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Introduction

Contents
1.1 Inverse problem models . . . . . . . . . . . . . . . . . . . . 1
1.2 Presentation of the models considered in this thesis . . 3

1.2.1 Size-structured population model . . . . . . . . . . . . . . . 3
1.2.2 Nonparametric regression with errors-in-variables . . . . . . 7

1.3 The Goldenshluger-Lepski method . . . . . . . . . . . . . 8
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Estimation of the division kernel . . . . . . . . . . . . . . . 10
1.4.2 Adaptive wavelet estimator for multivariate regression func-

tion in the errors-in-variables model . . . . . . . . . . . . . 16

1.1 Inverse problem models

This thesis is divided into two independent parts, both devoted to solve inverse
problems in the statistical framework. In the first two chapters, a model motivated
by the detection of the cellular aging in biology is studied. From the observation of
a dividing cell population with size structure, we estimate the kernel determining
how the daughters’ sizes are related to their mother’s one, with the purpose to see
whether the sharing is rather symmetric or asymmetric. This leads us to both direct
and indirect density estimation problems. In the latter, we deal with a deconvolution
problem where the convolution operator is of multiplicative type. In the last chapter,
we consider the estimation of a nonparametric regression function with errors in
variables, using wavelets in a multivariate setting. To the best of our knowledge, this
problem has seldom been studied. To take into account the noise in the covariates,
deconvolution is involved in the construction of wavelet estimators.

Inverse problems arise in many scientific domains, such as biology, medicine,
physics, engineering, finance, etc. Solving an inverse problem consists in reconstruct-
ing unknown quantities of interest from observed measurements. Loosely speaking,
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CHAPTER 1. INTRODUCTION

inverse problems are concerned with determining causes from known effects: for ex-
ample, recovering the original image from a given blurred version of the image (see
Bertero and Boccacci [13]) or determining the density of rock within the Earth from
measurements of seismic waves produced by earthquakes (see for instance Mosegaard
and Tarantola [85], Tarantola [102]), etc. Other applications of inverse problems in
biology and medicine can be found in Comte et al [28], Stirnemann et al [100] for
instance.

In mathematical terms, a general inverse problem is modelled as follows: let H
and K two Hilbert spaces and let A : H→ K an operator. Given a function g ∈ K,
we want to find a good approximation of the solution f ∈ H of the equation:

g = Af. (1.1)

We may refer to Bertero and Boccacci [13], Bissantz [15], Cavalier [19], Cavalier and
Hengartner [20], Tarantola [102], Tikhonov and Arsenin [104] for comprehensive
studies and discussions of standard and statistical inverse problems.

Depending on the properties of the operator A, the inverse problems are sepa-
rated into two categories: well-posed and ill-posed problems. Following Hadamard
[55], an inverse problem is called ill-posed if its solution does not exist (A is not
surjective), if the solution is not unique (A is not injective) or if the solution is not
continuous with respect to the data (A−1 is not continuous), i.e. a small change in
the data g can cause a large change in the reconstruction of f . Otherwise a problem
is said to be well-posed if it satisfies all three conditions above (existence, uniqueness
and stability). One example of a well-posed problem is the forward problem of the
heat equation. However, in practice inverse problems are often ill-posed problems
which arise naturally in many domains, for instance, in computerized tomography,
in image processing or in geophysics. The main issue is usually on the stability since
it is very difficult to observe the function g without errors. To account for this,
Equation (1.1) can be considered with an additive term ε modeled according to the
considered approaches: ε can be either a deterministic perturbation or a random
noise. In the deterministic approach, one supposes that the noisy observations of
g is gε = Af + σε for some σ > 0 and ε belongs to a ball of the Hilbert space G,
i.e ‖ε‖ ≤ 1. This approach is the standard framework for inverse problems. We
refer to Tikhonov [103], Tikhonov and Arsenin [104] for first studies of deterministic
perturbations. In contrast, the statistical point of view assumes that we observe

Y = Af + σε, (1.2)

where the noise ε is a random variable and σ corresponds to the noise level with
σ > 0. In the case where H is a functional space, many nonparametric estimation
problems are related to this second approach, such as probability density estimation,
or estimation in the regression model and in the white noise model. Initial studies
of inverse problems with random noise were proposed by Bakushinskii [6], Sudakov
and Khalfin [101].

A classical example of the model (1.2) is the Gaussian white noise model with
convolution (see for instance De Canditiis and Pensky [30], Johnstone [69], Kalifa
and Mallat [70], Kerkyacharian et al. [71] and Pensky and Sapatinas [90]):

Y (x) = f ? G(x) + σW (x), x ∈ [0, 1], (1.3)

2



1.2. PRESENTATION OF THE MODELS CONSIDERED IN THIS THESIS

where W (x) is assumed to be a Gaussian white noise. Here the operator A is the
convolution operator defined by:

Af(x) = f ? G(x) =
∫ 1

0
f(z)G(x− z)dz.

and f ∈ L2([0, 1]) is the unknown function we want to recover from noisy observa-
tions Y (x). The function G is assumed to be known (the Green kernel for the heat
equation for example). To obtain an estimate of f , we deal with a deconvolution
problem to find an inverse of A. In this thesis, deconvolution procedures arise in
Chapters 3 and 4. The difficulties that are encountered are due to the fact that
the convolutions are either multiplicative or in a multivariate setting.

This thesis consists of two statistical inverse problems: density estimation for a
pure birth process with size structure or a growth-fragmentation partial differential
equation (PDE), and multivariate nonparametric regression with errors in the vari-
ables. After giving a detailed presentation of the two problems that are considered in
this thesis (Section 1.2), we introduce the Goldenshluger and Lepski’s method (Sec-
tion 1.3) which is applied for our adaptive estimation procedures and the present
contributions of this thesis are summed up (Section 1.4).

1.2 Presentation of the models considered in this thesis

1.2.1 Size-structured population model

In the first part of the thesis, which consists of Chapter 2 and Chapter 3, we
study the problem of estimating a density function associated with an application
for cell population with size structure.

Size-structured population models have recently attracted a lot of attention and
interest in literature. We may cite the works of Calsina and Manuel [17], Diekmann
et al. [35], Doumic and Gabriel [37], Doumic et al. [40], Doumic and Tine [41], Farkas
and Hagen [48], Michel [83] and Perthame [91]. These authors study PDE models for
size-structured population. We refer to Bansaye et al. [8], Bansaye and Méléard [9],
Cloez [24], Doumic et al. [38] for size-structured population modelled by branching
processes. Furthermore, related studies for populations with age structure can be
found in Athreya and Ney [5], Harris [57], Jagers [67], Tran [107] and references
therein.

We consider a stochastic individual-based model to describe a discrete popula-
tion of cells in continuous time where the individuals are cells characterized by their
varying sizes and undergoing binary divisions. The term ’size’ covers variables such
as volume, length, level of certain proteins, DNA content, etc. that grow determin-
istically with time. Here, we have in mind that each cell contains some toxicities
which play the role of the size, in the spirit of the study of Stewart et al. [99]. For
the sake of simplicity, we assume here that the toxicity Xt inside a cell at time t
grows linearly with a constant rate α > 0.

dXt = αdt. (1.4)

3



CHAPTER 1. INTRODUCTION

When a division occurs, the mother cell dies and is replaced by two daughters.
The division rate is R > 0, meaning that the lifelength of each cell is an exponential
random variable with parameter R > 0. Upon division, a random fraction Γ of the
cell’s size goes into the first daughter cell and a fraction 1− Γ into the second one.
So if the division occurs at time t, and if the mother is of size Xt, the two daughter
cells are of sizes ΓXt− and (1−Γ)Xt−. The random variable Γ is on [0, 1] is assumed
to have a density h(γ) with respect to Lebesgue measure. Our purpose here is to
estimate the density h ruling the divisions. The originality of estimating h is to
detect aging phenomena such as the one put into light by Stewart et al. [99]. More
precisely, if h is piked at 1

2 (i.e. Γ ' 1
2), both daughters contain the same toxicity,

i.e. the half of their mother’s toxicity. The more h puts weight in the neighbourhood
of 0 and 1, the more asymmetric the divisions are, with one daughter having little
toxicity and the other’s toxicity close to its mother’s one. If we consider that having
a lot of toxicity is a kind of senescene, then, the kurtosis of h provides indication on
aging phenomena (see Lindner et al. [75]).

We stick to constant rates R and α for the sake of simplicity. Modifications
of this model to account for more complex phenomena have been considered in
other papers. Bansaye and Tran [11], Cloez [24] or Tran [106] consider non-constant
division and growth rates. Robert et al. [95] studies whether divisions can occur
only when a size threshold is reached. Notice that several similar models for binary
cell division in discrete time also exist in the literature, see for instance Bansaye et
al. [7, 10], Bercu et al. [12], Delmas and Marsalle [34], Guyon [54] or Bitseki Penda
[89].

In our model, the genealogy of these dividing cells can be represented by a binary
tree, namely a Yule tree, the nodes of which can be labelled with the Ulam-Harris-
Neveu notation. Let J =

⋃+∞
m=0 N× {0, 1}m be the set of labels with the convention

that {0, 1}0 = ∅ ; J is the set of words starting with an integer followed by a sequence
of 0s and 1s. The roots of the tree (the cells present at time 0) are given integer
labels in N. When a cell with label j splits, her daughters are given the labels j0
and j1 obtained by concatenating 0 or 1 to the word j. The population at time
t consists of the collection of sizes (Xi

t , i ∈ Vt) where Vt ⊂ J is the set of labels
of cells alive at time t. Nt = |Vt| is the size of the population. Because the size
of the population is random and increasing, it is more convenient to describe the
population by a random point measure, rather than a vector of varying size. Let

Zt(dx) =
∑
i∈Vt

δXi
t
(dx), (1.5)

be the sum of Dirac masses weighting the sizes of cells alive at time t. It is a empirical
measure onM(R+), the space of finite measures embedded with the topology of weak
convergence.

The dynamics described above defines (Zt, t ≥ 0) as a piecewise deterministic
Markov process (PDMP) that can be associated to a stochastic differential equation
(SDE) driven by a Poisson point measure (see e.g. [50, 106]): divisions correspond
to random times generated by the Poisson measure and between two divisions, sizes
grow following (1.4).

4



1.2. PRESENTATION OF THE MODELS CONSIDERED IN THIS THESIS

Let Z0 ∈ M(R+) such that E
(
〈Z0, 1〉

)
< +∞. Let Q(ds, di, dγ) be a Pois-

son point measure on R+ × E := R+ × J × [0, 1] with intensity q(ds, di, dγ) =
Rdsn(di)H(dγ) where n(di) is the counting measure on J and ds is Lebesgue mea-
sure on R+. Because Zt, for t ∈ R+, is a random variable in the space of finite
measuresMF (R+), we characerize its evolution by considering test functions f and
giving SDEs for 〈Zt, f〉 =

∫
R+
f(x)Zt(dx).

For every test function f : (x, t) 7→ f(x, t) = ft(x) ∈ C1,1
b (R+ ×R+,R) (bounded

of class C1 in t and x with bounded derivatives):

〈Zt, f〉 =〈Z0, f〉+
∫ t

0

∫
R+

(
∂sfs(x) + α∂xfs(x)

)
Zs(dx)ds (1.6)

+
∫ t

0

∫
E
1{i≤Ns−}

[
fs
(
γXi

s−

)
+ fs

(
(1− γ)Xi

s−

)
− fs(Xi

s−)
]
Q(ds, di, dγ).

The second term in the right hand side of (1.6) corresponds to the growth of sizes
in the cells and the third term gives a description of cell divisions where the sharing
of mother cell’s size into two daughter cells depends on the random fraction Γ.

The SDE (1.6) can easily be simulated as follows (see Bansaye and Méléard [9],
Ferrière and Tran [49] or Fournier and Méléard [50] for more details):

1. We start with N0 cells of sizes X0
0 , . . . X

N0−1
0 . The set of living cell labels at

time 0 is V0 = {0, . . . N0 − 1}.

2. To each living cell at time t = 0, we attach an independent random exponential
clock with parameter R.

3. The smallest clock value τ determines the cell u that divides next. The division
happens at time t + τ and the cell sizes just before the division are Xv

t+τ− =
Xv
t + ατ , v ∈ Vt+τ− . We draw an independent random variable Γ following

the distribution h(x)dx and replace the cell u by her daughters u0 of size
(1− Γ)Xu

t+τ− and u1 of size ΓXu
t+τ− .

4. We iterate again from step 2, with the last division time instead of t = 0.

Since all the cells have the same division rate, we can of course simplify the
algorithm: when the population is of size N , the next division occurs after an
independent exponential time with parameter NR and we can select uniformly the
cell that undergoes division.

InChapter 2, we assume that we observe the evolution of cells up to a fixed time
T , i.e. the whole division tree and the entire path (Zt, t ∈ [0, T ]) of the measure-
valued process. From the algorithm presented in the previous paragraph, we can
guess that the observation of the whole tree allows us to construct a sequence of in-
dependent random variables distributed as Γ, which we can use to construct an adap-
tive estimator of the kernel division, with a fully data-driven bandwidth selection
method. The main difficulty comes from the fact that the number of observations of
the sequence is random, and we have to study the SDE to obtain necessary estimates
to establish upper and lower bounds for the convergence rate of the estimator. This
is detailed in Section 1.4.

5



CHAPTER 1. INTRODUCTION

Hoffmann and Olivier in [59] describe the growth-fragmentation model by a
PDMP X = ((X1

t , X
2
t , . . .), t ≥ 0), with value in

⋃∞
k=0[0,∞)k, where Xi

t denotes
the age of the living individual at time t. The division rate B(x) considered by these
authors is a function of the size x. Kernel estimators of B(x) are constructed by
assuming that the whole genealogical tree on the time interval [0, T ] is observed.
The main difficulty comes from the fact that the number of observations as well as
the probability of inclusion of an individual both depend on B. In this thesis, we do
not consider these issues, but other difficulties appear.

In Chapter 3, we observe the cell population at a fixed time T . The whole
division tree is not completely observed and the estimation techniques developed
in Chapter 2 cannot be considered anymore. Models with partial observations arise
frequently in biology and have been investigated in many studies of both biostatistics
and probability, see for instance Donnet and Samson [36], Samson and Thieullen [97],
Wu [110]. In this case, the idea is to approximate the evolution of the population
when the initial size is large by a growth-fragmentation PDE. Assuming that we
have n independent observations X1, . . . , Xn of distribution n(T, x)dx, where n(T, x)
defines the solution of the PDE, we can estimate h from an inverse problem involving
a multiplicative convolution.

More precisely, assume that N0 = n and consider the renormalized random point
measure:

Znt (dx) = 1
n

Nn
t∑

i=1
δXi

t
(dx), (1.7)

where Nn
t is the number of cells alive at time t. The large population limit cor-

responds to n → +∞. Assume that Zn0 converges in distribution to the measure
n0(x)dx ∈ MF (R+) as n → +∞. Following the work of Fournier and Méléard [50]
(see also in Ethier and Kurtz [43] and Tran [107]), we prove that the renormalized
random process converges to the weak solution of a growth-fragmentation equation:

∂tn(t, x) + α∂xn(t, x) +Rn(t, x) = 2R
∫ 1

0
n

(
t,
x

γ

)
1
γ
h(γ)dγ, n(0, x) = n0(x).

(1.8)

The PDE (1.8) is very close to the one considered in Bourgeron et al. [16] and
Doumic and Tine [41]:



∂tn(t, x) + α∂x
(
g(x)n(t, x)

)
+B(x)n(t, x) = 2

∫+∞
0 n(t, y)B(y)κ(x, y)dy,

t ≥ 0, x ≥ 0,
g(0)n(t, 0) = 0, t > 0,
n(0, x) = n0(x), x ≥ 0,

(1.9)
where n(t, x) is the density of the cells structured by the size x at time t, κ(x, y) =
1
yh
(
x
y

)
is the division kernel, αg(x) is the non-constant growth rate and B(x) is the

non-constant division rate (see also Doumic et al. [39] in the case of equal mitosis).
Setting y = x/γ in (1.8) gives the PDE (1.9) in the case where the division rate and

6



1.2. PRESENTATION OF THE MODELS CONSIDERED IN THIS THESIS

the growth rate are the constants R and α respectively:

∂tn(t, x) + α∂xn(t, x) +Rn(t, x) = 2R
∫ +∞

0
n(t, y)h

(x
y

)dy
y
.

The study of the asymptotic behaviour of the solutions n(t, x) is related to the
following eigenvalue problem α∂xN(x) + (λ+R)N(x) = 2R

∫+∞
0 N(y)h

(
x
y

)
dy
y , x ≥ 0,

N(0) = 0,
∫
N(x)dx = 1, N(x) ≥ 0, λ > 0,

(1.10)

where λ is the first eigenvalue and N is the first eigenvector. When t → +∞, it
is proved (see e.g [84], [92]) that the approximation n(t, x) ≈ N(x)eλt is valid. We
assume that we have n i.i.d observations X1, X2, . . . , Xn with distribution N(x)dx.
For instance, each observation is drawn by measuring a cell selected randomly. Then,
the estimation of h leads us to an inverse problem with a multiplicative convolution
defined by the operator (

f ∨ g
)
(x) =

∫ +∞

0
f(y)g

(x
y

)dy
y
,

where f and g are two integrable functions defined on R+.

Deconvolution problem with multiplicative operator has seldom been studied
in statistical inverse problems. Thus, our problem is more complicated and quite
different, compared to the classical deconvolution problems. In a standard inverse
problem, Bourgeron et al. [16] consider an equation similar to Equation (1.10) but
the division rate R is replaced by the function B(x) and they aim to estimate B.
When dealing with the convolution

∫∞
0 H(y)h

(
·
y

)
dy
y with H(y) = B(y)N(y), they

apply the Mellin transform to replace the multiplicative convolution by a product.
In our problem, we apply a logarithmic change of variables in the right hand side
(r.h.s) of Equation (1.10) giving a term of the form

∫
RM(v)g(u− v)dv = (M ?g)(u)

where M(u) = N(eu) and g(u) = h(eu). Then we resort to Fourier techniques to
recover the Fourier transform of g for which we can propose a kernel-based estimator.
The estimator of the Fourier transform of g involves a quotient of two estimators
and we use techniques inspired by Comte and Lacour [26, 27], Comte et al. [28],
Neumann [87] for its construction. The estimator of h will be obtained from the
estimator of g. We prove only consistency of our estimator. Indeed, it appears that
regularities of functions to be estimated h or g are closely linked with functions ∂xN
and N in Equation (1.10). This makes the problems intricate and thus the study of
rates of convergence is a work in progress.

1.2.2 Nonparametric regression with errors-in-variables

In Chapter 4, we consider the multivariate regression with errors-in-variables. Sup-
pose that we observe n i.i.d random vectors (W1, Y1), . . . , (Wn, Yn) of the following
model: Yl = m(Xl) + εl,

Wl = Xl + δl, l = 1, . . . , n,
(1.11)

7



CHAPTER 1. INTRODUCTION

where Yl ∈ R, (δ1, . . . , δn) and (X1, . . . , Xn) are i.i.d Rd-valued vector. We denote
by fX the density of the Xl’s assumed to be bounded from below by a positive
constant, and by fW the density of the Wl’s. The covariates errors δl are i.i.d
unobservable random variables having known density g. The εl’s are i.i.d standard
normal random variables with known variance s2. The δl’s are independent of the
Xl’s and Yl’s. Our aim is to estimate the regression function m(x), x ∈ [0, 1]d
based on the observations Yl’s and Wl’s where direct observations of Xl’s are not
available. We aim at estimating the multidimensional regression function m(x) for
the pointwise risk. Model (1.11) has been mainly studied in the univariate case.
Let us cite the work of Fan and Truong [47], Comte and Taupin [29] and Meister
[79] among others and the goal is to extend these results to the multivariate setting.
Introduction of Chapter 4 describes the framework in which our contribution takes
place more precisely.

One of the difficulties of the problem is due to the design points which are cor-
rupted by additive errors leading to a necessary deconvolution step. To face this
issue we devise a kernel projection procedure based on wavelets. The second is-
sue we focus on is the choice of the multiresolution analysis on which projection is
performed. Note that this problem is intricate and barely considered. Here, our
approach based on an application of the Goldenshluger-Lepski rule leads to an auto-
matic and adaptive choice of the multiresolution analysis, which varies locally with
x. Note that our estimation procedure does not resort to thresholding. Considering
the ordinary smooth case on the component densities of the errors covariates, we
establish optimal rates of convergence for the estimator m̂(x) for the pointwise risk
and over anisotropic Hölder classes. The summary of the theoretical and numerical
results are presented in Section 1.4.

1.3 The Goldenshluger-Lepski method

This section is devoted to the presentation the Goldenshluger-Lepski (GL) method
which is the main adaptation method used in this thesis. InChapter 2, we apply the
GL method for the selection of the bandwidth of the kernel estimator ĥ. In Chapter
4, we inspire from the GL methodology to propose a data-driven selection rule of
the wavelet level resolution for the estimation of the multivariate regression function
m. As a consequence of using the GL method, we obtain oracle inequalities which
provide a good tool to measure the performance of our estimation procedures in both
problems of estimating the division kernel h and the estimation of the regression
function m.

The GL method is proposed in Goldenshluger and Lepski [52] and is widely used
in recent studies of nonparametric estimation, see for instance, Comte et al. [25],
Comte and Lacour [27], Doumic et al. [39], Reynaud-Bouret et al. [94] who apply
the GL method for selecting a fully-data driven bandwidth of kernel estimators, and
Bertin et al. [14], Chagny [21] who extent the GL method to model selection for
selecting dimension of estimator by projection.

Here, for the sake of simplicity, we present the GL method for the problem of
density estimation in the univariate case for the L2-loss: let X be a random variable

8
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in R having density f , we want to estimate f from the i.i.d sample X1, X2, . . . , Xn

drawn from f . Let K be a kernel satisfying
∫
K(x)dx = 1 and

∫
K2(x)dx <∞. We

introduce the kernel estimator of f as follows:

f̂`(x) := 1
n

n∑
i=1

K`(x−Xi),

where K`(·) = (1/`)K(·/`) and ` > 0 is the bandwidth to be selected.

We first study the bias-variance decomposition under the L2-risk:

E
[
‖f − f̂`‖22

]
= ‖f − E[f̂`]‖22 + E

[
‖E[f̂`]− f̂`‖22

]
.

For the variance term, we obtain easily

E
[
‖E[f̂`]− f̂`‖22

]
≤ 1
n`

∫
K2(x)dx = ‖K‖

2
2

n`
.

Moreover, one can easily check that E[f̂`] =
∫
K`(· − y)f(y)dy = K` ? f , where ?

denotes the convolution operator. Then we obtain

E
[
‖f − f̂`‖22

]
≤ ‖f −K` ? f‖22 + 1

n`
‖K‖22.

Let Hn be a family of possible bandwidths, then the best choice for the bandwidth
is the one which minimizes the bias-variance decomposition. This is the oracle
bandwidth ¯̀ defined as

¯̀ := argmin
`∈Hn

{
‖f −K` ? f‖22 + 1

n`
‖K‖22

}
.

However, it is impossible to obtain ¯̀ in practice since we cannot compute the bias
term ‖f −K` ? f‖2 due to the unknown function f . The idea of the GL method is
to estimate the bias term ‖f −K` ? f‖2 by considering several estimators. To derive
the selection rule, we define for any `, `′ ∈ Hn

f̂`,`′(x) := 1
n

n∑
i=1

(
K` ? K`′

)
(x−Xi) = (K` ? f̂`′)(x).

Heuristically, if f̂`′ is an estimator of f then f̂`,`′ = K` ? f̂`′ is an estimator of K` ? f .

Then, for any `, `′ > 0, the estimator of the bias term is defined as

A(`) = sup
`′∈Hn

{
‖f̂`′ − f̂`,`′‖22 − V (`′)

}
+
,

where V (`′) = χ
‖K‖22
n`′ with χ a constant to be tuned. We subtract the variance term

V (`′) in the setting of A(`) to take into account the fluctuations of the estimator
(see [39] for more details).

Finally, the bandwidth is selected as
ˆ̀ := argmin

`∈Hn

{
A(`) + V (`)

}
,

and we define f̂ := f̂ˆ̀ the corresponding kernel estimator.

9
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Under appropriate conditions, we can prove that this estimate satisfies an oracle
inequality for the L2-risk:

E
[
‖f − f̂‖22

]
≤ C inf

`∈H

{
‖f −K` ? f‖22 + 1

n`

}
+ ∆n,

where C > 0 is a constant independent of f and n and ∆n is a negligible term.

1.4 Contributions

1.4.1 Estimation of the division kernel

This section presents the main results for the estimation of the division kernel in the
case of complete data (Chapter 2) and in the case of incomplete data (Chapter
3).

Case of complete data:
Assume that we observe the whole division tree in the time interval [0, T ] with fixed
T . At the ith division time ti, let us denote ji the individual who splits into two
daughter cells Xji0

ti and Xji1
ti and define

Γ0
i =

Xji0
ti

Xji
ti−

and Γ1
i =

Xji1
ti

Xji
ti−

the random fractions that go into the daughter cells, with the convention 0
0 = 0. Γ0

i

and Γ1
i are exchangeable with Γ1

i = 1−Γ0
i . Γ0

i and Γ1
i are thus not independent but

the couples (Γ0
i ,Γ1

i )i∈N∗ are independent and identically distributed with distribution
(Γ0,Γ1) where Γ1 has the density h and Γ0 = 1− Γ1. Based on the observations of
the Γ1

i ’s, we construct an adaptive estimator of h by using a kernel method with a
kernel function K.

Assume that we observe (Γ1
1, . . . ,Γ1

MT
) where MT > 0 is the random number of

random divisions in [0, T ], we define the kernel estimator of h as follows:

Definition 1.4.1. Let K : R −→ R is an integrable function such that∫
R
K(x)dx = 1 and

∫
R
K2(x)dx <∞.

For all γ ∈ (0, 1), define

ĥ`(γ) = 1
MT

MT∑
i=1

K`(γ − Γ1
i ), (1.12)

where K` = 1
`K(·/`) and ` > 0 is the bandwidth to be chosen.

10
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When using a kernel method, the choice of bandwidth is crucial. We apply here
the GL method to propose a fully data-driven selection rule for which we can select
an adaptive bandwidth and provide a non asymptotic oracle inequality. Details of
our bandwidth selection rule is presented in Section 2.2.3 of Chapter 2.

We state an oracle inequality which highlights the bias-variance decomposition
of the mean squared integrated error (MISE) of ĥ. We recall that the MISE of ĥ is
the quantity E

[
‖ĥ− h‖22

]
.

Theorem 1.4.2. Let N0 be the number of mother cells at the beginning of divisions
and MT is the random number of divisions in [0, T ]. Consider H a countable subset
of {4−1 : 4 = 1, . . . ,4max} in which we choose the bandwidths and 4max = bδMT c
for some δ > 0. Assume h ∈ L∞([0, 1]) and let ĥ be a kernel estimator defined with
the kernel Kˆ̀ where ˆ̀ is chosen by the GL method. Define

%(T )−1 =


e−RT+log(RT )

1− e−RT , if N0 = 1,

e−RT , if N0 > 1.

Then,

E
[
‖ĥ− h‖22

]
≤ C1 inf

`∈H

{
‖K` ? h− h‖22 + ‖K‖

2
2

`
%(T )−1

}
+ C2%(T )−1,

where C1 is a constant depending on N0, ‖K‖1 and C2 is a constant depending on
N0, δ, ‖K‖1, ‖K‖2 and ‖h‖∞.

The constants C1 and C2 in the oracle inequality above depend also on a positive
constant ε to be tuned. However we do not mention ε for the ease of exposition.

The term ‖K` ?h−h‖22 is an approximation term, ‖K‖
2
2

` %(T )−1 is a variance term
and the last term %(T )−1 is asymptotically negligible. Hence the right hand side of
the oracle inequality corresponds to a bias variance trade-off.

Adaptive minimax rates of convergence are derived when the density h belongs
to a Hölder class H(β, L) of smoothness β and radius L and the kernel function
K satisfies some regularity conditions. These assumptions are detailed in Section
2.2.3 of Chapter 2. The upper bound in Theorem 1.4.3 is deduced from the oracle
inequality of Theorem 1.4.2. The lower bound is obtained by perturbation methods
(Theorem 1.4.4) and is valid for any estimator ĥT of h, thus indicating the optimal
convergence rate.

Theorem 1.4.3. Let β∗ > 0 and K be a kernel of order β∗. Let β ∈ (0, β∗). Let ˆ̀
be the adaptive bandwidth. Then, for any T > 0, the kernel estimator ĥ satisfies

sup
h∈H(β,L)

E‖ĥ− h‖22 ≤ C3%(T )−
2β

2β+1 ,

where %(T )−1 is defined as above and C3 is a constant depending on N0, δ, ε, ‖K‖1,
‖K‖2, ‖h‖∞, β and L.

11
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Theorem 1.4.3 illustrates adaptive properties of our procedure: it achieves the
rate %(T )−

2β
2β+1 over the Hölder class H(β, L) as soon as β is smaller than β∗. So, it

automatically adapts to the unknown smoothness of the signal to estimate.

Theorem 1.4.4. For any T > 0, β > 0 and L > 0. Assume that h ∈ H(β, L), then
there exists a constant C4 > 0 such that for any estimator ĥT of h

sup
h∈H(β,L)

E‖ĥT − h‖22 ≥ C4e
− 2β

2β+1RT .

Remark 1.4.5. The difficulty for adaptation is that the number of observations is
random. It is worth noting the difference between NT , the number of cells living at
time T , and the number of random divisions MT . Indeed, we have MT = NT −N0.
Moreover, the optimality of the estimator ĥ depends on N0. When N0 = 1, NT is
distributed according to a geometric distribution with parameter e−RT . The upper
bounds are e

2β
2β+1 (−RT+log(RT )) and differ with a logarithmic term from the lower

bound. When N0 > 1, NT has a negative binomial distribution NB(N0, e
−RT )

and both the upper bounds and lower bounds are in e
− 2β

2β+1RT . Thus the rate of
convergence is optimal when N0 > 1.

Lastly, we present here some numerical results to illustrate the performance of
our estimator. Full details of the simulation study can be found in Section 2.3.

We first recall that the Beta density with parameters (a,b), denote here by
Beta(a, b), is proportional to xa−1(1 − x)b−11[0,1](x). We implement simulations
where h is the density of the Beta(2, 2) distribution or a mixture distribution as
1
2 Beta(2, 6) + 1

2 Beta(6, 2). The Beta(2, 2) distribution represents symmetric divi-
sions with kernel concentrated around 1/2 while the choice of the Beta mixture
gives us a bimodal density corresponding to very asymmetric divisions. We aim in
both cases to estimate non-parametrically these densities with our nonparametric
estimator.

We take the classical Gaussian kernel K(x) = (2π)−1/2 exp(−x2/2) and recon-
struct ĥ by (1.12) where the adaptive bandwidth is selected by the GL method. We
compare the estimated densities by the GL bandwidth with those estimated by the
oracle bandwidth defined as

`oracle = argmin
`∈H

E
[
‖ĥ` − h‖22

]
.

Moreover, we are interested in comparing ĥ with estimators obtained by Cross-
Validation (CV) bandwidth, the rule-of-thumb (RoT) bandwidth. Computation of
the CV and RoT bandwidths is described in Section 2.3. More details of these
methods can be found in Silverman [98] or Tsybakov [108]. We shall call GL (resp.
oracle, CV, RoT) estimator for the one estimated by using the GL (resp. oracale ,
CV, RoT) bandwidth. For a further comparison, in the reconstruction of Beta(2, 2)
density, we compare our nonparametric estimators with the parametric one obtained
by assuming that the distribution is a Beta(a, a) distribution and by using Maximum
Likelihood (ML) method to estimate the parameter a.

12
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Figure 1.1: Reconstruction of division kernels with T = 13. (a): Beta(2, 2). (b): Beta
mixture.

To estimate the MISE, we implement Monte-Carlo simulations with M = 100
repetitions:

ē = 1
M

M∑
i=1

ei and σe =

√√√√ 1
M

M∑
i=1

(ei − ē)2

where

ei = ‖ĥ
(i) − h‖2
‖h‖2

, i = 1, . . . ,M,

and ĥ(i) denotes the estimator of h corresponding to ith repetition.

Figure 1.1 illustrates a reconstruction for the density of Beta(2, 2) and Beta
mixture with T = 13, R = 0.5 and α = 0.35.
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Figure 1.2: (a): The log-mean relative error for the reconstruction of Beta(2, 2) compared
to the log-rate (solide line) computed with β = 1. (b): Errors of estimated densities of
Beta(2, 2) when T = 17.

13



CHAPTER 1. INTRODUCTION

In Figure 1.2a, we illustrate on a log-log scale the mean relative error and the
rate of convergence with respect to the time T . This shows that the error is close
to the exponential rate predicted by the theory. The boxplots in Figure 1.2b rep-
resent the mean of relative error for estimated densities using the GL bandwidth,
the oracle bandwidth, the CV bandwidth and the RoT bandwidth. One can observe
that the GL estimator is closed to the oracle one which is the best estimator. Over-
all, we conclude that the GL method has a good behavior when compared to the
CV method and rule-of-thumb. As usual, we also see that the ML errors are quite
smaller than those of the nonparametric approach but the magnitude of the mean ē
remains similar.

Case of incomplete data:
As stated in Section 1.2.1, when the division tree is not fully observed, we can rely

on the PDE approximation of the stochastic process (Znt , t ∈ R+), when n→ +∞.

We denote by D
(
[0, T ],MF (R+)

)
(resp. C

(
[0, T ],MF (R+)

)
) the set of càdlàg

functions (resp. continuous functions) from [0, T ] to MF (R+) embedded with the
Skorohod distance (resp. embedded with the uniform convergence norm).

Theorem 1.4.6. Consider the sequence (Zn)n∈N∗ defined in (1.7). We assume that
Zn0 ∈MF (R+) satisfies

sup
n∈N∗

E
(
〈Zn0 , 1〉2

)
< +∞.

If Zn0 converges in distribution to µ0 ∈ MF (R+) as n → +∞ then for every
T > 0, (Zn)n∈N∗ converges in distribution in D

(
[0, T ],MF (R+)

)
as n→ +∞ to the

unique solution µ ∈ C
(
[0, T ],MF (R+)

)
of

〈µt, f〉 = 〈µ0, f〉+
∫ t

0

∫
R+

(
∂sfs(x) + αg(x)∂xfs(x)

)
µs(dx)ds

+
∫ t

0

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]
B(x)H(dγ)µs(dx)ds

(1.13)

where ft(x) ∈ C1,1
b (R+ × R+,R) is a test function.

We are interested in the problem of estimation the division kernel h in the case
where both the growth rate and the division rate are constants. Hence, we stick to
g(x) = 1 and B(x) = R for all x ∈ R+. If the measure µ0 has a density, we can
connect (1.13) to a growth-fragmentation PDE written under a more classical form:

Proposition 1.4.7. We have the following results:

i. If µ0(dx) = n0(dx) then ∀t ∈ R+, µt(dx) has a density n(t, x).

ii. If n(t, x) ∈ C1,1(R+,R+) then it satisfies the PDE:

∂tn(t, x) + α∂xn(t, x) +Rn(t, x) = 2R
∫ 1

0
n

(
t,
x

γ

)
1
γ
h(γ)dγ. (1.14)
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Proceeding as explained in Section 1.2.1, this leads us to the PDE (1.10), with
a multiplicative convolution in the second term:

α∂xN(x) + (λ+R)N(x) = 2R
∫ +∞

0
N(y)h

(x
y

)dy
y
.

We first change the variables in the PDE above to transform the multiplicative
convolution into an additive one. Let us introduce the functions

g(u) = euh(eu),

and
M(u) = euN(eu), D(u) = ∂u

(
u 7→ N(eu)

)
= ∂uN(eu).

Then the PDE (1.10) becomes

αD(u) + (λ+R)M(u) = 2R
(
M ? g)(u).

The estimator of h will be obtained from the estimator of g.

In the sequel, we denote by f∗ the Fourier transform of an integrable function f
defined by f∗(ξ) =

∫
f(x)eixξdx.

Assume that the the density h and the Fourier transform M∗ of M satisfy the
Assumptions 3.3.1, 3.3.2 and 3.3.3 in Section 3.3.1 of Chapter 3, then the Fourier
transform of g is given by:

g∗(ξ) = αD∗(ξ)
2RM∗(ξ) + λ+R

2R , ξ ∈ R. (1.15)

In view of (1.15), the purpose is first to propose an estimator for g∗ and eventually
to apply Fourier inversion to obtain an estimator of g.

Let K a kernel function in L2(R) such that its Fourier transform K∗ exists and
is compactly supported. Define K`(·) := `−1K(·/`) for ` > 0. We set

g` = K` ? g.

Since g∗` = K∗` × g∗, let M̂∗(ξ) and D̂∗(ξ) be unbiased estimators of M∗ and D∗

given in Proposition 3.3.6 (see Section 3.3.3), a natural estimator ĝ` of g is such that
its Fourier transform takes the following form:

ĝ`
∗(ξ) = K∗` (ξ)×

αD̂∗(ξ)
2R

1Ω

M̂∗(ξ)
+ λ+R

2R

 ,
where Ω =

{
|M̂∗(ξ)| ≥ n−1/2

}
and 1Ω/M̂∗(ξ) is the truncated estimator of 1/M∗(ξ)

which is added to avoid an explosion when M̂∗(ξ) is closed to 0.

Finally, taking inverse Fourier transform of ĝ`∗, we obtain

ĝ`(u) = 1
2π

∫
R
ĝ∗` (ξ)e−iuξdξ.
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Then the estimator of the division kernel h is given by

ĥ`(γ) = γ−1ĝ`
(

log(γ)
)
, γ ∈ (0, 1).

We establish the L2-consistency of ĝ` under a suitable choice of the bandwidth
` in the following theorem. This result is proved in Chapter 3. Moreover, we
consider only the consistency of the estimate ĝ` because of the difficulties explained
in Section 3.4.

Theorem 1.4.8. We suppose that Assumptions 3.3.1, 3.3.2 and 3.3.3 are satisfied
and the kernel bandwidth ` which depends on n satisfies lim

n→+∞
` = 0. Provided that

lim
n→+∞

1
n

(∥∥∥∥K∗` (ξ)ξ
M∗(ξ)

∥∥∥∥2

2
+
∥∥∥∥K∗` (ξ)
M∗(ξ)

∥∥∥∥2

2

)
= 0,

we have
lim

n→+∞
E
[
‖ĝ` − g‖22

]
= 0.

1.4.2 Adaptive wavelet estimator for multivariate regression func-
tion in the errors-in-variables model

In this section, we present the statistical results for the estimation of the multivariate
regression function m(·) in Chapter 4.

Notation. We denote by F the Fourier transform of any Lebesgue integrable
function f ∈ L1(Rd) by

F(f)(t) =
∫
Rd
e−i<t,y>f(y)dy, t ∈ Rd,

where < ., . > denotes the usual scalar product.

Recall that we consider the following regression with errors-in-variables model in
a multidimensional setting

Yl = m(Xl) + εl, Wl = Xl + δl, l = 1, . . . , n,

and fX , fW and g are the densities of the Xl’s, the Wl’s and the covariate errors
δl’s respectively. Our aim is to estimate the nonparametric multivariate regression
function m(x), x ∈ [0, 1]d. We provide an adaptive procedure in the multidimen-
sional setting and study the pointwise risk over the anisotropic Hölder classes. For
the ease of exposition, we refer to Section 4.2.1 of Chapter 4, pages 88 - 89 for the
complete presentation of the assumptions on the regression function m, the design
density fX and the density of the errors covariates g.

To estimate the regression function m, the idea is that we try to estimate the
conditional expectation

m(x) = E[Y |X = x] =
∫
yf(x, y)dy
fX(x) = p(x)

fX(x) ,
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where f(x, y) denotes the joint density of (X,Y ). Here we do not consider the prob-
lem of estimating the density fX . We use an estimate f̂X of fX introduced in Comte
and Lacour [27] (Section 3.4). This estimate is constructed from a deconvolution
kernel and the bandwidth is selected by the GL method [53]. Hence the main task
is to construct an estimate p̂ of p. Then the estimator m̂ of m at point x is given by

m̂(x) = p̂(x)
f̂X(x)

.

For the reconstruction of p̂ in the univariate case, using a kernel function K(·)
with a bandwidth hn, Fan and Truong [47] proposed an estimate of p̂ with

p̂n(x) = 1
nhn

n∑
j=1

YjLn

(
x−Wj

hn

)
,

where L(·) is the deconvoluting kernel given by

Ln(x) = 1
2π

∫
e−itx

F(K)(t)
F(g)(t/hn)dt.

Here we aim to construct an adaptive estimator of p(x) using projection kernels
on wavelets bases combined with a deconvolution operator which is a multidimen-
sional wavelet analogous of Ln(·). Let ϕ a father wavelet satisfying the conditions
(A1), (A2) and (A3) in Section 4.2.1 of Chapter 4 and let

{
ϕjk, j ∈ Zd

}
, j ∈ Nd

an orthonormal basis where for any x,

ϕjk(x) =
d∏
l=1

2
jl
2 ϕ(2jlxl − kl), j ∈ Nd, k ∈ Zd.

Given a resolution level j ∈ Nd, we define the estimator p̂j(x) of p(x) as follows

p̂j(x) = 1
n

∑
k

n∑
u=1

Yu × (Djϕ)j,k(Wu)ϕjk(x),

where the deconvolution operator Dj is defined as follows for a function f defined
on R

(Djf)(w) = 1
(2π)d

∫
e−i<t,w>

d∏
l=1

F(f)(tl)
F(gl)(2jltl)

dt, w ∈ Rd.

Furthermore, one can observe that the Fourier transform of the kernel K in the
operator Ln has been replaced in our procedure by the Fourier transform of the
wavelet ϕjk and the bandwidth hn by 2−j .

It remains to propose a method of selecting the wavelet resolution level j. We
propose here a fully data-driven selection rule of the resolution level inspired from
Goldenshluger and Lepski [53]. Then our estimation procedure automatically adapts
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CHAPTER 1. INTRODUCTION

to the unknown smoothness of the regression function to estimate. Details of the
selection rule are described in Section 4.2.3 of Chapter 4.

Let p̂ĵ be the final estimator of p where ĵ is the adaptive index selected by our
data-driven selection rule (see Section 4.2.3). We establish an oracle inequality (see
Theorem 4.3.1 in Section 4.3.1) which highlights the bias-variance decomposition of
the pointwise risk.

Let Hd(~β, L) be the anisotropic Hölder class with ~β = (β1, β2, . . . , βd) ∈ (R∗+)d
and L > 0 as in Definition 4.3.2, the following theorem give us the rates of conver-
gence of the estimators p̂ĵ over Hd(~β, L).

Theorem 1.4.9. Let q ≥ 1 be fixed and let ĵ be the adaptive index. Let N be the
number of vanishing moments of the father wavelet ϕ. Then, if for any l, bβlc ≤ N
and L > 0, it holds

sup
p∈Hd(~β,L)

E
∣∣∣p̂ĵ(x)− p(x)

∣∣∣q ≤ L q(2ν+1)
2β̄+2ν+1R2

(
logn
n

)qβ̄/(2β̄+2ν+1)

,

with β̄ = 1
1
β1

+···+ 1
βd

and R2 a constant depending on γ, q, ε, γ̃,m, d, s, ϕ, cg, Cg, ~β.

The constants m, d, cg, Cg are related to the assumptions on m, fX and g (see
Assumptions 4.1 - 4.4) and the constants γ, γ̃ and ε are tuned constants constituted
in the selection rule of the adaptive index ĵ (see Section 4.2.3).

For the estimation of m, we define the estimator m̂ for all x in [0, 1]d :

m̂(x) =
p̂ĵ(x)

f̂X(x) ∨ n−1/2
. (1.16)

where f̂X is an estimate introduced in Comte and Lacour [27]. The term n−1/2 is
added to avoid the drawback when f̂X is closed to 0.

The following theorems give the upper bounds and lower bounds for the estimator
m̂ under the pointwise risk. This shows that the estimate m̂ achieves the optimal
rate of convergence up to a logarithmic term.

Theorem 1.4.10. Let q ≥ 1 be fixed and let m̂ defined as above. Then, if for any
l, bβlc ≤ N and L > 0, it holds

sup
(m,fX)∈Hd(~β,L)×Hd(~β,L)

E
∣∣m̂(x)−m(x)

∣∣q ≤ L q(2ν+1)
2β̄+2ν+1R3

(
logn
n

)qβ̄/(2β̄+2ν+1)

,

with R3 a constant depending on γ, q, ε, γ̃,m, s, d, ϕ, cg, Cg, ~β.

Theorem 1.4.11. Let q ≥ 1, L > 0 and for any l, bβlc ≤ N . Then for any
estimator m̃ of m and for n large enough we have

sup
(m,fX)∈Hd(~β,L)×Hd(~β,L)

E
∣∣m̃(x)−m(x)

∣∣q ≥ R4n
−qβ̄/(2β̄+2ν+1),

with R4 a positive constant depending on ~β, L, s, Cg and Cg.
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1.4. CONTRIBUTIONS

We now describe briefly some numerical simulations to illustrate the theoretical
results. We select the Doppler function for the regression function m and aim to
estimate m̂ at point x0 = 0.25. The regression errors εl’s are taken to be a standard
normal variable with variance s2 = 0.15. For the design density fX , we consider Beta
densities and the uniform density on [0, 1]. The uniform distribution is quite classical
in regression with random design. The Beta(2, 2) distribution give us symmetric
distribution on [0, 1] while the Beta(0.5, 2) provides an asymmetric distribution with
an accumulation of points near 0 and few points near 1. The choice of the Beta(0.5, 2)
density allows us to determine the influence of the design density at the boundaries
of the interval [0, 1]. Moreover, despite the fact that Beta densities vanish in 0 and 1
and the design density fX is assumed to be bounded from below (see Section 4.2.1),
the choice of Beta distributions is still reasonable for simulations on any compact of
[0, 1] since the performances of the estimator are very bad at points very closed to
0 and 1. This is justified in Table 4.3 of Section 4.4.

For the choice of the density g of the covariate errors, we focus on the centered
Laplace density with scale parameter σgL > 0 that we denote gL. This distribution
has the explicit formula of the Fourier of transform of the gL which implies the
regularity of the noise density gL. Moreover, σgL is chosen according to the so-called
reliability ratio (see Section 4.4 for details). We choose here σL = 0.075 and 0.1.

We estimatem(x) by using Formula (1.16). First, we compute p̂ĵ(x) an estimator
of p(x) = m(x)×fX(x) which is denoted "GL" in the graphics below. Then we divide
p̂ĵ(x) by the adaptive deconvolution density estimator f̂X(x) of Comte and Lacour
[27].

We compare the pointwise risk error of p̂ĵ(x) (computed with 100 Monte Carlo
repetitions) with the oracle risk one. The oracle is p̂joracle with the index joracle
defined as follows:

joracle := arg min
j∈J
|p̂j(x)− p(x)|.

U [0, 1] Beta(2, 2) Beta(0.5, 2)
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Figure 1.3: Estimation of p(x) at x0 = 0.25
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CHAPTER 1. INTRODUCTION

Boxplots in Figure 1.3 illustrate the performances of our adaptive estimator at
x0 = 0.25: the risks of p̂ĵ are close to those of the oracle. This shows that our
performances are quite satisfying at x0 = 0.25. Furthermore, one can observe that
increasing the Laplace noise parameter σgL deteriorates slightly the performances.
Hence it seems that our procedure is robust to the noise in the covariates and
accordingly to the deconvolution step. Finally, we refer to Section 4.4 for full details
and discussions on the numerical results.
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This chapter is a version of the paper Estimating the division kernel of a size-
structured population (Hoang [58]) submitted for publication.

2.1 Introduction

Models for populations of dividing cells possibly differentiated by covariates such
as size have made the subject of an abundant literature in recent years (starting
from Athreya and Ney [5], Harris [57], Jagers [67]...) Covariates termed as ‘size’
are variables that grow deterministically with time (such as volume, length, level of
certain proteins, DNA content, etc.) Such models of structured populations provide
descriptions for the evolution of the size distribution, which can be interesting for
applications. For instance, in the spirit of Stewart et al. [99], we can imagine
that each cell contains some toxicities whose quantity plays the role of the size.
The asymmetric divisions of the cells, where one daughter contains more toxicity
than the other, can lead under some conditions to the purge of the toxicity in the
population by concentrating it into few lineages. These results are linked with the
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concept of aging for cell lineage. This concept has been tackled in many papers (e.g.
Ackermann et al. [1], Aguilaniu et al. [2], Evans and Steinsaltz [44], C-Y. Lai et al.
[74], Moseley [86]...).

Here we consider a stochastic individual-based model of size-structured popula-
tion in continuous time, where individuals are cells undergoing asymmetric binary
divisions and whose size is the quantity of toxicity they contain. A cell containing
a toxicity x ∈ R+ divides at a rate R > 0. The toxicity grows inside the cell with
rate α > 0. When a cell divides, a random fraction Γ ∈ [0, 1] of the toxicity goes in
the first daughter cell and 1− Γ in the second one. If Γ = 1

2 , the daughters are the
same with toxicity x

2 . We assume that Γ has a symmetric distribution on [0, 1] with
a density h with respect to Lebesgue measure such that P(Γ = 0) = P(Γ = 1) = 0. If
h is piked at 1/2 (i.e. Γ ' 1/2), then both daughters contain the same toxicity, i.e.
the half of their mother’s toxicity. The more h puts weight in the neighbourhood
of 0 and 1, the more asymmetric the divisions are, with one daughter having little
toxicity and the other a toxicity close to its mother’s one. If we consider that having
a lot of toxicity is a kind of senescence, then, the kurtosis of h provides indication
on aging phenomena (see [75]).

Modifications of this model to account for more complex phenomena have been
considered in other papers. Bansaye and Tran [11], Cloez [24] or Tran [106] consider
non-constant division and growth rates. Robert et al. [95] studies whether divisions
can occur only when a size threshold is reached. Our purpose here is to estimate the
density h ruling the divisions, and we stick to constant rates R and α for the sake
of simplicity. Notice that several similar models for binary cell division in discrete
time also exist in the literature and have motivated statistical question as here, see
for instance Bansaye et al. [7, 10], Bercu et al. [12], Bitseki Penda [89], Delmas and
Marsalle [34] or Guyon [54].

0 5 10 15

0
1

2
3

4
5

Time

t1

Figure 2.1: Trajectories of two daughter cells after a division, separating after the first
division at time t1.
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2.1. INTRODUCTION

Individual-based models provide a natural framework for statistical estimation.
Estimation of the division rate is, for instance, the subject of Doumic et al. [38, 39]
and Hoffmann and Olivier [59]. Here, the density h is the kernel division that we
want to estimate. Assuming that we observe the divisions of cells in continuous time
on the interval [0, T ], with T > 0, we propose an adaptive kernel estimator ĥ of h
for which we obtain an oracle inequality in Theorem 2.2.12. The construction of ĥ
is detailed in the sequel. From oracle inequality we can infer adaptive exponential
rates of convergence with respect to T depending on β the smoothness of the density.
Most of the time, nonparametric rates are of the form n

− 2β
2β+1 (see for instance Tsy-

bakov [108]) and exponential rates are not often encountered in the literature. The
exponential rates are due to binary splitting, the number of cells i.e the sample size
increases exponentially in exp(RT ) (see Section 2.3). By comparison, in [59] Hoff-
mann and Olivier obtain a similar rate of convergence exp

(
−λB ς

2ς+1T
)
of the kernel

estimator of their division rate B(x), where λB is the Malthus parameter and ς > 0
is the smoothness of B(x). However, their estimator B̂T of B is not adaptive since
the choice of their optimal bandwidth still depends on ς. Our estimator is adaptive
with an “optimal" bandwidth chosen from a data-driven method. We derive upper
bounds and lower bounds for asymptotic minimax risks on Hölder classes and show
that they coincide. Hence, the rate of convergence of our estimator ĥ proves to be
optimal in the minimax sense on the Hölder classes.

This chapter is organized as follows. In Section 2, we introduce a stochastic
differential equation driven by a Poisson point measure to describe the population
of cells. Then, we construct the estimator of h and obtain upper and lower bounds
for the MISE (Mean Integrated Squared Error). Our main results are stated in
Theorems 2.2.15 and 2.2.16. Numerical results and discussions about aging effect
are presented in Section 3. The main proofs are shown in Section 4.

Notation We introduce some notations used in the sequel.

Hereafter, ‖ · ‖1 and ‖ · ‖2 denote the L1 and L2 norms on R with respect to
Lebesgue measure:

‖f‖1 =
∫
R
|f(γ)|dγ, ‖f‖2 =

(∫
R
|f(γ)|2dγ

)1/2
.

The L∞ norm is defined by

‖f‖∞ = sup
γ∈(0,1)

|f(γ)|.

Finally, f ? g denotes the convolution of two functions f and g defined by

f ? g(γ) =
∫
R
f(u)g(γ − u)du.
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2.2 Microscopic model and kernel estimator of h

2.2.1 The model

We recall the Ulam-Harris-Neveu notation used to describe the genealogical tree.
The first cell is labelled by ∅ and when the cell i divides, the two descendants are
labelled by i0 and i1. The set of labels is

J =
{
∅
}
∪
∞⋃
m=1
{0, 1}m . (2.1)

We denote Vt the set of cells alive at time t, and Vt ⊂ J .

LetMF (R+) be the space of finite measures on R+ embedded with the topology
of weak convergence and Xi

t be the quantity of toxicity in the cell i at time t, we
describe the population of cells at time t by a random point measure inMF (R+):

Zt(dx) =
Nt∑
i=1

δXi
t
(dx), where Nt = 〈Zt, 1〉 =

∫
R+
Zt(dx) (2.2)

is the number of individuals living at time t. For a measure µ ∈ MF (R+) and a
positive function f , we use the notation 〈µ, f〉 =

∫
R+
fdµ.

Along branches of the genealogical tree, the toxicity (Xt, t ≥ 0) satisfies

dXt = αdt, (2.3)

with X0 = x0. When the cells divide, the toxicity is shared between the daughter
cells. This is described by the following stochastic differential equation (SDE).

Let Z0 ∈MF (R+) be an initial condition such that

E(〈Z0, 1〉) < +∞, (2.4)

and let Q(ds, di, dγ) be a Poisson point measure on R+ × E := R+ × J × [0, 1] with
intensity q(ds, di, dγ) = Rdsn(di)H(dγ). n(di) is the counting measure on J and ds
is Lebesgue measure on R+. We denote {Ft}t≥0 the canonical filtration associated
with the Poisson point measure and the initial condition. The stochastic process
(Zt)t≥0 can be described by a SDE as follows.

Definition 2.2.1. For every test function ft(x) = f(x, t) ∈ C1,1
b (R+ × R+,R)

(bounded of class C1 in t and x with bounded derivatives), the population of cells is
described by:

〈Zt, ft〉 = 〈Z0, f0〉+
∫ t

0

∫
R+

(
∂sfs(x) + α∂xfs(x)

)
Zs(dx)ds

+
∫ t

0

∫
E
1{i≤Ns−}

[
fs
(
γXi

s−

)
+ fs

(
(1− γ)Xi

s−

)
− fs

(
Xi
s−

) ]
Q(ds, di, dγ). (2.5)

The second term in the right hand side of (2.5) corresponds to the growth of
toxicities in the cells and the third term gives a description of cell divisions where
the sharing of toxicity into two daughter cells depends on the random fraction Γ.

We now state some properties of Nt that are useful in the sequel.
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Proposition 2.2.2. Let T > 0, and assume the initial condition N0, the number of
mother cells at time t = 0, is deterministic, for the sake of simplicity. We have

i) Let Tj be the jth jump time. Then:

lim
j→+∞

Tj = +∞ and lim
T→+∞

NT = +∞ (a.s). (2.6)

ii) NT is distributed according to a negative binomial distribution, denoted as
NB(N0, e

−RT ). Its probability mass function is then

P (NT = n) =
(
n− 1
n−N0

)(
e−RT

)N0(1− e−RT
)n−N0

, (2.7)

for n ≥ N0. When N0 = 1, NT has a geometric distribution

P (NT = n) = e−RT
(
1− e−RT

)n−1
. (2.8)

Consequently, we have
E
[
NT

]
= N0e

RT . (2.9)

iii) When N0 = 1:

E
[ 1
NT

]
= RTe−RT

1− e−RT . (2.10)

When N0 > 1, we have:

E
[ 1
NT

]
=
(

e−RT

1− e−RT

)N0

(−1)N0−1

N0−1∑
k=1

(
N0 − 1
k

)
(−1)kekRT

k
+RT

 .
(2.11)

iv) Furthermore, when N0 > 1, we have

e−RT

N0
≤ E

[ 1
NT

]
≤ e−RT

N0 − 1 . (2.12)

The proof of Proposition 2.2.2 is presented in Section 4.

2.2.2 Influence of age

In this section, we study the aging effect via the mean age which is defined as follows.

Definition 2.2.3. The mean age of the cell population up to time t ∈ R+ is defined
by:

X̄t = 1
Nt

Nt∑
i=1

Xi
t = 〈Zt, f〉

Nt
, (2.13)

where f(x) = x.
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Following the work of Bansaye et al. [8], we note that the long time behavior of
the mean age is related to the law of an auxiliary process Y started at Y0 = X0

N0
with

infinitesimal generator characterized for all f ∈ C1,1
b (R+,R) by

Af(x) = αf ′(x) + 2R
∫ 1

0

(
f(γx)− f(x)

)
h(γ)dγ. (2.14)

The empirical distribution 1
Nt

∑Nt
i=1 δXi

t
gives the law of the path of a particle

chosen at random at time t. Heuristically, the distribution of Y restricted to [0, t]
approximates this distribution. Hence, this explains the coefficient 2 which is a size-
biased phenomenon, i.e. when one chooses a cell in the population at time t, a cell
belonging to a branch with more descendants is more likely to be chosen.

Lemma 2.2.4. Let Y be the auxiliary process with infinitesimal generator (2.14),
for t ∈ R+,

Yt =
(
Y0 −

α

R

)
e−Rt + α

R
+
∫ t

0
e−R(t−s)dUs. (2.15)

where Ut is a square-integrable martingale.

Consequently, we have

E [Yt] =
(
Y0 −

α

R

)
e−Rt + α

R
, (2.16)

and
lim
t→∞

E [Yt] = α

R
. (2.17)

We will show that the auxiliary process Y satisfies ergodic properties (see Section
2.4) which entails the following theorem.

Theorem 2.2.5. Assume that there exists h > 0 such that for all γ ∈ (0, 1), h(γ) ≥
h. Then

lim
t→+∞

X̄t = lim
t→+∞

E(Yt) = α

R
. (2.18)

Theorem 2.2.5 is a consequence of the ergodic properties of Y , of Theorem 4.2
in Bansaye et al. [8] and of Lemma 2.2.4. It shows that the average of the mean
age tends to the constant α/R when the time t is large. Simulations in Section 3
illustrate the results. The proofs of Lemma 2.2.4 and Theorem 2.2.5 are presented
in Section 2.4 and Section 2.4.

Remark 2.2.6. When the population is large, we are interested in studying the
asymptotic behavior of the random point measure. As in Doumic et al. [39], we can
show that our stochastic model is approximated by a growth-fragmentation partial
differential equation. This problem is a work in progress.

2.2.3 Estimation of the division kernel

Data and construction of the estimator
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Suppose that we observe the evolution of the cell population in a given time interval
[0, T ]. At the ith division time ti, let us denote ji the individual who splits into two
daughters Xji0

ti and Xji1
ti and define

Γ0
i =

Xji0
ti

Xji
ti−

and Γ1
i =

Xji1
ti

Xji
ti−

,

the random fractions that go into the daughter cells, with the convention 0
0 = 0.

Γ0
i and Γ1

i are exchangeable with Γ0
i + Γ1

i = 1, Γ0
i and Γ1

i are thus not indepen-
dent but the couples (Γ0

i ,Γ1
i )i∈N∗ are independent and identically distributed with

distribution (Γ0,Γ1) where Γ1 ∼ H(dγ) and Γ0 = 1− Γ1.

Since h is a density function, it is natural to use a kernel method. We define an
estimator ĥ` of h based on the data (Γ0

i ,Γ1
i )i∈N∗ as follows.

Definition 2.2.7. Let K : R −→ R is an integrable function such that∫
R
K(x)dx = 1 and

∫
R
K2(x)dx <∞.

Let MT be the random number of divisions in the time interval [0, T ] and assume
that MT > 0. For all γ ∈ (0, 1), define

ĥ`(γ) = 1
MT

MT∑
i=1

K`(γ − Γ1
i ), (2.19)

where K` = 1
`K(·/`), ` > 0 is the bandwidth to be chosen.

Remark 2.2.8. Since N0 6= 0, the number of random divisions MT is not equal to
the number of individuals living at time T . Indeed, we have MT = NT −N0.

In (2.19), ĥ` depends also on T . However, we omit T for the sake of notation.
The estimator ĥ` will satisfy the following properties.

Proposition 2.2.9.

i) The conditional expectation and conditional variance given MT of ĥ`(γ) and
variance ĥ`(γ) are:

E
[
ĥ`(γ)|MT

]
= K` ? h(γ) and E

[
ĥ`(γ)

]
= K` ? h(γ), (2.20)

Var
[
ĥ`(γ)

∣∣∣MT ] = 1
MT

Var
[
K`(γ − Γ1

1)
]
, (2.21)

Var
[
ĥ`(γ)

]
= E

[ 1
MT

]
Var

[
K`(γ − Γ1

1)
]
. (2.22)

Consequently, we have E
[
ĥ`(γ)|MT

]
= E

[
ĥ`(γ)

]
.

ii) For all γ ∈ (0, 1),
lim

T→+∞
ĥ`(γ) = K` ? h(γ) (a.s). (2.23)
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Adaptive estimation of h by the Goldenshluger-Lepski’s (GL) method

Let ĥ` be the kernel estimator of h as in Definition 2.2.7. We measure the
performance of ĥ` via its L2-loss i.e the average L2 distance between ĥ` and h. The
objective is to find a bandwidth which minimizes this L2-loss. Since MT is random,
we first study the L2-loss conditionally to MT .

Proposition 2.2.10. The L2-loss of ĥ` given MT satisfies :

E
[
‖ĥ` − h‖2

∣∣∣MT

]
≤ ‖h−K` ? h‖2 + ‖K‖2√

MT `
. (2.24)

In the right hand side of the risk decomposition (2.24) the first term is a bias
term. Hence it decreases when ` → 0 whereas the second term which is a variance
term increases when `→ 0. The best choice of ` should minimize this bias-variance
trade-off. Thus, from a finite family of bandwidths H, the best bandwidth ¯̀would
be

¯̀ := argmin
`∈H

{
‖h−K` ? h‖2 + ‖K‖2√

MT `

}
. (2.25)

The bandwidth ¯̀ is called "the oracle bandwidth" since it depends on h which
is unknown and then it cannot be used in practice. Since the oracle bandwidth
minimizes a bias variance trade-off, we need to find an estimation for the bias-
variance decomposition of ĥ`. Goldenshluger and Lepski [53] developed a fully data-
driven bandwidth selection method (GL method). The main idea of this method is
based on an estimate of the bias term by looking at several estimators. In a similar
fashion, Doumic et al. [39] and Reynaud-Bouret et al. [94] have used this method.
To apply the GL method, we set for any `, `′ ∈ H:

ĥ`,`′ := 1
MT

MT∑
i=1

(
K` ? K`′

)
(γ − Γ1

i ) =
(
K` ? ĥ`′

)
(γ).

Finally, the adaptive bandwidth and the estimator of h are selected as follows:

Definition 2.2.11. Given ε > 0 and setting χ := (1 + ε)(1 + ‖K‖1), we define

ˆ̀ := argmin
`∈H

{
A(`) + χ‖K‖2√

MT `

}
, (2.26)

where, for any ` ∈ H,

A(`) := sup
`′∈H

{
‖ĥ`,`′ − ĥ`′‖2 −

χ‖K‖2√
MT `′

}
+
, (2.27)

Then, the estimator ĥ is given by

ĥ := ĥˆ̀. (2.28)
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An inspection of the proof of Theorem 2.2.12 shows that the term A(`) provides
a control for the bias ‖h −K` ? h‖2 up to the term ‖K‖1 (see (2.45) and (2.47) in
the proof of Theorem 2.2.12, Section 4). Since A(`) depends only on ĥ`,`′ and ĥ`′ ,
the estimator ĥ can be computed in practice.

We shall now state an oracle inequality which highlights the bias-variance decom-
position of the MISE of ĥ. We recall that the MISE of ĥ is the quantity E

[
‖ĥ−h‖22

]
.

Theorem 2.2.12. Let T > 0 and assume that observations are taken on [0, T ].
Let N0 be the number of mother cells at the beginning of divisions and MT is the
random number of divisions in [0, T ]. Consider H a countable subset of {4−1 : 4 =
1, . . . ,4max} in which we choose the bandwidths and 4max = bδMT c for some δ > 0.
Assume h ∈ L∞([0, 1]) and let ĥ be a kernel estimator defined with the kernel Kˆ̀
where ˆ̀ is chosen by the GL method. Define

%(T )−1 =


e−RT+log(RT )

1− e−RT , if N0 = 1,

e−RT , if N0 > 1.
(2.29)

For large T , the main term in %(T ) is e−RT in any case. It is exactly the order of
%(T ) for N0 > 1. Then, given ε > 0

E
[
‖ĥ− h‖22

]
≤ C1 inf

`∈H

{
‖K` ? h− h‖22 + ‖K‖

2
2

`
%(T )−1

}
+ C2%(T )−1, (2.30)

where C1 is a constant depending on N0, ‖K‖1 and ε and C2 is a constant depending
on N0, δ, ε, ‖K‖1, ‖K‖2 and ‖h‖∞.

The term ‖K` ?h−h‖22 is an approximation term, ‖K‖
2
2

` %(T )−1 is a variance term
and the last term %(T )−1 is asymptotically negligible. Hence the right hand side of
the oracle inequality corresponds to a bias variance trade-off.

We now establish upper and lower bounds for the MISE. The lower bound is
obtained by perturbation methods (Theorem 2.2.16) and is valid for any estimator
ĥT of h, thus indicating the optimal convergence rate. The upper bound is obtained
in Theorem 2.2.15 thanks to the key oracle inequality of Theorem 2.2.12.

For the rate of convergence, it is necessary to assume that the density h and
the kernel function K satisfy some regularity conditions introduced in the following
definitions.

Definition 2.2.13. Let β > 0 and L > 0. The Hölder class of smoothness β and
radius L is defined by

H(β, L) =
{
f : f has k = bβc derivatives and ∀x, y ∈ R∣∣∣f (k)(y)− f (k)(x)

∣∣∣ ≤ L|x− y|β−k}.
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Definition 2.2.14. Let β∗ > 0. An integrable function K : R → R is a kernel of
order β∗ if

•
∫
K(x)dx = 1,

•
∫
|x|β∗ |K(x)|dx <∞,

• For k = bβ∗c, ∀ 1 ≤ j ≤ k,
∫
xjK(x)dx = 0.

Then, the following theorem gives the rate of convergence of the adaptive esti-
mator ĥ.

Theorem 2.2.15. Let β∗ > 0 and K be a kernel of order β∗. Let β ∈ (0, β∗).
Let ˆ̀ be the adaptive bandwidth defined in (2.26). Then, for any T > 0, the kernel
estimator ĥ satisfies

sup
h∈H(β,L)

E‖ĥ− h‖22 ≤ C3%(T )−
2β

2β+1 , (2.31)

where %(T )−1 is defined in (2.29) and C3 is a constant depending on N0, δ, ε, ‖K‖1,
‖K‖2, ‖h‖∞, β and L.

We now establish a lower bound in Theorem 2.2.16.

Theorem 2.2.16. For any T > 0, β > 0 and L > 0. Assume that h ∈ H(β, L),
then there exists a constant C4 > 0 such that for any estimator ĥT of h

sup
h∈H(β,L)

E‖ĥT − h‖22 ≥ C4 exp
(
− 2β

2β + 1RT
)
. (2.32)

Contrary to the classical cases of nonparametric estimation (e.g. Tsybakov [108],
. . . ), the number of observations MT is a random variable that converges to +∞
when T → +∞ which is one of the main difficulty here. From Theorem 2.2.15,
when N0 > 1 the upper bound is in exp

(
− 2β

2β+1RT
)
which is the same rate as the

lower bound. The rate of convergence ĥ is thus optimal. When N0 = 1, the upper
bound is in exp

(
2β

2β+1

(
−RT + log(RT )

))
that differs with a logarithmic from the

rate in the lower bound. The rate of convergence is thus slightly slower than in the
case N0 > 1 and our estimator is optimal up to a logarithmic factor. Furthermore,
Theorem 2.2.15 illustrates adaptive properties of our procedure: it achieves the rate
%(T )−

2β
2β+1 over the Hölder class H(β, L) as soon as β is smaller than β∗. So, it

automatically adapts to the unknown smoothness of the signal to estimate.

2.3 Numerical simulations

2.3.1 Numerical computation of ĥ

We use the R software to implement simulations with two original distributions of
division kernel h and compare with their estimators. On the interval [0, 1], the first
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distribution to test is Beta(2, 2). The Beta(a, b) distributions on [0, 1] are charac-
terized by their densities

hBeta(a,b)(x) = xa−1(1− x)b−1

B(a, b) .

where B(a, b) is the renormalization constant.

Since h is symmetric, we only consider the distributions with a = b. Generally,
asymmetric divisions correspond to a < 1 and symmetric divisions with kernels
concentrated around 1

2 correspond to a > 1. The smaller the parameter a, the
more asymmetric the divisions. For the second density, we choose a Beta mixture
distribution as

1
2 Beta(2, 6) + 1

2 Beta(6, 2).

This choice gives us a bimodal density corresponding to very asymmetric divisions.
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Figure 2.2: (a): MISE’s as a function of ε. (b): ˆ̀− `oracle as a function of ε. The
dotted lines indicate the optimal value of ε which is used in all simulations.

We estimate ĥ by using (2.19) and we take the classical Gaussian kernel
K(x) = (2π)−1/2 exp(−x2/2). For the choice of bandwidth, we apply the GL method
with the family H =

{
1, 2−1, . . . , bδMT c−1

}
for some δ > 0 small enough when

MT is large to reduce the time of numerical simulation. We have ‖K‖1 = 1,
‖K‖2 = 2−1/2π−1/4 and K` ? K`′ = K√`2+`′2 , hence it is not difficult to calculate in
practice ĥ`,`′ as well as ĥ`′ . Finally, the value of ε in χ = (1 + ε)(1 + ‖K‖1) is chosen
to find an optimal value of the MISE. To do this, we implement a preliminary simu-
lation to calibrate ε in which we choose ε > −1 to ensure that 1+ε > 0. We compute
the MISE and ˆ̀− `oracle as functions of ε where `oracle = argmin `∈H E

[
‖ĥ` − h‖22

]
and h is the density of Beta(2, 2). In Figure 2.2a, simulation results show that the
risk has minimum value at ε = −0.68. This value is not justified from a theoretical
point of view. The theoretical choice ε > 0 (see Theorem 2.2.12) does not give bad
results but this choice is too conservative for non-asymptotic practical purposes as
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often met in the literature (see Bertin et al. [14] for more details about the GL
methodology). Moreover, following the discussion in Lacour and Massart [73] we
investigate (see Figure 2.2b) the difference ˆ̀− `oracle and observe some explosions
close to ε = −0.68. Consequently, we choose ε = −0.68 for all following simulations.

Figure 2.3 illustrates a reconstruction for the density of Beta(2, 2) and beta mix-
ture 1

2 Beta(2, 6) + 1
2 Beta(6, 2) when T = 13. We choose here the division rate and

the growth rate R = 0.5 and α = 0.35 respectively. We compare the estimated
densities when using the GL bandwidth with those estimated with the oracle band-
width. The oracle bandwidth is found by assuming that we know the true density.
Moreover, the GL estimators are compared with estimators using the cross-validation
(CV) method and the rule of thumb (RoT). The CV bandwidth is defined as follows:

`CV = argmin
`∈H


∫
ĥ2
` (γ)dγ − 2

n

n∑
i=1

ĥ`,−i(Γ1
i )


where ĥ`,−i(γ) = 1

n−1
∑
j 6=iK`

(
Γ1
j − γ). The RoT bandwidth can be calculated

simply by using the formula `RoT = 1.06σ̂n−1/5 where σ̂ is the standard deviation of
the sample (Γ1

1, . . . ,Γ1
n). More details about these methods can be found in Section

3.4 of Silverman [98] or Tsybakov [108].
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Figure 2.3: Reconstruction of division kernels with T = 13.

To estimate the MISE, we implement Monte-Carlo simulations with respect to
T = 13, 17 and 20. The number of repetitions for each simulation is M = 100.
Then, we compute the mean of relative error ē = (1/M)

∑M
i=1 ei and the standard

deviation σe =
√

(1/M)
∑M
i=1(ei − ē)2 where

ei = ‖ĥ
(i) − h‖2
‖h‖2

, i = 1, . . . ,M, (2.33)

and ĥ(i) denotes the estimator of h corresponding to ith repetition.
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GL Oracle CV RoT ML method
T = 13 ē 0.1001 0.0840 0.1009 0.0900 0.0610

σe 0.0585 0.0481 0.0599 0.0577 0.0724
¯̀̂ 0.0920 0.0845 0.0824 0.0727

T = 17 ē 0.0458 0.0397 0.0459 0.0405 0.0166
σe 0.0260 0.0230 0.0297 0.0237 0.0171
¯̀̂ 0.0485 0.0497 0.0478 0.0470

T = 20 ē 0.0261 0.0241 0.0262 0.0245 0.0088
σe 0.0140 0.0114 0.0132 0.00121 0.0091
¯̀̂ 0.0377 0.0359 0.0345 0.0354

Table 2.1: Mean of relative error and its standard deviation for the reconstruction
of Beta(2, 2). ¯̀̂ is the average of bandwidths for M = 100 samples.

GL Oracle CV RoT
T = 13 ē 0.1361 0.1245 0.1379 0.1686

σe 0.0672 0.0562 0.0815 0.0537
¯̀̂ 0.0618 0.0527 0.0522 0.0948

T = 17 ē 0.0539 0.0534 0.0550 0.0919
σe 0.0180 0.0168 0.0168 0.00223
¯̀̂ 0.0309 0.0272 0.0264 0.0590

Table 2.2: Mean of relative error and its standard deviation for the reconstruction
of beta mixture 1

2 Beta(2, 6) + 1
2 Beta(6, 2).

The MISE’s are computed for estimated densities using the GL bandwidth, the
oracle bandwidth, the CV bandwidth and the RoT bandwidth. For a further com-
parison, in the reconstruction of Beta(2, 2), we compute the relative error in a para-
metric setting by comparing the true density h with the density of Beta(â, â) where
â is a Maximum Likelihood (ML) estimator the parameter a. The simulation results
are displayed in Table 2.1 and Table 2.2. For the density of Beta mixture, we only
compute the error with T = 13 and T = 17. The boxplot in Figure 4 illustrates the
MISE’s in Table 2.1 when T = 17.

From Tables 2.1 and 2.2, we can note that the accuracy of the estimation of
Beta(2, 2) and Beta mixture by the GL bandwidth increases for larger T . In Figure
2.5, we illustrate on a log-log scale the mean relative error and the rate of con-
vergence versus time T . This shows that the error is close to the exponential rate
predicted by the theory. Moreover, we can observe that the errors of Beta mixture
are larger than those of Beta(2, 2) with the same T due to the complexity of its den-
sity. In both cases, the error estimated by using oracle bandwidth is always smaller.
The GL error is slightly smaller than the CV error. The RoT error can show very
good behavior but lacks of stability. Overall, we conclude that the GL method has a
good behavior when compared to the cross validation method and rule-of-thumb. As
usual, we also see that the ML errors are quite smaller than those of nonparametric
approach but the magnitude of the mean ē remains similar.
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Figure 2.4: Errors of estimated densities of Beta(2, 2) when T = 17.
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Figure 2.5: The log-mean relative error for the reconstruction of Beta(2, 2) compared
to the log-rate (solid line) computed with β = 1.

Since h is symmetric on [0, 1] with respect to 1
2 , the estimator ĥ can be improved

and we can introduce

h̃(x) = 1
2
(
ĥ(x) + ĥ(1− x)

)
,

which is symmetric by construction and satisfies also (2.31). We compute the mean
of relative error for the estimator h̃ with the estimation of Beta(2, 2) and Beta
mixture. The results are displayed in Table 2.3. Compared with the error in Table
2.1 and 2.2, one can see as expected that the errors for the reconstruction of h̃ are
smaller. However, these errors are of the same order, indicating that the estimator
ĥ had already good symmetric properties.

GL Oracle CV RoT
Beta(2, 2) T = 13 0.0785 0.0634 0.0762 0.0644

T = 17 0.0356 0.0309 0.0356 0.0309
Beta mixture T = 13 0.1117 0.0953 0.1030 0.1584

T = 17 0.0450 0.0414 0.0417 0.0893

Table 2.3: Mean of relative error for the reconstruction of h̃.
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2.3.2 Influence of the distribution on the mean age

For t ≥ 0, recall the mean age defined in (2.13). To study the influence of the
distribution on the mean age, we simulate n = 50 trees with respect to t = 6, 6 +
4t, . . . , 24 with4t = 0.36. For each sample (x̄(1)

t , . . . , x̄(n)
t ), we compute the average

mean, the 1st (Q25) quartile and 3rd (Q75) quartile. Figure 2.6a and 2.6b show the
simulation results corresponding to the density of Beta(2, 2) with α = 0.45 and
R = 0.4. One can see that the average of mean age and the mean age converge to
α
R = 1.125 for larger t. This agrees with the theoretical result proved in Section
2.2.2.
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Figure 2.6: (a) Average mean, 1st and 3rd quartiles for the sample of means for 50
trees. (b) Average mean, 1st and 3rd quartiles for one tree. (c) Average of Q75−Q25
with a ∈ [0, 2] at t = 12. (d) Mean age with a ∈ [0, 2] at t = 12.

Moreover, Q25 and Q75 vary when the parameter a changes. In Figure 2.6c, we
draw a fitted curve of the average of (Q75 − Q25) when a varies from 0 to 2. As
we mentioned in the introduction, if divisions are more asymmetric corresponding
to small values of a, the toxicities concentrate on few cells, i.e. we have more
older cells after the divisions. This explains the decreasing trend in the average of
(Q75 −Q25). Finally, Figure 2.6d displays the average of mean ages with respect to
a. One can note that it does not change when we replace the kernel distribution,
e.g Beta(0.6, 0.6) instead of Beta(2, 2).

2.4 Proofs

Proof of Proposition 2.2.2.

ii) The proof of ii) can be found easily in literature. Here we refer to [96], Section
5.3 for this proof.

i) Let us prove that limT→+∞NT = limj→+∞NTj = +∞. Since our model has only
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births and no death, (Nt)t∈[0,T ] is a non-decreasing process: NTj = N0 + j. All the
Tj ’s are finite and limj→+∞NTj = +∞ a.s. From ii), we have E[NT ] = N0e

RT .
Hence, we deduce from the estimate sup

t∈[0,T ]
E[Nt] < +∞ for all T > 0 that Tj −→

j→+∞

+∞ a.s. Then we also have limT→+∞NT = +∞ a.s.

iii) Let p = e−RT . When N0 = 1, NT ∼ Geom(p). Then we have

E
[ 1
NT

]
=
∞∑
n=1

1
n
P
(
NT = n

)
=
∞∑
n=1

1
n
p(1− p)n−1

= p

1− p

+∞∑
n=1

(1− p)n

n
= − p

1− p log(p).

Replace p with e−RT , we obtain (2.10).
When N0 > 1, NT ∼ NB(N0, p). Hence, we have

E
[ 1
NT

]
=

∞∑
n=N0

1
n

(
n− 1
n−N0

)
pN0(1− p)n−N0

=
(

p

1− p

)N0 ∞∑
n=N0

1
n

(
n− 1
n−N0

)
(1− p)n

:=
(

p

1− p

)N0

f(1− p), (2.34)

where f(x) =
∑+∞
n=N0

1
n

( n−1
n−N0

)
xn. We can differentiate f(x) by taking derivative

under the sum. Then:

d

dp
f(1− p) =−

+∞∑
n=N0

(
n− 1
n−N0

)
(1− p)n−1

=− (1− p)N0−1

pN0

+∞∑
n=N0

(
n− 1
n−N0

)
pN0(1− p)n−N0 = −1

p

(1
p
− 1

)N0−1
,

since the sum is 1 (we recognize the negative binomial).
Hence,

d

dp
f(1− p) =− 1

p

N0−1∑
k=1

(
N0 − 1
k

)
1
pk

(−1)N0−1−k + (−1)N0−1


=(−1)N0

N0−1∑
k=1

(
N0 − 1
k

)
(−1)k

pk+1 + 1
p

 . (2.35)

Integrating equation (2.35) and notice that f(0) = 0, we get

f(1− p) =(−1)N0

N0−1∑
k=1

(
N0 − 1
k

)
(−1)k

k

(
− 1
pk

)
+ log(p)


=(−1)N0−1

N0−1∑
k=1

(
N0 − 1
k

)
(−1)k

k

1
pk

+ log
(

1
p

) . (2.36)
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Combine (2.34),(2.36) and replace p with e−RT , we get (2.11).

iv) We first prove the lower bound of (2.12). From (2.5), taking ft(x) = 1, we have

NT = N0 +
∫ T

0

∫
E
1{i≤Ns−}Q(ds, di, dγ). (2.37)

Applying Itô formula for jump processes (see [63], Theorem 5.1 on p.67) to (2.37),
we obtain

1
NT

= 1
N0

+
∫ T

0

∫
E

(
1

Ns− + 1 −
1

Ns−

)
1{i≤Ns−}Q(ds, di, dγ)

= 1
N0
−
∫ T

0

∫
E

1
Ns− (Ns− + 1)1{i≤Ns−}Q(ds, di, dγ).

Hence,

E
[ 1
NT

]
= 1
N0
− E

[∫ T

0

1
Ns (Ns + 1)RNsds

]
= 1
N0
−R

∫ T

0
E
[ 1
Ns + 1

]
ds. (2.38)

Since Ns ≥ N0, we have 1
Ns+1 ≤

1
Ns
. Therefore, (2.38) implies that

E
[ 1
NT

]
≥ 1
N0
−R

∫ T

0
E
[ 1
Ns

]
ds. (2.39)

By comparison of E
[

1
NT

]
with the solutions of the ODE d

dT u(T ) = −Ru(T ) with
u(0) = 1/N0, we finally obtain

E
[ 1
NT

]
≥ 1
N0

e−RT .

For the upper bound, notice that E
[

1
NT

]
≤ E

[
1

NT−1

]
for N0 > 1. Then we have

E
[ 1
NT − 1

]
=

+∞∑
n=N0

1
n− 1

(
n− 1
n−N0

)
pN0(1− p)n−N0

=
+∞∑
n=N0

(n− 2)!
(n−N0)!(N0 − 1)!p

N0(1− p)n−N0

= p

N0 − 1

+∞∑
n=N0

(n− 2)!
(n−N0)!(N0 − 2)!p

N0−1(1− p)n−N0

= p

N0 − 1

+∞∑
m=N0−1

(m− 1)!
(m− (N0 − 1))!((N0 − 1)− 1)!p

N0−1(1− p)m−(N0−1)

= p

N0 − 1 = e−RT

N0 − 1 ,

by changing the index in the sum (m = n − 1) and by recognizing the negative
binomial with parameter (N0 − 1, p). Hence, we conclude that for N0 > 1

e−RT

N0
≤ E

[ 1
NT

]
≤ e−RT

N0 − 1 .

This ends the proof of Proposition 2.2.2.
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Proof of Lemma 2.2.4.

By symmetry of h with respect to 1/2, we have:

Yt = Y0 +
∫ t

0

(
α+ 2R

∫ 1

0
(γYs − Ys)h(γ)dγ

)
ds+ Ut

= Y0 +
∫ t

0

(
α− 2RYs

∫ 1

0
γh(γ)dγ

)
ds+ Ut

= Y0 +
∫ t

0
(α−RYs) ds+ Ut.

where Ut is a square-integrable martingale.
Let Ỹt = Yte

Rt, Ỹ0 = Y0. By Itô formula, we get

Ỹt = Ỹ0 + α

R

(
eRt − 1

)
+
∫ t

0
eRsdUs.

Replacing Ỹt by YteRt, we obtain

Yt =
(
Y0 −

α

R

)
e−Rt + α

R
+
∫ t

0
e−R(t−s)dUs.

We end the proof by taking the expectation and the limit as t→ +∞ of Yt to obtain
(2.16) and (2.17).

Proof of Theorem 2.2.5.

We will show that the process Y satisfies ergodicity and integrability assumptions
in Bansaye et al. [8] (see (H1) - (H4), Section 4). More precisely:

1. E [Yt] < +∞ for all t ≥ 0.

2. There exists $ < R and c > 0 such that E
[
Y 2
t

]
< ce$t for all t ≥ 0.

From (2.16) we note that E[Yt] < +∞ for all t ≥ 0. To prove the second point,
from (2.14) we have

E[Y 2
t ] = E

Y 2
0 +

∫ t

0

(
2αYs + 2R

∫ 1

0

(
γ2Y 2

s − Y 2
s

)
h(γ)dγ

)
ds


= Y 2

0 + 2α
∫ t

0
E[Ys]ds− 2θR

∫ t

0
E[Y 2

s ]ds, (2.40)

with θ =
∫ 1

0 (1− γ2)h(γ)dγ and 0 < θ < 1.

Substituting E[Yt] = (Y0−α/R)e−Rt+α/R into (2.40), we see that E(Y 2
t ) solves

the following equation:

dE[Y 2
t ]

dt
= −2θRE[Y 2

t ] +
(

2αY0 −
2α2

R

)
e−Rt + 2α2

R
. (2.41)
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The solution of the equation (2.41) is:

E[Y 2
t ] = e−2θRt

Y 2
0 +

∫ t

0
e2θRs

((
2αY0 −

2α2

R

)
e−Rs + 2α2

R

)
ds

 . (2.42)

Hence, if θ = 1
2 , we have

E[Y 2
t ] = Y 2

0 e
−Rt +

(
2αY0 −

2α2

R

)
te−Rt + 2α2

R2

(
1− e−Rt

)
≤ Y 2

0 e
−Rt +

(
2αY0 −

2α2

R

)
e−(R−θ)t + 2α2

R2

≤
(
Y 2

0 + 2αY0 + 2α2

R
+ 2α2

R2

)
e(0∨(θ−R))t = c1e

$t,

with $ = 0 ∨ (θ −R) := max(0, θ −R).

If θ 6= 1
2 ,

E[Y 2
t ] = e−2θRt

[
Y 2

0 +
(
2αY0 −

2α2

R

) ∫ t

0
e(2θ−1)Rsds+ 2α2

R

∫ t

0
e2θRsds

]

= Y 2
0 e
−2θRt +

(
2αY0 −

2α2

R

) 1
(2θ − 1)R

(
e−Rt − e−2θRt

)
+ α2

θR2

(
1− e−2θRt

)
≤
(
Y 2

0 +
(
2αY0 + 2α2

R

) 1
|2θ − 1|R + α2

θR2

)
= c2.

Thus, if we set c = max(c1, c2) then E
[
Y 2
t

]
< ce$t for all t ≥ 0.

Now, we apply by Theorem 5.3 of Meyn and Tweedie [82] to show that there
exists π ∈MF (R+) such that

lim
t→+∞

E[Yt] = 〈π, f〉 = α

R
.

The application of Meyn and Tweedie requires that the condition (S) (cf. Meyn
and Tweedie [82]) is satisfied, i.e. Y is a non-explosive right process, all compact
sets are petite for some skeleton chain, and condition (CD2) (cf. Meyn and Tweedie
[82]) holds for some compact set C and V bounded on C.

We first verify the condition (CD2). The infinitesimal generator A of Y is defined
for C1 test functions as

Af(x) = αf ′(x) + 2R
∫ 1

0

(
f(γx)− f(x)

)
h(γ)dγ.

For V (x) = x and f(x) = x+ 1, we have

AV (x) = α−Rx ≤ −R2 f(x) +
(
α+ R

2

)
1{

x≤ 2α
R

+1
}.
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Hence, (CD2) is satisfied. To verify the property of petiteness, we have

dYs = αds+ 2R
∫ 1

0
(γ − 1)Ys−Q(dγ, ds),

where Q(ds, dγ) is a Poisson point measure with intensity h(γ)dγds. Let us consider
the skeleton chain obtained by discretising the time in time steps4t. Our purpose is
to prove that there exist a compact set C and a measure ν such that the probability
transition kernel of the skeleton chain satisfies

K(y,B) ≥ ν(B) ∀y ∈ C,∀B measurable set.

We have

K(y,B) = Py
(
Y4t ∈ B

)
≥ Py

(
Y4t ∈ B, 1 jump in [0,4t]

)
= Py

(
Y4t ∈ B | 1 jump in [0,4t]

)
(2R4t)e−2R4t

= Py
(
(y + α4t)Γ ∈ B

)
(2R4t)e−2R4t

where Γ is a random variable with density h(γ). Thus:

K(y,B) ≥(2R4t)e−2R4t
∫ 1

0
1

{
γ ∈ B

y + α4t

}
h(γ) dγ.

Recall that h(γ) ≥ h > 0 for all γ ∈ (0, 1). Since C is a compact set, then there
exists M < +∞ such that max

y∈C
(y) ≤M . Then we obtain:

K(y,B) ≥(2R4t)e−2R4thLeb
(

B

y + α4t
∩ [0, 1]

)

≥(2R4t)e−2R4thLeb
(

B

M + α4t
∩ [0, 1]

)
where Leb(·) denotes a Lebesgue measure. This implies that the property of petite-
ness is satisfied. Thus the condition (S) is verified.

Finally, applying Theorem 4.2 of [8], we obtain the result

lim
t→+∞

〈Zt, f〉
Nt

= 〈π, f〉 = α

R
.

Proof of Proposition 2.2.9.

To prove (2.20), let us remark that the number of random divisions MT is inde-
pendent of (Γ1

i )i∈N∗ , because the division rate R is constant and because of the
construction of our stochastic process. Therefore, we have

E
[
ĥ`|MT

]
= E

[ 1
MT

MT∑
i=1

K`(γ − Γ1
i )
∣∣∣MT

]
= MTE[K`(γ − Γ1

1)]
MT

= E
[
K`(γ − Γ1

1)
]

= K` ? h(γ),
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and E
[
ĥ`
]

= E
[
E
[
ĥ`|MT

]]
= K` ?h(γ). By similar calculations as (2.20), we obtain

(2.21) and (2.22).

To prove ii), by the Strong Law of Large Numbers, we have

1
n

n∑
i=1

K`(γ − Γ1
i )

a.s−→ E
[
K`(γ − Γ1

1)
]

as n→ +∞.

From (2.6), we have limT→+∞NT = +∞ (a.s). Since MT = NT −N0 and N0 is
deterministic, this yields

1
MT

MT∑
i=1

K`

(
γ − Γ1

i

) a.s−→ E
[
K`(γ − Γ1

1)
]

= K` ? h(γ).

This ends the proof of Proposition 2.2.9.

Proof of Proposition 2.2.10.

We have

E
[
‖ĥ` − h‖2|MT

]
≤ ‖h−K` ? h‖2 + E

[
‖ĥ` − E[ĥ`]‖2|MT

]
.

For the variance term, using that E
[
ĥ`(γ)

]
= E

[
ĥ`(γ)|MT

]
E
[
‖ĥ` − E[ĥ`]‖22|MT

]
= E

[ ∫
R

∣∣∣ĥ`(γ)− E
[
ĥ`(γ)

]∣∣∣2dγ∣∣∣MT

]
=
∫
R
Var

[
ĥ`(γ)

∣∣∣MT

]
dγ

= 1
MT

∫
R
Var

[
K`(γ − Γ1

1)
]
dγ

≤ 1
MT

∫
R
E
[
K2
` (γ − Γ1

1)
]
dγ

By Fubini’s theorem, we get∫
R
E
[
K2
` (γ − Γ1

1)
]
dγ =

∫
R

∫
R
K2
` (γ − u)h(u)du dγ

=
∫
R
h(u)

(∫
R
K2
` (γ − u)dγ

)
du

= ‖K`‖22
∫
R
h(u)du = ‖K‖

2
2

`
.

Then we have
E
[
‖ĥ` − E[ĥ`]‖22|MT

]
≤ ‖K‖

2
2

MT `
. (2.43)

Hence, applying Cauchy-Schwarz’s inequality, we obtain (2.24). This ends the proof
of Proposition 2.2.10.
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Proof of Theorem 2.2.12.

This proof is inspired by the proof of Doumic et al. [39]. However, our problem here
is that the number of observations MT is random. To overcome this difficulty, we
work conditionally to MT to get concentration inequalities.

Hereafter, we refer
∫
f to

∫
R f and since the support of h is (0, 1), we can write∫

h(γ)dγ instead of
∫ 1
0 h(γ)dγ. Recall that

A(`) := sup
`′∈H

{
‖ĥ`,`′ − ĥ`′‖2 −

χ‖K‖2√
MT `′

}
+
.

Then, for any ` ∈ H, we have
‖ĥ− h‖2 ≤ A1 +A2 +A3,

where

A1 := ‖ĥ− ĥˆ̀,`‖2 ≤ A(`) + χ‖K‖2√
MT

ˆ̀
,

A2 := ‖ĥˆ̀,` − ĥ`‖2 ≤ A(ˆ̀) + χ‖K‖2√
MT `

,

A3 := ‖ĥ` − h‖2.

By definition of ˆ̀, we have

A1 +A2 ≤ 2A(`) + 2χ‖K‖2√
MT `

, (2.44)

and

A(`) ≤ sup
`′∈H

{
‖
(
ĥ`,`′ − E[ĥ`,`′ ]

)
−
(
ĥ`′ − E[ĥ`′ ]

)
‖2

+‖E[ĥ`,`′ ]− E[ĥ`′ ]‖2 −
χ‖K‖2√
MT `′

}
+

≤ ξT (`) + sup
`′∈H

{
‖E[ĥ`,`′ ]− E[ĥ`′ ]‖2

}
, (2.45)

where

ξT (`) = sup
`′∈H

{
‖
(
ĥ`,`′ − E[ĥ`,`′ ]

)
−
(
ĥ`′ − E[ĥ`′ ]

)
‖2 −

χ‖K‖2√
MT `′

}
+
. (2.46)

For the term sup
`′∈H

{
‖E[ĥ`,`′ ]− E[ĥ`′ ]‖2

}
, we have

E[ĥ`,`′ ]− E[ĥ`′ ] =
∫ (

K` ? K`′

)
(γ − u)h(u)du−

∫
K`′(γ − v)h(v)dv

=
∫ ∫

K`(γ − u− t)K`′(t)h(u)dtdu−
∫
K`′(γ − v)h(v)dv

=
∫ ∫

K`(v − u)K`′(γ − v)h(u)dudv −
∫
K`′(γ − v)h(v)dv

=
∫
K`′(γ − v)

(∫
K`(v − u)h(u)du− h(v)

)
dv

=
∫
K`′(γ − v)

(
K` ? h(v)− h(v)

)
dv.
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Hence, we derive

‖E[ĥ`,`′ ]− E[ĥ`′ ]‖2 = ‖K`′ ? (K` ? h− h)‖2 ≤ ‖K‖1‖K` ? h− h‖2, (2.47)

where the right hand side does not depend on `′ allowing us to take sup
`′∈H

in the left

hand side.

Thus, (2.44), (2.46) and (2.47) give

A1 +A2 ≤ 2ξT (`) + 2‖K‖1‖K` ? h− h‖2 + 2χ‖K‖2√
MT `

.

Then,

E
[
(A1 +A2)2

]
≤ 12E[ξ2

T (`)] + 12‖K‖21‖K` ? h− h‖22 + 12χ
2‖K‖22
`

E
[ 1
MT

]
. (2.48)

For the term A3, we have from (2.43)

E
[
A2

3

]
= ‖E[ĥ`]− h‖22 + E

[
‖ĥ` − E[ĥ`]‖22

]
≤ ‖K` ? h− h‖22 + ‖K‖

2
2

`
E
[ 1
MT

]
.

Finally, replacing χ by (1 + ε)(1 + ‖K‖1), we have for any ` ∈ H

E
[
‖ĥ− h‖22

]
≤ 2E

[
(A1 +A2)2

]
+ 2E

[
A2

3

]
≤ 24E

[
ξ2
T (`)

]
+ 2

(
1 + 12‖K‖21

)
‖K` ? h− h‖22

+ 2
(

1 + 12(1 + ε)2(1 + ‖K‖1)2
)‖K‖22

`
E
[ 1
MT

]
≤ 24E

[
ξ2
T (`)

]
+ C1

(
‖K` ? h− h‖22 + ‖K‖

2
2

`
E
[ 1
MT

])
, (2.49)

with C1 a constant depending on ε and ‖K‖1.

It remains to deal with the term E
[
ξ2
T (`)

]
where ξT (`) is defined in (2.46),

ξT (`) ≤ sup
`′∈H

{
‖ĥ`,`′ − E[ĥ`,`′ ]‖2 + ‖ĥ`′ − E[ĥ`′ ]‖2 −

χ‖K‖2√
MT `′

}
+

≤ sup
`′∈H

{
‖ĥ`′ − E[ĥ`′ ]‖2‖K‖1 + ‖ĥ`′ − E[ĥ`′ ]‖2 −

χ‖K‖2√
MT `′

}
+

≤ sup
`′∈H

{(
1 + ‖K‖1

)
‖ĥ`′ − E[ĥ`′ ]‖2 −

(1 + ε)(1 + ‖K‖1)‖K‖2√
MT `′

}
+

≤ (1 + ‖K‖1)ST ,

where
ST := sup

`∈H

{
‖ĥ` − E[ĥ`]‖2 −

(1 + ε)‖K‖2√
MT `

}
+
.
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Hence,

E
[
ξ2
T (`)

]
≤ (1 + ‖K‖1)2E

[
E
[
S2
T |MT

]]
. (2.50)

If we show that
E
[
S2
T |MT = n

]
≤ C∗

1
n
, (2.51)

then
E
[
ξ2
T (`)

]
≤ C∗(1 + ‖K‖1)2E

[ 1
MT

]
(2.52)

where C∗ is a constant.

Let us establish (2.51). When MT = n, ∀n ∈ N∗, we set

E
[
Σ2
n

]
= E

[
S2
T |MT = n

]
where

Σn := sup
`∈H

{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}
+
,

with
Z` = ĥ` − E[ĥ`] = 1

n

n∑
i=1

K`(γ − Γ1
i )− E[K`(γ − Γ1

i )].

Then,

E
[
Σ2
n

]
= E

 sup
`∈H

{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}2

+


≤
∫ +∞

0
P

 sup
`∈H

{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}2

+
≥ x

 dx
≤
∑
`∈H

∫ +∞

0
P

{‖Z`‖2 − (1 + ε)‖K‖2√
n`

}2

+
≥ x

 dx.
We bound this with Talagrand’s inequality.

Let A be a countable dense subset of the unit ball of L2([0, 1]). We express the
norm ‖Z`‖2 as

‖Z`‖2 = sup
a∈A

∫
a(γ)Z`(γ)dγ

= sup
a∈A

n∑
i=1

∫
a(γ) 1

n

(
K`(γ − Γ1

i )− E[K`(γ − Γ1
i )]
)
dγ.

Let
Vi,Γ =

∫
a(γ) 1

n

(
K`(γ − Γ1

i )− E[K`(γ − Γ1
i )]
)
dγ.

Then Vi,Γ, i = 1, . . . , n is a sequence of i.i.d random variables with zero mean. Thus,
we can apply Talagrand’s inequality (see [78, p. 170]) to ‖Z`‖2 = sup

a∈A

∑n
i=1 Vi,Γ.

For all η, x > 0, one has

P
(
‖Z`‖2 ≥ (1 + η)E[‖Z`‖2] +

√
2νx+ c(η)bx

)
≤ e−x,
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where c(η) = 1/3 + η−1,

ν = 1
n

sup
a∈A

E
[(∫

a(γ)
(
K`(γ − Γ1

1)− E[K`(γ − Γ1
1)]
)
dγ

)2
]
,

and,
b = 1

n
sup

y∈(0,1),a∈A

∫
a(γ)

(
K`(γ − y)− E[K`(γ − Γ1

1)]
)
dγ.

Next, we calculate the terms E[‖Z`‖2], ν and b. Applying Cauchy - Schwarz’s
inequality and using independence of variables, we get

E
[
‖Z`‖2

]
≤
(
E
[
‖Z`‖22

])1/2

≤

E
∫

 1
n

n∑
i=1

K`(γ − Γ1
i )− E[K`(γ − Γ1

i )]

2

dγ




1/2

= 1
n

∫ E


 n∑
i=1

K`(γ − Γ1
i )− E[K`(γ − Γ1

i )]

2
 dγ


1/2

= 1
n

∫ n∑
i=1

E
[(
K`(γ − Γ1

i )− E[K`(γ − Γ1
i )]
)2
]
dγ

1/2

≤ 1
n

(
n

∫
E
[
K`(γ − Γ1

1)2
]
dγ

)1/2
= ‖K‖2√

n`
.

For the term ν, we have

ν ≤ 1
n

sup
a∈A

E
[(∫

a(γ)K`(γ − Γ1
1)dγ

)2
]

≤ 1
n

sup
a∈A

E
[∫
|K`(γ − Γ1

1)|dγ ×
∫
a2(γ)|K`(γ − Γ1

1)|dγ
]

≤ ‖K‖1
n

sup
a∈A

E
[∫

a2(γ)|K`(γ − Γ1
1)|dγ

]
≤ ‖K‖1

n
sup
a∈A

∫
a2(γ)E

[
|K`(γ − Γ1

1)|
]
dγ

≤ ‖K‖1
n

sup
a∈A

∫ ∫
a2(γ)|K`(γ − u)|h(u)dudγ

≤ ‖h‖∞‖K‖
2
1

n
.

For the term b, we have

b = 1
n

sup
y∈(0,1)

‖K`(· − y)− E[K`(· − Γ1
1)]‖2

≤ 1
n

 sup
y∈(0,1)

‖K`(· − y)‖2 +
(
E
[ ∫

K2
` (γ − Γ1

1)dγ
])1/2

 ≤ 2‖K‖2
n
√
`
.
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So, for all η, x > 0, we have

P
(
‖Z`‖2 ≥ (1 + η)‖K‖2√

n`
+ ‖h‖1/2∞ ‖K‖1

√
2x
n

+ 2c(η)‖K‖2x
n
√
`

)
≤ e−x.

Let W` be some strictly positive weights, we apply the previous inequality to
x = W` + u for u > 0. We have

P

‖Z`‖2 ≥ (1 + η)‖K‖2√
n`

+ ‖h‖1/2∞ ‖K‖1

√
W`

n
+ 2c(η)‖K‖2W`

n
√
`

+ ‖h‖1/2∞ ‖K‖1
√
u

n
+ 2c(η)‖K‖2u

n
√
`

 ≤ e−W`−u.

If we set

Ψ` = (1 + η)‖K‖2√
n`

+ ‖h‖1/2∞ ‖K‖1

√
W`

n
+ 2c(η)‖K‖2W`

n
√
`

,

then,
P
(
‖Z`‖2 −Ψ` ≥ ‖h‖1/2∞ ‖K‖1

√
u

n
+ 2c(η)‖K‖2u

n
√
`

)
≤ e−W`−u.

Let

Λ = E
[

sup
`∈H

(
‖Z`‖2 −Ψ`

)2
+

]
=
∫ +∞

0
P
[

sup
`∈H

(
‖Z`‖2 −Ψ`

)2
+ ≥ x

]
dx.

An upper bound of Λ is given by

Λ ≤
∑
`∈H

∫ +∞

0
P
[(
‖Z‖2 −Ψ`

)2
+ ≥ x

]
dx.

Let us take u such that

x = f(u)2 =
(
‖h‖1/2∞ ‖K‖1

√
u

n
+ 2c(η)‖K‖2u

n
√
`

)2

.

So,

dx = 2f(u)
(
‖h‖1/2∞ ‖K‖1

1
2
√
nu

+ 2c(η)‖K‖2
n
√
`

)
du.

Hence,

Λ ≤
∑
`∈H

∫ +∞

0
e−W`−u2f(u)

(
‖h‖1/2∞ ‖K‖1

1
2
√
nu

+ 2c(η)‖K‖2
n
√
`

)
du

≤
∑
`∈H

∫ +∞

0
e−W`−u2f(u)

(
‖h‖1/2∞ ‖K‖1

√
u

n
+ 2c(η)‖K‖2u

n
√
`

)
u−1du

≤ 2
∑
`∈H

e−W`

∫ +∞

0
f2(u)e−uu−1du

≤ Cη
∑
`∈H

e−W`

(
‖h‖∞‖K‖21

∫ +∞

0
e−udu+ ‖K‖

2
2

`2

∫ +∞

0
ue−udu

)
× 1
n

≤ Cη
∑
`∈H

e−W`

(
‖h‖∞‖K‖21 + ‖K‖

2
2

`2

)
× 1
n
. (2.53)
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We need to choose W` and η such that

E
[
Σ2
n

]
= E

 sup
`∈H

{
‖Z`‖2 −

(1 + ε)‖K‖2√
n`

}2

+

 ≤ Λ. (2.54)

Let θ > 0, we choose

W` = θ2‖K‖22
2‖h‖∞‖K‖21

√
`
,

the we have
Ψ` = (1 + η)‖K‖2√

n`
+ θ‖K‖2√

2n
√
`

+ c(η)θ2‖K‖32
‖h‖∞‖K‖21

1
n`
.

Obviously, the series in (2.53) is finite and for any ` ∈ H, since ` ≤ 1, we have

Ψ` ≤ (1 + η + θ)‖K‖2√
n`

+ c(η)θ2‖K‖32
‖h‖∞‖K‖21

1
n`

≤
(

1 + η + θ + c(η)θ2‖K‖22
‖h‖∞‖K‖21

1√
n`

)
‖K‖2√
n`

.

Since H ⊂
{
4−1,4 = 1, . . . ,4max

}
, if we choose 4max = bδnc for some δ > 0, then

`min = 4−1
max and we obtain

Ψ` ≤
(

1 + η + θ + c(η)θ2‖K‖22
√
δ

‖h‖∞‖K‖21

)
‖K‖2√
n`

.

It remains to choose η = ε/2 and θ small enough such that

θ + c(η)θ2‖K‖22
√
δ

‖h‖∞‖K‖21
= ε

2 ,

then
Ψ` ≤ (1 + ε)‖K‖2√

n`
,

and we get
E
[
Σ2
n

]
≤ C∗ ×

1
n
,

where C∗ is a constant depending on δ,ε,‖h‖∞,‖K‖1 and ‖K‖2. Hence, we get (2.52).

Combining (2.49) and (2.52), we obtain

E
[
‖ĥ− h‖22

]
≤ C1

(
‖K` ? h− h‖22 + ‖K‖

2
2

`
E
[ 1
MT

])
+ C∗E

[ 1
MT

]
Moreover, since NT > N0, we have

E
[ 1
MT

]
= E

[ 1
NT −N0

]
= E

[
NT

NT −N0

1
NT

]
= E

 1
1− N0

NT

1
NT


≤ E

 1
1− N0

N0+1

1
NT


≤ (N0 + 1)E

[ 1
NT

]
. (2.55)
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Then, using (2.10), (2.12) and (2.55), recall the definition of %(T )−1 in (2.29),
we obtain for any ` ∈ H

E
[
‖ĥ− h‖22

]
≤ C1

(
‖K` ? h− h‖22 + ‖K‖

2
2

`
%(T )−1

)
+ C2%(T )−1.

This ends the proof of Theorem 2.2.12.

Proof of Theorem 2.2.15.

We begin with the bias term ‖K` ? h − h‖2 in the right hand side of the oracle
inequality (2.30). For any ` ∈ H and γ ∈ (0, 1), let k = bβc and b(γ) = K` ? h(γ)−
h(γ), then we have

h(γ + u`) = h(γ) + h′(γ)u`+ · · ·+ (u`)k

(k − 1)!

∫ 1

0
(1− θ)k−1h(k)(γ + θu`)dθ.

Since K is a kernel of order β∗ and β ∈ (0, β∗), we get

b(γ) =
∫
K(u) (u`)k

(k − 1)!

[∫ 1

0
(1− θ)k−1

(
h(k)(γ + θu`)− h(k)(γ)

)
dθ

]
du.

Setting Ek,`(u) = |K(u)| |u`|
k

(k−1)! for the sake of notation. Since h ∈ H(β, L) and
applying twice the generalized Minskowki’s inequality, we obtain

‖h− E[ĥ]‖22 =
∫
b2(γ)dγ

≤
∫ ∫ Ek,`(u)

[∫ 1

0
(1− θ)k−1

∣∣∣h(k)(γ + θu`)− h(k)(γ)
∣∣∣dθ] du

2

dγ

≤

∫ Ek,`(u)

∫ (∫ 1

0
(1− θ)k−1

∣∣∣h(k)(γ + θu`)− h(k)(γ)
∣∣∣dθ)2

dγ

1/2

du

2

≤

∫ Ek,`(u)
[∫ 1

0
(1− θ)k−1

(∫ ∣∣∣h(k)(γ + θu`)− h(k)(γ)
∣∣∣2dγ)1/2

dθ

]
du

2

≤

∫ Ek,`(u)
[∫ 1

0
(1− θ)k−1L(θu`)β−kdθ

]
du

2

≤

∫ |K(u)| |u`|
k

(k − 1)!

[∫ 1

0
(1− θ)k−1L(u`)β−kdθ

]
du

2

≤ CK,L,β`2β,

where CK,L,β =
(
L
k!
∫
|u|β|K(u)|du

)2
.

Finally, we have

E
[
‖ĥ− h‖22

]
≤ C1 inf

`∈H

{
CK,L,β`

2β + ‖K‖
2
2

`
%(T )−1

}
+ C2%(T )−1. (2.56)
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Taking the derivative of the expression inside the inf
`∈H

of (2.56) with respect to `, we
obtain the minimizer

`∗ =
(
‖K‖22

2βCK,L,β

) 1
2β+1

%(T )−
1

2β+1 .

Since the optimal bandwidth ˆ̀ is proportional to `∗ up to a multiplicative constant.
Therefore, by substituting ` by ˆ̀ in the right hand side of (2.56), we obtain

E
[
‖ĥ− h‖22

]
≤ C3%(T )−

2β
2β+1 ,

with C3 a constant depending on N0, δ, ε, ‖K‖1, ‖K‖2, ‖h‖∞, β and L. This ends
the proof of Theorem 2.2.15.

Proof of Theorem 2.2.16.

For T > 0, let us denote by ĥT the estimator of h. To prove the Theorem 2.2.16, we
apply the general reduction scheme proposed by Tsybakov [108] (Section 2.2, p.79).
We will show the existence of a family Hm,T =

{
hj,T : j = 0, 1, . . . ,m

}
such that:

1) hj,T ∈ H(β, L), j = 0, . . . ,m.

2) ‖hj,T − hk,T ‖2 ≥ 2c e−
β

2β+1RT , 0 ≤ j < k ≤ m.

3) 1
m

∑m
j=1K(Pj , P0) ≤ ϑ log(m) for 0 < ϑ < 1/8. Pj and P0 are the distribution

of observations when the division kernels are hj,T and h0, respectively. K(P,Q)
denotes the Kullback-Leibler divergence between two measures P and Q:

K(P,Q) =


∫

log dP
dQdP, if P � Q

+∞, otherwise.

Under the preceding conditions 1, 2, 3, Tsybakov [108] (Theorem 2.5, p.99) show
that

inf
ĥT

max
h∈Hm,T

P
(
‖ĥT − h‖22 ≥ c2e−

2β
2β+1RT

)
≥ C ′, (2.57)

where the infimum is taken over all estimators ĥT and positive constant C ′ is inde-
pendent of T . This will be sufficient to obtain Theorem 2.2.16 by [108, Theorem
2.7]. The proof ends with proposing a family Hm,T and checking the assumptions 1,
2, 3.

Construction of the family Hm,T :

The idea is construct a family of perturbations around h0 which is a symmetric
density with respect to 1

2 and belongs to H(L2 , β). For the simplification, we choose
h0(γ) = 1(0,1)(γ).

Let c0 > 0 be a real number, and let γ ∈ (0, 1), f(γ) = LD−βg (Dγ) where g is
a regular function having support (0, 1) and

∫
g(γ)dγ = 0, g ∈ H(1

2 , β), we define

D = dc0e
RT

2β+1 e and fk(γ) = f

(
γ − (k − 1)

D

)
,
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By definition, the functions fk’s have disjoint support and one can check that the
functions fk ∈ H(L2 , β).

Then, the function hj,T will be chosen in

D =

hδ(γ) = h0(γ) + c1

D∑
k=1

δkfk(γ) : δ = (δ1, . . . , δD) ∈ {0, 1}D
 ,

where

c1 = min
(

1
LD−β‖g‖∞

, 1
)
. (2.58)

We now check that hδ is a density, since
∫
hδ(γ)dγ =

∫
h0(γ)dγ = 1, it remains

to verify that hδ(γ) ≥ 0 ∀ γ. We have

inf
(0,1)

hδ(γ) ≥ inf
(0,1)

h0 − ‖c1

D∑
k=1

δkfk‖∞

≥ 1− c1LD
−βmax

k
sup
γ
|δk|g

(
Dγ − (k − 1)

)
≥ 1− c1LD

−β‖g‖∞ ≥ 0,

by the choice of c1. Thus the family of densities D is well-defined.

1) The condition hj,T ∈ H(β, L):

Let us denote q = bβc, then for all γ, γ′ ∈ (0, 1) we have

∣∣∣∣h(q)
δ (γ)− h(q)

δ (γ′)
∣∣∣∣ =

∣∣∣∣h(q)
0 (γ)− h(q)

0 (γ′) + c1

D∑
k=1

δk
(
f

(q)
k (γ)− f (q)

k (γ′)
)∣∣∣∣

≤ c1

D∑
k=1
|δk|

∣∣∣∣f (q)
k (γ)− f (q)

k (γ′)
∣∣∣∣

≤ c1max
k

∣∣∣∣f (q)
k (γ)− f (q)

k (γ′)
∣∣∣∣

≤ c1LD
−βmax

k
Dq

∣∣∣∣g(q)(Dγ − (k − 1))− g(q)(Dγ′ − (k − 1))
∣∣∣∣

≤ c1LD
bβc−βDβ−bβc|γ − γ′|β−bβc ≤ L|γ − γ′|β−bβc,

which is always satisfied with c1 = min
(

1
LD−β‖g‖∞ , 1

)
, thus hδ ∈ H(L, β).

2) The condition ‖hj,T − hk,T ‖2 ≥ 2c e−
β

2β+1RT :
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For all δ, δ′ ∈ {0, 1}D, we have

‖hδ − hδ′‖2 =
[∫ 1

0

(
hδ(γ)− hδ′(γ)

)2
dγ

]1/2

=

∫ 1

0

c1

D∑
k=1

(δk − δ′k)fk(γ)

2

dγ


1/2

= c1

∫ 1

0

D∑
k=1

(δk − δ′k)2f2
k (γ)dγ

1/2

= c1

 D∑
k=1

(δk − δ′k)2
∫ k

D

k−1
D

f2
k (γ)dγ

1/2

= c1

 D∑
k=1

(δk − δ′k)2
∫ k

D

k−1
D

L2D−2βg2 (Dγ − (k − 1)
)
dγ

1/2

= c1LD
−β−1/2‖g‖2

 D∑
k=1

(δk − δ′k)2

1/2

= c1LD
−β−1/2‖g‖2

√
dH(δ, δ′),

where dH(δ, δ′) =
∑D
k=1 1{δk 6= δ′k} is the Hamming distance between δ and δ′.

According to the Lemma of Varshamov-Gilbert (cf. Tsybakov [108], p.104),
there exist a subset

{
δ(0), . . . , δ(m)

}
of {0, 1}D with cardinal (2.59) such that δ(0) =

(0, . . . , 0),
m ≥ 2D/8, (2.59)

and
dH(δ(j), δ(k)) ≥ D

8 , ∀ 0 ≤ j < k ≤ m. (2.60)

Then, by setting hj,T (x) = hδ(j)(x), j = 0, . . . ,m, we obtain

‖hj,T − hk,T ‖2 = c1LD
−β− 1

2 ‖g‖2
√
dH(δ(j), δ(k))

≥ c1LD
−β−1/2‖g‖2

√
D

8

≥ c1L

4 ‖g‖2D
−β

whenever D ≥ 8.

Suppose that NT ≥ NT ∗ where T ∗ = log
(

7
c0

)
2β+1
R . Then, D ≥ 8 and Dβ ≤

(2c0)βe
β

2β+1RT . This implies:

‖hj,T − hk,T ‖2 ≥
c1L

4 ‖g‖2(2c0)−βe−
β

2β+1RT ,

But,

min
(

1
L‖g‖∞

, 1
)
≤ c1 ≤ 1

Hence, we obtain
‖hj,T − hk,T ‖2 ≥ 2c e−

β
2β+1RT ,

where
c = min(1, L‖g‖2)

8 (2c0)−β.
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3) The condition 1
m

∑m
j=1K(Pj , P0) ≤ ϑ log(m) for 0 < ϑ < 1/8:

We need to show that for all δ ∈ {0, 1}D,

K(Pδ, P0) ≤ ϑ log(m),

where

K(Pδ, P0) = E
[
log dPδ

dP0
|FT (Z)

]
,

and where (Zt)t∈[0,T ] is defined in (2.5) with the random measure Q having intensity
q(ds, di, dγ) = Rhδ(γ)ds n(di)dγ.

Here, the difficulty comes from the fact that NT is variable because the obser-
vations result from a stochastic process Zt. The law of these observations is not a
probability distribution on a fixed Rn where n would be the sample size, but rather a
probability distribution on a path space. Pδ is the probability distribution when the
Poisson point measure Q has intensity Rhδ(γ)ds n(di)dγ. Thus a natural tool is to
use Girsanov’s theorem (see [65], Theorem 3.24, p. 159) saying that Pδ is absolutely
continuous with respect to P0 on FT with

dPδ
dP0
|FT = Dδ

T ,

where (Dδ
t )t∈[0,T ] is the unique solution of the following SDE (see Proposition 4.17

of [105] for a similar SDE):

Dδ
T = 1 +

∫ T

0

∫
E
Dδ
s−1{i≤Ns−}

(
hδ(γ)
h0(γ) − 1

)
Q(ds, di, dγ). (2.61)

Apply Itô formula for jump processes to (2.61), we get

logDδ
T =

∫ T

0

∫
E
1{i≤Ns−}

 log

Dδ
s− −

(
hδ(γ)
h0(γ) − 1

)
Dδ
s−

− logDδ
s−

Q(ds, di, dγ)

=
∫ T

0

∫
E
1{i≤Ns−} log hδ(γ)

h0(γ)Q(ds, di, dγ) =
NT∑
i=1

log hδ(Γ
1
i )

h0(Γ1
i )

by definition of (Γ1
1, . . . ,Γ1

NT
).

Then,

K(Pδ, P0) = Eδ
[
logDδ

T

]
= Eδ

NT∑
i=1

log hδ(Γ
1
i )

h0(Γ1
i )


= E [NT ]Eδ

[
log hδ(Γ

1
1)

h0(Γ1
1)

]
= E [NT ]

∫ 1

0
hδ(γ) log hδ(γ)

h0(γ)dγ.

Here, E [NT ] does not depend on hδ and we have E[NT ] = N0e
RT . Thus, recall the
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definition of hδ(·) and note that log(1 + x) ≤ x for x > −1, we get

K(Pδ, P0) = N0e
RT
∫ 1

0
hδ(γ) log(hδ(γ))dγ

= N0e
RT
∫ 1

0

(
1 + c1

D∑
k=1

δkfk(γ)
)

log
(

1 + c1

D∑
k=1

δkfk(γ)
)
dγ

= N0e
RT

D∑
k=1

∫ k
D

k−1
D

(
1 + c1δkfk(γ)

)
log

(
1 + c1δkfk(γ)

)
dγ

= N0e
RT

D∑
k=1

δk

∫ 1/D

0

(
1 + c1f(γ)

)
log

(
1 + c1f(γ)

)
dγ

≤ N0e
RTD

∫ 1/D

0

(
1 + c1f(γ)

)
c1f(γ)dγ

≤ N0e
RT

[
c1LD

−β
∫ 1/D

0
g(Dγ)Ddγ + c2

1L
2D−2β

∫ 1/D

0
g2(Dγ)Ddγ

]

≤ N0e
RT c2

1L
2D−2β

∫ 1

0
g2(γ)dγ

≤ N0c
2
1L

2‖g‖22eRT c
−2β
0 e

− 2β
2β+1RT

≤ N0L
2‖g‖22c

−2β−1
0 D since c1 ≤ 1.

From (2.59), we have m ≥ 2D/8 then

D ≤ 8 log(m)
log(2) .

Hence, if we set

c0 =
(

8N0L
2‖g‖22

ϑ log(2)

)1/(2β+1)

,

we obtain K(Pδ, P0) ≤ ϑ log(m). This ends the proof of Theorem 2.2.16.

2.5 Perspective

In this chapter, we construct an adaptive estimator for the division kernel h of a
size-structured population model where the cell divisions occur under the assumption
that both the division rate and the growth rate are constants. It would be interesting
to extend the problem of estimating the division kernel to the case where the division
kernel is a function of size of cells B(x). The main difficulty arises in this case coming
from the fact that the size of the population depends on the size distribution which
itself depends on the division kernel h. In Hoffmann and Olivier [59], the authors also
encounter this difficulty when they consider the problem of estimating the division
rate B(x). For this following work, we will need to study a stochastic model to
describe the evolution of cells in the non-constant case of division rate, then propose
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an adaptive estimation procedure to construct an estimator of h by using a kernel-
based estimator, if possible. Lastly, we expect to obtain an oracle type inequality
and optimal rates of convergence for theoretical results.
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This chapter is a work in progress and is the fruit of a collaboration with Viet
Chi Tran (Université de Lille 1), Thanh Mai Pham Ngoc (Université Paris Sud) and
Vincent Rivoirard (Université Paris Dauphine).

3.1 Introduction

In this chapter, we consider the size-structured population describing the binary cell
divisions we studied in Chapter 2 but in a general case where the division rate is
a function B(x) and the toxicity x ∈ R+ grows inside a cell with rate αg(x) where
g(x) is a continuous positive function and α is a positive constant. Recall that when
a cell divides, a random fraction Γ of the toxicity goes in the first daughter cell and
a fraction (1 − Γ) in the second one. Here, Γ is assumed to be a random variable
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having a symmetric distribution H(dγ) on [0, 1] such that P(Γ = 0) = P(Γ = 1) = 0.
Indeed, in Section 3.3 we shall assume that H(dγ) has a density h(γ) in the problem
of estimating the division kernel. Furthermore, the division rate B and the function
g are assumed to satisfy the following assumptions:

Assumption 3.1.1.

• The division rate B(x) is continuous and bounded by a positive constant B̄.

• We have g ∈ L∞(R+).

We assume that the toxicity (Xt)t≥0 satisfies

dXt = αg(Xt)dt. (3.1)

Then we describe the population of cells at time t ≥ 0 by the following random point
measure:

Zt(dx) =
Nt∑
i=1

δXi
t
(dx),

where Nt is the number of cells living at time t.

We are interested in studying a renormalization (Zn)n∈N∗ of the microscopic
process Z. We prove in Section 3.2.2 that the renormalized microscopic process con-
verges in a large population limit (see for instance, Bansaye and Tran [11], Fournier
and Méléard [50], Tran [106] for such studies on the large population limit) to a
unique solution of the following growth-fragmentation equation:

∂tn(t, x)+α∂x
(
g(x)n(t, x)

)
+B(x)n(t, x) = 2

∫ +∞

0
n(t, y)B(y)h

(
x

y

)
dx

y
, t ≥ 0, x ≥ 0,

(3.2)
where n(t, x) is the density of the cells structured by the toxicity x at time t and
H(dγ) is assumed to be having a density h(γ). This growth-fragmentation equation
is widely used for the problem of estimating the division rate B(x) in both analysis
and statistics. In Bourgeron et al. [16] and Doumic and Tine [41], inverse problem
methods are used to estimate B. For the statistical approach, Doumic et al. [39]
construct an estimator of B using a kernel method in the case of equal mitosis where
H(dγ) = δ1/2(dγ), i.e. the daughters of a cell x have size x/2. Here, we are inter-
ested in the estimation of the division kernel h(·) of the size-structured population
introduced in Chapter 2 but for the case where we do not observe completely the
whole division tree, i.e. we only have the observations of the population at a fixed
time T . In this context, a kernel estimator as in Chapter 2 can not be used anymore
since the observations Γ1

1, . . . ,Γ1
MT

are not available. Thus we construct an estimate
of h starting from the growth-fragmentation equation (3.2). Study of the asymptotic
behavior of the solution n(t, x) (see [37, 84, 92]) shows that n(t, x) ≈ N(x)eλx where
(N,λ) is the unique solution of the following integro-differential equation:

α∂x
(
g(x)N(x)

)
+ (λ+B(x))N(x) = 2

∫ +∞

0
N(y)B(y)h

(x
y

)dy
y
, x ≥ 0. (3.3)
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3.2. RENORMALIZATION OF THE MICROSCOPIC PROCESS AND LARGE
POPULATION LIMIT

One can observe that there is a multiplicative convolution in the right hand side
(r.h.s) of Equation (3.3). Thus we resort to Fourier techniques for a deconvolution
procedure, then estimate h based on n observations having distribution N(x)dx.

This chapter is organized as follows: in Section 3.2, we describe the renormalized
stochastic process (Zn)n∈N∗ with its moment and martingale properties. Then we
prove the convergence of (Zn)n∈N∗ in the large population limit. Statistical estima-
tion of the division rate h(·) and the consistency of the estimator are presented in
Section 3.3.

Notation. We introduce some notations used in the sequel.

For two spaces metric E and F , we note that Cb(E,F ) (resp. D(E,F ), C1,1
b ,

Bb(E,F )) is the set of continuous bounded functions from E to F embedded with
the uniform convergences norm (resp. of càdlàg functions from E to F embedded
with the Skorohod distance, of bounded functions of class C1 in t and x with bounded
derivatives, of bounded measurable functions).

For a measurable space (E, E), we note MF (E) the set of finite measure on
E. For a measure m ∈ MF (E) and f ∈ Bb(E), we note 〈m, f〉 =

∫
E fdm. The

set of finite measure on R+ is denoted by MF (R+). By default, we will consider
the weak convergence topology. When necessary, we will write

(
MF (R+), w

)
(resp.(

MF (R+), v
)
) to precise the weak convergence topology (resp. vague convergence

topology).

In this chapter, we denote by f∗ the Fourier transform of an integrable function
f defined by

f∗(ξ) =
∫ +∞

−∞
f(x)eixξdx.

3.2 Renormalization of the microscopic process and large
population limit

3.2.1 Renormalized microscopic processes

We first define the renormalized microscopic process, then introduce a SDE driven
by a Poisson point measure which describes the evolution of cells.

Definition 3.2.1. For n ∈ N∗, we define the renormalized process belonging to
MF (R+) by

Znt (dx) = 1
n

Nn
t∑

i=1
δXi

t
(dx), (3.4)

where Nn
t = 〈nZnt , 1〉 is the number of cells alive at time t. The parameter n is

related to the large population limit which corresponds to n→ +∞.
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Definition 3.2.2. Let (Ω,F ,P) be a probability space:

1. Let (Zn0 )n∈N∗ be a sequence of independent random variable such that

∀n ∈ N∗, Zn0 ∈MF (R+) and sup
n∈N∗

E(〈Zn0 , 1〉2) < +∞. (3.5)

2. Let Q(ds, dν, di, dγ) be a Poisson point measure on R+×E := R+×R+×N∗×
[0, 1] with intensity q(ds, dν, di, dγ) = B̄ ds dν n(di)H(dγ) where n(di) is the
counting measure on N∗ and ds, dν are Lebesgue measures on R+. We denote
{Ft}t≥0 the canonical filtration associated with the Poisson point measure.

Then, for every test function ft(x) = f(x, t) ∈ C1,1
b (R+×R+,R) the cell popula-

tion is described by a SDE for the renormalized process Zn ∈MF (R+):

〈Znt , f〉 = 〈Zn0 , f〉+
∫ t

0

∫
R+

(
∂sfs(x) + αg(x)∂xfs(x)

)
Zns (dx)ds

+ 1
n

∫ t

0

∫
E
1{i≤Nn

s−}1{
ν≤

B(Xi
s−)

B̄

} [fs(γXi
s−
)

+ fs
(
(1− γ)Xi

s−
)
− fs

(
Xi
s−
)]
Q(ds, dν, di, dγ).

(3.6)

Remark 3.2.3. In fact, the Xi
t ’s depend also on n, since the division occurs differ-

ently when n varies. However, we omit the n for sake of notation.

In the sequel, we show some moment and martingale properties that will be
useful in the proof of the convergence in large population limit.

Definition 3.2.4. Let N > 0 and n ∈ N∗, we define the stopping-times as follows

τnN = inf
{
t ≥ 0, 〈Znt , 1〉 ≥ N

}
. (3.7)

Proposition 3.2.5. Consider the sequence (Zn)n∈N∗, if there exists q ≥ 1 such that

sup
n∈N∗

(
E〈Zn0 , 1〉q

)
< +∞, (3.8)

then we have, for all T > 0

sup
n∈N∗

E

 sup
t∈[0,T ]

〈Znt , 1〉q
 < +∞. (3.9)

Proof. We use ideas from [50, 105] to prove Proposition 3.2.5. Let N > 0, n ∈ N∗
and τnN is the stopping-times as in Definition 3.2.4. From equation (3.6), put f ≡ 1
we have

〈Znt∧τnN , 1〉 = 〈Zn0 , 1〉+
∫ t∧τnN

0

∫
E
1{i≤Nn

s−}1
{
ν≤

B(Xi
s−)

B̄

}Q(ds, dν, di, dγ).
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Applying Ito’s formula for jump process with finite variation (see [63], Theorem
5.1 on p.67), we get

〈Znt∧τnN , 1〉
q = 〈Zn0 , 1〉q

+
∫ t∧τnN

0

∫
E
1{i≤Nn

s−}1
{
ν≤

B(Xi
s−)

B̄

} [(〈Zns−, 1〉+ 1
n

)q
− 〈Zns−, 1〉q

]
Q(ds, dν, di, dγ).

Since we have increasing functions of t

sup
s∈[0,t∧τnN ]

〈Zns , 1〉q = 〈Znt∧τnN , 1〉
q.

Hence,

E

 sup
s∈[0,t∧τnN ]

〈Zns , 1〉q
 = E

(
〈Zn0 , 1〉q

)
+

+ E

∫ t∧τnN

0

∫
R+

[(
〈Zns , 1〉+ 1

n

)q
− 〈Zns , 1〉q

]
nB(x)Zns (dx)ds


≤ E

(
〈Zn0 , 1〉q

)
+ B̄ E

∫ t∧τnN

0

∫
R+

1
nq−1

[(
n〈Zns , 1〉+ 1

)q − (n〈Zns , 1〉)q
]
Zns (dx)ds


Since (1 + y)q − yq ≤ C(q)(1 + yq−1), we get by Fubini’s theorem and the choice of
τnN

E

 sup
s∈[0,t∧τnN ]

〈Zns , 1〉q
 ≤ E

(
〈Zn0 , 1〉q

)
+ B̄C(q)E

(∫ t∧τnN

0

∫
R+

1
nq−1

[
1 +

(
n〈Zns , 1〉

)q−1
]
Zns (dx)ds

)

≤ E
(
〈Zn0 , 1〉q

)
+ B̄C(q)E

(∫ t∧τnN

0

∫
R+

[
1 + 〈Zns , 1〉q−1

]
Zns (dx)ds

)

≤ E
(
〈Zn0 , 1〉q

)
+ B̄C(q)E

(∫ t∧τnN

0

[
1 + 〈Zns , 1〉q−1

] ( ∫
R+
Zns (dx)

)
ds

)

≤ E
(
〈Zn0 , 1〉q

)
+ B̄C(q)E

(∫ t∧τnN

0

[
〈Zns , 1〉+ 〈Zns , 1〉q

]
ds

)

≤ E
(
〈Zn0 , 1〉q

)
+ B̄C(q)E

(∫ t∧τnN

0

[
〈Zns , 1〉+ 〈Zns , 1〉q

]
ds

)
.

Since

E
(
〈Zns , 1〉+ 〈Zns , 1〉q

)
≤ 2E

(
1 + 〈Zns , 1〉q

)
≤ 2(1 + E( sup

u∈[0,s]
〈Znu , 1〉q)),

we have

E

 sup
s∈[0,t∧τnN ]

〈Zns , 1〉q
 ≤ E

(
〈Zn0 , 1〉q

)
+2B̄C(q)T+2B̄C(q)T

∫ t

0
E
(

sup
u∈[0,s∧τnN ]

〈Znu , 1〉q
)
ds.
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By using Gronwall’s inequality, we obtain

E

 sup
t∈[0,T∧τnN ]

〈Znt , 1〉q
 ≤ (E (〈Zn0 , 1〉q)+ 2B̄C(q)T

)
e2B̄C(q)T ≤ C(q, T ), (3.10)

with C(q, T ) a constant which is independent of n and N .

To end the proof, we need to show that

τn∞ = lim
N→∞

τnN = +∞. (3.11)

If there existsM < +∞ associated withAM ⊂ Ω such that ∀ω ∈ AM , limN→∞ τ
n
N (ω) <

M and P(AM ) > 0, then

∀T > M, E

 sup
t∈[0,T∧τnN ]

〈Znt , 1〉q
 ≥ P(AM )×N q.

This contrasts with (3.10) since P(AM )×N q depends on N . Therefore, τn∞ = +∞.

Using condition (3.8) and Fatou’s lemma, we obtain

E

lim inf
N→∞

sup
t∈[0,T∧τnN ]

〈Znt , 1〉q
 ≤ lim inf

N→∞
E

 sup
t∈[0,T∧τnN ]

〈Znt , 1〉q
 ≤ C(q, T ) < +∞,

and we conclude that sup
n∈N∗

E

 sup
t∈[0,T ]

〈Znt , 1〉q
 < +∞.

�

Corollary 3.2.6. From Proposition 3.2.5, if

sup
n∈N∗

E(〈Zn0 , 1〉) < +∞,

then, for all T > 0

sup
n∈N∗

E

 sup
t∈[0,T ]

〈Znt , 1〉

 < +∞

and we deduce that the SDE (3.6) has a solution (Znt )t≥0 ∈ D
(
[0, T ],MF (R+)

)
.

Proposition 3.2.7 (Martingale property). Let n ∈ N∗, we assume that Zn0 ∈
MF (R+) such that E(〈Zn0 , 1〉2) < +∞, then for all test function f(x, t) ∈ C1

b (R+ ×
R+,R):

Mn,f
t = 〈Znt , f〉 − 〈Zn0 , f〉 −

∫ t

0

∫
R+

(
∂sfs(x) + αg(x)∂xfs(x)

)
Zns (dx)ds

−
∫ t

0

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]
B(x)H(dγ)Zns (dx)ds.

(3.12)
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is a continuous square integrable martingale with quadratic variation

〈Mn,f 〉t = 1
n

∫ t

0

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]2
B(x)H(dγ)Zns (dx)ds.

(3.13)

The martingale property and quadratic variation are direct consequence of the
stochastic process (Zn)n∈N∗ w.r.t Poisson point measures.

Proof. Let τnN be the stopping-times as in Definition 3.2.4. We have for t ∈ R+

〈Mn,f 〉t∧τnN = 1
n

∫ t∧τnN

0

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]2
B(x)H(dγ)Zns (dx)ds,

then
〈Mn,f 〉t∧τnN ≤

1
n

∫ t∧τnN

0
3B̄‖f‖2∞

(∫
R+
Zns (dx)

)
ds.

Therefore,

E
(
〈Mn,f 〉t∧τnN

)
≤ 1
n

3B̄‖f‖2∞E
(∫ t∧τnN

0
〈Zns , 1〉ds

)

≤ 1
n

3B̄‖f‖2∞E

∫ t

0
sup

s∈[0,t∧τnN ]
〈Zns , 1〉ds


≤ t

n
3B̄‖f‖2∞E

 sup
s∈[0,t∧τnN ]

〈Zns , 1〉

 .
Since limN→∞ τ

n
N = +∞ and using the Fatou’s lemma, we obtain

E
(
〈Mn,f 〉t

)
≤ lim inf

N→∞
E
(
〈Mn,f 〉t∧τnN

)
≤ t

n
3B̄‖f‖2∞E

 sup
s∈[0,t]

〈Zns , 1〉

 < +∞.

Hence, Mn,f
t is a square integrable martingale.

�

3.2.2 Large population limit

The following theorem states the limit of (Zn)n∈N∗ when n→ +∞.
Theorem 3.2.8. Consider the sequence (Zn)n∈N∗ defined in Definition 3.2.1 and
3.2.2. If Zn0 converges in distribution to µ0 ∈ MF (R+) as n→ +∞ then (Zn)n∈N∗
converges in distribution in D

(
[0, T ],MF (R+)

)
as n→ +∞ to µ ∈ C

(
[0, T ],MF (R+)

)
,

where µ is the unique solution of

〈µt, f〉 = 〈µ0, f〉+
∫ t

0

∫
R+

(
∂sfs(x) + αg(x)∂xfs(x)

)
µs(dx)ds

+
∫ t

0

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]
B(x)H(dγ)µs(dx)ds,

(3.14)

with ft(x) ∈ C1,1
b (R+ × R+,R) a test function.
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Proof. Following Fournier and Méléard [50], we divide the proof into two parts:
first, we will prove that (Zn)n∈N∗ is tight in D

(
[0, T ],MF (R+)

)
, whereMF (R+) is

embedded with the topology of weak convergence. Then, we identify the limit in
the second part.

Step 1: Tightness of (Zn)n∈N∗.

Firstly, we prove that the sequence (Zn)n∈N∗ is uniformly tight in the space of
probability measures on D

(
[0, T ], (MF (R+), v)

)
where (MF (R+), v) is embedded

with the vague topology.

For a test function ft(x) = f(x, t) ∈ C1,1
b (R+ × R+,R), we define the finite

variation part of 〈Znt , f〉 given in (3.12) by

V n,f
t = 〈Znt , f〉 − 〈Zn0 , f〉 −M

n,f
t

=
∫ t

0

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]
B(x)H(dγ)Zns (dx)ds

+
∫ t

0

∫
R+

(
∂sfs(x) + αg(x)∂xfs(x)

)
Zns (dx)ds. (3.15)

Using Aldous-Rebolledo and Roelly’s criterion [3, 68], we need to show that

1. ∀t ∈ T dense in R+,
(
〈Mn,f 〉t

)
n∈N∗

and
(
V n,f
t

)
n∈N∗

are tight in R+.

2. ∀T ≥ 0, ∀ε > 0, ∀η > 0, ∃δ > 0, n0 ∈ N such that

sup
n≥n0

P
(∣∣∣〈Mn,f 〉Tn − 〈Mn,f 〉Sn

∣∣∣ ≥ η) ≤ ε, (3.16)

and
sup
n≥n0

P
(∣∣∣V n,f

Tn
− V n,f

Sn

∣∣∣ ≥ η) ≤ ε, (3.17)

for every couples of stopping-times (Sn, Tn)n∈N∗ such that Sn ≤ Tn ≤ T and
Tn ≤ Sn + δ.

To prove the first point, we need to show that, ∀T > 0

sup
n∈N∗

E

 sup
t∈[0,T ]

∣∣∣〈Mn,f 〉t
∣∣∣
 < +∞,

and

sup
n∈N∗

E

 sup
t∈[0,T ]

∣∣∣V n,f
t

∣∣∣
 < +∞.

From the expression of 〈Mn,f 〉t in (3.13), we have
∣∣∣〈Mn,f 〉t

∣∣∣ ≤ 1
n

∫ t

0
3B̄‖f‖2∞

(∫
R+
Zns (dx)

)
ds ≤ 1

n
3‖f‖2∞B̄

∫ t

0
sup

u∈[0,T ]
〈Znu , 1〉ds

≤ 1
n

3B̄T‖f‖2∞ sup
t∈[0,T ]

〈Znt , 1〉.
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Hence,

sup
n∈N∗

E

 sup
t∈[0,T ]

∣∣∣〈Mn,f 〉t
∣∣∣
 ≤ 3B̄T‖f‖2∞ sup

n∈N∗

 1
n

sup
t∈[0,T ]

〈Znt , 1〉

 < +∞.

Similarly, from (3.15) we have∣∣∣V n,f
t

∣∣∣ ≤ (‖∂tf‖∞ + α‖∂xf‖∞‖g‖∞
)
T sup
t∈[0,T ]

〈Znt , 1〉+ 3B̄T‖f‖∞ sup
t∈[0,T ]

〈Znt , 1〉

≤
(
‖∂tf‖∞ + α‖∂xf‖∞‖g‖∞ + 3B̄‖f‖∞

)
T sup
t∈[0,T ]

〈Znt , 1〉.

Hence,

sup
n∈N∗

E

 sup
t∈[0,T ]

∣∣∣V n,f
t

∣∣∣
 < +∞.

Next, ∀T > 0, ∀ε > 0, ∀η > 0, for δ > 0, we consider a sequence of couples of
stopping-times (Sn, Tn)n∈N∗ such that Sn ≤ Tn ≤ T and Tn ≤ Sn + δ, we have

E
(∣∣∣〈Mn,f 〉Tn − 〈Mn,f 〉Sn

∣∣∣)

= E

∣∣∣∣∣ 1n
∫ Tn

Sn

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]2
B(x)H(dγ)Zns (dx)ds

∣∣∣∣∣


≤ E
(

1
n

∫ Tn

Sn
3‖f‖2∞B̄

∫
R+
Zns (dx)ds

)

≤ 1
n

3B̄δ‖f‖2∞E

 sup
t∈[0,T ]

〈Znt , 1〉

 ≤ δCf,B̄,T
n

.

The upper bound can be as small as we wish with a proper choice of δ. Thus, we
obtain (3.16). Similarly,

E
(∣∣∣V n,f

Tn
− V n,f

Sn

∣∣∣) = E
(∣∣∣∣ ∫ Tn

Sn

∫
R+

(
∂sfs(x) + αg(x)∂xfs(x)

)
Zns (dx)ds

+
∫ Tn

Sn

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]
B(x)H(dγ)Zns (dx)ds

∣∣∣∣)
≤
(
‖∂tf‖∞ + α‖∂xf‖∞‖g‖∞

)
δ sup
n∈N∗

E
(

sup
t∈[0,T ]

〈Zns , 1〉
)

+ 3B̄δ‖f‖∞ sup
n∈N∗

E
(

sup
t∈[0,T ]

〈Zns , 1〉
)

≤ δ
(
‖∂tf‖∞ + α‖∂xf‖∞‖g‖∞ + 3B̄‖f‖∞

)
sup
n∈N∗

E
(

sup
t∈[0,T ]

〈Zns , 1〉
)

≤ δCf,g,α,B̄,T .

By the choice of δ, we obtain (3.17) and we conclude that (Zn)n∈N∗ is uniformly
tight in D([0, T ], (MF (R+), v)). Next, by the same computation as in Méléard and
Tran [81], we shall prove the tightness of (Zn)n∈N∗ in D([0, T ], (MF (R+), w)).
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Let us denote by µ a limiting process of (Zn)n∈N∗ . It is almost surely (a.s)
continuous in (MF (R+), v) since

sup
t∈R+

sup
f,‖f‖∞≤1

∣∣∣〈Znt , f〉 − 〈Znt−, f〉∣∣∣ ≤ 3‖f‖∞
n

. (3.18)

The same computation as in Step 1 for ft(x) = 1 implies that the sequence
(〈Zn, 1〉)n∈N∗ is uniformly tight in D([0, T ],R+). As a consequence, there exists an
increasing sequence (un)n∈N∗ such that:

• (Zun)n∈N∗ converges in distribution to µ in D([0, T ], (MF (R+), v)).

• (〈Zun , 1〉)n∈N∗ converges in distribution in D([0, T ],R+).

We can use the Méléard-Roelly’s criterion [80] to prove that (Zun)n∈N∗ converges
in distribution to µ ∈ D([0, T ], (MF (R+), w)) provided (〈Zn, 1〉)n∈N∗ converges to
〈µ, 1〉.

For the sake of simplicity, we will again denote un by n.

Now, we introduce of smooth function fk defined on R+ and approximating
1[k,+∞)(x). For k ∈ N∗, let us define

fk(x) = ψ(0 ∨ (x− (k − 1)) ∧ 1),

where ψ(x) = 6x5 − 15x4 + 10x3 is a non-decreasing function such that

ψ(0) = ψ′(0) = ψ′′(0) = 1− ψ(1) = ψ′(1) = ψ′′(1) = 0.

The sequence (fk)k∈N∗ is non-increasing, and satisfies for x ≥ 0 and p ≥ 1 that

1[k,+∞)(x) ≤ fk(x) ≤ 1[k−1,+∞)(x); (3.19)

f
(p)
k (x) ≤ sup

u∈[k−1,k]
|f (p)
k (u)|1[k−1,+∞)(x) ≤ sup

u∈[k−1,k]
|f (p)
k (u)|fk−1(x).

To prove that (〈Zn, 1〉)n∈N∗ converges to 〈µ, 1〉, we use the following lemma:

Lemma 3.2.9. Under the assumption of Theorem 3.2.8,

lim
k→+∞

lim sup
n→+∞

E
(

sup
t∈[0,T ]

〈Znt , fk〉
)

= 0, (3.20)

where (fk)k∈N are defined as above.

The proof is postponed at the end of Theorem 3.2.8. From Lemma 3.2.9, we can
deduce that

lim
k→+∞

E
(

sup
t∈[0,T ]

〈µt, fk〉
)

= 0. (3.21)

As a consequence, we can extract a subsequence of
(

sup
t∈[0,T ]

〈µt, fk〉
)
k
that converges

to 0 a.s, and since the process (µt)t∈[0,T ] is continuous from [0, T ] into (MF (R+), v),
one can deduce that it is also continuous from [0, T ] into (MF (R+), w).
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We now prove that 〈Zun , 1〉 converges to 〈µ, 1〉. Let G be a Lipschitz function
on C

(
[0, T ], (MF (R+), w)

)
, we have

lim sup
n→+∞

∣∣∣E(G(〈Zn, 1〉)−G(〈µ, 1〉))
∣∣∣

≤ lim
k→+∞

lim sup
n→+∞

∣∣∣E(G(〈Zn, 1〉)−G(〈Zn, 1− fk〉))
∣∣∣

+ lim
k→+∞

lim sup
n→+∞

∣∣∣E(G(〈Zn, 1− fk〉)−G(〈µ, 1− fk〉))
∣∣∣

+ lim
k→+∞

lim sup
n→+∞

∣∣∣E(G(〈µ, 1− fk〉)−G(〈µ, 1〉))
∣∣∣.

Since
∣∣∣G(〈ν, 1 − fk〉) − G(〈ν, 1〉))

∣∣∣ ≤ C sup
t∈[0,T ]

〈νt, fk〉 by Lipschitz property, ac-

cording to Lemma 3.2.9 and Equation (3.21), we obtain

lim
k→+∞

lim sup
n→+∞

∣∣∣E(G(〈Zn, 1〉)−G(〈Zn, 1− fk〉))
∣∣∣ = 0,

and
lim

k→+∞
lim sup
n→+∞

∣∣∣E(G(〈µ, 1− fk〉)−G(〈µ, 1〉))
∣∣∣ = 0.

By the continuity of ν 7→ 〈ν, 1− fk〉 in D
(
[0, T ], (MF (R+), v)

)
we have

lim
k→+∞

lim sup
n→+∞

∣∣∣E(G(〈Zn, 1− fk〉)−G(〈µ, 1− fk〉))
∣∣∣ = 0.

Thus,
lim

n→+∞
F
(
〈Zn, 1〉

)
= F

(
〈µ, 1〉

)
,

which completes the proof of tightness of (Zn)n∈N∗ in D
(
[0, T ], (MF (R+), w)

)
.

Step2: Indentification the limit.

To prove that µ satisfies (3.14) a.s, we will show that, for every test function
f : (t, x) 7→ f(t, x) ∈ C1,1

b (R+ × R+,R), the quantity

Ψt(µ) = 〈µt, f〉 − 〈µ0, f〉 −
∫ t

0

∫
R+

(
∂sfs(x) + αg(x)∂xfs(x)

)
µs(dx)ds

+
∫ t

0

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]
B(x)H(dγ)µs(dx)ds

vanishes.

Proposition 3.2.7 shows that ∀n ∈ N∗ the process

M
f,φ(n)
t = Ψt

(
Z
φ(n)
t

)
is a square integrable martingale. Thus, for t ∈ R+ we have

E
(∣∣∣∣Mf,φ(n)

t

∣∣∣∣
)2

≤ E
(∣∣∣∣Mf,φ(n)

t

∣∣∣∣2
)

= E
(
〈Mf,φ(n)〉t

)
≤ tC

φ(n)E
(

sup
s∈[0,t]

〈Zφ(n)
s , 1〉

)
.
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Then,

∀t ∈ R+, lim
n→+∞

E
(∣∣∣∣Mf,φ(n)

t

∣∣∣∣
)

= 0.

To show that, ∀t ∈ R+, Ψt(µ) = 0 a.s, we need to prove that

lim
n→+∞

E
(∣∣∣∣Mf,φ(n)

t

∣∣∣∣
)

= E
(∣∣Ψt(µ)

∣∣) .
Indeed, we have that (Zφ(n))n∈N∗ converges in distribution to µ. Since µ is contin-
uous almost surely, f ∈ C1 class with bounded derivatives and from the moment
assumption of Proposition 3.2.5 then Ψt is continuous and

lim
n→+∞

Ψt(Zφ(n)) d−→ Ψt(µ).

We have: ∀t ∈ R+, ∀z ∈ MF (R+), Ψt(z) ≤ C sup
s∈[0,t]

〈zs, 1〉. Hence, by Proposition

3.2.5, the sequence
(
|Ψt(Zφ(n))|

)
n∈N∗

is uniform integrability. Then we get

lim
n→+∞

E
(∣∣∣∣Mf,φ(n)

t

∣∣∣∣) = lim
n→+∞

E
(∣∣∣∣Ψt(Zφ(n))

∣∣∣∣) = E
(

lim
n→+∞

∣∣∣∣Ψt(Zφ(n))
∣∣∣∣)

This ends the proof of Theorem 3.2.8.

�

Proof of Lemma 3.2.9. With the sequence (fk)k∈N∗ defined in the proof of The-
orem 3.2.8, we have

〈Znt , fk〉 = 〈Zn0 , fk〉+
∫ t

0

∫
R+
f ′k(x)αg(x)Zns (dx)ds

+
∫ t

0

∫
R+

∫ 1

0

[
fk(γx) + fk((1− γ)x)− fk(x)

]
B(x)H(dγ)Zns (dx)ds+Mn,k

t ,

where the martingaleMn,k
t defined in (3.12) with fk instead of f , and with quadratic

variation given in (3.13). Similar arguments as above allow us to prove that

〈Mn,k〉t ≤
C1
n

∫ t

0
〈Zns , 1〉ds, (3.22)

where C1 is a constant. By (3.19) and since the sequence (fk)k∈N∗ is non-increasing,
〈Zns , fk〉 ≤ 〈Zns , fk−1〉, we obtain

〈Znt , fk〉 ≤ 〈Zn0 , fk〉+ α‖g‖∞C2

∫ t

0
〈Znt , fk−1〉ds+ 3B̄

∫ t

0
〈Znt , fk−1〉ds+Mn,k

t

≤ 〈Zn0 , fk〉+ C3

∫ t

0
〈Znt , fk−1〉ds+Mn,k

t ,

where C2, C3 are the constants.
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Let αn,kt = E
(

sup
s≤t
〈Znt , fk〉

)
and αnt = E

(
sup
s≤t
〈Zns , 1〉

)
which bounded uniformly

in n ∈ N∗ and t ∈ [0, T ] according to (3.9). From (3.22), one can deduces that

αn,kt ≤ αn,k0 + C3

∫ t

0
αn,k−1
s ds+ C4εn

where εn is a sequence that converges to 0 as n→ +∞.

Iterating this inequality yields,

αn,kt ≤
k−1∑
l=0

αn,k−l0
(C3t)l

l! +

(
C3
∫ t

0 α
n
s ds

)k
k! + εnC4

k−1∑
l=0

(C3t)l

l!

≤ αn,bk/2c0 eC3t + αn0

+∞∑
l=bk/2c+1

(C3t)l

l! + (C ′3t)k

k! + εnC4e
C3t,

where we use the monotonicity of αn,k0 w.r.t k for the second inequality. Given the
moment condition (3.9), the assumption of tightness in (MF (R+), w) of the initial
conditions (Zn0 )n∈N∗ is equivalent to

lim
k→+∞

sup
n→+∞

αn,k0 = 0

Hence,

lim
k→+∞

sup
n→+∞

αn,kt ≤ sup
n∈N∗

αn0 lim
k→+∞

+∞∑
bk/2c+1

(C3t)l

l! + lim
k→+∞

(C ′3t)k

k! .

As a consequence, we deduce that

lim
k→+∞

sup
n→+∞

E
(

sup
s≤t
〈Znt , fk〉

)
= lim

k→+∞
sup

n→+∞
αn,kt = 0,

which completes the proof of Lemma 3.2.9.

The following proposition give us a growth-fragmentation equation in the case
where the growth rate is a constant.

Proposition 3.2.10. We assume that g(x) = 1 for all x ∈ R+. This implies that
Xt = x0 + α(t − t0) if the toxicity is x0 at times t0. Then, we have the following
results:

i. If µ0(dx) = n0(dx) then ∀t ∈ R+, µt(dx) has a density n(t, x).

ii. If n(t, x) ∈ C1,1(R+,R+) then it satisfies the PDE:

∂tn(t, x) + α∂xn(t, x) +B(x)n(t, x) = 2
∫ 1

0

1
γ
B

(
x

γ

)
n

(
t,
x

γ

)
H(dγ) (3.23)
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Proof. i. We use an approach inspired by Tran [105, 106] but with more differences.
In our problem, we consider the case where a cell divides with random fraction Γ
and (1−Γ) into the two daughter cells respectively and Γ has a distribution H(dγ).

Let µt be a limit of (Znt )n∈N∗ in C([0, T ],R+), for a test function ft(x) = f(x, t)
we have

〈µt, ft〉 = 〈µ0, f0〉+
∫ t

0

∫
R+

[
∂sfs(x) + α∂xfs(x)

]
µs(dx)ds

+
∫ t

0

∫
R+

∫ 1

0

[
fs(γx) + fs((1− γ)x)− fs(x)

]
B(x)H(dγ)µs(dx)ds.

To show that µt(dx) has a density, for fixed t0 ∈ R+ and a positive function φ ∈
C1
b (R+,R+), we consider the function f(x, t) = φ(x− α(t− t0)). Then, we get

〈µt0 , φ〉 =
∫
R+
φ(x+ αt0)µ0(dx) +

∫ t0

0

∫
R+

∫ 1

0

[
φ(γx− α(s− t0))

+ φ((1− γ)x− α(s− t0))− φ(x− α(s− t0))
]
B(x)H(dγ)µs(dx)ds. (3.24)

Consider the term

I1 =
∫ t0

0

∫
R+

∫ 1

0
φ(γx− α(s− t0))B(x)H(dγ)µs(dx)ds.

By Fubini’s theorem and setting ν(ds, dx) = µs(dx)ds, we get

I1 =
∫ 1

0
H(dγ)

(∫ t0

0

∫
R+
φ(γx− α(s− t0))B(x)ν(ds, dx)

)
.

Let us show that

ν(ds, dx) = µ̄(dx)q(x, ds) = µ̄(dx)q(x, s)ds,

with µ̄(dx) the marginal measure of ν(ds, dx) such that∫
R+
g(x)µ̄(dx) =

∫ t0

0

∫
R+
g(x)µs(dx)ds,

for every measurable function g.

Let A is a ds− negligible set, we have ∀g∫ t0

0

∫
R+

1A(s)g(x)ν(ds, dx) =
∫ t0

0

[ ∫
R+

1A(s)g(x)µs(dx)
]
ds = 0.

Since ν(ds, dx) = µ̄(dx)q(x, ds), we have∫
R+
g(x)µ̄(dx)

∫ t0

0
1A(s)q(x, ds) = 0,

so that ∫ t0

0
1A(s)q(x, ds) = 0 g(x)µ̄(dx) a.e.
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Hence, by Radon-Nikodym’s theorem, there exists a density q(x, s) such that

q(x, ds) = q(x, s)ds µ̄(dx) a.e.

Thus, we get

I1 =
∫ 1

0
H(dγ)

(∫ t0

0

∫
R+
φ(γx− α(s− t0))B(x)(dx)q(x, s)µ̄ds

)
.

Let y = γx− α(s− t0), so that

I1 =
∫ 1

0
H(dγ)

(∫
R+

∫ γx+αt0

γx
φ(y)q

(
x,
γx− y + αt0

α

)
B(x)dy

α
µ̄(dx)

)

=
∫ 1

0
H(dγ)

(∫
R+

∫
R+

1γx≤y≤γx+αt0φ(y)q̃1(x, y)B(x)dyµ̄(dx)
)
,

where q̃1(x, y) = 1
α
q
(
x, γx−y+αt0

α

)
.

By Fubini’s theorem, we obtain

I1 =
∫
R+
φ(y)

∫
R+

∫ 1

0
1γx≤y≤γx+αt0φ(y)q̃(x, y)B(x)H(dγ)µ̄(dx)dy =

∫
R+
φ(y)Φ1(y)dy,

where
Φ1(y) =

∫
R+

∫ 1

0
1γx≤y≤γx+αt0φ(y)q̃1(x, y)B(x)H(dγ)µ̄(dx). (3.25)

Similarly, for the term

I2 =
∫ t0

0

∫
R+

∫ 1

0
φ
(
(1− γ)x− α(s− t0)

)
B(x)H(dγ)µs(dx)ds.

By putting y = (1 − γ)x − α(s − t0), and note that µs(dx)ds = µ̄(dx)q(x, s)ds we
obtain

I2 =
∫
R+
φ(y)Φ2(y)dy,

where

Φ2(y) =
∫
R+

∫ 1

0
1(1−γ)x≤y≤(1−γ)x+αt0φ(y)q̃2(x, y)B(x)H(dγ)µ̄(dx). (3.26)

For the last term

I3 =
∫ t0

0

∫
R+

∫ 1

0
φ
(
x− α(s− t0)

)
B(x)H(dγ)µs(dx)ds

=
∫ t0

0

∫
R+
φ
(
x− α(s− t0)

)
q(x, s)B(x)µ̄(dx)ds

=
∫
R+
φ(y)Φ3(y)dy. (3.27)
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where

Φ3(y) =
∫
R+

1x≤y≤x+αt0 q̃3(x, y)µ̄(dx) and q̃3(x, y) = 1
α
q

(
x,
x− y + αt0

α

)
.

Since

∫
R+
φ(x+ αt0)µ0(dx) =

∫
R+
φ(x+ αt0)n0(x)dx =

∫
R+
φ(y)n0(y − αt0)dy,

we set

Φ(y) = Φ1(y) + Φ2(y) + Φ3(y) + n0(y − αt0),

then

∫
R+
φ(x+ αt0)µ0(dx) +

∫ t0

0

∫
R+

∫ 1

0

[
φ
(
γx− α(s− t0)

)
+ φ

(
(1− γ)x− α(s− t0)

)
− φ

(
x− α(s− t0)

)]
H(dγ)B(x)µs(dx)ds =

∫
R+
φ(y)Φ(y)dy.

We conclude µt(dx) has a density nt(x)dx w.r.t µ̄s(dx)ds.

ii) From (3.14), we have

〈µt, f〉 = 〈µ0, f〉+
∫ t

0

∫
R+
αf ′(x)µs(dx)

+
∫ t

0

∫
R+

∫ 1

0

[
f(γx) + f((1− γ)x)− f(x)

]
B(x)H(dγ)µs(dx)ds.

Replace µs(dx) by n(t, x)dx and take the derivative by t, we obtain

∂

∂t

∫
R+
f(x)n(t, x)dx =

∫
R+
f ′(x)αn(t, x)dx−

∫
R+

∫ 1

0
f(x)B(x)H(dγ)n(t, x)dx

+
∫
R+

∫ 1

0

[
f(γx) + f((1− γ)x)

]
B(x)H(dγ)n(t, x)dx.

Integrate by part, we get

∫
R+
f(x) ∂

∂t
n(t, x)dx = αf(x)n(t, x)

∣∣∣∣+∞
0
−
∫
R+
αf(x) ∂

∂x
n(t, x)dx

−
∫
R+
f(x)B(x)n(t, x)dx+

∫
R+
B(x)n(t, x)

(∫ 1

0

[
f(γx) + f((1− γ)x)

]
H(dγ)

)
dx.

(3.28)
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By putting ν = 1− γ and H(dγ) is a symmetric distribution, we get

∫
R+
B(x)n(t, x)

(∫ 1

0

[
f(γx) + f((1− γ)x)

]
H(dγ)

)
dx

=
∫
R+
B(x)n(t, x)

∫ 1

0
f(γx)H(dγ)dx+

∫
R+
B(x)n(t, x)

∫ 1

0
f((1− γ)x)H(dγ)dx

=
∫ 1

0
H(dγ)

∫
R+
f(y)B

(
y

γ

)
n

(
t,
y

γ

)
dy

γ

+
∫ 1

0
H(dγ)

∫
R+
f(y)B

(
y

1− γ

)
n

(
t,

y

1− γ

)
dy

1− γ

=
∫ 1

0

1
γ
H(dγ)

∫
R+
f(y)B

(
y

γ

)
n

(
t,
y

γ

)
dy +

∫ 1

0

1
ν
H(dν)

∫
R+
f(y)B

(
y

ν

)
n

(
t,
y

ν

)
dy

= 2
∫ 1

0

1
γ
H(dγ)

∫
R+
f(y)B

(
y

γ

)
n

(
t,
y

γ

)
dy. (3.29)

From (3.28) and (3.29) we otain:∫
R+
f(x) ∂

∂t
n(t, x)dx+

∫
R+
αf(x) ∂

∂x
n(t, x)dx+

∫
R+
f(x)B(x)n(t, x)dx

= 2
∫ 1

0

1
γ
H(dγ)

∫
R+
f(y)B

(
y

γ

)
n

(
t,
y

γ

)
dy,

or

∂tn(t, x) + α∂xn(t, x) +B(x)n(t, x) = 2
∫ 1

0

1
γ
B

(
x

γ

)
n

(
t,
x

γ

)
H(dγ).

This ends the proofs of Proposition 3.2.10.

�

In the following section, we assume the distribution H(dγ) has a density h(γ)
that we aim to estimate.

3.3 Estimation of the division kernel h(·)

3.3.1 Estimation procedure and assumptions

In this section, we consider the problem of estimating the density h in the case of
incomplete data of divisions. As we introduced in Section 3.1, we shall construct
an estimator of h based on the stationary size distribution which results from the
study of the large population limit. Moreover, we consider the estimation of h in
the case where the division rate and the growth rate are positive constants R and α
respectively.
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From Equation (3.23), with H(dγ) = h(γ)dγ and B(x) = R, we obtain by setting
y = x/γ

∂tn(t, x) + α∂xn(t, x) +Rn(t, x) = 2R
∫ ∞

0
n(t, y)h

(
x

y

)
dy

y
, (3.30)

where h(x/y) = 0 if y < x.

We assume that the division kernel h satisfies the following assumption:

Assumption 3.3.1. There exists a positive constant C such that for any t ∈ (0, 1),
for ν ∈ {1, . . . , 4} ∫ t

0
h(x)dx ≤ min

(
1, Ctν

)
. (3.31)

Since h is the density of a symmetric distribution on [0, 1], it satisfies
∫
h(x)dx =

1 and
∫
xh(x)dx = 1/2. Moreover, under Assumption 3.3.1, it is proved in Doumic

and Gabriel [37] (see Lemma 3 in the Appendix) that
∫
x2h(x)dx < 1/2. Then,

by general relative entropy principle (see [92]), the division kernel h satisfies the
assumptions for the existence and uniqueness of the solution (λ,N) of the following
eigenvalue problem (see [37] or [91] for more details):

α∂xN(x) + (λ+R)N(x) = 2R
∫∞

0 N(y)h
(
x

y

)
dy

y
, x ≥ 0,

N(0) = 0,
∫
N(x)dx = 1, N(x) ≥ 0, λ > 0,

(3.32)

where N is the first eigenvector and λ is the first eigenvalue and∫ ∞
0
|n(t, x)e−λt − ρN(x)|φ(x)dx→ 0 as t→∞,

with ρ =
∫∞

0 n(t = 0, u)φ(u)du.

The long-time asymptotic behavior of the solution n(t, x) provides us an ob-
servation scheme for the estimation of the density h in the statistical approach:
since e−λtn(t, x) ≈ N(x) as t is large, we assume that we have n i.i.d observations
X1, X2, . . . , Xn. Each observation is drawn by measuring an individual cell selected
randomly. The Xi’s have probability distribution N(x)dx and we estimate h from
the data X1, . . . , Xn and Equation (3.32).

To estimate h, we face with a deconvolution problem but it is more compli-
cated and quite different when compared to classical deconvolution problems. In
particular, in Equation (3.32), one difficulty lies in the multiplicative convolution∫∞

0 N(y)h
(
x
y

)
dy
y leading to more intricate technical problems than for the classical

additive convolution. So, we apply a logarithmic change of variables to transform
the multiplicative convolution in the r.h.s of (3.32) into the additive one. Then we
classically apply the Fourier transform and work with products of functions in the
Fourier domain. Let us describe our estimation procedure in details. By using the
change of variable x = eu for x > 0 and u ∈ R, we introduce the functions

g(u) = euh(eu),
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and
M(u) = euN(eu), D(u) = ∂u

(
u 7→ N(eu)

)
= ∂uN(eu).

Then Equation (3.32) becomes

αD(u) + (λ+R)M(u) = 2R
(
M ? g)(u). (3.33)

Since h(γ) = γ−1g
(

log(γ)
)
for γ ∈ (0, 1), the estimator of h will be obtained from

the estimator of g. We need some assumptions on the density h and the Fourier
transform of M .

Assumption 3.3.2. The density h is continuous on [0, 1].

Note that since h is continuous, g is square integrable since we have∫
R
g2(x)dx =

∫
R
e2uh2(eu)du =

∫ ∞
0

xh2(x)dx =
∫ 1

0
xh2(x)dx < +∞.

Assumption 3.3.3. For all ξ ∈ R, M∗(ξ) 6= 0.

The Fourier transform of g is given by the following proposition.

Proposition 3.3.4. Under Assumption 3.3.3, we have

g∗(ξ) = αD∗(ξ)
2RM∗(ξ) + λ+R

2R , ξ ∈ R. (3.34)

Proof. Recall Equation (3.32) and we set for u, v ∈ R

x = eu and y = ev.

Then we get

αe−u∂uN(eu) + (λ+R)N(eu) = 2R
∫
R
N(ev)h(eu−v)dv.

Multiply both sides of the equation above by eu, we obtain

α∂uN(eu) + (λ+R)euN(eu) = 2R
∫
R
evN(ev)eu−vh(eu−v)dv.

Hence we get
αD(u) + (λ+R)M(u) = 2R(M ? g)(u).

Taking the Fourier transform of both sides of equation (3.33), we obtain

αD∗(ξ) + (λ+R)M∗(ξ) = 2RM∗(ξ)× g∗(ξ).

Therefore, if M∗(ξ) 6= 0 for all ξ ∈ R then the Fourier transform of g is obtained by
(3.34).

�
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3.3.2 Moment condition

In this section, we prove that the moment condition required for the existence of the
estimator of h is satisfied.
Proposition 3.3.5. Under the Assumption 3.3.1, the first eigenvector N of the
eigenproblem (3.32) satisfies∫ +∞

0
x−νN(x)dx < +∞ for ν ∈ {1, . . . , 4}. (3.35)

Proof. Let ε > 0 to be chosen small enough, we have∫ +∞

0
x−νN(x)dx =

∫ ε

0
x−νN(x)dx+

∫ +∞

ε
x−νN(x)dx

≤
∫ ε

0
x−νN(x)dx+ 1

εν

∫ +∞

ε
N(x)dx

≤
∫ ε

0
x−νN(x)dx+ 1

εν
.

Hence, it remains to prove ∫ ε

0
x−νN(x)dx < +∞.

We follow and adapt the steps of the proof of Theorem 1 in Doumic and Gabriel
[37]. Integrating both side of equation (3.32) between 0 and x0 < x, we get:

αN(x0) + (λ+R)
∫ x0

0
N(y)dy = 2R

∫ x0

0

∫ +∞

0
N(y)h

(z
y

)dy
y
dz. (3.36)

Thus,

αN(x0) ≤ 2R
∫ x0

0

∫ +∞

0
N(y)h

(z
y

)dy
y
dz ≤ 2R

∫ x

0

∫ +∞

0
N(y)h

(z
y

)dy
y
dz.

Let us define:
f : x 7→ sup

y∈(0,x)
N(y),

then we have for all x

f(x) ≤ 2R
α

∫ x

0

∫ +∞

0
N(y)h

(z
y

)dy
y
dz. (3.37)

From Assumption 3.3.1 we have for all x < ε:

f(x) ≤ 2R
α

∫ +∞

0
dyN(y)

∫ x

0
h
(z
y

)dz
y

≤ 2R
α

∫ +∞

0
N(y) min

(
1, C x

ν

yν

)
dy

≤ 2R
α

(∫ x

0
N(y)dy + C

∫ ε

x
N(y)x

ν

yν
dy + C

∫ +∞

ε
N(y)x

ν

yν
dy

)

≤ 2R
α

∫ x

0
sup

z∈(0,y)
N(z)dy + Cxν

∫ ε

x
sup

z∈(0,y)
N(z)dy

yν

+
(

2CR
α

∫ +∞

ε

N(y)
yν

dy

)
xν

≤ 2Rε
α
f(x) + CRxν

α

∫ ε

x

f(y)
yν

dy +Kxν ,
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with K = 2CR
αεν

.

By setting F (x) = x−νf(x), we get

F (x) ≤ K

1− 2Rε
α

+ 2CR
α− 2Rε

∫ ε

x
F (y)dy. (3.38)

Hence, we have to choose ε such that

0 < ε <
α

2R.

Then, applying Gronwall’s inequality to (3.38), we find that

F (x) ≤ K

1− 2Rε
α

exp
(

2CRε
α− 2Rε

)
:= C̃, ∀x ∈ [0, ε].

Thus, we will have
x−νN(x) ≤ C̃, ∀x ∈ [0, ε].

We finally obtain ∫ ε

0
x−νN(x)dx ≤ C̃ε < +∞.

This ends the proof of Proposition 3.3.5.

�

3.3.3 Estimators of g and h

Assume that we observe the i.i.d random variables X1, . . . , Xn having density func-
tion x 7→ N(x). We consider the random variables U1, . . . , Un where Ui = log(Xi)
which are i.i.d of density function u 7→ M(u) = euN(eu). In view of (3.34), the
purpose is first to propose an estimator for g∗ and then to apply the inverse Fourier
transform to obtain an estimator of g.

Let K a kernel function in L2(R) such that its Fourier transform K∗ exists and
is compactly supported. A possible kernel is given by the sinus cardinal kernel
K(x) = sin(x)

x . Define K`(·) := `−1K(·/`) for ` > 0. We set

g` = K` ? g.

From Equation (3.34) we have

g∗(ξ) = αD∗(ξ)
2RM∗(ξ) + λ+R

2R .

Hence, a natural estimator of g∗(ξ) is

ĝ∗(ξ) = αD̂∗(ξ)
2RM̂∗(ξ)

+ λ+R

2R ,

where M̂∗(ξ) and D̂∗(ξ) are unbiased estimators of M∗ and D∗ whose formulas are
given in the following Proposition.
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Proposition 3.3.6. Unbiased estimators of the Fourier transformM∗(ξ) and D∗(ξ)
are given by

M̂∗(ξ) = 1
n

n∑
j=1

eiξUj , (3.39)

D̂∗(ξ) = (−iξ) 1
n

n∑
j=1

e(iξ−1)Uj . (3.40)

Proof. Since

M∗(ξ) =
∫
R
euN(eu)eiuξdu = E

[
eiξU1

]
,

and

D∗(ξ) =
∫
R
D(u)eiuξdu =

∫
R
∂uN(eu)eiuξdu

= eiξuN(eu)
∣∣∣∣+∞
−∞
− iξ

∫
R
N(eu)eiξudu = (−iξ)

∫
R
euN(eu)e(iξ−1)udu

= (−iξ)E
[
e(iξ−1)U1

]
,

then the unbiased estimators of the Fourier transform of M and D are given by
(3.39) and (3.40).

�

Since g∗` = K∗` × g∗, a natural estimator ĝ` of g is such that its Fourier transform
takes the following form:

ĝ`
∗(ξ) = K∗` (ξ)×

αD̂∗(ξ)
2R

1Ω

M̂∗(ξ)
+ λ+R

2R

 , (3.41)

where Ω =
{
|M̂∗(ξ)| ≥ n−1/2

}
and 1Ω

M̂∗(ξ)
is the truncated estimator of 1

M̂∗(ξ)
:

1Ω

M̂∗(ξ)
=


1

M̂∗(ξ)
, if |M̂∗(ξ)| ≥ n−1/2,

0, otherwise.
(3.42)

Truncation is necessary to avoid explosion when |M̂∗(ξ)| is closed to 0.

Deconvolution estimators with close forms have been studied in Comte and La-
cour [26, 27], Comte et al. [28], Neumann [87]. However, the difference and the
difficulty in our problem come from the fact that the regularities of g and h are
closely related to the functions M and D that solve the eigenvalue problem (3.32),
in particular through the Equation (3.34). This complicates the study of the rates
of convergence.

Finally, taking the inverse Fourier transform of ĝ`∗, we obtain

ĝ`(u) = 1
2π

∫
R
ĝ∗` (ξ)e−iuξdξ. (3.43)
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Then the estimator of the division kernel h is given by

ĥ`(γ) = γ−1ĝ`
(

log(γ)
)
, γ ∈ (0, 1). (3.44)

3.3.4 Consistency for the L2-risk

This section is devoted to the theoretical study of the estimate ĝ`. More precisely,
we establish the L2-consistency of ĝ` under a suitable choice of the bandwidth `.

Theorem 3.3.7. We suppose that Assumptions 3.3.1, 3.3.2 and 3.3.3 are satisfied
and the kernel bandwidth ` which depends on n satisfies lim

n→+∞
` = 0. Provided that

lim
n→+∞

1
n

(∥∥∥∥K∗` (ξ)ξ
M∗(ξ)

∥∥∥∥2

2
+
∥∥∥∥K∗` (ξ)
M∗(ξ)

∥∥∥∥2

2

)
= 0, (3.45)

we have
lim

n→+∞
E
[
‖ĝ` − g‖22

]
= 0. (3.46)

Note that if M∗ is bounded from below by a positive constant on [0, 1] and if it
satisfies

|M∗(ξ)| |ξ|→+∞∼ |ξ|−γ

then, Assumption (3.45) is satisfied if

`−1 = o

(
n

1
3+2γ

)
.

Proof. To prove Theorem 3.3.7 we rely on the following proposition which gives a
bias variance trade-off of the L2-risk of ĝ`. In the sequel, the notation C denotes a
positive constant which may change from line to line.

Proposition 3.3.8. Under Assumptions 3.3.1, 3.3.2 and 3.3.3 , there exists a pos-
itive constant C < +∞ such that

E
[
‖ĝ` − g‖22

]
≤ ‖K` ? g − g‖22 + C

n
�(`) (3.47)

where
�(`) =

∥∥∥∥K∗` (ξ)ξ
M∗(ξ)

∥∥∥∥2

2
+
∥∥∥∥K∗` (ξ)
M∗(ξ)

∥∥∥∥2

2
.

Proof. We have

‖ĝ` − g‖2 ≤ ‖g` − g‖2 + ‖ĝ` − g`‖2.

The first term of the above r.h.s inequality is a bias term whereas the second is a
variance term. To control the variance term, we have by the Parseval’s identity and
by (3.41):
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‖ĝ` − g`‖22 = 1
2π ‖ĝ`

∗ − g∗` ‖22

= 1
2π

∫
R

∣∣∣∣∣K∗` (ξ)
[(αD̂∗(ξ)

2R
1Ω

M̂∗(ξ)
+ λ+R

2R

)
− g∗(ξ)

]∣∣∣∣∣
2

dξ

= 1
2π

∫
R

∣∣∣∣∣K∗` (ξ)
[(αD̂∗(ξ)

2R
1Ω

M̂∗(ξ)
− αD̂∗(ξ)

2RM∗(ξ) + αD̂∗(ξ)
2RM∗(ξ) + λ+R

2R

)
− g∗(ξ)

]∣∣∣∣∣
2

dξ

= 1
2π

∫
R

∣∣∣∣∣ α2RK∗` (ξ)D̂∗(ξ)
( 1Ω

M̂∗(ξ)
− 1
M∗(ξ)

)
+K∗` (ξ)

( αD̂∗(ξ)
2RM∗(ξ) + λ+R

2R − g∗(ξ)
)∣∣∣∣∣

2

dξ

≤ C
∫
R

∣∣∣∣∣K∗` (ξ)D̂∗(ξ)
( 1Ω

M̂∗(ξ)
− 1
M∗(ξ)

)∣∣∣∣∣
2

dξ + C

∫
R
|K∗` (ξ)2|

∣∣∣∣∣ αD̂∗(ξ)2RM∗(ξ) + λ+R

2R − g∗(ξ)

∣∣∣∣∣
2

dξ

:= I + II .

In the sequel, we deal with variance of complex variables. Note that for a complex
variable say Z, by distinguishing real and imaginary parts one gets that

Var(Z) := E[|Z − E(Z)|2] = E[|Z|2]− |E[Z]|2 ≤ E[|Z|2].

For the term II, because

E

K∗` (ξ)

 αD̂∗(ξ)
2RM∗(ξ) + λ+R

2R


 = K∗` (ξ)

(
αD∗(ξ)

2RM∗(ξ) + λ+R

2R

)

= K∗` (ξ)g∗(ξ),

we have

E(II) = C

∫
R
Var

K∗` (ξ)

 αD̂∗(ξ)
2RM∗(ξ) + λ+R

2R


 dξ

≤ C

∫
R
Var

K∗` (ξ) D̂
∗(ξ)

M∗(ξ)

 dξ
≤ C

∫
R

∣∣∣∣∣K∗` (ξ)
M∗(ξ)

∣∣∣∣∣
2

Var

(−iξ)
n

n∑
j=1

e(iξ−1)Uj

 dξ
≤ C

n

∫
R

∣∣∣∣∣K∗` (ξ)ξ
M∗(ξ)

∣∣∣∣∣
2

Var
(
e(iξ−1)U1

)
dξ

≤ C

n

∫
R

∣∣∣∣∣K∗` (ξ)ξ
M∗(ξ)

∣∣∣∣∣
2

E
[∣∣∣e(iξ−1)U1

∣∣∣2] dξ ≤ C

n

∫
R

∣∣∣∣∣K∗` (ξ)ξ
M∗(ξ)

∣∣∣∣∣
2

E
[
e−2U1

]
dξ

≤ C

n

∥∥∥∥∥K∗` (ξ)ξ
M∗(ξ)

∥∥∥∥∥
2

,

since E[e−2U1 ] < +∞ thanks to the Proposition 3.3.5.
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We now set
4(ξ) := 1Ω

M̂∗(ξ)
− 1
M∗(ξ) .

Then we get

E[ I ] ≤ C
∫
R
E
[∣∣∣∣K∗` (ξ)D̂∗(ξ)4(ξ)

∣∣∣∣2
]
dξ ≤ C

∫
R

∣∣∣K∗` (ξ)
∣∣∣2E [∣∣∣D̂∗(ξ)∣∣∣2∣∣∣4(ξ)

∣∣∣2] dξ
≤ C

∫
R

∣∣∣K∗` (ξ)
∣∣∣2E [∣∣∣D̂∗(ξ)− E

[
D̂∗(ξ)

]∣∣∣2∣∣∣4(ξ)
∣∣∣2] dξ

+ C

∫
R

∣∣∣K∗` (ξ)
∣∣∣2∣∣∣∣E[D̂∗(ξ)]∣∣∣∣2E[|4(ξ)|2

]
dξ

:= III + IV.

To control the term IV, we need the two following lemmas whose proofs are post-
poned in section 3.3.5.

Lemma 3.3.9. Let
4(ξ) = 1Ω

M̂∗(ξ)
− 1
M∗(ξ) .

Then there exists a positive constant Cp such that

E
[
|4(ξ)|2p

]
≤ Cp min

{
1

|M∗(ξ)|2p ,
n−p

|M∗(ξ)|4p

}
for p = 1, 2. (3.48)

Lemma 3.3.10. The ratio
∣∣∣ D∗(ξ)M∗(ξ)

∣∣∣ is bounded:

∣∣∣∣∣D∗(ξ)M∗(ξ)

∣∣∣∣∣ ≤ 2R
α

(
1 + λ+R

2R

)
, ∀ξ ∈ R.

Since D̂∗ is an unbiased estimator of D∗ using Lemma 3.3.9 we get

IV ≤ C
∫
R

∣∣∣K∗` (ξ)
∣∣∣2∣∣∣∣D∗(ξ)∣∣∣∣2 n−1

|M∗(ξ)|4dξ.

Then using Lemma 3.3.10 we get

IV ≤ C
∫
R

∣∣∣K∗` (ξ)
∣∣∣2 n−1

|M∗(ξ)|2dξ

≤ C

n

∥∥∥∥K∗` (ξ)
M∗(ξ)

∥∥∥∥2

2
.

For the term III, we have by applying Cauchy-Schwarz’s inequality and by
Lemma 3.3.9:
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III ≤ C
∫
R

∣∣∣K∗` (ξ)
∣∣∣2(E[∣∣∣D̂∗(ξ)− E

[
D̂∗(ξ)

]∣∣∣4])1/2(
E
[∣∣∣4(ξ)

∣∣∣4])1/2

dξ

≤ C
∫
R

∣∣∣K∗` (ξ)ξ
∣∣∣2
E[∣∣∣ 1

n

n∑
j=1

e(iξ−1)Uj − E
[
e(iξ−1)U1

]∣∣∣2]
1/2

×min
{

1
|M∗(ξ)|4 ,

n−2

|M∗(ξ)|8

}1/2

dξ

≤ C
∫
R

∣∣∣K∗` (ξ)ξ
∣∣∣2

|M∗(ξ)|2

E
∣∣∣∣ 1n

n∑
j=1

Zj(ξ)
∣∣∣∣4



1/2

dξ,

where Zj(ξ) = e(iξ−1)Uj − E
[
e(iξ−1)U1

]
. Since Z1(ξ), . . . , Zn(ξ) are independent cen-

tered variables with

E[|Z1(ξ)|4] ≤ E[|e(iξ−1)U1 |4] = E[e−4U1 ] < +∞,

by Proposition 3.3.5. Applying Rosenthal inequality to real and imaginary parts of
complex variables Zj ’s, we get

E

∣∣∣∣ 1n
n∑
j=1

Zj(ξ)
∣∣∣∣4
 ≤ Cn−4

(
nE[|Z1(ξ)|4] +

(
nE[|Z1(ξ)|2]

)2
)
≤ Cn−2.

Hence

III ≤ C

n

∫
R

∣∣∣K∗` (ξ)ξ
∣∣∣2

|M∗(ξ)|2 dξ = C

n

∥∥∥∥K∗` (ξ)ξ
M∗(ξ)

∥∥∥∥2
.

Finally, we obtain

E
[
‖ĝ` − g`‖22

]
≤ ‖K` ? g − g‖22 + C

n

(∥∥∥∥K∗` (ξ)ξ
M∗(ξ)

∥∥∥∥2

2
+
∥∥∥∥K∗` (ξ)
M∗(ξ)

∥∥∥∥2

2

)
.

This ends the proof of Proposition 3.3.8.

�

Let us go back to the proof of Theorem 3.3.7. Using (3.47), due to well-known
results on kernel density, the bias term converges to 0:

lim
n→+∞

‖K` ? g − g‖22 = 0,

and under the assumptions of the theorem we have for the variance term

lim
n→+∞

1
n

(∥∥∥∥K∗` (ξ)ξ
M∗(ξ)

∥∥∥∥2

2
+
∥∥∥∥K∗` (ξ)
M∗(ξ)

∥∥∥∥2

2

)
= 0,

which completes the proof of Theorem 3.3.7.

�
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3.3.5 Proof of technical lemmas

Proof of Lemma 3.3.9. This proof is inspired by the proof of Neumann [87]. We
will prove the result with p = 1. For p = 2, the proof is similar.

We divide into two cases: |M∗(ξ)| < 2n−1/2 and |M∗(ξ)| ≥ 2n−1/2. Recall that
Ω =

{
|M̂∗(ξ)| ≥ n−1/2

}
and E

[
M̂∗(ξ)

]
= E

[
eiξU1

]
= M∗(ξ), we have:

E
[
|4(ξ)|2

]
= E

∣∣∣∣ 1Ω

M̂∗(ξ)
− 1
M∗(ξ)]

∣∣∣∣2
 = E


∣∣∣∣∣∣ 1Ω

M̂∗(ξ)
−

 1Ω
M∗(ξ) + 1Ωc

M∗(ξ)

∣∣∣∣∣∣
2


= P(Ωc)
|M∗(ξ)|2 + E

1Ω
|M̂∗(ξ)−M∗(ξ)|2

|M̂∗(ξ)|2|M∗(ξ)|2

 . (3.49)

i) If |M∗(ξ)| < 2n−1/2:

E
[
|4(ξ)|2

]
≤ 1
|M∗(ξ)|2 +

E
[
|M̂∗(ξ)−M∗(ξ)|2

]
n

|M∗(ξ)|2| .

But

E
[∣∣∣∣M̂∗(ξ)−M∗(ξ)∣∣∣∣2

]
= Var

[
M̂∗(ξ)

]
= Var

 1
n

n∑
j=1

eiξUj


≤ 1
n
Var

(
eiξU1

)
≤ 1
n
E
[
|eiξU1 |2

]
= 1
n
.

Hence we obtain

E
[
|4(ξ)|2

]
≤ C

|M∗(ξ)|2 ≤ C min
{

1
|M∗(ξ)|2 ,

n−1

|M∗(ξ)|4

}
, (3.50)

since |M∗(ξ)| < 2n−1/2.

ii) If |M∗(ξ)| ≥ 2n−1/2:

We first control the probability P(Ωc),

P (Ωc) = P
(
|M̂∗(ξ)| < n−1/2

)
= P

(
|M̂∗(ξ)| < |M∗(ξ)| − |M∗(ξ)|+ n−1/2

)
≤ P

(
|M̂∗(ξ)−M∗(ξ)| > |M∗(ξ)| − n−1/2

)
≤ P

(
|M̂∗(ξ)−M∗(ξ)| > |M∗(ξ)|/2

)
. (3.51)

Let Tj(ξ) = eiξUj − E
[
eiξU1

]
, then

M̂∗(ξ)−M∗(ξ) = 1
n

n∑
j=1

eiξUj − E
[
eiξU1

]
= 1
n

n∑
j=1

Tj(ξ).
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We have
|T1(ξ)| =

∣∣∣eiξUj − E
[
eiξU1

]∣∣∣ ≤ ∣∣∣eiξUj
∣∣∣+ ∣∣∣E[eiξU1

]∣∣∣ ≤ 2,

and
Var

(
T1(ξ)

)
≤ E

[
|eiξU1 |2

]
= 1.

Thus, we get by Bernstein inequality (see Massart [78])

P
(
|M̂∗(ξ)−M∗(ξ)| > |M∗(ξ)|/2

)
≤ 2 max

{
exp

(
− n|M∗(ξ)|2

16

)
, exp

(
− n|M∗(ξ)|

16

)}

≤ 2 exp
(
− n|M∗(ξ)|2

16

)
≤ C n−1

|M∗(ξ)|2 . (3.52)

We also have that

1
|M̂∗(ξ)|2

= |M∗(ξ)|2

|M̂∗(ξ)|2|M∗(ξ)|2
=
|M̂∗(ξ)−

(
M̂∗(ξ)−M∗(ξ)

)
|2

|M̂∗(ξ)|2|M∗(ξ)|2

≤ 2

 1
|M∗(ξ)|2 + |M̂

∗(ξ)−M∗(ξ)|2

|M̂∗(ξ)|2|M∗(ξ)|2

 . (3.53)

Thus, from (3.49), (3.51) and (3.53) we have:

E
[
|4(ξ)|2

]
≤ C

 n−1

|M∗(ξ)|4 + E

1Ω
|M̂∗(ξ)−M∗(ξ)|2

|M̂∗(ξ)|2||M∗(ξ)|2


≤ C

 n−1

|M∗(ξ)|4 +
E
[
|M̂∗(ξ)−M∗(ξ)|2

]
|M∗(ξ)|4 +

E
[
|M̂∗(ξ)−M∗(ξ)|4

]
n

|M∗(ξ)|4

 .
(3.54)

To find an upper bound for E
[
|M̂∗(ξ)−M∗(ξ)|4

]
, recall that Tj(ξ) = eiξUj−E

[
eiξU1

]
.

Since T1(ξ), . . . , Tn(ξ) are independent centered variables with

E[|T1(ξ)|4] ≤ E[|eiξU1 |4] = 1.

Thus we get by Rosenthal’s inequality applied to real and imaginary parts

E
[
|M̂∗(ξ)−M∗(ξ)|4

]
= E

∣∣∣∣ 1n
n∑
j=1

Tj(ξ)
∣∣∣∣4


≤ Cn−4
(
nE[|T1(ξ)|4] +

(
nE[|T1(ξ)|2]

)2
)
≤ Cn−2

Thus, from (3.51) and (3.54) we get

E
[
|4(ξ)|2

]
≤ C n−1

|M∗(ξ)|4 .
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Furthermore
1

|M∗(ξ)|2 ≥
n−1

|M∗(ξ)|4 ,

since |M∗(ξ)| > 2n−1/2. Hence

E
[
|4(ξ)|2

]
≤ C min

{
1

|M∗(ξ)|2 ,
n−1

|M∗(ξ)|4

}
.

Combining the two cases, we obtain

E
[
|4(ξ)|2

]
≤ C min

{
1

|M∗(ξ)|2 ,
n−1

|M∗(ξ)|4

}
.

This ends the proof of Lemma 3.3.9.

Proof of Lemma 3.3.10. From equation (3.34) we have∣∣∣∣∣D∗(ξ)M∗(ξ)

∣∣∣∣∣ ≤ 2R
α

(
|g∗(ξ)|+ λ+R

2R

)
.

Using the change of variable eu = x

|g∗(ξ)| =
∣∣∣∣∫

R
eiuξg(u)du

∣∣∣∣ =
∣∣∣∣∫

R
eiuξeuh(eu)du

∣∣∣∣ =
∣∣∣∣∫ ∞

0
eiξ log xh(x)dx

∣∣∣∣
≤
∫ 1

0
h(x)dx = 1,

thus ∣∣∣∣∣D∗(ξ)M∗(ξ)

∣∣∣∣∣ ≤ 2R
α

(
1 + λ+R

2R

)
,

which completes the proof.

3.4 Perspective

In this chapter, we study a microscopic process which describes evolution of cells and
we study the large population limit that leads to obtain the PDE’s approximation
with a constant growth rate α. A study in the case of non-constant growth rate
should be considered, then we expect to match the microscopic stochastic system
with the following growth-fragmentation equation:

∂tn(t, x) + α∂x
(
g(x)n(t, x)

)
+B(x)n(t, x) = 2

∫ +∞

0
B(y)n(t, y)h

(x
y

)dy
y
.

Assuming B(x) = R and g(x) = 1, we have considered in Section 3.3 the problem
of estimating the kernel h based on the eigenvalue problem corresponding to the PDE
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above and have only proved the consistency of the proposed estimator. Hence, we
wish to establish rates of convergence and study optimality as well as adaptation for
the estimator ĝ then for the estimator ĥ. A natural approach would be the following:
Starting from (3.33)

αD(u) + (λ+R)M(u) = 2R
(
M ? g)(u),

the first step would consist in estimating D with an estimate D̂, then M with an
estimate M̂ and write (3.33) as

Y (u) = 2R(M ? g)(u) +W (u), (3.55)

with observations
Y (u) := αD̂(u) + (λ+R)M̂(u)

and "noise"

W (u) := α(D̂(u)−D(u)) + (λ+R)(M̂(u)−M(u)).

By observing that (3.55) is quite similar to (1.3) studied by De Canditiis and Pensky
[30], Johnstone [69], Kalifa and Mallat [70], Kerkyacharian et al. [71] and Pensky
and Sapatinas [90], this problem could be dealt with by using tools proposed in these
papers. However, two difficulties arise:

1. The convolution operator g 7→ M ? g is only known up to some errors (since
M is estimated).

2. In the literature, minimax adaptation is studied under a smoothness condition
on the unknown function and under an asymptotic condition on the noise with
both conditions being independent. It’s not the case here since the smoothness
of g and the asymptotic behavior of W will both depend on smoothness of M
(and D). See Proposition 3.3.4 for more details. Observe that assuming that
M is smooth, say M belongs to a Sobolev space of parameter γ, implies some
polynomial decay of its Fourier transform. In view of (3.34), since smooth-
nesses ofM and D are closely related, this implies some intricate conditions on
the function g, leading to a non-obvious control of the bias term ‖K`?g−g‖22 in
inequality (3.47). In particular g cannot belong to a Sobolev class if asymptot-
ically the ratio D∗(ξ)

M∗(ξ) is not equivalent to −(λ+R)/α. The study of adaptive
minimax rates of convergence is a work in progress.

Finally, it is worth generalizing the problem of estimating h to the case where the
division kernel and the growth rate are functions of size of cells.
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This chapter is a version of the paper Adaptive wavelet multivariate regression
with errors in variables (Chichignoud et al. [23]) written in collaboration with
Michaël Chichignoud (Winton Capital Management), Thanh Mai Pham Ngoc (Uni-
versité Paris Sud) and Vincent Rivoirard (Université Paris Dauphine), submitted
for publication, in minor revision.

4.1 Introduction

We consider the problem of multivariate nonparametric regression with errors in
variables. We observe the i.i.d dataset

(W1, Y1), . . . , (Wn, Yn)
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where
Yl = m(Xl) + εl

and
Wl = Xl + δl,

with Yl ∈ R. The covariates errors δl are i.i.d unobservable random variables having
error density g. We assume that g is known. The δl’s are independent of the Xl’s
and Yl’s. The εl’s are i.i.d standard normal random variables, independent of the
Xl’s with variance s2 which is supposed to be known. We wish to estimate the
regression function m(x), x ∈ [0, 1]d, but direct observations of the covariates Xl

are not available. Instead due to the measuring mechanism or the nature of the
environment, the covariates Xl are measured with errors. Let us denote fX the
density of the Xl’s assumed to be positive and fW the density of the Wl’s.

Use of errors-in-variables models appears in many areas of science such as medicine,
econometry or astrostatistics and is appropriate in a lot of practical experimental
problems. For instance, in epidemiologic studies where risk factors are partially ob-
served (see Fan and Masry [46], Whittemore and Keller [109]) or in environmental
science where air quality is measured with errors (Delaigle et al. [31]).

In the error-free case, that is δl = 0, one retrieves the classical multivariate non-
parametric regression problem. Estimating a function in a nonparametric way from
data measured with error is not an easy problem. Indeed, constructing a consistent
estimator in this context is challenging as we have to face to a deconvolution step
in the estimation procedure. Deconvolution problems arise in many fields where
data are obtained with measurement errors and has attracted a lot of attention in
the statistical literature, see Meister [79] for an excellent source of references. The
nonparametric regression with errors-in-variables model has been the object of a lot
of attention as well, we may cite the works of Fan and Masry [46], Fan and Truong
[47], Ioannides and Alevizos [64], Koo and Lee [72], Meister [79], Comte and Taupin
[29], Chesneau [22], Du et al. [42], Caroll et al. [18], Delaigle et al. [31]. The litera-
ture has mainly to do with kernel-based approaches, based on the Fourier transform.
All the works cited have tackled the univariate case except for Fan and Masry [46]
where the authors explored the asymptotic normality for mixing processes. In the
one dimensional setting, Chesneau [22] used Meyer wavelets in order to devise his
statistical procedure but his assumptions on the model are strong since the cor-
rupted observations Wl follow a uniform density on [0, 1]. Comte and Taupin [29]
investigated the mean integrated squared error with a penalized estimator based on
projection methods upon Shannon basis. But the authors do not give any clue about
how to choose the resolution level of the Shannon basis. Furthermore, the constants
in the penalized term are calibrated via intense simulations.

In this chapter, our aim is to study the multidimensional setting and the point-
wise risk. We would like to take into account the anisotropy for the function to
estimate. Our approach relies on the use of projection kernels on wavelets bases
combined with a deconvolution operator taking into account the noise in the covari-
ates. When using wavelets, a crucial point lies in the choice of the resolution level.
But it is well-known that theoretical results in adaptive estimation do not provide
the way to choose the numerical constants in the resolution level and very often lead
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to conservative choices. We may cite the work of Gach et al. [51] which attempts to
tackle this problem. For the density estimation problem and the sup-norm loss, the
authors based their statistical procedure on Haar projection kernels and provide a
way to choose locally the resolution level. Nonetheless, in practice, their procedure
relies on heavy Monte Carlo simulations to calibrate the constants. In our paper the
resolution level of our estimator is optimal and partially data-driven. It is automat-
ically selected by a method inspired from Goldenshluger and Lepski [53] to tackle
anisotropy problems. This method has been used recently in various contexts (see
Doumic et al. [39], Comte and Lacour [27] and Bertin et al. [14]). Furthermore,
we do not resort to thresholding which is very popular when using wavelets and our
selection rule is adaptive to the unknown regularity of the regression function. We
obtain oracle inequalities and provide optimal rates of convergence for anisotropic
Hölder classes. The performances of our adaptive estimator, the negative impact of
the errors in the covariates, the effects of the design density are assessed by examples
based on simulations.

The chapter is organized as follows. In Section 4.2, we describe our estimation
procedure. In Section 4.3, we provide an oracle inequality and rates of convergences
of our estimator for the pointwise risk. Section 4.4 gives some numerical illustrations.
Proofs of Theorems, propositions and technical lemmas are to be found in Section
4.5.

Notation Let N = {0, 1, 2, . . . } and j = (j1, . . . , jd) ∈ Nd, we set Sj =
∑d
i=1 ji and

for any y ∈ Rd, we set, with a slight abuse of notation,

2jy := (2j1y1, . . . , 2jdyd)

and for any k = (k1, · · · , kd) ∈ Zd,

hj,k(y) := 2
Sj
2 h(2jy − k) = 2

Sj
2 h(2j1y1 − k1, . . . , 2jdyd − kd),

for any given function h. We denote by F the Fourier transform of any Lebesgue
integrable function f ∈ L1(Rd) by

F(f)(t) =
∫
Rd
e−i<t,y>f(y)dy, t ∈ Rd,

where < ., . > denotes the usual scalar product.

For two integers a, b, we denote a ∧ b := min(a, b) and a ∨ b := max(a, b). And
byc denotes the largest integer smaller than y : byc ≤ y < byc+ 1.

4.2 The estimation procedure

For estimating the regression function m, the idea consists in writing m as the ratio

m(x) = m(x)fX(x)
fX(x) , x ∈ [0, 1]d.
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In the sequel, we denote
p(x) := m(x)× fX(x).

First, we estimate p, then fX . Since estimating fX is a classical deconvolution prob-
lem, the main task consists in estimating p. We propose a wavelet-based procedure
with an automatic choice of the maximal resolution level. Section 4.2.2 describes the
construction of the projection kernel on wavelet bases depending on a maximal res-
olution level. Section 4.2.3 describes the Goldenshluger-Lepski procedure to select
the resolution level adaptively.

4.2.1 Technical conditions

To facilitate the presentation, we collect in this subsection all the conditions that
we need to ensure the existence of all quantities defined throughout the chapter.

First, some conditions are imposed on the regression function m and the design
density fX . We suppose that

m ∈M(m) = {S : [0, 1]d → R : ‖S‖∞ ≤ m}, m > 0, (4.1)

and
fX ∈M(d) = {f density on [0, 1]d and ‖f‖∞ ≤ d}, d > 0. (4.2)

Futhermore, there exists C1 > 0 such that for any x ∈ [0, 1]d, fX(x) ≥ C1. We
also suppose that m · fX and F(m · fX) ∈ L1(Rd).

To derive rates of convergence as we have to face a deconvolution step, we need
some assumptions on the smoothness of the density of the errors covariates g. We
suppose that

F(g)(t) =
d∏
l=1
F(gl)(tl),

and there exist positive constants cg and Cg such that

cg

d∏
l=1

(1 + |tl|)−ν ≤ |F(g)(t)| ≤ Cg
d∏
l=1

(1 + |tl|)−ν , ν ≥ 0, tl ∈ R. (4.3)

We require a supplementary condition on the derivative of the Fourier transform
of g. There exists a positive constant Cg such that

|F ′(g)(t)| ≤ Cg
d∏
l=1

(1 + |tl|)−ν−1, tl ∈ R. (4.4)

Laplace and Gamma distributions satisfy the Assumptions (4.3) and (4.4) above.
Assumptions (4.3) and (4.4) control the decay of the Fourier transform of each
components of g at a polynomial rate controlled by the degree of ill-posedness ν.
Hence we deal with a midly ill-posed inverse problem.
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We consider a father wavelet ϕ on the real line satisfying the following conditions:

• (A1) The father wavelet ϕ is compactly supported on [−A,A], where A is a
positive integer.

• (A2) There exists a positive integer N , such that for any x∫ ∑
k∈Z

ϕ(x− k)ϕ(y − k)(y − x)`dy = δ0`, ` = 0, . . . , N.

• (A3) ϕ is of class Cr, where r ≥ ν + 2.

Conditions (A1), (A2) and (A3) are satisfied for instance by Coiflets wavelets
(see Härdle et al. [56], chapter 8). Condition (A3) has already been encountered
in the literature (see condition (A2) in Fan and Koo [45]). In particular, Condition
(A3) is useful to prove Lemma 4.5.12.

4.2.2 Approximation kernels and family of estimators for p

The associated projection kernel on the space

Vj := span{ϕjk, k ∈ Zd}, j ∈ Nd,

is given for any x and y by

Kj(x, y) =
∑
k

ϕjk(x)ϕjk(y),

where for any x,

ϕjk(x) =
d∏
l=1

2
jl
2 ϕ(2jlxl − kl), j ∈ Nd, k ∈ Zd.

Therefore, the projection of p on Vj can be written for any z,

pj(z) := Kj(p)(z) :=
∫
Kj(z, y)p(y)dy =

∑
k

pjkϕjk(z)

with
pjk =

∫
p(y)ϕjk(y)dy.

First we estimate unbiasedly any projection pj . Secondly to obtain the final
estimate of p, it will remain to select a convenient value of j which will be done in
Section 4.2.3. The natural approach is based on unbiased estimation of the projection
coefficients pjk. To do so, we adapt the kernel approach proposed by Fan and Truong
[47] in our wavelets context. To this purpose, we set

p̂jk := 1
n

n∑
u=1

Yu× (Djϕ)j,k(Wu) = 2
Sj
2

(2π)d
1
n

n∑
u=1

Yu

∫
e−i<t,2

jWu−k>
d∏
l=1

F(ϕ)(tl)
F(gl)(2jltl)

dtl,

89
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p̂j(x) = 1
n

∑
k

n∑
u=1

Yu × (Djϕ)j,k(Wu)ϕjk(x),

where the deconvolution operator Dj is defined as follows for a function f defined
on R

(Djf)(w) = 1
(2π)d

∫
e−i<t,w>

d∏
l=1

F(f)(tl)
F(gl)(2jltl)

dt, w ∈ Rd. (4.5)

Lemma 4.5.6, proved in Section 4.5.2 states that E[p̂j(x)] = pj(x) which justifies
our approach. Furthermore, the deconvolution operator (Djf)(w) in (4.5) is the
multidimensional wavelet analogous of the operator Kn(x) defined in (2.4) in Fan
and Truong [47]: the Fourier transform of their kernel K has been replaced in our
procedure by the Fourier transform of the wavelet ϕjk and their bandwith h by
2−j . Eventually, our estimator is well-defined. Indeed, using Lemma 4.5.11 and
assumption (4.3) we have that

d∏
l=1

∣∣∣∣∣ F(ϕ)(tl)
F(gl)(2jltl)

∣∣∣∣∣ ≤ C
d∏
l=1

(1 + |tl|)−r(1 + |2jltl|)ν ≤ C2Sjν
d∏
l=1

(1 + |tl|)ν−r,

which is integrable using condition (A3).

Note that the definition of the estimator p̂j(x) still makes sense when we do not
have any noise on the variables Xl i.e g(x) = δ0(x) because in this case F(g)(t) = 1.

4.2.3 Selection rule by using the Goldenshluger-Lepski methodol-
ogy

The second and final step consists in selecting the multidimensional resolution level
j depending on x and based on a data-driven selection rule inspired from a method
exposed in Goldenshluger and Lepski [53]. To define this latter we have to introduce
some quantities. In the sequel we denote for any w ∈ Rd,

Tj(w) :=
∑
k

(Djϕ)j,k(w)ϕjk(x)

and
Uj(y, w) := y

∑
k

(Djϕ)j,k(w)ϕjk(x) = y × Tj(w),

so we have
p̂j(x) = 1

n

n∑
u=1

Uj(Yu,Wu).

Proposition 4.5.1 in Section 4.5.2 shows that p̂j(x) concentrates around pj(x). So the
idea is to find a maximal resolution ĵ that mimics the oracle index. The oracle index
minimizes a bias variance trade-off. So we need an estimation of the bias-variance
decomposition of p̂j(x). We denote σ2

j := Var(Uj(Y1,W1)) and the variance of p̂j is

thus equal to σ2
j

n . We set :

σ̂2
j := 1

n(n− 1)

n∑
l=2

l−1∑
v=1

(Uj(Yl,Wl)− Uj(Yv,Wv))2, (4.6)
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and since E(σ̂2
j ) = σ2

j , σ̂2
j is a natural estimator of σ2

j . To devise our procedure, we
introduce a slightly overestimate of σ2

j given by:

σ̃2
j,γ̃ := σ̂2

j + 2Cj

√
2γ̃σ̂2

j

logn
n

+ 8γ̃C2
j

logn
n

, (4.7)

where γ̃ is a positive constant and

Cj :=
(
m + s

√
2γ̃ logn

)
‖Tj‖∞.

For any ε > 0, let γ > 0 and

Γγ(j) :=

√
2γ(1 + ε)σ̃2

j,γ̃ logn
n

+ cjγ logn
n

,

where
cj := 16 (2m + s) ‖Tj‖∞.

Let
Γγ(j, j′) := Γγ(j) + Γγ(j ∧ j′),

and
Γ∗γ(j) := sup

j′
Γγ(j, j′). (4.8)

We now define the selection rule for the resolution index. Let

R̂j := sup
j′

{ ∣∣∣p̂j∧j′(x)− p̂j′(x)
∣∣∣− Γγ(j′, j)

}
+

+ Γ∗γ(j). (4.9)

Then p̂ĵ(x) is the final estimator of p(x) with ĵ such that

ĵ := arg min
j∈J

R̂j , (4.10)

where the set J is defined as

J :=

j ∈ Nd : 2Sj ≤
⌊

n

log2 n

⌋ . (4.11)

Now, we shall highlight how the above quantities interplay in the estimation of the
risk decomposition of p̂j . An inspection of the proof of Theorem 4.3.1 shows that a
control of the bias of p̂j is provided by :

sup
j′

{ ∣∣∣p̂j∧j′(x)− p̂j′(x)
∣∣∣− Γγ(j′, j)

}
+
.

The term |p̂j∧j′(x) − p̂j′ | is classical when using the Goldenshluger Lepski method
(see Sections 2.1 and 5.2 in Bertin et al. [14]). Furthermore for technical reasons
(see proof of Theorem 4.3.1), we do not estimate the variance of p̂j(x) by σ̂2

j

n but we
replace it by Γ2

γ(j). Note that we have the straightforward control

Γγ(j) ≤ C

σ̂j
√

logn
n

+ (Cj + cj)
logn
n

 ,
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where C is a constant depending on ε, γ̃ and γ. Actually we prove that Γ2
γ(j) is of

order logn
n σ2

j (see Lemma 4.5.9 and 4.5.13). The dependence of σ̃2
j,γ̃ (4.7) inm appears

only in smaller order terms. In conclusion, up to the knowledge of m the procedure
is completely data-driven. Next section explains how to choose the constants γ and
γ̃. Our approach is non asymptotic and based on sharp concentration inequalities.

4.3 Rates of convergence

4.3.1 Oracle inequality and rates of convergence for p(·)

First, we state an oracle inequality which highlights the bias-variance decomposition
of the risk.
Theorem 4.3.1. Let q ≥ 1 be fixed and let ĵ be the adaptive index defined as above.
Then, it holds for any γ > q(ν + 1) and γ̃ > 2q(ν + 2),

E
[∣∣∣p̂ĵ(x)− p(x)

∣∣∣q] ≤ R1

(
inf
η
E
[{
B(η) + Γ∗γ(η)

}q])
+R′1n

−q,

where

B(η) := max
(

sup
j′

∣∣∣∣E [p̂η∧j′(x)
]
− E

[
p̂j′(x)

]∣∣∣∣ , ∣∣E[p̂η(x)]− p(x)
∣∣)

R1 a constant depending only on q and R′1 a constant depending on s, m, d, ϕ, cg,
Cg and ϕ.

The oracle inequality in Theorem 4.3.1 illustrates a bias-variance decomposition
of the risk. The term B(η) is a bias term. Indeed, one recognizes on the r.h.s the
classical bias term ∣∣E[p̂η(x)]− p(x)

∣∣ = |pη(x)− p(x)|.

Concerning
∣∣∣∣E [p̂η∧j′(x)

]
− E

[
p̂j′(x)

]∣∣∣∣, for sake of clarity let us consider for instance
the univariate case : if j′ ≤ η this term is equal to zero. If j′ ≥ η, it turns to be

|E
[
p̂η(x)

]
− E

[
p̂j′(x)

]
| = |pη(x)− pj′(x)| ≤ |pη(x)− p(x)|+ |pj′(x)− p(x)|.

As we have the following inclusion for the projection spaces Vη ⊂ Vj′ , the term
pj′ is closer to p than pη for the L2-distance. Hence we expect a good control of
|pj′(x)− p(x)| with respect to |pη(x)− p(x)|.

We study the rates of convergence of the estimators over anisotropic Hölder
Classes. Let us define them.
Definition 4.3.2 (Anisotropic Hölder Space). Let ~β = (β1, β2, . . . , βd) ∈ (R∗+)d and
L > 0. We say that f : [0, 1]d → R belongs to the anisotropic Hölder class Hd(~β, L)
of functions if f is bounded and for any l = 1, ..., d and for all z ∈ R

sup
x∈[0,1]d

∣∣∣∣∣∣∂
bβlcf

∂x
bβlc
l

(x1, . . . , xl + z, . . . , xd)−
∂bβlcf

∂x
bβlc
l

(x1, . . . , xl, . . . , xd)

∣∣∣∣∣∣ ≤ L|z|βl−bβlc.
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The following theorem gives the rate of convergence of the estimator p̂ĵ(x) over
anisotropic Hölder space.

Theorem 4.3.3. Let q ≥ 1 be fixed and let ĵ be the adaptive index defined in (4.10).
Then, if for any l, bβlc ≤ N and L > 0, it holds

sup
p∈Hd(~β,L)

E
∣∣∣p̂ĵ(x)− p(x)

∣∣∣q ≤ L q(2ν+1)
2β̄+2ν+1R2

(
logn
n

)qβ̄/(2β̄+2ν+1)

,

with β̄ = 1
1
β1

+···+ 1
βd

and R2 a constant depending on γ, q, γ̃,m, d, s, ϕ, cg, Cg, ~β.

4.3.2 Rates of convergence for m(·)

As mentioned above, the estimation of m requires an adaptive estimate of fX . This
is due to kernel estimators, e.g. projection estimators do not need an additional
estimate (see Bertin et al. [14]). For this purpose, we use an estimate introduced by
Comte and Lacour [27] (Section 3.4) denoted by f̂X . This estimate is constructed
from a deconvolution kernel and the bandwidth is selected via a method described
in Goldenshluger and Lepski [53]. We will not give the explicit expression of f̂X for
ease of exposition. Then, we define the estimate of m for all x in [0, 1]d :

m̂(x) =
p̂ĵ(x)

f̂X(x) ∨ n−1/2
. (4.12)

The term n−1/2 is added to avoid the drawback when f̂X is closed to 0.

Theorem 4.3.4. Let q ≥ 1 be fixed and let m̂ defined as above. Then, if for any l,
bβlc ≤ N and L > 0, it holds

sup
(m,fX)∈Hd(~β,L)×Hd(~β,L)

E
∣∣m̂(x)−m(x)

∣∣q ≤ L q(2ν+1)
2β̄+2ν+1R3

(
logn
n

)qβ̄/(2β̄+2ν+1)

,

with R3 a constant depending on γ, q, γ̃,m, s, d, ϕ, cg, Cg, ~β.

Next Theorem gives a lower bound for the pointwise risk:

Theorem 4.3.5. Let q ≥ 1, L > 0 and for any l, bβlc ≤ N . Then for any estimator
m̃ of m and for n large enough we have

sup
(m,fX)∈Hd(~β,L)×Hd(~β,L)

E
∣∣m̃(x)−m(x)

∣∣q ≥ R4n
−qβ̄/(2β̄+2ν+1),

with R4 a positive constant depending on ~β, L, s, Cg and Cg.

Consequently, the estimate m̂ achieves the optimal rate of convergence up to a
logarithmic term.
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4.4 Numerical results

In this section, we implement some simulations to illustrate the theoretical results.
We aim at estimating the Doppler regression function m at point x0 = 0.25 (see
Figure 4.1). We have n = 1024 observations and the regression errors εl’s follow
a standard normal density with variance s2 = 0.152. As for the design density of
the Xl’s, we consider Beta densities and the uniform density on [0, 1]. The uniform
distribution is quite classical in regression with random design. The Beta(2, 2)
and Beta(0.5, 2) distributions reflect two different behaviors on [0, 1]. Indeed, we
recall that the Beta density with parameters (a, b) (denoted here by Beta(a, b)) is
proportional to xa−1(1 − x)b−11[0,1](x). In Figure 4.2, we plot the noisy regression
Doppler function according to the three design scenario. For the covariate errors
δi’s, we focus on the centered Laplace density with scale parameter σgL > 0 that we
denote gL. This latter has the following expression :

gL(x) = 1
2σgL

e
− |x|
σgL .

The choice of the centered Laplace noise is motivated by the fact that the Fourier
transform of gL is given by

F(gL)(t) = 1
1 + σ2

gL
t2
,

and according to Assumption (4.3), it gives an example of an ordinary smooth noise
with degree of ill-posedness ν = 2. Furthermore, when facing regression problems
with errors in the design, it is common to compute the so-called reliability ratio (see
Fan and Truong [47]) which is given by

Rr := Var(X)
Var(X) + 2σ2

gL

.

Rr permits to assess the amount of noise in the covariates. The closer to 0 Rr
is, the bigger the amount of noise in the covariates is and the more difficult the
deconvolution step will be. For instance, Fan and Truong [47] chose Rr = 0.70. We
computed the reliability ratio in Table 4.1 for the considered simulations.

σgL design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.88 0.81 0.80
0.10 0.80 0.71 0.69

Table 4.1: Reliability ratio.

We recall that our estimator of m(x) is given by the ratio of two estimators (see
(4.12)) :

m̂(x) =
p̂ĵ(x)

f̂X(x) ∨ n−1/2
. (4.13)
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First, we compute p̂ĵ(x) an estimator of p(x) = m(x)×fX(x) which is denoted "GL"
in the graphics below. We use coiflet wavelets of order 5. Then we divide p̂ĵ(x) by
the adaptive deconvolution density estimator f̂X(x) of Comte and Lacour [27]. This
latter is constructed with a deconvolution kernel and an adaptive bandwidth. For
the selection of the coiflet level ĵ in p̂ĵ(x), we advise to use σ̂2

j instead of σ̃2
j,γ̃ and

2 maxi |Yi|‖Tj‖∞
3 instead of cj . It remains to settle the value of the constant γ. To do

so, we compute the pointwise risk of p̂ĵ(x) in function of γ: Figure 4.3 shows a clear
"dimension jump" and accordingly the value γ = 0.5 turns to be reasonable. Hence
we fix γ = 0.5 for all simulations and our selection rule is completely data-driven.
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Figure 4.1: a/ Representation of Doppler function. b/ A zoom of Doppler function
on [0.15, 0.30]. c/ A zoom of Doppler function on [0.80, 1].
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Figure 4.2: a/ Noisy Doppler with Xi ∼ U [0, 1]. b/ Noisy Doppler with Xi ∼
Beta(2, 2). c/ Noisy Doppler function with Xi ∼ Beta(0.5, 2).

σgL design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.0144 0.0204 0.0071
0.10 0.0156 0.0206 0.0072

Table 4.2: MAE of m̂(x) at x0 = 0.25
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Figure 4.3: Pointwise risk of p̂ĵ at x0 = 0.25 in function of parameter γ for the
Beta(2, 2) design and σgL = 0.075.
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Figure 4.4: Estimation of p(x) at x0 = 0.25

Boxplots in Figure 4.4 summarize our numerical experiments. Theorem 4.3.1
gives an oracle inequality for the estimation of p(x). We compare the pointwise risk
error of p̂ĵ(x) (computed with 100 Monte Carlo repetitions) with the oracle risk one.
The oracle is p̂joracle with the index joracle defined as follows:

joracle := arg min
j∈J
|p̂j(x)− p(x)|.

In Table 4.2, we have computed the MAE (Mean Absolute Error) of m̂(x) over
100 Monte Carlo runs.
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σgL design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.3461 0.5312 0.3445
0.10 0.3668 0.5493 0.3589

σgL design of the Xi

U [0, 1] Beta(2, 2) Beta(0.5, 2)
0.075 0.2153 0.3429 0.5130
0.10 0.2191 0.3453 0.5293

Table 4.3: MAE of m̂(x) at the points very closed to 0 and 1: on the left: x0 = 0.01
and on the right: x0 = 0.98.

We shall make a remark on the choice of Beta distributions. Beta densities are
bounded from below on any compact included in [0, 1]. One can see in Table 4.3
that the performances are very bad at points very closed to 0 and 1, in particular
x0 = 0.01 and x0 = 0.98.

Our performances are close to those of the oracle (see Figure 4.4) and are quite
satisfying at x0 = 0.25. When going deeper into details, increasing the Laplace noise
parameter σgL deteriorates sligthly the performances. Hence it seems that our pro-
cedure is robust to the noise in the covariates and accordingly to the deconvolution
step. Concerning the role of the design density, when considering the Beta(0.5, 2)
distribution, we expect the performances to be better not too far from 0 as the
observations tend to concentrate near 0. Indeed, this phenomenon is confirmed by
Table 4.2.

4.5 Proofs

4.5.1 Proofs of theorems

This section is devoted to the proofs of theorems. These proofs use some propositions
and technical lemmas which are respectively in Section 4.5.2 and 4.5.2. In the sequel,
C is a constant which may vary from one line to another one.
Proof of Theorem 4.3.1.
We firstly recall the basic inequality (a1 + · · · + ap)q ≤ pq−1(aq1 + · · · + aqp) for all
a1, . . . , ap ∈ Rp+, p ∈ N and q ≥ 1. For ease of exposition, we denote p̂ĵ(x) = p̂ĵ . So,
we can show for any η ∈ Nd:∣∣∣p̂ĵ − p(x)

∣∣∣ ≤ ∣∣∣p̂ĵ − p̂ĵ∧η∣∣∣+ ∣∣∣p̂ĵ∧η − p̂η∣∣∣+ ∣∣p̂η − p(x)
∣∣

≤
∣∣∣p̂η∧ĵ − p̂ĵ∣∣∣− Γγ(ĵ, η) + Γγ(ĵ, η) +

∣∣∣p̂ĵ∧η − p̂η∣∣∣− Γγ(η, ĵ) + Γγ(η, ĵ) +
∣∣p̂η − p(x)

∣∣
≤
∣∣∣p̂η∧ĵ − p̂ĵ∣∣∣− Γγ(ĵ, η) + Γγ(η, ĵ) +

∣∣∣p̂ĵ∧η − p̂η∣∣∣− Γγ(η, ĵ) + Γγ(ĵ, η) +
∣∣p̂η − p(x)

∣∣
≤
∣∣∣p̂η∧ĵ − p̂ĵ∣∣∣− Γγ(ĵ, η) + Γ∗γ(η) +

∣∣∣p̂ĵ∧η − p̂η∣∣∣− Γγ(η, ĵ) + Γ∗γ(ĵ) +
∣∣p̂η − p(x)

∣∣
≤ R̂η + R̂ĵ +

∣∣p̂η − p(x)
∣∣

≤ R̂η + R̂ĵ +
∣∣E[p̂η]− p(x)

∣∣+ ∣∣p̂η − E[p̂η]
∣∣

≤ R̂η + R̂ĵ +
∣∣E[p̂η]− p(x)

∣∣+ ∣∣p̂η − E[p̂η]
∣∣− Γγ(η) + Γγ(η)

≤ R̂η + R̂ĵ +
∣∣E[p̂η]− p(x)

∣∣+ sup
j′

{ ∣∣∣p̂j′ − E[p̂j′ ]
∣∣∣− Γγ(j′)

}
+

+ Γ∗γ(η).
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By definition of ĵ, we recall that R̂ĵ ≤ infη R̂η and

R̂η ≤ sup
j,j′

{ ∣∣∣p̂j∧j′ − E[p̂j∧j′ ]
∣∣∣− Γγ(j ∧ j′)

}
+

+ sup
j′

{ ∣∣∣p̂j′ − E[p̂j′ ]
∣∣∣− Γγ(j′)

}
+

+ sup
j′

∣∣∣E[p̂η∧j′ ]− E[p̂j′ ]
∣∣∣+ Γ∗γ(η).

Hence

∣∣∣p̂ĵ − p(x)
∣∣∣ ≤2

 sup
j,j′

{ ∣∣∣p̂j∧j′ − E[p̂j∧j′ ]
∣∣∣− Γγ(j ∧ j′)

}
+

+ sup
j′

{ ∣∣∣p̂j′ − E[p̂j′ ]
∣∣∣− Γγ(j′)

}
+

+ sup
j′

∣∣∣E[p̂η∧j′ ]− E[p̂j′ ]
∣∣∣


+ 2Γ∗γ(η) +
∣∣E[p̂η]− p(x)

∣∣+ sup
j′

{ ∣∣∣p̂j′ − E[p̂j′ ]
∣∣∣− Γγ(j′)

}
+

+ Γ∗γ(η).

By definition of B(η) = max
(

supj′
∣∣∣Ep̂η∧j′ − Ep̂j′

∣∣∣ , ∣∣Ep̂η − p(x)
∣∣), we get

∣∣∣p̂ĵ − p(x)
∣∣∣ ≤2 sup

j,j′

{ ∣∣∣p̂j∧j′ − E[p̂j∧j′ ]
∣∣∣− Γγ(j ∧ j′)

}
+

+ 3 sup
j′

{ ∣∣∣p̂j′ − E[p̂j′ ]
∣∣∣− Γγ(j′)

}
+

+ 3B(η) + 3Γ∗γ(η).

Consequently

∣∣∣p̂ĵ − p(x)
∣∣∣q ≤32q−1

[B(η) + Γ∗γ(η)
]q

+ sup
j′

{ ∣∣∣p̂j′ − Ep̂j′
∣∣∣− Γγ(j′)

}q
+

+ sup
j,j′

{ ∣∣∣p̂j∧j′ − Ep̂j∧j′
∣∣∣− Γγ(j ∧ j′)

}q
+

.
Using Proposition 4.5.4, we have

E
∣∣∣p̂ĵ − p(x)

∣∣∣q ≤ C (E [(B(η) + Γ∗γ(η)
)q])

+R′1n
−q.

Then, we get

E
∣∣∣p̂ĵ − p(x)

∣∣∣q ≤ R1

(
inf
η
E
[(
B(η) + Γ∗γ(η)

)q])
+R′1n

−q,

where R1 is a constant only depending on q and R′1 a constant depending on m, d,
s, ϕ, cg, Cg.
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Proof of Theorem 4.3.3.

The proof is a direct application of Theorem 4.3.1 together with a standard bias-
variance trade-off. We first recall the assertion of this theorem:

E
[∣∣∣p̂ĵ(x)− p(x)

∣∣∣q] ≤ C (inf
η
E
[(
B(η) + Γ∗γ(η)

)q])
+R′1n

−q.

For the bias term, we use Proposition 4.5.5 to get:

B(η) ≤ CL
d∑
l=1

2−ηlβl , for all η ∈ J.

Now let us focus on E
[
Γ∗γ(η)q

]
. We have

E
[
Γγ(η)q

]
= E



√

2γ(1 + ε)σ̃2
η,γ̃ logn

n
+ cηγ logn

n


q


≤ 2q−1

(2γ(1 + ε) logn
n

) q
2

E[σ̃qη,γ̃ ] +
(
cηγ logn

n

)q
≤ C

( logn
n

) q
2

2(2Sην+Sη) q2 +
(
cη logn
n

)q ,
using Lemma 4.5.9. But

cη = 16 (2m + s) ‖Tη‖∞ ≤ C2Sην+Sη ,

using Lemma 4.5.13. Hence

E
[
Γγ(η)q

]
≤ C

( logn
n

) q
2

2(2Sην+Sη) q2 +
(

logn
n

)q
2(Sην+Sη)q

 .
We have (

logn
n

) q
2

2(2Sην+Sη) q2 ≥
(

logn
n

)q
2(Sην+Sη)q⇐⇒2Sη ≤ n

logn,

which is true since by (4.11), 2Sη ≤ n
log2 n

.

This yields

E[Γ∗γ(η)q] ≤ C
(

2(2Sην+Sη) logn
n

) q
2

.

Eventually, we obtain the bound for the pointwise risk:

E
∣∣∣p̂ĵ(x)− p(x)

∣∣∣q ≤ C
inf

η

L
d∑
l=1

2−ηlβl +

√
2(2Sην+Sη) log(n)

n


q
+R′1n

−q.
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Setting the gradient of the right hand side of the inequality above with respect to η it
turns out that the optimal ηl is proportional to 2

log 2
β̄

βl(2β̄+2ν+1)(logL+ 1
2 log( n

log(n))),
which leads for n large enough to

E
∣∣∣p̂ĵ(x)− p(x)

∣∣∣q ≤ L q(2ν+1)
2β̄+2ν+1R2

(
log(n)
n

) β̄q

2β̄+2ν+1

,

with R2 a constant depending on γ, q, ε, γ̃,m, s, d, ϕ, cg, Cg, ~β. The proof of Theorem
4.3.3 is completed.

Proof of Theorem 4.3.4.

We recall that m(x) = p(x)
fX(x) and m̂(x) = p̂ĵ(x)

f̂X(x)∨n−1/2 . We now state the main

properties of the adaptive estimate f̂X showed by Comte and Lacour [27] (Theorem
2): for all q ≥ 1, all ~β ∈ (0, 1]d, all L > 0 and n large enough, it holds

P (E1) := P
(
|f̂X(x)− fX(x)| ≥ Cφn(~β)

)
≤ n−2q, (4.14)

and
P
(
|f̂X(x)− fX(x)| ≤ Cn

)
= 1, (4.15)

where φn(~β) :=
(
log(n)/n

)β̄/(2β̄+2ν+1). Although the construction of the estimate
f̂X(x) depends on q, we remove the dependency for ease of exposition (see Comte
and Lacour [27] Section 3.4 for further details). From (4.14), we easily deduce, since
fX(x) ≥ C1 > 0, for n large enough that

P (E2) := P
(
f̂X(x) < C1

2

)
≤ n−2q. (4.16)

We now start the proof of the theorem. We have together with (4.15)∣∣m̂(x)−m(x)
∣∣ =

∣∣∣∣∣ p̂ĵ(x)
f̂X(x) ∨ n−1/2

− p(x)
fX(x)

∣∣∣∣∣
≤
∣∣∣∣∣ p̂ĵ(x)
f̂X(x) ∨ n−1/2

− p(x)
f̂X(x) ∨ n−1/2

∣∣∣∣∣+
∣∣∣∣∣ p(x)
f̂X(x) ∨ n−1/2

− p(x)
fX(x)

∣∣∣∣∣
≤
∣∣∣∣∣ p̂ĵ(x)− p(x)
f̂X(x) ∨ n−1/2

∣∣∣∣∣+ ‖m‖∞‖fX‖∞
∣∣∣∣∣∣(f̂X(x) ∨ n−1/2)− fX(x)
fX(x)(f̂X(x) ∨ n−1/2)

∣∣∣∣∣∣
:= A1 + ‖m‖∞‖fX‖∞A2.

Control of E[Aq1]. Using Cauchy-Schwarz inequality and the inequality f̂X(x) ∨
n−1/2 ≥ n−1/2, we obtain for n large enough

E[Aq1] = E[Aq11Ec2 ] + E[Aq11E2 ]

≤ E[Aq11Ec2 ] +
√
E[A2q

1 ]
√
P(E2)

≤ CE
[∣∣∣p̂ĵ(x)− p(x)

∣∣∣q]+ nq/2

√
E
[∣∣∣p̂ĵ(x)− p(x)

∣∣∣2q]√P(E2).
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Then, using Theorem 4.3.3 and (4.16), we finally have E[Aq1] ≤ Cφqn(~β).

Control of E[Aq2]. Using (4.15) and the inequality f̂X(x)∨n−1/2 ≥ n−1/2, it holds
for n large enough

E[Aq2] ≤ E[Aq21Ec1∩Ec2 ] +E[Aq2(1E1 + 1E2)] ≤ E[Aq21Ec1∩Ec2 ] +Cn3q/2(P(E1) +P(E2)).

Then, using the definition of A2, (4.14) and (4.16), we obtain E[Aq2] ≤ Cφqn(~β).

Eventually, by definitions of A1 and A2, the proof is completed and

E[
∣∣m̂(x)−m(x)

∣∣q] ≤ C(E[Aq1] + E[Aq2]) ≤ L
q(2ν+1)

2β̄+2ν+1R3

(
log(n)
n

)qβ̄/(2β̄+2ν+1)

where R3 is a constant depending on γ, q, ε, γ̃,m, s, d, ϕ, cg, Cg, ~β. This completes the
proof of Theorem 4.3.4.

Proof of Theorem 4.3.5.

Following Meister [79], the proof is straightforward. Indeed, for the regression prob-
lem with errors in variables in dimension 1, Theorem 3.5 in Meister [79] proves a
lower bound in probability for the pointwise risk which claims that the minimax
rate is n−

2β
2β+2ν+1 for Hölder class of index β and degree-of-ill-posedness ν. Following

step by step the proof of Theorem 3.5 in Meister [79] in dimension 2 (the extension
to general case can be easily deduced), one obtains the lower bound of Theorem
4.3.5. Meister uses densities such as Cauchy distributions which admit multivariate
counterparts.

4.5.2 Statements and proofs of auxiliary results

This section is devoted to statements and proofs of auxiliary results used in Section
4.5.1.

Statements and proofs of propositions

Let us start with Proposition 4.5.1 which states a concentration inequality of p̂j
around pj .

Proposition 4.5.1. Let j be fixed. For any u > 0,

P

|p̂j(x)− pj(x)| ≥

√
2σ2

ju

n
+ cju

n

 ≤ 2e−u, (4.17)

where
σ2
j = Var(Y1Tj(W1)).
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For any γ̃ > 1 we have for any ε̃ > 0 that there exists R4 only depending on γ̃ and
ε̃ such that

P(σ2
j ≥ (1 + ε̃)σ̃2

j,γ̃) ≤ R4n
−γ̃ ,

σ̃2
j,γ̃ being defined in (4.7).

Proof.

First, note that

p̂j(x) =
∑
k

p̂jkϕjk(x) = 1
n

n∑
l=1

Yl
∑
k

(Djϕ)j,k(Wl)ϕjk(x) = 1
n

n∑
l=1

Uj(Yl,Wl).

To prove Proposition 4.5.1, we apply the Bernstein inequality to the variables
Uj(Yl,Wl)− E[Uj(Yl,Wl)] that are independent. Since,

Uj(Yl,Wl) = YlTj(Wl),

and
E
[
εlTj(Wl)

]
= 0,

we have for any q ≥ 2,

Aq :=
n∑
l=1

E[|Uj(Yl,Wl)− E[Uj(Yl,Wl)]|q]

=
n∑
l=1

E
[
|m(Xl)Tj(Wl) + εlTj(Wl)− E[m(Xl)Tj(Wl)]|q

]
. (4.18)

With q = 2,

A2 =
n∑
l=1

E[|Uj(Yl,Wl)− E[Uj(Yl,Wl)]|2]

= nVar(Y1Tj(W1))
= nE[(m(X1)Tj(W1) + ε1Tj(W1)− E[m(X1)Tj(W1)])2]
= nE[ε2

1T
2
j (W1)] + nVar(m(X1)Tj(W1))

= n
(
s2E[T 2

j (W1)] + Var(m(X1)Tj(W1))
)
.

Now, for any q ≥ 3, with Z ∼ N (0, 1),

Aq ≤ n2q−1 (E[|m(X1)Tj(W1)− E[m(X1)Tj(W1)]|q] + E[|ε1Tj(W1)|q]
)

≤ n2q−1 (E[|m(X1)Tj(W1)− E[m(X1)Tj(W1)]|q] + sqE[|Z|q]E[|Tj(W1)|q]
)

≤ n2q−1
(
E[|m(X1)TjW1)− E[m(X1)Tj(W1)]|q] + sqE[|Z|q]E[T 2

j (W1)]‖Tj‖q−2
∞

)
.

Furthermore,

E[|m(X1)Tj(W1)− E[m(X1)Tj(W1)]|q]
≤ E[(m(X1)Tj(W1)− E[m(X1)Tj(W1)])2]× (2‖m‖∞‖Tj‖∞)q−2

= Var(m(X1)Tj(W1))× (2‖m‖∞‖Tj‖∞)q−2.
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Finally,

Aq ≤ n2q−1‖Tj‖q−2
∞

(
Var(m(X1)Tj(W1))× (2‖m‖∞)q−2 + sqE[|Z|q]E[T 2

j (W1)]
)

≤ n2q−1‖Tj‖q−2
∞ E[|Z|q]

(
Var(m(X1)Tj(W1))× (2‖m‖∞)q−2 + sqE[T 2

j (W1)]
)

≤ n2q−1‖Tj‖q−2
∞ E[|Z|q]

(
Var(m(X1)Tj(W1)) + s2E[T 2

j (W1)]
)

×
(
(2‖m‖∞)q−2 + sq−2

)
≤ 2q−1‖Tj‖q−2

∞ E[|Z|q]×A2 ×
(
2‖m‖∞ + s

)q−2
.

Besides we have (see page 23 in [66]) denoting Γ the Gamma function

E[|Z|q] = 2q/2√
π

Γ
(
q + 1

2

)
≤ 2q/22−1/2q! ≤ 2(q−1)/2q!, (4.19)

as 1√
π
≤ 1√

2 and Γ( q+1
2 ) ≤ Γ(q + 1) = q!. So, for q ≥ 3,

Aq ≤ 2q−1‖Tj‖q−2
∞ 2(q−1)/2q!×A2 ×

(
2‖m‖∞ + s

)q−2

≤ q!
2 ×A2 ×

(
2

3q−1
2(q−2) ‖Tj‖∞

(
2‖m‖∞ + s

))q−2
.

The function 3q−1
2(q−2) is decreasing in q. Hence for any q ≥ 3, 2

3q−1
2(q−2) ≤ 16. Thus

Aq ≤
q!
2 ×A2 × cjq−2, (4.20)

with
cj := 16‖Tj‖∞ (2m + s) .

We can now apply Proposition 2.9 of Massart [78]. We denote fW the density of the
Wl’s. We have

E[T 2
j (W1)] =

∫
T 2
j (w)fW (w)dw

≤ ‖fX‖∞‖Tj‖22,

since the density fW is the convolution of fX and g, ‖fW ‖∞ = ‖fX ? g‖∞ ≤ ‖fX‖∞.
We have

Var(m(X1)Tj(W1)) ≤ E[m2(X1)T 2
j (W1)]

≤ ‖m‖2∞
∫
T 2
j (w)fW (w)dw

≤ ‖m‖2∞‖fX‖∞‖Tj‖22.

Therefore, with
σ2
j = A2

n
= Var(Y1Tj(W1)), (4.21)

σ2
j = σ2

εE[T 2
j (W1)] + Var(m(X1)Tj(W1)) (4.22)

≤ σ2
ε‖fX‖∞‖Tj‖22 + ‖m‖2∞‖fX‖∞‖Tj‖22

≤ ‖fX‖∞‖Tj‖22(s2 + ‖m‖2∞).
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We conclude that for any u > 0,

P

|p̂j(x)− pj(x)| ≥

√
2σ2

ju

n
+ cju

n

 ≤ 2e−u. (4.23)

Now, we can write

σ̂2
j = 1

n(n− 1)

n∑
l=2

l−1∑
v=1

(Uj(Yl,Wl)− Uj(Yv,Wv))2

= 1
n(n− 1)

n∑
l=2

l−1∑
v=1

(Uj(Yl,Wl)− E[Uj(Yl,Wl)]− Uj(Yv,Wv) + E[Uj(Yv,Wv)])2

= s2
j −

2
n(n− 1)ξj ,

with

s2
j := 1

n(n− 1)

n∑
l=2

l−1∑
v=1

(Uj(Yl,Wl)− E[Uj(Yl,Wl)])2 + (Uj(Yv,Wv)− E[Uj(Yv,Wv)])2

= 1
n

n∑
l=1

(Uj(Yl,Wl)− E[Uj(Yl,Wl)])2

and

ξj :=
n∑
l=2

l−1∑
v=1

(Uj(Yl,Wl)− E[Uj(Yl,Wl)])× (Uj(Yv,Wv)− E[Uj(Yv,Wv)]).

In the sequel, we denote for any γ̃ > 0,

Ωn(γ̃) =
{

max
1≤l≤n

|εl| ≤ s
√

2γ̃ logn
}
.

We have that
P(Ωn(γ̃)c) ≤ n1−γ̃ . (4.24)

Note that on Ωn(γ̃),
‖Uj(·, ·)‖∞ ≤ Cj ,

we recall that
Cj = (m + s

√
2γ̃ logn)‖Tj‖∞.

Lemma 4.5.2. For any γ̃ > 1 and any u > 0, there exists a sequence en,j > 0 such
that lim supj en,j = 0 and

P

σ2
j ≥ s2

j + 2Cjσj

√
2u(1 + en,j)

n
+
σ2
ju

3n

∣∣∣∣∣∣Ωn(γ̃)

 ≤ e−u.
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Proof.

We denote

PΩn(γ̃)(·) = P
(
·|Ωn(γ̃)

)
, EΩn(γ̃)(·) = E

(
·|Ωn(γ̃)

)
.

Note that conditionally to Ωn(γ̃) the variables Uj(Y1,W1), . . . , Uj(Yn,Wn) are
independent. So, we can apply the classical Bernstein inequality to the variables

Vl :=
σ2
j − (Uj(Yl,Wl)− E[Uj(Yl,Wl)])2

n
≤
σ2
j

n
.

Furthermore, as

EΩn(γ̃)[Uj(Y1,W1)] = E[m(X1)Tj(W1)|Ωn(γ̃)] + E[ε1Tj(W1)|Ωn(γ̃)]
= E[m(X1)Tj(W1)]
= E[Uj(Y1,W1)] (4.25)

we get

n∑
l=1

EΩn(γ̃)[V 2
l ] =

EΩn(γ̃)

[(
σ2
j −

(
Uj(Y1,W1)− E[Uj(Y1,W1)]

)2)2
]

n

=
σ4
j + EΩn(γ̃)

[(
Uj(Y1,W1)− E[Uj(Y1,W1)]

)4]
n

−
2σ2

jEΩn(γ̃)
[(
Uj(Y1,W1)− E[Uj(Y1,W1)]

)2]
n

≤
σ4
j + (4C2

j − 2σ2
j )EΩn(γ̃)

[(
Uj(Y1,W1)− E[Uj(Y1,W1)]

)2]
n

.

We shall find an upperbound for EΩn(γ̃)
[
(Uj(Y1,W1)− E[Uj(Y1,W1)])2

]
:

EΩn(γ̃)
[
(Uj(Y1,W1)− E[Uj(Y1,W1)])2

]
= Var(m(X1)Tj(W1)) + E[ε2

1T
2
j (W1)|Ωn(γ̃)]

= Var(m(X1)Tj(W1)) + E[T 2
j (W1)]

E[ε2
11Ωn(γ̃)]

P(Ωn(γ̃))

≤ Var(m(X1)Tj(W1)) + E[T 2
j (W1)] s2

P(Ωn(γ̃))

≤ Var(m(X1)Tj(W1)) + E[T 2
j (W1)] s2

1− n1−γ̃

= Var(m(X1)Tj(W1)) + E[T 2
j (W1)]s2(1 + ẽn),

where ẽn = n1−γ̃ + o(n1−γ̃).
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Using (4.22) we have

EΩn(γ̃)
[
(Uj(Y1,W1)− E[Uj(Y1,W1)])2

]
≤ (1 + en,j)σ2

j , (4.26)

where (en,j) is a sequence such that lim supj en,j = 0.

Now let us find a lower bound for EΩn(γ̃)
[
(Uj(Y1,W1)− E[Uj(Y1,W1)])2

]
:

EΩn(γ̃)
[
(Uj(Y1,W1)− E[Uj(Y1,W1)])2

]
= Var(m(X1)Tj(W1)) + E[T 2

j (W1)]
E[ε2

11Ωn(γ̃)]
P(Ωn(γ̃))

≥ Var(m(X1)Tj(W1)) + E[T 2
j (W1)]E[ε2

11Ωn(γ̃)]
= Var(m(X1)Tj(W1)) + E[T 2

j (W1)]E[ε2
1(1− 1Ωcn(γ̃))]

= σ2
j − E[T 2

j (W1)]E[ε2
11Ωcn(γ̃)].

Now using Cauchy Scharwz, (4.19) and (4.24) we have

EΩn(γ̃)
[
(Uj(Y1,W1)− E[Uj(Y1,W1)])2

]
≥ σ2

j − E[T 2
j (W1)](E[ε4

1])
1
2 (P(Ωc

n(γ̃)))
1
2

≥ σ2
j − Cs2E[T 2

j (W1)]n
1−γ̃

2

= σ2
j (1 + ẽn,j), (4.27)

where (ẽn,j) is a sequence such that lim supj ẽn,j = 0.

Finally, using the bounds we just got for EΩn(γ̃)
[
(Uj(Y1,W1)− E[Uj(Y1,W1)])2

]
yields

n∑
l=1

EΩn(γ̃)[V 2
l ] ≤

σ4
j + 4C2

j σ
2
j (1 + en,j)− 2σ4

j (1 + ẽn,j)
n

≤
4C2

j σ
2
j (1 + en,j)− σ4

j (1 + 2ẽn,j)
n

≤
4C2

j σ
2
j (1 + en,j)
n

.

We obtain the claimed result.

�

Now, we deal with ξj .

Lemma 4.5.3. There exists an absolute constant c > 0 such that for any u > 1,

P
(
ξj ≥ c(nσ2

ju+ C2
j u

2)
∣∣∣Ωn(γ̃)

)
≤ 3e−u.

Proof. Note that conditionally to Ωn(γ̃), the vectors (Yl,Wl)1≤l≤n are independent.
We remind that by (4.25), (4.26) and (4.27) we have

EΩn(γ̃)[Uj(Y1,W1)] = E[Uj(Y1,W1)] (4.28)
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and
EΩn(γ̃)

[
(Uj(Y1,W1)− E[Uj(Y1,W1)])2

]
= (1 + en,j)σ2

j .

The ξj can be written as

ξj =
n∑
l=2

l−1∑
v=1

gj(Yl,Wl, Yv,Wv),

with

gj(y, w, y′, w′) = (Uj(y, w)− E[Uj(Y1,W1)]))× (Uj(y′, w′)− E[Uj(Y1,W1)]).

Previous computations show that Conditions (2.3) and (2.4) of Houdré and Reynaud-
Bouret [61] are satisfied. So that we are able to apply Theorem 3.1 of Houdré and
Reynaud-Bouret [61]: there exist absolute constants c1, c2, c3 and c4 such that for
any u > 0,

PΩn(γ̃)
(
ξj ≥ c1C

√
u+ c2Du+ c3Bu

3/2 + c4Au
2
)
≤ 3e−u,

where A, B, C, and D are defined and controlled as follows. We have:

A = ‖gj‖∞ ≤ 4C2
j .

C2 =
n∑
l=2

l−1∑
v=1

EΩn(γ̃)[g2
j (Yl,Wl, Yv,Wv)] = n(n− 1)

2 σ4
j (1 + en,j)2.

Let

A =

(al)l, (bv)v : EΩn(γ̃)

 n∑
l=2

a2
l (Yl,Wl)

 ≤ 1, EΩn(γ̃)

n−1∑
l=1

b2l (Yl,Wl)

 ≤ 1

 .
We have:

D = sup
(al)l,(bv)v∈A

EΩn(γ̃)

 n∑
l=2

l−1∑
v=1

gj(Yl,Wl, Yv,Wv)al(Yl,Wl)bv(Yv,Wv)


= sup

(al)l,(bv)v∈A

 n∑
l=2

l−1∑
v=1

EΩn(γ̃)
[
(Uj(Yl,Wl)− [Uj(Yl,Wl)]))al(Yl,Wl)

]
× EΩn(γ̃)

[
(Uj(Yv,Wv)− E[Uj(Yv,Wv)]))bv(Yv,Wv)

]]
≤ sup

(al)l,(bv)v∈A

n∑
l=2

l−1∑
v=1

σ2
j (1 + en,j)

√
EΩn(γ̃)[a2

l (Yl,Wl)]EΩn(γ̃)[b2v(Yv,Wv)]

≤ σ2
j (1 + en,j) sup

(al)l,(bv)v∈A

n∑
l=2

√
l − 1

√√√√EΩn(γ̃)[a2
l (Yl,Wl)]

l−1∑
v=1

EΩn(γ̃)[b2v(Yv,Wv)]

≤ σ2
j (1 + en,j)

√
n(n− 1)

2 .
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Finally,

B2 = sup
y,w

n−1∑
v=1

EΩn(γ̃)
[
(Uj(y, w)− E[Uj(Y1,W1)]))2 × (Uj(Yv,Wv)− E[Uj(Y1,W1)])2

]
≤ 4(n− 1)C2

j σ
2
j (1 + en,j).

Therefore, there exists an absolute constant c > 0 such that for any u > 1,

c1C
√
u+ c2Du+ c3Bu

3/2 + c4Au
2 ≤ c(nσ2

ju+ C2
j u

2).

�

Let us go back to the proof of Proposition 4.5.1. We apply Lemmas 4.5.2 and 4.5.3
with u > 1 and we obtain, by setting

Mj(u) = σ̂2
j + 2Cjσj

√
2u(1 + en,j)

n
+
σ2
ju

3n +
2c(nσ2

ju+ C2
j u

2)
n(n− 1) ,

P
(
σ2
j ≥Mj(u)

)
≤ P

σ2
j ≥ s2

j −
2

n(n− 1)ξj + 2Cjσj

√
2u(1 + en,j)

n
+
σ2
ju

3n +
2c(nσ2

ju+ C2
j u

2)
n(n− 1)


≤ P

σ2
j ≥ s2

j + 2Cjσj

√
2u(1 + en,j)

n
+
σ2
ju

3n

∣∣∣∣∣∣Ωn(γ̃)


+ P

(
ξj ≥ c(nσ2

ju+ C2
j u

2)
∣∣∣Ωn(γ̃)

)
+ 1− P

(
Ωn(γ̃)

)
.

Therefore, with u = γ̃ logn and γ̃ > 1, we obtain for n large enough:

P
(
σ2
j ≥Mj(γ̃ logn)

)
≤ 5n−γ̃ .

And there exist a and b two absolute constants such that

P

σ2
j ≥ σ̂2

j + 2Cjσj

√
2γ̃ logn(1 + en,j)

n
+
σ2
jaγ̃ logn

n
+
C2
j b

2γ̃2 log2 n

n2

 ≤ 5n−γ̃ .

Now, we set

θ1 =
(

1− aγ̃ logn
n

)
, θ2 = Cj

√
2γ̃ logn(1 + en,j)

n
, θ3 = σ̂2

j +
C2
j b

2γ̃2 log2 n

n2

so
P
(
θ1σ

2
j − 2θ2σj − θ3 ≥ 0

)
≤ 5n−γ̃ .

We study the polynomial

p(σ) = θ1σ
2 − 2θ2σ − θ3.

108



4.5. PROOFS

Since σ ≥ 0, p(σ) ≥ 0 means that

σ ≥ 1
θ1

(
θ2 +

√
θ2

2 + θ1θ3

)
,

which is equivalent to

σ2 ≥ 1
θ2

1

(
2θ2

2 + θ1θ3 + 2θ2

√
θ2

2 + θ1θ3

)
.

Hence
P
(
σ2
j ≥

1
θ2

1

(
2θ2

2 + θ1θ3 + 2θ2

√
θ2

2 + θ1θ3

))
≤ 5n−γ̃ .

So,

P
(
σ2
j ≥

θ3
θ1

+ 2θ2
√
θ3

θ1
√
θ1

+ 4θ2
2

θ2
1

)
≤ 5n−γ̃ .

So, there exist absolute constants δ, η, and τ ′ depending only on γ̃ so that for n
large enough,

P

σ2
j ≥ σ̂2

j

(
1 + δ

logn
n

)
+
(

1 + η
logn
n

)
2Cj

√
2γ̃σ̂2

j (1 + en,j)
logn
n

+ 8γ̃C2
j

logn
n

1 + τ ′
(

logn
n

)1/2
 ≤ 5n−γ̃ .

Finally, for all ε̃ > 0 there exists R4 depending on ε′ and γ̃ such that for n large
enough

P(σ2
j ≥ (1 + ε′)σ̃2

j,γ̃) ≤ R4n
−γ̃ .

Combining this inequality with (4.23), we obtain the desired result of Proposition
4.5.1.

�

Proposition 4.5.4 shows that the residual term in the oracle inequality is negli-
gible.

Proposition 4.5.4. We have for any q ≥ 1,

E
[
sup
j∈J

(∣∣p̂j(x)− pj(x)
∣∣− Γγ(j)

)q
+

]
≤ R′1n−q, (4.29)

with R′1 a constant depending on s, m, d, ϕ, cg, Cg and ϕ.

Proof. We recall that J =
{
j ∈ Nd : 2Sj ≤ b n

log2 n
c
}
.

Let γ̃ > 0 and let us consider the event

Ω̃γ̃ =
{
σ2
j ≤ (1 + ε)σ̃2

j,γ̃ , ∀ j ∈ J
}
.
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Let γ > 0. We set in the sequel

E := E

sup
j∈J

∣∣p̂j(x)− pj(x)
∣∣−

√
2γ(1 + ε)σ̃2

j,γ̃ logn
n

− cjγ logn
n


q

+

1Ω̃γ̃

 ,
and Rj :=

∣∣p̂j(x)− pj(x)
∣∣. We have:

E =
∫ ∞

0
P

sup
j∈J

Rj −
√

2γ(1 + ε)σ̃2
j,γ̃ logn

n
− cjγ logn

n


q

+

1Ω̃γ̃ > y

 dy

≤
∑
j∈J

∫ ∞
0

P


Rj −

√
2γ(1 + ε)σ̃2

j,γ̃ logn
n

− cjγ logn
n


q

+

1Ω̃γ̃ > y

 dy

≤
∑
j∈J

∫ ∞
0

P


Rj −

√
2γσ2

j logn
n

− cjγ logn
n


q

> y

 dy.
Let us take u such that

y = h(u)q,
where

h(u) =

√
2σ2

ju

n
+ cju

n
.

Note that for any u > 0,
h′(u) ≤ h(u)

u
.

Hence

E ≤ C
∑
j∈J

∫ ∞
0

P

Rj >
√

2γσ2
j logn
n

+ cjγ logn
n

+

√
2uσ2

j

n
+ ucj

n

h(u)q−1h′(u)du

≤ C
∑
j∈J

∫ ∞
0

P

Rj >
√

2σ2
j (γ logn+ u)

n
+ cj(γ logn+ u)

n

h(u)q−1h′(u)du.

Now using concentration inequality (4.17), we get

E ≤ C
∑
j∈J

∫ ∞
0

e−(γ logn+u)h(u)q−1h′(u)du

≤ C
∑
j∈J

∫ ∞
0

e−(γ logn+u)h(u)q 1
u
du

≤ Ce−γ logn∑
j∈J

∫ ∞
0

e−u


√

2σ2
ju

n
+ cju

n


q

1
u
du

≤ C

e−γ logn∑
j∈J

(
σ2
j

n

)q/2 ∫ ∞
0

e−uu
q
2−1du+

(
cj
n

)q ∫ ∞
0

e−uuq−1du

 .
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Now using Lemma 4.5.13, we have that σ2
j ≤ R102(2Sjν+Sj) and cj ≤ C2Sjν+Sj .

Hence,

E ≤ C

e−γ logn∑
j∈J

(
2(2Sjν+Sj)

n

)q/2
+
(

2(Sjν+Sj)

n

)q
≤ Cn−γ+qν(logn)−(2ν+1)q ≤ Cn−q,

as soon as γ > q(ν + 1).

It remains to find an upperbound for the following quantity:

E′ := E

sup
j∈J

∣∣p̂j(x)− pj(x)
∣∣−

√
2γ(1 + ε)σ̃2

j,γ̃ logn
n

− cjγ logn
n


q

+

1Ω̃cγ̃

 .

We have

E′ ≤ E
[
sup
j∈J

(
|p̂j(x)− pj(x)

∣∣q 1Ω̃cγ̃

]

≤ 2q−1

E [sup
j∈J

(|p̂j(x)|)q1Ω̃cγ̃

]
+ E

[
sup
j∈J

(|pj(x)|)q1Ω̃cγ̃

] .

First, let us deal with the term E
[
supj∈J(|pj(x)|)q1Ω̃cγ̃

]
.

Following the lines of the proof of Lemma 4.5.10 we easily get that
∑
k ϕ

2
jk(x) ≤

C2Sj , hence

|pj(x)| =

∣∣∣∣∣∣
∑
k

pjkϕjk(x)

∣∣∣∣∣∣ ≤
∑

k

p2
jk

 1
2
∑

k

ϕ2
jk(x)

 1
2

≤ C‖p‖22
Sj
2 .

Now using Proposition 4.5.1 which states that P(Ω̃c
γ̃) ≤ Cn−γ̃

E
[
sup
j∈J

(|pj(x)|)q1Ω̃cγ̃

]
≤ sup

j∈J
(‖p‖22

Sj
2 )qP(Ω̃c

γ̃) (4.30)

≤ C

(
n

log2 n

) q
2

n−γ̃ . (4.31)
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It remains to find an upperbound for E
[
supj∈J(|p̂j(x)|)q1Ω̃cγ̃

]
. We have

E
[
sup
j∈J

(|p̂j(x)|)q1Ω̃cγ̃

]
= E

sup
j∈J

∣∣∣∣∣∣ 1n
n∑
l=1

YlTj(Wl)

∣∣∣∣∣∣
q

1Ω̃cγ̃


≤ 1
nq

E

sup
j∈J

 n∑
l=1

∣∣m(Xl) + εl
∣∣ |Tj(Wl)|

q 1Ω̃cγ̃


≤ nq−1

nq
E

sup
j∈J

n∑
l=1

∣∣m(Xl) + εl
∣∣q |Tj(Wl)|q1Ω̃cγ̃


≤ C

n
E

sup
j∈J

n∑
l=1

(
‖m‖q∞ + |εl

∣∣q)|Tj(Wl)|q1Ω̃cγ̃


≤ C

(
sup
j∈J

(‖Tj‖q∞)P(Ω̃c
γ̃) + sup

j∈J
(‖Tj‖q∞)E

[
|ε1|q1Ω̃cγ̃

])

≤ C

sup
j∈J

(‖Tj‖q∞)P(Ω̃c
γ̃) + sq sup

j∈J
(‖Tj‖q∞)

(
E
[
|Z|2q

]) 1
2 (

P(Ω̃c
γ̃)
) 1

2

 ,
where Z ∼ N (0, 1). Using (4.19) and ‖Tj‖∞ ≤ T42Sj(ν+1) , we get

E
[
sup
j∈J

(|p̂j(x)|)q1Ω̃cγ̃

]
≤ C

(
n

log2 n

)(ν+1)q

n−
γ̃
2 .

We have

E′ ≤ Cn−
γ̃
2

( n

log2 n

) q
2

+
(

n

log2 n

)(ν+1)q


≤ Cn−q,

as soon as γ̃ > 2q(ν + 2). This ends the proof of Proposition 4.5.4.

�

Proposition 4.5.5 controls the bias term in the oracle inequality.

Proposition 4.5.5. For any j = (j1, . . . , jd) ∈ Zd and j′ = (j′1, . . . , j′d) ∈ Zd and
any x, if p ∈ Hd(~β, L)

|pj∧j′(x)− pj′(x)| ≤ R12L
d∑
l=1

2−jlβl ,

where R12 is a constant only depending on ϕ and ~β. We have denoted

j ∧ j′ = (j1 ∧ j′1, . . . , jd ∧ j′d).
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Proof. We first state three lemmas.

Lemma 4.5.6. For any j and any k, we have:

E[p̂jk] = pjk.

Proof. Recall that

p̂jk := 1
n

n∑
u=1

Yu × (Djϕ)j,k(Wu) = 2
Sj
2

(2π)d
1
n

n∑
u=1

Yu

∫
e−i<t,2

jWu−k> F(ϕ)(t)
F(g)(2jt)dt.

Let us prove now that E(p̂jk) = pjk.
We have

E(p̂jk) = 2
Sj
2

(2π)d

(∫
E(Y1e

−i<t,2jW1−k>) F(ϕ)(t)
F(g)(2jt)dt

)
.

We shall develop the right member of the last equality. We have :

E
[
Y1e
−i<t,2jW1−k>

]
= E

[
(m(X1) + ε1)e−i<t,2jW1−k>

]
= E

[
m(X1)e−i<t,2jW1−k>

]
= E

[
m(X1)e−i<t,2jX1−k>

]
E
[
e−i<t,2

jδ1>
]

=
∫
m(x)e−i<t,2jx−k>fX(x)dx×F(g)(2jt)

= ei<t,k>F(p)(2jt)F(g)(2jt).

Consequently

E
[
p̂jk
]

= 2
Sj
2

(2π)d
∫
ei<t,k>F(p)(2jt)F(g)(2jt) F(ϕ)(t)

F(g)(2jt)dt

= 2
Sj
2

(2π)d
∫
ei<t,k>F(p)(2jt)F(ϕ)(t)dt

= 1
(2π)d

∫
F(p)(t)F(ϕjk)(t)dt.

Since by Parseval equality, we have

pjk =
∫
p(t)ϕjk(t)dt = 1

(2π)d
∫
F(p)(t)F(ϕjk)(t)dt,

the result follows.

Note that in the case where we don’t have any noise on the variable i.e g(x) =
δ0(x), since F(g)(t) = 1, the proof above remains valid and we get E[p̂jk] = pjk.

�
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Lemma 4.5.7. If for any l, bβlc ≤ N , the following holds: for any j ∈ Zd and any
p ∈ Hd(~β, L),

|E[p̂j(x)]− p(x)| ≤ L(‖ϕ‖∞‖ϕ‖1)d(2A+ 1)d
d∑
l=1

(2A× 2−jl)βl
bβlc!

.

Proof. Let x be fixed and j = (j1, . . . , jd) ∈ Zd. We have:∫
Kj(x, y)dy =

∫ ∑
k1

· · ·
∑
kd

d∏
l=1

[2jlϕ(2jlxl − kl)ϕ(2jlyl − kl)dyl] = 1.

Therefore, using lemma 4.5.6

E[p̂j(x)]− p(x) = pj(x)− p(x)

=
∫
Kj(x, y)(p(y)− p(x))dy

=
∑
k

ϕjk(x)
∫
ϕjk(y)(p(y)− p(x))dy

=
∑

k1∈Zj,1(x)
· · ·

∑
kd∈Zj,d(x)

ϕjk(x)
∫ d∏

l=1
2
jl
2 ϕ(2jlyl − kl)(p(y)− p(x))dy.

Now, we use that

p(y)− p(x) =
d∑
l=1

p(x1, . . . , xl−1, yl, yl+1, . . . , yd)− p(x1, . . . xl−1, xl, yl+1, . . . , yd),

with p(x1, . . . , xl, yl+1, . . . , yd) = p(x1, . . . , xd) if l = d and p(x1, . . . , xl−1, yl, . . . , yd) =
p(y1, . . . , yd) if l = 1. Furthermore, the Taylor expansion gives: for any l ∈
{1, . . . , d}, for some ul ∈ [0; 1],

p(x1, . . . , xl−1, yl, yl+1, . . . , yd)− p(x1, . . . xl−1, xl, yl+1, . . . , yd) =
bβlc∑
k=1

∂kp

∂xkl
(x1, . . . xl−1, xl, yl+1, . . . , yd)×

(yl − xl)k

k! +

∂bβlcp

∂x
bβlc
l

(x1, . . . xl−1, xl + (yl − xl)ul, yl+1, . . . , yd)×
(yl − xl)bβlc

bβlc!

−∂
bβlcp

∂x
bβlc
l

(x1, . . . xl−1, xl, yl+1, . . . , yd)×
(yl − xl)bβlc

bβlc!
.

Using vanishing moments of Kj and p ∈ Hd(~β, L), we obtain:

|pj(x)− p(x)|

≤
∑

k1∈Zj,1(x)
· · ·

∑
kd∈Zj,d(x)

|ϕjk(x)|
∫ d∏

l=1
2
jl
2 |ϕ(2jlyl − kl)|

d∑
l=1

L
|yl − x`|βl
bβlc!

dy

≤ ‖ϕ‖d∞
∑

k1∈Zj,1(x)
· · ·

∑
kd∈Zj,d(x)

∫
[−A;A]d

d∏
l=1
|ϕ(ul)|

d∑
l=1

L
|2−jl(ul + kl)− xl|βl

bβlc!
du.
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Since for any l, kl ∈ Zj,l(x), we finally obtain

|pj(x)− p(x)|

≤ ‖ϕ‖d∞
∑

k1∈Zj,1(x)
· · ·

∑
kd∈Zj,d(x)

∫
[−A;A]d

d∏
l=1
|ϕ(ul)|

d∑
l=1

L
(2A× 2−jl)βl
bβlc!

du

≤ L(‖ϕ‖∞‖ϕ‖1)d(2A+ 1)d
d∑
l=1

(2A× 2−jl)βl
bβlc!

.

�

Lemma 4.5.8. We have for any j = (j1, . . . , jd) ∈ Zd and j′ = (j′1, . . . , j′d) ∈ Zd
and any x,

Kj′(pj)(x) = pj∧j′(x).

Proof.

We only deal with the case d = 2. The extension to the general case can be easily
deduced. If for i = 1, 2, ji ≤ j′i the result is obvious. It is also the case if for l = 1, 2,
j′l ≤ jl. So, without loss of generality, we assume that j1 ≤ j′1 and j′2 ≤ j2.

We have:

Kj′(pj)(x) =
∫
Kj′(x, y)pj(y)dy

=
∫ ∑

k

ϕj′k(x)ϕj′k(y)pj(y)dy

=
∫ ∑

k1

∑
k2

ϕj′1k1(x1)ϕj′2k2(x2)ϕj′1k1(y1)ϕj′2k2(y2)pj(y)dy1dy2

=
∫ ∑

k1

∑
k2

ϕj′1k1(x1)ϕj′2k2(x2)ϕj′1k1(y1)ϕj′2k2(y2)

×
∑
`1

∑
`2

ϕj1`1(y1)ϕj2`2(y2)ϕj1`1(u1)ϕj2`2(u2)p(u1, u2)du1du2dy1dy2.

Since j1 ≤ j′1, we have in the one-dimensional case, by a slight abuse of notation,
Vj1 ⊂ Vj′1 and

∫ ∑
k1

ϕj′1k1(x1)ϕj′1k1(y1)ϕj1`1(y1)dy1 =
∫
Kj′1

(x1, y1)ϕj1`1(y1)dy1 = ϕj1`1(x1).

Similarly, since j′2 ≤ j2, we have Vj′2 ⊂ Vj2 and

∫ ∑
`2

ϕj2`2(y2)ϕj2`2(u2)ϕj′2k2(y2)dy2 =
∫
Kj2(u2, y2)ϕj′2k2(y2)dy2 = ϕj′2k2(u2).
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Therefore, with j̃ = j ∧ j′,

Kj′(pj)(x) =
∫ ∑

k2

∑
`1

ϕj′2k2(x2)ϕj1`1(u1)ϕj1`1(x1)ϕj′2k2(u2)p(u1, u2)du1du2

=
∫ ∑

`1

∑
`2

ϕj̃2`2(x2)ϕj̃1`1(u1)ϕj̃1`1(x1)ϕj̃2`2(u2)p(u1, u2)du1du2

=
∫ ∑

`

ϕj̃`(x)ϕj̃`(u)p(u)du

= pj̃(x),

which ends the proof of the lemma.

�

Now, we shall go back to the proof of Proposition 4.5.5. We easily deduce the
result:

pj∧j′(x)− pj′(x) = Kj′(pj)(x)−Kj′(p)(x)

=
∫
Kj′(x, y)(pj(y)− p(y))dy.

Therefore,

|pj∧j′(x)− pj′(x)| ≤
∫
|Kj′(x, y)||pj(y)− p(y)|dy

≤ R12L
d∑
l=1

2−jlβl ×
∫
|Kj′(x, y)|dy,

where R12 is a constant only depending on ϕ and ~β. We conclude by observing that∫
|Kj′(x, y)|dy =

∫ ∑
k1

· · ·
∑
kd

d∏
l=1

[2j′l |ϕ(2j′lxl − kl)||ϕ(2j′lyl − kl)|dyi]

≤ ‖ϕ‖d∞
∑

k1∈Zj′,1(x)
· · ·

∑
kd∈Zj′,d(x)

(∫
|ϕ(v)|dv

)d
≤

(
‖ϕ‖∞‖ϕ‖1(2A+ 1)

)d
.

We thus obtain the claimed result of Proposition 4.5.5.

�

Appendix

Technical lemmas are stated and proved below.

Lemma 4.5.9. We have

E[(σ̃j,γ̃)q] ≤ R52Sj(2ν+1) q2 ,

with R5 a constant depending on q, γ̃,m, s, d, ϕ, cg, Cg.
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Proof. First, let us focus on the case q ≥ 2. We recall the expression of σ̃2
j,γ̃

σ̃2
j,γ̃ = σ̂2

j + 2Cj

√
2γ̃σ̂2

j

logn
n

+ 8γ̃C2
j

logn
n

.

We shall first prove that
E[(σ̂j)q] ≤ C2Sj(2ν+1) q2 .

Let us remind that

σ̂2
j = 1

2n(n− 1)
∑
l 6=v

(Uj(Yl,Wl)− Uj(Yv,Wv))2.

We easily get
σ̂2
j ≤

C

n

∑
l

(Uj(Yl,Wl)− E[Uj(Y1,W1)])2.

First let us remark that∑
l

(Uj(Yl,Wl)− E[Uj(Y1,W1)])2


q
2

≤ C

∑
l

((Uj(Yl,Wl)− E[Uj(Y1,W1)])2 − σ2
j )


q
2

+ n
q
2σqj

.
We will use Rosenthal inequality (see [56]) to find an upper bound for

E


∑

l

((Uj(Yl,Wl)− E[Uj(Y1,W1)])2 − σ2
j )


q
2

 .
We set

Bl := (Uj(Yl,Wl)− E[Uj(Y1,W1)])2 − σ2
j .

The variables Bl are i.i.d and centered. We have to check that E[|Bl|
q
2 ] < ∞. We

have
E[|Bl|

q
2 ] ≤ C(E[|(Uj(Yl,Wl)− E[Uj(Y1,W1)]|q] + σqj ),

but
E[|(Uj(Yl,Wl)− E[Uj(Y1,W1)]|q] = Aq

n
,

with Aq defined in (4.18). Hence

E[|Bl|
q
2 ] ≤ C

(
Aq
n

+ σqj

)
. (4.32)

Using the control of Aq in (4.20), equation (4.21) and Lemma 4.5.13 we have

Aq ≤ Cnσ2
j ‖Tj‖q−2

∞

≤ Cn2Sj(qν+q−1). (4.33)
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Now, we are able to apply the Rosenthal inequality to the variables Bl which yields

E


∑

l

Bl


q
2

 ≤ C

∑
l

E[|Bl|
q
2 ] +

∑
l

E[B2
l ]


q
4

 ,

and using (4.32) and (4.33) we get

E


∑

l

Bl


q
2

 ≤ C

∑
l

(
Aq
n

+ σqj

)
+

∑
l

(
A4
n

+ σ4
j

)
q
4


≤ C

(
Aq + nσqj + (A4)

q
4 + n

q
4σqj

)
≤ C

(
n2Sj(qν+q−1) + n2Sj(2ν+1) q2 + (n2Sj(4ν+3)

q
4
)
.

Consequently

E[σ̂qj ] ≤ Cn−
q
2
(
n2Sj(qν+q−1) + n2Sj(2ν+1) q2 + (n2Sj(4ν+3)

q
4 + n

q
2 2Sj(2ν+1) q2

)
≤ C(n1− q2 2Sj(qν+q−1) + n1− q2 2Sj(2ν+1) q2 + n−

q
4 2Sj(4ν+3) q4 + 2Sj(2ν+1) q2 ).

Let us compare each term of the r.h.s of the last inequality. We have

n1− q2 2Sj(qν+q−1) ≤ 2Sj(2ν+1) q2 ⇐⇒ 2Sj ≤ n,

which is true by (4.11). Similarly we have

n−
q
4 2Sj(4ν+3) q4 ≤ 2Sj(2ν+1) q2 ⇐⇒ 2Sj ≤ n,

and obviously
n1− q2 2Sj(2ν+1) q2 ≤ 2Sj(2ν+1) q2 .

Thus we get that the dominant term in r.h.s is 2Sj(2ν+1) q2 . Hence

E[σ̂qj ] ≤ C2Sj(2ν+1) q2 .

Now using that

E[σ̃qj,γ̃ ] ≤ C

E[σ̂qj ] +

2Cj

√
2γ̃ logn

n


q
2

E[σ̂
q
2
j ] +

(
8γ̃C2

j

logn
n

) q
2

 ,
and since Cj ≤ C

√
logn2Sj(ν+1), we have

E[σ̃qj,γ̃ ] ≤ C

2Sj(2ν+1) q2 + ((logn)n−
1
2 2Sj(ν+1))

q
2 2Sj(2ν+1) q4 +

(
log2 n

n
22Sj(ν+1)

) q
2

 .
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Let us compare the three terms of the right hand side. We have

2Sj
q(2ν+1)

2 ≥ ((logn)n−
1
2 2Sj(ν+1))

q
2 2Sj(2ν+1) q4 ⇐⇒ 2Sj(qν+ q

2 ) ≥ (logn)
q
2n−

q
4 2Sj(qν+ 3q

4 )

⇐⇒ 2Sj ≤ n

log2 n
,

which is true by (4.11). Furthermore we have

2Sj
q(2ν+1)

2 ≥
(

log2 n

n
22Sj(ν+1)

) q
2

⇐⇒ 2Sj(qν+ q
2 ) ≥

(
log2 n

n

) q
2

2Sj(qν+q)

⇐⇒ 2Sj ≤ n

log2 n
,

which is true again by (4.11). Consequently

E[σ̃qj,γ̃ ] ≤ R52Sj(2ν+1) q2 ,

with R5 a constant depending on q, γ̃,m, s, d, ϕ, cg, Cg and the lemma is proved for
q ≥ 2.

For the case q ≤ 2 the result follows from Jensen inequality.

�

Lemma 4.5.10. Under assumption (A1) on the father wavelet ϕ, we have for any
j = (j1, . . . , jd) and any x ∈ Rd,∑

k

|ϕjk(x)| ≤ (2A+ 1)d‖ϕ‖d∞2
Sj
2 .

Proof. Let x ∈ Rd be fixed. We set for any j and any l ∈ {1, . . . , d},

Zj,l(x) =
{
kl : |2jlxl − kl| ≤ A

}
,

whose cardinal is smaller or equal to (2A+ 1). Since

ϕjk(x) =
d∏
l=1

2
jl
2 ϕ(2jlxl − kl),

then
ϕjk(x) 6= 0⇒ ∀ l ∈ {1, . . . , d}, kl ∈ Zj,l(x).

Now,

∑
k

|ϕjk(x)| =
∑

k1∈Zj,1(x)
· · ·

∑
kd∈Zj,d(x)

d∏
l=1

2
jl
2 |ϕ(2jlxl − kl)|

≤
∑

k1∈Zj,1(x)
· · ·

∑
kd∈Zj,d(x)

‖ϕ‖d∞2
Sj
2

≤ (2A+ 1)d‖ϕ‖d∞2
Sj
2 .

�
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Lemma 4.5.11. Under condition (A1) and ϕ is Cr, there exist constants R6 and
R7 depending on ϕ such that∣∣F (ϕ)(t)

∣∣ ≤ R6(1 + |t|)−r, for any t ∈ R. (4.34)

and ∣∣∣F (ϕ)(t)′
∣∣∣ ≤ R7(1 + |t|)−r, for any t ∈ R. (4.35)

Proof. First, let us focus on the case |t| ≥ 1.

We have by integration by parts that

F(ϕ)(t) =
∫
e−itxϕ(x)dx =

[
− 1
it
e−itxϕ(x)

]∞
−∞

+ 1
it

∫
e−itxϕ′(x)dx.

Using that the father wavelet ϕ is compactly supported on [−A,A], we get

F (ϕ)(t) = 1
it

∫
e−itxϕ′(x)dx.

By successive integration by parts and using that |t| ≥ 1 one gets

∣∣F(ϕ)(t)
∣∣ =

∣∣∣∣∣ 1
(it)r

∫
e−itxϕ(r)(x)dx

∣∣∣∣∣ ≤ 2r

(1 + |t|)r
∫
|ϕ(r)(x)|dx,

the integral
∫ A
−A |ϕ(r)(x)|dx being finite.

For the derivative we have

F(ϕ)(t)′ = i

∫
eitxxϕ(x)dx.

Following the same scheme as for F(ϕ)(t), one gets by integration by parts and using
the Leibniz formula that∣∣∣F(ϕ)(t)′

∣∣∣ =
∣∣∣∣∣ 1
(it)r

∫
eitx

dr

dxr
(xϕ(x))dx

∣∣∣∣∣ =

∣∣∣∣∣∣ 1
(it)r

∫
eitx

r∑
k=0

(
r

k

)
x(k)ϕ(x)(r−k)dx

∣∣∣∣∣∣
≤ 2r

(1 + |t|)r
r∑

k=0

(
r

k

)∫
|x(k)ϕ(x)(r−k)|dx,

the quantity
∑r
k=0

(r
k

) ∫ A
−A |x(k)ϕ(x)(r−k)|dx being finite.

Hence the lemma is proved for |t| ≥ 1.

The result for |t| ≤ 1 is obvious since∣∣F (ϕ)(t)
∣∣ =

∣∣∣∣∫ e−itxϕ(x)dx
∣∣∣∣ ≤ ∫ |ϕ(x)|dx <∞,

and ∣∣∣F (ϕ)(t)′
∣∣∣ =

∣∣∣∣i ∫ eitxxϕ(x)dx
∣∣∣∣ ≤ ∫ |xϕ(x)|dx <∞.

Then the lemma is proved for any t.

�
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Lemma 4.5.12. Under conditions (A1) and (A3), for ν ≥ 0, we have

∣∣(Djϕ)(w)
∣∣ ≤ R82Sjν

d∏
l=1

(1 + |wl|)−1, w ∈ Rd

where R8 is a constant depending on ϕ, Cg and cg.

Proof. If all the |wl| < 1 then using (4.3), Lemma 4.5.11 and r ≥ ν + 2 with ν ≥ 0
we have

∣∣(Djϕ)(w)
∣∣ ≤ C

∫ d∏
l=1

F(ϕ)(tl)
F(gl)(2jltl)

≤ C
d∏
l=1

∫ ∣∣∣F(ϕ)(tl)(1 + 2jl |tl|)ν
∣∣∣ dtl

≤ C2Sjν
d∏
l=1

∫
(1 + |tl|)ν−rdtl

≤ C2Sjν ≤ C2Sjν
d∏
l=1

(1 + |wl|)−1. (4.36)

Now we consider the case where there exists at least one wl such that |wl| ≥ 1.
We have

(Djϕ)(w) = 1
(2π)d

d∏
l=1,|wl|≤1

∫
e−itlwl

F(ϕ)(tl)
F(gl)(2jltl)

dtl×
d∏

l=1,|wl|≥1

∫
e−itlwl

F(ϕ)(tl)
F(gl)(2jltl)

dtl.

For the left-hand product on |wl| ≤ 1 we use the result (4.36). Now let us consider
the right-hand product with |wl| ≥ 1. We set in the sequel

ηl(tl) := F(ϕ)(tl)
F(gl)(2jltl)

.

We have

d∏
l=1,|wl|≥1

∫
e−itlwl

F(ϕ)(tl)
F(gl)(2jltl)

dtl =
d∏

l=1,|wl|≥1

∫
e−itlwlηl(tl)dtl.

Since |ηl(tl)| → 0 when tl → ±∞, an integration by part yields∫
e−itlwlηl(tl)dtl = iw−1

l

∫
e−itlwlη′l(tl)dtl.

Let us compute the derivative of ηl(tl)

η′l(tl) = F(ϕ)(tl)
′F(g)(2jltl)− 2jlF ′(g)(2jltl)F(ϕ)(tl)

(F(g)(2jltl))2 .
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Using Lemma 4.5.11, (4.3) and (4.4)

|η′l(tl)| ≤

∣∣∣∣∣∣ F(ϕ)(tl)
′

F(g)(2jltl)

∣∣∣∣∣∣+ 2jl
∣∣∣∣∣F ′(g)(2jltl)F(ϕ)(tl)

(F(g)(2jltl))2

∣∣∣∣∣
≤ C

(
(1 + |tl|)−r(1 + 2jl |tl|)ν + 2jl(1 + 2jl |tl|)−ν−1(1 + |tl|)−r(1 + 2jl |tl|)2ν

)
≤ C

(
2jlν(1 + |tl|)−r(2−jl + |tl|)ν + 2jl(1 + 2jl |tl|)ν−1(1 + |tl|)−r

)
≤ C

(
2jlν(1 + |tl|)−r(2−jl + |tl|)ν + 2jlν(2−jl + |tl|)ν−1(1 + |tl|)−r

)
≤ C2jlν

(
(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r

)
.

Therefore,∣∣∣∣∫ e−itlwlηl(tl)dtl
∣∣∣∣

≤ |wl|−1
∫
|η′l(tl)|dtl

≤ C|wl|−12jlν
∫ (

(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r
)
dtl

≤ C|wl|−12jlν(D1 +D2 +D3),

with D1, D2 and D3 defined below.

D1 :=
∫
|tl|≤2−jl

(
(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r

)
dtl

≤ C

∫
|tl|≤2−jl

(
(2−jl + |tl|)ν + (2−jl + |tl|)ν−1

)
dtl

≤ C2−jl(2−jlν + 2−jl(ν−1))
≤ C.

D2 :=
∫

2−jl≤|tl|≤1

(
(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r

)
dtl

≤ C

∫
2−jl≤|tl|≤1

(
(2−jl + |tl|)ν + (2−jl + |tl|)ν−1

)
dtl

≤ C

∫ 2jl

1
((2−jl + 2−jls)ν + (2−jl + 2−jls)ν−1)2−jlds

≤ C2−jl(ν+1)
∫ 2jl

1
sνds+ C2−jlν

∫ 2jl

1
sν−1ds

≤ C,

as soon as ν > 0.

D3 :=
∫
|tl|≥1

(
(1 + |tl|)−r(2−jl + |tl|)ν + (2−jl + |tl|)ν−1(1 + |tl|)−r

)
dti

≤ C

∫
|tl|≥1

(
|tl|ν−r + |tl|ν−1−r

)
dtl

≤ C,

since ν − r ≤ −2.
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When ν = 0 we still have∣∣∣∣∫ e−itlwlηl(tl)dtl
∣∣∣∣ ≤ C|wl|−12jlν = C|wl|−1.

Indeed when ν = 0
ηl(tl) = F(ϕ)(tl),

and ∣∣∣∣iw−1
l

∫
e−itlwlη′l(tl)dtl

∣∣∣∣ =
∣∣∣∣iw−1

l

∫
e−itlwlF(ϕ)(tl)

′
dtl

∣∣∣∣
≤ |wl|−1

∫ ∣∣∣F(ϕ)(tl)
′∣∣∣ dtl

≤ C|wl|−1
∫

(1 + |t|)−rdt < C|wl|−1,

using Lemma 4.5.11 and r ≥ 2.

�

Lemma 4.5.13. There exist constants R10 depending on s, m, d, ϕ ,cg, Cg and R11
depending on ϕ, cg, Cg such that

σ2
j ≤ R102Sj(2ν+1), ‖Tj‖∞ ≤ R112Sj(ν+1).

Proof. We have

σ2
j = Var(Uj(Y1,W1))

≤ E
[∣∣Uj(Y1,W1)

∣∣2]
= E


∣∣∣∣∣∣Y1

∑
k

(
Djϕ

)
j,k (W1)ϕjk(x)

∣∣∣∣∣∣
2


= E


∣∣∣∣∣∣(m(X1) + ε1)

∑
k

(
Djϕ

)
j,k (W1)ϕjk(x)

∣∣∣∣∣∣
2


≤ 2(‖m‖2∞ + σ2
ε)E


∣∣∣∣∣∣
∑
k

(
Djϕ

)
j,k (W1)ϕjk(x)

∣∣∣∣∣∣
2


≤ 2(‖m‖2∞ + σ2
ε)
∫ ∣∣∣∣∣∣
∑
k

(
Djϕ

)
j,k (w)ϕjk(x)

∣∣∣∣∣∣
2

fW (w)dw

≤ 2(‖m‖2∞ + σ2
ε)‖fX‖∞

∫
2Sj

∣∣∣∣∣∣
∑
k

(
Djϕ

)
(2jw − k)ϕjk(x)

∣∣∣∣∣∣
2

dw.
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Now making the change of variable z = 2jw− k, we get by using Lemma 4.5.10 and
Lemma 4.5.12 to bound (Djϕ)(z)

σ2
j ≤ 2(‖m‖2∞ + σ2

ε)‖fX‖∞
∫ ∣∣∣∣∣∣
∑
k

(
Djϕ

)
(z)ϕjk(x)

∣∣∣∣∣∣
2

dz

≤ C

∫
22Sjν

d∏
i=l

1
(1 + |zl|)2

∑
k

|ϕjk(x)|

2

dz

≤ R102Sj(2ν+1),

where R10 is a constant depending on s, m, d, ϕ ,cg, Cg . This gives the bound for
σ2
j .

For ‖Tj‖∞, using again Lemma 4.5.10 and Lemma 4.5.12, we have

‖Tj‖∞ ≤ max
k
‖(Djϕ)j,k‖∞

∑
k

|ϕjk(x)| ≤ 2
Sj
2 ‖(Djϕ)‖∞

∑
k

|ϕjk(x)|

≤ R112Sj(ν+1),

where R11 is a constant depending on ϕ, cg, Cg.

�

4.6 Perspective

In this chapter, we study the problem of adaptive estimation of multivariate regres-
sion function in the errors-in-variable model:

Yl = m(Xl) + εl, Wl = Xl + δl, l = 1, . . . , n.

We propose a wavelet-based kernel estimator and obtain the optimal rates of con-
vergence over anisotropic Hölder classes where the distribution of the errors δl’s is
ordinary smooth. It would be interesting if we complete the study with the super-
smooth case on the density of the errors covariates g, e.g we suppose that there exist
cg, Cg > 0, ν ∈ Rd, $, % ∈ (R∗+)d such that ∀t ∈ Rd

cg

d∏
l=1

(1 + |tl|)−νl exp(−$l|tl|%l) ≤ |F(g)(t)| ≤ Cg
d∏
l=1

(1 + |tl|)−νl exp(−$l|tl|%l).

Standard examples of supersmooth densities are Gaussian and Cauchy distributions.
Furthermore, most studies of errors-in-variables model assume that the distribution
of the errors is known. However, in practice the noise density may be unknown and
there are just a few studies in literature which have been investigated the errors-in-
variables model with unknown error densities. We refer to the works of Delaigle et
al. [32], Delaigle and Meister [33] and Linto and Whang [76] for related studies of
univariate nonparametric regression in the case of unknown error distribution where
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these authors use replicated observations to construct an estimator for the unknown
error density. Thus an extension to the case of unknown distribution of the errors
in the multidimensional setting should be considered for future research.

A second perspective is that we consider the errors-in-variables model where the
noise in the covariates is multiplicative. We aim to investigate the following model
in the multidimensional setting: Yi = m(Xi) + εi,

Wi = Xi � δi, i = 1, . . . , n,
(4.37)

where (X1, . . . , Xn), (ε1, . . . , εn) and (δ1, . . . , δn) are i.i.d Rd-valued vectors and �
is the Hadamard product (see [60, 93]) defined by A � B =

(
aijbij

)
1≤i,j≤n

. Mul-
tiplicative errors-in-variables model is sparsely studied in statistics, but only in the
parametric setting. We may cite here the works of Hwang [62] who considered a
linear model with multiplicative errors in variables to analyse the data collected
by the Department of Energy concerning energy consumption and housing charac-
teristics of households in the United States where some of the predicting variables
in the original data have been multiplied by random number to preserve confiden-
tiality, and Nguyen et al. [88] who consider a linear mixed model where the data
are contaminated by multiplicative errors. Other studies on multiplicative high-
dimensional linear regression model can be found in Arellano-Valle et al. [4] and
Loh and Wainwright [77]. Moreover, to the best of our knowledge, there is no study
about nonparametric multiplicative errors-in-variables model. Hence, it would be
interesting if we explore the errors-in-variables model with multiplicative errors to-
gether with a practical application.
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Titre: Estimation adaptative pour des problèmes inverses avec des appli-
cations à la division cellulaire

Résumé : Cette thèse se divise en deux parties indépendantes. Dans la première,
nous considérons un modèle stochastique individu-centré en temps continu décrivant
une population structurée par la taille. Ce modèle est motivé par la modélisa-
tion des divisions cellulaires et par la détection du vieillissement cellulaire en bi-
ologie. La population est représentée par une mesure ponctuelle évoluant suivant
un processus aléatoire déterministe par morceaux. Nous étudions ici l’estimation
non paramétrique du noyau régissant les divisions, sous deux schémas d’observation
différents. Premièrement, nous observons l’évolution des cellules jusqu’au temps
T et nous obtenons l’arbre entier des divisions. Nous construisons un estimateur
à noyau avec une sélection adaptative de fenêtre dépendante des données. Nous
obtenons une inégalité oracle et des vitesses de convergence exponentielles optimales.
Deuxièmement, dans le cas où l’arbre de division n’est pas complètement observé,
nous montrons que le processus microscopique renormalisé décrivant l’évolution de
la population converge vers la solution faible d’une équation aux dérivés partielles
(EDP). En considérant un probléme de valeurs propres lié à l’étude du comportement
asymptotique des solutions de cette EDP, nous proposons un estimateur du noyau
de division en utilisant des techniques de Fourier. Nous montrons la consistance de
l’estimateur. L’étude de la vitesse de convergence est un travail en cours.

Dans la seconde partie de la thèse, nous considérons le modèle de régression non
paramétrique avec erreurs sur les variables dans le contexte multidimensionnel.
Notre objectif est d’estimer la fonction de régression multivariée inconnue. Nous
proposons un estimateur adaptatif basé sur des noyaux de projection fondés sur une
base d’ondelettes multi-index et sur un opérateur de déconvolution. Le niveau de
résolution des ondelettes est obtenu par la méthode de Goldenshluger-Lepski. Nous
obtenons une inégalité oracle et des vitesses de convergence optimales sur les espaces
de Hölder anisotropes.

Mots clés : Population structurée par la taille, noyau de division, estimation non-
paramétrique, méthode de Goldenshluger et Lepski, adaptation, ondelettes, décon-
volution, régression anisotrope, erreurs de mesure.



Title: Adaptive estimation for inverse problems with applications to cell
divisions

Abstract: This thesis is divided into two independent parts. In the first one, we
consider a stochastic individual-based model in continuous time to describe a size-
structured population for cell divisions. This model is motivated by the detection of
cellular aging in biology. The random point measure describing the cell population
evolves as a piecewise deterministic Markov process. We address here the problem of
nonparametric estimation of the kernel ruling the divisions, under two observation
schemes. First, we observe the evolution of cells up to a fixed time T and we obtain
the whole division tree. We construct an adaptive kernel estimator of the division
kernel with a fully data-driven bandwidth selection. We obtain an oracle inequality
and optimal exponential rates of convergence. Second, when the whole division tree
is not completely observed, we show that, in a large population limit, the renor-
malized microscopic process describing the evolution of cells converges to the weak
solution of a partial differential equation (PDE). Considering an eigenvalue problem
related to the asymptotic behavior of the PDE’s solutions, we propose an estimator
of the division kernel by using Fourier techniques. We prove the consistency of the
estimator. The study of rates of convergence is a work in progress.

In the second part of this thesis, we consider the nonparametric regression with
errors-in-variables model in the multidimensional setting. We estimate the mul-
tivariate regression function by an adaptive estimator based on projection kernels
defined with multi-indexed wavelets and a deconvolution operator. The wavelet level
resolution is selected by the method of Goldenshluger-Lepski. We obtain an oracle
inequality and optimal rates of convergence over anisotropic Hölder classes.

Keywords: Random size-structured population, division kernel, nonparametric
estimation, Goldenshluger-Lepski’s method, adaptation, wavelets, deconvolution,
anisotropic regression, measurement errors.
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