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Abstract

Users expect modern software to be both continually available and updated on the

fly. Introduction of new features and integration of bug fixes should not trouble

the smooth running of an application. Developers also benefit from dynamic mod-

ifications of software, e.g. they can adapt code to new unanticipated situations

or they can run dynamic analyses to get feedback about the behavior of running

applications for monitoring, debugging and optimization purposes. Programming

languages and their runtimes should thus provides developers with mechanisms

that improve software adaptability.

At the same time, the increasing size and complexity of software call for ap-

plications made up of many interacting components developed by different parties.

In this context, either all components are trusted or each component needs to be

properly protected from other ones. For example, a plugin should not be able to

manipulate the internal structures or leaks private data of its host application unre-

strictedly. Likewise, a malicious library should not be able to corrupt its clients or

interfere with their operations. Programming languages should thus provide devel-

opers with mechanisms that improve software isolation, such as encapsulation and

custom access control policies.

The need for dynamic adaptations that can change nearly every aspect of an

application on the one hand and the need for properly confined components on

the other hand pulls programming language design in two opposite directions: ei-

ther more flexibility or more control. This dissertation studies this tension in the

context of dynamically-typed object-oriented languages with two language mech-

anisms that promote software adaptability: reflection and extension methods. For

both mechanisms, we demonstrate their usefulness, their harmful effect on encap-

sulation and propose solutions to retain their power while maintaining encapsula-

tion.
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Résumé

Les utilisateurs s’attendent à ce que les logiciels d’aujourd’hui soient à la fois con-

tinuellement disponibles et mis-à-jour à la volée. L’introduction de nouvelles fonc-

tionnalités et l’intégration de correctifs ne doit pas perturber la bonne marche d’une

application. Les développeurs bénéficient aussi de la modification dynamique des

logiciels: par exemple, ils peuvent adapter le code à de nouvelle situations non

anticipées ou bien ils peuvent exécuter des analyses dynamiques pour obtenir du

retour sur le comportement d’applications en cours d’exécution, et ce, à des fins de

monitorage, de déboggage et d’optimisation. Les languages de programmation et

leurs environments d’exécution doivent donc fournir aux développeurs des mécan-

ismes qui améliorent l’adaptabilité logicielle.

Dans le même temps, l’augmentation de la taille et de la complexité des logi-

ciels requièrent des applications faites de nombreux composants développés par

différents groupes. Dans ce contexte, soit tous les composant sont supposés dignes

de confiance ou bien chaque composant doit être convenablement protégé des

autres. Par exemple, un greffon logiciel ne doit pas être capable de manipuler les

structures internes ou bien de divulguer les données privée de son application hôte

de manière non contrôlée. De la même manière, une bibliothèque malveillante ne

doit pas pouvoir corrompre ses clients ou interférer dans leurs opérations. Les lan-

guages de programmation doivent donc fournir aux développeurs des mécanismes

qui améliorent l’isolation logicielle, tels que l’encapsulation et des politiques de

contrôle d’accès sur mesure.

Le besoin de supporter des adaptations dynamiques qui peuvent change quasi-

ment chaque aspect d’une application d’un côté, et le besoin d’avoir des com-

posants convenablement confinés d’un autre côté, poussent la conception des lan-

guages de programmation dans deux directions opposées: soit plus de flexibilité,

soit plus de contrôle. Cette dissertation étudie cette tension dans le contexte des

languages orientée-objet dynamiquement typés via deux mécanismes qui promeu-

vent l’adaptabilité logicielle: la réflexion et les méthodes d’extension. Pour cha-

cun de ces mécanismes, nous démontrons leur utilité, leurs effets néfastes sur

l’encapsulation et proposons des solutions qui conservent leurs forces tout en main-

tenant l’encapsulation.
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CHAPTER 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . 19

Users expect modern software to be both always available and updated on the

fly. Introduction of new features or integration of bug fixes should not trouble the

smooth running of an application. Developers also benefit from dynamic mod-

ifications of software, e.g. they can adapt code to new unanticipated situations

or they can run dynamic analyses to get feedback about the behavior of running

applications for monitoring, debugging and optimization purposes. Programming

languages and their runtimes should thus provide developers with mechanisms that

improve software adaptability.

At the same time, the increasing size and complexity of software call for ap-

plications made up of many interacting components developed by different parties.

In this context, either all components are trusted or each component needs to be

properly protected from other ones. For example, a plugin should not be able to

manipulate the internal structures or leaks private data of its host application unre-

strictedly. Likewise, a malicious library should not be able to corrupt or interfere

with the operations of its clients. Programming languages should thus provide de-

velopers with mechanisms that improve software isolation, such as encapsulation

and custom access control policies.

The need for dynamic adaptations that can change nearly every aspect of an

application on the one hand and the need for properly confined components on the

other hand pulls programming language design in two opposite directions: either

13



14 CHAPTER 1. INTRODUCTION

more flexibility or more control. This dissertation studies this tension in the context

of dynamically-typed object-oriented languages with two language mechanisms

that promote software adaptability: reflection [Smith 1984] and extension methods

[Bergel 2003, Akai 2012]. For both mechanisms, we demonstrate their usefulness,

their harmful effect on encapsulation and propose solutions to retain their power

while maintaining encapsulation.

The first mechanism, reflection, empowers programs with the ability to reason

and act upon their own state and behavior. Reflection is a powerful tool for the im-

plementation of generic code and dynamic analyses. Unfortunately, the power of

reflection steams from its ability to bypass object encapsulation and other isolation

mechanisms. For example, if reflection can implement access control mechanisms

it also provides the ability to circumvent these mechanisms. We study reflection

and its ability to alter software behavior for monitoring and access control pur-

poses. We then show how the proxy mechanism can scope such alteration to var-

ious spatial and temporal extends. We finally analyse the encapsulation problems

caused by reflection and propose and access control policy to reflective operations

based on object ownership [Clarke 1998, Noble 1999, Gordon 2007] that prevent

these problems.

The second mechanism, extension methods, allows packages to define meth-

ods for classes defined in other packages. Extension methods permit developers

to augment the behavior of packages they do not own, thereby promoting support

for unanticipated changes. Unfortunately, typical implementations make extension

methods globally visible, and leads to class encapsulation problems and thus to

interference between packages. Scoped version of extension methods have been

proposed for dynamically-typed languages, but the implication of their semantics

on class encapsulation has not been studied. We show applications and problems

of globally-visible extension methods. We then present and compare four differ-

ent approaches to scoped extension methods. Next we formalize and analyse and

the design space for scoped extension methods. We finally propose an efficient

implementation for single-dispatch languages.

This chapter introduces the context and the problem this dissertation tackles. It

then summarizes our contributions and gives the outline of this dissertation.
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1.1 Context

This section motivates the need for software that is both adaptable and encapsulated

and then explains the tension between these two goals.

1.1.1 Software Should be Adaptable

The waterfall software development methodology mimics the sequential produc-

tion process of physical goods: requirements are collected, the system is then de-

signed, implemented, and finally validated against supposedly eternally relevant

requirements. Continuing its hardware analogy, this methodology assumes that

changing software is overly costly if not impossible. Doing so, it does the hypoth-

esis that the requirements and the environment of the system are set once and for

all and will never change. This hypothesis can only hold for simple systems but is

unrealistic for the vast majority of modern software systems. Eventually, new con-

straints emerge, bugs are discovered, old requirements become outdated and new

ones appear, etc.

Consequently, developers aim to design software that is easy to change, extend

and fix. They use different techniques, such as modularization, parametrization

and subclassing to introduce variation points in code. But if it is easy to predict

that some aspects of a system will change eventually, it is difficult to forecast all

the aspects that will or could need variation. Designing systems that meet a wide

range of different variation points a priori is difficult and leads to contrived designs.

Many anticipated variation points may turn out unnecessary while other necessary

variation points were unforeseen. Anticipating too many variation points makes

a system less understandable and thus more difficult to change. Instead, software

systems should support unanticipated changes. They should be open to modifica-

tion and extension not only by design but also by construction.

Also, software with high availability requirements need to be adaptable while

in production. Such system should ideally be available and adaptable at the same

time, and should support run-time modifications of their behavior. Unanticipated

changes of running systems is of interest in a variety of situations, ranging from

functional upgrades to on-the-fly debugging, dynamic optimizations, analyses and

monitoring. Self-adaptive systems go a step further by actively supporting and con-
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trolling their own modification. For example, Gabriel and Goldman [Gabriel 2006]

propose a vision where software maintains itself and adapts to new circumstances

and users. Be a system self-adaptable or just adaptable, it needs to be both available

and maintainable by supporting run-time modifications of its behavior. Supporting

dynamic adaptability is the key to achieve sustainable and long-lived applications.

1.1.2 Software Components Should Be Encapsulated

The need for adaptable software imposes that programs have a large degree of free-

dom over their own behavior. But at the same time, large software aggregates many

different and independently developed components. The design of applications

thus strives for maximizing collaboration while minimizing interference between

components. Encapsulation is the main tool to achieve this goal. By encapsulation

we designate any language mechanism that allows some software entity to hide its

internals from other ones. Another definition of encapsulation is specific to object-

oriented programming and means to group data and related procedures together.

Here we use a broader definition of encapsulation. Encapsulation can apply to the

static entities of a language, like classes and packages in object-oriented languages,

or to their dynamic incarnations, like objects. For example, object-level encapsu-

lation ensures that an object can hide its internals from other objects. Class-level

encapsulation ensures that a class has control over the behavior of its instances (e.g.

unauthorized parties should not be able to change the code of a method) and over

which methods can be overridden in its subclasses. We will study both kinds of

encapsulation: object-level encapsulation with reflection and class-level encapsu-

lation with extension methods.

The first use case of encapsulation is to improve modularity and maintainabil-

ity. Developers use apply the information hiding [Parnas 1972] methodology to

hide implementation aspects that are likely to change. The idea is that clients of a

software component should not depend upon the specifics of its internal but upon

a well defined interface instead. Since client code communicates with these com-

ponents only through well defined interfaces, implementations can evolve without

impacting client code as long as the interfaces remain the same.
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The second use case of encapsulation is security. In the case where the multiple

components of an application do not trust each other, they need to be isolated from

each other. In such situations, encapsulation breaches become a security issue. The

hidden part is not kept away from clients only to enhance maintainability, but also

to ensure that clients cannot access to sensible information and operations. The

object-capability model (OCap model) [Miller 2006], is a security paradigm that

builds upon the object paradigm. The OCap model forces that all effects are car-

ried out via message-passing. The OCap model applies naturally to object-oriented

programming as the best practices of object design lead to good security properties.

For example the single-responsibility principle and the dependency inversion prin-

ciple [Martin 2003] correspond to the principle of least authority and “no ambient

authority” [Miller 2006] respectively. As its a necessity that there is no mean for

client code to access a hidden method or instance variable, encapsulation is critical

to the OCap model.

The need for flexible and adaptable software on the one hand, and enforced

encapsulation on the other hand, drives language design in opposite directions.

This thesis studies this tension in the context of two mechanisms that promote

software adaptability: reflection and extension methods.

1.1.3 Problem

One the one hand, software should be dynamic updatable and should support dy-

namic analysis for monitoring, self-optimizations an dynamic software updates.

This supposes that the language offers a lot of flexibility. For this reason we set

ourselves in the context of dynamically-typed languages that are typically more

flexible than statically-typed ones, especially when considering advance reflective

features. On the other hand the different parts of a system should be properly

confined. Each software component should be protected from other, potentially

malicious, components. This supposes that the language strives for more control

and limits flexibility. These two goals are antagonistic and pull language design

in two opposite directions. The freedom and the power required to allow dynamic

adaptations are a threat to the encapsulation of separate software components.
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Dynamically-typed languages are good candidates to study this tension. First,

because they imposes less constraints on the structure of programs, they often offer

features like advanced reflection and extension methods. These features makes the

structure and behavior of programs malleable. Second, these same features and the

lack of static type information makes static analyses difficult. So it is harder to

statically ensure that encapsulation boundaries are respected.

This thesis studies this tension in the context of dynamically-typed object-

oriented languages by focusing on two approaches for software adaptation. The

first approach is reflection, and particularly behavioral intercession, is studied for

its ability to dynamically adapt software behavior. Such variation of software

behavior enables monitoring, dynamic analyses and even the implementation of

application-specific security policies. In particular, we focus on proxies and their

ability to scope behavioral variation to different temporal and spatial extents. The

second approach is a mechanism known as extension methods, is studied for its

ability to adapt software structure by allowing software components to customize

each others. Encapsulation problems caused by each of these mechanism and so-

lutions are presented for both approaches.

1.2 Contributions

The contribution of this dissertation are the following. We first focus on reflection

and the behavioral variations that behavioral intercession enables.

• We present reflection and its various application in object-oriented languages.

• We give the formalization of an object oriented language with a simple Metaob-

ject Protocol (MOP) and propose an implementation in the Pharo program-

ming language. This operational semantics is then used to formalize the

different language mechanisms presented in this dissertation.

• We present the proxy mechanism, that enables fined-grained behavioral in-

tercession, different implementations and design variations.

• We show how proxies are realized in the context of our MOP and formalize

this approach.
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• We show how proxies can dynamically propagate behavioral variations to

various temporal and spatial scopes.

• We study the encapsulation problems caused by reflection and propose an

access control policy to reflective operations based on dynamic object own-

ership [Noble 1998, Gordon 2007] that prevents these problems.

Finally we focus on structural variations by studying and comparing different ex-

tension methods mechanisms.

• We present extension methods, their applications and the problems caused

by their global visibility.

• We compare four approaches to scoped extension method mechanisms, their

strength and their issues.

• We formalize the design space of scoped extension methods and compare

each axis.

• We propose an implementation of scoped extension methods in Pharo, based

on a variant of name mangling that incurs little performance loss.

1.3 Structure of the Dissertation

In Chapter 2, we present reflection state of the art and give a formalization of a

simple class-based language with a simple Metaobject Protocol that will be used to

describe the different mechanisms presented in the thesis. Chapter 3 studies prox-

ies and their ability to scope behavioral variations to various temporal and spatial

scopes. In Chapter 4, we present the encapsulation problems caused by reflection

and proposes an ownership-based access control policy to control reflective abili-

ties on a per object basis. Finally, Chapter 5 compares different scoped extension

method mechanisms, the implication of their implication with encapsulation, for-

malize the design space and propose an implementation in Pharo.





CHAPTER 2

Reflection and Object-Centric MOP

Contents
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Reflection in Object-Oriented Languages . . . . . . . . . . . . . 25

2.3 Object-Centric MOPs . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

This chapter presents reflection, its terminology and its applications. We dis-

cuss metaobject protocols (MOP) and particularly MOPs that are focused on the

semantics of individual objects, that we call object-centric MOP. We focus on the

alteration of the semantics that implicit enable. Finally, we give the operational

semantics of a simple object-centric MOP and present an implementation in Pharo.

This operational semantics will be used as a basis to formalize the different mech-

anisms presented in this dissertation.

Reflection is a powerful ability that allows programs to examine and modify

their own structure and behavior [Smith 1984]. By allowing alteration of program

interpretation, it has numerous applications.

Generic Code and Frameworks. By allowing programs to inspect their own struc-

ture reflection allows for very generic code that interacts with code whose

structure and behavior are unknown beforehand.

Factor Non Functional Concerns. Like Aspect Oriented Programming, reflection

can factor non functional concerns. AOP and reflection are in fact related do-

mains.

Self-Adaptive Programs. Programs can monitor themselves and to adapt to dif-

ferent contexts, to optimize and to repair themselves.

21
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Language Extensions. By exposing part of the language implementation to the

developers, reflection provides an interface to develop language extensions,

providing a language that can handles unanticipated changes.

Development tools. Reflection is also a basis for the implementation of develop-

ment tools like code browsers, refactorings, debuggers.

2.1 Terminology

This section sets the reflection terminology used in this thesis and begins with a

definition of reflective language using the terminology of Maes [Maes 1987a]. A

computational system is a set of software and hardware components that collabo-

rate to model a domain of application. The goal of a computational system is to

act on or reason about its domain. When a computational system and its domain

are linked in such a way that a change in one of the two is reflected on the other,

they are said to be causally-connected. Causal connection ensures that a compu-

tational system and its domain are always synchronized. A reflective system is a

computational system that, in addition to its primary domain, is also its own do-

main. The causally-connected representation that a reflective system has of itself

is called its self-representation. A reflective system consequently has the ability to

reason about itself and alter its own state and behavior. A reflective language is a

programming language that considers reflection an essential feature. Its programs

can reflect on themselves, i.e. each program in a reflective language is potentially

a reflective system. The part of a language that implements its reflective abilities is

called its reflective architecture.

In a reflective language, causal connection between programs and their self-

representation is maintained by two processes called reification and absorption

[Friedman 1984] (absorption was originally, and arguably confusingly, called re-

flection). Reification is the process that gives programs access to (a part of) their

self-representation, by modeling the data structures of the language interpreter as

first-class language entities manipulable by programs. These first-class models of

the data structures of the interpreter are also called reifications. The inverse process



2.1. TERMINOLOGY 23

is absorption, by which a reification is reinstalled back into the interpreter, thereby

altering the future behavior of the program.

2.1.1 Taxonomy of Reflective Features

Reflective languages provide a wide range of different reflective abilities. Different

axes are used to categorize these reflective features according to:

• what aspects of the program it concerns (structural or behavioral reflection),

• what the program can do with these aspects (introspection, self-modification

or intercession),

• when reflective computations take place (Implicit or explicit reflection).

2.1.1.1 Structural and Behavioral Reflection

The first axis splits reflection into two categories depending on which aspects of

the program is concerned. Structural reflection is concerned with static aspects of

programs and behavioral reflection is concerned with dynamic aspects.

Structural reflection concerns static aspects of programs, i.e. their code and

information that can be inferred from the code. For example, the typical structure

of a class-based language is:

• packages contain classes,

• classes contain methods and instance variable definitions,

• methods contain parameters and statements.

Structural reflection in a class-based language is thus concerned with the manipula-

tion of this hierarchical nesting of static entities. Examples of structural reflection

are listing all the classes of a package or adding a method to a class.

Behavioral reflection concerns dynamic aspects of programs i.e. the run-time

semantics of the language. This includes the interpretation of the structural part of

programs and the dynamic entities of the language (like object and method invo-

cation in an object-oriented language). In an object oriented language, behavioral

reflection concerns aspects like:

• how an instance variable is read or written,

• how a method is executed,

• how a message is sent.
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Of course, the distinction between structural and behavioral reflection applies

outside the object paradigm. In a logic language structural reflection is concerned

with predicates and clauses definition and behavioral reflection with the deduction

process. In a functional language structural reflection is concerned with aspects

such as data type and function definitions and behavioral reflection with aspects

such as environments and continuations.

Because structural changes affects the behavior of programs, structural reflec-

tion can serve as the basis to implement behavioral reflection. Implementing behav-

ioral reflective abilities in terms of structural ones consists in rewriting instructions

that corresponds to the behavioral events of interest, like instance variable assign-

ments. The replacing snippets of code, called Meta-Level Interceptions [Zimmer-

mann 1996], explicitly invoke a corresponding reflective operation that users can

redefine. This is the technique we use in the implementation of our object-centric

MOP.

2.1.1.2 Introspection, Self-Modification and Intercession

The second axis categorizes reflective operations depending on the kind of access

they exercise on the self-representation. Introspection corresponds to the set of

reflective features that allows a program to gain knowledge about its own state,

i.e. the self-representation is only read. Self-modification corresponds to the set

of reflective features that allows a program to modify its own state, i.e. the self-

representation is modified. Intercession corresponds to the set of reflective features

that allows a program to alter its own meaning. Intercession is thus concerned with

behavioral aspects. Some authors use a more general definition of intercession that

also includes self-modification.

2.1.1.3 Implicit and Explicit Reflection.

The third axis categorize reflection according to when reflective computation takes

place. With explicit reflection, reflective computation does not happen automati-

cally but only when base-level code explicitly invokes a reflective operation. On

the other hand, with implicit reflection, the interpretation of a program automati-

cally and continuously triggers the invocations of reflective operations on the oc-
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currence of specific interpretation events. Implicit reflection is a form of inter-

cession (and as such mostly concerns behavioral aspects) but intercession is not

necessarily implicit. An example of explicit intercession is 3-LISP reflective pro-

cedure [Smith 1984]. A reflective procedure is explicitly invoked and takes as

argument a function that will be called with the current environment and continu-

ation as arguments. Another example of explicit intercession is a specialized eval

function with altered semantics. In this thesis, we are interested with implicit in-

tercession, so when we talk about intercession we imply that it is implicit.

2.2 Reflection in Object-Oriented Languages

Early, reflection has been considered to fit the object paradigm well [Maes 1987b,

Ferber 1989], making object-oriented languages the vehicles of choice to imple-

ment reflective architectures. Reflection has been accepted by most mainstream

object-oriented programming languages (e.g. Ruby, Python, JavaScript, Java, Scala,

Smalltalk, CLOS). The most common reflective features are limited to the intro-

spection and self-modification. Dynamically-typed languages usually offer more

advanced reflective features like limited forms of implicit reflection. This ability

allows these languages to be easily extended.

The most common reflective architectures in object-oriented languages are sim-

ply based on a set of APIs. These reflective architectures often only offer introspec-

tion and limited self-modification. The reflective architecture of Java is an example.

The method getClass() returns a reification of the class of the receiver. Java also

supports a limited form of intercession thanks to dynamic proxies.

This section presents two kinds of advanced reflective architectures in object-

oriented languages: mirror-based architectures [Bracha 2004] and particularly metaob-

ject protocols [Kiczales 1991]. It focuses on metaobject protocols that support

intercession on a per-object basis with a formalization and the description of an

implementation.



26 CHAPTER 2. REFLECTION AND OBJECT-CENTRIC MOP

2.2.1 Mirror-based architectures

Mirror-based architectures [Bracha 2004] are reflective architectures based on the

concept of mirror. In a mirror-based reflective architecture, the reflective APIs are

stratified. This means that reflective operations are not directly accessible from

their targets (like the getClass() method in Java) but instead via special objects

called mirrors. A mirror-based reflective architecture follows three design princi-

ples:

• Encapsulation: The implementation of reflective operations is encapsulated.

It is then possible to substitute one implementation with another, e.g. for

adapting existing development tools to a different runtime or to provide re-

flection on remote objects.

• Stratification: The meta-level is totally separated from the base-level. Mir-

rors are not accessed directly via base-level objects but instead via a mirror

factory.

• Ontological correspondence: The reflective API describes the reflected lan-

guage in its entirety and distinguishes between static and dynamic aspects of

the language.

To perform reflection upon a resource, a client needs a reference over a mirror

factory. Without access to a mirror factory, clients cannot use reflection at all.

Typically, a default mirror factory creates mirrors that expose all available re-

flective operations. Thanks to the adherence to the Abstract Factory design pat-

tern [Gamma 1995], mirror-based reflective architectures allows for the design cus-

tom mirror factories.

Mirror-based architectures typically only offer explicit reflection. There is the

notable exception of the AmbientTalk reflective architecture [Mostinckx 2009] that

enables implicit intercession thanks to the concept of mirage. A mirage is an ob-

ject that is given an implicit mirror at creation. The operations of this mirror are

triggered during interpretation, altering the behavior of the mirage. This makes the

reflective architecture of AmbientTalk close to a metaobject protocol.
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2.2.2 Metaobject Protocols

Object-oriented languages that enable implicit reflection typically does so by pro-

viding a metaobject-protocol or MOP [Kiczales 1991]. In such architecture, an

interpreter manipulates metaobjects that represent some constructions of the lan-

guage (such as objects, classes and methods). A metaobject defines a set of meth-

ods that are triggered by the interpreter when specific events occur. Such set

of methods forms an interface (or protocol), hence the name “metaobject proto-

col”. Default metaobjects implement the default semantics of the language. Im-

plicit reflection is carried out by substituting custom metaobjects to the default

ones, thereby altering the language semantics. Programmers can replace one or

more of these metaobjects with specialized ones to affect specific aspects of spe-

cific parts of their program. Such alteration is not global but affects only the

base-level objects whose behavior specification involve the substituted metaob-

jects. Many flavors of MOPs have been considered over time: for class-based

languages [Kiczales 1991, Ferber 1989, Denker 2008], for prototype-based lan-

guages [Mostinckx 2007], or with focus on specific concerns like distribution and

concurrency [McAffer 1995] or simplicity [De Meuter 1998]. In this thesis we

are interested in specific MOPs that allows the behavioral alteration of individual

objects.

2.3 Object-Centric MOPs

We are interested in MOPs where each object behavior is described by a dis-

tinct metaobject: there is a one-to-one correspondence between an object and its

metaobject. A metaobject is the meta-level representation of a single object. The

base-level object that a metaobject controls is called its referent. Metaobjects are

also objects. Consequently, a metaobject has a metaobject itself. This gives a re-

flective tower, a virtually infinite chain of metaobjects. In practice, metaobjects

that describe the normal semantics are created lazily.

This kind of MOP has been described in detail in the literature [Maes 1987b,

Ferber 1989,Mostinckx 2009]. We borrow the terminology of Ressia [Ressia 2012]

and refer to these MOPs as object-centric MOPs. In a class-based language with
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an object-centric MOP, the metaobject of an object is distinct from its class: the

metaobject is concerned about behavioral aspects of the object and the class about

structural ones. The next section gives a formalization of an object-centric MOP

and then describes an implementation in Pharo Smalltalk.

2.3.1 Semantics

We propose MOPLITE, a small-step semantics for an object-centric MOP. To our

knowledge, this is the first operational semantics that describes a MOP. MOPLITE

does not feature structural reflection but can be extended to support it. Here, we

are interested in behavioral reflection, so we leave such extension as future work.

This operational semantics will be used to formalize the different mechanisms pre-

sented in this thesis: proxies, ownership and extension methods. The formalized

MOP supports the explicit invocation and the implicit interception of the following

operations:

Instance variable read: via the message get(iv) that corresponds to reading

the instance variable named iv.

Instance variable write: via the message set(iv, obj) that corresponds to

changing the value of the instance variable named iv to obj.

Message reception: via the message receive(m,args,c) that corresponds

to receiving a message m with arguments args where the method lookup

algorithm starts in the class c (typically the class of the receiver except for

super-sends).

Message sending: via the message send(obj,m,arg1s,c) that corresponds

to sending a message m with arguments args to the object obj where the

method lookup algorithm starts in the class c (typically the class of obj

except for super-sends).

2.3.1.1 Syntax

The syntax of MOPLITE is given in Figure 2.1. Elements of the surface syntax are

in bold. A program consists of a sequence of class definitions followed by an initial
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“main” expression. A class definition consists of the class identifier (i.e. its name),

the superclass identifier, a list of instance variables followed by a list of methods.

A method has an identifier, a list of formal parameters, and a body expression. An

expression is either an identifier, an assignment, a reference to the current object

self, a message send, a super-send, an instantiation, a local variable or a sequence

of expressions or an access to a metaobject.

p ∈ P ::= cls∗ exp

cls ∈ C ::= class id extends id { id∗ meth∗ }

meth ∈M ::= id(id∗) { exp }

exp ∈ E ::= id | id := exp | self | exp.id(exp∗)
| super.id(exp∗) | id.new(exp∗)
| let id = exp in exp | exp ; exp

| exp.meta
id ∈ I

Figure 2.1: Syntax of MOPLITE

2.3.1.2 Core Classes

Before the evaluation of a program, the code of two core classes is included into

the code of that program. These two classes do not strictly respect the above syntax

and they are the only ones that are allowed to do so.

The first core class is Object from which all classes inherit. This class only

contains a method init that does nothing. This class has no superclass so its

declaration cannot respect the syntax: the header of its declaration says “extends

nil”.

class Object extends nil {

init() { self }

}
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The second class is DefaultMO is the class of default metaobjects that define

the normal object semantics. This class defines one instance variable referent

(that points to the base-object of the metaobject) and contains five methods. The

body of each method consist of a call to a primitive. Primitive calls are not part

of the syntax: DefaultMO is the only class that can contain primitives. Other

calls to primitives are generated during execution. Each of the first four meth-

ods correspond to one of the four interceptable operations: receiving messages

(method receive), sending messages (method send), reading instance variables

(method get) and writing instance variables (method set). The fifth method

meta changes the metaobject of the referent.

class DefaultMO extends Object {

referent

receive(id,args,cls) { RECEIVE(referent,id,args,cls) }

send(rcv,id,args,cls) { SEND(rcv,id,args,cls) }

get(iv) { GET(referent,iv) }

set(iv,obj) { SET(referent,iv,obj) }

meta(mobj) { SETMO(referent,mobj) }

}

2.3.1.3 Well-Formed Programs

The syntax gives the basic structure of programs. But once the code of the two core

classes Object and DefaultMO is included into a programs, they must respect

additional constraints.

• Name conflicts are forbidden.

– A program cannot define two classes with the same identifier.

– A class cannot define two methods that have the same identifier and the

same number of arguments.

– Instance variable identifiers are unique within the hierarchy of a class,

i.e. a class cannot define an instance variable if it inherits from a class

that already defines an instance variable with the same name.



2.3. OBJECT-CENTRIC MOPS 31

– The identifier of a parameter cannot be the same than the one of an

instance variable of the class hierarchy, or of a class of the program.

– The identifier of a local variable cannot be the same than the one of

an outer local variable, of a parameter of the method, of an instance

variable of the class hierarchy, or of a class of the program.

• The superclass identifier given in a class definition must correspond to an-

other class defined by the program.

• Inheritance must be acyclic, i.e. a class cannot inherit from itself directly nor

indirectly.

• In methods, an identifier id must correspond to a local variable, a parameter

or an instance-variable of the hierarchy of the class.

• Instantiation expressions (id.new(exp∗)) are an exception to previous con-

straint: the identifier id must correspond to a class of the program.

• Finally, the identifier id of an assignment id := exp must correspond to an

instance variable.

A program that does not respect these constrains is not well-formed and cannot be

evaluated.

2.3.1.4 Functions and Relations

Several functions and relations are used to query the relationships of the elements

defined by a given program p.

• The partial function classp : I ⇀ C retrieves classes: classp(C) gives the

class named C defined in p or is undefined if p defines no such class.

• The partial function methodp : I×N×C ⇀M retrieves methods: methodp(m, n, c)

gives the method named m with n parameters that is defined in class c or is

undefined if c defines no such method.

• The partial function superp : C ⇀ C maps a class to its direct superclass, i.e.

superp(a) = b if a = class A extends B { . . . } and classp(B) = b.



32 CHAPTER 2. REFLECTION AND OBJECT-CENTRIC MOP

This function is defined for all classes expect Object, which is the only

class that has no superclass.

• The relation /p ⊂ C × C associates a class with classes defined upper in its

hierarchy, i.e. a /p b reads “a inherits from b”. This relation is the transitive

reflexive closure of superp (/p = super∗p).

• The relation @p⊂ I×C associates an instance variable identifier with classes

than define an instance variable with that name, i.e. iv @p cls reads “cls

defines instance variable iv”.

• The relation @hrc
p ⊂ I × C associates an instance variable identifier with

classes that have an instance variable with that name defined in their hier-

archy, i.e. iv @hrc
p cls reads “iv is defined in the hierarchy of cls”. This

relation is the composition of the inverse of /p with @p (@hrc
p = /p

−1 ◦ @p).

• The partial function lookupp : I × N × C ⇀ M× C performs the method

lookup algorithm: lookupp(m, n, c) gives the first method named m with n

parameters defined in the hierarchy of c and the class where that method

is defined. This function is undefined if not such method is defined in the

hierarchy of c. This function is defined as follows:

lookupp(id , n, cls) =
〈methodp(id , n, cls), cls〉 if methodp(id , n, cls) is defined

lookupp(id , n, superp(cls)) if superp(cls) defined (i.e. cls 6= classp(Object))

undefined otherwise (i.e. cls = classp(Object))

2.3.1.5 Abstract Machine

Programs are executed on an abstract machine whose configurations consist of a

call stack and a store.

The call stack represents the state of the unique thread of execution of the ab-

stract machine:
⌊

f2

f1

⌋
denotes a stack made of two stack frames f1 and f2 (oldest

frames at bottom and newest at top). Each stack frame is a triplet 〈exp, adr , cls〉 ∈
E × A × C where exp is the expression under evaluation, adr is the address of

the current object (self) and cls is the name of the current class (i.e. the class
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that defines the method under evaluation). The modelization of the call stack is not

capital for expressing the semantics of our MOP. We will use it for the formaliza-

tion of context-sensitive method lookup algorithms of scoped extension methods in

Chapter 5. Also, this modelization of the call stack makes our formalization closer

to an actual implementation.

The store is a partial function from addresses to objects: S : A ⇀ O. We note

S[ adr 7→ obj ] the store S updated with the address adr pointing to the object obj.

An object is a triplet 〈cls , adrmo, ivs〉 ∈ C × A × (I ⇀ A) where cls is its class,

adrmo is the address of the metaobject and ivs is a mapping from instance variable

identifiers to addresses.

The reduction function ↪→ formalizes the evaluation of expressions to addresses.

This function is expressed as a set of reduction rules over the configurations of

the abstract machine. The initial configuration of a program consists of an ex-

pression evaluated in the context of the nil object (whose address is noted nil).

The nil object is simply a specific instance of Object that is preallocated on the

store at start. That is, for a program P = . . . exp, the initial configuration is:〈⌊
exp,nil,Object

⌋
, {nil 7→ 〈Object,nil, {}〉}

〉
.

2.3.1.6 Evaluation Contexts

In the style of Felleisen and Hieb [Felleisen 1992], reduction rules specify the

evaluation of expressions within an evaluation context E. An evaluation context

is an expression with a “hole” (noted “[ ]”) at the point where the next evaluation

step takes place: E[exp] denotes the evaluation context E with the hole filled by

exp. Figure 2.2 gives the syntax of the evaluation contexts of MOPLITE. This

syntax determines the order of evaluation. For example, the order of evaluation for

message sends is specified by the cases E.id(exp∗) and adr.id(adr ∗, E, exp∗).

In the first case (E.id(exp∗)), the hole is located in the receiver, thereby forcing

the evaluation of the receiver subexpression until it reduces to an address. In the

second case (adr.id(adr ∗, E, exp∗)) the receiver is already reduced to an address

adr and the hole is located between an arbitrary number of reduced arguments

and an arbitrary number of non-reduced arguments. Together, these two cases thus

specify that the receiver of a message send is evaluated first and then the arguments

are evaluated from left to right.
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E ::= [ ] | id := E | E.id(exp∗) | adr.id(adr ∗, E, exp∗)

| super.id(adr ∗, E, exp∗) | id.new(adr ∗, E, exp∗)

| let id = E in exp | E ; exp

Figure 2.2: Evaluation Contexts

2.3.1.7 Reduction rules

The reduction function ↪→ specifies the evaluation of expressions. This function is

expressed as a set of reduction rules. A reduction rule describes one evaluation step:

it gives the next configuration of the abstract machine from the current one. Since

the evaluation of program is deterministic, only one rule is applicable at a time. If

no rule matches the current configuration the evaluation is stuck, representing an

error.

Self references. The rule [ self ] simply states that self reduces to the current

object address.

〈⌊
〈E[ self ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ adr ], adr , cls〉

...

⌋
, S

〉 [ self ]

Sequences of Expressions. The rule [ seq ] describes sequence of expressions.

Once reduced to an address, the first expression of the sequence is simply dropped

and evaluation continues with the second.

〈⌊
〈E[ adr ′ ; exp ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ exp ], adr , cls〉

...

⌋
, S

〉 [ seq ]
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Local Variables. The rule [ let ] declares a local variable. The expression let id = adr loc in exp

replaces each occurrence of the local variable identifier id in the subexpression exp

with the evaluated address adr loc.

〈⌊
〈E[ let id = adr loc in exp ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ exp[adr loc/id ] ], adr , cls〉

...

⌋
, S

〉 [ let ]

Instantiation. The rule [ new ] gives the semantics of instantiation. An instan-

tiation expression reduces to a new object address adrnew (i.e. not in the domain

of the store S) and updates the store to map this address to a new object. The sec-

ond element of the new object triplet is nil to show that this object has a default

metaobject. This reflects that default metaobjects are created lazily: only metaob-

jects that gives special semantics are consistently stored. Otherwise the store would

need to be infinite since each metaobject should also have its own metaobject. The

third element maps the identifier of each instance variable defined in the class hi-

erarchy to nil. This new object is then initialized with the message init and the

arguments given in the instantiation expression.

〈⌊
〈E[ cls.new(adr ∗) ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ adrnew.init(adr

∗) ; adrnew ], adr , cls〉
...

⌋
, S ′

〉

where
S ′ = S[adrnew 7→

〈
cls ,nil, {id iv 7→ S(nil) | ∀id iv. id iv @hrc

p cls}
〉
]

adrnew 6∈ dom(S)

[ new ]

Metaobject Access. The rule [ set-mo-prim ] gives the semantics of the SETMO

primitive that changes the metaobject of an object. This primitive is only used in

the body of the meta method of the class DefaultMO. The metaobject of the

target object changes to the specified one (here pointed by the address adrmo) and
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the instance variable referent of new metaobject is updated to point to the target

object address.

〈⌊
〈E[ SETMO(adr targ, adrmo) ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ adrmo ], adr , cls〉

...

⌋
, S ′

〉

where

S(adr targ) = 〈cls targ, ..., ivs targ〉
S(adrmo) = 〈clsmo, adrmo2, ivsmo〉

S ′ = S

[
adr targ 7→ 〈cls targ, adrmo, ivs targ〉 ,
adrmo 7→ 〈clsmo, adrmo2, ivsmo[referent 7→ adr targ]〉

]
[ set-mo-prim ]

Accesses to metaobjects are described by the rules [ get-def-mo ] and [ get-mo ].

The rule [ get-def-mo ] is responsible for the lazy creation of default metaobjects

(instances of DefaultMO) using the SETMO primitive.

〈⌊
〈E[ adr targ.meta ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ SETMO(adr targ,DefaultMO.new()) ], adr , cls〉

...

⌋
, S

〉

where S(adr targ) = 〈...,nil, ...〉

[ get-def-mo ]

The rule [ get-mo ] returns the metaobject of objects that have a non-nil metaob-

ject, i.e. the second element of the target object triplet.

〈⌊
〈E[ adr targ.meta ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ adrmo ], adr , cls〉

...

⌋
, S

〉

where
S(adr targ) = 〈..., adrmo, ...〉
adrmo 6= nil

[ get-mo ]

Message Sending and Message Reception. Message sending is specified by the

rules [ send ], [ super ] and by the SEND and RECEIVE primitives. The rule [ send ]

reduces to the SEND primitive.
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〈⌊〈
E[ adr rcv.idm(adr

∗
args) ], adr , cls

〉
...

⌋
, S

〉

↪→

〈⌊〈
E[ SEND(adr rcv, idm, adr

∗
args, clsrcv) ], adr , cls

〉
...

⌋
, S

〉

where S(adr rcv) = 〈clsrcv, ..., ...〉

[ send ]

Super-sends are almost identical regular message sends except that the lookup

class is the superclass of the current class (the class that defines the method under

evaluation).

〈⌊〈
E[ super.idm(adr

∗
args) ], adr , cls

〉
...

⌋
, S

〉

↪→

〈⌊〈
E[ SEND(adr , idm, adr

∗
args, clssuper) ], adr , cls

〉
...

⌋
, S

〉

where superp(cls) = clssuper

[ super ]

The rules [ send-prim ] and [ send-mo-prim ] defines the SEND primitive. The

rule [ send-prim ] sends a message to an object whose metaobject is not yet created.

The rule pushes a new stack frame onto the call stack with the body of the method

found with the function lookupp, starting the method lookup in the specified class

cls lookup. Occurrences of the method parameters identifiers are substituted with the

message arguments.

〈⌊〈
E[ SEND(adr rcv, idm, adr

∗
args, cls lookup) ], adr , cls

〉
...

⌋
, S

〉

↪→

〈
〈
expbody[adr

∗
args/id

∗
params], adr rcv, clsm

〉〈
E[ SEND(adr rcv, idm, adr

∗
args, cls lookup) ], adr , cls

〉
...

 , S

〉

where
lookupp(idm, |adr ∗args|, cls lookup) = 〈meth, clsm〉
meth = idm(id

∗
params) { expbody }

[ send-prim ]

The rule [ mo-send-prim ] sends a message to an object that has a non-nil

metaobject: it reduces to another call to the SEND primitive to invoke the receive

method of the metaobject with the method identifier the message arguments and

the lookup class. Using the primitive SEND instead of a normal message send

avoids infinite recursion: if instead this rule had reduced to the message send
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adrmo.receive(idm, adr
∗
args, cls lookup), the rule [ send ] would be triggered

again, then the rule [ mo-send-prim ] again, etc.

〈⌊〈
E[ SEND(adr rcv, idm, adr

∗
args, cls lookup) ], adr , cls

〉
...

⌋
, S

〉

↪→

〈⌊〈
E[ SEND(adrmo,receive, (idm, adr

∗
args, cls lookup), clsmo) ], adr , cls

〉
...

⌋
, S

〉

where
S(adr rcv) = 〈..., adrmo, ...〉
S(adrmo) = 〈clsmo, ..., ...〉 adrmo 6= nil

[ mo-send-prim ]

Finally, the primitive RECEIVE is used only in the body of the receivemethod

of the default metaobject class DefaultMO. The sole purpose of this primitive is

to avoid an infinite regression. Indeed, using the SEND primitive in the receive

method of DefaultMO would invoke that same method again and again indefi-

nitely. Consequently, apart from the name of the primitive, the rule [ receive-prim ]

is identical to the rule [ send-prim ].

〈⌊〈
E[ RECEIVE(adr rcv, idm, adr

∗
args, cls lookup) ], adr , cls

〉
...

⌋
, S

〉

↪→

〈
〈
expbody[adr

∗
args/id

∗
params], adr rcv, clsm

〉〈
E[ RECEIVE(adr rcv, idm, adr

∗
args, cls lookup) ], adr , cls

〉
...

 , S

〉

where
lookupp(idm, |adr ∗args|, cls lookup) = 〈meth, clsm〉
meth = idm(id

∗
params) { expbody }

[ receive-prim ]

Return. The rule [ return ] shows that once the evaluation of the current method

has reduced to an object address adr ret, the current stack frame is popped and the

object address replaces the subexpression exp in the evaluation context E of the

stack frame below.

〈
〈adr ret, adr 2, cls2〉
〈E[ exp ], adr 1, cls1〉

...

 , S

〉

↪→

〈⌊
〈E[adr ret], adr 1, cls1〉

...

⌋
, S

〉 [ return ]
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Instance Variable Reads. Reading instance variables is specified by the rules

[ get ], [ get-prim ] and [ mo-get ]. The rule [ get ] is used for objects with a nil

metaobject: it reduces to the GET primitive.

〈⌊
〈E[ id iv ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ GET(adr , id iv) ], adr , cls〉

...

⌋
, S

〉

where S(adr) = 〈...,nil, ...〉

[ get ]

The rule [ get-prim ] defines the GET primitive: it reduces to the object ad-

dress adr iv pointed by the instance variable identifier id iv in the instance vari-

able mapping ivs of the target object adr targ. The target object is the receiver

(adr targ = adr ) except when the GET primitive is invoked from the method get

of the default metaobject class DefaultMO.

〈⌊
〈E[ GET(adr targ, id iv) ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ adr iv ], adr , cls〉

...

⌋
, S

〉

where
S(adr targ) = 〈..., ..., ivs〉
ivs(id iv) = adr iv

[ get-prim ]

The rule [ mo-get ] is used for objects with a non-nil metaobject: it sends a get

message to the metaobject using the SEND primitive (to avoid infinite recursion like

in rule [ send-mo-prim ]).

〈⌊
〈E[ id iv ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ SEND(adrmo,get, (id iv), clsmo) ], adr , cls〉

...

⌋
, S

〉

where

S(adr) = 〈..., adrmo, ...〉
S(adrmo) = 〈clsmo, ..., ...〉
adrmo 6= nil

[ mo-get ]

Instance Variable Writes. Writing instance variables is specified by the rules

[ set ], [ set-prim ] and [ mo-set ]. The rule [ set ] is used for objects with a nil

metaobject: it reduces to the SET primitive.
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〈⌊
〈E[ id iv := adr val ], id , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ SET(id iv, adr val, id) ], id , cls〉

...

⌋
, S

〉

where S(adr) = 〈...,nil, ...〉

[ set ]

The rule [ set-prim ] defines the SET primitive: it updates to the object address

pointed by the instance variable identifier id iv to the new value adr val in the in-

stance variable mapping ivs of the target object adr targ and reduces to adr val. Like

with the GET primitive, the target object is the receiver (adr target = adr ) except

when the SET primitive is invoked from DefaultMO.

〈⌊
〈E[ SET(adr targ, id iv, adr val) ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[adr val], adr , cls〉

...

⌋
, S ′

〉

where
S(adr targ) = 〈cls targ, adrmo, ivs〉
S ′ = S[adr targ 7→ 〈cls targ, adrmo, ivs [id iv 7→ adr val]〉]

[ set-prim ]

The rule [ mo-set ] is used for objects with a non-nil metaobject: it sends a set

message to the metaobject using the SEND primitive.

〈⌊
〈E[ id ivadr val := ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ SEND(adrmo,set, (id iv, adr val), clsmo) ], adr , cls〉

...

⌋
, S

〉

where

S(adr) = 〈..., adrmo, ...〉
S(adrmo) = 〈clsmo, ..., ...〉
adrmo 6= nil

[ mo-set ]

This concludes the presentation of the reduction rules and the semantics of

MOPLITE. The next section describes an implementation of our MOP in Pharo

Smalltalk.
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2.3.2 Implementation

This describes an implementation of a object-centric MOP in Pharo Smalltalk, fol-

lowing the semantics of MOPLITE. It allows the interception of the same opera-

tions than MOPLITE at the granularity of objects: reading and writing instance-

variables and receiving and sending message. An overview of the implementation

is given in Figure 2.3.

The cost of reflection is often regarded as problematic. We believe the power

of reflection outweighs its performance cost. Moreover performances of reflective

languages can be largely improved thanks to optimization techniques like meta-

tracing, partial evaluation [Marr 2015] and adaptive recompilers [Hölzle 1995].

Also the performance penalty only needs to be paid where and when reflection is

effectively used: this is called partial reflection [Tanter 2003]. Our implementa-

tion performs partial reflection: only objects with a non-default metaobject pay the

performance overhead of reflection.

2.3.2.1 Metaobjects

Like it is expressed in the semantics of MOPLITE, metaobjects are created on de-

mand. Indeed, metaobjects like other objects have their own metaobject. This gives

a virtually infinite chain of metaobjects that cannot be allocated on finite memory.

Since an object with a default metaobject has a default semantics, the code of its

metaobject doesn’t need to be really executed. So default metaobjects are created

only when an object receives the message #meta. The default metaobjects that

are created are cached to insure that different invocations of #meta yield the same

metaobject. Objects with a non-default metaobject points directly to their metaob-

ject.

2.3.2.2 Code generation

Our implementation makes a distinction between two concepts of classes: concep-

tual classes and implementation classes. This distinction remains irrelevant from

the developer point of view. Conceptual classes are classes written by developers.

Implementation classes are either conceptual classes or synthetic classes. The im-

plementation class of objects with a default metaobject is simply their conceptual
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class. The implementation class of an object with a non-default metaobject is a

synthetic class, hidden form the developers, that contains generated methods.

Interceptions are implemented by code rewriting. The code of methods is trans-

formed to insert meta-level interceptions (MLI) into new generated methods that

are installed into synthetic classes. For example the #increment method of a class

Counter is transformed as follow.
1 Counter>>increment

2 � value := value + 1

3

4 (synthetic class)>>increment

5 � meta receive: (Message selector: #increment arguments #())

6

7 (synthetic class)>>_increment

8 � meta write: #value to: (meta read: #value) + 1

The first generated method sends #receive: to the metaobject of the receiver

with a message reification as argument. The second generated method, named #’

_increment’, is private and contains the transformed code of the original method.

It is invoked when the special metaobject code, such as the following, performs the

original operation with a super-send to the default metaobject class.

1 MySpecialMO>>receive: aMessage

2 | return |

3 ... do something before ...

4 return := super receive: aMessage.

5 ... do something after ...

6 � return

Lazy code generation. Generated methods are compiled lazily by intercepting

message reception with a second mechanism.

A special class with no method dictionary, that we call the trap class (depicted

with a cross in Figure 2.3), is the ancestor of all synthetic classes. In this situation,

the method lookup fails and the VM sends the message cannotInterpret: with

the message as argument but starting the method lookup in the superclass of the

trap class, ActiveObject. The default implementation of cannotInterpret: in

the class ProtoObject raises an error. By redefining this method in the superclass

of the trap class, we can intercept all messages. This technique comes from the
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Figure 2.3: Difference between conceptual and implementation classes. The ob-

ject counter1 has a non-default metaobject so its implementation class is a syn-

thetic class whose methods are the one of its conceptual class rewritten with MLIs.

The object counter2 has a normal metaobject so its implementation is the same as

its conceptual class

proxy library Ghost [Martinez Peck 2014]. It has the advantage that all messages

can be intercepted instead of only those that are not understood with the classic

#doesNotUnderstand: method.

Upon message reception, if no method has been generated for the selector of

that message, the #cannotInterpret: method in class ActiveObject is executed

and triggers the compilation of the generated method in the synthetic class. Method

redefinitions in synthetic subclasses cannot be intercepted with this mechanism if

the redefined method are already generated in superclasses. Consequently, these

methods are compiled eagerly: when a synthetic class is created all method re-

defintion are generated.
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2.3.2.3 Composition of Behavioral Variations

A special metaobject redefines the basic operations of the language to alter the

interpretation of its base object. We call these alteration behavioral variations. A

behavioral variation is typically a cross-cutting concern such as security, logging

or persistance.

As we saw previously, one way to implement a behavioral variation is to sub-

class the root metaobject class to redefine some operations and perform a super-

send to invoke the default operation. The problem of this approach is that it is not

composable. If a developer wants a metaobject that traces and profiles messages, he

cannot reuse a message tracing metaobject class and a profiling metaobject class.

Instead, he needs to create a new metaobject class that combines both behavioral

variations. This approach does not scale because it leads to an explosion of metaob-

ject classes. So instead we choose to follow a decorator approach for implementing

behavioral variations: a behavioral variation is implemented as a metaobject dec-

orator as illustrated in Figure 2.4. Naturally, the order of composition matters e.g.

tracing before profiling affects the reported duration os profiling that takes the time

to trace into account.

2.3.2.4 Examples of Behavioral Variations

This section presents a few examples of simple behavioral variations. The first

three examples are behavioral variations that perform simple dynamic analyses by

intercepting messages: tracing, logging and statistical typing. The last one inter-

cepts instance variable assignments to ensure that an object is immutable.

Tracing. A really simple behavioral variation is tracing. When a message is re-

ceived, its selector and arguments are simply printed on the transcript.

1 Tracing>>receive: aMessage

2 Transcript

3 print: aMessage selector;

4 print: aMessage arguments;

5 cr.

6 � wrappedMO receive: aMessage
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Figure 2.4: Example of two behavioral variations composed together. The metaob-

ject of object is a tracing behavioral variation that decorates a profiling behavioral

variation that decorates a default metaobject pointing back to its referent object.
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Profiling. Another behavioral variation that performs a behavioral analysis is

profiling.

1 Profiling>>initialize

2 tallies := Dictionary new

3

4 ProfilingBA>>receive: aMessage

5 | start |

6 start := Time now.

7 [ � wrappedMO receive: aMessage ] ensure: [

8 | duration |

9 duration := Time now - start.

10 (tallies

11 at: aMessage selector

12 ifAbsentPut: [ OrderedCollection new ]) add: duration ]

The tallies instance variable is a dictionary used to map a selector to a list

of durations. The #receive: method measure the duration of each message and

stores it in the dictionary. A method #showResults then prints the average duration

the standard deviation and the number of execution for each selector.

1 ProfilingBA>>showResults

2 tallies keysAndValuesDo: [ :selector :durations |

3 Transcript

4 print: selector;

5 show: ’ average: ’;

6 print: durations average;

7 show: ’ stdev: ’;

8 print: durations stdev

9 show: ’ executions: ’;

10 print: duration size;

11 cr ]

Statistical Typing. More advanced dynamic analyses are also possible. Here

we consider behavioral variation that stores the class of the arguments of each

messages to gives information about their possible dynamic types. This is useful

to gain understanding about a complex program behavioral in a dynamically-typed

language.
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1 StatisticalTyping>>initialize

2 types := Dictionary new

3

4 StatisticalTyping>>receive: aMessage

5 | array |

6 array := types

7 at: aMessage selector

8 ifAbsentPut: [ Array new: aMessage arguments size ].

9 1 to: aMessage arguments size [ :index |

10 | bag |

11 bag := (array at: index) ifNil: [ array at: index put: Bag

new ].

12 bag add: (aMessage arguments at: index) class ].

13 � wrappedMO receive: aMessage

The types instance variable is a dictionary that maps a selector to an array.

Each element of such array is a bag that stores the types of arguments of the re-

ceived messages. The method argumentTypesOf: prints the dynamic types of

each arguments of a given selector with a percentage of occurence.

1 StatisticalTyping>>argumentTypesOf: aSelector

2 (types at: aSelector) withIndexDo: [ :argBag :argIndex |

3 Transcript

4 show: ’argument ’;

5 print: argIndex;

6 crShow: ’:’.

7 argBag sortedCounts: [ :count :class |

8 Transcript

9 show: class;

10 space;

11 print: (count / argBag size) round: 2;

12 crShow: ’%’ ] ]

Read-Only. This last example shows a simple use of instance variable write in-

terception to ensure that an object is immutable.

1 ReadOnly>>write: anIV to: anObject

2 � Error signal: ’Illegal write to ’, anIV , ’ in ’, anObject

printString
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2.4 Conclusion

We presented reflective concepts and reflective architecture in object-oriented lan-

guages. We presented the reflective architecture that is used in this thesis that

takes the form of an object-centric MOP. Such architecture can enable behavioral

variations on a per-object basis. Behavioral variations can focus on monitoring

and adaptive aspects, thereby improving adaptability but also on encapsulation and

security aspects, thereby improving security. In the next chapter we will study

proxies, that allow an even more fine-grained form of implicit reflection. Proxies

enable a behavioral variation on a per-reference basis. Different clients can thus

have different behavioral variations implementing different encapsulation/security

rules.
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The last chapter presented reflection and gave a formalization of a simple object-

centric MOP. We saw how implicit reflection can customize the behavior of individ-

ual objects by altering the default semantics of the language with custom metaob-

jects. This chapter presents the proxy mechanism, that offers many ways to scope

behavioral variations in space and time. After a generic presentation of proxies,

this chapter reviews the typical implementations and see how proxies are realized

in an object-centric MOP. We will discuss proxies limitations and different possible

semantics. Finally, we will show how proxies can propagate behavioral variations

in space and time.

3.1 Introduction to Proxies

A proxy, or wrapper, is an object that acts as a surrogate for another object called

its target. A proxy mediates interactions between its target and its clients. This

49
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indirection has many use cases e.g. base-level behavior adaptation, access-control,

contracts [Strickland 2012], logging, profiling, dynamic analyzes etc.

The classical realization of a proxy is to implement a proxy class that adapts the

interface of another class. A proxy points to its target, an instance of the adapted

class. This technique is at the core of the Proxy and the Decorator design pat-

terns [Gamma 1995]. The problem of this kind of realization is that may lead to a

lot of duplicated code. For one behavioral variation, developers need to implement

one proxy class for each class that needs to be adapted. With many behavioral vari-

ations and adapted classes, it leads to an explosion of proxy classes. Furthermore,

the set of adapted classes is not open-ended: it is not possible to adapt a class that

has no proxy class for a given behavioral variation.

Consequently, several solutions have been proposed to make generic prox-

ies [Pascoe 1986, Eugster 2006, Van Cutsem 2010, Martinez Peck 2014]. The idea

is that proxies can intercept certain operations during execution just like in a MOP,

typically the reception of messages and the accesses to the object state. The proxy

can take some actions before, after or even instead of performing the original oper-

ation on the target. This permits proxy to implement various behavioral variation:

tracing, profiling, contracts, access control, read-only access...

Proxies have several advantages. First, behavioral variations expressed with

proxies compose naturally. For instance, tracing and profiling behavioral varia-

tions can be implemented by separate proxies that can be combined to apply both

behavioral variations. Different parties can add their own variations without being

aware of others already active for the same target. Also, proxies naturally support

partial reflection [Tanter 2003] at an object-level granularity: proxies scope be-

havioral variation to certain clients only. All other objects in the system remain

unaffected and pay no performance overhead. This means that the behavioral vari-

ation of a proxy is not enabled when accessing its target directly. A variation is

enabled for clients who possess a reference to the proxy while other clients may

have a reference to the target or to another proxy implementing another behavioral

variation. It is up to the creator of the proxy to decide whether to pass the proxy,

that enables to behavioral variation, or the target, that does not.
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3.2 Proxy Implementations

We review three main implementation styles for proxy implementation. First those

that redefine a method lookup failure hook, then modern stratified implementation

and finally in a context of an object-centric MOP.

3.2.1 Method Lookup Failure Hook

Let us first look at a common implementation of proxies in dynamically-typed

languages [Pascoe 1986, McCullough 1987, Ducasse 1999]. Certain dynamically-

typed languages allow objects to answer messages they don’t implement. When

an object receives a message it does not understand (i.e. the method lookup fails),

the runtime sends a special message to the object passing the message name and

the message arguments. The class of that object can redefine the corresponding

method to return a "fail-back" answer. This special failure message exists in many

languages:

• doesNotUnderstand: aMessage in Smalltalk,

• doesNotRecognizeSelector: aSelector in Objective-C,

• method_missing(method, *args, &block) in Ruby,

• __getattr__(self, name) in Python,

• and __noSuchMethod__(name, args) in SpiderMonkey Javascript.

This facility can be used to implement generic proxies. Since only messages

not understood can be intercepted the proxy class is made to understand only a few

messages. For example, in Squeak and Pharo the root class is not Object but its di-

rect superclass ProtoObject. This class has far less methods than Object. While

normal classes inherit Object, classes that redefine doesNotUnderstand: typi-

cally inherit from ProtoObject to be able to intercept more messages. Ruby fol-

lows the same scheme with the class BasicObject and its direct subclass Delegator

for implementing proxies. Objective-C defines a second special root class NSProxy.
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3.2.1.1 Example In Smalltalk

The following listing shows an example of a tracing proxy in Smalltalk.

1 "Tracing proxy is a subclass of ProtoObject and has a ’target’

instance variable"

2 ProtoObject subclass: #TracingProxy

3 instanceVariableNames: ’target’

4 classVariableNames: ’’

5 category: ’ProxyExample’

6

7 "Instantiation"

8 TracingProxy class >> target: anObject

9 � self new

10 initializeWithTarget: anObject;

11 yourself

12

13 "Initialization"

14 TracingProxy >> initializeWithTarget: anObject

15 target := anObject

16

17 "Print message selector on Transcript then forward message to the

target"

18 TracingProxy >> doesNotUnderstand: aMessage

19 Transcript crShow: aMessage selector.

20 � aMessage sendTo: target

A tracing proxy prx for an object obj can then be created with the expression

prx := TracingProxy target: obj. Messages sent to prx are then printed on

the transcript1.

3.2.1.2 Limitations

This kind of implementation has two limitations. The first limitation is that only

message reception can be intercepted and only for messages not understood by the

proxy class. Consequently, implementations look for proxy class with a minimum

number of implemented methods. In Pharo and Squeak Smalltalk, the root of the

class hierarchy is ProtoObject and understands far less messages than its direct

1The transcript is an equivalent of a console in a Smalltalk environment.
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subclass Object. This class has been introduced precisely for classes that redefine

#doesNotUnderstand:. Ruby uses a similar solution with the class BasicObject

and its subclass Delegate used for proxies. Objective-C introduced another root

class NSProxy for the same reason.

The second limitation of this kind of solution is that it conflates the base-level

with the meta-level operation for interception. There is a clash between the API of

the target and the API of the proxy implementation. Since these solutions are only

concerned with one operation (message reception), and consequently one special

method (here doesNotUnderstand:) there is little risk of confusion. If the special

method is not made private clients can call it directly with a forged message reifi-

cation to bypass methods implemented by the proxy class. If a proxy class is built

with the first limitation in mind, this can be problematic.

3.2.2 Stratified Solutions

To solve this problem, modern proxy mechanisms stratify the base and meta levels

of proxies [Eugster 2006,Van Cutsem 2010,Strickland 2012,Martinez Peck 2014].

In such case, the behavior of a proxy is defined by a separate object, typically called

its handler. Handler classes implement one method per interceptable operation.

These methods are called traps [Van Cutsem 2010]. When an operation is applied

to a proxy, the proxy intercepts it and invokes the corresponding trap in its handler.

Like with the previous approach, the handler can take some actions before, after or

even instead of performing the original operation on the target. Figure 3.1 shows

the relationships between a proxy, its handler and its target with an example of

message interception. We depict proxies differently than non-proxy objects with

half-circles.

These solutions are said to be stratified because a proxy and its handler are dis-

tinct, but usually such solution is not fully stratified as the reflective architecture of

the host language is not stratified itself. This distinction allows references to the

handler and the proxy to be kept separately: the creator of a proxy typically keeps

a reference to the handler while clients are only given a reference to the proxy.

But to forward operations to the target, these solutions fall under two categories

and neither comply to the stratification principle. In the first category the target
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targetclient
msg

receive:
proxy:
target:

proxy

handler

meta-level
base-level

arg

3
2

1

receive:

Figure 3.1: Example of message interception in a typical stratified solu-

tion. First, the client sends the message #msg to the proxy (1). Then, the

proxy intercepts the message and invokes the handler’s message reception trap,

#receive:proxy:target:, with a reification of the message, the proxy and the

target as arguments (various set of arguments are possible). Finally, the handler

ask the target to reflectively invoke the message with #receive: (3)
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exposes directly meta-level operations. In the second category meta-level opera-

tions are exposed globally. So if these proxy implementations are indeed stratified

themselves, the host language reflective API is typically not stratified. It is conse-

quently interesting to see how proxies are implemented within a stratified reflective

architecture like an object-centric MOP.

3.2.3 In an Object-Centric MOP

In an object-centric MOP, proxies are easily implemented. The proxy lies at the

base-level, its metaobject is the equivalent of the handler in the previous imple-

mentations and the set of available traps is the available MOP. A proxy is an object

whose behavior is an alteration of the behavior of its target. The proxy’s metaob-

ject points to the target’s metaobject, instead of the proxy pointing to its target

directly. The trap methods of the proxy’s metaobject typically forwards to the cor-

responding target’s metaobject trap methods before or after taking some actions

that implements the behavior alteration. Note that in an object-centric MOP, and

contrary to the previous solutions, metaobjects cannot be shared among several

proxies as handlers can.

Figure 3.2 shows an example of message interception. We depict proxies dif-

ferently than non-proxy objects with half-circles. The receive: method simply

forwards the message to the target, by also sending receive: to the metaobject of

the target.

1 ProxyMO >> receive: aMessage

2 � targetMO receive: aMessage

In the rest of this chapter we assume that we are in an object-centric MOP

proxy implementation but all conclusions extend to other kinds of implementation.

For the sake of clarity certain figures will omit metaobject and instead will show a

direct reference from an object to its target.

3.3 Proxies Limitation

Despite their wide range of applications, proxies also have limitations. These limi-

tations comes from the same characteristic that gives proxies their strength: a proxy
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Figure 3.2: Example of message interception in an object-centric MOP. First, the

client sends the message #msg to the proxy (1). Then, the proxy intercepts the

message and invokes (#receive:) method of its metaobject with a reification the

#msg message as argument (2). Finally proxy’s metaobject forwards this message

to its target’s metaobject (3).

and its target are different objects. While this distinction permits proxy creators to

scope a behavioral variation to some clients only, it is also the source of an issue

known as the two-body problem [Eugster 2006, Welch 1999, Renaud 2001]. The

two-body problem can in fact be decomposed in two subproblems: the self prob-

lem [Lieberman 1986] and the encapsulation problem.

3.3.1 Self Problem

The self problem arises because the self pseudovariable is different in a proxy

and its target. When a proxy intercepts a message, it can execute code before or

after forwarding the message to the target. But doing so, it looses the control of

the execution: after forwarding self-sends are not intercepted. Figure 3.3 shows

an example of this problem. In this example, a proxy wraps a widget to trace

messages. The widget has a method paint that draws the widget on a canvas and a

method repaint that clears the canvas zone occupied by the widget and call paint.
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Widget

paint
repaint

repaint
     bounds clear.
    ↑ self paint

client
repaint

proxy target

tracing
MO

meta-level
base-level

target
mo

Figure 3.3: Illustration of the self problem. The client sends repaint on the

proxy that intercept and trace the message. But once the proxy forward the message

to the target it loose control and cannot intercept self-sends: the message send

paint is not traced.

When the client (presumably from the widget library) sends repaint to the widget

only the message repaint is traced.

To solve the self problem, proxies can operate by delegation [Lieberman 1986]

like object inheritance in prototype object languages. With delegation the proxy

does not forward the message to its target but executes itself the code of the method

the target would have performed. In other words, the value of self is always the

proxy. We will study the difference between forwarding and delegation hereafter

in Section 3.4.

3.3.2 Encapsulation Problem

The encapsulation problem also comes from the fact that the self pseudovariable

is different in a proxy and its target. Encapsulation here means that a proxy should

not expose its target. This is especially important when using proxies for access

control or other security-related behavioral variations like e.g. a read-only behav-

ioral variation. If clients are able to retrieve the target of a proxy, the policy the

proxy wants to enforce is bypassed. The simplest most common form of the prob-

lem arises when the target returns a self-reference. Because self is bound to the
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target, the proxy lets a reference to its target escape to the clients. Using delegation

instead of forwarding solves this form of the problem. A less common form of

the encapsulation problem is when the target returns a reference to itself not via

self. The target might store a reference to itself in one of its instance variables or

receive it via an argument from a collaborating object. To solve both forms of the

problem at once, the proxy can test if return values from message interceptions are

the target and return itself instead. Here is the code of the #receive: method of

the metaobject class for such a proxy.

1 EncapsulatedProxyMO >> receive: aMessage

2 | return |

3 return := targetMO receive: aMessage.

4 � return == targetMO referent

5 ifTrue: [ self referent ]

6 ifFalse: [ return ]

Still, such a proxy metaobject class fails to completely solve the encapsulation

problem because a proxy could return an object that gives access to its target. We

will see how membranes solves this issue in Subsection 3.5.2.

3.4 Forwarding vs. Delegation

Delegation [Lieberman 1986] is a mechanism used to implement object inheritance

in prototype-based languages. It permits the behavior of an object to be composed

dynamically from other objects with partial behaviors. It is opposed to forwarding

(sometimes called consultation) that is the classical semantics of object-oriented

languages. The difference between delegation and forwarding is the treatment of

the self variable. Delegation has also been used in other scenarios than prototype-

based languages, for example in languages that combine class inheritance and ob-

ject inheritance [Kniesel 1999, Viega 2000]. Another example are delegation lay-

ers [Ostermann 2002] which extend the notion of delegation from objects to graph

of collaborating objects. A delegation layer affects not only a wrapped object but

its collaborating objects as well, refining specific sets of methods of the objects in

the collaboration.
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Delegation has also been studied in the context of proxies [Büchi 2000, Bet-

tini 2007, Wernli 2014, Teruel 2015]. The difference between conventional for-

warding and delegation is how self is bound during the execution of the target

methods. Traditional proxy implementations found in class-based object-oriented

languages, such as Java’s dynamic proxies, operate by forwarding. In ECMAScript

6, because it’s a prototype-based language, proxies operate by delegation.

When a message is intercepted by a proxy, the proxy may decide to forward

the message to its target: the method corresponding to the message is executed

with self-references bound to the target. This implies that the proxy loses control

of the execution. In the context of Figure 3.3, we saw that with normal message

forwarding, the proxy first traces the message repaint before resending the mes-

sage to the target. At this point, the proxy has lost the control of the execution,

its target executes its repaint method that self-sends paint but the later message

is not traced. With delegation, the proxy intercepts the message repaint, traces

it, and then delegates this message to the target. That is the proxy executes itself

the method the target would have executed: the value of self is the proxy. Conse-

quently, the self reference in the body of the repaint method refers to the proxy

instead of the target: the self-send paint is correctly intercepted by the proxy and

traced. Delegation is mandatory to intercept operations occurring during a method

execution such that object state reads and writes and message sends (as opposed

to message reception). We refer to these interpretation operations as sub-method

operations.

3.4.1 Effect of Delegation on Proxy Composition

With delegation the identity of the proxy that originally intercepted the operation

is maintained; this permits several behavioral variations to be composed by form-

ing chains of proxies. By using proxies as the targets of other proxies, we obtain

chains of proxies. In this case, when an operation is intercepted, the corresponding

trap methods of each proxy metaobject are executed in the order specified by the

chain. Consequently, the order of composition matters. This offers a natural way

to compose multiple behavioral variations.
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Figure 3.4: A chain of two proxies composing two behavioral variations. Client 1

has a composition of the behavioral variations of p1 and p2.

In Figure 3.4, we have two proxies, a target, their respective metaobject and

two clients. The target of p1 is p2 and the target of p2 is target. This forms a

chain of two proxies. The first client object sends a message incr that is supposed

to change the state of the target object by modifying its instance variable iv. The

second client has only the behavioral variation of the second proxy enabled. Let

see in details the execution of the message incr for the first client with forwarding

and delegation.

With forwarding execution begins with the message interception that triggers

the message-reception meta-level operation in the metaobject of p1. The metaob-

ject may at some point forward the intercepted message to the target of p1 —

namely the proxy p2 — losing control of the execution at the same time. The same

scenario applies to p2: it intercepts the message, invokes its message-reception

meta-level operation, its metaobject forwards the message to target which then

processes the message normally and increments the value of its instance variable

iv. Without delegation the instance variable write is not intercepted by p1 nor p2.

It would be the same thing with a self-send.

With delegation the execution begins the same: p1 intercepts the message and

invokes the message-reception operation in its metaobject. But instead of for-

warding the message to p2, the metaobject of p1 instead delegates the message:

it specifies that the receiver (self) should be bound to p1. Then p2 intercepts that
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message, which applies its own behavioral variation and delegates the message to

target. At this point p1 is still the receiver and has still control over the execu-

tion: it can intercept sub-method operations, in particular the modification of iv.

In reaction to this interception, the state-write operation of p1 is executed in its

metaobject. The state-write operation of p2 is then invoked. This example shows

that delegation permits behavioral variations to be composed correctly even in the

context of sub-method operations.

To sum up, using delegation instead of forwarding for proxy-based intercession

permits proxies to intercept sub-method operations and to compose behavioral vari-

ations by forming chains of proxies.

3.5 Proxy Propagation

We present two approaches to isolation with propagation of proxies during execu-

tion. The first one, known as membrane [Miller 2006, Van Cutsem 2010], dynami-

cally isolates a graph of objects through a layer of proxies. References exchanged

through a membrane are wrapped with proxies enabling one of two behavioral

variations depending on the direction they cross the membrane boundary. The

second one, that we call control flow propagation [Wernli 2014, Teruel 2015, Ar-

naud 2010, Arnaud 2015], applies a behavioral variation to all objects involved in

a given execution from a particular message send. Before presenting these two

forms of propagation, we first discuss the requirements for the dynamic wrapping

of proxies required for both.

3.5.1 Wrapping Objects During Propagation

To propagate a behavioral variation, the automatic wrapping of object with proxy

should be done with certain precautions. Without taking care, an object could be

wrapped by different proxies, i.e. an object wrapped at different times yields dif-

ferent proxies. This approach is inefficient because a proxy that already exists can

be reused. A more important issue is that object identity is not preserved across the

boundaries, potentially breaking code that relies on object identity. Consequently

proxies are cached. Clients always obtain the same proxy for the same object.
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Also an object that is already wrapped should not be rewrapped multiple times

because the behavioral variation would be applied more than once, yielding poor

performance and possibly incorrect results. The wrapping operation must be idem-

potent: normal objects get wrapped and proxies are just return untouched.

Finally, caching proxies should not prevent garbage collection. When a proxy is

no longer referenced, it should be garbage collected. But such cache is usually im-

plemented as a hash table that maps objects to their cached proxy. A naive solution

is to use a hash table with weak keys: if a key is no longer referenced outside the

cache the associated value also becomes collectable. But if an object used as a key

references a proxy used as a value, garbage collection is impossible. Consequently,

a more sophisticated finalization scheme is needed: ephemeron [Hayes 1997]. An

ephemeron is an association that holds weakly on its key and strongly on its value.

Once the key is garbage collected the value is held weakly. Ephemerons can be

used to implement a special kind of hash table known as a weak map . Weak maps

solve the problem of garbage collection. Given an available implementation of

weak maps, the code of the wrapping operation of a proxy cache is quite straight-

forward.
1 ProxyCache >> wrap: anObject

2 � proxyMap

3 at: anObject

4 ifAbsentPut: [ self basicWrap: anObject ]

3.5.2 Membrane

The first form of proxy propagation is a membrane [Miller 2006,Van Cutsem 2010]

A membrane isolates a whole object graph from client by wrapping objects with

proxies, by transitively propagating a behavioral variation to all references ex-

changed through the membrane. A membrane wraps all objects crossing the bound-

ary of the graph in both directions: all interaction between the isolated graph and

the outside is mediated via proxies.

3.5.2.1 Wrapping Rules

Figure 3.5 shows the wrapping rules in action. At start, a membrane consists of a

sole proxy whose target is the root of the object graph to isolate. When a message
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Figure 3.5: Wrapping rules of membranes (metaobjects are omitted for clar-

ity). The client object sends a message with an argument (1) and the argument

is wrapped when crossing the membrane (2). The target is about to return an object

(3) and its proxy wraps it before returning it to the client (4).

is sent to this proxy (situation 1 in the Figure 3.5), the arguments are wrapped and

the message passed to the target (2). Once the target has processed the message and

returns an object (3), its proxy wrap this object before handing it over to the other

side (4). The wrapping of arguments and return value is symmetric: it extends

to references exchanged in the other direction. This means that when an object

from the isolated graph sends a message to a proxy (obtained as argument in a

previous message), the arguments and the return value are also wrapped. Likewise,

all messages return proxies from the root proxy and all objects passed as argument

into the isolated graph are wrapped too.

But these wrapping are not applied indiscriminately because some objects would

be wrapped several times when crossing back and forth. For example, if an object



64 CHAPTER 3. SCOPING BEHAVIORAL VARIATIONS WITH PROXIES
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Figure 3.6: Unwrapping rules of membranes (metaobjects are omitted for clarity).

The client object sends a message with a proxy as argument (1) and the proxy is

unwrapped when crossing the membrane (2). The target is about to return a proxy

(3) and the its proxy unwraps it before returning it to the client (4).

sends a message to a proxy to the other side with also a proxy to the other as argu-

ment, the argument would be wrapped twice. So instead, in such situation, objects

are unwrapped when they come back to the side they belong. Figure 3.6 depicts

these unwrapping rules. When a message with a proxy to the other side as argu-

ment is sent across the membrane (1), the argument is unwrapped and the message

passed to the other side (2). Likewise, when a message returns a proxy to the other

side (3), it is also unwrapped (4). Like wrapping, these unwrapping rules are also

symmetric.

The term membrane usually refers to this kind of propagation when the propa-

gated behavioral variation is revocability [Miller 2006,Van Cutsem 2010]. A revo-
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cable proxy transparently forwards message to its target as long as it is active. The

creator of the proxy can then deactivate it so that it no longer forwards message

to its target. The permission granted to clients to send messages to the target is

effectively revoked. A revocable membrane applies revocability to a whole object

graph: all the objects that clients obtained from the graph can be revoked all at

once. We call them revocable membranes and use a broader meaning for mem-

brane: a membrane is the of propagation presented here, independently from the

particular behavioral variation it propagates.

3.5.2.2 Inside-out and Outside-in Behavioral Variations Distinction

Wrapping and unwrapping rules are symmetric because a membrane has two sides:

objects inside the membrane and objects outside. There are consequently two kinds

of proxies: outside-in proxies that mediate the interactions from the outside to

the inside (in dark grey in Figure 3.5 and Figure 3.6) and inside-out proxies that

mediate the interactions from the inside to the outside (in light grey in Figure 3.5

and Figure 3.6) Each kind of proxy can enable its own behavioral variation. For

example a membrane could enable tracing in both direction and read-only only for

outside-in proxies.

Membranes have many different use cases but when it comes to encapsulation

and security. A membrane can be used in two different ways: protecting the outside

from the inside and protecting the inside from the outside. In the first case, the

behavioral variation of inside-out proxies enforce a policy while outside-in proxies

are just here to automatically transform objects passed as argument to the inside

into inside-out proxies. Outside-in proxies mark their target as untrusted: they

wrap arguments into inside-out proxies and return values into outside-in proxies

but they typically enforce no policy. In the second case where a membrane is used

to protect the inside from the outside, the situation is reversed: outside-in proxies

enforce a policy while inside-out proxies enforce no policy but are used to mark

their respective target as untrusted.
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3.5.2.3 Implementation

We saw that the wrapping and unwrapping rules of membrane for each side are

symmetric. An implementation can profit from this symmetry. In such imple-

mentation, the logic of membrane wrapping rules are split in two objects, each one

representing one side of the membrane. Each side has a proxy cache and references

the other. Here is the code of a membrane proxy metaobject and of membrane side.

1 MembraneProxyMO>>receive: aMessage

2 aMessage arguments: aMessage arguments collect: [ :arg |

3 mySide toOtherSide: arg ]

4 � mySide toMySide: (targetMO receive: aMessage).

5

6 MembraneSide>>toMySide: anObjectOrProxy

7 � (proxyCache includesKey: anObjectOrProxy)

8 ifTrue: [ anObjectOrProxy ]

9 ifFalse: [

10 | proxy |

11 proxy := proxyCache wrap: anObjectOrProxy.

12 proxy meta side: self.

13 proxy ]

14

15 MembraneSide>>toOtherSide: anObjectOrProxy

16 � otherSide toMySide: anObjectOrProxy

3.5.3 Control flow propagation

A proxy can encode a behavioral variation that will be consistently propagated

to all objects accessed during the evaluation of a message send, i.e. the dynamic

extent of the message. Scoping behavioral variations to dynamic extents increases

expressiveness in useful ways [Tanter 2008, Tanter 2009]. With such a form of

scoping, it is possible to execute code in a read-only manner [Arnaud 2010] (thus

improving safety), or to track all state mutations to ease recovery in case of errors

(thus improving reliability), or to trace and profile code at a fine-grained level (thus

improving monitoring). A typical use case is to let proxies mimic their target state.

Likewise, one can think of a proxy as the entry to a parallel universe where each

object has potentially an alter-ego with a different state. This mechanism is close
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root proxy

actual control flow 

fictitious control flow 

Figure 3.7: A depiction of control flow propagation (metaobjects are omitted for

clarity). A root proxy (in grey) wraps a target object that is connected to some

object graph. The dashed line depicts the actual control flow of the execution.

Proxies are created on need and are eligible for garbage collection once the control

flow leaves them. The actual control flow parallels a fictitious control flow (dot-

ted line) i.e. the control flow that would have resulted if execution had not been

intercepted by the root proxy.

to the concepts of virtual copies [Mittal 1986], worlds [Warth 2011] and handles

[Arnaud 2010]. As an example, this permits to implement software transactional

memory quite easily.

With this technique a proxy propagates a behavioral variation to the dynamic

extents of the messages it receives. These dynamic extents are the parts of the

execution delimited by the processing of a message received by the proxy, from

the reception of the message until the corresponding method returns. All objects

accessed during this dynamic extent are consistently represented by proxies that

are created on-demand. We refer to the first proxy that initiates the propagations

as the root proxy. Other proxies created during the propagation are called non-root

proxies. The root proxy can be seen as the entry point to a lazily-created parallel

object graph as depicted in Figure 3.7.
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3.5.3.1 Tracing example

We will illustrate control flow propagation with a tracing example. Let us consider

the method Integer>>fib which computes the Fibonacci value of an integer using

recursion:
1 Integer>>fib

2 self < 2 ifTrue: [ � self ].

3 � (self - 1) fib + (self - 2) fib

The computation of the Fibonacci value of 2 corresponds to the following se-

quence of message sends (first the receiver of the message, then the message with

its arguments):
1 2 fib

2 2 < 2

3 false ifTrue: [ � self ]

4 2 - 1

5 1 fib

6 1 < 2

7 true ifTrue: [ � self ]

8 [ � self ] value

9 2 - 2

10 0 fib

11 0 < 2

12 true ifTrue: [ � self ]

13 [ � self ] value

14 1 + 0

To automatically trace message sends, we can use a proxy to intercept message

sends and print them. Delegation ensures that messages received by the proxy are

traced, including self-sends. However, it would fail to trace messages sent to other

objects and would print 2 fib, 2 < 2, 2 - 1, 2 - 2, but all the messages sent

to 1, 0, true, false and the closure [ � self ] would not be traced. To

consistently apply a behavioral variation during the execution of a message send,

all objects accessed during the execution must be represented with proxies.

3.5.3.2 Wrapping rule

The wrapping rules of control flow propagation are simple: wrap the receiver and

the arguments of messages sent and unwrap the value of state writes. When an in-
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stance variable is assigned a new value, the value of the assignment is unwrapped

before performing that assignment. This way, the proxies created during the prop-

agation are only referred to from within the call stack and don’t corrupt the object

graph connected to the target. Additionally, one rule must be decided for the return

values messages that start the propagation: consistently wrapping or unwrapping

it. Indeed, with only the two previous rules, the return value can be a proxy or not

depending on the code executed. If return value are consistently wrapped, objects

returned would also have the behavioral variation enabled for the dynamic extents

of the message they receive and also the objects these objects return, in a similar

fashion than membranes. If return values are consistently unwrapped, objects re-

turned would also have the behavioral variation enabled for the dynamic extents

of the message they receive and also the objects these objects return. Here is the

code of a metaobject class enabling control flow propagation with unwrapped re-

turns Behavioral variations concerned with encapsulation or security typically use

wrapped returns values and behavioral variations concerned with monitoring can

wrap return values or not.

1 ControlFlowPropagationMO>>receive: aMessage

2 � self unwrap: (aMessage delegateTo: targetMO)

3

4 ControlFlowPropagationMO>>send: aMessage

5 aMessage receiver: (self wrap: aMessage receiver)

6 aMessage arguments: (aMessage arguments collect: [ :arg | self

wrap: arg ])

7 � targetMO send: aMessage

8

9 ControlFlowPropagationMO>>write: anIV to: anObject

10 � targetMO write: anIV to: (self unwrap: anObject)

3.5.3.3 Examples

We focus in this section on new examples enabled by control flow propagation.

Read-only Execution Read-only execution [Arnaud 2010] prevents mutation of

state during evaluation. Read-only execution dynamically guarantees that the eval-

uation of a given piece of code yields no mutation. Classical proxies could restrict
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the interface of a given object to the subset of read-only methods. However, they

would fail to enable read-only execution of arbitrary methods, or to guarantee that

methods are deeply read-only. Read-only execution can be implemented trivially

with a behavioral variation that fails upon state writes.

1 ReadOnlyMO>>write: anIV to: anObject

2 ReadOnlyError signal

Thanks to proxy-based intercession, the target object is still available to trusted

clients that can modify it. Only clients holding a reference to the proxy are affected

by the read-only policy.

Object Versioning. To tolerate errors, developers implement recovery blocks

that undo mutations and leave the objects in a consistent state. Typically, this en-

tails cloning objects to obtain snapshots. Control flow propagation enables the

implementation of object versioning concisely. Before any field is mutated, the

metaobject class shown below records the old value into a log using a reflective

field read. The log can be used in recovery block, for instance to implement roll-

back.

1 RecordingMO>>write: anIV to: anObject

2 | oldValue |

3 oldValue := targetMO read: anIV.

4 log add: { targetMO. anIV. oldValue deepCopy }.

5 � targetMO write: anIV to: anObject

The log can then be used to reflectively undo changes if needed.

1 aLog reverseDo: [ :change | change first write: change second

to: change third ]

3.5.4 Other Variations of Propagation

Proxies provide flexible building blocks to implement various forms of scopes,

possibly blurring the line between static and dynamic scoping, similarly to Tanter’s

scoping strategies [Tanter 2009].
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3.5.4.1 Filtering on package

Propagation can for instance be adapted to enable a behavioral variation only for

instances of classes belonging to specific packages. This can be used to select

which parts of an execution are subject to a behavioral variation such as tracing. It

is especially useful for excluding kernel classes (string, dictionaries, arrays, etc.)

and focusing instead on the classes of the application under analysis.

To implement this form of scoping, it is possible to implement a filtering proxy

metaobject class with a set of packages. This class wraps an object only if this

object class is declared in one of the packages of interest.

1 PackageScopeControlFlowPropagationMO>>wrap: anObject

2 � (packages includes: t class package)

3 ifTrue: [ super wrap: anObject ]

4 ifFalse: [ self unwrap: anObject ]

3.5.4.2 Protecting the Target from Clients

With full control flow propagation, a read-only behavioral variation ensures that

no state is modified from within the dynamic extent of messages received by the

root proxy. Propagation can be relaxed to lessen the constraints imposed on clients.

We can ensure that no state of the object graph connected to the target is modified

from within the dynamic extent of messages received by the root proxy. To achieve

that we can have an alternative propagation that does not wrap initial arguments,

i.e. the arguments of messages sent to the root proxy. The rationale is that the

client necessarily has a reference to each of the objects it passes as arguments in

the message to the root proxy. The client can therefore access these objects with

the behavioral variation disabled in any case. In such scenarios, we also typically

want initial returns to be wrapped so that objects returned by the target are still

protected by the behavioral variation. Consequently, this alternative propagation

does not apply this unwrapping rule.

3.5.4.3 Protecting the Clients from the Target

A proxy can also propagate a behavioral variation to protect the clients from the

targets. Revocable membranes are an example of such protection. The behavioral
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variation can also be propagated along the control flow, but only to objects passed

as argument to the proxy. This is a combination of the control flow propagation

and membrane propagation, where the inside-out proxies of a membrane perform

a behavioral variation following the control flow. For example, a client ensure that

all objects it passes to an untrusted graph will enable read-only execution.

3.6 Related Mechanisms

Many different mechanisms have been proposed to adapt the behavior of objects.

This section reviews a few, compare them with proxies and present works related to

membranes and control-flow propagation. The control flow propagation technique

presented here is inspired from Wernli et myself [Wernli 2014, Teruel 2015]. This

previous work use other wrapping rules based on other interception operations like

literal and global variable resolution.

Composing Behavior. Inheritance leads to an explosion in the number of classes

when multiple variations of a given set of classes must be designed. Static traits

[Schärli 2003] or mixins enable the definition of units of reuse that can be com-

posed into classes, but they do not solve the issue of class explosion. Ressia et al.

proposed talents [Ressia 2014] which enable adaptations of the behavior of individ-

ual objects by composing trait-like units of behavior dynamically on a per-object

basis. Another solution is the use of decorators that refine a specific set of known

methods, e.g. the method paint of a window. Büchi and Weck [Büchi 2000] pro-

posed generic wrappers. A generic wrapper dynamically decorates an object to

redefine some methods of its statically known type. Bettini et al. [Bettini 2007]

proposed a similar construct but composition is dynamic. Unlike decorators, prox-

ies find their use when the refinement applies to unknown methods, e.g. to trace all

invocations.

AOP’s Pointcut-Advice Model. Proxy-based intercession differs from the tra-

ditional pointcut-advice model of aspect oriented programming. In the pointcut-

advice model, an aspect groups definition of pointcuts with corresponding advices,

i.e. a behavioral variation and its deployment. The metaobject class of a proxy



3.6. RELATED MECHANISMS 73

specifies the actions taken upon interception of certain operations. This looks sim-

ilar to the pointcut-advice model: the body of a metaobject method is akin to an

advice and the method itself matches certain points of execution, just like a point-

cut does. However, a proxy metaobject class does not specify which objects it will

affect. This allows developers to deploy a behavioral variation on specific object

references but it does not specifies a deployment scheme. This means that either an

application code or its clients code must be modified to include object wrapping in-

structions. Consequently, aspects and proxies can be complementary since aspects

can be used to specify how proxies should be deployed within an application.

Control Flow Pointcuts in AOP. In AOP, control flow pointcuts are popular

and supported by mainstream AOP implementations, e.g. AspectJ’s cflow and

cflowbelow. Aware of the limitations of control flow pointcuts, some AOP imple-

mentations provide specific constructs to scope to the dynamic extent of a block

of code, e.g. CaesarJ’s deploy [Aracic 2006]. Implemented naively, control flow

pointcuts are expensive since they entail a traversal of the stack at run time, but

they can be implemented efficiently using partial evaluation [Masuhara 2003].

Composition Filters. In the Composition Filters model [Aksit 1993], the incom-

ing and outgoing messages of an object pass through stacks of message filter that

can modify the messages in various ways. This model can be implemented with

proxies if interception of outgoing message is available. With composition filters,

an object can rewrite outgoing messages to change their receiver to an object with

that same behavior. As far as we are aware of, composition filters implementation

does not offer a mechanism to intercept instance variable accesses but we think

it could be easily added. Adding this facility would allow composition filters to

realize the control flow propagation technique presented here.

Security Metaobjects. Riechmann et al. [Riechmann 1997] presented a propa-

gation of behavioral variation similar to membranes. They propose to extend the

OCap model with Security Metaobjects (SMO). They note that the frequent ex-

change of object references makes hard to check which part of an application can

access a given capability. A SMO can be attached to an object reference to con-
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trol the messages that can be performed via this reference. Such facility can be

emulated by proxies. Also an SMO can attach itself or other SMOs to incoming

references (message arguments) and outgoing references (message returns). They

show how this facility can implement SMOs that propagate an access control pol-

icy to all exchanged references, in a similar fashion than membranes. Riechmann

et al. later proposed an extension of this model in the context of a role-based ac-

cess control mechanism [Riechmann 1998]. In this extension, they use two kind

SMOs: principal SMOs provides principal information that access control SMOs

use to check access.

Handles. Similarly to our control-flow propagation, Arnaud et al. presented han-

dles [Arnaud 2013a, Arnaud 2013b] that enable the adaptation of references with

behavioral variations that propagate across the control flow. The propagation be-

longs to the semantics of the handles, whereas in our approach, the propagation is

encoded reflectively in a specific proxy metaobject. Our approach is more flexible

since it decouples the notion of propagation from the notion of proxy but the handle

approach is more efficient since it is implemented at the runtime level.

Contextual behavior In context-oriented programming (COP) [Hirschfeld 2008,

von Löwis 2007], variations can be encapsulated into layers that are dynamically

activated in the dynamic extent of an expression. Unlike the propagation technique

presented in this paper that work better with homogenous variations, COP has a

better support for heterogenous variations [Apel 2008]. COP can be seen as a

form of multi-dimensional dispatch, where the context is an additional dimension.

Other mechanisms where the behavior of objects varies in a contextual manner are

roles [Kristensen 1996], perspectives [Smith 1996], and subjects [Harrison 1993].

3.7 Conclusion

There are advantages to use proxies to scope behavioral variations and thus to

support unanticipated changes. We saw the effect of delegation is important for

composition and the self-problem. Proxies can form chains to compose their be-

havioral variations: different parties can add their own behavioral variation without
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being aware of others already active for the same target. We can for instance trace

and profile an execution by using tracing proxies and profiling proxies that form

chains of delegation (composition). Adapting objects during an execution will not

affect other objects in the system (partial reflection [Tanter 2003]). Also, objects

are wrapped selectively and a behavioral variation is enabled only for the proxy.

A variation is enabled for clients who possess a reference to the proxy while other

clients may have a reference to the target or to another proxy implementing another

behavioral variation. It is up to the creator of the proxy to decide whether to pass

the proxy or the target.

Additionally, with specific wrapping rules it is possible to propagate a behav-

ioral variation to isolate an object graph with membranes or a portion of execution

with control flow propagation. Since the propagation is written reflectively, it can

be customized to achieve other forms of scoping.

When using a proxy for access control or other security-related concerns, an

important requirement is the absence of target leaking: it should be impossible to

gain access to the target from the proxy itself. But like with any security mechanism

that is implemented reflectively, it is important to ensure that reflection cannot be

used to bypass them. Consequently it is important to secure the underlying reflec-

tive architecture. The next chapter will present an ownership-based access control

policy to metaobjects that secure access to reflection. This access control policy

permits to leverage the security benefits that proxy brings.
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In the last chapters, we saw how reflection allows programs to examine and

modify their own structure and behavior. Reflection helps writing highly generic

code and frameworks. It can alter program interpretation to create language ex-

tensions, to perform dynamic analyses and to factor non-functional concerns. Re-

flection is a solid fundament to support unanticipated changes, development tools,

dynamic software updates and self-adaptive programs.

However, most reflective operations break object encapsulation, making it at

the same time a bless and a curse. Reflection supports adaptable software thanks to

scoped alterations of the language semantics, to dynamic code transformations and

to generic code that works on an open-ended set of data-types. At the same time

reflection power steams from its ability to bypass language rules such as encapsu-

lation. As long as reflective code is written with genericity in mind (e.g. listing

all the instance variables of an object instead of expecting it to have a specific

instance variable), such encapsulation breaches are not a problem from the modu-

larity point-of-view. However, as soon as we consider the collaboration of multiple

software components developed by different parties, these encapsulation breaches

77
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become a security threat. Malicious code can use reflection to corrupt critical be-

havior of to gain access to protected operations. The canonical example is object

state introspection, where clients break into the encapsulation boundaries of other

objects to obtain new references. Object state introspection is a reflective oper-

ation available in many languages: getattr() in Python, Field.get() in Java,

instVarNamed: in Smalltalk, instance_variable_get() in Ruby, etc.

To illustrate the problem we take an example that stresses the security issue of

these encapsulation breaches. This example consists of two "person" objects, Alice

and Bob, each holding a reference to its own private wallet object. In this context, if

Alice has a reference to Bob, she can use object state introspection to access Bob’s

wallet without his consent:

bobWallet := bob instVarNamed: #wallet.

With a reference to Bob’s wallet, Alice can now access its content, like its credit

card. Such leaked object reference can in turn be introspected: from a reference to

one object, all indirectly-connected objects become reachable. So once Alice has

obtained Bob’s credit card she can introspect it to get its PIN:

creditCard := bobWallet creditCard.

pin := creditCard instVarNamed: #pin.

From a security point of view the tension between reflection and object encap-

sulation is problematic. An unrestricted access to reflective operations allows any

code to inspect and corrupt any code loaded in the runtime or any computation

running therein. For example, the deployment of an application that requires re-

flection support in a shared runtime relies on trusting this application to not misuse

reflection. This situation is not satisfactory. Access to reflective operations needs

to be controlled.

This tension is also problematic when reflection is used to implement secu-

rity mechanisms [Ancona 1999,Riechmann 1997,Riechmann 1998]. In Chapter 3,

we saw that proxies are good candidates to implement security-related behavioral

variations. The problem here is that reflection, which is used to implement these

mechanisms, can also bypass them. Consequently, a security mechanism imple-

mented with reflection must be reflection-proof. A solution is to enforce policies
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that forbid reflection except for the implementation of these mechanisms. But this

situation is not satisfactory because reflection cannot be used anymore for all its

other applications, notably monitoring and analysis. Rather than forbidding reflec-

tion, or most of its useful applications, we want to control it to ensure that the

encapsulation breaches happen only under certain conditions.

In this chapter, we reconcile reflection and object encapsulation via an access

control policy to reflective operations. Such policy has to determine when breaking

into the encapsulation boundary of an object is legitimate. To this end, we explore

the notion of dynamic object ownership [Noble 1999,Gordon 2007] that organizes

object graphs around a notion of ownership. We use the object ownership relation

to determine access rights to reflective operations on a per-object basis. These ac-

cess rights are thus based on the dynamic arrangement of objects rather than on

static relations between structural entities (e.g. classes and packages) as it is the

case for visibility modifiers in most languages. Ownership information becomes

our basis to decide when it is legitimate for an object to break into the encapsulation

boundary of another one using reflection. We show that within a reflective architec-

ture that implements this policy, proxies (a reflectively implemented mechanism)

can be used to enforce reflection-proof security policies.

The contributions of this chapter are:

• a description of the problem of object encapsulation violations caused by

reflection, a presentation of the existing solutions and their shortcomings

(Section 4.1);

• a presentation of an access control policy to reflective operations based on

dynamic object ownership (Section 4.2);

• an evaluation of this access control policy in our object-centric MOP (Sec-

tion 4.3).

4.1 Encapsulation Violation of Reflection

Most reflective operations break object encapsulation. To reconcile reflection and

encapsulation we want an access control policy to reflective operations. The pur-

pose of such policy is to decide when an object can legitimately use a reflective
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operation on another object and thus potentially break the encapsulation of the lat-

ter.

In this section we set up the context of the discussion to explain the tension

between encapsulation and reflection. To stress this tension we analyse it through

the point of view of a security model where object encapsulation is a central re-

quirement: the Object-Capability Model (OCap model). The following brief intro-

duction to the OCap model also introduces some vocabulary.

4.1.1 Object-Capability Model

The Object-Capability Model [Miller 2006, Miller 2003] is a capability-based se-

curity model that builds upon the object paradigm. In capability-based security, a

capability is an unforgeable reference to a resource together with a set of access

rights to this resource. Capabilities are unforgeable i.e. it is impossible to coun-

terfeit a capability. A capability grants subjects holding it the permission to invoke

operations of the associated resource according to the associated access rights. In

a capability system it is impossible to designate a resource without having the per-

mission to access this resource: a capability is at the same time a designation and a

permission.

The OCap model applies capability-based security to object-oriented program-

ming by treating objects both as subjects and resources. An object is a resource for

objects holding a reference to it and a subject (or client) for objects it holds a refer-

ence to. In a memory-safe language a capability is encoded as an object reference:

the absence of pointer arithmetic ensures that object references are unforgeable. A

capability grants a subject the right to send messages to the resource. A capability

can only be obtained by:

• Introduction: An object can pass one of its capabilities to another one by

passing the former as an argument of a message to the latter.

• Parenthood: An object obtains the initially unique capability over an object

it create.

• Endowment: An object can pass some its capabilities to an object it creates.1

1Endowment can be seen as the combination of introduction and parenthood.
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In the context of our wallet example, if Alice holds a capability on Bob, she can

send him messages. On his side, Bob encapsulates its capability to its wallet: he

is the only one to decide if he gives its wallet away to strangers. That is to say, it

is up to the code of Bob to take care of exercising its wallet capability himself and

not to return or introduce this capability to collaborating objects. For example, if

Alice were to ask Bob to pay her for some item, Bob would have to take some coins

out of his wallet and give them to Alice, but he would not give away his wallet for

Alice to take these coins herself.

Object encapsulation is crucial to the OCap model: a capability only permits a

subject object to send messages to the associated resource object, but not to access

the capabilities of the resource without its consent. In the introduction we saw that

the global availability of object state introspection allows any object to access all

the objects indirectly connected to it. This is unacceptable because any capability

would bring as much authority than the sum of capabilities in its connected object

graph.

The integration of reflection and the OCap model in a same language is thus

challenging. Consequently OCap languages provide limited reflective abilities.

For example, Joe-E [Mettler 2010], an object-capability subset of Java, limits

reflection to introspection of public members. Another example is the E lan-

guage [Miller 2006] that limits reflection to the execution and interception of mes-

sage sends.

An OCap language could allow an object to perform many reflective opera-

tions on itself. An object inspecting its own state and behavior, instrumenting its

own code or altering its own interpretation does not contradict the principles of

the OCap model as soon as these reflective operations affect only the object itself.

Only the reflective operations that an object performs on another object needs to

be controlled. More precisely, an object should not be able to perform a reflective

operation that produces an effect that could not have been carried out without re-

flection. This is the reflection protection principle formulated by De Meuter et al.

in the context of the ChitChat language [De Meuter 2005]. The reflection protec-

tion principle states that, by default, an object does not expose more of itself at the

meta-level than it does at the base-level. An object can still expose more at the

meta-level than it does at the base-level, but only if it chooses to do so. The set
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of reflective operations that respect the reflection protection principle depends on

the host language. For example in Java, the visibility of a field or a method has to

be taken into account: reflection protection allows method calls, field readings and

field writings but only if the corresponding member is accessible from the class of

subject object according to the visibility restrictions. Another example is Smalltalk,

where instance variables are private to each object and all methods are public. In

this case reflection protection allows every message send but no access to instance

variables. The reflection protection principle can be relaxed by allowing the listing

of accessible members, even if it is not possible at the base-level. Indeed, listing

all the accessible methods of an unknown object is a good way to discover its inter-

face, a facility that is really useful for making generic code and adaptable software.

Hence we give the following definition of the reflection protection principle: a re-

flective API respects the reflection protection principle if only the members that

are accessible at the base-level can be accessed at the meta-level. Consequently, a

reflective API that respects the reflection protection principle only forbids to access

non-visible members. This definition allows for listing of accessible members.

While the reflection protection principle reconciles reflection with the OCap

model, it also constrains reflection and limits its range of applications. For exam-

ple the reflection protection principle limits the kind of behavioral variations that

a proxy can implement since the proxy can only forwards permitted operations.

Behavioral variations that have to forward object state accesses to the target, like

the read-only variation that forward state read, are forbidden. We are looking for a

more permissive approach to allow such kind of behavioral variations under certain

conditions.

4.1.2 Reflection as Separate Capabilities

A first step toward the reconciliation of reflection and the OCap model is to en-

capsulate reflective operations in separate metaobjects. Likewise the capability to

send messages to an object and the capability to reflect on this object are kept dis-

tinct. Additionally this separation prevent name clashes between the base-level

operations and the reflective operations.
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To allow fine-grained access control, a reflective architecture should provide

metaobjects that grant a subject the right to perform reflection on a single object.

This is the case of object-centric MOPs. For example, the reflective API of Java

does not fulfills this requirement: in Java, the method getClass() returns a reifi-

cation of the receiver’s class (instance of the class Class), that allows subjects to

inspect and modify any instance they reference. Reflective architectures that ex-

pose reflective operations via metaobjects can be divided in two categories: those

where metaobjects are accessed directly from objects and those where metaobjects

are acceded indirectly via an external provider.

An access control policy to reflective operations also has to face the problem of

right propagation. If any subject object can retrieve the metaobject of any object,

this metaobject becomes an entry point to the reflective system. The subject can

ask this metaobject the class of its referent. If a class gives access to its subclasses

and its superclass, all classes of the system become reachable from any object

reference. If a class gives access to its instances, all objects of the system become

reachable from any object reference. Because of the availability of these reflective

operations, any capability grants the authority to perform any reflective operation

on any object.

4.1.2.1 Direct Access to Metaobjects

Many reflective architectures grant base-level objects the right to access the metaob-

ject of any other object directly. In this case, the separation of capabilities is not

helpful since no access control is performed: the acquisition of a capability over

a base-object allows for the acquisition of a capability over the metaobject. When

the access to a metaobject is negotiated via message passing, and when the corre-

sponding accessing method can be redefined, objects may restrict the set of reflec-

tive operations they provide [De Meuter 2005]. Typically, this kind of solution has

two drawbacks.

The first drawback is a lack of principal information: an object has no easy

mean to know which subject object is asking for its metaobject. One solution can

rely on the different method visibilities provided by the language to grant different

subjects different levels of authority. But in most languages method visibilities are

based on static criteria, like the package or the hierarchy of the class defining the
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method. Such solution prevents fine-grained access control by making the assump-

tion that all instances of a class have necessary the same rights. And more often

than not, different instances need different access rights to properly encapsulate

their respective private state from each other. In the context of our wallet example,

restricting the reflective access of someone’s wallet to instances of the Person class

(like Java’s private modifier) would imply that Alice has the permission to access

Bob’s wallet reflectively. Likewise, restricting the reflective access of linked-list

nodes to instances of the LinkedList class would imply that any linked list has

the permission to access the nodes of any other linked-list. Also, if a malicious

program manages to take over one instance, it can then take over all other instances

it can access. Such solution also makes the assumption that principal boundaries

matches the visibility scopes provided by the language. A more satisfying solution

is to take the identity of subjects into account for more fine-grained control. This

is what the access controlled policy presented in this chapter does. Of course this

is only possible if the language offers a way to know the sender of a message.

A second drawback is that this kind of access to metaobjects forces the repet-

itive redefinition of metaobject access methods and may lead to duplicated code.

Also, developers may either implement over-restricting access policies and pre-

vent the usage of development tools and dynamic analyses or implement over-

permissive policies and introduce security breaches. To avoid these repetitive re-

definitions, the default accessing methods must provide a sensible default access

control policy. This is one of the contributions of this chapter.

4.1.2.2 Indirect Access to Metaobjects

Access to metaobjects can also be done indirectly via an external provider. This is

the case in mirror-based reflective architectures [Bracha 2004], where all reflective

operations are performed via metaobjects called mirrors. A mirror-based reflective

architecture follows three design principles:

• Encapsulation: The implementation of reflective operations is encapsulated.

It is then possible the substitute one implementation with another, e.g. for

adapting existing development tools to a different runtime or to provide re-

flection on remote objects.
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• Stratification: The meta-level is totally separated from the base-level. Mir-

rors are not accessed directly via base-level objects but instead via a mirror

factory.

• Ontological correspondence: The reflective API describes the reflected lan-

guage in its entirety and distinguishes between static and dynamic aspects of

the language.

In our context, stratification is the most important principle. To perform reflection

upon a resource, a subject needs a capability over the resource and a capability over

a mirror factory. Without access to a mirror factory, a subject cannot use reflection

at all. Typically, a default mirror factory creates mirrors that expose all available

reflective operations. A capability over the default mirror factory thus grants a

subject the right to reflect upon any object it references either directly, or indirectly

via transitive encapsulation breaches.

Thanks to the adherence to the Abstract Factory design pattern [Gamma 1995],

mirror-based reflective architectures make it possible to design custom mirror fac-

tories that produce mirrors with less authority. But such mirror factories still need

to keep track of access permissions to determine which rights it grants to different

subjects. Our policy uses ownership information to keep track of these permissions.

4.2 Access Control Policy to Reflective Operations

An access control policy to reflective operations has to decide when a subject object

can legitimately perform a reflective operation on a resource object. Ideally such

policy should be permissive enough to retain most of the power of reflection and

restrictive enough to prevent abuses. A policy should also be generic enough to be

a sensible default for most situations.

Consider the case where the subject and the resource are the same object. In

this case we consider all reflective operations legitimate, i.e. an object can always

access its own metaobject. An object should have the right to decide for itself

how it behaves: it should have the right to inspect and alter its own state as it

intends. The problematic case is when the subject and the resource are different

objects. Specifying access rights on a per-class basis is not a satisfactory solution
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because all instances of a class would have the same rights. Rather our policy

takes the dynamic relations between objects into account. We can observe that the

relation between Alice and Bob is not the same than the relation between Alice

and her wallet. While Alice should not be able to get access to Bob’s wallet, she

should have a privileged access to her own wallet and then to the credit card it

contains. She should be able to use reflection to alter the behavior of her credit

card. Likewise she can monitor and limit withdrawals when she lands it to an

untrustworthy friend. The relationship between a person and his wallet is stronger

than the relationship between persons: while Alice owns her wallet, she simply

refers to Bob. The distinction between this owning relationship and the standard

referencing relationship is embodied by the concept of Object Ownership.

4.2.1 Object Ownership

Object ownership was originally introduced to control the effects of object aliasing

in the context of Flexible Alias Protection [Noble 1998]. It was first embodied

as a type system with ownership types [Clarke 1998] and was then adapted in

the context of dynamically-typed languages with dynamic ownership [Noble 1999,

Gordon 2007]. In this paper we consider the latter. Note that we do not use object

ownership to control object aliasing but to keep track of reflection permissions on

a per-object basis.

The notion of object ownership comes from the observation that objects are

rarely autonomous but instead form aggregates. An aggregate object is composed

of objects that constitute its representation and refers to other objects that constitute

its arguments. An aggregate owns its representation but simply refers to its argu-

ments. A typical example is a linked-list: the list owns its nodes (its representation)

but simply refers to the elements it contains (its arguments).

Figure 4.1 shows the ownership relation in the context of our wallet example.

Alice and Bob refer to each other, and both own their respective wallet and credit

card. Such object graph could be the result of the following code.
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Figure 4.1: An example showing the ownership relation. Bob and Alice each own

their own wallet and credit card. Each wallet owns its respective linked-list and

each linked-list own its respective nodes. Bob and Alice only refer to each other

just like each node refers to its contents.

1 Person>>initialize

2 wallet := Wallet new.

3 wallet add: CreditCard new

4

5 alice := Person new.

6 bob := Person new.

7 alice friend: bob.

8 bob friend: alice
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4.2.2 Access Control to Reflective Operations

We now present our ownership-based access control to reflective operations. Each

object refers to its direct owner, which by default is the object that instantiated it.2

This forms the direct ownership tree. Depending on the execution model of the

host language, the root of this tree is either the first object instantiated or a special

object. For example, for Java there would need to be a special object to act as the

owner of objects instantiated within the main method. The ownership relation we

consider is the transitive reflexive closure of the direct ownership relation. In other

word, we say that an object A owns an object B if:

• A directly owns B (i.e. A is the direct owner of B), or

• there exists an object C such that A owns C and C directly owns B, or

• A and B are the same object.

The access control policy is to grant an object the permission to perform any

reflective operation on the objects it owns. For example, in the context of Fig-

ure 4.1, Alice owns her credit card and can alter its behavior to monitor or limit

withdrawals. If the subject object does not own an object the policy falls back to

the reflection protection principle i.e. only the reflective operations that perform an

action that could have been carried out without reflection are available. Reflection

is not entirely forbidden: the subject object can still perform some reflective opera-

tions. In the context of Figure 4.1, Alice does not own Bob but can still reflectively

send messages to Bob. But she cannot introspect Bob to obtain a capability to his

wallet.

4.2.2.1 Root Object as Superuser

Because the direct ownership relation forms a tree, the object at the root indirectly

owns all objects. Consequently, this root object has the permission to perform

any reflective operation on any object. This root object can thus use development

tools and perform dynamic analyses on any object. For example, an application in

production should be able to monitor all hash messages sent from each hash-table

2Other methods are possible to specify the direct owner of an object e.g. with annotations.
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to determine which hash methods are slow or produce too many collisions. To

perform such analysis this application should be able to reflect unrestrictedly on all

its objects. At the same time, that same application may use a library that it does

not trust completely. This library can use reflection but only on its own objects.

4.2.2.2 About Ownership Transitivity

Unlike other notions of object ownership our ownership relation is transitive. This

transitivity stems from the power of reflective abilities. Consider three objects A, B

and C such that A directly owns B and B directly owns C. Even without transitivity,

A could exercise its full reflective power over B to change its behavior at will.

Doing so, A could easily obtain B’s authority to have full reflective power over C.

4.2.2.3 Formalization

We can formalize our ownership-based access control to metaobjects by redefin-

ing the semantics of MOPLITE. In Subsection 2.3.1 an object was encoded as a

triplet: 〈cls , adrmo, ivs〉 ∈ C × A × (I ⇀ A) The first element, cls , is the class

of the object, adrmo is the address of the metaobject and ivs is a mapping from

instance variables identifiers to addresses. To encode ownership objects are now a

quadruplet to add the address of the owner of the object (adr own).

〈cls , adrmo, ivs , adr own〉 ∈ C × A× (I ⇀ A)×A

The direct ownership relation and its transitive reflective closure are respectively

noted I and I∗, i.e. a I b means that the direct owner of (the object pointed by

the address) a is (the object pointed by the address) b.

The instantiation rules [ new ] and [ new-mo ] are redefined to set the current

object (the one that executes the instantiation) as the owner of the new object.

Modifications to the original rules are underlined.
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〈⌊
〈E[ cls.new(adr ∗) ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ adrnew.init(adr

∗) ; adrnew ], adr , cls〉
...

⌋
, S ′

〉

where
S ′ = S[adrnew 7→

〈
cls ,nil, {id iv 7→ S(nil) | ∀id iv. id iv @hrc

p cls}, adr
〉
]

adrnew 6∈ dom(S)

[ new ]

The access control policy then concerns reduction rules that gives access to

metaobjects. The rules [ get-def-mo ] and [ get-mo ] are redefined to add the con-

dition that the current object owns the object being requested its metaobject (i.e.

adr targ I∗ adr ).

〈⌊
〈E[ adr targ.meta ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ SETMO(adr targ,DefaultMO.new()) ], adr , cls〉

...

⌋
, S

〉

where
adr targ I∗ adr

S(adr targ) = 〈...,nil, ..., ...〉

[ get-def-mo ]

〈⌊
〈E[ adr targ.meta ], adr , cls〉

...

⌋
, S

〉

↪→

〈⌊
〈E[ adrmo ], adr , cls〉

...

⌋
, S

〉

where

adr targ I∗ adr

S(adr targ) = 〈..., adrmo, ..., ...〉
adrmo 6= nil

[ get-mo ]

Finally, a rule [ get-wrapped-mo ] is added for the case the current object does

not own the object being requested its metaobject (i.e. adr targ 6I∗ adr ) In that case,

the metaobject is wrapped into an instance of the core class MOWrapper, defined

as follow:

class MOWrapper extends Object {

wrappedMO

init(mo) { wrappedMO := mo }
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receive(sel,args,cls) { wrappedMO.receive(sel,arg,cls) }

}

It should not be possible to use reflection to breach the wrapper encapsulation

and gain access to the wrapped metaobject. To ensure this, the owner of a wrapper

is the referent of its wrapped metaobject. If an object asks for a metaobject gets a

wrapper, it means that it does not own the referent. So if this same object asks for

the metaobject of the wrapper, it will get another wrapper wrapping the metaobject

of the first wrapper. To ensure that the target object is the owner of the wrapper, a

new stack frame is pushed where it is the current object.

〈⌊
〈E[ adr targ.meta ], adr , cls〉

...

⌋
, S

〉

↪→

〈
〈E[ MOWrapper.new(self.meta) ], adr targ,Object〉

〈E[ adr targ.meta ], adr , cls〉
...

 , S

〉

where adr targ 6I∗ adr

[ get-mo ]

4.3 Implementation

We now present the implementation of our ownership-based access control to metaob-

ject in our object-centric MOP. We discuss how ownership is encoded and cus-

tomized, and present the context subject-sentitive method meta that gives access to

metaobjects.

4.3.0.1 Ownership Encoding

Conceptually, encoding ownership information consists in adding a directOwner

instance variable to the root class Object. In practice, Pharo’s virtual machine

imposes some limits on the memory layout of some special classes so we use an

external table to map objects to their direct owner instead.

To initialize the direct owner of a newly-created object, this object receives the

message initializeDirectOwner after instantiation. The default implementation

of initializeDirectOwner determines the direct owner of the newly-created ob-

ject by traversing the call-stack. The receiver associated with each stack frame
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receives the message wantsOwnership: with the new object as argument: the first

receiver that answers true become the owner of the new object. The default im-

plementation of wantsOwnership: in Object unconditionally returns true but a

class can redefine this behavior if needed.

4.3.0.2 Customisation of Ownership Tree Construction.

The construction of the ownership tree can be customized for different situations.

In object-oriented design, some engineering practices, like Dependency Injection

frameworks and design patterns such as Factory Method and Abstract Factory,

strive for reducing coupling between software components. These practices have

in common that instantiation is performed by a third party. If these practices are

followed systematically, no object instantiates objects that are part of their repre-

sentation. Without special care, the resulting ownership tree would be very large

and very shallow. In this context, the object that instantiates another object has to

be able to let its clients become owner of that newly-created object or to transfer

ownership.

For example, a factory can let its clients become the owners of the object it cre-

ates by redefining wantsOwnership: to answer false for the classes it instantiates.

For example, a widget factory would implement wantsOwnership: as follows.

WidgetFactory>>wantsOwnership: anObject

^ (anObject class inheritsFrom: Widget) not

Another situation where customisation of object ownership is desirable is when

an inversion of control scheme takes place. This is for exemple the case of de-

pendency injection frameworks where the framework has to be able to transfer

ownership of the object it creates. Our implementation allows changing the direct

owner of an object. This operation is only available from an object’s metaobject,

so only an owner of an object can change its direct owner.

Another situation where the ownership tree construction needs to be customized

is when a class wants all its instances to be owned by the same object. This is the

case of immutable objects denoting values, like numbers, characters, points, etc,

that are unconditionally owned by the object nil, the root of the ownership tree.

This saves some space by not using the ownership map for these objects.
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4.3.0.3 Context-Sensitive Method meta

Our ownership-based access control policy grants an object the permission to ac-

cess the metaobjects of the objects it owns. When a subject requests the metaobject

of a resource it does not own, the policy is to restrict the available reflective oper-

ations. Only the reflective operations that perform an action that could have been

carried out without reflection are allowed, following the reflection protection prin-

ciple. In the context of Pharo, where all instance variables are object-private and all

methods are public, these restrictions only allow message reception. In our imple-

mentation, wrapper objects encapsulate metaobjects to enforce these restrictions.

The method meta implements the access control to metaobjects. This method is

context-sensitive: it checks whether the sender of the message is an owner of the

receiver or not. If the sender is not an owner the metaobject is wrapped.

These access rules extends to metaobjects returned by reflective operations.

For example, if the metaobject of an object A is about to return the metaobject of

another object B that A does not own, the metaobject of A wraps the metaobject of

B before returning it.

Alternative Design. Our access control policy does not need to be implemented

with metaobject wrappers. The restrictions could be implemented in the metaobject

directly. We choose the wrapper approach because it has two advantages. First, the

implementation is simpler because only the method meta is context sensitive. If

the restrictions were implemented in the metaobjects directly, each method would

have to check whether the corresponding reflective operation is permitted or not.

This would imply code duplication and slower execution. Second, an object can

choose to pass the metaobject of an object it owns to an external object it trusts.

If the restrictions were implemented in the metaobjects, they would apply to the

external object and prevent delegation of reflective rights as capabilities.

4.3.1 The Policy at Work

We now show our policy at work, first with proxies, a reflective mechanism that can

be used as an access control mechanism, then in the context of a reflective tower.

Proxies shows that our policy enables the reflective implementation of a security
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mechanism and prevents reflection to be used to bypass this mechanism. Reflective

towers shows that our policy can control reflection at any meta-level.

Proxy-based Behavioral Intercession. Proxies are good candidates to imple-

ment access control. A proxy can interpose an arbitrary policy between a client

and a resource and implement OCap patterns like caretakers, facets or membranes

[Miller 2006, Van Cutsem 2013].

The creator (i.e. the direct owner) of a proxy has to be sure that no object apart

its owners can bypass the policy the proxy enforces. In Figure 4.2 Alice asks Bob

to lend her his credit card. Because Bob does not trust Alice entirely, he creates a

proxy for his credit card to limit withdrawals to a certain amount. Alice hopes to

bypass the withdrawal policy imposed by the proxy. To do so she asks the proxy

for its metaobject to then access the metaobject of the proxy’s target (i.e. the credit

card). But since Alice does not own the proxy, she obtains a wrapper on the proxy’s

metaobject instead. The wrapper allows her to send messages to the proxy (as she

can do at the base-level) but do not permit her to access the state of the proxy’s

metaobject to obtain a reference to the metaobject of Bob’s credit card.

But the owner of a proxy does not have to own the target. In that case the proxy

owner can only access a wrapper of the target’s metaobject and only message sends

interceptions can be passed to the wrapper. This is enough to implement capability

patterns such as caretakers, facets and membranes.

Reflective Tower. When performing reflection upon the meta-level, one attains

the meta-meta-level (or meta-level 2). This is useful to record which meta-level

operations are performed on an object (meta-tracing for optimization), to query the

meta-level behavior for analysis, to debug the implementation of the meta-level,

etc.

More generally one can reflect on the meta-level n at the meta-level n + 1.

This virtually infinite stack of meta-levels is called a reflective tower [Smith 1984].

Each level interprets operations performed at the level below. The tower is not

actually infinite: the host language interpreter takes over level reification whenever

operations at a level n are interpreted according to the default semantics.
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BobAlice

credit 
card

mccard

proxy

creditCard
1: ask credit card

mproxy

2: return 
proxy

3: ask 
metaobject

meta

4: return 
wrapper

wrapper
target

Figure 4.2: Proxy protection: (1) Alice asks Bob for his credit card, (2) Bob creates

a proxy for his credit card to limit withdrawals and returns it, (3) Alice asks for the

metaobject of the proxy to leak the credit card (target of the proxy), (4) but since

she does not own the proxy she obtains a wrapper on the metaobject of the proxy

and cannot leak the credit card.
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m
n+1

m
nmobj

meta-level
n+1n10 

(base-level)

owner

Figure 4.3: A chain of metaobjects forming a reflective tower with their respective

owner. The owner of the object can reflect on this object at any level.

Reflective towers appear naturally in the context of an object-centric MOP.

Each base-level object is the first floor of its own reflective tower. The metaobject

of a base-level object belongs to meta-level 1. But like other objects, the behavior

of a metaobject is also defined by another metaobject, which belongs to meta-level

2. The reflective tower is embodied by a virtually infinite chain of metaobjects as

depicted in Figure 4.3.

The ability to jump from one meta-level to the meta-level above should not

jeopardize the access control policy. That is to say that if the access control pol-

icy states that an object A has restricted access rights to the metaobject of another

object B, A must not be able to circumvent this restriction by manipulating the

metaobject of that metaobject. To ensure that, we customize ownership tree con-

struction so that the direct owner of a metaobject is always its referent. Thereby, a

metaobject at meta-level n owns its metaobject at meta-level n+ 1. Consequently,

an object owns all the metaobjects of its tower. It follows that only the owners of

an object have the authority to reflect on this object at any level.

4.4 Related Work

Object Ownership. A lot of research has been done on object ownership through

ownership types [Clarke 1998, Clarke 2001] and dynamic object ownership [No-
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ble 1999, Gordon 2007]. Originally, object ownership was devised to control the

effect of object aliasing. Later, many different ownership systems have been used

for many other applications [Clarke 2013]: concurrency control, memory manage-

ment, security, etc.

Since our access control policy relies on ownership information, it would be

interesting to leverage this information with other applications. The first applica-

tion that comes to mind is object alias control since it is the original application of

object ownership. So an interesting question is to know if an effective alias control

discipline can be compatible with our access control policy. The precise design of

such alias control discipline remains an open question but we give some trails.

Such an alias control discipline has to rely on a transitive ownership relation.

Flexible alias protection [Noble 1999, Clarke 2001] enforces two rules to control

the effect of aliasing.

• The no representation exposure rule prevents the clients of an aggregate to

access its representation.

• The no argument dependence rule prevents an aggregate to depend on the

mutable state of its arguments.

With our ownership-based access-control to metaobjects, the no representation ex-

posure rule cannot be enforced when the client is an owner, at least at the meta-

level. Indeed, an owner can use reflective operations to access the representation of

the aggregate, and transitively the representation of that representation. The no rep-

resentation exposure rule can still be enforced at the base-level but this contradicts

with the reflection protection principle.

Secure MOP. Caromel et al. [Caromel 2001b,Caromel 2001a] presents concerns

about MOP and security in the context of component-based applications in Java.

These works do not concern the access control to reflective operations but the se-

curity implications of implementing a MOP within the security framework of Java.

The security framework of Java is based on inspecting the call stack to determine

whether the execution of a sensible operation is permitted or not. In this context,

the type of MOP used greatly influences the necessary propagation of permissions
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from meta-level code to base-level code. This is problematic because the imple-

mentation of a MOP typically requires many permissions. The authors show that

within a proxy-based run-time MOP, it is possible to capture the set of permissions

before reflective calls and restore them after. MOP implementation gets more per-

mission than base-level code even though the call stack contains stack frames from

different levels.

4.5 Conclusion

We explored the problem of encapsulation violation caused by reflective operations

and its implications on the OCap model. The tension between the need for object

encapsulation on the one hand and the need of reflection on the other hand led us

to the conclusion that we need a way to track when breaking into an encapsulation

boundary is legitimate. To this end we have explored the concept of dynamic object

ownership that has been originally used to tame object aliasing. Instead of object

aliasing, we showed how this notion of object ownership can be used to design an

access policy to reflective operations. Thanks to this access control policy, owners

of an object can perform any reflective operations on that object. An object that

does not own another target object can only perform reflective operations whose

effect could have been carried out without reflection. This simple policy reconcile

reflection and security in the context of multiple interacting software components.

We implemented this policy in the context of a prototype MOP. In this context,

we showed that this policy can ensure that domain-level access-control policies,

implemented reflectively with proxies, cannot be bypassed using reflection at any

meta-level.
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Previous chapters studied the usages of reflection for adaptability, the encap-

sulation problems it brings and proposed an access control policy to reflective op-

erations based on object-ownership that prevents harmful encapsulation breaches.

This chapter studies the tension between encapsulation and another mechanism for

adaptability: extension methods.

An extension method is a method declared in a package for a class declared

in another package. Extension methods allow developers to adapt classes they do

not own to their need. Adding convenience methods to standard library classes is

a typical use case. This mechanism is particularly popular in dynamically-typed

languages.

However, in typical implementation, extension methods are globally visible.

Because any developer can define extension methods for any class, conflicts occur

when two extension methods with the same signature are defined for the same

class. Implementations can forbid conflicts but this constraint poses problems in

practice. Indeed, when considering package co-evolution in large projects, the

addition of one extension method can invalidate the project configuration. Typical

implementations allows these conflicts. In this case only one extension method is

99
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visible and overwrites the other. Conflicts can also occur across class hierarchy,

introducing potentially erroneous overriding relationships. Because they concern

whole class hierarchy these kind of conflict is more likely to occur.

To avoid conflicts, some implementations limit the visibility of an extension

method to a particular scope. However, their semantics have not been fully de-

scribed and compared. In addition, these solutions typically rely on a dedicated

and slow method lookup algorithm to resolve conflicts at run time.

This chapter first introduces extension methods and gives some common use

cases. We then show some problems caused by the typical global visibility of ex-

tension methods, and conclude that extension methods must be local to their users.

The core of this chapter is an analysis of different local extension methods mecha-

nisms for dynamically-typed languages. We compare four approaches to local ex-

tension methods: Ruby refinements, Groovy categories, Classboxes, and Method

Shelters. We study their implication on encapsulation and formalize their seman-

tics in the context of MOPLITE. We show that lexically-scoped extension methods

yields less conflicts, respects encapsulation and are easier to reason about. Finally,

we propose an efficient implementation technique for lexically-scoped extension

methods that leverages the lookup-algorithm of single-dispatch languages using a

variant of name-mangling.

5.1 Introduction to Extension Methods

Extension methods are a popular feature in object-oriented languages. An exten-

sion method is a method that a developer adds to a class he does not own, e.g. a

class from the standard library of the language or a framework he uses. Variants

of extension methods are available in many dynamically-typed languages: they are

known as open classes in Ruby, categories in Objective-C and Groovy, and exten-

sion methods in Smalltalk and Pharo.

Nevertheless, in most existing implementations extension methods are globally

visible. This causes two problems: accidental overwrites and accidental overrides.

An accidental overwrite happens when two developers define an extension method

with the same signature in the same class: in this case a conflict occurs and one

method overwrites the other. An accidental override happens when two develop-
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ers define an extension method with the same signature in two classes related by

inheritance: one method overrides the other.

Another common problem is the absence of dependency declaration between

extension methods and their callers. Together with the global visibility of extension

methods, this promotes the emergence of hidden dependencies that are difficult to

track, especially in a dynamically-typed language.

One way to solve these problems is to assign each extension method a partic-

ular scope. Variants of scoped extension methods have already been discussed in

the literature with the Classbox model [Bergel 2003, Bergel 2005b, Bergel 2005a]

and the Method Shelter model [Akai 2012] and been implemented in Ruby since

version 2.1 and in Groovy. These variants, however, have different semantics that

must be well understood by the developers. There is no clear description and com-

parison of their semantics as well as pros and cons of their impact on applications.

In addition, these variants rely on dedicated method lookup algorithms to resolve

conflicts at run time and tend to have a negative impact on performances.

Other solutions have been proposed in the context of statically-typed languages

[Clifton 2000, Warth 2006, Ducournau 2007] but are not portable to dynamically-

typed languages as they rely on static type information. The difficulty in dynamically-

typed languages is to determine method families at call sites, i.e. the set of methods

that can be activated by a particular message send.

5.1.1 Usage of Extension Methods

We show different use cases of extension methods with examples taken from Petit-

Parser, a parser combinator library for Smalltalk [Renggli 2010]. In such a library,

a parser combinator accepts one or several parsers and produces a new composed

parser. Examples of combinators include “,” to sequence two parsers, “star” to

repeat a parser zero or more times and “not” to negate a parser.

As Syntactic Sugar. In addition to these combinators, PetitParser defines con-

venient asParser extension methods to some core classes. These extension meth-

ods create parsers depending on the receiver (see Figure 5.1). For example, the

asParser extension method defined in the class Character returns a parser that
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Figure 5.1: The PetitParser parser combinator library defines asParser extension

methods on core classes to create various kinds of parsers.

accepts the receiver character. Together with combinators, these extension methods

give a readable DSL-like syntax. For example, the following expression returns a

parser object that accepts regular expressions of the form ab*.

$a asParser , $b asParser star

Here, the asParser extension method act mainly as syntactic sugar. The next

expression returns an identical parser.

(PPLiteralObjectParser on: $a) asParser , (PPLiteralObjectParser on: $b) asParser star

To Improve Extensibility. By changing slightly the previous example, we can

see that extension methods can also improve code quality. Consider the following

code:
1 MyParser>>one: a thenMany: b

2 � a asParser , b asParser star.

3

4 MyParser>>id

5 � self

6 one: #uppercase

7 thenMany: #letter

8

9 MyParser>>int

10 � self

11 one: (’1’ to: ’9’)

12 thenMany: #digit
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In the MyParser class, the one:thenMany: method takes as parameter two ob-

jects that can be converted into parsers and returns a new parser. The id and int

methods use that first method to build custom parsers. The method id sends the

message one:thenMany: with two symbols (uppercase and letter) while the

method int sends the same message with an interval and a symbol. The method

one:thenMany: does not have to care about the class of its arguments. The only

requirement is that arguments understand the asParser message. Here, extension

methods improve extensibility and modularity by making unrelated classes poly-

morphic. Any developer can add the method asParser to any class and then pass

instances of this class to the one:thenMany: method.

To Adapt Classes Interfaces. The Adapter pattern [Gamma 1995] adapts the in-

terface of an existing class to work with other classes without modifying its source

code. Its classic realization consists in wrapping instances of the adapted class

into instances of an adaptor class. When there is no name conflicts between the

provided and required interfaces, extension methods offers an alternative without

relying on an adapter class. Instances of the adapted class can be used directly as

they do not need to be wrapped with an adapter object. Client code doesn’t need to

be updated to explicitly wraps object when needed.

To Handle Unanticipated Changes. Extension methods are also useful to han-

dle unanticipated changes. For example, if a package defines a class hierarchy not

prepared for the Visitor design pattern [Gamma 1995] another package can add

acceptVisitor: extension methods.

Monkey-Patching. If a third-party library or framework has a bug, developers

can create an overwriting extension methods to correct the bug, a technique known

as monkey patching 1. While occasionally useful, monkey patching is often con-

sidered a bad practice in developer communities (as the name implies).

1The term monkey patching is sometimes used as a synonym of globally-visible extension meth-

ods. Here we use a narrower definition that refers to one way of using extension methods.
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5.1.2 Problems of Globally Visible Extension Methods

Most implementations of extension methods, such as the ones of various Smalltalk

dialects, Ruby (before the introduction of refinements) and Objective-C, make ex-

tension methods globally visible. This can lead to undeclared dependencies, acci-

dental overwrites and accidental overrides.

Undeclared Dependencies. Once an extension method is loaded, it is visible

from everywhere. The method can be called from any class of any loaded pack-

age without any form of declaration. This means that an application can work

correctly in the developer’s environment and fail once deployed because the appli-

cation depends on an extension method from a non-loaded package. The absence

of declaration favors the emergence of these hidden dependencies.

Accidental Overwrites. Extension methods defined by different packages may

conflict in two different ways. The first kind of conflict arises when two packages

each define an extension method with the same signature in the same class. In this

case, one extension method replace the other. We call this situation an accidental

overwrite (this is unlike monkey patching where the overwrite is intentional).

An example is given in Figure 5.2. A package SimpleLog declares an exten-

sion method log for the class Object. This package is a logging framework that

records the string representation of an object in a log file. The package ObjectLog

declares another extension method log for the class Object. This latter package

is another logging framework that serializes objects in a log file for later analysis.

Because these two extension methods conflict the two logging frameworks cannot

be loaded at the same time. Even though these name clashes happen sparingly in

practice, they are also difficult to anticipate, especially when considering package

coevolution in large projects using dozens of packages.

Accidental Overrides. The second kind of conflict arises when a method over-

rides another method defined higher in the same class hierarchy. Figure 5.3 gives

two examples of such overrides with extension methods.

To the left, a regular method log in package Math accidentally overrides an

extension method in its superclass declared in package Logger. While Logger’s
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Figure 5.2: An exemple of accidental overwrite. Two packages each declare an

extension method log for the class Object.

extension method log prints the receiver object in some log file, Math’s extension

method log computes the logarithm of a number. Users of package Logger expects

that when they send a message log to an object, the extension method of Logger

is taken into account. However, Number, as a subclass of Object overrides the log

method in package Math.

To the right, an extension method in package Math overrides another extension

methods in package Logger. In this situation the packages Math and Logger are

unaware of each other: none of them know that Math’s extension method overrides

Logger’s.

These accidental overrides are more insidious than accidental overwrites. First,

as they involve a whole class hierarchy they potentially happen more often. Then,

an accidental overwrite is easily noticeable because the client packages are likely

to break upon the first invocation of the overwriting method. Accidental overrides

are much less noticeable because they affect only instances of the class defining the

overriding method. When multiple parties can enhance the interface of any class,

one party should not be able to override the methods defined by an unrelated party

it is not aware of.

A big task of programming is to put word on program entities according to the

terms of the business domain. Large programs usually involve multiples concerns

and domains, each coming with its own terminology. Even inside the business

domain of a single program several terms may have different meanings in differ-

ent contexts. Large programs involve many different concerns and domains with

different terminologies and overlapping terms. We call an override "accidental"

when it is not intended by the programmer. Another way to put it is to say that

accidental overrides happen when two or more concerns with overlapping termi-
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Number

Object

log()
      ...

...

Math

Core

Number

Object Object

log()

Core Logger

extends

...

...

...
...

...

...

Number
log()
      ...

Math

...

extends

Object

log()

Logger

extends

...

Figure 5.3: Two examples of accidental overrides. To the left, a regular method

accidentally overrides an extension method. To the right, an extension method

accidentally override another extension methods.

nologies spread over the same class hierarchy. In the context of extension methods,

the probability of an accidental override is large because any package can declare

an extension method for any class. When considering package coevolution, this

becomes really problematic. These accidental overrides are a form of interference

between packages.

To sanitize extension methods, accidental overrides must be limited, the visi-

bility of extension methods also needs to be limited and dependencies need to be

declared. In the next section, we study several scoped extension methods mecha-

nisms.

5.2 Scoped Extension Methods

Because extension methods with global visibility exhibit the above-mentioned prob-

lems, several implementations propose a narrower visibility. We briefly describe

four of these solutions. Depending on the solutions, the scope of activation of

extension methods is either lexical or dynamic. In solutions where the scope of

activation is lexical, the set of extension methods that are active at a given point is

determined statically. In solutions with a dynamic scope of activation, the set of

extension methods active at a given point is contextual. Dynamic scoping is nec-

essary to support a property called local rebinding [Bergel 2003, Bergel 2005b],
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that allows extension methods to override other methods in a contextual man-

ner. First we present the local rebinding property, its strenght and its weaknesses.

Then, we show three solutions that expose the local rebinding property: Class-

boxes [Bergel 2003, Bergel 2005b], Method Shelters [Akai 2012] and Groovy’s

categories. Finally, we present Ruby’s refinements where extension method activa-

tion is determined lexically.

In the following, we use the following terms:

Package. We call package the language-specific unit of deployment that gathers

definitions of classes and other modular constructs from the language. Dif-

ferent packages are potentially maintained by different parties. A package

also declares dependencies toward other packages by importing some defini-

tions.

Extension method. An extension method is a method that is defined in a package

for a class defined in another package.

Class extension. A class extension is a named set of extension methods that apply

to the same class. We do not consider addition of instance variables.

Extension. Finally, an extension is a named set of extension methods that may

apply to different classes.

5.2.1 Local Rebinding

Local rebinding is a property of a method-lookup algorithm first discussed in the

context of the Classbox model [Bergel 2003,Bergel 2005b] and then in the context

of the Method Shelter model [Akai 2012]. This property permits extension methods

to override other methods in a contextual manner, i.e. an active extension method

takes precedence over regular methods, even for indirect calls. This is similar to

traditional method overrides in a subclass except that with traditional overrides,

only the instances of the subclass are affected by the redefinition. With local re-

binding, the same objects behave differently in different contexts. In Figure 5.4, the

MyExtendedApp package redefines the printIndentation(int) method to print

spaces instead of tabs. When invoked from within this package, this redefinition
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MyEditor

printIndentation: level
Editor

SimpleEditor

print
printIndentation: level

Editor extends

anEditor printIndentation: 3
> prints with spaces
anEditor print
> prints with spaces

print 
  ...
  self printIndentation: indentLvl.
  ...

prints tabs prints tabs

Figure 5.4: With local rebinding, changes made by an extension method are applied

in case of indirect calls.

is taken into account, even in indirect calls: when invoking the print() method

defined in the MyApp package, the redefined version of printIndentation(int)

will be executed and not the one defined in the MyApp package.

With local rebinding, the lookup algorithm dispatches to different methods in

different contexts. More precisely, when the signature of an extension method e

matches the one of a method m of the extended class, local rebinding ensures that

e overrides m during the dynamic extent of message sent by importers of e. The

method lookup algorithm has to access this contextual information to determine the

active extension methods. Two ways to implement such method lookup algorithms

are by inspecting the call stack or by storing the set of active extension methods in

a thread-local variable.

5.2.2 Local Rebinding Weaknesses

As it mimics the behavior of method overriding in a class hierarchy, local rebinding

semantics seems to be quite natural. However, this property has drawbacks. First

it cause encapsulation problems because the behavior of an object can be changed

without it consent. Then accidental overrides can still occur, but in a contextual

manner, making them even more difficult to track and understand for developers.
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5.2.2.1 Potential Breach of Encapsulation

Beyond augmenting a class behavior, the local rebinding property can be used to

change the behavior of a class without subclassing. With subclassing, the behavior

of instances of the superclass is unchanged. Contrarily, with local rebinding, an ex-

tension method that overrides a regular method affects the extended class instances.

Instances of the extended class behave differently depending on which extension

methods are active in the current execution context (i.e. the current state of the call

stack). These invasive behavior modifications by third parties can corrupt objects

and raise a tension with object encapsulation.

5.2.2.2 Accidental Contextual Overrides

While the scope of extension methods is not global anymore, accidental overrides

can still happen with local rebinding. Indeed, when considering all the active ex-

tension methods that are imported in the context of each method in a call chain,

several extension methods may conflict with each other or with regular methods.

A solution providing the local-rebinding property has to define a priority between

these conflicting methods. The chosen one effectively overrides the others but only

in certain dynamic conditions. We call these situations contextual override and

we say that the method that has priority contextually overrides the others. When

such overrides is not intended by the involved developer we call them accidental

contextual overrides.

Because it is determined dynamically, the extension methods that are active at

a given point is hard to anticipate, preventing local reasoning. For example, the

control flow typically depends on the structure of the involved object graph. If ob-

jects in a graph are instances of classes located in different packages, a common

situation, and if some of these packages import conflicting extension methods, the

method lookup indirectly depends on the object structure and the consequent con-

trol flow.

Consider the example depicted in Figure 5.5. A Collections package defines

common collections and an abstract class Collection. Two packages ReadOnly

and Record each define a collection decorator.
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Collections

All Collections
add(element)
at(index)
...

Collection

All CollectionsAll Collections

SimpleLog

log()
Object

Core

...
Object

ObjectLog

log()
Objectextendsextends

ReadOnly

add(element)
at(index)
...

ReadOnlyDecorator

Record

add(element)
at(index)
...

RecordDecorator

imports imports

1 1

Figure 5.5: Decorating collections.

The read-only decorator disables all operations that mutate the decorated col-

lection. When one of these operations is invoked, the read-only decorator logs the

attempt using the logging facility of the SimpleLog package and throws an error.

The record decorator just logs the operations done on the decorated collection using

the logging facility of the ObjectLog package for latter analysis as shown below in

pseudo-code.

1 ReadOnlyDecorator>>at: index

2 � decoree at: index

3

4 ReadOnlyDecorator>>add: element

5 ’Adding element is forbidden’ log.

6 ReadOnlyError signal

7

8 RecordDecorator>>at: index

9 { ’accessing’. decoree. index } log.

10 � decoree at: index

11

12 RecordDecorator>>add: element

13 { ’adding’. decoree. element } log.

14 � decoree add: index
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If a client application uses both decorators together, one log method is likely

to contextually override the other. This is the case when one decorator decorates

the other. In this case the order of composition matters because it impacts the call

stack and thus the extension methods that are active when looking up log.

1 list := #(1,2,3,4).

2 "case 1"

3 (ReadOnlyDecorator on: (RecordDecorator on: list)) at: 3.

4 "case 2"

5 (RecordDecorator on: (ReadOnlyDecorator on: list)) add: 5

In case 1, a read-only decorator decorates a record decorator that decorates

a list. When sending the at(3) message to the read-only decorator, first its at()

method transfers the request to the record decorator. The at() method of the record

decorator then tries to log this operation. At this point two method activations are at

the top of the call-stack: first an activation of the at() method of record decorator,

then an activation of the at() method of the read-only decorator.

1 2. RecordDecorator at: 2

2 1. ReadOnlyDecorator at: 2

Since each package defining the at() method imports a different log() ex-

tension method, the lookup algorithm must decide which one to select. A similar

situation occurs with case 2 with another call order.
1 2. ReadOnlyDecorator at: 5

2 1. RecordDecorator at: 5

This shows how the structure of an object graph, by influencing the control-

flow, also influences the behavior of individual objects. We now study two strate-

gies to select a method in case of ambiguities: bottom-up local rebinding and top-

down local rebinding.

5.2.3 Bottom-up Local Rebinding

The first strategy gives precedence to extension methods imported by callers (i.e.

appearing first in the call stack). We refer to this strategy as bottom-up local re-

binding. This is the strategy of the Classbox and Method Shelters models.

In the context of Figure 5.5, this means that the log() method of the SimpleLog

package is selected in Case 1 and the log() extension method of the ObjectLog
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package is selected in Case 2. This strategy implies that client code may over-

ride other extension methods defined in any package. As the developer of a pack-

age, your methods can be overridden by a package that is indirectly using yours.

Consequently, this forces a developer to know the implementation of all the pack-

ages it uses (even indirectly) to prevent himself from creating accidental contextual

overrides. This raises a tension with information hiding at the package-level and

precludes local reasoning.

5.2.3.1 Classboxes

A classbox is a modular construct, akin to a package, that defines classes and class

extensions. A classbox can define at most one class extension per imported class.

This prevents useful ways to group related extension methods as we will see in

Subsection 5.3.1. A classbox can import class extensions from other classboxes.

Classboxes have been devised to facilitate handling of unanticipated changes. To

handle unanticipated changes, a developer of a client classbox can push modifi-

cations to other classboxes. Used sparingly, classboxes allows developers to cus-

tomize the implementation of external packages. However, if used extensively,

accidental contextual overrides are likely to occur.

5.2.3.2 Method Shelters

The Method Shelters model [Akai 2012] builds upon the Classbox model and adds

the ability to protect some extension methods from accidental contextual overrid-

ing. A method shelter consists of an exposed chamber and a hidden chamber.

Each chamber declares imports toward other method shelters. Importing a method

shelter brings the extension methods of its exposed chamber into the importing

chamber. Only methods imported or declared in the exposed chamber of a shelter

can be contextually overridden by other method shelters.

In Figure 5.6, two definitions of division (/) over integers coexist without ac-

cidental contextual override. The default / method of the FixNum class defines

euclidian division. The math shelter redefines / as exact division: the method re-

turns a rational number. The average shelter imports the math shelter in its hidden

chamber. The avg method of Array uses the exact division of the math shelter to



5.2. SCOPED EXTENSION METHODS 113

compute the average of an array of integers. Finally a client shelter imports the

average shelter and computes the average of an integer array: the computation

results in a rational number. The client shelter is oblivious of the fact that the

average shelter uses the math shelter. From its point of view, / still refers to the

standard euclidian division.

When only exported chambers are used, method shelters are similar to class-

boxes. This means that the same conflict problems happen. The developer of a

method shelter has to choose which extension methods can be contextually over-

ridden or not. To protect his code against unwanted overrides, the developer would

likely adopt a defensive attitude and put all the extension methods he can in the hid-

den chamber. However, if the method shelter has to offer some facilities to client

code via extension methods, they must be declared in its exposed chamber. In this

case, these exposed methods are overridable. The method shelter model could be

extended to support extension methods that are both importable by third parties and

non-overridable.

5.2.4 Top-Down Local Rebinding

The second strategy gives priority to extension methods imported by callees. With

this priority strategy, an extension method can be overridden in a called method.

In the context of Figure 5.5, this means that the log() method of the ObjectLog

package is selected in Case 1 and the log() extension method of the SimpleLog

package is selected in Case 2. We refer to this strategy as top-down local rebinding.

This is the strategy of Categories in Groovy.

5.2.4.1 Groovy Categories.

Groovy developers can define scoped extension methods in categories. A category

defines a named extension that can be put into the scope of a block of code using

the use keyword. When a use block is entered, the category is activated by pushing

it onto a thread-local stack variable. This extension is popped from the thread-local

stack of active extensions when the block is exited. Upon method lookup, a method

redefined in a category takes priority over the original method in the extended class.

In case of conflict between two extension methods in two categories, the method
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1 shelter MathShelter do

2 class Fixnum

3 def /(x)

4 Rational(self,x)

5 end

6 end

7 end

8

9 shelter ClientShelter do

10 import AverageShelter

11 def calc

12 p([1,2,3,4,5,6,7,8,9,10].avg) prints "(11/2)"

13 p(55/10) prints "5"

14 end

15 end

16

17 shelter AverageShelter do

18 class Array

19 def avg

20 sum = self.inject(0){|r,i| r + i}

21 sum / self.size

22 end

23 end

24 hide

25 import MathShelter

26 end

27

28 shelter_eval ClientShelter do

29 calc

30 end

Figure 5.6: Example taken from [Akai 2012]. Method shelters provide the ability to

control which method can be overridden: extension methods declared or imported

after hide cannot be overridden by client shelters



5.2. SCOPED EXTENSION METHODS 115

defined in the lastly-activated category (the one that is nearest to the top of the

stack) is selected. Moreover, a use block can activate several categories. If there is

conflicting methods in these categories the first definition hides the others.

All in all, we believe that local-rebinding brings more problems than solutions.

Accidental contextual overriding asides, local rebinding violates encapsulation. In-

deed, the developer of a class has no guaranty that this class instances will behave

as he intend. Extension methods can override its own methods and can possibly

lack private state or invalidate invariants. Lexical activation of extension does not

have this problem. We believe that lexical activation has a simpler and more pre-

dictable behavior.

5.2.5 Lexical Extension Activation

The previous section presented different models providing local-rebinding and their

issues. Here we present scoped extension methods with a lexical scope of activa-

tion. This kind of scoped extension methods is provided by refinements in Ruby.

A similar solution is available in the SmallScript language under the name selector

namespaces. Unfortunately, the lack of documentation for selector namespaces

prevents us from analyzing its properties in details.

Since its first versions, Ruby supports extension methods, under the name of

open classes. Ruby classes can indeed be reopened to add and change methods.

Such modifications are globally visible. To tackle the problems of global visibility

discussed in Subsection 5.1.2, Ruby 2.1 introduced scoped class extensions under

the name of refinements. Only the modules or classes importing a refinement can

call its extension methods. Unlike classboxes, refinements do not support local re-

binding: all method calls are resolved lexically. If a class uses a refinement, this

refinement is also active in the scope of the subclasses, even when the subclasses

are defined in another package. This propagation of visibility provides some com-

mon facilities to subclasses, a feature that may be useful in frameworks where an

abstract class of the framework is subclassed by users. Also, developers who sub-

class an external class should be aware of the refinements that are active in that

class. Surprisingly, while the sequence of active refinements can be determined

statically, the implementation of refinements does the resolution dynamically with
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P1

P2 P3

C1
redefined
    ^ #P1

selfSend
    ^ self redefined

C1
redefined
    ^ #P2

C1
redefined
    ^ #P3

sendRedefinedTo: aC1
    ^ aC1 redefined

sendSelfSendTo: aC1
    ^ aC1 selfSend

C2

sendRedefinedTo: aC1 via: aC2
    ^ aC2 redefinedSendTo: aC1

sendSelfSendTo: aC1 via: aC2
    ^ aC2 sendSelfSendTo: aC1

C3

extends extends

LR↑ LR↓ Lexical

aC2 sendRedefinedTo: aC1 #P2 #P2 #P2

aC2 sendSelfSendTo: aC1 #P2 #P2 #P1

aC3 sendRedefinedTo: aC1 via: aC2 #P3 #P2 #P2

aC3 sendSelfSendTo: aC1 via: aC2 #P3 #P2 #P1

Figure 5.7: A summary of the different method lookup algorithms.

a dedicated and slower method lookup. This choice may be due to other imple-

mentation constraints.

Figure 5.7 presents a synthesis that shows the difference between bottom-up

local rebinding (column "LR↑"), of top-down local rebinding (column "LR↓") and

lexical extension activation (column "Lexical").

5.3 Analysis

The previous section presented different solutions to scope extension methods to

their users. This section presents an analysis of the design space. We first discuss

import granularities then we formalize the different method lookup algorithms.

5.3.1 Declaration of Dependencies

Once extension methods are local to their users it is mandatory for the users to

declare which extension methods they bring into scope. Hence, all the existing
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solutions here solve the problem of hidden dependencies. These dependencies are

usually declared with some form of import statement. Such statement establishes

a dependency between a user (the importer) and a set of extension methods (the

importee). The choice of the granularity at both ends of the dependency answers to

the questions: "What is imported?" and "Where is it imported?".

Importee Granularity. Many different granularities can be considered for the

importee side. Importing extension methods one by one is tedious: the solutions

presented here offer means to group related extension methods together. One pos-

sible grouping is at the class-extension level (used by Classboxes for example): i.e.

extension methods are grouped by the class they extend. This kind of grouping is

simple but can not specify a set of related methods applying to different classes

(such as the asParser methods presented in Subsection 5.1.1). Also, with class-

boxes and method shelters this class-centric grouping can not specify different sets

of methods for the same class. Being able to make different groups for the same

class can be useful: one group for a public API while another group is not meant

to be exposed because it is implementation details. Another possible grouping is

at the extension level (used by Method Shelters, Refinements and Categories): i.e.

extension methods are grouped under a named extension and can affect different

classes. This kind of grouping is more powerful: (1) an extension can specify a set

of related methods in different classes (such as the asParser methods), (2) differ-

ent extensions can specify different sets of methods for the same class, and (3) the

previous class-based grouping can be realized with an extension whose methods

all belong to the same class.

Importer Granularity. The granularity at the importer side determines what

code is affected by the imported extension methods. With Classboxes for example,

a class extension is imported and visible for all methods in the importing Classbox.

With Groovy Categories, extension methods are activated during the execution of

an importing block. With Ruby Refinements, imported extension methods are vis-

ible in the importing class and all its subclasses. We believe that the method, class

and package-level are all valuable importers granularities and that a solution can

support several or all of them.
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5.3.2 Lookup Formalization

We presented several models of scoped extension methods in Section 5.2. To

study the different design choices of each model, we give an abstract specifica-

tion of a method lookup algorithm for scoped extension methods in the context of

MOPLITE. To this end we extend MOPLITE syntax with extensions as follow

(changes to original syntax are underlined).

p ∈ P ::= (cls | extension)∗ exp
cls ∈ C ::= class id extends id uses id∗{id∗ meth∗}

ext ∈ E ::= extension id{(id meth∗)∗}

A program now consists of a list of class or extension definition, and is still

followed by a main expression. A class definition now has a new uses clause

that lists the extensions it imports. These imports could be declared at other gran-

ularities: for a single method, for a whole class hierarchy, for a whole package,

etc. We choose the class level for simplicity. A new syntax is also introduced for

extensions. An extension has a name and a list of extension methods for different

classes.

The [ send ] and [ super-send ] rules of MOPLITE used an auxiliary function

lookup to perform the method lookup algorithm. To model the context-sensitiveness

of the lookup algorithms with local rebinding, the lookup function now takes a new

parameter: a sequence of classes.

lookupp : I × N× C × C∗ ⇀M×C

Each class correspond the current class of each stack frame present at lookup

time from bottom (oldest frame) to top (newest frame). The abstract machine of

MOPLITE consists of a stack and a heap. The stack frames are triplets: the first

element is an evaluation context, the second is the current object (the binding of

self in a frame) and the third, that is of interest here, is the current class. The

current class is the one where the method that corresponds to the stack frame is de-

fined. It was originally used for the lookup for super sends and now it is also used to
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retrieve the list of active extensions. In the following stack, the sequence of classes

from which the list of active extensions is retrieved is: (cls1, cls2, ..., clsn−1, clsn).

〈..., ..., clsn〉
〈..., ..., clsn−1〉

...

〈..., ..., cls2〉
〈..., ..., cls1〉


To better distinguish between the different kinds of lookup algorithms, we divide

the lookup in two steps. The first step, the function activeExts, determines the

sequence of active extensions from the sequence of classes. The second step, the

function select, selects a suitable method to be executed among the sequence of

active extensions determined by thefeat first step.

lookup(cls , id , n, cls ′∗) = select(cls , id , n, activeExts(cls ′∗))

where

activeExts : C → E∗

select : C × I × N× E∗ ⇀M

We can now describe different versions of the activeExts and the selection

functions separately. We call the different versions of activeExts active extensions

strategies and the different versions of select method selection strategies.

5.3.3 Active Extensions Strategies

We now review the different active extension strategies. In the context of local

rebinding, the lookup has to consider the chain of callers to find if one imports

an extension with an overriding extension method. The extension activation is

dynamically-scoped. This means that the lookup algorithm traverses the call stack

or uses a thread-local variable to determine active extensions. The call-stack can

be traversed bottom-up giving priority to callers imports, or top-down, giving pri-

ority to callees imports. Without local rebinding, the extension activation is said

to be lexical. For each strategy, we consider that a global extension global that

contains all regular methods is implicitly imported by default.



120 CHAPTER 5. SCOPED EXTENSION METHODS

5.3.3.1 Bottom-up Local Rebinding.

We first consider the extension activation strategy of bottom-up local rebinding as

exemplified by Classboxes and also by Method Shelters to a certain extent. The

selection of active extensions for method shelters is more refined as it stops search-

ing if one of the shelter is imported in a hidden chamber. Here is the definition of

the activeExtslr↑ that computes the active extensions following the this strategy:

activeExtslr↑(< c1, . . . , cn >) = imports(c1) _ . . . _ imports(cn) _< global >

Here imports returns the sequence of extensions a class uses and "_" denotes

concatenation of sequences. The function concatenates the imports of each class

with global at the end. As a result of this bottom-up approach, extensions im-

ported in the classes of the oldest stack frames come first. Precedence is thus given

to extensions imported by calling code over extensions imported by called code.

5.3.3.2 Top-down Local Rebinding.

Now we consider top-down call-stack traversal as exemplified by Groovy cate-

gories. Here is the definition of the activeExtslr↓ that computes the active exten-

sions following this strategy.

activeExtslr↑(< c1, . . . , cn >) = imports(cn) _ . . . _ imports(c1) _< global >

The function concatenates the imports of each class in reverse order with global

at the end. As a result of this top-down approach, extensions imported in the classes

of the newest stack frames come first. Precedence is given to extensions imported

by called code over extensions imported by calling code.

5.3.3.3 Lexical Extension Activation.

We finally consider the lexical extension activation strategy as exemplified by Ruby

refinements. The call-site determines active extensions alone. It means that the

sequence of active extension is known statically. The active extensions are the ones

imported by the calling method, that is the last element of the sequence cls∗.
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activeExtslex(< c1, . . . , cn >) = imports(cls1) _< global >

Choosing one of these three active extensions strategies (bottom-up local re-

binding, top-down local rebinding, lexical) determines which method extensions

are active during a message send. The next step of the lookup is to choose a method

among these extensions.

5.3.4 Method Selection Strategy

Once the sequence of active extensions are determined according to one of the pre-

vious strategies, the second step is to select one method from all these extensions.

One strategy is to lookup for a method in the first active extension throughout the

hierarchy and then continue with following extensions. We refer to this strategy as

hierarchy-first method selection strategy. Another solution is to lookup the method

in the receiver class for each active extension in order and then continue to the su-

perclass. We refer to this strategy as extensions-first selection strategy. The choice

of the method selection strategy has a big impact for the accidental override situ-

ation depicted in Figure 5.3. Indeed, given a sequence of active extensions, these

strategies determine whether in a hierarchy two extension methods with the same

name from different extensions have an override relationship or not.

5.3.4.1 Extensions-First Method Selection Strategy

This first method selection strategy searches for a suitable method in each active

extension before searching in the superclass of the receiver class. This is the strat-

egy used by all solutions presented in Section 5.2.

selectext(cls , id , n, ext
∗) =


lookupInClass(cls , id , ext∗) if defined

selectext(superclass(cls), id , ext
∗) if superclass(cls) defined

undefined otherwise

The function selectext first looks if an extension in ext∗ defines a method for

the provided class and signature using the function lookupInClass. If no method
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is found (i.e. lookupInClass(cls , id , n, ext∗) is undefined), selectext continues

recursively with the superclass of cls if it exists. Otherwise, it is undefined if

superclass(cls) is undefined. The function lookupInClass searches for the first

suitable method defined for a given class in a given sequence of extensions. It is

defined as follow:

lookupInClass(cls , id , n,<>) is undefined

lookupInClass(cls , id , n,< e1, . . . , en >) =method(cls , id , n, e1) if defined

lookupInClass(cls , id , n,< e2, . . . , en >) otherwise

With the extension-first method selection strategy, a method can be overridden

in extensions with higher priority in that method class or any subclass.

5.3.4.2 Hierarchy-First Method Selection Strategy

The other solution to select a method given a sequence of extensions is to first

lookup for the whole hierarchy of the receiver class in the context of the first ex-

tension and then consider the other extensions. As we will see later, this strategy

limits accidental overrides compared to the extension-first strategy. It is defined as

follow.

selecthrc(cls , id , n,<>) is undefined

selecthrc(cls , id , n,< e1, ..., en >) =

lookupInExtension(cls , id , n, e1) if it is defined

selecthrc(cls , id , n,< e2, ..., en >) otherwise

The function selecthrc first looks if the first extension defines a method in the

class c or its superclasses from thanks to the function lookupInExtension. If no

method is found, it continues recursively with the remaining scopes if there is some.

The function lookupInExtension searches for the first method defined in the hier-

archy of a given class in a given extension. It is defined as follow:
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lookupInExtension(cls , id , n, ext) =
method(cls , id , n, ext) if defined

lookupInExtension(superclass(cls), id , n, ext) if superclass(cls) defined

is undefined otherwise

With hierarchy-first method selection, a method can be overridden in extensions

with higher priority in the whole hierarchy of that method class. Now we study

which method selection strategies has the less risk of accidental overrides.

5.3.4.3 Estimation Accidental Overrides Risks

We now estimate and compare the risks of accidental overrides for the two method

selection strategies. Let consider an arbitrary message mess = (cls lookup, id , n, ext
∗)

with the signature (id , n) with the sequence of active extensions ext∗ and the

lookup beginning the class clsrcv. Let meth = lookupp(exti, id , n, clsdef ) be

that method. This method is declared in the extension exti, the i-th extension of

ext∗(possibly global if it is a regular method) for the class clsdef (i.e. cls lookup

or one of its superclasses). Now let consider the addition of an arbitrary method

new = lookupp(extj, id , n, clsnew) with the same signature (id , n). We want to

model the set of method locations where this new method would cause an acci-

dental override, i.e. the set of method locations that would cause mess to dispatch

new instead of meth. Since the method new has the same signature than meth, a

method location only consists of a class and an extension. If new overrides meth

and are defined in the same extension exti, this override is intentional, so we only

consider locations where j 6= i. We call this set of locations the accidental over-

riding space (AOS).

AOS of Extension-First Strategy. For extension-first method selection, new is

an accidental override of meth if: (1) new is defined for a subclass of clsdef

in an extension extj in ext where j 6= i, or (2) new is defined for clsdef in an

extension extj where j < i. If we note super−1+p (cls) all the subclasses of a class

cls (transitive closure of the inverse of superp), we have:
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AOSext(mess) =

{(clsnew, extj) | (clsnew ∈ super−1+p (cdef ) ∧ i 6= j) ∨ (clsnew = clsdef ∧ i < j)}

The size of AOSext(mess) is then given by:

|AOSext(mess)| = |super−1+p (clsdef )| × (|ext∗| − 1) + (i− 1)

AOS of Hierarchy-First Strategy. For hierarchy-first method selection, new ac-

cidentally overrides meth if new is defined in any class in clsdef hierarchy in an

extension ej in ext where j < i. If we note super+p (c) all the superclasses of a class

c, we have:

AOShrc(mess) =

{(clsnew, extj) | clsnew ∈ (super−1+p (clsdef ) ∪ clsdef ∪ super+p (clsdef )) ∧ i < j}

The size of AOShrc(mess) is then given by:

|AOShrc(mess)| = (|super−1+p (clsdef )|+ |super+p (clsdef )|+ 1)× (i− 1)

Comparison of |AOSext| and |AOShrc|. We can now compare the AOS of each

method selection strategy. We ask ourself when the hierarchy-first strategy is better

than the extension-first strategy i.e. when |AOShrc(mess)| ≤ |AOSext(mess)|.
To do so we must have an idea of the average number of subclasses and super-

classes a class has. We take these numbers from Pharo, where the average number

of subclasses of a class is 8.82 and the average number of superclasses of a class

is 3.83. With these numbers our inequality reduces to 1.43i − 0.43 ≤ |ext∗|. Re-

member that i ranges from 1 to |ext∗|.
We know for which values of i hierarchy-first strategy has less risk to cause

accidental overrides than extension-first strategy. For |ext∗| ranging from 1 to 10,

the table below shows these values of i.

|ext∗| 1 2 3 4 5 6 7 8 9 10

i ≤ 1 1 2 3 3 4 5 5 6 7
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For example, when 5 extensions are active, the hierarchy-first strategy has less

risk to cause an accidental override than extension-first strategy whenever meth be-

longs to one of the first 3 active extensions. In this table we see that there are more

values of i for which hierarchy-first strategy is better. This means that extension-

first strategy is better only when meth belongs to the last extensions, i.e. the ones

that have smaller priority. In addition, hierarchy-first strategy has the advantage

that an accidental method override happen only for extension with a higher prior-

ity. With extension-first strategy, accidental overrides can also happen for extension

with a lower priority. These reasons shows that the hierarchy-first strategy is better

to limit accidental overrides.

5.3.5 Synthesis

In this analysis we found that the design of scoped extension methods has a big

impact on accidental overrides. It is thus important to make the good design deci-

sions to not pose class encapsulation problems. Indeed we called these overrides

"accidental", but they can also be malicious, e.g. voluntarily corrupting a class

behavior to gain access to protected operations or break fundamental invariants.

We determined that while local-rebinding improves code adaptability it causes too

much encapsulation problems. On the other hand, lexical extension methods can-

not modify the behavior of object in a contextual manner like local-rebinding does

but are easier to reason about. Also we saw that the active extension strategy is

not the only design choice. The method selection strategy also has impact on ac-

cidental overrides. We determined that the hierarchy-first strategy is better than

the extension-first strategy. Finally the granularity of the import relationship has a

consequence on expressivity and segregation of extension methods in meaningful

groups. For the importee end, we saw that being able to define extension, named

groups of extension methods is the best solution. For the other importer end, we

think that multiple solutions are possible but a good solution would combine sev-

eral granularity: package-level, class-level and method-level.
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Importee Importer Extension Method

granularity granularity activation strategy selection strategy

Classboxes one class extension package bottom-up extensions-first

per class per package local rebinding

Method one extension package controlled extensions-first

Shelters per package bottom-up

local rebinding

Categories many extensions block of code top-down extensions-first

per package local rebinding

Refinements many extensions class and lexical extensions-first

per package its subclasses

Conch many extensions class, package lexical hierarchy-first

per package or method

Figure 5.8: Comparison of the different approaches to scoped extension methods

5.3.5.1 Comparison of the Presented Solutions.

Figure 5.8 presents a comparison of the solution we have presented according the

the criteria we have discussed previously: the importee granularity, the importer

granularity, the extension activation strategy, and the method selection strategy. In

addition, we add our solution (presented in Section 5.4) to the comparison.

5.4 Our Solution: Conch

In the previous sections we concluded that the combination of lexical activation and

hierarchy-first strategies limits accidental overrides. Now we present Conch that

follows the conclusions of this analysis. Conch is prototyped for Pharo. We be-

lieve our solution is close to the selector namespace mechanism of the SmallScript

language, but we could find no code or article to precisely verify it. We know that

selector namespace features lexical extension methods but we don’t know which

method selection strategy is used.
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5.4.1 Context

Like in other languages of the Smalltalk family, using extension methods is id-

iomatic in Pharo. Pharo is thus a good candidate to study how much extension

methods are used in a real system. In Pharo 32, 4.7% of all methods are extension

methods, 16.7% of all classes and traits are extended, 48.1% of all packages de-

fine an extension method and 31.7% of all packages define a class or a trait that is

extended by another package. These numbers demonstrate that extension methods

are widely used in practice. Consequently, even though the number of accidental

overrides is limited by coding conventions (like prefixing method names with the

extending package name), it would be more preferable to prevent them by design.

The implementation given here is built with certain constraints in mind. Ab-

sence of static type information prevents the compiler to know the receiver class of

a message send. Consequently, the message may dispatch to an extension method

or to a regular method. Also, since extension methods are widely used, we want

as little performance loss as possible. Moreover, the migration to the new model

must be feasible without rewriting every existing package from scratch. Our im-

plementation relies on the default method lookup of Pharo instead of changing it in

the virtual machine. We briefly present this method lookup.

Smalltalk-80 Method-Lookup. The Pharo method lookup algorithm is inher-

ited from Smalltalk-80. As a single-dispatch language, this lookup doesn’t take the

class of the arguments into account. The signature of a method only consists of

a selector (the name of the method that also encode the number of parameter) in-

stance of the class Symbol. Symbols are globally unique string: at most one symbol

object exists for any sequence of characters.

The methods of a class are stored in a dictionary that maps method selectors

to method objects that contain bytecode. When a message with a given selec-

tor is sent to an object, the lookup algorithm searches for the associated method

as follows: first, the current class is set to the class of the receiver object. If

the method dictionary of the current class contains a method for the given se-

lector, the lookup stops and returns that method. Otherwise, the lookup pursues

2build #860
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in the current class superclass. If no method is found in the hierarchy, the mes-

sage #messageNotUnderstood: is sent to the receiver object with a reification of

the original message as argument. Overriding #messageNotUnderstood: permits

classes to answer to any message, a technique used to implement generic proxy

objects as we saw in Chapter 3.

5.4.2 Model And Implementation

Conch is based on lexically scoped extensions with a hierarchy-first method selec-

tion strategy to minimise accidental overrides (see Figure 5.8). Packages gather

classes and extensions and extensions can be imported at the package, class or

method level.

An extension can have a parent extension. The child extension can declare

methods that are polymorphic with the one declared in its parent: the messages sent

by client code that uses the parent extension can dispatch to methods declared in the

child extension. A child extension cannot override an extension method declared

in its parent extension. This mechanism is useful when one wants to enhance an

external extension with new methods. For example, if a developer creates a DSL of

predicates to match objects upon various criteria, he can also issue a compatibility

package with PetitParser. This compatibility package declares a child extension

of the PetitParser extension (that declares the asParser extension methods). This

child extension declares its own version of asParser in predicate classes to convert

predicate objects into parsers. Client code that imports the PetitParser extension

can then use the extension of the compatibility package without changes.

5.4.2.1 Selector Mangling Implementation.

The key point of this implementation is to distinguish a method name from its

selector. The name is what the developer types in source code while the selector is

the object used to look into class method dictionaries at run time. An extension is

akin to a namespace: it maps a method name to a unique selector object. Instead of

Symbol the selector of extension methods are instances of a new class Selector.

Symbols are still used as selectors for regular methods.
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Before an extension method m is compiled, its abstract syntax tree (AST) is

transformed. The transformation changes the selector of the AST method node

from a symbol to the associated selector object of m’s extension e. If e has a parent

extension, the selector associated with m’s name in the parent extension is used. If

no selector object is associated with m’s name in e or its parent (i.e. m is the first

method of its name), a new selector object is generated and installed in e.

When compiling any method (extension method or regular method), the selec-

tor of each AST message node is transformed as follows. Each extension that is

visible from the method is queried for the selector associated with the message

name in order of priority. Because several extensions can declare extension meth-

ods with the queried name, this yields an ordered list of selectors objects. If this

list contains only one selector object, we replace the name of the message node (a

symbol) with that selector object. If this list contains several selectors objects, we

replace the name of the message node with a special selector object, instance of

the class DispatchSelector. Dispatch selectors are used to resolve dynamically

the ambiguities that exist at compile-time. The dispatch selector takes the list of

selector objects to be looked-up at run time. Once a method is found, it then installs

a new hidden entry in the method dictionary of the corresponding class that maps

the dispatch selector to the found method to improve performances. We call these

such new entry a method alias. Likewise, the next time the same dispatch selector

is looked-up for the same class, the dynamic resolution is no longer necessary. To

implement the hierarchy-first method selection strategy, each selector of this list

must be looked-up one by one in the entire hierarchy of the receiver class before

continuing with following extensions.

Self/Super Optimisation. In case the message node is a self send, we know that

the method lookup will start in the class of the receiver. Consequently we consider

only the selector objects of extensions that define an extension method for either

the class of the receiver, one of its superclass, or one of its subclasses. In case

the message send is a super send, we know that the method lookup will start in

the superclass of m’s class. Consequently we consider only the selector objects of

extensions that define an extension method for either the superclass of the class of

m, or one of its superclasses.
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Backward Compatible Error Handling Hook. When the method-lookup fails

the virtual machine sends the message #doesNotUnderstand: to the receiver with

a reification of message as argument. We use a selector object (i.e. not a sym-

bol) #retry: instead, in order to preserve the behavior of classes that override

#doesNotUnderstand:. A method with this same selector object #retry: is de-

fined in ProtoObject:

ProtoObject>>retry: aMessage

^ aMessage selector retryFor: self withMessage: aMessage

The #retryFor:withMessage: method of the class Symbol sends the normal

#doesNotUnderstand: message:

Symbol>>retryFor: anObject withMessage: aMessage

^ anObject doesNotUnderstand: aMessage

This permits classes that redefine #doesNotUnderstand: to behave as in-

tended. The method #retryFor:withArguments: of the class Selector is de-

fined as follows:

Selector>>retryFor: anObject withMessage: aMessage

(anObject class lookupSelector: self name) ifNotNil: [ :method |

self installAliasesFor: method.

^ anObject perform: selector withArguments: aMessage arguments ].

^ anObject doesNotUnderstand: aMessage

This method first checks if the receiver class implements or inherits a regular

method that has the same name. This is how we implement the implicitly imported

global extension that contains all regular methods. If a method is found, method

aliases are installed and the next lookups of this selector in that class hierarchy will

succeed directly and be as fast as normal message send.

For dispatch selectors, the situation is similar. At run time, when a message

with a dispatch selector is sent for the first time, the lookup will fail because no

method has this dispatch selector as selector. The method #retryFor:withMessage:

of the class DispatchSelector is defined as follow:
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DispatchSelector>>retryFor: anObject withMessage: aMessage

self selectors do: [ :each |

(anObject class lookupSelector: each) ifNotNil: [ :method |

self installAliasesFor: method.

^ anObject perform: selector withArguments: aMessage arguments ] ].

^ super retryFor: anObject withMessage: aMessage

This method searches the first selector understood by the receiver’s class and

sends it to the receiver with the message arguments using the reflective send method

#perform:withArguments: after installing the corresponding method aliases. If

none of the selector is understood by the receiver’s class we fallback with Selector’s

behavior.

To summarize, Conch is an implementation of lexically-scoped extensions meth-

ods for Pharo that requires no modification of the virtual machine. It solves the

problem of ambiguous call-sites thanks to dispatch selectors. Thanks to method

aliases, the amortized performance cost is zero.

5.5 Related Work

We now compare our work with related work: Bergel’s module taxonomy, scoped

extension methods in statically-typed languages and the new modifier of C#.

5.5.1 Module Taxonomy

Bergel et al. [Bergel 2005a] present a taxonomy of module systems using a mod-

ule calculus consisting of a small set of operators over environments and modules.

Using these operators, they specify a set of module combinators that capture the

semantics of Java packages, C# namespaces, Ruby modules, selector namespaces,

gbeta classes, classboxes, MZScheme units, and MixJuice modules. Even if the pa-

per covers Classboxes, their semantics does not capture the local rebinding lookup

stack traversal.
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5.5.2 Solutions for Scoped Extension Methods in Statically-Typed
Languages.

In this chapter we have limited our research to solutions in dynamically-typed lan-

guages. There exists other solutions in the context of statically-typed languages.

These solutions are not portable to dynamically-typed languages because they rely

on static type information. In C#, extension methods are essentially syntactic sugar

over static methods whose first argument type is the extended type. Scala supports

a mechanism similar to extension methods with implicit classes.

MultiJava [Clifton 2000] is a Java extension that support open classes and

multiple dispatch. The open-class solution proposed by MultiJava is close to our

proposition for dynamic languages. MultiJava protects from accidental overrides:

a method m overrides an extension method m′ only if m′ is imported in the file that

declares m.

Expanders [Warth 2006] are another language construct that support scoped

extension methods in the context of eJava, a Java extension. An expander is a

class extension that can be brought into the lexical scope of a compilation unit. It

allows classes to be updated with new methods, fields and interfaces. An expander

can override the extension methods defined in another expander. This solution

enables intended overrides while preventing accidental ones. An extension method

cannot override a regular method. By importing expanders, client code adapts some

classes to its particular need.

Module Refinement. PRM is a statically-typed language supporting class refine-

ment [Ducournau 2007]. In PRM, a module is a class hierarchy, i.e. a set of classes

ordered by specialisation. It is a reuse unit which can be compiled separately and

then linked to other modules to produce a final executable. A module depends on

a set of other modules (called supermodules) and can refine classes imported from

them. A class refinement can be one of the four atomic mechanisms: (1) adding a

property, i.e., the definition of a newly introduced method or attribute; (2) redefin-

ing a property; (3) adding a superclass; (4) generalizing a property, i.e., defining a

property in superclasses of the class which introduced it in the supermodules.
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5.5.3 C# new Method Modifier.

C# is the one of the rare languages that offers a way to control accidental overrides.

C# allows the programmer to qualify a method with the keyword new to declare

that while the newly defined method has the same name as the one in a superclass,

it is not an override, i.e. it is used for a different concept. As such all calls in the

superclass that would invoke a method with the same name will not consider that

new method.

5.6 Conclusion

Globally-visible extension methods can lead to conflicts: accidental overrides and

overwrites. These conflicts pose class encapsulation problems that can lead to sub-

tle bugs or be exploited by malicious parties. In this chapter we propose studied

various solutions that propose to scope extension methods in dynamically-typed

languages: Classboxes, Ruby Refinements, Method Shelters, and Groovy Cate-

gories. We saw that the semantics of scoped extension methods has a big impact

on accidental overrides, and concluded that the combination of lexical extension

methods with the hierarchy-first method selection strategy gives the best results.

We proposed Conch , a solution for scoped extension methods that follows these

conclusions, and described its implementation for Pharo that incurs little perfor-

mance overhead by leveraging a traditional class-based method lookup algorithm.

5.6.1 Future Work

Our implementation is based on first-class and unforgeable selectors. We believe

this kind of selector deserve further investigation.

When used only at the language level, like in our implementation, these selec-

tors can also be used to control the visibility of methods in a number of different

ways. Hence, these selectors can serve as a foundation to unify method visibility

with scoped extension methods. Scoping extension methods lexically is indeed an

advanced form of method visibility.

But these first-class selectors could also be used at the application level. Indeed,

the difference between these first class selectors and name mangling is that we
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use specific objects to represent scoped selectors. Unlike a mangled name, these

objects are unforgeable and can be used as a form of right amplification. A first-

class selector is a capability to send messages to instances of specific classes. For

example, a client object with a reference to a subject object cannot send a specific

protected message to that object unless it also has a reference to the corresponding

selector object. With a reference to that selector object in hand, the client can

reflectively send the protected message. In this context, selector objects are a way

to assign and delegate permissions to send messages to instances of specific classes,

thereby blurring the boundary between static and dynamic permission assignments.
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This last chapter summarizes the contributions made by this dissertation and

point to directions for future works.

6.1 Contributions

This thesis studied the tension between adaptability and encapsulation in the con-

text of reflective object-oriented languages. After motivating the need for software

that is both adaptable and encapsulated, we presented the tension between these

two goals under two perspectives: a behavioral perspective with the tension be-

tween behavioral reflection and object encapsulation and a structural perspective

with the tension between extension methods and class encapsulation.

6.1.1 Reflection

We presented reflective concepts and reflective architecture in object-oriented lan-

guages. We presented and formalized the reflective architecture that is used in this

thesis that takes the form of an object-centric MOP. Such architecture enables be-

havioral variations on a per-object basis. Behavioral variations can focus on moni-

toring and adaptive aspects, thereby improving adaptability but also on encapsula-

tion and security aspects, thereby improving security. We gave a formalization of

a simple object-centric MOP used to formalize the mechanisms presented in this

thesis.

135
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We studied proxies in details and their realization in an object-centric MOP. We

saw the effect of delegation is important for composition of behavioral variations

and for the self-problem. Proxies can form chains to compose their behavioral

variations: different parties can add their own behavioral variation without being

aware of other behavioral variations already active for the same target object. We

can for instance trace and profile an execution by using tracing proxies and profil-

ing proxies. Adapting objects during an execution will not affect other objects in

the system (partial reflection [Tanter 2003]). Also, objects are wrapped selectively

and a behavioral variation is enabled only for the proxy. A variation is enabled for

clients who possess a reference to the proxy while other clients may have a refer-

ence to the target or to another proxy implementing another behavioral variation.

It is up to the creator of the proxy to decide whether to pass the proxy or the target.

Additionally, with specific wrapping rules it is possible to propagate a behavioral

variation to isolate an object graph with membranes or a portion of execution with

control flow propagation. Since the propagation is written reflectively, it can be

customized to achieve various forms of scoping.

We explored the problem of encapsulation violation caused by reflective oper-

ations and its implications on the OCap model. The tension between the need for

object encapsulation on the one hand and the need of reflection on the other hand

led us to the conclusion that we need a way to track when breaking into an encapsu-

lation boundary is legitimate. To this end we have explored the concept of dynamic

object ownership that has been originally used to control object aliasing. Instead of

object aliasing, we showed how this notion of object ownership can be used to de-

sign an access policy to reflective operations. Thanks to this access control policy,

owners of an object can perform any reflective operations on that object. An object

that does not own a target object has only access to limited reflective abilities. This

simple policy reconciles reflection and security in the context of multiple interact-

ing software components. We implemented this policy in the context of a simple

object-centric MOP. In this context, we showed that this policy can ensure that

reflectively implemented domain-level access-control policies cannot be bypassed

using reflection.
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6.1.2 Extension Method

Finally we studied different extension method mechanisms and the implication of

their semantics on class encapsulation. We proposed a framework to formally study

various solutions that proposed to scope extension methods in dynamically-typed

languages: Classboxes, Ruby Refinements, Method Shelters, and Groovy Cate-

gories. We saw that the semantics of scoped extension methods has a big impact

on accidental overrides, and concluded that the combination of lexical extension

methods with the hierarchy-first method selection strategy gives the best results.

We proposed Conch, a solution for scoped extension methods that follows these

conclusions, and described its implementation for Pharo that incurs little perfor-

mance overhead by leveraging the traditional lookup algorithm of single-dispatch

class-based languages.

6.2 Future Works

We gave tracks to future works throughout the dissertation that we summarize here.

6.2.1 Ownership for Alias Control

Originally, object ownership has been devised to control the effect of object alias-

ing. Later, many different ownership systems have been used for many other appli-

cations [Clarke 2013]: concurrency control, memory management, security, etc.

Since our access control policy relies on ownership information, it would be

interesting to leverage this information with other applications. The first applica-

tion that comes to mind is object alias control since it is the original application of

object ownership. So an interesting question is to know if an effective alias control

discipline can be compatible with our access control policy.

This seems difficult because one principle of the original ownership-based alias

control (known as the owner-as-dominator discipline) is "no representation expo-

sure". This means that external objects can not reference the representation objects

of an aggregate. The transitivity of our ownership relation contradicts with this

principle. An alias control discipline has to rely on a transitive ownership relation

to be compatible with our access control policy to metaobjects.
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6.2.2 Unification of Method Visibility with Extension Methods

The distinction between a method name and a method selector used in our Conch im-

plementation can also be used to control the visibility of methods in a number of

different ways and hence can serve as a foundation to unify method visibility with

scoped extension methods. The visibility modifiers of a language are fixed and

doesn’t necessarily meet developers needs. Also visibility modifiers often come

with assumptions about the relationship with between visibility and overriding.

For example, in Java if a method in a superclass is visible then a method with

the same signature is necessarily and override. An infrastructure that allow de-

velopers to defines method visibilities that meets the specific modularity and se-

curity requirements of the application under development, such as encapsulation

policies [Schärli 2004], is really valuable. If the same infrastructure is used for

extension methods, this would offer an expressive way to deal with encapsulation.

6.2.3 First-class Selectors for Assignment and Delegation of Per-
missions

The difference between our implementation and name mangling is that we used

specific objects to represent scoped selectors. Unlike a mangled name, these ob-

jects are unforgeable. They can thus be used as a form of right amplification. For

example, a client object with a reference to a subject object cannot send a specific

protected message to that object unless it also has a reference to the corresponding

selector object. With a reference to that selector object, the client can reflectively

send the protected message to that subject object. Selector objects can then be used

as a way to assign and delegate permissions to send messages to instances of spe-

cific classes, thereby blurring the boundary between static and dynamic permission

assignments
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