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Reconstruction of finely resolved velocity fields in turbulent flows from low resolution
measurements

This work lies in between the research domains of turbulence and image processing. The
main objectives are to propose new methodologies to reconstruct small-scale turbulence from
measurements at large-scale only. One contribution of this work is a review of existing methods.
We also propose new models inspired from recent works in image processing to adapt them to the
context of turbulence. We address two different problems. The first problem is to find an empirical
mapping function between large and small scales for which regression models are a common
approach. We also introduce the use of “dictionary learning” to train coupled representations
of large and small scales for reconstruction. The second problem is to reconstruct small-scale
information via the fusion of complementary measurements. The non-local means propagation
model exploit the similarity of structures in the flow, while the Bayesian fusion model estimates
the most probable fields given the measurements thanks to a maximum a posteriori estimate.
All methods are validated and analyzed using numerical databases where fully resolved velocity
fields are available. Performances of the proposed approaches are also characterized for various
configurations. These results can be considered under the co-conception design framework where
different experimental setups are designed to maximize the level of useful information after
post-processing.

Keywords: reconstruction, turbulence, dictionary learning, non-local means, bayesian fusion,
regression, small scales

Reconstruction fine de champs de vitesses d’un écoulement turbulent à partir de mesures
faiblements résolues

Ce travail est à la jonction de deux domaines de recherche que sont la turbulence et le traitement
d’image. L’objectif principal est de proposer de nouvelles méthodologies pour reconstruire les
petites échelles de la turbulence à partir de mesures grande échelle. Ce travail revisite des méthodes
conventionnelles et propose de nouveaux modèles basés sur les travaux récents en traitement
d’image pour les adapter à une problématique de turbulence. Le premier problème consiste
à trouver une fonction de correspondance empirique entre les grandes et les petites échelles,
une approche classique pour les modèles de type regression. Nous introduisons également une
méthode appelée “apprentissage de dictionnaire” pour laquelle une représentation couplée des
grandes et des petites échelles est déduite par apprentissage statistique. Le deuxième problème est
de reconstruire les informations à petites échelles par fusion de plusieur mesures complémentaires.
Le modèle de type “propagation de la moyenne non-locale” exploite la similarité des structures
de l’écoulement alors que les modèles bayesiens de fusion proposent d’estimer le champ le
plus probable en fonction d’informations données, on parle d’estimateur maximum a posteriori.
Les performances des différentes approches sont validées et analysées sur des bases de données
numériques pour lesquelles les informations sont disponibles à toutes les échelles. Ces résultats
peuvent être utilisés dans une approche de type co-conception où il s’agit d’imaginer différents
dispositifs expérimentaux définis conjointement avec les traitements numériques pour maximiser
la qualité des informations obtenues après traitement.

Mots clés : reconstruction, turbulence, apprentissage de dictionnaire, moyenne non-locale, fu-
sion bayésienne, régression, petites échelles
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CV Cross Validation

DCT Discrete Cosine Trainsform
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RR Ridge Regression

SPIV Stereo Particle Image Velocimetry
SR Super- Resolution
SR1 Super-Resolution: coupling low and high resolution patches
SR2 Super-Resolution: coupling interpolated low and high resolution

patches
SR3 Super-Resolution: coupling derivatives with residuals patches
STB Shake-The-Box PIV calibration
SVD Singular Value Decomposition
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H haft the channel size (for channel flow)
τ (local coordinate in) time
α (local coordinate in) vertical direction
β (local coordinate in) spanwise direction
t (coordinate in) time
x (coordinate in) streamwise direction
y (coordinate in) vertical direction
z (coordinate in) spanwise direction
D f dimension of the feature vectors
∆T the size of the element block in time direction
∆y the size of the element block in vertial direction
∆z the size of the element block in spanwise direction
P spatial dimension of one high resolution field
Q spatial dimension of one low resolution field
N total number of snapshots at high temporal resolution
M total number of snapshots at low temporal resolution
(.)e superscript for samples outside the training data

nt a white Gaussian noise term at time t
x velocity vector at LTHS resolution of size PM × 1
y velocity vector at HTLS resolution of size QN × 1
z velocity vector at HTHS resolution of size PN × 1
X velocity at LTHS resolution of size M × P
Y velocity at HTLS resolution of size N ×Q
Z velocity at HTHS resolution of size N × P
xt a velocity snapshot of X at time t of size P× 1
yt a velocity snapshot of Y at time t of size Q× 1
zt a velocity snapshot of Z at time t of size P× 1

Rk
a operator to extract a patch centered at k−th pixel to accumulate

the estimate (non-local means filter)
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Rk
h operator to extract a high-resolution patch centered at k−th pixel
Rk
` operator to extract a low-resolution patch centered at k−th pixel
Rk

s operator to extract a patch centered at k−th pixel to estimate the
similarity (non-local means filter)

�s 2D cubic spline interpolator in space
�t 1D cubic spline interpolator in time
�

loc
s low-pass filter operator on local patches

�s 2D low-pass filter, either ideal Fourier or 5th-order least-square
spline

�t 1D low-pass filter, either ideal Fourier or 5th-order least-square
spline

�
loc
s subsampling operator on local patches
�s subsampling in space from P to Q snapshots, �s z = y
�t subsampling in time from N to M snapshots, �t z = x

∆κ loss of kinetic energy due to the subsampling or downsampling
ε normalized root mean square error

γ KRR kernel parameter
λ regularization parameter
L( f ) a loss function of f to minimize

di the i−th atom of dictionary D
ai the sparse coefficient corresponding to di

pk
h a high-resolution patch centered at k−th pixel

pk
` a low-resolution patch centered at k−th pixel

D A dictionary
A a sparse matrix to represent data via a dictionary
p dimension of a high-resolution patch
q dimension of a low-resolution patch
L number of nonzero coefficients in the sparse coefficient vector ai

used to reconstruct a vector via a dictionary D, L = ‖ai‖0
K number of atoms in a dictionary
m number of extracted patches to train the dictionary
Ph a matrix of high-resolution patches
P` a matrix of low-resolution patches



Latin symbols xvii

r size of accumulation patches in NLM-based propagation model
bt◦ small scales at t◦-th key frame to propagate via NLM model
Nk set of neighboring pixels of k−th pixel in a 2D
Nt◦ set of neighboring snapshots in time of the t◦-th one
s size of searching region in NLM-based propagation model
σ NLM global filter parameter
w[k, i, t] weight (intepreted as the probability) of k− th pixel of ĥt coming

from the i-th pixel of bt◦

hs conjugate part of the term �s y in space
ht small scales at time t to estimate (chapter 4) or conjugate part of

the term �t x in time (chapter 5)
λ1 regularization parameter in the learning stage
λ2 regularization parameter in the reconstruction stage
Σ covariance matrix
σ vector form of the covariance matrix Σ
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Math symbols

argmax
x

( f (x)) argument of the maximum, which is x for which the function
f (x) attains its maximum

argmin
x

( f (x)) argument of the minimum, which is x for which the function
f (x) attains its minimum

|.| matrix determinant

‖u‖22 square of a Euclidean distance: ‖u‖22 = uᵀu
‖u‖2

Σ
square of a Mahalanobis distance: ‖u‖2

Σ
= uᵀ

Σ
−1 u

‖u‖p Lp norm, defined as

∑
i

|ui |
p

1/p

p(u) Probability of a variable u
p(u |v) Conditional probability of u given v
E[.] expectation value
u ∼N(µu,Σu) Gaussian distribution of variable u that takes the mean µu and

fluctuates due to covariance Σu
N(u |v) distribution of u conditioning on v
u† pseudo-inverse of u, defined as uᵀ(uuᵀ)−1

O(d) Time complexity as the order of d
uᵀ transpose of vector u
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Introduction

Turbulence is very common in daily life, science and technology. Understanding its
nature and increasing our prediction capability is crucial for many applications. One of
the main engineering tasks is to calculate and predict the behaviors of turbulent flows.
This is essentially done with numerical simulations, since experiments are much more
expensive or sometimes even impossible. Exact simulations of turbulent flows without
modeling are possible only in academic contexts and limited to simple cases due to huge
computational demands. Approaches with turbulence models, i.e. approximate solutions,
are used more often in industries. Some only calculate mean quantities, while others
approximate only large scales and model the effects of small ones. However, they are not
yet satisfactory, mainly due to their incapability of predicting several flow configurations,
for instance flow separation. All fails due to the ignorance or crude modeling of small
scales.

Small-scale turbulence is very important but not yet fully accessible. Despite ad-
vancements of computational resources and experimental techniques, having access to
small-scale turbulence remains very challenging. Understanding its physics is the key to
propose realistic models by parameterizing the effects of the small scales on the large
ones, reducing the simulation efforts to much coarser grids. The physical properties of
the flow at small-scale are also important in many applications such as combustion or
biology. Unfortunately, accessing those information remains very difficult. Progressing
further in experimental tools is one solution but will take very long time. It requires
also advancements of infrastructure to handle such tremendous amount of data. Theoret-
ical models generating small scales from large ones could help to progress in another
direction. However, as discussed later, such a model is difficult to build from turbulence
theories. Despite many efforts, all theories are not yet satisfactory to fully model the
behaviors of small scales.

This thesis approaches the problem of estimating small-scale information from a
different perspective. Empirical models and learning algorithms are used to propose
computational methods to reconstruct full-scale information from available sparse mea-
surements. They are further adapted or developed from works in signal and image
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2 Introduction

processing, taking into account the key similarities and differences between turbulence
and natural images. This can be viewed as the inverse problem of seeking a higher
information level out of available measurements.

Outcomes of this work may improve our understandings of turbulence by giving
access to information that can not be directly measured. Further demonstrations of
the empirical relation between scales are shown, demonstrating how far the model can
reconstruct small scales given the large ones. This is beneficial for turbulence modeling,
since models can be trained from available datasets and give access to small scales in
new situations. Follow-up works may use those information and improve the prediction
of large scales, avoiding the use of crude turbulence models.

This work is also beneficial for data compression or compressive sensing purposes. It
deals with the quality of approximate reconstruction of physical quantities given a certain
amount of measurements. This is directly connected to another active research domain
of 3D data compression of large databases in fluid mechanics. This work characterizes
the expected small-scale information level given a certain amount of measurements.
Reversely, it also characterizes how many measurements are required for a certain level
of desired information.

Organization and contributions

The following parts of the thesis will be organized as follows:
Chapter 1. Problem definition: This chapter shortly reviews the importance of

turbulence studies, especially the challenging problem of understanding and modeling
small-scale turbulence. The shortage of research tools to access those information is
addressed, leading to the main motivation of this thesis: to propose computational

methods to reconstruct small scales from available measurements. Two problems are
addressed and solved in this thesis: estimating small scales from large scales; and fusing
available measurements to access higher information level. For each problem, a spectrum
of potential methods are reviewed/proposed and compared to facilitate the usage in new
situations.

Chapter 2 and 3. Estimating small scales from large scales: These two chapters
tackle the problem of seeking a mapping function that permits to estimate small-scale
information from measurements of large scales.

Chapter 2 discusses the family of regression models. It reviews conventional methods
such as ordinary least squares and other regularized regression models such as ridge
regression, LASSO and kernel methods. Parameter optimization via cross-validation is
also discussed as the way to choose the optimal set of parameters for each model.

Chapter 3 introduces the approach based on dictionary learning method, which
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generalizes principal component analysis to permit sparsity and redundancy properties.
To find the mapping between large and small scales, coupled dictionaries are learned to
represent large and small scales. When only large-scale information are accessible, its
representation is estimated and then combined with the dictionary of small scales learned
a priori to reconstruct those unknown details.

Chapter 4 and 5. Fusion of complementary measurements: These two chapters aim
at proposing fusion models to combine information from multi-source measurements
to estimate small-scale information. We will focus on the situation where two sources
of measurements are available: the high-temporal-low-spatial and low-temporal-high-
spatial resolution data.

Chapter 4 proposes a model to propagate small scales from the low-temporal-high-
spatial planes to other instants in time. The model is based on a non-local means filter,
where small scales are propagated in time based on the similarity between larger scales
from different planes. The estimation is done using a patch-based overlapping approach.

Chapter 5 proposes a Bayesian fusion model to combine the measurements in space
and time. This model is constructed based on a Bayesian framework where a prior
knowledge about the flow can be introduced into the estimation. Bayesian estimators
are used to find the most probable high-resolution fields given the measurements. The
final model is a simplified version, leading to a linear fusion model. This model contains
two important ingredients, the local structures of the flow and the statistical parameters
learned from data to encode the flow physics.

Chapter 6 compares performances of proposed models on various datasets. Detailed
analyses are performed to demonstrate benefits of each models compared to simple
interpolations. The configuration of complementary measurements in space and time are
studied, which permit to investigate all proposed models.

This work has been resulted in the following publication:

Nguyen et al., (2015). “A Bayesian fusion model for space-time recon-
struction of finely resolved velocities in turbulent flows from low resolution
measurements”. In: Journal of Statistical Mechanics: Theory and Experi-

ment 2015.10, P10008.

and has been presented at the following international/national conferences:

• 15th European Turbulence conference, Delft, Netherlands (August 2015)

• GDR Turbulence, Grenoble, France (June 2015)

All codes to reproduce the results of this work are available at https://github.com/
linhvannguyen/PhDworks/

https://github.com/linhvannguyen/PhDworks/
https://github.com/linhvannguyen/PhDworks/
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Chapter1
Problem definition

This chapter presents the context of the thesis, which aims at proposing empirical models
to estimate small-scale information of turbulent flows from low resolution measurements.
This work is addressed due to the shortage of research tools that could give a complete
view of turbulent flows, with information at both large and small scales. The thesis
brings forth two problems being solved. The first one is to find functions to estimate
high-resolution fields, containing both large and small scales, from low-resolution mea-
surements, essentially large-scale information. The second problem is to find fusion
models to combine multiple sources of low-resolution measurements to reconstruct fully
resolved velocity fields. The proposed methods will be tested on two direct numerical
simulation datasets of either isotropic turbulence or turbulent channel flow at moderate
Reynolds numbers. The data give access to the full information and permit to conduct
various numerical experiments and study the performances of the reconstructions.

1.1 Background

This section briefly reviews the importance of turbulence studies. The main properties of
turbulent flows are discussed, notably as a multi-scale phenomenon. The section further
emphasizes the importance of studying small scales, which leads to the main motivation
of the thesis.

1.1.1 Turbulence

Turbulence occurs very often in both nature and engineering applications. It appears
in our surroundings, since most fluid flows are turbulent. Turbulence scales can be
as extremely small as interior of biological cells or as large as flows in geophysics,
astrophysics, oceans or atmospheres. In engineering applications, it dominates most
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flows around vehicles such as cars, ships or airplanes. It also plays key roles in energy
production and transformation or inside combustion chambers. A nice review on these
applications of turbulence is given by George, (2009), McDonough, (2004), and Tennekes
and Lumley, (1972).

Turbulence brings both desirable and undesirable effects. On the one hand, it enhances
mixing and transporting matter, momentum and heat. This property is beneficial since
it improves fuel-air mixing and accelerates cooling process in combustion chamber for
instance. In civil engineering, turbulence helps releasing pollutant streams into the air
or ocean more rapidly. It also enhances mass and heat transfer at solid-fluid or fluid-air
interface. In aerospace engineering, it helps increasing wall shear stress on aircraft wing
and therefore contributes to avoid separation. On the other hand, turbulence also causes
serious consequences. Aerodynamics drag is one of the most troublesome problems.
Airbus estimates that 10 % reduction of drags caused by turbulent boundary layer would
result in one billion Euros fuel saving worldwide per year, along with the contribution to
reduce pollution. Turbulence is also the main source of aircraft noises. Better knowledge
will help to propose strategies of controlling turbulence in beneficial ways and reduce
energy footprint in transportation.

Turbulence studies have mainly focused on theoretical aspects after the discovery
of Navier-Stokes (N-S) equations. The experimental researches on fluid flows have
only started since O. Reynolds experiment (Reynolds, 1883), motivating later works on
non-dimensional parameters, closure models, and similarity theories for homogeneous
and isotropic turbulence. More recent works have mainly focused on large-scale coherent
structures and vortex organizations (Hutchins and Marusic, 2007). These works are only
possible thanks to the rapid progresses in experimental techniques (mostly optical devices
using micro and nano technologies) and computing power. These new results help in
increasing our knowledge on turbulence nature, hence improving predictive capacity and
proposing more accurate turbulence models for commercial software.

Despite constant efforts in the last two centuries, turbulence remains very challenging.
The problem has been tackled by many great scientists such as Boussinesq, O. Reynolds
(19th), Prandtl, Taylor, Kolmogorov (20th), to name only a few. However, it remains one
of the last unsolved problems of classical mathematical physics. Analytical solutions
are usually not accessible. The most recent works on N-S equations still discuss the
existence of the solution (Chemin and Gallagher, 2009; Gallagher, 2015; Gallagher
et al., 2003). The efforts to measure, calculate or model turbulence are also not fully
successful in most practical problems due to its properties as a random, multi-scale and
three-dimension irregular phenomenon.
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Figure 1.1 – Schematic representation of turbulence energy cascade (Davidson et al.,
2015), following the sketch by Frisch, (1995).

1.1.2 Importance of small-scale turbulence

Turbulence is a multi-scale phenomenon, involving scales from the size of the domain
till the Kolmogorov dissipative micro-scales. These scales co-exist and interact with
each other. Large scales usually contain most of the kinetic energy of the flow, therefore
responsible for the transportation of matter, momentum and heat. Small-scale turbulence
contains less energy and is strongly involved in the dissipation. Turbulence kinetic energy
usually cascades from large to small scales, as schematically represented in figure 1.1.
The range of scales is continuous, and the width of this range depends on the Reynolds
number of the flow.

All scales are important to characterize turbulent flows. For instance, an accurate
description of all scales is required to estimate full Reynolds stress tensor to validate
numerical simulations, turbulence models and scaling theories. This validation is usually
performed at very low frequencies, demanding measurements with large field-of-view
and long time records. Unsteady flow simulations resolve very small scales in space and
time, predict the sharp gradient in the shear layer or near-wall turbulence. Validating
these simulations requires small-scale information up to the Kolmogorov length scale.

Small-scale turbulence is crucial to understand the physics of the flow, since these
scales are responsible for the breaking and reconnection of vortices. They are also more
likely universal/quasi-universal compared to large scales. A good understanding could
lead to turbulence models where the presence of small scales can be parametrized by
more universal mathematical models. The efforts to simulate flows could be simplified to
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large-scale turbulence only, reducing significantly computation costs. Moreover, small
scales are crucial in some contexts such as combustion where matters are brought together
at the molecular scales.

1.2 Limitations of turbulence research tools

Despite the constant progress in experiments and numerical simulations, a full access
to small-scale turbulence remains impossible for flows at high Reynolds numbers. The
section reviews briefly recent advancements and critical limitations.

1.2.1 Numerical simulations

In academic context, direct numerical simulation (DNS) is the only available tools to
directly solve N-S equations without any additional model. It yields all information of
the flow via the numerical simulation using an extremely fine grid to resolve all range
of scales, from the largest (of the domain size) to the smallest eddies (of the order of
Kolmogorov scales). High order schemes such as compact finite difference or spectral
methods are used to discretize and solve the equations with a very high accuracy.

Constant progress in computational resources permits DNS of high Reynolds number
(Re) and more complex flows. The first attempt of DNS was to simulate isotropic
turbulence on a very coarse grid of 323 (Fox and Lilly, 1972; Orszag and Patterson Jr,
1972), while recent simulations of the same flows were performed at 40963 (Ishihara
et al., 2009; Kaneda et al., 2003). More complex geometries are also studied, such as
channel flows (Lee and Moser, 2014; Sillero et al., 2013), flat-plate boundary layer under
zero and favorable pressure gradients (Spalart, 1986, 1988) and backward facing step
(Le et al., 1997), among many others.

DNS is limited uniquely to academic context due to computational constraints. The
required number of grid points is O

(
Re9/4

)
in space and O

(
Re3/4

)
in time to resolve

the smallest scales. This becomes a real burden for most engineering flows at high Re

and with complex geometries. One of the largest DNS is a channel flow simulation at
Reτ ≈ 5200 based on friction velocity uτ (Lee and Moser, 2015) with the same domain
sizes as the well-known simulation by Hoyas and Jiménez, (2006) at Reτ ≈ 2000. This
is close to Re of most engineering flows, about Reτ ≈ 103 (Smits and Marusic, 2013).
However, many flows are at Re one order of magnitude higher and in much more complex
geometries. Even when computers become fast enough to simulate those flows, running
DNS for engineering flows could produce petabytes of data, which may exceed our
capability to analyze and draw useful conclusions.
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1.2.2 Experimental techniques

Experiments can provide some information that are not as complete as numerical simula-
tions but for more realistic flows at high Re and more complex geometries. The most
common techniques are hot wire anemometry (HWA) and particle image velocimetry
(PIV).

Hot Wire Anemometry

Hot Wire Anemometry (HWA), first proposed by King, (1914), is a simple yet accurate
technique to measure one-point velocities. The anemometer uses a thin wire at very high
temperature submerged into the flow. The flow changes the heat equilibrium around the
wire, altering the temperature of the wire. The electronic circuit of the device provide to
the wire a controlled amount of electrical current to keep the wire temperature constant.
The velocity is deduced from the voltage change. Since the change is analog without
any information loss, the temporal frequency of velocity measurements can reach about
100 kHz, which corresponds to Kolmogorov time scale of most realistic flows. The main
constraint is the spatial discretization, since only point-wise measurements are possible,
and a rake of hot wires soon becomes intrusive.

Particle Image Velocimetry

Particle Image Velocimetry (PIV) is currently the best technique to measure global/topo-
logical view of flows. The method aims at recording images of tracers seeded in the flow,
which are necessarily light and neutrally buoyant, to measure instantaneous velocity
fields (Adrian, 2005; Keane and Adrian, 1992). Laser light sheets pulsed at a fixed time
interval are used to illuminate a slice of the flow, and pairs of images are recored at
the same interval by CCD cameras. Velocity at one point is estimated as the averaged
displacement of its neighboring tracers within a so-called “interrogation window”. The
most likely position of a group of tracers inside this window at the next time step is
estimated using a correlation technique (Sutton et al., 1983). Final velocity fields are
computed knowing the displacements and the interval between two images of the same
pair.

The conventional PIV technique measures two-dimension two-component (2D-2C)
velocity fields. Stereo-PIV (SPIV) measures two-dimension-three-component (2D-3C)
fields (Prasad, 2000). It uses a system of two synchronized cameras to capture images of
a seeded flow. These images are simultaneously taken but with distinct off-axis views so
that “out-of-plane” velocities can be extracted. These two cameras are usually set up in
an angular configuration where the axes of the two cameras are rotated while assuring
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that they intersect with the object plane along the same axis following the Scheimpflug
principle.

Tomographic PIV can measure 3D-3C velocity fields. It gives the most complete
view of a flow, including the velocity gradient tensor, a crucial measure to validate
numerical approaches. Proposed recently by Elsinga et al., (2005) and Elsinga et al.,
(2006), the main principles remain analogous to SPIV with important modifications. The
illumination of the 3D volume is done with a thicker laser sheet, and 3D velocities are
estimated using 3D cross-correlations. Recent measurements can reach 3D-3C fields of
a volume of about 200 cm3 in water or 50 cm3 in air at a frequency of 3 kHz (Scarano,
2013).

“Shake-The-Box” (STB) calibration technique aims at improving further the spatial
resolution by combining Lagrangian and Eulerian views of a flow. The setup resembles
tomographic PIV. The time spacing is required to be of the order of the Kolmogorov time
scale to ensure an accurate tracking of particle trajectories. From the time-resolved se-
quence of tomographic images, STB uses particle image matching to find the Lagrangian
trajectory of each particles. Interpolation is used to get velocities on the Euclidean regular
grid. This technique ideally reaches the resolution till particle sizes. A recent work using
STB permits a resolution of 21 pixels per mm2 in a cube of 10cm×10cm×2cm at 1 kHZ
for a flow at Re = 33000 (Schröder et al., 2015).

Despite above advancements, PIV is still limited in measuring realistic flows due
to optical devices and data processing constraints. The state-of-the-art measurements
are still a question of finding compromises among high temporal frequency, high spatial
resolution and large field of view. This is due to the following critical limitations.

The spatial resolution of PIV measurements is limited due to the correlation-based
calibration technique. The maximum resolution is constrained by image density (Keane
and Adrian, 1992), which is the average number of tracers in an integral window (or
interrogation cell). This parameter is very important to determine the measurement
quality. Too high image density causes the problem of multiple correlation peaks,
while too low image density reduces the possibility to find an image pair for each
interrogation window. The optimal choice of image density is about 8-10 tracers per
interrogation window, which is a compromise between good spatial resolution and quality
of autocorrelation estimate.

STB can overcome the spatial resolution limits by resolving the fields down to the
particle size, but requires a system with a very high sampling frequency. Current PIV
systems only reach low frequencies compared to the smallest time scales. State-of-the-art
systems can capture up to 10000 frames per second (fps) at a resolution of one mega-pixel
(Willert, 2015). This fps is very large but still not sufficient for most engineering flows in
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air. These flows sometimes require measurements at frequencies at least one order of
magnitude higher. Moreover, a high speed PIV requires a laser that combines extremely
high pulsing frequencies and high power.

1.3 Problem definition

Complete views of turbulent flows at both large and small scales are desired. However,
current facilities are not yet available to measure such information. Large-scale informa-
tion are gradually available, but small-scale turbulence remains out-of-reach. This work
addresses the problem of empirically estimating small-scale information from large-scale
measurements. It aims at exploiting available measured data and propose computational
methods to reconstruct full fields in new situations. Such methods may permit to go
beyond what one can measure, compute or store. The idea of the co-conception approach
can be studied, where results from this work potentially paves the way to design ex-
periments or simulations in such way that facilitates the post-processing to recover a
maximum level of information.

Through out this thesis, cubic spline interpolation is used to go from low to high
resolution. It is used also as the benchmark to compare with the proposed models.
Interpolated fields contain no small scales with the frequency higher than the cut-off

associated with the grid of measured points, neglecting the aliasing effects due to the
subsampling. For this reason, through out this thesis, the term small-scale is referred also
as high-frequency (HF) or high-resolution (HR), while large-scale has the same meaning
as low-frequency (LF) or low-resolution (LR).

1.3.1 Estimating high-resolution turbulent fields from low-resolution
measurements

Structures in a turbulent flow can be relatively separated into large and small scales as
shown in figure 1.2. Energy content E(k) is shown as a function of each wave number k

in log-log scale. This Fourier spectrum is continuous, and under certain conditions it has
a k−5/3 region. The ranges of scales and their energy contents are very wide depending
on Re. Large scales zl f and small scales zh f are separated at the cutoff wavenumber kc.
We consider the situation where zl f - the low spatial resolution or low temporal frequency
fields- is measured while zh f is not accessible.

The question is can small scales be estimated from large-scale measurements?
This can be considered as whether a mapping function f exists such that, given LF
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Figure 1.2 – Turbulence energy spectrum with relative separation between large and
small scales by a cutoff wave number kc.
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Figure 1.3 – Spectrum of models ordered by their level of nonlinearity (from left to
right). Methods for mapping large-small scales are in blues, while those for fusion
of measurements are in reds. Notations: linear regression (LR), proper orthogonal
decomposition (POD), Kalman filter (KF), kernel regression (KR), similarity-based
(S-B), dictionary learning (DL), Bayesian network (BayesNet), neural network (NN).

measurements, the HF contents zh f of the flow can be predicted by:

f : zl f 7→ ẑh f = f
(
zl f

)
(1.1)

No theoretical mapping function exists, although turbulent flows are governed by N-
S equations. Despite constant attempts, researchers have not succeeded in proposing
turbulence models to represent universal relations between large and small scales.

This thesis aims at proposing empirical functions, either linear and nonlinear, to
estimate small-scale information given the large scales. The use of “empirical” models
is in the sense of learning, where data at all scales are available a priori. The proposed
algorithms learn from the training data an empirical relation between large and small
scales. This relation is presented in the form of a function f (.), which permits to estimate
small-scale information in new situations.

A large spectrum of methodologies is discussed and compared. Figure 1.3 lists
such methods (in blue) as a function of the order of their nonlinearity. Pure linear
models are conventional regression and dimensionality reduction (POD)-based methods.
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Figure 1.4 – Turbulence energy spectrum with relative separation between large and
small scales at wave number kc.

Nonlinearity level grows with model complexity. Simple nonlinear models, the so-called
kernel regression, work in a fixed kernel space. The family of dictionary learning methods
provides sparse representation of high dimensional data. Neural network, a broader and
very active research field, finds nonlinear mapping functions with a more adaptive kernel
space. A “deep” network permits to model highly nonlinear phenomena. However, we
will leave this approach for future works.

1.3.2 Fusion of large-scale measurements

Turbulence is multi-scale both in space and in time. Usually large or small scales
refer to either space (up to three dimensions) or time. However, LF measurements in
space potentially contain some HF information in time and vice-versa. One idea is to
measure those LF information by different measurement techniques and combine them
to infer some HF contents. Such a fusion model takes benefit from each measurement by
capturing all possible detailed information. The fused fields contain some small scales
that are not accessible from each single measurement.

Figure 1.4 depicts schematically the above idea, where LF measurements in space
and time are illustrated. In space, two sources of information

{
zl f , z(s)

l f

}
are available,

where zl f contains purely LF information in space-time, and z(s)
l f captures LF in space

but over the full range of temporal frequencies. An analogous interpretation holds for{
zl f , z(t)

l f

}
in time, where z(t)

l f potentially gives some detailed information of the flow in
space. By combining two sources of LF measurements in space and time, ideally one
can hope to predict all scales in three blocks zl f , z(t)

l f and z(s)
l f , while those within zh f are

unreachable.

This work addresses a configuration as in figure 1.5 where two sources of measure-
ments, the high-temporal-low-spatial (HTLS) and low-temporal-high-spatial (LTHS)
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Figure 1.5 – Sketch of the inverse problem, with the two sources of measurements: the
LTHS (color images) and a coarse grid of HTLS (red dots among black ones of LTHS).
The inverse problem of HTHS data reconstruction is to fill in the space-time data-cube.

resolution velocity fields are available. LTHS measurements (black dots) at the three
colorful planes are synchronized with HTLS measured positions at LR (red dots). HTLS
captures HF contents of the flow dynamics, while LTHS measures highly resolved infor-
mation in space. By combining these two sources, one hopes to capture more small-scale
information in space and time.

This idea has been studied at Laboratoire de Mécanique de Lille (LML) in an
European joint experiment (Coudert et al., 2011). A database of a boundary layer flow
at high Re was measured using SPIV synchronized with a rake of HWA probes. PIV
measurements (LTHS) are with a large field-of-view (30 × 30cm) and a high spatial
resolution (143× 167) but at a low acquisition frequency (4Hz). HWA measurements in
a rake of probes (HTLS) of the same field-of-view are sampled at an extremely high rate
(50kHz). However, the spatial discretization is very coarse (11× 13) compared to the
smallest scale. The post-processing step is to estimate velocity fields at the frequency
50kHz and the resolution 143× 167.

This work studies computational methods to combine HTLS and LTHS measurements
to maximize the information level. The spectrum of possible methods as the order of
nonlinearity is shown (in red) in figure 1.3. For completeness, the idea of data assimilation
using linear/nonlinear Kalman filter is mentioned, but further discussion is outside the
scope of this work. A fusion approach based on local similarity, the so-called similarity-
based (S-B) scales propagation model, is proposed. This method further exploits the local
information of the flow, with certain advantages and limitations compared to the linear
fusion model. Another fusion method based on Bayesian framework is also proposed,
which is further simplified as a linear model.
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1.4 Datasets

Experimental data are available from the WALLTURB project (Coudert et al., 2011).
However, there is no HR reference data in space-time to qualify and compare different
reconstructions. This is the reason why DNS data are used in the present study to access
fully resolved velocity fields. Data acquire the true properties of turbulent fields, since
DNS simulates flows without any turbulence modeling. The data are also free from
measurement uncertainties and noises, making possible a fair comparison of different
models. LR measurements are virtually extracted from HR data without the presence
of measurement noises. The proposed models are learned from these training data to
reconstruct fully resolved fields, which are used to estimate the accuracy of different
approaches by comparing to reference DNS data.

Two DNS datasets are used . The first data is from the DNS of a turbulent channel
flow at a moderate Re. The designed numerical experiments on this data very well
imitate the database from LML experiment. However, since the flow physics is strongly
non-homogeneous in vertical direction, it is challenging for some models to perform.
Data of isotropic turbulence is also used, with further assumptions of isotropy, periodicity
and homogeneity, but still retains the principal properties of turbulence.

For both data, the configuration of HTLS and LTHS measurements as in figure
1.5 is studied, with the following notations to describe. HTHS, HTLS and LTHS
snapshots at the t−th time step are denoted as zt ∈ IRP, yt ∈ IRQ and xt ∈ IRP, respectively.
The dimension of HR fields (zt and xt) is P, higher than the LR dimension Q of yt.
There are N HTHS and HTLS snapshots, and only M LTHS ones (M < N) sampled at
t = 1,1 + 1×N/M,1 + 2×N/M, ...,1 + (M − 1)×N/M. The matrix form of {zt}, {yt} and
{xt} are Z, Y and X of sizes N × P, N ×Q and M × P respectively.

To describe all numerical experiments, it is useful also to introduce a sketch of an
element block bounded by the measurements as in figure 1.6. This sketch is also used
later to characterize performances of all models, since reconstruction accuracies depends
on the relative positions in this block. A local coordinate system is introduced. The
time position τ is defined as a relative distance to two bounded LTHS snapshots (black
dots) at τ = 0 and τ = ∆T = Nδt/M (δt is the time distance between two neighboring
HTLS planes). In space, each plane at τ is bounded by the four HTLS measurements at
the four corners (red points). The distances between two neighbors are ∆y = δy

√
P/Q

in vertical and ∆z = δz
√

P/Q in spanwise direction. δy and δz are spatial grid sizes in
vertical and spanwise direction respectively. We assumed also the sampling ratio are
equally

√
P/Q in both directions. The most difficult positions to estimate are at local

coordinate (α,β,τ) = (∆y/2,∆z/2,∆T/2).
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0

Figure 1.6 – Sketch of an element block with local coordinates (α,β,τ). LTHS time
steps are at τ/δt = 0 and τ/δt = N/M. HTLS measurements are represented by red dots
and LTHS measurements by black ones.

Space Time

Subsampling ratio 5 10 20 4 10 20
Spacing 0.05 0.11 0.22 0.10 0.25 0.50
Energy loss ∆κ (%) 1.23 7.08 20.83 1.88 9.02 24.31

Table 1.1 – Configuration parameters of three subsampling cases in space and three in
time for DNS channel flow data. The subsampling ratios of HTLS measurements are√

P/Q and equal in both spatial directions. The ratios of LTHS measurements in time are
N/M. The equivalent spacing in spanwise direction is normalized by half channel height
as ∆z/H and the spacing in time is ∆t. The normalized energy losses in space ∆κs and in
time ∆κt are defined in equation 1.2.

The following parts describe the two datasets in detail.

1.4.1 DNS data of channel flow

DNS database of a turbulent wall-bounded flow is designed the same way as experimental
ones. The simulation uses the numerical procedure described in Marquillie et al., 2008.
The flow is at a Reynolds number Reτ = 550 based on the friction velocity uτ. Cartesian
coordinates of the simulation in space are (x,y,z) for streamwise, vertical and spanwise
directions respectively. The domain size normalized by half the channel height H is
2π × 2 × π. Fully resolved fluctuating streamwise velocities in a plane normal to the
flow direction are considered as HTHS data. This data includes N = 10000 snapshots

over a grid of P = 288× 257 points and at a sampling frequency of f =
H

δtUmax
= 40,
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Figure 1.7 – A sample 2D streamwise velocity of simulated channel and its subsampled
field by a factor of 10 (left). This subsampling ratio corresponds to the cut-off wave
number k2in the plot of spectrum (right) for horizontal lines at the center of the channel.
Other wave number k1 and k3 correspond to the subsampling ratio in space of 5 and 10
respectively.

subsampled from the original simulation at f = 200. Umax is the central velocity of the
flow. LTHS and HTLS measurements subsampled from HTHS data are used to train
different prediction models. HTHS is used as the ground truth to estimate reconstruction
errors. The extension to spanwise and vertical velocity components follows the same
procedure.

Various subsampling ratios both in space and time are considered. In space, the LR
fields are obtained by applying a direct subsampling ratio of

√
P/Q = 5,10 or 20 in

both spatial directions. These ratios correspond to a number Q of virtual HTLS sensors
of 51 × 57, 26 × 29 and 13 × 15 respectively. Each ratio has a spacing between two
successive HTLS points in spanwise and vertical directions of ∆z and ∆y. To test the idea
of combining space-time sparse measurements, these subsamplings in space are used
together with subsamplings in time of ratios ∆T = N/M = 4,10 or 20, corresponding to
the total number of snapshots M = 2500,1000 and 500 respectively. Each ratio, both in
space and time, corresponds to a certain amount of kinetic energy loss. This is essentially
the energy of small scales separated from the large ones by a low pass filter (LPF) �. In
practice � will be the 5th−order least square spline filter, either 1D in time (�t) or 2D in
space (�s), using measurements as knots. This spline filter has the advantage of a sharp
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Figure 1.8 – A sample 3D streamwise velocities (left) and vortices magnitude (right)
of DNS isotropic turbulence at 3842. The streamwise direction is considered as “time”
dimension in this case.

cutoff response with a finite support (de1978practical). The energy loss is defined by
comparing the filtered field � z to the original field z:

∆κ =

∑
j∈�

z2
j −

∑
j∈�

[� z]2
j∑

j∈�

z2
j

(1.2)

where � is the considered set of points. Table 1.1 gathers the energy loss in time (∆κt)
and in space (∆κs) estimated with �t and �s respectively. The set � here contains all
points at the center line of the channel, i.e. y/H = 1.

1.4.2 DNS data of isotropic turbulence

Channel flows with strong nonhomogeneity in vertical direction yields varying statistics
in this direction. Numerical tests of different methods and comparisons of results are
more challenging. This nonhomogeneity also calls for a very large database, since
all the averaging can be done only in spanwise direction (roughly at the center of
the channel) and time. The DNS database of homogeneous isotropic turbulence is
used for simplifications yet retaining essential properties such as three-dimensionality,
intermittency and multi-scale vortices. This flow is assumed to be incompressible inside
a periodic box with nearly homogeneous and isotropic statistics. The data are recorded
from a simulation over a 3843 grid using the Fourier spectral method as originally
proposed by Orszag and Patterson Jr, (1972). Figure 1.8 shows a sample of a 3D
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Figure 1.9 – A sample isotropic 2D streamwise velocity (left) and its subsampled field by
a factor of 3 (right) on the plane normal to flow direction. The subsampling is a forward
problem, while going from a subsampled to fully-resolved field is an inverse problem.

streamwise velocity and vorticity magnitude. Re is relatively low compared to the state-
of-the-art 40963 simulations by (Ishihara et al., 2009; Kaneda et al., 2003). However,
for the purpose of this work, the position of the cut-off frequency is the key parameter
and the width of the inertial range is not crucial. Reconstruction accuracy is expected to
depend more on the energy loss due to subsampling rather than on Re. Also, the accuracy
depends on the slope of the energy spectra at the cut-off frequency, which represents the
physics of the flow and implies the level of correlation between neighboring scales.

A total of 37 blocks of 3D fields at resolution 3843 is recorded. Since a long record of
time-resolved data is not available, the streamwise direction is virtually considered as the
“time” dimension to homogenize the notations for the two datasets. These data are then
downsampled by a factor of 4 in every dimension using an ideal Fourier filter, resulting
in 3D fields on a 963 grid. The objective is to avoid working within the dissipative
range where energy content is very low, leading to a too small energy loss for a given
subsampling ratio. Also, the slope of the spectrum is rather high, implying very weak
level of correlation between the measured scales and the ones to be reconstructed. Only
a small subsampling ratio will now lead to a significant loss, therefore avoiding to
work with large ratios and corresponding large numbers of uncertainty. The cubes of
963 are now considered as the reference HTHS fields. Only streamwise velocities in a
plane normal to the flow direction are extracted. LR fields will be obtained by virtually
subsampling from reference HR ones. A completely analogous procedure is applied to
other velocity components.
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Space Time

Subsampling ratio 3 4 6 4 6 8
Energy loss ∆κ (%) 1.03 2.63 7.29 1.23 3.56 6.53

Table 1.2 – Configuration parameters of three subsampling cases in space (span-
wise+vertical direction) and three in time (streamwise direction) for isotropic turbulence
data. The subsampling ratios of HTLS measurements are

√
P/Q and equal in both spatial

directions. The ratios of LTHS measurements in time (spanwise in this case) are N/M.
The normalized energy losses in space ∆κs and in time ∆κt are defined in equation 1.2.
The slopes are purely to qualify the steepness of the spectrum and have no physical
meaning.
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Figure 1.10 – 2D energy spectral of the reference DNS of resolution 3963. The maximum
real wave number is k = 128 after removing the aliasing contents. Different cutoff wave
numbers are shown: kmax = 128/4 corresponding to the pre-downsampling, k1 = kmax/3,
k2 = kmax/4 and , k3 = kmax/6 for subsampling ratios of

√
P/Q = 3,4 and 6 respectively.

Various cases with different ratios are investigated. The subsampling ratios
√

P/Q

applied in each direction of space are 3, 4 and 6. These ratios correspond to a number Q

of HTLS sensors of 32× 32, 24× 24 and 16× 16 respectively. A sampled HR field with
its corresponding subsampled LR field of ratio 3× 3 is shown in figure 1.9. Subsampling
ratios N/M in spanwise direction are 4 , 6 and 8, corresponding to the number of training
planes (or key frames) of M = 24, M = 18 and M = 12. Each ratio corresponds to a
certain amount of energy loss due to small scales filtered out by an ideal Fourier filter.
The energy loss is defined by comparing the filtered fields to the reference ones as in
equation 1.2. The set � now consists of all points thanks to isotropy and homogeneity
properties. Table 1.2 gathers the energy loss due to the 2D or 1D subsamplings.
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1.5 Concluding remarks

This chapter has briefly presented the context of the thesis, with the shortage of research
tools to measure and compute small scales of turbulence. This problem call for compu-
tational methods that permit to estimate such scales from available measurements. We
will tackle this problem by seeking: (i) empirical mapping functions between large and
small scales, and (ii) fusion models to combine complementary measurements. A wide
spectrum of methodologies will be discussed, and their performances will be analyzed
using two DNS datasets of either channel flow or isotropic turbulence. Both sets give
access to fully resolved fields and permit to design different numerical experiments
of various subsampling ratios to obtain virtual measurements. Each configuration is
characterized via the kinetic energy loss due to the subsampling.
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Chapter2
Velocity reconstruction using regression

This chapter presents regression models to address the problem of estimating high
resolution fields from low resolution measurements as defined in section 1.3.1. It reviews
the basic ordinary least squares model, regularized linear regression with the common L2
penalty as well as the L1 penalty, and kernel regression. These models are presented in
matrix forms, which are more compact than previous works on turbulence. The problem
of selecting model complexity and optimizing model parameters, a fundamental topic in
learning theory, are also discussed.

The models are used to reconstruct high-resolution fields from low-resolution mea-
surements. The DNS database of isotropic turbulence presented in section 1.4.2 are used
for illustration. Only partial results on selecting the models and optimizing parameters
are shown in this chapter. Optimal models will be used in chapter 6 when comparing
performances of all proposed models.

2.1 Regression in turbulence studies

Regression is probably the earliest method in statistics for prediction. It aims at learning
the relation between input variables and corresponding output targets. The model is
learned from training samples where both input and output variables are available. the
learned model will be used for prediction in situations where only input variables are
given. Nice reviews can be found in Bishop, (2006) and Hastie et al., (2009a).

Least squares regression has been applied widely in turbulence studies under the
name “linear stochastic estimation” (LSE) (Adrian, 1977, 1979). It has been further
investigated (Adrian, 1992; Ewing and Citriniti, 1999; Guezennec, 1989) to estimate
conditional eddies from the measurements. Later works introduced various extensions
such as multi-time, nonlinear or higher-order LSE (Durgesh and Naughton, 2010; Meyer

23
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and Tan, 2014; Mokhasi et al., 2009; Nguyen et al., 2010), which reconstruct velocity
fields from pressure or shear-stress measurements. LSE can be also linked to proper
orthogonal decomposition (POD), known also as “principle component analysis”, to
reduce the order of reconstruction problems (Bonnet et al., 1994).

The idea of combining LR velocity measurements to obtain HR fields using regression
has not been addressed until recently (Melnick and Thurow, 2012; Tu et al., 2013).
Melnick and Thurow, (2012) used a POD-LSE model to get fully resolved 3D velocities
of a flow over a flat plate by combining 3D smoke intensity and 2D PIV measurements.
The POD-LSE model has been developed further by Tu et al., (2013) with a multi-time
LSE reconstruction model. Kalman filter or Kalman smoother are used as real time
estimation or data post-processing respectively. The model is tested using time-resolved
PIV measurements of a bluff-body wake at a low Re.

Regression models in previous works remains rather simple, with the use of POD
to reduce the order of the model. However, simple linear regression models suffer from
certain limitations. The use of POD, acting as a low-pass filter, neglects certain small
scales a priori. This work discusses further extensions of simple linear regression based
on different regularizations or kernel methods. We aim at maximizing the amount of
information that each method can recover, so POD is left aside throughout the thesis.
Detailed analysis of reconstruction results such as spectra and errors will assess the
performances of regression models as mapping functions between large and small scales.

2.2 Ordinary least squares (OLS)

Given a set of M training samples
{(

yt, zt
)}
, t = 1,2, ...,M corresponding to pairs of inputs

yt ∈ IRQ and outputs zt ∈ IRP, regression models estimate zt as a function of yt via a
mapping function f :

f : yt 7→ ẑt = f (yt) + nt (2.1)

where nt ∼N(0,σ2
nt

) is usually a white Gaussian noise. f is learned from the M pairs of
training samples. This function should minimize the loss L( f ), which measures how far
the prediction f (y) and the reference z are different within the training data.

The ordinary least squares model (OLS) assumes that f is a empirical linear function
of yt. This model is widely used for its simplicity yet efficiency in situations where only
a small training set with low signal-to-noise ratio is given. Assuming that {zt} and {yt}

are mean-free and pre-normalized to one-standard deviation, OLS is expressed as:

ẑt = f (yt) = Bᵀ yt (2.2)
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where B is the coefficient matrix of size Q×P. The i−th column of B tells how to weight
each measurement yt, j to get an estimate of zt,i. The unknown B is learned from training
data by minimizing the empirical loss:

L(B) =

M∑
t=1

‖zt -Bᵀ yt‖
2
2 (2.3)

or rearranged in the matrix form as:

L(B) = ‖YB-Z‖22 = (YB−Z)ᵀ (YB−Z) (2.4)

where Yᵀ , {yt} of size Q×M and Zᵀ , {zt} of size P×M. ‖.‖22 is the Euclidean distance,
also called “L2 norm”. , is the notation of “defined as”. The loss L(B) is the square of
errors, which is purely data-dependent. The optimization problem is to finds B such that:

B = argmin
B
{L(B)} = argmin

B

{
‖YB−Z‖22

}
(2.5)

argmin {.} is the argument of the minimum seeking B such that L(B) attains its minimum.
The least square error solution of B is by differentiating equation 2.4 with respect to B
and set to zero:

B = Y†Z =
(
YᵀY

)−1 YᵀZ (2.6)

where (.)† is Moore-Penrose pseudo inverse. Then, the output ze of any new input vector
ye out of the training set is estimated as:

ze = Bᵀ ye (2.7)

2.3 Regularized linear regression

OLS suffers from critical problems. It requires the inverse of matrix YᵀY that can be
singular or almost singular. The iterative solver can overcome this problem, but may
result in a high-variance model with many large coefficients: a small change of ye leads
to very different predictions of ze. Since learned purely from the training data, it often
fits very well the training data but poorly performs otherwise. This phenomena is called
overfitting and will be discussed later in this chapter. Regularized least squares are
proposed to overcome this problem. The idea is to add a regularization term g(B) on B
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to the data-dependent error term:

L(B,λ) = ‖YB−Z‖22 + λg(B) (2.8)

where the regularization parameter λ controls the balance between the two terms. Differ-
ent terms lead to different regression models.

2.3.1 Ridge Regression (RR): L2 penalty

The most common and simple regularization is L2 penalty, also called “weight decay”,
which leads to the formulation of ridge regression (RR). The regularization term is on
the norm of OLS coefficients, i.e. g(B) = ‖B‖22. The loss function becomes:

L(B,λ) = ‖YB−Z‖22 + λ‖B‖22 (2.9)

The parameter λ controls the balance between the data misfit and regularization term,
which is the sum of squares of all coefficients. It controls how far B are shrunk towards
zero, the larger λ the further. Setting the derivative with respect to B to zero, the closed
form to estimate B is:

B =
(
YᵀY + λI

)−1 YᵀZ (2.10)

This formula is similar to that of OLS except that some positive value λ is added to the
diagonal elements of YᵀY to ensure YᵀY + λI is always invertible.

The mechanism of RR can be analyzed via the singular value decomposition (SVD)
of Y:

Y = UDVᵀ (2.11)

where U = (u1,u2, ...,uQ) is a M × Q orthogonal matrix, D = diag(d1,d2, ...,dQ) is a
Q×Q diagonal matrix (d1 ≥ d2 ≥ ... ≥ dQ), and Vᵀ = (vᵀ1 ,v

ᵀ
2 , ...,v

ᵀ
Q) is a Q×Q orthogonal

matrix. The orthogonality implies that UᵀU = I or Uᵀ = U−1, similarly for V and Vᵀ.
The formula to estimate RR coefficients becomes:

B =
(
YᵀY + λI

)−1 YᵀZ = Vdiag

 d2
j

d2
j + λ

 UᵀZ (2.12)

Re-estimating training output variables Z as a function of inputs, one obtains:

Ẑ = YB =

Q∑
j=1

u j
d2

j

d2
j + λ

uᵀ

Z (2.13)



2.3. Regularized linear regression 27

Algorithm 1 Iterative shrinkage-thresholding algorithm (ISTA)
1: Set k=0 and initialize B(0);
2: while not convergence do
3: 5 f (B(k)) = Yᵀ(Z−YB(k)) . Residual from step k
4: B(k+1)← proxλ‖.‖1

[
B(k) − t(k) 5 f (B(k))

]
5: k = k + 1
6: end while
7: return B(k+1)

This implies that RR projects Z onto the principal components of YᵀY with large energy
content (large d j) and shrinks the coefficients of low energy (small d j). This makes RR
close to the principal component regression model discussed in Jolliffe, (1982), where
one decomposes YᵀY using SVD and then set components with low energy content
(small d j) to zeros in a handy manner. The approach also avoids matrix inversion and
plays a role similar to regularization.

2.3.2 LASSO: L1 penalty

The nature of L2 penalty is to reduce model variance by shrinking coefficients corre-
sponding to irrelevant events toward zero. However, they are not exactly zero. L1 penalty
will precisely force some coefficients to zero. The model is called least absolute selec-
tion and shrinkage operator (LASSO) (Tibshirani, 1996) in statistics, or basis pursuit
denoising (BPDN) (Chen et al., 1998) in signal processing. It is considered as an implicit
subset selection step, where irrelevant events are neglected from the reconstruction. This
property favors sparsity - output is estimated as a combination of some input variables
only- that is beneficial in many applications.

The LASSO cost function is similar to that of RR with a subtle but very important
modification:

F(B) = ‖YB−Z‖22 + λ‖B‖1 (2.14)

The data-dependent term is the same as OLS or RR. The different penalty term λ‖B‖1
imposes a constraint on the sum of absolute values of coefficients. This modification
leads to sparsity, the key difference between LASSO and RR. It also makes the problem
nonlinear and there exits no closed-form solution. Gradient-based methods are usually
used to solve this optimization problem. Iterative shrinkage-thresholding algorithms
(ISTA) is one of them, where B is solved iteratively by soft-thresholding as in Algorithm
1 (Daubechies et al., 2004). In the pseudo code, prox- the shrinkage operator- is the
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element-wise soft-thresholding:

(
proxλ‖.‖1[B]

)
i
=

bi − λsign(bi) if |bi| > λ,

0 otherwise
(2.15)

where t(k) is the gradient step size, bi is the i−th coefficient of B. The sign function

sign(bi) is defined as:

sign(bi) =


−1 if bi < 0,

0 if bi = 0,

1 if bi > 0.

(2.16)

Faster schemes have been proposed to accelerate the convergence time (Beck and
Teboulle, 2009; Vonesch and Unser, 2008), but further discussions are outside the
scope of this work.

LASSO often outperforms RR and subset selection methods for several reasons.
Compared to RR, LASSO takes most of the advantages, including the stability of the
solution and the shrinkage feature. These features give a low-variance model compared
to subset selection method. Moreover, LASSO favors sparsity, which can be considered
as an implicit subset selection (Hastie et al., 2005, 2009b). By forcing some of the
coefficients to zeros, the irrelevant predictors are suppressed in final estimation.

2.4 Nonlinear regression

Linear regression aims at mapping the output as a linear combination of input variables.
This implies a real constraint on performances of this family of models. In many
cases including turbulence, linear functions are too simple to describe the undergoing
phenomenon. Nonlinear regression models are beneficial, and kernel feature mapping is
often used.

2.4.1 Feature mapping

Kernel methods are used to introduce nonlinearity into the model. The idea is to project
the original input vector y onto a fixed feature space:

yt 7−→ φt = ϕ
(
yt
)

(2.17)

and perform least square regression in this space. yt ∈ IRQ is the t− input vector. The
feature vector φt ∈ IRD f , where D f � Q is the dimension in feature space. The least
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square problem becomes:
B = argmin

B

{
‖Z-ΦB‖22

}
(2.18)

where Φ = {φt} (t = 1, ...,M), the so-called design matrix, is of size M ×D f . Adding L2
regularization term ‖B‖22 and deriving analogously as RR model, the solution is:

B =
(
ΦᵀΦ + λI

)−1
ΦᵀZ (2.19)

Then the prediction of a new input variable ye is:

ze = Bᵀϕ
(
ye) (2.20)

2.4.2 Kernel ridge regression

Involving nonlinearity via feature mapping significantly increases computational costs.
The kernel trick is proposed (Saunders et al., 1998) to overcome this problem, resulting
in the so-called kernel ridge regression (KRR) model. This trick appears when solving
ridge regression using Lagrange dual optimization.

Dual form of ridge regression

RR in equation 2.9 can be re-expressed as a dual Lagrangian optimization problem:

B = argmin
B

 M∑
t=1

‖et‖
2
2 +λ‖B‖22

 s.t. zt−Bᵀ yt = et, t = 1,2, ...,M (2.21)

where s.t stands for “subject to”. Introducing Lagrange multipliers A[M × P] , {aᵀt }(t =

1,2, ...,M), at ∈ IRP, the optimization problem 2.21 is equivalent to the problem of finding
the saddle point of the function:

M∑
t=1

‖et‖
2
2 +λ‖B‖22 +

M∑
t=1

aᵀt
(
zt−Bᵀ yt−et

)
(2.22)

The solution as shown in Saunders et al., (1998) is:

A = (K + λI)−1 Z (2.23)
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Function name k(u,v)

Linear uᵀ v

Polynomial (r + uᵀ v)d for r,d ≥ 0

Radial basis function (RBF) exp
(
-γ ‖u -v‖22

)
, γ > 0

Table 2.1 – Common basis functions for kernel methods.

where K , YYᵀ is the matrix of dot products, Km,n = yᵀm yn. The prediction for a new
input variables ye is:

ẑe =

 M∑
t=1

aᵀt yt

 ye = Aᵀ ke (2.24)

where ke , {kt} = {y
ᵀ
t ye} ∈ IRM.

Kernel trick

Solving RR in the dual form offers no improvement of accuracy, speed or stability.
However, the beauty of this approach is the presence of only dot products among input
variables in the final prediction step. This implies an analogous procedure when working
in a nonlinear feature space. The transformation into such a space is unnecessary if the
dot products of the transformed variables can be estimated using the kernel:

k(u,v) = ϕ (u)ᵀϕ (v) (2.25)

This explicit transformation is computed in time O(Q2), where Q is the dimension of the
input vectors. The kernel trick permits to estimate directly k(u,v) without computing
ϕ (u) and ϕ (v), reducing the computational time into O(Q) only. Not every kernel has
this property. Table 2.1 gathers three common functions.

2.5 A framework to select model and parameters

A model is assessed via its generalization performance, i.e. the prediction capability
on a new dataset independent from the training set. In all above models, there exists
one or more hyper-parameters that are directly linked to model performances. The
arising question is how to optimize those parameters using training data only in a
systematic manner. This step is the so-called parameter optimization, while the step to
test performances of the model on independent data is the so-called model assessment.

It is worth also mentioning the definition of different datasets: training, validation
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and test sets. The training set contains data from which a model is learned. The validation
set is used to estimate prediction errors, and from which the best model is chosen. This
model is the one that gives the most accurate prediction on the validation set. The testing
set is finally used to give an estimate of the prediction error of this optimal model. This
error is approximately the generalization error on independent datasets.

To optimize the generalization capability of a model, one needs to understand the
idea of bias and variance. Next sections will discuss this topic, with the technique called
“cross-validation” to find the trade-off between bias and variance using the training data
only.

2.5.1 Bias-variance trade-off

The above regression models can be interpreted as seeking a mapping function f :

f : y 7→ ẑ = f (y) + n (2.26)

where n ∼ N(0,σ2
n) is assumed to be a white Gaussian noise and be conditionally

independent of z. The expected prediction error of this model for an input vector y◦ is:

ε(y◦) = E
[(

z◦ -f (y◦)
)2
]

= σ2
n︸︷︷︸

Irreducible Error

+ (E[ ẑ◦]− z◦)2︸         ︷︷         ︸
Bias2

+E
[
( ẑ◦ -E[ ẑ◦])2

]︸             ︷︷             ︸
Variance

(2.27)

where E[.] is the expectation of a variable. The first term comes from the noise, which
depends only on the data and is irreducible. The second term is the square bias, showing
how far the average of the estimates is different from the true mean. The last term is
the expected variance of the estimate around its mean. We can interpret the bias as the
average prediction error over different data sets from the true mean, and the variance as
how this error is sensitive to a particular choice of data set.

After the decomposition, a model is said to be underfitting or overfitting depending
on the contribution of each term in the total error. An underfitting model is too simple
to capture all details of the underlying phenomenon. This model is high-bias and low-
variance: it poorly fits the training data and performs similarly in the testing data. An
overfitting model is over-complex: it closely fits the training data, including noises, and
gives poor performance on new testing data. This model has low bias and high variance.
Ideal models should have both low bias and variance. In practice, a good model must
satisfy its bias-variance trade-off when it does not suffer from either the problems of
overfitting or underfitting.
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Figure 2.1 – Typical behavior of prediction error for testing (red) and training (blue)
dataset as a function of a hyper-parameter (Hastie et al., 2009a). Different curves are for
various datasets. The solid ones are expected errors (average of all curves). From left to
right can be the direction of decreasing regularization or increasing model complexity.

The idea of underfitting and overfitting can be visualized in figure 2.1 as modified
from Hastie et al., (2009a). It shows the prediction errors for training and testing datasets
as a function of a parameter. This parameter can be either the model complexity in
an increasing order or the regularization parameter λ in a decreasing order. Models
toward the left (low complexity model, or regression with a strong regularization) are
underfitting. It does not fit well both the training and testing data. Toward the right, errors
on the training set decrease, while those of the testing set decrease and then increase
again. Models in the far right are overfitting. They fit well the training set but not the
testing set. The desired model is the one such that the error on the testing set is the
lowest. At this point, the model reaches its bias-variance trade-off: bias and variance
do not necessarily reach their minima, but a compromise ensures the minimal error on
testing data.

The idea of bias-variance trade-off can be further visualized schematically as in figure
2.2 (Hastie et al., 2009a). The blue-shaded region shows the irreducible error σ2

n (due
to random noise) of the training set, where the truth is at the center and all realizations
are within. To fit the model, the non-regularized model space (red curve) contains all
possible models, while the magenta one shows the restricted space of regularized models.
Model variances are depicted as yellow curves centered at the so-called “closest fit”. The
model bias is the distance of the closest fit and the truth, which can only be reduced
as increasing the model complexity or adding more features. Regularized models add
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Figure 2.2 – Schematic view of the behavior of bias and variance (Hastie et al., 2009a).
The blue-shaded, centered at the truth, is the realization space, where maximum distance
is the irreducible error. All possible models are bounded by the red/magenta model space
curves. Bias is shown by the black lines as the distance to the truth. Best models are
shown as black dots, and circled by model variances.

estimation bias on top of the model bias but reduce the variance. The benefit of the
trade-off is only when the variance is reduced more than the squared estimation bias.

The bias-variance trade-off is essentially estimated from the training data. If this set is
large enough, it can be virtually divided into training, cross-validation and testing sets. A
general advice for the size of these three sets is 50%, 25% and 25% respectively (Hastie
et al., 2009a). However, learned models are usually improved when using more data.
Cross-validation is another idea to find the trade-off while keeping the whole training
data for learning the model.

2.5.2 Cross-validation

In many cases, the training data is limited. Setting aside 50% the data to quantify the
model might lose all the benefits from regularization and nonlinearity compared to OLS.
Cross validation (CV) is commonly used to select the model and optimize parameters
using all given data.

The most popular CV technique is k-fold CV. The dataset is randomly split into K

subsets of approximately equal size. For each K-th subset to estimate the prediction
error, the model is trained on the remaining K − 1 subsets. This procedure is repeated K

times for all the subset, and the model error for the current setting is the average of its K

estimates. A summary of k-fold CV is presented in algorithm 2. K is at most the number
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Algorithm 2 K-fold cross-validation for set of L parameters γ1,γ2, ...,γL
1: Divide the training samples into k folds randomly
2: for i = 1,2, ...,L do
3: for j = 1,2, ...K do
4: Train the model with γi using all data set except the jth

5: Estimate prediction error ε(i, j) of the model on the jth set
6: end for
7: end for

8: Estimate averaged error ε(i) =
1
K

K∑
j=1

ε(i, j)

9: Return optimal parameter γm where ε(m) = min{ε(i)}.

of training samples (leave one out cross validation). When K is high, the selected model
tends to have lower bias but higher variance, since many training samples are similar.
A much heavier computation is also required, since the training/predicting is repeated
K times. The popular choice of K is from 5 to 10 (Breiman and Spector, 1992; Kohavi
et al., 1995).

2.6 Regression models for reconstruction of isotropic tur-
bulence

We now apply regression models to reconstruct HR velocity fields from LR measurements.
The data from DNS isotropic turbulence discussed in section 1.4.2 is used. Streamwise
velocities from 37 data cubes of fully resolved data 963 are used as the reference. In each
data cube, only the streamwise velocity component is considered. The training examples
are the HR fields (in spanwise-vertical directions) and equivalent LR ones subsampled
by a factor of

√
P/Q = 3 in both vertical and spanwise directions. This ratio is equivalent

to an energy loss of ∆κs = 1.03% (see table 1.2). In streamwise direction, the training
planes are selected every 4 snapshots, corresponding to an energy loss of 1.23%. This
configuration is chosen to mimic other problems investigated later in chapters 4 and 5.

Regression models are learned from 37× 24 pairs of LR (Q = 32× 32) and corre-
sponding HR (P = 96× 96) fields. The learned models are then used to reconstruct all
37× 96 HR fields from 37× 96 measured LR planes. These results are presented latter
in chapter 6 when comparing various methods. Following sections only discuss the
optimization of model parameters.
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Figure 2.3 – Shrinkage effect: coefficients of OLS (left) vs RR (right) models correspond
to an input LR measurement at the center of the field. The coefficients, which are
rearranged in a 2D field of the size 96× 96, can be interpreted as the contributions of this
input to the reconstruction of all other high-resolution points. The higher the coefficient,
the stronger the impact.

2.6.1 Regularization parameter and shrinkage effect

Ordinary least squares model inverses directly YᵀY, which is usually ill-conditioned,
leading to high variance models. A slight change of input variables can lead to very
different predictions. Regularization is introduced to reduce this effect by imposing
different penalty terms on regression coefficients. RR seeks a model with small sum-
of-square coefficients, LASSO imposes a penalty of their absolute values (see section
2.3).

Figure 2.3 shows the weight of the input variable at the center of the field in re-
constructing all other HR points by OLS and RR. These are the coefficients b j ,

[b j1,b j2, ...,b jP]ᵀ computed in equation 2.6 for OLS or equation 2.10 for RR. Recall that
B is of size Q×P. The figures are b j of OLS and RR models, where index j corresponds
to the central point. b j is then rearranged to recover the 2D shape of size

√
P×
√

P of
the 2D velocity fields. In both plots, the weights remain significant in a neighborhood of
several pixels. The coefficients drop very quickly when moving away from the center.
This is due to the rapid decay of correlation between the central point and its neighbors.
The difference between the two methods is that OLS (using direct inversion) gives large
coefficients almost everywhere whereas RR shrinks the contributions of irrelevant points
to small values.

The different shrinkage behaviors of RR and LASSO are visualized in figure 2.4.
This figure shows the eight different coefficients corresponding to eight HR outputs as a
function of the regularization parameter presented in equation 2.8. It confirms the effect
of the penalty term, which shrinks coefficients associated with irrelevant inputs to zeros.
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Figure 2.4 – Shrinkage effects of L2 (top) and L1 (bottom) penalty: coefficients cor-
responding to eight high-resolution outputs (in eight different colors) as functions of
regularization parameters λ. Higher λ shrink the coefficients toward zeros differently
depending on the penalty terms.

RR coefficients do not reach exact zeros even for extremely high λ, while LASSO rapidly
shrinks some coefficients to exact zeros.

2.6.2 Optimizing regularization parameters and model complexity
via ten-fold cross-validation

All regression models (except OLS) are parametric, i.e. at least one hyper-parameter
controls the construction of the model and its performances. With RR, LASSO or KRR,
the regularization parameter λ controls the balance between data misfit and regularization
term. KRR model is also characterized by kernel parameters, which are the standard
deviation of the distribution when using RBF kernel, or the polynomial order. All hyper-
parameters are chosen from the training samples using ten-fold CV (see algorithm 2).
The plot of the error as a function of model parameters is called the “validation curve”,
from which the best model or parameter is selected.



2.6. Regression models for reconstruction of isotropic turbulence 37

log10(λ)
-2 0 2 4

ǭ
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Figure 2.5 – RR validation curve: errors as functions of regularization parameter λ (left),
and learning curve: errors as functions of training data size (right). Red curves are for
the prediction, while blue ones are for the training data

Another important test is to see whether the training dataset is sufficient or not. This
is examined via the so-called “learning curve”. To estimate this curve, a small subset of
data is drawn out randomly from the training set. This set is retained to estimate the error
at the last step. For the remaining data, models are optimized using different portions.
Trained models are assessed by computing prediction errors on the testing data. The
curve of errors as a function of different data size, the “learning curve”, will tell whether
the current training data is sufficiently large to guarantee an accurate learning.

To plot validation and learning curves, the average normalized root mean square
error (NRMSE) ε̄ is used as the prediction error. ε̄ represents an overall measure of
the reconstruction accuracy. NRMSE is estimated between the reconstructed ( ẑt) and
reference (zt) fields

ε̄ =


∑
t

∑
j∈�

( ẑt, j − zt, j)2

∑
t

∑
j∈�

z2
t, j


1/2

(2.28)

� is the considered set of points used to estimate the error. In the present case of isotropic
turbulence, � contains all points in each plane.

Figure 2.5 shows the validation and learning curve of RR model on the training set
(blue) and validation set (red). The solid lines are the means, while a band of colors show
the standard deviations of ten estimates of ε̄ from ten folds. The validation curve (left)
shows the model behavior for different λ. For the training set, the model fits accurately
the data when no or small regularization is imposed. This effect of overfitting is shown on
the validation set, where higher errors are obtained. The model has also high variance, i.e.
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Figure 2.6 – KRR validation curve (RBF kernel), with parameters are kernel parameter
γ and regulartization parameter λ. Red curves are for the prediction, while blue ones are
for the training data

prediction errors vary strongly from one set to the other. The optimal value of λ ≈ 100
is reached where the validation error is minimum. When a very strong regularization is
imposed, errors on both training and validation sets increase, since all coefficients are
shrunk toward zero. Errors will grow till their maximum value, which is the variance of
the HR data. The learning curve (right) shows the effect of the training data size on the
performance of the model (with optimal λ). The figure shows that with larger training
data, the prediction error on the validation set decrease sharply while this error on the
training set gradually increase. With a good model and sufficiently large training data,
these two curves will be very close. The curves also suggest that a larger dataset will
lead to a better model in this case.

KRR model parameters are optimized using the same validation curve. Different
models come with different kernel parameters (recall table 2.1), together with the regu-
larization parameter λ. For RBF kernel, γ represents the kernel shape. Figure 2.6 shows
that the optimal values of both λ and γ are both of the order of 10−5. For polynomial
kernel, the polynomial order is to be tuned. The model with higher polynomial order will
have lower bias but higher variance. An analogous procedure is used to find the optimal
order of the polynomial fit, which is either 2 or 3 in general.

2.7 Concluding remarks

In this chapter, regression models are used to reconstruct high resolution fields of an
isotropic turbulence from low resolution measurements. The models seek a mapping
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function between low and high resolved fields. This function is learned from given
training samples and used for prediction when only low-resolution measurements are
available.

Both linear and nonlinear models have been discussed. The ordinary least squares
model is the simplest one and is widely used in the literature of turbulence. Since
suffering from some critical limitations, notably overfitting and ill-conditioning, various
regularization methods have been introduced. Both L2 and L1 penalty have been dis-
cussed. While L2 penalty reduces model variance by shrinking coefficients of irrelevant
events, L1 forces them to zeros by slightly change the penalty term and offers some
potential benefits. Nonlinear regression is another approach to improve OLS. Instead of
assuming the underlying phenomenon is linear, it introduces nonlinearity by projecting
input vectors to a fixed feature space before performing standard OLS. This nonlinearity
helps in improving reconstruction accuracy, since assuming a linear relation between
large and small scales of turbulence implies a big constraint on model performances.

We have presented the procedure to optimize hyper-parameters of regression models.
This step is crucial to ensure accurate predictions, since performances of all regression
models (except OLS) depend on at least one parameter. The models are learned from
the training data, but the performances are assessed on independent data only. Cross-
validation is used to seek a compromise, the so-called bias-variance trade-off, from
training data only. The dataset is virtually split into many subsets. The models are
trained within some subsets, and their prediction generalized errors are estimated using
the remaining sets.

The optimal set of parameters is found using the validation curve and ten-fold cross
validation technique. This curve shows the prediction errors on the validation set as a
function of model parameters. It gives an idea of the optimal parameter range. Through
all the tests, it is shown that the gradient of this curve near its minima is not very sharp,
implying that a good estimate of these parameters can be achieved from the training data
only.

All model parameters are investigated. RR model is optimal when its regularization
parameter λ is about 100. KRR model with RBF kernel is constructed with the optimal
values of both λ and γ are of the order of 10−5. For polynomial KRR takes 2 or 3
as the optimal order of the kernel. All such models will be used later in chapter 6 to
reconstruct high-resolution fields from low-resolution measurements and compared to
other proposed methods.
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Chapter3
Learning coupled dictionaries

This chapter describes a novel approach to learn the relation between large and small
scales of turbulence based on dictionary learning methods. The approach finds coupled
dictionaries to represent the low and high resolution turbulent fields and to reconstruct
the missing small-scale information. This method has been applied successfully in
image processing, and remains a very active research subject. It potentially outperforms
regression models, which are sometimes too simplistic to represent the underlying
phenomenon in turbulence. Indeed learned dictionaries could encode part of the physics
of the flow.

This chapter is organized as follows. First, different data representations are discussed,
from predefined bases such as Fourier or wavelets to learned bases such as principal
component analysis (PCA). Second, dictionary learning, a generalization of PCA, is
discussed for the first time as a representation for turbulent fields. This section reviews
also two algorithms to learn the dictionaries. Third, different approaches to learn coupled
dictionaries of low and high resolution fields are presented. Last, the approach is tested
on the DNS database of an isotropic turbulence presented in section 1.4.2.

3.1 From bases to dictionaries

This section briefly reviews conventional representations of turbulent signals. Given a
vector xt, the main idea of all representation methods is to find a “dictionary” D, a set of
basis functions or the so-called “atoms” from which xt can be represented via a linear
combination. This representation by coefficients at is called a “code”. The representation
can be exact:

xt = Dat (3.1)

41
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or approximate:
xt = Dat + nt (3.2)

where nt is an estimation noise term. Seeking the representation of the signal is an
optimization problem to estimate the dictionary D and the code at. The dictionary can
be mathematically predefined or learned from the data. The estimation of the coefficients
at can be very simple with very fast algorithms for predefined or orthogonal bases, or
more complex with redundant dictionaries.

3.1.1 Predefined dictionaries

Various types of dictionaries are studied to represent the data. They can be predefined
a priori such as the well-known Fourier transform, the group of wavelets or curvelets

(Mallat, 1999; Mallat, 1989). These predefined transforms are easy to compute thanks to
fast algorithms. Fourier transform aims at describing the signal via its frequency content
by decomposing signals as an infinite series of sines and cosines. This transformation
is localized in frequency but not in space/time. The constraint is overcome using
wavelet transforms, replacing the sines and cosines by wavelet functions localized both
in space/time and frequency. This property permits wavelets to better represent the signal
with discontinuities or sharp spikes. In such cases, the representations are much more
compact with wavelet functions than sines and cosines. This makes wavelets standard
in signal compression, for example JPEG 2000 for images, while Fourier transform is
mainly used for spectral analysis. However, despite the large family of wavelets, all kinds
of signals cannot be represented with high level of sparsity. Analogously for turbulence
data, different flows or a single flow at various positions with respect to a wall can have
significantly different physics, leading to signals with completely different properties.

3.1.2 Adaptive dictionaries

To further optimizing the representation, it is more appealing to learn dictionaries adap-
tively from the data (Bengio et al., 2013). The first and most common method is the
principal component analysis (PCA). This approach learns a basis that maximizes the
variance of the projected values. This is interesting for turbulence studies, since large
scales of higher variances are of interest. This representation imposes orthogonal bases,
which implies that the number of atoms is limited by the dimension of the input vectors.
PCA is potentially subject to certain limitations due to this constraint. This chapter dis-
cusses the generalized version of PCA, which permits to learn a “redundant” dictionary.
The method is called dictionary learning, which is widely used and remains an active
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research topic in image processing. It will be discussed further in this section before
applying to the problem of turbulent field reconstruction.

Adaptive dictionaries are useful in many applications (Tošić and Frossard, 2011).
The first one is dimension reduction (Burges, 2010), which is useful to build models
or visualize large amount of data. For modeling, high dimensional input variables
potentially causes the problem of high variance as discussed in chapter 2, or intractable
computation complexity. For visualization, it is a real constraint since the maximum
number of dimensions one can observe and analyze is probably no more than three.
The core idea is to project data onto a set of atoms in a dictionary. This projection is
lossy, meaning that a certain amount of less informative variance is discarded. Another
important application is to solve inverse problems such as super-resolution or denoising.
These problems are very ill-posed and cannot be solved directly by least-squares methods.
A good representation of the data can play the role as a regularization term, making the
problem easier to solve. The choice of a dictionary defines the space in which we search
for solutions.

3.2 Proper Orthogonal Decomposition (POD) as a rep-
resentation of turbulent fields

PCA (Jolliffe, 2002), known also as Karhunen–Loève transform, is commonly used
in many fields of signal and image processing. It was first introduced in turbulence
studies by Lumley, (1967) under the name “proper orthogonal decomposition” (POD).
It is then used as a standard approach for dimensionality reduction, which is largely
beneficial in large scales reconstruction, flow control and coherent structure studies. PCA
decomposes a sequence of snapshots into a dictionary D to represent spatial structures,
and a coefficient matrix A, to capture temporal dynamics. The works on coherent
structures and flow information extraction focus on the dictionary D (Bonnet et al., 1994;
Gordeyev and Thomas, 2000). Each atom di, as ranked by its variance (an equivalent
measure of the kinetic energy), represents the most energetic structures of the flow. Flow
control and modeling works focus more on the use of projection coefficients A. After
learning the fixed dictionary D, independent of time, from given training fields, the
temporal dynamics of the flow is presented in the projection coefficients A only. The
efforts to model and control the flow are reduced tremendously by considering only
several coefficients of high-variance atoms. This property is beneficial for reduced-order
modeling works in flow control and reconstruction of large-scale velocity fields (Ly and
Tran, 2001; Ravindran, 2000; Taylor and Glauser, 2004).
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To derive POD or PCA, let first denote a data matrix X of size P×M containing a
sequence of P−dimensional input vectors xt, t = 1,2, ...,M,

X ,
[
x1, x2, ..., xM

]
, (3.3)

assumed centered a priori:
M∑

t=1

xt = 0 (3.4)

From X, a dictionary D of size P× P is estimated, which contains P atoms di ∈ IRP, i =

1,2, ...,P. The objective is to project xt onto a reduced-order subspace of dimension
L ≤ P while maximizing the amount of variance. This idea, when applying to turbulent
fields where variance represents the kinetic energy, is interpreted as determining the most
energetic structures among a sequence of snapshots.

The first step is to find the most dominant basis function d1 ∈ IRP, assuming ‖d1‖
2
2 = 1.

Each input vector is projected onto this direction as dᵀ1 xt. The variance of this projection
is:

s1 =
1
M

M∑
t=1

(
dᵀ1 xt

)2
= dᵀ1Σd1 (3.5)

where Σ is the covariance matrix:

Σ =
1
M

XXᵀ (3.6)

The aim now is to find d1 such that s1 is maximum, with the constraint that ‖d1‖
2
2 = 1:

d1 = argmax
d1

{
dᵀ1Σd1

}
s.t ‖d1‖

2
2 = 1 (3.7)

This optimization problem can be rewritten in an unconstrained manner by introducing a
Lagrange multiplier σ1:

d1 = argmax
d1

{
dᵀ1Σd1 +σ1

(
1− dᵀ1 d1

)}
(3.8)

Setting the derivative with respect to d1 to zero, one obtains:

Σd1 = σ1d1 (3.9)

which implies that d1 is an eigenvector of Σ, and σ1 is the equivalent eigenvalue. Also,
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multiplying both side with dᵀ1 , using dᵀ1 d1 = 1, one has:

dᵀ1Σd1 = σ1 (3.10)

The above expression implies that σ1 is the variance of the projection onto d1. This
variance is maximized by selecting the maximum eigenvalue of the covariance matrix
Σ. This process is repeated to find the second basis of the dictionary d2 such that it is
orthogonal to the first one, i.e. dᵀ1 d2 = 0. This is identical to find the second eigenvector
corresponding to the second largest eigenvalue λ2. The procedure of seeking all P basis
vectors is identical to eigenvalue decomposition and SVD of the covariance matrix Σ.
Sorting P eigenvalues in a descending order as σ1 ≥ σ2 ≥ ... ≥ σP ≥ 0, one obtains the
dictionary, or codebook, learned from the training samples X by putting the equivalent
eigenvectors together as D , [d1, d2, ..., dP]. The projection matrix A is found such that:

X = DA (3.11)

3.3 Dictionary learning as a new representation

Due to the orthogonality and variance maximization properties, PCA gains its success
in many problems such as dimensionality reduction, low-order modeling and lossy
compression. However, in solving different inverse problems, PCA is subject to several
limitations. The number of atoms is at most the dimension of input vectors, leading to the
“limited expressiveness” property (Tošić and Frossard, 2011). The representation learned
by PCA can be efficient for training data, but a good generalization is not guaranteed. It is
desirable to ignore the constraint on the number of basis functions and learn a redundant
dictionary. Due to the redundancy, the sparsity constraint can be imposed and play the
role of the regularization to solve ill-posed inverse problems.

3.3.1 Redundant dictionary and sparse representation

Dictionary learning (DL) ignores the constraint on the number of basis functions, or
atoms, permitting to find a redundant (or overcomplete) dictionary D ∈ IRP×K to represent
the data. K is the number of atoms, and redundancy means that K is potentially larger than
P. These vectors are therefore not orthogonal. The companion of redundancy is sparsity,
where the linear transformation matrix A contains only a few nonzero coefficients. The
representation then relies on the duality between redundancy and sparsity, which will be
discussed further in this section. With more atoms, the representation using dictionary
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learning is expected to be more adaptive to the signal and to better represent new data.
This is the reason why the approach often gives the state-of-the-art results in most inverse
problems in image processing (Elad et al., 2010; Yang et al., 2010).

The problem of representing data X using the redundant dictionary D and sparse
coefficients A includes two alternating optimization problems. The first one is to estimate
the projection coefficients A. PCA, with the orthogonality among atoms, simply estimates
A by dot products. Dictionaries, which are not necessarily orthogonal, can have more
atoms than the dimension (K > P). There are potentially many matrices A such that
X = DA. The sparsity constraint, meaning that A has a minimal number of nonzero
coefficients, is imposed to make the solution unique. The representation of X becomes
approximate, i.e. X ≈ DA. Finding A becomes an optimization problem of the form:

Â = argmin
A
‖A‖p s.t. X = DA (3.12)

The notationˆis to distingush between solution and variable in each optimization problem.
The above problem can be re-arranged in the form of a regularized cost function as in
chapter 2:

Â = argmin
A
‖X-DA‖22 +λ‖A‖p (3.13)

The common `p norm ‖.‖p is with 0 ≤ p ≤ 1. Solving the problem with the `0 norm, i.e.
counting the number of nonzero coefficients, leads to orthogonal matching pursuit (OMP)
(Tropp and Gilbert, 2007), while solving with the `1 norm, summing the absolute values
of the coefficients, leads to LASSO as discussed in chapter 2. Least Angle Regression
(LARS) (Efron et al., 2004) is sometimes used as another efficient algorithm to solve
`1 penalty problems and gives results very similar to LASSO. These regularizations
help selecting a limited number of atoms that best approximate the input X. The second
problem is the choice of the dictionary, which is solved by efficient algorithms discussed
in the next section.

3.3.2 Dictionary learning methods

Many algorithms have been proposed to learn the dictionary from data, starting with
gradient descend method (Olshausen and Field, 1996), then K-SVD (Aharon et al., 2006),
feature-sign approach (Lee et al., 2006) and online dictionary learning (Mairal et al.,
2010). This section reviews some of those that are used later in this chapter.
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Alternate optimization

Dictionary learning is an alternate optimization problem to search the redundant dictio-
nary D and the sparse matrix A. The approach has started by using a gradient descent
approach (Olshausen and Field, 1996). It has recently gained popularity thanks to the
progress in solving regularized optimization problems with `p penalty (Donoho and Elad,
2003; Donoho et al., 2012; Efron et al., 2004; Tibshirani, 1996). One of the first efficient
dictionary learning approach is the method of optimal directions (MOP) (Engan et al.,
1999) where D and A are estimated by solving:

(D̂, Â) = argmin
D,A

‖X-DA‖22 s.t. ‖at‖0 < L ∀t (3.14)

L is the sparsity constraint- the maximum number of nonzero coefficients. This optimiza-
tion problem is combinatorial and highly non-convex. The search for a local minimum is
done by alternating two steps. With a fixed dictionary D, the sparse coding step finds the
representation of the input vectors by solving:

Â = argmin
A

{
‖X-DA‖22 +λ‖A‖p

}
(3.15)

This step uses OMP for `0 penalty and LASSO or LARS for `1 penalty. The dictionary

update step re-estimates D with fixed A via the Moore-Penrose pseudo-inverse:

D = XA† = XAᵀ(AAᵀ)−1 (3.16)

This scheme converges rapidly after some iterations, but requires complex matrix inver-
sion, which is not efficient in most cases (Aharon et al., 2006).

K-SVD

The K-SVD algorithm was proposed later by Aharon et al., (2006) and rapidly gained
its popularity. The dictionary update is done by a block-relaxation approach. Instead of
inversing the matrix, the algorithm updates each atom in an efficient way by generalizing
the k-means clustering method (Bishop, 2006). The k−th atom is estimated by minimizing
a quadratic error: {

d̂k, âk
}

= argmin
dk,ak

‖Ek - dkaᵀk ‖
2
2 (3.17)

where Ek is defined as the residual matrix:

Ek , Xk −
∑
j,k

(
d ja

ᵀ
j − dkaᵀk

)
(3.18)
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Algorithm 3 Online dictionary learning algorithm by Mairal et al., (2010)
1: Input:

• a set of S(x) of M input variable xt ∈ IRP;

• λ ∈ IR : regularization parameter (λ ≥ 0)

• D0 ∈ IRP×K: initial dictionary

2: G0← 0, H0← 0
3: for t = 1,2, ...,M do
4: Draw xt from S(x)
5: Sparse coding:

ât = argmin
a∈IRK

{xt−Dt−1a + λ‖a‖1} (3.19)

6: Gt←Gt−1 + ât â
ᵀ
t

7: Ht←Ht−1 + ât xᵀt
8: Update Dt:

D̂t =argmin
D∈C

1
t

t∑
i=1

1
2
‖xi -Dâi‖

2
2 +λ‖âI‖1


=argmin

D∈C

1
t

t∑
i=1

1
2

Tr
(
DᵀDGt

)
−Tr

(
DᵀHt

)
(3.20)

9: end for
10: Return D̂M

where Xk gathers examples xt using dk in their representation. The update of both dk

and ak is done simultaneously via a rank-1 approximation, i.e. considering only the first
eigenvector of Ek after performing a SVD.

Online dictionary learning (ODL)

K-SVD algorithm has certain constraints, mainly with a potential local minimum while
iteratively learning the dictionary (Rubinstein et al., 2010). The algorithm is also limited
to small numbers of samples due to its computational cost. Online dictionary learning
(ODL) has been proposed by Mairal et al., (2010) to learn D from massive datasets. The
use of stochastic gradient descent to update the dictionary for each example (or a group
of them), and LARS algorithm for sparse coding, permits the learning over millions of
samples. Algorithm 3 summarizes this approach.
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Figure 3.1 – An example of single image super-resolution using coupled dictionary
learning and patch-wise approach. Photo credit: Yang et al., (2010).

3.4 Learning coupled dictionaries

In this section, DL is used to solve the problem of reconstructing HR fields from LR ones.
The approach is inspired by the single image super-resolution application (Yang et al.,
2010, 2012; Zeyde et al., 2012), i.e. estimating HR images with finer details from LR
ones. The approach jointly learns coupled dictionaries at LR and HR from given training
samples. These dictionaries are forced to represent the data using the same coefficients.
In the prediction phase, the projection coefficients are estimated from the LR images and
then combined with the learned HR dictionary to reconstruct the HR images.

3.4.1 Patch-based approach

DL requires a sparse coding step, i.e. solving the l1-penalty optimization problem. The
computation complexity is O(P3 + MP2) (Efron et al., 2004), where P is the dimension of
the fields and M is the number of samples. Since P� M in most cases, the complexity
is O(P3), which is a very heavy procedure. The computation is therefore intractable
with the whole field. To overcome this difficulty, the “patch-wise” approach uses small
patches instead of the whole fields. These patches are extracted from the original fields
at all positions by moving pixel-by-pixel in both horizontal and vertical directions. Let
m be the total number of patches, and p be their dimension (m� p), the computation
complexity becomes O(mp2), which is tractable when p is small. In the reconstruction
phase, since one pixel belongs to several intersecting patches, the estimated field is
reconstructed by aggregating all possible estimates of each pixel after putting them back
into the whole scene.

The path-wise approach comes with several advantages. First, it localizes the infor-
mation. A shared dictionary can be learned to represent all type of images with different
contents. Second, it reduces tremendously the computation. Standard images are of
dimension few millions, while typical patch sizes are around 8× 8, which is a few orders
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of magnitude smaller. Last, since the learning is on small patches, the number of samples
required for the algorithm to converge is much smaller. From a single image, millions
of small patches can be extracted for learning. Working with the original image, the
number of training samples is necessary at least one order of magnitude higher than its
dimension, which is already millions of pixels.

To formulate the patch-based approach, let zt ∈ IRP be a snapshot of a high-resolution
field as a column vector. The operator Rk

h : IRP 7→ IRp is to extract the 2D patch and
put them in a lexicographical order to form a column vector pk

h , R
k
h zt ∈ IRp, where p

is the size of 2D patches pk
h. If the overlapping is such that all patches are translated

pixel-by-pixel, the total number of patches is
(√

P−
√

p + 1
)2

. The reconstruction of the
whole image is done as:

ẑt =

∑
k

(
Rk

h

)ᵀ
Rk

h

−1 ∑
k

(
Rk

h

)ᵀ
p̂k

h (3.21)

where p̂k
h and ẑt are the estimates of the reference pk

h and zt respectively. The term(
Rk

h

)ᵀ
: IRp 7→ IRP puts the equivalent patch into the global 2D scene and zero-pad

elsewhere. The term
(
Rk

h

)ᵀ
Rk

h just counts the number of estimates for each pixels. Its
inversion plays the role of a normalization factor. In practice, the whole process is done
by estimating each pixel as its mean or median of all estimates from all patches that it
belongs to.

3.4.2 The approach

Let assume that small patches from the field can be represented as a linear combination of
several atoms from the learned dictionary. This assumption is the so-called “Sparse-Land”
prior (Zeyde et al., 2012). The idea is to learn coupled dictionaries by imposing that the
representation coefficients are the same at low and high resolution. The following section
recalls the main ideas. More details can be found in Zeyde et al., (2012).

Suppose that zt ∈ IRP is the true high resolution velocity field. The corresponding
low-resolution field yt ∈ IRQ (Q < P) is obtained as:

yt = �s�s zt +vt (3.22)

where vt is a random noise obmitted in this case, �s is an anti-aliasing low-pass filter,
and �s is a subsampling operator. The presence of �s is to avoid the problem of aliasing
when subsampling the field. In the case of direct subsampling, this filter is omitted from
the above model. The goal is to find a HR estimate ẑt containing both large and small
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scales. The most naive and simple idea is to interpolate from y, i.e. ẑt = �s yt ∈ IRP.
However, it will give no access to small-scale information above the cutoff frequency
defined by the low-resolution grid. The coupled dictionary approach permits to learn
small scales from training data and uses it for the reconstruction.

DL uses the patch-based approach, where the couples of LR and HR patches are
extracted from the LR and HR fields respectively. Let pk

h = Rk
h zt ∈ IRp be the k−th HR

patch. By assuming the Sparse-Land model for high and low resolution training fields,
each patch can be estimated as a linear combination of atoms in a dictionary:

pk
h = Dhak + εk (3.23)

where Dh ∈ IRp×K is the HR dictionary, ak ∈ IRK is the coefficient vector and εk is the
reconstruction error. The dictionary is redundant (K > p) and the coefficients are sparse
(‖ak‖0 < L), with the sparsity constraint L� K. The corresponding LR patch pk

` ∈ IRq is:

pk
` = Rk

` yt = Rk
` �s�s zt +R

k
` vt (3.24)

Rk
` is just an extraction operator, and �s�s is a transformation operator going from HR to

LR fields. Since �s and �s are spatially independent operators, there exist local �loc
s and

�
loc
s that transform HR to LR patches:

pk
` = �loc

s �
loc
s pk

h +vk
` (3.25)

where vk
` is a random noise of the same dimension as the LR patches. From equations

3.23 and 3.25, one can write:

pk
` = �loc

s �
loc
s Dhak +�loc

s �
loc
s ε

k +vk
`

= �loc
s �

loc
s Dhak + ṽk

`

(3.26)

where ṽk
` , �

loc
s �

loc
s ε

k +vk
` is also a random noise term. Denoting D` , �

loc
s �

loc
s Dh, the

above equation illustrates that there exists also a Sparse-Land model for LR patches.
These models for LR and HR patches also share the same sparse coefficient ak. The LR
dictionary is also a downsampled version of the HR one.

3.4.3 Joint learning methods

In practice, �s�s or �loc
s �

loc
s are usually not given. Yang et al., (2010) has addressed this

problem by proposing the approach to jointly learn coupled dictionaries. Zeyde et al.,
(2012) follow the main idea with some modifications. All approaches contains two main
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steps: learning phase and reconstruction phase. The learning phase can be done offline,
i.e. training a priori from the data. With learned dictionaries, the reconstruction phase
can be online.

Given the training HR velocity fields zt ∈ IRP, corresponding LR fields are virtually
extracted as yt = �s�s zt ∈ IRQ. Couples of LR and HR patches

{
pk
`, p

k
h

}
are extracted

from the training fields as pk
` = Rk

` yt ∈ IRq and pk
h = Rk

h zt ∈ IRp, where q and p are the
size of LR and HR patches respectively, and p/q = P/Q. Let P` and Ph denote matrices
of all LR and HR patches:

P` =
[
p1
` p2

` ... pm
`

]
q×m

Ph =
[
p1

h p2
h ... pm

h

]
p×m

(3.27)

where m is the total number of patches, and m =
( √

Q−
√

q + 1
)2
×M at most, where M

is the number of training planes. The LR patches are collected by one-pixel overlapping,
while HR ones are obtained by overlapping p/q pixels to ensure the same number of
LR and HR patches. Coupled dictionaries {Dh,D`} are learned from the coupled training
patches {Ph,P`} imposing to share the same sparse representation:Ph ≈ DhA

P` ≈ D`A
(3.28)

The first learning approach is proposed by Yang et al., 2010, which aims at solving an
optimization problem:

{
D̂h, D̂`, Â

}
= argmin

Dh,D`,A

{
1
p
‖Ph −DhA‖22 +

1
q
‖P` −D`A‖22 + λ1

(
1
p

+
1
q

)
‖A‖1

}
(3.29)

A is the shared sparse coefficients, which ensures a compromise between small recon-
struction errors of patches and sparsity constraint. The two normalization terms 1/q and
1/p are to balance the two mean-square error terms. The above cost function can be
re-written as: {

D̂, Â
}

= argmin
D,A

{
‖P−DA‖22 + λ1‖A‖1

}
(3.30)

where

P =


1
√

p
Ph

1
√

q
P`

 , D =


1
√

p
Dh

1
√

q
D`

 (3.31)

This problem can be solved using the standard DL algorithms.
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The second approach is proposed by Zeyde et al., (2012), which contains a direct
model to estimate the HR dictionary. The LR dictionary is first learned from LR patches:{

D̂`, Â
}

= argmin
D`,A

{
‖P`-D`A‖22 +λ1‖A‖1

}
(3.32)

Assuming that the representation of HR patches Ph via the HR dictionary Dh will share
the same sparse code A, HR dictionary is estimated as:

D̂h = argmin
Dh

{
‖Ph −DhÂ‖22

}
(3.33)

for which the solution is easy to obtain by a pseudo-inverse:

D̂h = PhÂ† = PhÂᵀ(ÂÂᵀ)−1 (3.34)

As originally proposed for image super-resolution where sharp edges are important,
Yang et al., (2010, 2012) and Zeyde et al., (2012) use different pre-processing techniques
before learning coupled dictionaries. Interpolated images �s yt of the same dimension as
HR ones are considered as LR images. Yang et al., (2010, 2012) couple HR patches, i.e.
pk

h = Rk
h zt, with the derivatives of interpolated LR images �∗�s yt. The operator ∗ is

the convolution operator. These derivatives are obtained from the convolution of four
different 1D kernels � of first and second order:[

−1 0 1
]
,
[
−1 0 1

]ᵀ
,
[
1 0 −2 0 1

]
,
[
1 0 −2 0 1

]ᵀ
(3.35)

LR patches are then extracted as pk
` = Rk

h(�∗�s yt). Zeyde et al., (2012) couples the
same features �∗�s y, but with the residual between HR and interpolated images, i.e.
pk

h = Rk
h(zt−�s yt). Moreover, the dimension of the patches is reduced using PCA,

which corresponds to an adaptive low-pass filter. This step in practice is important,
since applying the four filters to low resolution fields bring redundant and superfluous
information and lead to unnecessary heavy computation.

Based on the above works by Yang et al., (2010) and Zeyde et al., (2012), we study
three different approaches, namely “SR1”,“SR2” and “SR3”, to learn coupled dictionaries.
Descriptions of LR and HR patches with their sizes are summarized in table 3.1. The
dimension of LR patches when using derivatives is 4p; However in practice, it is reduced
significantly via PCA while retaining 99.9% of energy content.
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Notation
Patch extraction Patch dimension

LR HR LR HR

SR1 Rk
` �s�s zt Rk

h zt q p
SR2 Rk

h �s�s�s zt Rk
h zt p p

SR3 Rk
h(�∗�s yt) Rk

h
{
zt−�s yt

}
4p p

Table 3.1 – Notations for three different methods of coupled dictionaries learning as
proposed by Yang et al., (2010) and Zeyde et al., (2012). The dimension of LR and HR
patches are q and p respectively.

3.4.4 Reconstruction using learned dictionaries

Having the coupled dictionaries at hand and given a LR field ye, the objective is to
reconstruct the HR ze. The superscript “e” stands for “external”, meaning outside of the
training planes. First, all LR patches Pe

` are extracted from ye with the overlapping of
one pixel. Pe

` is then centered by removing the mean of each patch ml. Next, the sparse
code A are estimated by solving the regularized least-squares problem:

Âe = argmin
Ae

{
‖P` − D̂`Ae‖22 + λ2‖Ae‖1

}
(3.36)

HR patches are estimated using this shared code and putting back the mean ml:

P̂e
h =

√
p
q

D̂hÂe + ml (3.37)

Finally, the HR field is reconstructed by solving an optimization problem:

ẑe = argmin
ze

∑
k

‖Rk
h ẑe − p̂k

h‖
2
2

 (3.38)

This problem aims to find the best compromise between all estimates, and the closed-form
least-squares solution is:

ẑe =

∑
k

(
Rk

h

)ᵀ
Rk

h

−1 ∑
k

(
Rk

h

)ᵀ
p̂k

h (3.39)

This is the overlapping procedure as discussed in section 3.4.1. A pseudo algorithm of
the whole process including the learning and reconstruction phases is summarized in
algorithm 4.
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Algorithm 4 Coupled dictionary learning for reconstruction of high-resolution fields
from low-resolution ones

1: Input:
• training high-resolution fields {zt} , t = 1,2, ...,M

• testing low-resolution field ye

2: Step 1: Learning phase (offline)

• Extract virtual low-resolution fields the same way as ye is recorded:

yt , �s�s zt +vt (3.40)

• Extract and join coupled patches {Pl,Ph} from the fields
{
yt, zt

}
, t = 1,2, ...,M:

P ,

[
1
√

p
Ph;

1
√

q
P`

]
(3.41)

• Learn the joint dictionary D ,

[
1
√

p
Dh;

1
√

q
D`

]
as:

(
D̂, Â

)
= argmin

D,A

{
‖P−DA‖22 + λ1‖A‖1

}
(3.42)

3: Step 2: Reconstruction phase (online)

• Extract LR patches: Pe
` ∈ IRq×m from ye

• Estimate the sparse code:

Âe = argmin
Ae

{
‖Pe

` − D̂`Ae‖22 + λ2‖Ae‖1
}

(3.43)

• Reconstruct HR patches P̂e
h = D̂hÂe ∈ IRp×m

4: Output: Reconstruct HR field ze from P̂e
h by overlapping.
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λ1 λ2
√

q
√

p K m

0.1 ∼ 0.2 10−5 4 16 2(q× p) 105

Table 3.2 – Set of parameters for coupled dictionaries approach (notations are consistent
with Algorithm 4): sparsity constrains λ1 for learning and λ2 for reconstruction; dimen-
sion of LR patches q and HR patches p; number of atoms K; number of training patches
m

3.5 Dictionary learning for isotropic turbulence fields

The section applies dictionary learning approach to the DNS database of the isotropic
turbulence discussed in chapter 1.4.2. This data is chosen because the fields are periodic,
isotropic and homogeneous. These properties will facilitate all computations and the
handling of boundary conditions. Two main problems are addressed. First, the effi-
ciency of the representation using dictionary learning will be studied, comparing with
other approaches such as wavelet transform or PCA. Second, the coupled dictionaries
approach is discussed to solve the problem of reconstructing HR velocity fields from LR
measurements.

To compare with other approaches, we consider a similar configuration as in chapter
2 to study regression models. The reference HTHS data is subsampled to obtain the
measurements of HTLS {yt} and LTHS {xt} (see figure 1.5). The subsampling ratios
are P/Q = 4× 4 in space and N/M = 6 in time, corresponding to a moderate amount of
energy losses in every directions. We will use {xt} only for the training, then uses {yt} to
predict {zt}.

3.5.1 On the choice of parameters

Results in the following sections are obtained with a consistent set of parameters pre-
sented in table 3.2. Notations are consistent with the algorithm 4 to learn coupled
dictionaries. This section briefly discusses these choices.

The first set of parameters are sparsity constraints λ1 and λ2. For the learning phase,
λ1 is about 0.1 ∼ 0.2 to learn either the coupled dictionaries in equation 3.29 or the LR
dictionary in equation 3.32. This constraint imposes that the reconstruction of training
patches uses only 10 ∼ 15 nonzero coefficients in average, corresponding to the sparsity
level of 0.90 ∼ 0.95 (only 5 ∼ 10% coefficients are nonzero). As will be seen later in
figure 3.3, this is a strong constraint. However, decreasing λ1, i.e. reducing the sparsity
level, downgrades reconstruction results of coupled dictionaries. This is probably the
overfitting problem discussed in chapter 2. With small λ1, the dictionaries represent well
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the training data but with a poor generalization capability. For reconstruction phase, λ2

is chosen to be close to zero. In such case, the sparsity level of Ae in equation 3.43 is
very low, i.e. the maximum number of atoms is used to reconstruct Pe

`.
The second set of parameters are to describe the training patches. The sizes of the

LR and HR patches are q = 4× 4 and p = 16× 16, respectively. The LR patch size is
small compared to the whole LR field of size Q = 16× 16, permitting to localize the
information. Numerical experiments show a slight improvement when increasing this
size, but it leads to a high computation requirements and a large number of training
planes. Coupled patches are extracted from 37× 16 LTHS planes for training. From each
snapshot, a total of (16− 4 + 1)× (16− 4 + 1) = 169 LR patches can be extracted using
one-pixel overlapping, i.e. translating the patch in each of the two dimension in space by
one pixel. The same number of corresponding HR patches are also extracted from HR
training fields. Around m = 105 couples of LR-HR patches are chosen randomly from
the whole set of 37× 16× 169 patches in total and used to train the coupled dictionaries.
The objective is to reduce the computational cost, since many patches are very similar.

The last parameter is the number of atoms. There is no general rule, but new findings
using non-parametric approaches of learning dictionaries with an adaptive number of
atoms (Dang and Chainais, 2016) show that the needed level of redundancy maybe not
very high. Numerical experiments in this work show that a good size is about twice the
dimension of input variables. For the case of coupled dictionary learning, the choice is
K = 2(p + q), where (p + q) is the dimension of the coupled LR and HR patches.

3.5.2 Efficiency of representations: a comparative study

Since the sparsity may play a key role, this section compares the efficiency of different
representations. “Efficiency” means the quality of the approximation with respect to
different sparsity levels. Mathematical predefined representation using wavelets, learned
bases using PCA and dictionary learning methods are compared. Both KSVD (Aharon
et al., 2006) and ODL (Mairal et al., 2010) are investigated. The representations are
learned from the LTHS planes {xt} in the cases of PCA and DL. These representations
are then tested on random subsampled fields from HTHS planes zt that are different from
the set of {xt} used for learning. Reconstruction errors are estimated by comparing with
reference fields.

Figure 3.2 shows the adaptive dictionaries learned by PCA (left) and ODL (right) as
ranked by their energy contents. The redundant dictionary by ODL has twice more atoms
compared to PCA, which contains exactly p = 16× 16 atoms as the dimension of the
input patches. Only 256 over 512 atoms obtained by ODL are shown to be comparable
with the PCA dictionary. The atoms are completely different in the two dictionaries. PCA
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Figure 3.2 – Dictionaries leaned by PCA and ODL from the set of HR patches of size
p = 16× 16. With ODL, only 256 atoms are chosen from 512 atoms.

dictionary has a sharp decline of variance content. Also, since the number of training
patches is sufficiently large, the atoms look similar to discrete cosine transform (DCT)
basis functions, which have modulated sine-wave patterns. The redundant dictionary
from ODL contains more “patterns” for each level of scale, which is expected to be more
adaptive to the data for sparse representation.

Using a wavelet transform, there is no learning since the bases are predefined. The
fields are decomposed into approximation and detail coefficients (horizontal, vertical
and diagonal). The common Daubechies wavelet is used for its compact support and
fast computation. The transform is performed on full fields. To test the sparsity effects,
different thresholds are used. Detail coefficients larger than each threshold are retained
while setting others to zeros, while approximation coefficients are kept unchanged.
Inverse wavelet transform reconstructs the fields using these unchanged approximation
and filtered detail coefficients. The sparsity is defined as the ratio of nonzero coefficients
L (including both approximation and retained detail coefficients after filtering) and the
dimension of the field P. The NRMSE between reconstructed fields ẑt and reference
ones zt is estimated as in equation 2.28 to qualify the reconstruction for each level of
sparsity (1− L/P).

With PCA, the dictionary D is learned from training patches Ph extracted from all
{xt} , t = 1, ...,M. Its atoms

{
di

h

}
are ranked by their variances σi, i.e. σ1 > σ2 > ... > σP.

The dimensionality is reduced such that the retained information from only the first L

principal components (L < p) is maximized. For a new field zt, Ph are extracted and
projected onto the first L vectors:

ai =
Ph · di

h

‖di
h‖

2
2

, i = 1,2, ...,L (3.44)
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Figure 3.3 – Sparsity vs error outside (left) and zoom in the region of low sparsity at semi-
log scale (right) for different representations: wavelet (Daubechies), PCA, dictionary
learning (ODL or KSVD). Wavelet transform is for the whole fields of size 96×96, while
PCA and DL are for patches of size p = 16× 16.

The filtered patches are estimated by combining the projected coefficients with the
corresponding functions:

P̂h =

L∑
i=1

ai di
h (3.45)

Finally, the reconstructed field ẑt is estimated by one-pixel overlapping as discussed in
section 3.4.1. The sparsity level is defined as 1 − L/p, where the patch size at HR is
p = 16× 16. NRMSEs are estimated using equation 2.28.

KSVD and ODL learn D from Ph a priori with a high sparsity level (λ = 0.2,
corresponding to about 15 non-zero coefficients). In the reconstruction step, all possible
patches Ph are extracted from each field zt. The sparse code is estimated using LARS
algorithm to solve:

Â = argmin
A

{
‖Ph-DA‖22 +λ‖A‖1

}
(3.46)

The efficiency of the learned dictionary D is studied by varying λ in this step. For each λ,
Â is estimated and then used to re-estimate the patches P̂h = DÂ before reconstructing
the global scene ẑt. Sparsity is measured as the average of 1− ‖ât‖0 /p, where ât is the
t−th row of Â. NRMSEs are estimated the same way as of wavelet transform or PCA.

Figure 3.3 shows the curves of NRMSE as functions of sparsity levels. These errors
are estimated from five testing planes equally far from neighboring LTHS snapshots. All
curves behave similarly as reducing the error when sparsity decreases. At high levels
(larger than 0.5), there is a clear benefit of using DL. With the same number of non-zero
coefficients, both ODL and KSVD give slightly lower errors than PCA and wavelet
transform. Few atoms from DL better represent the data than high variance principal
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Dh Dl

Figure 3.4 – Coupled dictionary of high and low resolution patches, with LR patches
are of size 4× 4, directly subsampled from their equivalent HR patches of size 16× 16.
The regularization parameter λ for join learning are chosen such that about 16 non-zero
coefficients are retained for reconstructing the joint patches of the training.

components of PCA or predefined ones. Comparing the two DL methods, ODL is better
than KSVD. When using more non-zero coefficients, errors by DL methods saturate at
nonzero values. Since DL provides only an approximate solution. Wavelet transform and
PCA give zero NRMSEs when using all coefficients because the transforms are exact.

The above comparisons demonstrate the advantages of representations using learned
dictionaries over predefined ones. Comparing redundant and orthogonal representations,
i.e. DL versus PCA, redundant dictionaries represent the fields more efficiently. They
achieve the same level of error using less atoms. This suggests also that the sparsity and
redundancy priors can be good candidates to help solving the ill-posed inverse problem
of reconstructing HR fields from LR ones. Comparing the two common DL methods,
ODL shows clear advantages both in term of efficient representation and computation
effort and will be used in the rest of this chapter.

3.5.3 Reconstruction of high resolution fields- subsampling cases

To compare to other methods, LR fields are first subsampled from HR ones by a factor of
4×4, i.e. yt = �s zt, where �s : IRP 7→ IRQ, P/Q = 4×4. Coupled LR and HR patches are
extracted to train the dictionaries. Due to direct subsampling, the aliasing, which has not
been addressed in previous works, will play an important role. This section investigates
the ability of dictionary learning approaches to handle this aliasing problem.
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Dh Dl

Figure 3.5 – Coupled dictionary of high and low resolution patches, where LR patches
are of size 4× 4, directly subsampled from their equivalent HR patches of size 16× 16.
The regularization parameter λ for join learning are chosen such that about 16 non-zero
coefficients are retained for reconstructing the joint patches of the training.

Learning step

ODL (Mairal et al., 2010) is used to learn a joint dictionary of HR and LR from the LTHS
planes. The subsampling ratio in space is P/Q = 4× 4, while the training samples are
taken every N/M = 6 snapshots in streamwise direction. From a total of 37× 16 training
planes, small patches of size 4× 4 at LR are extracted via the extraction operator Rk

` ,
coupled with HR patches of size 16× 16 by Rk

h. The choice of parameters is discussed in
section 3.5.1.

Three approaches SR1, SR2 and SR3 (table 3.1) are investigated. The interpolation
step in SR2 plays only the role of transforming the field from LR to the same dimension
as the HR one. The content should be rather the same, since the interpolation does not
introduce any small-scale information. However, starting from the interpolated fields
can bring the benefit of having a good large-scale information a priori. The model will
focus on small scales only. This approach has shown to be beneficial in many image
processing problems.

Figure 3.4 shows dictionaries for HR and LR patches and figure 3.5 shows dictionaries
for HR and interpolated LR patches. In both figures, atoms are sorted according to their
variances ‖ai‖

2
2 when learning the dictionary (from the top-left). The most significant

atoms contain mostly large scales, while less significant ones represent high-frequency
contents. Coupled atoms show similar patterns. The relation between LR and HR patches
are now encoded in the relation between LR and HR dictionaries. The assumption
of coupled representations in this case also implies that LR atoms are approximately
subsampled from the HR ones as shown in equation 3.26.
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Reconstruction step

Having learned dictionaries {Dh,D`} at hand, from given ye different from the training
data, the HR field ze is reconstructed by using algorithm 4. ye is also assumed to be
directly subsampled from ze the same way as in the training data, i.e. ye = �s ze. From ye,
all LR patches Pe

l with one-pixel overlapping are extracted. The sparse code is estimated
by solving the optimization problem in equation 3.43. Ae is then used to reconstruct HR
patches as P̂e

h = DhAe and put back into the global scene of ẑe.

LR and HR patches of sizes q = 4×4 and p = 16×16 respectively are extracted from
all training planes. The sparse code Ae is estimated from LR patches. Each row has at
most ‖Ae‖0 = q = 16 nonzero coefficients. It means that HR patches are reconstructed
from maximum 16 atoms within Dh, a strong constraint on the reconstruction accuracy
(see figure 3.3). The nature of the data also affects the accuracy in the sense how good
is the Sparse-Land prior in this case of turbulence. Also, this constraint addresses the
problem of designing more efficient representations of the data to reduce the error when
using the same number of atoms.

Using all three approaches presented in table 3.1, the models can reconstruct the
fields in the same accuracy as the spline interpolation but not better. This is due to
the severe situation where the presence of aliasing makes equation 3.26 a very crude
assumption. The subsampling of a small atoms brings a very strong aliasing effect
that coupled dictionaries could not efficiently handle. The next section will study the
capability of the present approach when the aliasing problem is absent from the LR data.

3.5.4 Reconstruction of high resolution fields- the downsampling
case

This section investigates the possibility of the current approach to estimate the HR fields
given the LR ones in the case of downsampling, i.e. with anti-aliasing prefiltering:

yt = �s�s zt (3.47)

where �s and �s are the spatial subsampling and low pass filter respectively. Bicubic
filter in Matlab built-in function imresize is used for the prefiltering and interpolation
step. It was shown also in section 3.4.2 that the assumptions Sparse-Land model at HR
also lead to the relation P` = �e

s�
e
sPh between LR and HR dictionaries. �e

s and �e
s are

local versions of �s and �s applying to patches.

We compare the three methods of coupled dictionary learning, the so-called SR1, SR2

or SR3, presented in table 3.1. To recall SR1 and SR2 couple either LR or interpolated LR



3.5. Dictionary learning for isotropic turbulence fields 63

Figure 3.6 – Dictionary of the residual between HR and interpolated LR.

patches with HR ones, while SR3 couples the residuals with the features of derivatives.
The procedure follows the previous section of subsampled fields, with learning parameters
in table 3.2. HR patches Ph are extracted from LTHS fields and coupled with LR patches
P`. The dictionaries are trained offline from {Ph,P`}, and used in online reconstruction
stage for all HTLS measurements to reconstruct HTHS fields.

We use three quantities for comparisons: the average NRMSE between reconstructed
and reference velocity fields estimated using equation 2.28, the 2D energy spectra of the
velocity fields and of the errors. These three quantities give a complete view to qualify
different approaches. Only the most difficult planes, which are equally far from LTHS
measurements, are used to estimate the errors. Error estimated using these planes will
better represent the generalization capability of the approaches.

Figure 3.7 shows the average NRMSEs of different reconstructions, either inter-
polation or reconstruction by coupled dictionaries using SR1, SR2 or SR3 approaches.
The three DL models reduce NRMSEs by 11.99%, 12.73% and 13.86% respectively
compared to the simple interpolation. SR3 gives the most accurate reconstructions by cou-
pling the residuals, essentially contain only small scales, with derivatives of large-scale
structures.

To further understand the quality of the reconstructed fields at different scales, figure
3.8 shows the 2D spectra of reference fields and different reconstructed ones. All methods
capture good large scales till about 0.5kc, where kc is the cutoff wave number defined
by the subsampling ratio. The interpolation, starting from the downsampled fields with
prefiltering step to avoid aliasing, loses already energy at large scales and capture almost
no small scales. By coupling the dictionaries, the reconstructed fields recover the large-
scale information with some small scales. If considering only the scales between 0.5kc
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Figure 3.7 – Means and standard deviations of NRMSEs estimated between reference
and reconstructed fields of all middle planes (at the center of blocks bounded by the two
LTHS planes). The reconstructions are by spline interpolation and super-resolution using
three different methods:: SR1, SR2 and SR3 (see table 3.1). NRMSEs are 0.267± 0.021,
0.235 ± 0.019, 0.233 ± 0.018 and 0.230 ± 0.019 respectively. The NRSME of spline
interpolation in the equivalent subsampling case is 0.276 (dashed black line).
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Figure 3.8 – 2D spectra of all planes used to computed the NRMSEs in figure 3.7, from
reference, interpolation and SR by three different methods: SR1, SR2 and SR3 (see table
3.1). For scales from 0.5kc to 1.5kc, energy losses of SR fields compared to reference
ones is 24%, 22% and 21% respectively, while that of interpolation is 85%.
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Figure 3.9 – (Left) 2D spectra of errors, which are the different between the reference
and reconstruction by interpolation and three different SR methods as described in 3.4.3.
(Right) 2D spectra of errors normalized by the energy spectrum of the reference (the
black curve in figure 3.8).

and 1.5kc, the energy loss of interpolated fields is 85%, while those are 24%, 22% and
21% for SR1, SR2 and SR3 respectively. The benefit of SR is significant in this most
interesting range of scales. Larger than 1.5kc, all reconstructions are not reliable. Smaller
than 0.5kc, spectra of all reconstructed fields are already very accurate.

Figure 3.9 (left) shows the spectra of the errors, which are the differences between
the reference and reconstructed fields by all methods. Errors are very low at small wave
numbers, reach a maximum around kc and reduce at higher wave numbers. Integrals of
these curves give the mean-square errors of each reconstruction method. To better qualify
the error at each scale, the curves are normalized by the energy spectrum of the reference
(the black curve in Figure 3.8). The normalized spectra of errors are interpreted as the
percentage of error at each scale. The interpolation gives very small relative errors at
large scales, but grow rapidly near kc. Error spectra of all SR methods collapse at 0.5kc

and reach a maximum of 100% error at around 1.5kc. Smaller than 0.5kc, SR1 and SR2

gives slightly higher errors compared to SR3. SR3 is more accurate since it starts from
the interpolated large scales, while those information are re-estimated by SR1 and SR2.
Also, SR3 focuses more on the missing information of small scales by using derivatives
as features and following the patterns of larger ones.

From the above comparisons, coupled dictionary approaches demonstrate clear
benefits compared to the simple interpolation, with errors reduced by about 15%. From
the energy spectra or spectra of errors, the benefits mostly come from the range of scales
between 0.5kc and 1.5kc, where kc is the cutoff defined by the grid of LR measurements.
The loss of energy in this range is reduced from 80% with interpolation to 20% by DL
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approaches. The spectra of the errors also show that most of benefits come from this
range of scales, before reaching 100% at around 1.5kc.

3.6 Concluding remarks

This chapter has discussed the possibilities of applying dictionary learning, a successful
approach in the field of signal and image processing, to turbulence studies. The method
finds a representation for the data by generalizing principal component analysis to
sparse representation in a redundant dictionary. Redundancy means that the number
of atoms can be larger than the dimension of input vectors, ignoring the orthogonality
constraint of PCA. This implies the sparsity, i.e. the representation is composed by a
linear combination of only a few atoms. These properties make the learned dictionary a
more adaptive representation of the data. Sparsity can also play the role of a prior about
the system when solving the inverse problem of HR field reconstruction.

To investigate the efficiency of DL in representing the data, the learned dictionaries
by this approach have been compared against PCA and predefined wavelet dictionaries.
Reconstruction errors as functions of sparsity, i.e. the number of atoms used, are shown
as the measure of efficiency. Adaptive dictionaries show some superiority compared to
the predefined ones. The benefits are mainly from the high sparsity levels, when less
than half the number of coefficients are non-zero.

DL is then used to reconstruct HR velocity fields from LR measurements. The
approach is called coupled dictionary learning, inspired from the single image super-
resolution application Yang et al., (2010) and Zeyde et al., (2012). By learning coupled
representations of LR and HR fields from the data, a nonlinear relation is established
and generalized to perform the reconstruction task. With the same idea, different pre-
processing techniques are tested. The coupling can be between HR and LR fields or
their interpolation. Another approach focuses more on the small-scale information by
coupling the small scales with the derivatives of interpolated fields.

The first attempt is for the configuration where LR fields are directly subsampled
from HR ones without any anti-aliasing prefiltering step. This is a priori not a favorable
case due to the presence of aliasing terms. However, it is worth studying since this setup
mimics what would happen in a real experiment. It is interesting also to see how well
learned dictionaries can handle aliasing. Results show that DL is inoperative to recover
some small scales on top of the interpolated large-scale information.

To understand whether the failure comes from the approach or from the aliasing,
another case is investigated where LR fields are downsampled from the HR ones with
a prefiltering step. The same approach with identical parameters is used. Results
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show significant improvements of reconstruction accuracy, with about 15% reduction of
NRMSEs compared to interpolation. Spectral analyses also show that most benefits are at
the frequency range of 0.5kc to 1.5kc, where kc is the cutoff wave number corresponding
to the downsampling ratio. In term of energy, simple interpolation loses 85% in this
range scales, while this loss is reduced to about 20% with DL approaches.

The above results demonstrate the capability and limitations of DL approaches in
solving the reconstruction problem in turbulence. The corresponding prior, which is the
duality between sparsity and redundancy, is robust. The first attempt has not succeeded
to reconstruct HR fields from direct subsampled LR ones due to the aliasing problem.
This attempt addresses also the question on designing a good sensing system or post-
processing techniques to deal with aliasing terms if exist.

This chapter has presented a similar configuration as regression models to learn the
mapping function between large and small scales. However, the learning is localized
thanks to the patch-wise approach. This property of dictionary learning approach can be
beneficial in other configurations where the training and testing samples are of different
scenes. For example, the training HR fields could be a small region of the whole field,
while LR one can be larger. In such case, dictionary approach is the only candidate
among all methods presented in this thesis.
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Chapter4
Non-local similarity-based propagation
model

This chapter proposes a novel model that combines low-resolution measurements in
space and time in order to reconstruct fully resolved turbulent fields. This method
tackles the problem of fusing high-time-low-space and low-time-high-space resolution
measurements mentioned in section 1.3.2. The model exploits local structures in large
scale measurements to reconstruct small scales. The idea is to assume that small scales
are essentially advected by large scales. This is based on the scale similarity hypothesis,
where information at adjacent ranges of scales are strongly correlated. The model is
further developed from the non-local means (NLM) denoising filter (Buades et al., 2005),
which is very simple but efficient, and widely used in image processing.

The proposed model is applied to the streamwise velocity fields from DNS data of
isotropic turbulence as described in section 1.4.2. Due to the absence of time resolved
fields, the streamwise direction is associated to the time dimension, while the other two
spatial directions are the spanwise and the vertical ones. Within this chapter, parameters
of the model will be optimized. Model performances are also investigated by fixing
one subsampling ratio in either space or time (spanwise) while varying the other. De-
tailed analysis of model performances are presented, but further comparisons with other
methods will be investigated in chapter 6.

4.1 Non-local means

Non-local means (NLM) was originally proposed by Buades et al., (2005) to deal with
the single image denoising problem. It has been then extended to solve other inverse
problems of image reconstruction such as inpainting (to fill in missing pixels) or super-

69
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Figure 4.1 – Image denoising using non-local means. Four sample patches in red
extracted from noisy image and centered at blue dots. The estimate of each point are
weighted average of its neighbors, and weights are computed as the similarity of the
moving patches compared to the reference patch. Photo credit: Foi and Boracchi, (2016).

resolution (to increase image resolution). The model assumes that image content is
likely to repeat in many regions. The estimate of each pixel is a weighted average of its
neighbors assigned with different weights. These weights are estimated as the similarity
of the denoised/inpainted/super-resolved pixel with its neighbors. By proposing several
estimates of a single pixel, NLM yields redundancy by using several observations of
similar scenes obtained from different locations within the same image. These multiple
observations of underlying ground truth help in solving the ill-posed inverse problem.

4.1.1 Non-local means filter for denoising

The NLM denoising filter is simple but rather robust. Figure 4.1 illustrates how the NLM
filter works on a sample image. Denoting zt ∈ IRP as the column vector of a 2D noisy
image, the NLM filter denoises the k−th pixel as a weighted average of its neighboring
noisy pixels:

ẑt[k] =

∑
i∈Nk

w[k, i] zt[i]∑
i∈Nk

w[k, i]
(4.1)

Nk is the set of neighboring pixels of the k−th pixel. The local weight coefficient w[k, i]
is the similarity between the k−th and i−th pixels:

w[k, i] = exp

-‖Rk
s zt -Ri

s zt ‖
2
2

2σ2

 (4.2)
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where the operator Rk
s : IRP 7−→ IRp extracts 2D patches of size

√
p×
√

p centered at
the k−th pixel. These patches are then arranged in a column vector in lexicographical
order. When p = 1, the NLM filter becomes a bilateral one. The global filter parameter σ
regulates the decay of the exponential expression. It controls the contribution of the i−th
pixel on the estimation of the k−th pixel. Geometrical priority can also be introduced,
where high weights are given to closer neighbors than further ones.

4.1.2 Generalized non-local means for super-resolution

The idea of the NLM filter has been generalized to perform video super-resolution
(Protter et al., 2009) by introducing time dimension. The aim is to estimate HR sequence
of images zt ∈ IRP, t = 1,2, ...,N, from corresponding LR sequence of images yt ∈ IRQ

(Q < P). NLM exploits the self-similarity property of natural images in the sequence.
The model assumes that common scenes are shared by many snapshots in the sequence.
Derivation and mathematical explanation can be found in Protter et al., (2009). The
closed form solution is simplified, where each HR pixel is estimated as a weighted
average of neighboring LR pixel in a space-time window:

ẑt◦[k] =

∑
t∈Nt◦

∑
i∈Nk

w[k, i, t] yt[i]∑
t∈Nt◦

∑
i∈Nk

w[k, i, t]
(4.3)

whereNt◦ is the set of neighboring snapshots in time of the t◦-th one. The weight w[k, i, t],
defined as the probability of the k−th HR pixel estimation coming from the i-th LR pixel,
is estimated as:

w[k, i, t] = exp

-‖Rk
s yt◦ -Ri

s yt‖
2
2

2σ2

 (4.4)

This solution exists when there is at least one non-zero weight w[k, i, t].

It is natural to test this idea to reconstruct HTHS turbulent fields Z of size N×P from
the corresponding HTLS measurements Y of size N ×Q (Q < P) subsampled directly
from Z. However, the NLM model by Protter et al., (2009) is not able to improve the
reconstruction accuracy compared to the single interpolation of HTLS velocity fields.
This is potentially due to the differences between video of natural images and turbulence.
The generalized NLM was originally illustrated most successful for video of human with
small motions, where the same scene is obtained for successive snapshots. Turbulent
fields are fundamentally different, where no sharp edge exists, sizes of structures make a
continuous spectrum, and all scales move and distort randomly. Also, since turbulence
fields have a decreasing power law spectrum, large scales contain most of the kinetic
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Figure 4.2 – A sketch of greedy and non-greedy propagation models. The two LTHS
planes are at the border including small scales bt◦ = h0 and bt◦+1 = hN/M defined in
equation 4.5. All small scales to be estimated from other planes h1,h2, ...,hP/Q−1 will be
propagated either directly from LTHS planes (greedy, red arrows) or in a plane-by-plane
manner (non-greedy, blue arrows). To simplify the plot, the propagation is shown from
LTHS planes to the central plane only.

energy. The reconstruction of these information plays the dominant role in total error.
The current NLM model re-estimates large scales, which are probably not as good as by
spline interpolation.

4.2 Similarity-based model to propagate small scales

We propose a similarity-based model in the spirit of the NLM model for video super-
resolution with important modifications. Since large scales are well reconstructed also
with spline interpolation, we leave these information unchanged while propagating small
scales only. Two models, the so-call “greedy” and “non-greedy” propagations, are
proposed. Figure 4.2 illustrates the idea of the two propagation schemes. While the
greedy model propagates small scales from LTHS planes directly toward other instant,
the non-greedy one does the propagation plane-by-plane.

4.2.1 Greedy propagation of small scales from key planes

LTHS measured snapshots are crucial to recover some spatial HF contents, since these
are the only place where small scales are available. In the configuration presented in
figure 1.5, HTLS snapshots give only information of large scales in space, while small
ones are only accessible from LTHS snapshots. The idea is to bring these small-scale
information and aggregate them on top of the measured large scales. The propagation
model is based on the similarity of large scales at different instants, while assuming that
small scales are advected by large ones.

LTHS snapshots {xt◦} ∈ IRP, t◦ = 1,2, ...,M, also called key frames, include both large
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and small scales. HTLS snapshots {yt} ∈ IRQ, t = 1,2, ...,N contain only large scales. The
propagation model aims at propagating the small-scale content from the key frames and
aggregating with the interpolation �s yt to reconstruct ẑt, which contains information of
all scales. �s : IRQ 7−→ IRP is the 2D cubic spline interpolator to reconstruct large scales
from LR measurements.

The propagation is based on the similarity of the large scales between the key frames
and the measured planes to reconstruct. Large and small scales could be separated from
the key frames using ideal Fourier filter. However, these large scales are not consistent
with those from the measured planes obtained by interpolations. It is more consistent to
subsample and re-interpolate LTHS fields the same way as HTLS ones. Small scales of
each key frame are then defined as:

bt◦ = xt◦ −�s�s xt◦ (4.5)

�s is the subsampling operator in space, �s : IRP 7−→ IRQ, and bt◦ should contain some
aliasing. The greedy propagation model estimates small scales ht at the t−th time step
from the given small scales bt◦ and bt◦+1 of the two bounded LTHS planes, ones just
before and after the t-th HTLS plane in time:

ĥt[k] =

∑
i∈Nk

w0[k, i, t] bt◦[i] +
∑
i∈Nk

w1[k, i, t] bt◦+1[i]∑
i∈Nk

w0[k, i, t] +
∑
i∈Nk

w1[k, i, t]
(4.6)

The weight w0[k, i, t] measures the similarity of k− th pixel of ĥt and the i-th pixel of bt◦ ,
and analogously for w1[k, i, t]. It is estimated as the similarity of large scales in the two
snapshots:

w0[k, i, t] = exp

-‖Rk
s �s yt -Ri

s�s�s xt◦ ‖
2
2

2σ2

 (4.7)

The term �s�s xt◦ is the conjugate large scales of bt◦ , i.e. xt◦ = �s�s xt◦ + bt◦ . w1[k, i, t] is
estimated analogously. The final reconstruction of all scales is:

ẑt = �s yt + ĥt (4.8)

Since �s yt contains some aliasing, so does ĥt due to the presence of aliasing in bt◦ and
bt◦+1, we could hope the two aliasing terms cancel and make the estimate of ẑt more
accurate. This can explain also the benefit when considering bt◦ as the residual of the
interpolation instead of ideal small scales.

The propagation in the formulation 4.6 is point-wise, where each point is estimated
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as a weighted average of its neighbors. Instead, a small patch centered at i−th pixel of
bt◦ and bt◦+1 can be accumulated over the patch centered at the k−th pixel of ĥt using the
same weights w0[k, i, t] and w1[k, i, t]. Since the same pixel belongs to several patches, the
overlapping as in the patch-based approach (section 3.4.1) is used. The overlapping will
ensure the continuity of neighboring points and increase the consistence of all existing
structures. There will be also more degree of freedom, where the number of estimates at
each location increases significantly. The accumulation of scales and weights are as:

ĥt =

P∑
k=1

(Rk
a

)ᵀ ∑
i∈Nk

w0[k, i, t]Ri
a bt◦[i] +

∑
i∈Nk

w1[k, i, t]Ri
a bt◦+1[i]




Wt =

P∑
k=1

(Rk
a

)ᵀ
Rk

a 1

∑
i∈Nk

w0[k, i, t] +
∑
i∈Nk

w1[k, i, t]




(4.9)

where Rk
a and Ri

a extract a small patch of size
√

r ×
√

r centered at the k−th and i−th
pixel respectively. The transpose operator

(
Rk

a

)ᵀ
is to put back this small patch into

the large field, centered at k−th pixel. 1 is the vector of size P× 1 of ones. The term(
Rk

a

)ᵀ
Rk

a 1 puts ones at the position of each patch. The whole procedure is to accumulate
the sum of all small scales estimates and their corresponding weights. The final step is
the normalization:

ĥt[k] 7−→
ĥt[k]

Wt[k]
(4.10)

4.2.2 Non-greedy propagation of small scales

The greedy model aims at propagating directly small scales from the two key frames to
the HTLS planes. The performance of such a model is very limited when the similarity
level decays rapidly with time far from the LTHS planes. A non-greedy propagation of
small-scale information plane-by-plane from the two neighboring LTHS fields toward
further planes is expected to improve the reconstruction.

The main step to propagate the small scales from the two key frames at bt◦ and bt◦+1

is presented in algorithm 5. g(t,h1,h2) is denoted as the similarity-based estimation
of small-scale information at t−th plane from the two bounded planes, with scales to
propagate being h1 and h2. The procedure starts by propagating small scales from these
two frames to their first two neighboring planes, h1 and hN/M−1 in algorithm 5, following
the formula 4.9. The next step considers these two estimated h1 and hN/M−1 as the new
key frames and propagate them further. This procedure is repeated till the central planes
that are equally far from bt◦ and bt◦+1.
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Algorithm 5 Estimating small scales of N/M−1 planes by non-greedy NLM propagation
from the two key frames at t◦ and t◦ + 1

1: Input: h0 , bt◦ , hN/M , bt◦+1
2: tc = round(N/2M) . Centered snapshot
3: for i = 1, ..., tc − 1 do
4: j = N/M − i
5: hi = g(i,hi−1,h j+1)
6: h j = g( j,hi−1,h j+1)
7: end for
8: if rem(N/M − 1) == 0 then . Check if even, there are 2 centered snapshots
9: htc = g(tc,hs[tc − 1],hs[tc + 2])

10: htc+1 = g(tc + 1,hs[tc − 1],hs[tc + 2])
11: else
12: htc = g(tc,htc−1,htc+1) . Estimate centered snapshot
13: end if

σ
√

p
√

r
√

s

0.05 9 1 5
0.1 17 3 11
0.2 25 13 17
0.4 25

Table 4.1 – Set of parameters to do simple grid search (try out all possible combinations
from this set): the global filter parameter σ, size of similarity patches p, size of accu-
mulation patches r, and size of searching region s. The search is performed on the DNS
data of isotropic turbulence, with the subsampling ratios are P/Q = 3× 3 in space and
N/M = 4 in time.

4.3 Applying the propagation model to isotropic turbu-
lence

4.3.1 The choice of model parameters

The propagation model uses four parameters (see equations 4.7 and 4.9), including the
filter parameter σ, the size s, p, and r of the searching region Ns, the similarity patch
extracted by Rs, and the accumulation patch extracted by Ra respectively. Optimization
of these parameters is done by varying one while fixing the remaining three. The
parameter-tunning is carried out by investigating the error between the reconstructed
fields and the reference ones. These tests give an idea on the optimal set of parameters,
which can be used in new situations where reference fields are not available.

Table 4.1 gathers all parameters to test. The DNS data of isotropic turbulence are
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used. HTLS and LTHS measurements are virtually extracted from the fully resolved
fields as discussed in section 1.3.2. The subsampling ratios are P/Q = 3× 3 in space,
equally distributed in spanwise and vertical direction, and N/M = 4 in time (streamwise).
These subsamplings correspond to energy losses of about 1% both in space and time (see
table 1.2). The configuration is chosen to have a moderate loss of information to facilitate
all numerical experiments. Other configurations with various losses are investigated later
in this section.

Three measures are used to study the effects of different parameters on the reconstruc-
tion accuracy. One is the average normalized root mean square error (NRMSE) ε̄, which
represents an overall measure of the reconstruction accuracy, as in equation 2.28. The
two other quantities are the power spectra E(k) and the spectra of the error Eε(k). Power
spectra show streamwise energy contents, while error spectra show the squared errors at
each frequency. These two measures give more insights about the model performances
when reconstructing turbulent fields at different scales.

Figure 4.3 shows average NRMSEs for the four parameters as a function of t/δt, the
time distance from the previous LTHS plane to the estimated one. Two LTHS planes are
at t/δt = 0 and t/δt = N/M = 4. Average NRMSEs are shown as bars, with the standard
deviation of each estimate shown by the error bars. The average and standard deviation
of NRMSEs at each t/δt are computed using 37× 23 estimates from all blocks between
the two successive key frames. Parameters are varied by changing one and keeping the
remaining three constant around a reference parameters set (σ = 0.1, p = r = 25× 25 and
s = 11× 11). This set is close to the optimal values used later in this section and chapter
6 when comparing with other models.

Figure 4.4 shows the 2D spectra of the errors Eε(k) normalized by the energy spectra
of the reference E(k). These spectra are estimated as an average of all planes at t/δt = 2,
the most difficult planes to reconstruct. For all reconstructions, the spectra exhibit very
small errors at large scales, which grow sharply when approaching the cutoff wave
number defined by the spacing of the low sampling measurements. At very small
scales, errors can reach 100%. This level of error means that no information has been
reconstructed.

Among all parameters, the filter parameter σ is the most sensitive. The optimal value
is σ ≈ [0.1,0.2]. Small values of σ narrow the searching region by shrinking weights of
patches with low similarity levels to zero. Less estimates are taken into account when
doing the weighted averaging. In the extreme situation σ = 0, the number of estimates
is reduced to one pixel only, which is the center of the most correlated patch. The
propagation model is simplified to the shifting of a single pixel. Otherwise, too large
values of σ put weights on all the neighboring patches. Models with very large σ lead
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Figure 4.3 – Average NRMSEs over the whole dataset: each estimate of NRMSE is
computed by comparing the reconstructed plane with the reference at each t/δt. The
bars show the average NRMSEs, while the error bars are standard deviations of NRMSE
estimates.

to a simple averaging with approximately equal weights. For these reasons, NRMSE is
high for both small and large σ, while a moderate value of σ is a good compromise to
minimize the reconstruction error. This is shown in the error spectra (figure 4.4) where
the optimal σ gives similar large-scale reconstruction errors but lower ones at small
scales.

Other model parameters are less sensitive. Searching region Nk defines how large
is the neighborhood to seek the small-scale information. However, the filter parameter
σ plays a similar role by dumping the contribution of irrelevant patches to zero. Sizes
of similarity and accumulation patches are more important. Similarity patches directly
define the quality of weight estimates. Small patches are necessary to keep small-scale
details of the flow. Larger patches improve the robustness of the models against noise
and ill-posed conditions of the inverse problem. Ideally, we want the model to work well
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Figure 4.4 – Normalized error spectra of reconstructed planes at t/δt = 2 (the most
remote from the two neighboring LTHS planes). Three cases of varying p, r and s, all
curves are almost collapsed.

with small patches. However, experiments show slight improvements with larger patches.
Similar results are observed when increasing the size of accumulation patches. Taking
more pixels into the averaging helps in reducing the estimation noise, hence improving
the reconstruction.

4.3.2 Comparing to spline interpolation

The proposed propagation models, either greedy or non-greedy algorithm in time, are
compared to cubic spline interpolations either in time �t xt or in space �s yt. Apparently,
�t xt contains no temporal small-scales information, while �s yt provides only large scales
in space.

Figure 4.5 shows the mean NRMSEs by different methods as a function of time
spacing to the previous LTHS plane t/δt. The error bars are also shown, telling how these
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Figure 4.5 – Comparison of averaged NRMSEs as functions of time distances to the
previous bounded LTHS plane by spatial/temporal interpolation, greedy and non-greedy
propagation for the configuration where subsampling ratios are 3× 3 in space and 4 in
time.

errors are different from one plane to another. These errors are estimated analogously
as in figure 4.3. NRMSEs of reconstructed fields obtained by propagation models or
time interpolation are necessarily small near the LTHS planes (t/δt = 1 and t/δt = 3), and
increase toward the center. The error remains constant for spatial interpolation as it is
only a function of the subsampling ratio in space. Greedy and non-greedy algorithms
essentially give the same errors at the closest two planes from the LTHS ones. At these
time steps, propagation models improve significantly (about 40%) compared to spatial
interpolation. At the middle plane, errors by propagation increase, but remain 20% lower
than both the interpolations. The non-greedy propagation model further decrease the
error compared to the greedy one.

Figure 4.6 shows the spectral analysis of the reconstruction by different models.
Energy spectra and error spectra are shown for the two positions, either close or far from
LTHS planes. From the first two spectra, it is shown that spatial interpolation captures
only large-scale information. Time interpolation gives an estimate with a good energy
spectrum, while propagation schemes are subject to a certain energy loss at small scales.
However, the error spectra shows that time interpolation gives good energy spectra with
poorly reconstructed small scales. Propagation models yield compromise estimates.
Certain amount of small scales are captured, while error spectra illustrate improvements
at all frequencies compared to both interpolations.
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Figure 4.6 – Comparison of energy spectra and error spectra for various reconstructions
by spatial/temporal interpolation, greedy and non-greedy propagation. Subsampling
ratios are 3× 3 in space and 4 in time. The spectra are averaged over all planes of the
same distance to the closest LTHS plane, i.e. t/δt = 1 (left) or t/δt = 2 (right).

4.3.3 Model performances in various configurations

To characterize the proposed propagation models, various configurations at different
subsampling ratios in either space or time are investigated. Model performances depend
on the ratio in space, since it defines how much information is missing. The performances
also depend on the ratio in time, since small-scale information will necessarily be lost
when similarity between large scales die off with increasing time spacings.

To test the model performances when increasing time distances between LTHS
snapshots, the subsampling ratio P/Q = 3× 3 in space, while varying those in time as
N/M = 4,6 and 8. The amount of missing information to recover due to the subsampling
in space is about 1% of the total energy of the flow. Average NRMSEs as a function
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Case
Subsampling ratios Energy loss√

P/Q N/M ∆κs(%) ∆κt(%)

1 3 4 1.03 1.23
2 3 6 1.03 3.56
3 3 8 1.03 6.53
4 3 4 1.03 1.23
5 4 4 2.63 1.23
6 6 4 7.29 1.23

Table 4.2 – Configuration parameters of six testing cases. The subsampling ratios of
HTLS measurements are

√
P/Q and equal in both spatial directions. The ratios of LTHS

measurements in time are N/M. The normalized energy losses in space ∆κs and in time
∆κt are defined in Eq. (1.2).

of the position in time are shown in figure 4.7. In all three cases, the central plane is at
∆tc/δt = 0, while other planes are at different distances ∆tc/δt to this plane, both negative
(planes before) or positive (plane after).

In the figure 4.7, NRMSE for spatial interpolation remains constant, since it is
independent of time. Errors by time interpolations or propagation models increase when
moving toward the center. For time interpolations, these errors increase dramatically
when the time subsampling ratio is high. The proposed propagation models are able
to bring down the errors compared to interpolation for small to moderate distances
between LTHS planes. For very large ones (N/M = 8, diamond shape), the propagated
small scales even slightly downgrade the given large-scale information from the spatial
interpolation.

Figure 4.8 shows NRMSEs of the proposed propagation models (both greedy and
non-greedy), spatial and temporal interpolations when varying the subsampling ratio in
space as P/Q = 3×3,4×4 and 6×6 while keeping a fixed distance between LTHS planes
of N/M = 4. Time interpolation gives the same error for all three cases, while errors of
spatial interpolations are independent of the position in time. For a small subsampling
ratio in time, temporal interpolation and propagation models are always better than spatial
interpolation. For a small ratio of P/Q = 3 × 3, the non-greedy propagation scheme
give the most accurate reconstruction. In the case of moderate ratio (P/Q = 4 × 4),
the energy loss in space is already three times larger than that in time (see table 4.2).
Propagation models start with large scales from spatial interpolation and reconstruct
small-scale information to give the same accuracy as time interpolation. For a large
subsampling ratio of P/Q = 6× 6, propagation models improves significantly compared
to spatial interpolation but remains worse than temporal interpolation. This is due to
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Figure 4.7 – Averaged NRMSEs of reconstruction by spatial/temporal interpolation,
greedy and non-greedy propagation models. The errors are shown for three cases, with a
fixed ratio in space (P/Q = 3×3) and varied ratios in time (N/M = 4,6,8). The reference
plane is chosen to be the mid-plane, and ∆tc/δt is the distance of each other plane from
the reference one. Different colors refer to different methods, while the marker shapes
vary for different N/M.

severe information losses after the subsampling in space, which cannot be completely
recovered.

4.4 Concluding remarks

The similarity-based propagation model, also called NLM-based propagation model, is
proposed to reconstruct small scales in a configuration where measurements of all scales
are given at key frames (LTHS planes). Small scales from these planes are propagated
toward other instants in time. The proposed model takes benefits from the local/nonlocal
similarity among scales and among neighboring fields. Large-scale information is used
as initial estimates and kept unchanged, while small scales are propagated as a weighted
sum within a small neighborhood from one plane to another. The weights are estimated
as the similarity of large scales in small patches. They are interpreted as the probabilities
of an estimate to be its neighbors from nearby planes or key frames.

The model works very well in the situation where the subsampling ratios are not
severe. In such case, it is able to bring small scales of the flow and add to initial
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Figure 4.8 – Averaged NRMSEs of reconstruction by spatial/temporal interpolation,
greedy and non-greedy propagation models. The errors are shown for different space
spacing (P/Q = 3×,4×4,6×6), while in time the ratio is fixed (N/M = 4). The reference
plane is chosen to be the mid-plane, and ∆tc/δt is the distance of each other plane from
the reference one. Different colors refer to different methods, while the marker shapes
vary for different P/Q.

large scales given by the coarse measurements. It also performs better than temporal
interpolation from key frames, which is point-wise and disregards the spatial structures of
the flow. Among the models, the non-greedy propagation works the most accurately by
gradually bringing small-scale information from the bounded planes toward the center.

This model is not robust when the subsampling ratios remain moderate. When the
time distance between LTHS planes increases, model performances are getting worse
than spatial interpolation. This is because when the key frames are far from each
other, similarities of large scales decay, making propagation models becomes inefficient.
Reconstructed small-scale information even downgrades the initial large scales from
spatial interpolation. The discrepancies are also found with large subsampling ratios
in space. In such cases, the model suffers from severe information loss that can not be
recovered completely.

More sophisticated models can be further investigated to improve the reconstruction.
First, it’s worth mentioning the idea of multi-scale propagation, which has been investi-
gated during this work but gives no improvement. However, in the case where the range
of scales is extremely wide, there might be potential gain from a non-greedy propagation
in space as the one in time presented in this chapter. Second, since structures in turbu-
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lence distort and rotate in a disorder manner, it maybe better to propose adapted methods
that compute similarity of rotating patches. This idea has been started by Zimmer et al.,
(2008), but further investigation is required to adapt to our problem.



Chapter5
Bayesian fusion model

This chapter proposes a Bayesian fusion model (Nguyen et al., 2015) to combine HTLS
and LTHS measurements as described in section 1.3.2. The model takes benefit from both
sources of information by searching for the most probable flow given the measurements
thanks to a maximum a posteriori estimate. Better performances are expected since space
and time correlations are equally important. The model also recovers flow details inac-
cessible from a single source of measurement via interpolations. By integrating directly
the measurements, a compromise estimate is proposed such that detailed information of
the flow close to the sensors is well preserved. This approach also overcomes the limita-
tions of simple regression, which acts as a low pass filter due to the mean square error
minimization. It potentially outperforms propagation models by using the space-time
measurements in a balanced manner, permitting to take benefits equally from the two
sources of information. In this chapter, DNS data of isotropic turbulence described in
section 1.4.2 is used to investigate model performances. Further comparisons with other
methods and demonstrations for DNS data of channel flow will be presented later in
chapter 6.

5.1 A probabilistic model

Bayesian framework has been used widely from very early in communication problems
(Sage and Melsa, 1971; Trees, 1967) and more recently in image processing, remote-
sensing, data assimilation and data fusion (wikle2007bayesian; Challa and Koks, 2004;
Durrant-Whyte and Henderson, 2008; Joshi and Jalobeanu, 2010; Koks and Challa,
2003; Levitan and Herman, 1987; Ma et al., 2000; Zhang et al., 2009). The core of the
framework is Bayes’ rule, which describes how the probability of a system is altered
by a new evidence or measurement. One of the main application of Bayes’ rule is the

85
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inference, with the aids of different Bayesian estimators.

5.1.1 Bayes’ rule

Let d denote a vector of observations/measurements/data, and h denote a hypothesis.
This hypothesis can be a parameter or an unknown variable to estimate, with a prior

distribution p(h). The probability of the observation vector, also called evidence, is p(d).
The joint probability p(d,h) can be expressed as (Kendall et al., 1987):

p(h, d) = p(h | d)p(d)

= p(d |h)p(h)
(5.1)

where p(.|.) is the conditional distribution of one variable given the other. Rearranging
the above equation, the conditional distribution of the hypothesis knowing the data is:

p(h | d) =
p(d |h)p(h)

p(d)
(5.2)

where p(d) is a constant. This relation is referred as Bayes’s rule, which can be rewritten
as:

p(h | d) ∝ p(d |h)p(h) (5.3)

or in general:

[posterior distribution] ∝ [likelihood] ∗ [prior distribution] (5.4)

The prior distribution p(h) describes our knowledge of h without observing the data
d, while p(h | d) is the corresponding knowledge after observing the data. p(d |h) is
likelihood function, which measures how far the hypothesis h explain observations d.

5.1.2 Bayesian estimates

Bayes’s rule is very simple but very powerful. Inference is one of the most important
applications. In most inference problem, either maximum likelihood estimate (MLE) or
maximum a posteriori (MAP) estimate is used.
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Maximum likelihood estimate (MLE)

The likelihood is the probability of the measurements d under the hypothesis h. For
given measurements, MLE finds the hypothesis h that maximizes the likelihood function:

ĥ = argmax
h
{p(d |h)} (5.5)

The resulting ĥ can be considered as the one that makes the measurements the most
“probable” or “likely”. Alternatively, the MLE is often obtained by maximizing the
log-likelihood:

ĥ = argmax
h
{log(p(d |h))} (5.6)

Very often, this problem is ill-posed, while in some situations, an explicit expression of
MLE can be obtained.

Maximum a posteriori estimate (MAP)

In many cases, some knowledge of undergoing phenomena is known a priori. Such
knowledge can be from theory or empirical evidence, represented via the prior distribution
p(h). To find the most probable hypothesis h given measurements d and some prior
knowledge of h, the posterior probability p(h | d) is maximized. Bayes’ rule tells us how
to incorporate prior knowledge into the maximization problem as:

ĥ = argmax
h
{p(h | d)}

= argmax
h
{p(d |h)p(h)}

(5.7)

MAP is different from MLE due to the presence of the prior probability p(h). This prior
plays the role of a regularization when dealing with ill-posed inverse problems.

5.2 Bayesian fusion model

In a Bayesian approach, this section derives a fusion model to combine LTHS and HTLS
measurements to reconstruct fully-resolved HTHS fields. This is done by considering
all variables as random. The most probable HTLS is sought such that it maximizes a
posterior probability given the two measurements via a MAP estimate.
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5.2.1 The model

Let x and y denote LTHS and HTLS measurements, and z denote HTHS data to recon-
struct. x and y are directly subsampled from HTHS, i.e. x = �t z and y = �s z. The
variables z, x and y are random, zero-mean of dimension PN, PM and QN respectively.
P and Q are numbers of spatial points in each snapshot, while N and M are numbers
of snapshots. The present work is a challenging inverse problem since we consider
Q � P and M � N. Let “s” denote the subscript of operators performing in space,
and “t” denote the subscript of those in time. � is an cubic spline interpolator, � is for
subsampling, and � is a low-pass filter to separate large scales from small scales. In
the case of isotropic turbulence, � is the ideal Fourier filter thanks to the isotropic and
periodic properties. In the case of channel flow, � is a least-square spline filter for its
sharp cutoff response.

Given LR measurements of either y in space or x in time, the fully resolved vector z
can be estimated by single interpolations. The 1D time interpolation goes from a PM to
a PN- dimensional space, i.e. x 7−→ ẑ = �t x, while the 2D space interpolation goes from
a QN to a PN- dimensional space, i.e. y 7−→ ẑ = �s y. Let PN- dimensional vectors hs

and ht denote the information that cannot be recovered by simple interpolations �s or �t.
z can be modeled in two ways:

z = �t x+ ht (5.8)

z = �s y+ hs (5.9)

Missing information ht and hs essentially feature small scales. Using either x or y, it is
not possible to estimate ht and hs. The idea of Bayesian fusion is to combine the two
models by using �t x in (5.8) to estimate the unknown hs in (5.9) and vice-versa.

Let N(u |µu,Σu) denote the multivariate Gaussian distribution of a PN dimensional
random vector u with mean value µu and covariance matrix Σu. The PN × PN matrix is
the expectation of (u−µu)(u−µu)ᵀ. The probability density function (pdf) of u with a
multivariate Gaussian distribution N(u |µu,Σu) is:

p(u) =
1

(2π)PN/2|Σu|1/2
exp

(
-
1
2
‖u -µu‖

2
Σu

)
(5.10)

where |.| denotes the matrix determinant, and ‖u−µu ‖
2
Σu

is the Mahalanobis distance:

‖u -µu‖
2
Σu

=
(
u−µu

)ᵀ
Σ
−1
n

(
u−µu

)
(5.11)

Let assume that �t x and ht are approximately independent; �t x captures temporal large
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scales of x. Similarly, �s y and hs are assumed to be approximately independent. This
is not exact, since the subsamplings cause aliasing terms in each pairs of (�t x,ht) and
(�s y,hs). Assume also that ht and hs are zero mean Gaussian processes, i.e. ht ∼

N(0,Σht) and hs ∼N(0,Σhs). Pdfs of these unknowns are modeled as:

p(ht) =
1

(2π)PN/2|Σht |
1/2 exp

(
-
1
2
‖ht‖

2
Σht

)
(5.12)

and similarly for p(hs). Posterior probabilities of z knowing either x or y are then
modeled as:

p(z | x) ∼N(z |�t x,Σht) (5.13)

p(z | y) ∼N(z |�s y,Σhs) (5.14)

5.2.2 MAP estimation

The present Bayesian model aims to build an estimate of z given x and y using the
probability models (5.13) and (5.14). The model uses a MAP estimate to search the most
probable ẑ given x and y such that ẑ maximizes the posterior pdf p(z | x, y):

ẑ = argmax
z

p (z | x, y) (5.15)

Using Bayesian rules, one has:

p (z | x, y) ∝ p (x, y | z) p(z) (5.16)

Assuming that x and y are conditionally independent of z, equation 5.16 becomes:

p (z | x, y) ∝ p(x | z)p(y | z)p(z) (5.17)

In equation 5.17, the likelihood functions p(x | z), p(y | z) and the prior pdf p(z) appear,
while only the posterior probabilities p(z | x) and p(z | y) are available in (5.13) and
(5.14).

To complete the model, the likelihood functions can be expressed in term of the
posterior pdfs and prior of z using Bayesian rules. Section 5.3.1 will introduce an
alternative way to estimate these functions from posterior pdfs using a linear Gaussian
model. Since there is no evidence of a proper prior for the fully resolved velocity field
z, it is natural to assume a “noninformative” prior (also referred as “vague” or “flat”).
This prior assumes that all the values of z are equally likely (Gelman et al., 2013). The
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estimation of ẑ is now solely based on the measurements and not influenced by external
information. The prior distribution therefore has no influence on the posterior pdfs.

With the assumption of a noninformative prior, p(z) is constant. Using Bayes rules,
the relation between the likelihood function and the posterior pdf is:

p (z | x) ∝ p (x | z) p(z) (5.18)

Since p(z) is replaced by a constant, one gets p (x | z) ∝ p (z | x) and p (y | z) ∝ p (z | y).
Equation 5.17 becomes:

p (z | x, y) ∝ p(z | x)p(z | y) (5.19)

The MAP estimate is therefore:

ẑ = argmax
z

p(z | x)p(z | y) (5.20)

Logarithms of p (z | x) and p (z | y) are:

− ln p(z | x) =
1
2
‖z -�t x‖2Σht

+C1 (5.21)

− ln p(z | y) =
1
2
‖z -�s y‖2Σhs

+C2 (5.22)

where C1 and C2 only depend on Σht and Σhs , and are independent of x, y and z. Solving
the optimization problem 5.20 is equivalent to minimize the cost function:

C(z) =
1
2
‖z -�t x‖2Σht

+
1
2
‖z -�s y‖2Σhs

(5.23)

Setting the gradient of C(z) to zero:

∂C(z)
∂ z

= Σ−1
hs

(z−�s y) +Σ−1
ht

(z−�t x) = 0 (5.24)

yields:
ẑ =

(
Σ
−1
ht

+Σ−1
hs

)−1 (
Σ
−1
hs
�s y+Σ−1

ht
�t x

)
(5.25)

Applying the matrix inversion lemma (Kay, 1993):

(A + BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1 (5.26)

Equation 5.25 can be rewritten as:

ẑ = Σht

(
Σht +Σhs

)−1
�s y+Σhs

(
Σht +Σhs

)−1
�t x (5.27)
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Equation 5.27 is the final form of the proposed Bayesian fusion model using a MAP
estimate and assuming a noninformative prior of z. Variance matrices Σht and Σhs are
parameters to be learned from the measurements.

5.3 Equivalent models

The above section presents a Bayesian fusion model to combine two sources of measure-
ments. In the final formula, the prior distribution is omitted. The model is similar to
some other models existing in the literature. The linear Gaussian model assumes that
measurements follow Gaussian distributions to estimate the likelihood functions and
prior probability. The final formula proposes slightly different weights compared to the
Bayesian model assuming a non-informative prior. Another model is the generalized
Millman formula (Shin et al., 2006), which is studied in the context of multi-sensor
fusion. The model aims at combining information from various sensors. It becomes
identical to the Bayesian fusion model when the cross-covariance between estimates are
neglected. We briefly recall these models below.

5.3.1 Linear Gaussian model

Let consider equations 5.8 and 5.9 as the two linear models of z. The posterior distribu-
tions N(z |�t x,Σht) and N(z |�s y,Σhs) are given in equations 5.13 and 5.14. Distributions
of the measurements p(�s y) = N(0,Σ�s y) and p(�s y) = N(0,Σ�s y) are also assumed
Gaussian. Using Bayes’ rule for these linear variables as described in Bishop, (2006),
appendix A.1 derives the following formulas:

p(�t x | z) = N
(
�t x |ΣtΣ

−1
ht

z,Σt
)

p(�s y | z) = N
(
�s y |ΣsΣ

−1
hs

z,Σs
)

p(z) = N (z |0,Σz)

where:

Σ
−1
t = Σ−1

ht
+Σ−1

�t x

Σ
−1
s = Σ−1

hs
+Σ−1

�s y

Σz = Σht +Σ�t x = Σhs +Σ�s y
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Using the above Gaussian distributions, a MAP estimate of z is:

ẑ = argmax
z
{p(�t x | z)p(�s y | z)p(z)}

= argmin
z
{− ln p(�t x | z)− ln p(�s y | z)− ln p(z)}

Taking the logarithm of above probabilities yields:

−2ln p(�t x | z) =
(
�t x−ΣtΣ

−1
ht

z
)ᵀ
Σ
−1
t

(
�t x−ΣtΣ

−1
ht

z
)

= ‖ΣtΣ
-1
ht

z -�t x‖2Σt

−2ln p(�s y | z) =
(
�s y−ΣsΣ

−1
hs

z
)ᵀ
Σ
−1
s

(
�s y−ΣsΣ

−1
hs

z
)

= ‖ΣsΣ
-1
hs

z -�s y‖2Σs

−2ln p(z) = zᵀΣ−1
z z = ‖z‖2Σz

(5.28)

The cost function C(z) is defined as the sum of above terms:

C(z) = ‖ΣtΣ
-1
ht

z -�t x‖2Σt
+‖ΣsΣ

-1
hs

z -�s y‖2Σs
+‖z‖2Σz

(5.29)

The gradient of C(z) is computed as:

∂C(z)
2∂ z

= Σ−1
t

(
ΣtΣ
−1
ht

z−�t x
)
+Σ−1

s

(
ΣsΣ

−1
hs

z−�s y
)
+Σ−1

z z

=
(
Σ
−1
ht

+Σ−1
hs

+Σ−1
z

)
z−

(
Σ
−1
t �t x+Σ−1

s �s y
)

The estimate ẑ is obtained by setting this gradient to zero so that:

ẑ =
(
Σ
−1
ht

+Σ−1
hs

+Σ−1
z

)−1 (
Σ
−1
t �t x+Σ−1

s �s y
)

(5.30)

This fusion formula has the same form of a weighted sum, with the weights are slightly
different from the formula 5.25.

5.3.2 Generalized Millman formula

In the context of multisensor fusion, the Millman and Bar-Shalom-Campo formula is very
common to combine the two estimates with either correlated or uncorrelated errors. This
formula is generalized in Shin et al., 2006, permitting to fuse multi-source measurements.
This formula turns out to be similar in this context of Bayesian fusion when no prior
knowledge is inserted into the model.

Let denote { ẑ1, ..., ẑK} the K estimates of an unknown random vector z ∈ IRn. The
objective of the fusion model is to find the best linear estimate via a set of coefficient
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matrices Ci (i=1,...,K):

ẑ =

K∑
i=1

Ci ẑi s.t.
K∑

i=1

Ci = In (5.31)

The final form of GMF, as derived in appendix A.2 is:

ẑ =

K∑
i=1

Ci ẑi s.t.



K∑
i=1

Ci = In

K−1∑
i, j=1

Ci
(
Σi j −ΣiK

)
+ CK

(
ΣK j −ΣKK

)
= 0, j = 1, ...,K − 1

(5.32)

In the case of fusing two estimates (K = 2), this becomes the Bar-Shalom-Campo
formula:

ẑ = (Σ22 −Σ21) (Σ11 +Σ22 −Σ12 −Σ21)−1 ẑ1 + (Σ11 −Σ12) (Σ11 +Σ22 −Σ12 −Σ21)−1 ẑ2

(5.33)
If ẑ1 and ẑ2 are uncorrelated, i.e. Σ12 = Σ21 = 0, the fusion formula becomes the
Millman’s formula

ẑ = Σ22 (Σ11 +Σ22)−1 ẑ1 +Σ11 (Σ11 +Σ22)−1 ẑ2 (5.34)

which is identical to the proposed Bayesian fusion model with a non-informative prior
on z.

5.4 Model simplifications

Though providing the full theoretical estimate of ẑ, equation 5.27 is impractical to
use as is for several reasons. The full covariance matrices Σht and Σhs , representing
all the sources of correlations in space and time, cannot be estimated from only the
measurements x and y. This is because the unknown ht and hs are only accessible at the
measured positions in space and time. Also, the covariance matrices of size PN ×PN are
very large, making them very difficult to accurately estimate and to invert. Additional
assumptions on the shape of Σht and Σhs are necessary.

5.4.1 Simplified covariance matrices

A common approach to simplify the formula 5.27 is to assume Σhs and Σht be diagonal.
This simplification implies the independence between all elements of ht and hs. The
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resulting simplified version of formula 5.27 is point-wise:

ẑ[i, t] =
σ2

hs
[i, t]

σ2
hs

[i, t] +σ2
ht

[i, t]
�t x[i, t] +

σ2
ht

[i, t]

σ2
hs

[i, t] +σ2
ht

[i, t]
�s y[i, t] (5.35)

where [i, t] is the index of each point in space and time respectively. The variances σ2
hs

and σ2
ht

are functions of each position in space and time. Their estimation is detailed in
the next section. Equation 5.35 will be used to reconstruct HTHS data. As a weighted
average, it proposes a compromise estimate from the measurements. With a symmetrical
form in space and time, the model uses information from both measurements to correct
large scales reconstruction and recover partial information at smaller scales.

Assuming diagonal covariance matrices, the linear Gaussian model in equation 5.30
is simplified as:

ẑ[i, t] =

σ2
hs

[i, t] +
σ2

ht
[i, t]σ2

hs
[i, t]

σ2
�t x[i, t]

σ2
ht

[i, t] +σ2
hs

[i, t] +
σ2

ht
[i, t]σ2

hs
[i, t]

σ2
z[i, t]

�t x[i, t]

+

σ2
ht

[i, t] +
σ2

ht
[i, t]σ2

hs
[i, t]

σ2
�s y[i, t]

σ2
ht

[i, t] +σ2
hs

[i, t] +
σ2

ht
[i, t]σ2

hs
[i, t]

σ2
z[i, t]

�s y[i, t]

(5.36)

The simplified linear Gaussian model slightly modifies formula 5.35 by introducing the

three terms:
σ2

ht
[i, t]σ2

hs
[i, t]

σ2
z[i, t]

,
σ2

ht
[i, t]σ2

hs
[i, t]

σ2
�s y[i, t]

and
σ2

ht
[i, t]σ2

hs
[i, t]

σ2
�t x[i, t]

. These three terms are

essentially small, since variances of hs and ht alone are relatively small compared to the
variances of z, �s y and �t x due to the power law spectrum of turbulence.

5.4.2 Statistical parameters estimation

Let Z, X, Y, Ht, Hs, Γht and Γhs be the matrix forms of z, x, y, ht, hs, σ2
ht

and σ2
hs

respectively. Matrices Z, Ht, Hs, Γht and Γhs are of size N × P, while X and Y are of
size M × P and N ×Q. Matrices Γht and Γhs correspond to empirical variances, which
are functions of space and time (i, t).

Variance matrices are estimated from Ht and Hs, which are available at the measure-
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ments positions only. We use:

�tHs = X− �s�sX (5.37)

�sHt = Y− �t�tY (5.38)

where �t subsamples in time from N to M time steps, and �s subsamples in space from
P to Q points. These M instants and Q positions are the same as for LTHS and HTLS
measurements. Since the flow is approximately stationary and spatial interpolation is
independent of time, Γhs[i, t] becomes Γhs[i], a function of spatial locations only. These
variances are estimated by averaging over all time steps:

Γhs[i] =
1

M

M∑
t=1

(X[i, t]− �s�sX[i, t])2 (5.39)

Variance in Γht is a function of distances τ to the previous LTHS time step only, where
τ/δt = 0,1,2, ...,N/M, and δt is the time lag between two consecutive HTHS time steps.
Γht becomes a function of space and τ only, i.e. Γht[i, τ]. It is estimated by averaging
over M blocks (of N/M snapshots) bounded by two consecutive LTHS instants:

Γht[i, τ] =
1
M

∑
t◦

(Y(i, t◦ + τ)− �t�tY(i, t◦ + τ))2 (5.40)

where t◦/δt = 1,1+N/M,1+2N/M, ...,1+(M−1)N/M. Along the homogeneous direction
of the flow, Γhs[i] and Γht[i, τ] can be also averaged over all blocks defined by the four
neighboring HTLS measurements (see figure 1.6). The variances are then a function of
positions only in non-homogeneous direction and relative distances to the four closest
HTLS sensors. These estimated variances are rearranged into a vector form σ2

ht
[i, t] and

σ2
hs

[i, t] to complete the fusion model using the simplified formula in equation 5.35.

5.5 Applying the Bayesian fusion model to DNS data of
isotropic turbulence

The Bayesian fusion model is applied to combine HTLS and LTHS measurements from
simulated data of an isotropic turbulence as described in section 1.4.2. It is noticed that
the streamwise direction is considered as time dimension, while the two spatial directions
are spanwise and vertical. Both Bayesian fusion model (BF) with non-informative prior
using formula 5.35 and the linear Gaussian model (LG) using formula 5.36 are tested.
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5.5.1 Impact of subsampling ratios

A total of seven cases gathered in table 5.1 are investigated. These cases correspond to
different subsampling ratios. In space, the ratios

√
P/Q = 3,4 and 6 are equally applied in

spanwise and vertical direction, corresponding to resolutions of HTLS fields Q = 32×32,
24×24 and 16×16 respectively. Subsampling ratios N/M in time (streamwise) dimension
are 4 (M = 37× 24), 6 (M = 37× 16) and 8 (M = 37× 12). The energy losses due to
these subsamplings are estimated as in section 1.4.2.

These seven cases can be categorized into three groups. Case 1 and case 2 are when
the subsampling ratios in time are more critical than those in space, reversely in case 3
and case 4. In such cases, either HTLS or LTHS measurements are more informative
than the other. The interpolation from the measurements with smaller ratio is more
accurate. In the last three cases, the subsamplings in space and time are balanced as the
energy losses are approximately equal. The fusion model in such cases is expected to
out-perform both interpolations by combining useful information from both sources.

The fusion model uses equation 5.35 to reconstruct fully resolved velocities ẑ from x
and y. Reconstructed fields are compared with the original DNS data via the normalized
root mean square error (NRMSE) (equation 2.28). The field z is more or less difficult
to estimate depending on the considered instant and position with respect to available
measurements. To qualify, two types of NRMSE, the mean NRMSE ε and the maximum
NRMSE εmax, are estimated using equation 2.28. ε is estimated over the set of points �
including all space-time positions. It represents how far the reconstructed field departs
from ground truth in order to evaluate reconstruction accuracy. εmax is estimated using
all blocks (in time and in spanwise directions) between HTLS sensors (see figure 1.6).
The set � includes all points at the local coordinate (∆y/2,∆z/2,∆T/2). Errors of sin-
gle interpolations from either measurements of HTLS or LTHS are also estimated for
comparisons.

Table 5.2 shows reconstruction errors in all cases. In cases 1 and 2, the energy losses
due to subsampling in time are much higher than in space, and vice-versa in cases 3 and
4. In these cases, the model gives similar errors compared to the best interpolation, with
smaller ε and comparable εmax. In cases 5 to 7, the losses are due to both the subsamplings
in space and time in a balanced manner. The two proposed models give similar accuracy,
with ε reduced by 15% to 25% and εmax reduced by 5% to 15% compared to the best
single interpolation.

Improvements were expected from the weighted average in equation 5.35 since it
uses variances σ2

s[i, t] and σ2
t [i, t] as parameters of the flow physics, and �t x and �s y

as the specific flow information. The proposed model imposes the reconstruction to be
consistent with measurements at nearby positions and proposes compromise estimates
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Case
Subsampling ratios Energy loss√

P/Q N/M ∆κs(%) ∆κt(%)

1 3 8 1.03 6.53
2 4 8 2.63 6.53
3 6 4 7.29 1.23
4 6 6 7.29 1.23
5 3 4 1.03 1.23
6 4 6 2.63 3.56
7 6 8 7.29 6.53

Table 5.1 – Configuration parameters of seven testing cases. The subsampling ratios of
HTLS measurements are

√
P/Q and equal in both spatial directions. The ratios of LTHS

measurements in time are N/M. The normalized energy losses in space ∆κs and in time
∆κt are defined in equation 1.2.

Case
ε εmax

�s y �t x LG BF �s y �t x LG BF

1 0.19 0.31 0.16 0.16 0.22 0.42 0.23 0.22
2 0.28 0.31 0.21 0.21 0.35 0.42 0.33 0.32
3 0.43 0.13 0.13 0.13 0.53 0.19 0.20 0.19
4 0.43 0.23 0.22 0.21 0.53 0.32 0.33 0.32
5 0.19 0.13 0.11 0.11 0.22 0.19 0.17 0.17
6 0.28 0.23 0.18 0.18 0.35 0.28 0.26 0.26
7 0.43 0.31 0.27 0.26 0.52 0.42 0.41 0.40

Table 5.2 – NRMSEs of all scales reconstruction errors for the seven cases presented
in table 5.1. ε and εmax are the average and maximum NRMSE defined by equation
2.28. ε is averaged over all fields, while εmax is computed for the most difficult positions
in space and time (the most remote from all nearby measurements at local coordinates
(∆y/2,∆z/2,∆T/2), see figure 1.6). These errors are shown for reconstructed fields
by spatial interpolation �s y, time interpolation �t x, linear Gaussian model (LG) using
formula 5.36 and Bayesian fusion model (BF) using formula 5.35. The smallest errors in
each cases are boldfaced.
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Case
Large scales Small scales

�s y �t x LG BF �s y �t x LG BF

5 0.16 0.12 0.09 0.09 0.98 0.67 0.64 0.64
6 0.23 0.19 0.14 0.14 0.98 0.80 0.71 0.70
7 0.34 0.22 0.20 0.19 0.98 0.81 0.72 0.72

Table 5.3 – Average NRMSEs ε of large and small scales (same notations in table 5.2).

elsewhere. Simple interpolations use either HTLS or LTHS measurements only, losing
information from the other sources.

5.5.2 Large and small scales reconstruction

In cases 1 to 4, both fusion models perform as the best interpolation with small im-
provements. This is expected since one measurement of HTLS or LTHS is much better
resolved than the other. Cases 5 to 7 are the most interesting since energy losses due
to subsampling in space and time are comparable. The model brings complementary
information from both measurements and improves the reconstruction.

The reconstructions of large and small scales are investigated in details for these
three cases. Spatial 2D ideal Fourier filters �s are used to separate large scales from
small scales. These filters define different cutoff wave numbers based on the subsampling
ratios. The reconstructed large scales by all methods are compared to the reference �s z.
Small scales are estimated using �−�s where � is the identity matrix. Table 5.3 shows
NRMSEs estimated using equation 2.28 but normalized by the RMS of either �s z or
(�−�s) z.

The proposed fusion models recover part of small scales from complementary mea-
surements. They correct also large-scale information compared to the spatial interpo-
lation, since subsampling degrades those scales and introduces some aliasing effects.
Results are shown in table 5.3 for the most favorable cases. Fusion models give smallest
error in all cases and at both large and small scales. Errors of large scale reconstruc-
tions are reduced by 20 to 50 % compared to the best single interpolation, while these
improvements are smaller for small scales reconstruction (5 to 25 %). Note that the
reconstruction error remains very high for small scales. Also, a good reconstruction of
large scales is surprisingly challenging despite the theoretical claims that large scales
should be accurately reconstructed by interpolations.
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5.6 Concluding remarks

This chapter proposes a Bayesian fusion model using a MAP estimate to reconstruct high
resolution velocities of a turbulent channel flow from low resolution measurements in
space and time. It searches for the most probable field given available measurements.
This approach yields a simple but efficient weighted average formula in equation (5.35).
Weighting coefficients are learned from measurements and encode the physics of the
flow. The fusion of available measurements improves the large scale reconstruction and
recovers some details at small-scale.

Numerical experiments using a DNS database of isotropic turbulence at a moderate
Reynolds number illustrate the efficiency and robustness of the proposed method. Low
resolution measurements are extracted to learn model parameters, while original data
are used as the ground truth to estimate reconstruction errors. The model is tested in
various cases with different subsampling ratios. Results are compared against cubic
spline interpolations. Bayesian fusion always produces the most accurate reconstruction.
The best results are obtained when missing spatial and temporal information are of the
same order of magnitude. The fusion model provides a better large scale reconstruction
compared to the interpolation. Small scales below the cutoff frequency are more difficult
to recover. The error remains high, since only a certain amount of small scale details are
reconstructed. This is one more reason in favor of using either some relevant physical
model or some sophisticated learning procedure to "guess" small scales.

Next chapter will compare the performances of various methods we have presented.
The analyses are on both the two datasets of isotropic turbulence and channel flow.
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Chapter6
Comparisons of model performances on
various datasets

This chapter synthesizes results of reconstructions by the proposed models to compare
their performances. Comparisons are shown for streamwise velocities from both DNS
datasets of isotropic turbulence (section 1.4.2) and channel flow (section 1.4.1). Isotropic
turbulence is rather ideal yet retains the fundamental characteristics of real turbulent
flows. It facilitates all computations of proposed methods for its homogeneity and
periodicity. The data of turbulent channel flow mimics better real flows. Results on these
data can be generalized for other velocity components and for experimental data.

We study the setup where multi-source measurements are given, the HTLS and
LTHS, as described in section 1.3.2. For each data, three favorable configurations of
balanced energy losses in space and time are used to perform detailed analyses. These
configurations permit to apply both families of approaches, the empirical models to learn
the relation between large and small scales, and the fusion models to combine the two
sources. With empirical approaches such as regressions (chapter 2) or dictionary learning
(chapter 3), LTHS planes are considered as training samples, while HTLS measurements
are used for reconstruction. Fusion models instead simultaneously combine both sources
of measurements by either exploiting different hypotheses (chapter 4 and 5).

Comparisons between two families of methods are valid but bias. Empirical mapping
models are not designed to take benefits of information in time, and reconstruction errors
purely depend on the subsampling ratio in space. Performances of fusion models will
depend on both ratios in space and time. Both results from the two proposed models
suggest that more gains are expected when the subsamplings are in a balanced manner.
In such cases, the models can get benefits from both sources of information. Otherwise,
if the loss caused by one subsampling is much more severe than by another, the models
tend to perform at best as accurate as the single interpolation from measurements with

101
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the lower energy loss. Comparisons with regression models and dictionary learning also
demonstrate how information from the measurements in time are beneficial in improving
reconstruction accuracies.

Dictionary learning is omitted in all the analyses, since it works only when downsam-
pled fields are considered as training low resolution planes. This configuration is different
from all other chapters and the inspired experiment at LML. For the direct subsampling
cases, it shows insignificant improvement compared to spatial interpolations.

6.1 Reconstruction results on DNS data of isotropic tur-
bulence

Detailed analyses of proposed models are investigated on the DNS data of isotropic
turbulence as described in section 1.4.2. The data facilitates numerical experiments of
all proposed methods for its isotropy, periodicity and homogeneity. The computation
complexity is first discussed. Then, detailed analyses of model performances are shown
for the three cases of balanced energy losses.

Computation time

All numerical experiments of the proposed methods are performed on the same personal
computer using either Matlab (verion 2014b) or python (version 2.7). Non-local means
propagation models are programmed in C using openMP parallelization. Dictionary
learning codes are based on SPArse Modeling Software (SPAMS) package (http://
spams-devel.gforge.inria.fr/). This package is written in C with Matlab and
python interfaces. Regression codes are based on scikit-learn package (Pedregosa et al.,
2011). The data contains 37× 96 HR planes at the resolution 96× 96 (about 400 Mb,
extracted from 25 Gb of original simulation data).

Regression and Bayesian fusion models are the simplest and fastest model to test.
To reconstruct all 37 × 96 fields, Bayesian fusion model takes only a few minutes to
interpolate, learn the covariance matrices and perform the weighted sum, thanks to the
matrix vectorization. Regression models, both RR and KRR, take up to one minute to
train the models. The time to reconstruct the whole 37× 96 fields is about 1 ∼ 2 minutes.
The most time consuming step is the cross-validation, which takes about 10 ∼ 30 minutes.
Coupled dictionary learning takes up to about 10 seconds to reconstruct one field in
the case of SR3 (see table 3.1) and even faster with SR1 and SR2. The learning step,
which is more expensive, can be done offline. Learning a dictionary of size K = 2× 162

from m = 105 patches of the dimension p = 162 takes about one hour to converge. With

http://spams-devel.gforge.inria.fr/
http://spams-devel.gforge.inria.fr/
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Case
Subsampling ratios Energy losses√

P/Q N/M ∆κs(%) ∆κt(%)

5 3 4 1.03 1.23
6 4 6 2.63 3.56
7 6 8 7.29 6.53

Table 6.1 – Isotropic turbulence: configuration parameters of three testing cases with
balanced energy losses. The subsampling ratios of HTLS measurements are

√
P/Q and

equal in both spatial directions. The ratios of LTHS measurements in time (streamwise
in this case) are N/M. The normalized energy losses in space ∆κs and in time ∆κt are
defined in Eq. (1.2).

NLM-based propagation models, the estimation of one field takes about 1 ∼ 2 seconds
without parallelization. All methods acquire a tractable computational time and therefore
could be generalized to larger experiments. To recall, all codes and data are available at
https://github.com/linhvannguyen/PhDworks/.

Model performance analyses

We study three cases of balanced energy losses in space (spanwise and vertical direction)
and time, with of subsampling ratios and energy losses are summarized in table 6.1. Due
to the lack of time-resolved fields, the streamwise direction is also considered as the
virtual time direction. The first family of methods (regression and dictionary learning)
does not depend on this condition. Bayesian fusion model also depends on the losses
of energy but not really the properties of the flow in time. NLM model might be more
sensitive, since the rapid distortion assumption is stronger with convective flows. It
is expected to work better in the case where time-resolved sequence of snapshots are
studied.

Table 6.2 gathers NRMSEs between reconstructed and reference fields of three cases
in table 6.1. Both average and maximum errors are shown for all methods. Interpolations
are 2D in space as �s y and 1D in time as �t x. Regression models are either linear (RR)
or non-linear (KRR) using RBF kernel. NLM-based propagations of both greedy and
non-greedy schemes are shown. As fusion models, linear Gaussian or Bayesian fusion of
non-informative prior are studied. The “best scores”, i.e. lowest NRMSEs, are shown
in bold at the bottom row. Fusion models by combining all sources of measurements
give lowest errors. The accuracy improvements compared to single interpolations are
significant. ε̄ is reduced by 15% ∼ 25%, and εmax is reduced 5% ∼ 10% compared to the
best single interpolation.

https://github.com/linhvannguyen/PhDworks/
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Method
ε εmax

Case 5 Case 6 Case 7 Case 5 Case 6 Case 7

�s y 0.19 0.28 0.43 0.22 0.35 0.52
�t x 0.13 0.23 0.31 0.19 0.28 0.42

RR 0.14 0.23 0.35 0.20 0.34 0.50
KRR 0.13 0.23 0.34 0.20 0.34 0.49

Greedy propagation 0.11 0.20 0.32 0.18 0.33 0.51
Non-greedy propagation 0.11 0.19 0.30 0.17 0.31 0.46
Fusion (LG) 0.11 0.18 0.27 0.17 0.26 0.41
Fusion (BF) 0.11 0.18 0.26 0.17 0.26 0.40

Best scores 0.11 0.18 0.26 0.17 0.26 0.40

Table 6.2 – NRMSEs of all scales reconstruction errors for three cases in table 6.1. ε
and εmax are the mean and max NRMSE defined in Eq. (2.28). ε is averaged over all
fields, while εmax is computed for the most difficult positions in space and time (the most
remote from all nearby measurements). The smallest errors in each cases are boldfaced.

Performances of fusion and NLM-based propagation models are similar at the low
subsampling ratio (case 5). Fusion models are superior in cases 6 and 7 of higher
ratios. They take into account all sources of measurements and find the best compromise
estimates via weighted sums. NLM models propagate small-scale information from
LTHS planes and put on top of initial spatial interpolations. The quality of propagations
strongly depends on flow dynamics. When the distance between the LTHS planes is far,
the assumption that small scales are advected by large ones can be rather crude.

Regression models give worse results than almost all methods except spatial interpo-
lations. As discussed, their errors depends solely on the subsampling ratio in space. All
regression models are not designed in such way to take benefits from information in time.
LTHS planes are used only to train the models. The models use averaged coefficients to
reconstruct all fields regardless the temporal dynamics of the flows. The performances
should be compared only to the spatial interpolation �s y. KRR gives slightly better
reconstructions to RR. The model reduces ε̄ by 18% ∼ 32%, and εmax by 5% ∼ 10%
compared to interpolations.

Cases 5 and 7 are used to further analyze model performances. Case 5 corresponds to
small energy losses due to subsamplings in both time (streamwise) and space (about 1%),
while these losses of case 7 are more severe (about 7 %). The configuration with small
losses is favorable for all models, and should be of interest when designing experiments
such that the reconstructed information is reliable. Case 7 is more critical to highlight
different behaviors and also limitations of present approaches.
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Figure 6.1 – Isotropic turbulence: NRMSEs are functions of time distances from the
previous LTHS instant at the most difficult spatial location, i.e. at (∆y/2,∆z/2, τ). These
errors are estimated between reference and reconstructed streamwise velocities by spatial
and temporal interpolations, RR, KRR, non-greedy propagation and Bayesian fusion
models. Results are shown for case 5 in table 6.1, with the subsampling ratios N/M = 4
in time and P/Q = 3× 3 in space.
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Figure 6.2 – Isotropic turbulence: similar plot as figure 6.1 for case 7 in table 6.1, with
the subsampling ratios N/M = 8 in time and P/Q = 6× 6 in space.
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Figure 6.3 – Isotropic turbulence: NRMSEs are functions of spatial coordinates in
an element block at the most difficult instant, i.e. at (α,β,Nδt/2M). These errors are
estimated between reference and reconstructed streamwise velocities by spatial and
temporal interpolations, RR, KRR, non-greedy propagation and Bayesian fusion models.
Results are shown for case 5 in table 6.1, with subsampling ratios of N/M = 4 in time
and P/Q = 3× 3 in space.

To analyze the reconstructions in time, figure 6.1 shows NRMSEs as a function of
distances τ from the previous LTHS time step in cases 5. For each τ, NRMSE is estimated
using the set of point � including points at local coordinates (∆y/2,∆z/2, τ) of all blocks
used to estimate εmax. NRMSEs are small close to the LTHS measurements (τ/δt = 0
and τ/δt = N/M) and increase when moving toward the middle (τ/δt = N/2M). Spatial
interpolation behaves differently since the NRMSE is independent of time. Regression
models illustrate the advantages of learning a model by significantly reducing the errors
(about 15% for mid-planes at N/M) compared to spatial interpolation. Time interpolation
gives smaller error than RR and KRR, since those errors of regression models depend
only on the subsampling ratio in space. These temporal information from LTHS planes
are taken into account to further improve the reconstruction using fusion models. Both the
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Figure 6.4 – Isotropic turbulence: NRMSEs are functions of spatial coordinates as in
figure 6.3. Results are shown for case 7 in table 6.1, with subsampling ratios of N/M = 8
in time and P/Q = 6× 6 in space.

propagation models and fusion model give better reconstructions than all other models.
Bayesian fusion and non-greedy model are slightly better than the greedy one.

Figure 6.2 shows similar results as in figure 6.1 for case 7 with very severe subsam-
pling ratios in both space and time. Model performances are consistent with case 5,
except that propagation models now give higher NRMSEs than time interpolation. This
is because the propagation models start from a critical loss of information and could not
recover completely. Also, this approach does not take advantages of temporal information
from LTHS snapshots (except their small scales to propagate). Bayesian fusion model,
which proposes a compromise estimate between the two interpolations. The model yields
the minimum errors at all time steps. Even in the middle of two LTHS instants, the
maximum fusion error remains lower than the one obtained with both interpolations.

To analyze the reconstructions in space, figures 6.3 and 6.4 show spatial NRMSE
maps by all the methods as a function of local coordinates (α,β) as described in figure
1.6, section 1.3.2. For each (α,β), NRMSE is estimated using equation (2.28), where �
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Figure 6.5 – Isotropic turbulence: comparison of energy spectra and error spectra for
reconstructions by interpolations (in space and time), KRR, non-greed propagation and
Bayesian fusion model in case 5 of subsampling ratios P/Q = 3×3 in space and N/M = 4
in time (see table 6.1). The spectra are averaged over all planes of the same distance to
the closest LTHS plane, i.e. t/δt = 1 (left) or t/δt = 2 (right).

includes points at (α,β,Nδt/2M) of all blocks used to estimate εmax. All methods give
small NRMSEs close to the four HTLS positions in the corners. The errors increase
when approaching the center. Time interpolation behaves differently since the errors
are independent of spatial coordinates. Compared to interpolation in space, regression
models do not give exact estimates at the HTLS positions. However, errors far from these
four points are significantly reduced. The fusion models yields the best reconstruction
results, where the Bayesian fusion model yields the smallest errors at all positions. At
the most difficult positions (near the center of the block), it improves the reconstruction
significantly compared to other methods.

Figure 6.5 shows the spectral analysis of the reconstruction by different models. To
make the plot readable, RR, greedy propagation and linear Gaussian models are omitted.
Energy spectra and error spectra are shown for the two positions, either close or far
from LTHS planes. The first two spectra illustrate that spatial interpolation captures only
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Case
Subsampling ratios Spacings Energy loss√

P/Q N/M ∆z/H ∆t ∆κs(%) ∆κt(%)

5 5 4 0.05 0.10 1.23 1.88
6 10 10 0.11 0.25 7.08 9.02
7 20 20 0.22 0.50 20.83 24.31

Table 6.3 – Channel flow: configuration parameters of seven testing cases. The sub-
sampling ratios of HTLS measurements are

√
N/M and equal in both spatial directions.

The ratios of LTHS measurements in time are P/Q. The spacing in spanwise direction
is normalized by half channel height as ∆z/H and the spacing in time is ∆t, normalized
by H/Umax (Umax is the central velocity of the flow). The normalized energy losses in
space ∆κs and in time ∆κt are defined in Eq. (1.2).

large-scale information, while time interpolation gives an estimate with a good energy
spectrum. All models are subject to a certain energy loss at small scales. The error
spectra shows that time interpolation gives good energy spectra with poorly reconstructed
small scales. KRR also shows significant improvement compared to spatial interpolation,
both in energy spectra and error spectra. Compared to those that have been shown
in figure 4.6, the Bayesian fusion model Bayesian fusion model shows similar results
compared to the non-greedy propagation. Both models yield compromise estimates,
where certain amount of small scales are captured. Error spectra illustrate improvements
at all frequencies compared to both interpolations.

6.2 Reconstruction results on DNS data of channel flow

This section further analyses and compares performances of proposed methods on the
DNS data of a turbulent channel flow with a moderate Reynolds number as described
in section 1.4.1. This data mimics the experiments from WALLTURB project (Coudert
et al., 2011), and simulates better practical flows compared to isotropic turbulence.
Its characteristics are strongly non-homogeneous in vertical direction. The real “time”
dimension is considered instead of a “virtual” one as in the previous dataset.

Based on the analyses on isotropic turbulence, and for simplicity, only RR and
Bayesian fusion model are selected to represent the two families of approaches. Three
cases of balanced subsamplings in space and time are considered. The configurations
with subsampling ratios, spacings and amounts of energy loss are presented in table 6.3.
The losses in space (2D) and time are similar in each case, from very small energy losses
(less than 1 ∼ 2% in case 5) to very severe ones (more than 20% in case 7). The average
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Method
ε εmax

Case 5 Case 6 Case 7 Case 5 Case 6 Case 7

�s y 0.14 0.36 0.68 0.16 0.47 0.85
�t x 0.11 0.32 0.54 0.18 0.55 0.85
RR 0.12 0.34 0.64 0.15 0.49 0.78
Fusion (BF) 0.08 0.25 0.46 0.13 0.43 0.73

Best scores 0.08 0.25 0.46 0.13 0.43 0.73

Table 6.4 – Channel flow: NRMSEs of all scales reconstruction errors for three cases
in Table. 6.3. ε and εmax are the mean and max NRMSE defined in Eq. (2.28). ε is
averaged over all space-time positions in the outer region y/H ∈ [0.25,1.75], while εmax
is computed for one of the most difficult position in space and time (the most remote
from all nearby measurements). The smallest errors in each cases are boldfaced.

and maximum NRMSEs of reconstructions by all methods for the three cases are shown
in table 6.4. The best errors obtained by the fusion model are boldfaced and shown in the
last row.

Case 6 of moderate energy loss (about 8%) is used for further visualization of the
analysis. The energy losses are not too severe but are critical to highlight interests of the
present approach. ε and εmax are reduced by 25 % and 35 % respectively for all scales
reconstruction. Model performances in time and in space are shown in figures 6.6 and
6.7respectively. They are estimated and plotted similarly as in figures 6.4 and 6.1. The
fusion model clearly demonstrates the benefits of combining information in space and
time by proposing a compromise estimate from the two single interpolations.

Figure 6.8 shows a time evolution of the point at y/H = 1 and z/H = 0 (α = ∆y/2 and
β = ∆z/2 in local coordinates, see figure 1.6), the most remote from neighboring HTLS
sensors. A good agreement between fused and reference velocity is still obtained. A
zoom-in period is shown for detailed comparisons with other methods. While time inter-
polation captures only low frequencies, spatial interpolation generates high frequencies
but weakly correlated with the truth. The fusion model proposes a good compromise to
improve both large and small scales reconstruction. It also captures detailed peaks much
better than RR, since RR smooths these small scales out by minimizing the mean square
errors.

Temporal spectra, estimated from the same points as those shown in figure 6.8,
are compared in figure 6.9. Time interpolation fails to estimate the signal at higher
frequencies than a certain cutoff. RR reconstructs both large and small scales, but the
loss of large scale energy is critical. This loss is highlighted in the zoom-in picture
of low frequencies. The present model improves the estimation at both low and high
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Figure 6.6 – Channel flow: NRMSEs between reference and reconstructed streamwise
velocities by all methods as: functions of time distances from the previous LTHS instant
at the most difficult spatial location, i.e. at (∆y/2,∆z/2, τ). Results are shown for case 5
in table 6.3, with the subsampling ratios N/M = 10 in time and P/Q = 10× 10 in space.

Figure 6.7 – Channel flow: NRMSEs between reference and reconstructed streamwise
velocities by all methods as: functions of spatial coordinates in an element block at the
most difficult instant, i.e. at (α,β,Nδt/2M). Results are shown for case 5 in table 6.3,
with the subsampling ratios N/M = 10 in time and P/Q = 10× 10 in space.
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Figure 6.8 – Channel flow: a time evolution of fluctuating streamwise velocity at y/H = 1
and z/H = 0 of a point with the local coordinate (∆y,∆z, τ) (see figure (1.6) ). The whole
evolutions of reference and fused velocity contain 900 samples. A region is zoomed in
and compared with results from interpolations and RR.

Figure 6.9 – Channel flow: spectra of the fluctuating velocity in figure 6.8.
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Figure 6.10 – Channel flow: probability distribution functions of velocity increments in
(left) the original DNS and (right) the reconstructed field.

frequencies.

Figure 6.10 shows estimates of the probability density functions of time increments
u(x, t + τ)− u(x, t) for the original DNS field as well as for the reconstructed field. As
expected, the original field displays intermittent non Gaussian distributions. More
importantly, the reconstructed field, while less intermittent, still clearly exhibits non
Gaussian increments at small scales. Note that the reconstruction error is essentially
due to the difficulty to accurately reconstruct these small scales. It is expected that any
reconstruction method will lead to fields that are less intermittent than the original one.

Figure 6.11 compares reconstructed snapshots by different methods. This snapshot
is at the most remote instant from its two neighboring LTHS time steps. The model
reconstructs correctly the velocity field with more flow details than spatial interpolation.
It also recovers better large scales than RR and time interpolation methods.

6.3 Concluding remarks

This section analyzes performances of all the models discussed in this thesis. All
reconstructions are gathered and compared to highlight the behaviors of different models.
These comparisons also suggest further ideas to improve the models by combining
several of them to take advantage of different sources of information.

Two datasets have been used, the DNS data of an isotropic turbulence and a turbulent
channel flow at a moderate Reynolds number. Only the streamwise velocity component
is studied, but all results can be reproduced for other components. In all configurations,
HTLS and LTHS measurements are used as complementary information in space and
time. Empirical models find the relation between large and small scales, while fusion
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Figure 6.11 – Channel flow: a sample snapshot of fluctuating streamwise velocity at
one of the most difficult instant to estimate (in the middle of two LTHS time steps):
Reconstruction of all scales (left) and large scales only (right). The figure is better viewed
on screen.
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models combine two sources of measurements. Only the cases of balanced energy losses
are investigated, since otherwise fusion models give results similar to single interpolation
of the measurements with the lower energy loss.

Performances of regression models depend only on the subsampling ratio in space.
This was expected since these models are not designed to take advantage of information
in time. The benefits of such models are highlighted only in comparison to spatial
interpolation. The improvements are significant. Kernel regression models also show
their superiority compared to linear ones. This is certainly due to the non-linear relation
between large and small scales in turbulence.

NLM-based propagation models reconstruct the small scales using a different prior.
Small scales are assumed to be advected by larger ones. These small-scale information are
then propagated along the time direction based on the similarity levels of corresponding
large scales in space. Results show some advantages especially when the subsampling
ratios are small in both space and time. A ratio of 3 × 3 in space, corresponding to
about 1% of energy loss, ensures that the model does not start from a too severe loss of
information. In time, a ratio of 4, also about 1% of energy loss, ensures that the similarity
level between large scales remains significant. Significant benefits are observed compared
to spatial interpolation, even in rather crude subsampling ratios in space and time. A
non-greedy scheme, by gradually propagating small scales from LTHS planes, gives
slightly better reconstructions compared to the greedy one.

The analyses show advantages of further exploiting information in time. The Bayesian
fusion model, despite its simplicity, demonstrates clear benefits compared to other
methods. By simply proposing compromise estimates between the two interpolations
in space and time, it leads to more accurate reconstruction at all positions in space and
time. The compromise is achieved in the form of a weighted average, where weights are
learned from measurements. These weights encode some information about the physics
of the flow. Benefits are significant in cases of balanced energy losses. The 2D fields or
1D signal comparisons also demonstrate that the fusion model seeks a trade-off between
retaining good large-scale information from a single interpolation and proposes more
details from the other interpolation.

All models reconstruct the fields using different priors, i.e. exploiting information
differently. Comparisons show clear advantages of combining different measurements.
Further exploitations and combinations of such models can improve the reconstruction
results. For instance, NLM-based propagation could start from initial large scales
obtained from regression, which are more accurate than spatial interpolation. This
propagated information, which exploits the local similarity of the flows, could combine
with the time interpolation to further improve results of Bayesian fusion models.
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Conclusions and perspectives

This work lies in between the two research domains of turbulence and image processing.
The main objective was to explore a large spectrum of approaches to estimate small-
scale turbulence from given measurements at large scales only. One contribution of
the thesis is to review conventional image-based methods. We have also adapted other
models inspired from recent works in image processing and proposed new methods to
our context.

The estimation of small-scale turbulence from measurements has been addressed via
two problems described in chapter 1. The first problem is to find a relationship between
large and small scales of turbulence given training samples at all scales. The second is to
measure and combine complementary information, which are from space and time in this
case. DNS data of an isotropic turbulence and a channel flow are used to setup different
numerical experiments. These data give access to all scales of turbulence, which are used
as the reference to qualify different approaches. Low-resolution fields of large scales are
virtually extracted from the reference ones to which the reconstructions are compared.

For the two problems, we have proposed two families of approaches. The first one
is to learn an empirical relationship between large and small scales through simple
regression models or through learning coupled representations of different scales using
dictionary learning. The second group of methods is based on the fusion of information.
Different assumptions are exploited to propose schemes to combine available measured
data. Two fusion models are developed, which use either similarity of structures in the
flows or probabilistic models to find compromise estimates given the measurements.

Chapter 2 reviewed regression models, which find mapping functions between low-
resolution and high-resolution fields. The function can be linear (via a set of coefficients)
or nonlinear (using fixed kernel spaces). Model performances are usually sensitive to
some hyper-parameters. This problem was addressed by optimizing a bias-variance
trade-off using the cross-validation technique. Comparing reconstruction results, these
models work better than standard spline interpolation. Nonlinear regressions also give
more accurate reconstruction than linear ones.

Chapter 3 discussed dictionary learning, a generalization of principal component anal-
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ysis (called proper orthogonal decomposition in turbulence studies) to learn redundant
bases that better represent turbulent fields in a sparse manner. A couple of representations
are learned and used to reconstruct the high-resolution fields from low-resolution mea-
surements. In the case of direct subsampling that could happen in real experiments, the
aliasing problem appears. We observe that the coupled dictionary learning method does
not permit to de-alias. The model has not brought significant improvements compared
to spatial interpolation. Once avoiding this problem by a prefiltering step, dictionary
learning gives significant improvements compared to interpolation. In the range of scale
between 0.5 and 1.5 the cutoff, it reduces the energy loss by about 60% and the total
error by about 15%.

Chapter 4 discussed a non-local means-based propagation model as the first fusion
model. The model was based on the hypothesis of rapid distortion, which assumes that
small scales are advected by large ones. These small-scale information from the LTHS
planes are propagated in time based on the similarity level of large scales in space. The
model works very well at low subsampling ratios in space and time (corresponding to
about 1% of energy loss) where it significantly improves the reconstruction accuracy (by
about 40%) compared to single interpolation in space. However, the model is not very
robust when the energy losses are more severe. With large subsampling ratios in space
(for instance P/Q = 6× 6), it suffers from severe losses and can not recover completely
even at large-scale. With large ratios in time (for instance N/M = 8) , similarities of large
scales decay rapidly and make propagation models less accurate.

To further exploit all available information from measurements, a simple yet efficient
fusion model was proposed in chapter 5. The model estimates a high-resolution field
that maximizes its posterior probability given the measurements. A Bayesian framework
is used and further simplifications lead to a linear fusion formula, a weighted sum of
the two single interpolations from the two measured data. Weighted coefficients are
covariance matrices of unknown small scales, which are learned from measurements.
The model reconstructs high-resolution fields with significant improvement compared to
single interpolations from either sources. The superiority of this model is emphasized in
the case where energy losses are balanced in space and time. In such cases, improvements
are observed both at large and small scales.

Chapter 6 provided a more global view of all proposed methods. We synthesized
reconstructions by all approaches for the same setups where measurements in space
and time are subsampled in a balanced manner. Dictionary learning is omitted in this
comparison because of its slightly different configuration of numerical experiments.
Single models to solve the reconstruction problem can be predefined (interpolation) or
learned adaptively from the training data (regression). Adaptive models reconstruct the
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fields more accurately. More significant improvements are observed when combining
complementary measurements in space and time. NLM-based model gives very accurate
reconstructions at low energy losses. At higher subsampling ratios, this model is not
able to over-perform temporal interpolation. Bayesian fusion model is simpler yet more
efficient, and gives the best reconstruction in all cases.

Suggestions for future works

The main purpose of this work was a first exploration of a set of methods for the
reconstruction of fully resolved turbulent fields from low resolution measurements.
Turbulent fields are highly disordered and much less regular than natural images, therefore
the inverse problem of reconstruction is even more difficult in our case. This thesis has
opened many new directions to develop tools for turbulence studies. Results have
suggested also some new directions for signal/image processing studies to provide even
more adapted tools. The present work gives rise to the following suggestions for future
works.

Extending to the reconstruction of three-component velocity fields?

The whole thesis has dealt with the reconstruction of streamwise velocity fields. All
results can be reproduced for the other two components independently. However, all
components are connected physically through Navier-Stokes equations. Further in-
vestigations are needed to exploit the information such as cross-correlation between
components, vorticities and divergence of the velocity fields. One idea is to impose the
prior of divergence-free. Another idea would be to use vorticities as features instead of
derivatives to learn coupled dictionaries.

Ensemble of models as generalizing Bayesian fusion model?

Chapter 6 has compared performances of all proposed models. It has shown that different
models, though exploiting different sources of information or assumptions, give better
results than single interpolations. Combining multi-sources of measurements through
their interpolations gives more accurate reconstructions compared to one complex single
model. This observation suggests to further ensemble different models and take advantage
of each single model. Regressions, by learning an adaptive interpolator, could replace
spline interpolations. NLM-based propagation models by exploiting the similarity
information also appear as a good candidate to replace simple interpolation.
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Highly nonlinear mapping function between large and small scales of turbulence?

This thesis has reviewed regression models, but they remain rather simplistic to describe
this highly nonlinear relation between scales. This is suggested when observing advan-
tages of kernel regressions in chapter 6. Other ideas, especially neural network and
deep learning (Dong et al., 2014), could be studied. Such approaches permit much
more complex and highly nonlinear mapping functions between input low-resolution and
output high-resolution fields, not restricted to a fixed kernel space as the KRR model.
However, such a model requires an extremely large amount of training samples. The
patch-wise approach is potentially a good candidate to give access to more samples and to
localize the information. Such models could be combined with sparse prior (Wang et al.,
2015) discussed in chapter 3 and proven to further improve reconstruction accuracy.

Dictionary learning for other inverse problems in turbulence?

As a more efficient representation compared to PCA and predefined wavelets, dictionary
learning has demonstrated its possibility to solve the inverse problem of reconstructing
high-resolution velocities from low-resolution measurements. The improvement is signif-
icant when aliasing is handled carefully but inoperative in the case of direct subsampling.
This approach is not limited to super-resolution only. Other inverse problems such as
removing noise or estimating missing pixels could be studied. One particular idea is to
apply dictionary learning to D time-resolved experimental data of “Shake-The-Box”-PIV
(Schröder et al., 2015). By following the particles, the method resolves till pixel size.
However, velocity fields in a uniform grid is estimated by simple interpolations. This
could be done with dictionary learning. Viewing the fields with many missing pixels as
random sensing, the approach could learn the missing small scales from the position it
“sees” and propose better estimates than interpolation. Also, measurements noise could
be separated from the true information in the same step.

Dictionary learning to deal with aliasing from direct subsampling?

Aliasing is a known problem when the sensing system directly subsamples the fields
without the prefiltering step. The first attempt of dictionary learning to reconstruct the
high-resolution fields from the subsampled measurements has failed potentially due
to aliasing. Without its presence, the model gives clear improvements compared to
single interpolation. The problem of removing aliasing could be addressed and solved
using dictionary learning as well. Coupled dictionaries could be learned to represent the
fields with and without aliasing. The model in chapter 3 would become a three-stage
super-resolution model, with an intermediate step to remove aliasing.



Conclusions and perspectives 121

A more complete fusion model, a Bayesian way?

The fusion model proposed in this work uses only a very simple weighted sum formula.
The prior of the estimated field is omitted from the formula due to the assumption of
a non-informative prior. Full covariance matrices to represent all sources of space-
time correlations are also simplified to diagonal ones. Some work remains to be done to
further exploit the information from measurements by building more complete covariance
matrices. Also, a good prior could further improve further the reconstruction. The prior
could carry physical properties of the flow, for example divergence free, energy spectra
or even full Navier-Stokes equations. In case the full fields are given as training data,
covariance matrices could also be learned adaptively. In such cases, the weights of the
fusion model could be learned to take the properties of turbulence into account.

Combining fusion and dictionary learning?

Dictionary learning has shown to be a good representation of turbulent fields using
a sparsity prior. This prior helps in solving the ill-posed problem of reconstructing
high-resolution fields. Fusion models by combining multi-sources of measurements are
simple but also very efficient to solve the problem. The idea of combining sparse prior
and fusion could be studied, inspired by Wei et al., (2015). In chapter 5, the optimization
problem is:

z = argmin
z

{
1
2
‖z -�t x‖2Σht

+
1
2
‖z -�s y‖2Σhs

}
(6.1)

By imposing the sparse prior, the problem could be rewriten as:

z = DA s.t. {D,A} = argmin
D,A

{
1
2
‖DA-�t x‖2Σht

+
1
2
‖DA-�s y‖2Σhs

+λ‖A‖1
}

(6.2)

or avoiding the interpolations, hence not bringing aliasing terms into the system, as:

z = DA s.t. {D,A} = argmin
D,A

{
1
2
‖�tDA- x‖2Σht

+
1
2
‖�sDA- y‖2Σhs

+λ‖A‖1
}

(6.3)

Solving the above highly non-convex problem could be addressed thanks to recent
progresses in solving alternating optimization problems (Boyd et al., 2011; Parikh, Boyd,
et al., 2014).

Increase resolution of PIV measurements using different setups?

Regression and interpolation are restricted to reconstruct high-resolution fields from low-
resolution ones at the same scene, while it is not the case for coupled dictionaries learning.
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One very promising setup would be to combine high-resolution PIV with time-resolved
PIV (Tr-PIV). High-resolution PIV can measure the flow at a small field-of-view but at
very high spatial resolution. These measurements could be used to train the dictionaries.
Then Tr-PIV measures the flow at a much larger field-of-view but at lower resolution.
Using the trained dictionaries, one could estimate time-resolved velocity fields at large
field-of-view and high spatial resolution. One should notice also the limitation of such
an approach in de-aliasing to carefully design the sensing system. Another configuration
could be to use two different PIV systems to measure HTLS and LTHS fields (see figure
1.5) and apply fusion models to maximize the level of useful information.

Co-conception design of experiments?

The thesis has studied the performances of various models for different configurations
at various subsampling ratios. This gives an idea of which method to choose for one
particular setup. From a certain loss of energy due to subsamplings, this work suggests the
maximum level of accuracy and scale one could expect to reconstruct. This information
is very useful to design new challenging experiments in order to maximize the expected
level of small scale content after post-processing. This thesis connects to the current
research area of co-conception. The idea is to co-design the measurement system with
respect to some pre-defined post-processing procedure.
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AppendixA
Bayesian framework

A.1 Derivation of Linear Gaussian models

A.1.1 Bayes’ theorem for Gaussian variables

Let v is the measurement, then the probability p(v) is known. Let u is the desired variable,
with the prior distribution p(u). Suppose also there exists a linear observation model:

v = Au+ n (A.1)

where n is a zero-mean random vectors and independent on u and v and has a precision
matrix denoted as Λv |u = Σ−1

v |u. One can express the joint probability p(w) as the product
of the prior probability p(u) and the likelihood function of the measurement given the
variable p(v |u) as:

p(u) = N(u |µu,Λ
−1
u ) (A.2)

p(v |u) = N(v |Aµu,Λ
−1
v |u) (A.3)

To derive, let take the natural logarithm of both sides, using also the symmetrical shape
of precision matrices, the left hand side gives:

ln p(w) = −
1
2
(
w−µw

)T
Λw

(
w−µw

)
+ const

= −
1
2

wT
Λw w+wT

Λwµw

−
1
2
µwΛwµw +const (A.4)

and the right hand side gives:

ln (p(u)p(v |u)) =
(
u−µu

)T
Λu

(
u−µu

)
−

1
2

(v−Au)T
Λv |u (v−Au)

+const (A.5)
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In above equations, const represents all the terms that are independent on u and v. The
first order terms in the above equation include:

1st order terms = uT
Λuµu−uT AT

Λv |u

=

(
u
v

)T (
Λuµu

0

)
(A.6)

and the second order terms are:

2nd order terms = −
1
2

uT
(
Λu + AT

Λv |uA
)
u−

1
2

vT
Λv |u v

+
1
2

vT
Λv |uAu+uT AT

Λv |u v

= −
1
2

(
u
v

)T (
AT
Λv |uA +Λu AT

Λv |u
−Λv |uA Λv |u

)(
u
v

)
= −

1
2

wT
Λw w (A.7)

Comparing above equations A.7, A.6 and A.4, Gaussian distribution of w takes the
precision matrix Λw of the form:

Λw =

(
Λuu Λuv
Λvu Λvv

)
=

(
AT
Λv |uA +Λu AT

Λv |u
−Λv |uA Λv |u

)
(A.8)

and the mean µw is:

µw =

(
µu
µv

)
= Λ−1

w

(
Λuµu

0

)
= Σw

(
Λuµu

0

)
(A.9)

The covariance matrix is obtained by taking the inverse of above:

Σw =

(
Σuu Σuv
Σvu Σvv

)
=

(
AT
Λv |uA +Λu AT

Λv |u
−Λv |uA Λv |u

)−1

(A.10)

Using the inversion lemma:(
A B
C D

)−1

=

(
M −MBD−1

D−1 + D−1CM D−1CMBD−1

)
(A.11)

where M = (A− BD−1C)−1 is the Schur complement of the matrix inversion with respect
to D. The covariance matrix is finally given as:

Σw =

(
Σuu Σuv
Σvu Σvv

)
=

(
Λ
−1
u Λ

−1
u AT

AΛ−1
u Λ

−1
v |u + AΛ−1

u AT

)
(A.12)
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Replacing this covariance matrix to equation (A.10), the expectation of w is given as:

µw =

(
µu
µv

)
=

(
Λ
−1
u Λ

−1
u AT

AΛ−1
u Λ

−1
v |u + AΛ−1

u AT

)(
Λuµu

0

)
=

(
µu

Aµu

)
(A.13)

From equation A.12 and A.13, the Gaussian distribution of v = N(v |µv,Σv) is:

µv = Aµu

Σv = Λ
−1
v |u + AΛ−1

u AT (A.14)

Using results of conditional Gaussian distribution as in equation ??, the posterior ditribu-
tion u |v is N

(
u |µu |v,Σu |v

)
where:

µu |v = µu−Λ
−1
uuΛuv(u−µu)

Σu |v = Λ
−1
uu (A.15)

Taking the partial precision matrices from equation A.8, covariance matrix Σu |v is given
as:

Σu |v =
(
AT
Λv |uA +Λu

)−1
(A.16)

and conditional mean µu |v is as:

µu |v = µu−
(
AT
Λv |uA +Λu

)−1 (
−AT

Λv |u
) (

v−Aµu
)

=
(
AT
Λv |uA +Λu

)−1 (
AT
Λv |u v+Λuµu

)
(A.17)

Final results written in covariance matrices notation, given:

v = Au
p(u) = N

(
u |µu,Σu

)
p(v |u) = N

(
v |Au,Σv |u

)
(A.18)

one gets:

p(v) = N
(
v |Aµu,Σv |u + AΣuAT

)
p(u |v) = N

(
u |Σu |v

(
AT
Λv |u v+Λuµu

)
,Σu |v

)
Σu |v =

(
AT
Σ
−1
v |uA +Σ−1

u
)−1

(A.19)

A.1.2 The model

As one of the example linear Gaussian model in Roweis and Ghahramani, 1999 and
restated in Bishop, 2006, given the Gaussian distribution of measurements p(u) and
posterior distribution p(u |v):

p(u) = N
(
u |µu,Σu

)
p(v |u) = N

(
v |Au+ b,Σv |u

)
(A.20)
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where µu, A and b are parameters governing the mean of the distributions; Σv |u is
not a function of u. Applying Bayes’s theorem for these Gaussian variables, the joint
distribution can be written using the prior and likelihood distributions given as:

p(v) = N
(
v |Aµu + b,Σv |u + AΣuAT

)
p(u |v) = N

(
u |Σu |v

(
AT
Λv |u (v− b) +Λuµu

)
,Σu |v

)
Σu |v =

(
AT
Σ
−1
v |uA +Σ−1

u
)−1

(A.21)

Using results in equation A.21, given the posterior distributions N(z |�t x,Σht) and
N(z |�s y,Σhs) in equations 5.13 and 5.14, and known distributions of measurements
N

(
�t x |0,Σ�t x

)
and N

(
�s y |0,Σ�s y

)
. Results of above section show that one can get the

likelihood functions and the prior distribution as:

�t x | z : N
(
�t x |ΣtΣ

−1
ht

z,Σt
)

�s y | z : N
(
�s y |ΣsΣ

−1
hs

z,Σs
)

z : N (z |0,Σz) (A.22)

where:

Σ
−1
t = Σ

−1
ht

+Σ−1
�t x

Σ
−1
s = Σ

−1
hs

+Σ−1
�s y

Σz = Σht +Σ�t x = Σhs +Σ�s y (A.23)

Using above resulting Gaussian distributions, The MAP estimation of z is given as:

ẑ = argmax
z
{p(�t x | z)p(�s y | z)p(z)}

= argmin
z
{− ln p(�t x | z)− ln p(�s y | z)− ln p(z)} (A.24)

Logarithm of above probabilities are given as:

−2ln p(�t x | z) =
(
�t x−ΣtΣ

−1
ht

z
)T
Σ
−1
t

(
�t x−ΣtΣ

−1
ht

z
)

= ‖ΣtΣ
−1
ht

z−�t x‖2
Σt

−2ln p(�s y | z) =
(
�s y−ΣsΣ

−1
hs

z
)T
Σ
−1
s

(
�s y−ΣsΣ

−1
hs

z
)

= ‖ΣsΣ
−1
hs

z−�s y‖2
Σs

−2ln p(z) = zT
Σ
−1
z z = ‖ z‖2

Σz

The cost function C(z) is defined as the sum of above terms:

C(z) = ‖ΣtΣ
−1
ht

z−�t x‖2
Σt

+ ‖ΣsΣ
−1
hs

z−�s y‖2
Σs
‖ z‖2

Σz
(A.25)
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The gradient of C(z) is computed as:

∂C(z)
2∂ z

= Σ
−1
t

(
ΣtΣ
−1
ht

z−�t x
)
+Σ−1

s

(
ΣsΣ

−1
hs

z−�s y
)
+Σ−1

z z

=
(
Σ
−1
ht

+Σ−1
hs

+Σ−1
z

)
z−

(
Σ
−1
t �t x+Σ−1

s �s y
)

(A.26)

The estimation of optimized ẑ is obtained when setting this gradient to zeros:

ẑ =
(
Σ
−1
ht

+Σ−1
hs

+Σ−1
z

)−1 (
Σ
−1
t �t x+Σ−1

s �s y
)

(A.27)

A.2 Derivation of generalized Millman formula

Let denote { ẑ1, ..., ẑK} be K estimates of an unknown random vector z ∈ Rn. The objective
of the fusion model is to find the best linear estimate via a set of coefficient matrices Ci
(i=1,...,K):

ẑ =

K∑
i=1

Ci ẑi s.t
K∑

i=1

Ci = In (A.28)

where the weighting matrices are estimated as:

{Ci}i=1,...,K = argmin
Ci

∥∥∥∥∥∥∥z−
K∑

i=1

Ci ẑi

∥∥∥∥∥∥∥
2

2

s.t
K∑

i=1

Ci = In (A.29)

Define the loss function J as the error expectation:

J = E


∥∥∥∥∥∥∥z−

K∑
i=1

Ci ẑi

∥∥∥∥∥∥∥
2

2

 (A.30)

Define also the total error covariance:

Σ, cov {z - ẑ} (A.31)

= E


z -

K∑
i=1

Ci ẑi


z -

K∑
j=1

Cj ẑj


T (A.32)

Since
K∑

i=1

Ci = In, the total error covariance is given as:

Σ = E

 K∑
i=1

Ci (z - ẑi)
K∑

j=1

Cj
(
z - ẑj

)T
 (A.33)
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Define the local error term as z̃i , z− ẑi and the local error covariance as Σi j , cov
{
z̃i, z̃j

}
,

the total error covariance becomes:

Σ = E

 K∑
i,j=1

Ci z̃i
(
Cj z̃j

)T
 (A.34)

=

K∑
i, j=1

CiΣi jCT
j (A.35)

The loss function J is rewritten as:

J = E


∥∥∥∥∥∥∥z−

K∑
i=1

Ci ẑi

∥∥∥∥∥∥∥
2

2

 (A.36)

= tr


K∑

i,j=1

CiΣijCT
j

 (A.37)

Substituting CK = In −C1 −C2 − ...−CK−1 into above equation, one gets:

J = tr


K-1∑
i,j=1

CiΣijCT
j +

K-1∑
i,j=1

(
CiΣiK + ΣKiCT

i

)
-

K-1∑
i,j=1

(
CiΣiKCT

j + CjΣKiCT
j

)
+ tr

ΣKK-

 K-1∑
i,j=1

Ci

ΣKK-ΣKK

 K-1∑
i,j=1

CT
j

 +

K-1∑
i,j=1

CiΣKKCT
j


(A.38)

Using the symmetric property of covariance matrices, i.e. Σi j = Σ
T
ji and Σii = Σ

T
ii , one

gets:

∂

∂Ci
(tr {CiΣ}) = ΣT (A.39)

∂

∂Ci

(
tr
{
ΣCT

i

})
= Σ (A.40)

∂

∂Ci

(
tr
{
CiΣCT

i

})
= Ci

(
Σ+ΣT

)
(A.41)

Taking partial derivative ∂J/∂Ci and set to zero, one gets:

K−1∑
i, j=1

Ci
(
Σi j −ΣiK

)
+ CK

(
ΣK j −ΣKK

)
= 0 s.t.

K∑
i, j=1

Ci = In, j = 1, ...,K − 1 (A.42)
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The final GMF of fusing z from { ẑ1, ..., ẑK} is:

ẑ =

K∑
i=1

Ci ẑi s.t.



K∑
i=1

Ci = In

K−1∑
i, j=1

Ci
(
Σi j −ΣiK

)
+ CK

(
ΣK j −ΣKK

)
= 0, j = 1, ...,K − 1

(A.43)

with a total error covariance of:

Σ =

K∑
i, j=1

CiΣi jCT
j (A.44)

Bar-Shalom and Campo (1986)

In the case of fusing two estimates (K = 2), the GMF becomes Bar-Shalom-Campo
formula:

ẑ = C1 ẑ1 + C2 ẑ2 (A.45)

Weighting matrices C1 and C2 satisfy:
C1 + C2 = In

C1 (Σ11 −Σ12) + C2 (Σ21 −Σ22) = 0
C1 (Σ12 −Σ12) + C2 (Σ22 −Σ22) = 0

(A.46)

which lead to: C1 = (Σ22 −Σ21) (Σ11 +Σ22 −Σ12 −Σ21)−1

C2 = (Σ11 −Σ12) (Σ11 +Σ22 −Σ12 −Σ21)−1 (A.47)

In case z̃1 and z̃2 are uncorrelated, i.e. Σ12 = Σ21 = 0, the fusion formula is known as the
Millman’s formula:

ẑ = Σ22 (Σ11 +Σ22)−1 ẑ1 +Σ11 (Σ11 +Σ22)−1 ẑ2 (A.48)

This formula is identical to the Bayesian fusion model assuming a non-informative prior
on z.
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Reconstruction of finely resolved velocity fields in turbulent flows from low resolution
measurements

This work lies in between the research domains of turbulence and image processing. The
main objectives are to propose new methodologies to reconstruct small-scale turbulence from
measurements at large-scale only. One contribution of this work is a review of existing methods.
We also propose new models inspired from recent works in image processing to adapt them to the
context of turbulence. We address two different problems. The first problem is to find an empirical
mapping function between large and small scales for which regression models are a common
approach. We also introduce the use of “dictionary learning” to train coupled representations
of large and small scales for reconstruction. The second problem is to reconstruct small-scale
information via the fusion of complementary measurements. The non-local means propagation
model exploit the similarity of structures in the flow, while the Bayesian fusion model estimates
the most probable fields given the measurements thanks to a maximum a posteriori estimate.
All methods are validated and analyzed using numerical databases where fully resolved velocity
fields are available. Performances of the proposed approaches are also characterized for various
configurations. These results can be considered under the co-conception design framework where
different experimental setups are designed to maximize the level of useful information after
post-processing.

Keywords: reconstruction, turbulence, dictionary learning, non-local means, bayesian fusion,
regression, small scales

Reconstruction fine de champs de vitesses d’un écoulement turbulent à partir de mesures
faiblements résolues

Ce travail est à la jonction de deux domaines de recherche que sont la turbulence et le traitement
d’image. L’objectif principal est de proposer de nouvelles méthodologies pour reconstruire les
petites échelles de la turbulence à partir de mesures grande échelle. Ce travail revisite des méthodes
conventionnelles et propose de nouveaux modèles basés sur les travaux récents en traitement
d’image pour les adapter à une problématique de turbulence. Le premier problème consiste
à trouver une fonction de correspondance empirique entre les grandes et les petites échelles,
une approche classique pour les modèles de type regression. Nous introduisons également une
méthode appelée “apprentissage de dictionnaire” pour laquelle une représentation couplée des
grandes et des petites échelles est déduite par apprentissage statistique. Le deuxième problème est
de reconstruire les informations à petites échelles par fusion de plusieur mesures complémentaires.
Le modèle de type “propagation de la moyenne non-locale” exploite la similarité des structures
de l’écoulement alors que les modèles bayesiens de fusion proposent d’estimer le champ le
plus probable en fonction d’informations données, on parle d’estimateur maximum a posteriori.
Les performances des différentes approches sont validées et analysées sur des bases de données
numériques pour lesquelles les informations sont disponibles à toutes les échelles. Ces résultats
peuvent être utilisés dans une approche de type co-conception où il s’agit d’imaginer différents
dispositifs expérimentaux définis conjointement avec les traitements numériques pour maximiser
la qualité des informations obtenues après traitement.

Mots clés : reconstruction, turbulence, apprentissage de dictionnaire, moyenne non-locale, fu-
sion bayésienne, régression, petites échelles
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