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Abstract

The eXtended Markup Language (Xml) provides a format for representing data

trees, which is standardized by the W3C and largely used today for exchanging

information between all kinds of computer programs. The main application areas

of Xml are document processing (DocBook), Web information representation

(Html), and NoSql databases with nested relations. The main task for Xml

processing are the problems to query and transform data trees. For solving these

tasks, the W3C has developed the languages Xslt, XQuery, and XProc. As

a common core, they rely on XPath for querying data trees for nodes, strings,

functions, or sequences thereof.

The challenge that we tackle in this thesis is the problem of how to answer

XPath queries on Xml streams with low latency, full coverage, high time efficiency,

and low memory costs. This requires to overcome the following difficulties:

1. Earliest query answering is computationally untractable, so that one cannot

hope to always reach optimal latency and memory consumption.

2. No previous streaming algorithm was able to deal with all navigational XPath

queries while also supporting comparisons of data values, aggregates, and

higher-order functions.

3. In contrast to in-memory XPath engines, where document projection with

respect to a given XPath query is highly relevant for time efficiency, it was

unclear how to project away irrelevant parts of Xml streams.

In this thesis we first propose to approximate earliest query answering for nav-

igational XPath queries by compilation to early nested word automata. It turns

out that this yields quasi-optimal results in most practical cases, leading to almost

optimal latency and memory consumption. Second, we contribute a formal seman-

tics of XPath 3.0. It is obtained by mapping XPath to the new query language

λXP that we introduce. This language has the advantage to be based on first prin-

ciples, so that it can be considered as a core language for XPath processing. We

then show how to compile λXP queries to networks of early nested word automata,

and develop streaming algorithms for the latter. Thereby we obtain a streaming

algorithm that indeed covers all of XPath 3.0. Third, we develop an algorithm for

projecting Xml streams with respect to the query defined by an early nested word

automaton. Thereby we are able to make our streaming algorithms highly time

efficient. We have implemented all our algorithms with the objective to obtain an

industrially applicable streaming tool, and tested them on the usual benchmarks. It

turns out that our algorithms outperform all previous approaches in time efficiency,

coverage, and latency.
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The eXtended Markup Language (Xml) provides a format for general infor-

mation representation [Bray 2008], which is standardized by the World Wide Web

Consortium (W3C) and largely used today for exchanging information between all

kinds of application. Essentially, the Xml format provides a concrete syntax for

describing data trees, i.e., finite unranked trees whose nodes are labeled by data

values.

There are three communities that joined their forces within the W3C for creat-

ing Xml that correspond to the following application areas: document processing

as with DocBook [Walsh 2010a] or Sgml [Goldfarb 1986], Web information rep-

resentation as with HTML [Pemberton 2002, Hickson 2014], and NoSql databases

with nested relations [Meier 2000, Grün 1983, Bloom 2001], where NoSql stands
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<twitter>

<tweet><id>2</id><user>984</user><mess>@PPeter @Marctotheus My

washing machine just broke down :(</mess></tweet>

<tweet><id>4</id><user>349</user><reply>2</reply><mess>

@IthinkThat I advise you to buy a Miele one. Those run forever

</mess></tweet>

<tweet><id>6</id><user>984</user><reply>4</reply><mess>@PPeter

Thx, I will definitely check them out.</mess></tweet>

</twitter>

Figure 1.1: An Xml document.

for “not only SQL” [Beyer 2011, Robinson 2015]. Xml was a success story in the

first two domains, with biggest success for the usage of input and output format

for all kinds of computer programs, so that it can be avoided to write any ad-hoc

parsers.

Xml had fewer success with NoSql databases and the development of Web

services, for which a new format of data trees was developed, called the Java Script

Object Notation (Json) [Crockford 2001], which despite of its name is independent

of the programming language of Web browsers Java Script [Eich 2015]. The data

trees of Json can be seen as nested key-value stores, i.e. as unranked unordered

trees, in which each edge is annotated by a data value. Furthermore, a key constraint

must be satisfied, stating that no two edges outgoing from the same node carry the

same data value. The development of recent kinds of NoSql databases relies on the

Json format rather than on Xml, since focussing on distributed query answering

algorithms [Friedgut 2004, Atserias 2013, Ngo 2013, Beame 2014, Beame 2013] in

contrast to previous Xml databases. The data trees underlying Json and Xml are

not that different and can be converted to the other data tree, respectively.

1.1 Xml Processing based on XPath

The main task for Xml processing are the problems to validate, query and transform

data trees. An example is the data tree of Figure 1.2 that models a collection of

tweets that reply to each other, i.e. it models the Xml document in Figure 1.1.

1.1.1 Schema Validation

Validation of Xml documents means to verify their conformance against a given

schema. For instance, for the data tree of Figure 1.2 one would like to verify the

existence of mess-child of a tweet-descendant that contains a non-empty data value,

as with XPath filter

[//tweet/mess[not(. = "")]].
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Figure 1.2: A data tree representing the Xml document of Figure 1.1.

One would also want to check that every assigned data value of an id node of

a tweet is unique. This can be done with the following XPath query that uses

function distinct-values that returns the input sequence of id values, but with

duplicates removed:

count(//tweet/id) = count(distinct-values(//tweet/id/text()))

There are several standard schema languages performing validation. The W3C

started with Dtds [Bray 2008] and then moved to more powerful Xml Schema

[Thompson 2004]. For instance, the syntax of XHTML is defined by a Xml Schema,

and also the syntax of DocBook, or the syntax of MathXml for representing

mathematical formulas. The document community supported Relax NG [van der Vlist 2003],

which was standardized by ISO. For instance, the syntax of the system biology

markup language Sbml is defined in Relax NG, while it was previously defined in

Xml Schema.

More recently, Schematron [Jelliffe 2006] was developed for an alternative val-

idation approach, where schemas are expressed by XPath filters. This has the

advantage that errors can be localized more easily, so that error messages can be

more informative. An example is the following XPath filter that verifies that all

tweet-labeled descendants have an id, a mess, and a user-labeled child. A cor-

responding Schematron program would output an error message for every missing

id, mess, or user-child of a tweet descendant, and vice versa could report that a

particular child exist.

[not(//tweet[not(id) or not(mess) or not(user)])]

The expressiveness of these schema languages was studied in numerous research

papers [Martens 2006b, Martens 2006a]. It was shown that when ignoring data

comparisons, DTDs describe vertically local languages of unranked trees, while

Xml schemas describe top-down and left-to right deterministic languages of un-

ranked trees, so that they can be validated in streaming mode. The expressiveness
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of Schematron, when restricted to XPath filters without advanced concepts (see

Section 1.1.3) is restricted to first-order logic, while Relax NG supports general

tree automata, and thus monadic second-order logic [Thatcher 1968, Comon 2007,

Gottlob 2002].

1.1.2 Query-based Transformation

For solving the query-based transformation tasks, the W3C has developed the

transformation languages Xslt [Clark 1999a], XQuery [Boag 2007], and XProc

[Walsh 2010b]. As a common core, they rely on XPath [Clark 1999b] for querying

data trees for nodes, strings, functions, or sequences thereof. In XQuery, transfor-

mations can then be expressed, similar to Sql data bases, by FLWOR expressions

(for, let, where, order by, and return) as in XQuery

for $x in doc("twitter.xml")//tweet

where contains($x/mess,"washing machine")

order by $x/id

return $x/following-sibling::tweet[reply = $x/id]

which returns a list of all tweet-nodes that reply to some tweet whose message

contains "washing machine". The core of XQuery studied in [Benedikt 2009]

exactly captures the class of first-order definable transformations.

Xslt transformations are expressed via stylesheets that declare a set of trans-

formation rules that are based on XPath expressions. The core of Xslt can be

defined by navigational macro tree transducers, where the navigation is defined by

XPath queries [Maneth 2005]. For example the following Xslt program produces

Html code that displays a table of all tweet ids and their messages.

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html><body>

<h2>Tweet Collection</h2>

<table border="1"><th>ID</th><th>Message</th>

<xsl:for-each select="twitter/tweet">

<tr><td><xsl:value-of select="id" /></td>

<td><xsl:value-of select="mess" /></td></tr>

</xsl:for-each>

</table>

</body></html>

</xsl:template>

</xsl:stylesheet>

As shown by Maneth and Engelfriet [Engelfriet 2000], macro tree transducers

with bounded copying capture the class of all MSO-definable transformations. This
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remains true, when adding XPath queries for navigation, as long as these XPath

queries remain first-order definable.

XProc is an Xml pipeline language whose programs allow to compose several

processing tasks and transformations.

1.1.3 XPath

XPath [Clark 1999b] is a language standardized by the W3C for defining node

selection queries in data trees. The selection conditions may rely on XPath filters

that we encountered already in the section on Xml schemas.

XPath was designed to be a core language hosted by all other Xml processing

languages of the W3C, and in particular for defining transformations of data trees

based on node selection queries with Xslt, XQuery, and XProc. Currently,

there are three W3C recommended versions of XPath [Clark 1999b, Berglund 2010,

Robie 2014a] with version numbers 1.0, 2.0, and 3.0. The syntax got extended with

each version in order to increase the expressiveness as we will discuss below, while

the semantics basically remained unchanged except for the handling of errors and

exceptions, and for changes in the type system. Furthermore, the current XPath

3.0 language is given two possible semantics, the ordered semantics used in Xslt

transformations and standardized in the W3C document about XPath 3.0 and the

unordered semantics that is used by XQuery as stated in the W3C document on

XQuery 3.0 [Robie 2014c]. The difference between these two semantics is that

sets are either treated as unordered collections or as sequences in the order of their

elements.

This difference is often crucial when it comes to stream processing, since when

imposing an order on sets, the latency and buffering needs may increase dramati-

cally. For instance, if one wants to select all tweets with a reply on a twitter stream,

but the first tweet does not have any reply, then one must wait until the last tweet

arrives, before one can be sure that the first tweet is not selected. In an ordered

mode, one needs to output the selected tweets in their order, so the output of all

other answers has to wait on the decision for the first tweet, and thus until the very

end.

The core of XPath is a navigational logical language that provides path queries

for node selection in Xml data trees [Gottlob 2002, Gottlob 2003]. For instance,

the following XPath query selects all message nodes of tweets, that do not have an

empty data value:

//tweet/mess[not(. = "")].

Navigational queries may navigate in a data tree moving along the tree relations

such as child, descendant, parent, ancestor, following sibling, preceding sibling,

following, preceding, etc. They may also test whether the label or data value of a

node is equal to some constant.

One of the motivations of the design of XPath was that it should support all

first-order connectives, as usual with database queries. This should also hold for

its navigational core which is a variable free language in the style of modal and
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temporal logics [Arenas 2007]. We already encountered negation in the previous

XPath example. Filters of a node express existential properties, stating that some

node can be reached when navigating over some path, and multiple filters express

conjunctions. Based on negation, universal properties can be expressed by exis-

tential properties, and disjunctions by conjunctions. Also existential and universal

quantifications exist within the language. For instance, filter

some $a in //a satisfies $a/b

asks whether there exists an a descendant that has a b child.

Marx and de Rijke [Marx 2004b] showed that the filters of the navigational

core of XPath 1.0 can be mapped to first-order logic formulas with at most 2

variables per subexpression. The variables that are counted here are not only the

free variables – of which we need one for node selection and none for filters – but

also the free variables of the subexpressions, which may be globally bound. It is

well-known, however, that the two variable fragment is not complete for first-order

logic of trees. A counter example is the query

a/b*/c

which selects all c nodes x with an a-ancestor y such that all intermediate nodes z

on the path from y to x are labeled by b. Here, three variables are needed, x, y,

and z. Since using recursion based on the Kleene-star, this query is not supported

by the syntax of XPath (in any version), and even worse, it cannot be expressed

in the navigational core of XPath 1.0.

This incompleteness problem of XPath was solved starting with version 2.0

[Berglund 2010], which added the missing expressiveness by adding operator except

for path complementation. There the missing query can be expressed as follows1:

/a//c except /a//*[not(fn:local-name(.) = "b")]//c.

As a consequence the navigational core of XPath became first-order complete, since

3 variables are known to be enough for expressing arbitrary first-order properties

of trees [Marx 2004a].

Besides the navigation core, XPath also permits to select, compare, and aggre-

gate data values in data trees, and to apply all kinds of functions to them, including

the usual arithmetic functions and string operations. For first-order logics of data

trees with comparisons of data values, however, the 3 variable fragment is no more

sufficient. Therefore XPath 2.0 did also add variables to the language. Query

for $t in //tweet return following-sibling::tweet[reply = $t/id],

for example, returns all tweets that reply to some start tweet, i.e. with the XQuery

unordered semantics. It binds to variable $t progressively all tweet descendants,

and returns all following-sibling tweet nodes whose reply child is equal to the id
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Figure 1.3: Graph of first-order query for XPath query for $t in //tweet

return following-sibling::tweet[reply = $t/id].

child of the node at $t. A corresponding first-order formula requires at least 4 vari-

ables as in query {$t’ | ∃$t, $i, $r : Φ($t’, $t, $i, $r),Φ presented in Figure 1.3}.

XPath 3.0 comprises a new type system that contains a large domain of data

types that are based on sequences. Sequences are ordered shallow lists, that are not

nested, whose single element instances are identified with the element itself, making

XPath 3.0 an expression language for processing sequences. Query

for $x in (1, 2, 3) return $x + 4

returns sequence (5, 6, 7), for example. The conversion of data types is also

supported within XPath, for example, it provides conversion function fn:boolean

that converts numbers, strings, and sequences of nodes to a boolean, allowing for

richer test expressions for conditionals and filters, as in query

if ("abc") then fn:true() else fn:false()

that returns true, since fn:boolean("abc") = true. Furthermore, XPath can also

express aggregation queries and supports higher-order functions, such that even

first-order logic is not enough!

Functions have become first-class citizens in XPath 3.0 and they may be of

higher order. They can be defined inline within expressions as in query

function($a as xs:double, $b as xs:double) as xs:double {$a * $b}

that returns the product function, or functions can be returned by partial function

applications, such as

fn:concat("a", ?, "c")

which returns the anonymous function λy.fn:concat("a", y, "c") that accepts

one argument.

1XPath function fn:local-name returns the label of the current node. Note that filter [not(b)]

is short for [not(child::b)] and thus not a valid substitution.
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1.1.4 Regular Extension of XPath

Extensions of XPath by a Kleene-star operator for recursive path composition

were proposed by many research papers [ten Cate 2007, Groz 2012, Parys 2011].

Recursive path queries are already interesting for navigational XPath queries such

as a/b*/c. These can be expressed otherwise by using path complementation (as

available since XPath 2.0). But this kind of encoding does not work in general. For

instance one cannot express a/(b/b)*/c in XPath. Furthermore, the encoding of

conditional regular axis, which have the form b[F]* where F is some filter, by using

complementation is cumbersome, and spoils the combined linear time complexity

for query answering.

In XPath 3.0 the Kleene-star operator is not supported syntactically, but it can

be expressed in the general case by using recursive functions as we will explain later

on. Nevertheless we will consider in this thesis an extension of XPath 3.0 with the

Kleene-star operator that we call regular XPath 3.0. The addition of the Kleene-

star operator will mainly serve us for simplifying the presentation of recursive path

queries in examples, and can be eliminated without problems by using recursive

functions.

Recursive path queries are particularly relevant when combined with variables

and comparisons of data values (data joins). For instance, we can use a regular

XPath 3.0 query to select dialogs in a Twitter stream:

//tweet[fn:contains(mess, "washing machine")]

/(let $y := . return following-sibling::tweet[reply = $y/id])*

The query navigates to tweet-labeled nodes whose message mess contains “washing

machine”, and from there it navigates recursively to following-sibling tweets that

reply to it. It thereby select the nodes of Figure 1.4 that are marked in bold. For the

second tweet with id “2”, the dialog query reports the tweet messages of repeated

replies, finding tweets with ids “4”, “5”, and “6”.

1.1.5 In Memory Evaluation

Evaluation algorithms for XPath queries receive an XPath query Q and an Xml

document D as an input, and compute the set of query answers Q(D). Two kinds of

evaluators should be distinguished: those who store the whole Xml document as a

data tree in main memory in a preprocessing phase where all kinds of indexes can be

computed, and those which read the Xml document as a stream in an incremental

left-to-right once-only manner.

The complexity of in-memory evaluation algorithms for XPath fragments found

much interest in database theory. For navigational XPath queries without variables

from the core of XPath, there exist evaluation algorithms that require combined

linear time in the worst case, i.e. time in O(|Q| · |D|) [Gottlob 2005]. When adding

comparisons of data values, query answering remains in polynomial time O(|Q|3 ·

|D|), see Theorem 1.1 in [Bojańczyk 2011], which is even linear in the size of the
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tweet tweet tweet tweet tweet tweet

id: “1” id: “2” id: “3” id: “4” id: “5” id: “6”

reply: 1 reply: 2 reply: 2 reply: 4

mess: m1 mess: m2 mess: m3 mess: m4 mess: m5 mess: m6

user: 235 user: 984 user: 786 user: 349 user: 963 user: 984

.

. .

. .

. .

.

. .

.

. .

.

twitter

. . .

m1 = I bought me a new pair of asics. And off I go.

m2 = @PPeter @Marctotheus My washing machine just broke down :(

m3 = @loosingg That’s awesome ;)

m4 = @IthinkThat I advise you to buy a Miele one. Those run forever

m5 = @IthinkThat Oh, but it’s not like I can do anything about it.

m6 = @PPeter Thx, I will definitely check them out.

Figure 1.4: A Twitter stream containing a dialog.

database. When recursive paths are also permitted, the worst-case complexity

increases slightly to O(|Q|3 ·|D|·log|D|). In contrast to these theoretical algorithms,

the algorithm from Saxon may run in exponential time in the size of the database

even for navigational queries. The problem may arise for queries where the number

of alternations between forwards and backwards axis is not bounded, as illustrated

by example in [Parys 2011].

The weakness of all these theoretical algorithms is that they traverse the whole

database D even for queries Q that require to inspect only the local environment

of a given tree node. This important problem can be approached in some algo-

rithms by adding data tree projection as proposed in [Marian 2003, Maneth 2010].

The idea is to discover irrelevant parts of the database during query answering,

and to avoid inspecting them as if they were pruned away. Indeed, the projec-

tion algorithm for XQuery from [Marian 2003] is used in Saxon [Kay 2004], the

most used Xml processing tool for XQuery and Xslt as of today. Good pro-

jection algorithms for Xslt are missing though. While not available in Saxon,

there exist good projection algorithms for large navigational fragments of XPath

[Maneth 2010, Arroyuelo 2015] based on tree automata techniques with highly effi-

cient implementations based on clever indexing.

1.1.6 Streaming Evaluation

When one wants to select dialogs in Twitter streams in real time, one cannot wait

until the end of the stream arrives. Instead one would like to query it as stream of

complex events – having a nesting structure – in real time and in an incremental

manner. This requires to buffer all tweets of the dialog, since replies to any of

these tweets may arrive with arbitrary delay. This is in contrast to sliding window

techniques for monitoring continuous streams, which will buffer only a bounded
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number of subsequent events on the stream [Barbieri 2010, Phuoc 2011].

The task of online dialog selection in Twitter streams is a special case of complex

event processing (Cep) [Brenna 2009, Wu 2006, Mozafari 2012], which is equally

relevant for the analysis of stock markets, Rss feeds, and social network posts. In

the case of dialog selection, Cep can be reduced to querying Xml streams, i.e.,

linearizations of data trees in Xml format. As argued by [Mozafari 2012], this also

holds for the other Cep tasks mentioned above.

The problem to answer XPath queries on Xml streams has been studied for

more than a decade [Gupta 2003, Fernández 2007, Olteanu 2007, Schmidt 2007,

Benedikt 2007, Madhusudan 2009, Kay 2010, Gauwin 2011a, Mozafari 2012]. The

main motivation here was to deal with huge documents which do not fit into main

memory, or large documents (say 40 gigabytes) for which the time to create an

in-memory representation would impose a too long delay.

Low Latency. Suppose that we want to select all tweets that have a reply on

a Twitter stream, while we assume the unordered mode for the output set. The

natural idea to do so works as follows. Any new tweet that arrives on the stream

is an alive candidate, of which one does not know yet whether it will become an

answer. Therefore it must be buffered until the decision can be taken. Furthermore,

whenever a newly arriving tweet is a reply to a previous one in the buffer, then this

buffered tweet is a candidate that can be safely selected. In this case it can be

output and removed from the buffer.

More generally, the idea for answering queries on Xml streams is to buffer all

alive candidates, until one can decide whether they answer the query or not for all

continuations of the stream. An algorithm that buffers only alive candidates is called

earliest. Any algorithm performing earliest query answering (eqa) must output

query answers with lowest latency and discard failed candidates at the earliest time

point. Unfortunately, it turns out that eqa is not feasible in polynomial time for

XPath queries [Benedikt 2008b], as first shown by adapting counter examples from

online verification [Kupferman 2001]. A second hardness argument follows from

that deciding aliveness is more difficult than XPath satisfiability [Gauwin 2011a],

which is coNP-hard even for small fragments of XPath [Benedikt 2008a].

The situation is different for queries defined by deterministic nested word au-

tomata (Nwas) [Alur 2004, Alur 2009], for which earliest query answering is feasible

in cubic time in the size of the automaton [Madhusudan 2009, Gauwin 2009b]. This

can be applied to navigational XPath queries by compilation to Nwas [Gauwin 2011a],

but this does not lead to an efficient streaming algorithm. The first problem is that

cubic time per event is too much in practice. The second problem is that the com-

piler from XPath to Nwas relies on nondeterminism for descendant and following

axes, and that the determinization of Nwas often raises huge blow-ups in practice

(in contrast to finite automata).

Since eqa is not feasible, existing streaming algorithms for XPath evaluation

either approximate eqa or restrict the problem to 0-delay queries. Approximations
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are done by Spex’s, which compiles navigational XPath queries to transducer

networks [Olteanu 2007], but also by Saxon’s streaming Xslt engine [Kay 2010],

and Gcx [Schmidt 2007] which implements a fragment of XQuery.

The recent XSeq tool [Mozafari 2012], in contrast, restricts XPath queries

by ruling out complex filters all over. In this way, node selection can always be

decided with 0-delay [Gauwin 2011b] once having read the attributes of the node

(which follow its opening event). Such queries are called begin-tag determined

[Benedikt 2007] if not relying on attributes.

Low Memory. A principle question is how much memory one may want to allow

for the streaming processing. Given that a stream can be read only once, from left

to right, one has to buffer parts of the stream that will be needed later on again.

The main objective may be to minimize the size of the buffer as with eqa, given

that streams may be huge or even infinite (in the case of Twitter).

Ideally, one would like to grant only constant memory, and thus be independent

of the size of the stream. But this allows hardly any query to be evaluated in

streaming mode. First of all, streaming algorithms for data trees typically have a

stack whose depth is equal to the depth of the tree, so if the depth of the tree is not

bounded, the memory will not be bounded. In practice, however, the depth of the

tree may become large but rarely huge, so that the stack fits into the main memory.

The second problem is about the size of the buffer which may grow linearly with

the size of the document, for instance for the query that selects all tweets with a

reply on a Twitter stream, where no tweet has a reply.

Besides the dependence on the depth of the Xml tree and the number of candi-

dates that have to be stored, many interesting queries require to buffer data content

of the Xml document. For instance, if one wants to verify that no two tweets have

the same Id, one needs to store the Ids of all tweets. If the Twitter stream is large

but not huge then it may as well happen that the set of all Ids fits into main memory

while the whole stream does not.

Time efficiency. Time efficiency is of paramount importance for XPath query

answering on Xml streams in practice. When the query is fixed, only constant time

should be needed for each event, so that the overall time is linear in size of the

stream. The typical case where this may fail even for navigational queries without

variables, is when the number of buffered candidates grows with the size of the

stream. In this case, one must avoid inspecting all the candidates in the buffer at

any event.

When measuring the time efficiency, it is important to separate the pure parsing

time from the time for answering queries. The reason is that one usually has to an-

swer a collection of XPath queries – stemming from an Xslt or XQuery program

– at the same time. The parsing time may be shared between all these XPath

queries while the time for answering the query cannot be shared. Furthermore, the

parsing-free time for answering a single XPath query is often dominated by the
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parsing time, so that one may quickly take wrong conclusions when not separating

these two time measures.

It is also interesting to compare the time requirements of streaming and in-

memory algorithms. Both algorithms have to parse the Xml document. While in-

memory algorithms may compute some indexes during preprocessing, this cannot

be done for streaming algorithms. Besides, the parsing-free time of a streaming

algorithm should correspond to the time needed by an in-memory algorithm after

preprocessing, except for the benefits of using indexes. The advantage of streaming

algorithms may be a lower latency. In applications such as streaming validation,

this may help to avoid reading the whole document, and thus spare parts of the

parsing time and of the preprocessing time. Generally, when only a few queries

have to be answered on the same document, streaming evaluators tend to be more

efficient than in-memory evaluators, since the cost of computing the indexes does

often not get amortized when answering few queries only.

1.2 Open Problems

From the practical perspective the main open problem is that there is no streaming

algorithm for XPath 3.0 with high coverage, low latency, high time efficiency, and

low memory consumption. The question is whether such an algorithm may exist,

given that eqa is computationally hard.

1.2.1 Low Coverage

The coverage of existing tools for navigational XPath is quite limited and the

support of non-navigational concepts is even worse, in particular the support for

variables, comparisons of data values, sequences, arithmetics, string operations,

aggregations, and higher-order functions.

For instance, the Gcx system is the only system that allows to evaluate XPath

queries in streaming that perform some data comparisons, but in order to obtain

this, the supported navigational aspects are minimalized. The navigational aspects

are also strongly restricted in XSeq, given that only 0-delay queries are supported,

where the selection of a node can be decided after having read its opening tag and

its attributes.

When looking into the usual XPathMark benchmark [Franceschet 2005] the

best coverage is reached by Olteanu’s Spex [Olteanu 2007] with 22% of the use

cases. The time efficiency of Spex, however, is only average, for instance compared

to Gcx [Schmidt 2007] which covers 19% and which often runs in time close to the

parsing time for a single query. Given that Saxon is mostly interested in Xslt

and XQuery evaluation, the support for the navigational aspects XPath remains

limited, leading to 6% of coverage for the XPathMark benchmark.
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1.2.2 Low Latency

Since eqa is computationally hard, one cannot hope for algorithms with minimal

latency. For this reason, some approaches including the XSeq system are restricted

to 0-delay queries, in order to avoid buffer management all over [Mozafari 2012,

Benedikt 2008b]. Other approaches such as Spex do not impose delay restrictions,

but have only low coverage since not supporting data joins, aggregation, higher-

order functions, and recursion.

A good approximation of eqa is also essential to ensure low memory consump-

tion. For this it is necessary to decide at a close to optimal time point whether a

candidate is safe for selection or rejection for a given query. The earlier candidates

can be selected or rejected, the lower will be the latency and memory consumption.

1.2.3 Low Time Efficiency

There are numerous reasons that limit the time efficiency of the existing streaming

algorithms, many of which depend on the algorithmic approach that is chosen. One

typical problem is to deal with queries with variables for tuple selection. In this

case, the number of candidate tuples may even grow exponentially in the arity of the

tuples. In the case of monadic node selection queries, the number of candidates is at

most linear in the size of the stream. This may still raise time costs if all candidates

are re-inspected at any event, typically for deciding whether they are still alive or

already safe for selection or rejection. If the number of candidates grows linearly

in the size of the stream, the overall running time will become quadratic, which is

not feasible for large streams.

Another general problem is the lack of projection algorithms for streaming

XPath query evaluation. This is an important problem, given that projection

is essential for the performance of in-memory evaluators. So the question is how

to obtain good projection algorithms for stream processing, by which to reduce the

parsing-free query answering time.

1.2.4 Lack of Formal Semantics.

Similarly to all other W3C standards XPath has no formal semantics. The problem

is that the standardization documents contain only informal descriptions of some

hundreds of pages often specified on an abstraction level close to implementation.

For example the XPath 3.0 grammar [Robie 2014b] already contains more than one

hundred nonterminal symbols and there are hundreds of functions and operators

[Kay 2014]. As a result, those definitions cannot serve as a basis for a formal analysis

and moreover they are difficult to understand.

So the challenge is whether one cannot have a formal core language of XPath

that is based on first principles, to which all the different versions of XPath can

be mapped by following their specification in the standards. Defining such a core

language seems also unavoidable if one wants to obtain large coverage streaming

implementations.
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1.3 Contributions

Our main contributions is a collection of algorithms that allow to evaluate full

XPath 3.0 queries on Xml streams with low latency and with high time efficiency

in practice.

1.3.1 Formal Semantics of XPath 3.0 in λXP

We introduce λXP, a typed first-order logical language for querying data trees based

on first principles, supporting path navigation, higher-order functions, recursion,

aggregates, tuples, lists, strings, and numbers.

To the best of our knowledge, the language λXP is different to previous higher-

order query languages [Benedikt 2015], in that λXP relies on a mode systems which

permits to distinguish logical subformulas for which solutions must be searched, and

functional subformulas that can be evaluated deterministically such as functional

programs.

The purpose of λXP in this thesis is to serve as a core language for implementing

evaluators for XPath 3.0. Therefore, we show how to compile all of XPath 3.0 to

λXP with one minor exception. The compiler can be understood as a compact for-

malization of what is described informally in the specification of XPath 3.0. Even

though formal, we believe that some of the details of the XPath 3.0 specification

by the W3C are easier to understand through our compiler to λXP.

1.3.2 Early Query Answering by Early Nwas

Queries in the navigational fragment of λXP can be compiled to nested work au-

tomata (Nwas) as shown in [Gauwin 2009b], under the assumption that there are

no backwards axis.

Nwas are the natural kind of pushdown machines for processing nested words

such as Xml streams [Alur 2004]. They can be determinized in contrast to standard

pushdown automata, basically since they have the same expressiveness as tree au-

tomata. Furthermore, eqa for queries defined by deterministic Nwas can be done

in cubic time per event [Gauwin 2009b, Madhusudan 2009]. This is an interesting

result, but since the resulting algorithm always requires cubic time in practice, this

is by far too slow. Furthermore, determinism is assumed, which must be obtained

by static determinization, which may lead to an exponential explosion – which

does arise for many practically relevant queries – and even before the cubic time

algorithm is applied.

We propose an approximation of eqa for navigational λXP queries, which does

not require static determinization. For this we introduce so called early Nwas,

which besides final states have selection and rejection states. Whenever a selection

(rejection) state is reached, any continuation of the nested word will be accepted

(rejected). We then show how to introduce appropriate selection and rejection states

when compiling navigational λXP queries to early Nwas. What we obtain is an

approximation of eqa, since it may still be the case that some candidate is safe for
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selection even though the early Nwa is not in a selection state. But deciding whether

an early Nwa is in a selection state is much easier that deciding the aliveness

of candidates, since the latter depends on its stack and its state. Indeed, the

approximation is indeed exact for all positive navigational XPath queries without

valid or unsatisfiable subfilters as shown in [Lick 2013].

Our streaming algorithm for navigational λXP queries runs the corresponding

early Nwa for all possible candidates, while performing on-the-fly determinization.

A candidate is created and buffered only if it does not go into a selection or rejection

state. A candidate from the buffer is output when the state of the candidate is a

selection state, and discarded when it is a selection or rejection state.

In order to avoid inspecting all candidates at all events, we propose a stack

and state sharing algorithm. The idea is that we can share the computation of

any two candidates in the same state, so that the running time does not depend

on the number of buffered candidates, but only on the number of states of the

deterministic Nwa created by on-the-fly determinization. Our streaming algorithm

with stack-and-state sharing for answering queries by early Nwas is original and

nontrivial, and enables tight upper bounds for time and space complexity that we

prove.

1.3.3 Networks of Early Nwas

We present a streaming evaluator for all λXP queries and thereby for all of XPath

3.0. The basic idea is that a formula of λXP can be decomposed into a network of

navigational λXP formulas with only forwards axis, each of which can be compiled

to an early Nwa. Therefore, it remains to show how to evaluate networks of early

Nwas in a streaming manner.

1.3.4 Projection for Nwas

We initiate the development of projection algorithms for processing Xml streams,

and in particular for Nwas.

Our idea is that a projected nested word should contain jump symbols i. . . for

projected factors, where the integer i stands for the excess of the factor, i.e., the

difference between the number of opening and closing tags. We propose projection

nested word automata (PNwas), a kind of mixed pushdown and counting automata,

that input projected nested words which besides others contain integers as letters.

Conversely, a projection of a nested word with respect to a given Nwa can be com-

puted by any corresponding PNwa. We then lift Nwa projection to the evaluation

of navigational XPath queries on Xml streams. It turns out that the parsing-free

time for our query answering algorithm for navigational XPath queries reduces by

a factor of 4 on average on the XPathMark benchmark.
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1.3.5 Implementation and Experiments

We have implemented our algorithms for navigational XPath queries and tested

and compared them using the usual XPathMark benchmark. Considering only

the navigational fragment of XPath, we improve on all other tools in coverage with

37% of the XPathMark benchmark (the previous best is Spex with 22%). We

also outperform all of them in time efficiency with the exception of Gcx, which

runs slightly quicker on few queries, and slightly slower on others.

1.4 Organization

The thesis starts with Chapter 2 on preliminaries that discusses data trees and their

linearization into nested words. It continues on Xml data trees that model the tree-

structure of the Xml data model, and it finishes with Nested Word Automata, that

allow to process linearizations of such data trees. This thesis is organized into three

main parts.

Part one on “A Formal Semantics of XPath 3.0” describes how the semantics of

XPath can be described formally by λXP expressions. It is split into the following

five chapters. Chapter 3 on Navigational XPath describes the navigational XPath

3.0 fragment, Chapter 4 explains the types and values of XPath 3.0, while Chap-

ter 5 presents full XPath 3.0. Various XPath expressions are explained abstractly,

while not going into details of the XPath specification. Next, in Chapter 6 we

introduce the λXP language that allows to query data trees and supports higher-

order functions and recursion. Then we present a compiler from XPath to λXP in

Chapter 7.

Part two on “Early Query Answering for Navigational XPath” describes how

XPath can be evaluated on Xml streams using Early Nested Word Automata,

and how it is speed up by introducing projection thereof. Chapter 8 on Early

Nested Word Automata compiles a forward navigational fragment of λXP to early

nested word automata which are run on Xml streams. We present a stack-and-

state sharing algorithm that reduces the processing time per event to be linear in

the number of states and stack symbols of the early nested word automata and

we present and compare the efficiency of our streaming tool that implements the

presented algorithms. In Chapter 9 we develop projection algorithms for nested

word automata. For this we compile nested word automata into projection nested

word automata that we introduce. These are used to produce the projected nested

word on which it runs. We finish by an experimental section that shows the speed-

up that we gain with respect to the early query answering algorithm of Chapter 8.

Part three on “Query Evaluation Algorithms for Full XPath” presents algo-

rithms for evaluating λXP formulas on data trees in-memory and in streaming.

Chapter 10 presents in-memory evaluators of λXP queries that rely on the mode

system of λXP, which splits the logical and programming parts of λXP queries.

Chapter 11 turns the in-memory evaluator into a streaming evaluation algorithm. It

runs early nested word automata for navigational λXP queries, while decomposing
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general λXP queries into a network of navigational queries.

We have added the following two appendices. Appendix A lists the full query

collection of the XPathMark benchmark, which we use in our experiments. Ap-

pendix B gives a complete translation of the compiler from XPath 3.0 to λXP

expressions that follows the ordered semantics of Xslt.

1.5 Publications

A quick sketch of our results of Early Nested Word Automata for XPath Query

Answering on Xml streams in Chapter 8 was published in the CIAA’2013 confer-

ence [Debarbieux 2013]. We published these results with full proofs and extended

experiments in the Theoretical Computer Science Journal [Debarbieux 2015]. Our

projection algorithms in Chapter 9 were published in the SOFSEM’2016 confer-

ence [Sebastian 2016].
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We introduce basic notations needed throughout the chapters. We start by

data trees and nested words. Then we discuss how the XPath data model can be

modeled using data trees, and show what Xml streams are. Finally we introduce

Nested Word Automata.

2.1 Data Trees

Data trees in this thesis will be unranked ordered finite rooted trees in which any

node is labeled by a tuple of data values. In addition, any node will also be labeled

by a tag from a finite alphabet.
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doc

el(“library”)

el(“book”)

att(“id”, “bk231”) el(“author”)

tx(“Abiteboul”)

el(“title”)

tx(“Data”)

Figure 2.1: A sample of a data tree: t2.1 ∈ TXml′types,Utf8∗ .

2.1.1 Definition

We fix a finite ranked alphabet Σ with arity function ar : Σ → N. Elements in Σ are

called node tags and ranged over by σ. We will sometimes write σ(k) to denote that

ar(σ) = k for some σ ∈ Σ. Furthermore we let ∆ be a finite set, whose elements

will be called characters of data values or internal letters and ranged over by c.

We next define data trees with parameters ∆ and Σ. A data value is a string

over ∆, and ranged over by w, i.e., w ∈ ∆∗. The set of node labels A is defined as

follows:

A =
⋃

σ(k)∈Σ

{σ} × ∆∗ × . . .× ∆∗
︸ ︷︷ ︸

k

The elements of A will be ranged over by a. The set T of data trees t over Σ and ∆

is the least set that contains all tuples a(t1, . . . , tn) where a ∈ A and t1, . . . , tn ∈ T .

In other words, the set of data trees satisfies the following abstract syntax:

t ∈ T ::= a(t1, . . . , tn) where a ∈ A, n ≥ 0, and t1, . . . , tn ∈ T

We will sometimes write TΣ,∆ instead of T when we want to specify the signatures

explicitly.

A data tree can be drawn as a graph in the obvious manner. An example moti-

vated from the Xml data model is the data tree t2.1 given in Figure 2.1. Here, ∆ =

Utf8 is the UTF-8 character set and Σ = Xml′types = {doc(0), el(1), att(2), tx(1)}

contains some of the Xml types. For element nodes the data value contains the

Xml tag, for text nodes the text content, and for attribute nodes the attribute

name and its attribute string-value.
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2.1.2 Logical Structure

Let k = max({ar(σ) | σ ∈ Σ}). For data trees, we define a logical structure with

the following relational symbols:

{ch, ch+,ns ,ns+, par , par+, ps, ps+, fo, pc, fut} ∪

{tagσ | σ ∈ Σ} ∪ {dv i | 1 ≤ i ≤ k} ∪

{equals}

The domain of the structure of a data tree t will be the union of the set of the nodes

of its graph together with the infinitely many data values in ∆∗. Here we consider

the graph abstractly, in that nodes are identified by their Dewey address, i.e., by

the word of natural numbers that addresses them when starting at the root. The

root node of t is identified with the empty word ε, and the i-th child of a node π of

t with π · i.

More formally, the set of nodes of a data tree is defined recursively for all trees

a(t1, . . . , tn) by:

Nodes(a(t1, . . . , tn)) = {ε} ∪ {i · π | 1 ≤ i ≤ n, π ∈ Nodes(ti)}

Another possible identification of nodes would be to simply enumerate them by a

consecutive numbering in pre-order for example. The relation symbols are inter-

preted as binary relations on this domain as follows: The binary relation cht relates

a node to its children, the binary relation nst relates a node to its next sibling to

the right.
cht = {(π, π · i) | π · i ∈ Nodes(t)}

nst = {(π · i, π · i+1) | π · i, π · i+1 ∈ Nodes(t)}

The parent relation par t = (cht)−1 relates a node to its parent, and the previous

sibling relation pst = (nst)−1 relates a node to its previous sibling. Descendant

relation (ch+)t, following-sibling relation (ns+)t, ancestor relation (par+)t, and the

preceding-sibling relation (ps+)t are the transitive closure of the child, next-sibling,

parent, and previous-sibling relation, respectively: (ch+)t = (cht)+, (ns+)t =

(nst)+, (par+)t = (par t)+ = ((ch+)t)−1, and (ps+)t = (pst)+ = ((ns+)t)−1. For

any relation A, by A∗ we denote the reflexive closure of A+. The following relation

fot = (par t)∗ ◦ (nst)+ ◦ (cht)∗ relates a node to all its following nodes, the preceding

relation pct = (par t)∗ ◦(pst)+ ◦(cht)∗ relates a node to its preceding nodes, and last

but not least the future relation fut t = (cht)∗ ∨ fot relates a node to all its future

nodes.

The label of a node π ∈ Nodes(t) is denoted by labt(π) ∈ A; it can be defined

recursively for all t = a(t1, . . . , tn) and iπ ∈ Nodes(t) as follows:

labt(ε) = a

labt(iπ) = labti(π)

tagσ are unary relations that are interpreted as the set tag tσ of all nodes that are

tagged by σ. For all 1 ≤ i ≤ k the functions dv ti map a node to the i-th data value

of its label, i.e. dv ti(π) = wi whenever labt(π) = σ(m)(w1, . . . , wm).
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In order to test equalities among data values, we add function equalst that

maps any two data values w1 and w2 to the boolean of whether w1 is equal to w2,

i.e. equalst(w1, w2) = (w1 = w2). This operator is what we minimally wanted to

have. It allows already to express the XPath join filter [author[child::text()

= "Abiteboul"]] in the first-order logic of this relational structure, assuming that

dv1 for element nodes returns the Xml tag, and assuming that dv2 for text nodes

returns its data content:

∃r.(¬∃.ch(y, r) ∧ tagel(r) ∧ equals(dv1(r), author) ∧

∃x.(ch(r, x) ∧ tag tx(x) ∧ equals(dv2(x), Abiteboul)))

But indeed our structure is incomplete in that its domain does not contain numerical

values, nor functions, and in that no arithmetic operations and others are supported.

2.1.3 Finite State Abstractions

For applying finite state technology, it is often necessary to abstract information

about data values, of which there are infinitely many, into finite state information.

For instance, the set of Xml tags is infinite, but it can be abstracted into a finite

set for a given query, for which only finitely many Xml tags are relevant.

More generally, we often want to relabel data trees. This can be done when

given a relabeling function α : A → A′ for some other alphabet A′ =
⋃

σ(k)∈Σ′ σ ×

(∆′∗)k. The relabeling of a data tree over Σ and ∆ is then defined, such that for

all a(t1, . . . , tn) ∈ TA:

relα(t) = α(a)(relα(t1), . . . , relα(tn))

The relabeled data tree relα(t) then belongs to TA′ . For instance, if one wants to

query the data tree in t2.1 ∈ TXml′types,Utf8 in Figure 2.1 by a query that concerns

only author-elements and data content, then we can use the following relabeling

function α for abstracting the other information away.

α(σ(k)(w1, . . . , wk)) =







author(0) if σ = el(1) and w1 = author

tx(1)(w1) if σ = tx(1)

doc(0) if σ = doc(0)

att(0) if σ = att(2)

el(0) if σ = el(1) and w1 6= author

Let Xml′′types = {doc(0), el(0), att(0), tx(1)}. Then we have Σ′ = Xml′′types∪{author
(0)}

and ∆′ = Utf8. The relabeling lifted to data trees relα maps the data tree t2.1 in

Figure 2.1 to the unary data tree in Figure 2.2.

Another useful relabeling that preserves all information while abstracting gen-

eral data trees to data trees where nodes have at most one data value, is abstraction

relconcat that concatenates the data values, if more than one present, using a special

separation symbol ⋄:

concat(σ(k)(w1, . . . , wk)) =

{
σ(1)(w1 ⋄ . . . ⋄ wk) if k ≥ 1

σ(0) else
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doc

el

el

att author

tx(“Abiteboul”)

el

tx(“Data”)

Figure 2.2: The abstracted data tree relα(t2.1) ∈ TXml′′types∪{author
(0)},Utf8 where

only author tags and text values are preserved.

2.1.4 Json Trees

The Json format [Crockford 2001] contains objects and arrays, which in turn are

made up of values. Values are either strings, numbers, objects, arrays, booleans, or

null. Objects are unordered sets of key/value pairs where no two pairs contain the

same key, and arrays are ordered lists of values. Keys are given by strings. We give

a sample Json document that describes a person in Figure 2.3. We display objects

in curly brackets, arrays in square brackets, strings in quotes, and for numbers and

booleans we just state the respective value.

Data trees that underly Json have signature

Σ = {obj 0, arr0, str1,numb1, bool1,null0}.

A Json data tree is given in Figure 2.4. However the logical structure of Json data

trees is slightly different than for general data trees in that relations ns , ns+, ps,

ps+, fo, pc, and fut are not defined on children of obj -labeled nodes, since Json

objects are unordered sets. Furthermore since keys must be unique in Json, we

also must impose this constraint on data values of children of obj -labeled nodes.

We next discuss how Json data trees and data trees as in Xml can be identified

with each other. Starting from a data tree as in Xml, we have two possibilities to

encode it into a Json data tree: We can either pack each child of a node into a new

“array”-node with label arr while preserving the order of the children. Or we first

annotate each node by its position, i.e. the i-th child of a node is annotated by i,

and then we pack the children of a node into a new “object”-node instead of an

“array”-node, with a str -labeled child with the annotation of nodes as data value.

Conversely, a Json data tree can be encoded into an Xml data tree by ordering

children of obj -labeled nodes according to their data value. This shows that data

trees in Xml or respectively in Json are very similar.
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{

”name”: ”PPeter”,

”addr”: { ”street”: ”Hell 2”,

”city”: ”Heaven” },

”age”: 31,

”phone numbers”: [

{ ”type”: ”home”,

”number”: ”1234567” },

{ ”type”: ”work”,

”number”: ”7654321” }

],

”isMale”: true,

”email”: null

}

Figure 2.3: A Json document.

2.2 Nested Words

2.2.1 Definition

A nested word [Alur 2009] is a word over three disjoint alphabets O, C, and ∆,

with opening tags 〈o〉 ∈ O, closing tags 〈/c〉 ∈ C, and internal letters in ∆. Com-

plete nested words are nested words that are more restricted in that they are well-

balanced, corresponding opening and closing tags must have the same label, and

initial opening tags cannot be closed before the end. The positions of nested words

are called events, of which there are three kinds: opening, closing, and internal.

Whenever O and C have the same set of labels Σ within opening and closing paren-

thesis, we permit ourselves to define only Σ, instead of O = {〈a〉 | a ∈ Σ} and

C = {〈/a〉 | a ∈ Σ}.

The following nested word is a word over signatures Σ = {l, b, a, t} and ∆ =

{A, b, i, t, e, o, u, l,D, a}:

〈l〉〈b〉〈a〉Abiteboul〈/a〉〈t〉Data〈/t〉〈/b〉〈/l〉

Sometimes information from the past may want to be stored within the label of

tags of a nested word. For example, we could annotate each opening and closing

event by its number as in

〈(l, 1)〉〈(b, 2)〉〈(a, 3)〉Abiteboul〈/(a, 4)〉〈(t, 5)〉Data〈/(t, 6)〉〈/(b, 7)〉〈/(l, 8)〉

2.2.2 Linearization of Data Trees

We show how to linearize unary data trees into nested words. While data trees in

general have arity k ≥ 1, we can always abstract them to signatures whose maximal

arity is 1 via abstraction relconcat of before.
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obj

str(“name”)

str(“PPeter”)

str(“addr”)

obj

str(“street”)

str(“Hell 2”)

str(“city”)

str(“Heaven”)

str(“age”)

numb(“31”)

str(“phone numbers”)

arr

obj

str(“type”)

str(“home”)

str(“number”)

str(“1234567”)

obj

str(“type”)

str(“work”)

str(“number”)

str(“7654321”)

str(“isMale”)

bool(“true”)

str(“email”)

null

Figure 2.4: A Json data tree representing the Json document of Figure 2.3.

In order to linearize unary data trees over Σ and ∆ into nested words, we need

to fix the following three functions:

op : A → O, int : A → ∆∗, and cl : A → C

If not stated otherwise, functions op and cl will map the finite part σ of node labels

to corresponding opening and closing tags, while function int will map to the data

value w or ε if absent:

op(a) = 〈σ〉, int(a) =

{
w if a = σ(1)(w)

ε if a = σ(0) , and cl(a) = 〈/σ〉

Once we have fixed functions op, int , and cl we can linearize any data tree t =

a(t1, . . . , tn) into the following nested word lin(t):

lin(a(t1, . . . , tn)) = op(a) · int(a) · lin(t1) · . . . · lin(tn) · cl(a)

2.3 Xml Data Trees

The logical structure of an Xml document is known as the data model, which

provides a tree representation of the Xml document.

2.3.1 Xml Data Model

When referring to the Xml Data model, we mean the informally described tree

representation of the data model specification1 for XPath 3.0, XQuery 3.0, and

Xslt 3.0. We formalize it in the following by means of Xml data trees.

1http://www.w3.org/TR/xpath-datamodel-30/

http://www.w3.org/TR/xpath-datamodel-30/
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The data model contains six2 types of nodes, where in parenthesis we give their

abbreviation used throughout this thesis: document (doc), element (el), attribute

(att), text (tx), comment (com), processing-instruction (pi).

We model the tree-structure of the Xml data model via data trees, while moving

node properties as data to node labels, and moving node type information to

Σ = Xmltypes = {doc(3), el(6), att(5), tx(1), com(1), pi(3)}.

In Figure 2.5 we give a grammar of data trees obtained by the Xml data model

together with their node properties. In gray we depict node properties that are

not directly relevant when posing XPath queries by the grammar of XPath 3.0

[Robie 2014b] but they become relevant when looking at respective XPath 3.0

functions3 (for properties base-uri, document-uri, is-id, and is-idref) or for Dtd

processing tasks (unparsed-entities). Node property node-name contains the name

of an element or attribute node, that consists of a namespace prefix and a lo-

cal name. Property target holds the name of a processing-instruction, values

for attribute nodes are stored in string-value, and property content contains

the data of text, comment, and processing-instruction nodes. Finally, properties

nilled and schema-type are needed for schema validation. nilled indicates that

an element node should be accepted as valid when it has no content. Property

schema-type is an Xml schema type, which is string “xs:untyped” for elements

and “xs:untypedAtomic” for attributes in the absence of schema.

Xml data trees, i.e. trees obtained from Xml documents according to the Xml

data model, thereby satisfy the following restrictions: The root is the only node

whose type is document. All nodes of type attribute, text, comment, and processing-

instruction are leafs. Only element nodes have attribute nodes as children, which

must precede all its other children. These restrictions are most relevant for early

query answering for XPath. For instance, for the query title[@lang=’eng’], any

element title-labeled node can be rejected, once the first non-attribute child was

read, and there was no lang attribute with string-value eng before.

An example of an Xml document is given in Figure 2.6 and its corresponding

Xml data tree is the one in Figure 2.1. It stores the Xml type, but only a subset

of the data values from the Xml datamodel: no data values for document nodes,

node-name for element and attribute nodes, the attribute value for attribute nodes,

and the data content for text nodes.

2.3.2 Xml Data Model Specifics

Document order. The so-called document order is a total order among all ac-

cessible nodes: The root node is the first node. Children and descendants of nodes

2Notice that we do not treat namespace nodes which are contained in the data model. This is

because the namespace axis, which selects namespace nodes, is deprecated as of XPath 2.0, and

is thus not supported by us, which in turn does not require to treat namespace nodes. It is also

not supported in XQuery.
3https://www.w3.org/TR/xpath-functions-30/

https://www.w3.org/TR/xpath-functions-30/
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Grammar:

doc → (el + pi + com + tx)∗

el → att∗(el + pi + com + tx)∗

att → none

tx → none

com → none

pi → none

Node labels:

doc(base-uri, unparsed-entities, document-uri)

el(base-uri, node-name, schema-type, nilled, is-id, is-idrefs)

att(string-value, node-name, schema-type, is-id, is-idrefs)

tx(content)

com(content)

pi(base-uri, target, content)

Figure 2.5: Grammar and node labels by Xml data model abstracted data trees.

<library>

<book id="bk231">

<author>Abiteboul</author>

<title>Data</title>

</book>

</library>

Figure 2.6: An Xml document.

occur after the respective node, while they occur before following siblings to the

right. Attribute nodes if present follow immediately their element parent nodes.

The relative order of attribute nodes is implementation-dependent, in that an im-

plementation may chose the order, but it does not change during the processing of

a query or transformation.

String-values. The data model defined the string-value of attribute nodes to be

the value of the attribute, while the string-value for document and element nodes

is the concatenation of its text nodes descendants in document order. Notice that

this value can be derived for document and element nodes, for which reason we do

not store it as data value in Xml data trees.

Children of element nodes. The Xml data model describes that children of

element nodes may exclusively be element, processing-instruction, comments, and

text nodes, while attributes, and document nodes can never appear as a child of an

element node. Even though that the attributes of an element are not considered

to be children, the element is considered to be the parent of these attribute nodes
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〈doc〉

〈el〉library

〈el〉book

〈att〉id ⋄ bk231〈/att〉

〈el〉author

〈tx〉Abiteboul〈/tx〉

〈/el〉

〈el〉title

〈tx〉Data〈/tx〉

〈/el〉

〈/el〉

〈/el〉

〈/doc〉

Figure 2.7: The nested word obtained from the Xml data tree in Figure 2.1.

however.

Data trees by the Xml data model have a different definition of the child relation,

where attribute nodes are children of element nodes that precede any other children.

Therefore when answering XPath queries on such data trees, one has to be careful,

that the child axes are translated correctly, as to come in Section 7.3.

2.3.3 Mapping to Nested Words and Back to Xml Documents

From an Xml data tree we can produce a nested word by the linearization of data

trees as in Section 2.2.2. This requires abstraction to maximal unary signature

Xml data trees obtained by concatenation of data values using a special separation

symbol. Such nested words can be interpreted as Xslt programs. The nested word

obtained from the Xml data tree in Figure 2.1 is given in Figure 2.7. In turn it can

be interpreted as a representation of the Xslt program in Figure 2.8. Indeed, this

Xslt program evaluates to the original Xml document in Figure 2.6.

We summarize the correlations Xml documents, data trees, and nested words

via the bijections depicted in Figure 2.9. It allows to identify the nested word for

some Xml document D by

nw(D) = lin(relconcat(data-model(D))).

Furthermore nw(D) allows to retrieve the Xml documents D again by interpreting

the nested word as an Xslt program that creates D:

Lemma 1. For all Xml documents D it holds that:

D = evaluate(asXSLT (nw(D)))

The notion of nested words thus formally captures the essence of an Xml doc-

ument, while ignoring the syntactic details of the Xml standard. While all our
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<xsl:document>

<xsl:element name="library">

<xsl:element name="book">

<xsl:attribute name="id">bk231</xsl:attribute>

<xsl:element name="author">

<xsl:text>Abiteboul</xsl:text>

</xsl:element>

<xsl:element name="title">

<xsl:text>Data</xsl:text>

</xsl:element>

</xsl:element>

</xsl:element>

</xsl:document>

Figure 2.8: The Xslt program represented by the nested word in Figure 2.7: it

evaluates to the original Xml document in Figure 2.6.

practical tools will process concrete Xml documents, our algorithms can assume

that these come as nested words.

2.4 Nested Word Automata

Our finite state technology for processing words will be nested word automata

[Alur 2009].

2.4.1 Definition

A nested word automaton (Nwa) is a pushdown automaton that runs on nested

words and suffixes. The usage of the pushdown of an Nwa is restricted: a single

symbol is pushed at opening tags, a single symbol is popped at closing tags, and

the pushdown remains unchanged when processing internal letters. More formally:

Definition 1. A nested word automaton is a tuple A = (O,C,∆, Q,QI , QF ,Γ, R)

where O, C, and ∆ are the finite alphabets of nested words, Q a finite set of states

with subsets QI , QF ⊆ Q of initial and final states, Γ a finite set of stack symbols,

and R is a set of transition rules of the following three types, where q, q′ ∈ Q,

〈o〉 ∈ O, 〈/c〉 ∈ C, and d ∈ ∆:

(open) q
〈o〉:γ
−−−→ q′ can be applied in state q, when reading the opening parenthesis

o. In this case, γ is pushed onto the stack and the state is changed to q′.

(close) q
〈/c〉:γ
−−−→ q′ can be applied in state q when reading the closing parenthesis c

with γ on top of the stack. Then, γ is popped and the state is changed to q′.
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Xml document

D

k-ranked data tree

unary-ranked data tree

nested word

nw(D)

Xslt program

da
ta

-m
od

el
relconcat

lin
earization
lin

asXSLT

evaluate

Figure 2.9: Xml documents D as nw(D) = lin(relconcat(data-model(D))), and back

D=evaluate(asXSLT (lin(relconcat(data-model(D))))).

(internal) q
d
−→ q′ can be applied in state q when reading the internal letter d. One

then moves to state q′.

An Nwa is called deterministic or a dNwa if it is deterministic as a pushdown

automaton. In contrast to more general pushdown automata, Nwas can always

be determinized [Alur 2009], essentially, since they have the same expressiveness as

bottom-up tree automata.

2.4.2 Runs of Nested Words

A configuration of an Nwa is a state-stack pair in Q×Γ∗. Let S ∈ Γn be a stack of

depth n ≥ 0 and s be a suffix of a complete nested word over O, C, and ∆, which

has excess −n. An S-run on s must start in a configuration with stack S and some

initial state, and then rewrite this configuration on all events of the suffix according

to some of the rules in R. An S-run on a suffix is called successful if it continues

until the end while reaching some final state. Note that the stack will always be

empty at the end of suffixes, given that the depth of S had the same absolute value

as the excess of the suffix and given the restriction on pushdowns of Nwas (often

called “visible”). The language LS(A) of an Nwa A is the set of all suffixes over

O, C, and and ∆ that permit a successful S-run by A.

An example of a run of the Nwa in Figure 2.10 on a suffix of a complete

nested word is depicted in Figure 2.11 with start stack S = α. The automaton

tests whether the suffix of the nested word as a tree satisfies the XPath filter

[descendant::a[descendant::b]]. When opening an a-node in its initial state

q0 the Nwa guesses that it matches the a-descendant of the XPath query, it pushes

α onto the stack and moves to state q1. From there it waits until the guess of the

b-descendant in the query, where it moves into final state q3, where it stays until

the end.
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q1 q2 q3
〈a〉 : α 〈b〉 : α

〈Σ〉 : α
〈/Σ〉 : α

〈Σ〉 : β
〈/Σ〉 : β

〈Σ〉 : α
〈/Σ〉 : α
〈/Σ〉 : β

Figure 2.10: An Nwa where Σ = {a, b} and ∆ = ∅.

〈a〉
q1

〈a〉
q2

〈a〉
q2

〈/a〉
q2

〈b〉
q3

〈/b〉
q3

〈/a〉
q3

〈/a〉
q3

β α

α

α

Figure 2.11: A run of the Nwa of Figure 2.10 on a suffix of a nested word.

〈(a, α, q1)〉 〈(a, α, q2)〉 〈(a, β, q2)〉 〈/(a, β, q2)〉〈(a, α, q3)〉 〈/(a, α, q3)〉 〈/(a, α, q3)〉 〈/(a, α, q3)〉

Figure 2.12: The run of Figure 2.11 as a nested word.

Furthermore the runs of nested words can be identified with nested words them-

selves. In Figure 2.12 we show the run of Figure 2.11 as a nested word. However,

corresponding opening and closing tags are labeled differently: For example open-

ing tag 〈(a, α, q2)〉 does not have the same label as its corresponding closing tag

〈/(a, α, q3)〉. Such nested words are still linearizations of trees, but with functions

op((a, α, q, q′)) = 〈(a, α, q)〉 and cl((a, α, q, q′)) = 〈/(a, α, q′)〉. Since runs of Nwas

are nested words, as a consequence, Nwas can be composed.

2.4.3 Runs on Marked Trees

A marked data tree is a pair (t, π) consisting of a data tree t and a node π ∈ Nodes(t),

called the mark. Marked unary data tree (t, π) can be linearized into the nested

word, which is the suffix of the complete nested word by the linearization of t

starting at the opening event of π. More formally, we define for any data tree

t = a(t1, . . . , tn) that contains node π a tree suffix suff (t, π) as follows:

suff (a(t1, . . . , tn), ε) = lin(a(t1, . . . , tn))

suff (a(t1, . . . , tn), iπ) = suff (ti, π) · lin(ti+1) · . . . · lin(tn) · cl(a)

The marked node of a tree suffix is the marked node of the underlying marked data

tree. Tree suffixes are complete nested words if and only if the marked node is the

root. More generally, tree suffixes lack the opening events for all ancestors of the

marked node.
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q1 q2

q′2

q3 q12 q13
〈author〉 : α 〈tx〉 : α “Abiteboul” 〈/tx〉 : α

〈¬
tx
〉

:
α

〈/
¬
tx
〉

:
α

〈Σ〉 : β

〈/Σ〉 : β

∆

〈Σ〉 : α

〈/Σ〉 : α

∆

Figure 2.13: Nwa for XPath filter [author[child::text()[1] = "Abiteboul"]]

with shortcuts Σ = Xml′′types ∪ {author(0)}, ¬tx = Σ \ {tx}, and ∆ = Utf8.

An example for a marked data tree is given in Figure 2.14, where the author-

node is chosen as the marked node, and thereby underlined. The Nwa in Fig-

ure 2.13 answers the XPath filter [author[child::text()[1] = "Abiteboul"]]

and thereby accepts all tree suffixes suff (t, π) for a marked data tree (t, π) of trees

t obtained from Xml documents and a marked author-node π, whose first text

node’s data content is equal to “Abiteboul”. A successful run over the marked data

tree is given in Figure 2.14 with start stack S = ααα.

2.4.4 Determinization of NWAs

In the following we give a direct determinization procedure for nested word au-

tomata over alphabets Σ and ∆. These are more restricted nested word automata

in that the alphabets O for opening and C for closing parenthesis coincide to

Σ = O = C. It is possible to determinize Nwas in the general case. However

the determinization becomes more complicated and moreover the more general case

is not needed for our algorithms.

An Nwa A = (Σ,∆, Q,QI , QF ,Γ, R) is deterministic if QI contains at most one

state, and for any q ∈ Q, a ∈ Σ, and a′ ∈ ∆ there is at most one pair (γ, q′) with

q
〈a〉:γ
−−−→ q′ ∈ R, for any γ ∈ Γ there exists at most q′ such that q

〈/a〉:γ
−−−→ q′ ∈ R, and

there exists at most one q′ such that q
a′
−→ q′ ∈ R.

Clearly, any dNwa permits at most one run per tree. The difficulty is to deal

with competing opening rules q
〈a〉:γ1
−−−→ q1 and q

〈a〉:γ1
−−−→ q2. Essentially, the choice is

delayed until closing time. The states and stack symbols of the determinization of

A are sets of such pairs of states (q, q′) ∈ Q2, with the intuitive meaning that the

sequence of children of the current node can be evaluated to q′ when starting in q.

The three inference rules below define its transitions.

Q̄′ = {(q3, q3) | (q1, q2) ∈ Q̄, q2
〈a〉:γ
−−−→ q3 ∈ R}

Q̄
〈a〉:Q̄
−−−→ Q̄′

At opening time the current set Q̄ is pushed onto the stack and the evaluation of

the sequence of the children of the current node is started in all pairs (q3, q3), for
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Figure 2.14: A successful run of the Nwa of Figure 2.13 on the tree suffix of

abstracted data tree from Figure 2.2 where the author-node is chosen as the mark.

Here the start stack is equal S = ααα containing stack symbol α for every ancestors

of the marked node.

which q3 can be reached by some transition of A.

Q̄′′ =

{

(q1, q5) |
(q3, q4) ∈ Q̄, (q1, q2) ∈ Q̄′,

q2
〈a〉:γ
−−−→ q3, q4

〈/a〉:γ
−−−→ q5 ∈ R

}

Q̄
〈/a〉:Q̄′

−−−−→ Q̄′′

At closing time, if one of the left siblings of the a-node could be evaluated to

(q1, q2) and the sequence of children of the a-node to (q3, q4) then one can evaluate

the sequence of left siblings including the a-subtree to (q1, q5), if q2 can be opened

to q3 with the same stack symbol γ that allows to close q4 to q5.

Q̄′ = {(q1, q3) | (q1, q2) ∈ Q̄, q2
a
−→ q3 ∈ R}

Q̄
a
−→ Q̄′

The internal rule allows to only update the current state in the second component

of all pairs of Q̄.

The only initial state of the determinization of A is {(q, q) | q ∈ QI}. A state Q̄

of the determinization of A is final if it contains some pair (q, q′) with q ∈ QI and

q′ ∈ QF .

In the worst case, the determinized automaton has 2|Q|2 states. In experiments,

we also observed huge size explosions in the average case. For example, for the

XPath query //a[following-sibling::b[.//c][./d]]/e we obtain an Nwa with

38 states and 7719 transitions. We were not able to construct the corresponding
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dNwa even if restricted to accessible states only. The main limiting factor was

memory. For the mentioned query we stopped the construction shortly, after having

reached 5000 states with more than 20 million transitions, and swapping to the disk.

Therefore, we will mostly rely on on-the-fly determinization.

2.5 Recursive Functions

The semantics of definitions of recursive functions is usually based on fixed points

on complete partial orders. We first recall the Kleene fixpoint theorem that extracts

the conditions under which such fixpoints exist, and then introduce lambda notion

for recursive functions based on this fixed point theorem.

2.5.1 Partial Orders and Fixed Points.

A partial order on a set D is a binary relation ⊏ on D which is irreflexive, anti-

symmetric, and transitive. For any partial order let ⊑ be the reflexive closure of

⊏.

Definition 2. We call a partial order complete or equivalently a cpo if for any

ascending chain v1 ⊑ v2 ⊑ . . . of D has least upper bound ⊔{vi | i ∈ N} ∈ D.

We call a function f : D → D monotone if for all v1, v2 ∈ D:

v1 ⊑ v2 ⇒ f(v1) ⊑ f(v2)

We call f Scott-continuous if every ascending chain v1 ⊑ v2 ⊑ v3 . . . of elements in

D has an upper bound such that:

f(⊔{vn | n ∈ N}) = ⊔f({vn | n ∈ N}).

We recall that any Scott-continuous function is monotone. A fixed point of f is an

element v of D such that f(d) = d.

Theorem 1 (Kleene fixed-point theorem).

Let (D,⊏) be a complete partially ordered set with least element ⊥ and f : D → D a

Scott-continuous function. Then f has a least fixed point lfpf = ⊔{fn(⊥) | n ∈ N}.

Proof. Since ⊥ is the least element in D, we have that ⊥ ⊑ f(⊥). Since f is

monotone, we have that fn(⊥) ⊑ fn+1(⊥) for all n ≥ 0. The chain has a supremum

since (D,⊏) is complete, so lfpf = ⊔{fn(⊥) | n ∈ N} is well defined. It follows that

lfpf is a fixed point of f since f is Scott continuous (and thus monotone):

f(lfpf ) = f(⊔{fn(⊥) | n ∈ N}) = ⊔{fn+1(⊥) | n ∈ N} = lfpf

Again from monotonicity it follows that lfpf is smaller than any other fixed point

of f .
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2.5.2 Lambda and Letrec Notation

We next introduce Λ notation for total functions, which is situated on the meta-level

of mathematics, rather than on the formal language level such as λ-terms.

Definition 3. Let D,D′ be sets and f(v) ∈ D′ for any v ∈ D. Then we write

Λ v ∈ D. f(v)

for the total function {(v, f(v)) | v ∈ D}.

We next introduce Letrec notation for recursive functions, by which we explain

how recursive functions can be defined by least fixed points and can be computed

functional programs.

Here we will have to deal with partial functions g ⊆ D ×D′, which form a cpo

with the inclusion ordering. Its least element is the empty partial function ∅.

Definition 4. Let f = (f1, . . . , fn) be a tuple of total function such that fi returns

for any input tuple v = (v1, . . . , vn) of partial functions vi ⊆ Di × D′
i an output

tuple f(v) = (f1(v), . . . , fn(v)) of partial functions fi(v) ⊆ Di ×D′
i. If f is Scott-

continuous on the cpo:

(D1 ×D′
1) × . . .× (Dn ×D′

n)

then we write:

Letrec v1 = f1(v) . . . vn = fn(v) in v

for the least fixed point of the operator f , which exists by Kleene’s fixed point theorem

(Theorem 1) and has the following form, since the tuple of empty partial relations

is the least element of the above cpo:

⊔{fn(∅, . . . , ∅) | n ∈ N}.

Furthermore, if there is a function g which can be applied to all elements of the

above cpo then we extend the Letrec notation as follows:

Letrec v1 = f1(v) . . . vn = fn(v) in g(v)

=df g(Letrec v1 = f1(v) . . . vn = fn(v) in v)

Proposition 1. Let f = (f1, . . . , fn) be a tuple of functions as above and (F1, . . . , Fn)

a tuple of functional programs such that Fi computes fi. Then for any 1 ≤ i ≤ n,

there exists an functional program that computes the function in the i-th component

of v = (v1, . . . , vn) where:

Letrec v1 = f1(v) . . . vn = fn(v) in v
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Proof. Let lfp be the least fixed point. The idea is to unfold the definitions of the

functions fi as far as needed. This can be done by the following recursively defined

functional program:

lfp =

fun(j)

fun(v)

case j

of 1 then F1(lfp 1, . . . , lfp n)(v)

. . .

of n then Fn(lfp 1, . . . , lfp n)(v)

in lfp(i)

We next illustrate the proof of the proposition for the functional program computing

the following two mutual recursive functions:

Letrec

v1 = Λ v ∈ N. v2 v − 1

v2 = Λ u ∈ N. if u = 0 then 1 else v1 u

in v2 3

Here we use the functions f1 and f2 such that for all v1, v2:

f1(v1, v2) = Λ v ∈ N. v2 v − 1

f2(v1, v2) = Λ u ∈ N. if u = 0 then 1 else v1 u

The proof of Proposition 1 yields the following functional program for computing

the components of Letrec v1 = f1(v1, v2) v2 = f2(v1, v2) in (v1, v2):

lfp = fun j.

fun v.

case j

of 1 then lfp 2 v − 1

of 2 then if v = 0 then 1 else lfp 1 v

When applied to the second function with argument 2, we obtain

lfp 2 3 = if 3 = 0 then 1 else lfp 1 3

= lfp 1 3

= lfp 2 3 − 1

= lfp 2 2

= if 2 = 0 then 1 else lfp 1 2

= lfp 1 2

= lfp 2 2 − 1

= lfp 2 1

= if 1 = 0 then 1 else lfp 1 1
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= lfp 1 1

= lfp 2 1 − 1

= lfp 2 0

= if 0 = 0 then 1 else lfp 1 0

= 1
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In this chapter, we distinguish the navigational XPath 3.0 fragment that we

call Navigational XPath for short.

3.1 Overview

The XPath queries that we present in the following apply to Xml data trees that

satisfy the Xml data model that we discussed in Section 2.3.1. Navigational queries

select sets of nodes of Xml data trees that are stored in a sequence. The default

semantics claims that nodes are to be sorted into document order, while an arbitrary

implementation dependent order can be chosen within the unordered semantics of

XQuery.

While we explain in detail in Chapter 4 the types and values of XPath 3.0, for

this chapter it suffices to understand sequences as a flat ordered list that contains

items which can either be a node, an atomic value, or a function. However, the

result of path expressions by navigational queries are always sequences of nodes,

while filters evaluate to a boolean or a sequence of nodes which is to be tested for

non-emptiness.

Navigational XPath is obtained by restricting the grammar of XPath 3.0

[Robie 2014b]. Whenever a rule (X) of the grammar is restricted, the remaining
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rules is given the name (X’). The restricted grammar that we present in the next

section allows for navigation in Xml data trees by forward and backward axis, with

relative and absolute expressions, filters, and compositions of paths. For example,

a navigational XPath query is

descendant::a[child::b]/parent::c

that selects the c-labeled parent of a-descendants that have a b-child. This query

contains filters and path compositions of single forward and backward paths. Fur-

thermore, navigational queries allow for more complex tests on node labels and

types, such as in query

child :: p : a/child :: text()

that selects all text children of type tx, below an a-labeled child of the root with

namespace prefix p. However, any data value comparisons, arithmetics, function

application are excluded by navigational XPath.

3.2 Grammar

We give the grammar of navigational XPath that we obtain from the grammar of

XPath 3.0 [Robie 2014b] via some minor modifications. We leave out certain rules

in order to disallow certain expressions. For the same reason we change slightly

some grammar rules, for example, rule (1) becomes rule (1’). Finally we add three

rules for negation (rule (Neg)) and boolean values true (rule (True)) and false (rule

(False)). Note that these exist in XPath 3.0 as built-in functions fn:not, fn:true,

and fn:false, but here we add them to the grammar, since no other functions are

needed.

3.2.1 Ebnf

The grammar of navigational XPath is given in Extended Backus-Naur Form

(Ebnf). There all nonterminals have a name that starts with a capital letter,

while terminal symbols are the strings within double quotes. We refer to the spec-

ification1 for more details about the Ebnf and describe only a few patterns P in

the following. A pattern P appears in the right-hand side of a grammar rule, that

is either a terminal, a nonterminal, or which consist of the more complex patterns,

where P and P’ are sub-patterns:

• (P) matches P,

• P? matches P or nothing,

• P P’ matches P followed by P’ (“space” pattern),

• P | P’ matches P or P’ (“or” pattern),

1https://www.w3.org/TR/xpath-30/#EBNFNotation

http://www.w3.org/TR/xpath-30/#doc-xpath30-XPath
https://www.w3.org/TR/xpath-30/#EBNFNotation
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• P - P’ matches all strings that match P, but not P’,

• P+ matches one or more occurrences of P,and

• P* matches zero or more occurrences of P (“star” pattern)

For example, nonterminal RelativePathExpr has Ebnf rule

RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

which uses “space”, “or”, and “star” patterns. Since a “space” pattern matches the

pattern before the space followed by the pattern after the space and since “star”

patterns match zero ore more occurrences, any string by RelativePathExpr is the

concatenation of a string by StepExpr followed by zero or more strings by StepExpr

that are separated by characters "/" or "//".

3.2.2 Expressions

The grammar starts with path expressions.

(1’) XPath ::= OrExpr

(16) OrExpr ::= AndExpr ( "or" AndExpr )*

(17’) AndExpr ::= NegationExpr ( "and" NegationExpr )*

(Neg) NegationExpr ::= TrueExpr | "not(" TrueExpr ")"

(True) TrueExpr ::= FalseExpr | "true"

(False) FalseExpr ::= PathExpr | "false"

(35) PathExpr ::= ("/" RelativePathExpr?) | ("//"

RelativePathExpr) | RelativePathExpr

(36’) RelativePathExpr ::= AxisStep (("/" | "//") AxisStep)*

(38) AxisStep ::= (ReverseStep | ForwardStep)

PredicateList

(39) ForwardStep ::= (ForwardAxis NodeTest) |

AbbrevForwardStep

(40) ForwardAxis ::= ("child" "::") | ("descendant" "::") |

("attribute" "::") | ("self" "::") |

("descendant-or-self" "::") |

("following-sibling" "::") |

("following" "::") | ("namespace" "::")

(41) AbbrevForwardStep::= "@"? NodeTest

(42) ReverseStep ::= (ReverseAxis NodeTest) |

AbbrevReverseStep

(43) ReverseAxis ::= ("parent" "::") | ("ancestor" "::") |

("preceding-sibling" "::") |

("preceding" "::") |

("ancestor-or-self" "::")

(44) AbbrevReverseStep::= ".."

(50) PredicateList ::= Predicate*

(51’) Predicate ::= "[" OrExpr "]"

http://www.w3.org/TR/xpath-30/#doc-xpath30-OrExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-PathExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AxisStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-AbbrevForwardStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-AbbrevReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-PredicateList
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Path expression may reference node test expressions that verify node labels and

kinds.

(45) NodeTest ::= KindTest | NameTest

(46) NameTest ::= EQName | Wildcard

(47) Wildcard ::= "*" | (NCName ":" "*") |

("*" ":" NCName) |

(BracedURILiteral "*")

(71’) KindTest ::= DocumentTest | ElementTest |

AttributeTest | PITest | CommentTest |

TextTest | AnyKindTest

(72) AnyKindTest ::= "node" "(" ")"

(73’) DocumentTest ::= "document-node" "(" ElementTest? ")"

(74) TextTest ::= "text" "(" ")"

(75) CommentTest ::= "comment" "(" ")"

(77) PITest ::= "processing-instruction" "("

(NCName | StringLiteral)? ")"

(78) AttributeTest ::= "attribute" "(" (AttribNameOrWildcard

("," TypeName)?)? ")"

(79) AttribNameOrWildcard ::= AttributeName | "*"

(82) ElementTest ::= "element" "(" (ElementNameOrWildcard

("," TypeName "?"?)?)? ")"

(83) ElementNameOrWildcard::= ElementName | "*"

Node label tests reference names.

(86) AttributeName ::= EQName

(87) ElementName ::= EQName

(89) TypeName ::= EQName

(94) EQName ::= QName | URIQualifiedName

(99) URIQualifiedName::= BracedURILiteral NCName

(100) BracedURILiteral::= "Q" "{" [^{}]* "}"

(104) QName ::= [http://www.w3.org/TR/REC-xml-names

/#NT-QName]

(105) NCName ::= [http://www.w3.org/TR/REC-xml-names

/#NT-NCName]

3.2.3 Parse Tree

An example is the parse tree of XPath query descendant::tweet in Figure 3.1.

This parse tree is obtained starting with nonterminal XPath. From there the only

choice is nonterminal OrExpr. Since the query does not contain the keyword or,

the star pattern of nonterminal OrExpr matched zero occurrences. So one expends

into nonterminal AndExpr, and so on.

http://www.w3.org/TR/xpath-30/#doc-xpath30-NodeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-NameTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-Wildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-AnyKindTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-TextTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-CommentTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-PITest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttributeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttribNameOrWildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementNameOrWildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttributeName
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementName
http://www.w3.org/TR/xpath-30/#doc-xpath30-TypeName
http://www.w3.org/TR/xpath-30/#doc-xpath30-EQName
http://www.w3.org/TR/xpath-30/#doc-xpath30-URIQualifiedName
http://www.w3.org/TR/xpath-30/#doc-xpath30-BracedURILiteral
http://www.w3.org/TR/xpath-30/#doc-xpath30-QName
https://www.w3.org/TR/REC-xml-names/#NT-QName
https://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
https://www.w3.org/TR/REC-xml-names/#NT-NCName
https://www.w3.org/TR/REC-xml-names/#NT-NCName
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Figure 3.1: The parse tree of XPath query descendant::tweet.

3.3 Path Expressions

Path expressions access nodes of Xml data trees. Navigation within an Xml data

tree is supported via axes by nonterminal AxisStep (38). They are single path

steps that perform navigation via forward and backward axis to some node which

is tested for its label, kind, and against a list of filters. These path steps can then

be composed.

3.3.1 Forward and Backward

Single path steps use either a forward or a backward axis. Forward axes contain

future nodes of the start node, i.e. those nodes that are related to the start node

via future relation fut . In the grammar production below such an axis is child

with proceeding colons “::”, to which a test on the target node follows.

(40) ForwardAxis::= ("child" "::") | ("descendant" "::") |

("attribute" "::") | ("self" "::") |

("descendant-or-self" "::") |

("following-sibling" "::") |

("following" "::") | ("namespace" "::")

Backward axes contain all other nodes, i.e. those related to the start node via

relation pc.

http://www.w3.org/TR/xpath-30/#doc-xpath30-AxisStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardAxis
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(43) ReverseAxis::= ("parent" "::") | ("ancestor" "::") |

("preceding-sibling" "::") | ("preceding" "::") |

("ancestor-or-self" "::")

3.3.2 Label Tests

Label tests inspect the node-name property of element and attribute nodes, that is

stored as data value. It represents a QName, which is made up of a namespace prefix

and a local part (the actual label). NameTests by nonterminal NameTest (46), allow

to test either the namespace prefix, the local part, or both of the nodes label.

An example is query

descendant::a

that selects all a-labeled descendants of the start node, while query

descendant::xml:*

selects all descendants nodes, whose namespace prefix is equal to xml.

3.3.3 Kind Tests

Any node can be tested for its kind, i.e. the Xml type, that is also stored in node

labels of Xml data trees. Kinds test are the document node, element, attribute,

processing-instruction, comment, and text node tests, or may be the AnyKindTest

node() the matches any node kind.

(71’) KindTest::= DocumentTest | ElementTest | AttributeTest |

PITest | CommentTest | TextTest | AnyKindTest

For example, query

child::text()

selects all children of type tx. One can also test whether descendant of some node

are element nodes whose label is “a” as in query

descendant::element(a)

which is equivalent to descendant::a.

3.3.4 Relative, Absolute, and Abbreviated Expressions

Path expressions can be relative such that they are evaluated from some node as

we have seen with queries descendant::a and child::text(). Otherwise they

are absolute and thereby evaluated from the root of the tree. In XPath absolute

expressions have “/” or “//” prepended to them, as in query /descendant::a that

selects all a-descendants of the root node.

Most often XPath queries use the abbreviation “/” for the child axis, and also

when the axis name is omitted for a path step, the child axis is the default one:

a/b = child::a/child::b

http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-NameTest
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An occurrence of the abbreviation “//” in XPath queries which is not at the begin-

ning of a path expression is an abbreviation for /descendant-or-self::node()/,

as in query

/a//b = /a/descendant-or-self::node()/b.

3.3.5 Filters

Filters a.k.a predicates in XPath are test expressions given in square brackets.

For some node they can test whether it is related to certain other nodes. The

following query, for example, retains all book- labeled descendant nodes for which

the filter becomes true:

//book[not(child::title)]

It selects all book-descendants of the root, that do not have a title-labeled child

node. Therefore, filters determine which elements of an input sequence are kept

and which are not.

In general a filter expression P[P’] is evaluated as follows. P evaluates to a

sequence of items, and not necessarily to a sequence of nodes only. For ev-

ery item in the sequence by P the filter P’ is evaluated. If the filter evaluates

to true, the item is retained. Note that filters in the original XPath grammar

[Robie 2014b] allow to evaluate to an integer as well. In that case the item is re-

tained if the integer is equal to the position of the item in the sequence, as with

query child::author[2] that selects the second author-child.

3.3.6 Compositions

Single path steps with optional filters can be composed using XPath’s path operator

“/”. For all a-children that have a b-child, for example, as in query

/child::a[child::b]/child::c

the expression child::c is evaluated, resulting in the selection of all c-nodes below

a-children of the root that have a b-child.

In general, expressions P in path compositions P/P’ must evaluate to a se-

quence on nodes. Expression P’ is evaluated for every node in that sequence and

result sequences are appended. In the original rule of the XPath 3.0 grammar of

[Robie 2014b] path compositions, as by nonterminal RelativePathExpr (36) single

path steps may also return numbers and strings, and not only nodes. The specifi-

cation of the path operator “/” states that the result sequences by P’ are either

sequences of non-nodes, or they are sequences of nodes of which duplicates are

removed, and which are returned in document order. The removal of duplicates is

performed in order to obtain a set of nodes. Otherwise with tree a(a(a(b))) one

would select the common b-descendant several times as with query

/descendant::a/descendant::b

which selects all b-descendants which has some a-ancestor of the root.

http://www.w3.org/TR/xpath-30/#doc-xpath30-RelativePathExpr
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This chapter explains the types and values of XPath 3.0 that are based on se-

quences: There are atomic types, node types, and function types. Respective values

are atomic values, such as integers, nodes of Xml data trees, and functions. These

values are called items. Then there are sequence types, whose values are sequences,

which are ordered list that are made up of items and not nested. Therefore a list

of pairs ((1, “one”), (2, “two”), (3, “three”)), for example, would have to be encoded

into sequence (1, “one”, 2, “two”, 3, “three”), where every two items make up for a

pair.

Type checking is static and dynamic. Statically one verifies whether there is

no syntax error in the query, whether the declared functions parameters do not

have the same name, or whether predefined prefixes such as xml are not declared

elsewhere. Otherwise type checking is mostly dynamic, while there exist dynamic

type-conditionals, such as instance of, that verify whether a sequence has an

expected type or not. Variables in XPath are statically typed depending on their

context, functions are annotated with input and output types, while items in general

may have several types because of subtyping. For all these reasons, sequence types

have a concrete syntax specified by the grammar of XPath 3.0.
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4.1 Sequence Type Expressions

Sequence type expressions are derived from nonterminal SequenceType (67). They

are expressions, but also types in the XPath 3.0 language, as we will discuss.

(67) SequenceType ::= ("empty-sequence" "(" ")") |

(ItemType OccurrenceIndicator?)

(68) OccurrenceIndicator ::= "?" | "*" | "+"

(69) ItemType ::= KindTest | ("item" "(" ")") |

FunctionTest | AtomicOrUnionType |

ParenthesizedItemType

(70) AtomicOrUnionType ::= EQName

(71) KindTest ::= DocumentTest | ElementTest |

AttributeTest | SchemaElementTest |

SchemaAttributeTest | PITest |

CommentTest | TextTest |

NamespaceNodeTest | AnyKindTest

(72) AnyKindTest ::= "node" "(" ")"

(73) DocumentTest ::= "document-node" "(" (ElementTest |

SchemaElementTest)? ")"

(74) TextTest ::= "text" "(" ")"

(75) CommentTest ::= "comment" "(" ")"

(76) NamespaceNodeTest ::= "namespace-node" "(" ")"

(77) PITest ::= "processing-instruction" "("

(NCName | StringLiteral)? ")"

(78) AttributeTest ::= "attribute" "(" (AttribNameOrWildcard

("," TypeName)?)? ")"

(79) AttribNameOrWildcard ::= AttributeName | "*"

(80) SchemaAttributeTest ::= "schema-attribute" "("

AttributeDeclaration ")"

(81) AttributeDeclaration ::= AttributeName

(82) ElementTest ::= "element" "(" (ElementNameOrWildcard

("," TypeName "?"?)?)? ")"

(83) ElementNameOrWildcard::= ElementName | "*"

(84) SchemaElementTest ::= "schema-element" "("

ElementDeclaration ")"

(85) ElementDeclaration ::= ElementName

(86) AttributeName ::= EQName

(87) ElementName ::= EQName

(88) SimpleTypeName ::= TypeName

(89) TypeName ::= EQName

(90) FunctionTest ::= AnyFunctionTest | TypedFunctionTest

(91) AnyFunctionTest ::= "function" "(" "*" ")"

(92) TypedFunctionTest ::= "function" "(" (SequenceType

http://www.w3.org/TR/xpath-30/#doc-xpath30-SequenceType
http://www.w3.org/TR/xpath-30/#doc-xpath30-SequenceType
http://www.w3.org/TR/xpath-30/#doc-xpath30-OccurrenceIndicator
http://www.w3.org/TR/xpath-30/#doc-xpath30-ItemType
http://www.w3.org/TR/xpath-30/#doc-xpath30-AtomicOrUnionType
http://www.w3.org/TR/xpath-30/#doc-xpath30-KindTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AnyKindTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-DocumentTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-TextTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-CommentTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-NamespaceNodeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-PITest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttributeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttribNameOrWildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-SchemaAttributeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttributeDeclaration
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementNameOrWildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-SchemaElementTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementDeclaration
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttributeName
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementName
http://www.w3.org/TR/xpath-30/#prod-xpath30-SimpleTypeName
http://www.w3.org/TR/xpath-30/#doc-xpath30-TypeName
http://www.w3.org/TR/xpath-30/#doc-xpath30-FunctionTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AnyFunctionTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-TypedFunctionTest
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("," SequenceType)*)? ")" "as"

SequenceType

(93) ParenthesizedItemType::= "(" ItemType ")"

(94) EQName ::= QName | URIQualifiedName

4.2 Basic Types

Basic types in XPath 3.0 are item types. It is a type that is derived by the Ebnf

rule ItemType (69). Their values are called items. Basically every item is either

an atomic value, a node, or a function.

(69) ItemType::= KindTest | ("item" "(" ")") |

FunctionTest | AtomicOrUnionType |

ParenthesizedItemType

The item type item() is the most general item type: any item has type item().

Any item has the type ParenthesizedItemType (93) if and only if the item has

the type that is in parenthesis.

4.2.1 Atomic Types

The XPath 3.0 data model accommodates of up to 50 different atomic types that

are derived by nonterminal AtomicOrUnionType (70) and that we present in Fig-

ure 4.1.

For example, strings such as "abc" are of type xs:string, numbers 56 may

represent integers of type xs:integer, 56E3 is a representation of a double of type

xs:double, booleans are of type xs:boolean, and names math:sin represent an

element of type QName that contain some local part (sin) and optionally some

namespace prefix (math). For these types XPath 3.0 functions are provided that

manipulate their values, such as fn:abs, fn:floor, math:exp, and math:sin for

numeric values, fn:concat, fn:normalize-space, and fn:contains for string val-

ues, and fn:prefix-from-QName and fn:local-name-from-QName for QNames.

4.2.2 Union Types

There exist union types as well in XPath 3.0. They are also derived by nonterminal

AtomicOrUnionType (70) and denote the union of the denotation of two item types.

4.2.3 Node Types

The node types are derived by nonterminal KindTest (71).

(71) KindTest::= DocumentTest | ElementTest | AttributeTest |

SchemaElementTest | SchemaAttributeTest | PITest |

CommentTest | TextTest | NamespaceNodeTest |

AnyKindTest

http://www.w3.org/TR/xpath-30/#doc-xpath30-ParenthesizedItemType
http://www.w3.org/TR/xpath-30/#doc-xpath30-EQName
http://www.w3.org/TR/xpath-30/#doc-xpath30-ItemType
http://www.w3.org/TR/xpath-30/#doc-xpath30-ItemType
http://www.w3.org/TR/xpath-30/#doc-xpath30-ParenthesizedItemType
http://www.w3.org/TR/xpath-30/#doc-xpath30-AtomicOrUnionType
http://www.w3.org/TR/xpath-30/#doc-xpath30-AtomicOrUnionType
http://www.w3.org/TR/xpath-30/#doc-xpath30-KindTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-KindTest
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Figure 4.1: Excerpt of the XPath Data Model 3.0 specification about atomic types

and their subtype relations.

Amongst the node types there are types document-node(), element(), attribute(),

text(), comment(), and processing-instruction() which denote nodes of the

respective kind, while node() denotes all nodes of all node kinds. Furthermore

there are node types by nonterminal ElementTest (82), for example, that may also

specify the label of an element node. For example, type element(a) denotes the

https://www.w3.org/TR/xpath-datamodel-30/
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementTest


4.3. Sequence Types 53

set of element nodes whose label is a. For nodes there exist built-in functions, such

as fn:name, fn:local-name, fn:path, fn:innermost, and fn:outermost to name

a few.

4.2.4 Function Types

Function types are produced by nonterminal FunctionTest (90). Type function(*),

for example, denotes any function. Function types may also contain the types of

their signature, such as type

function(xs:integer, xs:integer) as xs:integer

which denotes all two-parameter functions of signature xs:integer×xs:integer →

xs:integer. Built-in functions are provided, such as math:sin which return the

sine of its argument. Note that functions may be of higher order, i.e. return a

function as its result or take a function as one of its arguments, such as built-in

functions fn:for-each and fn:fold-left. The signature of these functions how-

ever use sequence types, as we discuss next.

4.3 Sequence Types

Sequence types are build from item types. They optionally use one of the oc-

currence indicators “?”, “*”, or “+”. Sequence types denote sequences that are

ordered lists of items that are not nested. Furthermore a singleton sequence, i.e.

a sequence containing exactly one item, is equivalent to the item it carries, for

example, the double 56E3 = (56E3).

(67) SequenceType ::= ("empty-sequence" "(" ")") |

(ItemType OccurrenceIndicator?)

(68) OccurrenceIndicator::= "?" | "*" | "+"

There is the empty sequence type empty-sequence() which denotes the empty

list. A sequence type that is an item type (no occurrence indicator is present)

denotes any one-item sequence of an item that denoted by the item type. For

example, the item type xs:integer is also a sequence type: xs:integer as an

item type denotes the set of integers, while xs:integer as a sequence type denotes

the set of one-item lists of integers. This is since singleton sequences are identified

to the item they carry, making every item of XPath 3.0 a sequence.

An occurrence operator indicates the number of items in the sequence: “?”

indicates zero or one items, “*” indicates zero or more items, and “+” stands for

one or more items. A sequence type that is build from an item type with an

occurrence operator “?”, “*”, or “+” denotes a list whose number of elements fits

the occurrence operator, and whose elements are items of the respective item type.

http://www.w3.org/TR/xpath-30/#doc-xpath30-FunctionTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-SequenceType
http://www.w3.org/TR/xpath-30/#doc-xpath30-OccurrenceIndicator
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For example the sequence type

xs:integer+

denotes a sequence of one or more integers, such as sequence

(1, 2, 3).

4.4 Subtyping

XPath 3.0 defines a subtype relation amongst item types and sequence types. The

subtype relation of XPath is first defined for item types and then lifted to sequence

types. We refer to the specification1 of a complete description of the subtype relation

and mention only a few here.

4.4.1 Item Types

Any node, function, or atomic type is a subtype of the general item type item().

Any function type is a subtype of the general function type function(*), and any

node type is a subtype of node(). For atomic types there are the subtypes indicated

by arrows in Figure 4.1, for example

xs:integer is a subtype of xs:decimal.

4.4.2 Sequence Types

The subtype relation for item types is extended to a subtype relation on sequence

types. This has to take into account all possible combinations of occurrence op-

erators. For example, the sequence type T? for some item type T, is a subtype of

sequence type T′* for some other item type T′, if T is a subtype of T′, e.g.

xs:integer? is a subtype of xs:decimal*

Note that the occurrence indicators may not exclude themselves, for example, a

sequence type with occurrence indicator “+” cannot be a subtype of a sequence

type with occurrence indicator “?”, since the occurrence “?” does not match more

than one item, and since “+” does not match zero items. Note that the empty

sequence type “()” is a subtype of all sequence types with indicators “?” and “*”,

but not a subtype for those with “+” or without an indicator.

4.5 Dynamic Type Checking

Dynamic type checking is referred to in the XPath 3.0 specification as Sequence

Type Matching2. Given some value it tests whether its type is derived from an

expected sequence type.

1http://www.w3.org/TR/xpath-30/#id-sequencetype-subtype
2http://www.w3.org/TR/xpath-30/#id-sequencetype-matching

http://www.w3.org/TR/xpath-30/#id-sequencetype-subtype
http://www.w3.org/TR/xpath-30/#id-sequencetype-matching
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Function derives-from that is stated in the specification mainly describes the

transitivity of the subtype relation. It can be defined as follows: Let T, T′, and T′′

be item types. Then T derives from itself. T derives from T′, if T is a subtype of T′.

T derives from union type T′ ∪ T′′ if either T = T′ or T = T′′. Finally T derives from

T′′ if T derives from some T′, which in turn derives from T′′.

This allows to check whether a type matches some value, as follows. An item

types T simply matches some value v, if the type of v is derived from T with respect

to the above function derives-from. For sequences it can be defined as follows:

the empty sequence type matches the empty sequence. An item type without an

occurrence indicator matches a sequence if it contains just one item that is matched

by the item type. An item type with an occurrence indicator matches a sequence if

the number of elements in the sequence match the occurrence indicator and if the

item type matches every item in the sequence.





Chapter 5

Full XPath 3.0

Contents

5.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Basic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.2 Navigational Expressions . . . . . . . . . . . . . . . . . . . . 59

5.1.3 Postfix Expressions . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.4 Terminal Expressions . . . . . . . . . . . . . . . . . . . . . . 60

5.1.5 Parse Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Strings and Numbers . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.4 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.5 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Path Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2 Map Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 First-Order Connectives . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Arithmetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Data Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6.1 Atomic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6.2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6.3 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7.1 Duplicate-free Sequences . . . . . . . . . . . . . . . . . . . . . 69

5.7.2 Computing Sets when possible . . . . . . . . . . . . . . . . . 69

5.8 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8.1 Kinds of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8.2 Try and Catch Expressions . . . . . . . . . . . . . . . . . . . 70

5.9 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.10 Regular Extension of XPath 3.0 . . . . . . . . . . . . . . . . 71

5.11 XPathMark Benchmark . . . . . . . . . . . . . . . . . . . . . 72

In this chapter we present most of the expressions allowed in XPath 3.0.
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5.1 Grammar

5.1.1 Basic Expressions

(1) XPath ::= Expr

(2) ParamList ::= Param ("," Param)*

(3) Param ::= "$" EQName TypeDeclaration?

(4) FunctionBody ::= EnclosedExpr

(5) EnclosedExpr ::= "{" Expr "}"

(6) Expr ::= ExprSingle ("," ExprSingle)*

(7) ExprSingle ::= ForExpr | LetExpr | QuantifiedExpr |

IfExpr | OrExpr

(8) ForExpr ::= SimpleForClause "return" ExprSingle

(9) SimpleForClause ::= "for" SimpleForBinding

("," SimpleForBinding)*

(10) SimpleForBinding ::= "$" VarName "in" ExprSingle

(11) LetExpr ::= SimpleLetClause "return" ExprSingle

(12) SimpleLetClause ::= "let" SimpleLetBinding

("," SimpleLetBinding)*

(13) SimpleLetBinding ::= "$" VarName ":=" ExprSingle

(14) QuantifiedExpr ::= ("some" | "every") "$" VarName "in"

ExprSingle ("," "$" VarName "in"

ExprSingle)* "satisfies" ExprSingle

(15) IfExpr ::= "if" "(" Expr ")" "then" ExprSingle

"else" ExprSingle

(16) OrExpr ::= AndExpr ( "or" AndExpr )*

(17) AndExpr ::= ComparisonExpr ( "and" ComparisonExpr )*

(18) ComparisonExpr ::= StringConcatExpr ( (ValueComp |

GeneralComp | NodeComp)

StringConcatExpr )?

(19) StringConcatExpr ::= RangeExpr ( "||" RangeExpr )*

(20) RangeExpr ::= AdditiveExpr ( "to" AdditiveExpr )?

(21) AdditiveExpr ::= MultiplicativeExpr ( ("+" | "-")

MultiplicativeExpr )*

(22) MultiplicativeExpr ::= UnionExpr ( ("*" | "div" | "idiv" |

"mod") UnionExpr )*

(23) UnionExpr ::= IntersectExceptExpr ( ("union" | "|")

IntersectExceptExpr )*

(24) IntersectExceptExpr::= InstanceofExpr ( ("intersect" |

"except") InstanceofExpr )*

(25) InstanceofExpr ::= TreatExpr ( "instance" "of"

SequenceType )?

(26) TreatExpr ::= CastableExpr ( "treat" "as"

SequenceType )?

http://www.w3.org/TR/xpath-30/#doc-xpath30-XPath
http://www.w3.org/TR/xpath-30/#prod-xpath30-ParamList
http://www.w3.org/TR/xpath-30/#prod-xpath30-Param
http://www.w3.org/TR/xpath-30/#prod-xpath30-FunctionBody
http://www.w3.org/TR/xpath-30/#prod-xpath30-EnclosedExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-Expr
http://www.w3.org/TR/xpath-30/#doc-xpath30-ExprSingle
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleForClause
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleForBinding
http://www.w3.org/TR/xpath-30/#doc-xpath30-LetExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleLetClause
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleLetBinding
http://www.w3.org/TR/xpath-30/#doc-xpath30-QuantifiedExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-IfExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-OrExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AndExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-ComparisonExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-StringConcatExpr
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http://www.w3.org/TR/xpath-30/#doc-xpath30-InstanceofExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-TreatExpr
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(27) CastableExpr ::= CastExpr ( "castable" "as" SingleType )?

(28) CastExpr ::= UnaryExpr ( "cast" "as" SingleType )?

(29) UnaryExpr ::= ("-" | "+")* ValueExpr

(30) ValueExpr ::= SimpleMapExpr

(31) GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

(32) ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"

(33) NodeComp ::= "is" | "<<" | ">>"

(34) SimpleMapExpr ::= PathExpr ("!" PathExpr)*

5.1.2 Navigational Expressions

(35) PathExpr ::= ("/" RelativePathExpr?) | ("//"

RelativePathExpr) | RelativePathExpr

(36) RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

(37) StepExpr ::= PostfixExpr | AxisStep

(38) AxisStep ::= (ReverseStep | ForwardStep)

PredicateList

(39) ForwardStep ::= (ForwardAxis NodeTest) |

AbbrevForwardStep

(40) ForwardAxis ::= ("child" "::") | ("descendant" "::") |

("attribute" "::") | ("self" "::") |

("descendant-or-self" "::") |

("following-sibling" "::") |

("following" "::") | ("namespace" "::")

(41) AbbrevForwardStep::= "@"? NodeTest

(42) ReverseStep ::= (ReverseAxis NodeTest) |

AbbrevReverseStep

(43) ReverseAxis ::= ("parent" "::") | ("ancestor" "::") |

("preceding-sibling" "::") |

("preceding" "::") |

("ancestor-or-self" "::")

(44) AbbrevReverseStep::= ".."

(45) NodeTest ::= KindTest | NameTest

(46) NameTest ::= EQName | Wildcard

(47) Wildcard ::= "*" | (NCName ":" "*") |

("*" ":" NCName) |

(BracedURILiteral "*")

5.1.3 Postfix Expressions

(48) PostfixExpr ::= PrimaryExpr (Predicate |

ArgumentList)*

(49) ArgumentList ::= "(" (Argument ("," Argument)*)? ")"

(50) PredicateList ::= Predicate*

http://www.w3.org/TR/xpath-30/#doc-xpath30-CastableExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-CastExpr
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http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-AbbrevReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-NodeTest
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http://www.w3.org/TR/xpath-30/#doc-xpath30-Wildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-PostfixExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-ArgumentList
http://www.w3.org/TR/xpath-30/#doc-xpath30-PredicateList
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(51) Predicate ::= "[" Expr "]"

(52) PrimaryExpr ::= Literal | VarRef |

ParenthesizedExpr | ContextItemExpr |

FunctionCall | FunctionItemExpr

(53) Literal ::= NumericLiteral | StringLiteral

(54) NumericLiteral ::= IntegerLiteral | DecimalLiteral |

DoubleLiteral

(55) VarRef ::= "$" VarName

(56) VarName ::= EQName

(57) ParenthesizedExpr ::= "(" Expr? ")"

(58) ContextItemExpr ::= "."

(59) FunctionCall ::= EQName ArgumentList

(60) Argument ::= ExprSingle | ArgumentPlaceholder

(61) ArgumentPlaceholder::= "?"

(62) FunctionItemExpr ::= NamedFunctionRef | InlineFunctionExpr

(63) NamedFunctionRef ::= EQName "#" IntegerLiteral

(64) InlineFunctionExpr ::= "function" "(" ParamList? ")" ("as"

SequenceType)? FunctionBody

(65) SingleType ::= SimpleTypeName "?"?

(66) TypeDeclaration ::= "as" SequenceType

5.1.4 Terminal Expressions

(95) IntegerLiteral ::= Digits

(96) DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)

(97) DoubleLiteral ::= (("." Digits) | (Digits ("."

[0-9]*)?)) [eE] [+-]? Digits

(98) StringLiteral ::= (’"’ (EscapeQuot | [^"])* ’"’) |

("’" (EscapeApos | [^’])* "’")

(99) URIQualifiedName::= BracedURILiteral NCName

(100) BracedURILiteral::= "Q" "{" [^{}]* "}"

(101) EscapeQuot ::= ’""’

(102) EscapeApos ::= "’’"

(103) Comment ::= "(:" (CommentContents | Comment)* ":)"

(104) QName ::= [http://www.w3.org/TR/REC-xml-names

/#NT-QName]

(105) NCName ::= [http://www.w3.org/TR/REC-xml-names

/#NT-NCName]

(106) Char ::= [http://www.w3.org/TR/REC-xml#NT-Char]

(107) Digits ::= [0-9]+

(108) CommentContents ::= (Char+ - (Char* (’(:’ | ’:)’) Char*))

http://www.w3.org/TR/xpath-30/#doc-xpath30-Predicate
http://www.w3.org/TR/xpath-30/#doc-xpath30-PrimaryExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-Literal
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http://www.w3.org/TR/xpath-30/#prod-xpath30-TypeDeclaration
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Figure 5.1: The parse tree of XPath query descendant::tweet.

5.1.5 Parse Tree

We present the parse tree of XPath query descendant::tweet for the XPath

3.0 grammar in Figure 5.1. This is the parse tree using the original XPath 3.0

grammar, in contrast to the parse tree of Figure 3.1 for the same query, but for the

navigational XPath grammar given in Section 3.2.2.
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5.2 Values

5.2.1 Strings and Numbers

There are literal expressions, created by nonterminal Literal (53), which are

expressions that either return a string or a numeric value. They are syntactic

representations of a string or a numeric value.

A numeric expression without “.”, “e”, or “E” is an integer of type xs:integer.

It is of type xs:decimal if it only has the dot “.”, and otherwise it is a value of

type xs:double. For example, expression 84 is a decimal value of type xs:decimal.

They can also be constructed using constructor functions that specify the atomic

type. For example, xs:integer(84) creates an integer value of type xs:integer.

Furthermore, we would like to mention xs:float("NaN") that returns special floating-

point value “Not a Number”, and xs:double("INF") that return a special value

for “positive infinity”.

String expressions are surrounded by double quotes and denote the string of

characters within the quotes. For example expression "8.4" denotes a string con-

taining the characters “8”, “.”, and “4”. Strings can be concatenated via the

string concatenation expression by StringConcatExpr (19) that uses symbol “||”

to denote the concat function fn:concat. For example, query "8." || "4" returns

string "8.4".

5.2.2 Booleans

The boolean values true and false are returned by XPath 3.0 functions fn:true and

fn:false, respectively. Boolean values in XPath 3.0 are computed by conditionals,

logical connectives, filters, quantifications, and comparisons. However also other

data types than booleans are permitted as test expressions, such as node sequences,

strings, and numeric values. For example, query

if //a then //b else ()

evaluates to the sequence of b-descendants, if there is an a-descendant, and other-

wise it evaluates to the empty sequence.

How to evaluate to boolean values in general is defined in XPath by the effec-

tive boolean value, which is computed by function fn:boolean. This function is

computed implicitly for all expressions requiring boolean values. The above example

is therefore equivalent to

if fn:boolean(//a) then //b else ()

For node sequences, functions fn:boolean returns true, if the sequence contains at

least one node. For string types, the function returns true, if the value is not the

empty string. For numeric values that are not equal to 0 and not the constant NaN

(not a number), true is returned and for boolean values the value itself is returned.

http://www.w3.org/TR/xpath-30/#doc-xpath30-Literal
http://www.w3.org/TR/xpath-30/#doc-xpath30-StringConcatExpr
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5.2.3 Functions

Function expressions. Functions can be referenced using EQNames, such as

built-in function math:sin. The whole list of built-in functions is given in [Kay 2014].

Functions may be also referenced by an expression name#arity that uniquely

identifies a function via its name and arity such as concat#2, which returns the

concat function with two arguments.

Functions can also be defined inline within the XPath expression, such as

function($a as xs:double, $b as xs:double) as xs:double {$a * $b},

that returns a function with two arguments of type xs:double computing their

product. Inline function expressions specify the sequence types of the parameters

of the function, the sequence type of the result, and the body of the function (the

part within the curly brackets). If a sequence type is not declared, the default type

is item()*.

Last but not least in XPath 3.0 there are function call expressions that identify

a function via an EQName, and which is called with a list of arguments. If some

of the arguments are argument placeholder expressions ?, it is considered to be a

partial function application that returns a function that is obtained via currying.

For example the partial function application fn:concat("a", ?, "c") results in

function λy.fn:concat("a", y, "c").

Atomization and Coercion. The evaluation of a function requires to convert

the value of its arguments to their expected type, which is specified by the function

conversion rules1. If one of its arguments types is a function type, then function

coercion is applied to each function of the argument sequence, see next paragraph.

Otherwise the expected argument type is a sequence type of non-function items.

Atomization is applied to every item in that sequence, resulting in a sequence of

atomic values. Those values are then converted to the expected non-function item

type, if possible.

The specification defines function coercion2, which converts a function that is

passed as argument to another function, in order to delay the checking of argument

and return types until the invocation of the function. The function is converted

into a new function that has the expected function type. When the new function

is invoked, function conversion rules are applied to the function arguments, with

which the original function is called. This result is finally converted to the expected

result type of the function, applying once more the function conversion rules.

5.2.4 Sequences

Construction. The empty sequence is constructed with query (). In general

sequences are constructed using the comma as in (((2)), (3.0, "4"), ()) which

is subject to sequence flattening.

1http://www.w3.org/TR/xpath-30/#id-function-conversion-rules
2http://www.w3.org/TR/xpath-30/#id-function-coercion

http://www.w3.org/TR/xpath-30/#id-function-conversion-rules
http://www.w3.org/TR/xpath-30/#id-function-coercion
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Flattening. Sequences are not nested, in that a sequence can not appear as an

element of another sequence. When combining sequences and items, an implicit

flattening occurs, e.g.

(((2)), (3.0, "4"), ()),

where () is the empty sequence, is flattened to the sequence

(2, 3.0, "4").

Decomposition. Sequence are decomposed via for expressions by nonterminal

ForExpr (8), such as

for $x in (1, 33, 555) return ($x + 100, $x)

which evaluates to sequence (101,1,133,33,655,555). The expression following

the return keyword is evaluated for every item $x in the sequence by the expression

before the return keyword and in that order. Result sequences are appended.

Moreover, functions that operate on sequences exist as built-in functions, such as

fn:head, fn:tail, fn:remove, and reverse.

Atomization. The evaluation of arithmetic expressions and comparison expres-

sions, relies on atomization, which atomizes a sequence of atomic values, nodes, and

functions, to obtain a sequence of atomic values only. This is computed by function

fn:data, which retains atomic values, raises an error when encountering functions,

and which computes the typed value of node items. The typed value is the data

content of text, comment, and processing-instruction nodes, which corresponds to

the attribute value for attribute nodes, and to the concatenation of data content of

text node descendants for document and element nodes. For attribute and element

nodes the result string is then cast to the schema-type stored as data value property

of attribute and elements nodes.

For example, if the value of the argument to function fn:data is already atomic,

as in query fn:(12.5), then the atomic value is returned. Otherwise for the small

document “<a>Hello <b>there</b>.</a>” query

fn:data(//a)

returns the untyped atomic value "Hello there.": The function gets a list of

a-nodes. Since nodes are not atomic, the nodes are atomized to their typed value.

Type Checking. An example XPath 3.0 query that performs sequence type

matching directly is expression P instance of P’ which returns true whenever

the type of the result by P matches the type by P’. For example

(1, 2, 3) instance of xs:integer+

evaluates to true.

http://www.w3.org/TR/xpath-30/#doc-xpath30-ForExpr
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5.2.5 Conversions

XPath 3.0 provides cast expressions that allow to cast values to a specific type, for

which the specification gives a vast list of conversion rules3 that we will not discuss

in any detail. An example is the following cast expression that casts value 2 as a

double value:

2 cast as xs:double

For the purpose of comparing values using comparison expressions, see Sec-

tion 5.6, one may require to find the least common type of two types, to which re-

spective values are converted. For example the least common type of an xs:integer

and a xs:float value is xs:float.

5.3 Positions

XPath makes vastly use of positions, which is the facility to test filters and to

evaluate path expressions according to some position in a sequence. It means to

reason about an item in a list, its position, and the size of the list. This information

has to be accessible when looking at just one item in the sequence, thus one would

require lists of tuples with this information when implementing it. However this is

not supported directly within XPath 3.0, since sequences are flat.

For path expression using the path operator in expressions P/P’, or the simple

map operator (see Section 5.4.2) in expressions P!P’, or when testing predicates

P[P’], XPath defines a dynamic context for the evaluation of sub-expressions P’,

which contains information about the evaluation of P: The context item, referred

to by XPath expression “.”, is the item which is currently being processed, whose

initial value is to be set by an implementation. For path expressions and filters,

the context item for P’ is the item of sequence P that is currently being processed.

The context position, referred to by function fn:position(), is the position of the

context item within the sequence. Finally the context size is the number of items

in the sequence, and referred to by function fn:last().

For example consider query

(1 to 30)[. mod 3 eq 0],

where 1 to 30 is a range expression that evaluates to the sequence of consecutive

integers 1 until 30. Each of those integers eventually becomes the context item, for

which the filter . mode 3 eq 0 evaluates to true if and only if it is dividable by

3. The result sequence is therefore 3, 6, 9, . . . , 27, 30. The context size for the filter

is 30 and the context item happens to be the context position. A query referring

to context position and size is

//a[fn:position()=fn:last()] = //a[fn:last()]

3http://www.w3.org/TR/xpath-30/#id-cast

http://www.w3.org/TR/xpath-30/#id-cast
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which returns the last a-node in document order: The number of a-nodes in

the sequence is fn:last(), while the positions of the a-nodes range from 1 un-

til fn:last() such that the equality becomes true only for the last a-node. Last

but not least, we mention a query that uses the path operator /, and which returns

a sequence of consecutive integers: one for every a-node, starting with 1:

//a/fn:position()

5.4 Navigation

5.4.1 Path Expressions

Path expressions are produced by nonterminal PathExpr (35), which we discussed

in detail in Chapter 3. Path expressions according to the full XPath 3.0 grammar

may also be postfix expressions, i.e. expressions by nonterminal PostfixExpr (48),

that produce literal expressions, variable reference expressions, function calls, and

function expressions.

5.4.2 Map Operator

One of the new features of XPath 3.0 are expressions by nonterminal SimpleMapExpr (34)

that use the mapping operator “!”, which in contrast to the path operator operates

on sequences of items, not only on sequences of nodes or non-node. It does not

perform duplicate elimination, but only appends sequences by P’ in the order of

items of the sequence by P for mapping expressions P!P’. For example, query

(1,3,5) ! (. + 10)

returns the sequence (11,13,15): Subexpression (. + 10) is evaluated for every

item in (1,3,5) where the context item “.” takes value 1, 3, and 5. Its result

sequence therefore contains items 11, 13, and 15 in that order. However when

XPath 3.0 is used in host language XQuery 3.0, whose ordering mode is set to

unordered, then the result sequence may be returned in an implement-dependent

order, see also Section 5.7.2.

Interestingly, the path expressions P/P’ that use the path operator “/” can be

expressed by the mapping operator which uses operations on sets of nodes:

P/P’ =

let $R:= P!P’ return

if (every $r in $R satisfies $r instance of node()) then

($R union ())

else if (every $r in $R satisfies not($r instance of node())) then

$R

else error()

First, expression P!P’ is evaluated. Then the result sequence is analyzed for whether

only nodes are contained. If so, the union operator union is applied to the result

http://www.w3.org/TR/xpath-30/#doc-xpath30-PathExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-PostfixExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleMapExpr
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sequence with the empty one: Duplicates are eliminated (see Section 5.7.1). Oth-

erwise if there exist an item in the sequence that is not a node, all items must be

non-nodes and the sequence is returned, otherwise an error is thrown.

5.5 First-Order Connectives

XPath 3.0 provides first-order logic constructs, such as the logical connectives:

conjunctions, disjunctions, negation, and quantifications.

Logical connectives like function fn:not and disjunction or perform implicit

calls to fn:boolean for their operands as in the following query. The function com-

putes the effective boolean value as discussed in Sectionchap3:sec:booleanvalues.

//book[fn:not(title) or fn:not(author)]

that selects all book-nodes, which either have no title or no author.

XPath provides existential quantification some $y in P satisfies P’ that

evaluate to true, if the effective boolean value of at least one evaluation of P’ with

variable $y bound to an element of the sequence by P is true. The quantification

every $y in P satisfies P’ requires function fn:boolean to become true for

all evaluations of P’ as in query

every $y in (1, "b", fn:true()) satisfies $y

which evaluates to true, since the fn:boolean(1) = true, fn:boolean("b") = true

and since the boolean constant fn:true() evaluates to true.

5.5.1 Arithmetics

Arithmetic operators are provided for addition “+”, subtraction “-”, multiplication

“*”, division “div” and “idiv”, modulus “mod”, and for unary expressions “+” and

“-”.

Arithmetic expressions P op P’ are evaluated as follows, where op is one of

the mentioned arithmetic operators. P and P’ are evaluated to sequences, that

undergo atomization. Then when the sequences contain exactly one atomic value,

whose types are of valid combination4 for operator op, then the result is computed.

Certain errors are raised if some of the mentioned condition for the computation

of the arithmetic expressions are not met, or from division by 0 for example. The

division of -3 div 2 for example returns a decimal value of -1.5, while the integer

division -3 idiv 2 returns integer -1.

5.6 Data Comparisons

Two values can be compared using one of XPath 3.0 comparison expressions: value

comparisons, node comparisons, and sequence comparisons.

4http://www.w3.org/TR/xpath-30/#mapping

http://www.w3.org/TR/xpath-30/#mapping
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5.6.1 Atomic

Atomic value comparison expressions, a.k.a. value comparisons in XPath, use

comparison operators “eq” (equals), “ne” (not equals), “lt” (less than), “le” (less

than or equals), “gt” (greater than), and “ge” (greater than or equals). These

expressions are evaluated similar to arithmetic expressions, in that sequences of

the operators are atomized, and in that they should contain only a single item.

The resulting two values, however, are first converted to their least common type

before they are compared, assuming that they are valid combinations. An example

is XPath query

//book[pages lt 200]

which selects all book-descendants of less than 200 pages.

5.6.2 Nodes

Node comparison expressions use operator “is”, which checks node identity, and

operators “<<” and “>>”, which checks whether a node appears before or after

another node in document order, respectively. No atomization occurs, but sequences

must evaluate to single-node sequences. Query

//book[isbn="34668966"] is /library/book[title="Data"]

returns true, if the book-descendant with isbn-number "34668966" is the same

node as a certain book-node, whose title is "Data".

5.6.3 Sequences

For sequence comparisons, a.k.a. general comparisons in XPath, two sequences

are being joined together in order to find respective elements that compare to true

with respect to the sequence comparison operators “=” (equals), “!=” (not equals),

“<” (less than), “<=” (less than or equals), “>” (greater than), and “>=” (greater

than or equals). Atomization is applied to each operand of the comparison to obtain

sequences of atomic values. In essence the result of the comparison is true, if there

exists a value from the first sequence and another value from the second one, such

that they compare to true with respect to the comparison operator. Behind the

scene a variety of type conversion are carried out in order to obtain comparable

types for the atomic values that are being compared. For example query

//book[author = "Abiteboul"]

selects all book-descendant, who have an author-child whose concatenation of data

content of its text node descendants is equal to "Abiteboul".

5.7 Ordered Sets

The concept of sets or sets of nodes is present in XPath 1.0. There the type

node-set is used, which is considered to be an unordered collection of nodes without
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duplicates. However when serializing or enumerating a set of items or a set of nodes,

one always needs to fix an order. Therefore in XPath 3.0 the concept of ordered

sets moved forward. It is represented as a sequence without duplicates.

5.7.1 Duplicate-free Sequences

The selection of nodes via navigation, as discussed in Section 3.3, produces a se-

quence of nodes without duplicates, that if not specified otherwise (see below in

Section 5.7.2), is sorted in document order.

Also basic operations on sets of nodes are provided: unions, intersections, and

complements. They take two sequences of nodes and compute the union, inter-

section, and set difference, respectively. All operators eliminate duplicates and

subsequently sort the nodes in document order, computing thus an ordered set of

nodes. For example XPath query

//a//c intersect //b//c

selects all c-nodes that are descendants of both an a-descendant and a b-descendant

of the root. Query //a//c union //b//c selects all c-nodes that are descendants

of either an a- or a b-descendant of the root. Last but not least query //a//c

except //b//c selects all c-nodes that are descendants of a-descendants of the

root, but which are no descendants of b-root descendants.

Furthermore there is a function fn:distinct-values which returns an ordered

set. It takes a sequence of items and returns a new duplicate-free sequence that

removes all but one of a set of values that are equal to one another. The sequence

may be returned in an implementation dependent order. We note that this function

heavily depends on the implementation of XPath’s equality operator eq.

5.7.2 Computing Sets when possible

For efficiency reasons one is interested in returning sequences in an arbitrary imple-

mentation dependent order. This can be obtained within XPath 3.0 by applying

fn:unordered. However it relaxes the ordering only for the sequence that is its

immediate operand. For query

fn:unordered(for $y in (1, 2, 3) return $y + 10)

any permutation of (11, 12, 13) is an admissible answer. However the sequences are

still concatenated in the order of sequence (1, 2, 3), and this cannot be undone

by applying function fn:unordered to the concatenation.

Within the host language of XQuery the order in which sequences are pro-

duced can be relaxed in XPath 3.0 expressions according to the ordering mode of

XQuery. This “order indifference” in XQuery expressions was already discussed

in [Grust 2007] and exploited in a purely algebraic fashion.

XQuery defines the ordering mode ∈ {ordered, unordered}, which has the

two values ordered and unordered that affect the order in which sequences of



70 Chapter 5. Full XPath 3.0

expressions and all nested expressions thereof are returned. XQuery expressions

ordered{P} and unordered{P} determine the ordering mode of expressions P and

its subexpressions. The ordering mode affects path expressions, node-set operations,

for expressions, and allows freedom even with position functions (Section 5.3) that

depend on the order of items in a sequence. For example the XQuery

unordered{//a/b//c}

would not have to sort the a-descendants found by subexpression //a into document

order, before applying the path operator / to find b-children and c-descendants

thereof.

5.8 Error Handling

5.8.1 Kinds of Errors

Errors may be raised in XPath 3.0 during static analysis or during the evaluation

of the query. Errors raised during the static analysis phase, that are no type errors,

are called static errors as with query

30div 5

which results in a syntax error. Type errors occur when some type does not match

another expected type. They may occur during static analysis or during the eval-

uation phase. Finally, dynamic errors are mostly those errors that are detected

during the evaluation phase. Consider XPath query

(5 div $y) + xs:decimal($z)

which may result in a dynamic error, when $y evaluates to 0 or when $z evaluates

to string "abc", for example. An implementation however may choose which of

the two errors is raised by the additive expression and if some operand of some

expression raises an error, then it may always decide to evaluate the other operands

as well in order to detect whether errors occur there as well.

5.8.2 Try and Catch Expressions

Try and catch expressions do not exist in XPath 3.0 as built-in constructs, although

they exist in XQuery 3.0. However, they exist in XPath 3.0 implicitly. There is

an expression in XPath that tests whether a given value is castable into a certain

type:

“The expression E castable as T returns true if the result of evalu-

ating E can be successfully cast into the target type T by using a cast

expression; otherwise it returns false.”

The castable-as expression thus performs a real cast (Section 5.2.5), and it catches

any dynamic errors that it may throw.
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5.9 Documents

XPath 3.0 provides a collection of functions that access input documents and

external resources, and other functions that allow to create Xml data trees on

the fly.

There is function fn:doc that identifies an Xml data tree within a sequence of

available documents using a string that contains a Uri and it returns its root node,

which is a document node. The query

fn:doc("library.xml")/library//books

selects all book-descendants of library-children of the root within the Xml data

tree that is associated with URI "library.xml".

Access to external resources, for example a text file, is granted by function

fn:unparsed-text that takes a string that contains a Uri as argument and op-

tionally an encoding and that returns a string that represents the content of the

file associated with the Uri. An example query that checks whether a string is

contained in a text file is:

fn:contains(fn:unparsed-text(passwords.txt),"#$df&@Wdf")

Last but not least we mention function fn:collection that returns a sequence

of nodes of Xml data trees. The function associates the Uri "http://example.org"

in query

fn:collection("http://example.org")//people

with a collection of nodes.

5.10 Regular Extension of XPath 3.0

By Regular XPath 3.0 we mean an extension of XPath 3.0 with regular axis P*,

which repeats steps for some path expression P. This is a pure syntactic extension,

since regular axis can be expressed by recursive functions in XPath 3.0 as we show

below. Syntactically it can be integrated into the grammar of XPath 3.0 by adding

a pattern "(" RelativePathExpr ")*" to nonterminal PathExpr (35), obtaining

(35’) PathExpr::= ("/" RelativePathExpr?) | ("//" RelativePathExpr) |

RelativePathExpr | "(" RelativePathExpr ")*"

Its semantics can be understood as follows. The context item, i.e. the item at

which P* is evaluated, must be a node, and P must always evaluate to a sequence of

nodes. Then P* evaluates to a sequence of nodes, which contains the context item

and which contains recursively all nodes that an evaluation of P yields from a node

that is contained in the sequence by P*.

However, the extension with regular axis to the grammar is not necessary, al-

though we keep it for simplicity, since regular axis P* can be expressed in XPath

http://www.w3.org/TR/xpath-30/#doc-xpath30-PathExpr
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P* =df

let $closureP :=

function($nodes as node()*,

$closure as function(node()*,function()) as node()*)

{let $newnodes := $nodes union ($nodes/P)

return if fn:exists($newnodes except $nodes) then

$closure($newnodes,$closure)

else

$newnodes

},

$regaxis :=

function($nodes as node()*) as node()*

{$closureP($nodes,$closureP)}

return $regaxis(.)

Figure 5.2: Regular axis P* by let expressions and recursive function definitions.

3.0 already as we show in Figure 5.2 using let expressions and recursive function

definitions. There the outer let expression defines two variables $closureP and

$regaxis, which are assigned to (unnamed) functions. Variable $regaxis is as-

signed to a function that takes one argument, which is a list of nodes. It is invoked

with the context node “.”, meaning the list containing only the context node. It

then invokes variable $closureP, which is assigned a function with two parameters:

the first being a list of nodes and the second parameter is function $closure also

with two parameters. The function proceeds by computing the union with all nodes

reached from nodes in $nodes by path expression P, obtaining possibly a bigger set

of nodes in $newnodes. If the new set of nodes is the same as the start set of nodes

in $nodes, then it is returned, otherwise the function goes into recursion with the

new set of nodes in $newnodes.

For example, consider the Xml data tree that represents a collection of tweets

by Twitter in Figure 1.4, where each tweet-node has children id, reply, mess,

and user. Then the regular XPath query

(let $y := . return following-sibling::tweet[reply = $y/id])*

when started at the second tweet-node, selects recursively all tweet-following-

sibling nodes that reply to it. They are marked in bold in the Figure 1.4.

5.11 XPathMark Benchmark

A common XPath benchmark is the XPathMark benchmark5 which is the revised

version in contrast to the benchmark of the original paper [Franceschet 2005]. It

5http://sole.dimi.uniud.it/˜massimo.franceschet/xpathmark/PTbench.html

http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html


5.11. XPathMark Benchmark 73

contains queries about XMark documents that contain a table of bids and a table

of bidders. Some of the queries are parameterized by an integer i ≥ 1, so that these

queries can be scaled in size. Notice that the XPathMark bechmark was designed

to test XPath 1.0 queries only, which are valid XPath 3.0 queries however. We

give an overview in the following about the types of queries in the benchmark, while

we refer to Appendix A for the full benchmark query collection, of which we test

only a subset in our experiments.

The benchmark contains six categories A–F of queries: downward (A), axis (B),

comparison (C), aggregation (D), position (E), and closure queries (F). Downward

queries in the benchmark use child and descendant axes, such as query

A3: /site/closed auctions/closed auction//keyword

or they contain filters with conjunctions or disjunctions, such

A7: /site/people/person[phone or homepage]/name

The axis queries in the benchmark use in addition to the downward axes, also

backward axes, attribute axes and other forward axes. Some of the queries are

parametric, such as

B12(i): //item(/@id/..)i/name

The comparison queries in the benchmark perform mostly data joins, such as query

C2:
/site/open auctions/open auction[bidder/increase = current]

/interval

The benchmark contains various aggregation queries that allow to count items, or

to sum up values:

D3:
/site/open auctions/open auction

[sum(bidder/increase) > 10 * initial]/interval

Positional queries of the benchmark contains positions as in query

E3: //keyword/ancestor::listitem[1]/text/keyword

Finally, there are some queries, that use some closure function, that repeatedly

perform axes steps, similar to regular axes.
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In this chapter we introduce λXP, a typed first-order logical language that

can query data trees. The language contains constructs for path navigation and

supports higher-order functions and recursion. It relies on a mode system that

distinguishes logical subformulas for which solutions must be searched allowing for

efficient implementations. λXP is then used as a core language for implementing

evaluators for XPath 3.0 in the next chapter.
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6.1 Types and Values

We define a typed language for values including tree nodes, tuples, sets, lists, and

higher-order types with unions.

6.1.1 Typing Parameters

The type language is parameterized by a set of atomic types, their subtyping rela-

tionships and their interpretation.

Definition 5. The type parameters for sequences of data trees are a tuple A with

the following components:

• Σ is a finite ranked set, the node constructors of the data trees.

• ∆ is a finite set, the alphabet of the data values of the data trees.

• D is a set of elements,

• Tatom is a finite set whose elements are the atomic types to be interpreted over

D ⊎ nodes(s) for any sequence s of data trees. They must contain:

{node, char, string,none, int,float,bool, lab} ⊆ Tatom

• For any sequence s of data trees and any atomic type T ∈ Tatom , there is a

domain of elements inhibiting this type JT Ks ⊆ D ⊎ nodes(s).

• For any sequence s of data trees, ≤D is a partial order on D which is total

when restricted to elements of equality types Teq defined below.

6.1.2 Atomic Types

The set of atomic types must contain the type node for nodes of trees in the

sequence, the type char of string characters in ∆, the type string of strings over

∆, the empty type none, the two numeric types int for integers and float for floats,

the Boolean type bool, and the type lab of node constructors in Σ. These types

have the following domains for any sequence of trees s ∈ (TΣ,∆)∗:

JnodeKs = nodes(s)

JcharKs = ∆

JstringKs = ∆∗

JnoneKs = ∅

JintKs = Int

JfloatKs = Float

JboolKs = Bool

JlabKs = Σ
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We assume that nodes of s are identified by values that are different from all others,

even though one may think of node identifiers as numbers. On atomic types we

define a subtype relation �atom semantically so that for all T1, T2 ∈ Tatom :

T1 �atom T2 iff ∀s. JT1Ks ⊆ JT2Ks

In particular, we have int �atom float and none �atom T for all T ∈ Tatom .

Furthermore, since we assumed that node identifiers are different from all other

values, we have node cannot be subtype or supertype of any of other atomic type

enumerated above. However, there may be some other atomic types, say for instance

nodeσ for all nodes labeled by σ ∈ Σ and this type is a subtype of node.

6.1.3 Types

A type is a term build from atomic types according to the following abstract syntax:

T ::= A | T1 × . . .× Tn | [T ] | {T} | T1 ∪ T2 | T1 → T2

Besides atomic types A ∈ Tatom , there are types for n-tuples T1× . . .×Tn, lists [T ],

sets {T}, unions T1 ∪ T2, and functions T1 → T2, where T, T1, T2 are types again.

The tuple type were n = 0 is denoted by unit. We can also define the type of

numerals:

num =def int ∪ float

To any type T and sequence s of trees we assign a value JT Ks by extending the

definition for atomic types as follows:

JT1 × . . .× TnKs = JT1Ks × . . .× JTnKs
J{T}Ks = {S | S ⊆ JT Ks finite}

J[T ]Ks = (JT Ks)
∗

JT1 ∪ T2Ks = JT1Ks ∪ JT2Ks
JT1 → T2Ks = JT1Ks → (JT2Ks ∪ {⊥})

Note that the type string denotes the set of all character strings in ∆∗, while the

denotations of num and float are both the set of floats, since int � float.

The function type T1 → T2 is interpreted as the set of all partial functions

JT1Ks → (JT2Ks ∪ {⊥}). The symbol ⊥ is returned for all the values of JT1Ks where

the function is undefined. This is needed, for instance, to treat division by zero in a

proper manner, but also for the treatment of non-termination of function evaluation.

6.1.4 Subtyping

We extend the subtype relation �atom to a subtype relation on types � by means

of the rules in Figure 6.1. We next note that subtyping entails set inclusion on the

denotations of the types.

Lemma 2. If T1 � T2 then JT1Ks ⊆ JT2Ks.

Proof. By induction of judgements of T1 � T2. In the base case of T1 �atom T2 it

holds by semantic definition of �atom .
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T1 �atom T2

T1 � T2

true

none � T

∀1 ≤ i ≤ n : Ti � T ′
i

T1 × . . .× Tn � T ′
1 × . . .× T ′

n

1 ≤ i ≤ n Ti � T ′
i ∪ T ′′

i

T1 × . . .× Tn �
(T1 × . . .× T ′

i × . . .× Tn)

∪ (T1 × . . .× T ′′
i × . . .× Tn)

T1 � T2

[T1] � [T2]

T1 � T2

{T1} � {T2}

true

T1 � T1 ∪ T2

T1 � T T2 � T

T1 ∪ T2 � T

T1 � T2

T1 ∪ T2 � T2

T ′
1 � T1 T2 � T ′

2

T1 → T2 � T ′
1 → T ′

2

Figure 6.1: Subtyping.

6.1.5 Equality Types

For defining the semantics of our language, we will distinguish types whose elements

can be compared for equality and ordered totally from the others. In particular, it

is not clear how to test functions for equality, so we rule we exclude function type

from the set of equality types.

Definition 6. The set Teq of equality types is the least set that contains all atomic

types, and for all equality types T, T1, . . . , Tn ∈ Teq , the tuple type T1 × . . .×Tn, the

list type [T ], and the union type T1 ∪ T2.

We assume that the partial order ≤D is total on all elements of equality types,

i.e, on Deq = ∪T∈Teq JT Ks. Thereby we obtain an equality relation on all elements

of equality types:

=eq = (Deq ×Deq) ∩ ≤D ∩ ≥D .

In practice the order ≤D is obtained as follows. We can assume that the values of

atomic types are totally ordered, so this order will be subsumed by ≤D . The order

for comparing tuples ≤T1×...×Tn is the lexicographic order on JT1Ks × . . . × JTnKs.

The order for lists is the lexicographic order on (JT Ks)
∗. Furthermore, we can have

atomic types except strings before tuples and lists, while strings are to be identified

with lists of characters.

We next show that subtypes of equality types are equality types too.

Lemma 3. Subtypes of equality types are equality types.

Proof. By induction of judgements T1 � T2. Atomic subtypes are equality types

by definition. For subtypes of types of n-tuples, the lemma hold by induction, and

similarly for subtypes of list types. Subtypes T1 or T2 of union type T1 ∪ T2 ∈ Teq

are equality types by definition. For subtyping rule
T1 � T T2 � T

T1 ∪ T2 � T
it follows

by induction that T1 and T2 are equality type, since T1 � T and T2 � T for equality

type T . It follows that subtype T1 ∪ T2 of T is an equality type by definition. For

rule
T1 � T2

T1 ∪ T2 � T2
it follows by induction that T1 is an equality type since T1 � T2
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for equality type T2. By definition also T1 ∪ T2 is an equality type. Function and

set types are ruled out, since we assume equality types.

6.1.6 Admissible Types

Definition 7. A type is admissible if for any of its subterms {T} the type T is an

equality type.

Lemma 4. Subtypes of admissible types are admissible.

Proof. By induction of judgements T1 � T2 it follows for all subtyping rules, except

rule
T1 � T2

{T1} � {T2}
, that the inferred subtype is admissible, according to the defini-

tion of admissibility. For rule
T1 � T2

{T1} � {T2}
, we know that for admissible type {T2}

the type T2 is an equality type. By Lemma 3 the subtype T1 of T2 is an equality

type. By definition we have that subtype {T1} of {T2} is an admissible.

Therefore, we restrict ourselves to admissible types, for which the elements of

sets have an equality type. This is particularly relevant for implementing finite sets,

as for instance by ordered lists, so that one can remove duplicates efficiently.

Lemma 5. For any two equality types T1, T2, the restrictions of ≤T1 and ≤T2 to

JT1Ks ∩ JT2Ks coincide.

As a consequence, if T1 � T2 then JT1Ks ⊆ JT2Ks by Lemma 2, so that ≤T1 is

the restriction of ≤T2 to JT1Ks.

Proof. The orders ≤T1 and ≤T2 are contained within ≤Teq and are thereby non-

contradicting.

6.2 λXP Queries

We present λXP a hybrid logic that combines navigation with standard program-

ming language constructs.

6.2.1 Philosophy of Sets and Functions

Sets and functions can be seen as relations which may contain infinitely many

elements. We are not only interested in finite sets, since we may also want to define

sets of strings and not only sets of nodes.

Therefore, one must clarify what it means that an algorithm returns a set or a

function. A set will be given by an algorithm that enumerates the elements of the

set. This algorithm can then be used to evaluate membership expression x ∈ E,

where all possible bindings of x to some value of E must be generated. A function

f of type T → T ′ will be given by an algorithm that inputs an argument v of the

function and returns the value of f(v).
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It should be noticed that sets are considered as generators, while functions are

considered as applications. Therefore, it will not be possible to encode sets by

their characteristic functions in the well-moded subset of our language, to which

the evaluator will be restricted.

6.2.2 Constants

The language λXP is parameterized by a set of typed constants Const that are

listed in Figure 6.2. The type of c ∈ Const is denoted by Type(c). The semantics

of a constant c of type T with respect to a sequence of trees s with node π is value

JcKs,π ∈ JT Ks that is defined in Figure 6.3.

In order to convert a list into a set or vise versa, we need to impose a total order

on the elements, in which the conversion is carried out. The order is most relevant

for converting a finite set into a list in a deterministic manner. Which precise order

to chose is irrelevant in such cases. And whenever a concrete order is expected,

it can be obtained by applying a sort function to the list obtained from the set.

The ordering chosen for the conversions may be implementation dependent. This

happens for instance, when converting a set to a list, where the elements of the set

are produced in streaming manner. One then wants to apply the conversion to the

elements of the set in the order in which they arrive on the stream. Sorting these

elements in some other order would require to buffer the whole set, which may block

real time progress in a streaming setting or require high memory consumption.

The current node which changes during evaluation of various axes can always

be accessed by applying function cur to the unit, i.e. to the empty tuple () which

has type none: the call will return the node π of the current environment.

Furthermore, we give in the following one of many possible implementations of

constant listconcat that concatenates lists of type T to obtain a single list of type

T : This implementation models lists, as open lists Lop of type T that are lists L

with a future element •, for example, v1 :: . . . :: vn :: •, where vi ∈ JT Ks. Then

listconcat can be implemented as follows.

listconcat(L) =df let O = open-list.new() in open-list.toList(listconcat ′(L,O))

where

open-list.new =df let F = future.new() in (F, F ) ,

open-list.toList(O) =df let (OL,F ) = O, b = future.bind(F,nil) in OL ,

listconcat ′(L,O) = case L of nil then return O

case L of H : L′ then return

listconcat ′(L′, open-list.extend(O,H))

,
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Constants Type

1, 2, 3, . . . ,max int int � num

-1E4, 1.23, -0, 0, . . . ,max float float � num

c ∈ ∆ char

w ∈ ∆∗ string

true, false bool

+, −, ×, ÷, idiv , mod
⋃

T�num

T × T → T

6=T , =T , >T , <T , ≥T , ≤T T × T → bool

T is equality type

nil [none]

∅ {none}

cur unit → node

set2listT {T} → [T ]

list2setT [T ] → {T}

∈T T × {T} → bool

labtype node → lab

labvalues node → ∪σ(k)∈Σstring
k

typeT,T ′ T × T ′ → bool

castT,T ′ T → T ′

root string → node

roots string → [node]

listconcat [[T ]] → [T ]

Figure 6.2: Constants.

open-list.extend(O,H) =df case H of nil then return O

case H of X :: H ′ then

let F ′ = future.new(),

(OL,F ) = O,

b = future.bind(F,X :: F ′)

in (OL,F ′)

6.2.3 Syntax

The abstract syntax of λXP formulas is given in Figure 6.4. It is parameterized by

some alphabet Σ, and alphabet ∆, the set of constants Const, a set of variables V ,

a set of axes A, and a set of label properties L. A label property L ∈ L verifies a

property for some label in Σ, i.e. L : Σ → B. For some sequence of data trees s the

label properties L ∈ L are used in unary relation symbols and interpreted as the

set Ls of nodes of s whose label satisfy L.

The navigational fragment F of λXP are formulas composed of axes, label

properties, node tests, conjunction, disjunction, and negation only:

F ::= A(F ) | L | isx | F1 ∧ F2 | F1 ∨ F2 | ¬F
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JiKs,π = i if Type(i) = num ∪ char ∪ string ∪ bool

JoKs,π =
⋃

T�num

(oJT Ks)⊥ if Type(o) =
⋃

T�num

T × T → T

JoT Ks,π = (oJT Ks)⊥ if Type(o) = T × T → bool

JnilKs,π = empty list

J∅Ks,π = empty set

Jset2listKs,π = (set2listJT Ks)⊥ set to list conversion

Jlist2setKs,π = (list2setJT Ks)⊥ list to set conversion

JcurKs,π = {( , π)} always returns the current node

J∈T Ks,π = (∈JT Ks)⊥ set membership

JlabtypeKs,π = (labtype)⊥ node label types

JlabvaluesKs,π = (labvalues)⊥ node label data values

JtypeT,T ′Ks,π = (typeJT Ks,JT ′Ks)⊥ checks whether for v : T also v : T ′

JcastT,T ′Ks,π = (cast JT Ks,JT ′Ks)⊥ casts from T to T ′

JrootKs,π = (root)⊥ root nodes by strings

JrootsKs,π = (roots)⊥ list of root nodes by strings

JlistconcatKs,π = (listconcatJT Ks)⊥ concatenation of lists

Figure 6.3: Semantic of constants from Figure 6.2.

When furthermore only forward axes child, descendant, and following-sibling are

used, i.e. A = {ch, ch+,ns+}, then formulas belong to the forward navigational

fragment of λXP, called Fxp.

Besides conjunction, disjunction, and negation λXP contains also constants

c, variables x, existential quantification, and goto constructs at(E1, E2). Stan-

dard programming language constructs that λXP inherits are conditionals and the

creation and decomposition of tuples, sets, and lists. λXP can define recursive

higher-order functions, for which it contains a recursive let-construct. Notice that

all expressions bound to variables must be monotone, see next section, since oth-

erwise we can not ensure the termination of recursively defined functions. Finally

λXP contains expressions for function applications and definitions. λXP contains

try and catch expression for exception handling, which we do not consider in our

formal analysis.

6.2.4 Positive Contexts

In order to decide whether an expression with recursive let definitions is valid or

not, we introduce positive contexts of expressions and positive functions: We define

positive contexts and positive functions in Figure 6.5.

6.2.5 Type System

The typing rules of λXP are explained in Figure 6.6. The type of constants c and

variables x is denoted by Type(c) and Type(x), respectively. Most of the typing
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E ::= E1 ∧ E2 | E1 ∨ E2 | ¬E | c | x | ∃x.E first-order logic

| A(E) | L | at(E1, E2) navigation

| if E1 then E2 else E3 conditionals

| letrec x1 = E1, . . . , xn = En in E recursion

where all xi occur in positive contexts in E1, . . . , En

and all Ei have function types

| (E1, . . . , En) | match E1 with (x1, . . . , xn) in E2 tuples where n 6= 1

| {x | E} sets

| E1 :: E2 | match E1 with x :: y then E2 else E3 lists

| E1E2 | λx. E functions

| try E1 catch(x) E2 | raise E exceptions

Figure 6.4: Abstract syntax of λXP formula E, where c ∈ Const is a constant,

x ∈ V a variable, L ∈ L a label predicate, and A a set of axes.

rules are standard. Notice that we require explicit type annotations on function

definition, since otherwise this type cannot always be inferred. Notice also that for

recursive let definitions we require that all variables are function types.

6.2.6 Library Functions

A common shortcut for the test whether the value of a variable is equal to the

current node is

isx =df x = cur().

Another shortcut is the simple non-recursive let that is reduced to function appli-

cation:

let x = E in E′ =df (λx.E′)(E)

In Figure 6.7, we define sets of tuples and functions that input tuples. Note

also, that one can always add or remove parenthesis in (E), so this expression is

equivalent to E; there are no 1-tuples in the language.

In Figure 6.8, we define the usual notion for sets, including enumerations for

finite sets, unions, and maps, and for-loops for their aggregation. Finally, we can

convert sets into lists, based on an implementation dependent order on the elements

of the set.

Data joins are defined in Figure 6.9. They are reduced to existential quantifiers,

conjunctions, and data comparisons. The usual list functions map, foldL, and

append are defined in Figure 6.10.
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C ::= [.] | C ∧ E | E ∧ C | C ∨ E | E ∨ C

| ∈T (E,C) | ∃x.C | A(C) | at(E,C) | at(C,E)

| if E then C else E′ | if E then E′ else C

| letrec x1 = E1, . . . , xn = En in C

where all xi occur in positive contexts in E1, . . . , En

and all Ei have function types

| match C with (x1, . . . , xn) in E

where all xi occur in positive contexts in E

| match E with (x1, . . . , xn) in C

| {x | C}

| C :: E | E :: C

| match C with x :: y then E else E′

where x and y occur in positive contexts in E

| match E with x :: y then C else E′

| match E with x :: y then E′ else C

| PC where P is a positive function

P ::= λx.E where x occurs only only in positive contexts of E

| c where JcKs is Scott continuous for all s such as +, ∗, . . .

| letrec x1 = E1, . . . , xn = En in xj
where all xi occur in positive contexts in E1, . . . , En

and Ej is some positive function P ′ and 1 ≤ j ≤ n

Figure 6.5: Positive contexts C and positive function P in λXP formulas.
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Ei : bool

E1 ∧ E2 : bool

Ei : bool

E1 ∨ E2 : bool

E : bool

¬E : bool

Type(c) = T

c : T

Type(x) = T

x : T

x : T E : bool

∃x.E : bool

E : bool

A(E) : bool

true

L : bool

E1 : node E2 : T

at(E1, E2) : T

E1 : bool E2 : T E3 : T

if E1 then E2 else E3 : T

x1 : T1 . . . xn : Tn E1 : T1 . . . En : Tn E : T T1, . . . , Tn function types

letrec x1 = E1, . . . , xn = En in E : T

E1 : T1 . . . En : Tn

(E1, . . . , En) : T1 × . . .× Tn

E1 : T1 . . . En : Tn E1 : T1 × . . .× Tn E2 : T

match E1 with (x1, . . . , xn) in E2 : T

x : T T ∈ Teq E : bool

{x | E} : {T}

E1 : T1 E2 : [T2]

E1 :: E2 : [T1 ∪ T2]

E1 : [T ] E2, E3 : T ′

match E1 with x :: y then E2 else E3 : T ′

E1 : T1 → T2 E2 : T1

E1E2 : T2

x : T1 E : T2 λx : T1 → T2

λx.E : T1 → T2

E : T T � T ′ T ′ admissible

E : T ′

Figure 6.6: Typing rules.

6.2.7 Recursive Functions

We can define recursive functions such as the faculty function as done usually in

functional programming:

fac =df letrec f = λy. if y = 0 then 1 else y · f(y − 1) in f

This definition relies on the laziness of conditionals. For instance, when computing

f(0) then in the second branch of the conditional there is the expression f(−1),

which is undefined and evaluates to ⊥. But this second branch will not be evaluated

since the test of the conditional y = 0 is satisfied in this case.

6.2.8 Regular Axes

We would like to notice that within λXP we can express regular axis E∗ where

E : {node}, which recursively navigates from the current node to one of the nodes

selected by E:

E∗ =df letrec O = λX. let X ′ = X ∪ {y | ∃x.x ∈ X ∧ y ∈ at(x,E)}

in if X = X ′ then X ′ else O(X ′)

in O({cur()})
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(E) =df E

{(x1, . . . , xn) | E} =df {x | ∃x1 . . . ∃xn. x = (x1 . . . , xn) ∧ E}

λ(x1, . . . , xn). E =df λz.match z with (x1, . . . , xn) in E

Figure 6.7: Tuples where n 6= 1.

{e} =df {x | x = e}

E1 ∪ E2 =df {x | x ∈ E1 ∨ x ∈ E2}

E1 ∩ E2 =df {x | x ∈ E1 ∧ x ∈ E2}

E1 \ E2 =df {x | x ∈ E1 ∧ ¬(x ∈ E2)}

map-set =df λfλx. list2set(map(f, set2list(x)))

foldL-set =df λf.λx. λy.list2set(foldL(set2list(y), x, f))

Figure 6.8: Sets.

Notice, that the recursive definition of regular axes and the one for datalog as we

show below, has a terminating condition. When one of these computed sets during

some recursion does not grow anymore, meaning that it is the same with respect

to the previous recursion, then one stops and the final set is computed. Notice also

that a similar definition for recursion functions, as in the previous section, does not

work. One could imagine to compute the graph of all arguments and values of the

function, but since it may not be finite, one cannot test for equality.

6.2.9 Datalog

We can express save Datalog programs by considering predicates as sets of tuples.

For instance consider the following datalog program defining the accessibility rela-

tion of a graph with edge relation e.

p(x, z) :− e(x, z).

p(x, z) :− p(x, y), p(y, z).

With recursive functions, such recursive set definitions can be expressed as follows:

letrec f = λp′. let p = p′ ∪ {(x, z) | e(x, z) ∨ ∃y. (x, y) ∈ p′ ∧ (y, z) ∈ p′}

in if p = p′ then p else f(p)

in f(∅)
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∃⊲⊳(E1, E2) =df ∃y1.∃y2.y1 ∈ E1 ∧ y2 ∈ E2 ∧ y1 ⊲⊳ y2

Figure 6.9: Data comparison where ⊲⊳ ∈ {6=,=, >,<,≥,≤}.

map =df letrec map ′ = λfλx. match x with z :: x′ then

f(z) :: map ′ f x′ else nil in map′

foldL =df letrec foldL′ = λf.λx.λy. match y with z :: y′ then

foldL′ f f(x, z) y′ else x in foldL′

foldR =df letrec foldR′ = λf.λx.λy. match y with z :: y′ then

f(z, foldR′f x y′) else x in foldR′

append =df letrec append ′ = λ(x, y).match x with z :: x′ then

z :: append ′(x′, y) else y in append ′

Figure 6.10: Lists.

6.2.10 Data Comparisons

Consider the following example that makes references to two different input trees

in s = t1, t2, where x1 = root(t1) and x2 = root(t2):

(Q1)

at(x1, {x | ch+(tweet ∧ isx
∧ ∃=(fn:data(set2list({x′ | ch(user name ∧ isx′)})),

at(x2, fn:data(

set2list({x′ | ch+(students ∧ ch(name ∧ isx′))})))))})

It selects the set of tweet-descendant nodes in t1, that have a user name-child whose

typed value is equal to the typed value of name-children of student-descendants

of t2. It is a join query between t1 and t2, where at-formulas are used to jump

between the two trees. It corresponds to XPath query $x1//tweet[user name

= $x2//students/name]. The typed values are obtained via atomization that we

discussed in Section 5.2.4, while we refer to Section 7.2.4 for an λXP expression

defining fn:data.

6.3 Semantics

We next define a denotational semantics for λXP queries. Since λXP permits

recursive definitions, we will base the semantics least fixed points, whose existence

is ensured by Kleene’s fixed point theorem.

6.3.1 Complete Partial Orders

For any s, we will turn the set of all s-values into a CPO, so that Kleene’s fixed

point theorem can be applied.
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⊥ ⊏ v false ⊏ true

v, v′ ∈ JT Ks T set type

v ( v′ ⇒ v ⊏ v′
v, v′ ∈ JT Ks T function type

v ( v′ ⇒ v⊥ ⊏ v′⊥

Figure 6.11: Partial order ⊏ on s-values, valid for all v, v′ ∈ Vs \ {⊥}.

The main difficulty that we have to deal with here is that of program errors or

nontermination in our denotational semantics. As usual, we will represent these by

the special symbol ⊥, and add ⊥ to the s-values in an appropriate manner.

For all types T except for function types, we define the domain of the CPO by

adding ⊥ to the s-values of type T :

JT K⊥s = JT Ks ∪ {⊥}

For function types T → T ′, we will define the CPOs by lifting functions to undefined

inputs: A partial function f : JT1Ks× . . .× JTnKs → JT K⊥s is lifted to a total function

f⊥ : JT1K
⊥
s × . . .× JTnK⊥s → JT K⊥s such that for all v1 ∈ JT1K

⊥
s , . . . , vn ∈ JTnK⊥s :

f⊥(v1, . . . , vn) =

{
f(v1, . . . , vn) if v1, . . . , vn 6= ⊥

⊥ otherwise.

We define the following domains for function types:

JT → T ′K⊥s = {f⊥ | f ∈ JT → T ′Ks} ∪ {⊥}

Notice that we distinguish the empty partial functions f∅ : T → T ′ from ⊥.

For any sequence s we now define a partial order ⊏ on the set of all lifted s-

values Vs = ∪T type JT K⊥s . This is the least partial order that satisfies the axioms in

Figure 6.11.

According to the first rule, ⊥ is the least element of Vs with respect to ⊏. For

Booleans we assume that false ⊏ true. Sets do increase if an element is added, and

similar for functions. Tuples increase if one of their components increases.

Since false ⊏ true it follows that ∧bool and ∨bool are monotone functions while

¬bool is not monotone. Since sets increase when adding elements, it follows that

set union is a monotone function, while set complement is not. The membership

functions Λv′.v ∈ v′ is monotone for any v, while non-membership Λv′.v 6∈ v′ is not.

Proposition 2. For any function f : JT1Ks×. . .×JTnKs → JT K⊥s and any 1 ≤ j ≤ n,

if f is monotone in its j-th argument then the function f⊥ is monotone in its j’th

argument too..

Proof. We consider two members of JT1K
⊥
s × . . . × JTnK⊥s , v = (v1, . . . , vn) and

v′ = (v1, . . . , vj−1, v
′
j , vj+1, . . . , vn) such that vj ⊏ v′j . We have to show that f⊥(v) ⊑

f⊥(v′). If there exists 1 ≤ i ≤ n such that vi = ⊥, then f⊥(v) = ⊥ ⊑ f⊥(v′).
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Otherwise, vi 6= ⊥ for all 1 ≤ i ≤ n and also v′j 6= ⊥. Hence for all 1 ≤ i ≤ n,

vi ⊏ v′i in the cpo JTiKs ordered by the restriction of ⊏. The monotonicity of f

then yields f⊥(v) = f(v) ⊑ f(v′) = f⊥(v′).

We will show next that the ordering ⊏ preserves the “top-level structure” of

s-values different from the error: it increases only some leaves containing functions

or Booleans, or adds some elements to the sets.

Definition 8. An ordered top-level structure is a term with n-constructors from

{set(n
′) | n′ ∈ N0 ∪ {∞}} ∪ {tuple(n), list(n) | n ∈ N0}

and constants from ∪T∈Tatom JT Ks ∪ ∪T,T ′ types JT → T ′Ks.

To any value of Vs \ {⊥} we can assign a set of ordered top-level structures, by

fixing for each set an order on the elements.

Lemma 6. For any s and any values v, v′ ∈ Vs, if v ⊑ v′ then either v = ⊥ or

there exist ordered top-level structures t of v and t′ of v′ such that for all nodes π

of t and n ≥ 0:

1. if t[π] = set(n) then t′[π] = set(m) for some n ≤ m,

2. if t[π] = t′[π],

3. if t[π] = false and t′[π] = true,

4. if t[π] = ṽ⊥ and t[π′] = ṽ′⊥ are functions such that ṽ ⊆ ṽ′.

Proof. By structural induction on derivations of v ⊑ v′.

Proposition 3. For any s, the partial order ⊏ on s-values is a complete partial

order (CPO).

Proof. We need to show that any increasing nonempty chain v1 ⊑ . . . vi ⊑ . . . has

a least upper bound. The chain may be of finite or infinite length.

Only the elements in the prefix of a prefix of the chain may be equal to ⊥, since

only the first rule concerns ⊥. In this case, the least upper bound of the same

chain but without the ⊥-prefix is a least upper bound for the complete chain too.

Therefore, we can assume that ⊥ does not occur in the chain. The only chains

containing an atom must be constantly equal to this atom, so it is the least upper

bound. Therefore, it is sufficient to consider chains without values of atomic types

or ⊥.

Now suppose that all vi are either tuples, sets, lists, or functions. According to

Lemma 6, there exist ordered top-level structures ti of vi, such that the nodes sets

of ti are increasing as well as the labels of the same nodes.

Let t be the ordered top-level structure with nodes(t) = ∪inodes(ti), such that

for every node π of some ti, the label of t is t[π] = ⊔j≥iti[π]. In the case where

ti[π] = set(ni) for some ni, we set ⊔j≥iti[π] = ⊔j≥iset
(ni) = setsupj≥i nj . Note that
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supj≥i nj may be equal to ∞. The only other possibility applies to leaf nodes π,

where all ti[π] are some functions f⊥
i where fi ∈ JT Ks. In this case, ⊔iti[π] = (∪ifi)

⊥.

The unique value v that admits t as ordered top-level structure is the least upper

bound of the chain of vi’s.

It follows from Proposition 3 that the partial order ⊏ restricted to Vs \ {⊥}

forms a CPO as well.

Proposition 4. For any function f : JT1Ks × . . . × JTnKs → JT K⊥s that is Scott-

continuous in all arguments, the function f⊥ is also Scott-continuous in all argu-

ments.

Proof. We fix a sequence of values v1, . . . , vn ∈ Vs and 1 ≤ i ≤ n. We define a

function g by:

g(v) = f(v1, . . . , vi−1, v, vi+1, . . . , vn)

for all v ∈ Vs. By assumption, g is Scott-continuous, i.e., for any increasing

nonempty chain v′1 ⊑ . . . ⊑ v′i ⊑ . . . in Vs \ {⊥} it holds that ⊔ig(v′i) = g(⊔iv
′
i).

We have to show that g⊥ is Scott-continuous too. So let v′1 ⊑ . . . ⊑ v′i ⊑ . . . be an

increasing chain in Vs. If v′i = ⊥ for all i we have ⊔ig
⊥(v′i) = ⊔ig

⊥(⊥) = ⊔i⊥ =

⊥ = g⊥(⊔iv
′
i).

Otherwise, we can remove the maximal prefix of ⊥-values from the chain, and

obtain an increasing nonempty chain in Vs \ {⊥}. Let m be the first index of this

chain. We then have ⊔i≥mg(v′i) = g(⊔i≥mv′i) since g is Scott-continuous. Further-

more, ⊔ig
⊥(v′i) = ⊔i≥mg⊥(v′i) and ⊔iv

′
i = ⊔i≥mv′i. Hence ⊔ig

⊥(v′i) = g⊥(⊔iv
′
i) as

required.

6.3.2 Denotational Semantics

In Figure 6.12 and Figure 6.13 we define the denotational semantics JEKs,π,µ of an

λXP formula E with respect to a sequence of data trees s, a node π ∈ nodes(s) of

one of these data trees, and a possibly partial variable assignment µ from variables

to s-values. We define the consistent union of two variable assignments µ and µ′ by

µ⊎µ′ = µ∪µ′ if this union is a functional relation and leave it undefined otherwise.

We also write µ ⊎ x/⊥ instead of µ if x is undefined in µ. This is a slight abuse

of notation, in that µ is a functional relation with µ ⊆ V × Vs \ {⊥} rather than a

total function with codomain Vs.

Furthermore, during the computation of a set JEKs,π,µ where E : {T}, the order

in which the elements of the set are discovered will depend on s, π and µ. In order to

obtain a deterministic semantics, we will fix the required orders as parameters of the

semantics. As parameters of the denotational semantics, we assume for any equality

type T ∈ Teq , expression E : {T}, trees s with node π, and variable assignment µ

into s a total order ≤E,T,s,π,µ on the elements of JEKs,π,µ. This order can be freely

chosen by the implementation.
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JE1 ∧ E2Ks,π,µ = JE1Ks,π,µ ∧
Bool⊥ JE2Ks,π,µ

JE1 ∨ E2Ks,π,µ = JE1Ks,π,µ ∨
Bool⊥ JE2Ks,π,µ

J¬EKs,π,µ = ¬Bool⊥ JEKs,π,µ
JcKs,π,µ = JcKs,π
JxKs,π,µ = µ(x) may be undefined if x 6∈ dom(µ)

J∃x.EKs,π,µ =







true if exists v ∈ JType(x)K such that JEKs,π,µ⊎[x/v] = true

false if all v ∈ JType(x)K satisfy JEKs,π,µ⊎[x/v] = false

⊥ otherwise

JA(E)Ks,π,µ = (∃π′ ∈ nodes(s). As(π, π′)∧Bool⊥ JEKs,π′,µ = true)

JLKs,π,µ = (π ∈ Ls)

Jat(E1, E2)Ks,π,µ = (Λπ ∈ nodes(s). JE2Ks,π,µ)⊥(JE1Ks,π,µ)

Jif E1 then E2 else E3Ks,π,µ =







JE2Ks,π,µ if JE1Ks,π,µ = true

JE3Ks,π,µ if JE1Ks,π,µ = false

⊥ if JE1Ks,π,µ = ⊥

Jletrec x1 = E1, . . . , xn = En in EKs,π,µ =

Letrec v1 = JE1Ks,π,µ′ , . . . , vn = JEnKs,π,µ′ in JEKs,π,µ′

where µ′ = µ ⊎ [x1/v1, . . . , xn/vn]

Figure 6.12: Part 1 of denotational semantics of λXP, where s is a sequence of data

trees, π ∈ nodes(s), and µ to s-values is a well-typed variable assignment.

6.3.3 Well-definedness

For instance, one can verify with this definition that the mutual recursive definition:

letrec g = λz.f(z), f = λy.27 in g(0)

evaluates to 27. The fixed point operator for the two equations will start with

(∅, ∅), then produce (∅,Λv.27) and finally converge to (Λv.27,Λv.27). Note that

the semantics must use tuples with increasing components to obtain the correct

evaluation.

The following proposition states that the semantics of letrec expressions is

always well-defined.

Proposition 5. Let x1 : T1, . . . , xn : Tn be variables of function types, s be a

sequence of trees, π ∈ nodes(s) and µ a variable assignment to s-values. Let D =

JT1Ks × . . . × JTnKs and ⊑D be the least partial order on D satisfying for any two

elements (v1, . . . , vn) ∈ D and (v′1, . . . , v
′
n) ∈ D:

v1 ⊑ v′1 . . . vn ⊑ v′n
(v1, . . . , vn) ⊑D (v′1, . . . , v

′
n)

Let ⊏D be the irreflexive restriction of ⊑D. Then (D,⊏D) is a cpo with least

element (∅, . . . , ∅).
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J(E1, . . . , En)Ks,π,µ = where E1 : T1, . . . , En : Tn

(Λv1 ∈ JT1Ks, . . . , vn ∈ JTnKs. (v1, . . . , vn))⊥(JE1Ks,π,µ , . . . , JEnKs,π,µ)

Jmatch E1 with (x1, . . . , xn) in E2Ks,π,µ =
{

JE2Ks,π,µ⊎[x1/v1,...,xn/vn]
if JE1Ks,π,µ = (v1, . . . , vn)

⊥ otherwise

J{x | E}Ks,π,µ =







{v ∈ JType(x)Ks | JEKs,π,µ⊎[x/v]} if for all v ∈ JType(x)Ks :

JEKs,π,µ⊎[x/v] 6= ⊥

⊥ otherwise

JE :: E′Ks,π,µ = (Λv ∈ JT Ks, v
′ ∈ J[T ]Ks. v :: v′)⊥(JEKs,π,µ , JE

′Ks,π,µ) where E : T

Jmatch E1 with x :: y then E2 else E3Ks,π,µ =






JE2Ks,π,µ⊎[x/v,y/v′] if JE1Ks,π,µ = v :: v′

JE3Ks,π,µ if JE1Ks,π,µ = nil

⊥ otherwise

JE1E2Ks,π,µ =

{
f(JE2Ks,π,µ) if f = JE1Ks,π,µ 6= ⊥

⊥ otherwise

Jλx.EKs,π,µ = (Λv ∈ JType(x)Ks. JEKs,π,µ⊎[x/v])
⊥

Figure 6.13: Part 2 of denotational semantics of λXP, where s is a sequence of data

trees, π ∈ nodes(s), and µ to s-values is a well-typed variable assignment.

Proof. Proposition 3 show that the set Vs of all s-values is a cpo with least element

⊥. It follows from Lemma 6 that all restrictions (JTiKs ,⊏|JTiKs×JTiKs
) are cpo’s

too, whose least element is ∅. As a consequence, (D,⊏D) is a cpo too whose least

element is (∅, . . . , ∅).

6.3.4 Correctness

Proposition 6. Let s be a sequence of trees, π ∈ nodes(s), and µ a variable as-

signment to s-values. Let λx.E be a positive function. Then the function described

by its denotation

(Λv ∈ JType(x)Ks. JEKs,π,µ⊎[x/v])
⊥

is Scott-continuous.

Proposition 7. Let s be a sequence of trees, π ∈ nodes(s), and µ a variable as-

signment to s-values. Let letrec x1 = E1, . . . , xn = En in E be a recursive let

expression, where all xi occur in positive contexts in E1, . . . , En and all Ei are

positive functions. Then the function

Λv ∈ JT1Ks × . . .× JTnKs.(JE1Ks,π,µ⊎ν(v) , . . . , JEnKs,π,µ⊎ν(v))

is Scott-continuous on the cpo of Proposition 5, where ν = Λ(v1, . . . , vn).[x1/v1] ⊎

. . . ⊎ [xn/vn] and for all 1 ≤ i ≤ n: Type(xi) = Ti.
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E ⊲ V → V ′

E ⊲ V ∪ V ′′ → V ′

E ⊲ V → V ′ ∪ V ′′

E ⊲ V ∪ V ′′ → V ′

E1 ⊲ V → V ′ E2 ⊲ V ⊎ V ′ → V ′′

E1 ∧ E2 ⊲ V → V ′ ∪ V ′′

true

c ⊲ ∅ → ∅

true

x ⊲ {x} → ∅

E1 ⊲ V → V ′ E2 ⊲ V → V ′

E1 ∨ E2 ⊲ V → V ′

E ⊲ V → V ′ ∪ {x} x /∈ V ′

∃x.E ⊲ V → V ′

E ⊲ V → ∅

¬E ⊲ V → ∅

E ⊲ V → V ′

A(E) ⊲ V → V ′

E ⊲ V → V ′ E is navigational

¬E ⊲ V → V ′

E1 ⊲ V → ∅ E2 ⊲ V → V ′

at(E1, E2) ⊲ V → V ′

E1 ⊲ V → ∅ E2 ⊲ V → V ′ E3 ⊲ V → V ′

if E1 then E2 else E3 ⊲ V → V ′

∀1 ≤ i ≤ n. Ei ⊲ V ⊎ {x1, . . . , xn} → ∅ E ⊲ V ⊎ {x1, . . . , xn} → V ′

letrec x1 = E1, . . . , xn = En in E ⊲ V → V ′

∀1 ≤ i ≤ n. Ei ⊲ V → ∅

(E1, . . . , En) ⊲ V → ∅

E1 ⊲ V → ∅ E2 ⊲ V ⊎ {x1, . . . , xn} → V ′

match E1 with (x1, . . . , xn) in E2 ⊲ V → V ′

E ⊲ V → {x}

{x | E} ⊲ V → ∅

E1 ⊲ V → ∅ E2 ⊲ V → ∅

E1 :: E2 ⊲ V → ∅

E1 ⊲ V → ∅ E2 ⊲ V ⊎ {x, y} → V ′ E3 ⊲ V → V ′

match E1 with x :: y then E2 else E3 ⊲ V → V ′

E1 ⊲ V → ∅ E2 ⊲ V → ∅

E1E2 ⊲ V → ∅

E ⊲ V ⊎ {x} → ∅ x /∈ V

λx.E ⊲ V → ∅

E ⊲ V → ∅

x = E ⊲ V → {x}

E ⊲ V → ∅

x ∈ E ⊲ V → {x}

Figure 6.14: Mode judgements for well-typed λXP formulas.

6.4 Safety Restrictions

Let E be a λXP formula. A mode of E is a pair of variable subsets V → V ′ of

input variables V ⊆ V whose values are known before evaluation of E, and output

variables V ′ ⊆ V whose values will be produced during the evaluation of E. We

write E ⊲ V → V ′ to say that E has mode V → V ′. Let fV (E) be the set of free

variables in E. We say that E is well-moded, if V ′ contains all free variables of E,

except those variables in V , i.e. fV (E) \ V ⊆ V ′.

Well-moded λXP formulas allow for efficient evaluation. Problems arise with

existential quantification ∃x.E, where one would have to test E enumerating all

possible values of Type(x), and also in set constructions {x | E} with the test of

E. To avoid this we have designed a mode system for λXP in Figure 6.14 that

guarantees well-modedness, such that well-moded λXP formulas can be efficiently

evaluated.

For existential quantifications for example, we have mode rule:

E ⊲ V → V ′ ∪ {x} x /∈ V ′

∃x.E ⊲ V → V ′

It says that ∃x.E is well-moded with input variables V and output variables V ′,
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{x | }
{x1, x2} → ∅

∃y {x1, x2} → {x}

∧
{x1, x2} → {x, y}

ch+(tweet ∧ isx ∧ isy)
{x1, x2} → {x, y}

at
{x1, x2} → ∅

x1
{x1, x2} → ∅

∃y1
{x1, x2, x, y} → ∅

∧
{x1, x2, x, y} → {y1}

y1 ∈
{x1, x2, x, y} → {y1}

E1
{x1, x2, x, y} → ∅

∃y2
{x1, x2, x, y, y1} → ∅

∧ {x1, x2, x, y, y1} → {y2}

y2 ∈{x1, x2, x, y, y1} → {y2}

E2
{x1, x2, x, y, y1} → ∅

y1 = y2 {x1, x2, x, y, y1, y2} → ∅

Figure 6.15: Mode-tree of query Q′
1 from Section 10.1.1 with expanded shortcuts,

and where E1 = fn:data(set2list({x′ | at(y, ch(user name ∧ isx′))})) and E2 =

fn:data(set2list({x′ | at(x2, ch
+(students ∧ ch(name ∧ isx′)))})).

if expression E has mode E ⊲ V → V ′ ∪ {x} producing values for variables x.

An evaluation of ∃x.E then does not have to guess all possible values for x, but

evaluates E to generate a finite set of possible values for x.

For query Q′
1 of Section 10.1.1 we give the mode-tree in Figure 6.15, i.e. where

all terms in Q′
1 are annotated by a mode, following the mode system. Notice that

the mode system allows λXP to be differently well-moded, which is due to the two

rules for submodes.

Note that for regular axis queries E∗, the mode system rules out E with mode

E ⊲ V → V ′ where V ′ 6= ∅. E may contain free variables however, but then

their values must be produced outside of E∗, e.g. when being used within another

formula. This follows from the rule on lambda abstraction, but also from the rule

on disjunctions.
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In this chapter we first define library functions that are required by the compiler

from XPath 3.0 expressions to λXP terms that we present in a second step.

7.1 Instantiation of λXP

For the mapping from XPath expressions to λXP formulas, we instantiate λXP

with parameters Σ and ∆ for signatures, axes A, (label properties L), constants

Const, and parameter A(Tatom ,D , J.K.,≤.,�atom) for atomic types.

The signatures are defined as discussed in Section 2.3.1:

Σ = Xmltypes

∆ = Utf8

We allow the following axes:

A = {ch, ch+,ns+, par , par+, ps+}.
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We define Const to contain all constants that we define in Section 6.2.2, where

we assume that arithmetic and comparison functions are defined as described by

the specification for arithmetics and comparisons1, and where the cast function

is defined as presented in the specification2. We assume a function sort of type

[T ] → [T ] for any equality type T ∈ Teq that may implement any of the known

sorting algorithms. Also by NaN we denote the double value of type xs:double

that stands for not a number. Values true and false are booleans contained in

Bool ⊆ D . Furthermore we add all XPath 3.0 built-in functions to Const, which

can be mapped to λXP expressions. In Section 7.2 we only presented the translation

of a small subset of the XPath 3.0 functions to λXP.

The parameter A for atomic types is defined as follows. The structure s is a

sequence of data trees that are potentially available using XPath 3.0 functions

fn:doc, fn:unparsed-text, and fn:collections. Function root from our con-

stants then return for some the Uri that specifies a document the root node of the

respective data tree, and similarly function roots takes a collection Uri for a col-

lection of documents and returns a sequence of root nodes of respective data trees.

Note that we model text files as data trees with a doc-root node, that has a single

child of type tx, whose data values contains the content of the text file. Tatom is

the finite set of atomic types that contains all atomic Xml types of Figure 4.1. The

domain D contains all nodes of s and all atomic values of the Xml Schema Part 2

specification3, i.e. the denotation of atomic types as discussed in Section 4.2.1. The

denotation J.Ks maps the atomic types of Tatom to corresponding atomic values of

D ∪ nodes(s). The subtype relation for atomic types was discussed in Section 4.4.

Finally the order for atomic Xml types is defined in section “Operator Mapping”4

of the XPath 3.0 specification.

7.2 Library functions

In this section we define library functions to translate XPath 3.0 expressions and

functions. See also Section 6.2.6 for library functions of λXP expressions, such as

functions map, foldL, and append , that are not purely related to the XPath 3.0

specification.

7.2.1 Access to Node Labels

In Figure 7.1 we present functions that operate on the label of nodes of Xml data

trees. They use functions labtype and labvalues of Figure 6.2 that are defined

according to the Xml node labels and thereby return the node type and node data

values, respectively.

1https://www.w3.org/TR/xpath-30/#mapping
2https://www.w3.org/TR/xpath-functions-30/#casting
3https://www.w3.org/TR/xmlschema-2/
4https://www.w3.org/TR/xpath-30/#mapping

https://www.w3.org/TR/xpath-30/#mapping
https://www.w3.org/TR/xpath-functions-30/#casting
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xpath-30/#mapping
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Function labname returns the value of node property “node-name” for element

and attribute nodes. It verifies with function labtype whether its argument node is

an element or an attribute node, and matches its data values according to function

labvalues against a 6- or a 5-tuple, respectively, and returns its “node-name” prop-

erty, which is stored at the second component. Function labname is defined only

for element and attribute nodes, such that it raises an error for other node types.

Notice that the value returned is a string that represents a QName, which is always

composed of a namespace prefix and a local name that are separated by a colon

“:”.

Similar function labschema-type returns the value of node property “schema-type”

for element and attribute nodes. The default values for property “schema-type” in

the absence of schema for elements is xs:untyped and for attributes it is xs:untypedAtomic.

Function labnilled returns the value of node property “nilled” for element nodes,

which is either string “true” or “false”. Function labtarget returns the value of node

property “target” for processing-instruction nodes. Function labdata returns the

value of node property “content” for text, comment, and processing-instruction

nodes, and function labvalue returns the value of node property “string-value” for

attribute nodes.

7.2.2 Lists of Nodes

The following functions transforms a list of nodes into a set of nodes, and it throws

an error, if a non-node is encountered in the list

nodelist2set =df

letrec nodelist2set ′ =

λz.match z with x :: y then

if typeType(x),node(x) then {x} ∪ nodelist2set ′(y) else raise error

else ∅

in nodelist2set ′

7.2.3 String Data Value of Nodes

The string-value of a node, which according to the specification is the concatena-

tion of the string values of all its text-node descendants for element nodes, can be

compiled into the λXP in Figure 7.2.

The fn:string5 function returns the string-value of nodes, while its casts atomic

values to string type xs:string.

Jfn:stringK =df

λz.match z with x :: y then

if typeType(x),node(x) then string value(x)

else if typeType(x),xs:anyAtomicType(x) then castType(x),string(x)

else raise error

else “”

5http://www.w3.org/TR/xpath-functions-30/#func-string

http://www.w3.org/TR/xpath-functions-30/#func-string
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labname =df

λx. if labtype(x) = el then match labvalues(x) with (x1, . . . , x6) in x2
else if labtype(x) = att then match labvalues(x) with (x1, . . . , x5) in x2
else raise error

labschema-type =df

λx. if labtype(x) = el then match labvalues(x) with (x1, . . . , x6) in x3
else if labtype(x) = att then match labvalues(x) with (x1, . . . , x5) in x3
else raise error

labnilled =df

λx. if labtype(x) = el then match labvalues(x) with (x1, . . . , x6) in x4
else raise error

labtarget =df

λx. if labtype(x) = pi then match labvalues(x) with (x1, . . . , x3) in x2
else raise error

labdata =df

λx. if labtype(x) = tx then match labvalues(x) with (x1) in x1
else if labtype(x) = com then match labvalues(x) with (x1) in x1
else if labtype(x) = pi then match labvalues(x) with (x1, x2, x3) in x3
else raise error

labvalue =df

λx. if labtype(x) = att then match labvalues(x) with (x1, . . . , x5) in x1
else raise error

Figure 7.1: Access to Node Labels.

7.2.4 Atomization of Sequences

The typed-value of a node can be computed via its string-value:

typed value =df

λx. if typeType(x),textnode(x) ∨ typeType(x),commentnode(x)

∨typeType(x),pinode(x) then

labdata(x)

else

caststring,Type(labschema-type(x))(string value(x))

Function fn:data6 that computes the atomization of a sequence, as discussed

in Section 5.2.4.

Jfn:dataK =df

6http://www.w3.org/TR/xpath-functions/#func-data

http://www.w3.org/TR/xpath-functions/#func-data
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string value =df

letrec string value ′ =

λx. if typeType(x),textnode(x) ∨ typeType(x),commentnode(x)

∨typeType(x),pinode(x) then

labdata(x)

else if typeType(x),attribute(x)

labvalue(x)

else if typeType(x),elementnode(x)

∨typeType(x),documentnode(x) then

listconcat

(map string value ′

sort(set2list(

{x′ | at(x, ch+(isx′ ∧ labtype(x′) = tx))})))

in string value ′

Figure 7.2: Function string value that computes strings of nodes.

λz.map (λz′.if typeType(z′),xs:anyAtomicType(z′) then z′

else if typeType(z′),node(z′) then typed value(z′) else raise error) z

7.2.5 Numerics

Function fn:number7 accepts singleton lists only whose element is cast into a double

of type xs:double. Otherwise the function returns the double value NaN .

Jfn:numberK =df

λz.match z with x :: y then

if y = nil then try castType(x),xs:double(x) catch(e) NaN else NaN

else NaN

Function fn:count8 counts the number of elements in a sequence or list.

Jfn:countK =df

letrec count =

λz. match z with x :: y then 1 + count(y) else 0

in count

7.2.6 Booleans

Function fn:boolean9 computes the effective boolean value that we discussed in

Section 5.5.

Jfn:booleanK =df

7http://www.w3.org/TR/xpath-functions-30/#func-number
8http://www.w3.org/TR/xpath-functions-30/#func-count
9http://www.w3.org/TR/xpath-functions-30/#func-boolean

http://www.w3.org/TR/xpath-functions-30/#func-number
http://www.w3.org/TR/xpath-functions-30/#func-count
http://www.w3.org/TR/xpath-functions-30/#func-boolean
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λz.match z with x :: y then

if typeType(x),node(x) then

true

else if y = nil then

if typeType(x),bool(x) then x

else if typeType(x),string(x) ∨ typeType(x),xs:anyURI(x)

∨ typeType(x),xs:untypedAtomic(x) then ¬(x = “”)

else if typeType(x),num(x) then

if x = 0 ∨ x = NaN then false else true

else raise error(err:FORG0006)

else raise error(err:FORG0006)

else false

In the following we translate boolean functions fn:true, fn:false, and fn:not.

Jfn:trueK =df

true

Jfn:falseK =df

false

Jfn:notK =df

λz.¬Jfn:booleanK(z)

7.2.7 Strings

Function fn:concat10, for example, concatenates strings. It takes a list of atomic

values, casts them to xs:string values, and concatenates the stings, treating them

as lists of characters.

Jfn:concatK =df

λ(z1, . . . , zn).listconcat(map(castxs:anyAtomicType,string, z1 :: . . . :: zn :: nil))

Other functions on strings11 like fn:contains and fn:normalize-space can be

implemented straightforwardly, by decomposition of lists of characters. Function

fn:contains can be implemented by some function contains that tests whether

a certain string contains another one, while fn:normalize-space removes from a

string leading and trailing whitespace and reduces sequences of whitespace within

the string to a single space character.

7.2.8 EQNames

EQNames are produced by nonterminal EQName (94) and are either QNames (104)

or URIQualifiedNames (99). Their values are to be identified with lists of char-

10https://www.w3.org/TR/xpath-functions-30/#func-concat
11http://www.w3.org/TR/xpath-functions-30/#string-value-functions

http://www.w3.org/TR/xpath-30/#doc-xpath30-EQName
http://www.w3.org/TR/xpath-30/#doc-xpath30-QName
http://www.w3.org/TR/xpath-30/#doc-xpath30-URIQualifiedName
https://www.w3.org/TR/xpath-functions-30/#func-concat
http://www.w3.org/TR/xpath-functions-30/#string-value-functions


7.2. Library functions 101

acters, similar to strings.

QNames contain a local name (the actual label), and a namespace prefix.

To have access to the individual parts, functions fn:local-name-from-QName and

fn:prefix-from-QName exist. Namespace prefix and local name in QNames are

separated by a colon “:”, which makes it easy to implemented with an λXP ex-

pression that treats QNames as lists of characters.

URIQualifiedNames contain a namespace Uri and a local name, of which the

namespace Uri is put in curly brackets which follows the local name. Similarly to

before, we can think of functions withinBrackets and afterBrackets that return the

namespace Uri and local name. Also since we need to compare namespace prefixes

to namespace Uris we assume a function prefix can returns the corresponding

namespace prefix for some namespace Uri.

The following function testEQName tests for some node z whether the data

value of its property node-name (which represents a QName) matches EQName

z′ (which is either a QName or a URIQualifiedName).

testEQName =df

λ(z, z′).

if typeType(z′),xs:QName(z′) then

if contains(z′, “:”) then

labname(z) = z′

else Jfn:local-name-from-QNameK(labname(z)) = z′

else //typeType(z′),xs:URIQualifiedName(z′) = true

Jfn:local-name-from-QNameK(labname(z)) = afterBrackets(z′) ∧

Jfn:prefix-from-QNameK(labname(z)) = prefix (withinBrackets(z′))

7.2.9 Positions

The addPositionAndSize function takes a list of elements and creates a new list

with the same elements, but with information about the position of the element in

the list and the size of the list. The result list stores triples that contain the original

element, its index in the list, and the size of the list. E.g. addPositionAndSize(“a” ::

“b” :: nil) = (“a”, 1, 2) :: (“b”, 2, 2) :: nil .

addPositionAndSize =df

λz. letrec add -index = λ(x1, x2, x3).

match x1 with x :: y then

(x, x2) :: add -index (y, x2 + 1, x3)

else nil

in add -index (z, 1, Jfn:countK(z))

Function addReversePositionAndSize similarly computes a list of triples, but

stores reverse indices for elements. E.g. addReversePositionAndSize(“a” :: “b” ::

nil) = (“a”, 2, 2) :: (“b”, 1, 2) :: nil .

addReversePositionAndSize =df
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λz. letrec addReverseIndex = λ(x1, x2, x3).

match x1 with x :: y then

(x, x2) :: addReverseIndex (y, x2 − 1, x3)

else nil

in addReverseIndex (z, Jfn:countK(z) + 1, Jfn:countK(z))

7.2.10 Roots and Input Documents

The fn:root12 function returns the root node of the data tree to which its argument

node $z belongs: Jfn:root($z)K = J($z/ancestor-or-self::node())[1]K.

In order to have access to input source documents we have added function root

in λXP, for the translation of function fn:doc, which given an Uri that represents

a document, returns the root of the respective data tree:

Jfn:docK =df

root

Similar we have a function roots in λXP that mimics function fn:collection

of XPath 3.0, returning a list of root nodes of data trees for a collection Uri:

Jfn:collectionK =df

roots

7.3 Compiling the XPath 3.0 Grammar to λXP

In this section we present the translation of a subset of XPath 3.0 expressions

to λXP expressions, while we refer to Appendix B for a complete translation of

XPath 3.0 to λXP that follows the ordered semantics of Xslt. We start by the

translation of navigational XPath 3.0 expressions relating to Chapter 3. Next we

show how queries with positions with respect to Section 5.3 are translated. Finally,

we present how ordering constraints can be relaxed within the unordered semantics

of XQuery, while otherwise we assume the standard ordered semantics of Xslt.

7.3.1 Navigational XPath Expressions

We present a translation for navigational XPath 3.0 expressions, which we dis-

cussed in Chapter 3. The translation applies only for instances of XPath 3.0

expressions P by the original XPath grammar [Robie 2014b], i.e. those in Sec-

tion 5.1.2, but only if query P can also be produced by the grammar of the naviga-

tional XPath 3.0 fragment given in Section 3.2.2.

The translation of a navigational XPath expression P that is an instance of

nonterminal N produces a boolean λXP expression E. The translation is parame-

terized by some given boolean λXP formula F of properties to be verified at nodes

12http://www.w3.org/TR/xpath-functions-30/#func-root

http://www.w3.org/TR/xpath-functions-30/#func-root
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that P navigates to, such as node label tests that we translate before the translation

of axes steps. For the translation of navigational expressions we write

LN(P)MF = E

The translation is initialized with F = true such that the result of LN(P)Mtrue is a

boolean λXP formula that is satisfied by some data tree of which the Xml document

that it models satisfies the XPath filter [P]. Otherwise F is set to isx such that

the result of LN(P)Misx is satisfied by some data tree, if the value for variable x is

amongst the nodes that XPath query P selects. The nodes selected by expressions

P then correspond to λXP expression

{x | LN(P)Misx}

We refer to the next section for an integration of the translation for navigational

XPath queries, that we present in the following, into a translation for arbitrary

XPath expressions.

Path Compositions. We start by the translation of expressions by nonterminal

(36) RelativePathExpr::= StepExpr (("/" | "//") StepExpr)*

for the case that the expression uses the path operator “/”:
LRelativePathExpr(StepExpr(P)/StepExpr(P′))MF =df

LStepExpr(P)MLStepExpr(P′)MF

The idea is that formula F is to be tested at nodes selected by StepExpr(P)/StepExpr(P′),

so it reduces to translation LStepExpr(P′)MF , which is to be tested at nodes selected

by StepExpr(P). Navigational expressions by nonterminal

(37) StepExpr::= PostfixExpr | AxisStep

are expressions by nonterminal AxisStep (38).

Filters. Expressions by nonterminal

(38) AxisStep::= (ReverseStep | ForwardStep) PredicateList

require a translation of a forward or backward path step P, which is an instance

of nonterminal ReverseStep or ForwardStep, respectively, together with a list of

filters Pi (by nonterminal PredicatesList) which are instances of nonterminal

Expr.
LAxisStep(P[Expr(P1)]...[Expr(Pn)])M

F =df

LPMF∧LExpr(P1)Mtrue∧...∧LExpr(Pn)Mtrue

The idea is that F and all filters require evaluation at nodes by P.

http://www.w3.org/TR/xpath-30/#doc-xpath30-RelativePathExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-StepExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AxisStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-AxisStep
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Single Forward Path Steps.

(39) ForwardStep::= (ForwardAxis NodeTest) | AbbrevForwardStep

For nonterminal ForwardStep we are not interested in nonterminal AbbrevForwardStep,

since considering only non-abbreviated XPath queries.
LForwardStep(ForwardAxis(P) NodeTest(P′))MF =df

LForwardAxis(P)MF∧LNodeTest(P′)Mtrue

F , together with the nodes label and kind tests by NodeTest(P′) are tested at nodes

by P.

Then we can translate the following expressions by nonterminal ForwardAxis(40)

as follows, where att is a label property that accepts all labels of attribute nodes.

(40) ForwardAxis::= ("child" "::") | ("descendant" "::") |

("attribute" "::") | ("self" "::") |

("descendant-or-self" "::") |

("following-sibling" "::") |

("following" "::") | ("namespace" "::")

LForwardAxis(child::)MF =df

ch(F ∧ ¬att)

LForwardAxis(descendant::)MF =df

ch+(F ∧ ¬att)

LForwardAxis(attribute::)MF =df

ch(F ∧ att)

LForwardAxis(self::)MF =df

F

LForwardAxis(descendant-or-self::)MF =df

ch∗(F ∧ ¬att)

LForwardAxis(following-sibling::)MF =df

ns+(F ∧ ¬att)

LForwardAxis(following::)MF =df

par∗(ns+(ch∗(F ∧ ¬att)))

LForwardAxis(namespace::)MF =df

raise error

(41) AbbrevForwardStep::= "@"? NodeTest

We do not consider abbreviated XPath queries.

Single Backward Path Steps. Concerned are the following three nonterminals,

whose translation works similar to the translation of single forward path steps.

http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-AbbrevForwardStep
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(42) ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep

(43) ReverseAxis ::= ("parent" "::") | ("ancestor" "::") |

("preceding-sibling" "::") |

("preceding" "::") |

("ancestor-or-self" "::")

(44) AbbrevReverseStep::= ".."

LReverseStep(ReverseAxis(P) NodeTest(P′))MF =df

LReverseAxis(P)MF∧LNodeTest(P′)Mtrue

LReverseAxis(parent::)MF =df

par(F ∧ ¬att)

LReverseAxis(ancestor::)MF =df

par+(F ∧ ¬att)

LReverseAxis(preceding-sibling::)MF =df

ps+(F ∧ att)

LReverseAxis(preceding::)MF =df

par∗(ps+(ch∗(F ∧ ¬att)))

LReverseAxis(ancestor-or-self::)MF =df

par+(F ∧ ¬att)

Node Labels and Kinds. Labels and kinds of nodes are verified by nonterminal

(45) NodeTest::= KindTest | NameTest

They will be translated to label properties L, which are satisfied by all nodes whose

label satisfied L.

An expression by nonterminal NameTest (46)

(46) NameTest::= EQName | Wildcard

(94) EQName ::= QName | URIQualifiedName

is a QName by nonterminal QName (104), for example, which is either a local name

P or a composition P′:P of a namespace prefix P′ and a local name P. We thereby

obtain
LQName(P)Mtrue =df

P

LQName(P′:P)Mtrue =df

P ∧ P ′

where we identify the result P of the translation with the label property that holds

for all nodes whose local name is P, and label property P ′ holds for all nodes whose

namespace prefix is P′.

We will not discuss in detail expressions by Wildcard (47). Furthermore, we

only give a few expressions that check node kinds, as derived by nonterminal

KindTest (71): Expressions attribute(), element(), and text() are satisfied

by attribute, element, and text nodes, respectively. We translate these test expres-

sions to corresponding label properties:

http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-AbbrevReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-NodeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-NameTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-NameTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-EQName
http://www.w3.org/TR/xpath-30/#doc-xpath30-QName
http://www.w3.org/TR/xpath-30/#doc-xpath30-Wildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-KindTest
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LAttributeTest(attribute())Mtrue =df

att

LElementTest(element())Mtrue =df

el

LTextTest(text())Mtrue =df

tx

First-Order Connectives. The boolean connectives and and or by nonterminals

(16) OrExpr ::= AndExpr ( "or" AndExpr )*

(17) AndExpr::= ComparisonExpr ( "and" ComparisonExpr )*

and the XPath 3.0 functions fn:true, false, and fn:not, that may appear in

filters of navigational XPath queries are translated straightforwardly as follows.
LOrExpr(AndExpr(P) or AndExpr(P′))Mtrue =df

LAndExpr(P)Mtrue ∨ LAndExpr(P′)Mtrue

LAndExpr(ComparisonExpr(P) and ComparisonExpr(P′))Mtrue =df

LComparisonExpr(P)Mtrue ∧ LComparisonExpr(P′)Mtrue

Lfn:true()Mtrue =df

true

Lfn:false()Mtrue =df

false

Lfn:not(Expr(P))Mtrue =df

¬LExpr(P)Mtrue

Example. We present an example for the previously mentioned XPath query

descendant::a/child::b that applies the presented translation rules:

Ldescendant::a/child::bMisx = Ldescendant::aMLchild::bMisx

= Ldescendant::MLchild::bMisx∧LaMtrue

= ch+(Lchild::bMisx ∧ LaMtrue ∧ ¬att)

= ch+(Lchild::bMisx ∧ a ∧ ¬att)

= ch+(Lchild::Misx∧LbMtrue ∧ a ∧ ¬att)

= ch+(ch(isx ∧ LbMtrue ∧ ¬att) ∧ a ∧ ¬att)

= ch+(ch(isx ∧ b ∧ ¬att) ∧ a ∧ ¬att)

7.3.2 Arbitrary XPath Expressions

We discuss how to translate arbitrary XPath expressions to λXP expressions. We

translate an instance P of a nonterminal N of the XPath 3.0 grammar to some λXP

expression E, and write

JN(P)Kz̄,ẑ,z̃ =df E.

The translation is parameterized by three variables z̄, ẑ, and z̃, which is needed

for a correct translation of positional queries. Those variables refer to the context

item, context position, and context size, respectively. Before we explain in detail

http://www.w3.org/TR/xpath-30/#doc-xpath30-OrExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AndExpr
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the treatment of positional queries, we first discuss the integration of the translation

for navigational queries that we presented before.

Navigational Expressions. The standard semantics claims that navigational

XPath queries return duplicate-free sequences of nodes, which are to be sorted into

document order, while the sorting can be relaxed within the unordered semantics of

XQuery, as we describe later. We therefore reuse our translation for navigational

expressions of before, and wrap it into a set, which we then transform into a list

in an arbitrary order via library function set2list, while applying an additional

sorting:

JN(P)Kz̄,ẑ,z̃ =df sort(set2list({x | LN(P)Misx}))

Positional Queries. We discuss in the following how to evaluate filters and path

expressions in general. For this let P and P’ be subexpressions of filters P[P′] and

path expressions P/P′ and P!P′, while we assume that expressions P′ are not navi-

gational and thus may contain positions, such as the context item expression “.”,

or function calls fn:position() or fn:last(), that we discussed in Section 5.3.

Those expressions return the context item, position, and size, respectively. We re-

call, that the context item is the item currently being processed in sequence P, the

context position is the position of the context item within the sequence, and the

context size is the number of items in the processed sequence.

The question is how to translate those filters and path expressions and their

subexpressions, since subexpressions P′ reference items and positions of items in the

result list by P, such that expressions P′ cannot be translated without information

of the evaluation of P. The idea is, that we translate P′ as a function which requires

the items, their positions, and the size of the list by P as input arguments, for which

we translate P to a list of such triples, and filters and path expressions to function

applications.

Context Item, Position, and Size. We thus translate the context item expres-

sion “.” by nonterminal ContextItemExpr (58), and function calls fn:position()

and fn:last() to variables, whose values will be computed later, during evaluation.

JContextItemExpr(.)Kz̄,ẑ,z̃ =df z̄

Jfn:position()Kz̄,ẑ,z̃ =df ẑ

Jfn:last()Kz̄,ẑ,z̃ =df z̃

Functions of Items, Position, and Size. Expressions P′ of filters and path

expressions, that contain context item expressions or functions calls, are translated

to functions

λ(z̄, ẑ, z̃).JP′Kz̄,ẑ,z̃.

This translation of subexpressions P′ to functions allows to compute the filter or

path expressions, when applied to triples of items, position, and size.

http://www.w3.org/TR/xpath-30/#doc-xpath30-ContextItemExpr
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Lists of Triples of Items, Position, and Size. For items within a list, the

information about its position within the list, and the size of the list, must be avail-

able directly, when evaluating filters and path expressions. We translate expressions

P not to a list of items, but to a list of triples of items, positions, and list-size.

This is done via function addPositionAndSize presented in Section 7.2.9 of our

function library. For the evaluation of filters and path expressions as mentioned

above, we translate subexpressions P to addPositionAndSize(JPKz̄,ẑ,z̃). For example,

this function takes the list (“a”, “bc”, 135) and outputs the list ((“a”, 1, 3), (“bc”, 2, 3), (135, 3, 3)).

Evaluation of Filters. Filters P[P′] by nonterminal

(38) AxisStep::= (ReverseStep | ForwardStep) PredicateList,

where P is an instance of nonterminal ReverseStep (42) or ForwardStep (39), and

where [P′] is a filter by nonterminal PredicateList (50), can be translated to

function applications:

JP[P′]Kz̄,ẑ,z̃ =df

let eval = λz.match z with x :: y then

match x with (ci , cp, cs) in

let filter = if typeType(ci),node(ci) then

at(ci , (λ(zi, zp, zs).JP′Kzi,zp,zs)(ci , cp, cs))

else

(λ(zi, zp, zs).JP′Kzi,zp,zs)(ci , cp, cs)

in

if typeType(filter),num(filter) ∧ castType(filter),int(filter) = cp then

ci :: eval(y)

else if Jfn:booleanK(filter) then

ci :: eval(y)

else eval(y)

else nil

in eval(addPositionAndSize(JPKz̄,ẑ,z̃))

For this, we define an evaluation function eval that inputs a list of triples addPositionAndSize(JPKz̄,ẑ,z̃).

This function decomposes the list into triples x, which are made up of items ci , their

position cp within the list, and the size cs of the list. Next, the function computes

the function application (λ(zi, zp, zs).JP′Kzi,zp,zs)(ci , cp, cs) which is evaluated from

ci if ci is a node, and from z̄ otherwise. The return value of the evaluation is stored

in variable filter . When it is a numerical value, then the item ci is retained, if its

position cp is equal to that value. Otherwise the effective boolean value of the

value in filter is computed, where ci is retained if it evaluates to true.

Mapping Operator Expressions. Similarly we translate expressions that use

the mapping operator “!” as by nonterminal

(34) SimpleMapExpr::= PathExpr ("!" PathExpr)*

http://www.w3.org/TR/xpath-30/#doc-xpath30-AxisStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-PredicateList
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleMapExpr
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JSimpleMapExpr(PathExpr(P) ! PathExpr(P′))Kz̄,ẑ,z̃ =df

let apply = λz.match z with x :: y then match x with (ci , cp, cs) in

if typeType(ci),node(ci) then

at(ci , (λ(zi, zp, zs).JPathExpr(P′)Kzi,zp,zs)(ci , cp, cs)) :: apply(y)

else

(λ(zi, zp, zs).JPathExpr(P′)Kzi,zp,zs)(ci , cp, cs) :: apply(y)

else nil in

listconcat apply(addPositionAndSize(JPathExpr(P)Kz̄,ẑ,z̃))

We define a function apply that performs the function applications. It gets as

input a list of triples addPositionAndSize(JPathExpr(P)Kz̄,ẑ,z̃). For each triple the

function application is performed evaluating PathExpr(P′), which returns a list of

items. The overall result is thus a list of lists of items. Since sequences in XPath

are flat, we flatten this result list by appending the lists that are contained, and we

obtain a list of items.

Path Operator Expressions. Expressions that use the path operator “/” as by

nonterminal

(36) RelativePathExpr::= StepExpr (("/" | "//") StepExpr)*

can be expressed using the mapping operator “!”, see Section 5.4.2.

JRelativePathExpr(P/P’)Kz̄,ẑ,z̃ =df

JRelativePathExpr(

let $R:= P!P’ return

if (every $r in $R satisfies $r instance of node()) then

($R union ())

else if (every $r in $R satisfies not($r instance of node()))

then $R

else error()Kz̄,ẑ,z̃

7.3.3 Ordering Mode of XQuery

If ordering mode of XQuery is set to ordered, node sequences returned by path

expressions, union, intersect, and except expressions, and the fn:id and fn:idref

functions are to be sorted into document order. Otherwise the order of these return

sequences is implementation-dependent. In the following we use some constant

mode which is equal to the sort function sort if the ordering mode of XQuery is

set to ordered, while it is the identity function id , when the ordering mode is set to

unordered :

mode =

{
sort , ordering mode of XQuery is ordered

id , ordering mode of XQuery is unordered

http://www.w3.org/TR/xpath-30/#doc-xpath30-RelativePathExpr
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Node Selecting Path Expressions. Depending on constant mode the result list

of nodes for navigational expressions P is sorted or not:

JN(P)Kz̄,ẑ,z̃ =df mode(set2list({x | LN(P)Misx}))

Union, Intersect, and Except Expressions. Expressions by nonterminals

(23) UnionExpr ::= IntersectExceptExpr ( ("union" | "|")

IntersectExceptExpr )*

(24) IntersectExceptExpr::= InstanceofExpr ( ("intersect" |

"except") InstanceofExpr )*

use operators union, intersect, and except, which operate on sequences of nodes

only, see Section 5.7.1.

Notice that according to the specification, if one of the items in the sequences is

not a node, a type error is raised, which we treat with library function nodelist2set .

JUnionExpr(IntersectExceptExpr(P1) union ...

union IntersectExceptExpr(Pn))Kz̄,ẑ,z̃ =n≥2
df

mode(set2list(nodelist2set(JIntersectExceptExpr(P1)Kz̄,ẑ,z̃) ∪ . . .

∪ nodelist2set(JIntersectExceptExpr(Pn)Kz̄,ẑ,z̃)))

Notice here, that translations JIntersectExceptExpr(Pi)Kz̄,ẑ,z̃ produce lists of nodes,

which we transform to sets of nodes by function nodelist2set , whose set union is

computed, and which afterwards is converted back to a list of nodes in an arbitrary

order.

Expressions IntersectExceptExpr where opi ∈ {intersect, except} for all

1 ≤ i ≤ n translate similarly:
JIntersectExceptExpr(

InstanceofExpr(P1) op1 InstanceofExpr(P2) ...

InstanceofExpr(Pn) opn InstanceofExpr(Pn+1))Kz̄,ẑ,z̃ =n≥2
df

mode(set2list(

nodelist2set(JInstanceofExpr(P1)Kz̄,ẑ,z̃) op1
nodelist2set(JInstanceofExpr(P2)Kz̄,ẑ,z̃) op2

. . . opn nodelist2set(JInstanceofExpr(Pn+1)Kz̄,ẑ,z̃)))

For Expressions. For expressions for $x in P return P′ by nonterminal ForExpr

in

(8) ForExpr ::= SimpleForClause "return" ExprSingle

(9) SimpleForClause ::= "for" SimpleForBinding

("," SimpleForBinding)*

(10) SimpleForBinding::= "$" VarName "in" ExprSingle

concatenate sequences of the return expression P′ in the order of the items in the

binding sequence P if the ordering mode of XQuery is set to ordered :

http://www.w3.org/TR/xpath-30/#doc-xpath30-UnionExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-IntersectExceptExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleForClause
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleForBinding
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JForExpr(for $VarName(y) in ExprSingle(P)

return ExprSingle(P’))Kz̄,ẑ,z̃ =df

listconcat

(map (λJVarName(y)Kz̄,ẑ,z̃.JExprSingle(P’)Kz̄,ẑ,z̃) JExprSingle(P)Kz̄,ẑ,z̃)

There we perform a map on list JExprSingle(P)Kz̄,ẑ,z̃ with function λJVarName(y)Kz̄,ẑ,z̃.JExprSingle(P’)

while flattening the result list. For Example, query

for $x in (1, 33, 555) return ($x + 100, $x)

evaluates to list (101,1,133,33,655,555). If the ordering mode were set to un-

ordered, then the sequences by the return expression would not need to be concate-

nated in the order of the items of the binding sequence, but in an arbitrary order.

For example, (655,555,101,1,133,33) is an admissible answer. However, the or-

der of the items in the list by any evaluation of the return expression cannot be

changed: (1,33,101,133,555,655) is not an admissible answer. In order to profit

from this kind of order indifference, we allow the translation to add a call to XPath

3.0 function fn:unordered to the result of the evaluation of the binding sequence,

which allows the sequence to be returned in an implement-dependent order, but

only if the ordering mode is set to unordered :

JForExpr(for $VarName(y) in ExprSingle(P)

return ExprSingle(P’))Kz̄,ẑ,z̃ =df

listconcat

(map (λJVarName(y)Kz̄,ẑ,z̃.JExprSingle(P’)Kz̄,ẑ,z̃)

Jfn:unorderedK(JExprSingle(P)Kz̄,ẑ,z̃))

Notice that function fn:unordered only relaxes the order for its immediate operand,

while the ordering mode unordered of XQuery applies to all nested expressions.
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In this chapter, we propose a new algorithm that approximates earliest query

answering for navigational XPath queries. Our early query answering algorithms

is based on early nested word automata that we introduce that are obtained from

Fxp, the forward navigational fragment of λXP. We test our algorithms in detail

on the usual benchmarks in an experimental section with promising performance.
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8.1 Introduction

We present an approximation of earliest query answering for navigational XPath

queries. One objective is to improve on previous approximations, in order to support

earliest rejection for XPath queries with negation, such as for instance:

//tweet[not(pub/text()=’Springer’)][contains(text(),’Lille’)]

When applied to an Xml document for an electronic library, as below, all books

published from Springer can be rejected once its publisher was read:

<lib>...<book>...<pub> Springer </pub>

...<content>...Lille...</content>...</book>...</lib>

Spex’s algorithm on the basis of transducer networks [Olteanu 2007], however, will

check for all books from Springer whether they contain the string Lille and detect

rejection only when the closing tag </book> is met. This requires unnecessary

buffering space.

We provide an approximation of the earliest query answering algorithm for

queries defined by Nwa [Gauwin 2009b, Madhusudan 2009], while removing the

assumption of determinism imposed there. The main idea to gain efficiency is that

selection and rejection should depend only on the current state of an Nwa but not

on its current stack. Therefore, we propose early nested word automata (eNwas)

that are Nwas with two kinds of distinguished states: rejection states and selection

states. Selection states are final and must always remain final, so that a nested word

can be accepted, once one of its prefixes reaches a selection state. Symmetrically,

rejection states can never reach a final state, so that a nested word can be rejected,

once all non-blocking runs on a prefix reach a rejection state. We then present a new

streaming algorithm for answering eNwa queries in an early manner. The basic

idea is to run the eNwa for all possible candidates while determinizing on-the-fly,

so that one can see easily whether all non-blocking runs of the nondeterministic

automaton reach a rejection state, or whether one of them is selecting. The second

idea is to share the stacks and states of runs of buffered candidates in the same state,

so that the running time does not depend on the number of buffered candidates,

but only on the number of states of the deterministic automaton discovered during

the on-the-fly determinization. Our streaming algorithm with stack-and-state shar-

ing for answering eNwas queries is original and nontrivial. It enables tight upper

bounds for time and space complexity that we prove (Theorem 3).

Furthermore, we show how to compile XPath expressions to small eNwa de-

scriptors defining the same query. These descriptors allow to represent eNwas with

large finite alphabets in a succinct manner, by replacing labels in eNwa rules by

label descriptors. The label descriptor ¬a, for instance, stands for the set of all

finitely many labels different from a. The target of our XPath-compiler are thus

eNwa descriptors. For instance, the eNwa descriptors that our XPath compiler

obtains for the XPath expressions Pn = child::a1/child::a2/.../child::an is
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of size O(n), while the described eNwa is of size O(n2). The latter has n states

each of which has n transitions, in order to accept children with all possible let-

ters a1, . . . , an. We will prove a tight time bound for our compiler (Theorem 2). It

implies the same bound on the size of the generated eNwa descriptors, and in partic-

ular that the eNwa descriptors for any XPath expressions without filters, unions,

and with no other axes than child axes (such as Pn for instance) can be compiled in

time O(n). This improves on the previous compiler to dNwas from [Gauwin 2011a],

which required time O(n4) for Pn. The main idea of the compiler is to adapt the

previous translation to dNwas, so that it produces descriptors of eNwas while dis-

tinguishing selection and rejection states. We maintain pseudo-completeness (no

run can ever block) as an invariant, so that we can compile negations efficiently in

the deterministic case. Otherwise, we treat negation based on eNwa determiniza-

tion after the instantiation of the eNwa descriptors, even though this is costly in

theory and often unfeasible in practice. The XPath operators introducing non-

determinism are recursive axes such as descendant, following and following-sibling,

disjunctions of filters and unions of paths, and also expressions with child axes such

as child::a[following::b] where the subexpression cannot be decided when clos-

ing the child. It should also be noticed that the compilation of forward axis requires

a more complex treatment of stack symbols during the eNwa construction, which

leads to a more tedious correctness statement for our compiler.

We have implementated our algorithms to answer navigational XPath queries

in the QuiXPath system. It improves on all other tools in coverage with 37%

of the XPathMark benchmark (the previous best is Spex with 22%), and also

outperforms all of them in time efficiency with the exception of Gcx, which runs

slightly quicker on few queries, and slightly slower on others. Our approximation

of earliest query answering turns out to be tight in practice, in that all supported

queries of the XPathMark are treated in an earliest manner. Our algorithms

are not earliest on particular XPath queries with valid or unsatisfiable filters, of

which there are two in the XPathMark. Although they are not supported by the

algorithms presented in this chapter (since they use recursive axes below a negation),

they are supported by our algorithm in Chapter 10, which answer them in a non-

earliest manner. It is shown in follow-up work [Lick 2013] that our approximation

is also tight in theory, in that it is exact for all positive XPath queries without

valid or unsatisfiable subfilters. Note that there is still a gap between the tightness

results in practice presented here, and those in the theory of the follow-up paper,

in that some of the supported queries of the XPathMark use negation.

8.2 Automata Queries

We introduce how nested word automata are used to define node selection queries

on Xml data trees. We also introduce what it means to answer node selection

queries on data trees in streaming mode in an earliest manner.
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8.2.1 Tuple Selection

We consider tuple selection queries on marked trees, which select n-tuples of nodes

of the marked tree.

Definition 9. A tuple selection (forward) query over alphabets Σ and ∆ is a func-

tion Pn that maps all marked trees (t, π) over Σ and ∆ to some subset Pn(t, π) of

n-tuples of nodes (π1, . . . , πn) of t opened later or equal to π, i.e.,

Pn(t, π) ⊆ {(π1, . . . , πn) | for all 1 ≤ i ≤ n.fut t(π, πi)}.

These kinds of tuple selection queries cannot select nodes opened before π. We

impose this restriction since we are interested in XPath queries with forward axes

only in this chapter. From a streaming perspective, this means that queries of the

above type concern only the tree suffix suff (t, π) defined by a marked tree (t, π).

An example for a binary query is to select all pairs of nodes of a-descendant with

their b-children.

Even though tuple selection queries are needed for answering general XPath

queries over Xml streams, see Chapter 10, we consider mostly monadic queries for

the ease of presentation.

8.2.2 Monadic Queries

Monadic queries P are tuple selection queries that select tuples of size 1:

P (t, π) ⊆ {π′ | fut t(π, π′)}

The XPath query following-sibling::b, for instance, will select the nodes 2

and 3 of the marked tree (a(b, b, b), 1), since the b-node 1 of a(b, b, b) has the next

sibling 2 with label b, which in turn has the next sibling 3 again labeled by b. This

is an example of a query that does not make much sense when started at the root

of a tree, since the root never has any following sibling. For this reason, we apply

queries to marked trees and let the query start at the marked node.

8.2.3 Queries by Automata

We will use Nwas to define monadic queries (as usual for showing that tree automata

capture monadic second-order (Mso) queries). The idea is that an Nwa should only

test whether a candidate node is selected by the query on a given tree suffix, but

not generate the candidate by itself. We fix a single variable x for annotation and

set the label alphabet of such Nwas to {a, ax | a ∈ Σ}. Letters ax are called

annotated (or “starred” in the terminology of [Madhusudan 2009]) while letters a

are not. Then, a unique candidate node is assumed to be annotated on the input

tree suffix by some external process. A monadic query P on marked trees can be

defined by any Nwa that recognizes the set of variants of suff (t, π), in which the

label of a single selected node in P (t, π) is annotated by x.
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(el ,library)

(el ,book)

(el ,author) (el ,author)x (el ,title)

...

“M.Kay” “TimBL” “XML”

Figure 8.1: An example of a data tree for a library, in which the first book-element

is marked. The second auth-child of the marked node is annotated by variable x.

(el , )

(el ,book)

(el ,author) (el ,author)x (el ,title)

...

“M ” “ L” “XML”

Figure 8.2: A data tree with finite signature, obtained from the data tree in

Figure 8.1 via some relabling function that anonymizes letters not occurring in

book[starts-with(title,’XML’)]/auth.

Example. An example for a marked data tree of a library with an annotated

label is given in Figure 8.1. There only auth-elements and title-elements carry

a data value. The first book-element is chosen as the marked node. The second

auth-child of the marked book-element node is annotated by the variable x. The

XPath query

book[starts-with(title,’XML’)]/auth

selects the annotated node when applied to the marked library (without the anno-

tation), since the marked node is a book-element, whose title starts with “XML”

and since the annotated node is an auth-child of the marked node.

Whether the above XPath query applied to a marked tree can select a given

node, can be verified as follows. First we annotate the given node with x as in Figure

8.1, second we anonymize all symbols not occurring in the query by substitution

with , as in Figure 8.2, so that the signatures become finite, and third we run the

deterministic Nwa in Figure 8.3 on the marked, annotated, and anonymized tree

in Figure 8.2.

A successful run on the annotated marked tree from Figure 8.2 is depicted in

Figure 8.4. This S-run starts at the marked book node, with the start stack S = γ

containing a single element, since the marked node has a single ancestor.
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Figure 8.3: An Nwa for XPath query book[starts-with(title,’XML’)]/auth

selecting all authors of all books of a library whose title starts with “XML”. It can be

run on any marked library while starting at its marked node, under the assumption

that there is an arbitrary but unique node annotated by x. This is a candidate node

for which selection is to be verified by the Nwa. The finite signatures, obtained by

anonymization of all letters that do not belong to the query to , are Σ = {a, ax |

a ∈ Σ′} where Σ′ = {(el ,book), (el ,title), (el ,author), (el , )} and ∆ = {L,M,X, }.

As shortcuts, we use the sets of transitions ∗α = {〈a〉 : α, 〈/a〉 : α | a ∈ Σ′} ∪ ∆

and ∗β defined analogously to ∗α, and the set of tags Non Title = Σ′ \ {(el ,title)}.

(el , )
γ

(el ,book)
α

(el ,author)

β

(el ,author)x
β

(el ,title)
α

...

“M ” “ L” “XML”

q0

q1

q2

q2 q2 q2 q2 q2 q3 q3 q3 q3 q3 q7 q8 q9

q1 q3 q4 q6 q9

q9 q9 q9

q9

Figure 8.4: A successful run of the Nwa of Figure 8.3 on the annotated library from

Figure 8.2, in which the first book element is chosen as the marked node. Here, the

stack S = γ provides a stack symbol for the unique ancestor of the marked node.
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8.2.4 Earliest Query Answering

Let P be a query, (t, π) a marked tree, π′ a node such that fut t(π, π′) is true, and e an

event of suff (t, π′). We call π′ safe for selection at e if π′ ∈ P (t′, π) for every t′ being

a continuation of t beyond e, i.e., such that the prefixes of the linearizations of t and

t′ until event e are equal. We call π′ safe for rejection at e if π 6∈ P (t′, π) for every t′

such that t′ is a possible continuation of t beyond e. We call π alive at e if it is neither

safe for selection nor rejection at e. An earliest query answering (eqa) algorithm

outputs selected nodes at the earliest event when they become safe for selection, and

discards rejected nodes at the earliest event when they become safe for rejection.

Indeed, an eqa algorithm buffers only alive nodes. The problem to decide the

aliveness of a node is exptime-hard for queries defined by Nwas [Gauwin 2009b].

For dNwas it can be reduced to the reachability problem of pushdown machines

which is in cubic time [Gauwin 2011a]. This, however, is too much in practice with

Nwas of more than 50 states, 50 stack symbols, and 4 ∗ 502 = 10.000 transition

rules, so that the time costs are in the order of magnitude of 10.0003 = 1012.

8.3 Early Nested Word Automata

We will introduce early Nwas for approximating earliest query answering for Nwas

with high time efficiency. The idea is to avoid reachability problems of pushdown

machines, by enriching Nwas with selection and rejection states1, so that aliveness

can be approximated by inspecting states, independently of the stack. As we will

see in Section 8.5, we can indeed distinguish appropriate selection and rejection

states when compiling XPath queries to eNwas descriptors.

A subset Q′ of states of an Nwa A is called an attractor if any run of A that

reaches a state of Q′ can always be continued and must always stay in a state

of Q′. Whether runs reaching Q′ can always be continued is not that easy to

decide syntactically, since it requires to decide accessibility questions for pushdown

automata. In practice, however, we will only consider attractors that consists of a

single state, which can loop in itself with all possible transitions.

Definition 10. An early nested word automaton (eNwa) is a triple E = (A,QS ,

QR) where A is an Nwa, QS is an attractor of A of final states called selection

states, and QR an attractor of non-final states called rejection states.

In the example Nwa in Figure 8.3, we can define QS = {q9} and QR = ∅. We

could add a sink state to the automaton and to the set of rejection states. Also all

selection states can be merged into a single state, and all rejection states can be

deleted or merged into a single sink, if one wants to preserve pseudo-completeness

(no run can ever block), as needed for efficient complementation in the deterministic

case.

1The semantics of our selection states is identical with the semantics of final states in the

acceptance condition for Nwas in [Alur 2009], but should not be confused in general.
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An eNwa defines the same language or query as the underlying Nwa. Let us

consider an eNwa E defining a monadic query and a data tree with some annotated

node π. Clearly, whenever some run of E on this annotated tree reaches a selection

state then π is safe for selection. By definition of attractors, this run can always

be continued until the end of the stream while staying in selection states and thus

in final states. In analogy, whenever all runs of E reach a rejection state, then π

is safe for rejection, since none of the many possible runs can ever escape from the

rejection states by definition of attractors, so none of them can be successful. For

finding the first event, where all runs of E either reach a rejection state or block, it

is advantageous to assume that the underlying Nwa is deterministic. In this case,

if some run reaches a rejection state or blocks, we can conclude that all of them do,

as there is at most one run.

We call an eNwa deterministic if the underlying Nwa is. We next argue that

the determinization procedure for Nwas, see Section 2.4.4, can be lifted to eNwas.

Let E = (A,QS , QR) be an eNwa and A′ the determinization of Nwa A. The

states of A′ are sets of pairs of states of A′, and not just sets of states of A,

in contrast to more traditional classes of automata. We define the deterministic

eNwa E′ = (A′, QS
′, QR

′) such that QS
′ contains all sets of pairs of states of A,

such that the second component of some pair belongs to QS , while QR
′ contains all

sets of pairs of states of A, for which all pairs have their second component in QR.

Lemma 7. Let E = (A,QS , QR) be an eNwa and E′ = (A′, QS
′, QR

′) be the

deterministic eNwa obtained from the above determinization procedure. For any

event e of the stream of a tree t, there exists a run of E going into QS at event e if

and only if there is a run of E′ going into QS
′ at e. Likewise all runs of E go into

QR at event e iff all runs of E′ go into QR
′ at e.

This means that eNwa determinization preserves early selection and rejection.

Intuitively, the reason is as follows. If we ignore the first components of the state

pairs, then the run of automaton E′ on t always reaches the set of states reached

by E on t. Hence, whenever some run of E on t goes into a selection state q, the

unique run of E′ goes into a set of states that contains q and is thus selecting for

E′. And whenever all runs of E on t reach a rejection state (or block), then the

unique run of E′ on t reaches the set of all these rejection states, which is rejecting

for E′.

8.4 Fxp

By Fxp we denote the forward navigational fragment of λXP extended with label

formulas, and comparisons to static string data values, whose abstract syntax is

given in Figure 8.5. It is parameterized by some alphabet Σ, an alphabet ∆ for

strings, a set of variables V , and a set of label properties L, where a label property

L ∈ L verifies whether a property holds about some label in Σ, i.e. L : Σ → B.

Formulas are constructed from the single atomic formula true, the usual boolean
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Formulas F ::= F ∧ F | F ∨ F | ¬F | true | A(F ) | B(F ) | Ow

Forward Axes A ::= ch | ch+ | ns+ | fo

Label formulas B ::= isx | L | B&B

Comparisons O ::= equals | contains | starts-with | ends-with

Figure 8.5: Abstract syntax of Fxp where x ∈ V is a variable, L ∈ L a label

predicate on Σ, and w ∈ ∆∗ a string data value.

operators, forward axes A, label formulas B(F ), where B imposes a set of label

properties L ∈ L and a set of variables annotations x ∈ V , and string comparisons

equalsw, containsw, starts-withw, and ends-withw where w ∈ ∆∗.

For some data tree t the label properties L ∈ L are used as unary relation

symbols and interpreted as the set Lt of nodes of t whose label satisfies L. The

unary relations containstw, equalstw, starts-withtw and ends-withtw for words w ∈ ∆∗

are satisfied by all nodes π of t whose data values satisfy the respective relation to

w.

Navigational XPath queries are compiled to Fxp formulas as described in Sec-

tion 7.3.1. The XPath query book[starts-with(title,’XML’)]/auth, for exam-

ple, will be compiled to the following Fxp formula with one free variable x:

el&book(ch(el&title(starts-withXML))) ∧ ch(el&author&isx(true))))))

In this example, we rely on the following label properties: the label property el

stands for all node labels (el , a) with a ∈ Σ, the label book for all (T, book) where

T is one of the Xml types, and similarly title and author test whether a node

label has the respective Xml tag. In addition, we use relations symbols ch and

starts-withXML for talking about the corresponding relations of data trees.

We define the conjunction width w(F ) as the number of conjunction operators ∧

in F . The conjunction width of an Fxp formula will be relevant for the complexity

analysis of the automata construction in Section 8.5. Note that conjunctions in label

formulas B&B′ are not counted. Furthermore, B(F ) can be rewritten equivalently

with a conjunction B ∧ F , but this would increase the conjunction width.

We recall the formal semantics of Fxp in Figure 8.6 for a single data tree t,

while not considering program errors. A formula F is evaluated to a Boolean with

respect to a given marked data tree (t, π) and a variable assignment µ that maps

all variables of F to nodes of t opened later than π. The value of a formula F is the

Boolean JF Kt,π,µ defined in Figure 8.6. As usual we will write F |= F ′ if all models

of F are also models of F ′, i.e. if JF Kt,π,µ is true then also JF ′Kt,π,µ.

Any formula F with one free variable x defines a monadic query P on marked

trees such that P (t, π) = {µ(x) | JF Kt,π,µ = true}. For compiling XPath ex-

pressions to the fragment sketched above, we need only such Fxp formulas. For

the general case, as treated in the remainder of this chapter, formulas with n free
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JF1 ∧ F2Kt,π,µ ⇔ JF1Kt,π,µ ∧ JF2Kt,π,µ
JF1 ∨ F2Kt,π,µ ⇔ JF1Kt,π,µ ∨ JF2Kt,π,µ
J¬F Kt,π,µ ⇔ ¬ JF Kt,π,µ
JtrueKt,π,µ ⇔ true

JA(F )Kt,π,µ ⇔ ∃π′. At(π, π′) ∧ JF Kt,π′,µ

JB(F )Kt,π,µ ⇔ JBKt,π′,µ ∧ JF Kt,π′,µ

JisxKt,π,µ ⇔ π = µ(x)

JLKt,π,µ ⇔ π ∈ Lt

JB1&B2Kt,π,µ ⇔ JB1Kt,π′,µ ∧ JB2Kt,π′,µ

JOwKt,π,µ ⇔ π ∈ Ot
w

Figure 8.6: Semantics of Fxp formulas F for an Xml data tree t with node π and

variable assignment µ to nodes of t.

variables will be essential. Since the general case does not raise any additional

difficulties, we will not impose any restriction on the number of variables.

8.5 Compiler from FXP to Early Nested Word Au-

tomata

We have already seen in the previous examples of Nwas for XPath expressions2

that the number of similar transitions for different labels may become huge. Fur-

thermore, the alphabet of Nwas are exponential in the number of variables, which

may become huge in the n-ary case. Therefore, we will compile Fxp formulas into

compact descriptors of eNwas, in which labels are replaced by label descriptors.

8.5.1 ENWA Descriptors

Let V0 ⊆ V be a finite set of variables and L0 ⊆ L a finite set of label predicates

over Σ, for instance those used by some fixed Fxp formula.

A descriptor Dlab for a letter in Σ is an expression E1& . . .&En where all Ei

belong to {L,¬L | L ∈ L0} and n ≥ 0. We write Dlab = true if n = 0. We define

the denotation JDlabK ⊆ Σ as follows:

JLK = L and J¬LK = Σ \ L and JE1& . . .&EnK = JE1K ∩ . . . ∩ JEnK.

A descriptor Dvar for a subset of V0 is a pair (V, V ′) of subsets of V0. Its denotation

is defined as follows:

J(V1, V2)K = {V | V1 ⊆ V ⊆ (V \ V2)}

We define the conjunction of two such descriptors (V1, V
′
1)&(V2, V

′
2) as (V1∪V2, V

′
1 ∪

V ′
2). Clearly, J(V1, V

′
1)&(V2, V

′
2)K is equal to J(V1, V

′
1)K ∩ J(V2, V

′
2)K.

A descriptor Dtup for a triple in Σ× 2V0 × 2V0 is a triple (D1, D2, D3) consisting

of a descriptor D1 for a letter in Σ, and descriptors D2 and D3 for subsets of V0.

The denotation is J(D1, D2, D3)K = JD1K × JD2K × JD3K.

2See Figure 8.3 and also the expressions Pn in the introduction.
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Figure 8.7: A descriptor of an eNwa for XPath filter

[child::a1/child::a2/.../child::an] with selection state sel and rejection

state rej (without transitions for texts and other Xml types for simplicity).

A descriptor of an eNwa is an eNwa itself, whose alphabets of opening and

closing tags contain descriptors. An eNwa descriptor thus uses opening and closing

tags 〈D〉 and 〈/D〉 where D is a descriptor of a label in Σ × 2V0 × 2V0 rather than

the label itself. The intuition for why we consider labels in Σ × 2V0 × 2V0 is that

we construct automata, who need to check a label in Σ, an annotation in 2V0 , and

who needs to check the possibility for annotations in 2V0 of future nodes of the data

tree. This will become clearer in the following. The eNwa described is obtained

from an eNwa descriptor by instantiating all occurrences of letters D in transition

rules by all possible values of JDK. We also need similar descriptors for letters in ∆

but omit the details here. Note that it is possible that a rule is described twice by

an eNwa descriptor, while the described automaton is still deterministic.

In Figure 8.7, we illustrate the eNwa descriptor for XPath filter [child::a1
/. . ./child::an], i.e., the Fxp expression ch(el(a1(ch(...ch(el(an)))))). Here we

need conjunctive descriptors such as ai&el for expressing simultaneous type and

tag restrictions for the same node, and negative descriptors such as ¬el and ¬ai
for handling else cases. Thanks to the latter, the size of this eNwa descriptor is in

O(n), even though the size of the described eNwa is in O(n2), since for each of the

n states qi there are n outgoing edges, one for each ai.

8.5.2 When Variables Must be Bound

Consider the Fxp formula ch(x(true)). The linearization of an annotated tree must

be immediately rejected if x got assigned to the start node, since then x cannot be

assigned to any child of the start node anymore. What is relevant here is which

variables must be bound in order to make a subformula true.

Definition 11. Let F be an Fxp formula and x a variable. We say F must bind

x if F |= fut(x) and that F cannot bind x if F |= ¬fut(x).

In order to approximate F |= fut(x) syntactically, as needed for our automata

construction to define rejection states, we define the predicate F ⊢ fut(x) as the

least binary relation such that:
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1. F1 ∧ F2 ⊢ fut(x) if F1 ⊢ fut(x) or F2 ⊢ fut(x)

2. F1 ∨ F2 ⊢ fut(x) if F1 ⊢ fut(x) and F2 ⊢ fut(x)

3. A(F ) ⊢ fut(x) if F ⊢ fut(x)

4. L(F ) ⊢ fut(x) if F ⊢ fut(x)

5. x(F ) ⊢ fut(x) is true

Given a formula F one can compute in linear time the set {x ∈ V | F ⊢ fut(x)}.

The following soundness lemma for syntactic binding is obvious.

Lemma 8. For any Fxp formula F and variable x: F ⊢ fut(x) ⇒ F |= fut(x).

The converse, i.e. completeness, does not hold in general but still in many

interesting cases (see [Lick 2013]). The above soundness result will be sufficient to

justify the correctness of our automata construction. In cases where completeness

fails our eNwa may fail to be earliest.

8.5.3 Construction of ENWA Descriptors

Let V0 ⊆ V be a finite subset of variables. For any tree t and mapping α : V0 →

nodes(t) we define the annotated tree t ∗ α, by replacing in t for any node π the

label l of π by (l, α−1(π)), i.e., by annotating the label of any node by the set of

variables that are mapped to it.

Let F be an Fxp formula with variables in V0 and n ≥ 0. We define the language

of tree suffixes of F with marks at tree depth n as follows:

Ln(F ) := {suff (t ∗ µ, π) | JF Kt,π,µ is true, π is a node of t at depth n

µ(V0) ⊆ fut t(π), dom(µ) = V0}

This language contains all tree suffixes of annotated trees t∗µ, such that F evaluates

to true for a node π of t at depth n, and variable assignment µ. For any finite set

E of “external” stack symbols, that will be fixed by the context in which F will be

used, we construct an eNwa EF (E), such that for all stacks S ∈ En:

LS(EF (E)) = Ln(F )

Note that this equality will hold for all stacks S of height n, so that it is independent

of the precise content of the stack.

We call a tree suffix s with opening and closing parentheses <l> and </l> where

l ∈ Σ × 2V0 canonical, if each variable of V0 is annotated to exactly one node of s.

Whether a tree suffix is canonical can be decided by a streaming algorithm, that

runs the following deterministic finite word automaton C on the linearization of s.

The state set of C is 2V0 , the initial state is V0, and its final state is ∅. The rules

are V
〈(a,V ′)〉
−−−−−→ V \ V ′ if V ′ ⊆ V , V

〈/(a,V ′)〉
−−−−−→ V , and V

w
−→ V for a ∈ Σ, w ∈ ∆∗,
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and V, V ′ ∈ 2V0 . Note that C gets stuck at the earliest event, when the variable

annotation gets in conflict with canonicity.

Given a tree suffix of a marked tree s = suff (t ∗ α, π), let Can(t ∗ α, π) be

obtained from s by annotating all events by the subset of variables in V0 that were

not bound in the past or at the current event by α, so that they can still be bound

in the future. More formally Can(t∗α, π) is the suffix at node π of the tree obtained

from t∗α by replacing for any node π′ the label (l, V ) ∈ Σ×2V0 by (l, V, V ′), where

V ′ = {v ∈ V0 | α(v) ∈ fut t(π′) \ {π′}}. Note that corresponding opening and

closing events of Can(t ∗ α, π) have the form 〈(a, V, V1)〉 and 〈/(a, V, V2)〉 where V1

may be a proper subset of V2, so the label of corresponding events need not be

the same. Such nested words are still linearizations of trees but with the functions

op(a, V, V1, V2)=<(a,V,V1)> and cl(a, V, V1, V2)=</(a,V,V2)>.

First we obtain Can(s) by running the dfa C on the input tree suffix s, whose

current state will always be the subset of variables in V0 that were not yet bound.

Second, on the stream Can(s), the automaton E = EF (E) will run the eNwa

described by D = DF (E) constructed below. Whenever the run of C blocks, the

eNwa described by D will go into a rejection state.

8.5.4 Construction of the eNwa descriptor DF (E)

In order to compile an Fxp formula to the eNwa descriptor DF (E), we follow the

same fundamental approach as for compiling tree logics such as Mso into tree au-

tomata, as used before in the context of XPath [Gauwin 2009b, Madhusudan 2009].

The most novel part here is the distinction of appropriate selection and rejection

states, and the usage of label descriptors. It should also be noticed that our compiler

will heavily rely on non-determinism in order to compile formulas with recursive

axes such as ch+(F ), ns+(F ), or fo(F ), and disjunctions F1 ∨F2. However, we will

try to preserve determinism of the described eNwa as much as possible, so that we

can compile many formulas ¬F without having to determinize the described eNwa

for F . The compiler will rely on the so-called head h(D), that contains the subset of

all opening rules of D that start from an initial state, and the subset of closing rules

of D that end in a selection or rejection state with a stack symbol pushed by such an

opening rule. Without disjunctions and conjunctions, the heads will always remain

of constant size. This is the reason why formulas such as ch(a(ch(. . . ch(a) . . .))

can be compiled to eNwa descriptors of linear size in linear time. When adding

disjunction but no conjunction, the heads are still of amortized constant size, as we

will show later on. This is the reason why we will need an amortized size and time

analysis.

The construction of DF (E) is by induction on the structure of F as follows.

Case F = F1 ∧ F2. Let DFi(E) = (Ai, QSi, QRi) be the eNwa descriptors for Fi

where Ai has state set Qi and i ∈ {1, 2}. We define the eNwa descriptor D =

(A,QS , QR) such that A is the product of A1 and A2. We choose QS = QS1×QS2,

since a node is safe for selection for F1∧F2 iff it is safe for selection for both F1 and

F2. For rejection states we take QR = (QR1 × Q2) ∪ (Q1 × QR2), which may lead
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to a proper approximation of earliest query answering. Furthermore, note that a

large number of conjunctions may lead to an exponential blow-up of the number of

states.

Case F = F1 ∨ F2. Let DFi(E) = (Ai, QSi, QRi) be the eNwa descriptor for the

subexpressions where Ai has state set Qi and i ∈ {1, 2}. We define D = (A,QS , QR)

such that A is the union of A1 and A2, which introduces nondeterminism in contrast

to products. Furthermore, we define QS = QS1 ∪QS2 and QR = QR1 ∪QR2.

Case F = ¬F1. If D1 = DF1(E) describes a deterministic eNwa, then we obtain D

by flipping selection and rejection states of D1. This is correct, since we maintain

pseudo-completeness (i.e. no run can ever block [Gauwin 2009a], instead it goes into

a rejection state) of the described eNwa as an invariant. There is no approximation

here, since a node is safe for selection for ¬F1 iff it is safe for rejection for F1, and

conversely. Otherwise, we first compute the eNwa described by D and determinize

it in a first step, which is also free of approximation by Lemma 7, and second apply

the previous construction.

Case F = ch(F1) where F1 contains neither recursive axes nor disjunctions.

Since F1 neither contains recursive axes nor disjunctions, D1 = DF1(E) describes a

deterministic eNwa. Furthermore, selection and rejection can be decided no later

than when closing the start node. In this case, we can construct D such that it runs

D1 on all children of the start node, deterministically one by one, until a selection

state is reached or the start node was closed. This can be done by adding 2 states

and stack symbols to D1 only, based on a recomputation trick for the stack symbol

pushed at the start node by D1 [Gauwin 2009a].

The eNwa described by D = D(E) first reads the opening event of the start

node, say 〈(a, V ′, V ′′)〉 and goes into a rejection state if there exists x ∈ V ′ such

that F1 ⊢ fut(x) or if V ′ ∩ V ′′ 6= ∅. In the latter case, C will block. Otherwise, D

behaves as D1 but stacks the Boolean 0 (stating that no previous child was tested

successfully) instead of what D1 would stack. The missing stack symbol will then

be recomputed when closing the root of the child. In order to construct D alike,

one needs to iterate over the head of D1, but does not have to touch the rest of D1.

This can be done in time |h(D1)|. The selection states of D are those of D1, while

D introduces a new rejection state. Whenever a run of D1 goes into a rejection

state of D1 (which is not a rejection state of D), then automaton D may stop any

further child tests if x occurs in a set of γ and F1 ⊢ fut(x), in which case D goes

into its rejection state. If D reaches the closing event of the start node (that is

when the Boolean 0 is popped), then D also goes into the rejection state (this is

correct again since F1 contains no following axes, so that rejection of ch(F1) can be

decided there). Therefore, no external stack symbol from E will ever be read by D

(they may appear only after selection or rejection).

Case F = A(F1) where A ∈ {ch+,ns+, fo} or F = ch(F1) where F1 contains

recursive axes or disjunctions. Let D1 = DF1(E∪Γnew ) be the eNwa descriptor

for F1, where Γnew is the set of stack symbols that D = DF (E) introduces. A

nondeterministic eNwa is described by D, which guesses an A-successor of the
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start node and runs D1 starting there. There is a main run of D, which for all

non-A successors of the start node goes into a skip state qskip , and which goes into

a state q that generates tests for F1 for potential following A-successors: For A = ch

the main run goes to state q such that the next potential opening event is a child

of the start node, and it stays in qskip for the subtrees of children of the start node.

For A = ch+ the main run goes and stays in state q for all descendants of the start

node (no skip state qskip needed). For A = ns+ the main run goes to state q for all

siblings to the right of start node, and it stays in qskip for the subtree of the start

node and any of the subtrees of its siblings to the right. For A = fo the main run

skips the subtree of the start node and after stays in q for the rest of the stream,

which is done via closing rules q
〈/(true)〉:β
−−−−−−−→ q for all β ∈ E . The main run of D

starts tests for F1 by adding a rule q
〈a〉:α
−−−→ p for each initial rule i

〈a〉:α
−−−→ p of D′

with i ∈ QI of D′. This main run will continue until:

- either x occurs in a set of γ and F1 ⊢ fut(x), in which case D goes into a

rejection state, or

- the closing event of the start node of P arrives (for A = ch and A = ch+),

- the closing event of the parent of the start node of P arrives (for A = ns+),

- the end of the stream arrives (for A = fo), indicated by a unique top most

stack symbol.

Automaton descriptor D inherits its selection and rejection states from D1. Note

that here it matters again that a candidate can be rejected only if all runs of D on

this candidate go into a rejection state.

Case F = B(F1). Without loss of generality, let B = L1& . . .&Lm&x1& . . .&xn
where n + m ≥ 1 such that Li ∈ L and xi ∈ V0. Let DF1(E) be the eNwa

descriptor for F1. We build D from D1, by restricting all label descriptors of

initial rules of D1 by B: Descriptors (E1& . . . Ek, (V1, V2), (V
′
1 , V

′
2)) are replaced by

(E1& . . .&Ek&L1& . . .&Lm, (V1∪{x1, . . . , xn}, V2), (V
′
1 , V

′
2)). Furthermore, in order

to obtain pseudo-completeness, we add one new rule to D for each conjunct of B

and each initial state of D1 going into a rejection state of D1: For 1 ≤ i ≤ m the new

initial rule has label descriptor (¬Li&Li+1& . . .&Lm, (∅, ∅), (∅, ∅)), which describe

the complement of L1& . . .&Lm deterministically. The initial rule for 1 ≤ i ≤ n

has label descriptor (true, (∅, {xi}), (∅, ∅)) describing all variable subsets that do

not contain xi. D inherits selection and rejection states from D1.

Case F = Ow. The eNwa descriptor D for Ow has to compute the concatenation

of all strings of text nodes contained in the subtree of the start node, and has to

compare it to w with respect to O. This is done by creation of a deterministic finite

state automaton B that accepts all strings w′ such that (w′, w) is in the relation

induced by O. The idea is that D runs automaton B on all strings of text nodes in

the subtree of the start node. D maintains a copy of states of B, called copy states.

D’s main run r remains in copy states of B whenever not reading strings of text
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nodes of the subtree of the start node, while r switches to corresponding states of

B at text nodes. The main run starts in the initial copy state of B and stays there

until the first text node arrives at which it changes to the initial state of B. The

string of the text node is consumed by B, while reaching some state q which is not

necessarily a final state of B. At the corresponding closing event of the text node,

the main run goes into the corresponding copy state qcopy for q and stays there until

the next text node arrives, where r continues as before. The main run continues

until the closing event of the start node, where Ow can be decided. Whenever B

blocks, the main run moves into a rejection state, and whenever a final state of B

is reached, it moves into a selection state.

Case F = true. The eNwa descriptor D for true has five plus 2|E| rules with label

descriptor (true, (∅, ∅), (∅, ∅)): one opening initial rule to a selection state, opening

and closing rules looping in the selection and the rejection state, and 2|E| closing

rules to close the stream in the selection and rejection state.

Definition 12. We call an Fxp formula determinization free if it does not contain

any disjunction or any axis from ch+, ns+, and fo below a negation.

For the complexity analysis of our compiler, we will need to assume that the

input Fxp formula is simple, in that all label subformulas are of one of the following

three forms: B(Ow), B(A(F )) or B(true). We can transform all Fxp formulas into

equivalent simple Fxp formulas by applying the rewrite rule B(F ) → B(true)∧F

everywhere. This procedure, however, would increase the conjunction width, on

which the efficiency of our compiler depends. Instead, we will assume that the

input formulas is simply labeled in the following sense.

Definition 13. We call an occurrence of an operator in a formula labeled if it has

some ancestor, which is a label formula B but without having any axis A in between.

We call a formula simply labeled if it does not contain any labeled disjunctions and

negations.

Lemma 9. Any simply labeled Fxp formula can be transformed into a simple Fxp

formula with the same conjunction width in linear time.

Proof. We apply the following two rewrite rules exhaustively in a bottom-up man-

ner. This can be done in linear time since no subformulas are copied, and it does

not affect the number of conjunctions.

B(F ∧ F ′) → B(F ) ∧ F ′

B(B′(F )) → B&B′(F )

Both rules preserve simple labeling, since whenever one of them applies, all unla-

beled disjunctions and negations of F and F ′ must be located below some axis.

Therefore, they will remain unlabeled. If none of these rules applies any more, the

resulting Fxp formula is simple: subformulas B(F ∧ F ′) and B(B′(F )) would be

rewritten, B(F ∨ F ′) and B(¬(F )) are excluded since not simply labeled, and all

other three possible forms B(true), B(A(F )) and B(Ow) are simple.



8.5. Compiler from FXP to Early Nested Word Automata 131

8.5.5 Correctness

Proposition 8 (Correctness). Let E be a set of “external” stack symbols, n ≥ 0,

S ∈ En, F an Fxp formula with variables in a finite set V ⊆ V0, and D = DF (E)

be the constructed eNwa. Then

LS(DF (E)) = Can(Ln(F ))

Proof. The proof is by induction on the structure of Fxp formulas.

Case F = F1 ∧ F2. Let D1 = DF1(E) and D2 = DF2(E) be the eNwa for F1

and F2 respectively. Let s ∈ Can(Ln(F )), then trivially, s ∈ Can(Ln(F1)) and

s ∈ Can(Ln(F2)). By induction, for any i ∈ {1, 2}, some run on s by Di goes into

a selection state. Selection states of D are pairs of a selection state of D1 and a

selection state of D2. Hence some run of D on s goes into a selection state as well,

such that s ∈ LS(D). Conversely let s ∈ LS(D), then there exist some run on s

by D which goes into a selection state. Therefore there exist some run on s by Di

going into a selection state of Di. By induction it follows that s ∈ Can(Ln(Fi)) for

i = {1, 2}, and thus s ∈ Can(Ln(F )).

Case F = F1 ∨ F2. Let D1 = DF1(E) and D2 = DF2(E) be the eNwa for F1

and F2 respectively. Let s ∈ Can(Ln(F )), then there exist i ∈ {1, 2} such that

s ∈ Can(Ln(Fi)). By induction, some run on s by Di goes into a selection state.

Since all selection states of Di are selection states of D it follows that some run of

D on s goes into a selection state, and s ∈ LS(D). Conversely let s ∈ LS(D), then

there exist some run on s by D which goes into a selection state. Hence there exist

i ∈ {1, 2} such that some run on s by Di goes into a selection state. By induction

it follows that s ∈ Can(Ln(Fi)), and hence s ∈ Can(Ln(F )).

Case F = ¬F1. Let D1 = DF1(E) be the eNwa for F1. Let s ∈ Can(Ln(F )), then

s 6∈ Can(Ln(F1)). By induction, all runs on s by D1 go into a rejection state. By

Lemma 7 the unique run of the determinization of D1 on s goes into a rejection

state. Since D flips selection with rejection states the unique run of D on s goes

into a selection state, and thus s ∈ LS(D). Conversely let s ∈ LS(D), then the

unique run on s by D goes into a selection state. Hence the unique run by D1 on

s goes into a rejection state. By induction it follows that s 6∈ Can(Ln(F1)), so that

s ∈ Can(Ln(F )).

Case F = ch(F1) where F1 contains neither recursive axes nor disjunctions.

Let D1 = DF1(E) be the eNwa for F1. Let s ∈ Can(Ln(F )), then there exist a

suffix s′ of s with s′ ∈ Can(Ln(F1)), while starting with the opening event of some

child of the start node of s. By induction, as D1 is deterministic the unique run

on s′ by D1 goes into a selection state. By construction the unique run of D goes

into the same selection state on s. Hence s ∈ LS(D). Conversely let s ∈ LS(D),

then the unique run on s by D goes into a selection state. As D runs D1 on all

children of the start node of s, and as D goes into a selection state whenever D1

does, it follows that the unique run of D1 goes into a selection state for some suffix

s′ of s, that starts with the opening event of some child of the start node of s. By

induction it follows that s′ ∈ Can(Ln(F1)), so that s ∈ Can(Ln(F )).
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Case F = A(F1) where A ∈ {ch+,ns+, fo} or F = ch(F1) where F1 contains

recursive axes or disjunctions. Let D1 = DF1(E ∪ Γnew ) be the eNwa for F1,

where Γnew are stack symbols that D introduces. Let s ∈ Can(Ln(F )), then there

exist a suffix s′ of s with s′ ∈ Can(Ln(F1)), while starting with the opening event

of some A-successor of the start node of s. By induction, some run of D1 on s′ goes

into a selection state. By construction some run of D goes into the same selection

state on s. Thus s ∈ LS(D). Conversely let s ∈ LS(D), then some run on s by

D goes into a selection state. As D runs D1 on all A-successor of the start node

of s, and as D goes into a selection state whenever D1 does, it follows that some

run of D1 goes into a selection state for some suffix s′ of s, that starts with the

opening event of some A-successor of the start node of s. By induction it follows

that s′ ∈ Can(Ln(F1)), and hence s ∈ Can(Ln(F )).

Case F = B(F1). Let D1 = DF1(E) be the eNwa for F1. Let s ∈ Can(Ln(F )), then

the label of the start node of s belongs to all label properties L in B, while the start

node is annotated according to all variable restrictions in B, and s ∈ Can(Ln(F1)).

By induction, some run r of D1 on s goes into a selection state. By construction as

D runs D1 for some start node, whose label belongs to all label properties L of B

and is annotated by all variable restrictions in B, the same run r of D goes into the

same selection state on s. Therefore s ∈ LS(D). Conversely let s ∈ LS(D), then

some run r on s by D goes into a selection state only if the label of the start node

satisfies all properties or restrictions in B. This selection state is a selection state of

D1, such that the same run r of D1 goes into a selection state on s. By induction it

follows that s ∈ Can(Ln(F1)), and therefore s ∈ Can(Ln(F )) according to fulfilled

label and annotation restrictions.

Case F = Ow. Let s ∈ Can(Ln(F, V )), then the start node of s belongs to Ow.

By construction D runs a finite state automaton B (which accepts all string w′,

such that (w,w′) is in the relation induced by O) over the concatenation of the text

nodes in the subtree of the start node of s. As the start node of s belongs to Ow,

D goes into a final state of B for some string of some text node, and thereby into

a selection state of D. Hence s ∈ LS(D). Conversely let s ∈ LS(D). Then there is

a run on s by D which goes into a selection state, such that the data value of the

start node of s must be in relation with w with respect to O. Hence the start node

of s belongs to Ow, such that s ∈ Can(Ln(F, V )).

Case F = true. s ∈ Can(Ln(F )), is true for any tree suffix s. By construction D

moves to a selection state for any start node of s. Hence any run of D on any suffix

s goes into a selection state, such that s ∈ LS(D).

8.5.6 Size of Automata Descriptors

Lemma 10 (Size of automaton descriptor). There exists a constant c′ such that

for any Fxp-formula F , that is determinization free and simply labeled, and for any

finite set E of external stack symbols: |DF (E)| ≤ (|F |(c′ + 2|E|))w(F )+1.
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Proof. By Lemma 9 we can make F simple in a preprocessing step in linear time

without changing the conjunction width w(F ). For the treatment of recursive axis

ch+, ns+, and fo, we need nondeterministic automata with multiple initial rules. If

we always had a single initial rule, then the proof of the lemma was straightforward.

With multiple initial rules, we need an amortized cost analysis. Therefore, we define

the amortized size of an eNwa descriptor D by AS (D) = |D|+ |init(D)| where |D|

is the size of D and init(D) the set of initial rules of D, i.e. rules that depart an

initial state. With the constant c′ = 7, we can show for all determinization free

Fxp formulas F that:

AS (DF (E)) ≤ (|F |(c′ + 2|E|))w(F )+1

The lemma will then follow from |DF (E)| ≤ AS (DF (E)). The proof is by induction

on the structure of F . Let D = DF (E). Let E ′ be the extension of E and F1 and

possibly F2 the subformulas of F , such that D was constructed from D1 = DF1(E ′)

and possibly D2 = DF2(E ′). We write ω, ω1, and ω2 for the respective conjunction

widths of w(F ), w(F1), and w(F2), and I, I1 and I2 for the number of initial rules

of D, D1, and respectively D2.

Case F = F1 ∧ F2. The eNwa descriptor D is the product D1 and D2 where

E = E ′. Hence |D| = |D1| |D2| and I = I1 I2, so that:

AS (D) ≤ AS (D1) AS (D2)

≤ (|F1|(c
′ + 2|E|))ω1+1 (|F2|(c

′ + 2|E|))ω2+1 (ind. hypo.)

≤ (|F |(c′ + 2|E|))ω1+1 · (|F |(c′ + 2|E|))ω2+1

= (|F |(c′ + 2|E|))ω1+ω2+2

= (|F |(c′ + 2|E|))ω+1

Case F = F1 ∨ F2. The eNwa descriptor D is the union of the eNwa descriptors

D1 and D2 where |E| = |E|′, so |D| = |D1| + |D2| and I = I1 + I2. It follows that

AS (D) = AS (D1) + AS (D2) and thus smaller than in the case of conjunction.

Case F = ¬F1. Since F is determinization free, D1 describes a deterministic

automaton, which furthermore can never get stuck, so that we only need to swap

rejection and selection states of D1 in order to obtain D. Hence, by induction

hypothesis: AS (D) = AS (D1) ≤ (|F1|(c
′ + 2|E|))ω1+1 ≤ (|F |(c′ + 2|E|))ω+1

Case F = ch(F1) where F1 contains neither recursive axes nor disjunctions.

Since F1 contains no nondeterministic constructs, the automaton described by D1

will be deterministic. The eNwa described by D will thus run the eNwa described

by D1 (where E = E ′) on all children of the marked node, until one of these runs

succeeds. The rules of the head of D1 are rewritten for recomputing the stack

symbols that D1 used at the roots of all children of the marked node, but the number

of rules is not increased thereby. In addition, c′ = 7 new rules were added for the

treatment of the marked node. Therefore, |D| = |D1|+c′. The size of the head of D

is smaller than that of D1. Hence, AS (D) ≤ c′+AS (D1) ≤ c′+(|F1|(c
′+2|E|))ω1+1 ≤

(|F |(c′ + 2|E|))ω+1.
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Case F = A(F1) where A ∈ {ch+,ns+, fo} or F = ch(F1) where F1 contains

recursive axes or disjunctions. Now E ′ is obtained by E by adding at most c′

new stack symbols. The eNwa descriptor D has a generator state, from which it

starts all initial rules I1 of D1, when being at an A-successor of the marked node.

For A = fo maximum |E| rules are added in order to find all following nodes in any

future. In addition, c′ = 7 new rules were added for the treatment of the main run

of D. Thus, |D| ≤ |D1| + I1 + c′ + |E|, so that:

AS (D) = |D1| + I1 + c′ + |E|

= AS (D1) + c′ + |E|

≤ (|F1|(c
′ + 2|E|))ω1+1 + c′ + |E| (ind. hypo.)

≤ ((|F1| + 1)(c′ + 2|E|))ω1+1

= (|F |(c′ + 2|E|))ω+1

Case F = B(F1). Since F is simply labeled, F1 has the form A(F2) or Ow or

true. Hence, descriptor D1 for F1 has only one initial state. The size |D| of the

eNwa descriptor D is the size of D1, plus |B| opening rules to the initial state

of D1, with which the complement of B is described (for pseudo-completeness).

Hence |D| = |D1|+ |B| and the number of initial rules I of D is I1 + |B|. Therefore

AS (D) = |D1|+|B|+I = AS (D1)−I1+|B|+I1+|B| ≤ (|F1|(c
′+2|E|))ω1+1+2|B| ≤

(|F |(c′ + 2|E|))ω+1, since 2 ≤ c′ and |F | = |F1| + |B|.

Case F = Ow. The size of D is the sum of at most 3 · |w| many rules for the

finite state automaton B (that accepts all strings w′ such that (w′, w) is in the

relation induced by O), 3 · |w| many rules for moving in and out of copy states

of B as described above, and at most c′ many rules for the treatment of Ds main

run. In addition D needs 2|E| rules to close the stream in selection and rejection

states. Hence the size of D is smaller or equal to 6|w| + c′ + 2|E|, while the head

of D is constant and can be bounded by c′. As |F | = |w| it follows that AS (D) ≤

(|F |(c′ + 2|E|))ω+1.

Case F = true. The size |D| of the eNwa descriptor D for true is 5 and contains

2|E| many rules to close the stream. D’s amortized size is thereby smaller than

(|F |(c′ + 2|E|))ω+1.

8.5.7 Time to Compute Automata Descriptors

Theorem 2 (Compilation time). There exist c, c′ > 0 such that for any deter-

minization free and simply labeled Fxp-formula F and any finite set E of exter-

nal stack symbols, the time to compute the eNwa descriptor DF (E) is at most

2c(|F |(c′ + 2|E|))w(F )+1.

Proof. We fix a set E and constants c1 = 2, c′ = 7 and c = c1 + c′ = 9. We again

need an amortized analysis. We define the amortized time of an eNwa descriptor

D = DF (E) constructed by our algorithm as follows, where T (D) is the construction



8.5. Compiler from FXP to Early Nested Word Automata 135

time:

AT (D) = T (D) + |h(D)| + |E|

The proof is by induction on the structure of Fxp formulas F , under the assumption

that they are determinization free and simply labeled. Let F1 and possibly F2 be

the arguments of the top-level operator of F , and Di = DFi(E
′) be the subautomata

from which D was constructed. We will also write H for |h(D)|, Hi for |h(Di)|, and

similarly T for T (D), Ti for T (Di).

Case F = F1 ∧ F2. The time to compute an eNwa descriptor D = DF (E) for the

product F is the sum of the times for computing the eNwa descriptors D1 = DF1(E)

and D2 = DF2(E), plus the time to compute eNwa descriptor D for F , which can

be done in time c1 · |D1| · |D2|. Hence

AT (D) = T1 + T2 + c1 |D1| |D2| + H + |E|

≤ AT (D1) + AT (D2) + c1 |D1| |D2| + H

≤ AT (D1) + AT (D2) + (c1 + 1) |D1| |D2|

≤ 2c (|F1|(c
′ + 2|E|))ω1+1 + 2c (|F2|(c

′ + 2|E|))ω2+1

+(c1 + 1) |D1| |D2|

≤ 2c ((|F1|(c
′ + 2|E|))ω1+1 + (|F2|(c

′ + 2|E|))ω2+1 (c1 + 1 ≤ c)

+|D1| |D2|)

≤ 2c ((|F1|(c
′ + 2|E|))ω1+1 + (|F2|(c

′ + 2|E|))ω2+1 (Lemma 10)

+(|F1|(c
′ + 2|E|))ω1+1) (|F2|(c

′ + 2|E|))ω2+1

≤ 2c ((|F1| + |F2|)(c
′ + 2|E|))ω1+ω2+2 (am + bn + ambn ≤ (a + b)m+n)

≤ 2c (|F |(c′ + 2|E|))ω+1

Case F = F1 ∨ F2. The time to compute an eNwa descriptor D is the sum of the

times to compute D1 and D2. The size of the head of D is the sum of the head of

D1 and the head of D2. Hence

AT (D) = T + H + |E| = T1 + T2 + H + |E| =

= AT (D1) −H1 − |E| + AT (D2) −H2 − |E| + H + |E|

≤ AT (D1) + AT (D2)

and thus smaller than in the case of conjunction.

Case F = ¬F1. Since F is determinization free, D1 describes a deterministic

automaton, which furthermore can never get stuck, so that we only need to swap

rejection and selection states of D1 in order to obtain D. Hence, by induction

hypothesis: AT (D) = AT (D1) ≤ 2c(|F1|(c
′ + 2|E|))ω1+1 ≤ 2c(|F |(c′ + 2|E|))ω+1

Case F = ch(F1) where F1 contains neither recursive axes nor disjunctions.

Since F1 contains no nondeterministic constructs, the automaton described by D1

will be deterministic. The time to compute D is the time to compute D1 (where

E = E ′), plus the time to rewrite the head of D1 for the recomputation of stack

symbols pushed at root of the children of the marked node. In addition D takes

time 2|E| to delete closing stream rules for the rejection state of D1 and to add

these to the new rejection state of D1, and time at most c′ to add at most c′ new
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rules for the treatment of the marked node. The head of D contains only 5 rules.

Hence

AT (D) = AT (D1) −H1 − |E| + H1 + 2|E| + c′ + H + |E|

= AT (D1) + 2|E| + c′ + 5

≤ 2c(|F1|(c
′ + 2|E|))ω1+1 + 2|E| + c′ + 5 (ind. hypo.)

≤ 2c((|F1| + 1)(c′ + 2|E|))ω1+1 5 ≤ c

= 2c(|F |(c′ + 2|E|))ω+1

Case F = A(F1) where A ∈ {ch+,ns+, fo} or F = ch(F1) where F1 contains

recursive axes or disjunctions. The time to compute D is the time to compute

D1 where E ′ is obtained from E by adding at most c′ new stack symbols. Further-

more D needs time to compute I1 many rules for starting the test for F1 from Ds

generator state, plus |E| closing rules to reach all following nodes of the stream for

the case that A = fo, plus at most c′ rules for the treatment of the main run. The

head H = H1− I1 + 2, as the head of D contains all closing rules of the head of D1,

but none of the initial rules belonging to the head of D1, such that D needs two

new initial rules. Therefore AT (D) = T (D) + h(D) + |E| =

AT (D) = T1 + I1 + |E| + c′ + h(D) + |E|

= AT (D1) −H1 − |E| + I1 + |E| + c′ + H1 − I1 + 2 + |E|

= AT (D1) + c′ + 2 + |E|

and thus smaller than in the case of F = ch(F1) where F1 contains no nondeter-

ministic constructs.

Case F = B(F1). Since we assumed that F is simply labeled, it follows that

F1 is either a comparison Ow, an axis A(F2), or true. In all cases, the eNwa

descriptor D1 for F1 has only one initial state, and its head H1 is of size at most c′.

Therefore the time T for computing D is the time to compute D1, plus the time to

intersect label properties and variable restriction in B with the label descriptors of

initial rules of D1 (of which there are at most H1 many), plus the time to add an

opening rule for the initial state of D1 to some rejection state of D1 to describe the

complement of B. The head of D contains all rules from the head of D1, plus |B|

rules for the initial state in order to maintain pseudo-completeness. Hence

AT (D) = T + H + |E| = T1 + c′ + |B| + H + |E|

= AT (D1) −H1 − |E| + c′ + |B| + H1 + |B| + |E|

= AT (D1) + c′ + 2|B|

≤ 2c(|F1|(c
′ + 2|E|))ω1+1 + c′ + 2|B| (ind. hypo.)

≤ 2c(|F |(c′ + 2|E|))ω1+1 |F | = |F1| + |B|

Case F = Ow. The time to compute D is the time to compute at most 3 · |w| many

rules for the finite state automaton B (that accepts all strings w′ such that (w′, w)

is in the relation induced by O), the time to compute 3 · |w| many rules for moving

in and out of copy states of B as described above, the time to compute at most c′
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many rules for the treatment of Ds main run, plus 2|E| rules to close the stream in

selection and rejection states. D’s head contains only four rules. With |F | = |w|

the amortized time to compute D is therefore at most 6|w| + c′ + 2|E| + 4 + |E| ≤

2c(|F |(c′ + 2|E|))ω+1.

Case F = true. The time to compute D is the time to compute the 5 + 2|E| many

rules. The head of D has size 3 (initial rule plus 2 closing rules in for the selection

and rejection state). D’s amortized time is therefore 5 + 2|E| + 3 + |E| = 8 + 3|E|,

which is smaller than 2c(|F |(c′ + 2|E|))ω+1.

8.6 Early Query Answering

We show how to use eNwa descriptors for evaluating monadic queries on Xml

streams. The main idea is to generate on the fly all possible answer candidates,

and to run the described eNwa on all of them in parallel in a streaming manner.

The nondeterminism and the automata descriptors are resolved by on-the-fly in-

stantiation and determinization. We then improve this streaming algorithm in an

important manner, so that the stacks and states of the runs of multiple answer

candidates in the same state may be shared.

8.6.1 On-the-fly Instantiation and Determinization

Let D be a descriptor of an eNwa E′ that defines a monadic query, i.e., with tag

alphabet {a, ax | a ∈ Σ} where x is a fixed variable. We are interested in running

the determinization E of E′. This can be done while generating the needed part of

E from D on the fly (and thus without ever constructing E′). At any time point,

we store the subset of the states and transitions of E that were used before. If

a missing transition rule is needed for some state {(q1, q
′
1), . . . , (qk, q

′
k)} of E and

some label l then for each 1 ≤ i ≤ k one computes transitions of D from state qi
that describe label l (if not already computed once). These transition rules are then

used to compute the result state of E by applying the determinization procedure.

It should be noticed that each transition of E can be computed in polynomial time

(but not in linear time). For example, to compute a missing closing transition

of the deterministic automaton by on-the-fly determinization, our algorithm needs

time O(|Q|4 · |Σ|), where Q are the states of E′, see Section 2.4.4. Recall also that

the states of E are sets of pairs of states of E′. For efficiency reasons, we will

substitute such sets by integers, so that the known transitions of E can be executed

as efficiently as if a deterministic eNwa E′ was given at beforehand. Therefore, we

can safely separate the aspects of on-the-fly instantiation and determinization from

what follows.
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8.6.2 Streaming Algorithm for Deterministic ENWAs

We present a streaming algorithm that answers monadic queries defined by a deter-

ministic eNwas E in an early manner. This algorithm can then be lifted to eNwa

descriptors by on-the-fly determinization and instantiation, as explained above. We

will also assume that the deterministic eNwa E is pseudo-complete, so that it has

a unique complete run on any document.

Buffering Possibly Alive Candidates Suppose that we are given a stream

containing a nested word of some data tree, and that we want to compute the

answers of the query defined by E on this data tree in an early manner. That is,

we have to find all nodes of the data tree that can be annotated by x, so that E

can run successfully on the annotated data tree. At any event e of the stream, our

algorithm maintains a finite set of candidates in a so-called buffer. A candidate is

a triple that contains a value for x, a state of E that is neither a selection nor a

rejection state, and a stack of E. The value of x can either be a node opened before

the current event e, or “unknown” which we denote by •. At the start event, there

exists only a single candidate in the buffer, which is (•, q0,⊥) where q0 is the unique

initial state of E and ⊥ the empty stack. At any later event, there will be at most

one candidate containing the •.

Lazy Candidate Generation New candidates are generated lazily under su-

pervision of the automaton. This can happen at all opening events for which there

exists a candidate with the unknown value • (which then is unique). Consider the

<a> event of some node π and let (•, q, S) be the candidate with the unknown value

in the buffer at this event. The algorithm then computes the unique pair (γ, q′)

such that q
〈ax〉:γ
−−−−→ q′ is a transition rule of E. If q′ is a selection state, then π is an

answer of the query, so we can output π directly. If q′ is a rejection state, then π is

safe for rejection (since E is deterministic), so we can ignore it. Otherwise, π may

still be alive, so we add the candidate (π, q′, Sγ) to the buffer.

Candidate Updates At every event, all candidates in the buffer must be up-

dated except for those that were newly created. First, the algorithm updates the

configuration of the candidate by applying the rule of E with the letter of the cur-

rent event to the configuration of the candidate. If a selection state is reached, the

node of the candidate is output and discarded from the buffer. If a rejection state is

reached, the candidate is also discarded from the buffer. Otherwise, the node may

still be alive, so the candidate is kept in the buffer.

Example We illustrate the basic algorithm in Figure 8.8 on the eNwa from Fig-

ure 8.3 and the suffix of the document from Figure 8.2 with the book as start node.

Initially the buffer contains a single candidate with the unknown node •, that starts

in the initial state of the eNwa. According to opening tag 〈library〉 we launch the

open transition and apply state and stack changes. At the opening event of node
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(a) buffer (b) data tree

〈book〉

〈auth〉

〈title〉

“XML”

x state stack out

• q0 γ

x state stack out

• q1 γα

x state stack out

• q2 γαβ

3 q3 γαβ
...

...
x state stack out

• q2 γαβ

3 q6 γαα

4 q6 γαα

x state stack out

• q2 γαβ

3 q9 γαα 3

4 q9 γαα 4

1(el , )

2(el ,book) ...

3(el ,author) 4(el ,author) 5(el ,title)

“M ” “ L” “XML”

Figure 8.8: Evolution of the buffer (a) for the eNwa from Fig. 8.3 when answering

the XPath query book[starts-with(title,’XML’)]/auth on the suffix of the

data tree (b) with start node book.

3, i.e., when reading the open tag 〈author〉 in state q1, a new candidate is created.

This is possible, since there exists the transition rule q1
〈authorx〉:β
−−−−−−−→ q3 in the eNwa

and since q3 is neither a rejection nor a selection state. Similarly a new candidate

will be created for node 4 at its opening event. Only after having consumed the

text value of the title node 5, a selection state is reached for the candidates with

node 3 and 4, such that they can be output and removed from the buffer.

8.6.3 Adding Stack-and-State Sharing

For most queries of the XPathMark benchmark, the buffer will contain only 2

candidates at every event, of which one is the candidate with the unknown value

•. It may happen though that the number of candidates grows linearly with the

size of the document. An example is the XPath query /child::a[following::b]

on a document whose root has a large list of only a-children. There the processing

time will grow quadratically in the size of the document. All candidates (of which

there are O(n) for documents of size n) must be touched for all following events on

the stream (also O(n)). A quadratic processing time is unfeasible even for small

documents of some megabytes, so this is a serious limitation.

We next propose a data structure for state and stack sharing, that allows to

solve this issue. The idea is to share the work for all candidates in the same state,

by letting their stacks evolve in common. Thereby the processing time per event

for running the eNwa on all candidates will become linear in the number of states

and stack symbols of the eNwa, instead of linear in the number of candidates

in the buffer. In addition to this time per event, the algorithm must touch each

candidate at most three times, once for creation, output, and deletion. We will use

a directed acyclic graph (Dag) with nodes labeled in Γ for sharing multiple stacks.

For instance a Dag for stacks γ1γ2γ3γ4 and γ1γ
′
2γ3γ

′
4 share nodes for stack symbols

γ1 and γ3, as depicted in Figure 8.9.

In addition, we use a table B : Q × Γ → Aggreg relating a state and a root of
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γ4 γ′4
γ3

γ2 γ′2
γ1

Figure 8.9: Dag representing stacks.

the Dag through an aggregation of candidates. Table B aims at storing enough

information when sharing at opening events, so that one can undo the sharing

properly at closing events. Formally, Aggreg is the least set such that (1) it contains

all sets of candidates, and (2) all subsets of {(a, γ) | a ∈ Aggreg , γ ∈ Γ}. For

instance, the Dag and its associated B table at the <title>-event in Figure 8.8

is illustrated in Figure 8.10. Here we have B(q6, α) = {3, 4} and B(q2, β) = {•}.

In this case, the aggregations are just sets of candidate nodes. In general, an

aggregation contains information on how to unshare candidates related to a root

in the Dag which represents more than one stack. This means one needs more

information than just a set of candidates, and for this reason we introduce a nested

structure. Let B(qi, βi) = Ai for aggregations Ai in state qi with stack symbol βi
on top of the stack, for 1 ≤ i ≤ k (i.e. there are k roots).

At an opening event the automaton may have transitions that lead into the same

state q pushing the same stack symbol β for some of the states qi, for instance q2 and

q3. Since the corresponding aggregations A2 and A3 originate from different roots

in the Dag, we add this information in a new aggregation A = {(A2, β2), (A3, β3)}.

Consider for instance the situation depicted in Figure 8.11. From the first config-

uration, we reach the second with the <a>-event. There the candidate 2 is created

from the •-candidate whose configuration has β on top of the stack, goes into state

q′′, and pushes γ′. However, there is also the candidate 1 which will go into the same

state q′′ while pushing the same stack symbol γ′, but from a configuration with β′

on top of the stack. The pairs (2, β) and (1, β′) must be stored in the aggregation,

so we define B(q′′, γ′) = {(2, β), (1, β′)}.

At closing events for aggregations that contain pairs (Ai, βi) of an aggregation

Ai and a stack symbol βi, the unsharing is done by relating aggregation Ai to the

new root βi in the Dag, after closing. For instance the closing event </a> is read

when moving from the second to the third situation in

Figure 8.11. There we have to undo the sharing. We decompose the aggregate

and update the data structure to B(q′′′, β) = {2}, B(q′′′, β′) = {1} and B(q, β) =

{•}.

At every time point, B contains each buffered candidate exactly once. Whenever

a selection state is reached in the B-table, the candidates in the aggregate of this

state will be output and the aggregate will be deleted from the data structure.

For rejection states, we only have to discard the aggregate. Note that rejected or

selected candidates get deleted entirely from the data structure this way, since no

candidate may appear twice in different aggregates, again due to determinism.
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βα

α

γ

state x-es

q2 {•}

q6 {3, 4}

Figure 8.10: Buffer of <title>.

β′ β
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q {•}

q′ {1}
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〈a〉:γ
−−−→ q
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−−−−→ q′′

q
〈ax〉:γ′
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−−−−−→ q′′′
β′ β
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q {•}

q′′′ {2}
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Figure 8.11: Data structures for the state sharing algorithm.

Proposition 9 (Time per Event). For every deterministic eNwa E defining a

monadic query P and data tree t the time complexity per event of our query an-

swering algorithm with stack-and-state sharing to compute P (t) is in O(|Q|), where

Q is the set of states of E.

We can even reduce |Q| to the maximal number of states per event that are

assigned to the buffered candidates. This bound is at most 2 for all queries in our

practical experiments. In practice, therefore, the runtime should grow linearly in

the size of the document, and be independent of the size of the query. This will

indeed be confirmed by the experiments in Figure 8.18, which also indicate that the

costs for on-the-fly instantiation and determinization are irrelevant in practice.

Proof. We start with the case of opening events. Since E is deterministic there

is only one opening transition per state and label. According to the tag alphabet

{a, ax | a ∈ Σ}, the query answering algorithm has therefore two choices for

opening transitions for an opening event a. Hence at most 2 |Q| edges to new roots

in the Dag may be added. For candidates in table B additional information may

have to be stored (which needs only constant time). This happens, when candidates

in different states related to different roots in the Dag reach the same state at an

opening event. The evolution of the Dag at opening events can therefore be done

in time O(|Q|).

For internal events, the Dag structure is not altered. At most |Q| many state

changes occur in table B.
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We finish with the case of closing events. Closing transitions are applied ac-

cording to the label of the closing event e′ and to table B, which relates states and

roots of the Dag to an aggregation of candidates. At first glance it seems as there

could be |Q| |Γ| (hence quadratically many) possible transitions. Nevertheless the

number of possible closing transitions at e′ is bounded by

1. the number of opening transitions for opening event e that corresponds to e′

(of which there are maximum 2 |Q| many), plus

2. those closing transitions for potential candidates that were created between

events e and e′.

(1) is obvious, in that at event e table B contained maximum 2 |Q| entries to

aggregations C of candidates. As E is deterministic at event e′ there are thus 2 |Q|

many possibilities for these aggregations C to be related with stack symbols on top

of the Dag. For (2) let us consider the creation of new candidates between events

e and e′. All these candidates were instantiated from the unique • candidate, such

that they share parts of the stack. At the closing event all potentially created

candidates therefore are related to the unique stack symbol γ in the top of the Dag

belonging to the • candidate. These new candidates may be in at most |Q| many

different states. Hence with (1) and (2) maximum 3 |Q| closing transition may be

applied. For these only a constant number of operations are needed to unshare

the aggregations of candidates. Hence all together the run-time per event is in

O(|Q|).

Theorem 3 (Time and Space). For any deterministic eNwa E with state set Q

defining a monadic query P and data tree t, the time complexity of our streaming

algorithm with stack-and-state sharing to compute P (t) is in O(|E| + |Q| |t|) and

its space complexity in O(|E| + depth(t) |Q| + C), where C is the maximal number

of buffered candidates of P on t at any event.

Proof. By Proposition 9, the run-time per event is linear in the number of states

Q. With the construction of E we thereby obtain an overall run-time complexity

which is in O(|E| + |Q| |t|). Regarding space complexity, we have to keep E in

memory all the time. The maximum number of buffered candidates at any event is

C, while the Dag data-structure uses space in depth(t) |Q|.

As we did in the time analysis, we can reduce |Q| in our space analysis to

the maximal number per event of states of the buffered candidates. Therefore, we

can replace |Q| by 2 in our practical experiments. So if the depth of the tree is

bounded in addition (which is the case in our experiments), the space requirement

is determined by the maximal number of buffered candidates per event, and by

the size of the automaton. This will indeed be confirmed by our experiments in

Figure 8.19.
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8.7 QuiXPath tool

We present an implementation of our algorithms in the QuiXPath system and

analyze its time and space performance experimentally.

8.7.1 Implementation, Tools, and Applications

We have implemented QuiXPath, which inherits a library, called Fxp tool, for

compiling Fxp formulas to eNwas. QuiXPath is a streaming query evaluator

for a fragment of XPath 3.0. The implementation consists of 3 parts. First,

a streaming algorithm with stack-and-state sharing for answering eNwa queries,

second, a compiler from Fxp to eNwas, and third a compiler from navigational

XPath 3.0 to Fxp. All our implementation is done in Java 1.6, while relying on

the free XPath parser from Saxon.

In addition to what we presented in this chapter, QuiXPath supports arith-

metics, aggregation, and data comparisons, which is implemented on basis of net-

works of eNwas that we discuss in Chapter 10. Furthermore, there is a support

for backwards axes, which are eliminated at the cost of forward axes and regular

axes. Regular axes P ∗ are supported by QuiXPath, but only if P has 0-delay.

This is enough for most backwards axes in the usual benchmarks. We would also

like to notice that conditional regular axes are not sufficient for eliminating general

backwards axes, as proven in [Ley 2009].

All our experiments are run on a machine which features an Intel Core i7-

2720QM processor at 2.20GHz, 3.8GB of RAM, and an SSD hard drive. The

operating system is a 64-bit version of ubuntu 12.04 LTS.

8.7.2 Benchmarks

We will analyze the coverage and the time and space performance of QuiXPath,

and compare it to other streaming XPath evaluators, such as Spex, Saxon, and

Gcx. For this, we need an XPath benchmark collection, see Section 5.11, which

consists of a collection of XPath queries and a collection of documents, so that

both of them can be scaled in size.

We mainly use the XPathMark benchmark collection3 in its revised version

(and not the one from the original paper [Franceschet 2005]). These are (paramet-

ric) queries about XMark documents that contain a table of bids and a table of

bidders. The size of these documents can be scaled, basically by adding more bids

and bidders. Amongst the XPathMark queries from Section 5.11 only queries A1-

A8, B1-B7, B11(i)-B15(i), and C2 can be answered by some of the available tools

(QuiXPath, Spex, Saxon, and Gcx). With i = 1 these are 39% of the XPath-

Mark queries only. We added 2 further queries O1 and O2 to our collection, which

are given in Figure 8.12. These queries do apply to the same XMark documents,

3http://sole.dimi.uniud.it/˜massimo.franceschet/xpathmark/PTbench.html

http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
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O1: /site[closed auctions/closed auction/type]//item

O2: /site[c or not(c)]//bidder

Figure 8.12: Additional queries for illustrating the buffering behaviour.

but illustrate a different performance behavior since requiring to buffer much more

candidates.

It should be noticed that neither Saxon nor Gcx support XPath directly,

but through Xslt respectively XQuery programs. Therefore we could not run

the queries from the XPathMark directly, but had to embed them in an Xslt

or XQuery program. This kind of rewriting is not fully trivial, if one does not

want the experiments to be biased by different output modes. For Spex we used

their internal output mode “count results” and for QuiXPath we counted the

materialized answer nodes. For Saxon we use a style sheet which counts the number

of query answers. For Gcx we were not able to count the number of answers

without producing them. Therefore, we decided not to produce any output (rather

than using their default output mode, which is to print the subtrees of the selected

nodes).

There is a further problem when comparing to Gcx, which is that Gcx does

not support Xml attributes. Since we did not want to take Gcx out of the race,

we had to adapt the benchmark in the case of Gcx as follows: in documents, we

replaced attributes by elements, and in queries we replaced attribute axes by child

axes. These adaptations are not fully neutral. Therefore, we will also compare Gcx

and QuiXPath on the same documents and queries in a separate study.

8.7.3 Performance Comparison

In Figure 8.13 we compare the different tools for their XPath “conceptual” cov-

erage on the XPathMark benchmark: Gcx [Schmidt 2007], LNFA [Onizuka 2010],

Saxon [Kay 2010], Spex [Olteanu 2007], XMLtk [Green 2004], XSeq [Mozafari 2012],

and Xsq [Peng 2005]. Only 4 tools were available for testing in practice, but we

can still compare the coverage in terms of the concepts that are supported, and also

in the percentage of queries that require these features. When presenting such per-

centages, we restrict ourselves to the XPathMark queries with parameter i = 1.

This is an advantage for our competitor tools, since these cannot deal with n ≥ 2

anyway. Later on, we will also experiment with QuiXPath on queries with larger

parameters i ≥ 2 separately.

Only Gcx is able to deal with some queries with data joins such as C2. What

is not covered by any of the tools are queries with data positions, full aggregations,

and full negation. These features are used by the remaining 63% of queries of the

XPathMark. Spex and QuiXPath cover mostly the same features except for

top-level aggregation. Nevertheless, QuiXPath covers 37% of the XPathMark

queries, while Spex can only deal with 22%. The other available tools cover even

fewer queries, Gcx has 19% and Saxon is at 6%.
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Name QuiXPath Gcx LNFA Saxon Spex XMLtk XSeq Xsq

Language XPath XQuery XPath Xslt XPath XPath XSeq XPath

Available yes yes no yes yes yes no no

Coverage of
37% 19% 18% 6% 22% 5% 7% 11%

XPathMark

Downward axis

Complex filters

Backward axis

Negation

Top level aggreg.

Nested aggreg.

Arithmetics

0-delay reg. axis

Regular axis

Join

Multi inputs
supported: partially supported: not supported:

Figure 8.13: System features.

The advantage in coverage of QuiXPath over Spex is mostly due to the fact

that Spex does not support all queries that are produced by backward axes elim-

ination. Saxon’s low coverage for XPath in streaming mode may be motivated

by their focus on Xslt. The coverage of Gcx is lowered since it does not sup-

port backward axes. While the 37% coverage of QuiXPath on the XPathMark

benchmark is better than all previous tools, a much better result of 95% is achieved

by λXP.

In Figure 8.14, we compare the runtime performance of QuiXPath against

Spex, Saxon, and Gcx on the benchmark queries. A negative runtime here means

that the query was not supported by the respective tool. The document was fixed to

a 1.1GB XMark file. Generally, QuiXPath and Gcx show very good performance,

outperforming Saxon and Spex.

The parametric queries B11(i)-B15(i) cannot be treated by neither Spex nor

Gcx and also stresses QuiXPath to its limits. The problem comes with backwards

axes, which must be rewritten into forward axes4, such that the rewritten queries

are supported by the query evaluator. Indeed, only QuiXPath is able to execute

some of the rewritten queries, as we will discuss in Section 8.7.5.

In Figure 8.15 we give a more detailed comparison of the runtime performance

of QuiXPath and Gcx on the same 1.2GB document without attributes with the

queries adapted accordingly. It turns out that the parsing of Gcx is considerably

higher than that of QuiXPath which inherits the parser from Saxon, even though

4In the general case, backwards axes elimination may need to introduce regular axes[Ley 2009],

but not for the XPathMark queries considered here.
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Figure 8.14: Runtime in seconds of QuiXPath, Spex, Saxon, and Gcx for the

benchmark queries obtained on a 1.1GB XMark document. Whenever the query

was supported, we depict a negative runtime. The runtimes were averaged over

three runs, if there were no outliers (outliers were discarded).

Gcx is implemented in C++ and the others in Java. On the other hand side, the

overhead of Gcx with respect to the parsing time is lower than that of QuiXPath.

8.7.4 Performance Analysis

In order to understand the time efficiency of QuiXPath on the different queries

of the benchmark, it is essential to separate the parsing time from the time for

pure query evaluation. This is relevant to all languages embedding XPath queries,

since there, many XPath queries must be executed at the same time, while the

document is parsed only once.

We propose to measure the parsing-free evaluation time Tparsefree(P, d) of a query

P on a document d as follows. We launch the query several times in parallel

on the document, while parsing the document only once. When scaling the copy

number, the parsing time should become irrelevant in the limit. Let T (P, d, n) be

the runtime that is needed to evaluate n copies of P in parallel on document d, and

let Tparse(d) be the parsing time for document d. We then define the parsing-free

runtime Tparsefree(P, d) of query P on document d as follows:

Tparsefree(P, d) = lim
n→∞

T (P, d, n) − Tparse(d)

n

The limit converged quickly for all our benchmark queries. Already for n = 10 the

difference to the previous value was less than 50 ms for a 1.1 GB XMark document.

In Figure 8.16 we display the parsing-free evaluation times for all benchmark queries
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Figure 8.15: Runtime comparison of Gcx and QuiXPath for Gcx compatible

queries on a compatible 1.2GB XMark document.

on the 1.1 GB XMark document, and related it to the overall runtime and to the

parsing time.

The result shows that parser works in parallel with the query evaluator. The

reason is that the cpu can work in parallel with file accesses to the stream. However,

the degree of parallelism remains quite low for QuiXPath. It should also be noticed

that we were not able to compute the parsing-free evaluation time for the other tools,

so that we do not know whether they exploit more parallelism or not.

Our next objective is to explain the difference in the parsing-free evaluation

times for the various queries. The most relevant parameter is the workload of a

query on a document, which is the number of pairs of states and non-projected

events (see next paragraph), such that some buffered candidate was in this state at

the event. Figure 8.17 shows that the workload correlates nicely to the parsing free

evaluation time for all queries of our benchmark, except for queries that store big

numbers of candidates, whose rejection or selection requires additional time.

The QuiXPath implementation supports 2 kinds of projections (on which the

workload depends) while we do not consider the projection algorithms in Chapter 9

that we have added only later in λXP. First, if a query does not depend on text

data, all text events are projected away. This is indeed the case for all queries in the

benchmark except for query C2 with data joins (that QuiXPath cannot deal with).

The second kind is depth projection for queries that do not use the descendant axis,

so that they consider the nodes until a certain depth only. The queries with depth

projection are exactly those with the lowest parsing-free evaluation time: A7, A8,

B3, B4 (depth projection at depth 4), A6, B1 (depth projection at depth 5), and

A1, A4 (depth projection at depth 7). The next best queries are those with 0-delay,

since this reduces the workload too: A2, A3, B2, B6, B12(1), B13(1). The next

class are queries without projection, but only few buffered candidates A5, B5, B7,
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Figure 8.16: Parsing-free time of QuiXPath in relation to the additional runtime

for the benchmark queries on the 1.1 GB XMark document.

B11(1), B14(1), and B15(1). The highest parsing-free evaluation time is obtained

for the queries O1 and O2, which buffer thousands of candidates for many events,

but all of them in the same state.

QuiXPath scales up to large document sizes. Thanks to stack and state sharing,

the runtime remains linear in the size of the document as for all benchmark queries

in Figure 8.18 on larger documents ranging from 1 GB until 28 GB in size. This

even holds for queries such as O1 and O2, where the number of buffered candidates

grows linearly. But since all of them are in the same state, the running times remain

linear (and not quadratic). For document sizes greater than 17 GB the candidates

needed to buffer for query O2 did not fit into memory, such that no evaluation times

could be reported.

Query O2 is the only query from our benchmark collection, where QuiXPath

is not earliest. In general QuiXPath is not earliest with the presence of valid

respectively unsatisfiable filters (as in the examples showing the hardness of earliest

query answering [Gauwin 2011a]). It was also proven in follow-up work [Lick 2013],

that our early query answering algorithm is indeed earliest for a large subset of

positive XPath queries.
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Figure 8.17: Workload compared to parsing-free evaluation time.

8.7.5 Detailed Analysis

We provide a detailed analysis of the performance of QuiXPath including mea-

surements of its space consumption in particular.

We start with the analysis for the non-parametric XPathMark queries reported

in Figure 8.19. The first step is to compile the XPath queries into simple Fxp

formulas F , while eliminating backwards axes. The size of the formula and its

conjunction width becomes apparent only after this precompilation phase. The

maximal values are reached for the simple Fxp formula of query A8, with a size of

112 and a conjunction width of 12. These quite large values are due to backwards

axes elimination and the following rewriting into simple Fxp formulas.

The next compilation step is to convert F into a descriptor of the nondetermin-

istic eNwa. The number N of the states of this descriptor remains moderately small

with at most 129 states for A8 and also the memory KBdesc for its storage with

at most 1186 KB. The number D of states visited by deterministic eNwa during

on-the-fly instantiation and determinization also remains small with at most 127

for A8. The results confirm that the on-the-fly determinization inspects only a very

small subset of the state space of the determinized automaton, and that the time

required for on-the-fly instantiation and determinization (Tdet) can be ignored in

practice. The memory KBrun needed for storing the deterministic automaton and

the candidate buffer is small for all queries with few candidates with at most 672

KB for A8. It grows however linearly with the number of buffered candidates, as

one can observe for queries O1 and O2.

The minimal memory required to evaluate a query in reasonable time is the sum

of KBdesc + KBrun + 2000 KB, where the 2 MB serve for running the java virtual

maschine itself. Our runtime experiments were performed with 3 GB of memory
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Figure 8.18: Runtimes of the benchmark queries for large documents.

in order to reduce overheads by repeated garbage collections. Less memory implies

larger overheads. For query A1 we conducted a small experiment to estimate these

overheads. We restricted the memory to 5, 15, 30, 60, and 120 MB and obtain as

runtimes 14.0, 12.7, 10.7, 10.4, and 10.1 seconds respectively.

We next analyze the parametric queries B11(i)-B15(i). These contain backwards

axes, which must be rewritten into forward axes. QuiXPath can do this, but the

sizes of the Fxp formulas obtained by backwards axes elimination may be large,

as shown in Figure 8.21. For instance, the formula for B14(4) has size 11804 and

conjunction width 912. As a consequence, the corresponding eNwa descriptors will

be huge, so that they quickly do no more fit into main memory (for i ≥ 5 for all

B13(i), B14(i), B15(i)), or may not leave enough space for on-the-fly determinization

(for B13(4) and B15(4)).

Figure 8.20 shows the runtimes for the parametric queries that can still be

evaluated by QuiXPath with 3 GB of memory. It should be noticed that the

queries B11(i) are equivalent for all i ≥ 1, and similarly for B12(i), B13(i), B14(i),

and B15(i) respectively. Nevertheless, the sizes of the corresponding Fxp formulas

grow with parameter i and also the conjunction width (since our compiler ignores

query equivalence). Despite this, our compiler produces the same eNwa descriptor

for all B11(i) independently of i, and similarly for all B12(i), while the eNwa

descriptors for B13(i), B14(i), and B15(i) do grow quickly with i. The surprisingly

good treatment of the families B11(i) and B12(i) can be explained as follows. The

Fxp formulas obtained after backward axes elimination contain conjunctions of the

same filter over and over (the filter [./bidder] for B11(i) and the filter [@id] for

B12(i)). The automata for such conjunctions are independent of the number of

times that the filter is conjoined with itself.

The queries B13(i), B14(i), B15(i) with i ≥ 3 illustrate that the costs of on-the-

fly determinization may become relevant for the runtime in extreme cases. Oth-

erwise the runtime should be independent of the size of the eNwa descriptor, as

explained earlier. In extreme cases, the deterministic automata have thousands of
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A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4

|F | 25 13 17 31 24 34 37 115 43 41 19 19

w(F ) 0 0 0 1 1 2 2 12 0 2 0 0

N 17 9 12 27 17 35 21 129 24 39 13 13

KBdesc 201 102 131 237 177 307 212 1 186 276 411 136 141

D 14 10 14 27 23 32 23 127 14 49 16 15

KBrun 192 232 256 256 224 256 552 672 192 384 192 192

Tdet 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 0.00 0.02 0.00 0.00

B5 B6 B7 B11(1) B12(1) B13(1) B14(1) B15(1) O1 O2

|F | 24 103 21 17 16 37 62 69 23 34

w(F ) 1 4 1 1 0 2 0 3 1 2

N 13 58 15 12 10 32 33 34 25 18

KBdesc 161 571 122 120 99 389 326 372 251 193

D 32 28 20 17 11 28 19 29 25 12

KBrun 256 320 336 304 256 352 224 288 39 432 112 460

Tdet 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00

Figure 8.19: Detailed analysis for XPathMark queries. The queries are compiled

to Fxp formulas F of size |F | and conjunction width w(F ). N is the number of states

of the eNwa descriptor constructed for F and KBdesc the size of the memory needed

for its storage. D is the number of states of the deterministic eNwa constructed

by on-the-fly instantiation and determinization. KBrun is the memory required at

runtime for storing the deterministic eNwa and the candidate buffer, i.e., the overall

memory needed is at least KBrun + KBdesc. Tdet is the time in seconds needed to

compute all D states by on-the-fly instantiation and determinization.

states (D), each of which contains thousands of states of the nondeterministic au-

tomaton (N). This is problematic since the determinization time is not linear but

highly polynomial: overall it is in time O(D N4 |Σ|). Indeed, the overall time for

on-the fly determinization (Tdet) grows importantly in these cases. Furthermore,

the backward axes elimination for B13(i), B14(i), and B15(i) produces Fxp formu-

las with many disjunctions, so that the candidates admit almost all of the N states

of the nondeterministic eNwa. For this reason, the on-the-fly determinization re-

quires high memory costs in these cases (included in KBrun), raising out-of-memory

errors for B13(4) and B15(4).
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Figure 8.20: Runtime for parametric queries B11(i)-B15(i) of the XPathMark

queryset on a 1.1 GB XMark document. When for some parameter i no runtime

is displayed, then the corresponding eNwa descriptor did not fit into memory (for

B14(5)) or it could not be evaluated on-the-fly (for B13(4) and B15(4)).

B13(1) B13(2) B13(3) B14(1) B14(2) B14(3) B14(4) B15(1) B15(2) B15(3)

|F | 37 173 863 62 374 2 116 11 804 69 527 4 149

w(F ) 2 10 56 0 16 136 912 3 32 299

N 32 325 4 273 33 237 1 959 17 611 34 347 4 294

KBdesc 389 4 896 76 514 326 2 560 22 291 230 733 372 4 448 64 098

D 14 120 503 19 29 36 43 29 136 2 625

KBrun 352 1 683 32 747 224 384 1 821 16 868 288 1 448 394 780

Tdet 0.01 0.76 113.02 0.00 0.02 1.13 21.05 0.00 0.54 971.88

Figure 8.21: Detailed analysis for the parametric queries B13(i)-B15(i). The back-

ward axes elimination of QuiXPath infers a Fxp formula F of size |F | and con-

junction width w(F ) up to 912! The Fxp formulas are then compiled into eNwa

descriptors with N states, which can be stored in a memory of size KBdesc. On-the-

fly instantiation and determinization yields a deterministic eNwa of which D states

are visited. The memory for storing this deterministic automaton and the canidate

buffer is KBrun. Tdet is the time in seconds needed for on-the-fly instantiation and

determinization.
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In this chapter we develop projection algorithms for nested word automata. Our

algorithms translate nested word automata to projection nested word automata

that we introduce. They are a kind of mixed pushdown and counting automata.

The projection nested word automata is then evaluated over a stream producing

a projected nested word on which it runs. Our experiments show that we gain a

speed up of a factor of 4 in parsing-free time with respect to our query answering

algorithm for navigational XPath queries by early nested word automata.

9.1 Introduction

Projection is most relevant for efficient Xml processing algorithms, as shown for

in-memory evaluators for XQuery in [Marian 2003] and for a fragment of XPath

in [Maneth 2010]. The projection algorithm for XQuery runs in Saxon [Kay 2004],

today’s most used Xml processing tool.

The objective of this chapter is to initiate the development of projection algo-

rithms for processing Xml streams. Given that a single program written in one

of the Xml standards XQuery, Xslt, or XProc contains a collection of XPath

queries, we are interested in the evaluation of a collection of XPath queries on a

single input stream. The parsing time can be shared between many XPath queries,

and thus should be counted seperately. Therefore, we are mainly interested in the



154 Chapter 9. Projection

parsing-free time for query evaluation. Note however, that the parsing-free time for

a single query is often dominated by the parsing time.

We will restrict ourselves to projection for navigational XPath queries, since

these are fundamental to all others. For instance, in order to check whether the root

of a tree has at least 5 a-children, all other children of the root can be projected.

The computation of the projection still requires to read the entire input tree, but

the time for this can be shared similarly to the parsing time. As discussed before

in Chapter 8, navigational XPath queries are reduced to running an Nwa on all

possible answer candidates.

Projection for finite automata is well known [Frisch 2004, Maneth 2010]. It

amounts to project away all letters of the input word that do not change the state.

Projection for Nwas is more tedious, since such automata have a stack by which

they can pass information from opening tags to corresponding closing tags. There-

fore, one cannot simply project an opening tag away without taking care of the

corresponding closing tag. Our idea is that a projected nested word should contain

jump symbols i. . . for projected factors, where the integer i stands for the excess of

the factor, i.e., the difference between the number of opening and closing tags. We

present projection nested word automata (PNwas), a kind of mixed pushdown and

counting automata, that input projected nested words which beside others contain

integers as letters. These integers allow the automaton to compute the depth of

the current node of the tree at any time, and also the excess of the last jump.

Conversely, a projection of a nested word with respect to a given Nwa can be com-

puted by any corresponding PNwa. It may be surprising, but it turns out there

may exist different PNwas with maximal projection for the same Nwa. Therefore,

our projection algorithm has to make its choices.

We then lift Nwa projection to the evaluation of navigational XPath queries on

Xml streams. It turns out that the parsing-free time for our query answering algo-

rithm of Chapter 8 is reduced by a factor of 4 on average on the usual XPathMark

benchmark.

9.2 A Nested Word Automaton

Let Σ be a finite alphabet. Let PΣ be the set of parenthesis with labels in Σ, that

is the set of opening tags 〈a〉 and closing tags 〈/a〉 where a ∈ Σ. We consider

complete nested words over PΣ, such that corresponding opening and closing tags

have the same label. Furthermore we omit internal letters ∆ for what follows. As

a result Xml data trees and their linearizations contain no data values, which is

a strong simplification. However the treatment of data values works orthogonal to

the treatment of element nodes, since they can be encoded into elements.

Let us consider the unranked tree in Figure 9.1. The Xml stream obtained

by linearizing this unranked tree into a complete nested word is given in Figure

9.2. A deterministic Nwa that accepts the nested word is given in Figure 9.3. It

defines the XPath filter [//a/b] which accepts all Xml trees that contain some
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Figure 9.1: An unranked tree.

〈c〉 〈a〉 〈a〉 〈a〉 〈c〉 〈/c〉 〈/a〉 〈/a〉

〈c〉 〈b〉 〈/b〉

〈a〉 〈/a〉 〈/c〉

〈b〉 〈/b〉 〈/a〉 〈/c〉

Figure 9.2: The corresponding nested word is an Xml stream.

a-descendant with a b-child. Rules containing label sets represent sets of rules, one

for each label.

9.3 Projection NWAs

We next introduce projected nested words. Let N0 = N⊎ {0} be the by 0 extended

set of natural numbers, and Z the set of integers. For any unranked tree, we are

interested in the binary node relations child ch, descendant ch+, n-th grand parents

ch−n where n ∈ N, descendants of n-th grand parents ch−n/ch+, children of n-th

grand parents ch−n/ch, and stay at self. So let:

Rels = {ch, ch+, ch−n, ch−n/ch+, ch−n/ch, self | n ∈ N}.

9.3.1 Projected Nested Words

A projected nested word is a word whose letters are jump symbols i. . . where i ∈ Z

and jump targets p@r where p ∈ PΣ and r ∈ Rels. We write P ...
Σ for the set

of all these letters. We assume that any jump target is proceeded by a jump

symbol that indicates the excess of the jump, that is the depth difference in the

tree or equivalently, the difference of the numbers of opening and closing tags in the

complete nested word. We also assume that projected nested words are well-nested

up to jumping.

Two examples for projected nested words are given in Figure 9.4. Both are

valid descriptions of the nested word in Figure 9.2: pw1 projects to the letters

drawn in blue, while pw2 projects to the letters drawn in green. As we will see,
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q1
irrel∅

q2
irrel{b,c}

q3
irrel{a}

i -tree{c}\{a}

q4
irrelΣ

qrej
irrel∅

〈Σ〉 ↓ α
〈/c〉 ↑ γ

〈a〉 ↓ α

〈/a〉 ↑ α

〈c〉 ↓ γ

〈b〉 ↓ α

〈{b, c}〉 ↓ β′

〈/{b, c}〉 ↑ β′

〈a〉 ↓ β

〈/a〉 ↑ β 〈Σ〉 ↓ δ

〈/Σ〉 ↑ δ

〈/Σ〉 ↑ α

〈/Σ〉 ↑ β

〈/Σ〉 ↑ β′

〈/Σ〉 ↑ α

Figure 9.3: A deterministic Nwa over Σ = {a, b, c} for XPath filter [//a/b].

pw1: for all a-nodes without an a-parent and all non-a-children of a-nodes keep the

opening and closing tags, until the opening tag of the first match of //a/b:

〈c〉 0. . . 〈a〉@ch+ 2. . . 〈c〉@ch+ 0. . . 〈/c〉@self −2. . . 〈c〉@ch−3/ch+

0. . . 〈a〉@ch+ 0. . . 〈/a〉@self 0. . . 〈/c〉@ch−1 0. . . 〈b〉@ch−1/ch+

pw2: for all a-nodes and all b-children of a-nodes keep the opening and closing tags,

until the opening tag of the first match of //a/b:

〈c〉 0. . . 〈a〉@ch+ 0. . . 〈a〉@ch+ 0. . . 〈a〉@ch+ 0. . . 〈/a〉@self
0. . . 〈/a〉@ch−1 1. . . 〈a〉@ch−1/ch+ 0. . . 〈/a〉@self −1. . . 〈b〉@ch−2/ch

Figure 9.4: Two projected nested words describing the nested word in Figure 9.2.

both projections can be obtained from the Nwa in Figure 9.3. Note that the initial

opening tag is always kept for technical reasons. Except of this, both projections

are maximal, in that no further tags can be projected away: they just preserve

enough information for deciding whether the original nested word satisfies the filter

[//a/b]. Nevertheless, none of these two projections is more general than the other.

The green projection pw2 has the advantage to keep only tags with letters occurring

in the XPath filter [//a/b]. The blue projection pw1, has the advantage to keep

fewer of these tags, but therefore, it also keeps some others.

The blue projection pw1 starts with 〈c〉, meaning that any matching nested

word must start with 〈c〉. The next factor 0. . . 〈a〉@ch+ describes a nested word

with excess 0 that is followed by 〈a〉 in descendant position, i.e., by the opening tag

of an a-child of the root. The next factor 2. . . 〈c〉@ch+ describes a nested word with

excess 2 followed by 〈c〉 opening a descendant. Then 0. . . 〈/c〉@self requires to jump

with excess 0 to the closing tag 〈/c〉 of the same node. Next, −2. . . 〈c〉@ch−3/ch+ asks

to jump with excess −2 to an opening tag 〈c〉 of a descendant of a grand-grand-

grand-parent, etc.

9.3.2 Projection Nested Word Automata

We introduce PNwas as a mixture of a pushdown and a counting automaton, that

receive projected nested words as input. The counting serves for updating the

depths of nodes when jumping, so that the depth of the current node can always



9.3. Projection NWAs 157

be deduced from the current stack. Whenever jumping over a projected factor, the

excess of this factor is pushed. This is an integer that is popped when trying to

close the jump.

Definition 14. A PNwa is a tuple A = (Σ, Q,QI , QF ,Γ, R) like an Nwa but with

different kinds of transition rules: given a ∈ Σ, γ ∈ Γ, and q, q′ ∈ Q, there are rules

of the following types in R, for changing the state from q to q′.

Open: q
〈a〉 ↓γ
−−−→ q′ Like for Nwas.

Close: q
〈/a〉 ↑γ
−−−−→ q′. Like for Nwas.

Jump to a child or a descendant: q
z...〈a〉@r ↓z↓γ
−−−−−−−−→

∀z≥0
q′, where r ∈ {ch, ch+}.

When r = ch then z must be 0, and we jump to the opening tag of an a-child

and push first 0 and then γ onto the stack. When r = ch+ then we jump over

z descendants to the opening tag of an a-descendant, and push first z and then

γ onto the stack. For short we denote this transition as q
ju(〈a〉,r,γ)
−−−−−−→ q′.

Rejump to another child or descendant: q
z...〈a〉@ch−(z′+1)/r ↑z′↓z+z′↓γ
−−−−−−−−−−−−−−−−−−→

∀z,z′. z′≥0,z+z′≥0
q′,

where r ∈ {ch, ch+}.
While trying to close a jump from some grand parent to some node one can

rejump to another opening a-tag of a child or a descendant of the same grand

parent. The excess of the jump to the first node z′ on the stack is updated to

the excess of the second node z + z′. Furthermore, γ is pushed. For short, we

write this transition as q
reju(〈a〉,r,γ)
−−−−−−−−→ q′.

Jump to the closing tag of the self node: q
0...〈/a〉@self↑γ
−−−−−−−−−→ q′. Jump to the clos-

ing tag of the self a-node. In this case, γ is popped from the stack.

Jump back to the jump’s origin: q
−z... 〈/a〉@ch−(z+1) ↑z↑γ
−−−−−−−−−−−−−−→

∀z≥0
q′. When trying to close

a jump, one may jump back to the closing tag of the a-node where the current

jump started. The excess of −z is popped from the stack together with the

symbol γ which was pushed for the non-jumped a-node. For short we write

q
ju-back(〈/a〉,γ)
−−−−−−−−−→ q′.

Close last jump step: q
〈/a〉 ↑z↓z−1
−−−−−−−→

∀z>0
q′. When trying to close a jump, one may

read a closing a-tag for which the corresponding opening a-tag was jumped, so

that no stack symbol was pushed. In this case the excess of the jump on the

stack must be updated from z to z − 1.

A configuration of a PNwa is a pair in Q× (Γ⊎N0)
∗ consisting of a state in Q

and a stack in (Γ⊎N0)
∗. A run r of a PNwa A on a projected nested word over Σ

is a function that maps any prefix of the projected nested word to a configuration.

The run must start in some configuration with some initial state and the empty
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Figure 9.5: PNwa A1 for the XPath filter [//a/b].
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q2

0. . . 〈/c〉
@self
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q3

0. . . 〈/a〉
@self
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0. . . 〈/c〉
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q3[q3]

0. . . 〈b〉
@ch−1/ch+

q4

γ[q3]
2

0

α[q2]
0

γ[q3]

α[q3]
0

α[q2]
0
α

Figure 9.6: A successful run of the PNwa A1 of Figure 9.5 on pw1.

stack, i.e., r(ε) ∈ QI × (Γ⊎N0)
∗. Furthermore, for any prefix wl where l ∈ P ...

Σ , the

configuration r(w) must be transformed into r(wl) by applying some rule consuming

letter l. A run on a projected nested word w is called successful if it eventually

reaches a configuration with a final state, i.e., if r(w′) ∈ QF × (Γ ⊎ N0)
∗ for some

prefix w′ of w. The language L(A) of a PNwa A is the set of all projected nested

words that permit a successful run on A.

9.3.3 Examples of PNwas and Runs

First Projection. In Figure 9.5 we present PNwa A1 that is a projection of

the Nwa in Figure 9.3 for the XPath filter [//a/b]. This automaton accepts the

blue projection pw1 in Figure 9.4 of the nested word in Figure 9.2. Automaton A1

visits the opening and closing tags of all a-nodes with no a-parent, and of all non-a-

children of these a-nodes, and jumps over all other nodes. Automaton A1 accepts

when the first match of [//a/b] arrives. In Figure 9.6, we illustrate a successful
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run of A1 on pw1. The states of configurations are placed below the tags, while the

stack consists of the labels on the subedges above the state. Edges between tags

indicate their correspondence. Furthermore there are edges for jumps to children

and descendants, where the excess is pushed, while jumps to the jump origin close

the jump, and rejumps update the excess on the stack. The only exceptions are

jumps to the closing tag of self nodes, where no excess is pushed. In general PNwa

A1 works as follows. It starts in the initial state q1, it opens the root and goes into

q2, where either the root can be closed to qrej or where it can jump over b and c

nodes to the opening tag of an a-descendant and go to q3. There are 3 possibilities

depending on what happens first: (1) close the a-node, and go to q2[q2], (2) jump

down over a sequence of a-nodes to the opening tag of a c-descendant and go to q2,

or (3) jump down over a sequence of a-nodes to the opening tag of a b-descendant

and accept in q4. In state q2 a c-node with a sequence of a-grand parents can be

closed to q3[q3]. The sequence of a-grand parents consists of a sequence of jumped

a-nodes and one not jumped a-node π at the top. Continuing depending on what

comes first, the following can happen in q3[q3]: (1) jump back to the closing tag

of the a-grand parent π and go to q2[q2], (2) rejump over a sequence of a-nodes,

while staying below π, to the opening tag of a c-descendant and go to q2, or (3)

rejump over a sequence of a-nodes, while staying below π, to the opening tag of

a b-descendant, and accept in state q4. In state q2[q2] there are 3 possibilities

depending on what happens first: (1) rejump over a sequence of b and c nodes to

the opening tag of an a-descendant and goto q3, while staying below a not-jumped

c-grand parent with a sequence of a-grand parents if exists, (2) jump back to the

closing tag of a not-jumped c-grand parent with the a-grand parents sequence if

exists, or else (3) close the root to qrej .

Second Projection. A second projection of the Nwa from Figure 9.3 is given by

the PNwa A2 in Figure 9.7. This one accepts the green projection pw2 in Figure 9.4.

A successful run of A2 on pw2 from Figure 9.4 is illustrated in Figure 9.8.

Recomputing Stack Symbols. We give an PNwa that contains rules to recom-

pute stack symbols. In Figure 9.9 we give a deterministic Nwa for XPath filter

[//a/following-sibling::b]. A PNwa A3 for the same query is depicted in

Figure 9.13. A successful run of A3 on projected nested word pw3 from Figure 9.12

is illustrated in Figure 9.14.

9.3.4 Evaluation of Projection Nwas

Next we are interested to evaluate a collection of PNwas obtained from determinis-

tic Nwas on a single complete nested word. For this, we need to project the nested

word with respect to the PNwas, and run the PNwas on the respective projected

nested word. Therefore, we have to define how to project a nested word w with

respect to a deterministic PNwa. More generally, we define a projection πq(w) for
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Figure 9.7: PNwa A2 for the XPath filter [//a/b].
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Figure 9.8: A successful run of the PNwa A2 of Figure 9.7 on pw2.

any suffix w of some nested word in P ∗
Σ and state q of a PNwa A:

πq(w) = i. . . p@rπq′(w
′′)

such that w = w′pw′′ for some p ∈ PΣ and w′, w′′ ∈ P ∗
Σ, where w′ is the shortest

prefix, so that there exists a rule of A from q to q′ consuming letter p@r for some

r ∈ Rels, and i is the excess of w′.

9.4 Irrelevant Labels and Prefixes of Nested Words

In this section, we define properties of Nwa states which allow to skip parenthesis

with irrelevant labels and irrelevant prefixes of nested words, that is prefixes of

linearizations of subtrees.

Definition 15. An Nwa E can jump over parenthesis with labels in L and incoming

state q – in formulas q ∈ irrelL – if there exists a stack symbol γ, such that E has all

transitions shown in Figure 9.15, no other opening transition pushing γ, no other

L-opening transition in q, and no other L-closing transition with γ in q.
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q1
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q2
irrel

{b,c}

q3
irrel{b,c}
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irrelΣ

qrej
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〈Σ〉 ↓ α′ 〈a〉 ↓ α
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〈/Σ
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′

〈b〉 ↓ α
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〈a〉 ↓ α

〈{b, c}〉 ↓ β

〈/{b, c}〉 ↑ β 〈/a〉 ↑ α
〈Σ〉 ↓ γ

〈/Σ〉 ↑ γ

〈/Σ〉 ↑ α

〈/Σ〉 ↑ α′

〈/Σ〉 ↑ β

〈/Σ〉 ↑ β′〈/Σ
〉 ↑

α
′

Figure 9.9: A deterministic Nwa over Σ = {a, b, c} for XPath filter

[//a/following-sibling::b].

If q ∈ irrelL then any sequence of letters in PL is irrelevant in state q, so that

it can be removed from the nested word and replaced by a jump symbol. Consider

a run of E on a nested word w and assume q ∈ irrelL. We next argue, that we can

replace all letters in PL of w with ingoing state q by jump symbols, while “repairing”

the run. The first point is that the state is not changed when reading such letters,

so that their removal keeps the states correct. But we must also take care of the

stack. If an opening tag 〈a〉 is removed but not the corresponding closing tag, then

we have to repair the run, in order to be able to reproduce the missing stack symbol

when needed. The idea is to memoize the state before jumping. Since this state

does not change while jumping, one can then recompute the stack symbol that was

pushed for any letter that was jumped over. Conversely, it is not possible that

a closing tag 〈/a〉 was removed but not the corresponding opening tag, since the

symbol pushed at 〈a〉 must be γ, and by definition of q ∈ irrelL there is no other

opening transition pushing γ than that started in q.

Definition 16. An Nwa E in state q can jump over prefixes of nested words

(subtrees) that start in 〈L〉, do not contain letters in PL′ , and either end with the

closing tag of the subtree’s root or with a letter in L′, if there exist three different

stack symbols γ, γ′, γ′′ and a state q′ such that the transitions shown in Figure 9.16

exist, but no further opening transitions with γ, no further transitions with γ′, and

no further opening transitions in q′ for L′, and no further closing transition in q

for L popping γ. In this case, we write q ∈ i -treeL\L′ and call q a state of irrelevant

subtrees.

In the easiest case where q ∈ i -treeL\∅ one can jump over nested words linearizing

subtrees, with incoming state q and labels in L only. When opening the root of the

subtree, the state changes to q′ and stays there until closing the root and going back

to q. So the removal of the subtree does not change the state globally. In this case,

the full nested word of the subtree is read, so the stack difference is zero. In the

case where L′ 6= ∅ it is more tricky to repair the run, in order to deal with missing

stack symbols. But it remains possible, since the state used within the subtree does
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b

c

a

b

c

a

a

b

Figure 9.10: Another unranked tree.

〈b〉〈c〉〈a〉〈b〉〈c〉〈a〉〈a〉〈/a〉〈/a〉〈/c〉〈/b〉〈/a〉〈b〉〈/b〉〈/c〉〈/b〉

Figure 9.11: The nested word that corresponds to the unranked tree in Figure 9.10.

〈b〉 1. . . 〈a〉@ch+ 2. . . 〈a〉@ch+ 0. . . 〈a〉@ch+ 0. . . 〈/a〉@self
0. . . 〈/a〉@ch−1〈/c〉 0. . . 〈/a〉@ch−2〈b〉

Figure 9.12: Projected nested word pw3 describing the nested word in Figure 9.11.

not change, so that it can be memoized and so that missing stack symbols can be

recomputed at closing time.

For illustration, we have annotated the state of the Nwa in Figure 9.3 with

the properties that they satisfy. It turns out that state q3 satisfies both proper-

ties irrel{a} and i -tree{c}\{a}, but that we cannot perform the two corresponding

projections at the same time. When choosing projection with irrel{a} we obtain

the PNwa A1 from Figure 9.5, and when choosing projection with i -tree{c}\{a} we

obtain the second projection PNwa A2 from Figure 9.7.

9.5 Projection from Nwas to PNwas

We show how to project deterministic Nwas E to a PNwa A. For any state q

of E, we chose a projection property choice(p), which is either irrelL or i -treeL\L′

for some sets L,L′ ⊆ Σ. Note that irrel∅ can always be assigned, so that this

assumption can always be satisfied, but not always in a unique manner.

Any state of A is either a state of q of E or a pair of states of E that we write

as q[q′]. Such a pair means that one is in state q and that on the top of the stack

is a jump symbol i that was pushed from a jump over i descendants that started in

state q′. Any stack symbol of A is either a stack symbol γ of E or a pair written

as γ[q] of a stack symbol and a state of E. γ serves as the stack symbol that was

pushed before at opening tags, while q is the state where a previous jump started.

Whenever such a pair γ[q] is on the stack then the symbol below is always a jump
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Figure 9.13: PNwa A3 for the XPath filter [//a/following-sibling::b].
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Figure 9.14: A successful run of the PNwa A3 of Figure 9.7 on pw3 from Fig-

ure 9.12.

symbol i that was pushed by a jump over i descendants that started in state q. The

sets of initial and final states remain unchanged.

Every transition rule of E gives rise to a possible empty set of transition rules

of A, according to rules I–VII in Figure 9.17. In PNwa A1 from Figure 9.5 we

annotated transitions accordingly. Transitions from an initial state are translated

to non-jumping transitions that open the root. If choice(q) = irrelL, then all

looping transitions required by irrelL are removed. The other opening transitions

starting from q are translated to jumping and rejumping transitions to descendants

and descendants of grand parents. If choice(q) = i -treeL\∅ then the opening and

closing L transitions, and looping transitions required by i -treeL\∅ are removed. The

other opening transitions starting from q are translated to jumping and rejumping

rules to children and children of grand parents. If choice(q) = i -treeL→L′ then the

opening and closing L transitions, and looping transitions required by i -treeL→L′ are
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q

〈L〉 ↓ γ

〈/L〉 ↑ γ

Figure 9.15: q ∈ irrelL.

q q′

〈L〉 ↓ γ

〈/L〉 ↑ γ

〈L′〉 ↓ γ′′ 〈Σ \ {L′}〉 ↓ γ′

〈/Σ \ {L′}〉 ↑ γ′

Figure 9.16: q ∈ i -treeL\L′ .

removed. All other transitions with opening tag a ∈ L′ departing q are translated

to jumping and rejumping rules for descendants. Closing transitions are translated

to six rules: Two rules to close self nodes, two rules to jump back to jump’s origins,

and two last rules that close parents in a state q[q′′] for q 6= q′′. Those states do not

allow to rejump, since the previous jump started in a different state q′′ than the

current state q, and therefore they also do not allow to jump back to the jump’s

origin. For these states opening and closing transitions are translated as indicated,

while recomputing stack symbols, that have not been pushed for jumped grand

parents.

Proposition 10 (Soundness). Let E be a deterministic Nwa E with initial state

q0 and A be a PNwa obtained from E by our projection algorithm. It then holds

for any nested word w that w ∈ L(E) if and only if πq0(w) ∈ L(A).

9.6 Node Selection

Node selection as needed for typical XPath queries requires some extensions to

what we have presented so far, which we will discuss in the following.

Let us consider the unranked tree with the corresponding nested word in Fig-

ure 9.18. The tree represents an Xml library, in which a single node has a label

which is annotated by a fixed variable x, meaning that this node is to be tested for

selection by an Nwa that answers a given XPath query. Such x-annotations can

be computed in streaming mode as discussed in Chapter 8.

The Nwa in Figure 9.19 defines the XPath query library/book/title, which

selects all title-nodes in a tree, whose parent is a book -node, and whose grand parent

is the library-root. It accepts the nested word of Figure 9.18, where the title tag is

annotated, and thereby selects the corresponding title node in the library without

the x annotation. For sake of completeness, we assume a sink state qrej in the

Nwas, which allows for early rejection: whenever reached by a deterministic Nwa
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∀z > 0

Figure 9.17: Rewriting system for rules of a deterministic Nwa to rules of the

PNwa.

the run will fail on the completed tree. Transitions with annotated labels going to

qrej allow then to reject candidates that will fail early.

Due to the alphabet with annotated labels Σ = {a, ax | a ∈ Σno-var}, where

Σno-var is a signature without variable annotations, we need to adapt Definitions 15 and 16

of Section 9.4.

Definition 15 becomes

Definition 17. An Nwa E can jump over parenthesis with labels in L ⊆ Σno-var

and incoming state q, if there exists a stack symbol γ and a sink state qrej , such that

E has all transitions shown in Figure 9.20, no other opening transition pushing γ,

no other L-opening transition in q, no other {ax | a ∈ L}-opening transition in q,

and no other L-closing transition with γ in q.

There we require transitions with letters ax with a ∈ L go to rejection state qrej .

This is because since, otherwise if there exists a transition with an annotation that

does not go to the rejection, letter a becomes relevant. For these letters candidates

are created that may be selected in some future. Similarly Definition 16 requires an
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library

article

author title

book

author titlex

〈library〉〈article〉〈author〉

〈/author〉〈title〉〈/title〉〈/article〉

〈book〉〈author〉〈/author〉〈titlex〉

〈/titlex〉〈/book〉〈/library〉

Figure 9.18: An Xml tree library and the corresponding nested word.

q1 q2 q3 q4

q5

q6qrej

〈library〉 ↓ α 〈book〉 ↓ α

〈/book〉 ↑ α

〈titlex〉 ↓ α

〈no
book

〉 ↓ β〈/no
book

〉 ↑ β
〈Σ ′〉

↓
β

〈/Σ ′〉
↑
β〈Σ′〉 ↓ γ

〈/Σ′〉 ↑ γ 〈Σ′〉 ↓ γ

〈/Σ′〉 ↑ γ

〈Σ′〉 ↓ α

〈/Σ〉 ↑ α

〈/libra
ry
〉
↑
α

〈Σ
x〉

↓
α

〈n
o
tit
le
x 〉

↓
α

〈Σx〉 ↓ α

〈Σ x
〉 ↓ α

〈no
library〉

↓
α

〈Σ
x
〉
↓
α

Σ = {a, ax | a ∈ Σ′}, Σ′ = {library , book , author , title, article}, Σx = Σ \ Σ′,

no book = Σ′ \ {book}, no library = Σ′ \ {library}, no titlex = Σx \ {titlex}.

Figure 9.19: An Nwa for XPath query library/book/title.

adaptation, where transitions with letters {ax | a ∈ L} and {ax | a ∈ L′} for L,L′

of Figure 9.16 must go into the rejection state.

9.7 Experiments

We implemented Nwa projection within the QuiXPath system and tested it on

the (revised) XPathMark query set of Section 5.11 on queries A1-A8, B1-B7, and

B11(1)-B15(1).

As argued in the introduction, it is most natural to measure the efficiency in

parsing-free time as presented in Section 8.7.4.

In a first experiment, we start from Fxp and enhance it with projection. The

results are presented in Figure 9.21 for a 559 MB XPathMark document. It turns

out that projection reduces the parsing-free running time for this query set by a

factor of 4.3, which is a major improvement, in particular when evaluating many

XPath queries in parallel as needed for streaming Xslt or XQuery programs. In

our second experiment, we compare the overall running time of our PNwa evaluator

of XPath queries on Xml streams with Saxon’s in-memory evaluator [Kay 2004].

For each of our queries, we compare the full running times including parsing, when

evaluating the query n-times. The results are given in Figure 9.22. It turns out

that QuiXPath with projection for Nwas can answer on average a query up to 12

times in parallel, in no more time than needed by Saxon for the same task.

One observes that running less than 12 queries in parallel with PNwas is a lot

quicker than running them with Saxon, mostly due to the expensive in-memory
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q qrej

〈L〉 ↓ γ

〈/L〉 ↑ γ

〈L′〉 ↓ γ

Figure 9.20: L ⊆ Σno-var and L′ = {ax | a ∈ L}.

A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B11 B12 B13 B14 B15
0

1

2

3

ti
m

e
 i
n
 s

e
c
o
n
d
s

Parsing-Free Time pNWAs
Parsing-Free Time NWAs
Parsing Time

Figure 9.21: Improvement by Nwa projection of XPath query evaluation.

tree creation. But when running more than 12 queries on small documents, the

advantage of in-memory evaluation takes over. Indeed, without the time for parsing

and in-memory tree construction, Saxon in-memory evaluation is still faster by

a factor 20 in average than streaming with PNwas. With the improvements of

the present paper, it now seems possible that stream processing can become more

efficient than in-memory evaluation in practice in the future.
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Figure 9.22: Streaming wins vs. in-memory evaluation for up to 12 queries in

parallel.
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We present an algorithm for evaluating λXP queries on data trees that are

stored in-memory. When composed with our compiler from XPath 3.0 to λXP, this

yields an in-memory evaluator for full XPath.

In contrast to more standard λ calculi, the difficulty for obtaining an in-memory

evaluator for λXP is that it is unclear how to formulate a small-step semantics for

this language, given that it also supports first-order logical queries. For instance,

for evaluating ∃x.x ∈ {1, 2, 3} ∧ x + 1 ≥ 2 one has to generate and test all possible

values for x and apply the addition function to these values in order to test whether

they satisfy x + 1 ≥ 2. Our evaluator will rely on the mode system for λXP, in

order to properly split the logical and programming parts of λXP queries. The

logical parts will be evaluated by generating answer sets, while the programming

part will be evaluated by executing function applications.

We will then show how to turn our in-memory evaluator into a streaming eval-

uation algorithm. For this we need to split the navigational from non-navigation

aspects of λXP queries. Purely navigational λXP queries will be evaluated by run-

ning early nested word automata as described earlier. General λXP queries are

decomposed into networks of navigational λXP queries. These can be evaluated on

Xml streams by running networks of early nested word automata on them.
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In this chapter we present how to evaluate in-memory a network of navigational

λXP expressions. The network of navigational λXP is defined by simple expressions

that we introduce. For the evaluation of these formulas we present algorithms that

compute their semantics and variable assignments according to the mode system

of λXP that we introduced earlier. We thus evaluate well-moded and well-typed

λXP expressions.

10.1 Simplification of λXP Queries

λXP formulas can be decomposed into a network of navigational formulas, i.e. a

λXP formula where all subexpressions below an axis are navigational. This is a

simplication, because the evaluation of these simple kind of λXP formulas can be

split into an evaluation of navigational and non-navigational formulas, such that an

evaluator for navigational formulas can be lifted to an evaluator for arbitrary λXP

expressions.

Another simplication is the elimination of backward axes. This is neccessary

for a streaming evaluator that cannot go back on the stream, but also useful for an

in-memory evaluator, for example, since no support for backward axes is required.
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10.1.1 Simple Queries

We are interested in simple λXP formulas, where all formulas E in axis-expressions

A(E) are navigational, where below negations no non-deterministic constructs oc-

cur, and where goto-nodes formulas at no non-navigation expression exist.

Definition 18. We call an λXP formulas E simple, if

1. for all formulas A(E′) in E, where A is an axis, E′ contains no non-navigational

formulas,

2. for all navigational formulas A(F ) in E, where A is an axis, F contains no

negations ¬F ′, where F ′ contains disjunctions or non-child axes, and

3. for all formulas at(E1, E2) in E, E2 is navigational.

For example, for query

(Q1)

at(x1, {x | ch+(tweet ∧ isx
∧ ∃=(fn:data(set2list({x′ | ch(user name ∧ isx′)})),

at(x2, fn:data(set2list(

{x′ | ch+(students ∧ ch(name ∧ isx′))}))))}))

discussed already in Section 6.2.10, we give the following equivalent simple query,

where all subqueries of axes terms are navigational.

(Q′
1)

{x | ∃y[at(x1, ch
+(tweet ∧ isx ∧ isy))

∧ ∃=(fn:data(set2list({x′ | at(y, ch(user name ∧ isx′))})),

fn:data(set2list(

{x′ | at(x2, ch
+(students ∧ ch(name ∧ isx′)))})))]}

10.1.2 Decomposition into Networks of Navigational Queries

We next show that any λXP formulas can be translated into a simple λXP formula,

i.e. a network of navigational queries. In particular, this allows to lift the stream-

ing evaluator of Chapterchap:enwa for navigational λXP expressions to a general

streaming evaluator for λXP in Chapter 11.

Lemma 11. Any λXP formula can be transformed into a simple λXP formula.

Proof. Let E be an λXP formula.

Conditions (1) of definition 18 can be obtained as follows. We identify maximal

navigational contexts C in E with formulas E1, . . . , En in the holes: C(E1, . . . , En),

where all Ei are non-navigational and have an axis A above them in C for all 1 ≤

i ≤ n. Then we replace such C(E1, . . . , En) in E by ∃y1. . . . ∃yn.[C(isy1 , . . . , isyn)∧

at(y1, E1) ∧ . . . ∧ at(yn, En)].

Negations ¬ below an axis in navigational formulas of E which contain disjunc-

tions or non-child axes, are eliminated as follows. We identify maximal navigational

contexts C in E with formulas ¬E1, . . . ,¬En in the holes: C(¬E1, . . . ,¬En), where
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all Ei are navigational, containing a disjunction or some non-child axes, and where

all Ei have an axis A above them in C for all 1 ≤ i ≤ n. Then we will replace

such C(¬E1, . . . ,¬En) in E by ∃y1. . . . ∃yn.[C(isy1 , . . . , isyn) ∧ ¬at(y1, E1) ∧ . . . ∧

¬at(yn, En)].

Last but not least, we consider formulas at(E1, E2) in E, where E2 is not navi-

gational. We rewrite at(E1, E2) as follows: Let E2 = E′(E′
1, . . . , E

′
n), where E′

i are

navigational formulas and E′ does not contain any axes or label tests, assuming con-

dition (1) is true. Then at(E1, E2) is rewritten to E′(at(E1, E
′
1), . . . ,at(E1, E

′
n)).

This is correct and can be proven by induction on the structure of non-navigational

formulas E2. The idea is to push the at formula down to navigational formulas,

who depend directly on the evaluation start node, changed by at-formulas.

Simple query Q′
1 can be obtained from Q1 following the proof of the lemma.

10.1.3 Backward Axes Elimination

We show how to evaluate backward axes in simple navigational queries. Let F be

a simple navigational λXP formula, which contains backward axes, such as parent

par , ancestor par+, or preceding-sibling ps+. Since we are considering networks of

navigational queries, queries are evaluated from different nodes in general. We are

thus considering the more general case of an evaluation of F at some arbitrary node

π, instead of evaluating F from some root node always.

Our backward axes elimination procedure rewrites the query by “pushing up”

backward axes in the formula, until they appear at the root position of the formula.

This is useful for queries that are evaluated at the root of a tree, since there no

parent, no ancestor, and no preceding-sibling exists. Instead of rewriting formulas

F , which is evaluated at some node π, we rewrite backward axes in the slightly

adapted formulas:

start(F, z) =def ch∗(isz ∧ F )

Evaluating F at node π ∈ nodes(s) is then equivalent to evaluating start(F, z) on

the root root(π) to which π belongs:

JF Ks,π,µ = Jstart(F, z)Ks,root(π),µ⊎[z/π]

Therefore the elimination process “pushes up” backward axes and disjunctions

in start(F, z), until at the root of the term backward axes can be eliminated, by

applying the rewrite rules that we give in Figure 10.1 exhaustively. Notice that

since start(F, z) is simple we can assume that no backward axes appear below a

negation, for which reason the set of given rewrite rules suffices.



176 Chapter 10. In-Memory Evaluation of λXP Queries

Backward axes below existential axes:

ch(par(F ) ∧ F ′) = F ∧ ch(F ′)

ch(par+(F ) ∧ F ′) = (F ∨ par+(F )) ∧ ch(F ′)

ch(ps+(F ) ∧ F ′) = ch(F ∧ ns+(F ′))

ch+(par(F ) ∧ F ′) = (F ∧ ch(F ′)) ∨ ch+(F ∧ ch(F ′))

ch+(par+(F ) ∧ F ′) = ((par+(F ) ∨ F ) ∧ ch+(F ′)) ∨ (ch+(F ∧ ch+(F ′)))

ch+(ps+(F ) ∧ F ′) = ch+(F ∧ ns+(F ′))

ns+(par(F ) ∧ F ′) = par(F ) ∧ ns+(F ′)

ns+(par+(F ) ∧ F ′) = par+(F ) ∧ ns+(F ′)

ns+(ps+(F ) ∧ F ′) = ((ps+(F ) ∨ F ) ∧ ns+(F ′)) ∨ ns+(F ∧ ns+(F ′))

Disjunctions where A is an axis, and De Morgan’s law:

A(F ∨ F ′) = A(F ) ∨A(F ′)

(F ∨ F ′) ∧ F ′′ = (F ∧ F ′′) ∨ (F ′ ∧ F ′′)

Eliminate backward axes at the root of the term:

par(F ) = false

par+(F ) = false

ps+(F ) = false

Figure 10.1: Backward axes rewrite rules.

Example.

ch(isx ∧ (par+(a) ∨ ps+(b))) = ch((isx ∧ par+(a)) ∨ (isx ∧ ps+(b)))

= ch((isx ∧ par+(a))) ∨ ch(isx ∧ ps+(b)))

= ((a ∨ par+(a)) ∧ ch(isx)) ∨ ch(b ∧ ns+(isx))

= ((a ∨ false) ∧ ch(isx)) ∨ ch(b ∧ ns+(isx))

= (a ∧ ch(isx)) ∨ ch(b ∧ ns+(isx))

10.2 Evaluation Algorithm

What we would like to compute is the semantics JEKs,π,α for any expression E,

sequence of trees s, node π, and variable assignment α. We restrict ourselves to

expressions E that are well-moded and well-typed. This permits us to separate logi-

cal subexpressions, where variables assignments must be enumerated, from program

subexpressions, where functions are applied.

10.2.1 Specification

In order to deal with set constructions and existential quantifiers, we have to com-

pute variable assignments for well-moded expressions E ⊲ V1 → V2 of type bool.
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More precisely, given an assignment of the variables in V1 we have to compute

an extension to the variables in V1 ∪ V2 so that E becomes true. For well-moded

expressions of other types, the set V2 will always be empty.

Lemma 12. If E ⊲ V1 → V2 with V2 6= ∅ and E : T then T : bool.

If V2 = ∅ then we are interested in a program evaluator, which inputs some V1

assignment and computes the value of E for it. Otherwise, we have T = bool and

are interested in a query evaluator that inputs some V1 assignment, and generates

the set of all extensions to variables in V2 so that E becomes true.

Proposition 11. Let E be an expression with mode E ⊲ V1 → V2 and type E : T .

a) There exist a program evaluator A that computes the value of E for any se-

quence s of trees, V1 ∪ V2 assignments α into s-values, and any node π ∈

nodes(s):

A(s, α, π) = JEKs,π,α

under the assumption that a program evaluator exists that computes the se-

mantics of expressions c ∈ Const.

b) There exists a query evaluator B that for any sequence s of trees and V1

assignment to s-values computes the set of V1 ∪ V2 assignments to s-values

that extend β and satisfies E:

B(s, β, π) =







⊥ , if A(s, α, π) = ⊥

for some α ⊇ β

{α | β ⊆ α, A(s, α, π) = true } , otherwise

Proof. The construction of A and B is by simultaneous induction on derivations of

judgments E ⊲ V1 → V2. We first note that if V2 = ∅ then we can always obtain B

from A as follows:

B(s, π, β) =







{β} , A(s, π, β) = true

∅ , A(s, π, β) = false

⊥ , A(s, π, β) = ⊥

Submodes. Suppose that the judgement E ⊲ V1 → V2 is derived by the first rule

for submodes:
E ⊲ V → V ′

E ⊲ V ∪ V ′′ → V ′

Let A′, B′ be the program and query evaluators for E ⊲ V → V ′, respectively. We

then define program and query evaluators for E ⊲ V ∪ V ′′ → V ′ as follows:

A(s, π, α) = A′(s, π, α|V ∪V ′ )

B(s, π, β) =

{
⊥ , if B′(s, π, β|V ) = ⊥

{β ⊎ β′ | β′ ∈ B′(s, π, β|V )} , otherwise
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Next consider the case, where the judgement was inferred by the second rule for

submodes:
E ⊲ V → V ′ ∪ V ′′

E ⊲ V ∪ V ′′ → V ′

Let A′, B′ be the evaluators for E ⊲ V → V ′ ∪ V ′′. We define the evaluators A,B

for E ⊲ V ∪ V ′′ → V ′ as follows:

A(s, π, α) = A′(s, π, α)

B(s, π, β) =

{
⊥ , if B′(s, π, β|V ) = ⊥

{β′ | β′ ∈ B′(s, π, β|V ), β ⊆ β′} , otherwise

Conjunction. The mode is inferred by inference rule:

E1 ⊲ V → V ′ E2 ⊲ V ∪ V ′ → V ′′ E = E1 ∧ E2

E ⊲ V → V ′ ∪ V ′′

Let A1, B1 be evaluators for E1⊲V → V ′ and A2 and B2 evaluators for E2⊲V ∪V ′ →

V ′′. We define evaluators for E ⊲ V → V ′ ∪ V ′′ by induction:

A(s, π, α) = A1(s, π, α)∧Bool⊥A2(s, π, α)

B(s, π, β) =







⊥ , if B1(s, π, β) = ⊥ or

B2(s, π, β1) = ⊥ for

some β1 ∈ B1(s, π, β)

{β2 | β1 ∈ B1(s, π, β), β2 ∈ B2(s, π, β1)} , otherwise

Disjunction.
E1 ⊲ V → V ′ E2 ⊲ V → V ′ E = E1 ∨ E2

E ⊲ V → V ′

Let Ai and Bi be evaluators for Ei ⊲ V → V ′ for i ∈ {1, 2}. We define evaluators

for E ⊲ V → V ′ as:

A(s, π, α) = A1(s, π, α)∨Bool⊥A2(s, π, α)

B(s, π, β) = B1(s, π, β) ∪⊥ B2(s, π, β)

Negation.
E ⊲ V → ∅

¬E ⊲ V → ∅

Let A′ be the program evaluator for E ⊲V → ∅. We define A and B for ¬E ⊲V → ∅

as follows:

A(s, π, α) = ¬Bool⊥A′(s, π, α)

The modes are such that no variables are generated, so that B(s, π, β) can be defined

from A(s, π, β).

Constants.
true

c ⊲ ∅ → ∅
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We define program evaluator A for c ⊲ ∅ → ∅ as:

A(s, π, α) = JcKs,π

According to the proposition there exists a program evaluator computing JcKs,π.

Again, no variables are generated, so that B(s, π, β) can be defined from A(s, π, β).

Variables.
true

x ⊲ {x} → ∅

We define evaluators A and B for x ⊲ {x} → ∅ as:

A(s, π, α) = α(x)

Due to the modes, no variables are generated, B(s, π, β) can be defined from

A(s, π, β).

Existential quantification.

E ⊲ V → V ′ ∪ {x} x /∈ V ′

∃x.E ⊲ V → V ′

Let B′ be a query evaluator for E ⊲ V → V ′ ∪ {x}. We define evaluators for

∃x.E ⊲ V → V ′ as follows:

A(s, π, α) =







⊥ , B′(s, π, α|V ) = ⊥

true , ∃β′ ∈ B′(s, π, α|V ) : α ⊂ β′

false , otherwise

B(s, π, β) =

{

⊥ , if B′(s, π, β) = ⊥

{β′
|V ∪V ′

| β′ ∈ B′(s, π, β)} , otherwise

Navigation formulas. Consider first the rule for navigation by axes:

E ⊲ V → V ′

A(E) ⊲ V → V ′

Let A′ and B′ be evaluators for E⊲V → V ′. We define evaluators for A(E)⊲V → V ′

as:

A(s, π, α) = (∃π′ ∈ nodes(s) : As(π, π′) ∧Bool⊥A′(s, π′, α) = true)

B(s, π, β) =







⊥ , if B′(s, π′, β) = ⊥ for

some π′ with As(π, π′)

{β′ | As(π, π′), β′ ∈ B′(s, π′, β)} , otherwise

Node tests.
true

L ⊲ ∅ → ∅
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Since no variables are generated we only need to define the program evaluator A:

A(s, π, α) = (π ∈ Ls)

Negated navigational formulas.

E ⊲ V → V ′ E is navigational

¬E ⊲ V → V ′

Let A′ and B′ be evaluators for E ⊲ V → V ′. We define evaluators A and B for

¬E ⊲ V → V ′ as:

A(s, π, α) = (¬Bool⊥A(s, π, α))

B(s, π, β) =







⊥ , if B′(s, π, β) = ⊥

{β′ | β ⊆ β′, β′ /∈ B′(s, π, β) , otherwise

β′ is V ∪ V ′ assignment to s}

Notice that β′ in the definition of B(s, π, β) only permits variables of type node,

since E is navigational. Therefore there is only a finite number nodes to try for β′.

Location.
E1 ⊲ V → ∅ E2 ⊲ V → V ′ E = at(E1, E2)

E ⊲ V → V ′

Let A1 be a program evaluator for E1 ⊲ V → ∅, and A2 and B2 evaluators for

E2 ⊲ V → V ′. We define evaluators for E ⊲ V → V ′ as follows:

A(s, π, α) =

{
A2(s,A1(s, π, α), α) , A1(s, π, α) 6= ⊥

⊥ , otherwise

B(s, π, β) =

{
B2(s,A1(s, π, β), β) , A1(s, π, β) 6= ⊥

⊥ , otherwise

Conditional.
E1 ⊲ V → ∅ E2 ⊲ V → V ′ E3 ⊲ V → V ′

E = if E1 then E2 else E3

E ⊲ V → V ′

Let A1 be a program evaluator for E1 ⊲ V → ∅ and Ai and Bi be evaluators for

Ei ⊲ V → V ′ for i ∈ {2, 3}. We define evaluators A and B for E ⊲ V → V ′ as:

A(s, π, α) =







A2(s, π, α) , A1(s, π, α) = true

A3(s, π, α) , A1(s, π, α) = false

⊥ , A1(s, π, α) = ⊥

B(s, π, β) =







B2(s, π, β) , A1(s, π, β) = true

B3(s, π, β) , A1(s, π, β) = false

⊥ , A1(s, π, β) = ⊥
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Recursive definition.

∀1 ≤ i ≤ n. Ei ⊲ V ∪ {x1, . . . , xn} → ∅

E′ ⊲ V ∪ {x1, . . . , xn} → V ′

E = letrec x1 = E1, . . . , xn = En in E′

E ⊲ V → V ′

Let Ai be program evaluators for Ei ⊲ V ∪ {x1, . . . , xn} → ∅ for 1 ≤ i ≤ n and

A′ and B′ be evaluators for E′ ⊲ V ∪ {x1, . . . , xn} → V ′. We define evaluators for

E ⊲ V → V ′ as follows:

A(s, π, α) =

Letrec

v1 = A1(s, π, α|V ⊎ [x1/v1, . . . , xn/vn]),

. . .

vn = An(s, π, α|V ⊎ [x1/v1, . . . , xn/vn])

in A′(s, π, α ⊎ [x1/v1, . . . , xn/vn])

B(s, π, β) =

Letrec

v1 = A1(s, π, β ⊎ [x1/v1, . . . , xn/vn]),

. . .

vn = An(s, π, β ⊎ [x1/v1, . . . , xn/vn])

in B′(s, π, β ⊎ [x1/v1, . . . , xn/vn])

By Proposition 1, there exist algorithms computing the functions vi for all 1 ≤

i ≤ n.

Tuple constructions.

∀1 ≤ i ≤ n. Ei ⊲ V → ∅ E = (E1, . . . , En)

E ⊲ V → ∅

Let Ai be program evaluators for Ei ⊲ V → ∅ for 1 ≤ i ≤ n. We define the program

evaluator A for E ⊲ V → ∅ by:

A(s, π, α) =

{
⊥ , ∃i : Ai(s, π, α) = ⊥

(A1(s, π, α), . . . , An(s, π, α)) , otherwise

The query evaluator B can be derived from the program evaluator A since no

variables are generated.

Tuple decompositions.

E1 ⊲ V → ∅ E2 ⊲ V ∪ {x1, . . . , xn} → V ′

E = match E1 with (x1, . . . , xn) in E2

E ⊲ V → V ′
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Let A1 and be a program evaluator for E1 ⊲ V → ∅, and A2 and B2 evaluators for

E2 ⊲ V ∪ {x1, . . . , xn} → V ′. We define evaluators for E ⊲ V → V ′ as:

A(s, π, α) =







A2(s, π, α ⊎ [x1/a1, . . . , xn/an]) , A1(s, π, α) 6= ⊥

where A1(s, π, α) = (a1, . . . , an)

⊥ , otherwise

B(s, π, β) =






{β′
|V ∪V ′

| β′ ∈ B2(s, π, β ⊎ [x1/a1, . . . , xn/an]) , A1(s, π, β) 6= ⊥

A1(s, π, β) = (a1, . . . , an)}

⊥ , otherwise

Set constructions.

E ⊲ V → {x}

{x | E} ⊲ V → ∅

Let B1 be a query evaluator for E ⊲ V → {x}. We define the program evaluator A

for {x | E} ⊲ V → ∅ as follows:

A(s, π, α) =

{
⊥ , if B1(s, π, α) = ⊥

{β′(x) | β′ ∈ B1(s, π, α)} , otherwise

Since no variables are generated, the query evaluator B can be derived from the

program evaluator A.

List constructions.

E1 ⊲ V → ∅ E2 ⊲ V → ∅

E1 :: E2 ⊲ V → ∅

Let Ai be program evaluators for Ei⊲V → ∅ for i ∈ {1, 2}. We define the A program

evaluator for E1 :: E2 ⊲ V → ∅ as:

A(s, π, α) =

{
⊥ , ∃i : Ai(s, π, α) = ⊥

A1(s, π, α) :: A2(s, π, α) , otherwise

Since no variables are generated, the B query evaluator can be derived from the A

program evaluator.

List decomposition.

E1 ⊲ V → ∅ E2 ⊲ V ∪ {x, y} → V ′ E3 ⊲ V → V ′

E = match E1 with x :: y then E2 else E3

E ⊲ V → V ′

Let A1 be a program evaluator for E1 ⊲ V → ∅, A2 and B2 evaluators for E2 ⊲ V ∪

{x, y} → V ′, and A3 and B3 evaluators for E3 ⊲ V → V ′. We define evaluators for
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E ⊲ V → V ′ as follows:

A(s, π, α) =







A2(s, π, α ⊎ [x/a, y/a′]) , A1(s, π, α) = a :: a′

A3(s, π, α) , A1(s, π, α) = nil

⊥ , A1(s, π, α) = ⊥

B(s, π, β) =






{β′
|V ∪V ′

| β′ ∈ B2(s, π, β ⊎ [x/a, y/a′])} , A1(s, π, β) = a :: a′

B3(s, π, β) , A1(s, π, β) = nil

⊥ , A1(s, π, β) = ⊥

Function application.

E1 ⊲ V → ∅ E2 ⊲ V → ∅

E1E2 ⊲ V → ∅

Let Ai be program evaluators for Ei⊲V → ∅ for i ∈ {1, 2}. We define the A program

evaluator for E1E2 ⊲ V → ∅ as follows:

A(s, π, α) =

{
f(A2(s, π, α)) , f = A1(s, π, α) 6= ⊥

⊥ , otherwise

Since no variables are generated, the B query evaluator can be derived from the

program evaluator A.

Function definition.
E ⊲ V ∪ {x} → ∅

λx.E ⊲ V → ∅

Let A′ be a program evaluator for E ⊲ V ∪ {x} → ∅. We define the A program

evaluator for λx.E ⊲ V → ∅ as follows:

A(s, π, α) = (Λv ∈ JType(x)K.A′(s, π, α ⊎ [x/v]))⊥

Since no variables are generated, the B query evaluator can be derived from the A

program evaluator.

Variable binding.
E ⊲ V → ∅

x = E ⊲ V → {x}

Let A′ be a program evaluator for E ⊲ V → ∅. We define the evaluators for x =

E ⊲ V → {x} as follows:

A(s, π, α) =







⊥ , if A′(s, π, α|V ) = ⊥

true , if α(x) = A′(s, π, α|V )

false , otherwise

B(s, π, β) =

{
⊥ , if A′(s, π, β) = ⊥

{β ⊎ [x/A′(s, π, β)]} , otherwise

Set Membership.
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E ⊲ V → ∅

x ∈ E ⊲ V → {x}

Let A′ be the program evaluator for E ⊲ V → ∅. We define the evaluators for

x ∈ E ⊲ V → {x} as follows:

A(s, π, α) =







⊥ , if A′(s, π, α|V ) = ⊥

true , if α(x) ∈ A′(s, π, α|V )

false , otherwise

B(s, π, β) =

{
⊥ , if A′(s, π, β) = ⊥

{β ⊎ [x/v] | v ∈ A′(s, π, β)} , otherwise

10.2.2 Implementation

Large parts of the implementation of the in-memory evaluator are straightforward

given by functional programs. What we have not yet explained is how functions will

be represented. Functions may be contained in variable assignments as the input

of the evaluator, but may also be produced as output.

In our implementation, we always represent functions by functional programs

that compute the functions. For a function Λv ∈ Int .v + 3, one can use the corre-

sponding functional program fun(v) v + 3 where v ∈ Int . For recursive functions

Letrec x1 = E1, . . . , xn = En in E′ we can assume functional programs for E1, . . .,

En and E and then construct the functional program for the letrec expression as in

the proof of Proposition 1.

10.2.3 Examples

In the following we give examples for the evaluation of functions, recursive lets,

logical formulas, and their combinations.

Functions When applied to the lambda expression λx. x + 5 where Type(x) =

int the implementation of the program evaluator A returns a functional program

computing the total function Λi ∈ Int . i + 5, which when applied to some integer

i ∈ Int returns i + 5. The implementation of the program evaluator A for the

function application

(λx : int. x + 5)(3)

applies this functional program fun(v) v + 5 where v ∈ Int , which when applied to

argument 3 returns 8.

Recursion Let z be a variable of type Type(z) = int. When applied to the

recursive let expression

letrec xfac = λz. if z = 0 then 1 else z · xfac(z − 1) in xfac
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the implementation of the program evaluator A returns a functional program com-

puting the faculty function:

fac = fun(i) if i = 0 then 1 else i · fac (i− 1)

where i ∈ Int . When applied to a nonnegative integer i this functional program

computes fac(i) = i!, and otherwise returns ⊥. This functional program can be

obtained in a systematic manner from the letrec expression, as shown in the proof

of Proposition 1.

Mixing Logics and Functions Let x be a variable of type Type(x) = int. We

consider the following logical formula which contains an application of a recursive

function:

∃x. x ∈ {1, 2, 3} ∧ fac(x) ≥ 5

The query evaluator B for x ∈ {1, 2, 3} will return the set of variable assignments

{[x/1], [x/2], [x/3]}. From these, the query evaluator B of the conjunction will filter

those assignments, for which program evaluator A of fac(x) ≥ 5 returns true. This

is the set {[x/3]}. Since this set is nonempty, the program evaluator A of the

existential quantified formula will return true.





Chapter 11

Streaming Evaluation of λXP

Queries

Contents

11.1 Streaming Evaluators . . . . . . . . . . . . . . . . . . . . . . . 187

11.1.1 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.1.2 Linearizing a Sequence of Trees . . . . . . . . . . . . . . . . . 190

11.1.3 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

11.1.4 Extended Types . . . . . . . . . . . . . . . . . . . . . . . . . 192

11.1.5 Open Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

11.1.6 Registrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11.1.7 Program and Query Evaluators . . . . . . . . . . . . . . . . . 195

11.1.8 Running Evaluators over Streams . . . . . . . . . . . . . . . . 196

11.2 Evaluators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

11.2.1 Generic Functions . . . . . . . . . . . . . . . . . . . . . . . . 198

11.2.2 Inductive Construction of Evaluators . . . . . . . . . . . . . . 201

11.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

11.3.1 Navigational Queries . . . . . . . . . . . . . . . . . . . . . . . 244

11.3.2 A Network of Queries . . . . . . . . . . . . . . . . . . . . . . 246

11.4 Tuple Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

11.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

In this chapter we present a streaming algorithm that evaluates a network

of early nested word automata, where navigational expressions are evaluated by

eNwas as described in Chapter 8.

11.1 Streaming Evaluators

In this section we describe how we evaluate λXP formulas over a stream. We are

interested in two evaluators similar to Section 10.2: A program evaluator As that

computes the semantics of a formula, and a query evaluator Bs that computes sets

of extensions of variable assignment under which As becomes true. Both evalua-

tors use registrations that store possible open descriptions of values and variable

assignments, which can be completed when future values arrive on the stream.
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11.1.1 Restrictions

For the streaming evaluation we need to impose the following restrictions on con-

ditionals, list decompositions, and two new constants that we introduce. These

restrictions are necessary to avoid exponential blow-ups and problems with pro-

gram termination that arise by speculative execution that is required without the

restrictions. For example, the test expression of a conditional may not yet be deter-

mined at some event of stream, since it requires more information from the stream

for its evaluation. Therefore, one needs to speculatively guess that either the then

or the else expression will be taken. A problem is the nontermination of an invalid

branch that was a wrong guess. Furthermore, the choices for the guesses must be

propagated throughout the network, leading to copies of the choices, which becomes

expensive to resolve.

Furthermore, our streaming evaluators will maintain collections, i.e. set or lists,

of nodes whose determination may require more information from the future of the

stream. Such collections cannot always be decomposed by using list-matches, since

list-matches will be strongly restricted to be acceptable for streaming.

Therefore, we add further constants to our language. In particular, we introduce

the two mapping constants:

map-listT,T ′ : (T → T ′) × [T ] → [T ′]

map-setT,T ′ : (T → T ′) × {T} → {T ′}

which given some function f of type T → T ′ and a list or a set of type T , applies the

function to every element of the list or set, to obtain a new list or set, respectively.

This works fine, as long as termination is ensured for all applications of f to some

value. We also add constant

string value : node → string

to our language, that can be defined as in Section 7.2.3, but as a constant it can

be implemented in any preferable way. It computes the string value of a given

node. Then, for example, map-list string value can convert a list of nodes to

the list of their string values, even though the membership of some node to the

input list will be decided only lately. In this case, one will apply the function to

the candidate nodes in a speculative manner. This is safe, as long as speculative

function applications will not lead to nontermination.

Definition 19. We call a λXP expression E stream-acceptable if E is well-typed

and satisfies the following two conditions:

(1) for subexpression of E that is either a conditional

if E0 then E1 else E2

or a branching match-expression

match E0 with x :: y then E1 else E2

with types Ei : Ti for 1 ≤ i ≤ 3, either of the following holds:
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(a) the types T1 and T2 do not contain the type node as a subterm and the

expressions E1 and E2 do not contain any axis and any constant whose

semantics depends on nodes, or

(b) the type T0 does not contain the type node as a subterm and the expres-

sion E0 does not contain any axis and any constants whose semantics

depends on nodes.

(2) all occurrences of the constants map-list or map-set in E must be in applica-

tions of the form

map-list E′ or map-set E′

where E′ is some expression that is terminating in that it does neither contain

letrec nor any free variables or constants, with the exception of

string value

(or other constants that may not lead to nontermination).

Restriction (1a) allows for a late evaluation of branches E1 and E2 of conditionals

or branching match expressions. Since neither T1 and T2 do contain the type node

as a subterm and neither E1 nor E2 contain any axes, the expressions E1 and E2

do not depend on nodes on the stream, so that can be evaluated at any time point,

without any needs of stream buffering. For example, consider the expression

if ch∗(a) then fac(string value(1st-node())) else fac(string value(2nd -node()))

that is run on a document which has no a-labeled nodes, while the documents

first node’s string value is −1 and the second node’s string value is 3. 1st-node

and 2nd -node are constants that return the first and second node of the root,

respectively:

1st-node : unit → node and 2nd -node : unit → node

and fac is the faculty function defined in Section 6.2.7 that is defined for positive

integers only. The correct evaluation of the expression on the stream which contains

no a-labeled node should terminate with 6, since the evaluation of the test expression

of the conditional selects the else branch, but however, before arriving at the end

of the stream to determine whether an a-labeled descendant exists, when doing

all computation speculatively, one would be forced to also evaluate fac(−1), which

would lead to nontermination.

With restriction (1b) the test expression of the conditional and branching match

expressions will be determined right at the node when the branches are started, since

independent of future nodes on the stream. Then one chooses the respective branch

depending on the evaluation of the test expression and whether the list is empty or

not, respectively.
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Mapping expressions map-list E and map-set E allow to decompose lists and

sets containing elements whose membership to the list or set may depend on in-

formation from the future of stream. However, we must ensure that the function

application of the function by E on elements of the collection does not run into

nontermination. Restriction (2) thereby forbids letrec expressions, free variables,

and other constants, which may lead to nontermination.

11.1.2 Linearizing a Sequence of Trees

Let s be a sequence of trees s = t1, . . . , tn. A streaming evaluator for s consumes

the events of linearizations lin(t1), . . . , lin(tn). At every time point, i.e. after having

consumed already all events of linearizations lin(ti) up to and excluding an event

ei for all 1 ≤ i ≤ n, then the evaluator has the choice to read next any of the events

ei for some 1 ≤ i ≤ n:

lin(t1) =

e1

lin(t2) =

e2

...

lin(tn) =

en

︸ ︷︷ ︸

= lin(tn)≤en

By l≤e we denote the prefix of a linearization l that ends with event e. A prefix of

a linearization of s is thus a tuple (lin(t1)
≤e1 , . . . , lin(tn)≤en), which we denote by

lin(s)≤~e where ~e = (e1, . . . , en). Notice that there are many possible linearizations

of a sequence of trees: one for every different shuffle of events of the linearizations

of the trees.

11.1.3 Updates

In streaming, values are computed over the stream incrementally, such that one

needs a facility to modify them in an incremental manner. We define the modifi-

cations via update commands Upds listed in Figure 11.1 whose types upds(T ) are

defined in Figure 11.2. When no update is required, one can make use of the com-

mand none. Update commands can be composed via “&”. Atomic future values

• can be instantiated with a value v via command instantiate(v). Tuples are up-

dated with an tuple of updates. Sets and lists can be extended and their elements

can be updated and resolved, such that the element remains in the collection or

is removed. Finally, variable assignments can be extended with a new record and

values of variables may be updated.

In Figure 11.3 we present the apply function that given some value v and an

update command c returns the by c updated value of v.
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c ::= none no update

| c1&c2 two consecutive updates

| instantiate(v) v : T ∈ Tatom instantiating • by v

| (c1, . . . , cn) updating tuples

| extend -set(v) v : {T} extending sets by set v

| upd -elem-set(v, c) v : T updating element v of a set

| resolve-elem-set(e?, b) e? : T, b : bool resolving element e? by b

| extend -list(v) v : [T ] extending lists by list v

| upd -elem-list(i, c) i : int updating elements at index i

in a list

| resolve-elem-list(i, b) i : int, b : bool resolving element e? at

position i by boolean b

| extend -var -ass(x, v) x : T, v : T extending variable

assignment by [x/v]

| upd -var -ass(x, v, c) x : T, v : T updating assignment x to v by c

Figure 11.1: Update commands c.

true

none : upds(T )

c1 : upds(T ) c2 : upds(T )

c1&c2 : upds(T )

T ∈ Tatom v ∈ T

instantiate(v) : upds(T )

c1 : upds(T1) . . . cn : upds(Tn)

(c1, . . . , cn) : upds(T1 × . . .× Tn)

v : {T}

extend -set(v) : upds({T})

v : T c : upds(T )

upd -elem-set(v, c) : upds({T})

e? : T b : bool

resolve-elem-set(e?, b) : upds({T})

v : [T ]

extend -list(v) : upds([T ])

i : int c : upds(T )

upd -elem-list(i, c) : upds([T ])

i : int b : bool

resolve-elem-list(i, b) : upds([T ])

x : T x ∈ V v : T

extend -var -ass(x, v) : upds(assV )

x : T x ∈ V v : T c : upds(T )

extend -var -ass(x, v) : upds(assV )

Figure 11.2: Update commands and their types upds(T ).
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l e t r e c

apply = fun (v , c )

case c

of none then none

of c1&c2 then apply(apply(v, c1), c2)

of instantiate(v′) then i f v = • then v′ end

of (c1, . . . , cn) then

case v of (v1, . . . , vn) then (apply(v1, c1), . . . , apply(vn, cn)) end

of extend -set(v′) then v ∪ v′

of upd -elem-set(e, c′) then v \ {e} ∪ {apply(e, c′)}

of resolve-elem-set(e?, b) then i f b then v \ {e?} ∪ {e} e l s e v \ {e?}

of extend -list(v′) then listconcat(v, v′)

of upd -elem-list(i, c′) then list-apply-pos(v, i, λx.apply(x, c′))

of resolve-elem-list(i, b) then i f b then case v[i] of e? then

list-set(v, i, e) end e l s e list-remove(v, i)

of extend -var -ass(x, v′) then v ⊎ [x/v′]

of upd -var -ass(x, v′, c′) then v|v.dom()\{x}
⊎ [x/apply(v′, c′)]

end

in

apply

end

Figure 11.3: Function to apply update commands.

11.1.4 Extended Types

We extend the types of λXP by types assV for variable assignments, type proc(T )

of procedures that are like functions of type T → unit except that they do not

produce any output, type upds(T ) for update commands, variable types {x}, and

event types event:

T ::= A | T1 × . . .× Tn | [T ] | {T} | T1 ∪ T2 | T1 → T2

| assV | proc(T ) | upds(T ) | {x} | event

11.1.5 Open Values

For the evaluation of λXP formulas we have to compute s-values incrementally, since

the stream is consumed event per event. Given a prefix lin(s)≤~e of a linearization

of s, we can thus only compute lin(s)≤~e-values, that are open values that we define

in the following.

Open values are values such as atomic values, tuples, and functions, but where

sets are replaced by open sets, lists by open lists, and where the • value is added.

The open • value represents a future value that can only be determined once more

information from the stream is known. For example, it may be the future value

of a filter that requires to read more from the stream for the evaluation to true

or false. Sets and lists may also contain uncertain elements v?, which are atomic

values whose selection depends on the future of the stream. It may be that not all

the elements of a set are yet known, for which we consider open sets S ∪ • where
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JT K≤~e
s = JT Ks \ {π | π /∈ nodes(lin(s)≤~e)} ∪ {•} T ∈ Tatom

JT1 × . . .× TnK≤~e
s = JT1K

≤~e
s × . . .× JTnK≤~e

s

J{T}K≤~e
s = {{v1, . . . , vn} ∪ • | vi = v′i or vi = v′?i , v

′
i ∈ JT K≤~e

s }

J[T ]K≤~e
s = {v1 :: . . . :: vn :: • | vi = v′i or vi = v′?i , v

′
i ∈ JT K≤~e

s }

JT1 ∪ T2K
≤~e
s = JT1K

≤~e
s ∪ JT2K

≤~e
s

JT1 → T2K
≤~e
s = JT1K

≤~e
s → (JT2K

≤~e
s ∪ {⊥})

JassV K≤~e
s = assignments of variables x ∈ V of some type T

to open values in JT K≤~e
s

Jproc(T )K≤~e
s = JT K≤~e

s → ()

Jupds(T )K≤~e
s = as defined in Figure 11.2

J{x}K≤~e
s = {x}

JeventK≤~e
s = events(s)

Figure 11.4: Open values JT K≤~e
s , where T is a type, s a sequence of trees, and

lin(s)≤~e is a prefix of lin(s) that ends with events ~e.

only the elements of S are known so far. Similarly open lists can be open to the

right, such that the last element in the list is •, for example open list 1 :: 2 :: 3 :: •.

More precisely, we define open values JT K≤~e
s in Figure 11.4 for any extended type

T and prefix lin(s)≤~e of a linearization of a sequence s of data trees.

For atomic types T ∈ Tatom open values must belong to lin(s)≤~e-values and thus

exclude any node that comes in the future of the stream. The selection of uncertain

atomic open values v? depends on the future of the stream. They may only appear

within sets and lists, and may thus be deleted later on. Open tuples are tuples

that contain open values. Open sets are sets that may grow with the stream and

contain uncertain elements. Open lists are lists v1 :: . . . :: vn :: • with an open end

such that it may still grow with the stream containing possibly uncertain elements.

Open functions are functions whose arguments and values are open values.

11.1.6 Registrations

We are interested in a program evaluator that computes the semantics of a formula

incrementally while consuming the stream, and in a query evaluator that computes

incrementally extensions of variable assignments under which some formula becomes

true. This requires registrations that store in tables tuples of open values and

variable assignments to open variable.

Definition 20. Let V be a finite subset of typed variables, and let T be some type.

A registration with these parameters is a tuple

R = (R.dom, R.set-val , R.add-inst , R.remove, R.upd-ass)

of programs, that operate on a finite table as illustrate in Figure 11.5. This table

maps entries of type T ′ = node×assV to values of type T in a functional manner.

The programs are doing the following:
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R

node assV T

. . .

π α v

. . .

Figure 11.5: A registration table.

• R.dom : unit → T ′ is always applied to the empty tuple. It returns the current

set of entries of type T ′ to which the registration’s table assigns values.

• R.add-inst : proc(T ′) can be applied to any entry of type T ′ that is new to

the table, and then adds it to the table with value •.

• R.set-val : proc(T ′×T ) is given as arguments an entry of type T ′ in the table

and a value of type T . It then adds the entry with this value to the table.

• R.get-val : T ′ → T is a partial function that can be applied to an entry of

type T ′. It then returns the unique value of type T that the table assigns to

this entry, while assuming that it is there.

• R.remove : proc(T ′) receives an entry of type T ′ as argument and removes it

from the table, while assuming that is was there.

• R.upd-ass : proc(T ′ × assV ) receives an entry of type T ′ and a variable as-

signment of type assV and it assumes that the entry exists in the table. It

then replaces the variable assignment of the entry with the given variable as-

signment, preserving the entrie’s value.

Furthermore, we introduce master-registrations that extend registrations with

further programs by which to govern a tuple of slave registrations by providing

additional functionality.

Definition 21. Let n be a natural number, R is a registration of type T with

entries of type T ′ = node × assV for some set of typed variables V , and Ri are

subregistrations of type Ti for all 1 ≤ i ≤ n. A master-registration is a tuple of

programs:

M(R,R1, . . . , Rn) = (M.init-collection,M.collect ,M.get-collection)

These programs are doing the following:

• M.init-collection : proc(T ′ × int) sets for some entry of type T ′ and some

integer 1 ≤ i ≤ n the update command for subregistration Ri to none,

• M.collect : proc(
⋃

1≤i≤n
T ′ × upds(Ti) × int) collects update commands for

some entry of type T ′, some update command c, and some integer 1 ≤ i ≤

n. Update command c is collected, by replacing the already collected update

command c′ of registration Ri by c′&c, and
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• M.get-collection :
⋃

1≤i≤n
T ′ × int → upds(Ti) returns for some entry of type

T ′ and some integer 1 ≤ i ≤ n the collected update command for registration

Ri.

11.1.7 Program and Query Evaluators

In streaming we define program and query evaluators similar to the in-memory case,

which however compute semantics of formulas and variable assignments incremen-

tally. Let E be a λXP formula of type T with mode E ⊲ V1 → V2.

Program Evaluators. Program evaluators As compute a semantic description

of type T of E over some linearization lin(s) for some open node π : node and

some open variable assignment µ : assV1∪V2 . Evaluator As maintains a regis-

tration R with typed variables V1 ∪ V2 and result type T . Program evaluators

As = (get-val , is-done, remove, add -inst , upd -val) are defined via the following func-

tions, where T ′ = node× assV1∪V2 :

• get-val : T ′ → T is a partial function,

• is-done : T ′ → bool is a partial function,

• remove : proc(T ′),

• add -inst : T ′ → upds(T ), and

• upd -val :
⋃

x∈V1∪V2

event× 2T
′×{x}×upds(Type(x)) → 2T

′×T×upds(T ).

Function get-val(π, µ) returns the value stored in R for π and µ by calling R.get-val(π, µ).

Function is-done(π, µ) returns whether the open value computed by As is de-

termined. Procedure remove(π, µ) removes the entry with respect to π and µ

and thereby also calls R.remove(π, µ). Function add -inst(π, µ) created a new

entry in R for the computation of the semantic of E, but for a new node π

and variable assignment µ. The function calls R.add -inst(π, µ) and returns the

update command, by which the initial •-value in R for π and µ was updated.

Lastly, function upd -val(e,AssUps) updates entries in R with respect to event e and

(π, µ, x, c) ∈ AssUps, where the latter requires to update entry (π, µ) ∈ R.dom() by

applying c to the value of x ∈ µ.dom(). Not all entries may evolve at the new event

e however. The update function therefore returns the set of all tuples (π, µ, v, c),

such that the value v of entry (π, µ) was updated with c to some new value v′.

The evaluator is executed in an environment which feeds R with instructions to

create (add -inst), evolve (upd -val), and remove (remove) entries:

R

node assV T

. . .

π α v

. . .

(π, α) c ∈ Upds
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The incoming edge with label (π, α) represents that the environment has called

add -inst(π, α) that created entry (π, α) in R. The outgoing edge indicates that a

call to upd -val(e,AssUps) at some event e with variable assignment update AssUps

updated the previous value of the entry with update command c ∈ Upds to value v.

Notice, that the program and query evaluators may compute values for some future

node •. In streaming we require such pre-computations for nodes that have not

yet been seen on the stream, since the evaluation at nodes may require information

from the past of the stream (via backward axes), while a streaming evaluator cannot

go back on the stream. However given an environment such pre-computations are

thereby not arbitrary. For example, when interested in computing the node labels

for ancestor nodes, then the environment is in charge of running the a program

evaluator As for query labname(y) only for ancestor nodes y. The environment in

this case is then another evaluator for the selection of ancestor nodes, that pre-

computes nodes that may be ancestors to future nodes and thus runs As for these

precomputed nodes.

Query Evaluators. Query evaluators Bs compute extensions of variable assign-

ments under which formula E becomes true. Given some open node π : node and

some open variable assignment µ : assV1 it means to generate all possible extensions

µ′ : assV1∪V2 of µ. Evaluator Bs maintains a registration R with typed variables V1

and result type 2assV1∪V2 . Program evaluators Bs = (get-val , is-done, remove, add -inst , upd -val)

are defined via the following functions, where T ′ = node×assV1 and T ′′ = 2assV1∪V2 :

• get-val : T ′ → T ′′ is a partial function,

• is-done : T ′ → bool is a partial function,

• remove : proc(T ′),

• add -inst : T ′ → upds(T ′′), and

• upd -val :
⋃

x∈V1

event× 2T
′×{x}×upds(Type(x)) → 2T

′×T ′′×upds(T ′′).

similar to program evaluators, but with different signatures.

11.1.8 Running Evaluators over Streams

Let s = t1, . . . , tn be a stream of data trees t1, . . . , tn. Let E be a well-typed and

well-moded λXP formula of type T and mode E ⊲ V1 → V2. Let µ : assV1∪V2 be an

assignment of input variables in V1∪V2, let π ∈ {root(ti) | 1 ≤ i ≤ n}, and let As be

a program evaluator for E ⊲V1 → V2. The program evaluator As is run over stream

s according to the evaluation function eval of Figure 11.6. There, list-of -events(s)

computes a stream-merge of linearizations lin(ti) of s returning a list of events of

lin(s) in an implementation dependent order. Note that at any time point, open

values JT K≤~e
s are stored in the registration for As.
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//Let As be a program eva l ua t o r f o r E ⊲ V1 → V2

evals =

fun (π, µ)

(get-val , is-done, remove, add -inst , upd-val) = As

{x1, . . . , xn} = V1 ∪ V2

add -inst(•, µ)

i n

l e t r e c

eval ′ =

fun ( l )

case l

of e :: l′ then

i f e = (op, π) then add -inst(π, µ) e l s e sk i p end

upd -val(e, ∅)

i n

i f is-done(π, µ) then

get-val(π, µ)

e l s e

eval ′(l′)

end

of nil then

get-val(π, µ)

end

end

in

eval ′(list-of -events(s))

end

Figure 11.6: Evaluation of program evaluators over streams s.
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// f o r any l i n k f unc t i on on a r e g i s t r a t i o n R with v a r i a b l e s W

// link : node× assW → assW ′ f o r some W ′

// genera te a func t i on computing in v e r s e l i n k s to e n t r i e s o f R :

// gen-inv -links(R, link) : node× assW ′ → 2node×assW

gen-inv -links(R, link) =

fun (π : node, γ′ : assW ′ )

{(π, γ) ∈ R.dom() | link(π, γ) = γ′}

end

Figure 11.7: Generator of inverse links function.

11.2 Evaluators

In this section we present the streaming algorithms that evaluate a network of

simple well-typed and well-moded λXP formulas with eliminated backward axes.

For this we need to define program and query evaluators for all λXP formulas.

Before defining them inductively with respect to the mode system, we will present

and explain commonly used generic functions that will be used by our evaluators.

11.2.1 Generic Functions

Since the evaluators are constructed inductively, the registrations have the following

form:

R

node assV T

. . .

π α v

. . .

R1

node assV1 T1

. . .

π link1(π, α) v1
. . .

Rn

node assVn Tn

. . .

π linkn(π, α) vn
. . .

(π, α)

(π, link1(π, α)) upd(v1) (π, linkn(π, α)) upd(vn)

upd(v)

. . .

There, some evaluator As updates a registration R with variables in V , while sube-

valuators Ais will update registrations Ri for 1 ≤ i ≤ n. Evaluator As maintains link

relations link i : node× assV → assVi that uniquely link an entry (π, α) ∈ R.dom()

to entries (π, link i(π, α)) ∈ Ri.dom(). However, an entry in a subregistration may

be linked to various entries in the parent registration. In Figure 11.7 we present a

generator for inverse link function that map to sets of pairs of nodes and variable

assignments in the parent registration.
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// f o r any link f unc t i on on a r e g i s t r a t i o n

// genera te a func t i on gen-ass-com tha t computes update commands

gen-ass-com(link) =

fun (AssUps, U )

AssUps ′ = set.new()

f o r (π, γ, x, c) ∈ AssUps do

AssUps ′.add(π, link(π, γ), x, c)

end

in

AssUps ′.content()

end

Figure 11.8: Generator of functions that update assignment commands.

Registration then exchange update commands that are communicated among

linked entries. Given updates ci of values of entries in Ri one can then compute

update commands for entries in the parent registration R to which is linked with

respect to the inverse link function. Update commands are thus computed in a

bottom up fashion. However, one must also pass updates of variable assignments

top down. This becomes evident, for example, when decomposing tuples. Consider

mode rule
E1 ⊲ V → ∅ E2 ⊲ V ∪ {x1, . . . , xn} → V ′

E = match E1 with (x1, . . . , xn) in E2

E ⊲ V → V ′

When subexpression E1 evaluates to some n-tuple, then E2 is evaluated while as-

signing to variables xi the value of the i-th component of the n-tuple. In streaming,

the values of the components of the open tuple may not yet be determined. There-

fore, whenever some component of the tuple is updated, one also has to update

the corresponding variable assignment that E2 contains. In Figure 11.8 we de-

fine generator gen-ass-com that given some link definition returns a function that

starting from some update for variable assignments AssUps, returns a new update

for variable assignments to be passed down to subevaluators according to the link

definition.

In the beginning before evaluating over the stream we must initialize all registra-

tions with an initial entry of the future node • and some initial variable assignment

where every variable is mapped to •. This is necessary for the automata registra-

tions that precompute backward axes nodes. Besides the initial entries one can

create new entries in some registration R via function add -inst of R. Due to our

restrictions it holds the following invariant: When calling add -inst(π, µ) at some

event of the stream, either the event is the opening event of node π, or R answers

an expression whose type contains not the type node as subterm. The function can

be defined for most λXP constructs by the functions generator of Figure 11.9 that

is parameterized by add -inst i and link i functions of subregistrations and function

get-upd -com that computes update commands. The generated function obtains the
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// R i s r e g i s t r a t i o n wi th v a r i a b l e s W and type T with streams s

// t ha t has s u b r e g i s t r a t i o n s Ri with the same streams s . For i :

// − f unc t i on add -inst i i n s t a n t i a t e s e n t r i e s o f r e g i s t r a t i o n Ri

// − f unc t i on link i conver t s e n t r i e s o f R to e n t r i e s o f Ri

// − f unc t i on get-upd -com re turns update commands o f R based on the

update commands o f Ri

gen-add -inst(R, add -inst1, . . . , add -instn, link1, . . . , linkn, get-upd -com) =

fun (π : node, γ : assW )

R.add -inst(π, γ)

c1 = add -inst1(π, link1(π, γ))

. . .

cn = add -instn(π, linkn(π, γ))

c = get-upd -com(π, γ, c1, . . . , cn))

R.set-val(π, γ, apply(R(π, γ), c))

i n

c

end

Figure 11.9: Generator of functions that instantiate registration entries.

// R i s r e g i s t r a t i o n wi th v a r i a b l e s W and s u b r e g i s t r a t i o n Ri on

// the same streams . For a l l i :

// − procedure removei removes e n t r i e s o f r e g i s t r a t i o n Ri

// − f unc t i on link i conver t e n t r i e s o f R to e n t r i e s o f Ri

gen-remove(R, remove1, . . . , removen, link1, . . . , linkn) =

proc (π : node, γ : assW )

remove1(π, link1(π, γ))

. . .

removen(π, linkn(π, γ))

R.remove(π, γ)

end

Figure 11.10: Generator of remove procedures.

updates ci by the add -inst i function applied to entries that are in link i relation to

the input node π and variable assignment γ, then it computes the update commands

c for R by calling get-upd -com on the basis of all ci. Finally, it sets the value of R

for π and γ, applying the result update command c to the initial •-value R(π, γ).

Entries in R may also be removed, which can be defined for most evaluators by

procedures of the generator in Figure 11.10. Via the link i functions and removei
procedure for subregistrations, the remove procedures by the generator removes

entries in subregistrations to which entry (π, γ) ∈ R.dom() is linked, and it removes

entry (π, γ) itself.

Last but not least, in Figure 11.11 we present a generator for update functions

that implements a rewriting of entries in R that returns a set of tuples (π, γ, v, c)

of entries (π, γ) ∈ R.dom() whose value v was updated by c at some event e of
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some stream s. First, one updates the variable assignments in R with respect to

tuples (π, γ, x, c) ∈ AssUps: An entry with node π and variable assignment γ is

updated with the value that is obtained by applying command c to the value of

x in γ. Next, one updates entries of subregistrations Ri by calling the respective

upd -val i functions, while an update Ui may cause a change in a variable assignment

of a sibling registration, for which get-ass-com is called. Notice that answer tuples

in Ui concern only those entries in Ri whose value changed at event e. Similarly

for R one wants to return only those answers of entries which value has changed.

Therefore, we initialize a new collection, and collect all tuples (π, γ, c, i) where a

linked entry of subregistration Ri was updated with command c. Then, for all

entries in R for which some linked entry of a subregistrations was updated, one

calls the get-upd -com function for R to compute the updates for the respective

entry. We note that M.get-collection(π, γ, i) is equal to update command none

if the linked entry in Ri was not updated. Finally, we set the new value in R,

applying the newly computed update command to the old value in R, and we can

safely accumulate tuples in the answer set.

11.2.2 Inductive Construction of Evaluators

The construction of As and Bs is by simultaneous induction on derivations of judge-

ments E ⊲ V1 → V2.

Induction:

Submode rule 1. Suppose that the judgement E ⊲V1 → V2 is derived by the first

rule for submodes:
E ⊲ V → V ′

E ⊲ V ∪ V ′′ → V ′

Let A′
s be a program evaluator evaluating E ⊲ V → V ′ while assuming values

for all variables in V ′. We have to define a program evaluator As that evaluates

E ⊲ V ∪ V ′′ → V ′ given values for V ′. The idea is as follows. Program evaluator

As updates a registration R with variables in W = V ∪ V ′ ∪ V ′′, while program

evaluator A′
s will update a registration R′ with variables in W \ V ′′ that contains

the corresponding entries projected to W \ V ′′.

R

node assW Type(E)

. . .

π α v

. . .

R′

node assW\V ′′ Type(E)

. . .

π α|W\V ′′ v

. . .

(π, α)

(π, α|W\V ′′ ) upd(v)

upd(v)
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// R i s r e g i s t r a t i o n wi th v a r i a b l e s W and type T with streams s

// t ha t has s u b r e g i s t r a t i o n Ri with the same streams s . For a l l i :

// − f unc t i on upd-val i updates e n t r i e s o f r e g i s t r a t i o n Ri

// − f unc t i on link i conver t s e n t r i e s o f R to e n t r i e s o f Ri

// − f unc t i on get-upd -com re turns update commands o f R based on the

updated commands o f Ri

// − f unc t i on get-ass-comi computes assignment updates

gen-upd-val(R, upd -val1, . . . , upd-valn, link1, . . . , linkn, get-upd -com, get-ass-com1, . . . ,

get-ass-comn) =

l e t

inv -links1 = gen-inv -links(R, link1)

. . .

inv -linksn = gen-inv -links(R, linkn)

i n

fun (e ∈ events(s),AssUps )

f o r (π, γ, x, c) ∈ AssUps do R.upd-ass(π, γ, γ|W\{x}
⊎ [x/apply(γ(x), c)]) end

U1 = upd-val1(e, get-ass-com1(AssUps, ∅))

U2 = upd-val2(e, get-ass-com2(AssUps, U1))

. . .

Un = upd-valn(e, get-ass-comn(AssUps, Un−1))

M = master-registration.new(R,R1, . . . , Rn)

f o r (π, γ) ∈ R.dom() do

fo r 1 ≤ i ≤ n do M.init-collection(π, γ, i) end

end

fo r 1 ≤ i ≤ n do

fo r (π, γ′, v, c) ∈ Ui do

fo r (π, γ) ∈ inv -linksi(π, γ
′) do

M.collect(π, γ, c, i)

end

end

end

M = set.new()

f o r (π, γ) ∈ R.dom() do

c = get-upd -com(π, γ,M.get-collection(π, γ, 1), . . . ,

M.get-collection(π, γ, n))

v = R(π, γ)

R.set-val(π, γ, apply(v, c))

i n M.add((π, γ, v, c))

end

in M.content()

end

end

Figure 11.11: Generator of update functions.
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// Let A′
s be a program eva l ua t o r f o r E ⊲ V → V ′

As = l e t // program eva l ua t o r f o r E ⊲ V ∪ V ′′ → V ′ .

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

W = V ∪ V ′ ∪ V ′′

R = registration.new(W,Type(E))

link = fun (π, α) α|
W\V ′′ end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c′ ) c′ end

is-done = fun (π, α) is-done ′(π, link(π, α)) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.12: A program evaluator for submode rule 1 on streams s.

Whenever the environment of As requires to compute the value of E for a new

instance, consisting of a possible open start node π and some possible open W -

assignment α, then R.add -inst(π, α) is called and adds R.get-val(π, α) = •. Then

the subregistration is called with R′.add -inst(π, α|W\V ′′ ) to add a linked entry

R′.get-val(π, α|W\V ′′ ) = •. We then have to ensure that R.get-val(π, α) = R′.get-val(π, α|W\V ′′)

how so ever the open value will be instantiated by R′ later on: When calling

As.upd -val the updates to values in R′ by A′
s are also carried out to corresponding

values of R. This idea can be implemented by the following program evaluator

As based on algorithm A′
s in Figure 11.12. There, function get-upd -com performs

updates c′ to values in R, when A′
s performs updates c′ to corresponding values in

R′.

Let B′
s be a query evaluator that evaluates E ⊲ V → V ′ on streams while

generating values for V ′. We have to define a streaming query evaluator Bs for

E ⊲V ∪V ′′ → V ′ that generates values for V ′. The idea is similar to that of As but

now the registrations updated by Bs and B′
s have the following forms.

R

node assV ∪V ′′ 2assW

. . .

π β v′

. . .

R′

node assV 2assW\V ′′

. . .

π β|V v

. . .

v′ = {β′ ⊎ β|V ′′ | β
′ ∈ v}

(π, β)

(π, β|V ) upd(v)

upd(v′)

For computing the value of R.get-val(π, β) by Bs a corresponding entry R.get-val(π, β|V )
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// Let B′
s query e va l ua t o r f o r E ⊲ V → V ′

Bs = l e t // query e va l ua t o r f o r E ⊲ V ∪ V ′′ → V ′ .

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = B′
s

W = V ∪ V ′ ∪ V ′′

R = registration.new(W \ V ′,Type(E))

link = fun (π, β ) β|V end

get-val = fun (π, β ) R(π, β) end

l e t r e c

get-upd -com =

fun (π, β, c)

case c

of none then none

of c1&c2 then get-upd -com(π, β, c1)&get-upd -com(π, β, c2)

of extend -set(v) then extend -set({β′ ⊎ β|
V ′′ | β′ ∈ v})

of upd -elem-set(e, c′) then upd -elem-set(e ⊎ β|
V ′′ , c

′)}

of resolve-elem-set(e, b) then resolve-elem-set(e ⊎ β|
V ′′ , b)}

end

in

is-done = fun (π, β ) is-done ′(π, link(π, β)) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.13: A query evaluator for submode rule 1 on streams s.
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is added to the registration of B′
s. Whenever some variables assignment β′ is added

to R′.get-val(π, β|V ), the corresponding variable assignment β′ ⊎ β|V ′′ is added to

R.get-val(π, β). When an existing element e in R′.get-val(π, β|V ) is updated, the

corresponding element e⊎β|V ′′ in R.get-val(π, β) is updated as well, and similar for

resolving elements, as described by function get-upd -com of the streaming query

evaluator given in Figure 11.13.

Submode rule 2. Next consider the case, where the judgement was inferred by

the second rule for submodes:

E ⊲ V → V ′ ∪ V ′′

E ⊲ V ∪ V ′′ → V ′

Let A′
s be a program evaluator for E ⊲ V → V ′ ∪ V ′′. We define the program

evaluator As for E ⊲V ∪V ′′ → V ′ in Figure 11.14. The registrations R and R′ have

the following forms where W = V ∪ V ′ ∪ V ′′.

R

node assW Type(E)

. . .

π α v

. . .

R′

node assW Type(E)

. . .

π α v

. . .

(π, α)

(π, α) upd(v)

upd(v)

Updates to values in R′ are also carried out to corresponding values in R, see

definition of the get-upd -com function. Let B′
s be a query evaluator for E ⊲ V →

V ′ ∪ V ′′. We define the query evaluator Bs for E ⊲ V ∪ V ′′ → V ′ in Figure 11.15,

with registrations:

R

node assV ∪V ′′ 2assW

. . .

π β v′

. . .

R′

node assV 2assW

. . .

π β|V v

. . .

v′ = {β′ | β′ ∈ v, β ⊆ β′}

(π, β)

(π, β|V ) upd(v)

upd(v′)

Whenever a new variable assignment β′ is added to R′.get-val(π, β|V ), then one adds

it also R.get-val(π, β), but only if β ⊆ β′. Function get-upd -com also describes,
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// Let A′
s be a program eva l ua t o r f o r E ⊲ V → V ′ ∪ V ′′

As = l e t // program eva l ua t o r f o r E ⊲ V ∪ V ′′ → V ′

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

W = V ∪ V ′ ∪ V ′′

R = registration.new(W,Type(E))

link = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c′ ) c′ end

is-done = fun (π, α) is-done ′(π, α) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.14: A program evaluator for submode rule 2 on streams s.

that updating or resolving the value of an element in R′.get-val(π, β|V ) results in a

update of the respective element in R.get-val(π, β) if it exists.

Conjunction. The mode is inferred by inference rule:

E1 ⊲ V → V ′ E2 ⊲ V ∪ V ′ → V ′′ E = E1 ∧ E2

E ⊲ V → V ′ ∪ V ′′

Let A1s be a program evaluator for E1 ⊲ V → V ′ and A2s be a program evaluator

for E2 ⊲ V ∪ V ′ → V ′′. We define a program evaluator As for E ⊲ V → V ′ ∪ V ′′ in

Figure 11.16, while registration have the following form where W = V ∪ V ′ ∪ V ′′:

R

node assW bool

. . .

π α v1 ∧Bool⊥v2
. . .

R1

node assV ∪V ′ bool

. . .

π α|V ∪V ′ v1
. . .

R2

node assW bool

. . .

π α v2
. . .

(π, α)

(π, α|V ∪V ′ )
upd(v1) (π, α)

upd(v2)

upd(v1 ∧Bool⊥v2)

Given some entry (π, α) ∈ R.dom() one waits until entries (π, α|V ∪V ′ ) ∈ R1.dom()

and (π, α) ∈ R2.dom() have determined values v1 and v2, respectively, such that the

conjunction v1∧
Bool⊥v2 can be computed. The get-upd -com function implements

this by returning none until at some event e it holds that is-done(π, α) is true and
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// Let B′
s query e va l ua t o r f o r E ⊲ V → V ′ ∪ V ′′

Bs = l e t // query e va l ua t o r f o r E ⊲ V ∪ V ′′ → V ′

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = B′
s

W = V ∪ V ′ ∪ V ′′

R = registration.new(W \ V ′,Type(E))

link = fun (π, β ) β|V end

get-val = fun (π, β ) R(π, β) end

l e t r e c

get-upd -com =

fun (π, β, c)

case c

of none then none

of c1&c2 then get-upd -com(π, β, c1)&get-upd -com(π, β, c2)

of extend -set(v) then extend -set({β′ | β′ ∈ v, β ⊆ β′})

of upd -elem-set(e, c′) then i f e ∈ get-val(π, β) then upd -elem-set(e, c′) e l s e

none

of resolve-elem-set(e, b) then i f e ∈ get-val(π, β) then resolve-elem-set(e, b)

e l s e none

end

in

is-done = fun (π, β ) is-done ′(π, link(π, β)) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.15: A query evaluator for submode rule 2 on streams s.
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// l e t A1s a program eva l ua t o r f o r E1 ⊲ V → V ′

// l e t A2s a program eva l ua t o r f o r E2 ⊲ V ∪ V ′ → V ′′

As = l e t // program eva l ua t o r f o r E = E1 ∧ E2 ⊲ V → V ′ ∪ V ′′

(get-val1, is-done1, remove1, add -inst1, upd-val1) = A1s

(get-val2, is-done2, remove2, add -inst2, upd-val2) = A2s

W = V ∪ V ′ ∪ V ′′

R = registration.new(W,Type(E))

link1 = fun (π, α) α|
V ∪V ′ end

link2 = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c1, c2 ) i f (c1 6= none ∨ c2 6= none) ∧ is-done(π, α) then

instantiate(get-val1(π, link1(π, α)) ∧
Bool⊥get-val2(π, link2(π, α))) e l s e none end

is-done = fun (π, α) is-done1(π, link1(π, α)) ∧ is-done2(π, link2(π, α)) end

remove = gen-remove(R, remove1, remove2, link1, link2)

add -inst = gen-add -inst(R, add -inst1, add -inst2, link1, link2, get-upd -com)

upd-val = gen-upd -val(R, upd-val1, upd -val2, link1, link2, get-upd -com,

gen-ass-com(link1), gen-ass-com(link2))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.16: A program evaluator for conjunctions on streams s.

such that either v1 in R1 was updated by some update command c1 6= none or v2
was updated by some update command c2 6= none.

Let B1s be a query evaluator for E1 ⊲ V → V ′ and B2s be a query evaluator

for E2 ⊲ V ∪ V ′ → V ′′. A query evaluator Bs for E ⊲ V → V ′ ∪ V ′′ is given in

Figure 11.17 and Figure 11.18. Its registration have the following form:

R

node assV 2assW

. . .

π β v1 ∪ . . . ∪ vn
. . .

R1

node assV 2assV ∪V ′

. . .

π β {β1, . . . , βn}

. . .

R2

node assV ∪V ′ 2assW

. . .

π β1 v1
...

π βn vn
. . .

(π, β)

(π, β) upd({β1 . . . , βn})
(π, βi) upd(vi)

upd(v1 ∪ . . . ∪ vn)

The idea is the following. For every entry (π, β) ∈ R.dom() there exists a

corresponding entry in (π, β) ∈ R1.dom(), which computes variable extensions

{β1, . . . , βn}. According to the mode rule E2 ⊲ V ∪ V ′ → V ′′ the evaluator B2s
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must receive as input values for variables in V and V ′. Therefore, for every βi
where 1 ≤ i ≤ n an entry (π, βi) is created in R2, while the union of their an-

swers v1 until vn becomes the final answer for Bs. Since the link definition link2
links one entry of R to many entries in R2, unlike all other evaluators presented

here, the query evaluator presented in Figure 11.17 and Figure 11.18 cannot use the

common functions that are generated by the function generators in Section 11.2.1.

The add -inst function of Figure 11.17 therefore starts add -inst1 for some open

node π and open variable assignment β, and calls function create-entries that cre-

ates for every new answer vi of R1 with respect to π and β an entry in R2, while

the result update command is a conjunction add -inst2(π, v1)& . . .&add -inst2(π, vn).

Function upd -val presented in Figure 11.18 updates at some event e ∈ events(s)

with variable assignment updates AssUps the entries of R as follows. Variable

assignment update in AssUps are carried out to R via function upd -ass. Next,

before calling function upd -val1, one starts to compute the new variable assign-

ment updates AssUps ′ needed for the evaluation of upd -val2. Hence every exist-

ing entries in AssUps are changed according to link definition link2. Next, we

obtain updates U1 = upd -val1(e,AssUps), that allows to add to AssUps ′ those

assignment updates for variables in V ′ that B2s generated and for which R2 con-

tains corresponding entries. This is done by function add -ups which in case that

B1s performed an update c′ to some variable assignment β′ in upd -elem-set(β′, c′)

calls function add -var -ass-ups which in turn adds a respective variable assignment

update to AssUps ′, when c′ was an update to some variable in assignment β′.

Otherwise, function add -ups in the case that B1s removed some element β′ in

resolve-elem-set(β′?, false) then the corresponding entry in R2 is removed, while

Bs has to remove the elements of get-val2(π, b) in get-val(π). Finally, we have

compute the variable assignment updates AssUps ′ and function upd -val proceeds

to call upd -val2 with e and AssUps ′ to obtain U2. Next we need to add missing

updates to M . Similar to function add -inst one creates new entries in R2 for those

new variable assignments found by B1s in U1 by calling function create-entries of

before. Lastly, we add to M all updates in U2 by B2s which are also updates for

Bs and the function returns M .

Disjunction.

E1 ⊲ V → V ′ E2 ⊲ V → V ′ E = E1 ∨ E2

E ⊲ V → V ′

Let Ais be program evaluators for Ei⊲V → V ′ for i ∈ {1, 2}. The program evaluator

As for E⊲V → V ′ is given in Figure 11.19 and registrations have the following form

where W = V ∪ V ′:
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// Let B1s query e va l ua t o r f o r E1 ⊲ V → V ′

// Let B2s query e va l ua t o r f o r E2 ⊲ V ∪ V ′ → V ′′

Bs = l e t // de f i n e Bs query e va l ua t o r E = E1 ∧ E2 ⊲ V → V ′ ∪ V ′′

(get-val1, is-done1, remove1, add -inst1, upd-val1) = B1s

(get-val2, is-done2, remove2, add -inst2, upd-val2) = B2s

W = V ∪ V ′ ∪ V ′′

R = registration.new(V,Type(E))

link1 = fun (π, β ) β end

link2 = fun (π, β ) get-val1(π, link1(π, β))

get-val = fun (π, β ) R(π, β) end

is-done = fun (π, β ) is-done1(π, β) ∧ ∀β′
1 ∈ get-val1(π, β) : is-done2(π, β

′
1) end

remove = proc (π, β )

remove1

f o r β′ ∈ link2(π, β) do

remove2(π, β
′)

R.remove(π, β)

end

l e t r e c

create-entries =

fun (π, β, c)

case c

of none then none

of c1&c2 then get-upd -com(π, β, c1)&get-upd -com(π, β, c2)

of extend -set(v) then

{v1, . . . , vn} = v

i n

add -inst2(π, v1)& . . .&add -inst2(π, vn)

e l s e none

end

in

add -inst = fun (π, β )

R.add -inst(π, β)

c1 = add -inst1(π, β)

c = create-entries(π, β, c1)

R.set-val(π, β, apply(R(π, β), c))

i n

c

end

Figure 11.17: Part 1 of a query evaluator for conjunction on streams s.
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l e t r e c

add -var -ass-ups = proc (π, β′, c′,AssUps ′ )

case c′

of c1&c2 then

add -var -ass-ups(π, β′, c1,AssUps ′)&add -var -ass-ups(π, β′, c2,AssUps ′)

of upd -var -ass(x, v, c) then AssUps ′.add(π, β′, x, c)

e l s e re tu rn

end

add -ups = proc (π, β, c,AssUps ′,M )

case c

of c1&c2 then add -ups(π, β, c1, x)&add -ups(π, β, c2, x)

of upd -elem-set(β′, c′) then add -var -ass-ups(π, β′, c′,AssUps ′)

of resolve-elem-set(β′?, false) then

{β′′
1 , . . . , β

′′
n} = get-val2(π, β

′)

remove2(π, β
′)

M.add(π, β, get-val(π, β),

resolve-elem-set(β′′
1 , false)& . . .&resolve-elem-set(β′′

n, false))

e l s e re tu rn

end

in

upd-val = fun (e ∈ events(s),AssUps )

f o r (π, β, x, c) ∈ AssUps do R.upd-ass(π, β, β|W\{x}
⊎ [x/apply(β(x), c)]) end

AssUps ′ = set.new()

f o r (π, β, x, c) ∈ AssUps do

fo r β′ ∈ link2(π, β) do AssUps ′.add(π, β′, x, c) end

end

U1 = upd-val1(e,AssUps)

M = set.new()

f o r (π, β, v, c) ∈ U1 do add -ups(π, β, c,AssUps ′,M) end

U2 = upd-val2(e,AssUps ′.content())

f o r (π, β, v, c) ∈ U1 do

c′ = create-entries(π, β, c)

M.add((π, β, get-val(π, β), c′))

end

fo r (π, β′, v, c) ∈ U2 do

i f ∃(π, β′
|V
, v, c′) ∈ M then M.replace((π, β′

|V
, v, c′), (π, β′

|V
, v, c′&c))

e l s e M.add(π, β′
|V
, v, c))

end

in M.content()

end

in (get-val , is-done, remove, add -inst , upd -val)

Figure 11.18: Part 2 of a query evaluator for conjunction on streams s.
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// Let Ais be a program eva l ua t o r f o r Ei ⊲ V → V ′ , 1 ≤ i ≤ 2

As = l e t // As program eva l ua t o r f o r E = E1 ∨ E2 ⊲ V → V ′

(get-val i, is-donei, removei, add -inst i, upd-val i) = Ais , 1 ≤ i ≤ 2

W = V ∪ V ′

R = registration.new(W,Type(E))

link1 = fun (π, α) α end

link2 = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c1, c2 ) i f (c1 6= none ∨ c2 6= none) ∧ is-done(π, α) then

instantiate(get-val1(π, α) ∨
Bool⊥get-val2(π, α)) e l s e none end

is-done = fun (π, α) is-done1(π, link1(π, α)) ∧ is-done2(π, α) end

remove = gen-remove(R, remove1, remove2, link1, link2)

add -inst = gen-add -inst(R, add -inst1, add -inst2, link1, link2, get-upd -com)

upd-val =gen-upd-val(R, upd -val1, upd-val2, link1, link2, get-upd -com,

gen-ass-com(link1), gen-ass-com(link2))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.19: A program evaluator for disjunctions on streams s.

R

node assW bool

. . .

π α v1 ∨Bool⊥v2
. . .

R1

node assW bool

. . .

π α v1
. . .

R2

node assW bool

. . .

π α v2
. . .

(π, α)

(π, α)
upd(v1) (π, α)

upd(v2)

upd(v1 ∨Bool⊥v2)

Similar to the program evaluator for conjunction, the program evaluator for the

disjunction waits until the event at which both A1s and A2s have finished computing

their boolean values, such that function get-upd -com can compute the disjunction

for the respective entries.

Let Bis be query evaluators for Ei ⊲ V → V ′ for i ∈ {1, 2}. The query evaluator

Bs for E ⊲ V → V ′ is given in Figure 11.20. Registrations have the following form

where W = V ∪ V ′:
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// Let Bis query e va l ua t o r f o r Ei ⊲ V → V ′ , 1 ≤ i ≤ 2

Bs = l e t // de f i n e Bs query e va l ua t o r f o r E = E1 ∨ E2 ⊲ V → V ′

(get-val i, is-donei, removei, add -inst i, upd-val i) = Bis , 1 ≤ i ≤ 2

W = V ∪ V ′

R = registration.new(V,Type(E))

link1 = fun (π, β ) β end

link2 = fun (π, β ) β end

get-val = fun (π, β ) R(π, β) end

get-upd -com = fun (π, β, c1, c2 ) c1&c2 end

is-done = fun (π, β ) is-done1(π, β) ∧ is-done2(π, β) end

remove = gen-remove(R, remove1, remove2, link1, link2)

add -inst = gen-add -inst(R, add -inst1, add -inst2, link1, link2, get-upd -com)

upd-val = gen-upd -val(R, upd-val1, upd -val2, link1, link2, get-upd -com,

gen-ass-com(link1), gen-ass-com(link2))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.20: A query evaluator for disjunctions on streams s.

R

node assV 2assW

. . .

π β v1 ∪ v2
. . .

R1

node assV 2assW

. . .

π β v1
. . .

R2

node assV 2assW

. . .

π β v2
. . .

(π, β)

(π, β)
upd(v1) (π, β)

upd(v2)

upd(v1 ∪ v2)

Given some open node π and variable assignment β, evaluator Bs is in charge of

computing the union of variables assignments v1 and v2 by evaluators B1s and B2s,

respectively, for the linked entries. Therefore, as one sees in function get-upd -com,

any update to v1 by c1 and any update to v2 by c2 becomes an update c1&c2 to the

union v1 ∪ v2.

Negation.

E′ ⊲ V → ∅ E = ¬E′

E ⊲ V → ∅

Let A′
s be a program evaluator for E′ ⊲ V → ∅. We define a program evaluator As

for E ⊲ V → ∅ in Figure 11.21. Registrations have the following form:
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// Let A′
s be a program eva l ua t o r f o r E′ ⊲ V → ∅

As = l e t // program eva l ua t o r f o r E = ¬E′ ⊲ V → ∅ .

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

R = registration.new(V,Type(E))

link = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c) i f c 6= none ∧ is-done(π, α)) then

instantiate(¬Bool⊥get-val ′(π, link(α))) e l s e none end

is-done = fun (π, α) is-done ′(π, α) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.21: A program evaluator for negation on streams s.

R

node assV bool

. . .

π α ¬Bool⊥v

. . .

R′

node assV bool

. . .

π α v

. . .

(π, α)

(π, α) upd(v)

upd(¬Bool⊥v)

Since the program evaluator computes the negation of the boolean value computed

by A′
s, we wait until A′

s has finished computing the boolean value: For some entry

(π, α) ∈ R.dom() function get-upd -com tests whether the respective update c by A′
s

was not empty and whether its computation finished. In this case, one returns the

update command instantiate(¬Bool⊥get-val ′(π, link(α))), which is used in upd -val

to compute the result value. Since no variables are generated, a query evaluator Bs

can be defined from As.

Constants.
true

c ⊲ ∅ → ∅

We define in Figure 11.22 a program evaluator As for c⊲∅ → ∅ where c is an atomic

value, the empty set ∅ or empty list nil . Registration R has the following form:

R

node ass∅ Type(E)

. . .

π ∅ JcK≤~e
s

. . .

(π, ∅)
instantiate(JcK≤~e

s )
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// de f i n e As a program eva l ua t o r f o r E = c ⊲ ∅ → ∅ .

As = l e t

R = registration.new(∅,Type(E))

get-val = fun (π, ∅) R(π, ∅) end

is-done = fun (π, ∅) True end

remove = gen-remove(R)

add -inst = fun (π, ∅)

R.add -inst(π, ∅)

R.set-val(π, ∅, JcK≤~e
s )

i n

instantiate(JcK≤~e
s )

end

upd-val = fun (e ∈ events(s),AssUps ) ∅ end

in (get-val , is-done, remove, add -inst , upd -val)

Figure 11.22: A program evaluator for constants on streams s.

The add -inst function sets directly the final answer, for which for all entries is-done(π, ∅) =

true. The update function therefore returns always the empty set of updates. Since,

no variables are generated, a query evaluator Bs can be defined from As. We assume

the existence of streaming evaluators for all other constants c ∈ Const of λXP. For

example, a program evaluator for function constant set2list receives entries (π, α)

where α : ass{arg}, which contain the argument set to be transformed into a list,

which may possibly contain candidates which are to be decided later. As the argu-

ment set is updated, one updates the result list. This requires to store a mapping

from elements of the input set to indices in the result list, such that updates to

elements of the set can be mapped to updates that change the element at a certain

position in the result list.

Variables.
true

x ⊲ {x} → ∅

We define a program evaluator As for x ⊲ {x} → ∅ in Figure 11.23, while the

registrations has the following form:

R

node ass{x} Type(E)

. . .

π α α(x)

. . .

(π, α)
instantiate(α(x))

Similar to the program evaluator for constants, the add -inst functions can directly

set the answer α(x) of the query for any instance π and variable assignment α.

However, the update function that inputs an event e ∈ events(s) and a set of variable

assignment updates AssUps may contain a tuple (π, α, x, c) which instructs that the

value for x with respect to entry (π, α) ∈ R.dom() needs to be updated by c (as the
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As = l e t // program eva l ua t o r f o r E = x ⊲ {x} → ∅ .

R = registration.new({x},Type(E))

get-val = fun (π, α) R(π, α) end

is-done = fun (π, α) True end

remove = gen-remove(R)

add -inst = fun (π, α)

R.add -inst(π, α)

R.set-val(π, α, α(x))

i n

instantiate(α(x))

end

upd-val = fun (e ∈ events(s),AssUps )

M = set.new()

f o r (π, α, y, c) ∈ AssUps do

i f y = x then

α′ = [x/apply(R(π, α), c)]

R.add -inst(π, α′)

R.set-val(π, α′, α′(x))

M.add((π, α′, R(π, α), c))

end

in

M.content()

end

in (get-val , is-done, remove, add -inst , upd -val)

Figure 11.23: A program evaluator for variables on streams s.

program evaluator for tuple decompositions requires, see function get-ass-com of

Figure 11.35). Since many parent registration entries may be linked with an entry

(π, α) ∈ R.dom(), while the variable assignment update may only concern some of

the parent registration entries, see generator gen-ass-com(link) in Section 11.2.1,

one creates a new entry (π, α′) ∈ R.dom(), where α′ is the variable assignment where

x is assigned the by c updated value of α(x). Since, no variables are generated, a

query evaluator Bs can be defined from As.

Existential quantification.

E′ ⊲ V → V ′ ∪ {x} x /∈ V ′ E = ∃x.E′

E ⊲ V → V ′

Let B′
s be a query evaluator for E′ ⊲ V → V ′ ∪ {x}. We define a program evaluator

As for E ⊲ V → V ′ in Figure 11.24. Registrations have the following form where

W = V ∪ V ′:



11.2. Evaluators 217

// Let B′
s a query e va l ua t o r f o r E′ ⊲ V → V ′ ∪ {x}

As = l e t // program eva l ua t o r f o r E = ∃x.E′ ⊲ V → V ′ .

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = B′
s

W = V ∪ V ′

R = registration.new(W,Type(E))

link = fun (π, α) α|V end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c)

i f c 6= none ∧ is-done(π, α) then

i f ∃β′ ∈ get-val ′(π, link(π, α)) : α ⊂ β′ then

instantiate(true)

e l s e

instantiate(false)

e l s e

none

end

is-done = fun (π, α) get-val(π, α) = true ∨ is-done ′(π, link(α)) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.24: A program evaluator for existential quantifiers on streams s.

R

node assW bool

. . .

π α v′

. . .

R′

node assV 2assW∪{x}

. . .

π α|V v

. . .

v′ = ∃β′ ∈ v : α ⊂ β′

(π, α)

(π, α|V ) upd(v)

upd(v′)

Given some entry (π, α) ∈ R.dom() the evaluator As aims to find some variable

extensions β′ ⊃ α within the set v that is computed by query evaluator B′
s for the

linked entry (π, α|V ) in R′. Function then get-upd -com waits until the set v by B′
s

has been determined, such that the existence of some β′ ∈ v with α ⊂ β′ implies

that there exists a value for x, which is β′(x), for which the formula becomes true.

Let B′
s be a query evaluator for E′ ⊲V → V ′∪{x}. We define a query evaluator

Bs for E ⊲ V → V ′ in Figure 11.25. Registrations have the following form where

W = V ∪ V ′:
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R

node assV 2assW

. . .

π β v′

. . .

R′

node assV 2assW∪{x}

. . .

π β v

. . .

v′ = {β′
|W

| β′ ∈ v}

(π, β)

(π, β) upd(v)

upd(v′)

The idea is that query evaluator B′
s computes a set of variable assignment extension

v for some β and some node π, which also assigns values for variable x. Query

evaluator Bs then computes the set v′ = {β′
|W

| β′ ∈ v} that restricts assignments

β′ to variables in W without x. The challenge is, given an update command c to

variable extensions v from B′
s, how to compute update commands c′ by Bs that

update v′ accordingly. For this, we refer to function get-upd -com, which tests the

various possible case for update command c. When extending the set with new

elements β′, then one extends simply the set v′ by elements β′
|W

. When resolving

an element in v, then one resolves the corresponding element in v′. However, when

updating some element e ∈ v by c̄, then c̄ may contain updates for values for

x in e, which do not concern corresponding values in v′. In this case, we rely

on some function get-upd -var -ass-elem, which returns the proper adapted update

commands, regardless of updates c̄ that do not concern elements of v′.

Navigational formulas.

Let E be a simple navigational query with mode E ⊲ V → V ′. For navigational

queries we will apply our streaming algorithm of Chapter 8 that runs eNwas. They

require however to be evaluated from the root of any tree, for which we consider

the slightly adapted formula

start(E, z) =def ch∗(isz ∧ E).

When evaluating E at some node π ∈ nodes(s) with variable assignment α then

this is equivalent to evaluate start(E, z) on the root root(π) to which π belongs

while setting variable z to π:

JEKs,π,α = Jstart(E, z)Ks,root(π),α⊎[z/π]

In streaming we next eliminate backward axes in start(F, z) as described in Sec-

tion 10.1.3. Finally we translate the backward axes free and simple query into an

early nested word automata E = (Σ,∆, Q,QI , QF ,Γ, δ, QS , QR). We present a pro-

gram evaluator At for some tree t within the sequence of trees s in Figure 11.26 and

Figure 11.27 that runs E for every event of the stream that belong to t and whose

registration stores besides variable assignments for variables in V ∪ V ′ also values

for start variable z and configurations of the automata for variable conf . Since a
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// Let B′
s query e va l ua t o r f o r E′ ⊲ V → V ′ ∪ {x}

// de f i n e Bs query e va l ua t o r f o r E = ∃x.E′ ⊲ V → V ′ .

Bs = l e t

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = B′
s

W = V ∪ V ′

R = registration.new(W \ V ′,Type(E))

link = fun (π, β ) β end

get-val = fun (π, β ) R(π, β) end

l e t r e c

get-upd -var -ass-elem =

fun (e, c)

case c

of none then none

of c1&c2 then get-upd -var -ass-elem(e, c1)&get-upd -var -ass-elem(e, c2)

of extend -var -ass(y, v) then i f [y/v] ⊆ e|W then

upd -elem-set(e|W , extend -var -ass(y, v)) e l s e none

of upd -var -ass(y, v, c̄) then i f [y/v] ⊆ e|W then

upd -elem-set(e|W , upd -var -ass(y, v, c̄)) e l s e none

end

get-upd -com =

fun (π, β, c)

case c

of none then none

of c1&c2 then get-upd -com(π, β, c1)&get-upd -com(π, β, c2)

of extend -set(v) then extend -set({β′
|W

| β′ ∈ v})

of upd -elem-set(e, c̄) then get-upd -var -ass-elem(e, c̄)

of resolve-elem-set(e, b) then resolve-elem-set(e|W )

end

in

is-done = fun (π, β ) is-done ′(π, link(β)) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.25: A query evaluator for existential quantifiers on streams s.
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eNwa runs on one tree only, we maintain program and query evaluators for every

tree t in s. However, not all navigational formulas must be run on all trees of the

input sequence s. We leave it to static analysis to reduce the number of program

and query evaluators for navigational formulas, and otherwise run one evaluator

per tree t in s. We refer to Chapter 8 for a more detailed explanation of running

automata over streams, while in the following we only explain the essentials. The

registration has the following form:

R

node assz assconf assV ∪V ′ bool

. . .

π1 [z/π1] [conf /(q1, ρ1, σ1)] α1 true

π2 [z/π2] [conf /(q2, ρ2, σ2)] α2 false

π3 [z/π3] [conf /(q3, ρ3, σ3)] α3 •

. . .

(π1, α1)

(π2, α2)

(π3, α3)

insta
ntia

te(tru
e)

insta
ntia

te(fals
e)

non
e

q1 ∈ QS , q2 ∈ QR, q3 /∈ QS ∪QR

Function add -inst that is run for some open node π and variable assignment α ∈

assV ∪V ′ is called at the opening event of π. The automaton E guides the creation of

entry in R, by testing all variable annotations v that do not lead to some rejection

state for the opening event at π. If z ∈ v then an entry in R is created by calling

R.add -inst , which sets the new configuration and which sets start variable z to

π. When no entry was created in R for π and α, then the navigational formula

evaluates to false, otherwise one analyses the state q for the entry that contains π

and α and returns true if q ∈ QS is a selection state, one returns false if q ∈ QR is a

rejection states, and otherwise the •- value is stored in R as intermediate answer. In

the later case, it is the update function in Figure 11.27 that runs the automaton for

these entries at later events. It uses function test-new -state that computes updates

for those entries whose configuration’s state reached a selection or a rejection state.

We present a query evaluator Bt for E⊲V → V ′ in Figure 11.28 and Figure 11.29

that runs E that we obtain as explained for the program evaluator. The registration

has the following form:

R
node assz assconf assV assV ′ 2assV ∪V ′

. . .

π [z/π] [conf /(q1, ρ1, σ1)] β β1
π [z/π] [conf /(q2, ρ2, σ2)] β β2
π [z/π] [conf /(q3, ρ3, σ3)] β β3

. . .

(π, β) upd
({β

′
1
, β

′?
3
})

q1 ∈ QS , q2 ∈ QR, q3 /∈ QS ∪QR, β′
1 = β ⊎ β1, β′?

3 = β ⊎ β3






= {β′

1, β
′?
3 }

One can see that the registration for the query evaluator contains several entries

for one instance (π, β) ∈ R.dom(). The reason is that the automaton generates

all variable assignments for variables in V ′. The result for such an instance is
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// de f i n e At program eva l ua t o r f o r F ⊲ V → V ′ .

// where conf i s a g l o b a l v a r i a b l e f o r c on f i g u r a t i on s o f eNwa E

At = l e t

E = (Σ,∆, Q,QI , QF ,Γ, δ, QS , QR)

W = {z, conf } ∪ V ∪ V ′

R = registration.new(W,Type(E))

get-val = fun (π, α) R(π, α) end

is-done = fun (π, α : assV ∪V ′ )

∀π, q, ρ, σ, α′. ([conf /(q, ρ, σ), z/π] ⊎ α ∈ R.dom()) → q ∈ QS ∪QR

end

remove = gen-remove(R)

add -inst = fun (π, α : assV ∪V ′ ) // c a l l a t opening event o f π

a = lab(π)

f o r (•, α′) ∈ R.dom() : ∀x ∈ α.dom() : α′(x) = • ∨ α′(x) = α(x) do

(q, ρ, σ) = α′(conf )

f o r q
〈(a,v)〉:γ
−−−−−→ q′ ∈ δ : v 6= ∅ , q′ /∈ QR do

i f z ∈ v then

R.add -inst(π, [conf /(q′, ρv, σγ) ⊎ α′
|(V ∪V ′)\v

{[x/π] | x ∈ v})

end

end

M = {(π, α′) ∈ R.dom() | α ⊆ α′}

b = i f M = ∅ then false

e l s e //#M = 1

(π, α′) ∈ M

(q, ρ, σ) = α′(conf )

i f q ∈ QS then true e l s e i f q ∈ QR then false e l s e •

c = i f b = • then none e l s e instantiate(b)

R.set-val(π, α, b)

i n c

end

Figure 11.26: Part 1 of a program evaluator for navigational formulas on streams

s.
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test-new -state = fun (q, α,M )

i f q ∈ QS ∪QR then

i f q ∈ QR then R.remove(α(z), α)

c = i f q ∈ QS then instantiate(true) e l s e instantiate(false)

π = α(z)

α′ = α|
V ∪V ′

v = R(π, α′)

R.set-val(π, α′, apply(v, c))

M.add((π, α′, v, c))

i n M

end

upd-val =

fun (e ∈ events(s),AssUps )

(π, c) = e

i f π /∈ nodes(t) then

f o r (π, α, x, c) ∈ AssUps do

R.upd-ass(π, α, α|W\{x}
⊎ [x/apply(α(x), c)]) end

a = lab(π)

f o r (π′, α) ∈ R.dom() do

i f c = op then

(q, ρ, σ) = α(conf )

f o r q
〈(a,v)〉:γ
−−−−−→ q′ ∈ δ : v 6= ∅ , q′ /∈ QR do

i f z /∈ v then

alpha′ = [conf /(q′, ρv, σγ) ⊎ α|(V ∪V ′)\v
⊎ {[x/π] | x ∈ v})

R.add -inst(π′, α′)

test-new -state(q′, α′,M)

end

i f q /∈ QS then

q
〈(a,∅)〉:γ
−−−−−→ q′ ∈ δ

α′ = R.upd-ass(π′, α, α|
V ∪V ′∪{z}

⊎ [conf /(q′, ρ∅, σγ)])

test-new -state(q′, α′,M)

e l s e

i f q /∈ QS then

(q, ρv, σγ) = α(conf )

q
〈/(a,v)〉:γ
−−−−−−→ q′ ∈ δ

α′ = R.upd-ass(π′, α, α|
V ∪V ′∪{z}

⊎ [conf /(q′, ρ, σ)])

test-new -state(q′, α′,M)

end

in

M.content()

e l s e ∅

end

in (get-val , is-done, remove, add -inst , upd -val)

Figure 11.27: Part 2 of a program evaluator for navigational formulas on streams

s.
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then the set of extended variable assignments that is accumulated from all entries

that carry π and β. Similar to the program evaluator, function add -inst creates

entries for some open node π and variable assignment β under the guidance of

the automaton. The result set then contains all non-rejecting variable extensions,

where variable extensions with a non-selecting and non-rejecting configuration are

candidates whose selection is to be determined later on. Function upd -val runs

the automaton for all entries, possible creating new entries or candidates belonging

to some previously created instance. Function test-new -state removes and resolves

answer elements for previous entries whose state became selecting or rejecting at the

respective event. Function test-new -candidate adds new answer elements to the final

set, which are possibly candidates whose selection must yet be determined. Finally

function add -com-and -set-val keeps track that R contains the updated values for

created instances, while it adds update commands to answer set M .

Location.
E1 ⊲ V → ∅ E2 ⊲ V → V ′ E = at(E1, E2)

E ⊲ V → V ′

The semantics of formula at(E1, E2) at some open π and variable assignment α in

V ∪V ′, is equal to the semantics of E2 with the same variable assignment α, but at

the node selected by E1 for π and α. Let A1s be a program evaluator for E1⊲V → ∅

and A2s be a program evaluator for E2 ⊲ V → V ′. The program evaluator As for

E ⊲ V → V ′ is given in Figure 11.30 and Figure 11.31. The registrations have the

following form:

R

node assW Type(E2)

. . .

π α v

. . .

R1

node assV node

. . .

π α π′

. . .

R2

node assW Type(E2)

. . .

π′ α v

. . .

(π, α)

(π, α)
upd(π) (π′, α)

upd(v)

upd(v)

Given an instance (π, α) ∈ R.dom() one observes that an answer node π′ of the

linked instance in R1 is used as new start node to create an instance (π′, α) ∈

R2.dom(). Since the node of linked entries changes, unlike to all other registra-

tions, the program evaluator for location cannot make use of the function gener-

ators gen-ass-com, gen-add -inst , gen-remove, and gen-upd -val presented in Sec-

tion 11.2.1, but it mimics the functions that are being generated while taking care

of proper linkage with respect to the semantics. A query evaluator for E works just

as the program evaluator, but it assumes a query evaluator Bs for E2 ⊲ V → V ′.
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// de f i n e Bt query e va l ua t o r f o r F ⊲ V → V ′ .

// where conf i s a g l o b a l v a r i a b l e f o r c on f i g u r a t i on s o f eNwa E

Bt = l e t

E = (Σ,∆, Q,QI , QF ,Γ, δ, QS , QR)

W = {z, conf } ∪ V ∪ V ′

R = registration.new(W,Type(E))

get-val = fun (π, β ) R(π, β) end

is-done = fun (π, β : assV )

∀π, q, ρ, σ, β′. ([conf /(q, ρ, σ), z/π] ⊎ β′ ∈ R.dom() ∧ β ⊆ β′) → q ∈ QS ∪QR

end

remove = gen-remove(R)

add -inst =

fun (π, β : assV ) // c a l l a t the opening event o f π

a = lab(π)

f o r (•, β′) ∈ R.dom() : β′(z) = • ∧ ∀x ∈ β.dom() : β′(x) = • ∨ β′(x) = β(x) do

(q, ρ, σ) = β′(conf )

f o r q
〈(a,v)〉:γ
−−−−−→ q′ ∈ δ : v 6= ∅ , q′ /∈ QR do

i f z ∈ v then

R.add -inst(π, [conf /(q′, ρv, σγ)] ⊎ β′
|(V ∪V ′)\v

⊎ {[x/π] | x ∈ v})

end

end

M = set.new()

f o r (π, β′) ∈ R.dom() : β ⊆ β′ do

(q, ρ, σ) = β′(conf )

case q

of q ∈ QS then M.add(β′
|
V ∪V ′

)

of q /∈ QS ∪QR then M.add(β′?
|
V ∪V ′

)

of q ∈ QR then ⊥

end

c = extend -set(M.content())

R.set-val(π, β, apply(R(π, β), c))

i n c

end

add -com-and -set-val = proc (π, β,M, c)

v = R(π, β)

R.set-val(π, β, apply(v, c))

i f ∃(π, β, v, c′) ∈ M then M.replace((π, β, v, c′), (π, β, v, c′&c))

e l s e M.add((π, β, v, c))

end

Figure 11.28: Part 1 of a query evaluator for navigational formulas on streams s.
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test-new -state = fun (q, β,M )

i f q ∈ QS ∪QR then

i f q ∈ QR then R.remove(β(z), β)

c = i f q ∈ QS then resolve-elem-set(β?
|
V ∪V ′

, true)

e l s e resolve-elem-set(β?
|
V ∪V ′

, false)

add -com-and -set-val(β(z), β|V ,M, c)

i n M

end

test-new -candidate = fun (q, β,M ) //q /∈ QR

c = i f q ∈ QS then extend -set({β|
V ∪V ′ })

e l s e extend -set({β?
|
V ∪V ′

})

add -com-and -set-val(β(z), β|V ,M, c)

i n M

end

upd-val = fun (e ∈ events(s),AssUps )

(π, c) = e

i f π /∈ nodes(t) then

f o r (π, β, x, c) ∈ AssUps do R.upd -ass(π, β, β|W\{x}
⊎ [x/apply(β(x), c)]) end

a = lab(π)

M = set.new()

f o r (π′, β) ∈ R.dom() do

i f c = op then

(q, ρ, σ) = β(conf )

f o r q
〈(a,v)〉:γ
−−−−−→ q′ ∈ δ : v 6= ∅ , q′ /∈ QR do

i f z /∈ v then

β′ = [conf /(q′, ρv, σγ)] ⊎ β|(V ∪V ′)\v
⊎ {[x/π] | x ∈ v})

R.add -inst(π′, β′)

test-new -candidate(q′, β′,M)

end

i f q /∈ QS then

q
〈(a,∅)〉:γ
−−−−−→ q′ ∈ δ

β′ = R.upd-ass(π′, β, β|
V ∪V ′∪{z}

⊎ [conf /(q′, ρ∅, σγ)])

test-new -state(q′, β′,M)

e l s e

i f q /∈ QS then

(q, ρv, σγ) = β(conf )

q
〈/(a,v)〉:γ
−−−−−−→ q′ ∈ δ

β′ = R.upd-ass(π′, β, β|
V ∪V ′∪{z}

⊎ [conf /(q′, ρ, σ)])

test-new -state(q′, β′,M)

end

in M.content()

e l s e ∅

end

in (get-val , is-done, remove, add -inst , upd -val)

Figure 11.29: Part 2 of a query evaluator for navigational formulas on streams s.
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// l e t A1s a program eva l ua t o r f o r E1 ⊲ V → ∅

// l e t A2s a program eva l ua t o r f o r E2 ⊲ V → V ′

As = l e t // program eva l ua t o r f o r E = at(E1, E2) ⊲ V → V ′

(get-val1, is-done1, remove1, add -inst1, upd-val1) = A1s

(get-val2, is-done2, remove2, add -inst2, upd-val2) = A2s

W = V ∪ V ′

R = registration.new(W,Type(E))

link1 = fun (π, α) α|V end

link2 = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

is-done = fun (π, α)

is-done1(π, link1(π, α)) ∧ is-done2(get-val1(π, link1(π, α)), link2(π, α)) end

remove = proc (π, α)

remove1(π, link1(π, α))

remove2(get-val1(π, link1(π, α)), link2(π, α))

R.remove(π, α)

end

add -inst = fun (π, α)

R.add -inst(π, α)

c1 = add -inst1(π, link1(π, α))

c2 = add -inst2(get-val1(π, link1(π, α)), link2(π, α))

R.set-val(π, α, apply(R(π, α), c2))

i n

c2
end

get-ass-com2 = fun (AssUps )

AssUps ′ = set.new()

f o r (π, α, x, c) ∈ AssUps do

AssUps ′.add(get-val1(π, link1(π, α)), link2(π, α), x, c)

end

in

AssUps ′.content()

end

Figure 11.30: Part 1 of a program evaluator for locations on streams s.
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l e t r e c

get-upd -com =

fun (π, α, c1, c2 )

case c1
of none then c2
of instantiate(v) then add -inst2(v, link2(π, α))

end

in

upd-val = fun (e ∈ events(s),AssUps )

f o r (π, α, x, c) ∈ AssUps do R.upd -ass(π, α, α|W\{x}
⊎ [x/apply(α(x), c)])

U2 = upd -val2(e, get-ass-com2(AssUps))

M = master-registration.new(R,R1, R2)

f o r (π, α) ∈ R.dom() do

M.init-collection(π, α, 1)

M.init-collection(π, α, 2)

end

fo r (π′, α′, v, c) ∈ U2 do

fo r (π, α) ∈ {(π, α) | get-val1(π, link1(π, α)) = π′, link2(π, α) = α′} do

M.collect(π, α, c, 2)

end

end

get-ass-com1 = gen-ass-com(link1)

U1 = upd -val1(e, get-ass-com1(AssUps, ∅))

f o r (π, α′, v, c) ∈ U1 do

fo r (π, α) ∈ {(π, α) | link1(π, α) = α′} do

M.collect(π, α, c, 1)

end

end

M = set.new()

f o r (π, α) ∈ R.dom() do

c = get-upd -com(π, α,M.get-collection(π, α, 1),M.get-collection(π, α, 2))

v = R(π, α)

R.set-val(π, α, apply(v, c))

i n

M.add((π, α, v, c))

end

in

M.content()

end

in (get-val , is-done, remove, add -inst , upd -val)

Figure 11.31: Part 2 of a program evaluator for locations on streams s.



228 Chapter 11. Streaming Evaluation of λXP Queries

Conditionals.
E0 ⊲ V → ∅ E1 ⊲ V → V ′ E2 ⊲ V → V ′

E = if E0 then E1 else E2

E ⊲ V → V ′

Let A0s be a program evaluator for E0 : bool⊲V → ∅ and Ais be program evaluators

for Ei : T ⊲V → V ′ for i ∈ {1, 2}. We define a program evaluator As for E : T ⊲V →

V ′ in Figure 11.32. Registrations have the following form:

Rnode assV ∪V ′ T

. . .

π1 α1 v1
π2 α2 v2
π3 α3 •

. . .R0

node assV bool

. . .

π1 α1|V true

π2 α2|V false

π3 α3|V •

. . .

R1

node assV ∪V ′ T

. . .

π1 α1 v1
. . .

R2

node assV ∪V ′ T

. . .

π2 α2 v2
. . .

(π1, α1)

(π2, α2)

(π3, α3)

in
st

(tr
ue

)

in
st

(fa
lse

)

no
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For algorithm As in the beginning it is not known whether A0s evaluates to true,

for which the result by A1s is the answer, or whether A0s evaluates to False, for

which the result by A2s is needed. Therefore we wait until A0s has determined its

answer, at which event we start A1 or A2, respectively. Therefore in the example

we consider three entries (π1, α1), (π2, α2), (π3, α3) ∈ R.dom(). For entries where

A0s returns true, as with entry (π1, α1) ∈ R.dom(), registration R1 is started, while

when A0s returns false, then R2 is started. Due to our restrictions on conditionals

from Section 11.1.1 the possible late launch of either A1 or A2 does not require

information from the past of the stream. The get-upd -com function of the program

evaluator tests the update c0 of A0s at some event. If it is none, then maybe

because it has already determined its answer get-val0(π, link0(π, α)) for some entry

(π, α) ∈ R.dom(). If it was true, then the value of R for the entry requires the

same update c1 with which the corresponding value in R1 was updated with. If

the answer was false then one takes update c2 from R2, or the answer is not yet

known (•), such that neither R1 nor R2 has been started for the entry, for which

update command none is returned. If update c0 was instantiate(v), meaning that

R0 determined its answer, one starts either R1 or R2 depending on v. This is a

possible late start, e.g. a start at some event e = (op, π′) that was input to the

upd -val function, of a node π′ that came after π. The query evaluator Bs works

similarly and only differs in link definitions.
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// Let A1s be a program eva l ua t o r f o r E0 ⊲ V → ∅

// Let Ais be a program eva l ua t o r f o r Ei ⊲ V → V ′ f o r 1 ≤ i ≤ 2

As = l e t // program eva l ua t o r f o r E = if E0 then E1 else E2 ⊲ V → V ′

(get-val i, is-donei, removei, add -inst i, upd-val i) = Ais , f o r a l l 0 ≤ i ≤ 2

R = registration.new(V ∪ V ′,Type(E))

link0 = fun (π, α) α|V end

link1 = fun (π, α) α end

link2 = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c0, c1, c2 )

case c0
of none then

case get-val0(π, link0(π, α))

of true then c1
of false then c2
of • then none

end

of instantiate(v) then // s t a r t s A1s or A2s p o s s i b l y l a t e

i f v then add -inst1(π, link1(π, α))

e l s e add -inst2(π, link2(π, α))

end

end

is-done = fun (π, α) (get-val0(π, α|V ) = true ∧ is-done1(π, α))

∨(get-val0(π, α|V ) = false ∧ is-done2(π, α)) end

remove = gen-remove(R, remove0, remove1, remove2, link0, link1, link2)

add -inst = fun (π, α)

R.add -inst(π, α)

c0 = add -inst0(π, link0(π, α))

c = get-upd -com(π, α, c0,none,none)

i n

c

end

upd-val = gen-upd -val(R, upd-val0, upd -val1, upd-val2, link0, link1, link2, get-upd -com,

gen-ass-com(link0), gen-ass-com(link1), gen-ass-com(link2))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.32: A program evaluator for conditionals on streams s.
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Recursions.

∀1 ≤ i ≤ n. Ei ⊲ V ∪ {x1, . . . , xn} → ∅

E′ ⊲ V ∪ {x1, . . . , xn} → V ′

E = letrec x1 = E1, . . . , xn = En in E′

E ⊲ V → V ′

Let Ais be a program evaluator for Ei ⊲ V ∪{x1, . . . , xn → ∅, 1 ≤ i ≤ n. and A′
s

be a program evaluator for E′ ⊲ V ∪ {x1, . . . , xn} → V ′. The program evaluator As

for E ⊲ V → V ′ is given in Figure 11.33. The registrations have the following form

where W = V ∪ V ′ ∪ {x1, . . . , xn}:

R

node assV ∪V ′ T ′

. . .

π α v

. . .

R′

node assW T ′

. . .

π α′ v

. . .

α′ = α ⊎

[
x1/A1

′′
s , . . . ,

xn/An
′′
s

]
(π, α)

(π, α′) upd(v)

upd(v)

For some instance (π, α) ∈ R.dom() the respective entry in R′ is α′ = α⊎[x1/A1
′′
s , . . . , xn/An

′′
s ]

where the Ai
′′
s are recursively defined by program evaluators Ais. The subevalu-

ators for variables xi in A′
s that are assigned to Ai

′′
s are then the evaluators Ai

′′
s

themselves. The query evaluator Bs is similar to the program evaluator. It differs

only in link definitions.

Tuple constructions.

∀1 ≤ i ≤ n. Ei ⊲ V → ∅ E = (E1, . . . , En)

E ⊲ V → ∅

Let Ais be program evaluator for Ei : Ti⊲V → ∅ for 1 ≤ i ≤ n. We define a program

evaluator As for E ⊲ V → ∅ in Figure 11.34. Registrations have the following form:
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// Let Ais be a program eva l ua t o r f o r Ei ⊲ V ∪ {x1, . . . , xn} → ∅ , 1 ≤ i ≤ n

// Let A′
s be a program eva l ua t o r f o r E′ ⊲ V ∪ {x1, . . . , xn} → V ′

As = l e t // program eva l ua t o r f o r

E = letrec x1 = E1, . . . , xn = En in E′ ⊲ V → V ′

(get-val i, is-donei, removei, add -inst i, upd-val i) = Ais

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

l e t r e c

A1
′′
s = (get-val ′′1 , is-done

′′
1 , remove ′′

1 , add -inst
′′
1 , upd -val

′′
1 )

R′′
1 = registration.new(V ∪ {arg},Type(E))

link1 = fun (π, α) α ⊎ [x1/A1
′′
s , . . . , xn/An

′′
s ] end

get-val ′′1 = fun (π, α : assV ∪{arg} ) get-val1(π, link1(π, α)) end

get-upd -com ′′
1 = fun (π, α, c1 ) c1 end

is-done ′′
1 = fun (π, α) is-done1(π, link1(π, α)) end

remove ′′
1 = gen-remove(R′′

1 , remove1, link1)

add -inst ′′1 = gen-add -inst(R′′
1 , add -inst1, link1, get-upd -com

′′
1 )

upd-val ′′1 = gen-upd-val(R′′
1 , upd-val1, link1, get-upd -com

′′
1 , gen-ass-com(link1))

. . .

An
′′
s = (get-val ′′n, is-done

′′
n, remove ′′

n, add -inst
′′
n, upd-val

′′
n)

R′′
n = registration.new(V ∪ {arg},Type(E))

linkn = fun (π, α) α ⊎ [x1/A1
′′
s , . . . , xn/An

′′
s ] end

get-val ′′n = fun (π, α : assV ∪{arg} ) get-valn(π, linkn(π, α)) end

get-upd -com ′′
n = fun (π, α, cn ) cn end

is-done ′′
n = fun (π, α) is-donen(π, linkn(π, α)) end

remove ′′
n = gen-remove(R′′

n, removen, linkn)

add -inst ′′n = gen-add -inst(R′′
n, add -instn, linkn, get-upd -com

′′
n)

upd-val ′′n = gen-upd-val(R′′
n, upd-valn, linkn, get-upd -com

′′
n, gen-ass-com(linkn))

i n

W = V ∪ V ′ ∪ {x1, . . . , xn}

R = registration.new(V ∪ V ′,Type(E))

link = fun (π, α) α ⊎ [x1/A1
′′
s , . . . , xn/An

′′
s ] end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c′ ) c′ end

is-done = fun (π, α) is-done ′(π, link(π, α)) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.33: A program evaluator for recursive lets on streams s.
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// Let Ais be a program eva l ua t o r f o r Ei ⊲ V → ∅ , 1 ≤ i ≤ n

As = l e t // program eva l ua t o r f o r E = (E1, . . . , En) ⊲ V → ∅

(get-val i, is-donei, removei, add -inst i, upd-val i) = Ais , 1 ≤ i ≤ n

R = registration.new(V,Type(E))

link i = fun (π, α) α end fo r a l l 1 ≤ i ≤ n

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c1, . . . , cn ) (c1, . . . , cn) end

is-done = fun (π, α) is-done1(π, link1(π, α)) ∧ . . . ∧ is-donen(π, linkn(π, α)) end

remove = gen-remove(R, remove1, . . . , removen, link1, . . . , linkn)

add -inst = gen-add -inst(R, add -inst1, . . . , add -instn, link1, . . . , linkn, get-upd -com)

upd-val = gen-upd -val(R, upd-val1, . . . , upd-valn, link1, . . . , linkn, get-upd -com,

gen-ass-com(link1), . . . , gen-ass-com(linkn))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.34: A program evaluator for tuple constructions on streams s.

R

node assV T1 × . . .× Tn

. . .

π α (v1, . . . , vn)

. . .

R1

node assV T1

. . .

π α v1
. . .

Rn

node assV Tn

. . .

π α vn
. . .

(π, α)

(π, α)
upd(v1) (π, α)

upd(vn)

upd((v1, . . . , vn))

. . .

. . .

Tuples are constructed by program evaluator As, whereas program evaluator Ais

computes the i-th component of the tuples. Therefore, at some event, the get-upd -com

function of As combines the updates ci to the i-th component into an update

(c1, . . . , cn) of the tuple.

Tuple decompositions.

E1 ⊲ V → ∅ E2 ⊲ V ∪ {x1, . . . , xn} → V ′

E = match E1 with (x1, . . . , xn) in E2

E ⊲ V → V ′

Let A1s be a program evaluator for E1 : T1× . . .×Tn⊲V → ∅, and A2s be a program

evaluator for E2 : T ⊲ V ∪ {x1, . . . , xn} → V ′. We define a program evaluator As

for E ⊲ V → V ′ in Figure 11.35. Registrations have the following form where

W = V ∪ V ′ ∪ {x1, . . . , xn}:
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R

node assV ∪V ′ T

. . .

π α v

. . .

R1

node assV T1 × . . .× Tn

. . .

π α|V (v1, . . . , vn)

. . .

R2

node assW T

. . .

π α′ v

. . .

α′ = α ⊎ [x1/v1, . . . , xn/vn]

(π, α)

(π, α|V ) upd((v1, . . . , vn)) (π, α′)
upd(v)

upd(v)

Program evaluator As decomposes tuples by A1s in R1 into their components vi,

which are passed to evaluator A2s via assignments α′ = α⊎ [x1/v1, . . . , xn/vn] with

respect to the entries given for the registrations. Any updates of tuples in R1

must therefore be forwarded as variable assignment update to A2s. This is done by

function get-ass-com2, which given the updates U1 by A1s and given some variable

assignment update AssUps, computes a new variable assignment update such that

the upd -val of A2s has knowledge of these updates. The function first converts

the updates in AssUps to fit linked entries in R2 and next adds for any update c

of tuples (v1, . . . , vn) and any variable xi a new variable assignment update that

indicates that the value of variable xi has been updated with the update to the i-th

component of vi. This update is computed via function i -th-com that decomposes

the tuple update c into updates ci for component i. The query evaluator Bs for

E ⊲ V → V ′ differs with respect to the program evaluator As only in the link

definition.

Set constructions.
E′ ⊲ V → {x} E = {x | E′}

E ⊲ V → ∅

Let B′
s be a query evaluator for E′ ⊲ V → {x}. We define program evaluator As for

E : {T} ⊲ V → ∅ in Figure 11.36. The registrations have the following form:

R

node assV {T}

. . .

π α v′

. . .

R′

node assV 2assV ∪{x}

. . .

π α v

. . .

v′ = {β′(x) | β′ ∈ v}

(π, α)

(π, α) upd(v)

upd(v′)
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// Let A1s be a program eva l ua t o r f o r E1 ⊲ V → ∅

// Let A2s be a program eva l ua t o r f o r E2 ⊲ V ∪ {x1, . . . , xn} → V ′

// Let E = match E1 with (x1, . . . , xn) in E2

As = l e t // program eva l ua t o r f o r E ⊲ V → V ′

(get-val1, is-done1, remove1, add -inst1, upd-val1) = A1s

(get-val2, is-done2, remove2, add -inst2, upd-val2) = A2s

W = V ∪ V ′ ∪ {x1, . . . , xn}

R = registration.new(V ∪ V ′,Type(E))

link1 = fun (π, α) α|V end

link2 = fun (π, α)

case get-val1(π, link1(π, α))

of • then α ⊎ [x1/•, . . . , xn/•]

of (v1, . . . , vn) then α ⊎ [x1/v1, . . . , xn/vn]

end

end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c1, c2 ) c2 end

l e t r e c

i-th-com = fun (c, i)

case c

of none then none

of c1&c2 then i-th-com(c1, i)&i-th-com(c2, i)

of (c1, . . . , cn) then ci
end

in

get-ass-com2 = fun (AssUps, U1 )

M = set.new()

get-ass-com ′
2 = gen-ass-com(link2)

M.union(get-ass-com ′
2(AssUps, U1))

inv -links1 = gen-inv -links(R, link1)

f o r (π, α1, (v1, . . . , vn), c) ∈ U1 do

fo r (π, α) ∈ inv -links1(π, α1) do

M.add(π, α ⊎ [x1/v1, . . . , xn/vn], x1, i-th-com(c, 1))

. . .

M.add(π, α ⊎ [x1/v1, . . . , xn/vn], xn, i-th-com(c, n))

i n M.content()

end

is-done = fun (π, α) is-done1(π, link1(π, α)) ∧ is-done2(π, link2(π, α)) end

remove = gen-remove(R, remove1, remove2, link1, link2)

add -inst = gen-add -inst(R, add -inst1, add -inst2, link1, link2, get-upd -com)

upd-val = gen-upd -val(R, upd-val1, link1, upd -val2, link2, get-upd -com,

gen-ass-com(link1), get-ass-com2)

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.35: A program evaluator for tuple decompositions on streams s.
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// Let B′
s be a query e va l ua t o r f o r E′ ⊲ V → {x}

As = l e t // program eva l ua t o r f o r E = {x | E′} ⊲ V → ∅

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = B′
s

R = registration.new(V,Type(E))

link = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

l e t r e c

get-upd -var -ass-elem =

fun (e, c)

case c

of none then none

of c1&c2 then get-upd -var -ass-elem(e, c1)&get-upd -var -ass-elem(e, c2)

of extend -var -ass(y, v) then i f y = x then extend -set({v}) e l s e none

of upd -var -ass(y, v, c)) then i f y = x then upd -elem-set(v, c) e l s e none

end

get-upd -com =

fun (π, α, c)

case c

of none then none

of c1&c2 then get-upd -com(π, α, c1)&get-upd -com(π, α, c2)

of extend -set(v) then extend -set({β′(x) | β′ ∈ v, x ∈ β′.dom()})

of upd -elem-set(e, c′) then get-upd -var -ass-elem(e, c′)

of resolve-elem-set(e, b) then i f x ∈ e.dom() then resolve-elem-set(e(x), b)

e l s e none

end

in

is-done = fun (π, α) is-done ′(π, α) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.36: A program evaluator for set constructions on streams s.

The set of all elements of values for x is constructed via query evaluator B′
s that

generates all possible values for x, by computing variable assignment extensions.

Given an entry (π, α) ∈ R.dom() the value v of the linked entry (π, α) ∈ R′.dom()

contains variable assignment that extend α by assigning values to x. The result

set by As is thus v′ = {β′(x) | β′ ∈ v}. The challenge for the program evaluator

As is thus to compute updates to v′ given updates to v. The get-upd -com function

therefore decomposes updates c to v. When v is extended by a set of variables

assignments, then one simply extends v′ by the set of values of x of these variable

assignments. Whenever a variable assignment e of v that assigns some value to x

is resolved by boolean b then one resolves element e(x) in v′ by b. Finally when a

variable assignment e is updated via some variable assignment update c′, then one

calls function get-upd -var -ass-elem that returns an update to v that corresponds

to c′ when c′ involves updates to values of x.
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List constructions.

E1 ⊲ V → ∅ E2 ⊲ V → ∅ E = E1 :: E2

E ⊲ V → ∅

Let A1s be program evaluator for E1 : T ⊲V → ∅ and A2s be program evaluator for

E2 : [T ′] ⊲ V → ∅ We define program evaluator As for E1 :: E2 : [T ∪ T ′] ⊲ V → ∅ in

Figure 11.37. Registrations have the following form:

R

node assV [T ∪ T ′]

. . .

π α v1 :: v2
. . .

R1

node assV T

. . .

π α v1
. . .

R2

node assV [T ′]

. . .

π α v2
. . .

(π, α)

(π, α)
upd(v1) (π, α)

upd(v2)

upd(v1 :: v2)

Lists are constructed by joining some head element that is computed by program

evaluator A1s, with a tail that is the list, that is computed by program evaluator

A2s. In function get-upd -com one translates updates c1 to the head and updates c2
to the tail to updates for the result list as follows. Updates c1 become updates to

the result list that update the first element in the list. Updates c2 to the tail must

be altered to updates to the result list, that contains a new head element, which is

done via function add -index that converts updates to the i-th element of the tail,

to updates to the i + 1-st element of the result list.

List decompositions.

E1 ⊲ V → ∅ E2 ⊲ V ∪ {x, y} → V ′ E3 ⊲ V → V ′

E = match E0 with x :: y then E1 else E2

E ⊲ V → V ′

Let A0s be a program evaluator for E0 : [T ] ⊲ V → ∅, A1s a program evaluator for

E1 : T ′ ⊲ V ∪ {x, y} → V ′, and A2s a program evaluator for E2 : T ′ ⊲ V → V ′. We

define program evaluator As for E : T ′ ⊲ V → V ′ in Figure 11.38. Registrations

have the following form, where W = V ∪ V ′ ∪ {x, y}:
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// Let Ais be program eva l u a t o r s f o r Ei ⊲ V → ∅ and a l l 1 ≤ i ≤ 2

As = l e t // program eva l ua t o r f o r E = E1 :: E2 ⊲ V → ∅

(get-val i, is-donei, removei, add -inst i, upd-val i) = Ais f o r a l l 1 ≤ i ≤ 2

R = registration.new(V,Type(E))

link1 = fun (π, α) α end

link2 = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

l e t r e c add -index = fun (π, α, c)

case c

of none then none

of c1&c2 then add -index (π, α, c1)&add -index (π, α, c2)

of extend -list(v) then extend -list(v)

of upd -elem-list(i, c′) then upd -elem-list(i+ 1, c′)

of resolve-elem-list(i, b) then resolve-elem-list(i+ 1, b)

end

in

get-upd -com = fun (π, α, c1, c2 ) upd -elem-list(1, c1)&add -index (π, α, c2) end

is-done = fun (π, α) is-done1(π, link1(π, α)) ∧ is-done2(π, link2(π, α)) end

remove = gen-remove(R, remove1, remove2, link1, link2)

add -inst = gen-add -inst(R, add -inst1, add -inst2, link1, link2, get-upd -com)

upd-val = gen-upd -val(R, upd-val1, upd -val2, link1, link2, get-upd -com, gen-ass-com(link1),

gen-ass-com(link2))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.37: A program evaluator for list constructions on streams s.

RAnode assV ∪V ′ T ′

. . .

π1 α1 v1
π2 α2 v2
π3 α3 •

. . .RA0

node assV [T ]

. . .

π1 α1|V v :: v′

π2 α2|V nil

π3 α3|V •

. . .

RA1

node assW T ′

. . .

π1 α′
1 v1

. . .

RA2
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. . .
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For algorithm A in the beginning it is not known a priori whether A0s evaluates to

the empty list, for which the result by A2s is the answer, or whether A0s evaluates

to a non-empty list, for which the result by A1s is needed. One therefore waits

until the computation of the list by A0s has finished, at which event we launch A1s

or A2s, respectively. This is done by function get-upd -com, similar to conditionals.

Due to our restrictions on list decompositions the possible late launch of either
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A1s or A2s does not require information from the past of the stream. The query

evaluator Bs is similar and differs only slightly in link definitions.

Function applications.

E1 ⊲ V → ∅ E2 ⊲ V → ∅ E = E1E2

E ⊲ V → ∅

Let A1s be a program evaluator for E1 : T → T ′ ⊲ V → ∅ and A2s be a program

evaluator for E2 : T⊲V → ∅. We define a program evaluator As for E1E2 : T ′⊲V → ∅

in Figure 11.39. Registrations have the following form:

R

node assV T ′

. . .

π α v1
. . .

R1

node assV ∪{arg} T ′

. . .

π α ⊎ [arg /v2] v1
. . .

R2

node assV T

. . .

π α v2
. . .

(π, α)

(π, α ⊎ [arg /v2]) upd(v1) (π, α)
upd(v2)

upd(v1)

The argument v2 that is computed by A2s is passed via variable assignment [arg /v2]

to A1s. Any update c1 to the result by v1 by A1s is therefore an update to the result

v1 of As of the function application, see function get-upd -com. However, similar

to tuple decompositions, one requires to pass updates to argument v2 as variable

assignment updates to A2s, computed by function get-ass-com1. Then after the

registration R2 has been updated, one can update R1, as one sees in the order of

the parameters for the function generator gen-upd -val .

Function definitions.

E′ ⊲ V ∪ {x} → ∅ E = λx.E′

E ⊲ V → ∅

Let A′
s be a program evaluator for E′ : T ′ ⊲V ∪{x} → ∅. We define a program eval-

uator As for applying function definitions λx.E′ : T → T ′ ⊲ V → ∅ in Figure 11.40.

Registrations have the following form:
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// Let A0s be a program eva l ua t o r f o r E0 ⊲ V → ∅

// Let A1s be a program eva l ua t o r f o r E1 ⊲ V ∪ {x, y} → V ′

// Let A2s be a program eva l ua t o r f o r E2 ⊲ V → V ′

// Let E = match E0 with x :: y then E1 else E2

As = l e t // program eva l ua t o r f o r E ⊲ V → V ′

(get-val i, is-donei, removei, add -inst i, upd-val i) = Ais f o r a l l 0 ≤ i ≤ 2

W = V ∪ V ′ ∪ {x, y}

R = registration.new(V ∪ V ′,Type(E))

link0 = fun (π, α) α|V end

link1 = fun (π, α)

case get-val0(π, link0(π, α))

of • then α ⊎ [x/•, y/•]

of v :: v′ then α ⊎ [x/v, y/v′]

end

end

link2 = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c0, c1, c2 )

i f c0 6= none ∧ is-done0(π, link0(π, α)) then

i f get-val0(π, link0(π, α)) = nil then add -inst2(π, link2(π, α))

e l s e add -inst1(π, link1(π, α))

e l s e

i f none then

i f is-done0(π, link0(π, α)) then

case get-val0(π, link0(π, α))

of nil then c2
of v :: v′ then c1
end

e l s e none

e l s e none

end

is-done = fun (π, α) (get-val0(π, α|V ) = true ∧ is-done1(π, link1(π, α)))

∨(get-val0(π, α|V ) = false ∧ is-done2(π, link2(π, α))) end

remove = gen-remove(R, remove0, remove1, remove2, link0, link1, link2)

add -inst = fun (π, α)

R.add -inst(π, α)

c0 = add -inst0(π, link0(π, α))

c = get-upd -com(π, α, c0,none,none)

i n c

end

upd-val = gen-upd -val(R, upd-val0, upd -val1, upd-val2, link0, link1, link2, get-upd -com,

gen-ass-com(link0), gen-ass-com(link1), gen-ass-com(link2))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.38: A program evaluator for list decompositions on streams s.
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// Let Ais be a program eva l ua t o r f o r Ei ⊲ V → ∅ , 1 ≤ i ≤ 2

// Let arg be a f i x e d v a r i a b l e used to pass arguments

As = l e t // program eva l ua t o r f o r E = E1E2 ⊲ V → ∅

(get-val i, is-donei, removei, add -inst i, upd-val i) = Ais , 1 ≤ i ≤ 2

R = registration.new(V,Type(E))

link1 = fun (π, α) α ⊎ [arg /get-val2(π, α)] end

link2 = fun (π, α) α end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c1, c2 ) c1 end

get-ass-com1 = fun (AssUps, U2 )

M = set.new()

get-ass-com ′
1 = gen-ass-com(link1)

M.union(get-ass-com ′
1(AssUps, U2))

inv -links2 = gen-inv -links(R, link2)

f o r (π, α2, v, c) ∈ U2 do

fo r (π, α) ∈ inv -links2(π, α2) do

M.add(π, α ⊎ [arg /v], arg, c)

i n

M.content()

end

is-done = fun (π, α) is-done1(π, link1(π, α)) ∧ is-done2(π, link2(π, link2(π, α))) end

remove = gen-remove(R, remove1, remove2, link1, link2)

add -inst = gen-add -inst(R, add -inst1, add -inst2, link1, link2, get-upd -com)

upd-val = gen-upd -val(R, upd-val2, upd -val1, link2, link1, get-upd -com,

gen-ass-com(link2), get-ass-com1)

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.39: A program evaluator for function applications for streams s.
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// Let A′
s be a program eva l ua t o r f o r E′ ⊲ V ∪ {x} → ∅

As = l e t // program eva l ua t o r f o r E = λx.E′ ⊲ V → ∅

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

R = registration.new(V ∪ {arg}, T ′)

link = fun (π, α) α|V ⊎ [x/α(arg)] end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c) c end

is-done = fun (π, α) is-done ′(π, link(π, α)) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.40: Program evaluator for function definitions for streams s.

R

node assV ∪{arg} T ′

. . .

π α v

. . .

R′

node assV ∪{x} T ′

. . .

π α|V ⊎ [x/α(arg)] v

. . .

(π, α)

(π, α|V ⊎ [x/α(arg)])
upd(v)

upd(v)

As only applies the function definition to some argument. The evaluation of the

function body by A′
s therefore computes the required result.

Variable Bindings.
E′ ⊲ V → ∅ E = (x = E′)

E ⊲ V → {x}

Let A′
s be a program evaluator for E′ ⊲V → ∅. We define program evaluator As for

x = E′ ⊲ V → {x} in Figure 11.41. Registrations have the following form:

R

node assV ∪{x} bool

. . .

π α α(x) = v

. . .

R′

node assV Type(E′)

. . .

π α|V v

. . .

(π, α)

(π, α|V ) upd(v)

upd(α(x) = v)
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// Let A′
s be a program eva l ua t o r f o r E′ ⊲ V → ∅

As = l e t // program eva l ua t o r f o r E = (x = E′) ⊲ V → {x}

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

R = registration.new(V ∪ {x},Type(E))

link = fun (π, α) α|V end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c) i f c 6= none ∧ is-done(π, α) then

instantiate(α(x) = get-val ′(π, link(π, α))) e l s e none end

is-done = fun (π, α) is-done ′(π, α) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.41: A program evaluator for variable bindings on streams s.

Since a boolean is computed by As, one waits until the answer by A′
s for some

linked entry is determined. The get-upd -com function then returns the update of

the truth value of whether the answer v by A′
s is equal to value of x in the variable

assignment α of the respective input entry.

Let A′
s be a program evaluator for E′ ⊲ V → ∅. We define query evaluator Bs

for x = E′ ⊲ V → {x} in Figure 11.42. Registrations have the following form:

R

node assV 2assV ∪{x}

. . .

π β {β ⊎ [x/v]}

. . .

R′

node assV Type(E′)

. . .

π β v

. . .

(π, β)

(π, β) upd(v)

upd({β ⊎ [x/v]})

Query evaluator Bs must generate the value v for x that As computes, and must thus

return the set that contains the variable assignment of any input entry extended

by [x/v]. Given some update c to some result value v by As, the get-upd -com

function returns an update to the value that is assigned to variable x in the variable

assignment of the answer set.

Set Membership.

E′ ⊲ V → ∅ E = (x ∈ E′)

E ⊲ V → {x}
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// Let A′
s be a program eva l ua t o r f o r E′ ⊲ V → ∅

Bs = l e t // query e va l ua t o r f o r E = (x = E′) ⊲ V → {x}

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

R = registration.new(V,Type(E))

link = fun (π, β ) β end

get-val = fun (π, β ) R(π, β) end

get-upd -com = fun (π, β, c)

{v} = get-val(π, β)

upd -elem-set(v, upd -var -ass(x, v(x), c)

end

is-done = fun (π, β ) is-done ′(π, β) end

remove = gen-remove(R, remove ′, link)

add -inst = fun (π, β )

R.add -inst(π, β)

c′ = add -inst(π, link(π, β))

v = {β ⊎ [x/get-val ′(π, link(π, β))]}

R.set-val(π, β, v)

i n

extend -set(v)

end

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.42: A query evaluator for variable bindings for streams s.

Let A′
s be a program evaluator for E′ ⊲V → ∅. We define program evaluator As for

x ∈ E′ ⊲ V → {x} in Figure 11.43. Registration have the following form:

R

node assV ∪{x} bool

. . .

π α α(x) ∈ v

. . .

R′

node assV Type(E′)

. . .

π α|V v

. . .

(π, α)

(π, α|V ) upd(v)

upd(α(x) ∈ v)

Similar to the program evaluator for variable bindings, the program evaluator As for

the set membership waits until the set v by A′
s is determined, such that get-upd -com

returns the update that instantiates to the respective membership test.

Let A′
s be a program evaluator for E′ ⊲ V → ∅. We define query evaluator Bs

for x ∈ E′ ⊲ V → {x} in Figure 11.44. Registrations have the following form:
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// Let A′
s be a program eva l ua t o r f o r E′ ⊲ V → ∅

As = l e t // program eva l ua t o r f o r E = (x ∈ E′) ⊲ V → {x}

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

R = registration.new(V ∪ {x},Type(E))

link = fun (π, α) α|V end

get-val = fun (π, α) R(π, α) end

get-upd -com = fun (π, α, c) i f c 6= none ∧ is-done(π, α) then

instantiate(α(x) ∈ get-val ′(π, link(π, α))) e l s e none end

is-done = fun (π, α) is-done ′(π, α) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.43: A program evaluator for set membership testing on streams s.

R

node assV 2assV ∪{x}

. . .

π β v′′

. . .

R′

node assV Type(E′)

. . .

π β v

. . .

v′′ = {β ⊎ [x/v′] | v′ ∈ v}

(π, β)

(π, β) upd(v)

upd(v′′)

Query evaluator Bs must generate all values for x that arise from the set v that

A′
s computes. Given some entry (π, β) ∈ R.dom() and some set v by A′

s for some

linked entry, Bs computes the set of variable assignments {β ⊎ [x/v′] | v′ ∈ v}. The

get-upd -com function thus turns an update c to v into a corresponding update for

the result by Bs.

11.3 Examples

11.3.1 Navigational Queries

In the following we present the evaluation of a forward and a backward query, to

show the control of tuple generation and the interaction with registration tables

that may select nodes from the past.

A Forward Query. Let F = ch∗(a ∧ isx) be a forward query of interest with

mode F ⊲ ∅ → {x} that selects all a-descendants. We thus consider

start(F, z) = ch∗(isz ∧ ch∗(a ∧ isx)).
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// Let A′
s be a , program eva l ua t o r f o r E′ ⊲ V → ∅

Bs = l e t // query e va l ua t o r f o r E = (x ∈ E′) ⊲ V → {x}

(get-val ′, is-done ′, remove ′, add -inst ′, upd-val ′) = A′
s

R = registration.new(V,Type(E))

link = fun (π, β ) β end

get-val = fun (π, β ) R(π, β) end

l e t r e c

get-upd -com =

fun (π, β, c)

case c

of none then none

of c1&c2 then get-upd -com(π, β, c1)&get-upd -com(π, β, c2)

of extend -set(v) then extend -set({β ⊎ [x/v′] | v′ ∈ v})

of upd -elem-set(e, c′) then upd -elem-set(β ⊎ [x/e], upd -var -ass(x, e, c′))}

of resolve-elem-set(e, b) then resolve-elem-set(β ⊎ [x/e], b)

end

in

is-done = fun (π, β ) is-done ′(π, β) end

remove = gen-remove(R, remove ′, link)

add -inst = gen-add -inst(R, add -inst ′, link , get-upd -com)

upd-val = gen-upd -val(R, upd-val ′, link , get-upd -com, gen-ass-com(link))

i n (get-val , is-done, remove, add -inst , upd -val)

Figure 11.44: A query evaluator for set membership testing on streams s.

The query contains no backward axes, such that we can directly translate it to an

eNwa A. The alphabet of A is annotated by subsets of V(start(F, z)) = {z, x}, i.e.

the variables contained in start(F, z), and thus we are generating pairs of nodes.

Our example in Figure 11.45 evaluates A over a prefix of the linearization of tree

t = a(b(a)). The registration contains variables z, x, and conf for configurations

of A. We surrounded the second event by a rectangle to indicate that we want to

evaluated F at the second node π2 of the tree. Before evaluation starts, there is an

initial entry contained in the registration where c0 is the initial configuration of A

in an initial state with the empty stack, and for variables z and x there is a • entry,

for future nodes. The automaton will try to instantiate future • values by the node

of open events, for which it does not reject. However, it may only instantiate the

• for variable z if we instruct it to do so, thus at the second event. After reading

event (op, π1) of the first node π1, the configuration of the automaton for the begin-

candidates changes to c1, since the stack is updated. The intuitive meaning of a

pair (v1, v2) of values for variables z and x, respectively, with respect to the query,

is that v2 must be an a-descendant of v1. At the first event we did not instantiate

the z-• value with π1, since we did not start the evaluation of F at that node, and

the automaton could not instantiate the •-value for x, since a pair (•, π1) would

intuitively mean that π1 is an a-descendant of some future node, which is forbidden

according to the automaton. At the next event (op, π2) we want to evaluate F , and

thus instruct the automaton to instantiate node π2 for variable z. At the next event
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z x conf

• • c0

z x conf

• • c1

〈a〉:(op, π1)

z x conf

• • c2
π2 • c3

〈b〉:(op, π2)

z x conf

• • c4
π2 • c5
π2π3 c6

〈a〉:(op, π3)

z x conf

• • c7
π2 • c8
π2π3 c9

〈/a〉:(cl , π3)

z x conf

• • c10
π2π3 c11

〈/b〉:(cl , π2)

Figure 11.45: Content of the registration table for the evaluation of query ch∗(isz ∧

ch∗(a ∧ isx)) over the linearization of tree a(b(a)) until event 〈/b〉.

(op, π3) the automaton instantiates the x-• value of pair (π2, •) with π3 and moves

into a selecting configuration c6 with a selection state. Pair (π2, π3) is an answer:

node π3 is an a-descendant of node π2. At event (cl , π2) where we close node π2,

notice that the automaton removes pair (π2, •): indeed it is not possible that node

π2 finds further a-descendants.

A Backward Query. Queries that contain backward axes are evaluated just

as similar. Consider query F = par+(isx) with mode F⊲ → {x} that selects all

ancestors x of a given start node. Backward axes are eliminated in start(F, z) =

ch∗(isz ∧ par+(isx)). The backward axes free query is

isx ∧ ch+(isz) ∨ ch+(isx ∧ ch+(isz))

which translates to some eNwa. The evaluation of this query over the same tree t =

a(b(a)) as before is shown in Figure 11.46. There at the first event the registration

contains the pair (•, π1), which means that node π1 is an ancestor of any future node

to come. In general, our algorithm pre-computes all nodes selected by some query

that may contain backward axes when started at future nodes. Also notice, that

we precompute only those nodes that are candidates according to our eNwa: The

speculative computation therefore correlates to the earliest-ness of our automaton.

Finishing with the example, one sees at the next event (op, π2) that node π2 is

another ancestor of future nodes, and also since we instructed an evaluation of the

query at this node, we instantiated the • in pair (•, π1) with node π2 and obtain an

answer pair (π2, π1) that is stored: Node π2 has node π1 as ancestor.

11.3.2 A Network of Queries

We consider query

F = {x | par+(isx) ∧ labname(x) = “a”}

that may be evaluated relatively to some node π. It returns the set of a-ancestor

nodes of π. In particular, we are interested in subformula

labname(x) = “a”.
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z x conf

• • c0

z x conf

• • c1
• π1 c2

〈a〉:(op, π1)

z x conf

• • c3
• π1 c4
• π2 c5
π2 π1 c6

〈b〉:(op, π2)

z x conf

• • c7
• π1 c8
• π2 c9
• π3 c10
π2π1 c11

〈a〉:(op, π3)

z x conf

• • c12
• π1 c13
• π2 c14
π2π1 c15

〈/a〉:(cl , π3)

z x conf

• • c16
• π1 c17
π2π1 c18

〈/b〉:(cl , π2)

Figure 11.46: Content of the registration table for the evaluation of query ch∗(isz ∧

par+(isx)) over the linearization of tree a(b(a)) until event 〈/b〉.

of F that has one free variable x, whose value may be a node that comes before a

node for which the query is evaluated. We give in Figure 11.47 a decomposition of

F and display the contents of registration table for program and query evaluators

in the network that evaluate the query. We evaluate F on the linearization of tree

a(b(a(c))), while on the left in the figure we showcase the buffers after event (op, π3)

has arrived (indicated by an arrow pointing to the node in the tree in the upper

left corner of the figure), while on the right in the figure we showcase buffers after

processing event (op, π4) at which we start an evaluation. At event (op, π3), notice,

similar to as we seen before, that the registration R2 for par+(isx) finds ancestors

π1, π2, and π3 for any future node to come. The registration R1 for the conjunction

according to the mode system instruct for every tuple τ ∈ R2 an evaluation of the

algorithm for query labname(x) = “a” as we see in registration R3. The label test,

however, is satisfied for nodes π1 and π3 only, for which only those corresponding

tuples remain in R3. The algorithm for the conjunction combines the answers and

synchronizes the tuples of R3 with its registration table R1. The algorithm that

computes the set of all x such that the conjunction holds, now has precomputed

the open set of nodes π1 and π3 as an answer for any future node. At the next

event, in the figure on the right, one instructs an evaluation at node π4, for which •

values for variable z are instantiated by π4. One observes that in registration table

R3 there is an entry (π4, [x/π1]) and an entry (π4, [x/π3]) of a start node π4 with

values for variable x from the past. However, since we pre-computed the answers of

the label test for past nodes, the answer is already computed, and one just takes it

over, but leaves entries (•, [x/π1]) and (•, [x/π3]) within the registration table, for

further future nodes.

11.4 Tuple Sharing

Tuple sharing lifts the stack-and-state sharing algorithm of Section 8.6.3 to tuple

sharing in networks of early nested word automata. The need for tuple sharing

arises when the number of candidates grows linearly with the size of the document.

For example, XPath query //a/fn:data(following::b) that computes for every
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a π1

b π2

a π3

c π4

a π1

b π2

a π3

c π4

R

node {node}

• {π1, π3}
R

node {node}

• {π1, π3}

π4 {π1, π3}

R1

node 2ass{x}

• {[x/π1],

[x/π3]}

R1

node 2ass{x}

• {[x/π1],
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F1
︷ ︸︸ ︷

F2
︷ ︸︸ ︷

R = {x | par+(isx) ∧ labname(x) = “a”} ⊲ ∅ → ∅

R1 = F1 ∧ F2 ⊲ ∅ → {x}

R2 = F1 ⊲ ∅ → {x}

R3 = F2 ⊲ {x} → ∅

Figure 11.47: A network.

a-descendant the typed value of all following b-nodes. On a document whose root

contains a list of a-children followed by a list of b-children, without tuple sharing,

the typed value for every b-node will be computed, but this for every buffered

a-node.

The idea is that when the automaton evaluator with stack-and-state sharing

reaches for several candidates the same state and the same stack representative

(of which there are no more than states as shown by Proposition 9), then these

candidates can be shared in the tables, so that the work for them will be shared

from that event on. This happens in the above example, where for every a-node

there is an entry in the registration table that computes subquery following::b,

all of which have the same configuration. At the arrival of the first b-node, the

registration that computes the typed value of the b-node only does it once thanks
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FJ: //people/person[not(@id = following::bidder/personref/@person)]

BJ: //open auction

[not(@id = preceding::people/person/watches/watch/@open auction)]

AFJ: //people/person[not(@id = //bidder/personref/@person)]

ABJ: //open auction[not(@id = //people/person/watches/watch/@open auction)]

Figure 11.48: Additional data comparison queries.
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Figure 11.49: Parsing-free time of λXP for the queries of Figure 11.48.

to tuple sharing, instead of computing the same result for every a-node.

11.5 Experiments

The design of the λXP language is ahead of our current implementation in our

QuiXPath tool. QuiXPath however implements besides navigational XPath, a

large subset of the XPath functions, arithmetic, aggregation, and data compar-

isons in streaming. This implementation is based on the semantics and data model

of XPath 1.0 and supports practically all XPath 1.0 expressions. The implemen-

tation enjoys linear runtime behavior for most aggregation and data comparison

queries, thanks to tuple sharing.

In Figure 11.49 we showcase that QuiXPath runs indeed linearly for a collection

of data comparison queries, that we list in Figure 11.48. They perform joins with

forward and backward axes both with relative and absolute subqueries. There list

of tables of data values grow largely over the stream of XPathMark documents,

in contrast to the data comparison queries of the benchmark in Section A.3. A

second experiment for the aggregation queries of Section A.4 of the XPathMark

benchmark is done in Figure 11.50 scaling documents in size.
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Figure 11.50: Parsing-free time of λXP for aggregation queries of Section A.4.



Chapter 12

Conclusion and Outlook

In this thesis, we have developed streaming algorithms for XPath with high time

efficiency, low latency, low memory consumption, and large coverage.

The core of our algorithms maps navigational XPath queries to early nested

word automata. The first idea here was to approximate earliest query answering

by introducing selection and rejection states during the compilation, in order to

avoid the need to decide accessibility problems for nested word automata. The

second idea was to introduce a stack-and-state sharing algorithm. This was essential

to avoid quadratic or higher blow-ups in the processing time for documents, in

cases where the number of candidates is large. Rather than depending on the

number of candidates, the time for processing a single event is reduced to depend

only on the number states of the eNwa. We improved these algorithms further in

time efficiency by developing projection algorithms for early nested word automata

that permit to project large parts of the Xml streams away that the automata

thereby does not have to process. We therefore obtained a streaming algorithm

for answering navigational XPath queries with close to optimal low latency and

memory consumption, whose implementation outperforms all other available tools

in time efficiency.

Next, we worked on finding streaming algorithms that answer to general XPath

3.0 queries. For this purpose, we proposed λXP, a typed first-order logical language

with higher order functions based on first principles for querying data trees. We

then show that it is sufficiently expressive to capture all of XPath 3.0 by presenting

a compiler from XPath 3.0 to λXP. This compiler provides a formal semantics to

XPath 3.0 – for the first time to the best of our knowledge – i.e., it formalizes

the W3C standard for XPath 3.0. We then propose a restriction of λXP that is

accessible to streaming. The problem is to avoid exhaustive speculative compu-

tation. For instance, one might want to rule out cases, where some navigational

queries are computed dynamically from the input document, and then applied to

the same input document. Furthermore, exhaustive speculative computation bears

the risk of running incorrectly into nontermination, when wrongly speculating that

the result of a computation may be needed which is nonterminating. Finally, we

developed streaming algorithms for λXP queries that are accessible to streaming.

Our idea was to decompose general queries into network of simpler subqueries, so

that our streaming algorithms for navigational subqueries can be lifted to the gen-

eral case. To this purpose we proposed to decompose general queries into networks

of registrations with eNwas. In order to avoid quadratic or higher blow-ups on the
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network level, we propose to lift the stack-and-state sharing algorithm on the level

of eNwas to a tuple sharing algorithm on the level of registration networks. We

implemented our algorithm to a large extend, and show that it covers very large

fragments of XPath 3.0 in streaming mode. While mild extensions are still pos-

sible, it does not seem reasonable to us to try to process non-streaming-accessible

queries of XPath 3.0 in streaming mode.

In the following, we envisage to complete our implementation of the presented

streaming algorithms for the supported fragment of λXP. Then, they can serve as

a streaming XPath motor for streaming implementations of Xslt, XQuery, and

finally XProc. In [Labath 2015] the authors proposed a uniform programming

language, similar to that of λXP, that allows to implement the W3C standards.

This language extends on λXP by facilities to create and process data trees on the

fly as one requires for transformation languages like Xslt and XQuery.

For the future, it will be relevant to develop streaming algorithms for NoSql

databases. These rely on the Json format, whose data trees are then linearized

to complex Json events. The challenge is to find streaming algorithms that can

be combined with the algorithms of classical databases and that run in distributed

settings and may thereby profit from parallelism.
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A common XPath benchmark is the XPathMark benchmark1 which is the re-

vised version in contrast to the benchmark of the original paper [Franceschet 2005].

It contains queries about XMark documents that contain a table of bids and a

table of bidders. Some of the queries are parameterized by an integer i ≥ 1, so

that these queries can be scaled in size. Notice that the XPathMark bechmark

was designed to test XPath 1.0 queries only, which are valid XPath 3.0 queries

however. We state all of the queries of the benchmark, while we do not test against

all of the queries in our experiments.

A.1 Downward Queries

Downward queries use forward axes child and descendant, path compositions, and

filters.

A1: /site/closed auctions/closed auction/annotation/description/text

/keyword

A2: //closed auction//keyword

A3: /site/closed auctions/closed auction//keyword

A4: /site/closed auctions/closed auction

[annotation/description/text/keyword]/date

A5: /site/closed auctions/closed auction[descendant::keyword]/date

A6: /site/people/person[profile/gender and profile/age]/name

A7: /site/people/person[phone or homepage]/name

A8: /site/people/person

[address and (phone or homepage) and (creditcard or profile)]

/name

1http://sole.dimi.uniud.it/˜massimo.franceschet/xpathmark/PTbench.html

http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
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A.2 Axis Queries

The axis queries in the benchmark use in addition to the downward axes, also

backward axes, attribute axes and other forward axes. Some of the queries are

parametric.

B1: /site/regions/*/item[parent::namerica or parent::samerica]

/name

B2: //keyword/ancestor::listitem/text/keyword

B3: /site/open auctions/open auction/bidder

[following-sibling::bidder]

B4: /site/open auctions/open auction/bidder

[preceding-sibling::bidder]

B5: /site/regions/*/item[following::item]/name

B6: /site/regions/*/item[preceding::item]/name

B7: //person[profile/@income]/name

B8: /site/open auctions/open auction

[bidder and not(bidder/preceding-sibling::bidder)]/interval

B9: /site/open auctions/open auction

[(not(bidder/following::bidder) or

not(bidder/preceding::bidder)) or

(bidder/following::bidder and bidder/preceding::bidder)]

/interval

B10: /site/open auctions/open auction

[(not(bidder/following::bidder) or

not(bidder/preceding::bidder)) and

(bidder/following::bidder and bidder/preceding::bidder)]

/interval

B11(i): //open auction(/bidder/..)i/interval

B12(i): //item(/@id/..)i/name

B13(i): //keyword(/ancestor::parlist/descendant::keyword)i

B14(i): //bidder

(/following-sibling::bidder/preceding-sibling::bidder)i

B15(i): //keyword(/following::keyword/preceding::keyword)i

A.3 Comparison Queries

The queries in this section perform data comparisons, some of which use the id

function, that return all element nodes with an ID value that matche the values of

the argument to the id function.

C1: /site/people/person

[profile/age >= 18 and profile/@income < 10000
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and address/city != "Dallas"]/name

C2: /site/open auctions/open auction[bidder/increase = current]

/interval

C3: /site/people/person

[profile/@income = /site/open auctions/open auction/current]

/name

C4: /site/people/person

[watches/watch/id(@open auction)/seller/@person = @id]/name

C5: id("person0")/name

C6: /site/people/person/watches/watch/id(@open auction)/interval

C7: /site/people/person[watches/watch/id(@open auction)/itemref

/id(@item)/parent::australian]/name

C8(i): Y(i)/id(.)/name

where Y(1) = /site/catgraph/edge[@from = "category0"]/@to

Y(i) = /site/catgraph/edge[@from = Y(i− 1)]/@to for i ≥ 2

C9(i): /site/open auctions/open auction

(/seller/id(@person)/watches/watch/id(@open auction))i/interval

C10(i): /site/people/person

(/watches/watch/id(@open auction)/bidder/personref

/id(@person))i/name

A.4 Aggregation Queries

Aggregation queries perform arithmetic operations and count and sum up values.

D1: /site/open auctions/open auction[(count(bidder) mod 2) = 0]

/interval

D2: count(//text) + count(//bold) + count(//emph) + count(//keyword)

D3: /site/open auctions/open auction

[sum(bidder/increase) > 10 * initial]/interval

D4: /site/open auctions/open auction

[sum(bidder/increase) != (current - initial)]/interval

D5: /site/open auctions/open auction

[bidder and

(sum(bidder/increase) div count(bidder)) > 2 * initial]/interval

A.5 Position Queries

Position queries use positions, see Section 5.3.

E1: site/open auctions/open auction

[bidder[1]/number(increase) < bidder[floor((last() + 1) div 2)]

/number(increase) and bidder[floor((last() + 1) div 2)]

/number(increase) < bidder[last()]/number(increase)]/interval
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E2: /site/regions/europe/item/description/descendant::keyword[last()]

E3: //keyword/ancestor::listitem[1]/text/keyword

E4: site/open auctions/open auction/bidder

[preceding-sibling::bidder[1]/number(increase)

<= number(increase) and number(increase)

<= following-sibling::bidder[1]/number(increase)]

E5: /site/regions/*/item

[preceding::item[100] and following::item[100]]/name

E6: /site/regions/*/item[contains(description, name)]/name

E7: /site/regions/*/item

[contains(substring-before(description, "eros"), "passion") and

contains(substring-after(description, "eros"), "dangerous")]

/name

E8: /site/regions/*/item

[string-length(translate(normalize-space(description)," ",""))

> 10000]/name

A.6 Closure Queries

Closure queries perform the closure from nodes in $input and XPath query following-sibling::bidder

[position()=1 and number(increase) <= 10] according to the function closure

below, where

Bigger =df

following-sibling::bidder[position()=1 and number(increase) > 10]

Smaller =df

following-sibling::bidder[position()=1 and number(increase) <= 10]

and

closure =df

function closure($input as node()*, $result as node()*) as node()*

{

let $current := $input/following-sibling::bidder

[position()=1 and number(increase) <= 10]

let $new := $current except $result

let $all := ($result,$new)

return

if(exists($new))

then ($new, closure($new,$all))

else ()

}
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F1: //bidder

[number(increase) <= 10 and (Bigger or closure(.,Smaller)/Bigger)]

F2: //bidder

[number(increase) <= 10 and (Bigger or closure(.,Smaller)/Bigger)]

F3: //listitem[text/keyword or

closure(.,parlist/listitem/parlist/listitem)/text/keyword]

/text/keyword

F4: /site/open auctions/open auction[position() <= 5]

/closure(.,seller/id(@person)/watches/watch/id(@open auction))

/interval

F5: /site/people/person[position() <= 5]/closure(.,/watches/watch

/id(@open auction)/bidder/personref/id(@person))/name

F6: /site/people/person[1]/idref(@id)/..

F7: //category[@id="category0"]/@id

/closure(.,let $i = . return ($i | //edge[@from = $i]/@to))

/id(.)/name

F8: //category[@id="category0"]/@id

/closure(.,idref(.)[name() = "from"]/../@to)/id(.)/name
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We translate XPath 3.0 queries to λXP expressions along its grammar in Ebnf

given in Section 5.1 for basic, navigational, postfix, and terminal expressions, and

for sequence types whose production rules are given in Section 4.1.

B The following translations were done to the best of our understanding of the

informally described XPath 3.0 specification1.

The translation follows the specification where the XPath 1.0 compatibility

mode is set to false, and where its type system is based on Xml Schema 1.0.

Notice that we can also translate XPath 3.0 expressions where the XPath 1.0

compatibility mode is set to true, which then implements different specifications.

We use some constant mode which is equal to the sort function sort if the ordering

mode of XQuery is set to ordered, while it is the identity function id , when the

ordering mode is set to unordered :

mode =

{
sort , ordering mode of XQuery is ordered

id , ordering mode of XQuery is unordered

We assume that XPath expressions are not abbreviated, i.e. we only translate

the unabbreviated XPath syntax. Notice that we raise an error for expressions

that depend on the unsupported namespace axis (see the Xml data model in Sec-

tion 2.3.1).

1https://www.w3.org/TR/xpath-30/

https://www.w3.org/TR/xpath-30/
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B.1 Basic Expressions

B.1.1 XPath expressions

Nonterminal XPath expands to nonterminal Expr.
(1) JXPath(P)Kz̄,ẑ,z̃ =df

JExpr(P)Kz̄,ẑ,z̃

B.1.2 Nonterminals to define inline function expressions

The next four nonterminals in the grammar are used to define function declarations

by expressions InlineFunctionExpr (64), and thus translated as a whole there.

(2) ParamList ::= Param ("," Param)*

(3) Param ::= "$" EQName TypeDeclaration?

(4) FunctionBody ::= EnclosedExpr

(5) EnclosedExpr ::= "{" Expr "}"

B.1.3 Sequence constructions

(6) JExpr(P)Kz̄,ẑ,z̃ =df

JExprSingle(P)Kz̄,ẑ,z̃
Sequences in XPath are constructed using the comma seperator and they are

flattened according to Section 4.3 for which we append the result lists.
JExpr(P1,...,Pn)Kz̄,ẑ,z̃ =n≥2

df

listconcat(JExprSingle(P1)Kz̄,ẑ,z̃, . . . , JExprSingle(Pn)Kz̄,ẑ,z̃)

B.1.4 Single expressions

There exist various single expressions.
(7) JExprSingle(P)Kz̄,ẑ,z̃ =df





JForExpr(P)Kz̄,ẑ,z̃ P ∈ ForExpr

JLetExpr(P)Kz̄,ẑ,z̃ P ∈ LetExpr

JQuantifiedExpr(P)Kz̄,ẑ,z̃ P ∈ QuantifiedExpr

JIfExpr(P)Kz̄,ẑ,z̃ P ∈ IfExpr

JOrExpr(P)Kz̄,ẑ,z̃ P ∈ OrExpr

B.1.5 Sequence decompositions

For expressions using multiple variables are first expanded to a set of nested for

expressions:
ForExpr(for $VarName(y1) in ExprSingle(P1),...,

$VarName(yn) in ExprSingle(Pn) return ExprSingle(P))

=ForExpr(for $VarName(y1) in ExprSingle(P1) return ...

for $VarName(yn) in ExprSingle(Pn) return ExprSingle(P))
Then

single-variable for expressions concatenate sequences by the return expression P’ in

http://www.w3.org/TR/xpath-30/#doc-xpath30-XPath
http://www.w3.org/TR/xpath-30/#doc-xpath30-InlineFunctionExpr
http://www.w3.org/TR/xpath-30/#prod-xpath30-ParamList
http://www.w3.org/TR/xpath-30/#prod-xpath30-Param
http://www.w3.org/TR/xpath-30/#prod-xpath30-FunctionBody
http://www.w3.org/TR/xpath-30/#prod-xpath30-EnclosedExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-Expr
http://www.w3.org/TR/xpath-30/#doc-xpath30-ExprSingle
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the order of the items in the binding sequence P:
(8) JForExpr(for $VarName(y) in ExprSingle(P)

return ExprSingle(P’))Kz̄,ẑ,z̃ =df

listconcat

(map (λJVarName(y)Kz̄,ẑ,z̃.JExprSingle(P’)Kz̄,ẑ,z̃) JExprSingle(P)Kz̄,ẑ,z̃)

The following two nonterminals are used to define for expressions ForExpr,

translated above.

(9) SimpleForClause ::= "for" SimpleForBinding ("," SimpleForBinding)*

(10) SimpleForBinding ::= "$" VarName "in" ExprSingle

B.1.6 Let expressions

Similar to for expression, also let expressions using multiple variables are first ex-

panded to a set of nested let expressions:
LetExpr(let $VarName(y1) := ExprSingle(P1),...,

$VarName(yn) := ExprSingle(Pn) return ExprSingle(P))

=LetExpr(let $VarName(y1) := ExprSingle(P1) return ...

let $VarName(yn) := ExprSingle(Pn) return ExprSingle(P))
Single-

variable let expressions translate to let definitions in λXP:
(11) JLetExpr(let $VarName(y):= ExprSingle(P)

return ExprSingle(P’))Kz̄,ẑ,z̃ =df

let JVarName(y)Kz̄,ẑ,z̃ = JExprSingle(P)Kz̄,ẑ,z̃ in JExprSingle(P’)Kz̄,ẑ,z̃

The following two nonterminals are used to define let expressions LetExpr, trans-

lated above.

(12) SimpleLetClause ::= "let" SinleLetBinding ("," SimpleLetBinding)*

(13) SimpleLetBinding ::= "$" VarName ":=" ExprSingle

B.1.7 Quantified expressions

Quantified expressions that we mentioned briefly in Section 5.2.2 can bind several

variables in general. Expression P below that follows the satisfies keyword may

be tested for any such variable binding from variables yi to items of sequences Pi.

The translation to λXP expressions is therefore a little tedious. It obtains n lists

of elements from expressions Pi, which must be decomposed, such that all needed

variable bindings are obtained. This requires to re-iterate through certain lists in

general, which is done by the functions in the following translations. When func-

tion fi will be called, variables y1 until yi−1 have been bound by previous calls to

functions fj for j < i via the let definition for those variables. Function fi then

iterates through the list by Pi while binding variable yi and which evaluates fi+1 if

i < n, or if i = n it evaluates P, since all appearing variables are bound. When one

of these evaluations return true, the function returns true and stops the iteration.

http://www.w3.org/TR/xpath-30/#doc-xpath30-ForExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleForClause
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleForBinding
http://www.w3.org/TR/xpath-30/#doc-xpath30-LetExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleLetClause
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleLetBinding
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(14) JQuantifiedExpr(some

$VarName(y1) in ExprSingle(P1), ...,

$VarName(yn) in ExprSingle(Pn) satisfies ExprSingle(P))Kz̄,ẑ,z̃ =df

let fn = λzn.match zn with x :: y then

let JVarName(yn)Kz̄,ẑ,z̃ = x in

if Jfn:booleanK(JExprSingle(P)Kz̄,ẑ,z̃) then true else fn(y)

else false

in let fn−1 = λ(zn−1, zn).match zn−1 with x :: y then

let JVarName(yn−1)Kz̄,ẑ,z̃ = x in

if fn(zn) then true else fn−1(y, zn)

else false

in ...

in let f1 = λ(z1, . . . , zn).match z1 with x :: y then

let JVarName(y1)Kz̄,ẑ,z̃ = x in

if f2(z2, . . . , zn) then true else f1(y, z2, . . . , zn)

else false

in f1(JExprSingle(P1),...,ExprSingle(Pn))Kz̄,ẑ,z̃)
In contrast to test for the existence of a variable binding for which expressions P

becomes true as above, the quantification with keyword every tests whether P be-

comes true for all variables bindings:
JQuantifiedExpr(every

$VarName(y1) in ExprSingle(P1), ...,

$VarName(yn) in ExprSingle(Pn) satisfies ExprSingle(P))Kz̄,ẑ,z̃ =df

let fn = λzn.match zn with x :: y then

let JVarName(yn)Kz̄,ẑ,z̃ = x in

if Jfn:booleanK(JExprSingle(P)Kz̄,ẑ,z̃) then fn(y) else false

else true

in let fn−1 = λ(zn−1, zn).match zn−1 with x :: y then

let JVarName(yn−1)Kz̄,ẑ,z̃ = x in

if fn(zn) then fn−1(y, zn) else false

else true

in ...

in let f1 = λ(z1, . . . , zn).match z1 with x :: y then

let JVarName(y1)Kz̄,ẑ,z̃ = x in

if f2(z2, . . . , zn) then f1(y, z2, . . . , zn) else false

else true

in f1(JExprSingle(P1),...,ExprSingle(Pn))Kz̄,ẑ,z̃)

B.1.8 First-Order expressions

Conditionals, disjunctions, and conjunctions of XPath are translated to condition-

als, disjunctions, and conjunctions in λXP, respectively.

http://www.w3.org/TR/xpath-30/#doc-xpath30-QuantifiedExpr
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(15) JIfExpr(if (Expr(P)) then ExprSingle(P’)

else ExprSingle(P’’))Kz̄,ẑ,z̃ =df

if Jfn:booleanK(JExpr(P)Kz̄,ẑ,z̃)

then JExprSingle(P’)Kz̄,ẑ,z̃ else JExprSingle(P’’)Kz̄,ẑ,z̃

(16) JOrExpr(AndExpr(P))Kz̄,ẑ,z̃ =df

JAndExpr(P)Kz̄,ẑ,z̃

JOrExpr(AndExpr(P1) or ... or AndExpr(Pn))Kz̄,ẑ,z̃ =n≥2
df

Jfn:booleanK(JAndExpr(P1)Kz̄,ẑ,z̃) ∨ . . . ∨ Jfn:booleanK(JAndExpr(Pn)Kz̄,ẑ,z̃)

(17) JAndExpr(ComparisonExpr(P))Kz̄,ẑ,z̃ =df

JComparisonExpr(P)Kz̄,ẑ,z̃

JAndExpr(ComparisonExpr(P1) and ... and ComparisonExpr(Pn))Kz̄,ẑ,z̃ =n≥2
df

Jfn:booleanK(JComparisonExpr(P1)Kz̄,ẑ,z̃)

∧ . . . ∧ Jfn:booleanK(JComparisonExpr(Pn)Kz̄,ẑ,z̃)

B.1.9 Comparisons

Comparison expressions may expand to string concatenation expressions.
(18) JComparisonExpr(P)Kz̄,ẑ,z̃ =df

JStringConcatExpr(P)Kz̄,ẑ,z̃

Otherwise we translate comparison expression to λXP expressions as follows. It

spells out the details of the XPath 3.0 specifications, whose essence we described

in Section 5.6. The translation assumes a function lct that computes the least com-

mon type of two types in XPath. It also assumes a function validComb that tests

whether the transformed operands are of valid type with respect to the operator

according to the specification2.

2http://www.w3.org/TR/xpath-30/#mapping

http://www.w3.org/TR/xpath-30/#doc-xpath30-IfExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-OrExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AndExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-ComparisonExpr
http://www.w3.org/TR/xpath-30/#mapping
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JComparisonExpr(

StringConcatExpr(P) ValueComp(vc) StringConcatExpr(P’))Kz̄,ẑ,z̃ =df

let right = Jfn:dataK(JStringConcatExpr(P’)Kz̄,ẑ,z̃) in

match Jfn:dataK(JStringConcatExpr(P)Kz̄,ẑ,z̃) with x1 :: y1 then

if right = nil then nil else

if y1 = nil then

match right with x2 :: y2 then

if y2 = nil then

let x′1 = if typeType(x1),xs:untypedAtomic(x1)

then castxs:untypedAtomic,string(x1) else x1 in

let x′2 = if typeType(x2),xs:untypedAtomic(x2)

then castxs:untypedAtomic,string(x2) else x2 in

let x′′1 = castType(x′
1),lct(Type(x′

1),Type(x′
2))

(x′1) in

let x′′2 = castType(x′
2),lct(Type(x′

1),Type(x′
2))

(x′2) in

let op = JValueComp(vc)Kz̄,ẑ,z̃ in

if validComb(Type(x′′1),Type(x′′2), op)

then x′′1 op x′′2 else raise error(err:XPTY0004)

else raise error(err:XPTY0004)

else nil

else raise error(err:XPTY0004)

else nil
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JComparisonExpr(

StringConcatExpr(P) GeneralComp(gc) StringConcatExpr(P’))Kz̄,ẑ,z̃ =df

let x1 = Jfn:dataK(JStringConcatExpr(P)Kz̄,ẑ,z̃),

op = JGeneralComp(gc)Kz̄,ẑ,z̃,

x2 = Jfn:dataK(JStringConcatExpr(P’)Kz̄,ẑ,z̃) in

∃x.[x ∈ list2set(x1) ∧ ∃y.[y ∈ list2set(x2) ∧

let x′ = if typeType(x),xs:untypedAtomic(x) ∧ typeType(y),xs:untypedAtomic(y)

then castxs:untypedAtomic,string(x) else x in

let y′ = if typeType(x),xs:untypedAtomic(x) ∧ typeType(y),xs:untypedAtomic(y)

then castxs:untypedAtomic,string(y) else y in

if typeType(x′),xs:untypedAtomic(x′) ∨ typeType(y′),xs:untypedAtomic(y′) ∨ then

let left = if typeType(x′),xs:untypedAtomic(x′) then x′ else y′ in

let right = if typeType(x′),xs:untypedAtomic(x′) then y′ else x′ in

let left ′ =

if typeType(left),num(left) then castType(left),xs:double(left)

else if typeType(left),xs:dayTimeDuration(left) then

castType(left),xs:dayTimeDuration(left)

else if typeType(left),xs:yearMonthDuration(left) then

castType(left),xs:yearMonthDuration(left)

else castType(left),Type(right)(left)

in if validComb(Type(left ′),Type(right), op)

then left ′ op right else raise error

else if validComb(Type(x′),Type(y′), op) then x′ op y′ else raise error

JComparisonExpr(

StringConcatExpr(P) NodeComp(nc) StringConcatExpr(P’))Kz̄,ẑ,z̃ =df

let left = JStringConcatExpr(P)Kz̄,ẑ,z̃,

right = JStringConcatExpr(P’)Kz̄,ẑ,z̃ in

if left = nil ∨ right = nil then nil else

match left with x1 :: y1 then

if y1 = nil ∧ typeType(x1),node,(x1) then

match right with x2 :: y2 then

if y2 = nil ∧ typeType(x2),node(x2) then

x1 JNodeComp(nc)Kz̄,ẑ,z̃ x2
else raise error(//err:XPTY0004)

else nil

else raise error(//err:XPTY0004)

else nil

B.1.10 Concatenation of strings

(19) JStringConcatExpr(RangeExpr(P))Kz̄,ẑ,z̃ =df

JRangeExpr(P)Kz̄,ẑ,z̃
String concatenation expressions are translated by XPath 3.0 function fn:concat,

http://www.w3.org/TR/xpath-30/#doc-xpath30-StringConcatExpr
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i.e. $a||$b = fn:concat($a,$b).
JStringConcatExpr(RangeExpr(P1) || ...|| RangeExpr(Pn))Kz̄,ẑ,z̃ =n≥2

df

Jfn:concatK(JRangeExpr(P1)Kz̄,ẑ,z̃, . . . , JRangeExpr(Pn)Kz̄,ẑ,z̃)

B.1.11 Range expressions

We would like to refer to Section 5.3 for an example of a range expression, who

evaluate to sequence of consecutive integers.
(20) JRangeExpr(P)Kz̄,ẑ,z̃ =df

JAdditiveExpr(P)Kz̄,ẑ,z̃

JRangeExpr(AdditiveExpr(P) to AdditiveExpr(P’))Kz̄,ẑ,z̃ =df

match JAdditiveExpr(P)Kz̄,ẑ,z̃ with x1 :: y1 then

match JAdditiveExpr(P’)Kz̄,ẑ,z̃ with x2 :: y2 then

let left = Jfn:numberK(x1), right = Jfn:numberK(x2) in

if left > right then nil else left :: . . . :: right :: nil

else nil

else nil

B.1.12 Arithmetic Expressions

Operands of arithmetic expressions undergo atomization, see Section 5.5.1. The

translation for additive and multiplicate expressions tests whether all operands and

operators are pairwise valid combinations (validComb(z1, . . . , zn+1, op1, . . . , opn)).

For additive expressions AdditiveExpr operators are opi ∈ {+, -} for all 1 ≤ i ≤ n:

(21) JAdditiveExpr(P)Kz̄,ẑ,z̃ =df

JMultiplicativeExpr(P)Kz̄,ẑ,z̃

http://www.w3.org/TR/xpath-30/#doc-xpath30-RangeExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AdditiveExpr


268 Appendix B. XPath to λXP Compiler

JAdditiveExpr(

MultiplicativeExpr(P1) op1 MultiplicativeExpr(P2) ...

MultiplicativeExpr(Pn) opn MultiplicativeExpr(Pn+1))Kz̄,ẑ,z̃ =df

let x1 = Jfn:dataK(JMultiplicativeExpr(P1)Kz̄,ẑ,z̃), . . . ,

xn+1 = Jfn:dataK(JMultiplicativeExpr(Pn+1)Kz̄,ẑ,z̃) in

if x1 = nil ∨ . . . ∨ xn+1 = nil then nil else

let z1 = match x1 with x :: y then

if typeType(x),xs:untypedAtomic(x) then

try castType(x),xs:double(x) catch(e) raise error(err:FORG0001)

else x

else raise error(err:XPTY0004) in . . .

let zn+1 = match xn+1 with x :: y then

if typeType(x),xs:untypedAtomic(x) then

try castType(x),xs:double(x) catch(e) raise error(err:FORG0001)

else x

else raise error(err:XPTY0004) in . . .

if validComb(z1, . . . , zn+1, op1, . . . , opn) then

try z1 op1 z2 op2 . . . zn opn zn+1 catch(e) raise error(e)

else raise error(err:XPTY0004)

We assume that the operators belong to the built-in contansts Const in λXP.

Similar to additive expressions we translate multiplicative expressions MultiplicativeExpr,

but where opi ∈ {*, div, idiv, mod} for all 1 ≤ i ≤ n:

(22) JMultiplicativeExpr(P)Kz̄,ẑ,z̃ =df

JUnionExpr(P)Kz̄,ẑ,z̃
JMultiplicativeExpr(

UnionExpr(P1) op1 UnionExpr(P2) ...

UnionExpr(Pn) opn UnionExpr(Pn+1))Kz̄,ẑ,z̃ =df

same translation as for AdditiveExpr((21)), but where

xi = Jfn:dataK(JUnionExpr(Pi)Kz̄,ẑ,z̃) for all 1 ≤ i ≤ n + 1

B.1.13 Ordered Sets

The following two nonterminals UnionExpr and IntersectExceptExpr produce

operators union, intersect, and except, which operate on sequences of nodes

only, see Section 5.7.1. Notice that according to the specification, if one of the

items in the sequences is not a node, a type error is raised, which is treated in

shortcut nodelist2set . Furthermore the result list may be sorted in document order

according to constant mode.

(23) JUnionExpr(IntersectExceptExpr(P))Kz̄,ẑ,z̃ =df

JIntersectExceptExpr(P)Kz̄,ẑ,z̃
For the following union operator union, in XPath also | may be written, which

has the same semantics.

http://www.w3.org/TR/xpath-30/#doc-xpath30-MultiplicativeExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AdditiveExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-UnionExpr
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JUnionExpr(IntersectExceptExpr(P1) union ...

union IntersectExceptExpr(Pn))Kz̄,ẑ,z̃ =n≥2
df

mode(set2list(nodelist2set(JIntersectExceptExpr(P1)Kz̄,ẑ,z̃) ∪ . . .

∪ nodelist2set(JIntersectExceptExpr(Pn)Kz̄,ẑ,z̃)))

(24) JIntersectExceptExpr(InstanceofExpr(P))Kz̄,ẑ,z̃ =df

JInstanceofExpr(P)Kz̄,ẑ,z̃
For expressions IntersectExceptExpr we have opi ∈ {intersect, except} for

all 1 ≤ i ≤ n:
JIntersectExceptExpr(

InstanceofExpr(P1) op1 InstanceofExpr(P2) ...

InstanceofExpr(Pn) opn InstanceofExpr(Pn+1))Kz̄,ẑ,z̃ =n≥2
df

mode(set2list(

nodelist2set(JInstanceofExpr(P1)Kz̄,ẑ,z̃) op1
nodelist2set(JInstanceofExpr(P2)Kz̄,ẑ,z̃) op2

. . . opn nodelist2set(JInstanceofExpr(Pn+1)Kz̄,ẑ,z̃)))

B.1.14 Type checks and casts

We refer to Section 4.4 for some examples.

The instance-of expression P instance of P’ tests whether the type of the

result by P matches the type by P’, for which it is reduced to sequence type matching

in Section B.4.
(25) JInstanceofExpr(P)Kz̄,ẑ,z̃ =df

JTreatExpr(P)Kz̄,ẑ,z̃

JInstanceofExpr(TreatExpr(P) instance of SequenceType(P’))Kz̄,ẑ,z̃ =df

JSequenceType(P’)K
JTreatExpr(P)Kz̄,ẑ,z̃
z̄,ẑ,z̃

Treat expressions in XPath varify whether an expressions is of a certain type.

If the value of the expression matches the type, then it is returned, otherwise an

error is raised.
(26) JTreatExpr(P)Kz̄,ẑ,z̃ =df

JCastableExpr(P)Kz̄,ẑ,z̃

JTreatExpr(CastableExpr(P) treat as SequenceType(P’))Kz̄,ẑ,z̃ =df

if JInstanceofExpr(CastableExpr(P)

instance of SequenceType(P’))Kz̄,ẑ,z̃
then JCastableExpr(P)Kz̄,ẑ,z̃ else raise error(err:XPDY0050)

As mentioned in Section 5.8 the expressions that varify whether some value is

castable into a certain type, requires a facility to try and catch errors.
(27) JCastableExpr(P)Kz̄,ẑ,z̃ =df

JCastExpr(P)Kz̄,ẑ,z̃

JCastableExpr(CastExpr(P) castable as SingleType(P’))Kz̄,ẑ,z̃ =df

try

let z = JCastExpr(P cast as SingleType(P’))Kz̄,ẑ,z̃ in true

catch(e) false
Cast expressions in XPath are modeled with constant cast functions castS,T ∈

http://www.w3.org/TR/xpath-30/#doc-xpath30-IntersectExceptExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-InstanceofExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-TreatExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-CastableExpr
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Const in λXP that are defined for every combination of source types S and target

types T according to the specification3.
(28) JCastExpr(P)Kz̄,ẑ,z̃ =df

JUnaryExpr(P)Kz̄,ẑ,z̃

JCastExpr(UnaryExpr(P) cast as SimpleTypeName(P’))Kz̄,ẑ,z̃ =df

let z = Jfn:dataK(JUnaryExpr(P)Kz̄,ẑ,z̃) in

match z with x :: y then

if y = nil then castType(x),Type(JSimpleTypeNameKz̄,ẑ,z̃)(x)

else raise error(err:XPTY0004)

else raise error

JCastExpr(UnaryExpr(P) cast as SimpleTypeName(P’)?)Kz̄,ẑ,z̃ =df

let z = Jfn:dataK(JUnaryExpr(P)Kz̄,ẑ,z̃) in

match z with x :: y then

if y = nil then castType(x),Type(JSimpleTypeNameKz̄,ẑ,z̃)(x)

else raise error(err:XPTY0004)

else nil

B.1.15 Unary Expressions

(29) JUnaryExpr(ValueExpr(P))Kz̄,ẑ,z̃ =df

JValueExpr(P)Kz̄,ẑ,z̃
Any sequence of unary operators + and - is reduced to one unary operator in the

obvious way. The translation is similar to the translation of arithmetic expressions

as above. op ∈ {+, -}.

JUnaryExpr(op ValueExpr(P))Kz̄,ẑ,z̃ =df

match Jfn:dataK(JValueExpr(P)Kz̄,ẑ,z̃) with x :: y then

if y = nil then

let x′ = if typeType(x),xs:untypedAtomic(x)

then try castType(x),xs:double(x) catch(e) raise error(err:FORG0001)

else x

in

if validComb(x′, op) then

op Jfn:numberK(x′) else raise error(err:XPTY0004)

else raise error(err:XPTY0004)

else nil

B.1.16 Value expressions

Value expressions are simple map expressions.
(30) JValueExpr(P)Kz̄,ẑ,z̃ =df

JSimpleMapExpr(P)Kz̄,ẑ,z̃

3http://www.w3.org/TR/xpath-functions-30/#casting

http://www.w3.org/TR/xpath-30/#doc-xpath30-CastExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-UnaryExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-ValueExpr
http://www.w3.org/TR/xpath-functions-30/#casting
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B.1.17 Comparison operators

The translation of general comparison, value comparison, and node comparison

operators is straight forward.

(31) JGeneralComp(=)Kz̄,ẑ,z̃ =df=

JGeneralComp(!=)Kz̄,ẑ,z̃ =df 6=

JGeneralComp(<)Kz̄,ẑ,z̃ =df<

JGeneralComp(<=)Kz̄,ẑ,z̃ =df≤

JGeneralComp(>)Kz̄,ẑ,z̃ =df>

JGeneralComp(>=)Kz̄,ẑ,z̃ =df≥

(32) JValueComp(eq)Kz̄,ẑ,z̃ =df=

JValueComp(ne)Kz̄,ẑ,z̃ =df 6=

JValueComp(lt)Kz̄,ẑ,z̃ =df<

JValueComp(le)Kz̄,ẑ,z̃ =df≤

JValueComp(gt)Kz̄,ẑ,z̃ =df>

JValueComp(ge)Kz̄,ẑ,z̃ =df≥

(33) JNodeComp(is)Kz̄,ẑ,z̃ =df=

JNodeComp(<<)Kz̄,ẑ,z̃ =df<

JNodeComp(>>)Kz̄,ẑ,z̃ =df>

B.1.18 Simple Map expressions

(34) JSimpleMapExpr(PathExpr(P))Kz̄,ẑ,z̃ =df

JPathExpr(P)Kz̄,ẑ,z̃

The translation of the simple map operator (!) from Section 3.3.6 makes the

treatment of context nodes ci , context positions cp, and context size cs explicite

using nested data structures, as we discussed in Section 7.3.2.
JSimpleMapExpr(PathExpr(P) ! PathExpr(P’))Kz̄,ẑ,z̃ =df

let apply = λz.match z with x :: y then match x with (ci , cp, cs) in

if typeType(ci),node(ci) then

at(ci , (λ(zi, zp, zs).JPathExpr(P’)Kzi,zp,zs)(ci , cp, cs)) :: apply(y)

else

(λ(zi, zp, zs).JPathExpr(P’)Kzi,zp,zs)(ci , cp, cs) :: apply(y)

else nil in

listconcatapply(addPositionAndSize(JPathExpr(P)Kz̄,ẑ,z̃))

However for reverse axis, the assignment of context positions is in reverse doc-

ument order:

http://www.w3.org/TR/xpath-30/#doc-xpath30-GeneralComp
http://www.w3.org/TR/xpath-30/#doc-xpath30-ValueComp
http://www.w3.org/TR/xpath-30/#doc-xpath30-NodeComp
http://www.w3.org/TR/xpath-30/#doc-xpath30-SimpleMapExpr
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JReverseAxis(P)::NodeTest(P’) ! PathExpr(P’’)Kz̄,ẑ,z̃ =df

let apply = λz.match z with x :: y then

match x with (ci , cp, cs) in

at(ci , (λ(zi, zp, zs).JPathExpr(P’’)Kzi,zp,zs)(ci , cp, cs)) :: apply(y)

else nil

in listconcat apply(

addReversePositionAndSize(JReverseAxis(P)::NodeTest(P’)Kz̄,ẑ,z̃))

B.2 Navigational Expressions

B.2.1 Absolute path expressions

A “/” at the beginning of a path expression is an abbreviation for the root node of

the tree to which the context node self::node() belongs.
(35) JPathExpr(/)Kz̄,ẑ,z̃ =df

JPathExpr((fn:root(self::node()) treat as document-node()))Kz̄,ẑ,z̃

JPathExpr(/RelativePathExpr(P))Kz̄,ẑ,z̃ =df

JPathExpr((fn:root(self::node()) treat as document-node())

/RelativePathExpr(P))Kz̄,ẑ,z̃

JPathExpr(P)Kz̄,ẑ,z̃ =df

JRelativePathExpr(P)Kz̄,ẑ,z̃

B.2.2 Relative path expressions

(36) JRelativePathExpr(StepExpr(P))Kz̄,ẑ,z̃ =df

JStepExpr(P)Kz̄,ẑ,z̃
Each occurence of // in relative path expressions RelativePathExpr is an ab-

breviation for /descendant-or-self::node()/.
JRelativePathExpr(P//P’)Kz̄,ẑ,z̃ =df

JRelativePathExpr(P/descendant-or-self::node()/P’)Kz̄,ẑ,z̃
The path operator / that we describe in Section 3.3.6 can be expressed using

the simple map operator !:
JRelativePathExpr(P/P’)Kz̄,ẑ,z̃ =df

JRelativePathExpr(

let $R:= P!P’ return

if (every $r in $R satisfies $r instance of node()) then

($R union ())

else if (every $r in $R satisfies not($r instance of node()))

then $R

else error()Kz̄,ẑ,z̃

B.2.3 Steps

Steps in XPath 3.0 are expressions that produce a sequence of items that may be

filtered. A step is either an axis step or a postfix expression.

http://www.w3.org/TR/xpath-30/#doc-xpath30-PathExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-RelativePathExpr
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(37) JStepExpr(P)Kz̄,ẑ,z̃ =df
{

JPostfixExpr(P)Kz̄,ẑ,z̃ P ∈ PostfixExpr

JAxisStep(P)Kz̄,ẑ,z̃ P ∈ AxisStep

B.2.4 Axis steps and Filters

An axis step, described in Section 3.3.1, is either a forward or a backward step.
(38) JAxisStep(ForwardStep(P))Kz̄,ẑ,z̃ =df

JForwardStep(P)Kz̄,ẑ,z̃

JAxisStep(ReverseStep(P))Kz̄,ẑ,z̃ =df

JReverseStep(P)Kz̄,ẑ,z̃

An axis steps with predicates or postfix expressions PostfixExpr (48) are trans-

lated as follows. The expression P below is some expression P̄ of either a forward

step AxisStep(ForwardStep(P̄)), a backward step AxisStep(ReverseStep(P̄)),

or a primary expression PostfixExpr(PrimaryExpr(P̄)). More details on filters

can be found in Section 3.3.5. Similarly to the translation of the simple map oper-

ator, it must take care of context nodes and positions explicitely.
JP[P′]Kz̄,ẑ,z̃ =df

let eval = λz.match z with x :: y then

match x with (ci , cp, cs) in

let filter = if typeType(ci),node(ci) then

at(ci , (λ(zi, zp, zs).JP′Kzi,zp,zs)(ci , cp, cs))

else

(λ(zi, zp, zs).JP′Kzi,zp,zs)(ci , cp, cs)

in

if typeType(filter),num(filter) ∧ castType(filter),int(filter) = cp then

ci :: eval(y)

else if Jfn:booleanK(filter) then

ci :: eval(y)

else eval(y)

else nil

in eval(addPositionAndSize(JPKz̄,ẑ,z̃))

Notice that context positions are assigned in reverse document order for testing

predicated on nodes selected by reverse axes:

http://www.w3.org/TR/xpath-30/#doc-xpath30-StepExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AxisStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-PostfixExpr
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JReverseAxis(P)::NodeTest(P’)[Expr(P’’)]Kz̄,ẑ,z̃ =df

let eval = λz.match z with x :: y then

match x with (ci , cp, cs) in

let filter = at(ci , (λ(zi, zp, zs).JExpr(P’’)Kzi,zp,zs)(ci , cp, cs)) in

if typeType(filter),num(filter) ∧ castType(filter),int(filter) = cp then

ci :: eval(y)

else if Jfn:booleanK(filter) then

ci :: eval(y)

else eval(y)

else nil

in eval(addReversePositionAndSize(

JReverseAxis(P)::NodeTest(P’)Kz̄,ẑ,z̃))

B.2.5 Axis Steps

The following translations concern axis steps, as discussed in Section 3.3.1. Node

label and type tests are reduced to sequence type matching as in Section B.4.
(39) JForwardStep(ForwardAxis(P) NodeTest(P′))Kz̄,ẑ,z̃ =df

mode(set2list({x | x ∈ JForwardAxis(P)Kz̄,ẑ,z̃ ∧ JNodeTest(P′)Kxz̄,ẑ,z̃}))

Attribute nodes of Xml data trees are considered to be children of their parents,

in contrast to what the Xml data model specifies. Thus the following translation

has to take this into account.
(40) JForwardAxis(child::)Kz̄,ẑ,z̃ =df

{x | ch(isx) ∧ ¬typeType(x),attribute(x)}

JForwardAxis(descendant::)Kz̄,ẑ,z̃ =df

{x | ch+(isx) ∧ ¬typeType(x),attribute(x)}

JForwardAxis(attribute::)Kz̄,ẑ,z̃ =df

{x | ch(isx) ∧ typeType(x),attribute(x)}

JForwardAxis(self::)Kz̄,ẑ,z̃ =df

{x | isx}

JForwardAxis(descendant-or-self::)Kz̄,ẑ,z̃ =df

{x | ch∗(isx) ∧ ¬typeType(x),attribute(x)}

JForwardAxis(following-sibling::)Kz̄,ẑ,z̃ =df

{x | ns+(isx) ∧ ¬typeType(x),attribute(x)}

JForwardAxis(following::)Kz̄,ẑ,z̃ =df

{x | par∗(ns+(ch∗(isx))) ∧ ¬typeType(x),attribute(x)}

JForwardAxis(namespace::)Kz̄,ẑ,z̃ =df

raise error

We do not consider abbreviated XPath queries. “@” is an abbreviation for

“attribute::”.

(41) AbbrevForwardStep ::= "@"? NodeTest

The nonterminal for abbreviated forward steps AbbrevForwardStep is not con-

sidered.

http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ForwardAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-AbbrevForwardStep
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(42) JReverseStep(ReverseAxis(P) NodeTest(P’))Kz̄,ẑ,z̃ =df

mode(set2list({x | x ∈ JReverseAxis(P)Kz̄,ẑ,z̃ ∧ JNodeTest(P’)Kxz̄,ẑ,z̃}))

(43) JReverseAxis(parent::)Kz̄,ẑ,z̃ =df

{x | par(isx) ∧ ¬typeType(x),attribute(x)}

JReverseAxis(ancestor::)Kz̄,ẑ,z̃ =df

{x | par+(isx) ∧ ¬typeType(x),attribute(x)}

JReverseAxis(preceding-sibling::)Kz̄,ẑ,z̃ =df

{x | ps+(isx) ∧ ¬typeType(x),attribute(x)}

JReverseAxis(preceding::)Kz̄,ẑ,z̃ =df

{x | par∗(ps+(ch∗(isx))) ∧ ¬typeType(x),attribute(x)}

JReverseAxis(ancestor-or-self::)Kz̄,ẑ,z̃ =df

{x | par∗(isx) ∧ ¬typeType(x),attribute(x)}

We do not consider abbreviated XPath queries. “..” is an abbreviation for

“parent::node()”.

(44) AbbrevReverseStep ::= ".."

B.2.6 Node Tests, Name Tests, and Wildcards

Translation for node tests NodeTest, name tests NameTest, and wildcards Wildcard

are parametrized by the node v , for which the test is to be performed. It reduces

to sequence type matching in Section B.4.
(45) JNodeTest(P)Kvz̄,ẑ,z̃ =df{

JKindTest(P)Kvz̄,ẑ,z̃ P ∈ KindTest

JNameTest(P)Kvz̄,ẑ,z̃ P ∈ NameTest

The following translation for name tests NameTest uses shortcut testEQName.
(46) JNameTest(P)Kvz̄,ẑ,z̃ =df







let z = JEQName(P)Kz̄,ẑ,z̃ in

testEQName(v , z)
P ∈ EQName

JWildcard(P)Kvz̄,ẑ,z̃ P ∈ Wildcard

(47) JWildcard(*)Kvz̄,ẑ,z̃ =df

labtype(v) = el ∨ labtype(v) = att

JWildcard(NCName(P):*)Kvz̄,ẑ,z̃ =df

Jfn:prefix-from-QNameK(labname(v)) = JNCName(P)Kz̄,ẑ,z̃
JWildcard(*:NCName(P))Kvz̄,ẑ,z̃ =df

Jfn:local-name-from-QNameK(labname(v)) = JNCName(P)Kz̄,ẑ,z̃
JWildcard(BracedURILiteral(P)*)Kvz̄,ẑ,z̃ =df

Jfn:prefix-from-QNameK(labname(v)) = prefix (JBracedURILiteral(P)Kz̄,ẑ,z̃)

http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-ReverseAxis
http://www.w3.org/TR/xpath-30/#doc-xpath30-AbbrevReverseStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-NodeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-NameTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-Wildcard
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B.3 Postfix expressions

B.3.1 Postfix expressions

(48) JPostfixExpr(PrimaryExpr(P))Kz̄,ẑ,z̃ =df

JPrimaryExpr(P)Kz̄,ẑ,z̃
Expressions PostfixExpr(PrimaryExpr(P)[Expr(P’)]) are translated as pre-

sented before for filters, see AxisStep (38).

Argument expressions PostfixExpr(PrimaryExpr(P)(Argument(P1),..., Argument(Pn)))

are translated as function calls FunctionCall (59).

B.3.2 Argument Lists and Predicates

Argument lists are used to define function calls, see FunctionCall (59) and thus

not translated.

(49) ArgumentList ::= "(" (Argument ("," Argument)*)? ")"

Predicates are translated as filters, that may appear with expressions AxisStep

and PostfixExpr, and thus also not translated.

(50) PredicateList ::= Predicate*

(51) Predicate ::= "[" Expr "]"

B.3.3 Primary expressions

There are the following primary expressions in XPath.
(52) JPrimaryExpr(P)Kz̄,ẑ,z̃ =df





JLiteral(P)Kz̄,ẑ,z̃ P ∈ Literal

JVarRef(P)Kz̄,ẑ,z̃ P ∈ VarRef

JParenthesizedExpr(P)Kz̄,ẑ,z̃ P ∈ ParenthesizedExpr

JContextItemExpr(P)Kz̄,ẑ,z̃ P ∈ ContextItemExpr

JFunctionCall(P)Kz̄,ẑ,z̃ P ∈ FunctionCall

JFunctionItemExpr(P)Kz̄,ẑ,z̃ P ∈ FunctionItemExpr

B.3.4 Literals

Literals translate to constants in λXP, see Section B.5.
(53) JLiteral(P)Kz̄,ẑ,z̃ =df

{
JNumericLiteral(P)Kz̄,ẑ,z̃ P ∈ NumericLiteral

JStringLiteral(P)Kz̄,ẑ,z̃ P ∈ StringLiteral

(54) JNumericLiteral(P)Kz̄,ẑ,z̃ =df






JIntegerLiteral(P)Kz̄,ẑ,z̃ P ∈ IntegerLiteral

JDecimalLiteral(P)Kz̄,ẑ,z̃ P ∈ DecimalLiteral

JDoubleLiteral(P)Kz̄,ẑ,z̃ P ∈ DoubleLiteral

http://www.w3.org/TR/xpath-30/#doc-xpath30-PostfixExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-AxisStep
http://www.w3.org/TR/xpath-30/#doc-xpath30-FunctionCall
http://www.w3.org/TR/xpath-30/#doc-xpath30-FunctionCall
http://www.w3.org/TR/xpath-30/#doc-xpath30-ArgumentList
http://www.w3.org/TR/xpath-30/#doc-xpath30-PredicateList
http://www.w3.org/TR/xpath-30/#doc-xpath30-Predicate
http://www.w3.org/TR/xpath-30/#doc-xpath30-PrimaryExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-Literal
http://www.w3.org/TR/xpath-30/#doc-xpath30-NumericLiteral
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B.3.5 Variables

Variables translate to corresponding variables in λXP.
(55) J$VarRef(VarName(P))Kz̄,ẑ,z̃ =df

JVarName(P)Kz̄,ẑ,z̃

(56) JVarName(P)Kz̄,ẑ,z̃ =df

JEQName(P)Kz̄,ẑ,z̃

B.3.6 Parenthesized expressions and the empty list

Expressions with surrounding parenthesis translate to the expressions without the

parenthesis.
(57) J(Expr(P))Kz̄,ẑ,z̃ =df

JExpr(P)Kz̄,ẑ,z̃

The expression () translates to the empty list in λXP.
J()Kz̄,ẑ,z̃ =df

nil

B.3.7 Context Item, Position, and Size

Whenever an XPath query makes reference to the context item, position, or size

in filters or path expressions, then we translate as explained in Section 7.3.2. It

evaluates these expressions using some function whose argument will be a triple of

context item, position, and size that arrive during runtime. These arguments will

substitute the function’s parameters z̄, ẑ, and z̃, to which we translate the context

item expression, function fn:position, and function fn:last(), respectively.

(58) JContextItemExpr(.)Kz̄,ẑ,z̃ =df z̄

Jfn:position()Kz̄,ẑ,z̃ =df ẑ

Jfn:last()Kz̄,ẑ,z̃ =df z̃

B.3.8 Function Calls

Function calls rely on rules for function conversion and coercion, as mentioned

in Section 5.2.3. We use a function convert-argST (x) that converts arguments

according to the function conversion rules. It converts arguments x with respect to

a target sequence type ST . When ST is a TypedFunctionTest (92), then function

coercion is applied. Otherwise if ST is a generalized atomic type AT , for

example, the function converts x as follows:

convert-argAT =df

http://www.w3.org/TR/xpath-30/#doc-xpath30-VarRef
http://www.w3.org/TR/xpath-30/#doc-xpath30-VarName
http://www.w3.org/TR/xpath-30/#doc-xpath30-ParenthesizedExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-ContextItemExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-TypedFunctionTest
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λ(x).let x′ = Jfn:dataK(x) in

letrec fun = λz.

match z with y :: y′ then

if typeType(y),xs:untypedAtomic(y) then

if typeType(AT ),num(y) then

castType(y),xs:double(y) :: fun(y′)

else if typeType(y),xs:QName(y) ∨ typeType(y),xs:Notation(y) then

raise error

else

castType(y),Type(AT )(y) :: fun(y′)

else

castType(y),Type(AT )(y) :: fun(y′)

else nil

in fun(x′)

The following translation for function call expressions FunctionCall maps to

function applications in λXP in the absence of place holders ?, and otherwise re-

turns a new function that is obtained via currying. The result of the function call

is the value of a function f that matches JEQName(P)Kz̄,ẑ,z̃ when applied to the con-

verted arguments, of which none is a place holder ?. Otherwise the result is a new

function which has as many arguments as place holders:
(59) JFunctionCall(EQName(P)(Argument(P1),...,Argument(Pn)))Kz̄,ẑ,z̃ =df

λ(zk1 , . . . , zkn′ ).f(m1, . . . ,mn)

where f : ST 1 × . . .× STn → ST is function matching JEQName(P)Kz̄,ẑ,z̃,

(mi) =

{
convert-argST i(JExprSingle(Pi)Kz̄,ẑ,z̃) Pi 6= ?

zi Pi = ?
,

(ki) is the sequence of indices j for which Pj = ?

Function arguments Argument and place holders ArgumentPlaceholder are

translated in FunctionCall (59).

(60) Argument ::= ExprSingle | ArgumentPlaceholder

(61) ArgumentPlaceholder ::= "?"

B.3.9 Functions

Functions may be referenced by EQNames, as with function calls. Otherwise they

are referenced via their name and arity or they are constructed inline.
(62) JFunctionItemExpr(P)Kz̄,ẑ,z̃ =df

{
JNamedFunctionRef(P)Kz̄,ẑ,z̃ P ∈ NamedFunctionRef

JInlineFunctionExpr(P)Kz̄,ẑ,z̃ P ∈ InlineFunctionExpr

Named function references NamedFunctionRef identify functions by its name

and arity.
(63) JNamedFunctionRef(EQName(P)#IntegerLiteral(P))Kz̄,ẑ,z̃ =df

x where x ∈ Const is the function that matches JEQName(P)Kz̄,ẑ,z̃
and JIntegerLiteral(P’)Kz̄,ẑ,z̃

http://www.w3.org/TR/xpath-30/#doc-xpath30-FunctionCall
http://www.w3.org/TR/xpath-30/#doc-xpath30-FunctionCall
http://www.w3.org/TR/xpath-30#doc-xpath30-Argument
http://www.w3.org/TR/xpath-30/#doc-xpath30-ArgumentPlaceholder
http://www.w3.org/TR/xpath-30/#doc-xpath30-FunctionItemExpr
http://www.w3.org/TR/xpath-30/#doc-xpath30-NamedFunctionRef
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(64) JInlineFunctionExpr(function($EQName(x1),...,$EQName(xn))

{Expr(P)})Kz̄,ẑ,z̃ =df

λz.match z with (JEQName(x1)Kz̄,ẑ,z̃, . . . , JEQName(xn)Kz̄,ẑ,z̃) in JExpr(P)Kz̄,ẑ,z̃

JInlineFunctionExpr(function($EQName(x1) as SequenceType(P1),...,

$EQName(xn) as SequenceType(Pn))(as SequenceType(P’))

{Expr(P)})Kz̄,ẑ,z̃ =df

λz.match z with (y1, . . . , yn) in

let JEQName(x1)Kz̄,ẑ,z̃ = convert-argP1(y1),

. . . ,

JEQName(xn)Kz̄,ẑ,z̃ = convert-argPn(yn)

in JExpr(P)Kz̄,ẑ,z̃

B.3.10 Simple Types

Simple types are atomic, list, and union types, into which nonterminal SingleType

expands. Cast expressions require such simple types which however must directly

translate nonterminal SimpleTypeName (88), such that nonterminal SingleType

does not require a translation.

(65) SingleType ::= SimpleTypeName "?"?

TypeClaration are used when defining functions and function tests.

(66) TypeDeclaration ::= "as" SequenceType

B.4 Sequence Type Expressions

For matchings of some values v against sequence type expressions P, described in

more detail in Section 4.5, the translation JPKvz̄,ẑ,z̃ is further parametrized by some

value v . The translation returns a boolean value depending on whether v matches

a certain sequence type using the rules for sequence type matching4.

B.4.1 Top level Sequence Type Matching

Sequence type matching is reduced to matching of item types. The empty sequence

type matches the empty sequence.
(67) JSequenceType(empty-sequence())Kvz̄,ẑ,z̃ =df

if v = nil then true else false
An item type without an occurence indicator matches a sequence that contains

exactly one item, if the item type matches that item.
JSequenceType(ItemType(P))Kvz̄,ẑ,z̃ =df

match v with x :: y then

if y = nil then JItemType(P)Kxz̄,ẑ,z̃ else false

else false
Item types with an occurence indicator ?, *, or + match a sequence, if the

number of items in that sequence match the occurence indicator and the item types

4http://www.w3.org/TR/xpath-30/#id-sequencetype-matching

http://www.w3.org/TR/xpath-30/#doc-xpath30-InlineFunctionExpr
http://www.w3.org/TR/xpath-30/#prod-xpath30-SimpleTypeName
http://www.w3.org/TR/xpath-30/#doc-xpath30-SingleType
http://www.w3.org/TR/xpath-30/#prod-xpath30-TypeDeclaration
http://www.w3.org/TR/xpath-30/#doc-xpath30-SequenceType
http://www.w3.org/TR/xpath-30/#id-sequencetype-matching
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match the items in the sequence.
JSequenceType(ItemType(P)?)Kvz̄,ẑ,z̃ =df

match v with x :: y then

if y = nil then JItemType(P)Kxz̄,ẑ,z̃ else false

else true

JSequenceType(ItemType(P)*)Kvz̄,ẑ,z̃ =df

let rec = λz.match z with x :: y then

if JItemType(P)Kxz̄,ẑ,z̃ = true then rec(y) else false

else true

in rec(v)

JSequenceType(ItemType(P)+)Kvz̄,ẑ,z̃ =df

let rec = λz.match z with x :: y then

if JItemType(P)Kxz̄,ẑ,z̃ = true then rec(y) else false

else true

in if v = nil then false else rec(v)

The OccurrenceIndicator is treated within the translation for sequence types

SequenceType.

(68) OccurrenceIndicator ::= "?" | "*" | "+"

B.4.2 Item types

The matching against item types splits into the following tests. Notice that item

type item() matches any item.
(69) JItemType(P)Kvz̄,ẑ,z̃ =df







JKindTest(P)Kvz̄,ẑ,z̃ P ∈ KindTest

true P = item()

JFunctionTest(P)Kvz̄,ẑ,z̃ P ∈ FunctionTest

JAtomicOrUnionType(P)Kvz̄,ẑ,z̃ P ∈ AtomicOrUnionType

JParenthesizedItemType(P)Kvz̄,ẑ,z̃ P ∈ ParenthesizedItemType

B.4.3 Atomic and union types

Matching against atomic or union types reduces to testing whether the value is of

the respective type.
(70) JAtomicOrUnionType(EQName(P))Kvz̄,ẑ,z̃ =df

typeType(v),Type(JEQName(P)Kz̄,ẑ,z̃)
(v)

B.4.4 Kind Tests

Kind tests match nodes of Xml data trees against their type, name, and other

properties.

http://www.w3.org/TR/xpath-30/#doc-xpath30-OccurrenceIndicator
http://www.w3.org/TR/xpath-30/#doc-xpath30-ItemType
http://www.w3.org/TR/xpath-30/#doc-xpath30-AtomicOrUnionType
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(71) JKindTest(P)Kvz̄,ẑ,z̃ =df






JDocumentTest(P)Kvz̄,ẑ,z̃ P ∈ DocumentTest

JElementTest(P)Kvz̄,ẑ,z̃ P ∈ ElementTest

JAttributeTest(P)Kvz̄,ẑ,z̃ P ∈ AttributeTest

JSchemaElementTest(P)Kvz̄,ẑ,z̃ P ∈ SchemaElementTest

JSchemaAttributeTest(P)Kvz̄,ẑ,z̃ P ∈ SchemaAttributeTest

JPITest(P)Kvz̄,ẑ,z̃ P ∈ PITtest

JCommentTest(P)Kvz̄,ẑ,z̃ P ∈ CommentTest

JTextTest(P)Kvz̄,ẑ,z̃ P ∈ TextTest

JNamespaceNodeTest(P)Kvz̄,ẑ,z̃ P ∈ NamespaceNodeTest

JAnyKindTest(P)Kvz̄,ẑ,z̃ P ∈ AnyKindTest

Type node() matches any node.
(72) JAnyKindTest(node())Kvz̄,ẑ,z̃ =df

typeType(v),node(v)

Type document-node() matches any document node.
(73) JDocumentTest(document-node())Kvz̄,ẑ,z̃ =df

typeType(v),documentnode(v)

The following two kind tests against document nodes, require the existence of

exactly one element node child, that matches against a test for elements or a test

for element with schema information, respectively.
JDocumentTest(document-node(ElementTest(P)))Kvz̄,ẑ,z̃ =df

if typeType(v),documentnode(v) then

match set2list{v′ | at(v , ch(isv′ ∧ labtype(v′) = el))} with x :: y

then if y = nil then

JElementTest(P)Kv
′

z̄,ẑ,z̃

else false

else false

else false

JDocumentTest(document-node(SchemaElementTest(P)))Kvz̄,ẑ,z̃ =df

if typeType(v),documentnode(v) then

match set2list{v′ | at(v , ch(isv′ ∧ labtype(v′) = el))} with x :: y

then if y = nil then

JSchemaElementTest(P)Kv
′

z̄,ẑ,z̃

else false

else false

else false

Type text() matches any text node.
(74) JTextTest(text())Kvz̄,ẑ,z̃ =df

typeType(v),textnode(v)

Type comment() matches any comment node.
(75) JCommentTest(comment())Kvz̄,ẑ,z̃ =df

typeType(v),commentnode(v)

We do not support namespaces nodes and axes. However type namespace-node()

http://www.w3.org/TR/xpath-30/#doc-xpath30-KindTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AnyKindTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-DocumentTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-TextTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-CommentTest
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matches namespace nodes.
(76) JNamespaceNodeTest(namespace-node())Kvz̄,ẑ,z̃ =df

raise error

Type processing-instruction() matches any processing-instruction node.
(77) JPITest(processing-instruction())Kvz̄,ẑ,z̃ =df

typeType(v),pinode(v)

Tests against processing-instruction nodes that specify an NCName, match any

processing-instruction node whose target is equal to the NCName up to whitespace

normalization.
JPITest(processing-instruction(NCName(P)))Kvz̄,ẑ,z̃ =df

let x = JNCName(P)Kz̄,ẑ,z̃ in

let y = Jfn:normalize-spaceK(x) in

if ¬typeType(y),xs:QName(y) then raise error(err:XPTY0004)

else typeType(v),pinode(v) ∧ labtarget(v) = y

If the XPath 1.0 compatibility mode were set to true, one would have to allow

the specification of the processing-instruction target as string literal.
JPITest(processing-instruction(StringLiteral(P)))Kvz̄,ẑ,z̃ =df

let x = JStringLiteral(P)Kz̄,ẑ,z̃ in

if ¬typeType(x),xs:QName(x) then raise error(err:XPTY0004)

else typeType(v),pinode(v) ∧ labtarget(v) = x

Type attribute() matches any attribute node.
(78) JAttributeTest(attribute())Kvz̄,ẑ,z̃ =df

typeType(v),attribute(v)

Attribute tests that specify an attribute name match attribute nodes with the

respective node-name.
JAttributeTest(attribute(AttribNameOrWildcard(P)))Kvz̄,ẑ,z̃ =df

typeType(v),attribute(v) ∧ JAttribNameOrWildcard(P)Kvz̄,ẑ,z̃
Attribute tests that besides an attribute name also specify a type, require in

addition that the type annotation of the attribute node under consideration derives

from the given type.
JAttributeTest(attribute(AttribNameOrWildcard(P),TypeName(P’)))Kvz̄,ẑ,z̃ =df

typeType(v),attribute(v) ∧ JAttribNameOrWildcard(P)Kvz̄,ẑ,z̃
∧derives-from(labschema-type(v),Type(JTypeName(P’)Kz̄,ẑ,z̃))

(79) JAttribNameOrWildcard(AttributeName(P))Kvz̄,ẑ,z̃ =df

let z = JAttributeName(P)Kz̄,ẑ,z̃ in

testEQName(v , z)

JAttribNameOrWildcard(*)Kvz̄,ẑ,z̃ =df

true

Schema attribute tests match attribute nodes, with a certain attribute declara-

tion.
(80) JSchemaAttributeTest(schema-attribute(AttributeDeclaration(P)))Kvz̄,ẑ,z̃ =df

typeType(v),attribute(v) ∧ JAttributeDeclaration(P)Kvz̄,ẑ,z̃
The type Type(s) for an attribute s denotes the schema type declared for s

within the attribute declarations in Const.

http://www.w3.org/TR/xpath-30/#doc-xpath30-NamespaceNodeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-PITest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttributeTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttribNameOrWildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-SchemaAttributeTest
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(81) JAttributeDeclaration(AttributeName(P))Kvz̄,ẑ,z̃ =df

let z = JAttributeName(P)Kz̄,ẑ,z̃ in

testEQName(v , z) ∧ derives-from(labschema-type(v),Type(z))

Tests against element node, behave similar to tests for attribute nodes.
(82) JElementTest(element())Kvz̄,ẑ,z̃ =df

typeType(v),elementnode(v)

JElementTest(element(ElementNameOrWildcard(P)))Kvz̄,ẑ,z̃ =df

typeType(v),elementnode(v) ∧ JElementNameOrWildcard(P)Kvz̄,ẑ,z̃

JElementTest(element(ElementNameOrWildcard(P),TypeName(P’)))Kvz̄,ẑ,z̃ =df

typeType(v),elementnode(v) ∧ JElementNameOrWildcard(P)Kvz̄,ẑ,z̃
∧derives-from(labschema-type(v),Type(JTypeName(P’)Kz̄,ẑ,z̃))

∧labnilled (v) = “false”

JElementTest(element(ElementNameOrWildcard(P),TypeName(P’)?))Kvz̄,ẑ,z̃ =df

typeType(v),elementnode(v) ∧ JElementNameOrWildcard(P)Kvz̄,ẑ,z̃
∧derives-from(labschema-type(v),Type(JTypeName(P’)Kz̄,ẑ,z̃))

(83) JElementNameOrWildcard(ElementName(P))Kvz̄,ẑ,z̃ =df

let z = JElementName(P)Kz̄,ẑ,z̃ in

testEQName(v , z)

JElementNameOrWildcard(*)Kvz̄,ẑ,z̃ =df

true

In order to correctly translate schema element tests SchemaElementTest, we

require a formalism that allows to talk about the various properties of schema el-

ement declarations and substitution groups. We leave this translation open for

future work.
(84) JSchemaElementTest(schema-element(ElementDeclaration(P)))Kvz̄,ẑ,z̃ =df

raise error

B.4.5 Node and Type Names

Not matching occurs for the following five nonterminals, who return simply names

of elements and attributes, or names of types.
(85) JElementDeclaration(P)Kz̄,ẑ,z̃ =df

JElementName(P)Kz̄,ẑ,z̃

(86) JAttributeName(P)Kz̄,ẑ,z̃ =df

JEQName(P)Kz̄,ẑ,z̃

(87) JElementName(P)Kz̄,ẑ,z̃ =df

JEQName(P)Kz̄,ẑ,z̃

(88) JSimpleTypeName(P)Kz̄,ẑ,z̃ =df

JTypeName(P)Kz̄,ẑ,z̃

(89) JTypeName(P)Kz̄,ẑ,z̃ =df

JEQName(P)Kz̄,ẑ,z̃

http://www.w3.org/TR/xpath-30/#doc-xpath30-AttributeDeclaration
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementNameOrWildcard
http://www.w3.org/TR/xpath-30/#doc-xpath30-SchemaElementTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementDeclaration
http://www.w3.org/TR/xpath-30/#doc-xpath30-AttributeName
http://www.w3.org/TR/xpath-30/#doc-xpath30-ElementName
http://www.w3.org/TR/xpath-30/#prod-xpath30-SimpleTypeName
http://www.w3.org/TR/xpath-30/#doc-xpath30-TypeName
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B.4.6 Function Tests

There are the following two types of function tests.
(90) JFunctionTest(P)Kvz̄,ẑ,z̃ =df{

JAnyFunctionTest(P)Kvz̄,ẑ,z̃ P ∈ AnyFunctionTest

JTypedFunctionTest(P)Kvz̄,ẑ,z̃ P ∈ TypedFunctionTest

Test function(*) matches any function.
(91) JAnyFunctionTest(function(*))Kvz̄,ẑ,z̃ =df

typeType(v),function(v)
The specification for a typed function test verifies whether the sequence type of

the signature of a given function is a subtype of the sequence type of an expected

signature. This requires an extension in λXP that translates XPath functions

to pairs of λXP function and XPath sequence type. Then the typed function

test checks whether the corresponding XPath sequence type is a subtype of the

expected sequence type. For checking of the subtype relation for sequence types of

XPath we assume a function that does this.

(92)
TypedFunctionTest ::= "function"

"(" (SequenceType ("," SequenceType)*)? ")" "as" SequenceType

Parenthesized item types match an item if and only it the item matches the

item type within the parenthesis.
(93) JParenthesizedItemType((ItemType(P)))Kvz̄,ẑ,z̃ =df

JItemType(P)Kvz̄,ẑ,z̃

B.4.7 EQNames

EQNames are made up of either QNames or URIQualifiedNames.
(94) JEQName(P)Kz̄,ẑ,z̃ =df

{
JQName(P)Kz̄,ẑ,z̃ P ∈ QName

JURIQualifiedName(P)Kz̄,ẑ,z̃ P ∈ URIQualifiedName

B.5 Terminal Expressions

Terminal symbols IntegerLieral, DecimalLiteral, and DoubleLiteral translate

to some numeric value of a respective type. Terminal symbols StringLiteral,

URIQualifiedName, Comment, QName, NCName, and Char translate to a corresponding

value. Note that non-numeric values which are no characters, are identified with a

list of characters, such that they can be composed and decomposed.

(95) JIntegerLiteral(P)Kz̄,ẑ,z̃ =df P

(96) JDecimalLiteral(P)Kz̄,ẑ,z̃ =df P

(97) JDoubleLiteral(P)Kz̄,ẑ,z̃ =df P

(98) JStringLiteral(P)Kz̄,ẑ,z̃ =df P

http://www.w3.org/TR/xpath-30/#doc-xpath30-FunctionTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-AnyFunctionTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-TypedFunctionTest
http://www.w3.org/TR/xpath-30/#doc-xpath30-ParenthesizedItemType
http://www.w3.org/TR/xpath-30/#doc-xpath30-EQName
http://www.w3.org/TR/xpath-30/#doc-xpath30-IntegerLiteral
http://www.w3.org/TR/xpath-30/#doc-xpath30-DecimalLiteral
http://www.w3.org/TR/xpath-30/#doc-xpath30-DoubleLiteral
http://www.w3.org/TR/xpath-30/#doc-xpath30-StringLiteral
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(99) JURIQualifiedName(BracedURILiteral(P) NCName(P’))Kz̄,ẑ,z̃ =df

append(JBracedURILiteral(P)Kz̄,ẑ,z̃, JNCName(P’)Kz̄,ẑ,z̃)

(100) JBracedURILiteral(P)Kz̄,ẑ,z̃ =df P

(101) JEscapeQuot(P)Kz̄,ẑ,z̃ =df P

(102) JEscapeApos(P)Kz̄,ẑ,z̃ =df P

(103) JComment(P)Kz̄,ẑ,z̃ =df P

(104) JQName(P)Kz̄,ẑ,z̃ =df P

(105) JNCName(P)Kz̄,ẑ,z̃ =df P

(106) JChar(P)Kz̄,ẑ,z̃ =df P

http://www.w3.org/TR/xpath-30/#doc-xpath30-URIQualifiedName
http://www.w3.org/TR/xpath-30/#doc-xpath30-BracedURILiteral
http://www.w3.org/TR/xpath-30/#doc-xpath30-EscapeQuot
http://www.w3.org/TR/xpath-30/#doc-xpath30-EscapeApos
http://www.w3.org/TR/xpath-30/#doc-xpath30-Comment
http://www.w3.org/TR/xpath-30/#doc-xpath30-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml/#NT-Char
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Michael Stark. XQuery Streaming à la Carte. In Proceedings of the 23rd

International Conference on Data Engineering, ICDE 2007, The Marmara

Hotel, Istanbul, Turkey, April 15-20, 2007, pages 256–265, 2007. (Cited on

page 10.)

[Franceschet 2005] Massimo Franceschet. XPathMark: An XPath Benchmark for

the XMark Generated Data. In Database and XML Technologies, Third

International XML Database Symposium, XSym 2005, Trondheim, Norway,

August 28-29, 2005, Proceedings, pages 129–143, 2005. revised version:

http://sole.dimi.uniud.it/˜massimo.franceschet/xpathmark/PTbench.html.

(Cited on pages 12, 72, 143 and 253.)

http://www.grappa.univ-lille3.fr/tata
http://json.org/
http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html


290 Bibliography

[Friedgut 2004] Ehud Friedgut. Hypergraphs, Entropy, and Inequalities. The Amer-

ican Mathematical Monthly, vol. 111, no. 9, pages 749–760, 2004. (Cited on

page 2.)

[Frisch 2004] Alain Frisch. Regular Tree Language Recognition with Static Infor-

mation. In Exploring New Frontiers of Theoretical Informatics, IFIP 18th

World Computer Congress, TC1 3rd International Conference on Theoret-

ical Computer Science (TCS2004), 22-27 August 2004, Toulouse, France,

pages 661–674, 2004. (Cited on page 154.)

[Gauwin 2009a] Olivier Gauwin. Streaming Tree Automata and XPath. PhD thesis,
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ume 5, MontrÃ c©al, Canada, August 3 - 6, 2010, 2010. (Cited on pages 10,

11 and 144.)

[Kay 2014] Michael Kay. XPath and XQuery Functions and Operators 3.0,

W3C recommendation, 2014. https://www.w3.org/TR/xpath-functions-30/.

(Cited on pages 13 and 63.)

[Kupferman 2001] Orna Kupferman and Moshe Y. Vardi. Model Checking of Safety

Properties. Formal Methods in System Design, vol. 19, no. 3, pages 291–314,

2001. (Cited on page 10.)

[Labath 2015] Pavel Labath and Joachim Niehren. A Uniform Programming Lan-

guage for Implementing XML Standards. In SOFSEM 2015: Theory and

Practice of Computer Science - 41st International Conference on Current

Trends in Theory and Practice of Computer Science, Pec pod Sněžkou,
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