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Titre

Estimations sans pertes pour des méthodes asymptotiques et notion de propagation pour
des équations dispersives

Résumé

Dans cette thèse, nous nous intéressons au comportement d’intégrales oscillantes à une
variable d’intégration lorsqu’un paramètre fréquentiel tend vers l’infini. Pour cela, nous
considérons tout d’abord la version de la méthode de la phase stationnaire de A. Erdélyi
qui couvre le cas d’amplitudes singulières et de phases ayant des points stationnaires
d’ordre réel, et qui fournit des estimations explicites de l’erreur. La preuve, seulement
esquissée dans le papier original, est entièrement détaillée dans la thèse et la méthode
est améliorée. Par ailleurs, nous montrons l’impossibilité de déduire, à partir de cette
méthode, des estimations uniformes d’intégrales oscillantes par rapport à la position du
point stationnaire dans le cas d’amplitudes singulières. Afin d’obtenir de telles estimations
uniformes, nous proposons ensuite une extension du lemme de van der Corput au cas
d’amplitudes singulières et de points stationnaires d’ordre réel.

Ces résultats abstraits sont appliqués à des formules de solution de certaines équations
dispersives sur la droite réelle, couvrant des équations de type Schrödinger ainsi que des
équations hyperboliques. Nous supposons que la transformée de Fourier de la donnée
initiale est à support compact et/ou a un point singulier intégrable. Des développements à
un terme et des estimations uniformes dans certains cônes de l’espace-temps ainsi que dans
l’espace-temps tout entier sont établis, montrant l’influence des hypothèses ci-dessus sur
les solutions. En particulier, nous prouvons que les paquets d’ondes tendent à être localisés
dans certains cônes lorsque le temps tend vers l’infini, ce qui décrit leurs mouvements
asymptotiquement en temps.

Pour finir, nous considérons des solutions approchées de l’équation de Schrödinger
avec potentiel sur la droite réelle, telle que la transformée de Fourier du potentiel est
supposée avoir un support compact également. En appliquant les méthodes mentionnées
ci-dessus, nous prouvons que ces solutions approchées tendent à être concentrées dans
certains cônes lorsque le temps tend vers l’infini, ce qui met en évidence des phénomènes
de type réflexion et transmission.

Mots-Clés

Intégrales oscillantes, méthode de la phase stationnaire, lemme de van der Corput, équations
dispersives, bande de fréquences, fréquence singulière, décroissance (optimale) L∞ en
temps, cône de l’espace-temps.
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Title

Lossless estimates for asymptotic methods with applications to propagation features for
dispersive equations

Abstract

In this thesis, we study the asymptotic behaviour of oscillatory integrals for one integration
variable with respect to a large parameter. We consider first the version of the stationary
phase method of A. Erdélyi which covers singular amplitudes and phases with stationary
points of real order together with explicit error estimates. The proof, which is only
sketched in the original paper, is entirely detailed in the present thesis and the method
is improved. Moreover we show the impossibility to derive from this method uniform
estimates of oscillatory integrals with respect to the position of the stationary point in
the case of singular amplitudes. To obtain such uniform estimates, we propose then an
extension of the classical van der Corput lemma to the case of singular amplitudes and
stationary points of real order.

These abstract results are applied to solution formulas of certain dispersive equations
on the line, covering Schrödinger-type and hyperbolic examples. We suppose that the
Fourier transform of the initial condition is compactly supported and/or has a singular
point. Expansions to one term and uniform estimates of the solutions in certain space-
time cones as well as in the whole space-time are established, exhibiting the influence of
the above hypotheses on the solutions. In particular, we show that the waves packets tend
to be time-asymptotically localized in space-time cones, describing their motions when
the time tends to infinity.

Finally we consider approximate solutions of the Schrödinger equation on the line with
potential, where the Fourier transform of the potential is also supposed to have a compact
support. Applying the methods mentioned above, we prove that these approximate solu-
tions tend to be time-asymptotically concentrated in certain space-time cones, exhibiting
reflection and transmission type phenomena.

Keywords

Oscillatory integrals, stationary phase method, van der Corput lemma, dispersive equa-
tions, frequency band, singular frequency, (optimal) L∞-time decay, space-time cone.
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culier, Céline, Ahmed, Hà et Geoffrey, qui auront toujours une pensée bienveillante pour
Boutardo et Lili.
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Chapter 0

Introduction

The asymptotic behaviour of oscillatory integrals with respect to a large parameter is
sometimes used to study the time-asymptotic behaviour of solutions of certain evolution
equations, like the free Schrödinger equation or the Klein-Gordon equation on the line.
The stationary phase method is a tool which permits to expand oscillatory integrals with
respect to the large parameter. Among the various versions of this method, a theorem
of A. Erdélyi [16, Section 2.9] treats only the case of one integration variable but has
the advantage to cover singular amplitudes and stationary points of real order together
with explicit error estimates. The resulting decay rates are optimal and the results are
interesting for applications. Unfortunately it turns out that the expansion as well as the
remainder blow up when the stationary point of the phase attains the singular point of
the amplitude, expressing a change of nature of the integral. This blow-up prevents the
derivation of uniform estimates of the oscillatory integral with respect to the position of
the stationary point.
However uniform estimates of oscillatory integrals with regular amplitudes and stationary
points of integer order can be obtained by employing the classical van der Corput lemma
[27, Chapter VIII, Proposition 2]: it furnishes estimates of the modulus of oscillatory
integrals exhibiting the decay. Though these estimates are less precise than asymptotic
expansions, they are uniform with respect to the position of the stationary point, which
can be inside or outside the integration interval.
In this thesis, we provide an improved version of the stationary phase method of Erdélyi
with complete proofs, making explicit the above mentioned blow-up. Further an extension
of the van der Corput lemma is established, including phases with a stationary point of
real order and singular amplitudes. Combining these two methods, we obtain a complete
description of the phenomena produced by the stationary point of the phase, by the sin-
gular point of the amplitude and by their interaction.

These abstract results are then applied to solution formulas, given by oscillatory in-
tegrals depending on space and time, of certain evolution equations. Especially we treat
evolution equations defined by Fourier multipliers, covering Schrödinger-type and hyper-
bolic examples.
In order to exhibit detailed propagation patterns, the initial data are supposed to be in
frequency bands, meaning that their Fourier transform is compactly supported. To ex-
plain such hypotheses, let us consider the following formal decomposition of the Fourier
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Chapter 0. Introduction

transform of an initial condition u0:

Fu0 =
∑
k∈K

χIk Fu0 , (1)

where K is a subset of Z, {Ik}k∈K is a family of bounded intervals such that⋃
k∈K

Ik = R , ∀ k 6= l Ik ∩ Il = ∅ ,

and χIk is the characteristic function of the interval Ik. Applying formally the inverse
Fourier transform to equality (1), we obtain

u0 =
∑
k∈K

F−1χIk Fu0 =:
∑
k∈K

u0,k ,

where u0,k := F−1χIk Fu0. Hence u0,k is a component of u0 which is in the frequency
band Ik. By supposing u0 ∈ L2(R), this component u0,k can be interpreted in terms of
quantum mechanics: it represents the part of the initial state u0 having a momentum
localized in the band Ik. The idea of using frequency bands, which was used in [7] for the
Klein-Gordon equation on R with potential step, permits to exhibit certain phenomena
which disappear when superposing all the bands. Moreover we assume that the Fourier
transform of the initial data has a singular point, called singular frequency. Roughly
speaking, the presence of a singular frequency shows that there is a concentration of the
initial momentum around this singular frequency.
For initial data in frequency bands and having a singular frequency, we rewrite the solution
formula as an oscillatory integral with respect to time and apply the stationary phase
method to obtain expansions to one term in certain space-time cones, leading to optimal
time-decay rates in these regions. This strategy was already employed in [5] to study
solutions of the Klein-Gordon equation on a star-shaped network. Due to the blow-up
inherited from the abstract setting, these expansions to one term do not cover the entire
space-time in a uniform way. This problem is solved by applying our extended version of
the van der Corput lemma, which provides uniform estimates of the solution in arbitrary
cones as well as in the whole space-time.
The application of the two methods in the case of initial data in frequency bands permits
to derive in this thesis not only the optimal time-decay rate for the L∞-norm of the
solutions but also time-asymptotic localizations in cones, describing propagation features
of the wave packets. For example, we obtain

• a concentration phenomenon produced by a singular frequency, along a particular
space-time direction when the time tends to infinity ;

• the time-asymptotic localization of the solution of the Klein-Gordon equation in the
light cone issued by the origin, even for initial data which are not compactly sup-
ported; this can be interpreted as an asymptotic version of the notion of causality ;

• a time-asymptotic description of the first interaction of a wave packet with a poten-
tial, leading to transmission and reflection type notions.

12



One can mention that this method does not take into account the position of the initial
data, which would bring more precision to our results. Indeed one could consider recent
rigorous versions of Ehrenfest theorem in physics [18], which provides the evolution of the
mean position of a wave packet.

Before detailing the contents of the chapters of this thesis, let us remark that the paper
[4] contains the essence of Chapters 1 and 2, while the paper [13] contains the essence of
Chapters 3 and 4.

Chapter 1. In the first chapter, we start by recalling Erdélyi’s result in Theorem 1.1.3
concerning asymptotic expansions with remainder estimates of oscillatory integrals of the
type

∀ω > 0

∫ p2

p1

U(p) eiωψ(p) dp . (2)

The amplitude U : (p1, p2) −→ C may be singular at p1 and p2: we suppose that it is
factorized as

U(p) = (p− p1)µ1−1 (p2 − p)µ2−1 ũ(p) , (3)

where µ1, µ2 ∈ (0, 1) and ũ is supposed to be sufficiently regular. The phase function ψ
is allowed to have stationary points of real order at the endpoints as well; more precisely,
we suppose the factorization

ψ′(p) = (p− p1)ρ1−1 (p2 − p)ρ2−1 ψ̃(p) , (4)

where ρ1, ρ2 ∈ R are larger than 1 and ψ̃ is supposed to be positive on [p1, p2]. Since the
proof is only sketched in the source, we detail it entirely following the lines of the original
demonstration: we start by splitting the integral employing a smooth cut-off function
which separates the endpoints of the interval. Then we use explicit substitutions to sim-
plify the phases by exploiting the factorization (4). Afterwards successive integrations
by parts create the expansion of the integral and the remainder terms, that we estimate
to conclude. The two last steps are carried out using complex analysis in one variable
and using the factorization (3). Especially the application of Cauchy’s theorem allows to
shift the integration path of the integrals defining the primitive functions created by the
integrations by parts into a region of controllable oscillations of the integrands. This strat-
egy, coupled with the explicit substitutions, leads finally to a precise estimate of the error.

Then we treat in Theorem 1.1.7 the case of the absence of amplitude singularities,
which will be essential for certain applications. The previous error estimate furnishes
here only the same decay rate for the highest term of the expansion and the remainder.
The remedy proposed by Erdélyi [16, page 55] leads to complicated formulas when written
down and does not seem possible in the case of stationary points of non integer order.
To refine this analysis, we work on the above mentioned integrals defining the primitive
functions created by the integrations by parts and involved in the remainder. Introducing
a new parameter, we obtain estimates of these integrals permitting a balance between
their singular behaviour with respect to the integration variable of the remainder and
their decay with respect to ω. Putting these new estimates into the remainder, we obtain
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Chapter 0. Introduction

better decay rates of the remainder in the case of regular amplitudes.

To finish the comments on the first chapter, let us present for comparison two classical
versions of the stationary phase method coming from the literature. In [17, Chapter 4,
Section 5], the author assumes that the amplitude belongs to C∞c (Rd) (for d > 1) and
supposes that the stationary points of the phase are non-degenerate. Firstly the author
employs Morse’s lemma to simplify the phase function. Then using Fubini’s theorem, he
obtains a product of integrals, where each of them is actually the Fourier transform of a
tempered distribution. He computes these Fourier transforms explicitly thanks to complex
analysis and estimates them, leading to the result. Nevertheless, the use of Morse’s lemma
implies a loss of precision regarding the estimate of the remainder. Indeed, Morse’s lemma
is based on the implicit function theorem and so the substitution is not explicit.

In [20, Chapter VII], the author provides a stationary phase method which is different
from [17]. It is assumed that the amplitude U and the phase have a certain regularity
on Rd (for d > 1), and that U has a compact support. Asymptotic expansions of the
oscillatory integral are given by using Taylor’s formula of the phase, where the stationary
point is supposed to be non-degenerate. Morse’s lemma is not needed in this situation,
but stronger hypothesis concerning the phase are required in order to bound uniformly the
remainder by a constant. He needs also to use Taylor’s expansion of the amplitude, which
excludes the case of singular amplitudes. In addition, his expression of the remainder is
less explicit than ours.

Finally, we can compare the results of Erdélyi’s book [16] with the asymptotic ex-
pansions of oscillatory integrals given in the book [15, Chapter IV]. There, the phase is
supposed to be equivalent to xα and the amplitude to be equivalent to xβ when x tends
to 0, where 0 < α + 1 < β. Hence singular amplitudes are allowed and, in this case,
the stationary point of the phase and the singular point of the amplitude coincide. The
authors in [15] computes explicitly the first term of the expansions but does not furnish
remainder estimates, preventing the application to solution formulas of certain evolution
equations for example. The results given in Erdélyi’s book are then much more precise
than those established in [15].

Chapter 2. In Theorem 2.1.2 of Chapter 2, we modify the stationary phase method of
Erdélyi by replacing the smooth cut-off function used in the original proof by a characte-
ristic function. This is motivated by the fact that an inherent blow-up of the expansion of
the oscillatory integral and the remainder occurs when a stationary point and a singular
point of the amplitude tend to each other, restricting potentially the field of applications.
Hence the aim of employing a characteristic function instead of a smooth cut-off function
is to make explicit this blow-up in the remainder. For this purpose, we consider a fixed
cutting-point q ∈ (p1, p2) and then we follow the lines of the original proof: we carry out
explicit substitutions and we integrate by parts. Here the characteristic function has the
disadvantage that it produces new terms related to the cutting-point when integrating by
parts, and they are not the same due to the different substitutions employed in the two
integrals. However by expanding these terms with respect to the parameter ω, we observe
that the resulting first terms cancel out but not the remainders. These new remainders
related to the cutting-point q are estimated as well as the classical remainders related to
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p1 and p2, which permits to conclude.
As previously, we refine the estimate of the remainder related to pj if this point is a re-
gular point of the amplitude. For this purpose, we follow simply the lines of the method
described in the preceding chapter. Moreover, we note that the remainder related to the
cutting-point q tends always more quickly to zero than the expansion of the oscillatory
integral.

In preparation for applications to the free Schrödinger equation, our improved version
of the stationary phase method is applied to oscillatory integrals with amplitudes having
a unique singular point at the left endpoint p1 of the integration interval [p1, p2], and with
phases of the form

ψ(p) = −(p− p0)2 + c ,

where c ∈ R and where the stationary point p0 is supposed to belong to [p1, p2]. Thanks to
the explicitness of the phase functions and the preciseness given by the previous results,
we furnish in Theorem 2.2.2 asymptotic expansions together with remainder estimates
depending explicitly on the distance between the stationary point and the singularity.
In particular this theorem can be exploited to establish uniform estimates of the above
oscillatory integrals in parameter regions defined by,

p1 + ω−ϑ 6 p0 < p2 ,

where ϑ ∈
(
0, 1

2

)
. The resulting decay rates are proved to be optimal by expanding the

oscillatory integrals on the left boundary of the regions, namely on the curves given by

p0 = p1 + ω−ϑ .

These abstract results are then exploited to study the time-asymptotic behaviour of
the solution of the free Schrödinger equation on the line with initial data satisfying

Condition (C1[p1,p2],µ). Let µ ∈ (0, 1) and p1 < p2 be two finite real numbers.
A tempered distribution u0 on R satisfies Condition (C1[p1,p2],µ) if and only if Fu0 ≡ 0 on
R\[p1, p2) and

∀ p ∈ (p1, p2) Fu0(p) = (p− p1)µ−1 ũ(p) ,

where ũ ∈ C1
(
[p1, p2],C

)
and ũ(p1) 6= 0.

The interval [p1, p2] is called frequency band and the singular point p1 is called singular
frequency. More precisely, the aim is to study the influence of a restriction to compact
frequency bands and of singular frequencies on the dispersion. For this purpose, we
rewrite the solution formula as an oscillatory integral of the form (2) in order to apply the
preceding abstract results. By employing then Theorem 2.2.2, we establish asymptotic
expansions with explicit remainder estimates of the solution with respect to time in certain
space-time cones, namely space-time regions given by

CS(a, b) =
{

(t, x) ∈ (0,+∞)× R
∣∣∣ 2 a < x

t
< 2 b

}
, (5)

where a < b are two real numbers. Especially the first terms of the expansions exhibit
the optimal decay rates in these cones. Let us give the result in the case of weak singular
frequencies in the cone CS

(
p1 + ε, p2

)
:
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Chapter 0. Introduction

0.1 Theorem. Suppose that u0 satisfies Condition (C1[p1,p2],µ) with µ ∈
(

1
2
, 1
)
, and choose

a real number ε > 0 such that
p1 + ε < p2 .

For all (t, x) ∈ CS
(
p1 + ε, p2

)
, define H(t, x, u0) ∈ C as follows,

H(t, x, u0) :=
1

2
√
π
e−i

π
4 ei

x2

4t ũ
( x

2t

)( x
2t
− p1

)µ−1

,

Then for all (t, x) ∈ CS
(
p1 + ε, p2

)
, we have

∣∣∣u(t, x)−H(t, x, u0) t−
1
2

∣∣∣ 6 9∑
k=1

Ck(u0, ε) t
−σ(1)

k ,

where max
k∈{1,...,9}

{
−σ(1)

k

}
< −1

2
. The exponents σ

(1)
k and the constants Ck(u0, ε) > 0 are

given in the proof.

See Theorem 2.3.2 for a complete statement with proof which includes also the case of
strong singular frequencies, and see Theorem 2.3.4 for expansions to one term in cones
outside CS

(
p1, p2

)
. Let us now remark that an initial data satisfying (C1[p1,p2],µ) belongs

to L2(R) if and only if µ > 1
2
. Hence in the L2-case, we prove that the energy1 tends

to be concentrated in the cone CS
(
p1, p2

)
when the time tends to infinity, thanks to the

expansion given in Theorem 0.1:

0.2 Corollary. Suppose that the hypotheses of Theorem 0.1 are satisfied and for all t > 0,
define the interval It as follows,

It :=
(

2 (p1 + ε) t, 2 p2 t
)
.

Then we have∣∣∣∣∥∥u(t, .)
∥∥
L2(It)

− 1√
2π

∥∥Fu0

∥∥
L2(p1+ε,p2)

∣∣∣∣ 6 9∑
k=1

C̃k(u0, ε) t
−σ(1)

k + 1
2 ,

where the constants C̃k(u0, ε) > 0 are given in the proof.

See Corollary 2.3.5 for the proof. The physical principle of group velocity applied to the
free Schrödinger equation on the real line says roughly that the energy associated with a
frequency p̃ propagates with the speed given by the stationary phase method, in this case
x
t

= 2p̃. Theorem 0.1 and Corollary 0.2 furnish a precise meaning of this principle in our
case.

Now let us remark that it is not possible to derive an asymptotic expansion with
uniform error estimate of the solution in the entire cone CS

(
p1, p2

)
from Theorem 0.1,

due to the inherent blow-up occurring in the abstract setting. In order to study the

1For simplicity, we call in Chapter 2 of the thesis energy the L2-norm of the solution on subsets of R,
in contrast to the usual quantum mechanics interpretation as probability of occurrence of the particle in
a subset.
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time-asymptotic behaviour of the solution in regions containing the space-time direction
x
t

= 2p1, we start by expanding the solution on this direction, showing that the optimal

decay rate is given by t−
µ
2 . Then we exploit once again the preciseness provided by

Theorem 2.2.2 to establish uniform estimates of the solution in regions along the direction
associated with the singular frequency p1, which are asymptotically larger than any space-
time cone:

0.3 Theorem. Suppose that u0 satisfies Condition (C1[p1,p2],µ) with µ ∈
(

1
2
, 1
)
, and fix

ϑ ∈
(
0, 1

2

)
. Then for all (t, x) ∈ (0,+∞) × R satisfying 2 p1 + 2 t−ϑ 6 x

t
< 2 p2 and

t > (p2 − p1)−
1
ϑ , we have

∣∣u(t, x)
∣∣ 6 C0(u0) t−

1
2

+ϑ(1−µ) +
9∑

k=1

Ck(u0) t−σ
(2)
k +ϑς

(2)
k ,

where max
k∈{1,...,9}

{
−σ(2)

k + ϑς
(2)
k

}
< −1

2
+ ϑ(1−µ) and the decay rate t−

1
2

+ϑ(1−µ) is optimal.

The exponents σ
(2)
k , ς

(2)
k and the constants Ck(u0) > 0 are given in the proof.

The resulting decay rate t−
1
2

+ϑ(1−µ) is optimal because it is attained on the left boundary
of the region (see Theorem 2.3.8) and the case µ 6 1

2
is also studied (see Theorem 2.3.7

for a complete statement with proof). Theorem 0.3 suggests that the effect of a singular
frequency is strong in space-time regions close to the critical direction x

t
= 2p1, i.e. for ϑ

close to 1
2
.

The method employed in Chapter 2 to study the time-asymptotic behaviour of the
Schrödinger equation has been inspired by [5] and [6], where the authors consider the
Klein-Gordon equation on a star shaped network with a potential which is constant but
different on each semi-infinite branch. The authors are interested in the influence of the
coefficients of the potential on the time-asymptotic behaviour of the solution. To do so,
they calculate asymptotic expansions to one term with respect to time of the solution
with initial data in frequency bands in [5] and they exploit these expansions to describe
the time-asymptotic energy flow of wave packets in [6].
They notice that the asymptotic expansion degenerates when the frequency band ap-
proaches certain critical values coming from potential steps. These critical values play a
similar role as the singularities of the Fourier transform of the initial conditions in the
present chapter. Hence our refined version of Erdélyi’s expansion theorem could help to
improve the comprehension of the problem of the blow-up of the expansion in the setting
of [5] and [6].
Moreover the paper [5] shows the way to obtain this type of results for the Schrödinger
equation on domains with canonical geometry and canonical potential permitting suffi-
ciently explicit spectral theoretic solution formulas.

We can point out the usefulness of detailed informations on the motion of wave packets
in frequency bands by citing [3]. In this paper, the authors study the time-asymptotic
behaviour of the solution of the Schrödinger equation on star-shaped networks with a lo-
calized potential. They establish a perturbation inequality which shows that the evolution
of high frequency signals is close to their evolution without potential.
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Chapter 0. Introduction

One can also mention the methods and the results of the papers [11] and [12], in which
the time-decay rate of the free Schrödinger equation is considered. In [11], singular initial
conditions are constructed to derive the exact Lp-time decay rates of the solution, which
are slower than the classical results for regular initial conditions. In [12], the authors
construct initial conditions in Sobolev spaces (based on the Gaussian function), and they
show that the related solutions has no definite Lp-time decay rates, nor coefficients, even
though upper estimates for the decay rates are established.
The papers [11] and [12] use special formulas for functions and their Fourier transforms,
which are themselves based on complex analysis. In our results, we furnish slow decay
rates by considering initial conditions with singular Fourier transforms. Here, complex
analysis is directly applied to the solution formula of the equation, which permits to obtain
results for a whole class of functions. Our method seems therefore to be more flexible.

One-dimensional Schrödinger equations with singular coefficients have been studied
in the literature, as for example in [8]. There, dispersion inequalities and Strichartz-
type estimates are furnished, exhibiting the influence of the singular coefficients on the
dispersion. Under certain hypotheses on the singularities, we observe that the above
mentioned estimates remain unchanged as compared with the classical case.

Finally, among all the applications involving oscillatory integrals, let us mention that
results on this type of integrals have been employed to establish the first Strichartz-type
estimates in [28] for the Schrödinger equation and the Klein-Gordon equation, or to study
the time-decay rates for the system of crystal optics in [23].

Chapter 3. In Chapter 3, we consider oscillatory integrals of the type (2). Here the
amplitude U : (p1, p2] −→ C may be singular at p1: it is factorized as

∀ p ∈ (p1, p2] U(p) = (p− p1)µ−1 ũ(p) , (6)

where µ ∈ (0, 1] and ũ : [p1, p2] −→ C has a certain regularity. The phase function
ψ : I −→ R, where I is an open interval containing [p1, p2], is allowed to have a stationary
point p0 of real order; more precisely, we suppose that

∀ p ∈ I ψ′(p) = |p− p0|ρ−1 ψ̃(p) , (7)

where ρ ∈ R is larger than 1 and ψ̃ : I −→ R satisfies
∣∣ψ̃∣∣ > 0 on [p1, p2]. For example,

smooth functions with vanishing first derivatives are included.
The aim of this chapter is to provide uniform estimates of such integrals with respect
to the position of the stationary point p0. As explained previously, the stationary phase
method can not provide such estimates since an inherent blow-up of the asymptotic ex-
pansion occurs when the stationary point attains the singular point, while the oscillatory
integral is uniformly bounded with respect to p0 and ω. Hence we give up the idea of
expanding the integrals to one term in favour of estimates of their modulus. In the case
of regular amplitudes and stationary points of integer order, the classical van der Corput
lemma (see [32, Chapter V, Lemma 4.3] or [27, Chapter VIII, Proposition 2]) provides
such estimates which are uniform with respect to the position of the stationary point.
However the classical version of this lemma is not applicable to the above setting and
the constants are not explicitly given, which may prevent certain applications. Hence
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we propose an extension of this lemma to oscillatory integrals with singular amplitudes
and with stationary points of real order. To this end, we shall exploit the factorizations
(6) and (7) which are well-suited for the formulation of the results and which have been
inspired by [16].

The first part of Chapter 3 is devoted to the case of a phase function having a stationary
point p0 which is either inside or outside the interval of integration. In both cases, we
furnish an estimate which is uniform with respect to the position of p0 with explicit
constant. Moreover we remark that the resulting decay rate, depending on the order of
the stationary point and on the strength of the singular point, corresponds to the decay
rate given by the stationary phase method of Erdélyi when these two particular points
coincide:

0.4 Theorem. Let ρ > 1, µ ∈ (0, 1] and choose p0 ∈ I. Suppose that the func-
tions ψ : I −→ R and U : (p1, p2] −→ C satisfy Assumption (P2p0,ρ) and Assumption
(A2p1,µ) (given in Section 3.1), respectively. Moreover suppose that ψ′ is monotone on{
p ∈ I

∣∣ p < p0

}
and

{
p ∈ I

∣∣ p > p0

}
. Then we have∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 C(U, ψ)ω−
µ
ρ ,

for all ω > 0, and the constant C(U, ψ) > 0 is given in the proof.

See Theorem 3.1.8 for the proof. Assumption (A2p1,µ) and Assumption (P2p0,ρ) are satis-
fied if and only if the functions U and ψ verify equalities (6) and (7) respectively, with
additional hypotheses on the regularity of ũ and ψ̃.

In the second part of Chapter 3, we suppose the absence of a stationary point inside
[p1, p2] in preparation for applications to solutions of certain evolution equations in Chap-
ter 4. Thus, if the phase has a stationary point, then it is outside the integration interval;
in this case, we furnish a better decay rate than the one obtained in Theorem 0.4, but
the estimate is not uniform with respect to the position of the stationary point.
Let us remark that all the decay rates provided in Chapter 3 are proved to be optimal.
This optimality is a consequence of an application of the stationary phase method of
Erdélyi when the stationary point and the singular point coincide.

In the literature, adaptations of the van der Corput lemma have been developed. For
example, on can mention [9] in which the authors study the decay of Fourier transforms
on singular surfaces. To do so, they establish a variant of the van der Corput lemma,
based on the classical estimate [27], by supposing weaker hypotheses on the phase but
stronger hypotheses on the amplitude.

Furthermore, some authors have established versions of the van der Corput lemma for
several integration variables, to be applied to solutions of certain evolution equations on Rd

for example. In [26], hypotheses on the radial behaviour of the phase in a neighbourhood of
the stationary point permit to reduce the study to oscillatory integrals for one integration
variable. By combining the standard calculations in the one-dimensional case and well-
chosen assumptions on the phase and the amplitude, the author obtains the desired result.
This approach permits to extend the notion of stationary point of integer order to several
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Chapter 0. Introduction

variables and to provide estimates of oscillatory integrals with phases having this type of
stationary point, but the resulting constants are not explicit.

On the other hand, the authors in [1] establish a van der Corput-type estimate for
several integration variables with explicit constant. To this end, they adapt the proof
of the classical lemma to the case of several integration variables, leading to technical
computations. Nevertheless their result is restricted to phases whose Hessian is supposed
to be invertible, meaning that the order of the stationary can not be larger than one in
the one dimensional case.
The amplitudes in both above results are supposed to be smooth and compactly sup-
ported, meaning that they do not treat the case of singular amplitudes. An interesting
outlook would be to find a suitable extension to several variables of the notion of singular
point for which van der Corput type estimates can be established.

Chapter 4. In Chapter 4, we consider Fourier solution formulas for the class of initial
value problems given by { [

i ∂t − f
(
D
)]
u(t) = 0

u(0) = u0

, (8)

for t > 0, where the symbol f of the Fourier multiplier f(D) is supposed to satisfy f ′′ > 0.
One can note that the free Schrödinger equation belongs to this class since its symbol fS
is given by fS(p) = p2. Our aim is to study the phenomena exhibited in Chapter 2 for this
class of dispersive equations, not using asymptotic expansions, but by creating a (rougher
in a sense but closely related) method based on van der Corput type estimates established
in Chapter 3. This approach permits to avoid the blow-up of the expansion occurring in
Chapter 2 and hence to give uniform estimates in space-time cones as well as in the whole
space-time.

First of all, let us give a new definition of a space-time cone, which is slightly different
from (5) but more adapted to the present case:

C(a, b) =
{

(t, x) ∈ (0,+∞)× R
∣∣∣ a < x

t
< b
}
,

where a < b are two finite real numbers. The first result of Chapter 4 furnishes uniform
estimates of the solution of (8), for initial data in the frequency band [p1, p2] and having
a singular frequency at p1, in arbitrary large space-time cones containing C

(
f ′(p1), f ′(p2)

)
as well as in their complements:

0.5 Theorem. Suppose that u0 satisfies Condition (C2[p1,p2],µ) (given in Section 4.1) and

choose two finite real numbers p̃1 < p̃2 such that [p1, p2] ⊂ (p̃1, p̃2) =: Ĩ. Then we have

• ∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

) ∣∣u(t, x)
∣∣ 6 c(u0, f) t−

µ
2 ;

• ∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

)c ∣∣u(t, x)
∣∣ 6 cĨ(u0, f) t−µ .

All the constants are given in the proof and the two decay rates are optimal.
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See Theorem 4.1.3 for the proof. Condition (C2[p1,p2],µ) is similar to Condition (C1[p1,p2],µ)
but it includes also the case µ = 1 and the case Fu0(p2) 6= 0. Theorem 0.5 highlights
the concentration phenomenon produced by the frequency band as explained above in the
Schrödinger case. Moreover, this permits to derive an L∞-norm estimate for the solution
of the free Schrödinger equation for initial data satisfying Condition (C2[p1,p2],µ).
To study the influence of a singular frequency p1 of order µ− 1 in regions containing the
space-time direction defined by x

t
= f ′(p1), we provide estimates of the solution in cones

containing this direction as well as in cones which do not contain it:

0.6 Theorem. Suppose that u0 satisfies Condition (C3p1,µ) (given in Section 4.1), and
choose three finite real numbers ε > 0 and p̃1 < p̃2 such that p1 /∈ [p̃1, p̃2]. Then we have

• ∀ (t, x) ∈ C
(
f ′(p1 − ε), f ′(p1 + ε)

) ∣∣u(t, x)
∣∣ 6 c(1)(u0, f) t−

µ
2 + c(2)

ε (u0, f) t−1 ;

• ∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

) ∣∣u(t, x)
∣∣ 6 c

(1)
p̃1,p̃2

(u0, f) t−
1
2 + c

(2)
p̃1,p̃2

(u0, f) t−µ

+ c
(3)
p̃1,p̃2

(u0, f) t−1 .

All the constants are given in the proof.

See Theorem 4.1.7 and Theorem 4.1.8 for the proofs. This result proves that in cones
containing the space-time direction given by the singular frequency, the influences on the
decay rate of the order of the singularity and the stationary point are combined. In all
other cones, the decay rates given respectively by the order of the singularity and by
the stationary point are in concurrence. Here Condition (C3p1,µ) is similar to the above
Condition (C1[p1,p2],µ) but the initial datum is not supposed to be in a frequency band
anymore; for example the support of Fu0 may be equal to an infinite interval but in this
case, it must have a sufficiently fast decay at infinity. This permits to study the effect of
the singular frequency without the influence of a frequency band.

Then we focus our attention on the fact that the symbol may influence the dispersion
of the solution. We suppose now that the symbol f verifies the following condition:

Condition (Sβ+,β−,R). Fix β− > β+ > 1 and R > 1.
A C∞-function f : R −→ R satisfies Condition (Sβ+,β−,R) if and only if the second deriva-
tive of f is positive on R and verifies

∃ c+ > c− > 0 ∀ |p| > R c− |p|−β− 6 f ′′(p) 6 c+ |p|−β+ .

We note that the symbol related to the free Schrödinger equation does not satisfy the
above condition, unlike the function fKG given by fKG(p) =

√
c4 + c2 p2 , where c > 0

is a constant. Under Condition (Sβ+,β−,R), the first derivative of the symbol is bounded,
leading to the existence of a space-time cone in which the decay rate of the solution is
slower than outside:

0.7 Theorem. Suppose that the symbol f satisfies Condition (Sβ+,β−,R) and that u0 sat-
isfies Condition (C4µ,α,r) (given in Section 4.2), where µ ∈ (0, 1], α−µ > β− and r 6 R.
Then we have

• ∀ (t, x) ∈ C(a, b)
∣∣u(t, x)

∣∣ 6 c(1)(u0, f) t−
µ
2 + c(2)(u0, f) t−

1
2

• ∀ (t, x) ∈ C(a, b)c
∣∣u(t, x)

∣∣ 6 c(1)
c (u0, f) t−µ + c(2)

c (u0, f) t−1 .
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All the constants are given in the proof. The two finite real numbers a < b are defined by

a := lim
p→−∞

f ′(p) , b := lim
p→+∞

f ′(p) .

See Theorem 4.2.4 for the proof. Roughly speaking, an initial datum satisfies Condition
(C4µ,α,r) if and only if it satisfies Condition (C3p1,µ) with additional hypotheses on the de-
cay of Fu0 at infinity. To illustrate this intrinsic concentration phenomenon, we consider
the Klein-Gordon equation on the line. Since the solution formula is in fact a sum of the
solutions of evolution equations of the type (8) with symbols fKG and −fKG, where fKG
is defined above, Theorem 0.7 is applicable to each term. In this case, we observe that
the wave packets tend to be concentrated in the light cone issued by the origin, when the
time tends to infinity. The appearance of this cone is closely related to the hyperbolic
character of the Klein-Gordon equation.

Among all the applications of van der Corput type estimates, one can mention the pos-
sibility to derive L1-L∞ estimates for solutions of the free Schrödinger equation (see [25])
and the Klein-Gordon equation (see [24]) on Rd. Thanks to that, it is possible to establish
Strichartz-type estimates and then to study non-linear variants of these equations.

We mention also the paper [2] in which a global (probably not optimal) L∞-time decay
estimate for the Klein-Gordon equation on R with potential steps has been proved using
the van der Corput inequality, spectral theory and the methods of [24].

Moreover L1-L∞ estimates for more general evolution equations can also be established
by using van der Corput type estimates. In [10], the authors consider a family of initial
value problems given by (8), where the symbols are of the form f(p) = |p|ρ + R(p), with
ρ > 2 and R : R −→ R is a regular function whose growth at infinity is controlled in a
certain sense by |p|ρ−1. By establishing estimates of oscillatory integrals adapted to their
problem, they derive the following inequality,∥∥u(t, .)

∥∥
L∞(R)

6 C t−
1
ρ‖u0‖L1(R) ,

for a certain constant C > 0. This is then employed to study smoothing effects as well as
non-linear variants of the equation.
For comparison with the present chapter, let us remark that our method based on Fourier
solution formulas does not furnish a L1-L∞ estimate but it permits to derive spatial
information on the solution. This type of result does not seem possible with the method
employed in [10].

Finally let us mention the possibility to study the fractional Schrödinger equation,
firstly introduced in [22]. In [21], the authors consider its one-dimensional version and
furnish an L∞-estimate of the free solution for initial data belonging to an appropriate
function space by using van der Corput lemma. This is then employed to study a non-
linear variant of the equation.

Chapter 5. In the last chapter of this thesis, we propose an approach in order to study
time-asymptotic phenomena for approximate solutions of the solution of the Schrödinger
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equation on the line with potential,{
i ∂tu(t) = −∂xxu(t) + V (x)u(t)

u(0) = u0

, (9)

where t > 0. First of all, we prove in Theorem 5.1.2 the well-posedness of this equation
in H1(R) in the case V ∈ W 1,∞(R), by using the theory of semigroups. Moreover this
theory affirms that the solution of the above perturbed equation can be represented as
follows,

∀ t > 0 u(t) =
∑
n>0

Sn(t)u0 , (10)

where the sequence
(
Sn(t)

)
n>0

of bounded operators on H1(R) is defined in a recursive

way. The series given in (10) converges in the H1-norm for all t > 0 and is called Dyson-
Phillips series for the solution of (9).
In order to avoid complicated calculations and to make clear the phenomena, we restrict
in the present thesis the study to the two first terms of the above series. Let us note that
the first term S0(t)u0 is the free wave packet while the second term S1(t)u0 corresponds
to the wave packet resulting from the first interaction between the free solution and the
potential.
To apply the methods introduced in the preceding chapters, we suppose that the Fourier
transform of the potential is compactly supported; more precisely, we suppose that

suppFV ⊆ [−b,−a] ∪ [a, b] , (11)

where a < b are two finite real numbers. In particular, this type of hypothesis allows FV
to be even and real-valued, implying in this case that V is also a real-valued function. A
family of potentials satisfying (11) is constructed for illustration. For potentials satisfying
(11) together with initial data u0 in frequency bands, we prove that the terms S0(t)u0 and
S1(t)u0 are explicitly represented by oscillatory integrals and that the second term S1(t)u0

is actually a sum of two wave packets, that we call S−1 (t)u0 and S+
1 (t)u0. Under some

additional hypotheses on the position of the frequency band [p1, p2] of u0 with respect
to the bands [−b,−a] and [a, b], we expand the terms S0(t)u0, S−1 (t)u0 and S+

1 (t)u0 in
appropriate space-time cones and we estimate them outside the cones by employing the
methods of the preceding chapters. This shows that

• the optimal time-decay rate of the term S0(t)u0 in the space-time cone CS(p1, p2) is

t−
1
2 and this term decays at least like t−1 outside the cone ;

• the optimal time-decay rate of the term S−1 (t)u0 in the cone CS(p1− b, p2−a) is t−
1
2

and this term decays at least like t−1 outside the cone ;

• the optimal time-decay rate of the term S+
1 (t)u0 in the cone CS(p1 +a, p2 + b) is t−

1
2

and this term decays at least like t−1 outside the cone.

See Theorems 5.3.4, 5.4.6 and 5.4.7 for complete statements with proof. Especially, we
deduce that the terms S0(t)u0, S−1 (t)u0 and S+

1 (t)u0 are time-asymptotically localized in
the cones CS(p1, p2), CS(p1 − b, p2 − a) and CS(p1 + a, p2 + b) respectively.
By studying the inclination of the above space-time cones, we observe that the terms
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S0(t)u0 and S+
1 (t)u0 move always in the same direction and the maximal speed of S+

1 (t)u0

is always larger than the maximal speed of S0(t)u0 when the time tends to infinity. On
the other hand, the term S−1 (t)u0 travels either to the same direction in space as the one
of S0(t)u0 with a minimal speed smaller than the minimal speed of S0(t)u0 if the absolute
value of the initial speed is sufficiently large, or to the opposite direction otherwise. These
effects can be interpreted as reflection and transmission type phenomena.

Note that in [7], a phenomenon of retarded reflection for the Klein-Gordon equation
on the line with a potential constant but different on the positive and negative parts of
the real axis has been detected. For signals in sufficiently narrow frequency bands below
the threshold of the tunnel effect, it has been proved that the energy flow of the reflected
part is retarded with respect to the incoming signal. The estimate is time-independent
and thus carries no time-asymptotic information.

Further one could review other existing results on the Schrödinger equation with lo-
calized potential, e.g. [19] and [30]. An interesting issue could be to find optimal decay

conditions on the potential, ensuring the decay rate t−
1
2 .

Finally, the article [3] considers L∞-time decay estimates for the Schrödinger equation
with sufficiently localized potential on a star-shaped network. The results contain state-
ments on the Schrödinger equation on the real line as special cases.
For initial conditions with (sufficiently high) lower cut-off frequency, it is proved that the
solution tends to the free solution if this cut-off frequency tends to infinity. These results
have been obtained by an expansion of the solution in a Neumann-type series similar to
the series considered in our Chapter 5.

To finish the introduction, let us mention some ideas for future works:

• It could be interesting to extend the abstract results of this thesis to the multidimen-
sional case. For example, one could extend properly the notion of singular point in
higher dimension and establish estimates depending explicitly on the position of the
stationary point. This type of result might be applied to solution formulas of certain
evolution equations on Rd, where d > 1, to derive time-asymptotic information on
the solutions.

• As explained previously, our methods give information on the inclination of the
cones in space-time but not on their position. An interesting issue would be to find
a method in order to localize the origin of a space-time cone, leading to a result
comparable with Ehrenfest theorem in physics.

• In Chapter 5 of this thesis, we study only the two first terms of the Dyson-Phillips
series representing the solution of the Schrödinger equation with potential. A natural
possibility would be to study all the terms of the series in order to derive time-
asymptotic information on the solution of the Schrödinger equation with potential.

• Another generalization of the results of Chapter 5 would be to consider potentials
which are not in frequency bands. This setting would be more interpretable in terms
of physics.
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• Finally one could expect some applications to non-homogeneous and non-linear
equations.
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Chapter 1

Explicit error estimates for the
stationary phase method in one
variable

Abstract

In this chapter, we consider the version of the stationary phase method of
Arthur Erdélyi [16, Section 2.9] for oscillatory integrals in one integration
variable with respect to a large parameter. This version allows the amplitude
to have integrable singular points and the phase to have stationary points of
real order, and it gives explicit error estimates. The first aim of this chapter
is to provide a complete proof of Erdélyi’s result, since it was only sketched
in the source. The second aim is to give a better estimate for the remainder
term in the case of regular amplitudes, because the decay rate of the remainder
given in the original paper in this case is not sufficiently fast as compared with
those of the expansion.

Contents
1.1 Erdélyi’s expansion formula: complete proofs and slight im-

provements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 The core of the method: oscillation control by complex analysis 39
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Chapter 1. Explicit error estimates for the stationary phase method in one variable

1.1 Erdélyi’s expansion formula: complete proofs and

slight improvements

Before formulating the results of this section, let us introduce the assumptions related
to the phase and to the amplitude.

Let p1, p2 be two finite real numbers such that p1 < p2.

Assumption (P1ρ1,ρ2,N). Let ρ1, ρ2 > 1 and N ∈ N\{0}.
A function ψ : [p1, p2] −→ R satisfies Assumption (P1ρ1,ρ2,N) if and only if ψ ∈ C1

(
[p1, p2],R

)
and there exists a function ψ̃ : [p1, p2] −→ R such that

∀ p ∈ [p1, p2] ψ′(p) = (p− p1)ρ1−1(p2 − p)ρ2−1ψ̃(p) ,

where ψ̃ ∈ CN
(
[p1, p2],R

)
is assumed positive.

The points pj (j = 1, 2) are called stationary points of ψ of order ρj − 1, and ψ̃ the
non-degenerate factor of ψ.

Figure 1.1: Function satisfying Assumption (P1ρ1,ρ2,N)

Assumption (A1µ1,µ2,N). Let µ1, µ2 ∈ (0, 1] and N ∈ N\{0}.
A function U : (p1, p2) −→ C satisfies Assumption (A1µ1,µ2,N) if and only if there exists a
function ũ : [p1, p2] −→ C such that

∀ p ∈ (p1, p2) U(p) = (p− p1)µ1−1(p2 − p)µ2−1ũ(p) ,

where ũ ∈ CN
(
[p1, p2],C

)
, and ũ(pj) 6= 0 if µj 6= 1 (j = 1, 2).

The points pj are called singular points of U , and ũ the regular factor of U .

1.1.1 Remark. The hypothesis ũ(pj) 6= 0 if µj 6= 1 prevents the function ũ from affecting
the behaviour of the singular point pj.
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1.1. Erdélyi’s expansion formula: complete proofs and slight improvements

Figure 1.2: Function satisfying Assumption (A1µ1,µ2,N)

Non-vanishing singularities: Erdélyi’s theorem

The aim of this subsection is to state Erdélyi’s result [16, Section 2.9] and to provide
a complete proof.

Let us define some objects that will be used throughout this chapter.

1.1.2 Definition. Let ψ : [p1, p2] −→ R and U : (p1, p2) −→ C be two functions which
satisfy the Assumptions (P1ρ1,ρ2,N) and (A1µ1,µ2,N) respectively.

i) Let η ∈
(
0, p2−p1

2

)
. For j = 1, 2, let ϕj : Ij −→ R be the functions defined by

ϕ1(p) :=
(
ψ(p)− ψ(p1)

) 1
ρ1 , ϕ2(p) :=

(
ψ(p2)− ψ(p)

) 1
ρ2 ,

with I1 := [p1, p2 − η], I2 := [p1 + η, p2] and s1 := ϕ1(p2 − η), s2 := ϕ2(p1 + η).

ii) For j = 1, 2, let kj : (0, sj] −→ C be the functions defined by

kj(s) := U
(
ϕ−1
j (s)

)
s1−µj

(
ϕ−1
j

)′
(s) ,

which can be extended to [0, sj] (see Proposition 1.2.2).

iii) Let ν : [p1, p2] −→ R be a smooth function such that
ν = 1 on [p1, p1 + η] ,
ν = 0 on [p2 − η, p2] ,
0 6 ν 6 1 ,

where η is defined above.
For j = 1, 2, let νj : [0, sj] −→ R be the functions defined by

ν1(s) := ν ◦ ϕ−1
1 (s) , ν2(s) := (1− ν) ◦ ϕ−1

2 (s) .

29



Chapter 1. Explicit error estimates for the stationary phase method in one variable

Figure 1.3: Graph of the function ν

iv) For s > 0, let Λ(j)(s) be the complex curve defined by

Λ(j)(s) :=
{
s+ t e

(−1)j+1i π
2ρj

∣∣∣ t > 0
}
.

1.1.3 Theorem. Let N ∈ N\{0}, ρ1, ρ2 > 1 and µ1, µ2 ∈ (0, 1). Suppose that the
functions ψ : [p1, p2] −→ R and U : (p1, p2) −→ C satisfy Assumption (P1ρ1,ρ2,N) and
Assumption (A1µ1,µ2,N), respectively.
Then we have

∫ p2

p1

U(p) eiωψ(p) dp =
∑
j=1,2

(
A

(j)
N (ω) +R

(j)
N (ω)

)
,∣∣∣R(j)

N (ω)
∣∣∣ 6 1

(N − 1)!

1

ρj
Γ

(
N

ρj

)∫ sj

0

sµj−1

∣∣∣∣ dNdsN [νjkj](s)
∣∣∣∣ ds ω− N

ρj ,

for all ω > 0, where for j = 1, 2,

• A
(j)
N (ω) := eiωψ(pj)

N−1∑
n=0

Θ
(j)
n+1(ρj, µj)

dn

dsn
[
kj
]
(0)ω

−
n+µj
ρj ,

• R
(j)
N (ω) := (−1)N+1+j eiωψ(pj)

∫ sj

0

φ
(j)
N (s, ω, ρj, µj)

dN

dsN
[
νjkj

]
(s) ds ,

and for n = 0, ..., N − 1,

• Θ
(j)
n+1(ρj, µj) :=

(−1)j+1

n! ρj
Γ
(n+ µj

ρj

)
e

(−1)j+1iπ
2

n+µj
ρj ,

• φ
(j)
n+1(s, ω, ρj, µj) :=

(−1)n+1

n!

∫
Λ(j)(s)

(z − s)n zµj−1 e(−1)j+1iωzρj dz .

Proof. For fixed ω > 0, ρj > 1 and µj ∈ (0, 1), we shall note φ
(j)
n (s, ω) instead of

φ
(j)
n (s, ω, ρj, µj) in favour of readability. Now let us divide the proof in five steps.

First step: Splitting of the integral. Using the cut-off function ν, we can write the integral
as follows, ∫ p2

p1

U(p) eiωψ(p) dp = Ĩ(1)(ω) + Ĩ(2)(ω) ,
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where

Ĩ(1)(ω) :=

∫ p2−η

p1

ν(p)U(p) eiωψ(p) dp , Ĩ(2)(ω) :=

∫ p2

p1+η

(
1− ν(p)

)
U(p) eiωψ(p) dp .

Second step: Substitution. Proposition 1.2.1 affirms that ϕj : Ij −→ [0, sj] is a CN+1-
diffeomorphism with q1 = p2 − η here. Using the substitution s = ϕ1(p), we obtain

Ĩ(1)(ω) =

∫ p2−η

p1

ν(p)U(p) eiωψ(p) dp

= eiωψ(p1)

∫ s1

0

ν
(
ϕ−1

1 (s)
)
U
(
ϕ−1

1 (s)
)
eiωs

ρ1 (ϕ−1
1 )′(s) ds

= eiωψ(p1)

∫ s1

0

ν
(
ϕ−1

1 (s)
)
U
(
ϕ−1

1 (s)
)
s1−µ1(ϕ−1

1 )′(s) sµ1−1eiωs
ρ1 ds

= eiωψ(p1)

∫ s1

0

ν1(s) k1(s) sµ1−1eiωs
ρ1 ds ,

where k1 and ν1 are introduced in Definition 1.1.2. In a similar way, we obtain

Ĩ(2)(ω) = −eiωψ(p2)

∫ s2

0

ν2(s) k2(s) sµ2−1e−iωs
ρ2 ds .

Note that the minus sign comes from the fact that ϕ2 is a decreasing function.

Third step: Integrations by parts. Corollary 1.2.6 provides successive primitives of the
function s 7−→ sµj−1e(−1)j+1iωsρj . Moreover Proposition 1.2.2 ensures that kj ∈ CN

(
[0, sj],C

)
.

Thus by N integrations by parts, we obtain

e−iωψ(p1) Ĩ(1)(ω) =

∫ s1

0

ν1(s) k1(s) sµ1−1eiωs
ρ1 ds

=
[
φ

(1)
1 (s, ω)

(
ν1k1

)
(s)
]s1

0
−
∫ s1

0

φ
(1)
1 (s, ω)

d

ds

[
ν1k1

]
(s) ds

= . . .

=
N−1∑
n=0

(−1)n
[
φ

(1)
n+1(s, ω)

dn

dsn
[
ν1k1

]
(s)

]s1
0

(1.1)

+ (−1)N
∫ s1

0

φ
(1)
N (s, ω)

dN

dsN
[
ν1k1

]
(s) ds .

Let us simplify the sum given in (1.1) by using the properties of the function ν1: by

hypothesis, ν(p1) = 1, ν(p2 − η) = 0 and
dn

dpn
[ν](p1) =

dn

dpn
[ν](p2 − η) = 0, for n > 1. So

the definition of ν1 implies

ν1(0) = ν(p1) = 1 , ν1(s1) = ν(p2 − η) = 0 ;

and by the product rule applied to ν1k1, it follows

dn

dsn
[
ν1k1

]
(0) =

dn

dsn
[k1](0) ,

dn

dsn
[
ν1k1

]
(s1) = 0 .
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This leads to

Ĩ(1)(ω) =
N−1∑
n=0

(−1)n+1 φ
(1)
n+1(0, ω)

dn

dsn
[
k1

]
(0) eiωψ(p1)

+ (−1)N eiωψ(p1)

∫ s1

0

φ
(1)
N (s, ω)

dN

dsN
[
ν1k1

]
(s) ds .

By similar computations, we obtain

Ĩ(2)(ω) =
N−1∑
n=0

(−1)n φ
(2)
n+1(0, ω)

dn

dsn
[
k2

]
(0) eiωψ(p2)

+ (−1)N+1 eiωψ(p2)

∫ s2

0

φ
(2)
N (s, ω)

dN

dsN
[
ν2k2

]
(s) ds .

Fourth step: Calculation of the main terms. Let us compute the coefficients φ
(j)
n+1(0, ω),

for j = 1, 2. From Corollary 1.2.6, we recall that we have

φ
(j)
n+1(s, ω) =

(−1)n+1

n!

∫
Λ(j)(s)

(z − s)n zµj−1 e(−1)j+1iωzρj dz ,

for all s ∈ [0, sj] and n = 0, ..., N − 1. Choosing j = 1, putting s = 0 and parametrizing

the curve Λ(1)(0) with z = t e
i π
2ρ1 lead to

φ
(1)
n+1(0, ω) =

(−1)n+1

n!
e
iπ
2
n+µ1
ρ1

∫ +∞

0

tn+µ1−1 e−ωt
ρ1 dt .

Setting y = ω tρ1 in the previous integral gives

φ
(1)
n+1(0, ω) =

(−1)n+1

n!
e
iπ
2
n+µ1
ρ1 (ρ1 ω)−1

∫ +∞

0

( y
ω

)n+µ1
ρ1
−1

e−y dy

=
(−1)n+1

n!
e
iπ
2
n+µ1
ρ1

1

ρ1

Γ

(
n+ µ1

ρ1

)
ω
−n+µ1

ρ1 ,

where Γ is the Gamma function defined by

Γ : z ∈
{
z ∈ C

∣∣<(z) > 0
}
7−→

∫ +∞

0

tz−1e−t dt ∈ C .

A similar work provides

φ
(2)
n+1(0, ω) =

(−1)n+1

n!
e
−iπ

2
n+µ2
ρ2

1

ρ2

Γ

(
n+ µ2

ρ2

)
ω
−n+µ2

ρ2 .

Then we obtain

eiωψ(pj)

N−1∑
n=0

(−1)n+j φ
(j)
n+1(0, ω)

dn

dsn
[
kj
]
(0) = eiωψ(pj)

N−1∑
n=0

Θ
(j)
n+1(ρj, µj)

dn

dsn
[
kj
]
(0)ω

−
n+µj
ρj ,
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where Θ
(j)
n+1(ρj, µj) :=

(−1)j+1

n! ρj
Γ

(
n+ µj
ρj

)
e

(−1)j+1 π
2

n+µj
ρj .

Fifth step: Remainder estimates. The last step consists in estimating the remainders
R

(j)
N (ω). For j = 1, 2, we have for all s ∈ (0, sj] and for all t > 0,

s 6
∣∣∣s+ te

(−1)j+1i π
2ρj

∣∣∣ =⇒ sµj−1 >
∣∣∣s+ te

(−1)j+1i π
2ρj

∣∣∣µj−1

, (1.2)

since µj ∈ (0, 1). Now we parametrize the path of integration of the integral defining

φ
(j)
N (s, ω) by

z = s+ t e
(−1)j+1i π

2ρj ,

for t > 0, and we employ the previous inequality (1.2) to obtain∣∣∣φ(j)
N (s, ω)

∣∣∣ 6 1

(N − 1)!

∫ +∞

0

tN−1
∣∣∣ s+ te

(−1)j+1i π
2ρj

∣∣∣µj−1
∣∣∣∣ e(−1)j+1iω

(
s+te

(−1)j+1i π2ρj

)ρj ∣∣∣∣ dt
6

1

(N − 1)!
sµj−1

∫ +∞

0

tN−1e−ωt
ρj
dt

=
1

(N − 1)!
sµj−1 1

ρj
Γ

(
N

ρj

)
ω
− N
ρj , (1.3)

where the last equality has been obtained by using the substitution y = ω tρj . Employing
the definition of R

(j)
N (ω) and inequality (1.3) leads to∣∣∣R(j)

N (ω)
∣∣∣ 6 ∫ sj

0

∣∣∣φ(j)
N (s, ω)

∣∣∣ ∣∣∣∣ dNdsN [νjkj](s)
∣∣∣∣ ds

6
1

(N − 1)!

1

ρj
Γ

(
N

ρj

)∫ sj

0

sµj−1

∣∣∣∣ dNdsN [νjkj](s)
∣∣∣∣ ds ω− N

ρj .

We note that the last integral is well-defined because
dN

dsN
[
νjkj

]
: [0, sj] −→ R is conti-

nuous and s 7−→ sµj−1 is locally integrable on [0, sj].

Finally, we remark that the highest term of the expansion A
(j)
N (ω) behaves like ω

−
N−1+µj

ρj

when ω tends to infinity. Moreover R
(j)
N (ω) is estimated by ω

− N
ρj . This implies that the

decay rate of the remainder with respect to ω is faster than the one of the highest term
of the expansion. This ends the proof.

Amplitudes without singularities: refinement of the error esti-
mate

The preceding theorem remains true if we suppose µj = 1, that is to say if the am-
plitude U is regular at the point pj. But in this case, we observe that the decay rates
of the highest term of the expansion related to pj and of the remainder related to pj are

the same, namely ω
− N
ρj . Hence the aim of this subsection is to refine the estimate of the

remainder in this specific case.
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For this purpose, we establish the two following lemmas. In the first one, we provide
two estimates of the function s 7−→ φ

(j)
N (s, ω, ρj, 1): the first estimate is uniform with

respect to s but the decay with respect to ω is not sufficiently fast; on the other hand,
the second one provides a better decay with respect to ω but is singular with respect to
s. The first estimate is actually established in the proof of Theorem 1.1.3 and we carry
out integrations by parts to establish the second one.

1.1.4 Lemma. Let j ∈ {1, 2}, ρj > 1 and N ∈ N\{0}. Then for all s, ω > 0, we have
∣∣∣φ(j)
N (s, ω, ρj, 1)

∣∣∣ 6 aN,ρj ω
− N
ρj ,∣∣∣φ(j)

N (s, ω, ρj, 1)
∣∣∣ 6 bN,ρj ω

−
(

1+N−1
ρj

)
s1−ρj + cN,ρj ω

−(1+N
ρ ) s−ρj ,

where the constants aN,ρj , bN,ρj , cN,ρj > 0 are given in the proof.

1.1.5 Remark. Note that we can extend φ
(j)
N (., ω, ρj, 1) : [0, sj] −→ R to [0,+∞),

according to Remark 1.2.7.

Proof of Lemma 1.1.4. Let us fix s > 0, ω > 0 and let us choose j = 1. We recall
the expression of φ

(1)
N (s, ω, ρ1, 1) with the parametrization of the path Λ(1)(s) given in

Definition 1.1.2:

φ
(1)
N (s, ω, ρ1, 1) =

(−1)N

(N − 1)!

∫ +∞

0

tN−1 e
i
π(N−1)

2ρ1 e
iω

(
s+te

i π
2ρ1

)ρ1
dt e

i π
2ρ1 .

On the one hand, estimate (1.3) is still valid for µ1 = 1, namely,∣∣∣φ(1)
N (s, ω, ρ1, 1)

∣∣∣ 6 1

(N − 1)!

1

ρ1

Γ

(
N

ρ1

)
ω
− N
ρ1 =: aN,ρ1 ω

− N
ρ1 ,

furnishing the first estimate of the lemma.
On the other hand, we establish the second inequality by using integrations by parts. To
do so, we remark that for all s > 0 the first derivative of the function

t ∈ (0,+∞) 7−→ i ω
(
s+ t e

i π
2ρ1

)ρ1
does not vanish on its domain; therefore we can write

e
iω

(
s+te

i π
2ρ1

)ρ1
= (iωρ1)−1 e

−i π
2ρ1

(
s+ te

i π
2ρ1

)1−ρ1 d

dt

[
e
iω

(
s+te

i π
2ρ1

)ρ1]
.

Moreover Lemma 1.2.3 implies

∀ s > 0

∣∣∣∣∣eiω
(
s+te

i π
2ρ1

)ρ1 ∣∣∣∣∣ 6 e−ωt
ρ1 −→ 0 , t −→ +∞ . (1.4)

Now we distinguish the two following cases:
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• Case N = 1. Thanks to the two previous observations, we can integrate by parts,
providing

φ
(1)
1 (s, ω, ρ1, 1) = −(iωρ1)−1

∫ +∞

0

(
s+ te

i π
2ρ1

)1−ρ1 d

dt

[
e
iω

(
s+te

i π
2ρ1

)ρ1]
dt

= (iωρ1)−1s1−ρ1eiωs
ρ1

+
1− ρ1

iωρ1

e
i π
2ρ1

∫ +∞

0

(
s+ te

i π
2ρ1

)−ρ1
e
iω

(
s+te

i π
2ρ1

)ρ1
dt ,

where the boundary term at infinity is equal to zero according to (1.4). It follows∣∣∣φ(1)
1 (s, ω, ρ1, 1)

∣∣∣ 6 (ωρ1)−1 s1−ρ1

+
ρ1 − 1

ωρ1

∫ +∞

0

∣∣∣s+ te
i π
2ρ1

∣∣∣−ρ1 ∣∣∣∣∣eiω
(
s+te

i π
2ρ1

)ρ1 ∣∣∣∣∣ ds
6 (ωρ1)−1 s1−ρ1 +

ρ1 − 1

ωρ1

s−ρ1
∫ +∞

0

e−ωt
ρ1 dt (1.5)

=
1

ρ1

ω−1 s1−ρ1 +
ρ1 − 1

ρ2
1

Γ

(
1

ρ1

)
ω
−
(

1+ 1
ρ1

)
s−ρ1 (1.6)

=: b1,ρ1 ω
−1 s1−ρ1 + c1,ρ1 ω

−
(

1+ 1
ρ1

)
s−ρ1 .

Lemma 1.2.3 permits to obtain (1.5) by giving an estimate of the complex exponen-
tial and we use the substitution y = ω tρ1 to get (1.6).

• Case N > 2. We proceed as above by using an integration by parts:

φ
(1)
N (s, ω, ρ1, 1) =

(−1)N

(N − 1)!
e
i
π(N−1)

2ρ1 (iωρ1)−1

×
∫ +∞

0

tN−1
(
s+ te

i π
2ρ1

)1−ρ1 d

dt

[
e
iω

(
s+te

i π
2ρ1

)ρ1]
dt

=
(−1)N+1

(N − 1)!
e
i
π(N−1)

2ρ1 (iωρ1)−1

×
∫ +∞

0

d

dt

[
tN−1

(
s+ te

i π
2ρ1

)1−ρ1
]
e
iω

(
s+te

i π
2ρ1

)ρ1
dt (1.7)

=
(−1)N+1

(N − 1)!
e
i
π(N−1)

2ρ1 (iωρ1)−1

×
(

(N − 1)

∫ +∞

0

tN−2
(
s+ te

i π
2ρ1

)1−ρ1
e
iω

(
s+te

i π
2ρ1

)ρ1
dt

+ (1− ρ1) e
i π
2ρ1

∫ +∞

0

tN−1
(
s+ te

i π
2ρ1

)−ρ1
e
iω

(
s+te

i π
2ρ1

)ρ1
dt

)
.

The boundary terms in (1.7) are equal to zero; indeed we remark that the term at
0 vanishes and we use (1.4) once again to show that the term at infinity is equal to
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0. Then by similar arguments to those of the preceding case, we obtain

∣∣∣φ(1)
N (s, ω, ρ1, 1)

∣∣∣ 6 ω−1

ρ1(N − 2)!

∫ +∞

0

tN−2

∣∣∣∣∣(s+ te
i π
2ρ1

)1−ρ1
e
iω

(
s+te

i π
2ρ1

)ρ1 ∣∣∣∣∣ dt
+

(ρ1 − 1)ω−1

ρ1(N − 1)!

∫ +∞

0

tN−1

∣∣∣∣∣(s+ te
i π
2ρ1

)−ρ1
e
iω

(
s+te

i π
2ρ1

)ρ1 ∣∣∣∣∣ dt
6

1

ρ1(N − 2)!
ω−1 s1−ρ1

∫ +∞

0

tN−2 e−ωt
ρ1 dt

+
(ρ1 − 1)

ρ1(N − 1)!
ω−1 s−ρ1

∫ +∞

0

tN−1 e−ωt
ρ1 dt

=
1

ρ 2
1 (N − 2)!

Γ

(
N − 1

ρ1

)
ω
−
(

1+N−1
ρ1

)
s1−ρ1

+
(ρ1 − 1)

ρ 2
1 (N − 1)!

Γ

(
N

ρ1

)
ω
−
(

1+ N
ρ1

)
s−ρ1

=: bN,ρ1 ω
−
(

1+N−1
ρ1

)
s1−ρ1 + cN,ρ1 ω

−
(

1+ N
ρ1

)
s−ρ1 ,

concluding this point.

A very similar work for j = 2 provides the conclusion; it is sufficient to replace ρ1 by ρ2 in
the expressions of the constants aN,ρ1 , bN,ρ1 and cN,ρ1 to obtain aN,ρ2 , bN,ρ2 and cN,ρ2 .

Given a function satisfying a system of inequalities similar to the one given in Lemma
1.1.4, a new estimate for this function is established by exploiting the balance between
blow-up and decay. Note that a technical argument requires ρ > 2.

1.1.6 Lemma. Let N ∈ N\{0}, ρ > 2 and f : (0,+∞) × (0,+∞) −→ R be a function
which satisfies the following inequalities:

∀ s, ω > 0


∣∣f(s, ω)

∣∣ 6 aω−
N
ρ ,∣∣f(s, ω)

∣∣ 6 b ω−(1+N−1
ρ ) s1−ρ + c ω−(1+N

ρ ) s−ρ ,

where a, b, c > 0 are constants.

Fix γ ∈ (0, 1) and define δ :=
γ +N

ρ
∈
(
N

ρ
,
1 +N

ρ

)
. Then we have

∀ s, ω > 0
∣∣f(s, ω)

∣∣ 6 Lγ,ρ s
−γ ω−δ ,

where Lγ,ρ := aK γ
ρ > 0, with Kρ the unique positive solution of

aKρ − bK − c = 0 .

Proof. Let g1, g2 : (0,+∞) × (0,+∞) −→ R be the functions defined by

g1(s, ω) := aω−
N
ρ , g2(s, ω) := b ω−(1+N−1

ρ ) s1−ρ + c ω−(1+N
ρ ) s−ρ .
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Now we fix ω > 0 and we define the function hω : (0,+∞) −→ R by

hω(s) := sρ
(
g1(s, ω)− g2(s, ω)

)
= aω−

N
ρ sρ − b ω−(1+N−1

ρ ) s− c ω−(1+N
ρ ) .

Then the point sω := Kρ ω
− 1
ρ , where Kρ is the unique positive solution of the equation

aKρ−bK−c = 0, is the unique positive solution of the equation hω(s) = 0. So g1(., ω) and
g2(., ω) intersect each other at the point sω and we have g1(., ω) 6 g2(., ω) for s ∈ (0, sω]
and g1(., ω) > g2(., ω) otherwise.

Figure 1.4: The functions g1(., ω), g2(., ω) and gγ,δ(., ω)

Hence we obtain more precise estimates: ∀ s ∈ (0, sω]
∣∣f(s, ω)

∣∣ 6 aω−
N
ρ = g1(s, ω) ,

∀ s ∈ [sω,+∞)
∣∣f(s, ω)

∣∣ 6 b ω−(1+N−1
ρ ) s1−ρ + c ω−(1+N

ρ ) s−ρ = g2(s, ω) .

Now we seek a function g : (0,+∞) × (0,+∞) −→ R which is locally integrable with
respect to the variable s and which satisfies the following inequalities for any ω > 0:{

∀ s ∈ (0, sω]
∣∣f(s, ω)

∣∣ 6 g1(s, ω) 6 g(s, ω) ,

∀ s ∈ [sω,+∞)
∣∣f(s, ω)

∣∣ 6 g2(s, ω) 6 g(s, ω) ,
(1.8)

Here we propose gγ,δ(s, ω) := Lγ,ρ s
−γω−δ, where Lγ,ρ, δ, γ > 0 must be clarified. To this

end, we require the following condition:

∀ω > 0 gγ,δ(sω, ω) = g1(sω, ω) = g2(sω, ω) ,

leading to

gγ,δ

(
Kρ ω

− 1
ρ , ω
)

= Lγ,ρK
−γ
ρ ω

γ
ρ
−δ = aω−

N
ρ .

Since this equality holds for all ω > 0, we have
Lγ,ρ = aK γ

ρ

γ

ρ
− δ = −N

ρ

=⇒

{
Lγ,ρ = aK γ

ρ

δ = ρ−1(γ +N)
.
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Here we choose γ ∈ (0, 1) so that gγ,δ(., ω) : (0,+∞) −→ R is locally integrable with

respect to s; it follows δ = ρ−1(γ + N) ∈
(
N

ρ
,
1 +N

ρ

)
. To conclude, we have to check

the system of inequalities (1.8):

• Case s 6 sω. We have

gγ,δ(s, ω) = aK γ
ρ ω

−δ s−γ > aK γ
ρ ω

−δ
(
Kρ ω

− 1
ρ

)−γ
= aω

γ
ρ
−δ = aω−

N
ρ = g1(s, ω) ,

since
γ

ρ
− δ = −N

ρ
.

• Case s > sω. Here, we want to show that g2(s, ω) 6 gγ,δ(s, ω), which is equivalent
to

sρ
(
gγ,δ(s, ω)− g2(s, ω)

)
= aK γ

ρ ω
−δ sρ−γ − b ω−(1+N−1

ρ ) s− c ω−(1+N
ρ ) > 0 . (1.9)

We define the function kω : (0,+∞) −→ R by kω(s) := sρ
(
gγ,δ(s, ω)− g2(s, ω)

)
, and

we differentiate it,

(kω)′(s) = aK γ
ρ (ρ− γ)ω−δ sρ−γ−1 − b ω−(1+N−1

ρ ) .

Since s > 0 and ρ > 2, (kω)′ is an increasing function, vanishing at the point

s′ω =

(
b

aK γ
ρ (ρ− γ)

) 1
ρ−γ−1

ω−
1
ρ .

Now we want to show the inequality: s′ω 6 sω. Since ρ > 2, we have ρ− γ − 1 > 0
and so

0 6 bKρ (ρ− γ − 1) + (ρ− γ) c

⇐⇒ bKρ

ρ− γ
6 bKρ + c = aK ρ

ρ (1.10)

⇐⇒ b

aK γ
ρ (ρ− γ)

6 K ρ−γ−1
ρ ,

where the equality in (1.10) comes from the fact that Kρ satisfies aK ρ
ρ +bKρ+c = 0.

It follows that

s′ω =

(
b

aK γ
ρ (ρ− γ)

) 1
ρ−1−γ

ω−
1
ρ 6 Kρ ω

− 1
ρ = sω .

Hence for all s > sω > s′ω, kω is an increasing function and

kω(s) > kω(sω) = s ρω
(
gγ,δ(sω, ω)− g2(sω, ω)

)
= 0 .

Hence inequality (1.9) is satisfied and gδ,γ(s, ω) > g2(s, ω).
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Supposing that the amplitude is regular at pj, we derive from the two preceding results
a new estimate with faster decay rate of the remainder term related to pj.

1.1.7 Theorem. Let N ∈ N\{0} and assume µj0 = 1 and ρj0 > 2 for a certain j0 ∈ {1, 2}.
Suppose that the functions ψ : [p1, p2] −→ R and U : (p1, p2) −→ C satisfy Assumption
(P1ρ1,ρ2,N) and Assumption (A1µ1,µ2,N), respectively. Then the statement of Theorem
1.1.3 is still true and, for γ ∈ (0, 1) and

δ :=
γ +N

ρj0
∈
(
N

ρj0
,
N + 1

ρj0

)
,

we have ∣∣∣R(j0)
N (ω)

∣∣∣ 6 Lγ,ρj0 ,N

∫ sj0

0

s−γ
∣∣∣∣ dNdsN [νj0kj0 ] (s)

∣∣∣∣ ds ω−δ ,
for all ω > 0, where Lγ,ρj0 ,N > 0 is the constant given by Lemma 1.1.4 and Lemma 1.1.6.

Proof. We only have to prove the error estimate since the first four steps of the proof of
Theorem 1.1.3 remain valid with µj0 = 1.

Since Lemma 1.1.4 ensures that φ
(j0)
N (., ω, ρj0 , 1) satisfies the assumptions of Lemma 1.1.6,

we obtain

∀ s ∈ (0, sj0 ] ∀ω > 0
∣∣∣φ(j0)
N (s, ω, ρj0 , 1)

∣∣∣ 6 Lγ,ρj0 ,N s
−γ ω−δ ,

where γ, δ > 0 are defined in the statement of the theorem and Lγ,ρj0 ,N > 0 is given in
Lemma 1.1.6. Combining the expression of the remainder term from Theorem 1.1.3 with
the preceding estimate leads to the conclusion, namely,∣∣∣R(j0)

N (ω)
∣∣∣ 6 ∫ sj0

0

∣∣∣φ(j0)
N (s, ω, ρj0 , 1)

∣∣∣ ∣∣∣∣ dNdsN [νj0kj0 ](s)

∣∣∣∣ ds
6 Lγ,ρj0 ,N

∫ sj0

0

s−γ
∣∣∣∣ dNdsN [νj0kj0 ](s)

∣∣∣∣ ds ω−δ .
And we observe that the decay rate of the remainder term R

(j0)
N (ω) with respect to ω is

faster than the one of the highest term of the expansion A
(j0)
N (ω).

1.2 The core of the method: oscillation control by

complex analysis

The present section contains the technical but crucial arguments and calculations to
fill the considerable gaps left in the original sketch of the proof of Erdélyi. The results will
be presented in the order they appear in the proof of Erdélyi’s stationary phase method.

Throughout this section, the parameter ω > 0 will be fixed and the integer j will
belong to {1, 2}. We shall prove the propositions in the case j = 1 only; the proofs in the
case j = 2 follow the same lines as in the case j = 1 and require only appropriate changes
of calculations.
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Chapter 1. Explicit error estimates for the stationary phase method in one variable

At the beginning of the proof of Erdélyi’s theorem, a change of variables is carried
out in order to simplify the phase. The aim of the following proposition is to prove
that this change of variables is admissible. To this end, we prove that the associated
transformation is a diffeomorphism by exploiting substantially the factorization of the
zeros of the derivative of the phase.

1.2.1 Proposition. Fix q1, q2 ∈ (p1, p2) and let ψ : [p1, p2] −→ R be a function satisfying
Assumption (P1ρ1,ρ2,N). The real-valued functions ϕ1 and ϕ2 defined by

j = 1, 2 ϕj(p) =
(
(−1)j+1

(
ψ(p)− ψ(pj)

)) 1
ρj .

are CN+1-diffeomorphism from [p1, q1] to
[
0, ϕ1(q1)

]
and from [q2, p2] to

[
0, ϕ2(q2)

]
, res-

pectively.

Proof. First of all, we check that ϕ1 ∈ CN+1
(
[p1, q1],R

)
. We recall that

ψ′(p) = (p− p1)ρ1−1ψ̃2(p) ,

where we put ψ̃2(p) := (p2 − p)ρ2−1ψ̃(p), which belongs to CN
(
[p1, q1],R

)
. Applying

Taylor’s theorem with the integral form of the remainder to ψ′, we obtain the following
representation of ϕ1:

∀ p ∈ [p1, q1] ϕ1(p) = (p− p1)

(∫ 1

0

yρ1−1 ψ̃2

(
y(p− p1) + p1

)
dy

) 1
ρ1

=: (p− p1) J1(p)
1
ρ1 .

We fix k ∈ {1, . . . , N} and we compute formally the kth derivative of the above expression
by using the product rule:

dk

dpk
[
ϕ1

]
(p) = (p− p1)

dk

dpk

[
J

1
ρ1

1

]
(p) + k

dk−1

dpk−1

[
J

1
ρ1

1

]
(p) . (1.11)

The positivity and the regularity of the function ψ̃2 allow to differentiate k times under
the integral sign the function J1. Hence the k first derivatives of the composite function

J
1
ρ1

1 exist and are continuous; in particular, the expression (1.11) is well-defined for all

p ∈ [p1, q1] and dk

dpk

[
ϕ1

]
is continuous. Concerning the (N+1)th derivative, we must refine

the analysis because ψ̃ is not supposed to be CN+1
(
[p1, p2],R

)
. By applying formally the

product rule to ϕ1 once again for k = N + 1, we obtain

dN+1

dpN+1

[
ϕ1

]
(p) = (p− p1)

dN+1

dpN+1

[
J

1
ρ1

1

]
(p)︸ ︷︷ ︸

(i)

+ (N + 1)
dN

dpN

[
J

1
ρ1

1

]
(p)︸ ︷︷ ︸

(ii)

.

Note that the term (ii) is well-defined by the previous work. So it remains to study the

term (i). Firstly, let us define the function h1 : s 7−→ s
1
ρ1 . Then we obtain by applying

Faà di Bruno’s Formula to J
1
ρ1

1 = h1 ◦ J1,

dN+1

dpN+1

[
J

1
ρ1

1

]
(p) =

∑
CN

(
dm1+...+mN+1

dpm1+...+mN+1

[
h1

]
◦ J1

)
(p)︸ ︷︷ ︸

(iii)

N+1∏
l=1

(
dl

dpl
[
J1

]
(p)

)ml
︸ ︷︷ ︸

(iv)
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1.2. The core of the method: oscillation control by complex analysis

where the sum is over all the (N + 1)-tuples (m1, ...,mN+1) satisfying the condition

1m1 + 2m2 + 3m3 + . . .+ (N + 1)mN+1 = N + 1 .

We note that the term (iii) is well-defined by the positivity of J1; moreover by the previous
study, the term (iv) is well-defined and continuous for any l 6= N+1. So we have to study(
dN+1

dpN+1

[
J1

]
(p)

)mN+1

, where mN+1 6 1 by the above constraint. Since the case mN+1 = 0

is clear, we suppose that mN+1 = 1. We have

d

dp

[
dN

dpN
[
J1

]]
(p) =

d

dp

[∫ 1

0

yN+ρ1−1 d
N

dpN
[
ψ̃2

](
(p− p1)y + p1

)
dy

]
=

d

dp

[
1

(p− p1)ρ1+N

∫ p

p1

(s− p1)ρ1+N−1 d
N

dpN
[
ψ̃2

]
(s) ds

]
=
−(ρ1 +N)

(p− p1)ρ1+N+1

∫ p

p1

(s− p1)ρ1+N−1 d
N

dpN
[
ψ̃2

]
(s) ds

+
1

(p− p1)ρ1+N
(p− p1)N+ρ1−1 dN

dpN
[
ψ̃2

]
(p)

=
−(ρ1 +N)

(p− p1)

∫ 1

0

yρ1+N−1 d
N

dpN
[
ψ̃2

](
y(p− p1) + p1

)
dy

+
1

(p− p1)

dN

dpN
[
ψ̃2

]
(p) .

Multiplying this equality by (p− p1), we observe that the function

p ∈ [p1, q1] 7−→ (p− p1)
dN+1

dpN+1

[
J

1
ρ1
1

]
(p)

is well-defined and continuous. Then
dN+1

dpN+1

[
ϕ1

]
is continuous on [p1, q1], proving that

ϕ1 ∈ CN+1
(
[p1, q1],R

)
.

Furthermore, one remarks that
ϕ′1(p) =

1

ρ1

ψ′(p)
(
ψ(p)− ψ(p1)

) 1
ρ1
−1
> 0 ∀ p ∈ (p1, q1] ,

ϕ′1(p1) =
1

ρ ρ11

ψ̃2(p1)
1
ρ1 > 0 ,

,

so by the inverse function theorem, ϕ1 : [p1, q1] −→
[
0, ϕ1(q1)

]
is a CN+1-diffeomorphism.

As a result of this change of variables in the proof of the result of Erdélyi, the integrand
is factorized into a holomorphic function and a function on a real interval. The aim of
the following result is to prove that this second function is regular.

1.2.2 Proposition. Fix j ∈ {1, 2} and let U : (p1, p2) −→ C be a function satisfying
Assumption (A1µ1,µ2,N). Consider the function kj :

(
0, ϕj(qj)

]
−→ C defined by

kj(s) = U
(
ϕ−1
j (s)

)
s1−µj

(
ϕ−1
j

)′
(s) ,
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Chapter 1. Explicit error estimates for the stationary phase method in one variable

where the function ϕj and the point qj are defined in Proposition 1.2.1.
Then kj can be extended to

[
0, ϕj(qj)

]
and the extension belongs to CN

([
0, ϕj(qj)

]
,C
)
.

Proof. We define ũ2(p) := (p2 − p)µ2−1ũ(p) for all p ∈ [p1, p2). Then we have by the
definition of k1,

k1(s) =
(
ϕ−1

1 (s)− ϕ−1
1 (0)

)µ1−1
ũ2

(
ϕ−1

1 (s)
)
s1−µ1

(
ϕ−1

1

)′
(s)

=

(
ϕ−1

1 (s)− ϕ−1
1 (0)

s

)µ1−1

ũ2

(
ϕ−1

1 (s)
)(
ϕ−1

1

)′
(s)

=

(∫ 1

0

(
ϕ−1

1

)′
(sy) dy

)µ1−1

ũ2

(
ϕ−1

1 (s)
)(
ϕ−1

1

)′
(s) , (1.12)

for all s ∈
(
0, ϕ1(q1)

]
, and k1(0) := ũ2(p1)

(
ϕ−1

1

)′
(0)µ1 by taking the limit in (1.12). The

conclusion comes from the regularity of ũ and
(
ϕ−1

1

)′
.

The next step in the proof of Erdélyi consists in creating the expansion of the integral
by the classical procedure of integrations by parts. Thanks to the above factorization of
the integrand, we differentiate the regular function and we calculate successive primitives
under integral forms of the holomorphic factor. The task is to exploit the holomorphy
property and Cauchy’s theorem to shift the integration path of the primitives in a region
where we control the oscillations of the complex exponential, in preparation for precise
estimates of the remainder

In the following lemma, we establish an estimate of the complex exponential on a
half-line which will be the integration path of the primitives. This result is essential in
the proof of Theorem 1.2.4.

1.2.3 Lemma. Fix j ∈ {1, 2}, let ρj > 1 and s > 0. Then we have

∀ t > 0

∣∣∣∣∣∣ e
(−1)j+1iω

(
s+te

(−1)j+1i π2ρj

)ρj ∣∣∣∣∣∣ 6 e−ω t
ρj
.

Proof. Let us fix s, t > 0. By a simple calculation, we have

iρ1ω

∫ s

0

(
ξ + te

i π
2ρ1

)ρ1−1

dξ = iω
(
s+ te

i π
2ρ1

)ρ1
+ ωtρ1 . (1.13)

Moreover one can see that

∀ ξ ∈ [0, s] 0 6 Arg
(
ξ + te

i π
2ρ1

)
6

π

2ρ1

;

and since ρ1 > 1, it follows

0 6 Arg

((
ξ + te

i π
2ρ1

)ρ1−1
)

6
π(ρ1 − 1)

2ρ1

6
π

2
.

Hence the imaginary part of the complex number
(
ξ + te

i π
2ρ1

)ρ1−1
is positive and so the

real part of the right-hand side in (1.13) is negative. Therefore we have

<
(
iωzρ1 + ωtρ1

)
6 0 =⇒

∣∣ eiωzρ1 ∣∣ eωtρ1 =
∣∣ eiωzρ1+ωtρ1

∣∣ = e<(iωzρ1+ωtρ1 ) 6 1 ,
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which yields the result in the case j = 1. To treat the case j = 2, we use the following
equality

−iρ2 ω

∫ s

0

(
ξ + te

−i π
2ρ2

)ρ2−1

dξ = −iωzρ2 + ωtρ2 ,

and we carry out a similar work. This ends the proof.

Now we compute the limit of a sequence of primitives of a certain function related to

s ∈ (0, sj] 7−→ sµj−1e(−1)j+1iωsρj ∈ C ,

which is the holomorphic factor appearing after Erdélyi’s substitution. The sequence is
constructed in such a way that each primitive is given by an integral on a finite path,
and the sequence of these paths tends to the half-line considered in Lemma 1.2.3, called
Λ(j)(s). Exploiting the completeness of the space of holomorphic functions H(Ω), where
Ω ⊂ C is an non-empty open subset of C, and the continuity of the derivative in this space,
we show that the resulting limit is also a primitive and its integration path is Λ(j)(s).
This result will permit to derive the first primitive of the above holomorphic factor, given
in Corollary 1.2.6.

1.2.4 Theorem. Fix j ∈ {1, 2} and let sj > 0. Define the parallelogram Dj ⊂ C and the
domain U ⊂ C as follows:

• Dj :=

{
v∗ + tv e

(−1)j+1i π
2ρj ∈ C

∣∣∣∣ v∗ ∈ (0, sj + 1) , |tv| < 1

}
• U := C \

{
z ∈ C

∣∣∣<(z) 6 0 , =(z) = 0
}

Fix µj ∈ (0, 1], ρj > 1 and n ∈ N. Let F
(j)
n,ω(., .) : U × C −→ C be the function defined by

F (j)
n,ω(v, w) :=

(−1)n

n!
(v − w)n vµj−1e(−1)j+1iωvρj .

Then for every w ∈ Dj, F
(j)
n,ω(., w) has a primitive H

(j)
n,ω(., w) on Dj given by

H(j)
n,ω(v, w) := −

∫
Λ(j)(v)

F (j)
n,ω(z, w) dz =

(−1)n+1

n!

∫
Λ(j)(v)

(z − w)n zµj−1 e(−1)j+1iωzρj dz ,

where
Λ(j)(v) :=

{
v + t e

(−1)j+1i π
2ρj

∣∣∣ t > 0
}
. (1.14)

Proof. Let us fix w ∈ D1 and n ∈ N. Firstly, we show that the integral defining H
(1)
n,ω(v, w)

is well-defined for every v ∈ D1. Since v ∈ D1, we can write v = v∗ + tve
i π
2ρ1 where

0 < v∗ < s1 + 1 and −1 < tv < 1, and we observe that

−H(1)
n,ω(v, w) =

∫
Λ(1)(v)

F (1)
n,ω(z, w) dz =

∫
Λ(1)(v,v∗)

. . . +

∫
Λ(1)(v∗)

. . . ,

where Λ(1)(v, v∗) is the segment which starts from the point v and goes to v∗, and Λ(1)(v∗)
is given by (1.14).
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Figure 1.5: The parallelogram D1

Figure 1.6: The paths Λ(1)(v), Λ(1)(v∗) and Λ(1)(v, v∗) for different positions of v

Since F
(1)
n,ω(., w) is continuous on the segment Λ(1)(v, v∗), then the integral on Λ(1)(v, v∗) is

well-defined. Concerning the second integral, we give a parametrization of the integration
path Λ(1)(v∗),

∀ t ∈ [0,+∞) λ
(1)
v∗ (t) := v∗ + t e

i π
2ρ1 ∈ Λ(1)(v∗) .
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We obtain∣∣∣F (1)
n,ω

(
λ

(1)
v∗ (t), w

)∣∣∣ 6 1

n!

∣∣∣v∗ + te
i π
2ρ1 − w

∣∣∣n ∣∣∣v∗ + te
i π
2ρ1

∣∣∣µ1−1

∣∣∣∣∣eiω
(
v∗+te

i π
2ρ1

)ρ1 ∣∣∣∣∣
6

1

n!

n∑
k=0

(
n

k

)
|v∗ − w|n−k (v∗)µ1−1 tk e−ωt

ρ1 , (1.15)

where (1.15) comes from the binomial Theorem, Lemma 1.2.3 and the geometric obser-
vation: ∣∣∣v∗ + te

i π
2ρ1

∣∣∣ > v∗ .

Since the right-hand side of (1.15) defines an integrable function with respect to t on

[0,+∞), and since
∣∣(λ(1)

v∗ )′(t)
∣∣ = 1, the function F

(1)
n,ω(., w) is integrable on Λ(1)(v∗) and

hence, H
(1)
n,ω(v, w) is well-defined for any v ∈ D1.

Secondly, we prove that H
(1)
n,ω(., w) : D1 −→ C is a primitive of F

(1)
n,ω(., w) on D1. To this

end, we show that F
(1)
n,ω(., w) is a uniform limit on all compact subsets of D1 of a sequence

of functions
(
H

(1)
m,n,ω(., w)

)
m>1

which are primitives of F
(1)
n,ω(., w) on D1. Here we build

this sequence of functions as follows: first of all, fix an arbitrary point v0 > s1 + 1, for
instance v0 := s1 + 1, and define the following sequence of complex numbers:

∀m ∈ N \ {0} vm := v0 +me
i π
2ρ1 .

Let m ∈ N\{0}, let v = v∗ + tv e
i π
2ρ1 ∈ D1 and let Λm(v) be the path which is the

juxtaposition of the segment that starts from the point v and goes to the point v∗+me
i π
2ρ1

and of the horizontal segment that joins the points v∗+me
i π
2ρ1 and vm. We can now define

the sequence of functions
(
H

(1)
m,n,ω(., w) : D1 −→ C

)
m>1

as follows:

H(1)
m,n,ω(v, w) := −

∫
Λm(v)

F (1)
n,ω(z, w) dz .

It is clear that F
(1)
n,ω(., w) is holomorphic on the domain U , which is simply connected, and

for any v ∈ D1, Λm(v) is included in U . The Cauchy integral Theorem affirms that each

function H
(1)
m,n,ω(., w) : D1 −→ C is a primitive of the function F

(1)
n,ω(., w).

Now we prove that this sequence converges to H
(1)
n,ω(., w) uniformly on any compact subset

K of D1. Let K ⊂ D1 be a compact and for every v ∈ K, we have

H(1)
m,n,ω(v, w)−H(1)

n,ω(v, w) =

∫
Λc,1m (v)

F (1)
n,ω(z, w) dz +

∫
Λc,2m (v)

F (1)
n,ω(z, w) dz ,

where Λc,1
m (v) is the horizontal segment which starts from vm and goes to v∗+me

i π
2ρ1 , and

Λc,2
m (v) is the half-line with angle π

2ρ1
that starts from v∗ +me

i π
2ρ1 and goes to infinity.

Let λc,1m : [0, v0 − v∗] −→ C and λc,2m : [0,+∞) −→ C be parametrizations of Λc,1
m (v) and

Λc,2
m (v) respectively, and defined by

• ∀ t ∈
[
0, v0 − v∗

]
λc,1m (t) := −t+ v0 +me

i π
2ρ1 ∈ Λc,1

m (v) ,

• ∀ t ∈ [0,+∞) λc,2m (t) := v∗ + (t+m)e
i π
2ρ1 ∈ Λc,2

m (v) .
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Chapter 1. Explicit error estimates for the stationary phase method in one variable

Figure 1.7: The paths Λm(v), Λc,1
m (v) and Λc,2

m (v)

Then we have the following estimates:

∣∣∣F (1)
n,ω

(
λc,1m (t), w

)∣∣∣ 6 1

n!

n∑
k=0

(
n

k

)
|v0 − w|n−k

∣∣∣−t+me
i π
2ρ1

∣∣∣k mµ1−1 e−ωm
ρ1 (1.16)

6
1

n!

n∑
k=0

(
n

k

)
|v0 − w|n−k

(
C(K) +m

)k
mµ1−1 e−ωm

ρ1 (1.17)

• (1.16): use the binomial Theorem, Lemma 1.2.3 and the fact that
∣∣λc,1m (t)

∣∣ > m ;

• (1.17): use the compactness of K which provides 0 6 t 6 v0 − v∗ 6 C(K), for a
certain constant C(K) > 0.

Inequality (1.17) permits to estimate uniformly the integral on Λc,1
m (v),∣∣∣∣∫

Λc,1m (v)

F (1)
n,ω(z, w) dz

∣∣∣∣ 6 ∫ v0−v∗

0

1

n!

n∑
k=0

(
n

k

)
|v0 − w|n−k

(
C(K) +m

)k
mµ1−1 e−ωm

ρ1 dt

6
1

n!

n∑
k=0

(
n

k

)
|v0 − w|n−k

(
C(K) +m

)k
mµ1−1 e−ωm

ρ1C(K)

−→ 0 , m −→ +∞ ,

where we used the fact that 0 6 v0 − v∗ 6 C(K) one more time. Here, the convergence
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1.2. The core of the method: oscillation control by complex analysis

is uniform with respect to v. Furthermore,∣∣∣F (1)
n,ω

(
λc,2m (t), w

)∣∣∣ 6 1

n!

n∑
k=0

(
n

k

)
|v∗ − w|n−k |v∗|µ1−1 (t+m)k e−ω(t+m)ρ1 (1.18)

6
Cn,w(K)

n!

n∑
k=0

(
n

k

)
(t+m)k e−ω(t+m)ρ1 (1.19)

6
Cn,w(K)

n!

n∑
k=0

(
n

k

)
mk e−ωm

ρ1 (1 + t)k e−ωt
ρ1 (1.20)

6
Cn,w(K)Mk,ω

n!

n∑
k=0

(
n

k

)
(1 + t)k e−ωt

ρ1 (1.21)

• (1.18): use the binomial Theorem, Lemma 1.2.3 and
∣∣λc,2m (t)

∣∣ > v∗ ;

• (1.19): use the compactness of K and the fact that v ∈ K to bound uniformly
|v∗ − w| and |v∗| ;

• (1.20): use the inequalities (m+ t)k 6 mk(1 + t)k and e−ω(t+m)ρ1 6 e−ωm
ρ1e−ωt

ρ1 ;

• (1.21): use the boundedness of the sequences
(
mke−ωm

ρ1
)
m>1

for k = 0, . . . , n.

We remark that (1.20) tends to 0 as m tends to infinity for all t > 0 and (1.21) furnishes
an integrable function with respect to t and independent from m. So by the dominated
convergence Theorem,∣∣∣∣ ∫

Λc,2m (v)

F (1)
n,ω(z, w) dz

∣∣∣∣ 6 ∫ +∞

0

Cn,w(K)

n!

n∑
k=0

(
n

k

)
mk e−ωm

ρ1 (1 + t)k e−ωt
ρ1 dt (1.22)

−→ 0 , m −→ +∞ ,

and the convergence is uniform with respect to v since the right-hand side in (1.22) is
independent from v. Hence the hypotheses of a theorem of Weierstrass are satisfied and
therefore the function H

(1)
n,ω(., w) : D1 −→ C is holomorphic and its derivative is given by

∀ v ∈ D1
∂

∂v

[
H(1)
n,ω

]
(v, w) = lim

m→+∞

∂

∂v

[
H(1)
m,n,ω(v, w)

]
= F (1)

n,ω(v, w) ,

and the convergence is uniform on every compact subset.

Since we integrate by parts many times in Erdélyi’s proof, we need successive primitives
of the holomorphic part of the integrand. For this purpose, we establish this second
intermediate but essential result by employing the preceding theorem as well as complex
analysis in several variables.
The desired primitives will be deduced from the following result in Corollary 1.2.6.

1.2.5 Theorem. Fix j ∈ {1, 2} and let n ∈ N\{0}. Define the function h : C −→ C×C
by

h(u) := (u, u) ,
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and let H
(j)
n,ω(., .) : Dj × Dj −→ C be the function defined in Theorem 1.2.4. Then the

composite function H
(j)
n,ω(., .) ◦ h is holomorphic on Dj and its derivative is given by

∀u ∈ Dj
d

du

[
H(j)
n,ω ◦ h

]
(u) =

(
H

(j)
n−1,ω ◦ h

)
(u) .

Proof. The aim of the proof is to differentiate the composite function. For this purpose,
we must ensure that this function is holomorphic with respect to each variable.
Fix n ∈ N\{0}. We remark that each component of h is holomorphic on C, so is h on

C× C. Moreover for any fixed w ∈ D1, H
(1)
n,ω(., w) : D1 −→ C is a primitive of F

(1)
n,ω(., w)

on D1 by Theorem 1.2.4, so it is holomorphic. Now let us show that H
(1)
n,ω(v, .) : D1 −→ C

belongs to C1(D1) and satisfies the Cauchy-Riemann equations for fixed v ∈ D1. To do so,

we employ the holomorphy of F
(1)
n,ω(v, .) : C −→ C which provides the following relations:

∀w = x+ iy ∈ C
∂

∂w

[
F (1)
n,ω

]
(v, w) =

∂

∂x

[
F (1)
n,ω

]
(v, w) = −i ∂

∂y

[
F (1)
n,ω

]
(v, w) . (1.23)

By a simple calculation, we obtain

∂

∂w

[
F (1)
n,ω

]
(v, w) =

(−1)n−1

(n− 1)!
(v − w)n−1vµ1−1eiωv

ρ1 = F
(1)
n−1,ω(v, w) . (1.24)

Furthermore, one can bound F
(1)
n−1,ω(., w) on each path Λ(1)(v, v∗) and Λ(1)(v∗) by inte-

grable functions independent from w. To do so, one can parametrize each path Λ(1)(v, v∗)
and Λ(1)(v∗) and employ similar arguments to those of the proof of Theorem 1.2.4 as well
as the boundedness of D1. So we obtain the ability to differentiate under the integral sign
which yields the following equalities:

− ∂

∂x

[
H(1)
n,ω

]
(v, w) =

∂

∂x

[∫
Λ(1)(v,v∗)

F (1)
n,ω(z, w) dz

]
+

∂

∂x

[∫
Λ(1)(v∗)

F (1)
n,ω(z, w) dz

]
=

∫
Λ(1)(v,v∗)

∂

∂x

[
F (1)
n,ω

]
(z, w) dz +

∫
Λ(1)(v∗)

∂

∂x

[
F (1)
n,ω

]
(z, w) dz (1.25)

=

∫
Λ(1)(v,v∗)

∂

∂w

[
F (1)
n,ω

]
(z, w) dz +

∫
Λ(1)(v∗)

∂

∂w

[
F (1)
n,ω

]
(z, w) dz (1.26)

=

∫
Λ(1)(v,v∗)

F
(1)
n−1,ω(z, w) dz +

∫
Λ(1)(v∗)

F
(1)
n−1,ω(z, w) dz (1.27)

=

∫
Λ(1)(v)

F
(1)
n−1,ω(z, w) dz

= −H(1)
n−1,ω(v, w)

• (1.25): apply the theorem of differentiation under the integral sign ;

• (1.26): use equalities (1.23) coming from the holomorphy of the function F
(1)
n,ω(v, .) ;

• (1.27): use relation (1.24) .
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In a similar way, we obtain

−i ∂
∂y

[
H(1)
n,ω

]
(v, w) = H

(1)
n−1,ω(v, w) .

Then the Cauchy-Riemann equations are satisfied and
∂

∂x

[
H(1)
n,ω

]
(v, .) and

∂

∂y

[
H(1)
n,ω

]
(v, .)

are continuous on D1 by the continuity of F
(1)
n−1,ω(z, .) : C −→ C. So H

(1)
n,ω(v, .) : D1 −→ C

is holomorphic, with
∂

∂w

[
H(1)
n,ω

]
(v, w) = H

(1)
n−1,ω(v, w) .

Finally the composite function H
(1)
n,ω ◦ h is holomorphic on D1 × D1 and we have the

formula

d

du

[
H(1)
n,ω ◦ h

]
(u) =

(
∂

∂v

[
H(1)
n,ω

](
h(u)

) ∂

∂w

[
H(1)
n,ω

](
h(u)

))( 1
1

)
=

∂

∂v

[
H(1)
n,ω

]
(u, u) +

∂

∂w

[
H(1)
n,ω

]
(u, u) ;

And a short computation shows that
∂

∂v

[
H(1)
n,ω

]
(u, u) = F (1)

n,w(u, u) = 0, so for all u ∈ D1,

d

du

[
H(1)
n,ω ◦ h

]
(u) =

(
H

(1)
n−1,ω ◦ h

)
(u) =

(−1)n

(n− 1)!

∫
Λ(1)(u)

(z − u)n−1zµ1−1eiωz
ρ1dz .

Finally by restricting the domain of definition of the functions introduced in the two
preceding theorems to the interval (0, sj], we derive formulas for the successive primitives

of the function s ∈ (0, sj] 7−→ sµj−1 e(−1)j+1iωsρj , the holomorphic part of the integrand.

1.2.6 Corollary. Fix j ∈ {1, 2}, sj > 0, ρj > 1 and µj ∈ (0, 1]. For any ω > 0,

the sequence of functions
(
φ

(j)
n (., ω, ρj, µj) : (0, sj] −→ C

)
n>1

defined in Theorem 1.1.3
satisfies the recursive relation:

∀ s ∈ (0, sj]


∂

∂s

[
φ

(j)
1

]
(s, ω, ρj, µj) = sµj−1 e(−1)j+1iωsρj ,

∂

∂s

[
φ

(j)
n+1

]
(s, ω, ρj, µj) = φ(j)

n (s, ω, ρj, µj) ∀n > 1 .

Proof. It suffices to note that φ
(j)
n+1(., ω, ρj, µj) is the restriction to (0, sj] ⊂ Dj of the

function H
(j)
n,ω ◦ h. Hence Theorem 1.2.4 affirms that φ

(j)
1 (., ω, ρj, µj) : (0, sj] −→ C is

a primitive of s ∈ (0, sj] 7−→ sµj−1e(−1)j+1iωsρj , and use Theorem 1.2.5 to show that a

primitive of φ
(j)
n (., ω, ρj, µj) : (0, sj] −→ C is given by φ

(j)
n+1(., ω, ρj, µj) : (0, sj] −→ C, for

n > 1.

1.2.7 Remark. The function φ
(j)
n+1(., ω, ρj, µj) : (0, sj] −→ C can be extended to [0,+∞).

Indeed, we recall a parametrization of the curve Λ(j)(s):

λ(j)
s : t ∈ [0,+∞) 7−→ s+ t e

(−1)j+1i π
2ρj ∈ Λ(j)(s) .
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Then we have

∀ t > 0
∣∣∣F (j)

n,ω

(
λ(j)
s (t), s

)∣∣∣ 6 1

n!
tn+µj−1 e−ωt

ρj
, (1.28)

which was obtained by noting that

t 6
∣∣∣s+ te

(−1)j+1i π
2ρj

∣∣∣ =
∣∣λ(j)
s (t)

∣∣ =⇒ tµj−1 >
∣∣λ(j)
s (t)

∣∣µj−1
.

We notice that the right-hand side of (1.28) is an integrable function with respect to t on

[0,+∞) and independent from s > 0. So φ
(j)
n+1(s, ω, ρj, µj) is well-defined for all s > 0. In

particular, φ
(j)
n+1(0, ω, ρj, µj) is defined as follows,

φ
(j)
n+1(0, ω, ρj, µj) := lim

s→0+
φ

(j)
n+1(s, ω, ρj, µj)

=
(−1)n+1

n!

∫
Λ(j)(0)

zn+µj−1e(−1)j+1iωzρj dz .
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Chapter 2

Lossless error estimates, optimal
parameter domains and applications
to the free Schrödinger equation

Abstract

This new chapter begins with a modification of the stationary phase method
considered in Chapter 1: we replace the smooth cut-off function employed in
the original proof by a characteristic function, leading to lossless remainder
estimates. For particular oscillatory integrals, we derive optimal parameter
domains, depending explicitly on the distance between the stationary point
and the singular point, in which the expansion as well as the remainder are
uniformly bounded. These abstract refinements are then exploited to study the
time-asymptotic behaviour of the solution of the free Schrödinger equation on
the line, where the Fourier transform of the initial data is compactly supported
and has a singular point. We obtain asymptotic expansions with respect to
time in certain space-time cones as well as uniform and optimal estimates
in curved regions which are asymptotically larger than any space-time cone.
These results show the influence of a restriction to compact frequency bands
and of the singularity on the propagation and on the decay of the wave packets.

Contents
2.1 Lossless error estimates . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Approaching stationary points and amplitude singularities:
the first and the error term between blow-up and decay . . . 58

2.3 Application to the free Schrödinger equation: propagation
of wave packets and anomalous phenomena . . . . . . . . . . . 72
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Chapter 2. Lossless error estimates, optimal parameter domains and applications to the
free Schrödinger equation

2.1 Lossless error estimates

In order to motivate the results of this section, let us consider the following oscillatory
integral

I(ω, p2) =

∫ p2

p1

(p− p1)−
1
4 e−iω(p−p2)2 dp ,

with ω > 0 and p2 > p1; here p1 is a singular point of the amplitude of order µ1 = 3
4

and
p2 a stationary point of order ρ2 = 2. In particular, we have∣∣I(ω, p2)

∣∣ 6 4

3
(p2 − p1)

3
4 .

Now by applying the results of the preceding chapter, we obtain an asymptotic expansion
of the above oscillatory integral, namely,∫ p2

p1

(p− p1)−
1
4 e−iω(p−p2)2 dp =

√
π

2
e−i

π
4 (p2 − p1)−

1
4 ω−

1
2

+
Γ
(

3
4

)
2

3
4

ei
3π
8 e−iω(p2−p1)2 (p2 − p1)−

3
4 ω−

3
4 +R

(1)
1 (ω, p2) +R

(2)
1 (ω, p2) ,

and for δ ∈
(

3
4
, 1
)
, we have the following estimates of the remainders:

•
∣∣∣R(1)

1 (ω, p2)
∣∣∣ 6 ∫ 8

9
(p2−p1)2

0

s−
1
4

∣∣∣(ν1k1

)′
(s)
∣∣∣ ds ω−1;

•
∣∣∣R(2)

1 (ω, p2)
∣∣∣ 6 Lγ,2,1

∫ 2
3

(p2−p1)

0

s−γ
∣∣∣(ν2k2

)′
(s)
∣∣∣ ds ω−δ,

with γ = 2δ − 1.
For fixed ω > 0, we note that if p2 tends to p1 then the expansion of the integral blows

up due to the presence of the singular factors (p2− p1)−
1
4 and (p2− p1)−

3
4 . Especially this

implies that the expansion does not furnish a good approximation of I(ω, p2) for fixed
ω > 0 when p2 is too close to p1.
Moreover since the integral is bounded and the expansion blows up, the remainder tends
also to infinity when p2 tends to p1. Now let us note that the graphs of the smooth
cut-off functions νj compress when p2 tends to p1, implying the fact that the L∞-norms of
(νj)

′ tend to infinity. This observation leads to the idea that the smooth cut-off function
contributes artificially to the blow-up of the remainder.
Hence the aim of this section is to provide lossless error estimate for the stationary phase
method by replacing the smooth cut-off function by a characteristic function.

We start by modifying slightly the functions ϕj and kj introduced in Definition 1.1.2
of Chapter 1: we change only their domains of definition. We shall use the notations of
Chapter 1 again and these two new definitions will be used throughout the present chapter.

Let p1, p2 be two finite real numbers such that p1 < p2, and choose q ∈ (p1, p2).

2.1.1 Definition. Let ψ : [p1, p2] −→ R and U : (p1, p2) −→ C be two functions satisfying
Assumption (P1ρ1,ρ2,1) and Assumption (A1µ1,µ2,1) (given in Section 1.1), respectively.
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2.1. Lossless error estimates

Figure 2.1: Blow-up of the derivative of the cut-off function ν

i) For j = 1, 2, let ϕj : Ij −→ R be the functions defined by

ϕ1(p) :=
(
ψ(p)− ψ(p1)

) 1
ρ1 , ϕ2(p) :=

(
ψ(p2)− ψ(p)

) 1
ρ2 ,

with I1 := [p1, q], I2 := [q, p2] and s1 := ϕ1(q), s2 := ϕ2(q).

ii) For j = 1, 2, let kj : (0, sj] −→ C be the functions defined by

kj(s) := U
(
ϕ−1
j (s)

)
s1−µj

(
ϕ−1
j

)′
(s) ,

which can be extended to [0, sj] (see Proposition 1.2.2).

Now we state and prove a refinement of the version of the stationary phase method of
Erdélyi which consists in replacing the smooth cut-off function by a characteristic function.
The hypotheses on the regularity of the phase and of the amplitude are weakened as
compared with Theorem 1.1.3, because we establish an expansion to one term only, which
requires a single integration by parts.

2.1.2 Theorem. Let ρ1, ρ2 > 1 and µ1, µ2 ∈ (0, 1). Suppose that ψ : [p1, p2] −→ R and
U : (p1, p2) −→ C satisfy Assumption (P1ρ1,ρ2,1) and Assumption (A1µ1,µ2,1), respectively.
Then we have

∫ p2

p1

U(p) eiωψ(p) dp =
∑
j=1,2

(
A(j)(ω) +R

(j)
1 (ω, q) +R

(j)
2 (ω, q)

)
,∣∣∣R(j)

1 (ω, q)
∣∣∣ 6 1

ρj
Γ

(
1

ρj

)∫ sj

0

sµj−1
∣∣(kj)′(s)∣∣ ds ω− 1

ρj ,∣∣∣R(j)
2 (ω, q)

∣∣∣ 6 ρj − µj
ρj

Γ

(
1

ρj

) ∣∣∣U(q) (ϕj)
′(q)−1

∣∣∣ϕj(q)−ρj ω−(1+ 1
ρj

)
,
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for all ω > 0 and for a fixed q ∈ (p1, p2), where for j = 1, 2,

• A(j)(ω) := eiωψ(pj) kj(0) Θ(j)(ρj, µj)ω
−
µj
ρj ,

• R
(j)
1 (ω, q) := (−1)j eiωψ(pj)

∫ sj

0

φ(j)(s, ω, ρj, µj) (kj)
′(s) ds ,

• R
(j)
2 (ω, q) := (−1)j i

µj − ρj
ρj

eiωψ(pj) kj(sj)

∫
Λ(j)(sj)

zµj−ρj−1 e(−1)j+1iωzρj dz ω−1 ,

• Θ(j)(ρj, µj) :=
(−1)j+1

ρj
Γ

(
µj
ρj

)
e

(−1)j+1iπ
2

µj
ρj ,

• φ(j)(s, ω, ρj, µj) := −
∫

Λ(j)(s)

zµj−1 e(−1)j+1iωzρj dz .

2.1.3 Remark. Note that the quantities Θ(j)(ρj, µj) and φ(j)(s, ω, ρj, µj) correspond res-

pectively to Θ
(j)
1 (ρj, µj) and φ

(j)
1 (s, ω, ρj, µj), which are defined in Theorem 1.1.3. We

have removed the subscripts for simplicity.

Proof of Theorem 2.1.2. The present proof follows the steps of the proof of Theorem 1.1.3.
Hence the steps which are identical will be only sketched and we shall focus on the new
arguments coming from the cutting-point q.
As previously, we shall note φ(j)(s, ω) instead of φ(j)(s, ω, ρj, µj) in the proof.

First step: Splitting of the integral. We fix a point q ∈ (p1, p2) and we split the integral
at this point, ∫ p2

p1

U(p) eiωψ(p) dp = Ĩ(1)(ω, q) + Ĩ(2)(ω, q) ,

where

Ĩ(1)(ω, q) :=

∫ q

p1

U(p) eiωψ(p) dp , Ĩ(2)(ω, q) :=

∫ p2

q

U(p) eiωψ(p) dp .

Second step: Substitution. Since ϕ1 : [p1, q] −→ [0, s1] is a C2-diffeomorphism, we obtain
by setting s = ϕ1(p),

Ĩ(1)(ω, q) = eiωψ(p1)

∫ s1

0

k1(s) sµ1−1eiωs
ρ1 ds ,

where k1 is given in Definition 2.1.1. In a similar way, we obtain

Ĩ(2)(ω, q) = −eiωψ(p2)

∫ s2

0

k2(s) sµ2−1e−iωs
ρ2 ds ,

with k2 defined also in Definition 2.1.1.

Third step: Integration by parts. An integration by parts leads to

Ĩ(1)(ω, q) = φ(1)(s1, ω) k1(s1) eiωψ(p1) − φ(1)(0, ω) k1(0) eiωψ(p1)

− eiωψ(p1)

∫ s1

0

φ(1)(s, ω) (k1)′(s) ds ,

54



2.1. Lossless error estimates

and similarly,

Ĩ(2)(ω, q) = φ(2)(0, ω) k2(0) eiωψ(p2) − φ(2)(s2, ω) k2(s2) eiωψ(p2)

+ eiωψ(p2)

∫ s2

0

φ(2)(s, ω)(k2)′(s) ds . (2.1)

Fourth step: Cancellation. The aim of this step is to simplify the difference:

φ(1)(s1, ω) k1(s1) eiωψ(p1) − φ(2)(s2, ω) k2(s2) eiωψ(p2) . (2.2)

Since the two functions s 7−→ φ(j)(s, ω), for j = 1, 2, are given by oscillatory integrals, we
shall expand them with respect to ω and show that the first terms cancel out.

Since s1 > 0, we note that the derivative of the function t 7−→
(
s1 + te

i π
2ρ1

)ρ1
does not

vanish for all t > 0 and thus, one can write

e
iω

(
s1+te

i π
2ρ1

)ρ1
= e

−i π
2ρ1 (iωρ1)−1

(
s1 + te

i π
2ρ1

)1−ρ1 d

dt

[
e
iω

(
s1+te

i π
2ρ1

)ρ1]
.

Putting this equality in the definition of φ(1)(s1, ω) and carrying out an integration by
parts lead to

φ(1)(s1, ω) = −(iωρ1)−1

∫ +∞

0

(
s1 + te

i π
2ρ1

)µ1−ρ1 d
dt

[
e
iω

(
s1+te

i π
2ρ1

)ρ1]
dt

= (iωρ1)−1s µ1−ρ11 eiωs
ρ1
1

+
µ1 − ρ1

iωρ1

e
i π
2ρ1

∫ +∞

0

(
s1 + te

i π
2ρ1

)µ1−ρ1−1

e
iω

(
s1+te

i π
2ρ1

)ρ1
dt . (2.3)

We remark that the boundary term at infinity is 0; indeed, we observe that

s1 6
∣∣∣s1 + te

i π
2ρ1

∣∣∣ =⇒ s µ1−ρ11 >
∣∣∣s1 + te

i π
2ρ1

∣∣∣µ1−ρ1 ,
because µ1 6 ρ1, and by using Lemma 1.2.3, we obtain

∀ t > 0

∣∣∣∣∣(s1 + te
i π
2ρ1

)µ1−ρ1
e
iω

(
s1+te

i π
2ρ1

)ρ1 ∣∣∣∣∣ 6 s µ1−ρ11 e−ωt
ρ1 −→ 0 , t→ +∞ .

In a similar way, we have

φ(2)(s2, ω) = −(iωρ2)−1s µ2−ρ22 e−iωs
ρ2
2

− µ2 − ρ2

iωρ2

e
−i π

2ρ2

∫ +∞

0

(
s2 + te

−i π
2ρ2

)µ2−ρ2−1

e
−iω

(
s2+te

−i π
2ρ2

)ρ2
dt .

Furthermore, by the definitions of kj and sj := ϕj(q), we obtain

kj(sj) = U
(
ϕ−1
j (sj)

)
s

1−µj
j (ϕ−1

j )′(sj) = U(q)ϕj(q)
1−µj (ϕj)

′(q)−1 .
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Now, in the case j = 1, we multiply the last expression by the expansion of φ(1)(s1, ω)
given by (2.3),

φ(1) (s1, ω) k1(s1) eiωψ(p1) = (iωρ1)−1 eiω(s ρ11 +ψ(p1)) U(q)ϕ1(q)1−ρ1 (ϕ1)′(q)−1

− i µ1 − ρ1

ρ1

eiωψ(p1) e
i π
2ρ1 k1(s1)

∫ +∞

0

(
s1 + te

i π
2ρ1

)µ1−ρ1−1

e
iω

(
s1+te

i π
2ρ1

)ρ1
dt ω−1 .

(2.4)
The definition of ϕ1(q) gives ϕ1(q)ρ1 = ψ(q)− ψ(p1) and by the regularity of ϕ1, one has

ρ1 (ϕ1)′(q)ϕ1(q)ρ1−1 =
d

dp

[
(ϕ1)ρ1

]
(q) = ψ′(q) ,

simplifying the first term in (2.4); moreover the integral in (2.4) can be written as an
integral on the curve Λ(1)(s1) in the complex plane. These considerations lead to

φ(1)(s1, ω) k1(s1) eiωψ(p1) = −iω−1 eiωψ(q) U(q)

ψ′(q)

− i µ1 − ρ1

ρ1

eiωψ(p1) k1(s1)

∫
Λ(1)(s1)

zµ1−ρ1−1 eiωz
ρ1 dz ω−1 .

By similar calculations, we obtain

φ(2) (s2, ω) k2(s2) eiωψ(p2) = −iω−1 eiωψ(q) U(q)

ψ′(q)

− i µ2 − ρ2

ρ2

eiωψ(p2) k2(s2)

∫
Λ(2)(s2)

zµ2−ρ2−1 e−iωz
ρ2 dz ω−1 .

Hence we remark that the difference (2.2) is equal to

2∑
j=1

(−1)j i
µj − ρj
ρj

eiωψ(pj) kj(sj)

∫
Λ(j)(sj)

zµj−ρj−1 e(−1)j+1iωzρj dz ω−1 .

Consequently, we are able to write the initial integral as follows,∫ p2

p1

U(p)eiωψ(p)dp = −φ(1)(0, ω) k1(0) eiωψ(p1) − eiωψ(p1)

∫ s1

0

φ(1)(s, ω)(k1)′(s) ds

− i µ1 − ρ1

ρ1

eiωψ(p1) k1(s1)

∫
Λ(1)(s1)

zµ1−ρ1−1eiωz
ρ1 dz ω−1

+ φ(2)(0, ω) k2(0) eiωψ(p2) + eiωψ(p2)

∫ s2

0

φ(2)(s, ω)(k2)′(s) ds

+ i
µ2 − ρ2

ρ2

eiωψ(p2) k2(s2)

∫
Λ(2)(s2)

zµ2−ρ2−1e−iωz
ρ2 dz ω−1

=:
∑
j=1,2

(
A(j)(ω) +R

(j)
1 (ω, q) +R

(j)
2 (ω, q)

)
.

According to the fourth step of the proof of Theorem 1.1.3, we have

φ(j)(0, ω) = − 1

ρj
Γ

(
µj
ρj

)
e

(−1)j+1iπ
2

µj
ρj ω

−
µj
ρj =: (−1)j Θ(j)(ρj, µj)ω

−
µj
ρj .
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leading to the definition of A(j)(ω),

A(j)(ω) := (−1)j φ(j)(0, ω) kj(0) eiωψ(pj) = eiωψ(pj) kj(0) Θ(j)(ρj, µj)ω
−
µj
ρj .

Fifth step: Remainder estimates. Using the last step of the proof of Theorem 1.1.3, we
obtain∣∣∣∣eiωψ(pj)

∫ sj

0

φ(j)(s, ω, ρj, µj) (kj)
′(s) ds

∣∣∣∣ 6 1

ρj
Γ

(
1

ρj

)∫ sj

0

sµj−1
∣∣(k1)′(s)

∣∣ ds ω− 1
ρj .

Now let us estimate R
(j)
2 (ω, q). We have∣∣∣∣∣i µj − ρjωρj

eiωψ(pj) kj(sj) e
(−1)j+1i π

2ρj

×
∫ +∞

0

(
sj + te

(−1)j+1i π
2ρj

)µj−ρj−1

e
(−1)j+1iω

(
sj+te

(−1)j+1i π2ρj

)ρj
dt

∣∣∣∣∣
6
ρj − µj
ρj

∣∣kj(sj)∣∣ω−1 s
µj−ρj−1
j

∫ +∞

0

∣∣∣∣∣∣e
(−1)j+1iω

(
sj+te

(−1)j+1i π2ρj

)ρj ∣∣∣∣∣∣ dt (2.5)

6
ρj − µj
ρj

∣∣∣U(ϕ−1
j (sj)

)
(ϕ−1

j )′(sj)
∣∣∣ s −ρjj ω−1

∫ +∞

0

e−ωt
ρj
dt (2.6)

=
ρj − µj
ρj

Γ

(
1

ρj

) ∣∣U(q) (ϕj)
′(q)−1

∣∣ϕj(q)−ρj ω−(1+ 1
ρj

)
; (2.7)

• (2.5): use the fact that sj 6
∣∣∣sj + te

(−1)j+1i π
2ρj

∣∣∣ ;

• (2.6): use the definition of the function kj and Lemma 1.2.3 ;

• (2.7): use the equalities

∫ +∞

0

e−ωt
ρj
dt = Γ

(
1

ρj

)
ω
− 1
ρj and q = ϕ−1

j (sj).

We remark finally that the decay rates of A(j)(ω), R
(j)
1 (ω, q) and R

(j)
2 (ω, q) are ω

−
µj
ρj , ω

− 1
ρj

and ω
−
(

1+ 1
ρj

)
, respectively. Thus the decay rates of the remainder R

(j)
1 (ω, q) related to

pj and of the remainder R
(j)
2 (ω, q) related to q are faster than the one of the first term

A(j)(ω) related to pj. This ends the proof.

For fixed q ∈ (p1, p2), we observe that R
(j)
2 (ω, q) (for j = 1, 2) is always negligible as

compared with A(j)(ω) when ω tends to infinity, even if µj = 1. Nevertheless if µj0 = 1

for a certain j0 ∈ {1, 2} then the decay rates of R
(j0)
1 (ω, q) and A(j0)(ω) with respect to ω

are the same. So we shall use the ideas of the proof of Theorem 1.1.7 to obtain a better
decay rate for R

(j0)
1 (ω, q).

2.1.4 Theorem. Assume µj0 = 1 and ρj0 > 2 for a certain j0 ∈ {1, 2}. Suppose that
the functions ψ : [p1, p2] −→ R and U : (p1, p2) −→ C satisfy Assumption (P1ρ1,ρ2,1) and
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Assumption (A1µ1,µ2,1), respectively. Then the statement of Theorem 2.1.2 is still true
and, for γ ∈ (0, 1) and

δ :=
γ + 1

ρj0
∈
(

1

ρj0
,

2

ρj0

)
,

we have

∀ω > 0
∣∣∣R(j0)

1 (ω, q)
∣∣∣ 6 Lγ,ρj0

∫ sj0

0

s−γ
∣∣(kj0)′(s)∣∣ ds ω−δ ,

where Lγ,ρj0 := Lγ,ρj0 ,1 > 0, with Lγ,ρj0 ,1 is given in Theorem 1.1.7.

Proof. We obtain the above estimate by following the lines of the proof of Theorem
1.1.7.

2.2 Approaching stationary points and amplitude sin-

gularities: the first and the error term between

blow-up and decay

In this section, we consider a family of oscillatory integrals with respect to a large pa-
rameter ω. In preparation for applications to the solution formula of the free Schrödinger
equation, we suppose that the phase function is a polynomial of degree 2 and has its
stationary point p0 inside (p1, p2), which contains the support of the amplitude. We sup-
pose in addition that the amplitude has a singular point at p1, the left endpoint of the
integration interval.
The aim of this section is to furnish remainder estimates with explicit blow-up and to
exploit this in order to find curves in the parameter space on which blow-up and decay
balance out.

In the first result, we split the integral at the stationary point and then we expand
the two resulting integrals by using the results of the previous section.

2.2.1 Lemma. Let p1 < p2 be two finite real numbers. Let p0 ∈ (p1, p2) and c ∈ R be two
parameters, and define ψ : [p1, p2] −→ R by

ψ(p) := −(p− p0)2 + c .

Define the following integrals for all ω > 0,

I(1)(ω, p0) :=

∫ p0

p1

U(p) eiωψ(p) dp , I(2)(ω, p0) :=

∫ p2

p0

U(p) eiωψ(p) dp ,

where U satisfies Assumption (A1µ,1,1) on [p1, p2] with µ ∈ (0, 1), and U(p2) = 0. Let us
define H̃(ω, ψ, U) and K̃µ(ω, ψ, U) as follows,

H̃(ω, ψ, U) :=
√
π e−i

π
4 eiωc ũ(p0) , K̃µ(ω, ψ, U) :=

Γ(µ)

2µ
ei
πµ
2 eiωψ(p1) ũ(p1) .

Then
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• we have∣∣∣I(1)(ω, p0) − K̃µ(ω, ψ, U) (p0 − p1)−µ ω−µ− 1

2
H̃(ω, ψ, U) (p0 − p1)µ−1 ω−

1
2

∣∣∣
6

6∑
k=1

R
(1)
k (U) (p0 − p1)−α

(1)
k ω−β

(1)
k ,

where the constants R
(1)
k (U) > 0 and the exponents α

(1)
k ∈ R, β

(1)
k > 0 are given in

the proof ;

• we have

∣∣∣I(2)(ω, p0) − 1

2
H̃(ω, ψ, U) (p0 − p1)µ−1 ω−

1
2

∣∣∣ 6 2∑
k=1

R
(2)
k (U) (p0 − p1)−α

(2)
k ω−β

(2)
k ,

where the constants R
(2)
k (U) > 0 and the exponents α

(2)
k ∈ R, β

(2)
k > 0 are given in

the proof.

Proof. Study of I(1)(ω, p0). For all p ∈ [p1, p0], we have

ψ′(p) = 2(p0 − p) .

By setting ψ̃ := 2, we observe that ψ verifies Assumption (P11,2,N) on [p1, p0], for all
N > 1, and hence Theorem 2.1.2 is applicable. Here we choose

q := q(p0) = p1 +
p0 − p1

2
= p0 −

p0 − p1

2
,

for simplicity. Then we obtain

I(1)(ω, p0) =
∑
j=1,2

(
A(j)(ω, p0) +R

(j)
1 (ω, p0) +R

(j)
2 (ω, p0)

)
,

with

• A(1)(ω, p0) = eiωψ(p1) k1(0) Θ(1)(1, µ)ω−µ = Γ(µ) ei
πµ
2 eiωψ(p1) k1(0)ω−µ ,

• A(2)(ω, p0) = eiωψ(p0) k2(0) Θ(2)(2, 1)ω−
1
2 = −

√
π

2
e−i

π
4 eiωψ(p0) k2(0)ω−

1
2 .

To compute the values of k1(0) and k2(0), let us study the functions (ϕ−1
1 )′ and (ϕ−1

2 )′.
On the one hand, we obtain by the definition of ϕ1,

ϕ1(p) = ψ(p)− ψ(p1) =⇒ (ϕ1)′(p) = ψ′(p) = 2(p0 − p) , (2.8)

for all p ∈ [p1, q]. On the other hand, by the definition of ϕ2 and the expression of ψ, one
has

ϕ2(p) =
(
ψ(p0)− ψ(p)

) 1
2 = (p0 − p) ,
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for every p ∈ [q, p0]. So (ϕ−1
2 )′(s) = −1 and (ϕ−1

2 )′′(s) = 0 for all s ∈ [0, s2]. Then
it is possible to compute k1(0) by using the representation of k1 given in the proof of
Proposition 1.2.2,

k1(s) =

(∫ 1

0

(ϕ−1
1 )′(sy) dy

)µ−1

ũ
(
ϕ−1

1 (s)
)
(ϕ−1

1 )′(s) (2.9)

−→
s−→0+

(ϕ−1
1 )′(0)µ ũ

(
ϕ−1

1 (0)
)

= ψ′(p1)−µ ũ(p1) =
(
2(p0 − p1)

)−µ
ũ(p1) .

The value k2(0) can be computed in a direct way since p0 is a regular point of the ampli-
tude:

k2(s) = U
(
ϕ−1

2 (s)
)
(ϕ−1

2 )′(s) = −U
(
ϕ−1

2 (s)
)
−→
s−→0+

−U(p0) = −(p0 − p1)µ−1 ũ(p0) .

Therefore we obtain

• A(1)(ω, p0) =
Γ(µ)

2µ
ei
πµ
2 eiωψ(p1) ũ(p1) (p0 − p1)−µ ω−µ ,

• A(2)(ω, p0) =

√
π

2
e−i

π
4 eiωc ũ(p0) (p0 − p1)µ−1 ω−

1
2 .

Now let us control precisely the remainder terms. To do so, we have to study the
functions kj and ϕj. Firstly, the combination of the equalities 1

2
(p0−p1) = p0−q = q−p1

with (2.8) leads to

(p0 − p1) = 2(p0 − q) 6 (ϕ1)′(p) 6 2(p0 − p1) , (2.10)

for all p ∈ [p1, q]. It follows

∀ s ∈ [0, s1]
(
2(p0 − p1)

)−1
6 (ϕ−1

1 )′(s) 6 (p0 − p1)−1 .

Moreover by the equality (ϕ−1
1 )′′(s) = −(ϕ1)′′

(
ϕ−1

1 (s)
)

(ϕ−1
1 )′(s)3, we have

∀ s ∈ [0, s1] (ϕ−1
1 )′′(s) = 2 (ϕ−1

1 )′(s)3 6 2 (p0 − p1)−3 .

Then it is possible compute the value of s1 by using its definition,

s1 = ϕ1(q) = ψ(q)− ψ(p0) =
3

4
(p0 − p1)2 6 (p0 − p1)2 . (2.11)

Concerning s2, we have

s2 = ϕ2(q) = (p0 − q) =
1

2
(p0 − p1) 6 p0 − p1 . (2.12)

Now we study the functions kj. For this purpose, we shall use the expression of k1 given
in (2.9). Since ψ satisfies Assumption (P11,2,N) on [p1, p0] for all N > 1, it follows that ϕ1

is a CN+1-diffeomorphism by Proposition 1.2.1. Thus one has the ability to differentiate
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under the integral sign the function s 7−→
∫ 1

0

(ϕ−1
1 )′(sy)dy. Hence for all s ∈ [0, s1], we

have

(k1)′(s) =(µ− 1)

(∫ 1

0

y (ϕ−1
1 )′′(sy) dy

)(∫ 1

0

(ϕ−1
1 )′(sy) dy

)µ−2

ũ
(
ϕ−1

1 (s)
)

(ϕ−1
1 )′(s)

+

(∫ 1

0

(ϕ−1
1 )′(sy) dy

)µ−1

ũ′
(
ϕ−1

1 (s)
)

(ϕ−1
1 )′(s)2

+

(∫ 1

0

(ϕ−1
1 )′(sy) dy

)µ−1

ũ
(
ϕ−1

1 (s)
)

(ϕ−1
1 )′′(s) .

In consequence, we obtain the following estimate:∥∥(k1)′
∥∥
L∞(0,s1)

6
1− µ

2
2 (p0 − p1)−3

(
2(p0 − p1)

)2−µ ‖ũ‖L∞(p1,p2) (p0 − p1)−1

+
(
2(p0 − p1)

)1−µ ‖ũ′‖L∞(p1,p2) (p0 − p1)−2

+
(
2(p0 − p1)

)1−µ ‖ũ‖L∞(p1,p2) 2(p0 − p1)−3

6 21−µ ‖ũ‖W 1,∞(p1,p2)

(
2(2− µ)(p0 − p1)−(2+µ) + (p0 − p1)−(1+µ)

)
. (2.13)

To estimate (k2)′, we start by differentiating the expression of k2 given in Definition
2.1.1 by using the fact that U(p) = (p− p1)µ−1ũ(p). This leads to

(k2)′(s) =
(

(µ− 1)
(
ϕ−1

2 (s)− p1

)µ−2
ũ
(
ϕ−1

2 (s)
)

+
(
ϕ−1

2 (s)− p1

)µ−1
ũ′
(
ϕ−1

2 (s)
))

(ϕ−1
2 )′(s)2 ,

for all s ∈ [0, s2]. We employ then the fact that ϕ−1
2 (s) ∈ [q, p2] for any s ∈ [0, s2] and the

equality (ϕ−1
2 )′(s) = −1 to obtain∥∥(k2)′

∥∥
L∞(0,s2)

6
(

(1− µ) 22−µ(p0 − p1)µ−2 ‖ũ‖L∞(p1,p2) + 21−µ(p0 − p1)µ−1‖ũ′‖L∞(p1,p2)

)
6 21−µ ‖ũ‖W 1,∞(p1,p2)

(
2(1− µ)(p0 − p1)µ−2 + (p0 − p1)µ−1

)
. (2.14)

These considerations permit to estimate the four remainders.

• Estimate of R
(1)
1 (ω, p0). Theorem 2.1.2 furnishes an estimate of R(1)(ω, p0). We

combine it with the estimates of (k1)′ given in (2.13) and of s1 given in (2.11):∣∣∣R(1)
1 (ω, p0)

∣∣∣ 6 ∫ s1

0

sµ−1
∣∣(k1)′(s)

∣∣ ds ω−1

6
1

µ
s µ1
∥∥(k1)′

∥∥
L∞(0,s1)

ω−1

6
21−µ

µ
‖ũ‖W 1,∞(p1,p2)

(
2(2− µ)(p0 − p1)µ−2 + (p0 − p1)µ−1

)
ω−1

=: R
(1)
1 (U) (p0 − p1)−α

(1)
1 ω−β

(1)
1 +R

(1)
2 (U) (p0 − p1)−α

(1)
2 ω−β

(1)
2 , (2.15)

where

• R
(1)
1 (U) :=

22−µ

µ
(2− µ) ‖ũ‖W 1,∞(p1,p2) , R

(1)
2 (U) :=

21−µ

µ
‖ũ‖W 1,∞(p1,p2) ,

• α
(1)
1 := 2− µ , α

(1)
2 := 1− µ , β

(1)
1 = β

(1)
2 := 1 .
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• Estimate of R
(1)
2 (ω, p0). The estimate of R

(1)
2 (ω, p0) from Theorem 2.1.2 provides∣∣∣R(1)

2 (ω, p0)
∣∣∣ 6 (1− µ)

∣∣U(q) (ϕ1)′(q)−1
∣∣ ϕ1(q)−1 ω−2

6
1− µ
2µ−1

‖ũ‖L∞(p1,p2)(p0 − p1)µ−1 (p0 − p1)−1

(
3

4
(p0 − p1)2

)−1

ω−2

= (1− µ)
23−µ

3
‖ũ‖L∞(p1,p2) (p0 − p1)µ−4 ω−2

=: R
(1)
3 (U) (p0 − p1)−α

(1)
3 ω−β

(1)
3 , (2.16)

where the definition of U , inequality (2.10) and the value of s1 given in (2.11) were
used. Here we define:

• R
(1)
3 (U) := (1− µ)

23−µ

3
‖ũ‖L∞(p1,p2) ,

• α
(1)
3 := 4− µ , β

(1)
3 := 2 .

• Estimate of R
(2)
1 (ω, p0). Here µ2 = 1, so we have to employ the estimate ofR

(2)
1 (ω, p0)

provided by Theorem 2.1.4,∣∣∣R(2)
1 (ω, p0)

∣∣∣ 6 Lγ,2

∫ s2

0

s−γ
∣∣(k2)′(s)

∣∣ ds ω−δ
6

Lγ,2
1− γ

s 1−γ
2

∥∥(k2)′
∥∥
L∞(0,s2)

ω−δ

6
Lγ,2

1− γ
21−µ ‖ũ‖W 1,∞(p1,p2)

(
2(1− µ)(p0 − p1)µ−1−γ + (p0 − p1)µ−γ

)
ω−δ

=: R
(1)
4 (U) (p0 − p1)−α

(1)
4 ω−β

(1)
4 +R

(1)
5 (U) (p0 − p1)−α

(1)
5 ω−β

(1)
5 ,

(2.17)
where the last inequality was obtained by using (2.12) and (2.14). Here the pa-
rameter δ is arbitrarily chosen in

(
1
2
, 1
)
, and the parameter γ ∈ (0, 1) is given by

γ = 2δ − 1. Here we define:

• R
(1)
4 (U) :=

Lγ,2
1− γ

22−µ (1− µ) ‖ũ‖W 1,∞(p1,p2) , R
(1)
5 (U) :=

Lγ,2
1− γ

21−µ ‖ũ‖W 1,∞(p1,p2) ,

• α
(1)
4 := −µ+ 1 + γ , α

(1)
5 := γ − µ , β

(1)
4 = β

(1)
5 := δ .

• Estimate of R
(2)
2 (ω, p0). We employ Theorem 2.1.2 once again to control R

(2)
2 (ω, p0).

Using the definition of U , the relation (ϕ−1
2 )′ = −1 and the value of s2 given in

(2.12) leads to∣∣∣R(2)
2 (ω, p0)

∣∣∣ 6 1

2
Γ

(
1

2

) ∣∣U(q) (ϕ2)′(q)−1
∣∣ ϕ2(q)−2 ω−

3
2

6

√
π

2µ
‖ũ‖L∞(p1,p2) (p0 − p1)µ−1

(
2−1(p0 − p1)

)−2
ω−

3
2

=

√
π

2µ−2
‖ũ‖L∞(p1,p2)(p0 − p1)µ−3 ω−

3
2

=: R
(1)
6 (U) (p0 − p1)−α

(1)
6 ω−β

(1)
6 , (2.18)
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where

• R
(1)
6 (U) :=

√
π

2µ−2
‖ũ‖L∞(p1,p2) ,

• α
(1)
6 := 3− µ , β

(1)
6 :=

3

2
.

Study of I(2)(ω, p0). Firstly we remark that ψ′ is negative for all p ∈ [p0, p2]. To apply
Theorem 2.1.2, we make the change of variables p 7→ −p in order to have an increasing
phase. We obtain

I(2)(ω, p0) =

∫ p2

p0

U(p)eiωψ(p) dp =

∫ p̌0

p̌2

Ǔ(p)eiωψ̆(p) dp ,

where we put Ǔ(p) := U(−p), ψ̌(p) := ψ(−p), p̌0 := −p0 and p̌2 := −p2.
Thanks to this substitution, ψ̌ is now an increasing function that satisfies Assumption
(P11,2,N) on [p̌2, p̌0], for all N > 1, and by hypothesis Ǔ verifies (A11,1,1) on [p̌2, p̌0]. Fur-
thermore we remark that p̌2 is not a singular point of the amplitude and not a stationary
point. This observation indicates the non-necessity of a cutting-point q. Hence, in the
notations of Theorem 2.1.2, we employ only the expansion of the integral Ĩ(2)(ω, p0) with
p2 := p̌0 and q := p̌2. So we obtain from (2.1),

I(2)(ω, p0) = φ(2)(0, ω, 2, 1) k2(0) eiωψ̌(p̌0) − φ(2)(s2, ω, 2, 1) k2(s2) eiωψ̌(p̌0)

+ eiωψ̌(p̌0)

∫ s2

0

φ(2)(s, ω, 2, 1) (k2)′(s) ds .

Let us compute explicitly the first terms by studying the function ϕ2. By the definition
of ϕ2 and the expression of ψ, we have

ϕ2(p) =
(
ψ̌(p̌0)− ψ̌(p)

) 1
2 = p̌0 − p ,

for all p ∈ [p̌2, p̌0]. It follows that (ϕ2)′(p) = (ϕ−1
2 )′(s) = −1, and by the definition of k2,

we obtain
k2(s) = Ǔ

(
ϕ−1

2 (s)
)
(ϕ−1

2 )′(s) = −Ǔ
(
ϕ−1

2 (s)
)
.

Since ϕ2(p̌0) = 0 and ϕ2(p̌2) = s2, we have

k2(0) = −Ǔ(p̌0) = −U(p0) , k2(s2) = −U(p2) = 0 ,

by the hypothesis on U . Combining this with the expression of Θ(2)(2, 1) coming from
Theorem 2.1.2, we obtain

I(2)(ω, p0) =

√
π

2
e−i

π
4 eiωψ(p0) ũ(p0) (p0 − p1)µ−1 ω−

1
2

+ eiωψ(p0)

∫ s2

0

φ(2)(s, ω, 2, 1) (k2)′(s) ds .

As in the study of I(1)(ω, p0), we estimate the remainder term. Firstly, we bound the
number s2 as follows:

s2 = p̌0 − p̌2 = p2 − p0 6 p2 − p1 .
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Now we establish an estimate of the first derivative of k2. By the definition of this function
and by the fact that (ϕ−1

2 )′ = −1, we have

(k2)′(s) = (1− µ)
(
p̌1 − ϕ−1

2 (s)
)µ−2 ˇ̃u

(
ϕ−1

2 (s)
)

+
(
p̌1 − ϕ−1

2 (s)
)µ−1

(
ˇ̃u
)′ (

ϕ−1
2 (s)

)
,

where p̌1 := −p1. Since ϕ−1
2 (s) ∈ [p̌2, p̌0], it follows∥∥(k2)′

∥∥
L∞(0,s2)

6
(
(1− µ)(p0 − p1)µ−2 + (p0 − p1)µ−1

)
‖ũ‖W 1,∞(p1,p2) .

We combine this inequality with the estimate of the remainder given in Theorem 2.1.2 to
obtain∣∣∣R(2)

1 (ω, p0)
∣∣∣ 6 Lγ,2

1− γ
(p2 − p1)1−γ ‖ũ‖W 1,∞(p1,p2)

×
(
(1− µ)(p0 − p1)µ−2 + (p0 − p1)µ−1

)
ω−δ

=: R
(2)
1 (U) (p0 − p1)−α

(2)
1 ω−β

(2)
1 +R

(2)
2 (U) (p0 − p1)−α

(2)
2 ω−β

(2)
2 , (2.19)

where γ and δ are defined above. Here we define:

• R
(2)
1 (U) :=

Lγ,2
1− γ

(1− µ) (p2 − p1)1−γ ‖ũ‖W 1,∞(p1,p2) ,

R
(2)
2 (U) :=

Lγ,2
1− γ

(p2 − p1)1−γ ‖ũ‖W 1,∞(p1,p2) ,

• α
(2)
1 := 2− µ , α

(2)
2 := 1− µ , β

(2)
1 = β

(2)
2 := δ .

Employing the preceding lemma, we derive asymptotic expansions of the initial oscil-
latory integral with explicit error estimates. We distinguish three cases depending on the
strength of the singularity for readability.

2.2.2 Theorem. Under the assumptions of Lemma 2.2.1, let us define H̃(ω, ψ, U) and
K̃(ω, ψ, U) as follows,

H̃(ω, ψ, U) :=
√
π e−i

π
4 eiωc ũ(p0) , K̃µ(ω, ψ, U) :=

Γ(µ)

2µ
ei
πµ
2 eiωψ(p1) ũ(p1) .

Then we have

• Case µ >
1

2
:∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp− H̃(ω, ψ, U) (p0 − p1)µ−1 ω−
1
2

∣∣∣∣
6

9∑
k=1

R̃
(1)
k (U) (p0 − p1)−α̃

(1)
k ω−β̃

(1)
k ,

where the constants R̃
(1)
k (U) > 0 and the exponents α̃

(1)
k ∈ R, β̃

(1)
k > 1

2
are given in

the proof ;
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• Case µ =
1

2
:

∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp−
(
H̃(ω, ψ, U) + K̃µ(ω, ψ, U)

)
(p0 − p1)−

1
2 ω−

1
2

∣∣∣∣
6

8∑
k=1

R̃
(2)
k (U) (p0 − p1)−α̃

(2)
k ω−β̃

(2)
k ,

where the constants R̃
(2)
k (U) > 0 and the exponents α̃

(2)
k ∈ R, β̃

(2)
k > 1

2
are given in

the proof ;

• Case µ <
1

2
:

∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp− K̃µ(ω, ψ, U) (p0 − p1)−µ ω−µ
∣∣∣∣

6
9∑

k=1

R̃
(3)
k (U) (p0 − p1)−α̃

(3)
k ω−β̃

(3)
k ,

where the constants R̃
(3)
k (U) > 0 and the exponents α̃

(3)
k ∈ R, β̃

(3)
k > µ are given in

the proof.

Proof. This result is a consequence of Lemma 2.2.1. We start by splitting the integral as
follows,

∫ p2

p1

U(p) eiωψ(p) dp =

∫ p0

p1

. . . +

∫ p2

p0

. . . =: I(1)(ω, p0) + I(2)(ω, p0) .

Then we apply Lemma 2.2.1 by distinguishing the three following cases:
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• Case µ >
1

2
:

∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp− H̃(ω, ψ, U) (p0 − p1)µ−1 ω−
1
2

∣∣∣∣
=

∣∣∣∣ ∫ p0

p1

U(p) eiωψ(p) dp− 1

2
H̃(ω, ψ, U) (p0 − p1)µ−1 ω−

1
2

+

∫ p2

p0

U(p) eiωψ(p) dp− 1

2
H̃(ω, ψ, U) (p0 − p1)µ−1 ω−

1
2

∣∣∣∣
6
∣∣∣K̃µ(ω, ψ, U) (p0 − p1)−µ ω−µ

∣∣∣+
6∑

k=1

R
(1)
k (U) (p0 − p1)−α

(1)
k ω−β

(1)
k

+
2∑

k=1

R
(2)
k (U) (p0 − p1)−α

(2)
k ω−β

(2)
k

6
Γ(µ)

2µ
‖ũ‖L∞(p1,p2) (p0 − p1)−µ ω−µ +

6∑
k=1

R
(1)
k (U) (p0 − p1)−α

(1)
k ω−β

(1)
k

+
2∑

k=1

R
(2)
k (U) (p0 − p1)−α

(2)
k ω−β

(2)
k

=:
9∑

k=1

R̃
(1)
k (U) (p0 − p1)−α̃

(1)
k ω−β̃

(1)
k ,

where

• R̃
(1)
1 (U) :=

Γ(µ)

2µ
‖ũ‖L∞(p1,p2) , α̃

(1)
1 := µ , β̃

(1)
1 := µ ;

• R̃
(1)
k+1(U) := R

(1)
k (U) , α̃

(1)
k+1 := α

(1)
k , β̃

(1)
k+1 := β

(1)
k k = 1, . . . , 6 ;

• R̃
(1)
k+7(U) := R

(2)
k (U) , α̃

(1)
k+7 := α

(2)
k , β̃

(1)
k+7 := β

(2)
k k = 1, 2 .

Each β̃
(1)
k is strictly larger than 1

2
, ensuring that the decay rate of each remainder

term is faster than ω−
1
2 .
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• Case µ =
1

2
:

∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp−
(
H̃(ω, ψ, U) + K̃ 1

2
(ω, ψ, U)

)
(p0 − p1)µ−1 ω−

1
2

∣∣∣∣
=

∣∣∣∣ ∫ p0

p1

U(p) eiωψ(p) dp−
(

1

2
H̃(ω, ψ, U) + K̃ 1

2
(ω, ψ, U)

)
(p0 − p1)µ−1 ω−

1
2

+

∫ p2

p0

U(p) eiωψ(p) dp− 1

2
H̃(ω, ψ, U) (p0 − p1)µ−1 ω−

1
2

∣∣∣∣
6

6∑
k=1

R
(1)
k (U) (p0 − p1)−α

(1)
k ω−β

(1)
k +

2∑
k=1

R
(2)
k (U) (p0 − p1)−α

(2)
k ω−β

(2)
k

=:
8∑

k=1

R̃
(2)
k (U) (p0 − p1)−α̃

(2)
k ω−β̃

(2)
k ,

where

• R̃
(2)
k (U) := R

(1)
k (U) , α̃

(2)
k := α

(1)
k , β̃

(2)
k := β

(1)
k k = 1, . . . , 6 ;

• R̃
(2)
k+6(U) := R

(2)
k (U) , α̃

(2)
k+6 := α

(2)
k , β̃

(2)
k+6 := β

(2)
k k = 1, 2 .

As above, we have β̃
(2)
k > 1

2
.

• Case µ <
1

2
:

∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp− K̃µ(ω, ψ, U) (p0 − p1)−µ ω−µ
∣∣∣∣

=

∣∣∣∣∫ p0

p1

U(p) eiωψ(p) dp− K̃µ(ω, ψ, U) (p0 − p1)−µ ω−µ +

∫ p2

p0

U(p) eiωψ(p) dp

∣∣∣∣
6

∣∣∣∣12 H̃(ω, ψ, U)(p0 − p1)µ−1 ω−
1
2

∣∣∣∣+
6∑

k=1

R
(1)
k (U) (p0 − p1)−α

(1)
k ω−β

(1)
k

+

∣∣∣∣12 H̃(ω, ψ, U) (p0 − p1)µ−1 ω−
1
2

∣∣∣∣+
2∑

k=1

R
(2)
k (U) (p0 − p1)−α

(2)
k ω−β

(2)
k

6
√
π ‖ũ‖L∞(p1,p2) (p0 − p1)µ−1 ω−

1
2

+
6∑

k=1

R
(1)
k (U) (p0 − p1)−α

(1)
k ω−β

(1)
k +

2∑
k=1

R
(2)
k (U) (p0 − p1)−α

(2)
k ω−β

(2)
k

=:
9∑

k=1

R̃
(3)
k (U) (p0 − p1)−α̃

(3)
k ω−β̃

(3)
k ,
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where

• R̃
(3)
1 (U) :=

√
π ‖ũ‖L∞(p1,p2) , α̃

(3)
1 := 1− µ , β̃

(3)
1 :=

1

2
;

• R̃
(3)
k+1(U) := R

(1)
k (U) , α̃

(3)
k+1 := α

(1)
k , β̃

(3)
k+1 := β

(1)
k k = 1, . . . , 6 ;

• R̃
(3)
k+7(U) := R

(2)
k (U) , α̃

(3)
k+7 := α

(2)
k , β̃

(3)
k+7 := β

(2)
k k = 1, 2 .

Here we note that β̃
(3)
5 = β̃

(3)
6 = δ. So we can choose δ ∈

(
1
2
, 1
)

so that δ > µ and

thanks to that, each β̃
(3)
k is strictly larger than µ.

2.2.3 Remark. Looking carefully to the value of each α̃
(j)
k , we note that only

α̃
(1)
6 = α̃

(2)
5 = α̃

(3)
6 = α

(1)
5 = γ − µ

can be negative. To simplify slightly the proof of Theorems 2.3.2 and 2.3.7, and Corollary
2.3.5, we choose δ ∈

(
1
2
, 1
)

so that γ − µ > 0, namely δ > µ+1
2

.

From the previous theorem, we observe that the blow-up of the asymptotic expansion

comes from the terms (p0−p1)−α̃
(j)
k . This motivates the idea of considering p0 approaching

p1 with a certain convergence speed, described by the parameter ϑ > 0, when the large
parameter ω tends to infinity, as for example p0− p1 = ω−ϑ. This procedure modifies the
decay rates of the asymptotic expansions of the integral. We shall exploit the idea that
below a certain threshold, the convergence speed to the singular point p1 is sufficiently
slow so that the decay with respect to ω compensates the blow-up. More precisely the
proof consists in finding the values of ϑ > 0 for which the decay rate of the remainder is
strictly larger than the one of the first term, assuring the optimality of the decay rates.
This leads to asymptotic expansions on curves in the space of the parameters.

2.2.4 Corollary. Let ϑ ∈
(
0, 1

2

)
and suppose that p0 := p1 + ω−ϑ for ω > (p2 − p1)−

1
ϑ .

Then under the assumptions of Lemma 2.2.1 and with the notations of Theorem 2.2.2,
we have

• Case µ >
1

2
:∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp− H̃(ω, ψ, U)ω−
1
2

+ϑ(1−µ)

∣∣∣∣ 6 9∑
k=1

R̃
(1)
k (U)ω−β̃

(1)
k +ϑ α̃

(1)
k ,

where max
k∈{1,...,9}

{
−β̃(1)

k + ϑ α̃
(1)
k

}
< −1

2
+ ϑ(1− µ) ;

• Case µ =
1

2
:∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp−
(
H̃(ω, ψ, U) + K̃µ(ω, ψ, U)

)
ω−

1
2

+ 1
2
ϑ

∣∣∣∣
6

8∑
k=1

R̃
(2)
k (U)ω−β̃

(2)
k +ϑ α̃

(2)
k ,
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where max
k∈{1,...,8}

{
−β̃(2)

k + ϑ α̃
(2)
k

}
< −1

2
+

1

2
ϑ ;

• Case µ <
1

2
:

∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp− K̃µ(ω, ψ, U)ω−µ+ϑµ

∣∣∣∣ 6 9∑
k=1

R̃
(3)
k (U)ω−β̃

(3)
k +ϑ α̃

(3)
k ,

where max
k∈{1,...,9}

{
−β̃(3)

k + ϑ α̃
(3)
k

}
< −µ+ ϑµ .

Figure 2.2: The curve p0 = p1 + ω−ϑ

Proof. First of all, note that I(1)(ω, p0) and I(2)(ω, p0) are well-defined since the hypothesis

ω > (p2 − p1)−
1
ϑ implies p0 ∈ (p1, p2). Now we replace p0 − p1 by ω−ϑ in the estimates

of Theorem 2.2.2 and we compare the decay rates of the expansion with those of the
remainder. In the following, we choose the parameter δ ∈

(
1
2
, 1
)

in such way that we have
δ > 1

2
+ ϑ and δ > µ.

• Case µ >
1

2
: here we have

H̃(ω, ψ, U) (p0 − p1)µ−1 ω−
1
2 = H̃(ω, ψ, U)ω−

1
2

+ϑ(1−µ) .

We note that the modulus of the coefficient H̃(ω, p0, U) can be bounded from above
and below by a non-zero constant when ω is sufficiently large, due to the hypothesis
ũ(p1) 6= 0. It follows that this coefficient does not influence the decay and so the

expansion behaves like ω−
1
2

+ϑ(1−µ) when ω tends to infinity.
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To compare the decay rates of the expansion and of the remainder, it is sufficient to
compare the exponents of ω. Replacing p0−p1 by ω−ϑ in (2.15), (2.16), (2.17), (2.18)
and (2.19), we obtain new decay rates with respect to ω for the remainder terms.

The resulting exponents have to be less than −1

2
+ ϑ(1− µ), which is equivalent to

the fact that the following system of inequalities has to be satisfied:



−1

2
+ ϑ(1− µ) > −µ+ ϑµ (2.20a)

−1

2
+ ϑ(1− µ) > −1 + ϑ(2− µ) (2.20b)

−1

2
+ ϑ(1− µ) > −1 + ϑ(1− µ) (2.20c)

−1

2
+ ϑ(1− µ) > −2 + ϑ(4− µ) (2.20d)

−1

2
+ ϑ(1− µ) > −δ + ϑ(1 + γ − µ) (2.20e)

−1

2
+ ϑ(1− µ) > −δ + ϑ(γ − µ) (2.20f)

−1

2
+ ϑ(1− µ) > −3

2
+ ϑ(3− µ) (2.20g)

−1

2
+ ϑ(1− µ) > −δ + ϑ(1− µ) (2.20h)

−1

2
+ ϑ(1− µ) > −δ + ϑ(2− µ) (2.20i)

– Inequalities (2.20a), (2.20b), (2.20d), (2.20e), (2.20g). These inequalities are
satisfied because they are equivalent to ϑ < 1

2
, which is true by hypothesis.

Note that we used the relation γ = 2δ − 1 to study (2.20e).

– Inequality (2.20c). This inequality is equivalent to 1
2
< 1 which is clearly true.

– Inequality (2.20f). This inequality is equivalent to δ − 1
2
> ϑ(γ − 1). By

hypothesis, we have δ > 1
2
, ϑ > 0 and γ < 1. So (2.20f) is satisfied.

– Inequality (2.20h). This inequality is true because δ > 1
2

by hypothesis.

– Inequality (2.20i). We have supposed that ϑ < δ − 1
2
, which is equivalent to

(2.20i). Inequality (2.20i) is then satisfied.

• Case µ =
1

2
: in this situation,

(
H̃(ω, ψ, U)+K̃ 1

2
(ω, ψ, U)

)
(p0−p1)−

1
2 ω−

1
2 =

(
H̃(ω, p0, U)+K̃ 1

2
(ω, p0, U)

)
ω−

1
2

+ 1
2
ϑ .

As explained above, the expansion behaves like ω−
1
2

+ 1
2
ϑ when ω tends to infinity.

Here the decay rates of the remainder have to be faster than ω−
1
2

+ 1
2
ϑ. So we have
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to verify if the following system is satisfied:

−1

2
+

1

2
ϑ > −1 +

3

2
ϑ (2.21a)

−1

2
+

1

2
ϑ > −1 +

1

2
ϑ (2.21b)

−1

2
+

1

2
ϑ > −2 +

7

2
ϑ (2.21c)

−1

2
+

1

2
ϑ > −δ +

(
1

2
+ γ

)
ϑ (2.21d)

−1

2
+

1

2
ϑ > −δ +

(
γ − 1

2

)
ϑ (2.21e)

−1

2
+

1

2
ϑ > −3

2
+

5

2
ϑ (2.21f)

−1

2
+

1

2
ϑ > −δ +

1

2
ϑ (2.21g)

−1

2
+

1

2
ϑ > −δ +

3

2
ϑ (2.21h)

– Inequalities (2.21a), (2.21c), (2.21d), (2.21f). These inequalities are satisfied
because they are equivalent to ϑ < 1

2
, which is true by hypothesis. The relation

γ = 2δ − 1 is used to study (2.21d).

– Inequality (2.21b). This inequality is equivalent to 1
2
< 1 which is clearly true.

– Inequality (2.21e). This is similar to inequality (2.20f).

– Inequality (2.21g). This inequality is true because δ > 1
2

by hypothesis.

– Inequality (2.21h). This inequality is equivalent to ϑ < δ− 1
2
, which is true by

hypothesis.

• Case µ <
1

2
: replacing p0 − p1 by ω−ϑ, we obtain

K̃µ(ω, ψ, U) (p0 − p1)−µ ω−µ = Kµ(ω, ψ, U)ω−µ+ϑµ ,

and in this situation, the system of inequalities to verify is given by

−µ+ ϑµ > −1

2
+ ϑ(1− µ) (2.22a)

−µ+ ϑµ > −1 + ϑ(2− µ) (2.22b)

−µ+ ϑµ > −1 + ϑ(1− µ) (2.22c)

−µ+ ϑµ > −2 + ϑ(4− µ) (2.22d)

−µ+ ϑµ > −δ + ϑ(1 + γ − µ) (2.22e)

−µ+ ϑµ > −δ + ϑ(γ − µ) (2.22f)

−µ+ ϑµ > −3

2
+ ϑ(3− µ) (2.22g)

−µ+ ϑµ > −δ + ϑ(1− µ) (2.22h)

−µ+ ϑµ > −δ + ϑ(2− µ) (2.22i)

71



Chapter 2. Lossless error estimates, optimal parameter domains and applications to the
free Schrödinger equation

– Inequalities (2.22a), (2.22b), (2.22d), (2.22e), (2.22g). These inequalities are
equivalent to ϑ < 1

2
, which is true by hypothesis. We used once again the

relation γ = 2δ − 1 and the fact that δ > µ to study (2.22e).

– Inequality (2.22c). This inequality is equivalent to ϑ < 1−µ
1−2µ

. But we can show

that 1
2
< 1−µ

1−2µ
and we recall that ϑ < 1

2
, so (2.22c) is verified.

– Inequality (2.22f). This inequality is equivalent to δ − µ > ϑ(γ − 2µ). Now
we distinguish two cases: if γ − 2µ 6 0 then the inequaliy holds since δ − µ is
positive. In the other case, (2.22f) is equivalent to ϑ < δ−µ

γ−2µ
. Hence the last

inequality is true since ϑ < 1
2

and we can show 1
2
< δ−µ

γ−2µ
.

– Inequality (2.22h). It is equivalent to ϑ < δ−µ
1−2µ

. Since 1
2
< δ−µ

1−2µ
holds and

ϑ < 1
2
, (2.22h) is satisfied.

– Inequality (2.22i). It is equivalent to ϑ < δ−µ
2−2µ

. We can show that δ− 1
2
< δ−µ

2−2µ

and we recall that we have ϑ < δ − 1
2

by hypothesis, which proves that (2.22i)
is true.

2.3 Application to the free Schrödinger equation: pro-

pagation of wave packets and anomalous phe-

nomena

In this section, we are interested in the time asymptotic behaviour of the solution of
the free Schrödinger equation in one dimension, with initial conditions in a frequency band
[p1, p2] and having a singular frequency at p1. We establish time asymptotic expansions
as well as uniform estimates to explore the influence of the compact frequency band and
of the singularity on the dispersion.

We introduce the free Schrödinger equation on the line

(S)

{ [
i∂t + ∂xx

]
u(t) = 0

u(0) = u0

,

for t > 0. If u0 ∈ S ′(R) then this initial value problem has a unique solution in
C1
(
R+,S ′(R)

)
, given by the following solution formula,

u(t) = F−1
(
e−itp

2Fu0

)
,

where F : S ′(R) −→ S ′(R) is the Fourier transform.
Throughout this section, we shall suppose that the initial data satisfy the following con-
dition:

Condition (C1[p1,p2],µ). Let µ ∈ (0, 1) and p1 < p2 be two finite real numbers.
A tempered distribution u0 on R satisfies Condition (C1[p1,p2],µ) if and only if Fu0 ≡ 0
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on R\[p1, p2] and Fu0 verifies Assumption (A1µ,1,1) (given in Chapter 1, Section 1.1) on
[p1, p2], with Fu0(p2) = 0.

Figure 2.3: Fourier transform of an initial datum satisfying Condition (C1[p1,p2],µ)

Under this condition, we note that Fu0 is a function which has a singular point of or-
der µ − 1 at p1 whereas the point p2 is regular. For simplicity, we assume Fu0(p2) = 0
but a similar work can be carried out in the case Fu0(p2) 6= 0. Moreover under Condi-
tion (C1[p1,p2],µ), the solution formula of the free Schrödinger equation defines a function
u : (0,+∞)× R −→ C given by the following integral,

u(t, x) =
1

2π

∫ p2

p1

Fu0(p) e−itp
2+ixp dp ; (2.23)

for v ∈ L1(R), the Fourier transform of v is defined by

Fv(p) =

∫
R
v(x) e−ixp dx .

Now let us remark that the subset of tempered distributions which satisfy Condition
(C1[p1,p2],µ) is non-empty. Indeed if a function U supported on [p1, p2] verifies Assumption
(A1µ,1,1) with U(p2) = 0, then U is an integrable function and so it belongs to S ′(R).
Since the Fourier transform is a bijection on S ′(R), there exists u0 ∈ S ′(R) such that
U = Fu0, and hence u0 satisfies Condition (C1[p1,p2],µ).
Finally, we note that u0 is in fact an analytic function on R due to the fact that Fu0 is
compactly supported.

In this section, we shall need the following definitions of certain space-time regions.

2.3.1 Definition. Let a < b be two finite real numbers and let ϑ > 0.
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i) We define the space-time cone CS(a, b) as follows:

CS(a, b) :=

{
(t, x) ∈ (0,+∞)× R

∣∣∣∣ 2 a <
x

t
< 2 b

}
.

ii) We define the space-time curve Gϑ(a) as follows:

Gϑ(a) :=

{
(t, x) ∈ (0,+∞)× R

∣∣∣∣ xt = 2 a+ 2 t−ϑ
}
.

iii) We define the space-time region Rϑ(a, b) as follows:

Rϑ(a, b) =

{
(t, x) ∈ (0,+∞)× R

∣∣∣∣ 2 a+ 2 t−ϑ 6
x

t
< 2 b , t > Tϑ(a, b)

}
,

where Tϑ(a, b) := (b− a)−
1
ϑ .

Figure 2.4: Illustration of the region Rϑ(a, b) and the curve Gϑ(a)

In the first result, we furnish uniform remainder estimates for asymptotic expansions
of the solution in the cone CS

(
p1 + ε, p2

)
. After having rewritten the solution formula

as an oscillatory integral, we apply the results of the preceding section and we use the
fact that the distance between the stationary point x

2t
and the singularity p1 is bounded

from below by ε in order to estimate uniformly the remainder. Let us note that the
method employed in the proof furnishes asymptotic expansions of the solution in the
entire cone CS

(
p1, p2

)
with explicit blow-up when x

2t
approaches p1. Especially, we see

in the proof that restricting the cone CS
(
p1, p2

)
to CS

(
p1 + ε, p2

)
is sufficient to obtain

uniform estimates.
It is interesting to note that the singular frequency diminishes the time-decay rate in the
cone below the rate of quantum mechanic dispersion t−

1
2 , when leaving the L2-setting.

2.3.2 Theorem. Suppose that u0 satisfies Condition (C1[p1,p2],µ) and choose a real number
ε > 0 such that

p1 + ε < p2 .
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For all (t, x) ∈ CS
(
p1 + ε, p2

)
, define H(t, x, u0) ∈ C and Kµ(t, x, u0) ∈ C as follows,

• H(t, x, u0) :=
1

2
√
π
e−i

π
4 ei

x2

4t ũ
( x

2t

)( x
2t
− p1

)µ−1

,

• Kµ(t, x, u0) :=
Γ(µ)

2µ+1π
ei
πµ
2 e−itp

2
1 +ixp1 ũ(p1)

( x
2t
− p1

)−µ
.

Then for all (t, x) ∈ CS
(
p1 + ε, p2

)
, we have

• Case µ >
1

2
:

∣∣∣u(t, x)−H(t, x, u0) t−
1
2

∣∣∣ 6 9∑
k=1

C
(1)
k (u0, ε) t

−β̃(1)
k ,

where max
k∈{1,...,9}

{
−β̃(1)

k

}
< −1

2
. The exponents β̃

(1)
k are defined in Theorem 2.2.2 and

the constants C
(1)
k (u0, ε) > 0 are given in the proof ;

• Case µ =
1

2
:

∣∣∣u(t, x)−
(
H(t, x, u0) +Kµ(t, x, u0)

)
t−

1
2

∣∣∣ 6 8∑
k=1

C
(2)
k (u0, ε) t

−β̃(2)
k ,

where max
k∈{1,...,8}

{
−β̃(2)

k

}
< −1

2
. The exponents β̃

(2)
k are defined in Theorem 2.2.2 and

the constants C
(2)
k (u0, ε) > 0 are given in the proof ;

• Case µ <
1

2
:

∣∣u(t, x)−Kµ(t, x, u0) t−µ
∣∣ 6 9∑

k=1

C
(3)
k (u0, ε) t

−β̃(3)
k ,

where max
k∈{1,...,9}

{
−β̃(3)

k

}
< −µ. The exponents β̃

(3)
k are defined in Theorem 2.2.2 and

the constants C
(3)
k (u0, ε) > 0are given in the proof.

Proof. We shall prove the result in the case µ > 1
2
; the proofs in the other cases are very

similar.
In the solution formula (2.23), we factorize the phase function p 7−→ −tp2 +xp by t, which
gives

∀ (t, x) ∈ (0,+∞)× R u(t, x) =

∫ p2

p1

U(p) eitψ(p) dp ,

where 2 
∀ p ∈ (p1, p2] U(p) :=

1

2π
Fu0(p) =

1

2π
(p− p1)µ−1 ũ(p) ,

∀ p ∈ R ψ(p) := −p2 +
x

t
p .

2See Remark 2.3.3
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By hypothesis, U verifies Assumption (A1µ,1,1) on [p1, p2] and ψ has the form

ψ(p) = − (p− p0)2 + c ,

where p0 := x
2t

and c := p 2
0 = x2

4t2
. Moreover, we have the following equivalence,

(t, x) ∈ CS
(
p1 + ε, p2

)
⇐⇒ p1 + ε <

x

2t
= p0 < p2 ,

implying the fact that the stationary point p0 belongs to (p1, p2). Hence Theorem 2.2.2
is applicable and we obtain for all (t, x) ∈ CS

(
p1 + ε, p2

)
,

∣∣∣u(t, x)−H(t, x, u0) t−
1
2

∣∣∣ 6 9∑
k=1

R̃
(1)
k

(
1

2π
Fu0

) ( x
2t
− p1

)−α̃(1)
k

t−β̃
(1)
k ,

where the coefficient H(t, x, u0) is given in the statement of the theorem, the constants

R̃
(1)
k

(
1

2π
Fu0

)
> 0 and the exponents α̃

(1)
k > 0, β̃

(1)
k > 1

2
are provided by Theorem 2.2.2.

Note that we can choose α̃
(1)
k > 0 according to Remark 2.2.3 and in this case, if we suppose

(t, x) ∈ CS
(
p1 + ε, p2

)
then we have

ε 6
x

2t
− p1 =⇒

( x
2t
− p1

)−α̃(1)
k

6 ε−α̃
(1)
k .

By defining

∀ k ∈ {1, ..., 9} C
(1)
k (u0, ε) := R̃

(1)
k

(
1

2π
Fu0

)
ε−α̃

(1)
k ,

we obtain the result for the case µ > 1
2
.

We define in a similar way

• ∀ k ∈ {1, ..., 8} C
(2)
k (u0, ε) := R̃

(2)
k

(
1

2π
Fu0

)
ε−α̃

(2)
k ;

• ∀ k ∈ {1, ..., 9} C
(3)
k (u0, ε) := R̃

(3)
k

(
1

2π
Fu0

)
ε−α̃

(3)
k .

2.3.3 Remark. At this stage, the authors of [5] introduced the large parameter

ω :=
√
t2 + x2 ,

and replaced t and x by the bounded parameters τ := t
ω

and χ := x
ω

. This led to a family
of phase functions which was globally bounded in C4 with respect to τ and χ. This was
necessary for the application of the stationary phase method given in [20]. In our context,
it is sufficient to control the phase functions in space-time cones. Indeed the explicitness
of our remainder estimates shows that their coefficients depend only on the quotient x

t
,

which is bounded in these cones. It is not necessary to have the global boundedness with
respect to t and x separately. Therefore we can use t as a large parameter instead of√
t2 + x2, which is conceptually simpler and clearer.
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In the second result, we study the solution outside the cone CS
(
p1, p2

)
. In this case, the

stationary point is outside the integration interval and so the decay rate is only governed
by the singular frequency. As above, we have to restrict slightly the space-time cones in
which we expand the solution to bound uniformly the remainder.

2.3.4 Theorem. Suppose that u0 satisfies Condition (C1[p1,p2],µ) and choose ε > 0 such
that

−ε−1 < p1 − ε and p2 + ε < ε−1 .

Define for all (t, x) ∈ CS
(
− ε−1 , p1 − ε

)
,

K(1)
µ (t, x, u0) :=

Γ(µ)

2µ+1π
e−i

πµ
2 e−itp

2
1 +ixp1 ũ(p1)

(
p1 −

x

2t

)−µ
,

and for all (t, x) ∈ CS
(
p2 + ε , ε−1

)
,

K(2)
µ (t, x, u0) :=

Γ(µ)

2µ+1π
ei
πµ
2 e−itp

2
1 +ixp1 ũ(p1)

( x
2t
− p1

)−µ
.

Then

• for all (t, x) ∈ CS
(
− ε−1 , p1 − ε

)
, we have∣∣u(t, x)−K(1)

µ (t, x, u0) t−µ
∣∣ 6 C(1)(u0, ε) t

−1 .

The constant C(1)(u0, ε) > 0 is given in the proof ;

• for all (t, x) ∈ CS
(
p2 + ε , ε−1

)
, we have∣∣u(t, x)−K(2)
µ (t, x, u0) t−µ

∣∣ 6 C(2)(u0, ε) t
−1 .

The constant C(2)(u0, ε) > 0 is given in the proof.

Figure 2.5: Illustration of Theorem 2.3.2 and Theorem 2.3.4 in space-time
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Proof. The first step of the proof consists in rewritting the solution as an oscillatory
integral, namely,

u(t, x) =
1

2π

∫ p2

p1

Fu0(p) e−itp
2+ixp dp =

∫ p2

p1

U(p) eitψ(p) dp ,

where the functions U and ψ are defined at the beginning of the proof of Theorem 2.3.2.
Here the hypotheses on (t, x) imply

• (t, x) ∈ CS
(
−ε−1 , p1 − ε

)
⇐⇒ −ε−1 < p0 < p1 − ε ,

• (t, x) ∈ CS
(
p2 + ε , ε−1

)
⇐⇒ p2 + ε < p0 < ε−1 ,

where p0 := x
2t

is the unique stationary point of the phase. Hence the stationary point does
not belong to the integration interval [p1, p2] in both situations. In the space-time cone
CS
(
p2 + ε , ε−1

)
, the amplitude satisfies Assumption (A1µ,1,1) and the phase Assumption

(P11,1,N) (for N > 1) on [p1, p2] and so, the hypotheses of Theorem 2.1.2 are verified.
Note that it is not necessary to use a cutting-point to split the integral since only p1

is a particular point. This implies that we shall use only the expansion of the integral
Ĩ(1)(ω, q) (see the proof of Theorem 2.1.2) with ω := t and q := p2 in the present proof.
In the other cone CS

(
− ε−1 , p1 − ε

)
, we note that the phase is a decreasing function.

So we employ the substitution p −→ −p to make it increasing. Finally we use the above
inequalities to estimate the remainders, furnishing the following constants:

• C(1)(u0, ε) :=
1

4πµ

(
p2 + ε−1

)
(p2 − p1)µ

∥∥ũ∥∥
W 1,∞(p1,p2)

(
1− µ

2

(
p2 + ε−1

)
ε−4

+ ε−2 + ε−3

)
,

• C(2)(u0, ε) :=
1

4πµ

(
ε−1 − p1

)
(p2 − p1)µ

∥∥ũ∥∥
W 1,∞(p1,p2)

(
1− µ

2

(
ε−1 − p1

)
ε−4

+ ε−2 + ε−3

)
.

The following result is a consequence of Theorem 2.3.2. It permits to compute the
limit of the L2-norm of the solution on the spatial cross-section of the cone CS

(
p1 + ε, p2

)
when the time tends to infinity, assuming u0 ∈ L2(R).

2.3.5 Corollary. Suppose that the hypotheses of Theorem 2.3.2 are satisfied with µ > 1
2

and define the interval It as follows for all t > 0,

It :=
(

2 (p1 + ε) t , 2 p2 t
)
.

Then we have∣∣∣∣∥∥u(t, .)
∥∥
L2(It)

− 1√
2π

∥∥Fu0

∥∥
L2(p1+ε,p2)

∣∣∣∣ 6 9∑
k=1

C̃
(1)
k (u0, ε) t

−β̃(1)
k + 1

2 ,

where max
k∈{1,...9}

{
−β̃(1)

k

}
< −1

2
. The exponents β̃

(1)
k are defined in Theorem 2.3.2 and the

constants C̃
(1)
k (u0, ε) > 0 are given in the proof.
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Proof. We start by using the triangle inequality as follows,∣∣∣∣∥∥u(t, .)
∥∥
L2(It)

−
∥∥∥H(t, ., u0) t−

1
2

∥∥∥
L2(It)

∣∣∣∣2 6 ∥∥∥u(t, .)−H(t, x, u0) t−
1
2

∥∥∥2

L2(It)

=

∫
It

∣∣∣u(t, x)−H(t, x, u0) t−
1
2

∣∣∣2 dx .
Now we employ the estimate provided by Theorem 2.3.2 in the case µ > 1

2
:∫

It

∣∣∣u(t, x)−H(t, x, u0) t−
1
2

∣∣∣2 dx 6
∫
It

∣∣∣∣∣
9∑

k=1

C
(1)
k (u0, ε) t

−β̃(1)
k

∣∣∣∣∣
2

dx

=
9∑

k=1

C
(1)
k (u0, ε)

2 t−2β̃
(1)
k |It| ,

where |It| is the Lebesgue measure of the interval It; in our context, |It| is equal to
2(p2 − p1 − ε) t . By defining

C̃
(1)
k (u0, ε) :=

√
2(p2 − p1 − ε)C(1)

k (u0, ε) ,

we obtain ∣∣∣∣∥∥u(t, .)
∥∥
L2(It)

−
∥∥∥H(t, ., u0) t−

1
2

∥∥∥
L2(It)

∣∣∣∣ 6 9∑
k=1

C̃
(1)
k (u0, ε) t

−β̃(1)
k + 1

2 .

To finish, we compute
∥∥∥H(t, ., u0) t−

1
2

∥∥∥
L2(It)

by using the expression of H(t, x, u0) given

in Theorem 2.3.2,∥∥∥H(t, ., u0) t−
1
2

∥∥∥2

L2(It)
=

1

4π

∫
It

∣∣∣∣ũ( x2t)( x2t − p1

)µ−1

t−
1
2

∣∣∣∣2 dx
=

t

2π

∫ p2

p1+ε

∣∣ũ(y)(y − p1)µ−1
∣∣2 dy t−1

=
1

2π

∥∥Fu0

∥∥2

L2(p1+ε,p2)
.

The proof is now complete.

The aim of the following result is to show that the time decay rate is t−
µ
2 on points

moving in space-time with the critical velocity given by the singularity p1. In this case,
we do not have to deal with the uniformity of the constants of the remainder since we
establish an asymptotic expansion on a line.

2.3.6 Theorem. Suppose that u0 satisfies Condition (C1[p1,p2],µ). For all t > 0, define
Lµ(t, u0) as follows:

Lµ(t, u0) :=
1

2
Γ
(µ

2

)
e−i

πµ
4 eitp

2
1 ũ(p1) .

Then for all (t, x) ∈ (0,+∞)× R such that x
t

= 2 p1, we have∣∣∣u(t, x)− Lµ(t, u0) t−
µ
2

∣∣∣ 6 C(u0) t−
1
2 .

The constant C(u0) > 0 is given in the proof.
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Proof. In this situation, the stationary point p0 = x
2t

and the singular point p1 are equal
but the phase is decreasing. So we make the substitution p 7−→ −p and then we apply
Theorem 2.1.2. Since p1 is the unique singular point inside the integration interval, we
can employ only the expansion of the integral Ĩ(2)(ω, q) given in the proof of Theorem
2.1.2. Let us give the constant C(u0) to conclude the proof,

C(u0) :=

√
π

2µ
(p2 − p1)µ

∥∥ũ′∥∥
L∞(p1,p2)

.

Uniform estimates of the solution in the curved region Rϑ(p1, p2), which is asymp-
totically larger than any space-time cone contained in CS(p1, p2), are provided in the
following theorem. For this purpose, we rewrite the solution as an oscillatory integral

that we estimate by using Theorem 2.2.2. The quantities
(
x
2t
− p1

)−α̃(j)
k , which produce

the blow-up, are bounded by tϑ α̃
(j)
k in Rϑ(p1, p2), furnishing a uniform estimate of the

solution with modified decay rates for ϑ between 0 and 1
2
. Finally we use Corollary 2.2.4

to give the preponderant decay rate.

2.3.7 Theorem. Suppose that u0 satisfies Condition (C1[p1,p2],µ) and fix ϑ ∈
(
0, 1

2

)
. Then

for all (t, x) ∈ Rϑ(p1, p2), we have

• Case µ >
1

2
:

∣∣u(t, x)
∣∣ 6 C

(1)
0 (u0) t−

1
2

+ϑ(1−µ) +
9∑

k=1

C
(1)
k (u0) t−β̃

(1)
k +ϑα̃

(1)
k ,

where max
k∈{1,...,9}

{
−β̃(1)

k + ϑα̃
(1)
k

}
< −1

2
+ ϑ(1 − µ) and the decay rate t−

1
2

+ϑ(1−µ) is

optimal. The exponents α̃
(1)
k , β̃

(1)
k are defined in Theorem 2.2.2 and the constants

C
(1)
k (u0) > 0 are given in the proof ;

• Case µ =
1

2
:

∣∣u(t, x)
∣∣ 6 C

(2)
0 (u0) t−

1
2

+ϑ
2 +

8∑
k=1

C
(2)
k (u0) t−β̃

(2)
k +ϑα̃

(2)
k ,

where max
k∈{1,...,8}

{
−β̃(2)

k + ϑα̃
(2)
k

}
< −1

2
+
ϑ

2
and the decay rate t−

1
2

+ϑ
2 is optimal. The

exponents α̃
(2)
k , β̃

(2)
k are defined in Theorem 2.2.2 and the constants C

(2)
k (u0) > 0 are

given in the proof ;

• Case µ <
1

2
:

∣∣u(t, x)
∣∣ 6 C

(3)
0 (u0) t−µ+ϑµ +

9∑
k=1

C
(3)
k (u0) t−β̃

(3)
k +ϑα̃

(3)
k ,
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where max
k∈{1,...,9}

{
−β̃(3)

k + ϑα̃
(3)
k

}
< −µ+ϑµ and the decay rate t−µ+ϑµ is optimal. The

exponents α̃
(3)
k , β̃

(3)
k are defined in Theorem 2.2.2 and the constants C

(3)
k (u0) > 0 are

given in the proof.

Proof. First of all, let us establish an estimate for abstract oscillatory integrals that we
shall use in the present proof. From Theorem 2.2.2, we derive the following estimate in
the case µ > 1

2
,∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 ∣∣∣H̃(ω, p0, U)
∣∣∣ (p0 − p1)µ−1 ω−

1
2 +

9∑
k=1

R̃
(1)
k (U)(p0 − p1)−α̃

(1)
k ω−β̃

(1)
k

6
√
π
∥∥ũ∥∥

L∞(p1,p2)
(p0 − p1)µ−1 ω−

1
2 +

9∑
k=1

R̃
(1)
k (U)(p0 − p1)−α̃

(1)
k ω−β̃

(1)
k .

(2.24)

Now let us prove Theorem 2.3.7 in the case µ > 1
2
. Firstly, we rewrite the solution formula

(2.23) as an oscillatory integral (see the beginning of the proof of Theorem 2.3.2). The
hypothesis (t, x) ∈ Rϑ(p1, p2) implies

x

2t
− p1 > t−ϑ , (2.25)

and we see that p0 := x
2t
∈ (p1, p2) in this case. Hence we observe that the hypotheses of

Theorem 2.2.2 are satisfied and, in particular, estimate (2.24) is applicable, leading to∣∣u(t, x)
∣∣ 6 1

2
√
π

∥∥ũ∥∥
L∞(p1,p2)

( x
2t
− p1

)µ−1

t−
1
2 +

9∑
k=1

R̃
(1)
k

(
1

2π
Fu0

)( x
2t
− p1

)−α̃(1)
k

t−β̃
(1)
k .

According to Remark 2.2.3, each α̃
(1)
k is non-negative if the parameter δ ∈

(
1
2
, 1
)

appearing

in the proof of Theorem 2.2.2 is such that δ > µ+1
2

; so let us suppose that δ > µ+1
2

. Hence
we put inequality (2.25) into the last estimate and we obtain∣∣u(t, x)

∣∣ 6 1

2
√
π

∥∥ũ∥∥
L∞(p1,p2)

t−
1
2

+ϑ(1−µ) +
9∑

k=1

R̃
(1)
k

(
1

2π
Fu0

)
t−β̃

(1)
k +ϑα̃

(1)
k .

Thanks to Corollary 2.2.4, we know that each exponent −β̃(1)
k + ϑα̃

(1)
k is strictly smaller

than −1
2

+ ϑ(1− µ) if δ > µ (which is true since δ > µ+1
2

) and if δ > 1
2

+ ϑ; so δ is chosen
in such a way that it is strictly larger than 1

2
+ ϑ. Defining for all k ∈ {1, ..., 9},

C
(1)
0 (u0) :=

1

2
√
π

∥∥ũ∥∥
L∞(p1,p2)

, C
(1)
k (u0) := R̃

(1)
k

(
1

2π
Fu0

)
,

we obtain the result in the case µ > 1
2
. The optimality is a direct consequence of Theorem

2.3.8.
We employ the same arguments to establish the estimates in the two other cases, and we
define

• C
(2)
0 (u0) :=

(
1

2
√
π

+
Γ(µ)

2µ+1

)∥∥ũ∥∥
L∞(p1,p2)

, C
(2)
k (u0) := R̃

(2)
k

(
1

2π
Fu0

)
;

• C
(3)
0 (u0) :=

Γ(µ)

2µ+1

∥∥ũ∥∥
L∞(p1,p2)

, C
(3)
k (u0) := R̃

(3)
k

(
1

2π
Fu0

)
,
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for k > 1.

The last result is devoted to the optimality of the previous uniform estimates. In
the region Rϑ(p1, p2), we expect that the decay will be slow in parts which are close to
the critical direction given by p1, where the influence of the singular frequency is the
strongest. So we use Corollary 2.2.4 to provide asymptotic expansions of the solution on
the space-time curve Gϑ(p1), the left boundary of the region Rϑ(p1, p2), and we show that
the decay rates obtained in the preceding result are attained on this curve, proving the
optimality.

2.3.8 Theorem. Suppose that u0 satisfies Condition (C1[p1,p2],µ) and fix ϑ ∈
(
0, 1

2

)
. For

all t > Tϑ(p1, p2), define H(t, u0) ∈ C and Kµ(t, u0) ∈ C as follows:

• H(t, u0) :=
1

2
√
π
e−i

π
4 eit(p1+t−ϑ)2 ũ

(
p1 + t−ϑ

)
;

• Kµ(t, u0) :=
Γ(µ)

2µ
ei
πµ
2 e−itp

2
1 +ixp1 ũ(p1) .

Then for all (t, x) ∈ Gϑ(p1) with t > Tϑ(p1, p2), we have

• Case µ >
1

2
:∣∣∣u(t, x)−H(t, u0) t−

1
2

+ϑ(1−µ)
∣∣∣ 6 9∑

k=1

C
(1)
k (u0) t−β̃

(1)
k +ϑα̃

(1)
k ,

where max
k∈{1,...,9}

{
−β̃(1)

k + ϑα̃
(1)
k

}
< −1

2
+ϑ(1−µ). The exponents α̃

(1)
k , β̃

(1)
k are defined

in Theorem 2.2.2 and the constants C
(1)
k (u0) > 0 are given in Theorem 2.3.7 ;

• Case µ =
1

2
:∣∣∣u(t, x)−

(
Kµ(t, u0) +H(t, u0)

)
t−

1
2

+ϑ
2

∣∣∣ 6 8∑
k=1

C
(2)
k (u0) t−β̃

(2)
k +ϑα̃

(2)
k ,

where max
k∈{1,...,8}

{
−β̃(2)

k + ϑα̃
(2)
k

}
< −1

2
+
ϑ

2
. The exponents α̃

(2)
k , β̃

(2)
k are defined in

Theorem 2.2.2 and the constants C
(2)
k (u0) > 0 are given in Theorem 2.3.7 ;

• Case µ <
1

2
: ∣∣∣u(t, x)−Kµ(t, u0) t−µ+ϑµ

∣∣∣ 6 9∑
k=1

C
(3)
k (u0) t−β̃

(3)
k +ϑα̃

(3)
k ,

where max
k∈{1,...,9}

{
−β̃(3)

k + ϑα̃
(3)
k

}
< −µ+ ϑµ. The exponents α̃

(3)
k , β̃

(3)
k are defined in

Theorem 2.2.2 and the constants C
(3)
k (u0) > 0 are given in Theorem 2.3.7.

Proof. The hypothesis (t, x) ∈ Gϑ(p1) is equivalent to p0−p1 = t−ϑ where p0 := x
2t

. Using
the solution formula (2.23) and the rewritting given in the proof of Theorem 2.3.2, we
can apply Corollary 2.2.4 and we obtain the desired estimates.
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Chapter 3

Optimal van der Corput estimates
describing the interaction between a
stationary point of the phase and a
singularity of the amplitude

Abstract

In the present chapter, we furnish an extension of the van der Corput lemma
for oscillatory integrals for one integration variable: the phase is allowed to
have a stationary point of real order and the amplitude to have an integrable
singular point. This extension permits to obtain uniform estimates with res-
pect to the position of the stationary point, which can be inside or outside
the integration interval, for the above class of oscillatory integrals. Moreover
in order to localize time-asymptotically solutions of evolution equations in
Chapter 4, we consider also the case of the absence of a stationary point inside
the integration interval, leading to faster decay rates than those mentioned
above. All the resulting decay rates of the present chapter are proved to be
optimal by employing the results of Chapter 2.

Contents
3.1 Van der Corput type estimates for stationary points of real

order and singular amplitudes . . . . . . . . . . . . . . . . . . . 84

3.2 Non-vanishing first derivative of the phase: improvement of
the decay rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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Chapter 3. Optimal van der Corput estimates describing the interaction between a
stationary point of the phase and a singularity of the amplitude

3.1 Van der Corput type estimates for stationary

points of real order and singular amplitudes

We start this section by stating the hypotheses on the phase function. Two examples
are then given to illustrate theses assumptions.

Let p1, p2 be two finite real numbers such that p1 < p2, and let I be an open interval
containing [p1, p2].

Assumption (P2p0,ρ). Let p0 ∈ I and ρ > 1.
A function ψ : I −→ R satisfies Assumption (P2p0,ρ) if and only if ψ ∈ C1

(
I
)
∩C2

(
I\{p0}

)
and there exists a function ψ̃ : I −→ R such that

∀ p ∈ I ψ′(p) = |p− p0|ρ−1 ψ̃(p) ,

where
∣∣ψ̃∣∣ : I −→ R is assumed continuous and does not vanish on I.

The point p0 is called stationary point of ψ of order ρ−1, and ψ̃ the non-degenerate factor
of ψ.

Figure 3.1: First derivative of a function satisfying Assumption (P2p0,ρ)

Let us comment on this choice. Firstly we consider the absolute value of p − p0 because
we want to include stationary points of non-integer order in the study. Secondly, the fact
that ψ̃ does not vanish prevents this function from affecting the order of the stationary
point p0. Finally, the continuity of

∣∣ψ̃∣∣ is sufficient to ensure the fact that min
[p1,p2]

|ψ̃| exists

and is non-zero; this quantity will be employed several times to establish the results of
this chapter. Nevertheless we do not claim that we achieve maximum generality with
these hypotheses.
Note that ψ̃ is actually continuously differentiable on I\{p0}, because

∀ p 6= p0 ψ̃(p) =
ψ′(p)

|p− p0|ρ−1
.

This implies that ψ̃ has a constant sign on {p ∈ I | p < p0} and {p ∈ I | p > p0}; note that
the sign of ψ̃ can be different on each interval if ψ̃ has a discontinuity at the point p0.
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3.1. Van der Corput type estimates for stationary points of real order and singular
amplitudes

We illustrate the above Assumption (P2p0,ρ) in the following two examples. In particular,
the first example shows that smooth functions with vanishing first derivatives are included.

3.1.1 Example. i) Let ψ : I −→ R be a function belonging to CN
(
I
)

for a certain

N > 2, and let p0 ∈ I. Suppose that ψ(k)(p0) = 0 for k = 1, . . . , N − 1. Then by
Taylor’s formula, we obtain

ψ′(p) =
1

(N − 2)!

∫ p

p0

(p− x)N−2 ψ(N)(x) dx

=
(p− p0)N−1

(N − 2)!

∫ 1

0

(1− y)N−2 ψ(N)
(
y(p− p0) + p0

)
dy ,

for all p ∈ I. If we define ψ̃ as follows

ψ̃(p) :=



1

(N − 2)!

(
p− p0

|p− p0|

)N−1 ∫ 1

0

(1− y)N−2 ψ(N)
(
y(p− p0) + p0

)
dy ,

if p 6= p0 ,

1

(N − 1)!
ψ(N)(p0) , if p = p0 ,

then ψ′(p) = |p − p0|N−1 ψ̃(p). Supposing
∣∣ψ(N)

∣∣ > 0 on I implies that ψ satisfies
Assumption (P2p0,N).

ii) Let N ∈ N such that N > 2 and choose α ∈ (N−1, N). Suppose that ψ′(p) = |p|α−1,
for all p ∈ R. In this case, ψ ∈ CN−1

(
R,R

)
but ψ /∈ CN

(
R,R

)
, and ψ̃ = 1. Then

Assumption (P20,α) is satisfied.

Now let us introduce the hypotheses concerning the amplitude function that we shall
use throughout this chapter.

Assumption (A2p1,µ). Let µ ∈ (0, 1].
A function U : (p1, p2] −→ C satisfies Assumption (A2p1,µ) if and only if there exists a
function ũ : [p1, p2] −→ C such that

∀ p ∈ (p1, p2] U(p) = (p− p1)µ−1 ũ(p) ,

where ũ is assumed continuous on [p1, p2], differentiable on (p1, p2) with ũ′ ∈ L1(p1, p2),
and ũ(p1) 6= 0 if µ 6= 1.
The point p1 is called singular point of U , and ũ the regular factor of U .

According to this assumption, the amplitude is singular at the left endpoint of the inter-
val. The results of this chapter remain unchanged if we suppose that the singular point is
at the right endpoint of the interval. Moreover in the case of an amplitude function which
is singular inside the integration interval, the study can be reduced to the two preceding
cases: it suffices to split the integral at the singular point.

Before introducing the first theorem of this section, let us state a basic lemma which
will be used several times in this section.
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Figure 3.2: Function satisfying Assumption (A2p1,µ)

3.1.2 Lemma. Let α ∈ (0, 1] and let x, y ∈ R+ such that x > y. Then we have

xα − yα 6 (x− y)α .

Proof. The case α = 1 is trivial so let us assume α < 1. If y = 0 then the result is clear.
Suppose y 6= 0, then the above inequality is equivalent to(

x

y

)α
− 1 6

(
x

y
− 1

)α
.

Define the function h : [1,+∞) −→ R by

∀ t ∈ [1,+∞) h(t) := (t− 1)α − tα + 1 .

Then we note that for all t > 1,

h′(t) = α
(
(t− 1)α−1 − tα−1

)
> 0 ,

since α− 1 < 0. It follows

∀ t ∈ [1,+∞) h(t) > h(1) = 0 ,

which proves the lemma.

Now let us state a first van der Corput type estimate for integrals of the form

∀ω > 0 I(ω) =

∫ p2

p1

U(p) eiωψ(p) dp .

Here we suppose that the phase function ψ has a stationary point p0 of order ρ− 1 which
belongs to the integration interval. The resulting estimate is uniform with respect to
the position of p0 inside [p1, p2]; the decay rate is given by ω−

µ
ρ and an upper bound of

the constant is given in terms of the regular factor ũ of the amplitude and of the non-
degenerate factor ψ̃ of the phase function.
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3.1. Van der Corput type estimates for stationary points of real order and singular
amplitudes

The proof of this result is divided with respect to the size of the parameter ω. In the
case of small ω, the integral can be estimated by the product of the L∞-norm of the
regular part ũ and the length of the interval to the power µ, the exponent coming from
the singular behaviour of the integrand at the point p1 of order µ − 1. Then we exploit

the fact that the interval is smaller than ω−
1
ρ to bound the integral by ω−

µ
ρ . For large

ω, we adapt Stein’s method [27, Chapter VIII, Proposition 2], which covers the case of
stationary points of integer order and which is a generalization of Zygmund’s method
[32, Chapter V, Lemma 4.3] for simple stationary points. We decompose the integration
interval in such way that p0 and p1 are contained in intervals whose length is proportional

to ω−
1
ρ . The integrals on these intervals are estimated by using the asymptotic smallness

of their integration intervals. On the other intervals, we integrate by parts and we employ
an upper bound for the amplitude as well as a lower bound for the first derivative of the
phase, both bounds depending on ω, to obtain the result. Let us note that we consider
also the case of intermediate ω; this situation can be studied by combining the methods
used in the case of small and large ω.

3.1.3 Theorem. Let ρ > 1, µ ∈ (0, 1] and choose p0 ∈ [p1, p2]. Suppose that the functions
ψ : I −→ R and U : (p1, p2] −→ C satisfy Assumption (P2p0,ρ) and Assumption (A2p1,µ),
respectively. Moreover suppose that ψ′ is monotone on I−p0 and I+

p0
, where

I−p0 :=
{
p ∈ I

∣∣ p < p0

}
, I+

p0
:=
{
p ∈ I

∣∣ p > p0

}
.

Then we have ∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 C(U, ψ)ω−
µ
ρ ,

for all ω > 0, where the constant C(U, ψ) > 0 is given by

C(U, ψ) :=
3

µ
‖ũ‖L∞(p1,p2) +

(
8 ‖ũ‖L∞(p1,p2) + 2 ‖ũ′‖L1(p1,p2)

)(
min

p∈[p1,p2]

∣∣∣ψ̃(p)
∣∣∣)−1

.

Before proving this theorem, let us illustrate the monotonicity hypothesis on ψ′ by using
the settings given in Example 3.1.1.

3.1.4 Example. i) In the setting of Example 3.1.1 i), if
∣∣ψ(N)

∣∣ > 0 on I, then ψ′ is
monotone on both intervals I−p0 and I+

p0
.

Indeed if N = 2, then it is clear that the hypothesis
∣∣ψ′′∣∣ > 0 implies the result.

Suppose now that N > 3; then applying Taylor’s formula to ψ′′, namely

ψ′′(p) =
1

(N − 3)!

∫ p

p0

(p− x)N−3 ψ(N)(x) dx ,

for all p ∈ I, we observe that ψ′′ has a constant sign on I−p0 and I+
p0

, which provides
the result.

ii) In the setting of Example 3.1.1 ii), we note that ψ′ is clearly monotone on (−∞, 0)
and on (0,+∞).

Proof of Theorem 3.1.3. Let p0 ∈ (p1, p2) and let us suppose p0−p1
2

> p2− p0 without loss
of generality; the other case can be treated in a similar way. Note that we shall study the
cases p0 = p1 and p0 = p2 at the end of the proof. Now let us divide the proof.
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• Case ω > (p2 − p0)−ρ. Define δ := ω−
1
ρ and consider the following splitting of the

integral:∫ p2

p1

U(p) eiωψ(p) dp =

∫ p1+δ

p1

. . . +

∫ p0−δ

p1+δ

. . . +

∫ p0+δ

p0−δ
. . . +

∫ p2

p0+δ

. . .

=: I(1)(ω) + I(2)(ω) + I(3)(ω) + I(4)(ω) .

Remark that this splitting is well-defined thanks to the hypothesis ω > (p2− p0)−ρ.
Let us estimate each integral.

– Study of I(1)(ω). We bound I(1)(ω) in a simple way as follows:∣∣∣I(1)(ω)
∣∣∣ 6 ∫ p1+δ

p1

|U(p)| dp 6 ‖ũ‖L∞(p1,p2)

∫ p1+δ

p1

(p−p1)µ−1 dp =
‖ũ‖L∞(p1,p2)

µ
δµ .

– Study of I(2)(ω). Here we shall suppose that ψ̃ is positive on I−p0 , which implies

the positivity of ψ′; the case ψ̃ < 0 can be studied in the same manner. Since
ψ′ does not vanish on [p1+δ, p0−δ], the substitution s = ψ(p) can be employed.
Setting ϕ := ψ−1, s1 := ψ(p1 + δ) and s2 := ψ(p0 − δ), we obtain

I(2)(ω) =

∫ s2

s1

U
(
ϕ(s)

)
ϕ′(s) eiωs ds

= (iω)−1

([
(U ◦ ϕ)(s)ϕ′(s) eiωs

]s2
s1
−
∫ s2

s1

(
(U ◦ ϕ)ϕ′

)′
(s) eiωs ds

)
;

the last equality was obtained by integrating by parts.
Let us control the boundary terms and the integral. Firstly, we have∣∣U(p)

∣∣ 6 δµ−1 ‖ũ‖L∞(p1+δ,p0−δ) 6 δµ−1 ‖ũ‖L∞(p1,p2) , (3.1)

for all p ∈ [p1 +δ, p0−δ], since U(p) = (p−p1)µ−1ũ(p) by hypothesis. Moreover
the fact that ψ′ satisfies Assumption (P2p0,ρ) implies

∀ p ∈ [p1 + δ, p0 − δ] |ψ′(p)| > δρ−1m ,

where m := min
p∈[p1,p2]

∣∣∣ψ̃(p)
∣∣∣ > 0. Combining this with the definition of ϕ leads

to

∀ s ∈ [s1, s2] |ϕ′(s)| 6 δ1−ρm−1 . (3.2)

Inequalities (3.1) and (3.2) permit to estimate the boundary terms as follows,∣∣∣∣[(U ◦ ϕ)(s)ϕ′(s) eiωs
]s2
s1

∣∣∣∣ 6 2 ‖ũ‖L∞(p1,p2) m
−1 δµ−ρ .

It remains to control the integral. We have(
(U ◦ ϕ)ϕ′

)′
= (U ′ ◦ ϕ) (ϕ′)

2
+ (U ◦ ϕ)ϕ′′ ,
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by the product rule; consequently,∣∣∣∣ ∫ s2

s1

(
(U ◦ ϕ)ϕ′

)′
(s) eiωs ds

∣∣∣∣ 6 ∫ s2

s1

∣∣∣(U ′ ◦ ϕ)(s)ϕ′(s)2
∣∣∣ ds

+

∫ s2

s1

∣∣∣(U ◦ ϕ)(s)ϕ′′(s)
∣∣∣ ds

6
∫ s2

s1

∣∣∣(U ′ ◦ ϕ)(s)ϕ′(s)
∣∣∣ ds δ1−ρm−1

+ ‖U‖L∞(p1+δ,p0−δ)

∫ s2

s1

∣∣ϕ′′(s)∣∣ ds
6
∫ p0−δ

p1+δ

∣∣U ′(p)∣∣ dp δ1−ρm−1

+ δµ−1 ‖ũ‖L∞(p1,p2)

∫ s2

s1

∣∣ϕ′′(s)∣∣ ds . (3.3)

The definition of U implies∫ p0−δ

p1+δ

∣∣U ′(p)∣∣ dp 6 ∫ p0−δ

p1+δ

∣∣∣(µ− 1)(p− p1)µ−2 ũ(p)
∣∣∣ dp

+

∫ p0−δ

p1+δ

∣∣∣(p− p1)µ−1 ũ′(p)
∣∣∣ dp

6
∫ p0−δ

p1+δ

(1− µ)(p− p1)µ−2 dp ‖ũ‖L∞(p1,p2)

+ δµ−1

∫ p0−δ

p1+δ

∣∣ũ′(p)∣∣ dp
6 δµ−1 ‖ũ‖L∞(p1,p2) + δµ−1 ‖ũ′‖L1(p1,p2) ; (3.4)

the last inequality was obtained employing the fact that∫ p0−δ

p1+δ

(1− µ)(p− p1)µ−2 dp = δµ−1 − (p0 − δ − p1)µ−1 6 δµ−1 .

Moreover the relation ϕ′′ =

(
−ψ′′

ψ′ 3

)
◦ ϕ provides the following equalities,

∫ s2

s1

∣∣ϕ′′(s)∣∣ ds =

∫ s2

s1

∣∣∣∣∣−ψ′′
(
ϕ(s)

)
ψ′
(
ϕ(s)

)3

∣∣∣∣∣ ds =

∣∣∣∣∫ p0−δ

p1+δ

−ψ′′(p)
ψ′(p)2

dp

∣∣∣∣ ,
the last equality comes from the change of variable p = ϕ(s) and from the
constant sign of ψ′′ on [p1 + δ, p0 − δ] thanks to the fact that ψ′ is monotonic
on I−p0 . Then∫ s2

s1

∣∣ϕ′′(s)∣∣ ds =

∣∣∣∣∫ p0−δ

p1+δ

(
1

ψ′

)′
(p) dp

∣∣∣∣ =

∣∣∣∣ 1

ψ′(p0 − δ)
− 1

ψ′(p1 + δ)

∣∣∣∣ 6 δ1−ρm−1 ,

(3.5)
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where we used |ψ′(p)| > δρ−1m, for p ∈ [p1 + δ, p0− δ]. Putting (3.4) and (3.5)
into (3.3) provides∣∣∣∣ ∫ s2

s1

(
(U ◦ ϕ)ϕ′

)′
(s) eiωs ds

∣∣∣∣ 6 (2 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 δµ−ρ .

We are now able to estimate I(2)(ω):∣∣∣I(2)(ω)
∣∣∣ 6 (4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 δµ−ρ ω−1 .

– Study of I(3)(ω). As for I(1)(ω), we bound the integral of |U | on [p0− δ, p0 + δ]
to provide an estimate of I(3)(ω):

∣∣∣I(3)(ω)
∣∣∣ 6 ‖ũ‖L∞(p1,p2)

µ

(
(p0 + δ − p1)µ − (p0 − δ − p1)µ

)
6 2
‖ũ‖L∞(p1,p2)

µ
δµ ;

note that we use Lemma 3.1.2 to obtain the last inequality.

– Study of I(4)(ω). On [p0 + δ, p2], one can bound from below the absolute value
of the first derivative of the phase function as follows,∣∣ψ′∣∣ > δρ−1 min

p∈[p1,p2]

∣∣∣ψ̃(p)
∣∣∣ = δρ−1m ,

and we have

∀ p ∈ [p0 + δ, p2] (p− p1)µ−1 6 (p0 + δ − p1)µ−1 6 δµ−1 .

Following the lines of the study of I(2)(ω) and using the two previous estimates,
we obtain ∣∣∣I(4)(ω)

∣∣∣ 6 (4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 δµ−ρ ω−1 .

To conclude this first case, we replace δ by ω−
1
ρ leading to the desired estimate:∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 ∣∣I(1)(ω)
∣∣+
∣∣I(2)(ω)

∣∣+
∣∣I(3)(ω)

∣∣+
∣∣I(4)(ω)

∣∣
6
‖ũ‖L∞(p1,p2)

µ
ω−

µ
ρ + 2

‖ũ‖L∞(p1,p2)

µ
ω−

µ
ρ

+ 2
(

4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 ω−

µ−ρ
ρ ω−1

=: C(U, ψ)ω−
µ
ρ ,

where

C(U, ψ) :=
3

µ
‖ũ‖L∞(p1,p2) +

(
8 ‖ũ‖L∞(p1,p2) + 2 ‖ũ′‖L1(p1,p2)

)
m−1 .
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• Case
(
p0−p1

2

)−ρ
< ω 6 (p2 − p0)−ρ. As above, we define δ := ω−

1
ρ and we consider

the following splitting of the integral:∫ p2

p1

U(p) eiωψ(p) dp =

∫ p1+δ

p1

. . . +

∫ p0−δ

p1+δ

. . . +

∫ p0

p0−δ
. . . +

∫ p2

p0

. . . .

The three first integrals can be estimated using the methods of the first case, whereas
the last integral can be controlled as follows,∣∣∣∣∫ p2

p0

U(p) eiωψ(p) dp

∣∣∣∣ 6 ‖ũ‖L∞(p1,p2)

µ

(
(p2 − p1)µ − (p0 − p1)µ

)
6
‖ũ‖L∞(p1,p2)

µ
(p2 − p0)µ (3.6)

6
‖ũ‖L∞(p1,p2)

µ
δµ , (3.7)

where we used Lemma 3.1.2 to obtain inequality (3.6) and the fact that p2− p0 6 δ
to establish inequality (3.7). These arguments lead to∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 ∣∣∣∣∫ p1+δ

p1

. . .

∣∣∣∣ +

∣∣∣∣∫ p0−δ

p1+δ

. . .

∣∣∣∣ +

∣∣∣∣∫ p0

p0−δ
. . .

∣∣∣∣ +

∣∣∣∣∫ p2

p0

. . .

∣∣∣∣
6
‖ũ‖L∞(p1,p2)

µ
δµ +

(
4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 δµ−ρ ω−1

+
‖ũ‖L∞(p1,p2)

µ
δµ +

‖ũ‖L∞(p1,p2)

µ
δµ ; (3.8)

Replacing δ by ω−
1
ρ and observing that the constant which appears in (3.8) is smaller

than C(U, ψ) provides ∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 C(U, ψ)ω−
µ
ρ .

• Case ω 6
(
p0−p1

2

)−ρ
. In this last case, we split the integral at the point p0 and using

the fact that ω 6
(
p0−p1

2

)−ρ
6 (p2 − p0)−ρ, we obtain∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 ∣∣∣∣∫ p0

p1

. . .

∣∣∣∣ +

∣∣∣∣∫ p2

p0

. . .

∣∣∣∣
6
‖ũ‖L∞(p1,p2)

µ

(
(p0 − p1)µ + (p2 − p0)µ

)
6 3
‖ũ‖L∞(p1,p2)

µ
ω−

µ
ρ .

We see that C(U, ψ) is larger than the constant appearing in the right-hand side of
the preceding inequality, leading to the result in this case.

Finally the desired estimate holds also for p0 = p1 and p0 = p2, since it is sufficient to
adapt slightly the different splittings of the integral used in the present proof, and to
carry out the same steps.
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3.1.5 Remark. i) The choice of the splitting points is optimal in view of the final
decay rate. To prove that, we follow the indication given in the proof of Lemma
4.3 of [32]. Let us choose δ > 0 sufficiently small to split the oscillatory integral as
follows,∫ p2

p1

U(p) eiωψ(p) dp =

∫ p1+δ

p1

. . . +

∫ p0−δ

p1+δ

. . . +

∫ p0+δ

p0−δ
. . . +

∫ p2

p0+δ

. . . .

Applying the method employed in the case of large ω in the preceding proof gives
an estimate of the form ∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 fω(δ) ,

where fω(δ) := c1δ
µ + c2 ω

−1δµ−ρ, for certain constants c1, c2 > 0. We note that
(fω)′ vanishes at a unique point δ0 defined by

δ0 :=

(
µ

ρ− µ
c1

c2

)− 1
ρ

ω−
1
ρ .

Since lim
δ→0+

fω(δ) = lim
δ→+∞

fω(δ) = +∞, δ0 is then the minimum of fω. Therefore the

choice δ = ω−
1
ρ is optimal regarding the decay rate.

In particular, this splitting which depends on the parameter ω requires a decompo-
sition of the proof with respect to the size of ω. Indeed, the ω-dependent cutting-
points may leave the integration interval when ω is not sufficiently large.
And we note that the constant C(U, ψ) may not be optimal since we do not choose
exactly the minimum of fω for simplicity.

ii) Though the constant is surely not optimal, it could be slightly improved in the case
of regular amplitudes, namely µ = 1 with U = ũ. Indeed, the study of I(1)(ω) is not
necessary in this situation and inequality (3.4) can be simplified as follows,∫ p0−δ

p1

∣∣U ′(p)∣∣ dp 6 ‖ũ′‖L1(p1,p2) .

It follows that we can estimate I(2)(ω) and I(4)(ω) more precisely,∣∣∣I(j)(ω)
∣∣∣ 6 (3 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 δ1−ρ ω−1 , (3.9)

with j = 2, 4, leading to

C(U, ψ) := 2 ‖ũ‖L∞(p1,p2) +
(

6 ‖ũ‖L∞(p1,p2) + 2 ‖ũ′‖L1(p1,p2)

)
m−1 .

This refined constant will be used several times in Chapter 4, Section 4.1.

In our second result, we assume that the stationary point p0 is outside the interval
of integration [p1, p2]. In this case, the derivative of the phase function does not vanish
inside the integration interval but it can be arbitrarily close to 0 if the stationary point
is close to this interval. The estimate that we provide does not depend on the position
of the stationary point outside [p1, p2], which makes that the resulting decay rate is the
same as the one obtained in our first theorem. We follow the lines of the proof of Theorem
3.1.3 to prove the following result.
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3.1.6 Theorem. Let ρ > 1, µ ∈ (0, 1] and choose p0 ∈ I\[p1, p2]. Suppose that the
functions ψ : I −→ R and U : (p1, p2] −→ C satisfy Assumption (P2p0,ρ) and Assumption
(A2p1,µ), respectively. Moreover suppose that ψ′ is monotone on [p1, p2]. Then we have∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 C̃(U, ψ)ω−
µ
ρ ,

for all ω > 0, where the constant C̃(U, ψ) > 0 is given by

C̃(U, ψ) :=
2

µ
‖ũ‖L∞(p1,p2) +

(
4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)(
min

p∈[p1,p2]

∣∣∣ψ̃(p)
∣∣∣)−1

.

Proof. We divide the proof with respect to the value of ω.

• Case ω >
(
p2−p1

2

)−ρ
. We define δ := ω−

1
ρ and we split the integral,∫ p2

p1

U(p) eiωψ(p) dp =

∫ p1+δ

p1

. . . +

∫ p2−δ

p1+δ

. . . +

∫ p2

p2−δ
. . .

=: Ĩ(1)(ω) + Ĩ(2)(ω) + Ĩ(3)(ω) ,

where Ĩ(1)(ω) and Ĩ(3)(ω) are bounded from above by
‖ũ‖L∞(p1,p2)

µ
δµ. To estimate

the integral Ĩ(2)(ω), we follow the lines of the method employed to study the integral
I(2)(ω) in the proof of Theorem 3.1.3, which provides∣∣∣Ĩ(2)(ω)

∣∣∣ 6 (4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 δµ−ρ ω−1 ;

we used the fact that

∀ p ∈ [p1 + δ, p2 − δ]
∣∣U(p)

∣∣ 6 δµ−1‖ũ‖L∞(p1,p2) ,

and

∀ p ∈ [p1 + δ, p2 − δ]
∣∣ψ′(p)∣∣ > { (p1 + δ − p0)ρ−1m > δρ−1m , if p0 < p1 ,

(p0 − p2 + δ)ρ−1m > δρ−1m , if p0 > p2 ,

with m := min
p∈[p1,p2]

∣∣∣ψ̃(p)
∣∣∣. Finally we replace δ by ω−

1
ρ to conclude this case.

• Case ω 6
(
p2−p1

2

)−ρ
. Here we have∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 ‖ũ‖L∞(p1,p2)

µ
(p2 − p1)µ 6 2

‖ũ‖L∞(p1,p2)

µ
ω−

µ
ρ 6 C̃(U, ψ)ω−

µ
ρ ,

which ends the proof.
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3.1.7 Remark. In the case of regular amplitudes, one can use the estimate (3.9) of I(2)(ω)
provided in Remark 3.1.5. In this situation, the constant C̃(U, ψ) becomes

C̃(U, ψ) := 2 ‖ũ‖L∞(p1,p2) +
(

3 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)(
min

p∈[p1,p2]

∣∣∣ψ̃(p)
∣∣∣)−1

.

The following theorem is a consequence of the two previous results. We give an
estimate of the oscillatory integral which does not depend on the position of the stationary
point, which can be either inside the integration interval (setting of Theorem 3.1.3) or
outside (setting of Theorem 3.1.6) .

3.1.8 Theorem. Let ρ > 1, µ ∈ (0, 1] and choose p0 ∈ I. Suppose that the functions
ψ : I −→ R and U : (p1, p2] −→ C satisfy Assumption (P2p0,ρ) and Assumption (A2p1,µ),
respectively. Moreover suppose that ψ′ is monotone on I−p0 and I+

p0
, where

I−p0 :=
{
p ∈ I

∣∣ p < p0

}
, I+

p0
:=
{
p ∈ I

∣∣ p > p0

}
.

Then we have ∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 C(U, ψ)ω−
µ
ρ ,

for all ω > 0, where the constant C(U, ψ) > 0 is given by

C(U, ψ) :=
3

µ
‖ũ‖L∞(p1,p2) +

(
8 ‖ũ‖L∞(p1,p2) + 2 ‖ũ′‖L1(p1,p2)

)(
min

p∈[p1,p2]

∣∣∣ψ̃(p)
∣∣∣)−1

.

Proof. Let us distinguish two cases.

• Case p0 ∈ [p1, p2]. This corresponds to the setting of Theorem 3.1.3 and so the

integral is bounded by C(U, ψ)ω−
µ
ρ , where C(U, ψ) is given in Theorem 3.1.3.

• Case p0 /∈ [p1, p2]. In this case, either [p1, p2] ⊂ I−p0 or [p1, p2] ⊂ I+
p0

. Since ψ′ is
assumed monotone on both intervals I−p0 and I+

p0
, Theorem 3.1.6 is applicable and

then the integral is bounded by C̃(U, ψ)ω−
µ
ρ , where C̃(U, ψ) is given in Theorem

3.1.6.

Finally we remark that C̃(U, ψ) 6 C(U, ψ), which concludes the proof.

3.1.9 Remark. As previously, we furnish a more precise constant in the case of regular
amplitudes:

C(U, ψ) := 2 ‖ũ‖L∞(p1,p2) +
(

6 ‖ũ‖L∞(p1,p2) + 2 ‖ũ′‖L1(p1,p2)

)(
min

p∈[p1,p2]

∣∣∣ψ̃(p)
∣∣∣)−1

.

In the following theorem, we prove the optimality of the decay rate given in Theorem
3.1.8 under slightly stronger conditions. We show in fact that this decay rate is attained
in the case of p0 = p1, where one can expect a superposition of the effects of the stationary
point p0 and the amplitude singularity p1.
Technically this result is based on an asymptotic expansion of the oscillatory integral to
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one term in this case. We use Theorem 1.1.3 and Theorem 1.1.7 of Chapter 1 which
are versions of the stationary phase method with explicit error estimates. We recall that
Theorem 1.1.3, which covers the case of singular amplitudes, has been stated in [16] with
only rough indications of the steps of the proof. In Chapter 1, we have carried out all the
details of the proof. Theorem 1.1.7 is an improvement of the expansion result in [16] for
the case of regular amplitudes (µ = 1).

3.1.10 Theorem. Suppose that the hypotheses of Theorem 3.1.8 are satisfied. In addition
to this, we assume that ψ̃ is right continuously differentiable at p0 and ũ ∈ C1

(
[p1, p2],C

)
with ũ(p1) 6= 0.

Then the decay rate ω−
µ
ρ given in Theorem 3.1.8 is optimal and it is attained for p0 = p1.

Proof. First of all, let us suppose that p0 = p1. Since the phase ψ satisfies Assumption
(P2p1,ρ) in this case, the function ψ̃ has a constant sign on (p1, p2] and it belongs to
C1
(
(p1, p2],R

)
. Hence the fact that ψ̃ is supposed to be right continuously differentiable

at p0 = p1 implies that ψ̃ has a constant sign on [p1, p2] and it belongs to C1
(
[p1, p2],R

)
.

Now let us suppose that ψ̃ > 0 on [p1, p2] without loss of generality. Hence the hypotheses
of Theorem 1.1.3 in the case N = 1, ρ1 = ρ, ρ2 = 1, µ1 = µ and µ2 = 1 are satisfied and
we obtain the following asymptotic expansion of the oscillatory integral with remainder
estimates,

∀ω > 0

∫ p2

p1

U(p) eiωψ(p) dp =
∑
j=1,2

(
A

(j)
1 (ω) +R

(j)
1 (ω)

)
,

where

• A
(1)
1 (ω) :=

ρ
µ
ρ

ρ
Γ
(µ
ρ

)
ei
π
2
µ
ρ eiωψ(p1) ũ(p1)

ψ̃(p1)
µ
ρ

ω−
µ
ρ ,

• A
(2)
1 (ω) := e−i

π
2 eiωψ(p2) U(p2)

ψ′(p2)
ω−1 ,

•
∣∣∣R(1)

1 (ω)
∣∣∣ 6 C(1)(U, ψ, ν)ω−

1
ρ ,

•
∣∣∣R(2)

1 (ω)
∣∣∣ 6 C(2)(U, ψ, ν)ω−1 .

The constants C(1)(U, ψ, ν) and C(2)(U, ψ, ν, ) are independent from ω but both depend on
a smooth cut-off function ν which separates the points p1 and p2. The above asymptotic
expansion combined with the remainder estimates shows that ω−

µ
ρ is the optimal decay

rate.
Let us remark that if µ = 1, then Theorem 1.1.3 gives the same decay rate for the first

term A
(1)
1 (ω) and for the remainder term R

(1)
1 (ω), namely ω−

1
ρ . To avoid this situation,

one can employ Theorem 1.1.7 which furnishes an estimate of R
(1)
1 (ω) with a better decay

rate than ω−
1
ρ , and this fact assures that ω−

1
ρ is still the optimal decay rate for the

oscillatory integral.

3.1.11 Remark. Theorem 3.1.10 holds also when µ = 1 and ũ(p1) = 0, and in this case,

the optimal decay rate ω−
1
ρ is attained for p0 = p̃, if p̃ ∈ [p1, p2] satisfies ũ(p̃) 6= 0. To
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prove that, one can split the integral at p̃ and apply the stationary phase method to the
two resulting integrals as in the preceding proof. We do not state this case in Theorem
3.1.10 in favour of readability.

3.2 Non-vanishing first derivative of the phase: im-

provement of the decay rate

In this section, we suppose the absence of a stationary point inside the integration inter-
val. More precisely we assume that the phase function is twice continuously differentiable
and that its first derivative does not vanish on [p1, p2]. We obtain the decay rate ω−µ for
singular amplitudes satisfying Assumption (A2p1,µ).

When we want to apply the following result in the setting of Theorem 3.1.6 for com-
parison, we must suppose that the phase function is defined on an open interval I which
contains [p1, p2] and that the stationary point p0 of order ρ − 1 of the phase belongs to
I\[p1, p2], in other words it is outside the integration interval. In this case, Theorem 3.2.1

furnishes the better decay rate ω−µ as compared with the decay rate ω−
µ
ρ given in Theo-

rem 3.1.6. Nevertheless the constant Cc(U, ψ) of Theorem 3.2.1 tends to infinity when p0

tends to p1 or p2, while the constant C̃(U, ψ) provided in Theorem 3.1.6 is uniform with
respect to the distance between p0 and [p1, p2].

3.2.1 Theorem. Let µ ∈ (0, 1]. Suppose that the function U : (p1, p2] −→ C satisfies
Assumption (A2p1,µ). Moreover suppose that ψ : I −→ R belongs to C2

(
[p1, p2]

)
, and that

ψ′ does not vanish and is monotone on [p1, p2]. Then we have∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 Cc(U, ψ)ω−µ ,

for all ω > 0, where the constant Cc(U, ψ) > 0 is given by

Cc(U, ψ) :=
1

µ
‖ũ‖L∞(p1,p2) +

(
4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)(
min

p∈[p1,p2]

∣∣ψ′(p)∣∣)−1

.

Proof. We divide the proof with respect to ω one more time.

• Case ω > (p2 − p1)−1. We define δ := ω−1 and we consider the following splitting,∫ p2

p1

U(p) eiωψ(p) dp =

∫ p1+δ

p1

. . . +

∫ p2

p1+δ

. . .

=: I(1)
c (ω) + I(2)

c (ω) .

The integral I
(1)
c (ω) is bounded by

‖ũ‖L∞(p1,p2)

µ
δµ. Then we use the method em-

ployed to study the integral I(2)(ω) in the proof Theorem 3.1.3 in order to bound

I
(2)
c (ω), since ψ′ does not vanish on [p1, p2]. But here, we bound |ψ′| from below by
min

p∈[p1,p2]
|ψ′(p)| =: m > 0, leading to∣∣∣I(2)

c (ω)
∣∣∣ 6 (4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 δµ−1ω−1 .
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3.2. Non-vanishing first derivative of the phase: improvement of the decay rate

Finally we replace δ by ω−1 to conclude this case.

• Case ω 6 (p2 − p1)−1. We have∣∣∣∣∫ p2

p1

U(p) eiωψ(p) dp

∣∣∣∣ 6 ‖ũ‖L∞(p1,p2)

µ
(p2 − p1)µ 6

‖ũ‖L∞(p1,p2)

µ
ω−µ ,

and we conclude the proof by noting that the constant which appears in the pre-
ceding inequality is smaller than Cc(U, ψ).

3.2.2 Remark. Let us furnish a refinement of the constant Cc(U, ψ) in the case of regular

amplitudes. Here the integral I
(1)
c (ω) is not needed and according to Remark 3.1.5, the

estimate of I
(2)
c (ω) is improvable. Then we obtain

Cc(U, ψ) :=
(

3 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)(
min

p∈[p1,p2]

∣∣ψ′(p)∣∣)−1

.

In the last theorem of this chapter, we prove the optimality of the decay rate given
in Theorem 3.2.1 by applying Theorem 1.1.3 and Theorem 1.1.7, as we did in Theorem
3.1.10.

3.2.3 Theorem. Suppose that the hypotheses of Theorem 3.2.1 are satisfied. In addition
to this, we assume that ũ ∈ C1

(
[p1, p2],C

)
with ũ(p1) 6= 0.

Then the decay rate ω−µ given in Theorem 3.2.1 is optimal.

Proof. As in the proof of Theorem 3.1.10, we apply Theorem 1.1.3 whose hypotheses are
satisfied in the case N = 1, ρ1 = ρ2 = 1, µ1 = µ and µ2 = 1. A new asymptotic expansion
of the oscillatory integral with remainder estimates is then obtained,

∀ω > 0

∫ p2

p1

U(p) eiωψ(p) dp =
∑
j=1,2

(
Ã

(j)
1 (ω) + R̃

(j)
1 (ω)

)
,

where

• Ã
(1)
1 (ω) := Γ(µ) ei

π
2
µ eiωψ(p1) ũ(p1)

ψ′(p1)µ
ω−µ ,

• Ã
(2)
1 (ω) := e−i

π
2 eiωψ(p2) U(p2)

ψ′(p2)
ω−1 ,

•
∣∣∣R̃(1)

1 (ω)
∣∣∣ 6 C̃(1)(U, ψ, ν)ω−1 ,

•
∣∣∣R̃(2)

1 (ω)
∣∣∣ 6 C̃(2)(U, ψ, ν)ω−1 .

As in the proof of Theorem 3.1.10, ν is a smooth cut-off function separating the points p1

and p2, and the constants C̃(1)(U, ψ, ν) and C̃(2)(U, ψ, ν, ) are independent from ω. Hence
we can conclude that ω−µ is the optimal decay rate.
And if µ = 1, then we employ Theorem 1.1.7 to obtain more precise estimates for R̃

(1)
1 (ω)

and R̃
(2)
1 (ω), furnishing better decay rates than ω−1 for these remainder terms, and so

ω−1 is still the optimal decay rate.
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Chapter 3. Optimal van der Corput estimates describing the interaction between a
stationary point of the phase and a singularity of the amplitude

3.2.4 Remark. When µ = 1 and ũ(p1) = ũ(p2) = 0, the decay rate may be faster than
ω−1. In this case, it depends on the regularity of ψ and U , and on the values of the
successive derivatives of these functions at the endpoints of the integration interval (see
[27, page 331]).
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Chapter 4

Applications to evolution equations
given by Fourier multipliers covering
Schrödinger-type and hyperbolic
examples

Abstract

In this chapter, we consider a family of dispersive equations on the line de-
fined by Fourier multipliers, where the Fourier transform of the initial data is
compactly supported or has a singular point. By applying the van der Cor-
put type estimates provided in Chapter 3 to the solution formulas, we obtain
uniform estimates of the solutions in space-time cones as well as in their com-
plements. This type of results permits to exhibit the effect of a restriction to
compact frequency bands and of singular frequencies on the time-decay of the
solutions. Furthermore under certain restrictions on the growth of the symbol
at infinity, we show that the solutions are time-asymptotically concentrated in
a cone which depends on the symbol only. This corresponds to an asymptotic
version of the notion of causality for initial data without compact support.

Contents
4.1 Applications to a class of dispersive equations: influence of

frequency bands and singular frequencies on decay . . . . . . 100

4.2 An intrinsic concentration phenomenon caused by a limited
growth of the symbol . . . . . . . . . . . . . . . . . . . . . . . . 110
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Chapter 4. Applications to evolution equations given by Fourier multipliers covering
Schrödinger-type and hyperbolic examples

4.1 Applications to a class of dispersive equations:

influence of frequency bands and singular fre-

quencies on decay

In this section, we consider the class of evolution equations on the line defined by
Fourier multipliers whose symbols have a positive second derivative. We shall suppose
that the support of the Fourier transform of the initial condition is contained in a bounded
interval (called frequency band) or that this Fourier transform has a singular point of or-
der µ − 1 (called singular frequency), where µ ∈ (0, 1]. The influence of the frequency
band and the singular frequency on time-decay is studied by establishing estimates of the
solution inside certain space-time cones.

Let us describe the setting of this section: let f : R −→ R be a C∞-function such that
all derivatives grow at most as a polynomial at infinity. We can associate with such a
symbol f an operator f(D) : S(R) −→ S(R) defined by

∀x ∈ R f(D)u(x) :=
1

2π

∫
R
f(p)Fu(p) eixp dp = F−1

(
f Fu

)
(x) ,

where Fu is the Fourier transform of u ∈ S(R), namely Fu(p) =

∫
R
u(x) e−ixp dx. Since

all the derivatives of the symbol f grow at most as a polynomial at infinity, f(D) can
be extended to a map from the tempered distributions S ′(R) to itself. The operator
f(D) : S ′(R) −→ S ′(R) is called a Fourier multiplier.
Then for such an operator, we can introduce the following evolution equation on the line,{ [

i ∂t − f
(
D
)]
u(t) = 0

u(0) = u0

, (4.1)

for t > 0. Supposing u0 ∈ S ′(R), this initial value problem has a unique solution in
C1
(
R+,S ′(R)

)
, given by the following solution formula,

u(t) = F−1
(
e−itfFu0

)
. (4.2)

Throughout this section, we shall suppose that f ′′ > 0. In particular, the free Schrödinger
equation on the line is included since its symbol fS is given by fS(p) = p2. Let us remark
that one can also establish similar results to those of the present section when the second
derivative of the symbol is supposed to be negative.

Now we give a new definition of a space-time cone C(a, b). Let us remark that the
definition of the cone CS(a, b), given in Definition 2.3.1 in Chapter 2 and used to study
the asymptotic behaviour of the Schrödinger equation, is in fact to the cone C(2 a, 2 b).

4.1.1 Definition. Let a < b be two real numbers (possibly infinite). We define the space-
time cone C(a, b) as follows:

C(a, b) :=
{

(t, x) ∈ (0,+∞)× R
∣∣∣ a < x

t
< b
}
.

Let C(a, b)c be the complement of the cone C(a, b) in (0,+∞)× R .
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4.1. Applications to a class of dispersive equations: influence of frequency bands and
singular frequencies on decay

In the first result of this section, we consider the solution of the above evolution equa-
tion (4.1) for initial data in a compact frequency band [p1, p2] where p1 is a singular
frequency. We furnish estimates with optimal decay rates of the solution inside a space-
time cone, which is related to the frequency band, as well as in its complement. The decay
rate is slower inside the cone than outside and in both cases, it is affected by the singular
frequency p1. The difference between the two rates shows that the solution tends to be
concentrated in the cone when the time tends to infinity. In Theorem 2.3.2 and Theorem
2.3.4 of Chapter 2, different decay rates have already been obtained in the Schrödinger
case by expanding the solution in certain space-time cones but without uniformity.
The first step of the proof is to rewrite the solution formula as an abstract oscillatory
integral. In particular, the resulting phase function depends explicitly on the parameters
x and t, and we show that this phase has at most one stationary point which depends on
the quotient x

t
. The following step is to apply the results of the preceding chapter. To do

so, we have to divide the proof with respect to the value of x
t
: if x

t
is in a neighborhood of

the integration interval, then we apply Theorem 3.1.8 of Chapter 3 leading to a uniform
estimate in the above mentioned cone with the slow decay t−

µ
2 . Otherwise, we obtain the

better decay rate t−µ outside the cone by applying Theorem 3.2.1. The optimality of the
rates is a direct consequence of Theorem 3.1.10 and Theorem 3.2.3.

Condition (C2[p1,p2],µ). Fix µ ∈ (0, 1] and let p1 < p2 be two finite real numbers.
A tempered distribution u0 on R satisfies Condition (C2[p1,p2],µ) if and only if Fu0 ≡ 0
on R\[p1, p2] and Fu0 verifies Assumption (A2p1,µ) (given in Chapter 3, Section 3.1) on
[p1, p2], where the regular factor ũ is supposed to belong to C1

(
[p1, p2],C

)
and ũ(p1) 6= 0.

Figure 4.1: Fourier transform of an initial datum satisfying Condition (C2[p1,p2],µ)

4.1.2 Remark. i) As for Condition (C1[p1,p2],µ) in Chapter 2, let us show that the
subset of tempered distributions satisfying Condition (C2[p1,p2],µ) is non-empty. In-
deed if a function U verifies Assumption (A2p1,µ) with suppU ⊆ [p1, p2] and with a
regular factor belonging to C1

(
[p1, p2],C

)
, then U is an integrable function and so

it belongs to S ′(R). Since the Fourier transform is a bijection on S ′(R), there exists
u0 ∈ S ′(R) such that U = Fu0, and hence u0 satisfies Condition (C2[p1,p2],µ).
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Chapter 4. Applications to evolution equations given by Fourier multipliers covering
Schrödinger-type and hyperbolic examples

ii) Since the support of Fu0 is contained in a compact interval, u0 is in fact an analytic
function on R.

iii) Condition (C2[p1,p2],µ) implies that the initial condition has a singular frequency
at the left endpoint of its compact frequency band. As explained just after the
statement of Assumption (A2p1,µ) in Chapter 3, Section 3.1, the result in the case
of a singular frequency inside the frequency band is analogous to the result stated
in Theorem 4.1.3.

iv) Thanks to the integrability of Fu0, the solution formula given in (4.2) defines a
function on (0,+∞)× R as follows,

∀ (t, x) ∈ (0,+∞)× R u(t, x) =
1

2π

∫
R
Fu0(p) e−itf(p)+ixp dp . (4.3)

4.1.3 Theorem. Suppose that u0 satisfies Condition (C2[p1,p2],µ) and choose two finite

real numbers p̃1 < p̃2 such that [p1, p2] ⊂ (p̃1, p̃2) =: Ĩ. Then we have

∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

) ∣∣u(t, x)
∣∣ 6 c(u0, f) t−

µ
2 ,

where the constant c(u0, f) > 0 is given by (4.5). Moreover we have

∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

)c ∣∣u(t, x)
∣∣ 6 cĨ(u0, f) t−µ ,

where the constant cĨ(u0, f) > 0 is given by (4.6). And the two decay rates are optimal.

Figure 4.2: Illustration of Theorem 4.1.3 in space-time

Proof. We consider the solution formula given by (4.3) and we factorize the phase function
p 7−→ xp− tf(p) by t, which gives

∀ (t, x) ∈ (0,+∞)× R u(t, x) =

∫ p2

p1

U(p) eitψ(p) dp ,
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where 
∀ p ∈ (p1, p2] U(p) :=

1

2π
Fu0(p) =

1

2π
(p− p1)µ−1 ũ(p) ,

∀ p ∈ R ψ(p) :=
x

t
p− f(p) .

By hypothesis, the function U verifies Assumption (A2p1,µ) on [p1, p2]. Moreover, we recall
that f ′′ is supposed to be positive on R, which implies that f ′ : R −→ f ′(R) is strictly
increasing. It follows that the function ψ′ given by

∀ p ∈ R ψ′(p) =
x

t
− f ′(p) ,

is strictly decreasing on R. In particular, if a stationary point p0 exists then it is unique
and it is defined by

p0 =
(
f ′
)−1
(x
t

)
.

Hence the existence of a stationary point as well as its position with respect to the
integration interval depends on the value of x

t
. This leads us to divide the rest of the

proof into two parts.

i) Case x
t
∈ f ′

(
Ĩ
)
. In this case, the stationary point p0 exists and it belongs to the

interval Ĩ := (p̃1, p̃2). Moreover the fact that ψ′′ = −f ′′ < 0 implies ψ′′(p0) 6= 0.
Consequently, according to Example 3.1.1 i), the function ψ : R −→ R satisfies
Assumption (P2p0,2) with

ψ̃(p) =


p− p0

|p− p0|

∫ 1

0

−f ′′
(
y(p− p0) + p0

)
dy , if p 6= p0 ,

−f ′′(p0) , if p = p0 ,

(4.4)

and
∣∣ψ̃(p)

∣∣ > m > 0 for all p ∈ [p1, p2], where m := min
p∈[p1,p2]

f ′′(p) > 0. So we can

apply Theorem 3.1.8 with ρ = 2, which gives

∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

) ∣∣u(t, x)
∣∣ =

∣∣∣∣∫ p2

p1

U(p) eitψ(p) dp

∣∣∣∣ 6 c(u0, f) t−
µ
2 ,

where

c(u0, f) :=
1

2π

3

µ
‖ũ‖L∞(p1,p2) +

1

π

(
4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1 . (4.5)

ii) Case x
t
/∈ f ′

(
Ĩ
)
. Firstly, let us suppose x

t
> f ′(p̃2). Here there is no stationary

points inside the integration interval and so it is possible to bound ψ′ from below
by a non-zero constant,

∀ p ∈ [p1, p2] ψ′(p) =
x

t
− f ′(p) > f ′(p̃2)− f ′(p2) =: mp̃2 > 0 .

Theorem 3.2.1 is then applicable and provides

∀ t > 0 ∀x > f ′(p̃2) t
∣∣u(t, x)

∣∣ 6 cx/t>f ′(p̃2)(u0, f) t−µ ,
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Chapter 4. Applications to evolution equations given by Fourier multipliers covering
Schrödinger-type and hyperbolic examples

with cx/t>f ′(p̃2)(u0, f) :=
1

2π

1

µ
‖ũ‖L∞(p1,p2) +

1

2π

(
4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m−1
p̃2

.

In the other case x
t
6 f ′(p̃1), similar arguments furnish

∀ t > 0 ∀x 6 f ′(p̃1) t
∣∣u(t, x)

∣∣ 6 cx/t6f ′(p̃1)(u0, f) t−µ ,

with cx/t6f ′(p̃2)(u0, f) :=
1

2π

1

µ
‖ũ‖L∞(p1,p2) +

1

2π

(
4 ‖ũ‖L∞(p1,p2) + ‖ũ′‖L1(p1,p2)

)
m −1
p̃1

,

where we set mp̃1 := f ′(p1)− f ′(p̃1) > 0.
So we can finally write

∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

)c ∣∣u(t, x)
∣∣ 6 cĨ(u0, f) t−µ ,

where

cĨ(u0, f) := cx/t>f ′(p̃2)(u0, f) + cx/t6f ′(p̃1)(u0, f) . (4.6)

To prove the optimality of the above rates, we recall that the regular factor of Fu0 is
supposed to be continuously differentiable on [p1, p2]. Hence Theorem 3.2.3 is applicable
and it furnishes the optimality of the rate t−µ in the region C

(
f ′(p̃1), f ′(p̃2)

)c
. Moreover

the definition of the function ψ̃ (see (4.4)) implies that this function is right continuously
differentiable at p0, so we can employ Theorem 3.1.10 to prove the optimality of the
rate t−

µ
2 in C

(
f ′(p̃1), f ′(p̃2)

)
. In particular, the decay rate is attained on the space-time

direction defined by x
t

= f ′(p̃1).

An L∞-norm estimate for the solution can be easily derived from the preceding result.

4.1.4 Theorem. Suppose that u0 satisfies Condition (C2[p1,p2],µ). Then we have

∀ t > 0
∥∥u(t, .)

∥∥
L∞(R)

6 c(u0, f) t−
µ
2 + cĨ(u0, f) t−µ ,

where the constants c(u0, f) > 0 and cĨ(u0, f) > 0 are given by (4.5) and (4.6) respectively.
In particular, we have

∀ t > 1
∥∥u(t, .)

∥∥
L∞(R)

6
(
c(u0, f) + cĨ(u0, f)

)
t−

µ
2 .

Proof. Simple consequence of Theorem 4.1.3.

As an application of the above theorem, we furnish an L∞-norm estimate of the
solution of the free Schrödinger equation on the line for initial data satisfying Condition
(C2[p1,p2],µ). The resulting decay rate is given by t−

µ
2 . Let us remark that this decay

rate has been obtained in Theorem 2.3.6 by expanding the solution to one term on the
space-time direction given by x

t
= 2 p1.

4.1.5 Corollary. Let uS ∈ C1
(
R+,S ′(R)

)
be the solution of the free Schrödinger equation

on R, { [
i ∂t + ∂xx

]
u(t) = 0

u(0) = u0

,
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for t > 0, where u0 satisfies Condition (C2[p1,p2],µ). Then uS defines a complex-valued
function on (0,+∞)× R which satisfies

∀ t > 1
∥∥uS(t, .)

∥∥
L∞(R)

6 c(u0, fS) t−
µ
2 ,

where the constant c(u0, fS) > 0 can be computed from Theorem 4.1.4, and the decay rate
is optimal.

Proof. Remark 4.1.2 iv) assures that uS defines a function on (0,+∞)×R. Then we apply
Theorem 4.1.4 in the case fS(p) = p2, which gives the differential operator −∂xx.

In the following result, we establish estimates of the solution in arbitrarily narrow
cones containing the space-time direction x

t
= f ′(p1). In such regions, the phase function,

coming from the rewriting of the solution as an oscillatory integral, has a stationary point
which is in a neighbourhood of the singular frequency p1. In this context, these two par-
ticular points are expected to interact with each other, producing the slow decay t−

µ
2 .

Here we do not require the initial data to be in frequency bands anymore. This permits to
remove the concentration phenomenon produced by the frequency band, which has been
exhibited in Theorem 4.1.3, and to focus only on the influence of the singular frequency
p1 on the decay rate in the above mentioned cones.

Condition (C3p1,µ). Fix µ ∈ (0, 1) and choose a finite real number p1.
A tempered distribution u0 on R satisfies Condition (C3p1,µ) if and only if Fu0 ∈ L1(R)
and there exists a bounded differentiable function ũ : R −→ C such that ũ(p1) 6= 0,
ũ′ ∈ L1(R) and

∀ p ∈ R \ {p1} Fu0(p) = |p− p1|µ−1 ũ(p) .

Figure 4.3: Fourier transform of an initial datum satisfying Condition (C3p1,µ)

4.1.6 Remark. i) One can follow the lines of the point i) of Remark 4.1.2 to ensure
that the subset of tempered distributions satisfying Condition (C3p1,µ) is non-empty.
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ii) Here u0 is at least a continuous function on R but it is not necessarily analytic.
Furthermore the solution formula (4.3) is still well-defined for all t > 0 and x ∈ R.

4.1.7 Theorem. Suppose that u0 satisfies Condition (C3p1,µ) and choose a finite real
number ε > 0. Then for all (t, x) ∈ C

(
f ′(p1 − ε), f ′(p1 + ε)

)
, we have∣∣u(t, x)

∣∣ 6 c(1)(u0, f) t−
µ
2 + c(2)

ε (u0, f) t−1 .

The constants c(1)(u0, f) and c
(2)
ε (u0, f) are given by (4.7) and (4.9) respectively.

Proof. We shall employ the rewritting of the solution given in the proof of Theorem 4.1.3,
i.e.

∀ (t, x) ∈ (0,+∞)× R u(t, x) =

∫
R
U(p) eitψ(p) dp ,

where 
∀ p ∈ R \ {p1} U(p) :=

1

2π
Fu0(p) =

1

2π
|p− p1|µ−1 ũ(p) ,

∀ p ∈ R ψ(p) :=
x

t
p− f(p) .

Let ε > 0, choose a finite real number η > 0 such that η > ε (for example η = ε+ 1) and
split the integral as follows,∫

R
U(p) eitψ(p) dp =

∫ p1+η

p1−η
. . . +

∫
R\[p1−η,p1+η]

. . .

=: I(1)(t, x, η) + I(2)(t, x, η) .

Firstly we study I(1)(t, x, η). We recall that

ψ′(p) =
x

t
− f ′(p) ;

since
x

t
is supposed to belong to

(
f ′(p1 − ε), f ′(p1 + ε)

)
, then ψ has a stationary point

which belongs to (p1− ε, p1 + ε) ⊂ [p1−η, p1 +η]. Following the arguments of the point i)
of the proof of Theorem 4.1.3, we apply Theorem 3.1.3 on [p1 − η, p1] and on [p1, p1 + η]
with ρ = 2, leading to∣∣∣I(1)(t, x, η)

∣∣∣ 6 ∣∣∣∣∫ p1

p1−η
. . .

∣∣∣∣+

∣∣∣∣∫ p1+η

p1

. . .

∣∣∣∣ 6 (c(1)
1 (u0, f) + c

(1)
2 (u0, f)

)
t−

µ
2 ,

where

• c
(1)
1 (u0, f) :=

1

2π

3

µ
‖ũ‖L∞(p1−η,p1) +

1

π

(
4 ‖ũ‖L∞(p1−η,p1) + ‖ũ′‖L1(p1−η,p1)

)
m −1

1,η ,

• c
(1)
2 (u0, f) :=

1

2π

3

µ
‖ũ‖L∞(p1,p1+η) +

1

π

(
4 ‖ũ‖L∞(p1,p1+η) + ‖ũ′‖L1(p1,p1+η)

)
m −1

2,η ,

with m1,η := min
p∈[p1−η,p1]

f ′′(p) > 0 and m2,η := min
p∈[p1,p1+η]

f ′′(p) > 0. The constant c(1)(u0, f)

is then defined by
c(1)(u0, f) := c

(1)
1 (u0, f) + c

(1)
2 (u0, f) . (4.7)
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Let us study I(2)(t, x, η). Let k ∈ N and consider the following sequence,

Ĩ
(2)
k (t, x, η) :=

∫ p1+η+k

p1+η

U(p) eitψ(p) dp .

Since
x

t
∈
(
f ′(p1 − ε), f ′(p1 + ε)

)
, we note that the first derivative of the phase function

does not vanish on [p1 + η, p1 + η + k] and more precisely, we have for any k ∈ N,

∀ p ∈ [p1 + η, p1 + η + k]
∣∣ψ′(p)∣∣ = f ′(p)− x

t
> f ′(p1 + η)− f ′(p1 + ε) =: m̃1,η,ε > 0 .

Theorem 3.2.1 in the case µ = 1 furnishes for all (t, x) ∈ C
(
f ′(p1 − ε), f ′(p1 + ε)

)
,∣∣∣Ĩ(2)

k (t, x, η)
∣∣∣ 6 1

2π

(
3 ‖U‖L∞(p1+η,p1+η+k) + ‖U ′‖L1(p1+η,p1+η+k)

)
m̃ −1

1,η,ε t
−1 .

Now by using the hypotheses on the initial data, we give estimates for ‖U‖L∞(p1+η,p1+η+k)

and ‖U ′‖L1(p1+η,p1+η+k), namely,

• ∀ p ∈ [p1 + η, p1 + η + k]
∣∣U(p)

∣∣ 6 ηµ−1 ‖ũ‖L∞(R) ,

•
∫ p1+η+k

p1+η

∣∣U ′(p)∣∣dp 6 ηµ−1
(
‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
.

Consequently, Ĩ
(k)
2 (t, x, η) can be estimated as follows,∣∣∣Ĩ(2)
k (t, x, η)

∣∣∣ 6 1

2π
ηµ−1

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

1,η,ε t
−1 . (4.8)

Using the dominated convergence Theorem which claims that

lim
k→+∞

Ĩ
(2)
k (t, x, η) =

∫ +∞

p1+η

U(p) eitψ(p)dp ,

we can take the limit in (4.8) providing∣∣∣∣∫ +∞

p1+η

U(p) eitψ(p)dp

∣∣∣∣ 6 c
(2)
1,ε(u0, f) t−1 ,

with

c
(2)
1,ε(u0, f) :=

1

2π
ηµ−1

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

1,η,ε .

Similar arguments furnish the following estimate,

∀ (t, x) ∈ C
(
f ′(p1 − ε), f ′(p1 + ε)

) ∣∣∣∣∫ p1−η

−∞
U(p) eitψ(p)dp

∣∣∣∣ 6 c
(2)
2,ε(u0, f) t−1 ,

with

c
(2)
2,ε(u0, f) :=

1

2π
ηµ−1

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

2,η,ε ,
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where m̃2,η,ε := f ′(p1 − ε)− f ′(p1 − η) > 0.
Finally, by setting

c(2)
ε (u0, f) := c

(2)
1,ε(u0, f) + c

(2)
2,ε(u0, f) , (4.9)

we obtain for all (t, x) ∈ C
(
f ′(p1 − ε), f ′(p1 + ε)

)
,∣∣∣I(2)(t, x, η)

∣∣∣ 6 ∣∣∣∣∫ p1−η

−∞
. . .

∣∣∣∣+

∣∣∣∣∫ +∞

p1+η

. . .

∣∣∣∣ 6 c(2)
ε (u0, f) t−1 ,

which ends the proof.

Now we provide estimates of the solution in space-time cones which do not contain the
critical direction given by the singular frequency. In this case, the distance between the
stationary point and the singular frequency is bounded from below by a positive constant,
which removes the superposition of the effects of these particular points. Hence these two
points provide two distinct decay rates: t−

1
2 coming from the stationary point and t−µ

coming from the singular frequency. We note that these two rates are better than t−
µ
2 .

Theorem 4.1.8 combined with Theorem 4.1.7 highlights the fact that the influence of the
singular frequency p1 on the decay rate is stronger in space-time regions containing the
direction given by p1. These results can be compared with Theorem 2.3.7 of Chapter 2. In
the latter, we have furnished estimates of the solution of the free Schrödinger equation in
space-time regions along the direction x

t
= 2 p1, and this direction is outside the regions.

The estimates show that the decay rate diminishes when the boundary of the region
approaches the direction given by p1.

4.1.8 Theorem. Suppose that u0 satisfies Condition (C3p1,µ) and choose two finite real
numbers p̃1 < p̃2 such that p1 /∈ [p̃1, p̃2]. Then for all (t, x) ∈ C

(
f ′(p̃1), f ′(p̃2)

)
, we have∣∣u(t, x)

∣∣ 6 c
(1)
p̃1,p̃2

(u0, f) t−
1
2 + c

(2)
p̃1,p̃2

(u0, f) t−µ + c
(3)
p̃1,p̃2

(u0, f) t−1 .

The constants c
(1)
p̃1,p̃2

(u0, f), c
(2)
p̃1,p̃2

(u0, f) and c
(3)
p̃1,p̃2

(u0, f) are given by (4.10), (4.13) and
(4.14) respectively.

Proof. The calculations in the present proof are similar to those of the proof of Theorem
4.1.7. Thus we give only the main steps of the proof of Theorem 4.1.8.
Let η ∈

(
0,min{|p̃1 − p1|, |p̃2 − p1|}

)
and split the integral as follows,

u(t, x) =

∫
R
U(p) eitψ(p) dp =

∫ p̃2+η

p̃1−η
. . . +

∫
R\[p̃1−η,p̃2+η]

. . .

=: I(1)(t, x, η) + I(2)(t, x, η) ,

On the interval [p̃1−η, p̃2 +η], the phase has a unique stationary point and the amplitude
has no singular points. Theorem 3.1.3 is applicable with ρ = 2 and µ = 1, and it leads to

∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

) ∣∣∣I(1)(t, x, η)
∣∣∣ 6 c

(1)
p̃1,p̃2

(u0, f) t−
1
2 ,
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Figure 4.4: Illustration of Theorem 4.1.7 and Theorem 4.1.8 in space-time

where

c
(1)
p̃1,p̃2

(u0, f) :=



(p̃1 − η − p1)µ−1

π

(
‖ũ‖L∞(R)

+
(

4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m −1

1,p̃1,p̃2

)
, if p1 < p̃1 ,

(p1 − p̃2 − η)µ−1

π

(
‖ũ‖L∞(R)

+
(

4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m −1

1,p̃1,p̃2

)
, if p1 > p̃2 ,

(4.10)

with m1,p̃1,p̃2 := min
p∈[p̃1−η,p̃2+η]

f ′′(p) > 0.

Now let us study I(2)(t, x, η). First of all, we remark that we integrate over two infinite
intervals such that one of them contains the singular frequency p1. Consequently we shall
suppose that p1 < p̃1 without loss of generality; the other case p1 > p̃2 can be treated in
a similar way.
We consider the following sequence,

∀ k ∈ N∗ Ĩ
(2)
k (t, x, η) :=

∫ p̃1−η

p1−k
U(p) eitψ(p) dp .

We note that [p1− k, p̃1− η] contains the singular frequency p1 and ψ′ does not vanish on
this interval, and thus Theorem 3.2.1 is applicable on [p1−k, p1] and on [p1, p̃1−η]. Then
we take the limit when k tends to infinity by using the dominated convergence Theorem
and we obtain

∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

) ∣∣∣∣∫ p̃1−η

−∞
U(p) eitψ(p) dp

∣∣∣∣ 6 c
(2)
p̃1,p̃2

(u0, f) t−µ , (4.11)
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where

c
(2)
p̃1,p̃2

(u0, f) :=
1

π

(
1

µ
‖ũ‖L∞(R) +

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

2,p̃1

)
,

with m̃2,p̃1 := f ′(p̃1)− f ′(p̃1 − η) > 0. To study the integral on the other infinite interval,

we define Ĩ
(3)
k (t, x, η) as follows,

∀ k ∈ N∗ Ĩ
(3)
k (t, x, η) :=

∫ p̃2+η+k

p̃2+η

U(p) eitψ(p) dp .

Here there is no singular frequency or stationary point, therefore Theorem 3.2.1 in the
case µ = 1 is applicable and it furnishes

∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

) ∣∣∣∣∫ +∞

p̃2+η

U(p) eitψ(p) dp

∣∣∣∣ 6 c
(3)
p̃1,p̃2

(u0, f) t−1 , (4.12)

where

c
(3)
p̃1,p̃2

(u0, f) :=
(p̃2 + η − p1)µ−1

2π

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

3,p̃2
,

with m̃3,p̃2 := f ′(p̃2 + η)− f ′(p̃2) > 0.
Consequently we derive the following estimate for I(2)(t, x, η) in the case p1 < p̃1 from
(4.11) and (4.12),

∀ (t, x) ∈ C
(
f ′(p̃1), f ′(p̃2)

) ∣∣∣I(2)(t, x, η)
∣∣∣ 6 c

(2)
p̃1,p̃2

(u0, f) t−µ + c
(3)
p̃1,p̃2

(u0, f) t−1 .

To conclude, we provide the values of the constants c
(2)
p̃1,p̃2

(u0, f) and c
(3)
p̃1,p̃2

(u0, f) depending
on the position of p1 with respect to the interval [p̃1, p̃2]:

• c
(2)
p̃1,p̃2

(u0, f) :=


1

π

(
1

µ
‖ũ‖L∞(R) +

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

2,p̃1

)
, if p1 < p̃1 ,

1

π

(
1

µ
‖ũ‖L∞(R) +

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

3,p̃2

)
, if p1 > p̃2 ,

(4.13)

• c
(3)
p̃1,p̃2

(u0, f) :=


(p̃2 + η − p1)µ−1

2π

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

3,p̃2
, if p1 < p̃1 ,

(p1 − p̃1 + η)µ−1

2π

(
4 ‖ũ‖L∞(R) + ‖ũ′‖L1(R)

)
m̃ −1

2,p̃1
, if p1 > p̃2 .

(4.14)

4.2 An intrinsic concentration phenomenon caused

by a limited growth of the symbol

In this section, we consider the evolution equation defined in Section 4.1 with the
additional hypothesis that the symbols have a growth limitation at infinity. In Theorem
4.2.4, we shall prove the existence of a space-time cone, depending on the symbol only,
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such that the decay rate of the solution inside this cone is slower than outside. This result
highlights a concentration phenomenon of the solution in this cone when the time tends to
infinity, which can be viewed as an asymptotic notion of causality for initial data without
compact support.

We recall that we study the evolution equation on the line given by{ [
i ∂t − f

(
D
)]
u(t) = 0

u(0) = u0

,

for t > 0. Throughout this section, the symbol f will satisfy the following condition:

Condition (Sβ+,β−,R). Fix β− > β+ > 1 and R > 1.
A C∞-function f : R −→ R satisfies Condition (Sβ+,β−,R) if and only if the second deriva-
tive of f is positive on R and verifies

∃ c+ > c− > 0 ∀ |p| > R c− |p|−β− 6 f ′′(p) 6 c+ |p|−β+ . (4.15)

Figure 4.5: Second derivative of a symbol satisfying Condition (Sβ+,β−,R)

Let us state in the next lemma two important properties for a function f satisfying the
above condition. The first property shows that f ′(R) = (a, b) where a and b are the limits
of f ′ at infinity. The existence of the above mentioned cone depending only on the symbol
is a consequence of this first property. Indeed by recalling that the stationary point p0

of the phase related to the solution formula (4.3) satisfies f ′(p0) = x
t
, we see that either

x
t

belongs to (a, b) leading to the space-time cone C(a, b), or it is outside (a, b) providing
the complement of C(a, b). The second property furnishes estimates from below of the
distance between f ′ and its limits at infinity. This property will be necessary to carry out
the proof of Theorem 4.2.4.

4.2.1 Lemma. Let f : R −→ R be a function satisfying Condition (Sβ+,β−,R). Then

i) we have f ′(R) = (a, b) where

a := lim
p→−∞

f ′(p) , b := lim
p→+∞

f ′(p) ;
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ii) we have

• ∀ p > R b− f ′(p) > c−
β− − 1

p1−β− ,

• ∀ p 6 −R f ′(p)− a >
c−

β− − 1
(−p)1−β− .

Proof. i) On the compact interval [−R,R], the function f ′ is bounded since it is con-
tinuous. Now, using the right inequality in (4.15), we have for p > R,

f ′(p)− f ′(R) =

∫ p

R

f ′′(x) dx 6 c+

∫ p

R

x−β+dx ,

which provides

f ′(p) 6
c+

1− β+

p1−β+ + f ′(R)− c+

1− β+

R1−β+ 6 f ′(R)− c+

1− β+

R1−β+ <∞ .

Consequently f ′ is bounded from above on [R,+∞) and similar arguments show that
f ′ is bounded from below on (−∞, R]. Since the function f ′ is strictly increasing
on R, we deduce that f ′ is bounded on R and its bounds are given by its limits at
−∞ and +∞.

ii) For p > R, we have

b− f ′(p) =

∫ +∞

p

f ′′(x) dx > c−

∫ +∞

p

x−β−dx = − c−
1− β−

p1−β− ,

where we used the left inequality of (4.15). In the same way, we have for all p 6 −R,

f ′(p)− a =

∫ p

−∞
f ′′(x) dx > c−

∫ p

−∞
(−x)−β−dx = − c−

1− β−
(−p)1−β− .

In Theorem 4.2.4, we do not assume that the initial condition is in a frequency band
but one frequency can be singular, as in Theorem 4.1.7 and Theorem 4.1.8. But here, if
a singular frequency exists, then we put it at 0 in order to avoid a proof with too many
technical calculations. Without this assumption on the position of the singular frequency,
the result of Theorem 4.2.4 remains unchanged and the proof follows the steps of the proof
in the case of the singular frequency put at 0. In addition to this, the Fourier transform
of the initial datum is supposed to have a sufficient decay at infinity to carry out the proof:

Condition (C4µ,α,r). Fix µ ∈ (0, 1], α > µ and r > 0.
A tempered distribution u0 on R satisfies Condition (C4µ,α,r) if and only if there exists a
bounded differentiable function ũ : R −→ C such that ũ(0) 6= 0 if µ 6= 1, with

∀ p ∈ R \ {0} Fu0(p) = |p|µ−1 ũ(p) .

Moreover we suppose that

∃M > 0 ∀ p ∈ R
∣∣ũ(p)

∣∣ 6M
(
1 + p2

)−α
2 ,
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and that ũ′ ∈ L1
loc(R) with

∃M ′ > 0 ∀n ∈
{
n ∈ Z

∣∣ |n| > r
}

‖ũ′‖L1(n,n+1) 6M ′ |n|−α .

4.2.2 Remark and Example. i) The above condition implies in particular that Fu0

belongs to L1(R). Indeed Fu0 ∈ L1
loc(R) since the function p 7−→ |p|µ−1 with

µ ∈ (0, 1] belongs to L1
loc(R), and ũ ∈ L∞(R). Furthermore we have

∀ p ∈ R \ {0}
∣∣Fu0(p)

∣∣ 6M
(
1 + p2

)−α
2 |p|µ−1 6M |p|µ−1−α ,

since
(
1 + p2

) 1
2 > |p|. Hence the hypothesis α > µ leads to the integrability of Fu0

on R.
Thanks to that, one can show that the subset of tempered distributions verifying
Condition (C4µ,α,r) is non-empty by following the lines of Remark 4.1.2 i), and the
solution formula (4.3) is well-defined for all t > 0 and x ∈ R.

ii) Let us give an example for the above condition. Choose u0 ∈ S ′(R) such that its
Fourier transform has the following form:

∀ p ∈ R \ {0} Fu0(p) = |p|µ−1 (1 + p2)−
α
2 ,

with µ ∈ (0, 1] and α > µ. Here ũ : R −→ R is given by ũ(p) = (1 + p2)−
α
2 for all

p ∈ R.
In this case, we only have to control ‖ũ′‖L1(n,n+1) since the other hypotheses are
clearly satisfied. One can quickly show that

‖ũ′‖L1(n,n+1) =

{
ũ(n)− ũ(n+ 1) 6 ũ(n) , if n > 0 ,

ũ(n+ 1)− ũ(n) 6 ũ(n+ 1) , if n 6 −1 .

Using the fact that |n + 1|−α 6 2α |n|−α, if n 6 −2 according to Lemma 4.2.3 (see
below), we obtain

‖ũ′‖L1(n,n+1) 6


(
1 + n2

)−α
2 6 n−α , if n > 0 ,(

1 + (n+ 1)2
)−α

2 6 |n+ 1|−α 6 2α |n|−α , if n 6 −2 .

Hence for all |n| > 2, we have

‖ũ′‖L1(n,n+1) 6 2α |n|−α ,

and consequently, u0 satisfies Condition (C4µ,α,2).

As above, we shall use several times the following basic lemma in the present section.

4.2.3 Lemma. Let p ∈ [n, n+ 1], where n > 1 or n 6 −2. Then we have

1

2
|n| 6 |p| 6 2|n| .
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Proof. Firstly let us suppose that n > 1. Then

1

2
n 6 n 6 p 6 n+ 1 6 2n .

Now by supposing n 6 −2, we have

1

2
|n| = −1

2
n 6 −(n+ 1) 6 −p = |p| 6 −n = |n| 6 2 |n| .

To prove Theorem 4.2.4, we start by splitting the infinite integration interval of the
integral defining the solution formula (4.3) as follows: the singular frequency 0 is the
center of a sufficiently large but bounded interval, and we decompose the two remaining
infinite intervals into an infinite union of disjoints bounded intervals. Thanks to that, the
solution of the above evolution equation for an initial datum satisfying Condition (C4µ,α,r)
is actually a (infinite) sum of solutions of the same evolution equation but for initial data
in frequency bands. Then we follow the lines of the proof of Theorem 4.1.3 to apply the
abstract results of Chapter 3, Section 3.1, leading to a uniform estimate of each term of
the sum in the cone C(a, b) as well as in its complement. Hence the series given by these
uniform estimates furnishes a bound for the solution which is studied here. To assure the
convergence of this series, we suppose that the decay at infinity of the Fourier transform
of the initial datum is sufficiently fast as compared with the decay of the second derivative
of the symbol.

4.2.4 Theorem. Suppose that the symbol f satisfies Condition (Sβ+,β−,R) and that the
initial datum u0 satisfies Condition (C4µ,α,r), where µ ∈ (0, 1], α − µ > β− and r 6 R.
Then we have

∀ (t, x) ∈ C(a, b)
∣∣u(t, x)

∣∣ 6 c(1)(u0, f) t−
µ
2 + c(2)(u0, f) t−

1
2 ,

where the constants c(1)(u0, f) and c(2)(u0, f) are given by (4.16) and (4.18), respectively.
Moreover we have

∀ (t, x) ∈ C(a, b)c
∣∣u(t, x)

∣∣ 6 c(1)
c (u0, f) t−µ + c(2)

c (u0, f) t−1 ,

where the constants c
(1)
c (u0, f) and c

(2)
c (u0, f) are given by (4.19) and (4.20), respectively.

The two finite real numbers a < b are defined by

a := lim
p→−∞

f ′(p) , b := lim
p→+∞

f ′(p) .

Proof. We recall that the solution of the initial value problem (4.1) can be written as
follows,

∀ (t, x) ∈ (0,+∞)× R u(t, x) =

∫
R
U(p) eitψ(p) dp ,

where 
∀ p ∈ R \ {0} U(p) :=

1

2π
Fu0(p) =

1

2π
|p|µ−1 ũ(p) ,

∀ p ∈ R ψ(p) :=
x

t
p− f(p) .

114



4.2. An intrinsic concentration phenomenon caused by a limited growth of the symbol

Let us define N ∈ N and SN ⊆ Z as follows,

N := dRe+ 1 , SN = Z \ {−N, . . . , N − 1} ,

where d.e is the ceiling function, and let us split the integral,∫
R
U(p)eitψ(p) dp =

∫
R
χ[−N,N)(p)U(p) eitψ(p) dp+

∫
R

∑
n∈SN

χ[n,n+1)(p)U(p) eitψ(p) dp

=

∫ N

−N
U(p) eitψ(p) dp+

∑
n∈SN

∫ n+1

n

U(p) eitψ(p) dp ,

where χ[n,n+1) is the characteristic function of the interval [n, n + 1). Now we divide the
proof into two parts with respect to the value of x

t
.

i) Case x
t
∈ (a, b). In this case, x

t
belongs to (a, b), that is to say it belongs to f ′(R).

Therefore the phase ψ has a unique stationary point which belongs to R.
To estimate the integral on [−N,N ] in this case, we apply Theorem 3.1.8 for ρ = 2
on [−N, 0] and on [0, N ] by following the lines of the proof of Theorem 4.1.3 in the
case i) which gives

∀ (t, x) ∈ C(a, b)

∣∣∣∣∫ N

−N
U(p) eitψ(p) dp

∣∣∣∣ 6 ∣∣∣∣∫ 0

−N
. . .

∣∣∣∣+

∣∣∣∣∫ N

0

. . .

∣∣∣∣
6
(
c

(1)
−N(u0, f) + c

(1)
+N(u0, f)

)
t−

µ
2

=: c(1)(u0, f) t−
µ
2 , (4.16)

with

• c
(1)
−N(u0, f) :=

1

2π

3

µ
‖ũ‖L∞(−N,0) +

1

π

(
4 ‖ũ‖L∞(−N,0) + ‖ũ′‖L1(−N,0)

)
m −1
−N ,

• c
(1)
+N(u0, f) :=

1

2π

3

µ
‖ũ‖L∞(0,N) +

1

π

(
4 ‖ũ‖L∞(0,N) + ‖ũ′‖L1(0,N)

)
m −1

+N ,

and

m−N := min
p∈[−N,0]

f ′′(p) > 0 , m+N := min
p∈[0,N ]

f ′′(p) > 0 .

Now let us study each term of the series. By hypothesis, U has no singular points in
[n, n+ 1] for n ∈ SN . As above, we can apply Theorem 3.1.8 for ρ = 2 and µ = 1,
and we obtain

∀ (t, x) ∈ C(a, b)

∣∣∣∣∫ n+1

n

U(p) eitψ(p) dp

∣∣∣∣ 6 c(2)
n (u0, f) t−

1
2 ;

the constant c
(2)
n (u0, f) > 0 is given by

c(2)
n (u0, f) :=

1

π
‖U‖L∞(n,n+1) +

1

π

(
3 ‖U‖L∞(n,n+1) + ‖U ′‖L1(n,n+1)

)
m −1
n ,
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with mn := min
p∈[n,n+1]

f ′′(p) > 0.

The following step is to prove the summability of the sequence
{
c

(2)
n (u0, f)

}
n∈SN

.
On the one hand, we have by using the hypothesis on u0 and Lemma 4.2.3,

‖U‖L∞(n,n+1) 6 21−µ|n|µ−1M2α|n|−α = 21−µ+αM |n|µ−1−α .

Moreover

‖U ′‖L1(n,n+1) 6
∫ n+1

n

(1− µ)|p|µ−2 |ũ(p)| dp+

∫ n+1

n

|p|µ−1 |ũ′(p)| dp

6 ‖ũ‖L∞(n,n+1)

∫ n+1

n

(1− µ)|p|µ−2dp+ 21−µ |n|µ−1 ‖ũ′‖L1(n,n+1)

6M2α|n|−α 21−µ|n|µ−1 + 21−µ|n|µ−1M ′|n|−α (4.17)

= 21−µ (2αM +M ′) |n|µ−1−α ,

where the hypothesis
∥∥ũ′∥∥

L1(n,n+1)
6M ′|n|−α was used to get (4.17). On the other

hand, we have by the hypothesis on the symbol f ,

f ′′(p) > c− |p|−β− > c− 2−β−|n|−β− .

It follows

m −1
n 6

2β−

c−
|n|β− .

Then we obtain

c(2)
n (u0, f) =

1

π
‖U‖L∞(n,n+1) +

1

π

(
3 ‖U‖L∞(n,n+1) + ‖U ′‖L1(n,n+1)

)
m −1
n

6
21−µ+αM

π
|n|µ−1−α + 3

21−µ+α+β−M

π c−
|n|µ−1−α+β−

+
21−µ+β− (2αM +M ′)

π c−
|n|µ−1−α+β− .

Since α− µ > β−, the sequence
{
c

(2)
n (u0, f)

}
n∈SN

is summable. It follows

∣∣∣∣∣ ∑
n∈SN

∫ n+1

n

U(p) eitψ(p) dp

∣∣∣∣∣ 6 ∑
n∈SN

∣∣∣∣∫ n+1

n

U(p) eitψ(p) dp

∣∣∣∣ 6
(∑
n∈SN

c(2)
n (u0, f)

)
t−

1
2 .

Then it is possible to bound the last series by employing the following estimate of
the Riemann Zeta function,

∀σ > 1
∑
n∈N∗

n−σ 6
σ

σ − 1
.

116



4.2. An intrinsic concentration phenomenon caused by a limited growth of the symbol

Hence∑
n∈SN

c(2)
n (u0, f) 6

22−µ+αM

π

α + 1− µ
α− µ

+ 3
22−µ+α+β−M

π c−

α + 1− µ− β−
α− µ− β−

+
22−µ+β− (2αM +M ′)

π c−

α + 1− µ− β−
α− µ− β−

=
22−µ+αM

π

α + 1− µ
α− µ

+
22−µ+β−(2α+2M +M ′)

π c−

α + 1− µ− β−
α− µ− β−

=: c(2)(u0, f) . (4.18)

Hence we obtain finally for all (t, x) ∈ C(a, b),∣∣u(t, x)
∣∣ 6 c(1)(u0, f) t−

µ
2 + c(2)(u0, f) t−

1
2 .

ii) Case x
t
/∈ (a, b). We note that ψ has no stationary points on R and that (t, x)

belongs to C(a, b)c in this case.
We start by estimating the integral on [−N,N ]. To do so, we apply Theorem 3.2.1
on [−N, 0] and on [0, N ], providing

∀ (t, x) ∈ C(a, b)c
∣∣∣∣∫ N

−N
U(p) eitψ(p) dp

∣∣∣∣ 6 ∣∣∣∣∫ 0

−N
. . .

∣∣∣∣+

∣∣∣∣∫ N

0

. . .

∣∣∣∣
6
(
c̃

(1)
−N(u0, f) + c̃

(1)
+N(u0, f)

)
t−µ

=: c(1)
c (u0, f) t−µ , (4.19)

with

• c̃
(1)
−N(u0, f) :=

1

2π

1

µ
‖ũ‖L∞(−N,0) +

1

2π

(
4 ‖ũ‖L∞(−N,0) + ‖ũ′‖L1(−N,0)

)
m̃ −1
−N ,

• c̃
(1)
+N(u0, f) :=

1

2π

1

µ
‖ũ‖L∞(0,N) +

1

2π

(
4 ‖ũ‖L∞(0,N) + ‖ũ′‖L1(0,N)

)
m̃ −1

+N .

The terms m̃+N , m̃−N > 0 are defined as follows,

• ∀ p ∈ [−N, 0] |ψ′(p)| =
∣∣∣x
t
− f ′(p)

∣∣∣ > min
{
f ′(−N)− a, b− f ′(0)

}
=: m̃−N ,

• ∀ p ∈ [0, N ] |ψ′(p)| =
∣∣∣x
t
− f ′(p)

∣∣∣ > min
{
f ′(0)− a, b− f ′(N)

}
=: m̃+N .

See Figure 4.6 for an illustration of these estimates.

Now we study the terms of the series. The amplitude U has no singular points in
[n, n + 1] for n ∈ SN by hypothesis, so Theorem 3.2.1 is applicable once again on
the interval [n, n+ 1] with µ = 1 and it furnishes

∀ (t, x) ∈ C(a, b)c
∣∣∣∣∫ n+1

n

U(p) eitψ(p) dp

∣∣∣∣ 6 c̃(2)
n (u0, f) t−1 ;

the constant c̃
(2)
n (u0, f) > 0 is defined by

c̃(2)
n (u0, f) :=

1

2π

(
3 ‖U‖L∞(n,n+1) + ‖U ′‖L1(n,n+1)

)
m̃ −1
n ,
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Figure 4.6: First derivative of a symbol satisfying Condition (Sβ+,β−,R)

with m̃n := min
{
f ′(n) − a, b − f ′(n + 1)

}
> 0. As in the previous case, one can

show by using the fact that u0 satisfies Condition (C4µ,α,r) and by using Lemma
4.2.3 that

‖U‖L∞(n,n+1) 6 21−µ+αM |n|µ−1−α ,

and
‖U ′‖L1(n,n+1) 6 21−µ (2αM +M ′) |n|µ−1−α .

Furthermore the point ii) of Lemma 4.2.1 implies

m̃n >
c−

β− − 1
min

{
|n|1−β− , |n+ 1|1−β−

}
>

c−
β− − 1

21−β−|n|1−β− ,

where we used Lemma 4.2.3 one more time. Then we obtain

c̃(2)
n (u0, f) =

1

2π

(
3 ‖U‖L∞(n,n+1) + ‖U ′‖L1(n,n+1)

)
m̃ −1
n

6
β− − 1

2πc−

(
3× 2−µ+α+β−M + 2−µ+β− (2αM +M ′)

)
|n|µ−2−α+β− .

Then the summability of the sequence
{
c̃

(2)
n (u0, f)

}
n∈SN

follows from the assumption
α− µ > β− > β− − 1, and we have∑
n∈SN

c̃(2)
n (u0, f) 6

β− − 1

πc−

(
3× 2−µ+α+β−M + 2−µ+β−(2αM +M ′)

) α + 2− µ− β−
α + 1− µ− β−

=: c(2)
c (u0, f) . (4.20)

It follows that∣∣∣∣∣ ∑
n∈SN

∫ n+1

n

U(p) eitψ(p) dp

∣∣∣∣∣ 6
(∑
n∈SN

c̃(2)
n (u0, f)

)
t−1 6 c(2)

c (u0, f) t−1 .

We obtain finally for all (t, x) ∈ C(a, b)c,∣∣u(t, x)
∣∣ 6 c(1)

c (u0, f) t−µ + c(2)
c (u0, f) t−1 .
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To illustrate the preceding result, let us introduce the Klein-Gordon equation on R,{ [
∂tt − c2∂xx + c4

]
u(t) = 0

u(0) = u0 , ∂t u(0) = v0

, (4.21)

for t > 0, where c > 0 is a constant. In terms of quantum mechanics, the constant c
represents the speed of light and the solution is the wave function of a spinless relativistic
free particle with mass m = 1. By assuming that u0, v0 ∈ S ′(R), one can furnish a solution
formula which belongs to C2

(
R+,S ′(R)

)
,

uKG(t) = F−1
(
e−itfKGa+(u0, v0)

)
+ F−1

(
eitfKGa−(u0, v0)

)
=: u+(t) + u−(t) , (4.22)

where the symbol fKG : R −→ R is given by fKG(p) =
√
c4 + c2 p2 , and the tempered

distributions a+(u0, v0) and a−(u0, v0) are defined by

a+(u0, v0) :=
1

2

(
Fu0 +

i

fKG
Fv0

)
, a−(u0, v0) :=

1

2

(
Fu0 −

i

fKG
Fv0

)
.

In this context, we note that u+ and u− are actually the solutions of{ [
i ∂t − fKG

(
D
)]
u(t) = 0

u(0) = F−1a+(u0, v0)
,

{ [
i ∂t + fKG

(
D
)]
u(t) = 0

u(0) = F−1a−(u0, v0)
, (4.23)

for t > 0, respectively. In the following result, we furnish estimates of the solution
of the Klein-Gordon equation (4.21) coming from estimates of the evolution equations
given in (4.23). The proof consists mainly in showing that the symbol fKG satisfies
Condition (Sβ+,β−,R), for certain β+, β−, R. Theorem 4.2.4 is then applicable, and the
resulting estimates indicates that the solution of the Klein-Gordon equation (4.21) is
time-asymptotically localized in the space-time region C(−c, c), which is actually the
light cone issued by the origin.

4.2.5 Corollary. Let uKG ∈ C2
(
R+,S ′(R)

)
be the solution of the Klein-Gordon equation

in dimension one where F−1a+(u0, v0) and F−1a−(u0, v0) satisfy Condition (C4µ,α,r), with
µ ∈ (0, 1], α − µ > 3 and r 6 c. Then uKG defines a complex-valued function on
(0,+∞)× R which satisfies

∀ (t, x) ∈ C(−c, c)
∣∣uKG(t, x)

∣∣ 6 c(1)(u0, v0, fKG) t−
µ
2 + c(2)(u0, v0, fKG) t−

1
2 ,

and

∀ (t, x) ∈ C(−c, c)c
∣∣uKG(t, x)

∣∣ 6 c(1)
c (u0, v0, fKG) t−µ + c(2)

c (u0, v0, fKG) t−1 .

All the constants can be computed from Theorem 4.2.4.
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Figure 4.7: Illustration of Corollary 4.2.5 in space-time

Proof. Firstly, let us note a+(u0, v0) and a−(u0, v0) define integrable functions when
F−1a+(u0, v0) and F−1a−(u0, v0) satisfy Condition (C4µ,α,r). This implies that the so-
lution formula (4.22) defines a complex-valued function on (0,+∞)× R.
Secondly, let us remark that one can follow the lines of the proof of Theorem 4.2.4 to
establish very similar estimates of the solution of the evolution equation (4.1) when −f
satisfies Condition (Sβ+,β−,R), that is to say when f ′′ < 0. In this case, a is the limit of
f ′ at +∞ and b the limit of f ′ at −∞. In the present proof, this remark assures that
Theorem 4.2.4 is applicable to both equations given in (4.23) if the symbol fKG verifies
Condition (Sβ+,β−,R).
Now we provide the first and the second derivative of fKG,

∀ p ∈ R (fKG)′(p) =
c p√
c2 + p2

, (fKG)′′(p) = c3

(
c2

p2
+ 1

)− 3
2

|p|−3 .

By noting that the following inequalities are true,

∀ |p| > c 2−
3
2 c3 6 c3

(
c2

p2
+ 1

)− 3
2

6 c3 ,

we deduce that fKG satisfies Condition (S3,3,c). Moreover one can see that the limits
of (fKG)′ at −∞ and +∞ are given by −c and c respectively. It follows that Theorem
4.2.4 is applicable to the solutions of the equations (4.23), furnishing the estimates of the
solution uKG : (0,+∞)× R −→ C inside the cone C(−c, c) and outside.

120



Chapter 5

Time asymptotic behaviour of
approximate solutions of Schrödinger
equations with both potential and
initial condition in frequency bands

Abstract

In this final chapter, we consider the Schrödinger equation in one dimension
with potential. We start by proving that this equation is well-posed in H1(R)
if the potential belongs to W 1,∞(R). Afterwards we suppose in addition that
the Fourier transform of the potential is compactly supported. A family of
potentials satisfying this hypothesis is constructed for illustration. We then
focus our attention on the two first terms of a series, called Dyson-Phillips
series, representing the solution of the equation. The first term is the free
wave packet while the second term corresponds to the wave packet resulting
from the first interaction between the free solution and the potential. We
prove that these terms can be represented by oscillatory integrals. By using
the assumptions on the potential and the fact that the initial data are supposed
to be in frequency bands, we employ the methods of the previous chapters to
describe the asymptotic behaviour of the two above terms. This permits to
exhibit dynamic interaction phenomena produced by the potential.
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Chapter 5. Time asymptotic behaviour of approximate solutions of Schrödinger
equations with both potential and initial condition in frequency bands

5.1 Existence and representation of the exact solu-

tion

In this section, we consider the Schrödinger equation{
i ∂tu(t) = −∂xxu(t) + V (x)u(t)

u(0) = u0

(5.1)

for all t > 0, where the potential V is a function belonging to W 1,∞(R) and not necessarily
real-valued. The aim of this section is to assure existence and uniqueness of a solution for
this equation in H1(R) by exploiting the theory of semigroups. Moreover a representation
of the solution as a series called Dyson-Phillips series is also provided. Let us note that
the general results of the present section will be employed in the next sections where we
consider potentials satisfying additional hypotheses.

Before stating the above mentioned result, let us define some objects that will be used
throughout the rest of this chapter:

5.1.1 Definition. i) Let Fx→p be the Fourier transform on L2(R) and F−1
p→x its in-

verse. For f in the Schwartz space S(R), Fx→pf is a complex-valued function on R
given by

∀ p ∈ R
(
Fx→pf

)
(p) =

∫
R
f(x) e−ixp dx .

If there is no risk of confusion, we shall note f̂ := Fx→pf in favour of readability.

ii) Let A be the operator given by A := i d
2

dx2
with domain D(A) := H3(R) ⊂ H1(R).

iii) For V ∈ W 1,∞(R), let B be the operator defined on H1(R) by

∀ f ∈ H1(R) (Bf)(x) := −i V (x) f(x) a.e .

In this case, we have Bf ∈ H1(R) (see [14, Chapter VI, Section 5, Lemma 5-20]).

5.1.2 Theorem. Suppose that u0 belongs to H3(R) and that V belongs to W 1,∞(R). Then
there exists a unique function u : R+ −→ H1(R) which is continuously differentiable with
respect to the H1-norm, u(t) ∈ H3(R) for all t > 0, and u satisfies the Schrödinger
equation (5.1).
Moreover the function u : R+ −→ H1(R) can be represented as follows

∀ t > 0 lim
N→+∞

∥∥∥∥∥u(t)−
N∑
n=0

Sn(t)u0

∥∥∥∥∥
H1(R)

= 0 ,

where 
S0(t)u0 := F−1

p→x

(
e−itp

2
û0

)
Sn+1(t)u0 :=

∫ t

0

Sn(t− s)B S0(s)u0 ds , ∀n ∈ N
.
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5.1.3 Remark. i) The function u : R+ −→ H1(R) is called the classical solution of
the Schrödinger equation (5.1) (see [14, Chapter II, Proposition 6.2]) and the series∑

n>0 Sn(t)u0 is called the Dyson-Phillips series for the solution u (see [14, Chapter
III, Theorem 1.10]).

ii) For each n ∈ N, the term Sn+1(t)u0 belongs at least to H1(R) for all fixed t > 0 if
u0 ∈ H3(R), and thus it defines a continuous function on R. To evaluate it at any
point x ∈ R, let us define the operator Ex : H1(R) −→ C by

∀ f ∈ H1(R) Exf := f(x) .

Then Ex is a bounded operator from H1(R) into C thanks to the continuous em-

bedding of H1(R) into C0
0(R) :=

{
f ∈ C0(R)

∣∣∣ lim
|x|→0

f(x) = 0

}
. Hence Proposition

5.6.4 is applicable and provides1

∀x ∈ R
(
Sn+1(t)u0

)
(x) = Ex

(
Sn+1(t)u0

)
= Ex

(∫ t

0

Sn(t− s)B S0(s)u0 ds

)
=

∫ t

0

(
Sn(t− s)B S0(s)u0

)
(x) ds . (5.2)

This will be employed in Section 5.4.

Proof of Theorem 5.1.2. In order to apply results from semigroup theory, we start by
rewriting the Schrödinger equation (5.1) as an evolution equation of the form{

u̇(t) =
(
A+B

)
u(t)

u(0) = u0

,

where A and B are given in Definition 5.1.1.
Now let us recall that the operator

(
A,D(A)

)
is the generator of the strongly continuous

semigroup
(
T (t)

)
t>0

on H1(R) represented by

∀ t > 0 T (t)f = F−1
p→x

(
e−itp

2Fx→pf
)
, (5.3)

for f ∈ H1(R). Moreover the operator B belongs to L
(
H1(R)

)
, the space of bounded

operators from H1(R) into itself. Indeed we have∥∥Bf∥∥2

H1(R)
=

∫
R

∣∣V (x)f(x)
∣∣2 dx+

∫
R

∣∣(V f)′(x)
∣∣2 dx

=

∫
R

∣∣V (x)f(x)
∣∣2 dx+

∫
R

∣∣V ′(x)f(x)
∣∣2 dx+

∫
R

∣∣V (x)f ′(x)
∣∣2 dx

6 2
∥∥V ∥∥2

W 1,∞(R)

∥∥f∥∥2

H1(R)
.

1To apply Proposition 5.6.4, the integral defining Sn+1(t)u0 and the integral given in (5.2) are here
interpreted as Bochner-integrals. Especially, the integrand of (5.2) is complex-valued and, due to the
construction of the Bochner-integral, it is actually an integral of Lebesgue-type.
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since V ∈ W 1,∞(R). According to Theorems 5.6.1 and 5.6.2, if u0 ∈ H3(R) = D(A) then
the Schrödinger equation (5.1) has a unique classical solution belonging to C1

(
R+, H1(R)

)
.

More precisely, the solution u : R+ −→ H1(R) is given by

∀ t > 0 u(t) = S(t)u0 ,

where
(
S(t)

)
t>0

is the semigroup generated by the operator
(
A+B,D(A)

)
.

Employing Theorem 5.6.3, the solution of the equation (5.1) can be represented as follows,

∀ t > 0 lim
N→+∞

∥∥∥∥∥u(t)−
N∑
n=0

Sn(t)u0

∥∥∥∥∥
H1(R)

= 0 ,

where S0(t) := T (t) and

Sn+1(t)u0 :=

∫ t

0

Sn(t− s)B T (s)u0 ds .

According to equality (5.3), we have S0(t)u0 = T (t)u0 = F−1
p→x

(
e−itp

2Fx→pu0

)
, which

ends the proof.

5.2 A large class of admissible potentials

Throughout the rest of the chapter, we shall use the following hypothesis on the potential.

Condition (Pa,b). Let a < b be two finite positive real numbers.

An element V of L2(R) satisfies Condition (Pa,b) if and only if V̂ is an even real-valued

C1-function on R which verifies supp V̂ ⊆ [−b,−a] ∪ [a, b].

5.2.1 Remark. i) If U is an even real-valued C1-function supported on [−b,−a]∪[a, b]

then it belongs to L2(R). Hence there exists V ∈ L2(R) such that U = V̂ thanks to
the fact that Fx→p : L2(R) −→ L2(R) is bijective. In this case, V satisfies Condition
(Pa,b) and so the set of functions satisfying Condition (Pa,b) is non-empty.

ii) If V satisfies Condition (Pa,b) then it is actually a real-valued function on R which is

analytic. Moreover since V̂ is continuous and has a compact support, the function V
and its first derivative V ′ are bounded on R. In particular, the function V belongs
to W 1,∞(R) and so the associated operator B defined in Section 5.1 belongs to
L
(
H1(R)

)
.

iii) Let us note that the function V̂ can be written as follows,

V̂ = χ[−b,−a]V̂ + χ[a,b]V̂ ,

which implies the following decomposition of V ,

V = F−1
p→x

(
χ[−b,−a]V̂

)
+ F−1

p→x

(
χ[a,b]V̂

)
=: V − + V + . (5.4)
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In the following theorem, we construct a family of potentials satisfying Condition
(Pa,b) and approximately localized in the interval (−c, c) with arbitrary precision if the
quantity (b− a) is sufficiently large. To do so, we use essentially Chebyshev’s inequality.

5.2.2 Theorem. Let a, b > 0 be two finite real numbers and let v be a real-valued C1-
function on R such that supp v ⊆ [−1, 1].

Let Va,b be the function on R such that its Fourier transform V̂a,b is given by

∀ p ∈ R V̂a,b(p) :=

√
2

b− a
v

(
2p+ (a+ b)

a− b

)
+

√
2

b− a
v

(
2p− (a+ b)

b− a

)
.

Then the function Va,b satisfies Condition (Pa,b), and we have for all c > 0,∫
|x|>c

∣∣Va,b(x)
∣∣2dx 6

16

c2

1

(b− a)2

∥∥v′∥∥2

L2(R)
.

Proof. The function V̂a,b is clearly an even real-valued C1-function on R. Moreover com-
bining the hypothesis supp v ⊆ [−1, 1] and the fact that p 7−→ (a− b)−1

(
2p+ (a+ b)

)
and

p 7−→ (b− a)−1
(
2p− (a+ b)

)
transform respectively the intervals [−b,−a] and [a, b] into

[−1, 1], we see that

supp V̂a,b ⊆ [−b,−a] ∪ [a, b] .

Hence the function Va,b verifies Condition (Pa,b).
Now let us apply Chebyshev’s inequality to the function Va,b,

∀ c > 0

∫
|x|>c

∣∣Va,b(x)
∣∣2dx 6

1

c2

∫
R

∣∣xVa,b(x)
∣∣2dx =

1

c2

∫
R

∣∣∣x(F−1
p→xV̂a,b

)
(x)
∣∣∣2dx .

(5.5)
For convenience, let us define for all p ∈ R,

V̂a,b
−

(p) :=

√
2

b− a
v

(
2p+ (a+ b)

a− b

)
, V̂a,b

+
(p) :=

√
2

b− a
v

(
2p− (a+ b)

b− a

)
.

Then by simple substitutions, we have for all x ∈ R,

•
(
F−1
p→xV̂a,b

−)
(x) =

1

2π

√
2

b− a

∫
R
v

(
2p+ (a+ b)

a− b

)
eixp dp

=
1

2π

√
b− a

2
e−i

a+b
2
x v̂

(
−b− a

2
x

)
, (5.6)

•
(
F−1
p→xV̂a,b

+
)

(x) =
1

2π

√
2

b− a

∫
R
v

(
2p− (a+ b)

b− a

)
eixp dp

=
1

2π

√
b− a

2
ei
a+b
2
x v̂

(
b− a

2
x

)
. (5.7)
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Putting this into inequality (5.5) provides∫
|x|>c

∣∣Va,b(x)
∣∣2dx 6

1

c2

∫
R

∣∣∣x(F−1
p→xV̂a,b

−)
(x) + x

(
F−1
p→xV̂a,b

+
)

(x)
∣∣∣2dx

6
2

c2

∫
R

∣∣∣x(F−1
p→xV̂a,b

−)
(x)
∣∣∣2dx +

2

c2

∫
R

∣∣∣x(F−1
p→xV̂a,b

+
)

(x)
∣∣∣2dx (5.8)

=
1

2π2c2

b− a
2

∫
R

∣∣∣∣x v̂(−b− a2
x

)∣∣∣∣2 dx
+

1

2π2c2

b− a
2

∫
R

∣∣∣∣x v̂(b− a2
x

)∣∣∣∣2 dx (5.9)

=
1

2π2c2

(
2

b− a

)2 ∫
R

∣∣y v̂(y)
∣∣2dy +

1

2π2c2

(
2

b− a

)2 ∫
R

∣∣y v̂(y)
∣∣2dy
(5.10)

=
16

c2

1

(b− a)2

∥∥v′∥∥2

L2(R)
(5.11)

• (5.8): use the inequality |z1 + z2|2 6 2
(
|z1|2 + |z2|2

)
, which holds for all z1, z2 ∈ C ;

• (5.9): use equalities (5.6) and (5.7) ;

• (5.10): use the substitutions y = ± b−a
2
x ;

• (5.11): use the relation (̂v′)(y) = i y v̂(y) and Plancherel’s theorem.

The proof is now complete.

5.3 Asymptotic behaviour of the free solution

In this section, we focus our attention on the asymptotic behaviour of the term S0(t)u0

of the Dyson-Phillips series given by Theorem 5.1.2.

First of all, we recall the definition of the space-time cone CS(a, b). Note that we
employ Definition 2.3.1 of Chapter 2, which is convenient to describe the asymptotic
behaviour of solutions of Schrödinger equations.

5.3.1 Definition. Let a < b be two real numbers (possibly infinite). We define the space-
time cone CS(a, b) as follows:

CS(a, b) :=
{

(t, x) ∈ (0,+∞)× R
∣∣∣ 2 a < x

t
< 2 b

}
.

Let CS(a, b)c be the complement of the cone CS(a, b) in (0,+∞)× R .

Now let us state the assumptions that the initial data will verify throughout the rest
of this chapter. Here we suppose that u0 is in a frequency band (i.e. the support of its
Fourier transform is contained in a compact interval). For simplicity, we suppose that
û0 is a C1-function on R, implying in particular that it vanishes at the endpoints of its
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5.3. Asymptotic behaviour of the free solution

support and that singular frequencies are not allowed.

Condition (C5[p1,p2]). Let p1 < p2 be two finite real numbers.
An element u0 of H3(R) satisfies Condition (C5[p1,p2]) if and only if û0 is a C1-function on
R which verifies supp û0 ⊆ [p1, p2].

5.3.2 Remark. i) One can prove that the set of elements of H3(R) satisfying Condi-
tion (C5[p1,p2]) is non-empty by using the following argument:
If a C∞-function U on R is supported on [p1, p2] then there exists u0 ∈ S(R), where
S(R) is the Schwartz space, such that û0 := U since the Fourier transform is a
bijection on S(R). In particular the function u0 belongs to H3(R) and it satisfies
Condition (C5[p1,p2]).

ii) Since the support of û0 is contained in a compact interval, u0 is analytic on R.

Supposing that the initial datum satisfies Condition (C5[p1,p2]), the term S0(t)u0 defines
a function on R for all t > 0 represented by

∀x ∈ R
(
S0(t)u0

)
(x) =

(
T (t)u0

)
(x) =

1

2π

∫ p2

p1

û0(p) e−itp
2+ixp dp , (5.12)

which is actually the solution of the free Schrödinger equation on the line with initial
datum u0. Let us recall that Theorem 2.2.2 has permitted to expand in the space-time
cone CS(p1+ε, p2) the solution of the free Schrödinger equation for initial data in frequency
bands and having singular frequencies (see Theorem 2.3.2). But in the present setting,
Theorem 2.2.2 is not applicable since it is only devoted to amplitudes having a singular
point. In the following theorem, we establish a similar result to Theorem 2.2.2 which treats
the case of regular amplitudes vanishing at the endpoints of the integration interval in
preparation for applications to the integral representing S0(t)u0. Let us remark that,
in this regular case, the remainder estimates are uniformly bounded with respect to the
position of the stationary point: no blow-up occurs since the amplitude has no singular
point.

5.3.3 Theorem. Let p1 < p2 be two finite real numbers. Let p0 ∈ (p1, p2) and c ∈ R be
two parameters, and define ψ : [p1, p2] −→ R by

ψ(p) := −(p− p0)2 + c .

Define the following integral for all ω > 0,

I(ω, p0) :=

∫ p2

p1

U(p) eiωψ(p) dp , (5.13)

where U satisfies Assumption (A11,1,1) (see Chapter 1, Section 1.1) on [p1, p2] with the
additional hypothesis U(p1) = U(p2) = 0. Let us define H̃(ω, ψ, U) as follows,

H̃(ω, ψ, U) :=
√
π e−i

π
4 eiωc U(p0) ,

127



Chapter 5. Time asymptotic behaviour of approximate solutions of Schrödinger
equations with both potential and initial condition in frequency bands

and let δ ∈
(

1
2
, 1
)
. Then we have∣∣∣I(ω, p0) − H̃(ω, ψ, U)ω−

1
2

∣∣∣ 6 C(U)ω−δ ,

where the constant C(U) > 0 is given by (5.17).

Proof. Here we split the integral at the stationary point p0,

I(ω, p0) =

∫ p2

p1

U(p) eiωψ(p) dp =

∫ p0

p1

. . . +

∫ p2

p0

. . . . (5.14)

On the interval [p1, p0], the phase ψ is an increasing function that satisfies Assumption
(P11,2,N) (see Chapter 1, Section 1.1) for all N > 1, and by hypothesis, U verifies As-
sumption (A11,1,1) on [p1, p2], and so it does on [p1, p0] as well. Here the point p1 is neither
a stationary point of the phase, nor a singular point of the amplitude. In this context,
a cutting-point separating p1 and p0 is not needed to expand the integral on [p1, p0] in
(5.14), as we have noticed in the proof of Lemma 2.2.1, part Study of I(2)(ω, p0). Hence, in
the notations of the proof of Theorem 2.1.2, we employ only the expansion of the integral
Ĩ(2)(ω, p0) with q := p1 and p2 := p0 and we obtain∫ p0

p1

U(p) eiωψ(p) dp = φ(2)(0, ω, 2, 1) k2(0) eiωψ(p0) − φ(2)
(
ϕ2(p1), ω, 2, 1

)
k2

(
ϕ2(p1)

)
eiωψ(p0)

+ eiωψ(p0)

∫ ϕ2(p1)

0

φ(2)(s, ω, 2, 1)(k2)′(s) ds ,

where

• φ(2)(0, ω, 2, 1) = −
√
π

2
e−i

π
4 ω−

1
2 ,

• ϕ2(p) =
(
ψ(p0)− ψ(p)

) 1
2 = p0 − p ∀ p ∈ [p1, p0] ,

• k2(s) = U(ϕ−1
2 (s)

)
(ϕ−1

2 )′(s) = −U(p0 − s) ∀ s ∈
[
0, ϕ2(p1)

]
,

• k2(0) = −U(p0) ,

• k2

(
ϕ2(p1)

)
= −U(p1) = 0 .

This leads to the following expansion,∫ p0

p1

U(p) eiωψ(p) dp =

√
π

2
e−i

π
4 eiωψ(p0) U(p0)ω−

1
2

+ eiωψ(p0)

∫ p0−p1

0

φ(2)(s, ω, 2, 1)U ′(p0 − s) ds . (5.15)

By using the remainder estimate provided by Theorem 1.1.7, by estimating
∣∣U ′(p)∣∣ by∥∥U ′∥∥

L∞(p1,p2)
and (p0 − p1) by (p2 − p1), it follows that∣∣∣∣eiωψ(p0)

∫ p0−p1

0

φ(2)(s, ω, 2, 1)U ′(p0 − s) ds
∣∣∣∣ 6 Lγ,2

1− γ
(p2 − p1)1−γ ∥∥U ′∥∥

L∞(p1,p2)
ω−δ ,
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where δ is arbitrarily chosen in
(

1
2
, 1
)
, γ := 2δ − 1 and the constant Lγ,2 is the constant

Lγ,2,1 given in Theorem 1.1.7.
To study the second integral, we remark firstly that the phase ψ is decreasing on [p0, p2].
So one can make the substitution p 7−→ −p to make ψ increasing. Then carrying out the
same computations as above leads to∫ p2

p0

U(p) eiωψ(p) dp =

√
π

2
e−i

π
4 eiωψ(p0) U(p0)ω−

1
2

− eiωψ(p0)

∫ p2−p0

0

φ(2)(s, ω, 2, 1)U ′(p0 + s) ds , (5.16)

where the remainder is also bounded by
Lγ,2

1− γ
(p2 − p1)1−γ ∥∥U ′∥∥

L∞(p1,p2)
ω−δ. Adding up

equalities (5.15) and (5.16) and estimating both remainders leads to the result, with

C(U) := 2
Lγ,2

1− γ
(p2 − p1)1−γ ∥∥U ′∥∥

L∞(p1,p2)
. (5.17)

We are now able to furnish an asymptotic expansion of the integral (5.12) representing
the term S0(t)u0 in the space-time cone CS

(
p1, p2

)
. As in the preceding chapters, the

method consists in rewriting this integral as an oscillatory integral of the form (5.13) with
ω = t and then applying a stationary phase method; here we employ the above Theorem
5.3.3. Remark that the expansion holds in the entire cone CS

(
p1, p2

)
: since there is no

singular frequency in the present setting, the first term as well as the remainder term are
uniformly bounded with respect to x in this cone.
Moreover we furnish uniform estimates of the term S0(t)u0 outside the cone CS

(
p1, p2

)
by employing Theorem 3.2.1 of Chapter 3, which is applicable here since it treats also
amplitudes without singularities.
Since the resulting decay rates are faster outside CS

(
p1, p2

)
than inside, we deduce that

the term S0(t)u0 tends to be time-asymptotically concentrated in this cone, which is in
accordance with the results of the preceding chapters.

5.3.4 Theorem. Suppose that u0 satisfies Condition (C5[p1,p2]). Then we have for all
(t, x) ∈ CS

(
p1, p2

)
, ∣∣∣(S0(t)u0

)
(x)−H0(t, x, u0) t−

1
2

∣∣∣ 6 C0(u0) t−δ ,

where

H0(t, x, u0) :=
1

2
√
π
e−i

π
4 ei

x2

4t û0

( x
2t

)
.

Moreover, if we choose two finite real numbers p̃1 < p̃2 such that [p1, p2] ⊂ (p̃1, p̃2) =: Ĩ,
then we have for all (t, x) ∈ CS

(
p̃1, p̃2

)c
,∣∣∣(S0(t)u0

)
(x)
∣∣∣ 6 C0,Ĩ(u0) t−1 .

The constants C0(u0), C0,Ĩ(u0) > 0 are given by (5.18), (5.19) respectively.
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5.3.5 Remark. It is straightforward that the L∞-norm with respect to x of S0(t)u0 is

estimated by t−
1
2 multiplied by a constant, by applying the results of Chapter 3 as we did

in Theorems 4.1.3 and 4.1.4. This is not carried out in the present chapter because our
main interest lies in the propagation features.

Proof of Theorem 5.3.4. Factorizing the phase function p 7−→ −tp2 + xp by t in the for-
mula (5.12) gives

∀ (t, x) ∈ (0,+∞)× R
(
S0(t)u0

)
(x) =

∫ p2

p1

U(p) eitψ(p) dp ,

where 
∀ p ∈ [p1, p2] U(p) :=

1

2π
û0(p) ,

∀ p ∈ R ψ(p) := −p2 +
x

t
p .

The function U verifies the assumptions of Theorem 5.3.3 on [p1, p2] by hypothesis and ψ
has the form

ψ(p) = − (p− p0)2 + c ,

where p0 := x
2t

and c := p 2
0 = x2

4t2
. Moreover the fact that (t, x) ∈ CS

(
p1, p2

)
is equivalent

to the fact that the stationary point p0 belongs to (p1, p2). Choosing δ ∈
(

1
2
, 1
)
, Theorem

5.3.3 is applicable and furnishes∣∣∣(S0(t)u0

)
(x)−H0(t, x, u0) t−

1
2

∣∣∣ 6 C0(u0) t−δ ,

where

C0(u0) :=
1

π

Lγ,2
2− 2δ

(p2 − p1)2−2δ
∥∥(û0)′

∥∥
L∞(R)

, (5.18)

and Lγ,2 is the constant Lγ,2,1 given in Theorem 1.1.7.
Now when x

t
> 2 p̃2, we have

∀ p ∈ [p1, p2] ψ′(p) =
x

t
− 2p > 2(p̃2 − p2) > 0 .

Moreover the amplitude U is a C1-function on R supported on [p1, p2]. In this context,
Theorem 3.2.1 in the case µ = 1 is applicable and it provides for x

t
> 2 p̃2,∣∣∣(S0(t)u0

)
(x)
∣∣∣ 6 1

4π

(
p̃2 − p2

)−1
(

3
∥∥û0

∥∥
L∞(R)

+
∥∥(û0)′

∥∥
L1(R)

)
t−1 .

Very similar arguments leads to∣∣∣(S0(t)u0

)
(x)
∣∣∣ 6 1

4π

(
p1 − p̃1

)−1
(

3
∥∥û0

∥∥
L∞(R)

+
∥∥(û0)′

∥∥
L1(R)

)
t−1 ,

for x
t
6 2 p̃1. Adding up the two previous inequalities furnishes the second estimate of

Theorem 5.3.4 with

C0,Ĩ(u0) :=
1

4π

(
1

p̃2 − p2

+
1

p1 − p̃1

)(
3
∥∥û0

∥∥
L∞(R)

+
∥∥(û0)′

∥∥
L1(R)

)
. (5.19)
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5.4 Asymptotic behaviour of the wave packet issued

by the first interaction

This section is devoted to the time-asymptotic behaviour of the term S1(t)u0 of the series
expansion of the solution given in Theorem 5.1.2. The aim is a similar result to Theorem
5.3.4 for an integral representation of S1(t)u0: expanding this integral to one term in a
certain space-time cone and to estimate it uniformly outside this cone.

In Proposition 5.4.1 and Proposition 5.4.4, we provide a representation of S1(t)u0 as
a sum of two oscillatory integrals. We assume that u0 and V satisfy Condition (C5[p1,p2])
and Condition (Pa,b) respectively, which is essential in order to apply the same methods
as in the preceding section.
In Proposition 5.4.1, we show that the term S1(t)u0 can be written as a sum of two
functions given by oscillatory integrals with amplitudes depending on time. If we ap-
ply Theorem 5.3.3 to these integrals, then the first terms and the remainder estimates
may depend intrinsically on time. In particular, deriving the optimal time-decay rates of
S1(t)u0 from these expansions may be not possible.
To prevent that, we furnish in Proposition 5.4.4 an expansion with respect to time of each
amplitude given in Proposition 5.4.1: here, the first term does not depend on time, and
the remainder is explicit and uniformly bounded by t−1. To establish these expansions,
we shall make additional hypotheses on the supports of û0 and V̂ : roughly speaking the
support of û0 does not contain 0 and does not intersect the support of V̂ .
Consequently each term of S1(t)u0 is time-asymptotically equivalent to an oscillatory in-
tegral whose amplitude does not depend on time (see Corollary 5.4.5) and this will permit
to apply the methods of Section 5.3.

To prove Proposition 5.4.1, we start by decomposing S1(t)u0 into a sum of two terms
by using the splitting of the potential in positive and negative frequencies according to
Remark 5.2.1 (iii). Then we employ the Fourier representation of T (t)u0 given in (5.12)
as well as Fubini’s theorem to show that the terms of the above sum are represented by
oscillatory integrals.

5.4.1 Proposition. Suppose that u0 and V satisfy Condition (C5[p1,p2]) and Condition
(Pa,b) respectively. Let t > 0 and let W−(t, .),W+(t, .) : R −→ C be the functions defined
by

∀ p ∈ R W±(t, p) :=

∫ t

0

W̃±(s, p) eisp
2

ds ,

where for all s ∈ [0, t],

• W̃−(s, p) :=
((
χ[−b,−a]V̂

)
∗
(
e−is ·

2

û0

))
(p) =

∫ −a
−b

V̂ (y) û0(p− y) e−is(p−y)2 dy

• W̃+(s, p) :=
((
χ[a,b]V̂

)
∗
(
e−is ·

2

û0

))
(p) =

∫ b

a

V̂ (y) û0(p− y) e−is(p−y)2 dy .

Note that for fixed t > 0, we have

suppW−(t, .) ⊆ [p1 − b, p2 − a] , suppW−(t, .) ⊆ [p1 + a, p2 + b] .
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Then we have

∀ t > 0 S1(t)u0 = S−1 (t)u0 + S+
1 (t)u0 ,

where S−1 (t)u0, S
+
1 (t)u0 : R −→ C are given by

• ∀x ∈ R
(
S−1 (t)u0

)
(x) =

1

2π

∫ p2−a

p1−b
W−(t, p) e−itp

2+ixp dp ,

• ∀x ∈ R
(
S+

1 (t)u0

)
(x) =

1

2π

∫ p2+b

p1+a

W+(t, p) e−itp
2+ixp dp .

Proof. Let t > 0. According to equality (5.4) from Remark 5.2.1 (iii), we can write the
operator B as follows,

(Bf)(x) = −i V (x)f(x) = −i V −(x)f(x)− i V +(x)f(x) =: (B−f)(x) + (B+f)(x) a.e ,

for all f ∈ H1(R). Putting this into equality (5.2) from Remark 5.1.3 (ii) and using the
Fourier representation of S0(s) := T (s), we obtain for all x ∈ R,

(
S1(t)u0

)
(x) =

∫ t

0

(
T (t− s)B− T (s)u0

)
(x) ds+

∫ t

0

(
T (t− s)B+ T (s)u0

)
(x) ds

= −i
∫ t

0

F−1
p→x

(
e−i(t−s)p

2Fx→p
(
V −F−1

p→x
(
e−isp

2

û0

)))
(x) ds

− i
∫ t

0

F−1
p→x

(
e−i(t−s)p

2Fx→p
(
V +F−1

p→x
(
e−isp

2

û0

)))
(x) ds

= −i
∫ t

0

F−1
p→x

(
e−i(t−s)p

2
((
χ[−b,−a]V̂

)
∗
(
e−is ·

2

û0

)))
(x) ds

− i
∫ t

0

F−1
p→x

(
e−i(t−s)p

2
((
χ[a,b]V̂

)
∗
(
e−is ·

2

û0

)))
(x) ds

=

∫ t

0

F−1
p→x

(
e−i(t−s)p

2

W̃−(s, p)
)

(x) ds

+

∫ t

0

F−1
p→x

(
e−i(t−s)p

2

W̃+(s, p)
)

(x) ds . (5.20)

By defining the functions S±1 (t)u0 : R −→ C as follows,

∀x ∈ R
(
S±1 (t)u0

)
(x) :=

∫ t

0

F−1
p→x

(
e−i(t−s)p

2

W̃±(s, p)
)

(x) ds , (5.21)

we obtain that: S1(t)u0 = S−1 (t)u0 +S+
1 (t)u0. Now let us rewrite the term S+

1 (t)u0. Since
W̃+(s, .) : R −→ C is a convolution of two compactly supported C1-functions, it is a
C1-function as well. Moreover as a consequence of Condition (C5[p1,p2]), the support of

the function p 7−→ e−isp
2
û0(p) is contained in the interval [p1, p2], which implies that

supp W̃+(s, .) = supp
((
χ[a,b]V̂

)
∗
(
e−is ·

2

û0

))
⊆ [a, b] + [p1, p2] = [p1 + a, p2 + b] ,
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for any s ∈ [0, t]. It follows that W̃+(s, .) is an integrable function and so the term
F−1
p→x
(
e−i(t−s)p

2
W̃+(s, p)

)
(x) can be given by the integral representation of the inverse

Fourier transform for integrable functions with respect to the variable p:

∀x ∈ R F−1
p→x

(
e−i(t−s)p

2

W̃+(s, p)
)

(x) =
1

2π

∫ p2+b

p1+a

W̃+(s, p) e−i(t−s)p
2+ixp dp .

Combining this with equality (5.21), we show that for all x ∈ R,

(
S+

1 (t)u0

)
(x) =

∫ t

0

(
1

2π

∫ p2+b

p1+a

W̃+(s, p) e−i(t−s)p
2+ixp dp

)
ds .

And we apply Fubini’s theorem to the last equality to obtain the desired equality for
S+

1 (t)u0, namely,

(
S+

1 (t)u0

)
(x) =

1

2π

∫ p2+b

p1+a

(∫ t

0

W̃+(s, p) eisp
2

ds

)
e−itp

2+ixp dp

=:
1

2π

∫ p2+b

p1+a

W+(t, p) e−itp
2+ixp dp .

Using very similar arguments, we establish the following equality for all t > 0 and x ∈ R,(
S−1 (t)u0

)
(x) =

1

2π

∫ p2−a

p1−b
W−(t, p) e−itp

2+ixp dp ,

with

∀ p ∈ [p1 − b, p2 − a] W−(t, p) :=

∫ t

0

W̃−(s, p) eisp
2

ds .

In Proposition 5.4.4, we shall expand the functions W±(t, .) with respect to the pa-
rameter t. We shall use one of the three following hypotheses:

Hypothesis (H1). The initial data u0 and the potential V verify Condition (C5[p1,p2])
and Condition (Pa,b) respectively, with a− b

2
> 0 and b

2
− a < p1 < p2 < a− b

2
.

Hypothesis (H2). The initial data u0 and the potential V verify Condition (C5[p1,p2])
and Condition (Pa,b) respectively, with b < p1.

Hypothesis (H3). The initial data u0 and the potential V verify Condition (C5[p1,p2])
and Condition (Pa,b) respectively, with p2 < −b.

These three hypotheses are illustrated in Figure 5.1: u1 satisfies Hypothesis (H1) (û1 is
in red), u2 satisfies Hypothesis (H2) (û2 is in blue) and u3 satisfies Hypothesis (H3) (û3

is in green).

5.4.2 Remark. In terms of quantum mechanics, the three previous hypotheses mean
that the momentum of the initial state u0 has to be localized outside the intervals given
by the support of V̂ .
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Figure 5.1: Illustration of the hypotheses (H1),(H2) and (H3)

If one of the three above hypotheses is satisfied, then the following lemma assures that
a certain quadratic function, that will appear in Proposition 5.4.4, does not vanish on a
domain related to the supports of û0 and V̂ . This result will be employed in the proof of
this proposition. Let us not that, actually, the statement of the lemma can be formulated
independently from û0 and V̂ , only the relations between the real numbers a, b, p1, p2 are
employed.

5.4.3 Lemma. Let p1 < p2 and 0 < a < b be four finite real numbers. Define the domains
D−, D+ ⊂ R2 as follows

D− := [−b,−a]× [p1 − b, p2 − a] , D+ := [a, b]× [p1 + a, p2 + b] .

Let q : D− ∪D+ −→ R be the function defined by

q(y, p) = (p− y)2 − p2 .

If one of the three following hypotheses

(H1′) a− b
2
> 0 and b

2
− a < p1 < p2 < a− b

2
,

(H2′) b < p1 ,

(H3′) p2 < −b ,

is satisfied, then the function q : D− ∪D+ −→ R does not vanish on its domain.

Proof. Clearly we have
q(y, p) = y (y − 2p) .

Since 0 < a 6 |y| by hypothesis, it suffices to prove that the factor (y − 2p) does not
vanish on D− ∪ D+ when one of the three hypothese (H1′), (H2′) or (H3′) is satisfied.
To do so, we remark that for (y, p) ∈ D+,

a− 2 p2 − 2 b 6 y − 2p 6 b− 2 p1 − 2 a ,

and for (y, p) ∈ D−,

−b− 2 p2 + 2 a 6 y − 2p 6 −a− 2 p1 + 2 b .

Now let us divide the proof.
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• Case 1: (H1′) is satisfied. In this case, we have

• b

2
− a < p1 =⇒ b− 2 p1 − 2 a < 0 ,

• p2 < a− b

2
=⇒ 0 < −b− 2 p2 + 2 a ,

which proves that the factor (y − 2p) does not vanish on D− ∪D+ in this case.

• Case 2: (H2′) is satisfied. Since a > 0, we have

b < p1 =⇒

{
0 > b− 2 p1 > b− 2 p1 − 2 a

0 > 2 b− 2 p1 > −a− 2 p1 + 2 b
.

In this case, the factor (y − 2p) is negative.

• Case 3: (H3′) is satisfied. Since a > 0, we have

p2 < −b =⇒

{
0 < −2 p2 − 2 b < a− 2 p2 − 2 b

0 < −b− 2 p2 < −b− 2 p2 + 2 a
.

In this case, the factor (y − 2p) is positive.

Lemma 5.4.3 is then proved.

Thanks to the preceding lemma, we can expand the functions W±(t, .) with respect
to time:

5.4.4 Proposition. Suppose that u0 and V satisfy Condition (C5[p1,p2]) and Condition
(Pa,b) respectively. Moreover suppose that one of the three hypotheses (H1), (H2) or (H3)
is verified and that 0 /∈ [p1, p2]. Let t > 0 and let W±

1 ,W
±
2 (t, .) : R −→ C be the functions

defined by

• W±
1 (p) := ∓

∫ ±b
±a

V̂ (y) û0(p− y)

q(y, p)
dy ,

• W±
2 (t, p) := ∓ i

∫ ±b
±a

∂y

[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]
e−it q(y,p) dy ,

for all p ∈ R. Note that for fixed t > 0, we have

• suppW−
1 = suppW−

2 (t, .) ⊆ [p1 − b, p2 − a] ,

• suppW+
1 = suppW+

2 (t, .) ⊆ [p1 + a, p2 + b] .

Then we have

W±(t, p) = W±
1 (p) +W±

2 (t, p) t−1 .
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Proof. Let t > 0 and let us recall that for all p ∈ R,

W+(t, p) =

∫ t

0

W̃+(s, p) eisp
2

ds ,

where

W̃+(s, p) =
((
χ[a,b]V̂

)
∗
(
e−is ·

2

û0

))
(p) =

∫ b

a

V̂ (y) û0(p− y) e−is(p−y)2 dy .

Since W+(t, .) is equal to 0 outside [p1 + a, p2 + b], we shall study this function on this
interval only. Now let us remark that the function

(s, y) 7−→ V̂ (y) û0(p− y) e−is(p−y)2+isp2 ,

is continuous on R × R for any p ∈ [p1 + a, p2 + b], so it is integrable on the compact
domain [0, t]× [a, b]. Using the definition of W̃+(s, p) and applying Fubini’s theorem gives

W+(t, p) =

∫ t

0

W̃+(s, p) eisp
2

ds

= −i
∫ t

0

(∫ b

a

V̂ (y) û0(p− y) e−is(p−y)2 dy

)
eisp

2

ds

= −i
∫ b

a

V̂ (y) û0(p− y)

(∫ t

0

e−is
(

(p−y)2−p2
)
ds

)
dy

= −i
∫ b

a

V̂ (y) û0(p− y)

(∫ t

0

e−is q(y,p) ds

)
dy .

The quantity q(y, p) = (p− y)2− p2 is never equal to 0 if y ∈ [a, b] and p ∈ [p1 + a, p2 + b]
according to Lemma 5.4.3, so we can integrate,∫ t

0

e−is q(y,p) ds =
i

q(y, p)

∫ t

0

∂

∂s

[
e−is q(y,p)

]
ds =

i

q(y, p)

(
e−it q(y,p) − 1

)
.

Hence we obtain for p ∈ [p1 + a, p2 + b],

W+(t, p) =

∫ b

a

V̂ (y) û0(p− y)

q(y, p)

(
e−it q(y,p) − 1

)
dy

=

∫ b

a

V̂ (y) û0(p− y)

q(y, p)
e−it q(y,p)dy −

∫ b

a

V̂ (y) û0(p− y)

q(y, p)
dy

=: W̃+
2 (t, p) +W+

1 (p) .

Now we remark that for fixed p ∈ [p1 + a, p2 + b], the integrand of the integral defining
W̃+

2 (t, p) is actually equal to zero outside the set Dp :=
{
y ∈ R

∣∣ p−y ∈ [p1, p2]
}

since the
support of û0 is contained in [p1, p2]. On the set Dp, the function ∂yq(y, p) = −2(p − y)
does not vanish thanks to the hypothesis 0 /∈ [p1, p2]. Hence we can integrate by parts,
providing

W̃+
2 (t, p) = i

∫ b

a

V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)
∂y

[
e−it q(y,p)

]
dy t−1

= −i
∫ b

a

∂y

[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]
e−it q(y,p) dy t−1

=: W+
2 (t, p) t−1 ;
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let us remark that the boundary terms in the second equality are equal to 0 because
V̂ (a) = V̂ (b) = 0.
By changing just the integration interval with respect to y, we obtain the desired equality
for W−(t, p).

From the two preceding propositions, we derive the following corollary:

5.4.5 Corollary. Under the hypotheses and the notations of Proposition 5.4.1 and Propo-
sition 5.4.4, we have for all (t, x) ∈ R+ × R,(

S−1 (t)u0

)
(x) =

1

2π

∫ p2−a

p1−b
W−

1 (p) e−itp
2+ixp dp+

1

2π

∫ p2−a

p1−b
W−

2 (t, p) e−itp
2+ixp dp t−1

=:
(
S−1,1(t)u0

)
(x) +

(
S−1,2(t)u0

)
(x) t−1 ,

and(
S+

1 (t)u0

)
(x) =

1

2π

∫ p2+b

p1+a

W+
1 (p) e−itp

2+ixp dp+
1

2π

∫ p2+b

p1+a

W+
2 (t, p) e−itp

2+ixp dp t−1

=:
(
S+

1,1(t)u0

)
(x) +

(
S+

1,2(t)u0

)
(x) t−1 .

Proof. It is sufficient to insert the expansions of the function W±(t, p) given in Proposition
5.4.4 into the definitions of the functions S±1 (t)u0 given in Proposition 5.4.1.

We are now in position to establish a similar result to Theorem 5.3.4 for the terms
S±1 (t)u0. We start by furnishing an expansion to one term of S−1 (t)u0 in the space-time
cone CS

(
p1 − b, p2 − a

)
and uniform estimates in its complement. To this end, we apply

Theorem 5.3.3 to
(
S−1,1(t)u0

)
(x) following the lines of the proof of Theorem 5.3.4: this

procedure gives an asymptotic expansion with respect to time such that the first term
depends explicitly on t and x, and the remainder is uniformly bounded with respect to
x in CS

(
p1 − b, p2 − a

)
. Outside this cone, we employ Theorem 3.2.1 to provide uniform

estimates of
(
S−1,1(t)u0

)
(x). Regarding the other term

(
S−1,2(t)u0

)
(x) t−1, we prove that

it can be estimated by a constant multiplied by t−1 in the whole space-time. Hence this
term does not dominate the asymptotic behaviour of

(
S−1 (t)u0

)
.

5.4.6 Theorem. Suppose that u0 and V satisfy Condition (C5[p1,p2]) and Condition (Pa,b)
respectively. Moreover suppose that one of the three assumptions (H1), (H2) or (H3) is
satisfied and that 0 /∈ [p1, p2]. Then we have for all (t, x) ∈ CS

(
p1 − b, p2 − a

)
,∣∣∣(S−1 (t)u0

)
(x)−H−1 (t, x, u0, V ) t−

1
2

∣∣∣ 6 C−1 (u0, V, δ) t
−δ + C−2 (u0, V ) t−1 ,

where δ ∈
(

1
2
, 1
)

and

H−1 (t, x, u0, V ) :=
1

2
√
π
e−i

π
4 ei

x2

4t W−
1

( x
2t

)
.

Moreover, if we choose two finite real numbers p̃1 < p̃2 such that [p1, p2] ⊂ (p̃1, p̃2) =: Ĩ,
then we have for all (t, x) ∈ CS

(
p̃1 − b, p̃2 − a

)c
,∣∣∣(S−1 (t)u0

)
(x)
∣∣∣ 6 C−

1,Ĩ
(u0, V ) t−1 .
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The constants C−1 (u0, V, δ), C
−
2 (u0, V ), C−

1,Ĩ
(u0, V ) > 0 are given by (5.22), (5.23), (5.24)

respectively.

Proof. By Corollary 5.4.5, we have for all t > 0 and x ∈ R,(
S−1 (t)u0

)
(x) =

1

2π

∫ p2−a

p1−b
W−

1 (p) e−itp
2+ixp dp+

1

2π

∫ p2−a

p1−b
W−

2 (t, p) e−itp
2+ixp dp t−1

=:
(
S−1,1(t)u0

)
(x) +

(
S−1,2(t)u0

)
(x) t−1 .

Following the lines of the proof of Theorem 5.3.4, we prove that for (t, x) belonging to
CS
(
p1 − b, p2 − a

)
,∣∣∣(S−1,1(t)u0

)
(x)−H−1 (t, x, u0, V ) t−

1
2

∣∣∣ 6 C−1 (u0, V, δ) t
−δ ,

where δ ∈
(

1
2
, 1
)

and

C−1 (u0, V, δ) :=
1

π

Lγ,2
2− 2δ

(p2 − p1)2−2δ

∥∥∥∥∥p 7−→
∫ −a
−b

∂p

[
V̂ (y) û0(p− y)

q(y, p)

]
dy

∥∥∥∥∥
L∞(R)

.

(5.22)
Moreover by a rough estimate, we have for all t > 0 and x ∈ R,∣∣∣(S−1,2(t)u0

)
(x) t−1

∣∣∣ 6 C−2 (u0, V ) t−1 ,

where

C−2 (u0, V ) :=
1

2π

∫ p2−a

p1−b

∫ −a
−b

∣∣∣∣∣∂y
[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]∣∣∣∣∣ dy dp . (5.23)

Therefore for all (t, x) ∈ CS
(
p1 − b, p2 − a

)
, we obtain∣∣∣(S−1 (t)u0

)
(x)−H−1 (t, x, u0, V ) t−

1
2

∣∣∣ 6 ∣∣∣(S−1,1(t)u0

)
(x)−H−1 (t, x, u0, V ) t−

1
2

∣∣∣
+
∣∣(S−1,2(t)u0

)
(x) t−1

∣∣
6 C−1 (u0, V, δ) t

−δ + C−2 (u0, V ) t−1 .

As in the proof of Theorem 5.3.4, we apply Theorem 3.2.1 to the oscillatory integral
giving the term

(
S−1,1(t)u0

)
(x) in the space-time regions

{
(t, x) ∈ R∗+ × R

∣∣ x
t
> p̃2 − a

}
and

{
(t, x) ∈ R∗+ × R

∣∣ x
t
6 p̃1 − b

}
. This furnishes the following estimate,

∀ (t, x) ∈ CS
(
p̃1 − b, p̃2 − a

)c ∣∣∣(S−1,1(t)u0

)
(x)
∣∣∣ 6 C̃−

1,Ĩ
(u0, V ) t−1 ,

where

C̃−
1,Ĩ

(u0, V ) :=
1

4π

(
1

p̃2 − p2

+
1

p1 − p̃1

)(
3

∥∥∥∥∥p 7−→
∫ −a
−b

V̂ (y) û0(p− y)

q(y, p)
dy

∥∥∥∥∥
L∞(R)

+

∫ p2−a

p1−b

∫ −a
−b

∣∣∣∣∣∂p
[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]∣∣∣∣∣ dy dp
)
.
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Hence it follows ∣∣∣(S−1 (t)u0

)
(x)
∣∣∣ 6 ∣∣∣(S−1,1(t)u0

)
(x)
∣∣∣+
∣∣∣(S−1,2(t)u0

)
(x)
∣∣∣

6 C̃−
1,Ĩ

(u0, V ) t−1 + C−2 (u0, V ) t−1

=: C−
1,Ĩ

(u0, V ) t−1 ,

where

C−
1,Ĩ

(u0, V ) := C̃−
1,Ĩ

(u0, V ) + C−2 (u0, V )

=
1

4π

(
1

p̃2 − p2

+
1

p1 − p̃1

)(
3

∥∥∥∥∥p 7−→
∫ −a
−b

V̂ (y) û0(p− y)

q(y, p)
dy

∥∥∥∥∥
L∞(R)

+

∫ p2−a

p1−b

∫ −a
−b

∣∣∣∣∣∂p
[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]∣∣∣∣∣ dy dp
)

+
1

2π

∫ p2−a

p1−b

∫ −a
−b

∣∣∣∣∣∂y
[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]∣∣∣∣∣ dy dp . (5.24)

In the last result of this section, we provide a very similar result to Theorem 5.4.6 for
the term S+

1 (t)u0.

5.4.7 Theorem. Suppose that the hypotheses of Theorem 5.4.6 are satisfied. Then we
have for all (t, x) ∈ CS

(
p1 + a, p2 + b

)
,∣∣∣(S+

1 (t)u0

)
(x)−H+

1 (t, x, u0) t−
1
2

∣∣∣ 6 C+
1 (u0, V, δ) t

−δ + C+
2 (u0, V ) t−1 ,

where δ ∈
(

1
2
, 1
)

and

H+
1 (t, x, u0) :=

1

2
√
π
e−i

π
4 ei

x2

4t W+
1

( x
2t

)
.

Moreover, if we choose two finite real numbers p̃1 < p̃2 such that [p1, p2] ⊂ (p̃1, p̃2) =: Ĩ,
then we have for all (t, x) ∈ CS

(
p̃1 + a, p̃2 + b

)c
,∣∣∣(S+

1 (t)u0

)
(x)
∣∣∣ 6 C+

1,Ĩ
(u0, V ) t−1 .

The constants C+
1 (u0, V, δ), C

+
2 (u0, V ), C+

1,Ĩ
(u0, V ) > 0 are given by (5.25), (5.26), (5.27)

respectively.

Proof. To prove Theorem 5.4.7, it is sufficient to follow the lines of the proof of Theorem
5.4.6 and to change some domains of integration.
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Let us give the expressions of the resulting constants:

• C+
1 (u0, V, δ) :=

1

π

Lγ,2
2− 2δ

(p2 − p1)2−2δ

∥∥∥∥∥p 7−→
∫ b

a

∂p

[
V̂ (y) û0(p− y)

q(y, p)

]
dy

∥∥∥∥∥
L∞(R)

,

(5.25)

• C+
2 (u0, V ) :=

1

2π

∫ p2+b

p1+a

∫ b

a

∣∣∣∣∣∂y
[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]∣∣∣∣∣ dy dp , (5.26)

• C+

1,Ĩ
(u0, V ) :=

1

4π

(
1

p̃2 − p2

+
1

p1 − p̃1

)(
3

∥∥∥∥∥p 7−→
∫ b

a

V̂ (y) û0(p− y)

q(y, p)
dy

∥∥∥∥∥
L∞(R)

+

∫ p2+b

p1+a

∫ b

a

∣∣∣∣∣∂p
[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]∣∣∣∣∣ dy dp
)

+
1

2π

∫ p2+b

p1+a

∫ b

a

∣∣∣∣∣∂y
[
V̂ (y) û0(p− y)

q(y, p) ∂yq(y, p)

]∣∣∣∣∣ dy dp . (5.27)

5.5 Interpretation of the results in terms of trans-

mission and reflection

In this short section, we discuss the results of the two preceding sections by comparing the
time-asymptotic behaviours of the terms S0(t)u0 and S1(t)u0 under different hypotheses.

Let us recall that the term S0(t)u0 of the series expansion of the solution given in
Theorem 5.1.2 is the solution of the free Schrödinger equation. In Theorem 5.3.4, it is
proved that this term tends to be localized in the space-time cone CS(p1, p2) when the
time tends to infinity. As for the term S1(t)u0, it is the resulting wave packet from the
first interaction of the free solution with the potential. We have proved in Corollary 5.4.5
that this term is actually the sum of the terms S−1 (t)u0 and S+

1 (t)u0, which tend to be
time-asymptotically concentrated in the cones CS(p1 − b, p2 − a) and CS(p1 + a, p2 + b)
respectively, according to Theorems 5.4.6 and 5.4.7. Hence these three space-time cones,
more precisely their inclinations, permit to describe the propagation of the above wave
packets.

We recall also that the results of Section 5.4 have been obtained under one of the three
hypotheses (H1), (H2) and (H3).

Limited and positive initial speed

Assume that Hypothesis (H1) is satisfied and that 0 < p1. In terms of quantum me-
chanics, this means that the momentum (or speed) of the initial state u0 is localized in
a bounded interval containing only positive values and being bounded from above by
the quantity a − b

2
. An illustration of the three cones CS(p1, p2), CS(p1 − b, p2 − a) and
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CS(p1 + a, p2 + b) under Hypothesis (H1) is given in Figure 5.2.

Figure 5.2: The different cones of propagation under Hypothesis (H1)

Hypothesis 0 < p1 implies that the two half-lines delimiting the cone CS(p1, p2) are
inclined to the right in space-time. It follows that the free wave packet S0(t)u0 tends to
move to the right in space when the time tends to infinity. The same conclusion holds for
the term S+

1 (t)u0 since the cone CS(p1 + a, p2 + b) is also inclined to the right. When the
time tends to infinity, we remark that the maximal speed of S+

1 (t)u0, given by 2(p2 + b),
is larger than the maximal speed of S0(t)u0, given by 2p2. This means that S+

1 (t)u0

moves more quickly to the right in space than S0(t)u0. On the other hand, the cone
CS(p1 − b, p2 − a) is inclined to the left in space-time due to the hypothesis p2 < a − b

2
,

which implies in particular that p2−a < 0. Hence the wave packet given by S−1 (t)u0 tends
to move to the left in space when the time tends to infinity. Here the terms S−1 (t)u0 and
S+

1 (t)u0 can be interpreted respectively as the reflected part and the transmitted part of
S1(t)u0.

High positive initial speed

Assume Hypothesis (H2). Figure 5.3 provides an illustration of the three cones under
this hypothesis.

For the same reasons as previously, the free wave packet S0(t)u0 and the term S+
1 (t)u0

move time-asymptotically to the right in space. But Hypothesis (H2) implies that
p1 − b > 0 and thus, the cone CS(p1 − b, p2 − a) is inclined to the right in space-time
too. This means that the wave packet given by S−1 (t)u0 moves also to the right in space
when the time tends to infinity. Hence the term S1(t) has no time-asymptotic reflected
part in the present case. This phenomenon is due to the fact that the speed of the initial
wave packet is sufficiently large so that the first interaction of the free wave packet with
the potential does not produce a reflection term. This was not the case in the preceding
subsection since the initial speed was relatively small.
Now under Hypothesis (H2), the maximal speed of S+

1 (t)u0 is still larger than the maxi-
mal speed of S0(t)u0. But the minimal speed of S−1 (t)u0, i.e. 2(p1 − b), is smaller than
the minimal speed of S0(t)u0, namely 2p1, showing that S−1 (t)u0 moves more slowly than

141



Chapter 5. Time asymptotic behaviour of approximate solutions of Schrödinger
equations with both potential and initial condition in frequency bands

Figure 5.3: The different cones of propagation under Hypothesis (H2)

the free wave packet. In the present case, S−1 (t)u0 and S+
1 (t)u0 can be interpreted as the

retarded transmission and advanced transmission respectively.

Up to now, we do not know if potentials in frequency bands are physically inter-
pretable. Considering potentials which are not in frequency bands is in principle possible
but studying the superposition of all the bands seems to be complicated. Further pheno-
mena as retarded reflection have been observed in mathematics as well as in experimental
and physical physics; we refer to the paper [7] for the mathematical results and the re-
ferences provided in this paper for the physical results. However the connection to our
calculations is not clear yet.

5.6 Some results from functional analysis

In this last section, we start by recalling some results from semigroup theory that we use
in Section 5.1. They permit to define the notion of classical solution for the Schrödinger
equation (5.1) and to prove existence and uniqueness of this solution. Then a result
concerning the possibility of interchanging integration with the application of bounded
operators is recalled.

Let us remark that the results of this section are not proved but quoted from the liter-
ature containing their proofs. Furthermore, in the present section, the operators A,B,C
and the semigroups

(
T (t)

)
t>0

,
(
S(t)

)
t>0

are general and do not refer to the particular
objects which are considered in the preceding sections of this chapter.

We start by recalling the notion of a classical solution of an abstract evolution equation
(see [14, Chapter II, Definition 6.1]). If an operator generates a semigroup on a Banach
space, then the classical solution of the evolution equation given by this operator exists,
is unique and corresponds to the orbit of the initial value under the semigroup (see [14,
Chapter II, Proposition 6.2]).
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5.6.1 Definition and Proposition. Consider the initial value problem{
u̇(t) = Au(t)

u(0) = v
, (5.28)

for t > 0, where A : D(A) ⊂ X −→ X is the generator of a semigroup
(
T (t)

)
t>0

on the
Banach space X.
A function u : R+ −→ X is called a classical solution of (5.28) if u is continuously
differentiable with respect to X, u(t) ∈ D(A) for all t > 0, and u satisfies (5.28).
If v ∈ D(A) then the function

u : t ∈ R+ 7−→ u(t) = T (t) v ,

is the unique classical solution of (5.28).

In the following theorem, we recall that the sum of a generator of a semigroup on
X and a bounded operator on X generates a semigroup as well (see [14, Chapter III,
Bounded Perturbation Theorem 1.3]).

5.6.2 Theorem. Let
(
A,D(A)

)
be the generator of a strongly continuous semigroup on

a Banach space X. If B is a bounded operator from X into itself, i.e. B ∈ L(X), then
the operator

(
C,D(C)

)
:=
(
A + B,D(A)

)
generates a strongly continuous semigroup on

X.

A representation of the semigroup generated by the operator
(
A+B,D(A)

)
as a series

is recalled in the following theorem. It is called Dyson-Phillips series (see [14, Chapter
III, Theorem 1.10]).

5.6.3 Theorem. Let
(
A,D(A)

)
be the generator of a strongly continuous semigroup(

T (t)
)
t>0

on a Banach space X, and let B ∈ L(X). The strongly continuous semigroup(
S(t)

)
t>0

generated by
(
C,D(C)

)
:=
(
A+B,D(A)

)
can be obtained as

lim
N→+∞

∥∥∥∥∥S(t)−
N∑
n=0

Sn(t)

∥∥∥∥∥
L(X)

= 0 ,

where S0(t) := T (t) and

∀ v ∈ X Sn+1(t)v :=

∫ t

0

Sn(t− s)B T (s)v ds .

In the final result, we recall that Bochner-type integration and the application of
bounded operators can be interchanged (see [31, Chapter V, Section 5, Corollary 2]).

5.6.4 Proposition. Let A be a bounded operator acting between two Banach spaces X
and Y and let J ⊆ R be an interval. If F : J −→ X is a Bochner-integrable function,
then AF : J −→ Y is also a Bochner-integrable function and

A

(∫
J

F (s) ds

)
=

∫
J

AF (s) ds .
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