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Spécialité: Informatique
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shipping operations conducted in the warehouse at the e-fulfilment process uphill.

We propose a global model based on picking and shipping coordination, and tactical-
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In the second part of the thesis, we study a last mile delivery system offering two

classical type of services: home delivery and pick up at relay station. We address a
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stochastic user equilibrium. Based on a local search that exploits a sensitivity anal-

ysis of the equilibrium choice probabilities, a new heuristic algorithm for the bi-level

services pricing problem is proposed and compared to others existing approaches.
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Chapter 1

Introduction

In developed countries, e-commerce logistics represent the latest big driver of change

in logistics and physical distribution networks. The logistic industry has been in-

novating and mutating in order to follow the continuous growth of e-commerce. In

France, for example, on-line sales have risen by 20% in 2013 and by 11% in 20141.

E-commerce logistics has evolved substantially over the past 40 years or so,

impacting the organisation of the supply chain, involved actors, interactions between

them and processes. Since the beginning of the 21st century, e-commerce began to

rapidly expand with pure-play (internet only) retailers leading the way in developing

e-fulfillment distribution networks 2.

In this thesis, we are interested in e-commerce business that generates physi-

cal flows, where the supply chain efficiency is a crucial success key. Along with

the maturation of the on-line market and the generalized use of information and

communication systems, the e-commerce supply chain has to meet new challenges

related to all levels of infrastructure design, resources management and operations

optimization.

This introduction describes first a major actor in e-commerce supply chain; the

third party logistics. Then, general description of the e-commerce supply chain is

given. Finally, the contributions of the thesis are depicted.

1.1 Third party logistics

In traditional commerce, customers buy and pick their goods in a shop. In e-

commerce, customers order on-line and goods are delivered to them. What happens

during the time a customer waits for his goods is crucial to his overall experience.

The challenge of e-fulfillment is that many undesirable events can occur between the

time an order is placed and when the customer receive the goods. Retailers improve

continuously their business to offer good products at attractive prices, but they can

miss the order, not have inventory to ship, enter a wrong shipping address. Not to

mention that the package may never get there or the item can be damaged when it

does arrive.

Some of these mistakes can be eliminated when using a service whose logistic

is the core competence and that specializes in the e-fulfillment defined as the steps

1http://www.fevad.com/espace-presse/les-ventes-sur-internet-en-hausse-de-16-au-2eme-

trimestre-2013
2http://cerasis.com/2014/04/30/e-commerce-logistics/
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involved in receiving, processing and delivering orders to end customers. The de-

velopment of e-commerce induced the emergence of third party logistics providers

(3PL). A third-party logistics provider is a firm which provides outsourced logis-

tics services for part, or all of its customers’ supply chain management functions 3.

Services include warehousing and distribution, but also administration and customs

procedures. The relation between a 3PL and its clients can vary from providing the

basic logistics activities to a full integration of logistics function. For the clients,

this organisation results in cost and time saving, low capital commitment, focusing

on the core business and flexibility.

The global 3PL market reached 750 billion USD in 2014, and grew by 157 billion

USD in the US while demand growth for 3PL services in the US (7.4%) outpaced

the growth of the US economy in 2014 4.

E-fulfillment services help retailers provide a better customer experience by offer-

ing faster shipping times, guarantee well-packed items, consistent on-time delivery,

and an easy return process. Nowadays, the fulfillment is a competitive advantage.

Retailers with a reliable and efficient fulfillment process gain a competitive advan-

tage in the market.

The 3PL, like our project partner5, offers a global support dedicated to e-

commerce shop, including the conception of logistic sites and equipments, the mod-

elling and the optimization of process, the management of demand variation and

peaks, etc.

1.2 E-commerce supply chain

In commerce, supply chain management (SCM), the management of the flow of

goods and services, involves the movement and storage of raw materials, of work-in-

process inventory, and of finished goods from point of origin to point of consump-

tion. Interconnected or interlinked networks, channels and node businesses combine

in the provision of products and services required by end customers in a supply

chain. Supply-chain management has been defined as the design, planning, execu-

tion, control, and monitoring of supply chain activities with the objective of creating

net value, building a competitive infrastructure, leveraging worldwide logistics, syn-

chronizing supply with demand and measuring performance globally 6.

All along the different phases thousands of decisions and more are taken related to

planning and operations management. Classically in SCM, three levels of decisions

are defined [Anthony 1965]:

-Strategic level : includes long term decisions that establish the bases of the

3https://en.wikipedia.org/wiki/Thirdparty logistics
4http://www.3plogistics.com/big-deal-2014-3pl-results-and-2015-estimates/
5http://www.dhl.fr/fr/logistique/solutions de chane logistique/ce que nous faisons/e-

fulfillment.html
6https://en.wikipedia.org/wiki/Supply chain management
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development of the supply chain, like for example the design of the supply chain

structure.

-Tactical level : includes mean term decisions that deal with the organisation of

regular activities, like for example the quantities of flows and resources.

-Operational level : includes short term decisions that gives detailed instructions

for immediate execution, like for example jobs scheduling.

The issues of SCM are different as we are in a Business to Business (B2B) case

or a Business to Consumer (B2C) one, regarding problem characteristics and ser-

vice requirements. The durations of decisions vary from an application to the other.

They depend on many parameters like data acquisition frequency or resources’ char-

acteristics. In e-commerce for example, operational decisions are set every hour since

orders are made continuously and need to be processed. While tactical decisions like

the number of temporary workers to use can be set at daily base.

The e-commerce supply chain (ESC) is a complex system that involves a wide

and multi-modal transportation network and manages several physical flows. Several

studies highlighted the strengths needed for efficient ESC : reliability, flexibility

and profitability.

1.2.1 E-fulfillment network

The design of the distribution network is the core of big investment and the dis-

tribution strategy. The facilities location have to find trade-off between costs and

delivery efficiency.

Figure 4.1 depicts an example of an e-fulfillment network. Traditional e-

commerce activity is based on a warehouse that stores all products and cover a

wide geographical area (a country or even more). We detail in chapter 2 the struc-

ture and the operations of the warehouse.

The transportation network is structured with delivery centres which handle the

final delivery. These centres are the starting point of the last mile delivery segment

that ends at the customer’s home or at a designated collection point.

Shoppers online want to choose the location of the delivery. Last studies shows

that 66% of french e-shoppers prefer the delivery at a relay point 7. The relay point

is usually a shop that makes a partnership with the retailers to offer the possibility

to receive and deposit delivered goods so that end customer can pick them later.

1.2.2 Transportation in e-commerce

In e-commerce, the main physical flow is the fulfilment flow, or direct, flow. It

insures the replenishment and the delivery of online ordered goods. The direct flow

is divided in two physical flows : upstream and downstream [Agatz 2008].

7http://www.fevad.com
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Warehouse

Delivery 
center

Relay

customers

Delivery 
center

Relay

customers

Figure 1.1: The e-fulfillment network

The upstream flow replenishes the warehouse by products coming from providers

to be stocked in the warehouse. These operations are usually done long time before

products are up for sale online. We do not consider this flow in this thesis, and even

if it is part of the fulfilment, we will use fulfilment to refer to the downstream flow.

As in any supply chain, transportation is more than crucial in e-fulfillment. Once

shipped from the warehouse, parcels make a long journey to reach the end customer.

The journey is made of consecutive segments and combines different transportation

modes. In e-commerce transportation includes also the management of the returned

parcels.

1.2.2.1 Long-haul transportation

The downstream flow is initiated every time an order is received by the warehouse.

The order is picked and the formed parcels are shipped from the warehouse to be

delivered to the customer.

The warehouse is designed to cover customers scattered in a wide geographical

area. Parcels shipped to the same region are consolidated in pallets and shipped

according to a transportation mode. The first segment is the transportation from

the warehouse to a regional delivery centre. Transportation is usually performed by

Less-Then-Truckload carrier. The long haul freight transportation generally anal-

yses multicommodity transportation systems at a regional, national or global level

[Crainic 2003]. It combines several modes including rail, truck, ship, etc. The per-

formance of such system is evaluated regarding different, and sometimes conflicting

criteria like cost, safety and pollution. It rises strategic design decisions related to

the network and services design involving big investments. It also includes planning

and management issues related to resources allocation and journeys’ scheduling.
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1.2.2.2 Last-mile delivery

The second e-fulfilment segment is the transportation of parcels from the regional

centre to end users. At the regional delivery center, parcels are shipped directly to

end users home or dropped in relay stations, generally shops. The second segment

is then the last segment in direct contact with the end user. Generally, distances

done in this phase are small compared to the previous phase. Thus we speak about

Last-Mile delivery problem. For both delivery options, trips need to be planned to

serve a set of destinations. But the delivery problem is different as the option is

home delivery or at a relay station. For home delivery a trip serves a big number of

customers, scattered and with little delivered parcels (often only one). Inversely, a

trip for delivery to a relay station includes a limited number of depots with many

delivered parcels. Moreover, home delivery must be done during a time window

defined by either the delivery company or the customer. While the delivery at a

relay station is free of such constraint. Thus, the delivery resources and the planning

of the trip are specific to each option.

Home delivery can be addressed as a variant of the vehicle routing problem with

a fleet of vehicles and customer time windows like in [Cattaruzza 2015a]. Vehicles

can perform more than one trip. The planning deals with the clustering of customers

into trips and the routing of each trip. Regarding drivers, trips must respect the

maximum legal driving time per day and the legal time breaks.

Delivery at relay station is close to city’s freight distribution systems or city

logistics. City logistics rely on consolidation to provide the best trade-off between

operations efficiency and resources utilization [Crainic 2009]. At the delivery center

parcels are sorted by relay station, then vehicles load are composed to serve a set of

stations.

1.2.2.3 Returns

For online customers, the ability to easily return purchased items is an important

part of the buying decision. For online sellers, the ability to effectively handle these

returns is critical to customer satisfaction. Customers should know how and where

to send returns, while the e-fulfilment service should set how returns will be handled

once they arrive back at the warehouse.

Customers can return items in different ways. They can post them back to the

warehouse and then get the shipping cost refunded. Or they can drop it at a relay

station, and the e-fulfillment company handles the transportation of returns to the

warehouse. The management of the return flow in e-commerce leads naturally to

additional transportation issues that are close to what is known as Reverse Logistics.

Advanced systems combine the delivery with returns by planning a pick up and drop

trips.
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1.3 Contributions

Our contributions aim to give a general understanding of e-commerce supply chain

and also to design efficient tools for e-fulfilment management. We focus particularly

on two issues:

- The coordination and integration of decisions in e-fulfilment management.

- The design of last-mile delivery services under customer choice.

More precisely, our first contribution, presented in chapter 2, deals with ware-

house management, by investigating the benefits of two capital innovations. The

first is the coordination between order picking and shipping schedules. These two

phases are classically done separately and sequentially, which leads in high activity

to strained situations. The proposed model is an approach for enhancing the sup-

ply chain flexibility by considering alternative actions like order postponement or

shipping mode change.

The second innovation of the model is the integration of tactical and operational

decision over a multi-period planning horizon. In fact the optimization of processed

quantities enables smoothing peaks and better resources usage, but ignoring the

operational constraints results in infeasible solution. The tactical-operational inte-

gration is a safe approach for a better resource usage and consequently global cost

reduction and profitability.

The proposed model is computationally challenging. Several costs of different

nature are taken into account including labour and trailers. Also there are penalties

related to orders postponement or mode changes. The model looks for a planning

through both tactical and operational decisions. It incorporates a large set of

constraints related to order picking and to shipping schedules. The classical

solution methods fail to provide an optimal solution. We then propose an advanced

heuristic method capable of providing good solution at reasonable computation time.

The second contribution, presented in chapter 3, focus on a main difficulty

of e-fulfillment management related to the uncertainty of demand. In practice, a

planning decision aims to take decisions related to future activities based on data.

Although forecast models are usually used for a-priori data estimation, there are

always errors compared to a-posteriori revealed data. Those errors can be more or

less important and deteriorate the optimality of the planning or lead to constraint

violation. Such situations are of course undesirable since they affect seriously the

reliability of the supply chain.

We introduce a second model with rolling horizon that reflects better the

information acquisition process. The model also enables us to include stochastic

information of future periods in different fashions. We evaluate the performance of

stochastic methods and deterministic policies with classical lower and upper bounds.
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The third contribution, presented in chapter 4, studies last-mile delivery sys-

tem with two family of services: home delivery and pick up at relay station. In this

part of the e-commerce supply chain several decision actors interact. There are two

interactions. The first one is between the delivery company and the customers. The

second interaction is between the customers themselves through congestion effect.

The originality of our contribution is twofold. The first is the formulation

of company-customers interaction as a bi-level model. At the upper level, the

provider controls services’ tariffs. At the lower level, customers react by choosing

their delivery service according to a utility function. The second originality is

the integration of customers behaviour. In addition to tariffs, the utility function

includes a congestion measure depending on the service. Due to correlation between

services of the same family we use a nested Logit model and compute the resulting

stochastic user equilibrium. A sensitivity analysis of the SUE is then conducted, it

gives explicit expression of the derivatives of customers’ decisions with respect to

services’ tariffs. Based on a local search that exploits the derivatives information,

a new heuristic algorithm for the bi-level services design problem is developed and

compared to others existing approaches.

The e-commerce supply will continue to attract research and we expect more

innovation in e-commerce logistics regarding demand forecast, delivery and real

time order tracking.
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2.1 Introduction

An e-commerce business is based on a warehouse that stores all products and covers

a wide geographical area (a country or even more). The warehouse is the heart

of e-commerce activities where upstream supply chain phases, replenishment and

storage, and downstream supply chain phases, orders picking and shipping, are

closely conducted [Agatz 2008] [Gu 2006].

In this chapter we focus on downstream process in order to investigate the poten-

tial advantages on cost reduction of jointly scheduling orders picking and shipments.

Main costs of e-fulfillment are related to resources required for performing orders

picking, workers, and for shipping, trucks.

In a standard organisation, where picking and shipping are not jointly deter-

mined, activity peaks results in bottleneck situations. To handle such situations

temporary workers are usually hired to enhance the permanent team. Such policy is

however costly. Thus we define a new global approach based on the integration of re-

sources determination and operation planning. The latter includes the coordination

between picking and shipping.

In addition, different delivery options, called modes, are offered to customers.

Each mode is associated with different trucks that guarantee different delivery times

(packages are delivered within 3-5 business days for the normal mode, and within

24 hours for the quick mode).

The coordination enlarges the set of possible actions that improve the process

flexibility and resources productivity. First, orders can be postponed and prepared

during a day later than the one of arrival. Second, an order is allowed to be assigned

to a mode different from its default one. Our approach looks for a global efficient

planning that takes into account the impact of postponements and mode changes

on the process of future demand.

In section 2.2 we describe the e-fulfilment process, and we give a state of the

art of related works in section 2.3. A mathematical formulation of the integrated

e-fulfilment problem is introduced in section 2.4. The section 2.5 is dedicated to

decomposition based matheuristic proposed for solving the problem. In section 2.6

we describe the numerical experimentations and comment the results. Finally, we

conclude the chapter in section 2.7.

2.2 Warehouse description

The warehouse is at the heart of an e-commerce business. This platform requires a

flawless organisation including replenishment, inventory management, order picking

and shipping. Warehouse management systems are continuously elaborated and

optimized in order to improve efficiency and profitability and meet the online sales

growth. We can distinguish three principal zones in a classical warehouse: storage

zone, packing workshops and shipping docks (see figure 2.1).
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Figure 2.1: The warehouse structure

We now describe the main phases of e-fulfilment that are carried out in the

warehouse.

2.2.1 Replenishment

The replenishment of the warehouse is the first phase of e-fulfillment. Goods are

received, counted, inspected, labelled, indexed in the warehouse management soft-

ware and stored. Replenishment is optimized based on inventory management the-

ory to find the good trade-off between reactivity and profitability. The problem

of managing the inventory can be addressed for example using multi-echelon the-

ory [yu Kevin 2005], [Alptekinoglu 2005]. It aims to determine the base-stock levels

and the warehouse replenishment (from providers) strategies in a way that minimizes

transportation, inventory handling and backordering costs.

E-commerce enables shoppers to make orders at any time and from anywhere

and thus it helps increase the sales. As a consequence, the inventory management

is more challenging. After replenishment, the warehouse is ready to receive and

process orders. In this thesis we do not study e-commerce replenishment issues, we

rather focus on the downstream flow that deals with the process of orders.

2.2.2 Order picking

When a customer orders a set of items, the latter are picked off the shelves by one of

the workers and transported to an order packing workshop. There, a worker makes

a quality control, selects the packaging materials, scans items, adds protection and

bill, seals the box, and then moves it to one of the shipping dock.

Different order picking methods can be employed in a warehouse, for exam-

ple single-order picking, batching and sort-while-pick, batching and sort-after-pick,

single-order picking with zoning, and batching with zoning [Gu 2006]. Many e-

commerce retailers outsource their order fulfilment, as they simply don’t have the
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in-house experience, expertise or technology to process orders efficiently.

2.2.3 Packages shipping

Once an order has been picked and packed, it is moved to a shipping dock and loaded

in the corresponding truck. The shipping truck depends on the delivery option

(quick/ normal). In addition, some goods, like fragile or big ones, are transported

by a specific service. Also for a given mode, different levels of service are generally

offered, since some customers are ready to pay more if they can receive their goods

earlier. The 3PL is responsible for efficient journey’s design for each order under

tariff and delay commitment. The 3PL manages several transportation contracts

with different partners, each of them having its own conditions regarding tariffs and

volumes. This particular environment, that we call multi-mode shipping, impacts

the warehouse structure, order picking process and also the use of human resources.

2.2.4 Picking and shipping coordination

Traditionally order picking and shipping are done separately. Orders are processed in

the order of their reception, while a zone close to the docks is dedicated to packages

before shipping. This situation may lead sometimes to bottlenecks in high activity

period. A problem in an order’s process, or related to a shipping truck impacts the

overall activity.

This leads us to suggest the coordination of the two phases. Coordination can

be defined as the simultaneous consideration of two or more processes or functions,

that are usually sequential and interdependent, in order to improve global efficiency.

Performing jointly order picking and shipping leads in some situations to improve

resources use regarding the demand configuration. The use of resources at the pick-

ing phase (workers) can be planned with respect to the available shipping resources

(trucks) and their departure schedule. In this way, a situation where picked orders

can not be shipped because of missing truck’s capacity can be avoided.

When the decision of picking an order is taken, simultaneously the shipping is

scheduled. On the ground, the loading of trucks is jointly done with the order

picking. This implies that the two phases are more connected and inter-dependant.

For example, the picking of an order cannot start unless a truck of the assigned

mode is at docks.

The coordination opens a field to improve flexibility and resource use. Order

processing is no more a simple first in first out process without taking into account

global needs and resources. Coordination enables consolidation and helps avoiding

extreme and difficult situations. For example an order can be postponed if it is costly

at the moment, an order can be switched to a different shipping mode from the one

selected by customer. Some of these decisions may not be costless, they also can

cause customer disappointment, but they lead to improve the overall performance.
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2.2.5 Resources optimization

As in every business profitability comes with optimization of resources. The resource

levels should lead to the best trade-off between customers satisfaction and costs. In

some application, when resources are scarce, an order can only be partially satisfied.

This can be acceptable by the customer. In e-commerce, an unmet order results in

the loss of customer, and a negative image of the retailer. On the other hand, an

unused resource or a resource not used at its best productivity is a wasted profit.

In e-fulfilment the demand is known a very short time before the start of pro-

cessing and it fluctuates from day to day. This aspect highlights the specificity of

e-fulfilment with respect to production problems or transportation problems where

demand is known in advance.

Resources required in e-fulfillment are mainly workers and trucks. Workers are

in charge of the picking and shipping operations. They are of two types: permanent

and temporary. The number of permanent is known in advance. Temporary workers

can be hired to work at least for one shift that represent a fixed number of hours.

Temporary workers have a higher cost than permanent ones, and they are used

to handle activity peaks. The average productivity of a worker is computed as the

average amount of order fulfilled by a worker in an hour. Picking requires more time

than packing and loading, and the number of picked products is a linear function of

the number of workers. We thus assume that an increase in demand would increase

the total number of workers linearly.

In the problem studied in this section, the number of trucks is determined for

each shipping mode. Traditionally the number of trucks per day is set in advance in

a contract over a given term. It is crucial to determine appropriately the number of

trucks. Undersized truck capacity would induce unmet demand. Since the shipping

capacity bounds the quantity of packages picked, undersized capacity can also result

in an underuse of workers. On the other side oversized capacity generates high

costs. In extreme cases, it is possible to increase ad hoc the number of trucks at a

prohibitive additional cost.

After describing the main operations in picking and shipping phases, and high-

lighting difficulties and challenges, we introduce in the following section our approach

that provides a global framework for e-fulfilment optimization.

2.2.6 The integrated picking and shipping problem

We highlighted earlier that the success of an e-fulfilment system depends on its flexi-

bility and profitability. Our approach aims to improve these criteria by coupling two

features: the integration of tactical and operational decisions and the coordination

between picking and shipping phases.

The integration considers simultaneously tactical and operational decisions. The

first are related to the determination of the number of workers and the number

of trucks. The second include orders processing and trucks moves (docking and
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undocking). We use later IPSP to refer to the integrated picking and shipping

problem. The problem is defined over several days to allow postponement of orders

process.

The tactical-operational integration takes into account picking and shipping pro-

cess in the resource allocation. Indeed considering only the global demand to com-

pute the required resources may lead to the violation of some constraints and con-

sequently to an infeasible planning. For example the manager needs to know the

number of workers at each shift and not just the workforce corresponding to the

global demand. Also all orders assigned to a mode have to be processed before a

fixed departure time slots. In addition, docks are at a limited number. So it is

necessary to control the movement of trucks and to know docks state (busy or free).

Looking at operations process, orders contain one or more items and they gen-

erate one or more packages. The process of one order can be divided and partially

made during different time. Thus order process is addressed by a lot-sizing model.

More precisely we consider a planning horizon of several periods where a period

represents a working day. A period is composed of T time slots, a slot representing

a duration of one hour in practice. For workers management, a period is also divided

into disjoint and consecutive shifts. During each shift, a given number of permanent

and temporary workers are in charge of processing orders. Each period is associated

with a given number of orders. The process of an order is to determine the exact

number of packages that are prepared at each slot, for every order of every period.

A demand with a volume greater than one can be prepared during different and not

necessarily consecutive slots.

As new packages are made they are immediately loaded in trucks. The packages

of one order can be made during different slots and loaded in different trucks, but

they have to be assigned to the same delivery mode. The coordination between

picking and shipping implies that when packages are made, a truck of the corre-

sponding mode is present at the docks to be charged. The warehouse is equipped

with a limited number of docks that bounds the number of trucks that can be si-

multaneously charged. Each truck contains only packages of orders associated with

a specific delivery mode. Then, if different modes are involved at a given slot, at

least one truck for each mode has to be present at the docks. Moreover, at each

slot the number of packages that are processed takes into account the total workers

productivity the total trucks capacity.

The coordination between picking and shipping in IPSP enables mode change.

Indeed, it is possible to deliver an order with different mode than the one chosen by

the customer. In that case a penalty needs to be paid. This penalty represents the

extra cost needed to deliver the order in the case the change is from the normal mode

to the express mode. It quantifies the dissatisfaction of the customer for a delivery

delay in the opposite case. In addition, as the problem addressed is multi-period

problem, the possibility to postpone the process of an order to a future period is

also allowed. As a counterpart, a penalty is paid when the postponement causes a
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delay. When an order is postponed to a future period, all its packages are made

during that period. Mode change and order postponement occur when they improve

resources use. The two strategies can also be combined, when an order associated

with the normal mode can be delivered with the express mode of the day after.

In summary, IPSP looks for an operational plan that minimizes the total cost

of orders picking and shipping over a number of periods computed as the sum of

workers (fixed and temporary) cost, trucks cost and the penalties generated by mode

changes and order postponements. In addition, considering that the number of docks

is a critical resource, the solution of IPSP minimizes their total use computed as the

sum of occupied docks at each slot.

2.3 State of the art

In this section a revue of literature related to IPSP is presented. We focus on

lot-sizing problems, coordination problems and integration problems.

2.3.1 Lot-sizing

The joint picking and shipping process studied in this chapter is close to capacitated

multi-item lot sizing problem classically used to model and solve production, man-

ufacturing and inventory problems [Karimi 2003] [Gicquel 2008] [Lee 2013]. In its

general form the lot-sizing problem aims to determine the quantities of one product

or of a set of products to meet the demand at each period of an interval of time,

having that no shortage is allowed. The solution finds the optimal trade-off between

production costs, set-up costs and inventory costs. Producing large quantities re-

duces setup cost but in the same time increases inventory costs. The problem can

be uncapacitated or capacitated when a constraint on the total quantities produced

at each period have to remain under a bounding level. The capacitated lot-sizing

problem (CLSP) is known to be NP-hard [Karimi 2003].

As in lot-sizing, the solution of IPSP determines periodically produced quantities.

However, the difference is about the decisions frequency which is higher in IPSP.

Another common point between CLSP and IPSP is the existence of flow conservation

constraints. In CLSP, these constraints insure transition between production and

inventory, while in IPSP, the balance is between production and loading.

IPSP differs from CLSP in that several capacities are involved and they are

variable. In [Helber 2013] a variant of lot-sizing is considered where in addition to

an available capacity, an overtime is added when needed.

When demand shortage is allowed, it is possible to delay the process of a part

of the demand. This usually adds a backlog cost in the objective function and

the resulting problem is more difficult to solve. An other feature that affect the

modelling and the complexity of CLSP is the setup cost structure. For example,
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a carry-over setup cost is only applied if the product was not produced in the last

period. In some application the setup cost depends on the production sequence.

Lot-sizing problems involves cost function with different structures. The initial

CLSP considers only costs with linear functions. While the costs in [Lee 2013] in-

clude a piecewise linear function and a piecewise constant function. The complexity

of the problem and the solution approach depends on the structure of the considered

costs.

The IPSP consider three main costs: the cost of workers, the cost of trucks

and the penalties. The cost of workers and the cost of trucks are piecewise constant

functions of the number of processed orders. Each function has a particular structure

depending on the resource characteristics (unit cost, capacity, productivity). Such

resource cost are classically used in CLSP. The cost of penalties function is a linear

function of the postponed orders and it is similar to backlogging cost.

2.3.2 Functional coordination

Coordination is a key function in modern management. A big company for example

is composed by a set of departments, and each one is in charge of one phase of

the final output. Phases are sequential and interdependent. In IPSP for example,

for a package to be loaded for shipping, the corresponding order has to be picked

before. Thus it is necessary that the planning of one department activity takes

into account some informations from dependant departments to insure a satisfying

fluidity that is beneficial for the global process. Typically a person or a group, a

coordinator, is in charge of insuring the planning of activities and the communication

between departments. Coordination is as well addressed as an optimization problem

where two or more planning, corresponding to different process phases, are jointly

determined taking into account inter-dependencies and optimizing a global objective.

The terms of synchronization or integration are also used to refer to coordination.

Although in this thesis we make a distinction between coordination and integration.

Our understanding for the latter is detailed in the next section 2.3.3.

In [Chen 2010] author survey works on production and distribution coordina-

tion. This problem can be identified in many applications where production and

distribution are consecutive in a short time: e-commerce, perishable products, com-

puter, etc. In [Z.L. Chen 2005], the production planning, modeled as a scheduling

problem, is coordinated with a distribution problem, modeled as a vehicle routing

problem.

In [Baptiste 2008] production is coordinated with shipment schedules: produc-

tion lines prepare batches that are subsequently charged into trucks and shipped to

final destinations. The problem consists in planning the production in order to ship

full truck and minimize the delivery costs.

In [Wang 2005] the problem is to coordinate production scheduling of jobs with

the selection of delivery mode. The objective is to minimize delivery cost under
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job delivery dates. the production stage is modeled as a scheduling problem on one

machine. The delivery stage consider that jobs can be immediately shipped after

production, while in other application, shipping can only starts at fixed dates.

In the problems addressed in [Cetinkaya 2005] [Lee 2003] inventory replenish-

ment is coordinated with outbound shipments schedule in a multi-period problem.

The optimal solution specifies how often, and in what quantities, the stock should

be replenished at the warehouse, and how often an outbound shipment should be

released so that transportation scale economies are realized and customer require-

ments are satisfied at a minimal cost. Transport costs are the cost of used cargo and

penalties due to early delivery and late delivery. IPSP differs from the cited works

in that coordinated phases, order picking and shipping, are modelled with higher

level of detail, at the operational level.

2.3.3 Decisions Integration

The second main feature of the proposed approach in this chapter is decision inte-

gration. Decisions in e-fulfilment, as it is the case in many planning problems, are of

three levels. Classically, first, strategic decisions are determined and implemented

for a long term. Then, with a higher frequency, mean term tactical decisions are

taken. Strategic and tactical decisions define the environment in which operational

decisions which execute concretely the process are determined on a daily or hourly

base. Decision integration is the joint determination of decisions of different levels.

Decisions integration is different from functional coordination in that the first is

vertical while the second is horizontal.

An integrated problem includes for example strategic and tactical decisions or

tactical and operational decisions. Since IPSP belongs to the second case, we limit

the literature revue here to tactical-operational integration. Tactical decisions in

IPSP are related to the resources: workers and trucks. They include the number

of truck for every mode and the number of permanent and temporary workers for

every shift. While the operational decisions include at every slot processed orders

and truck moves in the docks.

Tactical-operational integration in planning problems attracts increasing interest

as an approach to match resources with process requirements. It can be motivated by

demand uncertainty which makes resources design a complex issue. Indeed, one tra-

ditional strategy of coping with demand’s fluctuation is to build up inventory during

periods with low demand and meeting the demand in excess of production capac-

ity from inventory [Atamturk 2001]. For various reasons (inventory costs, product

value, ...) it is excluded for some companies to carry an inventory. Moreover in

modern labour market, it is possible to use interim workers to enhance long term

contracted workers during activity peaks making possible the practice of dynamic

capacity adjustments.

In such environment, companies look for efficient planning that integrates capac-
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ity allocation, subcontracting, production and inventory. This leads to integration

of tactical and operational decisions. Pac et al. [Pac 2009, Alp 2006] studied in-

ventory management with dynamic continuous capacity adjustments for handling

the fluctuations more effectively. In [Pac 2009] authors address a dynamic approach

for integrated problem involving tactical decisions (permanent workforce size and

contracted number of workers) and operational decisions (temporary workers and

produced quantities). A particular situation where a delay needs to be respected

before temporary workers are available is studied in [Mincsovics 2009].

Pinker and Larson [Pinker 2001] develop a model for flexible workforce manage-

ment in environments with uncertainty in the demand and in the supply of labor.

The idea is to determine first regular workers and contingent workers levels over all

the planning horizon. Jointly at each period, the allocation of temporary workers

and overtime are decided to handle the stochastic demand under possible regular

workers absenteeism.

An application of joint workforce planning and operations management in mail

treatment can be found in [Judice 2004]. The process of mails through a sequence of

units is determined using short slots of time, while the staff planning is determined

using shifts composed by a number of slots.

2.4 Problem definition, notation and model

In this section, the IPSP is mathematically formulated. We consider a planning

horizon of H periods, a period representing a period in practice, indexed in H =

{0, . . . , H − 1}. For each period h ∈ H we need to process a number of orders Dh

(indexed in Dh = {0, . . . , Dh−1}). Orders revealed on period h need to be prepared

in one of the following H̄ periods, indexed in H̄ = {0, . . . , H̄ − 1}. h̄ = 0 indicates

that orders are not postponed. There are V available delivery modes, indexed in

V = {0, . . . , V − 1}.
Each order d ∈ Dh of period h is characterized by its

• volume volhd, the number of packages it is composed;

• mode vhd;

• time slot at which the order becomes known (release date of the order) rhd;

• penalty ph̄vhdv for processing the order at period h + h̄ and assigning it to mode v.

h̄ = 1 corresponds to a postponement while vhd 6= v corresponds to a mode change

(p0
vhdvhd

= 0).

We assume that the penalty for postponing a package from a period h to a period

h+ h̄ or changing its mode is identical for all orders.

Each delivery mode v is characterized by its

• departure slot tv. No truck associated with mode v will be available after tv.
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All the trucks have the same capacity Q and the same cost ctruck. Moreover, Nmax

is the number of available docks at the warehouse, thus at most Nmax trucks can be

simultaneously loaded.

Each period h is divided into the same number of shifts S, and each shift into

the same number of slots T̄ . It follows that each period is divided into T = ST̄

slots. Each shift s of period h is characterized by its

• starting slot starths;

• ending slot endhs;

• cost for a permanent worker cperhs ;

• cost for a temporary worker ctemphs ;

• number of packages a permanent worker can prepare prodperhs ;

• number of packages a temporary worker can prepare prodtemphs ;

• maximum number of permanent workers emax
hs .

Trucks are managed according to the following truck movement policy. Each truck is

assigned to one and only one mode and will distribute only packages assigned to that

mode. Trucks can be made available at the docks at any slot. When a truck gets full

during a slot, it is undocked by the end of that slot, and the dock it has occupied

becomes free for use at the beginning of the next slot. Thus if a truck associated

with a delivery mode gets full during a slot, and in the same time packages continue

to be processed and assigned to that mode during the same slot, a new empty truck

(or more) is (are) docked, and at that slot more than one dock are used by the same

mode. If the truck is not fully loaded at the end of a slot, it remains docked for the

next slot. Non-full trucks for mode v are undocked in two cases: at slot tv or if no

more packages for mode v will be assigned to the corresponding mode during the

following slots of the period. This policy achieves the least docks occupation having

that an undocked truck will not be docked again.

Over the planning horizon, IPSP aims to determine the number of workers and

trucks, an order process planning that consists in identifying the exact slot during

which each package of each order is processed, and a truck management planning

(i.e., when to dock and undock truck) in order to minimize the sum of the workers

cost, trucks cost, penalties, and the docks occupation.

We introduce now the variables of the model. For each period h ∈ H, for each

h̄ ∈ H̄, for each d ∈ Dh, for each mode v ∈ V and for each shift s ∈ S we have:

• The tactical variables:

– zperhs the number of permanent workers working on shift s of period h;

– ztemphs the number of temporary workers working on shift s of period h;
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• and the operational variables:

– xh̄vhd equals 1 if the order d of period h is prepared in period h + h̄ and affected to

mode v, 0 otherwise;

– yvth equals 1 if the number of empty trucks for mode v during period h at a slot

t̄ ≥ t is not null, 0 otherwise;

– f h̄vthd indicates the number of packages of order d prepared in slot t of period h+ h̄

assigned to mode v;

– wvth is the number of docked trucks for mode v at period h in slot t;

– uvth is the number of empty trucks for mode v that are docked at period h in slot t;

– kvth is the residual capacity of trucks at period h in slot t for mode v.

Before analysing deeply the model, it can be noted from variables x and f that

orders are processed individually. The model offers a highly precise tracking of

orders process information, and it is possible to return for each order the exact slot

of its process. Such precise tracking is required in e-commerce for the management

of the whole delivery journey of the order and also for the management of customer

relationship.

The objective function (2.1) is to minimize the cost of processing all the orders.

This cost is given by the sum of four terms computed over the planning horizon.

The first term is the sum of all penalties due each time the process of an order is

postponed to a future period, or each time the delivery mode of an order is changed.

The second term in the objective function is the total labour cost computed as the

sum of all workers costs, while the third is the cost of the used trucks. The fourth

term is a measure of the docks occupation, and it is incremented each time one

of the dock is occupied by a truck during one time-slot. We express this term in

dock-slot as it is the case when measuring an amount of work using man-hour or

man-day units.

Constraints (2.2) ensure that all the packages that compose an order are pre-

pared. Constraints (2.3) and Constraints (2.4) impose that each order is assigned

to only one mode and processed entirely during the same period. Constraints (2.5)

forbid to prepare orders before their release date. Constraints (2.6) is the packages

flow conservation: processed packages are loaded in an already docked truck with

residual capacity or in an empty truck. These constraints are formulated differently

for the first slot of each period. The reader can note the update of the trucks residual

capacity at every slot. Constraints (2.7) (resp. Constraints (2.8)) force variables yvth
to be one (resp. zero) if (resp. if no) additional trucks for the mode v will be used
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during the slot t or the slots after t of period h.

(IPSP ) min
∑
h∈H

∑
d∈Dh

∑
h̄∈H̄

∑
v∈V

ph̄vhdv volhd x
h̄v
hd +

∑
h∈H

∑
s∈S

(cperhs z
per
hs + ctemphs ztemphs )+

+ ctruck
∑
h∈H

∑
v∈V

∑
t∈T

uvth +
∑
h∈H

∑
v∈V

∑
t∈T

wvth (2.1)

s.t.
∑
h̄∈H̄

∑
v∈V

∑
t∈T

f h̄vthd = volhd ∀h ∈ H, ∀d ∈ Dh (2.2)∑
t∈T

f h̄vthd ≤ volhd x
h̄v
hd ∀h ∈ H, ∀d ∈ D〈, ∀h̄ ∈ H̄, ∀v ∈ V (2.3)∑

h̄∈H̄

∑
v∈V

xh̄vhd = 1 ∀h ∈ H, ∀d ∈ D〈 (2.4)

f 0vt
hd = 0 ∀h ∈ H, ∀d ∈ D〈, ∀v ∈ V , 0 ≤ t < rhd (2.5)∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄v0
(h−h̄)d + kv0

h = Quv0
h ∀h ∈ H, ∀v ∈ V

∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d + kvth = k
v(t−1)
h +Quvth ∀h ∈ H, ∀v ∈ V , 0 < t ≤ tv

(2.6)
tv∑
t=t̄

uvth ≤ tvNmax y
vt̄
h ∀h ∈ H, ∀v ∈ V , 0 ≤ t̄ ≤ tv (2.7)

yvt̄h ≤
tv∑
t=t̄

uvth ∀h ∈ H, ∀v ∈ V , 0 ≤ t̄ ≤ tv (2.8)

Quv0
h ≤ Qwv0

h ∀h ∈ H, ∀v ∈ V

Quvth + k
v(t−1)
h ≤ Qwvth +Q(1− yvth ) ∀h ∈ H, ∀v ∈ V , 0 < t ≤ tv

(2.9)

Quvth + k
v(t−1)
h − kv(tv−1)

h ≤ Qwvth ∀h ∈ H, ∀v ∈ V , 0 < t ≤ tv
(2.10)∑

v∈V

wvth ≤ Nmax ∀h ∈ H, ∀t ∈ T (2.11)∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

∑
v∈V

f h̄vt(h−h̄)d ≤ prodperhs z
per
hs + prodtemphs ztemphs

∀h ∈ H, ∀s ∈ S, starths ≤ t ≤ endhs
(2.12)

zperhs ≤ emax
hs ∀h ∈ H, ∀s ∈ S (2.13)

ztemphs ≤ zperhs ∀h ∈ H, ∀s ∈ S (2.14)

xh̄vhd ∈ {0, 1} ∀h ∈ H, ∀d ∈ Dh, ∀h̄ ∈ H̄, ∀v ∈ V (2.15)

yvth ∈ {0, 1} ∀h ∈ H, ∀v ∈ V , ∀t ∈ T (2.16)

zperhs , z
temp
hs ∈ N ∀h ∈ H, ∀s ∈ S (2.17)

f h̄vthd ∈ N ∀h ∈ H, ∀d ∈ Dh, ∀h̄ ∈ H̄, ∀v ∈ V , ∀t ∈ T (2.18)

wvth , k
vt
h , u

vt
h ∈ N ∀h ∈ H, ∀v ∈ V , ∀t ∈ T (2.19)
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Constraints (2.9) and (2.10) combined enable to apply the truck movement policy

explained earlier in this section. They update variables wvth that represent the exact

number of docks occupied by the trucks associated to each mode at each slot. For

constraints (2.9) a particular formulation that corresponds to the first slot of each

period is given first. These formulations are different from the general form because

they do not implicate trucks residual capacities. In constraint (2.9), a new truck

docked at a given slot (variables uvth ) imply naturally as much occupied docks. While

a truck docked earlier remains on dock only if more trucks associated with the same

mode are expected to be used in the upcoming slots (yvth = 1). Constrains (2.10)

complete the truck movement policy by handling the particular case, not handled

by constraint (2.9), where at a give slot, a truck docked earlier should remain on

dock because a quantity of packages, inferior than the current residual capacity, is

expected in the upcoming slots without the need for an additional truck. Note that

it is possible to formulate constraints (2.9) and (2.10) differently in a more compact

way, by expressing variables yvth in terms of expected upcoming packages instead

of expected upcoming trucks. The proposed formulation was preferred because it

presents a good separability, in the sense that constraints (2.7) and (2.8) implicate

variables associated with the same period only.

Constraints (2.11) impose a limit on the number of docks that are available.

Constraints (2.12) impose that the number of packages to be prepared in each slot

should not exceed the production capacity of the workers. Constraints (2.13) impose

a limit on the number of permanent workers. Constraints (2.14) ensure that there

are not more temporary workers than permanent workers. Otherwise, we assume

that permanent workers should be on duty. Constraints (2.15)–(2.19) define the

integrality or binary requirements.

Based on the proposed formulation, we give in the following the complexity

property of IPSP.

Proposition 1 The Packaging and Shipping Problem (IPSP) is NP-hard.

We prove the NP-hardness of (IPSP) by reduction from the knapsack problem

(KP). Given a knapsack with volume B and a set N of N items, indexed from 1 to

N , each with a volume bi and a value ci, the KP consists in selecting a subset N̄ of

N under the budget constraint which imposes that the total volume is less than or

equal to B, such that
∑

i∈N̄ ci is maximised. It can be formulated as follows:

(KP) max
N∑
i=1

cixi (2.20)

s.t.
N∑
i=1

bixi ≤ B (2.21)

xi ∈ {0, 1},∀i ∈ N (2.22)

where binary variable xi is equal to 1 if the i-th item has been selected, and zero

otherwise. The objective function (2.20) is to maximize the value of the selected
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items. Constraint (2.21) is the budget constraint, while Constraints (2.22) impose

variables to be binary.

For each instance of the KP we construct the following IPSP instance. For each

item i ∈ N , we construct an order d, such that d ∈ D0 (i.e., it is an order associated

with the first period of the horizon), vol0d = bi, r0d = 0 and it is assigned to a unique

mode v. The horizon is made of two periods, i.e., H = {0, 1}. Orders received the

period 0, can be processed during period 1, i.e., H̄ = {0, 1}. Each period is made

by one shift indexed with zero, i.e., S = {0}. Shifts are made by only one slot, then

T = {0}. This implies only one slot forms the period. No order is received during

period 1. For sake of simplicity, in this section we omit the index related to the

period and the shift as well as the mode index.

At most one permanent worker is available for each shift, namely, emax
0 = emax

1 = 1

with a null cost. Productivity is
∑

i∈N voli of the permanent worker working during

period 0 (this worker can process all orders arrived in period 0), and B for the

permanent worker of period 1. On the other side, temporary workers have a null

productivity and their cost is fixed to a strict positive constant, i.e., 1. Due to

construction, mode change is not possible (only one mode is available). Postponing

order d to period 1 generates a penalty

ph̄d =

{
c̃d = − cd

vold
if h̄ = 1,

0 if h̄ = 0.
(2.23)

The cost of a truck is set to zero, i.e., ctruck = 0. truck capacity is set to∑
i∈N voli: a truck can contain all the orders received in period 0. It is supposed

that only one dock is available, Nmax is set to 1. Other time parameters like the

shift starting period, are trivially fixed. This transformation of a KP instance into

a IPSP instance is polynomial in time and takes O(|N |) operations.

For the obtained instance, the model (IPSP) is reduced to (2.24)–(2.42). Note

that variables related to the truck management are not present in the objective

function. Then, we can suppose variables w, u and y fixed to 1 and get rid of them.

Note that this assumption verifies Constraints (2.29)–(2.33).
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min
∑
d∈D0

∑
h̄∈H̄

ph̄d vold x
h̄
d +

∑
h∈H

(cperh zperh + ctemph ztemph ) (2.24)

s.t.
∑
h̄∈H̄

f h̄d = vold ∀d ∈ D0 (2.25)∑
h̄∈H̄

xh̄d = 1 ∀d ∈ D0 (2.26)

f h̄d ≤ vold x
h̄
d ∀d ∈ D0, ∀h̄ ∈ H̄ (2.27)∑

h̄∈H̄
h−h̄=0

∑
d∈D0

f h̄d + kh = Quh ∀h ∈ H (2.28)

uh ≤ Nmax yh ∀h ∈ H (2.29)

yh ≤ uh ∀h ∈ H (2.30)

Quh ≤ Qwh +Q(1− yh) ∀h ∈ H (2.31)

Quh ≤ Qwh ∀h ∈ H (2.32)

wh ≤ Nmax ∀h ∈ H (2.33)∑
h̄∈H̄
h−h̄=0

∑
d∈D0

f h̄d ≤ prodperh zperh + prodtemph ztemph ∀h ∈ H (2.34)

zperh ≤ 1 ∀h ∈ H (2.35)

ztemph ≤ zperh ∀h ∈ H (2.36)

xh̄d ∈ {0, 1} ∀d ∈ D0, ∀h̄ ∈ H̄ (2.37)

yh ∈ {0, 1} ∀h ∈ H (2.38)

zperh , ztemph ∈ N ∀h ∈ H (2.39)

f h̄d ∈ N ∀d ∈ D0, ∀h̄ ∈ H̄ (2.40)

wh, kh, uh ∈ N ∀h ∈ H (2.41)

Moreover, since periods are constituted by only one period, variables kh become

useless and Constraints (2.28) can be replaced by

∑
h̄∈H̄
h−h̄=0

∑
d∈D0

f h̄d ≤ Q ∀h ∈ H (2.42)

Due to construction, Constraints (2.42) are trivially satisfied (a truck can contain

the full orders received in period 0). Finally, due to construction, we are sure that in

the optimal solution only one fix worker works each period (zper0 = zper1 = 1), while

no temporary workers will be hired (ztemp0 = ztemp1 = 0). Constraints (2.35)–(2.36)

are trivially verified. The model reduces to
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min
∑
d∈D0

∑
h̄∈H̄

ph̄d vold x
h̄
d (2.43)

s.t.
∑
h̄∈H̄

f h̄d = vold ∀d ∈ D0 (2.44)∑
h̄∈H̄

xh̄d = 1 ∀d ∈ D0 (2.45)

f h̄d ≤ vold x
h̄
d ∀d ∈ D0, ∀h̄ ∈ H̄ (2.46)∑

h̄∈H̄
h−h̄=0

∑
d∈D0

f h̄d ≤ prodperh ∀h ∈ H (2.47)

xh̄d ∈ {0, 1} ∀d ∈ D0, ∀h̄ ∈ H̄ (2.48)

f h̄d ∈ N ∀d ∈ D0, ∀h̄ ∈ H̄ (2.49)

Replacing ph̄d with the definition given in Equation (2.23), the objective function

(2.43) is∑
d∈D0

∑
h̄∈H̄

ph̄d vold x
h̄
d =

∑
d∈D0

(p0
d vold x

0
d + p1

d vold x
1
d) =

∑
d∈D0

− cd
vold

vold x
1
d =

∑
d∈D0

−cd x1
d

and Constraints (2.47) decompose into∑
d∈D0

f 0
d ≤ prodper0 =

∑
d∈D0

f 0
d ≤

∑
d∈D0

vold (2.50)

∑
d∈D0

f 1
d ≤ prodper1 =

∑
d∈D0

f 1
d ≤ B (2.51)

Constraint (2.50) is always verified and can be removed. The model becomes

min
∑
d∈D0

−cd x1
d (2.52)

s.t.
∑
h̄∈H̄

f h̄d = vold ∀d ∈ D0 (2.53)∑
h̄∈H̄

xh̄d = 1 ∀d ∈ D0 (2.54)

f h̄d ≤ vold x
h̄
d ∀d ∈ D0, ∀h̄ ∈ H̄ (2.55)∑

d∈D0

f 1
d ≤ B (2.56)

xh̄d ∈ {0, 1} ∀d ∈ D0, ∀h̄ ∈ H̄ (2.57)

f h̄d ∈ N ∀d ∈ D0, ∀h̄ ∈ H̄ (2.58)

Note that Constraints (2.55) are never strict, and inequalities can be changed to

f h̄d = vold x
h̄
d ∀d ∈ D0, ∀h̄ ∈ H̄
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(perfect relation between variables x and f is due to the fact that periods are made

by only one period). Then the model is equivalent to

(IPSP-KP) max
∑
d∈D0

cd x
1
d (2.59)

s.t.
∑
h̄∈H̄

xh̄d = 1 ∀d ∈ D0 (2.60)∑
d∈D0

voldx
1
d ≤ B (2.61)

xh̄d ∈ {0, 1} ∀d ∈ D0, ∀h̄ ∈ H̄ (2.62)

It is trivial to see that problems defined by models (IPSP-KP) and (KP) have

the same optimal solution, and this concludes the proof.

2.5 A three-phase matheuristic

To solve the IPSP we propose an algorithm based on a three-phase matheuristic

Following the classification of matheuristics proposed by Ball [Ball 2011], our proce-

dure falls into the decomposition approach category: sub-problems are sequentially

solved in order to identify a feasible solution for the original problem. Our three-

phase approach sequentially solves three sub-problems of the IPSP, in a way that

the solution of each sub-problem (or part of it) is the input for the next phase. The

solution of the third sub-problem is in turn a solution for the IPSP.

In our three-phase approach, the first phase solves a relaxation of the IPSP model

presented in Section 2.4. It determines the workers needed to process all the orders.

In other words, for all h ∈ H and s ∈ S we fix the values of variables zperhs and

ztemphs . This phase leads to take the tactical decisions under aggregated operational

constraints. The second phase determines the complete orders process planning

and sets the mode changes and the postponements. Specifically, it determines, for

each h ∈ H, d ∈ Dh, h̄ ∈ H̄, v ∈ V , the values of variables xh̄vhd. This phase

focuses at the operational level based on decisions taken on the previous phase of

the method. The solution provided by the second phase does not consider docks

occupation minimization, but provides a feasible solution for IPSP. Therefore, the

algorithm could be stopped after this phase.

If the algorithm is continued, the output of the second phase is used as input

for the last phase which considers the truck movement policy and minimizes the

dock occupation. This phase refines operational decisions to optimize the dock

occupation. The phases are detailed in the next sections. An outline of the three-

phase procedure is given in Algorithm 1.

For each of the three phases of the algorithm, we propose a speed-up technique

to cut computation times. In particular, we compute two valid lower-bounds on the

objective function for the models solved in phase I and phase II. Each of these lower
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bounds is used to define a stopping criterion. Before starting the third phase of the

algorithm, we implement a orders aggregation procedure which groups all the orders

with the same characteristics. Indeed, the mode changes and the postponements

are determined in phase II, and the aggregation procedure does not reduce the set

of feasible solutions as it will be further explained in Section 2.5.4.3.

Algorithm 1 Three-phase algorithm

1: Phase I

2: Compute lower-bound for model IPSP I LBI (Section 2.5.4.2)

3: while Time limit not reached do

4: Solve model IPSP I (Section 2.5.1)

5: for all Feasible solutions found do

6: if Solution optimality proved or solution cost equal to LBI then

7: Go to Step 8

8: end

9: end

10: Fix workers based on solution of model IPSP I

11: Phase II

12: Compute lower-bound for model IPSP II LBII (Section 2.5.4.1)

13: while Time limit not reached do

14: Solve model IPSP II (Section 2.5.2)

15: for all Feasible solutions found do

16: if Solution optimality proved or solution cost equal to LBII then

17: Go to Step 16

18: end

19: end

20: Fix reassignments and postponements based on solution of model IPSP II

21: Phase III

22: Aggregate orders (Section 2.5.4.3)

23: while Time limit not reached do

24: Solve model IPSP III

25: end

26: Disaggregate orders (Algorithm 2)

This decomposition approach is based on the distinction of the different deci-

sions regarding their nature. In the first phase, the tactical decisions, namely, the

workers needed for production, are determined. The second and the third phases

concentrate on the operational decisions. We first determine a complete feasible

planning and then we re-optimize the production planning in order to minimize the

dock occupation.

Sections 2.5.1–2.5.3 present the three phases of the algorithm. Section 2.5.4

presents the speed-up techniques.
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2.5.1 Phase I - Production capacity

This phase determines the number of workers that are required during each shift

of each period of the planning horizon. To this aim, we solve a relaxation of the

model (IPSP) presented in Section 2.4. The relaxation does not consider the truck

management issues, i.e., constraints (2.6)–(2.11) are not taken into account. The

relaxation of the model (IPSP) is based on the following proposition.

Proposition 2 The following model

(IPSP I) min
∑
h∈H

∑
d∈Dh

∑
h̄∈H̄

∑
v∈V

ph̄vhdv volhd x
h̄v
hd +

∑
h∈H

∑
s∈S

(cperhs z
per
hs + ctemphs ztemphs )

(2.63)

s.t. (2.2)–(2.5)∑
v∈V

(
∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d + kvth ) ≤ QNmax +QV ∀h ∈ H, 0 ≤ t ≤ tv

(2.64)

(2.12)–(2.18)

is a valid relaxation for model (IPSP).

Note the change in the objective function of (IPSP I) compared to (2.1), and

the substitution of constraints (2.6)–(2.11) by the constraints (2.64).

By summing constraints (2.6) over all modes in V , we obtain (using Con-

straints (2.9))∑
v∈V

(
∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d) ≤ Q
∑
v∈V

(wvth + (1− yvth ))−
∑
v∈V

kvth

From Constraint (2.11) it follows∑
v∈V

(
∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d + kvth ) ≤ QNmax +Q(
∑
v∈V

(1− yvth ))−
∑
v∈V

kvth

From Constraint (2.19) on the variables, it follows that the term
∑

v∈V k
vt
h is positive,

then ∑
v∈V

(
∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d + kvth ) ≤ QNmax +Q(
∑
v∈V

(1− yvth ))

Finally, the term
∑

v∈V(1 − yvth ) ∈ {0, . . . , V } equals V when all the variables yvth
equal 0, i.e., when the process is ended. Then, we obtain:∑

v∈V

(
∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d + kvth ) ≤ QNmax +QV
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(IPSP I) is solved with a commercial solver, and the solution is used to determine

the number of workers assigned to each shift of each period.

2.5.2 Phase II - Reassignment and postponement

Based on the decisions obtained in phase I, the second phase of the algorithm de-

termines the assignment of each order to a period and to a delivery mode (variables

xh̄vhd). The productivity capacity during each shift is known from Phase I, i.e., vari-

ables zperhs and ztemphs are now fixed. Moreover, we do not minimize the platform

occupation, i.e., the term
∑

h∈H
∑

v∈V
∑

t∈T w
vt
h is removed from the objective func-

tion. The model solved in this phase is the following (the variables zperhs and ztemphs

are replaced by the parameters ζperhs and ζtemphs )

(IPSP II) min
∑
h∈H

∑
d∈Dh

∑
h̄∈H̄

∑
v∈V

ph̄vhdv volhd x
h̄v
hd + ctruck

∑
h∈H

∑
v∈V

∑
t∈T

uvth (2.65)

s.t. (2.2)–(2.11)∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

∑
v∈V

f h̄vt(h−h̄)d ≤ prodperhs ζ
per
hs + prodtemphs ζtemphs

∀h ∈ H, ∀s ∈ S, ∀t = starths, . . . , endhs
(2.66)

(2.15)–(2.16)

(2.18)–(2.19)

Note that the solution that is obtained after phase II is a feasible solution for the

(IPSP) model: by construction, it satisfies constraints (2.2)–(2.19). This solution

can be used as an initial feasible solution in the last phase.

2.5.3 Phase III - Dock management

In the last phase, the platform occupation is optimized, i.e., we look to minimize

the number of slots during which vehicles are present at the docks. The workers

to hire, i.e., the values of variables zperhs and ztemphs and the possible reassignment or

postponement of order preparation, i.e., the values of variables xh̄vhd, are fixed and

are parameters of the model (indicated with χh̄vhd). The mathematical model solved
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in this phase is the following:

(IPSP III) min
∑
h∈H

∑
v∈V

∑
t∈T

wvth (2.67)

s.t.
∑
t∈T

f h̄vthd ≤ volhd χ
h̄v
hd ∀h ∈ H, ∀d ∈ Dh, ∀h̄ ∈ H̄, ∀v ∈ V

(2.68)∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

∑
v∈V

f h̄vt(h−h̄)d ≤ prodperhs ζ
per
hs + prodtemphs ζtemphs

∀h ∈ H, ∀s ∈ S,∀t = starths, . . . , endhs
(2.69)

(2.2), (2.5)–(2.11)

(2.16), (2.18)–(2.19)

Variables xh̄vhd, z
per
hs and ztemphs are initially fixed to the values obtained in phase II.

The solution provided by Phase III is the final solution obtained for the IPSP.

2.5.4 Speed-up techniques

To speed-up the algorithm, we compute two valid lower-bounds on the objective

function values of models (IPSP I) and (IPSP II). The lower-bounds are given by

the solution of two specific arc-flows problems. Since the computation of these

lower-bounds is based on the same idea, we detail only the computation of the lower

bound for (IPSP II).

2.5.4.1 Lower-bound for (IPSP II)

We first recall that in phase II, the objective function is given by the sum of the

penalties due to the mode changes and the postponements plus the cost of used

trucks. The lower-bound is obtained by solving the following relaxation of (IPSP II).

(RIPSP II) min
∑
h∈H

∑
v∈V

∑
h̄∈H

∑
v̄∈V

ph̄vv̄ξ
h̄v̄
hv + ctruck

∑
h∈H

∑
v∈V

ζvh (2.70)

Dhv +
∑
h̄∈H̄
h−h̄≥0

∑
v̄∈V

ξh̄v̄hv − ξvh −
∑
h̄∈H̄

∑
v̄∈V

ξh̄v̄hv = 0 ∀h ∈ H, ∀v ∈ V

(2.71)

ξvh ≤ Qζhv ∀h ∈ H, ∀v ∈ V (2.72)

ξh̄v̄hv ∈ N, ∀h, h̄ ∈ H, ∀v, v̄ ∈ V (2.73)

ξvh, ζ
h
v ∈ N, ∀h ∈ H, ∀v ∈ V (2.74)

where
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• ξh̄v̄hv represents the total volume of orders for period h and mode v treated on period

h̄ by mode v̄

• ξvh represents the total volume of orders for period h and mode v that is not post-

poned or reassigned

• ζvh represents the total number of needed vehicles for mode v in period h

and Dhv is the total number of packages which should be prepared on period h and

delivered by mode v.

Proposition 3 Model (RIPSP II) is a relaxation of model (IPSP II).

From Equations (2.4), multiplying both terms by volhd, we obtain∑
h̄∈H̄

∑
v∈V

volhdx
h̄v
hd = volhd ∀h ∈ H, ∀d ∈ Dh

and summing up on the demands d ∈ Dh we obtain∑
d∈Dh

∑
h̄∈H̄

∑
v∈V

volhdx
h̄v
hd =

∑
d∈Dh

volhd =
∑
v∈V

∑
d∈Dh
vhd=v

volhd ∀h ∈ H

∑
v∈V

∑
d∈Dh
vhd=v

∑
h̄∈H̄

∑
v̄∈V

volhdx
h̄v̄
hd =

∑
d∈Dh

volhd =
∑
v∈V

∑
d∈Dh
vhd=v

volhd ∀h ∈ H

and, for v ∈ V , h ∈ H let us define ξhh̄vv̄ =
∑

d∈Dh
vhd=v

volhdx
h̄v̄
hd as the total demand of

day h assigned to mode v that is delivered on period h̄ by mode v̄. We then have∑
v∈V

∑
h̄∈H̄

∑
v̄∈V

ξhh̄vv̄ =
∑
d∈Dh

volhd =
∑
v∈V

∑
d∈Dh
vhd=v

volhd =
∑
v∈V

Dh
v = Dh ∀h ∈ H (2.75)

where Dh
v and Dh are respectively the total demand of day h originally associated

with mode v and the total demand of day h. Note that since, for each h ∈ H, for

each d ∈ Dh, for each v ∈ V and for each h̄ ∈ H̄ there exist only one variable xh̄vhd
that is equal to one, we can write Equations (2.75) as∑

h̄∈H̄

∑
v̄∈V

ξhh̄vv̄ =
∑
d∈Dh
vhd=v

volhd = Dh
v ∀h ∈ H, ∀v ∈ V

Dh
v −

∑
h̄∈H̄

∑
v̄∈V

ξhh̄vv̄ = 0 ∀h ∈ H, ∀v ∈ V (2.76)
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From Equations (2.6), summing on t ∈ T we obtain∑
t∈T

∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d +
∑
t∈T

kvth =
∑
t∈T
t>0

k
v(t−1)
h +Q

∑
t∈T

uvth ∀h ∈ H, ∀v ∈ V

∑
t∈T

∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d + kvTh = Q
∑
t∈T

uvth ∀h ∈ H, ∀v ∈ V

∑
t∈T

∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d ≤ Q
∑
t∈T

uvth ∀h ∈ H, ∀v ∈ V

Let us now define ξhv =
∑

t∈T
∑

h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt
(h−h̄)d

and ζhv =
∑

t∈T u
vt
h . Then we

obtain

ξhv ≤ Qζhv ∀h ∈ H, ∀v ∈ V (2.77)

that are Constraints (2.72). ξhv represents the total volume of packages that need

to be prepared in day h and delivered by mode v after postponing and re-affecting

operations. ζhv represents the number of vehicle needed to transport the ξhv packages.

From the definition of ξhv we have

ξhv =
∑
t∈T

∑
h̄∈H̄
h−h̄≥0

∑
d∈Dh−h̄

f h̄vt(h−h̄)d, ∀h ∈ H,∀v ∈ V

ξhv =
∑
h̄∈H̄
h−h̄≥0

∑
v̄∈V

∑
d∈Dh−h̄
v̄=vhd

∑
t∈T

f h̄vt(h−h̄)d, ∀h ∈ H,∀v ∈ V

ξhv =
∑
h̄∈H̄
h−h̄≥0

∑
v̄∈V

ξh̄hv̄v , ∀h ∈ H,∀v ∈ V

∑
h̄∈H̄
h−h̄≥0

∑
v̄∈V

ξh̄hv̄v − ξhv = 0, ∀h ∈ H,∀v ∈ V (2.78)

where we have defined ξh̄hv̄v =
∑

d∈Dh−h̄
v̄=vhd

∑
t∈T f

h̄vt
(h−h̄)d

, that represent all the packages

originally assigned to day h̄ − h and mode v̄ that are prepared on day h (i.e., are

postponed by h̄) and mode v.

Summing Equations (2.76) and (2.78) we obtain:

Dh
v +

∑
h̄∈H̄
h−h̄≥0

∑
v̄∈V

ξh̄hv̄v − ξhv −
∑
h̄∈H̄

∑
v̄∈V

ξhh̄vv̄ = 0 ∀h ∈ H, ∀v ∈ V (2.79)

that are Constraints (2.71). All the other constraints in the model (PSP II) are

relaxed.



2.5. A three-phase matheuristic 33

From Proposition 3 it follows that the value of the optimal solution of (RIPSP II)

is a lower-bound for (IPSP II).

The model (RIPSP II) is a special case of the multi-commodity capacitated

network design problem where only one commodity has to be routed on the network,

and capacities have to be respected or installed in order to satisfy the demand (see,

for example, Gendron et al. [Gendron 1999]). In particular, (RIPSP II) is equivalent

to

(AF-RIPSP II) min
∑
v∈V

∑
v̄∈V

∑
h∈H

∑
h̄∈H

ph̄vv̄ξ
h̄v̄
hv + ctruck

∑
v∈V

∑
h∈H

ζvh (2.80)

Aξ = b (2.81)

0 ≤ ξ ≤ c(ζ) (2.82)

ζ, ξ ∈ N (2.83)

Note that model (AF-RIPSP II) defines an arc-flow problem on an oriented graph

G = (N ,A) where N = {s, t}∪N h
v , and N h

v contains a node nhv for each pair (v, h),

v ∈ V , h ∈ H and

A = {(s, i)|i ∈ N h
v } ∪ {(i, t)|i ∈ N h

v } ∪ {(i, j)|i, j ∈ N h
v , i 6= j}

A is the adjacency matrix of graph G. Vectors b and c are as follows:

bi =


−
∑

v∈V
∑

h∈HD
h
v if i = s∑

v∈V
∑

h∈HD
h
v if i = t

0 otherwise

and,

ca =


Dh
v if a = (s, nhv)

Qζhv if a = (nhv , t)∑
v∈V

∑
h∈HD

h
v if a = (nhv , n

h1
v1

), i 6= s, t

Model (RIPSP II) is solved with a commercial solver and the value of the optimal

solution gives the lower-bound for the phase. With respect to our testbed, the size of

instances remains small, and optimal solutions are obtained almost instantaneously.

Each time a feasible solution for model (IPSP II) is identified and its value is equal

to the lower-bound, the solution of model (IPSP II) is stopped.

2.5.4.2 Lower-bound for phase I

The model (RIPSP II) determines orders that require postponement or mode change

in order to minimize the number of vehicles, and it computes the resulting penalties.

A valid lower-bound for phase I is obtained accordingly: an estimation of postponed

orders over the horizon is computed to minimize the number of required workers.

The problem can be formulated as arc-flow problem similar to (AF-RIPSP II). Due

to similarities shared by both constructions we omit the details here.
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2.5.4.3 Order aggregation for phase III

Phase II determines the quantities of orders assigned to each mode in each period.

Based on these decisions, Phase III looks for a packages loading plan, in other words

the quantities loaded at each slot and the required trucks movements, that minimizes

the docks occupation. To speed up the solution of phase III model, we aggregate

orders: we cluster orders that

• have the same release date,

• are assigned for process on the same period h ∈ H,

• are assigned for delivery to the same mode v ∈ V

as a unique order whose volume is the sum of individual order volumes. Orders in

Dh postponed by h̄ > 0 are included in the volume of the unique order created for

period h + h̄ associated with a release date equal to zero. Since these orders were

available h̄ periods before, they are available at the beginning of period h+ h̄.

This aggregation can be performed since no postponement or mode change are

allowed during this phase. Postponement or mode change must be done on the total

volume of an order. Aggregation is not possible when postponement or reassignment

are admissible, since the packages associated with each order have to be known. This

information is be lost in case of aggregation.

Formally, for each h ∈ H, for each v ∈ V and for each t ∈ T we define a unique

order Dt
hv with a volume volDthv defined as follows:

volDthv =


∑

d∈Dh
rhd=t

volhdx
0v
hd +

∑
d∈Dh−h̄

h−h̄≥0, h̄>0

vol(h−h̄)dx
h̄v
(h−h̄)d

if t = 0∑
d∈Dh
rhd=t

volhdx
0v
hd if t > 0

(2.84)

When t = 0, the volume Dt
hv corresponds to the sum of volumes of all orders released

exactly at t = 0 on the period h and processed on the same period, plus the volume

of all the orders released during period h − h̄ and postponed by h̄ periods. When

an order is postponed to a given period h, it is known at the beginning of period

h. When t > 0, the volume Dt
hv corresponds to the sum of volumes of all orders

released exactly at t > 0 on the same period h.

Moreover, Dt
hv is characterized by its mode vDthv = v, and its release date rDthv =

t.

Let D̄h denote the set of all aggregated orders. These orders are the input of

the model solved by the commercial solver in phase III. Let us indicate with f̄ h̄vthd

the variables corresponding to orders in D̄h. A solution of phase III determines an

operational planning for orders d ∈ D̄h. The solution of the problem in terms of

variables f h̄vthd can easily be obtained by applying a greedy algorithm using the values

of variables f̄ h̄vthd .

Algorithm 2 gives an example of greedy procedure used to construct the process

plan for the original orders (orders dis-aggregation).
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Algorithm 2 Dis-aggregation algorithm

1: for all h ∈ H do

2: for all r ∈ T do

3: d = 0

4: vol = 0

5: while d < |Dh| do

6: t = 0

7: h∗ = arg maxh̄∈H̄ x
h̄v
hd

8: v∗ = arg maxv∈V x
h̄v
hd {if h∗ = 0, d is included in Drd

hv∗ ; if h∗ > 0, d is

included in D0
(h+h∗)v∗}

9: if h∗ = 0 then

10: fh
∗v∗t

hd = max{f̄ 0v∗t
hDr

hv∗
, volhd}

11: f̄ 0v∗t
hDr

hv∗
= f̄ 0v∗t

hDr
hv∗
− fh∗v∗thd

12: else

13: fh
∗v∗t

hd = max{f̄ 0v∗t
(h+h∗)D0

(h+h∗)v∗
, volhd}

14: f̄ 0v∗t
(h+h∗)D0

(h+h∗)v∗
= f̄ 0v∗t

(h+h∗)D0
(h+h∗)v

− fh∗v∗thd

15: vol = vol + fh
∗v∗t

hd

16: if vol = volhd then

17: d = d+ 1

18: vol = 0

19: else

20: t = t+ 1



36 Chapter 2. Integration in E-fulfilment optimization

2.6 Computational results

This section discusses on the efficiency of the three-phase procedure we developed

for the IPSP. We first describe the instances we created starting from data provided

by an industrial partner (Section 2.6.1). Results on these instances are reported

in Section 2.6.2.1. Sensitivity analysis of the three-phase algorithm with respect

to slight modification of instances and with respect to different penalty profiles is

reported, respectively in Sections 2.6.2.2 and 2.6.2.3. Section 2.6.2.4 shows the per-

formance of the lower-bounds used in phases I and II introduced in Sections 2.5.4.1

and 2.5.4.2. Finally, Section 2.6.2.5 compares the three-phase algorithm with the

solution of the (IPSP) using a commercial solver.

2.6.1 Instance generation

The (IPSP) being a new problem, we have to generate a set of instances to test the

algorithm described in Section 2.5. The instances are based on real data provided

by a logistic company in the e-commerce sector.

Each working day is identified by a profile, namely, a number of orders known

during the day. We define three profiles, named low, normal, high respectively

characterized by 1000, 3000, 5000 orders.

A list of common data is shared among the different instances. Specifically, we

consider a horizon of three days, H = {0, 1, 2}, while order process can be postponed

by one day, i.e., H̄ = {0, 1}. Orders are received only during days 0 and 1. The

third day is only used in case the whole demand cannot be prepared during days 0

and 1. Each day includes two shifts made of eight time slot.

Two delivery modes are available, the express mode and the normal mode. Trucks

associated to the express mode leave the warehouse earlier than the other trucks,

that are supposed to leave at the end of the last shift. As an example, the express

mode departure time is slot 12. This means packages can be loaded into vehicles

until slot 11. Trucks have a capacity of 1300 packages and a fixed cost of 650 Euros

for both modes.

Permanent workers productivity is set to 40 packages per time slot and cost 185

Euros. Temporary workers produce up to 30 packages per time slot and cost 210

Euros. Workers are hired for at least one shift. We impose the limit on the number

of permanent workers to 15 for each day.

The number of available docks is set to 10. The penalties for a postponement or

a mode change are as follows:

ph̄vhd =


0 if h̄ = 0 and v = vhd,

1 if h̄ = 0 and v 6= vhd or h̄ = 1 and v = vhd,

2 if h̄ = 1 and v 6= vhd,

∞ otherwise.

(2.85)
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We consider nine type of instances associated with all possible profile combina-

tions for day 0 and day 1 chosen among low, normal and high profiles.

For each type of instance, five particular instances are generated randomly fixing

the values of the release date, the number of packages that constitute an order as

well as their delivery mode. Order volumes are uniformly drawn among values

{1, 2, 3} and release dates are drawn uniformly among the slots of the day. Modes

are initially assigned to orders according to a uniform distribution.

2.6.2 Discussion

The algorithm is implemented in C++ in Visual Studio environment. The models

presented in Sections 2.5.1–2.5.3 are solved with Cplex 12.6. All tests are performed

on an Intel R© CoreTM i7-4600U CPU 2.10 GHz. We allow a maximum of one hour

of computation for each phase of the algorithm.

2.6.2.1 Results on the basic-instances

We run our three-phase algorithm on the nine basic-instances described in Sec-

tion 2.6.1. Detailed results are reported in Table 2.1. Column Instance reports the

name of the instance’s type as a couple corresponding to the profiles of day 0 and

1. For each instance, we report results in four rows: the first three rows correspond

to each of the algorithm phases. The forth row give total cost and time values.

Column Phase indicates the considered phase of the algorithm. Column Cost

reports the cost of the objective function for each phase as well as the total solution

cost. Note that the objective function at Phase I takes into account the penalties

that occurs when setting the workforce. But after this phase, only the sum of workers

cost is taken into account in the value of the final solution. Penalties are computed

again in Phase II and then contribute effectively to the final solution cost. Columns

workers Per and workers Temp report respectively the number of permanent and

temporary workers. Note that these columns are blank in correspondence to phase II

and phase III, as they are determined definitively during phase I. Column Pen

reports the value of the sum of all postponement and mode change penalties. Column

Truck indicates the number of trucks needed to deliver the orders. Phase III does not

modify the values of these two columns and the corresponding slots are left blank.

Column Dock-slots reports the docks occupation during operations. The solution

of the Phase I model does not provide the values of Truck and Dock-slots columns

(variables uvth and wvth are not present in model IPSP I). We compute these values at

Phase I separately by an independent procedure for comparison purposes. Column

Gap indicates the optimality gap observed when the respective model is not solved

to optimality. Since we enhanced the solver with a specific lower bounds in Phase I

and II, the reported gap is provided using either the value of the linear relaxation or

the corresponding lower-bound (see Section 2.5.4). The gap is reported only when
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it is strictly positive. When the slot is blank, an optimal solution (for that phase)

is identified. Finally, column Time provides the CPU time in seconds.

For four type of instances and for each of the three phases, a (local) optimal

solution is obtained. For other five types, phase II fails to reach the optimal solution

within one hour of CPU time. However, the optimality gap is less than 2% for four

of them. Phase II reveals to be the bottleneck of the procedure. From the total

computation times, we observe that the algorithm can solve more easily instances

with the same profile for both days.

For four types of instances, Phase I suggests to hire temporary workers even if the

total availability of permanent workers for the first two days has not been used. We

recall that 15 permanent workers are available for each shift, for a total of 60 workers

for day-0 and day-1. The penalty scheme considered guide the optimization through

solutions that favour temporary workers hiring, rather than order postponement.

For seven types of instances, phase II is able to reduce the number of used

trucks that was first determined in Phase I. This is possibly due to the mode change

strategy the company defines. Note that the increase in the penalties cost is always

lower than the saving due to unused trucks. This result highlights the potential

benefit of incorporating postponement and mode change in the process planning.

Finally, Phase III always reduces the number of dock-slots which is crucial to

handle high activity peaks.

2.6.2.2 Algorithm behaviour analysis on instances of the Normal-Low

type

We run our algorithm on five instances of the type Normal-Low. Since on E-

commerce enterprise experiences often the same sequence of day profiles, but with

different orders quantities. One of these usual sequence is the Normal-Low sequence

that we selected to analyse the sensitiveness of the algorithm. Table 2.2 reports

detailed results on the five runs. Column names correspond to those reported in

Table 2.1. It can be seen that the results for different instances are equivalent. It

is worthwhile to note that he solution time for phases I and III do not vary among

instances significantly. The only significant variation is on the computation time for

phase II of the fifth instance. We can conclude that our solution algorithm is not

deeply impacted by the structure of the particular instance solved.

We made the same analysis for the other instance type solving each time five

instances, and we ended up each time by the same conclusion for the Normal-Low

type. Thus we omit to report detailed results on these cases.

2.6.2.3 Analysis of penalty schemes

In this section we compare the results obtained introducing different penalty schemes

for the postponements and mode changes. In Table 2.3 we report results obtained

when penalty values in Equation (2.85) are divided by 10.
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Instance Phase Cost
workers

Pen Truck Dock-slots Gap Time
Per Temp

I 2405 + 75 13 0 75 4 56 0.00% 66

Low-Low II 2675 75 4 52 0.00% 137

III 45 45 0.00% 1

5125 204

I 4810 + 75 26 0 75 8 60 0.00% 117

Low-Normal II 4665 115 7 59 1.61% 3602

III 46 46 0.00% 3

9521 3722

I 7290+75 36 3 75 11 63 0.00% 94

Low-High II 6735 235 10 58 1.11% 3602

III 40 40 0.00% 3

14065 3699

I 4810 26 0 0 8 60 0.00% 13

Normal-Low II 4960 410 7 48 0.00% 269

III 38 38 0.00% 6

9808 288

I 9671 + 10 50 2 10 15 76 0.00% 235

Normal-High II 9550 450 14 54 7.23% 3610

III 46 46 0.00% 83

19267 3928

I 7215 39 0 0 12 64 0.00% 14

Normal-Normal II 7076 576 10 48 0.00% 1549

III 39 39 0.00% 7

14330 1570

I 7290 + 2 36 3 2 10 62 0.00% 31

High-Low II 6501 1 10 57 0.02% 3626

III 43 43 0.00% 14

13834 3671

I 9485+1 49 2 1 14 66 0.00% 28

High-Normal II 8746 296 13 57 0.01% 3625

III 45 45 0.00% 19

18276 3672

I 12150 60 5 0 17 69 0.00% 30

High-High II 10560 160 16 61 0.00% 525

III 44 44 0.00% 16

22754 571

Table 2.1: Results on the basic-instances
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Phase Cost
workers

Pen Truck Dock Gap Time
Per Temp

I 4810 26 0 0 8 60 13

II 4960 410 7 48 269

III 38 38 6

9808 288

I 4810 26 0 0 8 59 19

II 4893 343 7 54 369

III 37 37 6

9740 394

I 4810 26 0 0 8 60 13

II 4851 301 7 57 135

III 35 35 5

9696 153

I 4810 26 0 0 8 59 13

II 4859 309 7 56 96

III 37 37 6

9706 115

I 4625+114 25 0 114 8 60 13

II 4871 321 7 58 2684

III 37 37 5

9533 2702

Table 2.2: Algorithm performance on 5 instances created from the same basic-

instance Normal-Low
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There are two main differences with the results reported in Table 2.1. The first

is related to the number of temporary workers while the second concerns the higher

optimality gap.

For the High-High instance, the algorithm a solution obtained postpones the

order process to the third day (day 2) with a consequent use of 3 permanent workers.

Note that 3 permanent workers guarantee a production (40 packages per slot times

8 slots times 3 equals to 960) equal to 4 temporary workers (30 times 8 times 4),

but cost 555 instead of 840, leaving room for a large postponement that is favored

by the low penalisation scheme adopted. In a rolling-horizon context, poor solution

could considered if the profile of day 2 is high.

Moreover larger optimality gaps is obtained in Phase II. An explanation could

be the following. Let us consider two orders d1 and d2 for the same day and with

the same volume and the same release date. Let us suppose to have in hand the

complete planning. Exchanging production of d1 with d2 would provide an equivalent

planning. This leads to equivalent solutions which the solver needs to consider to

prove optimality. When penalty is low, this symmetry is projected to the possibilities

of postponement and mode change, making computation even harder.

Table 2.4 reports results where the penalty scheme proposed in Equation (2.85)

is modified in order to change orders from the normal to the express mode for free

(even if associated with postponement). On one side earlier deliveries increase the

company’s image. On the other side a joint postponement coupled with a change to

a faster mode provide an on-time delivery. Similar observations as those formulated

for Table 2.3 can be drawn. Inexpensive mode changes and postponements make

disadvantageous to hire temporary workers and increase solution symmetry. The

latter leads to significant optimality gaps that are reported in the Table.

2.6.2.4 Lower-bound effectiveness

In Table 2.5 we report the deviations of the lower-bounds defined in Sections 2.5.4.1–

2.5.4.2 on the instances computing considered in Table 2.1. Columns Instance and

Phase are self-explanatory. Column Cplexgap reports the gap value between upper-

and lower-bounds provided by Cplex 12.6 when the solution of the corresponding

phase is stopped. Column LBgap indicates the gap value of the lower-bound com-

puted solving the related arc-flow problem. When the gap is null, the cell is left

blank.

A blank value (null gap value) in column LBgap associated with a positive value in

column Cplexgap certifies the effectiveness of the lower-bound that is used to stop the

corresponding model solution. It can be seen that the lower-bound for the phase I

(LB1) allows for an earlier stop of the computation 4 times, while the lower-bound

for phase II (LB2) does it in 3 cases. When the optimal values are not reached,

LB2 provides systematically a better optimality gap compared to the one given by

Cplexgap.
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Instance Phase Cost
workers

Pen Truck Dock Gap Time
Per Temp

I 2405 + 7.5 13 0 7.5 4 56 18

Low-Low II 2607.5 7.5 4 40 314

III 35 35 1

5047.5 333

I 4810+7.5 26 0 7.5 8 60 3

Low-Normal II 4659.2 109.2 7 44 2.26% 3602

III 35 35 4

9504.2 3609

I 7030 +75.5 38 0 75.5 12 89 5

Low-High II 7235.1 85.1 11 74 5.40% 3602

III 66 66 7

14331.1 3614

I 4810.0 26 0 0 8 60 13

Normal-Low II 4591.0 41.0 7 51 214

III 38 38 6

9439 233

I 9435 +49.1 51 0 49.1 16 92 16

Normal-High II 9193.0 93.0 14 73 7.64% 3610

III 58 58 7

18686.1 3633

I 7030+28.5 38 0 28.5 12 64 15

Normal-Normal II 6557.6 57.6 10 61 1063

III 39 39 7

13626.6 1085

I 7030 +80.1 38 0 80.1 11 63 32

High-Low II 7230.1 80.1 11 61 10.10% 3627

III 44 44 20

14304.1 3679

I 9460+48.1 50 1 48.1 14 66 38

High-Normal II 9183.0 83.0 14 60 7.66% 3628

III 46 46 17

18689.0 3683

I 11655+140.1 63 0 140.1 18 96 45

High-High II 11212.5 162.5 17 80 7.10% 3627

III 66 66 15

22933.5 3687

Table 2.3: Results on reduced penalties
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Instance Phase Cost
workers

Pen Truck Dock Gap Time
Per Temp

I 2405 13 0 0 6 68 266

Low-Low II 3457 207 5 44 75

III 3291 41 1

9153 342

I 4810 26 0 0 9 72 3

Low-Normal II 5200 0 8 68 662

III 5244 44 2

15254 667

I 7030+3 38 0 3 11 74 3

Low-High II 7150 0 11 69 1887

III 7198 48 2

21378 1892

I 4810 26 0 0 8 60 28

Normal-Low II 4893 343 7 50 7.01% 3609

III 4587 37 7

14290 3644

I 9435 51 0 0 14 73 16

Normal-High II 9100 0 14 66 7.14% 3609

III 9152 52 5

27687 3630

I 7030+54 38 0 54 12 75 399

Normal-Normal II 7150 0 11 57 9.09% 3610

III 7195 45 7

21375 4016

I 7030 38 0 0 11 74 494

High-Low II 7150 0 11 69 5.03% 3626

III 7198 46 14

21378 4134

I 9435 51 0 0 14 77 65

High-Normal II 9100 0 14 70 7.14% 3624

III 9149 49 15

27684 3704

I 11840 64 0 0 18 81 52

High-High II 11700 0 18 80 11.11% 3625

III 11755 55 15

35295 3692

Table 2.4: Results on free normal to express change
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Instance Phase Cplexgap LBgap

Low-Low
I 5.19%

II 2.80%

Low-Normal
I 4.36%

II 4.34% 1.61%

Low-High
I 3.53%

II 3.78% 1.11%

Normal-Low
I 2.87%

II 12.85%

Normal-Normal
I 2.54%

II 14.46% 7.23%

Normal-High
I 2.80%

II 14.28%

High-Low
I 1.39%

II 2.31% 0.02%

High-Normal
I 0.54%

II 7.60% 0.01%

High-high
I 2.75%

II 4.85%

Table 2.5: Lower-bound effectiveness

2.6.2.5 Comparaison with commercial solver

In this section we report on the comparison between our algorithm and the com-

mercial solver Cplex 12.6. The result on the complexity of the IPSP suggests that

only small size instances can be solved to optimality.

In Table 2.6, columns Cplex report the results obtained by the Cplex 12.6, while

columns Three-phase report the results obtained by our algorithm. Columns CPU

report the computational time in seconds. Columns Cost reports the value of the

solution obtained. Finally, column Gap reports the gap between both solutions.

Negative gaps correspond to better solution obtained by the three-phase algorithm.

A time limit of 8 hours of computation is given to Cplex 12.6. We report the value

of the solution found by the three-phase procedure and up to four solution values

related to the Cplex solution. In particular, we report 1) the value of the first feasible

solution found by Cplex 12.6; 2) the value of the solution Cplex 12.6 found after the

CPU time required by the three-phase procedure; 3) the value of the first improved

solution; 4) the value of the solution when CPU time limit is reached. In the last

case, when the solution is optimal it is indicated by an asterisk. When Cplex 12.6

does not find a better solution than the three-phase algorithm only three values are

reported. A dash indicates that Cplex 12.6 was not able to find a solution.

For Normal-Low type instances, the three-phase procedure takes 5 minutes to

get a solution. Cplex 12.6 after 5 minutes has not got a feasible solution, it finds its
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Three-phase Cplex Gap

Instance Cost Cpu Cost Cpu Cost

Low-Low 5125 3 mins 5243 1 min -2.3%

5102 2 mins 0.4%

5102 3 mins 0.4%

5099∗ 12 mins 0.5%

Low-Normal 9521 1 hour 10654 1 min -11.9%

9720 1 hour -2.1%

9720 8 hours -2.1%

Low-High 14065 1 hour 15514 4 mins -10.3%

13910 5 mins 1.1%

13896 1 hours 1.2%

13896 8 hours 1.2%

Normal-Low 9808 5 mins - 5 mins -

10642 8 mins -8.5%

9743 40 mins 0.7%

9730 8 hours 0.8%

Normal-Normal 14330 25 mins 15211 25 mins -6.1%

14427 8 hours -0.7%

Normal-High 19266 1 hour 19538 9 mins -1.4%

19235 45 mins 0.2%

19235 1 hour 0.2%

18527 8 hour 3.8%

High-Low 13834 1 hour 17362 22 mins -1.5%

13816 35 mins 0.1%

13804 1 hour 0.1%

13799 8 hours 0.1%

High-Normal 18277 1 hour 19766 13 mins -8.1%

18550 1 hour -1.5%

18265 2.5 hours 0.1%

18262 8 hours 0.1%

High-High 22754 10 mins - 10 mins -

26285 58 mins -15.5%

22994 8 hours -1.1%

Table 2.6: Comparison with Cplex 12.6
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first feasible solution after 8 minutes (the three-phase solution is 8.5% better). The

first improving solution is found after 40 minutes.

For two types of instances, Cplex 12.6 has not found a feasible solution before

the end of the time required by the three-phase solution (Normal-Low and High-

High). Note that for three types, after 8 hours of computation the commercial

solver is not able to improve the solution found by the three-phase procedure. On

the other side, for four types Cplex 12.6 behaves better than our algorithm, even

if for three types the two approches can be considered equivalent due to the small

improvement provided by Cplex 12.6: at most 0.4%. In seven cases Cplex 12.6 has

found a solution on the same time required by our algorithm. The latter provides

better solution with an average decrease of the solution value of 1.3%. better.

2.7 Conclusions

In this paper we introduced the Packaging and Shipping Problem (IPSP) arising in

E-commerce logistics. It consists in determining the number of employees required

to precess a set of orders in a multi-day horizon setting. Furthermore, the problem

asks to produce an operational planning to process the orders and load the packages

into trucks for delivery that can be performed with different modes. We introduced

two strategies in order to obtain overall solutions with a lower cost: mode change

and postponement. The first strategy consists in changing the delivery chosen by

the customer to another. The second consists in processing the order in a day later

than to the one of arrival. These strategies generate penalties but they can lead to

hire less employees or to use less trucks and consequently result into savings for the

company.

We proposed a mathematical model for the IPSP and proved that the IPSP is

NP-hard. It is then unlikely the IPSP can be efficiently solved to optimality in

a reasonable time regardless the size of the instances (unless P = NP). We then

proposed a three-phase matheuristic approach that allows to deal with large real-life

instances. Our approach exploits the structure of IPSP by sequentially solving three

sub-problems of IPSP to construct a feasible. We first take the tactical decisions,

fixing the work force for each day, and consequently we determine the operational

planning. Moreover, our approach is enhanced with speed up techniques based on

lower-bounds for the sub-problems.

We created a set of instances for the IPSP based on data provided by our in-

dustrial partner. Instances with up to 5000 orders per day are then solved by the

three-phase procedure we proposed. Results show the efficiency of the method which

can provide high-quality solutions in a reasonable amount of time and performs sig-

nificantly better than the commercial solver.

Future work could consider the stochastic nature of the problem. In this paper,

we consider that all orders information are deterministic. In real life, total demand

is only forecasted for the following days and, consequently, exposed to variations.
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Since we have interaction between decision of consecutive periods, future demand

uncertainty should be taken into account in the decision making process. We sug-

gest to apply rolling horizon based procedure that fits well data acquisition and

decision making dynamics in e-fulfillment, and to investigate appropriate stochastic

optimization techniques.
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3.1 Introduction

Chapter 2 was dedicated to the theoretical and computational study of the inte-

grated picking and shipping problem. The proposed model suffers from two main

drawbacks. First, the complexity of the problem is an obstacle for its scaling. It

was shown that even for instances with a planning horizon of two periods, the

computational effort is excessive. Second, we assumed that all the problem data are

deterministic, including future orders, which is not true. Indeed the decision making

process incorporates a part of uncertainty that has been ignored in IPSP.

In real life, orders process is conducted by continuously taking decisions of re-

sources assignment and operations planning according mainly to orders arrivals.

Over a horizon of several days, decisions are determined at regular frequency and

decisions related to different periods are not independent.

At the beginning of each day, orders process plans and the level of required

resources need to be determined. Decisions related to the current period take into

account the orders received at that period. They also depends on decision taken

during the last period and on the expected state of the system at the following period.

For example, the decision of postponing an order to a future period change the e-

fulfilment plan of that period. Massive orders postponing to a future period induces

the use of additional resources during that period or a cascade of orders postponing.

The process of repetitive data updates and decision making characterizes a dynamic

problem.

On the other side, all data are not known at the moment of decision making, like

in a classical deterministic problem. While part of the problem data is known all

over the planning horizon, like truck capacities for example, data like the number

of orders to process is updated at the beginning of each period. Some decision, like

the process of a giving order at a given period, is taken when all data related to the

period are fully known. While the decision of postponing the order to the following

period is taken without knowing exactly the orders arriving at the beginning of that

period. Thus the optimization problem at each period embeds uncertainty.

To treat these issues, we introduce in this chapter a dynamic model with rolling

horizon for the multi period picking and shipping problem with stochastic demand,

or MPSSD problem for short. The proposed model differs from IPSP in that it de-

termines the daily tactical decisions: number of workers, number of trucks and the

quantities of orders processed in the current period. Tactical optimization integrates

operational constraints like the docks limitation to guarantee feasible solutions in

practice. Focussing only on tactical decisions allows us to aggregate orders by de-

livery mode. Based on the decisions given by the model, IPSP can be then solved

to determine the daily operational decisions (the assignment of each order to a slot

for process). The combination of the two models leads thus to a decomposition of

the global problem that helps to tackle big instances.

Numerous applications are modelled as multi-period problems with
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rolling horizon, like for example vehicle routing problems [Cordeau 2015]

[Albareda-Sambola 2014], trains scheduling [Meng 2011] or gaz delivery

[Rakke 2011].

Procedure with rolling horizon are deterministic in [Cordeau 2015] and

[Rakke 2011] and they are motivated by the impossibility to tackle the consid-

ered optimization problem over the desired horizon. In contrary, in [Meng 2011]

[Pironet 2014] the authors include in their rolling horizon procedure stochastic data.

The organization of the chapter is as follows. The multi-period procedure with

rolling horizon is described in section 3.2. We provide a formulation of MPSSD in

section 3.3. In section 3.4, fully deterministic heuristics without use of informa-

tion on future orders are proposed. The section 3.5 is dedicated to the stochastic

optimization approaches selected for the studied application. Numerical experi-

mentations and results are given in section 3.6. Finally, section 3.7 concludes the

chapter.

3.2 Multi-period rolling horizon procedure

We describe in this section the rolling horizon mechanism and we give the detailed

formulation of MPSSD problem solved at every period.

3.2.1 Rolling horizon mechanism

The solution of MPSSD is constructed gradually using a sequence of solutions ob-

tained by considering iteratively the problem over a restricted horizon called the

rolling horizon. More precisely, at the beginning of the procedure the rolling hori-

zon is positioned at the first period of the planning horizon. At each iteration a

solution of MPSSD is solved and the solution is used to determine definitively a

subset of decisions. Then the rolling horizon is shifted by one period and the pro-

cess is iterated until reaching the end of the planning horizon. A typical rolling

horizon procedure is illustrated by Figure 3.1

Decision Decision1st j th EndLook-ahead

1 j H

RH periods

Figure 3.1: Rolling horizon procedure

At period j the rolling horizon contains the following parts:

• A decision part refers to the current period j because it is associated to a new

solution of MPSSD. Decisions of the solution are not all transformed in actions,



52 Chapter 3. Dynamic optimization with rolling horizon

mean definitely fixed in the final solution. In this chapter only decisions related to

the current period j are definitively implemented in the final solution. Decisions

related to the others periods of the rolling horizon are renewed at the next decision

step. In other applications, during the current period, decisions related to a following

period are taken. This creates a frozen part in the rolling horizon.

• A look-ahead part is composed of periods from period j + 1 to j + RH − 1. Data

in this part can be either deterministic or stochastic. Since decisions of different

periods are not independent, including the look-ahead part data in MPSSD helps in

making the ”best” decisions during the current period.

• There are periods starting from period j+RH up to the last period H , i.e. periods

in the remote part of the horizon. These periods are not taken into account for the

optimization problem related to actions of the current period j.

The rolling horizon procedure is relevant when there are interactions between

periods. In the e-fulfillment context, if the process of a quantity of orders requires

additional worker or a truck, it can be advantageous to postpone it to the next

period. But if it appears that the postponed quantity requires additional resources

at the next decision step, the previous postponing decision should not have been

taken.

At every iteration, decisions are made based an a solution of MPSSD that takes

into account informations of RH periods. The obtained solution is analysed and

some actions issued from this solution are performed. The costs or rewards of these

actions are recorded into the final solution value. This concludes the decision phase

for the decision period j. Then, data are updated when the horizon rolls from j to j

+ 1:

- data enters the rolling horizon, typically within the period j + RH

- data status is modified (e.g. stochastic data becoming deterministic or proba-

bility distribution modification)

- data are discarded from the rolling horizon as they are outdated, typically those

from period j.

Finally, a new optimization process takes place in period j + 1 and the sequence

of decisions and updates is repeated.

The presented rolling horizon structure in not unique. In some application, at

each iteration the rolling horizon includes periods between the current one to the end

of the planning horizon. Thus at every decision step the horizon length decreases.

For example, the planning of a working day is optimized every hour for requests

coming in along the day. In that case, the horizon is set initially to 8 hours, and

it reduces by one hour at every decision step and it reaches one period at the final

decision.
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3.2.2 Policy Vs solution

In the rolling horizon procedure, the actions performed over the long term are de-

cided based on a sequence of solutions of MPSSD over restricted horizons. This is an

important feature of the multi-period process compared to a classical optimization

problem solved globally where all decisions are jointly determined. Thus the deci-

sion making process does not look for a particular optimal solution, but rather for a

policy leading to determining actions at decision periods. The value of the policy is

computed as the cumulated cost or rewards of successive actions. This value is not

sum of all objective function values over all rolling horizons, since at each decision

period, the performed actions are a restricted portion of the decision variables of

the solution over the rolling horizon.

Indeed, different algorithms may be available to compute a solution at every

decision step. This solution might be issued from rules, exact methods, heuristics

or meta-heuristics. Moreover, different approaches treat the stochastic data of the

look-ahead part differently. The set of actions performed can vary according to

the solution generated by these approaches. The aim is to find the algorithm that

provides the best policy.

The choice of algorithm is far of being trivial for different reasons. First the

algorithm that provides the best solution over the rolling horizon is not necessarily

the one that provides the best policy over the planning horizon. As mentioned, the

value of the policy is not the sum of all objective function of all generated solutions.

Second the problem addressed at every decision step can be a stochastic problem,

like the one considered in this chapter. In this case it is already hard to define the

best stochastic approach for a single solution. Finally, in a practical context, the

algorithm is not only evaluated over the quality of the solution, but also regarding

computing time.

3.2.3 Start and end of horizon biases

In a multi-period optimization procedure every decision period is impacted by pre-

vious actions. This applies also for the first period. But it is difficult to include past

decisions in the initial periods. Ignoring the initial conditions can induce a bias in

the policy valuation. A remedy is to remove these initial periods of the whole hori-

zon, and to consider them as a warm-up delay: we run the procedure up to certain

period that is considered a representative of the system’s steady state regarding past

effects and information inside the rolling horizon.

In the other hand, the evaluation is necessarily stopped at a final period. As

the procedure approaches the final period, decisions are taken based on a decreasing

horizon. These decisions are also biased by the particular final conditions. To reduce

this bias, The planning horizon H should be long enough to dissipate the biased

extra cost or reward. In our simulations, solution values are considered without

considering a number of periods at the end of the planning horizon.
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3.2.4 Rolling horizon length

It is obvious that the length of the rolling horizon highly impacts the policy’ quality.

Since there are interactions between periods, considering jointly decisions of several

successive periods improve the overall policy. In the same time when deciding at a

given period, informations of periods far away in the horizon may not be useful. Thus

the calibration of the rolling horizon length has to take into account the decision

process of the considered application.

Moreover, as the rolling horizon increases, the size of MPSSD increases. Thus

the rolling horizon length should be such a solution of MPSSD is obtained in an

appropriate time, mostly when the planning horizon is big.

For those reasons the rolling horizon length in an important issue and should

carefully calibrated by analysing different possibilities (see section 3.6).

3.2.5 Bounds with fully revealed information

The dynamism and uncertainty inherent to the multi-period problem make that

the optimal solution cannot be reached. It is then important to define criteria for

evaluating the quality of policies and assess. One classical way is to use bounds

computed assuming that data is revealed [Pironet 2014]. In this chapter, we use:

1. The a-priori or myopic bound L0 based on a solution of the multi-period

problem only using the information from the deterministic part of the horizon.

This value is associated to the myopic or a-priori policy.

2. The rolling horizon a-posteriori bound LR obtained by the solution of the

multi-period problem assuming fully revealed information over the rolling horizon

RH. This value is associated to the rolling horizon a-posteriori policy.

3. The optimal a-posteriori bound L∗ based on a single solution assuming the

information fully revealed over the whole horizon H. In this case, the value of

the policy is equal to the value of the solution over the entire horizon, an it is

associated to the a-posteriori optimal policy. When it is impossible to obtain a

solution over the entire horizon, L∗ is obtained using the solution using the fully

revealed information over the longest solvable rolling horizon.

These bounds using deterministic information are easier to compute than solving

the real stochastic problem. The optimal a-posteriori one L∗ outperforms naturally

the a-priori solutions L0, and we have that L∗ ≤ L0 for a minimization problem (

and conversely for a maximization one).

In the same sense, the value LR is assumed to be in between the lower and the

upper bound. Yet, this cannot be claimed as sometimes the myopic policy performs

better than the rolling horizon a-posteriori one (see [Pironet 2014]). Therefore we
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can state for a minimization problem that ”usually”:

L∗ ≤ LR ≤ L0.

For maximization problem the equation is in reverse order. In the case where

the multi period problem is stochastic, like in this chapter, each bound is estimated

by the average value over the set of considered scenarios. We keep in this chapter

the former notations to refer to these estimates.

3.3 Mathematical formulation

We provide in this section the mathematical formulation of MPSSD defined over the

rolling horizon RH. MPSSD is solved for each period of the planning horizon H.

At every solution over the rolling horizon, the decision related to the first period are

implemented in the final solution. Some decision are the process of orders during the

first period, while some decisions are the postponement of orders from the first period

to the second period. These orders need to be saved and injected as input during

the following decision step. More over, a postponed order can not be postponed

a second time. Thus the process of these orders is then different from the process

orders revealed at each period. Dv denotes the number of postponed orders assigned

to mode v during the previous solution.

A period j = 1, ..., RH represents a day in practice and it is associated with a

set of new orders njv for each mode v ∈ V , V being the set of modes.

All periods have the same time representation. A period is divided into T time

slots, a slot represents an hour in practice. This fine time granulation is needed to

take into account departure time of each mode tv, which is assumed to be same all

along the horizon, and to determine at each slot the state of the docks (occupied or

free). More over, a period is divided into a number of consecutive and disjoint shifts

for workers management. Figure 3.2 shows an example of period structure with 8

slots and 2 shifts.

We also consider that all along the planning horizon, and for all shipping modes,

trucks are of the same capacity Q and the number of docks is Nmax.

The set of working shifts is labelled S. A shift s ∈ S starts at time slot hds
and finishes at time slot hfs . Besides the L permanent workers present at every

shift, temporary workers can be hired at every shift for a cost cwt per worker. The

productivity of a worker is the quantity of picked orders per time slot. It is bp for a

permanent bt for a temporary. The design of workers in MPSSD does not concern

the permanent workers who are already determined. However the model takes into

account their number and productivity to adjust the permanent workers number at

every shift.

Orders are initially assigned to a delivery mode chosen by the customer. To

enhance flexibility, an order may be assigned to a mode different from the one

selected by the customer or postponed to a future period. Postponement and mode
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Periods
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Figure 3.2: The time discretization

change are penalized according to a general penalty pattern pj̄vv̄, with v, v̄ ∈ V and

j̄ ∈ {0, 1}. These actions can result in delivery delay or in an extra-cost for the

company, however they can lead to reduce the global labour cost and transportation

cost. A postponement happens when j̄ = 1 while a mode is changed when v 6= v̄. In

this chapter we allow postponement for only one period. The Figure 3.3 summarizes

all possible mode assignments when the customer mode is mode 1 (left) and mode

2 (right). The green assignments respect the customer mode, the red ones generate

a delay penalty and the blue ones a mode change penalty.

j j+1Mode

1 1 1

2 2 2

j j+1Mode

1 1 1

2 2 2

Customer Delay Change

Figure 3.3: Penalty pattern

We define the following variables for all j ∈ H, v ∈
V , j̄ = {0, 1}, v̄ ∈ V , t = 1, ..., T , and s ∈ S
f j̄v̄tjv Number of orders associated to mode v and period j assigned to period j + j̄,

mode v̄, and time slot t;

F v̄t
v Number of postponed orders associated to mode v assigned to mode v̄ at time slot t;
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utjv Number of empty trucks for mode v of period j in time slot t ;

ktjv Residual capacity for mode v of period j in time slot t;

wtjv Number of used docks for mode v of period j in time slot t;

ytjv equals 1 if the number of empty truck for mode v during period h at slot t̄ ≥ t

is not null, 0 otherwise;

zjs Temporary workers hired in shift s of period j.

The objective function (3.1) minimizes the sum of temporary workers cost, trucks

cost and penalties. Constraints (3.2) (respectively (3.3) ensure that orders at each

period of rolling horizon (the postponed orders during the previous optimization) are

processed. Constraints (3.4) and (3.5) are the packages flow conservation equations

for each mode at each time slot; packages are loaded in a residual capacity of a truck

or in an empty truck. Note the particular formulation of this constraint for the first

period (3.4) where the postponed orders are processed. Indeed these orders are not

allowed to be postponed a second time. Moreover, constraints (3.4) and (3.5) have

a particular formulation for each first slot of each period.

Constraints (3.6)–(3.9) implement the truck movement policy. We remind that

the goal of the policy is to compute the occupied docks at each slot (variables wtjv)

under particular rules explained in chapter 2.

Constraints (3.10) state that at a given time slot the total number of docked

trucks does not exceed the number of docks. Constraints (3.11) ensure that at

each time slot, the total quantity of picked orders is less than the total worker

productivity. Note again the particular formulation related to the first period of

the rolling horizon involving the postponed orders. After solution over RH, Dv is

updated with the number of orders initially assigned to mode v postponed from the

first period to the second period.

The model integrates tactical decisions: the number of workers, the number of

trucks decisions and the quantities produced and loaded at each slot for each mode.

This integration enables taking into account operational constraints like a feasible

truck movements plan.

The construction of the final solution

The solution of the multi-period e-fulfilment problem is constructed progressively

through a sequence of solutions. At each iteration decisions related to the current

period are determined. The optimization problem (3.1)-(3.12) is solved over the

rolling horizon where the current period is the first one. Using the resulting solution,

the following decisions are implemented:

- The number of temporary workers for each shift and the number of trucks for each

mode of the current period.

- The assignments of postponed orders to modes at each slot of the current period.

- The assignments of new orders to modes at each slot of the current period.

- The movements of trucks on docks at each slot of the current period.
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min
RH∑
j=1

∑
v,v̄∈V

1∑̄
j=0

T∑
t=1

pj̄vv̄f
j̄v̄t
jv +

∑
v,v̄∈V

T∑
t=1

p1
vv̄F

v̄t
v

+
RH∑
j=1

∑
s∈S

cwtzjs +
RH∑
j=1

∑
v∈V

T∑
t=1

ctutjv (3.1)

1∑
j̄=0

∑
v̄∈V

T∑
t=1

f j̄v̄tjv = njv j = 1, ..., RH, v ∈ V (3.2)

∑
v̄∈V

T∑
t=1

F v̄t
v = Dv v ∈ V (3.3)∑

v̄∈V

f 0v̄0
1v +

∑
v̄∈V

F v̄0
v + k0

1v = u0
1vQ v ∈ V∑

v̄∈V

f 0v̄t
1v +

∑
v̄∈V

F v̄t
v + kt1v = kt−1

jv + ut1vQ v ∈ V , t = 2, ..., tv (3.4)

1∑
j̄=0

∑
v̄∈V

f j̄v̄0
(j−j̄)v + k0

jv = u0
jvQ j = 2, ..., RH, v ∈ V

1∑
j̄=0

∑
v̄∈V

f j̄v̄t
(j−j̄)v + ktjv = kt−1

jv + utjvQ j = 2, ..., RH, v ∈ V , t = 2, ..., tv (3.5)

tv∑
t̄=t

ut̄jv ≤ Nmaxtvy
t
jv j = 1, ..., RH, v ∈ V , 1 ≤ t ≤ tv (3.6)

ytjv ≤
tv∑
t̄=t

ut̄jv j = 1, ..., RH, v ∈ V , 1 ≤ t ≤ tv (3.7)

Qu1
jv ≤ Qw1

jv j = 1, ..., RH, v ∈ V
Qutjv + kt−1

jv ≤ Qwtjv +Q(1− ytjv) j = 1, ..., RH, v ∈ V , 1 < t ≤ tv (3.8)

Qutjv + kt−1
j − ktv−1

jv ≤ Qwtjv j = 1, ..., RH, v ∈ V , 1 < t ≤ tv (3.9)∑
v:tv≤t

wtjv ≤ Nmax j = 1, ..., RH, t = 1, ..., T (3.10)∑
v∈V

∑
v̄∈V

f 0v̄t
1v + F v̄t

v ≤ bpL+ btz1s s ∈ S, t = hds, ..., h
f
s

1∑
j̄=0

∑
v∈V

∑
v̄∈V

f j̄v̄t
(j−j̄)v ≤ bpL+ btzjs j = 2, ..., RH, s ∈ S, t = hds, ..., h

f
s (3.11)

f j̄v̄tjv , F
v̄t
v , u

t
jv, k

t
jv, w

t
jv, zjs ∈ Z+ (3.12)
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- The quantities of orders postponed to the following period.

Using the solution the cost of the process during the current period can be

computed. The cost of the current period includes the used temporary workers and

trucks and the penalty corresponding to postponements and mode changes. The

cost of the final solution is then increased by the cost of the current period.

The final solution of MPSSD over the planning horizon depends on the solu-

tion method selected to obtain each solution of MPSSD over the rolling horizon.

We present in the following two families of solution approaches. The first are de-

terministic, in the sense that at every decision period, they only use the revealed

information. The second family includes stochastic approaches that, at every deci-

sion period, exploit the distribution of the uncertain demand of the future periods.

3.4 Deterministic approaches

In the rolling horizon procedure proposed in this chapter, iteratively one period is

considered and its decisions are determined (see figure 3.1). Since the final goal is

to find the best solution over the planning horizon and decisions between periods

are not independent, the decisions of a given period have to take into account the

following periods. However, when deciding for a given period, if some informations

related to the following periods are not available, it becomes difficult to take into

account these periods. Deterministic approaches are used to determine each period

decisions based only on the data revealed at that period, in this sense the determin-

istic policies are also called myopic. We present first myopic policies that are based

either on a pessimistic or an optimistic assumption regarding the upcoming periods.

Then we introduce a policy that operates order postponement to the next period

based on their contribution to the resources cost of that period. Finally, we present

a heuristic method that postpones a quantity of the orders of a given period based

on the resources productivity level.

3.4.1 Pessimistic and optimistic policies

The pessimistic policy considers that the future is always not advantageous for orders

postponement, in the sense that a postponement will not lead to reduce resources.

As a consequence, the planner decides to fulfil all the orders of the current period

during that period, and thus no postponement to the next period is operated.

Let L0 refers to the value of the pessimistic policy solution. It is obtained by

having the rolling horizon equal to one period and not allowing order postpone-

ment. The activity peaks are managed by operating mode change or by the increase

of resources (temporary workers and trucks). The pessimistic solution is not ex-

pected to be effective, but it is easy to implement using reduced amount of data and

easy to explain to practitioners. It also provides a benchmark against which other

approaches can be evaluated.
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A second policy is an optimistic policy that considers that the future is always

advantageous for orders postponement, in the sense that postponement is automat-

ically more advantageous than an increase of resource during the current period.

This policy appears to be not efficient. The planner at a current period ignores

totally the impact of massive postponement on upcoming periods and he ends up

by high penalty cost and a high resources cost. Because of its bad performance on

preliminary tests, the optimistic policy is not considered in the rest of the study.

Both the pessimistic and optimistic policies are based on an extreme assumption

on the future when operating order postponement. We present now two determin-

istic approaches that look to determine, in a smarter way, what quantity of orders

to postpone at each period.

3.4.2 Policy with linearised resource cost (PLRC)

In this section we introduce a deterministic policy, that we call the policy with

linearised cost (PLRC), that can be used by the rolling horizon procedure at every

decision period. The PLRC gives a solution of MPSSD over a horizon of one period.

When solving for a given period, it allows the postponement of orders to the

following period. The decision to postpone an order takes into account the impact

of its process on the resources cost during the following period.

More precisely, in addition to the penalty, the cost of postponing an order in-

cludes the contribution of the postponed order in the resources cost. The cost of

this contribution is obtained by the linearised cost of resources. As resources are

trucks and workers, the linearised cost includes two terms: ūt which is a truck cost

divided by its capacity, and ūw which is the cost of a permanent worker divided by

its productivity. Thus the PLRC defines the cost of postponing an order as follows:

p̄ = p1
vv̄ + ūw + ūt

In conclusion, the solution of MPSSD using PLRC is obtained by setting the rolling

horizon length to one period, allowing postponement with a cost of p̄, instead of ph̄vv̄,

per postponed order.

Obviously ūw + ūt is different from the real resources cost which is not a linear

function of processed orders. The contribution of a postponed order on the resources

cost related to the next period depends on orders and resources configuration at that

period. For example it can be null if the required resources are already available, or

it can be high if additional resources are involved just to treat a postponed order.

The suggested linearised cost coincides with the real contribution in resource cost if

the resource is available and used at its maximum capacity.

Moreover, using PLRC, the solution of MPSSD combines the real resources cost,

which is constant piecewise function, on the first period and a linearised cost on the

second period. Thus the decision to add resource on the first period is triggered

when the cumulated postponed orders reaches a certain threshold.
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The linearised postponement cost p̄ is a parameter representing a level of opti-

mism of the policy at a given period regarding the following period. It also enables

to take into account a weak information on the demand of the following period,

when no exact information neither a good expected value are available. This is the

case when just a trend, like a low activity or a high activity, is expected. In the

first case only permanent workers will be used, while in the second temporary will

be necessary. The linearised cost can then be adjusted depending on such forecasts.

In the next section, we present another deterministic approach based on a dif-

ferent policy for order postponement decision making.

3.4.3 Policy with resource productivity

The policy presented in this section is based, like the PLRC, on a rolling horizon

of one period and it also allows orders postponement. The decision of postponing

an order is taken in a different way, by considering the resource productivity at the

current period. We call this approach the policy with resource productivity (PRP).

Roughly speaking, the PRP determines the number of each resource in two

steps. First, a relaxed version of MPSSD is solved over the current period having

that no postponement is allowed. Then one resource is considered and based on

its productivity its final number is determined following branching rules defined in

3.4.4.1. This process is iterated until the determination of all resources number.

3.4.4 Resource productivity computation

We apply the PRP to only trucks as a first attempt. The resource productivity is

computed by relaxing the integrity constraints on the number of trucks used by each

mode. Then the productivity of trucks is a fractional value of the number of trucks

in the obtained solution.

Due to interactions between modes, the PRP proceeds by considering separately

all the modes. At every iteration, constraints on trucks number are relaxed for

remaining modes. The solution of this relaxed MPSSD is used to determine the

number of trucks for the considered mode following the branching rules defined in

section 3.4.4.1. Once all modes are treated and all trucks numbers are fixed to

integer values, an additional solution of MPSSD is carried to determine the final

number of temporary workers needed at the current period and the quantities of

postponed orders.

3.4.4.1 Branching

Iteratively, in the solution of the relaxed MPSSD the number of trucks corresponding

to a subset of modes have real value. The number of trucks of one of these modes

is considered to determine an integer value. Our approach is to round to the closest

integer value: If the value is less than its integer value increased by 0.5 than the
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truck number is fixed at the value of the integer value, else it is fixed at the integer

value increased by 1.

A constraint imposing the considered number of trucks to its new integer value is

added to the relaxed model, and this variable is definitely determined. The updated

relaxed model is then solved for the next mode.

3.4.4.2 Feasibility correction

Fixing the number of trucks can make it impossible to find a feasible solution.

This happens in the following situation. When deciding for period i, some orders,

associated with the express mode for example, are postponed. At the following

decision step, these orders have to be loaded in a truck associated with the express

mode. However, the PRP can suggest to set the number of trucks of the express

mode to 0. In this case, the orders associated with the express mode postponed at

decision step i can not be processed, and no feasible solution is possible. Thus we

define particular branching rules to avoid situations leading to infeasibility.

In the previous section, we presented different deterministic approaches that can

be used as a decision policy in the rolling horizon procedure. At every decision

period, these approaches use only the data revealed, and solve MPSSD over one

period. Each of the PLRC and the PRP is based on specific mechanism to plan the

resources and determine postponed orders quantities. We present in the next section

another family of approaches that can also be incorporated in the rolling horizon

procedure. These approaches belong to stochastic optimization and particularly to

scenario-based techniques.

3.5 Scenario based approaches

Stochastic approaches address optimization problem where some of the data are

uncertain or random. These problems occur in numerous application like in the

vehicle routing problem where a provider has to determine a route or a set of routes

to serve the demands of a set of clients with a capacitated truck at the least transport

cost. In the stochastic version of the problem, some of the demands are not known

in advance and are revealed at the arrival to the clients.

Modelling stochastic problems and dealing with data uncertainty differ from an

application to another. The solution approaches depend on the available information

related to the random data. These information are for example, the distribution of

the random data, the values interval or a set of possible scenarios.

In our application, the uncertain parameters are the number of orders associated

to each mode. As the rolling horizon advances, new information of the first period is

revealed, while stochastic information related to the other periods are incorporated

to MPSSD.
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The scenario-based, also called sampling, techniques [Pironet 2014] for stochastic

optimization problem are based on the insight that considering one scenario helps

making decisions that take into account the upcoming periods. A scenario is a

particular realization of the stochastic parameters.

The general framework for the studied stochastic approaches is the rolling horizon

framework where the rolling horizon RH includes a number of look-ahead periods

containing stochastic data. At every decision period, decisions are extracted from

the solution of MPSSD over the rolling horizon associated with the selected scenario.

We are interested in finding the technique that provides the policy that has a good

performance over different possible scenarios.

The mono-scenario approximation has some advantages. It is easy to explain

to practitioners and the data management is reduced. If there is an algorithm to

solve the deterministic multi-period problem, this algorithm can be employed again

for any other single scenario which is a deterministic outcome of the stochastic

parameters. Nevertheless, the drawback is ”how to find a representative scenario”

if such a scenario exists. We present in the following classical scenarios that should

be tested for any problem.

3.5.1 Expected value Solution

The expected scenario is build by replacing stochastic parameters by their expected

solution. Usually, the expected scenario is supposed to be the most representative

scenario. The expected value solution is the policy based on the expected scenario.

The expected value of the number of orders can be estimated based on old

data. In e-fulfilment, the data of previous weeks can be analysed to determine the

general shape of orders arrivals depending on each day of the week. Such study

was conducted by [Boulanouar 2014] on data of three months and it shows that the

distribution of orders number can be approximated by a Poisson distribution. We

are then able to deduce the expected scenario over a week.

3.5.2 Random Value Solution

Even if we were able to build the expected scenario for orders arrival, when pro-

cessing a new week, the data deviates from the expected scenario. We consider

that the each random number of orders varies uniformly in an interval centred at

the expected value. The random value solution consists in replacing each random

parameter by a random value that corresponds to a possible realization.

3.5.3 Quantile Value Solution

Another interesting scenario is the quantile scenario where each random parameter r

is replaced by particular value V that covers a fraction ξ of all possible scenarios. It

is defined such as P (r ≤ V ) = ξ. When solving MPSSD using the quantile scenario,
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the postponed quantities and resources plan are determined to satisfy the quantile

value. So as long as the real orders number is less than the quantile there will be

enough resources for the postponed quantity, and the postponement decision are

likely to be good.

3.6 Numerical results

The multi-period formulation wit rolling horizon procedure was coded in C++ using

concert technology and Cplex 12. Tests were performed on a 3.30GHz Intel Core

processor with 3 GB RAM, under the Linux Ubuntu 12 operating system. A testbed

of instances was constructed to assess the efficiency of the solution approaches.

3.6.1 Instances generation

The testbed was built on the basis of 2014 activity statistics provided by a major e-

fulfillment company and through warehouse visits. The considered planning horizon

is made of 8 periods to study a week planning. The last two periods are cooling

periods: they are used to avoid end of horizon biases and then are not considered

in the evaluation of the solution (see section 3.2).

3.6.1.1 Stochastic demand

First the expected scenario for order arrivals is built. Activity statistics show that

orders arrivals fluctuate between three main levels: low, medium and high. Low

level is associated with a nominal value of 500 orders, medium with 1000 and high

with 1500. Based on the past data, the average distribution of demand levels is

computed (see table 3.1).

low medium high

Percentage 0.17% 0.69% 0.14%

Table 3.1: Average demand distribution

We obtain that the expected scenario of 8 periods includes one period of low

demand, one period of high demand, and 6 periods of medium demand. For the

e-fulfillment company, the management of the period with high demand and the pe-

riod with low demand is challenging. Indeed, the first requires additional resources

compared to other periods, while the second may lead to a low resource productiv-

ity. Consequently, for each of these periods, particular anticipatory strategies and

recovery strategy are required the day before and the day after in order to manage

demand fluctuation. For these reasons, in the considered expected scenario each of

the period with high demand and the period with low demand is placed between

two periods of medium demand (see in figure 3.4).
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Figure 3.4: The expected demand scenario

As mentioned earlier, when real data are revealed, they deviate from the expected

scenario. We suppose that the data vary uniformly in an interval centered on the

expected value. We experiment different values for the standard deviation varying

from 10% to 50% of the expected value.

3.6.1.2 Deterministic parameters

Each period is divided in 16 slots and 4 disjoint shifts. Shipping mode parameters

are given in Table 3.2. The productivity of workers is 40 packages per slot for

permanent workers and 40 packages for temporary workers. The latter cost 100

Euro per working shift.

Mode Departure slot Cost(euro) Capacity

Express 8 430 1000

Standard 16 430 1000

Table 3.2: Delivery modes parameters

3.6.2 Algorithm Comparison

Table 3.6.2 reports the results of the solutions and bounds presented in this chapter.

We provide results for the 5 levels of demand deviation with respect to the expected

demand scenario The first line of the Table corresponds to the solution L0, the

myopic solution, that represents an upper bound on the solution of MPSSD. Two

lines are associated with the others bounds and solutions.

The first line gives the total cost over the first 6 periods, while the second line

gives the relative gap with respect to the myopic solution. This gap represents

the improvement achieved by each solution. As the penalty value related to a

postponement or mode change impacts the decisions taken, we compare the solutions

for three different values {0, 0.5, 1}.
For each column and each method, the reported value corresponds to the average

over 10 runs.
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L2 (respectively L3) is the a-posteriori bound value assuming fully revealed in-

formation over a rolling horizon of 2 periods (respectively 3 periods). A-posteriori

bounds are considered as lower bounds for the solution of MPSSD.

We report then the results of the solutions obtained by respectively PLRC and

PRP. The four last lines of the table corresponds respectively to the mono-scenario

approaches : mean scenario (Lmean), random scenario (Lrand), quantile of 75%

(Lquant+) and quantile of 25% (Lquant−).

From Table 3.6.2 it can be observed that the multi period model improves the

basic myopic solution. Taking into account the future period by allowing post-

ponement results in cost reductions, for both deterministic policies or by stochastic

techniques. The improvement achieved decreases when the penalties increase. In

fact low penalties are an incentive to postpone orders, while high penalties reduce

these opportunities. Thus the improvement is mainly due to orders postponement.

L2 and L3 provide almost the same results. Beyond one look-ahead period, the

additional information on future demands is useless for the current decisions. We

attract the attention of the reader to a specificity of multi-period problems with

rolling horizon illustrated by the comparison of L2 and L3. Intuitively, when we

compute a-posteriori bounds, we expect that the more periods are included in the

rolling horizon, the better the solution is. However, the second column in Table

3.6.2 contradicts this intuition. It happens that the value for L3 is worse than the

value for L2. The same column shows that L3 is even worse than a Lquant−.

It is noteworthy the good performance of the PLRC. The policy reaches the best

bound in one case and its average gap with respect to the best bound is 0.03%.

In general the PLRC is close to the stochastic approaches while it requires less

computational effort since it is based on solutions of MPSSD over one period. We

also observe that the PLRC’s performance is deteriorated when the penalties are

high. For such values the postponement rules does not seem to be relevant.

Regarding the PRP, it appears to be very bad, even worse than L0 in sev-

eral cases. The postponement strategy of the PRP, based on resource productivity

thresholds, is clearly not appropriate for our application.

On the other side, it is hard to distinguish the best mono-scenario technique.

The solution Lrand outperforms the others stochastic approaches in 11 cases, and in

7 cases it reaches the best bounds. The quantile scenario Lquant+ realizes the best

performance in 10 cases, and in 4 cases it reaches the best bound.
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3.6.3 Demand variability

The proposed policies often provide solution values equal to bounds. In the same

time, it is hard to determine the best stochastic approach, since more than one

achieve similar performance. Thus a deeper analysis on the impact of demand vari-

ability on the optimal solution structure is required. More precisely, when making

decisions for a current period, we need a better understanding on how optimal de-

cisions depend on the demand variability in the next period.

To better understand the specificity of MPSSD, we make an analogy with the

simplified stochastic routing problem studied in [Birge 2011]. In this problem, a

provider has to determine a route or a set of routes to serve a set of clients with

one capacitated vehicle. The demands of the clients are assumed to be known in

advance except one which is uncertain. For this problem, it is possible to divide the

possible values of the uncertain demand into consecutive disjoint sub-intervals and

then define a specific optimal solution related to each one of them.

When solving MPSSD over two periods, we are faced to a different situation.

The solution includes the quantity of orders to process during the first period and

the quantity of orders to postpone to the second period. The exact values of these

quantities depend on the postponement penalty and on the possibility to process

postponed orders during the second period without additional resource costs, in

other words the residual capacity of the second period. Indeed, if some postponed

orders lead to additional resources in the second period, it is better to not postpone

these orders and add resources in the first period.

In turn, the residual capacity of the following period depends on its demand.

For different levels of demand, we observe a similar level of the residual capacity

of the second period. leading to the same decisions related for the first period. As

consequence, as the demand of the second period vary, a solution can be observed

in different range of values. This behaviour is related to the fact that resource levels

are variable. Different levels of demand for the second period lead to the same set

of decisions during the first period.

Therefore, it is challenging to compute the different threshold value that deter-

mine the distribution of solutions with respect to the future demand. This distri-

bution depends on various parameters: demand levels, penalties and resource costs

and capacities.

3.6.4 Sensitivity analysis

This section is dedicated to the analysis of the sensitivity of the linearised cost which

is used by both the PLRC and the stochastic techniques. Figure 3.5 illustrates the

variation of the solution values obtained by respectively the PLRC (diamond) and

the quantile scenario (triangle) as an example of a stochastic approach.

It is noteworthy that the performance of the PLRC is very bad when the value

of the linearised resource cost is low (near zero). We also note that all values above
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Figure 3.5: Results of sensitivity analysis

0.5 gives similar results. The stochastic technique seems not to be impacted by the

linearised resource cost. This is explained by the fact that the MPSSD in this case

is defined over 2 periods (and not only one like for the PLRC). This alleviates the

impact of the linearised resource cost.

3.7 Conclusion

In this chapter we study a dynamic version of the integrated picking and ship-

ping problem with stochastic demand (MPSSD). The MPSSD looks for a tactical

resources design decisions under operational constraints. It is incorporated in a

rolling horizon procedure to determine efficient solution methods over a set of peri-

ods. The structure of the rolling horizon is detailed and a mathematical formulation

MPSSD is provided.

The main difficulty considered is the uncertainty of future demand. The rolling

horizon framework enables us to use a number of look-ahead periods when deciding

for a current period. Stochastic information can better guide decisions related to or-

der postponement toward an efficient resources usage. Several stochastic approaches

are proposed and compared.

We also investigated fully deterministic methods that can be implemented in the

rolling horizon framework. Those methods are relevant when the decision maker

have no reliable stochastic information.

Because of the complexity of the problem we provided bounds to evaluation the

performances of the different methods. The results provide interesting insights on

the dynamic management. The results highlight the benefit achieved by using the

information of one look-ahead period compared to a myopic approach. It seems to be

sufficient to limit the rolling horizon length to two periods. Including informations

for more than one look-ahead period appears to be useless as shown by the gap

between L2 and L3.

A first perspective is to investigate how to derive from the demand distribution
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the distribution of the residual capacity, and how such distribution can be used in

the design of an advanced stochastic approach. A second perspective is to con-

duct simulations on larger instances and investigate the limits of the rolling horizon

procedure with respect to computation time.
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Last mile delivery services pricing

with congestion

The works presented in this chapter were published in the revue Electronic
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4.1 Introduction

The last segment of the supply chain is the delivery of packages from a local dis-

tribution center to the customer. The disproportionate expense of the last mile

contributes to what’s known as the ”last-mile problem”. This is because of the

difficulty of reaching end users, especially in busy urban areas. This can translate

to higher fuel costs due to the amount of time spent driving around making deliv-

eries, since business-to-consumer deliveries often involve one package per stop, as

compared to large volumes for business-to-business deliveries.

An efficient delivery system should offer various services and takes into account

customers behaviour. In a highly competitive environment, customers are sensitive

to the tariff of a delivery service, and also to its quality. The latter can be damaged

by congestion experienced by customers when they are too many using one service.

In this chapter, we study a last mile delivery system, including the two most

popular services: delivery at home and pick up at relay station. After making an

order, each customer selects a delivery service by comparing the services utility

functions. The utility includes using the service’s tariff and a congestion measure.

The latter, inspired from queuing theory, is specific to each service and it increases

with the number of the service’s users.

In economics and transport, discrete choice models describe and explain choices

between two or more discrete alternatives. We use for present application the nested

logit model to reflect better correlation between alternatives. At a given configura-

tion (services tariffs and capacities), the system converges to a stable state, called

an equilibrium, where no customer is willing to change unilaterally his/her choice.

Knowing the customers’ behaviour, the system’s manager is interested in deter-

mining the optimal system’s parameters, like the tariffs, to optimize a given criteria

which can be its revenue or the global customers’ welfare. We address the system’s

manager problem with bi-level model, where at the upper level, he/she controls

services’ tariffs. At the lower level, users react by choosing their delivery service

according to the utility function.

The chapter is organized as follows. In section 4.2 we introduce the last mile

delivery problem and we describe the two main delivery services, home delivery and

pick up. We provide in section 4.3 a state of the art on discrete choice models and

bi-level problems. In section 4.4, services utility function are depicted along with the
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customers’ choice model. Section 4.5 is dedicated to the study and computation of

the stochastic user equilibrium corresponding to the nested logit model. We present

in section 4.6 a sensitivity analysis of the equilibrium that enables to compute the

derivatives of equilibrium probabilities with respect to the services tariffs. Then,

in section 4.7, we present the control problem for the leader which is a bi-level

optimization problem formulated as a MPEC. We provide three solution techniques,

and investigate the benefit of sensitivity analysis. We give experimental results in

section 4.8. Finally section 4.9 concludes the chapter.

4.2 Last mile delivery

With the increased number of online sales, the ”last-mile” deliveries become a crucial

part of the supply chain. Enough unhappy consumers can have a very negative

impact on online retailers and their parcel delivery company.

Bud Workmon, President of 3PD Inc, one of North America’s largest and ex-

clusive national providers of last-mile delivery and logistics services, highlights that

’Although last-mile logistics is only one small link in the supply chain, it’s the only

one that directly touches the customer - an important point to remember when con-

sidering your site options’.1 More, in his article, Workmon claims that congestion,

in terms of stem time, is one of the main concerns for the customers and should be

for the last-mile delivery companies. It is natural to witness numerous and varied

innovative delivery solutions looking to realize the trade-off between cost efficiency

and customer requirement of timeliness and reliability. More and more retailers

combine different delivery services and options offered to customers. We describe in

the following the two main delivery services in e-commerce.

4.2.1 Delivery services

Delivery services can be classified into two main categories: Delivery at home (D)

and Pick Up (P). In the first option, packages are delivered directly at home. This

option is often convenient for the customer as there is no effort for picking the parcel.

On the other side it has a non-negligible cost for the delivery company (vehicles,

drivers, etc.), thus the customer generally has to pay for this service.

In addition to home delivery service, more and more on-line retailers (such as

Amazon, Fnac, ..) offer customers to have their goods in a pick up location that

can be a shop. This alternative way let customer choose a convenient time to collect

their goods without having to be home for the delivery. This service is generally less

charged by the delivery companies and even free of charge for the customer. The

main drawback of this second option is the storage capacity of the pick up location,

which is limited to small back office of standard shops, particularly in down-town

cities and congested urban areas.

1LDW: Logistics, Distribution & Warehousing 2009, www.AreaDevelopment.com.
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The latest trends in last mile delivery are parcel lockers. With parcel locker

stations near shopping centers, couriers can place packages in lockers, and then

provide customers with a unique key needed to access the locker.

4.2.2 Quality of service

After making the order and waiting for the delivery, the customer is finally ready to

receive the goods. The customer is willing to receive the goods in a perfect state but

also to be delivered as expected. If this experience turns bad, it will surely results in

considerable disappointment. And the reason for a such sad ending can come from

the delivery.

Home delivery can be inconvenient for the customer when loosing time waiting

for the deliver-man. While letting the customer define delivery appointment would

highly complicate the rationalization of deliveries tours for the companies. Dynamic

Vehicle Routing Problem in which new orders arrive during operation [Pillac 2013]

and Period Vehicle Routing Problem with Service Choice [Braekers 2016] are rele-

vant for home delivery operations to determine both routes and service frequencies.

But such planning approaches suffer from the repercussions of congestion due to

unforeseen activity peaks. In this case additional delays result in missing delivery

appointment. Defining the time windows menu is challenging for the success of home

delivery. Moreover resources’ use can be optimized through yield management, like

for example, in [Asdemir 2008], where dynamic pricing influences customer’s choice

of a delivery window.

It may appear that the geographical location of the pick up is a main criteria

for the customers. In reality, it is not that trivial since the customer plan usually

the visit of the pick up location in a regular trip like the home-work trip or during

shopping. Thus we do not include relay stations location in the attributes of cus-

tomers choice. On the other hand, the congestion of the relay station implies an

undesirable delay for the user because it impacts the rest of his (her) activities. The

time spent at the location has thus to be as limited as possible.

We then notice for both types of service the importance of measuring and manag-

ing the congestion. The congestion measure depends on the type of service. In fact,

the more customers choose the (D) service, the more trips have to be performed. As

a consequence, the delivery time increases for a part of customers. While the num-

ber of customers that choose a (P) option, determines the probability of saturating

its storage capacity.

4.3 State-of-the-art: methodologies

The following state of the art focuses on the two main features of the last mile

delivery system design: discrete choice models and bi-level programming.
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4.3.1 Discrete choice models

Discrete choice models (DCM) describe and predict choices between two or more

discrete alternatives, such as entering or not entering the labor market, or choosing

between modes of transport.

If we assume that customers have full information of each service’s utility func-

tion and that they rationally make their decision, we obtain the deterministic user

equilibrium, also called the Wardropian equilibrium. This assumption is too strong

in our application. It is more accurate to consider that they can make errors in their

choices for many reasons (lack of information, individual preference,...). Precisely it

is assumed that the utility includes an error ε that can not be observed. In the multi-

nomial Logit model (MNL), the error is modelled as a random variable that follows

Gumbel distribution. The MNL, usually considered in traffic assignment problems,

has many interesting properties like the efficiency principle [Erlander 1975], that

assumes that the random terms ε are independent and identically distributed (IID)

Gumbel variables. That leads to a closed-form expression of choice probabilities

defining a stochastic user equilibrium (SUE).

But MNL does not take into account the correlations that may exist among dif-

ferent options (overlapping effects between routes in traffic context for example) and

thus can give unrealistic choice probabilities. By using normally distributed random

terms, the multinomial Probit model (MNP) does not have this drawback, because

it considers the covariance between the random terms [Sheffi 1985]. However, MNP

does not give a closed-form expression of choice probabilities, instead it requires

computationally demanding Monte Carlo simulations, and thus can not be applied

on large problems.

One family of extension overcomes the overlapping problem by modifying the

utility function. The C-logit model for example [Zhou 2010] adds a communality

factor. Nested Logit models (NLM) [Wen 2001] are based on a two-level structure

and then can be used to model the possible correlation between options. The nested

Logit models fits well the choice process considered in the delivery, we detail this

model in section 4.4.

4.3.2 Bi-level programming

Bi-level models suit a wide variety of situations where a first actor, called the leader,

integrates in his/her decision process the decision of a second part, called the fol-

lower. More precisely the leader solves an optimization problem that includes an-

other optimization problem representing the decision of the follower. We talk also

about the leader taking into account the response of the follower. It is the case

for example when a private company decides the quantity of product to produce

knowing that a competitor will react by adjusting its own production.

Bi-level problems (BLP) gathered considerable interest in economy and game

theory and more recently in optimization and operations research (see [Colson 2005]
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for a survey). Numerous situations can be modelled by BLP, we find applications

in transportation network tolling [Brotcorne 2000], energy pricing [Brotcorne 2008]

and telecommunication [Bouhtou 2007]. BLP are known to be challenging even in

their simplest form where all objective functions and constraints are linear. Indeed

linear BLP is NP-hard, and even strongly NP-hard [Brotcorne 2008].

In a Bi-level problem the leader knows how the follower makes a decision but

he/she can not directly intervene in the latter’s decision. Thus the leader considers

the follower’s reaction in his/her own decision problem. In some situations where

followers impact each other, the leader can hardly predict their reaction. Consider

the problem of designing an urban road network by deciding its link capacities, the

aim being to reduce the global travel delay. Due to congestion effects, perverse ef-

fects can appear, like the Braess paradox, where increasing the capacity of a link

(or building a new link) may result in a delay increase for every user of the net-

work. In this case the reaction of follower is the result of an equilibrium based on

the leader decision and the overall congestion. The leader decision problem is nat-

urally formulated by a mathematical program with equilibrium constraint (MPEC)

[Luo 1996].

Pieper [Pieper 2001] highlighted the intrinsic difficulty of MPEC by showing that

the usual constraint qualification like Mangasarian-Fromovitz constraint qualifica-

tion or linear independence constraint qualification does not hold at any feasible

point. These assumptions, aside some others, are critical for the convergence of

many algorithms used for standard nonlinear problems. The author applied piece-

wise sequential quadratic programming, penalty interior point algorithm and se-

quential quadratic programming. These methods are based on the formulation of

the lower problem as a non linear complementarity constraint. Another approach

uses smooth function [Facchinei 1999] and solves iteratively local approximation that

gives a search direction for the upper level problem.

Considering a Wardropian (deterministic) equilibrium, Wang and Lo

[Wang 2010] reduce the bi-level model to a single level one. They introduce a lin-

earization scheme for the equilibrium constraint along with linear approximation of

utility functions. Then, the resulting mixed integer linear problem can be solved us-

ing commercial software for an approximate global solution. Recently, Liu and Wang

[Liu 2015] have proposed a global solution algorithm for a network design problem

with stochastic user equilibrium. The algorithm is based on a linear relaxation of

the initial non-convex problem.

At the heuristic front, sensitivity analysis (SA) has been shown to be a very useful

tool to build efficient methods. (SA) consists generally in computing the derivatives

of lower-level variables with respect to the upper-level variables. The derivative can

then be incorporated in descent methods like in [Friesz 1990] where the gradient of

upper-level objective function is computed using (SA), and used to update upper-

level variables towards a local optimum. Based on the sensitivity analysis, Yang et

al. in [Yang 1994a, Yang 1994b] build a linear approximation of the bilevel problem
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that provides a descent direction for upper-level variables. In [Ying 2003] (SA) is

implemented for Logit based (SUE) and used to find optimal road tolls and transit

tax. Another approach based on (SA) can be find in [Meng 2001]. The major

difficulty of these approaches lies in the fact that there is no guarantee that the

solution obtained is a global optimum due to the inherent non-convexity of MPEC.

We note the use of heuristics and metaheuristics with upper-level decisions being

integer variables ( decisions are for example lane layout, link/lane allocation, signal

stages, etc) such as hill climbing, simulated annealing, tabu search [Cantarella 2005],

scatter-search technique [Gallo 2010], genetic algorithm [Ceylan 2003]. The general

principle consists in alternating upper level problem resolution (with lower level

variables fixed) and equilibrium computing (for fixed upper level variables) until

convergence.

4.4 Delivery services choice model

The delivery system is composed of a set N of N services. All along this chapter, we

consider the two classical service types: delivery at home (D) and pick up at relay

station (P). Note that, the model addressed in this chapter and obtained results can

directly be applied to a more general setting. In order to fit customers requirements,

each service admits several options. For delivery at home service (D), options are

distinguished by the time window of the delivery. Options of the pick up service (P)

vary in the location areas: dense city center (usually with small capacity storage)

or outside city site (higher storage capacity). For each service n ∈ N the set of

options is denoted by On. The delivery system is depicted on Figure 4.1. In a

study of a similar delivery services including one (D) service and one (P) service

[Hayel 2016], customers are interacting creating congestion which is measured using

queuing theory. We use here the same service models.

Delivery Pick upServices

Options

Figure 4.1: Last-mile delivery services system

We denote by λ the customers arrival rate per unit of time. Particularly, this
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process is assumed to follow a Poisson process and the expected number of customers

is equal to λ. Each customer selects a service n and an option j among options

On. All customers are identical and we denote by pnj the probability that a new

customer chooses option j of service n. This probability is equivalent to the fraction

of customers choosing option j ∈ On.

4.4.1 Utility functions

The customer decision is based on comparing option utility functions. The utility

function of an option j of service n depends mainly on two attributes: the tariff tnj
of the option set by the provider, and a measure of the quality of service that reflects

the satisfaction level of the customer. The measure of quality of service depends on

the nature of the service, but it is always related to the congestion effect induced

by customers decisions. These metrics are obtained by considering general queueing

models. The congestion function of option j of service n is denoted by the function

fn(pnj). Thus the general form of the utility cnj of option j ∈ On is given by the

following expression:

∀n ∈ N , ∀j ∈ On, cnj(pnj) = tnj + βnfn(pnj), (4.1)

where βn is a monetary conversion coefficient that is calibrated regarding the type

of service (D) or (P).

4.4.1.1 Home delivery congestion function

A home delivery service is modeled as a M/D/1 queue where D is the time required

by the transportation company to deliver one parcel. In other words, the trans-

portation company can treat a maximum number of 1/D parcels per unit of time.

We consider D is constant as it is related to the delivery capacity of the vehicles

used by the transportation company. We could consider that this time depends also

of some exogenous random conditions (traffic density, drivers, etc.) and then we

should consider an M/G/1 queue. In order to keep the analysis simple and as clear

as possible, we decide to keep the M/D/1 model with a First-In-First-Out discipline.

If a customer chooses the (D) services, the congestion is perceived in term of

the average delivery delay. The arrival of demand for this service follows a Poisson

process like the arrival of customers into a Markov queue. Customers are served one

by one, and the service time of each customer is represented as a positive random

variable Snj. The average sojourn time (which corresponds to the average delivery

delay) is given by the Pollaczek-Khinchin formula [Takács 1962] as the following

non-linear function:

∀n ∈ N ,∀j ∈ On, fn(pnj) = m1 +
λpnjm2

2(1− λpnjm1)
.

with m1 = IE(Snj) and m2 = IE(S2
nj). Both are decreasing functions of Knj, the

delivery capacity of option j of service n. This value may represent for option j in
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service n the number of parcels that can be delivered per unit of time. A simple

assumption could be that Snj follows an exponential distribution with parameter

Knj, and then m1 = 1/Knj and m2 = 2/K2
nj.

4.4.1.2 Relay station congestion function

A Pick up service is modeled as a M/M/K/K queue where K is the capacity of

the relay, i.e. the number of packets that can be stored, waiting to be picked up

by costumer. We assume that each packet occupies one storage unit (before being

picked up) during a random duration which follows an exponential distribution with

parameter µ. All these durations are independent and identically distributed. We

do not consider the time it takes to deliver the packet to the relay station. We

consider that the most important for a customer when choosing this option, is to

be delivered in the chosen relay (which is usually close to his/her house or his/her

office).

When using a service of type (P), parcels may be rejected if the relay station is

full. Then the customer pays extra cost related to the dispatch the parcel to another

relay station. I

The average congestion function for type (P) service is expressed by the blocking

probability of a M/M/Knj/Knj queue where Knj is the capacity of the relay station

j. Then, the Erlang-B formula gives this blocking probability depending on the

parameters of the system as:

∀n ∈ N , ∀j ∈ On, fn(pnj) =
(
λpnj
µ

)Knj

Knj!
∑Knj

k=0(
λpnj
µ

)k/k!
.

Each customer decides selfishly his/her best choice regarding a cost function that

includes service’s tariff and the congestion measure. While the tariff is known from

customer when making the order, the congestion state can only be perceived during

the delivery. We assume that the congestion state can be communicated to customer

at the moment of the order. This information can be based on the current state of

services and previsions.

4.4.2 Logit model

The logit model is classically used in discrete choices. It allows choices to not be

full rational by including in utility function a random error term that captures the

unobservable customers preferences. Utility functions have then the following form

∀n ∈ N ,∀j ∈ On, unj(pnj) = cnj(pn,j) + γn,j . (4.2)

The logit model assumes that all error terms γn,j have a logistic distribution (Gum-

bel) and they are independent. It is then possible to obtain a closed form of the
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probability pnj of a choice to be chosen [Stevanovic 2006], as:

∀n ∈ N ,∀j ∈ On, pnj =
e−θcnj∑

m∈N

∑
k∈Om

e−θcmk
. (4.3)

The parameter θ determines the level of rationality of the decisions of the cus-

tomers. When θ tends to infinity, we obtain the full rational case and the SUE

collapses on the Wardrop equilibrium. As θ tends to 0, we have a complete irra-

tional situation where options have the same probability to be chosen whatever are

their costs (uniform distribution over the options).

The logit model has several good properties. We note that when one option of

an alternative increases letting the others constant, the corresponding probability

also increases while other probabilities decrease. Another feature of the logit model

is that all probabilities are non negative. Thus if an alternative is supposed to not

have any chance to be selected, it must be removed from the set.

4.4.3 Disadvantages of Logit

A main consequence of the logit model is the proportional substitution between

alternatives. When the utility of an alternative varies, say it decreases, all other

alternatives probabilities increase with the same proportion of their previous value.

Indeed the ratio between two alternatives remains the same when another alternative

is added, removed, or changed (in the sense its utility function is changed). The

ratio between two alternatives only depends on their two utility functions. This

property is called the independence from irrelevant alternatives (IIA).

The IIA is however wrong in some choice situations. This is illustrated by the

blue bus/ red bus paradox. In this example, users chose their travel mode between

two alternatives, car or bus. First, it is supposed that utility functions are equal

and thus choice probabilities are: P (car) = P (bus) = 1/2.

Now, suppose that a second bus is added to alternatives set, and that it has the

same service than the existing bus except that it has a different color (the first bus

is red and the second is blue). Since utility function are equal (the bus color does

not impact the choice), the new choice probabilities are : P (car) = P (red bus) =

P (blue bus) = 1/3. And the IIA is verified.

This result is however not realistic because the two bus services are considered

by users as one since only the color is different. The choice probabilities should by

as follows. P (car) = 1/2 and P (red bus) = P (blue bus) = 1/4.

Thus for the IIA to be valid, the choice set has to contain strictly distinct al-

ternatives. The blue bus/ red bus paradox shows that when some alternatives have

similarities, the logit model fails to reflect truly the choice process. We present in

the next section the nested logit model which is based on a hierarchical structure of

alternatives that is present in our delivery system.
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4.4.4 Nested Logit

The nested logit is a particular case of Generalized Extreme Value (GEV) models

which take into account different types of correlation between alternatives. The

nested logit is one of the most used and it is based on a two levels choice process. It

particularly suits situations where alternatives can be partitioned in groups, called

nests.

• Inside each nest, the IIA property is verified. The ratio between two alternatives

probabilities does not depend on the existence or the attributes of others alternatives.

• For two alternatives from different nests, the ratio of probabilities depends on the

others alternatives in the two nests, and IIA does no more hold.

In our setting, a nest represents a service n ∈ N . The nested model we consider

has non overlapping nests, and it is a particular case of the cross nested logit model

proposed in [Bekhor 2003]. The choice process can be seen as divided in two steps.

First, each customer determines the nest (D) or (P); second, the customer decides

which option of the nest is chosen. To alleviate complicated notations, we refer to

utility function by cnj instead of cnj(pnj).

The GEV distribution of error terms gives the probability of option j in service

n to be chosen by a customer as the product of the marginal probability Pr(n) of

the service n being chosen, and the conditional probability Pr(j|n) of option j being

chosen given that service n is chosen [Stevanovic 2006]:

∀n ∈ N ,∀j ∈ On, pnj = Pr(n)Pr(j|n) (4.4)

with

Pr(n) =

(
∑
k∈On

e−θcnk/φn)φn∑
m∈N

(
∑

k∈Om
e−θcmk/φm)φm

and Pr(j|n) =
e−θcnj/φn∑

k∈On
e−θcnk/φn

.

The parameter φn, for each service n ∈ N , is the nesting or correlation degree

between options in the nest n. It is ranged between 0 and 1. The MNL model

corresponds to the case where φn = 1 for all n ∈ N , while options are more and

more correlated as φn → 0.

Considering two options i and j in two nests respectively n and m, the ratio of

probabilities is :

pni
pmj

=

e−θcni/φn(
∑
k∈On

e−θcnk/φn)φn−1

e−θcmj/φm(
∑

k∈Om
e−θcmk/φm)φm−1

.

When the two options are in the same nest (n = m) the two sum terms are

removed and the ratio is independent of all others options. So if one option’s utility
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varies, other option in the same nest varies according to the proportional substitu-

tion. This behaviour is realistic because individuals who would change their choice

but remain in the same nest, will only consider the attractiveness of the nest’s

options.

The behaviour is different if we analyse the relation between two options of

different nests (n 6= m). The ratio depends on the options present in the two nests.

We see that the probabilities ratio depends on all the options of the two considered

nests. When options i varies, say it decreases, the attractiveness of nest n decreases,

while the attractiveness of other nests, including m, increases. This makes indirectly

the probability of option j increase.

4.5 Stochastic user equilibrium

In order to determine the SUE with the nested logit model presented in section 4.4,

we have to solve a system of non-linear equations given by pnj = Pr(n)Pr(j|n) for

all n ∈ N , j ∈ On. Such system is difficult to solve in closed-form, mainly because

of the complex congestion functions based on queueing systems metrics. We give in

the following a formulation of the SUE as a convex optimization problem. Then we

describe an efficient method to compute the SUE.

4.5.1 Equivalent optimization problem

We give in this section an optimization formulation for the nested SUE. The utility

functions cnj, ∀n ∈ N ,∀j ∈ On are increasing functions and separable, meaning

that cnj depends only on option’s probability pnj. Our formulation is an adaptation

of the general formulation of Sheffi [Sheffi 1985]. The mathematical formulation

enables the computation of the nested SUE. Furthermore it is used to develop a

sensitivity analysis for the SUE in section 4.6.

Proposition 4 Let p∗ a solution of the following minimization problem:

[N-SUE] min
p

Z(p) = Z1(p) + Z2(p) + Z3(p) (4.5a)

s. t. Z1(p) =
∑
n∈N

∑
j∈On

∫ pnj

0

cnj(s)ds (4.5b)

Z2(p) =
∑
n∈N

φn
θ

∑
j∈On

pnj ln(pnj) (4.5c)

Z3(p) =
∑
n∈N

1− φn
θ

((
∑
j∈On

pnj) ln(
∑
j∈On

pnj)) (4.5d)∑
n∈N

∑
j∈On

pnj = 1 (4.5e)

pnj ≥ 0 ∀n ∈ N ,∀j ∈ On (4.5f)
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Then p∗ is a solution of the non-linear system ( 4.4) and there exists a SUE

considering a Nested Logit DCM with congestion cost functions.

Proof The term Z1 comes from the formulation of the Deterministic equilibrium

[Sheffi 1985]. Z2 is an entropy term that is related to the Logit model. It is mod-

ified here compared to Fisk’s formulation [Fisk 1980] to include the correlation co-

efficients. Finally we introduce a second entropy term Z3 that corresponds to the

nested choice structure.

We demonstrate that the optimality conditions of the proposed mathematical

formulation correspond to the nested SUE (4.4).

Let us consider the following Lagrangian function :

L(p, ν) = Z1(p) + Z2(p) + Z3(p) + ν(1−
∑
n∈N

∑
j∈On

pnj),

where ν is the Lagrange coefficient associated to the constraint (4.5e). The first-

order conditions of the Lagrangian function are obtained by looking at the partial

derivatives of L with respect to decision variable pnj:

∀n ∈ N ,∀j ∈ On,
∂L(p, ν)

∂pnj
= cnj(pnj)+

φn
θ

(ln(pnj)+1)+
1− φn
θ

(ln(
∑
k∈On

pnk)+1)−ν = 0,

and also
∂L(p, ν)

∂ν
= 0.

To simplify mathematical notations, cnj(pnj) is written as cnj for the rest of the

proof. After some manipulations of the equations we get:

∀n ∈ N ,∀j ∈ On, pnj(
∑
k∈On

pnk)
1−φn
φn = e(νθ−1)/φne−θcnj/φn . (4.6)

Summing equation (4.6) over all options j ∈ On for the nest n ∈ N , we obtain:

∀n ∈ N , (
∑
k∈On

pnk)
1
φn = e(νθ−1)/φn

∑
j∈On

e−θcnj/φn . (4.7)

Elevating both sides to φn, we get:

∀n ∈ N ,
∑
k∈On

pnk = eνθ−1(
∑
j∈On

e−θcnj/φn)φn . (4.8)

Then we can derive the probability Pr(n) for a nest n to be chosen by:

∀n ∈ N , P r(n) =

∑
k∈On

pnk∑
m∈N

∑
k∈Om

pmk
=

(
∑
k∈On

e−θcnk/φn)φn∑
m∈N

(
∑

k∈Om
e−θcmk/φm)φm

. (4.9)
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The probability for an option j ∈ On to be chosen, given that nest n was chosen,

is obtained by dividing equation (4.6) by equation (4.7).

∀n ∈ N ,∀j ∈ On, P r(j|n) =
pnj∑

k∈On
pnk

=
e−θcnj/φn∑

k∈On
e−θcnk/φn

. (4.10)

Equations (4.9) and (4.10) correspond to the nested Logit equilibrium given by

the system 4.4. In this sense, the mathematical formulation (4.5) corresponds to a

nested Logit SUE formulation.

Proposition 5 The strategic decision problem considering the Nested Logit DCM

admits a unique SUE solution.

Proof Since for all n ∈ N , j ∈ On, the cost functions cnj(pnj) are positive and

increasing in pnj, the function Z1(p) is convex. Note also that the feasible region

is convex. Moreover, twice differentiating the function Z2(p) and Z3(p) gives the

following results:

∂2Z2(p)

∂pnj∂pmk
=

{
φn
θpnj

, if n=m and j=k,

0 , otherwise,
(4.11)

∂2Z3(p)

∂pnj∂pmk
=


1−φn
θ

1∑
l∈On

pnl
, if n=m,

0 , otherwise.
(4.12)

First, note that in DCM models, each alternative has a strictly positive probability,

i.e. for all n ∈ N ,∀j ∈ On pnj > 0. Second, as θ is finite, the Hessian matrix of

Z2(p) is diagonal with positive elements. Thus the function Z2(p) is strictly convex.

The Hessian matrix of function Z3(p) is bloc diagonal. It is positive semidefinite

(all elements in the matrix are equal to one another, and the determinant is equal to

zero). All arguments together ensure strict convexity of the whole objective function

Z(p), and hence the solution is unique in terms of choice probabilities pnj.

4.5.2 SUE computation

A classical method for equilibrium solution is the method of successive averages

(MSA). This method has been proved to be efficient for solving the Logit-based SUE

[Sheffi 1985, Damberg 1995, Maher 1998], and for the nested SUE [Bekhor 2003]. It

is an iterative descent method that involves at each iteration i descent direction

di with respect to the objective function and a step size τ i. A sequence of points

pi = (pinj),∀n ∈ N ,∀j ∈ On with i = 1, 2, . . ., that converges to the solution of (4.5)

is constructed following the following recursive pattern:

∀i = 1, 2, . . . , pi+1 = pi + τ idi.
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This process converges to a local minimizer which is global in the case of convex

problem. At a given iteration, given a current choice probabilities pi = (pinj), utility

functions are fixed for all n ∈ N ,∀j ∈ On at the value Ci
nj := cnj(p

i
nj). An auxiliary

choice probabilities vector yi = (yinj) is then computed by applying the formulae of

the nested SUE(4.4). A descent direction di is then given by di := yi − pi.

For the Nested Logit DCM, given current costs Ci
nj, the auxiliary point yi = (yinj)

is computed as follows:

∀n ∈ N ,∀j ∈ On,∀i = 1, 2, . . . yinj =

(
∑
k∈On

e−θC
i
nk/φn)φn∑

m∈N
(
∑
k∈On

e−θC
i
nk/φm)φm

e−θC
i
nj/φn∑

k∈On
e−θC

i
nk/φn

.(4.13)

The standard MSA suggests a step size τi = 1/i that is shown to be efficient

[Sheffi 1985]. The convergence of MSA is reached when new probabilities vector

is ε closed to the previous one, where ε > 0 is a given threshold. The detailed steps

of (MSA) are as follows.

• Step 0: Initialization, i = 0. Find initial choice probabilities p0 and compute

initial costs C0
nj = cnj(p

0
nj), ∀n ∈ N , j ∈ Sn.

• Step 1: Direction finding. Apply equation (4.13) with fixed costs Ci
nj in order to

get the auxiliary points yi.

• Step 2: Move. Find the new solution pi+1 = (pi+1
nj ) by:

∀n ∈ N ,∀j ∈ On, pi+1
nj = pinj +

yinj − pinj
i+ 1

.

• Step 3: Convergence criterion. Compute the infinite norm difference as ||pi+1 −
pi||∞ := max

n∈N ,j∈On
|pi+1
nj − pinj|. If ||pi+1 − pi||∞ < ε then stop, else set i = i+ 1 and

go to step 1.

The costs at the initialization step are obtained considering the free-flow costs,

i.e. for all n ∈ N ,∀j ∈ On, C0
nj = cnj(0). Note that MSA can be improved by

performing a line-search to have optimal step size at step 2 [Chen 1991]. As our

problem is similar to a traffic assignment problem with a particular parallel links

topology, we use the standard MSA that is shown to be efficient for the examples

we consider in section 4.8.

4.6 Sensitivity analysis

The SUE that rules customer behaviour depends on the system parameters and

characteristics such as options tariff, pick-up relay capacities, delivery capacity, etc...

It is then interesting to understand how the resulting SUE evolves when one or more

of those parameters change.
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The absence of closed expression of the dependence of SUE on the control pa-

rameter motivates the use of sensitivity analysis like in [Yang 1994a]. ”Sensitivity

analysis identifies how the variability in an output quantity of interest is connected

to an input in the model”2.

It is generally based on sensitivity derivatives i.e., the gradient of the output of

interest with respect to input variables. We develop in this subsection a sensitivity

analysis of the nested SUE with respect to the provider’s control parameters. Let I

by the number of set of provider’s control parameters indexed in the set I = 1, .., I,

u = (ui),∀i ∈ I.

4.6.1 General result

We first remind basic results of sensitivity analysis for nonlinear optimization prob-

lem [Fiacco 1983]. Consider a general parametric nonlinear programming problem

defined for a given ε > 0 as follows:

Q(ε) = min
x
f(x, ε),

subject to

gi(x, ε) ≤ 0, i = 1, ..m,

hi(x, ε) = 0, i = 1, ..n.

The Lagrangian function associated with P (ε) is defined by:

L(x, ν, µ, ε) = f(x, ε) +
m∑
i=1

νigi(x, ε) +
n∑
j=1

µjhj(x, ε)

where ν ∈ Rm, µ ∈ Rn. Suppose that the second order sufficient conditions for a

strictly local minimum of P (ε) hold at x with the associated Lagrange multiplier

vectors ν and µ. Then we have the following theorem.

Theorem 1 [Fiacco 1983] If the following conditions are verified:

• the functions defining problem Q(ε) are twice continuously differentiable neighbor-

hood of a couple (x?, ε?),

• the second order sufficient conditions for a local minimum of Q(ε?) holds at x?, with

associated Lagrange multipliers ν? and µ?,

• the gradients, 5xgi(x
?, ε?) for i such that gi(x

?, ε?) = 0, and 5xhj(x
?, ε?) for j =

1, ..., n are linearly independent,

• the strict complementary slackness condition: νi > 0 when gi(x
?, ε?) = 0, is satisfied,

2Dimitri Papadimitriou, Plenary talk ”Network modeling and design for unpredictability and

uncertainty” in the 7th international network optimization conference, 20/05/2015.
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then we have:

1. x? is a strict local minimum of Q(ε?) and the associated Lagrange multiplier vectors

ν? and µ? are unique,

2. For ε in a neighborhood of ε?, there exists a unique once continuously differentiable

function [x(ε), ν(ε), µ(ε)] satisfying the second-order sufficient conditions for a local

minimum of P (ε) such that

[x(ε?), ν(ε?), µ(ε?)] = [x?, ν?, µ?]

and hence, x(ε) is a locally unique solution to Q(ε) and ν(ε) and µ(ε) are the unique

associated multipliers.

3. For ε = ε? and (x, ν, µ) = (x?, ν?, µ?), the first order Kuhn-Tucker conditions are:

∇xL(x, ν, µ, ε) = 0

νigi(x, ε) = 0 i = 1, ...,m

hi(x, ε) = 0 j = 1, ..., n

(4.14)

Let the Jacobian matrix of the system of equations (4.14) with respect to y = (x, ν, µ)

be denoted as M(ε) and with respect to ε as N(ε). Then the matrix M(ε) is non-

singular and the partial derivatives of [x, ν, µ] with respect to ε are given by:

∇εy(ε) = −M−1(ε)N(ε) (4.15)

This theorem is at the core of the sensitivity analysis in nonlinear optimization

problems. We apply this theorem in our setting in order to make a sensitivity anal-

ysis of the nested Logit SUE. The perturbation occurs in provider’s tariffs t = (tnj).

Thus, option utility functions are of the form cnj(tnj, pnj), for all n ∈ N , ∀j ∈ On.

As required for the theorem application, the utilities functions are once continuously

differentiable in t and p.

4.6.2 The case of nested Logit SUE

In this section, based in the theorem 1 we develop a sensitivity analysis of the nested

SUE, in order to compute the derivatives of choice probabilities at equilibrium p̄

with respect to the provider’s tariffs t. The parameterized [N-SUE] problem is

[N-SUE(t)] min
p

Z(t,p)

s.t
∑
n∈N

∑
j∈On

pnj = 1

pnj ≥ 0 ∀j ∈ On, n ∈ N
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We assume that for a given tariffs vector t0 = (t0nj) we have an equilibrium solution

p̄0 = (p̄0
nj) solution of [N − SUE(t)], and it is unique. Let L be the Lagrangian of

problem [N-SUE(t0)]:

L(t0,p, ν, µ) = Z(t0)−
∑
n∈N

∑
j∈On

νnjpnj − µ(
∑
n∈N

∑
j∈On

pnj − 1)

where µ and ν are the Lagrange multipliers associated with constraints of [N-SUE].

Let y be the vector (p, µ, ν). An equilibrium solution (p̄0, µ?, ν?) must satisfy the

first order necessary conditions:

∂Z(t0,p)
∂pnj

− µ? − ν?nj = 0 ∀j ∈ On,∀n ∈ N∑
n∈N

∑
j∈On

p̄0
nj − 1 = 0

ν?nj p̄
0
nj = 0 ∀j ∈ On,∀n ∈ N

p̄0
nj ≥ 0, ν?nj ≥ 0 ∀j ∈ On,∀n ∈ N

We can simplify the previous system. We know that in a solution p̄ of [N-SUE(t)]

the probability of each service is strictly positive. We thus have ∀j ∈ On, ∀n ∈
N p̄nj > 0 and ν?nj = 0. The same situation is of course obtained after any

perturbation in t. Hence the derivatives of ν?nj with respect to t are null. And the

system becomes
∂Z(t0,p)
∂pnj

− µ = 0 ∀j ∈ On, ∀n ∈ N∑
n∈N

∑
j∈On

p̄nj − 1 = 0

we write the first equation evaluated for a given p̄nj

∂Z(t0,p)

∂pnj
= cnj(p̄nj) +

φn
θ

(ln(p̄nj) + 1) +
1− φn
θ

(ln(
∑
k∈On

p̄nk) + 1) .

We note that the first and the second terms are functions of p̄nj while the third

depends on the probabilities of all options in nest n. Let ∇pZ(t0, p̄0) = [∂Z(t0,p)
∂pnj

] be

the Jacobian matrix of Z(t0,p) with respect to p and evaluated at p̄0. and M is a

vector of size J with all elements equal to one. MT denotes the matrix transpose of

M . The system can be written in the matrix form:

∇pZ(t0, p̄0)− µM = 0 (4.16a)

MT p̄0 − 1 = 0 (4.16b)

Now we derive the system (4.16) with respect to variable y = (p, µ). Each

equation is derived with respect to each variable, we obtain the following Jacobian

matrix

Jy = [
∇2
pZ(t0, p̄0) −M
MT 0

]

where ∇2
pZ(t0, p̄0) is the Jacobian matrix of ∇pZ(t0,p0) with respect to p and

evaluated at p̄0. The matrix ∇2
pZ(t0, p̄0) is bloc diagonal and it is given by :

∇2
pZ(t0, p̄0) = D +B
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where D is diagonal matrix and B is bloc diagonal matrix. Each bloc of matrix B

corresponds to a service n ∈ N , it is a square matrix of size |On| and all its elements

are equal.

D = diag([..., dnj, ...]) B =



b1 . . . b1

...
...

... 0 0

b1 . . . b1

b2 . . . b2

0
...

...
... 0

b2 . . . b2

0 0
. . .


where dnj = c′nj(pnj) + φn

θpnj
, ∀j ∈ On, n ∈ N and bn = 1−φn

θ
∑

k∈On
pnk

, ∀n ∈ N . Here

c′nj(pnj) is the derivative of cnj(pnj) with respect to pnj.

Assume that

J−1
y = [

B11 B12

B21 B22
]

To simplify notation, ∇2
pZ(t0, p̄0) is just written ∇2

pZ for the rest of the proof.

Denoting by ∇2
pZ
−1 the inverse matrix of ∇2

pZ, it can be obtained easily that

B11 = ∇2
pZ
−1[I −MT [M∇2

PZ
−1MT ]−1M∇2

pZ
−1]

B12 = ∇2
pZ
−1MT [M∇2

pZ
−1MT ]−1

B21 = −[M∇2
pZ
−1MT ]−1M∇2

pZ
−1

B22 = [M∇2
pZ
−1MT ]−1

where I denotes an identity matrix of appropriate dimensions. The Jacobian matrix

of the system (4.16) of equations with respect to t is

Jt = [
∇t∇pZ(t,p)

0
]

From the expression of ∂Z(t,p)
∂pnj

and cnj(pnj) we obtain that ∇t∇pZ(t,p) is equal to

the identity matrix. From (4.15) we have

[
∇tP

∇tµ
] = [

B11 B12

B21 B22
] [
−I
0

]

Therefore, the derivatives of choice probabilities with respect to t and evaluated at

(t0, p̄0) are given by

∇tp̄ = −B11. (4.17)
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The derivatives informations
∂p̄nj
∂tmk

, ∀n,m ∈ N ,∀j ∈ On,∀k ∈ Om give infor-

mations on how the SUE evolves when one or more tariffs vary. They are also

used to build approximation of the SUE local to a tariffs set, the quality of this

approximation is evaluated in section 4.8.

4.7 The delivery services pricing problem

We studied in the previous section the concept of nest SUE used to model the be-

haviour of customers in a system where they interact through congestion effects.

The service provider is in general looking for achieving a particular goal or objec-

tive function. The provider is then interested in finding optimal set of the system

parameters, in our context, the design of delivery services. We denote by SDP the

bi-level services design problem addressed by the provider.

4.7.1 Problem formulation

Without loss of generality and for simplicity of analysis, we limit in this first study

the provider control to service tariffs tnj for all n ∈ N , j ∈ On. Then, for a particular

set of tariffs, customers decide their option. This hierarchical process leads to a SUE

that depends on the tariffs set by the provider. Denote by t the tariffs vector. The

bi-level problem with SUE constraint can be formulated as follows:

SDP (U) max
t,p

F (t,p) (4.18a)

s. t. Lnj ≤ tnj ≤ Unj ∀n ∈ N , j ∈ On (4.18b)

(L) min
p

Z(t,p) (4.18c)

s. t.
∑
n,j

pnj = 1 (4.18d)

pnj ≥ 0 ∀n ∈ N , j ∈ On (4.18e)

The bi-level problem consists in two sub-problems: (U) which is defined as the

upper level problem, and (L) the lower level problem. The upper level decision

maker or system manager is called the leader in bi-level terminology, while the

lower-level decision maker(s) is(are) called the follower(s). The function F (t,p) is

the objective function of the upper-level problem and t is the decisions or variables

vector of the leader. The leader’s objective function F is generally a global metric

which depends on the entire system as a whole. We consider in this paper that this

objective function is the revenue and it is defined by:

F (t,p) =
∑
n∈N

∑
j∈On

λtnjpnj.

Note that our model and results are easily applied to other example of leader objec-

tive function like the social welfare for example. Constraints (4.18b) are called the
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upper level constraints and set bounds on the leader variables. Constraints (4.18d)

and (4.18e) are the lower level constraints related to the lower-level problem. For

any control t of the leader, lower-level problem (L) determines a response based on

the minimization in p of the function Z(t,p) defined in section 4.5. The leader then

influences followers decision by setting tariffs t, thus changing the objective func-

tion of the lower level problem, or (in different problems than ours) restricting the

feasible set for the followers decisions. The second interaction is that the objective

function of the upper-level problem depends on the followers decisions.

In some applications, it is possible to obtain analytically the followers response

function with respect to leader decision. In our problem, the followers interact

between each others, moreover their response is not entirely rational. Thus, the

leader cannot predict exactly followers response set for a given control. We present

in the following, three heuristics to solve the bi-level services pricing problem.

4.7.2 Gradient descent algorithm (GDA)

This first algorithm for optimizing the provider’s objective function, taking into

account the underlined SUE, computes a descent direction along which the upper-

level objective function is gradually improved. Intuitively the descent direction is

the gradient of the upper-level objective function. For example, considering the

revenue maximization problem, this gradient direction is given by:

∀n ∈ N , j ∈ On,
∂F (t, p̄)

∂tnj
= λ(p̄nj +

∑
m∈N

∑
k∈Om

tmk
∂p̄mk
∂tnj

).

We observe the use of the sensitivity analysis performed previously, in order to

determine the right-hand side term. We then next elaborate the GDA method

as follows for the revenue optimization purpose. Figure 4.2 illustrates the general

schema of GDA. The heuristic sequentially handles the upper-level problem and the

lower-level problem:

• Upper level phase: given a follower equilibrium probabilities, a descent direction

for upper-level is computed and tariffs are updated.

• Lower level phase: given the tariffs, the SUE and the sensitivity derivatives are

computed.

The detailed steps of GDA are as follows:

• Step 0: Initialization. Determine an initial set of control variables t0 =

(t0nj)n∈N ,j∈On . Set counter i = 0.

• Step 1: Lower-level. Solve the lower-level problem for ti using MSA and obtain

corresponding SUE p̄i+1(ti).
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Leader Problem
Compute descent direction

Follower Problem
Compute new SUE

Set new
 Tariffs

Compute 
Derivatives

(SA)

Figure 4.2: GDA main steps

• Step 2: Sensitivity analysis. Compute the derivatives
∂p̄i+1
nj

∂timk
, ∀n ∈ N ,m ∈ N , j ∈

On, k ∈ Om at ti using the sensitivity analysis method.

• Step 3: Upper-level. Compute descent direction ∀n ∈ N , j ∈ On
di+1
nj := p̄i+1

nj +
∑
m∈N

∑
k∈Om

tmk
∂p̄i+1
mk

∂tinj
.

• Step 4: Move. Compute ∀n ∈ N , j ∈ On, ti+1
nj = tinj + di+1

nj .

• Step 5: Convergence. If |F (ti+1, p̄i+1)−F (ti, p̄i)| < ε then stop, else go to step 1

and i = i+ 1.

The GDA is intuitive and does not need a particular parametrization. To eval-

uate the quality of GDA, and particularly the efficiency of gradient based descent

direction, both in terms of solution and computation cost, we implemented a second

heuristic. The latter performs local search and we call it bi-level local search (BLS).

4.7.3 Bi-level local search (BLS)

Local search is a classical heuristic method in combinatorial optimization problems

[Talbi 2009]. The idea of a local search is to move from solution to solution in the

space of candidate solutions (the search space) by applying minor local changes. This

process runs until a solution deemed optimal is found or a time bound is elapsed.

Concretely speaking, such algorithm starts from an initial set of control variables

t0. Then, at each iteration i, a neighborhood set V i of candidate solutions is built.

Then the algorithm evaluates the leader’s function F (v, p̄(v)), for all v ∈ V i and pick
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the neighbor with the best evaluation. This step is a direction finding step similar

to step 3 in GDA, but without computing the gradient of the Leader’s objective

function. If the best neighbor candidate improves the objective function then it

becomes the new current solution. These steps are repeated until no improvement

can be obtained.

Figure 4.3 illustrates the progress of a local search for an example with two

leader’s variables. The numbered points designate the current solution at a given

iteration, the grey points surrounding a numbered point are the corresponding neigh-

bors.

1 2

3

σ1

t 1

t 2

σ2

σ 3

Figure 4.3: Local search progress.

Different neighborhood structures are possible for local search, the size and the

construction method of the neighborhood need to be well defined in a way to have the

appropriate trade-off between exploration and computation cost. For our services

design problem, the neighborhood V i of a current solution ti at iteration i is a set

of tariff vectors, having the same size then ti. Each neighborhood is constructed by

locally modifying ti, by adding or subtracting a radius σi to some of the tariffs of

ti. Thus the neighborhood V i contains all possible tariffs vector v = (vnj)n∈N ,j∈On
of the form vnj = tinj + ∆,∀n ∈ N , j ∈ On where ∆ ∈ {−σi, 0, σi}. The radius σi

is a non-negative decreasing sequence. Thus if the total number of tariffs is I, the

size of the neighborhood is I3. This neighborhood structure is slightly bigger than

the one depicted in figure 4.3 where some neighbors are not shown (corner points)

for more clarity. The steps of the BLS algorithm can be described as follows:

• Step 0: Initialization. Determine an initial set of control variables t0 =

(t0nj)n∈N ,j∈On . Set counter i = 0.

• Step 1: Neighborhood. Build the neighborhood set V i of the solution ti.

• Step 2: Evaluation. At each neighbor v, perform MSA to get the corresponding

SUE p̄(v) and evaluate leader objective function F (v, p̄(v)).
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• Step 3: Selection. Select the best neighbor ti+1 = argmaxv∈V iF (v, p̄(v)).

• Step 4: Convergence. A stopping criterion can be when the leader objective can

no more be improved. If |F (ti+1, p̄i+1) − F (ti, p̄i)| < ε then stop, else go to step 1

and i = i+ 1.

The BLS algorithm, like the GDA, iteratively explores the solution space from

a point to another in order to find the best one. BLS works with a randomly gen-

erated neighborhood of candidates. While one may expect that evaluating different

candidates around the current solution helps finding a better descent direction, the

major inconvenient of this heuristic is that at each neighbor of a current solution, a

SUE is computed using the MSA. As the size of problem instance increases, at each

iteration of BLS the neighborhood is larger, increasing the number of calls to MSA,

that moreover, requires more computation time. We are thus faced to classical issues

of local search related to how to find a good compromise between the exploration

strength (size of the neighborhood) and the computation expense.

Contrary to GDA, the BLS algorithm needs parameter configuration which is the

radius (σi) for the construction of the neighborhood V i. At the first iterations, the

radius should lead to rapidly get close to the optimum. As the algorithm approaches

the optimum, the radius has to decrease. We use a predetermined decreasing se-

quence of decreasing radius σi = 1
i
. Experimentally, as we will see in section 4.8,

more efficient radius sequence can be used for improving both the quality of the

solution and the computation time of the algorithm.

In order to reduce computation time, we introduce in the next section, a third

heuristic that combine the local search technique and useful informations obtained

by the sensitivity analysis.

4.7.4 Sensitivity analysis based local search (SLS)

The SLS is proposed in order to overcome the highlighted drawback of the BLS

which is the computation of a the SUE for each of the candidate solution in the

neighborhood of the current solution (step 2 of BLS algorithm). We suggest instead

to use the sensitivity analysis result and to compute an approximation of the SUE.

Specifically, at iteration i, given the current tariffs set t̄i = (tinj), MSA is performed

once in order to compute the SUE p̄i = (p̄inj). Then, for a given neighbor v = (vnj),

the corresponding SUE is approximated by the following formulae:

∀n ∈ N , j ∈ On, p̄nj = p̄inj +
∑
m∈N

∑
k∈Om

∂p̄nj
∂tmk

(vmk − timk). (4.19)

The approximated choice probabilities are then injected in the upper level ob-

jective function to evaluate each neighbor. Thus, at each iteration MSA is called

one time for (SLS) while it is called for each neighbor for BLS. The SLS algorithm

is composed of the same steps as the BLS algorithm but step 2, which is replaced

by the following :
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• Step 2’: Evaluation. Run MSA and compute the corresponding SUE for the

current solution. For each neighbor, compute an approximation of the SUE using

(4.19) and evaluate the leader objective function.

These three methods for solving SDP are evaluated and compared in different

numerical scenarios within the next section.

4.8 Numerical results

We conduct in this section several experimentations that focus on two main features

of the delivery services system. First the correlation between options has impacts

on customer choice process. This will be shown by the effect of the nested coeffi-

cient on options probabilities at equilibrium in subsection 4.8.1. Consequently the

correlation between options impacts also the leader objective function as illustrated

in subsection 4.8.2. The second feature is technical and is related to the benefit

of combining local search technique with sensitivity analysis in the solution of the

services design problem. The comparison of the three heuristics is conducted in

subsection 4.8.2 for two delivery system configurations.

All scripts and codes were written in Scilab 5.3.3, experimentations were made

on a laptop running with processor Intel Core 2 DUO CPU T7100 1.80 GHZx2 and

2.9 Go RAM.

We study first the example 1 described by figure 4.4. We consider two nests , i.e.

N = 2, that are Home delivery (D), indexed by 1, and Pick up (P), and the second

by 2. Each nest contains two options. The conversion coefficients of congestion

effect that depends on the service type, is β1 = 100 for (D) service, and β2 = 10 for

(P) service. The arrival rate of demand is λ = 40 and the rate at which a parcel

stays in a pick up location is µ = 1. The storage capacities pick up locations are

respectively K21 = 15 and K22 = 10 parcels. For (D) services, delivery capacities

are respectively K11 = 40 and K12 = 30 parcels per unit of time.

DCM

Delivery Pick upServices

Options

Figure 4.4: Delivery system with two services
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4.8.1 Stochastic user equilibrium

The SUE is computed by an implementation of MSA. The threshold for stopping

criteria is set to ε = 10−3. In the example of Figure 4.4 , we observed that the MSA

converges quickly to the SUE ( in less than 10 iterations).

First we analyse the effect of the nesting coefficients. Figure 4.5 depicts the

variations of the SUE when one tariff, here t21, increases from 0 to 20. Two situations

are considered: φ2 = 1 (no correlation and the choice model corresponds to the

multinomial Logit), φ1 = φ2 = 0.5 (with correlation). Every option is associated to

two curves, each curve corresponds to a nesting coefficient.

p11

p12

p21

p22

ϕ1=ϕ2=1

ϕ1=ϕ2=0,5

Tariff of option 1 in nest 2

Figure 4.5: Options comparaison in Logit and nested Logit models

Naturally as tariff t21 increases, option 1 in nest 2 is less and less attractive

compared to others options and the probability p21 decreases. The decrease is greater

in the nested situation than in the logit situation. Indeed, this decrease is related to

two facts. First, the nest 2 has less weight compared to other nests. Second, option

1 in nest 2 has less weight compared to other options in the same nest.

Considering the other options, we see that all probabilities increase. Again, this
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Tariff of option 1 in nest 2

nest 1
nest 2
ϕ1=ϕ2=1
ϕ1=ϕ2=0,5

Figure 4.6: services comparaison in Logit and nested Logit models

increase however depends on the nesting coefficient. We see that p22 increases more

in the nested situation than in the logit situation. That means that option 2 in

nest 1, captures more customers who leave option 1 in nest 2 in the nested situation

than in the logit situation. In the same time the increase of option 2 is far from

counterbalancing the decrease of the option 1, it is then clear that globally customers

are moving from nest 2 to nest 1. Figure 4.6 depicts the probabilities of each service,

computed as the sum of the probabilities of its options, in the two nesting situations.

In nest 1, we observe clearly that option 1 captures more customers in the nested

situation than in the logit one. At the opposite option 1 is depreciated in the nested

situation. As mentioned before, in the logit situation all options compete at the same

level, and thus an option attracts customers as it outperforms any other option. In

the nested situation, options in different nests compete through the weights of their

corresponding nests. Options in the same nest compete directly for the distribution

of customers attracted by that nest.

4.8.1.1 Sensitivity analysis

We evaluate now the quality of the derivatives of the equilibrium probabilities p̄

with respect to tariff, obtained by the sensitivity analysis described in section 4.5.

Table (4.1) shows the computed derivatives of choice probabilities with respect to

tariffs, and evaluated at a given tariffs set (here t11 = t12 = t21 = t22 = 3).

The derivatives computed using the sensitivity analysis can be used to estimate

the choice probabilities given the tariff of each option. First we compute using MSA

the SUE corresponding to the tariffs set t11 = t12 = t21 = t22 = 3. The values of

resulting options probabilities are given by column ”Initial” in table (4.2). Then for

a perturbation of one tariff the new exact SUE computed using the MSA is given by

column ”Exact” and the estimated SUE (first order approximation using derivatives
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Options Derivatives of choice probabilities

Probabilities t11 t21 t12 t22

p11 - 0.1174628 0.0509520 0.0486570 0.0178537

p12 0.0509520 - 0.0794786 0.0208691 0.0076575

p21 0.0486570 0.0208691 - 0.0883142 0.0187881

p22 0.0178537 0.0076575 0.0187881 - 0.0442993

Table 4.1: Sensitivity analysis at t11 = t12 = t21 = t22 = 3.

by applying (4.19)) is given by column ”Estimated”.

Choice Initial Variation with Variation with

Probabilities δt11 = +1.00 δt21 = +1.00

Exact Estimated Exact Estimated

p11 0.2454 0.1315 0.1279 0.2892 0.2940

p12 0.0697 0.1257 0.1207 0.0885 0.0906

p21 0.4139 0.4620 0.4625 0.3271 0.3256

p22 0.2708 0.2906 0.2887 0.2810 0.2896

Table 4.2: Comparison of estimated SUE and exact SUE.

We can observe that the estimated SUE are very close to the exact SUE. This

means that the sensitivity analysis gives good result to approximate the impact of

control parameters like tariffs on the equilibrium of the customer choices.

4.8.2 Services design problem

We now illustrate the algorithms proposed in section 4.7 in order to optimize the

revenue of the delivery provider by controlling the tariffs of the different options in

each service. For more clarity, we consider a second example made by removing an

option from nest 1 which now contains only one option, while the nest 2 contains

2 options. We also assume that one option is not controllable in the sense that the

provider cannot modify the tariff (otherwise the solution is trivial). This assumption

holds in a competitive market between several providers that induces some tariff

constraint.

Figure 4.7 illustrates the leader revenue as a function of tariffs t11 and t21. We

observe that this function has good properties of concavity and a single maximum.

The table 4.3 illustrates the comparison of the three heuristics GDA, BLS and

SLS. The sequence of radius for BLS and SLS is σi = 1
i
. The algorithm BLS gives

the best solution in terms of revenue. But this algorithm requires more computation

time than the others. We expect that we can reduce the computational time of BLS

and SLS algorithms by choosing appropriately the radius. We then consider different

radius for BLS and SLS of the form σi = a
b+i

. For each we found a particular radius

that improves the corresponding heuristic. The improved radius σib = 2
1.5+i

gives the
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t 11

t 21

Revenue

Figure 4.7: Leader revenue depending on tariffs t11 and t21.

Ex 1: 3 services

GDA SLS BLS

Revenue 89.534 89.536 89.553

Tariffs 3.928 5.575 3.926 5.577 3.948 5.456

Nb iter 69 149 132

Time (s) 0.636 1.492 6.97

Table 4.3: Heuristics comparison with default radius.
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best results for BLS while the improved radius σis = 8
6+i

gives the best result for

SLS. Those results are summarized in table 4.4.

Ex 1: 3 services

GDA SLS BLS

Revenue 89.534 89.571 89.571

Tariffs 3.928 5.575 3.862 5.646 3.872 5.661

Nb iter 69 34 30

Time (s) 0.636 0.376 1.656

Table 4.4: Heuristics comparison with improved radius.

We observe that these improved radius help both BLS and SLS algorithms reach

a better solution in a reduced time. The sequence of improved radius are obtained

empirically and the optimization of these parameters is an important improvement

of BLS and SLS which is out of the scope of this work.

An important feature of our bi-level services design problem is the nested model

parameters (the correlation and the dispersion factors) that describes the DCM

customer choice at the lower level. Figure 4.8 illustrates the impact of the nested

correlation factor φ2 on the provider’s revenue. We compare the revenue obtained

with the Nested model with the multinomial Logit (i.e. φ2 = 1). For each value the

optimal tariffs are computed using (GDA) for example. The solid curve represents

the revenue obtained if tariffs are fixed to what is obtained assuming (MNL) model

(φ2 = 1). In others words, the nested structure is ignored. While the dotted curves

represent the revenue computed with the nested model for each value of φ2. We can

notice that the more correlation (φ2 decrease) the bigger the gap between the two

curves. That means that the computed tariffs based on (MNL) are more and more

sub-optimal when ignoring the nested choice structure.

We examine in a second analysis, the effect of the dispersion parameter θ. This

parameter characterizes the degree of rationality of customers in their decision. We

see in figure 4.9 that for low value of θ (weak rationality) the revenue is high, and

as θ increases, the revenue decreases. This is intuitive since the more customers are

rational the more they are influenced by perceived costs and then by the provider’s

tariffs. Moreover the impact of θ is slightly the same for different levels of nesting

coefficient.

The last numerical test studies the scalability issue of our algorithms. We con-

sider the same 2 services but with more options (3 options for each service). For

BLS and SLS, we found empirically that the best values for radius are respectively

σib = 6
7+i

, σis = 5
8+i

. For those settings, we report the results in table 4.5 along with

the results of GDA. We observe particularly that the BLS algorithm is very time

consuming and does not scale well. Therefore, for large instances, the SLS algorithm

seems to give the best trade-off between quality of the solution and scalability.
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Ex 1: 6 services

GDA SLS BLS

Revenue 78.964 79.311 83.142

Nb iter 527 32 24

Time (s) 14 1.3 41

Table 4.5: Heuristics comparison for a large instance with 6 options.

4.9 Conclusion

In this chapter, we study a pricing problem for e-commerce last mile delivery sys-

tem. The problem includes several decision makers having complex interactions and

different, even conflicting, goals. These interactions are divided in two level. The

first interaction is between the services provider and all the customers. The second

interaction is between each customer and all the others.

We propose a bi-level model that reflects the first hierarchical interaction. At

the upper level, the provider controls and optimizes service tariffs in order to achieve

a certain goal like the overall revenue. At the lower level, users react by choosing

selfishly their delivery option according to their utility function. A service utility

function incorporates the provider’s tariff and a congestion measure.

The second interaction, between customers, is modelled using a particular dis-

crete choice model, the nested logit model. The nested model captures the hierarchi-

cal choices structure since services are grouped by type. The steady state customers

choices are obtained by computing the stochastic user equilibrium associated to the

nested Logit model. We use for this purpose the method of successive averages.

We also present a sensitivity analysis for the SUE that enables to compute the

derivatives of equilibrium probabilities with respect to services tariffs.

A gradient descent algorithm and a local search heuristic are proposed for the

bi-level pricing problem with stochastic equilibrium constraint. Moreover, based

on the sensitivity analysis of the equilibrium, we provide an improved local search

method that gives encouraging results.

In future works we suggest to investigate the possible extension of the model to

additional parameters of the delivery system that can be controlled and optimized

by the provider. Possible parameters are the delivery capacities and the relay station

capacities. This extension is challenging since it involves discrete leader’s variables.

Thus the resulting model would be a mixed integer bi-level problem with equilibrium

constraint, and new solution methods need to be investigated.



Conclusions and perspectives

Conclusion

All over the world, with a continuous growth, the e-commerce has imposed itself as

a major retail market. The supply chain in e-commerce is a main factor of its de-

velopment and success. It has known consecutive evolutions impacting the involved

actors, interactions and process. The maturity of e-commerce is today shown by the

emergence of large e-fulfillment networks and the development of a global supply

chain. The wide success of e-commerce has been achieved by overcoming plenty of

crucial issues arising in the optimization of e-fulfillment process and in the manage-

ment of the logistic platforms.

This thesis aims to contribute in the understanding of the logistic challenges in

e-fulfilment and to propose relevant models and methods to help decision making. In

a competitive environment, the supply chain is a complex system that has to deal

with fluctuating situations under high requirement of reliability and profitability.

Our contributions are related to two distinct phases: Orders picking and shipping,

and last-mile delivery. We precisely propose:

- An integrated approach for resources design and operations planning in picking

and shipping phases.

- A bi-level approach for last mile delivery services pricing with quality-sensitive

customers.

In the first part, we study the process of order picking and shipping in order to in-

vestigate the potential benefit of two novel features: the coordination between order

picking and shipments schedules, and the integration of resources design and picking

and shipping planning. This integrated approach aims to enhance the flexibility of

the supply chain and to reduce global cost while fitting the reliability requirement.

We first define a multi period model for the integrated picking and shipping

problem. The problem looks for an operational plan that minimizes over the plan-

ning horizon a global cost function including labour cost, trucks cost, penalty and

docks occupation. The optimal solution corresponds to a trade-off between several

costs with different structure under complex operational constraints.

To solve the proposed model, we have designed a matheuristic that determines

gradually decisions in three phases involving the solution of a MILP. The method

is enhanced by speed-up techniques that exploit lower bounds. It has been tested

on real-size instances based on data provided by a major logistic company. The

three-phase matheuristic provides encouraging results compared to commercial

solver in finding good solutions in a reasonable amount of time.
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Our second contribution presented in chapter 3 is an advanced model that aims

to capture the information acquisition and the decision making dynamics of e-

fulfillment. It is based on a rolling horizon procedure where decisions are deter-

mined period by period based on a sequence of solutions of the integrated picking

and shipping problem over a reduced horizon.

Moreover, we proposed several approaches that deal with demand uncertainty in

order to determine efficiently the quantities of postponed orders. One first approach

is based on the estimation of the impact of order postponements using a linearised

resources cost. We also propose different mono-scenario techniques that construct

a solution based on a representative scenario of the uncertain future demand. The

proposed approaches are compared and evaluated based on a-priori and a-posteriori

bounds.

The two models proposed for the integrated picking and shipping problem can

be coupled to form a global tool. While the second model focuses on tactical

decisions (number of workers and trucks) under uncertainty, the first model, based

on these decisions and on deterministic information of the current day, determines

the operations planning for each order.

The second part of the thesis is related to the last mile delivery phase. In e-

commerce, this phase is crucial for the success of the delivery and for the e-retailer

image. An efficient delivery system should offer various services and predict cus-

tomers behaviour. In a highly competitive environment, customers are sensitive to

the tariff of a delivery service, but also to its quality. The latter can be damaged

by congestion effect induced by customer decisions. We introduce a bi-level model

for last-mile delivery services pricing with two family of services. At the upper level

the service provider determines services tariffs in order to maximize its revenue. At

the lower level, customers choose selfishly their service according to the tariff and

to the congestion. The reaction of customers is computed as the equilibrium state

based on the nested logit model.

Our study includes computation and sensitivity analysis of the equilibrium state

corresponding to a given set of tariffs. We illustrate the impact of the nested struc-

ture of services on the customer choices. For the bi-level services pricing problem,

we provide two classical heuristics: a gradient descent algorithm and a local search

heuristic. We introduce a third heuristic that combines the local search technique

with the sensitivity analysis of the lower level equilibrium. This heuristic shows

encouraging results in term of solution quality and computation time.

Perspectives

Perspectives for the presented works can be drawn on different levels. Short

term perspectives related to specific extensions of each work are presented in the

corresponding chapter.
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On a long term, concerning the integrated picking and shipping problem, a

first perspective is to investigate alternative solution methods based on orders

aggregation/disaggregation techniques. The idea is to define an appropriate

method to cluster orders. Then IPSP is solved with the grouped orders as input.

Finally, a disaggregation step uses the solution and determines decisions related

to each order. The process of aggregated process needs to be defined including

lot-sizing, postponement and mode change. Of course, the optimization phase

will be facilitated and solutions will be obtained in shorter time. The challenges

here are twofold. First, the aggregation/disaggregation method should not prevent

information tracking on orders process. Second, it will be interesting to investigate

if the aggregation leads to a deterioration of the solution value. In fact, the process

of aggregated orders has reduced number of possibilities compared to the process

of orders individually. It would be then crucial to look for an efficient aggregation

method that realizes the best trade-off between optimality and computation cost.

The multi-period procedure with rolling horizon appears to be a good framework

to deal with data uncertainty. In this thesis we propose approaches to treat orders

arrival uncertainty. However, other uncertainty are inherent to e-fulfilment process

like order process time or the workers availability. We then suggest to include these

uncertainties to the framework and to adapt accordingly the proposed solution

methods.

Regarding the second part of the thesis dedicated to the last-mile delivery

services, the discrete choice model can be refined by considering a multi-class

representation. Indeed in real life, customers perceive in different way the same

service utility according to their revenue or habits for example. The resulting

equilibrium where customers perceive the congestion differently, is challenging and

it will be interesting to investigate if the method of successive averages remains

efficient or there will be a need for an advanced method.

A second perspective related to the services pricing problem is to consider a

dynamic version where the provider optimises tariffs frequently, day by day, regard-

ing the occurrence of influencing events like big fluctuations in demand or services

capacities change. Moreover, the services pricing problem should also take into

account the influence of the competition. Indeed, the competition imposes to the

delivery company to offer attractive tariffs. In the same time, the company designs

services capacities in order to manage the congestion and remain attractive. Thus,

an approach for services design and pricing with competition will help the company

to find the most profitable strategy for capacities investments and market share.
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