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Le fait est que les chameaux sont
plus intelligents que les
dauphins[...]. Ce chameau ci
s’appelait Sale-Bête. Il était, de fait,
le plus grand mathématicien du
monde. Sale-Bête réfléchissait : on
dirait qu’on a affaire à une
instabilité dimensionnelle croissante,
oscillant à première vue de zéro à
quarante-cinq degrés. Soit ν égal à 3.
Soit τ égal à χ/4. Soit κ/y un ordre
de tenseur différentiel à quatre
coefficients de spin imaginaires...

Terry Pratchett - Pyramides

Dédié à mes parents, qui m’ont toujours soutenu.
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A B S T R A C T

This thesis is concerned with the rational homotopy theory of intersection
spaces. It is composed of three parts, each of them being more or less
independent.

Unless stated otherwise, all homology and cohomology groups involved
in this thesis have to been understood with rational coefficients. These
coefficients won’t be denoted unless if there is ambiguity, for instance if
we consider homology or cohomology with coefficients in Z or C.

The first part concerns the notion of Poincaré duality associated to the
intersection spaces IpX. When X is a compact connected oriented pseudo-
manifold of dimension n = 4s with only isolated singularities, we then
have a well defined middle perversities intersection spaces

ImX = InX

with a non degenerate symmetric intersection form

bHI : HI
2s
m (X)×HI2sm (X) −→ Q.

This intersection form comes from a generalized Poincaré duality defined
on intersection spaces, but is not defined as the evaluation of a cup product
against a fundamental class. We construct rational Poincaré duality spaces
DP(X) such that when dimX = 4s the Witt class of the intersection form
bDP(X) associated to DP(X) is the same that bHI in the Witt group W(Q).
We also show how to construct Poincaré duality spaces DP(X) when n =

2s+ 1.
The second part develop the notion of Lagrangian intersection spaces

introduced in the first part to construct DP(X) when dimX = 2s+ 1. We
show that the rational homology of these spaces lies between the two mid-
dle perversities intersection homology IHm∗ (X) and IHn∗ (X) in a sense that
we call a (s+ 1, s)-bireflective diagram. In a second section we extend the
notion of homology truncation to nilpotent rational spaces of finite type.

The last part is devoted to the interaction between Hodge theory and the
rational cohomology of intersection spaces when X is a complex projective
algebraic varieties with only isolated singularities. We show that theses
spaces carry a natural mixed Hodge structure at the algebraic models level.
We then use these mixed Hodge structures to derive results about the
formality of intersection spaces.
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R É S U M É

Cette thèse se concentre sur l’homotopie rationnelle des espaces d’inter-
section, espaces définis et développés par M. Banagl dans [6]. Le présent
manuscrit se décompose en trois chapitres, chacun étant plus ou moins
indépendants des autres.

Le premier chapitre traite de la dualité de Poincaré associée aux es-
paces d’intersection. Étant donnée X une pseudovariété compacte, con-
nexe et orientée de dimension n = 4s à singularités isolées, les espaces
d’intersections associés aux deux perversités milieux coïncident

ImX = InX.

Cela nous permet de définir une forme d’intersection bilinéaire symétrique
non dégénérée

bHI : HI
2s
m (X)×HI2sm (X) −→ Q

provenant d’une dualité de Poincaré généralisée définie sur l’homologie
rationnelle des espaces d’intersection. Cette dualité ne provient pas de
l’évaluation d’un cup produit contre une classe fondamentale. En utilisant
le formalisme des espaces d’intersection nous montrons, dans le cas de la
dimension paire, qu’il est possible de construire un espace à dualité de
Poincaré rationnelle DP(X). Lorsque dimX = 4s la classe de Witt associée
à la forme d’intersection bDP(X), définie via dualité de Poincaré, est la
même que la classe Witt de bHI dans le groupe W(Q). Nous montrons
aussi comment construire de tels espaces DP(X) de le cas d’une dimension
impaire.

Le second chapitre développe la notion d’espace d’intersection lagrang-
ien, notion introduite dans le premier chapitre pour construire DP(X)

lorsque dimX = 2s + 1. Nous montrons que l’homologie rationnelle de
ces espaces interagit avec les homologies d’intersection milieu IHm∗ (X)

et IHn∗ (X) au travers d’un diagramme commutatif que nous appelons
un diagramme (s + 1, s)-biréflexif. Dans une seconde partie, nous éten-
dons la notion de troncation homologique utilisée pour définir les espaces
d’intersection au cas des espaces rationnels nilpotents de type fini.

Pour finir, le troisième chapitre étudie l’interaction entre la théorie de
Hodge mixte et la cohomologie rationnelle des espaces d’intersection pour
X une variété algébrique projective complexe à singularités isolées. Nous
montrons que la cohomologie de ces espaces d’intersection possède de
façon naturelle une structure de Hodge mixte définie au niveau des mod-
èles rationnels. Ces structures de Hodge mixte nous permettent alors de
déduire des résultats sur la formalité des espaces d’intersection.
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I N T R O D U C T I O N

general setting : the problem of singular spaces and an-
swers to this problem

“Pour une variété fermée, les nombres de Betti également distants des
extrêmes sont égaux.”

With that foundational theorem, that Poincaré stated in [38] and cor-
rected in [39], began algebraic topology.

Nowadays it is stated in terms of homology and cohomology. Homology
and cohomology assign in a natural way to each manifoldM of dimension
n graded abelian groupsM 7−→ H∗(M; Z),

M 7−→ H∗(M; Z).

Then, when M is an oriented closed manifold, this theorem states that we
have and isomorphism between the integral homology and cohomology

H∗(M; Z) ∼= Hn−∗(M; Z).

This isomorphism, given a choice of orientation of M, is defined by the
cap product with the fundamental class of M

−∩ [M] : H∗(M; Z)
∼=−→ Hn−∗(M; Z).

When passing to rational coefficients, the universal coefficients theorem
states that

Hi(M; Q) ∼= Hom(Hi(M; Q), Q).

WhenM is of dimension n = 4s, Poincaré duality defines a non degenerate
symmetric bilinear form

H2s(M)×H2s(M) −→ Q,

Figure 1: Poincaré duality on the torus. The red and green cycles are dual to each
other.
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Figure 2: Failure of Poincaré duality in the suspended torus. The red and green
cycles become boundaries.

for which we can computes its signature. It is a theorem of Thom, [46],
that this signature is

• a cobordism invariant,

• multiplicative under cartesian product,

• additive under disjoint union.

As cohomology and homology are defined for any topological spaces,
one can ask whether the Poincaré duality holds for general spaces. Poincaré
already answered this question in [38, p. 232] by giving a counterexample
to his isomorphism. The historical and prototypical example that Poincaré
gave was the suspension of the torus, denoted by ΣT . That topological
space is a manifold at every points unless for the two suspension points
and this is already enough to break Poincaré duality. A classical Mayer-
Vietoris long exact sequence gives the following rational homology groups

H∗(ΣT) ∼=



Q ∗ = 0,

0 ∗ = 1,

Q⊕Q ∗ = 2,

Q ∗ = 3,

this computation show that ΣT does not satisfies Poincaré duality.
Characteristic numbers of manifolds are intimately related to Poincaré

duality. In the 1960’s and the 1970’s some characteristic classes were ex-
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tended to the realm of singular spaces. Motivated by applications to surge-
ry theory, D. Sullivan asked whether it is possible to define a signature
for a new homology theory for singular spaces. This new homology the-
ory was to restore Poincaré duality, and one would be able to determine
families of spaces together with a signature that is a bordism invariant.

Actually, there are two strategies to restore Poincaré duality for singular
spaces:

1. The "algebraic" answer : we change the definition of our homology.
This is the solution followed by Mark Goresky and Robert MacPher-
son when defining intersection homology groups.

2. The "topological" answer : we try to modify our class of spaces or the
spaces themselves. This is the solution followed by Markus Banagl
when defining intersection spaces.

Intersection homology theory was defined by Mark Goresky and Robert
MacPherson in [26] and [27], first with the use of simplicial techniques and
then using sheaf theory. Intersection homology with rational coefficients
assign to each singular space (they use stratified pseudomanifold) a family
of graded vector spaces

X IHp∗ (X).

These vector spaces depend of a multi index p which is called a perversity
and these perversities form a finite poset Pn with a unique maximal ele-
ment t. Then, when X is a compact, connected, oriented pseudomanifold
and p and q two complementary perversities, meaning p+ q is defined in
Pn and equal to t, we have a generalized Poincaré duality isomorphism

IH
p
i (X)

∼= IHn−iq (X)

with IHn−iq (X) = IH
q
n−i(X)

∨ = hom(IHqn−i(X), Q). In particular, when X
is of dimension n = 4s and stratified by only even dimensional strata, the
middle perversity m is self-complimentary, m+m = t. This implies that
we have a well defined non degenerate symmetric bilinear form

IHm2s(X)× IHm2s(X) −→ Q.

The signature of this bilinear form is also a cobordism invariant. This
solved the problem Sullivan asked in the 1970’s.

Intersection spaces were defined by Markus Banagl in [6] as a way to
implement Poincaré duality at the level of topological spaces.

Suppose given a stratified pseudomanifold X of dimension n with only
isolated singularities. We also suppose the links of the singularities are
simply connected. We assign to such a space a family of topological spaces

X IpX,

called its intersection spaces, also indexed by perversities p ∈ Pn. Let us
mention here that in the isolated singularity case a perversity is just an
integer 0 6 p 6 n− 2.
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Figure 3: Construction on a pseudomanifold with isolated singularities by coning
off the boundaries of the left manifold.

Before explaining the construction of the intersection spaces, let us recall
how to construct stratified spaces with only isolated singularities.

Consider X a stratified pseudomanifold with isolated singularities Σ =

{σ1, . . . ,σν}. Removing an open neighbourhood of each singularities leaves
us with a manifold with boundary (Xreg,∂Xreg) where the boundary

∂Xreg =
⊔
σi∈Σ

Li

is the disjoint union of the links Li for each singularities σi ∈ Σ.
Conversely, assume that is given a manifold with boundary (M,∂M)

such that the boundary ∂M is the union of m connected components

∂M =

m⊔
i=1

∂iM.

Let (I(1), . . . , I(`)) be a partition of m and consider

∂I(k)M :=
⊔

∑k−1
r=1 I(r)<j6

∑k
r=1 I(r)

∂jM

with k > 1 and I(0) = 0. The space

X :=M
⋃
∂M

( ⊔̀
k=1

c(∂I(k)M)

)

formed by glueing the cones c(∂I(k)M) onto the boundary is then a strat-
ified pseudomanifold with ` isolated singularities. The manifold M be-
comes then the regular part Xreg of X. An example is shown in Figure
3.

The process to construct intersection spaces is similar in the sense that
the IpX are constructed by conning off only a part of the boundary.

Suppose that is given X a stratified pseudomanifold of dimension nwith
only isolated singularities Σ = {σ1, . . . ,σν} and a perversity 0 6 p 6 n− 2.
Suppose also the links Li are simply connected.

Consider the associated manifold with boundary (Xreg,∂Xreg), we have
∂Xreg = tσiLi. Spatial homology truncation theory (originally defined in

xiv



 

Figure 4: Contruction of an intersection space by coning off only a part of the
boundaries.

[6]) provides, for each Li and for an integer k(p) := n − 1 − p, a CW-
complex tk(p)Li together with a comparison map

fi : tk(p)Li −→ Li

such that the induced map in homology Hr(f; Z) is an isomorphism for
r < k(p) and the zero map otherwise. The intersection space IpX is then
defined as the mapping cone of the compostion⊔

σi

tk(p)Li
tσifi−→

⊔
σi

Li −→ Xreg.

The ordinary homology of these spaces satisfies generalized Poincaré
duality when X is a compact, connected, oriented pseudomanifold of di-
mension n with only isolated singularities and simply connected links. By
analogy with intersection homology we denote H̃Ip∗ (X) := H̃∗(I

pX) and
H̃I∗p(X) := H̃

∗(IpX). We have the following isomorphism

H̃I
p
i (X)

∼= H̃In−iq (X).

where p and q are complementary perversities.
The homology of the intersection spaces IpX is not isomorphic to the

intersection homology of X. Intersection spaces can in fact be understood
as an enrichment of intersection homology theory and we can recover in-
formation on intersection homology by studying the intersection spaces.
In particular, when X is a stratified pseudomanifold of dimension n = 4s

with isolated singularities, the cohomology of the middle perversity inter-
section space ImX defines a non degenerate symmetric bilinear form

H̃I2sm (X)× H̃I2sm (X) −→ Q

and both this bilinear form and the form induced by intersection cohomol-
ogy share the same Witt element in the Witt group W(Q).

Of the problem of restoring Poincaré duality on singular spaces, this the-
sis focuses on the second solution : the intersection spaces, from the point
of view of rational homotopy theory. Let us first briefly recall the notion
of rational homotopy theory. The rational homotopy type of a topological
space X is given by the commutative differential graded algebra APL(X) in
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the homotopy category Ho(CDGAQ) defined by formally inverting quasi-
isomorphisms and where APL(−) : Top → CDGAQ is the polynomial De
Rham functor defined by Sullivan.

Rational homotopy theory provides a powerful tool since it allows us to
work in a completely algebraic way. The most important result being the
fact that one can completely classify connected nilpotent rational topolog-
ical space of finite type. In fact to any rational homotopy type belongs a
unique isomorphism class of cdga’s. To be more precise, define by CW0

rat,ft
the full subcategory of connected rational nilpotent CW-complexes of fi-
nite type and by SulAlg0ft the full subcategory of connected Sullivan alge-
bras of finite type. Passing to homotopy categories we have an equivalence
of categories [45]

Ho(CW0
rat,ft) Ho(SulAlg0ft)

op.

poincaré duality and intersection spaces

Intersection spaces theory provide, when dimX = n = 2s, a topological
space ImX such that its homology satisfies generalized Poincaré duality.

H̃Ikm(X) ∼= H̃Im2s−k(X).

The natural question which comes to mind is : "Is it a manifold ? If not,
how close it is from a manifold ?"

Note we gave the generalized Poincaré duality of intersection spaces
with reduced homology. This is because the intersection spaces IpX do not
carry a fundamental class for any perversity p. Thus for the middle per-
versity m the Poincaré duality isomorphism

H̃Imi (X) ∼= H̃In−im (X).

cannot be described as a cap product with a fundamental class. Therefore
the IpX are not manifolds.

In this thesis we modify the preceding construction in order to get a
Poincaré duality space. That is a topological space Y, which is not neces-
sarily a manifold, but whose rational homology satisfies Poincaré duality.
Moreover, this duality isomorphism is given by the cap product with an
orientation class [Y]

−∩ [Y] : Hr(Y; Q) −→ Hn−r(Y; Q).

Let X be a compact, connected and oriented stratified pseudomanifold
X of dimension n with only isolated singularities and simply connected
links. We can associate to X a rational Poincaré duality space DP(X) such
that DP(X) lies between the regular part Xreg of X and its normalisation
X. We call DP(X) a Poincaré duality approximation space of X, see the
definition 1.1.0.1. Moreover, when dimX ≡ 0mod4 the Witt element of
the intersection form of DP(X) is the same as the one from ImX. Being
more precise, we have the following theorem.
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Theorem 0.0.1 (Multiple isolated singularities case). Let X be a compact,
connected oriented pseudomanifold of dimension n with only isolated singularities
Σ = {σ1, . . . ,σν;ν > 1} of links Li simply connected. Then,

1. If n = 2s, there exists a rational Poincaré approximation DP(X) of X.
Moreover, if dimX ≡ 0 mod 4, then the Witt class associated to the inter-
section form bDP(X) is the same as the Witt class associated to the middle
intersection cohomology of X.

2. If n = 2s+ 1 and X is either a Witt space or an L-space then there exists a
rational Poincaré approximation DP(X) of X.

What this theorem means is that, for instance in the case where n = 2s,
the intersection space ImX can be "completed" into a rational Poincaré du-
ality space by glueing a single 2s-dimensional cell e2s. Moreover, when
X is simply connected, the rational homotopy type of this new space
DP(X) := ImX∪ e2s is determined by ImX.

mixed hodge structures

One of the other points investigated here is the study of the rational coho-
mology algebraHI∗p(X) of the IpXwhen X is a complex projective algebraic
variety with only isolated singularities. The rational cohomology of X al-
ready bears interesting information since we know it can be endowed with
a mixed Hodge structure and that this mixed Hodge structure is functo-
rial with respect to algebraic morphisms, [17]. In fact the mixed Hodge
structure is defined at the algebraic models level, meaning that the cdga
APL(X) can be endowed with two filtrations (APL(X),W, F) such that the
cohomology of the triple (APL(X),W, F) induces a mixed Hodge structure
on H∗(X).

This notion of mixed Hodge structure can then be used to derive results
about the rational homotopy type of X, like its formality. A space X is for-
mal if there is a string of quasi-isomorphisms from the cdga APL(X) to its
cohomology with rational coefficients H∗(APL(X)) ∼= H∗(X) seen as a cdga
with trivial differential. In particular if X is simply connected and formal
then its rational homotopy type is a formal consequence of its cohomology
algebra, its higher order Massey products vanish and the rational homo-
topy groups of X, π∗(X)⊗Q can be computed in a purely algebraic way di-
rectly from H∗(X). One of the landmark result combining the two notions
of rational homotopy theory and Hodge structures is the result of Deligne,
Griffiths, Morgan and Sullivan [18] that compact Kähler manifolds, in par-
ticular smooth projective varieties, are formal topological spaces.

The notion of Hodge structure dates back to the result of William Hodge
[31] on compact Kähler manifolds. A complex form α has type (p,q) if for
any local system of holomorphic coordinates (z1, . . . , zn) , the form α is a
linear combination of forms g · dzi1 ∧ · · ·∧ dzip ∧ dzj1 ∧ · · ·∧ dzjq with g
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a differentiable function. Suppose given X a compact Kähler manifold of
complex dimension n. For all m, we have the following decomposition

Hm(X; C) =
⊕

p+q=m

Hp,q(X)

where Hp,q(X) is the subspace of cohomology classes whose harmonic
representative is of type (p,q). The space Hp,q(X) is the complex conjugate
of Hq,p(X). This modelization by a direct sum decomposition leads to the
more general definition of a Hodge structure of weight k with the use of a
decreasing filtration. Let H be a Z-module of finite rank and a decreasing
filtration

H⊗C ⊃ · · · ⊃ Fp ⊃ Fp+1 ⊃ · · ·

such that Fp ∩ Fq = 0 whenever p+ q = k+ 1, then H has a (pure) Hodge
structure of weight k if one has

H⊗C =
⊕

p+q=k

Fp ∩ Fq.

The existence of a pure Hodge structure on a cohomology group puts
restrictions on its rank. For instance, if X a compact Kähler manifold we
have

H1(X; C) = H1,0(X)⊕H0,1(X)

and H1(X; C) is then of even rank. For a non-compact or singular com-
plex algebraic variety the above decomposition doesn’t work, for instance
H1(X) can have odd rank. This led Deligne to generalize the Hodge struc-
ture notion into the notion of mixed Hodge structure [16], [17]. The idea
is that on each cohomology groups Hk(X) there is a increasing filtration
W∗, the weight filtration, such that the m-th graded quotient has a pure
Hodge structure of weight m.

Morgan [36] endowed homotopy groups of smooth algebraic varieties
with mixed Hodge structures through the notion of mixed Hodge dia-
gram. He not only put a mixed Hodge structure on the higher homotopy
groups of a complex algebraic manifold X, he showed that the minimal
model of the Sullivan algebra APL(X) also has a mixed Hodge structure.
Navarro Aznar then extended the results of Morgan [4] to possibly sin-
gular complex algebraic varieties. Independently, Hain also extended the
results of Morgan with the use of Chen’s iterated integrals [28] [29].

Given a cdga (A,d) with an increasing bounded filtration {W∗A} one
can consider the associated spectral sequence E(A,W) with

Er,s
1 (A,W) := Hr+s(grWr (Ar+s)).

In the case of the weight filtration on the rational models of a complex
projective variety X that spectral sequence is called the weight spectral
sequence and is denoted by E1(X,W). Cirici and Guillen proved [15] that
complex algebraic varieties are E1-formal. This means that the rational
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homotopy type of complex algebraic varieties is determined by the E1-
term of the weight spectral sequence. In other words, there is a string of
quasi-isomorphisms

APL(X) −→ ∗ ←− E1(X,W).

Let us consider the family {IpX}p∈Pn of intersection spaces associated to
the space X. Each one of them admits a rational model which we denote
by AIp(X), in fact this family can be considered as a functor

AI•(X) : P
op
n −→ CDGAQ

which we call a coperverse cdga, see definition 3.2.2.1. These coperverse
cdga’s enjoy an extended product

AIp(X)⊗AIq(X) −→ AIq(X) p 6 q in Popn .

When p = q, this is the product that each one of the cdga AIp(X) naturally
has as rational model of a topological space. Moreover when X ∈ SuperVC,
that is, when X is a complex projective variety with only isolated singu-
larities and simply connected links, the coperverse cdga AI•(X) can be
endowed with two filtrations. One increasing filtration W• on the rational
algebra AI•(X), its weight filtration, and one decreasing filtration F• on its
complexification AI•(X)⊗ C, its Hodge filtration, in a way such that the
triple

(AI•(X),W•, F•)

is a coperverse mixed Hodge cdga. This means that for every perversity p,
we have a bifiltered cdga

(AIp(X),Wp, Fp)

such that the two filtrations define a mixed Hodge structure on AIp(X)
compatible with the poset maps AIp(X)→ AIq(X).

The work of Chataur and Cirici [12] made for studying the interactions
between mixed hodge structures and the intersection cohomology of a
complex projective variety with only isolated singularities can be modi-
fied to suit the study of mixed hodge structures on HI∗•(X). This allow
us to get the following theorem, which was stated in [12, theorem 3.10]
for intersection cohomology. In a more precise way we have the following
theorem.

Theorem 0.0.2. Let X ∈ SuperVC of complex dimension n. There exists a coper-
verse mixed Hodge cdga MI•(X) together with a string of quasi-isomorphisms

MI•(X)← ∗ → AI•(X)

such that this mixed Hodge structure is compatible with the one on Xreg and the
one on X.
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A more precise statement is given is the theorem 3.4.1.
It is interesting to remark here that the intersection spaces I•X aren’t

complex algebraic varieties. The fact that their cohomology carries a mixed
Hodge structure isn’t clear at all at first glance.

Next we study the weight spectral sequence associated to (MI•(X),W)

which we denote by EI•(X). We then use this spectral sequence to derive
results about the formality of the intersection spaces IpX. The key ingredi-
ent to obtain results about formality is the following theorem about what
we call the EI1,•-formality of complex projective algebraic varieties with
isolated singularities.

Theorem 0.0.3. Let X ∈ SuperVC with only isolated singularities. There is a
string of quasi-isomorphisms of coperverse cdga’s fromMI•(X)⊗C to EI1,•(X)⊗
C. In particular, there is an isomorphism in Ho(P̂n

op
CDGAC) from AI•(X)⊗C

to EI1,•(X)⊗C.

One remarkable fact is that a similar theorem is also true in the case
of intersection cohomology [12, theorem 3.12]. This shows the strong re-
semblance between intersection cohomology and the cohomology of inter-
section spaces when we consider complex projective varieties. This result
allows us to state the theorem 3.5.4 of the type "purity implies formality"
and the theorem 3.6.1 which in particular says that the intersection spaces
IpX of any nodal hypersurfaces X in CP4 are formal.

xx
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Part I

P O I N C A R É D U A L I T Y A N D S I N G U L A R S PA C E S

In this part we assign, under reasonable hypothesis, to each
pseudomanifold with isolated singularities a rational Poincaré
duality space. These spaces are constructed with the formal-
ism of intersection spaces defined by Markus Banagl and are
indeed related to them in the even dimensional case.
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4 poincaré duality for spaces with isolated singularities

1.1 introduction

We are concerned with rational Poincaré duality for singular spaces. There
is at least two ways to restore it in this context :

• As a self-dual sheaf or as a self-dual cohomology. This is for instance
the case with rational intersection homology.

• As a spatialization. That is, given a singular space X, trying to asso-
ciate to it a new topological space XDP that satisfies Poincaré duality.
This strategy is at the origin of the concept of intersection spaces.

Let us briefly recall this two approaches.
While seeking for a theory of characteristic numbers for complex ana-

lytic varieties and other singular spaces, Mark Goresky and Robert Mac-
Pherson discovered (and then defined in [26] for PL pseudomanifolds and
in [27] for topological pseudomanifolds) a family of groups IHp∗ (X) called
intersection homology groups of X. These groups depend on a multi-index
p called a perversity. A n-perversity p is a function

p : {2, 3, . . . ,n} −→ {0, 1, . . . ,n− 2}

such that p(2) = 0 and p(k) 6 p(k + 1) 6 p(k) + 1, where n is the di-
mension of X. The n-perversities form a finite poset Pn endowed with a
partial addition + and a unique maximal element called the top perver-
sity t defined by t(k) = k − 2 for all k. Two n-perversities p and q are
said to be complementary if p+ q exists in Pn and is equal to t. Intersec-
tion homology is able to restore Poincaré duality on topological stratified
pseudomanifolds.

If X is a compact oriented pseudomanifold of dimension n and p,q are
two complementary perversities, over Q we have an isomorphism

IH
p
i (X)

∼= IHn−iq (X),

With IHn−iq (X) := hom(IHqn−i(X), Q).
In particular, suppose given an oriented pseudomanifold X of dimension

n = 4s. Moreover, suppose that X has only even dimensional strata. Then
for the lower middle perversity m(k) := bk2c− 1 we have a well defined
non degenerate symmetric bilinear pairing

IHm2s(X)× IHm2s(X) −→ Q.

We can define the Witt class of its associated quadratic form in W(Q).
The signature of this bilinear form is a bordism invariant. This pairing
can be generalized to Witt spaces. A Witt space is a topological stratified
pseudomanifold such that for each stratum S of odd codimension 2r+ 1
the lower middle perversity intersection homology of the link LS satisfies

IHmr (LS) = 0.

This duality has been extended to non Witt spaces by Markus Banagl
[5]. He introduces a category SD(X) of complexes of sheaves on X. Those
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sheaves are required to be Verdier self-dual and satisfy stalk axioms, which
make them lie between the lower and upper-middle perversity intersection
chain sheaves on X. When the category SD(X) is not empty we can choose
a self dual chain complex of sheaves F, this allows the definition of a sig-
nature. The signature does not depend of F in SD(X).

Intersection spaces were defined by Markus Banagl in [6] as an attempt
to spatialize Poincaré duality for singular spaces. Given a stratified pseu-
domanifold X on dimension n with only isolated singularities and simply
connected links we have a family of topological spaces IpX indexed by per-
versities p. By analogy with intersection homology, denote by H̃Ip∗ (X) :=

H̃∗(I
pX) and H̃I∗p(X) := H̃∗(IpX). Over Q and for complementary perver-

sities p, q, we have an isomorphism

H̃I
p
i (X)

∼= H̃In−iq (X).

One may regard the theory of intersection spaces as an enrichment of in-
tersection homology and we can recover informations about intersection
homology thanks to those intersection spaces. In particular they have the
same information when it comes to the signature of the intersection form
as shown in [6, theorem 2.28]. Suppose X is a compact oriented pseudo-
manifold of dimension n = 4s with only isolated singularities and simply
connected links. Considering the middle perversity intersection space ImX
gives us the isomorphism

H̃Imi (X) ∼= H̃I4s−im (X).

Then, by the way of some nice algebraic tools it is shown that the two
bilinear pairings over Q

bHI : H̃I
m
2s(X)× H̃Im2s(X) −→ Q

and

bIH : IHm2s(X)× IHm2s(X) −→ Q

have the same Witt element in W(Q).
It must be noticed here that the pairing H̃Im2s(X)× H̃Im2s(X)→ Q is not re-

alized as the quadratic form associated to the generalized Poincaré duality
of the space ImX. In fact, the space ImX does not have a fundamental class.
That is we can’t express bHI(x,y) as 〈[ImX], x ∪ y〉 where [ImX] would be
a fundamental class of the space ImX.

What we show is the existence of a rational Poincaré duality space
DP(X). In particular the pairing defined above for the middle perversity in-
tersection space can be realized as a pairing induced by a classical Poincaré
duality and we have

bDP(X)(x,y) = 〈[DP(X)], x∪ y〉.

Basically, we can separate the construction of the space DP(X) in two
cases, whether the pseudomanifold X has only one isolated singularity or
more than one.
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Suppose given a compact, connected oriented pseudomanifold X of di-
mension n with only isolated singularities Σ = {σ1, . . . ,σν} and denote by
Li the link of the singularity σi. We also suppose that the Li are all simply
connected.

The case where X has only one singularity is very particular in the sense
that the link of the singularity is always a boundary. If we denote by Xreg
the complementary in X of an open neighbourhood of the singularity, then
Xreg is a manifold with boundary and ∂Xreg = L. By a classical result
of Thom, see [30], the Witt class [bL] ∈ W(Q) of the intersection form
associated to L is zero. This result allows us to perform what we call a
Lagrangian truncation, which we explain in 1.2.4, and then construct a ra-
tional Poincaré duality space when the dimension of X is odd. When the
dimension of X is even, we do not need this assumption and the construc-
tion of DP(X) is easier. We have the following definition and theorems

Definition 1.1.0.1. Let X be a compact, connected pseudomanifold with only
isolated singularities Σ = {σ1, . . . ,σν}. Denote by X the normalization of X. A
good rational Poincaré approximation of X is a topological space DP(X) such that

1. DP(X) is a rational Poincaré duality space,

2. there is a rational factorization of the inclusion i : Xreg → X in two maps

Xreg
φ−→ DP(X)

ψ−→ X.

That is ψr ◦φr = ir : Hr(Xreg)→ Hr(X) such that

• If dimX = 2s, then

a) φr : Hr(Xreg) −→ Hr(DP(X)) is an isomorphism for 2s− 1 >
r > s and an injection for r = s,

b) ψr : Hr(DP(X)) −→ Hr(X) is an isomorphism for r < s and
r = 2s.

• If dimX = 2s+ 1, then

a) φr : Hr(Xreg) −→ Hr(DP(X)) is an isomorphism for 2s > r >
s+ 1 and an injection for r = s+ 1,

b) ψr : Hr(DP(X)) −→ Hr(X) is an isomorphism for r < s and
r = 2s+ 1 and a surjection for r = s.

We say that DP(X) is a very good rational Poincaré approximation of X if

• when dimX = 2s, then φs is also an isomorphism.

• when dimX = 2s+ 1, then φs+1 and ψs are also isomorphisms.

Theorem 1.1.1 (Unique isolated singularity case). Let X be a compact, con-
nected oriented pseudomanifold of dimension n with one isolated singularity of
link L simply connected. There exists a good rational Poincaré approximation
DP(X) of X. Moreover if dimX ≡ 0 mod 4, then the Witt class associated to
the intersection form bDP(X) is the same that the Witt class associated to the
middle intersection cohomology of X.
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Depending of the dimension of X we use two different types of trunca-
tions on the link of the singularity L. When dimX = 2s this is the classical
homology truncation defined by Markus Banagl in [6]. The odd dimen-
sional case also use the Lagrangian truncation which will be defined in
section 1.2.4.

The case where we have more than one singularity is a bit more delicate
in the odd dimensional case because we do not have anymore the result
of Thom we used above. Consider for example SCP2, the suspension on
the 2 dimensional complex projective space. As a pseudomanifold, it has
two isolated singularities which are the two suspension points and each of
these points has a copy of CP2 as link. But CP2 is not the boundary of the
regular part which is homeomorphic to CP2× [0, 1], and SCP2 is neither a
Witt space nor an L-space as stated in definitions 1.2.7.3 and 1.2.11.1.

The odd dimensional case then breaks down in two subcases corre-
sponding to the type of space we are dealing with. If the space is a Witt
space we can construct a rational Poincaré duality space, and if the space
is an L-space we can perform a Lagrangian truncation to also get a ratio-
nal Poincaré duality space. In the even dimensional case we can always
construct a rational Poincaré duality space. We then have the following
theorem.

Theorem 1.1.2 (Multiple isolated singularities case). Let X be a compact,
connected oriented pseudomanifold of dimension n with only isolated singularities
Σ = {σ1, . . . ,σν;ν > 1} of links Li simply connected. Then,

1. If n = 2s, there exists a good rational Poincaré approximation DP(X) of
X. Moreover, if dimX ≡ 0 mod 4, then the Witt class associated to the
intersection form bDP(X) is the same as the Witt class associated to the
middle intersection cohomology of X.

2. If n = 2s+ 1 and is either a Witt space or an L-space then there exists a
good rational Poincaré approximation DP(X) of X. Moreover when X is a
Witt space DP(X) is a very good rational Poincaré approximation of X.

The first section of this paper contains the various and already known
definitions and results we will use. We first recall the definitions of pseudo-
manifolds, perversities and we give a brief account of rational homotopy
theory. The third part is devoted to the theory of homological truncation
theory and intersection spaces defined by Markus Banagl in [6], we also
give a rational model of the intersection spaces in 1.2.7.3. We extend the
homological truncation to a Lagrangian truncation in the fourth part 1.2.4.

The second section is devoted to the construction of the spaces DP(X).
We first recall the notions we use about Poincaré duality. We then com-
pletely develop the method of construction, first with a unique isolated
singularity and then explain how to modify the results to get the general
theorem in the context of multiple isolated singularities.

We finish with a section of examples, the real algebraic varieties, the
nodal hypersurfaces and the Thom spaces.
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1.2 background, truncations and intersection spaces

1.2.1 Pseudomanifold and Goresky MacPherson perversity

We first recall the definitions of stratified pseudomanifolds, links and per-
versities.

Definition 1.2.0.1. A (topologically) stratified pseudomanifold is defined induc-
tively on dimension.

• A 0-dimensional stratified pseudomanifold X is a countable set of points
with the discrete topology.

• An n-dimensional stratified pseudomanifold is a paracompact Hausdorff
topological space X equipped with a filtration

X = Xn ⊃ Xn−1 = Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X1 ⊃ X0 ⊃ X−1 = ∅

such that

1. Every non-empty Xn−k − Xn−k−1 is a topological manifold of dimension
n− k, called an (open) stratum of X.

2. X−Xn−2, the top stratum, is dense in X.

3. For each point x ∈ Xn−k − Xn−k−1, there exists an open neighbourhood
U of x ∈ X, a compact topological stratified pseudomanifold L of dimension
k− 1 with stratification

L = Lk−1 ⊃ Lk−3 ⊃ · · · ⊃ L0 ⊃ L−1 = ∅

and a homeomorphism

φ : U
'−→ Rn−k × ◦cL

where
◦
cL := L× [0, 1)/((t, 0) ∼ (t ′, 0)) is the open cone on L, φ restricts

to homeomorphisms

φ| : U∩Xn−l
'−→ Rn−k × ◦cLk−l−1.

The pseudomanifold L is called a link of the point x in X.

In our case all the topological spaces are supposed compact. So a 0-
dimensional stratified pseudomanifold X is a finite set of points with the
discrete topology.

In the rest of this paper we will work with pseudomanifold with iso-
lated singularities of dimension n. That is a compact Hausdorff topologi-
cal space X with stratification

∅ ⊂ Σ ⊂ Xn = X
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where Σ = {σ1, . . . ,σν} is a finite set of points, the isolated singularities.
We will denote by Li := L(σi,X) the link in X of the singularity σi and by

L(Σ,X) :=
⊔
σi∈Σ

Li

the disjoint union of the links. The space L(Σ,X) is then a disjoint union of
topological manifolds of dimension n− 1.

Such a pseudomanifold X can be obtained by coning off a manifold with
boundary. Let (M,∂M) be manifold with boundary such that ∂M is the
disjoint union of m connected components,

∂M =

m⊔
j=1

∂jM.

Let I = (I(1), . . . , I(ν)) be a partition of m such that I(k) 6= 0 for all k ∈
{1, . . . ,ν}. This partition of m induces the following partition on ∂M. For
k > 1, denote by

∂I(k)M :=
⊔

∑k−1
r=1 I(r)<j6

∑k
r=1 I(r)

∂jM

with I(0) = 0, then ∂M = tνk=1∂I(k)M. The homotopy pushout diagram

tνk=1∂I(k)M tνk=1c(∂I(k)M)

M X

defines X as a stratified pseudomanifold with ν isolated singularities Σ =

{σ1, . . . ,σν}. The link Li of σi is then

Li = ∂I(i)M.

Conversely, let X be a stratified pseudomanifold with only isolated sin-
gularities Σ = {σ1, . . . ,σν}. Removing a small open neighbourhood of each
singularities σi gives us a manifold with boundary (Xreg,∂Xreg) where
the number of connected components of ∂Xreg is the number of connected
components of L(Σ,X). The manifold Xreg is called the regular part of X.

Definition 1.2.0.2. Let X is a compact, connected oriented pseudomanifold of
dimension n with only isolated singularities Σ = {σ1, . . . ,σν}. We say that X is
a normal pseudomanifold if the link Li of each singularities σi is connected.

If X is constructed by coning off the boundary ∂M of (M,∂M), saying
that X is normal is then equivalent to say the partition used was

(I(1), I(2), . . . , I(m)) = (1, 1, . . . , 1).

The integer m being the number of connected components of ∂M as be-
fore.



10 poincaré duality for spaces with isolated singularities

Figure 5: Manifold with boundary with m = 3 connected components.

Figure 6: Pseudomanifolds with isolated singularities obtained by coning off the
boundary with the partition (1, 2) and (1, 1, 1).

Given X is a compact, connected oriented pseudomanifold of dimension
n with only isolated singularities, one can construct its normalization X by
considering its regular part Xreg and using the partition (1, 1, . . . , 1) for
coning off the boundary. The space X is then a normal pseudomanifold
with only isolated singularities. We have a map X −→ X.

Since the definition of a Poincaré duality approximation space of X
1.1.0.1 involves a map from DP(X) to its normalization X, we will always
assume for the rest of this part that the pseudomanifolds considered here
are normal pseudomanifolds.

Since we only work with isolated singularities, a perversity is just a
number p ∈ {0, 1, . . . , dimX − 2}. We denote by m and n the following
perversitiesm := bdimX

2 c− 1,

n := ddimX
2 e− 1.

Example 1.2.1. 1. Thom spaces. Let B be a compact, connected, oriented
manifold of dimension n and E a fiber bundle over B of rank n ′,

Rn
′ −→ E −→ B.

The Thom space Th(E) of the fiber bundle E is defined as the homotopy
cofiber of the map

SE −→ DE

where SE and DE are respectively the sphere bundle and disk bundle associ-
ated to E.

Th(E) is then a pseudomanifold of dimension n+n ′, the singularity is the
compactification point, its link is the sphere bundle SE and the regular part
of Th(E) is the disk bundle DE.
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2. Real algebraic varieties. Using Whitney stratifications, one can show
that any real algebraic set X has a stratification that makes it a stratified
pseudomanifold in the sense of the definition above unless for the condition
about the strata of codimension 1. For example the figure 8 can be defined as
a real algebraic variety, its singular point is then a codimension 1 stratum.
See for instance the section 3 of the chapter 4 in [2].

1.2.2 Rational homotopy theory

We recall here the definitions involving minimal and rational models we
will need later. The results of this section are true for any fields k of char-
acteristic zero, we focus on Q. We refer to [24] and [25] for the following
definitions and results.

Denote by DGAQ the category of differential graded algebras over Q,
dga for short, and by CDGAQ its full subcategory of commutative differ-
ential graded algebras over Q, cdga for short, and by Top the category of
topological spaces.

We have the contravariant functor C∗(−; Q) : Top → DGAQ that to each
topological space K assigns its cochain algebra of normalized singular
cochains on K. This algebra is almost never commutative but homotopy
commutative. In fact, the only case where this algebra is commutative is
when X is a disjoint union of points.

Nevertheless over the rationals we can restrict our attention to commu-
tative dga.

Theorem 1.2.1 ([45]). There exists a contravariant functor APL(−) : Top →
CDGAQ such that, for all topological spaces X, there is a natural cochain algebra
quasi-isomorphism of dgas C∗(K; Q)

'−→ · '←− APL(K).

Given a graded vector space V , ∧V denotes the free commutative graded
algebra generated by V and not just its exterior algebra. We denote by ∧nV

the vector space generated by the elements of the form x1 · · · xn with the
xi ∈ V . We also have by ∧+V = ⊕n>1 ∧n V and ∧>qV = ⊕n>q ∧n V .

Definition 1.2.1.1. A Sullivan algebra is a cdga (∧V ,d), where

1. V = {Vp}p>1 is a graded vector space over Q,

2. V = ∪∞k=0V(k), where V(0) ⊂ V(1) ⊂ · · · is an increasing sequence of
graded subspaces such that

d = 0 in V(0) and d : V(k)→ ∧V(k− 1), k > 1.

Definition 1.2.1.2. 1. A Sullivan model for a cdga (A,d) is a quasi isomor-
phism

m : (∧V ,d) −→ (A,d)

from a Sullivan algebra (∧V ,d).
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2. If K is a path connected topological space then a Sullivan model for APL(K)

m : (∧V ,d) −→ APL(K)

is called a Sullivan model for K.

3. A Sullivan algebra, (∧V ,d) is called minimal if

imd ⊂ ∧+V ·∧+V

Proposition 1.2.1.1. Any cdga (A,d) satisfying H0(A) = Q and any path
connected topological space K have a unique minimal Sullivan model up to iso-
morphism.

Definition 1.2.1.3 (Rational model). A rational model for a space K is a cdga
(A∗(K),d) with a quasi-isomorphism

m : (M(K),d)→ (A∗(K),d),

where (M(K),d) is the minimal model of K.

When needed, we will denote by (M(K),d) the minimal model of the
topological space K and by (A∗(K),d) a rational model of K, not necessarily
minimal.

We will also need the notion of relative minimal models.

Definition 1.2.1.4. A relative minimal cdga is a morphism of cdga’s of the form

i : (A,dA) −→ (A⊗∧V ,d),

where i(a) = a, d|A = dA, d(V) ⊂ (A+⊗∧V)⊕∧>2V and such that V admits
a basis xα indexed by a well ordered set such that d(xα) ∈ A⊗ (∧(xβ))β<α.

Theorem 1.2.2. Let f : (A,d) −→ (B,d) be a morphism of cdga’s. We then have
a commutative diagram

A B

(A⊗∧V ,d)

f

i
g

where i is a relative minimal cdga and g a quasi-isomorphism. This property
characterizes (A⊗∧V ,d) up to isomorphism.

Example 1.2.2. 1. For n odd, the minimal model of the sphere Sn is the cdga
(∧(e),d = 0) with |e| = n.

2. For n even, the minimal model of the sphere Sn is the cdga (∧(e, e ′),d)
with |e| = n, |e ′| = 2n− 1 and de ′ = e2.

3. The minimal model of S3× S5 is the cdga (∧(s3, s5),d = 0) with |ei| = i.
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4. The minimal model of S3 ∨ S5 is the cdga (∧(s3, s5,d7),d) with d(d7) =
s3s5, |si| = i and |d7| = 7.

5. The minimal model of the torus Tn of dimension n is the cdga

(∧(x1, . . . , xn), 0)

where all the xi have degree 1.

6. The minimal model of the complex projective spaces CPn are the cdgas
(∧(x,y),d) with dy = xn+1, |x| = 2 and |y| = 2n+ 1 .

Definition 1.2.2.1. Let f : (∧V ,d)→ (∧W,d) be a morphism between Sullivan
algebras. The linear map

Q(f) : V →W

defined on the graded vector spaces V and W by

f(v) −Q(f)(v) ∈ ∧>2W, v ∈ V

is called the linear part of the morphism f.

Let K be a path connected topological space and suppose α ∈ πkK is
represented by a : (Sk, ∗) → (K, ∗). Then Q(a) : VkK → Q · e depends only
on α and the choice of the morphism mK : (∧VK,d)→ APL(K). We define
the pairing

〈−,−〉 : V × π∗K −→ Q

by

〈v;α〉 =

Q(a)(v) if v ∈ VkK
0 if deg v 6= degα.

That pairing is bilinear and when K is simply connected and H∗(K) has
finite type it induces the following theorem.

Theorem 1.2.3 ([24]). Suppose K is simply connected and H∗(K) has finite type,
let (∧V ,d) be its minimal Sullivan model. Then we have an isomorphism :

Vk
∼=−→ homZ(πk(K), Q).

One of the advantage of rational homotopy theory is that it also extends
the range of the Hurewicz theorem

Theorem 1.2.4 (Rational Hurewicz theorem,[23],[34]). Let K be a simply con-
nected topological space with πi(K)⊗Q = 0 for 1 < i < r. Then the Hurewicz
map induces an isomorphism

Huri : πi(K)⊗Q −→ Hi(K)

for 1 6 i < 2r− 1 and a surjection for i = 2r− 1.
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Given the family of rational homotopy groups of K, {π∗(X)⊗Q}, we can
endow them with a structure of graded Lie algebra by considering the pair
({π∗(K)⊗Q}, [−,−]) where [−,−] is the Whitehead product. We first recall
the definition of the Whitehead product and then see it has a nice property
when considering rational homotopy theory.

For k > 1, recall the homeomorphisms Ik/∂Ik → Sk and ∂Ik+1 → Sk.
Regard the first one as a continuous map ak : (Ik,∂Ik)→ (Sk, ∗). Thus

ak×an : (Ik+n,∂Ik+n,y0) −→ (Sk× Sn,Sk∨ Sn, ∗),y0 = (1, 1, . . . , 1).

Use the second homeomorphism to identify (ak × an)|∂Ik+n as a continu-
ous map

ak,n : (Sk+n−1, x0) −→ (Sk ∨ Sn, ∗), x0 = (
1√
k+n

, . . . ,
1√
k+n

).

Definition 1.2.4.1. Let K be a path connected topological space. The Whitehead
product of γ0 ∈ πk(K)⊗Q and γ1 ∈ πn(K)⊗Q is the homotopy class [γ0,γ1] ∈
πk+n−1(K)⊗Q represented by the map

[c0, c1] : Sk+n−1
ak,n−→ Sk ∨ Sn

(c0,c1)−→ K,

where c0 : Sk → K represents γ0 and c1 : Sn → K represents γ1.

Let’s now relate it to rational homotopy.
Consider a minimal Sullivan algebra (∧V ,d). The restriction of d to V

decomposes as the sum of linear maps

αi : V −→ ∧i+1V , i > 1.

Each αi extends uniquely to a derivation di of ∧V increasing wordlength
by i. Moreover, d decomposes as the sum

d = d1 + d2 + · · ·

of the derivations di. The square d21 raises wordlength by 2 and d2 − d21
by at least 3. Since d2 = 0 we must have d21 = 0.

Definition 1.2.4.2. The differential d1 is called the quadratic part of the differen-
tial d.

We now define a trilinear map

〈−;−,−〉 : ∧2VK × π∗(K)⊗Q× π∗(K)⊗Q −→ Q

by

〈vw;γ0,γ1〉 = 〈v;γ1〉〈w;γ0〉+ (−1)|w||γ0|〈v;γ0〉〈w;γ1〉

We then have the

Proposition 1.2.4.1. The Whitehead product in π∗K is dual to the quadratic part
of the differential of (∧VK,d). That is

〈d1v;γ0,γ1〉 = (−1)k+n−1〈v; [γ0,γ1]〉

for v ∈ VK, γ0 ∈ πkK, γ1 ∈ πnK.



1.2 background, truncations and intersection spaces 15

The key property of the functor APL(−) and the minimal models is the
following theorem.

Theorem 1.2.5. There is a bijection

{rational homotopy types}
∼=→ {isomorphism classes of minimal models over Q}

where on the left side we restrict to simply connected spaces with rational homol-
ogy of finite type and on the right side to Sullivan algebras (∧V ,d) with V1 = 0
and each Vk finite dimensional.

We recall the following theorem of minimal cellular models.

Theorem 1.2.6 ([24, theorem 9.11 p.111]). Every simply connected space K is
rationally modelled by a CW-complex K̃ for which the differential in the integral
cellular chain complex is identically zero.

Sketch of proof. Let us give here a sketch of the proof on how to inductively
construct such a CW-complex K̃ since we will need this argument later.

By cellular approximation, for example see [24, theorem 1.4], we restrict
ourselves to the case where K is a CW-complex with K0 = K1 = pt, and
all cells are attached by based maps (Sk, ∗)→ (Kk,pt).

Let (C∗(K),∂∗) denote the cellular chain complex for K, we also use the
same symbol to denote an k-cell of K and the corresponding basis element
of Ck(K).

Choose k-cells aki and bkj so that in the rational chain complex (C∗(K)⊗
Q,∂∗)

Ck(K)⊗Q = ker∂k ⊕
⊕
i

Qaki = im∂k+1 ⊕
⊕
j

Qbkj ⊕
⊕
i

Qaki .

Define subcomplexes W(k) ⊂ Z(k) ⊂ Kk by

W(k) := Kk−1 ∪ (
⋃
i

aki ),

Z(k) :=W(k)∪ (
⋃
j

bkj ).

Since ∂ :
⊕
iQaki

∼=→ im∂k the Cellular chain models theorem [24, theo-
rem 4.18] asserts that H∗(W(k),Z(k− 1)) = 0. Thus the inclusion λ : Z(k−
1) → W(k) is an isomorphism in rational homology, thus π∗(λ) ⊗Q is
an isomorphism. In particular, since the cells bkj are attached by maps
fj : (S

k−1, ∗) → Kk−1 ⊂ W(k), there are maps gj : : (Sk−1, ∗) → (Z(k−

1), ∗) and non-zero integers rj so that

πn−1(λ)[gj] = rj[fj].

The construction of ϕ : K̃ → K is made inductively so that ϕ restrict
to rational homotopy equivalences ϕk : K̃k → Z(k) ⊂ Kk. We explain the
induction for K̃. Begin with K̃0 = K̃1 = pt. Suppose ϕk−1 : K̃k−1 → Z(k−
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1) is constructed. Then there are maps hj : (Sk−1, ∗) → (Kk−1,pt) and
non-zero integers sj such that

πk−1(ϕk−1)[hj] = sj[gj].

Set h = {hj} :
∨
j S
k−1
j → K̃k−1 and set

K̃k := K̃k−1 ∪h (
∨
j

Skj ).

Remark 1.2.7. 1. Let K1 and K2 be two simply connected CW-complexes
such that Ks1 = Ks2 for all s 6 k. Then K̃1

s
= K̃2

s
for all s 6 k and

the map ϕK1s and ϕK2s are equal for all s 6 k.

2. If K is a CW-complex of dimension n such that for the cellular chain com-
plex (C∗(K),∂∗) we have ker∂n = 0. Then K̃ is a CW-complex of dimen-
sion n− 1.

1.2.3 Homological truncation and intersection spaces

In [6] Markus Banagl constructed, for a given perversity p, a space called
the perversity p intersection space of X denoted by IpX. We briefly recall
the construction.

Definition 1.2.7.1. Given an integer k > 3, a (homological) k-truncation struc-
ture is a quadruple (K,K/k,h, tkK), where

• K is a simply connected CW-complex,

• K/k is an k-dimensional CW-complex with (K/k)k−1 = Kk−1 and such
that the group of k-cycles of K/k has a basis of cells,

• h : K/k→ Kk is the identity on Kk−1 and a cellular homotopy equivalence
rel Kk−1, and

• tkK ⊂ K/k is a subcomplex such that

Hr(tkK; Z) ∼=

Hr(K; Z) r < k,

0 r > k,
(1)

and such that (tkK)k−1 = Kk−1.

Proposition 1.2.7.1 ([6]). Given any integer k > 3, every simply connected
CW-complex K can be completed to an k-truncation structure (K,K/k,h, tkK).

We won’t rewrite the whole proof but we can at least give more pre-
cisions about the construction of K/k. Let K be a simply connected CW-
complex and for k > 3 we consider the short exact sequence

0 −→ ker∂k −→ Ck(K) −→ im∂k −→ 0
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where Ck(K) is the abelian group of the cellular k-chains of K. All the
groups are freely generated so we have the existence of a section

s : im∂k −→ Ck(K),

call Y := im s and consider the direct sum

Ck(K) = Zk(K)⊕ Y.

where Zk(K) is the abelian group of the cellular n-cycles of K. Suppose
chosen a basis {ξβ} of Zk(K) and a basis {ηα} of Y. For k > 3, the simple
connectivity of K implies the simple connectivity Kk−1 and the Hurewicz
map gives us an isomorphism

Hurk : Ck(K) −→ πk(K
k,Kk−1).

For a k-cell ek, the connecting homomorphism

d : πk(K
k,Kk−1)→ πk−1(K

k−1)

send the class of its characteristic map χ(ek) to the class of its attaching
map. Let

aα : S
k−1 → Kk−1

be choices of representatives for the homotopy classes of dηα, and let

bβ : S
k−1 → Kk−1

be choices of representatives for the homotopy classes of dξβ. For {yα}

and {zβ} families of k-cells, we define K/k by taking the new cells {yα} and
{zβ} and attaching them to Kk−1 by the mean of the maps aα for yα and
the bβ for zβ

K/k := Kk−1 ∪
⋃
aα

yα ∪
⋃
bβ

zβ.

We then define tkK to be

tkK := Kk−1 ∪
⋃
aα

yα.

For the construction of the cellular homotopy equivalence rel Kn−1, h :

K/n ' Kn, we send the reader to [6].
Given any k-truncation structure (K,K/k,h, tkK), we have a homotopy

class of maps f : tkK→ K given by the composition of the following maps

tkK ↪→ K/k
h→ Kk ↪→ K

where the maps at the extremities are cellular inclusions.
Let now X be a compact, connected oriented pseudomanifold of dimen-

sion n with isolated singularities Σ = {σ1, . . . ,σν} of simply connected
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links Li = L(σi,X), the Li are then (n − 1)-dimensional compact mani-
folds.

Given a Goresky MacPherson perversity p, put k(p) := n− 1− p(n), we
apply the k(p)-truncation on each links Li to get a family of CW-complexes
tk(p)Li together with homotopy classes of maps

fi : tk(p)Li → Li.

We denote by

tk(p)L(Σ,X) f−→ L(Σ,X)

the disjoint union of these maps, with f := tσifi.
We define the two following homotopy cofibers.
If the link Li of σi, has more than one connected component, that is

Li = tj∈JLi,j with J a finite set, denote by fi,j : tk(p)Li,j → Li,j the corre-
sponding map.

First, consider the homotopy cofiber of the map fi,j, which we denote
by tk(p)Li,j and call it the k(p)-cotruncation of Li,j. We have maps

fi = tjfi,j : Li = tjLi,j −→ tk(p)Li = tj∈Jtk(p)Li

and

Hr(t
k(p)Li; Z) ∼=


Z r = 0,

0 1 6 r < k(p),

Hr(Li; Z) r > k(p).

We then have a family of maps

∂Xreg = L(Σ,X) =
⊔
i

Li −→
⊔
i

tk(p)Li.

Then, we define by tk(p)L(Σ,X) to be the homotopy cofiber of the map
f.

Definition 1.2.7.2. 1. The intersection space IpX of the space X is the homo-
topy pushout of the solid arrows diagram.

L(Σ,X) Xreg

tk(p)L(Σ,X) IpX

2. The normal intersection space IpX of the space X is the homotopy pushout
of the solid arrows diagram.

L(Σ,X) Xreg

⊔
i t
k(p)Li IpX
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When X is normal with only one isolated singularity, there is no differ-
ence between the two definitions. Differences may arise only for the first
homology group. In the first case, which is the original definition of [6],
we have

H1(I
pX) = H1(Xreg)⊕Qβ0(∂Xreg)−1

where β0(∂Xreg) is the number of connected components of ∂Xreg. For
the normal intersection space IpX we have

H1(I
pX) = H1(Xreg).

We now determine rational models of the truncation, cotruncation and
the intersection space of X. Let L be a simply connected CW-complex of
finite dimension and (M(L),d) be its unique minimal Sullivan model.

Let us make some changes which will be useful when working rational
models. Recall that L admits a cellular model L̃ for which the differential
in the integral cellular chain complex is identically zero by theorem 1.2.6.
Denote by ϕ : L̃ → L the rational homotopy equivalence given by this
theorem.

Since (tkL)
k−1 = Lk−1, the first point of the remark 1.2.7 implies that

t̃kL
k−1

= L̃k−1.

By definition tkL is a CW-complex of dimension k such that for its cellular
chain complex (C∗(tkL),∂∗) we have ker∂k = 0. The CW-complex t̃kL is
then of dimension k− 1 and is equal to L̃k−1 by the second point of the
remark 1.2.7.

Consider then the following diagram

L̃k−1 L̃

tkL L/k Lk L

incl

i h j

ϕ| ϕ

where ϕ| is the restriction of ϕ to the (k− 1)-cellular skeleton of L̃, which is
then a rational homotopy equivalence. Since h is a homotopy equivalence
relative to Lk−1 this diagram is commutative. The fact that ϕ is a rational
homotopy equivalences imply that the minimal models of L and L̃ are
isomorphic. The same is true for the minimal models of tkL and L̃k−1.

Proposition 1.2.7.2. For k > 0. Let m : (M(L),d) → (A∗(L),d) be a rational
model of L. Denote by Ck−1 a supplement of

ker(dk−1 : Ak−1(L)→ Ak(L))

and by Ik−1 be the differential ideal of A∗(L) generated by Ck−1 ⊕A>k(L).
A rational model of tkL is given by A∗(L)/Ik−1 and a Sullivan representative

of f : tkL −→ L is given by the projection to the equivalence class

A∗(L)� A∗(L)/Ik−1.
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Proof. By the discussion above, we have the isomorphism of minimal mod-
els

M(ϕ) : (M(L),d)
∼=−→ (M(L̃),d).

Composing its inverse with the quasi-isomorphism m gives us the follow-
ing rational model of L

M := m ◦M(ϕ)−1 : (M(L̃),d) −→ (A∗(L),d).

Consider now the map M(incl) : M(L̃) −→ M(L̃k−1). By theorem 1.2.2
there is a relative minimal model

M(L̃) M(L̃k−1)

M(L̃) M(L̃)⊗∧V

M(incl)

i

= g

where g is a quasi-isomorphism and i the canonical inclusion. The fact that
H∗(M(L̃)) = H∗(M(L̃k−1)) = H∗(L) for ∗ 6 k− 1 implies that the elements
of V are either

• of degree greater than or equal to k,

• or of degree k− 1 and not in kerdk−1.

Let then Ik−1 the differential ideal defined in the proposition and con-
sider the following diagram.

M(L̃) M(L̃)⊗∧V

A∗(L) A∗(L)/Ik−1

i

p

M M

Where p is the projection map. We define the map M byM(a) = [M(a)] a ∈ M(L̃),

M(∧V) = 0.

The image of a product is defined byM(ab) = [M(a)M(b)] a,b ∈ M(L̃),

M(vw) = 0 =M(v)M(w), v,w ∈ V ,

and for all v ∈ V and all a ∈ M(L̃), the degree of av is greater than or equal
to k, so we define

M(av) := 0 =M(a)M(v).

This diagram then commutes and M defines a quasi-isomorphism.
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We now determine a rational model for the intersection spaces and the
normal intersection spaces. The cotruncation being a homotopy cofiber,
the next lemma follows from [24, Proposition 13.6]

Lemma 1.2.7.1. The k-cotruncation of L, tkL, being defined as the homotopy
cofiber of the map tkL→ L, a rational model is given by

Q⊕ kerp = Q⊕ Ik−1

where p is the map p : A∗(L)� A∗(L)/Ik−1.

Proposition 1.2.7.3. Let X be a compact, connected oriented pseudomanifold of
dimension n with only isolated singularities Σ = {σ1, . . . ,σν} of simply con-
nected links Li = L(σi,X). Let p be a Goresky MacPherson perversity and

φ : (A∗(Xreg),d)→ (A∗(L(Σ,X)),d)

a surjective model of the inclusion i : L(Σ,X) = ∂Xreg → Xreg. A rational model
of IpX is given by

AIp(X) := (A∗(Xreg),d)⊕A∗(L) (Q⊕ Ik(p),d)

where (A∗(Xreg),d) is a rational model of the regular part of the pseudomanifold
and (Q⊕ Ik(p),d) a rational model of tk(p)L(Σ,X).

Proof. The intersection space IpX of the space X is the homotopy pushout
of the diagram.

L(Σ,X) Xreg

tk(p)L(Σ,X) IpX

i

Then applying APL(−) we have a diagram of pullback,

APL(I
pX) APL(t

k(p)L(Σ,X))

APL(Xreg) APL(L(Σ,X))
APL(i)

and then the quasi isomorphism.

APL(I
pX) ' APL(Xreg)⊕APL(L(Σ,X)) APL(t

k(p)L(Σ,X)).

Given the rational models of Xreg, L(Σ,X) and tk(p)L(Σ,X) thanks to the
lemma 1.2.7.1, we get a map

(A∗(Xreg),d)⊕A∗(L(Σ,X)) (Q⊕ Ik(p),d)→ APL(Xreg)⊕APL(L(Σ,X)) APL(t
k(p)L(Σ,X)).

With the surjective model φ : (A∗(Xreg),d) → (A∗(L(Σ,X)),d), we get
the following morphism of short exact sequences. The result follows from
an application of the five lemma to the associated long exact sequences.
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kerφ (A∗(Xreg),dXreg)⊕A∗(L(Σ,X)) (Q⊕ Ik(p),d) (Q⊕ Ik(p),d)

ker APL(i) APL(Xreg)⊕APL(L(Σ,X)) APL(t
k(p)L(Σ,X)) APL(t

k(p)L(Σ,X))

Proposition 1.2.7.4. Let X be a compact, connected oriented pseudomanifold of
dimension n with only isolated singularities Σ = {σ1, . . . ,σν} of simply con-
nected links Li = L(σi,X). Let p be a Goresky MacPherson perversity and

φ : (A∗(Xreg),d)→ (A∗(L(Σ,X)),d)

a surjective model of the inclusion i : L(Σ,X) = ∂Xreg → Xreg. A rational model
of the normal intersection space IpX is given by

AIp(X) := (A∗(Xreg),d)⊕A∗(L) (
⊕
i

Q⊕ Ik(p,i),d)

where (A∗(Xreg),d) is a rational model of the regular part of the pseudomanifold
and (Q⊕ Ik(p,i),d) a rational model of tk(p)Li.

Proof. The proof is exactly the same as the previous proposition unless the
normal intersection space IpX is the homotopy pushout of the following
diagram.

L(Σ,X) Xreg

⊔
i t
k(p)Li IpX

i

In the odd dimensional case, there is a class of pseudomanifolds X for
which the truncations tk(m) and tk(n) will coincide.

Definition 1.2.7.3. Let X be a compact, connected oriented pseudomanifold of
dimension n = 2s+ 1 with only isolated singularities Σ = {σ1, . . . ,σν} of links
Li simply connected. X is a Witt space if Hs(Li) = 0 for all σi ∈ Σ.

Example 1.2.3. 1. The suspension of the complex projective space SCP3 is a
Witt space since H3(CP3) = 0.

2. The suspension of the complex projective plane SCP2 is not a Witt-space
since H2(CP2) = Q.

Remark 1.2.8. Being a Witt space is a condition on singularities of odd codimen-
sion, there is no condition on singularities of even codimension.
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1.2.4 Lagrangian truncation and Lagrangian intersection spaces

First, we recall some facts about quadratic spaces that we will need later.
The only field we’ll work with is Q, but the results are true over any field
k such that char(k) 6= 2.

Definition 1.2.8.1. A regular quadratic space (E,b) is a vector space of finite
dimension E together with a non degenerate bilinear form

b : E× E→ k,

b being either be a symmetric form or an skew-symmetric one.

When needed, we’ll denote by q the quadratic form associated to b,
that is q(x) := b(x, x). If the context is clear, we will use without any
distinctions both notations.

Definition 1.2.8.2. An isotropic subspace V of (E,b) is a subspace of E such
that for all x ∈ V , q(x) = b(x, x) = 0. If 2dimV = dimE, V is then called a
Lagrangian subspace.

Theorem 1.2.9 ([40]). Let (E,b) be a regular quadratic space of dimension p and
suppose that E posses an isotropic subspace V of dimension m. Then there exists
a subspace H of E such

• V ⊂ H,

• dimH = 2dimV ,

• there exists a basis

(a1, . . . ,am,a∗1, . . . ,a∗m,b1, . . . ,bp−2m)

of E such that (a1, . . . ,am,a∗1, . . . ,a∗m) is an hyperbolic basis of H, that
is, for all i, j ∈ {1, . . . ,m}2,

b(ai,aj) = 0,

b(a∗i ,a
∗
j ) = 0,

b(ai,a∗j ) = δij.

In particular, any hyperbolic basis of H is a basis in the usual sense of H.

When the bilinear form is non degenerate skew-symmetric, that is the
form is symplectic, the theorem above simplifies because the classification
of skew-symmetric bilinear forms is determined by the dimension of E
and the rank of the form.

Theorem 1.2.10 ([40]). Let (E,b) be a regular quadratic space such that the
bilinear form b is skew-symmetric, then there exists a basis

(a1, . . . ,am,a∗1, . . . ,a∗m)
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of E such that
b(ai,aj) = 0,

b(a∗i ,a
∗
j ) = 0,

b(ai,a∗j ) = δij.

In particular (a1, . . . ,am,a∗1, . . . ,a∗m) is a basis in the usual sense of E and
dimE = 2m. We also call this base an hyperbolic basis.

The spaces generated respectively by (a1, . . . ,am) and (a∗1, . . . ,a∗m) are
then Lagrangian subspaces.

We now gather the various hypothesis we need to define the Lagrangian
truncation

Consider K as a simply connected n-dimensional CW-complex satisfy-
ing Poincaré duality with n = 2s. We denote by b the non degenerate bi-
linear form induced by the Poincaré duality with Q coefficients, consider
dimHs(K) = 2m and

b : Hs(K)×Hs(K) −→ Q

where b(x,y) := 〈x ∪ y, [K]〉 with [K] ∈ H2s(K) the fundamental class and
〈−,−〉 the evaluation form.

If b is symmetric suppose that Hs(K) posses a Lagrangian subspace V
of dimension m, let then (a1, . . . ,am) be a basis of V and thanks to the
theorem 1.2.9, complete (a1, . . . ,am) into a hyperbolic basis

(a,, . . . ,am,a∗1, . . . ,a∗m)

of Hs(K).
If b is skew-symmetric then thanks to the theorem 1.2.10, there exists a

hyperbolic basis

(a,, . . . ,am,a∗1, . . . ,a∗m)

of Hs(K).
Either way, denote by V and V∗ the subspaces respectively generated by

(a,, . . . ,am) and (a∗1, . . . ,a∗m), we have

Hs(K) = V ⊕ V∗.

Remark that since b(ai,a∗i ) = 1, ai and a∗i are Poincaré duals to each
other. Denote by V and V∗ the Poincaré duals in Hs(K) of respectively V
and V∗ and by (a1, . . . ,am) the basis of V and by (a∗1, . . . ,a∗m) the basis of
V∗. We have the direct sum

Hs(K) = V ⊕ V∗.

Applying theorem 1.2.6 to K we then have a rational cellular homotopy
equivalence ϕ : K̃ −→ K where (C∗(K̃), 0) is the integral cellular chain
complex. We then perform and define the Lagrangian truncation on K̃.
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Since the differential of C∗(K̃) is zero we have

Cs(K̃)⊗Q = Hs(K̃) ∼= Hn(K) = V ⊕ V∗

By simply connectivity and the Hurewicz theorem we have the isomor-
phism

Hurs : V ⊕ V∗
∼=−→ πs(K̃

s, K̃s−1).

Let

λi, λ∗i : S
s−1 → K̃s−1

be choices of representatives for the homotopy classes of dai, da∗i . Then
for s-cells {ti}, {t∗i } and using λi, λ∗i as attaching maps we define

K̃/L := K̃s−1 ∪
⋃
λi

ti ∪
⋃
λ∗i

t∗i .

We get the cellular homotopy equivalence h : K̃/L→ K̃s rel K̃s−1 the same
way as the classical spatial homology truncation in [6, proposition 1.6].

Definition 1.2.10.1. The Lagrangian truncation of the CW-complex K is defined
by

tLK := K̃s−1 ∪
⋃
λi

t∗i .

Moreover, we have hs : Hs(K̃/L) ∼= Hs(K̃) ∼= Hs(K̃
s, K̃s−1). Denote by

(C∗(K̃/L),∂) the integral cellular chain complex of K̃/L then this implies
that

(C6s(K̃/L),∂)⊗Q −→ (Cs(K̃), 0)⊗Q

yields an isomorphism of homology in degree n. This implies that

∂ : Cs(K̃/L)→ Cs−1(K̃/L)

is zero.
The comparison map tLK→ K is then defined as the composition of the

maps

tLK ↪→ K̃/L
h→ K̃s ↪→ K̃

ϕ→ K

where the arrows ↪→ denote cellular inclusions, h is a cellular homotopy
equivalence rel K̃s−1 and ϕ a cellular rational homotopy equivalence. We
have

Hr(tLK)
∼=


Hr(K) r 6 s− 1

V∗ r = s

0 r > s.

(2)
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We now define, with the help of Lagrangian truncation, the space called
the Lagrangian intersection space associated to X

Let X a compact, connected oriented pseudomanifold of dimension n
with only isolated singularities Σ = {σ1, . . . ,σν} of links Li simply con-
nected. This time we fix the dimension of X to be odd, n = 2s+ 1.

Denote by

bi : H
s(Li)×Hs(Li) −→ Q

the non degenerate bilinear form induced by Poincaré duality on the links
Li. Suppose that for all i, Hs(Li) admit a Lagrangian subspace Vi with
respect to the bilinear form bi. To each Li we then apply the Lagrangian
truncation process to get maps

fi : tLLi −→ Li.

Denote by tLLi the homotopy cofiber of the map fi and call it the La-
grangian cotruncation of Li, we then have a map

fi : Li −→ tLLi.

And

Hr(t
LLi) ∼=



Q r = 0,

0 1 6 r < s,

Vi r = s,

Hr(K) s+ 1 6 r 6 2s.

Definition 1.2.10.2. The normal Lagrangian intersection space ILX of the space
X is the homotopy pushout of the solid arrows diagram.

L(Σ,X) Xreg

⊔
i t

LLi ILX

Remark 1.2.11. We use the adjective normal to differentiate it from the La-
grangian intersection space we will used in the second part.

We want to know when we can perform Lagrangian truncation to get
Lagrangian intersection spaces. Lets us first define the class of spaces for
which it is possible.

Definition 1.2.11.1. Let X be a compact, connected oriented pseudomanifold of
dimension 2s+ 1 with only isolated singularities Σ = {σ1, . . . ,σν} of links Li
simply connected. X is an L-space if Hs(Li) has a Lagrangian subspace with
respect to the non degenerate bilinear form bi : H

s(Li)×Hs(Li) → Q for all
σi ∈ Σ.
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Example 1.2.4. 1. The suspension of the torus ST2 is an L-space since

H1(L) = H1(T2) = Q⊕Q.

2. The suspension of the complex projective plane SCP2 is not an L-space since
H2(CP2) = Q.

Remark 1.2.12. Being an L-space implies that dimHn(Li) is an even number
for all i.

We would like to have a simple criterion saying when X is an L-space
and thus when we can perform a Lagrangian truncation. We in fact have
two cases to consider, following the parity of s.

Suppose first that dimLi ≡ 2 mod 4, that is dimX = n = 4s+ 3. In that
case the non-degenerate bilinear form induced by Poincaré duality

bi : H
2s+1(Li)×H2s+1(Li) −→ Q

is skew-symmetric due to the graded commutativity. The form bi is then
called a non-degenerate symplectic form for all σi ∈ Σ, we always have a
Lagrangian subspace in that case.

Now, if dimLi ≡ 0 mod 4, that is dimX = 4s+ 1. We can’t always apply
the Lagrangian truncation.

Let Li be a link of a singularity of X, Li is then a connected compact man-
ifold of dimension 4s. Consider its non-degenerate bilinear form induced
by Poincaré duality

bi : H
2s(Li)×H2s(Li) −→ Q

and let σ(bi) be its reduced signature, σ(bi) is related to the Pontryagin
numbers by the Hirzebruch signature formula.

The existence of a Lagrangian subspace for H2s(Li) is then given by the
theorem of Sullivan and Barge, see [9] and [45], about rational classification
of simply connected manifolds. We recall here the part of the Sullivan-
Barge theorem we need.

Theorem 1.2.13 ([45]). Let (∧V ,d) be a Sullivan model whose cohomology satis-
fies Poincaré duality with a fundamental class in dimension n = 4s and V1 = 0.
We also choose cohomology classes p = {pj} ∈ H4j(∧V ,d).

If the signature is zero, there is a compact simply connected manifold that real-
izes the pair ((∧V ,d),p), if and only if the quadratic form on H2s is equivalent
over Q to a quadratic form

∑
±x2k.

Lemma 1.2.13.1. Let L be a simply connected compact manifold of dimension
n = 4s and such that σ(bL) = 0. Then H2s(L) has a Lagrangian subspace.

Proof. Let (∧V ,d) be a Sullivan model of L and p = {pi} the Pontrya-
gin numbers of L related to σ(bL) = 0. Obviously L realizes the pair
((∧V ,d),p), this implies and then the quadratic form on H2s(L) is equiva-
lent over Q to a quadratic form

m∑
k=1

x2k −

m∑
k ′=1

x2k ′ .
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This quadratic form is then hyperbolic and posses a Lagrangian subspace.

Proposition 1.2.13.1. Let X a compact, connected oriented pseudomanifold of
dimension n with only isolated singularities Σ = {σ1, . . . ,σν} of links Li simply
connected. Then

1. If n = 4s+ 3, X is an L-space.

2. If n = 4s+ 1, σ(bi) = 0 for all i if and only if X is an L-space.

1.3 the construction of poincaré duality spaces

1.3.1 Poincaré duality

We recall here the definitions and results about Poincaré duality needed
in the rest of the paper.

Definition 1.3.0.1. Let (X, Y) be a pair of CW-complex, we say that (X, Y) is a
rational Poincaré duality pair of dimension n if :

1. dimQHr(X; Q) is finite for all r,

2. Y is a sub-CW-complex of X with the same property,

3. there exists a class [x] ∈ Hn(X, Y; Q) such that

−∩ [x] : Hr(X; Q) −→ Hn−r(X, Y; Q)

is an isomorphism. We call [x] an orientation class of (X, Y)

Remark 1.3.1. Let (X, Y) be a Poincaré duality pair of dimension n, then Y =

(Y, ∅) is a Poincaré duality pair without boundary of dimension n− 1. Indeed,
if [x] ∈ Hn(X, Y) is an orientation class, then [y] = ∂[x] ∈ Hn−1(Y) is an
orientation class of Y. We then say that Y is a Poincaré complex of dimension
n− 1. We also say that (Y, [y]) is the oriented boundary of (X, Y, [x]).

Let (X1, Y, [x1]) and (X2, Y, [x2]) be two oriented Poincaré duality pairs
of dimension n with the same oriented boundary (Y, [y]). Let X̂ := X1 ∪Y
X2 the CW-complex obtained by glueing X1 and X2 along their common
boundary Y. We have the two classical Mayer-Vietoris sequences.

Hr+1(X̂) Hr(Y) Hr(X1)⊕Hq(X2) Hr(X̂)

Hr(Y) Hr(X̂) Hr(X1, Y)⊕Hq(X2, Y) Hr−1(Y)

∂0

j1 − j2 ∂1 + ∂2

Together with the commutative diagram

Hr+1(X̂) Hr(Y)

Hr+1(Xi, Y)

∂0

ji
∂i
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Theorem 1.3.2 ([11], Glueing of 2 oriented Poincaré duality pairs). Consider
the following diagram

0

Hn(X̂)

Hn(X1, Y)⊕Hn(X2, Y) Hn(X̂, Y)

Hn−1(Y)

i

∂

i1 ⊕ i2

and let [x̂] = i−1(i1 ⊕ i2([x1], [−x2])) ∈ Hn(X̂). Then any two of the following
conditions imply the third.

1. (X̂, [x̂]) is an oriented Poincaré complex of dimension n without boundary,

2. (Y, [y]) is a Poincaré complex of dimension n − 1 with orientation class
[y] = ∂1[x1] = ∂2[x2] = ∂0[x̂] ∈ Hn−1(Y),

3. (Xi, Y, [xi]) are Poincaré duality pairs of dimension n with orientation
classes [xi] ∈ Hn(Xi, Y).

Proof. This is a direct consequence of the commutativity (up to sign) of the
following ladder and the 5-lemma.

· · · Hr−1(Y) Hr(X̂) Hr(X1)⊕Hr(X2) · · ·

· · · Hn−r(Y) Hn−r(X̂) Hn−r(X1, Y)⊕Hn−r(X2, Y) · · ·

δ0

−∩ ∂0[x̂] −∩ [x̂] (−∩ [x1]) + (−∩ [x2])

Let (X, Y, [x]) be an oriented Poincaré duality pair of dimension n = 4s,
the following diagram

H2s(X, Y) H2s(X)

H2s(Y) H2s(X) hom(H2s(X), Q)

−∩ [x] ∼=
i∗

∼=

gives the vector space H2s(X) a symmetric bilinear form for which the
kernel is i∗(H2n(Y)). We denote it by bX.

Lemma 1.3.2.1 (Novikov). Suppose given (X1, Y, [x1]) and (X2, Y, [x2]) 2 ori-
ented Poincaré duality pairs of dimension n = 4s with the same oriented bound-
ary (Y, [y]). If (X̂, [x̂]) is the space obtained by glueing as in theorem 1.3.2, then

[bX̂] = [bX1 ] − [bX2 ] in W(Q).
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The rational homotopy type of rational Poincaré duality spaces does not
depend of the fundamental class. As stated in the following theorem.

Theorem 1.3.3 ([42]). Let H be a Poincaré duality algebra of top dimension n
and H1 = 0. Let X be a simply connected rational space with H(X) ∼= H except
Hn(X) = 0. If Y = X ∪ en with H(Y) ∼= H, then the rational homotopy type of
Y is determined by X. Moreover, the cell en is attached by ordinary Whitehead
products (not iterated) with respect to some basis of π∗(X)⊗Q.

Example 1.3.1. Consider the two spaces Y = S3 × S5 and X = S3 ∨ S5. The
space Y, as a manifold of dimension 8, satisfies Poincaré duality. The theorem then
says that, rationally

S3 × S5 'Q (S3 ∨ S5)∪
[s]3,s]5]

e8.

Indeed, denote by s]3 and s]5 the elements of respectively π3X⊗Q and π5X⊗Q
obtained by theorem 1.2.3, then [s]3, s]5] ∈ π7(S

3 ∨ S5) and the rational model of
(S3 ∨ S5)∪

[s]3,s]5]
e8 is the rational model of a cell attachment to the space X, see

[24, 13.d p.173], given by

((∧VS3∨S5)⊕Qe8,D)

where ∧(VS3∨S5) is given in item 4 of the example 1.2.2 and

1. deg e8 = 8,

2. ∧(VS3∨S5) is a subalgebra and e8 ·∧+(VS3∨S5) = 0 = e
2
8,

3. De8 = Ds3 = Ds5 = 0 and D(d7) = d(d7) + 〈d7; [s]3, s]5]〉e8.

Using proposition 1.2.4.1 and the fact that d(d7) = d1(d7) we have

〈d7; [s]3, s]5]〉e8 = −〈d(d7); s]3, s]5〉e8 = −〈s3s5; s]3, s]5〉e8 = −e8

then

D(d7) = d(d7) − e8 = s3s5 − e8.

The Whitehead bracket in fact encodes the Poincaré duality of the space S3×S5.

1.3.2 The unique isolated singularity case

In this part we prove the following theorem

Theorem 1.3.4 (Unique isolated singularity case). Let X be a compact, con-
nected oriented pseudomanifold of dimension n with one isolated singularity of
link L simply connected. Then, there exists a good rational Poincaré approxima-
tion DP(X) of X. Moreover if dimX ≡ 0 mod 4, then the Witt class associated
to the intersection form bDP(X) is the same that the Witt class associated to the
middle intersection cohomology of X.

The strategy adopted here is to transform the pair (tL,L), where tL is a
given cotruncation of the link L, into a Poincaré duality pair and to glue
it to the already existing Poincaré duality pair (Xreg,∂Xreg) via theorem
1.3.2 to obtain our spaces DP(X).
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1.3.2.1 The even dimensional case

Consider now X a compact, connected oriented pseudomanifold of dimen-
sion n = 2s with one isolated singularity σ of simply connected link L.
Since m = n we have a well defined intersection space IX := ImX = InX.

Let φ : S2s−1 → tL be an arbitrary continuous map with tL := tk(m)L

the middle cotruncation of the link. We denote by tφL the space obtained
as the result of the following homotopy pushout :

S2s−1 D2s

tL tφL

φ HPO

Lemma 1.3.4.1. (tφL,L) is a Poincaré duality pair if and only if φ2s−1 is an
isomorphism. Where φ2s−1 is the connecting homomorphism

φ2s−1 : H2s(t
φL,L) −→ H2s−1(L)

in the long exact sequence of the pair (tφL,L) induced by the attaching map φ.

Proof. Suppose (tφL,L) is a Poincaré duality pair and denote by [eφ] a
choice of orientation class for the pair. By definition we have ∂2s[eφ] = [L],
but ∂2s = φ2s−1.

On the other hand, if φ2s−1 : H2s(tφL,L) ∼= H2s−1(L) is an isomorphism
let us denote by [eφ] := φ−1

2s−1([L]). We then have to check the commuta-
tivity of the following square for the different values of i

Hr(tφL) H2s−r(t
φL,L)

Hr(L) H2s−1−r(L)

−∩ [eφ]

−∩ [L]
∼=

incl∗ ∂2s−i

and the fact that this induces an isomorphism on the upper row. Which
are straightforward calculations.

We now look at a condition on φ to be an isomorphism, condition that
is given by the rational Hurewicz theorem 1.2.4.

Lemma 1.3.4.2. φ2s−1 is an isomorphism if and only if

Hur2s−1([φ]) 6= 0

in H2s−1(tL) = H2s−1(L) = Q.

Since the pair (Xreg,∂Xreg), with ∂Xreg = L, satisfies Poincaré-Lefschetz
duality this is a Poincaré duality pair with the same boundary that the pair
(tφL,L). The space

DP(X) := Xreg ∪L tφL
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is then a Poincaré complex of dimension 2s whitout boundary and of
orientation class given by

[DP(X)] = i−1(i1 ⊕ i2([Xreg,L], [−eφ]))

We now show the relation between IX and DP(X). We recall the two
following results (see for exemple [44])

Proposition 1.3.4.1. If i : A ↪→ B is a cofibration in the diagram F given by

C
f←− A i

↪→ B

then the comparison morphism

ξ : hocolimF→ colimF

is a homotopy equivalence.

Proposition 1.3.4.2 (2 out 3 for homotopy pushouts). Consider the following
commutative diagram

• • •

• • •

(I) (II)

and denote the outside square by (T).

1. If (I) and (II) are homotopy pushout squares, then (T) is also a homotopy
pushout square.

2. If (I) and (T) are homotopy pushout squares, then (II) is also a homotopy
pushout square.

Proposition 1.3.4.3. Let X be a compact, connected oriented pseudomanifold of
dimension n = 2s with one isolated singularity of link L simply connected. The
space DP(X) is then rationally homotopy equivalent to IX ∪ e2s. If moreover
H1(Xreg) = 0, then e2s is attached by ordinary Whitehead products (not iterated)
with respect to some basis of π∗(IX)⊗Q and the rational homotopy type of DP(X)

is determined by IX.

Proof. Consider the following diagram.

L = ∂Xreg Xreg

S2s−1 tL IX

D2s tφL DP(X)

(I) HPO

i2 (III) HPO (II)

i1

φ



1.3 the construction of poincaré duality spaces 33

The square (I) is a homotopy pushout by definition of the construc-
tion of the space IX, since i1 is a cofibration DP(X) is then the homotopy
pushout of the diagram tLφ ← tL ← L ↪→ M. By the proposition 1.3.4.2
the square (II) is a homotopy pushout. The square (III) is also a homotopy
pushout by definition of tφL, again by the proposition 1.3.4.2 this time ap-
plied to the squares (II) and (III) the corresponding outside square is a
homotopy pushout. We have the commutative square

S2s−1 IX

D2s DP(X)

which is then a homotopy pushout.
So we have a rational homotopy equivalence between DP(X) and IX ∪

e2s.
Suppose now that we also have H1(Xreg) = 0. The space DP(X) is then

simply connected and the theorem 1.3.3 then tells us how e2s is attached
to IX.

In the case of a pseudomanifold of dimension n = 4s with isolated sin-
gularities, Markus Banagl showed in [6, theorem 2.28] that the intersection
form

bHI : H̃I
m
2s(X)⊗ H̃Im2s(X) −→ Q

has the same Witt element that the Goresky-MacPherson intersection form

bIH : IHm2s(X)⊗ IHm2s(X) −→ Q.

that is [bHI] = [bIH] ∈ W(Q), where W(Q) is the Witt group of the ratio-
nals.

Applying the lemma 1.3.2.1 to the Poincaré duality pair (tφL,L) con-
structed above shows that this pair is endowed with a symmetric bilin-
ear form of kernel i∗(H2s(L)) = H2s(t

φL), that is the form is the zero
form. We then see that the Witt class of the intersection form [bDP(X)] of
DP(X) is completely determined by the intersection form of the regular
part (Xreg,∂Xreg). Which is also the case of IX as showed in [6, theorem
2.28]. Therefore we have the following corollary.

Corollary 1.3.4.1. DP(X) is a Poincaré duality rational space whose Witt class
associated to the intersection form bDP(X) is the same that the Witt class associ-
ated to the middle intersection cohomology of X.

1.3.2.2 The odd dimensional case

Consider now X a compact, oriented pseudomanifold of dimension n =

2s + 1 with one isolated singularity σ of simply connected link L. If we
want to extend the construction we just made in the even dimensional case
we will have to consider more hypothesis on the link to get our second
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Poincaré duality pair. The pair (Xreg,∂Xreg) being a Poincaré duality pair
whatever the dimension of M is.

We then consider two case :

1. Either we have tk(m)L = tk(n)L, k(m) = 2n−m and k(n) = 2n− n

which gives us the case of Witt spaces.

2. Or tk(m)L 6= tk(n)L and we must put more algebraic structures on
the link to get our Poincaré duality pair. This is the case of L-spaces.

First let us consider that X is a Witt space, that is Hs(L) = 0. We then
have the following proposition.

Proposition 1.3.4.4. Let X be a compact, oriented pseudomanifold of dimension
n = 2s+ 1 with one isolated singularity σ of simply connected link L. Suppose
moreover that X is a Witt space. The constructions of the even dimensional case
extend to this case and there exists a rational Poincaré approximation DP(X) of
X.

Proof. We have to show that there exists a cotruncation tL of the link of
the singularity and a map φ ∈ π2s(tL)⊗Q such that the pair (tφL,L) is
a Poincaré duality pair. If so, the theorem 1.3.2 and the proposition 1.3.4.3
can be applied.

Consider the cotruncation tk(n)L given by the upper middle perversity
n. By definition of Witt spaces and of the cotruncation we have

Hs(t
k(n)L) = Hs(L) = 0.

So in fact tk(n)L is s-connected and we have

tk(m)L = tk(n)L := tL.

By the rational Hurewicz theorem we have the isomorphism

π2s(tL)⊗Q
∼=−→ H2s(tL).

We still denote by φ the map obtained by this isomorphism, φ2s as in
the lemma 1.3.4.1 is then a isomorphism and the pair (tφL,L) is a Poincaré
duality pair.

When we only have only one isolated singularity, every pseudomanifold
X of dimension n = 2s+ 1 which is not a Witt space is in fact an L-space
due to the following result of Thom.

Lemma 1.3.4.3 (Thom, [30]). Let (X, [x]) be a rational Poincaré complex of di-
mension n = 4s such that (X, [x]) is the boundary of a rational Poincaré duality
pair (Y, [y]). Then [bX] = 0 ∈W(Q).

The link L of the singularity of X is a manifold of dimension 2s and we
have the non degenerate bilinear form induced by Poincaré duality.

bL : Hs(L)×Hs(L) −→ Q
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Suppose that X is not a Witt space. By this result of Thom, the Witt class
[bL] ∈ W(Q) of the intersection form associated to L is zero. This implies
that bL is hyperbolic and we have the existence of a Lagrangian subspace.
The pseudomanifold X is then an L-space. This can be resumed in the
following corollary to the Thom’s lemma.

Corollary 1.3.4.2. Any compact, connected oriented pseudomanifold of dimen-
sion 4s+ i, i = 1, 3, with one isolated singularity σ of simply connected link L is
an L-space.

Let us then fix X a compact oriented L-space of dimension 4s+ i, i = 1, 3,
with one isolated singularity σ of simply connected link L. The link L of
the singularity is of dimension 4s+ i− 1 and thanks to the lemma 1.3.4.3
we have

H2s+
i−1
2 (L) = V ⊕ V∗

where V is a Lagrangian subspace of dimension 1
2 dimH2s+1(L) := m.

Suppose (a1, . . . ,am) is a basis of V and complete it into a hyperbolic
basis using theorem 1.2.9. Apply then the Lagrangian truncation to L and
denote by tLL the homotopy cofiber of the map

tLL −→ L.

Recall that

Hr(tLL) =



Q if r = 0,

0 if 1 6 r 6 2s,

V if r = 2s+ i−1
2 ,

H∗(L) if r > 2s+ i−1
2 .

Let (M(tLL),d) be the Sullivan minimal model of this Lagrangian co-
truncation and let $ be the element of degree 4s + i − 1 in (M(tLL),d)
representing the fundamental class [L]∗ ∈ H4s+i−1(L).

Proposition 1.3.4.5. Suppose $ is an indecomposable element of (M(tLL),d),
then there exists a map φ ∈ π4s+i−1(tLL)⊗Q such that Hur4s+i−1([φ]) = 1.

Proof. Suppose $ is an indecomposable element, that is $ ∈ W4s+i−1

where W = ⊕k>0Wk is the graded vector space generating M(tLL). So
using theorem 1.2.3, we have the natural isomorphism

W4s+i−1 ∼=−→ hom(π4s+i−1(t
LL), Q).

That natural isomorphism is the same as saying that the bilinear pairing

〈−,−〉 :W × π∗(tLL) −→ Q

defined by

〈v;α〉 =

Q(a)(v) if v ∈Wk

0 if deg v 6= degα.
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is non degenerate, where α ∈ π∗(tLL) is represented by a. So there is a
map ϕ ∈ π4s+i−1(tLL) such that 〈$, [ϕ]〉 6= 0.

Recall that

m
tLL

: (∧W,d) = (M(tLL),d) −→ APL(t
LL)

denotes the minimal Sullivan model of tLL and denote by

Hurk : πk(t
LL)⊗Q −→ Hk(t

LL)

the Hurewicz map. Since imd ⊂ ∧>2W, division by imd defines a lin-
ear map ξ : H+(∧W) → W, since $ represents the fundamental class
[L]∗ ∈ H4s+i−1(L) = H4s+i−1(tLL), we clearly have a element [$] ∈
H+(∧W)4s+i−1 such that ξ([$]) = $.

Denote by {−,−} the bilinear pairing between cohomology and homol-
ogy defined by {[f], [c]} := f(c), since we work on Q that pairing is also non
degenerate. By the definition of the pairing 〈−,−〉 we have

〈ξ([$]), [ϕ]〉 = {H(m
tLL

)[$], Hur4s+i−1(ϕ)} 6= 0.

Since H(m
tLL

)[$] = [L]∗, we have Hur4s+i−1(ϕ) = q[L] with q ∈ Q −

{0}. Then

φ :=
1

q
ϕ ∈ π4s+i−1(tLL)⊗Q

is the map we wanted.

Lemma 1.3.4.4. $ is an indecomposable element of (M(tLL),d), that is $ ∈
W4s+i−1 where W = ⊕k>0Wk is the graded vector space generating M(tLL).

Proof. The elements of degree 2s+ i−1
2 of (M(tLL),d) come from the La-

grangian V so for all elements x,y ∈ M(tLL)2n+
i−1
2 there exists an element

z ∈ M(tLL)4n+i−2 such that dz = x · y, in particular, none of these prod-
ucts are equal to $. For degree reasons these were the only elements we
had to care about.

Denote by φ the element of π4s+i−1(tLL)⊗Q obtained by this process,
like in the general case, and consider the homotopy pushout.

S4s+i−1 D4s+i

tLL tL,φL

φ HPO

Proposition 1.3.4.6. (tL,φL,L) is a Poincaré duality pair if and only if φ4s+i−1
is an isomorphism.

We denote by DP(X) the space obtained by the glueing of the two
Poincaré duality pairs (Xreg,∂Xreg) = (Xreg,L) and (tLLφ,L) following
the theorem 1.3.2. We then have the last part of the theorem 1.1.1.
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Proposition 1.3.4.7. Let X be a compact, oriented pseudomanifold of dimension
n = 4s+ 1 or n = 4s+ 3 with one isolated singularity σ of simply connected link
L. Suppose moreover that X is an L-space. Then there exists a rational Poincaré
approximation DP(X) of X.

Just like in the even dimensional case with the proposition 1.3.4.3. We
can relate the spaces DP(X) to the intersection and Lagrangian intersec-
tions spaces, and get more precision on how to attach the top cell in the
simply connected case. When X is a Witt space, we denote by IX = ImX =

InX.

Proposition 1.3.4.8. Let X be a compact, connected oriented pseudomanifold of
dimension n = 2s+ 1 with one isolated singularity of link L simply connected.

1. Suppose X is a Witt space. The space DP(X) is then rationally homotopy
equivalent to IX ∪ e2s+1. If moreover H1(Xreg) = 0, then e2s+1 is at-
tached by ordinary Whitehead products (not iterated) with respect to some
basis of π∗(IX)⊗Q and the rational homotopy type of DP(X) is determined
by IX.

2. Suppose X is an L-space. The space DP(X) is then rationally homotopy
equivalent to ILX ∪ e2s+1. If moreover H1(Xreg) = 0, then e2s+1 is at-
tached by ordinary Whitehead products (not iterated) with respect to some
basis of π∗(ILX)⊗Q and the rational homotopy type of DP(X) is deter-
mined by ILX.

Proof. The proof is the same as for the proposition 1.3.4.3 unless we con-
sider the following diagram when X is a Witt space.

L = ∂Xreg Xreg

S2s tL IX

D2s+1 tφL DP(X)

(I) HPO

i2 (III) HPO (II)

i1

φ

and the following diagram when X is an L-space.

L = ∂Xreg Xreg

S2s tLL ILX

D2s+1 tL,φL DP(X)

(I) HPO

i2 (III) HPO (II)

i1

φ
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The considerations whether the approximations are good or very good
come from the study of the rational homology of these diagrams of homo-
topy pushouts

L Xreg

tφL DP(X)

∗ X

φ

ψ

i

for the even dimensional case and the Witt space case, or

L Xreg

tL,φL DP(X)

∗ X

φ

ψ

i

for the L-space case.

1.3.3 The multiple isolated singularities case

The theorem 1.3.2 did not make any assumptions on the connectivity of
the pairs (Xj, Yj, [xj]), so in fact we can apply everything that was above to
the case of a pseudomanifold with more than one isolated singularity.

Theorem 1.3.5 (Multiple isolated singularities case). Let X be a compact,
connected oriented pseudomanifold of dimension n with only isolated singularities
Σ = {σ1, . . . ,σν}, ν > 1, of links Li simply connected. Then,

1. If n = 2s, there exists a good rational Poincaré approximation DP(X)

of X. Moreover, if dimX ≡ 0 mod 4, the Witt class associated to the
intersection form bDP(X) is the same as the Witt class associated to the
middle intersection cohomology of X in W(Q).

2. If n = 2s+ 1 and is either a Witt space or an L-space there exists a good
rational Poincaré approximation DP(X) of X. Moreover is X is Witt space
DP(X) is a very good rational Poincaré approximation of X
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Just like before, the considerations whether the approximations are good
or very good come from the study of the rational homology of these dia-
grams of homotopy pushouts

⊔
σi
Li Xreg

⊔
σi
tφiLi DP(X)

⊔
σi
∗ X

φ

ψ

i

for the even dimensional case and the Witt space case, or

⊔
σi
Li Xreg

⊔
σi
tL,φiL DP(X)

⊔
σ ∗ X

φ

ψ

i

for the L-space case.

1.3.3.1 The even dimensional case

Let X be a compact oriented pseudomanifold of dimension n = 2s with
only isolated singularities Σ = {σ1, . . . ,σν;ν > 1} of simply connected
links Li.

The rational Hurewicz theorem gives us maps φi such that the pairs
(tφiLi,Li) are Poincaré duality pairs for all i. Denote by [eφ]i the induced
orientation class in H2s(tφiLi,Li).

The pair (Xreg,∂Xreg) with ∂Xreg = tσiLi is still a manifold with
boundary, thus satisfies Poincaré-Lefschetz duality and is a Poincaré dual-
ity pair. The theorem 1.3.2 then applies and, with the same notation, DP(X)

is an oriented Poincaré complex of dimension 2s without boundary and
of orientation class given by

[DP(X)] = i−1(i1 ⊕ i2([Xreg,∂Xreg], [−eφ]1, . . . , [−eφ]r)),

and all the results obtained before remain true except for the proposition
1.3.4.3 which has to be modified. We have to take the normal intersection
space IX = ImX = InX to modify the proposition 1.3.4.3. Which then
becomes

Proposition 1.3.5.1. Let X be a compact, connected oriented pseudomanifold
of dimension n = 2s with only isolated singularities Σ = {σ1, . . . ,σν;ν >
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1} of links Li simply connected. Suppose moreover that H1(Xreg) = 0. Then
DP(X) is rationally homotopy equivalent to t2s−1IX ∪ e2s where e2s is at-
tached by ordinary Whitehead products (not iterated) with respect to some basis
of π∗(t2s−1IX)⊗Q and the rational homotopy type of DP(X) is determined by
t2s−1IX.

Proof. Consider the following diagram, obtained by the construction of
DP(X)

⊔
σi
Li = ∂Xreg Xreg

⊔
σi
S2s−1i

⊔
σi
tLi IX

⊔
σi
D2si

⊔
σi
tφiLi DP(X)

(I) HPO

i2 (III) HPO (II)

i1

⊔
σi
φi

With the same arguments than for the unique isolated singularity case,
DP(X) is rationally homotopy equivalent to

DP(X) ' IX∪ (
⋃
φi

e2si ).

Now, H1(Xreg) = 0 so DP(X) is simply connected and the theorem 1.2.6
gives a rational homotopy equivalence

ϕ : D̃P(X) −→ DP(X)

such that the differential in the integral cellular chain complex of D̃P(X)

is identically zero. This implies that there is only one top dimensional cell

on D̃P(X), we have a attaching map θ and a cell e2s such that

D̃P(X) = X0 ∪θ e2s.

Let us now determine X0. By the theorem 1.2.6 X0 is a CW-complex of
dimension 2s− 1 and by the Poincaré duality of DP(X) we have

H2s−1(X0) = H2s−1(DP(X)) ∼= H1(DP(X)) = H1(Xreg) = 0.

For any other r 6 2s− 2 we have by construction Hr(X0) = Hr(IX).

X0 X0 ∪θ e2s

t2s−1IX IX/2s− 1 IX2s−1 IX DP(X)

incl

i h j

ϕ| ϕ
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The above diagram commutes and by the same argument that the one
given before the proposition 1.2.7.2, ϕ restricts to a rational homotopy
equivalence

ϕ| : X0 −→ t2s−1IX.

Then, up to rational homotopy equivalence, we have

DP(X) = t2s−1IX∪θ e2s.

The theorem 1.3.3 then tells us that e2s is attached by ordinary White-
head products (not iterated) with respect to some basis of π∗(t2s−1IX)⊗Q
and the rational homotopy type of DP(X) is determined by t2s−1IX.

The others results remain true, in particular DP(X) is a rational Poincaré
duality space and we have the first part of the theorem 1.1.2.

Proposition 1.3.5.2. If dimX = 2s, then DP(X) is a good rational Poincaré ap-
proximation of X. Moreover, if dimX ≡ 0 mod 4, then the Witt class associated
to the intersection form bDP(X) is the same that the Witt class associated to the
middle intersection cohomology of X in W(Q).

1.3.3.2 The odd dimensional case

Let X be a compact, connected oriented pseudomanifold of dimension
n = 2s+ 1 with only isolated singularities Σ = {σ1, . . . ,σν;ν > 1} of links
Li simply connected.

Suppose that X is a Witt space. Just as in the case of a unique isolated
singularity we have

Hs(t
k(m)Li) = Hs(Li) = 0.

So in fact tk(m)Li are s-connected and we have

tk(m)Li = t
k(n)Li := tLi.

The rational Hurewicz theorem gives us maps φi such that the pairs
(tφiLi,Li) are Poincaré duality pairs for all i. Applying the theorem 1.3.2
in the case of multiple isolated singularities gives us then a rational Poinca-
ré duality space DP(X) and the following part of the theorem 1.1.2.

Proposition 1.3.5.3. Let X be a compact, connected oriented pseudomanifold of
dimension n = 2s+ 1 with only isolated singularities Σ = {σ1, . . . ,σν;ν > 1} of
links Li simply connected. Suppose moreover X is a Witt space, then DP(X) is a
very good rational Poincaré duality space.

Suppose now X is an L-space. For each link Li of the pseudomanifold
X4s+i, i = 1, 3 we have

H2s+j(Li) = Vi ⊕ V∗i j = 0, 2

where Vi and V∗i are Lagrangian subspaces of dimensions

1

2
dimH2n+j(Li) := mi.
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Applying the Lagrangian truncation to each of the links, the lemma
1.3.4.4 then give us maps φi such that the pairs (tL,φiLi,Li) are Poincaré
duality pairs for all i. The theorem 1.3.2 in the case of multiples isolated
singularities gives us then a rational Poincaré duality space, which con-
cludes the theorem 1.1.2.

Proposition 1.3.5.4. Let X be a compact, oriented pseudomanifold of dimension
n = 2s+ 1 with only isolated singularities Σ = {σ1, . . . ,σν;ν > 1} of simply
connected links Li. Suppose moreover X is an L-space, then DP(X) is a good
rational Poincaré approximation of X.

1.4 examples and applications

1.4.1 Real Algebraic varieties

If V is a real algebraic variety of even dimension with isolated singular-
ities Σ = {σ1, . . . ,σν} and an oriented regular part Vreg. We can apply
the homological truncation and then by the use of the precedents results
construct a rational Poincaré approximation DP(V).

The odd dimensional is more interesting. Suppose that V is a real alge-
braic variety of with multiple isolated singularities of odd dimension. If
the regular part Vreg of V is oriented then V is automatically an L-space
due to the following result of Selman Akbulut and Henry King :

Theorem 1.4.1 ([1]). Let V be a compact topological space. Then the following
are equivalent :

1. V is homeomorphic to a real algebraic set with isolated singularities.

2. V is homeomorphic to the quotient obtained by taking a smooth closed man-
ifold M and collapsing each Li to point a point where Li, i = 1, . . . ,ν is a
collection of disjoint smooth subpolyhedra of M.

3. V =M∪
⋃ν
i=1 cLi where M and Li are smooth compact manifolds, ∂M is

the disjoint union of the Li’s, each Li bounds a smooth compact manifolds
and Li × 1 ⊂ cLi is identified with Li ⊂M.

Consider then V a oriented real algebraic variety of dimension n =

4s+ 1 with ν isolated singularities. Then by the third equivalence we have

V =M∪
ν⋃
i=1

cLi

and each link Li is a smooth compact manifold of dimension 4s and is the
boundary of a 4s+ 1 smooth compact manifold. Then by the lemma 1.3.4.3
we have that

[bi] = 0 ∈W(Q) ∀i.

We then can perform a Lagrangian truncation and we have our rational
Poincaré approximation DP(V).
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Note that if V is of dimension 4n + 3 then we don’t need this result
because the bilinear form bL would be skew-symmetric.

We then have the following result

Proposition 1.4.1.1. Every oriented real algebraic variety V with only isolated
singularities and simply connected links admits at least a good rational Poincaré
approximation DP(V).

1.4.2 Hypersurfaces with nodal singularities

Let V be a complex projective hypersurface with one nodal singularity
such that dimC V = 3. The link of this singularity is then L = S2 × S3,
applying the method of theorem 1.3.3 and example 1.3.1 to this case the
link of the singularity is then rationally homotopy equivalent to

L ' (S2 ∨ S3)
⋃

[s]2,s]3]

e5.

Since m(6) = n(6) = 2, the homological truncation of the link is

t2L = S2

and the cotruncation is rationally homotopy equivalent to

t2L = S3 ∨ S5.

To see this, just compute the cohomology algebra of the cotruncation.
The rational Hurewics theorem 1.2.4 then says that we have the isomor-
phism

π5(t
2L)⊗Q

∼=−→ H5(t
2L) ∼= H5(S

5).

The cell attachment φ obtained by this isomorphism then kill the 5-sphere
of the cotruncation. That is we have

t2Lφ = (S3 ∨ S5)∪
s
]
5
e6 ' S3.

But τLφ = S3 ' D3 × S3 ans since ∂(D3 × S3) = S2 × S3, the pair
(τLφ,L) = (D3 × S3,S2 × S3) is a Poincaré duality pair. The space DP(V)

is then a good rational Poincaré approximation of X.
This construction extends to multiple isolated singularities and higher

dimension complex hypersurfaces with nodal singularities.

1.4.3 Thom Spaces

Definition 1.4.1.1. Let B be a compact, connected, oriented manifold of dimen-
sion m and E a fiber bundle over B of rank m ′,

Rm
′ −→ E −→ B.
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The Thom space Th(E) of the fiber bundle E is defined as the homotopy cofiber of
the map

SE −→ DE

where SE and DE are respectively the sphere bundle and disk bundle associated to
E.

Th(E) is then a pseudomanifold of dimension m+m ′, the singularity is
the compactification point, its link is the sphere bundle SE and the regular
part of Th(E) is the disk bundle DE.

We show that in the case of an odd dimensional Thom space Th(E) is
either an L-space or a Witt space whether the rank of the vector bundle is
lesser than the dimension of the base space or not.

Theorem 1.4.2. Suppose m ′ > 0.

1. Let R2m
′ −→ E −→ B2m+1 with B be a manifold of dimension 2m+ 1

and E a fiber bundle over B of rank 2m ′. Then,

• if m ′ 6 m+ 1, Th(E) is an L-space,

• if m ′ > m+ 1, Th(E) is a Witt space if and only if Hm+m ′(B) = 0.

2. Let R2m
′+1 −→ E −→ B2m with B be a manifold of dimension 2m and E

a fiber bundle over B of rank 2m ′ + 1. Then,

• if m ′ 6 m, Th(E) is an L-space,

• if m ′ > m, Th(E) is a Witt space if and only if Hm+m ′(B) = 0.

Proof. Consider R2m
′ −→ E −→ B2m+1.

In order to know if Th(E) is an L-space or a Witt space we have to look at
Hm+m ′(SE) where SE is the sphere bundle associated to the vector bundle
E (see definitions 1.2.7.3 and 1.2.11.1). To compute Hm+m ′(SE) we use the
cohomological Leray-Serre spectral sequence associated to the fiber bundle

S2m
′−1 −→ SE −→ B2m+1.

We have Ep,q
2 = Hp(B;Hq(S2m

′−1)) = 0 if q 6= 0, 2m ′ − 1 and

d2m ′ : E
p,2m ′−1
2m ′ −→ E

p+2m ′,0
2m ′

is the only non-zero differential which is defined by

d2m ′ : E
0,2m ′−1
2m ′ −→ E2m

′,0
2m ′

with d2m ′(a) = eu(E) ∈ H2m
′
(B) with a the generator of H2m

′−1(S2m
′−1)

and eu(E) ∈ H2m ′(B) the Euler class of the sphere bundle. Since this is the
only non-zero differential we have

Hm+m ′(SE) = E
m+m ′,0
2m ′+1 ⊕ E

m−m ′+1,2m ′−1
2m ′+1 .

Suppose that m ′ 6 m+ 1.
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The summand Em−m ′+1,2m ′−1
2m ′+1 is well defined and using the structure

product of the spectral sequence, we see that the product of two elements
belonging to the same summand of Hm+m ′(SE) is zero. Then by Poincaré
duality the symmetric bilinear form

Em+m ′,0
2m ′+1 × E

m−m ′+1,2m ′−1
2m ′+1 −→ E2m+1,2m ′−1

2m ′+1
∼= Qωa

induced by the product and where ω ∈ H2m+1(B) is the fundamental
class of the manifold B is non degenerate. Thus, provided than one of the
two summand is non zero, the symmetric bilinear form is then hyperbolic
and SE is an L-space.

Suppose that m ′ > m+ 1.
Then Em−m ′+1,2m ′−1

2m ′+1 = 0 and Em+m ′,0
2m ′+1 = Hm+m ′(B) and SE is a Witt

space if and only is Hm+m ′(B) = 0.
We now consider R2m

′+1 −→ E −→ B2m. By the same arguments we
have

Hm+m ′(SE) = E
m+m ′,0
2m ′+2 ⊕ E

m−m ′,2m ′
2m ′+2 .

If m ′ 6 m then Em−m ′,2m ′
2m ′+2 is well defined, the same arguments about

the product structure and Poincaré duality imply that SE is an L-space.
If m ′ > m then Em−m ′,2m ′

2m ′+2 = 0, Em+m ′,0
2m ′+2 = Hm+m ′(B) and Th(E) is a

Witt space if and only if Hm+m ′(B) = 0.

Corollary 1.4.2.1. For any complex line bundle C −→ E −→ Bk with k > 1,
the Thom space Th(E) is an L-space.

Remark 1.4.3. The cases where the fiber and the base space have the same parity,
that is they both are of odd dimension or they both are of even dimension has
already been taken care of by the definition 1.2.7.3. The Thom space is then an even
dimensional space and the singularity is of even codimension. Therefore Th(E) is
automatically a Witt space by definition.

Let B9 := (S3 × S6)](S4 × S5), where ] denotes the connected sum, and
let f : B9 → S4 the composition of the following contraction map q and
projection map p :

B9
q−→ S4 × S5 p−→ S4.

Let E be the fiber bundle over B9 that is the pullback along f of the tangent
space over S4,

R4 R4

E := f∗(TS4) TS4

B9 S4
f
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The Thom space Th(E) associated to this bundle is a pseudomanifold
of dimension 13 and is an L-space, indeed we show using the Leray Serre
spectral sequence that H6(SE) = Q⊕Q and that both of these factors are
Lagrangian subspaces. The sphere bundle associated to E is the bundle

S3 −→ SE −→ B9,

applying the cohomological Leray Serre spectral sequence to this bundle,
we have the following E2 page

E
p,q
2 = Hp(B9;Hq(S3))

3 Qa 0 0 Qs3a Qs4a Qs5a Qs6a 0 0 Qωa

0 Q1 0 0 Qs3 Qs4 Qs5 Qs6 0 0 Qω

0 1 2 3 4 5 6 7 8 9

d4

In this page, si represents the generator of the sphere Si in B9, ω the
fundamental class of B9 with ω = s4s5 = s3s6 and a the generator of the
fiber S3 of the sphere bundle.

The only non zero differential is d4 so E2 = E3 = E4 and E∞ = E5, d4
is completely determined by the Euler class eu(E) of the sphere bundle
because d4a = eu(E). We know that eu(TS4) = 2[S4] so by naturality of
the Euler class we have

eu(E) = eu(f∗(TS4)) = f∗(eu(TS4)) = 2s4.

We then have

H6(SE) = Qs6 ⊕Qs3a.

Using the product structures of the spheres S6 and S3, we have s6s6 = 0
and (s3a)(s3a) = 0, but since ω = s3s6 the matrix of the intersection form

H6(SE)×H6(SE) −→ Q

in the base (s6, s3a) is given by0 1

1 0

 .



1.4 examples and applications 47

The intersection form is then hyperbolic and both factors Qs6 and Qs3a
are Lagrangian subspaces.

We now construct a rational model of DP(Th(E)). For that we’ll need a
surjective model of SE ↪→ DE and a model of the Lagrangian truncation
tLSE. A surjective model of SE ↪→ DE is given by

A(DE)
ϕ
� A(SE)

with 

A(SE) = (A(B)⊗∧a,d) with da = s4

A(DE) = (A(B)⊗∧(a,b),D) with Da = s4 − b

ϕ|A(B)⊗∧a = id

ϕ(b) = 0

where A(B) is a rational model of the base space (S3×S6)](S4×S5) which
is given by

A(B) = (∧(s3, s4, s5, s6,β6,β7,1,β7,2,β8, . . . ),d)

with |si| = |βi| = i and

dβ6 = s3s4

dβ7,1 = s24

dβ7,2 = s5s3

dβ8 = s3s6 − s4s5.

Since dimB = 9 we only gave elements of the model of B up to degree
9, the rest of the model being an acyclic part. That is for every element
αk of degree k > 10 such that dαk = 0, there is an element βk−1 such
that dβk−1 = αk. In fact we can take take a better model for A(SE) and
A(DE) because the base space B is a formal space, that is we have a quasi
isomorphism

ψ : (A(B),d) −→ (H(B), 0)

given by
ψ(si) = si

ψ(βi) = 0

ψ(A>10(B)) = 0.

The models we use are then

A(SE) = (H(B)⊗∧a,d) with da = s4

A(DE) = (H(B)⊗∧(a,b),D) with Da = s4 − b

ϕ|H(B)⊗∧a = id

ϕ(b) = 0



48 poincaré duality for spaces with isolated singularities

By adapting the proposition 1.2.7.2 and then using the lemma 1.2.7.1 we
can show that a model of the Lagrangian cotruncation is given by

(A(tLSE),d) = (Q⊕ IL,d)

where IL is the differential ideal given in this case by a choice of gen-
erator for one of the Lagrangian subspaces, a complementary of ker(d :

A6(SE) → A7(SE)) and all the cochains of degree greater or equal to 7 of
A(SE). A choice of A(tLSE)) is given by

Q⊕ (Qs6 ⊗ (H(B)⊗∧a)>7)

and the model of ILTh(E) is

A∗(ILTh(E)) = (H(B)⊗∧(a,b),D)⊕H(B)⊗∧a (Q⊕ IL,d).

We attach the top cell inducing Poincaré duality by Whitehead products
with respect to some basis of π∗(ILTh(E))⊗Q and denote the resulting
space by DP(Th(E)), its cohomology algebra is then

H∗(DP(Th(E))) =
Q[e4,e6]⊗∧(e7,e9,e13)

(e24,e26,e4e6,e4e7,e6e9,e7e9,e6e7=e4e9=e13)
with |ei| = i.



Part II

I N T E R S E C T I O N S PA C E S A N D R AT I O N A L
H O M O T O P Y T H E O RY

In this part, we first develop the notion of Lagrangian inter-
section spaces we introduced in the first chapter. We compute
their rational homology and show that they are related to the
middle perversities intersection homology. We then talk about
the rational homology truncation.
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2.1 bireflective algebra

Definition 2.1.0.1. Let (H ′∗,H∗,H ′′∗ ,B∗) be Z-graded R-modules and let

(A,C1−,C1+,C2−,C2+)

be R-modules. A (k+ 1,k)-bireflective diagram is a commutative diagram of the
form

· · · Bk+2 Hk+2 H ′k+2 Bk+1 · · ·

H ′k+1 H ′′k

Bk+1 C1− C1+ A C2− C2+ Bk−1

Hk+1 Hk

αk+1 l1 l2 αk

r1k+1 r1kd1k+1 d1k

d2k+1 d2kr2k+1 r2k

Bk−1 H ′′k−1 Hk−1 Bk−2 · · ·

Such that we have the following exact sequences

1. · · · → Bk+2 → Hk+2 → H ′k+2 → Bk+1 → C1−
d1k+1−→ H ′k+1 → 0,

2. · · · → Bk+1 → C1− → C1+ → A→ C2− → Hk → C2+ → 0,

3. 0→ H ′′k
r1k−→ C2+ → Bk−1 → H ′′k−1 → Hk−1 → Bk−2 → · · · ,

4. 0→ C1− → Hk+1 → C1+ → A→ C2− → C2+ → Bk−1 → · · · ,

5. · · · → Bk+1 → C1− → C1+ → A→ C2− → C2+ → Bk−1 → · · · .

Such a diagram will be denoted by ∆H(k+ 1,k).

Definition 2.1.0.2. Let (H ′∗,H∗,H ′′∗ ) be Z-graded R-modules. We say that the
triple (H ′∗,H∗,H ′′∗ ) is (k+ 1,k)-bireflective along the Z-graded R-module B∗ if
there exist R-modules (A,C1−,C1+,C2−,C2+) such that they all fit into (k+ 1,k)-
reflective as defined above.

Let ∆H(k+ 1,k) be a (k+ 1,k)-reflective diagram. Suppose there exist
R-modules A1,A2,D1,D2 such that A = A1 ⊕ A2, Di ⊂ Ai, and maps
γ1,γ2,γ3 and γ4 creating two new commutative squares in the following
diagram
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0 H ′k+1 H ′′k 0

Bk+1 C1− C1+ A1 ⊕A2 C2− C2+ Bk−1

Hk+1 D1 D2 Hk

γ2 γ3

h1 αk+1 l1 l2 αk h2

γ1 γ4

d1k+1 d1k

d2k+1

d2kr2k+1

r2k

r1k+1 r1k

Definition 2.1.0.3. Such a (k + 1,k)-bireflective diagram is called split if we
have the two following short exact sequences

0 −→ C1−
d2k+1−→ Hk+1

γ1−→ D1 −→ 0

and

0 −→ D2
γ4−→ Hk

r2k−→ C2+ −→ 0.

Let ∆H(k+ 1,k) be a split (k+ 1,k)-reflective diagram, we have the two
T-shaped diagrams of short exact sequences

0

H ′k+1

0 C1− Hk+1 D1 0

imh1

0
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and

0

H ′′k

0 D2 Hk C2+ 0

imh2

0

if we are on a field k we have the isomorphisms

Hk+1 ∼= imh1 ⊕H ′′k+1 ⊕D1

and

Hk ∼= imh2 ⊕H ′k ⊕D2.

2.2 lagrangian truncation and associated bireflective al-
gebra

We first briefly recall the notion of Lagrangian truncation defined in the
section 1.2.4 of the first chapter.

Let K be a simply connected CW-complex of dimension n = 2s satis-
fying Poincaré duality. We denote by b the non degenerate bilinear form
induced by the Poincaré duality with Q coefficients, consider dimHs(K) =

2m and

b : Hs(K)×Hs(K) −→ Q

where b(x,y) := 〈x ∪ y, [K]〉 with [K] ∈ H2s(K; Q) the fundamental class
and 〈−,−〉 the evaluation form.

If b is symmetric suppose that H2k(K; Q) posses a Lagrangian subspace
V of dimension m, if b in skew-symmetric then one has automatically a
Lagrangian subspace. By hyperbolic completion we have in both cases a
hyperbolic basis

(a,, . . . ,am,a∗1, . . . ,a∗m)

of Hs(K) such that, if we denote by V and V∗ the subspaces respectively
generated by (a,, . . . ,am) and (a∗1, . . . ,a∗m), we have

Hs(K) = V ⊕ V∗.
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We are then able to construct a topological space tLK

tLK −→ K

such that

Hr(tLK; Q) ∼=


Hr(K) if r 6 s− 1

V∗ if r = s

0 if r > s.

(3)

We recall the definition 1.2.10.1 from the first chapter.

Definition 2.2.0.1. The space tLK is called the Lagrangian truncation of the
CW-complex K.

Let now X be an L-space. That is a compact, connected oriented pseu-
domanifold of dimension n = 2s+ 1 with only isolated singularities Σ =

{σ1, . . . ,σν} such that, for each singularities σi ∈ Σ Hs(Li) has a Lagrangian
subspace with respect to the non degenerate bilinear form

bi : H
s(Li)×Hs(Li)→ Q.

Denote by L(Σ,X) := tσiLi and let

j : L(Σ,X) −→ Xreg

be the inclusion of the links into the regular part of X.
Applying the Lagrangian truncation to L(Σ,X) one then has the map

tLL(Σ,X) f−→ L(Σ,X)
j−→ Xreg.

Definition 2.2.0.2. Let X be an L-space with simply connected links. The La-
grangian intersection space of the L-space X, denoted by ILX, is defined by the
homotopy cofiber of the maps tLL(Σ,X) −→ L(Σ,X) −→ Xreg.

ILX := hocof(tLL(Σ,X) f−→ L(Σ,X)
j−→ Xreg)

We note by HIL∗ (X) := H∗(ILX) and by HI∗
L
(X) the corresponding coho-

mology.

Remark 2.2.1. In the first chapter, the definition 1.2.10.2 of ILX we used was the
normal Lagrangian intersection space it is easier for the construction of Poincaré
approximation spaces. The definition 2.2.0.2 used here is as a homotopy cofiber
with Lagrangian truncation because of the availability of braid diagrams for ho-
motopy cofiber sequence. The only difference between these two definitions is at
the first homology group level where loops appear in HIL1 (X) when it is defined
as a homotopy cofiber.

Theorem 2.2.2. 1. Let X be an L-space of dimension 2s+ 1 with only isolated
singularities. The triple

(IHm∗ (X),HIL∗ (X), IH
n
∗ (X))

is a split (s+ 1, s)-bireflective diagram along H∗(L).
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2. Let X be a Witt space of dimension 2s+ 1 with only isolated singularities.
The triple

(IHm∗ (X),HIm∗ (X), IHn∗ (X))

is a split (s+ 1, s)-reflective diagram along H∗(L).

Proof. We denote by g : tLL→ Xreg the composition j ◦ f, the triple

tLL
f−→ L(Σ,X)

j−→ Xreg

induces the following commutative braid

Hr+2(j) Hr+1(f) Hr(tLL) Hr(Xreg) Hr(j) Hr−1(f) Hr−2(tLL)

Hr+1(L) Hr+1(g) Hr(L) Hr(g) Hr−1(L) Hr−1(g)

Hr+1(tLL) Hr+1(Xreg) Hr+1(j) Hr(f) Hr−1(tLL) Hr−1(Xreg) Hr−1(j)

where the paths of color red, blue and green are long exact sequences, by

a result of Wall [10, lemma 6.16 p.189], the dashed arrow is also an long
exact sequence. We have

Hr(g) = HI
L
r (X)

and

HILr (X) =

Hr(X) = Hr(j) r < s

Hr(Xreg) r > s+ 1.

By composing with the indicated isomorphisms and their inverses, we
may replace Hr(f) by Hr(tLL) and Hr(Li) by Vi⊕V∗i. The braid diagram
around r = s then becomes

Hs+2(X) Hs+1(L)
⊕ν
i=1 Vi Hs(Xreg) Hs(X) 0

Hs+1(L) HILs+1(X)
⊕ν
i=1 Vi ⊕ V∗i HILs (X) Hs−1(L)

0 Hs+1(Xreg) Hs+1(X)
⊕ν
i=1 V

∗
i Hs−1(L) Hs−1(Xreg)

0 δ1 αs

αs+1 δ2
0

i d2s h2= β1 l2

r2s

h1

r2s+1 p0 d2s+1 l1

β2

=

where the notations for the maps are the one of the previous section. For
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the middle perversities, we have the following intersection cohomologies
for X

IHnr (X) =


Hr(Xreg) r < s

imαs : Hs(Xreg)→ Hs(X) r = s

Hr(X) r > s

and

IHmr (X) =


Hr(Xreg) r < s+ 1

imαs+1 : Hs+1(Xreg)→ Hs+1(X) r = s+ 1

Hr(X) r > s+ 1

This implies the following maps for the braid diagram.

IHns (X)

Hs+2(X) Hs+1(L)
⊕ν
i=1 Vi Hs(Xreg) Hs(X) 0

Hs+1(L) HILs+1(X)
⊕ν
i=1 Vi ⊕ V∗i HILs (X) Hs−1(L)

0 Hs+1(Xreg) Hs+1(X)
⊕ν
i=1 V

∗
i Hs−1(L) Hs−1(Xreg)

IHms+1(X)

d1s r1s

d1s+1 r1n+1

0 δ1 αs

αs+1 δ2
0

i d2s h2= β1 l2

r2s

h1

r2s+1 p0 d2s+1 l1

β2

=

The braid then contains the desired bireflective diagram and all the re-
quired exact sequences. The split is given by the following diagram.

0 IHms+1(X) IHns (X) 0

Hs+1(L) Hs+1(Xreg) Hs+1(X)
⊕ν
i=1 Vi ⊕ V∗i Hs(Xreg) Hs(X) Hs−1(L)

HILs+1(X) imβ1

⊕ν
i=1V

∗
i

kerβ2
HILs (X)

i p

h1 αs+1 l1 l2 αs h2

β1 β2

d1s+1 d1s

d2s+1

d2sr2s+1

r2s

r1s+1 r1s

The case of a Witt space is easier. Consider X to be a Witt space, then
Hs(Li) = 0 for all i and we have HIm∗ (X) = HIn∗ (X) and IHm∗ (X) = IHn∗ (X)

the braid diagram becomes
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IHns (X)

Hs+2(X) Hs+1(L) 0 Hs(Xreg) Hs(X) 0

Hs+1(L) HIms+1(X) 0 HIns (X) Hs−1(L)

0 Hs+1(Xreg) Hs+1(X) 0 Hs−1(L) Hs−1(Xreg)

IHms+1(X)

d1s r1s

d1s+1 r1s+1

0 δ1
αs

αs+1
δ2 0

i d2s h2= β1 l2

r2s

h1

r2s+1 p0 d2s+1 l1

β2

=

As before the braid then contains the desired bireflective diagram and
all the required exact sequences.

Now that we have our braid diagrams, we are able to give the T-shaped
that are verified when X is an L-space or a Witt space. For X an L-space
we have

0

IHms+1(X)

0 Hs+1(Xreg) HILs+1(X)
⊕ν
i=1(ker l2)∩ Vi 0

imh1

0
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and

0

IHns (X)

0
⊕ν
i=1

V
∗
i

(im l1)∩V
∗
i

HILs (X) Hs(X) 0

imh2

0

For a Witt space it is easier since Hs(L) = 0, we then have HIns (X) =

Hs(X) and HIms+1(X) = Hs+1(Xreg), with ImX = InX. The intersection
homology groups IHns (X) and IHms+1(X) are respectively subvector spaces
of Hs(X) and Hs+1(Xreg).

Proposition 2.2.2.1. The rational homology of ILX is given by

HILr (X)
∼=



Q r = 0

H1(X)⊕Qβ0(L)−1 r = 1

Hr(X) 1 < r < s

Hs(X)⊕ (
⊕ν
i=1

V
∗
i

(im l1)∩V
∗
i

) r = s

Hs+1(Xreg)⊕ (
⊕ν
i=1(ker l2)∩ Vi) r = s+ 1

Hr(Xreg) r > s+ 1

where β0(L) is the number of connected components of L(Σ,X), that is the number
of isolated singularities.

For X a Witt space we have

HImr (X) = HInr (X)
∼=



Q r = 0,

H1(X)⊕Qβ0(L)−1 r = 1,

Hr(X) 1 < r 6 s,

Hr(Xreg) r > s+ 1.

For example, consider the suspension of S2s+1 × S2s+1, denoted by
Σ(S2s+1×S2s+1). This is an L-space of dimension 4s+ 3 with two isolated
singularities which are the suspension points Σ = {σ1,σ2}. We have

H2s+1(L1) ∼= H2s+1(S
2s+1
1 )⊕H2s+1(S2s+11 ) := V1 ⊕ V

∗
1,
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H2s+1(L2) ∼= H2s+1(S
2s+1
2 )⊕H2s+1(S2s+12 ) := V2 ⊕ V

∗
2.

The regular part is Xreg = S2s+1 × S2s+1 × [0, 1].
Then

HILr (Σ(S
2s+1 × S2s+1)) ∼=



Q r = 0,

Q r = 1,

Hr(Σ(S
2s+1 × S2s+1)) 1 < r 6 2s,

H2s+1(S
2s+1
2 ) r = 2s+ 1,

H2s+1(S
2s+1
1 ) r = 2s+ 2,

Hr(S
2s+1 × S2s+1) r > 2s+ 3.

Which gives

HILr (Σ(S
2s+1 × S2s+1)) ∼=



Q r = 0,

Q r = 1,

0 1 < r 6 2s,

Q r = 2s+ 1,

Q r = 2s+ 2,

0 2s+ 3 6 r < 4s+ 2,

Q r = 4s+ 2.

2.3 extension of the rational homological truncation

For the rest of this section, we will consider the following categories, with
models categories of the left and full subcategories on the right.

TopSerre CW0
rat,ft

sSetQuillen sSet0rat,ft

(CDGAQ,proj)
op SulAlg0ft

|− | S∗(−)

〈−〉 APL(−)

The different categories and the relations between them in the diagram
are

1. The category of topological spaces TopSerre endowed with the model
structure where

• The fibrations are the Serre fibrations.
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• The weak equivalences are the weak homotopy equivalences
of topological spaces, that is f : X → Y is a weak homotopy
equivalence if

πk(f) : πkX −→ πkY

is a bijection for all k.

2. The category of simplicial sets sSetQuillen endowed with the Quillen
model structure where

• The cofibrations f : X→ Y are the levelwise injection fn : Xn →
Yn of simplicial sets.

• The weak equivalences are the weak homotopy equivalences,
that is the morphisms whose Milnor realization is a weak ho-
motopy equivalence of topological spaces.

3. The category of commutative differential graded algebras over Q
CDGAQ,proj endowed with the projective model structure where

• The fibrations are the degreewise surjection.

• The weak equivalences are the quasi-isomorphisms.

Between theses categories there are the following Quillen adjunctions

1. The Milnor realization and the singular set functors |− | a S∗(−), this
pair also sets a Quillen equivalence.

2. The polynomial De Rham functor and the Sullivan simplicial realiza-
tion functors APL(−) a 〈−〉.

Denote by CW0
rat,ft the full subcategory of connected nilpotent rational

CW-complexes of finite type and by sSet0rat,ft the category of simplicial sets
such that their realization is in CW0

rat,ft. The objects of CW0
rat,ft are CW-

complexes X such that

• The CW-complex X is a connected topological space.

• The fundamental group π1X is a nilpotent group and πnX is a nilpo-
tent π1X-module.

• The reduced homology of X, H̃k(X, Z) is a Q-vector space of finite
dimension.

The category SulAlg0ft denotes the category of connected Sullivan algebras
of finite type. By connected we mean we have a morphism of cdga’s

ε : Q −→ A

where Q is seen as a cdga (Q, 0) with Q of degree zero and such that we

have the isomorphism H0(ε) : H0(Q) = Q
∼=−→ H0(A,d). Finite type means

that their homology is finite dimensional is every degree.
When have the following theorem
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Theorem 2.3.1 ([45]). When passing to homotopy categories, the adjunctions
induces the following equivalences of categories.

Ho(CW0
rat,ft) Ho(sSet0rat,ft) Ho(SulAlg0ft)

op

S∗(−)

|− |

Q(APL(−))

〈−〉

We recall some of the properties we will need. The adjunction

Top(|X|, Y) ∼= sSet(X,S∗(Y))

induces the following unit and counitθX : X −→ S∗(|X|)

νY : |S∗(Y)| −→ Y

When we are considering CW-complex we have the following proposi-
tion.

Proposition 2.3.1.1. [24, Proposition 17.3]

1. If Y is a simply connected CW-complex, then νY is a homotopy equivalence.

2. If X is a simplicial set such that |X| is simply connected then |θX| is a
homotopy equivalence, that is θX is a weak homotopy equivalence.

Let (A,d) be a cdga, combining Sullivan’s functor with Milnor realiza-
tion gives the following definition.

Definition 2.3.1.1. The spatial realization of a cdga (A,d) is the CW-complex
‖A,d‖ := |〈A,d〉|. The spatial realization of a morphism ϕ : (A,d) → (B,d) is
the continuous map ‖ϕ‖ := |〈ϕ〉|.

This defines a contravariant functor

‖− ‖ : CDGAQ −→ CW.

Definition 2.3.1.2. Let X ∈ Top, we define the cdga APL(X) to be the cdga
associated to the simplicial set S∗(X). That is

APL(X) := APL(S∗(X)).

Definition 2.3.1.3. A Sullivan algebra for a space X is the functorial cofibrant
replacement of APL(S∗(X)).

A more algebraic definition was already given in the definition 1.2.1.1.
Note that we do not consider taking the minimal model of a cdga (A,d) as
a cofibrant replacement even if by definition the minimal model of (A,d)
is a Sullivan algebra. This is because taking the minimal model defines a
functor only up to homotopy, unlike taking a cofibrant replacement. We
denote by

Q(−) : CDGAQ −→ SulAlg

the cofibrant replacement (Sullivan algebra) functor.
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Proposition 2.3.1.2. Let X ∈ CW0
rat,ft, then the map X→ ‖Q(APL(X))‖ coming

from adjunctions is a homotopy equivalence.

Definition 2.3.1.4. Let (A,d) be a cdga and p ∈ N. Denote by Cp a supplement
of

ker(dp : Ap(L)→ Ap+1(L))

and by Ip be the differential ideal of A∗(L) generated by Cp ⊕A>p+1(L).
The p-truncation of the cdga (A,d) is defined by the following cdga (ξpA,d)

where ξpA := A/Ip.

We then have a surjection πp(A) : A� ξpA.
This defines an assignment

ξp : CDGAQ −→ CDGAQ

with a comparison map πp(−) : Id� ξp.
Note that up to quasi-isomorphism the p-truncation of (A,d) is given

by

ξpA
i '


Ai i < p

kerdp i = p

0 i > p

but since this definition doesn’t define a cdga, we are forced to take quo-
tient by Ip.

Recall that CDGAQ has a model category structure where the fibrations
are the degreewise surjections and where the weak equivalences are the
quasi-isomorphisms. We then have the obvious following property.

Proposition 2.3.1.3. The p-truncation assignment

ξp : CDGAQ −→ CDGAQ

preserves fibrations and weak equivalences.

Definition 2.3.1.5. Let (A,d) ∈ CDGAQ and p ∈ N. We define the p-cotrunca-
tion of the cdga (A,d), denoted by ξp+A, by the following pullback of cdga’s.

ξ
p
+A Q

A ξpAπp(A)

p
λp(A) ε
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By universal property of pullback diagrams, we have the following com-
mutative diagram

Q⊕ kerπp(A)

ξ
p
+A Q

A ξpA

λp(A)

πp(A)

and the map m : Q⊕ kerπp(A)→ ξ
p
+A is an isomorphism.

This defines an assignment

ξ
p
+ : CDGAQ −→ CDGAQ

with a comparison map λp(−) : ξp+ ↪→ Id. The following property also
holds thanks to the isomorphism m.

Proposition 2.3.1.4. The p-cotruncation assignment

ξ
p
+ : CDGAQ −→ CDGAQ

preserves fibrations and weak equivalences.

We now define the truncation and cotruncation of a nilpotent rational
space of finite type.

By the proposition 1.2.7.2 of the first chapter, if (A,d) is a rational model
of a simply connected space X, then ξpA is a rational model of the homo-
logical (p+ 1)-truncation of X, we recall that

Hr(tp+1X) ∼=

Hr(X) r < p+ 1,

0 r > p+ 1.

Being a rational model implies we have a quasi-isomorphism

APL(tp+1X)
∼−→ ξpA.

Then if X is simply connected of finite type, applying cofibrant replace-
ment and geometric realization of cdga’s we have the following homotopy
equivalence by proposition 2.3.1.2.

(tp+1X)Q ' ‖Q(APL(tp+1X))‖
'−→ ‖Q(ξpA)‖.

The homological truncation defined in the first chapter is done in a topo-
logical way by constructing a new CW-complex and only concerns simply
connected space. What we want to do here, with the help of algebraic tools,
is to extend this construction to the case of nilpotent rational topological
spaces of finite type. Suppose we have such a truncation and denote it by
t

Q
6p(−). Such a truncation should verify the following properties.
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1. It should defines a covariant assignment

t
Q
6p(−) : CW0

rat,ft −→ CW0
rat,ft,

and not necessarily a functor. The homological truncation on simply
connected CW-complex defined in [6] is not a functor unless for very
specific spaces and maps, which from what is called a rigid subcate-
gory of the CW-complexes.

2. It should come with a comparison map embQ
p (X) : t

Q
6p(X)→ X such

that Hr(embQ
p (X)) is an isomorphism for r 6 p and the zero map

otherwise. Again embQ
p (X) shouldn’t necessarily be a natural trans-

formation.

3. It should preserve homotopy equivalences, meaning that if X and Y
have the same homotopy type, then tQ

6p(X) and t
Q
6p(Y) should at

least have the same rational homotopy type.

4. If X ∈ CW1
rat,ft, that is X is a simply connected rational CW-complex

of finite type, then tQ
6p(X) should be homotopy equivalent to tp+1X.

The following definition verifies these 4 properties. We denote by Pn the
poset {0, 1, . . . ,n− 2}.

Definition 2.3.1.6. Let X ∈ CW0
rat,ft, n = dimX and p ∈ Pn, the rational

cohomological p-truncation of X is defined by

t
Q
6p(X) := ‖Q(ξpAPL(X))‖.

We denote by embQ
p (X) : t

Q
6p(X) → ‖Q(APL(X))‖ the continuous map induced

by the spatial realization of the comparison map πp(APL(X)),

embQ
p (X) := ‖Q(πp(APL(X)))‖.

Here we have

Hr(tQ
6p(X)) = H

r(‖Q(ξpAPL(X))‖)
∼= Hr(ξpAPL(X))

∼=

Hr(APL(X)) ∼= Hr(X) r 6 p

0 r > p

and the map embQ
p (X) induces

Hr(embQ
p (X)) : H

r(‖Q(APL(X))‖) −→ Hr(tQ
6p(X))

which is an isomorphism for r 6 p and the map

Hr(embQ
p (X)) : H

r(‖Q(APL(X))‖)→ 0

for r > p. Note that by the universal coefficients theorem t
Q
6p(X) also trun-

cates the rational homology of X in the same way. We define the cotrunca-
tion in the same way.
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Definition 2.3.1.7. Let X ∈ CW0
rat,ft and p ∈ Pn, the rational cohomological

p-cotruncation of X is defined by

t
Q
>p(X) := ‖Q(ξp+APL(X))‖.

We denote by proQ
p (X) : ‖Q(APL(X))‖ → t

Q
>p(X) the continuous map induced

by the spatial realization of the comparison map λp(APL(X)),

proQ
p (X) := ‖Q(λp(APL(X)))‖.

We have

Hr(tQ
>p(X)) = H

r(‖ξp+APL(X)‖)
∼= Hr(ξ

p
+APL(X))

∼=


H0(APL(X)) ∼= H0(X) = Q r = 0

0 1 6 r 6 p

Hr(APL(X)) ∼= Hr(X) r > p

With the definitions of the truncation and cotruncation assignment ξp,
ξ
p
+ and the different Quillen pairs involved, it is then clear that tQ

6p(−)

and tQ
>p(−) preserve homotopy equivalences.

Definition 2.3.1.8. Let F : A −→ B be a covariant assignment between the cate-
gories A and B.

• The assignment F is said to be augmented if it comes with a comparison
map

α : Id −→ F.

• The assignment F is said to be coaugmented if it comes with a comparison
map

α : F −→ Id.

Since ‖Q(APL(X))‖ ' X for X ∈ CW0
rat,ft, embQ

p (−) defines a coaugmenta-
tion embQ

p (X) : t
Q
6p(X)→ X in HoCW0

rat,ft and proQ
p (−) defines an augmen-

tation proQ
p (X) : X→ t

Q
>p(X) in HoCW0

rat,ft. We then have

Theorem 2.3.2. 1. (tQ
6p(−), embQ

p (−)) : HoCW0
rat,ft −→ HoCW0

rat,ft is a co-
augmented assignment.

2. (tQ
>p(−), proQ

p (−)) : HoCW0
rat,ft −→ HoCW0

rat,ft is an augmented assign-
ment.
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Let X be a complex projective variety of complex dimension n
with only isolated singularities of simply connected links. We
show that we can endow the rational cohomology of the family
of the p-perverse intersection spaces {IpX}(p) with compatible
mixed Hodge structures.
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3.1 introduction

This part deals with the notion of mixed Hodge structure associated to the
intersection spaces of a complex projective variety X of complex dimension
n with only isolated singularities and simply connected links.

Intersection spaces were defined by Markus Banagl in [6] as a way to
spatialize Poincaré duality for singular spaces. Suppose given a compact,
connected pseudomanifold of dimension nwith only isolated singularities
and simply connected links. We assign to this space a family of topological
spaces IpX, its intersection spaces, where p is an element called a perver-
sity varying in a poset Pn called the poset of perversities. We then have for
complementary perversities a generalized Poincaré duality isomorphism

H̃Ikp(X)
∼= H̃I

q
n−k(X)

∨.

with H̃Iqn−k(X)
∨ = hom(H̃Iqn−k(X), Q)

The theory of intersection spaces can be seen as an enrichment of in-
tersection homology since they both gives complementary informations
about X.

The aim of this part is twofold. First we want to get a better under-
standing of the family of cohomology algebras {HI∗•(X)}p∈Pn when we
take all the spaces into consideration. We then want to put mixed Hodge
structures on these algebras in order to get results about the formality of
intersections spaces.

Formality is a notion tied to the rational homotopy theory of topologi-
cal spaces. The rational homotopy type of a topological space X is given
by the commutative differential graded algebra APL(X) in the homotopy
category Ho(CDGAQ) defined by formally inverting quasi-isomorphisms
and where APL(−) : Top → CDGAQ is the polynomial De Rham functor
defined by Sullivan. The space X is then formal if there is a string of quasi-
isomorphisms from the cdga APL(X) to its cohomology with rational co-
efficients H∗(APL(X)) ∼= H∗(X, Q) seen as a cdga with trivial differential.
In particular is X is formal then its rational homotopy type is a formal
consequence of its cohomology ring and its higher order Massey products
vanish.

The combination of rational homotopy theory and Hodge theory has al-
ready been showed to be fruitful. Using Hodge theory, Deligne, Griffiths,
Morgan and Sullivan proved in [18] that compact Kähler manifolds, in par-
ticular smooth projective varieties, are formal. It was also shown by Simp-
son in [41] that every finitely presented group G is the fundamental group
of a singular projective variety X and then Kapovich and Kollár showed
in [33] that this X could be chosen to be complex projective with only
simple normal crossing singularities. More recently, Chataur and Cirici
proved in [13] that every complex projective variety of dimension n with
only isolated singularities Σ = {σ1, . . . ,σν} such that the link Li of each
singularities σi is (n− 2)-connected is then a formal topological space.

The intersection spaces IpX of X are not complex nor algebraic varieties,
even if X is. Thus at first glance there should be no reasons the cohomol-
ogy of these spaces carry a mixed Hodge structure. On second thought,
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when X is a complex projective variety of complex dimension n with only
isolated singularities and that we look at the rational cohomology of their
normal intersection spaces

HIkp(X) =



Q k = 0

Hk(X) 1 6 k 6 p

Hk(X)⊕ imHk(Xreg)→ Hk(L) k = p+ 1

Hk(Xreg) k > p+ 1

it becomes a bit more natural to think that there is a mixed Hodge struc-
ture since each part of their rational cohomology can be endowed with
a natural mixed Hodge structure coming from X. We show here that in
fact all these structures naturally come from a mixed Hodge structure at
the algebraic models level and that this structure is compatible with the
different operations defined on intersection spaces.

It must be pointed out here that the question of a Hodge structure on
the intersection spaces as already been looked at in the work of Banagl and
Hunsicker [7] where they use L2-cohomology to provide a Hodge theoretic
structure. We do not follow this path here and rather modify the rational
homotopy theory tools developed in [12] for the mixed Hodge structures
in intersection cohomology.

We explain the contents of this paper.
The section 3.2 is devoted to collect the different definitions needed. We

recall what we call a perversity, the definition of the intersection spaces
and the convention we use to construct them. We also introduce the no-
tion of a coperverse cdga which is the main tool for the rational algebraic
models of the intersection spaces. We then define a model category struc-
ture on the category of coperverse cdga’s 3.2.5.

The section 3.3 is a direct application of the previous section. We define
the notion of a coperverse cdga associated to a morphism of cdga’s. As
a result we show that the whole family of algebraic model AI•(X) com-
puting the rational cohomology of intersection spaces carry a structure of
coperverse algebra and that we have a external product on that family,
extending the cup product that each IpX naturally has as a topological
space.

The section 3.4 is the main section of this chapter, we extend our notion
of coperverse cdga to the notion of coperverse mixed Hodge cdga. These
coperverse mixed Hodge algebras carry a mixed Hodge structure which
is compatible the differential, product and poset maps of the underlying
coperverse cdga. After developing their algebraic definitions we show in
theorem 3.4.1 that given a complex projective variety X of complex dimen-
sion n with only isolated singularities and simply connected links, there
is a coperverse mixed Hodge cdga MI•(X) quasi-isomorphic to the cop-
erverse cdga AI•(X). As a result the whole family HI∗•(X) carry a well
defined mixed Hodge structure defined at the algebraic models level.

The section 3.5 is devoted to the computation of the associated weight
spectral sequence. If X is a complex projective algebraic variety with only
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isolated singularities and such that X admits a resolution of singularities
where the exceptional divisor is smooth, we are able to compute the weight
spectral sequence associated to the mixed Hodge structure. We then use
this spectral sequence to show a result of "purity implies formality" in
theorem 3.5.4.

The section 3.6 is completely devoted to the proof of the theorem 3.6.1 :
suppose X to be a complex projective algebraic threefold with isolated sin-
gularities such that there exists a resolution of singularities with a smooth
exceptional divisor, then if the links are simply connected the intersection
spaces IpX are formal topological spaces for any perversity p. The proof
being rather long and intricate, we made the choice of giving it its own sec-
tion. This result goes well with the result of [14, Theorem E p.76] stating
that any nodal hypersurface in CP4 is intersection-formal.

The last section 3.7 deals with computations, with for instance the com-
putations for the Calabi-Yau generic quintic 3-fold 3.7.3 and the Calabi-Yau
quintic 3-fold 3.7.4 where we are able to retrieve the cohomology of the as-
sociated smooth deformation as stated in [8].

3.2 background, intersection spaces and coperverse alge-
bras

3.2.1 Perversities and intersection spaces

Since we are concerned about complex algebraic varieties of complex di-
mension n with only isolated singularities we use the following definition
of a perversity.

Definition 3.2.0.1. A perversity p is determined by a integer 0 6 p 6 2n− 2.
We denote by P

op
n the poset {0, . . . , 2n− 2;6} with the reverse order, we set

P̂n
op

:= P
op
n ∪ {∞}.

The posets P
op
n and P̂n

op
are then totally ordered and look like

2n− 2→ 2n− 3→ · · · → 2→ 1→ 0.

∞→ 2n− 2→ 2n− 3→ · · · → 2→ 1→ 0.

The maximal element is the zero perversity 0 = 0, the minimal element
is the top perversity t = 2n− 2 for Popn and∞ for P̂n

op
.

The posets Popn and P̂n
op

are endowed with a partial addition ⊕ defined
by p⊕ q := p+ q if p+ q 6 2n− 2 for Popn and P̂n

op
. The complementary

perversity q of p is then q = t− p = t− p.
If we do not consider complex varieties but just pseudomanifold of di-

mension n with only isolated singularities, we will still use a linear poset

∞→ n− 2→ n− 3→ · · · → 2→ 1→ 0.

Throughout this paper, every equation involving perversities will be con-
sidered in P̂n

op
. For example max(p, 0) = 0, min(∞,p) =∞ for all p and

if p = 2 and q = 1, then p < q.
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Intersection spaces were defined by Markus Banagl in [6] in an attempt
to spatialize Poincaré duality for singular spaces. The construction of these
spaces rely on the notion of spatial homology truncation also introduced in
[6].

Definition 3.2.0.2. Given a simply connected CW-complex K of dimension n
and an integer k 6 n. A spatial homology truncation of cut-off degree k of K is a
CW-complex tkK together with a comparison map

f : tkK −→ K

such that the induced map Hr(f) gives the following isomorphisms

Hr(tkK) ∼=

Hr(K) r < k,

0 r > k.
(4)

The integer k is called the cut-off degree of the truncation.

Remark 3.2.1. Such a truncation always exists provided that K is simply con-
nected and this truncation is in fact defined on Z and not just on Q, see [6].

Definition 3.2.1.1. Let X be a compact, connected, oriented pseudomanifold of
dimension n and denote by Σ = {σ1, . . . ,σν} the singular locus of X. The pseu-
domanifold X is called supernormal if the link Li of each singularity σi ∈ Σ is
simply connected.

We denote by SuperVC the class of supernormal complex projective varieties
with only isolated singularities.

For the rest of this chapter, we assume that the definition of a supernor-
mal pseudomanifold X includes the fact that X is a connected pseudoman-
ifold of dimension n (the compacity and orientability assumptions being
automatic since we work in projective spaces CPn).

Before recalling the definition of intersection spaces given in 1.2.7.2, let
us make changes on how we define the cut off degree k(p) for the spatial
homological truncation. This new definition will be more suited for our
notion of coperverse cdga we will introduce in definition 3.2.2.1.

Let K be a simply connected CW-complex of dimension n and suppose
given a perversity p. Since

k(p) := n− 1− p(n) = t(n) − p(n) + 1 = q(n) + 1

with q the complementary perversity of p, we now set that the cut-off
degree is directly given by the perversity p and we denote it by tpK. That
is

Hr(tpK) ∼=

Hr(K) if r 6 p

0 if r > p.
(5)
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Note that we also swap the strict and large inequalities in the definition.
We will use this convention for the rest of this chapter.

By convention we also define t∞K = K.
Suppose given a supernormal pseudomanifold X with isolated singular-

ities,

L(Σ,X) := tσiLi

is then the disjoint union of simply connected topological manifold of
dimension n− 1. Denote by Xreg := X−Σ the regular part of X. We denote
by tpLi the homotopy cofiber of the map

fi : tpLi → Li.

We have maps

fi : Li −→ tpLi.

If the link Li of the singularity σi has more than one connected compo-
nent, we apply the above homotopy cofiber separately on each connected
components.

Definition 3.2.1.2. The intersection space IpX of the space X is defined by the
following homotopy pushout diagram

L(Σ,X) Xreg

⊔
i t
pLi IpX

We shall use this definition of intersection spaces for the rest of the
chapter. Note that with this definition we have I∞X = X which is the
normalization of X. We will denote by HI∗p(X) := H∗(IpX) and by H̃I∗p(X)
the reduced cohomology. We then have

HIrp(X) =



Q r = 0

Hr(X) 1 6 r 6 p

Hr(X)⊕ imHr(Xreg)→ Hr(L) r = p+ 1

Hr(Xreg) r > p+ 1

In particular, we have HI∗
0
(X) = H∗(Xreg) and HI∗∞(X) = H∗(X).

Remark 3.2.2. 1. With this definition of the cut-off degree, our intersection
spaces IpX are the normal intersection spaces IqX originally defined in
1.2.7.2. Since we will only work with normal intersection spaces here, we
drop the adjective normal and just call them intersection spaces.
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2. This convention also has to be compared at the level of algebraic models with
[14], where a p-perverse rational model of a cone cL on a topological space
L of dimension n is given by a truncation in degree p(n) of the rational
model of L. In our case, a rational model of the intersection space IpcL is
then given by a unitary cotruncation in degree p(n) of the rational model
of L.

Let’s compute the bounds of the different weight filtrations involved in
HIrp(X) for a general perversity p. Denote by Rr(Xreg,L) := imHr(Xreg)→
Hr(L).

Lemma 3.2.2.1. For r < n, Rr(Xreg,L) is pure of weight r. For r > n, we have

0 =Wr ⊂Wr+1 ⊂ · · · ⊂W2r = Rr(Xreg,L).

Proof. This follows from the semi purity of the link, see [43]. Since

dim(Σ) = 0,

the weight filtration on the cohomology of the link is semi-pure, this means
that :

• the weights on Hr(L) are less than or equal to r for r < n,

• the weights on Hr(L) are greater or equal to r+ 1 for r > n.

Combined with the two following facts

• The filtration 0 ⊂Wr ⊂ · · · ⊂W2r = Hr(Xreg).

• Hr(Xreg)→ Hr(L) is a morphism of mixed Hodge structures.

We have three cases
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First case : p < m = n− 1

1 6 r 6 p r = p+ 1 p+ 1 < r < n n 6 r

−1 0 0

0 W0 W0

1 W1 W1

...
...

...

r− 1 Wr−1 Wr−1 Wr−1 = 0 Wr−1 = 0 Wr−1 = 0

r Wr Wr ⊕ Wr Wr Wr

r+ 1 Wr+1

...
...

2r− 1 W2r−1

2r W2r

Hr(X) Hr(X) ⊕ Rr(Xreg,L) Hr(Xreg) Hr(Xreg)

Second case : p = m = n− 1

1 6 r 6 n− 1 r = p+ 1 = n n 6 r

−1 0 0

0 W0 W0

1 W1 W1

...
...

...

r− 1 Wr−1 Wr−1 Wr−1 = 0

r Wr Wr ⊕ Wr = 0 Wr

r+ 1 Wr+1 Wr+1

...
...

...

2r− 1 W2r−1 W2r−1

2r W2r W2r

Hr(X) Hr(X) ⊕ Rr(Xreg,L) Hr(Xreg)
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Third case : p > m = n− 1

1 6 r 6 n n < r 6 p r = p+ 1 p+ 1 < r

−1 0

0 W0

1 W1

...
...

r− 1 Wr−1 Wr−1 = 0 Wr−1 = 0 Wr−1 = 0

r Wr Wr Wr ⊕ Wr = 0 Wr

r+ 1 Wr+1 Wr+1

...
...

...

2r− 1 W2r−1 W2r−1

2r W2r W2r

Hr(X) Hr(X) Hr(X) ⊕ Rr(Xreg,L) Hr(Xreg)

3.2.2 Coperverse algebras and their homotopy theory

3.2.2.1 Coperverse algebras

Let k be a fixed field of characteristic zero.

Definition 3.2.2.1. A n-coperverse commutative differential graded algebra over
k, coperverse cdga for short, is a functor

A• : P̂n
op
−→ CDGAk.

That is for all perversities p ∈ P̂n
op

, Ap is a bigraded k-algebra (Akp)k∈N,
together with a linear differential d : Akp → Ak+1p and an associative product
µ : Aip ×A

j
p → A

i+j
p .

We assume that products and differentials satisfy graded commutativity, Leib-
niz rules, and are compatible with poset maps. That is for every p 6 q in P̂n

op

we have the following commutative diagrams.

Ap ×Ap Ap

Aq ×Aq Aq

µ

µ

(ϕp,q,ϕp,q) ϕp,q

Ap Ap

Aq Aq

d

d

ϕp,q ϕp,q
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We denote by H•(A, k) := H(A•,d).

Alternatively, a coperverse cdga is a diagram

A∞ ϕ∞,2n−2−→ A2n−2
ϕ2n−2,2n−3−→ · · ·

ϕ2,1−→ A1
ϕ1,0−→ A0

where the vertices are cdga’s and the edges are morphisms of cdga’s. The
assumption about the compatibility of the poset maps with the differen-
tials and the products implies that passing to cohomology gives a coper-
verse cdga with the zero differential.

H∗∞(A) H(ϕ∞,2n−2)−→ H∗
2n−2

(A)
H(ϕ2n−2,2n−3)−→ · · ·

H(ϕ2,1)−→ H∗
1
(A)

H(ϕ1,0)−→ H∗
0
(A)

Morphisms of coperverse cdga’s f• : A• → B• are then morphisms of
cdga’s {f∞, . . . , f0} such that the following ladder commutes.

· · · Ap+1 Ap Ap−1 · · ·

· · · Bp+1 Bp Bp−1 · · ·

ϕp+2,p+1 ϕp+1,p ϕp,p−1 ϕp−1,p−2

ϕ ′
p+2,p+1

ϕ ′
p+1,p

ϕ ′
p,p−1

ϕ ′
p−1,p−2

fp+1 fp fp−1

Composition is given by the compostion of the vertical arrows.
We denote by P̂n

op
CDGAk the category of coperverse cdga’s over k.

Note that with this definition, we have an extended product over the
whole family (Ap)p∈P̂n

op . Indeed, for every p 6 q in P̂n
op

, denote by
µp,q the following composition

µp,q : Ap ×Aq
(ϕp,q,id)
−→ Aq ×Aq

µ−→ Aq.

Definition 3.2.2.2. The map µ•,• defined for all p 6 q in Pop by the above
composition is called the extended product over the family (Ap)p∈Pop .

Remark 3.2.3. 1. The following diagram, where T is the twist isomorphism
T(a,b) := (−1)|a|·|b|(b,a), commutes. Because of that and for the sake of
simplicity, we will then adopt the following convention. Each time a product
Ap× · · · ×Aq will appear, we will consider that the perversities are put in
order, that is p 6 · · · 6 q in P̂n

op
.

Ap ×Aq Aq ×Aq Aq

Aq ×Ap Aq ×Aq

(ϕp,q, id)

(id,ϕp,q)

T T

µ

µ
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2. The extended product µ•,• verifies Leibniz rule, is associative and compat-
ible with poset maps and morphisms of coperverse algebras. That is all
p 6 q 6 r in P̂n

op
we have the commutative diagram,

Ap ×Aq ×Ar Ap ×Ar

Aq ×Ar Ar

(id,µq,r)

(µp,q, id)

µq,r

µp,r

and for all p1 6 p2 6 q1 6 q2 in P̂n
op

we have the commutative diagram.

Ap1 ×Aq1 Aq1

Ap2 ×Aq2 Aq2

µp1,q1

ϕp1,p2 ×ϕq1,q2

µp2,q2

ϕq1,q2

Since µp,p = µ for all p we will always consider the family (Ap)p∈P̂n
op

endowed with the extended product. We then denote a coperverse cdga
by (A•,µ•,•).

3.2.2.2 Homotopy theory of coperverse algebras

We now define a model structure on the category of coperverse cdga’s
by using the formalism of Reedy categories. The definitions and results
involving Reedy categories can be found in [32].

First, recall the model structure of CDGAk. The projective model struc-
ture on CDGAk is given by the following

• the weak equivalences are the quasi-isomorphims,

• the fibrations are the degreewise surjections,

• the cofibrations are the retracts of relative Sullivan algebras.

For n ∈ N, consider the semifree dga’s

S(n) := (∧k[n],d = 0)

where k[n] denotes the graded vector space which is k in degree n and 0
otherwise. For n > 1, consider the semifree dga’s

D(n) :=

0 n = 0,

(∧(k[n+ 1]⊕ k[n]),d = 0) n > 0

and write

in : S(n)→ D(n)
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for the morphism that send the generator of degree n to the generator of
degree n. If n = 0 then this is the unique morphism 0→ 0, and for n > 0

jn : 0→ D(n).

Proposition 3.2.3.1. The sets I := {in}n ∪ {S(0) → 0}, and J := {jn}n>0 are
the sets of generating cofibrations and acyclic cofibrations, respectively, of CDGAk.
The category CDGAk is then cofibrantly generated.

Before talking about Reedy categories, note that we have an exact evalu-
ation functor

Evp : P̂n
op

CDGAk −→ CDGAk

that send A• to Ap, this functor admits an exact left adjoint Fp defined by
Fp(A)q = A if p 6 q and zero otherwise.

Definition 3.2.3.1. Let C be a small category and C ′ ⊂ C a subcategory. The
subcategory C ′ is said to be a lluf subcategory if the objects of C ′ and C are the
same.

This implies that for all x,y ∈ C, the sets C(x,y) and C ′(x,y) might be
different.

Definition 3.2.3.2 (Reedy category). Let C be a small category together with a
degree function deg : C −→ N defined on the objects and suppose that we have
two lluf subcategories

−→
C and

←−
C . We say that (C,

−→
C ,
←−
C ) is a Reedy category if

the two following conditions are satisfied.

1. If α : c → c ′ is a non-identity map in
−→
C (resp. in

←−
C ) then deg(c) <

deg(c ′) (resp. deg(c) > deg(c ′)).

2. Every map α in C has a unique factorization
α = −→α ◦←−α ,
−→α ∈

−→
C ,

←−α ∈
←−
C .

Example 3.2.1. 1. A discrete category C, that is a category where C(x,y) =
{idx} if and only if x = y and the empty set otherwise, is a Reedy category
where all the objects are of degree 0.

2. Let P be a finite poset. We define every minimal element to be of degree 0
and we define the degree of an element p ∈ P to be the length of the longest
path of non-identity maps from an element of degree zero to p. If we have
p → p ′ with p 6= p ′ then necessarily we have degp < degp ′. The poset
P is then endowed with a structure of Reedy category with

−→
P = P,
←−
P = Disc(P).

where Disc(P) is the discrete category underlying the poset P, every ele-
ments of Disc(P) are of degree 0.
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For every Reedy category C there exists subcategories C<n of objects
of degree strictly inferior to n. Let then F : C → M a functor which we
suppose covariant, consider c ∈ C with deg c = n, we have the two objects
and maps

LcF
`c−→ F(c)

mc−→McX,

where

LcF := colim(∂(
−→
C<k/c)

Uc−→ C
F−→M),

McF := lim(∂(c/
←−
C<k)

Uc−→ C
F−→M).

with ∂(
−→
C<k/c) and ∂(c/

←−
C<k) are the two full subcategories of respec-

tively
−→
C<k/c and c/

←−
C<k where we have removed the identity object

c→ c.

Definition 3.2.3.3. The objects LcF and McF are respectively called the c-th
latching and c-th matching objects. The maps `c andmc are then the c-th latching
and c-th matching maps.

Given a map F → G in Fun(C,M), we define the c-th relative latching
map by the following diagram of pushout

LcF F(c)

LcG ·

G(c)

y

and the c-th relative matching map by the following diagram of pullback

F(c)

· McF

G(c) McG

p

Theorem 3.2.4 ([32], 5.2.5). Let M be a model category et let C be a Reedy
category. Then there is a model category on Fun(C,M) such that :
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1. the weak equivalences are defined pointwise,

2. the cofibrations are the maps F→ G such that each relative latching map

LcG
∐
LcF

F(c) −→ G(c)

is a cofibration in M,

3. the fibrations are the maps F→ G such that each relative matching map

F(c) −→ G(c)×McGM
cF

is a fibration in M.

We now apply this result to our context. We endow P̂n
op

with the struc-
ture of a Reedy category defined in the item 2 of the last example.

Let A• : P̂n
op
→ CDGAk be a coperverse cdga and p ∈ P̂n

op
such that

degp = k. We have

LpA• := colim(∂(Pop<k/p)
Up−→ Pop

A•−→M) = colimp<qAq

and

MpA• := lim(∂(p/Disc(P))
Up−→ Pop

A•−→M) = 0.

Computing the relative latching and matching map we get the following
result

Theorem 3.2.5. The category P̂n
op

CDGAk has a structure of a cofibrantly gen-
erated model category which we call the projective model structure. In this model
category, the weak equivalences are the quasi-isomorphisms and the fibrations are
the surjections.

Proof. The computations of weak equivalences and fibrations are clear.
The fact that P̂n

op
CDGAk is cofibrantly generated comes from [32, Re-

mark 5.1.8], the generating cofibrations are the {Fp(i)}i∈I,p∈P̂n
op and the

generating acyclic cofibrations are the {Fp(j)}i∈J,p∈P̂n
op where I and J are

the sets defined in the proposition 3.2.3.1.

For clarity, we give the following definition as a result of the previous
theorem.

Definition 3.2.5.1. Let f• : A• → B• be a morphism of coperverse cdga’s. The
morphism f• is

1. A quasi-isomorphism if, for every perversity p ∈ P̂n
op

, the induced map
H∗p(A)→ H∗p(B) is an isomorphism.

2. A fibration if, for every perversity p ∈ P̂n
op

, the induced map fp : Ap →
Bp is a degreewise surjection.
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We denote by Ho(P̂n
op

CDGAk) the homotopy category associated to the
model category structure on P̂n

op
CDGAk. That is the category defined by

formally inverting quasi-isomorphisms.

Remark 3.2.6. There are many ways to put a model structures on P̂n
op

CDGAk.
Indeed the category CDGAk also has an injective model structure where the weak
equivalences are the quasi-isomorphisms and the cofibrations are the injections
and we could have choose this model structure to do the computations.

On the other hand we could have chose the projective or injective model struc-
ture on P̂n

op
CDGAk coming from CDGAk rather than doing computations using

Reedy categories. But since CDGAk is a combinatorial model category all the ways
mentioned above are guaranteed to be Quillen equivalent to the projective model
structure on P̂n

op
CDGAk.

By the way, all these model structures share the same weak equivalences.

3.3 coperverse rational models

3.3.1 Coperverse cdga’s associated with a morphism of cdga’s

The tools in this chapter are modified versions of the one appearing the
work of Chataur and Cirici [12] on the interactions between intersection
cohomology and mixed Hodge structures.

Let (A,d) ∈ CDGAk. We denote by k(t,dt) := ∧(t,dt) the free cdga
generated by t and dt with deg t = 0, degdt = 1 and d(t) = dt.

Definition 3.3.0.1. We denote by A(t,dt) := A⊗k k(t,dt). For λ ∈ k we also
define the evaluation map

δλ : A(t,dt) −→ A

by δλ(t) = λ and δλ(dt) = 0.

For all r > 0, we have the following short exact sequence

0 −→ kerdr −→ Ar −→ Coimdr −→ 0

where Coimdr := Ar/ kerdr. Denote by sr : Coimdr → Ar a choice of
section. For all r > 0, we denote by Cr := im sr, the differential dr induces
the isomorphism Cr → imdr.

Definition 3.3.0.2. Let p ∈ P̂n
op

, the unitary p-cotruncation of A(t,dt) is
defined by

ξ
p
+A(t,dt) := A

0 ⊕ ξpA(t,dt).

where ξpA(t,dt) is defined by

ξpA(t,dt)r :=


Ar ⊗ k[t]t⊕Ar−1 ⊗ k[t]dt r < p

Ap−1 ⊗ k[t]dt⊕Ap ⊗ k[t]t⊕ Cp r = p

Ar−1 ⊗ k[t]dt⊕Ar ⊗ k[t] r > p
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Lemma 3.3.0.1. ξ•+A(t,dt) is a coperverse cdga.

Proof. Consider first ξpA(t,dt).
The compatibility of ξ•A(t,dt) with the differential d(ξpA(t,dt)) ⊂

ξpA(t,dt) and product ξpA(t,dt) × ξpA(t,dt) → ξpA(t,dt) is clear by
construction. We detail the compatibility with the poset maps. By unicity
of the maps ϕp,q, every ϕp,q is a composition of poset maps ϕk+1,k so we
only detail these ones. We have

ξk+1A(t,dt)r :=


Ar ⊗ k[t]t⊕Ar−1 ⊗ k[t]dt r < k+ 1

Ak ⊗ k[t]dt⊕Ak+1 ⊗ k[t]t⊕ Ck+1 r = k+ 1

Ar−1 ⊗ k[t]dt⊕Ar ⊗ k[t] r > k+ 1

and

ξkA(t,dt)r :=


Ar ⊗ k[t]t⊕Ar−1 ⊗ k[t]dt r < k

Ak−1 ⊗ k[t]dt⊕Ak ⊗ k[t]t⊕ Ck r = k

Ar−1 ⊗ k[t]dt⊕Ar ⊗ k[t] r > k.

For r 6 k or r > k+ 1, ϕk+1,k is the identity map. For r = k+ 1, since
Ak+1 ⊗ k[t] = Ak+1 ⊕Ak+1 ⊗ k[t]t, ϕk+1,k is an injection.

Now for ξp+A(t,dt) := A0 ⊕ ξpA(t,dt) the compatibility with the differ-
ential and the poset maps is clear by the same arguments than above. The
product ξp+A(t,dt) × ξ

p
+A(t,dt) → ξ

p
+A(t,dt) is also clear by construc-

tion.

Let now f : A −→ B be a morphism of cdga’s. Given a perversity p ∈
P̂n
op

, we consider the following pull-back diagram in the category CDGAk.

Jp(f) ξ
p
+B(t,dt)

A B
f

p
δ1

The product and the differential are defined component-wise, the pull-
back J•(f) is compatible with poset maps. We then have

Proposition 3.3.0.1. The pull-back J•(f) is a coperverse cdga.

Definition 3.3.0.3. J•(f) is the coperverse cdga associated to the morphism of
cdga’s f : A −→ B.

Definition 3.3.0.4. Let (A•,µ•,•) be a coperverse cdga and r ∈ Z. We say that
(A•,µ•,•) is a r-sharp coperverse cdga if the product satisfies the two following
conditions
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1. Unity For Aip ×A
j

0
→ A

i+j

0
the product lifts to

A
i+j
p

Aip ×A
j

0
A
i+j

0

µp,0

ϕp,0

2. Factorization For p,q 6= 0 and i, j 6= 0 the product lifts to

A
i+j
p+q+r

Aip ×A
j
q A

i+j
q

µp,q

ϕp+q+r,q

We assume that this lift satisfies all the properties of the product µ. That is Leibniz
rule with respect to the differential, graded commutativity and compatibility with
poset maps and morphisms of cdga’s.

Lemma 3.3.0.2. ξ•+A(t,dt) is a (−1)-sharp coperverse cdga.

Corollary 3.3.0.1. Let f : A −→ B be a morphism of cdga’s, then J•(f) is a
(−1)-sharp coperverse cdga

Remark 3.3.1. 1. The first condition means that the final cdga A0, since 0
is the maximal element of P̂n

op
, plays the role of the unit for the family

(Ap)p∈P̂n
op and in particular for the unit η0 : k → A0

0
we have Aip ×

A0
0
→ Aip for every p and every i > 0.

2. coperverse cdga’s are meant to model the rational cohomology of intersection
spaces HIkp(X). Since the IpX are topological spaces their cohomology bear
an inner cup-product which is reflected in the definition of the coperverse
cdga’s. The lift is here to show the interactions between the differentHIkp(X).

3.3.2 Coperverse rational model of intersection spaces

Let X ∈ SuperVC of complex dimension n, we denote by Σ the singular
locus of X.

Let T be a closed algebraic neighbourhood of the singular locus in X
such that the inclusion Σ ⊂ T is a homotopy equivalence. Such a neigh-
bourhood exists and is constructed with "rug functions", see [37, p.144] or
[22].

The link L := L(Σ,X) of Σ in X is defined by L := ∂T ' T∗ := T − Σ.
The inclusion i : L ↪→ Xreg of the link into the regular part of X induces a
morphism of cdga’s over Q

i∗ : APL(Xreg) −→ APL(L).
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Let p ∈ P̂n
op

be a perversity, the rational model of the intersection space
IpX is given by AIp(X) := Jp(i

∗), which is the following pull-back diagram
by proposition 1.2.7.4.

Jp(i
∗) ξ

p
+APL(L)(t,dt)

APL(Xreg) APL(L)
i∗

p
δ1

Definition 3.3.1.1. The coperverse cdga AI•(X) is called the coperverse rational
model of the intersection spaces I•X.

If A• is a coperverse cdga, its cohomology is also a coperverse cdga with
trivial differential. We then have the following proposition.

Proposition 3.3.1.1. HI∗•(X) is a coperverse cdga.

We have an isomorphism of coperverse cdga H∗(AI•(X)) ∼= HI∗•(X). This
defines a map

AI• : SuperVC −→ Ho(P̂n
op

CDGAk).

If we only consider the coperverse rational model of X ∈ SuperVC, we
then have that AI•(X) is a (−1)-sharp coperverse cdga by corollary 3.3.0.1.
But if we only want to consider the cohomology coperverse algebraHI∗•(X),
we can have an even sharper result.

Proposition 3.3.1.2. Let X ∈ SuperVC. Then (HI∗•(X), 0) is a 1-sharp coperverse
cdga. That is we haveHIi0(X)⊗ H̃I

j
p(X) −→ H̃I

i+j
p (X)

H̃Iip(X)⊗ H̃I
j
q(X) −→ H̃I

i+j

p+q+1
(X) p+ q+ 1 6 2n− 2.

Remark 3.3.2. It is important to make a difference between the extended product
µ•,• and the property of sharpness. The existence of the extended product is a
consequence of the definition 3.2.2.1 and as such every coperverse cdga defined in
the same way naturally has an extended product.

The property of sharpness of our coperverse algebras defined in 3.3.0.3 is a
consequence of our methods of construction. There might be coperverse algebras
which do not have any property of sharpness, but still have an extended product.

3.4 hodge theory

3.4.1 Coperverse mixed Hodge algebras

We now want to put finer structures on our coperverse cdga’s. This is done
with the help of filtered cdga’s and mixed Hodge cdga’s, see for example
[15].
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Definition 3.4.0.1. A filtered cdga (A,W) is a cdga (A,d) together with a filtra-
tion {WmA}m∈Z such that

1. Wm−1A ⊂WmA and d(WmA) ⊂WmA, for all m ∈ Z,

2. WmA.WnA ⊂Wm+nA,

3. The filtration W is exhaustive and biregular : for all n > 0 there exist
integers m and l such that WmAn = 0 and WlAn = An.

Definition 3.4.0.2. A mixed Hodge cdga over Q is a filtered cdga (A,W) with a
filtration F on A⊗C such that for all n > 0,

1. the triple (An, Dec(W), F) is a mixed Hodge structure,

2. the differential d : Ak → Ak+1 and the product µ : Ai ×Aj → Ai+j are
morphisms of mixed Hodge structures.

The filtration W is called the weight filtration and the filtration F is called the
Hodge filtration.

We extend these definitions to make them compatible with our notion
of coperverse cdga.

Definition 3.4.0.3. A coperverse filtered cdga (A•,W) is a coperverse cdga A•
together with a filtration {WmA•}m∈Z such that

1. Wm−1Ap ⊂ WmAp and d(WmAp) ⊂ WmAp, for all m ∈ Z and all
p ∈ P̂n

op
,

2. WmAp.WnAp ⊂Wm+nAp,

3. ϕp,q(WmAp) ⊂WmAq for all p 6 q in P̂n
op

,

4. The filtrationW is exhaustive and biregular : for all n > 0 and all p ∈ Pop

there exist integers m and l such that WmAnp = 0 and WlAnp = Anp .

Definition 3.4.0.4. A coperverse mixed Hodge cdga over Q is a coperverse filtered
cdga (A•,W) with a filtration F on A• ⊗ C such that for all n > 0 and all
p ∈ P̂n

op
,

1. the triple (Anp , Dec(W), F) is a mixed Hodge structure,

2. the differential d : Akp → Ak+1p , the product µ : Aip×A
j
p → A

i+j
p and the

poset maps ϕp,q : A
k
p → Akq are morphisms of mixed Hodge structures.

The filtration W is called the weight filtration and the filtration F is called the
Hodge filtration.

We will denote, by an abuse of notations, such a coperverse mixed
Hodge cdga by the triple (A•,W, F) with in mind the fact that F is not
defined on A• but on its complexification A•⊗C. The filtration Dec(W) is
the Deligne’s décalage of the weight filtration defined in [16, p. 15] which
is given by



88 mhs on the rational homotopy of intersection spaces

Dec(Wp)An• :=Wp−nA
n
• ∩ d−1(Wp−n−1An+1• ).

We denote by P̂n
op

MHCDGAQ the category of coperverse mixed Hodge
cdga’s over Q.

Lemma 3.4.0.1. Let (A•,W, F) be a coperverse mixed Hodge cdga, then the ex-
tended product µ•,• is a morphism of mixed Hodge structure.

Definition 3.4.0.5. A coperverse filtered cdga (A•,W) is said to be r-sharp if
A• is a filtered coperverse cdga such that the lift is compatible with the filtration
{WmA•}m∈Z. That is we have the two following conditions

1. Filtered unity For WmAip ×WnA
j

0
→Wm+nA

i+j

0
the product lifts to

Wm+nA
i+j
p

WmA
i
p ×WnA

j

0
Wm+nA

i+j

0

µp,0

ϕp,0

2. Filtered factorization For p,q 6= 0 and i, j 6= 0 the product lifts to

Wm+nA
i+j
p+q+r

WmA
i
p ×WnA

j
q Wm+nA

i+j
q

µp,q

ϕp+q+r,q

Definition 3.4.0.6. A r-sharp coperverse mixed Hodge cdga over Q is a coper-
verse mixed Hodge cdga (A•,W, F) such that the lift is a morphism of mixed
Hodge structure.

Consider Q(t,dt) together with the bête filtration σ, that is the multi-
plicative filtration with t of weight 0 and dt of weight −1. We endow
C(t,dt) := Q(t,dt)⊗C with the bête filtration σ and the trivial filtration t,
that is decreasing filtration given by

0 = t1C(t,dt) ⊂ t0C(t,dt) = C(t,dt).

Since Dec(σ) = t the triple (Q(t,dt),σ, t) is a mixed Hodge cdga.
Given another mixed Hogde cdga (A,W, F), since the category of mixed

Hodge structure is abelian the triple

(A(t,dt),W ∗ σ, F ∗ t)

is again a mixed Hodge cdga where the filtrations are defined by convolu-
tion. That is we have

(W ∗ σ)mA(t,dt)n :=WmA
n ⊗Q[t]⊕Wm+1A

n−1 ⊗Q[t]dt
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and

(F ∗ t)kA(t,dt) := FkA⊗C(t,dt).

The evaluation map δ1 is strictly compatible with filtrations.

Lemma 3.4.0.2. Let (A,W, F) be a mixed Hodge cdga. Then ξ•+A(t,dt) is a
(−1)-sharp coperverse mixed Hodge cdga.

Proof. The triple (A(t,dt),W ∗ σ, F ∗ t) is a mixed Hodge cdga, for all p ∈
Pop, ξp+A(t,dt) is a sub-algebra with the filtrations induced by restriction.

The differential is a morphism of mixed Hodge structure since the dif-
ferential on (A(t,dt),W ∗ σ, F ∗ t) is and d(ξp+A(t,dt)) ⊂ ξ

p
+A(t,dt).

The poset maps ϕk+1,k, k > 0, are the identity everywhere but at the
cut-off degree k+ 1 where they are canonical inclusions, ϕk+1,k in then
compatible with both filtrations and by composition so are the ϕp,q.

The extended product ξp+A(t,dt)i × ξ
q
+A(t,dt)j → ξ

q
+A(t,dt)i+j being

defined as the composition of µ with poset maps ϕp,q, it is a morphism of
mixed Hodge structure.

The sharpness comes from the fact that ξp+A(t,dt) is (−1)-sharp and
that the product is a morphism of mixed Hodge structure.

Let then f : (A,W, F) → (B,W, F) be a morphism of mixed Hodge cdga.
Since the category of mixed Hodge structures is abelian, see [16, Theorem
2.3.5], we have the following proposition.

Proposition 3.4.0.1. The coperverse cdga J•(f) is a coperverse mixed Hodge
cdga.

3.4.2 Mixed Hodge structure on the coperverse rational model of the intersection
spaces I•X

Definition 3.4.0.7 ([15]). A mixed Hodge diagram of cdga’s over Q consists of
a filtered cdga (AQ,W) over Q, a bifiltered cdga (AC,W, F) over C, together
with a string of filtered E1-quasi-isomorphisms from (AQ,W)⊗ C to (AC,W).
in addition, the following axioms must hold :

• The weight filtrations W are regular and exhaustive. The Hodge filtration
F is biregular. The cohomology H(AQ) has finite type.

• For all p ∈ Z, the differential of grWp (AC) is strictly compatible with F.

• For all n > 0 and all p ∈ Z, the filtration F induced on Hn(grWp (AC))

defines a pure Hodge structure of weight p+n on Hn(grWp (AQ)).

Morphisms of mixed Hodge diagrams are defined by level-wise mor-
phisms of bifiltered cdga’s such that the associated diagram is strictly com-
mutative. Forgetting the multiplicative structure gives back the notion of
mixed Hodge complex defined by Deligne in [17, section 8.1].
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Definition 3.4.0.8. Let X be a topological space. A mixed Hodge diagram for X
is a mixed Hodge diagram M(X) such that M(X)Q ' APL(X), that is its rational
component is quasi-isomorphic to the rational algebra of piecewise linear forms on
X.

The following theorem is a modified version of a theorem appearing
in [12] stating that the intersection homotopy type of a complex variety
X with only isolated singularities carries well-defined mixed Hodge struc-
tures.

Theorem 3.4.1. Let X ∈ SuperVC of complex dimension n. There exists a coper-
verse mixed Hodge cdga MI•(X) together with a string of quasi-isomorphisms

MI•(X)← ∗ → AI•(X)

such that :

1. MI•(X) = J•(ι̃) where ι̃ : M(Xreg) → M(L) is a model of mixed Hodge
cdga’s for the rational homotopy type of the inclusion i : L ↪→ Xreg.

2. there is an isomorphism of coperverse mixed Hodge cdga’s

H∗(MI•(X)) ∼= HI∗•(X).

3. The mixed Hodge cdga’s MI0(X) and MI∞(X) defines respectively the
mixed Hodge structure on the rational homotopy type of the regular part
Xreg of X and on the normalisation X of X.

4. The differential of MI•(X) satisfies d(WpMI•(X)) ⊂Wp−1MI•(X).

This defines a map

MI• : SuperVC −→ Ho(P̂n
op

MHCDGAQ).

Proof. By [20, theorem 3.2.1], there is a morphism of mixed Hodge dia-
grams M(Xreg)→M(L) induced by the inclusion i : L ↪→ Xreg. The ratio-
nal component of this morphism is the morphism i∗ : APL(Xreg)→ APL(L)

of rational piecewise linear forms induced by the inclusion i : L ↪→ Xreg.
By [15, theorem 3.19], there is a commutative diagram of mixed Hodge
diagrams

APL(Xreg) APL(L)

∗ ∗

M(Xreg) M(L)

i∗

ι̃
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where the vertical maps are quasi-isomorphisms and ι̃ is a map of mixed
Hodge cdga’s whose differential satisfies d(Wp) ⊂ Wp−1. We then let
MI•(X) := J•(ι̃). The above commutative diagram defines a string of quasi-
isomorphisms from MI•(X) to AI•(X) by proposition 1.2.7.4.

Let now show that MI•(X) is a coperverse mixed Hodge cdga. Consider
the mixed Hodge cdga M(L)(t,dt) defined as in definition 3.3.0.1. Then
ξ
p
+M(L)(t,dt) is a complex of mixed Hodge structure for every perversi-

ties p ∈ P̂n
op

. The product

ξ
p
+M(L)(t,dt)× ξq+M(L)(t,dt) −→ ξ

q
+M(L)(t,dt)

and the poset maps

ξ
p
+M(L)(t,dt) −→ ξ

q
+M(L)(t,dt)

for p 6 q ∈ P̂n
op

are strictly compatible with filtrations. Since the category
of mixed Hodge structures is abelian, for each n > 0 and each p ∈ P̂n

op
,

the vector space MIp(X)n carries a mixed Hodge structure. The compati-
bility with product and poset maps is a matter of verifications. This proves
the first three properties.

The differential on MIp(X) being defined via the pull-back of cdga’s
whose differential satisfies d(Wp) ⊂Wp−1, this also holds forMIp(X).

From this result we can deduce the two following product structure.

Corollary 3.4.1.1. Let X ∈ SuperVC, MI•(X) is then a (−1)-sharp coperverse
mixed Hodge cdga.

Corollary 3.4.1.2. Let X ∈ SuperVC, then the family of algebras

{HI∗
0
(X), H̃I∗

1
(X), . . . , H̃I∗

2n−2
(X)}

is endowed with a productHIi0(X)⊗ H̃I
j
p(X) −→ H̃I

i+j
p (X)

H̃Iip(X)⊗ H̃I
j
q(X) −→ H̃I

i+j

p+q+1
(X) p+ q+ 1 6 2n− 2.

This product is a morphism of mixed Hodge structure.

Due to the method of construction of the coperverse mixed Hodge cdga
MI•(X), we have the following commutative diagram of mixed Hodge
cdga’s.

M(Xreg) M(L) ξk+1+ M(L)(t,dt)

M(Xreg) M(L) ξk+M(L)(t,dt)

0 0 M(L,k)

ι̃ δ1

ι̃ δ1

ϕk+1,k
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Where each elements of the last row is the quotient of the previous ele-
ments in the same column. That is M(L,k) is the mixed Hodge cdga quo-
tient such that Hi(M(L,k)) = Hk(L) for i = k and zero otherwise. Taking
the pullback on each rows we then have a short exact sequence of mixed
Hodge structure

0 −→MIk+1(X) −→MIk(X) −→M(L,k) −→ 0.

This short exact sequence induces a long exact sequence of mixed Hodge
structure and extends to arbitrary perversities. That is we have

Corollary 3.4.1.3. Suppose given X ∈ SuperVC and two perversities p 6 q ∈
P̂n
op

. We have a long exact sequence of mixed Hodge structures

· · · → HIip(X)→ HIiq(X)→ Hi(M(L,q,p))→ HIi+1p (X)→ · · ·

where

Hi(M(L,q,p)) =

Hi(L) q 6 i < p,

0 otherwise.

3.5 weight spectral sequence

Let (B,W, F) a mixed Hodge cdga, then (B(t,dt),W ∗ σ, F ∗ t) is again a
mixed Hodge cdga where the filtrations are given by

(W ∗ σ)mB(t,dt)n :=WmB
n ⊗Q[t]⊕Wm+1B

n−1 ⊗Q[t]dt

and

(F ∗ t)kB(t,dt) := FkB⊗C(t,dt).

The graded subspace associated to the the weight filtration is then given
by

grW∗σm (B(t,dt)n) = grWm (Bn)⊗Q[t]⊕ grWm+1(B
n−1)⊗Q[t]dt.

Given a mixed Hodge cdga (B,W, F), we then have a cohomological
weight spectral sequence E(B,W) whose E1 term is defined by

Er,s
1 (B,W) := Hr+s(grW−r(B

r+s)).

The spectral sequence associated to a coperverse filtered cdga (A•,W) is
compatible with the multiplicative structure. Thus, for all r > 0, The term
Er(A•,W) is a coperverse bigraded algebra with differential dr of degree
(r, 1− r).

Lemma 3.5.0.1. Let (B,W, F) a mixed Hodge cdga, we have a canonical isomor-
phism of differential bigraded algebras

E1(B(t,dt),W ∗ σ) ∼= E1(B,W)(t,dt)
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Lemma 3.5.0.2. Let f : (A,W, F) → (B,W, F) be a morphism of mixed Hodge
cdga’s. There is a quasi-isomorphism of coperverse differential bigraded algebras

E1(J•(f),W)
∼−→ J•(E1(f,W)).

Proof. The evaluation map δ1 is strictly compatible with filtrations. Since
f is a morphism of mixed Hodge structures, the morphism of complexes
f − δ1 : A× ξp+B(t,dt) → B is strictly compatible with filtrations. There-
fore we have E1(ker(f− δ1)) = kerE1(f− δ1). The lemma 3.5.0.1 and the
observations that we have a quasi-isomorphism E1(ξ

•
+B(t,dt),W ∗ σ)

∼
↪→

ξ•+E1(B,W)(t,dt) finish the proof.

Lemma 3.5.0.3. Let (A•,W, F) be a coperverse mixed Hodge cdga such that

d(WpA•) ⊂Wp−1A•.

There is an isomorphism of complex coperverse cdga’s

A• ⊗C ∼= E1(A• ⊗C,W).

Proof. The proof is is the same as the proof of [12, lemma 3.4] for perverse
mixed Hodge cdga’s.

Remark 3.5.1. Let (A,W) be a filtered cdga of finite type over a field k and
k ⊂ K a field extension. By [15, theorem 2.26] we have that A ∼= Er(A,W) if
and only if A⊗k K ∼= Er(A⊗k K,W). For a coperverse cdga of finite type the
same proof is valid. This implies the isomorphism of lemma 3.5.0.3 descends to an
isomorphism over Q.

Let X ∈ SuperVC of complex dimension n. The inclusion i : L ↪→ Xreg of
the link into the regular part induces a morphism of multiplicative weight
spectral sequence E1(i∗) : E1(Xreg)→ E1(L). We define

EI1,•(X) := J•(E1(i
∗)).

This is a coperverse differential bigraded algebra whose cohomology sati-
fies

EIr,s
2,p(X) := H

r,s(EI1,p(X)) ∼= grWs (HIr+sp (X))

Definition 3.5.1.1. Let X ∈ SuperVC of complex dimension n. The spectral
sequence EI1,•(X) defined by

EI1,•(X) := J•(E1(i
∗))

is called the coperverse weight spectral sequence associated to I•X.

In [12, theorem 3.12], Chataur and Cirici prove the existence of a quasi-
isomorphism between the rational perverse model IA•(X) of a complex
projective variety with only isolated singularities and the first term of its
perverse weight spectral sequence IE1,•(X). This theorem can be modified
to get the following one.
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Theorem 3.5.2. Let X ∈ SuperVC with only isolated singularities. There is a
string of quasi-isomorphisms of coperverse cdga’s fromMI•(X)⊗C to EI1,•(X)⊗
C. In particular, there is an isomorphism in Ho(P̂n

op
CDGAC) from AI•(X)⊗C

to EI1,•(X)⊗C.

Proof. Let (MI•(X),W, F) be the coperverse mixed Hodge cdga given by
the theorem 3.4.1. Since the differential satisfies

d(WpMI•(X)) ⊂Wp−1MI•(X)

by the lemma 3.5.0.3 we have an isomorphism of complex coperverse
cdga’s MI•(X)⊗C ∼= E1(MI•(X)⊗C,W).

By construction, we have MI•(X) := J•(ι̃), where

ι̃ : (M(Xreg),W, F)→ (M(L),W, F)

is a morphism of mixed Hodge cdga’s which computes the rational ho-
motopy type of ι : L → Xreg. Thus by lemma 3.5.0.2 we have a quasi-
isomorphism of coperverse cdga’s E1(MI•(X),W) −→ J•(E1(ι̃,W)). It re-
mains to note that we have a string of quasi-isomorphisms from J•(E1(ι̃))

to EI1,•(X) := J•(E1(i
∗))

Remark 3.5.3. Suppose we have a topological space X such that its rational model
is endowed with an increasing filtration W, then one can consider the associ-
ated spectral sequence E1(X,W). The existence of a string of quasi-isomorphisms
between the rational model of X and the first page E1(X,W) is called the E1-
formality and is a property of complex algebraic varieties, see [15] and [13]. It
is an interesting result that the intersection spaces of complex projective varieties
have this property although they are not algebraic varieties.

Definition 3.5.3.1. Let X be a compact, connected oriented pseudomanifold of
dimension n with only isolated singularities. We say that X is a EIr,•-formal
topological space if its coperverse rational model AI•(X) can be endowed with
an increasing filtration W such that there exists a string of quasi-isomorphisms
between AI•(X) and the r-th term of its associated spectral sequence EIr,•(X,W).

With this definition, the theorem 3.5.2 can be rephrased in the following
corollary.

Corollary 3.5.3.1. Let X ∈ SuperVC. The space X is EI1,•-formal with respect to
the weight filtration.

Corollary 3.5.3.2. The complex homotopy type of IpX is completely determined
by the first term of its weight spectral sequence EI1,p(X).

3.5.1 The case of a smooth exceptional divisor

3.5.1.1 Notations

Let X be a complex projective variety of complex dimension n with only
normal isolated singularities. We denote by Σ = {σ1, . . . ,σν} the singular
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locus of X and by Xreg := X− Σ its regular part. We also denote by L :=

L(Σ,X) the link of Σ in X and by i : L ↪→ Xreg the natural inclusion of the
link into the regular part.

Since Σ is discrete, we can write L as a disjoint union L = tσiLi where
Li := L(σi,X) is the link of σi ∈ Σ in X. The assumption that X is normal
implies that Li is connected for all σi ∈ Σ.

From now on, we will always assume X admits a resolution of singular-
ities

D X̃

Σ X

j

f

such that the exceptional divisor D := f−1(Σ) is smooth.
We denote by

jk : Hk(X̃) −→ Hk(D) and γk : Hk−2(D) −→ Hk(X̃)

the restriction maps and the Gysin maps induced by the inclusion j.
For all k > 2 we also denote by

jk] : H
k−2(D)

γk−→ Hk(X̃)
jk−→ Hk(D)

the composition of the two maps.
The morphism E1(i

∗) : E∗,∗1 (Xreg)→ E∗,∗1 (L) of weight spectral sequence
induced by the inclusion i : L ↪→ Xreg is defined by

E−1,s
1 (Xreg) E0,s

1 (Xreg) Hs−2(D) Hs(X̃)

E−1,s
1 (L) E0,s

1 (L) Hs−2(D) Hs(D)

E−1,s
1 (i∗) E0,s

1 (i∗) = id js

d

d

γs

js]

The algebra structure on E∗,∗1 (Xreg) is given by the cup product ofH∗(X̃),
together with the map

Hs(X̃)×Hs ′(D) −→ Hs+s
′
(D)

(x,a) 7−→ js(x) · a.

This algebra structure is compatible with the differential γ because

γ(js(x) · a) = x · γ(a).
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In other words, the following diagram commutes.

Hs(X̃)×Hs ′(D) Hs+s
′
(D)

Hs(X̃)×Hs ′+2(D) Hs+s
′+2(X̃)

(id,γs
′+2) γs+s

′+2

The non-trivial products on E∗,∗1 (L) are the maps

E0,s
1 (L)× Er,s ′

1 (L) −→ Er,s+s ′
1 (L) r ∈ {0, 1}, s, s ′ > 0

induced by the cup-product on H∗(D).
The coperverse weight spectral sequence EI1,•(X) := J•(E1(i

∗)) for X is
then given by

s > p+ 1 Hs−2(D)⊗Q[t] → Is0 ⊕Hs−2(D)⊗Q[t]dt → Hs(D)⊗Q[t]dt

s = p+ 1 Cp ⊕Hs−2(D)⊗Q[t]t → Is0 ⊕Hs−2(D)⊗Q[t]dt → Hs(D)⊗Q[t]dt

1 6 s < p+ 1 Hs−2(D)⊗Q[t]t → Is1 ⊕Hs−2(D)⊗Q[t]dt → Hs(D)⊗Q[t]dt

s = 0 0 I00 → H0(D)⊗Q[t]dt

EIr,s
1,p(X) r = −1 r = 0 r = 1

Where

1. Cp is the image of the section of d−1,s
1 : E−1,s

1 (L) → E0,s
1 (L), ie a sec-

tion of js] : H
s−2(D) → Hs(D). Note that Cp is just a computational

tool and does not impact the value of the EI2 term since it has been
shown in [6, theorem 2.18] that the values of HIkp(X) for rational coef-
ficients are independent of the choices made during the construction.

2. Isk, k ∈ {0, 1}, is the vector space given by the following pullback
square.

Isk Hs(D)⊗Q[t]tk

Hs(X̃) Hs(D)
js

p
δ1

3. The differential d−1,s
p : EI−1,s

1,p (X)→ EI0,s
1,p(X) is defined by∑

ait
i 7→

(
(
∑

γs(ai),
∑

js] (ai)t
i),
∑

iait
i−1dt

)
ai ∈ Hs−2(D).

4. The differential d0,s
p : EI0,s

1,p(X)→ EI1,s
1,p(X) is defined by(

(x,
∑

ait
i),
∑

bit
idt
)
7→
∑

iait
i−1dt+

∑
js] (bi)t

idt
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with ai ∈ Hs(D),bi ∈ Hs−2(D),

x ∈ Hs(X̃), js(x) =
∑
ai.

We describe the internal algebra structure of the coperverse weight spec-
tral sequence EIr,s

1,p(X). Due to the method of construction, this algebra
structure is similar to the external one on the perverse weight spectral
sequence for intersection cohomology in [12].

The algebra structure is described by the following maps. We set x, x ′ ∈
H∗(X̃) and a,a ′,b,b ′ ∈ H∗(D)⊗Q[t].

EI0,s
1,p(X)× EI

0,s ′
1,p (X) −→ EI0,s+s ′

1,p (X)

((x,a+ b · dt), (x ′,a ′ + b ′ · dt)) 7−→ (xx ′,aa ′ + (a ′b+ b ′a)dt)

EI0,s
1,p(X)× EI

1,s ′
1,p (X) −→ EI1,s+s ′

1,p (X)

((x,a+ b · dt), (a ′ · dt)) 7−→ aa ′ · dt

EI−1,s
1,p (X)× EI1,s ′

1,p (X) −→ EI0,s+s ′
1,p (X)

(a,a ′ · dt) 7−→ aa ′ · dt

EI−1,s
1,p (X)× EI0,s ′

1,p (X) −→ EI−1,s+s ′
1,p (X)

(a, (x,a ′ + b ′ · dt)) 7−→ aa ′

Note that since Cp ⊂ Hs−2(D) and Is1 ⊂ Is0, ϕk+1,k induces a morphism
of spectral sequences of bidegree (0, 0)

EI1(ϕk+1,k) : EI1,k+1(X)→ EI1,k(X)

and we get a diagram of spectral sequences

EI1,∞(X)→ EI1,2n−2(X)→ · · · → EI1,1(X)→ EI1,0(X).

The internal algebra structure extends into an external one, we have an
extended product

EIr,s
1,p(X)× EI

r ′,s ′
1,q (X) −→ EIr+r

′,s+s ′
1,q (X)

defined with the same map as before for the internal structure and follow-
ing the same rules for r, r ′, s, s ′.
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By computing the cohomology of EI1,p(X) we have

s > p+ 1 kerγs cokerγs 0

s = p+ 1 0 cokerγs
|Cp

0

1 6 s < p+ 1 0 ker js coker js

s = 0 0 H0(X̃) 0

EIr,s
2,p(X) r = −1 r = 0 r = 1

Where γs
|Cp

is the restriction of γs to

Cp → Hs(X̃).

We then have the following isomorphisms

HIkp(X) =



H0(X̃) = Q k = 0

Hk(X) ∼= ker jk ⊕ coker jk−1 1 6 k < p+ 1

Hk(X)⊕ imHk(Xreg)→ Hk(L) ∼= cokerγk
|Cp
⊕ coker jk−1 ⊕ kerγk+1 k = p+ 1

Hk(Xreg) ∼= kerγk+1 ⊕ cokerγk k > p+ 1

3.5.1.2 Remark on coker j0

It is important to note here that the values of ker js and coker js recorded
in the array of the EI2 term above start with s = 1, meaning we don’t take
into account ker j0 and coker j0, this is intended.

Indeed, coker j0 accounts for the number of loops created when the in-
tersection spaces are defined as a homotopy pushout over a single point,
like in the original definition of [6], this not the definition we use.

As a consequence, when we have multiple isolated singularities, the
generalised Poincaré duality of the intersection spaces fails for H̃I1p(X) ∼=

H̃In−1q (X).

3.5.1.3 Remark on the zero perversity

The intersection space for the zero perversity is by definition 3.2.1.2 the
regular part Xreg of the complex projective variety X ∈ SuperVC involved.
The isomorphism given above by the EI2 term gives

HI1
0
(X) = cokerγ1|C0 ⊕ kerγ2.

Let’s see that this coincides with H1(Xreg).
Consider the term cokerγ1

|C0
, by definition C0 is defined as the image of

a section of j0] : H
−1(D) = 0 → H1(D). So we have C0 = 0, and we then

have cokerγ1
|C0

∼= cokerγ1.
We then have what we wanted

HI1
0
(X) = cokerγ1 ⊕ kerγ2 = H1(Xreg).
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3.5.2 (p, r)-purity implies (p, r)-formality

Let f : A→ B be a morphism of cdga’s, f is called an r-quasi-isomorphism
if the induced morphism

Hi(f) : Hi(A) −→ Hi(B)

is an isomorphism for all i 6 r and a monomorphism for i = r+ 1. We
extend this definition to the case of a morphism of coperverse cdga’s to
prove a result of "purity implies formality".

Definition 3.5.3.2. Let 0 6 r 6 ∞ be an integer and p a perversity. A mor-
phism of coperverse cdga’s f• : A• → B• is a (p, r)-quasi-isomorphism if for all
perversities s 6 p in Pop the map fs is an r-quasi-isomorphism.

Definition 3.5.3.3. 1. A coperverse cdga (A•,d) over k is said to be (p, r)-
formal if there exists a string of (p, r)-quasi-isomorphisms from (A•,d) to
its cohomology (H•(A, k), 0) seen as a coperverse cdga with zero differen-
tial.

2. Let X ∈ SuperVC, I•X is said to be (p, r)-formal if its coperverse rational
model AI•(X) is (p, r)-formal.

3. Let X ∈ SuperVC, I•X is said to be (p, r)-pure if the weight filtration
HIks (X) is pure of weight k for all k 6 r and for all perversities s 6 p in
Pop.

Theorem 3.5.4. Let X ∈ SuperVC of dimension n with only isolated singularities.
Let r > 0 be an integer and p a perversity. Suppose that I•X is (p, r)-pure, then
I•X is (p, r)-formal.

Proof. By theorem 3.5.2, we need to define a string of (p, r)-quasi-isomor-
phisms of differential bigraded algebras from

(EIi,j1,s(X),d
i,j
s )←− ∗ −→ (EIi,j2,s(X), 0)

for i+ j 6 r and s 6 p in P̂n
op

.
Given X ∈ SuperVC of dimension n with only isolated singularities, the

terms EI1 and EI2 of the spectral sequence look like.

j = 5
...

...
...

j = 4 EI−1,4
1,• (X) EI0,4

1,•(X) EI1,4
1,•(X)

j = 3 EI−1,3
1,• (X) EI0,3

1,•(X) EI1,3
1,•(X)

j = 2 EI−1,2
1,• (X) EI0,2

1,•(X) EI1,2
1,•(X)

j = 1 EI−1,1
1,• (X) EI0,1

1,•(X) EI1,1
1,•(X)

j = 0 0 EI0,0
1,•(X) EI1,0

1,•(X)

EI
i,j
1,•(X) i = −1 i = 0 i = 1
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j = 5
...

...
...

j = 4 grW4 (HI3•(X)) grW4 (HI4•(X)) grW4 (HI5•(X))

j = 3 grW3 (HI2•(X)) grW3 (HI3•(X)) grW3 (HI4•(X))

j = 2 grW2 (HI1•(X)) grW2 (HI2•(X)) grW2 (HI3•(X))

j = 1 grW1 (HI0•(X)) grW1 (HI1•(X)) grW1 (HI2•(X))

j = 0 0 grW0 (HI0•(X)) grW0 (HI1•(X))

EI
i,j
2,•(X) i = −1 i = 0 i = 1

The (p, r)-purity assumption implies that grWj (HIj−1s (X)) = 0 for all j 6

r+ 1 and grWj (HIj+1s (X)) = 0 for all j 6 r− 1. This means that kerd−1,j
s = 0

for all j 6 r+ 1 and imd
0,j
s = EI1,j

1,s(X) for all j 6 r− 1.
Denote by FIi,js (X) the bigraded differential algebra defined by, for all

s 6 p in P̂n
op



FI
−1,j
s (X) := EI−1,j

1,s (X) j 6 r+ 1,

FI
−1,j
s (X) := 0 j > r+ 1,

FI
0,j
s (X) := kerd0,j

s ∀ j,

FI
1,j
s (X) := 0 ∀ j.

The differential being di,js .
The bigraded differential algebra FI∗,∗s (X) has the following product

structure
FI

−1,j
s (X)× FI−1,j

s (X) −→ 0 ∀ j,

FI
−1,j
s (X)× FI0,j ′

s (X) −→ FI
−1,j+j ′
s (X) ∀ j, j ′,

FI
0,j
s (X)× FI0,j ′

s (X) −→ FI
0,j+j ′
s (X) ∀ j, j ′.

which is well defined and is compatible with d
i,j
s and the poset maps

EI1(ϕs+1,s) for all s 6 p.
We then clearly have a inclusion (FIi,js (X),di,js ) ↪→ (EIi,j1,s(X),d

i,j
s ), the

map (FIi,js (X),di,js )→ (EIi,j2,s(X), 0) is defined by the following commutative
diagram where the dashed arrows are the zero map.
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FI
−1,j
s+1

(X) kerd0,j
1,s+1

FI
−1,j
s (X) kerd0,j

1,s

grWj (HIj−1
s+1

(X)) grWj (HIj
s+1

(X))

grWj (HIj−1s (X)) grWj (HIjs(X))

d
−1,j
s+1

d
−1,j
s

p

p

EI1(ϕs+1,s)

EI2(ϕs+1,s)

EI1(ϕs+1,s)

EI2(ϕs+1,s)

The string (EIi,j1,s(X),d
i,j
s ) ←− (FIi,js (X),di,js ) → (EIi,j2,s(X), 0) then defines

a (p, r)-quasi-isomorphism.

Regardless of the perversity. The two cases of special interest here are
the cases where r = 1 and r =∞.

The case r = 1, the 1-formality, implies that the rational Malcev com-
pletion of π1(IpX) can be computed directly from the cohomology group
HI1p(X), together with the cup product HI1p(X)⊗HI1p(X) → HI2p(X). We
then say that π1(IpX) is 1-formal.

The case r = ∞ implies the formality of IpX in the usual sense, which
in the cases where IpX is simply-connected or nilpotent implies that the
rational homotopy groups πi(IpX)⊗Q can be directly computed from the
cohomology ring HI∗p(X). We note that formality implies 1-formality.

Suppose now X ∈ SuperVC with only normal isolated singularities, that
is

HIk∞(X) = Hk(X) = Hk(X)
then by the Van-Kampen theorem and by definition 3.2.1.2 for any perver-
sity p we have

π1(X) = π1(I
pX) = π1(Xreg).

Morevover, whether p = 0 or p 6= 0 we have the two following commuta-
tive diagrams.

HI1
0
(X)⊗HI1

0
(X) HI2

0
(X)

H1(Xreg)⊗H1(Xreg) H2(Xreg)

−∪−

−∪−

= =
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H1(X)⊗H1(X) H2(X)

HI1p(X)⊗HI1p(X) HI2p(X)

−∪−

−∪−

∼=

Which means that if X is 1-formal then we can compute the rational
Malcev completion of π1(IpX) by computing the one from π1(X). It is
a result from [3] that when considering normal projective varieties the
fundamental group is always 1-formal, see also [13, Corollary 3.8] for the
isolated singularities case. We can then deduce the following result

Proposition 3.5.4.1. Let X ∈ SuperVC with only normal isolated singularities.
Then for any perversity p π1(IpX) is 1-formal.

We also highlight the case r =∞.

Corollary 3.5.4.1. Let X ∈ SuperVC with only isolated singularities. If I•X is
(p,∞)-pure then I•X is (p,∞)-formal.

Let X ∈ SuperVC with only normal isolated singularities. For any per-
versity p we have a map MI∞(X) −→ MIp(X). By construction of the
intersection spaces this map is a p-quasi-isomorphism for all perversities
p. Moreover, this map is also a morphism of mixed Hodge structures by
theorem 3.4.1. We then have the following proposition.

Proposition 3.5.4.2. Let X ∈ SuperVC with only normal isolated singularities.
If the weight filtration on Hk(X) is pure of weight k for all k 6 r, then I•X is
(r, r)-pure.

Corollary 3.5.4.2. Let X ∈ SuperVC with only normal isolated singularities. If
the weight filtration on Hk(X) is pure of weight k for all k 6 r, then I•X is
(r, r)-formal.

Remark 3.5.5. The question of the purity of the weight filtration is also considered
in intersection cohomology, where a similar result of "purity implies formality"
exists [12, corollary 3.13]. It must be pointed out that the purity of X ∈ SuperVC

in intersection cohomology does not imply the purity of I•X. For example the
Kummer surface of section 3.7.2, it is a Q-homology manifold and as such IHkp(X)
is pure of weight k for any perversities and then is intersection formal. This is not
the case of the corresponding intersection space for the middle perversity I1X since
grW4 (HI3

1
(X)) 6= 0.

Another and more involved example. It is a consequence of Gabber’s purity
theorem and the decomposition theorem of intersection homology (see [43]) that
for projective varieties X with isolated singularities and for the middle perversity,
the weight filtration W on IHkm(X) is pure of weight k for all k > 0, this is not
the case for the Calabi-Yau 3folds treated in the last parts as we see that the weight
filtration W on HIkm(X) isn’t pure.
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3.6 formality of intersection spaces for 3-folds

3.6.1 Preparatory work

Let X be a complex projective algebraic 3-fold with isolated singularities
and denote by Σ = {σ1, . . . ,σν} the singular locus of X. Assume that there
is a resolution of singularities f : X̃ → X such that the exceptional divisor
D := f−1(Σ) is smooth and the link Li of σi in X, for all σi ∈ Σ is simply
connected.

First we recall and collect the different properties we will need. We state
them in the case of a space of complex dimension 3 but they are completely
general and holds for any complex projective variety of complex dimen-
sion n with only isolated singularities by replacing 3 by n. The proofs can
be found in [12].

Lemma 3.6.0.1. We have the following Poincaré duality isomorphisms for all
0 6 s 6 3,

cokerγ3+s ∼= (ker j3−s)∨ kerγ3+s ∼= (coker j3−s)∨

Recall that since dim(Σ) = 0, the weight filtration on the cohomology of
the link is semi-pure, meaning :

• the weights on Hk(L) are less than or equal to k for k < 3,

• the weights on Hk(L) are greater or equal to k+ 1 for k > 3.

We have the following results.

Lemma 3.6.0.2. With the previous notations we have :

1. The map jk] : H
k−2(D) → Hk(D) is injective for k 6 3 and surjective for

k > 3.

2. The Gysin map γk : Hk−2(D) → Hk(X̃) is injective for k 6 3 and γ6 is
surjective.

3. The restriction morphism jk : Hk(X̃)→ Hk(D) is surjective for k > 3.

Lemma 3.6.0.3. With the assumption on the links L, we have the following :

1. The map j2] : H
0(D)→ H2(D) in injective, the map j4] : H

2(D)→ H4(D)

is surjective, jk] : H
k−2(D)→ Hk(D) is an isomorphism for k = 1, 3, 5.

2. The map γk : Hk−2(D)→ Hk(X̃) is injective for all k 6= 4, 6 and the map
jk : Hk(X̃)→ Hk(D) is surjective for all k 6= 0, 2.

Lemma 3.6.0.4. With the above assumptions we have the following :

1. Hk(X̃) ∼= ker jk ⊕ imγk for k = 1, 3, 5.

2. ker j2 ∩ imγ2 = 0.
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With the lemmas above the second term of the spectral sequences for
the regular part and the links are given by

Er,s
2 (Xreg)

s = 6 kerγ6 0

s = 5 0 cokerγ5

s = 4 kerγ4 cokerγ4

s = 3 0 cokerγ3

s = 2 0 cokerγ2

s = 1 0 cokerγ1

s = 0 0 H0(X̃)

r = −1 r = 0

Er,s
2 (L)

s = 6 H4(D) 0

s = 5 0 0

s = 4 ker j4] 0

s = 3 0 0

s = 2 0 coker j2]

s = 1 0 0

s = 0 0 H0(D)

r = −1 r = 0

The computation of the cohomology of the intersection spaces involve a
choice of complementary subspace Cp, we detail here the choice we make.

• For the perversity 1, the map j2] is injective by lemma 3.6.0.2, we then
have C1 = H

0(D) and cokerγ2
|C1

= cokerγ2.

• For the perversity 2, the map j3] is an isomorphism by lemma 3.6.0.3,
we then also have C2 = H

1(D) and cokerγ3
|C2

= cokerγ3.

• For the perversity 3, there is no assumption on j4] and we chose a
complementary subspace of ker j4] which we denote by C3.

• For the perversity 4, the map j5] is an isomorphism by lemma 3.6.0.3,
we then also have C4 = H

3(D) and cokerγ5
|C4

= cokerγ5.

Since the links of the singularities are simply connected five dimensional
manifolds, by definition of the intersection spaces we have I0X ' I1X and
I3X ' I4X. Thus the second terms of the corresponding spectral sequences
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must be isomorphic, for now the corresponding second term for the asso-
ciated spectral sequences are the following.

EIr,s
2,0

(X) EIr,s
2,1

(X)

s = 6 kerγ6 0 0 kerγ6 0 0

s = 5 0 cokerγ5 0 0 cokerγ5 0

s = 4 kerγ4 cokerγ4 0 kerγ4 cokerγ4 0

s = 3 0 cokerγ3 0 0 cokerγ3 0

s = 2 0 cokerγ2 0 0 cokerγ2 0

s = 1 0 cokerγ1 0 0 ker j1 0

s = 0 0 H0(X̃) 0 0 H0(X̃) 0

r = −1 r = 0 r = 1 r = 1 r = 0 r = 1

EIr,s
2,3

(X) EIr,s
2,4

(X)

s = 6 kerγ6 0 0 kerγ6 0 0

s = 5 0 cokerγ5 0 0 cokerγ5 0

s = 4 0 cokerγ4
|C3

0 0 ker j4 0

s = 3 0 ker j3 0 0 ker j3 0

s = 2 0 ker j2 coker j2 0 ker j2 coker j2

s = 1 0 ker j1 0 0 ker j1 0

s = 0 0 H0(X̃) 0 0 H0(X̃) 0

r = −1 r = 0 r = 1 r = 1 r = 0 r = 1

We have to show that EIr,s
2,0

(X) ∼= EIr,s
2,1

(X) and EIr,s
2,3

(X) ∼= EIr,s
2,4

(X). The
first isomorphism is given by the isomorphism

H1(X̃) ∼= ker j1 ⊕ imγ1

from the lemma 3.6.0.4, we then have cokerγ1 ∼= ker j1.
For the second isomorphism we need to show that

cokerγ4|C3
∼= ker j4.

Which is given by the following lemma
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Lemma 3.6.0.5. We have the following isomorphism

H4(X̃) ∼= ker j4 ⊕ imγ4|C3
.

Proof. Denote by (ker j4)⊥ a complementary subspace of ker j4 ⊂ H4(X̃).
The maps j4] and j4 are surjective by lemma 3.6.0.2. We then have the
following commutative diagram

H2(D) ∼= ker j4] ⊕ C3 H4(X̃) ∼= ker j4 ⊕ (ker j4)⊥

H4(D)

γ4

j4j4]

By definition of C3 we have γ4
|
: C3 → (ker j4)⊥. The commutative di-

agram restricts then to the following commutative diagram where the re-
strictions j4]| and j4

|
are isomorphisms. Which finishes the proof.

C3 (ker j4)⊥

H4(D)

γ4
|

j4
|

j4]|

The second terms of the spectral sequences of EIr,s
2,p(X) for p ∈ {0, 2, 4}

are finally.

EIr,s
2,0

(X) EIr,s
2,2

(X) EIr,s
2,4

(X)

s = 6 kerγ6 0 0 kerγ6 0 0 kerγ6 0 0

s = 5 0 cokerγ5 0 0 cokerγ5 0 0 cokerγ5 0

s = 4 kerγ4 cokerγ4 0 kerγ4 cokerγ4 0 0 ker j4 0

s = 3 0 cokerγ3 0 0 cokerγ3 0 0 ker j3 0

s = 2 0 cokerγ2 0 0 ker j2 coker j2 0 ker j2 coker j2

s = 1 0 cokerγ1 0 0 ker j1 0 0 ker j1 0

s = 0 0 H0(X̃) 0 0 H0(X̃) 0 0 H0(X̃) 0

r = −1 r = 0 r = 1 r = −1 r = 0 r = 1 r = −1 r = 0 r = 1

We are now ready to state the following theorem.
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3.6.2 Statement and proof

In [14, Theorem E] it is proved that any nodal hypersurface X in CP4 is
GM-intersection-formal, meaning there is a zig-zag of quasi-isomorphisms
between their perverse rational models and their intersection cohomology
algebras

IA•(X)←− ∗ −→ IH∗•(X).

This result is extended in [12, theorem 4.5] to the case of complex projec-
tive varieties of dimension n with only isolated singularities and (n− 2)-
connected links using mixed Hodge structures.

We follow these methods and show that for X a complex projective al-
gebraic 3-fold with isolated singularities and simply connected links, the
intersection spaces are formal topological spaces.

Theorem 3.6.1. Let X be a complex projective algebraic 3-fold with isolated sin-
gularities and denote by Σ = {σ1, . . . ,σν} the singular locus of X. Assume that
there is a resolution of singularities f : X̃ → X such that the exceptional divisor
D := f−1(Σ) is smooth and the link Li of σi in X, for all σi ∈ Σ, is simply
connected. Then I•X is (2,∞)-formal over C. Moreover, if Σ = {σ} is given by a
unique normal isolated singularity, then I•X is (0,∞)-formal over C

By theorem 3.5.2 there is a string of quasi-isomorphisms of coperverse
cdga’s from AI•(X) ⊗ C to EI1,•(X) ⊗ C. Moreover we have EI∗,∗2,•(X)

∼=

HI∗•(X). We follow this pattern

1. We define a bigraded differential algebra (FIr,s
p (X),∂r,s

p ) step by step
for the perversities 4, 2 and 0.

• When needed, we then define the poset map ϕp,q : FI
r,s
p (X) →

FIr,s
q (X) and show its compatibility with the product and the

differential.

2. We define the quasi-isomorphisms

(EIr,s
1,p(X),d

r,s
p )

ψr,s
p←− (FIr,s

p (X),∂r,s
p )

φr,s
p−→ (EIr,s

2,p(X), 0)

and check their compatibility with the products and differentials.

• When needed, we then check the compatibility of the maps ψ∗,∗•
and φ∗,∗• with the poset map ϕp,q : FI

r,s
p (X)→ FIr,s

q (X).
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3.6.2.1 The top perversity

We begin with the top perversity t = 4. We define the bigraded differential
algebra (FIr,s

4
(X),∂r,s

4
).

s = 6 H4(D) H6(X̃) 0

s = 5 H3(D) H5(X̃) 0

s = 4 0 ker j4 0

s = 3 0 ker j3 0

s = 2 0 ker j2 (kerγ4)∨ ⊗ dt

s = 1 0 ker j1 0

s = 0 0 H0(X̃) 0

FIr,s
4

(X) r = −1 r = 0 r = 1

The only non-trivial differentials are ∂−1,s
4

: Hs−2(D) → Hs(X̃) given by
∂−1,s
4

= γs for s = 5, 6. The algebra structure is defined by FI0,s
4

(X) ×
FI0,s ′

4
(X)→ FI0,s+s ′

4
(X).

Let’s now define the map ψ∗,∗
4

: FI∗,∗
4

(X)→ EI∗,∗
1,4

(X). Recall that we have
the following first term for the weight spectral sequence.

s > 5 Hs−2(D)⊗Q[t] → Is0 ⊕Hs−2(D)⊗Q[t]dt → Hs(D)⊗Q[t]dt

1 6 s 6 4 Hs−2(D)⊗Q[t]t → Is1 ⊕Hs−2(D)⊗Q[t]dt → Hs(D)⊗Q[t]dt

s = 0 0 I00 → H0(D)⊗Q[t]dt

EIr,s
1,4

(X) r = −1 r = 0 r = 1

For r = s = 0, the map ψ0,0
4

is the identity map.For r = 0, s > 0, the map
ψ0,s
4

: FI0,s
4

(X)→ EI0,s
1,4

(X) is defined to be

ψ0,s
4

(x) := (x, js(x)).

For r = −1, ψ−1,s
4

is defined to be the canonical inclusion.
By lemma 3.6.0.1 we have (kerγ4)∨ ∼= coker j2 ⊂ H2(D), we then define

ψ1,2
4

to be the injective map

ψ1,2
4

: (kerγ4)∨ ⊗ dt −→ EI1,2
1,4

(X) = H2(D)⊗Q[t]dt.
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By definition Isk, k ∈ {0, 1}, is the vector space given by the following
pullback square.

Isk Hs(D)⊗Q[t]tk

Hs(X̃) Hs(D)
js

p
δ1

We have Is1 ⊂ Is0, the map ψ0,s
4

(x) := (x, js(x)) is then compatible with the
algebra structure of FI∗,∗

4
(X). The commutativity of the following diagrams

FI−1,s
4

(X) FI0,s
4

(X)

EI−1,s
1,4

(X) EI0,s
1,4

(X)

∂−1,s
4

= γs

d−1,s
4

ψ−1,s
4

ψ0,s
4

ker j2 (kerγ4)∨ ⊗ dt

EI0,2
1,4

(X) EI1,2
1,4

(X)

0

d−1,s
4

ψ0,2
4

ψ1,2
4

concludes that we have a quasi-isomorphism ψ∗,∗
4

: FI∗,∗
4

(X)→ EI∗,∗
1,4

(X).
We now detail the map φ∗,∗

4
: FI∗,∗

4
(X)→ EI∗,∗

2,4
(X).

For r = −1, φ−1,s
4

is non zero only for s = 6 where it is the projection
H4(D)� kerγ6.

For r = 0, since FI0,s
4

(X) = kerd0,s
4

for all s, we define the map φ0,s
4

to
be the surjection φ0,s

4
: kerd0,s

4
� EI0,s

2,4
(X).

For r = 1, the assignation (kerγ4)∨ ⊗ dt 7→ coker j2 defines φ1,2
4

and
φ1,s
4

is zero for any other s.

Since we have kerd0,s
4
× kerd0,s ′

4
→ kerd0,s+s ′

4
, the map φ∗,∗

4
is compat-

ible with the algebra structure of FI∗,∗
4

(X).
The map φ∗,∗

4
is also compatible with the two non zero differentials of

FI∗,∗
4

(X) since the two following diagrams are commutative.

H4(D) H6(X̃)

kerγ6 0

γ6

φ−1,6
4

H3(D) H5(X̃)

0 EI0,5
2,4

(X) = cokerγ5

γ5

φ0,5
4

We then have a quasi-isomorphism of algebras

(EIr,s
1,4

(X),dr,s
4

)
ψr,s
4←− (FIr,s

4
(X),∂r,s

4
)
φr,s
4−→ (EIr,s

2,4
(X), 0).
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3.6.2.2 The middle perversity

We define the bigraded differential algebra (FIr,s
2

(X),∂r,s
2

) as the sub-alge-
bra of (EI1,2(X),d

r,s
2

) given by

s = 6 H4(D) H6(X̃) 0

s = 5 H3(D) H5(X̃) 0

s = 4 H2(D) H4(X̃) 0

s = 3 0 ker j3 0

s = 2 0 ker j2 (kerγ4)∨ ⊗ dt

s = 1 0 ker j1 0

s = 0 0 H0(X̃) 0

FIr,s
2

(X) r = −1 r = 0 r = 1

Where (EI1,2(X),d
r,s
2

) is given by

s > 3 Hs−2(D)⊗Q[t] → Is0 ⊕Hs−2(D)⊗Q[t]dt → Hs(D)⊗Q[t]dt

1 6 s 6 2 Hs−2(D)⊗Q[t]t → Is1 ⊕Hs−2(D)⊗Q[t]dt → Hs(D)⊗Q[t]dt

s = 0 0 I00 → H0(D)⊗Q[t]dt

EIr,s
1,2

(X) r = −1 r = 0 r = 1

Compared to FI∗,∗
4

(X), we added H2(D) in bidegree (−1, 4) and replaced

ker j4 by H4(X̃) in bidegree (0, 4), both are related by a new non-trivial
differential ∂−1,4

2
= γ4.

The algebra structure is still non-trivial only for r = 0, with

FI0,s
2

(X)× FI0,s ′

2
(X)→ FI0,s+s ′

2
(X).

The mapϕ4,2 : FI
∗,∗
4

(X)→ FI∗,∗
2

(X) is then the canonical inclusion, which
is clearly compatible with the differential and the algebra structure.

To construct ψ∗,∗
2

: FI∗,∗
2

(X) → EI∗,∗
1,2

(X), we extend ψ∗,∗
4

, meaning that

ψ−1,s
2

is the inclusion, ψ0,s
2

(x) = (x, js(x)) and ψ1,s
2

= ψ1,s
4

. The algebra
structure is preserved by ψ0,s

2
and the following diagram commutes

H2(D) H4(X̃)

EI−1,4
1,2

(X) EI0,4
1,2

(X)

∂−1,4
2

= γ4

d−1,4
2

ψ−1,4
2

ψ0,4
2
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The rest being the same as for the top perversity, we have the following
quasi-isomorphism

ψ∗,∗
2

: FI∗,∗
2

(X) −→ EI∗,∗
1,2

(X).

We now construct φ∗,∗
2

: FI∗,∗
2

(X)→ EI∗,∗
2,2

(X).

First of all nothing changes for r = 1 and φ1,s
2

= φ1,s
4

.
For r = −1, φ−1,s

2
is non zero only for s = 4, 6 where it is the projection

Hs−2(D)� kerγs.
For r = 0, since FI0,s

2
(X) = kerd0,s

2
for all s 6= 3, we define the map φ0,s

2

to be the surjection φ0,s
2

: kerd0,s
2
� EI0,s

2,2
(X). For s = 3, by lemma 3.6.0.4

we have ker j3 ∼= cokerγ3, this isomorphism defines φ0,3
2

.
For s = 4, 6 or s = 5, the following diagrams commute

Hs−2(D) Hs(X̃)

kerγs cokerγs

γs

0

φ−1,s
2

φ0,s
2

H3(D) H5(X̃)

0 EI0,5
2,2

(X) = cokerγ5

γ5

φ0,5
2

So φ∗,∗
2

is compatible with the differential.
To see its compatibility with the algebra structure of FI∗,∗

2
(X) we have to

check the commutativity of the following diagram

ker j1 × ker j2 ker j3

cokerγ1 × cokerγ2 cokerγ3

∼=

We then have a quasi-isomorphism of algebras

(EIr,s
1,2

(X),dr,s
2

)
ψr,s
2←− (FIr,s

2
(X),∂r,s

2
)
φr,s
2−→ (EIr,s

2,2
(X), 0).

We now check the commutativity of the following diagram

(EIr,s
1,4

(X),dr,s
4

) (FIr,s
4

(X),∂r,s
4

) (EIr,s
2,4

(X), 0)

(EIr,s
1,2

(X),dr,s
2

) (FIr,s
2

(X),∂r,s
2

) (EIr,s
2,2

(X), 0)

ψr,s
4

φr,s
4

ψr,s
2

φr,s
2

EI1(ϕ4,2) ϕ4,2 EI2(ϕ4,2)

The only differences between EIr,s
i,4

(X) and EIr,s
i,2

(X), i = 1, 2, arise for s =
3, 4. We then only check these cases.
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The only square that does not trivially commutes for s = 3 is the follow-
ing

I31 ⊕H1(D)⊗Q[t]dt ker j3 ker j3

I30 ⊕H1(D)⊗Q[t]dt ker j3 cokerγ3

ψ0,3
4

φ0,3
4

ψ0,3
2

φ0,3
2

EI1(ϕ4,2) ϕ4,2= EI2(ϕ4,2)

The left hand square commutes because imψ0,3
4
⊂ I31, imψ0,3

2
⊂ I30 and

the fact that I31 ⊂ I30. The right hand square commutes because of the
isomorphism ker j3 ∼= cokerγ3.

For s = 4, the only square that does not trivially commutes is the follow-
ing

I41 ⊕H2(D)⊗Q[t]dt ker j4 ker j4

I40 ⊕H2(D)⊗Q[t]dt H4(X̃) cokerγ4

ψ0,4
4

φ0,4
4

ψ0,4
2

φ0,4
2

EI1(ϕ4,2) ϕ4,2 EI2(ϕ4,2)

The left hand square commutes for the same reason that for s = 3. We
then consider the right hand square. By lemma 3.6.0.5 we have H4(X̃) ∼=

ker j4 ⊕ imγ4
|C3

, moreover we have imγ4
|C3
⊂ imγ4, this implies that

ker j4 ∩ imγ4 6= {0}.

We may then find a direct sum decomposition

ker j4 = (ker j4 ∩ imγ4)⊕C

and defines a map ker j4 → C by projection on the second summand. We
then have

H4(X̃) ∼= (ker j4 ∩ imγ4)⊕C⊕ imγ4|C3
,

the maps EI2(ϕ4,2) and φ0,4
2

then send the summand (ker j4 ∩ imγ4)⊕
imγ4

|C3
to zero and C to its class in cokerγ4. Which makes the right hand

square commute.
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3.6.2.3 The infinite perversity

We define the bigraded differential algebra (FIr,s∞ (X),∂r,s∞ ) as the sub-alge-
bra of (EI1,∞(X),dr,s∞ ) given by

s = 6 0 H6(X̃) 0

s = 5 0 H5(X̃) 0

s = 4 0 ker j4 0

s = 3 0 ker j3 0

s = 2 0 ker j2 (kerγ4)∨ ⊗ dt

s = 1 0 ker j1 0

s = 0 0 H0(X̃) 0

FIr,s∞ (X) r = −1 r = 0 r = 1

There is no non trivial differentials. The algebra structure is as always
concentrated in r = 0. The map ϕ∞,4 is the canonical inclusion and is
compatible the algebra structure.

The maps ψ∗,∗∞ and φ∗,∗∞ are clear from the previous computations for
the top perversity.

We then have a quasi-isomorphism of algebras

(EIr,s
1,∞(X),dr,s∞ )

ψr,s∞←− (FIr,s∞ (X),∂r,s∞ )
φr,s∞−→ (EIr,s

2,∞(X), 0).
We then define the coperverse cdga FI∗,∗• (X) to be

FI∗,∗• (X) =


FI∗,∗∞ (X) p =∞,

FI∗,∗
4

(X) p ∈ {3, 4},

FI∗,∗
2

(X) p = 2,

We then have a quasi-isomorphism of coperverse cdga’s.

(EI∗,∗1,•(X),d
∗,∗
• )

ψ∗,∗•←− (FI∗,∗• (X),∂∗,∗• )
φ∗,∗•−→ (EI∗,∗2,•(X), 0).

Then I•X is (2,∞)-formal.

3.6.2.4 The zero perversity

Suppose that X has only one normal isolated singularity. Then kerγ6 = 0

and the EI2-term of the weight spectral sequence is
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EIr,s
2,0

(X)

s = 6 0 0 0

s = 5 0 cokerγ5 0

s = 4 kerγ4 cokerγ4 0

s = 3 0 cokerγ3 0

s = 2 0 cokerγ2 0

s = 1 0 cokerγ1 0

s = 0 0 H0(X̃) 0

r = −1 r = 0 r = 1

We define the bigraded differential algebra (FIr,s
0

(X),∂r,s
0

) as the sub-
algebra of (EI1,0(X),d

r,s
0

) given by

s = 6 H4(D) H6(X̃) 0

s = 5 H3(D) H5(X̃) 0

s = 4 H2(D) H4(X̃) 0

s = 3 0 ker j3 0

s = 2 0 (ker j4)∨ ⊕ (kerγ4)∨ ⊗ t (kerγ4)∨ ⊗ dt

s = 1 0 ker j1 0

s = 0 0 H0(X̃) 0

FIr,s
0

(X) r = −1 r = 0 r = 1

Where (EI1,0(X),d
r,s
0

) is given by

s > 1 Hs−2(D)⊗Q[t] → Is0 ⊕Hs−2(D)⊗Q[t]dt → Hs(D)⊗Q[t]dt

s = 0 0 I00 → H0(D)⊗Q[t]dt

EIr,s
1,0

(X) r = −1 r = 0 r = 1

Compared to FI∗,∗
2

(X), we added (kerγ4)∨ ⊗ t and replaced ker j2 by
(ker j4)∨ in bidegree (0, 2). There is also a new differential

∂0,2
0

: (kerγ4)∨ ⊗ t→ (kerγ4)∨ ⊗ dt
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which is differentiation with respect to t.
The algebra structure is non trivial only for r = 0 where we have((kerγ4)∨ ⊗ t)× FI0,s

0
(X) −→ 0 ∀ s,

FI0,s
0

(X)× FI0,s ′

0
(X) −→ FI0,s+s ′

0
(X) otherwise.

We now define ϕ2,0 : FI
∗,∗
2

(X)→ FI∗,∗
2

(X). For s > 3, there is no changes
and ϕ2,0 is the identity, same if s = 0, 1. For s = 2, by lemma 3.6.0.4 we
have ker j2 ∩ imγ2 = 0 so we have the inclusion ker j2 → (ker j4)∨. The
map ϕ2,0 is then an inclusion and is compatible with the differential and
the algebra structure.

We now construct ψ∗,∗
0

: FI∗,∗
0

(X) → EI∗,∗
1,0

(X). Since we have (ker j4)∨ ⊕
(kerγ4)∨ ⊗ t ⊂ I20 there is no difference between ψ∗,∗

0
and ψ∗,∗

2
and the

definition is the same. We then have a quasi-isomorphism

ψ∗,∗
0

: FI∗,∗
0

(X)→ EI∗,∗
1,0

(X).

We define φ∗,∗
0

: FI∗,∗
0

(X)→ EI∗,∗
2,0

(X), for s > 3 there is no difference with

the middle perversity. If s = 2 then we define φ0,2
0

by (ker j4)∨ 7→ cokerγ2

and (kerγ4)∨ 7→ 0, we then have the following commutative diagram.

(ker j4)∨ ⊕ (kerγ4)∨ ⊗ t (kerγ4)∨ ⊗ dt

EI0,2
2,0

(X) = cokerγ2 0

∂0,2
0

φ0,2
0

If s = 1, the isomorphism ker j1 ∼= cokerγ1 defines φ0,1
0

.
We then have a quasi-isomorphism of algebras

(EIr,s
1,0

(X),dr,s
0

)
ψr,s
0←− (FIr,s

0
(X),∂r,s

0
)
φr,s
0−→ (EIr,s

2,0
(X), 0).

We now check the commutativity of the following diagram

(EIr,s
1,2

(X),dr,s
2

) (FIr,s
2

(X),∂r,s
2

) (EIr,s
2,2

(X), 0)

(EIr,s
1,0

(X),dr,s
0

) (FIr,s
0

(X),∂r,s
0

) (EIr,s
2,0

(X), 0)

ψr,s
2

φr,s
2

ψr,s
0

φr,s
0

EI1(ϕ2,0) ϕ2,0 EI2(ϕ2,0)

The only differences between EIr,s
i,2

(X) and EIr,s
i,0

(X), i = 1, 2, arise for
s = 1, 2. We then only check these cases. For s = 1, there is nothing to
check and everything commutes. For s = 2, the only thing to check is the
commutativity of the square
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I21 ⊕H0(D)⊗Q[t]dt ker j2 ker j2

I20 ⊕H0(D)⊗Q[t]dt (ker j4)∨ ⊕ (kerγ4)∨ ⊗ t cokerγ2

ψ0,2
2

φ0,2
2

ψ0,2
0

φ0,2
0

EI1(ϕ2,0) ϕ2,0 EI2(ϕ2,0)

Which is clear by the previous computations.

We then define the coperverse cdga FI∗,∗• (X) to be

FI∗,∗• (X) =



FI∗,∗∞ (X) p =∞,

FI∗,∗
4

(X) p ∈ {3, 4},

FI∗,∗
2

(X) p = 2,

FI∗,∗
0

(X) p ∈ {0, 1}.

Then I•X is (0,∞)-formal.
If X has more than one normal isolated singularity, then kerγ6 6= 0 and

the EI2-term of the spectral sequence has a non-trivial product outside of
the column r = 0 given by

EI0,2
2,0

(X)× EI−1,4
2,0

(X) −→ EI−1,6
2,0

(X)

with

cokerγ2 × kerγ4 −→ kerγ6.

This implies the following diagram does not commutes is x 6∈ kerγ4 ⊂
H2(D). This gives an obstruction to the (0,∞)-formality.

FI0,2
2,0

(X)× FI−1,4
2,0

(X) FI−1,6
2,0

(X) (ker j4)∨ ×H2(D) H4(D)

EI0,2
2,0

(X)× EI−1,4
2,0

(X) EI−1,6
2,0

(X) cokerγ2 × kerγ4 kerγ6

=

3.7 examples and applications

We use the following conventions in the rest of this section :

• When needed, we will denote by {1i,Ei} a basis of H∗(CP1(i)), we
complete it into a basis {1i,Ei,Ei,Λi} ofH∗(CP1(i)×CP1(i)) with |Ei| =

|Ei| = 2, |Λi| = 4 and where EiEi = Λi.

• even if we do not take into account the loops in the first cohomology
group (see subsection 3.5.1.2), we mark them in red
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3.7.1 Projective cone over a K3 surface

Definition 3.7.0.1. A K3 surface S is a simply connected compact smooth com-
plex surface such that its canonical bundle KS is trivial.

Denote by S a K3 surface, for example a nonsingular degree 4 hypersur-
face in CP3, such as the Fermat quartic

S = {[z0 : z1 : z2 : z3] ∈ CP3 : z40 + z
4
1 + z

4
2 + z

4
3 = 0}.

In fact every K3 surface over C is diffeomorphic to this example, see [35].
The Hodge diamond of a K3 surface is completely determined and is given
by the following.

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2 =

h1,0 h0,1

h0,0

1

0 0

1 20 1

0 0

1

Which means that we have the following cohomology.

s 0 1 2 3 4

Hs(S) Q 0 Q22 0 Q

Denote by PCS ⊂ CP4 the projective cone over the K3 surface. This
is a simply connected hypersurface of complex dimension 3 with only
one isolated singularity which is the cone point and defined by the same
equation but in CP4

PCS = {[z0 : z1 : z2 : z3 : z4] ∈ CP4 : z40 + z
4
1 + z

4
2 + z

4
3 = 0}.

The cohomology of PCS is given by (see [19, p.169])

Hk(PCS) = H
k−2(S) ∀ k > 2.

By Hironaka’s Theorem on resolution of singularities there exists a carte-
sian diagram

S P̃

∗ PCS

f
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where the exceptional divisor is the K3 surface S and P̃ is a smooth pro-
jective variety of complex dimension 3. We then have the following Mayer-
Vietoris sequence

· · · → Hk(PCS)→ Hk(P̃)⊕Hk(∗)→ Hk(S)→ · · ·

which gives the following cohomology for P̃.

s 0 1 2 3 4 5 6

Hs(P̃) Q 0 Q⊕Q22 0 Q⊕Q22 0 Q

We compute the intersection space for the perversities {0, 1, 2, 3, 4}.
First of all the intersection space for the zero perversity is by definition

the regular part, which is computed by the following spectral sequence

Er,s
1 ((PCS)reg) Er,s

2 ((PCS)reg)

s = 6 Q Q 0 0

s = 5 0 0 0 0

s = 4 Q22 Q⊕Q22 0 Q

s = 3 0 0 0 0

s = 2 Q Q⊕Q22 0 Q22

s = 1 0 0 0 0

s = 0 0 Q 0 Q

r = −1 r = 0 kerγs cokerγs
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Now we need the cohomology of the link, which is given by the spectral
sequence defined by js] : H

s−2(D)→ Hs(D), as in the section 3.5.1.

Er,s
1 (L) Er,s

2 (L)

s = 6 Q 0 Q 0

s = 5 0 0 0 0

s = 4 Q22 Q Q21 0

s = 3 0 0 0 0

s = 2 Q Q22 0 Q21

s = 1 0 0 0 0

s = 0 0 Q 0 Q

r = −1 r = 0 ker js] coker js]

We then have
H0(L) = H5(L) = Q,

H1(L) = H4(L) = 0,

H2(L) = H3(L) = Q21.

By the E2 term of the previous spectral sequence we see that the only
sections of js] for which the image won’t be zero correspond to the perver-
sities 1 and 3. Each times the image of the section is equal to Q, we then
have the two following map

γ2|C1
: C1 = Q −→ H2(P̃) = Q⊕Q22,

γ4|C3
: C3 = Q −→ H4(P̃) = Q⊕Q22.

and cokerγ2
|C1

∼= cokerγ4
|C3

∼= Q22.
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The last map we need to know is js : Hs(P̃) → Hs(S), the map induced
by the inclusion S ↪→ P̃.

s = 6 Q 0

s = 5 0 0

s = 4 Q22 0

s = 3 0 0

s = 2 Q 0

s = 1 0 0

s = 0 0 0

ker js coker js

We recall the EI2 term of the spectral sequence of IpX.

s > p+ 1 kerγs cokerγs 0

s = p+ 1 0 cokerγs
|Cp

0

1 6 s < p+ 1 0 ker js coker js

s = 0 0 H0(P̃) 0

EIr,s
2,p(X) r = −1 r = 0 r = 1

We then have the following results.

EIr,s
2,1

(PCS)

s > 5 0

s = 4 Q

s = 3 0

s = 2 Q22

s = 1 0

s = 0 H0(P̃)

r = 0

EIr,s
2,2

(PCS)

s > 5 0

s = 4 Q

s = 3 0

s = 2 Q

s = 1 0

s = 0 H0(P̃)

r = 0

EIr,s
2,3

(PCS)

s > 5 0

s = 4 Q22

s = 3 0

s = 2 Q

s = 1 0

s = 0 H0(P̃)

r = 0

EIr,s
2,4

(PCS)

s > 5 0

s = 4 Q22

s = 3 0

s = 2 Q

s = 1 0

s = 0 H0(P̃)

r = 0
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Note that for complementary perversities, such as 1 and 3 or 0 and
4, and for s 6= 0 the EI2 term gives back the generalized Poincaré duality
between the various intersection spaces such as proved in [6, theorem 2.12].
The middle perversity here is 2 and we also get back the self-duality of the
space I2PCS.

For any perversity p the weight filtration is pure, so by the theorem 3.5.4
we get the following proposition.

Proposition 3.7.0.1. Let S be a K3-surface, the intersection space I•PCS is
(0,∞)-formal.

3.7.2 Kummer quartic surface

Let K be a Kummer quartic surface, that is an irreducible surface of degree
4 in CP3 with 16 ordinary double points, which is the maximum for such
surfaces.

From the algebraic topologist point of view, a Kummer surface is con-
structed in the following way. Let’s consider a 4-dimensional torus

T = S1 × S1 × S1 × S1

endowed with the complex involution τ : z 7→ z̄ action. This action has 16

fixed point and we define the Kummer surface to be the quotient complex
surface

K := T/τ.

We have the following cohomology for K.

s 0 1 2 3 4

Hs(K) Q 0 Q6 0 Q

The link of each singularity is then a projective space RP3. These singu-
larities are quotients singularities so by [21] K admits a resolution where
the exceptional set consists of curves of genus zero and self-intersection
−2. Which means we have the following resolution diagram

⊔16
i=1CP1(i) K̃

⊔16
i=1 ∗(i) K

f

The Mayer-Vietoris sequence gives the following cohomology for K̃.

s 0 1 2 3 4

Hs(K̃) Q 0 Q6 ⊕
⊕16
i=1QEi 0 Q
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We have the fairly easy following spectral sequence for the links.

Er,s
1 (L) Er,s

2 (L)

s = 4
⊕16
i=1QEi 0

⊕16
i=1QEi 0

s = 3 0 0 0 0

s = 2
⊕16
i=1Q1i

⊕16
i=1QEi 0 0

s = 1 0 0 0 0

s = 0 0
⊕16
i=1Q1i 0

⊕16
i=1Q1i

r = −1 r = 0 ker js] coker js]

The rational cohomology of link of each singularities is then a 3-sphere,
which is the rationalization of RP3.

The only interesting perversity here is the middle perversity 1. We need
a C1 for the computation, we have here

C1 =
16⊕
i=1

Q1i

and γ2
|C1

= γ2.
The following spectral sequence computes the regular part and the sec-

ond array is the restriction map js.

Er,s
1 (Kreg) γs : Hs−2(D) −→ Hs(K̃) Er,s

2 (Kreg)

s = 4
⊕16
i=1QEi Q

⊕15
i=1QEi 0

s = 3 0 0 0 0

s = 2
⊕16
i=1Q1i Q6 ⊕

⊕16
i=1QEi 0 Q6

s = 1 0 0 0 0

s = 0 0 Q 0 Q

r = −1 r = 0 kerγs cokerγs
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s = 4 Q 0 Q 0

s = 3 0 0 0 0

s = 2 Q6 ⊕
⊕16
i=1QEi

⊕16
i=1QEi Q6 0

s = 1 0 0 0 0

s = 0 Q
⊕16
i=1Q1i 0

⊕15
i=1Q1i

Hs(K̃) Hs(D) ker js coker js

The cohomology of the middle perversity intersection space of a Kum-
mer surface is then given by the following array. Note that the cohomology
obtained isn’t pure.

s = 4
⊕15
i=1QEi 0 0 0

s = 3 0 0 0
⊕15
i=1QEi

s = 2 0 Q6 0 Q6

s = 1 0 0 0
⊕15
i=1Q1i

s = 0 0 H0(K̃)
⊕15
i=1Q1i H0(K̃)

EIr,s
2,1

(K) r = −1 r = 0 r = 1 HIs
1
(K)

3.7.3 The Calabi-Yau generic quintic 3-fold

Let Y ⊂ CP4 the singular hypersurface given by the equation

Y := {[z0 : z1 : z2 : z3 : z4] ∈ CP4 : z3g(z0, . . . , z4) + z4h(z0, . . . , z4) = 0}

where g and h are generic homogeneous polynomials of degree 4. Y is the
Calabi-Yau generic quintic 3-fold containing the plane

π := {z3 = z4 = 0} ∼= CP2.

The singular locus

Σ := {[x] ∈ CP4 : z3 = z4 = g(z) = h(z) = 0} ⊂ CP2

is given by 16 ordinary double points. That is the link of each singularity
σ ∈ Σ is topologically equal to Lσ = S2 × S3.

We have the following cohomology for Y.

s 0 1 2 3 4 5 6

Hs(Y) Q 0 Q Q189 Q2 0 Q
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We consider the following commutative diagram of resolutions

⊔16
i=1CP1(i) ×CP1(i)

⊔16
i=1CP1(i)

⊔16
i=1 ∗(i)

Y Ỹ Y

Blow up small res.

B` f

The first square is a simultaneous small resolution of the 16 singularities
obtained by blowing up CP4 along the plane π ∼= CP2. The exceptionnal
divisor of this blow-up is a CP1-bundle over π ∼= CP2.

For the second square B` is a blow-up along the CP1(i)’s.
Denote by Ψ the generator of H2(Y).
By using twice the Mayer-Vietoris long exact sequence, we get the fol-

lowing cohomology for Y.

H0(Y) = H6(Y) = Q,

H1(Y) = H5(Y) = 0,

H2(Y) = QΨ⊕QE1 ⊕
⊕16
i=1QΛ∨

i ,

H4(Y) = QΨ∨ ⊕QE∨1 ⊕
⊕16
i=1QΛi,

H3(Y) = Q174.

The cohomology of the links of the singularities is given by the spectral
sequence

Er,s
1 (L) Er,s

2 (L)

s = 6
⊕16
i=1QΛi 0

⊕16
i=1QΛi 0

s = 5 0 0 0 0

s = 4
⊕16
i=1(QEi ⊕QEi)

⊕16
i=1QΛi

⊕16
i=1QEi 0

s = 3 0 0 0 0

s = 2
⊕16
i=1Q1i

⊕16
i=1(QEi ⊕QEi) 0

⊕16
i=1QEi

s = 1 0 0 0 0

s = 0 0
⊕16
i=1Q1i 0

⊕16
i=1Q1i

r = −1 r = 0 ker js] coker js]

We here follow the section 3.6 and do the computations for the top,
middle and zero perversity. The spectral sequence of the regular part is
given by
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Er,s
1 (Yreg) γs : Hs−2(D) −→ Hs(Y) Er,s

2 (Yreg)

s = 6
⊕16
i=1QΛi Q

⊕15
i=1QΛi 0

s = 5 0 0 0 0

s = 4
⊕16
i=1(QEi ⊕QEi) QΨ∨ ⊕QE∨1 ⊕

⊕16
i=1QΛi

⊕15
i=1QEi QΨ∨

s = 3 0 Q174 0 Q174

s = 2
⊕16
i=1Q1i QΨ⊕QE1 ⊕

⊕16
i=1QΛ∨

i 0 QΨ⊕QE1

s = 1 0 0 0 0

s = 0 0 Q 0 Q

r = −1 r = 0 kerγs cokerγs

Finally we also need the restriction morphism js.

s = 6 Q 0 Q 0

s = 5 0 0 0 0

s = 4 QΨ∨ ⊕QE∨1 ⊕
⊕16
i=1QΛi

⊕16
i=1QΛi QΨ∨ ⊕QE∨1 0

s = 3 Q174 0 Q174 0

s = 2 QΨ⊕QE1 ⊕
⊕16
i=1QΛ∨

i

⊕16
i=1(QEi ⊕QEi) QΨ

⊕15
i=1QEi

s = 1 0 0 0 0

s = 0 Q
⊕16
i=1Q1i 0

⊕15
i=1Q1i

Hs(Y) Hs(D) ker js coker js

We then get the following tables for the perversities 0, 2, 4. Note here
that the generalized Poincaré duality is only partial as we explained in the
subsection 3.5.1.2 since we do not take into accounts the loops of coker j0

(marked in red in the arrays).
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s = 6
⊕15
i=1QΛi 0 0 0

s = 5 0 0 0
⊕15
i=1QΛi

s = 4
⊕15
i=1QEi QΨ∨ 0 QΨ∨

s = 3 0 Q174 0 Q189

s = 2 0 QΨ⊕QE1 0 QΨ⊕QE1

s = 1 0 0 0
⊕15
i=1Q1i

s = 0 0 H0(Y)
⊕15
i=1Q1i H0(Y)

EIr,s
2,0

(Y) r = −1 r = 0 r = 1 HIs
0
(Y)

Note here the partial duality for the values s = 2, 3, 4 for the perversities
0 and 4.

s = 6
⊕15
i=1QΛi 0 0 0

s = 5 0 0 0
⊕15
i=1QΛi

s = 4 0 QΨ∨ ⊕QE∨1 0 QΨ∨ ⊕QE∨1

s = 3 0 Q174 0 Q189

s = 2 0 QΨ
⊕15
i=1QEi QΨ

s = 1 0 0 0
⊕15
i=1Q1i

s = 0 0 H0(Y)
⊕15
i=1Q1i H0(Y)

EIr,s
2,4

(Y) r = −1 r = 0 r = 1 HIs
4
(Y)

For the perversity 2 we retrieve the values of the smooth deformation as
in [8], unless for s = 1.
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s = 6
⊕15
i=1QΛi 0 0 0

s = 5 0 0 0
⊕15
i=1QΛi

s = 4
⊕15
i=1QEi QΨ∨ 0 QΨ∨

s = 3 0 Q174 0 Q204

s = 2 0 QΨ
⊕15
i=1QEi QΨ

s = 1 0 0 0
⊕15
i=1Q1i

s = 0 0 H0(Y)
⊕15
i=1Q1i H0(Y)

EIr,s
2,2

(Y) r = −1 r = 0 r = 1 HIs
2
(Y)

3.7.4 The Quintic

Let ψ be a complex number and consider the variety

Xψ :=
{
[z0 : z1 : z2 : z3 : z4] ∈ CP4 : z50 + z

5
1 + z

5
2 + z

5
3 + z

5
4 − 5ψz0z1z2z3z4 = 0

}
,

which is Calabi-Yau. It is smooth for small ψ 6= 1 and becomes singular
when ψ = 1, denote by X the singular degeneration Xψ=1.

The singular locus Σ of X is here composed of 125 ordinary double
points. That is the link of each singularity σ ∈ Σ is topologically equal to
Lσ = S2 × S3, just like before.

We get the following cohomology for X.

s 0 1 2 3 4 5 6

Hs(X) Q 0 Q Q103 Q25 0 Q

Using the same method of resolution that before

⊔125
i=1CP1(i) ×CP1(i)

⊔125
i=1CP1(i)

⊔125
i=1 ∗(i)

X X̃ X

Blow up small res.

B` f
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With the Mayer-Vietoris long exact sequence, we get the following coho-
mology for X, we still denote by Ψ the generator of H2(X).

6 Q

5 0

4 QΨ∨ ⊕
⊕24
i=1 E

∨
i ⊕

⊕125
i=1QΛi

3 Q2

2 QΨ⊕
⊕24
i=1QEi ⊕

⊕125
i=1QΛ∨

i

1 0

0 Q

s Hs(X)

The spectral sequences of the regular part if given by

Er,s
1 (Xreg) γs : Hs−2(D) −→ Hs(X) Er,s

2 (Xreg)

s = 6
⊕125
i=1QΛi Q

⊕124
i=1QΛi 0

s = 5 0 0 0 0

s = 4
⊕125
i=1(QEi ⊕QEi) QΨ∨ ⊕

⊕24
i=1 E

∨
i ⊕

⊕125
i=1QΛi

⊕101
i=1QEi QΨ∨

s = 3 0 Q2 0 Q2

s = 2
⊕125
i=1Q1i QΨ⊕

⊕24
i=1QEi ⊕

⊕125
i=1QΛ∨

i 0 QΨ⊕
⊕24
i=1QEi

s = 1 0 0 0 0

s = 0 0 Q 0 Q

r = −1 r = 0 kerγs cokerγs

The formulas for the restriction morphism are
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s = 6 Q 0 Q 0

s = 5 0 0 0 0

s = 4 QΨ∨ ⊕
⊕24
i=1 E

∨
i ⊕

⊕125
i=1QΛi

⊕125
i=1QΛi QΨ∨ ⊕

⊕24
i=1QE∨i 0

s = 3 Q2 0 Q2 0

s = 2 QΨ⊕
⊕24
i=1QEi ⊕

⊕125
i=1QΛ∨

i

⊕125
i=1(QEi ⊕QEi) QΨ

⊕101
i=1QEi

s = 1 0 0 0 0

s = 0 Q
⊕125
i=1Q1i 0

⊕124
i=1Q1i

Hs(X) Hs(D) ker js coker js

We let the reader fill in the arrays for the top and zero perversities, we
here give the result for the middle perversity 2.

s = 6
⊕124
i=1QΛi 0 0 0

s = 5 0 0 0
⊕124
i=1QΛi

s = 4
⊕101
i=1QEi QΨ∨ 0 QΨ∨

s = 3 0 Q2 0 Q204

s = 2 0 QΨ
⊕101
i=1QEi QΨ

s = 1 0 0 0
⊕124
i=1Q1i

s = 0 0 H0(X)
⊕124
i=1Q1i H0(X)

EIr,s
2,2

(X) r = −1 r = 0 r = 1 HIs
2
(X)
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