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Short english abstract: This dissertation is dedicated to the study of the Thompson
Sampling (TS) algorithms designed to address the exploration-exploitation dilemma that
is inherent in sequential decision-making under uncertainty. As opposed to algorithms
based on the optimism-in-the-face-of-uncertainty (OFU) principle, where the exploration
is performed by selecting the most favorable model within the set of plausible one, TS
algorithms rely on randomization to enhance the exploration, and thus are much more
computationally efficient. We focus on linearly parametrized problems that allow for
continuous state-action spaces, namely the Linear Bandit (LB) problems and the Linear
Quadratic (LQ) control problems. We derive two novel analyses for the regret of TS
algorithms in those settings. While the obtained regret bound for LB is similar to previous
results, the proof sheds new light on the functioning of TS, and allows us to extend
the analysis to LQ problems. As a result, we prove the first regret bound for TS in
LQ, and show that the frequentist regret is of order O(

√
T ) which matches the existing

guarantee for the regret of OFU algorithms in LQ. Finally, we propose an application of
exploration-exploitation techniques to the practical problem of portfolio construction, and
discuss the need for active exploration in this setting.

Titre en français : Thompson Sampling pour l’exploration-exploitation dans les systèmes
linéaires.

Résumé court en français : Cette thèse est dédiée à l’étude du Thompson Sampling
(TS), une heuristique qui vise à surmonter le dilemme entre exploration et exploitation qui
est inhérent à tout processus décisionnel face à l’incertain. Contrairement aux algorithmes
issus de l’heuristique optimiste face à l’incertain (OFU), où l’exploration provient du choix
du modèle le plus favorable possible au vu de la connaissance accumulée, les algorithmes TS
introduisent de l’aléa dans le processus décisionnel en sélectionnant aléatoirement un modèle
plausible, ce qui les rend bien moins coûteux numériquement. Cette étude se concentre sur
les problèmes paramétriques linéaires, qui autorisent les espaces état-action continus (infinis),
en particulier les problèmes de Bandits Linéaires (LB) et les problèmes de contrôle Linéaire
et Quadratique (LQ). Nous proposons dans cette thèse de nouvelles analyses du regret des
algorithmes TS pour chacun de ces deux problèmes. Bien que notre démonstration pour
les LB garantisse une borne supérieure identique aux résultats préexistants, la structure
de la preuve offre une nouvelle vision du fonctionnement de l’algorithme TS, et nous
permet d’étendre cette analyse aux problèmes LQ. Nous démontrons la première borne
supérieure pour le regret de l’algorithme TS dans les problèmes LQ, qui garantie dans le
cadre fréquentiste un regret au plus d’ordre O(

√
T ). Enfin, nous proposons une application

des méthodes d’exploration-exploitation pour les problèmes d’optimisation de portefeuille,
et discutons dans ce cadre le besoin ou non d’explorer activement.

Key words: machine learning, decision-making, algorithm, thompson sampling, multi-armed
bandit, linear bandit, linear quadratic control, reinforcement learning.

Mots clés: apprentissage automatique, processus décisionnel, algorithme, thompson sampling,
bandit multi-bras, bandit linéaire, contrôle linéaire quadratique, apprentissage par renforcement.
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Chapter 1

Introduction

This dissertation is dedicated to the study of Thompson Sampling algorithms, designed
to address the exploration-exploitation dilemma that is inherent in sequential decision-
making under uncertainty. Sequential decision-making is a complex and general process
that consists in selecting a sequence of actions in order to achieve a task. Consider
for instance the parking problem, where a driver (the agent) wants to park: each time
the driver sees an available spot, it balances between parking immediately or waiting
for another spot closer to its destination, running the risk of finding none and turning
back. When the agent does not have the complete knowledge of its environment (e.g.,
the number of available parking spots), the agent has to deal with the uncertainty
about the outcomes of its actions and adapts its decisions to its observations i.e., the
empirical knowledge accumulated during the decision process. Therefore, the learning
agent faces a dilemma between exploring (go further see whether there is any available
spot) and exploiting (there was few available spots so far, it seems unlikely to find
one further, park now). How to build intelligent agents that properly address this
trade-off is one of the major goals of Artificial Intelligence, and is at the heart of
Reinforcement Learning (RL). In RL, each time the agent selects an action, it receives
a reward generated in an unknown fashion, and aims at cumulating as much reward
as possible. While a large number of methods have been proposed so far to deal
with the exploration-exploitation trade-off, two main principles emerged as the most
effective and flexible solution to this problem: the optimism-in-the-face-uncertainty
(OFU) and the Thompson sampling (TS). The former consists in selecting action that
seems the more rewarding in the most favorable environment that is coherent with
observations so far, while the latter introduces randomness in the way actions are
chosen to enhance the exploration of the unknown environment with respect to the
objective. The OFU principle has been intensively investigated in the last decades and
led to the celebrated family of Upper Confidence Bound (UCB) algorithms, for which
theoretical guarantees have been provided. TS is an old principle based upon Bayesian
ideas, that has recently attracted lot of consideration because of its impressive empirical
performances. However, theoretical guarantees for TS algorithms are still limited.
Despite the success of RL in numerous domains, one of its main limitations is that the
action and/or the state spaces are usually assumed to be finite (and of small cardinality)
whereas real-world applications often deal with infinite (or large) state-action spaces.
In order to overcome this limitation, a natural approach is to consider parametrized
systems with continuous state-action spaces. However, this makes the control and the
learning problems significantly harder. To this end, linearly parametrized systems are
of major interest as they remain tractable but reflect the key difficulties in designing
and studying exploration-exploitation algorithms for continuous state-action spaces
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settings. Additionally, they consist in robust, yet flexible models and thus are widely
used in practice.

In this thesis, we analyse TS algorithms for the Linear Bandit (LB) problem and
the Linear Quadratic (LQ) control problem. LB is a natural extension of the celebrated
Multi-Armed Bandit (MAB) framework, where an agent has to sequentially select actions
from an infinite set, at each round, and receives a reward that is randomly generated
independently from the previous rounds, according to a linear model. Formally, the
reward function is a noisy linear mapping between the action and an unknown parameter.
One of the main limitations of the LB setting is that it cannot model problems where
the environment is affected by the actions chosen by the agent over time. For such
systems, one has to consider the environment’s dynamics that makes both the learning
and the control problems harder. LQ is a specific instance of Markov Decision Processes
(MDP) with infinite state-action spaces, that assumes the dynamics to be linear in
the state (which characterizes the system) and the action (chosen by the agent), and
where the reward function is quadratic. LQ is a standard in control theory and offer
the advantage of having explicit solutions for the optimal policy (i.e., the mapping from
observations to actions) when the dynamics and the reward model are known.

Contents
1.1 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline and contributions . . . . . . . . . . . . . . . . . . . . . 4

1.1 Our approach
The original motivation of this thesis lies in addressing the dynamical portfolio allocation
problem, where the dynamics of the market exhibit both return predictability i.e, the
fact that traders have “views” on the future prices’ movements, and price impact i.e.,
the fact that the trading orders affect the prices in an adverse way. When the volume of
the transactions is large compared to the available liquidity, the execution of such orders
drastically changes the supply and demand, and thus the prices. Moreover, empirical
studies suggest that this effect is dynamical, i.e., that the market has memory of past
trades and digest them slowly. While the objective is not to construct a complete and
functional trading robot, we consider this use-case as a tool that helps us highlighting
the practical issues that arise when constructing autonomous agent, and address them
theoretically.
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In the concrete example of portfolio allocation, the challenges are numerous:

1. The dynamical nature of both the return predictability and the price impact
effects requires one to use dynamic programming techniques in order to compute
the optimal allocation. Moreover, the problem is intrinsically characterized by a
large or a continuous state-action space: at short timescales (e.g., high-frequency
trading), the prices and the traded volumes are discrete with fine-mesh that
induces a very large state-action space; for longer horizons and larger volumes
(e.g., asset management), the state-action space becomes so huge that both are
usually modeled as continuous variables.

2. By nature, the dynamics of the financial market are unknown and have to be
estimated. Moreover, to observe the price impact effects, the learner has to trade
in a so-called bandit feedback scenario since it does not have access to the other
participants’ actions, and only observes the outcomes of its own decisions. This
implies that one has to consider the online learning setting, where the task (i.e.,
the trading process) and the estimation are performed simultaneously.

3. Finally, for practical applications, it is of crucial importance that the models and
the methods be robust (e.g., that two similar problems have similar solutions and
performances) and tractable (i.e., computationally efficient).

We address the first point by considering parametrized systems, which can handle
continuous state-action spaces. Nevertheless, this usually makes the control problem
hard or impossible to solve. We overcome this issue showing that one can cast the
portfolio optimization problem into a Linear Quadratic control problem for which closed-
form solutions have been derived when the parameters of the dynamics are known.
This reformulation can be performed for any linear Markovian market model and thus
encompasses numbers of econometric models used in the industry. Then, we consider
online learning procedures for generic LQ systems that would allow us to perform the
control and the estimation jointly. To tackle the exploration-exploitation trade-off,
algorithms have been derived from the two popular principles that are optimism-in-the-
face-of-uncertainty and Thompson sampling. While the optimistic instance has been
recently proved to suffer a low regret (i.e., have good performance), the computational
cost of this strategy is prohibitive in this setting. Indeed, it requires at each policy
re-evaluation to solve a non-convex, high-dimensional, optimization problem. On the
other hand, TS stands as a good candidate to maintain tractability since it just requires
a random sampling at each time step. Unfortunately, limited theoretical guarantee has
been provided for this strategy which motivates our theoretical analysis for TS in LQ.
However, the existing analysis for TS sampling in the simpler Linear Bandit setting
(that does not take into account the dynamical effects) cannot be extended to LQ,
mostly because of the structure of the proof. In particular, the analysis requires that
the performance associated with any action under any parametrization concentrates as
soon as the parameter concentrates around the true one. Unfortunately, while in LB the
performance is well defined for every actions under any parametrization, it is no longer
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the case in LQ where this performance can diverge to −∞ and thus the concentration
property does not hold. To this end, we derive an alternative analysis for TS in LB
that does not rely on this property and thus that can be extended to LQ. Moreover, it
provides some intuitions about the functioning of the TS algorithm, that we leverage
together with the existing proof for the optimistic algorithm in LQ to guarantee the
first regret bound for TS in LQ.

1.2 Outline and contributions
In this section, we give an outline of the thesis and summarize the contributions.

Chapter 2: Exploration-Exploitation Dilemma in Sequential Decision-
Making
The objective of this chapter is to introduce the concept of exploration-exploitation,

present the state-of-the-art and the material that we need for the analyses of Ch. 3 and 4.
We first introduce the exploration-exploitation dilemma in the well-known Multi-Armed
Bandit setting, explaining the challenges that the learner faces and presenting the two
most popular principles to address this issue, based respectively on optimism-in-face-
of-uncertainty and Thompson sampling. Then, we present two extensions, namely the
Linear Bandit problem and the Linear Quadratic control problem, that address the
main limitations of MAB, i.e., the finite action space and the independency between
rounds. We present algorithms based on the two principles in those frameworks and
recall the available regret guarantees.

Chapter 3: Thompson Sampling in Linear Bandit
We derive an alternative proof for the regret of Thompson sampling (TS) in the

stochastic linear bandit setting, where the reward is linear in the chosen arm (the
selected action) according to an unknown parameter. While we obtain a regret bound
of order Õ(d3/2

√
T ) as in previous results, the proof sheds new light on the functioning

of the TS. We leverage the structure of the problem to show how the regret is related
to the sensitivity (i.e., the gradient) of the objective function and how selecting optimal
arms associated to optimistic parameters does control it. Thus, we show that TS can
be seen as a generic randomized algorithm where the sampling distribution is designed
to have a fixed probability of being optimistic, at the cost of an additional

√
d regret

factor compared to a UCB-like approach. Furthermore, we show that our proof can be
readily applied to regularized linear optimization and generalized linear model problems
for which we prove the first Õ(

√
T ) regret bound for the TS algorithm.

Chapter 4: Thompson Sampling in Linear Quadratic System
We consider the exploration-exploitation trade-off in Linear Quadratic control prob-

lems, where the state dynamics is linear and the cost function is quadratic in the state
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and control. We analyze the regret of TS (a.k.a. posterior-sampling for reinforcement
learning) in the frequentist setting, i.e., when the parameters characterizing the LQ
dynamics are fixed. Despite the empirical and theoretical success in a wide range of prob-
lems from MAB to LB, extending those results to the LQ setting is highly challenging:
1) the standard line of proof that relies on classifying arms into saturated/unsaturated
pool cannot be applied here as their associated optimal value could be infinite; 2) the
TS functioning requires frequent policy updates, which is in contrast with the usual
lazy update scheme used in most RL algorithm. As a consequence, it raises the issue of
bounding the gap in the optimal value at the policy switches.
We prove that TS achieves a Õ(

√
T ) regret, thus matching the performance of the OFU

approach and confirming the conjecture of Osband and Van Roy (2016). We address
the first point leveraging the ideas introduced in Ch. 3, stressing the link between the
actual actions chosen by TS and the gradient of the optimal value function. We exhibit
the need to trade-off the frequency of sampling optimistic parameters and the frequency
of switches in the control policy, and show that lazy update schemes induce at best an
overall regret of O(T 2/3). Finally, we derive a novel bound on the regret due to policy
switches, thus allowing to update parameters and the policy at each step and overcome
the limitations due to lazy updates.

Chapter 5: Application to Portfolio Construction
We propose an application of exploration-exploitation strategies for the concrete

example of optimal portfolio allocation under price impact. We introduce a novel
LQ formulation for the portfolio allocation problem, under the assumption of linear
price dynamics, from which we obtain the optimal control and discuss the exploration-
exploitation trade-off arising from the presence of unknown parameters. We consider
two problem instances with or without risk constraint and show that this affects the
need for exploration. In the unconstrained case, a greedy strategy fails to achieve
sub-linear regret, while Thompson Sampling or optimism-based algorithms effectively
trade-off exploration and exploitation. On the other hand, the risk constraint modifies
the structure of the policy, removing somehow the need for active exploration, and a
greedy strategy is optimal. We discuss this counter-intuitive result and support it with
numerical experiments.

Chapter 6: Summary and Future Work
We summarize the dissertation and discuss some directions for future research.





Chapter 2

Exploration-Exploitation Dilemma
in Sequential Decision-Making

The objective of this chapter is to introduce the exploration-exploitation trade-off
which is at the core of our work and is a standard problem in decision-making. We
present the state-of-the-art methods and results and the material that we need for the
analyses of Ch. 3 and 4. We first introduce the exploration-exploitation dilemma in
the well-known Multi-Armed Bandit (MAB) setting, explaining the challenges that the
learner faces and presenting the two most popular principles to address this issue, based
respectively on optimism-in-face-of-uncertainty and randomness. Then, we present
two extensions, namely the Linear Bandit (LB) problem and the Linear Quadratic
(LQ) control problem, that address the main limitations of MAB, i.e., the finite action
space and the independency between rounds. LB is a natural extension of MAB with
continuous action space, where the reward depends linearly on an unknown parameter
and the chosen arm. Despite the fact that the action set is allowed to change with time
(in the contextual setting), it cannot be affected by the actions chosen by the learner.
On the other hand, Markov Decision Processes allow the system to be dynamically
affected by the actions, and thus overcome this limitation. However, it usually assumes
the state-action space to be finite. To this end, LQ stands as a powerful framework to
extend the MDP model to continuous state-action spaces, while imposing the dynamic
of the system to be linearly parametrized. We present algorithms based on the two
principles in those frameworks and recall the available regret guarantees.

Contents
2.1 The multi-armed bandit problem . . . . . . . . . . . . . . . . . 7

2.2 The linear bandit problem . . . . . . . . . . . . . . . . . . . . . 16

2.3 Markov decision processes and linear quadratic control . . . 20

2.1 The multi-armed bandit problem
The Multi-Armed Bandit (MAB) problem is a sequential decision-making problem where
an agent chooses at each time step an action to play and it receives a reward drawn
from an unknown distribution. The aim of the agent is to maximize the cumulative
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reward, i.e., the global payoff received from the chosen sequence of actions. The name
Multi-Armed Bandit comes from the problem instance where a gambler (agent) faces
multiple slot machines (one-armed bandits) with different unknown reward distributions
and has to sequentially decide which machine (arm) to play. MAB problems have been
originally introduced to study the problem of clinical trials (which treatment to use
on patients suffering from the same disease) and is now used in a large number of
applications (see e.g., Bubeck and Cesa-Bianchi 2012) such as allocation in finance,
web-advertisement, routing etc... From a theoretical perspective, its popularity is due to
the fact that it offers a simple framework to study the exploration-exploitation dilemma
that is inherent of sequential decision making in unknown environment, where the agent
balances between selecting highly rewarding actions based on the knowledge acquired
so far, and playing poorly estimated actions (with potential low reward) to enhance
his knowledge and select better actions in the future. This allocation problem had
been extensively studied in statistics and became a standard in Reinforcement Learning
(RL). In this section, we present the MAB setting and the challenges induced by the
exploration-exploitation trade-off, the main principles used to tackle this issue and the
algorithms that have been derived from those principles together with their theoretical
guarantees.

2.1.1 Setting and challenges
We consider the stochastic MAB setting (see e.g., Bubeck and Cesa-Bianchi 2012,
Agrawal 1995, Auer et al. 2002a) where an agent selects at each time step t = 1, 2, . . .
one arm (action) It from a finite set of K arms i.e., It ∈ {1, . . . , K}. Each arm i is
associated with a distribution νi of mean µi so that when the agent plays arm It, it
receives a rewardXIt randomly generated (independently from the past) according to νIt .

Setting. The objective of the agent is to select a sequence of arms (I1, I2, . . . ) to
maximize the associated cumulative reward. Denoting the optimal arm and optimal
average reward as

i? ∈ argmax
i=1,...,K

µi and µ? = max
i=1,...,K

µi,

the equivalent objective is to minimize the regret of the strategy i.e., the difference
between the optimal reward that would have been collected playing arm i? at each time
step and the reward actually collected. Formally, we consider the expected sudo-regret
defined as

Rn = nµ? − E
(

n∑
t=1

µIt

)
,

where n is the total number of rounds. The expectation is taken w.r.t. any randomization
in the choice of the sequence of arms. Finally, introducing Ti(t) = ∑t

s=1 1{Is = i}
the number of times the agent selected arm i up to time t, and ∆i = µ? − µi the
sub-optimality gap between arm i and i?, it is possible to re-write the pseudo-regret as

Rn = µ?
K∑
i=1

E
(
Ti(n)

)
− E

(
K∑
i=1

Ti(n)µi
)

=
K∑
i=1

∆iE
(
Ti(n)

)
. (2.1)
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The agent does not know about the reward distributions {νi}i=1,...,K , and hence
does not know about the average rewards {µi}i=1,...,K , but collects knowledge about
their value by observing the sequence of reward (XI1 , XI2 , . . . ) generated by its
own sequence of actions (I1, I2, . . . ). As a result, the agent faces an exploration-
exploitation trade-off, where it balances between playing the most rewarding arm
given its current knowledge to minimize its instantaneous regret, and playing badly es-
timated arms to collect information that would help it to improve its future performance.

Lower bound. Before introducing the main strategies used to tackle the exploration-
exploitation trade-off in the MAB problem, we highlight the inherent difficulty of
this sequential decision making problem, by recalling the existing lower-bounds. In
the parametric case where νi = νi(θ?i ) are function of a unknown parameter θ? =
(θ?1, . . . , θ?K) ∈ Θ, under mild assumptions on the set of parameter Θ, one has:

Theorem 2.1.1 (Lai and Robbins (1985)). For any adaptive strategy whose regret
satisfies, for each θ ∈ Θ, the condition that as n→∞,

Rn(θ) = o(na) for every a > 0, (2.2)

one has that for any θ ∈ Θ,

lim inf
n→∞

Rn(θ)
log(n) ≥

∑
i 6=i?

∆i

KL(νi||νi?)
, (2.3)

where KL(νi||νj) =
∫∞
−∞ νi(x) log νi(x)

νj(x)dx is the Kullback-Leibler divergence.

Amongst the set of consistent strategies i.e., allocation rules satisfying Eq. 2.2,
Thm. 2.1.1 guarantees that the regret scales at best as Ω(log n): from Eq. 2.1, it implies
that an optimal strategy must select sub-optimal arms at most log n times. Additionally,
Thm. 2.1.1 provides us with the optimal problem dependent constant that is function
of the unknown distributions {νi}i=1,...,K . To gain intuition about this result, consider
the problem instance where rewards are generated according to Bernoulli distributions
with parameters (µ1, . . . , µK) ∈ [0, 1]K pairwise disjoint (µi 6= µj for any i 6= j) and
suppose that µ? = 1/2 for sake of simplicity. Then, for all i 6= i?, the Kullback-Leibler
divergence can be lower and upper bounded as

2
(
∆i

)2
≤ KL(νi||νi?) ≤ 4

(
∆i

)2
,

and thus the constant in Eq. 2.3 scales as ∑i 6=i?
1

∆i
.

Finally, a non-asymptotic minimax lower bound (see e.g., Cesa-Bianchi and Lugosi
2006), i.e., a problem-independent regret bound is given by the following theorem:

Theorem 2.1.2. Let supν denote the supremum over all distribution of rewards (i.e.,
over the MAB problem instances), and let infalgo denote the infimum over any adaptive
strategy. Then,

inf
algo

sup
ν
Rn = Ω

(√
nK

)
. (2.4)
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2.1.2 Heuristics
In this subsection, we introduce and illustrate the two main principles that address
the exploration-exploitation in MAB in particular and in RL in general, namely the
optimism in face of uncertainty that leads to the celebrated Upper Confidence Bound
(UCB) algorithms, and the Thompson Sampling that relies on randomization to enhance
the exploration.
To highlight the difficulty of the problem, we first describe the behavior of a naive
strategy that is known to suffer linear regret, where the choice of It is made greedily
given the current estimates of {νi}i=1,...,K . First, notice that at time step t ≤ n, given
the sequence of arms (I1, . . . , It−1) selected so far, the learner observed the sequence of
associated rewards (XI1,1, . . . , XIt−1,t−1) where Xi,s is randomly drawn from νi at time
step s independently from the past. Thus, for each arm i, it can compute the empirical
estimate µ̂ti of the mean µi as

µ̂ti = 1
Ti(t− 1)

t−1∑
s=1

Xi,s1{i = Is}, for all i = 1, . . . , K. (2.5)

The greedy strategy then consists in selecting the arm as

It = argmax
i=1,...,K

µ̂ti.

As claimed above, this strategy is known to fail, as the algorithm can be stuck in a
configuration where it keeps on selecting a sub-optimal arm. Consider for instance
the 2-armed case where i? = 1 and suppose that, at some time step t, due to the
randomness of the rewards, µ̂1,t < µ̂2,t. Then, the algorithm will pick arm 2, improving
the accuracy of µ̂2,t but leaving µ̂1,t unchanged. Thus, it may persistently pull arm 2,
which unfortunately is the sub-optimal arm. We illustrate this configuration in Fig. 2.1.
This sub-optimal behavior comes from the fact that the accuracy of the estimation is
only improved over chosen arms, which speaks in favor of adjusting the score of arms
w.r.t. the number of pull, or alternatively of adding some random perturbation to force
the exploration over badly estimated arms.
Leveraging this intuition, optimistic algorithms no longer select the arm with the
maximum empirical average but the one with the maximum adjusted empirical average
as

It = argmax
i=1,...,K

[
µ̂ti +Bi,t

]
,

where Bi,t is the exploration bonus that quantifies how often arm i has been pulled up
to time t. Since the agent still wants to take advantage of the accumulated knowledge,
Bi,t is designed to be an upper-bound for µi i.e., such that µi ∈ [µ̂ti−Bi,t, µ̂

t
i +Bi,t] with

high probability, which explains the Upper Confidence Bound (UCB) name for this class
of algorithms. As a result, such method overcomes the difficulty faced by the greedy
strategy, as illustrated in Fig. 2.2, where we consider the same initial configuration as
the one of Fig. 2.1.
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Figure 2.1 – Illustration of the functioning of the greedy strategy. Left: at time step t, the
empirical means µ̂t1 and µ̂t2 are computed and deviate from the true means µ1 and µ2 due
to the lack of accuracy of the estimation (the black segments represent the h.p. confidence
intervals). Here, µ̂t2 ≥ µ̂t1 so the greedy strategy selects the sub-optimal arm 2. Center:
The agent observes a reward for arm 2 randomly generated according to ν2. Thus, µ̂2 is
re-evaluated and its accuracy improves while µ̂1 are left unchanged. As a result, arm 2 is
selected once again. Right: The greedy strategy keeps on selecting arm 2, improving the
accuracy of its estimate, but is never able to discriminate that µ1 ≥ µ2, and thus is persistently
sub-optimal.
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Figure 2.2 – Illustration of the functioning of the optimistic strategy. Left: The agent
associates an optimistic score to each arm by adjusting the empirical means µ̂t(1,2) with a
bonus B(1,2),t which is designed so that the score corresponds to the upper bound of the
confidence interval (black segment). In this configuration, arm 2 is selected. Center: A reward
is generated for arm 2, and its empirical mean and upper bound are re-evaluated while the
one of arm 1 are left unchanged. As a result, the score of arm 1 is significantly boosted by
the bonus B1,t+1 compared to arm 2, and despite the fact that µ̂t+1

2 ≥ µ̂t+1
1 , arm 1 is selected.

Right: Similarly, a reward is generated for arm 1, and its empirical mean and upper bound
are re-evaluated while the one of arm 2 are left unchanged. Improving the accuracy of the
estimation implies that µ̂t+2

1 gets closer to µ1 (and hence higher) so that arm 1 gets the best
score and is selected by the optimistic strategy.
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Finally, another principle, named Thompson Sampling (TS), is built on Bayesian
ideas where one assumes a prior over the average reward µi’s and maintains this
distribution as new data are collected. Then, a prediction µ̃i is sample for each arm i

according to the posterior and the arm is selected as
It = argmax

i=1,...,K
µ̃ti.

The original idea dates back from Thompson (1933) and has attracted considerable
attention recently because of the impressive empirical performance of TS (see
e.g., Chapelle and Li 2011). Furthermore, despite the Bayesian construction of this
method, TS has also been shown to perform well in the frequentist setting, where
parameters of the reward distribution of every arms are fixed, though unknown,
implying that TS can be seen as a randomized algorithm and that the prior assumption
only acts as a convenient tool to derive the sampling distribution. The underlying idea
is that the posterior plays the role of the high-probability confidence interval of UCB
i.e., w.h.p. µ̃i ∈ [µ̂ti −Bi,t, µ̂

t
i +Bi,t], so TS can be seen as a randomized counterpart of

UCB and hence avoids getting trapped in bad decisions. This point of view is somehow
in contrast with the original Bayesian construction of TS and is at the core of our new
analysis for TS in LB (see Ch. 3).

2.1.3 Algorithms and theoretical guarantees
We now present the main algorithms that had been derived from those heuristics and
provide their associated theoretical guarantees. We first present the seminal UCB1
algorithm of Auer et al. (2002a) and its extensions UCB-V and KL-UCB introduced
respectively by Audibert et al. (2007) and Cappé et al. (2013), Maillard et al. (2011).
Then, we present two instances of TS algorithms with Bernoulli and arbitrary reward
distributions respectively.

UCB algorithms. The UCB algorithm of Auer et al. (2002a) is based on the index

µ̂ti +
√

2 log t
Ti(t− 1) for each arm i = 1, . . . , K,

where
√

2 log t
Ti(t−1) plays the role of the exploration bonus Bi,t. This is motivated by the

Chernoff-Hoeffding’s inequality which ensures that

P
(
µ̂i,t +

√
2 log t
Ti(t− 1) ≤ µi

)
≤ 1
t4
, for all i = 1, . . . , K.

As a consequence, each index is an upper bound of the true means with high-probability.
We report the formal algorithm in Fig. 2.3.
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Initialization: Play each arm once, store the rewards in X = (X1,1, . . . , XK,1) and set
Ti = 1 for all i = 1, . . . ,K

1: for t = {1, . . . , n} do
2: Compute µ̂ti according to Eq. 2.5 for all i = 1, . . . ,K
3: Play arm It = argmaxi µ̂ti +

√
2 log t
Ti

4: Receive reward XIt,t

5: Update TIt = TIt + 1 and X = (X,XIt,t)
6: end for

Figure 2.3 – UCB1 algorithm for the MAB problem with K arms.

Auer et al. (2002a) guarantee the following expected regret bound for the UCB1
algorithm:

Theorem 2.1.3. For all K > 1, if policy UCB1 is run on the MAB problem with K
arms, with arbitrary reward distributions ν1, . . . , νK with support in [0, 1], its expected
regret over n steps is at most

Rn ≤ 8 log(n)
∑
i 6=i?

1
∆i

+
(
1 + π2/3

) ∑
i 6=i?

∆i.

The derivation of UCB1 relies on the Chernoff-Hoeffding’s inequality which does
not take into account the higher moments of the distributions but the empirical average
only. To refine this result, Audibert et al. (2007) introduced a variant named UCB-V
which takes into account the empirical variance and is based on a more advanced
concentration inequality, namely an empirical version of the Bernstein’s inequality
instead of Hoeffding’s. Formally, the arm selection is made as

It = argmax
i=1,...,K

µ̂ti +

√√√√2V t
i log(t)

Ti(t− 1) + 3 log(t)
Ti(t− 1)

 ,
where V t

i is the empirical variance of arm i at time t. They show that the regret of
UCB-V is bounded as

Rn ≤ 10 log(n)
∑
i 6=i?

(σ2
i

∆i

+ 2
)
,

where σ2
i is the variance of the distribution of arm i. This is a major improvement over

Thm. 2.1.3 since it reflects the fact that an arm with low variance is easy to estimate
and thus does not contribute much in the regret. Refining further this result, Cappé
et al. (2013) and Maillard et al. (2011) introduced the KL-UCB algorithm using the
Kullback-Leibler divergence kl(p, q) of two Bernoulli distributions with parameter p
and q. Formally, one has:

kl(p, q) = p log p
q

+ (1− p) log 1− p
1− q ,
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and the arms are selected according to the index

ui(t) = max
q

{
q ∈

]
µ̂ti, 1

]
: kl(µ̂ti, q) ≤

log t
Ti(t− 1)

}

and It = argmax
i=1,...,K

ui(t). They show that the regret suffered by KL-UCB is bounded as

Rn ≤ log(n)
∑
i 6=i?

∆i

kl(µi, µ?)
+O

(√
log n

)
,

which implies that KL-UCB is asymptotically optimal as it matches the lower bound in
Thm. 2.1.1.

TS algorithms. In order to provide intuition about the functioning of the Thomp-
son Sampling algorithm, we first introduce it for the Bernoulli bandit problem of Chapelle
and Li (2011) i.e., we assume that the reward distributions νi’s are Bernoulli with un-
known parameters µi’s. In this setting, the beta distribution stands as a convenient tool,
since this distribution is a conjugate prior w.r.t. the Bernoulli distribution. Formally,
we denote as Beta(α, β) the beta distribution with parameters α > 0, β > 0, whose pdf
is given by

f(x;α, β) = Γ(α + β)
Γ(α)Γ(β)x

α−1(1− x)β−1.

When the prior over the reward distribution is Beta(α, β), after observing a Bernoulli
trial, its posterior is simply Beta(α + 1, β) if the trial is a success, or Beta(α, β + 1)
if the trial is a failure. Agrawal and Goyal (2012a) propose a specific instance of
TS, where it is initially assumed that arm i has a prior Beta(1, 1) over µi (which
corresponds to the uniform distribution over [0, 1]), and maintain this distribution as
Beta(Si(t) + 1, Fi(t) + 1) where Si(t) and Fi(t) are respectively the number of success
(Xi = 1) and failure (Xi = 0) of arm i observed so far. Then, the algorithm randomly
samples from these posteriors and plays the arm with the largest sample mean. The
algorithm in summarized in Fig. 2.4.

Initialization: For each arm i = 1, . . . ,K, set Si = 0 and Fi = 0
1: for t = {1, . . . , n} do
2: For each arm i = 1, . . . ,K, sample µ̃i(t) ∼ Beta(Si + 1, Fi + 1)
3: Play arm It = argmaxi µ̃i(t)
4: Receive reward XIt,t

5: If XIt,t = 1, update SIt = SIt + 1, else update FIt = FIt + 1
6: end for

Figure 2.4 – Thompson Sampling for Bernoulli Bandits.

When the reward distributions are not Bernoulli, Agrawal and Goyal (2012a) propose
an extension of this algorithm based on Bernoulli trials: after observing a reward
Xi,t ∈ [0, 1] that is generated from an arbitrary distribution, the algorithm performs a
Bernoulli trial with probability of success Xi,t, and updates the quantities Si(t) and
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Initialization: For each arm i = 1, . . . ,K, set Si = 0 and Fi = 0
1: for t = {1, . . . , n} do
2: For each arm i = 1, . . . ,K, sample µ̃i(t) from Beta(Si + 1, Fi + 1)
3: Play arm It = argmaxi µ̃i(t) and receive reward XIt,t

4: Perform a Bernoulli trial with success probability XIt,t and observe output X̃t

5: If X̃t = 1, update SIt = SIt + 1, else update FIt = FIt + 1
6: end for

Figure 2.5 – Thompson Sampling for general MAB problem

Fi(t) depending on whether this Bernoulli trial is a success or a failure. We summarize
the algorithm in Fig. 2.5.

Agrawal and Goyal (2012a) proved the following guarantee:

Theorem 2.1.4. The regret of the TS algorithm in Fig 2.5 is bounded w.h.p. as

Rn ≤ O

(∑
i 6=i?

1
∆2
i

)2

log n
 .

The bound in Thm. 2.1.4 is optimal w.r.t. the dependency on n, but sub-optimal
w.r.t. the dependency on ∆i in the constant. To overcome this, Kaufmann et al. (2012)
derive a Bayes-UCB algorithm for Bernoulli rewards, which uses both the idea of UCB
and TS, that achieves the lower bound of Lai and Robbins (1985). Further, Korda et al.
(2013) study an instance of TS wih Jeffreys prior, and show that the induced algorithm
has a regret bounded by O

(∑
i 6=i?

∆i

KL(νi||νi? ) log n
)
, thus is asymptotically optimal, when

the reward distributions νi’s belong to a 1−dimensional canonical exponential family.
Finally, Agrawal and Goyal (2013) prove a O(

√
nK log(n)) problem-independent regret

bound for TS in MAB, that is near-optimal w.r.t. the problem-independent lower
bound in Eq. 2.4, up to a factor log(n).

2.1.4 Extensions
The ability of the MAB problem to encode in a simple framework the hardness of the
exploration-exploitation dilemma explains its popularity, and numerous variants and
extensions have been studied over the last decade. For instance, while we focused in this
section on the stochastic MAB problem, its adversarial counterpart have been studied
by Bubeck and Cesa-Bianchi (2012) and Auer et al. (2002b), where the rewards are no
longer assumed to be stochastic but chosen by an oblivious adversary. On the other
hand, TS has also been studied in the Bayesian setting, where the parameters of the
reward distributions are assumed to be generated from a true, yet unknown prior, and
the regret is measured in average w.r.t. this prior (Bubeck and Liu, 2013). Further,
enriching the structure of the rewards, May et al. (2012) considered the contextual
bandit problem, where the reward is function of the action It and a context xt. Russo
et al. (2017) address the discounted regret to take into account time preference when
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the optimal action is costly to learn compared to near-optimal actions and propose
a variation of the TS algorithm in this setting. Finally, despite existing results for
the MAB problem with more arms than the possible number of rounds i.e., K � n

(Wang et al., 2009), the main limitation of this framework is that the number of arms
is finite, thus the action space cannot be continuous. This motivates one of the major
extension, the Linear Bandit (LB) problem, where the action set is embedded in Rd and
the reward is a noisy linear combination between the action and an unknown parameter.
We present the LB problem in the next section.

2.2 The linear bandit problem

Despite the richness of the MAB framework and the flexibility of the model that allows
very different reward distributions, one of its major limitation is its inability to model
problems where the number of arms is infinite e.g., when the arm set is embedded in
Rd: without any further assumption on the problem, the lower bound of Eq. 2.3 clearly
states that the regret would grow infinite (both because of infinite elements in the sum
and because ∆→ 0). To address this issue, Dani et al. (2008) formalized the Linear
Bandit (LB) extension, that was introduced by Auer et al. (2002a), where the arms
are vector of Rd and the payoff is a noisy and unknown linear function of the arm.
Given this additional structure, they derived an optimistic algorithm that relies on
least square estimation but shares the same structure as UCB. Further, Li et al. (2010)
propose the LinUCB algorithm that uses tighter confidence bounds and has been proved
later by Abbasi-Yadkori et al. (2011b). To do so, they introduce a new concentration
inequality for the least square estimates which allows them to improve the regret bound
of Dani et al. (2008) (see Abbasi-Yadkori et al. 2011a) since, as hinted in Sec. 2.1, the
performance of optimistic algorithms are determined by the tightness of the confidence
bounds. Similarly, a TS algorithm can be derived for the LB problem which has been
shown to offer very good empirical performance. Agrawal and Goyal (2012b) provided
the first regret analysis for the LB problem, and showed that up to a factor

√
d, the

TS algorithm offers the same performance as the UCB-like algorithm. We present
here the LB setting and the least square concentration inequality, and provide the two
algorithms together with their theoretical regret bounds.

2.2.1 Setting

We consider the stochastic linear bandit extension of Dani et al. (2008). Let X ⊂ Rd

be an arbitrary (finite or infinite) bounded set of arms. When an arm x ∈ X is pulled,
a reward is generated as

r(x) = xTθ? + ξ,

where θ? ∈ Rd is a fixed but unknown parameter and ξ is a zero-mean noise. An arm
x ∈ X is evaluated according to its expected reward xTθ? and for any θ ∈ Rd we denote
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the optimal arm and its value by

x?(θ) = arg max
x∈X

xTθ, J(θ) = sup
x∈X

xTθ.

Then x? = x?(θ?) is the optimal arm for θ? and J(θ?) is its optimal value. At each
step t, the learner selects an arm xt ∈ X based on the past observations (and possibly
additional randomization), it observes the reward rt+1 = xT

t θ
? + ξt+1, and it suffers

a regret equal to the difference in expected reward between the optimal arm x? and
the arm xt. All the information observed up to time t is encoded in the filtration
Ft = (F1, σ(x1, r2, . . . , rt, xt)), where F1 contains any prior knowledge. The objective
of the learner is to minimize the cumulative regret up to step T , i.e.,

R(T ) =
T∑
t=1

(
x?,Tθ? − xT

t θ
?
)
.

2.2.2 RLS estimation
The stochastic LB problem is characterized by bandit feedback, in the sense that
the learner only observes the rewards without any additional information about the
components of θ?. However, an estimate θ̂t can be computed at each time step using
the standard least square procedure. Formally, let (x1, . . . , xt) ∈ X t be a sequence of
arms chosen so far and (r2, . . . , rt+1) be the corresponding rewards, then θ? can be
estimated by regularized least-squares (RLS). For any regularization parameter λ ∈ R+,
the design matrix and the RLS estimate are defined as

Vt = λI +
t−1∑
s=1

xsx
T
s , θ̂t = V −1

t

t−1∑
s=1

xsrs+1.

One of the many advantages of the RLS is that it offers strong theoretical guarantees.
Leveraging the theory of self-normalized processes (see De La Pena et al. 2009), Abbasi-
Yadkori et al. (2011b) derived a new concentration inequality for the RLS estimate.
Notice that the analysis in the online setting is non-trivial because of the correlations
between the data points (the covariates xt’s are chosen by the learner based on his
knowledge and thus mutually dependent). Formally, they show the following result:

Proposition 2.2.1 (Thm. 8 in (Abbasi-Yadkori et al., 2011b)). Assume that the noise
sequence {ξt+1}t≥1 is a Ft-martingale difference sequence, conditionally subgaussian
with constant R. Then, for any δ ∈ (0, 1), for any Ft-adapted sequence (x1, . . . , xt), the
RLS estimator θ̂t is such that for any fixed t ≥ 1,

‖θ̂t − θ?‖Vt ≤ βt(δ)

w.p. 1− δ (w.r.t. the noise {ξt}t and any source of randomization in the choice of the
arms), with

βt(δ) = R

√
2 log (λ+ tX2)d/2λ−d/2

δ
+
√
λS.

where X and S are constants such that ‖x‖ ≤ X for all x ∈ X and ‖θ?‖ ≤ S.
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2.2.3 Algorithms and theoretical guarantees
As for the MAB framework, two type of algorithms can be derived from the optimistic
and random principles presented in Sec. 2.1. We first present the Optimism in Face
of Uncertainty for Linear bandit (OFUL) algorithm of Abbasi-Yadkori et al. (2011a)
which is a refined version of the ConfidenceBall algorithm of Dani et al. (2008), and
then present the TS algorithm for LB of Agrawal and Goyal (2012b) together with
their respective theoretical guarantees.

OFUL algorithm. According to the concentration inequality for RLS estimates,
one can defined a confidence ellipsoid ERLS

t at each time step as

ERLS
t =

{
θ ∈ Rd | ‖θ − θ̂t‖Vt ≤ βt(δ)

}
,

which is centered around θ̂t with orientation defined by Vt and radius βt(δ). Thus, with
high probability θ? ∈ ERLS

t so that ERLS
t plays the role of the confidence bound of the

UCB algorithm. Formally, the OFUL algorithm selects at each time step the optimistic
parameter

θ̃t = argmax
θ∈ERLS

t

J(θ),

and then chooses the optimal arm w.r.t. θ̃t as xt = x?(θ̃t). We summarize the algorithm
in Fig. 2.6.

Initialization: Set θ̂1 = 0 and V1 = λI

1: for t = {1, . . . , n} do
2: Define the confidence ellipsoid ERLS

t =
{
θ ∈ Rd | ‖θ − θ̂t‖Vt ≤ βt(δ)

}
3: Select the optimal parameter θ̃t = argmaxθ∈ERLS

t
J(θ)

4: Play the arm xt = x?(θ̃t) = argmaxx∈X xTθ̃t
5: Observe reward rt+1 = xT

t θ
? + ξt+1

6: Update the RLS estimate θ̂t+1 and design matrix Vt+1
7: end for

Figure 2.6 – OFUL algorithm.

Under the assumptions of Prop. 2.2.1, Abbasi-Yadkori et al. (2011a) proved the
following result:

Theorem 2.2.1. For any 0 < δ < 1, with probability at least 1− δ, the regret of the
OFUL algorithm in Fig. 2.6 is bounded as

R(T ) = O
(
d log(T )

√
T +

√
dT log(T/δ)

)
.

Therefore, apart for logarithmic factors, the OFUL algorithm is optimal.
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TS algorithm. To design the TS algorithm, Agrawal and Goyal (2012b) use a
Gaussian prior for the unknown parameter θ?. The motivation is that whenever the
reward noise ξt is conditionally Gaussian, the linear model ensures that the posterior is
also Gaussian. Notice that none of those assumptions are required to be true but that
they only provide a useful tool to obtain the sampling distribution. Formally, at each
time step, a parameter θ̃t is randomly sampled according to N (θ̂t, vV −1

t ), where v is a
parameter, and the optimal arm w.r.t. θ̃t is chosen i.e., xt = x?(θ̃t). The TS algorithm
is summarized on Fig. 2.7.

Initialization: Set θ̂1 = 0 and V1 = λI

1: for t = {1, . . . , n} do
2: Sample the parameter as θ̃t ∼ N (θ̂t, vV −1

t )
3: Play the arm xt = x?(θ̃t) = argmaxx∈X xTθ̃t
4: Observe reward rt+1 = xT

t θ
? + ξt+1

5: Update the RLS estimate θ̂t+1 and design matrix Vt+1
6: end for

Figure 2.7 – TS algorithm.

Notice that in line with MAB, the sampling of the TS algorithm for LB is made
so that θ̃t spans the confidence ellipsoid ERLS

t . The variance V −1
t is rescaled by the

tuning parameter v, which is here to ensure that the sampling covers the whole ellipsoid
with sufficient probability. In practice v = R

√
9d log(T/δ) if T is known, or replaced

by vt = R
√

9d log(t/δ) at time t if the horizon T is unknown. Leveraging the proof
structure of TS for MAB (Agrawal and Goyal, 2013), Agrawal and Goyal (2012b)
proved the following guarantee:

Theorem 2.2.2. For any 0 < δ < 1, with probability at least 1− δ, the regret of the
TS algorithm in Fig 2.7 is bounded as

R(T ) = O
(
d3/2 log(T )

√
T + d

√
dT log(T/δ)

)
.

The bound in Thm. 2.2.2 is
√
d worst than the bound of OFUL. Despite the very

good empirical performance of TS, whether this bound is tight or not is an open
question. On the other hand, notice that the TS algorithm is computationally more
efficient than OFUL, as the latter requires solving a bilinear optimization problem (i.e.,
arg maxθ maxx xTθ) whereas the computational complexity of the former is dominated
by the sampling and the computation of the optimal action (i.e., arg maxx xTθ).

2.2.4 Extensions
We presented in this section the LB problem with fixed arm set X . However, both Abbasi-
Yadkori et al. (2011a) and Agrawal and Goyal (2012b) show that their results are still
valid in the so-called contextual setting, where the arm set is allowed to vary with time,
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i.e., replacing at each time step X by Xt. While this setting is richer, it is limited to
the case where the changes in the arm set are independent of the learner’s actions and
cannot handle the case where the learner’s decisions affect the environment (and thus
Xt). To do so, one has to consider a more complicated setting, such as Markov Decision
Processes (MDP), that we present in the next section. On the other hand, efforts
have been made to relax the linear assumption on the reward model which led to the
Generalized Linear Model extension of LB that is widely used in practice (see Filippi
et al. 2010, Li et al. 2017, Jun et al. 2017). Finally, Lattimore and Szepesvari (2017)
recently analyzed the asymptotic problem-dependent regret in LB and showed that
no algorithm based on TS or optimism can achieve the lower bound in the finite arm
setting.

2.3 Markov decision processes and linear quadratic
control

In this section, we consider the more challenging setting where the agent’s actions
influence the environment’s dynamics, which permits to overcome one of the limitations
of the contextual bandit framework. To leverage the existing result of dynamic control,
we restrict to the case where the environment’s dynamics are Markovian, i.e., we focus
on Markov Decision Processes (MDP) (Sutton and Barto, 1998). This is motivated
by the fact that it allows one to use Bellman operators to compute the optimal policy
(see (Bertsekas, 1995) for an introduction), i.e., the mapping from observations to actions
which maximizes the total reward. We illustrate the agent/environment interactions in
Fig. 2.8.

Environment
rt = R(st, at)

st+1 ∼ P (·; st, at)

Agent
at = π(st)

(rt, st+1)at

Figure 2.8 – Agent/environment interactions and dynamics in MDP.

At each time step t, the agent decides which action at to take, based on his current
knowledge, encoded in the state st which characterizes the environment, according to a
policy π. For each state-action pair, the environment returns a reward rt = R(st, at)
and the system evolves to the next state st+1 according to a transition model P which
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is function of the current state and action (since we restrict to Markovian dynamics).
Finally, the agent’s objective is to find a policy π that maximizes the cumulative reward.
When the transition and reward models are known, it is possible to compute the optimal
policy using standard technics via the resolution of the well-known associated Bellman
equation. For instance in the discrete case with finite state-action pairs, one can use
Policy Iteration (PI) and Value Iteration (VI). On the other hand, when the transition
and/or reward models are unknown, the agent faces an exploration-exploitation trade-off
since it selects actions both to maximize the rewards and to get knowledge about the
transition and/or reward model.
In this section, we first provide a brief overview of the standard finite state and action
space MDP’s for which algorithms have been derived using the optimistic and random
principles. However, as for MAB, the finite state-action space property is a major
limitation, that can be overcome by looking at parametrized MDPs with continuous
state-action space. To this end, we present the Linear Quadratic (LQ) control problem,
where the transition model is parametrized according to a linear model, which stands
as a standard in control theory. One of the main advantages of LQ is that the Bellman
equation can be solved efficiently, and that the unknown dynamic can be estimated
via least square. We will present the setting and the optimistic algorithm introduced
by Abbasi-Yadkori and Szepesvári (2011).

2.3.1 Markov decision process
Setting. A MDP is defined as a tupleM = (S,A, P, R) where S and A are respectively
the state and action space that are assumed to be finite with cardinality S and A,
P is the transition model that defines the underlying Markov chain modeling the
environment dynamic and R is the reward function. Formally, R : S × A → R and
P : S × S ×A → S such that for any (s, s′) ∈ S2, for any a ∈ A,

P (s′, s, a) = P(st+1 = s′|st = s, at = a),

is the probability of observing the next state s′ when action a is taken at state s and
R(s, a) is the associated reward. The objective is to find a policy π : S → A mapping
states to actions that maximizes the expected cumulative reward. Several instances of
this problem have been studied depending on the horizon (e.g., finite horizon, infinite
horizon with discount). Here, we focus on the infinite horizon with average reward, that
consists in maximizing the expected average reward

ρ(M,π, s) = lim
T→∞

1
T
E
(
T−1∑
t=1

r(st, at)
∣∣∣s0 = s, at = π(xt) ∀ t ≥ 1

)
.

The difficulty of learning the optimal policy in MDP depends on size of the state-action
space S×A and on the transition model P . To measure this transition structure, Jaksch
et al. (2010) propose to consider the diameter D of the MDP which is defined as the
time it takes to move from any state s to any other state s′ under an appropriate policy.
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Definition 2.3.1. Let T (s′|M,π, s) be the random variable for the first time step in
which s′ is reached from state s, for MDP M and stationary policy π. Then, the
diameter of M is defined as:

D(M) := max
s 6=s′∈S

min
π

E
[
T (s′|M,π, s)

]
.

We further consider MDPs with finite diameter which are usually known as commu-
nicating. In this case, the optimal average reward ρ?(M) does not depend on the initial
state (see e.g., Puterman 2014), i.e.,

ρ?(M) := ρ?(M, s) = max
π

ρ(M,π, s).

Finally, we denote as π?(M) = arg maxπ ρ(M,π) the optimal policy w.r.t. M and define
the regret of any adaptive strategies, i.e., a sequence of policy (π1, . . . , πT ) by:

R(T ) = Tρ?(M)−
T∑
t=1

r
(
st, πt(st)

)
,

for which Jaksch et al. (2010) prove a lower bound of Ω
(√

DSAT
)
.

UCRL2 algorithm. We now describe the UCRL2 algorithm, based on the opti-
mistic principle, proposed by Jaksch et al. (2010) (a similar algorithm named REGAL
has also been introduced by Bartlett and Tewari (2009)). In the general setting, the
agent does not know about the transition model P and the reward function R of the
true MDP M . However, it observes, at each time step t, the current state of the system
st and the associated reward rt = R(st, at). As a result, it has access to empirical
estimate P̂t(s′, s, a) and R̂t(s, a) for any s′, s, a ∈ S × S ×A defined as

R̂t =
∑t−1
τ=1 rt1{sτ =s, aτ =a}∑t−1
τ=1 1{sτ =s, aτ =a}

; P̂t(s′, s, a) =
∑t−1
τ=1 1{sτ+1 =s′, sτ =s, aτ =a}∑t−1

τ=1 1{sτ =s, aτ =a}
. (2.6)

Using concentration inequalities, Jaksch et al. (2010) introduce a confidence set Ct
for the MDP at time t, that contains the MDPs with transition model P̃ and reward
function R̃ such that, for any state-action pair (s, a),

∣∣∣R̃(s, a)− R̂(s, a)
∣∣∣ ≤

√√√√ 7 log(2SAt/δ)
2∑t−1

τ=1 1{sτ = s, aτ = a}
,

∥∥∥P̃ (·, s, a)− P̂ (·, s, a)
∥∥∥

1
≤

√√√√ 14S log(2At/δ)
2∑t−1

τ=1 1{sτ = s, aτ = a}
,

where δ ∈ (0, 1), so that, with probability at least 1− δ, M ∈ Ct.
The structure of UCRL2 is very similar to UCB and OFUL, the only difference being
that the chosen policy is kept constant for episodes instead of being re-evaluated at
each time step: at the beginning of each episode, the agent selects the most optimistic
MDP M̃ within the confidence set, and compute the optimal policy π?(M̃) associated
with M̃ ; then it follows this policy for a whole episode, it observes the states and
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rewards, and refines the confidence set given the new observations at the end of the
episode. An episode ends as soon as the number of visit doubles for a state-action
pair. This way of updating the policy is used both for theoretical purpose, and for re-
ducing the computational complexity. We summarize the UCRL2 algorithm in Fig. 2.9.

Initialization: Set ν(s, a) = 0 and N(s, a) = 0 for all (s, a) ∈ S ×A, s1, π0
1: for t = {1, . . . , T} do
2: if ν(st, πt−1(st)) > N(st, πt−1(st)) then
3: Update P̂t and R̂t by Eq. 2.6
4: Find M̃t = arg maxM∈Ct ρ?(M)
5: Compute πt = arg maxπ ρ(M̃t, π)
6: Let ν(s, a) = 0 for all (s, a) ∈ S ×A
7: else
8: πt = πt−1
9: Choose action at = πt(st)
10: Obtains reward rt and observe next state st+1
11: Update ν(st, at) = ν(st, at) + 1 and N(st, at) = N(st, at) + 1
12: end if
13: end for

Figure 2.9 – UCRL2 algorithm.

Notice that as opposed to UCB or OFUL, finding the optimistic MDP M̃t and
computing its optimal policy πt is a complicated task. To solve this issue, Jaksch et al.
(2010) introduced an extended value iteration procedure that allows them to compute
directly the policy πt, and proved the following regret bound which is a significant
improvement over the bound of the UCRL algorithm previously introduced by Auer
and Ortner (2007).

Theorem 2.3.1. For any 0 < δ < 1, with probability at least 1− δ, for any initial state
s and any T > 1, the regret of the UCRL2 algorithm in Fig 2.9 is bounded as

R(T ) ≤ 34DS

√√√√AT log
(
T

δ

)
,

PSRL algorithm. In line with MAB and LB, a Thompson Sampling algorithm
for MDP, known as Posterior Sampling for Reinforcement Learning (PSRL) have been
derived (Strens, 2000). The idea is to assume a prior over the true MDP M i.e., over
the transition model and reward function T and R and to maintain this distribution as
new data are collected using prior-posterior update. Then, at each time step t, a MDP
M̃t is sampled from the posterior, and the actions are chosen according to the policy πt
that is optimal w.r.t. M̃t. From a practical perspective, PSRL is therefore much more
efficient than UCRL2 since it does not require an extended value iteration procedure (to
find the optimistic MDP) but a standard value iteration procedure to extract πt from
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M̃t. Additionally, PSRL has been shown to offer very good empirical performances.
However, the analysis of PSRL in the same frequentist setting as UCRL2 is significantly
more difficult, and most theoretical guarantees are provided for the Bayesian regret,
i.e., the expected regret w.r.t. to the prior over the true MDP, and are restricted to
finite and episodic MDP. Osband et al. (2013) proved the first regret bound for PSRL
in finite MDPs of order O(S

√
AT ). Osband and Roy (2014) studied finite factored

MDPs (i.e., MDPs where dynamics and rewards are factored over the multidimensional
representation of the state space), showing that their structure can be exploited to reduce
the dependency on the number of states and actions in the final bound. The more general
setting of learning in parameterized MDPs is studied in (Osband and Van Roy, 2014),
where it is shown that the regret of PSRL depends on the dimensionality of the space of
parameters rather its cardinality. Recently, Osband and Van Roy (2017) compared the
behavior of randomized and optimism-based algorithm, showing that existing optimistic
algorithms trade-off statistical efficiency with tractability while randomized approaches
may enable simultaneous statistical and computational efficiency.
Unfortunately, when moving from the episodic to infinite horizon setting the results of
PSRL are very limited. While most of the results for UCRL hold in both cases, Osband
and Van Roy (2016) reviewed in detail the challenges of extending episodic results to
infinite horizon showing how previous attempts in proving regret for infinite horizon
problem were possibly flawed (Abbasi-Yadkori and Szepesvári, 2015). Notable exceptions
are the work of Gopalan and Mannor (2015) who proved frequentist regret bounds in
a slightly more general non-episodic setting under the assumption that the MDP is
ergodic and that the initial state is positive recurrent under any policy, and the recent
result of Agrawal and Jia (2017) who proved a Õ(D

√
SAT ) high-probability frequentist

regret bound for any communicating MDP in the infinite horizon with average reward
setting.

2.3.2 Linear quadratic control
As for MAB, the main limitation of finite MDPs is their inability to model systems
with continuous state-action space, or even large but finite state-action space, since as
stressed by the lower bound of Jaksch et al. (2010), the regret scales at best as

√
SA

w.r.t. the cardinality. To move from finite to continuous state-action space, the natural
idea is to parametrize the MDP (see e.g., Abbasi-Yadkori and Szepesvári 2015), i.e., to
impose a structure over the transition model and reward function so that one can learn
the model without observing all state-action pairs. On the other hand, this makes the
control problem, i.e., the resolution of the Bellman equation, much harder as Value
Iteration (VI) and Policy Iteration (PI) cannot be applied. In order to overcome this
issue, standard approaches consist in approximating the value function or discretizing
the state-space to perform (VI) and (PI), thus narrowing down the interest of the
continuous state-action space formulation.
A notable exception is the Linear Quadratic (LQ) control problem which is a specific
instance of parametrized MDP with continuous state-action space where the dynamics
of the environment is linear in the state and control, and the cost function is quadratic



2.3. Markov decision processes and linear quadratic control 25

(LQ is generally introduced as a cost minimization problem rather than a reward
maximization problem). This setting stands as a standard in the control literature
because the Bellman equation can be turned into a discrete Riccati equation, which
can be solved efficiently. From a practical perspective, LQ problems have been
intensively used and studied to address problems in many different fields such as
robotics, economics, bioengineering, finance etc... We provide in this section an
overview of the LQ theory. The interested reader may refer to (Bertsekas, 1995) for a
first introduction and to (Lancaster and Rodman, 1995) for a complete survey of the
underlying Riccati equation. Finally, we present the OFU-LQ algorithm introduced
by Abbasi-Yadkori and Szepesvári (2011) that uses the optimistic principle to address
the exploration-exploitation trade-off in LQ system.

Setting. We adopt the standard notations of the LQ theory and consider the
dynamic system of Fig. 2.8 where the environment is characterized by a state xt ∈ Rn

and control ut ∈ Rd, and evolves according to the linear dynamic

xt+1 = Axt +But + εxt+1,

where A ∈ Rn×n, B ∈ Rn×d and {εxt+1}t≥0 is a martingale difference sequence w.r.t. the
filtration Ft = σ(x0, . . . , xt) such that V(εxt+1|Ft) = Σx. The objective of the agent
is to find a policy π : Rn → Rd mapping state to control that minimizes the average
expected cost

Jπ = lim
T→∞

1
T
E
(
T−1∑
t=1

c(xt, ut)
∣∣∣x0 = s, ut = π(xt), ∀ t ≥ 1

)
.

The cost function is quadratic in the state and action as:

c(x, u) = xTQxT + 2xTNu+ uTRu,

where Q,R,N are matrices of appropriate dimensions. For sake of convenience, we

collect them into a single matrix Q =
(
Q N

NT R

)
. Before stating the main result of the

LQ theory, we introduce several properties characterizing the linear system.

Definition 2.3.2 (Ch.4 in (Lancaster and Rodman, 1995)). Let A ∈ Rn×n and B ∈
Rn×d be two real-valued matrices and let C =

(
B,AB, . . . , An−1B

)
be the associated

controllability matrix. Then,

• The pair (A,B) is said to be controllable if and only if the controllability matrix
C is of rank n (full row rank).

• The pair (A,B) is said to be stabilizable if and only if for any x ∈ Ker(C),
‖Ax‖ ≤ ‖x‖.

The controllability of the pair (A,B) ensures that every state x′ is reachable from
any state x in less than n time steps by using a suitable sequence of control. As a
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consequence, this property can be seen as the continuous counterpart of the finite
diameter in MDP. Stabilizability is a weaker notion that ensures that the uncontrollable
part of the linear system is stable. Formally, a matrixM is said to be stable if ‖M‖2 ≤ 1,
where ‖ ·‖2 is the spectral norm. Symmetrically, we introduce the notion of observability
and detectability that ensures that it is possible to retrieve the initial state of the system
driven by xt+1 = Axt + εxt+1 from any sequence of n observations given by yt = Cxt.

Definition 2.3.3 (Ch.4 in (Lancaster and Rodman, 1995)). Let A ∈ Rn×n and C ∈
Rd×n be two real-valued matrices. Then,

• The pair (C,A) is said to be observable if and only if the pair (AT, CT) is
controllable.

• The pair (C,A) is said to be detectable if and only if the pair (AT, CT) is
stabilizable.

To ensure the existence and uniqueness of an optimal solution to the LQ problem,
we consider the following assumption.

Assumption 2.3.1. The pair (A,B) is stabilizable and the matrix Q is symmetric
positive definite.

In some case, the positive definiteness of Q is a too restrictive assumption, which
can be relaxed by the weaker assumption:

Assumption 2.3.2. The pair (A,B) is stabilizable, the matrix Q is symmetric non
singular and the pair (Q,A) is observable.

Under those assumptions, it is well known that the LQ problem admits a unique
optimal policy which is linear in the state.

Theorem 2.3.2 (Th.16.6.4 in (Lancaster and Rodman, 1995)). Under Asm. 2.3.1
or 2.3.2, the optimal solution of the LQ problem is unique and given by

π?(x) = Kx,

K = −(R +BTPB)−1(BTPA+NT),
P = Q+ ATPA− (ATPB +N)(R +BTPB)−1(BTPA+NT).

Further, the closed-loop matrix A+BK is asymptotically stable and the optimal cost is
given by Jπ? = Tr(PΣx).

Notice that the optimal control matrix K is function of a matrix P , that is the
solution of a so-called discrete Riccati equation, which can be computed efficiently thus
making the LQ solution tractable (see Laub 1991, Van Dooren 1981, Chun-hua 1998,
Laub 1979).
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RL in LQ systems. While Thm. 2.3.2 ensures that the optimal solution to the LQ
problem is tractable for a given system with known matrices, it is often the case that the
matrices are unknown and have to be estimated online, i.e., while controlling the system.
To tackle this problem, Abbasi-Yadkori and Szepesvári (2011) introduced an optimistic
algorithm called OFU-LQ, which addresses the induced exploration-exploitation trade-
off in LQ system. We recall here their setting, we present the OFU-LQ algorithm, and
its theoretical guarantees.
They consider the LQ system with cost function c(x, u) = xTQx+ uTRu and assume
that the cost matrices Q and R are known to the agent while the dynamic of the system
is unknown. Additionally, they assume for sake of simplicity that Σx = I. Formally,
they denote as (A∗, B∗) the unknown matrices of the true dynamics and collect them
in a matrix θT

∗ = (A∗, B∗). The objective of the learning strategy is to find a sequence
of policy {πt}t that minimizes the regret w.r.t. the unknown optimal average cost
J∗ = Jπ?(θ∗) = TrP (θ∗) defined as:

R(T ) =
T∑
t=0

xT
t Qxt + uT

t Rut − TJ∗,

where ut = πt(xt) for all t = 0, . . . , T .
Leveraging the linear structure of the state dynamic, at each time step, Abbasi-Yadkori
and Szepesvári (2011) estimate θ∗ given the past control sequence (u0, . . . , ut−1) and
associated states (x0, . . . , xt) using RLS, for any regularization parameter λ > 0, as:

Vt = λI +
t−1∑
s=0

zsz
T
s ; θ̂t = V −1

t

t−1∑
s=0

zsx
T
s+1, (2.7)

where zt = (xt, ut)T. A concentration inequality for this matrix RLS estimate can be
derived in a straightforward manner from Prop. 2.2.1.

Proposition 2.3.1. For any δ ∈ (0, 1) and any Ft-adapted sequence (z0, . . . , zt), the
RLS estimator θ̂t is such that

Tr
(
(θ̂t − θ∗)TVt(θ̂t − θ∗)

)
≤ β2

t (δ); βt(δ) = n

√√√√2 log
( det(Vt)1/2

det(λI)1/2δ

)
+ λ1/2S, (2.8)

w.p. 1− δ (w.r.t. the noise {εxt }t and any randomization in the choice of the control).
S is a positive constant such that ‖θ∗‖ ≤ S.

Let ERLS
t := {θ ∈ Rn(n+d) s.t. Tr

(
(θ̂t − θ)TVt(θ̂t − θ)

)
≤ β2

t (δ)} be the confidence
ellipsoid such that θ∗ ∈ ERLS

t with probability 1 − δ. Abbasi-Yadkori and Szepesvári
(2011) propose an algorithm that follows the same structure as UCRL2: at the beginning
of each episode, an optimistic parameter θ̃t is chosen as

θ̃t = arg min
θ∈Θ∩ERLS

t

TrP (θ),

where they add the constraint θ ∈ Θ (we refer to (Abbasi-Yadkori and Szepesvári, 2011)
for the formal definition of Θ) to guarantee the controllability of θ̃T

t = (Ãt, B̃t). Then,
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the system is optimally controlled w.r.t. θ̃t for the episode as ut = K(θ̃t)xt. Finally,
they use a doubling schedule to determine the length of the episodes. In this specific
LQ setting, Abbasi-Yadkori and Szepesvári (2011) propose to update the policy when
the determinant of the design matrix det(Vt) doubles. We summarize the OFU-LQ
algorithm in Fig. 2.10.

Initialization: Set θ̂0 = O and V0 = λI

1: for t = {1, . . . , T} do
2: if det(Vt) > 2 det(V0) then
3: Calculate θ̂t by Eq. 2.7
4: Find θ̃t = arg minθ∈Θ∩ERLS

t
TrP (θ)

5: Let V0 = Vt
6: else
7: θ̃t = θ̂t−1
8: end if
9: Choose optimal control ut based on the current parameters, ut = K(θ̃t)xt
10: Execute control, observe next state xt+1
11: Save (xt+1, zt) into the dataset, where zT

t = (xT
t , u

T
t )

12: Update Vt+1 = Vt + xtx
T
t

13: end for
Figure 2.10 – OFU-LQ algorithm.

Abbasi-Yadkori and Szepesvári (2011) prove the following regret bound for the
OFU-LQ algorithm:

Theorem 2.3.3. For any 0 < δ < 1, for any time T , with probability at least 1 − δ,
the regret of OFU-LQ algorithm is bounded as

R(T ) = Õ
(√

T log(1/δ)
)

where Õ hides logarithmic factors and problem dependent constant.

We conclude this section by noting that finding the optimistic parameter θ̃t is
a computationally expensive task as θ :→ TrP (θ) is a non-convex function, while
computing the optimal control K(θ) is cheap thanks to the Riccati equation solver. As
a result, a TS algorithm would be much more efficient, as the optimistic step would
be replaced by a sampling from the posterior. Abbasi-Yadkori and Szepesvári (2015)
proposed a lazy PSRL algorithm for smoothly parametrized MDP, for which LQ is
a specific instance, that they study in the Bayesian regret setting. Unfortunately, as
hinted by Osband and Van Roy (2016), the proof suffers a flaw coming from the difficulty
to move from episodic to non-episodic settings. Applying PSRL to LQ and providing
regret bounds for this algorithm is one of main questions that motivates our work. We
address it in Ch. 4.



Chapter 3

Thompson Sampling in Linear
Bandit

In this chapter1 , we derive an alternative proof for the regret of Thompson sampling
(TS) in the stochastic linear bandit setting. While we obtain a regret bound of order
Õ(d3/2

√
T ) as in previous results, the proof sheds new light on the functioning of the

TS. We leverage the structure of the problem to show how the regret is related to the
sensitivity (i.e., the gradient) of the objective function and how selecting optimal arms
associated to optimistic parameters does control it. Thus, we show that TS can be seen
as a generic randomized algorithm where the sampling distribution is designed to have
a fixed probability of being optimistic, at the cost of an additional

√
d regret factor

compared to a UCB-like approach. Furthermore, we show that our proof can be readily
applied to regularized linear optimization and generalized linear model problems.
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3.1 Introduction

In this chapter, we focus on the Linear Bandit (LB) problem introduced in Sec. 2.2
and draw novel insights on the functioning of Thompson Sampling (TS) in this
setting, where the value of an arm is obtained as the inner product between an arm
feature vector x and an unknown global parameter θ?. While TS has been originally
introduced as a Bayesian heuristic (Thompson, 1933), it has been proved to offer
good performance in the frequentist setting (Agrawal and Goyal, 2012b). We propose
here an alternative frequentist analysis for the regret of TS in LB that stresses the
randomized nature of the exploration performed by the algorithm. As opposed to the
optimistic approaches, the main technical difficulty in analyzing TS lies in controlling
the deviation in performance due to the randomness of the algorithm. Agrawal and
Goyal (2012b) follows the MAB proof structure (as in (Agrawal and Goyal, 2012a))
classifying arms as saturated and unsaturated depending on whether their standard
deviation is smaller or bigger than their gap to the optimal arm.2 While for unsaturated
arms the regret is related to their standard deviation that decreases over time, they
prove that TS has a small (but constant) probability to select saturated arms and it
achieves a regret Õ

(
d3/2
√
T
)
.

Contributions. The major contributions of this paper are: 1) Following the
intuition of Agrawal and Goyal (2012b), we show that the TS does not need to sample
from an actual Bayesian posterior distribution and that any distribution satisfying
suitable concentration and anti-concentration properties guarantees a small regret.
In particular, we show that the distribution should over-sample w.r.t. the standard
least-squares confidence ellipsoid by a factor

√
d to guarantee a constant probability

of being optimistic. 2) We provide an alternative proof of TS achieving the same
result as Agrawal and Goyal (2012b). One of our major finding is that, leveraging the
properties of support functions from convex geometry, we are able to prove that the
regret is related to the gradient of the objective function, that is ultimately controlled by
the norm of the optimal arms associated to any optimistic parameter θ. This provides
a novel insight on the fact that whenever an optimistic parameter θt is chosen, not only
is its instantaneous regret small but the corresponding optimal arm xt = arg maxx xTθt
represents a useful exploration step that improves the accuracy of the estimation of θ?
over dimensions which are relevant to reduce regret in any subsequent non-optimistic
step. This approach allows us to avoid the introduction of saturated/unsaturated arms
and it illustrates why any TS-like algorithm (not necessarily Bayesian) with a constant
probability of being optimistic has a bounded regret. 3) Finally, we show how our proof
can be easily adapted to regularized linear optimization (with arbitrary penalty) and to
the generalized linear model, for which we derive the first frequentist regret bound for
TS, which was first suggested by Agrawal and Goyal (2012b) as a venue to explore.

2Here we refer to the definition introduced in the arXiv paper, which slightly differs from the
original ICML paper.
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3.2 Preliminaries
The setting. We briefly recall the LB setting introduced in Sec. 2.2, and detail the
assumptions that we impose on the problem structure as well as the additional material
needed for our analysis.
Let X ⊂ Rd be an arbitrary (finite or infinite) set of arms. When an arm x ∈ X is
pulled, a reward is generated as r(x) = xTθ? + ξ, where θ? ∈ Rd is a fixed but unknown
parameter and ξ is a zero-mean noise. An arm x ∈ X is evaluated according to its
expected reward xTθ? and, for any θ ∈ Rd, we denote the optimal arm and its value by

x?(θ) = arg max
x∈X

xTθ, J(θ) = sup
x∈X

xTθ. (3.1)

At each step t, the learner selects an arm xt ∈ X based on the past observations (and
possibly additional randomization), it observes the reward rt+1 = xT

t θ
? + ξt+1, and it

suffers a regret equal to the difference in expected reward between the optimal arm
x?(θ?) and the arm xt. The objective of the learner is to minimize the cumulative regret
up to step T , i.e.,

R(T ) =
T∑
t=1

(
x?Tθ? − xT

t θ
?
)
.

Notation. We use ‖ · ‖ to denote the 2-norm and xT to denote the transpose
of x ∈ Rd. For a positive definite matrix M ∈ Rd×d, we denote as ‖ · ‖M the
weighted 2-norm defined by ‖x‖2

M = xTMx for any x ∈ Rd. We use λmin(M)
and λmax(M) to denote the minimum and maximum eigenvalues of the positive
semi-definite matrix M , respectively. We use 1{E} to denote the indicator func-
tion of the event E. Finally, we encode all the information observed up to time
t in the filtration Fxt = (F1, σ(x1, r2, . . . , rt, xt)), where F1 contains any prior knowledge.

We impose the following assumptions on the problem structure and the noise ξt+1.

Assumption 3.2.1 (Arm set). The arm set X is a bounded closed (and hence compact)
subset of Rd such that ‖x‖ ≤ X for all x ∈ X . We also assume X = 1.

We focus here on the fixed arm set setting where X does not change with time while
the original analysis of Agrawal and Goyal (2012b) has been derived for the contextual
LB problem where the arm set Xt can be chosen by an oblivious adversary at each time
step t. However, our analysis still holds in this case, replacing X by Xt and the optimal
value function J by Jt in every steps of the proof.

Assumption 3.2.2 (Bandit parameter). There exists S ∈ R+ such that ‖θ?‖ ≤ S and
S is known.

Assumption 3.2.3 (Noise). The noise process {ξt}t is a martingale difference sequence
given Fxt and it is conditionally R-subgaussian for some constant R ≥ 0,

∀t ≥ 1, E [ξt+1|Fxt ] = 0,
∀α ∈ R, E

[
eαξt+1 | Fxt

]
≤ exp

(
α2R2/2

)
.
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Technical tools. Let (x1, . . . , xt) ∈ X t be a sequence of arms and (r2, . . . , rt+1) be
the corresponding rewards, then θ? can be estimated by regularized least-squares (RLS).
For any regularization parameter λ ∈ R+, the design matrix and the RLS estimate are
defined as

Vt = λI +
t−1∑
s=1

xsx
T
s , θ̂t = V −1

t

t−1∑
s=1

xsrs+1. (3.2)

For any 0 < δ < 1, we make use of Prop. 2.2.1 to define the high-probability ellipsoid
ERLS
t at each time step t as

ERLS
t =

{
θ ∈ Rd

∣∣∣ ‖θ−θ̂t‖Vt ≤ βt(δ′)
}
, with βt(δ′)=R

√
2 log (1 + t/λ)d/2

δ′
+
√
λS, (3.3)

that is centered around θ̂t with orientation defined by Vt and radius βt(δ′), where
δ′ = δ/4T . Under Asm. 3.2.1, 3.2.2, and 3.2.3, Prop. 2.2.1 guarantees that θ? ∈ ERLS

t

for all t ≤ T , with probability at least 1− δ/4.
Finally, we report a standard result of RLS that, together with Prop. 2.2.1, shows that
the prediction error on the xt’s used to construct the estimator θ̂t is cumulatively small.

Proposition 3.2.1. Let λ ≥ 1, for any arbitrary sequence (x1, x2, . . . , xt) ∈ X t let Vt+1
be the corresponding design matrix (Eq. 3.2), then

t∑
s=1
‖xs‖2

V −1
s
≤ 2 log det(Vt+1)

det(λI) ≤ 2d log
(

1 + t

λ

)
.

This result plays a central role in most of the proofs for linear bandit, since the
regret is usually related to ‖xs‖V −1

s
and Prop. 3.2.1 is used to bound its cumulative

sum. While Agrawal and Goyal (2012b) achieve this by dividing arms in saturated and
unsaturated, we follow a different path that leverages the core features of the problem
(structure of J(θ)) and of TS (probability of being optimistic).

3.3 Linear Thompson sampling
Agrawal and Goyal (2012b) define TS for linear bandit as a Bayesian algorithm where a
Gaussian prior over θ? is updated according to the observed rewards, a random sample
is drawn from the posterior, and the corresponding optimal arm is selected at each step.
As hinted by Agrawal and Goyal (2012b), we show that TS can be defined as a generic
randomized algorithm constructed on the RLS-estimate rather than an algorithm
sampling from a Bayesian posterior (see Fig. 3.1). At any step t, given RLS-estimate
θ̂t and the design matrix Vt, TS samples a perturbed parameter θ̃t as

θ̃t = θ̂t + βt(δ′)V −1/2
t ηt,

where ηt is a random sample drawn i.i.d. from a suitable multivariate distribution
DTS, which does not need to be associated with an actual posterior over θ?. Then the
optimal arm xt = x?(θ̃t) is chosen, a reward rt+1 is observed and Vt and θ̂t are updated
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according to Eq. 3.2. Notice that the resulting distribution on θ̃t is obtained by rotation
of ηt according to the design matrix Vt and by a rescaling βt(δ′). The computational
complexity of TS is dominated by computation of x?(θ̃t), which requires solving a linear
optimization problem and by the sampling process from DTS. This is in contrast with
OFUL (Abbasi-Yadkori et al., 2011a) presented in Fig. 2.6, which requires solving a
bilinear optimization problem (i.e., arg maxθ maxx xTθ).

Input: θ̂1, V1 = λI, δ, T
1: Set δ′ = δ/(4T )
2: for t = {1, . . . , T} do
3: Sample ηt ∼ DTS and compute parameter θ̃t = θ̂t + βt(δ′)V −1/2

t ηt
4: Compute optimal arm xt = x?(θ̃t) = arg maxx∈X xTθ̃t
5: Pull arm xt and observe reward rt+1
6: Compute Vt+1 and θ̂t+1 using Eq. 3.2
7: end for

Figure 3.1 – Thompson sampling algorithm for LB.

The key aspect to ensure small regret is that the perturbation ηt is distributed so
that TS explores enough but not too much. This translates into the following conditions
on DTS.

Definition 3.3.1. DTS is a multivariate distribution on Rd absolutely continuous with
respect to the Lebesgue measure which satisfies the following properties:

1. (anti-concentration) there exists a strictly positive probability p such that for any
u ∈ Rd with ‖u‖=1,

Pη∼DTS

(
uTη ≥ 1

)
≥ p,

2. (concentration) there exists c, c′ positive constants such that ∀δ ∈ (0, 1)

Pη∼DTS

(
‖η‖ ≤

√
cd log c

′d

δ

)
≥ 1− δ.

Once interpreted in the construction of θ̃t, the definition of DTS basically requires
TS to explore far enough from θ̂t (anti-concentration) but not too much (concentration).
This implies that TS performs “useful” exploration with enough frequency (notably
it performs optimistic steps), but without selecting arms with too large regret. We
introduce the high-probability ellipsoid ETS

t as

ETS
t = {θ ∈ Rd | ‖θ − θ̂t‖Vt ≤ γt(δ′)}, with γt(δ′) = βt(δ′)

√
cd log(c′d/δ′).

The difference between ERLS
t and ETS

t lies in the additional factor
√
d in the definition

of γt(δ′) and it is crucial for both concentration and anti-concentration to hold at the
same time. In Sect. 3.5 we prove that any distribution satisfying the conditions in
Def. 3.3.1 introduces the right amount of randomness to achieve the desired regret
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without actually satisfying any Bayesian assumption. Def. 3.3.1 includes the Gaussian
prior used by Agrawal and Goyal (2012b), but also other types of distributions such as
the uniform on the unit ball Bd(0,

√
d) or distributions concentrated on the boundary

of ETS
t (refer to App. 3.A for exact values of c, c′, and p for uniform and Gaussian

distributions).

3.4 Sketch of the proof

In this section we report a sketch of the proof providing a geometric intuition on the
behavior of TS and how its actions (i.e., the sampled θ̃t and the corresponding xt)
influence the regret. For the sake of illustration, we consider the unit ball X = {‖x‖ ≤ 1},
such that the optimal arm is just the projection of θ on the ball (x?(θ) = θ/‖θ‖), and
the optimal value is J(θ) = θTθ/‖θ‖ = ‖θ‖. We start by decomposing the regret using
the definition of J(θ) as

R(T ) =
T∑
t=1

(
x?Tθ? − xT

t θ̃t
)

+
(
xT
t θ̃t − xT

t θ
?
)

=
T∑
t=1

(
J(θ?)− J(θ̃t)

)
︸ ︷︷ ︸

RTS(T )

+
T∑
t=1

(
xT
t θ̃t − xT

t θ
?
)

︸ ︷︷ ︸
RRLS(T )

,

where RTS depends on the randomization of TS and RRLS mostly depends on the
properties of RLS.

3.4.1 Bounding RRLS(T ).

We first show that both RLS estimate θ̂t and TS parameter θ̃t should concentrate
appropriately, by decomposing the regret RRLS(T ) as

RRLS(T ) =
T∑
t=1

(
xT
t θ̂t − xT

t θ
?
)

+
T∑
t=1

(
xT
t θ̃t − xT

t θ̂t
)
.

Since at each step t, θ̃t is sampled from DTS, the second term is kept under control by
construction, while the first sum deals with the prediction error of RLS. As opposed to
RTS, this error is not related to the exploration scheme and it is small for any sequence
of arms. Intuitively, this is due to the fact that the RLS estimate is the minimizer of the
regularized cumulative squared error θ̂T+1 = arg minθ

(∑T
t=1 |rt+1 − xT

t θ|2 + λ‖θ‖2
)
, so

that xT
t θ̂T+1 is an accurate prediction on the arms observed so far. The RLS minimizes

the error in “hindsight” (i.e., after observing all rewards up to T ) and therefore it also



3.4. Sketch of the proof 35

controls the online error |rt+1 − xT
t θ̂t+1|2. By induction,

T∑
t=1
|rt+1 − xT

t θ̂T+1|2 + λ‖θ̂T+1‖2 = |rT+1 − xT
T θ̂T+1|2 +

T−1∑
t=1
|rt+1 − xT

t θ̂T+1|2 + λ‖θ̂T+1‖2

≥ |rT+1 − xT
T θ̂T+1|2 + min

θ

(
T−1∑
t=1
|rt+1 − xT

t θ̂|2 + λ‖θ̂‖2
)

= |rT+1 − xT
T θ̂T+1|2 +

T−1∑
t=1
|rt+1 − xT

t θ̂T |2 + λ‖θ̂T‖2

≥ · · · ≥
T∑
t=1
|rt+1 − xT

t θ̂t+1|2 + λ‖θ̂1‖2.

Having a small online error also implies a small prediction error |rt+1 − xT
t θ̂t|2. In fact,

using a recursive version of Eq. 3.2, we have

θ̂t+1 = θ̂t + V −1
t xt(1 + ‖xt‖2

V −1
t

)−1(rt+1 − xT
t θ̂t),

which, together with ‖xt‖2
V −1
t
≤ 1/λ, leads to

|rt+1 − xT
t θ̂t+1| ≥

λ

1 + λ
|rt+1 − xT

t θ̂t|.

Since the cumulative prediction error is small, then the associated regret∑T
t=1 |xT

t θ̂t − xT
t θ

?| is also small. This result can be seen as an intrinsic on-
policy error guarantee of RLS. Nonetheless, notice that while RLS minimizes the
prediction error for any sequence of arms, this does not imply the consistency of the
estimator. For instance, when the same arm x is repeatedly played, the unknown
parameter θ? is well-estimated in the direction of x (thus making RRLS(T ) small)
but it is poorly estimated in any other directions. This shows the need for a careful
exploration strategy to recover consistency and hence a sub-linear regret.

3.4.2 Bounding RTS(T ).
We denote by RTS

t = J(θ?) − J(θ̃t) each term in RTS(T ). For optimistic algorithms
this term is bounded by 0 at any step since w.h.p. J(θ̃t) ≥ J(θ∗) by construction. In
the Bayesian regret analysis of TS, this term is equal to 0 by assumption that θ∗ is
drawn from the same prior as θ̃t. On the other hand, in the frequentist analysis, we
have to control the deviations caused by the random sampling of θ̃t. This is achieved
by showing that the arms selected by TS provide “useful” information about θ? and
contribute to keep the regret small. We follow three steps: 1) we show that the regret
is related to the sensitivity of J w.r.t. the errors in estimating θ? and we bound the
regret with the gradient of J(θ) at any optimistic θ; 2) we show how the gradient in
a point θ is intrinsically related to its corresponding optimal arm x?(θ); 3) since we
prove that TS is frequently optimistic, then we can finally link x?(θ) to xt = x?(θ̃t) and
Prop. 3.2.1 allows us to finally bound the overall regret.
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Figure 3.2 – Illustration of the steps 2) and 3) of the proof in R1 and R2. Left: The regret
at step t could be bounded by the gradient of the function J at a previous optimistic θ̃τ times
the distance between θ̃τ and the current θ̃t. Notice that θ? is always included in ERLS

t (in
dark gray) and thus θ̃s sampled from ETS

t (in light gray) are never too far. Right: TS has a
constant probability of being optimistic thanks to the over-sampling of DTS.

Step 1 (regret and sensitivity of J). We first show why the exploration of TS
should be well adapted to J(θ). Using the definition of J(θ) = ‖θ‖ we have

RTS
t = J(θ?)− J(θ̃t) = ‖θ?‖ − ‖θ̃t‖ ≤ ‖θ? − θ̃t‖ ≤

‖θ? − θ̃t‖Vt√
λmin,t

,

where λmin,t is the smallest eigenvalue of Vt. This bound shows that it is sufficient to
estimate θ? accurately over all its components (i.e., λmin,t tends to infinity) to obtain
a no-regret algorithm. Nonetheless, the desired regret bound of O(

√
T ) is obtained

only if λmin,t increases as O(t). While this could be achieved by a fully explorative
algorithm (e.g., a round robin over the canonic vectors ei reduces the ellipsoid ETS

t to a
ball of radius λmin,t), it would severely increase the second term of RRLS(T ) and cause
an overall linear regret3. Fortunately, inspecting the definition of RTS

t reveals that not
all components of θ? must be equally well estimated. In fact, we have w.h.p. that

RTS
t ≤ sup

θ∈ERLS
t

sup
θ′∈ETS

t

(
J(θ)− J(θ′)

)
.

This shows that RTS
t is determined by the diameter of ellipsoid ETS

t w.r.t. J , which
suggests that the estimation of θ? should be more accurate on the dimensions on which
J is more sensitive. In the case of X unit ball, the most sensitive direction of J is
θ?/‖θ?‖ itself and Fig. 3.3 illustrates two opposite cases where the accuracy in the
estimation of θ? is the same (i.e., Vt has the same eigenvalues) but the regret may be
very different.

3This happens because xt would be optimal w.r.t. a θ̃t, which is not in the ellipsoid ERLS
t .
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Figure 3.3 – While ETS
t,1 and ETS

t,2 have an equivalent accurate estimation of θ?, ETS
t,1 has smaller

regret than ETS
t,2 .

The numerical experiment reported in Fig. 3.4 supports the fact that TS handles
correctly the consistency of the estimates w.r.t. the sensitivity of J . In the 2-dimensional
case, the eigenvalues λmax,t and λmin,t exhibit different divergence rate. While 1/λmax,t
decreases as 1/t, 1/λmin,t decreases as 1/

√
t, which according to a direct consistency

argument, is not enough to guarantee a
√
T regret. However, the picture on the r.h.s

shows that the diameter of the ellipsoid ETS
t w.r.t J decreases as 1/

√
t. This is due to

the fact that the sampling ellipsoid ETS
t tends to align with the first configuration of

Fig. 3.3. It implies that, on direction where J is very sensitive, the diameter of the
ellipsoid shrinks appropriately (scaling with 1/λmax,t ≈ 1/t) whereas on direction where
J is less sensitive, a slower decay (scaling with 1/λmin,t ≈ 1/

√
t) of the diameter of the

ellipsoid still guarantees the deviation in J to be small. Therefore, the overall deviation
in any direction decreases as 1/

√
t, inducing a

√
T regret.
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Figure 3.4 – Numerical illustration on how TS adapts the eigenvalues rate of divergence with
the sensitivity of J . While λmin,t and λmax,t have different divergence rate, the diameter of the
ellipsoid ETS

t shrinks fast, which stresses that λmin,t has been associated with the less sensitive
direction while λmax,t has been associated with the most sensitive direction. Left: loglog plot
of the inverse of the eigenvalues of the design matrix Vt w.r.t. t. Rates of convergence are 1/t
and 1/

√
t. Right: loglog plot of the deviation in J over ETS

t w.r.t. t (blue dashed line). The
rate of convergence is 1/

√
t (green line).
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Let Θopt = {θ : J(θ) ≥ J(θ?)} be the set of optimistic parameters. In our example
J(θ) = ‖θ‖ is convex thus we can make explicit the dependency of the regret on the
sensitivity of J through its gradient evaluated at any θ ∈ Θopt as (see Prop. 3.5.1 for
the general case)

RTS
t ≤ sup

θ′∈ETS
t

J(θ)− J(θ′) ≤ sup
θ′∈ETS

t

∇J(θ)T(θ − θ′),

which shows that the regret of non-optimistic θ̃t is bounded by the gradient of J(θ) at
any optimistic θ and its distance to any other point in the TS ellipsoid.

Step 2 (sensitivity of J and optimal arm). According to Prop. 2.2.1, the
difference θ − θ′ in the previous inequality is well controlled whenever θ belongs to
the ellipsoid, while the first term cannot be immediately controlled by the algorithm.
Nonetheless, we notice that since J(θ) = ‖θ‖, then ∇J(θ) = θ/‖θ‖ = x?(θ) (see
Lem. 3.5.2 for the general case). This shows how selecting the optimal arm associated
to an optimistic θ is equivalent to controlling the gradient of J , which results in

RTS
t ≤ sup

θ′∈ETS
t

x?(θ)T(θ − θ′).

From Prop. 3.2.1, we could conclude that the regret would be cumulatively small if
x?(θ) corresponded to the arms chosen by the TS (xt = x?(θ̃t)). As a result, we need
a θ 1) that is optimistic (i.e., θ ∈ Θopt), 2) it belongs or is close to the ellipsoid ETS

t

and 3) it is used to select an arm xt. The first two requirements are at the core of
the choice of the TS distribution in Def. 3.3.1 where the anti-concentration property
guarantees enough probability to be optimistic, while the concentration property implies
that θ̃s are within a small ellipsoid. Let τ < t be any step when TS selects θ̃τ ∈ Θopt

with corresponding arm xτ = x?(θ̃τ ), then we have (see an illustration of this bound in
Fig. 3.2 in the 1-d case)

RTS
t ≤ sup

θ′∈ETS
t

xT
τ (θ̃τ − θ′) ≤ ‖xτ‖V −1

τ
sup
θ′∈ETS

t

‖θ̃τ − θ′‖Vτ .

Introducing θ? and using the fact that the design matrices forms a non-decreasing
sequence (i.e., Vτ 4 Vt), we decompose

sup
θ′∈ETS

t

‖θ̃τ − θ′‖Vτ ≤ ‖θ̃τ − θ?‖Vτ + sup
θ′∈ETS

t

‖θ? − θ′‖Vτ ,

≤ ‖θ̃τ − θ?‖Vτ + sup
θ′∈ETS

t

‖θ? − θ′‖Vt .

Since by Prop. 2.2.1, θ? is contained in all ellipsoids ERLS
t with high probability, then

RTS
t ≤

(
βτ (δ′) + γτ (δ′) + βt(δ′) + γt(δ′)

)
‖xτ‖V −1

τ
,

≤
(
2βT (δ′) + 2γT (δ′)

)
‖xτ‖V −1

τ
.
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Let K be the number of times θ̃t ∈ Θopt, tk the corresponding steps, and νk = tk − tk−1,
then the final regret can be written as

RTS(T ) ≤ 2
(
βT (δ′) + γT (δ′)

) K∑
k=1

νk‖xtk‖V −1
tk

.

Step 3 (optimism). This bound shows the importance that TS is optimistic with
high frequency. In fact, whenever θ̃t is in Θopt, not only the corresponding instantaneous
regret RTS

t is upper-bounded by 0, but the exploration performed by playing arm x?(θ̃t)
has also a positive impact in controlling the regret for any subsequent non-optimistic
step. Consider the extreme case when TS is never optimistic. Then, K = 1, ν1 = T and
RTS(T ) = O(T ). On the other hand, if TS is optimistic with a constant frequency, then
we can easily show that RTS(T ) is bounded by Õ(

√
T ). Consider the case where an

optimistic θ is chosen with probability p. Since E[νk] = 1/p, we can prove that w.h.p.
RTS(T ) ≤ Õ(1/p

√
T ) by Cauchy-Schwarz and Prop. 3.2.1 applied to ∑K

k=1 ‖xtk‖2
V −1
tk

,

where K ≈ T . Unfortunately, sampling θ̃t from the RLS ellipsoid ERLS
t may have a very

small probability of being optimistic (see e.g., Fig. 3.2, where sampling uniformly in
ERLS
t has zero probability to return a θ̃t ∈ Θopt). For this reason, TS is required to draw
θ̃t from a distribution over-sampling by a factor

√
d w.r.t. ERLS

t as in the definition of
DTS. This guarantees a fixed probability p of being optimistic (see Lem. 3.5.3) and the
final desired regret.

3.5 Formal proof
In this section we report the main steps of the regret analysis, while we postpone
technical lemmas to the supplementary material. We prove the following result.

Theorem 3.5.1. Under assumptions 3.2.1,3.2.2,3.2.3, the regret of TS is bounded w.p.
1− δ as

R(T ) ≤
(
βT (δ′) + γT (δ′)(1 + 4/p)

)√
2Td log

(
1 + T

λ

)
+ 4γT (δ′)

p

√
8T
λ

log 4
δ
,

where δ′ = δ
4T .

As anticipated in introduction, this bound is of order Õ(d3/2
√
T ) and it entirely

matches the result of Agrawal and Goyal (2012b). The analysis of the regret requires
extra care in the definition of the filtrations. While in analyzing RRLS we consider all
the knowledge up to step t (i.e., including the sampled parameter θ̃t), in RTS we need
to study the randomness of θ̃t conditional on all the information before sampling ηt.
We introduce an additional filtration besides Fxt .

Definition 3.5.1. We define the filtration Ft as the accumulated information up to
time t before the sampling procedure, i.e., Ft = (F1, σ(x1, r2, . . . , xt−1, rt)).
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Notice that θ̂t and V −1
t are both Ft and Fxt adapted, while θ̃t is a random variable

w.r.t. Ft and it is fixed when considering Fxt . Hence we have F1 ⊂ F2 ⊂ Fx2 ⊂ F3 ⊂
Fx3 , . . . . We are now ready to introduce the high-probability events we use in the rest
of the proof.

Definition 3.5.2. Let δ ∈ (0, 1) and δ′ = δ/(4T ) and t ∈ [1, T ]. We define Êt as the
event where the RLS estimate concentrates around θ? for all steps s ≤ t, i.e.,

Êt =
{
∀s ≤ t, ‖θ̂s − θ?‖Vs ≤ βs(δ′)

}
.

We also define Ẽt as the event where the sampled parameter θ̃s concentrates around θ̂s
for all steps s ≤ t, i.e.,

Ẽt =
{
∀s ≤ t, ‖θ̃s − θ̂s‖Vs ≤ γs(δ′)

}
.

Then we have that Ê := ÊT ⊂ · · · ⊂ Ê1, Ẽ := ẼT ⊂ · · · ⊂ Ẽ1 and we use
Et = Êt ∩ Ẽt and E = Ê ∩ Ẽ.

Lemma 3.5.1. [see proof in App. 3.D] Under Asm. 3.2.2, 3.2.3 we have

P(Ê ∩ Ẽ) ≥ 1− δ

2 .

Conditioned on Ft and event Êt, we have θ? ∈ ERLS
t , while on event Ẽt we have

θ̃t ∈ ETS
t , then we directly bound the regret on event E as

R(T ) = R(T )1{E} =
T∑
t=1

(
J(θ?)− J(θ̃t)

)
1{E}+

T∑
t=1

(
xT
t θ̃t − xT

t θ
?
)
1{E}

≤
T∑
t=1

(
J(θ?)− J(θ̃t)

)
1{Et}+

T∑
t=1

(
xT
t θ̃t − xT

t θ
?
)
1{Et}

=
T∑
t=1

RTS
t +

T∑
t=1

RRLS
t ,

w.p. 1− δ/2. Notice that the formal definitions of RTS
t and RRLS

t involve the indicator
of the high-probability events 1{Et}, which is the quantity of interest since we aim at
bounding the regret on E. As discussed in Sec. 3.4, the main difficulty lies in bounding
the regret term specific to TS. We first report the formal proof to bound RTS(T ), while
the bound on RRLS(T ) and the overall regret is postponed to Sec. 3.5.4.

Similar to the sketch in Sect. 3.4, the proof follows three steps: 1) we use the
convexity of J to upper-bound the regret by its expectation conditioned on being
optimistic and to relate it to the gradient of J , 2) we relate the gradient of J to the
arms chosen by TS over time, 3) we show that despite the randomization, TS has a
constant probability of being optimistic.
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3.5.1 Step 1 (regret and gradient of J(θ)).

On event Et, θ̃t belongs to ETS
t and thus,

RTS
t ≤

(
J(θ?)− inf

θ∈ETS
t

J(θ)
)
1{Êt}.

Recalling that Θopt is the set of all optimistic θs, we can bound the previous expression
by the expectation over any random choice of θ̃ in Θopt

t := Θopt ∩ ETS
t where we restrict

the optimistic set to the high-probability sampling ellipsoid, that is

RTS
t ≤ E

[(
J(θ̃)− inf

θ∈ETS
t

J(θ)
)
1{Êt}

∣∣∣∣Ft, θ̃ ∈ Θopt
t

]
,

where θ̃ = θ̂t + βt(δ′)V −1/2
t η with η ∼ DTS is the TS sampling distribution. We now

rely on the following characterization of J(θ) (see App. 3.C).

Proposition 3.5.1. For any set of arm X satisfying Asm. 3.2.1, J(θ) = supx xTθ has
the following properties: 1) J is real-valued as the supremum is attained in X , 2)
J is convex on Rd, 3) J is continuous with continuous first derivative except for a
zero-measure set w.r.t. the Lebesgue’s measure.

These properties follow from the fact that J is the support function of X and it
shows that J is convex for any arm set X . As a result, we can directly relate RTS

t to
the gradient of J as

RTS
t ≤ E

[
sup
θ∈ETS

t

∇J(θ̃)T(θ̃ − θ)1{Êt}
∣∣∣∣Ft, θ̃ ∈ Θopt

t

]

≤ E
[
‖∇J(θ̃)‖V −1

t
sup
θ∈ETS

t

‖θ̃−θ‖Vt1{Êt}
∣∣∣∣Ft, θ̃∈Θopt

t

]

≤ 2γt(δ′)E
[
‖∇J(θ̃)‖V −1

t

∣∣∣∣Ft, θ̃∈Θopt
t

]
1{Êt},

(3.4)

where we used Cauchy-Schwarz from line 1 to line 2, the fact that θ̃ ∈ ETS
t and that Êt

is Ft measurable from line 2 to line 3.

3.5.2 Step 2 (from gradient of J(θ) to optimal arm x?(θ)).

In the sketch of the proof there was a direct relationship between ∇J(θ) and the optimal
arm corresponding to θ by direct construction. In the next lemma, we show that this
connection is true for any arm set X .

Lemma 3.5.2. Under Asm. 3.2.1, for any θ ∈ Rd, we have ∇J(θ) = x?(θ) except for
a zero-measure set w.r.t. the Lebesgue’s measure.
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Proof. The proof relies on the fact that, for any arm set X , J is the support function
of X . Recalling Eq. 3.1,

x?(θ) = arg max
x∈X

xTθ, J(θ) = sup
x∈X

xTθ.

By Asm. 3.2.1, x?(θ) is well defined (since X is bounded) and x?(θ) ∈ X (since X is
closed). By Prop. 3.C.1, we know that J is twice differentiable almost everywhere.
Thus, denoting as ∂J(θ) the sub-gradient of J in θ ∈ Rd, it guarantees that it reduces
to a singleton almost everywhere. This translate in ∂J(θ) = {∇J(θ)} except for a
zero-measure set w.r.t. the Lebesgue’s measure.
Thus, one just has to ensure that x?(θ) ∈ ∂J(θ) for all θ ∈ Rd to conclude the proof.
By definition, x?(θ)Tθ = J(θ) and for any θ̄ ∈ Rd, J(θ̄) ≥ x?(θ)Tθ̄. Therefore,

J(θ̄)− x?(θ)Tθ̄ ≥ 0 := J(θ)− x?(θ)Tθ

J(θ̄) ≥ J(θ) + x?(θ)T
(
θ̄ − θ

)
, ∀θ̄ ∈ Rd

which is the definition of the sub-gradient.

Using Lem. 3.5.2 in Eq. 3.4, one obtains:

RTS
t ≤ 2γt(δ′)E

[
‖x?(θ̃)‖V −1

t

∣∣∣∣Ft, θ̃∈Θopt
t

]
1{Êt}. (3.5)

This property strongly connects the exploration of TS to the actual regret. In fact,
together with Prop. 3.2.1, it implies that selecting the optimal arm associated with
any optimistic θ is equivalent to reducing the weighted norm of the gradient of J and
ultimately the regret RTS

t . This motivates the next step where we show that since
TS is often optimistic, then the arm xt = x?(θ̃t) contributes to the reduction of the regret.

3.5.3 Step 3 (optimism).
The optimism of TS is a direct consequence of the convexity of J and the fact that
the distribution of η is oversampling by a factor

√
d w.r.t. the ellipsoid ERLS

t . Since
this is at the core of the TS sampling analysis, we detail the proof here but postpone
convexity results in App. 3.B.

Lemma 3.5.3. Let Θopt
t :={θ∈Rd|J(θ)≥J(θ?)}∩ETS

t be the set of optimistic parameters,
θ̃ = θ̂t + βt(δ′)V −1/2

t η with η ∼ DTS, then, on Êt,

∀t ≥ 1, P
(
θ̃ ∈ Θopt

t |Ft
)
≥ p/2.

Proof. We need to study the probability that a θ̃ drawn at time t from the TS sampling
distribution is optimistic, i.e., J(θ̃) ≥ J(θ?), under event Êt. More formally let

pt = P
(
J(θ̃) ≥ J(θ?)|Ft

)
.
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Using the definition of Êt we have that θ? ∈ ERLS
t (i.e., the true parameter vector

belongs to the RLS ellipsoid) and then, under event Êt, we can replace J(θ?) by the
supremum over the ellipsoid as

pt ≥ P
(
J(θ̃) ≥ sup

θ∈ERLS
t

J(θ)
∣∣∣∣Ft).

By recalling the definition of the TS sampling process, we can write θ̃ = θ̂t+βt(δ′)V −1/2
t η,

where η ∼ DTS and for notational convenience, we define the function ft(η) = J(θ̂t +
βt(δ′)V −1/2

t η). Let θt = arg maxθ∈ERLS
t

J(θ) and ηt be the corresponding η (i.e., ηt is
such that θt = θ̂t +βt(δ′)V −1/2

t ηt). Since the supremum is taken within ERLS
t , ηt belongs

to the unit ball (i.e., ηt ∈ Bd(0, 1)). As a result, we can rewrite the previous expression
as

pt ≥ P
(
ft(η) ≥ ft(ηt)

∣∣∣∣Ft).
Since the function ft inherits all the properties of J , notably its convexity in η, we
know that the supremum on a convex closed set is reached at least at one point η̄t
and that it belongs to the boundary (see Prop. 3.B.1), which in our case corresponds
to ‖ηt‖ = 1. Moreover, let Ht(ηt) be the hyperplane tangent to ηt. Ht(η̄t) splits Rd

in two complementary subsets Gt and G⊥t where Gt does not contain the unit ball by
convention. Formally, one has:

Ht(ηt) := {η ∈ Rd s.t. ηTη̄t = 1}, Gt := {η ∈ Rd s.t. ηTη̄t ≥ 1}.

Again, the convexity of ft ensures that ft(η) ≥ ft(η̄t) for all η ∈ Gt as proved in
Prop. 3.B.2. As illustrated in Fig. 3.5 the probability of being optimistic is now reduced
to the probability that η drawn from DTS falls into Gt, which corresponds to

pt ≥ P
(
η ∈ Gt

∣∣∣∣Ft) = P
(
ηTη̄t ≥ 1

∣∣∣∣Ft).
Notice that η̄t is entirely defined by the filtration Ft and the event Êt and it is thus

independent from η. As a result, we obtain from property 1 of Def. 3.3.1 of the TS
sampling distribution, that

P
(
ηTη̄t ≥ 1

∣∣∣∣Ft) ≥ p.

Finally, we show that this property is not affected, up to a second order term, by the
high-probability concentration event. It relies on the fact that the chosen confidence
level δ′ = δ/4T is small compared to the anti-concentration probability p of Def. 3.3.1.
For sake of simplicity, we assume that T ≥ 1/2p which implies that δ′ ≤ p/2.
For any events A and B, one has

P(A ∩B) = 1− P(Ac ∪Bc) ≥ P(A)− P(Bc)
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ETS
t

O

Bd(0, 1)

ηt

Ht

GtG⊥
t

Figure 3.5 – Illustration of the probability of selecting an optimistic θ̃t.

Since, by Def. 3.3.1, P(θ̃ ∈ ETS
t ) ≥ 1 − δ′, applying the previous inequality to A :=

{J(θ̃) ≥ J(θ?)} and B := {θ̃ ∈ ETS
t } leads to

P(θ̃t ∈ Θopt ∩ ETS
t |Ft) ≥ p− δ′ ≥ p/2.

To control the regret, we now make use of the fact that the probability of being
optimistic is constant under the event Êt. Let g(θ̃) be an arbitrary non-negative function
of θ̃, then we can write the full expectation as

E[g(θ̃)|Ft]1{Êt} ≥ E[g(θ̃t)1{θ̃ ∈ Θopt
t }|Ft]1{Êt}

≥ E
[
g(θ̃)

∣∣∣θ̃ ∈ Θopt
t ,Ft

]
P
(
θ̃ ∈ Θopt

t

∣∣∣Ft)1{Êt}
≥ p/2E

[
g(θ̃)

∣∣∣θ̃ ∈ Θopt
t ,Ft

]
1{Êt}.

Setting g(θ̃) = 2γt(δ′)‖x?(θ̃)‖V −1
t

, we obtains an upper bound for Eq. 3.5 as

RTS
t ≤ 4γt(δ′)/p E

[
‖x?(θ̃)‖V −1

t
|Ft
]
1{Êt} ≤ 4γt(δ′)/p E

[
‖x?(θ̃)‖V −1

t
|Ft
]
,

where 2/p can be interpreted as the expected time between any two optimistic samples.
Finally, by construction θ̃ d= θ̃t|Ft, thus x?(θ̃) d= x?(θ̃t)|Ft. As a result,

RTS
t ≤ 4γt(δ′)/p E

[
‖x?(θ̃t)‖V −1

t
|Ft
]
,
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and we can use Azuma’s inequality to obtain the final bound with probability at least
1− δ/2

RTS(T ) ≤ 4γT (δ′)
p

( T∑
t=1
‖xt‖V −1

t
+
√

8T
λ

log 4
δ

)
, (3.6)

where xt is the optimal arm x?(θ̃t) selected by TS. The proof is concluded using
Cauchy-Schwarz and Prop. 3.2.1 to bound RTS(T ) and Prop. 2.2.1 to bound RRLS(T ).

3.5.4 Final bound
Bounding RRLS(T ). Similar to the sketch in Sect. 3.4, the proof relies on the fact
that the RLS guarantees a small on-policy error. Let

RRLS(T ) =
T∑
t=1

RRLS
t =

T∑
t=1

(
xTt θ̃t − xTt θ?

)
1{Et},

the bound on RRLS is derived as in previous analysis (Abbasi-Yadkori et al., 2011b,
Agrawal and Goyal, 2012b). We decompose the term in a sampling prediction error
and a RLS prediction error as follow

RRLS(T ) ≤
T∑
t=1
|xT
t (θ̃t − θ̂t)|1{Et}+

T∑
t=1
|xT
t (θ̂t − θ?)|1{Et}

By definition of the concentration event Et,

|xT
t (θ̃t − θ̂t)|1{Et} ≤ ‖xt‖V −1

t
γt(δ′), |xT

t (θ̂t − θ?)|1{Et} ≤ ‖xt‖V −1
t
βt(δ′),

thus, one obtains:
T∑
t=1

RRLS
t ≤

(
γT (δ′) + βT (δ′)

) T∑
t=1
‖xt‖V −1

t
(3.7)

Plugging everything together. Collecting bounds in Eq. 3.6 and Eq. 3.7, ap-
plying Cauchy-Schwarz and using Prop. 3.2.1 , one has, with probability at least
1− δ/2,

RRLS(T ) +RTS(T ) ≤
(
(4/p+ 1)γT (δ′) + βT (δ′)

) T∑
t=1
‖xt‖V −1

t
+ 4γT (δ′)

p

√
8T
λ

log 4
δ

≤
(
(4/p+ 1)γT (δ′) + βT (δ′)

)√
T

(
T∑
t=1
‖xt‖2

V −1
t

)1/2

+ 4γT (δ′)
p

√
8T
λ

log 4
δ

≤
(
(4/p+ 1)γT (δ′) + βT (δ′)

)√
2d log(1 + T/λ)

√
T + 4γT (δ′)

p

√
8T
λ

log 4
δ

Finally, by Lem. 3.5.1, the event E = ⋂
t≤T Et holds with probability at least 1− δ/2.

Hence, a union bound argument ensures that with probability at least 1− δ,
R(T ) ≤ RTS(T ) +RRLS(T )

≤
(
βT (δ′) + γT (δ′)(1 + 4/p)

)√
2Td log

(
1 + T

λ

)
+ 4γT (δ′)

p

√
8T
λ

log 4
δ

where δ′ = δ
4T which proves Thm. 3.5.1.
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3.6 Extensions

We provide an alternative proof for TS in LB, leveraging the properties of the
optimal value function, the properties of the RLS estimate and the concentration/anti-
concentration property of the sampling. As the functioning of the proof does not
rely on the specific shape of the J function, we can readily apply it to similar, yet,
more general linear problems. We present here two extensions: the regularized linear
optimization problem and the generalized linear bandit.

3.6.1 Regularized linear optimization

Our proof holds for any arm set X and the corresponding constrained optimization
problem maxx∈X xTθ?. Similarly, we can apply it to any regularized linear optimization
problem maxx∈Rd fµ,c(x; θ), with fµ,c(x; θ) = xTθ + µc(x), where µ is a constant and
c(x) is an arbitrary penalty function of x (e.g., norm-regularization). While there
always exists a set of constraints (corresponding to a set of arms Xc,µ,θ) such that
the solution to the constrained and regularized problems coincides, such mapping
is often unknown (e.g., c(x) = ‖x‖1) and thus TS cannot be run on Xc,µ,θ but we
need to directly deal with the regularized problem (i.e., sampling θ̃t and pulling arm
xt = arg maxx fµ,c(x; θ̃t)). In this case, it can be seen that the three main steps of our
proof still hold. In fact 1) J(θ) is convex, 2) the gradient of J(θ) corresponds to the
optimal arm x∗(θ), 3) Lemma 3.5.3 holds unchanged since it relies on the convexity of
J(θ) and the TS distribution DTS is the same. As a result, the regret bound follows.

Setting. We consider here the Regularized Linear Optimization (RLO) problem
as an extension of the Linear Bandit problem. Given a set of arms X ⊂ Rd and an
unknown parameter θ? ∈ Rd, a learner aims at each time step t = 1, . . . , T to select
action xt ∈ X which maximizes its associated reward xT

t θ
? + µc(xt) where µ is a known

constant and c an arbitrary (yet known) real-valued function. Whenever arm x is
pulled, the learner receives a noisy observation y = xTθ? + ξ. As for LB, we introduce
the function f(x; θ) = xTθ + µc(x), and denote as x?(θ) = arg maxx∈X f(x; θ) and
J(θ) = maxx∈X f(x; θ) the optimal action and optimal reward associated with θ. The
regret is therefore defined as

RRLO(T ) =
T∑
t=1

f(x?(θ?); θ?)− f(xt; θ?).

Since this problem is just the regularized extension of the Linear Bandit, the TS
algorithm is similar to Fig. 3.1 where rt is replaced yt and xt = arg maxx∈X f(x, θ̃t).
Under the same assumptions, the regret shares the same bound and our line of proof
holds.
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Sketch of the proof. First, we decompose the regret

RRLO(T ) =
T∑
t=1

[
(f(x?(θ?); θ?)− f(xt; θ̃t)) + (f(xt; θ̃t)− f(xt; θ?))

]

=
T∑
t=1

[
J(θ?)− J(θ̃t)

]
︸ ︷︷ ︸

=RTS(T )

+
T∑
t=1

[
xT
t θ̃t − xT

t θ
?
]

︸ ︷︷ ︸
=RRLS(T )

.

Since Prop. 2.2.1 holds thanks to the linear observations yt, RRLS(T ) is bounded as in
the LB analysis. Finally, to bound RTS(T ), one just need to ensure that Prop. 3.5.1,
Lem. 3.5.2 and Lem. 3.5.3 hold.

The convexity of the function f with respect to θ implies the convexity of J : ∀x ∈ X ,
∀θ, θ′ ∈ Rd, ∀α ∈ (0, 1),

J(αθ + (1− α)θ′) = max
x∈X

f(x;αθ + (1− α)θ′)

≤ max
x∈X

(
αf(x; θ) + (1− α)f(x; θ′)

)
≤ αJ(θ) + (1− α)J(θ′).

Then, J is real-valued and convex which implies its continuous differentiability thanks
to Alexandrov’s theorem. As a consequence, the first step of the proof holds.
The equality between the gradient ∇J(θ) and the optimal arm x?(θ) can be derived as
in Lem. 3.5.2: for any θ, θ̄ ∈ Rd, by definition, J(θ) = f(x?(θ); θ) and J(θ̄) ≥ f(x?(θ); θ̄).
Then,

J(θ̄)− f(x?(θ), θ̄) ≥ 0 := J(θ)− f(x?(θ), θ),
J(θ̄) ≥ J(θ) + f(x?(θ), θ̄)− f(x?(θ), θ) = J(θ) + x?(θ)T

(
θ̄ − θ

)
, ∀θ̄ ∈ Rd,

which is the definition of the sub-gradient. Finally, the almost everywhere differentia-
bility of J ensures the sub-gradient to be a singleton and hence equals the gradient.
Therefore, Lem. 3.5.2 holds and so is step 2. Finally, since the optimism just relies on
the convexity of J and on the over-sampling, it is satisfied in the RLO and step 3 holds.
As a result, we obtain the same regret bound as in the LB.

On the other hand, the original proof by Agrawal and Goyal (2012b) could be less
readily applied to this case. First notice that the mapping from µ and c(x) to the
constrained set Xc,µ,θ? requires the unknown parameter θ?. This means that if we pass
from the regularized problem to the constrained problem at each time step t, we would
be working on a set X

c,µ,θ̃t
which keeps changing over time. While Agrawal and Goyal

(2012b) study the contextual bandit problem where Xt changes arbitrarily over time,
in this case Xt would change in response to θ̃t itself (i.e., it would not be available in
advance) and the analysis would bound the per-step regret rt = maxx∈X

c,µ,θ̃t

xTθ?− xT
t θ,

which does not correspond to the desired regret on fµ,c (the true optimal arm x?(θ?)
may not even be in X

c,µ,θ̃t
). Alternatively, we need to formulate a suitable definition of

saturated and unsaturated arms for fµ,c(x; θ), which does not seem trivial and it may
require developing a more ad-hoc analysis.
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3.6.2 Generalized linear bandit
Another interesting extension is the generalized linear bandit (GLM) problem of Filippi
et al. (2010). In this setting, the reward associated to arm x ∈ X is no longer drawn
from the linear regression model but is generated as r(x) = µ(xTθ?) + ξ, where µ is
the so-called link function, θ? ∈ Rd is a fixed but unknown parameter vector and ξ

is a random zero-mean noise. One of the major advantage of this setting is that it
encompasses logistic regression. It can model the case when the reward is in [0, 1] and
thus became very popular in recommender system where the reward represents the
probability of click.
Similarly to the regularized optimization problem, a regret bound can be derived for
the GLM problem using the same line of proof that we use for LB. It first relies on the
fact that, under suitable assumptions about the link function µ, consistent estimates
are available for θ? together with high probability confidence ellipsoids. Then, we can
show that the GLM optimal value function JGLM(θ) := supx∈X µ(xTθ) is related to
the LB optimal value function J(θ) as JGLM(θ) = µ(J(θ)) and thus, link the regret of
GLM to the regret of LB.
We present here how to apply our derivation to the generalized linear bandit (GLM)
problem of Filippi et al. (2010). The regret bound is obtained by basically showing
that the GLM problem can be reduced to studying the linear case.

The setting. Let X ⊂ Rd be an arbitrary (finite or infinite) set of arms. Every
time an arm x ∈ X is pulled, a reward is generated as r(x) = µ(xTθ?) + ξ, where µ is
the so-called link function, θ? ∈ Rd is a fixed but unknown parameter vector and ξ is
a random zero-mean noise. The value of an arm x ∈ X is evaluated according to its
expected reward µ(xTθ?) and for any parameter θ ∈ Rd we denote the optimal arm and
its optimal value as

x?,GLM(θ) = arg max
x∈X

µ(xTθ), JGLM(θ) = sup
x∈X

µ(xTθ).

Then x? = x?,GLM(θ?) is the optimal arm associated with the true parameter θ? and
JGLM(θ?) its optimal value. At each step t, a learner chooses an arm xt ∈ X using
all the information observed so far (i.e., sequence of arms and rewards) but without
knowing θ? and x?. At step t, the learner suffers an instantaneous regret corresponding
to the difference between the expected rewards of the optimal arm x? and the arm xt
played at time t. The objective of the learner is to minimize the cumulative regret up
to a finite step T ,

RGLM(T ) =
T∑
t=1

(
µ(x?,Tθ?)− µ(xT

t θ
?)
)
.

Assumptions. The assumptions associated with this more general problem are the
same as in the linear bandit problem plus one regarding the link function. Formally, we
require assumption 3.2.1, 3.2.2 and 3.2.3 and add:

Assumption 3.6.1 (link function). The link function µ : R → R is continuously
differentiable, Lipschitz with constant kµ and such that cµ = infθ∈Rd,x∈X µ(xTθ) > 0.
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Technical tools. Let (x1, . . . , xt) ∈ X t be a sequence of arms and (r2, . . . , rt+1)
be the corresponding observed (random) rewards, then the unknown parameter θ?
can be estimated by GLM estimator. Following Filippi et al. (2010) one gets, for any
regularization parameter λ ∈ R+,

θ̂GLM
t = arg min

θ∈Rd
‖
t−1∑
s=1

(
rs+1 − µ(xT

s θ)
)
xs‖2

V −1
t
, (3.8)

where Vt is the same design matrix as in the linear case. Similarly to Prop. 2.2.1, we
have a concentration inequality for the GLM estimate.

Proposition 3.6.1 (Prop. 1 in appendix.A in (Filippi et al., 2010)). For any δ ∈
(0, 1), under assumptions 3.2.1, 3.2.2, 3.2.3 and 3.6.1, for any Fxt -adapted sequence
(x1, . . . , xt, . . .), the prediction returned by the GLM estimator θ̂GLM

t (Eq. 3.8) is such
that for any fixed t ≥ 1,

‖θ̂GLM
t − θ?‖Vt ≤

βt(δ)
cµ

,

and

∀x ∈ Rd, ‖µ(xTθ̂GLM
t )− µ(xTθ?)‖ ≤ kµβt(δ)

cµ
‖x‖V −1

t
,

‖xTθ̂GLM
t − xTθ?‖ ≤ βt(δ)

cµ
‖x‖V −1

t
,

with probability 1 − δ (w.r.t. the noise sequence {ξt}t and any other source of ran-
domization in the definition of the sequence of arms), where βt(δ) is defined as in
Eq. 3.3.

The Asm. 3.6.1 on the link function together with the properties of the GLM
estimator implies the following: 1) since the first derivative is strictly positive, µ is
strictly increasing and x?,GLM(θ) = arg maxx∈X xTθ = x?(θ) so we retrieve the optimal
arm of the linear case. Similarly, JGLM(θ) = µ(J(θ)); 2) the concentration inequality
of the GLM estimate involves the same ellipsoid as for the RLS (multiplied by a factor
1
cµ
). These two facts suggest to use then exactly the same TS algorithm as for the

linear case (with a βt(δ′) multiplied by a factor 1
cµ
, where δ′ = δ

4T ).

Sketch of the proof. From the previous comments, making use of the property of
µ, one just need to reduce the GLM case to the standard linear case.

RGLM(T ) =
T∑
t=1

(
µ(x?θ?)− µ(xT

t θ
?)
)
,

=
T∑
t=1

(
µ(x?θ?)− µ(xT

t θ̃t)
)

+
T∑
t=1

(
µ(xT

t θ̃t)− µ(xT
t θ

?)
)

≤
T∑
t=1

(
µ(x?θ?)− µ(xT

t θ̃t)
)

+
T∑
t=1

kµ‖x‖V −1
t
‖θ̃t − θ?‖Vt .



50 Chapter 3. Thompson Sampling in Linear Bandit

The second term is bounded exactly as RRLS(T ). To bound the first one, we make use
of the fact that

µ(x?θ?)− µ(xT
t θ̃t) ≤ kµ

(
J(θ?)− J(θ̃t)

)
, ifJ(θ?)− J(θ̃t) ≥ 0,

µ(x?θ?)− µ(xT
t θ̃t) ≤ cµ

(
J(θ?)− J(θ̃t)

)
, otherwise.

Following the proof of the linear case, with high probability, for all t ≥ 1,

J(θ?)− J(θ̃t) ≤
2γt(δ′)
cµp

E
(
‖xt‖V −1

t
|Ft
)
.

Since the r.h.s is strictly positive one can bound the first part of the regret, independently
of the sign by,

T∑
t=1

(
µ(x?θ?)− µ(xT

t θ̃t)
)
≤ 2kµγT (δ′)

cµp

T∑
t=1

E
(
‖xt‖V −1

t
|Ft
)
.

Finally, the same proof as in the linear case leads to the following bound for the
Generalized Linear Bandit regret.
Lemma 3.6.1. Under assumptions 3.2.1,3.2.2,3.2.3 and 3.6.1, the cumulative regret
of TS over T steps is bounded as

RGLM(T ) ≤ kµ
cµ

(
βT (δ′) + γT (δ′)(1 + 2/p)

)√
2Td log

(
1 + T

λ

)
+ 2kµγT (δ′)

pcµ

√
8T
λ

log 4
δ

with probability 1− δ where δ′ = δ
4T .

3.6.3 Other extensions
To go further, we can generalize our proof to the other convex optimization problems
maxx∈X f(x, θ), with linear observations (i.e., y = xTθ + ξ). If f(x, θ) is convex in θ,
then J(θ) is convex as well, thus enabling the possibility to apply our line of proof.
More precisely, the gradient of J to the arms played by TS should be related (step
2, Lem. 3.5.2) and the on-policy prediction error RRLS measured w.r.t. f should be
bounded (Prop. 2.2.1). Whenever these properties are satisfied, the regret result follows.
Notice that while the original proof by Agrawal and Goyal (2012b) may be extended
to cover some of these problems, its requirements are slightly stronger. In fact, the
definition of saturated and unsaturated arms relies on the fact that f(x, θ̂n) concentrates
to f(x, θ) for any x, while in our case, we only need to bound RRLS, which corresponds to
an on-policy error, where prediction errors are measured on the specific arms selected by
the algorithm. While this advantage may appear abstract, let consider the reinforcement
learning case, where f(x, θ) is the value function of a policy x in an environment θ.
In this case, f(x, θ?) may actually be unbounded for some x (i.e., the policy x does
not control the system) and the definition of saturated/unsaturated arms could not be
easily adjusted. This suggests that our proof could enable covering special RL cases as
well. Finally, we remark that defining TS as a randomized algorithm and using convex
geometry arguments in its analysis bears a strong resemblance with follow-the-perturbed-
leader algorithm and its regret analysis in adversarial linear bandit (Abernethy et al.,
2015), suggesting that the two approaches may be strongly related.
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3.7 Discussion
We developed an alternative proof for TS in LB with novel insights on the core elements
of the algorithm (optimism) and the structure of the problem (support function J(θ)).
There are a number of possible applications of our results and future directions of
investigation. The main open question is whether or not oversampling is needed to
guarantee a

√
T regret bound for TS. Since this worsens the bound by

√
d, answering

this question could improve the current frequentist bound from Õ(d3/2
√
T ) to Õ(d

√
T ),

thus matching the bound achieved by OFUL. We first present numerical experiments
that compare the Bayesian and frequentist versions of TS and exhibit the dependency
of the constant of the frequentist regret w.r.t d. Then, we stress why oversampling is
needed in the current analysis and discuss how to relax it.

Numerical experiments. To understand the impact of the oversampling, we
compare two instances of the TS algorithm:

1) we denote as FreqTS the instance of the algorithm where, at each time step, the
parameter is sampled as θ̃t = θ̂t + βtV

−1/2
t η with η ∼ N (0, I), for which we prove

a Õ
(
d3/2
√
T
)
regret bound,

2) we denote as BayesTS its Bayesian counterpart where, at each time step, the
parameter is sampled as θ̃t = θ̂t+V −1/2

t η with η ∼ N (0, I), for which no frequentist
regret guarantee exists.

We compute the regret over trajectories of length T = 200000 for values of d spanning
[0, 30] and present the results in Fig. 3.6. The motivation for such long trajectories is
that the regret curves exhibit slightly different regimes (w.r.t. t). Since we focus on
the dependency on d, we discard this effect ensuring that each trajectory reaches the
asymptotic regime. The parameter θ? is fixed at the beginning of each trajectory as
θ? = (1, 0, . . . , 0). The reason for imposing ‖θ?‖ = 1 is to remove the dependency on d
in the norm of θ?, which affects the regret through the constant S of Asm. 3.2.2. The
RLS estimation is initialized as V0 = λI with λ = 1 and θ̂0 is randomly chosen on the
unite sphere. Finally, the reward noise sequences {ξt}t are generated i.i.d according to
ξt ∼ N (0, 1).

The intuition provided by this experiment is twofold: first, it stresses that the
Õ
(
d3/2
√
T
)
regret bound of the FreqTS algorithm is tight, so a factor

√
d cannot be

removed by a different analysis; secondly, it suggests that no oversampling is needed
to guarantee a

√
T regret and that a Õ

(
d
√
T
)
regret bound could be derived for the

BayesTS algorithm.

About optimism and oversampling. As illustrated in Sect. 3.4, in the current
proof optimistic steps allows to bound the regret of non-optimistic steps. Nonetheless,
it can be shown that some non-optimistic steps (even very pessimistic!) may indeed be
as “informative” as optimistic steps and allow reducing the regret as well. Let consider



52 Chapter 3. Thompson Sampling in Linear Bandit

0 50000 100000 150000 200000
t

0

2000

4000

6000

8000

10000

12000 Regret comparison w.r.t t

av. Regret BayesTS

h.p Regret BayesTS

av. Regret FreqTS

h.p Regret FreqTS

0 5 10 15 20 25 30
d

0

10000

20000

30000

40000

50000 Terminal av. Regret w.r.t d

FreqTS

BayesTS

Figure 3.6 – Regret comparison between BayesTS and FreqTS algorithm. Left: empirical
average and high probability regret w.r.t t for 100 trajectories with d = 10. Right: empirical
average terminal regret R(T ) for T = 200000 w.r.t d for 100 trajectories.

a minor change in the line of proof, anticipating the use of the convexity of J , i.e.,

RTS
t ≤ sup

θ∈ETS
t

∇J(θ?)T(θ? − θ)1{Et}

≤ ‖∇J(θ?)‖V −1
t

2γt(δ′)1{Et}.

If we sample a θ̃ such that the gradient at it ∇J(θ̃) (i.e., which coincides with
the corresponding optimal action x?(θ̃)) has the same V −1

t -norm as ∇J(θ?), then
we could apply the same reasoning as in the original sketch of the proof and
bound the regret of any subsequent step. More formally, we can define the
set Θgrad

t = {θ : ‖∇J(θ)‖V −1
t
≥ ‖∇J(θ?)‖V −1

t
} of parameters that have larger

gradient than θ?’s. Similar to Θopt, if the probability of sampling θ̃ in Θgrad
t is

lower-bounded by a constant p′, then the proof can be reproduced with exactly
the same arguments and result. Even further, we could relax the requirement and
define Θgrad

t (α) = {θ : ‖∇J(θ)‖V −1
t
≥ α‖∇J(θ?)‖V −1

t
}, with α < 1, which would

allow even a bigger probability at the cost of an extra constant factor α in the final regret.

As illustrated in Fig. 3.7, in the case X = Bd(0, 1), Θgrad
t (α) corresponds to a cone

whose overlap with ETS may actually be even larger than for Θopt. This illustration
shows that the set of useful explorative actions does not necessarily coincide with the
set of optimistic parameters and that many more parameters in ETS may contribute
to reduce the regret. This may explain the empirical success of TS and it may
suggest that the oversampling by a factor

√
d to ensure optimism may be a too strong

requirement. Finally, we remark that a similar optimistic argument is employed
by Agrawal and Goyal (2013) in MAB. Nonetheless, in Lemma 2 they prove that the
probability of being optimistic increases over time. This may suggest that ETS needs
to be only a constant fraction bigger than ERLS, since the initial small probability of
being optimistic would tend to a constant (or even to 1) later on during the learn-
ing process. Whether this argument holds and how to prove it remains an open question.
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Figure 3.7 – Illustration of the non-optimistic region that could contribute to reduce the
regret.



Appendix

3.A Examples of TS distributions
Example 1: Uniform distribution η ∼ UBd(0,

√
d). The uniform distribution satisfies

the concentration property with constants c = 1 and c′ = e
d
by definition. Since the

set {η|uTη ≥ 1} ∩ Bd(0,
√
d) is an hyper-spherical cap for any direction u of Rd, the

the anti-concentration property is satisfied provided that the ratio between the volume
of an hyper-spherical cap of height

√
d− 1 and the volume of the ball of radius

√
d is

constant (i.e., independent from d). Using standard geometric results (see Prop. 3.E.1),
one has that for any vector ‖u‖ = 1

P(uTη ≥ 1) = 1
2I1− 1

d

(
d+ 1

2 ,
1
2

)
,

where Ix(a, b) is the incomplete regularized beta function. In Prop. 3.E.2 we prove that

I1− 1
d

(
d+ 1

2 ,
1
2

)
≥ 1

8
√

3π
,

and hence we obtain p = 1
16
√

3π .
Example 2: Gaussian case η ∼ N (0, Id). The concentration property comes

directly from the Chernoff bound for standard Gaussian random variable together with
union bound argument. For any α > 0, we have

P(‖η‖ ≤ α
√
d) ≥ P(∀1 ≤ i ≤ d, |ηi| ≤ α) ≥ 1− dP(|ηi| ≥ α).

Standard concentration inequality for Gaussian random variable gives, ∀α > 0,

P(|ηi| ≥ α) ≤ 2e−α2/2.

Plugging everything together with α =
√

2 log 2d
δ
gives the desired result with c = c′ = 2.

Let ηi be the i-th component of η for any 1 ≤ i ≤ d. Then ηi ∼ N (0, 1). Since η is
rotationally invariant, for any direction u of Rd and an appropriate choice of basis, we
have P(uTη ≥ 1) ≥ P(η1 ≥ 1). From standard Gaussian properties (see Thm 2 of Chang
et al. (2011)) we have

P(η1 ≥ 1) = 1
2erfc

(
1√
2

)
≥ 1

4
√
eπ

which ensures the anti-concentration property with p = 1
4
√
eπ
.

3.B Properties of convex function
Proposition 3.B.1. Let f : Rd → R be a convex function and C be a closed convex
set of Rd. Then, on C, f reaches its maximum on the boundary of C.
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Proof. Let’s denote as int(C) and bound(C) the interior and the boundary of the
closed convex set C respectively. Assume that ∃x? ∈ int(C) such that f(x?) > f(x) for
any x ∈ bound(C) and f(x?) ≥ f(y) for any y ∈ int(C).

Then define y = x? + ε(x? − x) for some x ∈ bound(C). By definition of the open
set int(C), ∃ε > 0 such that y ∈ int(C). Moreover, x? ∈ [y, x] i.e.,

x? = (1− t)x+ ty, t = 1
1 + ε

∈]0, 1[

Using the convexity of f , one has

f(x?) ≤ (1− t)f(x) + tf(y) < (1− t)f(x?) + tf(y) ⇒ f(x?) < f(y)

which is impossible by assumption.

Proposition 3.B.2. Let f : Rd → R be a convex function. Let Bd(0, 1) be the unit
d−dimensional ball and Sd(0, 1) the associated unit sphere.
Let x? ∈ Sd(0, 1) such that f(x?) ≥ f(x) for all x ∈ Bd(0, 1), and let H(x?) be the
hyperplan tangent to Bd(0, 1) at the point x?, which splits Rd into two complementary
subsets G(x?) and G⊥(x?) defined respectively by

H(x?) = {x ∈ Rd s.t. xTx? = 1},
G(x?) = {x ∈ Rd s.t. xTx? ≥ 1},
G(x?)⊥ = {x ∈ Rd s.t. xTx? < 1}.

Then, ∀y ∈ G(x?), f(y) ≥ f(x?).

Proof. We first notice that from Proposition 3.B.1 x? is well defined since the maximum
is reached on the boundary. The associated subspace G(x?) is then

G(x?) := {y = x? + u, u ∈ Rd | uTx? ≥ 0}.

We want to show that f(y) ≥ f(x?) for any y ∈ G(x?). We introduce the increasing
sequence of subspace

Gn =
{
y = x? + u, u ∈ Rd | uTx? ≥ ‖u‖

2(n− 1)

}
, n ≥ 2.

For any y = x? +u in Gn, we associate x = x?− 1
2(n−1)

u
‖u‖ . By definition of y (and hence

u), we have

‖x‖2 = 1 + 1
2(n− 1)

2
− 1

2(n− 1)‖u‖u
Tx? = 1 + 1

2(n− 1)

[
1

2(n− 1) −
uT

‖u‖
x?
]
≤ 1,

which means that x ∈ Bd(0, 1). Moreover let t = [2(n− 1)‖u‖+ 1]−1, t ∈]0, 1[ one has
x? = (1− t)x+ ty. Since x ∈ Bd(0, 1) then

f(x?) ≤ (1− t)f(x) + tf(y) ≤ (1− t)f(x?) + tf(y) ⇒ f(x?) ≤ f(y).
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Since the statement of the proposition holds for any Gn, then we obtain the desired
result for G(x?) by continuity of f . Let y ∈ G(x?), y = x? +u. If uTx? > 0, then ∃n ≥ 2
such that y ∈ Gn and the proposition is satisfied. Otherwise, if uTx? = 0, we introduce
the sequences {un} and {yn} defined as:

un = u+ ‖u‖√
1− 1

2(n−1)
2

x?

2(n− 1) = u+ ‖un‖
2(n− 1)x

?,

yn = x? + un.

By construction, yn ∈ Gn and yn → y as n→∞. Since the f(yn) ≥ f(x?) for any n ≥ 2
we obtain the desired result taking the limit since f is continuous as a convex function
on Rd.
Theorem 3.B.1 (A.D. Alexandrov). Let f : Rd → R be a convex function, then it is
twice differentiable almost everywhere with respect to the Lebesgue’s measure.
Proof. This result is an extension of the Rademacher’s theorem for convex functions. A
proof can be found in (Niculescu and Persson, 2006), Thm. 3.11.2.

3.C Properties of support function (proof of Propo-
sition 3.5.1)

We study the support function of a set C, which is a function fC : Rd → R such that
fC(θ) = sup

x∈C
xTθ

Those functions are at the core of convex geometry analysis.
Proposition 3.C.1. Let C ⊂ Rd be a non-empty compact set and fC the associated
support function. Then,

1. fC is real-valued and supx∈C xTθ is attained in C,

2. fC is convex,

3. fC is continuous on Rd and twice differentiable almost everywhere with respect to
the Lebesgue’s measure.

Proof. 1. This comes directly from the compactness of C: since C is bounded, the
support function is real-valued and since C is closed, the supremum is attained in
C,

2. Let θ1, θ2 two vectors of Rd, and t ∈ (0, 1). By definition of the supremum, since
fC is real-valued:
fC(tθ1 + (1− t)θ2) = sup

x∈C

(
txTθ1 + (1− t)xTθ2

)
≤ t sup

x∈C
xTθ1 + (1− t) sup

x∈C
xTθ2

3. The continuity is a consequence of the convexity of fC on the open convex set Rd

and the second order differentiability comes from Alexandrov’s theorem 3.B.1.
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3.D Proof of Lemma 3.5.1
We first bound the two events separately.

Bounding Ê. This bound is a straightforward application of Proposition 2.2.1
together with a union bound argument. Let δ′ = δ/(4T ), then

∀1 ≤ t ≤ T, P
(
‖θ̂t − θ?‖Vt ≤ βt(δ′)

)
≥ 1− δ′

from union bound, P
(

T⋂
t=1

{
‖θ̂t − θ?‖Vt ≤ βt(δ′)

})
≥ 1−

T∑
t=1

P
(
‖θ̂t − θ?‖Vt ≥ βt(δ′)

)

⇒ P
(

T⋂
t=1

{
‖θ̂t − θ?‖Vt ≤ βt(δ′)

})
≥ 1−

T∑
t=1

δ′

⇒ P
(
Ê
)
≥ 1− Tδ′ = 1− δ

4 .

Bounding Ẽ. This bound comes directly from the concentration property of the
TS sampling distribution. From the expression of θ̃t = θ̂t + βt(δ′)V −1/2

t ηt where ηt is
drawn i.i.d. from DTS, we have

∀1 ≤ t ≤ T, P

‖θ̃t − θ̂t‖Vt ≤ βt(δ′)
√
cd log c

′d

δ′

 = P

‖ηt‖ ≤
√
cd log c

′d

δ′

 .
Then from Definition 3.3.1, we have

P

‖ηt‖ ≤
√
cd log c

′d

δ′

 ≥ 1− δ′.

As before, a union bound over the two bounds ensures that P(Ẽ) ≥ 1− Tδ′ = 1− δ
4 .

Finally, a union bound argument between the two terms leads to P(Ê ∩ Ẽ) ≥ 1− δ
2 .

3.E Hyperspherical cap and beta function
Proposition 3.E.1. Let Vd(R) be the volume of the d−dimensional ball of radius R
and let V cap

d (h) the volume of the hyperspherical cap of height h = R− r > 0. Then,

V cap
d (h) = 1

2Vd(R)I1−( r
R

)2

(
d+ 1

2 ,
1
2

)
where Ix(a, b) is the incomplete regularized beta function.

Proof. The proof can be found in (Li, 2011).

Proposition 3.E.2. Let Ix(a, b) is the incomplete regularized beta function,

∀d ≥ 2, I1− 1
d

(
d+ 1

2 ,
1
2

)
≥ 1

8
√

3π
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Proof. The incomplete regularized beta function can be expressed in terms of the beta
function B(a, b) and the incomplete beta function Bx(a, b) where

Bx(a, b) =
∫ x

0
ta−1(1− t)b−1dt, B(a, b) = B1(a, b), Ix(a, b) = Bx(a, b)

B(a, b)

Hence we seek for a lower bound on B1− 1
d

(
d+1

2 , 1
2

)
and an upper bound for B

(
d+1

2 , 1
2

)
.

1. Let first find an lower bound for the incomplete beta function. Since t →
t
d−1

2 (1− t)−1/2 is positive and increasing on [0, 1], for any d ≥ 2,

B1− 1
d

(
d+ 1

2 ,
1
2

)
≥
∫ 1− d2

1− 3
2d

t
d−1

2 (1− t)−1/2dt ≥ 1
2d

( 3
2d

)−1/2 (
1− 3

2d

) d−1
2

≥ 1√
6d

(
1− 3

2d

) d−1
2
≥ 1√

6d

(
1− 3

2d

) d
2

From the increasing property of x → (1 − α
x
)x for any α < 1 the sequence{(

1− 3
2d

) d
2
}
d≥2

is increasing and

B1− 1
d

(
d+ 1

2 ,
1
2

)
≥ 1√

6d

(
1− 3

2× 2

) 2
2

= 1
4
√

6d

2. Now we seek for an upper bound for B
(
d+1

2 , 1
2

)
. Since B(a, b) = Γ(a)Γ(b)

Γ(a+b) one has:

B

(
d+ 1

2 ,
1
2

)
=

Γ
(

1
2

)
Γ
(
d+1

2

)
Γ
(
d
2 + 1

) =
√
π

Γ
(
d+1

2

)
Γ
(
d
2 + 1

)
From Chen and Qi (2005), we have the following inequalities for the gamma
function ∀n ≥ 1:

Γ(n+ 1/2)
Γ(n+ 1) ≤ (n+ 1/4)−1/2

Γ(n+ 1/2)
Γ(n+ 1) ≥ (n+ 4/π − 1)−1/2

Together with Γ(x+ 1) = xΓ(x) and treating separately cases where d is even or
not, one gets ∀d ≥ 2

Γ
(
d+1

2

)
Γ
(
d
2 + 1

) ≤
√

2
d

3. Using the obtained upper and lower bound we get:

I1− 1
d

(
d+ 1

2 ,
1
2

)
≥

√
d√

2π × 4
√

6d
≥ 1

8
√

3π



Chapter 4

Thompson Sampling in Linear
Quadratic System

We now consider the exploration-exploitation tradeoff in linear quadratic (LQ) control
problems, where the state dynamics is linear and the cost function is quadratic in the
state and control. We analyze the regret of Thompson sampling (TS) (a.k.a. posterior-
sampling for reinforcement learning) in the frequentist setting, i.e., when the parameters
characterizing the LQ dynamics are fixed. Despite the empirical and theoretical success
in a wide range of problems from multi-armed bandit to linear bandit, extending those
results to the LQ setting is highly challenging: 1) standard line of proof that relies
on classifying arms into saturated/unsaturated pool cannot be applied here as their
associated optimal value could be infinite; 2) the TS functioning requires frequent
policy updates, which is in contrast with the usual lazy update scheme used in most
RL algorithm. As a consequence, it raises the issue of bounding the gap in the optimal
value at the policy switches.
In the chapter1, we prove that indeed TS achieves a O(

√
T ) regret in LQ problems,

thus matching the performance of the OFU approach and confirming the conjecture
of Osband and Van Roy (2016). We address the first point leveraging the ideas
introduced in Ch. 3, stressing the link between the actual actions chosen by TS and the
gradient of the optimal value function. We exhibit the need to trade-off the frequency
of sampling optimistic parameters and the frequency of switches in the control policy,
and show that lazy update schemes induces at best an overall regret of Ω(T 2/3). Finally,
we derive novel bound on the regret due to policy switches, thus allowing to update
parameters and the policy at each step and overcome the limitations due to lazy updates.
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1This chapter is an extended version of our AI&Stats paper (Abeille and Lazaric, 2017b).
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4.1 Introduction

Designing algorithms to properly trade off exploration of an unknown environment
and exploitation of the estimated optimal control policy is one of the most important
challenges towards scaling reinforcement learning (RL) (Sutton and Barto, 1998) to
problems with large and/or continuous state and action spaces. To this end, we
focus in this chapter, on a specific family of continuous state-action MDPs, the linear
quadratic (LQ) control problems introduce in Sec. 2.3, where the state transition is
linear and the cost function is quadratic in the state and the control. Despite their
specific structure, LQ models are very flexible and widely used in practice (e.g., to
track a reference trajectory). If the parameter θ defining dynamics and cost is known,
the optimal control can be computed explicitly as a linear function of the state with an
appropriate gain. On the other hand, when θ is unknown, an exploration-exploitation
trade-off needs to be solved. Bittanti et al. (2006) and Campi and Kumar (1998), first
proposed an optimistic approach to this problem, showing that the performance of an
adaptive control strategy asymptotically converges to the optimal control. Building on
this approach and the OFU principle, Abbasi-Yadkori and Szepesvári (2011) proposed
a learning algorithm (OFU-LQ) with O(

√
T ) cumulative regret. Abbasi-Yadkori

and Szepesvári (2015) further studied how the TS strategy, could be adapted to work
in the LQ control problem, but due to the difficulty to move from episodic to in-
finite horizon, no regret guarantee is available, either in a Bayesian or a frequentist sense.

Contributions. In this chapter, we analyze the regret of TS in LQ problems in
the frequentist case2, where θ is a fixed parameter, with no prior assumption of its
value, and prove a O(

√
T ) regret bound for the 1-dimensional case (i.e., states are one

dimensional). The analysis of OFU-LQ relies on three main ingredients: 1) optimistic
parameters, 2) lazy updates (the control policy is updated only a logarithmic number of
times) and 3) concentration inequalities for regularized least-squares used to estimate
the unknown parameter θ. While we build on previous results for the least-squares
estimates of the parameters, points 1) and 2) should be adapted for TS. Unfortunately,
the existing frequentist regret analysis for TS in linear bandit due to Agrawal and
Goyal (2012b) cannot be generalized to the LQ case. Leveraging the novel analysis
of TS for LB presented in Ch. 3, we first prove that TS has a constant probability to
sample an optimistic parameter (i.e., an LQ system whose optimal expected average
cost is smaller than the true one) and then we exploit the LQ structure to show how
being optimistic allows to directly link the regret to the controls operated by TS over
time and eventually bound them. Nonetheless, this analysis reveals a critical trade-off
between the frequency with which new parameters are sampled (and thus the chance of
being optimistic) and the regret cumulated every time the control policy changes. In
OFU-LQ this trade-off is easily solved by construction: the lazy update guarantees
that the control policy changes very rarely and whenever a new policy is computed, it
is guaranteed to be optimistic. On the other hand, TS relies on the random sampling

2This setting is more challenging than its Bayesian counterpart in general as it encompasses it.
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process to obtain optimistic models and if this is not done frequently enough, the regret
can grow unbounded which forces TS to favor short episodes. We first show that,
sticking to lazy updates, the regret guarantee scales in O(T 2/3) at best, and then prove
a O(
√
T ) bounds in the frequentist regret when the policy updates are performed at

each time step, thus confirming the conjecture in (Osband and Van Roy, 2016). This
result is enabled by a novel lemma that bounds the regret suffered at the switch between
two episodes. We show that the regret incurred at policy switches is somehow related
to the overall regret and that it can be bounded following similar steps. As a result, we
are able to reduce the length of episodes even further (i.e., constant length or even one
single step) at no additional cost and fully exploit the optimism of TS.

4.2 Preliminaries
We briefly recall the setting for the LQ problem introduced in Subsec. 2.3.2 and detail
the assumptions that we impose on the problem structure as well as the additional
material needed for our analysis. Most of the notations in this section are adapted
from (Abbasi-Yadkori and Szepesvári, 2011).

The control problem. We consider the discrete-time infinite-horizon linear
quadratic (LQ) control problem with state x ∈ Rn and control u ∈ Rd. Given state xt
and control ut at time t, the next state and cost are computed as:

xt+1 = A∗xt +B∗ut + εt+1; c(xt, ut) = xT
t Qxt + uT

t Rut, (4.1)

where A∗, B∗, Q, R are matrices of appropriate dimension and {εt+1}t is a zero-mean
process. Following the setting of Abbasi-Yadkori and Szepesvári (2011), we assume Q
and R are known, while the unknown parameters are summarized in θT

∗ = (A∗, B∗). The
objective of the learner is to find a stationary deterministic control policy π : Rn → Rd

mapping states to controls that minimizes the asymptotic (i.e., infinite horizon) average
expected cost

Jπ(θ∗) = lim sup
T→∞

1
T
E
[

T∑
t=0

c(xt, ut)
]
, (4.2)

with x0 = 0 and ut = π(xt). We denote as π∗(θ∗) the optimal policy of the LQ problem
parametrized by θ∗. We impose the following assumptions over the noise process and
the linear system of Eq. 4.1.

Assumption 4.2.1 (Noise). The noise {εt}t is a Ft−martingale difference sequence,
where Ft is the filtration which represents the information knowledge up to time t.
Furthermore, the noise is conditionally Gaussian, i.e., εt|Ft ∼ N (0, I) for all t ≤ T .

Assumption 4.2.2 (LQ). The cost matrices Q and R are symmetric p.d. and (A∗, B∗)
is stabilizable.3

3(A,B) is stabilizable if there exists a gain matrix K s.t. A+BK is stable, i.e., all eigenvalues are
in (−1, 1). A formal characterization is given in Def. 2.3.2.
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Under Asm. 4.2.1 and 4.2.2, Thm. 2.3.2 guarantees the existence and uniqueness of
an optimal policy, such that π∗(θ∗) = K(θ∗)x, where,

K(θ∗) = −
(
R +BTP (θ∗)B

)−1
BTP (θ∗)A,

P (θ∗) = Q+ ATP (θ∗)A+ ATP (θ∗)BK(θ∗),

The optimal average cost is J∗ = Jπ∗(θ∗) = Tr(P (θ∗)). Finally, we also have that the
closed-loop matrix A∗ + B∗K(θ∗) is asymptotically stable. For sake of compactness,
we introduce the matrix H(θ∗) =

(
I K(θ∗)T

)T
and rewrite the closed-loop matrix as

A∗ +B∗K(θ∗) = θT
∗H(θ∗).

We now construct a constraint set S such that for any θ ∈ S, there exists an optimal
control K(θ). This is done by rejecting the pair (A,B) that are non-stabilizable, i.e.,
the one for which there exists no linear controller K such that the closed-loop matrix
A+BK is asymptotically stable (i.e., has eigenvalues in the open unit disk). Fortunately,
this set is of zero Lebesgue measure as provided by the following proposition.

Proposition 4.2.1 (Cor. 12 in (Klamka, 2016)). For given dimensions n and d, the
set of dynamical systems which are controllable is open and dense in the space Rn(n+d)

of all dynamical system of the form (4.1).

Since controllability implies stabilizability (see Def. 2.3.2), the set of uncontrollable
system is of zero Lebesgue measure and so is the set of unstabilizable system. Moreover,
when the pair (A,B) is not stabilizable, there exists no control K such that A+BK is
stable, thus, under any linear controller, the state process xt diverges exponentially. As
a result, the associated “optimal” average cost is J(θ) = +∞.
This property has two major implications: First, it is possible to define the optimal
value function over the whole space Rn(n+d) in a continuous manner by setting its value
to +∞ wherever θ is a non-stabilizable pair; Second, for any sampling distribution
absolutely continuous w.r.t the Lebesgue measure, the associated optimal value function
is finite with probability one. However, it might sample parameters that are almost
non-stabilizable (and hence of large optimal cost), which is still harmful from both
theoretical and practical perspective. This motivates the introduction of the constraint
set S defined as:

Definition 4.2.1. S = {θ ∈ R(n+d)×n s.t. J(θ) = Tr(P (θ)) ≤ D and Tr(θθT) ≤ S2}

This definition is implicit since it involves the optimal average cost but offers the
advantages of unifying assumption A-2 and A-4 in (Abbasi-Yadkori and Szepesvári,
2011) in a tight way and implies the following guarantees.

Proposition 4.2.2. S is a compact set. For any θ ∈ S, θ is a stabilizable pair (since
J(θ) = +∞ otherwise) and there exist ρ < 1 and C <∞ positive constants such that
ρ = supθ∈S ‖A+BK(A,B)‖2 and C = supθ∈S ‖K(θ)‖2.

Further, we assume that the true parameter belongs to the constraint set. Formally,
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Assumption 4.2.3. Let S be defined as in Def. 4.2.1, then θ∗ ∈ S.

Finally, we recall a result about the regularity of the Riccati solution.

Proposition 4.2.3 (proof in App. 4.A). Under Asm. 4.2.1 and for any LQ with
parameters θT = (A,B) and cost matrices Q and R satisfying Asm. 4.2.2, let J(θ) =
Tr(P (θ)) be the optimal solution of Eq. 4.2. Then, the mapping θ ∈ S → Tr(P (θ)) is
continuously differentiable. Furthermore, let Ac(θ) = θTH(θ) be the closed-loop matrix,
then the directional derivative of P (θ) in a direction δθ, denoted as dP (θ)(δθ), where
dP (θ)(δθ) ∈ Rn×n, is the solution of the Lyapunov equation

dP (θ)(δθ) = Ac(θ)TdP (θ)(δθ)Ac(θ) + C(θ, δθ) + C(θ, δθ)T,

where C(θ, δθ) = Ac(θ)TP (θ)δθTH(θ).

The learning problem. We consider the standard online learning setting where at
each step t the learner receives the current state xt as input, it executes a control ut and
it observes the associated cost c(xt, ut); the system then transitions to the next state
xt+1 according to Eq. 4.1. The learning performance is measured by the cumulative
regret over T steps, where the costs cumulated over time are compared to the minimal
cost obtained on average by the optimal policy. Formally we define

RT (θ∗) =
T∑
t=0

(
ct − J∗(θ∗)

)
.

Independently from the control problem, we need basic tools for the estimation
of the parameter θ∗. Let (u0, . . . , ut) be a sequence of controls and (x0, x1, . . . , xt+1)
be the corresponding states generated according to Eq. 4.1. For any regularization
parameter λ ∈ R∗+ the regularized least-squares (RLS) and the associated design matrix
are defined as

Vt = λI +
t−1∑
s=0

zsz
T
s ; θ̂t = V −1

t

t−1∑
s=0

zsx
T
s+1, (4.3)

where zt = (xt, ut)T. While the RLS estimate of Eq. 4.3 slightly differs from the one
of Ch. 3 since it is derived in matrix form, the concentration inequality still hold (see
Prop. 2.3.1). Thus, for any 0 < δ < 1, we define the high-probability ellipsoid ERLS

t at
each time step t as

ERLS
t =

{
θ ∈ Rn(n+d)

∣∣∣‖θ−θ̂t‖Vt ≤ βt(δ′)
}
, βt(δ′)=n

√√√√2 log
( det(Vt)1/2

det(λI)1/2δ′

)
+λ1/2S, (4.4)

where δ′ = δ
8T and ‖ · ‖M denote the weighted Frobenius norm associated with any

positive definite matrix M , such that, for any θ ∈ Rn(n+d), ‖θ‖2
M = Tr

(
θTMθ

)
. Under

Asm. 4.2.1 and 4.2.3, Prop. 2.3.1 guarantees that θ? ∈ ERLS
t for all t ≤ T , with

probability at least 1− δ/8.
Finally, we also have the standard result of RLS that, together with Prop. 2.3.1,
shows that the prediction error on the points zt used to construct the estimator θ̂t is
cumulatively small.
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Proposition 4.2.4 (Lem. 10 in (Abbasi-Yadkori and Szepesvári, 2011)). Let λ ≥ 1, for
any arbitrary Ft-adapted sequence (z0, z1, . . . , zt), let Vt+1 be the corresponding design
matrix, then

t∑
s=0

min
(
‖zs‖2

V −1
s
, 1
)
≤ 2 log det(Vt+1)

det(λI) .

Moreover when ‖zt‖ ≤ Z for all t ≥ 0, then

and

t∑
s=0
‖zs‖2

V −1
s
≤ 2Z

2

λ
(n+ d) log

(
1 + (t+ 1)Z2

λ(n+ d)

)

βt ≤ nZ

(
(n+ d)
λ

log
(
1 + (t+ 1)Z2

λ(n+ d)
)

+ 2 log(1/δ)
)1/2

+ λ1/2S.

4.3 Thompson sampling for LQ
We introduce a specific instance of TS for learning in LQ problems obtained as a
modification of the algorithm proposed by Abbasi-Yadkori and Szepesvári (2015), where
we replace the Bayesian structure and the Gaussian prior assumption with a randomized
Gaussian process and we modify the update rule. The algorithm is summarized in
Fig. 4.1. At any step t, given the RLS-estimate θ̂t and the design matrix Vt, TS samples
a perturbed parameter θ̃t. In order to ensure that the sampling parameter is indeed
admissible, we re-sample it until a valid θ̃t ∈ S is obtained.We define θ̃t as

θ̃t = RS(θ̂t + βtV
−1/2
t ηt), (4.5)

where RS is the rejection sampling operator associated with the admissible set S,
θ̂t is the RLS-estimate, Vt is the design matrix and each entry of the perturbation
matrix ηt ∈ R(n+d)×n is a random sample drawn i.i.d. from N (0, 1). Then the control
ut = K(θ̃t)xt is executed and the next state xt+1 and ct are observed. The new samples
are then used to update θ̃t and Vt.

Input: θ̂0, V0 = λI, δ, T , t0 = 0
1: Set βt = βt(δ′) where δ′ = δ

8T according to Eq. 4.4
2: for t = {0, . . . , T} do
3: Sample θ̃t = RS(θ̂t + βtV

−1/2
t ηt)

4: Execute control ut = K(θ̃t)xt
5: Observe state xt+1 and cost ct = c(xt, ut)
6: Compute Vt+1 and θ̂t+1 using Eq. 4.3
7: end for

Figure 4.1 – Thompson sampling algorithm for LQ.

The major difference of this instance of TS w.r.t. OFU-LQ and the algorithms
of Abbasi-Yadkori and Szepesvári (2015) is that we are no longer using a lazy-update
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scheme and the policy is updated at each step. As shown in the Subsec. 4.5.4, this is
possible because of the novel analysis of the regret suffered at each policy switch.
The algorithm in Fig. 4.1 can be turned into a “proper” Bayesian algorithm if we follow
the same approach as in (Abbasi-Yadkori and Szepesvári, 2015) and define a prior P0 over
θ∗ as a multivariate Gaussian conditioned on θ∗ ∈ S. More formally, let [θ∗]i be the i-th
column of θ∗ then the density of the prior is proportional to ∏n

i=1 exp
(
λ[θ∗]Ti [θ∗]i

)
1{θ∗ ∈

S} where the indicator function guarantees that the resulting system is in the admissible
set. As a result, Eq. 4.5 with βt = 1 is indeed the posterior over θ∗ at time t. On the
other hand, TS can be seen as a randomized algorithm as suggested in Ch. 3. In this
case, no prior is needed and the factor βt in Eq. 4.4 is allowed to change as in Eq. 2.8.
We consider the latter instance here and use βt = βt(δ′) with δ′ = δ

8T .

4.4 Challenges and sketch of the proof
In this section, we highlights the challenges of proving a regret bound for TS in LQ
problem, stressing the differences with the Bayes and OFU-LQ analysis. Then, we
report a sketch of the proof, leveraging ideas presented in Ch. 3, to provide intuition
on the behavior of TS. For the sake of illustration, we postpone the rigorous proof to
Sec. 4.5. The following analysis only holds on some high probability events and we
denote as �, a numerical constant that varies from line to line.
We start by decomposing the regret similarly to Abbasi-Yadkori and Szepesvári (2011,
Sec. 4.2).

R(T ) ≤
T∑
t=0
{J(θ̃t)− J(θ∗)} := RTS

+
T∑
t=0
{zT

t θ̃tP (θ̃t)θ̃T
t zt − zT

t θ∗P (θ̃t)θT
∗ zt} := RRLS

+
T∑
t=0
{xT

t P (θ̃t)xt − E
[
xT
t+1P (θ̃t+1)xt+1|Ft

]
} := Rmart

+
T∑
t=0

E
[
xT
t+1

(
P (θ̃t+1)− P (θ̃t)

)
xt+1|Ft

]
:= RGap

Before entering into the details of how to bound each of these components, we
discuss what are the main challenges in bounding the regret.

4.4.1 Related work and challenges

Since the RLS estimator is the same in both TS and OFU, the regret terms RRLS

and Rmart can be bounded as in (Abbasi-Yadkori and Szepesvári, 2011). In fact, Rmart

is a martingale by construction and it can be bounded by Azuma’s inequality. The
term RRLS is related to the difference between the true next expected state θT

? zt and
the predicted next expected state θ̃T

t zt. A direct application of RLS properties makes
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this difference small by construction, thus bounding RRLS. Finally, the Rgap term is
directly affected by the changes in model from any two time instants (i.e., θ̃t and θ̃t+1),
while RTS measures the difference in optimal average expected cost between the true
model θ∗ and the sampled model θ̃t. In the following, we denote by Rgap

t and RTS
t the

elements at time t of these two regret terms and we refer to them as consistency regret
and optimality regret respectively.

Optimistic approach. OFU-LQ explicitly bounds both regret terms directly by
construction. In fact, the lazy update of the control policy allows to set to zero the
consistency regret Rgap

t in all steps but when the policy changes between two episodes.
Since in OFU-LQ an episode terminates only when the determinant of the design
matrix is doubled, the number of episodes is bounded by O(log(T )), which bounds Rgap

as well (with a constant depending on the state bound X and other parameters specific
of the LQ system).4 At the same time, at the beginning of each episode an optimistic
parameter θ̃t is chosen, i.e., J(θ̃t) ≤ J(θ∗), which directly ensures that RTS

t is upper
bounded by 0 at each time step.

Bayesian regret. The lazy PSRL algorithm of Abbasi-Yadkori and Szepesvári
(2015) has the same lazy update as OFUL and thus Rgap should be controlled the same
way. Unfortunately, as hinted in (Osband and Van Roy, 2016), challenges of extending
episodic TS results to infinite horizon introduced a flaw in this approach, so even in the
Bayesian analysis, bounding Rgap remains an open question. On the other hand, the
random choice of θ̃t does not guarantee optimism at each step anymore. Nonetheless,
the regret is analyzed in the Bayesian setting, where θ∗ is drawn from a known prior
and the regret is evaluated in expectation w.r.t. the prior. Since θ̃t is drawn from a
posterior constructed from the same prior as θ∗, in expectation its associated J(θ̃t) is
the same as J(θ∗), thus ensuring that E[RTS

t ] = 0.
Frequentist regret. When moving from Bayesian to frequentist regret, this

argument does not hold anymore and the (positive) deviations of J(θ̃t) w.r.t. J(θ∗)
has to be bounded in high probability. Abbasi-Yadkori and Szepesvári (2011) exploits
the linear structure of LQ problems to reuse arguments originally developed in the
linear bandit setting. Similarly, we could leverage the analysis of TS for linear bandit
by Agrawal and Goyal (2012b) to derive a frequentist regret bound. Agrawal and Goyal
(2012b) partition the (potentially infinite) arms into saturated and unsaturated arms
depending on their estimated value and their associated uncertainty (i.e., an arm is
saturated when the uncertainty of its estimate is smaller than its performance gap w.r.t.
the optimal arm). In particular, the uncertainty is measured using confidence intervals
derived from a concentration inequality similar to Prop. 2.3.1. This suggests to use a
similar argument and classify policies as saturated and unsaturated depending on their
value. Unfortunately, this proof direction cannot be applied in the case of LQR. In fact,
in an LQ system θ the performance of a policy π is evaluated by the function Jπ(θ)
and the policy uncertainty should be measured by a confidence interval constructed as

4Notice that the consistency regret is not specific to LQ systems but it is common to all regret
analyses in RL (see e.g., UCRL2 (Jaksch et al., 2010)) except for episodic MDPs and it is always
bounded by keeping under control the number of switches of the policy (i.e., number of episodes).
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|Jπ(θ∗)− Jπ(θ̂t)|. Despite the concentration inequality in Prop. 2.3.1, we notice that
neither Jπ(θ∗) nor Jπ(θ̂t) may be finite, since π may not stabilize the system θ∗ (or θ̂t)
and thus incur an infinite cost. As a result, it is not possible to introduce the notion of
saturated and unsaturated policies in this setting and another line of proof is required.
Another key element in the proof of Agrawal and Goyal (2012b) for TS in linear bandit
is to show that TS has a constant probability p to select optimistic actions and that this
contributes to reduce the regret of any non-optimistic step. In our case, this translates
to requiring that TS selects a system θ̃t whose corresponding optimal policy is such
that J(θ̃t) ≤ J(θ∗). Lem. 4.5.5 shows that this happens with a constant probability
p. Furthermore, we can show that optimistic steps reduce the regret of non-optimistic
steps, thus effectively bounding the optimality regret RTS. Nonetheless, this is not
compatible with lazy updates. In fact, while RTS is small when optimistic parameters
θ̃t are sampled often enough, a crude bound of the consistency regret Rgap requires to
reduce the switches between policies as much as possible (i.e., number of episodes). If we
keep the same number of episodes as with the lazy update of OFUL (i.e., about log(T )
episodes), then the number of sampled points is as small as T/(T − log(T )). While
OFU-LQ guarantees that any policy update is optimistic by construction, with TS,
only a fraction T/(p(T − log(T )) of steps would be optimistic on average. Unfortunately,
such small number of optimistic steps is no longer enough to derive a bound on the
optimality regret RTS. Summarizing, in order to derive a frequentist regret bound
for TS in LQ systems, we need the following ingredients. 1) constant probability of
optimism, 2) connection between optimism and RTS without using the saturated and
unsaturated argument, 3) a novel approach to bound the deviation in the optimal value
at the policy switch to guarantee small consistency regret.

4.4.2 Sketch of the proof
The outline of the proof is the following. We prove first the main result that states that
TS keeps the average absolute deviation of the optimal value function small. Formally,
let

∆t = E
(
|J(θ̃t)− E

(
J(θ̃t)|Fxt , Et

)
|
∣∣∣Fxt , Et

)
,

where Et is some high probability event, and Fxt is a filtration encoding the knowledge
up to time t (we postpone the formal definitions to Sec. 4.5), we show that

T∑
t=0

∆t =
T∑
t=0

E
(
|J(θ̃t)− E

(
J(θ̃t)|Fxt , Et

)
|
∣∣∣Fxt , Et

)
= Õ

(√
T
)
.

Then, we show how this implies bounds for the terms Rgap and RTS. Thanks to the
constant probability of being optimistic and the fact that sampling distributions
does not change much between two subsequent steps, we relate RTS and RGap

to the average absolute deviation and thus bound the overall regret. Finally, we
recall the bounds from (Abbasi-Yadkori and Szepesvári, 2011) derived for the
OFUL strategy, but which still apply to RRLS and Rmart. This is due to the
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fact that the TS strategy shares the principle of choosing a point within a high
probability confidence ellipsoid (deterministically for OFUL, randomly for TS),
and then of controlling the system with an optimal control w.r.t the chosen pa-
rameter. We sketch here the steps that are used to bound the regret terms specific to TS.

Average absolute deviation. The proof consists in the following chain of inequal-
ities:

T∑
t=0

E
(
|J(θ̃t)− E

(
J(θ̃t)|Fxt , Et

)
|
∣∣∣Fxt , Et

)
≤ �

T∑
t=0

E
(
‖∇J(θ̃t)‖V −1

t
|Fxt , Et

)
(1)

≤ �
T∑
t=0

E
(
‖H(θ̃t)‖V −1

t
|Fxt , Et

)
(2)

≤ �
T∑
t=0

E
(
‖zt‖V −1

t
|Ft−1, Et−1

)
(3)

≤ �
T∑
t=0
‖zt‖V −1

t
+
√
T (4)

≤ �
√
T .

The objective of the first inequality is to link the average absolute deviation of the
optimal value function to its gradient, inspired by the discussion of Ch. 3 about the
sensitivity of the performance w.r.t the randomness of the sampling. However, as
opposed to LB, in the LQ setting no convexity argument can be used. We tackle this
limitation introducing a modified Poincaré inequality (see Lem. 4.5.3). The Poincaré
inequality is a major result in Sobolev spaces that allows to bound a function u by
its derivative, as ‖u‖Lp ≤ C‖∇u‖Lp . We adapt it to our problem, by modifying the
sharp L1-inequality derived by Acosta and Durán (2004) and apply it to the function
ft(η) = J(θ̂t + βV

−1/2
t η) so that ∇ηft = βV

−1/2
t ∇θJ .

The second inequality relates the gradient of the optimal value function to the control
matrix. Thanks to Prop. 4.A.1, we show that for any θ ∈ S, for any p.s.d. matrix
V , ‖∇J(θ)‖V ≤ � ‖H(θ)‖V . This stresses how the control chosen by TS over time
is related to the sensitivity of the optimal value function. However, bounding the
absolute deviation ∆t by the control matrix chosen by TS is not enough to bound the
cumulative sum, as Prop. 4.2.4 concerns the actual control. Formally, we would like
to move from H(θ̃t) to zt. Noticing that zt = H(θ̃t)xt, one can associate the control
H(θ̃t) to the chosen direction while xt plays the role of the amplitude. We rely on the
weak dependence between those two quantities to show their equivalence. For sake of
illustration, suppose for now that, conditionally to Ft−1, θ̃t and xt are independent.
Making use of the fact that the state xt is excited by the noise εt (see Eq. 4.1), one has
E(xtxT

t |Ft−1, θ̃t) = E(xtxT
t |Ft−1) < I so

‖H(θ̃t)‖V −1
t
≤ ‖H(θ̃t)E

(
xtx

T
t |Ft−1, θ̃t

)
‖V −1

t

≤ E
(
‖H(θ̃t)xtxT

t ‖V −1
t
|Ft−1, θ̃t

)
≤ XE

(
‖zt‖V −1

t
|Ft−1, θ̃t

)
,
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where X is an upper bound on ‖xt‖. As a consequence, using Azuma’s inequality and
the law of expectation, one has

E
(
‖H(θ̃t)‖V −1

t
|Fxt

)
. E

(
‖H(θ̃t)‖V −1

t
|Ft−1

)
. XE

(
‖zt‖V −1

t
|Ft−1

)
.

In practice, θ̃t and xt are weakly linearly dependent, but this dependency scales in
‖zt‖V −1

t
. When both are distributed as Gaussian random variable (conditionally), it is

possible to handle this weak dependence and derive a similar result. The last difficulty
comes from the conditioning θ̃t ∈ S and ‖xt‖ ≤ X that breaks this Gaussian property.
We overcome this issue by showing that this result still holds for truncated Gaussian
random variable, given that the truncations are far enough from the means of the
distributions.

Probability of being optimistic. The objective of this step is to relate J(θ̃t)−
J(θ∗) to ∆t i.e., the point-wise deviation from θ∗ w.r.t. J to the average absolute
deviation. Up to a martingale term, we equivalently aim to bound E(J(θ̃t)|Fxt )− J(θ∗).
To this end, we rely on the probability of sampling optimistic parameters i.e., whose
optimal average cost is smaller than the one of θ∗. Formally, let

Θopt = {θ ∈ Rn(n+d) s.t. J(θ) ≤ J(θ∗)},

for any θ ∈ Θopt, one has:

E(J(θ̃t)|Fxt )− J(θ∗) ≤ E(J(θ̃t)|Fxt )− J(θ) ≤ |E(J(θ̃t)|Fxt )− J(θ)|.

This implies that

E(J(θ̃t)|Fxt )− J(θ∗) ≤ E
(
|J(θ̃t)− E(J(θ̃t)|

∣∣∣Fxt )
∣∣∣Fxt , θ̃t ∈ Θopt

)
≤ E

(
|J(θ̃t)− E(J(θ̃t)|Fxt )|

∣∣∣Fxt )/P(θ̃t ∈ Θopt|Fxt ),

= ∆t

/
P(θ̃t ∈ Θopt|Fxt ).

Therefore, RTS is bounded as soon as the probability of being optimistic is constant
which is provided by Lem. 4.5.5. Intuitively, this means that optimistic samples induce
controls that contribute to bound the deviation in the performance, and the constant
probability of being optimistic ensures that we sample those parameters at a fixed
frequency i.e., often enough.

Subsequent sampling distributions. The objective of this step is to bound the
regret due to the gap at the policy switch Rgap. While standard approaches rely on lazy
updates to control this term, this is in contrast with the functioning of TS that requires
frequent updates in order to keep RTS small. This motivate our new line of proof,
which relies on the fact that subsequent sampling distributions are close to each other.
Unfortunately, due to the S constraint, this result is only provided for 1-dimensional
LQ system (we discuss the general case in Sec. 4.6). The objective is again to show that
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E
(
|J(θ̃t+1) − J(θ̃t)|

∣∣∣Ft) is bounded by ∆t. Supposed that θ̃t+1 and θ̃t have the same
distribution, then, by definition, E

(
|J(θ̃t+1)− J(θ̃t)|

∣∣∣Ft) ≤ 2∆t. The idea of the proof
is to show that this still holds, provided that the distributions are close enough. For
sake of illustration, we only sketch the proof when βt = β here. Let φt(θ) be the pdf
of the sampling step without the rejection sampling procedure (which can be done by
appropriate extension of the J function), one has:

φt(θ) = det(Vt)1/2

β(2π)n(n+d)/2 exp
(
− 1

2β2‖θ − θ̂t‖
2
Vt

)
.

Noticing that Vt+1 ≥ Vt and that det(Vt+1) ≤ � det(Vt), one obtains

φt+1(θ) ≤ � φt(θ − θ̂t+1 + θ̂t).

We use this inequality to re-write the expectation (together with some manipulation of
the conditioning) and get

E
(
|J(θ̃t+1)− J(θ̃t)|

∣∣∣Ft) ≤ E
(
|J(θ̃t − θ̂t+1 + θ̂t)− E(J(θ̃t)|Fxt )|

∣∣∣Fxt )+ ∆t.

We conclude by using the Lipschitz property of J and Prop. 4.5.5, which guarantees
that least square increments are cumulatively bounded.

4.5 Theoretical analysis
We prove the first frequentist

√
T regret bound for TS in LQ systems of dimension n = 1

and arbitrary d. In order to isolate the steps which explicitly rely on this restriction,
whenever possible we derive the proof in the general (n + d)-dimensional case. We
discuss limitation and possible extension to the (n+ d)-dimensional case in Sec. 4.6.

Theorem 4.5.1. Consider the LQ system in Eq. 4.1 of dimension n = 1 and arbitrary
d. Under Asm. 4.2.1 and 4.2.2 for any 0 < δ < 1, the cumulative regret of TS
(Algorithm 4.1) over T steps is bounded w.p. at least 1− δ as 5

R(T ) = Õ
(√

log(1/δ)T
)
.

4.5.1 Setting the stage
Filtration and sampling. To take into account the randomness of the sampling,
we define the “extended” filtration Fxt = (Ft−1, xt). Note that both θ̂t and Vt are
Fxt -measurable while θ̃t|Fxt is a random variable (since it is not conditioned on Ft).
Additionally, to handle the constraint S, we introduce θ̄t ∼ N (θ̂t, β2

t V
−1
t ) so that

θ̃t|Fxt
d= RS(θ̄t), where RS is a rejection sampling operator.

High-probability events. We introduce the following high probability events.
5Further details can be recovered from the proof.



4.5. Theoretical analysis 71

Definition 4.5.1. Let δ ∈ (0, 1) and δ′ = δ/(8T ) and t ∈ [0, T ]. We define the
confidence ellipsoids (RLS estimate concentration)

ERLS
t :=

{
θ ∈ Rd, ‖θ − θ̂t‖Vt ≤ βt(δ′)

}
,

and (parameter θ̃t concentration around θ̂t)

ETS
t :=

{
θ ∈ Rd, ‖θ − θ̂t‖Vt ≤ γt(δ′)

}
,

where γt(δ′) = βtn

√
2(n+ d) log

(
2n(n+ d)/δ′

)
. We also introduce their associated

high probability events Êt =
{
∀s ≤ t, θ∗ ∈ ERLS

s

}
and Ẽt =

{
∀s ≤ t, θ̃s ∈ ETS

s

}
respectively.

We also introduce a high probability event on which the states xt are bounded
almost surely.

Definition 4.5.2. Let δ ∈ (0, 1), X1, X2 be two problem-dependent positive constants
and t ∈ [0, T ] and let X = X1 log X2

δ
. We define the event (bounded states) Ēt =

{
∀s ≤

t, ‖xs‖ ≤ X
}
.

Then we have that Ê := ÊT ⊂ · · · ⊂ Ê1, Ẽ := ẼT ⊂ · · · ⊂ Ẽ1 and Ē := ĒT ⊂ · · · ⊂
Ē1. We show that these events do hold with high probability.

Lemma 4.5.1. P(Ê ∩ Ẽ) ≥ 1− δ/4.

Corollary 4.5.1. On Ê ∩ Ẽ, P(Ē) ≥ 1− δ/4. Thus, P(Ê ∩ Ẽ ∩ Ē) ≥ 1− δ/2.

Lem. 4.5.1 leverages Prop. 2.3.1 and the sampling distribution to ensure that Ê ∩ Ẽ
holds w.h.p. Furthermore, Corollary 4.5.1 ensures that the states remain bounded w.h.p.
on the events Ê ∩ Ẽ.6 As a result, the proof can be derived considering that both pa-
rameters concentrate and that states are bounded, which we summarize in the sequence
of events Et = Êt∩Ẽt∩Ēt, which holds with probability at least 1−δ/2 for all t ∈ [0, T ].

Regret decomposition. Conditioned on the filtration Ft and event Et, we have
θ? ∈ ERLS

t , θ̃t ∈ ETS
t and ‖xt‖ ≤ X. We decompose the regret and bound it on this

event in line with (Abbasi-Yadkori and Szepesvári, 2011) (see details in App. 4.D).

6This non-trivial result is directly collected from the bounding-the-state section in (Abbasi-Yadkori
and Szepesvári, 2011). While our algorithm differs, it shares the same mechanism of picking a parameter
θ̃t within a confidence ellipsoid w.h.p., which is the core idea of the proof. Finally, TS uses the ellipsoid
ETS

t instead of ERLS
t which is harmless to the proof because the scaling remains the same in terms of

xt’s.
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Proposition 4.5.1. Let Êt, Ẽt and Ēt be the high probability events introduced in
Def. 4.5.1-4.5.2, let Et = Êt ∩ Ẽt ∩ Ēt, then

R(T )1{ET} ≤
T∑
t=0

{
J(θ̃t)− J(θ∗)

}
1{Et} := RTS

+
T∑
t=0

{
zT
t θ̃tP (θ̃t)θ̃T

t zt − zT
t θ∗P (θ̃t)θT

∗ zt
}
1{Et} := RRLS

+
T∑
t=0

{
xT
t P (θ̃t)xt1{Et} − E

[
xT
t+1P (θ̃t+1)xt+11{Et+1}|Ft

]}
:= Rmart

+
T∑
t=0

E
[
xT
t+1

(
P (θ̃t+1)− P (θ̃t)

)
xt+11{Et+1}|Ft

]
:= RGap

(4.6)

4.5.2 Bounding the absolute deviation of the optimal value
function

We prove in this subsection the main result of the proof that states that the conditional
average absolute deviation of the performance J w.r.t. the TS distribution is cumulatively
bounded. This is critical in the TS analysis: since the controls selected at each time
step are based on random choices of θ̃t, one cannot expect to control the deviation
in the performance everywhere but only in expectation. Those results holds for LQ
systems of arbitrary dimension n and d.

Lemma 4.5.2. Consider the LQ system in Eq. 4.1. Under Asm. 4.2.1 and 4.2.2 for
any 0 < δ < 1, the absolute deviation of the performance J w.r.t. the sampling of TS
algorithm 4.1 is cumulatively bounded w.p. at least 1− δ/12 as

T∑
t=0

E
(
|J(θ̃t)− E

(
J(θ̃t)|Fxt , Et

)
|
∣∣∣Fxt , Et

)
≤ γabs

√
T ,

where

γabs = 16(1 + 1/β2
0)(1 + C)α2

[√
2(n+ d)/λ log

(
1 + ((1 + C)α)2T/λ(n+ d)

)
+
√

2 log(24/δ)
]
,

γ = 4
√
n(n+ d)βTDnρ/(1− ρ2),

α = (1 + 1/β2
0)
(√

2n log(3n) + (1 + C)X
(
2S +

√
n(n+ d)/β0

))
.

The absolute deviation is taken w.r.t the actual sample parameter θ̃t i.e., the one
with rejection sampling. However, in bounding the gap in the policy switch RGap, we
will use a slightly modified version of Lem. 4.5.2 for the parameter θ̄t without rejection
sampling. This is given by the following corollary:

Corollary 4.5.2. Consider the LQ system in Eq. 4.1. Let J̄ be the continuous extension
of J over Rn(n+d) defined by J̄(θ) = J(θ)1S(θ) +D1Sc(θ). Let θ̄t be a random variable
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defined by θ̄t = θ̂t + βtV
−1/2
t ηt where each component of ηt is conditionally distributed as

N (0, 1). Then, for any 0 < δ < 1, the absolute deviation of the extended performance J̄
of TS algorithm 4.1 w.r.t. to the random variable θ̄t is cumulatively bounded w.p. at
least 1− δ/12 as

T∑
t=0

E
(
|J̄(θ̄t)− E

(
J̄(θ̄t)|Fxt , θ̄t ∈ ETS

t , Et
)
|
∣∣∣Fxt , θ̄t ∈ ETS

t , Et

)
≤ γabs

√
T ,

where

γabs = 16(1 + 1/β2
0)(1 + C)α2

[√
2(n+ d)/λ log

(
1 + ((1 + C)α)2T/λ(n+ d)

)
+
√

2 log(24/δ)
]
,

γ = 4
√
n(n+ d)βTDnρ/(1− ρ2),

α = (1 + 1/β2
0)
(√

2n log(3n) + (1 + C)X
(
2S +

√
n(n+ d)/β0

))
.

We first prove Lem. 4.5.2 and then show how it can be extended to Cor. 4.5.2 thanks
to the extension of the performance function. Let

∆t = E
(
|J(θ̃t)− E

(
J(θ̃t)|Fxt , Et

)
|
∣∣∣Fxt , Et

)
.

The proof follows four steps: 1) we introduce a modified Poincaré inequality
to show that ∆t is bounded at each time step by a quantity which depends on
∇J ; 2) we link the gradient of the performance ∇J(θ) to the LQ control matrix
H(θ); 3) we introduce the state xt, making use of the fact that H(θ̃t)xt = zt, to
bound ∆t by ‖zt‖V −1

t
; 4) we conclude by using Prop. 4.2.4 to bound the cumulative sum.

Step 1) Absolute deviation and gradient. Let d′ =
√
n(n+ d), we introduce

the mapping ft from the ball B(0, d′) to R+ defined in Eq. 4.7,

ft(η) = J(θ̂t + βtV
−1/2
t η)− E[J(θ̃t)|Fxt , Et], (4.7)

where the restriction on the ball is here to meet the ETS
t confidence ellipsoid of the

sampling. By definition of the sampling distribution, we can rewrite ∆t as

∆t = Eηt
[
|ft(ηt)|

∣∣∣ηt ∈ B(0, d′), θ̂t + βtV
−1/2
t ηt ∈ S

]
1{Êt, Ēt}.

We now need to show that this formulation of the regret is related to the policy executed
by TS. We prove the following result (proof in App. 4.C), that is a generic result of
Sobolev’s space. In particular, we use the notation of Acosta and Durán (2004) which
are unrelated to the Chapter’s notation.

Lemma 4.5.3. Let Ω ⊂ Rd be a convex domain with finite diameter diam and denote
as W 1,1(Ω) the Sobolev space of order 1 in L1(Ω). Let p be a non-negative log-concave
function on Ω with continuous derivative up to the second order. Then, for all u ∈
W 1,1(Ω) such that

∫
Ω u(z)p(z)dz = 0 one has∫

Ω
|u(z)|p(z)dz ≤ 2diam

∫
Ω
||∇u(z)||p(z)dz
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Using Lem. 4.5.3 allows us to link ∆t to ∇ft and thus to ∇J since, for any η and
any θ = θ̂t + βtV

−1/2
t η, ∇ft(η) = βtV

−1/2
t ∇J(θ).

Step 2) From gradient to control. To obtain a bound on the norm of ∇ft, we
apply Prop. 4.A.1 (proof in App. 4.A) to get a bound on ‖∇J(θ)‖V −1

t
for any θ ∈ S.

First, notice that

‖∇J(θ)‖V −1
t
≤ sup
‖δθ‖=1

Tr
(
δθTV

−1/2
t ∇J(θ)

)
= sup
‖δθ‖=1

Tr
(
dP (θ)(V −1/2

t δθ)
)
,

where the first inequality comes from the fact that the equality holds for δθ =
V
−1/2
t ∇J(θ)/‖V −1/2

t ∇J(θ)‖ and the second equality comes directly from the defini-
tion of the differential. Then, making use of Tr(A) ≤ n‖A‖2 for any matrix A ∈ Rn×n,
we obtain:

‖∇J(θ)‖V −1
t
≤ n sup

‖δθ‖=1
‖dP (θ)(V −1/2

t δθ)‖2.

We conclude using Prop. 4.A.1 which ensures that, for any θ ∈ S,

∀‖δθ‖ = 1, ‖dP (θ)(V −1/2
t δθ)‖2 ≤ 2Dρ/(1− ρ2)‖H(θ)‖V −1

t
.

As a result, we have that θ ∈ S,

‖∇J(θ)‖V −1
t
≤ 2Dρ/(1− ρ2)‖H(θ)‖V −1

t
. (4.8)

We are now ready to use the weighted Poincaré inequality of Lem. 4.5.3 to link the
expectation of |ft| to the expectation of the norm of its gradient. From Lem. 4.2.3, we
have ft ∈ W 1,1(Ω), where Ω = B(0, d′) and its expectation is zero by construction. On
the other hand, the rejection sampling introduces the conditioning θ̂t + βtV

−1/2
t η ∈ S

which is unfortunately not convex (S is not convex). However, we can still apply
Lem. 4.5.3 considering the function f̃t(η) = ft(η)1(θ̂t + βtV

−1/2
t η ∈ S) and diameter

diam = d′. As a result, we finally obtain,

∆t ≤ γE
[∥∥∥H(θ̄t)

∥∥∥
V −1
t

|Fxt , θ̄t ∈ S, θ̄t ∈ ETS
t

]
, (4.9)

where θ̄t = θ̂t + βtV
−1/2
t ηt and γ = 4

√
n(n+ d)βTDnρ/(1− ρ2).

Step 3) From gradient to actions. Recalling the definition of H(θ) =(
I K(θ)T

)T
we notice that the previous expression bound the regret ∆t with a term

involving the gain K(θ) of the optimal policy for the sampled parameter θ. This shows
that the absolute deviation is directly related to the policies chosen by TS. To make
such relationship more apparent, we now elaborate the previous expression to reveal
the sequence of state-control pairs zt induced by the policy with gain K(θ̃t).
By noticing that zt = H(θ̃t)xt one just needs to include the state xt in Eq. 4.9. The
intuition why this does not have a big impact on the bound is the following. The main
contribution is coming from the direction H(θ̃t) that intercepts the design matrix V −1

t .
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On the other hand, the state xt can be seen as an amplitude i.e., once the direction is
chosen, the exploration is made proportionally to the state. This is true thanks to the
relative independence between xt and θ̃t. Finally, since xt is driven by the dynamic of
Eq. 4.1, which is excited by εt, its amplitude is lower bounded. Moreover, this property
still holds when we constrain the state to be bounded, given that the bound is large
enough. This is formalized in the following property on the conditional second order
moment.

Proposition 4.5.2. Let θ̄t ∼ N (θ̂t, β2
t V
−1
t ), let xt be the state generated by any

Fxt -measurable sequence of control {ut}t, let αt =
√

2n log(3n) + ‖x̄t‖ where x̄t =
E(xt|Ft−1, θ̄t, Et−1). Then,

E
(
xtx

T
t 1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1

)
<

1
8(1 + 1/β2

t )
I.

We prove Prop. 4.5.2 in two steps. First, we deal with the conditioning and then
with the boundedness of the state.

Proposition 4.5.3. Let θ̄t ∼ N (θ̂t, β2
t V
−1
t ), let xt be the state generated by any Fxt -

measurable sequence of control {ut}t, then,

V
(
xt|Ft−1, θ̄t, Et−1

)
<

1
1 + 1/β2

t

I.

Proof. This proposition is based on the following property for Gaussian random variables:
let X ∼ N (µx,Σx), Y ∼ N (µy,Σy) and Cov(X, Y ) = Σxy, then,

V(X|Y ) = Σx − ΣxyΣ−1
y ΣT

xy and E(X|Y ) = µx + ΣxyΣ−1
y (Y − µy).

This property still holds for matrix Gaussian distribution (by vectorization).
To exhibit the dependency, we write θ̄t = at−1 + V −1

t zt−1x
T
t + βtV

−1/2
t ηt where at−1,

zt−1 and Vt are Ft−1-measurable quantities and ηt|Ft−1 ∼ N (0, I). Then, applying
the Gaussian property to X = xt|Ft−1 and Y = θ̄t|Ft−1 one obtains by vectorization,
re-ordering and a little bit of algebra:

V
(
xt|Ft−1, θ̄t, Et−1

)
=
(
1 + 1

β2
t

‖zt−1‖2
V −1
t

)−1
I,

E
(
xt|Ft−1, θ̄t, Et−1

)
= E(xt|Ft−1, Et−1)

+
(
θ̄t − E(θ̄t|Ft−1, Et−1)

)T(
V −1
t zt−1z

T
t−1V

−1
t + β2

t V
−1
t

)−1
V −1
t zt−1.

(4.10)

Finally, since ‖zt−1‖2
Vt−1 = zT

t−1(Vt−1 + zt−1z
T
t−1)−1zt−1 =

‖zt−1‖2
V−1
t−1

1+‖zt−1‖2
V−1
t−1

≤ 1, one obtains

the desired result.

Proposition 4.5.4. Let θ̄t ∼ N (θ̂t, β2
t V
−1
t ), let xt be the state generated by any

Fxt -measurable sequence of control {ut}t, let αt =
√

2n log(3n) + ‖x̄t‖ where x̄t =
E(xt|Ft−1, θ̄t, Et−1), then,

E
(
xtx

T
t 1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1

)
< 1/8V(xt|Ft−1, θ̄t, Et−1).



76 Chapter 4. Thompson Sampling in Linear Quadratic System

The proof of Prop. 4.5.4 relies on properties of truncated Gaussian random variable.
The main ingredient is that, if the truncation takes place far enough from the mean,
the Gaussian properties are preserved and the second order moment is greater than the
variance. We postpone the proof to App. 4.D.

Thanks to Prop. 4.5.2, one has

‖H(θ̄t)
∥∥∥
V −1
t

≤ 8(1 + 1/β2
t )‖H(θ̄t)E

(
xtx

T
t 1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1

)∥∥∥
V −1
t

≤ 8(1 + 1/β2
t )E

(
‖H(θ̄t)xtxT

t

∥∥∥
V −1
t

1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1

)
,

which, plugged in Eq. 4.9 leads to

∆t ≤ γ8(1 + 1/β2
t )E

[
E
(
‖H(θ̄t)xtxT

t

∥∥∥
V −1
t

1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1
)∣∣∣∣∣Fxt , θ̄t ∈ S, θ̄t ∈ ETS

t

]

≤ γ8(1 + 1/β2
0)E

[
E
(
‖H(θ̄t)xtxT

t

∥∥∥
V −1
t

1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1
)∣∣∣∣∣Fxt , θ̄t ∈ S, θ̄t ∈ ETS

t

]
.

Plugging θ̄t = at−1 + V −1
t zt−1x

T
t + βtV

−1/2
t ηt into Eq. 4.10, one can obtain the following

bound for αt, conditioned on ηt ∈ B(0, d′):

αt ≤
√

2n log(3n) + ‖E(xt|Ft−1, θ̄t, Et−1)‖,

≤
√

2n log(3n) + 2(1 + C)SX + 1/βtd′(1 + C)X + (1− 1
1 + ‖zt−1‖2

V −1
t
/β2

t

)‖xt‖.

Thus, making use of ‖zt−1‖2
V −1
t
≤ 1, one has

‖xt‖ ≤ αt =⇒ ‖xt‖ ≤ (1 + 1/β2
t )(
√

2n log(3n) + (1 + C)X(2S + d′/βt))

≤ (1 + 1/β2
0)(
√

2n log(3n) + (1 + C)X(2S + d′/β0)).

Let α = (1 + 1/β2
0)(
√

2n log(3n) + (1 + C)X(2S + d′/β0)), one obtains:

∆t ≤ γ8(1 + 1/β2
0)E

[
E
(
‖H(θ̄t)xtxT

t ‖V −1
t
1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1

)∣∣∣∣∣Fxt , θ̄t ∈ S, θ̄t ∈ ETS
t

]
,

≤ γ8(1 + 1/β2
0)αE

[
E
(
‖H(θ̄t)xt‖V −1

t
1{‖xt‖≤α}|Ft−1, θ̄t, Et−1

)∣∣∣∣∣Fxt , θ̄t ∈ S, θ̄t ∈ ETS
t

]
,

≤ γ8(1 + 1/β2
0)αE

[
E
(
‖H(θ̃t)xt‖V −1

t
1{‖xt‖≤α}|Ft−1, θ̃t, Et−1

)∣∣∣∣∣Fxt , θ̃t ∈ ETS
t

]
,

≤ γ8(1 + 1/β2
0)αE

[
E
(
‖zt‖V −1

t
1{‖xt‖≤α}|Ft−1, θ̃t, Et−1

)∣∣∣∣∣Fxt , θ̃t ∈ ETS
t

]
,

≤ γ16(1 + 1/β2
0)αE

[
E
(
‖zt‖V −1

t
1{‖xt‖≤α}|Ft−1, θ̃t, Et−1

)∣∣∣∣∣Fxt
]
.
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where we used that θ̃t d= θ̄t|S from line 2 to line 3, that H(θ̃t)xt = zt from line 3 to line 4,
and that P(θ̃t ∈ ETS

t |Fxt ) ≥ P(Ẽt) ≥ 1/2 to discard the conditioning from line 4 to line 5.

Step 4) Bounding the cumulative sum. Let

Yt = E
[
E
(
‖zt
∥∥∥
V −1
t

1{‖xt‖≤α}|Ft−1, θ̃t, Et−1
)∣∣∣∣∣Fxt

]
,

summing the previous bound over T leads to:
T∑
t=0

∆t ≤ 16(1+1/β2
0)α

T∑
t=0

Yt, where α = (1+1/β2
0)(
√

2n log(3n)+(1+C)X(2S+d′/β0)).

Noticing that E(Yt|Ft−1) = E(‖zt
∥∥∥
V −1
t

1{‖xt‖≤α}|Ft−1), by the law of iterated expectation,{
Yt−‖zt

∥∥∥
V −1
t

1{‖xt‖≤α}
}
t≥1

is a Ft-martingale difference sequence, bounded almost surely
at each time step by (1 + C)α. Hence, using Azuma’s inequality, with probability at
least 1− δ/12,
T∑
t=0

Yt ≤
T∑
t=0
‖zt
∥∥∥
V −1
t

1{‖xt‖≤α} + (1 + C)α
√

2T log(24/δ),

≤
T∑
t=0
‖zt
∥∥∥
V −1
t

+ (1 + C)α
√

2T log(24/δ),

≤ (1 + C)α
√

2(n+ d)T/λ log
(
1 + ((1 + C)α)2 T

λ(n+ d)
)

+ (1 + C)α
√

2T log(24/δ)

where we used Cauchy-Schwarz inequality and Prop. 4.2.4 in the last inequality. This
ends the proof of Lem. 4.5.2.

Proof of Cor. 4.5.2. We conclude this section by proving Cor. 4.5.2, showing that

∆̄t = E
(
|J̄(θ̄t)− E

(
J̄(θ̄t)|Fxt , Et

)
|
∣∣∣Fxt , Et)

is upper bounded as ∆t. The difference lies in the fact that no rejection sampling is
considered here (i.e., θ̄t versus θ̃t) but the optimal value function J is extended to J̄ in
a constant fashion (i.e., J̄(θ) = J(θ)1S(θ) +D1Sc(θ)).
The proof is similar to the one of Lem. 4.5.2, the only difference lying in Step 1. Since
J̄ is a continuous extension of J , differentiable almost everywhere, we can apply the
modified Poincaré inequality, which leads to

∆̄t ≤ 2d′βtE
[
‖∇J̄(θ̄t)‖V −1

t
|Fxt , θ̄t ∈ ETS

t

]
.

However, by definition ∇J̄(θ) = ∇J(θ)1S(θ). Therefore,

∆̄t ≤ 2d′βtE
[
‖∇J(θ̄t)‖V −1

t
1S(θ̄t)|Fxt , θ̄t ∈ ETS

t

]
,

≤ 2d′βtE
[
‖∇J(θ̄t)‖V −1

t
|Fxt , θ̄t ∈ ETS

t , θ̄t ∈ S
]
.

Finally, using Eq. 4.8, we obtain ∆̄t ≤ γE
[∥∥∥H(θ̄t)

∥∥∥
V −1
t

|Fxt , θ̄t ∈ S, θ̄t ∈ ETS
t

]
, which is

identical to Eq. 4.9 so the rest of the proof follows.
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4.5.3 Bounding the optimality regret RTS

We prove in this section a
√
T bound for the regret term RTS. The idea of the proof is to

show that, thanks to the constant probability of being optimistic (see Lem. 4.5.5), one
can link RTS to the average absolute deviation of the optimal value function and thus
bound it with high probability according to Lem. 4.5.2. Unfortunately, since Lem. 4.5.5
only holds when n = 1, this restricts the result to the 1d case. However, we believe that
this comes mainly from technical difficulties, and that both the ideas and the structure
of the proof should hold in any dimension. We discuss its extension in Sec. 4.6.

Lemma 4.5.4. Consider the LQ system in Eq. 4.1 of dimension n = 1 and arbitrary
d. Under Asm. 4.2.1 and 4.2.2, for any 0 < δ < 1, the regret RTS incurred by running
the TS algorithm 4.1 is cumulatively bounded w.p. at least 1− δ/6 as

RTS =
T∑
t=0
{J(θ̃t)− J(θ∗)}1{Et} ≤ γTS

√
T

where γTS = 2D
√

2 log(24/δ) + γabs
p
.

The structure of the proof is the following: 1) we first decompose the regret,
introducing the average performance E

[
J(θ̃t)|Fxt , Et

]
, and bound the martingale part

of it, 2) we show that the probability of being optimistic is constant and we link the
remaining term to the average absolute deviation of the performance function, 3) we
conclude by using Lem. 4.5.2.

RTS decomposition. Let RTS
t := {J(θ̃t) − J(θ∗)}1{Et}. Introducing

E
[
J(θ̃t)|Fxt , Et

]
, one can split RTS as

RTS =
T∑
t=0

RTS,1
t +

T∑
t=0

RTS,2
t where RTS,1

t :=
{
J(θ̃t)− E

[
J(θ̃t)|Fxt , Et

]}
1{Et},

RTS,2
t :=

{
E
[
J(θ̃t)|Fxt , Et

]
− J(θ∗)

}
1{Et}.

By definition, {RTS,1
t }t≥1 is a Fxt -martingale difference sequence, bounded almost

surely at each time step by 2D (thanks to Def. 4.2.1). Therefore, applying Azuma’s
inequality guarantees that, w.p. at least 1− δ/12,

T∑
t=0

RTS,1
t =

T∑
t=0

{
J(θ̃t)− E

[
J(θ̃t)|Fxt , Et

]}
1Et ≤ 2D

√
2T log(24/δ).

Optimism and expectation. We now focus on the second term RTS,2
t . Let

Θopt = {θ : J(θ) ≤ J(θ∗)}

be the set of optimistic parameters (i.e., LQ systems whose optimal average expected
cost is lower than the true one). Then, for any θ ∈ Θopt, the per-step regret RTS,2

t is
bounded by:

RTS,2
t ≤

(
E[J(θ̃t)|Fxt , Et]− J(θ)

)
1{Et} ≤

∣∣∣∣J(θ)− E[J(θ̃t)|Fxt , Et]
∣∣∣∣1{Et},
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which implies that, for any random variable θ̃,

RTS,2
t ≤ E

[∣∣∣J(θ̃)−E[J(θ̃t)|Fxt , Et]
∣∣∣Fxt , Et, θ̃∈Θopt

]
,

where we use first the definition of the optimistic parameter set and bound the resulting
quantity by its absolute value. Since this inequality holds for any optimistic parameter,
it still holds in expectation, conditioned on θ̃ ∈ Θopt. While the last inequality is true
for any sampling distribution, it is convenient to select it equivalent to the sampling
distribution of TS. Thus, we set θ̃ = RS(θ̂t + βtV

−1/2
t η) with η is component wise

Gaussian N (0, 1) and obtain

RTS,2
t ≤ E

[∣∣∣J(θ̃t)− E[J(θ̃t)|Fxt , Et]
∣∣∣∣∣Fxt , Et, θ̃t ∈ Θopt

]
,

= E
[∣∣∣J(θ̃t)− E[J(θ̃t)|Fxt , Et]1{Θopt}

∣∣∣∣∣Fxt , Et
]/

P
(
θ̃t ∈ Θopt | Fxt , Et

)
≤ E

[∣∣∣J(θ̃t)− E[J(θ̃t)|Fxt , Et]
∣∣∣∣∣Fxt , Et

]/
P
(
θ̃t ∈ Θopt | Fxt , Et

)
.

(4.11)

Probability of being optimistic. At this point we need to show that the proba-
bility of sampling an optimistic parameter θ̃t is constant at any step t. This is provided
by the following lemma (proof in App. 4.B).

Lemma 4.5.5. Let Θopt := {θ ∈ Rd | J(θ) ≤ J(θ?)} be the set of optimistic parameters
and θ̃t = RS(θ̂t + βtV

−1/2
t η) with η be component-wise normal N (0, 1), then in the

one-dimensional case (n=1 and d=1)

∀t ≥ 0, P
(
θ̃t ∈ Θopt | Fxt , Et

)
≥ p,

where p is a strictly positive constant.

Summing up. Integrating the result of Lem. 4.5.5 into Eq. 4.11 gives

RTS,2
t ≤ 1

p
E
[∣∣∣∣J(θ̃t)− E[J(θ̃t)|Fxt , Et]

∣∣∣∣ | Fxt , Et
]
. (4.12)

The most interesting aspect of this result is that the constant probability of being
optimistic allows us to bound the worst-case non-stochastic quantity E[J(θ̃t)|Fxt ]−J(θ∗)
depending on J(θ∗) by an expectation E

[∣∣∣J(θ̃t)−E[J(θ̃t)|Fxt ]
∣∣∣ | Fxt ] up to a multiplicative

constant (we drop the events E for notational convenience). The last term is the
conditional average absolute deviation of the performance J w.r.t. the TS distribution.
This connection provides a major insight about the functioning of TS, since it shows
that TS does not need to have an accurate estimate of θ∗ but it should rather reduce
the estimation errors of θ∗ only on the directions that may translate in larger errors in
estimating the objective function J .
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From Eq. 4.12, and applying Lem. 4.5.2, we obtain, by Azuma, that with probability at
least 1− δ/12,

T∑
t=0

RTS,2
t ≤ 1/p

T∑
t=0

∆t ≤
γabs
p

√
T .

Moreover, since with probability at least 1 − δ/12, one has ∑T
t=1R

TS,1
t ≤

2D
√

2T log(24/δ), a union bound argument guarantees that, with probability 1− δ/6,

RTS ≤ 2D
√

2T log(24/δ) + γabs
p

√
T .

4.5.4 Bounding the gap at policy switch Rgap

We derive here a
√
T bound for the regret term Rgap which takes into account the

deviation in the performance between two subsequent sampling P (θ̃t+1)− P (θ̃t). The
standard approach to control this term is to modify the algorithm by keeping the
policy constant over episodes and performing policy update from time to time. Such
approach offers two advantages: from a computational point of view, the fewest policy
are updated, the cheapest (see Abbasi-Yadkori and Szepesvári 2011 for a lazy update
scheme in the LQ setting for OFUL algorithm); from a technical point of view, it
avoids quantifying and bounding the gap at policy switch.
However, this technique does not suit well with the TS algorithm. We first show
that TS has to solve a trade-off between frequently updating the policy to guarantee
enough optimistic samples (and hence bound RTS) and reducing the number of policy
switches to limit the regret incurred at each change (and hence bound Rgap). This
gives rise to a final bound of O

(
T 2/3

)
. Then, we derive a new line proof that over-

comes the trade-off of frequent versus lazy policy updates and thus leads to a
√
T bound.

Trading-off frequent and lazy updates. We discuss in this paragraph the issue
that arises when using lazy updates. Consider the modification of the TS algorithm 4.1
where the policy is kept constant over an episode. Denote as {tk}k=1,··· ,K the time steps
at which the policy switch occurs, K the number of switches and τk = tk+1 − tk + 1 the
length of each episode. As a result, in line with (Abbasi-Yadkori and Szepesvári, 2011),
the regret term Rgap is directly bounded by 2DX2K.
However, the bound of the optimality regret is modified accordingly: since the policy is
kept constant over episode, RTS becomes

RTS =
K∑
k=1

τkR
TS
tk

=
K∑
k=1

τkR
TS,1
tk +

K∑
k=1

τkR
TS,2
tk ,

≤ sup
k
τk

(
K∑
k=1

RTS,1
tk +

K∑
k=1

RTS,2
tk

)
.

Following the same proof as in Sec. 4.5.3, one obtains ∑K
k=1R

TS,1
tk +∑K

k=1R
TS,2
tk ≤ �

√
K,

where � is the appropriate numerical constant, and
√
K comes directly from the use of

Azuma’s inequality.
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Finally, consider for sake of simplicity the case where the length of episode is constant
(e.g. τk = τ = T/K for all k ≤ K), on obtains:

RTS +Rgap ≤ �
(
τ
√
K +K

)
≤ �

(
T/
√
K +K

)
,

which is minimized by K = T 2/3 and leads to a Õ(T 2/3) overall regret. This synthesizes
the trade-off faced by TS: by nature, thanks to randomization, the algorithm selects on
average useful policies which contribute to control the regret. Thus the more it samples,
the closer it gets to this average behavior. This speaks in favor of frequent updates. On
the other hand, the available bound for Rgap scales linearly with the number of policy
updates, and hence is not compatible with frequent updates.To overcome this issue,
we derive a new proof for Rgap that allows us to change the policy at each time step
without scaling linearly with the number of update. We prove the following result:

Lemma 4.5.6. Consider the LQ system in Eq. 4.1 of dimension n = 1 and arbitrary
d. Under Asm. 4.2.1 and 4.2.2, for any 0 < δ < 1, the regret Rgap incurred by running
the TS algorithm 4.1 is cumulatively bounded w.p. at least 1− δ/6 as

Rgap =
T∑
t=0

E
[
xT
t+1

(
P (θ̃t+1)− P (θ̃t)

)
xt+11{Et+1}|Ft

]
≤ γgap

√
T + γ′gap

where



γgap := 4D
√

2 log(24/δ) +X2(1 + 2γgap,2)γabs/p+ 2X2γgap,1γlipγgap,3/p,

γ′gap := X2γgap,2Dδ/(2p) + n2

pλ
γ2
gap,3,

γlip := 2Dρ/(1− ρ2)(1 + C),
γgap,1 := βT (1 + C)X +

√
n,

γgap,2 :=
(
1 + (1 + C)X

λ

)1/2
,

γgap,3 := (1 + C)X
√

2(n+ d)/λ log
(
1 + ((1 + C)X)2T/λ(n+ d)

)
.

As for Lem. 4.5.2, this result only holds in the 1d case. This is due to the rejection
sampling procedure that introduces boundary issue (w.r.t. the change in subsequent
sampling distribution) and requires the use of the extended optimal value function J̄ .
However, we believe that this comes mainly from technical difficulties, and that both
the ideas and the structure of the proof should hold in any dimension. We discuss its
extension in Sec. 4.6.

The structure of the proof is the following: 1) we decompose the regret and show
that the probability of sampling an admissible parameter (i.e., θ ∈ S) is constant. This
allows us to replace the actual TS sampling distribution by the unconstrained one
(i.e., we replace θ̃t by θ̄t). 2) We show that subsequent sampling distributions change
slowly and make use of the Lipschitz property of J to link Rgap to the average absolute
deviation of the extended optimal value function. 3) We conclude by using Cor. 4.5.2.
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Regret decomposition. We consider here the 1-d case with n = 1. As a result,
P (θ) = J(θ) and Rgap can be re-written as

Rgap =
T∑
t=0

E
[
xT
t+1

(
P (θ̃t+1)− P (θ̃t)

)
xt+11{Et+1}

∣∣∣Ft],
≤ X2

T∑
t=0

E
[
‖P (θ̃t+1)− P (θ̃t)‖21{Et+1}

∣∣∣Ft],
≤ X2

T∑
t=0

E
[
|J(θ̃t+1)− J(θ̃t)|1{Et+1}

∣∣∣Ft].
Applying Azuma’s inequality to the Ft-martingale difference sequence{

E
[
|J(θ̃t+1)− J(θ̃t)|1{Et+1}

∣∣∣Fxt ]− E
[
|J(θ̃t+1)− J(θ̃t)|1{Et+1}

∣∣∣Ft]}
t≥1

implies that, w.p. at least 1− δ/12,

Rgap ≤ X2
T∑
t=0

E
[
|J(θ̃t+1)− J(θ̃t)|1{Et+1}

∣∣∣Fxt ]+ 4D
√

2T log(24/δ).

Let J̄ = J(θ)1S(θ) +D1Sc(θ) be the continuous extension of the optimal value function.
Let J̄t = E

(
J̄(θ̄t)|Fxt , θ̄t ∈ ETS

t , Et
)
where θ̄t ∼ N (θ̂t, β2

t V
−1
t ) then, w.p. at least 1−δ/12,

Rgap ≤ 4D
√

2T log(24/δ) +X2
T∑
t=0

Rgap,1
t +X2

T∑
t=0

Rgap,2
t ,

where
Rgap,1
t := E

[
|J(θ̃t)− J̄t||Fxt , Et

]
,

Rgap,2
t := E

[
|J(θ̃t+1)− J̄t||Fxt , Et+1

]
,

(4.13)

where we used that 1{Et+1} ≤ 1{Et}, and pushed the events in the conditioning to
obtain the expressions of Rgap,1

t and Rgap,2
t .

Removing the S constraint. Let θ̄t ∼ N (θ̂t, β2
t V
−1
t ). Given that on Et, θ̃t ∈ ETS

t

and that θ̃t d= θ̄t|S for all t ≥ 1, the conditioning θ̃t ∈ Et implies that θ̄t ∈ ETS
t ∩ S.

Since, on S, J(θ) = J̄(θ), one has

Rgap,1
t = E

[
|J̄(θ̄t)− J̄t|

∣∣∣Fxt , θ̄t ∈ ETS
t ∩ S, Et

]
,

Rgap,2
t = E

[
|J̄(θ̄t+1)− J̄t|

∣∣∣Fxt , θ̄t+1 ∈ ETS
t+1 ∩ S, Et+1

]
.

We now rely on the following corollary to handle the rejection sampling.

Corollary 4.5.3. Let θ̄t ∼ N (θ̂t, β2
t V
−1
t ), then P(θ̄t ∈ S|Fxt , θ̄t ∈ ETS

t , Et) ≥ p where p
is the same constant as in Lem. 4.5.5.

Proof. The proof relies on Lem. 4.5.5, as in the worst-case configuration, the set of
admissible parameters may coincide with the set of optimistic parameters (it can
happen if D = J(θ∗)). Formally, one just need to notice that, by definition of the
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admissible parameter set, ∀θ ∈ S, J(θ) ≤ D. Moreover θ∗ ∈ S. Therefore, ∀θ ∈ Θopt,
J(θ) ≤ J(θ∗) ≤ D and Θopt ⊂ S. As a consequence,

P(θ̄t ∈ S|Fxt , θ̄t ∈ ETS
t , Et) ≥ P(θ̄t ∈ Θopt|Fxt , θ̄t ∈ ETS

t , Et),
≥ P(θ̃t ∈ Θopt|Fxt , Et) ≥ p.

Making use of Cor. 4.5.3, we get rid of the admissible constraint set

Rgap,1
t ≤ E

[
|J̄(θ̄t)− J̄t|1{S}

∣∣∣Fxt , ETS
t , Et

]/
P(θ̄t ∈ S

∣∣∣Fxt , ETS
t , Et)

≤ 1/pE
[
|J̄(θ̄t)− J̄t|1{S}

∣∣∣Fxt , ETS
t , Et

]
Rgap,2
t = E

(
E
[
|J̄(θ̄t+1)− J̄t|

∣∣∣Fxt+1, ETS
t+1, Et+1,S

]∣∣∣Fxt , ETS
t+1, Et+1

)

≤ E
(
E
[
|J̄(θ̄t+1)− J̄t|1{S}

∣∣∣Fxt+1, ETS
t+1, Et+1

]/
P(θ̄t+1 ∈ S

∣∣∣Fxt+1, ETS
t+1, Et+1)

∣∣∣∣∣Fxt , ETS
t+1, Et+1

)

≤ 1/pE
(
E
[
|J̄(θ̄t+1)− J̄t|1{S}

∣∣∣Fxt+1, ETS
t+1, Et+1

]∣∣∣∣∣Fxt , ETS
t+1, Et+1

)

=⇒


Rgap,1
t ≤ 1/pE

[
|J̄(θ̄t)− J̄t|

∣∣∣Fxt , θ̄t ∈ ETS
t , Et

]
Rgap,2
t ≤ 2/pE

[
|J̄(θ̄t+1)− J̄t|

∣∣∣Fxt , θ̄t+1 ∈ ETS
t+1, Et

] (4.14)

where we replaced Et+1 by Et in the last expression, making use of the fact that
P(Et+1 ∩ Ec

t |Fxt ) ≥ 1− δ/8T ≥ 1/2.
Thanks to Cor. 4.5.2, one directly obtains a bound for Rgap,1

t . The objective of next
step is to show that Rgap,2

t is closed to Rgap,1
t because subsequent sampling distribution

changes slowly.

Bounding Rgap,2
t . This step relies on the following propositions.

Proposition 4.5.5. Let {θ̂t}t≥1 be the sequence of least square estimate, ∀t ≥ 1,

E
[
‖θ̂t+1 − θ̂t‖

∣∣∣Fxt , Et] ≤ γgap,1‖zt‖V −1
t

where γgap,1 :=
[
(1 + C)X +

√
n
]

Proof. Least Square updates can be written explicitly as θ̂t+1 = θ̂t+ V
−1/2
t zt

1+‖zt‖2
V−1
t

(xt+1−θ̂T
tzt).

Thus,

‖θ̂t+1 − θ̂t‖ ≤
‖zt‖V −1

t

1 + ‖zt‖2
V −1
t

‖θT
∗ zt − θ̂T

t zt + εt+1‖ ≤ ‖θ̂t+1 − θ̂t‖ ≤
‖zt‖V −1

t

1 + ‖zt‖2
V −1
t

(βt‖zt‖V −1
t

+ ‖εt+1‖)

E
[
‖θ̂t+1 − θ̂t‖

∣∣∣Fxt , Et] ≤ ‖zt‖V −1
t

1 + ‖zt‖2
V −1
t

(βt‖zt‖V −1
t

+
√
n) ≤ ‖zt‖V −1

t

[
βt(1 + C)X +

√
n
]
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Proposition 4.5.6. Let {βt}t≥1 = {βt(δ′)}t≥1 be the sequence defined in Eq. 4.4, then,
∀t ≥ 1,

|βt+1 − βt| ≤
n‖zt‖2

V −1
t

2

Proof. Using the expression of βt = n

√
2 log

(
|Vt|1/2
|V0|1/2δ′

)
+
√
λS and that |Vt+1| = |Vt|(1 +

‖zt‖2
V −1
t

), one has

βt+1 ≤ βt + n
√

log(1 + ‖zt‖2
V −1
t

) ≤ βt + n
√

1 + ‖zt‖2
V −1
t
≤ βt +

n‖zt‖2
V −1
t

2 .

First, we get rid of the conditioning in Eq. 4.14 which is a high probability event:

∀t ≥ 1, P(θ̄t+1 ∈ ETS
t+1|Fxt , Et) ≥ 1− δ/8T ≥ 1/2.

Hence,

Rgap,2
t ≤ 2/pE

[
|J̄(θ̄t+1)− J̄t|

∣∣∣Fxt , Et] ≤ 2/pE
(
E
[
|J̄(θ̄t+1)− J̄t|

∣∣∣Fxt+1, Et
]∣∣∣∣∣Fxt , Et

)
.

Let θ̄t d= θ̂t+βtV −1/2
t η, where η ∼ N (0, I). We denote as φt(θ) and φ(η) the gaussian

pdf of θ̄t|Fxt and η respectively defined as

φt+1(θ) = det(Vt+1)1/2

β2(2π)(n+d)n/2 e
−1/2β2‖θ−θ̂t+1‖2Vt+1

φ(η)(η) = 1
1(2π)(n+d)n/2 e

−1/2‖η‖2 .

Rewriting the expectation in the integral form, one has:

E
[
|J̄(θ̄t+1)−J̄t|

∣∣∣Fxt+1, Et
]

=
∫
R(n+d)n

|J̄(θ̄)−J̄t|φt+1(θ̄)dθ̄ =
∫
R(n+d)n

|J̄(θ̂t+1+βt+1V
−1/2
t+1 η)−J̄t|φ(η)dη.

Using Prop. 4.2.2 and Prop. 4.2.3, it is clear that, for any θ ∈ S, ‖∇J(θ)‖ ≤ 2Dρ/(1−
ρ2)(1 +C) := γlip. Therefore, J is Lipschitz on S and by construction, so is J̄ (with the
same Lipschitz constant). Thanks to the Lipschitz property of J̄ and using. Prop. 4.5.5
and 4.5.6, we have:

E
[
|J̄(θ̄t+1)− J̄t|

∣∣∣Fxt+1, Et
]

=
∫
R(n+d)n

|J̄(θ̂t+1 + βt+1V
−1/2
t+1 η)− J̄t|φ(η)dη

≤|J̄(θ̂t+1)− J̄(θ̂t)|

+
∫
R(n+d)n

|J̄(θ̂t + βt+1V
−1/2
t+1 η)− J̄(θ̂t + βtV

−1/2
t+1 η)|φ(η)dη

+
∫
R(n+d)n

|J̄(θ̂t + βtV
−1/2
t+1 η)− J̄t|φ(η)dη

≤γlip‖θ̂t+1 − θ̂t‖+ |βt+1 − βt|
∫
R(n+d)n

‖V −1/2
t+1 η‖φ(η)dη

+
∫
R(n+d)n

|J̄(θ̂t + βtV
−1/2
t+1 η)− J̄t|φ(η)dη.
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Using that
∫
R(n+d)n ‖V −1/2

t+1 η‖φ(η)dη ≤ n√
λ
for the second term and a change of variable

for the third one, we get:

E
[
|J̄(θ̄t+1)− J̄t|

∣∣∣Fxt+1, Et
]
≤γlip‖θ̂t+1 − θ̂t‖+ |βt+1 − βt|

n√
λ

+ |Vt+1|1/2

|Vt|1/2
∫
R(n+d)n

|J̄(θ̄)− J̄t|φt(θ̄)dθ̄

Let γgap,2 :=
(
1 + (1+C)X

λ

)1/2
, using Prop. 4.5.5 and 4.5.6, we finally have that

E
[
|J̄(θ̄t+1)− J̄t|

∣∣∣Fxt+1, Et
]
≤γlip‖θ̂t+1 − θ̂t‖+ n2

2λ‖zt‖V
−1
t

+ γgap,2

∫
R(n+d)n

|J̄(θ̄)− J̄t|φt(θ̄)dθ̄

= γlip‖θ̂t+1 − θ̂t‖+ n2

2λ‖zt‖V
−1
t

+ γgap,2E
[
|J̄(θ̄t)− J̄t|

∣∣∣Fxt ].
Thus,

Rgap,2
t ≤ 2/p

(
γlipE

[
‖θ̂t+1 − θ̂t‖

∣∣∣Fxt , Et]+ n2

2λ‖zt‖V
−1
t

+ γgap,2E
[
|J̄(θ̄t)− J̄t|

∣∣∣Fxt , Et]
)
.

Re-introducing the constraint θ̄t ∈ ETS
t gives

E
[
|J̄(θ̄t)− J̄t|

∣∣∣Fxt , Et] = E
[
|J̄(θ̄t)− J̄t|1{ETS

t }
∣∣∣Fxt , Et]+ E

[
|J̄(θ̄t)− J̄t|1{ETS,c

t }
∣∣∣Fxt , Et]

≤ E
[
|J̄(θ̄t)− J̄t|

∣∣∣Fxt , ETS
t , Et

]
+ 2D

(
1− P(θ̄t ∈ ETS

t |Fxt , Et)
)

≤ E
[
|J̄(θ̄t)− J̄t|

∣∣∣Fxt , ETS
t , Et

]
+Dδ/(4T ),

and using Prop. 4.5.5, one has

E
[
‖θ̂t+1 − θ̂t‖

∣∣∣Fxt , Et]
)
≤ γgap,1‖zt‖V −1

t
.

Finally, one obtains

Rgap,2
t = 2

p

(
γgap,2E

[
|J̄(θ̄t)−J̄t|

∣∣∣Fxt , ETS
t , Et

]
+γgap,1γlip‖zt‖V −1

t
+γgap,2Dδ/(2pT )+n2

2λ‖zt‖V
−1
t

)
.

Summing up. Applying Cor. 4.5.2 provides us with a bound on the cumulative
sum of E

[
|J̄(θ̄t)− J̄t|

∣∣∣Fxt , ETS
t , Et

]
and applying Prop. 4.2.4 provides us with a bound

on ∑ ‖zt‖V −1
t

. Plugging it into Eq. 4.13 ensures that, with probability at least 1− δ/6,
Rgap ≤ γgap

√
T + γ′gap.

4.5.5 Final bound
Bounding RRLS and Rmart The regret term RRLS is related to the prediction error
of the least square. The following lemma provides an upper bound similar to the one
derived in (Abbasi-Yadkori and Szepesvári, 2011) with a minor modification due to the
different policy update rule between our TS sampling algorithms. We postpone the
proofs to App. 4.D.
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Lemma 4.5.7. Let If the TS is run over T time step according to algorithm 4.1, then,

where
RRLS ≤ γRLS

√
T

γRLS := 2/
√
λ(1 + C2)X2SD(γT (δ′) + βT (δ′))

√√√√2(n+ d) log
(

1 + T (1 + C2)X2

λ(n+ d)

)
.

On the other hand, as discussed in Sec. 4.4, the term Rmart is, up to minor modifi-
cation, a martingale sequence and thus is bounded w.h.p.

Lemma 4.5.8. With probability at least 1 − δ/6, Rmart ≤ γmart
√
T where γmart :=

2DX2
√

2 log(12/δ).

Plugging everything together. We are now ready to bring all the regret terms
together. Collecting all the results, one has

RRLS ≤ γRLS
√
T a.s.

Rmart ≤ γmart
√
T w.p. at least 1− δ/6

RGap ≤ γgap
√
T + γ′gap w.p. at least 1− δ/6

RTS ≤ γTS
√
T w.p. at least 1− δ/6

Therefore, w.p. at least 1− δ/2,

RRLS +Rmart +RGap +RTS ≤ (γRLS + γmart + γgap + γTS)
√
T + γ′gap.

Finally, notice that the regret decomposition Eq. 4.6, is conditioned on the high
probability sequence of events {Et}t≤T which holds w.p. at least 1 − δ/2 according
to Cor. 4.5.1. Thus, a union bound argument ensures that, w.p. at least 1 − δ,
R(T ) = Õ

(√
T
)
where Õ hides some logarithmic factor and can be recovered from the

proof.
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4.6 Discussion

We derived the first Õ(
√
T ) frequentist regret for TS in LQ control systems. Despite

the existing results in LQ for optimistic approaches (OFU-LQ), the Bayesian analysis
of TS in LQ, and its frequentist analysis in linear bandit, we showed that controlling
the frequentist regret induced by the randomness of the sampling process in LQ systems
is considerably more difficult and it requires developing a novel approach, inspired
from Ch. 3 that directly relates the regret of TS and the controls executed over time.
Furthermore, we stress the need for TS to sample new parameters (and hence choose
new policies) at a high frequency, which is in contrast with the lazy update approach
of OFU-LQ. The major implication is that the available bound for the gap at policy
switch only guarantees a Õ(T 2/3) overall regret bound. To overcome this issue, we
introduced a new line of proof that allows us to control the gap at policy switch, thus
making possible to update parameters at each time step while ensuring a Õ(

√
T ) overall

regret.
Despite the fact that most of the proof is derived in the general n dimensional case,
two key steps are unfortunately restricted to the 1d case (i.e., when the state is 1
dimensional), which narrows down the final results. We believe that this comes mainly
from technical difficulties and that it can be extended to n dimensions. We discuss here
these limitations and how to relax it.

4.6.1 Probability of being optimistic

The first limitation comes from the need for optimism. The current proof of
Lem. 4.5.5 uses the 1 dimension restriction to exhibit an optimistic set of parameters.
Thanks to over-sampling, we show that the probability of sampling within this
set is constant. While, inspired by the analysis of Ch. 3, we believe the way
over-sampling is performed should guarantee the extension to n dimensions, the
main limitation comes from the shape of the optimistic set. We highlight this is-
sue and then try to tackle the problem at a higher level, removing the need for optimism.

Extension to n dimension. For sake of illustration, consider the n-dimensional
problem which consists in n independent problems, of dimension 1. Formally, the
structure of the problem is diagonal

A∗ =


a1
∗ 0

. . .
0 an∗

 , B∗ =


b1
∗ 0

. . .
0 bn∗

 , Q =


q1 0

. . .
0 qn

 , R =


r1 0

. . .
0 rn

 .

and assume that the learner is aware of this structure. In this case, each system
can be estimated and sampled independently, so one can write θ̂t = [θ̂1

t , . . . , θ̂
n
t ], and

θ̃t = [θ̃1
t , . . . , θ̃

n
t ], with θ̃it conditionally independent. Accordingly, each systems can

be controlled independently, so Tr(P (θ̃t)) = ∑n
i=1 J(θ̃it), Tr(P (θ∗)) = ∑n

i=1 J(θi∗). As a
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consequence,

P
(
Tr(P (θ̃t)) ≤ Tr(P (θ∗))

)
≥ P

(
J(θ̃it) ≤ J(θi∗), ∀i ∈ [1, . . . , n]

)
≥

n∏
i=1

P
(
J(θ̃it) ≤ J(θi∗)

)
.

By independence, the probability of being optimistic can be narrowed down to the
probability of being jointly optimistic in each direction. Finally, notice that Prop. 2.3.1
becomes

Tr
(
(θ̂it − θi∗)TV i

t (θ̂it − θi∗)
)
≤ βit(δ)2, ∀i ∈ [1, . . . , n]

but that the sampling is made as θ̃it = RS
(
θ̂it + βtV

i,−1/2
t ηit

)
where βt ≥

√
nβit for all

i ∈ [1, . . . , n]. In line with the analysis of Ch. 3, this over-sampling by a factor
√
n

ensures the joint probability to be constant.
Despite the lack of generality due to the diagonal structure, this example stresses the
intuition that over-sampling (coming from βt) prevents a bad scaling of the probability
of being optimistic with the dimension, and that the crucial difficulties lies in the
characterization of the optimistic set Θopt. While in the diagonal case, one can look at
the joint probability of each system being optimistic, it is no longer possible in the
general case, as optimizing the cost in a direction could incur a larger cost in another
direction.
In fact, the proof of Lem. 4.5.5 relies on the following steps. First, we exhibit a set Θopt

that contains optimistic parameters θ, leveraging the shape of the optimal average cost
function J(θ) = Tr(P (θ)). Then, we show that the mass of this set, once transformed
by the mapping L : θ → 1

βt
V

1/2
t (θ − θ̂t), is constant. This is motivated by the fact that

the randomness of the sampling is due to ηt, thus the probability of being optimistic is
related to the volume of Θopt under the parametrization corresponding to ηt = L(θ̃t).
In the 1-dimensional case, we are able to exhibit a set Θopt which corresponds to the
area intercepted by two parallel hyperplanes. This specific shape is invariant under the
mapping L, thus the constant mass of Θopt w.r.t. the Lebesgue measure guarantee a
constant mass of L(Θopt) i.e., a fixed probability of being optimistic. On the other
hand, in the n-dimensional case, we are only able to exhibit a set Θopt that is a convex
n-dimensional cone, of constant mass. Despite the fact that, once transformed by L,
the obtained set is still a convex cone, its volume can shrink to zero (think of the case
where one eigenvalue of Vt diverge to ∞) and therefore does not guarantee a constant
probability of being optimistic. Whether it is possible to exhibit a bigger set Θopt of
invariant mass w.r.t. the mapping L is, up to our knowledge, still an open question.
On the other hand, we would like to point out the fact that this approach implicitly
replaces the initial objective Tr(P (θ)) ≤ Tr(P (θ∗)) by the more constrained version
P (θ) 4 P (θ∗), where 4 is the inequality associated with p.s.d. matrices. It means that
we require every eigenvalues to be smaller, or, equivalently to be more optimistic in
every direction. This is, of course, more restrictive than comparing the trace where
being very optimistic in a direction could compensate for a little pessimism in others.
Comparing the eigenvalues rather than the trace is motivated by the fact that there
exists no perturbation theory for trace of Riccati/Lyapunov solutions while some
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material is available in the matrix case.

Removing the need for optimism. While the above discussion is specific to LQ
problem, as it focuses on the shape of the Riccati solution, we try here to tackle the
issue at a higher level by discussing the need for optimism. As explained in Sec. 4.4,
the core of the analysis is to show that, thanks to the Poincaré inequality and the
relationship between the gradient of the optimal value function and the actual actions
selected by TS, the average absolute deviation is cumulatively small. Formally, we show
that

T∑
t=0

∆t =
T∑
t=0

E
[
|J(θ̃t)− E(J(θ̃t)|Fxt )|

∣∣∣Fxt ] = Õ(
√
T ).

Notice that this bound holds for any sampling distribution, which stresses the intuition
that it is a structural property of TS (as long as the gradient corresponds to actions).
On the other hand, the initial objective is to provide a bound on J(θ̃t)− J(θ∗) or, up
to a martingale term, on E(J(θ̃t)|Fxt )− J(θ∗). Since the only knowledge one has about
the unknown parameter is that w.h.p. θ∗ ∈ ERLS

t for all t ≤ T , one aims to bound

sup
θ∈ERLS

t

(
E(J(θ̃t)|Fxt )− J(θ)

)
. (4.15)

This motivates the structure of the sampling (see Eq. 4.5), which ensures that θ̃t spans
ERLS
t . Then the actual analysis makes use of the over-sampling (i.e., ERLS

t ⊂ ETS
t ) to

guarantee a fixed probability of being optimistic, which provides a link between Eq. 4.15
and ∆t as

sup
θ∈ERLS

t

(
E(J(θ̃t)|Fxt )− J(θ)

)
≤ ∆t/p.

However, this derivation is worst-case in the sense that it implicitly assumes that the
function f : θ → E(J(θ̃t)|Fxt ) − J(θ) is flat everywhere but over the optimistic set,
where it is of high value, and in particular, completely discards almost optimistic points.
Thanks to the regularity of the optimal value function J (and hence of f), it seems that
such inequality could be derived in a more global and tighter way. Formally, we would
like to have access to an inequality of the form

sup
θ∈ERLS

t

|f(θ)| ≤ c0 Eθ∼ETS
t

(
|f(θ)|

)
(4.16)

Alternatively, we could also use an inequality of the form

sup
θ∈ERLS

t

|f(θ)| ≤ c1 Eθ∼ETS
t

(
|f(θ)|

)
+ c2 Eθ∼ETS

t

(
‖∇f(θ)‖

)
. (4.17)

with c0, c1, c2 constants that depend on the regularity of f , on the sampling distribution
and on the dimension. Despite the fact that the converse of Eq. 4.16 holds with c0 = 1,
it is quite hard to construct counter-example for reasonably smooth function, since it
requires f to be flat everywhere but on a small subset where it is very steep (and thus
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not that smooth). Furthermore, notice that Eq. 4.16 holds for linear functions while
Eq. 4.17 holds in 1d (Taylor expansion). From a theoretical perspective, Eq. 4.16 seems
related to Converse Holder Inequality, in the extreme case L∞ versus L1, while Eq. 4.17
seems related to Sobolev inequalities. Proving those inequalities with small constant
c0, c1, c2 is a difficult and open question with implications way beyond the scope of this
work. In particular, it will be a major breakthrough for TS analysis, stressing why its
structural property (maintaining ∆t small) ensures a small regret.

4.6.2 Bounding the gap at policy switch
The second limitation comes from the way we bound Rgap, and is deeply related to the
constraint S and the rejection sampling. The current proof of Lem. 4.5.6 relies on the
fact that, when n = 1, P (θ) = J(θ) so that bounding ‖P (θ̃t+1)− P (θ̃t)‖2 is equivalent
to bounding |J(θ̃t+1)− J(θ̃t)|. This is motivated by the fact that J can be extended to
J̄ in a constant fashion, while P cannot and because the constant extension is necessary
to get rid of the rejection sampling due to the S constraint. However, we believe that
this is a technical detail of the proof and that the core idea, which consists in linking
|J(θ̃t+1)− J(θ̃t)| to the average absolute deviation is still valid for ‖P (θ̃t+1)− P (θ̃t)‖2.
To highlight this intuition, we provide a sketch of the proof under the assumption that
no rejection sampling is needed, and then discuss why this conjecture may hold.

The Gaussian sampling case. Assume for now, that the Riccati solution P (θ)
is bounded everywhere (i.e., ‖P (θ)‖2 ≤ D, ∀θ ∈ Rn(n+d)). Therefore, Prop. 4.2.3
guarantee that P is Lipschitz everywhere with constant γlip and no rejection sampling
is needed, so θ̃t d= θ̄t is actually sampled according to a Gaussian distribution. Thus,
following the proof of Sec. 4.5.4, introducing P̄t = E

(
P (θ̄t)|Fxt , ETS

t , Et
)
, one has:

Rgap ≤ 4D
√

2T log(24/δ) +X2
T∑
t=0

Rgap,1
t +X2

T∑
t=0

Rgap,2
t where

Rgap,1
t := E

[
‖P (θ̄t)− P̄t‖2|Fxt , ETS

t , Et
]

Rgap,2
t := E

[
‖P (θ̄t+1)− P̄t‖2|Fxt , ETS

t+1, Et+1
]

As in Sec. 4.5.4, Rgap,1
t is an average absolute deviation of the performance and can

be bounded the same way through the use of a modified Poincaré inequality. Even
though Lem. 4.5.3 is proved for real-valued function, at the cost of worsening a bit the
constant, using algebraic manipulation and matrix norm equivalence, one can apply it
component-wise and retrieve the same result as in Sec. 4.5.2, thus ensuring that w.h.p.∑T
t=1 R

gap,1
t = Õ(

√
T ). Therefore, what remains is to show that Rgap,2

t = O
(
Rgap,1
t +

√
T
)
.

Using the same line of proof, one obtains:

Rgap,2
t ≤ �E

[
‖P (θ̄t + θ̂t+1 − θ̂t)− P̄t‖2

∣∣∣Fxt , Et]
where � is the appropriate constant. Finally, the Lipschitz property of P together
with ‖θ̂t+1− θ̂t‖ cumulatively small (see Prop. 4.5.5) ensures that Rgap,2

t is cumulatively
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closed to Rgap,1
t and hence bounded.

Removing the constraint S. The above derivation requires P to be bounded
everywhere and thus Lipschitz. Unfortunately, this property is not true, as stated in
Prop. 4.2.1 Yet intuitively, we believe that the idea of the proof may still hold. A
sufficient condition to deal with the boundedness of P would be to guarantee that (for
t big enough) ETS

t ⊂ S or that, w.h.p., θ̄t ∈ S. This is tricky to verify theoretically,
because it requires quantifying at which rate does ETS

t shrink i.e., to look directly at
the consistency of the estimates. On the other hand, it is likely to be true in practice
since, the bigger the probability of sampling a parameter close to Sc is, the faster ETS

t

shrinks. The reason is that parameters that are close to Sc have high optimal value
and thus induce very aggressive control: each time such a point is selected, a lot of
knowledge is collected from the system which significantly reduces the uncertainty about
the parameter estimates.



Appendix

4.A Control theory

4.A.1 Proof of Prop. 4.2.2
Proposition 4.2.2. S is a compact set. For any θ ∈ S, θ is a stabilizable pair (since
J(θ) = +∞ otherwise) and there exist ρ < 1 and C <∞ positive constants such that
ρ = supθ∈S ‖A+BK(A,B)‖2 and C = supθ∈S ‖K(θ)‖2.

1. When θ> = (A,B) is not stabilizable, there exists no linear control K such
that the controlled process xt+1 = Axt + BKxt + εt+1 is stationary. Thus, the
positiveness of Q and R implies J(θ) = Tr(P (θ)) = +∞. As a consequence,
θ> /∈ S.

2. The mapping θ → Tr(P (θ)) is continuous (see Lem. 4.2.3). Thus, S is compact
as the intersection between a closed and a compact set.

3. The continuity of the mapping θ → K(θ) together with the compactness of S
justifies the finite positive constants ρ and C. Moreover, since every θ ∈ S are
stabilizable pairs, ρ < 1.

4.A.2 Proof of Prop. 4.2.3
Let θT = (A,B) where A and B are matrices of size n× n and n× d respectively. Let
R : Rn+d,n × Rn,n → Rn,n be the Riccati operator defined by:

R(θ, P ) := Q− P + ATPA− ATPB(R +BTPB)−1BTPA, (4.18)

where Q,R are positive definite matrices. Then, the solution P (θ) of the Riccati
equation is the solution of R(θ, P ) = 0. While Prop. 4.2.2 guarantees that there exists
a unique admissible solution as soon as θ ∈ S, addressing the regularity of the function
θ → P (θ) requires the use of the implicit function theorem.

Theorem 4.A.1 (Implicit function theorem (Krantz and Parks, 2012)). Let E and F
be two Banach spaces, let Ω ⊂ E×F be an open subset. Let f : Ω→ F be a C1-map and
let (x0, y0) be a point of Ω such that f(x0, y0) = 0. We denote as dyf(x0, y0) : F → F

the differential of the function f with respect to the second argument at point (x0, y0).
Assume that this linear transformation is bounded and invertible. Then, there exists

1. two open subsets U and V such that (x0, y0) ∈ U × V ⊂ Ω,

2. a function g : U → V such that g(x) = y for all (x, y) ∈ U × V .

Moreover, g is C1 and dg(x) = −dyf(x, g(x))−1dxf(x, g(x)) for all (x, y) ∈ U × V .
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Since R is positive definite, the Riccati operator is clearly a C1-map from S × S++
n

to S++
n . Moreover, thanks to Prop. 4.2.2, to any θ ∈ S, there exists P ∈ S++

n such
that R(θ, P ) = 0. Thanks to Thm. 4.A.1, a sufficient condition for θ → P (θ) to be
C1 on S is that the linear map dPR(θ, P (θ)) : Rn×n → Rn×n is a bounded invertible
transformation.

• Bounded. There exists M such that, for any P ∈ Rn×n, ‖dPR(θ, P (θ))(P )‖ ≤
M‖P‖.

• Invertible. There exists a bounded linear operator S : Rn×n → Rn×n such that
SP = In,n and PS = In,n.

Property 4.A.1. Let θT = (A,B) and R be the Riccati operator defined in equa-
tion (4.18). Then, the differential of R w.r.t P taken in (θ, P ) denoted as dPR(θ, P ) is
given by:

dPR(θ, P )(δP ) := ATc δPAc − δP, for any δP ∈ Rn×n,

where Ac = A−B(R +BTPB)−1BTPA.

Proof. The proof is straightforward using the standard composi-
tion/multiplication/inverse operations for the differential operator together with an
appropriate rearranging.

Clearly, dPR(θ, P ) is a bounded linear map. Moreover, thanks to the Lyapunov
theory, for any stable matrix ‖Ac‖2 < 1 and for any positive definite matrix Q, the
Lyapunov equation ATc XAc −X = Q admits a unique solution. From Prop. 4.2.2, the
optimal matrix P (θ) is such that the corresponding Ac is stable. This implies that
dPR(θ, P ) is an invertible operator, and θ → P (θ) is C1 on S.

Therefore, the differential of θ → P (θ) can be deduced from the implicit function
theorem. After tedious yet standard operations, one gets that for any θ ∈ S and
direction δθ ∈ R(n+d)×n:

dJ(θ)(δθ) = Tr(dP (θ)(δθ)) = Tr(∇J(θ)Tδθ),

where ∇J(θ) ∈ R(n+d)×n is the jacobian matrix of J in θ and, for any δθ ∈ R(n+d)×n,
one has:

dP (θ)(δθ) = Ac(θ)TdP (θ)(δθ)Ac(θ) + C(θ, δθ) + C(θ, δθ)T, where
C(θ, δθ) = Ac(θ)TP (θ)δθTH(θ).

(4.19)

Proposition 4.A.1. For any θ ∈ S and any positive definite matrix V , one has the
following inequality for the differential of P :

sup
‖δθ‖=1

‖dP (θ)(V 1/2δθ)‖2 ≤ 2Dρ/(1− ρ2)‖H(θ)‖V .
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Proof. From Eq. 4.19, we have, for any θ ∈ S, for any ‖δθ‖F = 1,

‖dP (θ)(V −1/2
t δθ)‖2 ≤ ‖Ac(θ)‖2

2‖dP (θ)(V −1/2
t δθ)‖2 + 2‖Ac(θ)‖2‖P (θ)‖2‖δθTV

−1/2
t H(θ)‖2

≤ ‖Ac(θ)‖2
2‖dP (θ)(V −1/2

t δθ)‖2 + 2‖Ac(θ)‖2‖P (θ)‖2‖δθTV
−1/2
t H(θ)‖

≤ ‖Ac(θ)‖2
2‖dP (θ)(V −1/2

t δθ)‖2 + 2‖Ac(θ)‖2‖P (θ)‖2‖δθ‖‖H(θ)‖V −1
t
,

where we used the matrix norm equivalence from line 1 to line 2 and Cauchy-Schwartz
from line 2 to line 3. Finally, on S, ‖Ac(θ)‖2 ≤ ρ and ‖P (θ)‖2 ≤ TrP (θ) ≤ D. Thus,
‖dP (θ)(V −1/2

t δθ)‖2 ≤ 2Dρ/(1− ρ2)‖H(θ)‖V −1
t

which concludes the proof.

4.B Proof of Lem. 4.5.5
We prove here that, on E, the sampling θ̃ ∼ RS(θ̂t + βtV

−1/2
t ηt) guarantees a fixed

probability of sampling an optimistic parameter i.e., which belongs to Θopt
t := {θ ∈

Rd | J(θ) ≤ J(θ?)}. However, our result only holds for the 1−dimensional case as we
deeply leverage the geometry of the problem. Figure 4.B.1 synthesizes the properties of
the optimal value function and the geometry of the problem w.r.t the probability of
being optimistic.

1) First, we introduce a simpler subset of optimistic parameters which involves hyper-
planes rather than complicated J level sets. Without loss of generality we assume that

A∗ + B∗K∗ = ρ∗ ≥ 0 and introduce H∗ =
(

1
K∗

)
∈ R1+d so that A∗ + B∗K∗ = θTH∗.

Let Θlin,opt = {θ ∈ Rd | |θTH∗| ≤ ρ∗}. Intuitively, Θlin,opt consists in the set of systems
θ which are more stable under control K∗. The following proposition ensures those
systems to be optimistic.

Proposition 4.B.1. Θlin,opt ⊂ Θopt
t .

Proof. Leveraging the expression of J , one has when n = 1,

J(θ) = Tr(P (θ)) = P (θ) = lim
T→∞

E
[ T∑
t=0

x2
t (Q+K(θ)2R)

]
= (Q+K(θ)2R)V(xt),

where V(xt) = (1−|θTH(θ)|2)−1 is the steady-state variance of the stationary first order
autoregressive process xt+1 = θTH(θ)xt + εt+1 where εt is zero mean noise of variance 1

and H(θ) =
(

1
K(θ)

)
. Thus,

J(θ) =
(
Q+K(θ)2R

)(
1− |θTH(θ)|2

)−1
.

Hence, for any θ ∈ Θlin,opt, (1− |θTH∗|2)−1 ≤ (1− |θT
∗H∗|2)−1 which implies that

(Q+K2
∗R)(1− |θTH∗|2)−1 ≤ (Q+K2

∗R)(1− |θT
∗H∗|2)−1 = J(θ∗).
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-1 1

Level set J(θ) = J∗

B

S

A

Θopt

Θopt,lin

θ̂t

SC

ERLS

θ∗

Figure 4.B.1 – Optimism and worst case configuration. 1) In 1-D, the Riccati solution
is well-defined expect for {(A,B) ∈]−∞,−1]∪ [1,∞[×{0}}. The rejection sampling procedure
into S ensures P (θ̃t) to be well-defined. Moreover, Sc does not overlap with Θopt. 2) The
introduction of the subset Θlin,opt prevents using the actual - yet complicated - optimistic
set Θopt to lower bound the probability of being optimistic. 3) Even if the event ERLS holds,
there exists an ellipsoid configuration which does not contain any optimistic point. This
justifies the over-sampling to guarantee a fixed probability of being optimistic.

However, since K(θ) is the optimal control associated with θ,

J(θ) = (Q+K(θ)2R)(1− |θTH(θ)|2)−1 = min
K

(Q+K2R)(1− |
(
1 K

)
θ|2)−1

≤ (Q+K2
∗R)(1− |θTH∗|2)−1 ≤ J(θ∗)

As a result, P
(
θ̃t ∈ Θopt | Fxt , Êt

)
≥ P

(
θ̃t ∈ Θlin,opt | Fxt , Êt

)
and we can focus on

Θlin,opt.

2) To ensure the sampling parameter to be admissible, we perform a rejection sampling
until θ̃t ∈ S. Noticing that Θlin,opt ⊂ Θopt ⊂ S by construction, the rejection sampling



96 Chapter 4. Thompson Sampling in Linear Quadratic System

is always favorable in terms of probability of being optimistic. Since we seek for
a lower bound, we can get rid of it and consider θ̃t = θ̂t+βtV −1/2

t η where η ∼ N (0, I1+d).7

3) On Êt, θ? ∈ ERLS
t , where ERLS

t is the confidence RLS ellipsoid centered in θ̂t. Since
θ∗ is fixed (by definition), we lower bound the probability by considering the worst
possible θ̂t such that Êt holds. Intuitively, we consider the worst possible center for
the RLS ellipsoid such that θ? still belong in ERLS

t and that the probability of being
optimistic is minimal. Formally,

P
(
θ̃t ∈ Θlin,opt | Fxt , Êt

)
= P

θ̃t∼N (θ̂t,β2
t V
−1
t )

(
θ̃t ∈ Θlin,opt | Fxt , Êt

)
≥ min

θ̂:‖θ̂−θ∗‖Vt≤βt(δ′)
P
θ̃t∼N (θ̂,β2

t V
−1
t )

(
θ̃t ∈ Θlin,opt | Fxt )

Moreover, by Cauchy-Schwarz inequality, for any θ̂,∣∣∣(θ̂ − θ∗)TH∗
∣∣∣ ≤ ‖θ̂ − θ∗‖Vt‖H∗‖V −1

t
≤ βt(δ′)‖H∗‖V −1

t
,

thus,

P
(
θ̃t ∈ Θlin,opt | Fxt , Êt

)
≥ min

θ̂:‖θ̂−θ∗‖Vt≤βt(δ′)
P
θ̃t∼N (θ̂,β2

t V
−1
t )

(
θ̃t ∈ Θlin,opt | Fxt )

≥ min
θ̂:|(θ̂−θ∗)TH∗|≤βt(δ′)‖H∗‖

V−1
t

P
θ̃t∼N (θ̂,β2

t V
−1
t )

(
θ̃t ∈ Θlin,opt | Fxt )

= min
θ̂:|θ̂TH∗−ρ∗|≤βt(δ′)‖H∗‖

V−1
t

P
θ̃t∼N (θ̂,β2

t V
−1
t )

(
|θ̃T
t H∗| ≤ ρ∗ | Fxt )

Cor. 4.B.1 provides us with an explicit expression of the worst case ellipsoid. Introducing
x = θ̃T

t H∗, one has x ∼ N (x̄, σ2
x) with x̄ = θ̂H∗ and σx = βt‖H∗‖V −1

t
. Applying

Cor. 4.B.1 with α = ρ∗, ρ = ρ∗ and β = βt(δ′)‖H∗‖V −1
t

, the last inequality becomes

P
(
θ̃t ∈ Θlin,opt | Fxt , Êt

)
≥ min

θ̂:|θ̂TH∗−ρ∗|≤βt(δ′)‖H∗‖
V−1
t

Pη∼N (0,I1+d)
(
|θ̂TH∗ + βtη

TV
−1/2
t H∗| ≤ ρ∗ | Fxt )

≥ Pη∼N (0,I1+d)
(
|ρ∗ + βt(δ′)‖H∗‖V −1

t
+ βtη

TV
−1/2
t H∗| ≤ ρ∗ | Fxt )

Introducing the vector ut = βt(δ′)V −1/2
t H∗, one can simplify

|ρ∗ + βt(δ′)‖H∗‖V −1
t

+ βt(δ′)ηTV
−1/2
t H∗| ≤ ρ∗,

⇔− ρ∗ ≤ ρ∗ + ‖ut‖+ ηTut
βt

βt(δ′)
≤ ρ∗,

⇔− ρ∗
‖ut‖

− 1 ≤ ηT ut
‖ut‖

βt
βt(δ′)

≤ −1.

Since η ∼ N (0, I1+d) is rotationally invariant and since βt
βt(δ′) := 1,

P
(
θ̃t ∈ Θlin,opt | Fxt , Êt

)
≥ Pε∼N (0,1)

(
ε ∈

[
1, 1 + 2ρ∗

‖ut‖
]
| Fxt , Êt

)
.

7In the 1-dimensional case, η is just a 1 + d standard Gaussian r.v.
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Finally, for all t ≤ T , ut is almost surely bounded: ‖ut‖ ≤ βT (δ′)
√

(1 + C2)/λ. There-
fore,

P
(
θ̃t ∈ Θlin,opt | Fxt , Êt

)
≥ Pε∼N (0,1)

(
ε ∈

[
1, 1 + 2ρ∗/βT (δ′)

√
(1 + C2)/λ

])
:= p

Corollary 4.B.1. For any ρ, σx > 0, for any α, β ≥ 0, arg minx̄:|x̄−α|≤β Px∼N (x̄,σ2
x)
(
|x| ≤

ρ
)

= α + β.

This corollary is a direct consequence of the properties of standard Gaussian r.v.

Lemma 4.B.1. Let x be a real random variable. For any ρ, σx > 0 Let f : R→ [0, 1]
be the continuous mapping defined by f(x̄) = Px∼N (x̄,σ2

x)
(
|x| ≤ ρ

)
. Then, f is increasing

on R− and decreasing on R+.

Proof. Without loss of generality, one can assume that σx = 1/
√

2 (otherwise, modify
ρ), and that x̄ ≥ 0 (by symmetry). Denoting as Φ and erf the standard Gaussian cdf
and the error function, one has:

f(x̄) = Px∼N (x̄,σ2
x)
(
− ρ ≤ x ≤ ρ

)
,= Px∼N (x̄,σ2

x)
(
x ≤ ρ

)
− Px∼N (x̄,σ2

x)
(
x ≤ −ρ

)
,

= Px∼N (x̄,σ2
x)
(
(x− x̄)/σx ≤ (ρ− x̄)/σx

)
− Px∼N (x̄,σ2

x)
(
(x− x̄)/σx ≤ (−ρ− x̄)/σx

)
,

= Φ((ρ− x̄)/σx)− Φ(−(ρ+ x̄)/σx),

= 1
2 + 1

2erf((ρ− x̄)/
√

2σx)−
1
2 −

1
2erf(−(ρ+ x̄)/

√
2σx),

= 1
2
(
erf(ρ− x̄)− erf(−(ρ+ x̄))

)
.

Since erf is odd, one obtains f(x̄) = 1
2

(
erf(ρ− x̄) + erf(ρ+ x̄)

)
. The error function is

differentiable with erf′(z) = 2
π
e−z

2 , thus

f ′(x̄) = 1
π

(
exp

(
− (ρ+ x̄)2

)
− exp

(
− (ρ− x̄)2

))
ă

= − 2
π

sinh
(
(ρ− x̄)2

)
≤ 0

Hence, f is decreasing on R+ and by symmetry, is increasing on R−.

4.C Weighted L1 Poincaré inequality (proof of
Lem. 4.5.3)

This result is build upon the following theorem which links the function to its gradient
in L1 norm:

Theorem 4.C.1 (see Acosta and Durán 2004). Let W 1,1(Ω) be the Sobolev space on
Ω ⊂ Rd. Let Ω be a convex domain bounded with diameter D and f ∈ W 1,1(Ω) of zero
average on Ω then ∫

Ω
|f(x)|dx ≤ D

2

∫
Ω
||∇f(x)||dx
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Lem. 4.5.3 is an extension of Thm. 4.C.1. In practice, we show that their proof still
holds for log-concave weight.

Theorem 4.C.2. Let L > 0 and ρ any non negative and log-concave function on [0, L].
Then for any f ∈ W 1,1(0, L) such that∫ L

0
f(x)ρ(x)dx = 0

one has: ∫ L

0
|f(x)|ρ(x)dx ≤ 2L

∫ L

0
|f ′(x)|ρ(x)dx (4.20)

The proof is based on the following inequality for log-concave function.

Lemma 4.C.1. Let ρ be any non negative log-concave function on [0, 1] such that∫ 1
0 ρ(x) = 1 then

∀x ∈ (0, 1), H(ρ, x) := 1
ρ(x)

∫ x

0
ρ(t)dt

∫ 1

x
ρ(t)dt ≤ 1 (4.21)

Proof. Since any non-negative log-concave function on [0, 1] can be rewritten as ρ(x) =
eν(x) where ν is a concave function on [0, 1] and since x → ex is increasing, the
monotonicity of ν is preserved and as for concave function, ρ can be either increasing,
decreasing or increasing then decreasing on [0, 1].
Hence, ∀x ∈ (0, 1), either

1. ρ(t) ≤ ρ(x) for all t ∈ [0, x],

2. ρ(t) ≤ ρ(x) for all t ∈ [x, 1].

Assume that ρ(t) ≤ ρ(x) for all t ∈ [0, x] without loss of generality. Then,

∀x ∈ (0, 1), H(ρ, x) := 1
ρ(x)

∫ x

0
ρ(t)dt

∫ 1

x
ρ(t)dt

=
∫ x

0

ρ(t)
ρ(x)

∫ 1

x
ρ(t)dt

≤
∫ x

0
dt
∫ 1

x
ρ(t)dt

≤ x
∫ 1

0
ρ(t)dt ≤ x ≤ 1

Proof of theorem 4.C.2. This proof is exactly the same as Acosta and Durán (2004)
where we use lemma 4.C.1 instead of a concave inequality. We provide it for sake of
completeness.

A scaling argument ensures that it is enough to prove it for L = 1. Moreover,
dividing both side of (4.20) by

∫ 1
0 ρ(x)dx, we can assume without loss of generality that
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∫ 1
0 ρ(x)dx = 1.
Since

∫ 1
0 f(x)ρ(x)dx = 0 by integration part by part one has:

f(y) =
∫ y

0
f ′(x)

∫ x

0
ρ(t)dt−

∫ 1

y
f ′(x)

∫ 1

x
ρ(t)dt

|f(y)| ≤
∫ y

0
|f ′(x)|

∫ x

0
ρ(t)dt+

∫ 1

y
|f ′(x)|

∫ 1

x
ρ(t)dt

Multiplying by ρ(y), integrating on y and applying Fubini’s theorem leads to∫ 1

0
|f(y)|ρ(y)dy ≤ 2

∫ 1

0
|f ′(x)|

∫ x

0
ρ(t)dt

∫ 1

x
ρ(t)dt

and applying (4.21) of lemma 4.C.1 ends the proof.

While theorem 4.C.2 provides a 1 dimensional weighted Poincaré inequality, we
actually seek for one in Rd. The idea of Acosta and Durán (2004) is to use arguments
of Payne and Weinberger (1960) to reduce the d−dimensional problem to a d − 1
dimensional problem by splitting any convex set Ω into subspaces Ωi thin in all but one
direction and such that an average property is preserved. We just provide their result.

Lemma 4.C.2. Let Ω ⊂ Rd be a convex domain with finite diameter D and u ∈ L1(Ω)
such that

∫
Ω u = 0. Then, for any δ > 0, there exists a decomposition of Ω into a finite

number of convex domains Ωi satisfying

Ωi ∩ Ωj = ∅ for i 6= j, Ω̄ =
⋃

Ω̄i,
∫

Ωi
u = 0

and each Ωi is thin in all but one direction i.e., in an appropriate rectangular coordinate
system (x, y) = (x, y1, . . . , yd−1) the set Ωi is contained in

{(x, y) : 0 ≤ x ≤ D, 0 ≤ yi ≤ δ for i = 1, . . . , d− 1}

This decomposition together with Treheorem 4.C.2 allow us to prove the
d−dimensional weighted Poincaré inequality.

Proof of Lem. 4.5.3. By density, we can assume that u ∈ C∞(Ω̄). Hence, up ∈ C2(Ω̄).
Let M be a bound for up and all its derivative up to the second order.
Given δ > 0 decompose the set Ω into Ωi as in lemma 4.C.2 and express z ∈ Ωi into the
appropriate rectangular basis z = (x, y), where x ∈ [0, di], y ∈ [0, δ]. Define as ρ(x0)
the d− 1 volume of the intersection between Ωi and the hyperplan {x = x0}. Since Ωi

is convex, ρ is concave and from the smoothness of up one has:

∣∣∣∣∣
∫

Ωi
|u(x, y)|p(x, y)dxdy −

∫ di

0
|u(x, 0)|p(x, 0)ρ(x)dx

∣∣∣∣∣ ≤ (d− 1)M |Ωi|δ (4.22)∣∣∣∣∣
∫

Ωi
|∂u
∂x

(x, y)|p(x, y)dxdy −
∫ di

0
|∂u
∂x

(x, 0)|p(x, 0)ρ(x)dx
∣∣∣∣∣ ≤ (d− 1)M |Ωi|δ (4.23)∣∣∣∣∣

∫
Ωi
u(x, y)p(x, y)dxdy −

∫ di

0
u(x, 0)p(x, 0)ρ(x)dx

∣∣∣∣∣ ≤ (d− 1)M |Ωi|δ (4.24)
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Those equation allows us to switch from d−dimensional integral to 1−dimensional
integral for which we can apply theorem 4.C.2 at the condition that∫ di

0 u(x, 0)p(x, 0)ρ(x)dx = 0 (which is not satisfied here). On the other hand, we
can apply theorem 4.C.2 to

g(x) = u(x, 0)−
∫ di

0
u(x, 0)p(x, 0)ρ(x)dx/

∫ di

0
p(x, 0)ρ(x)dx

with weighted function x → p(x, 0)ρ(x). Indeed, x → p(x, 0) is log-concave - as
restriction along one direction of log-concave function, x → ρ(x) is log-concave - as
a concave function, and so is x → p(x, 0)ρ(x) - as product of log-concave function.
Moreover, g ∈ W 1,1(0, di) and

∫ di
0 g(x)p(x, 0)ρ(x)dx = 0 by construction. Therefore,

applying theorem 4.C.2 one gets:

∫ di

0
|g(x)|p(x, 0)ρ(x)dx ≤ 2di

∫ di

0
|g′(x)|p(x, 0)ρ(x)dx∫ di

0
|u(x, 0)|p(x, 0)ρ(x)dx ≤ 2di

∫ di

0
|∂u
∂x

(x, 0)|p(x, 0)ρ(x)dx−
∣∣∣∣∣
∫ di

0
u(x, 0)p(x, 0)ρ(x)dx

∣∣∣∣∣∫ di

0
|u(x, 0)|p(x, 0)ρ(x)dx ≤ 2di

∫ di

0
|∂u
∂x

(x, 0)|p(x, 0)ρ(x)dx+ (d− 1)M |Ωi|δ
(4.25)

where we use equation (4.24) together with
∫

Ωi u(z)p(z)dz = 0 to obtain the last
inequality.

Finally, from (4.22)∫
Ωi
|u(x, y)|p(x, y)dxdy ≤

∫ di

0
|u(x, 0)|p(x, 0)ρ(x)dx+ (d− 1)M |Ωi|δ

from (4.25)∫
Ωi
|u(x, y)|p(x, y)dxdy ≤ 2di

∫ di

0
|∂u
∂x

(x, 0)|p(x, 0)ρ(x)dx+ (d− 1)M |Ωi|δ(1 + 2di)

from (4.23)∫
Ωi
|u(x, y)|p(x, y)dxdy ≤ 2di

∫
Ωi
|∂u
∂x

(x, y)|p(x, y)dxdy + (d− 1)M |Ωi|δ(1 + 4di)∫
Ωi
|u(x, y)|p(x, y)dxdy ≤ 2di

∫
Ωi
||∇u(x, y)||p(x, y)dxdy + (d− 1)M |Ωi|δ(1 + 4di)

Summing up on Ωi leads to∫
Ω
|u(z)|p(z)dz ≤ 2D

∫
Ω
||∇u(z)||p(z)dz + (d− 1)M |Ω|δ(1 + 4D)

and since δ is arbitrary one gets the desired result.
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4.D Regret proofs
We collect here the regret proofs that are directly inspired or collected from (Abbasi-
Yadkori and Szepesvári, 2011). Since our framework slightly differs, minors differences
coming from a different conditioning or the fact that we do not consider lazy updates,
we provide it for the sake of completeness.

Proof of Lem. 4.5.1. Let δ′ = δ/8T .
1) From Prop. 2.3.1, P

(
‖θ̂t − θ∗‖Vt ≤ βt(δ′)

)
≥ 1− δ′. Hence,

P
(
Ê
)

= P
( T⋂
t=0

(
‖θ̂t − θ∗‖Vt ≤ βt(δ′)

))
= 1− P

( T⋃
t=0

(
‖θ̂t − θ∗‖Vt ≥ βt(δ′)

))

≥ 1−
T∑
t=0

P
(
‖θ̂t − θ∗‖Vt ≥ βt(δ′)

)
≥ 1− Tδ′ ≥ 1− δ/8

2) From Lem. A.2, let η be component-wise N (0, 1) then, for any ε > 0, making use of
the fact that ‖η‖ ≤ n

√
n+ dmaxi≤n+d,j≤n |ηi,j|,

P
(
‖η‖ ≤ ε

)
≥ P

(
n
√
n+ dmax

i,j
|ηi,j| ≤ ε

)
≥ 1−

∏
i,j

P
(
|ηi,j| ≥

ε

n
√
n+ d

)
≥ 1− n(n+ d)PX∼N (0,1)

(
|X| ≥ ε

n
√
n+ d

)
.

Hence,

P
(
Ẽ
)

= P
( T⋂
t=0

(
‖θ̃t − θ̂t‖Vt ≤ γ(δ′)

))
= 1− P

( T⋃
t=0

(
‖θ̃t − θ̂t‖Vt ≥ γ(δ′)

))

≥ 1−
T∑
t=0

P
(
‖θ̃t − θ̂t‖Vt ≥ γ(δ′)

)
≥ 1−

T∑
t=0

P
(
‖η‖ ≥ γ(δ′)/βt(δ′)

)

≥ 1−
T∑
t=0

P
(
‖η‖ ≥ n

√
2(n+ d) log

(
2n(n+ d)/δ′

))
≥ 1− Tδ′ ≥ 1− δ/8.

Finally, a union bound argument ensures that P(Ê ∩ Ẽ) ≥ 1− δ/4.

Proof of Cor. 4.5.1. This result comes directly from Sec. 4.1. and App. D
of Abbasi-Yadkori and Szepesvári (2011). The proof relies on the fact that, on Ê,
because θ̃t is chosen within the confidence ellipsoid ERLS

t , the number of time steps the
true closed loop matrix A∗ + B∗K(θ̃t) is unstable is small. Intuitively, the reason is
that as soon as the true closed loop matrix is unstable, the state process explodes and
the confidence ellipsoid is drastically changed. As the ellipsoid can only shrink over
time, the state is well controlled expect for a small number of time steps.
Since the only difference is that, on Ê ∩ Ẽ, θ̃t ∈ ETS

t , the same argument applies and
the same bound holds replacing βt with γt. Therefore, there exists appropriate problem
dependent constants X,X ′ such that P(Ē|Ê ∩ Ẽ) ≥ 1− δ/4. Finally, a union bound



102 Chapter 4. Thompson Sampling in Linear Quadratic System

argument ensures that P(Ê ∩ Ẽ ∩ Ē) ≥ 1− δ/2.

Regret decomposition. Let R(T ) = ∑T
t=0 x

T
t Qxt + uT

t Rut − J(θ∗). Since {Et}t≤T is
an decreasing sequence of events, one has

R(T )1{ET} ≤
T∑
t=0

(
xT
t Qxt + uT

t Rut − J(θ∗)
)
1{Et}.

From the Bellman optimality equations for LQ problems, we get that

J(θ̃t) + xT
t P (θ̃t)xt = min

u

{
xT
t Qxt + uTRu+ E

[
x̃u,Tt+1P (θ̃t)x̃ut+1

∣∣∣Ft]
}

= xT
t Qxt + uT

t Rut + E
[
x̃ut,Tt+1 P (θ̃t)x̃utt+1

∣∣∣Ft],
where x̃ut+1 = θ̃T

t zt + εt+1. Hence,{
xT
t Qxt + uT

t Rut − J(θ∗)
}
1{Et} =

{
J(θ̃t)− J(θ∗)

}
1{Et}

+
{
zT
t θ̃tP (θ̃t)θ̃T

t zt − zT
t θ∗P (θ̃t)θT

∗ zt
}
1{Et}

+xT
t P (θ̃t)xt1{Et} − E

[
xT
t+1P (θ̃t)xt+11{Et}

∣∣∣Ft]
where we used in the last line that Et is Ft−measurable. Noticing that Et+1 ⊂ Et, one
has 1{Et+1}1{Et} = 1{Et+1} and since P (θ̃t) is positive definite, xT

t+1P (θ̃t)xt+1 ≥ 0.
Therefore,

E
[
xT
t+1P (θ̃t)xt+11{Et}

∣∣∣Ft] = E
[
xT
t+1P (θ̃t)xt+11{Et}(1{Et+1}+ 1{Ec

t+1})
∣∣∣Ft]

= E
[
xT
t+1P (θ̃t)xt+11{E+1}

∣∣∣Ft]+ E
[
xT
t+1P (θ̃t)xt+11{Et}1{Ec

t+1}
∣∣∣Ft]

≥ E
[
xT
t+1P (θ̃t)xt+11{E+1}

∣∣∣Ft]
= E

[
xT
t+1

(
P (θ̃t)− P (θ̃t+1)

)
xt+11{E+1}

∣∣∣Ft]
+ E

[
xT
t+1P (θ̃t+1)xt+11{E+1}

∣∣∣Ft]
Bounding Rmart. Re-ordering the term, using the fact that x0 = 0 and that P (θ̃t) is
definite positive by definition, one obtains:

Rmart ≤
T∑
t=1

{
xT
t P (θ̃t)xt1{Et} − E

[
xT
t P (θ̃t)xt1{Et}|Ft−1

]}
+

xT
0P (θ̃0)x0 − E

[
xT
T+1P (θ̃T+1)xT+11{ET+1}|FT

]
≤

T∑
t=1

{
xT
t P (θ̃t)xt1{Et} − E

[
xT
t P (θ̃t)xt1{Et}|Ft−1

]}

which is turns to be a martingale. On E, ‖xt‖ ≤ X for all t ∈ [0, T ]. Moreover, since
θ̃t ∈ S for all t ∈ [0, T ] due to the rejection sampling, Tr(P (θ̃t)) ≤ D. From the
definition of the matrix 2-norm,

sup
‖x‖≤X

xTP (θ̃t)x ≤ X2‖P (θ̃t)1/2‖2
2.
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Matrix norm equivalence ensures that for any A ∈ Rm,n, ‖A‖2 ≤ ‖A‖. Therefore,
‖P (θ̃t)1/2‖2

2 ≤ ‖P (θ̃t)1/2‖2 = TrP (θ̃t) and, for any t ∈ [0, T ], sup‖x‖≤X xTP (θ̃t)x ≤ X2D

so the martingale increments are bounded almost surely on E by 2DX2.
Applying Azuma’s inequality to Rmart one obtains that, w.p. at least 1− δ/6,

RRLS
1 =

T∑
t=0

{
xT
t P (θ̃t)xt1{Et}−E

[
xT
t+1P (θ̃t+1)xt+11{Et+1}|Ft

]}
≤ 2DX2

√
2T log(12/δ).

Bounding RRLS. The whole derivation is performed on the event E.

RRLS =
T∑
t=0

{
zT
t θ̃tP (θ̃t)θ̃T

t zt − z>t θ∗P (θ̃t)θT
∗ zt
}

=
T∑
t=0

{
‖θ̃T

t zt‖2
P (θ̃t)
− ‖θT

∗ zt‖2
P (θ̃t)

}
,

=
T∑
t=0

(
‖θ̃T

t zt‖P (θ̃t) − ‖θ
T
∗ zt‖P (θ̃t)

)(
‖θ̃T

t zt‖P (θ̃t) + ‖θT
∗ zt‖P (θ̃t)

)
By the triangular inequality,

‖θ̃T
t zt‖P (θ̃t) − ‖θ

T
∗ zt‖P (θ̃t) ≤ ‖P (θ̃t)1/2(θ̃T

t zt − θT
∗ zt)‖ ≤ ‖P (θ̃t)‖‖(θ̃T

t − θT
∗ )zt‖.

Making use of the fact that θ̃t ∈ S by construction of the rejection sampling, θ? ∈ S
by Asm. 4.2.2 and that supt∈[0,T ] ‖zt‖ ≤

√
(1 + C2)X2 thanks to the conditioning on E

and Prop. 4.2.2, one gets:

RRLS ≤
T∑
t=0

(√
D‖(θ̃T

t − θT
∗ )zt‖

)(
2S
√
D
√

(1 + C2)X2
)

≤ 2SD
√

(1 + C2)X2
T∑
t=0
‖(θ̃T

t − θT
∗ )zt‖

and one just has to bound ∑T
t=0 ‖(θ̃T

t − θT
∗ )zt‖. Using Cauchy-Schwarz inequality, one

has:
T∑
t=0
‖(θ̃T

t − θT
∗ )zt‖ =

T∑
t=0
‖(V 1/2

t )(θ̃t − θ∗))TV
−1/2
t zt‖ ≤

T∑
t=0
‖θ̃t − θ∗‖Vt‖zt‖V −1

t

However, on E, ‖θ̃t − θ∗‖Vt ≤ ‖θ̃t − θ̂t‖Vt + ‖θ∗ − θ̂t‖Vt ≤ βt(δ′) + γ(δ′) ≤ βT (δ′) + γ(δ′).
Therefore,

RRLS ≤ 4SD
√

(1 + C2)X2
(
βT (δ′) + γ(δ′)

) T∑
t=0
‖zt‖V −1

t
.

The proof is conclude by using Cauchy-Schwarz inequality and Prop. 4.2.4.

Proof of Prop. 4.5.4 We rely on the following properties of Gaussian/truncated
Gaussian random variable.

Property 4.D.1. Let ε ∼ N (0, 1), for any a ≥
√

2 log(6), V(ε | |ε| ≤ a) ≥ 1/2.
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Proof. Explicit formula for the truncated normal distribution moment leads to

V(ε | |ε| ≤ a) = 1− 2a√
2π

e−a
2/2

P(|ε| ≤ a) ≥ 1− ae−a
2/2

P(|ε| ≤ a) .

Standard inequality for the Gaussian cdf guarantees that P(|ε| ≤ a) ≤ e−a
2/2. Hence,

for all a ≥
√

2 log(6),

V(ε | |ε| ≤ a) ≥ 1− ae−a
2/2

1− e−a2/2 ≥

√
2 log(6)

5 ≥ 1/2

Property 4.D.2. Let ε ∼ N (0, 1), for any n ≥ 2, for any a ≥
√

2 log(n), P(|ε| ≤
a)n ≥ 1/4.

Proof. Again, since P(|ε| ≤ a) ≤ e−a
2/2, one has, for any a ≥

√
2 log(n), P(|ε| ≤ a) ≤

(1− 1/n)n ≥ 1/4

Proof of Prop. 4.5.4. Denote as x̄t = E(xt|θ̄t,Ft−1, Et−1) and Σt = V(xt|θ̄t,Ft−1, Et−1).
By Prop. 4.5.3 ‖Σt‖2 ≤ 1, hence, one has,

E(xtxT
t 1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1) ≥ E(xtxT

t 1{‖xt−x̄t‖≤αt−ρ‖x̄t‖}|Ft−1, θ̄t, Et−1),
≥ Σ1/2

t E(ytyT
t 1{‖yt−ȳt‖≤αt−ρ‖x̄t‖}|Ft−1, θ̄t, Et−1)Σ1/2

t ,

≥ Σ1/2
t E(ytyT

t 1{|yit−ȳit|≤
αt−ρ‖x̄t‖√

n
,∀i≤n}|Ft−1, θ̄t, Et−1)Σ1/2

t ,

where yt = Σ−1/2
t xt, ȳt = Σ−1/2x̄t and yi denotes the ith coordinate of the n-dimensional

vector y. By definition yt|θ̄t,Ft−1,Et−1 ∼ N (ȳt, I) thus,

E(ytyT
t 1{|yit−ȳit|≤

αt−ρ‖x̄t‖√
n

,∀i≤n}|Ft−1, θ̄t, Et−1)

= P(|yit−ȳit|≤αt−ρ‖x̄t‖√
n

,∀i≤n)E(ytyT
t |Ft−1, θ̄t, Et−1, {|yit−ȳit|≤αt−ρ‖x̄t‖√

n
,∀i≤n})

≥ P(|yit−ȳit|≤αt−ρ‖x̄t‖√
n

,∀i≤n)V(yt|Ft−1, θ̄t, Et−1, {|yit−ȳit|≤αt−ρ‖x̄t‖√
n

,∀i≤n})
= P(|ε| ≤ αt−ρ‖x̄t‖√

n
)nV(ε | |ε| ≤ αt−ρ‖x̄t‖√

n
)I,

where ε ∼ N (0, 1). Noticing that αt−ρ‖x̄t‖√
n

=
√

2 log(3n), Properties. 4.D.1- 4.D.2 holds
and E(ytyT

t 1{|yit−ȳit|≤
α−ρ‖x̄t‖√

n
,∀i≤n}|Ft−1, θ̄t, Et−1) ≥ 1/8I. As a results,

E(xtxT
t 1{‖xt‖≤αt}|Ft−1, θ̄t, Et−1) ≥ 1/8Σt = 1/8V(xt|Ft−1, θ̄t, Et−1)



Chapter 5

Application to Portfolio
Construction

In this chapter1, we apply exploration-exploitation techniques to the problem of portfolio
construction. While this is a standard in finance since the seminal work of Markowitz,
several approaches have been recently proposed to integrate the price impact effects
i.e., the fact that buying and selling shares modifies the supply and demand and hence
the price at which transactions are made. This makes the control problem significantly
more difficult since one has to anticipate the future costs implied by price impact.
Moreover, by nature, the dynamics of financial markets are unknown and have to be
estimated. However, in order to observe the price impact effects, asset managers have to
trade directly on the market and this may induce the exploration-exploitation trade-off
problem to balance between trading to make profit and trading to gain knowledge about
the market dynamics. We introduce a novel LQ formulation for the portfolio allocation
problem, under the assumption of linear price dynamics, from which we obtain the
optimal control and discuss the exploration-exploitation trade-off arising from the
presence of unknown parameters. We consider two problem instances with or without
risk constraint and show that this affects the need for exploration. In the unconstrained
case, a greedy strategy fails to achieve sub-linear regret, while Thompson Sampling or
optimism-based algorithms effectively trade-off exploration and exploitation. On the
other hand, the risk constraint modifies the structure of the policy, removing somehow
the need for active exploration, and a greedy strategy is optimal. We discuss this
counter-intuitive result and support it with numerical experiments.
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1This chapter is based on our paper (Abeille et al., 2016) for generic portfolio construction using
LQG systems that is submitted to International Journal of Theoretical and Applied Finance (under
review).
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5.1 Introduction
Modern finance theory is often thought to have started with the mean-variance approach
of Markowitz (1952). This approach provides portfolio managers with a systematic
treatment of the risk-return tradeoff by maximizing their own utility. This started
intensive research to further develop the basic mean-variance theory. In particular, it
raised questions about the relationship between risk and return, leading to the celebrated
CAPM model (Sharpe, 1964, Jensen et al., 1972) as well as finer modeling for the risk
structure and the return predictability (Fama and French, 1993). However, one of the
limitations of these approaches is their inability to take transaction costs into account:
in a multi-step setting, performing such a strategy may be highly suboptimal as the
rebalancing cost can be worse than the expected gain. This observation, of crucial
importance for practitioners, led to dynamic allocation rules where portfolio managers
anticipate this additional cost and track the Markowitz position by constraining the
turnover (see e.g., Constantinides 1979, Taksar et al. 1988, Morton and Pliska 1995,
Grinold 2010).
When the volume of the transaction is large compared to the available liquidity, another
effect known as price impact induces transaction costs: the execution of a large order
drastically changes the supply and demand and thus affects the price in an adverse
manner. The understanding of the market impact and the way to minimize it is
an important topic for large investors and a large amount of literature addresses
this question from different perspectives. Motivated by stylized facts and empirical
studies which stress that markets digest very slowly modifications induced by large
trade (Bouchaud et al., 2008, Brokmann et al., 2014), Mastromatteo et al. (2014),
Donier et al. (2014) derived a microstructure based model for the price impact from the
dynamic of the latent order book. Following the work of Kyle (1985), another stream of
literature considers agent-based model to understand how information is incorporated
into the prices and how it affects the liquidity. Huberman and Stanzl (2004), Gatheral
(2010) study the effect of the price impact on the absence of price manipulation and
derive various inequalities about the shape of the price impact function. On the other
hand, a large part of the literature is dedicated to the minimization of the price impact.
Two types of problem are usually considered: optimal execution (see e.g., Bertsimas
and Lo 1998, Almgren and Chriss 2001, Guéant 2012, Obizhaeva and Wang 2013)
where investors seek to liquidate a given position within a certain period, and optimal
allocation (see e.g., Gârleanu 2009, Lataillade et al. 2012, Gârleanu and Pedersen 2013,
Kallsen and Muhle-Karbe 2013, Moreau et al. 2014) where investors try to dynamically
control a portfolio to maximize their risk-profit utility under price impact. Finally, Park
and Van Roy (2015) consider the optimal allocation problem of Gârleanu and Pedersen
(2013) and introduce an adaptive algorithm, called CTRACE, that performs both the
estimation and control when the impact model is unknown.

In this chapter, we consider the optimal portfolio allocation problem when the
market exhibits dynamical return predictability and price impact. Our setting is close
to the one of Park and Van Roy (2015), the main difference being that they assume the
predictable part of the returns model to be known and focus only on the estimation
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of the impact, while we assume both to be unknown and estimate them jointly. We
consider an investor who wants to dynamically allocate a portfolio of N assets in order
to optimize a multi-horizon Markowitz cost function. Under the assumption that the
market dynamics are linear, we propose a novel approach that allows us to cast this
problem as a LQ problem, from which the optimal controller can be computed in an
efficient way by solving the associated Riccati equation. Our method holds for any
linear Markovian return dynamics (Abeille et al., 2016) and thus can handle most of the
standard financial model. In order to illustrate and discuss the exploration-exploitation
issue in portfolio allocation, we focus here a synthetic example that exhibits the key
features of the prices dynamics while remaining simple enough to provide intuition.
We first describe the setting that we consider, how to encode the problem into a
LQ framework and the obtained model, as well as its optimal solution. Additionally,
we stress that the existence and uniqueness of the solution is directly related to the
non-arbitrage property of the market model, highlighting the one-to-one relationship
between the LQ theory and the financial intuition.
Despite the generality and the flexibility of this LQ formulation, the main issue is that
the parameters of the state-space are unknown and have to be estimated online i.e.,
while trading, since the impact effects are only generated by trades. Leveraging ideas
presented in Ch. 4, we estimate the unknown parameters by Least Square (RLS) and
investigate the exploration-exploitation trade-off in this setting. We compare three
different algorithms: Certainty Equivalence (CE) which is the greedy strategy that
consists in trading optimally given the current RLS estimate, Thompson Sampling (TS)
where the exploration is based on randomization, and Optimism in Face of Uncertainty
(OFU-LQ), where the exploration is based on optimism. We focus on two instances
of the problem: at first, we consider the portfolio allocation problem without risk
constraint, and show that the CE algorithm incurs a linear regret, while both TS and
OFU-LQ incur a O(

√
T ) regret. Then, we address the portfolio allocation problem

with risk constraint and show that the regret of the greedy strategy is O(log T ), thus
optimal, which means that no additional exploration is needed in this setting. Finally,
we discuss why this surprising result is implied by the structure of the controller.

5.2 Setting the stage

5.2.1 The portfolio allocation control problem

Setting. We consider an investor whose objective is to dynamically construct a portfolio
of N assets: at each time step, it can decide to rebalance his portfolio, using his current
knowledge, in order to optimize his gain - encoded in the Profit and Loss (PnL) measure
- with respect to a cost function that represents the risk-return trade-off. The seminal
work of Markowitz suggests to balance between minimizing the PnL variance (i.e., the
risk) and maximizing the PnL expectation (i.e., the return). Formally, one aims to
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minimize

lim
T→∞

1
T
E
[
T−1∑
t=0

(
γV(PnLt,t+1 | Ft)− E(PnLt,t+1 | Ft)

) ∣∣∣∣ F0

]
(5.1)

where PnLt,t+1 represents the increment in the investor wealth, γ is a risk-tuning
parameter and Ft represents the information accumulated so far. To take into account
the transaction costs, we explicitly do the distinction between the decision prices pt
that are observed at every time step t and used to take the trading decision and the
execution prices p̄t,t+1, at which transactions occur, that are observed after the trade.
Let Qt be the inventory position at time step t i.e., the number of shares of each asset
hold at time t, and qt be the trade executed at time t one has:

PnLt,t+1 = QT
t+1pt+1 −QT

t pt − qT
t p̄t,t+1, Qt+1 = Qt + qt. (5.2)

The introduction of the execution prices is of crucial importance when considering
impact effects due to large trade: indeed, the decision prices correspond to the prices at
which the supply and demand meet, which by definition is of zero liquidity. Whenever
an investor seeks to buy (resp. sell) a large amount of shares, it has to offer a higher
(resp. lower) price in order to find enough liquidity. A reasonable model is to assume
that the execution prices are on average of the current and next decision prices as
p̄t,t+1 = ηpt+1 + (1− η)pt. Finally, for sake of simplicity we assume that η = 1 which
corresponds to a setting where the investor executes at the next decision price. As a
consequence, one can rewrite Eq. 5.2 as

PnLt,t+1 = QT
t rt+1, rt+1 = pt+1 − pt, Qt+1 = Qt + qt.

As claimed in the introduction, we assume that returns rt+1 follow a linear model, and
exhibit both impact effect and return predictability. We encode this into a state space
of the form:

αt+1 = Φ?
ααt + εαt+1

It+1 = Φ?
IIt + qt

rt+1 = β?pαt + β?I It + β?q qt + εrt+1

(5.3)

where εαt+1 and εrt+1 and zero-mean noises, conditionally independent and of identity
variance, for sake of simplicity. Φ?

α, Φ?
I , β?p , β?I and β?q are matrices of parameters of

appropriate dimensions. {αt}t≥0 is a stochastic process that represents the predictable
part of the returns, while {It}t≥0 is a deterministic process (w.r.t. trades) which takes
into account the trades executed so far and quantifies the price impact effects. To
visualize the dynamic of such systems, Impulse Response (IR) stands as a convenient
tool: it consists in separately perturbing the inputs of the system (here εαt+1 and qt) and
let the system evolves. We plot them in Fig. 5.1 for 1 dimensional system (rt+1 ∈ R),
and describe the system dynamic. Similarly, to visualize the PnL dynamic, we plot in
Fig. 5.2 the round trip response i.e., the PnL trajectory induced by a round-trip that
consists in buying 1 share for the first 10 time steps, let the system evolve for the next
10 time steps, and selling back the 10 shares for the last 10 time steps to have a zero
position at the end.
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Figure 5.1 – Impulse Response of the decision price. Left: An impulse of the predictor noise
pushes the price up and the growth is exponential thanks to the auto-regressive dynamic of
αt. Right: The impulse of the trade summarizes the impact model. The price is pushed up
by the instantaneous impact γqt, then decreases exponentially, thank to the mean-reverting
dynamic of It.
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Figure 5.2 – Round trip response of the open loop system. The trade sequence consists in
buying 1 share for each of the first 10 time steps, do nothing for 10 time steps and sell back
the position the same way. Left: Decision and execution prices trajectories. The decision
price is pushed up by the purchase and exhibits a concavity induced by the impact relaxation
of past trades. The execution is made at the next decision price. Symmetrically, the decision
price is pushed down when selling. On average over the trajectory, the execution price is high
for buy transactions, low for sell transactions, which stresses the adverse effect of price impact.
Right: PnL trajectory. Since the impact effects act in an adverse manner, the overall PnL is
negative. If it increases at the beginning of the trajectory due to the purchase, it is purely
artificial as the price mean-revert to zero when the trading stops, thus inducing a loss. This
effect is accelerated when selling, because the price impact is symmetric.
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LQ formulation. We introduce the state variable xt =

Qt

αt
It

, and write Eq. 5.3

as xt+1 = A?xt +B?qt + εxt+1,

rt+1 =
(
0 β?α β?I

)
xt + β?q qt + εrt+1,

(5.4)

where

A? :=

I 0 0
0 Φ?

α 0
0 0 Φ?

I

 , B? :=

I0
I

 , εxt+1 =

 0
εαt+1

0

 .
Further, we express the cost function ct = γV(PnLt,t+1|Ft) − E(PnLt,t+1|Ft) as a
function of xt and qt:

γV(PnLt,t+1|Ft)− E(PnLt,t+1|Ft) = xT
t Q

?xt + 2xT
t N

?qt + qT
t R

?qt,

where

Q? := 1
2

 2γI −β?p −β?I
−β?,Tp 0 0
−β?,TI 0 0

 , R? :=
(
0
)
, N? := 1

2

−β
?
q

0
0

 , Q? :=
(
Q? N?

N?,T R?

)
.

Therefore, solving the dynamical Markowitz problem of Eq. 5.1 reduces to find the
stationary deterministic control policy π mapping states to trades that minimizes the
performance measured by the asymptotic (i.e., infinite horizon) average expected cost

Jπ = lim
T→∞

1
T
E
[
T−1∑
t=0

xT
t Q

?xt + 2xT
t N

?qt + qT
t R

?qt

]
, (5.5)

with x0 = 0 and qt = π(xt). Since xt follows the linear dynamics of Eq. 5.4, we retrieve
a similar LQ formulation to the one introduced in Subsec. 2.3.2.2

Optimal control. As opposed to the LQ problem of Ch. 4, the cost matrices
Q?, R?, N? are no longer known but depend on the parameters of the returns model.
However, they still can be estimated through a linear regression thanks to Eq. 5.3.
Additionally, even if (A?, B?) is a stabilizable pair, the mapping of the portfolio allocation
problem into a LQ problem implies that the matrix Q? is no longer positive definite
which breaks the standard LQ assumptions (Asm. 2.3.1). Fortunately, one can still
compute an optimal control under a more flexible criterion that we link to non-arbitrage.

Assumption 5.2.1 (Noise). The noises {εαt }t and {εrt}t are Ft−martingale difference
sequences, conditionally independent, where Ft is the filtration which represents the
accumulated information up to time t. Furthermore, we assume that V(εαt+1|Ft) = I

and V(εrt+1|Ft) = I for all t ≥ 0.
2This formulation slightly differs as it involves a cross-term xT

t Nqt, although it remains quadratic.
Thanks to a change of variable, it is possible to retrieve the original formulation of Subsec. 2.3.2 (see
(Lancaster and Rodman, 1995)).



5.2. Setting the stage 111

Assumption 5.2.2 (LQ). The matrices Φ?
α and Φ?

I are stable and the matrices
A?, B?, Q?, R?, N? are such that there exists a control matrix K which stabilizes the
system (i.e., A? + B?K is stable) such that the hermitian matrix ΨK(z) > 0 for all
|z| = 1, z ∈ C, where

ΨK(z) = Y T
K (z−1)

(
(Iz−1 − A?)−1B?

I

)T

H?

(
(Iz − A?)−1B?

I

)
YK(z)

YK(z) = I +K(Iz − A? −B?K)−1B?.

Asm. 5.2.2 relies on a criterion over the Popov function ΨK to guarantee the existence
and uniqueness of an admissible controller (see Molinari 1975). While this stands as
a technical tool for LQ in general, it is possible to link it to a financial argument in
our specific portfolio allocation setting. In Lem. 5.2.1, we show that this is equivalent
to the fact that the system allows no dynamical arbitrage i.e., that, in the absence of
predictability, there exists no strategy which guarantees a positive profit. This “no free
lunch” assumption is standard in finance, and justifies the validity of Asm. 5.2.2. We
postpone the proof to App. 5.A.

Lemma 5.2.1. We denote as lp := {(xn)n≥0 ∈ RN s.t. ∑n≥0 |xn|p <∞} Consider the
deterministic system associated with Eq. 5.3 where the sequences of noise {εαt }t and
{εrt}t are set to zero. Let RT be the set of admissible round-trip defined as

RT = {q = (q0, q1, . . . ) ∈ l1 ∩ l2}, if γ = 0,
RT = {q = (q0, q1, . . . ) ∈ l1 ∩ l2 s.t. (Q0, Q1, . . . ) ∈ l1 ∩ l2} if γ ∈ (0,∞),

where l1 = {(qn)n≥0 s.t. ∑n≥0 |qn| <∞} and l2 = {(qn)n≥0 s.t. ∑n≥0 |qn|2 <∞}.
Let ΨK(z) be the Popov function of Asm. 5.2.2. Then, ΨK(z) > 0 if and only if, for
any q ∈ RT , the PnL trajectory induced by q is such that ∑∞t=0 PnLt,t+1 ≤ 0.

Under these assumptions, a slightly modified version of Thm. 2.3.2 (see Ch. 2,
Subsec. 2.3.2) provides that the optimal policy is linear with the state, i.e., π∗ = Kx,
where the optimal gain K is computed as

K = −
(
R +B?,TPB?

)−1
[B?,TPA? +N?,T],

P = Q? + A?,TPA? + [A?,TPB? +N?]K.

P is the unique solution to the Riccati equation associated with the control problem.

The optimal average cost is J = Jπ∗ = Tr(PΣx) with Σx = V(εxt+1|Ft) =

0 0 0
0 I 0
0 0 0

.
Finally, we also have the closed-loop matrix A? +B?K is asymptotically stable.
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5.2.2 The learning problem
Structure of the parameters. As claimed in introduction, one of the major issue in
this dynamic portfolio allocation problem is that the dynamic of the market is unknown
by nature which translates in unknown parameters contained in Φ?

α,Φ?
I , β

?
α, β

?
I , β

?
q .

However, one can reasonably assume that part of those parameters are known to the
controller, or at least can be estimated separately. We make the following assumptions
and discuss their validity.

Assumption 5.2.3. The predictable part of the returns model is observed at each time
step i.e., αt is Ft-measurable and parameters contained in Φ?

α are known. Furthermore,
we assume that this representation is minimal i.e., the eigenvalues of Φ?

α are pairwise
disjoint and that β?α is of full row-rank.

Assumption 5.2.4. The parameters contained in Φ?
I are known. As a consequence,

the impact variable It can be reconstructed from past trades (which are Ft-measurable)
and thus, It is Ft-measurable.

Since the variable αt encodes the prediction made by the investor about the future
prices move, it is reasonable to assume that it is observed at each time step. Furthermore,
its dynamics is independent from the sequence of trades as it takes into account the
uncontrolled prices move. As a result, Φ?

α can be estimated separately and its estimation
converges almost surely to the true parameters (as provided by autoregressive process
estimation) which implies that this does not participate to the exploration-exploitation
dilemma. For sake of convenience, we assume that Φ?

α is known beforehand. Finally, the
minimal representation assumption is here to ensure that the prediction model is not
over-parametrized (all predictors are different) and significant (all predictors influence
the returns dynamic).
On the other hand, there is no reason for Φ?

I to be known a priori. Moreover, the
impact variable It has no physical meaning but takes into account the fact that the
market digests slowly the modification induced by trades. Said differently, it is not a
hidden variable but a latent variable that is here to encode the structure of the impact
decay. However, one can overcome this difficulty using an over-parametrized state-space
model of higher dimension for the learning than the true one. This idea is already used
by Park and Van Roy (2015): consider the 1-dimensional case where rt ∈ R and It ∈ R;
focusing on the impact effect only, the return modeling has a dynamic characterized by

It+1 = Φ?
IIt + qt; rt+1 = β?I It + β?q qt.

Under Asm. 5.2.2, Φ?
I is stable which means that |Φ?

I | < 1 and by invariance, one
can set Φ?

I ≥ 0. Hence, it is possible to approximate the above model using a vector
ΦI = (Φ0

I , . . . ,Φs
I) which spans [0, 1[ together with an augmented state Ĩt ∈ Rs whose

dynamic follows

Ĩt+1 =


Φ0
I 0

. . .
0 Φs

I

 Ĩt +


1
...
1

 qt; rt+1 = βT
I Ĩt + β?q qt.
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In this case, each component of Ĩt represents a different impact model whose effect on
the return are weighted by the component of βI . As a result, the underlying difficulty
in learning parameters Φ?

I , β?I and β?q can be summarized into the estimation of βI and
β?q as long as ΦI is sufficiently dense in [0, 1[. In particular if ΦI contains the true value
Φ?
I , the augmented model includes the true one (where βI components are all zero

but one equal to β?I ) and the two estimation problems are equivalent. This stresses
that Asm. 5.2.4 does not reduce the learning complexity of the problem, but acts as a
choice of representation for the impact model. In particular, this does not influence the
exploration-exploitation problem. Neglecting the approximation error, it is therefore
possible to assume that Φ?

I is known by the controller and since, given Φ?
I , It can be

reconstructed from past trades, that the impact variable is observed at each time step.
Finally, under Asm. 5.2.3 and 5.2.4, the matrices A?, B? of Eq. 5.4 are known while the
unknown parameters are contained in β?q , β?α, β?I . We collect them in θ?,T = [β?q , β?α, β?I ].
Since θ? is used to construct the costs matrices Q?, R?, N?, it determines the LQ
problem. Thus, for any θ satisfying Asm. 5.2.2, we denote as P (θ), K(θ) and J(θ) the
optimal LQ quantities associated with this parametrization.

Regret definition. We consider the standard online learning setting where at
each step t the learner receives the current state xt as input, the current return rt as
observation, it executes a control qt and it suffers the associated cost

ct = cθ?(xt, qt) = xT
t Q

?xt + 2xT
t N

?qt + qT
t R

?qt

The system then transitions to the next state xt+1 and the next observation rt+1 is
generated according to Eq. 5.4. The learning performance is measured by the cumulative
regret over T steps, where the costs cumulated over time are compared to the minimal
cost obtained on average by the optimal policy. Formally we define

RT (θ?) =
T∑
t=0

(
ct − J(θ?)

)
RLS estimates. From a learning perspective, this LQ problem slightly differs from

the one of Ch. 4 although from a control point of view they share the same structure.
In particular, the unknown parameter θ? is used to defined the cost function rather
than the state dynamics.3 On the other hand, one still needs an estimate about its
value to compute the optimal control, thus requiring basic tools for the estimation of
the parameter θ?. Let (q0, . . . , qt) be the sequence of trades, (α0, . . . , αt) the sequence
of predictors, (I0, . . . , It) the sequence of impact variables, and let (r1, . . . , rt+1) be
the corresponding returns (i.e., observations) generated according to Eq. 5.4. For any
regularization parameter λ ∈ R∗+ the regularized least-squares estimate (RLS) and the
associated design matrix are defined as

Vt = λI +
t−1∑
s=0

zsz
T
s ; θ̂t = V −1

t

t−1∑
s=0

zsr
T
s+1, (5.6)

3Using state-space manipulations, it is possible to re-write the problem in the same form as in
Ch. 4. However, this requires to augment the dimension of the system, thus for sake of clarity, we
prefer to stick with this minimal model.
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where zT
t = (qT

t , α
T
t , I

T
t ).

5.3 Algorithms
In Sec. 5.2, we showed how the portfolio allocation problem of Eq. 5.1 can be cast as an
LQ problem, which allows us to compute the optimal control given the parameters of the
price dynamics. Additionally, we discussed how, under reasonable assumptions about
the parameters knowledge, one can use RLS to estimate the unknown component, thus
providing us with all the material needed to perform adaptive strategies. We present
in this section the algorithms CE, TS and the OFU-LQ (derived from the algorithm
presented in Fig. 2.10, for the specific portfolio allocation problem instance) that we
consider to address the exploration-exploitation trade-off in portfolio optimization. All
of them are based on policy updates that consists in choosing a new parameter and
following the policy which is optimal w.r.t this choice. To ensure that those parameters
are coherent with Asm. 5.2.2 and 5.2.3, we constrain them to belong to an admissible set
S that will be specified in the next section. We report in Fig. 5.1 the common structure
of the three algorithms and then precise separately the sub-routine TRIGGER and
SELECT that are specific to CE, TS and OFU-LQ and determine respectively the
frequency of updates and the choice of the parameters.

Input: θ̂0, V0 = λI, δ, T , S, τ
1: Set δ′ = δ/(8T )
2: for t = {0, . . . , T} do
3: if TRIGGER(t, t0, τ, V0, Vt) = 1 then
4: Select a new parameter θ̃t = SELECT(θ̂t, Vt, δ′,S)
5: else
6: θ̃t+1 = θ̃t
7: end if
8: Execute control qt = K(θ̃t)xt
9: Observe state xt+1, observation rt+1 and suffer cost ct = cθ?(xt, qt)
10: Compute Vt+1 and θ̂t+1 using Eq. 5.6
11: end for

Figure 5.1 – Adaptive algorithm for Portfolio allocation.

Greedy strategy. First, we describe the method known as the Certainty Equiva-
lence (CE) in the control literature (Kumar and Varaiya, 2015), that is a greedy strategy
where the optimal control is computed with respect to the current RLS estimate. While
this algorithm is known to fail to achieve sub-linear regret in standard bandit problems,
we use it as a base case to highlight the need or not for explicit exploration, and
surprisingly notice that it offers very good performance as soon as we consider the risk
constrained problem (see Subsec. 5.4.2).
To reduce the computational complexity of the algorithm, we keep the same policy for
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episode of constant length according to the TRIGGER sub-routine (see Fig. 5.2). Then,
we select the greedy parameter θ̃t ∈ S by projecting θ̂t onto S.

Input: t, t0, τ
1: if t ≥ t0 + τ then
2: TRIGGER(t, t0, τ) = 1 and t0 = t

3: else
4: TRIGGER(t, t0, τ) = 0
5: end if

Figure 5.2 – CE TRIGGER sub-routine.

Input: θ̂t, S
1: if θ̂t ∈ S then
2: θ̃t = θ̂t
3: else
4: θ̃t = arg minθ∈S ‖θ − θ̂t‖2
5: end if

Figure 5.3 – CE SELECT sub-routine.

Randomized strategy. To overcome the potential failure of the CE algorithm,
we consider the TS algorithm of Ch. 4. As discussed in the previous chapters, the
idea is to sample new parameters θ̃t taking into account the knowledge acquire so far,
around the current RLS estimate θ̂t but on the basis of the uncertainty i.e., with a
variance that depends on the design matrix Vt. Each time the policy is re-evaluted,
a parameter θ̃t is sampled, and the optimal policy w.r.t to θ̃t is executed. Formally,
θ̃t = RS(θ̂t + βtV

−1/2
t ηt), where RS is the rejection sampling operator associated with

the admissible set S, θ̂t is the RLS-estimate, Vt is the design matrix and each entry of
the perturbation matrix ηt ∈ R(n+d)×n is a random sample drawn i.i.d. from N (0, 1).
The SELECT sub-routine in presented in Fig. 5.4, while the TRIGGER sub-routine is
identical to the CE (Fig. 5.2).

Input: θ̂t, Vt, δ′,S
1: Compute βt = βt(δ′) from Eq. 2.8
2: while θ̃t /∈ S do
3: Sample θ̃t = θ̂t + βtV

−1/2
t ηt where ηt is component-wise N (0, 1)

4: end while

Figure 5.4 – TS SELECT sub-routine.

Optimistic strategy. Finally, we also compare the performance of CE and TS to
the OFU-LQ algorithm introduced in (Abbasi-Yadkori and Szepesvári, 2011) presented
in Fig. 2.10. We recall the TRIGGER and SELECT sub-routine in Fig. 5.5 and 5.6,
based respectively on the doubling-schedule and on optimism.
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Input: V0, Vt
1: if det(Vt) ≥ 2 det(V0) then
2: TRIGGER(V0, Vt) = 1
3: V0 = Vt
4: else
5: TRIGGER(V0, Vt) = 0
6: end if

Figure 5.5 – OFU-LQ TRIGGER sub-routine.

Input: θ̂t, Vt, δ′,S
1: Compute βt = βt(δ′) from Eq. 2.8
2: Define ERLS

t = {θ s.t. Tr[(θ̂t − θ)TVt(θ̂t − θ)] ≤ β2
t }

3: Find θ̃t = argminθ∈ERLS
t ∩SJ(θ)

Figure 5.6 – OFU-LQ SELECT sub-routine.

From a theoretical perspective, applying the results of Ch. 4 and the one of Abbasi-
Yadkori and Szepesvári (2011), one obtains the following guarantees for the regret of
TS of OFU-LQ.

Corollary 5.3.1 (From Thm. 4.5.1). Consider the portfolio allocation problem in
Eq. 5.1 of dimension n = 1. Under Asm. 5.2.1, 5.2.2, 5.2.3 and 5.2.4 for any 0 < δ < 1,
the cumulative regret of TS Algorithm 5.1 over T steps is bounded w.p. at least 1− δ as

R(T ) = Õ
(√

log(1/δ)T
)
.

Corollary 5.3.2 (From (Abbasi-Yadkori and Szepesvári, 2011)). Consider the portfolio
allocation problem in Eq. 5.1 of arbitrary dimension. Under Asm. 5.2.1, 5.2.2, 5.2.3
and 5.2.4 for any 0 < δ < 1, the cumulative regret of OFU-LQ Algorithm 5.1 over T
steps is bounded w.p. at least 1− δ as

R(T ) = Õ
(√

log(1/δ)T
)
.

Those two results are stated as Corollary as they can be derived easily, following the
same proof structure, from Ch. 4 and (Abbasi-Yadkori and Szepesvári, 2011). The minor
differences come from the regret decomposition (the term RRLS no longer appears), the
fact that xt is bounded w.h.p. since the matrices A?+B?K(θ̃t) are stable by Asm. 5.2.2,
and from a similar relationship between gradient and control (Prop. 4.A.1). Finally,
despite the fact that the CE algorithm is widely used in practice (see e.g., Polderman
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1986), its performance relies on the consistency of the parameter estimation which may
or may not occur. We exhibit this behavior through numerical experiments and discuss
it in Sec. 5.5.

5.4 Experiments
In this section, we provide numerical experiments for the CE, TS and OFU-LQ
algorithms. For sake of clarity, we consider the 1-dimensional case where rt ∈ R and
use the following values for the true parameters of the system: Φ?

α = 0.9, Φ?
I = 0.7,

β?α = 0.1, β?I = −1.5 and β?q = 5. Notice that the impact parameters β?I and β?q are
significantly larger than the prediction parameter β?α which takes into account the fact
that for large orders, the impact effects are huge compare to the predictions. Finally, the
TRIGGER sub-routine of CE and TS is run with τ = 50. In the next subsections, we
consider separately the case γ = 0 (no risk constraint) and γ = 0.1 (with risk constraint).
We first detail the shape of the admissible set S, and then present the results of the
strategies both in term of regret and in term of consistency of the estimation.

5.4.1 Optimal allocation without risk constraint
Whenever γ = 0, the optimization is made without taking into account the risk of
the allocation strategy i.e., no control is made about the amplitude of the position Qt,
and the objective is to maximize the profit only. This translates in the fact that the
optimal policy only depends on the current prediction and impact variables αt and
It. Formally, the control matrix has the shape of K =

(
0 Kα KI

)
. However, the

problem is still well defined due to impact effects: indeed, since trading is costly, it
constrains the amplitude of the trades. The set of admissible parameters S which is
the set of parameters such that there exists no dynamical arbitrage imposes the impact
effect to be adversarial. Formally, one has

S := {θ = (βq, βα, βI) s.t. βq > 0, βα 6= 0 and βq ≤ −(1− Φ?
I)βI}

We first consider the CE algorithm and independently run multiple experiments. The
estimate trajectories are plot in Fig. 5.1. It turns out that, on each trajectory, the
sequence of estimates do converge, but that the convergence happens only in distribution.
This is clear since running the same experiment, one obtains different limit points.
Moreover, it is possible to characterize the support of this distribution, which depends
on the parameter θ? (see Subsec. 5.5.2). Finally, despite the fact that θ? belongs to
this set, the limit distribution does not concentrate around it, which means that no
consistency is achieved and that the control can converge, with fixed probability, to a
sub-optimal one. As a result, the regret of this strategy is linear (see Fig. 5.2). This is
a well-known issue in RL and it motivates the use of more explorative algorithms, such
as TS and OFU-LQ, that, thanks to randomness or optimism, are able to discriminate
the true parameter and overcome the limitation of the CE. We plot in Fig. 5.2 the
regret bounds for the 3 strategies, on average and in high probability.
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Figure 5.1 – RLS estimates of the CE algorithm for 100 trajectories. Left: Empirical mean
squared error of the RLS estimate ‖θ̂t − θ̂∞‖2 on average over the trajectories and rate of
convergence in loglog plot. Right: Empirical distribution of estimates once the convergence is
obtained. The line corresponds to the support of the distribution, which contains the true
parameter θ?.
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Figure 5.2 – Average and high probability regret bounds of the CE, TS and OFU-LQ
algorithms.

First, as expected from Fig. 5.1, on sees that the regret of the CE strategy is linear
and that the high probability bound is significantly worse than the average bound. This
is due to the fact that for lots of trajectories, the estimates do converge to a point close
to θ?. However, there is a small, yet fixed, probability that θ̂t converges to a value which
is far from the true one, incurring point-wise a large linear regret. This is not the case
of TS and OFU-LQ which, accordingly with Cor. 5.3.1 and 5.3.2, achieve a O(

√
T )

regret, although, it may take some time to be smaller than the CE’s because of the
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“expensive” exploration phase. Finally, we note that TS performs better than OFU-LQ
(by a constant), which is often observed empirically although not provided by the theory.
This may be due to the fact that optimism induces a more aggressive exploration than
randomness, and that such aggressive behavior is not needed in practice and mostly
comes from the looseness of the theoretical bounds used to derive the algorithms.

5.4.2 Optimal allocation with risk constraint

We now consider the case γ = 0.1, which corresponds to the setting where the cost
function includes a risk term. The optimal policy becomes function of the current
position Qt as well as the current prediction and impact variables αt and It. Formally,
the control matrix has the shape of K =

(
KQ Kα KI

)
. The set of admissible

parameters S simplifies into

S := {θ = (βq, βα, βI) s.t. βq > 0, βα 6= 0 and βI ≤ 0}

This modification in the structure of the control K has a major consequence since it
implies that the CE estimation is now consistent. To illustrate this effect, we plot in
Fig. 5.3 the average trajectories of the estimates starting from different initial points.
Since they all converge to θ?, the convergence no longer occurs in distribution but
almost surely while the rate of convergence is still 1/t. As a result, the regret of the
CE is in log(T ) which is way better than the regret of TS and OFU-LQ. We show the
average and high probability regret bounds of the CE algorithm in Fig. 5.4.
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Figure 5.4 – Average and high probability bounds for the regret of the CE algorithm.

While this situation is unusual in RL, where greedy strategies often fail to achieve a
sub-linear regret, it provides support to the fact that this strategy had been widely used
by the control community. In the next section, we discuss this result and show why
adding a risk constraint to the portfolio allocation problem makes the greedy strategy
consistent, and thus optimal.

5.5 From closed-loop consistency to consistency
In this section, we discuss why the RLS estimates of the CE strategy converge or not
to the true parameters θ?. We first show that the limit estimate of the CE belongs
to a specific set, and then that it reduces to θ?, thus ensuring consistency, when risk
constraint is considered.

5.5.1 Closed-loop consistency
We introduce the set of self-coherent parameters which ensures the closed-loop consis-
tency. The closed-loop consistency corresponds to the fact that the closed-loop dynamics
of the system i.e., the dynamics of the system once controlled, is well estimated. The
set of self-coherent parameters corresponds to the set of θ such that the predicted
closed-loop dynamics is asymptotically equal to the observed one. We denote this set
as SC which is formally defined as

SC := {θ ∈ S s.t ‖(θ? − θ)TzT‖2 −→
T→∞

0, where qt = K(θ)xt for all t ≥ 1}, (5.7)

where the process {zt}t ≥ 0 is generated by following the policy q = K(θ)x. We first
characterize the shape of SC and then show that the CE estimates converge to this set.
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Lemma 5.5.1. Under Asm. 5.2.1, 5.2.2, 5.2.3 and 5.2.4, the set of self-coherent
parameters satisfies

SC =
{
θ ∈ S s.t θT

 K(θ)
0 I 0
0 0 I

 = θ?,T

 K(θ)
0 I 0
0 0 I

}.
The result of Lem. 5.5.1 provides a characterization of the set SC which is independent

of the covariate zt. We present the main ideas of the proof and postpone the formal
derivation to App. 5.B. We use the structure of zt to introduce the control matrix K(θ)
and the state process xt and show that, under the assumptions of Lem. 5.5.1, the state
process admits a stationary distribution with positive definite variance.
By construction, since qt = K(θ)xt, xT

t = (QT
t , α

T
t , I

T
t ), zT

t = (qT
t , α

T
t , I

T
t ), one has, for

all t ≥ 0,

zt =

0 0 0
0 I 0
0 0 I

xt +

I0
0

K(θ)xt =

 K(θ)
0 I 0
0 0 I

xt,
where xt+1 =

(
A?+B?K(θ)

)
xt+εxt+1. Under Asm. 5.2.2, the matrix Ac(θ) = A?+B?K(θ)

is stable and so is the process {xt}t which admits a stationary distribution. Denoting
as x∞ the random variable following the stationary distribution, Asm. 5.2.1 guarantees
that E(x∞) = 0 and that V(x∞) = Σ∞. Therefore, computing the expectatio of Eq. 5.7,
one obtains that

SC ⊂
{
θ ∈ S s.t Tr

(
(θ? − θ)T

 K(θ)
0 I 0
0 0 I

Σ∞

 0 0
KT(θ) I 0

0 I

 (θ? − θ)
)

= 0
}
.

A sufficient condition to ensure Lem. 5.5.1 is thus that Σ∞ is positive definite.
Intuitively, it requires all components of xt to be persistently excited by εxt+1 and
that there exists no linear relationship between them. Notice that εxt+1 has the
specific structure εx,Tt+1 = (0, εα,Tt+1, 0), which encodes the fact that the prediction
αt are naturally excited by the random noise εαt+1, while the inventory position
Qt and the impact variable It are function of the prediction process {αt}t, and
thus of {εαt }t through the trading policy q = K(θ)x. As a result, all component
of xt are persistently excited by {εαt }t. Further, the structure of the dynamic
and the control matrix K(θ) for any θ ∈ S impose that there exists no linear
relationship between them, provided that Φ?

I 6= I i.e., provided that the dynamic of Qt

and It are disjoint. Since this is guaranteed by Asm. 5.2.2, one obtains the desired result.

We now show that the sequence of the CE estimates converge to SC.

Lemma 5.5.2. Let θ̂t be the sequence of RLS estimates of the CE algorithm. Then,
θ̂t converges in distribution to a random variable θ̂∞ and θ̂∞ ∈ SC a.s.
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Applying the RLS properties of Prop. 4.2.4 to the portfolio estimation, one obtains:

Corollary 5.5.1. Let λ ≥ 1, for any arbitrary Ft-adapted sequence of control
(q0, . . . , qt), let θ̂t be the sequence of RLS estimates defined in Eq. 5.6, one has

t∑
s=0
‖(θ? − θ̂t)Tzt‖ = Õ

(√
T
)
.

Cor. 5.5.1 guarantees that the on-policy error of the estimation is cumulatively
bounded and that this is a structural property of the RLS, since it holds for any
sequence of trades. As a consequence it implies that asymptotically,

‖(θ? − θ̂T )TzT‖ −→
T→∞

0.

We now adopt an asymptotic reasoning. First, notice that without further assumption on
the design matrix Vt, no consistency can be guarantee for the RLS estimates, although
the convergence still holds in distribution. We introduce the random variable θ̂∞ which
corresponds to the limit estimate, so that θ̂T d−→

T→∞
θ̂∞. Further, the regularity of the

function K(θ) ensures that the control performed by the CE satisfy K(θ̂T ) d−→
T→∞

K(θ̂∞).
Using the fact that the trades executed by the CE algorithm follows, neglecting the
projection onto S, qt = K(θ̂t)xt, one obtains that θ̂∞ satisfies Eq. 5.7 i.e., that θ̂∞ ∈ SC.

5.5.2 Self-coherence set
Thanks to Lem. 5.5.2, we can exhibit, for any parametrization θ?, a sufficient condition
for the consistency of the CE estimates, or equivalently, a necessary condition for the
failure of this greedy strategy. To support the experiments of Sec. 5.4, we illustrate
both behavior depending on the presence of risk constraint.

Allocation without risk constraint. As discussed in Sec. 5.4.1, whenever γ = 0,
the optimal policy does not depend on the current inventory position: for any θ ∈ S,
K(θ) =

(
0 Kα(θ) KI(θ)

)
. As a result, the set of self-coherent parameters SC becomes:

SC =
{
θ = (βq, βα, βI) ∈ S s.t.

(
βqKα(θ) + βα
βqKI(θ) + βI

)
=
(
β?qKα(θ) + β?α
β?qKI(θ) + β?I

)}
.

Since K(θ) is known, the set SC is characterized block-wise by two equations of three
variables, and thus not reduced to a singleton. As a consequence, the CE asymptotic
estimates can potentially be distributed onto this set, which stands as a necessary
condition for the failure of the greedy strategy. This condition is common to RL
problems that require additional exploration: to illustrate this, we plot in Fig. 5.1 the
shape of such sets for the portfolio allocation problem (similar to the r.h.s of Fig. 5.1),
the LB problem of Ch. 3 and the LQ problem of Ch. 4.
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Figure 5.1 – Shape of the set of self-coherent parameters SC, i.e., parameters for which the
average predicted observation is equal to the observed one. Left: Portfolio allocation without
risk constraint. Center: Linear Bandit problem with arm set X = {x ∈ R2 s.t. ‖x‖ ≤ 1}.
Right: LQ problem.

Notice that if this provides us with a necessary condition, it is not a sufficient one.
Despite the fact that the support of the distribution of the asymptotic estimates is not a
singleton, it is does not imply that those points are attracting w.r.t the RLS estimation.
Moreover, for specific problems, it is possible that this set coincides with the set of
parameters that induces optimal control defined as K := {θ ∈ S s.t. K(θ) = K(θ?)}.
Therefore, this argument does not replace a regret analysis but provides some insight
about the potential behavior of the estimation process. Finally, notice that the more
we constrain the admissible parameter set S, the more we may reduce SC which is
coherent with the intuition that as we inject knowledge about the parameters in
the learning process (through the constraint), we make the exploration-exploitation
trade-off easier to solve.

Allocation with risk constraint. When the optimal allocation is made under
risk constraint (γ > 0), the optimal policy depends on the current inventory position
thus, for any θ ∈ S, K(θ) =

(
KQ(θ) Kα(θ) KI(θ)

)
with KQ(θ) 6= 0. Therefore, the

set of self-coherent parameters SC becomes:

SC =
{
θ = (βq, βα, βI) ∈ S s.t.

 βqKQ(θ)
βqKα(θ) + βα
βqKI(θ) + βI

 =

 β?qKQ(θ)
β?qKα(θ) + β?α
β?qKI(θ) + β?I

},
and is now characterized by three equations of three unknown variables. For sake of
simplicity, consider the 1-dimensional case where θ ∈ R3. Since K(θ) is known to the
controller, solving the three equations in SC leads to βq = β?q , βα = β?α and βI = β?I . As
a consequence, SC = {θ?}, so Lem. 5.5.2 ensures that the CE estimates are consistent.
Additionally, it allows us to characterize the convergence rate. Notice that by Least
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Squares, in average,

∥∥∥∥∥


β̂q,tKQ(θ̂t)
β̂q,tKα(θ̂t) + β̂α,t
β̂q,tKI(θ̂t) + β̂I,t

−


β?qKQ(θ̂t)
β?qKα(θ̂t) + β?α
β?qKI(θ̂t) + β?I


∥∥∥∥∥ ∼t→∞ 1

t
.

which implies that
∥∥∥θ̂t− θ?∥∥∥ ∼

t→∞
1
t
. As a consequence, in the presence of risk constraint,

the average regret of the CE strategy is bounded by Õ
(

log(T )
)
.

Discussion. We end this section stressing how the difference in the structure of
the controller, and hence the trades, modifies the behavior of the CE estimation. First,
looking at Eq. 5.4, one observes that the inventory position Qt does not affect the
open-loop i.e., uncontrolled dynamic of the returns, which only depends on αt, It and
qt. When the trading policy is of the form qt = Kααt +KIIt, which corresponds to the
risk-free case, this creates an ambiguity in the prediction of the returns, that the CE
strategy is unable to eliminate. A standard way to overcome this issue is to perturb
or regularize the control to enhance the exploration, which is somehow what TS or
OFU-LQ do. Following this intuition, one can understand trading policies of the form
qt = (Kααt + KIIt) + KQQt as a perturbed or regularized control. Moreover, in the
presence of risk constraint, it coincides with the shape of the optimal control, which
means that perturbing/regularizing is now optimal, thus the additional exploration is
given for free (in term of regret). While this point of view is clear when the perturbation
is exogenous i.e., independent of the state dynamic, it is less obvious here as Qt also
depends on {αt}t and {It}t. This is at the core of the proof of Lem. 5.5.1, which uses the
fact that the dynamic of Qt is by construction different from the one of αt and It, and
thus, relatively independent. As a result, it still acts as an "exogenous" perturbation,
maintaining the validity of the intuition.

5.6 Conclusion
In this Chapter, we present an application of adaptive strategies in LQ problems
for portfolio allocation. We first highlight the interest of this framework, showing
that under the assumption of linear Markovian prices dynamics, one can efficiently
encode and solve the allocation problem with price impact and return predictability.
In addition, we show that the LQ technical assumptions can be rephrased in term of
non-arbitrage, thus allowing to use the richness of the Riccati theory while maintaining
financial intuition. Further, we discuss the structure of the parameters and present
an approximation procedure that enables us to use RLS to estimate the model. We
recall and compare three strategies, both in terms of regret and consistency of the
estimation, respectively based on greedy updates (CE), randomness (TS) and optimism
(OFU-LQ). The obtained results differ significantly depending on the presence of risk
constraint: in the risk-free setting, we observe that the greedy strategy fails to tackle
the exploration-exploitation trade-off, while specifically designed algorithm such as TS
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and OFU-LQ does, and we retrieve the linear and square-root regret bounds expected
from the theory. On the other hand, under risk constraint, we show that the greedy
strategy becomes consistent and exhibit a log(T ) average regret. We explain how this
modification induces a different structure in the control, and why it guarantees the
consistency, introducing the set of self-coherent parameters and comparing its shape in
both cases. This has several implications: first, it stresses that the CE strategy may
perform well in adaptive problems that exhibit a specific structure and explains its
popularity in the control community. From a practical perspective, one shouldn’t discard
it a priori, even though it is usually expected to suffer a linear regret in standard RL
problems. Finally, we believe that the study of the self-coherent parameters set provides
a generic characterization of this issue in parametrized adaptive control problem, of
interest beyond the scope of portfolio allocation.



Appendix

5.A Proof of Lem. 5.2.1.
We derive here the proof of theorem 5.2.1 which maps the existence and uniqueness
guarantee of the LQR solution to a non-arbitrage criterion. The proof is structured
as follow: first, we present the Popov criterion (see e.g., Molinari 1975) which
guarantee the existence and uniqueness of a solution to the Riccati equation.
Secondly, we show that the deterministic and stochastic LQR share the same Riccati
equation and hence, share the same existence and uniqueness condition. Then, we
translate the Popov frequency domain criterion in terms of the cost function of the
deterministic LQR and thus, in terms of non-arbitrage for admissible trade sequence. Fi-
nally, we show that the set of admissible trade sequence is the set of round-trip sequence.

5.A.1 The Popov criterion

Since the cost matrix
(
Q N

NT R

)
associated with the LQR problem for portfolio con-

struction presented in Section 5.2 is not positive definite by construction, the usual
guarantee for the Riccati equation solution is violated. However, the existence of
a unique admissible solution of 5.5 can still be provided using the Popov criterion.
Introducing the hermitian matrix:

Ψ(z) =
(

(Iz−1 − A)−1B

I

)′ (
Q N ′

N R

)(
(Iz − A)−1B

I

)
,

and
ΨK(z) = Y ′K(z−1)Ψ(z)YK(z),
YK(z) = I +K(Iz − A−BK)−1B,

from (Molinari, 1975), we have the following theorem:

Theorem 5.A.1. Assume that the pair (A,B) is stabilizable then there exists a (neces-
sarily) unique symmetric stabilizing solution P satisfying the associated Riccati equation
if and only if for some (and hence all) K such that A+BK is asymptotically stable,
ΦK(z) > 0 for all |z| = 1, z ∈ C.

This frequency-domain criterion guarantees the global convexity of the problem
based on a fairly complete existence theory (see e.g., Molinari 1975, Ionescu et al.
1997, Van Dooren 1981, Wimmer 1984). The main drawback however is the use of
the frequency-domain method involved. To get a better intuition about the existence
of optimal solution, we link here the Popov criterion to a non-dynamical arbitrage
criterion in line with (Gatheral, 2010).
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5.A.2 Deterministic LQR
First, let’s notice that the LQR solution of the stochastic problem 5.5 involves the same
Riccati equation (see e.g., Bertsekas 1995) - and hence shares the same conditions - as
the deterministic LQR problem (5.8):

minimize
{qt}t=1,...,∞∈Q

J̃(q0, q1, . . . ) :=
∞∑
t=0

x′tQxt + 2x′tNqt + q′tRqt,

subject to xt+1 = Axt +Bqt,

(5.8)

where Q := {q = (q0, q1, . . . ) ∈ l1 ∩ l2 such that x = (x0, x1, . . . ) ∈ l1 ∩ l2} is the
admissible control space which are the stabilizing sequences.
Indeed, the stochastic LQR problem cost function is defined with an expectation
regarding the noise process εxt which is of zero conditional mean. Thanks to the linear
structure of the dynamics, the noises vanish within the Bellman equation which is then
the same as the one of the deterministic LQR. As a result, we can apply the Popov
criterion on the deterministic problem to ensure the existence and uniqueness of a
solution to the stochastic one.

5.A.3 From frequency to time domain
We now state the first corollary which derives directly from Thm. 5.A.1:

Corollary 5.A.1. Assume that the pair (A,B) is stabilizable then there exists a (nec-
essarily) unique symmetric stabilizing solution P if and only if J̃(q0, q1, . . . ) > 0 for any
q ∈ Q.

The proof is straightforward using the z-transform theory. Let q ∈ Q be any
admissible control sequence and denote as q(z) and x(z) the z-transform of the control
sequence and associated state sequence respectively. Then, applying the z-transform
theory to (5.8) and using Parceval’s theorem leads to:

J̃(q) =
∮
|z|=1

qT(z−1)Φ(z)q(z)dz. (5.9)

The following lemma provides another description for the admissible sequence q:

Lemma 5.A.1. q ∈ Q if and only if there exists a stable control K i.e., such that
A+BK is stable, and a sequence v ∈ l1 ∩ l2 such that

qt = Kxt + vt, ∀t ≥ 0.

Proof. Let K be a stable control and define vt = qt −Kxt for all t ≥ 1. By definition
of Q, q and x belong to l1 ∩ l2 and so does v.
On the other hand, let v ∈ l1 ∩ l2, K be a stable control and define qt = Kxt + vt for all
t ≥ 1. Then, xt+1 = (A+ BK)xt + vt and since A+ BK is stable, v ∈ l1 ∩ l2 implies
that x ∈ l1 ∩ l2 and so does q.
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We make use of Lemma 5.A.1 to rephrase (5.9) in terms of v sequence: for any
q ∈ Q, let K be a stable control and v ∈ l1 ∩ l2 sequence such that qt = Kxt + vt.
Denoting as v(z) the z-transform of v, the z-transform q(z) is:

q(z) = YK(z)v(z).

Finally, equation (5.9) becomes:

J̃(q) =
∮
|z|=1

qT(z−1)Φ(z)q(z)dz =
∮
|z|=1

vT(z−1)ΦK(z)v(z).

Therefore, rephrasing Thm. 5.A.1, there exists a unique symmetric stabilizing solution
to the Riccati equation if and only if for some (and hence all) K such that A + BK

is stable ΦK(z) > 0 for all |z| = 1 if and only if
∮
|z|=1 v

T(z−1)ΦK(z)v(z) > 0 for all
v ∈ l1 ∩ l2 if and only if J̃(q) > 0 for any q ∈ Q.

5.A.4 From admissible trade sequence to round-trip
Finally, to prove Lem. 5.2.1, one just has to show that the set of admissible sequence
coincides with the one of round-trip trajectories. Recalling the definition, one has

RT = {q = (q0, q1, . . . ) ∈ l1 ∩ l2 s.t. Q = (Q0, Q1, . . . ) ∈ l1 ∩ l2} if γ ∈ (0,∞),
RT = {q = (q0, q1, . . . ) ∈ l1 ∩ l2}, if γ = 0.

We first deal with the generic case where γ ∈ (0,∞) and then discuss the specific
instance where γ = 0. By definition, Q ⊂ RT so we just need to prove that for any
q ∈ RT , the associated state sequence is such that x ∈ l1 ∩ l2. To do so, we denote as
before q(z), Q(z) and x(z) the z-transform of qt, Qt and xt respectively. Then one has:

x(z) = (Iz − A)−1Bq(z),
x(z) = (Iz − A)−1B(z − 1)Q(z).

Multiplying by (z− 1) and taking the limit when z → 1 one has, since (z− 1)(Iz−A)−1

converges to a constant matrix (finite) H:

(z − 1)(Iz − A)−1 −→
z→1

H <∞ =⇒ (z − 1)x(z) ∼
z→1

H(z − 1)Q(z).

Thanks to the final value theorem, one gets xt ∼
t→∞

Qt and since Q ∈ l1∩ l2 by definition
of RT so does x. As a consequence, Q = RT . Finally, in the specific case where γ = 0,
one does not need to stabilize the position Qt and thus does not need to feedback the
current trade qt on the current position Qt. As a result, the same derivation can be
applied to the sub-system with internal state xt =

(
αT
t IT

t

)T
which follows a stable

dynamic by Asm. 5.2.2. Therefore, one directly obtains that q ∈ RT implies that
x ∈ l1 ∩ l2.
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5.A.5 Plugging everything together
Thanks to the previous steps, we have that there exists a unique solution to the Riccati
equation (since (A,B) is stabilizable) if and only if, for any q ∈ RT , J̃(q) > 0. Noticing
that in the absence of noise, the cost function is equal, in term of portfolio allocation to

J̃(q0, q1, . . . ) =
∞∑
t=0
−PnLt,t+1

proves Lem. 5.2.1. Because, in the absence of noise, there is no price predictability, this
criterion states that every round-trip must be non-profitable so that impact effects are
modeled to act in an adverse manner. Under such guarantee, a unique solution to the
portfolio allocation exists.

5.B Proof of Lem. 5.5.1.
As discuss in Sec. 5.5.2, one just need to prove that, for any θ ∈ S, the state process
generated by the trading policy q = K(θ)x admits a stationary distribution, with
positive definite variance. Since A? and B? are known, by definition, for any θ ∈ S,
Ac(θ) = A?+B?K(θ) is stable. Therefore, xt admits a stationary distribution. Denoting
as x∞ the random variable which follows this stationary distribution, one has E(x∞) = 0
and V(x∞) = Σ∞ where

Σ∞ = Ac(θ)Σ∞AT
c (θ) + Σx, with Σx = CCT and CT =

(
0 I 0

)
.

Further, we show the pair
(
CT, AT

c (θ)
)

is observable. Writing K(θ) =(
KQ(θ), Kα(θ), KI(θ)

)
and using Def. 5.B.1, this is provided if the matrix OT is of full

row-rank. Formally, one has

OT =

0 Kα(θ) (I +KQ(θ))Kα(θ) +Kα(θ)Φ?
α +KI(θ)Kα(θ)

I Φ?
α Φ2,?

α

0 Kα(θ) KQ(θ)Kα(θ) +Kα(θ)Φ?
α + (Φ?

I +KI(θ))Kα(θ)

 ,
which, is full-rank if and only if(

Kα(θ) (I +KQ(θ))Kα(θ) +Kα(θ)Φ?
α +KI(θ)Kα(θ)

Kα(θ) KQ(θ)Kα(θ) +Kα(θ)Φα(θ) + (Φ?
I +KI(θ))Kα(θ)

)
is full-rank. Algebraic manipulations ensure that it is equivalent to consider the matrix(

Kα(θ) (I +KQ(θ))Kα(θ) +Kα(θ)Φ?
α +KI(θ)Kα(θ)

0 (I − Φ?
I)Kα(θ)

)

By Asm. 5.2.2, Φ?
I is stable so I −Φ?

I is invertible and by Asm. 5.2.3, Kα(θ) is full-rank
which implies that O is full column-rank. Therefore, by Prop. 5.B.1, Σ∞ is positive
definite thus, SC is such that

SC =
{
θ s.t Tr

(
(θ? − θ)T

 K(θ)
0 I 0
0 0 I

Σ∞

 0 0
KT(θ) I 0

0 I

 (θ? − θ)
)

= 0
}
.
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Definition 5.B.1. Let A and C be two matrices of size n × n and d × n. The pair

(C,A) is said to be observable if the observability matrix O =


C

CA
...

CAn−1

 is of rank n

(full column rank).

Proposition 5.B.1 (Th. 5.3.5 in (Lancaster and Rodman, 1995)). Let A and C be
two matrices of size n× n and d× n. Let S be the solution of the Lyapunov equation

S = ATSA+ CTC.

Then, provided that the matrix A is stable, the solution is unique, symmetric and positive
semi-definite. Further, if the pair (C,A) is observable, the solution is positive definite.



Chapter 6

Summary and Future Work

This chapter provides a summary of methods and analyses presented in this thesis,
highlights some open questions that lay ground for future work and discusses the Linear
Quadratic Gaussian (LQG) extension that consists in adding partial observability to
the LQ problem of Ch. 4.

1 Summary
This thesis has been motivated by the study of Reinforcement Learning (RL) algorithms
in linearly parametrized systems, that address the exploration-exploitation trade-off in
sequential decision making. While linear models seem somehow limited to reflect the true
dynamics of real systems, they remain accurate enough for lots of practical applications
and offer many advantages that balance the induced approximation error. First, as
stressed in the specific example on portfolio construction (see Ch. 5), they consist in
robust, yet flexible models and thus can encode complicated features (e.g., dynamical
predictability and impact effects) while maintaining tractability of both the solution
of the control problem and of the estimation problem. Second, as a specific instance
of parametrized system, they can handle problems with large and/or continuous state
and action spaces, for which designing algorithms that properly trade-off exploration
and exploitation stands as one of the main challenges in RL. Third, from a theoretical
perspective, their relative simplicity allows one to focus on the underlying difficulty in
the analysis of algorithms and to exhibit the key aspect of their functioning. Finally,
they are the cornerstone of generic parametrized problems, and a good understanding
of analyses in those settings is a prerequisite to any further developments.
Two popular principles have been introduced to tackle the exploration-exploitation
trade-off: one based on optimism and one based on Thompson sampling (TS). While
the former have been intensively studied over the last decades and gave rise to many
algorithms for which theoretical guarantees have been provided, the latter has recently
generated significant interest due to the impressive empirical performance of the induced
algorithms. We focused in this thesis on Thompson sampling-based algorithms and
analyzed their performance in the Linear Bandit (LB) of Linear Quadratic (LQ) control
problems. While TS is originally build on Bayesian ideas, we studied it in the frequentist
setting and stressed the randomized nature of its functioning.

In Ch. 3, we analyzed the regret of TS in the LB setting, and derived an alternative
proof that sheds new light on the functioning of the algorithm. In particular, we leveraged
the structure of the problem to show how the regret is related to the sensitivity of
the objective function, and how the structure of the algorithm (i.e., selecting optimal
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arm w.r.t. a chosen parameter) takes this sensitivity into account. Then, we explain
how the random nature of TS selects arms that control the sensitivity of the objective
function, and hence the regret. Additionally, our analysis holds for any appropriate
sampling distribution, which stresses that randomization is the key feature of TS while
prior/posterior Bayesian update only stands as a convenient tool to obtain the sampling
distribution. Further, our proof relies on the property of the objective function and can
be readily applied to problems whose objective function shares the same structure (e.g.,
generalized linear model and regularized linear optimization).

In Ch. 4, we leveraged our novel analysis in LB and extended it to the LQ control
problem. In this more complicated setting, we showed that the functioning of the
algorithm is similar to the one of Ch. 3. We stressed the link between the actual
actions chosen by TS and the Jacobian of the optimal value function, and showed
how the randomization of TS induces actions that do control the sensitivity of the
optimal value function. Further, we exhibited the need to trade-off the frequency of
sampling parameters and the frequency of switches in the control policy, and showed
that standard lazy update schemes induce at best an overall regret of O(T 2/3). We
overcame this issue by deriving a novel bound on the regret due to policy switches, thus
allowing to update parameters and the policy at each step and overcome the limitations
due to lazy updates. As a result, we proved O(

√
T ) regret bound for the regret of TS

in LQ.
In Ch. 5, we presented an application example for portfolio allocation problems. We

highlighted the interest of the LQ framework, by showing that it is possible to cast a
complicated dynamical allocation problem, that takes into account the main features
of the prices dynamics, into a LQ control problem. We investigated the exploration-
exploitation trade-off in this specific setting and compared the performance of TS with
the optimistic-based algorithm for LQ (OFU-LQ) and with a naive greedy strategy.
While TS and OFU-LQ achieve a O(

√
T ) regret as expected from the theory, we

showed that depending on whether or not risk constraint is considered, the greedy
strategy suffers a O(T ) or a O(log T ) regret. We discussed this surprising result and
showed that the greedy strategy may or may not be consistent. Further, we exhibited
the support of the distribution of the limit estimates and explained the failure or the
success of the greedy strategy depending on the shape of this set.

2 Future Work
The analyses provided in this thesis open a number of interesting questions and research
directions. In particular, we discussed in Sec. 3.7 the need for optimism that is at the
core of the TS analysis, and hinted that this is a sufficient condition rather than a
necessary one. Investigating this aspect of TS is highly challenging because it requires
to quantify how ‘informative” actions induced by non-optimistic samples are, but may
improve the regret bound by

√
d and thus prove the empirical evidence that TS offers

similar performance as OFUL. Additionally, it would allow to extend the results of
Ch. 4 to the n-dimensional setting, since as discussed in Sec. 4.6, the need for optimism
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raises technical difficulties that would be overcome using a generic approach that relies
on the shape of the objective function over the whole ellipsoid (and not only on the
optimistic subset). Finally, we highlighted in Ch. 5 that a greedy strategy may guarantee
consistent estimation, and thus achieve a O(log T ) regret, depending on the structure of
the problem. A formal characterization of this matter would be of major interest, from
both theoretical and practical perspective. In particular, we have collected preliminary
theoretical and empirical evidence that the greedy strategy achieves a O(log T ) regret
in the Linear Quadratic Gaussian (LQG) control problem.
The LQG control problem is a natural extension of the LQ problem of Ch. 4, where
the agent no longer observes the current state of the system xt, but a noisy linear
transformation yt of it as yt = C∗xt + εyt , where {εyt }t is a zero-mean noise process,
and C∗ parametrizes the unknown observation model. As a result, it can be seen as a
linearly parametrized Partially Observable Markov Decision Process (POMDP). From
a practical perspective, it is very useful to model systems that do suffer from partial
observability or that follow a more complicated linear dynamics than the one of LQ,
e.g., autoregressive-moving-average with exogenous inputs (ARMAX) model versus
autoregressive with exogenous inputs (ARX) model. From a theoretical perspective,
the derivation of the optimal policy have been intensively studied (Bertsekas, 1995)
and relies on the separation principle that states that the optimal policy is linear in
the Kalman filter estimate of the internal state, where the linear map is given by the
LQ control matrix. One of the main challenge towards the analysis of exploration-
exploitation algorithms in LQG is the lack of theoretical guarantee for the estimation
of the unknown parameters of the dynamics. Several methods have been proposed,
such as the Subspace Method (SM) and the Prediction Error Method (PEM). The
former is more popular in system identification, and gave rise to the celebrated N4SID
algorithm while the latter is more popular in statistics, as it is based on Maximum
Likelihood (ML). Despite this limitation, it is possible to sketch a regret analysis,
assuming that confidence bounds do hold, in the same flavor as in Ch. 4. In particular,
the regret decomposition is very similar to Eq. 4.6, and, up to technical difficulties, a
regret analysis may be derived following the same proof structure. On the other hand,
numerical experiments suggest that the greedy strategy, which consists in following
the optimal policy w.r.t. the current estimate, achieves a O(log T ) regret, and thus,
is optimal. Using ML to estimate the parameters in the 1-dimensional case (i.e., the
state is 1-dimensional) and running the greedy strategy starting from different initial
parameters, one retrieve similar results as in Fig. 5.3 which suggests that the greedy
strategy induces consistent estimates, as in the portfolio example of Ch. 5. From a
theoretical perspective, inspired from the discussions in Sec. 5.5, one should show that
the self-coherent parameters set is reduced to a singleton, that is the true parameter.
Since ML aims at minimizing the prediction error, the sequence of estimates are designed
so that the predicted observation be equal to the true observation in average. However,
this equality is more difficult to characterize compared to LQ as it involves the whole
dynamics of the predictions, and not only the stationary distribution. While using
the z-transform theory in the 1-dimensional case and equalizing the transfert functions
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addresses this issue and proves that the self-coherent parameters set is reduced to a
singleton, how to properly define and characterize this set in the general n−dimensional
case, and proving that the N4SID or ML estimates of the greedy strategy converge to
this set, are open questions that lay ground for future work and might provide good
intuitions about exploration-exploitation issue in similar settings, such as POMDPs.
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Appendix

A Concentration inequalities
Lemma A.1 (Hoeffding’s inequality). Let X be a bounded r.v. in [a, b], of zero mean.
Then, for any t ∈ R,

E
[
etX

]
≤ et

2(b−a)2/8.

Lemma A.2 (Chernoff bound for Gaussian r.v.). Let X ∼ N (0, 1). For any t ≥ 0,
then,

P(|X| ≥ t) ≤ 2 exp
(
− t2

2
)
.

Theorem A.1 (Chernoff-Hoeffding’s inequality). Let (X1, . . . , Xn) be bounded inde-
pendent r.v. such that Xi ∈ [ai, bi] and µi = E(Xi) for all i = 1, . . . , n. Then, for any
t ∈ R,

E
(∣∣∣ n∑

i=1
Xi − µi

∣∣∣ ≥ t

)
≤ 2e

− 2t2∑n

i=1(bi−ai)2 .

Theorem A.2 (Azuma’s inequality). Let {Ms}s≥0 be a super-martingale such that
|Ms −Ms−1| ≤ cs almost surely. Then, for all t > 0 and all ε > 0,

P
(
|Mt −M0| ≥ ε

)
≤ 2 exp

( −ε2

2∑t
s=1 c

2
s

)
.

B Convergence of random variables
Definition B.1 (Convergence in distribution). A sequence (X1, X2, . . . ) of real-valued
random variables is said to converge in distribution or weakly to a random variable X if

lim
n→∞

Fn(x) = F (x),

for all x ∈ R at which F is continuous, where Fn and F are the cumulative distribution
functions of r.v. Xn and X, respectively. This convergence is denoted as Xn

d→ X.
Definition B.2 (Convergence in probability). A sequence (X1, X2, . . . ) of real-valued
random variables is said to converge in probability to a random variable X if for all
ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

This convergence is denoted as Xn
p→ X.

Definition B.3 (Almost sure convergence). A sequence (X1, X2, . . . ) of real-valued
random variables is said to converge almost surely to a random variable X if,

P( lim
n→∞

Xn = X) = 1.

This convergence is denoted as Xn
as→ X.
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