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Spécialité: Micro et Nanotechnologies, Acoustique et Télécommunications
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présentée et soutenue publiquement le 9 Décembre 2016 par:
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Abstract

A deeper understanding of the radio channel propagation phenomena is the key
to improve the overall performance of wireless communication systems. This is
particularly true for challenging propagation environments wherein strong diffuse
scattering mechanisms are observed. However, the most recent radio channel models
do not include this component and must be re-evaluated.

In this thesis, it is proposed to decompose the polarimetric MIMO radio chan-
nel into specular and dense multipath components (SMC and DMC) where DMC
includes diffuse scattering and weak SMC. The purpose of this decomposition is to
investigate the contribution of DMC to the radio channel and develop a compre-
hensive modeling framework; framework which has been applied to two propagation
scenarios presenting strong diffuse scattering mechanisms: indoor industrial and out-
door vegetation. Here, novel polarimetric models have been developed and validated
from measured radio channels.

Moreover, a multipath component distance (MCD)-based automatic clustering
identification algorithm is proposed to group SMC obtained from measured radio
channels. Its performance and robustness are compared with the K-means MCD
algorithm using cluster data simulated by the WINNER II channel model. The
validated clustering algorithm was then directly applied onto data which were esti-
mated from the measured radio channels with or without DMC in the radio channel
data model.

The results unambiguously demonstrate that the proposed models not only pro-
vide a better understanding of the propagation mechanisms but also that radio
channel models without DMC could potentially mislead the interpretation of those
mechanisms.
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Introduction

Over the past decade, the continuous and massive arrival of smart and compact
equipments such as laptops, smartphones, tablets, or even phablets (contraction of
phone and tablet) as well as the growing thirst of third-party applications for data
has required the design of novel telecommunication architectures and signal process-
ing techniques. From the basic voice calls to the HD video applications, all of these
services generally require a larger throughput with reduced latency. Unfortunately,
the limited bandwidths of the existing communication systems can not satisfy the
increasing demand and various technical solutions have been proposed and emerged
at different layer levels of the system. Multiplexing and diversity-based techniques
have been gradually introduced in recent communication systems to support this
trend. As an example, MIMO (Multiple-In Multiple-Out) techniques which rely
on the use of multiple antennas at the transmitter and/or emitter were proposed
to exploit the spatial dimension of the physical radio channel and provide a higher
spectrum efficiency solution. For instance, MIMO techniques can either be deployed
to increase the total throughput or improve the overall robustness of the commu-
nication link under degraded conditions. This technique has been standardized in
wireless communication protocols such as the WiFi 802.11n/ac legacy standards,
LTE, or WiMAX. This technique takes advantage of the inherent multipath effect
in a rich scatterer environment like urban or indoor scenarios. Moreover, polariza-
tion diversity in the radio channel can provide another dimension to further increase
the robustness or throughput of the radio link.

Communication systems need to operate in the most complex and harsh radio
channel propagation environments. As an example, the Internet of Things (IoT),
which will be encompassed in the upcoming 5G standard, widen the application
range of wireless communication systems and can be deployed in any favorable or
not propagation scenarios. As a consequence, the performance of such systems
must be evaluated thanks to dedicated radio channel models. It is well-known that
the radio channel exhibits different characteristics under different propagation en-
vironments. Hence, in order reach a reliable and robust communication link, the
radio channel has to be studied for a wide range of propagation scenarios, frequency
bands, and antenna types and configurations. For instance, the interest to deploy
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wireless systems in the industrial field under the scope of smart factories or factories
of the future grows progressively to increase the productivity and flexibility. In ad-
dition, another inevitable propagation environment is the vegetation scenario which
is widely recognized by the mobile operators as very challenging. Nonetheless, spe-
cific applications such as positioning or search and rescue services in forests require
robust communication systems.

The Multipath Components (MPCs) which contribute to the radio channel rich-
ness are directly linked to the channel fading properties as well as other known
physical effects described in this manuscript. For instance, in a geometrically com-
plex propagation environment, multipath fading severely degrades the performance
of communication systems and this effect is, as an example, particularly strong for
typical indoor scenarios. If the multipath characteristics can be well characterized,
then mitigation or dedicated access techniques can be implemented at the system
level to reduce the disturbance resulting from multipath fading. Therefore, a deep
understanding of the radio channel propagation phenomena and related character-
istics is the key to improve the overall system performance. Moreover, this enables
the development of more realistic multi-purpose radio channel models which can
then be used for wireless network and smart city planning.

Figure 1 presents the typical methodology to characterize the propagation char-
acteristics of any scenarios and to develop realistic radio channels. First, a narrow-
band or wideband system with single or multiple antennas are used to measure the
radio channel transfer functions. Many large-scale features of the radio channel can
be estimated from the measurement data such as the delay spread, coherence band-
width, etc. In addition, path loss models to predict the received signal strength
can be derived. These parameters or models have been very popular as simple
metrics to deploy and design wireless communication systems. However, they do
not provide any understanding of the inherent propagation mechanisms such as the
MPC or diffuse scattering. At this point, it was shown that the MPC and diffuse
scattering can be subcategorized into specular multipath components (SMC) and
dense multipath components (DMC). SMC includes the large Signal-to-Noise Ra-
tio (SNR) SMC whereas DMC includes both diffuse scattering and low SNR SMC.
In order to gain this knowledge, parametric estimation of the SMC must be per-
formed to assess the propagation mechanisms on a geometrical level. Basically, one
is interested into finding where, when, and from which direction the SMC depart
and/or arrive at the transmitter and/or receiver side, respectively. The radio chan-
nel propagation characteristics can then be statistically investigated as a function
of transmitter/receiver distance, polarization, frequency band, etc. Furthermore,
algorithms can be applied to the estimated data to group the MPC into clusters
which can be further statistically analyzed. The comprehension of the propagation
mechanisms in terms of geometrical parameters and clusters form the basis of the
recently developed geometry-based stochastic channel models (GSCM). GSCM aim
at providing realistic simulated radio channels at the link and system levels while
minimizing the computational time. However, it must be clear that all the devel-
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Figure 1: Radio channel modeling methodology.

oped radio channel models and underlying propagation mechanisms do not take into
account diffuse scattering (or DMC) and must be re-evaluated. In this context, the
motivation behind this thesis lies in the will to investigate and provide a detailed
study of the diffuse scattering characteristics in highly diffuse scenarios.

Due to the natural presence of rich scatterers, the industrial and vegetation
scenarios, which are not widely studied in the literature, have been identified as
challenging propagation scenarios. Thus, the level of understanding of the propaga-
tion mechanisms for these scenarios is rather low or not sufficient. In addition, radio
channel models such as path loss or clustering-based models for these specific sce-
narios are not only scarce but also completely undermine the contribution of diffuse
scattering. Hence, the originality of this work is to examine the contribution of this
component to the polarimetric radio channel with newly built dedicated path gain
models. In addition, in order to highlight the impact of diffuse scattering on the
goodness and validity of clustering features, the clustering data is studied with the
hypothesis that diffuse scattering is included or not in the radio channel. Finally,
another originality of this thesis arises from the inherent difficulties to link experi-
mental measurement of polarimetric radio channels including diffuse scattering with
theoretical modeling of propagation components and clustering features estimated
from these radio channels.

This manuscript is organized around five chapters as follows:

The first chapter is dedicated to the state-of-the-art on radio channel propa-
gation. The multipath components are introduced and associated with the radio
channel fading effects. In addition, a comprehensive analysis of the propagation
mechanisms and models in industrial and vegetation environments is presented. Fi-
nally, a review of the most previous works on this topic is provided.

In the second chapter, the maximum-likelihood (ML) channel parameter esti-
mation technique used to estimate the double-directional multipath component and
diffuse scattering is described. This technique is pivotal in this work to assess the
radio channel characteristics from measured radio channels. Furthermore, a de-
scription of the two MIMO radio channel sounders as well as the antenna array
characteristics will be introduced.
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The third chapter is the heart of this manuscript in which all models including dif-
fuse scattering are presented. First, the developed polarimetric distance-dependent
model of the received path gain and path loss model for indoor scenarios will be
presented. Moreover, a novel dedicated automatic clustering identification method
will be proposed and its performance and robustness discussed.

The fourth and fifth chapter focus on the propagation characterization and mod-
eling of an industrial and vegetation scenarios, respectively. The measurement
campaigns will be introduced in details. The validation of the distance-dependent
model is discussed and a discussion on the propagation characteristics is proposed.
The clustering of the estimated data and subsequent statistical analysis of the
cluster/intra-cluster distributions is finally presented.

Finally, a general conclusion and perspectives are provided to the reader.
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Chapter1
State-of-the-art on radio channel
propagation and modeling

1.1 Multipath channel

Basically, wireless radio propagation is the physical process of electromagnetic
waves propagating at a given frequency or across a frequency range in both space and
time. The simplest radio propagation example is free space propagation where it is
considered that the transmitter and receiver are under unobstructed Line-Of-Sight
(LOS). If only the direct wave arrives at the receiver, the received signal power is
inversely proportional to the square of the distance and is well predicted by the Friis
free space equation [7]. However, under most common radio channel propagation
scenarios, the propagation environment is far more complex than the free space case
and a deeper analysis of the channel propagation mechanisms must be performed.

1.1.1 Channel propagation mechanisms

The electromagnetic waves will interact with all the objects present in the en-
vironment. Under the geometrical optics description, the waves are often called
rays or paths. Figure 1.1 presents the three fundamental propagation mechanisms:
reflection, diffraction, and scattering diffusion.

Reflection mechanisms have been studied for decades on the analytical, numeri-
cal, and measurement level. Reflection phenomena occur when an electromagnetic
wave impinges on one object which has a large electrical dimension compared to the
incident wavelength. During reflection, the angle of incidence and angle of reflec-
tion are identical. Typically, specular reflection of the electromagnetic waves would
occur off the ground, walls, and ceilings (indoor scenarios) and can be described in
terms of Fresnel reflection. Besides, one important propagation model associated to
this phenomenon and derived from the free space equation is the ground reflection
model [7] which should also be mentioned.
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(a) (b) (c)

Figure 1.1: Example of the three basic propagation mechanisms: (a) reflection, (b)
diffraction, (c) scattering.

Another classical electromagnetic propagation mechanism is diffraction. This
effect happens when a wave impinges on an edge sharp object. According to the
Huygens principle, each point on the wave front can be considered as a secondary
source. At the boundary of the edge, these secondary sources will illuminate the
shadowed region behind the obstacle space. Diffraction is described in details in
terms of the Fresnel Zone. The signal attenuation can be well predicted by the
single knife-edge diffraction model [7]. This model was further extended in [8] to
apply on the multiple knife-edge diffraction problem.

Last but not least, scattering phenomena occur when electromagnetic waves im-
pinge on rough surfaces. The energy is then diffused in all directions. Diffused
energy makes an importance part in the received energy of radio channels because
they are more likely to arrive at the receiver compared with reflected waves. Diffu-
sion is strongly dependent to the surface roughness characterized by the Rayleigh
criterion. Furthermore, one scattering loss factor [8, 9] has been introduced to de-
scribe the diffused electrical field.

1.1.2 Radio channel fading

In a complex radio channel propagation environment such as indoor scenarios, the
electromagnetic waves arrive at the receiver from different directions (see Figure 1.2)
and exhibit different signal strength, phase, and polarization state. In addition,
they can individually suffer different propagation mechanisms or a mix of several
propagation mechanisms. It follows that the received signal can be understood as
a sum of these attenuated and delayed waves. In addition, since the multipath
components are filtered by the receiving chain due to the limited bandwidth of
analog/digital electronic components, multipath components arriving within the
delay resolution of the system coherently add up. This whole process is the cause
of multipath propagation and fading.

Fading can be split into large-scale and small-scale fading. Large-scale fading
(or path loss) describes the received signal level after traveling over a large area
(hundreds of wavelengths) whereas small-scale fading describes the signal level af-
ter encountering obstacles (several wavelengths to fractions of wavelengths) in the
vicinity of the receiver. These effects are highlighted in Figure 1.3 which presents
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Figure 1.2: Multipath radio channel

Figure 1.3: Large-scale and small-scale fading effect on the received signal level

the normalized received power over transmitted power as a function of distance.

1.1.2.1 Large-scale fading

Path loss was introduced to characterize the signal strength over large trans-
mitter and receiver distances. Path loss models are important tools to analyze the
cellular coverage range and optimize the communication systems.

Typically, the path loss can be modeled as following:

PL(d) = PL(d0) + 10n · log(
d

d0

) + χσ (1.1)

where χσ is a log-normally distributed random variable with zero mean (in dB) and
standard deviation σ characterizing the shadowing effect, n the path loss exponent,
and d0 is the arbitrary reference distance. The parameters are empirically derived
from measurement data using power law fittings. Path loss models are very popular
and provide a general behavior of the received signal level for any scenarios [7].
However, it must be noted that they don’t provide information about the underlying
propagation mechanisms in the radio channel.
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1.1.2.2 Small-scale fading

Small-scale fading is a consequence of the multipath propagation nature of the
channel. There are generally two factors influencing small-scale fading which are
the delay spread and the doppler spread. From the system level, the multipath
channel capacity is limited by the delay spread of the channel. If we are under the
case of selective fading, see Table. 1.1, the rapid fluctuation of the received signal
strength will result in inter-symbol interference which will further cause a degraded
communication link with a large Bit Error Rate (BER).

Table 1.1: Delay spread impact to small-scale fading

Flat fading Selective fading
Signal bandwidth < channel bandwidth Signal bandwidth > channel bandwidth
Delay spread < symbol period Delay spread > symbol period

In addition, the doppler spread which is a consequence of the radio link dynamics
can also contribute to the small-scale fading as presented in Table. 1.2. When the
channel suffers fast fading, the impulse response of the channel will be distorted and
the SNR will be decreased resulting in an increased BER.

Table 1.2: Doppler spread impact to small-scale fading

Fast fading Slow fading
High Doppler spread Low Doppler spread
Coherence time < symbol period Coherence time > symbol period
Base-band signal variation < channel variation Base-band signal variation > channel variation

From the channel modeling point of view, small-scale fading can be well modeled
with random variables. For instance, Rayleigh fading model is popular to simulate
the radio channel under Non-LOS (NLOS) propagation conditions whereas Rician
Fading model is suitable for LOS conditions [7].

1.1.2.3 Polarization

Polarization is yet another electromagnetic characteristic which is a source of
radio channel fading and can be used to boost the communication link performance.
To date, systems using orthogonal polarization states have been playing an im-
portant role in modern wireless communication [10]. If well designed, polarization
diversity is a technique that mitigates deep fading due to the random handset ori-
entation and multipath propagation. Also, the transmitted rate can be potentially
doubled or tripled compared to single polarized systems [11]. The effect of po-
larization mechanisms can be seen not only from the radio channel but also from
the receiver side. From the electromagnetic propagation point of view, depolariza-
tion is caused by the multiple reflections or oblique reflections with objects present
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in the environment. The complex reflection coefficients depend on many parame-
ters including the objects properties, roughness, frequency, etc. [7]. Under certain
conditions, high-order specular reflections can result in receiving partially canceled
orthogonal polarization links. From the antenna point of view, the conventional dual
polarization antenna has limited cross-polarization discrimination. This will intro-
duce correlation between the signals received at the ports resulting in a decreased
performance.

When polarimetric measurements are considered, the impact of the antennas
must be, anyhow, removed from the analysis of the radio channel characteristics since
both the emitting/receiving antennas and propagation mechanisms have an effect
on the received polarimetric signal levels. This implies that the polarized antenna
patterns which describes the received frequency-dependent gain as a function of the
polarization vector must be measured [12].

Channel depolarization is characterized using the cross-polarization discrimina-
tion (XPD) defined as the ratio of the co-polarization average received power to
the cross-polarization average received power. The co-polarization is defined with
respect to the emitter polarization state.

XPD(dB) = 10log10

(
〈P co−pol〉
〈P cross−pol〉

)
(1.2)

where〈P co−pol〉 is the average received power for the co-polarization link whereas
〈P cross−pol〉 is the average received power for the cross-polarization link.

1.1.3 Multipath radio channel

The signal power is one of the key parameters to design robust communications
chains. It can evidently be measured from the received signal but also modeled.
The modeling complexity will not only depend on the observable frequency, space,
and time samples but also on the underlying physical understanding of the radio
channel. Let’s first consider the Single-Input Single-Ouput (SISO) link with one
fixed transmitter and one moving receiver. Assuming a constant speed, the complex
time-varying channel impulse response is obtained at each sampling time. For such
a case, the channel impulse response is a series of complex values containing various
channel information. One of the most classical and simple model for the baseband
time-varying channel impulse response is given by:

h(t, τ) =

N(t)−1∑
i=0

ai(t)e
−jθi(t)δ(τ − τi(t)) (1.3)

where t is the sampling time, τ the excess delay, a the complex amplitude, θ the
phase, and N the number of received paths. It is noteworthy that this delay model
is incomplete as it does not take into account the spatial or angular distribution
of the paths with respect to the transmitter or receiver. If the measurement time
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is smaller than the coherence time of the channel (time duration over which the
channel impulse response is considered to be not varying), the channel radio channel
is considered to be stationary and the transmitter/receiver distance d can be included
such that the impulse response is given by h(τ, d). Since this manuscript primary
focuses on the development of stationary models, the time-varying aspect of the radio
channel is not discussed. Also, it has to be mentioned that the impulse response
can alternatively be obtained and modeled as the inverse Fourier transform of the
complex transfer function with respect to frequency H(f, d).

For the MIMO techniques considered here, the observed impulse response can
be simply extended to h(τ, d,m, n) where m and n are respectively the number of
transmit and receive antennas. The power of the multipath components can then
be computed as a function of time delay from the channel impulse response. This
power delay profile (PDP) is defined as the expectation of the squared amplitude
over all antennas.

P (τ, d) = E
[
|h(τ, d,m, n)|2

]
(1.4)

An arbitrary example of the PDP is illustrated in Figure 1.4.

1.1.4 Specular and Dense Multipath Component

1.1.4.1 Specular Multipath Component

Originally, the radio channel was considered as a mere collection of Specular Mul-
tipath Components (SMC) that have well-defined discrete locations in the different
radio channel dimension plus Additive White Gaussian Noise (AWGN). Hence, the
contribution of the distributed diffuse scattering process was broadly neglected. Ba-
sically, SMC include any paths suffering reflection and diffraction mechanism. A
given SMC can be described by a set of geometrical parameters including the Time-
Of-Arrival (TOA), Direction-Of-Arrival and Departure (DOA/DOD), and doppler.
From Figure 1.5, it can be observed that the band-limited radio channel makes it
somewhat difficult to extract individual paths in the delay domain. Nonetheless, it
is possible to identify a few SMC exhibiting a high SNR as well as their TOA and
peak amplitude.

At this point, only typical large scale parameters such as the root-mean-square
(rms) delay spread, coherence bandwidth/time, power, signal-to-noise-ratio (SNR),
and other characteristics can be computed from the measured channels [7]. Nonethe-
less, advanced digital signal processing techniques have been developed since the
early seventies to extract the geometrical parameters of individual components
mostly for radar and localization applications. In particular, high-resolution para-
metric estimation techniques described later in this manuscript allow to separate the
multipaths components from the measured complex impulse response (or transfer
function). These techniques rely on the diversity offered by the system to esti-
mate the geometrical parameters. For instance, the TOA can be obtained thanks
to the frequency diversity. The DOA/DOD are provided by having multiple anten-
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Figure 1.4: Example of a normalized channel at 1.35 GHz with 80 MHz bandwidth
under LOS condition for an outdoor scenario.

nas at the receiving and transmitting side, respectively. Finally, the doppler can
be estimated from samples of the time-varying radio channels. Depending upon
the communication link type and investigated scenario, it is then possible to jointly
estimate one or multiple parameters for each SMC.

1.1.4.2 Dense Multipath Component

When these estimated SMC components have been removed from the channel
impulse response, it is typically observed that the residual power is still rather
large. This power was historically attributed to distributed diffuse scattering which
was omitted in the data models of the estimators. It is only recently that it has
been revealed that not only the radio channel includes distributed diffuse scattering
on electrically small objects but also SMC with low SNR values. Nowadays, it is
well-accepted that these effects cannot be distinguished from each other and form
the basis for the Dense Multipath Components (DMC) [13] which illustrated in
Figure 1.5. In other words, DMC can be alternatively be interpreted as the non-
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Figure 1.5: Example of a band-limited limited Power Delay Profile for an indoor
environment with SMC and DMC.

coherent superposition of paths with weaker SNRs than the SMC, which still follow
the specular power decay as a function of distance [14, 15]. Hence, the introduction
of DMC in the physical model implies that common radio channel parameters have
to be re-evaluated. DMC is introduced to describe the contribution of large number
of weak propagation path that cannot be estimated. The contribution of DMC to
the total received power can vary between 10% and 90% [16] and is observed to
depend strongly on the propagation environment. It also follows that DMC plays
an important role in the channel capacity.

Therefore, a faithful DMC model is critical to assess the propagation character-
istics of the radio channel model. It is observed that the PDP decays exponentially
over time delay and has a base delay corresponding to the first arrived signal com-
ponents. The most widely used DMC model was introduced in [17]:

P(τ) = E[|h(τ)|2] =


0 , τ < τ

′

d
1

2
α1 , τ = τ

′

d

α1e
−Bd(τ−τ ′d) , τ > τ

′

d

(1.5)

where τ
′

d is the base delay, α1 the maximum power, and Bd the coherence bandwidth
of the diffuse components. Figure 1.6 illustrates the PDP obtained from the DMC
parameters where α0 is the AWGN variance.

Even though the physical interpretation of the radio channel with DMC can
differ greatly with a radio channel with only SMC, it still has to be highlighted that
the characteristics used for typical coverage analysis (path loss, mean delay, root
mean square delay, and others) are still valid. However, the contribution of DMC
to these large scale parameters is broadly ignored in the literature.
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Figure 1.6: Example of Dense Multipath Component.

1.1.4.2.1 room electromagneticss theory One widely accepted assumption
is the exponentially decaying tail of the PDP observed in indoor measurement re-
sults. This observation coincidentally matches the acoustic reverberation results
which describe how the acoustic energy dissipates in a reverberation chamber. Later,
this theory has been extended into the radio frequency spectrum in terms of the room
electromagnetics theory [18]. The theory and experimental observation from the re-
verberation chambers confirmed that the exponentially decaying tail happens in the
radio frequency domain. Moreover, the decaying rate which is one important factor
to describe the PDP decaying tail was introduced. It can be theoretically obtained
from the Sabine’s [19] and Eyring’s [20] reverberation models. From these mod-
els, the decaying rate is further described by one reverberation time that is merely
a function of propagation environment parameters such as the average absorption
coefficient, the room volume, and the surface of the room.

Sabine’s reverberation model assumes that a diffuse field is solely contained in
a single room. Hence, the incident power source S(t) splits into the reverberation
power and the absorption power. This power balance function of an isotropic diffuse
field has been derived in [19]:

S(t) = V
dW

dt︸ ︷︷ ︸
reverberation power

+
cηA

4
W︸ ︷︷ ︸

absorption power

(1.6)

where c is the speed of light, A the energy absorption surface, V the room volume,
η the average absorption coefficient of the room, and W the energy density in the
room which is also a function of time.

If the energy source is switched off, S(t) = 0, a solution to the homogeneous
equation (1.6) is given by:

W (t) = W0e
−t/τ (1.7)

where τ is expressed as the Sabine’s reverberation time, it is further represented as:
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τSab =
4V

cAη
(1.8)

In contrast, this equation was slightly modified by Eyring for scenarios with larger
room volume. Eyring’s reverberation time is defined as:

τEyr = − 4V

cAln(1− η)
(1.9)

These models provide a simplified approach to predict the PDP characteristics.
Nonetheless, based on the room electromagnetics theory, various DMC models were
developed for indoor environments [21, 22, 23]. In these models, the DMC is typically
observed as the decaying slope of the PDP and characterized by its reverberation
time. Recently, the polarization and frequency band dependence to the reverbera-
tion time have been investigated in [24]. Besides, measurement campaigns with the
aim to study the DMC characteristics have been reported in several works. From
the existing literature, the absorption coefficient η was found to be 0.29 in [25] for
an industrial environment, and 0.45 in [26] for an indoor office, both using Sabine’s
model. Very recently, the reverberation effect has been experimentally validated in
typical indoor office environments with a dedicated validation process [27]. In this
later study, the PDP tail was observed to be independent of the measurement po-
sition. It also concluded that Eyring’s model is more accurate than Sabine’s model
when propagation environment with high absorption coefficient are considered. Fi-
nally, it has to be noted that these models are not appropriate for outdoor radio
channels even though DMC is also typically observed.

1.1.5 MPC Clustering

Depending on the complexity of the environment, Some of the MPC contributing
to the radio channel can display a high degree of correlation between each other in
the delay, angular and polarization domains resulting in the notion of clustering.
This physical correlation is attributed to the spatial distribution of the scatterers
in the environment either around the emitter or receiver. The cluster behavior
has been firstly observed by Saleh and Valenzuela [28] in the multipath channel
propagation of an indoor scenario for wide-band SISO channel measurements. The
Saleh-Valenzuela (S-V) model was introduced as an empirical statistical channel
model and an example is shown in Figure 1.7.

The cluster model is only defined in the power-delay domain and assumes that
the power of each cluster decays exponentially. The overall envelop also decays ex-
ponentially with a different decaying rate. This model has been widely accepted but
the cluster’s definition is only for the TOA due to the SISO configuration. Hence,
it does not provide additional information of the MPC distribution in the angu-
lar domain. Nonetheless, clustering techniques performed on MIMO radio channels
indicate that it is likely that the TOA, DOA, and DOD are correlated in indoor
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Figure 1.7: Example of Saleh-Valenzuela model for SISO measurement.

Figure 1.8: Example of cluster in a MIMO radio channel.

scenarios (MPC belonging to a cluster share the same characteristics). Modeling
of the radio channel under the clustering assumption is not only appealing because
of its simplicity but also because statistical distributions of the clusters and MPC
parameters can be derived and then applied to many similar scenarios. In addition,
clustering provides more insight into the propagation mechanisms of the radio chan-
nel. Figure 1.8 gives an example of a clustered double-directional radio channel in
the spatio-temporal domain.

The cluster characteristics of radio channels have been reported in various works [29,
30, 31, 32]. Typically, the average number of clusters, cluster delay spread, cluster
angular spreads, cluster lifetime, cluster fading statistic and cluster correlation, etc.
are computed after the clustering technique is applied onto the estimated MPC. Be-
sides, the inter-cluster and intra-cluster characteristics of outdoor scenarios have also
been reported in [33]. They concluded that the elevation angle should be included
in the clustering identification process when the transmitter and receiver are nearby
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rich scatterers. More recently, it has been reported that radio channel models which
do not include a spatio-temporal clustering hypothesis result in overestimating the
channel capacity [34].

The simplest cluster identification technique is to visually inspect the data in the
azimuth-delay domain. However, this identification method is very hard to apply
on large double-directional channel dataset estimated by high resolution channel
parameter estimation algorithms. In addition, the problem is tightly bound to the
definition of what a cluster should be. For instance, there are various opposite
definitions of the cluster like in [35, 36]. Nonetheless, it is generally accepted that
the intra-cluster distribution is rather similar from clusters to clusters and that the
inter-cluster distance must be sufficiently large to avoid cluster overlapping. These
conditions can be used to improve the definition of a cluster and optimize the sorting
process. Needless to say, an automatic cluster identification approach is needed to
compute the cluster characteristics for large dataset anyway. A complete approach
to study the cluster features was first reported in [37]. They found that the cluster
properties are different in LOS and NLOS scenarios.

1.2 Existing radio channel models

To evaluate the link/system performance under certain propagation scenarios,
radio channels have to emulated with dedicated radio channel models. These models
must reproduce the main propagation characteristics of these scenarios in terms
of path loss, delay spread, capacity for example. Evidently, the development of
radio channel models must be initially performed by investigating the propagation
characteristics of the environment. To study the behavior of the radio channel and
evaluate the wireless communication performance at the link or system level, the
channel impulse response model is often needed to simulate the distance-dependent
h(τ, d) multipath radio channel. There exists many versatile models which can
be classified into three categories: the deterministic model, stochastic model, and
geometry-based stochastic model. In the literature, we can find three types radio
channel model: the deterministic, the stochastic and the geometry-based stochastic
channel model.

1.2.1 Deterministic model

The deterministic model is based on the geometrical optics (GO) hypothesis in an
a-priori known electromagnetic environment. Ray-tracing and ray-launching tech-
niques are the main techniques to generate the SMC and rely on the Snell-Descartes
law’s of reflection for the reflected paths and the Uniform Theory of Diffraction
(UTD) [38, 39] for the diffracted paths. These methods need to establish one purely
geometric description of the scenario and the frequency-dependent electromagnetic
properties of the objects present in the layout (concrete, dry walls, wood, metal,
etc.). Ray-tracing computes all the paths between the transmitter and receiver
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using the image theory [40]. The order of reflection and/or diffraction which deter-
mines the total number of components can be set by the user and will in-fine dictate
the complexity of the simulated radio channel. In ray-launching, the environment
is discretized and the emitter launches paths onto all potential interaction points.
All the rays collected within a certain radius around the receiver are considered to
contribute to the radio channel. Since the number of paths can be very large, a
threshold is applied to remove the weakest paths and stop the algorithm. These
methods are computationally attractive and the resulting radio channels are rather
accurate to reproduce the propagation and large-scale characteristics of the channel
provided that the numerical map grasps the complexity of the real scenario. How-
ever, the approach suffers several drawbacks. First, the simulated radio channels
are only valid for the studied scenario. Then, the numerical map is a simplified
description of the environment at a given time and, therefore, does not include the
details which contribute to radio channel fading such as moving cars, people, urban
furniture, etc. However, they provide a general idea of the physical phenomena in
the channel and having decent prediction of the radio coverage, thus avoiding costly
measurements campaigns.

1.2.2 Stochastic model

Stochastic models describe the stochastic nature of the radio channel and are
developed for system evaluation and optimization with the purpose of easy integra-
tion in binding simulators during the development phase of the system. From the
channel modeling point of view, it considers the channel as a superposition of a finite
MPC number whose parameters are drawn from statistical distributions. One well
known statistical channel model is the Clark’s model [41] from which the Rayleigh
and Rice fading model can be derived. Besides, the SV model [28] and its extension
model [42] which also fall under the clustering approach should be mentioned here.
This model is motivated by the observation of the radio channel measurement that
the MPC are found to arrive in clusters. The SV model have been standardized in
the IEEE 802.15.3a and IEEE 802.15.4a for UWB systems. Generally these statisti-
cal models are developed for each type of environment [43]. However, these models
are only valid as long as the defining statistics for the channel being modeled are
accurate.

1.2.3 Geometry-based stochastic channel model

Geometry-based stochastic channel models (GSCM) aim at providing realistic
simulated radio channel while minimizing the computational time. The MPC pa-
rameters are defined in part or completely stochastically while taking into account
the geometrical information of the environment.

In deterministic geometrical approaches like ray-tracing discussed in the previ-
ous subsection, the scatterer locations are defined in a database and correspond to
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real objects in the map. In contrast, GSCM choose the scatterer locations in a
stochastic fashion according to a certain probability distribution. MPC will exhibit
single-bounce or consecutive multi-bounce scattering with these scatterers such that
parameters in both delay and angular domains can be computed at the emitter and
receiver side. The number of MPC and scatterers are selected in a pre-defined table
and also drawn with distribution laws. Clustering has been included in the most
recent GSCM models such as the COST 259 [44], WINNER II [45], Random Cluster
Model [46], and COST 2100 model [47]. As mentioned in the previous section, it
was observed that MPC tend to appear in groups in the delay and angular domains.
By including clustering features into GSCM, it also brings an additional simplicity
to the modeling parameters.

GSCM models considering cluster features can be divided into two types: system
level and cluster level model. In order to provide more insight into these two different
types, the WINNER II is taken as an example for the system level model whereas
the COST 2100 is considered for the cluster level model. At each sampled time, the
WINNER II will run the modeling process to define the corresponding instant radio
channel. This process is briefly introduced as follows:

- Define the large-scale parameters (LSP) according to pre-defined stochastic
distributions

- Generate the clusters and MPC according to these LSPs

In contrast, the COST 2100 model will generate the entire environment at once.
Also, the concept of cluster visibility region is introduced. Only the clusters within
the cluster visibility region around the receiver or mobile station (MS) will contribute
to the radio channel.

Then COST 2100 modeling process is:

- Define large number of clusters throughout the simulation environment

- Define the MS location and MPC from visibility region

- Generate LSPs based on the cluster scattering

The different framework between the WINNER II and COST 2100 is significant
but both models propose to reproduce the stochastic properties of MIMO radio
channels over time, frequency, and space domain. Each model has certain advantages
and limitations which are presented in the Table 1.3.

1.3 Radio channel characteristics and related mod-

els for industrial scenarios

Recently, there has been a growing interest from the industry to introduce wire-
less communication systems in the production lines to improve their competitive-
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Table 1.3: Comparison between WINNER II and COST 2100

GSCM WINNER II COST 2100
Type system level cluster level

Advantages LSP statistic guaranteed
No constraint of LSP

Independence environment description
Good extension

Limitations Rigid structure for large MS motion
Large deviation of LSP statistic

Complex representation of the clusters

ness [48]. Wireless communication is found to be more flexible and low-cost com-
paring to conventional wired communication systems already massively deployed as
a standard in industry.

Unlike the indoor office environment, the industrial propagation environment
includes many metallic objects of any size and geometry such that the number
of scatterers around the transmitter and receiver is relatively large. Hence, the
received signal is not only subject to heavy multipath propagation but also prone to
strong diffuse scattering mechanisms. Therefore, it is expected that the propagation
characteristics are rather different compared with indoor offices. Nonetheless, there
are to the knowledge of the author limited contributions in the literature dealing with
industrial multipath propagation channel. Furthermore, DMC was only discussed
in couple of those papers. Table 1.4 presents the most up to date complete list of
the measurement campaigns, setups, and study objects in industrial scenarios.

1.3.1 Narrow-band path loss

Large-scale path loss have been studied in several works based on the measure-
ment of radio channels and wireless sensor networks. Table 1.5 provides a summary
of the path loss parameters (exponent and shadowing) computed for these environ-
ments and scenarios. In these works, path loss was considered to follow a power law
and to be affected by shadowing as detailed in (1.1).

It is observed from this table that the narrow-band path loss parameters are
strongly dependent to the environment configuration as well as the measurement
frequency. When the measurement frequency is large, small metallic objects will
act as additional reflectors, thus resulting in an increased multipath propagation.
The path loss exponent n is found to be generally less than 2 (free space) for many
environments. Again, this fact may result from the heavy multipath propagation in
the channel. Meanwhile, it is also found that n is related to the path length and the
industrial topology as well as the material type presenting in the environment.

The narrow-band received signal envelop distributions have been reported in [52,
53, 60, 48]. The Rice distribution was originally reported to fit well the signal
envelop distribution in the industrial environment and this was also validated by
other measurement campaigns. Later, the Nakagami, Lognormal, and Rayleigh
distributions were also reported to fit well the received signal envelop distribution
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Table 1.4: Measurement summary in industrial environment

Reference Antenna Frequency Range Data processing Environment Dimension Study object

[49] MIMO
1.3 GHz

BW:22 MHz
RIMAX 21.3× 77.2× 12.2m3 Large-scale fading,

polarization property

[50][51] MIMO 800 MHz-2.7 GHz APDP
15× 17× 5m3

18× 27× 5m3

20× 30× 6m3

small-scale statistic,
cluster modeling

[48] SISO
900,2400,5200 MHz

narrow-band
N/A distance: 15-140 m

large-scale,
temporal fading

[52] SISO
1300 MHz

narrow-band
N/A

74000m2

100000m2

150000m2

280000m2

210000m2

large-scale,
small-scale fading

[53] SISO
2450 MHz

narrow-band
N/A distance< 95 m

large-scale
small-scale fading

[54] SISO
3.1-10.6 GHz

UWB
CLEAN distance:1-25 m

large-scale,
small-scale fading

[55] SIMO
3.1-10.6 GHz
3.1-5.5 GHz

UWB
APDP

13.6× 9.1× 8.2m3

94× 70× 10m3

large-scale fading
small-scale statistics,

clusters

[25] MIMO
3 GHz

BW: 100 MHz
RIMAX 20.4× 22× 4.8m3 DMC

reverberation time

[56] MIMO 800 MHz - 4 GHz APDP height:7 m
small-scale statistic,

cluster

[57] SIMO
5.2 GHz

BW: 120 MHz
ESPRIT 300× 120× 10m3 temporal,

angular characteristics

[58] SISO
2.4 GHz

BW: 80 MHz
PDP 16× 45× 10m3 large-scale fading,

delay spread

[59] MIMO
2.4 GHz, 5.2 GHz

BW: 80 MHz
Channel covariance

capacity
N/A MIMO channel modeling

contradicting the original findings. Therefore, it is concluded that deep studies on
this aspect are required.

1.3.2 Wide-band characteristics

The wide-band measurements in [58] reveal the fact that the delay spread varies
widely in the radio channel and this is attributed by the random location of the
scatterers. The coherence bandwidth is found between 5 MHz and 15 MHz. It
is also indicated that the use of directional antenna can diminish the BER of the
system. Also in [57], the delay spread is found to vary between 40 ns and 100 ns.
Azimuth spread of the DOA varies from 5◦ to 25◦ for LOS and from 10◦ to 35◦

for NLOS scenarios, respectively. In [50], the cluster is visually identified in the
power-delay domain. Therefore, the PDP of the wide-band channel is successfully
modeled by the S-V model. Besides, the Weibull distribution was found to fit the
MPC small-scale fading.

The Ultra-Wide-Band (UWB) measurement in [55] reported that the delay spread
varies from 28 ns and 38 ns for LOS and 34 ns and 51 ns for NLOS, respectively.
Small-scale fading is fitted by the Rayleigh distribution whereas path loss is Log-
normally distributed. In [54], the average path loss is found to be increasing expo-
nentially. Also, the path loss exponent is larger than for indoor office environments.
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Table 1.5: Summary of path loss parameters [3]

Environment type Frequency(GHz) scenario d(m) n χσ (dB)

Industrial facility [60] 2.4
LOS 100 1.6 -

NLOS 100 3.73 -
Chemical pulp and cable factories [53] 2.45 LOS 95 1.1 -

Nuclear power plant [53] 2.45 LOS - 1.86 -

Oil rig installation [61]

2.4
LOS

10 1.39 1.82
5.8 10 1.76 1.83
2.4

NLOS
10 2.06 2.17

5.8 10 2.44 2.45
2.4

NLOS
10 1.17 1.22

5.8 10 1.41 1.31

Food and metal processing factories [48]

0.9
LOS 140 3.51 7.70
LOS 140 2.49 7.35

2.4
LOS 140 3.44 8.63
LOS 140 2.16 8.13

5.2
LOS 140 2.59 6.09
LOS 140 0.91 4.79

500 Kv Substation [62] 2.4
LOS 20 2.42 3.12

NLOS 20 3.51 2.95

Underground transformer vault [62] 2.4
LOS 20 1.45 2.45

NLOS 20 1.45 2.45

Main power room [62] 2.4
LOS 20 1.64 3.29

NLOS 20 2.38 2.25
Industrial facilities [52] 1.3 mixed 100 2.2 7.9

Corridor [63] 1.9 LOS - 1.80 -
Laboratory [63] 1.9 LOS - 2.20 -

Industrial hall [63] 1.9 LOS - 1.40 -

Assembly room [51]
0.9 LOS 16 1.72 3.80
1.6 LOS 16 1.37 2.58
2.45 LOS 16 1.69 3.93

Electronics room [51]
0.9 LOS 16 1.96 2.29
1.6 LOS 16 1.83 3.48
2.45 LOS 16 1.83 2.29

Mechanical room [51]
0.9 LOS 16 1.79 5.07
1.6 LOS 16 1.59 4.01
2.45 LOS 16 1.69 2.87
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For the channel modeling aspect, several radio channel models can be found
in the literature. One wide-band statistical channel model was proposed in [64] to
simulate the radio channel characteristic in the industrial open hall. Another GSCM
was proposed in [65] to simulate the radio channel in an industrial environment
within the production line. This model assumes that the scatterer density decays
exponentially with distance. Other physical statistical models were reported in [66,
67, 56] for which the S-V model was implemented to model the observed PDP. The
cluster definition of the aforementioned models are all under power-time domain.
The MIMO channel model in the industrial environment is reported in [59] which
concludes that the Weichselberger MIMO channel structure can better estimate
the channel capacity than the the Kronecker channel structure in the industrial
environment.

Very recently, the experimental analysis of the radio channel MPC in the indus-
trial environment has been reported in [25]. In this analysis, the MPC were split into
the SMC and DMC to deepen the analysis. The geometry of the industrial room was
found to have a significant influence to the channel characteristics. Also, the DOA
and TOA were observed to display different distributions. The DMC power was
found to vary from 23% to 70% under all investigated scenarios. One highlighted
point in [25] is the explanation of DMC by the room electromagnetics theory and
the computation of the average absorption coefficient. The industrial environment
was found to be 16% to 22% less absorbing compared to indoor office environments.

Finally, the polarization characteristics have been studied in [49]. Similarly
to [25], the polarimetric SMC and DMC have been estimated by de-embedding the
polarimetric radiating patterns of the dual-polarized measurement antennas. Under
the LOS condition, it was reported that the vertical polarization is more favorable
than the horizontal one. Similar results were obtained for the OLOS condition, but
the vertical polarization suffered more depolarization effects. Finally, a mean re-
verberation time of 70ns with low standard deviation and no significant difference
between polarized subchannels validated the room electromagnetics theory.

1.4 Radio channel characteristics and related mod-

els for vegetation scenarios

Similarly to the industrial environment, the vegetation radio channel propagation
is a particularly challenging outdoor environment and suffers from important mul-
tipath fading. The propagation mechanisms are pervasive to the specific topology
of the scatterers in-between the transmitter and receiver. One particular struc-
ture brought by the vegetation scenario is the tree canopy. It generally consists of
branches, forks and leaves of different dimensions, orientation and densities, which
also differ from species to species. On the other hand, throughout the seasons, the
density of leaves as well as the water content of trees vary, which could also im-
pact the communication links. The foliage nature is too complicated to provide one
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detailed mathematically modeling structure. Therefore, it could be considered to
be randomly distributed with asymmetry in the azimuth as well as in the elevation
planes. Also, one tree can be considered as a dense cluster of scatterers [68] to
simplify the analysis.

The propagation phenomenon through vegetation is complex. The radio signal
will be attenuated through the propagation due to a number of effects. Shadowing
and attenuation are generally considered to be caused by the leaves and the trunks.
Meanwhile, scattering is caused by branches and forks, and reflection and diffraction
mainly caused by the trunk. Since the forest is a random medium with many
discrete scatterers, radio waves experience a combination of different propagation
mechanisms which result in severe fading and introduces an excess vegetation loss to
the link budget. Also, fast fading caused by the wind or rain have to be considered
to establish reliable near-ground communication links.

1.4.1 Foliage path loss models

Propagation effects on terrestrial communication systems in the microwave and
millimeter wave frequency bands have been investigated for decades. The most
important effect introduced by the forest is the excess signal attenuation. In the
literature, accurate modeling of wave propagation behavior through foliage has at-
tracted significant attentions in recent years for its applications in many civilian
and military problems [69] [70]. Since a physical simulation of a complete forest is
too complex to conduct, simplification have to be made for the development of a
channel model with reasonable complexity.

The quantitative effect of vegetation on the radio wave attenuation is considered
as the difference between the measured path loss over a vegetated path and the ex-
pected path loss in absence of vegetation for the same systems and path parameters.
This additional loss due to the presence of foliage is termed as foliage loss.

The existing foliage path loss models can be classified into three categories:
a) empirical, b) semi-empirical , c) and analytical models. They mainly aim at
characterizing the effects of vegetation on propagation and the prediction of excess
attenuation.

1.4.1.1 Empirical models

The main advantage of these models is the simplicity of the mathematical ex-
pressions. However, they depend on specific measured data and they do not provide
information of the physical processes involved. The following models are cited ac-
cording to the band occupied from the lowest to the highest band.

1.4.1.1.1 Tewari models Tewari et al. [71] have realized an empirical model
which was later backed with a measurement campaign in an Indian forest [72] with
foliage depths from 40 m to 4 km. The vertical and horizontal polarized antenna
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Table 1.6: Exponentially Decaying (ED) path loss models

ED models Recommend frequency Distance Parameters: A, B, C
Meng [73] 240 MHz -700 MHz <5 km 0.48,0.43,0.13

Al-nuaimi [74] 10 GHz-40 GHz <140 m
0.37,0.18,0.59 out of leaf

0.39,0.39,0.25 in-leaf
ITU-R [75] 200 MHz - 95 GHz <400 m 0.2,0.3,0.6

Cost 235 [76] 9.6 GHz - 57.6 GHz <200 m
26.6,-0.2,0.5 out of leaf
15.6,-0.009,0.26 in-leaf

Weissberger [77] 230 MHz -95 GHz <400 m
1.33,0.284,0.588 (14 m<d≤ 400 m)

0.45,0.284,1(0 m≤ d<14 m)

are both used with frequencies values ranging from 50 to 800 MHz. The predicted
transmission loss is given by:

LTewari(dB) = 26.15− 20log10

[
Ae−αd

d
+
B

d2

]
(1.10)

where α is a constant describing the attenuation rate in dBm/m, d the distance
in m. The A and B constants are parameters to be fitted from the measurement
data. Interestingly, this path loss model predicts a possible dual-slope decaying rate.
For instance, it has been reported in [72] that the changeover from exponential to
logarithmic decay was at 400 m (which could be variable to different measurement
environment).

1.4.1.1.2 Exponentially decaying models Others empirical path loss models
fall under the type of exponentially decaying (ED) models. It is found that the excess
foliage loss can generally be well represented by the following expression:

Lfoliage(dB) = A ∗ fBdC (1.11)

The parameters A,B, and C can be empirically chosen or fitted from the measure-
ment data. The excess loss is corrected by the Free space model or by the ground
reflection model like the Meng’s model [73]. Table 1.6 presents a summary of the
existing exponentially decaying models found in the literature. Note a difference is
made whether the emitter is in or out of leaf.

These aforementioned models have been recently evaluated in [4, 5] based on
measurement campaigns conducted in European forests at 485 MHz with distance
under 1 km and at 1.9 GHz with distance up to 110 m. The results presented in
Table 1.7 show a good Root-Mean-Square Error (RMSE) for Meng’s model among
this family of ED models.

1.4.1.2 Semi-empirical models

This model is based on the knowledge of the qualitative behavior of absorption
and scattering in homogeneous scattering media. They are usually simply to apply
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Table 1.7: RMSE (dB) for the Exponentially Decay Models. (a) from [4] and (b)
from [5]

(a) Measurement at 485 MHz

Path Loss Model RMSE (dB)
COST 235 45.01
Free space 29.30

ITU-R 26.36
Plane Earth 16.64
Weissberger 15.52

Al-Nuaimi et al. 8.78
Meng et al. 6.40

(b) Measurement at 1.9 GHz

Path Loss Model RMSE (dB)
COST 235 13.2
Weissberger 9.0
ITU-R 7.1

but share the same disadvantages than the semi-empirical models. They do not take
account much of the channel dynamic effects and broadband effects of the vegetation
medium.

1.4.1.2.1 Seville’s model The Seville’s model was introduced in [78]. It is a
Dual-Gradient (DG) model which was found to give a better prediction than the
ITU-R model at 35 GHz, 37.5 GHz and 40 GHz with measured data. It is presented
as follows:

Afoliage =
R∞
faW b

+
k

W c

(
1− exp

(
−(R0 −R∞)W c

k
d

))
(1.12)

where f is the signal frequency in GHz and a, b, c, k, R0, R∞ are constants presented
in Table 1.8. The DG model takes into consideration of another dimension of the
measurement, ex. the illumination width. This gives a measure of the volume of
vegetation illuminated by the beam widths between the transmitter and receiver
antennas. W is the maximum effective coupling width between the transmit and
receive antennas which is derived from the measurement geometry.

Table 1.8: Constant values for Seville’s model

Constant Parameter in leaf out of leaf
a 0.7 0.64
b 0.81 0.43
c 0.37 0.97
k 68.8 114.7
R0 16.7 6.59
R∞ 8.77 3.89
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1.4.1.3 Theoretical model

While the empirical or semi-empirical models are usually simple to apply, they
are based on specific measured data and fail to relate the foliage path-loss to the
foliage dependent parameters such as tree species and density. On the other hand,
theoretical model provides an insight into the physical processes involved in radio
wave propagation through foliage by introducing the incoherent wave component
into consideration which is the dominant propagation component for large vegeta-
tion depth. However, these models are more complicated, but more generic and
applicable to any arbitrary foliage wave propagation scenario and over a large fre-
quency range. Several models were found in the literature.

• Radiative energy transfer theory [79]

• Geometrical and uniform theory of diffraction [80]

• Full wave solutions [81]

• Physical optics [82] [83]

• Statistical wave propagation (SWAP) model [84]

Later, a generic theoretical model covering the 1-60 GHz range [85] [86] was
reported. In this model, a combination of Radiative Energy Transfer, ground re-
flection and edge diffraction models was realized and verified for a wide variety of
vegetation media, path geometries and frequencies. This narrow-band model yields
an RMSE of 8.38 dB (11.51 dB for ITU-R) from variable measurements.

These models generally assume that the vegetation is a horizontal homogeneous
medium. The forest can be modeled into randomly distributed particles or dielectric
slab having random orientation. To achieve a reasonable computational time of these
models, the simplicity is made in the calculation of first order component of basic
function in the theoretical model. Moreover, the mathematical complexity in these
models prevent the compatibility to include the higher order propagation mechanism
in the model.

These theoretical models generally predict a dual-slope path loss model which
correspond to the coherent and incoherent signal components or one exponential
decaying function to the path loss. The main disadvantage of all these models is
that the final results is presented by the excess attenuation caused by the presence
of vegetation.

1.4.2 Lateral waves

In the literature, it is generally accepted that the signal components in the typical
vegetation scenario are formed by three parts shown in Figure 1.9: the direct wave,
the ground reflected wave and the lateral wave. The lateral wave is a particular
signal component presenting which was initially reported by Tamir [87] and Li [88].
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Figure 1.9: Propagation mechanisms through the vegetation.

It is considered to mainly propagate on top of the canopy along the air-canopy
interface. The lateral waves are dominant at the treetops over a large forest depth
at VHF (30 - 300 MHz) and low UHF (300 MHz - 3 GHz) bands. Therefore, the
main contribution to the received signal strength is not only the direct wave and
ground reflected wave but also the lateral wave. The lateral waves being essentially
a scattered field results in wide fluctuations in the measured data.

1.4.3 Polarization

The radio waves get substantially depolarized due to their scattering by the
foliage while propagating through the vegetation medium. It is one of the important
aspects of radio wave propagation in terrestrial links and must be considered for the
design of communication systems operating through dense or deep foliage. Generally,
the depolarization mechanisms were found to strongly depend on wavelength, ground
topography, foliage structure such as the size and density of leaves, orientation and
number of branches.

The depolarization effect have been studied in several works. In [89], the single
tree depolarization effects have been analyzed with measurements in an anechoic
chamber conducted at 20 GHz. The measurement focused on the depolarization
effect as a function of the incident angle on the tree. They found that the tree
structure trends to cause heavy depolarization at certain incident angles. It has
been highlighted that the transmitted vertical linearly polarized wave has been de-
polarized to a near horizontally polarized wave by the vegetation material. Besides,
they have observed the random change of polarization state due to the tree structure.
The depolarization occurs as a result of the various components of the tree struc-
ture. These components are then re-transmitting the waves at different polarization
resulting in an overall depolarization of the originally transmitted wave.

In [90], another measurement campaign has been made on the hilly (THF) and
flat (TFF) ground, respectively. The 1900 MHz and 390 MHz bands were investi-
gated with a maximal distance of 1.6 km. For short distances, it was found that the
1900 MHz band suffers less depolarization effect compared to the 390 MHz. This
gap is further affected by the topography effect. Generally, less depolarization is
observed on the flat ground compared to the hilly ground. When the vegetation
depth increases to a certain distance, the received signal is completely depolarized.
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For both topography condition, the results showed an equal depolarization effect for
both transmitted polarization in the 400 MHz band. In the 1900 MHz band, a higher
depolarization of the vertical polarized signals with up to 3-4 dB was observed.

1.4.4 Weather impacts

Evidently, the motion of the tree structure caused by the wind and rain has to
be considered as it will strongly introduce fast fading. This is particularly true in
the millimeter band due to the high level of humidity during the rain periods.

1.4.4.1 Wind

Wide variations in the received signal strength have been reported in [72, 91, 92]
during the periods of strong winds in the forest. This fluctuation in the received
signal is believed to be caused by the change in orientation of various scatters (like
leaves and branches) due to varying wind velocity. Also, a series of vegetation
scattering measurement during various wind condition was reported at 0.9, 1.8, 2, 12
and 17 GHz in [93, 94]. A high dependency between wind speed and received signal
was found based on measurements in an anechoic chamber and outdoor scenarios.
A statistical study of the K-factor confirmed the change of distribution law from
Rician to Rayleigh distribution due to the increasing of wind speed (0.51 m/s-7.1
m/s).

1.4.4.2 Rain

The rain effect has been reported in [6]. One measurement campaign was per-
formed inside a tropical forest at 240 MHz carrier wave. The foliage depth covered
in this experiment was 710 m. The transmit and receive antennas were both kept
stationary and at a constant height of 2.15 m. The rainfall was found to have distinct
effects on various parts of the propagating components for the VHF radio wave prop-
agation. The lateral wave at VHF band is the dominant mode of propagation and
is not affected by the presence of rain as it is similar to free space propagation over
the tree tops. The multipath components induced by the discrete scatterers such
as leaves, branches and tree trunks due to the wet foliage channel are significantly
affected by the variation in rain intensity.

It is reported in this work that the multipath components are attenuated to
different extents under different rain intensity conditions. Moreover, these effect
results in a variation of the RMS delay spread (Table. 1.9). Under steady rainfall,
the RMS delay spread decreases as the intensity of the rain increases. However,
unsteady heavy downpour can induce motion of the damp foliage medium, and thus
generates a variation in the multipath components.
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Table 1.9: mean RMS delay spread in a tropical forest after [6]

Weather τRMS (in µs)
No rain 0.2137

Slight rain 0.1639
Moderate Rain 0.1316

heavy rain 0.2206

1.4.5 Multidimensional measurements in vegetation scenar-
ios

To the knowledge of author, there are very limited multidimensional measure-
ments and studies which were reported in the literature for vegetation scenarios.
Furthermore, it appears only SIMO measurements were performed in many differ-
ent forest types around the world. This is probably due to the difficulty of having a
full array system deep in the forest. Table 1.10 presents a summary of these measure-
ment campaigns, frequency parameters, data processing technique, and objectives
of the work. Most of these studies focused on the spatial characteristics of the ra-
dio channel with the aim of providing a deeper understanding of the propagation
mechanisms for this scenario.

Table 1.10: Summary of SIMO measurements in vegetation scenario.

Environment Antenna Frequency Range Data processing Distance Study property

Palm plantation [95] SIMO
240 MHz
wideband

N/A 330 m,400 m,710 m Channel spatial correlation

Chigasaki forest [96] SIMO
455 MHz, 810 MHz,
2.2 GHz, 3.35 GHz

Wiener-Khintchine 100 m Spatial angular spread

Kauagawa forest [97] SIMO
2.22 GHz

Bp: 44 MHz
SAGE 109-123 m Spatial angular spread

Louvain-la-neuve forest [5] SIMO
1.9 GHz

Bp: 80 MHz
N/A 40-110 m

Spatial angular spread
delay spread

kanagawa forest [98] SIMO
2.2 GHz

Bp: 50 MHz
Capon spectrum 100 m Spatial angular spread

1.4.5.1 Delay spread

[99] reported delay spreads at 1.3, 2 and 11 GHz conducted in a park. The results
showed an increase in the delay spread values as the vegetation depth was increased
with distance up to 50 m. From their observation, the delay spread was generally
below 20 ns for the three bands. [5] studied in detail the delay spread characteristics
at 1.9 GHz with distance values ranging from 40 to 110 m in a typical forest. The
delay spread was found to be ranging from 60 to 120 ns and an increase was also
noticed at longer distances (about 100 m). Finally, [70] reported measurements at
1.9 GHz in a forest for a maximum distance of 100 m. For a distance range between
50 and 200 m, delay spreads ranging from 30 ns to 80 ns and 20 ns to 60 ns were
obtained using omni-directional and directional antennas, respectively. It was also
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observed that wet foliage decreases the delay spread under the same measurement
conditions.

1.4.5.2 Angular spread

[97] showed that the azimuth spread for horizontal polarization is larger than
that of vertical polarization at 2.22 GHz with 44 MHz bandwidth. In addition,
the co-elevation spread for the vertical polarization is always larger than that of
horizontal polarization. Mean arrival azimuth and co-elevation spread of 25◦ and
6◦ were computed. Also, the frequency characteristics of angular spread is reported
in [96]. The study was based on UWB SIMO measurements from 450 MHz - 3.35
GHz and the transmitter height was varied from 5 m to 15 m. The mean angular
spread was found to be 25◦ within the studied frequency range and was not found
to be dependent to the transmitter antenna height. [5] reported a mean azimuth
spread value of 15◦ with a maximum 26◦ value from 1.9 GHz measurements with
distance ranging from 40 to 110 m. The azimuth spread was observed to decrease
as the distance is increased. Finally, a measurement campaign at 2.22 GHz with
50 MHz bandwidth was reported in [98] using a cylindrical array antenna at the
receiver side. The azimuth spreads were calculated at different antenna heights and
polarization state. However, due to the rough estimations of the azimuth spreads,
it was only observed spreading in the received angles due to the foliage interaction.

1.4.6 Summary of propagation characteristics and models
in vegetation scenarios

Typically, propagation studies have been mainly conducted with path loss models
as their major advantage is simplicity. In particular, empirical exponential decaying
models fitted from measurement data are widely used but are limited to describe
propagation mechanisms. On the other hand, both semi-empirical and theoretical
studies which take into account more physical propagation mechanisms predict dual-
slope path loss behaviors revealing the different interaction of coherent component
and incoherent components as a function of distance. However, this comes at the
expense of numerical/analytical complexity which is dramatically increased com-
pared with classical path loss models. Also, it can be noted that the polarimetric
aspect of the propagation was also included in path loss models. The signal charac-
teristics have been shown to be strongly dependent on the wind and rain which are
inevitable dynamic effects. Finally, multidimensional measurements have been per-
formed to evaluate the spatial spreads of the multipath components at the receiver
side. However, a description of the double-directional radio channel characteristics
is missing.
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1.5 Conclusion

In this chapter, the state-of-the-art on wireless radio channel propagation mecha-
nisms has been introduced. Depending on the considered environment, the received
signal characteristics can greatly vary and various models have been introduced in
the last decades to describe these phenomena. When it comes to the underlying
propagation components, it is now acknowledged that MPC can be split into SMC
and DMC. The introduction of DMC in the radio channel structure has been proved
to be a significant progress to understand the overall propagation mechanism but
requires that all existing radio channels must be redefined under this framework.
DMC can be explained as a reverberation phenomenon in closed or highly diffuse
propagation environments and has been systematically studied under the umbrella
of the room electromagnetics theory. Polarization is yet an other important radio
channel characteristic as channel capacity can be greatly increased with diversity-
based techniques. Finally, clustering was introduced from the observation on how
SMC tend to group in the delay and spatial domains. It is an attractive approach
to characterize the radio channel features and simplify models. For instance, the
deterministic, stochastic, and GSCM modeling approaches were briefly introduced
and their advantages/disadvantages were discussed.

Since this thesis focuses on the industrial and vegetation scenarios, the multidi-
mensional characteristics and radio channel models reported in the literature have
been presented for these two environments. It is concluded from these studies that
neither the industrial nor the vegetation propagation characteristics or channel mod-
els include a detailed description of DMC. Furthermore, since DMC is neglected or
omitted, one could question the validity of all presented results to correctly grasp
and model the propagation properties. Furthermore, it can be argued whether hav-
ing or not DMC in the data model impacts the propagation characteristics and the
development of dedicated radio channel models for highly diffuse scenarios. Hence,
the purpose of this thesis is to develop a general framework to characterize and
model the radio channel properties when DMC is observed.
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Chapter2
High-resolution parameter estimation
technique and radio channel measurement
systems

2.1 Introduction

Multiple antenna techniques were originally developed to improve the reliabil-
ity of the radio link or increase data throughput and will be a key technique to
support the deployment of upcoming standards like 5G. In parallel, the added spa-
tial diversity is pivotal to gain a deeper insight of the propagation mechanisms as
the SMC angular properties can be estimated and characterized. This estimation
process is performed by applying powerful and efficient mathematical algorithms to
the measured radio channels. Historically and since the venue of digital processing
techniques, several approaches have been developed to solve the multi-dimensional
parameter estimation problem. Nowadays, it is well acknowledged that parameter
estimation techniques play a major role to estimate the SMC parameters of the radio
channel. This resulted in the development of reliable and realistic models that can
be used to design and optimize wireless communication systems. Moreover, it is a
powerful and versatile approach which allows studying detailed behaviors and char-
acteristics of any type of radio channels in any propagation environments. However,
it must be highlighted that the majority of the results reported in the literature
were obtained from estimators which do not include DMC. Hence, the propagation
characteristics and related models undermine the contribution of DMC to the radio
channel. The main objective of this thesis is to fill in this gap.

In this chapter, several well-known estimators will be introduced under two cat-
egories: spectral estimator and high-resolution estimator. Their advantages and
disadvantages will be briefly introduced. Then, the maximum likelihood (ML) Ri-
MAX estimator will be introduced. RiMAX is the most recent channel parameter
estimator in the literature and includes not only SMC but also DMC in its radio
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channel model. Hence, it been used throughout this thesis to extract these compo-
nents from the measured radio channels to assess, in particular, the characteristics
of the DMC and its contribution to the radio channel. Also, the polarimetric 16
× 16 radio channel sounder systems used in the measurement campaign to obtain
the radio channels will be introduced and motivated with respect to the investigated
scenarios. Their main features as well as the antenna array and elementary radiating
element will be discussed. Finally, the performance of the RiMAX framework used
in this work will be presented for both systems and related antenna array.

2.2 Radio channel parameter estimation techniques

Radio channel parameter estimation is not only one estimation technique but
also a reflection on the radio channel structure. The data model of any estimators
rely on the knowledge of the physical propagation mechanisms and their statistics.
It follows that the development of better estimators can only be enabled if a deeper
understanding of the radio channel is gained. The purpose of the parameter esti-
mation algorithm is to extract or estimate the geometrical SMC parameters such
as DOA, DOD, TOA and polarimetric amplitudes from the received complex sig-
nals. This multi-dimensional problem has a high degree of complexity related to the
mathematical treatment and measurement system which explains why it has been
progressively solved over the recent decades.

There are generally two types of estimation methods: spectral methods such as
beamforming and high-resolution estimation such as SAGE, ESPRIT and RiMAX.
Each estimator has its own specificity and performance. For instance, the perfor-
mance is limited by the physical limitation of the measurement setup, data model
design, search strategies, and measurement noise.

First, let’s consider the observed narrow-band signal received over an antenna
array:

X =
[

x1 x2 · · · xN
]

=


x11(f0) x12(f0) · · · x1N(f0)
x21(f0) x22(f0) · · · x2N(f0)

...
...

. . .
...

xM1(f0) xM2(f0) · · · xMN(f0)

 (2.1)

where N is the number of observations or snapshots, M the number of antennas in
the array, and f0 the central frequency.

For each snapshot, the observed signal can be classically further described by:

xk = A · sk + nk (2.2)

where A ∈ CM×D, D is the number of incident signals on the antenna array, and
nk the measurement noise. Each column of A describes the phase information for
each propagation path. Some algorithms have been proposed in the literature to
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Figure 2.1: Example of DOA estimation problem with a ULA.

estimate D such as the AIC (Akaike Information Criterion) and MDL (Minimum
Description Length) metrics. They rely on the eigenvalues of the covariance matrix
Rxx computed from the observed signal X [100]:

Rxx =
XXH

N
=

1

N

N∑
i=1

xix
H
i (2.3)

The knowledge of the number of incident sources is critical as far as channel pa-
rameter estimators are considered. A correct estimate of the number of signals can
greatly minimize the parameter estimation errors. On the other hand, an incorrect
guess would result in poor estimates [101].

2.2.1 Spectral methods

The early channel parameter estimators fall under the category of spectral meth-
ods and have been widely used for treating angular estimation problems. They are
based on the search of maxima in spectrum functions which depend on the parame-
ter of interest. Each parameter is extracted from their respective spectrum function
within a searching range. As an example (this approach can be extended to any
dimensions), let’s consider the DOA estimation θ of a propagation path impinging
onto a M-element Uniform Linear Array (ULA) as illustrated in Figure 2.1. The
beamforming [102] method can be considered as a spatial filter which weights the
received signals on the antenna array:

yk = hH(θi)xk (2.4)

The purpose is to find the weighted vector hH(θi) which can maximize the signal
component arriving under the direction θi while minimizing for other directions θj
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with i 6= j. One solution for this problem was proposed in [103] and is now called
conventional Bartlett beamformer:

h =
a(θ)

aH(θ)a(θ)
(2.5)

where a(θ) is called the steering vector of the antenna array. This steering vector
describes the phase difference between all antennas as a function of the angle of
incidence and, therefore, strongly depends on the array topology [1]. The angular-
dependent power spectrum is computed from yHk yk after inserting (2.5) in (2.4).
The underlying idea is to artificially steer the main lobe of the antenna array in all
possible directions and then multiply with the received signal power. Obviously, the
searched direction will be found for the antenna lobe pointing toward the desired
direction. The main drawback of this method is its low spatial resolution which
is limited by the number of antennas in the measurement system. Besides, this
estimation method is highly sensitive to signal correlation between different elements
in the antenna array as well as the noise which greatly degrades the estimation
performance.

Another related estimator was introduced in [103] and named Minimum Vari-
ance Distorsionless Response (MVDR). The MVDR algorithm applies a spatial filter
that minimizes the variance of the received signal such that the post-filtering result
is not distorted. The MVDR/Capon spectrum proposed in [104] is based on the
assumption that the covariance matrix of the received signal is invertible:

h =
R−1xxa(θ)

aH(θ)R−1xxa(θ)
(2.6)

where R−1xx is the inverted covariance matrix of the received signal. The performance
of MVDR/Capon beamformer is better than the conventional Bartlett beamformer
due to the pre-whitening. However, this comes at the expense of additional matrix
inversion steps provided that the covariance matrix has a full-rank.

Generally, spectral methods do not provide sufficient estimate accuracy of the
geometrical parameters. However, they are attractive and popular because of their
simplicity of implementation and low computational time. This estimation principle
is now widely used as the initialization step for other high-resolution estimations.

2.2.2 High-resolution parameter estimation techniques

High-resolution estimators provide an improved estimation resolution compared
with spectral estimators. The most recent estimation techniques found in the liter-
ature are briefly presented hereafter.

1) MUSIC (Multiple Signal Classification) [105] exploits the properties of the
covariance matrix Rxx of the measured signal to extract the characteristics of the
signal components. The basic idea of MUSIC is to use the orthogonality property
between the signal space and noise space [106]. The MUSIC spectrum needs to



2.2. Radio channel parameter estimation techniques 63

be calculated from the steering vectors and noise space. The estimated parameters
correspond to the maxima in the MUSIC spectrum. MUSIC estimation has been
very popular to estimate the channel parameters in terms of delay and angle and
can be applied to arbitrary antenna array configurations. However, its performance
is largely influenced by the effective number of antennas in the array.

2) ESPRIT (Estimation of Signal Parameters via Rotational Invariance Tech-
niques) was introduced for the first time in [107]. It is a fast, efficient and robust
parameter estimator which can be used for estimating directions of incidence of mul-
tiple sources impinging on an antenna array. ESPRIT is based on the same signal
model than MUSIC. However, it has the advantage of reducing considerably the
computational time and memory required for storage. This arises from the decom-
position of the total antenna array into sub-array structures invoking Rotational
Invariance Techniques. This approach simplifies the numerous matrix operations
within the estimation algorithm. Its main drawback lies in the restriction of an-
tenna array configurations due to the invariance hypothesis. Also, it has a poor
capability to distinguish closed signal components. Its performance may also be
influenced by the pre-estimation of the number of signals.

3) SAGE (Space-Alternating Generalized Expectation Maximization) was intro-
duced in [108, 109]. It is an iterative ML estimator. The main idea of SAGE is to
divide the multi-dimensional parameters problem into several individual parameter
problems. This provides a simplification of the grid-search technique used to initial-
ize the geometrical parameters as well as the optimization steps. At each step, the
parameters for a given SMC are optimized by maximizing the difference between
the observed and estimated channel. The best estimated SMC is removed from the
observation matrix and the previous step is repeated until a criterion is reached.
However, SAGE requires a faithful estimate of the number of signals which is typi-
cally done with AIC or MDL. The performance of this estimator is therefore greatly
dependent on the quality of the initial estimated parameters. Another drawback of
SAGE is its slow convergence particularly for the case where the SMC parameters
are strongly coupled.

4) The RiMAX algorithm introduced in [1] is the most recent method to estimate
channel parameters. Similarly to SAGE, it is based on the exploitation of the ML
function and provides an approach that circumvents the joint estimation problems
encountered by the previous algorithms such as SAGE and ESPRIT. A sheer differ-
ence between RiMAX and the other algorithms lies into its data model and noise
hypothesis [110]. From that point of view, it is considered a more realistic radio
channel by taking into account DMC (Section 1.1.4.2). The drawback of RiMAX
is its implementation complexity but the algorithm outperforms SAGE in terms of
computational time.

The RiMAX framework was naturally selected to process the measured radio
channels since the main scope of this work deals with the characterization and mod-
eling of the MIMO radio links with diffuse scattering. A more detailed description
of the data model and estimation principle will be introduced in the next section.
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Figure 2.2: Definition of a propagation path or SMC after [1].

2.3 RiMAX Estimation technique

2.3.1 RiMAX radio channel and data model

The concept of paths or concentrated paths developed in the RiMAX framework
is illustrated in Figure 2.2. The propagation path parameters are defined as the
mean value of the parameters for a group of close rays. A single concentrated
propagation path which is simply called SMC in this manuscript can be expressed
under the double-directional radio channel model by a set of data including the
TOA, DOA for azimuth and elevation, DOD for azimuth and elevation, doppler
shift, and polarimetric amplitude.

The RiMAX channel model splits the received signal into a deterministic part
s(θsp) and a stochastic part ndan which contains DMC and AWGN. The deterministic
part is built from the geometrical SMC parameter vector θsp whereas the DMC is
built using the DMC parameter vector θdan introduced in chapter 2.4.2. All high-
resolution algorithms proposed before RiMAX neglected the contribution of DMC
to the radio channel such that only AWGN was added to the deterministic part.

h = s(θsp)︸ ︷︷ ︸
SMCs

+ ndan︸︷︷︸
DMC+Noise

(2.7)

Hence, the sampled radio channel in the frequency domain can be considered as
one realization of a complex circular symmetric Gaussian process with mean value
S(θsp) and covariance matrix R(θdan) described by DMC and measurement noise.

h ∼ NC(s(θsp),R(θdan) (2.8)

where R(θdan) = R(θdmc) + α0I. If only measurement noise is assumed (i.e. DMC
is omitted), then the sampled radio channel is given by:

h ∼ NC(s(θsp), α0I) (2.9)
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The most general parameter vector θsp that fully describes a single SMC is given
by:

θsp =
[
α τ ϑT ϕT ϑR ϕR γHH γHV γV H γV V

]
(2.10)

where α is the Doppler shift, τ the excess delay, ϑ and ϕ are the azimuth and
elevation angle at transmission T and reception R, respectively.

The DMC parameter vector θdmc is given by:

θdmc =
[
α1 βd τd

]
(2.11)

where α1 is the DMC peak, βd the coherence bandwidth of the diffuse components,
τd the base delay (Fig. 1.6). Also, the polarimetric complex amplitude of each path
is represented by γHH , γHV , γV H , and γV V .

A compact form for the SMC channel model s(θsp) is given by:

s(θsp) = B · γ (2.12)

where B ∈ CMTMRMfMt×4P is the channel matrix and γ ∈ C4P×P is the polarimetric
matrix describing the complex amplitude of each path. MT and MR are the number
of antennas at the transmitter and receiver side, respectively. Mf and Mt are the
number of samples in the frequency and time domain. Finally, P is the number
of SMC in the channel. The complete polarimetric specular MIMO channel model
can be developed from (2.12) by assuming that all dimensions are independent from
each other:

s(θsp) =(BTH �BRH �Bf �Bt) · γHH + (BTH �BRV �Bf �Bt) · γHV +

(BTV �BRH �Bf �Bt) · γV H + (BTV �BRV �Bf �Bt) · γV V
(2.13)

where s(θsp) ∈MTMRMfMt × P .

In addition and without going into deeper details, the Effective Aperture Distri-
bution Function (EADF) technique was introduced with the purpose of separating
the radio channel model from the measurement system model [12]. This final form
is motivated by the fact that the measurement system (antenna array pattern and
frequency response of the system) must be taken into consideration to calibrate the
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SMC channel matrix:

s(θsp) =

(GTH · (AϑT �AϕT )︸ ︷︷ ︸
BTH

� (GRH · (AϑR �AϕR)︸ ︷︷ ︸
BRH

� (Gf ·Af )︸ ︷︷ ︸
Bf

� (I ·At)︸ ︷︷ ︸
Bt

 · γHH+

(GTH · (AϑT �AϕT )︸ ︷︷ ︸
BTH

� (GRV · (AϑR �AϕR)︸ ︷︷ ︸
BRV

� (Gf ·Af )︸ ︷︷ ︸
Bf

� (I ·At)︸ ︷︷ ︸
Bt

 · γHV +

(GTV · (AϑT �AϕT )︸ ︷︷ ︸
BTV

� (GRH · (AϑR �AϕR)︸ ︷︷ ︸
BRH

� (Gf ·Af )︸ ︷︷ ︸
Bf

� (I ·At)︸ ︷︷ ︸
Bt

 · γV H+

(GTV · (AϑT �AϕT )︸ ︷︷ ︸
BTV

� (GRV · (AϑR �AϕR)︸ ︷︷ ︸
BRV

� (Gf ·Af )︸ ︷︷ ︸
Bf

� (I ·At)︸ ︷︷ ︸
Bt

 · γV V +

(2.14)

where GTH and GTV are the EADF computed from the measured radiation pattern
of the transmit antennas with H and V polarization, respectively. Similarly, GRH

and GRV are the EADF computed from the measured radiation pattern of the receive
antennas with H and V polarization, respectively. Aϑ and Aϕ for T and R are the
steering vectors of the antenna array and describe the relationship between the angle
of interest and phase difference between each antenna. Gf is the frequency response
of the measurement system without the antennas. In general, the columns of A are
described by a family of complex exponential vectors:

A = e−jµ (2.15)

where µ is the normalized parameter vector which links the physical parameters to
their respective dimension. As an example, the normalized parameter vector for the
delay domain is linked to the frequency via Fourier theory and is given by:

µτ = 2πjfτ (2.16)

where f is the sampled frequency vector and τ the time-delay vector of all SMC. A
full description of all these matrices, parameter normalization scheme, and imple-
mentation can be found in [1].

Under the assumption that the dimensions of the measurement system are uncor-
related and independent, the channel covariance matrix R(θdmc) can be factorized
into a Kronecker product:

R(θdmc) = IR ⊗ IT ⊗Rf (θdmc)⊗ It,∈ CMRMTMfMt×MRMTMfMt (2.17)

Furthermore, under the Wide-Sense Stationary Uncorrelated Scattering (WS-
SUS) hypothesis, the band-limited sampled version of the DMC PDP is obtained
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from the time-delay domain model defined in (1.5). Its corresponding covariance
matrix can be described with a Toeplitz-like structure:

Rf (θdmc) =


ΨH(0) ΨH(−f0) · · · ΨH((Mf − 1)f0)

ΨH(f0) ΨH(0)
. . .

...
...

. . . . . . ΨH(−f0)
ΨH((Mf − 1)f0) · · · ΨH(f0) ΨH(0)

 ∈ CMf×Mf

(2.18)
Each element of (2.18) can be derived by the corresponding Fourier transformation
of (1.5) given by (2.19):

ΨH(∆f) =
α1

βd + j2π∆f
· e−j2π∆fτd (2.19)

where ∆f is the frequency sampling.
Originally, the DMC is estimated from the covariance matrix of the complete

data model (i.e., sum of all polarization links) such that the estimate is an average
across all polarization states. However, the DMC power characteristics are typically
not uniform across all polarization links like for the scenarios investigated in this
work. Consequently, the covariance matrix can be broken down into polarimetric
parts such that the DMC can be estimated for each polarization link XY as in [49]:

RXY (θdmc) = IXYR ⊗ IXYT ⊗RXY
f (θdmc)⊗ IXYt (2.20)

where X and Y can either be Horizontal (H) or Vertical (V) polarization states of
the transmitter and receiver, respectively.

2.3.2 Joint estimation of SMC and DMC parameters

In the previous section, the radio channel and system model have been briefly
introduced. The Probability Density Function (PDF) of an observed radio channel
x drawn from the process (2.9 is given by:

p(x|θsp,R(θdan)) =
1

πMdet(R(θdan))
e−(x−s(θsp))H ·R(θdan)−1·(x−s(θsp)) (2.21)

The log-likelihood function derived from (2.21) is given by:[
θ̂sp
θ̂dan

]
= arg max

(
− ln(det(R(θdan)))− (x− s(θsp)

H ·R−1
dan · (x− s(θsp)))

)
(2.22)

From that point of view, this multi-dimensional parametric equation can be
understood as a weighted nonlinear least-square problem which can be treated as
such by known mathematical techniques. RiMAX algorithm was developed within
this constrained problem an iterative ML estimator which sequentially estimates the
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SMC and DMC parameter vectors. The general iterative framework is introduced
in Figure 2.3.

Figure 2.3: RiMAX iterative flowchart.

The main steps of the algorithm RiMAX are summarized below:

1) Compute initial estimation of SMC parameters under the assumption of white
noise

2) Remove estimated SMC from channel and compute initial estimation of DMC
parameters

3) Optimization of the DMC parameters

4) Optimization of the SMC parameters

5) Verification of the SMC reliability with criterion

6) if all SMC fail the criterion then stop otherwise jump to 1).

2.3.2.1 SMC parameter estimation

An initial guess of the parameters for each SMC can be obtained by using an
extensive grid-search approach for each dimension. Basically, the A matrices are pre-
computed over the desired searching window. These functions are then correlated
with the observed radio channel in each dimension to obtain cost functions. Roughly,
the cost function returns an oversampled PDP and oversampled beamformer in
the time-delay and angular domains, respectively. The initial SMC parameters
are found as the maxima in the cost functions. Typically, this step is the most
computationally demanding in the whole algorithm and the number of SMC must
be selected with care. It was empirically found that 5 SMC give the best tradeoff
between convergence, time, and complexity. Typically, the initialization of the SMC
parameters is performed with the following estimation sequence:

1) Initial estimation of τ̂ {0}.

2) Initial estimation of DOD, ϑ̂
{0}
T and ϕ̂

{0}
T knowing τ̂ {0}.

3) Initial estimation of DOA, ϑ̂
{0}
R and ϕ̂

{0}
R knowing τ̂ {0}, ϑ̂

{0}
T and ϕ̂

{0}
T .
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4) Estimation of the coherent path weight γ̂{0} knowing all previous estimates
using the Blest Linear Unbiased Estimator (BLUE).

Then, the initial estimates are optimized using classical iterative routines ded-
icated to deterministic least-square problems. The iterative optimization step is
given by:

θ{i+1} = θ{i} + ζ ·∆θ{i} (2.23)

where ζ is an adjustable coefficient. Several optimization approaches have been
proposed such as the steepest descent, Newton-Raphson, and Gauss-Newton or
Levenberg-Marquardt method. The latter was selected as it provides the lowest
level of complexity and the largest computational speed. These algorithms are not
discussed in this manuscript but can found found here [1]. The algorithm stops once
|θ{i+1} − θ{i}| is below a pre-defined threshold.

2.3.2.2 DMC parameter estimation

An initial guess of the DAN (DMC and noise) parameter vector is obtained after
subtracting the initial SMC from the observed channel.

x̂dan = x− s(θ̂sp) (2.24)

These parameters in θ̂dan are subsequently identified using the mean PDP com-
puted from the residual channel x̂dan. Similarly to the SMC but using a stochastic
approach, a Levenberg-Marquardt step is performed to optimize the DMC parame-
ters.

2.4 Polarimetric MIMO radio channel sounder sys-

tems

Before applying channel parameter estimation techniques, polarimetric radio
channel transfer functions must be assessed with a dedicated measurement equip-
ment and antenna arrays. Such a scientific system is typically called a radio channel
sounder. In this thesis, two types of MIMO sounder systems operating around 1.3
GHz, fully developed in the TELICE group, have been used for the two considered
propagation scenarios with different array configurations. Their main features and
antenna characteristics are introduced in the following sections. This central fre-
quency was selected to describe the physical propagation phenomena for the mobile
and WiFi standards without emitting in the licensed bands.

2.4.1 Virtual MIMO radio channel sounder

The first MIMO sounder system is based on a Vector Network Analyzer (VNA)
which is a very popular and attractive solution in the propagation community for
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its hardware simplicity and cost as such. Its main advantage lies in the fact that all
ports are fully synchronized with the same Local Oscillor (LO) thus alleviating any
issues related to signal synchronization and calibration. Also, a broad frequency
range and frequency points can be selected within the specifications of the VNA
while preserving a high dynamic range and SNR. Finally, it can easily be externally
controlled for automatic measurement routines. However, several drawbacks must
be highlighted. Since the number of ports of limited, two solutions are possible
to measure a MIMO channel. On the one hand, all antennas of the array are
sequentially switched. On the other hand, a single antenna can be moved at specific
positions in space in order to describe the desired array and measurements are
performed in-between each position. The latter solution called virtual sounding was
the approach selected in TELICE but requires that the radio channel is stationary.
Indeed, the measurement time is strongly dependent to the antenna motion time and
is, therefore, not compatible with the measurements of time-varying radio channels.
Depending on the number of virtual antennas, the measurement time necessary to
probe a full polarimetric radio channel can easily exceed several minutes or dozens
of minutes. Also, additional Radio-Frequency (RF) cables or RF to optical/optical
to RF links must be used to increase the distance between the emitter and receiver
resulting in an increased noise figure and reduced SNR. For the above reasons, the
virtual channel sounder technique was used to probe the polarimetric radio channels
in the investigated indoor scenario. The measurements can be done at night to
ensure that the radio channel stationarity is enforced and long cables can also easily
be deployed.

2.4.1.1 Sounder system description

The architecture of the TELICE virtual MIMO channel sounder is presented in
Fig. 2.4 and relies on a 4-port VNA of reference Agilent E5071C. Two emitting ports
are connected to the Horizontal (H) and Vertical (V) ports of the Tx antenna. The
other two ports are connected to the H and V ports of the Rx antenna. The 4-port
VNA allows measuring simultaneously the V and H components of Rx. A 50 dB
isolation switch was placed behind Tx to manually or automatically switch between
H and V. Hence, under for a given static Tx-Rx position, a full polarimetric SISO
transfer function can be measured. In addition, A 500 m optical fiber was deployed
for the transmitting side with an RF to optics/optics to RF interface to allow the
Tx to move within a 500 m radius of the Rx. Typically, the system is Through
calibrated to remove the attenuation introduced by the optical system setup and
the RF cables. Only a Through calibration is required in this setup since only
the normalized transmission coefficient between the emitting and receiving port is
required. An additional 1 W power amplifier can be placed at the transmitting side
to increase the SNR. Low Noise Amplifiers (LNA) with Noise Factor of ∼1.2 dB
can be optionally added at each receive ports to boost the received signal power if
necessary. It is noteworthy that the power amplifiers and LNAs were not included
in the calibration. Their frequency-dependent characteristics were characterized
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separately to correct the measured transfer functions.

Figure 2.4: Architecture of the TELICE Virtual MIMO radio channel sounder.

2.4.1.2 Antenna array and element

At both link ends, a virtual antenna array was created by an antenna mounted
on an automated rotating arm (Fig. 2.4). At both Tx and Rx side, dual-polarized
antennas were used, installed at 1.60 m above ground level. The virtual array was
a planar horizontal uniform circular array (UCA) with radius 15 cm and consisting
of MT = MR = 8 dual-polarized antenna elements. Hence, a 16 x 16 MIMO radio
channel can be measured under these conditions. For such an array, the generic
steering vector is defined by:

Aϕ,ϑ = e
−2πjr
λ

cos(ϕ) sin(ϑ) (2.25)

where r is the antenna position vector and λ the wavelength at 1.35 GHz. A UCA is
rather adequate for indoor scenarios. It has a full 360◦ visibility in the azimuth plane
to maximize the estimation of MPC around the transmitter and receiver. However,
it comes at the expense of a limited 20◦ visibility in the elevation plane. Also, since
the array is parallel to the ground, there is an ambiguity and the estimator can not
know whether the MPC arrive below or above the array.

Figure 2.5 presents a front and rear view of the dual-polarized antennas used for
Tx and Rx. They are identical 1.6-mm-thick FR4 (εr = 4.35) square patches and the
size of the copper ground plane is 11.06 cm ×11.06 cm and 55.9 mm ×55.9 mm for
the active region. Via-hole SMA feeds were positioned horizontally and vertically at
1.575 cm from the center of the active region to obtain orthogonal modes between
V and H with 50 Ω characteristic impedance.
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Figure 2.5: Dual-polarized patch antenna for the Virtual MIMO sounder.

The measured S-parameters are presented in Fig. 2.6. Both antennas display a
22 MHz bandwidth measured for a return loss lower than -10 dB with a 1.3 GHz
central frequency. A 25 dB isolation between the ports is observed in the operating
band. It should be mentioned that SHV and SV H are identical.

Figure 2.6: Measured S-parameters.

Finally, Figure 2.7 presents the normalized co- and cross-polar far-field radiat-
ing patterns for the H and V ports at 1.3 GHz. These polarimetric patterns were
measured in an anechoic chamber at the University of Gent using a reference horn
antenna. The antennas exhibit a 5 dBi gain. As shown, the antennas have a mini-
mum 15 dB XPD with computed 120◦ and 100◦ beamwidth at half-power measured
in the azimuth and elevation plane, respectively. There is also a maximum backward
gain of -10 dB.
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(a) (b)

(c) (d)

Figure 2.7: Normalized far-field radiating patterns for (a) VV, (b) VH, (c) HV, and
(d) HH (in dB) measured at 1.3 GHz. The patterns have been normalized with
respect to the maximum gain for each port.

2.4.2 MIMOSA radio channel sounder

In contrast with the in-house virtual radio channel sounder, true MIMO sounder
systems can be commercially rented or bought from companies but are very complex
and expensive scientific electronic equipments. Their main advantages lie in the pos-
sibility of measuring time-varying radio channels under less than milliseconds over
very large distances without the need of a physical link between the emitter and re-
ceiver for LO synchronization purposes. Thus, since Tx and Rx are independent, the
systems can be embedded into any fitting vehicles when low- to high-speed scenar-
ios are considered. However, post-processing of the recorded data is mandatory to
retrieve the complex transfer functions with all commercial systems available on the
market. This problem can be rapidly intractable when large dataset are collected.
The engineers and researchers of the TELICE group decided to develop their own
radio channel sounder called MIMOSA which is briefly described hereafter. This
sounder was used to assess the polarimetric radio channels in forest scenarios due
to the dynamics of the channel discussed in chapter . Also, it circumvents the
difficulties related to having the emitter away from the virtual sounder in a dense
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vegetation environment.

2.4.2.1 Sounder system description

MIMOSA is a a 16 x 16 MIMO channel sounder operating with a 100 MHz band-
width around 1.35 GHz and its basic architecture is presented in Figure 2.8. It is
based on interleaved Orthogonal space-Frequency Division Multiplexing (OFDM),
giving a large possibility of tone and antenna allocation. This channel sounder
belongs to the new generation of software radio design based systems. The architec-
ture was designed to comply with the highest flexibility thus opening a wide range
of applications. In addition, the channel sounder has been built to avoid heavy
post-processing: i) the Tx signal is pre-processed to include the non-linearity of the
Tx and Rx chain, ii) thanks to the high sampling frequency of the FPGA (Field-
Programmable Gate Array), a real digital baseband signal is transmitted to the RF
chain avoiding I/Q impairment, iii) the output file gives transfer functions of the
full polarimetric matrix in a versatile binary format. The power consumption of the
sounder is low and can be powered with a 12 V/24 V vehicle battery. Finally, a
friendly Graphic User Interface (GUI) was designed to parameterize the system.

Figure 2.8: MIMOSA radio channel sounder architecture.

The transmitting frame structure consists in one preamble subsequently followed
by Ns OFDM symbols which include the cyclic prefix. The preamble provides the
time synchronization of the frame such that the OFDM symbols can be decoded.
The total number of transmitted OFDM subcarriers Nt is 8192 which can be uni-
formly distributed on each antenna element. For example, with an 8-antenna array,
the frequency space ∆F between the subcarriers of a single antenna is 97.66 kHz,
meanwhile the frequency space ∆f between subcarriers is 12.21 kHz. The main
features of MIMOSA are presented in the Table 2.1.
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Table 2.1: MIMOSA radio channel sounder main features.

RF Baseband
Center frequency 1350 MHz Tx sampling rate 400 MHz
Tx max power 500 mW Rx sampling rate 200 MHz

Number of channel

Tx (V/H) 8 Bandwidth 100 MHz

Tx switch mode (V/H) 16
Nt 8192
∆F 97.66 kHz
∆f 12.21 kHz

Rx 8 Oversampling ratio R 2
Tx power Amp 1-6 GHz Pout = 1 W IFFT length 32768
Rx LNA NF = 1 dB 1-4 GHz G = 40 dB FFT length 16384

2.4.2.2 Antenna array and element

Two identical planar Uniform Rectangular Array (URA), shown in Figure 2.9,
were selected at both link ends to probe the radio channel in forest scenarios. Each
array consists in 8 dual-polarized antennas with inter-element spacing of 0.486λ at
1.35 GHz (10.8 cm) along x and y (0.5 cm from side to side). Since the number of
antennas is even, the position of the antennas has been optimized with simulations
to minimize the variance of the error between the real and estimated parameters.
For such an array, the generic steering vector for each path is defined by:

Aϕ,ϑ =
(
e
−2πjdx

λ
sin(ϕ) cos(ϑ)

)
⊗
(
e
−2πjdy

λ
sin(ϑ)

)
(2.26)

where dx and dy are the antenna position matrices along x and y respectively.
This array was placed perpendicular to the ground and has a 180◦ visibility in the
azimuth and elevation plane such to maximize the estimation of MPC in front of
the array. However, it is not capable to resolve MPC coming from the back plane.
For those reasons, it is adequate to measure the propagation characteristics of a
medium in-between the transmitter and receiver. Open forest scenarios fall under
this category thus motivating our choice for this array topology.

Figure 2.9: 8-element URA with dual-polarized slot patch antennas.

All the antennas used in the array are identical slot patch antennas with two
orthogonal -45◦/+45◦ polarization ports as illustrated in Figure 2.10. It is 10.3 mm
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thick with a 103 mm × 103 mm × 103 mm ground plane. The thickness is used to
reach the desired bandwidth and was achieved by bonding three duroid layers with
dielectric adhesive layers. The two rear ports have a 50Ω characteristic impedance
are connected to the active region with SMA via-holes.

Figure 2.10: Dual-polarized slot patch antenna for MIMOSA. The red dash lines
indicate the polarization direction of each port.

The simulated S-parameters shown in Figure 2.11 indicates a 1.35 GHz center
frequency. A 72 MHz bandwidth is observed at -10 dB and the isolation between
the two ports is larger than -18 dB. Since the antenna bandwidth is less than that
of the measurement system, a 80 MHz bandwidth tradeoff was selected for the mea-
surements. The measured polarimetric far-field patterns associating with different
polarization state are showed in Fig. 2.12 with the measured antenna element placed
at the X-Y plane. The antennas exhibit a ∼7 dBi gain with 80◦ beamwidth at -3
dB in the azimuth and elevation plane, respectively.

A drawback of the antenna topology is the -45◦/+45◦ polarization scheme. It
is not appropriate to transmit and receive H and V fields per se while polarimetric
propagation characteristics are typically performed with these reference fields. This
problem is simply solved by rotating the array by ±45◦ such that the port 1 (or 2)
emits/receives a V (or H) field.

2.5 Theoretical performance of RiMAX for UCA

and URA

The performance of the ML estimator RiMAX was assessed for the two radio
channel sounder systems and their respective antenna arrays used in this work.
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(a) (b)

Figure 2.11: Simulated S-parameters of the antenna ports by ADS Momentum sim-
ulation, (a) S11 , (b) S21.

The purpose of this step is critical to investigate the resolution capabilities of the
numerical technique when applied to real-world data. It was demonstrated in[1]
that the Cramér-Rao Lower Bound (CRLB) is attained in the RiMAX framework
for asymptotically uncoupled SMC (i.e. the parameters are not correlated). The
CRLB is the uniform bound on the variance of any parameter estimator θ̂ for the
parameters of a given model. It determines the variance of an unbiased estimator,
which is minimum variance unbiased (MVUB). An unbiased estimator satisfies the
following equation:

E
(
θ̂ − θ

)
= 0 (2.27)

where E is the expectation operator. The CRLB is then understood as the variance
of the estimation error:

CRLB = E

((
θ̂ − θ

)
·
(
θ̂ − θ

)T)
(2.28)

The following methodology was used to evaluate the CRLB. For each antenna
array and sounder frequency parameters, polarimetric synthetic radio channels were
simulated with a single SMC using the adequate radio channel and polarimetric
antenna patterns (EADF) and a 20 dB AWGN was added to the synthetic channel.
The SMC parameters were randomly drawn from a uniform distribution within the
search range of the measurement system. This range is dictated for the time-delay
domain by the number of frequency points Mf , bandwidth, and central frequency.
For the angular domain, it is a function of the number of antennas MR/T , inter-
element spacing, central frequency, and steering array (UCA or URA). An absolute
amplitude of one and random phase were selected for all elements of the polarimetric
path matrix. In addition, the CRLB was computed as a function of snapshots which
was either 1, 10, 100, and 1000. Obviously, the larger the number of snapshots the
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Figure 2.12: Measured normalized far-field antenna pattern for, (a) port 1 co-
polarization, (b) port 2 co-polarization, (c) port 1 cross-polarization, and (d) port
2 cross-polarization.

better the estimation of the covariance matrix used in the optimization steps. During
the measurement campaign, Mf = 1601 and MR/T = 8 with a 22 MHz bandwidth
and 1.3 GHz central frequency were taken for the virtual radio channel sounder. For
MIMOSA, Mf = 819 and MR = 8 with a 80 MHz bandwidth and 1.35 GHz central
frequency were taken. Note that only the DOA was computed for MIMOSA as it
will be discussed in chapter 5.

As discussed previously, the URA can be tilted by ±45◦ to transmit/receive
true H and V polarized fields. Hence, the CRLB was computed for both array
orientations. Only the variance for γHH is shown for the sake of clarity as all
other polarimetric gains are the same. Prior computing the variance, the TOA was
expressed in ns and the angles in degrees. Figure 2.13 presents the computed CRLB
for the virtual radio channel sounder with UCA (a) and MIMOSA with URA (b).
In general, the variance is much below 10−1 for all investigated parameters (except
for the elevation with UCA). For example, standard deviation values of 0.07 ns and
0.26◦ are obtained for TOA and DOA/DOD, respectively with the UCA. A lower
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variance is obtained for the URA array. This is expected as the URA introduces an
additional true elevation dimension. Indeed, the CRLB is roughly proportional to
the inverse of the squared total number of samples brought by each dimension[1].
For the UCA, the elevation is initially estimated but can not be optimized due to
the structure of the UCA steering array. This results in a resolution decreased by a
factor of 64 (82) for all parameters compared to the URA. Also, the results show that
the 45◦ orientation of the URA has no consequences on the quality of the estimated
parameters.
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Figure 2.13: Variance of the estimation error computed for a) the UCA array (virtual
sounder), and b) the URA array with 0◦ and 45◦ orientation (MIMOSA).
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2.6 Conclusion

In this chapter, the classical and high-resolution radio channel parameters esti-
mation techniques have been introduced along with a discussion on their advantages
and disadvantages. The RiMAX framework including the radio channel and data
model used in this thesis has been presented. The selection of the RiMAX algo-
rithm was motivated by the fact that the radio channel model includes both SMC
and DMC; the latter being the main focus of this thesis. In particular, the initial-
ization and optimization steps of the SMC and DMC parameters have been briefly
described starting from the ML function of the radio channel PDF. RiMAX provides
a joint estimation of the SMC and DMC and the flowchart of the algorithm was dis-
cussed. Also, the SMC complex path gains estimates are free from the contribution
of the polarimetric antenna patterns via the EADF technique. In addition, the
two 16 x 16 polarimetric radio channel sounder systems used during the measure-
ment campaigns have been described and their main features presented. First, the
stationary indoor radio channel was assessed with a virtual channel sounder using
horizontal UCAs at both link ends. For the more dynamic vegetation radio channel,
the recently developed real-time MIMOSA sounder was used with vertical URAs at
both link ends. For the sake of comparison, both systems were operated around
∼1.3 GHz with 22 and 80 MHz bandwidth, respectively. Also, the performance
of the ML RiMAX estimator was evaluated to quantify the lowest variance of the
estimation error that can be possibly reached for both systems . The purpose of the
measurement campaigns is to provide a large set of radio channel transfer functions
which then feed a high-resolution parameter estimator. Hence, the performance
of the chosen RiMAX estimator was evaluated and discussed for each system and
antenna array.



Chapter3
Polarimetric distance-dependent model for
scenarios with DMC and clustering
approach of radio channel parameters

3.1 Introduction

Over the recent years, extensive experimental studies have been performed with
the aim of providing a deeper physical comprehension of the propagation mechanisms
and developing physically sound radio channel models for all types of scenarios.

Originally, the radio channel was commonly considered as a mere collection of
specular multipath components (SMCs) that have well defined discrete locations
in the different radio channel dimensions. Recently, distributed diffuse scattering
on electrically small objects and SMCs with low SNR are also included into the
channel but were historically interpreted as polluting noise. It has been widely
accepted that the DMC is another important multipath radio channel component.
From now, the existing channel model and channel model parameters need to be
refined by including DMC. Faithful models of the DMC are critical to reproduce the
propagation characteristics of the radio channel such as the path loss, mean delay,
root-mean-squared delay spread (rms). These characteristics are used for typical
coverage analysis, network optimization, localization [111], or even human exposure
analysis [112].

On the other hand, modern radio channel models are expected to encompass
a polarimetric description of the physical radio link that could be used for the
optimization of diversity-based wireless communications or dedicated applications.
In [49], the general radio characteristics, cross-polar discrimination (XPD) statis-
tics, and propagation mechanisms were investigated from each estimated individual
SMC and DMC as a function of distance and shadowing conditions. Inspite being
appealing for the propagation community, polarimetric PDP and path gain models
as well as path loss models including both the SMC and DMC are missing in the
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literature.
In this chapter, a polarimetric model of the SMC and DMC PDP/path gain is

developed to fulfill this gap. The proposed model is a strongly modified extension
of [2]. In particular, it provides a finer polarimetric description of the SMCs which
are decomposed into primary and secondary parts and the DMC. The polarimetric
path gain model can be used to describe any general characteristics such as the
rms delay spread, XPD, or DMC fractional power. From this approach, single-slope
path loss models are discussed to take into account the contribution of the DMC.
Furthermore, an additional important novelty of this work is the development of a
two-step fitting method to obtain jointly the path loss characteristics for the primary
SMC and DMC directly from the measured channels. This approach is validated
with the measurement and modeled data. A connection between the DMC path loss
characteristics and room electromagnetics theory is also highlighted.

Moreover, a generic clustering identification approach is developed and proposed.
Clustering is one important MIMO channel analysis tool which aims at providing
a better comprehension of the radio channel propagation mechanisms with reduced
complexity. The performance of the proposed clustering identification approach is
evaluated with simulated radio channels presenting realistic cluster like features. The
results are also compared with different clustering identification algorithm. Further-
more, the developed approach uncovers a physical link between the best clustering
solution and the propagation characteristics for a given scenario. This latter aspect
could be used to categorize scenarios based on their clustering properties and to
improve existing radio channel models.

3.2 Polarimetric Distance Dependent Model

The development of faithful path loss models is critical to the deployment of
wireless systems in many propagation scenarios. For instance, indoor propagation
models rely on the empirical path loss exponent n which links the received power
with the logarithm of the distance [52]. A single-slope model is typically observed,
but multi-slope (or multiple breakpoint) path loss models were also reported in office
scenarios when the distance was large or when the receiver (transmitter) was located
at a different floor [113].

Obviously, the path loss exponent retrieved from the measured channels must be
a path loss weighted by the contribution of SMCs and DMCs if present, contribution
which will depend on the Tx-Rx distance, room configuration, shadowing condition,
etc. Moreover, DMC path loss models are missing to the knowledge of the authors.
Hence, the computation of the DMC to the total power ratio is a prerequisite to
analyze the contribution of each mechanism to the radio channel and impact on
the path loss exponent. If we take the polarization aspect into account, one more
detailed polarimetric radio channel model can be established.

Motivated by the experimental observation, one distance-dependent model was
recently reported in [2]. The early part or primary SMC includes line of sight (LOS)
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and first-order reflection off the walls, floor, ceiling, and objects. Similar to the
room electromagnetics theory, the reverberant component is the remaining part of
the PDP such that the DMC cannot be physically distinguished from the secondary
SMC (high order reflections, diffractions, etc.).

Figure 3.1: Illustration of the band limited PDP observation for in room environment
in [2].

Such model can be illustrated in Figure 3.1 where the delay power spectrum
is obtained by three measurement positions in the room. The peak is considered
to be the primary components of SMC which follow a power law (d−n). The tail
part is modeled as the reverberant component which is exponentially decaying. The
decay rate of the tail is considered to be identical in the whole room. Based on such
conception, we propose one strong modification to refine such distance-dependent
model.

3.2.1 PDP model

From the modeling point of view, the distance-dependent PDP can be understood
as the sum of the band-limited SMC and DMC

G(τ, d) = GSMC(τ, d) + GDMC(τ, d) (3.1)

Steinbock et al [2] recently proposed to decompose the PDP into primary and
reverberation components which both display a dependence to the distance

G(τ, d) = Gpri(τ, d) + Grev(τ, d) (3.2)

The primary component describes the early part of the PDP and includes the
LOS and first-order reflections (if present) off the floor, ceiling, walls, and objects.
It was proposed to be simply modeled by

Gpri(τ, d) = G0,pri

(
d0

d

)npri
δ

(
τ − d

c

)
(3.3)
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where npri is the path loss exponent, G0,pri the reference gain for the primary com-
ponent at reference distance d = d0, and c the speed of light. In contrast, the
reverberation component is the remainder of the channel after the primary com-
ponent has been removed and describes the exponentially decaying behavior of the
PDP tail as:

Grev(τ, d) = G0,reve
−τ/T, τ >

d

c
(3.4)

where T is the reverberation time [23, 18]. From this point of view, it can be seen
that the reverberation component could be the sum of DMC and the secondary
SMC (high-order reflections, diffractions, etc.)

Grev(τ, d) = Gsec(τ, d) + GDMC(τ, d) (3.5)

This modeling decomposition was shown to produce faithful distance dependent
radio characteristics such as mean delay, delay spread, path gain, etc. However, the
propagation properties and mechanisms of the DMC and secondary SMC could not
be individually assessed. Here, we propose to alleviate this problem by introducing
the following decomposition for the PDP:

G(τ, d) = Gpri(τ, d) + Gsec(τ, d) + GDMC(τ, d) (3.6)

As an example, the decomposition of the PDP into the primary/secondary
SMC, and DMC is illustrated in Figure 3.2 for an indoor scenario with given
transmitter-receiver distance di. This figure shows that the secondary SMC includes
a wide collection of high-order SMCs that have different time delays and gains. It
can simply be modeled as the superposition of weighted single Dirac terms with a
power law model like with the primary component as proposed in equation 3.3.

Gsec(τ, d) =
Nsec∑
k=1

Gk,sec

(
d0

d

)nsec
δ(τ − τk(d)) (3.7)

where τk(d) and Gk,sec are the distance-dependent time-delay and reference gain at
reference distance d = d0 for the kth secondary SMC, respectively. nsec and Nsec

are the path loss exponent and number of secondary SMC, respectively. In a simple
empty environment such as the investigated one, it is assumed that Nsec does not
change with the distance.

The exponential function from (3.8) was kept to model the Nsec secondary DMC
in the delay domain.

Gexp
rev(τ, d) = Gexp

0,DMCe
−τ/T, τ >

d

c
(3.8)

where GExp
0,DMC is the reference gain at reference distance d = d0. Moreover, when po-

larimetric measurements are considered, all components can be further decomposed
into co-polar and cross-polar components.

GXY (τ, d) = GXY
pri (τ, d) + GXY

sec (τ, d) + GXY
DMC(τ, d) (3.9)
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Figure 3.2: Illustration of the PDP behavior in an indoor scenario for certain
transmitter-receiver distance di. The PDP includes the primary SMC, secondary
SMC and DMC.

where the subscripts X and Y denote the polarization of the transmitting and re-
ceiving antenna, respectively. X and Y are either horizontal (H) or vertical (V ).
As discussed in chapter 2, this decomposition is motivated by the fact that electro-
magnetic waves might suffer strong depolarization mechanisms in highly reflective
environments like indoor scenarios or outdoor scenarios with a vegetation environ-
ment. Necessarily, all components will experience depolarization effects but at dif-
ferent scales due to the nature of each propagation mechanism. Hence, the proposed
distance-dependent polarimetric model for the primary SMC is given:

GHH
pri (τ, d) = χHHpri (d)GHH

0,pri

(
d0

d

)nHHpri
δ

(
τ − d

c

)
(3.10)

GHV
pri (τ, d) = (1− χHHpri (d))GHH

0,pri

(
d0

d

)nHVpri
δ

(
τ − d

c

)
(3.11)

GV V
pri (τ, d) = χV Vpri (d)GV V

0,pri

(
d0

d

)nV Vpri
δ

(
τ − d

c

)
(3.12)

GV H
pri (τ, d) = (1− χV Vpri (d))GV V

0,pri

(
d0

d

)nVHpri
δ

(
τ − d

c

)
(3.13)

where χHHpri and χV Vpri are the distance-dependent polarization coefficients for HH
and V V , GHH

0,pri and GV V
0,pri the gain at reference distance d = d0 for HH and V V ,
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and nXYpri the path loss exponent for each polarization link.
The distance-dependent polarimetric model for the secondary SMC is given with

the similar conception:

GHH
sec (τ, d) =

Nsec∑
k=1

χHHk (d)GHH
k,sec

(
d0

d

)nHHsec
δ (τ − τk(d)) (3.14)

GHV
sec (τ, d) =

Nsec∑
k=1

(1− χHHk (d))GHH
k,sec

(
d0

d

)nHVsec
δ (τ − τk(d)) (3.15)

GV V
sec (τ, d) =

Nsec∑
k=1

χV Vk (d)GV V
k,sec

(
d0

d

)nV Vsec
δ (τ − τk(d)) (3.16)

GV H
sec (τ, d) =

Nsec∑
k=1

(1− χV Vk (d))GV V
k,sec

(
d0

d

)nVHsec
δ (τ − τk(d)) (3.17)

where χHHk and χV Vk are the distance-dependent polarization coefficient for HH and
V V whereas GHH

k,sec and GV V
k,sec are the reference gain for HH and V V at reference

distance d = d0 for the kth SMC. Finally, nXYsec is the path loss exponent for each
polarization link.

3.2.2 Polarimetric path gain model

From the developed distance-dependent polarimetric PDP model, the path gain
PXY averaged at distance d is derived by integrating the PDP with respect to delay
for each propagation mechanism and polarization state.

PXY (d) =

∫
GXY (τ, d)dτ. (3.18)

Consequently, the following path gain models are obtained for HH, HV , V H
and V V , respectively:

PHH(d) = χHHpri (d)GHH
0,pri(

d0

d
)n
HH
pri︸ ︷︷ ︸

PHHpri (d)

+χHHsec (d)GHH
0,sec(

d0

d
)n
HH
sec︸ ︷︷ ︸

PHHsec (d)

+

χHHDMC(d)GHH
0,DMCTHHe

−d
cTHH︸ ︷︷ ︸

PHHDMC(d)

.

(3.19)

PHV (d) = (1− χHHpri (d))GHH
0,pri(

d0

d
)n
HV
pri︸ ︷︷ ︸

PHVpri (d)

+ (1− χHHsec (d))GHV
0,sec(

d0

d
)n
HV
sec︸ ︷︷ ︸

PHVsec (d)

+

(1− χHHDMC(d))GHH
0,DMCTHV e

−d
cTHV︸ ︷︷ ︸

PHVDMC(d)

.

(3.20)
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PV V (d) = χV Vpri (d)GV V
0,pri(

d0

d
)n
V V
pri︸ ︷︷ ︸

PV Vpri (d)

+χV Vsec (d)GV V
0,sec(

d0

d
)n
V V
sec︸ ︷︷ ︸

PV Vsec (d)

+

χV VDMC(d)GV V
0,DMCTV V e

−d
cTV V︸ ︷︷ ︸

PV VDMC(d)

.

(3.21)

PV H(d) = (1− χV Vpri (d))GV V
0,pri(

d0

d
)n
VH
pri︸ ︷︷ ︸

PVHpri (d)

+ (1− χV Vsec (d))GV V
0,sec(

d0

d
)n
VH
sec︸ ︷︷ ︸

PVHsec (d)

+

(1− χV VDMC(d))GV V
0,DMCTV He

−d
cTVH︸ ︷︷ ︸

PVHDMC(d)

.

(3.22)

In total, 24 parameters, some of which are distance dependent, are required to
tune the PDP or path gain models where the DMC follows an exponential model in
the delay domain. All model parameters are summarized in Table 3.1. Despite the
high level of complexity, the proposed approach provides deep information about
each mechanism for any polarization link. For instance, the model grants flexibility
to derive other desired characteristics such as path loss models for each propagation
component which will be later discussed in the following chapter.
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Table 3.1: Proposed Model Parameters

SMC DMC

Param. Polar.link Primary Secondary Exp.law

nXY

HH npriHH nHHsec X

HV npriHV nHVsec X

V H npriVH nV Hsec X

V V npriV V nV Vsec X

GXY
0

HH GHH
0,pri GHH

0,sec GHH
0,DMC

V V GV V
0,pri GV V

0,sec GV V
0,DMC

χXY
HH χHHpri χHHsec χHHDMC

V V χV Vpri χV Vsec χV VDMC

TXY

HH X X THH

HV X X THV

V H X X TV H

V V X X TV V

3.2.3 Polarimetric reverberation ratio

In the previous section, the total polarimetric path gain model has been intro-
duced. In addition, the polarimetric DMC to total power ratio RXY (d) is defined
to provide a deeper understanding of the DMC contribution to the radio channel.
The chosen definition is similar to the ones reported in previous works [25, 49, 114]
without consideration of secondary SMC and is given by:

RXY (d) =
PXY
DMC(d)

PXY (d)
(3.23)

This parameter directly presents the distance-dependent DMC contribution to the
total received power and is bounded in the [0, 1] range. It was shown in [2] that the
reverberation ratio converges toward zero when the Tx-Rx distance approaches zero
or infinity:

lim
d→0

RXY (d) = 0, lim
d→∞

RXY (d) = 0 (3.24)
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As an example, the polarimetric reverberation ratio is presented for HH and HV
in Figure 3.3 for selected values of the model parameters. A 0.9 depolarization
constant was chosen to highlight the effect of strong depolarization mechanisms to
the DMC characteristics and contribution to the radio channel. Also, under the
assumption that room electromagnetic theory is satisfied, the reverberation time
was varied between 20 ns and 40 ns for both HH and HV. The model predicts that
the reverberation characteristics are rather different between the co-polar and cross-
polar links for which DMC is particularly strong. In addition, it can be observed
that the reverberation ratio increases with the reverberation time which is an ex-
pected physical effect. Finally, the distance at which the maximum value of the
reverberation ratio occurs also depends on the reverberation time.
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Figure 3.3: Illustration of the polarimetric reverberation ratio characteristics with
the proposed model. The model parameters were set arbitrarily: GHH

pri = 1 dB,
χHHpri = 0.9, nHHpri = 2, GHH

sec = 1 dB, χHHsec = 0.9, nHHsec = 3, GHH
DMC = 60 dB,

χHHDMC = 0.5. THH and THV were varied between 20 ns and 40 ns.

Figure 3.4 presents the effect of DMC to the path gain using the same parameters
than in Figure 3.3. For the sake of comparison, the black lines depict the path
gain when no reverberation mechanisms are considered (i.e. TXY = 0). For this
case, the proposed distance-dependent model simply turns back into a power law
model. The convex parts clearly demonstrate the reverberation effect to the path
gain model. With the considered model parameters, it is also observed that the
reverberation mechanism has a greater impact on the cross-polarization state than
the co-polarization one.
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Figure 3.4: Illustration of the polarimetric path gain in presence of DMC. The same
model parameters than in Figure 3.3 were used.

3.3 Low Complexity Path Loss Parameters Fit-

ting Technique

The presented path loss models require a priori estimation of the SMC and DMC
path gains from the measured polarimetric radio channels. It is reminded that the
estimation process is a highly complex mathematical treatment requiring huge com-
putational post-processing time especially when the dataset comprises hundreds or
even thousands measurement points. In addition, modeling errors due to the an-
tenna array calibration or assumptions in the data model could result in degraded
estimates [12]. In contrast, classical log-distance path loss models have been widely
used because they follow the opposite philosophy. They do not make any assump-
tions at all about the propagation mechanisms, and the fitting steps exhibit low
complexity and fast processing time characteristics. Here, we explore the possibility
to use the SMC plus DMC path loss models as fitting metrics. The motivation is to
develop a low complexity technique to obtain joint estimates of the SMC and DMC
path loss parameters without the need for estimation technique.

Inspired by the effects observed in Figure 3.3 and Figure 3.4, it is clear that the
contribution of the DMC to the path gain occurs when the reverberation ratio is
much above 50%. For this case, the main channel propagation mechanism is DMC
and the channel path gain does not follow a power law (linear with the logarithm
of distance) anymore but an exponential law (linear with distance). Therefore, it
is considered that a low complexity path loss parameter fitting approach could be
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developed if the path gain is overlooked with a different distance scale.

3.3.1 Path loss models including DMC for low complexity
fitting technique

It is considered that the radio channel only includes DMC or that the contribu-
tion of the secondary SMC is weak compared to DMC. This case could happen if
shadowing conditions are harsh [strong Non Line-Of-Sight (NLOS)] or if polariza-
tion coefficients are close to unity. For the latter case, the path gain model for the
channel could be simplified by taking into account only the DMC path gain.

For instance, the polarimetric path loss PLXY
DMC is obtained from the DMC path

gain models PXY
DMC . Only the cross-polar links such as HV with exponential law are

treated in the discussion, which is believed that the DMC is much more important
in one cross polarization link. However, the model can be derived in the similar
fashion for other links.[

PLHV
DMC(d)

]
dB

= −
[
(1− χHHDMC)GHH

0,DMCTHV
]
dB

+
10d

cTHV log(10)
(3.25)

Provided that THV and χHVDMC are constant, it follows that the DMC path loss is
linear with the distance and inversely proportional to THV . This proportionality
parameter or DMC path loss factor denoted here ηHVDMC is given by

ηHVDMC =
10

cTHV log(10)
(3.26)

Equation (3.26) establishes a direct relationship between THV and ηHVDMC and pro-
vides an attractive approach to link the room electromagnetics theory characterized
by THV with the loss mechanisms of the channel characterized by the DMC path
loss factor. Evidently, ηHVDMC will also change if the room electromagnetics theory
does not apply (TXY not constant across all polarization links). Finally, it is pos-
sible to reformulate the DMC path gain model by substituting (3.26) in (3.8) to
highlight ηHVDMC

PHV
DMC(d) = ((1− χHHDMC)GHH

0,DMCTHV )e
−ηHVDMCd·log(10)

10 (3.27)

The more general case appears when the primary SMC and DMC are both
included into the radio channel like the co-polar links in this work. As an example
(all other polarization can be similarly derived), the path loss model for HH is given
by

[
PLHH

DMC(d)
]
dB

= −

[
χHHpri GHH

0,pri

(
d0

d

)nHHpri
+ (χHHDMCGHH

0,DMCTHH)e

(
−ηHHDMCd·log(10)

10

)]
(3.28)
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The secondary SMC was omitted in (3.28) since its contribution to the radio
channel could be marginal. This expression provides more insight about the path
loss mechanisms of the radio channel and highlights the competition between the two
components. For instance, when the transmitter−receiver distance is really short or
really large (Figure 3.3), the primary SMC dominates the DMC and the contribution
of the DMC to the path loss is small. Conversely, there is a transmitter−receiver
distance range for which the DMC is the dominant propagation mechanism such
that the contribution of the primary SMC is now small.

3.3.2 Two-step path loss parameters fitting method

The joint analysis of the reverberation results and SMC plus DMC path loss
models in the previous section reveals that the characterization of the path loss
parameter for each propagation mechanism can be split into two fitting steps. Two
cases can be distinguished in Figure 4.7. In a first case, RXY is below 0.5 (see
horizontal line) such that the SMC power is larger than that of the DMC (co-polar
links). For the second case, RXY is above 0.5 such that the DMC power is now
much larger than that of the SMC (cross-polar links)
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Figure 3.5: Example of the two-step path loss exponent fitting for the polarimetric
radio channel. The dotted line (black) is the slope fit for (a) the SMC

(
nXY−Ipri

)
and

(b) DMC
(
ηXY−IIDMC

)
.

As an example, Figure 3.5 illustrates this two-step fitting procedure. In a first
step [Figure 3.5(a)], the path loss exponent for the primary SMC noted nHH−I is
computed from the linear region of the log-distance curve for distances where the
SMC gain is greater than the DMC. In a second step [Figure 3.5(b)], the DMC
path loss factor ηHH−IIDMC is computed from the linear region of the linear-distance
curve where the DMC gain is greater than the SMC. It is observed that the fitting
slope follows well the asymptotic behavior of the model for each region (power law
for the SMC and exponential law for the DMC). In addition, the SMC to DMC
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transition distance between the two propagation mechanisms can be obtained with
the intersection of the log- and linear-distance lines. For this example, a transition
distance is obtained when R = 0.5.

Therefore, the parameters nXY−Ipri and ηXY−IIDMC developed in (3.26) can be es-
timated by one simply line regression fitting. This approach also indicates that
the reverberation time T could be estimated from (3.26) without applying complex
parametric estimation techniques.

Overall, this approach is possible to grasp the path loss characteristics of each
mechanism with the two-step fitting method. This method is general and could be
applied to any path loss data already collected in environments with DMC wherein
room electromagnetics applies.

3.4 Clustering identification method

Clustering methods are widely used techniques to group multi-dimensional data
presenting a high degree of correlation between one or many dimensions. For in-
stance, these methods have greatly improved over the last decades when it comes to
radio channel modeling. The most basic cluster classification technique is achieved
by visual inspection [115] but becomes rapidly intractable when large datasets are
considered like with MIMO radio channel parameters. For those cases, not only an
automatic clustering approach is required but it should also be able to encompass
multi-dimensional data to find the most appropriate clustering solution. Once a
clustering solution is obtained, its goodness or quality can be evaluated with Clus-
tering Validity Indices (CVIs) which individually give a definition of how the data
should be clustered [116, 117, 118].

The automatic clustering approach can trace back to the well-known K-means
clustering algorithm [119]. It is a popular iterative descent clustering method. Some
K-means based clustering algorithms have been specifically developed for radio chan-
nel analysis such as K-means MCD and K-means Power (KPM) [120]. These method
rely on the Multipath Component Distance (MCD) [121] in the main body of the
algorithm as a metric to quantify the distance between SMC. These approaches fo-
cus on clustering the dataset as a whole. In other words, the definition of a cluster
is revealed after the algorithm has converged.

Another approach takes into account the radio channel structure as a-priori
known information like the S-V approach shown in Figure 1.7. The SMC are grouped
with an MCD threshold as recently reported in [122] and [123] for millimeter-wave
data obtained in indoor scenarios. These approaches focus on the local cluster
description in the dataset via the MCD. In other words, the clustering is performed
based on a pre-defined description of what should be a cluster.
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3.4.1 Distance metric and cluster validity indices

3.4.1.1 Multipath Component Distance metric

The MCD was originally introduced in [121] as a metric to cluster real-world data
that often present different units and orders of magnitude. It also solves the angular
ambiguity issue. For instance, the large-scale parameters of the SMC estimated
from measured MIMO radio channels such as the TOA and DOA/DOD greatly
differ by nature. This metric was shown to be particularly effective compared with
the Euclidean metric [124]. The angular MCD between an SMC pair with index
(i, j) is given by:

MCDDOA/DOD,ij =

1

2

∣∣∣∣∣∣
 sin(θi)cos(ϕi)

sin(θi)sin(ϕi)
cos(θi)

−
 sin(θj)cos(ϕj)

sin(θj)sin(ϕj)
cos(θj)

∣∣∣∣∣∣ (3.29)

where θ and ϕ are the co-elevation and azimuth angle, respectively.

For the time-delay dimension, the MCD metric is given by:

MCDτ,ij = ζ · |τi − τj|
∆τmax

· τstd
∆τmax

(3.30)

where ∆τmax = maxi,j{|τi − τj|} and ζ is a scaling factor that provides additional
flexibility to treat real-world data [124]. Finally, the complete MCD distance is
given by:

MCDij =
√
‖MCDDOA,ij‖2 + ‖MCDDOD,ij‖2 + ‖MCDτ,ij‖2 (3.31)

The angular MCD is normalized in the interval of [0, 1] whereas MCDτ is in the
range of [0, ζ]. The MCD was reported as a meaningful approach to compute the
distance between SMC [125].

To provide a direct insight on how MCD works, an example of angular MCD is
shown in Figure 3.6. An angle with 0◦ azimuth and 90◦ co-elevation was selected as
a reference point. This figure was obtained by spanning all azimuth and co-elevation
angles in the [-π,π] and [0,π] range respectively.
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Figure 3.6: Illustration of angular MCD computed from (3.29). An angle with 0◦

azimuth and 90◦ co-elevation was selected as a reference point.

3.4.1.2 Cluster Validity Indices

The goodness of the clustering solution obtained from any techniques can be
assessed with Cluster Validity Indices (CVI) as recently reported in the literature
for radio channels [117, 118]. These CVI individually focus on certain properties
and features of the clusters like the compactness, cluster separation, intra-cluster
distance, etc. In this work, three validation indices which rely on the MCD metric
have been investigated: the Calinski-Harabasz, Xie-Beni, and PBM.

3.4.1.2.1 Calinski-Harabasz index The Calinski-Harabasz (CH) index was
presented in [126]:

νCH =

∑K
k=1 Lk(MCD(ck, c))

2

K − 1∑K
k=1

∑Lk
l=1(MCD(sl, ck)

2)

L−K

(3.32)

where Lk and L are the number of rays in the kth cluster and the total number of
rays respectively. sl is the data of the lth subpath in cluster k. ck and c are the
positions of the kth cluster centroid and global centroid, respectively. Finally, K is
the total number of clusters. The optimal solution is provided by the highest CH
value.
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3.4.1.2.2 Xie-Beni index The Xie-Beni (XB) index was introduced in [127]
and describes the cluster compactness to cluster separation ratio:

νXB =

∑K
k=1

∑Lk
l=1 Lk(MCD(sl, ck))

2

L×
[

min
k1,k2

(MCD(ck1, ck2))2

] (3.33)

The optimal solution is provided by the smallest XB value.

3.4.1.2.3 PBM Finally, the PBM index is given by:

νPBM =

 1

K
×

max
k1,k2

(MCD(ck1, ck2))∑K
k=1

∑Lk
l=1 MCD(sl, ck)

2

(3.34)

The optimal solution is provided by the highest PBM value.

3.4.1.2.4 CVI fusion technique In [116], it was concluded that no matter
how good the CVI is, it may not work at all for all types of data. Therefore, in
order to increase the versatility of the CVI for a given data set, it was proposed
in [128] to combine all CVIs to compute a global clustering score or score fusion.
It was reported that the performance of the fusion indices outperforms the single
indices [117]. Here, the Score Fusion was computed as the geometrical mean (SFg)
of all CVIs and is given by:

SFg(k) =

(
M∏
i=1

νi(k)

)1/M

(3.35)

where M represents the number of CVIs. The decision rank fusion method (Kr)
was not explored in this work. In our simulations, each index was scaled to [0, 1]
(min-max normalization) before computing SFg. The normalized XB index used in
(3.35) is modified into 1− νXB such that the optimal clustering solution is obtained
for the maximum SFg value.

3.4.1.3 CVI property study

In this section, an intuitive example of the CVIs and its performance is demon-
strated. The simplest cluster-like radio channel includes only two clusters. The
WINNER II advanced model was selected to generate the radio channels since it
is a GSCM with a double-directional cluster-like structure [45]. First, a double-
directional MIMO radio channel with two clusters is generated using arbitrarily the
urban micro-cell B1 scenario. Each cluster includes 20 SMCs. The PDP, DOA and
DOD of the simulated radio channels are shown in Figure 3.7 and the two clusters
can be well identified with different colors.
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Figure 3.7: Simulated SMC using WINNER II B1 radio channel with two clusters
in the: (a) time-delay domain (PDP), (b) and angular domain (DOA and DOD).

For this scenario, some overlap is observed in the time-delay domain (Figure 3.7(a))
but not in the DOA and DOD domains. Also, the DOA is statistically more spread
than the DOD (Figure 3.7(b)). The idea is to artificially and progressively make
the clusters overlap in all dimensions. This can be done by adding an arbitrary
offset in the domain of interest as shown in Figure 3.8. In Figure 3.8(a), the clusters
overlapp in the DOA domain but are still well separated in the DOD domain. In
Figure 3.8(b), these two clusters are completely overlapped in both dimensions.
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Figure 3.8: Modified simulated channel: (a) nearby clusters, (b) overlapping clusters.
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In a first step, the CVIs are computed assuming that the clustering solution is
correct (i.e. the SMC are all assigned to their respective cluster). The results in
Table 3.2 indicate that the CVI values do not differ much and a standard deviation
less than 3% was computed for the three cases. Nonetheless, the optimal solution is
different depending on the selected index. The CH index considers the overlapped
case as the best solution (maximum value). The XB index considers the original
case as the best solution (minimum value). Meanwhile, PBM considers the three
cases as good solutions. Finally, the fusion index SFg indicates that the overlap case
is the optimal solution. Surprisingly, this result is reasonable. Since the SMC are
originally correctly assigned to their cluster, any position of the cluster with respect
to each other in all dimensions will provide a good solution and it is expected the
CVI values to be strongly similar. In summary, this simulation demonstrates the
stability of the CVI provided that the clustering solution is correct.

Original Nearby Overlap
CH 35.3072 36.8792 37.6445
XB 0.1400 0.1421 0.1422

PBM 0.0011 0.0011 0.0011
SFg 0.1698 0.1716 0.1723

Table 3.2: CVIs for the B1 two-cluster scenario.

In a second step, the CVI values are computed from a clustering solution which
is progressively degraded. This is performed by reassigning the SMC to the wrong
cluster. Table 3.3 presents the CVI values for an error rate (percentage of SMC
incorrectly assigned to their true cluster) of 0% (perfect case), 15%, 25%, and 40%.
The results indicate that the XB, PBM, and SFg values diverge well from the
optimal solution as the error rate is increased. On the other hand, the CH index
does not perform well and this is attributed to the characteristics of the clusters for
the selected radio channel scenario.

In summary, the CVI values were found to be good indicators of the clustering
goodness. They were used to assess the performance of the classical and developed
clustering techniques which were then applied to simulated and real-world data.

Error rate 0% 15% 25% 40%

CH 35.3072 37.4622 39.02 39.2606
XB 0.1400 0.2083 0.6658 0.9412

PBM 1.1× 10−3 7.51× 10−4 2.34× 10−4 1.66× 10−4

SFg 0.1698 0.1442 0.0846 0.0499

Table 3.3: CVIs as a function of clustering goodness.
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3.4.2 MCD-based clustering algorithm

3.4.2.1 K-means MCD

Under the scope of K-means clustering, K-means MCD algorithm must be ini-
tialized with the number of clusters K present in the radio channel; information that
is a-priori unknown. K can be initially fixed by the user either manually (i.e. best
visual guess) or automatically using the Kim-Parks index [129]. Then, an initial
position for the K centroids are typically estimated by selecting K SMC randomly
from the dataset. A deterministic approach using a weighted MCD metric was also
developed in [130] to jointly estimate the number of clusters and centroid positions,
thus reducing the overall complexity of the algorithm. In any cases, K-means was
reported to be highly sensitive to the initial position of the centroids [131] but also
to outliers and noise resulting in non-convergence problems and a low capability to
pass the local optimum. Consequently, the algorithm must be applied to the same
data with different initial centroid positions to statistically obtain the best clus-
tering solution. Finally, it does not work well with non-circular cluster shape and
clusters which do not have well defined centers. This latter point is attributed to
the data type and inadequate metric distance. This is partially solved by replacing
the squared Euclidean norm with the MCD in the main body of the K-means MCD
algorithm as suggested by [125].

A brief description of the K-means MCD algorithm developed for this work is
shown in Algorithm (1) which is considered as the reference algorithm for our pro-
posed clustering approach. First, the SMC which contribute the most to the radio
channel (i.e. most energetic) are selected from the whole dataset by applying a power
threshold. For a given number of clusters Kinit , the centroids ck are randomly gen-
erated from the data and the MCD between the SMC and centroids is computed.
A deterministic approach was also proposed in [130] to initialize the clustering al-
gorithm using a power weighted MCD metric. It offers the advantage of reducing
the complexity of the clustering algorithm and was reported to produce satisfactory
results. However, it was not investigated in the present work since the classical K-
means algorithm is typically initialized with a random guess. The algorithm assigns
the SMC to the nearest centroids and updates all centroid positions. The centroid
positions are computed as the average position of the SMC for each dimension. Note
that the power was not included to weight the average. The algorithm stops once
all centroids are stable.

3.4.2.2 Automatic Cluster Identification (ACId)-MCD

The clustering approach developed in this work is motivated by the approaches
reported in [122, 123]. Their method consists in sorting the rays either by delay or
power. Then, the joint MCD is computed and a preset threshold is used to group
rays. In other words, rays with MCD less than the threshold form a new cluster.
Steps are repeated until all rays are grouped. In contrast with K-means MCD, an
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Algorithm 1 K-means MCD

1: Define Kinit and SMC threshold power PT

2: Randomly generate cik
3: Select SMC with power > PT

4: while ci+1
k 6= cik do

5: Compute MCD(lik, c
i
k)

6: Assign SMC lik to nearest centroid cik
7: Update centroid position cik
8: i = i+ 1
9: end while

attractive characteristic of this algorithm is the fact that the number of clusters is
the resulting output. Hence, no pre-processing of the data is necessary to choose
an initial number of clusters like with K-means. However, both studies did not
investigate which MCD threshold would be best even though visual inspection of
the data was explored by [123] to physically link the SMC distribution with the
threshold. The algorithm reported by [122] suffers two major drawbacks: 1) the
position of the centroid is never updated and 2) some assigned SMC could be closer
to new clusters and should be re-allocated. Martinez-Ingles et al [123] modified
the algorithm by taking into account the second problem. Nonetheless, MCD-based
clustering techniques are very promising and computationally-efficient algorithms
compared to K-means MCD but comprehensive works on this topic are scarce in the
literature.

A novel MCD-based clustering technique called Automatic Cluster Identification
(ACId) is introduced to fulfill this gap. The proposed approach (Algorithm (2) is an
improved variant of the algorithm reported in [123]. As such, SMC are iteratively
assigned to a cluster provided that the cluster-SMC MCD is within a MCD threshold
set by the user. Analysis of (3.31) shows that the cluster shape can vary from cluster
to cluster as the axis length for each dimension is physically bounded by the MCD
threshold. Necessarily, it follows that the SMC distribution, number of clusters,
and cluster size/shape are strongly dependent to the threshold value which should
be carefully selected to find the optimal clustering solution. For example, a MCD
threshold of 0.25 was used in [122] without being deeply motivated. A 0.1 threshold
was used in [123] by manually inspecting the data. An attractive characteristic of
the algorithm is the fact that the number of clusters is the resulting output. Hence,
no pre-processing of the data is necessary to choose an initial number of clusters like
with the typical K-means.

ACId-MCD has been designed to dynamically update the centroid position like
K-means and reassigning SMC that might be closer to existing clusters. Even though
MCD matrices must be iteratively computed between unassigned SMC and cen-
troids, this approach was found to be computationally effective since the MCD
matrix size, large with the original dataset, decreases as SMC are progressively be-
ing assigned. For a given MCD threshold, the MCD-based clustering techniques
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converge fast towards a unique solution even when large datasets are considered.
This is a strong advantage compared with the classical K-means for which a family
of solutions is obtained for each input K due to the random aspect of the initial-
ization step. The optimal clustering distribution must be then selected from this
family for each K and, therefore, adds additional complexity. Furthermore, it also
increases the computational time since the probability to find the optimal solution
decreases as the dataset is increased. Finally, a newly defined centroid is defined
as the strongest SMC. This is motivated by the physical structure of clusters which
often include a single or few strong SMC with weaker SMC satellites.

Algorithm 2 ACId-MCD

1: Define MCD threshold MCDT and power threshold PT ,
2: Select SMC with power > PT

3: Compute MCD(i, j)
4: while Unassigned SMC> 1 do
5: Pick strongest unassigned SMCas new centroid cik
6: while ci+1

k 6= cik do
7: Assign SMC lik satisfying MCD(l, cik) 6MCDT

8: Update cik
9: Compute MCD(lik, c

i
k−m) with m < k

10: Reassign SMC lik satisfying MCD(lik, c
i
k−m) < MCD(lik, c

i
k) to nearest cen-

troid cik−m
11: Update lik, l

i
k−m, cik and cik−m

12: i = i+ 1
13: end while
14: k = k + 1
15: end while

3.4.3 Evaluation framework

3.4.3.1 Cluster-like radio channel simulations

Before assessing the solution of the clustering techniques with the CVIs, realistic
radio channels must be simulated. Once again, the WINNER II advanced model
was selected since it is a GSCM with a double-directional cluster-like structure [45].
Four scenarios were considered: indoor office (A1), large indoor hall (B3), urban
macro-cell (C2), and rural macro-cell (D1) with the presence of the Line-Of-Sight
(LOS). These four scenarios were selected as they are representative of typical indoor
and outdoor propagation scenarios with different cluster characteristics and also
representative of the investigated scenarios of this work. These cluster features for
each scenario are presented in Table 3.4: Azimuth Spread of Departure and Arrival
(ASD and ASA), Elevation Spread of Departure and Arrival (ESD and ESA). Since
the ESD and ESA are not supported in the WINNER II Matlab program, elevation
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angles were drawn from a normally distributed angle with 5◦ spread. This value
is arbitrary and corresponds to values obtained for the azimuth. In addition, the
number of subpath (i.e. SMC) in each cluster is 20 but the power and TOA of every
SMC in one cluster are set to equal. Therefore, the Saleh-Valenzuela multipath
propagation model [35] was introduced to produce clusters with more realistic time-
delay and power properties. The TOA of each SMC in each cluster was drawn from a
normal distribution with mean of the simulated TOA SMC and arbitrary σTOA = 10
ns standard deviation. In addition, the power of each subpath exponentially decays
as a function of delay.

Table 3.4: Modified Winner II cluster features

A1 B3 C2 D1
Number of cluster 11 10 8 9

Number of SMC per cluster 20 20 20 20
σTOA(ns) 10 10 10 10
ASA (◦) 5◦ 5◦ 12◦ 3◦

ESA (◦) 5◦ 5◦ 5◦ 5◦

ASD (◦) 5◦ 5◦ 6◦ 2◦

ESD (◦) 5◦ 5◦ 5◦ 5◦

∆TOA(ns) 37.6 35.8 45 32.4
∆DOAaz(

◦) 21.5 21.5 90.1 12.9
∆DOAel(

◦) 17.6 19 16.2 19.1
∆DODaz(

◦) 21.5 21.5 25.9 8.6
∆DOAel(

◦) 18.1 20.6 17.2 18.6

A single drop or realization was simulated for each scenario and saved. Table. 3.4
lists the average cluster size computed for each dimension (in ns for TOA and degree
for DOA/DOD) and saved reference scenario. The average cluster size is given by:

∆X =
1

K

K∑
i=1

|Xi
max −Xi

min| (3.36)

where X is either the TOA, DOA azimuth, DOA elevation, DOD azimuth, or DOD
elevation. K is the number of clusters for a given scenario. The synthesis channel
output is a L×6 matrix where L is the total number of SMC and the dimensions are
[Power, TOA, DOA azimuth, DOA elevation, DOD azimuth, DOD elevation]. As an
example, Figure 3.9 presents the DOA and DOD angular distribution obtained for
scenario A1 and indicates that some clusters can overlap in one or more dimensions.
Clustering algorithms make use of the diversity provided by the different dimensions
to correctly assign the SMC to the best cluster candidate. For instance, some clusters
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do not overlap simultaneously in all dimensions such that the clusters can still be
distinguished (e.g. simulated scenarios A1, B3, C2). If some clusters overlap in all
dimensions simultaneously then it is safe to assume that any clustering algorithms
would fail to correctly estimate the true number of clusters. This case happens for
scenario D1.

DOD

(a)

DOA

(b)

Figure 3.9: A1 scenario of the distribution of SMC in azimuth and elevation. (a).
DOD. (b). DOA

3.4.3.2 Evaluation protocol

The goodness of the clustering solution and optimal solution are evaluated with
the protocol presented in Algorithm (3) for K-means MCD and ACId-MCD.

3.4.4 Performance of ACId-MCD and K-means MCD

The evaluation protocol is applied to the investigated scenarios and a 30 dB
power threshold is used to select the SMC. The computation of MCDτ is done
with the scaling factor ζ = 2.5. For K-means MCD, NIte = 500 and Kinit was
ranging between Kmin = 3 and Kmax = 15. For ACId-MCD, 50 values of MCDT

were taken between MCDmin = 0.02 and MCDmax = 0.3. The lower and upper
limit, arbitrarily chosen, correspond to an angular difference between two SMC of
about 15◦ and 60◦, respectively (for MCDτ = 0). For a given scenario, the total
computational time is a bit less than 2 hours (111.6 min) with K-means MCD (1.03
s per run) whereas it is merely 40 seconds with ACId-MCD (0.8 s per run), thus
showing the superiority of the proposed approach on this aspect.

Figure 3.10 presents the normalized SFg as a function of the input number
of clusters with K-means MCD for the four investigated scenarios. The optimum
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Figure 3.10: Normalized SFg as a function of K for K-means MCD, (a) Scenario
A1, (b) Scenario B3, (c) Scenario C2, (d) Scenario D1.
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Algorithm 3 Evaluation Protocol

1: Simulate and save WINNER II scenario
2: Define power threshold PT

3: Select SMC with power > PT

4: Define K range= [Kmin, Kmax] and number of iterative steps NIte

5: for Kinit = Kmin to Kmax do
6: while NIte 6= 0 do
7: Apply K-means MCD
8: Save cluster Solution CSKmeans = f(Kinit, NIte)
9: end while

10: end for
11: Compute normalized SFg to obtain Kopt and NIteopt

12: Define MCD range = [MCDmin,MCDmax]
13: for MCDT = MCDmin to MCDmax do
14: Apply ACId-MCD
15: Save Cluster Solution CSACId = f(MCDT )
16: end for
17: Compute normalized SFg to obtain MCDopt and Kopt

number of clusters Kopt is given by the maximum SFg value and are presented in
Table 3.5. It is observed that K-means slightly overestimates the true number of
clusters Ktrue listed in Table 3.4 for the scenario A1 (Kopt = 13), B3 (Kopt = 11),
and C2 (Kopt = 3). However, only 3 clusters are obtained for scenario D1. This is
attributed to the overlapping of some clusters with small ASA/ASD values which is
believed to severely disturb the clustering algorithm. Nonetheless, a local maximum
is reached for K = 7 close to Ktrue = 9. Moreover, it is also observed that a local
maximum is obtained with all scenarios for K = 3. These results seem pervasive of
the CVIs definition of a cluster.

Table 3.5: Number of clusters and optimal MCD threshold.

ACId-MCD K-means MCD
Ktrue Kopt MCDopt

T Kopt

A1 11 11 0.01− 0.04 13
B3 10 10 0.125 11
C2 8 8 0.15 9
D1 9 18 0.05 3

Since the optimal solution is statistically obtained by applying K-means MCD
NIte times for a given radio channel data, it is clear that many attempts will result in
sub-optimal solutions with relatively low SFg values. This is verified in Figure 3.11
which presents the histogram of SFg obtained from the NIte = 500 solutions with
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Figure 3.11: Normalized SFg histogram for K-means MCD with NIte = 500 and
K = Ktrue. (a) Scenario A1, (b)Scenario B3, (c) Scenario C2, and (d) Scenario D1,
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K = Ktrue for all scenarios. The results show that the probability of having a high
SFg value (better solution) is relatively low. In addition, this demonstrates that the
singularity and uniqueness of the true solution makes it difficult for the algorithm
to reach it. Consequently, NIte should be as large as possible but this comes at the
expense of the overall computational time. Hence, it should be selected carefully
when using K-means.
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Figure 3.12: Normalized SFg as a function of K for ACId-MCD,(a) Scenario A1,(b)
Scenario B3,(c) Scenario C2,(d) Scenario D1.

Figure 3.12 presents the normalized SFg as a function of the input MCD thresh-
old MCDT with ACId-MCD for the four investigated scenarios. The optimal
MCDTopt is given by the maximum SFg value. It is observed rather different behav-
iors for SFg depending upon the scenario indicating that the algorithm is highly
sensitive to the data type. Furthermore, the results shown in Table. 3.5 indicate
that MCDTopt not only depends on the scenario but is also unique for each scenario.
For instance, MCDTopt varies between 0.01 and 0.04 for A1, is ∼ 0.125 for B3, is
∼ 0.15 for C2, and ∼ 0.05 for D1. Conversely, this means that scenarios could be
categorized based upon the clustering properties characterized by MCDT . This is
an elegant approach to physically link the SMC distribution with the propagation
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scenario. In addition, Figure 3.13 presents the normalized SFg as a function of K.
In contrast with the results shown in Figure 3.10, sharp maxima are observed for all
scenarios and Kopt = Ktrue for scenario A1, B3, and C2. Kopt is overestimated for
scenario D1 (18 clusters) even though a local maximum is reached like with K-means
for K = 8 close to Ktrue = 9 (see Table 3.5).

Table 3.6: Percentage of correct intra-cluster SMC

ACId-MCD K-means MCD
K = Kopt K = Ktrue K = Kopt K = Ktrue

A1 100% 100% 95.45% 86.82%
B3 97% 97% 98% 88.5%
C2 100% 100% 93.75% 95%
D1 60% N/A 26% 96.11%

Even though the correctness of the number of clusters is a good indicator for the
clustering goodness, the performance of the clustering techniques is further evaluated
by checking whether the SMC assigned to a given cluster for the best solution are
the same than the ones for the true solution. This is simply performed by comparing
the index or label of the SMC between the best and true solution for each cluster.
Two cases are considered for this study and are presented in Table 3.6. First, the
percentage of correct indices is computed for K = Kopt. Then, it is computed
for the case where the algorithm finds the correct number of clusters K = Ktrue.
For K = Kopt, a perfect success rate is achieved for the scenario A1, B1 (97%),
and C2 with ACId-MCD but it has to be recalled that Kopt = Ktrue for those
scenarios. 60% is obtained for D1 which could be attributed to the fact that twice
as much clusters are found for this scenario. Note that no results were available with
K = Ktrue for D1 due to the selected MCD threshold range. Good rates are also
obtained with K-means MCD with K = Kopt except for D1. Nevertheless, results
also indicate that when K = Ktrue, generally the K-means algorithm, assigns most
of the SMC correctly (even for scenario D1) as percentages obtained were higher
than 86% in all the four scenarios. This suggests that, probably, some clusters
existing in the dataset are incorrectly grouped in a single cluster and maybe some
other ones are incorrectly split. Thus, the algorithm could not identify correctly
the existing clusters, although, the number of requested clusters is the same as the
actually existing in the data set. An increase in K, will allow that some of the
grouped clusters are finally correctly identified, yielding to a solution which may
be better under the considered evaluation criteria and presenting also more SMC
correctly assigned to the corresponding cluster. The number of SMC incorrectly
assigned reduces to those in clusters that were incorrectly split.

Finally, the average cluster size was computed for each dimension (in ns for
TOA and degree for DOA/DOD) from the optimal clustering output of the K-
means MCD and ACId-MCD algorithms (K = Kopt). The results presented in
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Figure 3.13: Normalized SFg as a function of MCDT for ACId-MCD, (a) Scenario
A1, (b) Scenario B3, (c) Scenario C2, and (d) Scenario D1.

Table 3.7: Average cluster size with ACId-MCD and K-means MCD

A1 B3 C2 D1
ACId K-means ACId K-means ACId K-means ACId K-means

∆TOA(ns) 37.6 31.1 38.5 31.9 45 63 14.5 15.4
∆DOAaz(

◦) 21.5 20.6 23 20.3 90.1 108.2 10.1 8.1
∆DOAel(

◦) 17.6 16.4 18.9 20.6 16.2 14 15.2 15.7
∆DODaz(

◦) 21.5 18.5 20.7 29.5 25.9 28.3 5.5 4.4
∆DODel(

◦) 18.1 16.6 21.3 21.8 17.2 16.5 15 13.2
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Table 3.7 can be compared with those of Table 3.5 and demonstrate the ability
of the ACId-MCD algorithm to correctly grasp the radio channel clustering size.
For ACId-MCD, a perfect agreement is found for the scenarios A1 and C2 since
the number of clusters is correct and the percentage of correct intra-cluster SMC is
100% for these two scenarios. The values are also close for B3 for similar reasons
whereas a slightly larger deviation is obtained for D1 in spite of a number of clusters
largely overestimated with a percentage of correct intra-cluster SMC of only 60%.
For K-means MCD, the optimal number of clusters is incorrect for all scenarios and
the percentage of intra-cluster SMC correctly assigned never reaches 100%. Hence,
the average cluster size values present a larger deviation compared with ACId-MCD.
This is particularly true for the scenarios C2 and D1.

3.4.5 Robustness of ACId-MCD

In this section, it is proposed to evaluate the robustness of the developed ACId-
MCD algorithm using Monte-Carlo simulations. This is performed by generating the
same radio channel with the method introduced in section 3.4.3.1. ACId-MCD has
been applied to 500 radio channels emulated from the A1 scenario. Since the SMC-
cluster assignment is a-priori known from the simulator, the error percentage can
be computed from the clustering results. The histogram of the error percentage is
presented in Figure 3.14. The results show that an error less than 5% is obtained for
more than 425 simulated channels (85% of the 500 channels). This is a considerable
improvement compared to other clustering algorithms [118] and demontrastes the
robustness of the developed approach.

3.4.6 Definition of cluster parameters

In this paragraph, the relevant cluster parameters used to perform the statistical
analysis in chapters 4 and 5 are defined. These parameters are computed from the
estimated cluster index of each SMC and their respective time-delay and angular
parameters. First, the cluster power is defined as the sum of the power of all SMC
belonging to the same cluster as proposed by [132]:

PXY
k =

∑
Lk

|γXYk,l |2 (3.37)

Then, the cluster-level XPD XPDX
k can be obtained by:

XPDX
k =

PXX
k

PXY
k

(3.38)

The computation of the cluster-level XPD does not take into account single-SMC
cluster.
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Figure 3.14: Error percentage of uncorrectly assigned SMC using ACId-MCD. 500
Winner II channels were generated using scenario A1.
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The averaged cluster XPD is obtained as the mean value of all cluster XPD for
the same measurement position:

XPD
X

cluster = E[XPDX
k ] (3.39)

The cluster mean delay and RMS delay spread are defined as suggested in [133]:

µ̄τ,k =

∑Lk
l=1 |γk,l|2τk,l∑Lk
l=1 |γk,l|2

(3.40)

where γk,l and τk,l are the complex path amplitude and time-delay of the lth SMC
in the kth cluster, respectively.

τrms,k =

√∑Lk
l=1 |γk,l|2(τk,l − µ̄τ,k)2∑Lk

l=1 |γk,l|2
(3.41)

The averaged cluster delay spread is calculated with the same manner than in (4.24):

µ̄rms,cluster = E[τrms,k] (3.42)

Finally, the correlation coefficients for the cluster-level parameters are given by:

ρx,y =
Cxy√

CxxCyy

(3.43)

where Cxy is the cross-covariance of two parameters. This method follows the pa-
rameters computation methodology proposed in the WINNER II channel model [45].

3.5 Conclusion

In this chapter, two complementary modeling approaches have been proposed
and developed to analyze the characteristics of polarimetric links from the esti-
mated radio channel SMC and DMC parameters and their related PDP. First, a
comprehensive polarimetric distance-dependent model of the PDP and path gain is
proposed for scenarios including DMC. This model considers the respective contri-
bution of different radio channel multi-path components. The conventional path loss
model which is based on the power law was re-evaluated by including DMC. This
model provides a deeper physical insight into the propagation mechanisms when
polarimetric radio channels with DMC are considered. Furthermore, a two-step
method with low complexity to compute the joint path loss characteristics of the
SMC and DMC directly from the measured data has been developed. This highlights
the need to include not only a complete polarimetric description of both the SMC
and DMC into polarimetric radio channel models such as the COST2100 [47] but
also that polarimetric SMC plus DMC path loss models must be carefully thought.
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These results have been published in [134, 135]. The proposed path loss model will
be validated and evaluated in the following chapter.

Furthermore, a novel MCD-based clustering algorithm, ACId-MCD, was pro-
posed to group the SMC obtained from MIMO radio channels. The performance
of the novel algorithm was compared with the popular K-means MCD algorithm
using a dedicated evaluation protocol. The radio channels were simulated by the
GSCM WINNER II channel model under four scenarios. The results indicate that
ACId-MCD outperforms K-means MCD for all investigated scenarios. Clearly, the
capability of ACId-MCD to estimate correctly without ambiguity the radio chan-
nel clusters and intra-cluster SMC is demonstrated. Also, its robustness has been
demonstrated with Monte-Carlo simulations. Moreover, the optimal clustering so-
lution is obtained without performing computationally extensive statistical studies
on the same radio channel as required by the investigated K-means MCD. Further-
more, the optimal number of clusters is associated with a unique MCD threshold.
This threshold is physically linked to the cluster size/distribution and, therefore,
deeply rooted to the large-scale parameters of the radio channel. From the radio
channel modeling point of view and specifically GSCM ones, it is believed that the
MCD threshold could be used as an additional large-scale parameter to categorize
propagation scenarios based on their clustering properties. These results have been
published in [136, 137, 138]. The application of ACId-MCD to real-world data will
be introduced and discussed in the following chapter.
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Chapter4
Indoor scenario with DMC: industrial
radio channel

4.1 Introduction

In this chapter, it is proposed to investigate the radio channel propagation char-
acteristics of an indoor scenario including DMC. The selected environment is a large
open hall which is the host of high-tech small and medium-sized enterprises (SMEs)
and is categorized under the industrial radio channel.

First, the polarimetric distance-dependent and path loss models proposed in
the previous chapter were applied to the SMC and DMC PDPs estimated from
measured polarimetric MIMO transfer functions. The validation of the proposed
model will be followed by a discussion of the propagation mechanisms and their
relative contribution to the radio channel.

Then, clustering of the estimated SMC was performed with the ACId-MCD algo-
rithm developed in the framework of this thesis. In order to evaluate the contribution
of DMC to the cluster statistics and distributions for this environment, it is pro-
posed to compare the clustering results obtained for the two following cases. 1) it is
assumed that the radio channel only includes SMC. This is the classical hypothesis
from which all GSCM were built on. 2) the radio channel includes both SMC and
DMC. The cluster features for these two cases will be compared and discussed.

4.2 Measurement campaign and data processing

4.2.1 Measurement setup and scenario

The validity of the developed model is assessed with data collected in a large
atrium (48.8 m × 36.35 m × 18 m) of the EuraTechnologies Center, Lille, France.
The polarimetric radio channel transfer functions were obtained at 1.3 GHz over a
22 MHz bandwidth with the virtual 16 × 16 MIMO channel sounder presented in

115
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chapter 2 (section 2.4.1). Prior being refurbished into a high-technology building,
this three level high environment was the host of a textile plant, explaining the
presence of traditional brick walls, marble floor, large windows surface, and metallic
structure, as depicted in Figure 4.1(a). A few chairs, tables, benches, and decoration
plants are located around the center for social events such that the environment can
be considered as almost empty. Figure 4.1(b) presents the 13 LOS Tx-Rx positions
in the hall with distances ranging between 10 and 45 m. The measurement campaign
was performed at night without workers and visitors to ensure that the radio links
are static over time. The transmitting unit was moved around the hall whereas the
receiving unit was set to the same position for all measurements. A virtual UCA
was used for both Tx and Rx with dual-polarized patch antennas located at 1.6 m
high.

(a) (b)

Figure 4.1: (a) Picture of the EuraTechnologies Center atrium (Lille, France) from
the receiving array point of view. (b) Tx (blue circles), Rx (red cross) measurement
pairs in the EuraTechnologies Center atrium. The black squares indicate the vertical
brick beams visible in (a).

It is recalled here that the complex impulse response of the distance-dependent
polarimetric MIMO radio channel hXY (τ, d,m, n) can be obtained by Fourier trans-
forming sampled versions of the frequency response HXY (f, d,m, n) measured for
all Tx-Rx links:

hXY (τ, d,m, n) = F−1(HXY (f, d,m, n)) (4.1)

where d is the Tx-Rx distance, τ is the time-delay, f the sampled frequency, m
the mth antenna of the Tx array, n the nth antenna of the Rx array, and F−1 the
inverse Fourier operator. The polarimetric distance-dependent PDP GXY (τ, d) can
be obtained from the expectation of the squared magnitude of hXY .

GXY (τ, d) = E
[
|hXY (τ, d,m, n)|2

]
(4.2)

The expectation operator is applied over all Tx-Rx links to remove the small-scale
fading. As an example, Figure 4.2 presents the measured polarimetric PDP for
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position 6 (short Tx-Rx distance) and 13 (large Tx-Rx distance). The exponential
decay of the PDP indicates the presence of DMC for all polarization links. In
addition, SMC clusters can be clearly observed for the co-polar PDP, but individual
SMC cannot be visually distinguished from each other due to the limited bandwidth.

(a) (b)

Figure 4.2: Example of measured polarimetric PDP for (a) position 6 and (b) posi-
tion 13.

4.2.2 Parametric Estimation and PDP

The polarimetric SMC and DMC parameters were initially estimated with the
ML estimator RiMAX described in chapter 2 [1]. The wideband polarimetric MIMO
measurements with a UCA at both link ends allow to access the TOA, DOA, DOD,
polarimetric complex gain for each SMC, as well as the DMC. In addition, the
antennas were de-embedded from the measured radio channels with the sampled
polarimetric radiating patterns of the patch antennas. The effective aperture distri-
bution function (EADF) technique was used to store and interpolate the polarimetric
gain for each SMC as a function of azimuth and elevation angles for both DOA and
DOD.

Here, the number of new SMCs per iteration was set to five as originally sug-
gested in [1]. This number was chosen as a good trade-off between the estimator
computational time and its ability to split coupled SMC. Note that no significant
change in the results was obtained with a larger number. The reliability of each new
SMC is checked with an SNR criterion and the algorithm stops itself when all five
SMCs fail the criterion. Fifty iterations were chosen such that the maximum num-
ber of SMCs was potentially 250. However, the algorithm stopped before reaching
this limit for all positions and the mean number of estimated SMCs per position
was found to be around 75. For the sake of comparison, this value is in-between the



118 Chapter 4. Indoor scenario with DMC: industrial radio channel

number of SMCs obtained by ray tracing in an empty parallelepipedic scenario with
a 5th (61) and 6th (85) order of reflection.

4.2.2.1 PDP Estimation

(a) (b)

(c) (d)

Figure 4.3: Estimated contribution of the primary SMC, secondary SMC and DMC
(in %) to the total path gain as a function of distance for polarimetric links (a) HH,
(b) HV , (c) V V , (d) V H.

The developed polarimetric distance-dependent path gain model relies on the
estimated versions of the primary and secondary SMC and DMC PDP and subse-
quent path gain. These band-limited GXY

pri , GXY
sec , and GXY

DMC can be reconstructed
from the SMC and DMC parameters thanks to the estimator data model. At this
point, it is necessary to define which SMCs contribute to the primary and secondary
components. For indoor scenarios with low room volumes, the LOS and first-order
components typically arrive within a short delay period and contribute all to the
primary part of the PDP. However, for large volume scenarios such as the one con-
sidered in this work, some of the first-order components may arrive much later than
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the LOS. This is particularly true when the Tx-Rx distance is short like for posi-
tion 6, see Figure 4.1(b). For this position, peaks are observed 180 ns (54 m) later
than the LOS and attributed to reflections off the left and up walls. Here, only
the SMCs which contribute to the first observed peak of the PDP were considered
for the primary SMC. This is done by picking all SMCs within one delay bin (45
ns) with respect to the LOS, and all the remaining SMCs are thrown into the sec-
ondary SMC. This criterion was found to be simple to implement and in-line with
the proposed model.

Figure 4.3 presents the estimated contribution of the primary SMC, secondary
SMC, and DMC to the total path gain as a function of distance for all polarimetric
links. It is observed that the primary SMC and DMC contributions are not only
dependent to the distance but also polarization links. In contrast, the contribution
of the secondary SMC to the total path gain is weaker than the primary SMC and
DMC with less than 9% on average for the co-polar and 4% for the cross-polar links,
respectively.

4.3 Application of the polarimetric distance-dependent

path gain model

4.3.1 Reference model

As discussed earlier, an exponential law is selected to describe the distance-
dependent properties of DMC whereas those of the SMC are modeled with a power
law. The development of path loss models is always performed with the latter model,
and it can be useful to compare with already published path loss results for radio
channels where DMC was identified as the strongest component. Hence and for the
sake of comparison, a reference path gain model for DMC with a power law must be
also considered. However, we would like to emphasize that the connection to room
electromagnetics theory is completely missing when a power law is used. Such a
reference model is given by:

GPow
DMC(τ, d) =

NDMC∑
k=1

Gk,DMC

(
d0

d

)nDMC

δ(τ − τk(d)) (4.3)

where nDMC is the path loss exponent and Gk,DMC is the reference gain for the DMC
at reference distance d = d0 for the kth path, respectively. NDMC is the number of
paths contributing to the DMC.

Similarly to the path gain equations derived in chapter 3 from 3.18, equations
can be derived for the DMC part:

PHH
Pow,DMC(d) = χHHDMC(d)GHH

0,DMC

(
d0

d

)nHHDMC

(4.4)
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PHV
Pow,DMC(d) = (1− χHHDMC(d))GHH

0,DMC

(
d0

d

)nHVDMC

(4.5)

PV V
Pow,DMC(d) = χV VDMC(d)GV V

0,DMC

(
d0

d

)nV VDMC

(4.6)

PV H
Pow,DMC(d) = (1− χV VDMC(d))GV V

0,DMC

(
d0

d

)nVHDMC

(4.7)

The complete reference path gain model can be simply obtained by replacing the
PXY
DMC in (3.19-3.22) by the above equations.

4.3.2 Summary of the model parameters

In total, it is recalled that 24 parameters, some of which are distance-dependent,
are required to tune the PDP or path gain models where the DMC follows an
exponential model or power law model (reference model) in the delay domain. All
model parameters are summarized in Table 4.1.

Table 4.1: Proposed Model and reference model Parameters

SMC DMC

Param. Polar.link Primary Secondary Exp.law Power law

nXY

HH npriHH nHHsec X nHHDMC

HV npriHV nHVsec X nHVDMC

V H npriVH nV Hsec X nV HDMC

V V npriV V nV Vsec X nV VDMC

GXY
0

HH GHH
0,pri GHH

0,sec GHH
0,DMC GHH

0,DMC

V V GV V
0,pri GV V

0,sec GV V
0,DMC GV V

0,DMC

χXY
HH χHHpri χHHsec χHHDMC χHHDMC

V V χV Vpri χV Vsec χV VDMC χV VDMC

TXY

HH X X THH X

HV X X THV X

V H X X TV H X

V V X X TV V X
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4.3.2.1 Path gain model parameter estimation

For the estimation of proposed model parameters, after computing PXY
pri , PXY

sec

, and PXY
DMC from their respective PDP, a linear regression is performed to estimate

the polarimetric path loss exponent nXYpri and nXYsec respectively. χHHSMC , χV VSMC , χHHDMC

and χV VDMC are obtained indirectly as a function of the XPD and it can be shown
that:

χHHSMC(d) =
XPDH

SMC(d)

(d0
d

)(nHHSMC−n
HV
SMC) + XPDH

SMC(d)
(4.8)

χV VSMC(d) =
XPDV

SMC(d)

(d0
d

)(nV VSMC−n
VH
SMC) + XPDV

SMC(d)
(4.9)

where the distance-dependent XPD with respect to H and V is computed from the
estimated path gain for the SMC (both primary and secondary) or DMC by:

XPDH
SMC/DMC(d) =

(
PHH
SMC/DMC

PHV
SMC/DMC

)
(4.10)

XPDV
SMC/DMC(d) =

(
PV V
SMC/DMC

PV H
SMC/DMC

)
(4.11)

Finally, the reference gains for the primary/secondary SMC are computed at
reference distance d0 from:

GHH
0,SMC =

PHH
SMC

χHHSMC(d0)
(4.12)

GV V
0,SMC =

PV V
SMC

χV VSMC(d0)
(4.13)

Similarly, provided that TXY is a byproduct of the estimator, χHHDMC and χV VDMC

are given by:

χHHDMC(d) =
XPDH

DMC(d)

(T
HH

THV
)e
−d
c

(
THV −THH

THV THH

)
+ XPDH

DMC(d)
(4.14)

χV VDMC(d) =
XPDV

DMC(d)

(TV V

TVH
)e
−d
c

(
TVH−TV V

TVHTV V

)
+ XPDV

DMC(d)
(4.15)

where XPDH
DMC and XPDV

DMC are also computed with (4.10)and (4.11). Finally,
GHH

0,DMC and GV V
0,DMC are computed at reference distance d0 from:

GHH
0,DMC =

PHH
DMC(d0)

χHHDMC(d0)THHe
−d0
cTHH

(4.16)

GV V
0,DMC =

PV V
DMC(d0)

χV VDMC(d0)TV V e
−d0
cTV V

(4.17)
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4.3.2.2 Reference path gain model parameter estimation

nXYDMC , χXYDMC , and GXY
DMC need to be estimated for the reference model . A linear

regression is used to estimate the nXYDMC from PXY
DMC . χHHDMC and χV VDMC are obtained

similarly to (4.8) and (4.9):

χHHDMC(d) =
XPDH

DMC(d)

(d0
d

)(nHHDMC−n
HV
DMC) + XPDH

DMC(d)
(4.18)

χV VDMC(d) =
XPDV

DMC(d)

(d0
d

)(nV VDMC−n
VH
DMC) + XPDV

DMC(d)
(4.19)

wherein XPDH
DMC and XPDV

DMC can be computed from (4.10) and (4.11) respec-
tively. Finally, the reference gain for the DMC can be obtained as (4.12) and (4.13)
at reference distance d0:

GHH
0,DMC =

PHH
DMC(d0)

χHHDMC(d0)
(4.20)

GV V
0,DMC =

PV V
DMC(d0)

χV VDMC(d0)
(4.21)

4.3.2.3 Estimated path gain model parameters

With the previously introduced estimation methods, the polarimetric path loss
exponents were fitted from the estimated primary and secondary SMCs, and DMC
path gains. Then, the polarization coefficients as well as the reference gains were
computed for the SMC and DMC from (4.8) to (4.17). It is shown in Figure 4.4
that the primary and secondary SMCs do not exhibit strong depolarization effects.
(i.e., χXYSMC ≈ 1) over the whole distance range. In contrast, a larger depolarization

(a) (b)

Figure 4.4: Primary/secondary SMC and DMC polarization coefficients χXY for (a)
H and (b) V.
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is observed for the DMC but still constant. It is only noted a slight change trend for
the DMC with exponential model, greater for VV than for HH. This change is too
weak to be considered, and the complexity of the model can be decreased by taking
the averaged value over the studied distance range. Similarly, TXY was not found
to be distance-dependent across all polarization links. A standard deviation of 14.7,
3.7, 2.7, and 5.5 ns was computed for HH, HV, VH, and VV, respectively. Hence,
the averaged value was also selected to tune the model. Moreover, not only this
confirms the validity of the room electromagnetics theory and applicability of the
proposed model but also that the estimation of T is more faithful for the cross-polar
links. Finally, the reference gains were computed from the data at reference distance
d0 = 10 m for the SMC and DMC with the reference model (power law), meanwhile
d0 = 10 m for SMC and d0 = 41 m for the DMC with proposed model (exponential
law).

Table. 4.2 summarizes the complete set of parameters required to tune the pro-
posed PDP and path gain model for the investigated scenario.

Table 4.2: Estimated Model Parameters

SMC DMC

Param. Polar.link Primary Secondary Exp.law Power law

nXY

HH 2.19 2.88 X 1.14

HV 1.47 1.26 X 0.85

V H 1.53 1.11 X 0.78

V V 1.56 3.16 X 1.11

GXY
0 (dB)

HH −0.9 −10.3 60.9 −6.88

V V −4.6 −14.2 60.2 −8

χXY
HH 0.99 0.99 0.88 0.91

V V 0.97 0.99 0.82 0.84

TXY (ns)

HH X X 125.6 X

HV X X 126.6 X

V H X X 126.6 X

V V X X 116 X

4.4 Validation of the proposed model

4.4.1 Polarimetric path gain

The validation of the proposed polarimetric path gain model including the ref-
erence model (i.e. DMC with power law) is performed by comparing with the data
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estimated from the measurements. Figure 4.5 presents a comparison between the
estimated and modeled path gains for each propagation mechanism and polarization
link. In addition, Figure 4.6 presents the distance-dependent total path gain of the
estimated and modeled data, respectively. The path gain models were built from
(3.19) to (3.22) with the parameters as listed in Table 4.2.

(a) (b)

(c) (d)

Figure 4.5: Estimated and modeled primary/secondary and DMC path gain as a
function of distance for polarimetric links (a) HH, (b) HV , (c)V V , (d) V H.

The results show a good agreement between the model and data estimated from
the measurements. This goodness of fit is demonstrated by the root-mean-squared
error (RMSE) values computed between the path gain deduced from the models and
measurements (in dB) for each polarization link and shown in Table 4.3.

The RMSE values are found as good with a power law or an exponential model
for the investigated range. It is observed larger RMSE values for the cross-polar
primary SMC than for the co-polar links. Conversely, smaller RMSE values are
obtained for the cross-polar DMC than for the co-polar links. The secondary SMCs
present almost the largest RMSE values across the polarization links. The large
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(a) (b)

(c) (d)

Figure 4.6: Estimated and modeled total path gain as a function of distance for
polarimetric links (a) HH, (b) HV , (c)V V , (d) V H.

Table 4.3: RMSE (dB) of Path Gains

PXY
DMC PXY

PXY
pri PXY

sec Exp.model Power law Exp.law Power law

HH 3.41 4.31 1.16 0.72 1.76 1.75

HV 4.64 4.32 0.74 0.63 0.81 0.7

V H 5.65 6.45 0.73 0.63 0.46 0.48

V V 3.55 6.73 1.53 1.22 1.39 1.42
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RMSE values for the SMC could be attributed to the time-gating approach used
to select the SMC which has not been optimized. It is noteworthy that a deeper
analysis of the polarization mechanisms for each component is not discussed here
since that we primarily focus on developing and validating the model.

4.4.2 Polarimetric Reverberation ratio

The prediction of polarimetric reverberation ratio is another good indicator to
check the validity of the proposed polarimetric model. As introduced in section 3.2.3,
the distance-dependent polarimetric reverberation ratio RXY was computed with the
data and model in which the power law and exponential model were both considered.
The results are presented in Figure 4.7. A good agreement is found between the

(a) (b)

(c) (d)

Figure 4.7: RXY as a function of distance (a) HH, (b) HV , (c) V V , (d) V H.

measured and modeled data for the investigated distance range. Results with the
exponential and power laws are similar for distances up to 50 m but differ greatly
for larger distances. As originally shown in [2] with an exponential model, RXY

tends toward zero when the distance between the transmitter and receiver exceeds
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several hundred meters. However, the behavior of RXY is rather different with the
power law and converges toward unity without passing through a maximum value.
For the exponential model, the distance at which RXY is maximal is equal to 50m
for both HV and V H but is equal to 75 m for HH and 50 m for V V . However, it
is noted that it is not possible at this point to experimentally verify which model
holds for longer distances. Further experimental study on larger distance is needed
but could not be investigated in this thesis. In contrast to the path gain models,
a strong asymmetry (shape and distance at which the maximum value is obtained)
is observed between all polarimetric subchannels and, in particular, the co-polar
ones. The fact that reverberation effects are non-uniform across all polarization
links highlights the complexity of propagation mechanisms even in simple scenarios
and that polarimetric radio channel models including DMC must be designed with
care.

The measured reverberation ratio values are ranging between 20 and 75 for RHH

and RV V similar to other investigated indoor scenarios [14, 139, 25, 49] and above
75 up to 100 for RHV and RV H . High reverberation ratio values are expected in
indoor or industrial scenarios (when the room electromagnetic theory applies) since
intermediate distances are typically used. Consequently, this result confirms the
findings of all previous studies on this topic.

4.5 Application of path loss model with DMC

4.5.1 Two-step path loss parameter fitting method

The two-step parameter fitting technique which has been introduced in sec-
tion 3.3 has also been applied on the measurement data. The parameters were
obtained using a linear regression fitting. Here, the application case is illustrated
with the HH sub-channel.

Figure 4.8 illustrates this two-step fitting procedure for the measured HH radio
channel data. In a first step [Figure 4.8(a)], the path loss exponent for the primary
SMC noted nHH−I is computed from the linear region of the log-distance curve for
distances where the SMC gain is greater than the DMC. In a second step [Fig-
ure 4.8(b)], the DMC path loss factor ηHH−IIDMC is computed from the linear region
of the linear-distance curve where the DMC gain is greater than the SMC. It is
observed that the fitting slope follows well the asymptotic behavior of the model for
each region (power law for the SMC and exponential law for the DMC). In addition,
the SMC to DMC transition distance between the two propagation mechanisms can
be obtained with the intersection of the log- and linear-distance lines. For this
case, a transition distance d = 37 m is obtained in agreement with the value in
Figure 4.7(a) (see vertical line).

In summary, Table 4.4 presents the SMC path loss exponent nXY−Ipri and DMC

path loss factor ηXY−IIDMC fitted from this procedure for each polarization link. For
the sake of comparison, nXY , nXYpri , nXYDMC (Table 4.2), and ηXYDMC computed with
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(a) (b)

Figure 4.8: Two-step path loss exponent fitting for theHH radio channel. the dotted
line (black) is the slope fit for (a) the SMC

(
nHH−Ipri

)
and (b) DMC

(
ηHH−IIDMC

)
. The

vertical line indicates the transmission distance at which R = 0.5 (37 m here).

Table 4.4: RMSE (dB) of Path Gains

Meas. Pri.SMC DMC

nXY nXYpri nXY−Ipri nXYDMC ηXYDMC ηXY−IIDMC

HH 1.63 2.19 2.17 1.14 0.12 0.17

HV 0.88 1.47 0.95 0.85 0.11 0.11

V H 0.86 1.53 0.9 0.78 0.11 0.11

V V 1.21 1.56 1.89 1.11 0.13 0.17
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(3.26) from the values of TXY
DMC (Table 4.2) were also added. As discussed at the

beginning of this section, it is confirmed that nXY is not only in-between nXYpri and
nXYDMC but also in line with values reported in [52, 49, 140]. Hence, the need for
path loss models where DMC is included is clearly demonstrated. Furthermore, a
relatively good agreement is obtained between nXYpri with nXY−Ipri , and an excellent

fit is obtained between nXYDMC and ηXY−IIDMC . This latter result indicates that the
reverberation time can be estimated with great accuracy for the cross-polar channels
from (3.26) without applying complex parametric estimation techniques.

Overall, the results show that it is possible to grasp the path loss characteristics
of each mechanism with the two-step fitting approach which is a strong contribution
of this work. Finally, even if the investigated distance span and related measurement
dataset were limited, it was sufficient to develop the model since the measured data
overlap over both regions. This method is general and could be applied to any
path loss data already collected in environments wherein the contribution of DMC
is strong and room electromagnetics applies.

4.6 Application of ACId-MCD

In this section, the previously introduced automatic clustering algorithm ACId-
MCD was applied to the measured data. This novel clustering tool was fed with
SMC parameters estimated by RiMAX. In the literature, the SMC used to perform
the clustering analysis are always estimated with algorithms which do not include
DMC in their data model. It is expected that the statistics and distributions of
these clusters to be different if DMC is jointly estimated. To assess the impact of
neglecting DMC in the data model, a comparative study was performed and the
results are discussed in the following paragraphs.

For the sake of comparison, the measured radio channels were treated with two
different estimators and the estimated SMC were then processed with ACId-MCD.
First, the RiMAX estimator which includes both SMC and DMC in its data model
was used to process the data. This approach is called method 1 for the following
results and figures. In addition, a second RiMAX estimator which does not include
DMC was also used to estimate the SMC and is called method 2. All the MPC
falling under the DMC umbrella (method 1) will obviously be picked up as SMC in
the method 2. Note that the weak SMC were classified as DMC clusters in the work
of [132] which is an alternative approach to this work. For instance, and with a 40
dB power threshold, about 50 SMCs on average are found for method 1 whereas
300 SMCs on average are found for method 2 at each measurement position. The
large difference in the number of paths will obviously result in different clustering
characteristics. As an example, Figure 4.9 presents the raw SMC parameters (no
threshold), SMC and DMC PDPs estimated using both methods for position 5.
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Figure 4.9: Example of estimation results for position 5 using method 1 (left column)
and method 2 (right column) for the following dimension: (a) and (b) TOA (SMC
and DMC), (c) and (d) DOAaz, and (e) and (f) DOAco−el.
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4.6.1 Definition of cluster parameters

It is meaningful to define some cluster parameters based on the estimated cluster
index of each SMC. The cluster power is defined as the sum of total SMCs power in
the same cluster, which is in line with [132]. It is showed in (4.22).

P
X/Y
k =

∑
Lk

|γX/Yk,l |
2 (4.22)

with L being the total number of SMC in the k-th cluster, and X/Y being the two
orthogonal polarization states. Then the cluster-level XPDH can be obtained by

XPDH
k =

PHH
k

PHV
k

(4.23)

The calculation of the cluster-level XPD does not take into account the single SMC
cluster.

Due to several estimated clusters at one measurement position, the averaged
cluster XPD is obtained by the mean value of all cluster XPD at the same measure-
ment position. This value is believed to reflect one overall cluster XPD at certain
measurement position.

XPD
H

cluster = E[XPDH
k ] (4.24)

The cluster mean delay and RMS delays spread are defined as following which
are inline with [133].

µ̄τ,k =

∑Lk
l=1 |γk,l|2τk,l∑Lk
l=1 |γk,l|2

(4.25)

τrms,k =

√∑Lk
l=1 |γk,l|2(τk,l − µ̄τ,k)2∑Lk

l=1 |γk,l|2
(4.26)

The averaged cluster delays spread is calculated with the same manner than (4.24).

µ̄rms,cluster = E[τrms,k] (4.27)

The correlation coefficients of cluster-level parameters are calculated as following

ρx,y =
Cxy√

CxxCyy

(4.28)

where Cxy is the cross-covariance of two parameters. Such method is inline with the
parameters calculation of WINNERII channel model.
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4.6.2 Clustering analysis

The SMC parameters estimated with method 1 and 2 were processed with the
ACId-MCD algorithm. The MCD searching range was set from 0.02 to 0.8 for
all clustering data. The clustering was initially performed with the co-polarized
HH and V V links but the results were found to be similar. Therefore, only the
clustering analysis for HH is presented hereafter. Table A.1 (Annex section of
the manuscript) summarizes all the large-scale parameters of the channel, cross-
correlation parameters, as well as the clustering parameters computed from the
ACId-MCD output for the two methods. The presented parameters are inline with
the GSCM philosophy of the WINNER II radio channel model [45].

Table A.1 presents the channel delay and spread parameters for the HH link
(HH being used for clustering). The delay spread is typically computed from the
measured PDP at each measurement position with a 20 dB threshold. The computed
mean value is 85 ns which is inline with the findings in [57]. The DOA azimuth
spread mean value is ∼100◦ and do not show a dependence with distance. This is
attributed to the emptiness of the propagation scenario and the lack of scatterers
around Tx and Rx. Finally, the DOA elevation spread is found to have a mean value
of 17◦ for method 1 and 28◦ for method 2.

4.6.2.1 Preliminary analysis

The preliminary results of the clustering analysis are presented in Figure 4.10 as
a function of distance . The average number of SMC per cluster (Figure 4.10(a)) is
a good indicator of the cluster density. For method 1, the average number of SMC
per cluster is relatively large at short distance values and then decreases down to a
few SMC for the intermediate distance range (25 m - 40 m). A large spike is also
observed at 20 m but is difficult to interpret at this stage. The number of clusters
(Figure 4.10(b)) was found to vary greatly highlighting the complexity of the cluster
distribution from position to position. For the method 2 data, the average number
of SMC per cluster is much larger than in method 2. However, the same behavior is
observed and the clusters are denser at short distance. This can be explained by the
presence of weaker SMC around the most energetic ones. Figure 4.10(b) show 5-10
clusters at short distance values whereas 10-20 clusters are found between 25 and
40 m. This could be attributed to the fact that the SMC are more widely spread
out in the time-delay and angular domains for a larger distance range resulting in
more clusters. Finally, Figure 4.10(c) presents the optimal MCD threshold (MCDT )
as a function of distance. This parameter is quite important because it provides a
physical indication of the optimal average cluster size with respect to the MCD
metric. It is clearly demonstrated that the cluster size in method 2 is much larger
than that of method 1 for all positions. This means that the presence of weaker
SMC in method 2 increase the cluster size. Conversely, the incorporation of these
paths in DMC (method 1) tend to decrease the cluster size. In summary, it can
be observed that the introduction of DMC results in lighter and smaller clusters.
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However, the number of clusters does not seem to be drastically affected and this
confirms the physical clusterlike nature of the investigated double-directional radio
channel.
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Figure 4.10: ACId-MCD clustering results as a function of distance. (a) Averaged
number of SMC per cluster, (b) number of clusters, (c) estimated MCDT .

4.6.3 Statistical analysis

Beyond this preliminary analysis, a statistical study was performed to investigate
in details the cluster and intra-cluster characteristics and related distributions from
the equations presented in Section 4.6.1.
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4.6.3.1 RMS time-delay/angular spreads

First, Figure 4.11 presents the averaged cluster RMS delay spread µ̄τrms,cluster
computed as the mean value of all cluster RMS delay spread for the same measure-
ment position ( 4.27). Larger spread values are obtained for method 2 compared
to method 1 and this is attributed to a larger SMC number in each cluster (Fig-
ure 4.10). The spread values vary between 80 and 110 ns for method 2 but are
somewhat constant across the distance range (except at 20 m). On the other hand,
the values for method 1 are more spread out and vary between 20 to 90 ns such that
a dependence to the distance is not observed.
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Figure 4.11: Averaged cluster delay spread µ̄τrms,cluster as a function of distance.

In addition, the averaged cluster angle spread µ̄φrms,cluster was investigated and
Figure 4.12 presents the spread values for DOA and DOD in azimuth and co-
elevation, respectively. As observed in the previous Figure for the delay spreads
and for the same reasons, a strong difference is observed between the 2 methods.
Indeed, much larger angle spread values are computed for method 2 data. For
method 1, the spread values for DOA in azimuth are large at short distance and
then decrease importantly with distance. The co-elevation spreads for DOA and
DOD and azimuth spreads for DOD are more constant across the distance range
with values ranging between 2◦ and 25◦. For method 2, the elevation spreads for
DOA and DOD are also relatively constant. On the other hand, the azimuth spread
for DOA and DOD vary greatly with the measurement distance but seem strongly
correlated.
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Figure 4.12: Averaged cluster RMS angle spread µ̄φrms,cluster as a function of dis-
tance.
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The empirical cumulative distribution function (ECDF) of the averaged cluster
angle spread parameters are shown in 4.13. It is clearly shown that the angle spread
mean value for method 1 (either azimuth or co-elevation) is relatively smaller than
that of method 2. Once again, this is attributed to the presence of weak higher-order
reflection SMC in the method 2 data. For the azimuth spreads (Figure 4.13(a)), the
DOA and DOD show a high degree of correlation as observed in 4.12 for method 2
but the spreads are larger for DOA than DOD when method 2 is considered. This
suggests that the clusters around the receiver are larger than the clusters around
the emitter when DMC is included resulting in an asymmetry with respect to the
double-directional features of the radio channel. Also, it is recalled that Tx is located
in the corner of the measurement hall (Figure 4.1) and could be another reasonable
explanation to the larger DOA deviation at the receiver side. However, a complete
opposite behavior is observed for the elevation spreads (Figure 4.13(b)). The DOA
and DOD spreads are now strongly correlated for method 1 and more distributed
for method 2. This could be explained by the presence of weak SMC with higher
elevation angles coming from the floor or ceiling.
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Figure 4.13: ECDF of averaged angle spread for: (a) azimuth, and (b) co-elevation
spread.

4.6.3.2 Cluster XPD

In addition to the spreads, Figure 4.14 presents the averaged cluster XPDH and
XPDV as a function of distance. In general, it can be observed that the cluster
XPD decreases as the distance increasing and this trend is more pronounced for
method 1 than for 2. In other words, the effect of the depolarization mechanisms to
the cluster XPD increase with the distance and is more keen to method 1. When the
Tx-Rx distance is small, the LOS and first-order SMC contribution to the cluster
XPD is large as expected. For method 1, no substantial difference is found between
XPDH and XPDV and it could be concluded that the radio channel favors equally
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H and V . In contrast, XPDV is larger than XPDH for method 2 for distance
values above 20 m. Under this method hypothesis, it could be concluded that the
radio channel favors V over H. In addition, the XPD for method 1 are on average
10 dB larger than for method 2. This indicates that DMC contributes largely to the
depolarization mechanisms of the radio channel as it was also reported in [49] on a
more general radio channel analysis. However, it is demonstrated here an additional
direct impact of DMC to the cluster characteristics.
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Figure 4.14: Averaged cluster XPD to distance.

From all the previous observations, it is also interesting to link the DMC reverber-
ation ratio with the cluster XPD obtained with method 1. This study is presented in
Figure 4.15 which shows the reverberation ratio as a function of XPDH and XPDV .
It is observed that the reverberation ratio is inversely proportional to the averaged
cluster XPD and similar values are obtained for H and V . When the reverberatio
ratio is small (i.e. DMC is weak), then the contribution of the early SMC (primary
SMC) is particularly strong as discussed in the first part of this chapter. Hence,
it is expected that the clusters display a high XPD. On the other hand, when the
reverberation ratio is large (i.e. DMC is strong), the primary SMC is now weak and
only the secondary SMC contribute to the cluster XPD. These components suffer a
high-order of interactions with the environment resulting in stronger depolarization,
thus resulting in lower cluster XPD values.

4.6.4 Intra-cluster parameter distributions

For the radio channel modeling purpose, it is always useful to characterize and
model the intra-cluster parameters. As an example, a single cluster of position
1 was selected to present the analysis but the analysis was performed onto the
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Figure 4.15: Reverberation ratio as a function of the averaged cluster XPD (method
1).

whole dataset. The selection of the distribution functions was performed using the
maximum likelihood criterion. For instance, Figure 4.16 presents the ECDF of the
intra-cluster amplitude and delay parameters for method 1 (top) and method 2
(bottom). The lognormal distribution was computed as the best candidate to fit all
the data. In addition, the Weibull distribution was also found as a good distribution
to fit the SMC amplitude for method 1.

On the other hand, the Von Mises distribution realized with the help of [141]
was the best fitting distribution for the intra-cluster angle parameter in azimuth
or elevation due to its periodic characteristics. For instance, Figure 4.17 and 4.18
present the intra-cluster distribution of DOA and DOD and their respective Von
Mises fitted distribution (Figure 4.17).

4.7 Conclusion

In this chapter, the contribution of the DMC to the radio channel has been
evaluated for an indoor scenario under two complementary modeling approaches.
First, the polarimetric distance-dependent model of the PDP and path gain has
been validated with polarimetric measurements of the large hall radio channel under
LOS conditions at 1.3 GHz. This approach provides the main characteristics of
the DMC and its contribution to the radio channel propagation mechanisms. The
measured MIMO channels were processed by RiMAX to separate the polarimetric
primary/secondary SMC and DMC from which the parameters of the path gain
model were retrieved. The validity and robustness of the proposed approach are
provided by the good agreement between the polarimetric data and models. In
particular, the description of the radio channel with path loss models is discussed
for cases when the DMC is included. Furthermore, a two-step method to compute
the joint path loss characteristics of the SMC and DMC directly from the measured
data has also been applied and validated. It has been showed that this two-step
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Figure 4.16: ECDF of the intra-cluster amplitude and delay parameters for a single
cluster of position 1 and fitting distributions: (a) Amplitude (method 1), (b) delay
(method 1), (c) amplitude (method 2), (d) delay (method 2).
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Figure 4.17: ECDF of the intra-cluster DOA parameters for a single cluster of po-
sition 1 and fitting distributions: (a) azimuth (method 1), (b) co-elevation (method
1), (c) azimuth (method 2), (d) co-elevation (method 2).
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Figure 4.18: ECDF of the intra-cluster DOD parameters for a single cluster of po-
sition 1 and fitting distributions: (a) azimuth (method 1), (b) co-elevation (method
1), (c) azimuth (method 2), (d) co-elevation (method 2).
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fitting method can grasp the path loss characteristics of the propagation mechanism
without the application of complex parametric estimation techniques. This method
has the potential to be applied on indoor radio channel measurement data wherein
room electromagnetic applies and was published in [134, 135].

In addition, the ACId-MCD clustering algorithm has been applied on the es-
timated SMC. Two estimation methods have been applied to highlight the conse-
quence of having DMC or not in the data model. The cluster analysis results have
been extensively presented in terms of the clusters and intra-cluster statistics as a
function of the Tx-Rx distance. It can be concluded that DMC has a strong impact
on the large-scale clustering parameters (cluster size, XPD, etc.) but not on the
intra-cluster distributions. In addition, a strong correlation was found between the
cluster XPD with the reverberation ratio which is an elegant approach to link the
DMC characteristics (PDP model) with the depolarization mechanisms observed at
the cluster level (cluster model). Nonetheless, further studies need to be conducted
to confirm this observation.

In conclusion, the results presented in this chapter demonstrate without any
ambiguities that DMC is an important propagation mechanism in the investigated
indoor scenario which can not be neglected any more. Furthermore, the clustering
results obtained without DMC in the data model channel are in great contrast
with those having DMC. This is another major contribution and originality of this
manuscript and it must be highlighted, to the knowledge of the author, that this has
not been discussed or reported in the literature yet. Those results seem pervasive of
scenarios wherein diffuse scattering is observed and this aspect will be investigated
in the final chapter of this manuscript for an outdoor scenario in the presence of
vegetation.



Chapter5
Outdoor scenario with DMC: radio
channel propagation through vegetation

5.1 Introduction

Environments with vegetation is a particularly challenging propagation scenario
for radio communication systems. The radio propagation phenomena are rather
complex due to the particular structure brought by vegetation as discussed in chap-
ter 2. Several studies have been reported in such environments with the aim of
evaluating the propagation characteristics and proposing simple path loss and clus-
tering models. Inspite this environment is prone to strong diffuse scattering, the
investigation of the propagation mechanisms under the DMC scope has not been
addressed in the literature. Following the philosophy of chapter 4, the objectives of
this chapter are to investigate the DMC contribution to the radio channel in dense
vegetation and how it could potentially impact the development of a cluster-based
channel model. A deeper understanding of the propagation mechanisms and subse-
quent modeling is pre-requisite to improve the radio channel communication systems
in such scenarios.

In this chapter, the data collected from an extensive measurement campaign in a
typical European forest has been analyzed in terms of vegetation excess attenuation.
Furthermore, the RiMAX channel parameter estimator was used to obtain estimates
of the SMC and DMC parameters from the measurement data. As in the previous
chapter, the aforementioned techniques developed in Chapter 3 were applied on the
estimated data.

5.2 Measurement campaign

The measurement campaign was performed in one of the numerous forests of
Monterfil located near Rennes, France. A top view of the measurement site is
showed in Figure 5.1 and consists in a light airplane runway and open fields around
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the ∼20000 m2 (2 ha) forest of interest. The main tree species mostly include
beech and oak trees (see Figure 5.2(a)) with a canopy height between 6 and 15
m. Dense fern is also spread out across the forest but was not fully grown when
the measurement took place. A polarimetric MIMO radio channel sounding was
performed at 1.35 GHz with a 80 MHz bandwidth using the MIMOSA radio channel
sounder introduced in section 2.4.2. Several Tx-Rx configurations were considered
during the measurement campaign as shown in Figure 5.1. The Tx was placed at
two different positions, deep in the forest (Tx1) and on a side way (Tx2). Tx1 was
set at -3 m high with respect to the plateau where the receiver was moved whereas
Tx2 was set 5 m higher than Tx1 due to the ground height change. The receiver was
moved using a crane (Figure 5.2(b)) along Rx1 and Rx2 for a total distance of 43 m
and 41 m, respectively. The crane was moving at ∼0.5 m/s with the receiver placed
in its platform and a snapshot was recorded every 0.5 s. It is recalled that a snapshot
is measured under 250 µs with MIMOSA. The number of snapshots measured for
each configuration was between 180 to 261. Three heights have been considered in
this work: H1=3.5 m, H2=6.4 m, and H3=19.5 m, respectively. Figure 5.2(a) and
Figure 5.2(c) present the front and back view of the emitting and receiving antenna
array, respectively. The 8-elements patch antenna array was rotated 45◦ to emit and
measure H and V polarization fields as explained in section 2.10.

Figure 5.1: Measurement location of Monterfil.

5.3 Vegetation excess loss

In this section, a preliminary analysis of the excess attenuation due to the vege-
tation is presented. Due to the selected scenarios, the Tx1-Rx2 and Tx2-Rx2 were
used to evaluate the excess attenuation. Indeed, the forest depth variation is very
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(a)

(b) (c)

Figure 5.2: Transmission and reception views: (a) Tx1, (b) side-view of the crane
with Rx at H3 = 19.5 m, (c) View from the crane platform at H3 = 19.5 m.
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small for Tx1-Rx1 and for Tx2-Rx1. The Tx1-Rx2 and Tx2-Rx2 distance was be-
tween 97 m to 140 m and 151 m to 190 m, respectively. Figure 5.3 presents the
measured vegetation excess loss as a function of distance for Tx1-Rx2 and Tx2-Rx2
at different antenna height with respect to the HH and V V co-polarization states.
The excess attenuation due to the vegetation is computed by removing the attenu-
ation in free space loss model as suggested in the literature. It can be noticed that
the slope of excess loss due to vegetation is dependent to the Rx antenna height.
For instance, the excess attenuation slope (in dB/m) decreases as Rx is elevated
from H1 to H3. Furthermore, it is observed that the foliage excess loss for H3 is
no longer suitable for the application of vegetation exponentially decaying models
(1.11). More importantly, it seems less sensitive to the Tx-Rx distance. This can
be explained by the fact that Rx is higher than the forest canopy at this height
such that diffraction effects off the canopy becomes the main propagation effect.
Therefore, the contribution of the vegetation excess loss is weak in the considered
Tx-Rx distance.

In the literature, several vegetation or excess loss (or foliage excess attenuation)
models have been proposed to predict the path loss introduced by vegetation. A
summary on most used path loss models was presented in section 1.6. Here, the
vegetation excess loss derived from our measurement campaign is compared with
the ITU-R and Weissberger vegetation excess loss models which fit in our scenario
parameters in terms of frequency and distance. In addition, the obtained excess
loss has been fitted by the conventional exponential decaying (ED) model (1.11).
All these models are also shown in Figure 5.3. The Table 5.1 provides the fitted
c parameter which characterizes the decaying rate of the vegetation excess loss for
the ED model. Since a single operating frequency was used in our measurement
campaign, only c can be estimated. It can be seen that the c values are generally
comparable to the ITU-R and Weissberger model parameters (Table 1.6).

Table 5.1: Estimated parameter c for exponential decaying (ED) model

c HH VV
Tx1 Tx2 Tx1 Tx2

H1 0.56 1.47 0.81 1.51
H2 0.12 0.73 0.30 0.70

Then, the goodness of fit was computed by the root-mean-squared error (RMSE)
values computed between the path gain deduced from the models and measurements
(in dB) for each polarization link and antenna height. Table 5.2 demonstrates that
the best fitting is provided by the direct application of (1.11) which confirms the
generic of exponential decaying model under vegetation scenario. However, due to
the empirical nature of this model, less physical explanation can be discussed from
these models.



5.3. Vegetation excess loss 147

80 100 120 140 160 180 200
−5

0

5

10

15

20

25

30

35

40

Distance Tx−Rx (m)

F
o

lia
g

e
 e

x
c
e

s
s
 l
o

s
s
 o

f 
H

H
(d

B
)

 

 

Meas.H1

Meas.H2

Meas.H3

Fit Tx1 H1

Fit Tx2 H1

Fit Tx1 H2

Fit Tx2 H2

Weiss

ITU

(a)

80 100 120 140 160 180 200
−5

0

5

10

15

20

25

30

35

40

Distance Tx−Rx (m)

F
o
lia

g
e
 e

x
c
e
s
s
 l
o
s
s
 o

f 
V

V
(d

B
)

 

 

Meas.H1

Meas.H2

Meas.H3

Fit Tx1 H1

Fit Tx2 H1

Fit Tx1 H2

Fit Tx2 H2

Weiss

ITU

(b)

Figure 5.3: Foliage excess attenuation as a function of distance for co-polarized links
(a) HH , and (b) VV computed from the Tx1-Rx2 and Tx2-Rx2 configurations.
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Table 5.2: RMSE (dB) of foliage attenuation models.

HH VV
Model type Hant Tx1 Tx2 Tx1 Tx2

Exp.Decay
H1 1.14 1.17 1.52 1.98
H2 1.43 1.49 2.63 2.44

Weissberger
H1 10.51 11.52 11.66 13.78
H2 14.09 16.38 15.13 17.19

ITU-R
H1 16.99 19.71 18.11 21.88
H2 20.58 24.58 21.57 25.33

5.4 Application of the polarimetric distance-dependent

model

The Tx1-Rx1 configuration was selected as the excess attenuation loss is constant
and will not impact the investigated propagation characteristics. On the other hand,
the structure of the forest seen by Rx will change as a function of height and Tx-
Rx distance. This section aims to investigating the propagation characteristics of
the SMC and DMC as a function of these parameters. Similarly to chapter 4, it is
proposed here to apply the polarimetric distance-dependent model to the vegetation
scenario with the aim of discussing whether it can be extended to outdoor scenarios
wherein DMC is observed and room electromagnetics applies. As before, the same
parameter estimation techniques were applied to derive the necessary parameters
for the model. However, since Tx was surrounded by dense vegetation, it follows
that the DOD parameters are widely spread out and strongly correlated with the
DMC reducing the capacity of the estimator to converge and correctly assess the
DOA parameters. Hence, a SIMO version of RiMAX was used to estimate the
polarimetric radio channel parameters such as the TOA and DOA in azimuth and
elevation.

5.4.1 Discussion on Application scope of Polarimetric Dis-
tance Dependent Model

Based on the observation of the data in the previous section 5.3, it is suggested
that the contribution of the primary SMC, secondary SMC, and DMC may strongly
depend on the Rx antenna height. Hence, the contribution of these components to
the radio channel are investigated for the different antenna height.

Figure 5.4 presents the ECDF of the estimated contribution of the primary SMC,
secondary SMC, and DMC with respect to each polarimetric link. In addition, Ta-
ble 5.3 presents the mean and standard deviation values as a function of height
and polarization link. The distance information is evidently hidden but the ECDFs
provide a general view of the respective contribution of the main propagation com-
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ponents. First, it can be seen in this set of Figures that the contribution of the
primary and secondary SMC depend on the Rx height. For H1, Figure 5.4 indicates
that the primary SMC for HH (a) and HV (b) is the largest contributing compo-
nent to the total received power whereas it is the secondary component for V V (c)
and V H (d). This is attributed to the fact the V-polarized waves are strongly de-
polarized by the trunks. The contribution of the primary for HH and HV decrease
as the Rx height is increased whereas the secondary SMC contribution increases.
The V V and V H primary SMC have about the same contribution for H2 and H3
but the secondary SMC is the strongest component for those heights. This could be
due to the tree canopy which introduces a higher-degree of waves interaction and
depolarization and also obstructs the LOS. Finally, it is observed that the DMC is
relatively constant for HH, HV , and V H and more spread out for V V at which its
contribution is the lowest.
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Figure 5.4: ECDF of the estimated contribution of the primary SMC, secondary
SMC, and DMC (in %) to the total path gain as a function of height H1, H2 and
H3 for (a) HH, (b) HV, (c) VV, and (d) VH.

The ECDF of the polarimetric reverberation time TXY
rev computed from the es-

timated DMC is shown in Figure 5.5 for the three studied heights and the cor-
responding averaged and standard deviation values are summarized in Table 5.4.
Similar mean values are obtained for HH, HV , and V H for all antenna heights.
However, V V is found to be more dependent to the Rx height. There results are
also in agreement with the DMC contribution to the radio channel for this link. It is
also shown that the ECDF for V V and V H almost coincide at H3. In other words,
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Table 5.3: Mean and standard deviation values (%) as a function of height and
polarization link from Figure 5.4.

HH HV VH VV

H1

pri
mean 65.3 55.0 50.4 49.2
std 21.6 22.3 27.4 21.0

sec
mean 34.1 44.3 49.0 50.2
std 21.1 22.3 27.3 21.0

dmc
mean 23.9 34.6 25.1 32.8
std 12.8 19.4 13.5 15.1

H2

pri
mean 63.8 63.3 38.6 41.1
std 20.9 20.9 30.0 19.8

sec
mean 35.9 52.0 60.8 58.2
std 20.5 24.0 30.2 20.0

dmc
mean 27.7 40.9 30.4 38.4
std 13.5 19.0 16.8 15.0

H3

pri
mean 63.8 41.1 38.8 43.9
std 21.5 19.6 26.1 19.5

sec
mean 35.7 58.4 60.6 55.5
std 21.1 19.7 26.2 19.5

dmc
mean 23.6 38.4 25.3 28.3
std 11.2 16.5 12.3 12.9
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this indicates again that the DMC created by the vegetation medium at this height
under a V-polarized transmitted wave displays the same characteristics for V than
for H received waves. Moreover, it also suggests that since room electromagnetic
theory is validated, therefore, the polarimetric distance-dependent model could be
potentially used for this special case.
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Figure 5.5: ECDF of the Estimated polarimetric reverberation time TXY
rev for (a)

H1, (b) H2, and (c) H3.

5.4.2 Estimated path gain model parameters

Based on the previous discussion, we will focus in this section on the application
of our model for the Tx1-Rx1 configurationon at height H3. First, the methodology
used to compute the model parameters described in (4.8)-(4.21) was applied for this
scenario. Figure 5.6 presents the ECDF of the estimated polarization coefficients
χH and χV for the primary SMC, secondary SMC, and DMC. The data show that
χH is rather spread out across all mechanisms in contrast to χV . It is noticed
that primary/secondary SMC and DMC present a larger depolarization rate for
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Table 5.4: TXY
rev averaged and standard deviation values (in ns) as a function of

height.

Mean value Std

H1

HH 55.76 11.78
HV 68.00 11.52
V H 62.49 9.12
V V 67.39 11.26

H2

HH 56.26 8.91
HV 68.18 9.42
V H 62.25 8.38
V V 67.00 10.57

H3

HH 57.38 9.92
HV 70.66 10.70
V H 65.11 9.96
V V 65.09 10.68

V V compared to HH. Again, this is explained by the fact that forests strongly
depolarize V waves. Also, the polarization coefficients present a dependence to the
distance and the variation varies upon the considered mechanism. This effect was
not observed at this scale in the indoor scenario investigated in chapter 4. Hence, in
order to apply the model and estimate the other parameters, only the mean values
were taken.
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Figure 5.6: Primary/secondary SMC and DMC polarization coefficients at H3: (a)
χH , (b) χV .

Table 5.5 presents the estimated parameters for the proposed model. The ref-
erence gains were computed from the data at reference distance d0 = 100m for the
SMC and DMC with the reference model (power law), meanwhile d0 = 100m for
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SMC and d0 = 120m for the DMC with proposed model (exponential law).

Table 5.5: Estimated model parameters for Tx1-Rx1 at H3.

SMC DMC

Param. Polar.link Primary Secondary Exp.law Power law

nXY

HH 5.43 4.62 X 5.26

HV 6.53 5.83 X 5.85

V H 8.23 3.84 X 4.18

V V 7.89 5.04 X 5.47

GXY
0 (dB)

HH -40.64 -40.20 55.39 -44.76

V V -42.47 -40.40 49.97 -45.04

χXY
HH 0.70 0.45 0.82 0.51

V V 0.56 0.55 0.54 0.58

TXY (ns)

HH X X 57.38 X

HV X X 70.66 X

V H X X 65.11 X

V V X X 65.09 X

5.4.3 Validation of the model

5.4.4 Polarimetric path gain

The performance of the proposed polarimetric path loss model is compared with
the reference model (DMC Power law) with the same manner than that is described
in the previous chapter. In Figure 5.7, the estimated and modeled path gains for
each propagation mechanism and polarization links are compared. Overall, the
models do not follow well the rapid fluctuations of the path gains introduced by
the environment with distance but grasp correctly, on average, the behavior of each
propagation mechanism.

The distance-dependent total path gain of the estimated and modeled data are
presented in Figure 5.8. The path gain models were built with the parameters listed
in Table 5.5. It is found that the results show a good agreement between the model
and data estimated from the measurements. The goodness of fit for the estimated
model is confirmed by the small RMSE values computed between the measured
path gains and estimated models and which are presented in Table 5.6. Finally,
the difference between the exponential and power law for DMC is found to be not
significant. In comparison with the indoor scenario investigated in the previous
chapter (Table 4.3), only a 1 dB difference in the RMSE values is observed.
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Figure 5.7: Estimated and modeled primary/secondary and DMC path gain as a
function of distance for polarimetric links at H3: (a) HH, (b) HV , (c) V V , (d) V H.

Table 5.6: RMSE (dB) of Path Gains at H3

PXY
DMC PXY

PXY
pri PXY

sec Exp.model Power law Exp.law Power law

H3

HH 4.59 2.39 2.45 2.55 2.15 2.21
HV 5.99 1.75 2.37 2.43 2.14 1.71
V H 4.77 3.01 2.05 2.35 1.99 2.11
V V 4.55 2.60 2.10 2.10 2.34 2.43
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Figure 5.8: Estimated and modeled total path gain as a function of distance for
polarimetric links at H3: (a) HH, (b) HV , (c) V V , (d) V H.
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5.4.5 Polarimetric Reverberation Ratio

In addition to the path gains, Figure 5.9 presents the estimated polarimetric
reverberation ratios computed from the model using the exponential model and ref-
erence model (power law model). All models predict a maximum reverberation value
but a monotonic change for HH and HV is obtained with the reference model for
the investigated distance range. A good agreement is observed between the proposed
model with exponential law and the measured reverberation ratio. The maximum
reverberation distance predicted by the exponential model is 90 m for HH, 126
m for HV and 128 m for V V , 104 m for V H, respectively. The results suggest
that the reverberation ratio fits and measurements are rather different across polar-
ization links for a vegetation scenario with values ranging between 10% and 95%.
Furthermore, the reverberation ratio is strongly dependent to the distance which
highlights the high complexity of the propagation mechanisms. Even though the
validity of the proposed approach to model the different radio channel components
is demonstrated, it is only for a limited distance range. Hence, further studies must
be performed with a longer Tx-Rx distance.

5.5 Application of ACId-MCD

In this section, clustering analysis is performed on the Tx1-Rx1 measurement
data using the ACId-MCD clustering technique developed in chapter 3. Since a
SIMO version of RiMAX was used to estimate the polarimetric radio channel pa-
rameters, the SMC are only described by γXH , γXV , τ , ϑR and ϕR. X is the
polarization at the transmitter side (H or V). Hence, it should be noted that the
estimated SMC parameters may not be identical for H and V due to the SIMO
estimation model as they are not jointly estimated any more. The two estimation
methods introduced in section 4.6 were also adopted to assess the contribution of
DMC to the clustering results.

The average number of SMC estimated with method 1 is ∼25 and ∼70 for
method 2 after applying a 20 dB power threshold. In comparison, it is recalled that
50 and 300 SMC were estimated for the industrial radio channel under the same
estimation conditions but this large difference is expected since outdoor scenarios
are open propagation environments. Since DOD angles could not be estimated, it
was removed from the MCD metric. This was done by setting the SMC parameters
ϑT = 0◦ and ϕT = 90◦. The MCD searching range was set from 0.07 to 0.8 for all
considered clustering data and Rx heights.

Table B presents the computed channel parameters as well as the cluster param-
eters similarly to Table A.1. Delay spreads ranging between 29 ns and 44 ns were
computed; values which are slightly larger to those reported in [99] for a vegetation
depth varying between 0 to 50 m. DOA azimuth spread mean values varying be-
tween 37◦ and 44◦ for method 1 and from 69◦ to 75◦ for method 2 were obtained.
These values are found to be larger compared to values reported in the literature. In
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Figure 5.9: RXY as a function of distance at H3 for polarimetric links: (a) HH, (b)
HV , (c) V V , and (d) V H.
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addition, the DOA elevation spread mean value is found to vary between 19◦ to 48◦

for method 1. The results indicate a weak dependence of the azimuth and elevation
spreads to the Rx height as reported in [96].

5.5.1 Preliminary analysis

Figure 5.10 presents the ECDF of the number of clusters estimated from both
method 1 and method 2 for all considered Rx heights. The number of estimated clus-
ters follow the same distribution for all Rx heights and polarization links although
the number of clusters is larger for method 2 than 1. The method 2 ECDFs are less
spread out than the ones obtained from method 2. For method 1, 20% of positions
are described by 2 clusters and 40% for method 2. This result indicates that the
structure of the clusterlike radio channel model can be greatly simplified for certain
Tx-Rx distance values. This also shows that the power arrives at the receiver side
from specific directions dictated by the environment geometry and more specifically
the trunks.
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Figure 5.10: ECDF of the number of estimated clusters with: (a) method 1, and
(b) method 2.

Figure 5.11 presents the averaged number of SMC per cluster. The data from
method 1 (Figure 5.11(a)) show that 60 to 80% of the measurement positions have a
small number of SMC per cluster. The average number of SMC varies from 2 to 35.
More importantly, it appears the number of SMC per cluster vary as a function of
Rx height and is the largest for H3. This could be due to the diffusion mechanisms
provided by the forest canopy. For the method 2, (Figure 5.11(b)), the clustering
characteristics seem to be less effected by the Rx height. Overall, the averaged
number of SMC per cluster is generally larger than for method 1. This could be
explained by the presence of higher-order SMC in the method 2 data.

MCDT is presented in Figure 5.12 for method 1 and 2. It can be noticed that
about 50% of the positions display an MCDT value of 0.07 which is the lower limit of
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Figure 5.11: ECDF of the averaged number of SMC per cluster with: (a) method
1, and (b) method 2.

the MCDT searching range. This indicates a high degree of separation between the
SMC for these cases. From Figure 5.12(a), it can be observed that the largest MCDT

is obtained for H3 for both polarization states. This observation is consistent with
that in Figure 5.11(a). The polarization V is found to provide a larger MCDT for H2
and H3 but the opposite is obtained for H1. The results in Figure 5.11(b) indicate
that 60% of the positions can be described with a low MCDT whereas the other 40%
are described with larger MCDT values. Again, the values are generally larger than
that in method 1 due to the presence of higher-order SMC. As to the polarization
aspect, MCDT seems less affected by the different polarization states at H3, which
could be explained as the high level of diffusion due to forest canopy. In summary,
the distribution of MCDT suggests that the clustering characteristics greatly differ
whether DMC is included or not. In addition, the dependence with the Rx height
suggests that the canopy plays a role to the DMC propagation mechanisms.

5.5.2 Statistical analysis

In this section, a deeper statistical analysis of the clustering characteristics are
provided to the reader. The same cluster parameter definition detailed in sec-
tion 4.6.1 is used, as in chapter 4. The following parameters are calculated for
clusters having more than one SMC.

5.5.2.1 RMS time-delay/angular spreads

First, Figure 5.13 shows that the averaged cluster delay spread is nearly constant
across all considered Rx heights and polarization links for a given method. Values
ranging between 10 and 50 ns are obtained with method 1 and 5 to 60 ns with
method 2 but larger values are obtained on average with method 1. This result could
be attributed to the presence of stronger secondary SMC under this configuration.
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Figure 5.12: ECDF of the estimated MCDT for (a) method 1, and (b) method 2.

Moreover, it is noted that the cluster delay spread values are much less than those
computed for the indoor scenario.
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Figure 5.13: ECDF of the averaged cluster delay spread (ns) for (a) method 1, and
(b) method 2.

The averaged cluster azimuth spreads of DOA are presented in Figure 5.14 for
both methods. The results shows that the values are weakly dependent to the Rx
height whether it is for method 1 or 2 and present the same distributions. Nonethe-
less, it is observed that the V-polarized clusters are slightly larger in size compared
to the H ones. Figure 5.14(b) indicates that the spread values are generally larger
than that of method 1 resulting in bigger clusters in this dimension. This is prob-
ably attributed to the higher-order SMC which are weaker but arrive from larger
azimuth angles.

Finally, Figure 5.15 presents the averaged cluster co-elevation spread for method
1 and method 2. In contrast with the azimuth spreads, a clear difference in values
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Figure 5.14: ECDF of the averaged cluster azimuth spread (in ◦) for (a) method 1,
and (b) method 2.

and distributions is observed between Figure 5.15(a) and (b). For instance, the
cluster spread values are ranging between a few degrees and 12 degrees for method
1 and between 5 degrees and 30 degrees for method 2. Hence, it appears most of
the high-order SMC in method 2 display larger co-elevation angles than the SMC
in method 1. In other words, DMC contributes to increase the cluster size in the
co-elevation dimension. In addition, the co-elevation spreads do not seem to be
dependent to the Rx height as for the delay and azimuth spreads. From that point
of view, it could be concluded that the forest acts as an isotropic medium whose
characteristics are only dependent on the Tx-Rx distance but not generally on Rx
height.
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Figure 5.15: ECDF of the averaged cluster co-elevation spread (in ◦) for (a) method
1, and (b) method 2.
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5.5.2.2 Cluster XPD

The averaged cluster XPD is presented in Figure 5.16 for method 1 and method
2. When DMC is included in the data model (Figure 5.16(a)), the spread values and
distributions present a high degree of similarity across all heights and polarizations
with a 3 dB median value. Whether it is for H or V, more than 80% of the clusters
present a large depolarization (XPD values below 7 dB). Larger XPD values are
obtained for method 2 (Figure 5.16(b)) indicating that the clusters are less prone
to depolarization effects. In contrast with the method 1 data, the averaged cluster
XPD for V also seems to depend on the Rx height clusters.
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Figure 5.16: ECDF of the averaged cluster XPD for (a) method 1, and (b) method
2.

5.5.3 Intra-cluster parameter distributions

In this section, the characteristics of the intra-cluster parameters and related
distributions are investigated with the purpose of establishing building bricks which
could then be used for the development of suitable GSCM-type emulation channel
models for vegetation scenarios. Without the loss of generality and for the sake of
presentation simplicity, the following figures describe the cluster distribution results
for a single cluster at H2 with polarization H. The complete list of parameters and
distributions for all other heights can be found in Appendix . As previously, the
largest log-likelihood value was selected as the criterion to choose among all possible
fitting distributions.

Figure 5.17(a) and (b) present the ECDF of the intra-cluster amplitude which
can be generally fitted by Lognormal distributions. Lognormal or Weibull distribu-
tions are found to be best to model the intra-cluster delay distribution as shown in
Figure 5.17(c) and (d).

Finally, the intra-cluster spatial parameter distribution fitting results are pre-
sented for DOA in Figure 5.18 where it is shown that the Von Mises distribution
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Figure 5.17: ECDF of the intra-cluster amplitude and delay parameters for a single
cluster at H2 with polar H and fitting distributions: (a) Amplitude (method 1), (b)
delay (method 1), (c) amplitude (method 2), (d) delay (method 2).
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is also a good candidate to describe the intra-cluster spatial parameters due to its
periodic angular feature.
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Figure 5.18: ECDF of the intra-cluster DOA parameters for a single cluster at H2
with polar H and fitting distributions: (a) azimuth (method 1), (b) co-elevation
(method 1), (c) azimuth (method 2), (d) co-elevation (method 2).

5.6 Conclusion

In this chapter, the contribution of the DMC to the radio channel has been
evaluated for an outdoor scenario with dense vegetation under two complementary
modeling approaches.

First, a polarimetric MIMO measurement campaign was performed at 1.35 GHz
in a European forest environment. Several Tx-Rx configurations and Rx height were
considered to evaluate the contribution of the forest structure to the DMC observed
in the radio channel. The measured vegetation excess loss was fitted using conven-
tional exponential decaying models and compared with the ITU-R and Weissberger
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foliage path loss models. It was concluded that the ED model is not suitable for the
highest Rx height H3 since the antenna array is above the forest canopy. On the
other hand, the polarimetric distance-dependent model was considered for the H3
measurement data to extend its potential application scope. The measured MIMO
channels have been processed by RiMAX to separate the polarimetric primary SMC,
secondary SMC and DMC from which the parameters of the path gain model were
constructed. It has been demonstrated that the proposed model can generally pre-
dict well the measured polarimetric path gain with respect to distance with low
RMSE values.

Furthermore, the clustering features of the radio channel have been investigated
with the ACId-MCD clustering algorithm for the investigated Tx-Rx distance and
receiving antenna heights. The measured MIMO channels were processed by RiMAX
with a SIMO data model to estimate the SMC parameters used for clustering. The
cluster analysis results have been extensively presented in terms of the clusters and
intra-cluster statistics as a function of polarization and Rx height to study the effect
of the forest structure to the propagation mechanisms and subsequent clustering
characteristics. The same conclusion than in chapter4 is reached. Overall, it can be
concluded that DMC has a strong impact on the large-scale clustering parameters
(cluster size, XPD, etc.) but not on the intra-cluster distributions.

From the application of the PDP, path gain models and clustering analysis tool,
it can be concluded that the polarimetric propagation mechanisms and clustering
characteristics strongly depend on the physical interaction between the propagation
mechanisms and the forest structure. In particular, the effect of the canopy has been
highlighted from the path gain model. Clearly, assuming DMC in the radio channel
greatly impacts the clustering spreads and distributions in all dimensions more than
the Tx-Rx distance and Rx height. It is also highlighted that these results are inline
with those obtained for the industrial scenario.
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General conclusion and perspectives

The main objectives of thesis dealt with the characterization and modeling of
indoor and outdoor wireless radio channels in the presence of diffuse scattering or
Dense Multipath Components (DMC). Due to the natural presence of rich metallic
scatterers and forest tree structure, the industrial and vegetation environments have
been investigated, respectively.

A review of the radio channel models such as path loss or clustering-based models
for these specific scenarios was presented. Generally, these models are not only
scarce but also completely undermine the contribution of DMC. The propagation
conditions are very complex and this might be a reason why these scenarios were not
deeply explored in the literature. Thus, the level of understanding of the propagation
mechanisms is rather low or not sufficient and must to be redefined when DMC is
included in the data model.

The contributions of this thesis are multifold with strong implications on both
the experimental and theoretical levels. Results presented in this thesis rely on
the experimental measurement of polarimetric multidimensional radio channels in
harsh scenarios and subsequent processing with highly-advanced parameter estima-
tion algorithms in order to obtain specular multipath components (MPC) and DMC
estimates. The measurements were performed with a virtual and MIMOSA radio
channel sounder operating around ∼1.3 GHz which were built in TELICE. This fre-
quency was chosen to describe the physical propagation phenomena for the mobile
and WiFi standards without emitting in the licensed bands. The main characteristics
such as the delay spread or depolarization effects were observed to be in agreement
with the values reported in the literature for equivalent scenarios. The underlying
radio channel data model was specifically developed under the framework of DMC
to investigate the contribution of this component to the radio channel properties as
a joint deterministic and stochastic maximum-likelihood (ML) problem. Another
strong contribution of this work includes the development of novel path gain and
automatic clustering methods to analyze the radio channel propagation character-
istics of the considered scenarios. These techniques have been validated with either
experimentally measured or simulated radio channels. It must be emphasized that
some of the results presented in this work have been published in the literature.

167
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1) Polarimetric distance-dependent path gain model

The first contribution is the development of a flexible polarimetric distance-
dependent path gain model for indoor scenarios. This model is built on the con-
sideration of room electromagnetics to predict the DMC path gain. The model
was validated from SMC and DMC path gains estimated from measurements of the
two investigated scenarios. However, the introduction of DMC was demonstrated to
open a new depth of understanding and a direct connection between the propagation
mechanisms and reverberation effects were highlighted. In addition, the proposed
model has the potential to highlight the various depolarization mechanisms for each
component (primary/secondary SMC and DMC). Furthermore, a low complexity
parameter fitting approach was derived from the model and applied to the measure-
ment data. This approach allows estimating the contribution of SMC and DMC in
indoor scenarios without using high resolution parameter estimation techniques.

2) ACId-MCD clustering tool

The development of an automatic clustering identification algorithm has been
proposed and is the second contribution of this work. The algorithm named ACId-
MCD allows to sort and group the SMC into clusters from measured or simulated
radio channels. It relies on the multipath component distance (MCD) as a mean to
preset the cluster maximum size. The validation of this algorithm has been assessed
with a dedicated evaluation protocol including clustering validity indices (CVI) and
radio channels simulated with the clusterlike WINNER II GSCM. Its performance
has been evaluated by comparing with the classical K-means clustering technique
and robustness studied via Monte-Carlo simulations. The proposed clustering al-
gorithm is found to be highly versatile and can potentially be applied to any radio
propagation scenarios where clusterlikes features are observed.

Propagation and clustering characteristics

The polarimetric distance-dependent path gain model was successfully applied
to the indoor industrial radio channel. For this scenario, the DMC is demonstrated
to be a particularly strong distance-dependent component with reverberation values
up to 75%. It is the main source of the depolarization observed in the radio channel
and the results clearly demonstrate that this component can not be neglected to de-
scribe and understand the radio channel propagation mechanisms. For instance, the
difference in H and V polarization is now better understood in terms of DMC. The
application range of the model was also extended to the vegetation scenario for a
special case wherein room electromagnetics is valid. Similarity on the reverberation
time behavior has been noticed between the indoor and vegetation scenarios. How-
ever, the reverberation values are smaller than for the indoor scenario with values
varying between 15 to 95% but 40% on average across all polarizations. Also, the
impact of the forest was investigated by comparing the propagation properties for
different receiver (Rx) heights. Rather different propagation and polarization mech-
anisms have been observed from the model in comparison with the indoor scenario
due to the forest trunk/canopy specific structure. The validity of the path gain
model with both scenarios suggests the versatility of this model to describe radio
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channels when DMC is observed. Finally, the model parameters for each scenario
have been provided to the reader. It is noteworthy that the path loss behavior can
be well predicted with empirical exponential decay models.

In addition, the ACId-MCD algorithm has been applied to the indoor and out-
door measurement data. The cluster and intra-cluster parameters have been com-
puted with the WINNER II approach and discussed. The contribution of DMC
has been evaluated by comparing the cluster characteristics with and without DMC
in the estimator data model which is, yet, another originality of the present work.
Moreover, the parameter distributions have been studied with the purpose of sim-
ulating these scenarios with clusterlike radio features are were found more or less
in agreement with the previous studies on this topic. All presented results strongly
indicate that DMC has a strong impact on the large-scale clustering parameters
(cluster size, XPD, etc.) but not on the intra-cluster distributions. It is finally
concluded that some of the cluster size depend on the Rx height due to the trunk
and canopy.

In conclusion, a comprehensive and complete framework has been proposed to
evaluate the contribution of DMC in scenarios where this component is likely to
occur. Several dedicated tools have been successfully developed and validated with
extensive experimental measurements. This thesis has clearly highlighted the im-
portance of including DMC into the data model and that all existing radio channel
models from simple path loss to more advanced GSCM models must be revisited.
The introduction of DMC provides a deeper level of understanding for the propa-
gation properties. From that point of view, it must be acknowledged that current
complex models could lead users to reach incorrect interpretations and non-physical
propagation effects.

Perspectives

The polarimetric distance-dependent model proposed in this thesis includes three
multipaths components which are the primary SMC, secondary SMC and DMC.
Furthermore, it was assumed that the secondary SMC follows a power law model like
the primary SMC and this was only validated for the investigated LOS (industrial)
and OLOS (vegetation) environments. Hence, this hypothesis needs to be confirmed
for propagation scenarios wherein the contribution of the secondary SMC to the
radio channel is large. Even though this has not been discussed in this work, it
was noticed a strong correlation between the DMC peak gain α1 and primary SMC
gain. In addition, a connection between the DMC and secondary SMC was also
shown. These interesting aspects of the propagation mechanisms could be studied
in future works to develop simpler polarimetric path gain models based on the
correlation between the received components. In this thesis, a few selected scenarios
and unique frequency band/bandwidth have been investigated. Hence, the proposed
model could be applied under other propagation scenarios and frequency parameters
in order to find a more-defined application range and limitations.

In addition, the proposed automatic clustering identification technique ACId-
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MCD was observed to be a powerful approach for clustering analysis purposes but
the computation of the optimal solution still relies on the Cluster Validation Indices
(CVIs). The CVIs found in the literature have been designed for general clustering
applications and the definition of a cluster may not be in line with this research
topic. It follows further research could focus on the development of novel CVI
specifically built for radio channel clustering. Also, the cluster size and distribution
strongly depends on the propagation scenarios such that CVIs may apply to given
scenarios but not to others. Furthermore, the performance of the ACId-MCD could
be improved by considering an adaptive MCDT for each cluster at the expense of
computational complexity. Finally, a relationship between MCDT and the propa-
gation environment has been highlighted. This aspect could be further investigated
with the aim of including this cluster parameter into GSCM radio channel models.



Appendix A

INDOOR SCENARIO: EURATECHNOLOGIES, LILLE

Table A.1: Indoor radio channel large-scale and clustering parameters for HH link

Environment type CITC (13 positions)
RIMAX estimation model MIMO Only SMC SMC+DMC

Channel Delay spread (DS) log10([s])
µ -7.07 -7.07
σ 0.11 0.11

Channel DOA azimuth spread log10([◦])
µ 2.01 2.05
σ 0.06 0.10

Channel DOA EL spread log10([◦])
µ 1.45 1.25
σ 0.11 0.29

Channel DOD AZ spread log10([◦])
µ 1.92 1.73
σ 0.09 0.19

Channel DOD EL spread log10([◦])
µ 1.31 0.98
σ 0.14 0.21

Channel cross-correlation

DOAaz vs DS -0.31 -0.38
DOAel vs DS 0.27 -0.16
DODaz vs DS 0.24 0.17
DODel vs DS -0.53 -0.05

DOAaz vs Distance 0.14 -0.41
DOAel vs Distance 0.42 0.33
DODaz vs Distance 0.33 0.46
DODel vs Distance 0.06 -0.43

Cluster RMS DS log10([s])
µ -6.98 -7.32
σ 0.04 0.24

Cluster RMS DOAaz log10([◦])
µ 1.63 1.39
σ 0.12 0.59

Cluster RMS DOAel log10([◦])
µ 1.34 0.83
σ 0.04 0.34

Cluster RMS DODaz log10([◦])
µ 1.63 0.92
σ 0.10 0.55

Cluster RMS DODel log10([◦])
µ 1.16 0.76
σ 0.05 0.34

Cluster XPDH (dB)
µ 9.53 23.61
σ 2.53 6.41

Cluster XPDV (dB)
µ 12.07 20.73
σ 1.93 3.47

Cluster cross-correlation

DOAaz vs DS -0.02 -0.07
DOAel vs DS 0.48 0.48
DODaz vs DS 0.10 0.09
DODel vs DS 0.45 0.44

DOAaz vs Distance 0.11 0.11
DOAel vs Distance 0.02 0.22
DODaz vs Distance 0.23 0.02
DODel vs Distance -0.22 -0.21

MCDT
µ 0.62 0.17
σ 0.12 0.19

Intra-cluster distribution

delay lognormal lognormal
Amp lognormal lognormal/Weibull
DOAaz Von Mises Von Mises
DOAel Von Mises Von Mises
DODaz Von Mises Von Mises
DODel Von Mises Von Mises

Number of clusters 15.3 21.6
SMC per cluster 26.1 8.3

Cluster average DOAaz size (◦) 45.5 22.2
Cluster average DOAel size (◦) 18.3 7.2
Cluster average DODaz size (◦) 45.9 8.0
Cluster average DODel size (◦) 11.3 6.1
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Appendix B

OUTDOOR SCENARIO: MONTERFIL FOREST

Table B.1: Outdoor radio channel large-scale and clustering parameters for HH link

Monterfil (140 m - 180 m) H1(H) H1(V ) H2 (H) H2(V ) H3(H) H3(V ) H1 (H) H1(V ) H2(H) H2(V ) H3 (H) H3(V )

RIMAX estimation model SIMO Only SMC SMC+DMC

Channel Delay spread (DS) log10([s])
µ -7.53 -7.41 -7.54 -7.35 -7.52 -7.41 -7.53 -7.41 -7.54 -7.35 -7.52 -7.41

σ 0.37 0.19 0.34 0.18 0.26 0.20 0.37 0.19 0.34 0.18 0.26 0.20

Channel DOAaz spread log10([◦])
µ 1.84 1.87 1.85 1.88 1.85 1.88 1.61 1.62 1.57 1.61 1.59 1.65

σ 0.14 0.13 0.14 0.10 0.12 0.12 0.28 0.28 0.31 0.34 0.31 0.32

Channel DOAel spread log10([◦])
µ 1.64 1.70 1.67 1.70 1.63 1.69 1.37 1.45 1.33 1.34 1.28 1.34

σ 0.15 0.13 0.17 0.12 0.12 0.12 0.33 0.33 0.31 0.34 0.35 0.34

Channel cross-correlation

DOAaz vs DS -0.04 -0.07 0.11 0.17 0.14 0.04 -0.10 -0.07 -0.12 0.19 -0.05 0.07

DOAel vs DS 0.02 -0.03 0.21 0.10 0.19 0.21 0.00 -0.02 -0.08 -0.04 -0.06 -0.01

DOAaz vs Distance -0.36 -0.09 -0.10 -0.10 -0.26 -0.17 -0.33 0.04 -0.23 -0.44 -0.32 -0.41

DOAel vs Distance -0.17 0.27 -0.11 0.04 0.04 0.01 -0.18 -0.01 -0.23 -0.27 -0.24 -0.34

Cluster DS log10([s])
µ -7.98 -7.85 -8.01 -7.95 -8.00 -7.96 -7.74 -7.75 -7.73 -7.68 -7.67 -7.74

σ 0.24 0.14 0.14 0.13 0.13 0.14 0.10 0.17 0.08 0.11 0.12 0.15

Cluster DOAaz log10([◦])
µ 1.04 1.03 0.92 1.02 0.95 0.99 0.80 0.89 0.79 0.90 0.89 0.90

σ 0.12 0.09 0.11 0.09 0.08 0.07 0.14 0.13 0.10 0.06 0.14 0.10

Cluster DOAel log10([◦])
µ 0.97 0.97 0.98 1.03 0.94 0.94 0.69 0.62 0.72 0.56 0.69 0.76

σ 0.24 0.24 0.23 0.19 0.18 0.19 0.13 0.17 0.07 0.11 0.11 0.14

Cluster XPDH (dB)
µ 8.50 N/A 9.08 N/A 8.91 N/A 8.19 N/A 6.59 N/A 4.51 N/A

σ 5.18 N/A 5.14 N/A 4.44 N/A 4.45 N/A 3.60 N/A 3.99 N/A

Cluster XPDV (dB)
µ N/A 10.09 N/A 11.57 N/A 13.27 N/A 6.63 N/A 7.84 N/A 6.27

σ N/A 4.73 N/A 4.27 N/A 4.09 N/A 4.08 N/A 4.73 N/A 3.71

Cluster cross-correlation

DOAaz vs DS 0.71 0.73 0.51 0.61 0.74 0.56 0.46 0.83 0.36 0.53 0.83 0.72

DOAel vs DS 0.05 0.75 0.44 0.52 0.71 0.47 0.61 0.64 0.26 0.13 0.65 0.37

DOAaz vs Distance 0.28 0.002 -0.11 -0.26 -0.43 0.34 0.54 0.42 0.11 0.07 0.60 0.31

DOAel vs Distance 0.25 0.14 -0.14 0.16 -0.19 0.18 -0.25 0.26 0.08 -0.33 0.39 -0.45

MCDT

µ 0.28 0.26 0.26 0.32 0.28 0.27 0.15 0.14 0.18 0.14 0.17 0.15

σ 0.28 0.25 0.24 0.28 0.27 0.26 0.15 0.13 0.04 0.11 0.12 0.11

intra-cluster distribution

delay lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull

Amp lognormal/weibull lognormal/Weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull lognormal/weibull

DOAaz Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises

DOAel Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises Von Mises

Number of clusters 9.91 10.36 10.23 9.96 10.07 10.13 7.77 7.49 8.45 6.85 6.95 7.28

SMC per cluster 8.24 8.7 7.13 9.25 8.08 7.86 3.99 3.71 3.15 4.53 6.31 6.35

ClusteraverageDOAaz size (◦) 11.55 10.7 8.96 11.03 9.40 10.40 7.54 8.09 7.14 8.23 8.58 8.42

ClusteraverageDOAel size (◦) 13.44 9.52 10.98 10.80 9.47 9.07 5.35 4.55 5.78 4.24 5.55 6.32
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des canaux MIMO. PhD thesis, Lille 1, 2009.

[101] Paul Stefanut. Application des algorithmes de haute résolution à la localisation
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