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Abstract xix

Transient aspects of the polymer induced drag reduction phenomenon

Abstract

The addition of a small amount of polymers of high molecular weight can lead to a pressure
drop decrease in turbulent flows. Over the years, numerous experimental and numerical studies
have been conducted in attempts to make practical use of polymer-induced drag reduction,
including long-distance transport of liquids, oil well operations, firefighting, transport of
suspensions and slurries, and biomedical applications. The polymers successively stretch and
coil by interacting with the turbulent structures, which changes the turbulent flow and further
imposes a transient behaviour on the drag reduction (DR) as well as the subsequent mechanical
polymer degradation. As a result, DR undergoes at least three stages over time: A, B, and C. In
stage A, referred to as the developing time, DR departs from zero and assumes negative values
due to a significant polymer stretching at the beginning of the process, which requires energy
from the flow. After the minimum DR is reached, the polymers start their coil-stretch cycle
and, in consequence, DR increases in response to the development of turbulent structures,
achieving a maximum value, which makes for the beginning of stage B. However, during their
coil-stretch cycle, polymers can be mechanically degraded as a result of an intense polymer
stretching, which reduces their ability to act as energy exchange agents. Hence, when polymer
degradation becomes pronounced, DR decreases until achieving a final value which indicates
that the degradation has stopped and the molecular weight distribution has reached a steady
state. The polymer degradation process characterizes the stage C. In the present work, numerical
analyses are conducted aiming to investigate the stages A, B and C. The transient aspects of the
polymer induced drag reduction phenomenon are explored with the aid of direct numerical
simulations of turbulent plane Poiseulle and Couette flows of viscoelastic FENE-P fluids taking
into account a wide range of Reynolds number, Weissenberg number and maximum polymer
molecule extensibility. Stages A and B are carefully studied from tensor, statistical, energy
budget and spectral perspectives. Additionally, a new and simple polymer scission model based
on the molecule strain level is developed in order to numerically reproduce the stage C. It is
found that the significant transient behaviour of DR within stage A is related to important
exchanges of energy between the polymers, the mean flow and the turbulent structures, which
is accentuated as the elasticity increases. In stage B, the dynamics of the flow is described by an
autonomous regeneration cycle. The effects of polymers on such a cycle are attenuated by the
molecules degradation during the stage C.

Keywords: direct numerical simulation, turbulent flow, fene-p model, drag reduction, transi-
tory aspects, polymer degradation.

Laboratoire de Mécanique de Lille (LML)
Av. Paul Langevin – Cité Scientifique – 59650 Villeneuve d’Ascq – France



xx Abstract

Des aspects transitoires du phénomène de réduction de la traînée induite par des poly-
mères

Résumé

La dilution en très faible concentration de chaînes polymériques longues dans un fluide new-
tonien peut réduire considérablement la traînée turbulente, phénomène nommé ici DR (drag
reduction). Au cours des dernières années, de nombreuses études expérimentales et numériques
ont été menées motivées par les applications pratiques de la DR, à savoir le transport à grandes
distances des liquides par pipelines, le transport des boues et des suspensions et des applica-
tions médicales. Les polymères s’étirent et s’enroulent successivement, en interaction avec les
structures turbulentes, ce qui modifie l’écoulement turbulent, imposant à DR un comportement
transitoire et provoquant la dégradation polymérique. Il en résulte que la DR traverse au moins
trois stades. Lors du premier, connu sous le nom de temps de développement, la DR démarre à
zéro et descend à des valeurs négatives en raison d’un étirement considérable du polymère au
début du processus, ce qui exige de l’énergie de l’écoulement. Une fois atteint le niveau minimal
de réduction de la traînée, les polymères commencent leur cycle d’étirement-enroulement et,
par conséquent, la DR augmente en réponse au développement de structures turbulentes, pour
en arriver à une valeur maximale, menant au début du deuxième stade. Cependant, lors de
leur cycle d’étirement-enroulement, les polymères peuvent subir une dégradation mécanique
à la suite d’un étirement polymérique intense, ce qui réduit leurs capacités de servir d’agents
d’échange d’énergie. Lorsque la dégradation polymérique devient assez prononcée, la DR re-
descend pour atteindre une valeur finale qui indique que la dégradation s’est arrêtée et que la
distribution de la masse moléculaire s’est stabilisée. Le processus de dégradation polymérique
caractérise le troisième stade. Dans le présent travail, des analyses numériques ont été menées
dans le but d’examiner ces trois stades. Les aspects transitoires du phénomène de réduction de
la traînée induite par des polymères sont explorés à l’aide de simulations numériques directes
d’écoulements turbulents viscoélastiques FENE-P en géométries du type Poiseuille plan et
Couette plan, sur un large éventail de nombres de Reynolds, de nombres de Weissenberg et
d’extension maximale de la chaîne polymérique. Les deux premiers stades sont soigneusement
étudiés à partir des analyses tensorielle, statistique, énergétique et spectrale. De surcroît, un
nouveau modèle de dégradation polymérique basé sur le niveau d’étirement des molécules est
proposé afin de reproduire numériquement le stade final. Il a été constaté que le comportement
transitoire significatif de la DR lors du premier stade est lié à d’importants échanges d’énergie
entre les polymères, l’écoulement moyen et les structures turbulentes, s’intensifiant à mesure
que l’élasticité augmente. Lors du deuxième stade, la dynamique de l’écoulement est décrite
par un cycle de régénération autonome. Les effets des polymères sur ce cycle s’atténuent par la
dégradation moléculaire qui survient lors du troisième stade.

Mots clés : simulation numérique directe, écoulement turbulent, modèle fene-p, réduction de
la traînée, aspects transitoires, dégradation du polymère.
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Chapter1
Introduction

1.1 Motivation

Turbulence represents one of the most challenging subjects of physics. Such a flow

regime dramatically increases in complexity when small amounts of polymers are

diluted in Newtonian fluids, giving to the problem a viscoelastic character. These

molecules induce an expressive drag reduction [28, 93, 61] whose practical uses include

long-distance transport of liquids [80], oil well operations [15], firefighting [27], trans-

port of suspensions and slurries [29], and biomedical applications [32]. In this context,

[97] showed in a pioneering experimental work that if the friction drag for pipe flows is

plotted in Prandtl–Kármán coordinates, it departs from the Prandtl–Kármán law (the

onset of drag reduction) to its bound, the so-called maximum drag reduction (MDR) or

Virk’s asymptote, as a result of an increase in either the Reynolds number, the polymer

concentration, or the polymer’s molecular weight.

Over the years, researchers have successfully analysed relevant aspects of this

phenomenon and a significant literature is available, e.g. [36, 98, 63, 96, 12, 13, 60,

33, 44]. However, up to now, there has been no definitive consensus concerning the

interactions between the turbulent energy and the deformations of the polymer.

Phenomenological explanations for polymer drag reduction (DR) gravitate around

two major theories. According to the viscous theory, independently proposed by Lumley

[52] and Seyer and Metzner [81] and supported by Ryskin [79], polymer stretching in

a turbulent flow produces an increase in the effective viscosity in a region outside of

the viscous sublayer and in the buffer layer, which suppresses turbulent fluctuations,

increasing the thickness of the buffer layer and reducing the wall friction. The elastic

theory postulated by Tabor and de Gennes [84] assumes that the elastic energy stored

by the polymer becomes comparable to the kinetic energy in the buffer layer. Since the

corresponding viscoelastic length scale is larger than the Kolmogorov scale, the usual

energy cascade is inhibited, which thickens the buffer layer and reduces the drag [see

5
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also 43]. Numerically, polymer-induced drag reduction theories have been intensively

investigated for over a decade since the first simulations conducted by Toonder et al.

[94] and Orlandi [62], such as Sureshkumar et al. [83], Min et al. [59], L’vov et al. [53],

de Angelis et al. [20], Dubief et al. [24], Benzi et al. [9], Dallas et al. [19], and Thais et

al. [86].

Despite the discrepancies between the two most prominent theories, what seems

to be in accordance with both scenarios is the relevance of the polymer-turbulence

interactions, which further imposes a transient behaviour on the drag reduction [105] as

well as a subsequent polymer degradation, a consequence of polymer elongation [58, 64,

82]. The relation between the polymer extension level and drag reduction was discussed

by Dimitropoulos et al. [21] with the aid of direct numerical simulation (DNS) analysis

to compute DR in a turbulent boundary layer flow of a FENE-P fluid. According to

the authors, the development of polymer extension and streamwise vortices along the

length of the plate is asynchronous. In other words, the turbulent structures take some

time to rearrange following a high deformation at the very beginning of the process,

which leads to a variation of DR level along the boundary. This numerical observation

was recently experimentally confirmed in a series of works by Pereira and Soares [65],

Pereira et al. [64] and Andrade et al. [2], who, using a rotating cylindrical double

gap device, reported that DR undergoes, at least, three stages over time, as shown in

Figure 1.1 where transient aspects of the polymer induced drag reduction phenomenon

are illustrated. Initially, during the stage A, DR presents negative values due to an

instantaneous increment of local extensional viscosity caused by a high and abrupt

polymer stretching at the very beginning of the test, which requires enhanced energy

input that comes from the flow. The molecules then start their coil-stretch cycle and DR,

after reaching a minimum value, DRmin, increases in response to the development of

turbulent structures, achieving a maximum value, denoted DRmax. The time to achieve

DRmax is refereed as the developing time, td . Following td , DRmax is maintained for a

period called resistance time, tr (stage B). Finally, during the stage C, DR decreases as a

result of polymer scissions, attaining a final and asymptotic value, a time during which

the polymer degradation stops and the molecular weight distribution reaches a steady

state.

The expressive transient behaviour described above is not predicted by the DR

mechanisms proposed in the literature, which reveals that the DR phenomenon is not

completely understood and many aspects of the problem remain unclear. Any attempt

to completely elucidate polymer-induced drag reduction must consider, at least, four

important issues: the mechanism of polymer coil–stretch; the development of turbulent

structures in viscoelastic flows; the exchange of energy between the turbulence and the

polymers; and the breaking of the polymer molecules. In the present dissertation, these

four important points will be systematically analysed from a numerical standpoint.
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Figure 1.1 – Sketch of the polymer-induced drag reduction over time.

1.2 About this thesis

1.2.1 Objective

The DR curve illustrated in Figure 1.1 was never numerically reproduced since, up to

now, there is no polymer degradation model available in the literature capable to take

into account the molecule scissions in a turbulent viscoelastic flow scenario. In addition,

the DR development from its very beginning was scarcely investigated. The majority of

the papers concerning the drag reduction are, thus, restricted to the state B in Figure

1.1, neglecting very important transient aspects of the drag reduction mechanism.

The main objective underlying the present dissertation is to study the strong tran-

sient behaviour of the polymer induced drag reduction phenomenon by developing

numerical methodologies which allow the complete reproduction of the blue curve

displayed in Figure 1.1. In this sense, direct numerical simulations of turbulent flows

of a viscoelastic FENE-P fluid are performed in order to investigate the development

of turbulent structures in viscoelastic flows, the exchange of energy between the tur-

bulence and the polymers, the mechanism of polymer coil–stretch, and the breaking

of the polymer molecules. The latter point is analysed in the light of a new polymer

scission methodology based on the molecule strain level.
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1.2.2 Organization of the contents

The present thesis is a synopsis of publications prepared during the stay of the author

at the École Polytechnique Universitaire de Lille (09/2012-09/2016). Most of the chapters

in the present dissertation are transcriptions of published or submitted journal articles.

Consequently, unavoidable redundancies exist between the introductory sections of

some chapters, since these chapters consist of the text of journal articles under their

original form.

The sequential organization of chapters follows the chronological order of develop-

ment of this doctoral work through the pursuit of the understanding of DR. In order

to help the reader to focus on the logical evolution of these researches, we summarize

here the contents of this dissertation:

• Chapter 2: The polymer coil–stretch mechanism in turbulent drag reducing flows
(Pereira et al. [67, 71])

In this initial chapter, we use the DNS database produced by our Research Group

between 2011 and 2013 [89, 87, 86, 88] to study the polymer coil–stretch process

in turbulent plane Poiseuille flows of a viscoelastic FENE-P fluid taking into

account a wide range of zero-shear friction Reynolds numbers (from 180 up to

1000). Tensorial and statistical analyses are developed. The flow is divided into

two distinct regions, following the Q-criterion of flow classification [see 38]: an

elliptical (or vortical) and a hyperbolic (or extensional) part. The polymer work

fluctuation is then investigated within these regions, separately. The analyses

that came out from these tools enable the proposition of a polymer coil–stretch

mechanism (stage B in Figure 1.1).

• Chapter 3: On the drag reducing plane Couette flows (Pereira et al. [70])

Aiming to analyse the drag reduction phenomenon in a flow scenario dominated

by large-scale motions, in Chapter 3 we perform direction numerical simulations

of turbulent plane Couette flows of viscoelastic FENE-P fluids. Such configuration

is characterized by the presence of large-scale structures only observed in plane

Poiseuille flows at high Reynolds numbers (Reτ0 > 1000; see also [75]). The results

enable the addition of new details concerning the effects of the polymers on the

autonomous regeneration cycle conceived for Newtonian flows by Jiménez and

Pinelli [42], expanded to viscoelastic flows by Dubief et al. [24] and revisited in

Chapter 2. The new DNS set of turbulent viscoelastic plane Couette flows is used

in the following chapters.

• Chapter 4: Transient aspects of the drag reducing plane Couette flows (Pereira et al.

[72])
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This chapter is devoted to the evolution of DR over its developing time (stage A in

Figure 1.1). We show that the initial interactions between the mean shear flow,

turbulent structures, and molecules are the key to understanding the step-by-step

evolution of the drag reduction phenomenon. The effects of elasticity on the

developing time are also clarified.

• Chapter 5: Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing
plane Couette flows (Pereira et al. [69]).

In Chapter 5, we investigate the polymer-turbulence interactions within ellip-

tical, parabolic and hyperbolic parts, separately, from a kinetic energy budget

perspective. We have found that even more activity is located within the confines

of the hyperbolic (extensional) structures when compared to what happens in

the elliptical (vortical) ones, which highlights the importance of considering the

role of hyperbolic domains on the drag reduction mechanism. In addition, we

also show that the initial evolution of DR discussed in Chapter 4 is dramatically

affected by the initial flow condition (velocity field).

• Chapter 6: Active and hibernating turbulence in drag reducing plane Couette flows
(Pereira et al. [66])

When the level of elasticity becomes pronounced, turbulent flows start to oscil-

late between the active and the hibernating regime [105] more frequently. The

former regime is related to the basic dynamical elements of Newtonian near-wall

turbulence, exhibiting a higher drag. In contrast, during the latter regime, the

turbulent structures almost disappear, which reduced the drag. In Chapter 6 we

show that the polymer-turbulence interactions in these two fundamental states

are considerably different. Especially during the hibernating state, polymers act

as an important source of turbulent energy, which can be an explanation for the

MDR limit.

• Chapter 7: Drag reducing flows considering the effects of polymer degradation (Pereira

et al. [68])

Finally, in Chapter 7, we develop a new polymer degradation methodology based

on the molecule strain level in order to numerically reproduced the molecular

scission (stage C in Figure 1.1). The effects of polymer degradation on the drag

reduction phenomenon are then evaluated.
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1.3 General physical formulation and numerical method-

ology

In the present dissertation, two channel flow configurations are used: plane Poiseuille

(Figure 1.2a) and plane Couette (Figure 1.2b). These flow configurations are commonly

adopted in direct numerical simulations due their simplicity as well as their attractive-

ness for theoretical studies of near wall turbulent interactions. The former is certainly

the most explored one in the drag reduction context. On the other hand, although DNS

results of turbulent viscoelastic plane Couette flows are scarce in the DR literature, the

plane Couette geometry represents a useful alternative to probe large-scale effects in

wall-bounded flow since it is dominated by strong inner/outer layer interactions similar

to those founded in high-Reynolds-number Poisseuile flows (Reτ0 > 1000; see also [75]).

The channel streamwise direction is x1 = x, the spanwise direction is x2 = y, and the

wall-normal direction is x3 = z. In the plane Poiseuille geometry, the flow between the

two parallel stationary plates is induced by a constant streamwise pressure gradient,

as illustrated in Figure 1.2(a). Nevertheless, the imposed pressure gradient is null in

the plane Couette configuration and the flow is driven by both the top and the bottom

plates, which have the same magnitude of velocity in the streamwise direction (Uh) but

opposite senses, as indicated in Figure 1.2(b).

The instantaneous velocity field in the respective directions is (ux,uy ,uz) = (u1,u2,u3).

In order to conduct a comparative analysis of the inner layer dynamics of the plane

channel flow, wall scaling is used and based on zero-shear rate variables with the length

and time scaled by νtot/uτ and νtot/u
2
τ , where νtot = νN + νp0 is the total (solvent +

polymer) zero-shear viscosity, and uτ is the zero-shear friction velocity. Using this

scaling, the dimensionless conservation equations are

∂u+
j

∂x+
j

= 0 , (1.1)

∂u+
i

∂t+
+u+

j

∂u+
i

∂x+
j

= −
∂p+

∂x+
i

+ β0
∂2u+

i

∂x+
j

2 +
∂Ξ+

ij

∂x+
j

. (1.2)

In Eq. 1.2, the superscript ‘+’ indicates the wall unit normalization, p+ is the pressure,

β0 is the ratio of the Newtonian solvent viscosity (νN ) to the total zero-shear viscosity

(νtot). The extra-stress tensor components are denoted by Ξ+
ij . The formalism of Eq. 1.2

includes the assumption of a uniform polymer concentration which is governed by the

viscosity ratio β0, where β0 = 1 yields the limiting behaviour of the Newtonian case.

The extra-stress tensor components (Ξ+
ij) in Eq. 1.2 represent the polymer’s contri-

bution to the tension of the solution. This contribution is accounted for by a single

spring-dumbbell model. We employ here the FENE-P kinetic theory [14], which is the
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Figure 1.2 – Geometries of the plane Poisseuille (a) and Couette (b) flows with
coordinate system.
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most preferred one due to its physically realistic finite extensibility of the polymer

molecules and to its relatively simple second-order closure. This model employs the

phase-averaged conformation tensor Cij =
〈
qiqj

〉
, where the qi are the components of

the end-to-end vector of each individual polymer molecule. The extra-stress tensor is

then

Ξ+
ij = α0

(
f {tr (C)}Cij − δij

)
, (1.3)

where α0 = (1− β0) /W iτ0, and with Wiτ0 = λu2
τ /νtot the friction Weissenberg number

representing the ratio of the elastic relaxation time (λ) to the viscous timescale. Addi-

tionally, δij is the Kronecker’s delta and f {tr (C)} is given by the Peterlin approximation

f {tr (C)} =
L2 − 3

L2 − tr (C)
, (1.4)

where L is the maximum polymer molecule extensibility and {tr (.)} represents the

trace operator. This system of equations is closed with an evolution equation for the

conformation tensor

DCij
Dt+

=
(
CikS

+
kj + S+

ikCkj
)
−
(
CikW

+
kj +W +

ikCkj
)
−
f (tr (C))Cij − δij

Wiτ0
, (1.5)

where S+
ij =

(
∂u+

i /∂x
+
j +∂u+

j /∂x
+
i

)
/2 and W +

ij =
(
∂u+

i /∂x
+
j −∂u

+
j /∂x

+
i

)
/2 are, respectively,

the terms of the rate-of-strain, S+, and the rate-of-rotation, W +, tensors.

Since the numerical scheme for our DNS is detailed in Thais et al. [89], we present

here a brief description of the mathematical and numerical approaches. The hybrid

MPI/OPENMP algorithm used was tailored to run properly in massively parallel ar-

chitectures. The hybrid spatial scheme includes Fourier spectral accuracy in the two

homogeneous directions (x and y) and sixth-order compact finite differences for the first

and second-order wall-normal derivatives (z direction). The time marching can be up

to fourth-order accurate by the use of the Adams–Moulton scheme for the viscous terms

and Adams–Bashforth for the explicit terms. Pressure–velocity coupling is facilitated

by a higher order generalization of the semi-implicit fractional step method on a non-

staggered grid arrangement analysed by Armfield and Street [4]. In order to attenuate

high wave-number energy accumulation, de-aliasing and fourth-order filtering are

performed in the two homogeneous and wall-normal directions, respectively. Typically,

this algorithm makes possible high-resolution, high drag reduction viscoelastic DNS, at

relatively high flow Reynolds numbers.



Chapter2
The polymer coil–stretch mechanism in

turbulent drag reducing flows

The polymer coil–stretch mechanism in turbulent drag reducing flows is analysed using

direct numerical simulations of viscoelastic FENE-P fluids. The study is carried out

taking into account low and high drag reduction regimes. The polymer stretching

and the alignment between the conformation tensor and other relevant entities are

investigated using statistical and tensor analysis. The significant alignment between the

former and the velocity fluctuations product tensor indicates that the initial polymer

stretching due to the mean shear is increased by the flow stress fluctuations, providing a

supplementary polymer extension. In addition, interactions between the turbulence and

the polymer are evaluated from an instantaneous turbulent energy exchange perspective

by considering streamwise work fluctuating terms in elliptical and hyperbolic flow

regions, separately. Near the wall, polymers not only release energy to the streaks, but

also to the elliptical (or vortical) and hyperbolic (or extensional) structures. However,

polymers can be also dragged around near wall vortices, passing through hyperbolic

regions and experiencing a significant straining within both these turbulent structures

and storing their energy. Hence, polymers weaken elliptical and hyperbolic structures

leading to a tendency of a dominant parabolic character in the flow domain. Polymer

release of energy occurs primarily in the streamwise direction, which is in agreement

with the enhanced streamwise velocity fluctuation observed in drag reducing flows. A

detailed polymer coil–stretch mechanism is provided.

2.1 Introduction

The addition of a small amount of polymers of high molecular weight can lead to

a pressure drop decrease in turbulent flows. Since the first observations reported

by Forrest and Grierson [28], Toms [93] and Mysels and Metzner [61], numerous

13
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experimental studies have been conducted in attempts to make practical use of polymer-

induced drag reduction (DR), including long-distance transport of liquids [80], oil

well operations [15], fire fighting [27], transport of suspensions and slurries [29], and

biomedical applications [32]. In a remarkable and pioneering paper, Virk et al. [97]

performed a careful analysis with an experimental turbulent pipe flow apparatus and

showed that if the friction drag for pipe flows is plotted in Prandtl–Kármán coordinates,

it departs from the Prandtl–Kármán law (the onset of DR) to its bound, the so-called

maximum drag reduction (MDR) or Virk’s asymptote, as a result of an increase in

either the Reynolds number, the polymer concentration, or the polymer’s molecular

weight. Over the years, researchers have successfully analysed relevant aspects of this

phenomenon and a significant literature is available, e.g. [36, 98, 63, 96, 12, 13, 60,

33, 44]. However, up to now, there has been no definitive consensus concerning the

interactions between the turbulent energy and the deformations of the polymer.

Phenomenological explanations for polymer drag reduction gravitate around two

major theories. According to the viscous theory, independently proposed by Lumley

[52] and Seyer and Metzner [81] and supported by Ryskin [79], polymer stretching in

a turbulent flow produces an increase in the effective viscosity in a region outside of

the viscous sublayer and in the buffer layer, which suppresses turbulent fluctuations,

increasing the thickness of the buffer layer and reducing the wall friction. The elastic

theory postulated by Tabor and de Gennes [84] assumes that the elastic energy stored

by the polymer becomes comparable to the kinetic energy in the buffer layer. Since the

corresponding viscoelastic length scale is larger than the Kolmogorov scale, the usual

energy cascade is inhibited, which thickens the buffer layer and reduces the drag [43].

Numerically, polymer-induced drag reduction theories have been intensively inves-

tigated for over a decade since the first simulations conducted by Toonder et al. [94]

and Orlandi [62]. Using an inelastic generalized Newtonian fluid to analyse pipe [94]

and channel [62] flows, both researchers argued that DR seems to be closely related to

the anisotropy of the elongational viscosity, a parameter that measures the resistance

of the fluid against stretching deformations. Such an argument was also presented by

Sureshkumar et al. [83], who performed the first direct numerical simulation (DNS)

of turbulent channel flow of a viscoelastic finitely extensible nonlinear elastic in the

Peterlin approximation (FENE-P) fluid [73], at a zero-shear friction Reynolds number

of 125. Their results suggest a partial suppression of turbulence within the buffer layer

after the onset of drag reduction, which is linked with an enhanced effective viscosity

attributed to the extension of polymers dispersed in the flow.

The explanations proposed in the three papers referred to above [94, 62, 83] seem

to corroborate Lumley’s theory. In an attempt to quantify this viscous scenario, L’vov

et al. [53] used conservation principles to show that an additional effective viscosity

growing linearly with the distance from the wall in the buffer layer has similar effects to



2.1. Introduction 15

those observed by the addition of flexible polymers in turbulent flows. This theoretical

prediction was later confirmed by de Angelis et al. [20], who performed a DNS of

Newtonian turbulent flows with an added viscosity profile obtaining results previously

observed in viscoelastic FENE-P simulations. Additionally, using this simple linear

viscosity model, de Angelis et al. [20] were able to predict the maximum drag reduction

asymptote, a point discussed in detail by Benzi et al. [9].

It is important to note that the elastic theory has also been actively explored. Min

et al. [59] conducted a DNS of turbulent drag reducing channel flows in which the

dilute polymer solution is simulated using the Oldroyd-B model. Their results showed

good agreement with previous theoretical and experimental predictions of the onset

of DR at specific friction Weissenberg numbers, which is interpreted based on the

elastic theory. Min et al. [59] and Dallas et al. [19] describe an elastic scenario in

which the elastic energy stored in the near-wall region due to the uncoiling of polymer

molecules is transported to and, to some extent, released in the buffer and log-law

layers. This storage of energy around the near-wall vortices was confirmed by Dubief

et al. [24], who performed a DNS of turbulent polymer solutions in a channel using

the FENE-P model, although, in contrast to Min et al. [59] and Dallas et al. [19], they

proposed an autonomous regeneration cycle of polymer wall turbulence in which the

coherent release of energy occurs in the very near-wall region, just above the viscous

sublayer. In order to clarify the dynamics of the polymer–turbulence interaction, Thais

et al. [87] used the DNS of a fully developed turbulent channel flow of Newtonian

and viscoelastic FENE-P fluids, at zero shear friction Reynolds numbers up to 1000,

and carefully examined the budgets of turbulent kinetic energy and the elastic energy

budget in drag-reducing flows. The authors showed that the elastic energy production

is small in the very near-wall region, growing with the distance from the wall and

reaching a maximum value in the log-law region. This elastic energy production acts

simultaneously as the dominant source of elastic energy and as the dominant sink

of turbulent energy. This is rather in line with Tabor and De Gennes’s description.

However, recently, Thais et al. [86] emphasized that at Reτ0 = 1000, the elastic coupling

between the turbulence and the polymer does not depend on the drag reduction regime

(the level of viscoelasticity), which is in disagreement with the elastic theory.

Despite the discrepancies between the two most prominent theories, what seems

to be in accordance with both scenarios is the relevance of the polymer coil–stretch

process, which further imposes a transient behaviour on the drag reduction as well as

a subsequent polymer degradation, a consequence of polymer elongation [58, 64, 82].

In order to understand the polymer coil–stretch process, Bagheri et al. [6] presented

direct numerical simulations of turbulent channel flow with passive Lagrangian lin-

ear (Oldroyd-B) and nonlinear (FENE) polymers. For the FENE model, the polymers

are more elongated within the near-wall region although such extension becomes less
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heterogeneous as the Weissenberg number increases. Furthermore, a much stronger

orientational trend is seen close to the wall, where the polymers are well aligned along

the streamwise direction. The authors also verified the alignment of the end-to-end vec-

tor with respect to the principal directions of the rate-of-strain tensor and the vorticity

vector. Nevertheless, they did not identify possible tensors capable of stretching the

polymers, which would reveal more details about the uncoiling mechanism.

It is clear that the DR phenomenon is not completely understood and many aspects

of the problem remain unclear. Any attempt to completely elucidate polymer-induced

drag reduction must consider, at least, four important issues: the mechanism of polymer

coil–stretch; the development of turbulent structures in viscoelastic flows; the exchange

of energy between the turbulence and the polymers; and the breaking of the polymer

molecules.

In the present work, we investigate the polymer coil–stretch process with the aid

of direct numerical simulations of the turbulent plane Poiseuille flow of a viscoelastic

FENE-P fluid taking into account a large range of zero-shear friction Reynolds numbers

(from 180 up to 1000). Tensorial and statistical analyses are developed in an attempt

to highlight the role played by three relevant kinematic tensor entities in the polymer

extension mechanism: the velocity fluctuation product tensor (which can be physically

interpreted as an instantaneous Reynolds stress), the rate-of-strain tensor, and the rate-

of-rotation tensor. As the primary focus, the relative polymer stretch and the alignment

between the conformation tensor and these three important tensor entities will be

confronted. Additionally, joint probability density functions will be used in order

to correlate the polymer–turbulence exchanges of energy and polymer orientations.

Lastly, the flow will be divided into two distinct regions, following the Q-criterion of

vortex identification [38]: an elliptical (or vortical) part where the second invariant of

the velocity gradient tensor is positive, and a hyperbolic (or extensional) part which is

determined by the negative values of the second invariant of the velocity gradient tensor.

The polymer work fluctuation will then be investigated within these regions, separately.

The analyses that came out from these tools enable the proposition of a polymer coil–

stretch mechanism based on the autonomous regeneration cycle reported by Dubief

et al. [24], which in turn was based on that conceived for Newtonian turbulent flows,

previously presented by Jiménez and Pinelli [42].

Following the description of the physical formulation and numerical methodology

presented in Section 2.2, our main results are separated into three parts: Sections 2.3,

2.4, and 2.5. In the first part (Section 2.3), some classical time-averaged quantities are

initially presented. In Section 2.4, we analyse the distribution of polymer stretch along

the wall distance, of which the effects on near-wall vortices and the dependence on

L and Wiτ0 are investigated as well, as exposed in subsection 2.4.1. Tensor analyses

are conducted in subsection 2.4.2 in an attempt to verify the alignment between the
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conformation tensor and the other three relevant entities. In Section 2.5, joint probabil-

ity density functions are used in order to correlate the polymer–turbulence exchanges

of energy and polymer alignments (subsection 2.5.1). Additionally, the coil–stretch

polymer process is linked with the coherent structures within the flow (subsection

2.5.2). In Section 2.6, these interactions are finally employed to describe a detailed

cyclic mechanism of the polymer–turbulence interaction.

2.2 Numerical methodology

The parameters for the turbulent Newtonian and FENE-P channel flows studied here

are summarized in table 2.1. Our simulated cases were chosen keeping in mind that

viscoelastic fluids can have significantly different statistical behaviour from a Newto-

nian fluid. For a given turbulence level, as parametrized by the zero shear friction

Reynolds number Reτ0 (defined as Reτ0 = uτh/ν0), this effect can vary with the fric-

tion Weissenberg number, Wiτ0 (where Wiτ0 = λuτ2/ν0) and the maximum polymer

extension length, L. In this paper, four Newtonian flow and seven viscoelastic flows

were examined, keeping the viscosity ratio β0 fixed at 0.9 and taking into account four

different values of the zero-shear friction Reynolds number (Reτ0
= 180, Reτ0

= 395,

Reτ0
= 590 and Reτ0

= 1000) and two different values of the friction Weissenberg num-

ber and the maximum polymer molecule extensibility (Wiτ0
= 50; Wiτ0

= 115; L = 30;

L = 100), which provided drag reduction regimes from 28.5% up to 62.3%. The drag

reduction level is defined by

DR[%] =
(
1− < τw(t) >

< τw,N (t) >

)
× 100 , (2.1)

where < τw(t) > and τw,N (t) denote the area-averaged wall shear stress at a given instant

t for the polymer solution and the Newtonian solvent, respectively, evaluated at the

same zero shear friction Reynolds number. Time averaging of DNS data (represented by

the bar) is taken in time over some 500 flow snapshots spanning several eddy turnover

times, while spatial averaging (indicated by ‘〈 〉’) is taken in the two homogeneous

channel directions (x, y).

Two drag reducing regimes are shown in table 2.1: the high drag reduction (HDR;

DR > 40%) and the low drag reduction (LDR; DR 6 40%). Physically, the main differ-

ence between these two regimes consists in the fact that for LDR flows, the Reynolds

stresses play a major role, whereas in the HDR regime, the near-wall dynamics of the

flow is dominated by the polymer stresses [102].

The channel extent for the flow cases at Reτ0
up to of 590 was Lx × Ly × Lz = 8π ×

1.5π × 2.0. For the highest zero-shear friction Reynolds number flow, Lx × Ly × Lz =
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6π × 1.5π × 2.0. The number of mesh points (Nx ×Ny ×Nz) shown in table 2.1 for

each case corresponds to a grid resolution of 8.8 ≤ ∆x+ ≤ 12.3, 5.4 ≤ ∆y+ ≤ 7.3, and

0.2 ≤ ∆z+ ≤ 12.1. The superscript ‘+’ indicates normalization by the friction velocity,

defined by uτ =
√
τw/ρ, and the total kinematic zero-shear rate viscosity. The Schmidt

number Scc = 0.1 was necessary to keep the algorithm stable and the conformation

tensor symmetric positive-definite.

Reτ0 Wiτ0 L β0 Nx x Ny x Nz ∆+
x x ∆+

y x ∆+
z,min ∆+

z,max DR [%]
180 0 0 1 512 x 128 x 129 8.8 x 6.6 x 0.2 7.1 0
180 50 30 0.9 512 x 128 x 129 8.8 x 6.6 x 0.2 7.1 28.5 (LDR)
180 115 30 0.9 512 x 128 x 129 8.8 x 6.6 x 0.2 7.1 38.4 (LDR)
180 50 100 0.9 512 x 128 x 129 8.8 x 6.6 x 0.2 7.1 47.0 (HDR)
180 115 100 0.9 512 x 128 x 129 8.8 x 6.6 x 0.2 7.1 62.3 (HDR)
395 0 0 1 1024 x 256 x 257 9.7 x 7.3 x 0.2 7.9 0
395 115 100 0.9 1024 x 256 x 257 9.7 x 7.3 x 0.2 7.9 62.0 (HDR)
590 0 0 1 1536 x 512 x 257 9.7 x 5.4 x 0.5 10.4 0
590 115 100 0.9 1536 x 512 x 257 9.7 x 5.4 x 0.5 10.4 61.0 (HDR)

1000 0 0 1 1536 x 768 x 385 12.3 x 6.1 x 0.5 12.1 0
1000 115 100 0.9 1536 x 768 x 385 12.3 x 6.1 x 0.5 12.1 58.0 (HDR)

Table 2.1 – Parameters for the DNS of Newtonian and FENE-P turbulent channel flows.

2.3 Statistics of the flow

2.3.1 Time-averaged statistics

The distributions of the mean velocity in wall-coordinates, 〈Ux
+〉, for turbulent channel

flows of Newtonian and viscoelastic solutions are displayed in figure 2.1(a). The bar

indicates time average and ‘〈 〉’ denotes the x− y plane average. The gray circles present

the Newtonian mean velocity profile at Reτ0
= 180 while the other symbols present

the viscoelastic flows. In the viscous sublayer (0 < z+ < 5), where the total stress is

predominantly associated with viscous effects, the mean velocities converge to the

same linear shape 〈Ux
+〉 = z+ represented by the solid grey line. As the wall distance

increases, the Reynolds stress becomes important and comparable to the viscous stress

within the Newtonian buffer layer (5 < z+ < 30). Then, the Newtonian mean velocity

departs quickly from the linear profile, taking on a logarithmic dependence on z+ (grey

dashed line) in the Newtonian log-law region, z+ > 30,

〈Ux
+〉 =

1
κ

ln(z+) +A1 , (2.2)
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where κ is commonly called the von Kármán coefficient (1/κ is the slope), and A1 is

the intercept at z+ = 1. For Newtonian channel flows over a hydraulically smooth wall,

κ = 0.4 and A1 = 5.5 [45]. In order to better describe our results, we use the boundaries

of the viscous sublayer, the buffer layer and the log-law Newtonian regions to define

regions I, II and III, respectively.

The interactions between the viscoelastic fluid dynamics and the turbulent flow

dynamics result in changes in the mean velocity profile relative to the Newtonian fluid.

The polymer drag reduction phenomenon leads to an increased bulk mean velocity,

as observed by comparing the viscoelastic profiles plotted in figure 2.1. When a high

enough polymer concentration is used, the maximum level of drag reduction (MDR)

is attained. In that state, the velocity profile is commonly represented by the Virk’s

asymptote [98],

〈Ux
+〉 = 11.7ln(z+) + 17.8 , (2.3)

which is a matter of recent controversy [104]. This velocity profile, illustrated by the or-

ange dash-dotted line and partially fitted by the most viscoelastic case (orange inverted

triangles), was derived by L’vov et al. [53] using a DNS of FENE-P turbulent flows

and assuming that the Reynolds stress momentum flux is negligible and the pressure

gradient is balanced by the effective polymer/viscous force [10, 76, 8]. Additionally,

the MDR scenario was recently explored by Dubief et al. [22], who performed direct

numerical simulations of FENE-P inertial channel flows in an attempt to investigate

the mechanism of the turbulence primarily driven by the polymers, which is called the

elasto-inertial turbulence. The authors pointed out that in the MDR state, the fluctuations

in polymer stresses create turbulent kinetic energy. This fact suggests that the maximum

drag reduction asymptote can not be surpassed since the polymer coil–stretch process

is itself a source of turbulence. Hence, the elasto-inertial turbulence phenomenon may

provide a reasonable explanation for the MDR. Nevertheless, as pointed by the authors,

further analysis is required to validate this rationale.

Experimental and recent numerical results based on DNS [25, 77, 26, 87] indicate

a parallel upward shift of the logarithmic region of the mean velocity profile with

increasing DR, which is clearly perceived at high Reynolds numbers [86]. Such a

behaviour suggests a significant extension of the buffer layer region into the channel

caused by the polymers. For viscoelastic fluids, the cross-over to a presumed Newtonian
plug-flow occurs at a distance from the wall where the Reynolds stress momentum

flux is no longer negligible compared to that of the polymer/viscous stress. Figures

2.1(b), (c), and (d) show the normal components of the Reynolds stress tensor, whose

components are defined as the time standard deviation of the velocity fluctuation product

(u′ iu′j
+

). The mean effect of the polymer on the turbulence is anisotropic and induces

an increase in the streamwise normal Reynolds stress component (figure 2.1b), while
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Figure 2.1 – Mean velocity profiles in the streamwise direction (a),〈Ux
+〉, and normal

components of the Reynolds stress (b, c, and d) for Newtonian and viscoelastic channel
flows, against the normalized wall distance.
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weakening both the spanwise (figure 2.1c) and the wall-normal (figure 2.1d) terms, as

experimentally found by many researchers such as Pinho and Whitelaw [74], Warholic

et al. [99] and White et al. [103]. This effect is more pronounced as the elasticity

increases, as indicated by the solid black arrows. In the most elastic flow at Reτ0
= 180

(orange inverted triangles), for instance, the peak of 〈u′xu′x
+〉 moves from z+ ≈ 12

(region II) to z+ ≈ 32 and its value is one order of magnitude greater than the Newtonian

one (grey open circles). In addition, the other components also shift away from the wall,

but their peaks decrease by one order of magnitude compared to the Newtonian flow.

Since vortices produce significant transverse fluctuations, the reduction of both u′y and

u′z suggests a strong interaction between these intermittent structures and polymers

[24]. Lastly, the dashed arrows indicate that the normal Reynolds stress components

are an increasing function of Reτ0. Their peaks move towards the channel centre with

increasing Reynolds number.

The variations in polymer mean stresses across the channel can be highlighted

by analysing the polymer mean stretch, which is linked with the former by the Pe-

terlin function (equation 1.4). The distribution of the relative polymer mean stretch

〈tr
(
C
)
/L2〉 as a function of z+ is displayed in figure 2.2(a), for all viscoelastic cases

studied in the present paper. As a common point, the polymer molecules exhibit a

significant extension at the wall, which increases in the buffer layer, where its peak is

attained. This peak magnitude, as well as its location, is a decreasing function of L, but

increases with increasing Wiτ0 (these trends are discussed in subsection 2.4.1). As the

wall distance increases further, 〈rmtr
(
C
)
/L2〉 becomes less pronounced until achieving

its minimum level at z+ = 180. A very simple method to clarify the polymer stretching

mechanism consists in solving equation 1.5 using different mean velocity profiles. The

result is illustrated in figure 2.2(b), where the less elastic flow is considered (grey open

circles), as well as the polymer extension produced in this fluid by three mean veloc-

ity profiles: turbulent-channel-like Ux = (9/8)[1 − (z/h)8] [19]; laminar-channel-like,

Ux = (3/2)[1−(z/h)2]; and laminar-Couette-like,Ux = (z/h). As the derivative of the mean

velocity with respect to the wall-normal direction increases, the polymers stretch consid-

erably, due to the increase of the shear stress. More specifically, the profile of 〈tr
(
C
)
/L2〉

follows the mean viscous shear stress feature. In a pure Couette shear flow (black star

symbol), the polymers exhibit a weak and constant extension, 〈tr
(
C
)
/L2〉 ≈ 0.06. On

the other hand, for a pure channel shear flow (blue plus symbol), the relative polymer

stretch decreases monotonically and linearly from 〈tr
(
C
)
/L2〉 ≈ 0.25 to 〈tr

(
C
)
/L2〉 = 0

across the channel. Lastly, comparing the relative polymer extensions obtained from a

turbulent-like mean velocity profile (orange inverted triangles) and DNS results (grey

open circles), it is interesting to observe that both curves depart from the same level

(≈ 0.54), at z+ = 0. However, as the wall distance increases, the discrepancy between

them becomes pronounced. In fact, near the wall, the increasing 〈tr
(
C
)
/L2〉 noticed



22CHAPTER 2. The polymer coil–stretch mechanism in turbulent drag reducing flows

Figure 2.2 – (a) Evolution of the mean relative polymer extension, 〈tr
(
C
)
/L2〉, against

the normalized wall distance. (b) Effects of mean shear stress profile on polymer
extension.

for the grey circles curve suggests that in this region there is a particular intermittent

flow topology capable of producing an increase in the polymer extension beyond the

viscous mean shear level represented by the orange inverted triangles. In other words,

the viscous mean stress is responsible for a relevant polymer stretching, which is incre-

mented since the turbulent structures interact with the polymer molecules, providing a

supplementary polymer extension. We believe these intermittent polymer–turbulence

interactions are also responsible for the polymer coil–stretch process, which will be

analysed in later subsections from statistical and tensorial perspectives.

All the trends discussed above considering Reτ0 = 180 are also observed at higher

zero-shear friction Reynolds numbers, as previously reported by Thais et al. [87, 86].

2.4 Polymer stretching and alignment

In order to analyse the effects of instantaneous polymer stretching on the flow, the

following data and results were evaluated at the same instant of simulation, after a

statistical steady state was achieved. Such an instantaneous analysis is justified by the

fact that in turbulent flows, the polymer action is likely to be as intermittent as the near-

wall vortices [24]. Hence, these intermittent events may be hidden by a time-averaging

procedure. In other words, such an analysis of the instantaneous quantities could reveal

rare but important events for the DR phenomenon.

Although in this Subsection we analyse the effects of the elasticity on the stretching
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and alignment of the polymers at a low zero-shear friction Reynolds number, Reτ0
= 180,

it is important to emphasize that the trends shown below are observed for all viscoelastic

cases studied. In other words, the physical aspects of DR discussed here are not affected

by low–Reynolds number effects.

2.4.1 Polymer stretching

The three-dimensional structures shown in figure 2.3 represent the isosurfaces of the

vortical regions, defined as the positive second invariant of the velocity gradient tensor,

∇u, in Newtonian (a) and viscoelastic (b, c, d, and e) flows. For incompressible flows,

the second invariant of ∇u, Q, can be used to identify vortical structures, the so-called

Q-criterion [38], and simplified as

Q =
1
2

(
||W ||2 − ||D||2

)
> 0 , (2.4)

which indicates the spatial regions where the Euclidean norm of the rate-of-rotation

tensor, ||W ||, dominates that of the rate-of-strain, ||D|| (the Euclidean norm of a generic

second order tensor A is ||A|| =
√
tr

(
A ·AT

)
). These structures follow an organized

hierarchy across the channel. In the vicinity of the wall (z+ < 20), eddies are found to

be pairs of counter-rotating quasi-streamwise vortices, while for z+ > 30, these eddies

resemble hairpins (the so-called horseshoe vortices). The formation of such morphologies

is induced by combined second-quadrant ejection (u′x < 0,u′z > 0; Q2 event) and fourth-
quadrant sweep (u′x > 0,u′z < 0; Q4 event) events within the flow [1]. Specifically, the

hairpin vortices are composed of three well defined parts. The legs are regions of

rotation quasi-aligned with the streamwise direction. The head is a rotation part aligned

with the spanwise direction. The necks are the connections between the legs and the

head of the hairpin. These three parts, as well as the velocity fluctuations associated

with them, can be seen in detail in figure 2.4, where a typical hairpin extracted from

our less elastic flow (Reτ0 = 180, Wiτ0 = 50 and L = 30) is coloured by the Q events.

Comparing figures 2.3(a), (b), (c), (d) and (e), it can be seen that the number of

vortices with a value of the Q-criterion equal to 0.7 decreases with increasing elasticity

(Wiτ0 and L). For Wiτ0 = 115 and L = 100, which provides DR = 62.3%, the vortices

with Q = 0.7 are completely gone and the vortices with Q = 0.1 (figure 2.3e) are only

found close to the walls. In viscoelastic flows, the vortical structures are significantly

weaker than in the Newtonian flow, which is considered fundamental evidence of the

polymer–turbulence interactions and the consequent drag reduction [46, 47, 102]. As

the elasticity increases, some characteristics of the vortices change: their thicknesses and

streamwise lengths increase, while their strengths weaken, which is clearly observed

by comparing figures 2.3(a) and (e). Furthermore, the vortices become more parallel
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Figure 2.3 – The three-dimensional structures represent isosurfaces of vortical regions
defined as a positive value of the second invariant of velocity gradient tensor, ∇u. The

colours indicate the polymer stretching, tr (C) /L2.
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Figure 2.4 – Typical hairpin extracted from a viscoelastic flow (Reτ0 = 180; Wiτ0 = 50;
L = 30) with Q = 0.7 and coloured by the Q1 (u′x > 0,u′z > 0), Q2 (u′x < 0,u′z > 0), Q3

(u′x < 0,u′z < 0), and Q4 (u′x > 0,u′z < 0) events.



26CHAPTER 2. The polymer coil–stretch mechanism in turbulent drag reducing flows

to the wall. In the log-law region, the hairpin head is strongly weakened. It has been

experimentally and numerically shown that in drag reducing flows, the streamwise

component of the Reynolds normal stresses increases relative to the Newtonian case,

while the other components of the Reynolds stress tensors decrease [100, 99, 77, 46, 87].

These variations seem to be closely connected with the coil–stretch polymer transition

and the consequent vortex structural changes [21]. The colours in figures 2.3(b), (c), (d)

and (e) indicate the relative polymer stretch, tr (C) /L2. The y − z planes show that for

all four viscoelastic flows, the polymers are more stretched close to the wall (yellow

and red regions). In contrast, the polymer extensions are less pronounced in the middle

of the channel (blue regions). The isosurface colours and those of the intersections

between vortical structures and y − z planes show that the polymers are more extended

around the near-wall vortices.

The stretching of the polymers can be seen more clearly in figure 2.5(a), where the

evolution of the x−y plane average normalized trace of the instantaneous conformation

tensor, 〈tr (C) /L2〉, is plotted against the wall distance z+ (solid symbols) together with

the normalized streamwise normal component of the conformation tensor, 〈Cxx/L2〉
(open symbols). The percentage of polymer extension, 〈tr (C) /L2〉, is relatively high at

the wall, achieving a peak in the very near-wall region (z+ < 20), the exact location of

which varies with L and Wiτ0. This peak is commonly associated with the streamwise

vortices [19, 24, 21]. After this point, 〈tr (C) /L2〉 starts to decrease, until reaching its

minimum at the channel centre. In comparing the grey solid circles with the red solid

diamonds, or the blue solid triangles with the green solid squares, it can be clearly seen

that 〈tr (C) /L2〉 decreases with increasing L, for fixed Reτ0 andWiτ0, which suggests that

the large polymer molecules could be less susceptible to chain scission degradation [65].

A further comparison of the grey solid circles with the blue solid triangles, or of the red

solid diamonds with the green solid squares, reveals that the relative polymer extension

becomes greater as the friction Weissenberg number increases, since higher values of the

polymer time scale induce the polymer molecules to be influenced by a wider spectrum

of time scales of the flow [19]. Figure 2.5(a) also shows that the dominant contribution

to the trace of the conformation tensor comes from Cxx, i.e. 〈tr (C) /L2〉 ≈ 〈Cxx/L2〉
(especially near the wall and for the highest value of L, L = 100). This distribution

suggests a significant stretching of the polymers in the streamwise direction. The other

component with a non-zero wall value is the off-diagonal component Cxz, normalized

and displayed in figure 2.5(d). However, its value at the wall is almost two orders of

magnitude smaller than that of the Cxx component. Moreover, as Wiτ0 and L increase,

the profile of 〈Cxz/L2〉 follows the same tendencies noted in figure 2.5(a), reaching its

peaks at z+ not much different from those observed for Cxx. The peak magnitude of

the off-diagonal component Cxz is comparable to that of the Czz component (plotted in

figure 2.5b), although both are only slightly smaller than the peak magnitude of the
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Figure 2.5 – Normalized conformation tensor as a function of the normalized wall
distance. Streamwise normal components of C and tr(C) /L2 (open and solid in a,

respectively). Spanwise normal component of C (b). Wall-normal normal component of
C (c). Cross components (d).
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Cyy component (shown in figure 2.5c). It is worth noting that 〈Cxz/L2〉 is an increasing

function of the molecular relaxation time (the variations of which are here computed by

changing Wiτ0 at fixed Reτ0) although a saturation effect is observed when increasing

the elasticity (the red diamonds and green square curves are close). This saturation

effect is also seen for Czz (figure 2.5b) and Cyy (figure 2.5c). The peak magnitude of the

normal components Czz and Cyy are both one order of magnitude smaller than that

of the Cxx component, starting with a zero wall value. Lastly, as Wiτ0 increases, Czz
and Cyy increase. The opposite behaviour is observed with increasing L. These two

normal components exhibit maximum values beyond the buffer layer (60 < z+ < 90), as

previously reported by Thais et al. [87], which is currently linked to the straining flows

around the vortices [24, 21].

In figure 2.5, it is worth noting that Cxx � Cyy > Czz ≈ Cxz indicates a strong

anisotropic behaviour of the conformation tensor. This anisotropy seems to dramatically

influence the statistics of the fluctuating velocity fields, especially at small scales. The

analysis of the trace of the conformation tensor reveals two locations of interest that

will be systematically explored in this paper: z+ = 8.2, the approximate position where

〈tr (C) /L2〉 is a maximum; z+ = 180, where the trace of the conformation tensor reaches

its minimum value with respect to L2.

The probability distribution functions (PDFs) of tr (C) /L2 are displayed in figure

2.6. The grey circles indicate the PDF for the whole channel, while the blue triangles

and red diamonds are for the x − y planes located at z+ = 8.2 and z+ = 180, respectively.

Figure 2.6(a) shows the results for the less elastic flow, for which Wiτ0 = 50, L = 30,

and DR = 28.5%. The relative polymer extensions shown in this figure vary between 0

and 0.9, although the curve of grey circles indicates that most of the molecules have a

stretch percentage of 55%, which is equally observed at z+ = 8.2. Moreover, close to the

wall, the polymer molecules present a more reduced stretch range, 0.3 < tr (C) /L2 < 0.8

(there are no coiled molecule in this x−y plane). At the centre of the channel (z+ = 180),

a large number of polymer molecules are coiled and most of them are weakly stretched

(tr(C) /L2 = 0.05). A comparison between figures 2.6(a) and 2.6(c) shows that as L

increases, keeping Wiτ0 fixed, the polymer extension percentage decreases and the

number of coiled molecules increases. The same trend is observed comparing figures

2.6(b) and 2.6(d). Regarding figure 2.6(c), in the x−y plane located at z+ = 180 almost all

polymer molecules have a null stretching percentage. As discussed before, the relative

polymer extension becomes greater as the friction Weissenberg number increases, since

higher values of the polymer time scale are influenced by a wider spectrum of time

scales of the flow. This is clearly observed by comparing figures 2.6(a) and (b). In figure

2.6(b), where Wiτ0 = 115 and L = 30, an increase in Wiτ0 widens the range of polymer

stretching (3/900 < tr (C) /L2 < 0.95). The majority of polymer molecules are highly

extended (0.78). Furthermore, in the x − y plane located close to the wall, only strongly
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Figure 2.6 – Probability distribution functions of the polymer extensions, tr (C) /L2.
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stretched molecules are noted, and even at the middle of the channel it is possible to

find considerably extended ones. The probability distribution functions for the most

elastic flow are displayed in figure 2.6(d). We note that these PDF curves are comparable

to those in figure 2.6(a), and have the same trends.

2.4.2 Polymer alignment

Figure 2.7 shows the average values in the x − y plane of the cosines of the angles

Ψ between the first principal direction, e1, of our three relevant tensor entities (the

eigenvector related to the largest eigenvalue) and the three unit vectors ex (streamwise;

figure 2.7a), ey (spanwise; figure 2.7b), and ez (wall-normal, figure 2.7c) against the

normalized wall distance, for the Newtonian case.

The alignment between the first principal direction of the velocity fluctuation

product tensor, τ′ (whose components are defined by u′iu
′
j), and ex, indicated in figure

2.7(a) by the blue open triangles, is accentuated near the wall, growing within the

buffer layer, where 〈cosΨ
(
eτ
′

1 , ex
)
〉 achieves its peak magnitude (≈ 0.85) at z+ ≈ 8.2.

This is consistent with the fact that u′xu
′
x is the most important component of τ′ in the

near-wall region. However, as the wall distance increases, u′yu
′
y , u′zu

′
z, and u′xu

′
z become

important while u′xu
′
x decreases, considerable reducing 〈cosΨ

(
eτ
′

1 , ex
)
〉 in the middle

of the channel (≈ 0.57). A different behaviour is observed by analysing the angles

between eτ
′

1 and both the spanwise and wall-normal directions as functions of z+, as

shown in figures 2.7(b) and (c), respectively. Firstly, at the wall, 〈cosΨ
(
eτ
′

1 , ey
)
〉 ≈ 0.48

while 〈cosΨ
(
eτ
′

1 , ez
)
〉 = 0 due to the wall effects (u′zu

′
z = 0). Although an increase in

〈cosΨ
(
eτ
′

1 , ez
)
〉 with z+ is noted, the buffer layer favours the alignment between τ′ and

the streamwise direction. Consequently, 〈cosΨ
(
eτ
′

1 , ey
)
〉 decreases, reaching a minimum

value of 0.37 at z+ ≈ 15. Lastly, in the middle of the channel, both 〈cosΨ
(
eτ
′

1 , ey
)
〉 and

〈cosΨ
(
eτ
′

1 , ez
)
〉 are approximately 0.5, indicating a random tendency of the alignment

of τ′ with both the y and z directions.

The orientation of the rate-of-strain tensor presented in figure 2.7(a), (b) and (c)

exhibits an interesting behaviour as the wall distance increases. Since in the viscous

sublayer the Reynolds stress tensor is negligible compared to the viscous stress ten-

sor [24], the flow in this region is laminar and, consequently, 〈cosΨ
(
eD1 , ex

)
〉 ≈
√

2/2,

〈cosΨ
(
eD1 , ey

)
〉 ≈ 0, and 〈cosΨ

(
eD1 , ez

)
〉 ≈
√

2/2. In contrast, in the log-law region, the

flow is driven by the turbulence, and 〈cosΨ
(
eD1 , ex

)
〉 ≈ 〈cosΨ

(
eD1 , ey

)
〉 ≈ 〈cosΨ

(
eD1 , ez

)
〉 ≈

0.5, which emerges from a weak velocity gradient, of which the tendency of direction is

not clear.

The green open squares in figures 2.7(a), (b) and (c) show the orientation of the

vorticity vector. Following the rate-of-strain tensor, beyond the buffer layer (60 <

z+ < 180), a chaotic alignment is perceived, since 〈cosΨ (ω, ex)〉 = 〈cosΨ
(
ω, ey

)
〉 =
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Figure 2.7 – Average values in the x − y plane of the cosines of the angles between the
principal directions of a given tensor and the three unit vectors ex, ey , and ez (which

represent the streamwise, spanwise and wall-normal directions) against the normalized
wall distance.

〈cosΨ (ω, ez)〉 ≈ 0.5. However, close to the wall (z+ < 20), the vorticity vector tends to be

strongly aligned with the spanwise direction.

Following the method described above, the effects of a polymer on the average

orientation of our three relevant tensor entities are plotted against the wall distance

in figures 2.8 and 2.9 for two drag reduction regimes: the less elastic (DR = 28.5%,

Wiτ0 = 50 and L = 30) and the most elastic (DR = 62.3%, Wiτ0 = 115 and L = 100). In

this subsection, we use the acronyms LDR and HDR to refer to these two cases. The

orientation of the conformation tensor is also considered.

The polymer alignment in the LDR case is shown in figures 2.8(a), (b) and (c). The

grey open symbols indicate that in the viscous sublayer, the conformation tensor is well

oriented along the streamwise direction. This preferential alignment between eC1 and

ex is maintained within the buffer layer. However, it weakens as 〈cosΨ
(
eC1 , ey

)
〉 and

〈cosΨ
(
eC1 , ez

)
〉 increase from z+ = 30 to z+ = 180, at which point both profiles reach a

peak (≈ 0.4) and 〈cosΨ
(
eC1 , ex

)
〉 exhibits its minimum value (≈ 0.6). Nevertheless, it is

worth noting that even in the LDR middle region region, where the Reynolds stresses

are more pronounced, a slight preferential orientation of C with ex is observed. A

comparison of figures 2.8 and 2.9 reveals that cosΨ
(
eC1 , ex

)
is an increasing function of

the elasticity. In the HDR case, the angle between eC1 and ex is approximately zero for

all z+, indicating that the polymers are strongly aligned with the streamwise direction

throughout the whole channel.

The alignment between the first principal direction of τ′ and ex for the LDR case

displayed in figure 2.8(a) is accentuated at the wall (≈ 0.85), where 〈cosΨ
(
eτ
′

1 , ex
)
〉

is approximately 6% greater than that of the Newtonian case. In addition, the peak
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Figure 2.8 – Average values in the x − y plane of the cosines of the angles between the
principal directions of a given tensor and the three unit vectors ex, ey , and ez against

the normalized wall distance.

magnitude of 〈cosΨ
(
eτ
′

1 , ex
)
〉, which is located in the buffer layer (z+ ≈ 8.2), is also

6% larger than for the Newtonian flow. As the wall distance increases, the alignment

between eτ
′

1 and ex decreases, achieving its minimum value (〈cosΨ
(
eτ
′

1 , ex
)
〉 ≈ 0.6) at

the middle of the channel. Analysing the angles between eτ
′

1 and both spanwise and

wall-normal directions, we initially note that at the wall, 〈cosΨ
(
eτ
′

1 , ey
)
〉 ≈ 0.35 and

〈cosΨ
(
eτ
′

1 , ez
)
〉 = 0. The increasing fluctuation in the streamwise velocity in the buffer

layer favours the alignment between τ′ and ex, which reduces 〈cosΨ
(
eτ
′

1 , ey
)
〉 to its

minimum value (≈ 0.3) at z+ ≈ 15. After this point, similar to the Newtonian behaviour,

〈cosΨ
(
eτ
′

1 , ey
)
〉 and 〈cosΨ

(
eτ
′

1 , ez
)
〉 increase, reaching their peak magnitude (≈ 0.45)

at the middle of the channel. Since, at this location, 〈cosΨ
(
eτ
′

1 , ex
)
〉 ≈ 0.6, we can

conclude that the addition of a polymer reduces the initial random tendency of the

orientation of τ′ observed for the Newtonian flow. This polymer effect is more clearly

perceived in figures 2.9(a), (b) and (c). In the HDR case, 〈cosΨ
(
eτ
′

1 , ex
)
〉 changes from

0.96, at the wall, to the maximum value of 0.98 within the buffer layer. In contrast,

〈cosΨ
(
eτ
′

1 , ex
)
〉 decreases along the region III, reaching its minimum value (≈ 0.85) at

z+ = 180. Additionally, 〈cosΨ
(
eτ
′

1 , ey
)
〉 changes from 0.12, at z+ = 0, to 0.1, in the buffer

layer, after which it starts to increase, achieving its peak magnitude (≈ 0.26) at z+ = 180.

Moreover, 〈cosΨ
(
eτ
′

1 , ez
)
〉 smoothly increases from zero to 0.22 across one-half of the

channel. Lastly, it is important to note that in the HDR case, 〈cosΨ
(
eτ
′

1 , ex
)
〉 > 0.85

and 〈cosΨ
(
eτ
′

1 , ez
)
〉 < 〈cosΨ

(
eτ
′

1 , ey
)
〉 < 0.3 for all z+. In other words, the addition of

polymers induces a preferable alignment of τ′ with the streamwise direction in the

whole channel.

The effects of a polymer on the orientation of the rate-of-strain in the LDR case
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Figure 2.9 – Average values in the x − y plane of the cosines of the angles between the
principal directions of a given tensor and the three unit vectors ex, ey , and ez, against

the normalized wall distance.

are indicated by the red open diamonds in figures 2.8(a), (b) and (c). In the viscous

sublayer, a laminar characteristic eigenvector emerges. Consequently, 〈cosΨ
(
eD1 , ex

)
〉 =

〈cosΨ
(
eD1 , ez

)
〉 ≈
√

2/2, and 〈cosΨ
(
eD1 , ey

)
〉 ≈ 0. These typical orientations gradually

change to random orientations at z+ = 180, which differs from the fast transition

observed in the Newtonian case, for which a chaotic tendency of alignment is noted

throughout the entire log-law region. In the HDR regime, the alignment is not random,

as can be seen in figures 2.9(a), (b) and (c). The angle between eD1 and ex is equal to

45o from the wall to z+ = 155. In addition, 〈cosΨ
(
eD1 , ey

)
〉 < 0.5 and 〈cosΨ

(
eD1 , ez

)
〉 > 0.4

for all z+. Such a behaviour is consistent with the fact that polymers weaken the

normal components of D while no significant difference is perceived for its off-diagonal

terms compared with the Newtonian case. Thus, polymers act in the flow by partially

suppressing the turbulence, making the rate-of-strain tensor more laminar.

Figures 2.8(a), (b) and (c) also show the orientation of the vorticity vector in the LDR

regime. The green open squares indicate that although the variations of 〈cosΨ (ω, eα)〉
across the half channel are smoother than those for the Newtonian flow, there are

similarities between both the LDR and the Newtonian cases, such as the preferable

alignment of ω with the y direction in the viscous sublayer, and the chaotic orientation

of this vector within the log-law region. Nevertheless, the analysis of the alignment

of the vorticity for the HDR flow displayed in figures 2.9(a), (b) and (c) reveals that an

increasing elasticity amplifies 〈cosΨ
(
ω, ey

)
〉, which results from the fact that polymers

weaken both 〈ωx〉 and 〈ωz〉 in the region III, but do not affect 〈ωy〉.

Figures 2.7, 2.8 and 2.9 bring out the complexity of the near-wall dynamics in

a Newtonian turbulent flow and how much this region is affected by polymers. In
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the high drag reduction regime, polymer effects are perceived even far from the wall

(60 < z+ < 180). The most evident polymer effects shown in these figures are the strong

alignment of C and τ′ with x, which increase with increasing elasticity. These preferable

streamwise orientations indicate not only that the most significant turbulence–polymer

energy exchanges should occur in the x direction, but also that C and τ′ present an

significant alignment between them, which can be linked with the coil–stretch process

of the polymer. Thus, in order to clarify the role played by the three considered tensors

in the polymer extension mechanism, it is convenient to compute their alignments

with respect to the local conformation tensor (the eigenvectors of C are the local

reference frames), as shown in figures 2.10 and 2.11 for the same LDR and HDR

regimes previously analysed in this subsection.

The cosines of the angles between the eigenvectors of C and eτ
′

1 in the LDR case

are displayed in figure 2.10. Following the blue open triangles in figure 2.10(a), we

notice that 〈cosΨ
(
eC1 , e

τ′
1

)
〉 departs from an accentuated value at the wall (≈ 0.85).

Furthermore, the alignment between eC1 and eτ
′

1 becomes more pronounced while

moving along the viscous sublayer, achieving its peak magnitude (≈ 0.9) at z+ = 8.2,

the exact same location as the maximum polymer extension (〈tr (C) /L2〉 ≈ 0.8) observed

in figure 2.5. This peak is maintained until z+ ≈ 12, from which point 〈cosΨ
(
eC1 , e

τ′
1

)
〉

starts to decrease to its minimum value (≈ 0.58), located at the middle of the channel.

In contrast, 〈cosΨ
(
eC2 , e

τ′
1

)
〉 and 〈cosΨ

(
eC3 , e

τ′
1

)
〉 exhibit opposite behaviours along the

channel, as shown by the blue open triangles in figures 2.10(b) and (c), respectively. The

former is small at the wall and, after reaching its minimum value (≈ 0.27) at z+ = 8.2,

tends to 0.5. The latter is very close to zero in the viscous sublayer. However, it slightly

increases as the wall distance increases, achieving a peak of 0.4 at z+ = 180. In the HDR

case, shown in figures 2.11(a), (b) and (c), 〈cosΨ
(
eC1 , e

τ′
1

)
〉 changes from 0.96, at the wall,

to 0.98 at z+ ≈ 10, which represents a peak magnitude 9% greater than that of the LDR

case. This value is sustained until z+ ≈ 15, from which point the alignment between

eC1 and eτ
′

1 gently decreases to its minimum value (≈ 0.85), situated at the centre of

the channel. In the opposite sense, increasing elasticity decreases 〈cosΨ
(
eC2 , e

τ′
1

)
〉 and

〈cosΨ
(
eC3 , e

τ′
1

)
〉. It is worth noting that the alignment between the first eigenvectors of

C and τ′ is significant even at the middle of the channel, where 〈cosΨ
(
eC1 , e

τ′
1

)
〉 is about

47% greater than in the case of the LDR. This indicates that the interaction between C

and τ′ is an increasing function of the elasticity, whose effects are perceptible not only

near the wall, but also in the region III.

In the viscous sublayers of both the low and the high drag reduction regimes (figures

2.10 and 2.11, respectively), while eC2 and eD1 are almost orthogonal, there is an angle

of ≈ 45o between eC3 and eD1 , as well as between eC1 and eD1 . Interestingly, Ψ
(
eC1 , e

D
1

)
is maintained across the channel. In contrast, in the LDR scenario, both Ψ

(
eC3 , e

D
1

)
and Ψ

(
eC2 , e

D
1

)
become random as the wall distance increases. However, in the HDR
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Figure 2.10 – Average values in the x − y plane of the cosines of the angles between the
principal directions of the conformation tensor and other relevant entities.

Figure 2.11 – Average values in the x − y plane of the cosines of the principal directions
of the conformation tensor and other relevant entities.
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regime, this tendency of chaotic alignment within the region III is attenuated, and,

in consequence, 〈cosΨ
(
eC3 , e

D
1

)
〉 ≈ 0.6 and 〈cosΨ

(
eC2 , e

D
1

)
〉 ≈ 0.25. Thus, as Wiτ0 and L

increase, the polymer becomes more exposed to the rate-of-strain tensor not only in I

and II, but also in the region III.

Near the wall, the polymer molecules exhibit a weak tendency to lie in the plane

perpendicular to ω since 〈cosΨ
(
eC1 ,ω

)
〉 and 〈cosΨ

(
eC3 ,ω

)
〉 are almost zero, as can be

seen in figures 2.10 and 2.11. However, one can note that in this region, 〈cosΨ
(
eC2 ,ω

)
〉 ≈

1.0. This occurs because, near the wall, eC2 is oriented along the ey direction (not shown

here), as is ω (see figures 2.8 and 2.9).

2.5 Polymer–turbulence energy transfer

2.5.1 Global exchanges of energy

As pointed out in previous subsections, near-wall polymers are highly aligned with τ′

and, consequently, strongly exposed to flow stress fluctuations. The latter are respon-

sible for the generation of intermittent quasi-streamwise vortices, which play a very

important role in the momentum exchange as well as in the increase of the turbulent

friction drag [50]. Hence, our tensorial and statistical analyses suggest that polymers

primarily interact with these intermittent structures, exchanging energy with them.

Aiming to characterize such energy exchanges, we consider the work fluctuation terms.

These energy terms are that exclusively related to the fluctuating fields which appear

in the right-hand side of the work fluctuation equation, which in turn is obtained by

decomposing the variables of the momentum equation into mean flow (U
+
α, p̄+ and Ξ̄+

αj)

and fluctuations (u′α
+, p′+ and Ξ′αj

+), and then multiplying the resulting equation by

the streamwise velocity fluctuation (u′α
+). The work terms exclusively linked with the

fluctuating fields are then: E′α
+ =

(
u′α

+ ∂Ξ
′
αj

+

∂x+
j

)
, A′α

+ =
[
−u′α

+ ∂
(
u′α

+u′j
+
)

∂x+
j

]
, P ′α

+ =
(
−u′α

+ ∂p′+

∂x+

)
and V ′α

+ =
[
(β0)u′α

+ ∂2u′α
+

∂x+
j

2

]
. Since the turbulent energy exchanges in the x direction

constitute more than 90% of that considering the streamwise, the spanwise and the

wall-normal directions, we analyse here only the streamwise work fluctuation terms

(α = x). Hence, the instantaneous polymer work term, E′x
+, indicates the amount of en-

ergy stored (E′x
+ < 0) or released (E′x

+ > 0) by the polymers from the fluctuating velocity

field in the streamwise direction, u′x
+ (the fluctuations are denoted by the superscript

‘′’). The supplementary fluctuating work terms denote the advection, A′x
+, the pressure

redistribution, P ′x
+, and the viscous stress, V ′x

+. The sum A′x
+ + P ′x

+ +V ′x
+ is referred to

as the Newtonian fluctuating work, N ′x
+.

In figures 2.12 and 2.13, the x − y plane average of the instantaneous streamwise

work fluctuating terms against the normalized wall distance are considered. In addition,
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both 〈tr (C)/L2〉 and 〈cosΨ
(
eC1 , e

τ′
1

)
〉 are plotted. These quantities are denoted by the

solid symbols in figures 2.12(d) and 2.12(f ), respectively. Different levels of elasticity

are considered in figure 2.12 fixing the Reynolds number, while the effects of Reτ0
are

shown in figure 2.13 maintainingWiτ0
= 115 and L = 100. Our lowest Reynolds number

case (Reτ0
= 180) and the seven viscoelastic flows detailed in table 2.1 are considered.

Very close to the wall (I), where the turbulent stresses are negligible, the work

fluctuation terms are close to zero. The streamwise vicous work fluctuation (figures

2.12c and 2.13c) and the streamwise polymer work fluctuation (figures 2.12d and 2.13d)

exhibit initially an opposite behaviour. For the less elastic case (blue open triangles),

the former decreases from the wall to z+ ≈ 10, where its minimum value is located.

The latter, one order of magnitude smaller than V ′x, increases throughout the viscous

sublayer, reaching its peak magnitude at z+ ≈ 5. It is worth noting that both the inflexion

point of 〈E′x
+〉 and the minimum value of 〈V ′x

+〉 are located at the same wall distance

for each case analysed here. Additionally, the maximum values of 〈tr (C)/L2〉 (solid

symbols in figures 2.12c and 2.13c) and 〈cosΨ
(
eC1 , e

τ′
1

)
〉 (solid symbols in figures 2.12d

and 2.13d), quantities which develop parallel profiles, are observed at the same location

(z+ ≈ 10 for the less elastic case). Both the advection and pressure terms become less

pronounced as elasticity increases, playing a less important role in the fluctuating

energy budget under LDR flow conditions (figure 2.12). In the opposite trend, more

significant values of 〈A′x
+〉 and 〈P ′x

+〉 are observed at higher Reτ0
(figure 2.13).

The black arrows in figure 2.12 indicate that increasing elasticity makes 〈A′x
+〉, 〈P ′x

+〉,
and 〈V ′x

+〉 close to zero. This effect of increasing elasticity is more pronounced in the

viscous term and, consequently, in the Newtonian term (A′x
+ + P ′x

+ +V ′x
+) of which the

minimum value changes from 〈N ′x
+〉 ≈ ˘0.225 for the Newtonian case to 〈N ′x

+〉 ≈ −0.07

for the most elastic case (not shown). Furthermore, the minimum and the maximum

values observed in figure 2.12 move away from the wall as Wiτ0
and L increase. On the

other hand, as indicated by the black arrows in figure 2.13, for a fixed elasticity, the

magnitude of the energy budget terms increases with increasing Reynolds number.

Intermittent energy transfers may be hidden even by instantaneous spatial averaging

procedures. Further evidence regarding such energy transfers are provided by figure

2.14, which shows five different joint probability density functions (JPF) for the x − y
planes related to the less elastic case and located at z+ ≈ 5.0, where 〈E′x

+〉 is a maximum,

as well as that situated at z+ ≈ 50, where 〈E′z
+〉 is a minimum (not shown here). The black

solid line represents the JPF of E′α vs u′α (where α can denote either x or z), whereas the

red solid line represents the JPF which considers the instantaneous streamwise polymer

work fluctuation and the cosine of the angle between the first principal directions of C

and τ′. Similar JPFs are displayed in figure 2.15 for the Newtonian work fluctuation at

the same x − y planes. The work fluctuation terms were normalized by their temporal

root mean square spatially averaged over the corresponding x − y plane. In this figure,
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Figure 2.12 – The open symbols show the normalized instantaneous streamwise work
fluctuating terms against the normalized wall distance. The solid symbols in (c) and (d)

show the profiles of 〈tr (C) /L2〉 and 〈cosΨ
(
eC1 , e

τ′
1

)
〉 across the channel half-width,

respectively.
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Figure 2.13 – The open symbols show the normalized instantaneous streamwise work
fluctuating terms against the normalized wall distance. The solid symbols in (c) and (d)

show the profiles of 〈tr (C) /L2〉 and 〈cosΨ
(
eC1 , e

τ′
1

)
〉 across the channel half-width,

respectively.
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Figure 2.14 – Joint probability density functions of instantaneous polymer work vs
instantaneous velocity fluctuation for the x − y planes located at z+ = 5.0 (a and b) and
z+ = 50 (c) and d). Fluctuations terms are normalized by their temporal root mean

square spatially averaged over the corresponding x − y plane.
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Figure 2.15 – Joint probability density functions of instantaneous Newtonian work vs
instantaneous velocity fluctuation over the x−y planes located at z+ = 5.0 (a and b) and
z+ = 50 (c) and d). Fluctuations terms are normalized by their respective temporal root

mean square spatially averaged over the corresponding x − y plane.
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the most probable events are indicated by internal lines. Although only our less

elastic fluid is treated in this figure, all the supplementary viscoelastic cases present

qualitatively similar trends.

Firstly, with regard to figure 2.14(a), it is important to observe that the polymer

molecules are allowed to coil (E′x > 0) and stretch (E′x < 0) within the near-wall region

(z+ ≈ 5.0). At such a location, the polymer molecules are predominantly injecting

energy into the flow (E′x > 0) and, as a consequence, increasing both the negative

and the positive streamwise velocity fluctuations as well as the absolute value of T ′x
(see figure 2.12). Moreover, this injection of energy is closely related (has a higher

probability) to negative values of u′z, as shown in figure 2.14(b). Interestingly, the red

solid lines in figure 2.14(b) reveal that more pronounced polymer–turbulence exchanges

of energy occur when the conformation tensor is predominantly oriented along the

first principal direction of τ′ (cosΨ
(
eC1 ,e

τ′
1

)
≈ 1), which reinforces the relevance of the

aligment between C and τ′ for the polymer–turbulence exchange of energy.

Figure 2.14 also shows that at z+ ≈ 50, polymers primarily extract energy from the

flow (E′z < 0), which preferentially occurs where u′x < 0 (figure 2.14c) and u′z < 0 (figure

2.14d). However, the suppression of ejection flows (u′x < 0 and u′z > 0; Q2 region) is also

a moderately likely event.

Comparing figures 2.14 and 2.15, it is interesting to note that in the very near-wall

region, E′x and N ′x tend to have opposite signs. Hence, at z+ ≈ 5, injection events are

strongly related to E′x > 0 and N ′x < 0. Similarly, at z+ ≈ 50, the ejection and injection

events are linked with E′z < 0 and N ′z > 0.

2.5.2 Elliptical and hyperbolic exchanges of energy

In order to better understand the polymer coil–stretch process from the energy perspec-

tive, we divide the flow into three different regions by using the Q-criterion discussed in

subsection 2.4.1. Instead of the usual approach, where a threshold is chosen to produce

a Boolean picture of the flow, as in figure 2.3, for example, we adopt the Q-criterion as

a measure of the intensity of stretching/rotation activity, i.e. we plot the Q field. To this

end, Q is normalized in order to produce values between 0 and 1 [54] and thus takes

the form

Qnorm =
1
π

cos−1
(
||W ||2 − ||D||2

||W ||2 + ||D||2

)
. (2.5)

Normalized values 0 ≤Qnorm < 0.5 represent swirling-like or elliptical regions, whereas

0.5 < Qnorm ≤ 1 indicates a non-swirling-like or hyperbolic region. A value of Qnorm = 0.5

represents transition surfaces where the magnitudes of W and D are equal. This

normalized vortex identification criterion was applied to the centre x − z plane (at

y = 0.75π) for all viscoelastic flows corresponding to Reτ0 = 180, as shown in figure 2.16.
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Figure 2.16 – Contour of normalized Q-criterion, Qnorm. The lines around vortical
regions (blue and green regions) represent intersections between the x − y plane and

vortices with Q = 0.01. These lines are black or white, which indicates polymer
stretching or coiling, respectively.

The vortical regions (swirling-like) are shown in blue, while the extensional regions

(non-swirling-like) are shown in red. Green indicates the transition regions, generally

referred to as parabolic, where the intensities of the rotational and extensional motions

are close to each other. The lines around vortical regions represent the intersections

between the x−y plane and vortices withQ = 0.01 (consequently, the lines surround the

blue parts). These lines are black or white, which indicates polymer stretching (E′x < 0)

or coiling (E′x > 0) in the streamwise direction, respectively.

Analysing figure 2.16, we first notice that both the vortical and extensional motion

are weakened by increasing elasticity. Hence, green regions are more frequent in the

HDR cases (c and d). Furthermore, the lines indicate that the morphology of the vortices

changes with an increase of Wiτ0 and/or L, since their thicknesses and streamwise
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lengths increase, while they become more parallel to the wall, something also seen in

figure 2.3. Concerning the polymer–vortex interactions, it is apparent that the lines

around the elliptical parts are predominantly black. Such a result reveals that polymers

essentially stretch in such a region, extracting energy from the vortices. In addition, we

note that far from the wall, polymers also store a significant amount of energy from the

hyperbolic regions, which are mostly surrounded by black lines as well (not shown for

clarity).

The extraction of energy from the elliptical and hyperbolic structures by the polymer

is further explored in figure 2.17, where the contours of the normalized Q-criterion

were applied to the centre y − z plane (at x = 4.0π) for our less elastic case. The arrows

in figure 2.17(a) indicate the direction and the sense of the vectors resulting from

u′y and u′z, while those in figure 2.17(b) illustrate the direction and the sense of the

vectors resulting from polymer force fluctuations (f ′α = E′α/u
′
α) in both the spanwise

and wall-normal directions (the vector magnitudes are not considered in these figures).

Comparing both of these figures, it is apparent that, fundamentally, the polymer forces

oppose the vortical motion (blue regions) by imposing a counter-torque around such

structures. However, it is important to stress that in the extensional structures (yellow

and red regions) the polymer forces also oppose the fluctuating velocities. Similar

results were obtained for the other case (not shown here).

The energy exchanges between the polymers and turbulent structures are high-

lighted by the open symbols in figures 2.18 and 2.19, where the x − y plane average

of the streamwise polymer work fluctuations (a) and the streamwise Newtonian work

fluctuations (b) are plotted against the wall distance for both the elliptical (c and d) and

the hyperbolic (e and f ) regions, separately. Additionally, a similar analysis is displayed

for 〈cosΨ
(
eC1 , e

τ′
1

)
〉 plotted against z+ (solid symbols in figures a, c and, e).

Considering the whole channel evaluated in figures 2.18(a), 2.18(b), 2.19(a) and

2.19(b) it is found that polymers essentially release energy within the viscous sublayer,

since 〈E′x
+(z+ < 5)〉 > 0. In contrast, after reaching its maximum value at z+ ≈ 5.0, 〈E′x

+〉
becomes negative and reaches expressive negative values in the region II (20 ≤ z+ ≤ 30).

Negative values of 〈E′x
+〉 are also observed within the region III. Hence, the polymers

store turbulent energy in both the region II and III (E′α < 0), and release it into the

viscous sublayer (E′x > 0) by coiling along the streamwise direction, which increases the

streamwise velocity fluctuations (see figure 2.1b).

Inside the elliptical and hyperbolic structures, the streamwise polymer work fluctua-

tion profiles follow the same trends as those described for the whole channel. Polymers

release energy to elliptical (figures 2.18c and 2.19c) and hyperbolic (figures 2.18e and

2.19e) parts located in the near-wall region (I), which had been previously extracted

from such structures in the regions II and III. These results corroborate those shown in

figure 2.16. On the other hand, in the wall-normal direction as well as in the spanwise
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Figure 2.17 – Velocity (a) and polymer body force (b) fluctuation vectors on the y − z
plane at x = 4.0π. Contours of the normalized Q-criterion, Qnorm, are also overlaid,

with blue regions indicating large swirling strength and red regions representing large
extensional deformations.
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Figure 2.18 – The open symbols show the normalized streamwise polymer (left column)
and Newtonian (right column) work fluctuations against the wall (z+) distance
considering the whole channel (a and b) as well as the elliptical (c and d) and

hyperbolic (e and f ) regions, separately. The solid symbols in (a), (c) and (e) show the
profile of 〈cosΨ

(
eC1 , e

τ′
1

)
〉 against the wall distance, in the same three domains.
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Figure 2.19 – The open symbols show the normalized streamwise polymer (left column)
and Newtonian (right column) work fluctuations against the wall (z+) distance
considering the whole channel (a and b) as well as the elliptical (c and d) and

hyperbolic (e and f ) regions, separately. The solid symbols in (a), (c) and (e) show the
profile of 〈cosΨ

(
eC1 , e

τ′
1

)
〉 against the wall distance, in the same three domains.
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Figure 2.20 – The three-dimensional structures represent the isosurfaces of hyperbolic
regions defined as a negative value of the second invariant of the velocity gradient

tensor, ∇u. The colours indicate polymer stretching, tr (C) /L2.
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direction (not shown here), the polymer molecules predominantly store turbulent en-

ergy from the elliptical and hyperbolic structures by stretching in the region III, which

reinforces our remarks concerning figure 2.17. It is important to emphasize that the

polymer–turbulence exchanges of energy are more pronounced in hyperbolic regions,

especially in the streamwise direction. Lastly, regarding 〈cosΨ
(
eC1 , e

τ′
1

)
〉 (solid symbols),

the more significant alignments between C and τ′ are situated in the hyperbolic regions

(figures 2.18e and 2.19e). These alignments decrease monotonically from the viscous

sublayer to the centre of the channel.

More significant elastic and inertial effects are observed for 〈N ′x
+〉 (figures 2.18b

and 2.19b), which is essentially negative along z+ and reaches its minimum value in

the buffer layer (z+ ≈ 20). This term is one order of magnitude greater than 〈E′x
+〉 and

becomes close to zero as Wiτ0
and L increase, and Reτ0

decreases. Within the elliptical

region (figures 2.18d and 2.19d), no positive values of 〈N ′x
+〉 are observed (figures 2.18d

and 2.19d). However, in the hyperbolic regions (figures 2.18f and 2.19f ), after achieving

its minimum value, 〈N ′x
+〉 increases and reaches a positive peak magnitude at z+ ≈ 70.

Concerning figures 2.18 and 2.19, it is also important to note that, for each viscoelas-

tic case, the profiles given by the sum of the energy terms shown in figures 2.18(c) and

(e), and in figures 2.19(c) and (e) at each z+ are approximately equal to those displayed

in figures 2.18(a) and 2.19(a), respectively, which is also valid for figures 2.18(b), (d) and

(f ), and figures 2.19(b), (d) and (f ). Such a result indicates that the amount of energy

exchanged between the polymers and turbulence in the parabolic regions is negligible

compared to that occurring in elliptical or hyperbolic regions.

In order to illustrate the role played by the addition of a polymer in the hyperbolic

structures of the domain, consider the hyperbolic counterpart of figure 2.3. Since the

magnitude of the second invariant of the velocity gradient is not altered when one

interchanges the Euclidean norms of D and W , a negative value of Q with the same

magnitude as the ones depicted in figure 2.3 would give the hyperbolic structure an

intensity corresponding to the elliptical structure intensity of that figure, as measured

by Q. In this connection, what is seen in figure 2.20 is a distribution over the domain

of hyperbolic structures corresponding to: Q = −0.7 for the Newtonian (figure 2.20a);

Q = −0.7 for the viscoelastic case with Wiτ0 = 50, L = 30 (figure 2.20b); Q = −0.7 for

the viscoelastic with Wiτ0 = 115, L = 30 (figure 2.20c); Q = −0.7 for the viscoelastic

case with Wiτ0 = 50, L = 100 (figure 2.20d); and Q = −0.1 for the viscoelastic case with

Wiτ0 = 115, L = 100 (figure 2.20e). A direct comparison between figures 2.3 and 2.20

shows a remarkable similarity in the intensity of the structures. Although there are clear

differences in the morphology of the corresponding hyperbolic structures, figure 2.20

shows that these turbulent entities are also weakened by the action of the polymer. As

the elastic character of the polymer becomes more prominent, the hyperbolic structures

are reduced in intensity and size in a quite similar fashion to what happened with the
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Figure 2.21 – Sketch of the polymer-induced drag reduction mechanism.

elliptical structures displayed in figure 2.3. We can deduce that the polymer molecules

interact with the turbulence, damping the elliptical and hyperbolic turbulent structures

and leading to a tendency of a dominant parabolic character in the flow domain.

2.6 The DR mechanism

Recently, Andrade et al. [2] experimentally showed that the polymer drag reduction

phenomenon undergoes at least three stages over time: A, B, and C, as shown in figure

2.21(a). In stage A, referred to as the developing time (td), the DR is first negative, due to

an instantaneous increase in the local extensional viscosity caused by a large and abrupt

polymer stretching. This initial process requires a significant energy input, which comes
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predominantly from the mean flow [72], besides a lesser but still important amount of

energy that is extracted from the elliptical and hyperbolic structures, since the polymers

are strongly exposed to τ′. After reaching a minimum value (DRmin), the polymers

start their coil–stretch cycle and, in consequence, the DR increases in response to the

polymer-flow interactions, achieving a maximum value (DRmax), which makes for the

beginning of stage B. The duration of stage B is referred to as the resistance time (tr).

Such a stage is characterized by a negligible polymer degradation, during which the

DR is maintained at its maximum value. In order to describe the polymer coil–stretch

mechanisms during stage B, we invoke the autonomous regeneration cycle discussed by

Dubief et al. [24], in which we include new details concerning the polymer–turbulent

exchanges of energy shown in figure 2.21(b). This autonomous cycle is originally based

on that put forward by Jiménez and Pinelli [42] and conceived for Newtonian turbulent

flows. In the viscous sublayer, the polymers are highly exposed to the mean flow,

which acts as a source of elastic potential energy [86]. Additionally, just above the

viscous sublayer (z+ ≈ 5), the polymers enhance the streamwise momentum in the

elliptical and hyperbolic regions by releasing streamwise turbulent energy (E′x > 0) to

such structures (see figure 2.18). However, polymers can be also pulled around the

near-wall vortices, passing through hyperbolic regions and experiencing a significant

strain within both these turbulent structures. Thereby, as shown in figure 2.18, the

polymers store turbulent energy from the elliptical and hyperbolic parts (E′α < 0) in

the regions II and III (where they probably also release a non-negligible amount of

energy to the mean flow). Lastly, the polymer can be injected (or re-injected) into the

very near-wall region, there releasing streamwise turbulent energy and being more

exposed to the mean shear. It is worth mentioning that, as shown by the red JPF in

figure 2.14(b), more pronounced polymer–turbulence exchanges of energy occur where

cosΨ
(
eC1 ,e

τ′
1

)
≈ 1.

Since the amount of energy stored by the polymer from the fluctuating velocity field

in the regions II and III is greater than that released just above the viscous sublayer, there

is a weakening of the elliptical and hyperbolic turbulent structures, as indicated by both

the blue and red arrows in figure 2.21(c), resulting in the growth of the parabolic domain.

This flow parabolization trend is accompanied by the reduction of the Newtonian work

fluctuation as the elasticity increases.

During their coil–stretch cycle, polymer molecules can be mechanically degraded

as a result of excessive polymer stretching, which reduces their ability to act as energy

exchange agents. Hence, when polymer degradation becomes pronounced, the DR

decreases, as represented by stage C in figure 2.21(a), until achieving an asymptotic

value (DRasy), which indicates that the degradation has stopped and the molecular

weight distribution has reached a steady state.

The coil–stretch mechanism discussed above and sketched in figure 2.21 highlights
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the role played by the polymers in the self-sustained wall turbulence interacting with

the mean shear, nonlinear interactions, near-wall elliptical and hyperbolic structures in

viscoelastic drag reducing flows, considering a DR which evolves over time from the

very start of the phenomenon until reaching its asymptotic value.

2.7 Concluding Remarks

The statistical and tensorial analysis of the polymer coil–stretch mechanism in a drag

reducing channel flow were conducted by using direct numerical simulations employing

the viscoelastic FENE-P model. Four Newtonian flow and seven viscoelastic flows were

examined, keeping the viscosity ratio β0 fixed at 0.9 and taking into account four

different values of the zero-shear friction Reynolds number (Reτ0
= 180, Reτ0

= 395,

Reτ0
= 590 and Reτ0

= 1000) and two different values of the friction Weissenberg

number and the maximum polymer molecule extensibility (Wiτ0
= 50; Wiτ0

= 115;

L = 30; L = 100), which provided drag reduction regimes from 28.5% up to 62.3% (the

simulation details are in table 2.1, Section 2.2).

The polymer modifies the mean flow velocity, increasing its streamwise component,

which departs from the Prandtl–Kármán law (the onset of DR) up to Virk’s asymptote,

as Wiτ0 and L increase. A similar effect is found for the streamwise Reynolds stress

normal component, although the other normal components of this tensor decrease

(figure 2.1 in Section 2.3). Concerning the relative polymer extension, the polymer

molecules exhibit a significant stretch level close to the wall, which reaches its maximum

within the buffer layer but is minimal, yet still relevant, at the centre of the channel.

Such an extension profile can not, however, be sustained exclusively by the mean

flow, although the mean viscous shear stress is the most relevant stretch agent in the

very near-wall region (figure 2.2 in Section 2.3). As pointed out in Section 2.4, the

stretching produced by the mean flow is increased, since the turbulent structures

interact with the polymers molecules, providing a supplementary polymer extension.

In fact, polymer molecules are strongly exposed to flow stress fluctuations, which is

evidenced by the high degree of alignment between the instantaneous conformation

tensor and the instantaneous velocity fluctuation product tensor (especially in the

very near-wall region). As Wiτ0 and L increase, this alignment between both the first

principal directions of the conformation tensor (C) and the velocity fluctuation product

tensor (τ′) becomes more pronounced.

The thickening of the buffer layer was also evidenced by the tensorial and statistical

analysis, as shown in subsection 2.4.2. For the most viscoelastic flow, for instance,

the angle between eD1 and ex is equal to 45o from the wall to z+ = 155, a typical

orientation which indicates that the polymers act on the flow by partially suppressing

the turbulence, making the rate-of-strain tensor more laminar, viscometrically speaking.
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The Q-criterion was used as a measure of the intensity of elliptical (vortices) and

hyperbolic structures. A normalized dimensionless version of this criterion was con-

structed in order to partition the domain into elliptical, hyperbolic, and parabolic

regions. The strong interactions between the polymers and intermittent turbulent

structures were investigated using perspective of the Q-criterion (Section 2.5). Figure

2.17 showed that the previously documented counter-torque action [46] on the turbu-

lent elliptical structures (vortices) corresponding to blue regions where Qnorm < 0.5 (or

Q > 0) is accompanied by a counter-stretch force acting on the hyperbolic structures

corresponding to red regions where Qnorm > 0.5 (or Q < 0). To illustrate the polymer–

turbulence interactions in the hyperbolic structures, figure 2.20 showed how these

structures are weakened as the elasticity is increased from the Newtonian to our maxi-

mum drag reduction case. The similarities with respect to the effect on the elliptical

structures in terms of the intensity of the structures are remarkable (see figure 2.3).

The conclusion reached at this point was schematically represented in figure 2.21(c).

An important consequence of the addition of a polymer to turbulent shear flows is the

weakening of elliptical and hyperbolic structures, inducing the enhancement of the

parabolic domain, which is typical of a viscometric laminar response to an imposed

shear flow.

The instantaneous turbulent energy exchange represented by the streamwise work

fluctuation terms (Section 2.5) was analysed in this paper by splitting the domain into

elliptical and hyperbolic flow regions. Such analyses, combined with the tensorial

and statistical ones, allowed us to include more details concerning the polymer coil–

stretch mechanism on the autonomous regeneration cycle discussed by Dubief et al.

[24] and originally based on that put forward by Jiménez and Pinelli [42] conceived

for Newtonian turbulent flows. The Newtonian fluctuating term, 〈N ′x
+〉 exceeds by

one order of magnitude the elastic fluctuating term, 〈E′x
+〉, and, therefore, needs to be

taken into account in the description of the DR mechanism. We have noticed higher

intensities of these quantities in the hyperbolic domain than in the elliptical ones. In

the very near-wall region, polymers not only release energy to the streaks [24], but also

to the elliptical and hyperbolic structures. However, these two turbulent structures

are damped within the buffer layer. Joint probability functions have shown that more

pronounced polymer–turbulence exchanges of energy occur when the conformation

tensor is predominantly oriented along the first principal direction of τ′ (figure 2.14).

Fundamentally, in elliptical regions, the polymer stores turbulent energy by applying a

counter-torque around the vortices, damping the ejection (Q2) and sweep (Q4) events,

while, in the hyperbolic regions, polymers take energy from the flow by opposing

the extensional deformation. Lastly, it is important to remark that a polymer release

of energy occurs almost exclusively in the streamwise direction since 〈E′y
+〉 ≤ 0 and

〈E′z
+〉 ≤ 0 across the channel half-width (not shown here), which is in agreement with
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the increase in the velocity streamwise fluctuation observed in drag reducing flows.

Polymers store energy from the mean flow [86] in order to have a considerable stretch in

the very near-wall region, and we believe that they can also release energy to the mean

flow within the buffer layer, a fact with which the increase in u′x could be also related,

since the mean flow also acts as a source of turbulent kinetic energy in this region.



Chapter3
On the drag reducing plane Couette

flows

Turbulent drag reducing plane Couette flows are analysed using direct numerical

simulations of viscoelastic FENE-P fluids. The study is carried out taking into account

low and high drag reduction regimes obtained for a large range of Reynolds number

(based on the velocities of the plates), Weissenberg number and maximum polymer

molecule extensibility. Both the mean and turbulent fields are investigated. The

interactions between polymers and turbulence are carefully explored from an energy

budget perspective in a flow scenario dominated by large-scale structures. The analyses

are complemented by the longitudinal 1D spectra of turbulent kinetic energy. The

results are employed to describe a detailed cyclic mechanism of energy exchange

between polymers and turbulence in drag reducing flows.

3.1 Introduction

Turbulence represents one of the most challenging subjects of physics. Such a flow

regime dramatically increases in complexity when small amounts of polymers are

diluted in Newtonian fluids, giving to the problem a viscoelastic character. These

molecules induce an significant drag reduction [28, 93, 61] whose practical uses in-

clude long-distance transport of liquids [80], oil well operations [15], firefighting [27],

transport of suspensions and slurries [29], and biomedical applications [32]. In this

context, [97] showed in a pioneering experimental work that if the friction drag for pipe

flows is plotted in Prandtl–Kármán coordinates, it departs from the Prandtl–Kármán

law (the onset of DR) to its bound, the so-called maximum drag reduction (MDR) or

Virk’s asymptote, as a result of an increase in either the Reynolds number, the polymer

concentration, or the polymer’s molecular weight.

Over the years, researchers have experimentally analysed relevant aspects of the

55
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drag reduction phenomenon (DR) and a significant literature is available [36, 98, 63,

96, 12, 13, 60, 33, 44, 65, 82]. Additionally, an extensive number of direct numerical

simulations (DNS) of turbulent flows of a viscoelastic finitely extensible nonlinear

elastic in the Peterlin approximation (FENE-P) fluid have been conducted [83, 59, 53,

20, 9, 21, 19, 87] in order to investigate the two most prominent theories concerning

the exceedingly non-linear nature of DR: the viscous theory [52, 81] and the elastic

theory [84]. White and Mungal [102] provide a review of some recent progress in

understanding the fundamentals of polymer drag reduction.

Marginally to the prolific discussions around the two main theories referred above,

there is an effort on understanding the effects of the interactions between the polymers

and the turbulence by investigating how these two entities, representatives of the

material and the flow, are correlated to each other. In this connection, it has been

observed that, in the viscous sublayer, the polymers are highly exposed to the mean

flow, which acts as a source of elastic potential energy [86]. In addition, just above

the viscous sublayer, the polymers increase the streamwise momentum of the flow

by releasing turbulent energy to its vortical regions [24]. In addition, polymers can

be also pulled around the near-wall vortices, passing through vortical regions and

experiencing a significant strain within these regions. Consequently, the polymers

store turbulent energy from the vortical structures as the wall distance increases by

applying a counter-torque around the vortices, which attenuate the drag [47]. Lastly, the

polymer can be injected (or re-injected) into the very near-wall region, there releasing

streamwise turbulent energy and being more exposed to the mean shear. The energy

exhanges between polymers and vortical structures were considered by Dubief et al.

[24], who propose a cyclic drag reduction mechanism based on these interactions. This

cyclic DR mechanism was recently incremented by Pereira et al. [71], who bring to light

new details about the polymer-flow interactions. According to the authors, turbulent

extensional structures, as captured by the Q-criterion [38], are also directly damped by

the molecules. The preliminary results have shown that the process which occurs within

the extensional (or hyperbolic) domain is not less important than the corresponding

process in the vortical (or elliptical) parts, which is more established in the literature.

In other words, what was shown by Pereira et al. (2016) is that the action of the polymer

on turbulence induces a flow evolution towards a parabolic state where elliptical and

hyperbolic structures get weaker as a consequence of elastic effects.

The details concerning the DR mechanism recently reported by Pereira et al. reveals

that many aspects of the interaction between polymers and turbulent structures remain

unclear. These interactions can be intensified in a turbulent plane Couette flow since

such a configuration is inherently characterized by the presence of large-scale structures

having a typical length up to 30h and spanwise size of 4h [7, 49], where h is the channel-

half height. Turbulent plane Couette flows of Newtonian fluids are described by a



3.2. Numerical methodology 57

strong inner/outer layer interaction similar to those founded in high-Reynolds-number

channels (Reτ0 > 1000; [75]). Hence, as indicated by Bernardini et al. [11], the plane

Couette geometry can represent a useful alternative to probe large-scale effects in wall-

bounded flow. Here, we consider such geometry in attempt to analyses the polymer-flow

interactions in a flow dynamic scenario dominated by large-scale motions.

In the present work, we investigate the drag reduction phenomenon with the aid of

direction numerical simulations of turbulent plane Couette flows of viscoelastic FENE-P

fluids taking into account a large range of Reynolds number based on the plate velocities

(1000 ≤ Reh ≤ 4000), Weissenberg number based on the plate velocities (1 ≤Wih ≤ 10)

and maximum polymer molecule extensibility (10 ≤ L ≤ 100). Statistical analyses are

developed in an attempt to highlight the interactions between the polymers and the

turbulence in a flow context dominated by large-scale structures. The results which

emerge from a careful energy budget investigation enable the addition of new details

concerning the effects of the polymers on the autonomous regeneration cycle conceived

for Newtonian flows by Jiménez and Pinelli [42], expanded to viscoelastic flows by

Dubief et al. [24] and recently revisited by Pereira et al. [71]. A new set of numerical

simulations of turbulent plane Couette flows of viscoelastic fluids is described and

compared with simulations of plane Poiseuille flows.

The outline of the work is as follows. The description of the physical formulation and

numerical methodology are presented in Section 3.2. Our main results are separated

in three parts: Sections 3.3, 3.4 and 3.5. Firstly, in Section 3.3, some classical time-

averaged quantities are explored. In Section 3.4, we present a detailed energy budget

investigation. The energetic analysis is complemented by the longitudinal 1D spectra

of turbulent kinetic energy shown in Section 3.5. Finally, in Section 3.6, our results are

employed to describe the mechanism of interaction between polymers and turbulence

in drag reducing flows.

3.2 Numerical methodology

The parameters for the turbulent Newtonian and FENE-P plane Couette flows studied

here are summarized in table 3.1. Our simulated cases were chosen keeping in mind

that viscoelastic fluids can have significantly different statistical behaviour from a

Newtonian fluid. For a given turbulence level, as parametrized by the Reynolds number,

Reh, based on the plate velocities (defined as Reh = hUh/νtot), this effect can vary with the

Weissenberg number, Wih (where Wih = λUh/h) and the maximum polymer extension

length, L. In this work, four Newtonian flows and sixteen viscoelastic flows were

examined, keeping the viscosity ratio β0 fixed at 0.9 and taking into account four

different values of the Reynolds number based on the plate velocities (Reh = 1000,

Reh = 2000, Reh = 3000 and Reh = 4000). A large range of Weissenberg number based
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on the plate velocities (1 ≤Wih ≤ 10) and maximum polymer molecule extensibility

(10 ≤ L ≤ 100) were explored, which provided drag reduction regimes (DR) from 0.9%

up to 52.8%. The drag reduction level is defined by

DR =
(
1− 〈τw〉
〈τw,N 〉

)
× 100 , (3.1)

where 〈τw〉 and 〈τw,N 〉 denote the x − y plane average of the shear stress at the wall for

the polymer solution and the Newtonian solvent, respectively.

The geometry extent for the flow cases at Reh = 1000 was Lx×Ly×Lz = 20π×6π×2.0

[5]. For the other Reynolds number flows, Lx×Ly×Lz = 12π×4π×2.0 [11]. The number

of mesh points (Nx×Ny×Nz) for the cases at Reh = 1000, Reh = 2000 and Reh = 3000 was

Nx×Ny×Nz = 384×256×127. In addition, at Reh = 4000,Nx×Ny×Nz = 768×512×257.

These number of mesh points corresponds to a grid resolution of 7.4 ≤ ∆x+ ≤ 16.6,

3.5 ≤ ∆y+ ≤ 8.3, and 0.2 ≤ ∆z+ ≤ 5.4, as shown in table 3.1.

Case Reh Reτ0 Wih Wiτ0 L ∆x+ x ∆y+ x ∆z+
min ∆z+

max DR[%]
N1 1000 65.5 0 0 0 10.7 x 4.8 x 0.2 1.9 0
A 1000 65.2 1 4.3 10 10.7 x 4.8 x 0.2 1.9 0.9 (LDR)
B 1000 65.0 2 8.5 10 10.6 x 4.8 x 0.2 1.9 1.5 (LDR)
C 1000 64.5 3 12.5 10 10.6 x 4.8 x 0.2 1.8 3.0 (LDR)
D 1000 62.9 4.3 17.0 10 10.3 x 4.6 x 0.2 1.8 7.7 (LDR)
E 1000 59.2 4.3 15.1 30 9.7 x 4.4 x 0.2 1.7 18.4 (LDR)
F 1000 57.8 4.3 14.4 50 9.5 x 4.3 x 0.2 1.7 22.1 (LDR)
G 1000 57.0 4.3 14.0 100 9.3 x 4.2 x 0.2 1.7 24.3 (LDR)
H 1000 62.1 7.5 28.9 10 10.2 x 4.6 x 0.2 1.8 9.6 (LDR)
I 1000 61.7 10 38.0 10 10.0 x 4.5 x 0.2 1.8 11.4 (LDR)
J 1000 55.7 10 31.0 30 9.1 x 4.1 x 0.2 1.6 27.8 (LDR)

N2 2000 118.4 0 0 0 11.6 x 5.8 x 0.3 3.8 0
K 2000 97.6 10 47.6 30 9.6 x 4.8 x 0.3 3.1 32.1 (LDR)
L 2000 89.0 10 39.6 100 8.7 x 4.4 x 0.2 2.9 43.5 (HDR)

N3 3000 169.5 0 0 0 16.6 x 8.3 x 0.4 5.4 0
M 3000 136.5 10 62.1 30 13.4 x 6.7 x 0.4 4.4 35.2 (LDR)
O 3000 119.1 10 47.3 100 11.7 x 5.9 x 0.3 3.9 50.6 (HDR)

N4 4000 220.0 0 0 0 10.8 x 5.4 x 0.2 3.8 0
P 4000 172.0 4.3 31.8 100 8.4 x 4.2 x 0.2 3.0 38.9 (LDR)
Q 4000 151.1 10 57.2 100 7.4 x 3.7 x 0.2 2.6 52.8 (HDR)

Table 3.1 – Parameters for the DNS of Newtonian and FENE-P turbulent plane Couette
flows.

Averaging of DNS data is taken in time over some 500 flow snapshots spanning

several eddy turn-over times. Two drag reducing regimes are obtained from our drag

reducing flows: the high drag reduction (HDR; DR > 40%) observed for the cases A, B,

C, D, E, F, G, H, I, J, K, M and P; the low drag reduction (LDR; DR 6 40%) related to the
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cases L, O and Q. Physically, the main difference between these two regimes consists in

the fact that for LDR flows, the Reynolds stresses play a major role, whereas in the HDR

regime, the near-wall dynamics of the flow is dominated by the polymer stresses [102].

Figure 3.1 shows that DR is an increasing function of Wih (a), L (b), and Reh (c). The

numerical data illustrated by the blue triangles are well fitted by the red diamonds

given by

DR
WihL

=
a1Re

3/7
h

a2WihL+ a3
. (3.2)

Equation 3.2 was obtained by Pereira and Soares [65] how experimentally analysed the

DR phenomenon in a cylindrical double gap rheometer device. Here, the constants

a1 = 2.0, a2 = 1.1 and a3 = 200. It is shown that DR saturates at high values of Wih
and L, which means that the drag reduction is bounded at high values of elasticity

Virk’s description of the phenomenon [97, 98]. Furthermore, this equation evidenced

an important connection between experimental and numerical results.

3.3 Statistics of the flow

3.3.1 Velocity and pressure statistics

The distributions of the mean velocity in wall-coordinates for turbulent plane Couette

flows of Newtonian and viscoelastic solutions are displayed in figure 3.2(a). In order to

compare our profiles with the classical ones available in the literature, the velocity of the

bottom plate was subtracted from the velocity field, resulting in a relative streamwise

mean component, Urx given by Urx =Ux − (−Uh). In addition, figures 3.2(b), (c), and (d)

show the normal components of the Reynolds stress tensor, τ+, whose components are

defined as the time average of the fluctuation velocity products (τ+
ij = u′ iu′j

+
). In figure

3.2, the bar indicates time average and ‘〈 〉’ denotes the x − y plane average. The effects

of Reh, Wih and L on these quantities are analysed.

The results displayed in figure 3.2 are qualitatively similar to those obtained from

drag reducing channel flow [71]. The gray circles indicate the Newtonian profiles while

the other symbols are related to viscoelastic flows. In the viscous sublayer (0 < z+ < 5,

region I), where viscous effects are more pronounced, the mean velocities for all cases

exhibit a linear shape 〈Urx
+〉 = z+ represented by the solid grey line (3.2a). Nevertheless,

as pointed out by the gray circles in figures 3.2(b), (c), and (d), the Reynolds stress

becomes important and comparable to the viscous stress within the Newtonian buffer
layer (5 < z+ < 30, region II). In this region, the Newtonian mean velocity detaches

from the linear profile, assuming a logarithmic dependence on z+ in the Newtonian

log-law region (z+ > 30, region III). This log-law velocity profile 〈Urx
+〉 = 1

κ ln(z+) +A1

is plotted in figure 3.2(a) for a von Kármán coefficient κ = 0.41 (1/κ is the slope) and
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Figure 3.1 – Effects of Wih (a), L (b) and Reh (c and d) on the drag reduction level.
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Figure 3.2 – Relative mean velocity profiles in the streamwise direction (a),〈Urx
+〉, and

normal components of the Reynolds stress (b, c, and d) for Newtonian and viscoelastic
plane Couette flows against the normalized wall distance.
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Figure 3.3 – Weighted mean velocity gradient across the half-width plane Couette for
Newtonian and FENE-P turbulent flows. The dot straight line has a constant value of

1/0.41.

A1 = 5.1 (the intercept at z+ = 1), as recently reported by Avsarkisov et al. [5]. The

addition of flexible polymers in turbulent flow can gradually increase 〈Urx
+〉 towards

the maximum drag reduction level (MDR) represented here by the orange dash-dotted

line (〈Urx
+〉 = 11.7ln(z+) + 17.8; see [98]). The increasing elasticity also increases the

streamwise Reynolds stress component in regions II and III, while the other normal

components (〈u′yu′y
+〉 and 〈u′zu′z

+〉) are continuously attenuated. This anisotropic

effect of the polymers on the Reynolds stress components was previously reported by

many researchers, such as Pinho and Whitelaw [74], Warholic et al. [99] and White

et al. [103] who performed experimental and/or numerical analyses in drag reducing

channel and pipe flows. Despite this anisotropic effect, it is worth noting that the peak

magnitude of the Reynolds stress components moves away from the wall throughout

the level of elasticity, suggesting the thickening of the buffer layer predicted by both

the viscous [52] and the elastic [84] theories.

Comparing the mean velocity profiles shown in figure 3.2(a), it is interesting to

observe that the curves of LDR cases are shifted upwards, developing velocity profiles

which are parallel to the Newtonian one. In addition, the HDR flows exhibit a different

mean velocity curve with the slope 1/κ increasing towards the MDR. Such a behaviour

suggests a significant extension of the buffer layer into the plane Couette flow and can
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be further evidenced by analysing the log-indicator function plotted in figure 3.3. As

recently reported by Avsarkisov et al. [5], the Newtonian curves collapse up to their

first minimum at z+ ≈ 60, which, according to Hoyas and Jiménez [37], can be taken as a

lower limit for the Newtonian outer layer (z+ ≥ 60). At this location, 〈z+ ∂Urx
+

∂z+ 〉 ≈ 1/0.41

for the Newtonian turbulent flows. For the LDR cases shown in figure 3.3(a), this

minimal value is an increasing function of Wih and L. However, when the HDR regime

is achieved (figure 3.3b), the log-indicator curve dramatically changes and its minimum

peak magnitude becomes unidentifiable, indicating the thickening of the buffer-layer

and the consequent suppression of the log-law region.

The interactions between polymers and turbulent fields also modify the time stan-

dard deviation statistics of the fluctuating vorticity normalised by viscous scales, ω′+,

as illustrated in figure 3.4 for different viscoelastic cases. As the elasticity increases, a

persistent attenuation of the streamwise vorticity fluctuations, ω′x
+, is perceived along

the normalised wall distance (figure 3.4a). Additionally, the distance between the local

minimum and maximum of ω′x
+ are displayed away from each other when increasing

the elasticity, which can be interpreted as an increase in the average size of the stream-

wise vortices induced by the polymers [19]. Interestingly, the polymer effects on both

the spanwise (ω′y
+) and wall-normal (ω′z

+) vorticity fluctuations exhibit a transitional

character (figures 3.4b and c, respectively). The presence of the molecules partiality

suppresses the former in the near-wall region (I) and increases it further away while

DR becomes more pronounced. The latter departs from zero at the wall due to the

no-slip boundary conditions and achieves its peak magnitude in region II, where it

is inhibited and shifted away from the wall as DR increases. However, in region III,

an opposite trend is observed since polymers produce an increase in ω′z
+. We believe

that this transitional behaviour of ω′y
+ and ω′z

+ is possibly related to the increase in u′x
+

evidenced in figure 3.2.

It is worth noting that the most significant polymer effect on ω′+ is the attenuation

of its streamwise component across the plane Couette geometry. The weakening of

the streamwise vortices as well as their morphological changes have been reported

by many authors trough numerical channel flow analyses (see, for instance, [21, 46,

47, 71]). Here, these changes are illustrated from a coherent structure perspective by

considering the isosurfaces given by Uz/Uh = 0.008 (red) and Uz/Uh = −0.008 (blue) in

figure 3.5. The effects of Wih and L are analysed by keeping Reh fixed at 1000. The long

counter-rotating pairs which emerges from such analysis are generated by low–speed

velocity streaks which appear due to a quasi-periodic process in the core region of

the turbulent plane Couette flow [35, 48, 75, 11, 57]. This process does not occur

in turbulent plane Poiseuille flows and it is considerable affected by the presence of

polymers, as observed by comparing the flows displayed in figures 3.5(a) and (b). For

the Newtonian fluid shown in figure 3.5(a), five counter-rotating pair are found in the
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Figure 3.4 – Standard deviation of the normalized vorticity components across the
half-width plane Couette for Newtonian and FENE-P turbulent flows.
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Figure 3.5 – Coherent structures given by Uz/Uh = 0.008 (red) and Uz/Uh = −0.008
(blue) through all the plane Couette geometry.



66 CHAPTER 3. On the drag reducing plane Couette flows

box. However, as the elasticity gradually increases, the rotating structures become less

numerous and, consequently, in figure 3.5(b) only 4 counter-rotating pairs are observed.

Comparing figures 3.5(a) and (b), it is noted that the molecules not only weaken and

suppress the rotating structures, but also widen them, as previously indicated in figure

3.4(a).

The anisotropy invariant map of the Reynolds stress anisotropy tensor (bij = 〈τ+
ij〉/(〈tr(τ

+)〉−
δij /3) shown in figures 3.6 (for Newtonian cases) and 3.7 (for viscoelastic cases) provides

more details about the morphological changes in turbulence caused by the polymers.

The map consist in cross-plotting the second and third invariants of bij . The former, IIb,

is given by IIb = −bijbji/2, while the latter, IIIb, is calculated as IIIb = bijbjkbki/3. The

top boundary of the map (IIb + 3IIIb = −1/9) designates a 2-D anisotropic turbulence

(ellipsoid). The top vertex ( 2
27 , 1

3 ) indicates the 1-D state (line; most anisotropic state).

The vertex located at the point ( −1
108 , 1

12 ) represents the 2-D isotropic turbulence (disk),

while the bottom one (0,0) characterises the 3-D isotropic turbulence (sphere). The

boundary in between, (−IIIb/2)(−IIb/3)3/2 = 1, indicates a 3-D pancake-like turbulence

(oblate spheroid). Lastly, the bottom boundary, (IIIb/2)(−IIb/3)3/2 = 1, defines a 3-D

cigar-like turbulence (prolate spheroid). Near the wall, all turbulent flows analysed here

exhibit a 2-D anisotropic behaviour. However, drag reducing flows can be dramatically

more anisotropic than the Newtonian ones, since there is significant migration in the

FENE-P cases towards the top vertex when increasing DR (the case J almost reaches the

one-component apex of the map). In other words, in drag reducing flows, u′xu′x
+

tends

to be much larger than u′yu′y
+

and u′zu′z
+

since both the spanwise and the wall-normal

normal components are strongly reduced by the polymers. Also consistent with the

thickened buffer layer region in the FENE-P cases, the migration location to the axisym-

metric boundary of the invariant map has shifted from z+ = 6.69 for the Newtonian

case at Reh = 4000 to z+ = 11.6 for the LDR case at Reh = 4000, Wih = 10 and L = 100.

Lastly, despite the fact that the mean pressure gradient is null in the turbulent plane

Couette flow as shown in figure 3.8(a), i.e. the flow is driven by the plate motions,

fluctuations in the pressure gradient field are perceived. One can note in figure 3.8(b)

that these fluctuations are relatively high in Newtonian flows (grey circles), reaching

their peak of magnitude in region III. However, the pressure gradient fluctuations are

considerable attenuated with increasing elasticity throughout the whole plane Couette

geometry. In comparing, for instance, the grey open circles with the blue plus symbols,

it can be clearly seen that, for all z+, viscoelastic case exhibits a fluctuating gradient

pressure which is approximately two times smaller than that of the Newtonian case.

Additionally, the peak magnitude of the viscoelastic cases shift away from the wall

when increasing DR.
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Figure 3.6 – Anisotropy-invariant map of Reynolds stress tensor for two Newtonian
flows: Reh = 1000 (a) and Reh = 4000 (b).
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Figure 3.7 – Anisotropy-invariant map of Reynolds stress tensor for six FENE-P flows.
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.

Figure 3.8 – Average value in the x − y plane of the mean normalized gradient pressure
as a function of the normalized wall distance (a). Standard deviation of the normalized

gradient pressure as a function of the normalized wall distance (b)
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3.3.2 Polymer statistics

The interaction between polymers and turbulence also reflects on the molecules confor-

mations (3.9). The stretching of the polymers can be seen in figure 3.9(a), where the

evolution of the x−y plane average normalized trace of the time-averaged conformation

tensor, 〈tr (C) /L2〉, is plotted against the normalized wall distance (solid symbols) to-

gether with the normalized streamwise normal component of the conformation tensor,

〈Cxx/L2〉 (open symbols). Following the results founded in plane Poiseuille flows (see,

for instance, [24, 21, 87, 71]), figure 3.9(a) indicates that the dominant contribution

to the trace of the conformation tensor comes from Cxx, since 〈tr (C) /L2〉 ≈ 〈Cxx/L2〉
(especially near the wall and for the highest value of L). These two quantities are

relatively high at the wall and their values tend to be incremented as DR increases, until

achieving their magnitude peak in region II. This peak is commonly associated with

the streamwise fluctuating vorticity presented in figure 3.4(a) [24, 21, 19] and its exact

location varies with Reh, Wih and L. For the case J (blue plus symbols, DR = 27.8%), for

instance, the maximum 〈tr (C) /L2〉 (≈ 0.47) is situated at z+ ≈ 8. However, for the case

M (black asterisks, DR = 38.9%), the maximum 〈tr (C) /L2〉 is shifted from the wall, been

located at z+ ≈ 15. After this point, both 〈tr (C) /L2〉 and 〈Cxx/L2〉 start to decrease, until

reaching their minimum at the plane Couette centre. These quantities decrease with

increasing L, for fixed Reh and Wih, suggesting that the large polymer molecules could

be less susceptible to chain scission degradation [65]. On the other hand, 〈tr (C) /L2〉
and 〈Cxx/L2〉 become greater as the friction Weissenberg number increases, since higher

values of the polymer time scale induce the polymer molecules to be influenced by

a wider spectrum of time scales of the flow [19]. As indicated by the black arrows

in figures 3.9(a), (b), (c), and (d), similar effects of L and Wih on Cyy , Czz and Cxz are

observed. The latter exhibits a non-zero wall value, as displayed in figure 3.9(d) and its

peak is almost one order of magnitude smaller than that of the Cxx component, been

achieved at z+ not much different from those observed for Cxx. The peak magnitude of

the off-diagonal component Cxz is comparable to that of the Czz component (plotted in

figure 3.6c), although both are only slightly smaller than the peak magnitude of the Cyy
component (shown in figure 3.6b). Lastly, is interesting to observe that, different from

the plane Poiseuille flow, 〈Cyy/L2〉 and 〈Czz/L2〉 exhibit maximum values at the centre

of the geometry, which is probable related to the intense spanwise and wall-normal

velocity fluctuations at this location.

The results discussed in figure 3.9 suggest a preponderant polymer activity in the

streamwise direction. Supplementary information concerning this polymer preferential

direction can be obtained from an anisotropy invariant map of the extra-stress tensor

analogous to that of the Reynolds stress. In this connection, the extra-stress anisotropy

tensor is defined as eij = Ξ+
ij /tr(Ξ

+)−δij /3 [87]. Its second and third invariants are given
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Figure 3.9 – Normalized conformation tensor as a function of the normalized wall
distance. Streamwise normal components of C and tr (C) /L2 (open and solid in a,

respectively). Spanwise normal component of C (b). Wall-normal normal component of
C (c). Cross components (d).
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by IIe = −eijeji/2 and IIIe = eijejkeki/3, respectively. The results are shown in figure

3.10 for six viscoelastic cases, which further exemplifies the significant dominance

the streamwise conformation tensor component has on the polymeric stress field. The

invariant map is positioned along the bottom boundary, in between the 3-D isotropic

vertex (0,0) and the 1-D state (the most anisotropic state), throughout the entire geome-

try. Near the wall, the highly dominant streamwise polymer conformation component

makes eij = Ξ+
ij /tr(Ξ

+)− δij /3 anisotropic. Similar to the tendencies noted in figure 3.8,

the increasing elasticity displaces the invariant map towards this 1-D anisotropic state.

Further comparisons between the Reynolds stress tensor and the extra-stress tensor

from a shear stress balance perspective reveal important difference between the low

drag reduction regime (LDR), DR ≤ 40%, and the high drag reduction one (HDR),

DR > 40%. Physically, the main difference between these two regimes consists in the

fact that for LDR flows, the Reynolds stresses play a major role, whereas in the HDR

regime, the near-wall dynamics of the flow is dominated by the polymer stresses [102].

In figure 3.11, two viscoelastic cases are illustrated keeping Reh and L fixed. In the

LDR case displayed in figure 3.11(a), DR = 38.9%, Reh = 4000, Wih = 4.3 and L = 100

(case P). For the HDR regime illustrated in figure 3.11(b), DR = 52.8%, Reh = 4000,

Wih = 10 and L = 100 (case Q). In both cases, the viscous shear stress (grey open

circles), given by 2β0Sxz
+

where Sij
+

= (∂Ui
+
/∂x+

j + ∂Uj
+
/∂x+

i )/2, is close to 1 within

the viscous sublayer (region I). However, it decreases greatly within region II, whereas

both the Reynolds and polymer shear stresses increase (blue open triangles and red

open diamonds, respectively). For the LDR flow, it is clearly observed that 〈u′xu′z
+〉

is the most important shear term in regions II and III, going up to 82% of the total

stress (2β0Sxz
+ −u′xu′z

+
+Ξxz

+
) represented by the solid black line. In contrast, in the

HDR case, 〈u′xu′z
+〉 is considerably suppressed, while the polymers produce a stronger

shear stress than in the LDR. These changes make the polymer shear stress contribution

surpass the Reynolds shear stress in the larger part of region II (5 < z+ < 20).
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Figure 3.10 – Anisotropy-invariant map of extra-stress tensor for six FENE-P flows.
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Figure 3.11 – The balance of shear stress for two viscoelastic flows.
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3.4 Energy budgets

The results discussed above indicate a significant interaction between the polymers and

the flow, which is analysed in the present section from an energy budget perspective.

Aiming to characterize such energy exchanges, we consider the time average work

equation1
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where the time-averaged amount of energy which is stored (E+
m,α < 0) or released

(E+
m,α > 0) by polymers from the velocity in the α direction, u+

α , is represented by E+
m,α.

The complementary work terms denote the advection A+
m,α, the pressure redistribution

P +
m,α, and the viscous stress V +

m,α. The sum A+
m,α + P +

m,α +V +
m,α is referred as time average

Newtonian work, N+
m,α, and T +

m,α is the time derivative term. The velocity, pressure

and extra-stress fields in equation 3.3 can be decomposed into mean (U+
i , P +, Ξ+

ij) and

fluctuating (u′i
+, p′+, Ξ′ij

+) fields, which leads to the equation:

1
2

∂
(
U+
α

2
)

∂t+

︸        ︷︷        ︸
T +
mm,α

+T +
mt,α =

−U+
α

∂
(
U+
α U

+
i

)
∂x+

i

︸                ︷︷                ︸
A+
mm,α

+A+
mt,α +

[
−U+

α
∂P +

∂x+
α

]
︸       ︷︷       ︸

P +
mm,α

+P +
mt,α+

(β0)U+
α
∂2U+

α

∂x+
i

2

︸             ︷︷             ︸
V +
mm,α

+V +
mt,α +

U+
α
∂Ξ+

αi

∂x+
i

︸      ︷︷      ︸
E+
mm,α

+E+
mt,α ,

(3.4)

where the amount of energy which is stored (E+
mm,α < 0) or released (E+

mm,α > 0) by

polymers from the mean velocity in the α direction, U+
α , is represented by E+

mm,α. The

complementary work terms denote the mean advection A+
mm,α, the mean pressure

redistribution P +
mm,α, and the mean viscous stress V +

mm,α. The sum A+
mm,α +P +

mm,α +V +
mm,α

is referred as mean Newtonian work, N+
mm,α, and T +

mm,α is the time derivative term

associated with the mean velocity. The work terms related to the fluctuating fields are
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expressed as: 

T +
mt,α = T +

m,α − T +
mm,α ;

A+
mt,α = A+

m,α −A+
mm,α ;

P +
mt,α = P +

m,α − P +
mm,α ;

V +
mt,α = V +

m,α −V +
mm,α ;

E+
mt,α = E+

m,α −E+
mm,α .

(3.5)

It is worth mentioning that the energy exchanges in the x direction (α = x) constitute

more than 90% of that considering the streamwise, the spanwise and the wall-normal

directions. Hence, in figure 3.12, only the x − y plane average of the streamwise work

terms provided by equation 3.4 against the normalized wall distance are considered.

Figure 3.12 shows the time averages of the streamwise work terms related to mean

fields (left side column) and to fluctuating fields (right side column) across the plane

Couette half-width for Newtonian and FENE-P turbulent flows at Reh = 1000. Firstly,

concerning the mean energy terms (left side column), it is observed that the 〈E+
mm,α〉 and

〈V +
mm,α〉 are the most important terms. The former, displayed in figure 3.12(g) departs

from its minimum negative value at the wall 〈E+
mm,α〉, which is maintained across the

larger part of region I. In other word, near the wall, polymers store a significant amount

of energy from the mean flow. This storage of energy within region I becomes more

pronounced while increasing the elasticity. However, around the upper limit of the

viscous sublayer, 〈E+
mm,α〉 starts to increase until reaching its maximum positive value

within region II, where a non-negligible quantity of energy is released to the mean flow.

Small positive values of 〈E+
mm,α〉 are also observed in region III. This polymer release

of energy in regions II and III are an increasing function of Wih and L and they are

probably linked with the increase in the streamwise mean velocity pointed out in figure

3.2(a). The intense storage of energy by the polymers in the viscous sublayer favours

the enhancement of the mean viscous work (figure 3.12e), which in turn starts to depart

from a non-null value at the wall (viscoelastic cases) instead of zero (Newtonian case).

Nevertheless, comparing the viscoelastic cases with the Newtonian one, it worth noting

that the peak magnitude of 〈V +
mm,α〉 situated in the region II decreases with increasing

Wih and L. The same trend is observed in 〈V +
mt,α〉 (figure 3.12f ). Such a behaviour is

possibly related to the increase in the streamwise velocity in region II caused by the

polymers (see figures 3.2a and b). The polymer release of energy to the mean flow in

region II and III also increases the magnitude of 〈A+
mm,α〉 within these regions. However,

this term is one order of magnitude smaller than 〈A+
mt,α〉, which indicates that the

advection work is dominated by the fluctuating velocity field. Since the fluctuating

velocity field is partially suppressed by the polymers (see figures 3.2c and d), one can

note in figure 3.12(b) that 〈A+
mt,α〉 tends to decrease in region II, although it is slightly

increased in region III due to the morphological changes in the turbulent structures
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reported by [72]. Regarding the exchanges of energy between the polymers and the

fluctuating velocity field, 〈E+
mt,α〉 (figure 3.12h), it is interesting to observe that, near

the wall, the molecules release energy to the fluctuating velocity field (〈E+
mt,α〉 > 0 for

z+ < 5). In contrast, in regions II and III, 〈E+
mt,α〉 assumes a significantly negative value,

indicating a considerable damping of the fluctuations. Lastly, it is important to observed

that the mean pressure redistribution 〈P +
mm,α〉 ≈ 0 across the geometry since the mean

pressure gradient is null, while 〈P +
mm,α〉 is reduced when increasing Wih and L due to

the partial suppression in the pressure gradient fluctuations caused by the polymers

(see figure 3.8b).

Comparing figures 3.12(g) and (h), the polymer-flow interactions can be summarized

as follows. In the viscous sublayer, polymers store energy from the mean flow in order

to have a considerable stretch in the near-wall region. In the regions II and III, however,

the molecules release energy to the mean flow, a fact with which the increase in u′x could

be also related, since the mean flow also acts as a source of turbulent kinetic energy

in this region as reported by Thais et al. [86]. Additionally, polymer interacts directly

with the fluctuating part of the flow, damping it in region II and releasing part of this

energy to the fluctuating velocity field in region I.

In order to compare our results with that presented by Thais et al. [86] who nu-

merically analysing turbulent plane Poiseuille flows of FENE-P fluids, we consider the

transport of mean kinetic energy as well as that of turbulent kinetic energy in figures

3.13 and 3.14, respectively.

The transport equation for the mean kinetic energy (MKE), K+
m =

(
U+
i

2
)
/2, is ob-

tained

DK+
m

Dt+
= −P +

m − P +
pm − β0

∂U+
i

∂x+
j

2

︸       ︷︷       ︸
ε+
m

+β0

∂2K+
m

∂x+
j

2

︸      ︷︷      ︸
D+
mν

−
∂
(
P + U+

i

)
∂x+

i︸      ︷︷      ︸
D+
mP

−

∂
(
U+
i τ

+
ij

)
∂x+

j︸     ︷︷     ︸
D+
mt

+
∂
(
U+
i Ξ+

ij

)
∂x+

j︸       ︷︷       ︸
D+
pm

,

(3.6)

where −P +
m is an energy exchange term acting as a sink of mean kinetic energy to the

turbulent kinetic energy (production of turbulent kinetic energy),

P +
m = −τ+

ijS
+
ji , (3.7)

and −P +
pm is also an energy exchange term but acting as a sink of mean kinetic energy to
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Figure 3.12 – Mean (left column) and fluctuating (high column) polymer work terms
across the half-width plane Couette.
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polymer energy (production of mean polymeric energy),

P +
pm = −Ξ+

ij S
+
ji . (3.8)

The remaining terms on the right side represent the dissipation rate of MKE (ε+
m),

the viscous diffusion of MKE due the solvent (D+
mν), the pressure transport of MKE

(D+
mP ), the turbulent transport of MKE (D+

mt), and the mean polymeric transport of MKE

(D+
pm). As shown by the equation 3.9, the mean flow energy is partitioned to both the

turbulence and the polymer (elastic portion).

The transport equation for the turbulent kinetic energy (TKE), K+
t = tr (Ξ+) /2, if

formed in the usual manner from the fluctuating momentum equation, and is given by

DK+
t

Dt+
= P +

m − β0

∂u′i+∂x+
j


2

︸       ︷︷       ︸
ε+
t

+β0

∂2K+
t

∂x+
j

2

︸      ︷︷      ︸
D+
tν

+
∂
(
p′+u′i

+δij
)

∂x+
j︸          ︷︷          ︸

D+
tP

+

∂
(
u′i

+u′i
+u′j

+/2
)

∂x+
j︸              ︷︷              ︸

D+
mt

−P +
pt +D+

pt ,

(3.9)

where the first five terms on the right side are the classic Newtonian terms representing

the production of fluctuating energy by the mean shear (P +
m), the dissipation rate of

TKE (ε+
t ), the viscous diffusion of TKE (D+

tν) due the solvent, the pressure transport of

TKE (D+
tP ), and the turbulent transport of TKE (D+

mt). The remaining two terms are an

energy exchange term (production of turbulent polymeric energy),

P +
pt = Ξ′ij

+ S ′ji
+ . (3.10)

and a polymeric/turbulent transport (polymeric transport of TKE) of,

D+
pt =

∂
(
Ξ′ij

+u′i
+
)

∂x+
j

. (3.11)

which provide the energetic connection between the flow turbulent and the polymeric

fluid stress.

Figure 3.13 brings out the mean kinetic energy budget across the plane Couette

flow half-width for Newtonian and FENE-P turbulent flows. The mean kinetic energy

is explored in figure 3.13(a), while the terms of the energy balance (equation 3.9) are

displayed in figures 3.13(b)-(h).
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Figure 3.13 – Mean kinetic energy profiles across the half-width plane Couette.
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Figure 3.14 – Turbulent kinetic energy profiles across the half-width plane Couette.
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Concerning the mean kinetic energy (figure 3.13a) resulting from budget discussed

above, one can note that 〈K+
m〉 increases with elasticity. Furthermore, the slope of the

drag reduction profiles becomes more pronounced while moving increasing DR, which

is related the increase in the streamwise mean velocity caused by the polymers.

For the Newtonian mean kinetic budget (grey circles in figures 3.13), the dominating

balance in the vicinity of the wall is between the mean viscous dissipation, 〈ε+
m〉, and

the viscous diffusion, 〈D+
mν〉. As previously pointed out by Thais et al. [86] for a channel

flow, at z+ ≈ 10, the production of turbulent kinetic energy (or the destruction of

mean kinetic energy), 〈−P +
m〉, achieves a minimum and the turbulent transport of MKE,

〈−D+
mt〉, reaches its maximum. Since the mean pressure gradient is approximatively

equal to zero (figure 3.8a), the mean pressure transport, 〈D+
mP 〉, make no discernible

contributions to the energy balance, which is also valid for the viscoelastic flows.

The appearance of the polymeric terms, 〈D+
pm〉 and 〈−P +

pm〉, which act respectively

as a source and sink of MKE, modifies the mean kinetic budget, decreasing the peak

magnitude of 〈−P +
m〉, 〈−D+

mt〉 and 〈D+
mν〉, although the latter is enhanced in near wall

region (similar to 〈V +
mm,α〉). As the elasticity increases, these peak magnitudes are

shifted from the wall towards the centre of the geometry, a further evidence of the

enhancement of the buffer layer. Following the analyses concerning 〈E+
mm,α〉 shown in

figure 3.12(g), 〈D+
pm〉 and 〈−P +

pm〉 indicate that polymers store a significant amount of

energy from the mean flow in region I (〈D+
pm〉 < 0 and 〈−P +

pm〉 < 0). Nevertheless, part of

this energy is released to the mean velocity field in regions II and III, where 〈D+
pm〉 > 0.

The turbulent kinetic budget across the plane Couette flow half-width explored in

figure 3.14 gives supplementary details about the polymer-flow interactions. As have

been shown for turbulent channel flows [87, 86], the turbulent kinetic energy, 〈K+
t 〉,

increases for viscoelastic fluids relative to the Newtonian case (figure 3.14a). Figure

3.14a also exemplifies the thickening of the buffer layer, the peak of 〈K+
t 〉 moving

away from z+ ≈ 15 for the case N1 (Newtonian fluid; grey circles), to z+ ≈ 20 for the

case J (Reh = 1000,Wih = 10 and L = 30; blue plus symbols) and finally to z+ ≈ 35 for

the case Q (Reh = 4000, Wih = 10 and L = 100). For the Newtonian turbulent kinetic

budget (grey circles in figures 3.14), the typical wall-proximity balance between viscous

diffusion, 〈D+
tν〉, and viscous dissipation rate, 〈−ε+

t 〉, is observed [5]. As reported in

Thais et al. [86] by considering a Newtonian channel flow, at z+ ≈ 12, the production of

TKE, 〈P +
m〉, achieves its peak, been balanced by 〈−ε+

t 〉 and contributions from 〈D+
tν〉 and

〈D+
tt〉. Despite non-negligible, the pressure transport of TKE, 〈D+

tP 〉, plays a marginal

role, which is attenuated as the elasticity increases due to the partial suppression of the

pressure gradient fluctuations evidenced in figure 3.8(b). Regarding the viscoelastic

cases, consistent with the mean kinetic energy budget (figure 3.13), the production of

TKE decreases for these cases, having their peak magnitude moved away from the wall.

The polymeric transport term 〈D+
pt〉 acts as source of turbulent energy in regions I and
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III (〈D+
pt〉 > 0) as well as a sink of it in region II (〈D+

pt〉 < 0). For the LDR cases, 〈−P +
pt〉

is negative for all z+, indicating a destruction of turbulent energy by the polymers.

However, it is important to emphasizes that, for the HDR cases, 〈−P +
pt〉 exhibits a

positive peak magnitude just above the bottom limit of the region II, suggesting that the

polymers are also acting as a source of turbulence around this location. This maximum

positive value increases when increasing Wih and L. Lastly, following the fluctuating

viscous work analysed in figure 3.12(f ), the addition of polymers induces a reduction of

the viscous diffusion and dissipations rate of TKE, which is mostly perceived in regions

I and II.

3.5 Longitudinal 1D spectra of turbulent kinetic energy

Figure 3.15 show longitudinal 1D spectra of turbulent kinetic energy, E11/(h U
2
h ), for

two Newtonian flows and seven viscoelastic flows at z+ = 15. Around such a location, the

production of TKE is maximum for all cases analysed here (see figure 3.14b). Despite the

low Reynolds number considered in figure 3.15(a), Reh = 1000, a range of wavenumbers

between 1 ≤ kx ≤ 3 for the Newtonian fluid (grey open symbols) shows the classical

power law decay, k−5/3
x (dashed line). However, such a decay is modified by the presence

of polymers, moving toward k−14/3
x [88]. As a result of the polymer-flow interactions,

the high wavenumber structures (kx > 10) are strongly supressed whereas a small

increase in E11/(h U
2
h ) occurs within very small wavenumber structures. Additionally,

at Reh = 4000, the Newtonian flow exhibits a clear k−5/3
x power law decay in the range

2 ≤ kx ≤ 10, which again is highly affected by the molecules, getting close to k−14/3
x

(dash-dotted line) with increasing elasticity. A last characteristic of the 1D viscoelastic

spectra clearly observed at Reh = 4000 is that the low wavenumber energy content in

the streamwise direction is an increasing function of the drag reduction level, which

contributes to the enhancement of the streamwise velocity fluctuation illustrated in

figure 3.2(b) as well as to the increase in the streamwise advection work in region III

(figures 3.12a and b). These observations are qualitatively in line with experimental

and numerical data obtained from turbulent plane Poiseuille flows of viscoelatic fluids

[99, 88].
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Figure 3.15 – 1D-power spectral density of the streamwise velocity fluctuation at the
wall distance z+ = 15. Reh = 1000 (a) and Reh = 4000 (b).



3.6. Polymer-turbulence interaction mechanism 85

3.6 Polymer-turbulence interaction mechanism

Recently, Pereira et al. [71] numerically provided new details concerning the polymer-

turbulence interactions from a drag reduction point of view, which were included

in the autonomous regeneration cycle discussed by Dubief et al. [24] and originally

conceived for turbulent Newtonian flows by Jiménez and Pinelli [42]. Following the

recent contributions of Pereira et al. [71], we increment the referred autonomous

regeneration cycle in figure 3.16 taking into the results presented in this work.

The grey dashed arrow in figure 3.16 indicates that, in the viscous sublayer (z+ < 5),

the polymers are highly exposed to the mean flow, which acts as a source of polymeric

energy (〈E+
mm,α〉 < 0 in figure 3.12g). Additionally, as indicated by the blue dashed arrow,

near the wall (at z+ ≈ 5), polymers not only release energy to the streaks (purple dashed

arrow), but also to the vortical and extensional structures (〈E+
mt,α〉 > 0 at z+ ≈ 5 in figure

3.12g). However, polymers can be also pulled around the near-wall vortices, passing

through extensional regions and experiencing a significant strain. Fundamentally,

within the rotating structures, the polymer stores turbulent energy by applying a

counter-torque around the vortices [47], while, in the extensional ones, polymers

take energy from the flow by opposing the extensional deformation [71]. As a result,

polymers store turbulent energy (〈E+
mt,α〉 < 0) in regions II and III, which is represented

by the red dashed arrow. Lastly, the polymer can be injected (or re-injected) into the

very near-wall region, there releasing streamwise turbulent energy and being more

exposed to the mean shear.

Despite the enhancement of the streamwise momentum caused by the polymer

release of streamwise turbulent energy at z+ ≈ 5, it is noteworthy to mention the

significant reduction on both the spanwise and the wall-normal velocity fluctuation

caused by the molecules (figures 3.2c and d), which reflects on the morphology of the

turbulent structures: their thicknesses and streamwise lengths increase, while their

strengths weaken [71]. In consequence, the near-wall advection work decreases, as

illustrated by the green dashed arrow in figure 3.16 (see also figures 3.12a and b). On

the other hand, the fact that the turbulent structures become more parallel to the wall

favours the advective transport throughout the streamwise direction in region III since

the heads of the hairpins (spanwise rotation) completely vanish in this region [46].

Hence, polymers induce a slight increase in the magnitude of 〈A+
mm,α〉 and 〈A+

mt,α〉, far

from the wall, as represented by orange dashed arrow (figures 3.12a and b).

The drag reduction mechanism discussed above and sketched in figure 3.16 clarifies

the role played by the polymers in the self-sustained wall turbulence interacting with

the mean shear, nonlinear interactions, near-wall elliptical and hyperbolic structures in

viscoelastic drag reducing flows.
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Figure 3.16 – Sketch of the polymer-induced drag reduction mechanism.
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3.7 Concluding Remarks

Direct numerical simulations of a FENE-P fluid were used to analyse turbulent viscoelas-

tic flows in a plane Couette geometry. Four Newtonian flows and sixteen viscoelastic

flows were examined, keeping the viscosity ratio β0 fixed at 0.9 and taking into account

four different values of the Reynolds number based on the plate velocities (Reh = 1000,

Reh = 2000, Reh = 3000 and Reh = 4000). A large range of Weissenberg number based

on the plate velocities (1 ≤Wih ≤ 10) and maximum polymer molecule extensibility

(10 ≤ L ≤ 100) were explored, which provided drag reduction regimes (DR) from 0.9%

up to 52.8% (the simulation details are in table 3.1, Section 3.2).

Polymers modify the velocity field, increasing its streamwise component, which

departs from the Prandtl–Kármán law (the onset of DR) up to Virk’s asymptote, as DR

increases (figure 3.2a). A similar effect is found for the streamwise Reynolds stress

normal component (figure 3.2b). Such an effect is related to the increase in the low

wavenumber energy observed from the perspective of the longitudinal 1D spectra of

turbulent kinetic energy (figure 3.15). Consequently, the advection transport becomes

more pronounced in the core zone relative to the Newtonian case. An opposite trend is

perceived in the near-wall region (z+ < 10), where the high wavenumber structures are

partially suppressed (kx > 10) due to the attenuation of both the normal spanwise and

wall-normal Reynolds stress components induced by the polymers (3.2b). As a result,

the near-wall advection transport decreases with increasing elasticity.

A careful energy budget analysis allowed us to include more details concerning the

polymer-flow interactions on the autonomous regeneration cycle discussed by Dubief

et al. [24] and recently explored by Pereira et al. [71] (figure 3.15). Fundamentally,

polymers are highly exposed to the mean flow, which acts as the main source of poly-

meric energy (〈E+
mm,α〉 < 0 in figure 3.12g) in the vicinities of the wall (z+ < 10), where

the molecules are highly stretched. In this region, polymers are also able to interact

with the turbulent structures, releasing energy to them (〈E+
mt,α〉 > 0 in figure 3.12h),

which contributes to enhance the streamwise velocity fluctuation. However, these

trends completely change as the wall distance increases. Consequently, within turbu-

lent structures located far from the wall, the molecules store energy by applying a

counter-torque around the vortices [47] and a counter-stretch in the extensional regions

[71]. In contrast, the molecules also release polymeric energy to the mean flow in the

core zone, increasing the streamwise mean velocity. Lastly, it is important to remark

that the polymer-flow exchanges of energy mentioned above become more pronounced

as the drag reduction level increases (Reh, Wih and L).
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Chapter4
Transient aspects of drag reducing plane

Couette flows

The addition of a small amount of polymers of high molecular weight can lead to a

decrease in the pressure drop in turbulent flows. Over the years, numerous studies have

been conducted in attempts to make practical use of polymer-induced drag reduction.

However, many aspects concerning its main mechanism are still unclear. One of those

aspects is the development of the turbulent structures and polymer deformation over

time in the beginning of the phenomenon. As an attempt to further understand the drag

reduction over this developing time, we analyse a turbulent Couette flow of a FENE-P

fluid with the aid of direct numerical simulations. We show that the initial interactions

between the mean shear flow, turbulent structures, and polymer stretching are the key

to understanding the step-by-step evolution of the drag reduction (DR). A few instants

after the beginning of the simulation, the DR assumes a significantly negative value

before starting to increase and reaches its maximum. When the DR is a minimum, the

polymers experience their highest deformation state. The energy necessary to initially

stretch them comes mainly from the mean shear flow, which causes a decrease of the DR

until its minimum and negative value. After this point, the polymers start to strongly

interact with the turbulent structures, which are partially suppressed, and the DR starts

to increase. Part of the energy stored by the molecules is then released to the mean flow,

increasing the DR to a maximum level while the polymer extension decreases. Lastly,

DR reduces, reaching an asymptotic and positive value, which indicates the beginning

of the statistical steady flow state.

4.1 Introduction

The drag reducing flows by polymers has been analysed since the pioneering works of

Forrest and Grierson [28], Toms [93], and Mysels and Metzner [61]. Among its appli-

89
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cations there is a great variety of processes, such as fire-fighting operations, transport

of liquids in pipes, transport overseas, blood flow resistance, and many others [27,

15, 80, 29, 3]. The fundamentals of drag reduction (DR) together with many of its

practical aspects can be found in [52, 51, 96, 84, 102]. From these papers one can mainly

understand how the concentration, molecular weight, and temperature affect the DR.

Phenomenological explanations for polymeric drag reduction gravitate around two

major ideas: the viscous theory, independently proposed by Lumley [52] and Seyer and

Metzner [81], and the elastic theory postulated by Tabor and de Gennes [84]. Additional

details regarding the DR mechanism have also been reported by Dubief et al. [24],

Dimitropoulos et al. [21] and Thais et al. [86].

An aspect of the DR that has not been sufficiently analysed is its dependence on time,

which is particularly significant at the begging of the phenomenon and will be the main

focus of this work. When polymers are introduced into a fully developed turbulent flow,

they cause an abrupt disturbance. The mean shear flow and the turbulent structures are

strongly changed and a new steady state takes time to be reached, as numerically shown

by Dimitropoulos et al. [21] and Tamano et al. [85] and experimentally confirmed

by Andrade et al. [2]. The level of drag reduction can even assume negative values

at the very beginning of the phenomenon (when the polymers are injected into a

turbulent flow, for example). In fact, DR is zero at the beginning and decreases until

a minimum value, before starting to increase and achieve its maximum value after

a significant period, called the developing time [65, 64]. The details concerning the

polymer–turbulence interactions during this period remain, however, unclear.

Despite the fact that DR has been widely studied, its transient aspect has not not yet

been systematically investigated. The focus of our work is to carefully analyse, with the

aid of a numerical simulation of a FENE-P fluid, the transient aspects of drag reducing

plane Couette flows during the developing time. The initial interactions between the

polymers and the flow are fundamental to fully understanding the variations in the

level of the drag reduction, which can even assume negative values at the beginning of

the simulations. The evolution of DR over time is confronted here with the evolution

of the polymer stretching and turbulent structures. In addition, we also analyse the

total kinetic energy budget, which is quite a good tool to further understand polymer–

turbulence interactions. We believe that the comprehension of these interactions is the

key to understanding the DR mechanism.

This work is organized as follows. The details concerning our numerical method-

ology are exposited in Section 4.2. Following the description of the methodology, our

main results are finally presented in Section 4.3, where the transient aspects of drag

reduction are analysed.
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4.2 Numerical methodology

In order to analyse the interaction of the polymer molecules with the turbulence from

the very beginning to the steady state, the initial conditions for the conformation

tensor were the identity tensor, I (C = I at the beginning of the simulations). In

addition, for each viscoelastic case, both the velocity and the pressure fields were

initially started from the same Newtonian fully developed turbulent flow. As a result of

this methodology, the DR exhibits a significant transient behaviour before achieving its

statistical steady state, as we will show in the next section.

The parameters for the turbulent FENE-P plane Couette flows studied here are

summarized in Table 4.1. We simulated our viscoelastic cases fixing the Reynolds

number based on the plate velocities, Reh = hUh/νtot, at 3000 and β0 at 0.9. Three

combinations of Weissenberg number, Wih = λUh/h, and L were explored: Wih = 10

and L = 100; Wih = 4.3 and L = 100; Wih = 10 and L = 30. Both the size of the domain

(Lx×Ly×Lz = 12π×4π×2) and the number of mesh points (Nx×Ny×Nz = 384×256×129)

were kept the same for all cases, which leads to a grid resolution of 11.69 6 ∆x+ 6 13.40,

5.85 6 ∆y+ 6 6.70, and 0.31 6 ∆z+ 6 4.36.

Reh Reτ0 Wih Wiτ0 L uτ ∆+
x x ∆+

y x ∆+
z,min ∆+

z,max DR [%]
3000 119.1 10 47.3 100 0.040 11.69 x 5.85 x 0.31 3.81 47 (HDR)
3000 136.5 4.3 26.7 100 0.046 13.40 x 6.70 x 0.35 4.36 30 (LDR)
3000 136.5 10 62.1 30 0.046 13.40 x 6.70 x 0.35 4.36 30 (LDR)

Table 4.1 – Parameters for the turbulent FENE-P plane Couette flows. In this paper,
three FENE-P flows were examined keeping Reh = 3000 and β0 = 0.9 fixed. In addition,
both the size of the domain (Lx ×Ly ×Lz = 12π × 4π × 2) and the number of mesh points

(Nx ×Ny ×Nz = 384× 256× 129) were kept the same for all cases.

For the present study, we define the percentage of DR in time as follows:

DR(t) =
(
1− < τw(t) >

< τw(t = 0) >

)
× 100 , (4.1)

where < τw(t) > is the wall shear stress at a given instant t and < τw(t = 0) > is the wall

shear stress at the very beginning of the simulation when the polymers are totally coiled.

Two drag reducing regimes are obtained from our drag reducing flows after a statistical

steady state was reached: the high drag reduction (HDR; DR > 40%) observed for our

most elastic case (Wih = 10 and L = 100) in which DR = 47%; the low drag reduction

(LDR; DR 6 40%) related to our least elastic cases (Wih = 4.3 and L = 100; Wih = 10 and

L = 30) for which DR = 30%. Physically, the main difference between these two regimes

consists in the fact that for LDR flows, the Reynolds stresses play a major role, whereas

in the HDR regime, the near-wall dynamics of the flow is dominated by the polymer

stresses [102].
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4.3 Results and Discussion

The focus of our work has been to carefully analyse, with the aid of a numerical

simulation of a FENE-P fluid, a drag reducing flow over time. The polymer–turbulence

interactions are complex and fundamental to clarifying the mechanism of DR, which

can even assume negative values at the beginning of the simulation. Such negative

values are not intuitive at first glance, and deserve our attention. In fact, the drag

reduction is a consequence of the polymer’s deformation (here estimated by tr (C) /L2)

and its interaction with the turbulent structures over time. The comprehension of this

relationship is important to understand the mechanism of DR and the simulations

shown here are a further step in this direction. The variations of DR over time are

confronted here with the evolution of polymer stretching and turbulent structures.

Lastly, the total kinetic energy budget is also considered, which represents quite a

good tool for further explaining DR. We simulated three viscoelastic cases fixing Reh
at 3000 and β0 at 0.9. The parameters of the FENE-P fluid are in Table 4.1. All data

are presented here in terms of wall units and at a dimensionless time tUh/h, where h is

the half-gap between the upper and bottom plates and Uh is the absolute value of their

velocities.

The evolution of the vortical structures over time can be recognized in figure 4.1, in

which the three-dimensional isosurfaces of Q are displayed. The use of such a kind of

entity to identify turbulent structures is quite common and is known as the Q-criterion,

in which vortical (or elliptical) structures are defined as the positive values of the second

invariant of the velocity gradient tensor, computed for incompressible flows by

Q =
1
2

(
||W ||2 − ||S||2

)
> 0 , (4.2)

where ||W || and ||S|| denote the Euclidean norms of W and S, respectively1. On the

other hand, negative values of Q indicate extensional (or hyperbolic) regions. For more

details about such a criterion, see [38]. The structures shown in figure 4.1 come from

the simulation of our most elastic FENE-P fluid (Wih = 10 and L = 100). From the top

to the bottom, there are displayed four instantaneous three-dimensional structures of

Q. For clarity, exceptionally in figure 4.1(a), we fixed Q = 1, since, at the very beginning

of the simulation, tUh/h = 0.3, the flow is full of structures and the isosurfaces of

Q = 0.1 completely fill the domain. Hence, only to distinguish the structures, we show

in figure 4.1(a) the isosurfaces of Q = 1. The colours on the isosurfaces depict the

level of the relative polymer stretching, measured by the trace of the conformation

tensor (normalized by the maximum polymer extension length), tr (C) /L2. At the

very first instants of the simulation, the molecules are totally coiled, tr (C) /L2 ≈ 0

1The Euclidean norm of a generic second order tensor A is ||A|| =
√
tr

(
A ·AT

)
.
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(the blue colour is dominant). Without any interaction between the polymers and

turbulent structures, we see an apparently Newtonian fluid flow and the drag reduction

is negligible (DR ≈ 0%), which is expected. It is known that in turbulent flows of

Newtonian fluids, the morphology of the vortical structures follows an organized

hierarchy over the domain (see figure 4.1). In the vicinity of the wall (z+ < 20), eddies

are found in pairs of counter-rotating quasi-streamwise vortices, while for z+ > 30, these

eddies resemble hairpins (the so-called horseshoe vortices; see also [1]) composed of three

well defined parts: the legs (where the rotation is quasi-aligned with the streamwise

direction), the head (a rotation part aligned with the spanwise direction), and the

necks (connections between the legs and the head of the hairpin). A few instants later,

at tUh/h = 9, figure 4.1(b), the Newtonian morphology is completely changed. The

polymers are abruptly stretched and the turbulent structures are partially destroyed

(the vortices with Q = 1 have completely vanished). The isosurfaces of Q = 0.1 do not

completely fill the domain anymore, even though the number of structures is widely

spread over it. The surfaces are coloured from blue (tr(C)/L2 ≈ 0) to red (tr(C)/L2 ≈ 0.8),

which indicates a distribution of the polymeric deformation over the domain. The

stretching is higher close to the wall, where the mean shear stress is more intense (we

will go back to this point later). We would like to emphasize here that at tUh/h = 9,

the drag reduction reaches its minimum negative value (DR ≈ −60%), despite the

disappearance of a great number of turbulent structures. This fact really deserves

our attention because it is not intuitive. If DR is a process in which a turbulent flow

approaches a laminar state at the same Reynolds number, how is it possible to have

the drag increased at the same instant when the turbulent structures are reduced?

Numerical simulations of FENE-P fluid which show a drag increase have also been

reported by Dimitropoulos et al. [21] and Tamano et al. [85], who argue that polymers

take the great part of the necessary energy for stretching from the mean shear flow

and such a significant loss of energy is the main cause of an initial drag increase, even

restraining part of the vortices. The same explanation was used by Andrade et al. [2]

who performed a number of experiments to take into account the drag increase and its

dependence on the polymer’s concentration and molecular weight.

In the sequence of the simulation, at tUh/h = 100, figure 4.1(c), the turbulent

structures with Q = 0.1 are strongly suppressed and the flow experiences its maximum

level of drag reduction (DR ≈ 60%). The morphology of the vortices is very different

from the Newtonian case at the beginning of the simulation, displayed in figure 4.1(a).

Their thicknesses and streamwise lengths increase, while they become parallel to the

wall. Hence, the classic Newtonian hierarchical organization mentioned before is no

longer observed. At the same time, the polymers are weakly stretched (colours are

midway blue and green). After the maximum DR is reached, a significant amount of

structures appear again before finding their statistical steady state at tUh/h > 300. In
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Figure 4.1 – The three-dimensional structures represent isosurfaces of vortical regions
defined as a positive value of the second invariant of velocity gradient tensor, ∇u. The

colours indicate the polymer stretching, tr (C) /L2.
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figure 4.1(d) we see the isosurfaces at tUh/h = 500, in which the final value of DR is

around 47%. The difference between the maximum value of DR and its asymptotic one

(DRmax −DRasy), which is smaller, is not obvious and deserves an explanation. This

point will be discussed in the following paragraphs.

It is worth mentioning that the polymers interact with the turbulent shear flows,

weakening not only the vortical structures (Q > 0; as shown in figure 4.1), but also

the extensional ones (Q < 0; not shown here), which induces an enhancement of the

parabolic domain (Q = 0). These initial interactions between the polymers and turbulent

structures impose a transient behaviour on the drag reduction level at the very beginning

of the phenomenon, as highlighted in figure 4.2(b) for our three viscoelastic cases. The

drag reduction level is compared with the spatial average of the relative polymer

stretching, < tr (C) /L2 >xyz, presented in figure 4.2(a), revealing an asynchronism

between these two quantities. At the very beginning, there is no interaction between

the polymers and turbulent structures and, consequently, the DR and < tr (C) /L2 >xyz
are zero. A few instants later, despite the fact that the polymers also take a non-

negligible amount of energy from the turbulent structures, the molecules start to be

stretched mainly by the mean shear flow, and < tr (C) /L2 >xyz increases until reaching

its maximum value (such a maximum value occurs at tUh/h = 9 for the most viscoelastic

FENE-P fluid). Simultaneously, the DR significantly falls and, at the same time, its

maximum negative value of −60% is reached, which indicates a significant drag increase.

Thus, the minimum DR (or the maximum drag increase) occurs when the molecules have

their maximum mean length, which is a diametrical asynchronism. As we mentioned

before, it occurs because the polymers take their energy for stretching primarily from

the mean shear flow, and the consequence is the decrease of the DR. As the elastic

parameters are incremented, the drag increase becomes more evident (DR ≈ −20%

for Wih = 10 and L = 30, and DR ≈ −60%, for Wih = 10 and L = 100). This is in

accordance with the experiments available in Andrade et al. [2]. The increase of

polymer concentration or molecular weight in a solution induces an increase in the drag

at the very start of the drag reducing flow. The authors argue that the necessary energy

used to change the polymers from their coiled state to a stretched new configuration

increases when more molecules are introduced into the solvent. The same happens

if the molecular weight is increased since a larger molecule stores more energy when

stretched.

After its minimum value, DR starts to increase and simultaneously < tr (C) /L2 >xyz
decreases until the maximum value of drag reduction is reached. Such a maximum

occurs at the dimensionless time equal to 100 for the most viscoelastic FENE-P fluid

(grey circles). Some instants later, the phenomenon achieves its steady state regime,

from an average point of view. As pointed out before, the maximum and the minimum

values of DR are increasing functions of L and Wih, which is fully in accordance with
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Figure 4.2 – Evolution of the spatial average of the relative polymer stretching as a
function of the normalized time, tUh/h (a). Average drag reduction, DR, as a function

of the normalized time (b).

the experiments. Thus, the polymer stretching and the drag reduction do not follow the

same rate. In fact, they are totally asynchronous. Such a behaviour was also observed

by Dimitropoulos et al. [21], analysing a turbulent flow of FENE-P fluid in a different

geometry. Hence, the turbulent flow is disturbed by the polymers within a very few

instants of the beginning of the process. There is a exchange of energy between the

mean flow, the vortices, and the polymers. This interaction induces a highly transient

behaviour, which reaches its statistical steady state after a period of time, called here

the ’developing time’, td . This time is also an increasing function of the elasticity (L and

Wih). Again, this is in accordance with the experiments in Andrade et al. [2], where a

td that increases with polymer concentration and molecular weight is observed.

It is worth noting in figure 4.2(a) how L and Wih affect the polymeric deformation.

Hence, let us compare the grey circles (Wih = 10; L = 100) and the red diamonds

(Wih = 10; L = 30). It can be clearly seen that the relative polymer extension decreases

with increasing L, which suggests that larger polymer molecules are less susceptible to

chain scission, as pointed out by Pereira and Soares [65]. In an opposing trend, tr(C)/L2

increases with Wih. If the relaxation time increases, the polymers can interact with a

more extensive spectrum of turbulent structures [19]. Thus, their stretching must be

more pronounced. This is also in agreement with Pereira and Soares [65].

In order to better understand the changes in the conformation of the molecules

during the begging of the drag reduction phenomenon, we display in figure 4.3 how the
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polymers are stretched relative to the wall distance at different instants. The average

values in the x − y plane of the trace of the normalized conformation tensor, 〈tr (C) /L2〉,
are displayed as a function of the normalized wall distance z+ for our three combinations

of L andWih. We have chosen some very specific instants for each viscoelastic case, such

as those for the maximum drag increase and drag reduction (values of tUh/h inside the

boxes in figure 4.2b), in addition to an instant at the very beginning of the simulation

and at that corresponding to the statistical steady state. It is mainly shown that the

polymers are stretched near the wall, within the viscous sublayer (0 < z+ < 5; region

I), where the mean turbulent shear flow is very intense. The maximum deformation

occurs within region II (5 < z+ < 30) and it dramatically decreases in the region III

(z+ > 30; region III). In the core zone, region III, the polymers are also stretched since

the fluctuations in the velocity field also interact with the polymers, being a source of

polymeric energy [86], but with a much lower intensity. Obviously, at the very start

of the simulation, tUh/h = 0.3, the mean polymer stretching is zero (grey circles). It

reaches its maximum value some instants later (blue triangles), before decreasing again

until finding a new minimum (red diamonds). At dimensionless times 500 and 1000,

the polymer deformation is at its statistical steady state. In turbulent Newtonian flow

studies, the boundaries of regions I, II and III are used to define the viscous sublayer, the

buffer layer and the log-law region, respectively.

The interactions between the polymers and the turbulence can be also evaluated

from the perspective of the streamwise velocity component, as shown in figure 4.4.

The velocity profiles are analysed at the same five characteristic instants used in figure

4.3, for our three viscoelastic cases. Each point in the figure is an average in the x − y
plane along z+. In order to compare our profiles with the classical ones available in

the literature, the velocity of the bottom plate was subtracted from the velocity field,

resulting in a relative streamwise component, urx given by urx = ux − (−Uh). Close to the

wall, region I, all velocity profiles fall down in the viscous law (< u+
rx >= z+; solid grey

line), as expected. At the very start of the simulation, tUh/h = 0.3, the polymers were

totally coiled and the velocity profile fitted the Newtonian log-law (grey dots). Hence, at

the beginning of the simulation the FENE-P behaves as a Newtonian fluid, because the

molecules are not significantly stretched. Some instants later, when the maximum drag

increase is reached, the velocity profile is below the Newtonian (blue triangles). This

is quite representative and a clear picture of what happens to the mean flow, which is

retarded when the polymers take energy from it to be stretched. Such retardation is

very impressive for the case of the most viscoelastic FENE-P fluid. The velocity profile

for the maximum drag reduction conduction is in red diamonds in (a), (b) and (c). It is

worth noting that the MDR asymptote (red dash-dotted line; [96]) is achieved for the

most viscoelastic case (Wih = 10 and L = 100), at tUh/h = 100, when the maximum DR

is reached, before decreasing to find its steady state (green squares and orange inverted
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Figure 4.3 – Average values in the x − y plane of the trace of the normalized
conformation tensor, 〈tr (C) /L2〉, as a function of the normalized wall distance for three
FENE-P turbulent flows: Reh = 3000, Wih = 10 and L = 100 (a); Reh = 3000, Wih = 4.3

and L = 100 (b); Reh = 3000, Wih = 10 and L = 30 (c). For each viscoelastic flow, the
relative polymer extension is analysed at four normalized instants, tUh/h.
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triangles).

Taking into account these results, the difference DRmax −DRasy can be explained.

Why is the maximum drag reduction not sustained, but instead falls, reaching an

asymptotic value below its maximum one? From an experimental point of view, this

is expected, since polymers degrade or de-aggregate, but our current model does not

take into account any degradation. In fact, we can detach the phenomenon as being

dependent on three distinct entities: the polymers; the mean shear flow; and the

turbulent structures. We can identify and compute the energy from each of these

quantities. Thus, following the phenomenon step-by-step, we observe a Newtonian

flow at the very beginning, when the polymers are totally coiled (tr (C) /L2 ≈ 0). After a

few instants, the polymers are stretched and the necessary energy comes mainly from

the mean shear flow, but a smaller part also comes from the structures. The part of the

energy which comes from the vortices (one can see that in figure 4.1b the structures are

reduced in comparison to figure 4.1a) works to increase the DR, but that part which

comes from the mean shear flow is much larger and the consequence is a significant

increase in the drag. The maximum drag increase at tUh/h = 9 for our most elastic

fluid imposes a retardation in the flow. We see in figure 4.4(a) a velocity profile (blue

triangles) significantly below the Newtonian curve (grey dotted line). At that very

moment, the mean velocity reaches its maximum retardation (see figure 4.4a). The

polymers start to strongly interact with the turbulent structures, inhibiting them, and

the DR starts to increase. In other words, the main reason for an increasing DR over

time, after its minimum value is achieved, is the suppression of the turbulent structures.

In addition, part of the energy stored by the polymers is released to the mean flow when

their mean length is decreasing, which helps the DR to increase. This process continues

until DRmax is reached at tUh/h = 100 for Wih = 10 and L = 100. In addition, as the

mean flow also acts as a source of turbulent energy [86], the increasing mean velocity

tends to strengthen the vortices, which works in this sense to reduce the DR. After

reaching their minimal stretching, the polymers start to deform again, but, unlike in the

beginning, the mean shear stress is also minimal, since the velocity gradient near the

wall is at its minimum value. Hence, in this new period of increasing deformation, the

level of stretching reached is less pronounced. Again, the polymers take energy from

the mean flow and the DR decreases until its final asymptotic value. Such a process is

periodic, but after a sufficiently long time, the developing time (td), everything happens

around a mean level which constitutes a statistical steady state in which the polymers

interact with the flow following a coil–stretch cycle [24]. Finally, the fact that DRasy is

smaller than DRmax is expected and can be explained. The exchange over time of energy

between the mean flow, the turbulent structures, and that stored by the polymers is the

key of the mechanism.

The results discussed above indicate a significant interaction between the polymer
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Figure 4.4 – Average values in the x − y plane of the streamwise relative velocity, 〈u+
rx〉,

as a function of the normalized wall distance for three FENE-P turbulent flows: Reh =
3000, Wih = 10 and L = 100 (a); Reh = 3000, Wih = 4.3 and L = 100 (b); Reh = 3000, Wih

= 10 and L = 30 (c). For each viscoelastic flow, the streamwise relative velocity is
analysed at four normalized instants, tUh/h.
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and the flow in the beginning of the drag reduction phenomenon, followed by significant

energy exchanges. These energy exchanges are taken into account by multiplying the

momentum equation (1.2) by the velocity, which leads to the work equation:1
2

∂
(
u+
α

2
)

∂t+
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, (4.3)

where the instantaneous polymer work term, E+
α , indicates the amount of energy stored

(E+
α < 0) or released (E+

α > 0) by the polymers from the velocity field in the α direction, u+
α .

The complementary work terms denote the advection A+
α, the pressure redistribution

P +
α , and the viscous stress V +

α . The sum A+
α + P +

α +V +
α is referred to as the Newtonian

work, N+
α , and T +

α is the time derivative term.

It is worth mentioning that the energy exchanges in the x direction constitute

more than 90% of that considering the streamwise, the spanwise and the wall-normal

directions. Hence, in figures 4.5 and 4.6, only the x − y plane average of the instanta-

neous streamwise total kinetic energy budget, provided by equation 4.3, against the

normalized wall distance is considered.

Figure 4.5 shows the spatial average of the streamwise energy budget, equation 4.3,

as a function of the dimensionless time. The same three FENE-P cases are shown here.

From this figure we can get quite a good picture of the energy exchange between the

polymers and the turbulent flow. The polymeric work < E+
x >xyz is null at the beginning

of the simulation, since the molecules are mainly coiled at this moment (blue crosses).

The total energy < T +
x >xyz is balanced by the Newtonian work (the grey circles and the

orange inverted triangles collapse into a single curve). Thus, at the very start of the

simulation, the flow behaves as a Newtonian one. Some instants after the beginning, the

energy balance totally changes, the polymeric work start to decrease, achieving negative

values, meaning that the polymers are being stretched and energy is taken from the

flow. The minimum value of < E+
x >xyz occurs at tUh/h ≈ 9 for the most viscoelastic case

(< E+
x >xyz≈ −0.29) displayed in figure 4.5(a). At the very same moment, the viscous

work < V +
x >xyz reaches its maximum value (green squares; < V +

x >xyz≈ 0.3) and the

drag increase is around 60% (see figure 4.2b). Concerning the instantaneous velocity

(figure 4.4a), we observe a significant retardation of the flow, since < u+
rx > is below the

classic Newtonian profile at tUh/h = 9. Hence, the polymer work is balanced by the

viscous work. In other words, the main energy stored by the polymers comes from

the mean shear flow. After this point, part of the energy stored by the polymers is

released to the mean flow while the mean extension of the molecules decreases (figure

4.2a). Consequently, the streamwise velocity increases and < T +
x >xyz also increases.

At tUh/h = 100 for our most elastic case, DRmax is reached, < E+
x >xyz approaches zero,
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Figure 4.5 – Spatial average of the streamwise energy budget terms as a function of the
normalized time, tUh/h.
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and a flow condition of minimum wall shear stress is achieved. Then, the polymers

start to interact with this flow condition, stretching moderately until a constant mean

level. At this final stage (tUh/h > 300), < T +
x >xyz fluctuates around zero and the energy

exchanges are mainly balanced by the polymeric work and the viscous work following

the significant suppression of both the advection (blue triangles) and the pressure (red

diamonds) related to the weakening of the turbulent structures shown in figure 4.1. As

described by Dubief et al. [24], at the statistical steady state, the molecules work in their

coil–stretch cycle, alternately storing energy in the flow and obtaining energy from the

flow. Thus, the asymptotic value of < E+
x >xyz oscillates around its time-averaged value

(< E+
x >xyz≈ −0.05 for the most elastic case), which is clearly an increasing function of

Wih and L.

Lastly, in figure 4.6 we can see the kinetic energy distribution as a function of the

wall distance. The analysis is restricted to the most viscoelastic FENE-P fluid (Wih = 10

and L = 100). Again we see that, at the very beginning, tUh/h = 0.3, the polymeric work

(blue crosses) is zero and the kinetic energy is balanced by the Newtonian terms (orange

inverted triangles). The advection term < A+
x > balances the viscous work < V +

x >. Both

quantities are nulls at the wall and reach their maximum values in the region II, just

above the viscous sublayer (z+ ≈ 5.5). It seems that < A+
x > and < V +

x > are the main

terms in the flow of Newtonian fluids, the former being the most important one as

pointed by Graham [31]. In region III, both the terms are significantly reduced. Such a

behaviour is expected, since the viscous work in flows of Newtonian fluids are related

to the small scale fluctuations, which are null very close to the walls and less significant

in the core region. After tUh/h = 9, the energy distribution dramatically changes (figure

4.6b). The polymeric work starts to play a very important role in the flow. At this

time, when the maximum drag increase occurs, the energy is exclusively balanced by

the polymeric work and the viscous work, since < A+
x > is strongly suppressed across

the plane Couette half-width and < P +
x > plays a minor role. As discussed previously,

the polymers are primarily stretched by the mean shear flow close to the wall, which

implies an intense polymeric work in the viscous sublayer, region I. In addition, the

turbulent structures interact with the molecules, providing a supplementary polymer

extension over the geometry. In other words, the mean shear flow is responsible for a

significant polymer pre-stretching, which is increased since the turbulent structures

interact with the polymer molecules, providing a supplementary polymer extension.

After the polymer deformation in the beginning of the simulation, the molecules reduce

their mean length and release energy to the mean flow. A significant increase in the

advection term < A+
x > is then perceived in figure 4.6(c), which results from the fact that

the mean flow also acts as a source of turbulent energy. At this time, tUh/h = 100, we

observe the maximum drag reduction (DR ≈ 60%). Lastly, the energy in the statistical

steady state condition, figure 4.6(d), is balanced by the polymeric work, the viscous
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work, and the advection terms. In fact, comparing figures 4.6(a) and (d), we observe

that < A+
x > is strongly reduced due to the presence of the polymers within region II

and slightly increased in region III, as a consequence of the morphological changes in

the turbulent structures evidenced in figure 4.1.

4.4 Concluding Remarks

Direct numerical simulations of a FENE-P fluid are used to analyse a time-dependent

drag reducing flow between parallel plates for a turbulent regime at Reh = 3000. We

simulated three viscoelastic cases, changing the values of Wih and L, but keeping the

same viscosity rate β0 = 0.9. Our main interest was to capture and emphasize some

transient features of the drag reducing flow throughout parallel plates in an attempt to

further understand its mechanism. The analyses of the simulations clearly show that

three entities play a very important role in DR(t), namely: the mean shear flow, the

polymeric stretching, and the turbulent structures. Energy is constantly exchanged

between these quantities from the beginning of the simulation until its statistical steady

state, and it is the key to understanding drag reduction as a function of time.

Figure 4.7 summarizes the principal four stages related to the DR mechanism at

the beginning of the phenomenon. The open symbols denote the mean streamwise

velocity profiles, while the worm-like structures represent vortical (or elliptical) regions

and the purple line illustrates the polymers. The exchanges of energy between these

three entities at each stage are represented by the arrows. Firstly, at the stage 1 (figure

4.7a), polymers (purple line), initially coiled, store a significant amount of energy (|E+
x |,

increases) which primarily comes from the mean shear flow (grey circles), as indicated by

the grey solid arrow. In addition, a smaller part of this energy comes from the turbulent

structures (elliptical and hyperbolic ones, although only the former are represented

in the sketch), as shown by the black solid arrow in figure 4.7(a). These polymer–flow

interactions not only weaken the turbulent structures, as they decrease the magnitude

of the advection (|A+
x |), but also impose a retardation in the streamwise velocity. As

a result, the DR decreases while the molecules stretch considerably, increasing the

viscous work (|V +
x |) near the wall. At stage 2 (figure 4.7b), the velocity profile reaches

its maximum retardation (blue triangles) and DR = DRmin. Nevertheless, the polymers

continue to interact with the turbulent structures, storing their energy and reducing

|A+
x | (black solid arrow in figure 4.7b). At a certain point, molecules deformation cannot

be sustained since the streamwise velocity and the turbulent structures are significantly

weak. Consequently, the polymers start to partially coil, releasing energy to the mean

flow (purple solid arrow), which helps DR and the mean streamwise velocity (red

diamonds) to increase to their maximum level, as illustrated in figure 4.7(c) (stage 3).

As the mean flow also acts as a source of turbulent energy [86], the increasing mean
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Figure 4.6 – Average values in the x − y plane of the streamwise total kinetic energy
budget against the normalized wall distance.
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Figure 4.7 – Sketch of the polymer–flow interactions during the developing time. The
open symbols denote the mean streamwise velocity profiles, while the worm-like

structures represent vortical (or elliptical) regions and the purple line illustrates the
polymers. The exchanges of energy between these three entities at each stage are

represented by the arrows.

velocity tends to strengthen the turbulent structures (|A+
x | slightly increases at stage

3, as illustrated by the red dash-dotted arrow in figure 4.7c), reducing the DR. After

reaching their minimal stretching, polymers start to deform again. However, differently

from the beginning, the mean shear stress is minimal, since the velocity gradient near

the wall is in its minimum value. Thus, in this period of increasing deformation, the

level of stretching reached is less pronounced. Lastly, the polymers take energy from

mean flow (red solid arrow in figure 4.7c) and the DR decreases until its asymptotic

value, DRasy , as shown in figure 4.7(d) (stage 4). In this statistical steady state, the

polymers interact with the flow following the coil-stretch cycles described by Dubief et

al. [24].

Lastly, it is important to emphasize that the asymptotic drag reduction is below its

maximum value, which is explained here by means of fluid dynamics. In fact, DR(t)
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and < tr (C) /L2 >xyz oscillate until finding a statistical steady state after a long time due

to the strong exchanges of energy, which dramatically modify the flow over time as well

as the drag reduction level and the polymer conformation.
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Chapter5
Elliptical, parabolic, and hyperbolic

exchanges of energy in drag reducing

plane Couette flows

The Q-criterion is used to partition the domain into elliptical, parabolic, and hyperbolic

subdomains corresponding to regions where the magnitude of vorticity surpasses, is

equal, or is lower than the magnitude of the rate of strain. Although the importance

of the hyperbolic parts is stressed in some works in fluid mechanics, only recently

hyperbolic structures were recognized to play a crucial role on the drag reduction phe-

nomenon of viscoelastic turbulent flows. More specifically, not only vortical structures

are weakened by the action of polymers in turbulent flows, but also hyperbolic struc-

tures are attenuated in the same direction, in a process that can be referred to as flow
parabolization. In the present work we investigate the polymer-turbulence interaction by

discriminating the mechanical response of this system accordingly to the different sub-

domains, elliptical, parabolic, and hyperbolic, where this response is allocated. To this

end, we employ Direct Numerical Simulations (DNS) of a viscoelastic Finite Extensional

Nonlinear Elastic model with the Peterlin approximation (FENE-P) to examine the

transient evolution and statistically steady regimes of a plane Couette flow which was

perturbed from a laminar flow at an initial time and developed a turbulent regime as a

result of this perturbation. We have found that even more activity is located within the

confines of the hyperbolic structures when compared to what happens in the elliptical

ones, which highlights the importance of considering the role of hyperbolic structures

on the drag reduction mechanism.

109
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5.1 Introduction

The turbulence of viscoelastic fluids is a subject that receives increasing attention in the

literature. Turbulence is considered one of most challenging subjects of physics and,

therefore, if the fluid that experiences such regime has a viscoelastic character, there is

a substantial amplification of complexity of the flow. Besides that, the polymer induced

drag reduction phenomenon (DR), i.e. the decrease in the friction factor originated by

the addition of small amounts of polymers on a Newtonian turbulent flow [28, 93, 61],

motivates considerably the investigation of viscoelastic turbulence, since important

industrial processes can be economically impacted by a controlled DR procedure [15,

80, 29].

Although one can find efforts on modelling the flow using a Reynolds average

approach [55, 56], or even Large Eddy Simulations (LES) [90], the main approaches

used to investigate the DR are Direct Numerical Simulations (DNS) and experiments.

This happens because the DR is not completely understood and, therefore, there is

a need for fundamental studies that are able to explore new aspects of this problem

and enhance our comprehension on the underlying physics of the polymer-turbulence

interaction. Marginally to the prolific discussion around the two main theories that try

to explain, in a simplistic form, the exceedingly non-linear nature of the DR, i.e. the

viscous theory [52, 81, 51] and the elastic theory [84], there is an effort on understanding

the effects of the interactions between polymers and turbulence by investigating how

these two entities, representatives of material and flow, are correlated to each other.

This correlation has been investigated in some fronts, as described below.

An intuitive and first investigated approach to understand polymer-turbulence

interaction is to compute the effects of the polymer action on average quantities like

mean velocity and Reynolds stress tensor. This line of investigation is responsible for

the finding of the maximum drag reduction (MDR) or Virk’s asymptote, an universal

bound for the DR presented by Virk and co-workers [97, 98, 96, 95]. The categories low
drag reduction (LDR) and high drag reduction (HDR) regimes are also an output of this

approach. The Reynolds stress tensor is also highly affected by the action of polymers.

Apart from the decrease of the shear stress component, there is a ‘stretching’ of the

Reynolds stress ellipsoid in the streamwise direction, i.e. a growth on the magnitude

of the streamwise normal component, accompanied with a decrease of the normal

components in wall and spanwise directions [74, 99, 103, 23, 87].

A valuable approach is to analyse the energy budget equation and evaluate in which

conditions the energy associated to the polymeric contribution is stored or released.

This front was explored by Dubief et al. [24]. They found an unexpected release

of polymer energy near the wall and proposed an autonomous regeneration cycle of

polymer wall turbulence, i.e. a mechanism that could explain the energy interchanges
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between polymer and turbulence. Pereira et al. [71] also analysed the energy-budget

equation from this perspective. A new aspect of this cycle was observed, namely that

the changes in the energy budgets are more significant on the Newtonian terms than

the polymeric ones, showing a compensation of these Newtonian terms with respect

to the polymeric one and revealing a clear non-linear effect of this interaction. A

relevant contribution to the investigation of viscoelastic turbulence is the recognition of

intermittent events that are hidden by time averages. In this connection, an important

finding is the alternation between active and hibernating turbulence reported by the

Graham’s group [105, 106, 30]. The framework of nonlinear dynamic systems was

employed to explain particularities of the flow, extolling the importance of extracting

information from the time series produced by main variables. The study of the transient

aspect of the polymer-turbulence interaction was considered by Pereira et al. [72],

taking the Newtonian turbulent flow as a base flow where, at time t = 0, occurs the

addition of a FENE-P polymer (Finite Extensible Nonlinear Elastic with the Peterlin

approximation; [73, 14]).

A different approach that is used to correlate polymers and turbulence is to analyse

how main features of polymer molecules like shape and orientation are connected to the

organization of the turbulent flow considered. From the DNS perspective, it became

usual to employ the Finite Extensible Nonlinear Elastic with the Peterlin approximation

(FENE-P) due to a physically realistic representation of the finite extensibility of a

polymer molecule combined with simplicity. This mesoscale approach belongs to

the family of models in which the main features of the polymer are captured by the

conformation tensor. In this sense, polymer shape and orientation are evaluated by

their model counterparts which are the eigenvalues and principal directions of the

conformation tensor that in turn are directly related to average dyadic of the end-to-end

vector. Usually this information is condensed into the first invariant of the conformation

tensor and the eigenvector associated to the highest eigenvalue. From the turbulent

viewpoint of the polymer-turbulence nonlinear relation, important features of how this

chaotic motion is organized can be grasped by its spectrum of different time and length

scales or the instantaneous Reynolds stress tensor. Nevertheless, it is recognized that

a crucial manifestation of turbulence is how this motion is structured. How to educe

turbulent structures is a subjective issue and different approaches have been employed

in this direction. It is not the aim of the present work to go through all the details in

this matter, but a brief discussion is worthwhile. Going through the literature it is hard

to distinguish in a clear way the expressions: turbulent structures and coherent structures.
Sometimes these expressions can also be interchangeable with the expression vortical
structures. In the 80’s and 90’s, Cantwell [16], Hussain [39, 40], Robinson [78], and

others have developed the concept of coherent structures in turbulent flows. The vortex

concept is still a non-consensual matter, as reported in a number of articles [18, 41, 107,
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17, 34]. One widely used criterion for vortex identification is the Q-criterion presented

in Hunt et al. [38]. Besides delineating the eddy zones what is usually interpreted as

‘vortices from the Q-criterion perspective’, this work also framed what they called the

convergent zones as zones of convergence and divergence of streamlines. In a similar

fashion, Weiss [101] alluded to regions vorticity-dominated and regions strain-rate-

dominated using the expressions elliptical mode and hyperbolic mode, respectively. Haller

[34] also refer to the elliptical domain and hyperbolic domain as regions where the flow

defies the tendency dictated by the rate-of-strain tensor or corroborates that tendency,

respectively. The expression ‘parabolic domain’ was employed to refer to 2D-boundaries

between elliptical and hyperbolic domains. Inspired by these ideas, Pereira et al. [71]

employed the expressions elliptical structures and hyperbolic structures based on the

Q-criterion. These structures are obtained as a function of time and are manifolds

of connected regions in space of constant values of Q, being elliptical if Q > 0, and

hyperbolic if Q < 0. Several articles in the literature that investigate the DR places

vortical (or elliptical) structures under scrutiny and have found unequivocal connection

between the action of polymers in a turbulent flow and weakening of vortical structures

[47]. Nevertheless, Pereira et al. [71] found that hyperbolic structures as captured

by the Q-criterion, are also diminished by the influence of polymer activities. The

preliminary results have shown that the process that occurs at the hyperbolic domain

is not less important than the corresponding process in the elliptical domain, which

is more established in the literature. What was shown by Pereira et al. [71] is that the

action of polymer on turbulence induces an evolution towards a parabolic state where

elliptical and hyperbolic structures get weaker as a consequence of elastic effects.

In the present work, we investigate the polymer-flow interactions within elliptical,

parabolic and hyperbolic parts, separately, from a kinetic energy budget perspective.

Employing the viscoelastic FEPE-P model, direct numerical simulations are conducted

in order to examine the transient evolution and statistically steady regimes of drag

reducing plane Couette flows which was perturbed from a laminar condition at an

initial time and developed to a turbulent regime as a result of this perturbation. Two

Newtonian fluids and two viscoelastic fluids are considered.

This work is organized as follows. In Section 5.2, we present the physical formu-

lation and the numerical methodology considered for our simulations. Following the

methodology description, our main results are displayed in Section 5.3, where the ellip-

tical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette

flows are analysed. Finally, the conclusions are drawn in the closing section.
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5.2 Numerical methodology

The parameters for the turbulent Newtonian and FENE-P plane Couette flows studied

here are summarized in Table 5.1. We simulated our viscoelastic cases fixing the

Weissenberg number, Wih = λUh/h, at 10, L at 100 and β0 at 0.9. In addition, two

values of Reynolds number based on the plate velocities, Reh = hUh/νtot, were explored:

Reh = 1500 and Reh = 4000. In order to investigate the polymer addition effects on

the fluid dynamic, these viscoelastic flows were compared with two Newtonian cases

at the same Reh. The size of the domain was kept the same for all DNS presented

here (Lx ×Ly ×Lz = 12π × 4π × 2) while the number of mesh points was Nx ×Ny ×Nz =

768× 512× 257 for the higher Reh case and Nx ×Ny ×Nz = 384× 256× 129 for the lower

one. This leads in a grid resolution of 11.69 ≤ ∆x+ ≤ 13.40, 5.85 ≤ ∆y+ ≤ 6.70, and

0.31 ≤ ∆z+ ≤ 4.36.

Reh Reτ0 Wih Wiτ0 L uτ ∆+
x x ∆+

y x ∆+
z,min ∆+

z,max DR [%]
1500 93 - - - 0.062 9.13 x 4.56 x 0.19 2.84 0
1500 64 10 27.5 100 0.043 6.28 x 3.14 x 0.19 1.96 50
4000 220 - - - 0.055 10.80 x 5.40 x 0.19 3.81 0
4000 150 10 56.3 100 0.038 7.36 x 3.68 x 0.19 2.60 52

Table 5.1 – Parameters for the turbulent Newtonian and FENE-P plane Couette flows.
In this work, two FENE-P flows were examined keeping Wih = 10, L = 100, and β0 = 0.9

and varying the Reynolds number (Reh = 1500; Reh = 4000). The number of mesh
points was Nx ×Ny ×Nz = 768× 512× 257 for the higher Reh case and

Nx ×Ny ×Nz = 384× 256× 129 for the lower one. The size of the domain was kept the
same for all cases (Lx ×Ly ×Lz = 12π × 4π × 2).

For the present study, we define the percentage of DR as a function of time as

follows:

DR(t) =
(
1− < τw(t) >

< τw,N (t) >

)
× 100 , (5.1)

where < τw(t) > is the area-average of the FENE-P wall shear stress at a given instant

t and < τw,N (t) > is the area-average of the Newtonian wall shear stress at the same

instant t. The following steady unidirectional shear field was used as initial velocity

and pressure conditions for the DNS: ux(x,y,z) = z, uy(x,y,z) = 0, uz(x,y,z) = 0, and

p(x,y,z) = 0. Additionally, for the viscoelastic DNS, the initial conformation tensor field
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was given by the stationary analytical solution:

Cxx = 1
f {tr(C)}

[
1 +

2 We2
h

f 2{tr(C)}

(
dux
dz

)2
]

Cxy = Cyz = 0

Cxz = Weh
f 2{tr(C)}

(
dux
dz

)
Cyy = Czz = 1

f {tr(C)}

f {tr (C)} = 2
3 cosh φ

3 + 1
3 ,

(5.2)

with φ = cosh−1
(

27
2 Ω2 + 1

)
, Ω =

(√
2 Weh/Lp+ 1

)
dux
dz and dux

dz = 1 since ux = z ∀z ∈
[−1,1]. Aiming to analyse the interaction of the polymer molecules with the turbulent

structures from the very beginning of the DR phenomenon (DR = 0%) to its steady state

(DR > 0% and statistically constant), turbulence was triggered by a initial perturbation

consisting of four pairs of counter-rotating vortices with axes of rotation aligned with

the x-direction:

u′init = 0

v′init = −A
(
x − Lx2

)(
y − Ly2

)
exp

[
−
(
x − Lx2

)2
−
(
y − Ly2

)2
](

1− 6z2 + 5z4
)

w′init = A (z)
(
1− z2

)2 (
x − Lx2

)
exp

[
−
(
x − Lx2

)2
−
(
y − Ly2

)2
][

1− 2
(
y − Ly2

)2
]
,

(5.3)

where u′init, v
′
init, and w′init are the initial velocity increments responsible for disturb

the flow in each direction and A is the amplitude coefficient (A was kept fixed at 5 for

the cases shown in 5.1). As a result of this methodology, DR exhibits a high transient

behaviour before achieving its statistical steady state, as we will show in the next

section.

5.3 Results and discussion

As discussed in section 5.1, Pereira et al. [71] showed that not only the elliptical

structures but also the hyperbolic ones play an important role on the drag reduction

mechanism. Both types of structures tend to evolve towards a parabolic state, which is

a fingerprint of the laminar viscometric regime, when interacting with polymers. In the

present work, we will employ a strategy of investigation that splits a general quantity

of interest into relative intensities associated to each of these structure forms.

Figure 5.1 shows subfigures of the evolution in time of elliptical and hyperbolic

structures originated from a turbulence perturbation superposed onto a laminar vis-

coelastic shear flow at dimensionless time t/Uhh = 0 for the case at Reh = 4000,Wih = 10
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Figure 5.1 – The three-dimensional structures represent isosurfaces of elliptical and
hyperbolic structures defined respectively as a positive and negative value of the
second invariant of velocity gradient tensor, ∇u. The colors indicate the polymer

stretch, tr (C) /L2.
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and L = 100. These structures are determined by isosurfaces of Q [38]. For incom-

pressible flows, Q = 1
2

(
||W ||2 − ||S||2

)
, where || || denotes the Euclidean norm of a given

tensor. On the left column in figure 5.1, we find how the elliptical structures associated

to Q = 0.1 evolves in time, while on the right, hyperbolic structures characterized by

the same intensity, Q = −0.1, are displayed. The color of the structures indicates the

stretch level of the polymers as measured by the quantity tr(C) /L2. Figures 5.1(a) and

5.1(b), related to the dimensionless time, tUh/h = 3 (three units after the perturbation

injection), show that, elliptical and hyperbolic structures form a volume with quite

similar sizes. These structures are predominantly blue, indicating that the polymers

are coiled at the beginning. At this moment, the level of DR is negligible (DR ≈ 0).

From figures 5.1(c) and 5.1(d), we notice that, at tUh/h = 15, elliptical and hyperbolic

structures advance in the domain exhibiting a similar overall shape. At this instant,

the polymer chains are more stretched showing a distribution of colors predominantly

green, i.e. tr (C) /L2 ≈ 0.5. The polymers associated to the hyperbolic structures are less

stretched around the upper plate (more bluish), while around the lower plate they are

more stretched in both hyperbolic and elliptical structures, what is illustrated by the

yellow color. When time advances to tUh/h = 52.5 and the drag reduction is around

DR ≈ 78%, the structures corresponding to the magnitude |Q| = 0.1 are spread all over

the domain. The main difference between the hyperbolic and the elliptical parts is that

the former is more fragmented than the latter.

A worth noticing fact, is that there was a significant change in DR from tUh/h = 52.5

to tUh/h = 105 (from ≈ 78% to ≈ 48%) with a insubstantial corresponding change in the

structure level of both types. On the other hand, a small change inDR from tUh/h = 105

to tUh/h > 200 had a remarkable change in the number of hyperbolic and elliptical

structures. We will return to this point later.

The changes in the flow during the development of the initial perturbation are

evaluated from a turbulent structure perspective in figures 5.2, where the spatial

average over the whole domain (< >xyz) of the percentage of elliptical (grey circles),

parabolic (blue triangles) and hyperbolic (red diamonds) structures is shown as a

function of the dimensionless time, tUh/h, for the four cases considered here: the

Newtonian flow at Reh = 1500 (figure 5.2a); the Newtonian flow at Reh = 4000 (figure

5.2b); the viscoelastic flow at Reh = 1500, Wih = 10 and L = 100 (figure 5.2c); the

viscoelastic flow at Reh = 4000, Wih = 10 and L = 100 (figure 5.2d). In the early stages

of evolution, when the flow is essentially laminar, there is a dominance of the parabolic

state, as expected, for all cases. Besides that, the hyperbolic and the elliptical structures

are equally distributed, occupying 10% of the flow (5% of elliptical parts and 5% of

hyperbolic ones). From this percentage viewpoint, the effect of changing the Reynolds

number in the Newtonian case is almost indistinguishable (figure 5.2a and b). For all

four cases, as the initial perturbation advances in the domain, the number of elliptical
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Figure 5.2 – Percentage of coherent structures as function of the dimensionless time,
tUh/h.
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and hyperbolic structures increases whereas the percentage of parabolic parts associated

with the laminar regime strongly decreases. It is worth noting that after tUh/h ≈ 1, the

quantity of hyperbolic structures increases more sharply than that of the elliptical ones.

Except for the viscoelastic case at Reh = 1500, just before the achievement of the steady

state, the percentage of hyperbolic structures has a peak whereas elliptical percentage of

structures have a valley. The viscoelastic cases do also present a valley in the percentage

of parabolic states. Once the statistically steady state regime is achieved, we can find

very well defined plateaus for each percentage of structures. During this period, the

percentage of parabolic parts is negligible compared with the hyperbolic (≈ 60%) and

elliptical (≈ 40%) distributions, for the Newtonian cases. In contrast, a non-negligible

amount of parabolic parts is observed for the viscoelastic flows. In general, it can be

said that the viscoelastic fluids redistribute the percentage of structures, favouring

the enlargement of the parabolic domain and decreasing the percentage number of

hyperbolic and elliptical structures, as previously discussed in Pereira et al. [71].

The picture given by an evolution in time as presented in figure 5.2 can be enriched

from a location perspective as shown in figure 5.3, where the average values in the

x − y plane of the time-averaged percentage of structures is displayed as a function

of the wall distance. The percentage of structures was averaged in time over some

500 flow snapshots spanning several eddy turnover times after the statistical steady

state was achieved (the same methodology employed by [Thais-13, 87]). Our four

flows are analysed. All the cases show a predominance of a parabolic state near the

wall, while hyperbolic and elliptical structures are more frequent far from the wall.

Another common feature these cases share is that hyperbolic structures are more present

than elliptical ones in the entire domain. It is noteworthy the intense redistribution

that occurs within the space of the first wall unit (region I, 0 < z+ < 5). Taking the

Newtonian case at Reh = 4000 as an example (figure 5.3b), we can see that the parabolic

parts go down from 100% at the wall to ≈ 5% at z+ = 1. From z+ = 0.2 to z+ = 1,

the hyperbolic structures have increased from 0% to ≈ 75%, while the percentage of

elliptical structures have increased from 0% to ≈ 20%. This redistribution is less intense

in the low Reh case (figure 5.3a), but still very high. This intense activity very near

the wall may be responsible for the poor description obtained from the Large Eddy

Simulation approach where even in wall resolved version, the first grid point is typically

of one or more wall distance units. If we continue to increase the wall distance, we find

that, at the end of the viscous sublayer (z+ = 5), the percentage of parabolic states is

negligible and the redistribution of domains are restricted to hyperbolic and elliptical

ones. In this case, we can see that as wall distance gets higher, more elliptical structures

are formed at the expense of the hyperbolic ones. For the Newtonian cases, it seems that

the minimum distance between the percentage of hyperbolic and elliptical structures

is achieved at the upper limit of the buffer layer (z+ = 30). Comparing the viscoelastic
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Figure 5.3 – Percentage of coherent structures as function of the dimensionless wall
distance.



120 CHAPTER 5. Elliptical, parabolic, and hyperbolic exchanges of energy

Figure 5.4 – Evolution of the wall shear stress, τw, made dimensionless by its laminar
value, τw−laminar , as function of the dimensionless time, tUh/h.

cases with their Newtonian counterparts, we can observe a significant extension of the

near-wall region where the parabolic parts are accompanied with both elliptical and

hyperbolic structures z+ =∈ [2,30]. Taking the case at Reh = 4000, Wih = 10 and L = 100,

we notice that at z+ = 1 the percentage of parabolic parts is still ≈ 74% against ≈ 5% of

the Newtonian case. This fact may suggest that the decrease of the parabolic domain

can be used as a criterion for inferring the size of the viscous sublayer for viscoelastic

wall turbulence. After the upper limit of the region II (5 < z+ < 30), another remarkable

difference in viscoelastic flow is the continuous decrease in the gap between hyperbolic

and elliptical structures as we move towards the centre of the geometry. This behaviour

is in contrast to the Newtonian cases where a minimum gap between the percentage

number of hyperbolic and elliptical structures coincides with the limit between the

buffer and s. If this criterion is used to define this transition, one would conclude that

the buffer layer would continue until the centre line while the log-law layer would be

suppressed. This conclusion is in accordance to the works of White and co-workers [102,

104] who put in light the suppression of the log-law layer in viscoelastic turbulence and

criticized the use of a log-law to describe the maximum drag reduction limit. Relative to

the Newtonian flows, the viscoelastic cases exhibit a less numerous near-wall elliptical

and hyperbolic parts (region I). In region III (z+ > 30), a higher percentage of elliptical

structures is observed, while the hyperbolic ones appear in a smaller number than the

corresponding Newtonian case.

In order to better understand effects the of the Reynolds number and the elasticity
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on the drag, we analyse in figure 5.4(a) how the average of the wall stress in x − y
plane evolves over time, taking as reference the wall shear stress at the laminar regime

(〈τw〉/〈τw, laminar〉). Because of this reference, all curves start from unity. Our four cases

are considered. Examining the two Newtonian curves, we can see a dramatic difference

between the two levels of stresses at the wall when the Reynolds number increases

from Reh = 1500 (black stars) to Reh = 4000 (grey balls), although they exhibit similar

shapes. The ratio 〈τw〉/〈τw, laminar〉 departs from 1 at the very few instants after the very

beginning of the simulations. At tUh/h ≈ 3, inertia (Reh) and elasticity (Wih, L) start play

a role as can be noticed by the detachment of the different curves. It is worth noting that,

specifically for the Newtonian cases, the asymptotic value is preceded by an overshoot in

the wall shear stress. The occurrence of the overshoot explains the significant decrease

in DR with no corresponding changes in the turbulent structures shown in figure 5.2.

This is a Newtonian effect. Figure 5.4(b) reveals that this overshoot emerges from

inertial effects related to the value of the amplitude of the initial perturbations, A.

Comparing our standard results obtained with A = 5 (grey circles), with the results

with new amplitudes, A = 1 (green squares) and A = 10 (orange inverted triangles), it

is clearly perceived that the overshoot is a increasing function of A. Since polymers

suppress inertial effects, no overshoot is observed for the viscoelastic cases analysed in

figure 5.4(a). Furthermore, polymers delay the development of the turbulent structures.

At tUh/h = 105, for instance, the wall shear stress for the Newtonian flow at Reh = 1500

already achieved its asymptotic level (black stars) while the correspondent viscoelastic

wall shear stress barely started to increase (blue triangle). Hence, for viscoelastic cases,

the asymptotic plateau is reached at higher dimensionless times compared to their

Newtonian counterparts, which is in accordance with the recent experimental results

reported by Andrade et al. [2], who evidenced that the development of turbulent

structures is delayed by the polymers.

Regarding the increase in the viscoelastic wall shear stress towards its asymp-

totic value, it is possible to distinguish at least three stages. During the first stage,

〈τw〉/〈τw, laminar〉 slightly increases. Considering, for instance, the viscoelastic case

at Reh = 4000 (red diamonds), the initial stage occurs for the dimensionless time

3 < tUh/h < 52.5. However, at tUh/h = 52.5, the slope of 〈τw〉/〈τw, laminar〉 dramatically

increases, characterizing the second stage of the flow development. The same tendency

is observed for the case of Reh = 1500 (blue triangles curve) at tUh/h = 105. As we will

show later, the initial and smaller slope is related to the interactions between polymers

and turbulent structures while the second and accentuated slope is linked with strong

energy exchanges between the polymers and the mean flow. Lastly, during the third

stage (the statistical steady state), 〈τw〉/〈τw, laminar〉 oscillates around its time-averaged

value.

As discussed in Section 5.2 (equation 5.1), the instantaneous drag reduction level
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Figure 5.5 – Evolution of the spatial average of the relative polymer stretch as function
of the dimensionless time, tUh/h. Average drag reduction, DR, as function of the

dimensionless time.

is calculated by dividing the viscoelastic wall shear stress curve by its corresponding

Newtonian one, the both shown in figure 5.4(a). The evolution over time of the drag

reduction level is displayed in figures 5.5(a) and (b) (green squares) together with

instantaneous spatial averages of the relative polymer stretching, 〈tr (C) /L2〉xyz. The

former is evaluated by considering not only the whole domain (black stars), but also each

subdomain, i.e. the elliptical (grey circles), parabolic (blue triangles) and hyperbolic

(red diamonds) ones.

Analysing the green square curve in figure 5.5(b), we first notice that DR starts to

increases at tUh/h ≈ 3, achieving its maximum value at tUh/h ≈ 52.5. As shown in figure

5.4(a), at this dimensionless time, the Newtonian wall shear stress is very close to its

peak while the viscoelastic one is increasing sharply. As a consequence, DR decreases

during the next instants until reaching its asymptotic plateau (≈ 52%) at tUh/h ≈ 105. A

similar behavior is perceived at Reh = 1500, as illustrated by the green squares in figure

5.5(a). The only difference between the two viscoelastic cases is the retardation in the

flow development which happens at Reh = 1500. In this case, DR is shifted from zero

at tUh/h ≈ 9 and reaches its maximum level at tUh/h ≈ 60. In addition, its asymptotic

wall shear stress plateau is achieved at tUh/h ≈ 200. It is important to remark that,

for the both viscoelastic cases, the polymer conformation (black stars) is still strongly

varying over time when the asymptotic wall shear stress plateau is achieved. Therefore,

the fact that the asymptotic 〈τw〉 was reached does not indicate the begging of the

statistical steady state [21, 72]. At Reh = 4000, for instance, the final flow condition
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Figure 5.6 – Evolution of the spatial average of the relative polymer stretch normalized
by the size of each subdomain as function of the dimensionless time, tUh/h.

is only observed for tUh/h > 200, when both the velocity and the conformation tensor

fields oscillated around their mean values. At Reh = 1500, the statistical steady state is

observed for tUh/h > 300.

Concerning the relative polymer stretching, it is noted that, a few instants after

the beginning of the simulations, 〈tr (C) /L2〉xyz increases from approximately zero to

its peak. For the viscoelastic case represented by the black stars in figure 5.5(b), the

increase in the polymer extension becomes more pronounced between tUh/h ≈ 52.5

and tUh/h ≈ 90, when 〈tr (C) /L2〉xyz is maximum (≈ 0.38). Then, the polymers release

part of their energy to the flow and 〈tr (C) /L2〉xyz decreases to its statistical steady value

(〈tr (C) /L2〉xyz ≈ 0.2 for tUh/h > 200). Furthermore, from figure 5.5, we can observe that

in the parabolic domain the polymers are remarkably shrunk, as indicated by the blue

triangles. In contrast, accentuated values of 〈tr (C) /L2〉xyz are found in both the elliptical

and hyperbolic parts. The polymer extension curves evolve in a similar way within

these two turbulent structures. Nevertheless, polymers are slightly more stretched

in the hyperbolic domain than in the elliptical one. Therefore, we can conclude that

hyperbolic and elliptical structures are constantly donating energy to polymers, in

order to maintain their stretching level. On the other hand, in a parabolic state where

a turbulent structure is not present, the polymers are able to relax and assume an

isotropic configuration.

The results shown in figure 5.5 are a direct consequence, not only to the ability of a

certain subdomain (elliptical, parabolic, hyperbolic) to stretch the polymers but also,

to the portion each subdomain occupies in the whole domain. We have already shown
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(see figure 5.3) that the hyperbolic subdomain is the largest one, since it overcomes

the other two outside and in a part of the viscous sublayer. Therefore, we have not

answered the question of which subdomain has a higher ability to stretch the polymers,

since the size of the domain enters the computation of figure 5.5. In order to asses

this question, we plotted in figure 5.6 the same averaged evolution over time, but now

normalized by the size of each subdomain. What can be seen in this figure is that the

relative stretching in each subdomain is higher in the elliptical one, followed by the

hyperbolic case. Therefore, we can conclude that the parabolic subdomain has the least

ability on stretching the polymers. The main conclusion is that, from the perspective

of the Q-criterion, there are more stretched polymers in the hyperbolic subdomain

because its size is larger than the size of the elliptical subdomain and not because of its

ability to stretch polymers.

In order to better understand the changes on the molecules conformation during the

begging of the drag reduction phenomenon, we displayed in figure 5.7 how polymers

are stretched relatively to the wall distance at different instants. Average values in

the x − y plane of the trace of the normalized conformation tensor, 〈tr (C) /L2〉, are

displaced as a function of the dimensionless wall distance, z+, for our viscolestic case at

Reh = 4000. We choose some very specific instants for each viscoelastic case, as those

indicate inside the boxes in figures 5.4(a) and 5.5(b) as well as that corresponding to

the statistical steady state tUh/h = 1500. The whole domain is considered in figure

5.7(a), while the relative polymer stretch is partitioned among elliptical, parabolic and

hyperbolic parts in figures 5.7(b), (c), and (d), respectively. Hence, for each specific

instant, the superposition of the profiles displayed in figures 5.7(b), (c), and (d) is equal

to that shown in figures 5.7(a).

During the initial instants, except for the small perturbation in the middle of the

geometry, the flow is essentially laminar and dominated by a parabolic state. The linear

streamwise velocity profile ux = z leads to a constant and weak velocity gradient for

tUh/h ≤ 3. Consequently, τw = τw,laminar and a very low and constant relative polymer

stretch profile exclusively related to the parabolic regions is observed at tUh/h = 0.3

(grey circles in figures 5.7a and c) and at tUh/h = 3 (blue triangles in figures 5.7a and

c). Additionally, at these instants, both the elliptical and the hyperbolic domains bar-

ley begun to develop, which makes 〈tr (C) /L2〉 ≈ 0 within these turbulent structures,

as illustrated by the grey circles and the blue triangles in figures 5.7(b) and (d). At

tUh/h = 52.5, when the increase in τw becomes more accentuated, polymers exhibit a

strong deformation profile that departs from 〈tr (C) /L2〉 ≈ 0.095 at the wall, increasing

exponentially until it reaches its maximum level (〈tr (C) /L2〉 ≈ 0.3) at the middle of the

plane Couette geometry. Very close to the wall, z+ < 1, the polymer stretch essentially

takes place within parabolic and hyperbolic domains. Nevertheless, the former van-

ishes as we move towards the centreline and, in the core zone (III; where 〈tr (C) /L2〉 is
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Figure 5.7 – Average values in the x − y plane of the trace of the normalized
conformation tensor, 〈tr (C) /L2〉, as function of the dimensionless wall distance for the
most elastic case: Reh = 4000, Wih = 10 and L = 100. The relative polymer extension is

analysed at five dimensionless instants, tUh/h.
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maximum), the polymer deformation is driven by both the elliptical and hyperbolic

structures, as indicated by the red diamonds. In other words, in the beginning of the

process, the DR achieves its maximum value following the significant molecules defor-

mation due to their interactions with the turbulent structures situated in the core zone.

This is in accordance with the elastic theory postulated by Tabor and de Gennes [84],

who claimed that the polymer drag reduction is not a wall–dependent phenomenon.

Additionally, at tUh/h = 52.5, the development of the turbulent structures have dra-

matically modified the velocity gradient and polymers start to strongly interact with

the mean flow, storing its energy and increasing ∂τw/∂t (figure 5.4a) as a consequence.

At tUh/h = 105, when the wall shear stress reaches its peak, although 〈tr (C) /L2〉 is

large within parabolic parts located in the vicinity of the wall (〈tr (C) /L2〉 ≈ 0.28 at

tUh/h = 105), the relative polymer stretch achieves its highest values in regions II

and III, where the molecules deformation is mainly driven by the turbulent action on

the elliptical and hyperbolic domains (green squares in figures 5.7b and d). However,

during their initial stretch process, polymers store a considerable amount of energy

from these turbulent structures, weakening them. Thus, after tUh/h = 105, the high

molecular deformation cannot be sustained since the elliptical and hyperbolic parts

are significantly weak. Consequently, the molecules situated in regions II and III start

to partially coil, releasing energy to the mean flow and slightly decreasing τw. The

polymer extension profile moves downward, assuming the shape represented by the

orange inverted triangles. Lastly, τw oscillates around it asymptotic level, which indi-

cates the beginning of the statistical steady flow (τw ≈ 5.6 τw,laminar for tUh/h > 200, as

pointed out in figure 5.4). During the statistical steady state illustrated by the profiles

evaluated at tUh/h = 1500 (orange inverted triangles in figure 5.7), it is firstly observed

that polymers are considerably stretched near the wall, where the mean turbulent shear

flow is intense. The maximum 〈tr (C) /L2〉 occurs in the region II and it dramatically

decreases in the region III. Nevertheless, in the core zone, polymers are still stretched

since the turbulent structures were not completely suppressed. Hence, the fluctuations

on the velocity field also interact with polymers, being a source of polymeric energy

[Thais-13], but in a much lower intensity. In this final stage, the polymer stretching

near the wall is due to the parabolic subdomain (see the comparison between figures

5.7a and 5.7c). The decrease of the parabolic polymer stretching is compensated by the

increase of the elliptical and hyperbolic contributions to this stretching at the end of

the viscous sublayer and most of the (Newtonian) buffer layer. From the end of region

II going through the entire region III the polymer stretching decreases in elliptical and

hyperbolic subdomains.

The interactions between polymers and turbulence can be also evaluated from

the perspective of the streamwise velocity component, as shown in figure 5.8. The

velocity profile are analysed at the same five characteristic instants used in figure
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Figure 5.8 – Average values in the x − y plane of the streamwise relative velocity, 〈u+
rx〉,

as function of the dimensionless wall distance: Reh = 4000, Newtonian (a); Reh = 4000,
Wih = 10 and L = 100 (b). For each flow, the streamwise relative velocity is analysed at

five dimensionless instants, tUh/h.

5.7, for our two cases at Reh = 4000. The polymer effect on the velocity profile are

evaluated by confronting the Newtonian (figure 5.8a) and the viscoelastic flow (figure

5.8b). Each point in the figure is an average in the x − y plane along z+. In order to

compare our profiles with the classical ones available in literature, the velocity of the

bottom plate was subtracted from the velocity field, resulting in a relative streamwise

component, urx given by urx = ux−(−Uh). At instants tUh/h = 0.3 and tUh/h = 3, both the

Newtonian and the viscoelastic flows exhibit a laminar character and the coincidence

of the velocity profile with the curve u+
rx = z+ surpasses the viscous sublayer. However,

the development of the turbulent structures starts to significantly modify the flows.

The velocity, then, decreases while the wall shear stress becomes more accentuated, as

displayed in figure 5.4. At tUh/h = 52.5, significant differences between the Newtonian

and the viscoelastic cases are observed. The former presents a streamwise velocity

profile (red diamonds in figure 5.8a) below the classic log-law one, which can be seen

in figure 5.8(a) by comparing the red diamonds and the grey dots. In addition, its

wall shear stress is very close to the maximum level (grey circles in figure 5.4). In

contrast, the latter, whose the wall shear stress is still small, presents a streamwise

velocity profile very close to the MDR one (red dash-dotted). Lastly, for tUh/h > 100, the

Newtonian velocity fits the classic log-law while the wall shear stress reaches its mean

level. However, for the viscoelastic case, u+
rx undergoes some changes before achieving

the statistical steady state at tUh/h = 200. In other words, the addition of polymers
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retards the development of the steady state velocity profile.

In face of the results presented previously, we can now describe, from a dynamic

point of view, the development of the polymer drag reduction phenomenon trigged

by an initial perturbation superposed onto a laminar viscoelastic shear flow. This

phenomenon can be detached as being dependent on three distinct entities: polymers,

mean shear flow, and turbulent structures (elliptical and hyperbolic parts). Following

τw(t), step-by-step, we observe a laminar flow at the very beginning which is not able to

stretch the molecules (〈tr (C) /L2〉xyz < 0.02 at tUh/h = 0). Consequently, τw = τw,laminar
and DR = 0%. Nevertheless, after few instants, polymers are extended and the neces-

sary energy comes from the elliptical and hyperbolic structures related to the initial

perturbation located in the middle of the geometry. Hence, polymers firstly exhibit

an accentuated stretch within regions II and III, while a less significant 〈tr (C) /L2〉 is

observed in the vicinity of the wall (red diamonds in figure 5.7). The development

of the turbulent structures increases τw and modify the mean shear flow, making the

latter a source of polymeric energy for the molecules situated close to the wall. Then,

〈tr (C) /L2〉 tends to increase in region I (green squares in figure 5.7), while u+
rx is delayed

(green squares in figure 5.8b). This retardation of u+
rx increases τw more markedly until

its peak. However, at this point, the high molecular deformation in the core zone can

not be sustained since the elliptical and hyperbolic structures become weak, following

the significant polymer-turbulence interactions. Consequently, the molecules situated

in regions II and III start to partially coil, releasing energy to the mean flow. This

releasing of energy increases u+
rx and slightly decreases τw toward their final stages

(orange inverted triangles in figure 5.8b and red diamonds in figure 5.4, respectively).

The results discussed above indicate a strong interaction between the polymer and

the flow in the beginning of the drag reduction phenomenon followed by a significant

energy exchanges. These energy exchanges are taken into account by multiplying the

momentum equation (1.2) by the velocity, which leads to the work equation1
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where the instantaneous polymer work term, E+
α , indicates the amount of energy stored

(E+
α < 0) or released (E+

α > 0) by the polymers from the velocity field in the α direction, u+
α .

The complementary work terms denote the advection A+
α, the pressure redistribution

P +
α , and the viscous stress V +

α . The sum A+
α + P +

α +V +
α is referred as the Newtonian work,

N+
α , and T +

α is the local time derivative term. It is worth mentioning that the energy

exchanges in the x direction constitute more than 90% of the total energy, including the

streamwise, the spanwise and the wall-normal directions. Hence, in figures 5.9, 5.10,
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5.11, and 5.12 only the x−y plane average of the instantaneous streamwise total kinetic

energy budget, provided by equation 5.4, against the dimensionless wall distance is

considered.

Figure 5.9 shows the spatial average of the streamwise energy budget, equation 5.4,

as function of the dimensionless time. The Newtonian (left column) and viscoelastic

(right column) cases Reh = 4000 are shown here. The whole domain energy budget (a
and b) is divided into the elliptical (c and d), parabolic (e and f ), and hyperbolic (g and

h) parts. From these subfigures, we can get a quite good picture of the energy exchanges

between polymers and the turbulent structures during the developing time. Concerning

the viscoelastic case, it is observed in figure 5.9(b) that the polymeric work 〈E+
x 〉xyz is

null at the beginning of the simulation, since the molecules are mainly coiled at this

moment (blue plus symbols). The local time derivative term 〈T +
x 〉xyz is identical to the

Newtonian work (the grey circles and the orange inverted triangles collapse in a single

curve) which, during this stage, is mainly composed by the pressure term. Some instants

after the beginning of the process, the balance of energy totally changes. The initial

perturbation advances in the domain (figure 5.1), changing the flow and increasing

the magnitude of 〈T +
x 〉xyz. The polymeric work starts to decrease achieving negative

values, which means that the molecules are being stretched, following their interactions

with the turbulent structures. During the interval tUh/h ∈≈ [20,100] the local time

derivative term 〈T +
x 〉xyz is mainly explained by the polymeric term. At tUh/h ≈ 80,

the polymeric contribution starts to decrease after its valley (〈E+
x 〉xyz ≈ −0.18) while

〈V +
x 〉xyz starts to increase with more intensity, showing a maximum (together with τw)

at tUh/h = 105 and being the main contribution to the Newtonian term. At this stage,

u+
rx appears closer to the log-law profile (green squares in figure 5.8b). These trajectories

suggest that the mean flow is now acting as a source polymeric energy. Therefore, both

the Newtonian and polymeric terms contribute to the increase of 〈T +
x 〉xyz until the flow

reaches its statistically steady state. This regime shows a very low local time derivative

of the kinetic energy obtained from a balance between a positive Newtonian (almost

viscous) and a negative polymeric contributions of the same order of magnitude, i.e.

〈N+
x 〉xyz ≈ −〈E+

x 〉xyz ≈ 0.05. In other words, while in the Newtonian case the viscous

term counteracts the pressure work contribution, 〈P +
x 〉xyz ≈ −0.2, in the viscoelastic case

the viscous work increases counteracting the drainage of energy provided by the new

work term, the polymeric one. This increase in the viscous work can be responsible for

the decrease of the turbulent structures and the raise of the parabolic domain.

The analysis conducted above for the whole domain can gain additional insight if

we understand how each term of equation 5.4 is distributed among the subdomains,

i.e. elliptical, parabolic, and hyperbolic as illustrated by the next subfigures of figure

5.9. Confronting the Newtonian and viscoelastic cases shown in the left and the

right columns, it is observed that, although for the whole domain the advective term,
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Figure 5.9 – Spatial average of the streamwise energy budget terms as function of the
dimensionless time, tUh/h.
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〈A+
x 〉xyz (blue triangles), is negligible, the same cannot be said about its subdomains

counterparts, especially hyperbolic and elliptical ones. The Newtonian case exhibits

non-negligible contributions of these structures but, in the presence of polymers the

magnitude of 〈A+
x 〉xyz increases in both the elliptical and hyperbolic subdomains without

changing its overall value, which is close to zero. The contribution of the parabolic

subdomain is negligible (please notice that the scale of the parabolic curves is one

order of magnitude lower). Comparing figures 5.9(c) and (d), and figures 5.9(g) and

(h), it is interesting to note that the morphological changes in the turbulent structures

caused by the addition of polymers increases the streamwise advection within both the

elliptical and hyperbolic parts. In other words, although the polymers strongly reduce

the quantity of elliptical and hyperbolic structures and change their morphology, the

modified (and less numerous) turbulent structures which emerges from the polymer-

flow interactions exhibit a more accentuated A+
x . This result is an additional motivation

for including the hyperbolic structures in the analysis of turbulent flows. The elliptical

structures, identified as vortices in the literature, cannot be the only source of the

connection between the turbulent structures and the physical explanation of the flow.

Analysing figures 5.9(d), (f ) and (h), it can be seen that the polymeric energy, differ-

ently from the advective term, has contributions of elliptical, parabolic, and hyperbolic

subdomains in the same direction, i.e. a negative contribution to 〈T +
x 〉xyz. These contri-

butions come primarily from the hyperbolic structures. During the statistical steady

state (tUh/h > 200), for instance, the magnitude of 〈E+
x 〉xyz in the hyperbolic parts

(〈E+
x 〉xyz ≈ −0.04) is approximatively two times greater than that observed in the ellipti-

cal ones (〈E+
x 〉xyz ≈ −0.02), while a less significant quantity of energy (approximatively

ten times smaller) is stored in the parabolic domain. The viscous term increases from

the Newtonian to the viscoelastic case in every subdomain. Again, one can verify a

near symmetric value of 〈V +
x 〉xyz with respect to the polymeric contribution after the

statistically steady state has been achieved.

Similarly to the rationale that was employed with respect to the results shown in

figure 5.5, which originated figure 5.6, the same concern is applied to figure 5.9, i.e. it

would be illustrative to understand each term of equation 5.4 looking separately to each

subdomain as our universe of analysis. This is done in figure 5.10, where figures 5.10(a)

and (b) are coincident with figures 5.9(a) and (b). Interestingly, the main difference

between figures 5.9 and 5.10 is the fact that some the terms of equation 5.4, like 〈A+
x 〉xyz,

〈N+
x 〉xyz, and 〈T +

x 〉xyz in the elliptical subdomains have a higher relative magnitude

when compared to what is taking place in the hyperbolic subdomain, although the sign

relation is maintained. In other words, a quantity like 〈A+
x 〉xyz, for example, has its

contribution equilibrated in elliptical and hyperbolic regions because hyperbolic regions

are more numerous, what balances the fact of being less intense in this subdomain.

The polymeric contribution, 〈E+
x 〉xyz, has also slightly changed to a situation where
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hyperbolic and elliptical regions have more similar values.

It is worth noting that the developing time reported in Pereira et al. [72] and

the one presented here are very different from each other. In the former work, the

polymers are initially stretched and the velocity and the pressure fields are started

from a Newtonian fully developed turbulent flow. The mean flow exhibits, then, an

accentuated velocity gradient (especially near the wall), which allows it to act as the

primarily source of energy to the molecules. Consequently, during the first seconds

of simulation, polymers strongly interact with the mean shear flow, storing part of

its energy. This storage of energy imposes a retardation in the mean velocity, which

increases the drag (τw) and moves DR from zero to negative values. In contrast, in the

present work, since the initial laminar shear flow is not capable to deform the molecules,

the energy necessary to initially stretch the polymers comes from the elliptical and

hyperbolic structures related to the initial perturbation located in the middle of the

geometry. As these turbulent structures weaken, DR moves from zero (at the very

beginning of the simulations) to positive values. The differences between the two

referred works show that the development of DR is highly dependent not only on the

initial molecules conformation, as experimentally evidenced by Andrade et al. [2], but

also on the flow condition at the very beginning of the process. However, it is important

to stress that, once the statistical steady state is reached, all the simulated flows follow

the wall turbulence regeneration cycle described in Pereira et al. [71]. In other words,

despite the dynamic differences during their developing time, in the statistical steady

state, the viscoelastic turbulent flows reported here and in Pereira et al. [72] converge

to the same polymer–flow mechanism. Some important aspects of this polymer–flow

mechanism are explored here from a time–average perspective. In this connection, the

averaging of the energy terms shown in equation 5.4 is taken over time using 500 flow

snapshots spanning several eddy turnovers times. The starting point is the mean work

equation,1
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where the time–averaged amount of energy which is stored (E+
m,α < 0) or released

(E+
m,α > 0) by polymers from the velocity in the α direction, u+

α , is represented by E+
m,α.

The complementary work terms denote the mean advection A+
m,α, the mean pressure

redistribution P +
m,α, and the mean viscous stress V +

m,α. The sum A+
m,α + P +

m,α + V +
m,α is

referred as time–averaged Newtonian work, N+
m,α, and T +

m,α is the term associated to

the time–averaged local time derivative of the kinetic energy. In figure 5.11, we can
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Figure 5.10 – Spatial average of the streamwise energy budget terms as function of the
dimensionless time, tUh/h.
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see the x − y plane average of the mean kinetic energy distribution as a function of

the wall distance. The analysis is restricted to the Newtonian and viscoelastic cases at

Reh = 4000. Again, we split the domain into elliptical, parabolic and hyperbolic flow

subdomains in order to clarify the specific exchanges of energy.

Firstly, regarding the Newtonian flow shown in figure 5.11(a), we observe that the

advection term, 〈A+
m,x〉, balances the viscous one, 〈V +

m,x〉. Both quantities are nulls at the

wall and reach their maximum values in the region II, just above the viscous sublayer

(z+ ≈ 5.5). It seems that 〈A+
m,x〉 and 〈V +

m,x〉 are the main terms in flow of Newtonian

fluids, the former being the most important one as reported by Graham [31]. In region

III, both the terms significantly reduce. Such a behavior is expected, since the viscous

work in flows of Newtonian fluids are related to the small scale fluctuations, which

are nulls very close to wall and less significant in the core zone. As pointed out in

figures 5.11(c), (e), and (g), the most significant values of 〈A+
m,x〉 occurs within elliptical

structures situated in the region II. In contrast, within these structures, 〈V +
m,x〉 is slightly

smaller than in the hyperbolic ones. The results displayed in figure 5.11(b) indicate that

energy distribution dramatically changes when polymers are introduced in Newtonian

fluids. The polymeric work starts to play a very important role in the flow. In region

I, the energy is primarily balanced by the polymeric term and the viscous one. The

latter departs from an accentuated value at the wall, while the former reaches its peak

in region II (〈V +
m,x〉 ≈ 0.59 at z+ ≈ 7.0). However, a slightly reduction of 〈V +

m,x〉 is also

noted in region II, by comparing figures 5.11(a) and (b). Furthermore, in this region,

polymers partially suppress the advection work, of which the maximum absolute value

is two times smaller than that observed for the Newtonian flow shown in figure 5.11(a).

In the opposite sense, in region III, the addition of polymers slightly increases 〈A+
m,x〉,

which seems to be closely related to the fact that, in viscoelastic flows, the turbulent

structures become more parallel to the wall, while their thicknesses and streamwise

lengths increase [46]. Moreover, as shown in figures 5.3(c) and (d), the viscoelastic flows

exhibit a larger number of elliptical structures within region III than their Newtonian

counterparts, which also could justify the increase in |〈A+
m,x〉| observed far from the wall

(figure 5.11d).

The elliptical, parabolic, and hyperbolic exchanges of energy are illustrated in

figures 5.11(d), (f ), and (h), respectively, for a viscoelastic fluid. Figure 5.11(f ) shows

that, for z+ < 1, polymers store energy primarily from the near-wall parabolic domain

(〈V +
m,x〉 < 0). In addition, the highest values of 〈V +

m,x〉 are also linked with the parabolic

parts situated in the vicinity of the wall (figure 5.11f ). Moving from region I to region

II, the elliptical and the hyperbolic exchanges of energy become important (figures

5.11d and h), while the parabolic ones vanish (figure 5.11f ). At z+ ≈ 3.5, 〈E+
m,x〉 reaches

its peak within both the elliptical and hyperbolic parts. Furthermore, for this two parts,

the maximum value of 〈V +
m,x〉 occurs at z+ ≈ 7.5. Comparing the Newtonian results
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Figure 5.11 – Average values in the x − y plane of the streamwise kinetic energy budget
against the dimensionless wall distance: Reh = 4000, Wih = 10 and L = 100.
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with the viscoelastic ones, it can be clearly seen that the most significant advection

suppression occurs within elliptical structures situated in region II. In contrast, for

elliptical and hyperbolic parts located in region III, |〈A+
m,x〉| is greater than that of the

Newtonian case at the same Reh, which is linked with the morphological changes in the

turbulent structures as well as the increase in the number of elliptical structures far

from the wall (see figures 5.3c and d). Hence, we can conclude that the reduction in

the percentage number of hyperbolic and elliptical structures caused by the polymers

(see figure 5.2) decreases the peak of 〈A+
m,x〉 in region II. However, the morphological

changes experienced by these structures favor the streamwise advection in region III,

since they become more parallel to the wall and their thicknesses and streamwise

lengths increase [46]. Lastly, it is important to observe that the addition of polymers

shifts the peak away from the wall. For both the Newtonian and viscoelastic cases,

〈T +
m,x〉 and 〈P +

m,x〉 are null along the plane Couette half-width.

Finally, during the statistical steady state, the time–averaged polymer work term

can be related to both the mean and fluctuating fields

E+
m,x =

U+
x
∂Ξ+

x,i

∂x+
i

︸       ︷︷       ︸
E+
mm,x

+

u′+x ∂Ξ′+x,i∂x+
i

︸       ︷︷       ︸
E+
mt,x

, (5.6)

where E+
mm,x and E+

mt,x denote the quantity of energy stored (E+
mm,x < 0 and E+

mt,x < 0) or

released (E+
mm,x > 0 and E+

mt,x > 0) by the polymers from the mean and the fluctuating

velocity fields, respectively, in the streamwise direction. The average values of these

quantities in the x−y plane across one-half of the geometry is highlighted in figure 5.12.

Our two viscoelastic cases are considered and the results are quite similar. Analysing

〈E+
mm,x〉 for the whole domain (black stars in figures 5.12a and b), it is clearly seen that

polymer extract a considerable amount of energy from the flow within region I. This

energy comes mainly from the mean shear flow through the parabolic parts (for z+ < 1;

blue triangles) and the hyperbolic ones (1 < z+ < 5). In region II, significant negative

values of 〈E+
mm,x〉 are still observed within the elliptical (grey circles) and hyperbolic

(red diamonds) structures. However, 〈E+
mm,x〉 increases along the region II and reaches

a positive peak around z+ ≈ 30, which is more accentuated within hyperbolic parts.

The insets in figures 5.12(a) and (b) indicate that the release of energy by the polymers

in region III is small, but non-negligible if compared with 〈E+
mt,x〉 shown in figures

5.12(c) and (d). The latter exhibits an opposite behavior with respect to 〈E+
mm,x〉. As

shown by the black stars in figures 5.12(a) and (b), 〈E+
mt,x〉 departs from zero at the

wall (were the velocity fluctuations are nulls) and gradually increases across the region

I until achieving its maximum value at z+ ≈ 4. This polymeric energy is exclusively

released to elliptical and hyperbolic parts. After this point, 〈E+
mt,x〉 decreases and
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Figure 5.12 – Average values in the x − y plane of both the mean and turbulent
streamwise kinetic energy budget against the dimensionless wall distance.
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reaches its minimum and negative value in region II, at z+ ≈ 25. Negative values of

〈E+
mt,x〉 are also observed in region III, where polymers store energy from both the

elliptical and hyperbolic structures. In short, figures 5.12 highlights how complex the

interactions between polymers, the mean shear flow, and the velocity fluctuations are.

In region I, polymers basically extract a significant amount of energy from the mean

flow (〈E+
mm,x〉 < 0) and release a smaller part of it to the velocity fluctuations (〈E+

mt,x〉 > 0).

Nevertheless, these trends completely change along region II and, as a result, in region

III, polymers simultaneously dampen the turbulent structures and release part of their

energy to mean shear flow. In other words, polymers interact with the mean flow and

with the fluctuating velocity following opposite trends across the geometry.

5.4 Concluding remarks

Direct numerical simulations of FENE-P fluid are used to analyse a time–dependent

drag reducing flow between parallel plates for turbulent regimes at Reh = 1500 and

Reh = 4000. In order to investigate the polymer addition effects on the fluid dynamic,

these viscoelastic flows were compared to two Newtonian cases at the same Reynolds

numbers. We simulated our viscoelastic cases fixing Wih at 10, L at 100 and β0 at 0.9.

Aiming to analyse the interaction of the polymer molecules with the turbulent structures

from the very beginning of the DR phenomenon (DR = 0%) to its steady state (DR > 0%

and statistically constant), turbulence was triggered by an initial perturbation consisting

of four pairs of counter-rotating vortices superimposed onto a laminar viscoelastic shear

flow (see details in Section 5.2). Our primary focus was to capture and emphasize some

transient features of the drag reducing flow which emerges from the interaction between

the polymers and the turbulent structures. These turbulent structures were defined

from the perspective of the Q-criterion of flow classification [38]. Hence, the flow was

divided into three distinct subdomains: an elliptical (or vortical) one where the second

invariant of the velocity gradient tensor is positive (Q > 0), a hyperbolic (or extensional)

subdomain which is determined by the negative values of the second invariant of the

velocity gradient tensor (Q < 0), and a parabolic intermediary subdomain for which

Q = 0. The polymer-turbulence exchanges of energy were then investigated for each

one of these subdomains.

Figure 5.13 summarizes the principal four stages related to the DR mechanism

at the beginning of the phenomenon. Firstly, at the stage 1 (figure 5.13a), the flow

is primarily laminar and, consequently, the wall shear stress is equal to the laminar

one (τw = τw,laminar ; see figure 5.4). The polymers, practically coiled (tr (C) /L2 ≈ 0,

DR = 0), store a significant amount of energy (E+
x > 0) which initially comes from the

elliptical (curved arrows) and hyperbolic (straight arrows) structures related to the small

perturbation located in the middle of the geometry. As a results, at stage 2 (figure 5.13b),
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Figure 5.13 – Sketch of the polymer–flow interactions during the developing time.
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the molecules start to stretch within regions II (5 < z+ < 30) and III (z+ > 30), while the

turbulent structures are partially suppressed, which reduces the advection magnitude,

|A+
x | and increases DR to its maximum value (DR =DRmax). During their development,

the turbulent structures also interact with the laminar mean shear flow, changing the

latter and making it able to act as an important source of polymeric energy within

parabolic parts. Hence, at the stage 3 (figure 5.13c), the polymers exhibit a significant

deformation not only in regions II and III, but also in region I (0 < z+ < 5), where the

modified mean shear flow plays a major hole for the polymer stretch mechanism. The

mean velocity is then delayed, which increases the wall shear stress until its maximum

value (τw = τw,max), decreasing the DR (DR < DRmax). However, a few instants after

at this point, the high molecular deformation in the core zone cannot be sustained

since the elliptical and the hyperbolic structures become weak, following the significant

polymer-turbulence interactions. As a consequence, the molecules situated in regions

II and III start to partially coil, releasing energy to the mean flow. As a result, u+
rx

increases and τw slightly decreases toward their final and statistical steady state (stage

4, figure 5.13d). During this final period, the polymers interact with the flow following

the coil-stretch cycle described by Pereira et al. [71].



Chapter6
Active and hibernating turbulence in

drag reducing plane Couette flows

We analyse the active and hibernating turbulence in drag reducing plane Couette

flows using direct numerical simulations of viscoelastic FENE-P fluids. The polymer-

turbulence interactions are studied from an energetic standpoint for a range of Weis-

senberg number, fixing the Reynolds number, the viscosity ratio and the maximum

polymer molecule extensibility. The qualitative picture which emerges from this investi-

gation is a cyclic mechanism of energy exchange between the polymers and turbulence

that drives the flow through an oscillatory behaviour.

6.1 Introduction

The reduction of the energy dissipation in turbulent flows by polymers has been widely

analysed over the years since the observations reported by Toms [93]. Despite the dis-

crepancies between the most prominent theories concerning the nature of the polymer

induced drag reduction (DR; [52, 84]), it is well known that the phenomenon is bounded

by two major laws: the Prandtl–Kármán law (when DR is null) and the so-called maxi-

mum drag reduction regime (MDR) or Virk’s asymptote (when DR is maximum; [97]).

The existence of the MDR’s limit represents one of the most important issues in the

DR context since changing the polymer concentration, the molecular weight or even

chemical characteristics of the additives produces no effect on this maximum drag

reduction level.

Recently, an important contribution to understating the MDR’s limit was given by

Xi and Graham [105, 106], who defined the MDR as a turbulent flow that fluctuates

between two distinct regimes: active and hibernating. The former is related to the

basic dynamical elements of Newtonian near-wall turbulence, exhibiting a higher drag.

In contrast, during the latter regime, the turbulent structures almost vanish, which

141
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reduces the drag. Performing direct numerical simulation (DNS) of turbulent plane

Poiseuille flows of viscoelastic finitely extensible nonlinear elastic, with the Peterlin

approximation (FENE-P fluids), Xi and Graham [105, 106] pointed out that the flow

oscillations between active and hibernating regimes, which exist in the Newtonian

turbulence, are accentuated by the presence of polymers.

In attempt to better understand the polymer-flow interactions in the MDR scenario,

we investigate in the present work the active and hibernating turbulence regimes in

drag reducing plane Couette flows. The polymer effect on these two turbulent regimes

are explored taking into account a range of Weissenberg numbers, which provides drag

reduction levels from 11% up to 54%. Our DNS are performed keeping the Reynolds

number (based on the plate velocities), the viscosity ratio and the maximum polymer

molecule extensibility fixed. The results which emerge from energy budget and spectral

analyses bring out new details concerning the effects of the polymers on the oscillatory

behaviour of turbulent viscoelastic flows through the active and hibernating regimes.

The organization of the work is as follows. The description of the physical formu-

lation and numerical methodology are presented in Section 6.2. Our main results are

discussed in Section 6.3, where energy budget and spectral analyses are conducted.

Finally, conclusions are drawn in the closing section.

6.2 Physical formulation and numerical methodology

We follow here the same numerical methodology used in Pereira et al. [72] and all

details of the scheme employed are given by Thais et al. [89]. As in Pereira et al. [72],

we analyse here the interaction of the polymer molecules with the turbulence from the

very beginning (when polymers are totally coiled) until the steady state regime. The

initial condition for the conformation tensor is the identity tensor, i.e. (C(t = 0) = I ).

In addition, for each viscoelastic case, both the velocity and the pressure fields are

initially started from the same Newtonian fully developed turbulent flow. As a result

of this methodology, the DR exhibits a marked transient behaviour before achieving

its asymptotic value, from a statistical point o view. We define the percentage of DR in

time as

DR(t) =
(
1− < τw(t) >

< τw(t = 0) >

)
× 100 , (6.1)

where < τw(t) > is the area-averaged wall shear stress at a given instant t and < τw(t =

0) > is the area-averaged wall shear stress at the very beginning of the simulation, when

the polymers are in an isotropic configuration (coiled from an experimental point of

view).

For the present study, we simulate the viscoelastic cases fixing the Reynolds number

based on the plate velocities, Reh = hUh/νtot, at 4000, β0 at 0.9 and L at 100. Five
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cases are studied by setting the following Weissenberg numbers based on the plate

velocities (Wih = λUh/h): 2, 4.3, 10, 20 and 30. The respective asymptotic drag reduction

values, DRasy , are: 11%, 33%, 50%, 53 % and 54%. Lastly, both the size of the domain

(Lx×Ly×Lz = 12π×4π×2) and the number of mesh points (Nx×Ny×Nz = 768×512×257)

are kept fixed for all cases, which leads to a grid resolution of 7.2 6 ∆x+ 6 9.5, 3.6 6

∆y+ 6 4.8, and 0.2 6 ∆z+ 6 3.4.

6.3 Results and Discussions

Our primary focus here is on the oscillatory behaviour of the turbulent viscoelastic

flow through the active and hibernating regimes, which is achieved by following the

numerical methodology detailed in Pereira et al. [72]. Hence, at the very first instant

of the simulation, the molecules are totally coiled, tr (C) /L2 ≈ 0, the DR level is null,

and the turbulent velocity field still exhibits a Newtonian-like nature. The flow is

then characterized by the presence of a considerable number of turbulent structures,

some of which are illustrated in figures 6.1(a) and 6.2(a) by using the Q-criterion of

flow classification1 [38] for the most elastic case (Reh = 4000, Wih = 30 and L = 100).

In figures 6.1 and 6.2, the vortical and extensional structures respectively described

by Q = 0.05 and Q = −0.05 are colored from blue (tr(C)/L2 = 0) to red (tr(C)/L2 = 1),

what indicates a distribution of the relative polymeric deformation over the domain.

Since the development along time of the DR was already discussed in our previous

work [72], we present here only a brief overview of the beginning of the phenomenon

(shown in figures 6.1a-e and 6.2a-e) and we concentrate our attention on the active and

hibernating regimes illustrated in figures 6.1(f-j) and 6.2(f-j).

At the very beginning, tUh/h = 0.3 (figures 6.1a and 6.2a), the polymers are totally

coiled and the turbulent structures appear with a Newtonian morphology [1]. The

drag reduction at this instant is still negligible (DR ≈ 0%). The departure from this

state develops toward highly negative values as the simulation evolves over time,

moving from DR ≈ −6% at tUh/h = 3 (figures 6.1b and 6.2b) to its minimum value

of DR ≈ −112% at tUh/h = 9.6 (figures 6.1c and 6.2c). After that, the DR starts an

increasing trajectory, reaching its positive peak of DR ≈ 77% at tUh/h = 300 (figures

6.1d and 6.2d) before it decreases towards an oscillatory state of a lower mean value (an

asymptotic value from an statistical point of view). During this period, the molecules

strongly interact with the flow, stretching (especially near the wall, as displayed in

figures 6.1c and 6.2c) and partially suppressing the turbulent structures. At tUh/h ≈ 525

1The vortical (or elliptical) and extensional (or hyperbolic) structures are defined as the respective
positive and negative values of the second invariant of the velocity gradient tensor, computed for
incompressible flows by Q = 1

2

(
||W ||2 − ||S||2

)
, where ||W || and ||S|| denote the Euclidean norms of W and

S. The Euclidean norm of a generic second order tensor A is ||A|| =
√
tr

(
A ·AT

)
.
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Figure 6.1 – The three-dimensional structures represent isosurfaces of vortical (or
elliptical) regions defined as a positive value of the second invariant of velocity

gradient tensor, ∇u. The colours indicate the relative polymer stretching, tr (C) /L2.
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Figure 6.2 – The three-dimensional structures represent isosurfaces of extensional (or
hyperbolic) regions defined as a negative value of the second invariant of velocity

gradient tensor, ∇u. The colours indicate the relative polymer stretching, tr (C) /L2.
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(figures 6.1e and 6.2e), DR starts to fluctuate around its time-averaged value (DRasy),

indicating the beginning of the statistically steady state flow. A more detailed physical

description of such developing time is founded in Pereira et al. [72].

At the dimensionless time tUh/h = 640, the DR level is equal to 54%, which repre-

sents its asymptotic value, DRasy . Nevertheless, once the statistically steady state is

reached (tUh/h > 525), the turbulence starts to oscillate between periods of strong acti-

vation and hibernation. The differences between these two regimes can be observed by

comparing the turbulent structures pictured in figures 6.1(f ) and 6.2(f ) (our reference

for the active state) with the others structures displayed in sequence. During highly

active periods (figures 6.1h-i and 6.2h-i), the flow is dominated by the expected three-

dimensional turbulent structures, the drag increases and, in consequence, DR appears

smaller than DRasy . In contrast, within hibernating periods (figures 6.1g, 6.1j, 6.2g and

6.2j), the structures with Q = ±0.05 almost vanish, which is a distinct characteristic of

the MDR. As a consequence, the drag decreases and DR assumes more pronounced

values. At tUh/h = 2063, for instance, DR approaches 63 %, a value around 14% greater

than that observed at tUh/h = 1842.

It is worth noting that the molecules are more stretched in the active regime than in

the hibernating one. This can be seen more clearly in figure 6.3, where the evolution

of both the spatial average of the relative polymer stretching, < tr(C/L2) >xyz (blue

triangles), and the area-averaged wall shear stress dimensionalized by its asymptotic

value, < τw > / < τw,asy > (red diamonds), are shown as functions of tUh/h. Only the

statistically steady state is considered (500 < tUh/h < 3000). Two cases are displayed:

Reh = 4000, Wih = 20 and L = 100 (figure 6.3a); and Reh = 4000, Wih = 30 and L = 100

(figure 6.3b). The rectangular green boxes indicate the hibernating periods, which are

identified by considering the criteria proposed by Xi and Graham [105]. The authors

considered a hibernation the period of 50 seconds in which < τw > / < τw,asy > drops

below a cutoff value of 0.9, indicated by the black line in figure 6.3. Clearly, the fraction

of the total time of hibernation in our simulation increases withWih, which corroborates

the results reported by Xi and Graham [105, 106]. Furthermore, the reduction of stress

also becomes more significant as Wih increases. Lastly, it is worth mentioning that the

polymer stretching is in phase with the wall shear stress, what means that the molecules

are more stretched in the active periods.

The profile of the relative polymer extension is plotted in figure 6.4 (left column)

together with the streamwise velocity (right column). Each point in this figure is

an average in the x − y plane along z+. The channel half-width is divided into three

distinct regions: I (0 < z+ < 5), II (5 < z+ < 30), and III (z+ > 30). In order to compare

our profiles with those available in literature, the velocity of the bottom plate was

subtracted from the velocity field, resulting in a relative streamwise component, urx.

Three cases with Re = 4000 and L = 100 are shown: Wih = 30 (figures 6.4a and b);
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Figure 6.3 – Evolution of the spatial average of the relative polymer stretching as a
function of the dimensionless time, tUh/h (blue triangles). Area-averaged wall shear
stress made dimensionless by its asymptotic value, < τw > / < τw,asy >, as a function of

the dimensionless time (red diamonds).

Wih = 10 and (figures 6.4c and d); Wih = 4.3 (figures 6.4e and f ). For each case,

three different instants are considered: an instant for a moderately active regime

characterized by < τw > / < τw,asy >= 1 and, thus, DR =DRasy (grey circles); an instant

when the turbulence is highly active, corresponding to peak of < τw > / < τw,asy >

(blue triangles); and, finally, an instant when an intense hibernation occurs, relative to

valley of < τw > / < τw,asy > (red diamonds). It is clearly observed that the differences

between the active (Act) and the (Hib) hibernating regimes become more pronounced

as Wih increases. In other words, the intensity of the hibernation is accentuated by the

presence of polymers. For Wih = 4.3, the curves practically collapse in a single one.

The differences slightly increase for Wih = 10 and becomes quite clear for Wih = 30.

At this level of elasticity, the hibernating velocity profile (red diamonds) approaches

the Virk’s asymptote (red dash-dotted line). Moreover, the urx profile corresponding

to the most active case (blue diamond) is markedly below the curve that represents

the time-averaged asymptotic profile (grey circles), getting close to the log-law profile

represented by the grey dotted line. Concerning the most elastic case, it is also important

to remark that the polymers appear more extended in the active periods. In contrast, in

the hibernating periods, the molecules are in their least stretched configuration. Such

an observation is rigorously the same phenomenon reported by Xi and Graham [105,

106] for turbulent plane Poiseuille flows.

In an attempt to further understand the role played by the active and hibernating

turbulence regimes in drag reducing flows, we conduct an analysis from the energy
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Figure 6.4 – Left column: average values in the x − y plane of the relative polymer
stretching, 〈tr (C) /L2〉, as a function of the dimensionless wall distance. Right column:
average values in the x − y plane of the streamwise relative velocity, 〈u+

rx〉, as a function
of the dimensionless wall distance. Three FENE-P turbulent flows are analysed: Reh =
4000, Wih = 30 and L = 100 (a and b); Reh = 4000, Wih = 10 and L = 100 (c and d); Reh
= 3000, Wih = 4.3 and L = 100 (e and f ). For each viscoelastic flow, 〈tr (C) /L2〉 and 〈u+

rx〉
are analysed at three dimensionless instants, tUh/h.
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budget and the spectral perspectives, which are displayed in figures 6.5, 6.6 and 6.7.

Figure 6.5 shows the average values in the x − y plane of the instantaneous kinetic

energy terms obtained from the work equation [72]1
2

∂
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, (6.2)

where the instantaneous polymer work term, E+
x , indicates the amount of energy stored

(E+
x < 0) or released (E+

x > 0) by the polymers from the velocity field in the streamwise

direction, u+
x . The complementary work terms denote the advection, A+

x , the pressure

redistribution, P +
x , and the viscous stress, V +

x . The sum A+
x +P +

x +V +
x is referred to as the

Newtonian work, N+
x , and T +

x is the local time derivative term. The x − y plane averages

of these terms are plotted as a function of z+. The profiles are evaluated at tUh/h = 1842

(a peak of the active regime; figure 6.5a) and tUh/h = 2063 (a valley of hibernation;

figure 6.5b) for the most elastic case. In fact, a careful analysis on the energy exchange

for the drag reducing flow between parallel plates was reported in Pereira et al. [72].

In the present work it is worth noting the main difference between each term of the

kinetic energy in the active and hibernating states, displayed in figures 6.5(a) and (b).

The main difference is concerned with the polymeric (plus blue symbol) and the viscous

(green squares) works within the viscous sublayer (region I). The energy stored by the

polymers near the wall is clearly less pronounced during the hibernating regime. This

term is balanced by the viscous work, which also decreases in the hibernation.

There are striking differences between the active and hibernating states that appear

in figure 6.6, where the x − y averages of fluctuating work terms are displayed across

the channel half-width for the most elastic case. These energy terms are that exclusively

related to the fluctuating fields which appear in the right-hand side of the streamwise

work fluctuation equation, which in turn is obtained by decomposing the variables of the

streamwise momentum equation into mean flow (Ū+
x , p̄+ and Ξ̄+

xj) and fluctuations (u′x
+,

p′+ and Ξ′xj
+), and then multiplying the resulting equation by the streamwise velocity

fluctuation (u′x
+). The work terms exclusively linked with the fluctuating fields are then:

E′x
+ =

(
u′x

+ ∂Ξ
′
xj

+

∂x+
j

)
, A′x

+ =
[
−u′x

+ ∂
(
u′x

+u′j
+
)

∂x+
j

]
, P ′x

+ =
(
−u′x

+ ∂p′+

∂x+

)
and V ′x

+ =
[
(β0)u′x

+ ∂2u′x
+

∂x+
j

2

]
.

The instantaneous polymer work term, E′x
+, indicates the amount of energy stored

(E′x
+ < 0) or released (E′x

+ > 0) by the polymers from the fluctuating velocity field

in the streamwise direction, u′x
+ (the fluctuations are denoted by the superscript ‘′’).

The supplementary fluctuating work terms denote the advection, A′x
+, the pressure

redistribution, P ′x
+, and the viscous stress, V ′x

+. The sum A′x
+ + P ′x

+ + V ′x
+ is referred

to as the Newtonian fluctuating work, N ′x
+. Following the profiles shown in figure 6.6,
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Figure 6.5 – Average values in the x − y plane of the streamwise total kinetic energy
budget against the dimensionless wall distance. Two dimensionless instants, tUh/h, are

analysed.

it is clearly seen that, when the flow regime changes from the active (figure 6.6a) to

the hibernating one (figure 6.6b), the magnitude of both the advection (|A′x
+|) and the

pressure (|P ′x
+|) work fluctuations decrease far from the wall (region III). However, |A′x

+|
increases within the region II. The same tendency is observed for |V ′x

+|. It is worth

noting that, in the active regime, the molecules located in the regions II and III store

energy from the fluctuating velocity field (E′x
+ < 0). However, this scenario considerably

changes during the hibernation since significant positive values of E′x
+ are perceived

within the region II, which indicates a release of polymeric energy in the fluctuating

velocity field. Hence, we can conclude that, especially during the hibernating state,

the polymers act as an important source of turbulent kinetic energy in region II. In

other words, the turbulence tends to be re-activated by the polymers, which, lastly,

increases |N ′x
+|, as indicated by the orange inverted triangles in figure 6.6(b). The

polymer-turbulence exchanges of energy in the hibernating regime may provide a

reasonable explanation for the MDR’s limit. Xi and Graham [105] argue that the MDR

regime is a state in which hibernating turbulence is the norm, with active turbulence

arising intermittently.

Finally, figure 6.7 shows the longitudinal 1D spectra of the turbulent kinetic energy,

E11/(h U
2
h ), at z+ = 15 for the most elastic case. Around this point, |N ′x

+| is maximum

for both the active and hibernating regimes (see figure 6.6). For the former regime,

illustrated by the grey solid line and the blue dashed line, a range of wavenumbers



6.4. Concluding Remarks 151

Figure 6.6 – Average values in the x − y plane of the streamwise fluctuating kinetic
energy budget against the dimensionless wall distance. Two dimensionless instants,

tUh/h, are analysed.

between 3 ≤ kx ≤ 9 exhibits the typical power law decay related to drag reducing flows,

k−14/3
x (black solid line) [88]. However, such a decay is modified in the hibernating

period, moving from k−14/3
x towards k−8

x (black dotted line). Consequently, the large

wavenumber structures (kx > 15) are strongly suppressed. In contrast, within very small

wavenumbers, no significant changes in E11/(h U
2
h ) are perceived by comparing the

three curves plotted in figure 6.7. Hence, we can conclude that the oscillatory behaviour

of the turbulence between the active and hibernating regimes affects basically the

small-scale structures (high frequencies), which in turn tend to be suppressed during

the hibernation while the large structures (low frequency) are preserved. Lastly, it is

important to emphasize that the active and hibernating profiles of E11/(h U
2
h ) collapse

into a single one at Wih ≤ 10 (not shown, for brevity).

6.4 Concluding Remarks

Direct numerical simulations of FENE-P fluids were used to analyse the active and

hibernating turbulence regimes in drag reducing plane Couette flows. Five viscoelastic

flows were examined, keeping the Reynolds number, Reh, the viscosity ratio, β0, and

the maximum polymer molecule extensibility, L, fixed. A large range of Weissenberg

number based on the plate velocities was explored (2 ≤ Wih ≤ 30), which provided

asymptotic drag reduction levels, DRasy , from 11% up to 54%.
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Figure 6.7 – Power spectral densities of the streamwise velocity component at the
wall-normal position, z+ = 15. Three dimensionless instants, tUh/h, are analysed.

The qualitative picture that emerges from our energy transfer and spectral analyses

is a cycle which begins when the polymer-flow interactions in the active turbulence

regime favour the extension of the molecules. In their stretching process, polymers

reduce the mean fluid velocity and partially suppress the turbulent structures (the

small-scale ones), driving the flow towards a very weak turbulent hibernating regime

in which the polymers tend to relax. Hence, their level of stretching decreases while a

significant amount of polymeric energy is released into the flow, increasing its mean

velocity towards the MDR asymptote. Additionally, a significant part of the polymeric

energy is directly injected into the fluctuating velocity field, favouring the re-activation

of turbulence. Finally, the active turbulence stretches the molecules again, reinitiating

the cycle.



Chapter7
Drag reducing flow considering the

effects of polymer degradation

We analyse the effects of polymer degradation on a drag reducing plane Couette flow

using direct numerical simulations of a viscoelastic FENE-P fluid. A new molecular

scission model based on relative polymer extension is developed. It is shown that,

as the polymer degradation evolves over time, both the drag reduction level and the

streamwise velocity decrease while the number of turbulent structures enhances. The

polymer-flow interactions are significantly attenuated by the molecular scissions, espe-

cially in the viscous sublayer, which is evidenced by an energy budget analysis.

7.1 Introduction

Polymer-induced drag reducing flow has been investigated for over 60 years. One reason

for this is that the drag reducers in turbulent flow systems have been successfully

applied and represent a significant potential benefit to many industrial processes.

However, the efficiency of the additives is not constant. Turbulence is also responsible

for breaking the polymer molecules, decreasing their ability to reduce drag [65].

Experimentally, turbulent flow degradation of polymers in different geometries have

been studied by a number of researchers [58, 60, 65, 64, 82]. For instance, Pereira et

al. [65] analysed various parameters for polymer degradation in turbulent flows in a

cylindrical double gap geometry, such as the Reynolds number, polymer concentration,

molecular weight, and temperature. They concluded that increasing concentration and

molecular weight delay the observed effects of degradation whereas both the Reynolds

numbers and the temperature produce an opposite effect. These results are rather in

line with that recently obtained by Soares et al. [82] who performed turbulent pipe flow

experiments.

Numerically, as far as we know, the polymer degradation process in turbulent drag
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reducing flows was never explored in the literature, a scarcity certainly related to the

constraints involving the strong numerical instabilities associated with turbulent vis-

coelatic flows. Nevertheless, the development of numerical models capable to compute

the molecular scission in such scenario could open new tracks for understanding the

polymer-flow interactions in turbulent flows and, consequently, the drag reduction

phenomenon.

In attempt to better understand the polymer degradation process in drag reducing

flows, we conduct in the present work direct numerical simulations (DNS) of a turbulent

plane Couette flow of a FENE-P fluid taking into account the molecular scissions. To this

end, a molecular scission model is developed based on relative polymer extension. The

effects of the polymer degradation on the flow over time are evaluated from statistical

and energy budget perspectives.

The organization of this work is as follows. The description of the molecular scission

model is presented in Section 8.2. Our main results are discussed in Section 7.3, where

statistical analyses concerning the polymer degradation and its impact on the flow are

conducted. Finally, conclusions are presented in the closing section.

7.2 Numerical methodology (molecular scission model)

A molecular scission model based on the relative polymer extension is developed in

order to compute the effects of polymer degradation in turbulent drag reducing flows.

More specifically, we consider a temporal and local field of maximum polymer extension

length, L(x,y,z, t) instead of the unique and constant value of L typically used in the

classical FENE-P model. At the beginning of the simulation, L(x,y,z, t) is uniform

and equal to an initial value, Li = 30. As the simulation progresses, a degradation

criterion based on the trace of the conformation tensor divided by L2
i , tr(C(x,y,z, t)/L2

i ),

is employed to modify L(x,y,z, t) within the channel. At particular time-steps during the

simulation, if tr(C(x,y,z, t)/L2
i ) > 0.5, then L(x,y,z, t) is reduced by 2%. Since L(x,y,z, t)

is used to calculate a local Peterlin function at each time-step (which is related to

the polymer forces), a decreasing L(x,y,z, t) reduces the polymer contribution on the

momentum equation, increasing the drag. Aiming to minimize numerical instabilities,

the degradation criterion is applied every 10 seconds (physical time). In addition,

we propose an evolution equation for L(x,y,z, t) in order to transport the degraded

molecules within the flow,

∂L
∂t

+
(
ux
∂L
∂x

+uy
∂L
∂y

+uz
∂L
∂z

)
= kL

(
∂2L

∂x2 +
∂2L

∂y2 +
∂2L

∂z2

)
, (7.1)

in which L represents the local and instantaneous maximum polymer extension

length and u+
x , u+

y , and u+
z dictate the respectively local velocity components in the
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streamwise (x+), spanwise (y+) and wall-normal (z+) direction. The explicit dissipative

elliptic term in equation 7.1 is an artifice used to remove non-physical high wave-

number instabilities typically induced by the chaotic nature of viscoelastic turbulent

flows, when computed with a high-order spectral code. Hence, kL represents a constant

of artificial diffusivity. Here, this constant is considerably small, kL = 10−6, and, as a

result, the transport of L is dominated by advection. Lastly, the Dirichlet boundary

condition is used to L(x,y,z, t) at the walls (L(x,y,z, t) = Li).

For the present study, we simulate one viscoelastic case fixing the Reynolds number,

Reh = hUh/νtot at 1000, the Weissenberg number, Wih = λUh/h, at 10, and the viscosity

ratio, β0, at 1000, 10 and 0.9. At the beginning of the simulation, the field of L is

uniform and equal to 30. However, L decreases as the polymer degradation becomes

important, which increases the drag over time. We define the percentage of DR in time

as

DR(t) =
(
1− < τw(t) >

< τw,N (t) >

)
× 100 , (7.2)

where < τw(t) > and < τw,N (t) > denote the area-averaged wall shear stress for the

polymer solution and the Newtonian solvent, respectively, at a given instant t. Lastly,

both the size of the domain (Lx ×Ly ×Lz = 12π × 4π × 2) and the number of mesh points

(Nx×Ny×Nz = 384×256×129) are kept fixed for all cases, which leads to a grid resolution

of ∆x+ ≈ 9.2, ∆y+ ≈ 4.1, and 0.2 6 ∆z+ 6 1.6 at the beginning of the simulation and

∆x+ ≈ 9.7, ∆y+ ≈ 4.4, and 0.21 6 ∆z+ 6 1.7 when L reaches its asymptotic value.

7.3 Results and Discussions

The goal of our work has been to evaluate the effects of the polymer degradation on

the drag reduction phenomenon by using the molecular scission model presented

previously. As the simulation evolves in time, the number of degraded molecules

increases and, consequently, the role played by the extra-tensor in the moment equations

becomes less important. As a result, DR falls over time, as indicated by the grey circles

in figure 7.1. At the beginning of the process, the drag reduction is about 28%. However,

every 10 seconds, new molecular scissions take place, reducing DR towards its final

level, DRf inal ≈ 18%, which is reached at tUh/h ≈ 1800. Following a similar tendency,

the spatial average of the maximum polymer extension length, < L/Li >xyz, moves from

its initial value (< L/Li >xyz= 1) to its asymptotic one (< L/Li >xyz≈ 0.7), as illustrated by

the blue triangles.

The increase in the drag over time is closely related to the growing number of

structures illustrated in figure 7.2 by using the Q-criterion [38]. For instance, at the

beginning of the simulation (tUh/h = 0.3; figure 7.2a), when L = 1 for the whole domain,

DR ≈ 28% and a moderate number of vortical (blue) and extensional (red) structures
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Figure 7.1 – Drag reduction, DR (grey circles) as a function of the dimensionless time,
tUh/h, together with evolution of the spatial average of the maximum polymer

extension length made dimensionless by its initial value, < L/Li >xyz (blue triangles).

with Q equal to 0.1 and −0.1, respectively, are observed across the channel. Nevertheless,

these structures almost fill the geometry at tUh/h = 1800, when 0.7 < L/Li < 1 and

DR ≈ 18%.

In figure 7.3, the contours of L/Li in the centre x − y plane (high column) are

compared with that of the norm of the velocity vector made dimensionless by the

plate velocity, ||u||/Uh (left column), in the same plane. Two dimensionless instants are

considered: 650 (a-b) and 1800 (c-d). At tUh/h = 650 (figure 7.3b), values of L/Li close

to the unity (red) are more frequent. However, at tUh/h = 1800 (figure 7.3d), L/Li < 0.85

for the entire centre x − y plane. Comparing figures 7.3(a) and (b), it is interesting to

note that smaller values of L/Li (blue contours) appear in the regions where ||u||/Uh is

pronounced (yellow contours). The same correlation is observed by comparing figures

7.3(c), which suggests that the polymer degradation is accentuated within the streaks.

A further comparison between the velocity contours in figures 7.3(a) and (c) reveals that

the flow becomes more disturbed with increasing degradation.

More details concerning the effects of the molecular scissions on the flow are shown

in figure 7.4 in which the profile of the streamwise velocity (figure 7.4b) is plotted

together with the relative polymer extension (figure 7.4a). Each point in this figure

is an average in the x − y plane along z+. The channel half-width is divided into

three distinct regions: I (0 < z+ < 5), II (5 < z+ < 30), and III (z+ > 30). Three different

instants, tUh/h, are considered: 0.3, 650 and 1800. In order to compare our profiles with
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Figure 7.2 – The three-dimensional structures represent isosurfaces of vortical (or
elliptical) and extensional (or hyperbolic) regions respectively defined as a positive

(blue) and a negative (red) value of the second invariant of velocity gradient tensor, ∇u.
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Figure 7.3 – Contours of L/Li in the centre x − y plane (high column) compared with
that of the norm of the velocity vector made dimensionless by the plate velocity, ||u||/Uh
(left column), in the same plane. Two dimensionless instants are considered: 650 (a-b)

and 1800 (c-d).

those available in literature, the velocity of the bottom plate was subtracted from the

velocity field, resulting in a relative streamwise component, urx. It is clearly observed

that the differences between the curves become more pronounced as the simulation

evolves in time and, consequently, the number of degraded molecules increases. Since

no molecular scissions were computed until tUh/h = 10, at tUh/h = 0.3 the velocity

profile exhibits its highest values (grey circles), figuring in between the maximum drag

reduction asymptote (MDR; [97]) indicated by the red dash-dotted line and the log-

law represented by the grey dotted line. Nevertheless, instants later, the degradation

starts to play an important role and, as a result, the velocity profile moves towards

the log-law, a tendency indicated by the black arrow. Lastly, concerning the relative

polymer deformation displayed in figure 7.4(a), it is noted that < tr(C/L2) > is an

increasing function of the degradation for all z+. These results are rather in line with

those concerning the effects of the reduction of L on the relative polymer deformation

available in the literature (see, for instance, [71]). It is worth noting that more significant

differences between the polymer deformation profiles at tUh/h = 0.3 and tUh/h = 1800

occur within the region I, where the degradation is intense due to the high polymer

stretching level in the vicinities of the wall.

The molecular degradation also affects the polymer-flow exchanges of energy, as

pointed out in figure 7.5. This figure shows the average values in the x − y plane of the
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Figure 7.4 – (a): average values in the x − y plane of the relative polymer stretching,
〈tr (C) /L2〉, as a function of the dimensionless wall distance. (b): average values in the
x − y plane of the streamwise relative velocity, 〈u+

rx〉, as a function of the dimensionless
wall distance. The quantities are analysed at three distinct dimensionless instants,

tUh/h: 0.3, 650 and 1800.

energy terms obtained from the streamwise work equation,1
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x

, (7.3)

where the instantaneous polymer work term, E+
x , indicates the amount of energy stored

(E+
x < 0) or released (E+

x > 0) by the polymers from the velocity field in the streamwise

direction, u+
x . The complementary streamwise work terms denote the advection, A+

x , the

pressure redistribution, P +
x , and the viscous stress, V +

x . The sum A+
x +P +

x +V +
x is referred

to as the streamwise Newtonian work, N+
x , and T +

x is the local time derivative term. The

energy terms are taken into account by multiplying the momentum equation by the

velocity and their x − y plane averages are plotted as a function of z+. The profiles are

evaluated at two dimensionless instants, tUh/h: 0.3 (figure 7.5a) and 1800 (figure 7.5b).

Fundamentally, as reported by [72], the energy is balanced by the polymeric work, the

viscous dissipation, and the advection terms. Comparing figures 7.5(a) and (b), it is

noted that the polymer storage of energy (E+
x < 0) is considerably attenuated by the

molecules scission, especially in the region I, as indicated by the blue plus symbols.

In other word, the polymer-flow exchanges of energy are weakened by the molecular
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Figure 7.5 – Average values in the x − y plane of the streamwise total kinetic energy
budget against the dimensionless wall distance. Two dimensionless instants, tUh/h, are

analysed: 650 and 1800.

scissions. In addition, although the peak magnitude of V +
x exhibits a highest value at

tUh/h = 1800, the viscous term also decreases in the near wall region with increasing

degradation. In contrast, the magnitude of both the advection and the pressure terms

appear as increasing functions of the molecular scissions, which is strongly related to

the increasing number of turbulent structures shown in figure 7.2. As a result, a more

disturbed flow emerges, which, finally, slightly increases |T +
x |.

7.4 Concluding Remarks

Direct numerical simulation of a FENE-P fluid was used to analyse a turbulent viscoelas-

tic flow in a plane Couette geometry fixing the Reynolds number, Reh, the Weissenberg

number, Wih, and the viscosity ratio, β0, at 1000, 10 and 0.9. A new model based on

the polymer extension was developed in order to compute the effects of the molecular

scissions on the drag reduction phenomenon. A temporal-local field of maximum

polymer extension length, L, is considered instead of the constant value typically used

in the classical FENE-P model.

At the beginning of the simulation, the field of L is uniform and equal to 30 while

the drag reduction level (DR) is about 28%. However, L drops to 21 as the polymer

degradation becomes important, which reduces the contribution of the extra-tensor to
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the moment equations. Consequently, DR decreases over time to about 18%, the drag

reduction final level, while the number of turbulent structures grows and the mean

velocity decreases towards the log-law profile. An energy budget analysis revealed that

the polymer-flow interactions are significantly attenuated by the molecular scissions,

especially in the viscous sublayer.
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Chapter8
General conclusions

8.1 Contribution to the understanding of DR

In this thesis, we have investigated in depth the transient aspects of the drag reducing

flows related to the states A, B and C shown in figure 1.1. To this end, we conducted

direct numerical simulations of turbulent plane Poiseulle and Couette flows of vis-

coelastic FENE-P fluids taking into account different values of Reynolds number, Reh,

Weissenberg number, Wih, and maximum polymer molecule extensibility, L. Our main

contributions to the understanding of the drag reduction mechanism contained in the

different chapters of this dissertation are gathered and summarized below:

(a) Investigation of the drag reduction phenomenon from its very beginning (Chapters 4 and
5);

We have analysed the development of the drag reduction phenomenon from its

very beginning (when the drag reduction, DR, is null), which is represented by

the stage A and referred to as the developing time. It was showed that, during this

period, the shape of the DR curve is highly affected by the initial flow condition

(velocity field), the initial polymer configuration (tensor conformation field) and

the elasticity (Wih and L). In addition, as the latter increases, the developing time

becomes more pronounced.

(b) Development of a methodology to analyse the polymer-turbulence interactions (Chapters
2 and 5);

The polymer-turbulence interactions have been analysed by discriminating the

mechanical response of this system accordingly to the different subdomains defined

by the Q-criterion of flow classification [38]: elliptical (or vortical); parabolic;

hyperbolic (or extensional). The exchanges of energy between these subdomains

and the polymers were highlighted.
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(c) Detailed description of the mechanism of polymer coil–stretch (Chapters 2 and 3);

Using statistics and tensor analysis, we were able to provided a detailed description

of the mechanism of polymer coil–stretch, which concerns the stage B in figure 1.1.

In short, the mean flow acts as the main source of polymeric energy near the wall.

In this region, polymers also interacts with the elliptical and hyperbolic structures,

releasing their energy. Nevertheless, these trends completely change as the wall

distance increases. The molecules can be pulled by the turbulent structures towards

the centre of the channel, applying a counter-torque around the vortices and a

counter-stretch in the extensional subdomains, storing their energy. Lastly, in the

core zone, the molecules also release polymeric energy to the mean flow, increasing

the streamwise mean velocity.

(d) Refinement of the understanding of active and hibernating turbulence in drag reducing
flows (Chapter 6);

When the level of elasticity becomes pronounced, even the stage B exhibits a tran-

sient character since the flow starts to strongly oscillate between two different

turbulent regimes: active and hibernating [105]. This oscillatory behaviour is

closely related to the maximum drag reduction (MDR) asymptote and the effects of

the polymers on it were investigated from energy budget and spectral perspectives.

Fundamentally, it was shown that, when the elasticity is accentuated, the polymer

damping of turbulent structures drives the flow towards a very weakly turbulent hi-

bernating regime. During hibernation, polymers tend to relax towards equilibrium,

releasing a significant amount of polymeric energy into the flow. Consequently, the

mean velocity increases towards the MDR asymptote while the velocity fluctuations

are intensified, favouring the re-activation of the turbulence.

(e) Development of a new model to compute polymer degradation (Chapter 7);

A new and simple polymer scission model based on the molecule strain level was

developed in order to numerically reproduce the stage C in Figure 1.1.

(f) Evaluation of the effects of polymer degradation on the drag reduction phenomenon
(Chapter 7);

Using the new model referred above, we were able to qualitatively evaluate the

polymer degradation effects on the drag reduction phenomenon. As expected, it

was observed that the polymer-flow exchanges of energy are significantly attenuated

by the molecular scissions.
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8.2 Future prospects

The present dissertation has led to a better understanding of several important issues

related to the polymer induced drag reduction. In this context, new paths have been

opened for the investigations of the polymer-flow interactions. For instance, the ex-

changes of energy between the polymers and the elliptical, parabolic and hyperbolic

subdomains were studied here in the light of the Q-criterion, which in turn can vary

with respect to a reference frame (the Q-criterion is non-objective). In order to avoid

such variations, a similar methodology can be employed by considering objective flow

classification criteria [92, 91, 54], which, lastly, could reveals more details concerning

the drag reduction mechanism.

It was also shown in this work that the polymers considerably accentuate the flow

oscillations between the active and the hibernating regimes. Consequently, when the

elasticity becomes pronounced, estimating uncertainties with respect to the different

entities obtained from the statistics of DNS becomes a difficult task. In such a scenario,

the development of new methodologies to estimate the statistical errors associated with

the direct numerical simulations becomes highly desirable.

Finally, concerning the simulations of the polymed degradation, a new model was

proposed. This model represents a initial efforts to better understand the process of

molecular scission in drag reducing flows and the results that emerges from it are still

preliminary. However, they open new tracks for the development of more realistic

models. In this connection, a promising methodology which has been explored by our

research group is the addition of degradation parameters on the basis of the FENE

model, which shall be natural incorporated into the FENE-P model, after proceeding to

the Peterlin approximation.
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Transient aspects of the polymer induced drag reduction phenomenon

Abstract

The addition of a small amount of polymers of high molecular weight can lead to a pressure
drop decrease in turbulent flows. Over the years, numerous experimental and numerical studies
have been conducted in attempts to make practical use of polymer-induced drag reduction,
including long-distance transport of liquids, oil well operations, firefighting, transport of
suspensions and slurries, and biomedical applications. The polymers successively stretch and
coil by interacting with the turbulent structures, which changes the turbulent flow and further
imposes a transient behaviour on the drag reduction (DR) as well as the subsequent mechanical
polymer degradation. As a result, DR undergoes at least three stages over time: A, B, and C. In
stage A, referred to as the developing time, DR departs from zero and assumes negative values
due to a significant polymer stretching at the beginning of the process, which requires energy
from the flow. After the minimum DR is reached, the polymers start their coil-stretch cycle
and, in consequence, DR increases in response to the development of turbulent structures,
achieving a maximum value, which makes for the beginning of stage B. However, during their
coil-stretch cycle, polymers can be mechanically degraded as a result of an intense polymer
stretching, which reduces their ability to act as energy exchange agents. Hence, when polymer
degradation becomes pronounced, DR decreases until achieving a final value which indicates
that the degradation has stopped and the molecular weight distribution has reached a steady
state. The polymer degradation process characterizes the stage C. In the present work, numerical
analyses are conducted aiming to investigate the stages A, B and C. The transient aspects of the
polymer induced drag reduction phenomenon are explored with the aid of direct numerical
simulations of turbulent plane Poiseulle and Couette flows of viscoelastic FENE-P fluids taking
into account a wide range of Reynolds number, Weissenberg number and maximum polymer
molecule extensibility. Stages A and B are carefully studied from tensor, statistical, energy
budget and spectral perspectives. Additionally, a new and simple polymer scission model based
on the molecule strain level is developed in order to numerically reproduce the stage C. It is
found that the significant transient behaviour of DR within stage A is related to important
exchanges of energy between the polymers, the mean flow and the turbulent structures, which
is accentuated as the elasticity increases. In stage B, the dynamics of the flow is described by an
autonomous regeneration cycle. The effects of polymers on such a cycle are attenuated by the
molecules degradation during the stage C.

Keywords: direct numerical simulation, turbulent flow, fene-p model, drag reduction, transi-
tory aspects, polymer degradation.

Laboratoire de Mécanique de Lille (LML)
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Des aspects transitoires du phénomène de réduction de la traînée induite par des poly-
mères

Résumé

La dilution en très faible concentration de chaînes polymériques longues dans un fluide new-
tonien peut réduire considérablement la traînée turbulente, phénomène nommé ici DR (drag
reduction). Au cours des dernières années, de nombreuses études expérimentales et numériques
ont été menées motivées par les applications pratiques de la DR, à savoir le transport à grandes
distances des liquides par pipelines, le transport des boues et des suspensions et des applica-
tions médicales. Les polymères s’étirent et s’enroulent successivement, en interaction avec les
structures turbulentes, ce qui modifie l’écoulement turbulent, imposant à DR un comportement
transitoire et provoquant la dégradation polymérique. Il en résulte que la DR traverse au moins
trois stades. Lors du premier, connu sous le nom de temps de développement, la DR démarre à
zéro et descend à des valeurs négatives en raison d’un étirement considérable du polymère au
début du processus, ce qui exige de l’énergie de l’écoulement. Une fois atteint le niveau minimal
de réduction de la traînée, les polymères commencent leur cycle d’étirement-enroulement et,
par conséquent, la DR augmente en réponse au développement de structures turbulentes, pour
en arriver à une valeur maximale, menant au début du deuxième stade. Cependant, lors de
leur cycle d’étirement-enroulement, les polymères peuvent subir une dégradation mécanique
à la suite d’un étirement polymérique intense, ce qui réduit leurs capacités de servir d’agents
d’échange d’énergie. Lorsque la dégradation polymérique devient assez prononcée, la DR re-
descend pour atteindre une valeur finale qui indique que la dégradation s’est arrêtée et que la
distribution de la masse moléculaire s’est stabilisée. Le processus de dégradation polymérique
caractérise le troisième stade. Dans le présent travail, des analyses numériques ont été menées
dans le but d’examiner ces trois stades. Les aspects transitoires du phénomène de réduction de
la traînée induite par des polymères sont explorés à l’aide de simulations numériques directes
d’écoulements turbulents viscoélastiques FENE-P en géométries du type Poiseuille plan et
Couette plan, sur un large éventail de nombres de Reynolds, de nombres de Weissenberg et
d’extension maximale de la chaîne polymérique. Les deux premiers stades sont soigneusement
étudiés à partir des analyses tensorielle, statistique, énergétique et spectrale. De surcroît, un
nouveau modèle de dégradation polymérique basé sur le niveau d’étirement des molécules est
proposé afin de reproduire numériquement le stade final. Il a été constaté que le comportement
transitoire significatif de la DR lors du premier stade est lié à d’importants échanges d’énergie
entre les polymères, l’écoulement moyen et les structures turbulentes, s’intensifiant à mesure
que l’élasticité augmente. Lors du deuxième stade, la dynamique de l’écoulement est décrite
par un cycle de régénération autonome. Les effets des polymères sur ce cycle s’atténuent par la
dégradation moléculaire qui survient lors du troisième stade.

Mots clés : simulation numérique directe, écoulement turbulent, modèle fene-p, réduction de
la traînée, aspects transitoires, dégradation du polymère.
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