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A mon Blacky,

Tout bruit ecouté longtemps devient une voix,
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2 Résumé de la thèse

Dans cette thèse, nous avons étudié le couplage entre le transport de
charge dans un conducteur quantique et le rayonnement émis dans son
environnement électromagnétique. En e�et, le caractère probabiliste du
transport électrique dans ce type de conducteurs engendre des �uctu-
ations de courant qui dissipent de l'énergie dans l'environnement sous
forme de photons.

Pour caractériser cette interaction, nous avons utilisé un circuit dans
lequel une Jonction Josephson polarisée avec une tension continue est
couplée à un résonateur micro-onde.

Quand le travail fourni par la source de tension pour faire passer une
charge 2e à travers la jonction correspond à un nombre entier de quanta
d'énergie dans le résonateur, on observe un courant continu de paires
de Cooper associé à l'émission de rayonnement dans le résonateur. Ce
rayonnement est ensuite collecté dans une ligne de mesure micro-onde.

En fabriquant des résonateurs hautes impédances basés sur des induc-
tances planaires, nous avons pu atteindre le régime de fort couplage et
observer les e�ets spectaculaires de cette interaction lumière-matière.
D'une part, le régime de fort couplage exacerbe les processus multi-
photoniques et nous avons observé jusqu'à l'émission simultanée de neuf
photons part une paire de Cooper.

De plus en utilisant un montage de type Hanbury-Brown and Twiss,
nous avons pu mesurer la statistique des photons émis. Nous avons ainsi
démontré que la rétroaction de l'environnement sur la dynamique du
transport permet de créer une source non-classique de photons sous-
Poissonniens, en accord avec les prédictions théoriques.
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3 Summary of the thesis

In this thesis, we investigate the coupling between the charge transport
in a quantum conductor and the associated radiation emitted in the
electromagnetic environment. In fact, the probabilistic character of the
electric transport in this type of conductors generates current �uctua-
tions which dissipate energy in the environment in the form of photons.

To characterize this interaction, we used a circuit in which a Josephson
junction is coupled to a microwave resonator and dc voltage biased.

When the work provided by the voltage source to transfer a charge
2e through the junction corresponds to an integer number of energy
quanta in the resonator, we observe a dc current of Cooper pairs asso-
ciated with the emission of radiation in the resonator. This radiation
is then collected in a microwave measuring line.

By carefully engineering high impedance resonators based on planar
inductances, we were able to reach the strong coupling regime and
observed the dramatic e�ects of this light-matter interaction. Firsr, the
strong coupling regime favors multi-photon processes and we observed
up to the simultaneous emission of nine photons by a single tunneling
Cooper pair.

In addition, using a Hanbury-Brown and Twiss type, we were able to
measure the statistics of the emitted photons. We have demonstrated
that the feedback of the environment on the transport dynamics creates
a non-classical source of antibunched photons, in agreement with the
theoretical predictions.
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1 Introduction and summary:
Quantum Electrodynamics of
quantum conductors

A quantum conductor (QC) is a device through which electrons are
transmitted while keeping their phase coherence [52][14]. As a conse-
quence, electric transport in quantum conductors can be described from
an electronic wave scattering point of view [61]. This implies that the
transfer of electrons is probabilistic, which results in quantum current
�uctuations called Shot Noise that are directly connected to the charge
carrier properties [11].

QCe-

I

t

V EE :
I

P(I)

I

Reflection

Transmission

Figure 1. Top : Electron transport across a quantum coherent conductor
embedded in an Electromagnetic Environment (EE) and voltage biased.

Bottom : Shot noise current �uctuations and current histogram.

These �uctuations of the current can be characterized by their proba-
bility distribution and compared to the statistics of random �uctuations
associated to a Markovian process where the currents results from the
emission of electrons with a constant probability per unit of time, which
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leads to Poissonian �uctuations [70]. Due to the fermionic nature of
electrons, the Shot noise associated with a normal quantum conductor
is Sub-Poissonian, revealing a natural anti-bunching of the transmitted
electrons.

When coupled to an electromagnetic environment (EE) these current
�uctuations may excite its modes, which leads to inelastic electron
tunneling. This phenomenon called Dynamical Coulomb Blockade
(DCB)[38] raises two questions:

1. What are the consequences of this QC-EE coupling on the trans-
port properties of the quantum conductor ?

2. What is the connection between the quantum properties of the
emitted radiation and those of the charge transferred through
the QC? [9][34]

Although a full description is still missing, the �rst question is fairly
well understood for quantum electron transport in tunnel elements in
the presence of an electromagnetic environment within the framework
of the so called P (E) theory of Dynamical (or environmental) Coulomb
Blockade [46].

The latter point was adressed by Beenakker and Schomerus in a pio-
neering paper [9] who, neglecting the feedback of the electromagnetic
environment (i.e. DCB e�ect) showed that one can use a quantum con-
ductor to imprint the anti-bunched behavior of the electron on photons,
which usually obey super Poissonian distribution.

During the last twenty years, experiments mainly focused on the
�electronic� part of tunneling, investigating the current through conduc-
tors by measuring I(V) characteristics [18][43][22][23][31][19][32][49].
Inspired by these developments and huge progress in low temperature
microwave electronics pushed by radio-astronomy, the Quantronics and
Nano electronics group of CEA Saclay embarked on a project inves-
tigating the quantum properties of photons emitted by a quantum con-
ductor coupled to well designed microwave environments. By carefully
engineering the environment, one can obtain a single mode resonator
in the microwave range which can be thought as the microwave equiv-
alent of low frequency LC circuits. Its coupling to a superconducting
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tunnel junction, i.e. a Josephson junction, is then characterized by
the coupling constant r = �ZC /RQ, where RQ = h/ (2e)2 ' 6.5k
 is
the quantum of impedance relevant for superconducting circuits and ZC
is the characeristic impedance of the mode = L/C

p
. If one applies a dc

bias voltage V to the junction, Cooper pair inelastically tunnel through
the junction, associated with the emission of photons into the resonator
provided that the energy of a Cooper pair transferred through the junc-
tion 2e V , corresponds to the energy of an integer number of photons in
the resonator. One thus obtains a dc current through the voltage biased
junction, associated with the emission of photons into the environement

In 2011, Hofheinz et al. [41] performed the �rst measurement of the cur-
rent �uctuations in such systems, i.e. photons emitted by the quantum
conductor in a resonator. By collecting the emitted radiation and mea-
suring the associated current, they showed that the photon emission
rate is in quantitative agreement with the Cooper pair tunneling rate.
This proves that Dynamical Coulomb Blockade is imprinted on the
emitted photons. However, they were not able to reach the strong cou-
pling regimes (r � 1), for which recent theories [51][20] predict that
successive tunnel events become correlated and show non-classical sta-
tistics.

The aim of this thesis was to build high impedance resonators in order
to reach this strong coupling regime (r�1), where the electromagnetic
environment has a strong back-action on the quantum conductor itself.
Indeed, we do observe strong Dynamical Coulomb Blockade e�ects and
non-classical radiation.

1 Dynamical Coulomb blockade of a dc
biased Josephson junction

The name of Dynamical Coulomb Blockade comes from the reduction
at low bias voltage of the di�erential conductance of a tunnel junction
embedded in an electromagnetic environment [43][2]. As shown in Fig.
2 : the low bias suppression of inelastic tunneling processes which trans-
fers energy to the environment impedance Z, hence a reduction of the
conductance at low bias voltage.

17



Figure 2. Dynamical Coulomb Blockade in normal tunnel junctions:
inelastic tunneling that transfers energy to the environment impedance Z
yields a reduction of the number of possible tunneling processes and thus
of the conductance at low bias voltage.

In our experiments, we couple a dc biased superconducting tunnel junc-
tion to a high impedance single mode resonator. As depicted in Fig.
3, when the potential di�erence between the two electrodes reaches
2e V =k h f0, where f0 is the resonance frequency of the mode, inelastic
tunneling through the junction is allowed, with the simultaneous emis-
sion of k photons in the resonator. These photons then leak in the
measurement line.

V
2eV = khf0

voltage biasing

radiation
collection

hf0

Cooper pair 
tunneling 2eV

Figure 3. Description of the experiment. A Josephon junction is voltage
biased through a single mode resonator. When a Cooper pair tunnels, it
emits photons in the resonator which leak in the measurement chain.

Description of the circuit

Our simple circuit consists of :

¡ a low noise dc voltage source

¡ a SQUID which is used as a tunable Josephson junction
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¡ a single mode microwave resonator.

The Josephson junction behaves as a pure tunneling element in parallel
with its geometric capacitance that participates to the junction's envi-
ronment. The total Hamiltonian of this system reads

H =Henv+Hel+HT ; (1)

where Henv is the Hamiltonian of the electromagnetic environment, HT

describes the tunneling of Cooper pairs and Hel account for the two
electrodes.

Our experimental set-up has the following features :

- The electromagnetic environment can be modeled to some extent by
a single mode with the Hamiltonian

Henv= ~!0
�
âyâ+

1
2

�
;

where a and ay are respectively photon annihilation and creation opera-
tors at the resonance pulsation !0. The phase operator of this harmonic
oscillator is de�ned as :'̂env= r

p
(â+ ây). Zero-point phase �uctuations

are related to the coupling constant

r=
�ZC
RQ

; (2)

with ZC = L/C
p

the characteristic impedance of the mode. For a
resonator with a �nite quality factor, this coupling constant takes the
form

r=
2

RQ

Z
0

1Re(Zenv(!))

!
d!: (3)

- The sample is at low temperature so that ~!0�kBT and biased below
the gap e V � 2� = 360 �eV. As a consequence, the superconducting
electrodes stay in their ground state and one can consider only Cooper
pair tunneling. The two electrodes are thus de�ned by the phase of
their macroscopic order parameter '̂r;l, a pure electromagnetic degree
of freedom.

- The last part of the HamiltonianHT describes the tunneling of Cooper
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pairs between the right and left electrodes

HT =¡
EJ
2
(e2i'̂J+ e¡2i'̂J); (4)

where '̂J= '̂l¡ '̂r is the phase di�erence accross the junction and EJ
the Josephson energy which is related to the normal tunnel resistance
RT and the superconducting gap � through the Ambegaokar-Barato�
formulas

EJ =
~IC
2e

IC=
��
2eRT

:

According to Kirchho�'s laws, and following the schematic of Fig. 4,
the phase '̂J accross by the Josephon junction is

V

Figure 4. Circuit phase and voltage de�nitions.

'̂J= '̂+ '̂env=
eV
h
t+ r
p

(â+ ây) (5)

One notes that the phase across the Josephson junction '̂J is related
to the phase of the electromagnetic environment and that it appears
explicitly in the tunnel Hamiltonian HT . At equilibrium the phase
�uctuations of '̂J, from thermal and quantum origin, are stationary
and depend on the impedance of the whole circuit as shown by Eq. 5
and Eq. 2.

Josephson relations link these phase �uctuations and charge transfer
across the junction through :

I = IC sin'̂J

2e VJ= ~'̂J_ :
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The inelastic tunneling of Cooper pairs in the Coulomb blockade regime
is well accounted for by the P (E) theory.

Main results of the P (E) theory in superconducting tunnel
junctions

We recall here the main results of the so-called P (E) theory in the
superconducting case. The P (E) function describes the probability to
release the energy E into a linear electromagnetic environment during
a tunnel event [46]. It is valid:

� in a regime where the electrons tunnel independently from each
other

� considering that the electromagnetic environment is separable
from the electrons onto the electrodes

� considering that the electromagnetic environment, as well as the
electrodes of the junction are constantly in the thermal equilib-
rium it would have in the absence of tunneling

The P (E) function only depends on temperature and on the impedance
of the environment. In the case of single resonant mode, it is de�ned as

P (E)=e¡r
X
k=0

1
rk

k!
�(E ¡ k~!0) (6)

where r is the coupling contant de�ned in Eq. 2.

This function is di�erent from zero only when the energy provided
by the voltage bias can be absorbed is a multiple of the quantum of
excitation of the resonator, directly re�ecting its spectrum.

The global Hamiltonian 1 of the system gives acess to the Cooper pair
tunneling rate

¡Cp(V ) =
�
2~EJ

2P 0(2eV);

and the associated current accross the junction I(V )= 2e¡Cp(V ).
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In pratice, when a Josephson junction is biased below the gap and cou-
pled to a single mode resonator, Dynamical Coulomb blockade appears
throught dc current peaks thanks to the absorption of energy by the
electromagnetic environment as shown in Fig. 5 and already observed
in previous experiments [43][41] as shown in Fig. 6

V

I

V

eV

I :2eV = hf0 II :2eV = 2hf0 III :2eV = 3hf0 IV:eV>2Δ

hf0≪Δ

I
II

III

IV

Figure 5. Dynamical Coulomb Blockade in a Josephson junction coupled
to a single mode environment. When the junction is biased below the super-
conducting gap, dc current peaks appear when the energy 2e V carried by a
Cooper pair can be transmitted to the environment through the emission of
k photons. the label I, II, and III corresponds to the single, 2 and 3 photon
emission peaks. When the Josephson junction is biased above the gap, the
external voltage source provide enough energy to break Cooper pairs and
quasiparticles can tunnel, the system behaves as a normal tunnel junction
(IV).
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Without the in�uence of DCB, one would expect no current peaks
when the junction is voltage biased below the superconducting gap
e V � 2�. Thanks to inelastic tunneling associated with the emission
photons in the environment, current peaks appears when the applied
voltage reaches 2e V = k h f0 (process I to III in Fig. 5). When the
junction is biased above the gap, the system provide enough energy to
break Cooper pairs and current is carried by quasiparticles. The system
thus behaves as a normal tunnel junction (process IV in Fig. 5). This
phenomenon has been experimentally observed as shown by the I(V )
curve of Fig. 6.

Figure 6. Dynamical Coulomb Blockade of a Josephson junction.

I(V) characteristics of a JJ placed in series with a microwave resonator.
Current is allowed when the energy acquired by a Cooper pair tunneling
matches one excitation quantum of the resonator. The top curve represents
experimental data and the lower one, DCB based theoretical predictions
shifted for convenience. The inset on the upper right corner shows quasi-
particle current for biases eV> 2�. Reproduced from ref. [43]

Since we are not measuring the current but the emitted radiation, this
theory needs to be extended to �eld quantities (spectrum, high-order
correlations) as in [41]. However, this formalism is only valid for low
coupling (small impedance resonators).
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In the case of �nite, but small quantum �uctuations of the phase, it is
predicted that the Josephson relations still hold, but with a renormal-
ized Josephson energy EJ [71].

In the strong coupling regime, large phase �uctuations across the
resonator can induce correlations between tunnel events. Recent the-
oretical works [51][50][1][20] have calculated the statistical properties
of the emitted radiation.

Building high impedance resonators

Microwave resonators with a characteristic impedances signi�cantly
larger than the vacuum impedance (Z0= �0/"0

p
= 377
) are di�cult

to achieve using distributed elements. One must thus design resonators
based on lumped elements.

Using planar coil geometries, one can reach inductances up to several
tens of nH. In order to stay in our microwave measurement band (4-
8 GHz) where h f0 � kBT and far below the gap of the aluminum
Josephson junction h f � 2�� 360�eV , such an inductance must be
coupled to a capacitance of the order of 10 fF, which is already the
order of magnitude of the parasitic capacitance to ground.
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Figure 7. Optical microscope image of the planar coil and simulation
results of the resonator impedance.
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Using microwave simulation results, we have designed and fabricated
planar inductors as shown in Fig. 7 and used their parasitic stray capac-
itance to achieve characteristic impedances of 2.2 k
, corresponding to
a coupling constant r' 1.

2 From Cooper pair current to microwave
power measurement

This thesis focuses on the photonic side of the Dynamical Coulomb
Blockade as we want to measure the statistics of the emitted radiation.
A previous experiment of Hofheinz et al. [41] has demonstrated quan-
titative agreement (within less than 5%) between the measurements
of the current and the associated power, validating the Dynamical
Coulomb Blockade model.

In this experiment, the sample is connected to a bias tee, separating low
and high frequency signals. A dc voltage bias is applied to the junction
through the low frequency port and the emitted radiation is collected
through the high frequency port.

V bias-tee

sample
voltage
biasing

radiation collection

Josephson
junction

resonator

Figure 8. Measurement principle. Using a bias-tee, the sample is dc biased
through the low-frequency port and the emitted radiations are collected in
the measuremet line, connected to the high frequency port of the bias-tee.
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The respective rates of emitted photons ¡Ph and tunneling Cooper pair
¡Cp are

¡Ph=
P

~!0
and ¡Cp=

Idc
2e

where P is the microwave power emitted by the sample in the measure-
ment chain and Idc is the dc current crossing the Josephson junction.
The result of their experiment is shown in Fig. 9.

Figure 9. Photon and Cooper pair rates (taken from Hofheinz et al. [41]).
Top : real part of the impedance seen by the junction, calculated from the
resonator geometry (black line) and reconstructed (magenta) from a quasi-
particle shot noise measurement. Bottom : Measured Cooper pair ¡Cp(red)
and Photon ¡ph (blue) rates extracted from current and microwave power
measurements. The �rst resonance is hit when one CP emits one photon
while tunneling : V = ~!0/2e' 12�V . The inset is a zoom on the photon
rate at voltage 2eV = 2~!0, corresponding to the two photon emission
process.Solid lines are P (E) theory �ts.
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In this experiment, the coupling was low (r = 0.08) and two-photon
processes had much lower rates than the single photon processes as
predicted by equation 6. With our high impedance resonators, we probe
the strong coupling regime consequences on the emitted photons.

This thesis aims at characterizing the quantum properties of the
emitted radiation. Using a similar experimental set-up, we thus simpli-
�ed the experimental set-up and suppressed the current measurement,
assuming that

¡Ph= k¡CP;

with k, the number of photons emitted by each Cooper pair.

More over, they showed that extending the standard DCB theory allows
to account for the spectral density of the emitted radiation

SII(!; V )=
2�e2EJ

2

~ (P 0(~!¡ 2e V ) +P 0(~!+2e V ));

where P 0(2eV � ~!), corresponds to the probability to emit/absorb
one photon of energy ~!. This spectrum can be directlty accessed by
measuring the spectral density of the emitted radiation.
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3 Spectral measurements results

Single photon emission peak : calibration of the environment

Here, we measure the power spectrum of the radiation emitted by the
Josephson junction as a function of the bias voltage when each tun-
neling Cooper pair emits one photon. The Josephson junctions emits
photons at the Josephson frequency f =(2e/h)V , when this frequency
matches the microwave resonance frequency, one observes radiation
emitted in the measurment line thanks to inelastic tunneling associated
with photon emission.
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Figure 10. Single photon emission. Bottom : Map of the radiation emitted
by the Josephson junction when the voltage is swept around V =(h/2e)f0.
Top : Black line : the extracted impedance of the environment assuming
that the emitted power follows the P (E) theory as described in section 1.3.
Red line : Sonnet simulation of the circuit geometry.
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If we consider the process where each Cooper pair emits one photon in
the resonator, the emitted power P1 is

P1/Re(Z(�)) �(eV¡h�):

As the emitted power is directly proportionnal to the real part of the
impedance, by following the line V = (h/2e)f on the map of Fig. 10,
we can reconstruct the shape of the electromagnetic environment (top
panel). The extension of the P (E) theory predicts an in�nitely narrow
line but, in practice, its width is �nite and determined by the voltage
bias noise (5MHz). This measurement of the mode impedance gives us
access to the characteristic impedance of the resonator ZC and thus to
the coupling constant r.

Multiphoton emission peaks

Increasing further the voltage bias across the junction, we reach reso-
nance where the bias correponds to the emission of several photons in
the environment as shown in the map of Fig. 11.
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Figure 11. Multiple photon emission map: we measure the power associ-
ated to processes where a tunneling Cooper pair emits simultaneously up
to 4 photons.
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On this map, we can see di�erent peaks corresponding to processes
where up to 4 photons are emitted simultaneously. We have then
performed measurements integrating the power emitted in the whole
resonator.

In previous experiments, peaks corresponding to �rst and second order
processes have been observed [41] and were well described by the P (E)
theory. As the coupling factor was rather low (r<0.1), the amplitude of
higher order peaks was too low to be observed. Enhancing the coupling,
we can now see peaks in the emitted power in Fig. 12, corresponding
to processes where a single Cooper pair emits simultaneously up to 9
photons to tunnel.
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Figure 12. Multiphoton processes. Emitted power integrated over the
resonator bandwidth (Linear and logarithmic scales) at the maximum value
of EJ.

As described by the P (E) theory, the height of the respective current
peaks is supposed to behave according to a Poisson distribution of
parameter r [46]. As ¡Ph=n¡CP, the result on power emission should
then be:

Pn/ e¡r
rn

(n¡ 1)! :

Poisson distribution gives a qualitative shape of the peaks for low values
of EJ, but it does not quantatively describe the behavior of the peaks
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at higher Josephson energies of Fig. 12. We nevertheless compare with
a �t using the coupling factor r obtained from the measurement of the
environment impedance (sec 1.3) as shown in Fig. 13.
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Figure 13. Integrated power of k photon emission (green bars) and �t with
the P (E) theory with r=1 and an adjustable scaling factor (grey bars).

We observe that few and several photon processes do not follow the
predictions of the P (E) theory.

Breakdown of the EJ
2 scaling rule

We use a SQUID as a tunable Josephson junction. By modulating
the �ux threading the SQUID, we can tune the coupling between the
eletrodes EJ. As the emitted power scales like EJ2

EJ
2(�)=EJ max

2 cos2
�
�
�
�0

�
;

we expect a sinsuoidal behavior when varying the �ux. We observe that
this scaling rule does not apply for large values of EJ where 1 and 2
photon processes saturate whereas higher order processes are enhanced,
as shown in Fig. 14.
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Figure 14. Evolution of the photon emission power with magnetic �eld
for single (blue line), two(pink line), three (green line) and four photon
processes (red line). The three photon process is the only one which scales
like EJ2 predictions (black line).
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To characterize the statistics of photons emitted sequentially by tun-
neling Cooper pairs through the Josephson junction, we focus on the
single photon regime.

4 Emission of anti-bunched photons
Two papers by Beenakker and Schomerus pointed out the connec-
tion between quantum electronic transport and quantum optics [10][9].
These high frequency properties of quantum conductors have recently
been extended to Josephson junctions in the Dynamical Coulomb
Blockade regime [54][51].

The �rst steps towards the experimental investigation of these predic-
tions were :

� to detect the photons emitted by a single mode quantum con-
ductor [77][41]

� to develop and validate a Hanbury-Brown-Twiss set-up to probe
the statistics of microwave photons emitted by a quantum con-
ductor [78][65]

These two measurements were previously performed in the group in the
case of low impedance environment coupled to a tunnel junction. We
thus use tools provided by quantum optics and perform a Hong-Ou-
Mandel experiment [44] on the emitted radiations [78][33] to extract
the second order correlator g(2).

Intensity correlator g(2)

The intensity correlator was �rst used by Hanbury-Brown and Twiss
[39] who showed that intensity-intensity correlations yield more precise
measurements of star diameter. Radioastronomy essentially focuses on
classical thermal radiation sources, but in quantum optics, where a
much wider range of sources are characterized, such correlators also
probe the non-classical nature of radiation [56].

In order to characterize the statistics of the emitted radiation, we use
the intensity-intensity correlator g(2) de�ned as :

g(2)(�)=
hÎ(t) Î(t+ �)i
hÎ(t)i2

=
<ây(t)ây(t+ �)â(t+ �)â(t)>

<âyâ >2
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It quanti�es correlations between subsequent photon emission with a
delay � . For � =0, g(2)(0) measures the probability to emit two photons
simultaneously and characterizes radiation statistics:

� if g(2)(0)< 1, the �eld is anti-bunched

� if g(2)(0)> 1, the �eld is bunched

� for a Poissonian process g(2)(0)= 1

� for thermal radiation g(2)(0)=2

Hanbury-Brown and Twiss microwave set-up

In order to be able to extract second order correlators, and get rid of
any measurement chain in�uence, the sample is placed in an Hanbury-
Brow and Twiss like experiment [78] as described in Fig. 15.

We de�ne the operators a and ay for photons anihilation and creation
and fA/B; fA/B

y for the intrinsic noise contribution of the ampli�ers.

Noise
source

GB

Noise
source

GA

Signal

Beam
Splitter

Figure 15. Measurement scheme. Splitting the signal before ampli�cation
prevent pollution from the ampli�er noise.

Performing correlation measurements at the output of the two lines,
one obtains

hAyByBAi¡ hAyAihByB i= GAGB

4
(hâyâyââi¡ hâyâi2)
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In order to extract g(2), one also needs to measure the contribution of
hâyâi

hAyAi= G
2
hâyâi+(G¡ 1)2hfA

y fAi:

The hfA
yfAi contribution can be easily removed by performing On-o�

measurements. Performing cross-correlation measurements gives access
to the g(2)(�) correlator according to

g2(�)=
<ây(t)ây(t+ �)â(t+ �)â(t)>

<âyâ >2
=1+

<�PA(t):�PB(t+ �)>
PA:PB

where �PA/B is the excess of power due to the signal and PA/B is the
total mean power. We have used this microwave Hanbury-Brown and
Twiss set-up to show that the photons emitted by a Josephson junction
can display non classical properties.

Photon anti-bunching in strong coupling regime

For characteristic impedances of the order of RQ, sequential tunnelings
of Cooper pairs are predicted to be correlated. The tunneling of a
Cooper pair shifts the charge across the resonator by 2e, according to :

e2i'̂Qe¡2i'̂=Q¡ 2e

Where '̂= r
p

(â+ ây). The probability that tunneling occurs is related
to the probability to add a photon in the resonator initially populated
by N photons

PN!N+1/
���<N +1

��e¡2i r
p ¡

ây+â
���N >

���2�(2eV ¡h f0)
At low temperature, the resonator is empty at equilibrium as vacuum
�uctuations of the charge �Q � e. When 2eV = h f0, one photon is
emitted by each CP and we can �rst consider only transistions from
j0> to j1> and from j1> to j2> photons in the resonator.

For strong coupling, i.e. large values of r, P0!1 has a �nite value but
P1!2 is strongly reduced and even null for a coupling contant r=2 as
decribed by Fig. 16.
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Figure 16. Anti-bunched photon source proposed by Gramich et al.

[37]. Figure reproduced from ref. [65].

I : assuming the resonator is initally empty, the �rst tunneling Cooper pair
emits one photon and the resonator goes from |0i to j1i. The probability
of this event is directly related to the overlap between the shifted j0i state
wave function and the j1i state wavefunction.

II : The probability for a second Cooper pair to tunnel is then related to
the overlap between the shifted |1i state wave function and the j2i state
wavefunction. For r = 2, this overlap jh1je¡2i'̂j2ij = 0. As a consequence,
when a Cooper pair tunnels and emits one photon in the resonator, it pre-
vents further photon emission until the �rst one leaks into the measurement
chain. This mechanism generates anti-bunched photons.

As a result, the emission of a �rst photon in the resonator blocks the
inelastic tunneling of a second Cooper pair that would require the emis-
sion of a second photon. Due to the �nite lifetime in the resonator, the
second tunneling event is forbiden until the �rst photon escape the res-
onator and leak in the measurement chain. This ideal case correponds
to perfect anti-bunched photon source.

For lower coupling constant, the transition P1!2 is not forbidden but
has a vanishing probability. Exploiting this mechanism, we can imprint
the anti-bunched behavior of Cooper pairs on emitted photons. Recent
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theoritical work [51] made predictions for g(2)(0) at low photon occu-
pancy of the resonator in the strong coupling regime

g(2)(0)= (1¡ /r 2)
2

where r= /�ZC RQ is the coupling constant, as previously described.

Experimental validation

Performing measurement with HBT set-up and high impedance res-
onator (r ' 1), we reached g(2)(0) = 0.28, meaning non-classical and
strongly anti-bunched photons, in agreement with theoretical predici-
tions. We measure the second order correlator at zero time delay g(2)(0)
as a function of the emission rate ¡ as shown in Fig. 17.
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Figure 17. Second order correlator at zero time delay g(2)(0) as a function
of the measured emission rate.

One �rst observes that g(2)(0)<1, meaning that the emitted photons
have a non-classical behavior and are anti-bunched. Furthermore, the
value obtained at the lowest rate is in good agreement with the pre-
dicted 0.25 theoretical limit for r=1 [51].
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However, this theoretical value is only valid when the resonator is
almost empty, i.e. when the assumption that only the transitions P0!1

and P1!2 are relevant is valid. When the emission rate of the Josephson
junction increases, the mean occupation of the resonator increases as
well and the initial condition of an empty resonator is no longer ful-
�lled. Higher order transitions such as P2!3 are not identically a�ected
by strong coupling and are not �blocked� identically. As expected,
we observe less anti-correlations for high rates and g(2)(0) increases
towards 1.

Time resolved correlator : g(2)(�)

By adding a delay between the two lines, one can also probe the
timescale of these anti-correlations, which are supposed to be propor-
tional to the lifetime of a photon in the cavity. This measurement
gives access to the timescale of correlations, as predicted in [20]

g(2)(�) =

�
1¡ r

2
e¡
�/2

�
2

; (7)

where 
=2� FWHM is the photon leakage rate of the resonator.
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Figure 18. Time resolved evolution of the second order correlation factor
g(2)(�) (blue) and theoretical �t [20]. The horizontal lines correspond to the
theoretical prediction for g(2)(0)=0.25 and the long time limit g(2)(�)=1.
For this measurement, the emission rate was tune to 42 MHz.
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One �rst observes that the timescale over which g(2)(�) reaches one is
in consistent with theoretical predictions [20]. The additionnal �uctua-
tions that one can see on Fig. 18 correspond to noise on the correlated
signal.
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2 Theoretical background & state of
the art

In this chapter, we �rst brie�y introduce the main physical ingredi-
ents underlying the coupling between quantum conductors (QC) and
electromagnetic radiation in their electrical environement. We then
describe the physics of electronic transport through a normal tunnel
junction (well-known QC), introduce its coupling to radiation, and
present �rst experimental results. In a second part, we move on the
case of a Josephson junction, which is at the heart of this work.

Finally, we will focus on the �bright side� of this problem, i.e. on the
emission of radiation by the junction. In particular, we show that one
can extend the standard theory to account for the spectral density of
the emitted radiation. We then present two approaches, which allow us
to go beyond this �rst step and get a full description of the quantum
properties of the emitted radiation. This last part especially focus on
the strong coupling regime and show that a voltage-biased Josephson
junction can be used to emit anti-bunched photons in its environment.

Let's �rst consider a voltage biased tunnel junction, connected to a
resistive environment of impedance Z(!) (see Fig. 20). A tunnel junc-
tion consists in two electrodes separated by a thin insulating barrier
through which electrons can tunnel. This element can be modeled as a
capacitance which sees charge accumulation on each electrode in par-
allel with a pure tunneling element. The charge accumulation on the
capacitor plates is due to a continuous collective displacement of the
electronic �uid, in which each electron is surrounded by a screening
cloud, all electrons thus moving in a highly correlated manner. Such
collective charge motion can be described in terms of low-energy collec-
tive excitations of the Fermi sea consisting of surface plasmons, which
are of bosonic nature. In contrast, in the limit of a low transparency
tunnel barrier, charge transport through the pure tunnel element is
due to the individual tunneling of genuine electrons, as shown by the
schematic of Fig.19.
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Figure 19. Cartoon description of a tunneling event. At the left, a qua-
sielectron di�uses in the top electrode. The quasielectron is made of an
electron (green dot) surrounded by its screening cloud (red surrounding).
When it reaches the tunnel barrier, only the bare electron can tunnel,
leaving its screening cloud on the �rst side and rebuilding a new one it in
the bottom electrode. This leaves a charge�e on the plates of the junction's
capacitor. This charge is then evacuated in the rest of the circuit to restore
equilibrium. We assume that the tunneling time during which the electron
crosses the barrier is in�nitely short on the timescale of other phenomena.
(taken from Philippe Joyez's master lectures and F. Pierre PhD thesis [66])

When an electron tunnels through the barrier, it undresses of its
screening charge leaving a +e surface (plasmonic) charge in the �rst
electrode and dresses again on the other side, creating another ¡e
surface charge. Microscopically, tunneling thus consists in the anni-
hilation of a quasiparticle (an electron and its screening cloud) on one
side and the creation of another quasiparticle on the other side accom-
panied by an electromagnetic excitation of charge e that will eventually
propagate in the circuit connected to the junction. This description
will lead to the Hamiltonian discussed in section 1.2.

The relaxation of this charge excitation in the environment circuit (see
Fig 20) will generally lead to Joule dissipation in the real part Re[Z(!)]
of the impedance is hardly ever stricly zero at all frequencies), making
tunneling an inelastic process [22][38].

At low bias voltages, energy conservation results in a reduction of the
phase space for the tunneling quasiparticle and consequently to a reduc-
tion of the tunnel conductance at low bias voltages, hence the name of
Dynamical Coulomb Blockade (DCB).
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Figure 20. Dynamical Coulomb Blockade : inelastic tunneling that trans-
fers energy to the environment impedance Z yields a reduction of the
number of available states, hence a reduction of the conductance at low
bias voltage.

This dissipation can be described as the emission of photons in the
environment [76]. The higher Re[Z(!)], the stronger the dissipation and
the stronger the coupling between the conductor and the environment.

More precisely, we will see that the dimensionless parameter charac-
terizing the strength of this coupling is the characteristic impedance
of the environment, divided by the resistance quantum. One can thus
increase the coupling between the environment and the conductor by
engineering Re[Z(!)]. This contrasts with the physics of atoms coupled
to radiation, for which the coupling strength is of the order of the �ne
structure constant and which are thus always in the weak coupling
regime. This coupling of tunnel junctions with the electromagnetic
environment has been extensively studied over the twenty past years
[23][13][22][31][19].

One can ask how this phenomemon a�ects electron transfer in quantum
conductors that are not tunnel junctions. In that case one may use the
Landauer-Buttikker-Martin scattering formalism, to describe electrical
transport as an electronic wave scattering problem. More speci�cally,
one uses a multi-terminal block description : a phase coherent region
is connected to several fermionic reservoirs where the electrons loose
their phase coherence and thermalize. These reservoirs are connected
to a macroscopic biasing circuit, which impose their electrochemical
potential �n and temperature Tn, as described by Fig. 21.
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Scattering matrix description of a quantum conductor between two reser-
voirs l; r with chermical potentials �r;l and temperature Tr;l. For each
mode of energy ~!, the amplitudes an;in(!) and aj;out(!) of the inpout and
output waves are related by formule landauer !! scattering matrix

One then introduces electronic modes at angular frequency !, prop-
agating toward or from the reservoir n with amplitudes an;in(!) and
an;out(!), respectively. The current going in/out of the reservoir can
be expressed in terms of an;in(!) and an;out(!) operators as well. The
next step is to describe the phase coherent conductor by a scattering
matrix S which allows to express particular an;in amplitude as a linear
combination of the aj;out(!) amplitudes leaving the other reservoirs
j. Using this model, one can then calculate the current through the
sample as a function of temperature and of the voltage bias across the
conductor.

As in any quantum scattering problem, the transmisssion or re�ection
of an electron is a probabilistic process. As a consequence, due to the
discrete nature of the charge carriers, the current through reservoirs will
exhibit quantum current �uctuations called shot noise even for a per-
fectly quiet potential di�erence at zero temperature. As any �uctuating
current, they will emit radiation into the electromagnetic environment,
resulting in inelastic charge tunneling, which a�ects the dynamics of the
charge transfer as already mentionned. This shows that the phenom-
enon Dynamical Coulomb Blockade is a generic feature of the coupled
dynamics of charge transfer and electromagnetic radiations. Let us
note �nally that the theory of Dynamical Coulomb Blockade originally
formulated for tunnel junctions was recently generalized to quantum
conductors of arbitrary transmission, provided the dwell time of the
electron in the scaterrer is shorter that the inverse of the high frequency
cuto� of the environment impedance [1].
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In this work we will restrict to the case of tunnel element connected to
a linear environment at thermal equilibrium. The theory of Dynam-
ical Coulomb Blockade that describes light-matter interactions in this
simple case [46], successfully describes experimental observations on
normal and superconducting tunnel junctions [32][23]. Its main results
will be presented in sections 1 and 3.

1 Quantum description of the circuit :
normal tunnel junction

We now consider a circuit where a normal tunnel element is placed
in series with an electromagnetic environment, assumed to be linear,
according to a model close to our experimental situation. As shown by
Fig. 22 : the tunnel junction is dc voltage-biased through the impedance
Z0.

V

Z0

V

Z0

V

Zenv

Figure 22. Description of the e�ective environment impedance. The junc-
tion capacitance is included in the environment.

The junction behaves as a tunneling element in parallel with its own
geometric capacitance CJ. In the following, we consider the junction as
a pure tunnel element only and include its intrinsic capacitance in the
environment impedance

Zenv(!)=
Z0(!)

1+ jCJ!Z0(!)
:

We now give a quantum description of the junction and of this elec-
tromagnetic environment. Then, we turn on the coupling, present its
consequences and discuss previous experimental results proving that
the dissipation induced by the impedance, results in inelastic elec-
tron tunneling and suppresses the low bias voltage conductance of the
normal tunnel junctions [18][22][31][43].
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1.1 Electromagnetic environment

The e�ective impedance Zenv(!) in series with the tunnnel element,
see Fig. 22, can always be described as the impedance of a (possibly
in�nite) series of LC oscillators having di�erent resonant frequencies
[16].

Figure 23. Description of an impedance by a series of LC oscillators.

In our experiments, the environment consist in a single LC mode.

Single mode environment

We �rst consider a single LC resonator with !i=
1

LiCi
p its resonant fre-

quency and Zi=
Li
Ci

q
its impedance. Althought it is a purely reactive

element, its dissipative response can be obtained from the Kramers-
Kronig relation

Re(Zi)=
�

2
Zi!i �(!¡!i): (8)

Second quantization of this LC resonator yields the Hamiltonian

H0= ~!i
�
ai
yai+

1

2

�
;

where ai and ai
y are respectively bosonic annihilation and creation oper-

ators for an excitation of pulsation !i. The conjugated variable of the
charge is a �ux that, normalized by ~/e, takes the form of the phase

'
i
= ri
p

(ai+ ai
y); (9)
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where

ri=
�
RK

L!i
C!i

r

corresponds to the amplitude of the zero-point �uctuations of the phase
of the oscillator.

To describe an environment consisiting in a �nite number of LC oscil-
lators, we sum over all the N discrete resonator frequencies and get the
following Hamiltonian

Henv=
X
i=0

N

~!i
�
ai
yai+

1
2

�
; (10)

the characteristic impedance

ZC=
X
i=0

N

Zi�(!¡!i) =
2
�

Z
0

1Re(Z(!))
!

d!; (11)

and the corresponding zero point �uctuations of the phase

r=
�ZC
RK

: (12)

1.2 Normal tunnel junction

In the absence of tunneling, a tunnel junction behaves like a capacitor,
the applied bias simply shifts the electronic cloud from the ion lattice.
This capacitive behavior, is separated from the pure tunnel element
behavior and included in the environment, as previously mentionned.

For the following, we introduce the de�nition of the phase 'J as the
time integral of voltage across the junction

'J =
e
~

Z
¡1

t

dtVJ ; (13)
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The consequences of tunneling, due to the quantum nature of the junc-
tion will be addressed in the following

Quantum treatment of the electrodes

In the absence of tunnel coupling, the electrons in the electrodes can be
described as free neutral Landau particles [62] distributed in energy "
with a continuous density of states �(") around the Fermi level �. The
Hamiltonian of these electrodes is

He=Hr+Hl (14)

with

Hl;r=

Z
d"l;r�l;r("l;r)"l;r cl;r cl;r

y (15)

where c (resp. cy) corresponds to quasi-particle annihilation (resp. cre-
ation) operators, and the indices r and l comes to di�erentiate right
and left electrodes.

Tunneling

The description of tunneling given in the introduction leads to the
following Hamiltonian :

HT =Te�+h:c; (16)

where

�=
X
l;r

Tlr cl cr
y (17)

describes the tunneling of a quasiparticle from the left to the right
electrode, where Tl;r is the tunnel matrix element corresponding to the
tunneling of a quasiparticle. The operator

Te= e¡j'J (18)

transfers an elementary charge e through the environment impedance
and veri�es

ei'JQe¡i'J=Q¡ e:
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1.3 Full circuit : From charge tunneling to environ-
mental �uctuations

Embedding a tunnel junction with its electromagnetic environment in
a circuit, yields the total Hamiltonian

H =Henv+He+HT (19)

where Henv, He and HT are given by Eqs. 10, 14-15 and 16, respec-
tively. HT is treated below as a perturbation yielding the so called P(E)
theory.

According to Kirchho�'s laws, and following the schematic of Fig. 24 ,
the phase 'J accross the junction is

V

Figure 24. Circuit phase and voltage de�nitions.

'J= 'ext+
X

'i=
eV
h
t+
X

'i

and appears directly in the Hamiltonian describing electron tunneling
HT . This points out that phase �uctuations across the junction are
strongly correlated to those in the electromagnetic environment, and
as a consequence, to its impedance.

When an electron tunnels through the barrier, its screening charge
remains in the lead, producing an excess of charge e, which has to relax
generating �uctuations of the �Fermi� liquid. The collective motion of
the electronic cloud is called a plasmon and corresponds to an excita-
tion of the modes of the electromagnetic environment.

49



The charge-light interaction in this single mode model is quanti�ed by
the ratio between the charging energy EC of the tunnel capacitance
and the energy carried by one electromagnetic excitation or photon of
pulsation !0:

r=
EC
~!0

=
�ZC
RK/Q

(20)

This coupling constant also compares the characteristic impedance of
the environment to RK or RQ, quantum of resistance for a normal or
superconducting channel.

2 Theoretical description of Dynamical
Coulomb Blockade in a normal tunnel junc-
tion

The theory of Dynamical Coulomb Blockade was derived in references
[23][32]. It is well summarized in chapter 2 [46] of Single Charge Tun-
neling [38].

2.1 Expression of the tunneling current

If we �rst make the assumption of a perfect dc voltage bias, the tun-
neling of a charge does not have any in�uence on latter processes by
environmental �uctuations contribution which are associated with Te.
Here, we recall main results developped in details in Olivier Parlavec-
chio's PhD Thesis [65] using the P (E) theory of DCB.

The current operator associated with the tunneling of electron through
the junction is

I = q_ =
dH
d'J

=¡j e~(T ¡T
y) (21)

where q is the charge that has tunneled through the junction. This
equation, takes into account forward and backward tunneling.

A perturbative treatment at the lowest order of the tunneling Hamil-
tonian gives [69] for the mean current value

hI(t)i=¡ e
~2

Z
¡1

t

d t0h[HT(t
0); I0(t)]i; (22)
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where h:::i = Tr[�0:::], with �0 the total unperturbed density matrix.
By de�ning � = t¡ t0 and using tunneling operators one gets

hI(t)i=¡ j~

Z
¡1

t

d �(hT (t)T y(t+ �)i¡ hT y(t)T (t+ �)i)+h:c: (23)

One sees here that the average current is directly related to the corre-
lators hT (t)T y(t+ �)i and hT y(t)T (t+ �)i.

By assuming that there is initially no correlations between the elec-
trodes and the environment, meaning that the system is at thermal
equilibrium, one gets

hT (t)T y(t+ �)i= h�(t)�y(t+ �)ielhe¡j'(t)ej'(t+�)ienv ej
eV

~ � (24)

hT y(t)T (t+ �)i= h�y(t)�(t+ �)ielhej'(t)e¡j'(t+�)ienv e¡j
eV

~ � (25)

where hOiel/env=Tr[�el/envO] denote averaging over the electronic and
environmental degrees of freedom, assumed to be uncoupled. One then
computes these three factors separately.

- The Fourier transform of h�y(t)�(t+ �)i describes the ability of the
electrodes to absorb the energy h f = �r ¡ �l from the voltage source
[49][65], as shown in Fig. 25.


(hf) =
1
h

Z
¡1

+1
d� h�y(t)�(t+ �)iel e¡2jf� (26)


(hf) = jT j2
Z
¡1

+1
d�l �l(�l)�r(�l+h f)f�(�l)[1¡ f�(�l+h f)] (27)

where f�(E) is the Fermi function, �l;r are the energies of the right and
left electrodes and �l;r corresponds to the chemical potential of the
electrodes.
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Figure 25. Description of tunneling rates at �nite-temperature. When an
electron tunnels, a quasi-electron is destroyed on one electrode (left) at the
energy �l, and a quasi-electron is created on the other one (right), at the
energy �r. The left electrode is excited with respect to thermal state by
the appearance of an hole with the energy �h = -�l, and the right electrode
is excited with an electron with energy �l = -�r. The pictured process is
inelastic because the energy di�erence E, de�ned as eV = �h + �e + E is
sent to an other degree of freedom. Reproduced from Ref. [65].

This quasi-particle correlators h�(t)�y(t+�)iel looks very similar to the
Landauer-Büttiker formalism [15], where there is no correlator for the
electromagnetic environment, and where the voltage source is included
into the energy of the Fermi seas.

In the situation where the densities of state are �at over the energy
scales kBT and eV , they can be factorized in equation 27, which leads
to


(h f) = jT j2�l�r
h f

1¡ e¡�f
:

This function is represented in Fig.25b). Note that there is a direct
relation between the microscopic parameters �l, �r, jT j2 and the tunnel
resistance of the junction [4]

RN =
~

2�e2�l�r jT j2
:

One can calculate the other correlator of equation 25 and get the same
result, which is expected, as long as electron hole symmetry is pre-
served.
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- The second factor he¡j'tej't+�i in the correlator hT (t)T y(t+ �)i (see
Eqs. 24-25) describes the dynamics of the electrodynamic �eld at
thermal equilibrium. We de�ne the phase-correlation function

J(�)= h['(t)¡ '(0)] '(0)i: (28)

This function J(�) is obtained from the impedance of the electromag-
netic environment by

J(�)=

2

Z
0

+1d !
!

Re(Z(!))
RK

�
coth

�
�~!
2

�
[cos(!�)¡ 1]¡ j sin(!�)

�
:

(29)

Since, for a linear electromagnetic environment at thermal equilibrium,
�uctuations of the phase are Gaussian and stationary, it yields to the
following relation [46]

hej'(t+�) e¡j'(t)ienv= eJ(�)

The physical meaning of this correlator appears when Fourier trans-
formed. The function P (E) thus de�ned as [46]

P (E) =
1
h

Z
¡1

1
d� hej'(t) e¡j'(t+�)ienv e¡j!� ; (30)

P (E)=
1
h

Z
¡1

1
d� exp

�
J(�)+

i
~E�

�
(31)

is actually the analogous of 
(f) for the environment, i.e. it is the
density probability that the electromagnetic environment absorbs the
energy E when a charge tunnels through the barrier.

One can demonstrate in the same way that the other phase correlator
hT (t)T y(t + �)i gives he¡j'(t+�) ej'(t)ienv;t = eJ(�) and thus the same
FT and function P (E).
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One can now access the average current using 
 and P (E) functions
according to the equation 23.

hI(V )i= 2�e
~ [
 
P (eV )¡ 
 
P (¡eV )] (32)

where 
 is the convolution product which �counts� all the possible ways
to split the energy �e V between the electronic degrees of freedom and
electromagnetic ones of the environment. The current results from the
di�erence between forward and backward tunneling. This equation 32
is one of the main results of the P (E) theory.

Its predictions have been probed in numerous works over the past thirty
years [22][31][19][43][13].

2.2 Current �uctuations : Shot Noise

The shot noise quantum �uctuations of the current, directly connected
to the charge carrier properties, provide a direct link between DCB and
current noise.

Figure 26. Current noise induced by charge tunneling and associated
probability density function.

Indeed, one �nds that the Joule dissipation associated to shot noise
current �uctuations is identical to the energy transferred to the envi-
ronment by inelastic tunneling in the P (E) theory.

The power spectral density, and higher order correlation functions
can provide a quantitative description of the dynamics of the charge
transfer. As we will describe it in chapter 4, the current noise power
spectral density can be accessed in our measurement set-up.
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Current probability density function

In classical statistics, the moments of a function are obtained using
a generating function. For quantum systems, that are de�ned by the
so called Full Counting Statistics. If one precisely knows the model of
a circuit, one can access all the moments of the current distribution.
These moments may re�ect the dynamics of electrons in the quantum
conductor, but most often they are only �xed by the response time
(inverse bandwidth) of the measurement apparatus which is generally
much slower. Furthermore, the higher the order the more di�cult to
observe because of several noise sources in�uence.

Hopefully, as any linear electromagnetic environment is supposed to
experience Gaussian �uctuations, it is then fully described only by its
�rst and second moments (as all the following moments are products of
them). The properties of the current crossing the tunnel junction are
then given by

hÎ(t)i: mean current is proportional to the tunneling rate

hÎ(t)Î(t+�)i : variance / central moment characterize photon statistics

Correlator and power spectral density

One characterizes the current noise by its power spectral density given
by Wiener-Khintchine theorem

Si
0(!)= 2

Z
¡1

1
d � [hI(t) I(t+ �)i ¡ hI(t)2it]ej!� ; (33)

Si
0(!) =h

X
�




���hjh�jÎ j
 ij2it �(~!+(E
 ¡E�)): (34)

The �uctuations of currents at a given frequency appear as the proba-
bility to jump from the eigenstate j�i to an eigenstate j
 i which have
an energy di�erence ~!,

� for positive energy di�erence, E�<E
, meaning that the energy
~! is released by the conductor into the environment,

� for negative energy di�erence, E
 <E�, meaning that the con-
ductor absorbs the energy ~! from its environment.
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As the system is at thermal equilibrium, we have hI(t)2it = 0 at zero
perturbation order [65]. We can now calculate the �rst part of the
correlator

hI(t) I(t+ �)i=
�
e
~

�
2
[hT y(t)T (t+ �)i+ hT (t)T y(t+ �)i];

and the associated noise spectral density

Si
0(!)=

2
�
e
~

�
2
Z
¡1

1
d � [hT y(t)T (t+ �)i+ hT (t)T y(t+ �)i]ej!� : (35)

Using the previous equations, one gets

Si
0(!; V )=

4�e2

~ [
 
P (eV ¡ ~!) + 
 
P (¡eV ¡ ~!)]: (36)

This result is quite similar to the dc current of equation 32. How-
ever, the power spectral density takes the possibility to emit/absorb
the energy ~! in/from the environment. Furthermore, both tunneling
directions have a positive contribution on the noise, current �uctuations
are thus symmetric with respect to the voltage.

2.3 Case of a single mode environment

A �nite quality factor resonator can be treated, to a certain extent, as
a single mode. This case is relatively simple and will illustrate the �rst
experiments performed using normal tunnel junction. Furthermore, it
will lead to the experiment of this thesis when applied to the case of a
superconducting tunnel junction.

The treatment of discrete modes in the perturbation formalism
described above requires that the environment remains in a thermal
state. We use superconducting resonators which are dissipationless,
but couple them to a 50
 detection chain. This measurement line
acts as a relaxation channel, giving photons of the resonator a �nite
lifetime. The resonator should be treated, more rigorously, as a con-
tinuum of modes [56].
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We consider here an environment made of one single parallel LC-res-
onator having the resonant frequency f0=

¡
2� LC
p �¡1 and whose real

part of its impedance is

Re(Z(!))=
�2

C
[�(!¡!0) + �(!+!0)]:

Using equations 29 and 31, the P (E) function take the form [46]

P (E)= exp
�
¡r coth

�
~!
2kBT

��
X

k=¡1

1

Ik

24 r

sinh
�
~!
2kBT

�35exp� k~!
2kBT

�
�(E ¡ k~!)

(37)

where r is the coupling parameter (see Eq. 20) and Ik is the modi�ed
Bessel function of order k. As shown by the factor �(E ¡ k~!), the
resonator can only exchange quantum of energy ~!.

At low temperature kBT�~!, this expression takes a very simple form

P (E)= e¡r
X
k=0

1
rk

k!
�(E ¡ k ~!): (38)

The factor e¡rrk/k! is the probability to produce k oscillator quanta in
a single tunnel event, transfering an energy k ~! into the environment.
One can note that it follows a Poisson distribution of parameter r.
In addition, the larger the coupling r, the stronger the multi-photon
probability as shown in Fig. 29.

Experimental evidence

Experiments in the case of a single mode environment are reported in
[43][64].

The data of O. Parlavecchio in [64][65] are shown in Fig. 27. The
steps in the di�erential conductance dI(V)/dV are the signature of the
opening of new tunneling channels, corresponding to production of 1,
2 or 3 excitations in the resonator during a single tunnel event.
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Figure 27. Conductance of a normal tunnel junction coupled to a single
mode as a function of bias voltage. Theoretical plot of the dI(V )/dV curve
extracted from equation 37, for a normal tunnel junction coupled to a single
mode with resonant frequency f0 = 6 GHz and a characteristic impedance
ZC= 1.4k
 at 20 mK.

The conductance has step-like features caused by inelastic tunneling of
electrons. For small voltage eV < hf0 only the elastic process is allowed.
Each time e V is a multiple of h f0, another inelastic process is activated:
the electron can tunnel releasing n photons at frequency f0. The pink part
of the density of states of the electrodes represents the energy window
in which are located eligible electrons for the tunneling.Reproduced from
Olivier Parlavecchio's PhD Thesis.
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3 Dynamical Coulomb Blockade in
Josephson junctions

We now consider the case of a tunnel junction between superconducting
electrodes, i.e. a Josephson junction.

3.1 Description of the Josephson junction :

In this thesis, we consider superconducting metallic electrodes that
are described by the BCS theory of superconductivity [8]. In these
metals, a phonon-mediated electron-electron interaction provokes an
instability of the normal state Fermi sea below a critical temperature,
which results in a phase transition to a new state, the superconducting
state. The superconducting ground state consists of a coherent super-
position of time-reversed electronic states and is characterized by a
complex order parameter �= j�jei'; it can be roughly seen as a �super-
�uid condensate of Cooper pairs� which can support dissipationless
currents. In a Josephson junction one can observe manifestations of
both the modulus and the phase of the order parameter, as we now
explain.

The excitation spectrum of the superconductor has a well defined
energy gap of j�j between this ground state and the exited states,
known as the (Bogoliubov) quasiparticle states [12]. This energy gap,
predicted by BCS theory, is an intrinsic property of the material (�Al=
180�eV). Breaking a Cooper pair yields two Bogoliubov quasi-par-
ticle excitations, which requires adding a minimum energy of 2� to
the system. As a consequence, for a Josephson junction connected
to a voltage source V such that jV j < 2j�j / e, the voltage source
does not deliver enough energy to break Cooper pairs in a tunnel event
and consequently no quasiparticle current can �ow. This threshold for
quasiparticle tunneling is clearly visible in the I ¡ V characteristics
of a Josephson junction, were the current sharply rises at jV j>2j�j/e.

Furthermore, since the order parameter describes a ��uid� of charged
particules, its phase is a degree of freedom which is linked to the elec-
tromagnetism of the system. Indeed, Josephson pointed out that the
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phase di�erence between the two electrodes is simply related to the
potential di�erence applied to the junction according to

d
dt
('l¡ 'r) =

2e VJ
~ (39)

where VJ, is the bias between the two electrodes 1. Introducing the
shorthand notation 'J= 'l¡ 'r, the above equation leads to

'J(t) =
1
'0

Z
¡1

t

VJ(�)d� (40)

with '0=
~
2e
, the reduced �ux quantum. This equation is the same we

have used in the normal case (Eq. 13) except for the change e! 2e
signaling that now charge carriers are Cooper pairs.

By combining electron tunneling with the BCS Hamiltonian of the
junction electrodes, Josephson demonstrated in 1963 that the tunneling
of Cooper pairs is non vanishing and can be described as an interaction
term [48]

HJ =¡EJ cos'J: (41)

The energy EJ is called the Josephson energy; it is related to the normal
state resistance RN of the junction through

EJ=��
RQ

RN
; (42)

where RQ=h/(2e)2 is the superconducting quantum of impedance.

As the phase difference across the junction is conjugated with the
number of Cooper pairsNJ transfered through it, the Josephson Hamil-
tonian can be rewritten as

HJ=
¡EJ
2

[TJ+TJ
y] (43)

where TJ= e¡i'J transfers a charge 2e through the tunnel junction.

1. This relation assumes we use a gauge where the vector potential A is constant.
Otherwise there is an extra term VJ=

~
2e

@

@t
('r¡ 'l)+

R
l

r @A

@t
d`.
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Finally, the supercurrent through the junction is given by I=2e d

dt
NJ

can be obtained from the Hamilton relation, yielding

I =2e
d
d'J

HJ= IC sin'J ;

where the maximum supercurrent IC that can �ow through the junc-
tion[3] is related to the Josephson energy

EJ=
~IC
2e

: (44)

3.2 The Josephson junction and its electromagnetic
environment
When a Josephson junction is inserted in a circuit and biased at
subgap voltages, quasiparticle tunneling can be disregraded and the
total Hamiltonian of the system can be written as2

H =Henv+HJ (45)

where HJ is the E�ective Josephson Hamiltonian given above (Eqs.
41 or 43) and Henv describes the rest of the circuit. As in the normal
case, the Kirchho�'s loop relation relevant for Fig. 24 allows to write
the phase across the Josephson junction as

'J=
2eV
~ t+ 'env;

where 'env is the phase accross the environment, which contains zero
point phase �uctuations. For low coupling constants, these �uctuations
are small and do not in�uence the behavior of the junction and the
usual textbook description of Josephson junctions applies. In this thesis
we consider the opposite case where the electromagnetic environment
exhibits sizeable zero point phase �uctuations whose e�ect cannot be
disregarded.

By making use of the Josephson Hamiltonian 43, the Hamiltonian 45
of a Josephson junction with an environment appears as a simpli�ed

2. One should be aware that in this derivation of the e�ective Hamiltonian 41, 43,
Josephson did not take into account the environment of the junction. One can show
however that its form is quite generally valid in presence of an environment, with
simply a renormalization of the Josephson energy.
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version of the Hamiltonian 19 describing a normal junction in its envi-
ronment: all the quasiparticle degrees of freedom are now absent. The
di�erences are that (i) HJ describes now tunneling of Cooper pairs
instead of electron (that is with a charge twice larger), and (ii) that
during a tunnel event the whole work provided by the source can only
go into excitations of the environment. Given the similarity of the
Hamiltonians, this case can also be accounted for by P (E) theory pre-
sented above which was originally derived for normal state junctions.
In the following we do not rederive all the corresponding results: they
are obtained in a similar way, albeit simpler, than in the normal case.

3.3 P (E) theory for a Josephson junction coupled to
a single-mode environment: Incoherent Cooper pair
tunneling rate

From now on, we consider a Josephson junction coupled to a single
mode of frequency f0� �/h (See Fig. 28 ) and we restrict to cases
where it is always biased well within the superconducting gap 0<eV �
2� (we assume V =/ 0 in order to exclude the supercurrent branch of
the junction).

From the discussion in the preceeding section we see that Cooper pairs
will be able to tunnel through the junction only when 2eV =k h f0, i.e.
when the electrostatic energy 2eV of a single pair creates an integer
number k of excitations in the resonator3. One sees that in Josephson
junctions, Dynamical Coulomb blockade appears through dc current
peaks below the gap, thanks to the absorption of energy by the res-
onant environment. These processes are depicted in Fig. 28 and were
�rst investigated in the experiment of Holst et al. [43].

Main results of the P (E) theory for a Josephson junction

The coupling constant r is now

r=�
ZC
RQ

;

where RQ=4e2/h� 6.4k
.

3. We assume the superconducting electrodes are and remain in their ground state
in these processes, which is valid as long as kBT ��.
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Figure 28. Dynamical Coulomb Blockade consequences for a Josephson
junction. For biases eV < 2�, the superconductor remains in its ground
state (blue). There is no additionnal degree of freedom due to quasiparticles
in the lead and Cooper pair carry dc current when inelastic tunneling is
allowed by P (E), i.e. when 2eV= k ~!0 (I to III).

For biases eV > 2�, we provide enough energy to the system to break
Cooper pairs (green). The current is then carried by quasiparticles and we
observe the behavior of normal tunnel junction in Shot Noise regime.

By perturbatively treating Josephson equations 41 in EJ, one obtains
the Cooper pair current

I(V )=
�eEJ

2

~ (P 0(2eV )¡P 0(¡2eV )): (46)
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In this equation, the previously de�ned P (E) function becomes P 0(E),
describing the probability density for a Cooper pair to cross the junc-
tion while emitting photons with a total energy E in the environment.

At low temperature, kBT�eV , P 0(¡2eV )�0 and backward tunneling
can be neglected in I(V ) calculation and the equation 46 takes the
simple form

I(V )=
�eEJ

2

~ P 0(2eV ):

The pair current directly measures P 0(E).For quantum systems, that
are de�ned by the so called Full Counting Statistics.

In the case of a single mode whose real part of the impedance was
de�ned by equation 8, one gets :

P 0(E)=
1
2�~

Z
¡1

1
dte

4J(t)+
i

~Et= e¡r
X
k=0

N
rk

k!
�(E ¡ k~!): (47)

The current peak amplitudes are proportionnal to EJ
2 and scale as a

Poisson function of parameter r. The �gure 29 shows the relative height
of the current peaks for di�erent coupling constant r.
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Figure 29. Current peak amplitudes predicted for a Josephson junction
coupled to a single mode environment for di�erent values of the coupling
factor r, normalized to the amplitude of the single photon peak.
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Noise current spectrum

The previous expression of the current noise correlator (see equation
35), yields to

SII(!) =
1
2�

Z
¡1

1 2e2

~2 EJ
2 cos

�
2e V t
~

�
e
J(t)

ei!td t; (48)

from which, using equation 47, one derives the voltage dependent cur-
rent noise spectrum

SII(!; V )=
2�e2EJ

2

~ (P 0(k ~!+2eV ) +P 0(k ~!¡ 2eV )); (49)

where P 0(2e V �k~!) corresponds to the probability to emit/absorb k
photon of energy ~!.

Note, however, that this perturbative treatment is only valid when
the system stays at thermal equilibrium. It is not compatible with
correlations between successive events (tunneling of CP), a regime that
we will also probe. This situation will be addressed in section 3.4.

First experimental evidence

In this first experiment[43], the current-voltage characteristics of a
small capacitance Josephson junction coupled to a coplanar wave-
guide microwave resonator was measured in both superconducting and
normal cases as shown in Fig. 30.

The resonator had several resonant modes with angular frequencies

!2p+1=(2p+1)!0

with !0 the fundamental mode angular frequency. In addition, the
modes had a low impedance,

 
L
C

r !
n

�RQ;K:
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Figure 30. Dynamical Coulomb Blockade of a Josephson junction.

I(V) characteristics of a JJ placed in series with a microwave resonator.
Current is allowed when the energy acquired by a Cooper pair tunneling
matches one excitation quantum of the resonator. The top curve represents
experimental data and the lower one, DCB based theoretical predictions,
shifted downwards for clarity. The inset on the upper right corner shows
quasi-particle current for biases eV> 2�. Reproduced from ref. [43]

Using the toolbox provided by dynamical Coulomb blockade theory
[46], Holst and coworkers described quantitatively the current peaks
height as being due to the process by which a Cooper pair tunnels by
emitting a photon, �the basic process of the theory of the e�ect of the
electromagnetic environment on tunneling�.

In their experiment, the coupling of the junction to the modes was
indeed so weak that the current peak amplitude was well described by
the �rst order expression of P (E). This is not the case of our samples
and the consequences of strong coupling regime are addressed in the
following section.

3.4 Strong coupling regime : beyond P (E) theory

The strong coupling regime of a Josephson junction to a single mode
environment, r � 1 is an unchartered regime of quantum optics. In
particular, it enhances multi-photon processes and yields to a non-
classical behavior of the emitted radiation as shown in section 5.
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According to equation 9, the coupling factor r is proportionnal to zero
point �uctuations (ZPF) of the phase h�'2i. Reaching the strong cou-
pling corresponds to a transition from a well de�ned phase across the
junction to a regime where the tunneling charge is well de�ned.

This regime may question the validity of the hypothesis made by the
P (E) theory :

� The P (E) theory is a perturbative treatment in EJ that assumes
either low emission rates or low coupling [46] so that

EJP (E)� 1:

This implies that the dc current through the junction is much
smaller than its critical current IDC � IC. As a consequence,
multi Cooper-pair processes, where several Cooper pairs tunnel
simultaneously to emit one or several photons can be neglected.
When the impedance of the environment increases, the value
of P (E) increases as well, as shown by equation 47 and the
perturbative approach at the lowest order is only valid for very
low values of EJ.

� In addition, this treatment assumes that the environment stays
at thermal equilibrium, meaning that the resonator has time to
relax between subsequent tunneling events. The back-action of
the excitations produced by the dynamical Coulomb blockade on
the conductor itself is thus neglected, suppressing the memory
of the previous tunneling events.

This assumption can be invalidated, leading to correlations
between subsequent tunneling events [50]. As an example, in
the two photon emission regime (2e V = 2h f0), stimulated
emission yields to a parametric resonance of the resonator above
a certain threshold energy

EJT = ~¡
ZC
RQ

:

� Moreover the P (E) theory derivation assumes that the admit-
tance Y (!) of the junction itself is negligible and does not a�ect
the environment

Y (!)� [Zenv(!)]
¡1:
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When this condition is no longer ful�lled, the perturbative
approach is not valid and the problem must be solved self-con-
sistently [50].

Even if the P (E) theory and its extensions provide a meaningful frame-
work for describing the strong coupling regime investigated in this
thesis, a quantitative treatment beyond its scope may be required.

4 Relation between tunneling and emitted
radiations
The experiment of Holst et al. [43] presented in section 3 demonstrated
the presence of sub-gap current peaks for dc biased Josephson junc-
tion coupled to a single mode resonator, in good agreement with P (E)
theory.

Investigations on the emitted radiation, showing �the bright side of
dynamical Coulomb blockade� was later addressed by Hofheinz et al.
[41]. They measured both the Cooper pair current and the photon emis-
sion rate. They also extented the P (E) theory to the photon emission.

In this last experiment, the sample consisted in a dc biased Josephson
junction connected to a microwave resonator, with !0 / 2� = 6 GHz
resonant frequency.

The Cooper pair transfer rate was obtained from the average current
measurement

¡Cp=
I
2e
; (50)

and the photon rate from the microwave power P , leaking from the
sample around the resonance into the measurement chain

¡ph=
P

~!0
(51)

where ~!0 is the energy of a photon at resonance. These two rates
should be directly linked according to

¡ph= k ¡Cp (52)
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where k is the number of photons emitted by each tunneling Cooper
pair.

Both quantities were simultaneously measured while sweeping the dc
bias voltage across the Josephson junction. The extracted rates ¡Cp
and ¡ph are presented in Fig. 31. On the one photon peak, both rates
are equal within the 5% measurement error bar.

Figure 31. Photon and Cooper pair rates (taken from Hofheinz et al.
[41]). Top : real part of the impedance seen by the junction, calculated from
the resonator geometry (black line) and reconstructed (magenta) from a
quasiparticle shot noise measurement.

Bottom : Measured Cooper pair ¡Cp(red) and Photon ¡ph (blue) rates
extracted from current and microwave power measurements. The �rst reso-
nance is hit when one CP emits one photon while tunneling : V =~!0/2e'
12�V . The inset is a zoom on the photon rate at voltage 2eV = 2~!0,
corresponding to the two photon emission process. Solid lines are P (E)

theory �ts.

In addition, all results of this work were in good agreement with the
P (E) theory and its extension. According to equations 46 and 50, the
Cooper pair-rate is

¡Cp=
�
2~EJ

2P (2e V ) (53)
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At, T =0, one can compute P (E) and obtains

¡Cp' EJ
�

2~2

�
r(!J)
!J

+

Z
0

!J

d!
r(!)
!

r(!¡!J)
!¡!J

�
(54)

where !J = 2e V /~ is Josephson pulsation corresponding to a bias V,
r(!)=�Re[Zenv(!)]/RQ is the coupling factor and EJ� is the renormal-
ized Josephson energy due to the environment phase �uctuations [36]

EJ
�=EJ

�
1¡

Z
0

!J

d!
r(!)
!

�
: (55)

The �rst term in the parenthesis of equation 54, represents the contri-
bution of single photon processes, while the second term accounts for
two photon processes, emitted at ! and !J¡!. In this experiment, the
coupling was low (r= 0.08) and two-photon processes had much lower
rates than the single photon processes as predicted by equation 47.

In conclusion, this experiment [41] validated the understanding of
Dynamical Coulomb Blockade based on photon emission into the elec-
tromagnetic environment.

Other related works have con�rmed this approach

� on a normal tunnel junction [2];

� in the case of two photon emission [65].

All these experiments have open the way to new schemes for the
emerging field of quantum optics with microwave photons, dubbed
quantum microwaves.

Some other groups have also focused on radiations emitted by a tunnel
junction and used their properties to produce non-classical states of
light [27][30].
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5 Quantum circuit's dynamics

Although the extension of the P (E) theory yields the spectral density
of the emitted radiation, we present now two approaches [51][54] which
allow us to go further and predict the full quantum properties of the
emitted radiation.

5.1 Quantum description of the �eld

The microwave resonators used in this thesis consist of sections of TEM
transmission lines. In order to get a full quantum description of the
�eld in these resonators, we follow the approach of Yurke and Denker
[75], who proposed a quantum description of the TEM modes of a one
dimensional transmission line.

A transmission line is a conductor whose dimensions are not all negli-
gible compared to the wavelength of the signals which are carried [67].
Its electrical variables are Q(x; t), the total charge at the right from
the point x at the time t and I(x; t) the current [24]. They are de�ned
for an in�nite, lossless and unidimensionnal line by

Q(x; t) ; I(x; t) =
@Q(x; t)

@t
;V (x; t)=¡CT

@Q(x; t)
@x

(56)

where CT is the linear capacitance of the transmission line and V (x; t)
the voltage.

The formalism of classical electromagnetism yields the Lagrangian [76]

L= 1
2

�
LT

�
@Q
@t

�
2

¡ 1
CT

�
@Q
@x

�
2
�

The natural conjugate of the charge is then the �ux

�(x; t)=
@L

@(@Q/@t)
=LT

@Q
@t

=LTI(x; t);
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which simply corresponds to the magnetic �ux per unit length
threading the transmission line at t and x. In the case of a super-
conducting transmission line, the �ux �(x; t) is related to the supercon-
ducting phase introduced in section 3.1:

'(x; t)=
�(x; t)
'0

:

The wave velocity is v=(LTCT)¡1/2.

According to the usual procedure of canonical quantization, Q̂ and �̂
are operators and get

[Q̂(x; t); Q̂(x0; t)] = [�̂(x; t); �̂(x0; t)] = 0

[Q̂(x; t); �̂(x0; t)] = i~�(x¡x0)

We split the quantum �elds in two counterpropagating waves

Q̂(x; t)= Q̂ (x+ v t) + Q̂!(x¡ v t):

One can then link these equations with quantum optics by describing
charge dynamics in terms of creation/anihilation operators of free prop-
agating waves [76].

Q̂ (x+ v t)=
~

4�ZC

r Z
0

1 d!

!
p (â (!)e

¡i!(t+ /x v)+ â 
y (!)e¡i!(t+ /x v))

Q̂!(x¡ v t)=
~

4�ZC

r Z
0

1 d!

!
p (â!(!)e

¡i!(t¡ /x v)+ â!
y (!)e¡i!(t¡ /x v))

where ZC is the characteristic impedance of the line. The value d!/ !
p

is de�ned in agreeement with quantum optics concepts[75]. In fact,
~/(4�ZC) corresponds to the spectral power of charge �uctuations in
the vacuum state j0i and the operator a�

y (!)a�(!) correponds to the
�ow of photons, having a pulsation ! and travelling in the direction �.
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These operators also obey the canonical commutation relations

[â�(!); â�(!
0)] = 0

[â�(!); â�
y(! 0)] = �(!¡! 0)���

where � and � corresponds to travelling directions ! or  .

It is also possible to de�ne the current and voltage operators Î(x;!) and
V̂ (x; !). One can then link these quantities to the measured power at
the output of the transmission line, considering �!, the measurement
bandwidth.

Finally, we can introduce the temporal equivalents of creation/anihila-
tion operators

â(t) =

Z
�!

d!

2�
â(!)e¡i!t ; ây(t)=

Z
�!

d!

2�
ây(!)ei!t;

which also obey the commutation relations

[â(t); â(t0)] = 0

[â(t); ây(t0)] = �(t¡ t0):

The rate of photon detection in the measurement line is then obtained
from hây(t)â(t)i. It also allows us to calculate �eld correlation functions
using photon power measurements.

One thus sees that the concepts of Quantum Optics can be readily
applied to microwave circuits and transmission lines with one impor-
tant di�erence: the modes we have discussed here are surface plasmons
associated to the TEM modes of our waveguides. As a consequence,
they have only one polarization, so that iconic quantum information
experiments as the one performed by Alain Aspect and co-workers to
demonstrate the violation of Bell's inequality [5] cannot be envisionned
in the systems we describe in this thesis.
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We now give an input-output description of the environment and show
why it is, in addition, a nice probe to observe the quantum properties
of the �eld.

5.2 Input-output description of junction radiation

The decomposition of a transmission line modes into two counter-
propagating �elds allows to naturally introduce input-output theory
formalism when we are interested in the boundary conditions of the
line. Let's �rst consider a half-in�nite transmission line, going from
x = 0 to x = +1 connected to a certain system at x = 0 [75]. Fields
propagating from the line to the system are described by the oper-
ators ain(!) and those going from the system to the transmission line
are described by aout(!).

As the incident �elds in are coming from the in�nite, they are not
a�ected by the presence or the absence of the system. They are just
propagating modes of the line. However, �elds outgoing of the system
into the transmission line result from the interaction between the inci-
dent �elds and the system, and impose boundary conditions to the line.
By knowing this interaction mechanism, one can then link the state of
the system to the outgoing modes which corresponds to measurement
observables in an experiment.

Radiation of a Josephson junction coupled to an in�nite trans-
mission line

Juha Leppäkangas and Göran Johansson [55][53] have developed such a
description in the case of a voltage biased Josephson junction connected
to a semi-in�nite transmission line. According to their description, the
phase �̂ is de�ned as

�̂(x; t)=

~Z0
4�

r Z
0

1 d!

!
p fâin(!)e¡j(!t+x/v)+ âout(!)e

¡j(!t¡x/v)+h:c:g
:

This description of �̂ is true everywhere in the line, including in x=0,
where it is related to the voltage across the junction through Josephson
relations.
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Figure 32. Model introduced in [75] to describe the radiation emitted by
a Josephson junction into a semi in�nite transmission line.

As shown in Fig. 32 and described in section 1, the junction is modeled
as a pure tunnel element in parallel with a capacitance CJ.

The Josephson junction is biased with a perfect dc bias V at the input of
the transmission line. The current in the transmission line is de�ned as

ITL= IC+ IJ

ITL=¡
1
LTL

@�̂
@x

(0; t)

IC=
@Q̂
@t
(0; t) =CJ

@2�̂
@t2

(0; t)

IJ= I0 sin'J= I0 sin
�
2e
~ (�̂(0; t)¡V t)

�

where ITL; IJ and IC are the current of the transmission line, of
the tunnel element and geometric capacitance of the junction, respec-
tively.The boundary condition for the transmission line is then

CJ
@2�̂
@ t2

(0; t)+
1

LTL

@ �̂
@ x

(0; t) =¡I0 sin
�
2e
~ (�̂(0; t)¡V t)

�
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There is no general solution to this equation. However, in the so called
�charge regime� where zero point charge �uctuations are small (which is
the case for strong coupling constant), one can look for a perturbative
solution in I0 and decompose the outgoing mode of the transmission
line as

âout(!) =
X
n=0

1

�nân(!):

where � is the perturbation of I0. The zero order term, which corre-
sponds to the case of pure capacitor without tunneling element is then

â0(!)=
1¡ j Z0CJ!
1+ j Z0CJ!

âin(!)

which corresponds indeed to the re�exion coe�cient of an incident wave
from a transmission line with the impedance Z0 on a pure capacitance
CJ. The following term contains the dynamical Coulomb blockade term
due to phase �uctuations

â1(!) =¡
j I0

1+ j Z0CJ!
Z0
~!�

r Z
¡1

1
dt ej!tsin

�
2e
~
¡
�̂0(t)¡Vt

��

where �̂0(t) is the expansion at the �rst order in I0 of �̂(0; t), which
corresponds to vacuum phase �uctuations at the level of the junction.
This development can be extended to higher order to compute âout(!)
to any precision. All the information about the junctions radiations can
then be extracted by calculation. Its spectral density f(!) is given by

f(!)=

Z
0

1d! 0

2�
hâout
y (!)âout(!

0)i:

Here, the âout(!) are no longer �eld modes, and thus f(!) calculations
show other frequencies contributions. This expansion pushed to the
second order in I0 shows a contribution of thermal photons fth(!),

fth(!)=
1
2�

1

e�~!¡ 1

which is negligible as soon as kBT � ~!.
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Radiation of a Josephson junction coupled to a resonator

We now treat the case of a Josephson junction coupled to a single mode
resonator, leaking in the measurement line. We model the resonator as
a section of transmission line with �nite length, inserted between the
junction and a semi-in�nite line with a di�erent characteristic imped-
ance.

The position-dependent magnetic-�ux is now de�ned for each section
according to Fig. 33

� in the resonator 0<x<d

�̂(x; t) =

~Zr
4�

r Z
0

1 d!

!
p fâinr (!)e¡j(!t+x/vr)+ âout

r (!)e¡j(!t¡x/vr)+h:c:g

� in the measurement line x>d

�̂(x; t)=

~Zm
4�

r Z
0

1 d!

!
p fâinm(!)e¡j(!t+x/vm)+ âout

m (!)e¡j(!t¡x/vm)+h:c:g

where r; m refer to the resonator and measurement transmission line.
In our experiment, we measure the outgoing �eld âoutm (!).

V

CJ

ICIJ

ITL

0 xd

Zr Zm

Figure 33. Model introduced in [53] to describe the radiation leaking from
a single mode resonator coupled to a Josephson junction.
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The authors of [53] calculate correlation functions of the outgoing �eld.
They �nd for the photon �ux leaking in the measurement chain

hâout
my(!)âout

m (!)i=2� f(!)

where f(!) is identi�ed as the photon �ux.

Radiation due to inelastic Cooper-pair tunneling is, at the leading order
in IC

f(!)=
EJ
2

'0
2

Re(Zenv(!))

2!
(P 0(2e V ¡ ~!)+P 0(¡2e V ¡~!)):

This result relates the outgoing photon �ux to the Cooper pair transfer
rate across the Josephson junction, according to the P (E) theory (equa-
tion 46.

The input-output theory developped in [53] shows how one can directly
access the properties of a quantum conductor, here a Josephson junc-
tion, by measuring the power spectral density of the emitted radiation.

5.3 Photon statistics
We now give an introduction to the tools we use to characterize the
emitted radiation and the statistics of the emitted photons.

In a two terminal conductor, in the low transparency limit where all
conducting channel have a transmission Tn�1, the Shot Noise spectral
density was �rst described by Schottky [70] as

SP =
e3jV j
�~

X
n

Tn=2ehI i: (57)

Stochastic (incoherent) processes are de�ned by their Poisson distribu-
tion [11] and this value is often re�ered to as the Poisson Value of Shot
Noise.

However, non-stochastic processes can follow di�erent statistics and
either be

� bunched : in that case, the statistics is super-Poissonian,
meaning that the events have the tendency to occur simulta-
neously. This bosonic behavior is observed at the output of a
photon beam splitter.
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� anti-bunched : anti-correlated events corresponding to a sub-
Poissonian statistics. For example, photons produced by relax-
ation of a single atom are emitted sequentially.

In mesoscopic physics, the Fano factor, introduced below, is commonly
used to characterize this behavior [33][68], especially in the case of
partitionning noise in QPC.

Fano Factor

In the classical case, Shot Noise spectral density, resulting from the
tunneling of independent particles obey equation 57. Deviations from
this value are the signature of electronic interactions, which can be
quanti�ed by the so-called Fano factor F

SII
Class(V )= 2eFI:

In fact, F corresponds to the deviation from classical Poisson statistics

� = 1 Poissonian noise

� >1 super Poissonian : bunching

� <1 sub Poissonian : anti-bunching

� = 0 noiseless current perfectly correlated electrons

In quantum optics, one characterize the statistics of the emitted radi-
ation using correlation functions [56][7][45].

First order correlator : g(1)

Considering photon creation/anihilation operators ây/â, one de�nes
the �rst order correlation function [56]

gaa
(1)(�)=

hây(t) â(t+ �)i
hâyâi

(58)

This quantity is directly proportionnal to the output intensity of a
Mach-Zender interferometer with delay � . This function g(1) describes
correlations in terms of complex �eld amplitude, meaning it is sensitive
to the phase coherence of the �eld.
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Integrated over the frequency domain, this �rst order correlator
becomes [53][56]

g(1)(�)=

R
0

+1
d!!hây(!) â(!)ie¡j!�R

0

+1d!!f(!)
;

where f(!) the photon �ux density [53] is

hây(!)â(! 0)i= f(!)�(!¡! 0):

Second order correlator : g(2)

This intensity-intensity correlator was created in the context of radio-
astronomy by Hanbury-Brown and Twiss who showed that it provides
a much more precise measurement of star diameters [39]. Radioas-
tronomy essentially focuses on thermal radiation sources, but in
quantum optics, where a much wider range of sources are characterized,
intensity-intensity correlation is a tool that can probe the non-clas-
sical nature of light. In fact, an important quantity describing photon
emission is the relation between the �rst and second order moments.
This intensity-intensity correlator g(2) is de�ned as

g(2)(�) =
<ây(t)ây(t+ �)â(t+ �)â(t)>

<âyâ >2
(59)

and quanti�es correlations between a photon emission at a time t and
the emission of a second one a a time t + � . As the system is expe-
riencing a constant voltage bias, g(2) does not depends on t. This
correlator g(2) can be measured using a single beam splitter and two
power detectors [65], as we will decribe it in detail in chapter 6.

In the regime when each tunneling Cooper pair emits a single photon,
the second order correlator of the emitted radiation is related to the
current correlator

g(2)(�)=
hÎ(t) Î(t+ �)i
hÎ(t)i2

:
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At � =0, g(2)(0), which measures the probability to emit two photons
simultaneously, characterizes the type of radiation statistics :

� if g(2)(0)< 1, the �eld is anti-bunched

� if g(2)(0)> 1, the �eld is bunched

� for a Poissonian process g(2)(0)= 1

� for thermal radiations g(2)(0)=2

Although arbitrarily large bunching is allowed for classical �elds, anti-
bunching is a direct proof of nonclassicality [73]. A perfect single photon
source is characterized by its vanishing g(2)(0).

The link between the Fano factor and the second order correlator is
given by the Mandel formula [57][60]

F =1+¡

Z
0

1
d�(g(2)(�)¡ 1) (60)

where ¡ is the photon emission rate.

This equation illustrates the di�erence between these two values. In
fact, F compares long time scale correlations and will always reach one
for extremely low rates, whereas g(2)(�) characterises correlations at all
times.

Classical �elds

According to the proposal by Glauber [34], any classical �eld can be
decomposed in a statistical mixture of coherent �elds j�i with the
probability P (�). Its density matrix writes

�=

Z
d�P (�)j�ih�j;

which yields the following result for the second order correlator

g(2)(�) =

R
d�P (�)j�j4

(
R
d�P (�)j�j2)2

> 1:
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In addition, in a �eld resulting from random processes, a(t) and a(t+�)
are not correlated, yielding

hÎ(t)i2= hÎ(t) Î(t+ �)i! g(2)(�)= 1

Furthermore, as correlations have �nite time scales, this limit is reached
at long time � for both quantum and classical �elds.

Beyond P (E) theory

Photons in the cavity have a life time �res inversely proportionnal to
the bandwidth of the resonator. The main assumption of P (E) theory
is that the environment goes back to equilibrium before each tunneling
event. This assumption is valid as long as the life time of a photon in
the resonator �res , is much shorter than the mean time between two
subsequent tunneling events, ¡¡1, i.e. ¡�res�1. In this fast relaxation
regime, the electromagnetic �eld produced by an event cannot a�ect
the subsequent one.

For high rates or strong couplings, the environment has not enough
time to relax and in�uences subsequent processes, giving rise to non-
classical radiation.

By tuning the Josephson energy, we can vary the emission rate ¡(EJ)
and thus, the average number of photons in the resonator hni.

As one aim of this thesis is to produce anti-bunched photons, we now
present two theoritical proposals to reach this regime [54][37][51].

5.4 Anti-bunched photons using an additionnal
resistor
In 2015 Leppakangas et al. [54] demonstrated that one could produce
anti-bunched photons by voltage biasing a Josephson junction through
a resistive environment, as shown in Fig. 34.

They show that the low frequency dynamics of the junction, charac-
terized by a �nite charging time RC, prevents simultaneous tunneling
events to occur yielding to anti-bunching. This phenomenon is remi-
niscent from the proposal of Likharev and coworkers [6] to obtain anti-
bunched electron sources.
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Figure 34. The single-photon source proposed by Leppäkangas et al.
(�gure reproduced from ref. [54]).

(a) a Josephson junction (JJ) with capacitance CJ is connected in series
with a semi-in�nite transmission line (TL) with an impedance step, Z0<R,
and voltage biased. The TL section provides a �/2-resonator between the
impedance step and the junction. The total e�ective impedance is described
in (b)�(c).

(b) The impedance as seen by the JJ, presents a peak at zero frequency
described by a zero frequency resistance R > RQ and a capacitance C
de�ning its bandwidth, as well as a peak at �nite frequency !0 opening a
window for photon emission. When 2eV= ~!0+(2e)2/2C, a photon at !0
can be emitted by Cooper-pair (CP) tunneling together with many other
ones in the low frequency environment. Further CP tunneling events are
momentarily blocked. After a time RC the capacitor discharges and the
next photon-assisted CP tunneling can occur.

(c) An experimentally feasible realization allowing for large zero-frequency
impedance R � RQ, while maintaining compatiblity with standard 50 W
TLs.

A semiclassical picture indeed yields for the voltage across the junction
after a tunnel event

v(t) =V ¡
�
2e
C

�
e¡ /

t
RC:

The system takes a recharging time RC to recover after the voltage
drop 2e/C that occurs at a tunnel event. The associated correlation
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function is

g(2)(�) =

R
BWRe[Zenv(!)]P (2e v(�)¡ ~!)d!R
BWRe[Zenv(!)]P (2e V ¡~!)d!

(61)

where BW is the measurement bandwidth centered around the LC
resonant frequency (see dashed lines in Fig. 35).

The computed P (E) has a peak for E = 4EC, corresponding to the
charging energy of the junction's capacitance, but it also show a second
peak for E = (2e)2 /2C + ~!0, corresponding to an additionnal exci-
tation of the cavity mode according to Fig. 34. This last condition
corresponds to a bias voltage 2e V =(2e)2/2C + ~!0.
For charging times of the junction above the time resolution of the mea-
surement chain, they calculated temperature e�ects on g(2)(�). They
�nd that the resistor brings in thermal �uctuations that limit anti-
bunching e�ects as shown by their more complete theory based on a
fourth order expansion in EJ (see full lines in Fig. 35).

Figure 35. Second order coherence function g(2)(�) calculated by Lep-
äkangas et al. (�gure reproduced from ref. [54]). Second-order coherence
function based on semianalytical approximation Eq. 61 (dashed lines) and
on the full theory (solid lines), at di�erent temperatures. When biased
optimally (black arrow in the inset), the anti-bunching observed within
the RC timescale is strongly reduced by temperature. The semi-analytical
formula 61 well accounts for the long-time behavior.
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An experimental set-up implementing this theoretical proposal is
presently developped by Hofheinz and coworkers.

5.5 Anti-bunching with high impedance resonators

A second way to produce anti-bunched photons, based on enhanced
coupling with the resonator, was proposed in parallel by Ankerhold and
coworkers [37][51].

We have implemented this proposal in this thesis work. It consists in
coupling a dc voltage biased Josephson junction to a high impedance
single mode resonator. This theoretical proposal focuses on the regime
where EJ is low enough so that Cooper pair tunneling occurs sequen-
tially.

According to P (E) theory [46], the probability of a tunnel event is
directly proportionnal to the probability to emit a photon in the res-
onator

PN!N+1/
���<N +1

��e¡2i r
p ¡

ây+â
���N >

���2�(2eV ¡h f0) (62)

where jN i and jN + 1i, correspond to the number of photons in the
resonator before and after tunneling, and f0 is the mode frequency.

At low temperatures h f0 � kBT , the resonator is empty at thermal
equilibrium. For low tunneling rates and when the junction is biased so
that 2eV = h f0, where each tunneling Cooper pair emits one photon,
one can consider, as a �rst approximation, only transitions from j0i to
j1i and from j1i to j2i. A calculation of the matrix elements in Eq. 62
yields

P0!1/ r2 e¡r

P1!2/
1
4
r2 e¡r(2¡ r)2

In the strong coupling regime, P0!1 has a �nite value but P1!2 is
strongly reduced and vanishes at r=2, the case described by �g. 36.
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Figure 36. Anti-bunched photon source proposed by Gramich et al. [37].
Figure reproduced from ref. [65].

I: assuming the resonator is initally empty, the �rst tunneling Cooper pair
emits one photon and the resonator goes from |0i to j1i. The probability
of this event is directly related to the overlap between the shifted j0i state
wave function and the j1i state wavefunction.

II: The probability for a second Cooper pair to tunnel is then related to the
overlap between the shifted by 2e |1i state wave function and the j2i state
wavefunction. For r = 2, this overlap jh1je¡2i'j2ij = 0. As a consequence,
when a Cooper pair tunnels and emits one photon in the resonator, it pre-
vents further photon emission until the �rst one leaks into the measurement
chain. This mechanism generates anti-bunched photons.

As a result, the emission of a �rst photon in the resonator blocks the
tunneling of a second Cooper pair that would imply the emission of a
second photon. Due to the �nite lifetime in the resonator, the second
tunneling event is blocked until the �rst photon escapes the resonator
and leaks in the measurement chain. This ideal case corresponds to
perfect anti-bunching/ single photon source.

For slightly lower coupling constant r, the transition P1!2 is not for-
bidden but has a small probability, causing anti-bunching. To estimate
the �e�ectiveness� of this blocking e�ect, Gramich et al. [37] calculate
analytically the second order correlator g(2)(0) at zero time delay, see
Fig. 37.

For low photon occupancy of the resonator it is simply given by

g(2)(0)= (1¡ /r 2)
2 (63)
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with r=�ZC/RQ the superconducting coupling constant.

Figure 37. Second order correlation function g(2)(0) as a function of the
coupling � (which corresponds to r in this manuscript) and for di�erent
average population of the resonator hni0 (/ photon emission rate): DCB-
result for hni0=0.01 (black) ; numerical data (RWA) for hni0=0.05 (red),
hni0=2(blue) ; full data (non-RWA) including also the impact of 2-photon
processes for hni0= 0.5, Q = 10 (red-dashed). Figure taken from ref. [51].

As expected and shown in �g.37, for a coupling constant � = r = 2,
photons are perfectly anti-bunched. However, even for lower coupling
constants, signi�cantly anti-bunched photons are emitted.

E�ect of the photon emission rate on g(2)

The average population of the resonator is directly related to the dri-
ving strength

hni0/
�
EJ
�




�
2

where hni0 is the average population of the resonator, EJ� is the normal-
ized Josephson energy and 
 is the damping rate of the cavity de�ned as


=
!0
Q
:
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As expected, anti-bunching is enhanced for low occupation number of
the resonator where it is correct to consider only transitions from j0i
to j1i and from |1i to |2i. For higher occupation numbers, i.e. higher
emission/tunneling rates, the resonator is in a statistical mixture of
states. Transitions from j2i to |3i and to higher photon number states
that are not blocked identically, must be considered. This explains why
g(2)(0) approaches 1 when hni0 increases.
On the other hand, for very low population of the resonator, the photon
has time to escape in the measurement line long before the next tun-
neling event, destroying any correlation between subsequent tunnelings.
Furthermore, the out of resonance simultaneous emission of two pho-
tons by a single tunneling Cooper pairs, provides a second source of
coherence. For low Q resonators, this process induces a rise of g(2)(0),
as shown in Fig. 38 and in agreeement with Olivier Palavecchio's results
[65].

Figure 38. Photon correlation function g(2)(0) at the one-photon reso-
nance versus the Josephson coupling as a function of hni0 : the one-photon
contribution together with the result at the two-photon resonance for r=0.4
(blue, dashed�dotted) ; the one-photon contribution (red, solid) reduces to
the CB-result (red, dashed) for low driving ; the full g(2) (0) (non-RWA)
at the single-photon resonance !0 = !J (black, solid for Q = 5) diverges
for weak driving due to the dominating impact of o�-resonant two-photon
processes in accordance with perturbative results (black dashed). Figure
taken from ref. [51].

Dynamics of correlations : time resolved g(2)
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As previously described, Cooper pair tunneling is blocked as long as the
�rst emitted photon stays in the resonator. As a consequence, consid-
ering the resonant case, we expect that g(2)(�)!1 with a characteristic
timescale given by the lifetime of photons in the cavity as descibed in
[20]:

g(2)(�) =

�
1¡ r2

2
e¡
�/2

�
2

(64)

with r the coupling constant and 
=2� FWHM the photon leakage of
the resonator.

This is shown to be true for the rather modest coupling strength
achieved in our set-up. For higer coupling strength r� 3, the coherent
evolution of the �eld in the cavity furthermore induces a suppression
of g(2)(� =/ 0) as described in [20] and illustrated inf Fig. 39.

Figure 39. The second-order correlation function g(2)(�) in the number
few-photon limit hni0=( �

p
EJ
�/~
)2!0, for various values of the coupling

constant � (which corresponds to r in this manuscript). �=0 corresponds
to the uncoupled harmonic oscillator and �=2 to a two-level system whith
perfect anti-bunching. The nonlinearity for �nite � becomes apparent in
suppressed (enhanced) transitions to the second-excited state. Figure taken
from ref. [20].
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The main goal of this thesis is to use this mechanism of cavity back-
action to produce non-classical light. We have built high impedance
resonators to imprint the anti-bunched behavior of Cooper pairs on
emitted photons.
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3 Designing the electromagnetic
environment
In order to validate theoretical predictions from the group of J. Anker-
hold [51], as described in 5.3, we want to apply a dc bias to a Josephson
junction coupled to a high impedance single mode resonator and collect
radiations leaking from the resonator.

Figure 40. Theoretical circuit scheme. Picture extracted from ref. [37]

In an experimental point of view, this can be implemented by the
following circuit:

V bias-tee

sample
voltage
biasing

radiation collection

Josephson
junction

resonator

Figure 41. Measurement scheme. The bias-tee splits the applied dc

voltage from the microwave signal.

The high impedance microwave mode we will use is represented by
the green box in Fig. 41. Its resonant pulsation !0 and characteristic
impedance ZC are given by [67]

ZC=
L
C

r
; !0=

1

LC
p :
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Aiming at acoupling strength r' 1 at a frequency around 5 GHz, one
gets, ZC� 2k
, L� 60nH and C� 15fF, which corresponds to a very
low capacitance.

In order to reduce the capacitance we decided to have the resonator
on the same chip than the junction and to use quartz wafers, which
have a small e�ective permittivity "r=4.2 (in comparison with 11.8 for
silicon).

To measure the radiation emitted by the junction, we will connect it to
a dissipation-less resonator on a 3�10mm2quartz chip, as shown in Fig.
57. This device is then bonded to a printed circuit board (PCB) with a
single input/output port. The PCB will be placed in a metallic box and
cooled down to 15 mK in a dilution refrigerator. Using an additional
microwave component, called bias-tee we can apply a dc bias to the
sample while collecting the emitted radiations in a 50
 detection line.

Huge technical progress in the microwave technologies over the last
twenty years provide us performing measurement apparatuses for fre-
quencies around 5GHz. We have �rst performed electromagnetic simu-
lations to design a circuit presenting a single resonance between 4 and
8 GHz associated with a large impedance as seen from the junction
and thus, optimize the coupling to the Josephson junction as described
in section 1.

There are two di�erent ways to build electromagnetic resonators : dis-
tributed circuits for which capacitance and inductance are distributed
along a transmission coplanar waveguide (CPW), or lumped element
circuits where discrete elements are drawn on the chip.

On a typical substrate, our target frequency range corresponds to wave-
length of the order of l�1cm. Having lines of the same length-scale,
one can then use phase rotation along these lines in addition with their
inductance and capacitance to the ground plane to build distributed
element resonators.

However, the capacitance of a CPW line is already of the order of
100pF/m and a length of 150mm is too short to reach our targeted
inductance. As a consequence, our resonator has to be based on lumped
element geometries.

Using abacus, one can precisely estimate the length and shape required
to obtain discrete element based inductances [67]. As the resulting line
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is longer than l/10, phase rotation along the line will also in�uence the
resonator behavior, forcing us to perform detailed electromagnetic sim-
ulations. In order to reduce its capacitance to ground, this line can be
packed as a meander or wounded as a coil, which will be quantitatively
compared in section 1.3.

Finally, a third parameter of the resonator that must be tuned is its
quality factor Q. We consider a simple parallel LC oscillator with

Q=
f0
�f

=
ZC
ZS

;

where ZS is the impedance of the source as seen from the resonator
and �f the resonance bandwidth at -3dB. To tune Q, we can insert
an impedance transformer between the 50
 measurement line and the
resonator and thus increase the e�ective input impedance.

1 Electromagnetic simulations

1.1 Sonnet simulations

In order to simulate our resonators, we use a high frequency electro-
magnetic software tool for planar circuits analysis : Sonnet. The system
simulated by this software consists in several metallic layers separated
by dielectrics as shown in Fig. 42.

Figure 42. Sonnet schematic of the dielectric stack.
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Each metallic sheet layer contains a metallic pattern for the circuit,
with strip-lines or resonators and can be connected to the other layers
through vias. Dielectric layers properties and thickness can also be
chosen.

This stack is enclosed in a box with perfect metallic walls. The simu-
lated device sees the outer world through ports that sit at the surface
of the box, or are added inside the box, as probes shown in Fig. 43.
Sonnet also provides additional tools making possible to insert lumped
electric component in the circuit, between two points of the pattern.

Figure 43. Sonnet simulated elements.

Using �nite element based method, this software calculates scattering
and impedance matrices at each port over a speci�ed frequency band.
It can also compute current/charge densities as well as far �elds and
build a �-model �le of the circuit. It is also possible to build a network
of previously simulated blocks and compile the overall system.

Port impedance de�nition

Ports are de�ned as presented below :
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V

R L

C

Figure 44. : Sonnet port con�guration. They correspond to the parameters
of the input line and can be tuned after the simulation.

When a port is used as an intput, a voltage source is connected to it
and excite the system. Most of common apparatus as well as microwave
devices have 50 Ohm output impedances, so we will assume in the
following that input ports are de�ned with R = 50
 and C = L = 0,
unless it is precised.

As we are interested in the behavior of the environment seen by the
junction, we will replace it by a port, which will act like a probe. As
we will voltage bias the Josephson junction below the superconducting
gap, there will be almost no current crossing the barrier ; we can thus
model the junction as an open port. Furthermore, in order to take
into account the junction's geometric capacitance, we add a discrete
capacitor in parallel to ground as presented in Fig. 44.

1.2 Extraction of the characteristics of the resonator
In general, microwave systems are described by their scattering S-
matrices, which gives access to the amplitude of in/outgoing electro-
magnetic waves. Impedance Z-parameters can also be used to describe
a linear electromagnetic device and are more relevant in our case, as
we will focus on the impedance seen by the Josephson junction. The
em simulator Sonnet calculates S;Z andY =Z¡1 matrices de�ned as :

S=

(
Si;j=

Vi
¡

Vj
+

)
Vi=/ j
+ =0

;

with Vi
+ and Vi

¡ amplitudes of incident and re�ected voltage waves on
port i, and

Z =

�
Zi;j=

Vj
Ii

�
Ik=/ i=0

;
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where the voltage V is the sum, while I is the di�erence of ingoing and
outgoing waves. This matrix is calculated with �open ports�,i.e. with
no current �owing through the other ports.

Using simulation results, we predict the resonant frequency f0, the
impedance seen by the junction Zout2, the quality factor Q and the
environment characteristic impedance ZC. In order to mimic the actual
set-up, our circuit is de�ned as

1 2ZS=50Ω

Zenv

CJ

DUT

Figure 45. Schematic of our simulation block.

,

where the box represent the device under test (DUT), ZS is the 50

input impedance of port �1�, CJ is the geometric capacitance of the
junction and Zenv, the impedance seen by the junction.

Resonant frequency f0

The resonant frequency, in the case of a lossless system, is usually found
on S-parameters, by the point where the phase has turned by ¡180�.
It also corresponds to the point where Im[Y (!0)]=0, meaning that the
impedance Z reaches a maximum.

Impedance seen by the junction

As previously mentioned, the Z-matrix is calculated with all ports open.
We will consider a resonant circuit connected to a 50
 measurement
line, according to Fig. 45, and we are thus interested in the impedance
seen on port 2 when the port 1 is connected to 50
. This impedance
Zenv can be extracted from the impedance matrix by

Zenv(!)=Z22¡
Z12Z21

Z11+ZS

where ZS= 50
 is the impedance of the measurement line.

As discussed in section 1, we want to measure the power emitted by
the junction, which is proportional to the real part of Zenv. For this
reason, our simulations will mainly focus on the shape of Re[Zenv(!)].
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Quality factor

The width of the resonance gives access to the quality factor of the
resonator. On typical S-measurement, it corresponds to the spectral
width around resonance over which the phase rotates from ¡45� to¡
135

�
or when the transmitted power is divided by 2. This value can also

be extracted from Re(Zenv) and corresponds to the full wifth at half-
maximum (FWHM) of the real part of the impedance.

Characteristic impedance

The characteristic impedance of a single LC resonator can be extracted
using the derivative of the admittance Y-matrix according to

ZC=
L
C

r
=

2
!0 Im[Yenv(!0)0]

;

where !0 is the resonant pulsation.

According to formula 11 from chapter 1, the characteristic impedance
of an LC resonator connected to a 50
 measurement line can also be
extracted from

ZC=

Z
d!

Re[Zenv(!)]
!

:

As a consequence, our simulations aim at maximizing the integral of
Re[Zenv(!)].

More simply, one can also estimate the characteristic impedance from
Re[Zenv(!)] with a good precision by making the following assumption :

ZC�
Re[Zenv(!0)]

Q

1.3 Large inductance simulations

To built lumped planar inductances, di�erent shapes can be used : coils
[59][58] or meanders [29][67]. Here, we �rst compare the inductance of a
meander and a coil with similar sizes as it would be seen by the junction
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(according to the circuit of Fig. 45) and extract the corresponding
inductances using the formula :

L=
ZC
!0

1 12 2

C C
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Figure 46. : a) & b) Sonnet drawings of the coil and meanderinductances
forming a resonator with a lumped capacitor. Input port 1 is connected to a
50
 load. c) Real part of the impedance Re[Zenv(!)] as seen from internal
port 2 (note the three orders of magnitude between left and rigth Y-scales
for the two resonators).

The capacitance in parallel CJ, was tuned so that the resonant frequen-
cies match the experimental frequency window in both cases and so
that we can estimate whether a discrete capacitance must be added to
the circuit. The resulting parameters and corresponding inductances
are compared in the table below.
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resonator f0(GHz) �f(MHz) Q ZC(
) L(nH))
Meander 4,85 1 720 2,8 167 5,4

Coil 5,22 65 80 2k 63,6

Table 1. Characteristics of the resonator extracted from simulations.

With no surprise, the inductance of the �at coil is more than ten times
bigger than the inductance of the meander because of a mutual induc-
tance generated by the turns. For the same resonant frequency, we can
thus achieve ten time bigger characteristic impedances, making their
utilization essential to our project.

In addition, these inductances already have a non negligible parasitic
capacitance which cause the coil to get a self resonance (SRF), as
already mentioned. We will use this parasitic capacitance, as well as
the capacitance to the ground plane to build the resonator.

Planar coils have however one main disadvantage : their center has to
be connected, using either bonding wires or bridges. We will �rst focus
on the shape of the coil itself, and simulation results showing in�uence
of the bridge will be presented in the following section 1.4.

Coil simulations

Coils can have di�erent shapes as shown in Fig. 47. By using cir-
cular shapes, we avoid the charge accumulation in the corners and
the associated parasitic capacitance. We are thus able to optimize the
characteristic impedance as well as the quality factor.

Figure 47. Common �at coil shapes.

As the size of a coil is of the order of hundreds �m in diameter and the
line are of the order of a �m, it is not really compatible with electron
beam lithography (EBL) which would be very long. Our design must
then be compatible with optical lithography techniques, meaning at
least 1�m wide lines.
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By playing with the space between the lines, the number of turns, the
inner diameter and the distance to the ground plane, we were able to
tune the resonant frequency and the impedance of the mode.

1.4 Bridge

To connect the center of a coil, several options are possible. Some
groups have chosen air bridges, some other place dielectric spacers
below the bridge. It is also possible to connect the center of the induc-
tance with a bonding wire (Christian Schönenberger, private communi-
cation).but it requires to have a big pad in the middle of the coil,
at the cost of a higher parasitic capacitance.
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Figure 48. Re�ected phase response of the resonator with di�erent bridge
con�gurations. The height of the bridge was 500 nm in all simulations
(vertical scale was multiplied by 10 on drawings).
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All these solutions have a non negligible in�uence on the resonance, as
shown in Fig. 48 . In fact, the bridge forms a capacitor with every turn
of the coil.

As the radius of the coil is of the order of �100�m, the solution of an
air bridge is not compatible with fabrication constraints. One must
either add pillars between the turns of the coil, or place a piece of
dielectric on top of which sits the line. After several unsuccessful trial
with air bridges, we have decided to use bisbenzocyclobutene (BCB)
based bridges. Its description is given in table 2 and compared with
other common insulators.

dielectric PMMA BCB SiNX

relative permittivity "r 2.8 2.65 3.9
losses factor (tan�) 10¡2 8.10¡4 1,510¡2

Table 2. Properties of common dielectrics.

The BCB is a low loss dielectric which has been developed for such
applications by the microwave industries which also has a relatively
low permittivity. Using it, we were also able to increase the insulator
thickness from 500nm to >1�m and reduce the capacitance to the coil.

1.5 Final design

After several simulations, we decided to use the following parameters :

Coil nb of turns line width line space bridge
23.5 1 �m 2�m BCB / 1.2�m

Results f0 �f ZC Re(Zenv)MAX

(CJ=2fF) 5,1 GHz 60 MHz 2,05 kW 188 k


Table 3. Geometric parameters of the resonator and associated character-
istics.

The corresponding schematic and result of simulations are shown in
Fig. 49. Now, the lumped capacitor CJ represents the capacitance of
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the Josephson junction alone, the rest of the capacitiance being imple-
mented by the surrounding ground.
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Figure 49. Final design drawing (left) and associated simulation
result(right).

Computing current densities

In order to understand the full resonator behavior, we have simulated
current and charge densities at resonance, as shown in Fig. 50.
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Resonator : impedance transformer
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Figure 50. a) Our circuit has two ports. One external port �1� to be con-
nected to the measurement chain can be modeled as a 50
 load. The second
port �2� is internal to the circuit and parametrized to mimic the Josephson
junction open between the resonator and the ground plane probes the
impedance seen by the future junction. These boundary conditions make
us expect the resonator to behave like a �/4 resonator.

b) In a typical � / 4, the low impedance port 1 corresponds to a node in
charge and an anti-node in current, while on the �open� side port 2, there
is an accumulation of charges and no current.

c) As expected, there is a charge accumulation on the high impedance side
of the resonator. As the coil is used as an inductance but is also the capac-
itance of the circuit, there is an accumulation of charge at the periphery,
i.e. in the �rst turn of the coil.

d) There is indeed no current �owing through the high impedance side and
we see an increase toward the low impedance port.

in c) and d) the ground plane shown in �g. 49 is not represented here as
it does not present peculiar current/charge density.
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1.6 Junction's capacitance in�uence

The Josephson junction's geometric capacitance CJ is of the order of
few fF (70 fF:�m¡2) [42] and is also part of the environment seen by
the pure Josephson element according to

Zenv(!)=
Zcircuit(!)

1+ jCJ!Zcircuit(!)
;

where Zcircuit(!) is the impedance of the resonant circuit connected to
the measurement line without junction.

By adding a discrete capacitor to ground C = CJ (cf. �g. 45) at the
junction's position in simulations and tuning its value, one can then
observe in Fig. 51 that it is not negligible and must be taken into
account.
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Figure 51. Real impedance seen by the junction Re[Zenv(!)] for di�erent
junction capacitances

As we aim at building a resonator with a capacitance around 15 fF, CJ
will account for 10 to 20% of the total capacitance of the circuit. As
a consequence, both characteristic impedance and resonant frequency
will be decreased by 5 to 10%.

1.7 Tuning the bandwidth using quarter wavelength

104



resonator

According to table 3 and Fig. 49, our resonator has a bandwidth of
�f �60MHz. For experimental reasons which will be presented in the
next chapter, it is useful to broaden this resonance while preserving the
characteristic impedance and resonant frequency.

In fact, keeping the same resonator geometry, one can enlarge its band-
width by inserting a second resonator between it and the source to play
the role of an impedance transformer (quarter wavelength). Doing so,
we can increase the input impedance seen by the coil and broaden the
resonance as shown in Fig. 52.
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Figure 52. By increasing the input impedance of port 1, one observes a
small increase of the resonant frequency and a broadening of Zenv, while
the characteristic impedance is preserved.

We have built this second stage of impedance transformer �on chip�
between the measurement line (modeled by Z0) and the coil, using a
lossless coplanar waveguide (CPW) of length l=�/4 according to :
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Figure 53. Circuit with an addinitionnal impedance transformer.

This transformer is characterized by

Z0
0=

ZC
2

Z0
;

where ZC is the characteristic impedance of the line, Z00 the �new� load
impedance of the resonator and Z0 the 50
 input impedance of the
input line.

One can then choose the impedance seen by the coil (the impedance
Z0
0 of the transformer) by tuning the characteristic impedance ZC. To

do so, textbook calculations allow to choose the good ratio between
the width of the central conductor and the distance to ground plane
on a particular substrate [74]. The bandwidth of the resonator, corre-
sponding to an input impedance of 50
, is 60MHz. By adding quarter
wavelength transformers, we increase �f as listed in table 4 :

�f (MHz) Z0
0 Zc; �/4 width(�m) Gap (�m)

60 50 - - -
100 100 70 25 10
300 400 140 10 50
500 600 173 5 67

Table 4. In�uence of an additionnal impedance transformer on the resonator band-
width.

The length of the line must be tuned to a quarter of the resonant
frequency wavelength, which on a quartz wafer, is around �1cm. In
order to �t on the 3�10mm2 chip, this line will be packed as a meander,
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taking into account that the ground plane between two lines must be,
at least �ve times larger than the gap. Sonnet simulations give the
following results for the resonance of the di�erent transformers :
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Figure 54. S11 phase and Re(Z00) for �/4 transformers of table 4

Using these simulations as a �rst block and the previous coil results as
a second one, the full circuit was simulated, using the Sonnet �netlist�
feature. Such a combination of previous simulations assumes no geo-
metric �crosstalk� between the two resonators, which makes sense given
that they are shielded from each other by ground planes. We obtained
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the results of Fig. 55.

1.8 Further improvement perspective : �at coil on
SiO2 membranes

Simulation results above, exhibit characteristic impedances of 2.2 k
,
leading to coupling factor r � 1 (see chapter 1). In order to increase
further the coupling and reach the ideal value of r= 2 , the resonator
should have a characteristic impedance of �4.1 k
.

One way to obtain such a value, would be to reduce further the capac-
itance of the resonator, by fabricating the inductance on silicon nitride
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Figure 55. : initial simulation result and Netlist simulation results for the 3
�/4 transformers of table 4

We were then able to check that the �/4 resonator has no in�uence on
the characteristic impedance by extracting it for each design. In order
to have di�erent bandwidth, these four con�gurations were fabricated.
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membranes.

Running simulations with the previously designed 25 turns resonator,
we were able to increase the characteristic impedances by 50%. As
the resonant frequency increases as well, one could also increase the
inductance by building larger coils. This design was not implemented
however during my PhD.

Figure 56. Influence of the membrane thickness on the characteristic
impedance and resonant frequencies.
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2 Fabrication

As mentioned in the previous section, we want to build the circuit
of Fig. 57 on a 3� 10mm2 low permittivity quartz chip with a single
input/output port adapted to a 50
 measurement line.

Figure 57. Picture of the chip.

Our fabrication process consists in 3 mains steps. First, we fabricate
Niobium based coil and quarterwave impedance transfromers. Then, we
connect the center of the coil to its periphery with a bridge and �nally,
as it is the most fragile element, we fabricate the Josephson junctions.

2.1 Resonator: coil and �/4

In order to be able to test the samples at 4K, we chose to built niobium
based resonator. As Niobium is of a much better quality when sputtered
than evaporated, we used a top down approach for this step.

A 100 nm a layer of Niobium was �rst deposited on a 430�m thick
Quartz wafer at 2nm/s using a dc-magnetron sputtering machine and
then patterned by optical lithography and reactive ion etching (RIE).

In order to pattern the resonators, we used an optical lithography
process. The classical optical lithography process used a resist thick
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enough so that all the niobium between the lines can be removed before
all the resist is etched: the S1813.

It was spinned according to the following recipe:

1. 110°C prebake of the substrate on hot plate

2. Resist spinning : S1813, 4000 rpm 45� / 8000 rpm 15�

3. 2 min rebake on hot plate

Using these parameters, and performing interferometric measurements,
we measured a resist layer of 1450 nm. The sample was then exposed
with a Karl-Süss MJB4 optical aligner, with a dose of 150 mJ/cm¡2

(15 secs). Finally it was developed using microposit MF319 during 90
seconds and rinsed in deionized water for at least 1 min.

Figure 58. Fabrication of the coil. Left : optical image after optical lith-
ography. Right : optical image after niobium etching.

The next step of the process is the reactive ion etching of the niobium
�lm : we used a mixture of CF4 and Ar (20/10 cc) at a pressure of
50�bar (plasma o�) and a power of 50 W (209V) for 4 minutes 45
seconds (150 nm). After this process, the sample was cleaned in 40°C
acetone for 10 minutes to remove any resist residues and rinsed in IPA.
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The quarter wave resonator was fabricated at the same time as the coil
by Niobium etching.

Figure 59. 70 
 quarter wavelength resonator and coil. The whole chip is
3� 10mm2.

2.2 Bridge

As we decided to use a dielectric spacer to support the bridge, we added
two additional steps to the fabrication process. One for the dielectric
spacer, the second one for the brdige itself. One of the main di�culties
of these steps is that, as the pads to connect the bridge is small, they
require very precise alignment.

Dielectric support

We chose to work with polymers derived from B-staged bisbenzocy-
clobutene, sold as Cyclotene 4000 by Dow Chemicals and choose the
lower viscosity, in order to obtain a spacer between 0.8 and 1.8�m
thick: XU35133. The process was performed according to the following
recipe:

1. 2 minutes prebake at 110°C

2. Primer AP 3000 rpm 30 secs

3. BCB XU : 3000rpm, 45secs/ 8000 rpm 15 secs
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4. 3 minutes rebake @80°C

Using this technique, we obtained 1650 nm thick layers. The sample
was then exposed with the MJB4 optical aligner, with during 3 seconds.
The development of this resist is quite di�cult as it is not dissolved by
acetone:

1. 30 secs on hot plate (70 °C) : to avoid that the bridge �ows

2. DS 3000 rinsing for 1 minute

3. TS 1100 rinsing for 30 seconds

4. 1 min rinsing in deionized water

5. the sample was then dried while spinning

In order to obtain a �at surface and remove all resist residues, an RIE
SF6/O2 etching was performed for 30 seconds (20/2 cc, 10�bar, 50W)
as shown in Fig 60. Finally, the sample was rebaked during 30 minutes
at 190°C to stabilize the resist.
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Figure 60. The �atness of the sample was measured with a stepper. After
30 seconds of SF6/O2 etching, resist residues have disappeared

Bridge's line
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As the spacer is quite thick, this step requires a thicker resist. We used
AZ5214 and obtained a 1.5�m layer of resist according to the recipe:

1. 72°C prebake on hot plate

2. microposit primer : 6000rpm for 30 seconds

3. AZ5214 : 4000 rpm during 60s, 8000rpm during 10s

4. 2min rebake at 100°C with a bescher on top of the sample

The sample was then aligned and exposed during 7s using the MJB4.
As the AZ5214 is a negative resist which can be reversed, we rebaked
the sample for 3min at 120°C and performed a �ood exposure for 25
seconds. The development was then performed using diluted AZ 400K
with deionized water (1:4) for 1 min. Finally, the BCB was covered with
a 200 nm layer of aluminum after 12 seconds Argon etching to ensure
good contacts with the coil.

Figure 61. Left: in a �rst step, a BCB brick is deposited with optical
lithography. Right: in a second step the core of the coil is connected with
an aluminum bridge.

2.3 Josephson junction

As explained in chapter 2, for r ' 1, strong anti-bunching e�ects
are expected when the resonator is, in average, almost empty. The
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maximum photon emission rate is given by

n_ =
Re[Z(!0)]I02

2~!0
;

from which the mean occupation number n can be deduced by:

n_ =
n
¡
;

with ¡=2�HMBW, the leaking rate of the resonator. In order to esti-
mate the targeted resistance of the junction, one uses the Ambegaokar-
Barato� formula and Josephson relations (taking into account that
DCB will renormalizes EJ by a factor of exp(¡�Zc/2RQ)):

I0=
��
2eRN

; EJ=
'0IC
2�

:

In order to be able to tune EJ with a magnetic �eld, a SQUID geometry
is used for the josephson junction: two junctions are placed in parallel
to form a loop, which behaves as a single e�ective junction tunable with
the external magnetic �ux applied to the loop.

As a small capacitance is required for the resonator, junctions must
be as small as possible, but big enough to be reproducible and lead to
a good symmetry between the two branches of the SQUID. Assuming
a symmetry of 90%, EJ can then be reduced by a factor of 10 tuning
the �ux with a little coil on top of the sample.

Assuming a bandwidth�!�100MHz, a characteristic impedance ZC�
2k
 , a critical current I0 of 1nA and a symmetry of 90%, one can
estimate the minimal amount of photon in resonator :

n=1/100:
n_
¡
=

ZCI0
2

2h(�!)2:100
e
¡�Zc/RQ� 0.5

with �! the half maximum bandwidth of the resonator (FWHM).
These parameters require a normal state resistance for the SQUID of
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RN� 300k
.

Fabrication principle

Samples are made of aluminum based tunnel junctions, fabricated by
double angle evaporation through a suspended shadow mask, according
to a technique developed 40 years ago [25]. By adjusting the angles of
evaporation, two adjacent openings in the mask can be projected onto
the same spot, creating an overlay of metallic �lms as shown in �g.
62. The �rst �lm is oxidized before the second evaporation to form the
tunnel barrier.

Figure 62. Double angle evaporation principle: two metallic layers are
evaporated onto the same spot, creating an overlay of metallic �lms. As the
�rst layer was oxydidized, the two electrodes are separated by an insulator
and form a Josephson SIS junction.
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In order to have reproducible as well as small junctions, we used a cross
shape as shown in Fig. 63.

SQUID fabrication

PMMA/PMGI resist bilayer spining :

1. 2 min rebake at 110°C

2. Ti prime 6000 rpm 30 secs

3. PMGI SF8 : 3000rpm, 45secs/ 6000 rpm 15 secs (� 613�15nm)

4. 5min rebake @170°C with bescher

5. PMMA A6 : 6000rpm, 60secs (� 253�21nm)

6. 15 min rebake @ 170°C (with bescher)

As the quartz is very sensitive to charging e�ects, we placed an addi-
tional 7nm layer of aluminum of top of the resist to evacuate charges
during EBL. The full wafer was then covered by a thick layer of UVIII
resist which can be removed in IPA and sent to IEF for dicing. Actu-
ally, as the Quartz substate has an hexagonal symmetry, it cannot be
cleaved.

Figure 63. Left: SEM image of the SQUID. Right: zoom on one of the
Josephson junction with size 95� 87nm2
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We then performed EBL on single chips using an FEI XL30 SEM with
a dose of 300 �C.cm¡2 at 30 kV. The focus was tuned a three point on
the sample using 20 nm gold colloids.

The development process then consisted in :

1. 35 secs MIF 726, 15 secs ODI to remove the aluminum layer

2. 60 secs MIBK + IPA (1:3), 30 secs IPA, 15 secs ODI to open
the Josephson junction patterns

3. 25 secs MIF 726, 1min ODI, 15 secs ethanol to have a nice
undercut

Double oxidation junctions

Finally, we deposited and oxidized aluminum to form highly resistive
Josephson junctions using double angle evaporation technique. In order
to fabricate very resistive Josephson junctions, the group of J.P. Pekola
[42] raised the idea of oxidizing not one layer of aluminum but to do
it twice. By evaporating an additional subnanometer thick layer of Al
immediately after oxidizing the �rst layer, and oxidizing this fresh very
thin layer, one thus obtain thicker barriers.

The key parameter of this recipe is the thickness of the interme-
diate thin Al layer. As it will be completely oxidized we can achieve
resistances up to 1M
 with 0,4nm. Using this process, the surfacic
capacitance of the junction is estimated to 70 fF / �m2 i.e. �2 fF for
the SQUID.

1. Argon ion milling 2x10 secs / 3 mA

2. -24° : 20 nm Al @ 1 nm.s-1

3. O2/Ar (15/85 %) oxidation 300 mbar during 20 min

4. 0.25 nm Al @ 0.1 nm.s-1

5. O2/Ar (15/85 %) oxidation 667 mbar during 10 min

6. 24° : 80 nm Al @ 1 nm.s-1
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a)

b)

c)

d)

Figure 64. Josephson junction fabrication steps :

a) Josephson junction shape : PMMA development

b) Undercut : PMGI development

c) & d) optical microscope view of the junctions after lift-o�

The lift-off of the resist was done by putting the sample in 60°C
remover-PG during 40 minutes. In order to get uniform resistance
values and limit Josephson junctions aging, they were rebaked on a
hot plate at 110°C during one minute.

The chip was then stuck on the PCB with UVIII resist and bonded to
the single input/ output port using aluminum wires as shown in Fig.
57.

The chip was then placed in a brass box, connected to the measurement
chain and cooled down to 15mK.
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4 Measurement techniques and set-
up calibrations

As presented in details in chapter 1, we want to apply a dc voltage
bias to a Josephson junction coupled to a high impedance microwave
resonator and collect the emitted radiation leaking from the resonator
into a 50
 detection line. In chapter 3, we have presented simulations
results of our microwave resonators with resonance frequency in the
4-5 GHz range, i.e. inside the 4-8 GHz detection bandwidth we are
equipped for.

The �rst measurement step consists in characterizing the resonators
(section 1); we then couple them to a Josephson junction nanofabri-
cated on chip. The sample was then cooled at 15 mK and connected
to a measurement set-up (Sec. 2), comprising a dc line (Sec. 2.1) and
a microwave measurement line (Sec. 2.2 ).

1 4K characterization of the resonators

Our resonators are made of niobium whose critical temperature Tc�
9K, higher than liquid helium temperature. In order to �rst test the
resonators and probe our designs, the junction is not made, thus leaving
this side of the resonator open. We dip the chip in liquid Helium
and perform re�ection measurements with a vectorial network ana-
lyzer (VNA).

Re�ection measurement set-up

Our sample has only one port, and can thus be characterized through
re�ection measurements only. In order to di�erentiate re�ections from
the sample from the parasitic re�ection of the measurement line, we
use an hybrid coupler and perform S21 measurements with a VNA as
shown in Fig. 65. This is indeed equivalent to an S11 measurement.
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Figure 65. 4K S11 measurement set-up : the signal is sent to the sample
from port 1 of the VNA and measured in port 2. In order to avoid para-
sitic re�ections, both line are attenuated. The hybrid coupler provides an
additional 20 dB attenuation of the input signal.

To perform this measurement, we place attenuators between cables to
avoid standing waves. In addition, we use the internal attenuators of the
VNA to reduce the power of the output signal. In fact above a certain
input power, the sample turns normal and the resonance disappears.

We measure the S21 signal on the VNA which corresponds to the signal
re�ected by the sample. We performed magnitude and phase measure-
ments. As we measure a dissipation-less resonator, the amplitude of
S11 is always �0dB. After removing the slope in the phase due to the
cable length, this measurement gives access to the resonant frequency
and the quality factor Q from

Arg(S11)=¡2Arctan
�
2Q

f ¡ f0
f0

�
: (65)

Coil & bridge
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Figure 66. 4K re�ection measurements of the resonator without (red) and
with the BCB bridge (blue). The �ts yield the resonator parameters given
in table 5.

The results extracted from these measurements are given in table 5.

experiment (sonnet) Coil + bridge + JJ
f0 (GHz) 5.41 (5.97) 4.7 (5.19) 4.47(5.1)
Q 80 (85) 93 (104) 65(74)

Table 5. Resonator parameters extracted from measurements (bold) and
simulations (in parentheses).

The third column corresponds to a di�erent measurement of the res-
onator connected to the Josephson junction. Instead of performing
re�ection measurements, we have used the Josephson junction voltage
biased above the gap as a white noise source and measure the emitted
radiations to characterize the microwave environment. This last mea-
surement was performed at 15mK.

The initial resonance frequency is lower than the simulation results (see
chapter 3) by 10%, which is quite signi�cant but still compatible with
our measurement set-up (allowing detection in the 4-8 GHz frequency
range). We have performed simulations to check whether this could
be due to the width of the coil lines, to the height of the simulation
box or to the wafer thickness. In the simulations, these parameters
do not a�ect the resonance. We attribute this shift to an additional
capacitance of unknown origin.
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This is somewhat not surprising, as we observed that the resonant
frequency depends of the precise way our sample box is closed. We thus
attribute this discrepancy to a capacitive coupling of our resonator to
the sample box not correctly taken into account in our simulations.

The bridge, in good agreement with simulations, decreases the resonant
frequency by 15%. This is qualitatively easily understood as the bridge
capacitively couples the high impedance end of our resonator to the low
impedance input, so that one can think of the bridge as an additional
capacitance.

Even though the full resonant circuit can be modeled as a parallel LC
resonator, one sees in table 5 that the contribution of the bridge cannot
be modeled as a simple capacitive contribution (which would lower the
quality factor). In fact, the capacitance between the turns as well as
the mutual inductance are a�ected in a non trivial way by the addition
of any element. The bridge thus modi�es the current distribution in
the entire inductor, thus making electromagnetic simulations essential.

In our simulations, assuming a size of 2 � 100 � 100 nm2 for the
junctions [42], we took a Josephson junction capacitance CJ = 2 fF.
Our experimental results indicate that the capacitance added by this
element is more important (around 5 fF). In fact, our estimate was
not taking into account the capacitance related to the lines connecting
the SQUID to rest of the circuit which might be responsible for a
capacitance of 1.5 fF (assuming CL = 40 pF:m¡1). In addition, the
SQUID branches may also bring some parasitic capacitance and can
further increase the shunting capacitance.

Both the bridge and the junction's capacitance lower the resonant fre-
quency of our inductor but did not strongly a�ect the characteristic
impedance. Our complete resonator is still compatible with our mea-
surement chain, allowing us to access the strong coupling regime.
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2 Voltage bias of a Josephson junction and
collection of emitted photon

We then build an experiment analogous to the experiment of Hofheinz
et al. [41], without current measurement in order to reduce the voltage
noise on the dc line. The corresponding experimental set-up is pre-
sented in Fig. 67 : the capacitive port of the bias tee guides the photons
emitted by the junction to a microwave amplifying chain, whereas its
inductive port is connected to a low frequency circuit making possible
to apply a dc voltage bias V to the junction.

V bias-tee

sample
voltage
biasing

radiation collection

Josephson
junction

resonator

Figure 67. Measurement scheme. The bias-tee splits the applied dc voltage
from the microwave signal.

One important feature of our measurement set-up is to apply dc bias
voltage to the sample while measuring the emitted microwave radia-
tions. In this aim, the resonator is galvanically coupled to the biasing
line through a single port.

2.1 Low noise voltage biasing

As previously mentioned in section 3, in order to emit radiations into
the environment, the sample must be biased according to

2e V = k h f0;
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where f0 is the resonance frequency of the mode. This condition
requires the voltage noise amplitude on the biasing line to be much
smaller than the equivalent width of the resonator

�V � h�f

2e
;

where �f=130MHz is the full width at half maximum (FWHM). This
is fairly di�cult as it corresponds to a �V = 300nV.

Voltage divider

In order to reduce the noise shined on the sample from the room
temperature DC bias source (Yokogawa), we voltage bias the sample
through a huge voltage divider of 200
 / 6.5M
 according to Fig. 68.

Thanks to this divider, we can voltage bias the junction with a precision
of a fraction of �V and thus neglect the noise coming from the voltage
source as it will be divided by R1/R2� 3.2 104.

V

sample

R2=200 Ω

R3=60 Ω

R1=6,5 MΩ

300 K

15 mK

900 mK

C2

Cu powder 
filter

C1

C3

Figure 68. Bias line �ltering scheme.

The �rst biasing resistor R1=6.5M
 is placed at 1K to reduce thermal
�uctuations. The second resistor of the voltage divider is a distributed
resistance R2 = 200
 associated with an important capacitance to
ground C2� 100 nF, thus providing a �rst RC �ltering stage.
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The sample is �nally biased through a 60
 resistor (remain of the pre-
vious current measurement set-up) in parallel with a Presidio capacitor
C3 = 100 nF at room temperature, and supposed to increase at low
temperature. This forms a second stage of RC �ltering.

The Copper powder �lter does not contribute to the low frequency
�ltering but protects the sample for very high frequency noise that
may have been transmitted across the two �rst �lters through parasitic
capacitive couplings.

Thermal noise on the biasing line

Here, we estimate the total noise power that reaches the sample. In
fact, each resistor of the line can be modeled as a pure resistance in
parallel with a current noise source as shown in Fig. 69., which shines
thermal �uctuations to the rest of the circuit.

As they are almost suppressed by the voltage division, we do not con-
sider intrinsic voltage �uctuations of the source and 1K �uctuations of
the resistor R1 = 6.5M
. In addition, we neglect the contribution of
the Copper powder �lter as its resistance is negligible (0.3
).

As a consequence we consider here two stages of RC �ltering : R2C2
and R3C3. The amplitude of the voltage noise of each RC circuit can
be calculated independently according to

�VRMS
2 =4 kBTNR�f

Where �f is the bandwidth of the circuit, given by the considered RC
�lter cut-o� frequency 1/2�R C. The voltage noise then takes a very
simple form

�VRMS
2 =

1
2�

Z
0

+1 d!
1+R2C2!2

4kBTR=
kB T
C

: (66)

where T is the temperature of the resistance. As a �rst approximation,
we can sum up the noise that is brought by the stages independently,
which is not irrelevant if the cut-o� frequencies of the second �ltering
stages does not �lter most of the noise of the �rst stage.
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In order to validate our �ltering strategy and estimate the amplitude
of voltage noise at the sample level, we perform lock-in power measure-
ment to extract the cut-o� frequency of the biasing line.

As described in Fig. 69, we �rst apply a constant bias V0 to the sample,
in order to hit the side of the single photon processes resonance. In
this regime, we expect the emitted power to be proportional to the
impedance of the resonator at the Josephson's frequency 2e V /h. We
then add a second contribution VAC cos(2�ft) and chose VAC = 4 mV
that corresponds to a bandwidth VAC / (h /2e) = 58 MHz over which
we can consider that the impedance seen by the junction is a linear
function of the Josephson frequency (black arrow).
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R3=60 Ω

R1=6,5 MΩ
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900 mK
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C3

Sample

E
m

it
te

d
 p

ow
er

 (
a.

u
.) 100 MHz

measurement
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V
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C1∼100 pF
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Noise : 100µVpp

Figure 69. Measurement of the DC line frequency cut-o�.
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As shown in Fig. 70, we measure the excess power as a function of the
modulation frequency. In this regime, the emitted power is proportional
to the impedance of the environment Zenv(2e V /h) and thus increase
linearly with the e�ective voltage applied to the sample.
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Figure 70. Excess power emitted by the sample as a function of the fre-
quency modulation on the bias.

From this measurement, we extract the cut-o� frequency fc ' 5 KHz
and the �ltering slope. The slope of -20 dB/decade on the power mea-
surement corresponds to a slope of -20 dB/decade on the amplitude of
the applied voltage and thus to a second order �lter. This means that
both the second and third stages have a frequency cut-o� around fc.

We know that C3=100 nF at 300 K and increases as low temperatures
up to �1 �F. Considering a 5 kHz cut-o� frequency, we estimate C3=
500 nF at 15 mK. From this measurement, we also deduce approxima-
tively the value of C2, as given in table 6.

Stage R C frequency cut-o�
2 200
 �150nF 5 kHz
3 60
 �500 nF 5 kHz

Table 6.
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A straightforward calculation of the noise contribution from this 2-stage
�lter gives

�VRMS
2 =

2kBT
�

Z
0

+1 R2+R3
¡
1+R2

2

C2
2!2
�

(1¡R2C2R3C3!2)2+(R2C�+R3C3)
2!2

d!

where C� = C2 + C3. This corresponds to a voltage noise �VRMS =
0.7 nV.

In our experiment, the amplitude of this voltage noise �VRMS will result
in a frequency noise �f in the emitted radiation. Assuming Gaussian
�uctuations /e(f¡f0)/2�f, this will correspond to a frequency FWHM
�fRC=2 2ln2

p
�f ' 2.35�VRMS

�0
= 800 kHz.

Given the measurement uncertainties, this results is consistent with our
measurement of �fmeas=3MHz presented in chapter 5.

One should note that we have neglected so far the in�uence of the
Yokogawa voltage source noise. However, its contribution might be
signi�cant as the data-sheet gives a noise amplitude of 100 �Vpp for a
10kHz bandwidth. This would correspond to an additional �VRMS =
0.75 nV contribution on the noise, resulting in a total width of 1.2 MHz,
which is in reasonable agreement with our measurements..

2.2 Radiation measurements

2.2.1 Low temperature ampli�cation

Now that our sample has a clean sample biasing line, we characterize
the radiation of the Josephson junction with power measurements. One
photon at a frequency 4.4 GHz corresponds to a temperature of �
200 mK. As the signals that we want to measure are initially very small,
we �rst need to amplify them.

We use HEMT low temperature ampli�ers from LNF. They provide a
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40 dB gain over the 4 to 8 GHz bandwidth. Its input/output signals
can be described in terms of annihilation/ creation operators : a and ay

for the input line,f and f y for the idler port associated to the intrinsic
noise of the phase preserving ampli�er, and A and Ay for the output
signal of the ampli�er.

Noise
source

Ginput output

Figure 71. Ampli�ers noise contribution on the output signal.

The output of the ampli�er is then de�ned by its operators [17][40]

A= G
p

a+ G¡ 1
p

f y;

Ay= G
p

ay+ G¡ 1
p

f

(67)

where G is the gain of the ampli�er.

The output voltage is then

V =A+Ay= G
p

(a+ ay)+ G¡ 1
p

(f + f y);

and as a and f commute, the associated power is

PT ;A= hAyAi=Ghay ai+(G¡ 1)2hf y f i: (68)

One should note that the output of the ampli�er is now made of a huge
number of photons so that /N+1

N � 1 and can thus be considered as a
macroscopic signal.
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By performing correlation measurements at the output of the ampli�er
and removing all terms which do not preserve photon number, one
obtains for the power �uctuations h�PA2 i

h�PA2 i/ hAyAyAAi ¡ hAyAi
2
;

with

hAyAyAAi=G2hayayaai+(G¡ 1)2hf yf yff i+2G(G¡ 1)hayaihf yf i:

This is obviously di�erent from hayayaai that we want to access. As
these ampli�ers have a noise temperature of �2K (see Sec. 2.3.2),
jf j� jaj.

The hf yf yff i contribution from the amplifier noise can be easily
removed by performing on-o� measurements.

As the signal is a small (�1%) contribution PS on top of the ampli�er
noise PN, the calculated correlator is mainly accounted for by the �rst
moment contribution hayai. We will present in details in section 1.1, a
way to circumvent this e�ect by using a beam splitter and performing
Hanbury-Brown and Twiss like experiment.

In addition, this noise is also present at the input of the ampli�er.
In order to prevent the ampli�er to shine thermal radiation on the
sample, we use 4 circulators as isolators, which provides more than
60dB isolation.
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2.2.2 Cold Stage set-up

V V

Dissipative filters

4-8 GHz filters

Circulators

-3dB coupler

Sample

Bias tee

Coil

200 Ω

60 Ω

6,5 MΩ

4K amplifiers

Room temperature  : 
power measurement chain

Circulators

300 K

15 mK

900 mK

4 K

Figure 72. Wiring of the cold part of the experiment : The sample (green)
is biased through a voltage divider (red). The outgoing microwave signal,
emitted by the sample, is �ltered and ampli�ed (blue). The �ux through
the SQUID loop is tuned with a small coil on top of the sample (orange).
Unlabeled resistors are 50
 loads connected to ground.
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The reference of the elements are listed in table 7. In addition with all
the previously mentioned devices, the circuit has:

� a twisted pair of cables to feed a coil on top of the sample box
holder. This allows to modulate EJ by changing the magnetic
�eld.

� 4 ¡ 8 GHz and dissipative �lters to remove any out of band
contribution at the input of the ampli�ers.

� Copper powder �lters on the dc line

element reference
Bias tee SHF BT 45B 40873

20kHz-40GHz /16V, 0,4A
-3dB coupler Pulsar QS2-05-463/2
double circulator : Quinstar :
- before splitter QCY060400C020
- after splitter QCY060400CM20
dissipative �lters Marki FX0109
4-8 GHz �lters Microtronics BPC 50403
ampli�ers LNF LNC4_8A
Cu powder �lter 0.3
 / 350pF

Table 7.

With this cold stage set-up, we voltage bias the sample with extremely
low noise and measure its microwave emission on top of the ampli�ers
noise at the output of the fridge.

2.2.3 Spectral power measurement

In a �rst step, we measure the power emitted by the sample without
performing correlation measurements, as done by Hofheinz and
coworkers [41], but without current measurement. We use the set-up
shown in Fig. 73.
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Figure 73. Room temperature microwave set-up for power measurements.
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The references of the elements used in the room temperature microwave
set-up are listed in table 8 :

� First, at the output of the fridge the signal goes through an
isolator to avoid shining noise from 300K ampli�ers back to the
fridge.

� The signal is once more �ltered and ampli�ed in the 4¡ 8GHz
band. As our resonator frequency is 4.4 GHz, we add a second
step of �ltering to get rid of ampli�ers noise.

� Then we use a �rst mixer as a chopper to perform homodyne
detection with lock-ins. To do so, we use Marki mixers and
connect the low frequency port to a MHz square source. The
input/output signals are connected to the LO and RF port of
the mixer.

� In order to be able to tune measurement frequency and band-
width, we down-convert the signal with a second stage of mixers
(Miteq). We use an RF source from Rhode and Schwartz as a
local oscillator and �lter the output of the mixer with a low-pass
�lter �f .

� Finally, we perform power measurement using quadratic detec-
tors, amplify the output voltage and send it to quadratic detec-
tors to perform homodyne detection.

element reference
4¡ 8GHz �lters Microtronics BPC 142 44
4.1¡ 4.7GHz �lters Microtronics BPC 188 98
4.25¡ 4.7GHz �lters WI WTBCJV6 41254825 250 1100 50SS
Mixers (chopping) Marki M80420LS-0409
Mixers (heterodyning) MiteQ DB0218LW2
RF source R&S SMR20
MHz sources HP 3310B
(LI detection) SRS DS 345
Quadratic detectors Herotek DTM 180AA
Lock-in SRS SR830 DSP

Table 8.
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Quadratic detectors

Quadratic detectors consist of a resistor connected to a capacitance
through a diode. To obtain the RMS value of the signal, the input
voltage must stay well below the threshold voltage of the diode.

This kind of detector has two main drawbacks :

- due to the �nite charging time the capacitance, they do not follow
power �uctuations above a certain frequency

� a voltage over which they become nonlinear.

The maximum input voltage to achieve 1% precision is typically 0.2 v0,
with v0� 26mV.

When a voltage V =Vin cos(!0t) is applied to the diode, the output of
the detector, charged by a resistance RL is then

Vout=RL Isat
Vin
2

v0
2

where Isat is the saturation current of the diode. This value is in fact
proportional to SII. We use two types of quadratic detectors :

� Slow Quadratic detector : low cut-o� frequency : 1 MHz

they are used to measure the average power on each line.

� Fast Quadratic detectors : rising time of 0.6ns (1 ns, according to
their speci�cations). They are used to perform cross correlation
measurements and their output power is given by Fig. 74.

Figure 74. Quadratic detector linear behavior range.

(reproduced from Herotek data-sheet)
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Homodyne detection

The output voltage of the quadratic detector is proportional to the
emitted power and is ampli�ed with a 20 dB gain ampli�er. Each line is
then split and measured with two lock-in detectors as shown in Fig. 73.

� The �rst one is synchronized with the �rst mixer of the warm
chain to perform standard homodyne detection and gives access
to the total power : PT ;A/B=PN;A/B + PS;A/B.

� The second one is synchronized with a TTL signal chopping the
biasing line, which allows to measure the excess noise coming
from the sample when the bias is applied : PS;A/B.

The typical frequencies that we used were �120Hz for the TTL and
several MHz for the mixers.

The main contribution to the total power PT ;A/B is the power associ-
ated with the noise contribution of the cold stage ampli�ers PN;A/B.
We assume that the temperature associated to this value stays constant
over time and that the �uctuations of the total power are due to �uc-
tuations of the gain. As a consequence, the ratio PS;A/B /PN;A/B is
thus directly related to the power emitted by the sample.

In the Shot Noise regime, where the power emitted by the sample is
well de�ned, the ratio between these two powers allow us to calibrate
the whole measurement chain (see Sec. 2.3.2)

2.3 Calibrations

Before performing the power fluctuation measurements to access
g(2)(�), we calibrate the gain of our detection chain and characterize
the electromagnetic environment of the junction.

The main parameters of the sample that we have measured are

Name f0 FWHM Q
Lores_Quartz2_C5 4.41GHz 130 MHz 34

ZC RN (300K) ZC�/4
2.05 k
 230 k
 70


Table 9. Main characteristics of the measured sample.
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By performing on-o� measurement, chopping the bias of the junction,
we measure the excess noise PS coming from the sample when a voltage
bias is applied.

2.3.1 Shot Noise calibration

We �rst voltage bias the Josephson junction above the gap eV>2�, so
that it acts as a white noise source, as shown in section 5. The power
spectral density emitted by the sample is then

SII(!)= 2eV¡(!); (69)

where ¡(!) is the coupling coe�cient between the junction and the
resonator.

Coupling coe�cient

Shot noise measurement thus give access to the coupling coe�cient
between the Josephson junction and its single mode environment [67]
which is related to its impedance

¡(!)=
4Re(Zenv(!))RT

jZenv(!)+RT j2
(70)

where Zenv(!) is the impedance of the environment and RT , the normal
tunnel resistance of the Josephson junction. As this resistance was
measured at room temperature, we consider that it increases by 17%
at low temperature, according to previous experiments [35][65].

Using Eq. 69, the associated power measured by the quadratic detectors
is

PS=2eV¡(!)�f (71)

where �f is the bandwidth of the power measurement chain.
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Figure 75. Coupling ¡(!) for V =990�V >2� : Shot Noise measurement
(black line) compared with simulation results (red line)

In order to measure the emission spectrum, we sweep the frequency of
the heterodyning source and �lter the signal with a narrow bandpass
�lter (Fig. 73) or directly measure the emission spectrum with a spec-
trum analyzer.

From this measurement presented in �g. 75 (black line), we extract the
resonant frequency f0 = 4.41 GHz. The coupling ¡(!) extracted from
simulations using equation 70 is compared to the experimental results
in Fig.75.

To extract the e�ective coupling from the data, we �t the emitted
power with a Lorentzian and assume that its maximum matches the
simulation.

2.3.2 Noise temperature of the cryogenic ampli�ers

The second goal of this calibration step is to determine the total gain
of the chain, i.e. to convert an output quantity : the power measured
by the quadratic detectors, into an absolute quantity : photon emission.

The main contribution to the power is the intrinsic noise of the cryo-
genic ampli�er as described in section 2.2.1. This noise power can be
associated with a noise temperature TN so that PN;A/B=4kBTNA/B.

In order to calibrate the equivalent temperature of the two cold ampli-
�ers, we measure both the total power PT ;A/B and the excess power
PS;A/B emitted in the whole resonator, assuming a constant noise tem-
perature over its bandwidth.
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Sweeping the voltage bias across the junction above the gap

2eV> 2�� 360�V ;

we measure the excess noise power coming from the sample as shown
in Fig. 76.
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Figure 76. Excess power emitted by the Josephson junction in the two
measurement lines as a function of bias voltage.

As this excess power is well de�ned by equation 71, it is used as a cal-
ibration to extract the noise temperature of the two ampli�ers TNA/B

TNA/B=
2eV¡

4kB /PS;A/B
PN;A/B

where PS;A/B is the excess power coming from the sample and PN;A/B

is the power measured at zero applied dc voltage, corresponding to
intrinsic noise of the ampli�ers.

By measuring the slopes, as shown in Fig. 76, we extract the noise
temperature of the two ampli�ers referred at the output of the sample
that are given in table 10.

Noise temperature Ampli�er reference
as seen from the sample LNF :

TNA= 11.4K LN8CA - SN 067
TNB= 15.1K LN8CA - SN 070

Table 10.
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These values are consistent with the �2 K noise temperature of the
ampli�ers combined with the attenuation of the various components
inserted between the sample and the ampli�ers as presented in the cold
stage Fig. 72 of section 2.2.2. This includes the insertion losses of the
4 circulators, the small attenuation of the 12 GHz low pass �lters, and
the 3dB due to the splitter.

Since the ampli�ers noise temperature is stable over the duration of the
experiments, we use the background noise of the ampli�er as a power
reference. Using all calibrations, we extract the photon emission rate
in the Dynamical Coulomb Blockade regime as

¡=
PS
PN

TN
~!0

�f:
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5 Power spectrum measurements

The main goal of this thesis is to characterize the statistics of photons
emitted by a Josephson junction strongly coupled to a single mode
environment. This requires power �uctuation measurements using a
Hanbury Brown and Twiss set-up as discussed in chapter 4.

We �rst characterize the spectral density of the radiation emitted by
the Josephson junction, which is equivalent to measuring g(1), before
performing power �uctuation measurements in the single photon peak
to obtain g(2).

We also investigate in this chapter new features that appear in the
strong coupling regime. We observe in particular processes involving
the simultaneous emission of up to 9 photons by a single Cooper pair
as well as the renormalization of EJ, which goes beyond the standard
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P (E) theory of Dynamical Coulomb Blockade.

1 Single photon peak

The spectrum of the radiation emitted by the junction when the voltage
is swept around the single photon resonance is shown in Fig. 77.
According to section 3, the Josephson junction emits single photons at
the Josephson frequency f = (2e/h) V . When this frequency matches
the resonance, one observes a single photon emission peak, leaking
in the measurement line.

This map of Fig. 77. was taken at a low enough value of EJ for which
the P (E) theory is expected to account for the emitted radiation as
tested further below.
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Figure 77. Single photon emission. Bottom : Map of the radiation emitted
by the Josephson junction when the voltage is swept around V =(h/2e)f0.
Top : Black line : the extracted impedance of the environment assuming
that the emitted power follows the P (E) theory as described in section 1.3.
Red line : Sonnet simulation of the circuit geometry.
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1.1 Characterization of dc voltage noise

Given the bias voltage noise directly a�ects the emission frequency, our
experiment requires a careful �ltering of the biasing line so that voltage
�uctuations �V (coming either from thermal �uctuations or parasitic
noise) induce frequency �uctuations �f signi�cantly smaller than the
spectral width of the resonator.

In order to estimate the voltage noise on the line, we use two methods :

� we bias the junction with a �xed voltage and measure the emis-
sion spectrum. The result for di�erent values of EJ is shown in
Fig. 78 (left) and give a bandwidth �fmeas of 3¡ 5MHz, which
corresponds to a �VRMS� 2.5nV.

� Using heterodyning and �ltering the signal in a 10 MHz band-
width, we select a narrow frequency band and sweep the bias
across the junction as shown in �g. 78 (right) and we measure
the frequency noise with a quadratic detector. As the quadratic
detector has a low frequency cut-o�, we cannot reduce the �l-
tering bandwidth down to a few MHz. We obtain �VFWHM =
0.03 �V, which corresponds to �fmeas = 15 MHz. Given the 10
MHz convolution from the �ltering bandwidth, this value agrees
with the direct spectral measurement.
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Figure 78. dc voltage noise characterization. Left : direct spectral analysis
of the emitted radiation. Right : emitted power at a frequency f in a 10
MHz bandwidth when the bias voltage is swept around (h/2e)f .
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In previous experiments using a similar set-up, the voltage noise cor-
responded to a 35 MHz frequency broadening [65]. This is why our
sample was designed to have a FWHM frequency width of 130 MHz.

We attribute the reduction of the noise in the present experiment to
improved �ltering. Our sample with a quarter wave transformer, has a
sizeably larger that the achieved technical broadening of 5 MHz. This
low value could even allow narrower resonances.

1.2 Spurious environment modes due to the bias tee

Bias tees are made of inductive and capacitive elements, resulting in a
RF self resonance which can also exchange photons with the Josephson
junction. As these modes are of much lower impedance than the res-
onator, they are weakly coupled to the junction but result in small
additional side-band peaks involving two photon processes, as shown
in Fig. 79.

One observes 3 lines, which from bottom to top correspond to :

I. As the energy 2e V provided by a Cooper pair is 2e V <h f0, it
can nevertheless emit a photon in the resonator by absorbing a
photon from the bias-tee mode.

II. Dominant process : emission of a single photon in the resonator.
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III. Simultaneous emission of one photon in the sample resonator
and one photon in the bias-tee mode.
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Figure 79. E�ect of the spurious bias-tee mode on the emission spectrum.
Single photon peakmap (logarithmic scale). The two side-band peaks corre-
spond to the simultaneous emission of a photon in the resonator associated
with the absorption/emission of a photon from/in the 160 MHz bias-tee
mode.

The resonant frequency of the parasitic low frequency mode, extracted
from a cut of the map of Fig. 79, corresponds to fp = (2e / h)�V =
160MHz.

In addition, the mean thermal population n of the parasitic mode can
be obtained from the ratio between emission and absorption side-bands
n+1

n
. The measured value 2.07 yields n= 0.93 , which corresponds to a
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temperature of 15 mK, in good agreement with the fridge temperature.

1.3 Analysis of the single photon peak with the
P (E) theory : extraction of Re(Zenv)

According to the P (E) theory prediction of Eq. 49, the excess emitted
power density is

SII(!; V )=
2�e2EJ

2

~ P1
0(!; V );

where P10(!; V ) corresponds to the probability to emit single photons
in the environment. This probability described in section 3, is propor-
tional to the real part of the impedance of the environment

P1
0(2eV¡ ~!)/Re[Zenv(!)] �(2eV¡ ~!):

Following the line 2e V = h f on the map of �g. 77, one can precisely
reconstruct the pro�le of the environment.

We make the assumption that the noise temperature of the ampli�ers
is constant over the resonator bandwidth and correspond to the power
PN. The emitted power ratio PS /PN measured in the map shown in
Fig. 77 is then proportional to Re[Zenv(w)].

In order to obtain Re[Zenv(w)] from the data, we make the assumption
that the integral of the emitted power ratio is equal to the integral of
the simulation results. This procedure leads to the impedance shown on
the top panel of Fig. 77 (black line). The extracted data summarized
in table 11, matched simulation results (see Sec. 1).

f0 �f Q ZMAX ZC r
4.41GHz 151MHz 29 59k
 2.05k
 1.0

Table 11.

Consistency check with the coupling coe�cient in Shot Noise
measurements
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The impedance of the environment was also characterized by the cou-
pling coe�cient ¡(!) in Shot Noise power measurements in the normal
state of the junction given by Eq. 70

¡(!)=
4Re[Zenv(!)]RT
jZenv(!)+RT j2

:

We extract the coupling coe�cient from the measurement of
Re[Zenv(w)].

We compare in Fig. 80 the measured coupling coe�cient, the coupling
coe�cient derived from the single photon peak analysis and using Eq.
70, and simulation results. The good agreement achieved is a consis-
tency check of the global analysis framework.
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Figure 80. Comparison of the coupling coe�cient measured in Shot Noise
(red curve), derived from the single photon peak analysis (black curve), and
simulation results (green curve).

1.4 Tuning the emission rate ¡ with the �ux
Previous results in this chapter were obtained at a �xed and small value
of EJ. By modulating the �ux � threading the SQUID [47], one can
tune EJ over a large range, and thus the photon emission rate.

According to the P (E) theory (Eq. 33), the emitted power should scale
as EJ2(�) and thus be proportional to

EJ
2(�)=EJ max

2 cos2
�
�
�
�0

�
(72)
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where � is the magnetic �ux threading the coil and �0=h/2e, the �ux
quantum.

In order to observe this modulation, we place the sample at the single
photon resonance frequency 2e V = h f0, and collect the radiation
emitted in the whole resonator as shown in Fig. 81 (black line). This
modulation was compared to theoretical expectations (red line).
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Figure 81. Power emitted by the single photon process as a function of
magnetic �eld (black line) and rescaled theoretical prediction (red line).

The observed variation of the total emitted power with the �ux does not
scale as predicted by Eq. 72. One observe a saturation of the emitted
power at large EJ which we attribute to the strong coupling regime
reached in our experiment.

Our very symmetric SQUID allows us to reach low values of EJ, for
which the P (E) theory is valid as demonstrated in section 1.3. In addi-
tion, it allows us to reach the low mean photon occupation regime
required for observing strong anti-bunching as discussed in section 5.5.

1.5 Characterization of EJ(�)

The scaling of Eq. 72 should nevertheless be valid when P (E) is small
enough to ful�ll the inequality (see Sec. 3.4)

EJ(�)P (E)� 1:
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To calibrate EJ in situ using the standard P(E) formalism, we bias the
junction at a bias voltage corresponding to the upper end of the single
photon peak region, at frequencies of 2e V /h=4.512 and 4.6 GHz, and
�lter with a narrow 10 MHz bandwidth. We then bias the junction at
voltage corresponding to the peak frequency, with a bandwidth cov-
ering the whole resonance.

At the frequency f = 4.6 GHz, the real part of the impedance is
Re[Zenv(2�f)]' 6 k
 (and Re[Zenv(2� 4.512 109)]� 19 k
), which are
respectively 3 and 10 times lower than the maximum impedance.

We measure the emitted power at 4.512 GHz and 4.6 GHz at a given
bias voltage. However, these data cannot be directly used because the
variations of the current with EJ(�) induce a voltage drop across the
60
 resistor of the biasing line, which yields to a small change in the
Josephson frequency, but still larger than the narrow �lter bandwidth.

Thus, we �rst measure a map of the emitted radiation as shown in �g.
82 in order to maintain the Josephson frequency in the �lter bandwidth.
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Figure 82. Voltage drop due to the 60
 resistance in series. For a fre-
quency of 4.512GHz with a �ltering bandwidth of 10MHz.

Note that this map, through the voltage drop, also gives access to the
current through the junction.

By taking the maximum of emission for each �ux in the map at 4.6
GHz, we obtained the corrected power shown in Fig. 83 (red curve).
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Figure 83. EJ modulation by sweeping the �ux through the SQUID. the
blue curve corresponds to a polarization at the center of the resonator i.e.
strong coupling whereas the black curve corresponds to photon emission
on the side of the resonance (4.6 GHz). The red curve is the associated
sinusoidal �t.

One observes that the emission on the side of the resonator (red curve)
follows the EJ2(�) scaling (black curve), in agreement with the P (E)
theory. At resonance, a similar measurement, in a larger bandwidth
for the sake of simplicity, shows a strong saturation of the excess power
(blue curve) as already shown in Fig. 81.

According to recent theoretical works [50][1], the strong coupling regime
leads to a saturation of EJ : when the parallel admittance of the junc-
tion becomes appreciable, it shunts the environment. This e�ect could
possibly explain our results, and calculations are presently pushed for-
ward (Philippe Joyez, private communication).

2 Multiple photon emission

We now focus on the regime where a single tunneling Cooper pair emits
simultaneously several (k) photons in the environment. The power
emitted in the measurement chain is then proportional to the photon
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emission rate ¡Ph= k¡Cp. Assuming an in�nite quality factor mode,
the P (E) theory yields

Pk=�2EJ
2 f0 e

¡r rk

(k¡ 1)! ; (73)

where f0 is the resonant frequency of the mode, and r, the coupling
constant.

2.1 Power spectrum of multiple photon processes

In a previous experiment of the group [41], a coupling factor of r=0.08
was achieved. As a consequence, the second order peak amplitude was
1/12 of the single photon peak and processes involving the emission of
3 or more photons were not measurable.

With a much larger coupling factor r � 1, higher order processes are
observed as shown on the map in Fig. 84. In this measurement, we
measure the spectral power emitted by the junction as a function of
frequency while increasing the bias voltage up to 2e V = 4h f0, i.e. up
to the four photon emission resonance.
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Figure 84. Multiple photon emissionmap: wemeasure the power associated to
processes where a tunneling Cooper pair emits simultaneously up to 4 photons.
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On the map of Fig. 84, the 4 lines correspond to the four processes
k=1; :::; 4.

One observes that the multi-photon process lines are broader than
the single photon line. This is due to the fact that for higher order
processes, the previous condition �(2eV ¡ h f) becomes �(2eV ¡
h f1 ¡ :::: ¡ h fk). For example, the emitted power at a �xed voltage
for the two photon process is proportional to

P2(V )/
Z
BW

Re(Z(!1))Re(Z(!2)) �(2eV¡ ~(!1+!2)):

This implies that the frequency of the emitted photons can be slightly
di�erent from 2e V /k h , as long as the sum of their energies are equal
to 2e V as shown in �g. 85.
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a) single photon emission

2eV=hf

b) two photon emission
2eV=hf1+hf2

Figure 85. contributions to the emitted power. Left : Single photon emis-
sion peak, the spectral width is given by the voltage noise on the biasing
line. Right : at a given voltage, 2 photon processes can lead to emission at
di�erent frequencies. The cartoon illustrates the case !J=!0.
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This predicts that the peaks corresponding to two photon are broader
that the single photon peak, as observed. The width of the multi-
photon peak is given by a (multiple) convolution of the mode imped-
ance shape.

At large values of EJ, the emitted power is large and the signal to noise
ratio is optimum. Integrating the power emitted in the whole resonator
bandwidth (from 4.1 to 4.7 GHz) and increasing the bias voltage across
the junction, we observe up to 9 photon processes as shown in Fig. 86 .
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Figure 86. Multiphoton processes. Emitted power integrated over the
resonator bandwidth (Linear and logarithmic scales) at the maximum value
of EJ.

The integrated power of each peak is given in the table below :

1 2 3 4 5 6 7 8
9.99 22.73 16.90 5.45 1.28 0.88 0.50 0.19

Table 12.
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Figure 87. Integrated power of k photon emission (green bars) and �t with
the P (E) theory with r=1 and an adjustable scaling factor (grey bars).

2.2 Attempt to extract of the coupling factor from
multiphoton peaks

According to the P (E) theory, the amplitude of the integrated peaks
Pk shown in Fig. 87 should scale like EJ2 and obey a poissonian law

Pk/EJ2 e¡r
rk

(k¡ 1)! : (74)

At large values of EJ, the amplitude of the peaks in Fig. 87, cannot be
�t by Eq. 74. We nevertheless compare with a �t using the coupling
factor r obtained from the measurement of the environment impedance
in the single photon regime (sec 1.3).

We observe that few and several photon processes do not accurately
follow the predictions of the P (E) theory. In particular, one observes
that the high order peaks are signi�cantly larger.

2.3 E�ect of strong coupling on multiphoton peaks

We �rst investigate if the breakdown of the EJ2 scaling observed on the
single photon peak in section 1.5 also occurs on higher order processes.
To do so, we measure �ux modulation for the 3 and 4-photon peaks as
shown by Fig. 88.
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Figure 88. Evolution of the photon emission power with magnetic �eld
for single (blue line), two(pink line), three (green line) and four photon
processes (red line). The three photon process is the only one which scales
like EJ2 predictions (black line). The grey dashed lines correspond to the
values of EJ used in Fig.89 .

One observes that the single and 2-photon peaks show a saturation at
large EJ, that the 3-photon peaks follows the EJ2 �ux modulation pre-
dicted by the P (E) theory, and that the 4 photon process is enhanced
at large EJ. We now discuss these di�erent phenomena.
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2.3.1 Single and two photon processes : emission saturation

We now compare the relative peaks height up to the four photon process
at a few di�erent values of EJ as shown in �g. 89. As the amplitude
of the peaks signi�cantly increases with EJ, the results are normalized
with the 3 photon peak which follows the EJ2 prediction of the P (E)
theory.
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Figure 89. Single to 4-photon peak amplitude at di�erent values of EJ
normalized by the 3-photon peak that scales as EJ2.

One can see in �g. 89 that the 1 and 2 photon peaks are saturated at
large couplings.

We attribute this saturation to a shunt of the environment by the
Josephson junction. Indeed, the junction adds an e�ective admittance
in parallel with environment whose value increases with EJ. Calcula-
tions are currently performed in order to evaluate this e�ect. (Philippe
Joyez, private communication).

2.3.2 High order processes : enhanced emission

In Fig. 87, one has seen that high order processes do not behave as
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predicted by the P (E) theory. We now focus on this regime and show
in Fig. 90 the power emitted by the processes involving the emission
of 5 to 9 photons.
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Figure 90. Evolution of the amplitude of photon emission from 5 to 9
photon emission peaks.

These k order processes do not follow the P (E) theory scaling rk/(k¡
1)!.

The ratio between the single and 8 photon peaks is 50, whereas the
scaling of Eq. 74 predicts 5 000 for a coupling constant r�1, i.e. a two
orders of magnitude discrepancy.

We tentatively attribute this e�ect to a stimulated emission phenom-
enon as described by the cartoon of Fig. 91 and presented in [63].

Let us assume that the resonator is initially empty : n = 0. A �rst
Cooper pair tunnels and emits k photons in the resonator. These pho-
tons leak one by one in the measurement line with a characteristic
timescale Q/!0. At a time t + � , p photons remain in the resonator
and the decay rate in the cavity is thus ¡leak= p!0/Q.

The rate ¡Cp associated with the tunneling of a second Cooper pair is
given by

Pp!p+k=EJ
2 p!
(p+ k)!

�
r
2

�
k
e¡r jLpk(r)j2;
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increasing the number of photons, from n= p to n= p+ k. These two
transition rates are in competition and can lead to an out of equilibrium
population state of the resonator. This process might induce stimu-
lated tunneling of Cooper pairs and the associated enhanced photon
emission. We attribute this enhanced emission to the appearance of a
lasing regime.

V
2eV = khf0

voltage biasing

radiation
collection

hf0

t0 t+τ

relaxation in the
measurement

line

relaxation in the
measurement

line

Cooper pair 
tunneling

tunneling
event

tunneling
event

Figure 91. Lasing regime principle. When a Cooper pair tunnels, emitting
several photons in the resonator, they leak one by one in the measurement
line at a rate given by ¡leak= p!0/Q where p is the number of photon in
the resonator. The ratio between Cooper pair tunneling rate ¡Cp and the
photon leak rate ¡leak can lead to a divergence of the population in the
resonator and thus, to parametric resonance as detailed in [63].
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6 Statistics of the emitted radiation
1 Correlation measurement set-up
In order to access the statistics of the emitted radiations, we measure
correlators. As discussed in section 2.2.1, the low temperature ampli-
�ers add noise to the signal, that prevents us to directly access the
quantum correlators. Our g(2) measurement thus requires interfero-
metric measurements à la Hanbury-Brown and Twiss.

1.1 Hanbury-Brown and Twiss set-up for
microwaves
To get rid of any measurement chain in�uence, the sample is connected
to a microwave Hanbury-Brow and Twiss (HBT) set-up [39][78] : the
radiation leaked by the resonator is split between two path before the
�rst stage of ampli�cation. Correlation measurements are then per-
formed between the output of the two ampli�ers.

The beam splitter we use for our HBT set-up is an -3dB hybrid cou-
pler: it consists in a four port microwave device comprising two input
and two out ports. Half of the power impinging on each input port is
distributed between the two output ports. It can be described by an
electromagnetic unitary scattering matrix which can be directly used
to express the output �eld operator as a function of the two input �eld
operators (see Fig. 92.).

ĉ=
â+ i b̂

2
p ; d̂=

â¡ i b̂
2
p (75)

Signal

Beam
Splitter

Noise

Figure 92. Quantum description of the beam-splitter.
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One can easily show that this ensures that ĉ and d̂ have the same
commutation relations that â and b̂.

[ĉ ; d̂] = [â; b̂] = 0;�
ĉ ; d̂y

�
=0;

and

[ĉ ; ĉy] =
�
d̂; d̂y

�
=1:

In our experiment, the b port is connected to a 50 
 load thermally
anchored to the fridge dilution chamber, so that we can assume that

b̂yb̂
�
=0. Then, we amplify the two split lines, as described in section

2.2.1 (see Eq. 67) and shown by Fig. 93.

Noise
source

GB

Noise
source

GA

Signal

Beam
Splitter

Figure 93. Measurement scheme. Splitting the signal before ampli�cation
prevent pollution from the ampli�er noise.

Performing a cross-correlation measurement at the output of the two
lines, one obtains

hAyByBAi ¡ hAyAihByBi=GAGB (hcydydci¡ hcycihdydi):
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When we take in account the contribution of the beam splitter and
extract this correlator directly as a function of the signal emitted by
the sample we obtain

hAyByBAi¡ hAyAihByBi= GAGB

4
(hâyâyââi ¡ hâyâi2): (76)

In order to extract the second order correlator g(2)(�) de�ned in chapter
2, our signal is split directly after the bias-tee as shown by the cold
stage set-up of Fig. 72 and we perform cross-correlation measurements
between the output power �uctuations of the two lines with a delay �

hAy(t)By(t+ �)B(t+ �)A(t)i¡ hAy(t)A(t)ihBy(t+ �)B(t+ �)i

=
GAGB

4
(hây(t)ây(t+ �)â(t+ �)â(t)i ¡ hây(t)â(t)i2):

This measurement removes all


fA/B
y fB/A

�
contributions as the noise

of the two ampli�ers are uncorrelated. This directly gives access to
g(2)(�) according to Eq. 68

g(2)(�) =
<ây(t)ây(t+ �)â(t+ �)â(t)>

<aya>2

=1+
<�PA(t):�PB(t+ �)>

PS;A:PS;B
;

(77)

where PS;A/B is the excess power emitted by the sample.

To measure g(2), we need both PN;A/B and PS;A/B, the average
powers from the previous lock-in measurements and the correlator <
�PA(t):�PB(t+ �)> . These power correlation measurements are per-
formed using quadratic detectors and a data acquisition board fast
enough to catch the dynamics of these �uctuations.

Note that although the ampli�er's noise does not contribute to the
averaged signal, it still appears in individual measurements and deter-
mines our signal to noise ratio. The HBT set-up does not improve our
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signal to noise ratio, but the accuracy of our measurements. We further
comment on this point in Sec. 1.3, where we determine the number of
samples required to reach a given SNR.

1.2 Correlation measurement scheme

We perform correlation measurements of the radiation emitted in the
whole resonator. To access both g(1) and g(2) at the same time, we
perform Hong-Ou-Mandel experiment [44] and split the signal a second
time in the warm chain, as described in Fig. 94 :

� The �rst line is sent to the two lock-in detectors to measure the
emitted power. As we are interested in the power emitted in the
whole resonator, we no longer implement a narrow �lter by down
conversion and low pass �ltering but rather insert a 600 MHz
�lter wide enough to cover most of the resonator still reducing
in�uence of the ampli�ers noise.

� the second line is sent to a fast quadratic detector that can access
the dynamics of the signal. Its output is sent to the acquisition
board.

In order to optimize the signal to noise ratio, we use �f1 = 600 MHz
and �f2 = 350 MHz bandpass �lters around the resonator frequency
4.41 GHz. On the single photon emission peak, the power is emitted in
bandwidth of 3 to 5 MHz and we catch all the emitted power with both
�lters. However, the correlator g(2)(�) involves 2 photon correlators
associated with 2 CP tunnel events. As a consequence, we expect the
�uctuations to scale as Re[Zenv(!)]

2. In order to estimate the amount
of correlation that we loose die to the �lters, we calculate the ratio

R
�f

Re[Zenv(!)]d!R
0

+1Re[Zenv(!)]d!
:

For �f1= 600MHz, we miss 2.25% of the correlations and for �f1=
350MHz, 5.9%.
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Figure 94. Warm chain scheme for correlation measurements.
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1.3 Data acquisition board

In order to perform fast correlation measurement and access �PA/B(t) ,
the output of the fast quadratic detectors are connected to the inputs
of the SP-devices digitizing board whose characteristics are listed in
table 13.

Sampling rate 1 / 2 Gsample/sec
channel 4 / 2 channels
range from 100mV to 2V
dynamics of ADC 12 bits

Table 13. Data acquisition board characteristics.

The data are then transfered to a computer and we perform �rst and
second order correlator calculations. As the bandwidth of the fast qua-
dratic detector is �270MHz, we use a 1 GHz sampling rate.

The amplitude of the measured signal is set by the power limit of the
last stage ampli�ers, corresponding to 200 mV. We tune the range of
the board in order to exploit its full 12-bit dynamics.

Correlator calculation

The acquisition board records N samples on each line that are then
transfered to the computer. In order to optimize calculation time, the
array is then cut into chunks of 10 000 points. The calculation of the
autocorrelations and cross-correlations are performed on each chunk
and averaged.

cards output correlator calculation results
PA0::::PAi:::PAN AutoA=

P
i=0
n PAi

2

PB0::::PBi:::PBN AutoB=
P

i=0
n PBi

2

Cross =
P

i=0
n

(PAi¡P�A)(PBi¡P�B)

Table 14. Correlator calculation. The output values of the acquisition
card Pi corresponds to the output voltage of the quadratic detectors and
are thus proportional to the emitted power.
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These calculations are performed with or without bias voltage applied
to the sample (corresponding to the upper indices B and 0). The global
calculation rate, taking measurement and data transfer time in account
was 100 MHz.

Our cross correlation measurements is performed on the total signal
PT ;A/B yielding

�PA �PB=(PT ;A¡PT ;A)(PT ;B¡PT ;B): (78)

On each individual measurement the emitted power is

PT ;A/B=PS;A/B+PN;A/B (79)

where S and N stand respectively for contributions of the sample and
the ampli�ers. By replacing PT ;A/B by Eq. 79 in Eq. 78 for a single
measurement, one obtains

�PA �PB= �PS;A �PS;B+ �PN;A �PS;B+ �PS;A �PN;B+ �PN;A �PN;B

Only the �rst of those four contributions will give no zero average
value. However, each of them contribute individually. The variance of
the measurement is given by the sum of the variances of each of the
contributions and will be dominated by the ampli�er's contribution
PN;A/B

Var(�PA �PB) =Var(�PN;A �PN;B)

=Var(�PN;A)Var(�PN;B)

=kB
4 TN;A

2 TN;B
2 �fA

2 �fB
2 :

(80)

For a g(2)(�)= 0, one expects

�PA �PB=¡PS;APS;B ;
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which corresponds to a signal to noise ratio (SNR) per measurement
point

SNR=
S
N

=
abs(�PA �PB)

[Var(�PA �PB)]1/2

=
PS;APS;B

kB
2 TN;ATN;B�fA�fB

=
PS;APS;B
PN;APN;B

(81)

We average the results over N samples. As the global SNR is propor-
tional to N

p
, the total number of samples N that we need is

N=
SNR2�

PS;A

PN;A

�
2
�
PS;B

PN;B

�
2 : (82)

For a photon emission rate ¡ = 200 MHz, the power emitted by the
sample is 1% of the noise power of the ampli�ers (�P / P = 0.01).
Reaching a SNR of 10 thus requires to measure N = 1010 data points.

As the number of points N scales with the emission rate as 1/¡4, we
can measure correlators down to 50 MHz emission rates, which already
corresponds to a 14 hours measurement.

Second order correlator g(2)(� )

The second order correlator g(2)(�) is de�ned in terms of power �uctua-
tions by Eq. 77. It can be calculated using the output of the acquisition
board and the lock-in measurement chains according to

Cross=<�VA:�VB>=GAGB<�PA:�PB>

AutoA;B=<VA;B
2 >=GA;B

2 <�PA;B
2 >

where GA/B is the total gain of the chain. We then have for power
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correlations

<�PA:�PB>=
Cross
KAKB

=
Cross

AutoAAutoB
p <�PA

2 ><�PB
2 >

p
:

As we want to measure correlations from the emitted power in DCB
regime, we will take Cross= CrossB ¡ Cross0 to remove any parasitic
contribution of the cross-correlation measurement.

To calibrate the chains total gainGA andGB, as we know the associated
power �uctuations, we use the autocorrelation without bias on the
sample AutoA/B

0 and have

<�PA/B
2 >=2 kB

2 TN;A/B
2 �fA/B

2

2

with �fA/B, the measurement bandwidth of line A/B and TN;A/B, the
equivalent noise temperature of the low temperature ampli�er, previ-
ously de�ned in section 2.3.2. We then obtain for power correlations

<�PA:�PB>=
CrossB¡Cross0

AutoA0 AutoB0
p kB

2 TN;ATN;B�fA�fB: (83)

However, as the quadratic detectors are not in�nitely fast compared to
the signal �uctuations, we miss some power �uctuations as discussed in
section 2.1. We thus add a correction factor K that will be characterize
in the chain calibration yielding

<�PA:�PB>=
CrossB¡Cross0

AutoA0 AutoB0
p K kB

2 TN;ATN;B�fA�fB: (84)

The excess power coming from the sample in DCB regime PS;A/B is

PS;A/B =
VQD
B ¡VQD

0

VQD
0

kBTN;A/B�fA;B

=
PS;A/B
PN;A/B

kBTN;A/B�fA;B:

(85)
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where PN is the contribution of the ampli�ers noise and PS, the excess
noise emitted in DCB regime.

The only value a�ected by the delay � between the two lines in the
crosscorrelation CrossB(�). Inserting the results of Eq. 84 and Eq. 85
in the de�nition of g(2) given by Eq. 77, we obtain

g(2)(�) =1+K
CrossB(�)¡Cross0

AutoA0 AutoB0
p 1

/PS;A
PN;A

/PS;B
PN;B

: (86)

In the following, we �rst perform measurement in Shot Noise to cali-
brate the whole measurement chain and then measure the statistic of
the emitted photon in the single photon emission peak.

2 Calibration procedures

We �rst use the noise temperature of the ampli�ers to calibrate our
measurement set-up. In a second step, we voltage bias the Josephson
junction above the gap, to use it as a white noise source of photons
which populates the resonator. In this shot noise regime, the statistics
of the emitted radiation can be used as a characterization tool as it
corresponds to a thermal bath of bunched photons : gSN

(2)
(0)= 2.

2.1 Fast quadratic detector calibration

The fast quadratic detectors that we use (Herotek DTM 180AA) have
a rising time of �R � 0.6ns, corresponding to a Lorentzian spectral
response

FQD(!)=
1

1+
�
f

f0

�
2

where f0 = /1 2��R ' 270 MHz is the frequency cut-o� of the quadratic
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detector.

We estimate the in�uence of the quadratic detector on a �at signal with
a 325 MHz bandwidth as we will measure it in our experiment. Due
to the �nite time response of the quadratic detector, it cannot catch
all the dynamics of the signal, and we thus miss some correlations, as
shown on Fig. 95.

The power associated to a signal with a �f = 600MHzbandwidth is

P0=

Z
0

+1
d!PN �PN(!) =A0

2

Z
0

+1
d f

�
1¡ f

�f

�
; (87)

where A0 is the amplitude of the signal. The power measured at the
output of the quadratic detector is

PQD=

Z
0

+1
d!(PN �PN(!))FQD(!)=A0

2

Z
0

+1
d f

1¡ f

�f

1+
�
f

f0

�
2 (88)
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Finite charging time 
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f
0 0.6

FQD(PN*PN)(ω)

Figure 95. Shape of the initial signal, associated power and QD measure-
ment result.

By taking the ratio between these two expressions, we can estimate the
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power that is not catched by the quadratic detectors.

To precisely compensate for this e�ect, we performed power measure-
ment at the output of the quadratic detectors using the intrinsic noise
of the ampli�ers as shown in Fig.96.
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Figure 96. Spectrum at the output of the fast quadratic detector (bold
line) and theoretical model (thin lines). Inset : associated power measure-
ment and theoretical limit (horizontal lines)

Taking the ratio between the power at the output of Quadratic detector
PQD and the total power P0, we �nd for the two lines,

K =
PQD

P0
� 0.70:

As the number of sample required is directly related to (�P / P )¡4

according to Eq. 82, we have also performed correlation measurements
with narrower �f = 325MHz �lters whose spectrum is shown Fig. 97.
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Figure 97. Spectrum at the output of the fast quadratic detector (bold
line) and theoretical model (thin lines) for a �ltering bandwidth �f =

325MHz.

The associated correlation factors yields K = 0.84. By reducing the
bandwidth, we might loose some correlations but decrease the mea-
surement time by a factor of 12.

2.2 Autocorrelation vs power measurements

According to section 2.2.1, the autocorrelation function of the signal
coming out of line A takes the form

hAyAyAAi=
G2hcycyc ci+(G¡ 1)2hfA

yfA
yfAfAi+2G(G¡ 1)hcycihfA

yfAi:
(89)

As the gain of the ampli�er is G � 1 and hf yf i � hcyci, measuring
the normalized di�erence with and without bias voltage applied to the
sample yields

AutoB¡Auto0

Auto0
=2
hcyci
hf yf i

=2
PS
PN

In order to measure this ratio, we voltage bias the junction above the
gap. The power emitted by the junction then increases linearly with the
applied bias V and we extract the corresponding slopes. Measurements
of the power and autocorrelation ratios are displayed in Fig. 98.
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Figure 98. Excess power emitted in ShotNoise regime for the two mea-
surement lines A, B. Comparison of autocorrelations from the acquisition
board (red and black squares) and Lock-in measurements (blue and green
triangles).

The ratio between autocorrelation and power measurements is slightly
smaller than 2, as shown in Fig. 99. This is another consequence of the
�nite rising time of quadratic detectors which thus miss some autocor-
relations.
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Figure 99. Ratio between autocorrelations ratio and excess power mea-
surement ratio on line A.

By measuring the ratio s between /�auto
auto and /�P

P for a �ltering
bandwidth of 325 MHz, we found sA = 1.74 on line A, as shown in
Fig.99, and sB=1.7 on line B. These values yield to a correction factor
of K=s/2�0.86, in agreement with the value estimated in section 2.1.

174



2.3 Distribution of the measured values

We measure the distribution of the values measured by the acquistion
board. A typical histogram is shown in Fig. 100 together with a �t
corresponding to recti�ed Gaussian �uctuations, combined with a small
thermal rounding due to the ampli�er after the quadratic detector (red
curve).

-1500 -1000 -500 0 500 1000 1500
1E-7

1E-6

1E-5

1E-4

0,001

0,01

co
u

n
ts

amplitude (digits)

signal
Gaussian + thermal fit

Figure 100. Histogram of the measurement of the acquisition card

We attribute the saturation observed at large values to the non-linearity
of the quadratic detector. Note that the saturation of the last ampli�er
would have a similar e�ect. The tail of the curve which is slightly
saturated accounts for �1h of the measured values.

These histograms are a quick tool to check that there is no signi�cant
saturation and that the dynamics of the board is properly used.

2.4 Correlation measurements in Shot Noise regime

When voltage biased well above the superconducting gap, the junction
acts as a white noise source coupled to the resonator.

In this quasiparticle tunneling regime, the coupling factor r for Dynam-
ical Coulomb Blockade e�ects is reduced by a factor 4. In addition,
as the emitted power is high, the mean photon occupation number of
the resonator is large and Dynamical Coulomb Blockade e�ects are
negligible.
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As a consequence, the properties of the emitted radiation corresponds
to a thermal population of photons that are bunched, and with g(2)(0)=
2. In addition, g(2)(�) tends to 1 after a time given by the inverse of
the resonator bandwidth.

2.4.1 Time delay in Shot Noise regime

For experimental reasons, there is a small di�erence between the length
of the two measurement lines, resulting in di�erent propagation times.
In order to compensate this shift, the origin of time delays between
the two lines is adjusted by placing the origin at the maximum value.
As g(2) is directly proportionnal to the cross-correlation function, we
measure cross-correlations as function of time delay far above the gap
to have the best signal to noise ratio, as shown in Fig. 101.
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Figure 101. Cross-correlation function in Shot Noise regime as a function
of the time delay.

The time delay is tuned by introducing a shift between the arrays of
data corresponding to the two measurement lines.

2.4.2 calibration of g
(2)

(0) in Shot Noise regime

Time resolved measurements of the second order correlator g(2)(�) are
presented in Fig. 102.
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Figure 102. Time resolved second order correlator g(2)(�).

In the data processing using Eq. 86, we take K = 0.72 for the correc-
tion factor, as previously estimated for a wide �lter bandwidth �f =
600MHz. We obtained similar results for gSN

(2)(�) with the narrower 325

MHz �lters. The maximum value of gSN
(2)(0)=1.98 is then in agreement

with the theoretical prediction gSN
(2)
(0)=2 for a thermal bath of photons.

In addition, as expected the FWHM is 4.5 ns which is comparable with
the 7 ns photon lifetime in the resonator.

3 Statistics of emitted photons

We now characterize the statistics of the emitted radiation in the single
photon emission peak. As described in chapter 2, Kubala et al. [51]
made the following prediction for g(2)(0) at low photon occupancy in
the resonator as a function of the coupling factor r

g2(0)=
�
1¡ r

2

�
2
� 0.25: (90)

which yields g2(0)= 0.25 for our high impedance resonator r' 1.
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By varying the �ux threading the SQUID, we can tune the Josephson
energy EJ and thus the photon emission rate ¡. This allows us to adjust
the average photon population hni in the resonator

hn(EJ)i=
¡(EJ)
2��f

where �f is the FWHM of the resonator.

3.1 Evolution of g(2)(0) with the photon emission
rate
We measure the second order correlator at zero time delay g(2)(0) as a
function of the emission rate. The obtained results are shown in Fig.
103.
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Figure 103. Second order correlator at zero time delay g(2)(0) as a func-
tion of the measured emission rate.

One �rst observes that g(2)(0)<1, meaning that the emitted photons
have a non-classical behavior and are anti-bunched. Furthermore, the
value obtained at the lowest rate is in good agreement with the pre-
dicted 0.25 theoretical limit [51].

Because of the saturation e�ect on the single photon emission peak
presented in chapter 5, we were not able to increase the photon emis-
sion rate till correlation e�ects disappear, and g(2)(0)= 1. Theoretical
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calculations are in progress to �t this curve (J. ankerhold, private com-
munication).

The error bars on the curve of Fig. 103 take in account the statistical
uncertainty. In order to reduce parasitic noise, we have �rst calibrated
the chain and then removed the total power measurement associated
with the lock-in detection chain. The autocorrelations ratio gave us
access to the the emission rate and allowed us to calculate g(2) with an
uncertainty within the error bar.

3.2 Time resolved correlator : g(2)(�)
This measurement gives access to the timescale of correlations, as pre-
dicted in [20]

g(2)(�) =

�
1¡ r

2
e¡
�/2

�
2

; (91)

where r is the coupling constant and 
 = 2� FWHM is the photon
leakage of the resonator.
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Figure 104. Time resolved evolution of the second order correlation factor
g(2)(�) (blue) and theoretical �t using Eq. 91 from [20]. The horizontal lines
correspond to the theoretical prediction g(2)(0) = 0.25 and the long time
limit g(2)(�) = 1. For this measurement, the emission rate was tune to 42
MHz; we average over 2.1011samples with a sampling rate of 2 GHz.
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One �rst observes that the timescale over which g(2)(�) reaches one is
in consistent with theoretical predictions [20]. The additionnal �uctua-
tions that one can see on Fig. 104 corresponds to noise on the correlated
signal.

Due to the �nite rising time of quadratic detectors which average the
g(2)(�) function over their rising time of 0.6 ns, there is an addintionnal
rounding e�ect. We take in account this e�ect on the red curve which
thus does not reach the theoretical limit.
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7 Conclusion

In this Ph.D., I have developed high impedance microwave resonators,
with characteristic impedances ZC around 2k
. These resonators,
based on spiral inductors micro-fabricated on quartz substrate allowed
us to reach a strong coupling to a Josephson junction as their imped-
ance becomes scalable with RQ is the superconducting quantum of
resistance. This coupling is characterized by

r=
�ZC
RQ

=1;

and corresponds to a regime that has not been previously explored in
such systems.

By modulating the �ux threading the SQUID loop, used as a tunable
Josephson junction, we can tune the Josephson coupling EJ between
the electrodes. This allows us to observe the transition between the
low coupling regime, well accounted for by the P (E) theory and its
extensions, and the strong coupling regime, whose description requires
to go beyond the P (E) theory. In particular, we observed enhanced
emission in multiphoton processes as well as the breakdown of the EJ2

scaling rule for 1 and 2 photon emission peaks.

Then, focusing on the single photon emission peak, this strong coupling
allowed us to probe a spectacular prediction of Joachim Ankerhold
and his coworkers [51]: when the junction is biased at a voltage chosen
so that the energy of a Cooper pair transmitted across the junction
matches the energy of a photon in the resonator, the presence of a
photon inhibits the subsequent tunneling of a Cooper pair and the
emission of another photon. This results in a strong anti-bunching of
the emitted radiation.

We characterized this anti-bunching by measuring g(2)(�) the time
resolved second order coherence function of the radiation leaked by
the resonator into a 50
 detection environment. To do so, we used an
Hanburry-Brown set-up which allows to get rid of the noise of the detec-
tion ampli�er. In the low Josephson energy, the zero time second order
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coherence function reaches g2(0) = 0.25� 0.1, in good agreement with
the theoretical predictions. As expected, g2(�) reaches 1 with a typical
time scale corresponding to the lifetime of photons in the resonator. At
higher Josephson energy, g2(0) increases to reach 0.7, and we observe a
saturation of the number of photons in the resonator which is due to the
strong �uctuations of the phase induced by our strong coupling regime.

One of the perspectives of this work in to further increase the imped-
ance of the modes by further decreasing their capacitance, using SiN
membranes instead of Quartz substrate [26]. This should allow us to
reach a characteristic impedance of 4.1 k
, for which one expects a
perfect anti-bunching. This will allow to take a further step, building
on an idea developed by Ash Clerk and his colleagues [72] to stabilize
a N =1 Fock state in the resonator. To reach this, achieving g2(0)=0
is not su�cient: although the presence of a photon in the resonator
completely suppresses the emission of another photon, it is still possible
for a Cooper pair to tunnel back-wards, re-absorbing the photon. To
suppress this process, we will couple a junction to two modes, a high
impedance, high quality factor one, and a low impedance, low quality
factor one. Then we will bias the junction at a voltage chosen so that
the energy of a Cooper pair transmitted through the junction matches
the sum of the energies of a photon in the two modes. After a Cooper
pair tunnels and emits a photon in either modes, the low quality factor
mode loses its photon quickly, prohibiting the backward emission of
a Cooper pair, thus stabilizing the N = 1 state in the high impedance
mode.

Another interesting direction would be to probe the two photon
processes: upon increasing the Josephson energy, the photon number
in the resonator increases, and stimulated emission processes result in
a parametric transition analogous to the one observed in a two photon
micro-maser [63]. This transition is marked by a a divergence of the
�uctuations of the photon number at the transition. It has been pre-
dicted that in the strong coupling regime, the transition is smeared
by the quantum �uctuations of the phase, suppressing this divergence.

Beyond these possibilities, an exciting perspective of our high imped-
ance resonators open is the ability to investigate experimentally the
in�uence of strong quantum �uctuations of the phase on the Josephson
Hamiltonian itself. Indeed, the Josephson Hamiltonian HJ=¡EJ cos �
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can be derived from the standard tunneling Hamiltonian HT = e
i�/2P

tl;r;� cl;�
y cr;� + h.c. . If the left and right electrodes are in a super-

conducting state characterized by a gap �, one then rewrites the
normal quasi-particle creation and annihilation operators cl;;r;�

y and
cl;r;� in terms of Bogoliubov operators. One thus recovers the stan-
dard Josephson Hamiltonian, with the Josephson energy related to the
normal tunneling resistance via Rt the Ambegaokar-Barato� formula:

EJ=
�RQ

2Rt

, where RQ=h/4 e
2 is the superconducting resistance quantum. How-

ever, in this derivation, the phase � across the junction is supposed to
be a classical quantity, and it is not clear whether this Hamiltionian
still holds in presence of large quantum phase �uctuations, especially
if their frequency is higher than the gap frequency �/h.

One of the most appealing aspects of our resonators is that they should
sustain a moderate in plane magnetic �eld, making their use com-
patible with semiconductors 2D electron gas (2DEG). Coupling such
resonators to a normal quantum point contacts or quantum dot would
allow us to probe the physics of dynamical Coulomb Blockade for
normal conductors with arbitrary electronic transmission, for which
no full theory is available yet [10][28]. Furthermore, using high spin-
orbit coupling materials such as the ones I used in IEMN would allow
to lift the spin degeneracy, thus making the problem simpler from a
theoretical point of view [21].

Last, coupling such resonators with InAlAs nanowires connected to
superconducting electrodes would allow us to probe the Coulomb
Blockade of multiple Andreev re�ections.

In a nutshell, the experiments performed during this thesis work are
examples of the many possibilities enabled by high impedance res-
onators, giving access to a new regime of quantum optics.
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