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Abstract xvii

Numerical simulation of turbulent viscoelastic fluid flows
Flow classification and preservation of positive-definiteness of the conformation tensor

Abstract

The purpose of this work is to provide an enhancement of the knowledge about the polymer-
induced drag reduction phenomenon by considering some aspects of its numerical simulation
and the changes that occur in the flow kinematics. In the first part, the square root and kernel
root-k formulations for the conformation tensor in the FENE-P model were implemented and
showed to preserve the positiveness of the conformation tensor. However they led to numerical
divergence due to the loss of boundedness of the conformation tensor. This constraint was
violated even with the inclusion of artificial diffusion. The damping effect of artificial diffusion
helped to ensure numerical stability, but led to relative drag reduction from 22% to 42% lower
than expected from traditional methods. In the second part, the composition of two classic flow
classification criteria was evaluated by means of the dynamic terms in the evolution equation of
the strain-rate tensor. The λ2-criterion was criticised due to the lack of clarity concerning some
assumptions. The analyses of the Q-criterion suggest that the well-known weakening of vortical
regions in drag-reducing flows is a consequence of non-linear interactions between the polymer
stress and flow dynamics. Moreover, the use of objective flow classification criteria provided
richer information concerning the flow kinematics. Finally, the thickening of the buffer layer in
drag-reducing flows was visualised.

Keywords: viscoelastic flows, flow classification, vortex identification, objectivity, turbulent
channel flow, drag reduction, turbulence, direct numerical simulation, artificial diffusion,
FENE-P, conformation tensor

Simulation numérique d’écoulements turbulents de fluides visco-élastiques
Classification d’écoulements et préservation de la positivité du tenseur de conformation

Résumé

Le but de ce travail est de fournir une amélioration de la connaissance sur le phénomène de la
réduction de la traînée induite par polymère en considérant certains aspects de sa simulation
numérique et les changements qui se produisent dans la cinématique de l’écoulement. Dans un
premier temps, les transformations du type racine carrée et kernel racine-k pour le tenseur de
conformation du modèle FENE-P ont été implémentées afin d’assurer la positivité du tenseur de
conformation. Cependant, ces approches divergent en raison du caractère non-borné du tenseur
de conformation. Cette contrainte n’a pas été respectée, même avec l’inclusion de diffusion
artificielle. L’effet d’amortissement de la diffusion artificielle a permis d’assurer la stabilité
numérique, mais il aboutit à une réduction de la traînée relative de 22% à 42% plus faible
que prévue par les approches standards. Dans un second temps, on a évalué la composition de
deux critères classiques de classification d’écoulements à l’aide des termes dynamiques dans
l’équation d’évolution du tenseur de déformation. Le critère λ2 a été critiqué en raison du
manque de clarté concernant certaines hypothèses. Les analyses du critère Q suggèrent que
l’affaiblissement bien connu des régions tourbillonnaires dans les écoulements avec réduction
de traînée est une conséquence des interactions non linéaires entre la tension polymérique et la
dynamique de l’écoulement. En outre, l’utilisation de critères de classification d’écoulements
objectifs a fourni des informations plus riches concernant la cinématique de l’écoulement.
Enfin, l’épaississement de la zone tampon dans les écoulements avec réduction de traînée a été
visualisé.

Mots clés : écoulements viscoélastiques, classification d’écoulements, identification de vortex,
objectivité, écoulement turbulent en canal plan, réduction de la traînée, turbulence,
simulation numérique directe, diffusion artificielle, FENE-P, tenseur de conformation

Laboratoire de Mécanique de Lille (LML)
Boulevard Paul Langevin – Cité Scientifique – 59655 Villeneuve d’Ascq Cedex –
France
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General Introduction

Motivation

The motion of fluids has always been a field of interest throughout history. Wind,

vortices, buoyancy, convection, flight, navigation, pipe flow and many other aspects of

fluid flow have been investigated until our days.

With the formalisation of Fluid Mechanics, mainly after the contributions of Sir

Isaac Newton, Poisson, Navier and Stokes (among many other remarkable scientists), the

motion of many fluids could be predicted by the Navier-Stokes equation. This notorious

equation describes the motion of low-molecular-weight fluids, notwithstanding several

complex questions remain open and under investigation. Even more complex issues

appear in the study of fluids whose motions can not be described by the Navier-Stokes

equations. These fluids are known as non-Newtonian fluids. There are several examples

of non-Newtonian fluids which are part of our daily lives by different ways, such as

blood, toothpaste, printer ink, yogurt, butter, nail polish, etc.

Among the non-Newtonian fluids, a variety of behaviours are possible, such as

plasticity, viscoplasticity, thixotropy, elastoplasticity, elasticity, and viscoelasticity. We

are particularly interested here in the flow of high-molecular-weight polymeric fluids,

which present viscoelastic behaviour. “Visco” because they can somewhat resist shear as

a viscous fluid. “Elastic” because they may respond to some degree as an elastic solid,

deforming elastically and storing energy to, then, release it and recover partially their

original shape.

Viscoelastic fluids involve several “fascinating” (as qualified by Bird and Curtiss

[1]) and sometimes also challenging phenomena. Bird, Armstrong, and Hassager [2,

Chapter 3] showed and explained various effects of viscoelastic fluid flow, including

rod-climbing, extrudate swell, the tubeless siphon, drag reduction in turbulent flow

and vortex inhibition. The latter two will be somehow explored, in this thesis.



2 General Introduction

Polymer-induced drag reduction and its numerical simu-

lation

Over the last 20 years, the Direct Numerical Simulation (DNS) of viscoelastic fluid

flows has been providing relevant information on the polymer-induced drag reduction

phenomenon [3, 4]. After the pioneering DNS of Sureshkumar, Beris, and Handler [5],

several numerical works have helped to enhance the knowledge about this phenomenon:

Dimitropoulos and co-workers [6–9], De Angelis et al. [10], Min and co-workers [11, 12],

Dubief et al. [13], Housiadas and co-workers [14–17], Dallas, Vassilicos, and Hewitt [18],

Thais and co-workers [19–22] among others provided enriching data and discussions

about the polymer-induced drag reduction. The polymer contribution to the Newtonian

solvent is usually taken into account by means of a dumbbell model. Most of such

models make use of a conformation tensor to describe polymer orientation [23].

By definition, the conformation tensor is Symmetric Positive Definite (SPD)1. Nev-

ertheless, numerical simulations of turbulent flows of viscoelastic fluids using high-

order schemes usually face non-physical high-wavenumber instabilities (the so called

Hadamard instabilities [24]) that cause the loss of the positive-definiteness of the con-

formation tensor. Consequently, the uncontrolled growth of the non-SPD points leads

to non-physical results and the simulation usually break down after a few iterations.

Several proposals to overcome this issue are available in the literature. One that

has been largely used is the addition of an artificial stress diffusion [25] that brings an

elliptical character to the hyperbolic evolution equation for the conformation tensor.

Since diffusion has no physical meaning at the simulated scales (even for a DNS), the

results obtained with this method will always be confronted to the question of how

intrusive this additional term is with respect to the original model [26]. A less invasive

alternative is to apply the artificial diffusion only to the domain points where the SPD

condition is not fulfilled (e.g. [27]). Also, alternatives without any artificial term do exist.

They are usually based on flux-limiter schemes to overcome the typical exponential

growth on the field of the conformation tensor due to the steep gradients inherent to

high-precision simulations of viscoelastic flows [18, 28–30].

More recent solutions propose transformations to be applied to the conformation

tensor in order to enforce mathematically its positive-definiteness [31–34]. Some of

these transformations however have not yet been tested in the context of turbulent

viscoelastic shear flows exhibiting drag reduction, which brings us to part of the scope

of this thesis.

The polymer-induced drag reduction is known to change flow dynamics. One of

the most evident changes in wall turbulence of viscoelastic fluid is the weakening

and elongation of vortices [35]. Motivated by this changes, the evaluation of different
1A symmetric matrix M is SPD if z ·M · zT > 0 for arbitrary (non-zero) z.



Vortex identification and flow classification in the context of turbulent viscoelastic fluid flows3

motions in the context of turbulent drag-reducing flows and the proper identification

and interpretation is also being considered here.

Vortex identification and flow classification in the context

of turbulent viscoelastic fluid flows

The concept of a vortex is still cause for dissension within the scientific community.

There is not a true consensus for the definition of a vortex. There are indeed several

mathematical quantities available in the literature to identify a vortex. Some of them

are very popular, such as the Q-criterion by Hunt, Wray, and Moin [36], ∆-criterion by

Chong, Perry, and Cantwell [37], λ2-criterion by Jeong and Hussain [38], λci-criterion

by Zhou et al. [39]. Despite this hazy definition, what is consensual is that there

are coherent rotating structures whose dynamics plays an important role in different

transport phenomena, such as heat transfer, mixing, combustion, noise generation, aero-

and hydrodynamic drag and other typically turbulent flows.

Vortex identification and flow classification are closely linked, since, the ideas

regarding vortex involve fluid rotation and one of the interests of flow classification is

to separate, for instance, rotational and extensional regions of a flow.

Besides the issue of defining a vortex, other discussions gravitating over properties

that flow classification criteria must have also persist. One of them is whether a flow

classification criterion should be invariant to arbitrary translating-rotating reference

frame or to constant speed translations only. In other words, respectively, should a

criterion enjoy Euclidean invariance or Galilean invariance only would be enough?

Historically, the majority of flow classification criteria are Galilean invariant, but some

authors claim that a solid criterion should be objective (or Euclidean frame indifferent),

i.e. invariant to any possible transformation.

In the context of viscoelastic flows, other questions arise: When applied to a vis-

coelastic fluid flow, should a flow classification criterion take into account rheological

parameters or not? If one uses a criterion that was conceived for a Newtonian fluid in

a viscoelastic fluid flow, how to interpret such results? Moreover, it is known that the

polymer coil-stretch process affects vortex dynamics, but is it possible to go more into

details? These are questions we will explore in this work.

Objectives

The flow of viscoelastic fluids is a field in which numerous questions remain open due

to the complexity of the phenomena. Among the open questions, we shall address the

following in the present work:
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1. Transformations for the conformation tensor in the numerical simulation of turbulent
polymer-induced drag-reducing flows.
The objective here is to evaluate the performance of more recent formulations

for the conformations tensor that preserve the definite-positiveness of the con-

formation tensor. More precisely, the square-root [33] and the rootk kernel [34]

transformations will be applied to turbulent channel flows. The need for main-

taining (or not) an artificial stress diffusion in order to preserve numerical stability

will also be assessed.

2. Vortex identification and flow classification in the context of turbulent viscoelastic
flows and the role of objectivity.

The goal here is to analyse the behaviour of objective versions of classic criteria

available in the literature. The exercise will be conducted for several benchmark

flows, such as the ABC flow, the abrupt contraction and the turbulent channel

flow.

Furthermore, recent flow classification criteria [40] which are naturally objective

will be applied to the same flows. Finally, the contribution of polymers to the iden-

tification of vortices and its dynamics is investigated in the context of turbulent

channel flow of viscoelastic fluids.

In both of these fronts, we will use the nnewt_solve algorithm developed by Thais et

al. [19]. This code is a massively parallel scheme conceived to perform DNS of turbulent

drag-reducing flows. It uses hybrid Fourier spectral and sixth-order compact finite

differences schemes for spatial discretisation, and time marching can be up to fourth-

order accurate. The parallelism is facilitated by a two-dimensional MPI Cartesian grid,

together with OpenMP multi-threading.

Regarding the first objective, the algorithm will be adapted to model the evolution

equation for the transformation of the conformation tensor. The second objective

involves mostly post-processing methodologies and theoretical discussions on the

identification of vortices.

Organisation of the document

This document is divided in two parts along the two objectives mentioned above.

Part I consists on the application of transformations to the conformation tensor

with the aim to avoid the loss of evolution in the simulation of turbulent wall-bounded

viscoelastic fluid flows due to the lack of positive-definiteness of the conformation

tensor. The need for maintaining or not an artificial stress diffusion is also assessed.

Part II comprises theoretical discussions on the role of objectivity in flow classifica-

tion and vortex identification. In a first moment, we discuss how the flow classification
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criteria are impacted by the presence of polymers and how to take that into account

when trying to make conclusions on the flow dynamics of viscoelastic fluids. Then,

preliminary results for laminar and analytical flows are discussed. Finally, several

criteria are applied to turbulent channel flows of both Newtonian and viscoelastic

fluids.

A portion of the results contained in this part is a compilation of the following works

that have been published (journal paper and book chapter):

• Ramon S. Martins, Anselmo S. Pereira, Gilmar Mompean, Laurent Thais and

Roney L. Thompson. An objective perspective for classic flow classification criteria.
Comptes Rendus Mécanique, 344, pp. 52–59, 2016.

• Ramon S. Martins, Anselmo S. Pereira, Gilmar Mompean, Laurent Thais and

Roney L. Thompson. On Objective and Non-objective Kinematic Flow Classification
Criteria. In: Progress in Wall Turbulence 2: Understanding and Modelling. Eds.

Michel Stanislas, Javier Jimenez, and Ivan Marusic. Cham: Springer International

Publishing, 2016. pp. 419–428.
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Chapter1
Numerical simulation of viscoelastic

fluid flow: State of the art

The flow of viscoelastic fluids is fascinating because of the strange effects associated

with them. The Newtonian fluid mechanics has been quite explored and reasonably

explained. However, viscoelastic fluids behave differently. They exhibit non-linear and

time dependent responses to deformation. Moreover, the stress is also anisotropic, i.e. it

can present different behaviour according to the direction. These characteristics lead to

instabilities that may appear in several geometries and at different flow regimes.

From a numerical point of view, these effects are generally reproduced with the aid

of viscoelastic fluid models. These models try to capture the essence of viscoelasticity

and to simulate the effect of polymer solutions. Many options are now available in the

literature, leading to several type of models: differential, integral, linear, nonlinear.

Among these groups, there is an important class of models that approximates polymer

molecules diluted in a Newtonian solvent as a set of beads and springs (see Fig. 1.1).

q

q

Real polymer
molecule

Bead-spring
dumbbell

Figure 1.1 – Schematic representation of a real polymer molecule and its physical
representation as a bead-spring dumbbell. The vector q is the end-to-end vector.

The beads represent very small polymer monomers while the springs connecting

them act like a restoring force that virtually represent the tendency of polymer chains
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to coil. These models are also referred to as dumbbell models. Hookean (linear) springs

present infinite extensibility and, even so, can reasonably reproduce lots of viscoelastic

phenomena. One of the most used Hookean dumbbell models is the Oldroyd-B model

[23].

On the other hand, limiting the polymer stretch leads to an important class of

models known as Finitely Extensible Nonlinear Elastic (FENE) models [23]. Besides the

more realist physical foundation behind these models (when compared to linear elastic

models), they are able to better approach combinations of a given polymer-solvent by

varying its parameters.

One drawback of the FENE model is that it does not have a closure that allows its

implementation for numerical calculations on general transport phenomena. In an

effort to obtain results with such a promising methodology, several closures have been

proposed, as, for instance, FENE-P [41], FENE-CR [42], FENE-L and FENE-LS [43, 44],

FENE-CD [45], FENE-DT [46], FENE-QE [47].

Usually, the interesting viscoelastic effects are time-dependent and, some of them,

get more intense with increasing elasticity. When performing simulations of unsteady

viscoelastic fluid flows, however, it is quite common to find limitations due to numerical

instabilities.

1.1 The conformation tensor and its properties

Dumbbell models are usually based on a tensor that carries information about the

configuration of each individual polymer molecule. This tensor is usually named con-
formation tensor and is formed by the components of the end-to-end vector that connects

the polymer chain ends [23]. Because of its physical meaning and mathematical repre-

sentation, the conformation tensor is symmetric and positive definite (SPD) and must

remain so. In particular, in the FENE-P model, the conformation tensor receives another

constraint due to the approximation proposed by Peterlin [41]. This approximative

closure consists on a pre-averaging in space for the end-to-end vector. Consequently,

the trace of the conformation is then bounded by the square of the maximum chain

extensibility imposed by the pre-averaging.

Vaithianathan and Collins [26] point out three issues associated to the conformation

tensor in numerical simulations.

• Positiveness (or positive-definiteness) of the conformation tensor.
Negative eigenvalues are equivalent to locally negative viscosity. Thus, the loss

of positive-definiteness gives rise to instabilities that may lead to non-physical

results or even numerical divergence.

• Boundedness of the conformation tensor.
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For models that consider a finite extensibility to the polymer chain (such as the

FENE-P model), special attention should be given to the trace of the conformation

tensor, which indicates how stretched the polymer molecules are. For instance,

in the FENE-P model, the trace is bounded by the theoretical upper value of the

chain extensibility squared. All the same, highly extensional flows may give rise

to numerical errors due to overextension of the conformation tensor. When this

happens, the restoring force changes sign, leading to divergence. The authors

comment that solving the equations implicitly may partially alleviate this, but the

price is a much slower convergence rate.

• Lack of a dissipation mechanism.
If, for any reason, steep gradients are generated in the conformation tensor, the

polymer stress divergence might increase without bound. The authors state that,

physically, a molecular mechanism is expected to truncate this growth, but no

diffusion term is included in most used models.

These three points are challenges for the scientific community involved in the

simulation of viscoelastic flows. Notably, the third issue concerns turbulent flows, in

which sharp gradients are more common.

In an effort to better understand how the properties of the conformation tensor affect

the simulation of viscoelastic flows, the literature review presented below is split in

three sections. Each section contains the main effects observed under specific conditions,

the limitations of their numerical simulations and the main solutions available. The

first section is dedicated to laminar flows, the second section presents the special case

of elastic turbulence, and the third section discusses (inertial) turbulent phenomena,

such as drag reduction, on which our attention is focused here.

1.2 High Weissenberg Number Problem and loss of pos-

itiveness in viscoelastic flows

Simulating viscoelastic flows in complex geometries has been a challenge to the scientific

community. According to Keunings [48], “ever since the early attempts of the mid

1970’s, researchers have repeatedly met with an outstanding problem, namely the

failure of their numerical schemes to provide solutions beyond some critical value of

the Weissenberg number [. . . ]”. This has been often referred to as the High Weissenberg

Number Problem (HWNP). The critical Weissenberg number depends on the geometry

and on the model (constitutive equation) used for the polymer solution.

In order to understand the HWNP, the problem has been addressed from different

fronts. Basically, mathematical and numerical explanations were sought.
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Rutkevich [49–52] firstly explored the evolutionary conditions of viscoelastic flows

using Maxwellian fluids. In the work of Joseph, Renardy, and Saut [53], the change

of (mathematical) type of the system of equations was investigated and the concept

of Hadamard instability [24] in this context was introduced. The authors claim that

small instabilities caused by ill-posed initial(-boundary) value problems may lead to

oscillations that grow exponentially. Physically, it may warn about instabilities, but,

in the context of numerical simulation, this leads to divergence [54]. Following that,

several fluid models and flows were explored [24, 55–59].

In the late 1980’s some first workarounds were proposed. The concomitant advances

in parallel computation and numerical methods lead to the further evolution of more

successful simulations that were able to explore slightly higher elasticity values and

more complex flows with more accuracy and stability. We present in the following the

main methods that contributed to such evolution.

1.2.1 Some remedies available

The first strategies consisted of manipulating the constitutive equation so that their

elliptic character could be somehow split from the hyperbolic one. This leads to nu-

merical stability, mainly because of the smoothing character coming with ellipticity.

This was the case, for instance, for the following schemes: Explicitly Elliptic Momen-

tum Equation (EEME) [60], Elastic-Viscous Stress Splitting (EVSS) [61], and Adaptive

Viscoelastic Stress Splitting (AVSS) [62]. Even though these solutions were the first

proposed to stabilise the simulation of viscoelastic fluid flows, they are still quite used

nowadays, sometimes combined with more recent methods.

Alves, Oliveira, and Pinho [63] came up with a high resolution scheme that limits the

flux of advection terms with good iterative convergence. The so called Convergent and

Universally Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA)

was tested in a code based on finite-volume, for Newtonian flows over a backward-

facing step, and viscoelastic flows past a cylinder and in a sudden contraction. For the

viscoelastic flows, the CUBISTA scheme was also used for the advection term in the

constitutive equation, leading to better stability and accuracy.

By using a unique decomposition to the velocity gradient, Fattal and Kupferman [31]

reported a new logarithmic transformation for the conformation tensor. The authors

were inspired by the idea of smoothing the steep gradients that arise in the field of

the conformation tensor. They applied their methodology to the lid-driven cavity flow

of a FENE-CR [42] fluid without the need of an artificial stress diffusion. Using a

finite difference framework, they stated that their scheme remains stable at moderately

high Weissenberg numbers. Later, the authors presented more detailed results with an

Oldroyd-B fluid [32] and affirm that for sufficiently high Weissenberg numbers, strong
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oscillations lead to divergence.

More recently, Balci et al. [33] showed that there is also a unique square-root trans-

formation for the conformation tensor that can guarantee its positive-definiteness. The

authors presented the formulation for both Oldoryd-B and FENE-P fluids. However,

they performed simulations of Stokesian flows using Oldroyd-B fluids without any

artificial stress diffusion. Higher Weissenberg numbers could be achieved with im-

proved stability and accuracy, although limitations were still found with increasing

elasticity. The authors highlighted the easy implementation and the low CPU require-

ments of their formulation compared to logarithmic transformation. Their statement is

based on the fact that their method does not require the calculation of eigenvalues and

eigenvectors of the conformation tensor at every time step.

Afonso, Pinho, and Alves [34] gathered the decomposition of the velocity gradient by

Fattal and Kupferman [31] and the idea of applying transformations to the conformation

tensor to present a generic framework for a large group of matrix transformations.

The so-called kernel transformation has shown to recover the log- and square-root-

conformation formulations. The method was tested for a confined cylinder flow of an

Oldroyd-B fluid for various logarithm-based and root-based models (among others).

They concluded that the kernel transformation can be used to gain numerical stability,

but the best choice of kernel function depends on its capacity of smoothing gradients in

the conformation field and still preserve its positiveness. It is important to remark that

the square-root formulation deriving from the kernel transformation differs from the

originally proposed by Balci et al. [33]. The main difference is that, in the kernel

transformation framework, the calculation of eigenvalues and eigenvectors of the

conformation tensor is required in the whole domain at every time step.

The alternatives cited above have been tested in different contexts in laminar vis-

coelastic flows. Among many others, one may cite the use of EVSS and AVSS to simulate

extrudate swell [64], EVSS to simulate 180° bent planar channel and in a 4:1 planar con-

traction [65], lid-driven cavity, flow past a cylinder, 4:1 contraction using the square-root

and the logarithm conformations with the CUBISTA scheme [66], the log-conformation

to simulate a lid-driven cavity [67] and the flow past a cylinder [68], the square-root

transformation combined with the CUBISTA scheme to solve the lid-driven cavity

flow, the flow around a confined cylinder, the cross-slot flow and the impacting drop

free surface problem [69], a combination of the kernel conformation with CUBISTA

scheme to simulate the Poiseuille flow in a channel, the lid-driven cavity flow and the

extrudate-swell free surface flow with Oldroyd-B fluid [70], and, more recently, the

Weissenberg effect [71] using the kernel-conformation.
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1.3 Elastic turbulence: nor simply laminar, neither mere-

ly turbulent

The flow of polymer solutions at vanishing Reynolds number and high level of elasticity

indicates chaotic fluctuations in time and space, similar to those observed in (inertial)

turbulent flows. It is known now that this phenomenon is purely elastic and it is usually

referred to as elastic turbulence [72].

Experiments suggest that the onset of elastic turbulence is associated to curvilinear

streamlines. Therefore, most of successful numerical simulations of this phenomenon

so far have been carried out using curvilinear geometries or imposing forces to the flow

field that produces circular motion.

In the curvilinear geometry context, Thomas, Sureshkumar, and Khomami [73]

performed DNS of 3D time-dependent Taylor-Couette flows of a FENE-P fluid. The

authors found instabilities of elastic origin demonstrating spatial and time variation

patterns. For these simulations, the authors adapted a fully spectral algorithm previ-

ously used for turbulent channel flows [5] that uses artificial diffusion to avoid the loss

of positiveness and ensure stability (see the next section for more information on the

use of artificial diffusion). More recently, Feng-Chen et al. [74] simulated curvilinear

channel flow driven by pressure gradient. The authors used a Giesekus [75] model

also with the addition of artificial diffusion (as proposed by [25]) to avoid steep oscilla-

tions and undershoot/overshoot. They present a brief and preliminary explanation of

intermittent energy pumping in the flow.

Concerning wall-free flows with an imposed curvilinear force term, Berti and co-

authors [76, 77] conducted DNS of Kolmogorov flows using the Oldroyd-B model with

the Cholesky decomposition proposed by Vaithianathan and Collins [26] to guarantee

the maintenance of positiveness for the conformation tensor. Stationary states transits

to a chaotic state when properly excited over a critical Weissenberg number. The power

spectrum of velocity fluctuations in chaotic state is found to be close to experimental

results. Thomases and Shelley [78] performed simulations of 2D periodic Stokesian

flows using the Oldroyd-B model in a pseudospectral code. They found two transitions:

one being steady and asymmetric and the other being oscillatory.

Results using a classic straight channel flow are also available. On one hand, Hong-

Na et al. [79] added a sinusoidal force term to both the momentum equation and the

Giesekus constitutive equation of their DNS to excite the flow, usually stable. The

authors conclude that large shear rates are important to elastic turbulence, because,

at the regions where they occur, strong stretching and more intense vortical activ-

ity are observed. On the other hand, Samanta et al. [80] introduced the concept of

elasto-inertial turbulence. They performed pipe flow experiments and DNS of channel

flows using the FENE-P model with local artificial diffusion (see the next section for
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further information about local artificial diffusion). The authors stress that their results

contain a non-negligible amount of inertia, but, still, it seems to be related to elastic

turbulence. They found that the transition point to turbulence is delayed when polymer

solutions are compared to their relative Newtonian cases. Moreover, they noticed that

elastic instabilities that appear at the regions of large shear rate lead to friction factors

comparable to the Maximum Drag Reduction (MDR) regime (further information on

MDR is available in the next section).

In a very recent paper, Ray and Vincenzi [81] used a shell model that imitates

the Fourier modes of the velocity field and of the polymer configuration field for a

viscoelastic fluid flow without the information on the spatial structure of these fields.

The resulting formulation is like a reduced low-dimensional version of the FENE model

[23]. The authors verify the transitional and the chaotic states of elastic turbulence for

different Weissenberg numbers and polymer concentrations, concluding that these two

parameters show similar influence on the transition to elastic turbulence. Moreover,

they claim that the physical mechanisms that lead to elastic turbulence do not depend

on the boundary conditions, nor on the mean flow.

In short, even though elastic turbulence is a recent discovery and the methodology

for its numerical simulation is still being discussed, some important results are already

available. Regarding the issues related to the conformation tensor, since elastic turbu-

lence has a lot in common with inertial turbulence, its simulation undergoes the same

limitations. To avoid that, artificial diffusion is mostly used. This and other solutions

to overcome the numerical instabilities associated to turbulent viscoelastic flows are

presented in the next section.

1.4 Turbulent viscoelastic flows: the drag reduction phe-

nomenon

The dilution of very small amounts of high-molecular-weight polymers in a Newtonian

fluid may lead to a diminution of pressure drop in turbulent flows. This phenomenon,

known as polymer-induced drag reduction, has been explored since its first observations

in the 1930’s, by Forrest and Grierson [82] and in the 1940’s by Toms [83] and Mysels

[84]. Almost 80 years later, even though many advances have been made, a complete

and consensual theory on the mechanism of drag reduction is still being sought.

Virk, Mickley, and Smith [85] provided a systematic experimental analysis of the

polymer-induced drag reduction phenomenon in turbulent pipe flows. The author

investigated the onset of the phenomenon and found an asymptotic upper limit usually

referred to as Maximum Drag Reduction MDR. The sensitivity of the phenomenon and

its features were tested for varying polymer’s concentration, molecular weight, and
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Reynolds number.

Two major theories try to explain the polymer-induced drag reduction phenomenon.

Lumley [86] and Seyer and Metzner [87] proposed independently that the polymers

chains are stretched due to the turbulent flow outside the viscous sublayer, leading

to an increase of the effective viscosity in the turbulent region. The thickness of the

viscous sublayer and of the buffer layer is therefore increased, reducing the velocity

gradient near the wall, and, consequently, the drag. Because its explanation is based on

the increase of effective viscosity, this theory is mostly known as viscous theory.

Tabor and de Gennes [88] came up with the idea that, due to its elastic properties,

polymers store part of the turbulent energy in the buffer layer. When the elastic (stored)

energy becomes comparable to the turbulent energy, the energy cascade is affected.

Since the length of elastic scales associated to this action is larger than the Kolmogorov

scale, the buffer layer is thickened and drag is reduced. This proposed mechanism is

known as elastic theory.

The direct numerical simulation (DNS) of this phenomenon has been helping to

clarify some physical issues related to it. DNS provides precious information about the

interaction between polymer chains and the flow field which lead to new viewpoints of

the phenomenon that sometimes could not be obtained experimentally.

By performing the direct numerical simulation of turbulent pipe flows and using

a constitutive equation that relates the elongational viscosity to the second and third

invariants of the rate-of-strain tensor, Den Toonder, Nieuwstadt, and Kuiken [89] were

able to conclude that not only the effect of polymer stretch is relevant to the drag

reduction mechanism, but the polymer compression (or coiling) motion is important as

well.

Orlandi [90] simulated a channel flow using a constitutive equation for which the

elongational viscosity is a function of the rate of the strain rate to the rotation rate.

The author reproduced qualitative results of the polymer drag reduction phenomenon

for a minimal channel. The results were obtained using a pseudospectral algorithm

(Chebishev polynomials + Fourier expansions). Concerning time integration, the re-

ferred algorithm treated viscous terms with implicit schemes, while nonlinear terms

were treated explicitly.

Beris and Sureshkumar [91] presented a fully spectral simulations of a three-

dimensional turbulent channel flow using various viscoelastic fluids: the upper con-

vected Maxwell [92], the Oldroyd-B [23] and the Chilcott-Rallison (FENE-CR) [42]

models. They used a mixed explicit/implicit time-integration algorithm. The authors

also investigated the effect of an artificial stress diffusion term on the stability of turbu-

lent channel flows using the Oldroyd-B model [25]. This technique is known as Global

Artificial Diffusion (GAD). They concluded that with an appropriate stress diffusion,

the numerical stability is considerably enhanced without significant changes in the flow
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characteristics. Later, Sureshkumar, Beris, and Handler [5] conducted direct numer-

ical simulations of turbulent channel flows with the FENE-P model [23]. Very good

qualitative agreement was observed when comparing their results to the tendencies of

statistics and dynamics of experimental drag reduction results. However, even if this

solution is largely used by Beris and co-workers [5, 14–17, 93] and other groups [6, 10,

19, 20, 94], it brings a non-physical term into the equation, which must be adjusted to

be as small as possible.

In a first effort to find less intrusive approaches, Min and co-workers [11, 12, 27]

introduced the idea of Local Artificial Diffusion (LAD). Instead of considering the

artificial stress diffusion globally, i.e. to the whole domain (actually, with the exception

of boundary points), they applied the artificial diffusion locally, only at locations where

the constraints for the conformation tensor were being violated. This methodology

has been proved to also provide stability and physical results in accordance with the

literature trends. More precisely, their results using LAD in a third-order compact

upwind difference scheme led to more drag reduction than those with GAD. The authors

claim that the dissipative error caused by local artificial diffusion term is negligible

since the calculation points in which such term is needed change with time marching

and do not pass 0.5% of the total grid points of the tested cases. The same method has

been successfully used by Dubief and co-authors in [13, 95].

Two decompositions that preserve both positiveness and boundedness (if the model

predicts so) of the conformation tensor have been proposed by Vaithianathan and

Collins [26]. One of them consists of applying an eigendecomposition to the confor-

mation tensor and evolving its eigenvalues and eigenvectors separately. The other one

is based on a Cholesky decomposition to a mapped conformation tensor along with a

logarithm transformation applied to the decomposed tensor. These two methods were

applied to the FENE-P model and tested for isotropic turbulent flows. Comparisons

with the standard conformation formulation with and without artificial diffusion were

also conducted. By performing uncoupled simulations (in which the polymer field does

not affect the velocity field), the authors showed that both proposed decompositions

eliminate the occurrence of negative eigenvalues of the conformation tensor. With the

standard formulation with artificial diffusion, the frequency of their occurrence is only

attenuated, meaning that negative eigenvalues are still occurring.

In a later publication by Vaithianathan et al. [28], it was discussed that the numerical

scheme used in [26] did preserve the positiveness of the conformation tensor, but

not its conservation. They argued that, in fact, regarding spectral and high-order

compact schemes, artificial diffusion seems to be the solution to discontinuities in

the field of the conformation tensor that causes undershoots or overshoots in the

conformation tensor, which may lead to negative eigenvalues. They claim however

that capturing the polymer strength around discontinuities is essential to calculate
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turbulent flows of polymer solutions. They assert that spectral and high-order compact

schemes are not naturally appropriate to solve hyperbolic equations. Moreover, possible

alternatives are somehow difficult to deal with. Thus, they opted for a second-order

finite-difference bound-preserving scheme which was originally conceived to guarantee

the positiveness of scalar field based on flux limiters, but that they extended to tensor

fields. The authors reported unconditionally stable results of the new algorithm for

homogeneous turbulence. The effect of artificial stress diffusion was tested and resulted

in a diminution of the drag reduction percentage of 10-15% and underestimation of

polymer stretching.

Yu and Kawaguchi [29] introduced a high-resolution flux-limiter algorithm with

which they were able to simulate drag-reducing channel flows using the Giesekus

model without any artificial diffusion. The effect of artificial diffusion was assessed

with another algorithm of their own. They reported higher drag reduction regimes

(percentages) with their new algorithm. Beris and Housiadas [96] argue that the stress

diffusivity used by Yu and Kawaguchi [29] is higher than usual for spectral methods.

Moreover, if one is interested on the mechanisms of polymer stretching and flow

dynamics in various time and spatial scales, spectral methods are very suitable.

By adapting the periodic algorithm of Vaithianathan et al. [28] to wall-bounded flows,

Dallas, Vassilicos, and Hewitt [18] performed drag-reducing channel flows without any

artificial assumption for FENE-P fluids. At the same time, Housiadas, Wang, and Beris

[17] combined the log-conformation together with a mapping scheme that preserves

the boundedness of the conformation tensor. Their algorithm is almost fully spectral,

the only exception being a second-order finite-difference multigrid scheme to solve the

stress diffusion term added to the constitutive equation.

It is worth noting that the simulation of homogeneous isotropic turbulence of

viscoelastic fluids also requires special attention on the loss of evolution, but they will

not be concerned here. Just to cite a few examples of applications in this context, De

Angelis et al. [97] used the artificial diffusion [5, 25], Perlekar, Mitra, and Pandit [98]

made use of the Cholesky decompostion proposed by [26], and Cai, Li, and Zhang [99]

applied the eigendecomposition in [28].
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Mathematical modelling and numerical

method

The introduction in the previous chapter substantiates that the simulation of turbulent

viscoelastic flows is not trivial, since it involves numerical instabilities coming from the

hyperbolic nature of the constitutive equations that potentially grow due to the lack

of a dissipation mechanism in the model. Basically, two options should be weighted

to overcome this: either one privileges the spatial accuracy of spectral and high-order

compact schemes and use an artificial stress diffusion that smooths the shocks in the

conformation tensor, or the somewhat intrusive artificial diffusion is avoided, by using

flux limiter schemes paying the price of lower order accuracy (typically second order).

In this chapter, the mathematical models and numerical methods are presented. The

DNS code used here considered originally the standard conformation tensor formulation

for FENE-P fluids with the inclusion of a global artificial stress diffusion to avoid the

breakdown due to the loss of positive-definiteness. The minimum diffusivity coefficient

was properly adjusted to provide numerical stability. In general, with this approach,

the amount of grid points in which the conformation tensor presents non-positive

eigenvalues corresponds to at most 1% of the total number of grid points.

The formulations for the square-root and the kernel transformations are presented

and the need to maintain or not the artificial stress diffusivity for these formulations is

also evaluated.

2.1 Basic equations

For the three-dimensional channel flow considered here, the position vector x∗ reads

x∗ = (x∗1,x
∗
2,x
∗
3) = (x∗, y∗, z∗), where x∗ is the stream-wise direction, y∗ is the wall-normal

direction, and z∗ is the span-wise direction1. The channel has dimensions (L∗x,L
∗
y ,L
∗
z),

1A superscript asterisk is used to denote dimensional variables.
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corresponding to the same respective directions above. Figure 2.1 provides a schematic

representation of the geometry.

Figure 2.1 – Schematic representation of the channel geometry.

The flow satisfies the mass conservation equation (or continuity equation). Assuming

the fluid to be incompressible, this reads

∇∗ ·u∗ = 0 . (2.1)

The generalised form of the Navier-Stokes equations (the balance of momentum) is

Du∗

Dt∗
=
∂u∗

∂t∗
+u∗ ·∇∗u∗ = −1

ρ
∇∗p∗ + 1

ρ
∇∗ ·T ∗ , (2.2)

where u∗ is the velocity vector with entries (u∗1,u
∗
2,u
∗
3) = (u∗,v∗,w∗), corresponding

respectively to the directions (x∗, y∗, z∗). The dimensional time is represented by t∗.

The velocity gradient ∇∗u∗ has entries ∇∗u∗ijei ⊗ ej = ∂u∗j /∂x
∗
iei ⊗ ej . It is important to

introduce also the transpose of the velocity gradient2, L∗ = ∇∗u∗T . The pressure is

represented here by p∗ and ρ∗ stands for the fluid density. The symbol ∇∗() corresponds

to the gradient operator, while ∇∗ · () stands for the divergence operator. The material

derivative is indicated by D()/Dt.

The boundary conditions for the velocity field are: periodicity in the homogeneous

directions (stream-wise, x∗, and span-wise, z∗) and no-slip wall condition at the walls.

In this generalised representation of the Navier-Stokes equations, the stress tensor

T ∗ may be split into two parts,

T ∗ = TN
∗ +TP

∗ , (2.3)

in which

TN
∗ = 2µ∗0βD

∗ , (2.4)

2The expression velocity gradient is used interchangeably for ∇∗u∗ or L∗ and for the non-dimensional
∇u or L.
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takes into account the Newtonian contribution, while TP
∗ represents the polymeric

contribution. In Eq. (2.4), β is the ratio of the solvent dynamic viscosity, µ∗S , to the total

zero-shear-rate solution dynamic viscosity, µ∗0 = µ∗S + µ∗p0 (where µ∗p0 is the polymeric

zero-shear-rate dynamic viscosity), and D∗ is the rate-of-strain tensor, defined as the

symmetric part of the velocity gradient, D∗ = (L∗ + L∗T )/2. The value of β works

as an indicator for the polymer concentration, so that the limit of β = 1 yields the

Newtonian case. The contribution, TP
∗, due to the presence of polymers is defined by

the constitutive equation chosen to model it and is proportional to 1−β (see Subsection

2.1.1 below).

The equations are made non-dimensional using the bulk velocity U ∗b as a velocity

scale and the channel half width h∗(= L∗y/2) as a length scale. The time scale thus

becomes h∗/U ∗b. The non-dimensional variables and operators are

u =
u∗

U ∗b
, t =

t∗U ∗b
h∗

, x =
x∗

h∗
, p =

p∗

ρ∗U ∗b
2 , ∇ = h∗∇∗ , (2.5)

The non-dimensional form of Eqs. (2.1) and (2.2) is

∇ ·u = 0 , (2.6)

∂u
∂t

+u ·∇u = −∇p+
β

Reh
∆u+

1
Reh
∇ ·Ξ . (2.7)

In Eq. (2.7) above, the bulk Reynolds number, Reh, is based on the channel half gap,

h, and calculated as Reh = h∗U ∗b/ν
∗
0 (ν∗0 being the total zero-shear-rate kinematic viscosity

defined as µ∗0/ρ
∗). The term Ξ is the extra-stress tensor which contains non-dimensional

the polymer contribution (TP
∗) and reads

Ξ =
h∗

µ∗0U
∗
b

TP
∗ . (2.8)

In order to close the problem formed by the set of Eqs. (2.6) and (2.7) we need a

model for Ξ which is given by the constitutive equation.

2.1.1 Constitutive equations: modelling polymer solutions

In the present work, the FENE model with the closure proposed by Peterlin [41] (known

as the FENE-P model [23]) was chosen to account for the polymeric stress, Ξ. This

model has been largely used in the context of turbulent drag-reducing flows due to its

relatively simple second-order closure.

The FENE-P model requires the solution of the phase-averaged configuration tensor,

c, usually named conformation tensor. The non-dimensional conformation tensor is
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defined as c = 〈q∗q∗〉/〈q∗q∗〉eq, where q∗ is the end-to-end vector which represents the

configuration of polymer molecules in the model, the angles, 〈·〉, indicate a phase aver-

age, and 〈q∗q∗〉eq represents the configuration in the equilibrium state. The equilibrium

state is given by the relation 〈q∗q∗〉eq = (k∗BT
∗/H ∗)I , where k∗B, T ∗ and H ∗ stand for the

Boltzmann constant, the absolute temperature and the dumbbell spring constant. The

(dimensional) polymer stress contributing to the momentum equation is

TP
∗ = µ∗0(1− β)

[
f (tr(c))c− I

λ∗

]
, (2.9)

in which I stands for the identity tensor and λ∗ is the fluid’s relaxation time. The

function f (tr(c)) is the Peterlin function that provides the closure for the FENE-P model

and is defined as

f (tr(c)) =
L2 − 3
L2 − tr(c)

. (2.10)

The closure proposed by Peterlin [41] is precisely what limits the trace of the conforma-

tion tensor, tr(c), with the square of the maximum chain extensibility, L.

Using Eqs. (2.5) and (2.9), the extra-stress, Ξ, assumes the non-dimensional form

Ξ =
1− β
W ih

[f (tr(c))c− I ] . (2.11)

where Wih is the bulk Weissenberg number given by λ∗U ∗b/h
∗. Note that if c = I , the

polymer stress is null. This state is called equilibrium state of the polymer molecule.

The maximum extensibility of the polymer chain, L, and the relaxation time scale,

λ∗, are the rheological parameters for the FENE-P model allowing to relate simulations

with real combinations of polymer-solvent. It is worth noticing that a FENE-P fluid,

just like other typical viscoelastic fluids, is “shear-thinning” [2], i.e. its (apparent)

shear viscosity decreases with increasing shear rate. The relaxation time scale is most

commonly expressed by means of the Weissenberg number, Wih.

Finally, the evolution equation for the conformation tensor, c, reads

Dc
Dt
− c ·∇u−∇uT · c+

f (tr(c))c− I
Wih

= 0 . (2.12)

Equation (2.12), together with Eqs. (2.6) and (2.7), forms the basic set of equations to be

solved in the flow of viscoelastic fluids.
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2.1.2 The inclusion of an artificial stress diffusion to the constitu-

tive equations for the FENE-P model

As discussed in Chapter 1, the original algorithm by Thais et al. [19] considers an

artificial stress diffusion as proposed by Sureshkumar and Beris [25] in order to avoid

the uncontrolled growth of Hadamard instabilities during time evolution. With a

dimensionless artificial stress diffusivity, Dc, a dissipation term proportional to Dc∆c is

thus added to Eq. (2.12), yielding

Dc
Dt
− c ·∇u−∇uT · c+

f (tr(c))c− I
Wih

=
Dc
Reh

∆c , (2.13)

whereDc is given by κ∗/ν∗0, which is the equivalent of the inverse of the Schmidt number,

Sc, with κ∗ being the dimensional artificial diffusivity.

The original algorithm by Thais et al. [19] solves the system formed by Eqs. (2.7)

and (2.13) (with continuity) to perform DNS of viscoelastic channel flows. Regarding

the value of Dc, it has been formerly adjusted to be as small as possible still providing

numerical stability. The presence of the artificial diffusion term does not avoid the

appearance of non-SPD for the conformation tensor during the calculations. Instead, it

controls the number of points that lose the SPD property and ensures that Hadamard

instabilities do not propagate indefinitely.

The addition of an elliptic (diffusion) term to the hyperbolic equation of the confor-

mation tensor implies the need for boundary conditions. Hence, the equations are first

evolved in time without artificial diffusion and the intermediate values obtained are

used as boundary conditions for c (see more details in Section 2.4).

As exposed in Chapter 1, one of the goals of the present work is to investigate

how recent propositions to avoid the loss of the SPD property performs under turbu-

lent channel flows. In the following sections, we will present the formulation of two

promising methods: the square-root [33] and the kernel rootk [34] transformations.

2.2 The square-root transformation

The combination of loss of positiveness in viscoelastic fluid flows and open questions

around viscoelastic phenomena has been inspiring the scientific community to find

solutions over the last 30 years, approximately. However, some recent ideas have not

been explored in the frame of turbulent viscoelastic flows.

The square-root transformation, by Balci et al. [33], is a promising proposition based

on the unique square-root of a SPD tensor. The eigenvalues of the square-root tensor,
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b = c1/2, can be obtained from

Λb =QT
c · c

1
2 ·Qc , (2.14)

where Qc is the orthogonal tensor containing the components of the eigenvectors of c

in columns. The operation in Eq. (2.14) diagonalises c and takes the square-root of its

eigenvalues, resulting in the diagonal tensor Λb, which represents the square-root of c

on the basis of the eigenvectors of c. To obtain the square-root tensor on the basis of the

problem, the inverse rotation (compared to Eq. (2.14)) must be applied, yielding

b =Qc ·Λb ·QT
c . (2.15)

The tensor b has been proven to be unique and SPD [33], and to remain so when

evolving over time, given an SPD initial condition. From tensor b, the conformation

tensor may be recovered by the following operation

c = bT ·b , (2.16)

and, the square-root tensor b being symmetric, Eq. (2.16) also reads c = b ·b. The key

idea of the square-root method is that Eq. (2.16) is a mathematical constraint for c to be

SPD.

It is now required to derive the evolution equation for the square-root tensor using

the original equation for c. This follows Balci et al. [33] and the derivation proposed by

Chen et al. [66].

Firstly, replacing Eq. (2.16) into Eq. (2.12) yields

D(bT ·b)
Dt

−bT ·b ·∇u−∇uT ·bT ·b+
f (tr(c))bT ·b− I

Wih
= 0 , (2.17)

which can be rearranged and multiplied on the left by b−T (= (b−1)T ) and on the right by

b−1 to yield

b−T · Db
T

Dt
+
Db
Dt
·b−1 −b ·∇u ·b−1 −b−T ·∇uT ·bT +

f (tr(c))I −b−T ·b−1

Wih
= 0 . (2.18)

It is easy to manipulate Eq. (2.18) so that, on one side, all the terms are post-

multiplied by b−1, and all the terms on the other side are pre-multiplied by b−T , giving[
Db
Dt
−b ·∇u+

f (tr(c))b−b−T

2Wih

]
·b−1 = −b−T ·

[
DbT

Dt
−∇uT ·bT +

f (tr(c))bT −b−1

2Wih

]
,

(2.19)
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Regarding Eq. (2.19), it is easily verified that one side is minus the transpose of the other.

Therefore, each side of this equation is anti-symmetric. Let us define an anti-symmetric

tensor, a, and split Eq. (2.19) into two equal equations, yielding[
Db
Dt
−b ·∇u+

f (tr(c))b−b−T

2Wih

]
·b−1 = a , (2.20)

and

−b−T ·
[
DbT

Dt
−∇uT ·bT +

f (tr(c))bT −b−1

2Wih

]
= a . (2.21)

Since the goal here is to find an evolution equation for the square-root of the

conformation tensor, one can either multiply Eq. (2.20) on the left by b or Eq. (2.21) on

the right by bT , which respectively gives

Db
Dt
−b ·∇u−a ·b+

f (tr(c))b−b−T

2Wih
= 0 , (2.22)

and
DbT

Dt
−∇uT ·bT +bT ·a+

f (tr(c))bT −b−1

2Wih
= 0 . (2.23)

Since b = bT , these equations can be rewritten as

Db
Dt
−b ·∇u−a ·b+

f (tr(c))b−b−1

2Wih
= 0 , (2.24)

and
Db
Dt
−∇uT ·b+b ·a+

f (tr(c))b−b−1

2Wih
= 0 . (2.25)

Let us now define the tensor

r = b ·∇u+a ·b . (2.26)

First, note that its transpose is rT = ∇uT · b − b · a, and that Eqs. (2.24) and (2.25)

contain respectively r and rT . Furthermore, these equations are equal. Thus, replacing

(−b ·∇u−a ·b) and (−∇uT ·b+b ·a) by −r and −rT in the referred equations, we conclude

that r = rT , and, therefore, r is symmetric. So, the relation rij = rji yields the following

linear system 
b11 + b22 b23 −b13

b23 b11 + b33 b12

−b13 b12 b22 + b33



a12

a13

a23

 =


t1
t2
t3

 , (2.27)
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where the terms t1,2,3 are given by

t1 = (b12∇u11 − b11∇u12) + (b22∇u21 − b12∇u22) + (b23∇u31 − b13∇u32)

t2 = (b13∇u11 − b11∇u13) + (b33∇u31 − b13∇u33) + (b23∇u21 − b12∇u23)

t3 = (b13∇u12 − b12∇u13) + (b23∇u22 − b22∇u23) + (b33∇u32 − b23∇u33)

, (2.28)

and the entries of a can be calculated as a function of b and ∇u solving for Eq. (2.27).

2.2.1 The inclusion of an artificial stress diffusion into the square-

root formulation

For numerical stability purposes, it is common to include an artificial stress diffusion

term to the evolution equation of the conformation tensor when simulating turbulent

viscoelastic fluid flows. Regarding the square-root transformation, a first approach,

analogous to the proposition by Sureshkumar and Beris [25], is to add a term propor-

tional to Db∆b to the evolution equation of the square-root conformation (Eq. (2.24)).

This equation containing the artificial stress diffusion reads

Db
Dt
−b ·∇u−a ·b+

f (tr(c))b−b−1

2Wih
=
Db
Reh

∆b . (2.29)

An alternative approach is to use Eq. (2.13), which includes stress diffusion into the

evolution equation, as a starting point, and henceforth apply the square-root transfor-

mation. This solution is more consistent from a mathematical viewpoint (see Appendix

B in [33]). Applying the square-root transformation to Eq. (2.13) yields

D(bT ·b)
Dt

−bT ·b ·∇u−∇uT ·bT ·b+
f (tr(c))bT ·b− I

Wih
=
Dc
Reh

∆(bT ·b) . (2.30)

Note, however, that

∆(bT ·b) = ∆bT ·b+bT ·∆b+ 2

(∂b∂x
)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2 . (2.31)

Analogously to the previous procedure, multiplying Eq. (2.30) on the left by b−T

and on the right by b−1 leads to

b−T · Db
T

Dt
+
Db
Dt
·b−1 −b ·∇u ·b−1 −b−T ·∇uT ·bT +

f (tr(c))I −b−T ·b−1

Wih
=

Dc
Reh

b−T ·

∆bT ·b+bT ·∆b+ 2

(∂b∂x
)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2
 ·b−1 ,

(2.32)
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Rearranging terms:{
Db
Dt
−b ·∇u +

f (tr(c))b−b−T

2Wih
−

− Dc
Reh

b−T ·
1
2
bT ·∆b+

1
2
∆bT ·b+

(
∂b
∂x

)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2
 ·b−1 =

−b−T ·
{
DbT

Dt
−∇uT ·bT +

f (tr(c))bT −b−1

2Wih
−

− Dc
Reh

1
2
∆bT ·b+

1
2
bT ·∆b+

(
∂b
∂x

)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2 ·b−1

 .

(2.33)

Similarly to Eq. (2.19), one side of Eq. (2.33) is the negative transpose of the other,

meaning that both sides are anti-symmetric.

Now, let us define

h =b−T ·
1
2
∆bT ·b+

(
∂b
∂x

)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2 =

b−1 ·
1
2
∆b ·b+

(
∂b
∂x

)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2 ,

(2.34)

and make Eq. (2.33) equal to the anti-symmetric tensor a∗. Multiplying the left-hand

side of Eq. (2.33) on the right by b yields

Db
Dt
−b ·∇u−a∗ ·b− Dc

Reh
h+

f (tr(c))b−b−1

2Wih
=
Dc
Reh

1
2
∆b , (2.35)

and multiplying the right-hand side on the left by bT yields

Db
Dt
−∇uT ·b+b ·a∗ − Dc

Reh
hT +

f (tr(c))b−b−1

2Wih
=
Dc
Reh

1
2
∆b . (2.36)

Comparing Eqs. (2.35) and (2.36), the following equation appears

−b ·∇u−a∗ ·b− Dc
Reh

h = −∇uT ·b+b ·a∗ − Dc
Reh

hT . (2.37)

Similarly to the case without any artificial stress diffusion, it is possible to define

r∗ = b ·∇u+a∗ ·b+
Dc
Reh

h , (2.38)

and to conclude that r∗ = r∗T , and, therefore, that r∗ is symmetric. Using r∗ij = r∗ji , the
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following linear system shows up
b11 + b22 b23 −b13

b23 b11 + b33 b12

−b13 b12 b22 + b33



a∗12

a∗13

a∗23

 =


t∗1
t∗2
t∗3

 , (2.39)

where the terms t∗1,2,3 are given by

t∗1 = t1 + Dc
Reh

(h21 − h12)

t∗2 = t2 + Dc
Reh

(h31 − h13)

t∗3 = t3 + Dc
Reh

(h32 − h23)

, (2.40)

in which the terms t1,2,3 are those in Eq. (2.28).

A simpler way to include artificial diffusion in the square-root formulation

Analysing the manipulation made by Balci et al. [33], a simpler way to consider the

artificial stress diffusion is suggested here. The resulting equations are equivalent, but

with the advantage of easier implementation and faster calculation.

Going back to Eq. (2.32), we can manipulate differently, to obtain{
Db
Dt
−b ·∇u +

f (tr(c))b−b−T

2Wih
−

− Dc
Reh

b−T ·
bT ·∆b+

(
∂b
∂x

)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2
 ·b−1 =

−b−T ·
{
DbT

Dt
−∇uT ·bT +

f (tr(c))bT −b−1

2Wih
−

− Dc
Reh

∆bT ·b+
(
∂b
∂x

)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2 ·b−1

 .

(2.41)

Note that both sides in Eq. (2.41) are anti-symmetric as well.

Now, an analogous but simpler term h∗ can be defined as

h∗ = b−T ·
(∂b∂x

)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2 = b−1 ·
(∂b∂x

)2

+
(
∂b
∂y

)2

+
(
∂b
∂z

)2 , (2.42)

Note that h∗ is not a function of the Laplacian of b, which is a considerable improvement

in terms of computation. Using another anti-symmetric tensor, a∗∗, the evolution

equation for b reads

Db
Dt
−b ·∇u−a∗∗ ·b− Dc

Reh
h∗ +

f (tr(c))b−b−1

2Wih
=
Dc
Reh

∆b , (2.43)
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where a∗∗ is obtained by solving the following linear system
b11 + b22 b23 −b13

b23 b11 + b33 b12

−b13 b12 b22 + b33



a∗∗12

a∗∗13

a∗∗23

 =


t∗∗1
t∗∗2
t∗∗3

 , (2.44)

where the terms t∗∗1,2,3 are given by

t∗∗1 = t1 + Dc
Reh

(h∗21 − h
∗
12)

t∗∗2 = t2 + Dc
Reh

(h∗31 − h
∗
13)

t∗∗3 = t3 + Dc
Reh

(h∗32 − h
∗
23)

. (2.45)

2.2.2 Implementation of the square-root formulation

Starting from a code that considers the standard conformation tensor with artificial dif-

fusion, the changes needed to the square-root formulation are relatively small. Basically,

the following steps have been performed:

• Transformation of the initial field of c into a field of its square-root, b, using

Eqs. (2.14) and (2.15);

• Calculation of the anti-symmetric tensor a (or a∗ or a∗∗ depending on the specific

formulation considered) and replacement of a (or equivalent) in place of ∇uT ;

• Calculation of the inverse of b3 and replacement of b−1 in place of I ;

• Assembly of the term h (or equivalent) if needed;

• Inverse transformation (Eq. (2.16)) when c is required4.

2.3 The kernel transformation

Inspired by previous methods proposed to ensure the positive-definiteness of the

conformation tensor, Afonso, Pinho, and Alves [34] arrived at a general and versatile

family of transformations. Since it is based on a particular decomposition for the

velocity gradient, this decomposition is presented below.

3Since b is SPD, its inverse can be easily obtained using adjunct and determinant.
4In the particular case of the trace of c in the Peterlin function, as shown by Balci et al. [33], tr(c) =

‖b‖2 = tr(bT ·b) and can thus be easily calculated in terms of b.
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2.3.1 A special decomposition for the velocity gradient

Fattal and Kupferman [31] proposed a unique decomposition for the velocity gradient

tensor. The decomposition consists in writing the velocity gradient on the basis of the

eigenvectors of the conformation tensor to find the following tensors,

L̃ = ∇̃uT =QT
c ·∇uT ·Qc = B̃ + Ω̃+ Ñ (Λc)−1 , (2.46)

where Qc represents the orthogonal tensor composed by the eigenvectors of the confor-

mation tensor in columns, Λc is the diagonal tensor containing the eigenvalues of c, B̃

is a diagonal tensor, and Ω̃ and Ñ are anti-symmetric tensors.

Defining B =Qc ·B̃ ·QT
c , Ω =Qc ·Ω̃·QT

c , andN =Qc ·Ñ ·QT
c , and using c =Qc ·Λc ·QT

c ,

the decomposition (2.46) also reads

L = ∇uT = B +Ω+Nc−1 . (2.47)

It is worth noting that B is symmetric and commutes with c, and Ω and N are

anti-symmetric.

Substitution of the decomposition (2.47) in Eq. (2.12) gives

Dc
Dt
− (Ω · c− c ·Ω)− 2Bc+

f (tr(c))c− I
Wih

= 0 , (2.48)

where

B̃ij = ∇̃uij , (2.49)

and

Ω̃ij =
Λc
ii∇̃uij +Λc

jj∇̃uji
Λc
jj −Λ

c
ii

. (2.50)

Equation (2.48) can also be expressed in its eigendecomposed version (originally

shown by Vaithianathan and Collins [26]), by applying the chain derivative rule on

Λc =QT
c · c ·Qc, yielding

DΛc

Dt
=
D(QT

c · c ·Qc)
Dt

=
DQT

c

Dt
· c ·Qc +QT

c ·
Dc
Dt
·Qc +QT

c · c ·
DQc

Dt
. (2.51)

Substitution of Eq. (2.48) in Eq. (2.51) yields

DΛc

Dt
= Λc ·Q−Q ·Λc + Ω̃ ·Λc −Λc · Ω̃+ 2B̃ ·Λc −

f (tr(c))Λc − I
Wih

, (2.52)

whereQ = QT
c ·

DQc
Dt = −DQ

T
c

Dt ·Qc = −QT . Thus, the tensorQ is anti-symmetric, as Ω̃.

Therefore, these two tensors cannot contribute to the evolution of (the diagonal tensor)
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Λc. Equation (2.52) can be split into two parts, one for the diagonal terms and another

one for the off-diagonal terms, which respectively yields

DΛc

Dt
= 2B̃ ·Λc −

f (tr(c))Λc − I
Wih

, (2.53)

and

Q ·Λc −Λc ·Q = Ω̃ ·Λc −Λc · Ω̃ . (2.54)

Note that, from Eq. (2.54), we have thatQ = Ω̃.

2.3.2 A general transformation

The kernel operation applies for any transformation function k() applied to the confor-

mation tensor being continuous, invertible and differentiable, yielding the following

relation

k(c) =Qc · k(Λc) ·QT
c . (2.55)

The kernel transformation is based not only on the decomposition presented above,

but also on the fact that, generally, every analytic function of a diagonal matrix, d, can

be computed entry-wise as follows

k(diag(d11;d22; . . . ;dnn)) = diag(k(d11);k(d22); . . . ;k(dnn)) . (2.56)

The kernel transformation operates on the magnitude of the extension of the poly-

meric conformation without changing its eigendirections. For the evolution equation of

the kernel function, the chain derivative rule is used, yielding

∂k(Λc
ii)

∂t
=
∂Λc

ii

∂t
· ∂k(Λc

ii)
∂Λc

ii
=
∂Λc

ii

∂t
· Jii , (2.57)

where J is the (diagonal) gradient matrix defined as

J = diag
(
∂k(λc1)
∂λc1

;
∂k(λc2)
∂λc2

;
∂k(λc3)
∂λc3

)
. (2.58)

Equation (2.53) can be used into Eq. (2.57) to give

Dk(Λc)
Dt

= 2B̃ ·Λc · J −
f (tr(c))Λc − I

Wih
· J , (2.59)

The evolution equation for the kernel function, k(c), can be obtained using the chain



32 CHAPTER 2. Mathematical modelling and numerical method

derivative rule for the relation k(c) =Qck(Λc)QT
c ,

Dk(c)
Dt

=
D(Qc · k(Λc) ·QT

c )
Dt

=
DQc

Dt
· k(Λc) ·QT

c +Qc ·
Dk(Λc)
Dt

·QT
c +Qc · k(Λc) ·

DQT
c

Dt
.

(2.60)

Using Eq. (2.59) and some relations shown before, the evolution equation for the

kernel function takes the form:

Dk(c)
Dt

− (Ω · k(c)− k(c) ·Ω)− 2B +
1
Wih

H = 0 , (2.61)

where

B =Qc · B̃ ·Λc · J ·QT
c , (2.62)

and

H =Qc · H(Λc) · J ·QT
c , (2.63)

with H(Λc) = f (tr(c))Λc − I for a FENE-P fluid.

2.3.3 The rootk kernel transformation

One of the advantages of the kernel transformation is that, rather than being restricted

to the square-root transformation, it allows a general root-type transformation for a

given root k. The rootk kernel transformation is then defined as

k(c) = c
1
k =Qc · (Λc)

1
k ·QT

c . (2.64)

The conformation tensor can be recovered with the following inverse operation

c = k(c)k . (2.65)

For the rootk kernel transformation, the diagonal gradient matrix J takes the form

J = diag

∂λc1
1
k

∂λc1
;
∂λc2

1
k

∂λc2
;
∂λc3

1
k

∂λc3

 =
(Λc)

1−k
k

k
. (2.66)

Moreover, following Eqs. (2.62) and (2.63), tensors B and H are respectively calculated

as follows

B =Qc · B̃ ·Λc · J ·QT
c =Qc · B̃ ·Λc · (Λ

c)
1−k
k

k
·QT

c =
1
k
Qc · B̃ · (Λc)

1
k ·QT

c =
1
k
Bk(c) ,

(2.67)
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and

H =Qc · H(Λc) · J ·QT
c =Qc · [f (tr(c))Λc − I ] · (Λ

c)
1−k
k

k
·QT

c =

1
k
Qc ·

[
f (tr(c)) (Λc)

1
k − (Λc)

1−k
k

]
·QT

c =
1
k

(
f (tr(c))k(c)− k(c)1−k) .

(2.68)

The evolution equation for the rootk kernel transformation is then expressed as

Dk(c)
Dt

− (Ω · k(c)− k(c) ·Ω)− 2
k
Bk(c) +

1
kW ih

(
f (tr(c))k(c)− k(c)1−k

)
= 0 . (2.69)

It is easy to check that replacing k by 2 recovers the square-root kernel transforma-

tion, which reads

Dk(c)
Dt

− (Ω · k(c)− k(c) ·Ω)−Bk(c) +
1

2Wih

(
f (tr(c))k(c)− k(c)−1

)
= 0 . (2.70)

Equation (2.70) is equivalent to Eq. (2.24). Indeed, in this particular case, k(c) = b, and

thus

Ω ·b−b ·Ω+B ·b = b ·∇u+a ·b . (2.71)

2.3.4 The inclusion of an artificial stress diffusion for the kernel

rootk transformation

Regarding the inclusion of an artificial diffusion into the equations for the kernel rootk

formulation at least two approaches are again possible: adding a diffusive term directly

to the evolution equation for k(c) (Eq. (2.69)) or consider a diffusion term in the standard

conformation tensor (as in Eq. (2.13)) and apply the kernel transformation.

The first proposition simply adds a term proportional to the Laplacian of k(c) into

Eq. (2.69), which gives

Dk(c)
Dt

− (Ω · k(c)− k(c) ·Ω)− 2
k
Bk(c) +

1
kW ih

(
f (tr(c))k(c)− k(c)1−k

)
=
Dk
Reh

∆k(c) .

(2.72)

In a second approach, the kernel transformation is applied to Eq. (2.13) instead of

Eq. (2.12) so that the artificial diffusion term would also be transformed.

Let us focus first on the diffusion term. What changes is that an extra term would be

added to Eq. (2.59) to give

Dk(Λc)
Dt

= 2B̃ ·Λc · J −
f (tr(c))Λc − I

Wih
· J +

Dc
Reh

∆k(Λc) · J , (2.73)
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Following the procedure in Eq. (2.60) would lead now to

Dk(c)
Dt

− (Ω · k(c)− k(c) ·Ω)− 2B +
1
Wih

H =
Dc
Reh

D , (2.74)

with D = Qc ·∆Λc · J ·QT
c . Now, for the rootk formulation, J was already shown to be

(1/k)(Λc)
1−k
k , which makes the new tensor D related to the diffusion like

D =Qc ·∆Λc · J ·QT
c =

1
k
Qc ·∆Λc · (Λc)

1−k
k ·QT

c =
1
k
∆k(c)k · k(c)1−k . (2.75)

The evolution equation of the rootk with artificial diffusion would then assume the form

Dk(c)
Dt

− (Ω · k(c)− k(c) ·Ω)− 2
k
Bk(c)+

+
1

kW ih

(
f (tr(c))k(c)− k(c)1−k

)
=
Dc
Reh

1
k
∆k(c)k · k(c)1−k .

(2.76)

Note the complexity of this new term on the right-hand side of Eq. (2.76). It involves

not only the (already calculated) term k(c)1−k but also ∆k(c)k, which, as a matter of

fact, equals ∆c. Extra operations regarding eigenvalues, eigenvectors and rotations are

needed, all of them computationally expensive.

2.3.5 The implementation of the kernel rootk formulation

The kernel rootk formulation requires more code changes compared to the square-root

method. The main steps for the kernel rootk formulation are:

• Transformation of the initial field of c into a field of its kernel rootk function, k(c),

using Eq. (2.64);

• Calculation of the tensors B̃ and Ω̃ (Eqs. (2.49) and (2.50)), as well as their

respective rotated tensors B and Ω;

• Calculation of the term k(c)1−k;

• Computation of the inverse transformation (Eq. (2.65)) when c is required.

It is worth noting that almost all operations described above involve knowing the

eigenvalues and eigenvectors of c at every time step, leading to considerable increase of

CPU time.

2.4 Numerical method

In this section, a brief description of the numerical method to solve the evolution

equations is provided.
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The original algorithm, named nnewt_solve [19] has been used to provide a better

understanding of the drag reduction phenomenon over the last 5 years [19–22]. Since

the code is well documented in [19], the reader is referred to this reference for further

information.

2.4.1 Time discretisation

Momentum equation

Firstly, let us recall the non-dimensional equation for momentum balance, in index

notation, which yields

∂u
∂t

+u ·∇u = −∇p+
β

Reh
∆u+

1
Reh
∇ ·Ξ . (2.7)

In Eq. (2.7) above, pressure, advection and polymer stress are treated explicitly,

whereas the diffusion term is treated implicitly. Assembling the advection and polymer

stress terms in a vector H gives

H = u ·∇u− 1
Reh
∇ ·Ξ . (2.77)

In the present algorithm, this vector is treated with the Adams-Bashforth scheme from

second to fourth order (user defined). In all simulations performed here the second-

order scheme was used. Thus, Eq. (2.77) at the current time step, n, is discretised

as

Hn (u,c) =
3
2
H (un,cn)− 1

2
H (un−1,cn−1) . (2.78)

For the diffusion term, an (user defined) implicit Adams-Moulton scheme is used.

Second and third orders are available, but, here again, only second-order runs were

done. Therefore, only the second-order formulation (Crank-Nicolson scheme) will be

presented. The Laplacian term is discretised as follows

Ln+1(u) =
1
2

(
∆un+1
∗ +∆un

)
, (2.79)

where un+1
∗ is the intermediate velocity at the time-step n+ 1 and its associated discre-

tised equation is

un+1
∗ −un

δt
+Hn (u,c) = −∇pn +

β

Reh
Ln+1(u) . (2.80)

The discretised momentum equation considering second-order Adams-Bashforth

scheme for advection and polymer stress, and Crank-Nicolson scheme for diffusion
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takes the form( I
δt
−

β

2Reh
∆

)
δun+1
∗ = −3

2
H (un,cn) +

1
2
H (un−1,cn−1) +

β

2Reh
∆un −∇pn , (2.81)

subject to the Dirichlet boundary conditions δun+1
∗ = δwn+1

∗ = 0 at the walls. At this

point, the increment for the intermediate velocity remains δvn+1
∗ = vn+1

∗ −vn = vn+1
∗ . The

intermediate velocity, vn+1
∗ , is used further on for the pressure boundary condition.

Equation (2.81) is solved in terms of the velocity increment δun+1
∗ = un+1

∗ − un.

However, the intermediate velocity field, un+1
∗ = un + δun+1

∗ , is not solenoidal. Thus, a

pressure correction of the form δpn+1 = pn+1 − pn is applied, leading to

un+1 = un+1
∗ − δt∇

(
δpn+1

)
. (2.82)

To enforce a divergence-free velocity field, un+1, the pressure correction must satisfy

the Poisson equation

∆(δpn+1) =
1
δt
∇ ·un+1

∗ . (2.83)

The pressure increment equation is solved on a staggered grid subject to the Neu-

mann boundary conditions ∂(δpn+1)/∂y = vn+1
∗ /δt.

Hence, marching in time the (pressure-velocity) fields follows this procedure:

• solve the Helmholtz equation (2.81) for the velocity increment, δun+1
∗ ;

• obtain the intermediate velocity field, un+1
∗ = un + δun+1

∗ ;

• solve the Poisson equation (2.83); and

• finally update the velocity field with and the pressure field as pn+1 = pn + δpn+1.

Conformation tensor equation

Let us retake the evolution equation for the conformation tensor with artificial diffusion

included,
Dc
Dt
− c ·∇u−∇uT · c+

f (tr(c))c− I
Wih

=
Dc
Reh

∆c . (2.13)

Analogously to the momentum equation, the diffusion term is treated with a Crank-

Nicolson scheme while all the other terms are treated with a second-order Adams-

Bashforth scheme. Again, let us gather the explicit terms in a tensor H c, as follows

H c = u ·∇c− c ·∇u−∇uT · c+
f (tr(c))c− I

Wih
. (2.84)
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As a first step, the conformation tensor field is updated at the walls without any

artificial diffusion, which yields the intermediate field

cn+1
∗ = cn − δt

[3
2
H c(u

n,cn)− 1
2
H c(u

n−1,cn−1)
]

. (2.85)

The increment to the conformation tensor, δcn+1 = cn+1 − cn, is obtained through

solution of the Helmholtz equation

( I
δt
− D0

2Reh
∆

)
δcn+1 = −3

2
H c(u

n,cn) +
1
2
H c(u

n−1,cn−1) +
D0

2Reh
∆cn . (2.86)

subject to the boundary conditions δcn+1 = cn+1
∗ − cn at the walls.

Once Eq. (2.86) is solved, the conformation tensor is updated with

cn+1 = cn + δcn+1 . (2.87)

It is important to highlight that, concerning time discretisation, no changes were

necessary for the implementation of the square-root and the kernel formulations. Basi-

cally, the variable c is replaced by its transformed one, and some terms in the tensor H c

change accordingly with the model.

2.4.2 Spatial discretisation

The numerical code uses Fourier (spectral) discretisation in the stream- and span-wise

(homogeneous) directions, x and z respectively. In the wall-normal direction, y, the

discretisation with high-order compact finite difference schemes.

Equations in the Fourier space

The flow equations are 2D-Fourier transformed in the two homogeneous directions.

The (complex) fields in Fourier space will be identified with an over-hat, ˆ. For the

momentum equation for the calculation of the velocity increment, the 2D-Fourier

transformation yields

{ I
δt

+
β

2Reh

(
|k|2I − d2

dy2

)}
δ̂u

n+1
∗ =

− 3
2
Ĥ (un,cn) +

1
2
Ĥ (un−1,cn−1) +

β

2Reh

(
−|k|2I +

d2

dy2

)
ûn −∇sp̂n ,

(2.88)

in which k = kxex + kzez, with kx and kz are the wave-numbers in the stream-wise and

span-wise directions, respectively. The operator d/dy indicates the finite difference

approximation for the wall-normal derivative ∂/∂y (see basic information about finite



38 CHAPTER 2. Mathematical modelling and numerical method

difference tools below) and ∇s = (jkx,d/dy, jkz)t is the hybrid gradient operator, with

j =
√
−1.

For the pressure increment equation, one gets(
|k|2I − d2

dy2

)
δ̂p

n+1
=

1
δt
∇s · ûn+1

∗ . (2.89)

Finally, for the conformation tensor increment, the 2D-Fourier transformed equation

reads { I
δt

+
D0

2Reh

(
|k|2I − d2

dy2

)}
δ̂c
n+1

=

− 3
2
Ĥ c(u

n,cn) +
1
2
Ĥ c(u

n−1,cn−1) +
Dc

2Reh

(
−|k|2I +

d2

dy2

)
ĉn .

(2.90)

Finite difference scheme

First and second derivatives in the wall-normal direction, y, are obtained by means of

high-order compact finite difference schemes. The Hermitian technique used to obtain

the first and second derivatives of a function f (ξ) on equidistant grid-points ξi (with

i = 1,N + 1) follows from solution of the tri-banded linear systems

Cf ′ =Df and Af ′′ = Bf , (2.91)

where f = (f1, f2, · · · , fN , fN+1)t, fi is f (ξ) evaluated at ξi ∈ [a,b], f ′ = df /dξ, and f ′′ =

d2f /dξ2. The generation of the banded matrices A, B, C, and D is facilitated by the

finite difference stencils by Lele [100] and Carpenter, Gottlieb, and Abarbanel [101],

which are detailed in the paper by Thais et al. [19].

The scheme used is of sixth order for core points and fifth order for boundary

points and first points off the boundaries. We insist in particular that the second-order

derivative is directly evaluated with a sixth-order scheme, not by taking two successive

first-order derivatives. This ensures spectral-like precision in the wall-normal direction.

In this direction, the equidistant grid points {ξ1 = a,ξ2,ξ3, · · · ,ξN ,ξN+1 = b} in an

interval [a,b] separated by a distance h = b − a are stretched by a hyperbolic mapping

function in order to increase the resolution near the walls where strong gradients occur.

The stretching function used transforms an equidistant discretisation, ξi , of N + 1

grid points within the interval [a,b] = [−1,1] in a clustered set of non-uniform N + 1

points, yi , in [−1,1]. The stretching function is

y = (1/s)tanh[ξtanh−1(s)] , (2.92)

where s is a positive parameter proportional to the degree of clustering near the walls,
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with s→ 0 reverting to a regular equidistant mesh.

First and second derivatives on the non-uniform grid are calculated as a function of

the derivatives on the uniform grid following the chain rule for derivation as follows

∂f

dy
= γ1

∂f

∂ξ
,

∂2f

∂y2 = γ2
1
∂2f

∂ξ2 +γ2
∂f

∂ξ
, (2.93)

in which γj =
(
∂jξ/∂yj

)
are the Jacobian of order j of the stretching function. Finally,

considering Eqs. (2.91) and (2.93), the approximation of the first and second derivatives

of a function f on a non-uniform grid spacing are computed as

df
dy

=
{
σ1C

−1D
}
f , (2.94)

and
d2f
dy2 =

{[
σ1

2A−1B
]
+
[
σ2C

−1D
]}
f , (2.95)

where the tensors σ are defined as σk = γkI . Note that linear system of Eqs. (2.94)

and (2.95) preserve their tri-banded property on the irregular grid, which guaranties

numerical efficiency.

2.4.3 Further comments on the algorithm

The code uses de-aliasing in the homogeneous directions and filtering in the wall-

normal direction to get rid of the typical accumulation of energy at high wave-numbers

in spectral turbulent simulations.

Furthermore, it is important to remark that the algorithm was conceived for mas-

sively parallel environments using Message Passing Interface (MPI) and Open Multi-

Processing (OpenMP) implementation.

Detailed information concerning the parallel aspects of the code are available in

reference [19].



40 CHAPTER 2. Mathematical modelling and numerical method



Chapter3
Results and Discussions

In this Chapter, the results for turbulent channel flows using the square-root and

the kernel rootk formulations are compared with those obtained with the standard

conformation tensor formulation.

Attempts to run turbulent channel simulations without any artificial diffusion have

not converged. Therefore, different approaches to include artificial diffusion have been

assessed.

At a first step, the effect of artificial diffusion is evaluated on laminar flows where

analytical or pseudo-analytical solutions can be used for validation. The convergence of

each formulation is then discussed for turbulent channel flows, including the difference

in terms of CPU time, stability and sensitivity to the artificial stress diffusion. Finally,

some concluding remarks are presented, followed by a few suggestions for further

investigation.

3.1 Summary of the approaches to include artificial dif-

fusion

None of the attempts to simulate turbulent channel flows using either the square-root

or the kernel rootk transformation without artificial diffusion succeed. Even if the

positiveness of the conformation tensor is preserved, the turbulent flows present steep

gradients in both velocity and conformation tensor fields to rise numerical errors that

lead to unbounded values for the conformation tensor, rapidly causing divergence.

In view of this scenario, we consider here the inclusion of artificial diffusion to

the constitutive equations. Regarding the addition of artificial diffusivity, for the

conformation tensor, the idea of Sureshkumar, Beris, and Handler [5] is followed,

giving
Dc
Dt
− c ·∇u−∇uT · c+

f (tr(c))c− I
Wih

=
Dc
Reh

∆c , (2.13)
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However, for the transformed conformation equations, two general approaches were

presented in Chapter 2. In the approach 1, the tensor transformations are applied to

Eq. (2.13), i.e. the standard formulation for the conformation tensor with the inclusion of

stress diffusion. This procedure is more consistent from the mathematical point of view

and, hereafter, it will be referred to as “a priori approach”. On the other hand, approach

2 considers the transformation of the original equation of the FENE-P model without

any artificial diffusion (Eq. (2.12)) and adds a term proportional to the Laplacian of

the transformed conformation tensor directly into the resulting equation. The term “a
posteriori approach” will be used to refer to this more simplistic approach.

For the root-type kernel transformation, the “a priori approach” yields

Dk(c)
Dt

− (Ω · k(c)− k(c) ·Ω)− 2
k
Bk(c)+

+
1

kW ih

(
f (tr(c))k(c)− k(c)1−k

)
=
Dc
Reh

1
k
∆k(c)k · k(c)1−k ,

(2.76)

which is quite inconvenient because of the terms that appear as powers of the trans-

formed conformation tensor. Therefore, this approach has not been considered here.

On the other hand, the “a posteriori approach” gives

Dk(c)
Dt

− (Ω · k(c)− k(c) ·Ω)− 2
k
Bk(c) +

1
kW ih

(
f (tr(c))k(c)− k(c)1−k

)
=
Dk
Reh

∆k(c) ,

(2.72)

and can be easily adapted from the standard conformation tensor formulation with

artificial diffusion since the diffusion term is alike.

Similarly, the “a posteriori approach” to the square-root conformation leads to

Db
Dt
−b ·∇u−a ·b+

f (tr(c))b−b−1

2Wih
=
Db
Reh

∆b , (2.29)

and will be assessed as well.

Moreover, the “a priori approach” was shown to have two possible formulations for

the square-root formulation: one with the term h proposed by Balci et al. [33], leading

to
Db
Dt
−b ·∇u−a∗ ·b− Dc

Reh
h+

f (tr(c))b−b−1

2Wih
=

1
2
Dc
Reh

∆b , (2.35)

and the other, proposed here, considering the term h∗ instead, according to

Db
Dt
−b ·∇u−a∗∗ ·b− Dc

Reh
h∗ +

f (tr(c))b−b−1

2Wih
=
Dc
Reh

∆b . (2.43)

In short, we added artificial diffusion to the constitutive equations considered here
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using different approaches. A summary of these choices is shown in Tab. 3.1.

Method
Inclusion of

Notes
Corresponding

Nomenclature
artificial diffusion Equation

standard direct (2.13) std

square-root
a priori term h (2.35) sqrt (h)
a priori term h∗ (2.43) sqrt (h∗)

a posteriori (2.29) sqrt

kernel
a priori not used (2.76) -

a posteriori (2.72) kernel

Table 3.1 – Summary of approaches to include artificial diffusion.

3.2 Results for laminar channel flow

The modified algorithm using the square-root and the kernel transformations has been

preliminary tested for the laminar Poiseuille flow. For these cases, the bulk Reynolds

number, Reh, is fixed at 1, the Weissenberg number is Wih = 10, and the polymer

maximum extensibility, L, equals 100. The domain lengths (Lx,Ly ,Lz), normalised with

the channel half-gap, h, are respectively (2π,2,π). The mesh considered for laminar

simulations is Nx ×Ny ×Nz = 16× 49× 8.

In a first approach, no artificial diffusion was included to any formulation. The

profiles of the four non-null components of the conformation tensor for the case without

artificial diffusion are depicted in Fig. 3.1.

The conformation tensor is normalised by the square of the maximum chain ex-

tensibility, L2. The square-root and kernel rootk formulations - the latter with k = 2

and 4 - are compared to analytical solutions obtained with the BVPSUITE [102] (see

Appendix A for more information). The analytical solutions presented in Fig. 3.1 are

those obtained for the set of ODE representing the square-root formulation without

artificial diffusion. The conformation tensor is recovered by computing c = b ·b.

Observation of Fig. 3.1 suggests that all transformations recover the analytical

solution with satisfactory precision. In order to validate both the solution of the ODE

and the numerical results for the transformed conformation formulations, the l2-norm
1 of the difference between each solution method and the numerical solution for the

1The l2-norm of each component (ij) of the conformation tensor is calculated as

l2 =
√

(csolij − c
ss
ij )

2/(
√
cssij )

2 (3.1)

where csolij are the non-null components of the conformations tensor coming from one of the solution

methods considered here (solution of ODE, square-root formulation or kernel rootk formulation) and cssij
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Figure 3.1 – Profiles of normalized components of the conformation tensor without
artificial diffusion. (Dα = 0)

steady state provided by Sureshkumar, Beris, and Handler [5] is calculated for each

non-null component of the conformation tensor and is shown in Tab. 3.2.

Method cxx cyy czz cxy

solution ODE 1.857× 10−9 2.947× 10−10 2.947× 10−10 1.503× 10−9

square-root 8.389× 10−3 5.930× 10−4 5.307× 10−4 6.146× 10−3

kernel root k = 2 1.003× 10−2 5.113× 10−4 5.113× 10−4 4.464× 10−3

kernel root k = 4 1.036× 10−2 6.660× 10−4 6.660× 10−4 4.121× 10−3

Table 3.2 – l2-norm measuring the difference between each solution method and the
analytical solution for the steady state flow without artificial diffusion for each

non-null component of the conformation tensor.

Table 3.2 shows that the solution of the system of ODE using the BVPSUITE [102]

provides good results with l2-norms from ∼ 10−10 − 10−9. The largest values of l2

are the components of the steady-state solution for conformation tensor available in Sureshkumar, Beris,
and Handler [5] (see Appendix A).



3.2. Results for laminar channel flow 45

are always associated to the stream-wise component of the conformation tensor, cxx,

which is indeed the most stretched one. The l2-norm of the results obtained with the

transformed conformation tensor formulations are approximately 6 order of magnitudes

of those coming from the solution of the ODE. However, it is important to remark that

the mesh used by the BVPSUITE [102] to solve the system of ODE contains 101 points,

while the laminar simulations were performed with 49 points in the wall-normal

direction.

The main component cxx (Fig. 3.1a) has a parabolic profile with positive concavity,

meaning that the greatest polymer stream-wise stretching is near to the wall. As pre-

dicted by the set of equations, components cyy and czz (Figs. 3.1b and 3.1c, respectively)

present local maximum at the channel centreline. Stretching in those directions is

globally negligible relative to the stream-wise direction.

Finally, the shear component, cxy (Fig. 3.1d), presents maximum values near the wall

and has an inflexion point at the channel centreline with slightly negative concavity in

the lower half-channel.

Even though no artificial diffusion is needed to simulate laminar viscoelastic channel

flows, the effect of the diffusion term on the results is now evaluated.

To do so, a small (dimensionless) stress diffusivity of Dα = 10−6 is added to the

respective models. 2 This is the above-defined “a posteriori approach”. The results are

displayed in Fig. 3.2. Again, the analytical results are from the square-root formulation

with a posteriori inclusion of artificial diffusion.

At this level of dissipation, artificial diffusion plays a negligible role in almost

all components of the conformation tensor. The only exception is the wall-normal

component, cyy , for which a small trough appears around the channel centreline. This

occurs for all formulations and for the analytical solution as well, indicating that

this is not a numerical issue, but a result of mathematical changes in the equations.

This behaviour is detailed in the zoom box in Fig. 3.2b. Note that the curves do not

have a maximum at y = 0 like for the component czz (Fig. 3.2c). Instead, they all bend

downwards. Moreover, a closer look indicates that, the values for the kernel formulation

oscillates around the analytical solution and even go beyond the expected maximum

value (≈ 10−4 for cyy/L2).

This “bending” behaviour increases with the stress diffusivity on the cyy component.

Figure 3.3 shows the profiles of the normalised component of the conformation tensor

for Dα = 10−3.

Note that the profile of the wall-normal component of the conformation tensor,

cyy , now suffers marked changes. Instead of having a parabola-like profile, similar to

2The subscript α in the stress diffusivity, Dα , denotes here a generalisation for the indexes c, b or
k representing the stress diffusion coefficient for the standard, square-root and kernel formulations,
respectively.
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Figure 3.2 – Profiles of normalized components of the conformation tensor with the “a
posteriori approach” for the artificial diffusion.(Dc = 10−6)

component czz, it bends in the middle region of the channel, becoming concave up

around to the centreline. Furthermore, rather than a maximum value, the central point

now has a minimum value. The analytical solution of the corresponding system of ODE

shows the same behaviour, eliminating again any chance of numerical errors within the

code. According to Fig. 3.3b, the smaller the degree of the root-k formulation, the closer

to the analytical solution the results of the kernel formulation are.

In Fig. 3.4, the results for the formulations considering the a priori inclusion of

artificial diffusion are presented, i.e. those whose diffusion terms appear from transfor-

mation of the conformation tensor equation with artificial diffusion. The same applies

for the analytical results. Since artificial stress effects are most prominent at Dc = 10−3,

this value is here considered.

First, it is worth noting that the analytical result for this formulation does not contain

any kind of “bend” in the profile of the component cyy .

The profiles obtained from simulation, though, independently of the formulation

used (term h or h∗), still oscillate minimally and present a very small change of concavity
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Figure 3.3 – Profiles of normalized components of the conformation tensor with the “a
posteriori approach” for the artificial diffusion.(Dα = 10−3)

in the channel centreline. However, the a priori treatment of diffusion leads to results

significantly closer to the analytical solution.

In conclusion, all the tested formulations, with or without artificial diffusion, have

shown to be unconditionally stable for laminar channel flows. Regarding the inclusion

of artificial diffusion into the constitutive equation, the so-called “a priori approach”,

i.e. when the diffusion term is considered before applying the transformations, pre-

sented very good agreement with the analytical solution for all components of the

conformation tensor. A few numerical oscillations occur around the channel centreline,

but the results are overall satisfactory. When including the artificial diffusion term

after the transformation (i.e. in the “a posteriori approach”), the system of equations is

transformed so that the wall-normal component of the conformation tensor, cyy , bends

downwards at the channel mid-height. The comparison of Figs. 3.2b and 3.3b indicates

the deformation of the cyy profile is proportional to the stress diffusivity considered.

Since the “a priori approach” is more consistent mathematically, it is not surprise that it

produces better results.
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Figure 3.4 – Profiles of normalized components of the conformation tensor with the “a
priori approach” for the artificial diffusion. (Dc = 10−3)

3.3 Turbulent drag-reducing channel flow

In this section, the results for turbulent channel flows considering the same formulations

as for the laminar flow will be presented. Short notes on the initialisation of turbulent

simulations, the convergence rate and the stability of each method are also included.

3.3.1 Calculation of DR

Before commenting the results concerning turbulent drag-reducing channel flows, it is

important to see how the relative drag reduction is calculated. As stated by Housiadas

and Beris [16], the classical calculation of the relative drag reduction (DR) as a function

of the wall shear stress, τ∗w, is

DR = 1− τ
∗
w

visc

τ∗w
N , (3.2)

where the superscripts “visc” and “N” stand respectively for viscoelastic and Newtonian.

There are two possible ways to compute a turbulent channel drag-reducing flow.
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One is to impose the same sulk velocity as in the reference Newtonian flow, in which

case Eq. (3.2) can be used directly. The other one, which is used within this work, is

to impose the same pressure gradient in which case the bulk velocity increases in the

viscoelastic flow. In this case, we need to take into account the shear-thinning effects of

the FENE-P model, and Housiadas and Beris [16] proposed to use

DR = 1−µ2(1−n)/n
w

〈u〉+y visc

〈u〉+y
N


(−2/n)

, (3.3)

in which µw = ηw/η0 = 1/(du+/dy+)|0,w is the viscosity ratio at the walls, the overline

indicates time average, the superscript “+” stands for wall-units and the angle brackets,

〈〉y , designate the spatial average in the wall-normal direction. The exponent n correlates

the bulk and the shear Reynolds number, Reh and Reτ0, and is prescribed through Dean’s

correlation [103] (see [16] for details).

3.3.2 Initial conditions

There are several possibilities to initialise a turbulent viscoelastic channel flow:

1. use a previously calculated turbulent field for velocity and pressure, with equilib-

rium or a specific analytical input for the conformation tensor;

2. use previously calculated turbulent fields for velocity, pressure and conformation

tensor;

3. use steady-state initial conditions with an ad-hoc disturbance to trigger the transi-

tion to turbulence.

These three possibilities have been tested in the present work. The difficulties in

starting the computations are exemplified if one uses a root-type transformation to

the conformation tensor. In particular, it is noteworthy that option 1 above can be

complicated due to its initial steep velocity gradients in the turbulent field. Because of

these strong gradients, the first iterations must be performed with time steps up to 10

times smaller than suggested by the CFL condition, and the artificial diffusion had to

be multiplied by 10 in order to stabilise the algorithm.

Option 2 deserves attention if coming from standard conformation tensor simula-

tions as well because the field of the conformation tensor may contain non-SPD values

to which smoothing must be applied. Applying a root-type transformation to the

conformation tensor involves diagonalising this tensor. If, for any reason, the initial

conformation tensor field is not SPD, this would result in floating point exception

from the onset of the computation. Most of the simulations conducted here used this
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approach by forcing any non-positive eigenvalue of the conformation tensor to equal a

very small positive number. In general, the amount of non-SPD points in a turbulent

field coming from the original algorithm is limited to a maximum of 1% of the total

number of grid points.

A more elegant solution is option number 3. In order to verify that option number 2

can be used without loss (and to look somehow to the transition to turbulence), option 3

was tested for a specific flow case with a streamfunction-based disturbance [104] added

to the initial velocity field . The details of this methodology can be found in Appendix

B.

Using option 3, the conformation tensor was initiated in equilibrium state (c = I ).

For the velocity field, localised disturbances properly excited the flow. The remaining

initial parameters are the same for all options: the bulk Reynolds number is Reh = 2800,

L = 30, Wih = 4.3 and Dα = 5.6. Figure 3.5 shows the evolution of the bulk Reynolds

number, Reh, as a function of the simulation time, t, for the standard, square-root and

kernel formulations, the latter two with “a posteriori” inclusion of artificial diffusion

(explanation in Subsection 3.3.3 further on).
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Figure 3.5 – Time evolution of the bulk Reynolds number, Reh, for different
formulations and initial conditions.

Four cases are presented in Fig. 3.5. The green line represents the evolution of the

bulk Reynolds number for the square-root formulation transitioning to turbulence. The

magenta line also stands for the square-root formulation, but the fields are initialised

with previous results obtained with the standard conformation tensor formulation. This

is also the initial condition for the kernel root simulation with k = 2 (light-blue line). As

can be seen, regardless of the approach to initiate the turbulent simulations for the new

formulations, the same statistically converged state is achieved (Reh ≈ 3086).
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However, an interesting result is already found here with the the standard con-

formation tensor formulation (blue line) transitioning to turbulence. The statistically

converged state, fluctuates around Reh ≈ 3468, leading to a relative drag reduction of

approximately 28%. The value obtained for the square-root formulation, Reh ≈ 3086,

corresponds to relative drag reduction of nearly 14%.

So, the use of the same stress diffusivity for the standard and square-root formula-

tions led to a 50% underestimation of the relative drag reduction. This will be better

explored in Section 3.3.5 below.

3.3.3 Note on the divergence of some formulations

The analysis of laminar channel flows shown above suggests that the “a priori” inclusion

of stress diffusion is much more promising than the “a posteriori” approach, since it led

to more realistic results. The “a priori” approach leading to an unfriendly equation for

the kernel transformation, the expectations were all on the square-root formulation. Al-

though its promising results under laminar regimes, when trying to initiate a turbulent

simulation with this formulation, despite several attempts with varied combination of

initial conditions and parameters, all simulations rapidly diverged due to unbounded

values for the conformation that destabilises the code growing very fast. It is important

to recall that we propose here the “a priori” formulation for the square-root proposed

by Balci et al. [33] and a original simplified version of it as well, but unfortunately, they

both fail within a few time steps. In view of this limitation, no turbulent results could

be obtained with the “a priori” approach.

It is also important to note that all transformations in their original formulations,

i.e. without any artificial diffusion, also quickly induced fast growth of numerical

instabilities, leading to divergence.

3.3.4 CPU cost of the different methods

Although five new theoretically possible formulations were shown in Tab. 3.1, at the

beginning of this chapter, only two of them are eligible to the problem here assessed.

The “a priori approach” to the kernel rootk transformation was initially rejected because

of its unfriendly formulation. The next two were eliminated due to the loss of stability

caused by the growth of unbounded values for the conformation tensor.

Finally, the square-root and kernel rootk transformations, both with the so-called

“a posteriori” approach, are the ones that were considered for computing the turbulent

drag-reducing channel flows.

In Chapter 2, it was shown that one promising advantage of the square-root for-

mulation is that it only requires to perform the eigendecomposition of the initial

conformation tensor field. Henceforth, the square-root tensor is evolved in time and,
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each time the conformation tensor is required, it can be easily recovered by squaring

the square-root tensor, which is computationally cheap. All this makes the square-root

method almost as efficient as the original method.

On the other hand, the kernel conformation transformation formulation, although

more versatile, is based on a decomposition that implies eigendecomposition at every

time-step. This operation is computationally expensive.

In order to compare each formulation, test runs were performed with the same

simulation parameters. The ratio of the mean time per iteration with respect to the

standard formulation is approximately 1.12. For the kernel formulation the ratio goes

over 6, but, in general, the CPU cost in simulations with the kernel formulation are

around 5 times greater than those of the standard formulation (and the square-root

as well, since they are very close). So, from practical point of view, the square-root

formulation is by far the most promising.

3.3.5 Results for transformed conformation tensor formulations

The main results of converged turbulent viscoelastic channel flows are presented in the

following. Results for both the square-root and the kernel formulations are compared

to the values of the public database by Thais [105]. The results in this database were

obtained with the algorithm in its original conformation tensor formulation using the

standard conformation-based FENE-P with global artificial diffusion (see [19–22]).

Regarding the original algorithm, for all viscoelastic simulations at Reτ0 = 180,

the artificial stress diffusivity used was Dc = 5.6 (equivalent to Schmidt number, Sc =

0.18). This value guarantees numerical stability by preserving the SPD property of the

conformation tensor at more than 99% of the simulation grid points.

With the new formulations implemented (square-root and root-type kernel), the

conformation tensor is mathematically considered to remain positive definite when

evolving in time. Thus, both new versions of the code are now able to provide results

that are potentially more reliable from the physical viewpoint.

Because the CPU requirements of the kernel formulation is considerably greater,

only a few simulations were conducted until convergence and kept to gather a sufficient

amount of information to give statistically converged results. Regarding diffusivity, as

observed in the preliminary laminar cases and discussed further on for the turbulent

simulations, the critical value under which the code diverges is very sensitive to the

degree of the root k.

The square-root and the 4th-root kernel formulation results are first compared to

the results obtained with the standard conformation tensor formulation for the flow

case Reτ0 = 180, L = 30 and Wiτ0 = 50. The value for the artificial diffusivity (Dα)

varies between 1.4 to 5.6, leading to relative drag reduction from 11.6% up to 28.5% as
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summarised in Tab. 3.3.

Case Dα DR%

standard 5.6 28.5

square-root
5.6 14.1
2.8 17.9

kernel (k = 2)
5.6 14.0
2.8 17.5

kernel (k = 4) 1.4 11.6

Table 3.3 – Relation between artificial diffusivity and relative drag reduction for cases at
Reτ0 = 180, L = 30, Wiτ0 = 50.

It is noteworthy that, with the same amount of artificial diffusivity, the relative

drag reduction for the square-root formulation and kernel transformation (with k = 2)

converge to the same value of 14%. This value is, however, approximately half of the

relative reduction obtained with the standard conformation tensor formulation.

Figure 3.6 compares the cross-channel profiles of the mean stream-wise velocity

(3.6a) and shear component of the Reynolds stress tensor (3.6b) for the new formulations

with the results of the database [105] (black solid line) for the flow cases in Tab. 3.3.
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Figure 3.6 – Profiles of the mean velocity and shear component of the Reynolds stress
tensor in wall-units for several transformations of the conformation tensor and for

different values of stress diffusion. (Reτ0 = 180, L = 30, Wiτ0 = 50)

Note that the velocity profiles (Fig. 3.6a) with any of the tested transformations

present good agreement with the standard results in the viscous sublayer (0 < y+ < 5)

but considerably underestimate the profile in the log-law region (y+ > 30) and within

the buffer layer (5 < y+ < 30). Also, as predicted by Afonso, Pinho, and Alves [34], the

kernel rootk transformation with k = 2 is equivalent to the square-root transformation.
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The results suggest that, for a given k, the lower the stress diffusivity is, the closer

to the standard conformation formulation the results are. Tab. 3.3 shows that the

square-root and the kernel transformation underestimate the relative drag reduction

up to a factor 2. The closest result obtained is for the square-root formulation and the

root-k=2: 17% vs 28% drag reduction.

Regarding the shear component of the Reynolds stress (R+
xy = 〈u′v′+〉, Fig. 3.6b),

the standard formulation predicts a peak value (of ≈ 0.6) at y+ ≈ 40. It is known that

drag reduction occurs when turbulent energy is suppressed and stored by the polymer,

leading to a decrease of the shear component compared to the Newtonian flow. Results

presented here remain between those of the Newtonian and the standard formulation.

Moreover, for the present cases, the peak is higher (≈ 0.65) than the one obtained

with the standard formulation, which implies that less energy was subtracted from the

turbulent fluctuations, leading to less drag reduction. Another noteworthy behaviour is

that the peak are located closer to the wall (y+ ≈ 30) for the present results.

The underestimation of the relative drag reduction is corroborated from the view-

point of polymer stretch. Figure 3.7 shows the distribution of the non-null components

of the normalised conformation tensor for the same flow cases.

The time-averaged polymer stretch in the stream-wise direction, 〈cxx〉 /L2 (Fig. 3.7a),

achieves a value close to 0.55 near the wall for all cases. The benchmark result from

the standard formulation shows a peak in the buffer layer at y+ ≈ 10 and decreases as

it approaches the middle of the channel. The present results, however, do not have

this peak and decrease monotonically from the viscous sublayer towards the channel

centreline.

The values of the wall-normal component,
〈
cyy

〉
/L2 (Fig. 3.7b), are very close to zero

in the viscous sublayer, indicating very weak polymer stretch in this direction. In the

buffer layer, there is a transition region with increased stretching and a peak is reached

in the log-law region around y+ = 90. Here, the results obtained with the transformed

formulations do reproduce the peak. However, its magnitude is lower by up to 50%

for the kernel case with k = 4 and Dk = 1.4. Furthermore, the peak is slightly moved

towards the wall.

The span-wise component of the conformation tensor, 〈czz〉 /L2 (Fig. 3.7c), behaves

similarly to the wall-normal component. The main difference is that the relative stretch

is slightly higher in this direction.

Finally, the shear component of the conformation tensor,
〈
cxy

〉
/L2 (Fig. 3.7d) presents

a non-zero value at the wall. It has a maximum around y+ ≈ 20 and , goes towards

zero at the middle of the channel, and has a peak around y+ = 20. Once again, the

results obtained with the square-root and the kernel transformations underestimate the

polymer stretch regardless of the artificial diffusivity used.

The common feature of reduced polymer stretching corroborates the physical trends
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Figure 3.7 – Profiles of the mean non-null components of the conformation tensor in
wall-units by means of several transformations applied to it. (Reτ0 = 180, L = 30,

Wiτ0 = 50)

in the results of Fig. 3.6. These results also suggest that decreasing the amount of stress

diffusivity improves the prediction of the transformed formulations.

However, decreasing stress diffusivity is only possible to a certain value beyond

which the simulations start to breakdown. After close inspection, one sees that the

breakdown occurs shortly after unbounded values fo the conformation tensor compo-

nents appear (tr(c)� L2). Unbounded values of the conformation tensor are due to a

change of sign in the restoring elastic force of the polymer [26].

This phenomenon never appears with the standard formulation of the conforma-

tion tensor. It looks like that enforcing the SPD property of the conformation tensor

promotes its tendency to become unbounded.

Simulations for other three different levels of elasticity have been performed by

varying the two viscoelastic parameters of the FENE-P model (L = 30 and 100, and

Wiτ0 = 50 and 115). A summary of the parameters explored is presented in Tab. 3.4
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together with the respective artificial diffusivity and relative drag reduction obtained.

For these new simulations, only the square-root formulation was considered.

L Wiτ0
Standard formulation Square-root formulation
Dc DR% Db DR%

30 50 5.6 28.5 2.8 17.9
30 115 5.6 38.4 2.8 29.0

100 50 5.6 47.0 3.9 27.0
100 115 5.6 62.3 4.5 48.5

Table 3.4 – Comparison of relative drag reduction as a function of elasticity levels for
the standard and square-root transformations.

With the standard formulation with an artificial diffusivity Dc = 5.6, four different

levels of relative drag reduction are achieved from 28 to 62 %. However, when using

the square-root formulation, the smallest artificial diffusion achieved leads to drag

reduction levels from 18 to 48 %. Drag reduction percentages are from approximately 22

to 42 % lower than the corresponding values with the standard formulation. Hence, the

tendency observed seems quite general irrespectively of the flow elasticity conditions.

A summary of the results is plotted in Fig. 3.8 which reproduces the profiles of the

trace of the mean conformation tensor for the standard and square-root formulations.
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Figure 3.8 – Mean trace of the conformation tensor in wall-units obtained with the
standard (solid lines) and the square-root (open symbols) formulations for several

elasticity levels.

Similarly to the trend in Fig. 3.7a, the trace of the conformation tensor calculated

by means of the standard formulation presents a local maximum located in the buffer

layer. The magnitude of the maxima depends on the level of elasticity. In contrast,

the square-root formulation result show no trace of local maxima, with the notable

exception of the flow case (L = 30,Wiτ0 = 50) for which maximum polymer stretch does

not show up at the wall, but near y+ ≈ 10.
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3.4 Concluding remarks

The performance of different transformations applied to the conformation tensor was

evaluated for turbulent viscoelastic channel flows. The square-root formulation and

the root-type kernel transformation were first tested without success in their original

forms, i.e. without any stress diffusion.

Artificial stress diffusion was then added to the constitutive equations following two

approaches: either the diffusion term was added to the original conformation tensor

equation and then transformed (“a priori approach”), or a term proportional to the

Laplacian of the transformed conformation tensor was added directly to its transformed

evolution equation (“a posteriori approach”). Validation tests for laminar channel flow

indicate that the “a posteriori approach” is more appropriate, but it rapidly diverges in

turbulent flows due to the occurrence of unbounded values in the conformation tensor.

The transformations applied to the conformation tensor do preserve its positiveness,

but the inclusion of a stress diffusion term was found to be also necessary to help

stabilising the code. Even guaranteeing the positiveness of the conformation tensor, its

boundedness is not unconditionally preserved. Although better results are obtained

when decreasing the artificial diffusivity, the smallest value which can be used in

practice led to underestimation of polymer stretching, and thus of the relative drag

reduction.

From inspection of Fig. 3.3b, we can see that, in laminar flows, the “a posteriori
approach” leads to the cyy component of the conformation tensor being incorrectly

predicted towards the channel centreline. For Dα = 10−3, the peak is even transformed

in a trough at the centreline. At this very high level of stress diffusivity, the diffusion

coefficient in the constitutive equation is Dα/Reh ∼ 10−3/10 ∼ 10−4.

For the turbulent flows, the diffusion coefficient isDα/Reh ∼ (3 to 5)/(3000 to 4000) ∼
10−3. Although the laminar and turbulent shear flows are different in nature (〈cyy〉and〈czz〉
are not maximum at the channel centreline in turbulent flows), this could lead to believe

that the square-root formulation underpredicts the local maxima in the conformation

tensor field owing to this high level of stress diffusion.

However, in the standard conformation tensor approach, the stress diffusion coef-

ficient is of the same order, e.g. Dα/Reh ∼ 10−3, and the standard conformation does

not underpredict stretching. The real cause of the polymer stretch underestimation

must therefore lie on the constraint of the positive definiteness which however has a

theoretical foundation.

The limiting value under which simulations rapidly diverge due to unbounded

values for the conformation tensor varies from formulation to formulation. In particu-

lar, for the root-type kernel transformation, polymer stretching underestimation is a

growing function of k. Without any other treatment, the limiting artificial diffusivity
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may lead to underestimations up to ≈ 50% in terms of relative drag reduction.

Basically, the loss of positiveness and boundedness of the conformation tensor can be

tackled in two ways. If the accuracy of the numerical method is prioritised, spectral or

high-order schemes are used, and the addition of artificial diffusion is crucial to achieve

stability. This can be seen as a physical disadvantage, since the polymer dumbbell

models do not include diffusion at the scales simulated even by DNS. On the other

hand, if the physics of the dumbbell model is prioritised, one has to use flux limiter

schemes with typically lower spatial resolution.
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Chapter4
Flow classification, vortex identification

and the role of objectivity

4.1 Introduction

In Fluid Mechanics, its is usual to deal with complex flows exhibiting different kinds

of motion that are time and space dependent. These motions can include extension,

rotation, shear, stagnation, and in some cases, combinations of them. The proper

identification and localisation of theses motions may contribute to the understanding

of several phenomena. For instance, extensional motion is relevant in the context

of non-Newtonian instabilities and drag reduction by the addition of polymers in a

Newtonian solvent. Regarding rotation, many applications are also related, such as

combustion, mixture, mass and heat transfer, hydro- and aerodynamic drag. Together

with rotation, a central concept in Fluid Mechanics appears: the vortex.

The idea of vortices is very old and has been used to explain different phenomena for

a long time. Despite of the large use of such concept and the tremendous advances in

Fluid Mechanics over the years, a consensual definition for a vortex is still lacking. As a

matter of fact, the discussion in the literature usually gravitates around the appropriate

physical and mathematical foundations to identify vortices.

Some authors defend that vortices should be defined in a Lagrangian framework,

meaning that vortical regions can be identified by the features of a particle’s trajectory

within the flow. On the other hand, there are others who claim that vortices can be

thought as consequence of the field of flow entities, which corresponds to an Eulerian

approach.

Another point of discussion is whether a vortex should be identified using dynamic

or kinematic entities. For those defending the former, interacting forces that change the

flow kinematics are directly connected to vortices, while for the latter, the velocity field

solely must be used to identify vortical regions.
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The invariance with respect to changes of frames is also a non-consensual feature

regarding the definition of a vortex. Some argue that the definition should be invariant

when calculated in any two reference frames moving at constant relative rectilinear

velocity, thus characterising a Galilean invariance. In contrast, some claim in favour of

objectivity or Euclidean invariance, i.e. the idea that a criterion should be invariant to

arbitrary changes of frames (translation and rotation).

Moreover, another cause of dissension is the fact that some criteria need a threshold

value that is user-defined, rendering to the vortex identification a subjective decision

on what value would be more adequate to classify each flow. On the other hand, some

criteria do not depend on the flow or on user-defined thresholds, being ready to classify

any flow regardless of the user.

In order to understand the evolution of the controversies on the definition for a

vortex, the main flow classification criteria will be presented and commented in the

following.

4.2 Vortex: from concept to definition

Despite the obscurity regarding the definition of a vortex, it is common to express

turbulent motions as a tangle of interacting vortices that evolve in time [106]. This

spatial and time evolution of vortices is usually referred to as vortex dynamics.

In this connection, it was found that turbulent flows are generally filled with regions

characterised by ordered vortical motions named coherent structures [107–109]. The

interaction between such structures and the turbulent flow is of interest, not only

because of the promising better understanding of the turbulence phenomenon, but also

due to the possibility of modelling and controlling it more accurately.

In this sense, flow visualisation has been a very important tool. Both experiments

and DNS have been providing elucidating information on vortex dynamics. In the case

of experiments, the use of tracers combined with image techniques can provide the

velocity field or the streamlines of the flow. These informations are treated to provide

statistics and correlations that contribute to the understanding of turbulent phenomena.

In the numerical approach, the entire field of any solved variables is available for a

given flow. Its space and time resolution depend on the choice of discretisation schemes.

The concept of a vortex may be quite intuitive, mainly due to the swirling motions

observed with the aid of flow visualisation. However, from the first attempts to propose

a solid definition for a vortex until our days, the difficulties to do it persist and have

been pointed out and discussed.

This intuitive relation between vortices and swirl motion lead to three elementary

ways to identify vortical structures. The first definitions for vortices related the presence

of vortex cores to closed or spiral streamlines, vorticity extrema, or local pressure
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minima.

The idea of relating closed or spiral streamlines with vortices is primitive but

very reasonable as a first approach. Nevertheless, as pointed out by Lugt [110], a

quick counterargument appears concerning the transient features of vortices. Because

streamlines are obtained from instantaneous fields, the referred author advocates

the use of pathlines (time-integrated paths) as a more suitable approach. For him, a

vortex is constituted by “any mass of fluid moving around a common axis”, and this

is mathematically represented by closed or spiral streamlines in a reference frame for

which the flow field is steady. This definition is however non-invariant to Galilean or

Euclidean transformations, as stated by the author himself and criticised by Jeong and

Hussain [38].

Inspired by the concept of closed streamlines, another common argument to define a

vortex is to associate it with a local pressure minimum. Jeong and Hussain [38] explain

that pressure may balance the centrifugal force in swirling motions, leading to local

minimum on the axis of an eddy. However, according to them, this reasoning is only

valid in steady inviscid planar flow. The authors also present an example where the

simple consideration of pressure minimum identifies a vortex core in a flow with no

swirl. Despite the inadequacy of the direct application of this idea, it has been inspiring

for some of the most used flow classification criteria such as the Q-criterion [36] and

the λ2-criterion [38], as detailed further on.

Vorticity is also commonly used to visualise vortical structures. Vorticity lines were

already used, for instance, in the context of isotropic turbulence [111] and turbulent

channel flow [112]. Regions with vorticity extrema are widely used in the literature to

identify vortices (e.g. [113–118]). Even though most of the work using the magnitude

of vorticity date from the 1980’s, more recent work suggests to look to this entity again

but from new perspectives [119, 120].

4.2.1 Some important definitions

Before presenting some definitions for a vortex, let us define some relevant flow entities.

As commented above, the first ideas behind a vortex were closely related to its visuali-

sation. When translating this idea of flow visualisation into mathematical entities, it is

very common to deal with the velocity gradient tensor, ∇u.

In the literature, one can find two different ways to define the velocity gradient. To

avoid any misunderstanding in the present work, we define the entries of the velocity

gradient tensor and its transpose, L, as follows,

∇uij = LTij =
∂uj
∂xi

ei ⊗ ej and ∇uTij = Lij =
∂ui
∂xj

ei ⊗ ej . (4.1)
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At this point, it is important to remark that, even though the symbolic representa-

tion is always respected, the expression “velocity gradient tensor” may be used here

interchangeably for ∇u and L.

Next, we remind that the velocity gradient tensor can be decomposed into a symmet-

ric part, D = (L+LT )/2, representing the rate-of-strain tensor, and a skew-symmetric

part, W = (L−LT )/2, which represents the rate-of-rotation (or vorticity) tensor.

Another important quantity is the vorticity vector, ω, which is defined as half of the

curl of the velocity vector (ω = 1
2∇×u). It has a close relation to the (skew-symmetric)

rate-of-rotation tensor, W , which can be expressed as function of the components of

the vorticity vector, yielding

W =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4.2)

4.2.2 Hyperbolic, parabolic and elliptic modes in fluid motion

Weiss [121] introduced the concept of hyperbolicity and ellipcity in the context of fluid

motion. According to the author, the fluid is in a hyperbolic mode when the magnitude

of the strain rate exceeds that of the rotation rate. Contrarily, where the rotation rate

dominates the strain rate, the fluid is in an elliptic mode of motion. Haller [122] states

that the intersection between these two regions can be called parabolic domain, in which

the magnitude of the strain and rotation rates are in equilibrium.

These definition being presented, let us show now some of the relevant flow classifi-

cation criteria available in the literature and a brief idea of the basis in which they were

conceived.

4.3 Definitions for a vortex

4.3.1 The criterion by Hunt, Wray, and Moin [36]

Hunt, Wray, and Moin [36] aimed to classify different flow zones in the context of

turbulent flows. They defined eddy zones, convergence zones, and streaming zones.

The first one contains regions of a local pressure minimum (where the pressure is

smaller than a threshold value) and where the magnitude of the rate-of-rotation tensor

is greater than the magnitude of the strain-rate tensor, characterising thus vortical

motions. The second one represents regions dominated by irrotational strain and

diverging/converging streamlines, usually containing stagnation points. The latter

zone is characterised by relative fast motion without diverging/converging or curved

streamlines.
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Let us focus here in what the authors called eddy zones. The relation between the

magnitude of the rotation-rate and strain-rate tensors was expressed by the authors in

terms of the second invariant, Q, of the velocity gradient, as follows

Q =
1
2

[
(tr(∇u))2 − tr(∇u ·∇u)

]
=

1
2

(
||W ||2 − ||D||2

)
, (4.3)

where ||A|| =
√

tr(A ·AT ) is the Euclidean (or Frobenius) norm of a generic tensor A.

The dominance of the rotation rate with respect to the strain rate is thus mathemati-

cally expressed as

Q =
1
2

(
||W ||2 − ||D||2

)
> 0 . (4.4)

Originally, according to Hunt, Wray, and Moin [36], the eddy zones corresponded to

regions enjoying the criterion in Eq. (4.4) and being at a local pressure minimum spot.

However, in practice, this latter condition has been neglected by most users.

It is important to remark here that a similar measure was proposed before by

Truesdell [123]. The author introduced what he called kinematic vorticity number,

defined as

Nk =
||W ||
||D||

, (4.5)

and states that Nk =∞ corresponds to a rigid-body rotation, while Nk = 0 corresponds

to non-rigid irrotational motion.

Finally, it is easy to note thatQ > 0 is equivalent toNk > 1. Thus, both theQ-criterion

and Truesdell’s kinematic vorticity number provide a measure of the local competition

between the magnitude of the strain-rate and rotation-rate tensors.

4.3.2 The criterion by Chong, Perry, and Cantwell [37]

Chong, Perry, and Cantwell [37] presented a topological classification of solution trajec-

tories for a three-dimensional system of first-order equations using matrix invariants

(study initiated in a previous work [124]). They used the velocity field, u, and its associ-

ated gradient tensor, ∇u, to identify different flow patterns according to the features of

the characteristic equation for ∇u, which can be written as

λ3 − P λ2 +Qλ−R = 0 , (4.6)

where P , Q and R are respectively the first, second and third invariants of ∇u. The first

invariant, P , is the trace of ∇u, while the third invariant, R, is its determinant. The roots

of Eq. (4.6) are the eigenvalues of the velocity gradient tensor.
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Let us now define the discriminant, D∇u, of Eq. (4.6) as

D∇u = P 2Q2 − 4Q3 − 4P 3R− 27R2 + 18PQR . (4.7)

The characteristic equation (4.6) can have three classes of solutions, depending on

the sign of its discriminant, D∇u: (i) three distinct real roots (if D∇u > 0); (ii) three real

roots with at least two being equal (if D∇u = 0); and (iii) one real root and a conjugate

pair of complex roots (if D∇u < 0).

Let us now define

δ = −D∇u = −P 2Q2 + 4Q3 + 4P 3R+ 27R2 − 18PQR . (4.8)

Then, conditions (i) and (iii) above are equivalent to δ < 0 and δ > 0, respectively.

Note that, for incompressible flows, which is a usual condition regarding the appli-

cation of the criterion of Chong, Perry, and Cantwell [37], P = tr(∇u) = 0 and Eq. (4.8)

becomes

δ = 4Q3 + 27R2 . (4.9)

Under irrotational flow, the eigenvalues of the velocity gradient tensor are real and

distinct (type (i), δ < 0). When the vorticity is large enough, the nature of the eigenvalues

of the velocity gradient tensor is of type (iii) (δ > 0). According to Chong, Perry, and

Cantwell [37], where the velocity gradient tensor presents complex eigenvalues, the

velocity is associated to a swirling-like flow, revealing thus a vortex core. Thus, these

regions can be identified by the relation

δ = 4Q3 + 27R2 > 0 or ∆ =
δ

108
=

(Q
3

)3
+
(R

2

)2
> 0 . (4.10)

It important to remark that, theses closed or spiral streamlines are observed in a

reference frame moving with the same velocity as the vortex core, which characterises a

Galilean invariance.

4.3.3 The criterion by Jeong and Hussain [38]

Jeong and Hussain [38] claim that pressure minimum by itself is not a strong criterion

for detecting vortices, even though it provides a promising rationale. They present

counterarguments showing how pressure minima can misinterpret the identification

of vortex cores due to unsteady rate of strain or viscous effects. Even so, the basis of

their criterion is the local pressure minimum in a plane defined by the axis of a vortex

core. The authors propose thus to look to the pressure Hessian, He(p) = ∇∇(p), which

contains the necessary conditions for the pressure to be minimum.
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Let us take the (scaled) Navier-Stokes equation

∂u
∂t

+u ·∇u = −∇p+
1
Reh

∆u . (4.11)

The equation for the pressure Hessian rises from taking the gradient of Eq. (4.11),

which yields

∇
(
∂u
∂t

)
+∇ (u ·∇u) = ∇ (−∇p) +∇

(
1
Reh

∆u

)
. (4.12)

This equation can be rewritten as

∂∇u
∂t

+u · ∇ (∇u) +∇u · ∇u = −He(p) +
1
Reh

∆∇u . (4.13)

The velocity gradient tensor in Equation (4.13) can be decomposed into symmetric

and antisymmetric parts, yielding

∂(D −W )
∂t

+u · ∇ (D −W ) + (D −W ) · (D −W ) = −He(p) +
1
Reh

∆ (D −W ) . (4.14)

The antisymmetric part of Eq. (4.14) is related to the evolution equation for vorticity

and reads
DW
Dt

+DW +WD =
1
Reh

∆W , (4.15)

whereas its symmetric part represents the evolution of the strain rate, which reads

DD
Dt

+D2 +W 2 = −He(p) +
1
Reh

∆D , (4.16)

where D()/Dt = ∂()/∂t +u · ∇() is the material derivative operator.

As commented above, Jeong and Hussain [38] advocate the inadequacy of the local

pressure minimum to identify a vortex. They present two arguments for that:

• Transient effects of the strain field may lead to local pressure minima, even if the

flow has no vorticity. The authors present an analytical example where it occurs

(see Section 2.1 in [38]);

• Under some conditions, viscous effects may balance the pressure gradient so that

vortices occur in the absence of a local pressure minimum.

Because of these flaws – and despite the fact that they happen under specific condi-

tions –, the authors generalise such inadequacy and claim that discarding the unsteady

and viscous terms in Eq. (4.16) would lead to “a better indicator for the existence of

a vortex”. Therefore, they postulate to discount from the pressure Hessian the contri-

butions of that two terms, leading to a “modified” pressure Hessian expressed by the
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relation

D2 +W 2 = −He(p) , (4.17)

i.e. the modified pressure Hessian can be computed in kinematic terms.

A local pressure minimum at the plane of vorticity occurs where the tensor He(p)

presents (at least) two positive eigenvalues. Considering Eq. (4.17), this condition is

equivalent to regions where the tensor D2 +W 2 presents two negative eigenvalues.

Because D2 +W 2 is symmetric, its eigenvalues are always real. Define λD
2+W 2

1 , λD
2+W 2

2

and λD
2+W 2

3 as the eigenvalues of D2 +W 2, so that λD
2+W 2

1 ≥ λD2+W 2

2 ≥ λD2+W 2

3 . Then,

λD
2+W 2

2 is the eigenvalue that indicates whetherD2+W 2 has two negative eigenvalues or

not. Thus, a local pressure minimum can be identified by the regions where λD
2+W 2

2 < 0.

It is important to remark though that when a user of the λ2-criterion calculates

the intermediate eigenvalue of D2 +W 2, by the balance of Eq. (4.16), it is not possible

to drop the eventual contributions of the unsteady and viscous terms added to the

pressure Hessian.

Finally, the authors relate their λ2-criterion to the Q-criterion [36] as follows

Q = −1
2

tr(D2 +W 2) , (4.18)

and show that, for planar flows, the criteria Q, ∆, and λ2 are equivalent.

It is worth noting that the λ2-criterion is in fact based on dynamical aspects, albeit

expressed as a function of kinematic entities. Moreover, this criterion is Eulerian,

Galilean-invariant and its threshold parameter is not user-defined.

4.3.4 The criterion by Kida and Miura [125]

Kida and Miura [125] follow the rationale by Jeong and Hussain [38], but with the

addition of a swirl condition together with the pressure minimum location. They use

the eigenvector associated with the smallest eigenvalue of the pressure Hessian to define

a plane in which the velocity gradient is projected. Besides a pressure minimum, their

criterion requires that the projected rotation rate overcomes the projected strain rate

for a region to be considered a vortex core.

4.3.5 The criterion by Zhou et al. [39]

Inspired by the the ∆-criterion [37], the so-called λci-criterion also associates complex

eigenvalues of the velocity gradient tensor to vortices. The complex conjugate pair of

eigenvalues may be written as λcr ± iλci , with λcr and λci being its real and imaginary

parts, respectively. Zhou et al. [39] consider the imaginary part of the complex eigenval-

ues of the velocity gradient as a measure of swirl strength. The criterion is then defined
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as

λ2
ci > δ , (4.19)

where δ is a user-defined threshold parameter usually given as a percentage of the

maximum λ2
ci .

4.3.6 The criterion by Cucitore, Quadrio, and Baron [126]

Until this point, all vortex identification criteria were conceived in a point-wise ap-

proach, i.e. the criteria are locally calculated point by point. Cucitore, Quadrio, and

Baron [126] pointed out that most of these criteria privilege specific directions, usu-

ally associated with the vortex axis (e.g. ∆-criterion [37] and λ2-criterion [38]). They

claim that, due to the differences in the definitions of each criteria, these directions are

generally different at any point inside a vortical structure.

In this connection, the authors came up with a non-local criterion based on the

idea that the relative distance between two particles inside a vortex should not vary

significantly. Their criterion basically “measures the tendency of two particles in the

flow to remain near each other” in a Galilean-invariant basis. This measure is given by

the following quantity

R(x, t) =
|
∫ t

0
ua(τ)dτ | − |

∫ t
0
ub(τ)dτ |∫ t

0
|ua(τ)−ub(τ)|dτ

, (4.20)

where ua and ub are the respective velocities of two particles a and b in a flow.

The quantity R(x, t) has values from 0 to 1. According to the authors, the two

analysed particles are within a vortical region when the inferior limit is approached.

The upper limit indicates that one particle or the pair of particles is out of a vortical

region.

4.3.7 The criterion by Chakraborty, Balachandar, and Adrian [127]

Chakraborty, Balachandar, and Adrian [127] introduced an additional condition to the

λci-criterion [39] in order to take into account small relative dispersion within vortex

cores, just as required by Cucitore, Quadrio, and Baron [126]. However, they propose a

local Eulerian approximation of the non-local Lagrangian quantity by Cucitore, Quadrio,

and Baron [126]. This is done by introducing what they call inverse spiralling compactness,
which is defined as the ratio λcr /λci , a measurer of the range of the local spiralling

motion.

The authors propose then the following criteria

λci ≥ ε , (4.21)
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and

λcr /λci ≤ δ , (4.22)

where ε and δ are user-defined thresholds. The authors explain that a λcr /λci-vortex is

the intersection region between conditions in Eqs. (4.21) and (4.22).

4.3.8 The criterion by Haller [122]

A non-local objective Lagragian/Eulerian criterion was proposed by Haller [122]. Ac-

cording to the author, a vortex is an ensemble of trajectories that persistently defy the

trend imposed by the instantaneous strain rate tensor. This defiance is measured with

the aid of tensor M , the covariant convected time derivative of the strain rate tensor, D,

which reads

M = Ḋ +DL+LTD . (4.23)

Haller [122] also defines the elliptical cone, Z, that appears as the limiting region

between the action of a material filament to corroborate or defy (in a certain sense)

the tendency of straining suggested by D. This is valid for incompressible flows with

non-null determinant of D. The cone Z in the basis of the eigenvectors of D, eDi (with

i = 1,2,3), associated to its eigenvalues, λDi (with i = 1,2,3 and λD1 > λ
D
2 > λ

D
3 ), is given

by

η2
3 = aη2

1 + (1− a)η2
2 , (4.24)

in which a is the ratio between λD1 and λD3 , and η = η1e
D
1 + η2e

D
2 + η3e

D
3 is a material

filament1.

It turns out that, at a generic point, the tensor MZ , the restriction of M to Z, can

be either positive definite or indefinite2. According to Haller [122], regions where MZ

is positive definite corroborate with the positive strain tendency and are considered

hyperbolic. When MZ is indefinite, the tendency imposed by the strain rate is defied by

its objective material derivative M , characterising a vortex core (elliptic region).

4.3.9 The criterion by Zhang and Choudhury [128]

A Galilean-invariant criterion conceived for compressible flows was proposed by Zhang

and Choudhury [128]. It is based on the helicity density, He, defined as

He = nswirl ·ω , (4.25)

1Material filaments are straight lines of infinitesimal size in the fluid that can rotate, stretch, compress,
but not bend.

2Very briefly, for the present purpose, one can think of positive definite tensors as tensors whose
all eigenvalues are positive, and indefinite tensors as tensors presenting both positive and negative
eigenvalues.
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where nswirl = − i2(e1 × e2), where e1 and e2 are the eigenvectors corresponding to the

conjugate complex eigenvalues of ∇u.

4.3.10 The criteria by Thompson [40]

Following Haller [122], Thompson [40] adds more consistent physical meaning to the

role played by the covariant strain acceleration tensor,M , proposing a (non-)persistence-

of-straining criterion based on this entity.

He adopts a decomposition of the covariant strain acceleration tensor, M ≡
4
D (where

the triangle indicates the covariant convected time derivative), with respect to the strain

rate tensor,D, as proposed by Thompson [129]. This decomposition splits tensorM into

two additive parts: one that is in-phase with D, φDM , and another one that is out-of-phase
with D, φ̃DM . These tensors are defined as

φDM = IDD :M ; φ̃DM =
(
Iδδ − IDD

)
:M , (4.26)

where the symbol “:” accounts for the double dot product and IDD is a fourth order

tensor given by

IDD =
3∑
i=1

eDi e
D
i e

D
i e

D
i , (4.27)

where eDi is an eigenvector of D and Iδδ is the fourth order identity tensor.

In this sense, tensor M can be completely in-phase with the eigenvectors of D,

meaning that it corroborates the tendency imposed by D. On the other extreme, if M is

totally out-of-phase with respect to D, it defies the tendency of D.

Aligned with the concepts presented by Haller [122], Thompson and co-workers [40,

130] define a vortex as regions where the strain acceleration, M , defies the tendency

suggested by D. This defiance is measured by the following normalised ratio

Nφ = 1− 2
π

cos−1


∣∣∣∣∣∣φDM ∣∣∣∣∣∣
||M ||

 . (4.28)

In fact, the ratio Nφ is an indicator of how the tensor M corroborates with the tendency

dictated by D. Thus, Nφ = 0 represents rigid-body rotation, while Nφ = 1 is the limit of

totally strain persistent flow.

Thompson [40] argues that because Nφ measures a competition between M and

D, it may be interesting to analyse that from an anisotropic viewpoint. Therefore, the

author proposes two indicators of directional information. The first one, called “line”
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anisotropic ratio, is defined as follow

Nl k = 1− 2
π

cos−1
(

[M]kk [M]kk

[MM]kk

)
, (4.29)

where [M]kk is an element of the diagonal of tensor M (terms of M which are in-
phase with D), and [MM]kk is an element of the principal diagonal of tensor M2. The

quantities Nl k measure how the strain acceleration, M , defies the tendency imposed by

the strain rate, D, by comparing each diagonal component of M to the other positions

of their respective line.

The second indicator is called “surface” anisotropic ratio, because it compares the

relevance of diagonal components with respect to off-diagonal components of sub-

matrices representing the projection of M in planes defined by eigenvectors of D. This

is done by the following relation

Nsk = 1− 2
π

cos−1


(
MD

ii −M
D
jj

)2

∆Mk

 , (4.30)

where ∆Mk
is the determinant of the sub-matrix Mk, the projection of tensor M on the

plane defined by the kth-eigenvalue of D. The sub-matrix Mk is obtained by the linear

operation Mk = ψ̃k :M , with ψ̃k being a fourth-order tensor given by

ψ̃k = eDi e
D
i e

D
i e

D
i + eDi e

D
j e

D
j e

D
i + eDj e

D
i e

D
i e

D
j + eDj e

D
j e

D
j e

D
i . (4.31)

The isotropic ratio, Nφ, and both line and surface anisotropic ratios, Nl and Ns, are

normalised so that elliptic modes correspond to values from 0 to less than 0.5 and

hyperbolic modes correspond to values greater than 0.5 and less than or equal to 1. The

limit of 0.5 indicates a parabolic mode.

Both Nl and Ns components are rearranged so that Nl1 ≥Nl2 ≥Nl3 and Ns1 ≥Ns2 ≥
Ns3. Thus, when evaluating, for example, a vortical region, one may chose either a more

relaxed condition (Nl3 or Ns3 < 0.5) that identifies regions where at least one direction

is swirl-dominated, or a conservative condition (Nl1 or Ns1 < 0.5) for which the three

directions concerned with the anisotropic ratios have to indicate elliptical dominance.

4.4 Some relevant remarks

At this point, some important remarks can be done considering the definitions for a

vortex presented so far and concepts they bring with.
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4.4.1 Solid foundations for a flow classification criterion as stated

by Astarita [131]

According to Astarita [131], a solid flow classification criterion should be

1. local – calculated point-wise in the flow;

2. objective – invariant to Euclidean transformations (arbitrary changes of reference

frame); and

3. general – applicable to every kind of flow without any restriction.

Furthermore, a criterion enjoying the three conditions above should belong to one of

the following two types:

• purely kinematic – which does not consider materials’ properties; or

• function of kinematics and material’s rheological parameters.

This proposition seems very reasonable for flow classification. Regarding the local
condition, it is quite common, specially in turbulent flows, to deal with flows containing

different regions in which extensional or swirling motions dominate one over another.

It is interesting then to properly identify and locate each region.

The invariance to arbitrary changes in the reference frame appears to be fair. In the

context of vortex identification, for instance, if an objective criterion were used, any
observer would conclude that a given region presents a vortical motion. This issue will

be detailed below (see Section 4.5 and Chapter 6).

Astarita [131] also states that a criterion that is “applicable to only a restricted class

of flow fields is of little utility”, and therefore pleads for general applicability. For

example, some criteria are restricted to incompressible flows. Other authors also defend

this idea, as we will see further on (see Section 4.4.3).

Regarding the issue of whether a criterion should be purely kinematic or combine

kinematics with rheological information of the fluid, it may be more interesting in other

contexts than Newtonian fluids, such as non-Newtonian or magneto-sensitive fluids

(see more comments in Section 4.4.3 and Chapter 5 below).

4.4.2 A special look at the rate of strain

The most intuitive ideas of a vortex rely on the velocity gradient, which can be decom-

posed in a symmetric part (D) related to strain and a skew-symmetric part (W ) related

to rotation. Since there is also a strong relation between vortical motion and rotation,

the rate-of-rotation tensor was considerably explored throughout the years.
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Nevertheless, as pointed out by Thompson [40], more recent works seem to reveal

a remarkable aspect regarding vortex identification: the tendency of relating in some

manner the identification of vortices to the evolution of the rate-of-strain tensor.

This tensor and its eigenbasis have been considered since the appearance of ob-

jective criteria, as commented in Section 4.5 below. However, even in some cases in

which objectivity is not aimed, definitions for a vortex that are function of the strain

acceleration tensor may appear.

Jeong and Hussain [38] were trying to define vortical structures based on pressure

minima. This information was contained in the pressure Hessian, which in turn is

obtained by taking the gradient of the momentum balance equation (Navier-Stokes equa-

tion for a Newtonian fluid). Interestingly, even though seeking for vortical structures,

the authors drop the skew-symmetric part of the resulting equation, which represents

the evolution equation for vorticity, to find their needs in the evolution equation for the

strain-rate tensor.

Moreover, the works by Klein, Hua, and Lapeyre [132], Haller [122], and Thompson

[40] all use a certain objective time derivative of the strain rate tensor to evaluate the

flow. In particular, regarding the work by Klein, Hua, and Lapeyre [132], objectivity

was not intended, but naturally appeared, contrary to Thompson [40] and Haller [122],

who were seeking objective flow classification criteria.

In short, when looking for ways to identify a vortical motion, the strain rate tensor

has been repeatedly considered, through its evolution equation, its time derivative

(acceleration strain) or through its eigenbasis.

4.4.3 Applicability of the criteria

As commented above, one of the guidelines provided by Astarita [131] for a solid flow

classification is that it should be ruled by a generally applicable criterion. In fact, maybe

one can think of that appeal as an invitation to look to the extension of Fluid Mechanics

and try to reach the greatest amount of sub-areas as possible in terms of application.

Needless to say, it may not be trivial, but it does make sense if one thinks on some

important class of flows that deserve special attention in Fluid Mechanics.

After Astarita [131], some authors defended specific causes. For example, Cuci-

tore, Quadrio, and Baron [126] advocate the extension of flow classification criteria to

compressible flows. In addition to their new criterion, the authors propose a modified

version of the λ2-criterion [38] that takes into account compressibility effects.

Further, Zhang and Choudhury [128] present a criterion based on the eigen analysis

of the velocity gradient tensor that is usable under compressibility effects. They also

conclude that the λ2-criterion [38] fails to identify vortices in compressible flows, and

other classic criteria (such as Q [36], ∆ [37], vorticity magnitude) present only partial
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success.

More recently, Kolář [119, 133] reinforced the importance of the applicability of

flow classification criteria to compressible flows, arguing that “the effect of compress-

ibility plays an important role in many interesting problems, including the bifurcation,

stability, and breakdown of compressible swirling flows” (e.g. [134, 135]). The author

states that among the most popular criteria (Q [36], ∆ [37], λ2 [38], λci [39]), only the

criteria ∆ [37] and λci [39] are extendible to compressible flows. Moreover, Kolář [133]

affirms that the MZ-criterion by Haller [122] is limited to incompressible flows.

In the context of non-Newtonian fluids, it is common to deal with complex flows

exhibiting several kinds of motion. The identification of the regions where these

motions take place is of fundamental importance to the evaluation of non-Newtonian

effects. For example, it is known that in turbulent polymer-induced drag reduction, the

proper identification of vortical structures may lead to a better understanding of the

phenomenon [19, 35, 136–138].

Another field motivating general flow classification criteria is Magnetohydrodynam-

ics. In this context, magnetic fields act directly on the rheology properties of the fluid.

These changes may lead, for instance, to drag reduction and consequent modifications

on vortical structures [139].

4.5 The role of objectivity

The idea of an entity to remain invariant under arbitrary changes of reference frame

(i.e. to be objective or Euclidean-invariant) is largely diffused in Continuum Mechanics.

Regarding Fluid Mechanics though, it seems that objectivity is only well-diffused among

non-Newtonian fluid mechanicists. In fact, objectivity is a required condition for a

constitutive model. On the other hand, this concept is not quite settled in Newtonian

Fluid Mechanics.

In the context of vortex identification, Haller [122] presents a simple example

where Galilean-invariant-only criteria can detect an infinite vortex in one frame and no

vortex in another frame. He concludes that Galilean-invariance is not enough for vortex
identification criteria.

Other arguments for a vortex identification criterion to be objective are pointed out

(or reinforced) by Thompson [40]:

• the reference frame to identify a vortex could be arbitrarily chosen with no

previous need to favour a specific one;

• objective criteria are Galilean-invariant as well;

• objectivity could lead to more appropriate interpretation of results connecting
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vortex dynamics to any objective variable of interest in the flow, such as quality of

mixture, amount of heat or drag reduction.

In this connection, we present bellow a brief historic of objectivity in the context of

flow classification, followed by objective versions of classical criteria.

4.5.1 Persistence-of-straining and effective vorticity

A key concept relevant to the discussion on objectivity is the concept of persistence-

of-straining, introduced by Lumley [86], and applied by several authors [129, 131,

140–142]. Briefly, the persistence-of-straining concept is associated with the capacity of

the flow to persistently stretch a material element.

Figure 4.1 illustrates the concept of persistence-of-straining by depicting two pos-

sible scenarios when a material element that is aligned with an eigenvector of D is

advected by the flow. This material element will rotate under the action of the rotation

rate, W , and stretch following the action of the strain-rate tensor, D.

Figure 4.1 – Schematic representation of the possible scenarios involving the rotation of
a material element with respect to the eigenbasis of the strain-rate tensor.

Suppose the material element is initially aligned with the principal direction of the

strain-rate tensor, D, represented by the first eigenvector, êD1 , associated to the largest

eigenvalue of D, λD1 . In this scenario, this material element is under the strongest

stretch it could be in that point. In a short following moment, after being advected by

the flow, both the direction of the material element and the eigendirections of D may

have changed. Therefore, two further scenarios are possible. In a first scenario, they

can rotate with the same angular velocity, i.e. the angular velocity of the eigenvectors of

D, ΩD, can be equal to the angular velocity of the material element, W . This means
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that the material filament will persist to be strongly stretched. In the second scenario,

ΩD does not coincide with W , and the material element loses the alignment with the

main direction of D, undergoing a stretch relief.

The persistence-of-straining concept leads to a physically consistent perspective of

the motion of a fluid element, and, consequently, to a new point of view regarding flow

classification. In this context, Astarita [131] proposed a criterion based on the relative
rate of rotation, W , defined as

W =W −ΩD , (4.32)

where the tensor ΩD = ėDeD represents the rate of rotation of the eigenvectors of D.

The quantity W , also called effective rotation [143] or absolute rotation rate [144],

represents the relative rate of rotation with respect to the principal directions of the

strain-rate tensor, D. Interestingly, even though W and ΩD are not objective, W was

proved to be objective [145, 146].

With the concept of effective rotation in mind, Astarita [131] proposed an objective

criterion defined as

RD = −tr(W
2
)

tr(D2)
. (4.33)

The authors states that the limit of RD =∞ represents rigid-body rotation, RD = 0

is a (purely) extensional flow and RD = 1 indicates a viscometric flow. Despite this

brilliant idea, the criterion proposed by Astarita has been proven to present some flaws

for certain classes of 3D flows (see [147]).

By analysing these inconsistencies, Thompson and Mendes [142] proposed a criterion

based on the concept of persistence-of-straining. They suggest the criterion

R =

√
1
2

[
DW −WD

]
tr(D2)

, (4.34)

for which the quantity DW −WD is a measurer of how far from the total persistence-

of-straining the flow is. This criterion is always positive. The limit R = 0 indicates

extensional flow and it tends to infinity as the flow approaches a rigid-body rotation.

Using another line of thought without invoking objectivity, Tabor and Klapper [148]

verified the importance of the use of the relative-rate-of-rotation by analysing stretching

and alignment of material filaments. Their analysis reinforces the criterion of Astarita

[131], which can be seen as an objective version of the Q-criterion as presented in the

following.
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4.5.2 Objective versions for classic flow classification criteria

The majority of vortex definitions presented in the literature is based on the rate-of-

rotation (or vorticity) tensor, W . This tensor is not invariant under arbitrary transfor-

mations of the reference frame. In other words, these vortex definitions do not enjoy

objectivity because they depend on W .

Parallel to this, as discussed above, it is clear that some consistent definitions of

vortex have been expressed in terms of the strain-acceleration tensor and/or on the

basis of the strain-rate tensor.

Consequently, objective redefinitions of classic flow classification criteria can be

achieved by replacing the non-objective term of the criteria, most usually W , with the

relative rate of rotation, W (Eq. (D.1)), which is objective. For instance, as commented

by Haller [122], an objective version of the Q-criterion [36] can be introduced based on

the work presented by Tabor and Klapper [148], which yields

Q̂ =
1
2

(
||W ||2 − ||D||2

)
> 0 . (4.35)

The same methodology can be applied to other classical non-objective criteria [149].

The objective versions of the criteria ∆, λ2, and λcr /λci take respectively the form

∆̂ =
(
Q̂
3

)3

+

det(D +W )
2

2

> 0 , (4.36)

λ̂2 = λD
2+W

2

2 < 0 , (4.37)

and
λ̂cr
λ̂ci

=
λD+W
cr

λD+W
ci

=
λLcr

λLci

, (4.38)

The hat over the criteria symbol indicates their objective version. Note also that in the

objective versions of the criteria depending on the velocity gradient (or its transpose,

L), this tensor is replaced by its objective version, L =D +W .

The objective versions of the four classic flow classification criteria presented above

were applied to the analytical ABC flow and a sudden 4:1 contraction by Martins et

al. [149] (see Appendix C). The authors stated that the criteria that enjoy objectivity

provide more information about the kinematics of the flow, for example, identifying

more elliptical regions than their non-objective counterparts.

Moreover, Martins et al. [138] (see Appendix D) also use the objective version of

the Q-criterion and the ratios proposed by Thompson [40] in the context of turbulent

drag-reduction channel flow. They showed that the objective criteria clearly indicate

the thickening of the buffer layer, which is predicted by the major theories on the
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phenomenon and corroborated by both experiments and numerical simulations.

In Chapter 5, the influence of polymers on the identification of vortices will be

evaluated using some of the most widely used criteria. Further discussions on the

application of objective criteria to complex flows along the work by Martins et al. [138,

149] will be presented in Chapter 6.
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Chapter5
The influence of polymeric effects on

vortex identification

Vortex identification criteria are largely used in the context of turbulent flows of Newto-

nian fluids. With the aid of classic vortex identification criteria, turbulent structures

have been found and proven to be fundamental in the explanation of several phenom-

ena, as, for instance, the self-sustaining mechanism of wall turbulence [150].

In this connection, when turbulent viscoelastic fluid flows are considered, vortical

structures were found to weaken and elongate in the stream-wise direction [35, 151].

These turbulent structures and their morphological changes have been used to explain,

the autonomous regeneration cycle of wall turbulence in the context of polymer-induced

drag-reduction [13, 35]. In the wall turbulence mechanism for polymer solutions, the

influence of polymers is considered by evaluating how its interaction with turbulent

structures changes the flow dynamics. However, the influence of polymers on the

criteria to identify the vortices has never been called into question.

In this chapter, the following question is raised: how can we stress the polymer

influence on vortex identification criteria for viscoelastic turbulent flows? In order

to answer this question, some criteria are revisited and applied to turbulent channel

flow of Newtonian and viscoelastic fluids. The main objective is to evaluate how the

presence of diluted polymers affects these criteria, but the discussion on Newtonian

fluid is already enriching.

5.1 Polymer contribution

In the case of viscoelastic effects, the presence of polymers lead to the addition of an

extra-stress term into the equation of momentum balance. Therefore, criteria whose

definition depends on this equation may be somehow compromised in the presence of

polymers.
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Among the classic vortex identification criteria, the λ2-criterion fits the condition

above. Therefore, let us revisit its definition and discuss the effect of polymers on its

operation.

5.1.1 Revisiting the λ2-criterion

As previously commented, the λ2-criterion by Jeong and Hussain [38] is based on the

idea that, on the axis of a vortex core, the pressure tends to have a local minimum. They

used the Hessian of the pressure to locate that by considering the symmetric part of the

gradient of the Navier-Stokes equation, which reads

DD
Dt

+D2 +W 2 = −He(p) +
1
Reh

∆D . (4.16)

Jeong and Hussain [38] argued that discarding the unsteady (DD/Dt) and viscous

(∆D/Reh) terms, would avoid some inconsistencies between the existence of a local

pressure minimum and a vortex core. The λ2-criterion looks for regions where the

intermediate eigenvalue of the Hessian of the pressure is positive (condition for a

local minimum). With the neglected terms, this equals regions where the intermediate

eigenvalue of the tensor D2 +W 2 is negative.

Now, the contribution of a diluted polymer will be taken into account using the

FENE-P model. As shown in Chapter 2, in the FENE-P model, an extra-stress tensor

containing contributions due to the presence of polymers is added to the Navier-Stokes

equation, yielding
∂u
∂t

+u ·∇u = −∇p+
β

Reh
∆u+

1
Reh
∇ ·Ξ . (2.7)

Following the rationale of Jeong and Hussain [38], taking the gradient of Eq. (2.7)

yields
∂∇u
∂t

+u ·∇ (∇u) +∇u ·∇u = −He(p) +
β

Reh
∆∇u+

1
Reh
∇ (∇ ·Ξ) . (5.1)

Just like Jeong and Hussain [38] proceeded with the Navier-Stokes equation, Eq. (5.1)

above can be decomposed into symmetric and anti-symmetric parts. Taking the sym-

metric part containing the Hessian of the pressure and putting the term D2 +W 2 in

evidence yields

D2 +W 2 = −DD
Dt
−He(p) +

β

Reh
∆D +

1
Reh

SP , (5.2)

where SP is the symmetric part of the tensor ∇ (∇ ·Ξ) 1 .

1Making ∇ (∇ ·Ξ) = Φ , its symmetric and anti-symmetric parts are respectively obtained by

SP =
1
2

(
Φ +ΦT

)
and AP =

1
2

(
Φ −ΦT

)
. (5.3)
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Thus, when applying the λ2-criterion to a FENE-P fluid, the tensor considered is

actually the sum of all terms on the right-hand side in Eq. (5.2). Further, considering

the same assumptions made by Jeong and Hussain [38], the first and third terms on the

right-hand side drop and the polymer contribution to the λ2-criterion is represented by

the term (1/Reh)S
P .

At this point, a theoretical discussion takes place on whether the polymeric term

should be placed with the tensor D2 +W 2, on the left-hand side of Eq. (5.2), or on

the right-hand side with the Hessian of the pressure. In other words, when iden-

tifying vortices in a viscoelastic fluid with the λ2-criterion, should the user still

consider the intermediate eigenvalue of
[
D2 +W 2

]
or the intermediate eigenvalue of[

D2 +W 2 + (1/Reh)S
P
]

should be the one to look at? Moreover, is the term (1/Reh)S
P

relevant in this calculation or it should be discarded, just like the unsteady and viscous

terms?

In this connection, following the idea behind the λ2-criterion by Jeong and Hussain

[38], we perform an evaluation of the contribution of each term in Eq. (5.2) above to the

characterisation of a λ2-vortex.

In practice, users of the λ2-criterion identify vortices by the intermediate eigenvalue

of D2 +W 2, λD
2+W 2

2 . Therefore, let us apply the following operation to Eq. (5.2)

eD
2+W 2

2 ·
[DD

Dt

]
·eD

2+W 2

2 + eD
2+W 2

2 ·
[
D2 +W 2

]
· eD

2+W 2

2 =

eD
2+W 2

2 · [−He(p)] · eD
2+W 2

2 + eD
2+W 2

2 ·
[
β

Reh
∆D

]
· eD

2+W 2

2 +

eD
2+W 2

2 ·
[

1
Reh

SP
]
· eD

2+W 2

2 ,

(5.4)

where eD
2+W 2

2 is the intermediate eigenvector of D2 +W 2 associated to λD
2+W 2

2 . For

conciseness, λD
2+W 2

2 and eD
2+W 2

2 may be hereafter referred to as λ2 and e2, respectively.

The same for the unsteady term, DD/Dt, that may be referred to as Ḋ instead.

Equation (5.4) provides the projection of Eq. (5.2) on the direction of eD
2+W 2

2 . Thus,

the term eD
2+W 2

2 ·
[
D2 +W 2

]
·eD2+W 2

2 equals the intermediate eigenvalue of D2 +W 2, λ2,

and Eq. (5.4) can be rearranged as

λ2 = e2 ·
[
−DD

Dt

]
· e2 + e2 · [−He(p)] · e2 + e2 ·

[
β

Reh
∆D

]
· e2 + e2 ·

[
1
Reh

SP
]
· e2 . (5.5)

We put λ2 in evidence on the left-hand side of Eq. (5.5) to show what is calculated

in practice to identify a λ2-criterion. Even if the proposition of Jeong and Hussain [38]

is to neglect the first and third terms on the right-hand side, when λ2 is calculated, it

does take them into account. It is possible though to check whether these two terms

and the polymeric one play a negligible role on the establishment of a λ2-vortex or not.
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This will be discussed in Section 5.2 below.

5.1.2 Writing the Q-criterion from a dynamical perspective

Hunt et al. [36] defined a vortex as a region where the intensity of the rate-of-rotation

tensor, W , is greater than that of the strain-rate tensor, D. This dominance of W over D

is calculated by means of the second invariant of the velocity gradient tensor as follows

Q =
1
2

(
||W ||2 − ||D||2

)
> 0 . (4.4)

Jeong and Hussain [38] showed that the Q-criterion relates to the trace of the tensor

D2 +W 2, used to calculate the λ2-criterion, as follows

Q = −1
2

tr
(
D2 +W 2

)
. (4.18)

It means that the Q-criterion can also be seen as the consequence of contributions of

minus half of the trace of the terms in Eq. (5.2). The Q-criterion can thus be obtained

with the following relation

Q = −1
2

tr
(
D2 +W 2

)
= −1

2
tr

(
−DD

Dt

)
− 1

2
tr(−He(p))− 1

2
tr

(
β

Reh
∆D

)
− 1

2
tr

(
1
Reh

SP
)

.

(5.6)

Similarly to the case of the λ2-criterion above, one can evaluate how each term

contribute to the identification of a Q-vortex. This different look at the Q-criterion may

lead to some physical and theoretical interpretations, as discussed in Section 5.2 below.

5.2 Results and Discussion

These new viewpoints for the criteria Q and λ2 are evaluated with the aid of snapshots

coming from the DNS of turbulent channel flows of Newtonian and viscoelastic (FENE-

P) fluids performed by Thais and co-workers [19, 20, 105].

Simulations at Reτ0 = 180, 395, 590 and 1000 were conducted for Newtonian fluid.

For the FENE-P simulations, at Reτ0 = 180, four elastic levels were achieved by the

combination of two values of L(= 30 and 100) and two values of Wiτ0(= 50 and 115),

leading to four levels of relative drag reduction. At Reτ0 = 1000, two levels of elasticity

were compared, one with L = 30 and Wiτ0 = 50, and another with L = 100 and Wiτ0 =

115. For the intermediate Reτ0(= 395 and 590), only the most elastic case (L = 100 and

Wiτ0 = 115) was considered. A summary of the simulation data is available in Tab. 5.1.

For the post-processing necessary to perform the present analyses, the meshes were
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Reτ0 L Wiτ0 β Lx ×Ly ×Lz Nx ×Ny ×Nz δt %DR

180 - - 1 8π × 2× 3π/2 512× 129× 128 1× 10−3 0
180 30 50 0.9 8π × 2× 3π/2 512× 129× 128 1× 10−3 28.5
180 30 115 0.9 8π × 2× 3π/2 512× 129× 128 1× 10−3 38.4
180 100 115 0.9 8π × 2× 3π/2 512× 129× 128 1× 10−3 47.0
180 100 115 0.9 8π × 2× 3π/2 512× 129× 128 1× 10−3 62.3
395 - - 1 8π × 2× 3π/2 1024× 257× 256 1× 10−3 0
395 100 115 0.9 8π × 2× 3π/2 1024× 257× 256 1× 10−3 62.0
590 - - 1 8π × 2× 3π/2 1536× 257× 512 1× 10−3 0
590 100 115 0.9 8π × 2× 3π/2 1536× 257× 512 7.5× 10−4 61.0

1000 - - 1 6π × 2× 3π/2 1536× 385× 768 8× 10−4 0
1000 30 50 0.9 6π × 2× 3π/2 1536× 385× 768 5× 10−4 30.0
1000 100 115 0.9 6π × 2× 3π/2 1536× 513× 768 5× 10−4 58.0

Table 5.1 – Summary of the simulation data that provided the snapshots for the present
analysis.

respected. In fact, the same spatial discretisation scheme and differentiation stencils

presented in Chapter 2 (Section 2.4.2) were used here.

It is important to remark that for the calculation of the time-depend term DD/Dt,

two consecutive snapshots were considered with the same time step of the original

simulation (i.e. δt displayed in Tab. 5.1).

The post-processors created for the present operations are also parallel (using MPI)

and work with slabs parallel to the wall. To perform the present analysis, runs using

from only 1 up to 128 MPI cores and taking from a few seconds to one hour of CPU

time were conducted

In the following, the analysis for the effect of the Reynolds number in the Newtonian

case, the effect of the Reynolds number in the viscoelastic case and the effect of elasticity

at low (Reτ0 = 180) and high (Reτ0 = 1000) Reynolds number are presented.

5.2.1 Effect of Reynolds number on Newtonian fluid

The average contribution in wall-normal planes of each term in Eq. (5.6) at different

Reynolds numbers for a Newtonian fluid is shown in Fig. 5.1, representing the composi-

tion of the Q-criterion. A first general comment is that the Reynolds number does not

seem to play a fundamental role in this analysis, since the tendencies are mostly alike

for all terms considered. In fact, increasing the Reynolds number implies achieving

higher y+ positions and increasing the intensity of each term, but the overall behaviour

is the same.

Note that, since the flow is divergent-free (tr(∇u) = tr(D) = 0), the trace of the

terms Ḋ and ∆D/Reh are null. Consequently, when applied to a Newtonian fluid, the
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Figure 5.1 – Contribution of each term in Eq. (5.6) (Q-criterion) at varied Reynolds
numbers (Newtonian fluid): (a) Reτ0 = 180; (b) Reτ0 = 395; (c) Reτ0 = 590; and (d)

Reτ0 = 1000 .

Q-criterion depends only on the pressure term. This direct relation to the pressure

has been presented by Jeong and Hussain [38], who showed that, from the Poisson

equation for the pressure, Q can also be seen as the pressure source term by the relation

∆p = 2ρQ.

The Q-criterion (term related to D2 +W 2) and the Hessian of the pressure, He(p),

tend to zero at the wall, and a valley (minimum value) is achieved at y+ ≈ 5. Then, at

y+ ≈ 12, their signs change and a peak (maximum value) occurs just after y+ ≈ 20. After

this peak, they both tend to zero with increasing y+.

Figure 5.2 shows x − z-plane-average profiles of each term in Eq. (5.5) regarding the

λ2-criterion. Similarly to the case of the Q-criterion, the Reynolds number does not

play a fundamental role, except with regards to the intensity of the terms. The shape of

the curves remain basically the same with increasing Reτ0.

All terms tend to be null at the wall and at the channel centre. Regarding now

each term separately, Fig. 5.2 shows that the Hessian of the pressure is, on average,

essentially positive, contributing in the sense of hyperbolic modes, and presents a peak
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Figure 5.2 – Contribution of each term in Eq. (5.5) (λ2-criterion) at varied Reynolds
numbers (Newtonian fluid): (a) Reτ0 = 180; (b) Reτ0 = 395; (c) Reτ0 = 590; and

(d) Reτ0 = 1000; .

at y+ ≈ 6. A second smaller peak is observed at y+ ≈ 30. Contrarily, the unsteady term

(Ḋ) is mostly negative, contributing in the sense of elliptic modes, and present a single

minimum value at y+ ≈ 30. The viscous term contributes mostly negatively as well,

with a minimum value at y+ ≈ 20. A slightly different behaviour is observed for a

small region very near to the wall (y+ / 4), where this terms contributes positively (or

neutrally for Reτ0 = 395).

As a consequence of this balance, λ2 departs from zero at the wall to a maximum

value at y+ ≈ 5. After this peak, it decreases to zero somewhere between 10 / y+ / 20

and achieve a minimum close to y+ = 20. After this valley, λ2 tends to zero as it

approaches the centre of the channel.

It is remarkable that λ2 is mostly dictated by the Hessian of the pressure in the

vicinity of the wall, until y+ ≈ 3, and, conversely, away from the wall (y+ ' 200),

the value of λ2 basically equals the viscous term. Furthermore, note that the terms

discarded by Jeong and Hussain [38], are actually not negligible. In fact, they both

oppose the trend dictated by the Hessian of the pressure, specially within the buffer



88 CHAPTER 5. The influence of polymeric effects on vortex identification

layer (5 / y+ / 30). These results make questionable the assumptions made by Jeong

and Hussain [38] for the λ2-criterion.

Moreover, we remember that Jeong and Hussain [38] use tensor D2 +W 2 with the

intention of capturing the effects of the Hessian of the pressure. Figure 5.2 shows

though that these terms are very similar for y+ < 5, but, from the buffer layer on, the

pressure terms actually plays against the tendency of λ2.

5.2.2 Effect of Reynolds number on viscoelastic fluids

Now, the effect of the Reynolds number is verified for the viscoelastic cases. The

elasticity level is maintained by fixing L = 100 and Wiτ0 = 115.

The average contribution of terms in Eq. (5.6) to the composition of the Q-criterion

is presented in Fig. 5.3. Differently from the Newtonian case, the profiles of Q and the

pressure term do not coincide, clearly because of the polymeric term that plays a signif-

icant role. Also, compared with the Newtonian case, the terms suffer a considerable

decrease in intensity (one order of magnitude).
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Figure 5.3 – Contribution of each term in Eq. (5.6) (Q-criterion) at varied Reynolds
numbers (viscoelastic fluid - L = 100 and Wiτ0 = 115): (a) Reτ0 = 180; (b) Reτ0 = 395; (c)

Reτ0 = 590; and (d) Reτ0 = 1000 .
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The profile of Q still departs from zero at the wall, decreases to a minimum value

around y+ ≈ 10. Then, it changes sign between 40 / y+ / 60 and then tends gradually

to zero as the centre of the channel is being reached. This means that, on average, the

flow is predominantly hyperbolic close to the wall (viscous and buffer layer) and elliptic

closer to the centreline.

The polymeric term starts from a negative value at the wall and changes sign

approximately at the same y+ position of Q. Then, it also tends gradually to zero with

increasing y+. The pressure term compensates the tendency of the polymeric term at

the wall, starting from a positive value but keeping a shape very close to the Q-criterion.

It is important to note that, compared to the Newtonian case (Fig. 5.1), the peak

positions in Fig. 5.3 are all shifted away from the wall.

Another notable effect of the Reynolds number is a relative increase of the negative

(hyperbolic) extrema with respect to the positive (elliptic) peak when increasing the

Reynolds number. For the lowest Reynolds number, the elliptic extrema has the same

order of magnitude of the hyperbolic extrema. At Reτ0 = 1000, the hyperbolic extrema

are approximately three times more intense than the elliptic peaks.

As regards the formation of the λ2-criterion, Fig. 5.4 displays the average profile

of each term in Eq. (5.5). A first overall comment is that the approximate position of

the extrema and sign change points are also shifted away from the wall compared to

the Newtonian case, just like it was observed for the λ2-criterion. Also, the intensity

of the terms is considerably lower and can be up to two orders of magnitude different

at Reτ0 = 180, indicating a decrease in the swirl intensity, just like for the Q-criterion.

Differently from the Newtonian case, the Reynolds number affects qualitatively the

results.

The trend on the average behaviour of λ2 is qualitatively the same. It is null at

the wall and increases until achieving a peak value, in this case, at y+ ≈ 10. Then, it

changes sign at y+ ≈ 40, except for Reτ0 = 1000, for which this change occurs at y+ ≈ 60.

A minimum is than achieved usually at 100 / y+ / 200, and it tends to zero as we

approach the centre of the channel. The λ2-criterion also indicates a dominance of

hyperbolic modes closer to the wall and elliptic modes closer to the centreline.

In the viscoelastic case, the Hessian of the pressure again is always contributing to

hyperbolicity (on average). Its first peak is now located at y+ ≈ 12 and this location is

independent from the Reynolds number. The second peak is now located at y+ ≈ 100

and its value is closer (even greater at Reτ0 = 180) than the first one.

Still in Fig. 5.4, the time-dependent term is considerably affected by the Reynolds

number. This term is basically negative at Reτ0 = 180, but, with increasing Reynolds

number, small positive contribution clearly tends to appear in the very beginning of

the buffer layer (5 / y+ / 10).

The viscous and polymeric terms have similar behaviour, presenting positive contri-
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Figure 5.4 – Contribution of each term in Eq. (5.5) (λ2-criterion) at varied Reynolds
numbers (viscoelastic fluid - L = 100 and Wiτ0 = 115): (a) Reτ0 = 180; (b) Reτ0 = 395;

(c) Reτ0 = 590; and (d) Reτ0 = 1000; .

butions from the wall up to y+ ≈ 10 and negative contributions thereafter.

It is interesting that the changes in Ḋ implies in similar changes in λ2, whose peak

value gets closer to the peak of the pressure with increasing Reynolds, even if they occur

at slightly different y+ positions (y+ ≈ 9 for λ2 and y+ ≈ 12 for the pressure term).

We recall here the fundamental question raised in Section 5.1.1 above on how to

consider the polymeric contribution to the evolution of D. One could place it together

with the term D2 +W 2 (see Eq. (5.2)) arguing that if the Hessian of the pressure is put

in evidence and the unsteady and viscous terms are discarded, as suggested by Jeong

and Hussain [38], vortical regions would be represented by the intermediate eigenvalue

of D2 +W 2 − SP /Reh.

Another option would be to place the polymeric term with the Hessian of the

pressure and continue to consider the intermediate eigenvalue of D2 +W 2. In fact, that

is our choice here to perform this analysis because a regular user of the λ2-criterion

usually considers the tensor D2 +W 2 regardless of what is on the other side of the

equation.
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Finally, one could advocate to drop the polymeric term, either because it brings

inconsistencies in some case, or just to maintain the relationD2+W 2 = −He(p) proposed

by Jeong and Hussain [38].

What is important to highlight is that, even when applied to Newtonian fluids, the

λ2-criterion contain some assumptions that do not seem to be reasonable, at least in the

context of turbulent channel flow. Further, when applying this criterion to viscoelastic

fluid, the user is left with a fundamental question concerning how to consider the

polymeric contribution. Our results here show that the contribution of the polymeric

term, just like the contribution of the unsteady and viscous term discarded by Jeong

and Hussain [38], is not negligible, which leads us to question the consistency of this

criterion, at least in the context of turbulent viscoelastic fluid flow. Therefore, the

λ2-criterion will no longer be considered in the present work.

5.2.3 Effect of elasticity at Reτ0 = 180

Here, the friction Reynolds number is fixed at Reτ0 = 180 and the elasticity is varied so

that its effect is evaluated. Two maximum polymer extensibility parameters, L = 30 and

100, and two friction Weissenberg numbers, Wiτ0 = 50 and 115, have been combined

leading to relative drag reduction from 28.5% to 62.3%.

The average contribution of the terms that compose the Q-criterion is shown in

Fig. 5.5 for the four elasticity levels. It is notable that the intensity of all terms decrease

with increasing elasticity. This becomes clear if a reference y+ position is chosen and the

corresponding values of each term at that position is compared. For example, at y+ = 10,

in the less elastic case (Fig. 5.5a), Q is approximately −0.038, this value decreases

to −0.024 for L = 30 and Wiτ0 = 115 (Fig. 5.5b), −0.014 for L = 100 and Wiτ0 = 50

(Fig. 5.5c) and achieves −0.0022 in the most elastic case (Fig. 5.5d).

The influence of the polymeric term is relatively small, which leads to very similar

values for Q and the pressure term. In fact, it suggests that the decrease in intensity

within both elliptic and hyperbolic regions is not a linear effect of the polymeric term in

the evolution equation of the strain rate tensor. In other words, the intensity of Q is not

diminished directly by the term (SP /Reh) as a consequence of the balance of Eq. (5.6).

Instead, it is a consequence of the non-linearities relating the polymer stress and flow

dynamics.

5.2.4 Effect of elasticity at Reτ0 = 1000

The elastic effect is now evaluated for the highest Reynolds number considered here

(Reτ0 = 1000). For this analysis, only two cases are compared: a moderately elastic case

with L = 30 and Wiτ0 = 50, and a highly elastic level with L = 100 and Wiτ0 = 115,

leading to relative drag reduction of 30% and 58%, respectively.
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Figure 5.5 – Contribution of each term in Eq. (5.6) (Q-criterion) for varied elasticity
levels at Reτ0 = 180: (a) L = 30 and Wiτ0 = 50; (b) L = 30 and Wiτ0 = 115; (c) L = 100

and Wiτ0 = 50; and (d) L = 100 and Wiτ0 = 115 .

Differently from the results at Reτ0 = 180, we present in Fig. 5.6 the profiles of the

non-null terms composing the Q-criterion for the Newtonian and the two viscoelastic

cases at Reτ0 = 1000 in the same figure. From this perspective, it is clear that the

intensity of all terms diminishes considerably with increasing elasticity. The main elastic

effect consists then on the trend of turning elliptic (vortical) and hyperbolic (extensional)

regions into parabolic ones. In other words, regions dominated by rotation or extension

in Newtonian flows tend to turn into regions where the rotation and extension are

equilibrated in the presence of polymers. This characterises a laminarisation of the

flow.

This trend is corroborated by the location of peaks (elliptic extrema region) and

valleys (hyperbolic extrema region). For the Newtonian case, the valley for Q and the

pressure term are at y+ ≈ 4. For the low-elasticity case, these location is shifted upwards

until y+ ≈ 7 and its intensity is approximately five times smaller. For the high-elasticity

case, he valley is located at y+ ≈ 12 and the minimum value is more than 30 times less

intense, as evidenced in the zoom box in Fig. 5.6. It is important to remark that similar
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Figure 5.6 – Comparison of the contribution of each term in Eq. (5.6) (Q-criterion)
between Newtonian and viscoelastic cases at Reτ0 = 1000.

effects can be observed for the peaks, concerning the elliptic region.

5.3 Concluding remarks

The evolution equation of the strain-rate tensor, D, was used by Jeong and Hussain

[38] to propose the λ2-criterion. The authors also show that this evolution equation

is related to the Q-criterion. In this chapter, we used the evolution equation of D to

evaluate how each of its dynamic terms affect flow kinematics.

In the case of the λ2-criterion, each term in Eq. (5.5) was projected in the direction

of the intermediate eigenvalue of the tensor D2 +W 2. This operation allows to evaluate

the contribution of each term for the composition of the λ2-criterion. We showed that

the argument made by Jeong and Hussain [38] to drop the time-dependent and viscous

terms in the evolution equation of D does not hold, at least for a turbulent channel flow.

These two terms showed to be relevant to the composition of the λ2-criterion, basically

competing with the Hessian of the pressure.

Moreover, the application of the λ2-criterion to viscoelastic fluid flows seems to

be compromised by a fundamental question. This question concerns the treatment

of the polymeric term that appears in the evolution equation of D. Because of the

controversial argumentation presented by Jeong and Hussain [38] to chose the tensor

D2 +W 2 in the place of the Hessian of the pressure, the decision of what to do with

this extra term is not clear at all. Should the user discard it too? Should it be added to

D2 +W 2 before taking the intermediate eigenvalue or should it add the Hessian of the

pressure? In view of this lack of clarity, we decided to abandon the λ2-criterion in what

follows in the present work.

Concerning the Q-criterion, Jeong and Hussain [38] showed that if one takes minus

half of the trace of the evolution equation of D, the term involving D2 +W 2 returns the

Q-criterion. By applying the same operation to all other terms, we compared how each
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of them helps to form a Q-vortex in terms of their average profiles. The time-dependent

and viscous terms showed to be null for all cases. Therefore, for Newtonian fluids, the

Q-criterion is purely dictated by the Hessian of the pressure.

When a polymer solution is considered, the polymeric contribution is not negligible,

but does not seem to be the direct cause of the decrease in intensity of both elliptic (vor-

tical) and hyperbolic (extensional) regions observed with increasing elasticity. Finally,

according to the composition of the Q-criterion, the distance of the extrema of each

term is an increasing function of the elasticity of the fluid.



Chapter6
Objective flow classification criteria

applied to turbulent viscoelastic channel

flow

The concepts of hyperbolic, elliptic and parabolic modes [121, 122] in a flow were intro-

duced in Section 4.2.2. They represent important information concerning fluid motion

and are largely used in the context of flow classification. Briefly, hyperbolic domains are

characterised by the dominance of strain over rotation, whereas elliptic domains occur

where swirl motions are more intense than strain. The limiting subdomain between

them where the magnitude of the rate of strain and the rate of rotation are equilibrated

is named parabolic domain.

Moreover, the concept of objectivity was presented in Chapter 4 with some com-

ments on the theoretical advantages of using frame-independent criteria. In the fol-

lowing, we will be able to compare the results of objective criteria with the classic

(non-objective) ones.

In this chapter, non-objective and objective flow classification criteria will be used

to evaluate the distribution of hyperbolic, parabolic and elliptic domains within the

turbulent channel flow of Newtonian and viscoelastic fluids. Preliminary results are

firstly evaluated for a Newtonian fluid concerning the analytical ABC flow and a 4:1

sudden contraction.

6.1 Criteria analysed in the present work

The choice of the criteria to be evaluated here was made according to their physical

consistence. Among the most popular criteria, namely Q [36], λ2 [38], ∆ [37], and

λci [39], the latter (and its variant λcr /λci [127] as well) being a “swirling strength”

measurer, it is limited to the classification of elliptic modes only. Because we are here
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interested in analysing the whole possibilities involving fluid motions, the λci-criterion

will not be considered in the following. We recall that we drop the analyses for the

λ2-criterion as well due to its lack of clarity concerning some assumptions made to

derive it.

The criterion chosen to be applied to turbulent viscoelastic channel flow were then:

the (non-objective) criteria Q [36] and ∆ [37], their objective versions Q̂ and ∆̂, and the

objective ratios Nφ and Nl proposed by Thompson [40].

The objective isotropic and line anisotropic ratios (Nφ and Nl , respectively) are

preferred here because they are objective and have a very solid physical basis. Moreover,

the line anisotropic ratios provide more detailed directional information about the

motions. These ratios provide values from 0 to 1 so that values smaller than 0.5

represent elliptic regions and values greater than 0.5 stand for hyperbolic regions. The

frontier of 0.5 corresponds to the parabolic domain and the limits of 0 and 1 represent,

respectively, rigid-body and purely-extensional motion.

The surface anisotropic ratio, Ns, as it has been defined in Section 4.3.10, does not

have the same hyperbolic/elliptic polarity provided by the other criteria. It is correct to

classify regions as hyperbolic domains when Ns approaches 1, but nothing guarantees

that the parabolic frontier is at 0.5 and, consequently, that values under 0.5 indicate

elliptic domination. 1 Therefore, the surface anisotropic ratio, Ns, is not considered

here.

In order to keep the same basis to compare all criteria, we apply the same normali-

sation used by Bacchi [130] and Martins et al. [149] to the objective and non-objective

versions of the criteria Q and ∆. The resulting normalised criteria provide the same

scale (from 0 to 1) of the objective ratios and read

Q∗ =
1
π

cos−1
(
‖W ‖2 − ‖D‖2

‖W ‖2 + ‖D‖2

)
, (6.1)

∆∗ =
1
π

cos−1


(
‖W ‖2 − ‖D‖2

6

)3

+
(

det(D +W )
2

)2

(
‖W ‖2 + ‖D‖2

6

)3

+
(

det(D +W )
2

)2

 , (6.2)

for the original non-objective versions, and

Q̂∗ =
1
π

cos−1

‖W ‖2 − ‖D‖2‖W ‖2 + ‖D‖2

 , (6.3)

1According to Thompson [152], one possible solution is to redefine Ns, splitting the sub-matrices Mk
into diagonal and off-diagonal parts, and taking the ratio of the norm of the diagonal part of Mk to the
norm of Mk .
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∆̂∗ =
1
π

cos−1



‖W ‖2 − ‖D‖26

3

+

det(D +W )
2

2

‖W ‖2 + ‖D‖2

6

3

+

det(D +W )
2

2


, (6.4)

for their objective versions considering the effective rate of rotation.

In Eqs. (6.1-6.4), the superscript asterisk indicates normalisation and the hat over

the symbol is used to distinguish the objective version from the non-objective one.

6.2 Calculation of objective entities

The acceleration strain, M , computed as the covariant convected derivative of the strain-

rate tensor, is a quantity used by Thompson [40] and Haller [122] to define a vortex (see

Chapter 4). This tensor is defined as

M = Ḋ +DL+LTD , (4.23)

where Ḋ = ∂D/∂t +u · ∇D is the material derivative of D.

Two consecutive instantaneous flow fields are considered to compute the term ∂D/∂t.

All other (non-time-dependent) terms are based on the first of the two consecutive flow

fields. The time step between the flow fields corresponds to the simulation time step, δt

(see values in Tab. 5.1).

Thompson [129] proposed the so-called in-phase-out-of-phase decomposition of a

tensor with respect to another. In the context of flow classification, this decomposition

has been used [40, 130, 153] to evaluate how the tendency dictated by the strain-rate

tensor is defied by its covariant convected derivative, M . For that, Thompson and

co-workers [40, 130, 153] apply the in-phase-out-of-phase decomposition to find the

parts of M that are co-axial (or in phase, φDM ) and orthogonal (or out-of-phase, φ̃DM )

with respect to D. These two parts can be obtained by the following relation

M = φDM + φ̃DM = IDD :M + (Iδδ − IDD) :M , (6.5)

where IDD is the fourth-order tensor defined as

IDD =
3∑
i=1

eDi e
D
i e

D
i e

D
i , (6.6)

where eDi is an eigenvector of D, and Iδδ is the fourth-order identity tensor defined as

Iδδ = ejekekej . (6.7)



98 CHAPTER 6. Objective criteria applied to viscoelastic channel flows

Thompson, Bacchi, and Machado [153] showed that

φDM = IDD :M =D′ + 2D2 , (6.8)

and

φ̃DM = (Iδδ − IDD) :M =D ·W −W ·D . (6.9)

Since φDM is co-axial with D and φ̃DM is orthogonal to D, the tensor D′ + 2D2 is

related to the persistence-of-straining concept, while tensor D ·W −W ·D is related to

non-persistence-of-straining.

Equation (6.9) can be written on the basis of the eigenvectors of D as

(φ̃DM )D =DD ·W
D
−W

D
·DD . (6.10)

In possession of D and having calculated M with Eq. (4.23), a system formed by

Eq. (6.10) can be solved to find W on the basis of D. Thus, W can be obtained without

the direct computation of the angular velocity of the eigenvectors of D, ΩD . Moreover,

if needed, ΩD can be easily calculated with W and W .

The procedure described above was used here to compute the effective rate of

rotation, W , for all cases tested involving objective criteria.

6.3 Preliminary analysis with Newtonian fluids

The chosen criteria will be first applied to relatively simpler flows as a preliminary

evaluation before getting into the turbulent viscoelastic channel flow. Following Martins

et al. [149], the Arnold-Beltrami-Childress (ABC) flow [154–156] and the 4:1 sudden

contraction are assessed.

6.3.1 Unsteady ABC flow

The Arnold-Beltrami-Childress (ABC) flow [154–156] is largely used in the study of

chaotic trajectories [157, 158]. A transient version of it was already used by Haller [122]

and Martins et al. [149]. The set of equations for the flow field of the unsteady ABC

flow is given by trigonometric functions, as follows

u(y,z, t) = A(t)sin(z) +C cos(y) ,

v(x,z, t) = Bsin(x) +A(t)cos(z) ,

w(x,y) = C sin(y) +Bcos(x) ,

(6.11)



6.3. Preliminary analysis with Newtonian fluids 99

where A(t) = A0 +
(
1− e−qt

)
sin(ωt), with A0 =

√
3, q = 0.1 and ω = 2π, while B =

√
2 and

C = 1. These coefficients were used by Haller [122] and Martins et al. [149] and are also

used here. The domain considered here is a cube limited to the interval [0,2π] in every

direction.

For all objective criteria considered in this analysis, the relative rate of rotation, W ,

was calculated using two consecutive instantaneous velocity fields with a time step of

0.01 seconds.

In Fig. 6.1 the contours of all selected criteria are displayed for the ABC flow. The

planes x = 2π, y = 2π and z = 2π are evidenced.

Let us start with the non-objective and objective versions of the classic criteria Q

and ∆. Generally speaking, the results for both the original and objective versions of the

Q-criterion are similar to their corresponding ones for the ∆-criterion. More precisely,

both Q∗ and Q̂∗ present larger hyperbolic and elliptic domains when compared to ∆∗

and ∆̂∗, but these domains have the same core regions. Also remarkable, the objective

Q̂∗ and ∆̂∗ clearly indicate more elliptic regions than observed with the non-objective

criteria. Martins et al. [149] stated that this is due to the rotation of the eigenvectors of

D near these regions (see Appendix C).

Detailing the analysis, we observe at the three highlighted planes (x = 2π, y = 2π

and z = 2π) that Q∗ and ∆∗ identify two cores of elliptical dominance and another two

of hyperbolic dominance. What changes from one plane to the other and from one

criterion to other is their intensities and extensions. At the plane x = 2π, theQ∗-criterion

the elliptic domains are centred around (y ≈ π/2, z ≈ π/2) and (y ≈ π/2, z ≈ 3π/2), while

the hyperbolic domains are centred around (y ≈ 3π/2, z ≈ π/2) and (y ≈ 3π/2, z ≈ 3π/2).

Both elliptic and hyperbolic domains at this plane are close to the parabolic value.

Similar behaviour is observed at the plane y = 2π, with two elliptic regions around

(x ≈ π/2, z ≈ π/2) and (x ≈ 3π/2, z ≈ π/2), and other two hyperbolic-dominant regions

around (x ≈ π/2, z ≈ 3π/2) and (x ≈ 3π/2, z ≈ 3π/2). However, both elliptic and hyper-

bolic regions at this plane are larger and more intense (closer to rigid-body-like and

purely-extensional-like motions, respectively).

At z = 2π, the elliptic and hyperbolic regions observed are more elongated in the y-

direction and their intensities are approximately the same of those at plane y = 2π. The

elliptic domain extends around x ≈ π/2, and the hyperbolic domain, around x ≈ 3π/2.

The analysis made for Q∗ above also applies to ∆∗. The main difference being

though that the latter presents smaller elliptic and hyperbolic domains, although their

location coincides with those of Q∗. Because these extrema are smaller, ∆∗ indicates

more parabolic domains compared to Q∗.

As regards the objective Q̂∗ and ∆̂∗, one remarkable difference with respect to their

corresponding non-objective versions is that elliptic domains are considerably enhanced

while hyperbolic domains are slightly weaken.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.1 – Contour of normalised criteria applied to the ABC flow.

For the isotropic ratio, Nφ, at x = 2π, predominantly hyperbolic domains are ob-

served in the region limited by π . y . 2π, whereas slightly elliptic domains are

observed in the region limited by 0 . y . π. At y = 2π, two important hyperbolic

domains appear at (x ≈ π/2, z ≈ 3π/2) and (x ≈ 3π/2, z ≈ 3π/2), together with smaller

ones and very small elliptic spots as well. Elsewhere at this plane, parabolic domains

dominate. At z = 2π, two hyperbolic domains appear at (x ≈ 3π/2, y ≈ π/2) and

(x ≈ 3π/2, y ≈ 3π/2). Moreover, two triplets of elliptic domains can be found centred
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around (x ≈ π/2, y ≈ π/2) and (x ≈ π/2, y ≈ 3π/2).

Regarding the line anisotropic criterion, Nl , in Fig. 6.1, we see that Nl1 and Nl2
behave similarly to the isotropic ratio, Nφ, but with more intense straining in the case of

Nl1 and more swirl strength for Nl2. It is important to note that some elliptic spots are

observed forNl1, specially at the plane z = 2π, which indicates that, within these regions,

the three directions are dominated by rotation. Nl3 basically shows a mix of parabolic

and elliptic modes. However, two hyperbolic spots located at (x ≈ 3π/2, y ≈ π/2) and

(x ≈ 3π/2, y ≈ 3π/2) indicate purely-extensional motion in the three directions at this

regions.

6.3.2 4:1 sudden contraction

The flow in a sudden contraction is largely used in the context of Newtonian and non-

Newtonian fluids. It is known for inducing the flow into different states of motion such

as shear, extension and rigid-body rotation. Therefore, the sudden contraction can be

very useful to evaluate flow classification criteria.

Following Martins et al. [149], a laminar steady-state flow of a Newtonian fluid

passing a 4:1 sudden contraction is considered here. The Reynolds number based on

the velocity and height at the outlet is equal to 0.043. The algorithm used is the one

described by Mompean, Thompson, and Mendes [159] with a mesh of 150×80 grid

points respectively in the stream-wise (x) and wall-normal (y) directions.

The results for all selected criteria when applied to the 4:1 contraction are depicted

in Fig. 6.2.

The non-objective criteria Q∗ and ∆∗ capture the fully developed shear region away

from the contraction. Approaching the contraction, near the centreline, a large hyper-

bolic domain is identified not only by ∆∗ and Q∗, but by other criteria as well. This is

due to the acceleration the fluid undergoes to pass through the contraction. Because

of the proximity of the corners, the flow around both sharp corners presents a mix of

extensional and rotational motion. These features are captured by all the criteria in

Fig. 6.2.

For the objective Q̂∗ and ∆̂∗, an additional elliptic domain appears near the centreline,

just before the extensional region near the contraction. As commented by Martins et al.

[149] and Mompean, Thompson, and Mendes [159], this is an effect of the rotation of the

eigenvectors of D. The shear flow in the fully developed region imposes the π/4− 3π/4

directions to the eigenvectors of D. In extensional regions, they are aligned with the

0−π/2 directions. Hence, when passing from shear to extension the eigenvectors of D

experience a rotation that may relieve or persist the strain of material filaments therein.

Because the eigenvectors of D have to return to the fully developed condition, the same

rationale applies for the elliptical domain just after the contraction. It is important
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.2 – Contour of normalised criteria applied to the flow in a 4:1 sudden
contraction.

to remark that these more detailed features of the flow are frame-invariant and not

detected by non-objective criteria.

The isotropic criterion, Nφ, and the greatest line anisotropic ratio, Nl1, behave very

similarly. They both start from a totally parabolic domain away from the contraction,

typically the case for shear flows. A small elliptic domain appears just after the con-

traction, which is also related to the rotation of the eigenvectors of D. The elliptic

region identified by the anisotropic ratio, Nl2, just outside of the hyperbolic region

around the centreline is also related to this relative rotation. The referred elliptic region

is though only detected by the Nl2, meaning that only one direction undergoes this

swirl-domination.

6.4 Turbulent channel flow of viscoelastic fluid

When applied to turbulent boundary layers flows, the most popular flow classification

criteria (Q, λ2, ∆, λci) can identify vortical coherent structures usually called hairpin
vortices or horseshoe vortices. These spatial-time coherent structures evolve in time
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and were proven to play an important role in several turbulent phenomena such as

drag-reduction, jets, waves, mixture, hydro- and aerodynamics, and heat transfer.

The dynamics of these coherent structures have been largely explored in the liter-

ature in the context of Newtonian fluids [39, 160]. As commented by Adrian [160],

although they can appear singly, hairpins often occur in packets. According to the

author, the most plausible explanation for that is the autogeneration mechanism related

to such structures. Furthermore, the hairpin packages render a mechanism to transport

vorticity, low momentum and turbulent kinetic energy from the wall [160].

Regarding non-Newtonian fluids, previous works [5, 7, 11, 161] have provided

evidences of the inhibition of vortex stretching by polymeric effects. Kim et al. [35]

explored the changes on the coherent structures in channel flow. The authors noted

that in drag-reducing flows, hairpin vortices are weakened and elongated due to the

polymer forces that opposes vortical motions.

We evaluate here the results for the criteria Q and ∆ in their original (non-objective)

and objective versions plus the objective ratios proposed by Thompson [40] applied

to the instantaneous velocity fields of both Newtonian and viscoelastic channel flows.

The velocity fields were obtained by DNS with the algorithm presented by Thais et al.

[19] commented in Part I. The cases considered in the following are the same of those

presented in Tab. 5.1. Friction Reynolds numbers equal to 180, 395, 590 and 1000

were assessed. Polymeric effects are taken into account by means of the FENE-P model

(based on the original conformation tensor formulation) with maximum polymer chain

extensibility, L, equal to 30 or 100 and a friction Weissenberg number, Wiτ0, equal to

50 or 115, which leads to relative drag reduction from 28.5% 62.3%.

Figure 6.3 present iso-surfaces of elliptic (rotation-dominated) regions by the Q-

criterion (Q = 2) for several cases. On the left-hand side, Newtonian cases are shown,

while the right-hand side contains the viscoelastic cases with L = 100 and Wiτ0 = 115.

Each line corresponds to a friction Reynolds number, varying from Reτ0 = 180 (first line)

to Reτ0 = 1000 (first line). The domain visualised is limited to 4π in the stream-wise

direction and 1 (half-gap) in the wall-normal position. The iso-surfaces are coloured

with the local intensity of the stream-wise velocity component, u.

The hairpin-like vortical structures can be observed in Fig. 6.3 at all friction Reynolds

numbers considered here. They become more numerous in the flow with increasing

Reynolds number, even in the viscoelastic case. It is important to note that very

similar structures can be observed with the ∆-criterion, but they are not shown here for

conciseness.

Comparing the results for Newtonian (left column) and viscoelastic (right column)

fluids in Fig. 6.3, it is notable that the amount of hairpins diminishes drastically in the

presence of polymers. Since the value of Q is the same (Q = 2), this decrease means

that there are less regions with that intensity of rotation in the viscoelastic fluid flow.
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(a)Reτ0 = 180, Newtonian (b)Reτ0 = 180, viscoelastic

(c)Reτ0 = 395, Newtonian (d)Reτ0 = 395, viscoelastic

(e)Reτ0 = 590, Newtonian (f)Reτ0 = 590, viscoelastic

(g)Reτ0 = 1000, Newtonian (h)Reτ0 = 1000, viscoelastic

Figure 6.3 – Iso-surfaces of Q = 2 (elliptic regions) from Reτ0 = 180 (first line) to
Reτ0 = 1000 (last line). Newtonian cases are on the left-hand side and viscoelastic cases
(L = 100 and Wiτ0 = 115) are on the right-hand side. The displayed domain is restricted

to 0 ≤ y ≤ 1 and 0 ≤ x ≤ 4π. Iso-surfaces are coloured with the local intensity of u.
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This represents then the weakening of vortical structures in polymer solution already

reported in the literature [35]. As previously observed as well, for the same friction

Reynolds number, these vortical structures are also more elongated.

Now, all normalised criteria will be compared in order to evaluate the influence of

polymers from the perspective of objective criteria. Figure 6.4 displays the comparison

for a Newtonian fluid at Reτ0 = 1000. The iso-surfaces of all normalised criteria at a

value of 0.25, representing elliptic domains.

It is notable that the elliptic domains detected by normalised version of the Q-

criterion are less organised in space than those of its non-normalised version (see

Figs. 6.3g and 6.4a). On one hand, this lack of organisation in the normalised criteria

precludes the visualisation of the hairpin vortices. On the other hand, the effects

concerning the addition of polymers are equally observed as we will see further on.

The criteria Q∗ and ∆∗ present similar behaviour with lots of dispersed small elliptic

domains. The main difference between these two criteria is that the ∆∗-criterion presents

less intense elliptic domains, which is in accordance with the previous results. Their

objective versions (criteria Q̂∗ and ∆̂∗) show even closer relation, but detect much more

elliptic domains than their non-objective versions. This behaviour also corroborates

previous results.

The results for the isotropic criterion, Nφ, are comparable to those ofQ∗. The elliptic

regions are very dispersed and even smaller than those of the non-objective Q-criterion.

Regarding the line anisotropic criteria, Nl , the results for Nl1 show that there are very

few elliptic domains in which the rotational behaviour is predominant in all three

directions. However, according to Nl2, the number and location of domains that are

elliptic-dominated in at least two directions is comparable to those detected by the

criteria Q̂∗ and ∆̂∗. Finally, as far as Nl3 is concerned, we see lots of regions in which at

least one directions is dominated by rotation.

Let us now evaluate the effect of polymers by looking at the iso-surfaces at the same

value (0.25) used in Fig. 6.4, but for a viscoelastic fluid with L = 100 and Wiτ0 = 115 at

Reτ0 = 1000. The results for this case is shown in Fig. 6.5 for all normalised criteria.

It is remarkable that the normalised criteria predict the same effects in the presence

of elasticity. Even if the elliptic regions are not as spatially organised as in Fig. 6.3

(regarding the non-objective and non-normalised criteria), the general tendency of

weakening and growth is also noticed in Fig. 6.5. One can take, for instance, the

objective isotropic criterion, Nφ, by comparing Figs. 6.4e and 6.5e. Note that the elliptic

domains are bigger in the latter but there are more blank spaces within the domain,

indicating a decrease in the amount of elliptic regions and a tendency to combine with

each other. The same behaviour applies to all other normalised criteria.

This tendency of the elliptic domains to join with each other in the presence of

polymers can also be observed in Fig. 6.6. This figure contains the contours in plane
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(a)Q∗ (b) Q̂∗

(c) ∆∗ (d) ∆̂∗

(e)Nφ (f)Nl1

(g)Nl2 (h)Nl3

Figure 6.4 – Iso-surfaces of normalised criteria at the value of 0.25 (elliptic regions) at
Reτ0 = 1000 for Newtonian fluid. The displayed domain is restricted to 0 ≤ y ≤ 1 and

0 ≤ x ≤ 4π. Iso-surfaces are coloured with the local intensity of u.
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(a)Q∗ (b) Q̂∗

(c) ∆∗ (d) ∆̂∗

(e)Nφ (f)Nl1

(g)Nl2 (h)Nl3

Figure 6.5 – Iso-surfaces of normalised criteria at the value of 0.25 (elliptic regions) at
Reτ0 = 1000 for viscoelastic fluid (L = 100 and Wiτ0 = 115). The displayed domain is

restricted to 0 ≤ y ≤ 1 and 0 ≤ x ≤ 4π. Iso-surfaces are coloured with the local intensity
of u.
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Figure 6.6 – Contours at z = 3π/4 of all normalised criteria applied to: (left column)
Newtonian and (right column) viscoelastic (L = 100 and Wiτ0 = 115) fluid at
Reτ0 = 1000. The displayed domain is restricted to 0 ≤ y ≤ 1 and 0 ≤ x ≤ 4π.

z = 3π/4 (middle channel in the span-wise direction) for all the normalised criteria

applied to the same flow fields.

The colour scheme in Fig. 6.6 follows the normalised scale of the criteria. Blue stands

for the value of zero, corresponding to extreme elliptic mode (rigid-body motion). Red

indicates the value of 1 associated with extreme hyperbolic mode (purely extensional

motion). The intermediate value of 0.5 is represented by the green colour and indicates

parabolic domains.

The non-objective versions of the criteriaQ and ∆ are presented in the first two lines.

At this plane, the Q-criterion presents predominant (near-)parabolic modes, meaning

that strain and rotation rates are mostly in equilibrium. Dispersed hyperbolic and
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elliptic domains do appear, with a slightly tendency towards hyperbolic modes for both

Newtonian and viscoelastic cases. Precisely for the latter, each subdomain (hyperbolic,

parabolic and elliptic) seems to be less dispersed, therefore composing larger subdo-

mains. Regarding the ∆-criterion a strongly parabolic behaviour is indicated for both

fluids.

The next two lines in Fig. 6.6 (3rd and 4th lines) shows the objective versions of

Q and ∆. They both follow similar trends, presenting basically parabolic and elliptic

modes that are highly dispersed for the Newtonian case and less dispersed for the

viscoelastic case. In fact, for viscoelastic cases, a slight trend to have parabolic modes

near the wall and elliptic modes near the centreline is observed.

The fifth line in Fig. 6.6 depicts the results for the isotropic ratio, Nφ. Generally

speaking, it behaves much the same way as the Q∗. Lines 6−8 display the results for the

line anisotropic ratio, Nl . The behaviour of Nl1 and Nl2 are comparable with that of Q∗,

but the former clearly presents hyperbolic dominance while the latter is slightly elliptic-

dominated. Nl3 is elliptic-dominant and is generally at most parabolic, opposing

to Nl1 that is at least parabolic. Since Nl2 shows more elliptic modes, according to

the Nl-criterion, there are two direction presenting elliptic-dominance and another

direction that is hyperbolic-dominant. The same tendency of decreasing dispersion for

the viscoelastic case is observed for Nl , more pronouncedly for Nl1 and Nl3.

In the following, the effect of Reynolds number and elasticity will be evaluated using

the average on wall-normal plans of the normalised criteria considered here.

6.4.1 Effect of Reynolds number

First, let us analyse the effect of the Reynolds number for a Newtonian fluid. Figure 6.7

shows the plane-averaged profiles of normalised non-objective criteria for friction

Reynolds numbers equal to 180, 395, 590 and 1000.

In a general sense, Reynolds number clearly does not play an important role in

the average profile of the criteria. Regardless of the Reynolds numbers analysed, a

parabolic mode (value of 0.5, characteristic of a laminar flow) is observed from the wall

until y+ ≈ 20. There after, the Q-criterion present slightly hyperbolic values, while the

∆-criterion have even weaker elliptic tendencies that are, in fact, very near from the

parabolic limit.

In view of this apparent independence with respect to the Reynolds number and

for conciseness, Fig. 6.8 concerning the objective versions of the criteria Q and ∆

depicts only the lowest and highest friction Reynolds number (Reτ0 = 180 and 1000,

respectively).

The profiles for the objective versions of Q and ∆ also depart from a parabolic

mode at the wall, but after y+ ≈ 8, they both present more pronounced elliptic modes
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(b)Reτ0 = 395
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(c)Reτ0 = 590
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Figure 6.7 – Profiles of the plane-averaged non-objective criteria for Newtonian fluid at:
(a) Reτ0 = 180; (b) Reτ0 = 395; (c) Reτ0 = 590; and (d) Reτ0 = 1000 .
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Figure 6.8 – Profiles of the plane-averaged objective criteria for Newtonian fluid at: (a)
Reτ0 = 180; and (b) Reτ0 = 1000 .

apparently with an asymptotic behaviour tending to 0.3. It means that, from this

objective perspective, more elliptic modes are identified comparing to the original

(non-objective) versions of these criteria. In addition, we can notice that the objective

versions are more coincident. This is in accordance with the trends found by Martins
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et al. [149] for the ABC and 4:1 sudden contraction.

Still concerning the effect of Reynolds number for a Newtonian fluid, Fig. 6.9

contains the profiles of the objective ratios Nφ and Nl for Reτ0 = 180 and 1000.
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Figure 6.9 – Profiles of the plane-averaged objective ratios for Newtonian fluid at: (a)
Reτ0 = 180; and (b) Reτ0 = 1000 .

Once again, the Reynolds number does not show any pronounced effect on the

average profiles of the criteria. The isotropic ratio, Nφ, has a behaviour comparable to

that of Q∗, while the line anisotropic ratio Nl2 behaves similarly when compared to ∆∗

(see Q∗ and ∆∗ in Fig. 6.7).

Regarding the line anisotropic ratio, Nl1 is predominantly greater than 0.5 and

Nl3 principally less than 0.5. This means that, on average, there are no regions where

extension or rotation dominates in all three directions. By analysing the quantity

Nl2, we conclude that in the viscous sublayer (y+ ≤ 5), there is a one direction that

is swirl-dominated, another that is extensional-dominant, and a neutral (parabolic)

direction. Closer to the centreline, asymptotic behaviour is observed for all three Nl
quantities. Nl1, Nl2 and Nl3 tend, respectively, to ≈ 0.7, 0.45 and 0.225. This indicates

that, away from the near-wall region, there is one direction of extension-dominance,

and two others of swirl-dominance. It is worth noticing that such behaviour was already

reported by Martins et al. [138].

6.4.2 Effect of elasticity

It was shown above that the Reynolds number does not play a relevant role in the

present analysis. Therefore, for the evaluation of the elastic effect, only the results for

Reynolds Reτ0 = 1000 will be presented. At this friction Reynolds number, there are

results for two elastic levels: one with maximum chain extensibility L = 30 and friction

Weissenberg numberWiτ0 = 50, leading to a relative drag reduction of 30% and another

with L = 100 and Wiτ0 = 115 yielding 58% of relative drag reduction.
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The elastic effect can be observed in Fig. 6.10 below containing the results for all the

criteria atReτ0 = 1000. As regards the non-objective and objective versions of the criteria

Q and ∆ (Figs. 6.10a-6.10d), when compared to the their respective corresponding

Newtonian cases (Figs. 6.7d and 6.8b), they all seem to be have the parabolic subdomain

close to wall extended towards the centreline. This is more evident for the objective

criteria (second line) which tend to more accentuated elliptic mode with increasing

y+. While in the Newtonian case the parabolic-dominant subdomain ended at y+ ≈ 8,

for the low-elasticity case (left), it goes until y+ ≈ 10 and for the high-elasticity (right)

it extends until y+ ≈ 30. Thus, according to the criteria Q and ∆ in both their non-

objective and objective versions, increasing the elasticity leads to an augmentation of

the parabolic subdomains near the wall.

The profiles for the objective ratios (Figs. 6.10e and 6.10f) have behave similarly to

the correspondent Newtonian curves showed in Fig. 6.9b. In general, the curves have a

first behaviour starting at the wall, an asymptotic behaviour away from the wall and

a transition region usually starting at the buffer layer (5 ≤ y+ ≤ 30) and achieving the

beginning of the log-law region (y+ > 30). This general behaviour is maintained, but

basically, the y+ positions of this transition region is shifted away from the wall with

increasing elasticity.

Since the transition region that connects the near-wall behaviour with the centreline

asymptote coincides with the buffer layer and is shifted away from the wall, a connection

can be done here with the thickening of buffer layer, observed experimentally [162,

163] and numerically [5, 8, 11, 12] for polymer-induced drag-reducing flows. It is worth

noticing that this effect is also predicted by the two major theories on the drag reduction

mechanism [86, 88].

6.5 Concluding remarks

The main propose here was to provide a new perspective for the phenomenon of

turbulent drag reduction grounded in the principles of objectivity. Criteria that enjoy

objectivity are preferable due to its independence from the reference frame, leading to

more solid and general conclusions.

Two classic flow classification criteria were considered here: theQ-criterion by Hunt,

Wray, and Moin [36] and the ∆-criterion by Chong, Perry, and Cantwell [37]. Other

classic criteria such as λ2 [38], λci [39] and λcr /λci [127] were discarded because of either

limitations on the classification of hyperbolic regions (λci and λcr /λci) or inconsistent

assumptions that lead to undetermined choices when considering polymer solutions

(λ2).

Objective versions of the two classic criteria considered were also tested. The

objectivity is taken into account by replacing the rotation-rate tensor,W , by the effective
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(b) L = 100 and Wiτ0 = 115
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(c) L = 30 and Wiτ0 = 50
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(d) L = 100 and Wiτ0 = 115

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y+

<
Λ
>

x
z

 

 

Λ = Nφ

Λ = Nl1
Λ = Nl2
Λ = Nl3

(e) L = 30 and Wiτ0 = 50
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Figure 6.10 – Profiles of the plane-averaged criteria for two viscoelastic fluids (left
column: L = 30 and Wiτ0 = 50; right column: L = 100 and Wiτ0 = 115) at Reτ0 = 1000:
non-objective criteria in the first line ((a) and (b)); objective criteria in the second line

((c) and (d)); and objective ratios in the last line ((e) and (f)) .

rate-of-rotation tensor, W , the rotation rate relative to the angular velocity of the

eigenvalues of the strain-rate tensor, D.

The objective isotropic and line anisotropic criteria proposed by Thompson [40] were

also assessed. These criteria are based on the concept of (non-)persistence-of-straining.

Also, just like the criterion by Haller [122], it consists of a measure of how much the
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tendency suggested by the strain rate is defied.

All the selected criteria were applied to three flows: the unsteady version of the

analytical ABC flow, the laminar flow of a Newtonian fluid through a 4:1 sudden

contraction and the turbulent channel flow of both Newtonian fluid and polymer

solutions. For all theses cases, objective criteria provided richer information about

the kinematics of the flow and these informations are independent from the reference

frame.

The most important results regards the turbulent channel flow of polymer solutions.

By analysing iso-surfaces, wall-normal cuts and spatial averages of the criteria, some

interesting observations were possible. In accordance with previous work in the litera-

ture [35], the weakening and elongation of elliptic (vortical) regions was noticed for

viscoelastic fluids. When analysed by means of normalisation, the iso-surfaces of the

classic criteria are not as spatially organised as the ones captured by their classic (non-

normalised) version. Consequently, no hairpin vortices are observed with normalised

criteria. However, the effects of elasticity are also in accordance with previous results.

The elliptic regions observed in the presence of polymers are less frequent and bigger

than the ones obtained for Newtonian fluid. These trends increase with increasing

elasticity.

The averaged profiles usually show two distinct behaviour: one in the vicinity of

the wall and another in the log-law region. The location of the transition zone between

these two regions seems to be related with the buffer layer. The upper limit of this

transition zone is shifted away with increasing elasticity, indicating the detection of the

predicted thickening of the buffer layer in polymer induced drag-reducing flows.
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The polymer-induced drag reduction phenomenon has been addressed here in two

different approaches. Firstly, root-based formulations to the conformation tensor were

evaluated with the aim of preserving its positiveness. The original algorithm for DNS

of turbulent channel flow of FENE-P fluid based on the standard conformation tensor

formulation with global artificial diffusion has been modified to consider the square-

root [33] and kernel rootk [34] formulations. The goal was to evaluate the performance

of these transformations under wall-bounded turbulent flows and the need for maintain

or not artificial diffusion.

According to the present simulations, the square-root and kernel transformations

do preserve the positiveness of the conformation tensor, but other limitations have

been found. Firstly, they both needed the inclusion of artificial diffusion to remain

stable. Otherwise, simulations rapidly diverge because of the loss of boundedness of

the conformation tensor.

The damping effect of artificial diffusion in the root-based formulations are more

evident, leading to a significant underestimation of the polymer stretching and, con-

sequently, of the relative drag reduction. The physical tendencies are however in

accordance with benchmark results. Decreasing the artificial diffusivity would leave

to better prediction of the relative drag reduction, but when proceeding so, another

constraint for the conformation tensor is violated.

Before achieving values for which artificial diffusivity leads to relative drag reduction

that are comparable to the usual results in the literature, the algorithm in the root-

based formulations diverges, still due to unbounded values of the conformation tensor.

Therefore, in contrast with the original standard formulation, the addition of artificial

diffusion in the root-based formulations does not guarantee numerical stability. A

suggestion to overcome this new limitation is presented further on.

It is worth noticing that, in the kernel rootk formulation, root degrees other than 2

can be tested. The results suggest that the higher the degree k of the rootk formulation,

the stronger the effect of stress diffusion on underestimating the drag reduction is.

Another important verification concerns the computational time needed by each

formulation. The kernel transformation showed to be about 5 times slower than the

standard (conformation-tensor-based) formulation. On the other hand, the computing
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extra-cost of the square-root formulation with respect to the standard formulation

is only about 10%. In the context of turbulent drag-reducing flows, the square-root

formulation showed to be much more advantageous with respect to the kernel rootk

formulation, basically because it is slightly easier to adapt when departing from a code

based on the conformation tensor, and, more importantly, because it leads to the same

benefits as the kernel rootk formulation but being about 5 times faster with computation

times very close to the ones encountered for the original formulation.

The second study performed regards the evaluation of the influence of polymeric

terms on the composition of some flow classification criteria and the advantages of using

objective flow classification criteria. To evaluate that, some selected criteria have been

applied to the instantaneous fields of turbulent Newtonian and viscoelastic channel

flows at friction Reynolds number from 180 up to 1000.

To investigate the contribution of polymeric terms to the composition of the criteria

Q and λ2, the symmetric part of the evolution equation for the strain-rate tensor was

considered. It has been shown that the assumption of dropping the time-dependent

and viscous terms in the derivation of the λ2-criterion [38] is inconsistent and should be

reconsidered. The referred terms are not negligible and actually have tendencies that,

on average, are contrary to that imposed by the Hessian of the pressure. Moreover, when

considering viscoelastic cases, the choice of how to take into account the contributions

of polymers is not clear at all.

Furthermore, it was verified that the only term contributing to the composition of

the Q-criterion [36] applied to Newtonian fluids is the one related to the Hessian of the

pressure. For polymer solutions, the intensities of all terms (including the polymeric

one) is drastically lowered with increasing elasticity, which indicates that the weakening

of vortices in polymer-induced drag-reducing flows is not a direct consequence of the

contribution of the polymeric stress on its own, but the result of non-linear interactions

between the polymer and the flow dynamics.

As regards objective flow classification criteria, their independence to reference

frame lead to more general conclusions on the flow kinematics. The results concerning

the objective criteria considered here indicate observations of the thickening of the

buffer layer, an effect that is predicted by the major theories on drag reduction [86, 88].

Finally, based on the experience documented here, some ideas for future work are

suggested in the following:

• Positiveness of the conformation tensor in turbulent drag-reducing channel flow

– Implicit algorithm
As stated by Vaithianathan and Collins [26], solving the equations implicitly

may help to avoid unbounded values for the conformation tensor that appear

due to numerical errors and lead to divergence. Even if the price to pay is
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slowing the algorithm, treating some strategical terms of the equation (such

as the stretching term of the form c ·∇u+∇uT · c or the polymer stress) may

alleviate this issue. Is the gain on stability worthy regarding the increase in

computational time? That is one question that arises here.

– Mapping
The simulations performed here suggest that, in the context of turbulent

viscoelastic channel flows, root-type transformations do preserve the posi-

tiveness of the conformation tensor, but do not guarantee its boundedness.

In fact, unboundedness was the main reason of unsuccessful runs during

the present work. Following Housiadas, Wang, and Beris [17], maybe map-

ping the conformation tensor and/or its transformed conformation (kth-root)

could also guarantee boundedness of the conformation tensor, allowing to go

further down for the value of artificial diffusivity.

• Classification of turbulent drag-reducing flow

– Composition ofM
The idea of evaluating the contribution of the terms composing a criterion

could be applied to objective criteria by Thompson [40]. The main idea

behind these criteria is the in-phase-out-of-phase decomposition of the strain

acceleration tensor, M , with respect to the strain rate tensor, D. ButM can be

written either as M = Ḋ+DL+LTD or M =D′ +2D2 +DW −WD. Therefore,

one could apply the in-phase-out-of-phase decomposition to the terms that

compose M and analyse how they contribute to the criteria.

– Different normalisation
The normalisations used here to enable the comparison of the same intensities

regarding vortical motion for different criteria suggested that the mathemati-

cal relation chosen can change the shape of the visualised structures, even

if the physics behind is preserved. For instance, the Q-criterion enables

the visualisation of the classic hairpin vortices. Nevertheless, these vortices

are no longer observed with its normalised version. Therefore, the seek for

other mathematical relations capable of normalising the criteria with minor

changes is suggested for all the criteria used here, including the objective

ratios.
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AppendixA
The solution of implicit ODE with the
BVPSUITE

In Chapter 2, the analytical solution for the steady-state field of the square-root confor-
mation tensor is used as a reference for laminar Poiseuille flows. The velocity profile is
u(y) = (3/2)(1− y2).

When no artificial diffusion is considered, the system of equations to solve with the
square-root conformation tensor formulation is

0 =
1

2Wih

{[
L2 − 3
L2 − tr(c)

]
bxx(y)− b−1

xx (y)
}

+ 6ybxy(y) + axy(y)bxy(y)

0 =
1

2Wih

{[
L2 − 3
L2 − tr(c)

]
byy(y)− b−1

yy (y)
}

+ axy(y)bxy(y)

0 =
1

2Wih

{[
L2 − 3
L2 − tr(c)

]
bzz(y)− b−1

zz (y)
}

0 =
1

2Wih

{[
L2 − 3
L2 − tr(c)

]
bxy(y)− b−1

xy (y)
}
− axy(y)byy(y) .

(A.1)

The resulting system contains only four equations because the components bxz and byz
are null (cxz and cyz as well) and b is symmetric. The trace of the conformation tensor
can be expressed as a function of the components of b, and a is given as a function of b
and of the velocity (see Eq. (2.27)). Once the non-null components of b are calculated,
the conformation tensor is recovered using the relation c = b ·b.

When including stress diffusivity into the equations of the square-root formulation,
two approaches are possible, which have been discussed in Section 3.1. For both
approaches, the problem formulation scales down to a system of implicit second-order
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ODE. In the “a posteriori” approach, the resulting system of ODE is

Db
Reh

d2bxx(y)
dy2 =

1
2Wih

{[
L2 − 3
L2 − tr(c)

]
bxx(y)− b−1

xx (y)
}

+ 6ybxy(y) + axy(y)bxy(y)

Db
Reh

d2byy(y)

dy2 =
1

2Wih

{[
L2 − 3
L2 − tr(c)

]
byy(y)− b−1

yy (y)
}

+ axy(y)bxy(y)

Db
Reh

d2bzz(y)
dy2 =

1
2Wih

{[
L2 − 3
L2 − tr(c)

]
bzz(y)− b−1

zz (y)
}

Db
Reh

d2bxy(y)

dy2 =
1

2Wih

{[
L2 − 3
L2 − tr(c)

]
bxy(y)− b−1

xy (y)
}
− axy(y)byy(y) ,

(A.2)

whereas, for the “a priori” formulation (following Eq. (2.35)), one gets

Dc
2Reh

d2bxx(y)
dy2 =

1
2Wih

{[
L2 − 3
L2 − tr(c)

]
bxx(y)− b−1

xx (y)
}

+ 6ybxy(y) + axy(y)bxy(y)− Dc
Reh

hxx(y)

Dc
2Reh

d2byy(y)

dy2 =
1

2Wih

{[
L2 − 3
L2 − tr(c)

]
byy(y)− b−1

yy (y)
}

+ axy(y)bxy(y)− Dc
Reh

hyy(y)

Dc
2Reh

d2bzz(y)
dy2 =

1
2Wih

{[
L2 − 3
L2 − tr(c)

]
bzz(y)− b−1

zz (y)
}

− Dc
Reh

hzz(y)

Dc
2Reh

d2bxy(y)

dy2 =
1

2Wih

{[
L2 − 3
L2 − tr(c)

]
bxy(y)− b−1

xy (y)
}

− axy(y)byy(y)− Dc
Reh

hxy(y) .

(A.3)

As shown in Eq. (2.34), h is also a function of b and u.

To solve these sets of equations, we use the BVPSUITE [102], a MATLAB code
conceived to solve boundary value problems for systems of implicit ODE.

The boundary conditions for the solution with stress diffusion are obtained from the
steady-state boundary value computed with the standard conformation tensor without
artificial diffusion. This steady-state solution was presented by Sureshkumar, Beris,
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and Handler [5] and reads

cssxx =
1
F(y)

1 +
2Wi2τ0

F2(y)

(
du
dy

)2 ,

cssyy = csszz =
1
F(y)

,

cssxy =
Wiτ0

F2(y)
du
dy

,

cssxz = cssyz = 0 ,

(A.4a)

(A.4b)

(A.4c)

(A.4d)

with

F(y) =

√
3Ω(y)

2sinh(φ/3)
,

Ω(y) =

√
2Wiτ0

L
du
dy

,

φ(y) = sinh−1
(

3
√

3Ω(y)
2

)
.

(A.5a)

(A.5b)

(A.5c)
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AppendixB
Disturbed field used for transition to
turbulence

The technique used here is based on the work of Henningson, Lundbladh, and Johansson
[104] for Newtonian flows, and recently employed in a viscoelastic context by Agarwal,
Brandt, and Zaki [164]. It consists of localised disturbances in the shape of two pairs of
counter-rotating vortices in the stream-wise direction, which are added to the initial
parabolic laminar velocity profile. The streamfunction for the disturbances is

ψ = εf (y)x(y′ − y0)exp
[
−x2 − y2

]
, (B.1)

where ε is the amplitude of the disturbance, x = (x′ − x0)/lx and y = (y′ − y0)/ly , with x0
and y0 being the location of the centre of the disturbance, and lx and ly , the disturbance’s
length scales in the stream-wise and span-wise directions, respectively. Furthermore,

(x′, y′) = (xcosθ − y sinθ,x sinθ + y cosθ) , (B.2)

where θ is the angle with respect to the stream-wise direction. The power-law function
relating the wall-normal dependence is

f (y) = (1 + y)p(1− y)q . (B.3)

The corresponding velocity fluctuations are given by

(u′,v′,w′) =
(
−
∂ψ

∂z
sinθ,

∂ψ

∂y′
,−
∂ψ

∂z
cosθ

)
, (B.4)

and the disturbed velocity field is finally imposed as

(ũ, ṽ, w̃) = (u +u′,v + v′,w+w′) . (B.5)

The parameters for the initial disturbance whose centre coincides with the centre of
the channel are ε = 0.1, (lx, ly) = (2,2), θ = 0, and p = q = 2.
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C.1 Introduction

In Fluid Mechanics, flow visualization is an important subject, since fundamental
aspects of the flow can be captured by observation. Post-processing Computational
Fluid Dynamics (CFD) data is also a field that makes important contributions for the
understanding of the flow. Complex flows exhibit different kinds of motion that depend
on position and time. In these flows, it is common to find swirling motions in different
parts of the domain. In order to locate and visualize these regions, a criterion of vortex
identification is generally used to see the manifestation of the rotational character of
the flow.

However, the concept of a vortex is still cause for dissension within the scientific
community. As a consequence, there are several criteria available in the literature that
are used to identify rotational structures in the flow. In other words, there is no quantity,
in the mathematical sense, that is consensually accepted in the literature as a definition
for a vortex. Some of the non-consensual issues that are present in this context are if the
vortex is an Euclidean or a Lagrangian entity and if it should be defined in a kinematic
or in a dynamical basis.

Comparisons among the different criteria are still a subject of investigation (e.g.
[165]). An important point raised by Haller [122] is the requirement that a vortex
should be an Eulerian invariant entity, i.e. invariant under arbitrary changes of the
reference frame. This requirement affects the vortex concept, since, before that work,
only the Galilean invariance was invoked to define a vortex [38]. We can stress here that
the classic vortex definitions, such as the Q-criterion by Hunt et al. [36], the ∆-criterion
by Chong et al. [37], the λ2-criterion by Jeong and Hussain [38] and the λcr /λci-criterion
by Chakraborty et al. [127], enjoy only Galilean invariance (i.e. they are invariant to
constant velocity translating frames).

The arguments to adopt an objective criterion for vortex identification are the
following. First, if one observer identifies a certain region as being a vortex while,

http://dx.doi.org/10.1016/j.crme.2015.08.002
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for another one, this region is not a vortex, there is no reason to privilege the verdict
stated by one observer with respect to the other. Secondly, we have to have in mind
the advantages of building a criterion for vortex identification. One clear purpose
of identifying a region as being a vortex is to connect the rotational character of the
flow with another phenomenon besides the flow itself. It is consensual that processes
like: the convection in a heat transfer problem, the degree of mixture of different
fluids, the percentage of components due chemical reaction in a flow, the intensity of
polymer stretching due to the flow, and other transport phenomena problems, cannot
be observer-dependent. Hence, if a vortex is non-objective, the logic of cause-effect that
could link the flow character with one of these measurers of the intensity that a certain
phenomenon is occurring is weaker, when compared to an objective criterion.

In the present work we employ objective versions of four classic criteria largely used
in the literature. The classic criteria and their respective objective versions are analysed
and applied for two benchmark cases, the transient Arnold-Beltrami-Childress (ABC)
flow [154–156] and the flow through a 4:1 contraction.

C.2 Classic criteria

In the following we briefly present four criteria that are currently used in the literature
to classify different regions of the flow. These criteria are Eulerian and Galilean-
invariant and were recently selected by Pierce et al. [165] to evaluate for instance
boundary layer flows.

The Q-criterion was proposed by Hunt et al. [36] in the context of incompressible
flows. Besides local pressure minima, they required that, to identify a vortex, the second
invariant of the velocity gradient tensor, ∇u (defined by ∇u = (∂uj /∂xi)eiej , where
u = uiei is the velocity vector field), should be positive. This condition can be expressed
for incompressible flows as a function of the Euclidean norms1 of the symmetric,
D = (L + LT )/2, and skew symmetric, W = (L − LT )/2, parts of the velocity gradient
(where L = (∂ui/∂xj)eiej is the transpose of ∇u). The condition for the Q-criterion can
be expressed as follows,

Q =
1
2

(
‖W ‖2 − ‖D‖2

)
> 0 . (C.1)

The ∆-criterion proposed by Chong et al. [37] is based on the assumption of an
equivalence between a vortex and complex eigenvalues of the velocity gradient tensor2.
Complex eigenvalues of the velocity gradient is a sign of vorticity dominance with
respect to rate-of-strain, since the symmetric rate-of-strain tensor can only have real
eigenvalues. Mathematically, the ∆-criterion can be defined as

∆ =
(Q

3

)3
+
(

det(D +W )
2

)2

> 0 , (C.2)

where det(·) is the third invariant (determinant) of a given second order tensor.
The λ2-criterion proposed by Jeong and Hussain [38] is based on the idea of joining

1The Euclidean norm of a generic second-order tensor A is ‖A‖ =
√

tr(A ·AT ), where tr(·) is the first
invariant (trace) of a given second-order tensor.

2The expression velocity gradient is used interchangeably for L or ∇u.
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the local pressure minima condition to a vorticity predominance over the rate-of-strain
in the same mathematical condition. By making some assumptions, neglecting some
terms, this condition leads to

λ2 = λD
2+W 2

2 < 0 , (C.3)

where λD
2+W 2

2 is the intermediate eigenvalue of the tensor D2 +W 2.
The λcr /λci-criterion proposed by Chakraborty et al. [127] is based on the concept

that material points that follow orbits which remain compact during the revolutions
around each other are in a vortex. λci and λcr are the imaginary and real values,
respectively, of the conjugate complex eigenvalues of the velocity gradient:

λcr
λci

=
λD+W
cr

λD+W
ci

=
λLcr
λLci

. (C.4)

The criterion was proposed in the form λcr /λci < δ and, therefore, a threshold
parameter (δ) is needed. This condition can only be applied in regions where there
are complex eigenvalues of the velocity gradient. This criterion was conceived to be
applied together with the λci > ε criterion proposed by Zhou et al. [39], where another
threshold is needed.

In order to compare the results of the above criteria, normalized dimensionless
versions are used and will be presented in the next section. Specifically for the λcr /λci-
criterion, such normalization allows us yet to avoid the choice of a threshold parameter
(see section C.3 for details).

C.2.1 Objective redefinition for classic criteria

Drouot [145], Drouot and Lucius [146] have shown that the relative rate-of-rotation
tensor, W , defined by

W =W −ΩD , (C.5)

is an objective quantity. In Eq. (C.5), ΩD accounts for the rate of rotation of the
eigenvectors of D, and is defined by

ΩD ≡ êDi ˙̂eDi , (C.6)

where êDi are the normalised eigenvectors of D, and ˙̂eDi are their time derivatives. This
quantity was used by Astarita [131], to form an index defined by the ratio of the norm
of W to the norm of D. This index was used as means for flow classification dividing
the domain into extension-like motions and rigid-body-rotation-like ones. Astarita
[131] was seeking for an objective quantity when he proposed that flow classifier.

Although a different path was followed by Dresselhaus and Tabor [143] and Tabor
and Klapper [148] investigating the alignment and stretching of material filaments3 in
an approach of dynamic systems, they have also arrived on the necessity of expressing
these quantities with the help of the relative-rate-of-rotation tensor, which was called
effective vorticity. The physical interpretation of the effective vorticity is discussed next.

3Material filaments being straight lines of infinitesimal size in the fluid which can rotate, stretch,
compress, but not bend.
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The more common interpretation of the vorticity tensor is that a vorticity compo-
nent associated to a certain plane is the (arithmetic) mean of the rate-of-rotation of two
filaments initially orthogonal to each other in that plane. However, a less adopted inter-
pretation is that the vorticity is the rate of rotation of the filaments which are aligned
to the eigenvectors of D. This fact induces the necessity of evaluating the vorticity
with respect to the rate-of-rotation of the eigenvectors of D. When the eigenvectors
of D are fixed in certain frame of reference, the vorticity tensor is responsible for a
deviation between the filaments that are initially aligned with the eigenvectors and their
respective directions. However, when the flow is complex and the eigendirections of D
do change in time, the effective vorticity is the entity responsible for this deviation and,
by consequence, for exposing different material filaments to the eigenvectors. This also
means that when effective vorticity vanishes, the same material filament is exposed to
the eigendirections of the rate-of-strain tensor. In this case, the filament aligned to the
eigenvector corresponding to the highest positive eigenvalue is persistently stretched.
As shown by Dresselhaus and Tabor [143], effective vorticity plays an important role on
the dynamics of material lines and vorticity lines, affecting vortex stretching also.

As suggested by Haller [122], an alternative but analogous form of the Q-criterion
can be built by replacing vorticity by effective vorticity in Eq. (C.1) leading to

Q̂ =
1
2

(
‖W ‖2 − ‖D‖2

)
> 0 . (C.7)

A similar procedure can be adopted for adapting the other criteria into an objective
backbone. Therefore we can define the new versions of ∆-, λ2-, and λcr /λci-criteria,
respectively, as

∆̂ =
(
Q̂
3

)3

+

det(D +W )
2

2

> 0 , (C.8)

λ̂2 = λD
2+W

2

2 < 0 , (C.9)

λ̂cr
λ̂ci

=
λD+W
cr

λD+W
ci

=
λLcr

λLci

. (C.10)

We highlight that all objective entities hereafter will be displayed with a hat.

C.3 Results

This section presents the results obtained by applying both objective and non-objective
criteria to two cases: (1) the three-dimensional analytical flow field known as the ABC
flow in its unsteady version, and (2) an abrupt 4:1 planar contraction.

It is worth noting that all criteria have been normalized in order to produce values
between 0 and 1. Moreover, normalized values greater than or equal to 0 and less than
0.5 represent swirling-like or elliptical regions, whereas those greater than 0.5 and
less than or equal to 1 represent non-swirling-like or hyperbolic regions. The value
of 0.5 represents then a transition (parabolic) region where the magnitude of rotation
rate and deformation rate are alike. The only exception applies to the λcr /λci- and
λ̂cr /λ̂ci-criteria. Since these criteria apply for elliptical regions only, we decided to
normalize them from 0 to 0.5, where 0.5 is the boundary of elliptical region.
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The difference from the non-objective and objective versions lies on the reference
frame from which the rate-of-rotation is computed. While the non-objective quantities
use the original fixed frame, the objective quantities have their reference on the local
frame attached to the eigenvectors of D.

Normalized criteria are identified by a superscript asterisk and are given by the
following equations [153]

Q∗ =
1
π

cos−1
(
‖W ‖2 − ‖D‖2

‖W ‖2 + ‖D‖2

)
, (C.11)

∆∗ =
1
π

cos−1


(
‖W ‖2 − ‖D‖2

6

)3

+
(

det(D +W )
2

)2

(
‖W ‖2 + ‖D‖2

6

)3

+
(

det(D +W )
2

)2

 , (C.12)

λ∗2 = 1− 1
π

cos−1

 λ2
D2+W 2

tr(D2)−λ1
D2+W 2

−λ3
D2+W 2

 , (C.13)

λ∗cr
λ∗ci

=
2
π2

[
tan−1

(
λcr

D+W

λci
D+W

)]2

, (C.14)

Q̂∗ =
1
π

cos−1

‖W ‖2 − ‖D‖2‖W ‖2 + ‖D‖2

 , (C.15)

∆̂∗ =
1
π
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C.3.1 Transient ABC flow

The classic ABC flow [154–156] is largely used in the study of chaotic trajectories.
Aiming to investigate high-frequency instabilities [157, 158], we used a transient
version of the ABC flow, also considered by Haller [122]. The flow field is given by the
following set of equations:

u(y,z, t) = A(t)sin(z) +C cos(y) ,
v(x,z, t) = Bsin(x) +A(t)cos(z) ,
w(x,y) = C sin(y) +Bcos(x) .

(C.19)
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In the set of equations (C.19), A is time-dependent and is defined as A(t) = A0 +(
1− e−qt

)
sin(ωt) with A0 =

√
3, q = 0.1 and ω = 2π, while B =

√
2 and C = 1.

Figure C.1 contains the normalized classic flow classification criteria (Q∗, ∆∗, λ∗2
and λ∗cr /λ

∗
ci) on the first line and their respective normalized objective version (Q̂∗, ∆̂∗,

λ̂∗2 and λ̂∗cr /λ̂
∗
ci) on the second line. The non-objective criteria were obtained using

the instantaneous velocity flow field (t=0 s) described by the set of equations (C.19),
whereas the objective criteria need two consecutive velocity fields (at the instants t
= 0 and t = 0.01 s) to compute the rate-of-rotation of the eigenvectors of D, ΩD (see
Eq. (C.6) above).

Figure C.1 – Iso-contours of the normalized flow classification criteria applied to the
ABC flow field: non-objective (first line) and objective (second line) versions of

Q∗-criterion, ∆∗-criterion, λ∗2-criterion and λ∗cr /λ
∗
ci-criterion.

The figure shows three surfaces of the cube whose dimensions are limited to the
interval [0,2π]. Generally, the normalized Q- and λ2-criteria (first and third columns
in Fig. C.1, respectively) present very similar results, which may be explained by
the strong relation between these two criteria (see [38]). The classifications of the
normalized ∆-criteria (second column in Fig. C.1) are also qualitatively similar when
compared to those obtained using the normalized Q-criteria, although slightly different
quantitatively, which, once again, may be justified by the relation between the ∆-
criterion and the Q-criterion ([38]). Both λ∗cr /λ

∗
ci- and λ̂∗cr /λ̂

∗
ci-criteria (last column in

Fig. C.1) have a different range due to less detailed information on non-swirling-like
regions. Nevertheless, they maintain a similar qualitative behaviour in terms of the
location of vortex cores.

Analysing the non-objective criteria (first line in Fig. C.1) at the plane z = 2π, the
Q∗-, ∆∗- and λ∗2-criteria (Figs. C.1a-c) identify two vortex cores at (x ≈ π/2, y ≈ π/2)
and (x ≈ π/2, y ≈ 3π/2), which are characterized by the colour blue. Once again, due
to its different range, almost all the region between 0 < x < π is blue according to the
λ∗cr /λ

∗
ci-criterion (Fig. C.1d), characterizing a swirling-like region. Still at this plane,

all classic criteria seem to identify extensional (red) regions whose cores are located
at approximately (x = 3π/2, y = π/2) and (x = 3π/2, y = 3π/2). The regions between
elliptical (blue) and hyperbolic (red) regions are transition regions (green) generally
referred to as parabolic, where the role played by rotation and extension is equivalent.
Qualitatively, the results at the plane y = 2π are very similar to those of the plane z = 2π.
Two vortex (blue) cores are now identified at (x ≈ π/2, z ≈ π/2) and (x ≈ 3π/2, z ≈ π/2),
and two extensional (red) regions are located at approximately (x = π/2, z = 3π/2)
and (x = 3π/2, z = 3π/2). It is worth noting that the magnitude of both swirling-
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and non-swirling-like regions are slightly greater than those identified at the plane
z = 2π. Finally, for the plane x = 2π, the behaviour is yet similar, with vortex cores now
identified at (y ≈ π/2, z ≈ π/2) and (y ≈ π/2, z ≈ 3π/2), and extensional regions centred
around (y ≈ 3π/2, z ≈ π/2) and (y ≈ 3π/2, z ≈ 3π/2). The main difference at this plane is
the magnitude of the identified motions, which is reasonably weaker, indicating that
the intensities of rotational and extensional motions are close to each other.

From the perspective of the objective criteria (second line in Fig. C.1), the flow at the
three planes analysed above presents quite similar characteristics. The main difference
is the remarkable increase in swirling-like (blue) regions. This fact is related to regions
where the rate of rotation of the eigenvectors of D are more pronounced, see Fig. C.2.
This means that there are regions where the filaments aligned with the eigenvectors
of D do not rotate intensively with respect to the reference frame where the problem
is being described, but rotate significantly with respect to the frame attached to the
eigendirections of D. This fact will be more explored in the following section for the
4:1 abrupt contraction below.
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Figure C.2 – Eigendirections of tensor D in the three planes for the ABC flow
considered. The ordering corresponds to the eigenvalues λD1 ≥ λ

D
2 ≥ λ

D
3 .

C.3.2 Abrupt 4:1 contraction

The flow generated by an abrupt 4:1 contraction presents different regions in which the
fluid is submitted to shear, extension or rigid-body motion. Because this feature can
be considerably useful for a rich discussion about flow classification, we considered a
laminar steady state flow of a Newtonian fluid (Reynolds number based on the outlet
velocity and height equal to 0.043). The numerical approach used is the same described
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by Mompean et al. [159] and the mesh consists of 150×80 grid points respectively in the
streamwise (x) and wall-normal (y) directions.

The iso-contours of non-objective (left column) and objective (right column) flow
classification criteria are shown in Fig. C.3. Likewise the ABC flow, the non-objective
criteria employed here provide similar identifications and classifications except for
the λ∗cr /λ

∗
ci-criterion, since it has a different range associated to elliptical and parabolic

domains only. The same rationale applies to the objective versions.
Again, the green color represents regions which are not elliptical nor hyperbolic. In

the present case they are related to the shear motion typical of fully-developed flow in
a geometry of constant cross sectional area.

Figure C.3 – Iso-contours of flow classifiers for the flow trough a 4:1 contraction:
non-objective (left-hand side) and objective (right-hand side) versions of Q∗-criterion,

∆∗-criterion, λ∗2-criterion and λ∗cr /λ
∗
ci-criterion.

The non-objective criteria Q∗, ∆∗ and λ∗2 (Figs. C.3a-c) identify a shear region away
from the contraction, where the flow is fully developed. Close to the contraction and
around the symmetry plane, an extensional region can be seen due the acceleration of
the fluid passing through the contraction. Both near the sharp corner (x ≈ 2.75,0.75 /
y / 1) and the corner vortex (x ≈ 2.5,0.1 / y / 0.25) a mix of extensional and rotational
motions is observed. In fact, in these regions, the fluid is submitted to both extensions
and rotations caused by the singularity of the geometry nearby. It is worth remembering
that the λ∗cr /λ

∗
ci-criterion does not provide any distinction in terms of non-swirling-like

motions, i.e. swirling-like motions have a degree of intensity (greater than or equal to
0 and less than 0.5) whereas non-swirling-like motions possess only the classification
(equal to 0.5, without a gradation). Therefore, in Fig. C.3d, every region in red may
be interpreted simply as a non-swirling-like region (possibly being either shear or
extensional). The blue regions, on the other hand, can be considered as elliptical
regions. Thus, except for the size and intensity, the same two regions with rotational
motions pointed by the other non-objective criteria are identified by the λ∗cr /λ

∗
ci-criterion.

However, it also identifies two extra swirling regions: (a) the one close to the wall in the
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inner region, and (b) the one just by the outlet region.
Concerning the objective criteria (Figs. C.3e-h), the same three elliptical (swirling-

like) regions identified by Mompean et al. [159] are observed here. As commented by the
authors, the regions (i) just after the sharp corner (x ≈ 2.75,0.75 / y / 1), and (ii) near
the corner vortex (x ≈ 2.5,0.1 / y / 0.25) are intuitively understandable, since the flow
is submitted to rotate at rates which are larger than the local rate-of-deformation. On
the other hand, the third region (iii) just before the extensional region may be counter-
intuitive at first, since it appears between regions of expected shear and extension.
Again, the authors explain that this region should actually be considered as a plug
flow (close to rigid-body motion) where the rates of rotation of the eigenvectors of
D are larger than the local rates of deformation. One important result shown by the
objective quantities is the information with a broad-spectrum of values for all the four
criteria when compared with the non-objective quantities. This information is frame-
invariant and related to the principal directions of the rate-of-deformation tensor,
and is physically expected. Before entering a region where extension is dominant,
the region just before the contraction plane, the eigenvectors of D rotate from the
π/4 − 3π/4 directions of the shear flow in the fully-developed region to the 0 − π/2
directions of the extensional flow. This rotation is overlooked by the non-objective
criteria, but are captured by the objective ones. Although the filaments do not rotate
predominantly with respect to the reference frame (x,y), they do rotate with respect
to the eigenvectors of D, as clearly shown in Fig. C.4. Because of this relative rate
of rotation, new filaments are exposed to the corresponding eigenvalues. A similar
rationale explains the appearance of the elliptical region just after the contraction, not
detected by the non-objective quantities. The D-eigenvectors need to rearrange in order
to return to a fully-developed condition.
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Figure C.4 – Eigendirections of tensor D in the x − y plane for the 4:1 contraction flow.
Again, the ordering corresponds to the eigenvalues λD1 ≥ λ

D
2 ≥ λ

D
3 .

It seems that the λcr /λci-criterion has some problems on the so-called parabolic
regions, i.e. the regions of transition between hyperbolic and elliptical regions. It is
difficult to delineate this intermediate region by this criterion in both, objective and
non-objective versions. We can notice an almost binary color result. What we can see
is that parts of the domain with no apparent physical difference that are classified as
hyperbolic or elliptical. Most of these parts are in the parabolic region accordingly to
other criteria.

C.4 Final remarks

In the present work we analysed the performance of normalized objective versions of
classic flow classification criteria. The classic criteria are the Q-criterion proposed by
Hunt et al. [36], the ∆-criterion proposed by Chong et al. [37], the λ2-criterion proposed
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by Jeong and Hussain [38], and the λcr /λci-criterion proposed by Chakraborty et al. [127].
The two flows considered were the transient ABC flow with A(t) = A0 +

(
1− e−qt

)
sin(ωt)

(with A0 =
√

3, q = 0.1 and ω = 2π), B =
√

2 and C = 1, and a 4:1 abrupt contraction.
The ABC flow is known for its chaotic character for the values employed. The abrupt
contraction is a complex flow that exhibits different types of motion distributed in the
domain: extension, pure shear, and rigid-body motion.

The objective quantities in the present work use the effective vorticity as the entity
associated to the elliptical character of the flow, in the place of the vorticity. The main
difference between objective and non-objective quantities was the presence of elliptical
regions in the objective versions which were not present in its non-objective counter-
parts. This happened because in these regions, the rate-of-rotation of the eigenvectors
of the rate-of-strain tensor, with respect to the original frame, was significant and the ef-
fective vorticity uses this rate-of-rotation as reference for computing the rate-of-rotation
of the filaments.

Finally, it was shown that the objective criteria provides more information about the
kinematics of the flow. Such new features of the flow may be useful in the investigation
of complex flows and phenomena, as, for instance, drag-reducing flows, convection-
driven problems or the mixture between two or more fluids. We emphasize that our
goal is not to appoint to a preferable particular flow classification criterion, but to stand
up for the advantages of applying criteria which enjoy objectivity.
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Abstract

Turbulent flows present several compact and spatially coherent regions generically
known as coherent structures. The understanding of these structures is closely related
to the concept of vortex, whose definition is still a subject of controversy within the
scientific community. In particular, the role of objectivity in the definition of vortex
remains a largely open question. The three most usual criteria for vortex identification
(Q, ∆ and λ2) are non-objective since they all depend on the fluid’s rate-of-rotation,
which is not invariant to the reference frame. In the present work, we propose an objec-
tive redefinition for these criteria by using the concept of relative rate-of-rotation with
respect to the principal directions of the strain rate tensor. We also explore two novel
naturally objective flow classification criteria. All the criteria are applied to instanta-
neous velocity fields obtained by DNS of both Newtonian and viscoelastic turbulent
channel flows. The analysis will be carried out here for four friction Reynolds numbers
from 180 to 1000, emphasizing the difference between objective and non-objective
flow classification criteria, as well as between Newtonian and non-Newtonian flows.
Moreover, we try to obtain, from the results of flow classification criteria, information
related to the polymer drag reduction phenomenon.

D.1 Introduction

Vortices are present in many practical flows and their dynamics dictates several phe-
nomena, such as heat transfer, mixing, combustion, noise generation and hydrodynamic

http://dx.doi.org/10.1007/978-3-319-20388-1_37
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drag. Hence, a solid understanding of vortex dynamics may lead to a better comprehen-
sion of these phenomena.

D.1.1 Previous work

In fact there is not, among researches, a consensus for the definition of a vortex. Instead,
there are several criteria available in the literature. Nevertheless, the majority of these
definitions is based on the rate-of-rotation (or vorticity) tensor, W. Such tensor is not
invariant under general transformations of the reference frame. In other words, tensor
W does not enjoy the objectivity property. Thus, all criteria which depend on the
rate-of-rotation tensor are not objective as well. For instance, the classic Q-criterion by
Hunt et al. [36]), ∆-criterion by Chong et al. [37], and λ2-criterion by Jeong and Hussian
[38], largely employed in the literature, all depend on the tensor W and, therefore, are
not objective criteria.

A key concept relevant to the discussion on objectivity is the concept of persistence-
of-straining, introduced by Lumley [86], and applied by several authors [129, 131, 140–
142]. In brief, this concept is associated to the capacity of the flow to persistently stretch
a material filament. This leads to a physically consistent perspective of the motion of a
fluid element, and, consequently, to a new point of view regarding flow classification.
In this connection, rigid body motion opposes to maximum persistence-of-straining.
In this context, Astarita [131] argued that, because flow classification is mostly used
to verify the behavior of constitutive equations, a solid criteria should enjoy (among
others) the same invariance properties as those required for the constitutive equations.
Besides that, a legitimate flow classification should be an intrinsic character of the flow,
and not something that changes depending on the observer. The author proposed a
criterion based on the relative rate-of-rotation (W), a quantity known to be objective
([145, 146]). The tensor W represents the rate-of-rotation with respect to the principal
directions of the strain rate tensor (D).

Despite the remarkable work carried out by Astarita, the criterion proposed by him
has been proven to present some flaws for certain classes of 3D flows, see [147]. By
analyzing these inconsistencies, Thompson and de Souza Mendes [142] proposed a
criterion based on the concept of persistence-of-straining.

By examining stretching and alignment of material filaments, Tabor and Klapper
[148] verified the importance of the use of the relative rate of rotation without invoking
objectivity. Their analysis reinforces Astarita’s criterion which is equivalent to an
objective version of the Q-criterion mentioned above.

Haller [122] conducted a remarkable work which defends the importance of objec-
tivity on identifying a vortex and presents a criterion based on the stability analysis
of the trajectory of particles immersed in the flow. His criterion uses the covariant
strain acceleration tensor, obtained from the covariant convected derivative of the strain
rate tensor, in order to quantify the ability of the flow to defy the stretching tendency
imposed by the strain rate tensor. The author also presents a simple elucidating example
regarding the role played by objectivity. In a subsequent work, Thompson [129] adds
more consistent physical meaning to the role played by the covariant strain acceleration
tensor, proposing a persistence-of-straining criterion based on this entity.

The present work aims to analyze the behavior of objective and non-objective kine-
matic flow classification criteria applied to the instantaneous velocity fields of both
Newtonian and viscoelastic channel flows obtained by direct numerical simulation
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(DNS). The interaction between polymer and turbulence, especially near the wall, is
also aimed due to its relation to the drag reduction phenomenon.

D.2 Objective versions for classic flow classification cri-
teria

The relative rate-of-rotation, presented by Astarita [131], is the rate-of-rotation “of the
fluid" with respect to the principal directions of the strain rate tensor. Mathematically,
it takes the following form given by Eq. (D.1),

W = W−ΩD , (D.1)

where ΩD is the tensor that gives the rate of rotation of the eigenvectors of D. Although
both W and ΩD are non-objective tensors, Drouot and Lucius [145, 146] have proven
that W is objective. If W vanishes, the filaments that are aligned to the eigenvectors of
D have the tendency to continue aligned. In this sense, the stretch is persistent.

An objective redefinition for the Q-criterion is now proposed by replacing the non-
objective rate-of-rotation tensor, W, by the objective relative rate-of-rotation tensor, W,
in its respective original formulation, yielding

Qs =
1
2

(
‖W‖2 − ‖D‖2

)
> 0 . (D.2)

Applying the same methodology to the ∆ and λ2-criteria, their objective versions take
the form of Eqs. (D.3) and (D.4), respectively.

∆s =
(Qs

3

)3
+
(
det(D + W)

2

)2

> 0 (D.3)

λD2+W
2

2 < 0 (D.4)

D.3 Novel naturally objective criteria

We adopt here a decomposition of the covariant strain acceleration tensor, M ≡
4
D

(where the triangle indicates the covariant convected time derivative) with respect to
the strain rate tensor, D, as discussed in [129]. This decomposition splits tensor M into
two additive parts: a part that is in-phase with D, φDM , and a part that is out-of-phase
with D, φ̃DM . These tensors are defined as

φDM = IDD : M ; φ̃DM =
(
Iδδ − IDD

)
: M , (D.5)

where the symbol “:" accounts for the double dot product and IDD is a fourth order
tensor given by

IDD =
3∑
i=1

eDi eDi eDi eDi , (D.6)
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where eDi is an eigenvector of D and Iδδ is the fourth order identity tensor.
Aligned to the concepts presented by Haller [122], we can define a ratio, IR, that can

be interpreted as a measurer of how tensor M corroborates the tendency dictated by D
as

IR = 1− 2
π

cos−1


∣∣∣∣∣∣φD

M

∣∣∣∣∣∣
||M||

 . (D.7)

It can be shown that this quantity is the complement with respect to unity to the
quantity we would find if we replace φDM by φ̃DM . In this other case this quantity would
be a measurer of how tensor M defies the tendency dictated by D.

Because the flow character is, most of the times, anisotropic, we found the necessity
to come up with anisotropic ratios that could better represent the competition between
the parts that corroborates and defies the D-tendency. Hence, we can define anisotropic
ratios depending on the eigendirection of D, as

AR(k) = 1− 2
π

cos−1


√

[M]kk [M]kk

[MM]kk

 , (D.8)

where [M]kk is an element of the principal diagonal of tensor M (terms of M which are
in-phase with D), and [MM]kk is an element of the principal diagonal of tensor M2.

The anisotropic ratios are reorganized so that AR1 > AR2 > AR3. The anisotropic
ratios are better interpreted together. While the other criteria aim to give an overall
verdict, the anisotropic ratios provide a directional information.

D.4 Results and discussions

We discuss here the results obtained with all criteria applied to the instantaneous
velocity fields of both Newtonian and viscoelastic channel flows obtained by DNS with
the massively parallel algorithm presented by Thais et al. [19]. Viscoelastic effects
are taken into account by means of the FENE-P model with maximum polymer chain
extensibility L equal to 100 and a friction Weissenberg numberWeτ (beingWeτ = λu2

τ /ν,
where λ is the relaxation time scale, uτ is the friction velocity and ν is the kinematic
viscosity of the solution) equal to 115, which leads to a percentage of drag reduction of
62.3%.

It is possible to identify the so called hairpin vortices in turbulent boundary layers
by the application of classic flow classification criteria (such as Q, ∆ and λ2 criteria).
The dynamic evolution of these hairpin vortices have been largely explored in the
literature (see, for example, ref. [160] for a remarkable literature review). Regarding
non-Newtonian fluids, one of the first analyses of the effects of elasticity on such
coherent structures was carried out by Kim et al. [35]. In drag-reducing flow, he authors
noted that hairpin vortices get larger and weaker due to rotations imposed by the
polymer work, which are in opposition to that of the vortices.

Figure D.1 shows the iso-contours of the Q-criterion for both Newtonian (left
column) and viscoelastic (right column) fluids at four friction Reynolds numbers,
Reτ = 180, 395, 590 and 1000 (being Reτ = uτh/ν, where h is the channel half-gap).
Using the Q-criterion, the classic hairpin vortices are recovered for the Newtonian fluid
and very similar structures are identified for the viscoelastic cases. Moreover, regardless
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of the fluid, the quantity of hairpin vortices increases with the friction Reynolds number.
The same qualitative results are found for the two other classic criteria cited above (∆
and λ2) and thus such results are not shown.

Figure D.1 – Iso-contours of Q-criterion (Q = 1.5) for Newtonian (left column) and
viscoelastic (right column) fluids at Reτ = 180, 395, 590 and 1000.

The elastic effect observed in Fig. D.1 is also remarkable. Taking the same friction
Reynolds number, the number and the size of hairpin vortices change reasonably. The
results show that, for the same value of the Q-criterion (i.e., for the same intensity of
rotation) there are less hairpin vortices in the viscoelastic cases than in the Newtonian,
which suggests that the intensity of hairpin vortices is reduced, as already observed by
Kim et al. [35]. Furthermore, hairpin vortices seem to be bigger in the viscoelastic cases.

On the other hand, from the perspective of the objective versions, classic hairpin
vortices are no longer observed, as shown in Fig. D.2. In fact, the objective criteria
identify swirling-like regions, but their ensemble does not present any well-defined
shape.

D.4.1 Thickening buffer layer in viscoelastic flows

Since we could not identify any well-defined shape with the objective criteria, a wall-
normal plane placed in the middle of the channel and measuring the half-gap height is
investigated bellow.

Aiming to better understand the differences observed between objective and non-
objective approaches, the criteria are normalized so that the results are always between
0 and 1. The low values (from 0 to 0.5) represent swirling-like regions, whereas the high
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Figure D.2 – Iso-contour for non-objective (a) and objective (d) versions of Q-criterion,
and IR (b) and AR (c, e and f) criteria for Newtonian fluid at Reτ = 180.

values (from 0.5 to 1) represent non-swirling-like regions. If the normalized criteria is
equal to 0.5, than, in that point, the intensities of extension and rotation are equivalent.
Normalized criteria are marked with a superscript asterisk, except for IR and AR, which
are already normalized.

The analysis of the contours of the normalized criteria in wall-normal (xy-) planes
enables the observation of an interesting behavior that seems to be related to the drag
reduction phenomenon, as depicted in Figs. D.3 and D.4. Firstly, it is important to notice
that from the perspective of the classic Q-criterion, the Newtonian flow (Fig. D.3(a)) is
globally dominated by regions where the intensity of the rate-of-rotation is similar to
the intensity of the rate-of-strain (Q∗ = 0.5). Nevertheless, there are some swirling-like
(Q∗ < 0.5, or darker) and non-swirling-like (Q∗ > 0.5, or lighter) regions dispersed in the
plane.

Figure D.3 – Contours of non-objective and objective criteria for Newtonian fluid at
Reτ = 180. The xy-plane is located in the middle of the channel.
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Figure D.4 – Contours of non-objective and objective criteria for viscoelastic fluid with
L = 100 and Weτ = 115 at Reτ = 180. The xy-plane is located in the middle of the

channel.

On the other hand, when analyzing the same snapshot from the perspective of
the normalized objective version of the Q-criterion (Fig. D.3(d)), the flow seems to be
swirl dominated (Q∗s < 0.5), except for a thin layer where Q∗s ≈ 0.5. However, the other
objective criteria (Fig. D.3(b, c, e and f)) present more homogeneous results qualitatively
closer to the those of the Q∗-criterion.

At a first impression, the results for the viscoelastic case depicted in Fig. D.4 present,
in general, more elongated structures when compared to the Newtonian case (Fig. D.3).

Interestingly, comparing the Newtonian and the viscoelastic results for the Q∗s-
criterion (respectively, Figs. D.3(d) and D.4(d)), it is noteworthy that the thickness of
the layer where Q∗s ≈ 0.5 increases in the latter case. We believe that this is due to the
thickening of the buffer layer caused by the presence of flexible polymers, leading to
drag reduction. Such physical effect has been already observed by many authors by
both experiments [163] and numerical simulations [5, 8, 11, 12], and has been predicted
by the two most important theories on drag reduction phenomenon (Lumley’s viscous
theory [86], and Tabor and De Genne’s elastic theory [88]).

The effect that seems to represent the thickening of the buffer layer is even more
evident in Figs. D.5 and D.6, which contain the values of all criteria evaluated in the
present work averaged at wall-parallel (xz) planes for Newtonian and viscoelastic fluids,
respectively, at Reτ = 180.

All non-objective criteria depicted in Figs. D.5(a) and D.6(a) present similar behavior.
Extensional and swirling motions have the same intensity within the near-wall region
and values tend to be slightly extensional near the center of the channel, whereas a very
weak rotational tendency is found for the ∆∗-criterion. The major difference is that, for
the viscoelastic case, the criteria are equal to 0.5 even near the center of the channel,
which is probably related to the thickening of the buffer layer.

Regarding objective criteria in Figs. D.5(b) and D.6(b), as predicted by Figs. D.3 and
D.4, the IR criterion present a behavior which is similar to those of non-objective criteria.
It can be noticed that AR1 ≥ 0.5 and AR3 ≤ 0.5 in the whole domain. This fact suggests
that there is no perfect extension, where extension acceleration overcomes rotation
acceleration in the three directions, nor perfect swirling structure where the opposite
happens. What we have, instead, is a situation where at every point of the domain there
are directions where extension overcomes rotation and vice-versa. The quantity AR2
shows that near the wall, the swirling structure has one direction extensional-dominant,
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Figure D.5 – xz-plane averaged values of non-objective (left) and objective (right)
criteria for Newtonian fluid at Reτ = 180.
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Figure D.6 – xz-plane averaged values of non-objective (left) and objective (right)
criteria for viscoelastic fluid with L = 100 and Weτ = 115 at Reτ = 180.

another swirling-dominant, and a neutral direction. Near the centerline there are two
directions where rotation dominates.

The objective versions of the classic criteria present behavior which are qualitatively
the same. In the near-wall region, they follow the tendency of their non-objective
counterpart, with a first layer around 0.5. However, near the center of the channel,
these criteria tend to identify swirl-dominated regions, opposing the modest tendency
of identifying extensional motion presented by the corresponding classic non-objective
criterion (except for ∆∗) in this region. Moreover, because the swirl motion identified by
such criteria is reasonably more intense, the deviation gets more evident, enabling an
estimation of the thickening, due to the presence of polymers, of the layer related to
the buffer layer. Comparing the results of the objective version of the classic criteria
in Figs. D.5(b) and D.6(b), the thickness of the near-wall layer where the value of the
criteria is around 0.5 increases from y+ ≈ 8 in the Newtonian case to y+ ≈ 40 in the
viscoelastic case.

It is important to remark that the same analysis have been carried out for Reτ = 395,
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590 and 1000. Nevertheless, the thickness of the buffer layer seems to depend more on
the percentage of drag reduction than on the Reynolds number. The results at higher
friction Reynolds are qualitatively similar to the case at Reτ = 180 differing basically by
the possibility to go further on the y+ scale.
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Numerical simulation of turbulent viscoelastic fluid flows
Flow classification and preservation of positive-definiteness of the conformation tensor

Abstract

The purpose of this work is to provide an enhancement of the knowledge about the polymer-
induced drag reduction phenomenon by considering some aspects of its numerical simulation
and the changes that occur in the flow kinematics. In the first part, the square root and kernel
root-k formulations for the conformation tensor in the FENE-P model were implemented and
showed to preserve the positiveness of the conformation tensor. However they led to numerical
divergence due to the loss of boundedness of the conformation tensor. This constraint was
violated even with the inclusion of artificial diffusion. The damping effect of artificial diffusion
helped to ensure numerical stability, but led to relative drag reduction from 22% to 42% lower
than expected from traditional methods. In the second part, the composition of two classic flow
classification criteria was evaluated by means of the dynamic terms in the evolution equation of
the strain-rate tensor. The λ2-criterion was criticised due to the lack of clarity concerning some
assumptions. The analyses of the Q-criterion suggest that the well-known weakening of vortical
regions in drag-reducing flows is a consequence of non-linear interactions between the polymer
stress and flow dynamics. Moreover, the use of objective flow classification criteria provided
richer information concerning the flow kinematics. Finally, the thickening of the buffer layer in
drag-reducing flows was visualised.

Keywords: viscoelastic flows, flow classification, vortex identification, objectivity, turbulent
channel flow, drag reduction, turbulence, direct numerical simulation, artificial diffusion,
FENE-P, conformation tensor

Simulation numérique d’écoulements turbulents de fluides visco-élastiques
Classification d’écoulements et préservation de la positivité du tenseur de conformation

Résumé

Le but de ce travail est de fournir une amélioration de la connaissance sur le phénomène de la
réduction de la traînée induite par polymère en considérant certains aspects de sa simulation
numérique et les changements qui se produisent dans la cinématique de l’écoulement. Dans un
premier temps, les transformations du type racine carrée et kernel racine-k pour le tenseur de
conformation du modèle FENE-P ont été implémentées afin d’assurer la positivité du tenseur de
conformation. Cependant, ces approches divergent en raison du caractère non-borné du tenseur
de conformation. Cette contrainte n’a pas été respectée, même avec l’inclusion de diffusion
artificielle. L’effet d’amortissement de la diffusion artificielle a permis d’assurer la stabilité
numérique, mais il aboutit à une réduction de la traînée relative de 22% à 42% plus faible
que prévue par les approches standards. Dans un second temps, on a évalué la composition de
deux critères classiques de classification d’écoulements à l’aide des termes dynamiques dans
l’équation d’évolution du tenseur de déformation. Le critère λ2 a été critiqué en raison du
manque de clarté concernant certaines hypothèses. Les analyses du critère Q suggèrent que
l’affaiblissement bien connu des régions tourbillonnaires dans les écoulements avec réduction
de traînée est une conséquence des interactions non linéaires entre la tension polymérique et la
dynamique de l’écoulement. En outre, l’utilisation de critères de classification d’écoulements
objectifs a fourni des informations plus riches concernant la cinématique de l’écoulement.
Enfin, l’épaississement de la zone tampon dans les écoulements avec réduction de traînée a été
visualisé.

Mots clés : écoulements viscoélastiques, classification d’écoulements, identification de vortex,
objectivité, écoulement turbulent en canal plan, réduction de la traînée, turbulence,
simulation numérique directe, diffusion artificielle, FENE-P, tenseur de conformation
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