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ABSTRACT

The preventive maintenance of the railway contact wires is very critical to the proper
functioning of the railway company. In this PhD thesis, we have demonstrated through
various studies and experiments the necessity of using 3D vision system to measure the

cross-section area of the contact wires. The major drawback of the present state of art Contact
Wire Wear Measurement System is that they measure the wire wear using 2D image processing.
Therefore, we have proposed a Contact Wire Wear Measurement System that measures the
cross-section of any contact wire using 3D computer vision techniques. The proposed system
consists of lasers and Scheimpflug optical devices. The Scheimpflug device is made up of a camera
and a special optical lens which ensures that the sensor plane is tilted at double angles with
reference to the camera’s optical axis. This is a non-classical optical set-up that increases the
field of view.

As we have to measure the contact wire using the laser-Scheimpflug device, we need to
calibrate the system. We proposed a new calibration method suited for 3D laser-Scheimpflug
device triangulation system. It is a two-step calibration process that first estimates the intrinsic
parameter of the Scheimpflug device, then determines the laser plane parameters in the calibrated
camera coordinate system. The method provides significant improvement on the calibration error
compared to the state of art triangulation system.

We have also proposed a method that estimates the cross-section of contact wires directly
from their images, that are acquired by the proposed system. First, we use a method to extract
the pixels that correspond to the laser line profile projected on the contact wire. Thereafter,
these pixels are transformed to the 3D profile by triangulation using the proposed laser-camera
calibration method. Finally, a profile analysis method is proposed to determine the cross-section of
the contact wire directly from the reconstructed profile. We have validated the system capability
both on plug gauge and challenging contact wire samples.

Keywords : Calibration, Scheimpflug, Laser stripe extraction, Triangulation, 3D reconstruction,
Point analysis, Region growing, Sub-pixel interpolation, Gaussian filter, Regression, Bundle
adjustment, Polygonal approximation, Rectification
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RÉSUMÉ

Dans cette thèse nous avons montré à travers différentes études et expériences la nécessité
de mesurer la section de pièces métalliques.

Les méthodes actuelles sont basées sur des systèmes de vision 2D, ce qui ne permet pas de
traiter toutes les géométries possibles. Par conséquent nous avons proposé d’utiliser des méthodes
de vision 3D basées sur un couplage laser caméra et sur un dispositif optique de type Scheimpflug.

Ce dispositif non conventionnel augmente le champ de vue focalisé de la caméra. La mesure
dimensionnelle de la pièce nécessite une calibration spécifique d’un tel système. Nous avons donc
proposé des méthodes de calibrage dont les performances dépassent celles de l’état de l’art.

Une fois le système calibré, la mesure de la section est obtenue par une analyse du profil
résultant de la projection du plan laser sur la pièce. La capacité du système développé a été
évaluée avec des pièces étalons.

Mots cles : Calibrage, Scheimpflug, Triangulation, Vision 3D, Mesure dimensionnelle
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INTRODUCTION

Railway infrastructures must be regularly inspected to ensure their working order. There-

fore, early detection of faults will avoid costly damage [56]. The maintenance task is

generally performed with the use of full inspection train such as French railway com-

pany (SNCF) IRIS 320 [73], Italian Geocat system [25] and Japanese Dr. yellow [47]. The

emergence of computer vision field has provided non-contact and automated tools to carry out

maintenance of railway infrastructures. They include detection of missing sleepers and fasteners

[57, 58, 66, 88, 113], obstacle detection [16, 23, 69, 108], pantograph related problems [44, 77],

etc. There are still lots of improvement to be made in the inspection of overhead catenary system

because railway industries still rely largely on human inspection. The main drawback of human

inspection is the need to switch off the high voltage wire to be inspected for long period, which

avoids circulation of commercial trains during this period.

According to recent statistics from SNCF field test, the accumulated delays of trains caused

by contact wire incidents amount to more than 135 days lost in a year. Contact wire incidents are

mainly caused by wire breakage. So, it is important to estimate the degree of contact wire wear

before it reaches critical condition. This will allow earlier replacement planning for the wires

whose thickness is too small. Between 2001 and 2009, SNCF has tested several Contact Wire

Wear Measurement Systems (CWWMS) on the railway network. The main conclusion from these

experiments is that no present measurement system meets the required performance expected

by the SNCF. Therefore, contact wire maintenance still largely relies on human inspection, which

is cumbersome, and time consuming.

In the first part, we briefly present the overhead catenary system used on the SNCF network.

Then we describe the specifications about contact wire inspection. The second part is dedicated
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to the state of art review about Contact Wire Wear Measurement System (CWWMS) that are

based on 3 visual strategies, shadowgraphy, analysis of the acquired contact wire images thanks

to single and multiple views. In the final part, we briefly present the specifications of our project

and the main contributions in this PhD thesis.

1.1 Overhead Contact System

The Overhead Contact System (OCS) is the electric system of a railway network. From figure 1.1,

the overhead system components are named as following, (1) Mast or Pole, (2) Cantilever arm, (3)

Insulator, (4) Catenary wire, (5) Connection cable, (6) Dropper or supporting wire, (7) Auxiliary

contact wire, (8) Contact Wire, and (9) Pantograph.

Figure 1.1: The Overhead Contact System (1)-(9)

Contact wires are parallel to the railway track, thanks to the sagged catenary wires. The

electricity is transferred to the contact wire through connection cable woven around the dropper,

and a clamp is attached at the end of the dropper to hold the contact wire directly from the

catenary one (see figure 1.2). The pantograph is the structure mounted on the roof of the train.

It has a conducting strip on its top-head that transfers electricity to the train, through sliding

across the surface of the contact wire by means of a moving train [77].

Figure 1.2: Connecting structure of the OCS.

Historically, there exist in France two types of power supply for the railway network with

the OCS. The first system emerged in early 1922, and uses low voltage rating of 1.5kV DC. In
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1953, the high voltage 25kV AC was completed, and has then become the standard electrification

all over the world. However, since substantial amounts of RFF’s network, especially at the

south of Paris have already been electrified at 1.5kV DC, SNCF therefore engaged in some

major electrification projects which lead to the development of a dual-voltage locomotives, which

requires the use of two 1.5kV DC contact wire types. The use of these two 1.5kV DC contact

wires is mostly common on conventional rail (maximum train speed < 80km/h). We refer to the

overhead systems that use a single 25kV contact wire as single unit and those with double 1.5kV

as double unit installation, respectively (see figure 1.3).

(a) Single unit (b) Double unit

Figure 1.3: Overhead Contact System installation types.

1.1.1 Contact Wire

The location of contact wire varies across the OCS. Figure 1.4 shows the area where the contact

wire has to be inspected. This area is delimited by two extreme points A and B. A 3D coordinate

system is placed at the center of the railway track, so that the train moves along y-axis. The

distance between the contact wire and the railway track along the vertical direction (z-axis)

ranges between 4200mm and 6300mm. Moreover, the contact wire moves along X-axis according

to 900mm. The wire can move in the area A-B, except when the train enters into a tunnel or

railway station, which means that the vertical distance between point A and the rooftop is largely

reduced.

(a) Back view (b) Side view

Figure 1.4: Description of the measurement area.

3



CHAPTER 1. INTRODUCTION

1.1.1.1 Dimension

The contact wires used by SNCF are grouped into "Round" and "Oval" types. Figure 1.5 illustrates

the contact wire profile for both the round and oval wires. As contact wire is circular in shape,

we describe it with three parameters: center Ocw, radius rcw, and thickness Tcw. The two wire

types are symmetrically grooved on the left and right parts of the circle to form a hollow/notch

part. The presence of groove facilitates attachment of the clamp that holds contact wire to the

catenary wire.

For the round wire, the radius rcw is constant along the wire surface (excluding the notch

region) unlike oval wire that has an almost flat surface "weak curvature" at the bottom-end of

the wire. The geometric shape of the round wire makes easy to estimate its cross-section area

(CSA) using circle area properties.

(a) Round wire (b) Oval wire

Figure 1.5: Round and oval contact wire types.

From recent statistics, all high speed rails (maximum train speed ≥ 80km/h) now use the

round wire type, while the oval type can be found mostly on the conventional rail (speed <
80km/h). Contact wires are traditionally made from copper alloys. This is due to their durability,

mechanical strength, high resistance to corrosion, excellent electrical and thermal conductivity.

Examples of used copper alloys are copper silver (CuAg), copper tin (CuSn), copper cadmium

(CuCd), copper magnesium (CuMg) etc. Contact wires are generally manufactured in different

cross-section areas (CSA) ranging between 107 mm2 and 150 mm2 (see table 1.1). These nominal

CSA values are calculated with the exclusion of the notch area.

Round wire Oval wire
BC-107 BC-120 BC-150 BF-107 BF-150

rcw (mm) 6.12 ± 0.1 6.42 ± 0.1 7.25 ± 0.1 6.43 ± 0.08 7.55 ± 0.1
Tcw (mm) 12.24 12.85 14.50 11.35 13.60

CSA (mm2) 108.182 119.386 151.461 108.8435 153.1293

Table 1.1: Dimension of SNCF contact wires.
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1.1.1.2 Surface aspect

The surface aspect of contact wire located in outdoor condition changes during the time. These

wires undergo numerous modifications from chemical reaction with the environment, and carbon

polish deposits on the wire surface. So, it is difficult to define a single reflectance function of the

wire surface in the visible domain. Figure 1.6 shows the different surface aspects of contact wire.

Figure 1.6: Different surface aspects of the contact wire.

1.1.1.3 Grease deposit

The material used to manufacture the contact strip that is located on top of the pantograph affects

the life-cycle of the contact wire. Recent contact strip is made of carbon band which increases

life-cycle of the wire, whereas the old pantograph uses a combination of steel-copper strip which

reduces largely the wire’s life-cycle. Therefore, some OCSs on the SNCF network (mostly on

conventional lines) that use old pantograph still require projection of grease to the wires. This

will ensure that the life-cycle of polished wires increases largely. The grease is made up of about

5 % copper powder, mineral oil and a thickener powder as shown in figure 1.7(a).

(a) Grease appearance (b) Adverse effect

Figure 1.7: Contact wire grease deposit.

As the pantograph slides across the contact wire by means of a moving train, the left-over

grease forms a thick surface layer at the side of the contact wire. In most cases, the surface layer

deforms the profile of the contact wire as shown in figure 1.7(b).
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1.1.1.4 Wear

The continuous friction between the pantograph and the wire leads to gradual wear on the contact

wire surface. An illustration of a wear for round wire is shown in figure 1.8, where W is the

wear width. By comparing this worn-out wire with the new one shown in figure 1.5a, one can

see that the remaining thickness Tcw of the worn-out wire is reduced. The wear illustrated in

figure 1.8 is a standard one, because the wear segment is perfectly horizontal. Therefore, one

can use some geometrical wire models to estimate the remaining cross-section area, thickness

Tcw or worn-out area directly from the measured width W. SNCF use cross-section area, Spanish

railway company (RENFE) use the worn-out area, and Japanese railway (JR) use the thickness

measure to determine the degree of a contact wire wear.

(a) Wear profile (b) 3D view

Figure 1.8: Description of contact wire wear profile.

The position of contact wire varies in the measurement area described in figure 1.4. The

contact surface between the wire and pantograph depends on the wire location. This results in

complex wear profiles that are formed whenever the wire comes in contact with the pantograph.

Few examples of wire profiles due to wear are shown in figure 1.9. The profiles in figures 1.9(a-b)

are characterized by a single wear segment, where (a) is a standard (horizontal) wear and (b) is

an inclined wear. Profiles in figures 1.9(c-e) have several wear segments without any privilege

direction. The wear profile in (d) is due to bad sliding quality of the pantograph.

Figure 1.9: Different profiles of contact wire wear. (a-b) are simple wears, (c-e) are complex wears.
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1.1.1.5 EMA limit

EMA ("Epaisseur Minimale Admissible" in French) is the acceptable minimum thickness that

requires quick intervention for the wire replacement program on the SNCF’s network. The EMA

values are defined by the SNCF for different wire types that are shown in table 1.1. Whenever

the remaining thickness Tcw is lower than the EMA, the contact wire has to be replaced.

Figure 1.10: Contact wire EMA limit.

However, the thickness is not a relevant feature to estimate the wear degree of the contact

wire in all cases. Therefore, it is important to develop a new measurement tool that determines

the cross-section area (CSA) of the contact wire over its life-cycle. Accurate and periodical measure

of the contact wire cross-section is required by the wire maintenance and repair/replacement

planning. When the remaining cross-section of the wire is less than 70% of the original cross-

section, the contact wire is considered as being in a critical condition and therefore, must be

replaced.

1.1.2 CWWMS Specifications

The Contact Wire Wear Measurement System (CWWMS) using computer vision has to provide

the CSA of wires by respecting the following specifications:

• Operating condition: The OCS scene contains different elements such as the catenary wires,

droppers, clamps, contact wires etc. Generally, there are two contact wires that move across

the measurement area described in figure 1.4, but can be up to four contact wires. Therefore,

it is very important to locate the wires so that cameras are focused on the inspected wires.

One must also ensure that the spatial resolution at the contact wire surface is fixed in the

acquired image. The vision system must also be able to inspect the contact wire in outdoor

conditions under sunlight, fog and moderate rain.

• Surface aspect and wear profile: The CSA provided by the system has to be robust against

the surface aspect (see figure 1.6) and the wear profile of the contact wire (see figure 1.9).

• Acquisition rate: The measurement system is located on a train moving at 120km/h, which

will allow it to be inserted and scheduled in regular commercial train circulation. The CSA

has to be measured at every 15mm along the wire at maximum train speed.

7



CHAPTER 1. INTRODUCTION

• Accuracy: The CSA of the inspected contact wires has to be estimated with Root Mean

Square Error (RMSE) that is lower than 3.0 mm2, for 95% of measurements. The mea-

surement results must also be repeatable. The parameters of acquisition device must be

set-up to respect the desired spatial resolution, that will contribute to the accuracy of the

measurement system.
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1.2 State-of-the-art on CWWMS

The introduction of computer vision has allowed easier means of inspecting the contact wires.

The first Contact Wire Wear Measurement System (CWWMS) is based on manual video analysis

[70], where the images of the wire scene are acquired using video cameras. Then they are

visually classified into satisfactorily, or non-satisfactorily categories on-board. Images that are

classified as non-satisfactorily are later cross checked manually by the inspector who will then

issue maintenance instructions. Although visual analysis saves lots of time compare to manual

measurement, the main problem is the low image resolution. Therefore, it is difficult to identify

contact wire wear from viewing the acquired videos.

In this section, we make brief state of art review on existing CWWMS. For simplicity, we

regroup these systems into the three following categories,

• Shadowgraphy,

• Single view,

• Multiple view.

The systems that fall into the same category follow the same working principle with slight

differences about technological choice. For each category, we review their system illumination,

optical set-up, measurement principle, accuracy, and drawbacks.

1.2.1 Shadowgraphy

The CWWMS based on the shadowgraphy principle [59] generally consists of a laser emitter at

one end, and a receiver sensor at the other end of the system. The laser emitter scans the contact

wire located on its path, so that any signal loss perceived by the receiver sensor is interpreted to

determine the contact wire thickness.

1.2.1.1 EPFC System

The EPFC system deployed by SNCF is based on shadowgraphy principle. The system is generally

mounted on the pantograph and placed directly close to the contact wire as shown in figure 1.11.

Figure 1.11: Shadowgraphy measurement system.
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The wire thickness is estimated thanks to the number of receiver sensor elements that capture

the laser signal. A mechanical unit ensures that the contact wires to be measured are well placed

and aligned between the laser and detector devices. The system can measure up to two contact

wires with maximum train speed of 25km/h.

However, it is difficult to reach a perfect alignment of the contact wire especially in the case of

inclined and complex wear profiles (see example in figure 1.12). So, the thickness of badly aligned

contact wire is not accurately estimated by shadowgraphy. SNCF has been working on different

projects over the years to improve the mechanical alignment of the wires before measurements.

Figure 1.12: Shadowgraphy measurement drawback.

1.2.2 Single View

The single view systems are based on Specular Reflection Technique (SRT). It requires that a

camera (line scan or area scan) observes an object illuminated by light source (lamps, lasers etc).

The goal of SRT is to provide an output image that exhibits the high specular surface properties

of the object to be inspected (see figure 1.13). SRT assumes that the wear track is characterized

by its metallic aspect so that the lighting choice and the system set-up should ensure that the

grey-levels of the pixels representing the wear track are higher than those of the background

pixels.

Figure 1.13: Single view system under specular reflection technique.

The left and right edges in the acquired image are determined using edge detection methods,
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and then used to estimate the wear width w in pixels. Thanks to a calibration step (i.e. function

relation between pixel and mm), the wear width w in the image is transformed to its metric

value W (mm). Finally, the wire cross-section area or thickness is determined from W using some

geometrical wire models. The performance reached by this technique strongly depends on aspect

of the wear track, so that the light is homogeneously reflected by the wear track to the camera.

1.2.2.1 Doctor Yellow

Doctor yellow is a multipurpose inspection train that has been used on the Japanese railway

network for a very long time. The first wear measurement system proposed by Kamiya et al.

[2] consists of sodium vapour lamp that illuminates the contact wire. The wire is then observed

by area scan camera whose location is adjusted according to the height of the wire by means of

moving mirrors. Further upgrades to the system over the years are explained in the following

papers [31, 48, 94].

Figure 1.14: Description of system installed on Doctor Yellow [47].

In the updated system version presented by Kusumi et al. [47] (see figure 1.14), the authors

used a line scan camera with a photo multiplier to acquire image of contact wire illuminated by a

YAG laser. The line scan camera acquires the image with higher spatial resolution compared to

area scan cameras used by earlier version of the system. The laser power has to be greater than

5W since the system is located on the roof of the train. As it is required that the spatial resolution

of contact wire in the acquired image should be constant, the system thus includes a separate

control unit that determines the contact wire’s location needed to regulate the mirror’s position.

The spatial measurement sampling is 70mm for a train moving at maximum speed of 270km/h.

There is no information about the measurement accuracy, but the system can measure the

thickness of up to four contact wires simultaneously [91]. An older version of the system was

tested by SNCF few years ago and the main conclusion was that Japanese systems are generally

very hard to operate, which means they require experts for their maintenance.
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1.2.2.2 MEDES System [8]

This system was proposed by Borromeo et al. [8], and located inside the train but not very far

from the pantograph. The system component contains six blocks, each block has a line scan

camera, a small size LED laser diode and a mirror targeted to the location of the contact wire

(see figure 1.15). The system includes a wavelength filter in front of the camera lens to eliminate

sunlight effect during the day. The distance between the contact wire and camera is regulated

by a PID (proportional-integral derivative) controller to position the cameras so that the spatial

resolution does not change with respect to contact wire position. The system measures the wire

worn-out area from the determination of wear width in the image, and provides measurements

at every 150mm for maximum train speed of 120km/h.

Figure 1.15: MEDES system block arrangement [8].

The system has been installed on SNCF trains, and tested on different samples of the contact

wires. The system provides good results on wires with simple wear profiles, both for round and

oval wires. However, it cannot measure precisely the contact wires with complex wear profiles.

The main advantage is that the system is cheaper and easier to maintain compared to Dr. yellow

[47] and ATON systems [28, 83].

1.2.2.3 Meidensha System [86]

Meidensha system (also known as Catenary eye) that uses a LED laser, combined with line scan

camera has two main units. The first unit determines the contact wire height, while the second

unit estimates its thickness. The contact wire height determination has been performed using

two computer vision methods: (1) formerly with the use of marker placed on the pantograph and

(2) recently with stereo vision set-up using two line scan cameras. Thanks to the determination

of contact wire height, the images are rectified so that the spatial resolution in the acquired

images is constant. This ensures that a pixel corresponds to (0.1mm × 0.1mm) on the wire’s

surface throughout its location in the measurement area. An example of juxtaposed line-scan

images (called spatio-temporal image) provided by the line scan camera is shown in figure 1.16.

Assuming that the wire width w for the rectified image is well determined, the thickness of

contact wire can then be effectively estimated.
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Figure 1.16: An example of juxtaposed line-scan images with Meidensha system [86].

The spatial sampling measurement of the system is 30 mm for maximum train speed of

110km/h. This system has not been tested on the SNCF network, but one can refer to Koshiba

[45] for further information.

1.2.2.4 Chugui System [5, 13]

The contact wire is illuminated by a laser, and is observed by an area scan camera according to a

specific viewing angle. The laser includes a rotary mirror that produces plane shaped patterns

(see figure 1.17). As the spatial location of the wire changes, the author proposed the combination

of mirrors, and wire height tracking motor to reach a fixed spatial image resolution, so that one

pixel corresponds to 0.3 x 0.3mm2 area on the surface of the contact wire.

(a) (b)

Figure 1.17: Chugui system set-up [13].

The acquired images are analyzed so that the laser stripe center of the projected laser pattern

is extracted for each column. The contact wire profile is then determined by linking the obtained

stripe centers by a curve (using mean square deviation criteria) directly on the 2D image plane.

Finally, the cross-section of the worn-out area is determined by fitting circular arc that passes

through the edges of the wear, as shown in figure 1.18.

Experiments were carried out on contact wire samples whose sections are 85mm2 and

100mm2, and the system can measure up to 4 contact wires. The measurement sampling of the
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Figure 1.18: Estimated wire profile [42].

system is 10mm for maximum train speed of 60km/h [42]. The authors affirm that the RMSE

of the cross-section estimation is 1.5mm2. This system has only been tested on simple cases of

contact wire wear, and the measurement speed falls below the expectation of SNCF.

As it is difficult to extract contact wire profile from analysis of single view images, other

systems acquire several images of the wire according to multiple views. The system based on

multiple view will be explained next.

1.2.3 Multiple View

The multiple view systems are also based on the Specular Reflection technique (SRT), which

involves illumination of the wear track, followed by an image processing step to estimate the

contact wire cross-section or thickness. The main difference from the single view system is the

use of two or more cameras that observe the wire with respect to different directions.

Figure 1.19: Multiple view system.

Figure 1.19 shows an arrangement of a multiple view system with two cameras placed at

the left and right side of the contact wire. An obstacle (e.g grease) at the left side of the wire is

observed by the left camera. The occlusion from this obstacle impacts wear width estimation

from the left camera needed to determine the thickness or cross-section. Thanks to multiple
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view set-up, one can then compensate for this problem by using only the image acquired by the

right camera. This is done thanks to comparison between the accuracy of wear width extraction

provided by the analysis of left and right images.

1.2.3.1 Siemens System [75]

This system was developed to deal with possible grease deposit at one side of the contact wire

[75]. Two line scan cameras and infrared laser diodes (15W) were placed on the roof of the

measurement train. The cameras are not placed vertically facing the sky in order to prevent

direct sunlight effect, and the optical parameters were setup to get a large depth of field that

covers the whole measurement zone whose height is approximately 2000mm in figure 1.20a.

(a) System set-up (b) Spatio-temporal image

Figure 1.20: Illustration of the Siemens system.

The system uses Chirped Laser Radar technique [76] to determine the wire location, which is

then used to rectify the acquired wire images regardless of the distance between wire and camera.

Both line scan cameras acquire images at every 100mm for maximum train speed of 120 km/h

in order to create a spatio-temporal image shown in figure 1.20b. The overall system suitability

for operation in a railway environment was proved by continuous rail tests in 2001 on German

railway network [10, 20].

One of the system main drawbacks is the use of high laser power to illuminate the contact

wire. This poses high security risk to the railway workers and passengers. SNCF has bought

this system in the past, and the main conclusion is that the system only reaches satisfying

performances for contact wires with homogeneous surface aspect, and simple wears.

1.2.3.2 WWS System (Fraunhofer) [39]

The Wire Wear monitoring System (WWS) is composed of (a) Contact wire Recording System

(CRS) that determines the contact wire spatial location using optical radar techniques [30] and (b)

a sub-system that measures the thickness of the contact wire using Specular Reflection Technique
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[39]. To measure the wire thickness, the authors use two independent blocks containing the laser

and camera (see figure 1.21). Thanks to CRS, each block is targeted to the contact wire using

galvanometric scanning mirrors and a motorized objective lens. The acquired images are then

processed to extract the wear width needed to estimate the contact wire thickness.

Figure 1.21: WWS measurement system set-up.

The system can measure up to four contact wires, which means each block has the possibility

of measuring two wires simultaneously. The system was installed on a train moving at a maximum

speed of 160km/h with measurement sampling of 50mm. The test run was done on both Italian

and Finland railway networks, but no information about the measurement accuracy is provided.

1.2.3.3 OPTEL System [26]

This system uses two area scan cameras and lasers (power ≈ 1watt) that were placed as shown

in figure 1.22. The optical axes of the two cameras are perfectly parallel, which indeed form a

stereo vision set-up. The illuminated wear track is projected to the images of both the left and

right cameras. The acquired images are filtered to remove noise. The wear width is determined

by the analysis of both images.

Figure 1.22: Optel measurement System.
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The authors proposed a geometrical wire model based on triangle similarity properties to

determine the parameters that can be used to characterize the contact wire. The parameters

include vertical and horizontal distance, wear width, and thickness in mm [26, 27]. The system

can measure up to two contact wires for a train moving at maximum speed of 80km/h. The system

has only been tested on moderately inclined wear, and simple wear profiles. There is no detail

information about the system location, and the measurement accuracy.

1.2.4 Conclusion

SNCF has made experiments between 2001 and 2009 using most of the CWWMS described in this

section. Only the systems in section 1.2.2.4 and 1.2.3.3 have not been tested. The integrity of each

system has been evaluated using the repeatability and reproducibility of the CSA measurement

of certain challenging test rail stretch on SNCF network. The conclusion from these experiments

is that the EPFC system is the most reliable system but only when the contact wires are well

aligned before measurement. This has motivated SNCF over the years to improve mechanical

alignment unit of the EPFC system, especially for highly inclined wires.

Among the single and multiple view systems, MEDES has provided the most acceptable

measurement results on the challenging test rail stretch. It is the only method that succeeds in

measuring correctly the CSA of oval wires. The most common problem with single and multiple

view systems is that they are susceptible to produce incomprehensible results. Therefore, one

is required to regularly verify their measurements. For example, whenever the wire or wear is

highly inclined, the wear track may not reflect the light back toward the cameras as expected. As

a consequence, only the light reflected from only one of the wear edges (see figure 1.19) is really

captured by the cameras, and the system thus concludes that the wear width is lower (thinner)

than it really is.

In this section, we have shown that the use of machine vision techniques is very important

for contact wire wear measurement. A few vision systems have provided satisfying results but

still lack reliability. The measurements provided by these systems are mainly issued from 2D

image processing. Indeed, the methods only analyze projection of contact wire’s wear track on a

plane sensor, and neglect their 3D profile. Therefore, 3D reconstruction of the contact wire profile

using multiple view should be relevant to avoid the drawbacks of existing systems. The use of

3D methods will provide richer information of the scene needed for accurate contact wire CSA

estimation.
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1.3 Camescat Project

The CaMeSCat (Capteur de Mesure de la Section Catenaire "Catenary Section Measurement

System") is a research and innovation project. The aim is to bring together panel of experts

which include industries and public research laboratories in order to design an embedded system

that measures the cross-section of contact wires. It must be able to make measures in outdoor

conditions, and at minimum speed of 120km/h to ensure its placement in proper commercial

train circulation. The developed system will be used for preventive maintenance of the railway

overhead contact system.

This PhD. thesis is achieved under the Camescat project between SNCF (French Railway

Company) and CRISTAL laboratory of Lille1 University. The thesis is financed under CIFRE

(Conventions Industrielles de Formation par la REcherche) convention, as well as the FUI (inter

ministry fund) project of the Nord-Pas-De-Calais region.

1.3.1 Thesis Contributions

The single state of art review about contact wire wear measurement systems was written by

Muller et al. [67] before 2000. Therefore, we have made a complete state of art study on recent

measurement systems. Our study shows that the CSA of contact wires is approximated from the

wear width that has been estimated thanks to analysis of 2D images. Therefore, one can avoid

this limitation thanks to estimation of the contact wire profile using 3D vision techniques. For

this purpose, a 3D measurement system that is based on laser triangulation is proposed. The

system is made up of laser planes and cameras.

Note : Due to intellectual property right and confidentiality of the Camescat project, some

sensitive issues about the camera and laser placements as well as their technological choices are

omitted in this PhD report.

Figure 1.23: System placement problem.

The camera and laser have been placed on a mechanized pantograph to coarsely maintain

constant distance from the contact wire, and has also been set-up in order to respect the spatial
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resolution required to accurately inspect the contact wire (see figure 1.23). With this set-up, one

will need to use a high number of cameras and lasers to cover the whole measurement area.

However, the weight of the acquisition device put on the pantograph has to be limited, notably for

security purposes. To decrease the number of cameras and lasers, we have used a Scheimpflug

optical set-up that increases the camera’s field of view, while decreasing its depth of field [18].

The sensor plane is tilted according to an angle θ with reference to the optical axis, thanks to the

Scheimpflug lens (see figure 1.24).

Figure 1.24: Scheimpflug device.

System calibration
To perform dimensional measurement of the contact wire, the laser-camera triangulation system

has to be calibrated. For intrinsic camera calibration, we model the formation of an image

acquired by a Scheimpflug device. Then, we propose two intrinsic calibration methods using

bundle adjustment technique. The proposed methods are tested on real calibration images,

and these experiments have shown that our approaches provide better accuracy than classical

calibration methods.

The laser-Scheimpflug device has been calibrated with a new pattern. This is a calibration

method that requires just a single image of the laser calibration pattern. The pattern has been

particularly proposed to suit with the project requirements in terms of security. Once the system

has been calibrated, images of laser projection on the contact wire surface are analyzed to

measure the contact wire cross-section area.

Cross-section determination by 3D analysis
We first propose a laser stripe extraction technique to locate the center pixels that correspond to

the laser projected on the contact wire. Thanks to laser-camera calibration, we transform these

pixels to reconstructed 3D points using triangulation technique.

Finally, we develop an algorithm to determine the CSA of different contact wire profiles

directly from the reconstructed 3D points. The proposed method combines shape modeling, and
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pattern recognition. The performance of the proposed system has been assessed using both

simulated, and real datas.

1.3.2 Manuscript Organization

After this general introduction that includes the state of art review on Contact Wire Wear

Measurement System, the rest of this PhD thesis manuscript is organized as follows:

Chapter 2 describes our calibration method of the proposed laser-camera triangulation system.

The used cameras have been equipped with a Scheimpflug lens. We first recall essential back-

ground equation for pinhole image formation, then propose a slight adjustment in the model to

formulate tilted image, which is called Scheimpflug image formation model. Next, we propose

calibration methods for the Scheimpflug device in order to extract the intrinsic camera parame-

ters. Thanks to the proposed intrinsic calibration procedure, we can then effectively calibrate the

whole laser-camera triangulation system. The proposed method has been evaluated and deemed

suitable for industrial application.

Chapter 3 presents the thesis contribution that is required for cross-section estimation of the

contact wire. It is divided into two successive steps, the profile determination, and the profile

analysis. The profile determination starts from accurate extraction of the pixels that correspond

to center of the laser stripe projected on the contact wire. Next, the pixels are transformed to

reconstructed 3D points, thanks to the system calibration. These reconstructed 3D points are

analyzed to determine the cross-section area using shape analysis methods.

Chapter 4 presents various experiments that have been carried out to verify the capability of the

proposed contact wire wear measurement system. Indeed, the experiments allow us to validate

the whole system chain from calibration to cross-section estimation. The system prototype has

been tested on both plug gauge and real contact wire samples. The experimental results have

allowed further improvements on final real system conception.

Chapter 5 summarizes the PhD thesis contributions, with few discussions about the perfor-

mance reached by the system. Various issues regarding the system, and future perspective of the

PhD thesis are then detailed.
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SYSTEM CALIBRATION

Active 3D reconstruction is one of the artificial vision techniques for generating dense

3D points of an observed object. In our case, it involves the use of a laser plane that

intersects the measured object, so that its shape is captured by a 2D camera (see figure

2.1). A ray passing through the camera’s optical center Oc is guaranteed to intersect the laser

plane at 3D point Pw only if both the ray and laser planes are not parallel in 3D space [80]. So,

point Pw is projected to a pixel p in the image plane. Once the homography between image and

laser planes has been determined, we can estimate the 3D coordinates of Pw from the spatial

coordinates of its associated pixel p in the image by triangulation.

Figure 2.1: 3D laser scanner.

In the following, we introduce the term "line profile", which is the intersection between the

laser plane and the object in the scene. In order to determine the 3D coordinates of the line profile

from the acquired 2D images (i.e. 3D profile), one needs to first determine the camera’s intrinsic

parameters, followed by the laser plane position in the calibrated camera coordinate system.
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In this chapter, we first detail the image formation model under Scheimpflug set-up. Then,

we propose two methods that calibrate a camera equipped with a Scheimpflug lens (Scheimpflug

device). Finally, we determine the laser plane position in the calibrated camera coordinate system.

2.1 Image Formation Model

In this section, we give background equations on classical image formation using pinhole model.

Next, we explain the Scheimpflug image formation model, and the optical lens distortion.

2.1.1 Pinhole Formation Model

Figure 2.2: Image formation under Pin-hole model.

The pinhole formation model describes the mathematical relationship between the coordinates

of a 3D point and its projection onto the image plane of an ideal pinhole camera (R3 =⇒ R2). In

such a case, the internal geometry, the position and the orientation of a camera in the scene are

modeled. The simplest image formation using pinhole model is proposed by Hall et al. [33] (see

figure 2.2). Various parameters are presented in the following:

• The world coordinate system, (Ow[Xw,Yw, Zw])w,

• The camera coordinate system, (Oc[X c,Yc, Zc])c, where Oc is the optical center and Zc

corresponds to the optical axis,

• The optical axis intersects the image plane at OI called the principal point, with image

plane coordinate system (OI [x, y, z = 0])I , ‖OcOI‖ = di is fixed under pinhole model,

• The pixel coordinate system, (Op[u,v])p.

Using homogeneous coordinates, and assuming pinhole model with no geometric distortion,

a 3D world point Pw(Xw,Yw, Zw)w is projected onto the image pixel p(u,v)p using a projection

matrix A as shown below,
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λ


u

v

1

=A


Xw

Yw

Zw

1

 where A =K [R |T ](2.1)

In equation (2.1), λ is a scaling factor on both u and v axes. The projection matrix A has been

decomposed intro intrinsic K and extrinsic [R |T ] matrices. The intrinsic matrix models the

internal geometry and optical characteristics of the image sensor, while the extrinsic matrices

[R |T ] measure the position of the optical center, and the orientation of the camera with respect

to the world coordinate system.

2.1.1.1 Extrinsic Parameters

To obtain the camera coordinate point Pc(X c,Yc, Zc)c from a point Pw(Xw,Yw, Zw)w in the 3D

world coordinate, the camera should first be translated to the world coordinate origin and then be

rotated. With perspective projection using homogeneous coordinates, this can be written together

in a combined matrix notation as,


X c

Yc

Zc

= [R|T ]


Xw

Yw

Zw

1

 , where R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 and T =


tx

ty

tz

(2.2)

The rotation matrix R is "3x3" in dimension, and is parametrized by Euler angle rotations

around the Xw, Yw and Zw axes respectively.

2.1.1.2 Intrinsic Parameters

We consider a camera with the optical axis that is collinear to the Zc axis and whose optical

center is located at the origin Oc of the camera coordinate system, so that the lens plane is

(Oc[X c,Yc, Zc = 0])c. A 3D point Pc(X c,Yc, Zc)c in the camera coordinate system is expressed in

the image coordinate system, assuming no distortion as:

x = di
X c

λ
,

y= di
Yc

λ
,(2.3)

where λ=Zc is the homogeneous scaling factor. The matrix notation of equation (2.3) can then be

written as follows,
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(2.4) λ


x

y

1

=


di 0 0

0 di 0

0 0 1




X c

Yc

Zc

 ,where Kdi =


di 0 0

0 di 0

0 0 1


Let us define the principal point OI in the pixel coordinate system as Op(u0,v0)p. We can

easily transform points in image coordinate (x, y, z)I to their pixel location (u,v)p. We should note

that the pixels of the image sensors are not necessarily square, and can also be skewed. These

characteristics of the imaging system can be taken into account by the camera model thanks

to two additional parameters "a" and "sk" which model the pixel aspect ratio, and skewness

respectively. The intrinsic matrix that directly maps camera coordinates to pixel coordinates

"under pinhole" can now be written as shown below,

λ


u

v

1

=


di
sx

sk u0

0 a di
sy

v0

0 0 1




X c

Yc

Zc



where K =


fx ≡ di

sx
sk u0

0 f y ≡ a di
sy

v0

0 0 1


(2.5)

fx ≡ di
sx

, f y ≡ a di
sy

are the focal lengths on both u and v axes, sx and sy are the pixel sizes. We

should also note that the camera skew parameter sk is very close to zero and may be neglected.

Note: Under pinhole model, the focal length f is the same as di, and it is fixed. Therefore, we

can write focal lengths on both u and v−axis as fx ≡ di
sx

, and f y ≡ a di
sy

respectively.

2.1.2 Scheimpflug Formation Model

2.1.2.1 Introduction

For any camera to be in perfect focus, the object to be measured has to be placed in a planar

surface that is parallel to the image plane. However, having a sharp image can be very difficult

when this object moves along an oblique plane to the camera. An example is shown in figure 2.3

where the object plane is located at an oblique angle to the camera. This is the case when one is

interested in capturing a very large object such as the facade of a tall building, or a decorative

cobblestone pathway. The camera is required to be aimed upward at an angle which makes it

difficult to bring the complete object of interest in focus all along the object plane.

In order to bring the object in focus along the object plane in the camera’s Field Of View (FOV),

one needs to decrease the relative aperture (increase the f-number) of the lens. However, this

solution limits the amount of light reaching the sensor, which leads to poor grey-level dynamic in
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Figure 2.3: Conventional camera set-up.

the image. One way of escaping this dilemma is to use the "Scheimpflug’s principle" [18, 64]. This

principle calls for three planes to intersect in a common line:

• The object plane containing the observed objects, and oblique to the lens plane,

• The lens plane,

• The image plane that is tilted at given angles θ,γ to intersect with the two other planes.

Figure 2.4: Scheimpflug device set-up.

This line of intersection between these three planes is known as the "Scheimpflug line"

(see figure 2.4). In this new set-up, the camera focus plane coincides with the object plane

which allows us to obtain a sharp camera’s field of view that is wide enough to perform 3D

dimensional measurement. Scheimpflug principle is employed for Particle Image Velocimetry

(PIV) applications [3, 106].

For conventional cameras under pinhole model, the image plane is usually parallel to the lens

plane (Oc, [X c,Yc, Zc])c. In Scheimpflug set-up, the image plane is tilted at given angles θ and γ,
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(called Scheimpflug angles) around the axis parallel to the X c, Yc but in OI (see figures 2.4 and

2.5). This adjustment ensures that the image plane, the lens plane and the object focus plane

intersect at a line parallel to X c axis, denoted as "Scheimpflug line".

Figure 2.5: Scheimpflug camera model illustration.

For a point Pw along the object focus plane (see figure 2.5), lets denote the image distance

di = ‖−−−−→Oc pa
t ‖ and object distance do = ‖−−−−→Oc Pa‖ from center of the lens along the optical axis,

where pa
t and Pa are the projections of pt and Pw to the optical axis. The thin lens equation still

hold for Schiempflug set-up so that 1
f = 1

do + 1
di . This is possible for any projected points on the

tilted image plane from the object focus plane.

We distinguish the following coordinate systems:

• The untilted image coordinate system,(OI [x, y, z])I , where z = 0 for each point on the

untilted image plane (Normalized)

• The tilted image coordinate system (Ot ≡OI [xt, yt, zt])t, where zt = 0 for each point on the

tilted image plane (Normalized)

• The untilted pixel coordinate system (Op[u,v])p,

• The tilted pixel coordinate system, (Op[ut,vt])p

In order to determine the 3D coordinates of world point Pw from its projected point pt in the

tilted image plane, we need to calibrate the used camera. However, camera calibration methods

under pinhole model cannot be used for Scheimpflug device. So we extend the pinhole formation

model to take into account Scheimpflug angles. We propose a Schiempflug image formation based

on pinhole model assumption.

2.1.2.2 Image Formation Model

Assuming no optical distortion (see section 2.1.1), an object point Pw(Xw,Yw, Zw,1)w is first

projected to the point p(x, y,0,1)I in the untilted image plane as
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(2.6) λ p =Kdi[R |T ] Pw

Now, let us model the image formation on the tilted image plane. A ray passing through the

optical center Oc of the camera intersects the tilted plane at pt(xt, yt,0)t and the untilted one at

p(x, y,0)I respectively. Without abuse of notations, we represent the point pt(xt, yt,0)t in the tilted

image plane as pt
c(X c,Yc, Zc)c in the camera coordinate system. Likewise, point p(x, y,0)I in the

untilted image plane is represented as pc(X c,Yc, Zc = di)c in the camera coordinate system.

Therefore, the untilted camera coordinate points pc(X c,Yc, Zc = di)c can be related to the

untilted image coordinate points p(x, y,0)I as,

X c = x

Yc = y

Zc = di

(2.7)

We first apply a projective transformation represented by matrix K t
c that transforms point

pc(X c,Yc,di)c to pt
c(X c,Yc, Zc)c as shown below (see appendix 7.1.1 for K t

c matrix formulation):

pt
c =K t

c pc,

where K t
c =


di 0 0

0 di 0

0 0 di

tan γ − tan θ
cos γ 1


(2.8)

Then we express point pt
c(X c,Yc, Zc)c in the camera coordinate to their point pt(xt, yt,0)t in

the tilted image plane. This is done by applying combined rotation matrix Rs with respect to the

OX-axis parametrized by angle θ, and OY-axis parametrized by angle γ respectively. The rotation

matrix Rs is preceded by a translation vector Ts (from Oc to OI ) (See appendix 7.1.2). Finally,

Ks matrix is expressed as below,

λ pt =Kspt
c,

λ pt =


cos γ 0 −sin γ di sin γ

sin γ sin θ cos θ cos γ sin θ −di cos γ sin θ

sin γ cos θ −sin θ cos γ cos θ −di cos γ cos θ

0 0 0 1

pt
c

(2.9)

Note that the two steps described earlier complete the Scheimpflug image formation ("Intrinsic

formation"). Hence, the point pt(xt, yt,0)t on the tilted image plane is deduced from pc(X c,Yc,di)c

in the camera coordinate system as below
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(2.10) λpt =KsK
t

c pc

A final conversion in pixel coordinates is effected with Kb matrix where sx, sy are the pixel

sizes and (u0,v0) are the principal point coordinates in pixel.

(2.11) Kb =


1
sx

sk = 0 u0

0 1
sy

v0

0 0 1


Here is the full equation that that relates points pc(X c,Yc, f )c to pt(ut,vt)p in pixel coordi-

nates:

(2.12) λpt =KbKsK
t

c pc

Finally, to obtain pt(ut,vt)p from Pw(Xw,Yw, Zw)w under pinhole model assumption, we have

to apply successively equations (2.6), and (2.12). Therefore, the full Scheimpflug pinhole model is

shown in equation (2.13) and (2.14), respectively. They are formulated based on plane geometries

and rotations with the two Scheimpflug angles {θ,γ}. See appendix 7.1 for full formulation.


X c

Yc

Zc

=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz




Xw

Yw

Zw

1



λ


x

y

1

=


di 0 0

0 di 0

0 0 1




X c

Yc

Zc


(2.13)

λ


ut

vt

1

=Kb


cos γ 0 −sin γ di sin γ

sin γ sin θ cos θ cos γ sin θ −di cos γ sin θ

sin γ cos θ −sin θ cos γ cos θ −di cos γ cos θ

0 0 0 1




di 0 0

0 di 0

0 0 di

tan γ − tan θ
cos γ 1




x

y

di


(2.14)

2.1.2.3 Optical lens distortion

A real imaging system deviates from pinhole model due to the use of an optical lens. As a result

of lens manufacturing process, straight lines in the world imaged through real lenses generally
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become curve-like on the image plane. This means that the camera ray does not necessarily

intersect at the optical center. This distortion has not been taken into account by the earlier

Scheimpflug formation. Therefore, the world point Pw is projected to the distorted point p̃t

instead of undistorted pt as shown in figure 2.6.

Figure 2.6: Scheimpflug camera model under lens distortion.

The common types of optical distortions are the radial, tangential [9] and thin prism [103].

In practice, radial lens distortion causes straight lines to be mapped as curved lines and appear

more visible at the image edges where the radial distance is high. The most common types of

radial distortion are (1) barrel that causes the image to bulge toward its center, and (2) pincushion

that causes the image to shrink toward the center (see figure 2.7). The tangential distortion is due

to the decentering of optical lens, while thin prism is due to the imperfection in lens construction.

The thin prism model is generally used for cameras with very large distortions such as fish eye,

and mostly neglected in the calibration of conventional cameras [97, 99, 104].

(a) No distortion (b) Barrel (c) Pincushion

Figure 2.7: Illustration of the optical lens distortion.

As these optical distortions have been caused by the lens, they need to be modeled on the

untilted image plane, which is parallel to the lens plane. The relation between distorted pixel

p̃(ũ, ṽ)p and undistorted p(u,v)p is shown in equation (2.15).
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ũ = u+ (u−u0)[k1r2 +k2r4 +k3r6]+ [2t2xy+ t1(r2 +2x2)]+ [s1r2]

ṽ = v+ (v−v0)[k1r2 +k2r4 +k3r6]+ [2t1xy+ t2(r2 +2y2)]+ [s2r2]
(2.15)

where r =
√

(u−u0)2 + (v−v0)2 is the radial distance from the image center (u0,v0), the coeffi-

cients (k1,k2,k3) are the radial distortions, (t1, t2) are the tangential coefficients, and (s1, s2) are

the thin prism coefficients, respectively.

These non-linear distortions would be simplified independently from the camera parameters.

Thanks to the proposed Scheimpflug model and known Scheimpflug angles, the distorted pixel

p̃t(ũt, ṽt)p can first be projected back to its untilted pixel p̃(ũ, ṽ)p where the distortion coefficients

will be determined according to the calibration method. The Scheimpflug calibration procedure

under lens distortion will be detailed in section 2.2.

2.2 Intrinsic Camera Calibration

Camera calibration is mostly performed by using 2D planar target or 3D object that contains

feature points. Depending on the calibration target, most of the methods use the centers of

high contrast circular patterns [38, 43, 63], and corners of square patterns [29, 55, 111]. The

feature pixels that correspond to these feature points can easily be identified through methods

that combine image processing techniques such as edge detection, thresholding, and sub-pixel

estimation. Finally, the projection matrix A (see equation 2.1) between the 3D coordinate feature

points and coordinates of feature pixels in the image plane can be used to extract the camera

parameters.

Figure 2.8: The camera calibration pattern.

We cannot use 3D calibration target due to limited depth of field in our present application.

Therefore, we focus on the camera calibration methods that use 2D planar target. The dot-grid

pattern shown in figure 2.8 has been used in this work. This is a small pattern that is possible to

fit within the camera’s field of view. It contains 45 tiny circular dots, whose centers are used as the

feature points. The diameter of the dot grid is 5mm, and the distance between adjacent centers
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is 7.5mm. The cross pattern between the dot-grids has been used to determine the pattern’s

orientation during the calibration procedure.

In the first part of this section, we summarize the state of art methods for classical camera cal-

ibration, and detail the planar based camera calibration method proposed by Zhang [111]. In the

second part, we make a summarized review on present Scheimpflug calibration techniques, then

we propose two new calibration methods for Scheimpflug device using the described Scheimpflug

formation model (see section 2.1.2). This is because the pinhole model assumptions used by

classical camera calibration techniques [1, 21, 33, 78, 93, 100, 104, 111] are not valid anymore

for cameras under Scheimpflug set-up. The first method we proposed is based on optimally

estimating the Scheimpflug angles needed to remove Scheimpflug distortions in the acquired

images, while the second method is purely based on lens distortion models.

2.2.1 Classical Calibration

There is a very large literature on camera calibration, and the most influential works for geometric

camera calibrations include DLT/Faugeras [1, 21], Tsai [93] and Zhang [111]. Determining camera

parameters from known world points and their corresponding image projections is called the

camera calibration problem, and the main goal is to find the linear projection matrix A .

Since the relation between the 3D world and 2D image projections (R3 =⇒ R2) is linear, most

of the calibration methods use Direct Linear Transformation (DLT) to extract the projection

matrix. The aim of DLT is to solve linear equations using Linear Least Square (LLS) methods.

Assuming we have at least 6 known feature points, an over determined system of linear equation

is formed, and then solved by eigenvalue decomposition using the so called Singular Value

Decomposition (SVD). The estimated matrix A using LLS can there-after be decomposed to

camera intrinsic K and extrinsic parameters [R|T ], as in Faugeras, and Zhang [21, 111]. An

alternative decomposition of the projection matrix is proposed by these authors [38, 63].

The perspective projection is a linear model of image formation that does not take into

account the geometric distortions caused by the lens used. When one takes into account the lens

distortion parameters in the camera calibration, the model becomes nonlinear. The best solution

in the literature is to estimate the camera parameters independently, then refine the estimated

camera parameters in a non-linear optimization technique with the addition of the lens distortion

parameters. This is done using bundle adjustment with Levenberg-Marquardt iteration [98].

Zhang [111] search for an initial solution, followed by a nonlinear optimization based on the

maximum likelihood. In the first step, an approximation of projection matrix is obtained based

on DLT approach, followed by applying self calibration techniques to obtain absolute conic matrix

that allows us to obtain the camera parameters. Subsequently, optical distortion coefficients
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are modeled independently, before final optimization of all parameters (distortion and camera

parameters) in a general framework.

Figure 2.9: Planar based camera calibration.

Let’s define an object model plane M containing n feature points, and m its corresponding

image plane in pixel coordinate (see figure 2.9). At each pose j = 1, . . . ,m of the object model plane,

M j(3×n) feature points are projected to their corresponding target m j(2×n) pixels in the image,

so that m number of A( j) matrices can be estimated. Using homogeneous coordinates, we can

write the relation as,

m j =A( j)M j

where A( j) =K [r1 r2 r3 |T ]( j)
(2.16)

and r1, r2, r3 represents the columns of the rotation matrix R. The matrix K that contains the

intrinsic parameters is constrained to be the same for j = 1, . . . ,m. This will be fully explained

later in the chapter.

The use of planar object for calibration in equation (2.16) means that we can assume Z(i)
w = 0

in the world coordinate system. Therefore, the third column of A( j) will be equal to zero. Hence,

for a single pose j of a model plane, each feature points i, where i = 1, . . . ,n respects:

λ( j)


u(i)

v(i)

1


( j)

=K [r1 r2 0 |T ]


X (i)

w

Y(i)
w

Z(i)
w = 0

1

(2.17)

Without loss of generality, j is forgotten for the subsequent demonstration. Therefore, a model

point Pw(Xw,Yw, Zw)w on a planar calibration object (i.e. Zw = 0) and its corresponding image

pixel p(u,v)p is related by a 3×3 homography H matrix. Therefore, the m poses of the target

object plane give rise to m homographies.
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In order to estimate the H matrix, we need at least 3 feature points on the calibration target

(i ≥ 3) so that an over-determined system of linear equations is solved (See appendix 6.1 for the

normalized homography estimation using Linear Least Square (LLS) [35]).

From the estimated homography matrix H , Zhang [111] then proposed a method based on

image of the absolute conic to extract the constrained intrinsic matrix K from the m poses of

the calibration target. The author imposed two basic constraints on the K matrix to extract the

image of absolute conic B =K −TK −1 [35], and finally proposed a close form solution to extract

the required camera intrinsic parameters K . The full method is described in Appendix 6.2.

One way to deal with the lens distortion is the use of bundle adjustment technique. It should

be estimated independently from the camera parameters. The idea is to optimize altogether the

camera and distortion parameters in a single non-linear optimization procedure. The process

of refining calibration parameters is known as bundle adjustment. The distortion and camera

parameters are refined through minimizing reprojection error as shown in equation (2.18) using

Levenberg-Marquardt method:

min
m∑

j=1

n∑
i=1

‖p̃(i, j) − p̂(i, j)(K̂ ,R̂( j),T̂( j), k̂1, k̂2, k̂3, t̂1, t̂2)‖2(2.18)

where p̃(i, j) is the real coordinate of image pixels, and p̂(i, j) denote those of the reprojected pixels

using the estimated system parameters (K̂ ,R̂( j),T̂( j), k̂1, k̂2, k̂3, t̂1, t̂2).

2.2.2 Scheimpflug Calibration

2.2.2.1 State of art

There are few papers about intrinsic calibration of Scheimpflug device. Haig et al. [32] proposed

a mathematical model to compensate for lens inclination that is lower than 1◦. The first method

for larger tilt angle was proposed by Li et al. [53], and based on single Scheimpflug angle θ. The

authors assumed that the tilt angle is perfectly known due to mechanical set-up, so the acquired

images are directly rectified.

The issue of bundle adjustment for Scheimpflug calibration was first addressed by Louhichi

et al. [54] using single angle θ. Legarda et al. [51] extend the method to two angles (θ, γ). The

two methods used the same bundle adjustment technique on the tilted image plane, but the

initialization of the Scheimpflug angles is different. Louhichi et al. [54] initialize the Scheimpflug

angles with magnification factor, while Legarda et al. [51] uses the output result of classical Zhang

method that is directly applied on the tilted image plane, in order to extract the initial Scheimpflug

angles. Full experiments and detailed comparisons with pinhole methods are provided in the

recent paper of Legarda et al. [52].
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The main problem with the state of art methods is that the Scheimpflug angles have to be

known precisely. However, it is not easy to accurately determine these angles by experimental

adjustment. Therefore, we have proposed two calibration methods. The first method does not

need accurate initial Scheimpflug angle estimation. This method works step by step, by first

simplifying the distortion introduced by the Scheimpflug tilt effect, using the proposed formation

model. Then, we extract camera parameters from the projected pixels on the untilted image

plane using the same approach as Zhang [111]. Finally, a bundle adjustment technique based on

Levenberg-Marquardt is used to refine the intrinsic camera parameters.

For the second method, we propose a method that can deal with introduced Scheimpflug

distortions, without the need to estimate their optimal angles. Indeed, we propose an original

strategy that consists in fitting Scheimpflug model framework into the lens distortion model.

Finally, we compare the proposed methods with classical camera calibration and the state of art

method of Legarda et al. [52].

2.2.2.2 Method based on Scheimpflug angle estimation

To calibrate the Scheimpflug device, we need to move the calibration pattern at different orienta-

tions (poses) from the camera to cover the whole camera’s viewpoints. The pattern must be well

oriented to avoid large image blur that is highly possible under Scheimpflug set-up.

The usual plane based calibration technique used in Zhang [111] is applied for the proposed

Scheimpflug model. Recall i = 1, ..,n be the number of known featured points on a target plane

and j = 1, ..,m be the number of target poses. Each point of the calibration target in the world coor-

dinate system P(i, j)(Xw
(i, j),Yw

(i, j)Zw
(i, j))w is matched to its corresponding pixel p̃(i, j)

t (ũ(i, j)
t , ṽ(i, j)

t )p

in the tilted image plane. The Scheimpflug device calibration involves three main steps as

described below.

Projection onto the untilted image plane
As a result of distortion introduced by the tilt effect, we thereby propose to perform the calibration

procedure on the untilted "virtual" image plane. This means that we are interested in projecting

pixels p̃(i, j)
t (ũ(i, j)

t , ṽ(i, j)
t )p to their untilted point p̃(i, j)(X̃ (i, j)

c , Ỹ (i, j)
c ,di)c.

By simplifying the proposed Scheimpflug formation model in equation (2.14) (see Appendix

7.1.3 for the simplification), we extract p̃(i, j)(X̃ (i, j)
c , Ỹ (i, j)

c ,di)c or p̃(i, j)
t (x̃(i, j), ỹ(i, j),0)I in the camera

coordinate for all points p̃(i, j)
t (ũ(i, j)

t , ṽ(i, j)
t )p:

x̃(i, j) = X̃ (i, j)
c = di[sx cos γ(ũt

(i, j) −u0)+ sy sin γ sin θ(ṽt
(i, j) −v0)]

di− sx sin γ(ũt
(i, j) −u0)+ sy sin θ cos γ (ṽt

(i, j) −v0)

ỹ(i, j) = Ỹ (i, j)
c = di [sy cos θ(ṽt

(i, j) −v0)]

di− sx sin γ (ũt
(i, j) −u0)+ sy sin θ cos γ (ṽt

(i, j) −v0)
(2.19)
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However, we need to give initial values for di, θ, γ, u0, v0, sx and sy in order to use equation

(2.19). These values should be very close to the true ones to ensure fast convergence of the

subsequent minimization steps. We can use the values given by the manufacturer for f as di, sx,

sy, u0 and v0 respectively.

Finally, points p̃(i, j)
t (x̃(i, j), ỹ(i, j))I can be expressed in their pixel coordinates p̃(i, j)

t (ũ(i, j), ṽ(i, j))p

using matrix Kb as shown below,

(2.20)

[
ũ(i, j)

ṽ(i, j)

]
=


1/sx 0 u0

0 1/sy v0

0 0 1




x̃(i, j)

ỹ(i, j)

1



Target to image plane homography estimation
We can then extract the homography H( j) between the feature points P(i, j)

w (X (i, j)
w ,Y (i, j)

w , Z(i, j)
w )w,

and their corresponding pixels p̃(i, j)(ũ(i, j), ṽ(i, j))p on the untilted image plane, using the normal-

ized DLT algorithm described in Appendix 6.1. The estimated homography H( j) may not be

accurate due to the presence of noise. This is because linear solutions like the DLT only minimize

an algebraic error function, and do not consider geometric error.

Therefore, it is required to refine the homography by minimizing the reprojection error

corresponding to the image distance between the reprojected pixels p̂(i, j), and a measured/true

ones p̃(i, j) as,

min
n∑

i=1
‖p̃(i, j) − p̂(i, j))‖2, where p̂(i, j) = Ĥ( j)P

(i, j)
w(2.21)

The reprojection error in equation (2.21) is minimized based on maximum likelihood using

Levenberg-Marquardt iterative method (see Appendix 6.1.1).

Scheimpflug angle estimation
We can estimate the constrained camera intrinsic parameter matrix K and extrinsic parameter

matrix [R( j)| T( j)] from the refined homography H( j=1,...,m) using Zhang’s method (see Appendix

6.2).

From the proposed Scheimpflug image formation, we have shown that the tilt deformation is

only possible on the tilted plane, therefore we omit the lens distortion simplification during the

Scheimpflug angle estimation. Given an initial value of the tilted angles {θ0,γ0} coupled with the

preceding estimated camera parameters, we propose a bundle adjustment technique to refine the

tilt angles (θ̂,γ̂) as:

{θ̂, γ̂}= min{θ,γ}

m∑
j=1

n∑
i=1

‖p̃(i, j) − p̂(i, j)(K̂ ,R̂( j),T̂( j), {θ̂, γ̂})‖2(2.22)
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where p̂(i, j) are the estimated coordinates of the projected pixel that depend on (K̂ ,R̂( j),T̂( j), {θ̂, γ̂}).

We illustrate in Appendix 7.2 how the bundle adjustment optimization procedure is used to deter-

mine the optimal Scheimpflug angles.

Camera parameters refinement
Once the optimal tilt angles (θ̂, γ̂) have been estimated, we project all tilted pixels p̃(i, j)

t to the

optimal untilted plane pixels p̃(i, j)
{θ̂,γ̂}

. We can then minimize the reprojection error on the untilted

plane as:

min
m∑

j=1

n∑
i=1

‖p̃(i, j)
{θ̂,γ̂}

− p̂(i, j)(K̂ ,R̂( j),T̂( j), k̂1, k̂2, k̂3, t̂1, t̂2, ŝ1, ŝ2)‖2(2.23)

p̂(i, j) are the estimated coordinates of the projected pixel that depend on K̂ ,R̂( j),T̂( j) and the

distortion coefficients.

Improvement with fronto-parallel approach
The accurate extraction of the feature pixels (dot-grid centers) impacts the calibration perfor-

mance. Due to the manipulation of the target according to different poses, circular grids become

ellipse-like shapes in the image as a result of the perspective projection. This makes it difficult to

precisely locate the feature pixels. With the Scheimpflug device, these difficulties are even more

accentuated, so that the circle grids appear blurred and low contrasted in the acquired images.

To improve the accuracy of the camera parameter estimation, we incorporate the fronto-

parallel transformation method [14, 97]. An image is created which looks as if the planar

calibration is perfectly orthogonal to the optical axis of the camera. This image, called frontal

image, has been computed thanks to cubic interpolation [71] (See Appendix 7.3). Examples of

fronto-parallel transformation have been displayed in figure 2.10.

Figure 2.10: Examples of real and resulting frontal images.

Once the optimization in equation (2.23) has been achieved, we propose to compute the frontal

images using the estimated system parameters at each iteration. The procedure is as follows,

36



2.2. INTRINSIC CAMERA CALIBRATION

1. Create the frontal images using earlier estimated camera parameters K̂ ,R̂( j),T̂( j), and

lens distortion parameters (k̂1, k̂2, k̂3, t̂1, t̂2, ŝ1, ŝ2),

2. Extract the feature pixels in the resulting frontal images,

3. Reproject the detected feature pixels on the frontal images back into the "untilted" image

plane,

4. Perform bundle adjustment of all parameters as below,

min
m∑

j=1

n∑
i=1

‖p̃(i, j)
{θ̂,γ̂}

− p̂(i, j)(K̂ ,R̂( j),T̂( j), k̂1, k̂2, k̂3, t̂1, t̂2, ŝ1, ŝ2)‖2(2.24)

p̃(i, j)
{θ̂,γ̂}

is the real pixel on the "optimal" untilted image plane, and p̂(i, j) is the estimated one

from bundle adjustment.

5. Go back to step "1" until feature pixels mean variation is lower than a threshold (0.001px).

This improvement completes the first method for Scheimpflug device calibration that is based on

the simplification of the distortions introduced by Scheimpflug tilt effect.

2.2.2.3 Method based on lens distortion model

This second Scheimpflug device calibration method does not require one to estimate the Scheimpflug

tilt angles {θ,γ}. We fit Scheimpflug framework into distortion model with the use of fronto-parallel

approach, and iterative bundle adjustment scheme.

Analogy of Scheimpflug to distortion model
Note that it is geometrically incorrect to use the lens distortion equations on the tilted image

plane since it has been formulated for the untilted one, but we will go ahead and write it for

the following explications. As the images provided by the camera are the projection of the world

points on the tilted image plane, we propose to write a classical lens distortion expression for

tilted plane pixels p̃t as,

ũt = ut + (ut −u0)[k1r2 +k2r4 +k3r6]+ [2t2xt yt + t1(r2 +2x2
t )]+ [s1r2]

ṽt = vt + (vt −v0)[k1r2 +k2r4 +k3r6]+ [2t1xt yt + t2(r2 +2y2
t )]+ [s2r2](2.25)

By setting di to "1" in the proposed Scheimpflug image formation in equation (2.14), we can

express the coordinates (xt, yt) of the point in the tilted image plane from those of coordinates

(x, y) in the untilted image plane as:
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xt = x− y sin γ tan θ

x sin γ− y tan θ+ cos γ
+ x0

yt = y cos γ
cos θ[x sin γ− y tan θ+ cos γ]

+ y0

(2.26)

Our main goal here is to express the Scheimpflug formation model in a clearer form that

allows better view of how the tilted point pt(xt, yt) is deduced from the untilted one p(x, y). The

required simplification is expressed as:

xt = x
1

cos γ
− y

sin γ tan θ

cos γ
+ x0x

sin γ

cos γ
− x0 y

tan θ

cos γ

yt = y
1

cos θ
− yy0

sin θ

cos θ cos γ
+ xy0 tan γ

(2.27)

Equation (2.27) shows that,

1. There is a scaling factor 1
cos on both x and y coordinates which can be handled in the

camera matrix by the focal length coefficients fx ≡ di
sx

and f y ≡ a di
sy

,

2. The y coordinate contributes individually to express xt which will be taken into account by

the camera matrix skew factor sk,

3. The xy ≡ x0 y or y0x term contributes for both xt and yt, which is a non-linear quantity

(meaning that the camera matrix can’t handle it). This should be handled in a non-linear

optimization technique.

Solution : We propose to introduce two new coefficients c1 and c2 in the distortion model

so that equation (2.25) is expressed as:

ũt = ut + (ut −u0)[k1r2 +k2r4 +k3r6]+ [t1(r2 +2x2
t )]+ [s1r2]+ c1xt yt

ṽt = vt + (vt −v0)[k1r2 +k2r4 +k3r6]+ [t2(r2 +2y2
t )]+ [s2r2]+ c2xt yt(2.28)

The difference between equations (2.25) and (2.28) is that we have removed the second order

tangential (2t2, 2t1), and replaced it by coefficients (c1, c2) that are independent of the tangential

distortion. However, we will see later that we can initialize the coefficients (c1, c2) using the

tangential ones.

Therefore, the use of non-linear optimization in the form of an "iterative" bundle adjustment

should be able to estimate the coefficients (c1, c2), and at the same time be able to refine the

other system parameters.
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Calibration procedure
In summary, the calibration procedure for the new proposed method based on lens distortion

model is as follows,

1. Detect the feature pixels p̃(i, j)
t on the tilted image plane that corresponds to feature points

P(i, j)
w , where i = 1, . . . ,n and j = 1, . . . ,m,

2. Estimate the homography H( j) between the feature pixels and points (see equation 2.21),

3. Extract the camera parameters using Zhang’s method (see Appendix 6.2). The extracted

parameters are K̂ , R̂( j) and T̂( j),

4. Refine these parameters, with lens distortion through bundle adjustment based on Levenberg-

Marquardt optimization technique (see appendix 7.2). The refined parameters are K̂ , R̂( j),

and T̂( j) and the lens distortion coefficients (k̂1, k̂2, k̂3, t̂1, t̂2),

5. Initialize the "iterative" bundle adjustment scheme with the parameters estimated in step

(4). Then, set the additional parameter ŝk=0, coefficients ŝ1, ŝ2 = 0, ĉ1 = 2t̂2, and ĉ2 = 2t̂1,

Start the iterative bundle adjustment

6. Create the frontal images using the parameters (R̂( j), T̂( j), K̂ , k̂1, k̂2, k̂3,t̂1, t̂2, ŝ1, ŝ2, ĉ1, ĉ2),

7. Extract the feature pixels on the frontal images, then project them back to the tilted image

plane,

8. Optimize all the parameters directly on the tilted image plane using bundle adjustment

procedure as below,

min
m∑

j=1

n∑
i=1

‖p̃(i, j)
t − p̂(i, j)

t (K̂ ,R̂( j),T̂( j), k̂1, k̂2, k̂3, t̂1, t̂2, ŝ1, ŝ2, ĉ1, ĉ2)‖2(2.29)

9. Go back to step (6) until the feature pixel variation is lower than a threshold.

2.2.3 Experiments and Results

We have carried out various tests to evaluate the proposed Scheimpflug calibration methods. The

experiments have been done on different sets of data acquired by an industrial system set-up

where the calibration images are perturbed by large distortions. Moreover, the system is placed

in a thick "plexi" glass housing.

The first part of the experiment was carried out on images acquired with the laboratory

prototype, while the second part has been performed with images acquired by real system set-up.

The main aim of these experiments is to compare the calibration results of classical calibration

method to the new proposed Scheimpflug calibration methods.
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In the experimental table of this section, we use the following nomenclature ("Classical,
Legarda, Method I, Method II") to describe the calibration methods,

• Classical: The classical camera calibration using Zhang’s method (see section 2.2.1),

• Legarda: The state of art Scheimpflug device calibration method presented by Legarda et

al. [52],

• Method I: The new Scheimpflug calibration method that requires the optimal estimation

of Scheimpflug angles (see section 2.2.2.2),

• Method II: The new Scheimpflug calibration method that is based on lens distortion model

(see section 2.2.2.3).

2.2.3.1 Laboratory Experiment

This experiment was carried out with the laboratory prototype using a firewire camera equipped

with a sensor of 1280×1024 pixels whose size is 0.0067mm×0.0067mm. We use a canon TS-E

focal 24mm Scheimpflug lens, whose tilt angles range between ±8.5◦. The image set contains

only 25 calibration images, since we ensure that they cover the whole field of view of the camera.

Comparison between all methods
For the first test, the Scheimpflug angle on the X-axis has been tilted to approximately θ = -1.4◦.
Since we have no information about its adjustment on Y-axis, angle γ has been set to 0◦. Figure

2.11 shows few examples of the calibration images used for this experiment. The accuracy of the

camera calibration methods has been determined by using the mean reprojection error between

the true coordinates of the feature pixels and the reprojected ones using the estimated camera

parameters over the whole calibration images.

Figure 2.11: Scheimpflug calibration images at tilt angle -1.4◦.

The experimental results are shown in table 2.1. We have used the same stopping criteria

for the iterative bundle adjustment to avoid any bias between the compared methods. We have

set the stopping criteria so that the iterative bundle adjustment procedure stops whenever the
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mean variation of feature pixels between two successive steps is lower than (0.001px). The whole

calibration procedure takes about 45 minutes, but the calibration results are already good at the

third iteration. The fronto-parallel transformation procedure is time consuming since we need to

create these frontal images and detect the feature pixels at each iteration. This procedure has

been speed up under GPU, and the calibration time is lower than 7minutes.

No Fronto-parallel Fronto-parallel
Classical Legarda Method I Classical Legarda Method I Method II

fx, f y(mm) 25.59, 25.44 25.35, 25.40 25.50, 25.38 25.43, 25.45 25.54, 25.47 25.43, 25.39 25.54, 25.50
sk - - - - - - 19.98

u0,v0(px) 1100, 688 1038, 740 1190, 673 1034, 703 1141, 629 1016, 699 1115, 533
θ,γ(◦) - -0.005, -1.385 -0.004, -1.399 - -0.004, -1.382 -0.004, -1.399 -

k1 -0.010 0.003 0.005 0.009 0.012 0.032 0.134
k2 -5.727 -6.012 -4.384 -6.243 -5.321 -3.258 -2.0189
k3 66.4455 52.015 40.011 58.124 54.614 45.321 31.589
t1 0.003 0.027 0.003 0.004 0.0013 0.005 0.0052
t2 -0.002 -0.017 -0.004 0.001 0.0031 0.006 0.0294
s1 - - - 0.0015 -0.0059 0.0011 0.0032
s2 - - - 0.0035 0.0034 0.0024 0.0029
c1 - - - - - 0.0626
c2 - - - - - 0.0065

mean err(px) 0.107 0.101 0.102 0.0553 0.054 0.0530 0.0500
std err(px) 0.023 0.022 0.023 0.0331 0.0319 0.0310 0.028

Table 2.1: Experimental intrinsic calibration comparison between all methods (Scheimpflug tilt
angle is -1.4◦).

In the calibration result table without fronto-parallel transformation, one can see that

Method I performs better than the Classical (0.107 px → 0.102 px), and the Scheimpflug angles

are well estimated. The fronto-parallel transformation improves the results obtained by these

approaches, and the reprojection error is reduced by the factor of 2. Method II under the iterative

bundle adjustment procedure provides the best calibration result compared to the other methods.

In summary, the new proposed Scheimpflug calibration methods perform better than the classical

calibration method in all cases (i.e. both with and without fronto-parallel transformation).

Larger Scheimpflug angle test
The aim of the second test is to verify the validity space of the Method II i.e. we want to verify

that the assumptions made in Method II are still valid at large Scheimpflug angles. Therefore,

experiments have been conducted with the same Scheimpflug device as earlier test, but with

larger tilt angle close to 8.5◦. In practice, any Scheimpflug angle that is greater than 8.5◦ is

realistically impossible in our present application. Indeed, the camera-object distance has to be

lower than 110mm in that case. Few examples of the calibration images for this experiment are

shown in figure 2.12.

As the quality of the calibration images is very poor for this experiment, we increase the

background lighting of the calibration pattern in order to get visible dot-grid patterns. Even with
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Figure 2.12: Calibration example images at Scheimpflug tilt angle 8.5◦.

increased background lighting, one can still see that the quality of the images is degraded and the

perspective distortion is highly visible in them. The calibration result is shown in table 2.2. The

experimental result shows that our methods perform better than Classical one, and Method II
provides the lowest reprojection error (0.0412px).

Fronto-parallel, angle 8.5◦

Parameters Classical Method I Method II
fx, f y(mm) 25.63, 25.59 25.58, 25.54 25.63, 25.50

sk - - -30.65
u0,v0(px) 1017, 603 1082, 459 1065, 468
θ,γ(◦) -,- 8.321,0.009 -,-

k1 -1.7104 -1.8069 -0.9980
k2 7.2897 6.5230 3.8423
k3 -15.5451 -32.124 -7.2740
t1 -0.0072 -0.0072 0.0852
t2 -0.0375 -0.0260 -0.0122
s1 -0.1000 -0.0821 -0.2224
s2 0.0584 0.0493 0.0281
c1 - - -0.0493
c2 - - 0.0462

mean err(px) 0.0635 0.0461 0.0412
std err(px) 0.0443 0.0331 0.0291

Table 2.2: Experimental intrinsic calibration result at large Scheimpflug tilt angle 8.5◦.

From our previous tests, the skew parameter sk has not been optimized under Classical
and Method I. This is based on Zhang’s assumption of skew parameters to be zero. We have

decided to make additional test to verify the influence of the skew parameter sk. For this test, we

add this parameter in the optimization procedure of Classical and Method I. The calibration

results for this test are shown in table 2.3. We can see that the sk parameter has low influence in

the accuracy of these methods in our application. Therefore, Method II is still the best of these

methods.
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Fronto-parallel, angle 8.5◦ (with sk)
Parameters Classical Method I Method II
fx, f y(mm) 25.54, 25.47 25.49, 25.53 25.63, 25.50

sk 15.71 12.31 -30.65
u0,v0(px) 1141, 629 1109, 538 1065, 468
θ,γ(◦) -,- 8.321,0.009 -,-

k1 -1.3816 -1.0814 -0.9980
k2 3.9081 4.8812 3.8423
k3 -5.895 14.0945 -7.2740
t1 0.0253 -0.0053 0.0852
t2 -0.0500 -0.06712 -0.0122
s1 -0.2290 -0.1470 -0.2224
s2 0.0619 0.0352 0.0281
c1 - - -0.0493
c2 - - 0.0462

mean err(px) 0.0631 0.0463 0.0412
std err(px) 0.0451 0.0325 0.0291

Table 2.3: Experimental intrinsic calibration result at large tilt angle 8.5◦ (with sk).

The most important parameter under the Scheimpflug calibration using Method II is the

proposed additional distortion coefficients c1 and c2. Indeed, the experimental results in this

test show that Method II works well at large Scheimpflug tilt angles, and thus can be used to

calibrate any Scheimpflug device.

2.2.3.2 Real System Experiment

We have carried out the calibration procedure on two sets of 25 images acquired outside the

laboratory on the real system (see figure 2.13). The system to be calibrated uses a Basler camera

with a resolution of 2040x1088 pixels, pixel size of 0.0055mm×0.0055mm and a Schneider-

Kreuznach-f24mm adapter tilted to approximately θ0 = 1.4◦, γ0 = 0◦ on X and Y-axis respectively.

The experimental results are displayed in Table 2.4.

Figure 2.13: Calibration images captured using Scheimpflug camera.
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Set I (25 images) Set II (25 images)
Parameters Classical Method I Method II Classical Method I Method II
fx, f y(mm) 25.40, 25.39 25.54, 25.47 25.28, 25.36 25.40, 25.34 25.41, 25.34 25.52, 25.47

sk - - 26.63 - - -20.93
u0,v0(px) 1209, 672 1141, 629 1235, 647 1100, 602 1109, 572 1096, 623
θ,γ(◦) -,- 1.399, 0.004 - - 1.390, 0.012 -

k1 0.024 0.014 0.053 0.061 0.060 0.065
k2 -4.235 -5.316 -4.120 -7.218 -7.013 -7.523
k3 35.601 54.448 32.048 47.253 49.156 53.127
t1 0.0107 0.0015 0.0133 0.0021 0.0052 0.0074
t2 0.0113 0.0029 0.0115 0.019 0.0203 0.0214
s1 -0.0122 -0.031 -0.0067 -0.0065 -0.0109 0.0009
s2 -0.0135 -0.0148 -0.0085 -0.0090 -0.0087 0.0013
c1 - - 0.0278 - - 0.0358
c2 - - 0.0385 - - 0.0521

mean err(px) 0.0551 0.0525 0.0479 0.0543 0.0533 0.0481
std err(px) 0.0311 0.0309 0.0280 0.0321 0.0330 0.0280

Table 2.4: Experimental intrinsic calibration result with real system under fronto-parallel trans-
formation.

By examining table 2.4 for the real system test, we can conclude that Method II provides the

lowest mean reprojection error for the two sets of calibration images. Therefore, it has been chosen

for further experiments in the next chapters of this PhD thesis to evaluate the 3D laser-camera

system calibration.

2.2.4 Conclusion

We have proposed two calibration methods for any Scheimpflug device. The first method requires

the optimal estimation of the Scheimpflug tilt angles, while the second method is based on lens

distortion model by iterative bundle adjustment technique. With the second method, one does

not need to estimate the optimal Scheimpflug angles. We have made detailed experimental

comparison between the classical calibration method [111], state of art Scheimpflug method [52]

and the proposed methods.

From the experimental results, we show that the proposed Scheimpflug calibration methods

perform better than the state of art methods. Notably, the second method provides the best

performance. We have also tested different methods for the extraction of feature pixels of the

frontal image, such as digital image correlation [97], cross correlation, with sub-pixel detection

methods. The choice of extraction method on the frontal images does not have any significant

improvement on the calibration result.

Since these experiments have been carried out with a camera located inside a thick "plexi"

glass housing, we assume that the proposed methods can be used for systems under moderate

refractive distortions, thanks to the iterative bundle adjustment scheme.
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2.3 Laser-Camera Calibration

The laser-camera system consists of a camera and a laser which projects a line stripe on the

object to be measured (see figure 2.14). Let us consider the 3D point Pw that belongs to both

the laser plane, and the object surface. The ray passing through the point Pw and the optical

center Oc intersects the tilted image plane at point pt and thus provides the coordinates of

pixel corresponding to Pw in the scene. When the laser plane equation is known in the camera

coordinate system (Oc[X c,Yc, Zc])c, the position of the 3D point Pw can be easily expressed in this

coordinate system. Therefore, the laser-camera calibration consists in determining the equation

of the laser plane in the camera coordinate system. See, for example the paper of Lanman et al.

[50] on triangulation principles.

Figure 2.14: System laser-camera calibration.

From a well calibrated Scheimpflug device, the aim is to determine the transformation matrix

between laser and tilted image plane. Since it is very difficult to determine the physical origin

of the laser, one is required to place a calibration target/pattern with known coordinate system

directly on the laser path. This target must contain enough non-collinear feature points in order

to identify the laser plane equation.

2.3.1 Calibration Target

The choice of laser-camera calibration target depends on the application, expected accuracy and

budget constraint. We classify calibration targets that have been used over the years in to planar

and 3D targets. The planar targets are generally made from planar object, mostly using papers

with printed patterns. These printed patterns are built so that feature pixels can be extracted

from the images formed from the intersection of laser plane with these printed patterns. The

planar target needs to be moved at various positions on the laser path in order to get enough non

collinear points needed to represent the laser plane. Thereafter, the parameters from various

poses are unified to obtain a single plane parameter using non-linear optimization techniques.
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Few examples of planar target include grid pattern [107], square pattern [112], and chess pattern

[84].

The use of 3D target is mostly common in industries where the cost of equipment is not a major

factor. They use manufactured 3D targets that have been known to a reference coordinate with

high accuracy. It is very difficult to obtain a relevant good laser-camera calibration from just one

single pose of the 3D target (i.e. single-shot laser calibration technique) due to possible occlusion

of the feature points from the viewing camera. Therefore, most of the laser-camera calibration

methods still require minimum of two poses of the 3D target. This is done by coordinated

translation of the pattern [109] or coordinated insertion for both ring step gauge [46] and puzzle-

like gauge [40].

Other trends of inexpensive 3D targets are available. The targets are created with the use

of two or three orthogonal planes from readily available planar patterns [41, 62, 110]. These

methods avoid moving the pattern at different orientations by incorporating shape and geometric

informations such as vanishing point [101], invariance of cross-ratio [11, 41, 102], and scattered

point projection [6].

For an industrial application, 3D calibration target is the best choice to reach the expected

accuracy. The main problem under Scheimpflug set-up is the low depth of field, which makes it

difficult to use a full-scale 3D calibration target. Therefore, we have proposed a new laser-camera

calibration target that is suitable to the scope of the project (see figure 2.15). The proposed

pattern is suitable for a single-shot laser-camera calibration method, so that one can calibrate

the system by the analysis of a single image representing the calibration target.

Figure 2.15: The laser-camera calibration set-up. The laser calibration target is "hidden" due to
confidentiality constraint.
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2.3.2 Calibration Procedure

In the laser-camera calibration set-up shown in figure 2.15, the coordinates of the feature points

P(i)
st (i = 1, . . . ,n ≥ 20) on the calibration target are known with reference to the coordinate system

origin (Ost[Xst,Yst, Zst])st that has been placed at the target center. Our aim is to be able to

represent any point formed by the camera ray intersection with the laser plane directly in

reference to the Ost coordinate.

Feature pixel extraction
From a single image of the calibration target, we need to first extract the distorted tilted pixels

p̃(i)
t (ũ(i)

t , ṽ(i)
t )p that corresponds to the feature points P(i)

st on the calibration target. The calibration

accuracy strongly depends on the accurate extraction of these feature pixels.

Thanks to the proposed Scheimpflug calibration method in section 2.2, the distorted tilted

pixels p̃(i)
t (ũ(i)

t , ṽ(i)
t )p are then transformed to their undistorted points p(i)

t (x(i)
t , y(i)

t )I in the tilted

image plane.

Laser to camera homography estimation
We can determine the (3×3) homography Hst between the undistorted normalized image points

p(i)
t (x(i)

t , y(i)
t )I and world feature points P(i)

st (X (i)
st ,Y (i)

st , Z(i)
st )st. This is shown in equation (2.30), and

can be solved using the normalized DLT method explained in Appendix 6.1.

λ


x(i)

t

y(i)
t

1

=Hst


X (i)

st

Y(i)
st

Z(i)
st

(2.30)

As the perfect alignment of the calibration target is not always guaranteed, we propose

to refine Hst using special bundle adjustment through minimizing symmetric transfer error

[35, 81, 82, 92]. This is done by minimizing reprojection error on both the target plane Ost

and the tilted image plane OI as shown in equation (2.31). The minimization is performed

with Levenberg-Marquardt iterative method, where Ĥst, Ĥ −1
st are the forward and backward

estimated homographies.

min
n∑

i=1
‖p(i)

t −ĤstP̂(i)
st )‖2 +‖P(i)

st −Ĥ −1
st p̂(i)

t )‖2,(2.31)

Note: Further decomposition of the homography matrix to extract the laser plane parameters is

detailed in the following papers [22, 79].
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2.3.3 Experiments and Results

We have tested the laser-camera calibration method on both synthetic and real images. For the

synthetic test, we have simulated the image acquisition thanks to the proposed Scheimpflug

image formation model (excluding optical lens distortions). For the real test, we capture an image

of the calibration target that has been illuminated by the laser. The Scheimpflug device used for

this experiment has been calibrated in the real system experiment (see section 2.2.3.2).

The accuracy of the laser-camera calibration method has been determined using RMSE error

in mm over n feature points. The laser calibration results are shown in table 2.5. Although the

calibration procedure requires a single image of the target, we have captured three images with

varying camera exposure time (exp. time) so that the best calibration result between these three

images is retained.

Synthetic Images Real Images
fx, f y (mm) 25.33, 25.33 25.28, 25.36

sk - 26.63
u0,v0 (px) 1020, 512 1235, 647
θ,γ (◦) 1.52, 0.00 -

k1 0.053
Camera k2 -4.120

Calibration k3 32.048
t1 0.0133
t2 0.0115
s1 -0.0067
s2 -0.0085
c1 0.0278
c2 0.0385

mean err. (px) 0.0000 0.0479
std err. (px) 0.0000 0.0280

Image 1 Image 2 Image 3 Image 1 Image 2 Image 3
exp. time 20 40 60 20 40 60

Laser nb. feat. (n) 20 20 20 22 22 24
Calibration mean err. (mm) 0.045 0.050 0.041 0.030 0.025 0.015

Table 2.5: Laser-camera calibration result with both synthetic and real images.

The accuracy of the proposed laser-camera calibration method largely depends on the accuracy

of the feature pixel extraction i.e. the pixels that correspond to the feature points of the proposed

laser calibration target. The best result for the real images test has been obtained when the

exposure time of the camera is high, while not producing saturated images. In this case, we were

able to well extract a high number of feature pixels.
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2.4 Conclusion

In this chapter, we have presented a two step calibration method for a 3D laser-camera system

under Scheimpflug set-up. The method requires that we first calibrate the Scheimpflug camera

independently, followed by determining the transformation matrix between the laser plane

and the calibrated camera. We have proposed two intrinsic camera calibration methods for

the Scheimpflug device. The first method is based on optimally estimating the Scheimpflug

angles, while the second method is based on lens distortion model. The proposed methods use

iterative bundle adjustment coupled with fronto-parallel transformation technique to improve the

experimental results. The obtained reprojection error is lower than 0.050px. Indeed, the proposed

second method using lens distortion model provides the best result to calibrate any Scheimpflug

device. In the context of our application, we consider that the obtained error is satisfying since the

camera depth of field is low and the image acquisition is corrupted by strong optical distortions.

The laser-camera calibration method has been proposed to fit to the scope and requirements

of the project. It is a single shot calibration method where the calibration is performed using

only a single image of the calibration target. This method is highly sensitive to the accuracy of

extracted feature pixels, as well as the perfect alignment of the calibration pattern on the laser

path. We have proposed to use a symmetric bundle adjustment, which helps to compensate for

slight misalignment of the pattern on the laser path. The laser-camera calibration procedure has

been tested on synthetic and real image acquisitions, and the lowest mean reprojection error is

close to 0.015mm.

The obtained error is lower than those provided by state of art calibration methods. Indeed,

the 3D laser-camera system under Scheimpflug set-up defined by Li et al. [53] provides higher

error of (0.060mm) at a working distance largely less than in our present application. Under

classical calibration with less working distance as us, Zhang et al. [109] provides calibration error

close to (0.050mm). Based on these results, the performance reached by our proposed calibration

procedure outperforms the state of art methods. Once the system has been calibrated, images are

analyzed to estimate the cross-section of contact wires.
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CROSS-SECTION MEASUREMENT

The aim of our 3D measurement system is to estimate the cross-section of different contact

wires (with or without wear). In this chapter, we describe the procedure for estimating

cross-section of contact wires. For readers clarity, the successive processing steps for the

cross-section measurements have been grouped in the following sections:

• Profile Determination

• Profile Analysis

3.1 Profile Determination

The goal of the profile determination is to extract the 3D profile of the contact wire directly

from acquired images. The profile determination procedure is divided into three steps shown in

figure 3.1. First, a pre-processing step extracts the region of interest (ROI) using simple image

thresholding [34]. The second step estimates the coordinates of pixels that correspond to the

laser stripe centers. Finally, from these stripe centers, the 3D profile is determined using the

laser-camera triangulation method that is explained in section 2.3.

Figure 3.1: Profile determination step, from acquired images to 3D profile determination.
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3.1.1 Laser Stripe Extraction

Apart from the laser-camera calibration method explained in the previous chapter, the measure-

ment performances reached by the system also depend on the accuracy of the laser stripe center

extraction [36]. Laser stripe extraction consists in determining the coordinates of pixels that

correspond to the center of the line representing the laser projected on the contact wire [61].

Figure 3.2 is an example image of a laser stripe projected on the contact wire. Let us denote

(u,v) as the spatial coordinates of pixels in the region of interest (ROI) whose size is n×m. The

goal of the laser stripe extraction is to determine the coordinate S(v) that corresponds to the

center of the laser line for each column v. One can see that the image in figure 3.2 is largely

perturbed by specular reflection and speckle noise. This is due to the surface aspect of the contact

wire as well as the imperfection of the laser source.

Figure 3.2: An example laser stripe image.

These perturbations modify the grey-level profile as illustrated in figure 3.3a. Past authors

assumed an ideal Gaussian form with no noise perturbation [72], as shown in figure 3.3b. In that

case, it is relatively easy to localize the laser peak that corresponds to the stripe center at each

column.

(a) Acquired

u

(b) Gaussian model

u

Figure 3.3: Grey-level profile along a column v.

Due to the spatial discretization of the image, it is necessary to extract the laser stripe center

location S(v) with sub-pixel accuracy, since the accuracy of 3D estimation is affected by the
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resolution of the acquired images. Assuming that the grey-level profile I(u,v) along the column v

presents a regularized peak (see figure 3.3b), we denote the coordinate pixel u0 whose grey-level

intensity I0 is the highest along column v (see figure 3.4). Then, we number the neighboring

row pixels before and after u0 as (u−1), and (u+1), with their grey-level intensities I−1 and I+1,

respectively.

u+1u0u-1

Figure 3.4: Zoomed of profile peak along column v.

From these three pixels near the regularized profile peak, the solution will be to find the

displacement ∆, so that the true extrema is located at the displacement ∆ from position u0,

S(v)= u0 +∆
where ∆ ∈ [−0.5,0.5].

(3.1)

Generally, the laser stripe extraction is done in the following way. The region of interest is

first determined by distinguishing laser stripe projected on the background from that projected

on the object [96]. Then, images should be first filtered to remove the grey-level irregularity of

neighboring pixels, which makes the peak identification more robust [89]. Then, the center is

determined thanks to a sub-pixel approach applied to the peak of the filtered profile [4, 65].

Once centers have been determined for each column, Sun et al. [90] proposed to apply a

smoothing spline algorithm to obtain a continuous curve of centers across successive columns

of the image. As such a post-processing step is time consuming, it cannot be integrated in a

real-time 3D measurement system that analyses ≈ 1800 images per second. Therefore, we focus

only on one dimensional extraction methods, i.e. laser stripe extraction methods that analyze

each image column v independently. This strategy allows real-time laser stripe extraction. The
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methods described in this section, are based on sub-pixel interpolation applied to grey-level

profile regularized by adapted Gaussian filter.

3.1.1.1 Image filtering

The assumption to use a Gaussian filter comes from the Gaussian profile followed by the laser

light source. Therefore, noisy images can be transformed to the Gaussian form thanks to filter

g(.) expressed as,

g(u)= e−
u

2σ2(3.2)

where σ is the standard deviation of the Gaussian function. The choice of the σ parameter is very

important and its empirical value will be shown later in the experimental section of this chapter.

Let Ĩ(u,v) represent the convolution response using the Gaussian filter in equation (3.2).

The response Ĩ(u,v) should give a regularized and/or distinct peak that follows a Gaussian law.

Therefore, we can determine first the location u0 of the peak, followed by using the sub-pixel

interpolation methods to extract the stripe center S(v).

3.1.1.2 Sub-pixel interpolation algorithm

We have retained three sub-pixel methods that are well suited to our application. Several authors

attempt to fit the grey-level profile with a parabolic function [4, 65]. The center can also be

estimated thanks to a linear approximation [24] or by computing the center of gravity of grey-

level [36].

Parabolic fitting
Given that the grey-level profile around the peak is smooth, the sub-pixel location can be

determined using the parabolic estimator,

S(v)= u0 + Ĩ+1 − Ĩ−1

4Ĩ0 −2(Ĩ+1 + Ĩ−1)
.

(3.3)

Fischer et al. [24] have also proposed a Gaussian approximation method which is indeed the

same as parabola fitting if we exempt the "log" operator. Indeed, this log operator is ineffective

in our present application.

Linear Approximation
Linear interpolation can also be used to represent the spread of intensity around the laser peak

locations (u−1), u0 and (u+1), so that the laser stripe center sub-pixel S(v) is,

(3.4) S(v)=
u0 + Ĩ+1−Ĩ−1

2Ĩ0−2Ĩ−1
, if (Ĩ+1 > Ĩ−1)

u0 + Ĩ+1−Ĩ−1
2Ĩ0−2Ĩ+1

, else.
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Assumption about dispersion constancy may lead to inaccurate results when the laser line

width varies. When the grey level distribution around the peak of the profile is largely uneven,

Qi et al. [72] proposed the use of modified Gaussian function.

Center of Gravity
The Centre of Gravity (CoG) algorithm also known as "Center-of-Mass" has been used for laser

stripe center determination using a simple weighted average as,

S(v)= u0 + Ĩ+1 − Ĩ−1

Ĩ−1 + Ĩ0 + Ĩ+1
.

(3.5)

3.1.1.3 Experiments and Results

For industrial application purposes, we have compared the performances reached by three

presented approaches when the image resolution changes and when the laser width varies along

the image column (see figure 3.2 ). In the experimental set-up, several cylindrical objects (whose

diameter is 14.50mm) that are directly illuminated by a laser, are aligned in the Field of View

(FOV) of the Scheimpflug camera at three different horizontal and vertical positions, denoted

Positions [11 to 33], across the measurement area in the scene described by Ost(Xst,Yst, Zst)

plane in the scene (see figure 3.5). We can evaluate the robustness of the tested approaches

against the spatial resolution of the image since the camera-object distance varies with respect to

these positions.

Figure 3.5: Experimental set-up with cylindrical objects arranged on the measurement area.

The objects have been aligned in the FOV to cover the extreme limits of the depth of field

locations related to Scheimpflug system set-up. Due to the curve nature of the measured objects,

the location of the cylindrical object in the scene and the Scheimpflug tilt effect, the width of the

laser w varies between 2 to 20 pixels across each column of the image ROI.

We have developed a tool to simulate the experimental set-up in figure 3.5. To obtain the

ground truth, we have applied the laser stripe extraction methods on synthetic images that have
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been generated by our simulation tool. The images were created, thanks to Scheimpflug formation

model described in chapter 2.1.2. We have tested the algorithms on simulated images of the

cylindrical object corrupted by speckle noise with density whose variance has been set to 0.04

[89]. The variance value has been set to well represent the moderate level of noise perturbation

in acquired images of the cylindrical object. The performance of each method is measured by

using the distance between the estimated stripe center and that of the ground-truth, along each

column of the image.

Robustness against spatial resolution
The accuracy of the stripe extraction method is estimated thanks to the error measure d̄ expressed

in equation (3.6), where (St(v)(i),S(v)(i)) are the ground-truth and the determined laser stripe

centers, respectively, along the m columns of the ROI.

(3.6) d̄ = 1
m

m∑
i=1

|St(v)(i) −S(v)(i)|

The full experimental evaluation for the three described methods is shown in table 3.1. The

images have been filtered, thanks to the Gaussian filter of equation (3.2) where σ is set to 4. At

each position [11 - 33], the minimum error between the three methods is written in bold font

and we display the number m of columns where the laser stripe is inside the ROI. This table first

shows that m varies according to the position of the object observed by the camera. It also shows

that parabolic fitting outperforms CoG and linear methods for all object positions.

Mean error d̄(pixel)
Position m Parabolic Linear CoG

11 124 0.0498 0.0661 0.2345
12 124 0.0506 0.0697 0.2354
13 110 0.0731 0.0931 0.2371
21 153 0.0599 0.0844 0.2208
22 131 0.0672 0.0799 0.2535
23 113 0.0655 0.0821 0.2498
31 158 0.0700 0.0877 0.2353
32 133 0.0618 0.0812 0.2378
33 116 0.0634 0.0775 0.2432

Table 3.1: Comparison between the laser stripe extraction methods using mean error d̄.

We can also notice that errors provided by the linear method are close to but higher than those

provided by parabolic method. However, several other tests (not presented in this thesis report)

reveal that CoG method provides good results only when the grey-level profile is Gaussian-like so

that u0 is guaranteed to be very close to the center sub-pixel location S(v). An example of laser

stripe extraction provided by the parabolic fitting method is shown in figure 3.6.
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Figure 3.6: Stripe extraction result provided by parabolic fitting in the ROI.

Robustness against laser width
The accuracy of the center determination depends on the performance of image Gaussian

filtering. We have made several experiments to determine the empirical σ̂ parameter that is

well suited to our application. For the experiment, we simulate the cylindrical object at Position
[22] (see figure 3.5), then we determine the error d̄ over all the column m in the ROI. We plot in

figure 3.7 the mean error d̄ against σ parameter ranging from 1 to 35. The plot shows that the σ̂

parameter for parabolic fitting and linear approximation methods ranges between 10 and 15.
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Figure 3.7: Error measure d̄ vs σ , for the three tested methods.

Based on Stegger [87] formulations, the relation between the laser width w expressed in

pixels and the optimal σ̂ parameter for a Gaussian profile is shown in equation (3.7). If we look

closer at our earlier experiment result shown in figure 3.7, we will see that equation (3.7) is

experimentally verified. The laser width w has approximately 18 pixels across the image column

(except at the extreme ends of the image profile) so that the computed σ̂ should be higher than

10, and close to the local minimum.

(3.7) σ̂≥ w/
p

3 .
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The ROI in this application contains the laser stripe projection on the contact wire that is

acquired by the camera. The ROI contains i = 1, . . . ,m number of columns, so that a set of centers

{v(i),S(v)(i)} has been determined. Indeed, for the laser stripe extraction task, we obtain the stripe

centers S(v)(i) for all the m columns present in the ROI.

3.1.2 3D Reconstruction

From the laser stripe extraction explained in the previous section, the method that uses the

parabolic fitting is the best choice. It is well suited to our application where the acquired images

of the contact wire are corrupted by noise. This method has been used to determine the laser

stripe center S(v).

Thanks to the camera parameters given by the calibration procedure, the m stripe cen-

ters {v(i),S(v)(i)} are first transformed to their undistorted normalized tilted image points

p(i)
t (x(i)

t , y(i)
t )I , that is denoted as Image profile in figure 3.8. Then, we determine the 2D profile

of the contact wire using the inverse of homography H −1
st as shown in equation (3.10). The 2D

profile results from the projection of the image profile to the laser plane.

Figure 3.8: Illustration of the 3D reconstruction that gives 2D profile.

We will detail in the next part of this section the full 3D reconstruction procedure under our

laser-Scheimpflug device system set-up.

3.1.2.1 Removal of distortions

The extracted stripe centers {v(i),S(v)(i)} are distorted pixels p̃(i)
t (ũ(i)

t , ṽ(i)
t )p that are located on

the tilted image plane. Thanks to earlier camera calibration, we transform these pixels to their

corresponding distorted normalized points p̃(i)
t (x̃(i)

t , ỹ(i)
t )I using equation (3.8).

[
x̃(i)

t

ỹ(i)
t

]
=K −1

b


ũ(i)

t

ṽ(i)
t

1

 where Kb =


1/sx sk u0

0 1/sy v0

0 0 1

(3.8)
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Using the distortion parameters from earlier camera calibration, we can determine the

undistorted normalized tilted points p(i)
t (x(i)

t , y(i)
t )I by removing the distortions. The removal of

these distortions depends on the proposed calibration method. In this chapter, we use the second

method that is based on lens distortion model (see section 2.2.2.3). These distortions are the

radial, tangential, thin prism and the proposed Scheimpflug ones (c1, c2). By simplifying the

proposed distortion model in equation (2.28), we can remove the distortions using equation (3.9).

xt =
(x̃t − [t1(r2 +2x2

t )]+ [s1r2]+ c1xt yt)
1+k1r2 +k2r4 +k3r6

yt =
( ỹt − [t2(r2 +2y2

t )]+ [s2r2]+ c2xt yt)
1+k1r2 +k2r4 +k3r6

(3.9)

We need to remove these lens distortions in an iterative manner. From our experiments, the

number of iteration steps has been empirically set to the value of 10.

3.1.2.2 Triangulation using homography

Once the undistorted normalized coordinate points p(i)
t (x(i)

t , y(i)
t )I denoted as Image profile in

figure 3.8 have been determined, we can then use the inverse of homography from earlier laser

calibration (see section 2.3) to get the reconstructed profile as shown in equation (3.10), where

(X (i)
st , Y (i)

st , Z(i)
st ) are coordinates of the system associated with the laser plane.


X (i)

st

Y(i)
st

Z(i)
st

=H −1
st


x(i)

t

y(i)
t

1

(3.10)

As the Y(i)
st of the reconstructed profile is very close to zero, we set its value to zero so that (X (i)

st ,

Y (i)
st = 0, Z(i)

st ) for every reconstructed points. Therefore, we propose to use the term 2D profile
for the reconstructed profile rather than 3D profile. This means that the reconstructed profile in

this work is actually a (2D) curve that represents the wire profile.

Few examples of reconstructed 2D profiles of round and oval contact wires are shown in

figures 3.9 and 3.10, respectively. The proposed laser-camera system is placed at one side from

the wire to be inspected, so it can only inspect (at a single time) half profile instead of the full

contact wire profile. Figure 3.9a shows a round wire profile with no wear while figure 3.9b shows

a round wire profile with an early stage of wear. Likewise, figure 3.10a shows an oval wire profile

with no wear but with a slight rotation, while figure 3.9b shows an oval wire that has a wear.

One should note that the reconstructed points that belong to the notch of the contact wire have

been removed in the pre-processing step.
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(a) No wear
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Figure 3.9: The reconstructed 2D profile for round wires.

(a) No wear (rotation)
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Figure 3.10: The reconstructed 2D profile for oval wires.

3.1.3 Summary and Conclusion

In the first part of this section, we have proposed the combination of image filtering and sub-pixel

interpolation methods to accurately extract the laser stripe centers in images corrupted by

speckle and Gaussian noise. This method is well suited to environments where conditions about

the laser source, and object types cannot be controlled, such as in 3D measurements of steels,

metals, and irons. We have shown that parabolic fitting provides the best accuracy for laser stripe

center extraction while being suitable for real-time implementation. Thanks to this analysis of

the extracted stripe centers, we are able to provide a reconstructed 2D profile that will facilitate

relevant estimation of the contact wire cross-section.

Although the proposed laser stripe center extraction has been effective for moderate noise

perturbation of the contact wire images, the reconstructed 2D profiles are still noisy and have

irregular shape (see figures 3.9 and 3.10), compared to real contact wire profile without any

form of perturbations. Moreover, only half of the wire profile is available to estimate the cross-

section. So, these problems make it difficult to directly extract meaningful information required

to estimate the cross-section from the 2D profile. To deal with these problems, we have proposed

a profile analysis method that will be described in the next section.
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3.2 Profile Analysis

For the profile analysis (see figure 3.11), the reconstructed 2D profile is pre-processed to remove

noisy isolated points and points that belong to the contact wire notch. Next, we use non-parametric

regression method to smooth the 2D profile. Indeed, its irregular shape results from the contact

wire surface aspect and possible grease deposit.

Figure 3.11: Illustration of the profile analysis procedure.

During the segmentation step, we combine various point analysis algorithms to partition the

2D profile into the arc and flat primitives that represent the basic geometric shapes of contact

wire as shown in figure 3.12. This step labels the profile points to either the arc or the flat

primitives of the contact wire. Finally, we fit a circle to the points that belong to the arc primitives

and lines to those that belong to the flat primitives. This will contribute to the cross-section

estimation of the contact wire profile.

Figure 3.12: Primitive representation of the contact wire profiles.

3.2.1 Regularization by Smoothing

Our main objective is to smooth the reconstructed 2D profile represented as P(i)
st (X (i)

st ,Y (i)
st = 0,Z(i)

st )

from section 3.1.2. Linear regression is a simple way to model the relationship between these

data points. This is done with model equation (3.11), where ε is random error due to noise present

in the data, while a and b are parameters of the model line equation. This is a simple model that
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can be used as a form of linear regression on any given data points. Although the model is easy to

interpret, it still uses a very restrictive assumption about the linear relationship between the

data points.

Z(i)
st = a.X (i)

st +b+ε i=1,. . . ,m(3.11)

In our present case, we need to use a more complex model, which better reflects the unknown

relationship between the data points. This is mostly done with polynomial regression. However,

as there are many possibilities of wear profile shapes, finding the right relationship on their

points becomes challenging. Therefore, we propose to use non-parametric regression methods.

The most common methods are the Kernel Smooth Regression (KSR) and Smoothing Spline

[19, 95]. We have tested these two methods, and KSR provides the best results for our application

and thus is explained in this section.

The non-parametric regression is written as a form of linear equation given by equation (3.12),

where f (.) is the regression/smoothing function, and εi are the random errors.

Z(i)
st = f (X (i)

st )+εi i = 1, . . . ,m(3.12)

The aim is to estimate the underlying regression function f̂ (Xst)= E(Zst|Xst) that smooths

the sample data to obtain a function that falls between the pure parametric regression and

interpolation between each point of the data.

3.2.1.1 Smoothing by Kernel Regression

Kernel Smooth Regression (KSR) is a non-parametric way for regression task. The most common

method is proposed by Nadaraya-Watson [68]. The method is based on locally weighted average

between the neighborhood of data points using kernel K as a weighting function. The regression

function f̂ (Xst) at Xst is then given as:

f̂ (Xst)=
∑m

i=1K(Xst, X (i)
st )Z(i)

st∑m
i=1K(Xst, X (i)

st )
,

where K(Xst, X (i)
st )= exp(− (Xst − X (i)

st )2

2h2 )

(3.13)

In this application, the kernel used is in form of Gaussian weighted average filter and is

centered on a neighborhood distribution determined by bandwidth size h (see appendix 6.3.1 for

further description).
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We have applied the described kernel smooth regression method on example reconstructed

profile using two different bandwidths h = [0.1,0.5], and the results are shown in figures 3.13

and 3.14, respectively. The KSR result is drawn with "line plot" in the figure in order to well

illustrate the interpolation between the data points. The fitted line follows all the data points

when the bandwidth h = 0.1, whereas we have a smoother fits at bandwidth h = 0.5.
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Figure 3.13: Kernel smoothing on 2D profile of the round wire with wear (see figure 3.9b).

(a) h = 0.1
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(b) h = 0.5
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Figure 3.14: Kernel smoothing on 2D profile of the oval wire with no wear (see figure 3.10a).

Indeed, we see from earlier figures that the result is suitable for our application at h = 0.5

because it properly smooths the flat primitive of the 2D profile, even at the expense of the

modification of arc primitive. In the ideal case, the smoothing output of the flat primitive should

be perfectly straight (i.e. exhibit line property). This is a strong assumption here, and must be

respected in order to well distinguish the arc from the flat primitives.

3.2.2 2D Profile Segmentation

The objective of the profile segmentation is to decompose the 2D profile into the arc and flat

primitives, as illustrated in figures 3.15 and 3.16. From these two basic primitives, we can

represent all the contact wire types, with or without wear. We assume that flat primitive contains
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points that correspond to the wear while arc primitive contains the remaining points. These will

be further explained in the remaining part of this section.

(a) No Wear
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Xst(mm)

(b) Worn-out
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Figure 3.15: Primitive illustration for round 2D profiles.

(a) No wear
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(b) Worn-out
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Figure 3.16: Primitive illustration for oval 2D profiles.

We have combined point analysis and pattern recognition methods to determine the arc and

flat primitives. We present next the segmentation procedure followed by the estimation of the

wire’s cross-section area.

3.2.2.1 Profile decomposition into segments

First, we propose to decompose the 2D profiles into linked segments, thanks to polygonal ap-

proximation scheme. Polygonal approximation also known as curve simplification has been used

to approximate the 2D profile. There are vast literature on this subject and have been used in

various applications such as shape analysis and matching, compression for cartography, and

real-time visualization [37, 105].

The goal of polygonal approximation in this application is to represent the 2D profile with

fewer points denoted as "knot" points. The problem is to find the set of knot points which

decompose the 2D profile into disjoint segments that link the first to the last points of the profile.
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Kramer-Douglas-Peucker Algorithm [74]
To decompose the 2D profile into segments, a curvature criterion is used. The curvature criterion

is based on the orthogonal distance d between the segment and the farthest point as shown in

figure 3.17. The output segment is a good approximation of the profile if this distance d remains

less than a threshold.

Figure 3.17: Curvature criterion

The Kramer-Douglas-Peucker algorithm is simple, efficient and responds to our requirements

in this application. At first iteration the first and last points of the 2D profile are "knots" points,

and also set the starting segment to this point. The orthogonal distance d from this segment to

the farthest point is searched. If the distance d is less than a threshold dtol , the present points

is now a new knot point and the first segment is divided into two new segments at this point.

This procedure is performed recursively until all the distances d are less than dtol . This method

provides set of N knot points linked by N −1 segments.

The result of the polygonal approximation applied to the smoothed example 2D profiles is

shown in figures 3.18 and 3.19, respectively. The procedure produces "at least" one long segment

at the flat primitive in figures 3.18b and 3.19.
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Figure 3.18: Polygonal approximation on the smoothed 2D profile for round wires.
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(a) No wear
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Figure 3.19: Polygonal approximation on the smoothed 2D profile for oval wires.

Let us describe the symbols displayed in table 3.2 that will be used in the rest of this

section. We consider N knot points κ where κk=1,...,N . The knot points are linked together by line

segments Sk so that Sk=1,...,N−1, and the angle between two consecutive segments is denoted as

αk. A segment Sk is bounded by two extreme knot points κk and κk+1.

Symbol Description
κk k−th knot point, where k = 1, . . . , N
Sk k−th segment, where k = 1, . . . , N −1
αk angle between two consecutive segments Sk and Sk+1

Table 3.2: Summary of symbols under 2D profile segmentation.

3.2.2.2 Segment regroupement using region growing

We propose to regroup sets of connected segments into regions, thanks to region growing method

based on angle criteria. Let us denote two connected line segments Sk and Sk+1 as shown in

figure 3.20. Using the coordinates of their knot points {(κk,κk+1)}, and {(κk+1,κk+2)}, we can

determine the angle αk.

Figure 3.20: Illustration of the symbols under 2D profile segmentation.
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The angle αk is used to group these segments into region R. The region growing criteria

states that "if the angle αk between two consecutive segments is less than a tolerance angle αtol ,

then these two segments are grouped into the same region". For the example shown in figure

3.20 using Sk, the segment Sk+1 is grouped into the same region R j if the criteria is valid. The

pseudo code for the region growing method is shown in Algorithm 1.

j = 1, k = 1;
Sk ∈ R j;
for all Sk, where k → 1, . . . , N −2 do

determine αk between Sk and Sk+1;
if (αk <αtol) then

Sk+1 ∈ R j;
else

j = j+1;
Sk+1 ∈ R j;

end
end
M = j;

Algorithm 1: Region growing of connected segments using angle criteria.

The experimental results on example 2D profiles are shown in figures 3.21 and 3.22. The

region growing provides four regions on round profile shown in figure 3.21b, and five regions for

the oval profile shown in figure 3.22b. As at present, we do not know if these regions belong to

either the arc or flat primitives. The aim of next section will be to determine the identity of these

regions using a length criteria.

(a) Before region growing (b) After region growing

Figure 3.21: Region growing of round 2D profile segments using angle criteria.
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(a) Before region growing (b) After region growing

Figure 3.22: Region growing of oval 2D profile segments using angle criteria.

3.2.2.3 Region labeling using length criteria

The objective of this task is to determine the label of the regions. Indeed, any region R j that

contains at least one segment whose length is greater than a threshold value {dist (mm)} is labeled

as the flat primitive, and therefore considered as the region with the contact wire wear. Whenever

there is no segment whose length is greater than {dist (mm)}, the region is labeled as arc. The

pseudo code for the region labeling procedure using length criteria is shown in Algorithm 2. For

a particular segment Sk, length |Sk| is the distance between the knot points {κk and κk+1.

i=1;
for R j, where j = 1, . . . , M do

for all Sk ∈ R j do
if any |Sk| > dist then

label(R j)← Flat;
else

label(R j)← Arc;
end

end
end

Algorithm 2: Region labeling using length criteria.

By applying region labeling to round wire example in figure 3.21, all regions {R1,R3,R4} are

labeled as arc while {R2} is labeled as flat. Likewise for oval wire example in figure 3.22, all

regions {R1,R2,R3} are labeled as arc while {R4,R5} are labeled as flat.

Note : For the round wire example in figure 3.21, one can see that the length of segment S5 is

short (i.e |S5| < dist) but has been labeled as flat, thanks to S6 (with |S6| ≥ dist}) which lies in

the same region R2.
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3.2.2.4 Point labeling

Once the regions have been labeled, we use these labels to regroup the points into arc and flat

sets. Thanks to earlier region labeling procedure, we then use the knot points coordinate that

delimit each segment to determine the corresponding point label. At the end of this task, the arc

points that belong to both left and right parts of the 2D profile must have the same label, while

the flat points will have multiple labels depending on the total number of regions that correspond

to the flat region.

In summary, we determine arc points AP{ (X (i)
st , Z(i)

st ) }marc
i=1 , where marc is the total number of

arc points. This set contains both the points in the left and right parts of the 2D profile. The flat

points are grouped separately since the different regions correspond to different wears. Therefore,

flat points FP that belong to a flat region R j are denoted as FPRj{ X (i)
st , Z(i)

st }mFPR j
i=1 , where mFPR j

is the total number of points in a flat region R j. The whole segmentation procedure in this section

is summarized mathematically as below:

2D profile P(i)
st = { X (i)

st , Z(i)
st }m

i

⇓
Knot point κ κk=1,...,N = { X (k)

st , Z(k)
st } where N ≤ m and κ⊂ Pst

⇓
Segment Sk Sk is between ( κk, κk+1 )

⇓
Region R j Sk ∈ R j, where j = 1, . . . , M

label(Sk) = label(R j)

⇓
Point label label( X (i)

st , Z(i)
st ) = label(Sk), where X (k)

st ≤ X (i)
st < X (k+1)

st

⇓
Arc points AP AP{ X (i)

st ; Z(i)
st }marc

i=1

Flat points FP for R j, FPRj{(X (i)
st ; Z(i)

st )}mFPR j
i=1

The point label result on a round 2D profile is shown in figure 3.23. For this example, we can

assume that the points located in the Flat region R2 correspond to the contact wire wear. For

the oval profile example shown in figure 3.24, the points located in the Flat regions R4 and R5

are not the contact wire wear. Indeed, this profile example represents an oval wire with no wear.

Due to the weak curvature of the bottom-end of the new oval wire, our cross-section estimation

method will regard these regions as wear. This is just a special case that occurs only with oval

wire that has no wear.
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(a) Arc points (b) Flat points

Figure 3.23: Point labeling for round 2D profile.

(a) Arc points (b) Flat points

Figure 3.24: Point labeling of oval 2D profile.

3.2.3 Model Fitting

To estimate the cross-section of the wire, we need to fit specific model to the primitive points

using circle and line. Therefore, we propose to model the wire by a circle thanks to the arc points

and to model each flat region by a line. Figure 3.25 illustrates a circle fit to the arc points of the

2D profile, and two lines fit to the flat points.
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Figure 3.25: Model fitting (Circle and Lines) on the 2D profile points.
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3.2.3.1 Circle fitting on arc points

Let us denote the points that belong to the arc region as AP(X (i)
st ; Z(i)

st )
marc

i=1 . We model the wire by

a circle thanks to the arc points. The circle model needs 2 parameters, the center coordinate of

the circle c(cx, cz), and the radius r. The equation of a virtual circle passing through these points

is,

(X (i)
st − cx)2 + (Z(i)

st − cz)2 = r2(3.14)

To determine the best circle fit on these points, one need to minimize the function f (.), in

order to estimate the optimal circle parameters (cx, cz, r) as shown below,

f̂ (cx, cz, r)= min
marc∑
i=1

‖d(i) − r‖2

where d(i) =
√

(X (i)
st − cx)2 + (Z(i)

st − cz)2

(3.15)

d(i) is a (signed) distance from all the points. We need to minimize the above function, i.e.

iteratively reduce the distance between the circle and the complete set of points. This is done

with the use of Levenberg-Marquardt method (see appendix 7.2.1).

The underlying principle of the circle fitting method with LM is to first determine an initial

guess for the circle center (cx, cz), and radius r parameters. Although, the r parameter can be

initialized using a prior knowledge (also taking into account the wire radius tolerance r tol which

is an optional factor in our application), the center parameters (cx, cz) are indispensable and can

not be known a prior. Therefore, we need to find a way to determine their initial values.

The simplest way to determine these initial circle parameters is by the use of triangle

circumcircle theorem method proposed by Maisonobe [60]. In the method, many circles were

created using sets of three non-aligned points. The averaging of all the created circles gives

the required circle center and radius. One can also use the Landau circle fitting method [49] to

initialize the LM minimization procedure. The author uses a fixed-point iterative scheme to solve

the nonlinear equations generated from the function f (.) [12, 85].

3.2.3.2 Line fitting on flat points

We need to determine the best line fit to the points located in each flat region. The total number

of flat region will determine the number of line fittings required for this task. The equation of a

line that passes through these points is given as,

(3.16) Z(i)
st = a( j).X (i)

st +b( j)
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where i = 1, . . . ,mFPR j, recall that j depends on the number of flat regions. The best fit in the

least square sense is to determine the optimal line equation parameters a and b. This is done by

minimizing the cost function in equation (3.17).

(3.17) f̂ (a,b)=
mFPR j∑

i=1
‖Z(i)

st − (a( j).X (i)
st +b( j))‖2

The result of the model fitting using the circle (cx, cz, r) and line parameters (a( j),b( j)) is

shown in figure 3.25. In the next sub-section, we will explain in detail the cross-section estimation

procedure from the 2D profiles using the optimal circle and line fittings.

3.2.4 Cross-section Estimation

Once the circle representing the wire and the lines associated to the flat regions have been

determined, we can estimate the cross-section of the wire. Using the estimated circle parameters

(cx, cz, r), we determine an optimal virtual circle fitting on the arc points. Likewise, using the line

parameters (a( j),b( j)), we determine an optimal line fittings for each flat regions. We have used

these line parameters to determine an "infinite" line fits, with start and end point of each fitted

line set at infinity.

In order to determine the unimportant part of the circle which has been denoted as "Cut-off"

in figure 3.26, we propose to scan a line defined by Sc all along the "Lower circle region" using

increasing "step" angle (ρ). At each step angle (ρ), we determine the point of intersection Pp that

corresponds to the shortest distance from the circle center c. At the end of this operation, we

have mp number of Pp(X (i)
p ; Z(i)

p )
mp

i=1 points that formed the remaining points of the lower circle

region (see figure 3.26b).

Figure 3.26: Illustration of cut-off circle region under cross-section estimation.

Note that these points Pp have been ordered, and mp is defined by the increasing step angle

ρ. We can determine the upper circle region area using Area1= (πr2)/2, thanks to the estimated

radius r in section 3.2.3.1. To determine the area of the lower circle region, we use the determined
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3.2. PROFILE ANALYSIS

coordinate points Pp that have been well ordered. The area of this lower region (Area2) is

given in equation (3.18). Finally, the cross-section area of the 2D profile is determined using the

summation of the upper and lower circle region areas (i.e. CSA = Area1+ Area2).

Area2= ‖ (X (1)
p Z(2)

p −Z(1)
p X (2)

p )+ (X (2)
p Z(3)

p −Z(2)
p X (3)

p ) . . .+ (X (mp)
p Z(1)

p −Z(mp)
p X (1)

p )
2

‖(3.18)

The method used for the cross-section estimation of the lower circle region in equation (3.18)

is based on popular approach used to estimate the area of complex polygons. This method will

fail when the lower circle region represents a self-intersecting polygon (such as convex polygon).

In our application, we do not have to worry about this problem because we are guaranteed to

always have a concave polygon, thanks to the proposed cross-section estimation method.

The full algorithm to estimate the cross-section area of the contact wire from its 2D profile is

summarized as follows,

1. Pre-processing : Eliminate isolated noisy points and possible points that belongs to the

notch part of the contact wire,

2. Smoothing : Smooth the 2D profile using the Kernel Smooth Regression (optimal band-

width h parameter),

3. Segmentation : Classify the 2D profile points into the arc and flat labels,

• Approximate the 2D profile by segments using Kramer-Douglas-Peucker method

(optimal dtol parameter),

• Group the segments into regions R using angle criteria (optimal αtol value),

• Label the regions using length criteria,

• Assign the points into arc or flat labels.

4. Model fitting : Fitting of lines and circle on the geometry primitives of the wire profile,

• Fit a virtual circle on the arc points,

Note : For the optional case where the prior value of the radius is given, the LM

algorithm is adjusted to optimize the radius between a given tolerance value r tol that

is given by the user,

• Fit lines to the flat points depending on the total number of flat regions

5. Cross-section : Estimate the cross-section of the contact wire,

• Determine the points Pp that form the remaining circle points at the "lower circle

region" (see figure 3.26),
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CHAPTER 3. CROSS-SECTION MEASUREMENT

• Estimate the cross-section area of the upper circle region using (πr2)/2, and the lower

circle region using equation (3.18)

3.3 Experiments and Results

The experiments have been performed on synthetic 2D profiles that have been generated with

the use of a software tool developed under the project. This tool is based on Scheimpflug set-up,

and simulates various tasks such as the creation of different wire profiles, the laser calibration

pattern, as well as their image formation, with and without speckle noise addition.

We have only simulated BC-150 round wire type for this experiment. The wires have been

placed in the center of the camera’s focus plane Ost. We generate four different cases of the

wear profile shown in figure 3.27. Figures (a-c) are the wires with no wear, horizontal wear, and

inclined wear that has been rotated at approximately 7.5◦. Figure (3.27)d shows the wire with

two wear segments, which we denote as double wear.

(a) None (b) Horizontal (c) Inclined (d) Double
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Figure 3.27: Generated wire profiles using the simulation tool.

3.3.1 Evaluation Condition

In order to evaluate the system capability, we have generated different sources of error in the

software tool, through speckle noise addition and reprojection error from simulated laser-

camera calibration. The speckle noise has been added in the simulated images to represent the

perturbations of contact wire surface aspect (see section 3.1.1.3).

To simulate the reprojection error, we have generated the synthetic laser calibration target,

then applied the laser calibration technique that gives mean reprojection errors (err = 0.015

and 0.060mm). The error proportion (err = 0.060mm) corresponds to the error from the state

of art calibration method [109] under classical calibration method, while the error proportion

(err = 0.015mm) has been reached by our application. Indeed, we added a constant value to each

coefficient of the laser-camera homography Hst (see section 2.3) so that the mean reprojection

error computed using the feature points of the simulated target is equal to 0.015 and 0.060

respectively, as shown in equation (3.19). Thus for the case of perfect calibration, the mean

reprojection error is zero so that (err = 0mm).
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n∑
i=1

‖p(i)
t −ĤstP̂(i)

st )‖2 +‖P(i)
st −Ĥ −1

st p̂(i)
t )‖2 = 0.015 and 0.060mm(3.19)

3.3.2 Results

We have made two separate tests for the cross-section estimation. For the first test, we do not

include a prior knowledge of the contact wire radius in the optimization procedure. Furthermore,

we include this information in the second test to show the importance of this parameter. Table

3.3 shows the full parameters of the proposed cross-section method that have been used for the

subsequent experimental tests.

Symbol Value Description
Profile determination - 1 To remove background noise

σ 12 Gaussian filter
Profile analysis h 0.3 KSR bandwith

dtol 0.05 Douglas Peucker threshold
αtol 13 (◦) Region growing angle criteria
dist 2.5 (mm) Length (Wear) criteria
r tol 0.2 (mm) Wire fabrication tolerance

Table 3.3: The cross-section estimation parameters.

3.3.2.1 Without prior

We estimate the cross-section without any prior knowledge of the contact wire radius, and the

outcome is shown in table 3.4. Although (err = 0) assumes a perfect calibration, there is addition

of speckle noise, and the system only identifies a small arc of the full wire profile. This is because

the proposed system does not observe the full wire.

True CSA Estimation (mm2)
Wear type CSA (mm2) (err=0mm) (err=0.015mm) (err=0.060mm)

None 164.9852 165.4331 165.9895 172.8922
Horizontal 155.9946 157.6635 158.2785 161.6090

Inclined 156.0601 157.7593 157.1029 174.2254
Double 160.2345 161.9024 162.7839 169.3124

Table 3.4: Experimental result for CSA estimation in the presence of laser-camera calibration
error, and without prior wire radius knowledge.

We have defined a measurement tolerance value of 3mm2, and is used to evaluate the system.

From the result table, we can see that the difference between the true and estimated CSAs is

lower than 3mm2, at table columns with (err = 0mm) or (err = 0.015mm). The cross-section
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estimation results for the column (err = 0.060mm) are outside the 3mm2 tolerance value, and

thus unacceptable. Indeed, the reconstructed 2D profiles have been largely deformed as a result

of the larger calibration reprojection error.

3.3.2.2 With prior

For the second test, we have decided to include the prior knowledge of the radius (rcw) and the

tolerance (r tol) given by the wire’s manufacturer (rcw±r tol). With the use of Levenberg-Marquardt

optimization, we are able to better fit a circle on the arc points. This is done by optimizing the

circle parameters within the wire’s radius tolerance. Using this prior radius information, the

method is able to improve the quality of the CSA estimation as shown in table 3.5.

True CSA Estimation (mm2)
Wear type CSA (mm2) (err=0mm) (err=0.015mm) (err=0.060mm)

None 164.9852 165.0679 165.2691 166.5947
Horizontal 155.9946 156.4317 156.5748 157.9381

Inclined 156.0601 156.0273 155.5954 157.3299
Double 160.2345 161.6704 161.5415 163.2014

Table 3.5: Experimental result for CSA estimation in the presence of laser-camera calibration
error, and with prior wire radius knowledge.

(a) No wear (b) Single wear

Figure 3.28: Cross-section estimation on synthetic 2D profile with prior radius. The profile
has been perturbed with speckle noise, and calibration reprojection (err=0.060mm). The raw
points are in blue "dot" color (.), while the approximated CSA plot is in black "line plot" (-). The
approximated cross-section area plot does not pass through all the 2D profile points (see between
Xst 6.5−8.5mm) due to reprojection error.

With large calibration error (err = 0.060mm), the use of prior radius information is required.

This is because the 2D profiles have been largely deformed and possibly lost some of its circular

properties, especially at the two extreme ends of the curve as shown in figures 3.28 and 3.29
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respectively (see between Xst 6.5−8.5mm). The use of this prior information allows to reach a

better fit that converges to the prior radius knowledge (rcw ± r tol).

(a) Single wear (rotation) (b) Double wear

Figure 3.29: Cross-section estimation on synthetic 2D profile with prior radius. The profile
has been perturbed with speckle noise, and calibration reprojection (err=0.060mm). The raw
points are in blue "dot" color (.), while the approximated CSA plot is in black "line plot" (-). The
approximated cross-section area plot does not pass through all the 2D profile points (see between
Xst 6.5−8.5mm) due to reprojection error.

3.4 Conclusion

In this chapter, we have introduced a new method to determine the cross-section of contact wires.

The procedures are grouped into two main successive steps, which are the profile determination

and profile analysis. Profile determination consists in determining the reconstructed profile,

called 2D profile. This is done by extracting the laser stripe centers from the image, followed by

transforming these stripe centers to the reconstructed 2D profile using triangulation technique.

The profile is modeled by a set of segments that are classified into arc and flat primitives. The

points that delimit arc segments are used to fit a circle that represents the contact wire. The flat

segments are used to identify possible wear which finally contributes to the estimation of the

contact wire’s cross-section.

For the laser stripe extraction, we have combined the use of Gaussian filter and sub-pixel

interpolation techniques. This combination provides the possibility to deal with speckle and

Gaussian noises that corrupt the acquired images of the contact wire. Experimental tests have

shown that the use of Gaussian filter with parabolic fitting is the best choice for our application.

We have only focused on one dimensional laser stripe extraction technique whose processing time

is low.

The resulting 2D profile from laser-camera triangulation technique is mostly noisy and irreg-
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ular due to the noise perturbations of the contact wire images. The proposed system placement in

this work does not allow us to analyze the full contact wire profile (incomplete profile). The main

idea of the proposed profile analysis method is to approximate these irregular and incomplete

profiles in order to get meaningful information that will help in the cross-section estimation. For

this task, we use a smoothing method to eliminate some irregularities in the 2D profile, followed

by a polygonal approximation method to represent the profile by segments. Next, we proposed

a region growing method based on angle criteria to regroup these segments into regions. This

allows to separate the arc and flat regions, and we consider that any long segment (e.g. dist >

2.5mm) is regarded as a wear.

We have experimentally verified the proposed method using a software tool developed under

the project. The software tool completely simulates the Scheimpflug image formation as well as

the proposed system placement in this work. Few error quantities have been added on the camera

-laser plane homography. Indeed, this experiment allows us to globally analyze the influence of

calibration error in this work. An important conclusion from this test is that in the case of large

calibration error (err= 0.060mm), the cross-section estimation results are very bad. Therefore, it

is important to use prior knowledge of the contact wire radius so that the solution searches for

better radius in the given tolerance.

The cross-section estimation accuracy is also influenced by the number of arc points. The

higher the number of arc points, the more accurate the cross-section estimation. Another im-

portant observation is that the cross-section estimation result is better when arc points are

available in the left and right parts of the 2D profile. These experimental tests have allowed us

to validate the system, from calibration to cross-section estimation using the software tool. In

the next chapter, we will show more experiments of the system applied to plug gauges, and real

contact wires.
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4
EXPERIMENTS AND RESULTS

In this chapter, we present our experimental test in an orderly organization. For each

experiment, we describe encountered problem and the proposed adjustment on the system

prototype, before continuing with the subsequent experiments. This form of experimental

organization helps the reader to understand various issues of cross-section estimation under

Scheimpflug set-up.

The experiments have been divided into two kinds of test, validation and contact wire tests.

For the first test, we validate the prototype by inspecting a full and worn plug gauges, that

have been placed along the measurement area. For the second test, the system inspects real

contact wires with various challenging conditions. These wires have been chosen by SNCF

representatives.

4.1 Validation Test

To determine the system accuracy, the CSA of two known plug gauges placed in the measurement

area has been estimated. The first gauge does not have any wear, while the second one contains

a simple (horizontal) wear. The plug gauge has been fixed at each position [ 11, . . . , 45 ] in the

measurement area shown in figure 4.1. Position [ 33 ] corresponds to the focus plane of the

camera, which is the origin Ost of the laser calibration target. The system is located somewhere

to the downward-left of the measurement area, which means that position [ 41 ] is the closest to

the system while position [ 15 ] is the furthest. This experimental set-up allows us to cover the

depth of field extremities at the boundaries of the measurement area.

For each position, we acquire several images, from which we estimate the CSA of the observed

79



CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.1: Experimental set-up for the system validation test.

plug gauge. Let us denote Sµ and Sσ as the mean and standard deviation of measured CSAs,

respectively. According to the project specification, the standard deviation of the CSA estimation

error should be lower than 3mm2 for 95% of the cases. Let us define CSA as the true section of

an object (e.g. full plug gage has a CSA of 134.3709 mm2), and the tolerance error σtol = 3mm2

defined by SNCF. The tolerance interval on the cross-section estimation for the full plug gauge

is given as follows,

Sµ−2Sσ ≥ CSA−σtol and Sµ+2Sσ ≤ CSA+σtol

Sµ−2Sσ ≥ 131.3709mm2 and Sµ+2Sσ ≤ 137.3709mm2
(4.1)

4.1.1 Full gauge

The first test object is a full gauge without any wear, whose radius is 6.54mm, and gives a

nominal section (ground-truth) of 134.3709mm2. In this experiment, we have painted the head of

the gauge undergoing inspection in order to avoid surface aspect problem (see figure 4.2).

Figure 4.2: Painted plug-gage head to eliminate surface aspect problem.

We make acquisition of the gauge at every position [ 11, . . . , 45 ] on the measurement area

as shown in figure 4.1. We have approximately 150 reconstructed profiles at each position. The
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experimental results are summarized in table 4.1, using the mean cross-section Sµ, and the

standard deviation Sσ of the measures.

HH
HHHHL

C 1 2 3 4 5

1 (Sµ) 134.2933 135.7635 135.5388 134.7756 136.4004
(Sσ) 0.2135 0.2531 0.1872 0.2997 0.5298

2
135.0144 133.8339 136.1882 135.4257 136.0150
0.1879 0.1942 0.0986 0.1611 0.3589

3
135.1398 134.6263 134.8745 134.8215 135.6103
0.0981 0.0575 0.0767 0.0928 0.1718

4
134.1915 134.3212 134.7269 134.6850 135.2124
0.2279 0.1454 0.2100 0.0858 0.1409

Table 4.1: Full gage - Experimental result table of Sµ and Sσ for each gauge positions. The
measurement at position [ 15 ] (in red font) is outside of the tolerance interval.

By analyzing the result in table 4.1, one can see that the cross-section measure at position

[ 15 ] is clearly outside of the tolerance interval, while position [ 25 ] is just slightly inside of

it. This problem has been analyzed, and it is due to low depth of field at these positions on the

measurement area, which leads to blurry images of the plug gauge. Thanks to the outcome of this

test, we refocus the camera so that the depth of field plane is re-positioned to cover the positions

[ 15 ], and [ 25 ]. This will improve the images of the plug gauge at these positions, and thus

improve the cross-section estimation.

4.1.2 Worn gauge

The outcome of earlier full gauge test has allowed us to move the camera’s focalization plane

so that the images of the gauge acquired at positions [ 15 ] and [ 25 ] are less blurred. This has

been done under prototype adjustment task of the Camescat project. For this new test, we use a

worn-out gauge with a simple wear that is homogeneous all along the gauge surface. The gauge

has a radius of 6.42±0.08mm, wear width of 3mm, which gives a cross-section (Ground-truth) of

approximately 120.1217mm2. We have followed the same experimental procedure under Full
gauge test, but with a re-positioned camera’s focus plane. From the experimental result shown

in table 4.2, we can see that all the measures at positions [ 11, . . . , 45 ] fall within the tolerance

interval.
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HH
HHHHL

C 1 2 3 4 5

1 119.4289 120.1438 122.2315 121.6541 122.3588
0.1735 0.1623 0.1955 0.1952 0.2423

2
120.2001 119.9023 119.9213 120.2146 121.9562

0.0851 0.0815 0.0902 0.1023 0.1891

3
120.1856 119.5689 119.9128 119.9502 120.2145

0.0612 0.0547 0.0605 0.0756 0.0914

4
119.2564 119.4859 119.7589 119.5698 120.1852

0.1012 0.0953 0.1059 0.1332 0.1789

Table 4.2: Worn gage - Experimental result table of Sµ and Sσ for each gage positions after
system adjustment. All measurements are in the tolerance interval.

4.2 Contact Wire CSA Measurement

Ten contact wire samples have been used for this experimental test. Few examples of the contact

wire samples are shown in figure 4.3. Figures (a-b) show new contact wires that still maintain

their high reflectance property. However, figures (c-d) show old wires with small and large wears,

respectively. These wires have been darkened as a result of their daily use on the SNCF network.

Figure 4.3: Few examples of the contact wire samples for dynamic test(a-b) Shiny BC-150 and
107, (c) dark pitted BC-120, and (d) greasy BC-120.

The contact wire samples used in this experiment have been numbered by their name

(Wire 30, . . . ,39). For each contact wire samples, the true thickness Tcw and the wear width W

(if any) have been determined by SNCF representatives, with the use of independent measure-

ment tool (digital vernier caliper) with measurement tolerance of ±0.08mm. The ground-truth

cross-section areas have been estimated without excluding the notch area. The contact wire

characteristics are summarized in table 4.3. They consist of contact wires with different surface

aspects and presence of moderate grease.
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Values
Aspect W (mm) Tcw (mm) CSA (mm2)

Round BC-150 Wire 30 shiny - 14.50 166.27
Wire 33 dark - 14.59 167.18
Wire 34 dark - 14.52 165.58

BC-120 Wire 35 dark 4 12.54 117.2841
Wire 36 grease 11 9.73 111.2716
Wire 37 grease <2 12.76 123.1435

BC-107 Wire 31 shiny - 12.3 118.82
Wire 32 shiny - 12.12 115.37

Flat BC-107 Wire 38 grease - 11.35 ≈119
Wire 39 grease - 11.35 ≈119

Table 4.3: Characteristics of the contact wire samples used for the measurement.

For the experimental test, we allow the contact wires to move freely in the measurement

area (No fixed placement), and the camera acquires the images of the contact wire that has been

directly illuminated by the system laser.

4.2.1 Results and Discussions

We calibrate the system, and our procedure determines the cross-section of the wires. The system

is evaluated using the mean Sµ, maximum Smax, minimum Smin, and standard deviation Sσ of

the system measures. The experimental results are summarized in table 4.4. The second column

of the table corresponds to the total number of profiles analyzed for the tested contact wire

sample.

nb. Estimation (mm2)
profiles CSA (mm2) Sµ Sσ Smin Smax

Wire 30 421 166.2700 167.301 0.740 164.31 171.813
Wire 33 515 167.1800 167.184 1.025 159.892 174.509
Wire 34 303 165.5800 166.741 1.397 154.314 175.481
Wire 35 424 117.2841 119.916 1.223 115.194 128.194
Wire 36 333 111.2716 112.113 1.328 102.973 118.099
Wire 37 433 123.1435 124.3698 0.734 119.912 127.678
Wire 31 539 118.8200 118.245 0.891 113.275 124.758
Wire 32 511 115.3700 118.161 0.936 112.262 124.481
Wire 38 412 ≈119.0000 118.312 1.177 119.121 125.012
Wire 39 230 ≈119.0000 118.512 1.355 118.951 125.223

Table 4.4: Measurement result using the contact wire samples.

The outcome of this test on these contact wire samples is encouraging. For all the wires tested,

the standard deviation 2∗Sσ is well below the 3mm2 defined in the project specifications. It is a
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decent result considering that these wires are under challenging conditions. These experimental

results help to validate the system prototype from calibration to cross-section estimation.

We show in figure 4.4 and 4.5 some cases where the cross-section are well estimated, and thus

in the given radius tolerance. This is the case where the estimated cross-section is very close to

the mean section Sµ in earlier table 4.4. Indeed, we can see that the reconstructed profile points

are not very noisy. This ensures that the proposed cross-section estimation procedure works well

on these profiles. For each profile in the figures, we plot the notch point (if visible), the virtual

circle passing through the profile points, and also the estimated circle center (i.e. wire center).

(a) No wear (b) Small wear

Figure 4.4: Cross-section estimation on round contact wire samples. The CSA is well estimated
for these example profiles.

(a) No wear (b) Large wear

Figure 4.5: Cross-section estimation on oval contact wire samples. The CSA is well estimated for
these example profiles.

We show in figure 4.6-4.7 some cases where the estimated cross-section is bad. For these

cases, the estimated cross-section is either larger or smaller than the cross-section of the sample

contact wire (for example maximum Smax or minimum Smin in earlier table 4.4). The method
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gives bad result mainly because the proposed 2D profile segmentation procedure (see section

3.2.2) does not provide satisfying result. This leads to wrong determination of the arc and flat

primitives, which eventually affects the accuracy of the cross-section estimation.

(a) Worn-out (b) No wear

Figure 4.6: Bad Cross-section estimation on the contact wire samples with noisy 2D profile.

(a) No wear (b) No wear

Figure 4.7: Bad Cross-section estimation on the contact wire samples with noisy 2D profile.

The unacceptable cross-section estimation is caused by the grease deposit that deforms the

contact wire shapes, and other form of perturbations from its surface aspect. Whenever the laser

is projected on the contact wire with very challenging surface aspect, they produce weak reflection

which leads to low signal to noise ratio. The end result of these problems is a very noisy 2D profile

as shown in figures 4.6 and 4.7. We summarize the problems in those figures as below,

Figure 4.6a : In reality, the contact wire sample used for this test has a wear. From the figure,

the wear should be at position (Xst : 78 - 84). However, due to the weak reflection of the projected

laser to the viewing camera, the very noisy reconstructed profile that deforms the expected wear

location. Therefore, the cross-section estimation method assumes that the contact wire has no

wear.

85



CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.6b : In reality, the contact wire sample used for this test has no wear. Due to weak

reflection of illumination on the wire’s surface, there is missing reconstructed points at position

(Xst : 3.5 - 7.2). Our cross-section estimation method thus deduces that there is a wear at this

position. This leads to a smaller cross-section area than it really is.

Figure 4.7a : In reality, the contact wire sample used for this test has no wear. As a result of

noisy profile points, it is difficult to accurately determine the arc and flat points. Therefore, our

cross-section estimation method deduces that there is a tiny wear at position (Xst : 35.2 - 38.2),

which leads to estimated smaller cross-section area compared to the ground-truth.

Figure 4.7b : The contact wire sample used for this test has no wear, and has a better surface

aspect compared to the wires used in the earlier figures (4.6a-b, 4.7a). Due to very noisy profile

points, the cross-section estimation method does not succeed in fitting optimal circle to these

points. This leads to a larger estimated circle radius, and thus larger cross-section.

4.3 Conclusion

In this chapter, we have made various tests to evaluate and validate the proposed measurement

system. The system calibration has also been evaluated directly from the cross-section estimation

outcome using plug gauge with known cross-section area. The outcome of these tests has allowed

proper adjustment of the system prototype to regulate the depth of field problem in order to reach

an accurate system placement.

For the validation test, we use plug gauges (with and without wear) that are placed in a

static manner along the measurement area. The CSA measured by the proposed system is closer

to the true one, and the estimated CSA is in the tolerance defined by SNCF. For the tests on

contact wires, we use real wire samples that have challenging aspect surface problems. The

wires move freely in measurement area during the image acquisition. The CSA results are in the

measurement tolerance, which is sufficient to quantify a contact wire 3D measurement system.

For all the experiments in this section, the laser illumination has been fixed and made

homogeneous stripe all along the measurement area. The source of possible failures in the

proposed cross-section estimation method results from the contact wire’s surface aspect. Too

much grease on the wire surface completely deforms the 2D profile shapes, highly dark pitted

surfaces have weak reaction to the system laser and thus produce low intensity images. Also,

frequent change of the contact wire’s position in the measurement area provides specular and

speckle effect so that signal to noise ratio in the acquired image is very low. Moreover, when these

perturbations are too strong, the method does not succeed in correctly determining the wear.

The experimental results using the contact wire samples provided by the SNCF representa-
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tives show that the proposed system is able to reach the goal of measurement tolerance defined

in the project specifications. So, the measurement result is acceptable for measurements under

metrology application.
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5
CONCLUSION AND PERSPECTIVES

5.1 Contributions

In this PhD thesis, we have demonstrated through various studies and experiments our con-

tribution about computer vision approach for measuring the cross-section area of the contact

wires. The major drawback of the state of art Contact Wire Wear Measurement Systems is that

they measure the wire wear using 2D image processing. Therefore, we have proposed a Contact

Wire Wear Measurement System that measures the cross-section of any contact wire using 3D

computer vision technique. We have proposed a system that is composed of laser planes and

cameras. In order to reach the measurement accuracy of the specifications, the spatial resolution

of the acquired images has to be high. So, we require high number of cameras to cover the whole

of the contact wire displacement in the measurement area. However, the number of cameras is

limited because of the weight constraint, cost factor, and other security reasons. In order to avoid

this problem, an industrial member of the CaMeSCat project has proposed the use of Scheimpflug

optical device to increase the field of view of the cameras while reducing their Depth of field.

The Scheimpflug device is made up of a camera and a special optical lens which ensures that

the sensor plane is tilted at double angles with reference to the camera’s optical axis, to form a

non-classical optical set-up. This has been explained in the chapter 1 of the thesis.

To provide relevant dimensional measures of contact wire, the developed system has to be

calibrated. The system calibration process under Scheimplug set-up is detailed in Chapter 2. It is

a two-step calibration procedure that first estimates the intrinsic parameters of the Scheimpflug

device, then determines the laser plane parameters in the calibrated camera coordinate system.

We have proposed two methods for the intrinsic calibration. The first method is based on esti-

mating the optimal Scheimpflug angle that causes the distortions, and finally removes them
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before performing the calibration. The second method uses lens distortion model to deal with the

Scheimpflug angle distortions, and this approach provides the best result from experimental tests.

For the laser calibration, we have proposed a method that determines the laser plane parameters

from just a single image of the calibration target. The accuracy of the system calibration has been

evaluated on both synthetic and real data acquired with a Scheimpflug device. The calibration

result for the real data test provides a mean reprojection error between 0.020mm and 0.015mm.

This is a significant improvement on the calibration error compared with those provided by the

state of art laser-camera triangulation system.

Our method that estimates the cross section of contact wires directly from their acquired

images is fully described in Chapter 3. First, we use a laser stripe extraction method to determine

the pixels that correspond to the laser line profile projected onto the contact wire. Thereafter, these

pixels are transformed to the 3D profile by triangulation. Finally, a profile analysis method is

proposed to determine the cross-section of the contact wire. The proposed laser stripe extraction

method can process large number of images in one second, which is suitable for real-time

implementation. In Chapter 4, we demonstrate the capability of our system on real conditions. We

have tested the full system on plug gauge and challenging contact wire samples. The experimental

results show that the proposed system is suitable for 3D measurement under railway application,

and thus validate our contribution.

5.2 Perspectives

To get a full representation of the contact wire profile, full industrial system is composed of

several cameras and lasers. A sub-system has 2 cameras (left and right cameras) and 2 lasers

(left and right lasers), and each camera observes the contact wire from two different sides (left

and right sides). This means that a sub-system provides two images at a time instance and

hence 2 half profiles in order to form a multiple view representation of the observed contact wire.

Presently, the results presented in this report are based only on the analysis of 1 half profile of

the sub-system. In the remaining part of this section, we discuss the issues of merging the two

half profiles and other issues that can arise in the future deployment of the system on the railway

network.

5.2.1 Profile Merging

By combining the 2 half profiles from the different views of the sub-system, we expect to improve

the accuracy of the cross-section estimation. The main question is how to develop the best profile

merging approach. Thanks to the proposed laser calibration procedure, we can determine a

transformation matrix between the left and right cameras that provide the 2 half profiles. This

transformation matrix is used to rectify the right image plane so that it lies in the same coordinate

system as the left image plane.
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As the operating speed of the train will be increased to 120km/h in the future, the image plane

rectification may not necessarily solve other external vibration problems that will impact the

alignment of the two half profiles. In the future research aspect, one will need to propose a robust

profile rectification on the two half profiles. The idea will be to determine a slight rotation and

translation needed to improve the alignment of these profiles. The 2D profile segmentation step

that has been proposed under the system cross-section estimation method will be an indispensable

information for this future work.

For future work, one will need to explore a suitable strategy for merging the two half profiles.

This can be considered as a problem of the fusion of data provided by different sensors. One can

expect that the fusion procedure may deal with noisy or incomplete half profiles. Moreover, the

overhead system contains several contact wires that may hide or be close to the inspected one.

Therefore, a multi-view analysis should avoid contact wire occlusion.

5.2.2 Large Scale Measurement

The real measurement tests have been performed on railway test zone with homogeneous wear.

To prepare for the future deployment of the system on the railway network where large scale

measures will be accumulated for a long time. We will need to address engineering issues related

to measurement loss due to possible image loss or laser power fluctuations, aberrant measures

and image compression method.

Under large scale measurement, the contact wire wear is assumed to be homogeneous all

along the railway network undergoing inspection. Whenever there is a too strong variation

between successive dimensional measures, the system should filter them thanks to approach

such as Kalman and particle filters.

5.3 Generalization to other applications

The concepts presented in this dissertation are not only applicable to the railway industry, but

can also be generalized to other applications. The intrinsic camera calibration method can be used

for calibration problem in close range inspection under Particle Image Velocimetry (PIV), and can

inspire any other non-classical geometric system calibration. Our work has demonstrated, and

analyzed the depth of field issues under Scheimpflug set-up. We have done various experiments

and comparison between state of art calibration methods dedicated to 3D reconstruction system.

We also deal with the issue of moderate refractive distortion since the cameras are embedded in

a thick glass housing. From various experimental tests and outcome, we assume that the idea of

iterative bundle adjustment using fronto-parallel seems as a relevant way to deal with moderate

refractive distortions.

The proposed system is suitable for accurate 3D measurement (Metrology) of objects with

disturbing surface aspects. The proposed system can be further generalized to other industrial

91



CHAPTER 5. CONCLUSION AND PERSPECTIVES

applications such as automotive and aerospace for dimensional measurement and quality control

tasks.
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6
APPENDIX A

6.1 Homography estimation

For n number of points for a pose of the calibration target, we can estimate the homography H

using Direct Linear Technique (DLT). However, a data normalization step before applying the

DLT technique is required so that the result will be invariant with respect to arbitrary choices of

the scale and coordinate origin. This is known as normalized DLT in [35].

In the subsequent explanations, we assume that the feature points Pw in the world coordinate

and pixels p in the image coordinate have been normalized. The direct transformation is then,

λp =H Pw

λ


u(i)

v(i)

1

=


h11 h12 h13

h21 h22 h23

h31 h32 h33




X (i)
w

Y (i)
w

1

(6.1)

To solve for the homography, we need to have n number of features (n ≥ 3) for a single pose of

the calibration target. One can then write linear equation so that "Lb = 0" as shown in equation

(6.2).

(6.2)



X (1)
w Y (1)

w 1 0 0 0 −u(1)X (1)
w −u(1)Y (1)

w −u(1)

0 0 0 X (1)
w Y (1)

w 1 −v(1)X (1)
w −v(1)Y (1)

w −v(1)

. . . . . . . . .

. . . . . . . . .

X (n)
w Y (n)

w 1 0 0 0 −u(n)X (n)
w −u(n)Y (n)

w −u(n)

0 0 0 X (n)
w Y (n)

w 1 −v(n)X (n)
w −v(n)Y (n)

w −v(n)


b = 0
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The aim is to solve for vector b = [h11,h12,h13,h21,h22,h23,h31,h32,h33]T in equation (6.2).

This is a linear least square method problem and is done using Singular Value Decomposition.

6.1.1 Homography Optimization

Due to the presence of noise in the estimated homography from DLT [35], there is need for a

non-linear optimization of the homography. This is done through minimization of reprojection

error on the image using Levenberg Marquardt algorithm.

For simplicity, let us rewrite the homography as h = (h1,h2,h3)T , where each entry is a 3D

vector that represents a row in H . From equation (6.1), we can rewrite estimated (û, v̂,1)T in its

inhomogeneous coordinates as,

(û, v̂)= (
h1Pw

λ
,
h2Pw

λ
)T

where λ= h3Pw

(6.3)

The optimization method requires parameter vector H( j) = [h11, ...,h33] for each pose " j", and

the function F (P ) : ( p̂(i, j), ..., p̂(n,m)) that contains the reprojected pixels. Next, we need the matrix

representation of the first derivative of the function (i.e [Jh = f (P )
∂H ]( j)) known as Jacobian matrix

for each pose of the calibration target.

λ


û

v̂

1

=


h11 h12 h13

h21 h22 h23

h31 h32 h33




Xw

Yw

1

(6.4)

For the optimization, we need to derive the Jacobian matrix Jh of the homography function.

This is done by expressing the derivative of the projected point p̂ with respect to H using quotient

rule for derivation as shown below,

∂p̂
∂h

= ∂(û, v̂)
∂(h1,h2,h3)

=
∂( h1Pw

h3Pw
, h2Pw

h3Pw
)

∂h
=


∂( h1Pw

h3Pw
)

∂(h1) 0
∂( h1Pw

h3Pw
)

∂(h3)

0
∂( h2Pw

h3Pw
)

∂(h2)

∂( h2Pw
h3Pw

)

∂(h3)


=

 PT
w

h3Pw
0 −PT

w h1Pw
(h3Pw)2

0 PT
w

h3Pw

−PT
w h2Pw

(h3Pw)2

= 1
λ

(
Xw Yw 1 0 0 0 −Xwû −Ywû −û

0 0 0 Xw Yw 1 −Xw v̂ −Yw v̂ −v̂

)(6.5)

Therefore, for a pose j of a calibration target containing n numbers of feature points, we

should have a Jacobian of (2n×9) dimension, as shown below,
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Jh =


∂p̂(i)

∂h

.

.
δp̂(n)

δh

≡



∂û(i)

∂h
∂v̂(i)

∂h11

.

.
δû(n)

δh11
δv̂(n)

δh11


(6.6)

Finally, using the evaluated Jacobian matrix, we can refine the estimated homography with

Levenberg-Marquardt iterative using the update equation below,

(JT
h Jh +λI)∆=−JT

h ε(6.7)

where ε is a 2n-dimensional vector containing the reprojection error to be minimized, I is a (9x9)

identity matrix, λh is a scale factor that moves the function towards convergence, and ∆ (1x9)

contains the update values to be added to the initial homography parameters at each iteration

steps.

6.2 Zhang extraction

From the estimated homographies H j where j = 1, . . . ,m number of poses. We can use the method

of Zhang to extract the constrained intrinsic parameter K unified from all the target poses. The

unification of the homography is based on image of the absolute conic [35].

Let us denote h1,h2,h3 as the columns of an homography H so that,

[h1 h2 h3]=λK [r1 r2 T ](6.8)

Using the orthonormal basis of columns r1 and r2 of rotation matrix R, where λ is an arbitary

scale, we have

0= rT
1 r2 =λ2(K −1h1)TK −1h2(6.9)

Hence for λ 6= 0, equation (6.10) holds where K −T denotes (K T )−1

0= hT
1 K −TK −1h2(6.10)

Also, with rT
1 r1=rT

2 r2=1, we obtain
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hT
1 K −TK −1h1 −hT

2 K −TK −1h2 = 0(6.11)

Equations (6.10) and (6.11) are the two basic constraints imposed on the intrinsic parameters.

Since homography has 8 degrees of freedom, then we have 6 extrinsic parameters (3 rotations

and 3 translations). We can only obtain two constraints on the intrinsic parameters. Note that

K −TK −1 actually describes the image of the absolute conic B =K −TK −1 so that we write,

hT
1 Bh2 = 0

hT
1 Bh1 −hT

2 Bh2 = 0
(6.12)

Using close form solution, we can extract camera intrinsic parameters K from the image of

the absolute conic B. But first we need to solve for B in the equation (6.12), which is done by

rewriting earlier equation in form of sets of linear Lb = 0 (LLS) as shown in equation below for

all the m homographies,



(h11h12 h12h21 +h22h11 h22h21 h12h31 +h32h11 h22h31 +h32h21 h32h31)(1)

(h2
11 −h2

12 2h11h21 −2h12h22 h2
21 −h2

22 2h11h31 −2h12h32 2h21h31 −2h22h32 h2
31 −h2

32)(1)

. . . . . .

. . . . . .

(h11h12 h12h21 +h22h11 h22h21 h12h31 +h32h11 h22h31 +h32h21 h32h31)(m)

(h2
11 −h2

12 2h11h21 −2h12h22 h2
21 −h2

22 2h11h31 −2h12h32 2h21h31 −2h22h32 h2
31 −h2

32)(m)





B11

B12

B22

B13

B23

B33


= 0

(6.13)

where b = [B11,B12,B22,B13,B23,B33]T is 6 dimensional vector, L is a 2m×6 matrix. Finally, we

can minimize the function to obtain the vector b̂.

Indeed, the matrix B is symmetric and is expresses as below,

B =


B11 B12 B13

B12 B22 B23

B13 B23 B33

=


1
f 2

x
− γ

f 2
x f y

v0γ−u0 f y

f 2
x f y

− γ

f 2
x f y

γ2

f 2
x f 2

y
+ 1

f 2
y

−γ(v0γ−u0 f y)
f 2

x f 2
y

− v0
f 2

y
v0γ−u0 f y

f 2
x f y

−γ(v0γ−u0 f y)
f 2

x f 2
y

− v0
f 2

y

(v0γ−u0 f y)2

f 2
x f 2

y
+ v2

0
f 2

y
+1

(6.14)

We can compute the contents of the K matrix from B as,

v0 = B12B13 −B11B23

B11B23 −B2
12

λ= B33 −
B2

12 +v0(B12B13 −B11B23)
B11

fx =
√

λ

B11
f y =

√
λB11

B11B22 −B2
12

γ=−B12 f 2
x f y

λ
u0 = γv0

f y
− B13 f 2

x

λ

(6.15)
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Another way to obtain the intrinsic parameters from the matrix B is given by Cholesky

factorization or QR decomposition.

6.3 Regularization by Smoothing

6.3.1 Kernel Smooth Regression (KSR)

Let (xi, yi) define set of points where i = 1, . . . ,n number of points. The common method for

regression task is the KSR, and done using the Nadaraya-Watson estimator K. It is given in

equation (6.16). In the equation, Gaussian form of averaging kernel has been used.

f̂ (x)=
∑n

i=1K(x, xi)yi∑n
i=1K(x, xi)

, where K(x, xi)= exp(− (x− xi)2

2h2 )(6.16)

If we look closely in the Nadaraya-Watson estimator, we will see that it is indeed a special

case of linear polynomial estimator with (pth degree = 0), which we will show next.

We can write the set of linear equation using the Nadaraya kernel K, weight parameter β =

(β0, . . . ,βm), and linear polynomial basis "1,(x− xi), . . . , (x− xi)p". Then we have,

yi =K(.)β0 +K(.)β1(x− xi)+ . . .+K(.)βm(x− xi)p(6.17)

The solution to equation (6.17) is to determine the optimal β̂ parameter using linear least square

method as,

β̂=min
n∑

i=1
[yi −K(.)β0 +K(.)β1(x− xi)+ . . .+K(.)βp(x− xi)p](6.18)

This is done using weighted least square [7] and the solution is shown in equation (6.19),

where P is a (n×1+p) matrix, and B is a (n×n) matrix that is constructed using the kernel K.

One can see that the unknown mean function for the distribution has been assumed to be locally

well approximated with Gaussian averaging on neighbors using the Nadaraya kernel.

β̂= (PTBP)−1PTBy

where B=


K(x, x1) 0 . . . 0

0 K(x, x2) . . . 0
...

...
. . .

...

0 0 . . . K(x, xn)

 , P=


1 (x− x1) . . . (x− x1)p

1 (x− x2) . . . (x− x2)p

...
...

...

1 (x− xn) . . . (x− xn)p


(6.19)
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6.3.2 Spline

Another way to represent the unknown function for the data points distribution is by using spline

basis. Suppose various knot points are chosen between the data points, then spline is a piecewise

polynomial function that is continuous and has continuous derivatives at these knot points. The

knot points are generally chosen in the data at location of rapid changes and/or well spaced in the

data points. Splines are naturally parametrized by the use of truncated power basis, but B-spline

basis [15] has been shown to provide the best result in terms of implementation, and numerical

stability.

Suppose that j = 1, . . . ,m number of knots has been well chosen in the data points, b j(x) =
(b1, ...,bm)(x) are the B-spline basis, and β j(x)= (β1, ...,βm)(x) are their associated weights. The

linear equation for the regression task with B-spline is :

(6.20) y=
m∑

j=1
β jb j(x)+ε

The solution to the regression using B-spline basis in equation (6.20) is to determine the

optimal β parameter that minimize the equation as,

β̂= min
n∑

i=1
[yi −

m∑
j=1

β jb j(x)]2(6.21)

Equation (6.21) is solved using linear least square, and the solution is given in equation (6.22),

where the basis b j(x) has been arranged to form a matrix B. Indeed, B is a sparse matrix due to

the compact support of B-spline basis function, and thus evicts numeric instability.

β̂= (BTB)−1BT y

B=


b1(x1) . . . bm(x1)

...
. . .

...

b1(xn) . . . bm(xn),

(6.22)

Penalized smoothing spline [17]
Knot placement is an important problem for Spline method, especially under this application

where we do not have prior information of the expected 3D profile shape. The solution proposed

under penalized smoothing spline is to use every point of the data as a knot point. Thereafter, a

parameter λ is introduced to provide desirable smoothing result. The smoothing solution is to

extract the optimal β̂ by minimizing equation (6.23),
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β̂= min
n∑

i=1
[yi − f (xi)]2 +λ

∫ b

a
[ f ′′(x)]2dx

where f (x)=
m∑

j=1
β jb j(x)

(6.23)

If we compare equation (6.23) to (6.21), a roughness penalty term (λ
∫

[ f ′′(x)]2dx) has been

introduced, where "a" and "b" coefficients are the smallest and largest x values.

λ

∫ b

a
[ f ′′(x)]2dx ≡λβTDβ(6.24)

Thanks to the work of Reinsch [17], the penalty term can be written as a quadratic form in

equation (6.24), where D is the second moment matrix of B. The least square solution to equation

(6.23) is given as,

β= (BTB+λD)−1BT y(6.25)

The experimental result with different λ values is shown in figure 6.1. This means that at

λ equal to 1 (λ= 1), we end up with a very close fit that follows every detail in the data points,

whereas lesser value of λ (λ= 10.5) produce a smoother fit that is desirable in our application.

This is because we prefer to have a curve that is fairly smooth, with less variability.

(a) λ= 0.5
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(b) λ= 1
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Figure 6.1: Smoothing spline on 3D profile.

6.3.3 KSR vs Spline

We have tested the two smoothing methods (KSR and Spline) on several 2D profiles from our

system. An optimal smoothing parameter has been determined through various experiment

on different set of 2D profiles. Only the KSR method provides good result in all cases tested.
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It respects our earlier assumption that the smoothing output of the flat primitive have to be

straight (see figure 6.2). For the spline method, the smoothing result of the line primitive does

not conform with our earlier assumption. It is "curve-like", and not straight. It thus requires

tuning of parameters every time in order to have acceptable result for different profiles.

(a) KSR

Straight

(b) Spline

12 14 16 18 20 22 24
0

1

2

3

4

5

6

7

Curve-like

Figure 6.2: KSR vs Spline: Situation where Spline method fails.
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APPENDIX B - SCHEIMPFLUG

7.1 Scheimpflug Image Formation

We describe in detail the mathematical description for the Scheimpflug formation model. Under

Scheimpflug model, the image plane is first tilted at given angles θ and γ around the axis parallel

to the X c and Yc but in OI (see figure 2.5).

7.1.1 Projection Matrix K t
c

The matrix K t
c transform untilted camera coordinate points pc(X c,Yc,di)c to its tilted camera

coordinate points pt
c(X c,Yc, Zc)c. In figure 7.1, −→n I is the normal vector to the untilted image

plane, while −→n t is the normal vector to the tilted image plane.

Figure 7.1: Projection in the camera coordinate.

The normal vector −→n I is perpendicular to the lens plane that is defined by origin Oc(X c,Yc, Zc)c,
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and thus written as,

−→n I = [0,0,1]T(7.1)

We can derive the normal vector −→n t to the tilted image plane by rotating normal −→n I using

rotations through angles θ and γ as shown below,

−→n t =RγRθ
−→n I

−→n t =


cos γ 0 sin γ

0 1 0

−sin γ 0 cos γ




1 0 0

0 cos θ −sin θ

0 sin θ cos θ




0

0

1


−→n t =


sin γ cos θ

−sin θ

cos γ cos θ


(7.2)

Using the equation of plane, any tilted camera coordinate points pt
c(X c,Yc, Zc)c can be written

as in equation (7.3) where d is the signed distance for the plane equation.

−→n t.(X c,Yc, Zc)T =−d,(7.3)

In order to determine the signed distance d, one require a point on the tilted plane. Origin

OI (0,0,di)c is a point on the tilted plane (see figure 7.1). Therefore, we can solve for d as,

d =−−→n tOI

d =−di cos γ cos θ,
(7.4)

Our main aim is to determine the scalar parameter τ of a line equation that passes through

two points pt
c and pc. It is shown in equation (7.5) where

−−−→
Oc pc is a vector.

τ= −d−−→n tOc
−→n t

−−−→
Oc pc

(7.5)

τ= di cos γ cos θ
X c sin γ cos θ−Yc sin θ+Zc cos γ cos θ

= di
X c tan γ−Yc

tan θ
cos γ +Zc

,(7.6)
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Finally, the matrix K t
c is shown in equation (7.7). If we change the value of angle γ to zero,

we will obtain K t
c as a result of single rotation on the axis parallel to the X c axis alone.

(7.7) K t
c =


di 0 0

0 di 0

0 0 di

tan γ − tan θ
cos γ 1



7.1.2 Scheimpflug Rotation

The matrix Ks contains Scheimpflug rotation matrix Rs and translation Ts required to finally

lay the points from the lens/camera coordinate to the tilted coordinate:

Ks =
[
Rs Ts

0T 1

]
=


1 0 0 0

0 cos θ sin θ 0

0 −sin θ cos θ 0

0 0 0 1




cos γ 0 −sin γ 0

0 1 0 0

sin γ 0 cos γ 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 −di

0 0 0 1



Ks =


cos γ 0 −sin γ di sin γ

sin θ sin γ cos θ sin θ cos γ −di sin θ cos γ

cos θ sin γ −sin θ cos θ cos γ −di cos θ cos γ

0 0 0 1



(7.8)

Next, the transformation of the tilted image points to pixel coordinates is done with Matrix

Kb as shown in equation (7.9). The pixel size sz can be changed to one since it will finally be

canceled out later in the full equation.

(7.9) Kb =


1/sx 0 0 u0

0 1/sy 0 v0

0 0 1/sz 0

0 0 0 1


Hence, the full formulation to determine the point pt(ut,vt)p from pc(X c,Yc, Zc = di)c is

shown in equation (7.11), where where C represent cosine, and S for sine.

(7.10) λ pt =KbKsK
t

c pc
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(7.11)

λ


ut

vt

1

=


1/sx 0 0 u0

0 1/sy 0 v0

0 0 1/sz 0

0 0 0 1




C γ 0 −S γ di S γ

S γ S θ C θ C γ S θ −di C γ S θ

S γ C θ −S θ C γ C θ −di C γ C θ

0 0 0 1




di 0 0 0

0 di 0 0

0 0 di 0

tan γ − tan θ
cos γ 1 0




X c

Yc

Zc

1


Next, we will simplify equation (7.11) in to a clearer version as in the following,

(7.12) λ


ut

vt

1

=


1/sx 0 0 u0

0 1/sy 0 v0

0 0 1 0

0 0 0 1




di( X c

cos γ −Yc tan γ tan θ)
di Yc
cos θ

0

X c tan γ−Yc
tan θ
cos γ +Zc



ut = u0 + di(X c −Yc sin γ tan θ)
sx(X c sin γ−Yc tan θ+Zc cos γ)(7.13)

vt = v0 + di Yc cos γ
sycos θ(X c sin γ−Yc tan θ+Zc cos γ)(7.14)

7.1.3 Backprojection to the untilted image plane

In order to determine the untilted point directly from the tilted pixels, we backproject equation

(7.13) and (7.14) as follows,

sx cos γ(ut −u0)
sy cos θ(vt −v0)

= X c

Yc
− tan θ sin γ

so that, X c =Yc(tan θ sin γ+ sx cos γ(ut −u0)
sy cos θ(vt −v0)

)(7.15)

From equation (7.14)

X c sin γ−Yc tan θ+Zc cos γ= di cos γ
sycos θ(vt −v0)

Yc
(7.16)
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Rewrite equation (7.15) and (7.16) such that X c = X c

(
di

sy cos θ tan γ(vt −v0)
+ tan θ

sin γ
)Yc − Zc

tan γ
=Yc(tan θ sin γ+ sx cos γ(ut −u0)

sy cos θ(vt −v0)
)

Zc

Yc
= tan γ(

di
sy cos θ tan γ(vt −v0)

+ tan θ

sin γ
− tan θ sin γ− sx cos γ(ut −u0)

sy cos θ(vt −v0)
)

= di− sx sin γ(ut −u0)
sy cos θ(vt −v0)

+ tan γ tan θ(
1− sin2γ

sin γ
)

= di− sx sin γ(ut −u0)
sy cos θ(vt −v0)

+ tan θ cos γ

Yc = Zc

cos γ tan θ+ di−sx sin γ(ut−u0)
sy cos θ(vt−v0)

(7.17)

Therefore, with Zc = di

Yc =
di sy cos θ(vt −v0)

di− sx sin γ (ut −u0)+ sy sin θ (vt −v0) cos γ
(7.18)

To solve for X c , substitute Yc in to equation (7.15),

X c =Yc(tan θ sin γ+ sx cos γ(ut −u0)
sy cos θ(vt −v0)

)

X c =
di(sx cos γ(ut −u0)+ sy sin γ sin θ(vt −v0))
di− sx sin γ(ut −u0)+ sy sin θ cos γ(vt −v0)

(7.19)

7.2 Scheimpflug camera calibration

7.2.1 Levenberg Marquardt

The Levenberg Marquardt iteration method is a slight variation on the Gauss-Newton optimiza-

tion method, so that it transforms to gradient descent method whenever the Gauss-Newton

updates fail. This is done by replacing the Gauss Newton normal equation JT J∆=−JTε by an

augmented normal equation given below,

(JT J+λI)∆=−JTε(7.20)

J is the Jacobian matrix, ε is the cost (error) determined by the distance between the measured

pixels p̃(i) and reprojected ones p̂(i), I is an identity matrix, and λ is a form of step-scale that

varies from iteration to iteration. A typical initial value of λ is 10−3 times the average of the

diagonal elements of Hessian matrix He = JT J.

If the value of ∆ obtained by solving the augmented normal equation (7.20) leads to a reduction

in the error, then the increment is accepted and λ is divided by a factor (typically 10) before the

next iteration. On the other hand if ∆ leads to an increased error, then λ is multiplied by the

same factor, and the augmented normal equation is solved again. This process continues until
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a value of ∆ is found that gives rise to a decreased error. The process of repeatedly solving the

augmented normal equation for different values of λ until an acceptable ∆ is found constitutes

one iteration of the LM algorithm. An implementation of the LM algorithm can be seen in the

book of Press [98].

One should note that whenever λ is very small, the method is essentially the same as Gauss-

Newton iteration, and the process will converge fast to the minimum value. However, if λ is large

then the normal equation matrix is approximated by λI, so that the normal equation becomes

λ∆=−JTε which is is simply the gradient vector of ‖ε‖2, as in gradient descent method. Thus, the

LM algorithm transforms between Gauss-Newton iteration, which will cause rapid convergence

in the neighbourhood of the solution, and a gradient descent approach, which will guarantee a

decrease in the cost function when far from convergence.

7.2.2 Bundle Adjustment

Bundle adjustment [92] can be defined as the problem of simultaneously refining camera para-

meters that describes a scene geometry, and/or refining 3D estimates of the scene based on an

optimization criterion involving the corresponding image projections of all points. The bundle

adjustment technique used in this report employs the Levenberg Marquardt (LM) iteration

method to minimize the reprojection error.

In order to optimize the Scheimpflug camera parameters in equation (7.21) using the bundle

adjustment technique, one need to determine the Jacobian matrix J of the error function, and

parameter vector P .

min
m∑

j=1

n∑
i=1

‖p̃(i, j) − p̂(i, j)(K̂ ,R̂( j),T̂( j), k̂1, k̂2, k̂3, t̂1, t̂2, ŝ1, ŝ2,θ,γ)‖2(7.21)

For a simple bundle adjustment, the parameter vector contains only the camera parameters

as shown in equation (7.22),

P = [ fx, f y, sk,u0,v0,R(1), . . . ,R(m), . . . ,T(1),

. . . ,T(m),k1,k2,k3, t1, t2, s1, s2, c1, c2,

θ,γ]

(7.22)

Let us represent K = ( fx, f y, sk,u0,v0), the rotation matrix R( j) has been converted to 1 × 3

vector in "rodrigues form", T( j) is a 1 × 3 dimensional vector. Let K represent the lens distortion

coefficients so that K = k1,k2,k3, t1, t2, s1, s2, c1, c2. Therefore, the required Jacobian matrix is

shown in equation (7.23). The Jacobian matrix J has a dimension of 2nm × [5+(3m)+(3m)+9+nm].

If we assume that the number of points n=5 and the number of target pose m=2. Then we should

have Jacobian matrix of (20 × 36) in size.
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J = ∂p̂
∂P

=


∂p̂(i, j)

∂K , ∂p̂(i, j)

∂R(1)
. . . ∂p̂(i, j)

∂R(m)
, ∂p̂(i, j)

∂T(1)
...∂p̂(i, j)

∂T(m)
, ∂p̂(i, j)

∂K , ∂p̂(i, j)

∂θ
, ∂p̂(i, j)

∂γ

.

.
∂p̂(n,m)

∂K , ∂p̂(n,m)

∂R(1)
...∂p̂(n,m)

∂R(m)
, ∂p̂(n,m)

∂T(1)
...∂p̂(n,m)

∂T(m)
, ∂p̂(n,m)

∂K , ∂p̂(n,m)

∂θ
, ∂p̂(n,m)

∂γ

(7.23)

Note : Any parameter block that is not important can be removed from the Jacobian matrix. This

is based on which calibration method has been used. For example, in the proposed Scheimpflug

Method I, the parameter sk, c1, c2 block need to be removed from the Jacobian structure of the

bundle adjustment.

7.2.3 Scheimpflug Angles Optimization

In reality, the procedure used to optimise the Scheimpflug angles should follow the illustration in

figure 7.2. The Scheimpflug angles are optimized between the tilted and untilted image plane. To

determine the optimal θ̂ at each iteration, the tilted pixels p̃t are backprojected to the untilted

plane so that the reprojection error is minimized between the true p̃ and the reprojected p̂.

min
m∑

j=1

n∑
i=1

‖p̃(i, j) − p̂(i, j)(K̂ ,R̂( j),T̂( j), θ̂, γ̂)‖2(7.24)

Figure 7.2: Illustration of Scheimpflug angle optimization.

7.3 Fronto-parallel Transformation

To calibrate a camera using a planar calibration target, we must first acquire a set of images of

this target according to different poses, to vary the viewpoint of the camera as shown in figure 7.3.

The calibration target that is composed of grid circular features is projected on the image plane.

These circular features become ellipse-like shapes in the image as a result of the perspective
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projection. This makes it difficult to precisely locate the pixel coordinates of the centers of these

ellipses (i.e feature pixels).

Figure 7.3: Image captured from different viewpoint.

With the Scheimpflug device, these difficulties are even more accentuated, so that the circle

grids appear blurred and low contrasted in the acquired images. To improve the accuracy of the

camera parameter estimation, we incorporate the fronto-parallel transformation method [14, 97].

This method improves the extraction of the feature pixels. An image is created which looks as

if the calibration target has been placed directly in front of the camera (i.e the planar target is

perfectly orthogonal to the optical axis of the camera). This is done by projecting all image pixels

back onto the object/target plane defined by world coordinate Ow(Xw,Yw, Zw = 0) in figure 7.3.

The image is created by using the estimated camera parameters (K , [R( j)|, T( j)]), and distortion

coefficients (k1,k2,k3,t1,t2, s1,s2).

Figure 7.4: Real and resulting frontal images.

The realistic frontal image in this work (see figure 7.4) has been created using cubic interpo-

lation technique [71]. One can see that the resulting images are free from perspective and other

deformations. The feature pixels are easy to extract on these images because the dot-grids now

have circular shapes with the same radius size. The feature pixels extraction methods such as

digital image correlation [97], cross correlation, with sub-pixel detection methods can be used.
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These feature pixels can finally be projected back to their real image plane, where Scheimpflug

camera calibration method will be performed.
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