
École doctorale Sciences pour l’Ingénieur de l’Université de Lille

Thèse de Doctorat

Discipline

Mathématiques appliquées

présentée par

Hiba Alawieh

Fitting distances and dimension reduction
methods with applications

Soutenue publiquement le 13 mars 2017 devant le jury composé de

Directeur de thèse: Pr. Nicolas Wicker Université de Lille 1, France
Co-directrice de thèse: Pr. Baydaa AL Ayoubi Université Libanaise, Liban

Rapporteurs: Pr. Gérard Biau UPMC, France
Pr. Avner Bar-Hen CNAM Paris, France

Examinateurs: Pr. Gilbert Saporta CNAM Paris, France
Pr. Sophie Dabo Univérsité de Lille 3, France



2



3

Contents

Acknowlegments i

Résumé v

Abstract vi

List of figures x

List of tables xii

Introduction 1

Chapter 1 5

1 Preliminaries 5
1.1 Introduction to multivariate data analysis . . . . . . . . . . . . . . . . . . 5
1.2 Data dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Non-probabilistic dimensionality reduction methods . . . . . . . . . 6

1.2.2.1 Principal component analysis . . . . . . . . . . . . . . . . 6
1.2.2.2 Multidimensional Scaling . . . . . . . . . . . . . . . . . . 7
1.2.2.3 Procrustes analysis . . . . . . . . . . . . . . . . . . . . . 8
1.2.2.4 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Multidimensional data visualization . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Data Visualization techniques . . . . . . . . . . . . . . . . . . . . . 10

1.3.1.1 Scatter plot Matrix . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1.2 Parallel coordinates . . . . . . . . . . . . . . . . . . . . . 11
1.3.1.3 Self-Organizing Maps (SOM) . . . . . . . . . . . . . . . . 12
1.3.1.4 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1.5 Sammon’s mapping . . . . . . . . . . . . . . . . . . . . . . 13

Bibliography 15



4 CONTENTS

Chapter 2 17

2 Penalized Multidimensional Fitting 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Penalized multidimensional fitting method . . . . . . . . . . . . . . . . . . 20

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Choice of Penalty Function . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Choice of Parameter λ . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Human Estrogen Receptor Protein . . . . . . . . . . . . . . . . . . 27
2.3.2 Ferrichrome-iron Receptor Protein . . . . . . . . . . . . . . . . . . . 28
2.3.3 Aspartyl-tRNA Synthetase Protein . . . . . . . . . . . . . . . . . . 28

2.4 Comparaison with other methods . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Reference matrix reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Novel Penalization Parameter Calculation . . . . . . . . . . . . . . 34
2.5.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 39

Chapter 3 42

3 Random model for Multidimensional Fitting method 43
3.1 The random model of Multidimensional Fitting . . . . . . . . . . . . . . . 43
3.2 Calculation of (θ∗1, . . . , θ

∗
n) by minimization . . . . . . . . . . . . . . . . . . 44

3.2.1 Choice of regularization parameter . . . . . . . . . . . . . . . . . . 45
3.2.1.1 Criterion for selection points . . . . . . . . . . . . . . . . . 46

3.2.2 Statistical test for the displacement vectors (θ∗1, . . . , θ
∗
n) . . . . . . . 46

3.2.3 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Calculation of (θ∗1, . . . , θ

∗
n) by simulation . . . . . . . . . . . . . . . . . . . 48

3.3.1 Simulation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1.1 Identification of misplaced and correctly placed sets . . . . 48
3.3.1.2 Movement of set M . . . . . . . . . . . . . . . . . . . . . 48
3.3.1.3 Movement vectors generation . . . . . . . . . . . . . . . . 51
3.3.1.4 Proposal distribution . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Calculation of (θ∗1, . . . , θ
∗
n) using Metropolis-Hastings algorithm . . . 52

3.4 Calculation of the expectation and the variance of the error ∆ . . . . . . . 52
3.4.1 Fives Lemmas used in the calculation . . . . . . . . . . . . . . . . . 52

3.5 Calculation of the expectation value of error ∆ . . . . . . . . . . . . . . . . 57
3.6 Calculation of variance value of error ∆ . . . . . . . . . . . . . . . . . . . . 57



5

3.6.1 Calculation of Var(eij) . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.2 Calculation of cov(eij, eij′) . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.3.1 Optimization results . . . . . . . . . . . . . . . . . . . . . 62
3.7.3.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . 66

3.7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 70

Chapter 4 73

4 Projection under pairwise distance control 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Projection under pairwise distance control . . . . . . . . . . . . . . . . . . 74

4.2.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . 74
4.2.2 Our proposed method . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.3 Visualization example . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.4 Link with other methods . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Lower Bound of the optimization problem of the projection under pairwise
distance control method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 Construction of function f , g and h . . . . . . . . . . . . . . . . . . 78

4.3.1.1 Two Lemmas used . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1.2 The three functions . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Optimization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.1 Initialization point of problem Pr,x . . . . . . . . . . . . . . . . . . 84
4.4.2 Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.3 Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Numerical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.1 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.3.1 Visualization data in R2 . . . . . . . . . . . . . . . . . . . 90
4.5.3.2 Dimensionality reduction results . . . . . . . . . . . . . . 96

4.5.4 Advantages of projection under pairwise distance control method . 98
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



6 CONTENTS

Bibliography 99

Conclusion and Perspectives 101



i

To my parents
who are my first mathematics teachers and so much more.

To my sisters
Aya, Maya and Rana ♥



ii Acknowlegments



iii

Acknowledgments

First and above all, all thanks to almighty God, Allah, for the majestic grace, courage,
and patience that has immensely guided me in finishing this thesis.

I would like to express my sincere appreciation to my thesis advisor Nicolas Wicker.
His wide knowledge and experience have been of great value for me. His encouraging and
personal guidance have provided a good background for the present thesis. I would thank
him also for his patience, kindness, motivation and invaluable support during these years.

I also want to thank my co-supervisor Baydaa Al Ayoubi, for all of the advices and
cooperation she gave during the years I spent in the Lebanese university and Lille 1 uni-
versity.

Many thanks to professor Gérard Biau at Pierre et Marie Curie university and pro-
fessor Avner Bar-Hen at CNAM Paris, for accepting to review my work as well as for
participating in my jury committee.

I am also grateful to professor Gilbert Saporta at CNAM Paris and professor Sophie
Dabo at Lille university for their commitment to take part in my jury committee.

I am particularly grateful to Myriam Maumy-Bertrand and Frédéric Bertrand at Stras-
bourg university for their warm hospitality and the time they devoted to me in a part of
my work. Thank you for your kind collaboration.

A particular thank to professor Christophe Biernacki at Lille university, for our col-
laboration on a part of this thesis.

I will be always grateful to all of my laboratory partners for the good moments that
we shared.

My gratitude goes to my friends for their support and for all the times we have spent
together during these years.



iv Acknowlegments

Finally, I warmly thank and appreciate my parents who have always supported and
helped me in life. Thank you for your endless love, encouragement and emotional support.
I also would like to thank my sisters for the assistance they have provided in numerous
ways.



v

Résumé

Les données observées dans les différentes études dans tous les disciplines de la science peu-
vent être mesurées selon deux dimensions, le nombre de variables et le nombre d’exemples
et dans certains cas comme des distances ou dissimilarités entre les individus. Dans la
plupart de ces études, le nombre de variables peut prendre des valeurs élevées ce qui rend
leur analyse et leur visualisation assez difficile. Cependant, plusieurs méthodes statistiques
ont été conçues pour réduire la complexité de ces données, en utilisant les coordonnées
des individus ou bien les distances entre les individus, et permettant ainsi une meilleure
compréhension des connaissances disponibles dans ces données.

Dans cette thèse, notre objectif est de proposer deux nouvelles méthodes d’analyse des
données multivariées basé sur l’utilisation des distances entre les paires d’individu. Ces
deux méthodes s’appellent en anglais : " Multidimensional Fitting" et "Projection under
pairwise distance control".

La première méthode est une dérivée de la méthode de positionnement multidimen-
sionnelle (multidimensional scaling (MDS) en anglais ) dont l’application nécessite la
disponibilité des deux matrices décrivant la même population : une matrice de coordon-
nées et une matrice de distances et l’objective est de modifier la matrice des coordonnées
de telle sorte que les distances calculées sur cette matrice soient les plus proches possible
des distances observées sur la matrice de distances. Nous avons élargi deux extensions de
cette méthode : la première en pénalisant les vecteurs de modification des coordonnées
et la deuxième en prenant en compte les effets aléatoires qui peuvent intervenir lors de
la modification. Deux applications de ces deux extensions ont été faites sur des données
biologiques et des données de la sensométrie.

La deuxième méthode est une nouvelle méthode de réduction de dimension basée sur
la projection non linéaire des données dans un espace de dimension réduite et qui tient
en compte la qualité de chaque point projeté pris individuellement dans l’espace réduit.
La projection des points s’effectue en introduisant des variables supplémentaires, qui
s’appellent "rayons", et indiquent dans quelle mesure la projection d’un point donné est
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précise. Les principales contributions de cette méthode sont de donner une simple visu-
alisation des données en R2 avec une interprétation simple de la qualité d’approximation
et de fournir une nouvelle variante de réduction de la dimensionnalité. Nous avons ap-
pliqué cette méthode sur différents types de données tels que des données quantitatives,
qualitatives et fonctionnelles.
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Abstract

Data observed in various studies in all sciences disciplines can be measured in two dimen-
sions, the number of variables and the number of examples and in some cases as distances
or dissimilarity between points. In most of these studies, the number of variables can
take high values which makes their analysis and visualization quite difficult. However,
several statistical methods have been developed, using the coordinates of the points or the
pairwise distance to reduce the complexity of these data, allowing a better comprehension
of the knowledge available in these data.

In this thesis, our aim is to propose two new methods of multivariate data analysis
based on the use of the pairwise distance. These two methods called: " Multidimensional
Fitting" and "Projection under pairwise distance control".

The first method is a derivative of multidimensional scaling method (MDS) whose the
application requires the availability of two matrices describing the same population: a
coordinate matrix and a distance matrix and the objective is to modify the coordinate
matrix such that the distances calculated on the modified matrix are as close as possible
to the distances observed on the distance matrix. Two extensions of this method have
been extended: the first by penalizing the modification vectors of the coordinates and the
second by taking into account the random effects that may occur during the modification.
Two applications of these two extensions have been done on biological data and data of
sensometrics domain.

The second method is a new method of dimensionality reduction techniques based on
the non-linearly projection of the points in a reduced space by taking into account the
projection quality of each projected point taken individually in the reduced space. The
projection of the points is done by introducing additional variables, called "radii", and
indicate to which extent the projection of each point is accurate. The main contribu-
tions of this method are to give a simple data visualization in R2 with a straightforward
interpretation of the approximation quality and provide a new variant of dimensional-
ity reduction. We have applied this method on different types of data as quantitative,
qualitative and functional data.
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1

Introduction

In many disciplines, researchers measure several variables on each individual or object.
The use of univariate procedures with these data is not always possible. Elementary sta-
tistical analysis can be applied just to situations where one or two variables are observed
on a set of statistical objects (populations or samples). Extending these methods to cases
where the number of variables becomes higher is referred to multivariate data analysis.

Recent decades have seen impressive progress in multivariate data analysis and be-
comes increasingly popular among scientists and their applications in different fields such
as biology, chemistry, physics, geology, psychology and many other fields. This enormous
growth is a result of the development of computer science and statistical software.

Multivariate data analysis, presented in multidimensional space, studies the situations
where a set of variables must be simultaneously studied. It attempts to provide results
by reducing the number of dimension, and not limiting to one.

However, several statistical methods have been designed to reduce the complexity of
these data by conserving as much as possible the information given by the initial data set.
Different categories of multivariate data analysis have been developed as dimensionality
reduction, variable selection, cluster analysis and others. These categories are directly re-
lated to the main goal of the researcher: dimensionality reduction consists in summarizing
the data, variable selection consist in choosing the pertinent variables from the set of can-
didate variables and cluster analysis seeks grouping of the object or variables. Moreover,
data visualization in small dimension space is a main topic in multivariate data analysis
in many research domains so that many information can be given by this representation
and gives then an overview of the information contained in the data. In this thesis, we
focus our discussion on data dimensionality reduction and data visualization approaches
which is at the centre of interest of in our thesis.

A long list of well-known methods are used to reduce the dimension of data or/and
to visualize this data in reduced space. Principal components analysis (PCA) is the most
popular multivariate data analysis method used to reduce and visualize data. Despite
the simplicity and the efficiency of this method it presents many disadvantages. The
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main drawbacks in PCA is firstly that it can only perform linear combinations though
non-linear transformation can reduce the dimension of data if these data are positioned
on the surface of a Swiss roll for example. Secondly, PCA assumes that the directions
with the largest variances contain the most information which is not always valid as in
the linear discriminant analysis where minimum-variance variable permits classes to be
well separated. Additionally, the choice of the correct number of principal components
to keep can also induce an ambiguity in the application of PCA. Therefore, developing
methods that reduce the dimension of data and/or provide a simple data visualization
without taking into account the linearity separation or any specific construction of data,
is the main motivation of this thesis.

We will hereafter discuss two new methods for multivariate data analysis. The first
one is based on fitting distances and the second one is based on non-linear projection
points under pairwise distance control.

We first consider that we have two matrices, one contains the coordinates of the points
and the other contains the pairwise distance. A new method has been developed called
’multidimensional fitting ’ which modifies the coordinates of the points in such a way
that the distances calculated on the modified coordinates are as close as possible to the
distances given by the second matrix. The modification of the coordinates depends on
the problem at hand and in our work, we consider the modification as displacements of
the points that can be more interpretable. A penalized version of this method is needed
to avoid unnecessary modification, we address ’penalized multidimensional fitting ’. This
will be the focus of our work in chapter 2 with an interesting application to molecular
biology.

Neglecting the presence of random effects of multidimensional fitting model can affect the
interpretation of the displacements significance. Therefore, a random model of multidi-
mensional fitting exhibiting how significant displacements are is needed. This will be the
focus of our work in chapter 3 with an application to sensometrics.

Then we consider that we have just one matrix that contains the pairwise distance.
Using these distances, we propose a new non-linear projection method that takes into
account the local projection quality. As in many dimensionality reduction and data visu-
alization method, the quality of projection is a globally quality measure that takes only
into account what happens globally, a local quality measure can be very interesting to
indicate the projection quality of each projected point taken individually. In PCA, the
local measure is evaluated by the squared cosine of angle between the principal space and
the vector of the point. This measure is useful in cases of linear projection as happens
in PCA but cannot be applied to the case of non-linear projection. This leads to the
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development of a novel method that project the points in a reduced space and take into
account the projection quality of each point taken individually. This method refereed to as
’projection under pairwise distance control ’ performs a straightforward data visualization
in R2 with a simple reading of the approximation quality and provides a novel variant of
dimensionality reduction. This will be the subject of our work in chapter 4 with different
applications using different kinds of data set.



4 Introduction

This thesis is composed of four chapters:

In chapter 1, we present some background methods and results. We begin first with
an introduction about multivariate data analysis, then discuss two different ways to
treat this kind of data: data dimensionality reduction and data visualization. After
a brief introduction where the main ideas of data dimensionality reduction and data
visualization are illustrated, different methods for each way are given.

In chapter 2, we are interested in the problem of distances fitting. A new method
of multivariate data analysis based on the modification of one matrix to make it fit
to a second matrix is presented. This method has been applied in the molecular
biological domain particularly to detect the movement of amino acids in a protein.
The penalization of the displacements is important to obtain good information on
which part of protein has moved.

In chapter 3, a random model of multidimensional fitting extends the model seen
in Chapter 2. Moreover, we introduce a statistical test to assess how much a trans-
formation is significative. Optimization and simulation are illustrated to obtain
the displacement vectors of the points with an application on sensometrics in order
to explain consumer preferences for a set of competitive products by their sensory
profiles for these products.

In chapter 4, a new projection paradigm is presented to describe a non-linear
projection method that takes into account the projection quality of each projected
point in the reduced space, this quality being directly available in the same scale
as this reduced space. More specifically, this novel method allows a straightforward
visualization data in R2 with a simple reading of the approximation quality, and
provides then a novel variant of dimensionality reduction which is illustrated in the
application to different types of data sets.
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Chapter 1

Preliminaries

In this chapter some concepts, background methods and results are presented.
We begin first with an introduction about multivariate data analysis, used when several

measurements are made on each individual or object in one or more samples. Then, some
methods are introduced to facilitate the interpretation of this kind of data. In this section,
different dimension reduction and data visualization methods considered in this thesis are
presented.

1.1 Introduction to multivariate data analysis

In several scientific domains, researchers measure several variables on each individual or
object. This data can be viewed as a large matrix and extracting results from this type of
matrix is often hard and complicate since the use of univariate data analysis procedures
with this data is not allowed. That’s why, a new context of data analysis becomes a
priority in order to extract as possible as the information contained in these types of
matrices. We address multivariate data analysis.

Multivariate data analysis [1, 2, 3] provides methods used to reduce the complexity
of data by retaining as much as possible data information. In recent decades, long list
of multivariate data analysis methods have been developed and have become increasingly
popular among scientists in all domains and their applications affecting various areas.
In this chapter, we are interested by the dimensionality reduction methods called too
projection methods.

Dimensionality reduction techniques can be used in different ways including:

• Data dimensionality reduction: project the data in the high-dimensional space to
a low-dimensional space. Linear and non-linear data dimensionality reduction are
distinguished.

• Data visualization: provide a simple interpretation of the given data in R2 or R3 .
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Since our work is based on dimensionality reduction, two sections are presented to give
an overview of existing methods from literature used in the data dimension reduction and
data visualization.

1.2 Data dimensionality reduction

A variety of data dimensionality reduction methods have been proposed to drop the
difficulties associated to the high dimensional data. These methods are divided into
two categories: probabilistic and non-probabilistic methods. Firstly, we present a brief
introduction of data dimensionality reduction and then we explore the non-probabilistic
methods by discussing both linear and non-linear dimensionality reduction problems.
After that, some well-known methods of data dimensionality reduction are given.

1.2.1 Introduction

Given n p-dimensional data points noted X = [X1| . . . |Xn] ∈ Rn×p and a choice of
dimensionality q < p. The task of data dimensionality reduction is to find another data
representation in dimension q noted Y = [Y1| . . . |Yn] ∈ Rn×q which retains, at maximum,
the same data information as the original data given by the matrix X.

Linear dimensionality reduction is performed to produce a linear transformation P ∈
Rq×p of the form Y = XPT and non-linear dimensionality reduction transforms the orig-
inal data into a non-linear subspace using a non-linear function f .
Large number of non-probabilistic dimensionality reduction methods have been studied
over the last decade to find appropriate linear and non-linear transformations. The state-
of-the-art here is considered as a brief description of some well-known methods used to
reduce dimensionality of data.

1.2.2 Non-probabilistic dimensionality reduction methods

In this section, we want to present some of the important methods used in the linear and
non-linear dimensionality reduction. Principal component analysis (PCA), multidimen-
sional scaling (MDS), Procrustes analysis and kernel PCA methods are presented.

1.2.2.1 Principal component analysis

The most commonly applied method in linear dimensionality reduction and also the oldest
multivariate technique is principal component analysis (PCA). It is the "mother" of the
multidimensional data analysis [4] and has been investigated extensively [5, 6, 7, 8]. The
aim of this method is to project the original data set, using a linear projector, in a
reduced space by preserving as much of the variance from the original data set as possible.
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PCA computes new variables called principal components which are obtained as linear
combinations of the original variables.

Recall that the singular value decomposition of matrix X with rank equal to r is given
as: X = UDV

T
, where U ∈ Mn×r(R), V ∈ Mp×r(R) are respectively matrix of left and

right singular vectors and D ∈Mr×r(R) is the diagonal matrix of singular values.
LetM a chosen metric, we note I the total inertia of the original points and it is given

by:

I =
n∑
i=1

pi‖Xi − g‖2 (1.1)

where g is the center of gravity of the points and pi is the weight of point i such that∑n
i=1 pi = 1. This inertia can be rewritten as:

I = Trace(MV ). (1.2)

We have defined P ∈Mq×p(R) as a linear transformation which is called in PCA the
projection operator. The PCA comes down to find the projection operator by maximizing
the inertia of the projected data.
Indeed, the projected data Y is given by: Y = XPT and the covariance matrix of Y is
given by PV P T that implies that the inertia of projected points is equal to Trace(PV P T

M)

and by elementary operations, we conclude that Trace(PV P T
M) = Trace(VMP ). So,

maximizing the inertia of the projected data (i.e. Trace(VMP )) leads to conclude that
the q principal components are obtained from the q eigenvectors of the matrix VM and
explained the largest part of the inertia of the original data.

1.2.2.2 Multidimensional Scaling

Likewise PCA, Multidimensional scaling (MDS) consists in finding a new data configu-
ration in a reduced space. The main difference between these two methods is that the
input data in MDS are typically comprehensive measures of similarity or dissimilarity
between objects, they are called "proximity". These proximities are arranged in a n× n
symmetrical matrix called "proximity matrix" noted D and having dij as general element
where dij is the proximity between i and j. The key idea of MDS is to perform dimen-
sionality reduction in a way to approximate high-dimensional distances noted dij by the
low-dimensional distances δij.
Metric and nonmetric MDS can be shown by distinguishing the type of original distances.
Metric MDS [9] is used when the original data are in the form of observed quantities
measured in terms of coordinates where distance is meaningful. Nonmetric MDS is a
rank-based approach which means that the original distance data is substituted with
ranks ([10], [11] and for a recent thorough review see [12]). It is resorted to when the
original data are of categorical or of a similar type where only ranking is important and
not actual differences.
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The objective function of metric MDS minimization problem noted Stress is the fol-
lowing:

Stress =

∑
1≤i<j≤n(dij − δij)2∑

1≤i<j≤n dij
, (1.3)

and those of nonmetric MDS is:

Stress =

∑
1≤i<j≤n(f(dij)− δij)2∑

1≤i<j≤n f(dij)
. (1.4)

The function f that appears in the nonmetric MDS is a monotonically increasing function
chosen always to minimize Stress and works as if it was a regression curve with f(dij) as
y and δij as ŷ.

In what follows, we are interested in the presentation of the basic steps of the metric
MDS method. The first step of this method is to construct the matrix B = {bij} such
that

bij = −1

2
(aij − ai. − a.j + a..) , (1.5)

where

aij = d2
ij, ai. =

1

n

n∑
a=1

d2
ia, a.j =

1

n

n∑
a=1

d2
aj and a.. =

1

n2

n∑
i=1

n∑
j=1

d2
ij

The optimal value of the objective function is computed from the spectral decomposition
of B. Let V denote the matrix formed with the first q eigenvectors and Λ is a diagonal
matrix containing the q eigenvalues associated to the q chosen eigenvectors as diagonal
terms. The projected data points in the lower dimensional space are then given by:

[Y1|, . . . , |Yn] =
√

ΛV
T

. (1.6)

Note that since Euclidean distances are used, the projected data points in the lower
dimensional space are equivalent to those obtained using PCA [16].

For more details about nonmetric MDS and the different steps of resolution see [11],
[12], [13], [14] and [15].

Moreover, MDS has been recently extended to perform non-linear dimensionality re-
duction. A recent approach of non-linear dimensionality reduction based on MDS is the
Isomap algorithm. More details about Isomap can be founded in [20] and [21].

1.2.2.3 Procrustes analysis

Procrustes analysis [17] takes his name from the Procrustes torture method from Greek
mythology how fit the victims to his bed. It is a goodness of fit method based on the
transformation of one configuration to map another configuration as closely as possible
through rotation, translation and scaling [2].
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Let us consider two configurations X1, . . . , Xn and X ′1, . . . , X ′n, the idea is to modify
X ′1, . . . , X

′
n by translating and rotating it through a vector b and an orthonormal matrix

A respectively. So, the problem can be written as the following minimization problem:

EPA =
n∑
i=1

‖Xi − AX ′i − b‖2. (1.7)

The vector b is given by a simple derivation of EPA with respect to b as follows:

b =
1

n

n∑
i=1

(Xi − AX ′i). (1.8)

The value of b is equal to zero if the two configurations are centered.
To find the matrix A, we suppose that the two configurations are centered and we

note Z = X ′
T
X. By supposing Z of rank equal to p, the singular value decomposition of

matrix Z is given by: Z = UDV
T . By taking into account these suppositions and using

a matrix derivation with respect to A we obtain:

A = V U
T

. (1.9)

A scale change is also possible, the only modification is to take cAX ′i instead of AX ′i
with c is a scale change parameter.

More generally, Generalized Procrustes analysis (GPA) consists in considering m con-
figuration instead of two. We note consensual configuration the average configuration
calculated from the m configurations. GPA is an iterative method that reduces by a
series of transformations (scaling, translations, rotations, reflections) for the m configu-
rations, the distance of the m configurations to the consensus configuration. We refer the
reader to [18] for a detailed analysis of GPA.

1.2.2.4 Kernel PCA

In recent years, PCA has been extended to work with non-linear configurations as classical
PCA will fail to give us a "good" representation. Kernel PCA [19] has been developed to
extract non-linear principal components without expensive computations.

The idea is to perform PCA in a feature space noted F produced by a non-linear
mapping of data from its space into the feature space F , where the low-dimensional latent
structure is, hopefully, easier to discover. The mapping function noted Φ is considered as:

Φ : Rp → F
X → Φ(X)

The original data Xi is then represented in the feature space as Φ(Xi), where F and
Φ are not known explicitly but obtained thanks to the "kernel trick". We assume that we
are dealing with centered data i.e.

∑n
i=1 Φ(Xi) = 0.

The main steps of kernel PCA are the following:
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• Compute the Gram matrix K = kij with kij = K(Xi, Xj) = 〈Φ(Xi),Φ(Xj)〉 is a
chosen kernel.

• Compute the centred Gram:

G̃ = HKH. (1.10)

• Find the eigenvalues λi and the eigenvectors Vi of matrix G̃ satisfying

λV = nG̃V. (1.11)

• The eigenvectors are then expressed as:

Vl =
n∑
i=1

αliΦ(Xi), (1.12)

where αli is calculated from the equation:

λinα
l
iα
lT

i = 1. (1.13)

These eigenvectors can be used as the eigenvectors of PCA.

1.3 Multidimensional data visualization

Another objective in dimensionality reduction is to visualize with the naked eye the infor-
mation contents in the data. It is natural to show that a simple data visualization is given
with a small projection space dimension (i.e. k = 2 or 3). Multivariate data visualization
refers to the display of multidimensional data and aids the user to gain insight into the
data and directly interact with the data.
Different Multidimensional data visualization techniques have been developed and divided
into different categories [22], [23]. Four main categories are distinguished as geometric
projection techniques, Pixel-oriented techniques, hierarchical display techniques, iconog-
raphy techniques. In the following, we present briefly some of these methods.

1.3.1 Data Visualization techniques

This section is concerned to present some multidimensional data visualization techniques.
Five methods are detailed, namely thye Scatter plot Matrix, Parallel coordinates, Self-
Organizing Maps (SOM), PCA and Sammon’s mapping.
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Figure 1.1: Scatter plot matrix of Iris data set.

1.3.1.1 Scatter plot Matrix

Scatter plot is a geometric visualization method [25] based on all the possible two dimen-

sional data plots. The scatter plot matrix is composed of
p(p− 1)

2
scatter plots of all

possible pairs of variables in a dataset and give the relationships between pairs of several
variables [24].

An example of scatter plot method is given in figure 1.1 which depicts the scatter plot
matrix of the well-known Irises data set [29]. We can see that Setosa flowers are remote
from Versicolor and Virginica.

1.3.1.2 Parallel coordinates

Parallel coordinates method is also a geometric visualization method introduced by Alfred
Inselberg [26]. In this method, variables are represented as parallel lines such that the
upper and the lower points of each line are obtained respectively by the maximum and
the minimum of each variables. A n-dimensional point is displayed as n− 1 line segments
that cross each axis at a position proportional to its value for that dimension.

The Irises data set is displayed by applying parallel coordinates in figure 1.2. Each
iris is represented as line segment with specific color corresponding to the three species of
irises (blue correspond to Setosa, red to Versicolor and green to Virginica). It is clear to
see that the species are distinguished best by the petal length and width than the sepal
length and width.
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Figure 1.2: Parallel coordinates of Iris data.

1.3.1.3 Self-Organizing Maps (SOM)

The Self-Organizing Map [27] was developed by Kohonen in the early 1980’s. It is one of
the most popular neural network models based on unsupervised learning. The principal
goal of SOM is to transform an incoming signal pattern of arbitrary dimension into a
one or two dimensional discrete map, by making an artificial topographic maps that
preserves neighbourhood relations. Indeed, each point in the output space will map to
a corresponding point in the input space such that if X1 and X2 are two input vectors
and Y1 and Y2 are two output vectors corresponding to X1 and X2. Then Y1 and Y2

must be close in the discrete low- dimensional output space if X1 and X2 are close in the
continuous high dimensional input space.

A way to visualize the data is to represent each data dimension using feature planes by
displaying graphically the levels of the variables in each map unit. Figure 1.3 depicts the
feature planes obtained using the Iris data set. The distance between the adjacent neurons
is calculated and presented with different colourings between the adjacent nodes such that
the colors white and yellow signify high values of the variables, and black correspond to
low values of the variables.

In Figure 1.3, U-matrix representation of SOM which visualizes the distance between
the neurons shows that the top three rows form a cluster and by referring to the labels, we
can see that this cluster corresponds to the specie Setosa whereas the other two species
are not well separated. Moreover, petal length and petal width are very closely related to
each other and also having some correlation with the sepal length shown that have similar
component planes. Virginica specie is distinguished from Versicolor specie by their bigger
leaves whereas Setosa is distinguished from them by the small and short petals and the
wide sepals.
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Figure 1.3: Feature planes created with SOM of Iris data set.

1.3.1.4 PCA

PCA presented in section 1.2.2.1 is not just useful as a data reduction method but it can
serve also as a visualization method by taking k = 2. Figure 1.4 shows PCA plot that
was constructed from the Iris data set.

Figure 1.4: PCA of Iris data set.

The amount of variation explained by the two components is 73% + 22.9%= 95.9% of
the total variance. We can see clearly and straightforwardly the separation of the specie
Setosa from Versicolor and Virginica species.

1.3.1.5 Sammon’s mapping

Sammon’s mapping [28] is a non-linear projection method used in data visualization to
an implicit data transformation by conserving as possible as the inter-point Euclidean
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distances in the two spaces. It is based on the construction of a new lower-dimensional
data set which has a similar structure to the first data set in order to reflects the structure
present in the original dataset.

Figure 1.5: Sammon’s mapping of Iris data set.

A two-dimensional visualisation of the structure of a four-dimensional of Iris data set
is produced using Sammon’s mapping and shown in figure 1.5. The value of the stress of
the mapping obtained by the formula:

Stress =
1∑

1≤i<j≤n δij

∑
1≤i<j≤n

(dij − δij)2

δij
, (1.14)

is equal to 0.00657 which is very low (stress « 0.1), that indicates that the mapping gives
a good idea of the underlying structure of the data. Note that dij and δij are respectively
the distances between i and j in the high-dimensional and low-dimensional spaces.
In [28] it was mentioned that the search of a minimum of Stress function is obtained
using steepest descend procedure [30] as the minimum of the Stress function can not be
found analytically, therefore the use of an iterative method for obtaining an approximate
solution is allowed.
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Chapter 2

Penalized Multidimensional Fitting

In this chapter we are interested in the problem of protein movement detection producing
upon the reaction it undergoes and its substrate/cofactor/partners binding state. Various
methods exist to study these conformational changes but are limited to the detection of
large movements. Our main contribution is to develop a new multivariate data analysis
method based on fitting distances and inspired from MDS to gives a simple way to show
these conformational changes. Experimental results that illustrate protein movements, as
well as performance comparisons with current practice, are presented.

2.1 Introduction

Proteins are heteropolymers that can take three dimensional structures. These structures
are flexible, highly dynamic, and their biological functions depend intimately on them
[28]. They can change their shape, unfold (and refold), and switch to another conforma-
tion. This structure deformation can be induced in various ways such as binding other
molecules –ligand binding– [22], enzyme catalysis reaction [10], etc. Figure 2.1 shows the
ligand-binding reaction occurred on FhuA protein, an outer membrane transporter for
ferrichrome-iron.

Two main methods are used to study the conformational changes of proteins: molec-
ular dynamics simulation [1] and normal mode analysis [26]. Both of these methods use
chemico-physical properties to predict motions. Several other algorithms are applied for
detecting dynamical domains in proteins [21, 29, 11, 12, 4] and most of these algorithms
define a rigid domain as a region whose internal geometry is the same in both confor-
mations. Another approach is provided by a method called DynDom which determines
domain dynamics, hinge axes, and hinge-bending residues using two conformations of the
same protein [23]. However, this method, based on clustering, and the other algorithms
cited above are mainly used for studying domain movements, so the main disadvantage
for these methods is that they detect parts of amino acids sequence without giving us
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any information on the movements of each amino acids taken alone, thus the movements
comparison of amino acids it not possible. Therefore, a complementary method is needed
for detecting more subtle changes.

Figure 2.1: The liganded and unliganded forms of FhuA protein. The image is adapted
from [16].

Here, a novel method called penalized Multidimensional Fitting (penalized MDF) is
presented to detect movements by using two conformations of the same protein. This
new multivariate analysis approach is an adaptation of Multidimensional Fitting (MDF)
[3]. The idea is to compare one protein conformation with another one by modifying the
coordinate matrix of the first one, called target matrix, in order to make the distances
calculated on the modified target matrix similar to the distances given by the reference
matrix that is obtained, in the case of protein movement detection, by computing the
distances between its amino acids. The organization chart given in Figure 2.2 explains
the procedure of this method:

It is composed of three steps:

• Step I: Extract the Cartesian coordinates for each conformation.

• Step II: Keep the coordinates of the first conformation in a matrix called Target
matrix and calculate a distance matrix that contains the distances between the
amino acids for the second conformation and called Reference matrix.

• Step III: Modify the target matrix in order to make the distances computed on this
matrix after modification similar to the distances given by the reference matrix.

What differentiates our method from other goodness of fit measures [9],[8] used to com-
pare two configurations like the Procrustes analysis [7] is that the latter transforms one
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Figure 2.2: Penalized multidimensional fitting organization chart.

configuration to map another configuration as closely as possible through rotation, trans-
lation and scaling [17], that is the same rotation matrix, translation vector and scale are
applied for all points.

Penalization is necessary as it is clear that without it, every transformation would be
possible, and then the solution would reduce to take the modified target matrix equal to
the coordinate matrix corresponding to the reference matrix! This of course, would not
give any information on which part of the protein has moved. The main work here is to
devise a good penalization. Once penalized MDF is applied, we compare the initial target
matrix and the modified target matrix by computing the distance between the initial
position of each amino acid and its final position. Important displacements indicate parts
of the protein which have moved significantly between the two conformations.

In the second section, we have described the method. In the third section, it is applied on
three different proteins. In the fourth section, we have compared our results to the results
obtained by Procrustes analysis and DynDom. Finally, using k-means, we have simplified
our optimization problem by transforming the reference matrix into a sparse matrix.
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2.2 Penalized multidimensional fitting method

2.2.1 Introduction

Let X = {X1| · · · |Xn} be the n × p target matrix given by the points values for the set
of p variables and D = {dij} the n × n reference matrix obtained separately from the
pairwise dissimilarity (Table 2.1).

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
...

xn1 xn2 · · · xnp

 D =


d11 d12 · · · d1n

d21 d22 · · · d2n

...
...

...
...

dn1 dn1 · · · dnn



Table 2.1: Target and reference matrix. X is the target matrix and D is the reference
matrix

Multidimensional fitting (MDF) method presented for the first time in [3] allow us to
modify the target matrix in order to minimize the difference between the reference matrix
and the novel distance matrix computed on the modified target matrix. we note4 = {δij}
the distance matrix contained the pairwise distance after modification of target matrix
X. The modification of coordinate Xi for i = 1, . . . , n, is performed through an arbitrary
function f as following:

f : Rp × Rp −→ Rp

(Xi, Li) −→ Xi + Li.
(2.1)

For all i ∈ 1, . . . , n, the vector Li = (li1, li2, . . . , lip) denotes the displacement for the ith

point. The idea behind MDF is to minimize the mean square error:

2

n(n− 1)

∑
1≤i<j≤n

(aδij − dij)2 ,

where δij = d(f(Xi), f(Xj)) = d(Xi + Li, Xj + Lj) under some constraints and a ∈ R is
a scaling variable.
Here, no constraint is needed but to avoid unnecessary displacements, a penalty term is
added to the mean square error leading to the following function to optimize:

E =
∑

1≤i<j≤n

(a‖Xi + Li −Xj − Lj‖2 − dij)
2 + λ

n∑
i=1

pen(Li), (2.2)

The optimization problem is then:

(P ) : min
L1,...,Ln∈Rp

∑
1≤i<j≤n

(‖Xi + Li −Xj − Lj‖2 − dij)
2 + λ

n∑
i=1

pen(Li)·
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The parameter λ is a positive regularization parameter that controls the trade-off be-
tween the approximation of the reference matrix by the distance matrix computed on
the modified matrix and the use of a parsimonious number of displacements. If λ = 0,
the solution of (P ) comes down to move all the points so that we obtain same matrices.

When λ increases, more importance is given to the penalty term λ
n∑
i=1

pen(Li) eliminat-

ing unnecessary movements, then when λ becomes too large, pen(Li) tends to zero and
nothing moves, which means that the initial values of the target matrix are kept. To have
interesting results, it is clear that having a good penalization is important.

Returning to our protein movement detection problem, the application of penalized
MDF is performed by constructing the target matrix X using the amino acids Cartesian
coordinates of one protein structure and the reference matrix D using the Euclidean
distances between the amino acids calculated on another structure of the same protein. So,
the objective is to detect the amino acids that undergo an important movement by fitting
the distances of one conformation to the distances of the second one by modifying only
the coordinates of the first one. Here, the Cartesian coordinates of the two conformations
are in the same scale so the scaling parameter a is taken equal to 1.
As next step, we have firstly discussed the choice of the penalty function and then the
choice of the factor λ in the case where a = 1.

2.2.2 Choice of Penalty Function

Three natural possibilities for the choice of penalty function have studied such that `0, `1

and `2-norms.
First, we want to discard the `1-norm, to have a norm invariant by rotation as the struc-
tures can have any orientation. The `2-norm is used to penalize the displacements of
points. This chosen norm can be used in many ways, we have only considered two cases,
either having simply ‖.‖2 or having two homogeneous terms by taking ‖.‖2

2. Now if we
consider two simple situations described in figure 2.3, we obtain the results described in
table 2.2. ∑4

i=1 ‖li‖2

∑4
i=1 ‖li‖2

2

∑4
i=1 (‖li‖2 + ‖li‖0)

case 1 4d 4d2 4d+ 4

case 2 4d 8d2 4d+ 2

Table 2.2: Penalty term values using different forms of penalty term in the cases 1 and 2.

Using ‖.‖2
2, we have obtained, with less points moving, a penalty larger to the one ob-

tained with more points moving. This result is not interesting for our parsimony needs.
Therefore, we have concentrated on norm ‖.‖2. Furthermore, to take into account the
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case1 case2

Figure 2.3: In case 1, two points move in the right direction and two others in the left
one with the same absolute value of displacement that is equal to d. In case 2, only two
points move but the final relative positions are the same between case 1 and 2.

number of points that move we have used the `0-norm. The combined penalty term∑4
i=1 (‖li‖2 + ‖li‖0) give with less points moving, a penalty term smaller than that ob-

tained with more points moving. So, we have used in our study this combined penalty
term.
The `0-norm is not treated at a first stage to focus on the `2-norm. In this stage, the
objective function is the following:

E =
∑

1≤i<j≤n

(‖Xi + Li −Xj − Lj‖2 − dij)
2 + λ

n∑
i=1

‖Li‖2·

In a second stage, the results are transposed to the `0-norm in an elastic-net like context.

The combined penalty term is
n∑
i=1

(γ‖Li‖2 + (1− γ)‖Li‖0) weighted by a parameter λ,

with γ ∈ [0, 1]. We call the function γ‖Li‖2 + (1 − γ)‖Li‖0 the elastic-net penalty by
analogy with the well-known elastic-net [30]. The function to optimize becomes:

E =
∑

1≤i<j≤n

(‖Xi + Li −Xj − Lj‖2 − dij)
2 + λ

n∑
i=1

(γ‖Li‖2 + (1− γ)‖Li‖0) ·

Note the two special cases γ = 1 and γ = 0. In the first case, the penalty term is reduced
to the `2-norm, and in the second, to the `0norm.

2.2.3 Choice of Parameter λ

We have already seen that the value of λ is crucial for obtaining good results. In this
section, we want to find the best value of λ using `2-norm as penalty function (first stage).
First, in Lemma 2.1 we show that if λ > 0 there are only fixed point or at least two points
moving in different directions. Moreover, in the one dimensional case if there are no fixed
points and for ε > 0, we want to ensure that at least one ‖li‖2 exceeds ε then we derive
in Lemma 2.2 that λ < n(d0

ij − dij − 2ε) with d0
ij is the initial distance computed on
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the target matrix. Furthermore, Lemma 2.3 indicates that the optimum can be found in

some specific cases provided that λ is inferior to
n− 1

2
ε where ε is the typical movement

amplitude which is of the same order of magnitude as (d0
ij − dij − 2ε) if we consider that

d0
ij − dij is close to 2ε.

Lemma 2.1. The solution of problem (P ) is such that there is a fixed point or at least
two points moving in different directions provided that λ > 0.

Proof. We prove it by contradiction. Supposing that the optimal solution of (P ) is Lo

with all points moving in the same direction u, then we obtain:

E(Lo) =
∑

1≤i<j≤n

(‖Xi + Loi −Xj − Loj‖2 − dij)2 + λ

n∑
i=1

‖Loi‖2 .

Now, let us consider a new solution L† obtained from Lo by translating according to
the smallest displacement of length m observed in Lo. We write: m = min

i=1...n
‖Loi‖2 and

then the novel solution is given by: ∀i = 1 . . . n, L†i = Loi −mu. The objective function
becomes:

E(L†) =
∑

1≤i<j≤n

(‖Xi + Loi −mu−Xj − Loj +mu‖2 − dij)2 + λ
n∑
i=1

‖Loi −mu‖2

=
∑

1≤i<j≤n

(‖Xi + Loi −Xj − Loj‖2 − dij)2 + λ
n∑
i=1

‖Loi −mu‖2 ·

Thus, E(L†) < E(Lo) which is impossible by hypothesis.

In Lemma 2.2, we prove that in one-dimensional case, if we want to have at least one
‖li‖2 > ε, then λ cannot be too large. In Lemma 2.3, we prove, in dimension p, the same
context of Lemma 2.2 that in a specific case, λ must not be too large.

Lemma 2.2. In one dimension, at the optimum if for two successive points κ1 and κ2

(κ2 = κ1 + 1) having xκ1 < xκ2 and moving such that lκ1 > 0 and lκ2 < 0; the parameter
λ is such that λ < n(d0

κ1κ2
− dκ1κ2 − 2ε) and if for all 1 ≤ i < j ≤ n, xi + li ≤ xj + lj, then

∃ k with k ∈ {1, . . . , n}, such that |lk| > ε.

We prove it by contrapositive assuming that ∀i we have |li| ≤ ε. In one dimension, we
note l1, . . . , ln the optimal displacement of points. Let:

• I+ the set of all points that move in positive direction, we note: I+ = {i|li > 0}.

• I− the set of all points that move in negative direction, we note: I− = {i|li < 0}.

• I0 the set of all points that don’t move, we note: I0 = {i|li = 0}.
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In this case,

E =
∑

1≤i<j≤n

(| xi + li − xj − lj | −dij)2 + λ
∑
i∈I+

li − λ
∑
i∈I−

li·

Let λ ≥ 0, and γ1, γ2 . . . γn, n positive real numbers. The Lagrangian of the problem
becomes:

L(l1, . . . , ln, γ1, . . . , γn, λ) =
∑

1≤i<j≤n

(| xi + li − xj − lj | −dij)2 + λ
∑
i∈I+

li − λ
∑
i∈I−

li −
∑
i∈I+

γili +
∑
i∈I−

γili·

(2.3)
By hypothesis of sets I+ and I− we have ∀i = 1 . . . n, |li| > 0 so that γi = 0. Since
xi + li ≤ xj + lj, for all 1 ≤ i < j ≤ n from the hypothesis of the optimum we obtain the
distance δij = xj + lj − xi − li.

Let κ1 and κ2 two points such that κ1 ∈ I+ and κ2 ∈ I−. The first order optimality
conditions give:

∂L

∂lκ1
= 2

κ1∑
t=1

(xκ1 + lκ1 − xt − lt − dtκ1)− 2
n∑

t=κ1+1

(xt + lt − xκ1 − lκ1 − dtκ1) + λ = 0

=
n∑
t=1

(xκ1 + lκ1 − xt − lt)−
κ1∑
t=1

dtκ1 +
n∑

t=κ1+1

dtκ1 +
λ

2
= 0, (2.4)

∂L

∂lκ2
= 2

κ2∑
t=1

(xκ2 + lκ2 − xt − lt − dtκ2)− 2
n∑

t=κ2+1

(xt + lt − xκ2 − lκ2 − dtκ2)− λ = 0

=
n∑
t=1

(xκ2 + lκ2 − xt − lt)−
κ2∑
t=1

dtκ2 +
n∑

t=κ2+1

dtκ2 −
λ

2
= 0· (2.5)

Subtracting equations (2.4) and (2.5) gives:

0 =
n∑
t=1

(xκ1 + lκ1 − xκ2 − lκ2) +

κ1∑
t=1

(dtκ2 − dtκ1) +
n∑

t=κ2

(dtκ1 − dtκ2) + λ

≤
n∑
t=1

(xκ1 + lκ1 − xκ2 − lκ2) +

κ1∑
t=1

dκ1κ2 +
n∑

t=κ2

dκ1κ2 + λ by triangle inequality

≤ n(xκ1 + lκ1 − xκ2 − lκ2) + ndκ1κ2 + λ· (2.6)

By hypothesis, for all i = 1, . . . , n we have |li| ≤ ε so:

λ ≥ n(xκ2 + lκ2 − xκ1 − lκ1)− ndκ1κ2
⇒ λ ≥ n(xκ2 − xκ1 − 2ε)− ndκ1κ2
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So, as xκ1 < xκ2 we obtain:
λ ≥ n(d0

κ1κ2
− dκ1κ2 − 2ε)

which concludes the proof.
In Lemma 2.3, we have proved, in dimension p, the same context of Lemma 2.2 that

in a specific case, λ must not be too large.

Lemma 2.3. In dimension p, for ε > 0, if λ <
n− 1

2
ε and under conditions, for all

1 ≤ i < j ≤ n and k = 1, . . . , n:

• |‖Xi −Xj‖2 − dij| > ε,

• ∃ L1, . . . , Ln such as ‖Lk‖2 < ε,

• ‖Xi + Li −Xj − Lj‖2 = dij,

then a solution of problem (P ) can be found such that E(L) < E(0).

Proof. By hypothesis we have considered that for 1 ≤ i < j ≤ n, ‖Xi +Li−Xj −Lj‖2 −
dij = 0. Using the fact that |‖Xi −Xj‖2 − dij| > ε, we obtain:∑

1≤i<j≤n

(‖Xi −Xj‖2 − dij)2 >
n− 1

2
nε2· (2.7)

From the assumption of displacements Lk, we obtain:

∑
1≤i<j≤n

‖Xi + Li −Xj − Lj‖2 − dij)2 + λ
n∑
i=1

‖Li‖2 < nλε·

As λ <
n− 1

2
ε, this leads to

∑
1≤i<j≤n

‖Xi + Li −Xj − Lj‖2 − dij)2 + λ

n∑
i=1

‖Li‖2 <
∑
i<j

(‖Xi −Xj‖2 − dij)2·

Hence E(L) < E(0) which concludes the proof.

Thus, from these two lemmas we can see that the order of magnitude of λ should be
around n times ε, which is intuitively compared to the amplitude of random movements.

2.3 Application

In this section, penalized MDF has been applied to three different proteins to detect
important movements in their tridimensional structure. Each time, the same protein is
presented in two different conformations; for example, the three dimensional structure of
a nuclear receptor before and after ligand binding. Data used in this study were collected
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from Protein Data Bank (PDB) entries. These files contain the Cartesian coordinates
obtained by X-ray crystallography for each atom in the protein. The amino acid positions
are given by the coordinates of alpha carbons (Cα) which constitute the protein main
chain.

Penalized MDF needs a reference matrix and a coordinate matrix. For two different
structures of the same protein, the coordinate matrix is given by the Cα coordinates
of one structure and the reference matrix is given by the Euclidean distances between
the Cα of the second structure. The distance between two amino acids is given by:

dij =

√√√√ p∑
k=1

(xik − xjk)2, ∀i, j ∈ 1 . . . n and p = 3. After matrices construction, we apply

penalized MDF. The optimization problem (P ) is the following:

(P ) :

 min
L1,...,Ln∈Rp

∑
1≤i<j≤n

(‖Xi + Li −Xj − Lj‖2 − dij)
2 + λγ

n∑
i=1

‖Li‖2 + λ(1− γ)
n∑
i=1

‖Li‖0

s.t lik ∈ [−(xkmax − xkmin);xkmax − xkmin ]

where, ∀k = 1 . . . p, xkmax = max
i
{xik} and xkmin = min

i
{xik}.

This problem is a non-linear optimization problem and it is clear that is non convex
problem. The Nlopt library [13] has been used to solve it. Numerous algorithms exist
for solving such non-linear optimization problems. We choose the best of them in order
to minimize the objective function. A global optimization then a local optimization are
applied to search the best solution.
For global optimization, we choose DIRECT-L algorithm (DIviding RECTangles) [6]
which is a modified version of a partitioning algorithm called DIRECT algorithm [14]
that samples points in a given domain and then refines the search domain at each iter-
ation based on the function values at the sampled points . For local optimization, we
choose SBPLX algorithm, this algorithm is based on SUBPLEX method [25] that is a
generalization of NELDER-MEAD SIMPLEX. The global solution is considered as initial
solution for local optimization.

For the choice of parameter λ, recall that by lemmas 2.2 and 2.3 we have seen that
the order of magnitude of λ is n times the amplitude of random movements, that we take
equal to 0.5Å for the present application. Concerning parameter γ, the following values
have been used (0, 0.1, 0.3, 0.5, 0.8, 1) focusing then on 0.5 which gave the best results.

To have a threshold to determine if a movement is important, we compare the displace-
ment norm computed after penalized MDF given by: ‖Li‖2 with the standard deviation
σi for each point i. For this, we use the known B-factor (or temperature factor) of each
atom i which indicates the true static or dynamic mobility of an atom [24] given by:
Bi = 8π2d2

mi, to infer the mean displacement dmi of atom i, ∀i = 1, . . . , n .
Besides, d2

mi = E(‖Xi − µi‖2) with Xi ; N (µi;σ
2
i I3) and µi the mean coordinates for

each atom i. Then, d2
mi = σ2

iE(
‖Xi − µi‖2

σ2
i

) = 3σ2
i as

‖Xi − µi‖2

σ2
i

; χ2
3. Thus, σi =

dmi√
3
.
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In our application, we suppose that the value 2σi is high enough to detect important
displacements.

Penalized MDF has been applied to three proteins: human estrogen nuclear receptor
(ER), Ferrichrome-iron receptor (FhuA), and aspartyl-tRNA synthetase (AspRS). For
each protein, we compare, in Section 2.4, our results with those obtained by Procrustes
analysis and DynDom.

2.3.1 Human Estrogen Receptor Protein

Human Estrogen Receptor (ER) is a nuclear estrogen receptor composed of several func-
tional domains that serve specific roles. The ligand binding domain (LBD) region corre-
sponds to the ligand binding domain, it is composed of 12 helices and is responsible of
most of the functions activated by ligand binding [15]. Many experiments demonstrate
that their C-terminal Helix (H12) is more flexible without ligand, this increased mobility
being correlated with transcription repression and human diseases [2].
Penalized MDF has been used to compare the conformation with and without ligand.
The PDB entry 3ERT gives the Cartesian coordinates of amino acids of this receptor
after ligand binding and 1X7R gives the coordinates before ligand binding. The reference
matrix is computed from the coordinates of 1X7R.
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Figure 2.4: Displacement of each amino acid for Human estrogen receptor with λ = n
2
and

γ = 0.5. The x-axis indicates the amino acids, and the y-axis indicates the displacement
values. The amino acids number 26, 27, 28 and 214 − 231 are are known to undergo
important displacements.

The dashed plot in figure 2.4 shows the 2σi threshold for each point. Important dis-
placements are detected at amino acids number 26, 27, 28, and at the end of the sequence
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formed by the amino acids number 214 to 231. Concerning the others detected amino
acids, the value of the difference between the displacement after penalized MDF and 2σi

is smaller than the other detected amino acids, so we can neglect these small detected
displacements.
The sequence 214 to 231 corresponds to the helix H12. This result is confirmed by
Mueller-Fahrnow and Egner [20] who note that the position of this helix depends on the
presence or absence of a ligand. Concerning positions 26, 27 and 28, they correspond to
the sequence "SEA" which is apical of helix H3. After ligand binding, the helix H12 lies
over the ligand-binding cavity and forms, together with H3 and H5, a binding surface for
transcriptional co-regulators [27], which explains the movements of the helix H3.

2.3.2 Ferrichrome-iron Receptor Protein

FhuA is an outer membrane receptor protein of Escherichia-coli bacteries. FhuA and
other proteins like FecA and FepA are ferrichrome transporters [5]. It acts as an energy
dependent protein channel whose primary function is to transport ferrichrome across the
outer membrane of E.coli.
X-ray analysis at 2.7Å resolution reveals two distinct conformations in the presence and
absence of ferrichrome [16]. Penalized MDF has been applied to compare the two confor-
mations, the coordinate matrix has been constructed from the PDB entry 1by3 of FhuA
and the reference matrix has been calculated on the coordinates of Cα from the PDB
entry 1by5 of FhuA+F. Figure 2.5 depicts important displacements between 4 and 18Å
for the 10 first amino acids of the amino acid sequence of FhuA protein.
This result is confirmed by biology [16, 5] which shows that N-terminus has moved after
ligand binding. Indeed, Molecular dynamics simulation method has been applied to de-
tect the movements in FhuA protein [5]. Upon binding of ferrichrome, the formation of
ligand-protein contacts induces a subtle conformational change in the segments S3 and
S4 that yields an important displacement of 17Å for the segment S1 in the N-terminal.
Additionally, [16] indicates that the comparison of the liganded with the unliganded state
shows that the location of the N-terminus shifts considerably after ferrichrome binding.

2.3.3 Aspartyl-tRNA Synthetase Protein

Aspartyl-tRNA synthetase (AspRS) is a member of the aminoacyl-tRNA synthetases
family, an ubiquitous enzyme family which translates the genetic code by linking a given
amino acid to its cognate tRNA molecule. The AspRS is made of two monomers and
binds two ATP, two aspartic acids and two tRNA molecules. The amino acid attachment
reaction is performed only when all substrates are correctly recognized and bound to the
two monomers.
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Figure 2.5: Displacements of the amino acids for FhuA protein. Important displacements
are located in the N-terminus (the first amino acids).

Here, we have considered the complexed AspRS (PDB entry 1IL2) made of two
monomers of the E. coli AspRS protein, two tRNAAsp from yeast, and AMPPcP, a sub-
strate analogue. This complex is biologically non-productive as the bound tRNAAsp is
from yeast origin and thus badly recognized by the E. coli enzyme. However, one of the
two tRNAs is correctly bound to the active site (chains A/C) whereas the second lies in
the solvent (chain B/D). This complex constitutes a good candidate to study conforma-
tional changes at the enzyme level upon tRNA binding by comparing the two monomers
of the protein.

Penalized MDF method has been applied to compare chains A and B; the reference
matrix has been computed from the Cα coordinates of chain B and the target matrix
computed from the Cα coordinates of chain A. Results are presented in figure 2.6 where
it appears that important displacements occur in positions 220, 330 − 332, 335 − 337

342− 343 and 468. Penalized MDF finds moving positions inside the GAD domain of the
monomer, this domain has an unknown function, but moves towards the active site upon
binding of the acceptor stem of a tRNA molecule so as to pinch it through a network of
water molecules [19].

2.4 Comparaison with other methods

In this section, we have compared penalized MDF results with Procrustes analysis and
DynDom results.
Firstly, we have compared our results with Procrustes analysis results. Figure 2.7 depicts
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Figure 2.6: Displacements of the amino acids for AspRS protein. Amino acids having
distances larger than the threshold are: 220, 330 − 332, 335 − 337, 342 − 343, 441 and
468.

the movements of amino acids of the three proteins studied above using two methods. Pro-
crustes analysis detects more displacements than penalized MDF method and a number
of them are detected as important displacements mainly for ER and AspRS proteins.
Secondly, we have used the web application DynDom available over the internet (http://
fizz.cmp.uea.ac.uk/dyndom/dyndomMain.do) to obtain DynDom results. No domains
movements are detected by using DynDom for ER and FhuA proteins, whereas using
penalized MDF, we have succeed in finding the residues that move according to the
known biological literature. For AspSR protein, DynDom finds the following positions
287− 308, 312− 315, 321, 323− 404 and 412− 425. Both DynDOM and penalized MDF
find moving positions inside the GAD domain of the monomer. Interestingly, penalized
MDF finds also position 220, a conserved position in bacterial AspRS that controls the
recognition of the acceptor stem of the tRNA. Position 468 is displaced because of crystal
packing contacts; this has no biological significance.

2.5 Reference matrix reduction

In order to simplify the optimization problem and reduce the computing time, it is nec-
essary to reduce the reference matrix by conserving as much as possible the information
given by this matrix. For this task, we consider our reference matrix as a graph with
n(n− 1)

2
edges, each point is a vertex and each distance is an edge. Our objective is to

reduce this graph to another one with fewer edges.

http://fizz.cmp.uea.ac.uk/dyndom/dyndomMain.do
http://fizz.cmp.uea.ac.uk/dyndom/dyndomMain.do
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Figure 2.7: The displacements of amino acids after Procrustes analysis are given by the
cyan line plot and those after penalized MDF are given by the black line plot. The
threshold is the red line plot. We notice that using Procrustes analysis we detect more
amino acids moved which are in reality not moved.
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The idea is to divide the n points into q clusters using k-means. The squared distance
between i and j is given by: d2

ij = ‖Yi − Yj‖2
2
where Y1, . . . , Yn are the coordinates of the

n points obtained from the reference matrix.

The complete graph is replaced by a reduced graph with
(q − 1)

2
+ (n − q) edges, where

the distances between cluster centers and between cluster centers and their points are

kept. Thus, the complete reference matrix with
n(n− 1)

2
is replaced by another one with

q(q − 1)

2
+ (n− q) distances.

Using k-means method, we partition the n points into q clusters and then the points are
supposed to be uniformly distributed across the clusters. The center of each cluster is given
by the nearest neighbour of the center of gravity of clusters. Each cluster is considered as
an hypersphere and using the measure concentration on the sphere, for dimension d large,
we can consider that most of the points are concentrated in the equator of the sphere
Sd−1 in Rd [18]. Figure 2.8 shows the width of the band around the equator that contains
90% of the measure for different dimensions. If the width of the gray stripe is 2ω then:

P [{x ∈ Sd−1 : −ω ≤ xn ≤ ω}] = 0.9·

d = 3 d = 11 d = 101

Figure 2.8: Strip around the equator containing 90% of the area.

Using this result, we can consider that each edge is orthogonal to the edge that connects
two cluster centers. Figure 2.9 presents the distance between two points which are located
in two different clusters.
So we can approximate the squared distance d2

ij between i and j by:

‖Yi − YOk‖2
2

+ ‖YOk − YOl‖2
2

+ ‖Yj − YOl‖2
2
,

where Ok and Ol are respectively the centers of clusters Ck and Cl.

Ok •
Ol•

i
•

j
•

Figure 2.9: The black line is the distance between two points i and j which are located
in two different clusters. The gray band is the concentration measure band.
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The idea using k-means is to keep the minimal number of distances between points that
is equivalent to minimize the distances between nodes in the reduced graph. Therefore
the problem is to minimize the sum of the squared distances between all points. The
objective function of this minimization problem is the following :

V =
n∑
i=1

n∑
j=1,j 6=i

q∑
k=1

q∑
l=1

(
‖Yi − YOk‖2

2
zik + ‖YOk − YOl‖2

2
zikzjl + ‖Yj − YOl‖2

2
zjl
)
,

with for i = 1, . . . , n and k = 1, . . . , q, zik =

 1

0

if i ∈ Ck
otherwise.

By developing V we obtain:

V = 2q(n− 1)
n∑
i=1

q∑
k=1

‖Yi − YOk‖2
2
zik +

n∑
i=1

n∑
j=1,j 6=i

q∑
k=1

q∑
l=1

‖YOk − YOl‖2
2
zikzjl.

Besides, by noting O as the center of gravity of the clusters centers:

n∑
i=1

n∑
j=1,j 6=i

q∑
k=1

q∑
l=1

‖YOk − YOl‖2
2
zikzjl

≈
n∑
i=1

n∑
j=1,j 6=i

q∑
k=1

q∑
l=1

(
‖YOk − YO‖2

2
+ ‖YO − YOl‖2

2
zikzjl

)
provided that OOk ⊥ OOl

≈q(n− 1)
n∑
i=1

q∑
k=1

‖YOk − YO‖2
2
zik + q(n− 1)

n∑
j=1

q∑
l=1

‖YO − YOl‖2
2
zjl

≈2q(n− 1)
n∑
i=1

q∑
k=1

‖YOk − YO‖2
2
zik.

Consequently,

V ≈ 2q(n− 1)
n∑
i=1

q∑
k=1

‖Yi − YOk‖2
2
zik + 2q(n− 1)

n∑
i=1

q∑
k=1

‖YOk − YO‖2
2
zik

≈ 2q(n− 1)
n∑
i=1

‖Yi − YO‖2
2
.

Thus, the points total variation VT is proportional to
n∑
i=1

‖Yi − YO‖2
2
, so that V is a

constant and it is not necessary to minimize it. For the choice of the number of clusters,
we take it at most equal to

√
n.

Penalized MDF with reduced matrix reference requires a novel penalization parameter
calculation as less variables are involved.



34 2. Penalized Multidimensional Fitting

2.5.1 Novel Penalization Parameter Calculation

In this case, the objective function of penalized MDF problem is the following:

Er =
n∑
i=1

q∑
k=1

(‖Xi + Li −XOk − LOk‖2 − diOk)
2 zik + λ

n∑
i=1

‖Li‖2 +

q∑
k=1

q∑
l=k+1

(‖XOk + LOk −XOl − LOl‖2−dOkOl)
2 ·

(2.8)
The optimization problem here is:

(Pr) : min
L1,...,Ln∈Rp

Er·

Let give firstly some notations and assumptions. In one dimension, noted ok and ol

respectively the centers of clusters Ck and Cl, we suppose that xok + lok ≤ xol + lol , for
k = 1, . . . , q and l = k + 1, . . . , q. Let:

• I+ the set of all points i that move in the positive direction, we note I+ = {i|li > 0}.

• I− the set of all points i that move in the negative direction, we note I− = {i|li < 0}.

• A+ the set of all points i such that xi + li − xok − lok > 0.

• A− the set of all points i such that xi + li − xok − lok < 0.

• nUVt = Card(U ∩ V )t, the number of points in the set U ∩ V and cluster Ct.

Lemma 2.4. In one dimension, at the optimum if for two successive cluster centers oκ1
and oκ2 (κ2 = κ1 + 1) having xoκ1 < xoκ2 and moving such that loκ1 > 0 and loκ2 < 0; the

parameter λ is such that λ <
2q

N + 2
(d0
oκ1oκ1

−doκ1oκ2 −2ε) then ∃ m, with m ∈ {1, . . . , n},
such that |lm| > ε, where d0

oκ1oκ2
is the initial distance computed on the target matrix and

N = nA
+I+

κ1
− nA+I−

κ1
+ nA

−I+
κ1

− nA−I−κ1
− nA+I+

κ2
+ nA

+I−
κ2

− nA−I+κ2
+ nA

−I−
κ2

.

Proof. We prove it by contrapositive assuming that for all i we have |li| ≤ ε. The La-
grangian of the optimization problem is the following:

L(l1, . . . , ln, γ1, . . . , γn, λ) =
∑
i∈A+

q∑
k=1

(xi + li − xok − lok − diok)
2 zik

+
∑
i∈A−

q∑
k=1

(xok + lok − xi − li − diok)
2 zik

+

q∑
k=1

q∑
l=k+1

(xol + lol − xok − lok − dokol)
2

+ λ
∑
i∈I+

li − λ
∑
i∈I−

li −
∑
i∈I+

γili +
∑
i∈I−

γili

By hypothesis, for all i = 1 . . . n we have |li| > 0 so that γi = 0. The first order optimality
conditions give:



35

For i ∈ Ck and i 6= ok,
∂L

∂li
= 0 gives :

if i ∈ I+ ∩ A+, xi + li − xok − lok − diok = −λ
2

(2.9)

if i ∈ I+ ∩ A−, xi + li − xok − lok + diok = −λ
2

(2.10)

if i ∈ I− ∩ A+, xi + li − xok − lok − diok =
λ

2
(2.11)

if i ∈ I− ∩ A−, xi + li − xok − lok + diok =
λ

2
(2.12)

For the two centers oκ1 and oκ2 of clusters Cκ1 and Cκ2 such that oκ1 ∈ I+ and oκ1 ∈ I−

we have:
∂L

∂loκ1
= −

∑
t∈A+

(xt + lt − xoκ1 − loκ1 − dtoκ1 )ztκ1 +
∑
t∈A−

(xoκ1 + loκ1 − xt − lt − dtoκ1 )ztκ1

+

q∑
u=1

(xoκ1 + loκ1 − xou − lou)−
κ1∑
u=1

douoκ1 +

q∑
u=κ1+1

douoκ1 +
λ

2
= 0 · (2.13)

∂L

∂loκ2
= −

∑
t∈A+

(xt + lt − xoκ2 − loκ2 − dtoκ2 )ztκ2 +
∑
t∈A−

(xoκ2 + loκ2 − xt − lt − dtoκ2 )ztκ2

+

q∑
u=1

(xoκ2 + loκ2 − xou − lou)−
κ2∑
u=1

douoκ2 +

q∑
u=κ2+1

douoκ2 −
λ

2
= 0· (2.14)

Substracting equations (2.13) and (2.14) and using equations (2.9), (2.10), (2.11) and

(2.12), we obtain:

0 =
(
nA

+I+

κ1
− nA+I−

κ1
+ nA

−I+

κ1
− nA−I−κ1

− nA+I+

κ2
+ nA

+I−

κ2
− nA−I+κ2

+ nA
−I−

κ2

) λ
2

+

q∑
u=1

(xoκ1 + loκ1 − xoκ2 − loκ2 )−
κ1∑
u=1

douoκ1 +

q∑
u=κ1+1

douoκ1 +

κ2∑
u=1

douoκ2 −
q∑

u=κ2+1

douoκ2 + λ

≤(N + 2)
λ

2
+

q∑
u=1

(xoκ1 + loκ1 − xoκ2 − loκ2 )−
κ1∑
u=1

douoκ1 +

q∑
u=κ1+1

douoκ1 +

κ1∑
u=1

douoκ2

+

κ2∑
u=κ1+1

douoκ2 −
q∑

u=κ2+1

douoκ2 as κ1 < κ2

≤(N + 2)
λ

2
+

q∑
u=1

(xoκ1 + loκ1 − xoκ2 − loκ2 )−
κ1∑
u=1

douoκ1 +

q∑
u=κ1+1

douoκ2 +

q∑
u=κ1+1

doκ1oκ2

+

κ1∑
u=1

douoκ1 +

κ1∑
u=1

doκ1oκ2 +

κ2∑
u=κ1+1

douoκ2 −
q∑

u=κ2+1

douoκ2 by triangle inequality
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≤(N + 2)
λ

2
+

q∑
u=1

(xoκ1 + loκ1 − xoκ2 − loκ2 ) +

q∑
u=1

doκ1oκ2 as κ1 and κ2 are two successive points

≤(N + 2)
λ

2
+ q(xoκ1 + loκ1 − xoκ2 − loκ2 ) + qdoκ1oκ2

≤(N + 2)
λ

2
+ q(xoκ1 − xoκ2 + 2ε) + qdoκ1oκ2 as |li| ≤ ε

≤(N + 2)
λ

2
+ q(doκ1oκ2 − d

0
oκ1oκ2

+ 2ε) as xoκ1 < xoκ2 ·
Then

λ ≥ 2q

N + 2

(
d0
oκ1oκ2

− doκ1oκ2 − 2ε
)
,

which concludes the proof.

2.5.2 Application

Penalized MDF method has been applied using reduced reference matrix. The opti-
mization results were obtained much more quickly (even thirty times faster than using
complete matrix for ER protein) and the amino acids movements detected are similar to
those obtained with the complete reference matrix.

Penalized MDF method has been applied using reduced reference matrix. The opti-
mization results were obtained much more quickly (even thirty times faster than using
complete matrix for ER protein) and the amino acids movements detected are similar to
those obtained with the complete reference matrix.
For the choice of λ, asN can be equal to 0 we take the smallest admissible value considering
the examples at hand, that is 4. Thus we obtain λ ≤ q

3

(
d0
oκ1oκ1

− doκ1oκ1 − 2ε
)
. Note that

by increasing the value of N we decrease λ and more amino acids are moved and these
movements can be also detected as important displacements. Concerning the amplitude
of random movements, we take it equal to 0.5Å . The application results are given by
figure 2.10.
The amino acids detected with the reduced reference matrix are approximately similar to
those detected with the complete one with the exception of AspRS for which q should be
taken higher.

2.6 Conclusion

The purpose of penalized MDF is to modify only the coordinates of amino acids that have
significantly moved and fix the others. Penalization term and penalization parameters
are crucial in the process of obtaining good results. This involves the choice of a penalty
coefficient λ which is related to the minimum displacement.
Penalized MDF has been applied to three different proteins in order to find the residues
that were affected by the interaction with other molecules. Comparison of our results
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Figure 2.10: The displacements of amino acids for the three proteins studied above. The
line plot of movements for the two proteins ER and FhuA are similar to that obtained in
figures 2.4 and 2.5.
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with Procrustes analysis, DynDom results and the literature reveals that penalized MDF
is an efficient method for protein movement detection and fills a gap in the computational
toolbox of molecular biologists.
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Chapter 3

Random model for Multidimensional
Fitting method

In chapter 2, multidimensional fitting method with a penalized version was shown. The
displacement vectors are taken as deterministic vectors and the random effects that can
be produced during the modification and can affect the interpretation of the modifica-
tions significance are not taken into account. In this chapter, we want to introduce the
random effect in the model of MDF method to find then the real displacement vectors.
The minimization of the mean square error between the new distances and the reference
distances performed in the deterministic model of MDF, to obtain the optimal values of
displacement vectors, cannot be applied for the random model as the objective function
here is a random variable. Therefore, we want to use different ways to find these vectors.
First of all, the random model of MDF is presented in Section 3.1, then in Sections 3.2

and 3.3, two ways to obtain the optimal values of displacement vectors are illustrated.
After that, an application in the sensometrics domain is presented in Section 3.7 in order
to fit the sensory profiles of products to consumers preferences of these products. Finally,
we conclude our work in Section 3.8.

3.1 The random model of Multidimensional Fitting

In chapter 2 it was shown that the modification function f is written as follows: f(Xi) =

Xi+Li, where for i = 1, . . . , n, the vectorsXi and Li in Rp are, respectively, the coordinate
and the displacement vectors of point i. The optimization problem of MDF is given by:

∆ =
∑

1≤i<j≤n

(dij − a δij)2

with δij = ||Xi + Li −Xj − Lj||2 , a ∈ R a scaling variable.
Owing to the negligence of random effects that can occur during modification, the in-
terpretation of the displacements can be erroneous. Thereby, to tackle this problem we
introduce the random effects in the modification function. So, the new modification func-
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tion is given by:
f(Xi) = Xi + θi + εi,

where θi and εi in Rp are, respectively, the fixed and random part of modification.
Contrary to what has been seen above, δij here is a random variable and not a deterministic
value, for all 1 ≤ i < j ≤ n, so the error ∆ cannot be minimized directly. Deterministic
and stochastic optimization are presented to find the optimum value of vectors (θ1, . . . , θn):

1- Deterministic optimization: by minimizing a function depending on vectors (θ1, . . . , θn)
with consideration that the components of vectors εi, for all i = 1, . . . , n, are inde-
pendently and identically normally distributed.

2- Stochastic optimization: by simulating the error ∆ where the components of vectors
εi for all i = 1, . . . , n are dependent and not normally distributed.

3.2 Calculation of (θ∗1, . . . , θ
∗
n) by minimization

In this section, we suppose that the components of vector εi denoted εik, for all i = 1, . . . , n

and k = 1, . . . , p, are p-dimensional independent and identically distributed random vari-
ables where the vector εi is multivariate normally distributed with mean E(εi) = 0 (the
vector 0 in Rp is the null vector) and variance Var(εi) = σ2Ip (σ is a strictly positive
value to be fixed and Ip is the identity matrix).
We note Γ a n×nmatrix that contains the distances between the points after modification.
The objective function of the minimization problem called g(D,Γ) can be expressed in
different forms. We cite below some of them:

g : Mn×n(R)×Mn×n(R) 7−→ R

(D,Γ) 7−→



E(‖D − aΓ‖2
2)

med(‖D − aΓ‖2
2)

minmax(‖D − aΓ‖2
2)

‖D − a E(Γ)‖2
2

‖D − a med(Γ)‖2
2

‖minmax(D − aΓ)‖2
2.

In our work, we are interested to take g(D,Γ) = E(‖D − aΓ‖2
2
). The expression of

‖D − aΓ‖2
2
noted ∆ (as the mean square error cited above) can be rewritten as:

∆ =
∑

1≤i<j≤n

(dij − a‖Xi + θi + εi −Xj − θj − εj‖2)2·

The problem here is to find the vectors (θ∗1, . . . , θ∗n) such that the minimum of E(∆) under
(θ1, . . . , θn) is reached. The initial optimization problem (P0) is defined by:
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(P0) : min
θ1,...,θn∈Rp

E(∆)·

The optimal solution obtained from (P0) is a solution assigns the smallest value to E(∆)

but moves too many points. So, it is a good solution from minimization standpoint, but
awkward from parsimony standpoint.
A new optimization problem is presented to find the optimal vectors (θ∗1, . . . , θ

∗
n) by taking

into account the minimization of the expectation of ∆ and the parsimonious choice of
displacements. A natural approach to obtain such sparsity solution is to use the number
of non-zero displacements as a penalty. So, a penalty term can be defined, using `0-norm,
as
∑n

i=1‖θi‖0 where
‖.‖0= #(i = 1, . . . , n; k = 1, . . . , p| θik = 0)

is the `0 norm which measures the parsimony of the displacements of points. Thus, a new
optimization problem called (P1) is given by:

(P1) : min
θ1,...,θn∈Rp

E(∆) + η
n∑
i=1

‖θi‖0 ,

with η is a positive regularization parameter to be chosen. It controls the trade-off between
the minimization of the expectation of the error and the use of a parsimonious number of
displacements.

3.2.1 Choice of regularization parameter

In different penalization problems as the penalized regression or penalized likelihood meth-
ods for high dimensional data analysis [8], the choice of regularization parameter is always
crucial to lead good results attached to the problem at hand. Different methods have
been introduced to find the good value of this parameter (see [10],[6]). Some practical ap-
proaches consist in comparing different models using a sequence of penalization parameter
and then choose the best of them using some model selection criteria like Cross-validation
(CV) ([2], [20]), Akaike Information Criterion (AIC) [1] and Bayes Information Criterion
(BIC) [19].
In our model, the choice of the value of η is related to the number of displacements.
With the same practical concept as the approaches presented in the literature, we want
to solve the optimization problem (P1) by taking different values of η. However, our
problem is related to the number of displacements so we choose a value of η that takes
into account the number of points that must be modified in our data to fit the references
distances. This number of points can be computed from the data or fixed by the number
of displacements that we want to perform. So, the chosen number of displacements can
be taken by two ways:

1- through the posed problem,
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2- using the data.

Obviously, first way is trivial. Indeed, it is sufficient an user or a company choose a fixed
number of displacements that wish perform to find the desirable solution. Accordingly,
fixing the number of displacements can be interesting to companies because in some cases
a displacement can be difficult and expensive therefore it is suitable for them to fix at the
beginning the number of displacements. For the second way, the number of displacements
can be calculated using the data. Therefore, a criterion of points selection defined below
is used to choose the number of displacements.

3.2.1.1 Criterion for selection points

The number of displacements is related to the number of points that are misplaced in
their initial configuration and need movements to fit their reference distances. For that,
we have developed a simple criterion based on the error calculated on the initial data
before data modification. This criterion for selection of the points is denoted ρi.
Indeed, for i = 1, . . . , n and j = i+ 1, . . . , n, we calculate the following difference:

rij = (dij − a‖Xi −Xj‖2)2.

Note that rij is equivalent to eij with Li = Lj = 0.
Then, for each i = 1, . . . , n, the criterion for selection points is defined as:

ρi =

n∑
m=1,m 6=i

rim

n∑
1≤i<j≤n

rij

·

The values of ρi are between 0 and 1 so, for fixed value % ∈ [0, 1] which is chosen through
the value of ρi:

• if ρi ≤ %, then i is considered as correctly placed point,

• else, i is considered as misplaced point.

Now, in order to verify the interest of the modification of coordinates so as to approx-
imate the distances, we want to perform a statistical test on the displacement vectors
(θ∗1, . . . , θ∗n).

3.2.2 Statistical test for the displacement vectors (θ∗1, . . . , θ
∗
n)

In this section, we want to present a statistical test for the displacement vectors θi for all
i = 1, . . . , n. This test is based on the hypothesis of displacements significance. Recall
the error:



47

∆ =
∑

1≤i<j≤n

(dij − a‖Xi + θi + εi −Xj − θj − εj‖2)
2 . (3.1)

We note ∆0 the initial error given by:

∆0 =
∑

1≤i<j≤n

(dij − a‖Xi + εi −Xj − εj‖2)2.

The two hypothesis of the statistical test are:

(H0) :

(H1) :

For (θ∗1, . . . , θ
∗
n) such that dij = a‖Xi + θi −Xj − θj‖2 , for all (i, j),

the initial error ∆0 and the error ∆ calculated from

the vectors (θ∗1, . . . , θ
∗
n) have the same distribution.

The initial error ∆0 and the error ∆ calculated from the vectors

(θ∗1, . . . , θ
∗
n)have not the same distribution.

The error ∆ is the test statistic and the decision rule is the following:

Rejection of (H0)⇔ PH0 [Reject (H0)] ≤ α⇔ PH0 [∆ ≥ ∆c] ≤ α·
To perform this test, we use the Bienaymé-Tchebychev inequality:

∀γ > 0, P[|∆− E(∆)| ≥ γ] ≤ Var(∆)

γ2
·

Moreover, we suppose that the random effect is injected in the observation so instead of

observing Xi we observe Xi + εi. Then, by choosing γ = |∆0 − E(∆)|, the ratio
Var(∆)

γ2

can be considered as p-value. So, if it is small than α then we reject the null hypothesis
(H0) with α is the error of type I.
Computation of expectation and variance of error ∆ are done in Section 3.4. Under the
hypothesis (H0) it is sufficient to replace ‖Xi + θi −Xj − θj‖2 by dij.

3.2.3 The optimization problem

Once hypothesis (H0) is rejected, the vectors (θ∗1, . . . , θ∗n) can be calculated by solving
problem (P1).
Using the results of Section 3.4, the expectation of the error ∆ has been calculated from
the expectation of the non-central chi-squared and non-central chi distribution.

Proposition 3.2.1. The expectation of the error ∆ is:

E(∆) =
∑

1≤i<j≤n

[
d2
ij + 2a2σ2(p+ λ2

ij)− 2
√
πaσdijL

p
2
−1

1
2

(
−
λ2
ij

2

)]
,



48 3. Random model for Multidimensional Fitting method

where λij =
1√
2σ
‖Xi + θi −Xj − θj‖2 and Lγν(x) is the generalized Laguerre polynomial

[5].

The optimization problem (P1) can rewritten as:

(P1) : min
θ1,...,θn∈Rp

a2‖Xi+θi−Xj−θj‖2
2
−2
√
πaσdijL

p
2
−1

1
2

(
−
‖Xi + θi −Xj − θj‖2

2

4σ2

)
+η

n∑
i=1

‖θi‖0·

3.3 Calculation of (θ∗1, . . . , θ
∗
n) by simulation

In this section, we suppose that the p components of εi are dependent or/and not neces-
sarily normally distributed so the application of chi-squared and chi distributions becomes
impossible. Therefore, we want to present an algorithm noted Algorithm 1 which allows
us to find the optimal vectors θ∗1, . . . , θ∗n using Metropolis-Hastings [17].

3.3.1 Simulation tools

Different tools used in algorithm 1 and associated to the generation of vectors θ1, . . . , θn

in order to minimize the error ∆ are presented in the follow.

3.3.1.1 Identification of misplaced and correctly placed sets

The set of points can be divided into two subsets:

• The first, noted W , having size equal to nW . This subset contains the points that
are correctly placed and should not be moved.

• The second, notedM , having size equal to nM . This subset contains the points that
are misplaced and must be moved.

The criterion for points selection ρi presented in Section 3.2.1.1 is used to construct these
two subsets.

3.3.1.2 Movement of set M

The subset M contains the misplaced points that must be moved in order to fit the
reference distances. In this section, the work is concentrated to find movements for the
subset M approaching as possible as the distances calculated after movements to the
reference distances. The movements that can be applied to M are translation, scaling
and rotation. The scaling movement is not interest in our study as the subsets W and
M are in the same scale seen that are derived from the same set of points and the
scaling variable a presented in the optimization problem of MDF is kept. Moreover, we
suppose that the points inside M are well concentrated so that the rotation movement
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can be neglected. That is why we are just interested on the translation movement. The
translation of M through a vector B ∈ Rp can be shown as the translation of each points
in M . So, the translation of a point j ∈ M is given by: Yj + B where Yj ∈ Rp is the
coordinate vector of point j.

The translation movement is performed in such a way to approach the distances calculated
after translation to the distances given by the reference matrix. Thus, find the vector B
return to solve the following optimization problem:

(P) : min
B∈Rp

∑
i∈W

∑
j∈M

(
d2
ij − a ‖ Xi − Yj −B ‖2

2

)2
.

In order to simplify the problem (P), we suppose that for all i ∈ W and j ∈M , d2
ij − a ‖

Xi − Yj −B ‖2
2
≥ 0 and the problem (P) becomes:

(P1)

 s.t

min
B∈Rp

∑
i∈W

∑
j∈M

(
d2
ij − a ‖ Xi − Yj −B ‖2

2

)
∀i ∈ W and j ∈M, d2

ij − a ‖ Xi − Yj −B ‖2
2
≥ 0·

Relaxation of problem (P1): The following problem (P2) can easily solved and
provide a starting point to resolve (P1). We have:

(P2) :
∑
i∈W

∑
j∈M

(
d2
ij − a ‖ Xi − Yj −B ‖2

2

)
= 0 (3.2)

⇔
∑
i∈W

∑
j∈M

a
(
‖ Xi − Yj ‖2

2
+ ‖ B ‖2

2
−2〈Xi − Yj, B〉

)
−
∑
i∈W

∑
j∈M

d2
ij = 0

⇔ a ‖ B ‖2
2
−2a

∑
i∈W

∑
j∈M

〈Xi − Yj, B〉

nWnM
=

∑
i∈W

∑
j∈M

d2
ij

nWnM
− a

∑
i∈W

∑
j∈M

‖Xi − Yj‖2
2

nWnM
·

Hence,

a

∥∥∥∥∥∥∥∥B −
∑
i∈W

∑
j∈M

(Xi − Yj)

nWnM

∥∥∥∥∥∥∥∥
2

2

=

∑
i∈W

∑
j∈M

d2
ij

nWnM
− a

∑
i∈W

∑
j∈M

‖ Xi − Yj ‖2
2

nWnM

+a

‖∑
i∈W

∑
j∈M

(Xi − Yj) ‖2


2

n2
Wn2

M
·

So, ∥∥∥∥∥∥∥∥B −
∑
i∈W

∑
j∈M

(Xi − Yj)

nWnM

∥∥∥∥∥∥∥∥
2

2

≤ r2, (3.3)
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with

r2 =

∣∣∣∣∣∣∣∣∣∣∣

∑
i∈W

∑
j∈M

d2
ij

a nWnM
−

∑
i∈W

∑
j∈M

‖ Xi − Yj ‖2
2

nWnM
+

(
‖
∑
i∈W

∑
j∈M

(Xi − Yj) ‖2

)2

n2
Wn

2
M

∣∣∣∣∣∣∣∣∣∣∣
·

Using inequality (3.3), we can conclude that the optimal solution of the vector B belongs

to an hypersphere (S) centered in C =

∑
i∈W

∑
j∈M(Xi − Yj)
nWnM

with radius r. As Equation

(3.2) is never equal to zero during optimization, so we take it smaller than certain real
value. Therefore, the optimal solution is guened to belong to an hypersphere (Sξ) with
same center C as hypersphere (S) but with radius equal to r ± ξ with ξ a small value in
R+.

We suppose that vector B is uniformly distributed between 0 and Bmax, so it is necessary
to find the maximal value Bmax. This value is geometrically determined using Figure 3.1.
Starting with a null value of vector B, B moves uniformly on the line (d) passing by O
(the point where the vector B is null) and C to reach its maximum at the point A, the
far intersection between (d) and hypersphere (Sξ), hence the uniqueness of A.

C

ξ

ξ

r

O

A

(d)

(S)

•

•

•

Figure 3.1: Illustration of the determination of vector B in R2. The maximal solution of
B is located at A. The values of vector B moves uniformly on the segment [OA].

To calculate the maximal solution of vector B, it is needed to find the far intersection of
the line (d) with hypersphere (Sξ). The line (d) has as direction vector the vector OC.
So, the parametric equation of (d) is equal to:

B = (t+ 1)C· (3.4)

Furthermore, we have:  B = (t+ 1)C

‖ B − C ‖2
2
= (r + ξ)2.
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The intersection between (d) and (Sξ) gives:
‖ (t+ 1)C − C ‖2

2
= (r + ξ)2

‖ tC ‖2
2
= (r + ξ)2

t2 ‖ C ‖2
2
= (r + ξ)2

t = ± r + ξ

‖ C ‖2
·

We are interested by the farthest intersection, thus we take t =
r + ξ

‖ C ‖2
· By replacing t in

Equation (3.4), we obtain:

Bmax =

(
r + ξ

‖ C ‖2
+ 1

)
C.

The values of B can be proposed uniformly on the segment [OA], so
B ; U (0, Bmax) .

3.3.1.3 Movement vectors generation

In practice, for all k = 1, . . . , n, we suppose that M contains one point noted l. The
choice of this point is made by a multinomial distributionM(1, ρ1, . . . , ρn) where ρk for
k = 1, . . . , n is as defined in section 3.2.1.1.
At instant t, a point l chosen as misplaced point must occur a movement through the
uniform distribution such as U

(
0; ( rl+ξ‖Cl‖

+ 1)Cl

)
with Cl and rl are, respectively, the center

and the radius of hypersphere (Sξl ) obtained by taking M = {l}. Thus, the movement of
the point l is equal to the movement at instant t− 1 plus the new movement obtained by
uniform distribution. Hence, we can write:

θ∗l = θt−1
l +Bl,

with Bl is a generation value of the uniform distribution U
(
0, Bl

max

)
. Noted that the

equation of hypersphere given by Equation (3.3) in each instant depends of misplaced
point l.
We note Θ the sequence of n generated vectors in Rp defined by:

Θ = (θ1, . . . , θn). Therefore, the passage from θt−1
l to θtl occurs in a way to move:

Θt−1 = (θt−1
1 , . . . , θt−1

l , . . . , θt−1
n )

to
Θt = (θt−1

1 , . . . , θtl , . . . , θ
t−1
n ).

3.3.1.4 Proposal distribution

A proposal distribution is needed in the Metropolis-Hastings algorithm defined below.
This distribution is constructed by calculating the probability to pass from Θt−1 to a new
generate value of Θ denoted Θ∗ and it is equal to the probability to choose a point l
multiplied by the probability of the movement of this point. So, the proposal distribution



52 3. Random model for Multidimensional Fitting method

noted q is given by:

q(Θt−1 −→ Θ∗) = ρl ×
1

rl+ξ
‖Cl‖

+ 1

with l is the chosen point.
We can easily see that this proposal distribution is a probability density function as∑n

i=1 ρi = 1.

3.3.2 Calculation of (θ∗1, . . . , θ
∗
n) using Metropolis-Hastings algo-

rithm

We consider that the component of vector εi are dependent such that εi  Np(0,Σ), with
Σ is the covariance matrix.
The Metropolis-Hastings algorithm allows us to build a Markov chain with a desired
stationary distribution [17],[9]. The proposal distribution here is related to the choice of
vectors θi for i = 1, . . . , n and it is given in paragraph 3.3.1.4. The target distribution is
given by:

π(Θ, ε) ∝ exp

(
−E(Θ)

T

)
· h(ε)

where E is an application given by:
E : Mn×p 7−→ R

Θ = (θ1, . . . , θn) 7−→ E(Θ) =
∑

1≤i<j≤n

(dij − a‖Xi + θi −Xj − θj‖2)
2 ,

and h is the density function of the normal distribution Np(0,Σ). The variable T is the
temperature parameter, to be fixed according to the value range of E.
Algorithm 1 describes the Metropolis-Hastings algorithm of our method.
Remark: The error εi can be distributed through any other distribution other than the
Gaussian distribution, so it is sufficient to generate the vector εi using this distribution
instead the normal distribution in Algorithm 1.

3.4 Calculation of the expectation and the variance of
the error ∆

The statistical test presented in Section 3.2.2 needs the computation of the expectation
and the variance of the error ∆. So first of all, we want to give fives lemmas used in the
computation and then the computation of these values.

3.4.1 Fives Lemmas used in the calculation

We have:
eij = (dij − a‖Xi + θi + εi −Xj − θj − εj‖2)

2 .
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Algorithm 1
Initialization: Θ0 = (θ1| . . . |θn) = (0| . . . |0).
Calculate the ratios ρ1, . . . , ρn.
for t = 1 to N1 do
Generate a point l using multinomial distributionM(1, ρ1, . . . , ρn).
Generate a vector Bl using the uniform distribution U(0, Bl

max) with Bl
max =(

rl+ξ
‖Cl‖2

+ 1
)
Cl.

Generate the vector θ∗l = θt−1
l +Bl and for all i ∈ [1, . . . , n]− {l} take the vectors θ∗i

equal to θt−1
i .

Generate the vectors ε∗i using normal distribution N (0,Σ) for i = 1, . . . , n.

Calculate α = min{1,
exp

(
−E(Θ∗)

T

)
h(ε∗)q(Θ∗ → Θt−1)

exp
(
−E(Θt−1)

T

)
h(εt−1)q(Θt−1 → Θ∗)

}.

Generate u ∼ U(0, 1).
if u ≤ α then

Θt = Θ∗

else
Θt = Θt−1.

end if
end for
Choose Θ that gives the minimum value of error ∆

By developing the expression of eij, we obtain:
eij = d2

ij + a2‖Xi + θi + εi −Xj − θj − εj‖2
2 − 2 a dij‖Xi + θi + εi −Xj − θj − εj‖2 (3.5)

We want to present two lemmas that will help us in the calculation of expectation and
variance of ∆.

Lemma 3.1. Let Nij be a random variable defined by:

Nij =

p∑
k=1

(εik − εjk)2 ,∀1 ≤ i < j ≤ n (3.6)

where the p components of vectors εi, for all i = 1, . . . , n are identically independent
random variables and normally distributed such that εik  N (0, σ2) for k = 1, . . . , p.
Then, we have:

E(Nij) = 2σ2p et Var(Nij) = 8σ4p.

Proof. So that, εik  N (0, σ2) and the vectors εi and εj are independents, we have

εik − εjk  N (0, 2σ2). Thus,
p∑

k=1

(
εik − εjk√

2σ

)2

 χ2
p, and consequently:

E

(
p∑

k=1

(
εik − εjk√

2σ

)2
)

= p et Var

(
p∑

k=1

(
εik − εjk√

2σ

)2
)

= 2p.
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So, we obtain:
E (Nij) = 2σ2p

Var (Nij) = 8σ4p.

Lemma 3.2. Let Aij be a random variable defined by:
Aij = ‖Xi + θi + εi −Xj − θj − εj‖2 (3.7)

with εik  N (0, σ2). Then, we have:
E(Aij) =

√
2σµij

Var(Aij) = 2σ2(p+ λ2
ij − µ2

ij)

E(A2
ij) = 2σ2(p+ λ2

ij)

Var(Aij)2) = 8σ4(p+ 2λ2
ij)

E
(
A3
ij

)
= 6σ3

√
πL

p
2
−1

3
2

(
−
λ2
ij

2

)
E
(
A4
ij

)
= 4σ4(p+ λ2

ij)
2 + 8σ4(p+ 2λ2

ij)

with µij =

√
π

2
L
p
2
−1

1
2

(
−
λ2
ij

2

)
, λij =

√√√√ p∑
k=1

(
xik + θik − xjk − θjk√

2σ

)2

and L(α)
ν (x) is the

generalized Laguerre polynomial.

Proof. Aij is a random variable defined by:

Aij = ‖Xi + θi + εi −Xj − θj − εj‖2 =

√√√√ p∑
k=1

(xik + θik + εik − xjk − θjk − εjk)2.

The random variable xik + θik + εik − xjk − θjk − εjk is normally distributed such that
N (xik + θik − xjk − θjk, 2σ2) which implies that the random variable√√√√ p∑

k=1

(
xik + θik + εik − xjk − θjk − εjk√

2σ

)2

is distributed according to the non-central chi-squared distribution with p degrees of
freedom and λij the non-centrality parameter that is related to the mean of the random

variable by: λij =

√√√√ p∑
k=1

(
xik + θik − xjk − θjk√

2σ

)2

.

Then, we obtain:

E

√√√√ p∑
k=1

(
xik + θik + εki − xjk − θjk − εjk√

2σ

)2
 =

1√
2σ

E(Aij).

Recall that the expectation of non-central chi distribution χp(λij) is given by:√
π

2
L
p
2
−1

1
2

(
−
λ2
ij

2

)
,

where L
p
2
−1

1
2

(−λ2ij
2

) is the generalized Laguerre polynomial [5].
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We note

µij =

√
π

2
L
p
2
−1

1
2

(
−
λ2
ij

2

)
.

Then, we have
E(Aij) =

√
2σµij.

Moreover, we have:

Var

√√√√ p∑
k=1

(
xik + θik + εik − xjk − θjk − εjk√

2σ

)2
 =

1

2σ2
Var(Aij)·

Recall that the variance of non-central chi distribution χp(λij) is given by:
p+ λ2

ij − µ2
ij

that gives:
Var(Aij) = 2σ2(p+ λ2

ij − µ2
ij).

Concerning the calculation of moments of order 3 and 4, we have:

E

√√√√ p∑
k=1

(
xik + θik + εik − xjk − θjk − εjk√

2σ

)2
3

=
1

2
√

2σ3
E(A3

ij)

and

E

√√√√ p∑
k=1

(
xik + θik + εik − xjk − θjk − εjk√

2σ

)2
4

=
1

4σ4
E(A4

ij)·

For a non-central chi distribution, the moments 3 and 4 are given respectively by:

3

√
π

2
L
p
2
−1

3
2

(
−
λ2
ij

2

)
and (p+ λ2

ij)
2 + 2(p+ 2(λ2

ij)

We obtain then:

E(A3
ij) = 6σ3

√
πL

p
2
−1

3
2

(−
λ2
ij

2
)

and
E(A4

ij) = 4σ4(p+ λ2
ij)

2 + 8σ4(p+ 2λ2
ij)

As A2
ij is a random variable distributed according to the non-central chi-squared distri-

bution and having p degrees of freedom and λ2
ij non-centrality parameter, we obtain:

E(A2
ij) = 2σ2(p+ λ2

ij) and Var(A2
ij) = 8σ4(p+ 2λ2

ij).

Lemma 3.3. An upper bound of E(AijAij′) and E(A2
ijA

2
ij′) are given by:

E(AijAij′) ≤ 2σ2
√

(p+ λ2
ij)(p+ λ2

ij′),

E(A2
ijA

2
ij′) ≤ 4σ4

√[
(p+ λ2

ij)
2 + 2(p+ 2λ2

ij)
] [

(p+ λ2
ij′)

2 + 2(p+ 2λ2
ij′)
]
·

Proof. The variables Aij and Aij′ are two dependent random variables.
Using Cauchy-Schwartz inequality, we can write:

E(AijAij′) ≤
√
E(A2

ij)E(A2
ij′)
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Using Lemma 3.2, we obtain:
E(AijAi′j′) ≤ 2σ2

√
(p+ λ2

ij)(p+ λ2
ij′)·

Moreover,
E(A2

ijA
2
ij′) ≤

√
E(A4

ij)E(A4
ij′)·

And from lemma 3.2, we obtain:
E(A2

ijA
2
ij′) ≤ 4σ4

√[
(p+ λ2

ij)
2 + 2(p+ 2λ2

ij)
] [

(p+ λ2
ij′)

2 + 2(p+ 2λ2
ij′)
]
·

Lemma 3.4. A lower bounds of Var(Aij +Aij′), cov(Aij, Aij′) and E(AijAij′) are given
by:

Var(Aij + Aij′) ≥ 2σ2
(
p+ λ2

jj′ − (µij + µij′)
2
)
,

cov(Aij, Aij′) ≥ −σ2
(
p+ 2µijµij′ + λ2

ij + λ2
ij′ − λ2

jj′

)
,

E(AijAij′) ≥ −σ2
(
p+ λ2

ij + λ2
ij′ − λ2

jj′

)
·

Proof. We have:
Aij + Aij′ = ‖Xi + θi + εi −Xj − θj − εj‖+ ‖Xi + θi + εi −Xj′ − θj′ − εj′‖

≥ ‖Xj + θj + εj −Xj′ − θj′ − εj′‖ = Ajj′· (3.8)
The variance of Aij + Aij′ is given by:

Var(Aij + Aij′) = E(Aij + Aij′)
2 − E2(Aij + Aij′)·

Using inequality 3.8 and as the variables Aij are positives for all couples (i, j), we have
(Aij + Aij′)

2 ≥ A2
jj′ and then:

E
(
(Aij + Aij′)

2
)
≥ E(A2

jj′) = 2σ2(p+ λ2
jj′)·

Hence, we have:
Var(Aij + Aij′) ≥ 2σ2(p+ λ2

jj′)− (E(Aij) + E(Aij′))
2

≥ 2σ2(p+ λ2
jj′)− 2σ2(µij + µij′)

2

≥ 2σ2
(
p+ λ2

jj′ − (µij + µij′)
2
)
·

To obtain the lower bound of cov(Aij, Aij′), we use the definition:

cov(Aij, Aij′) =
1

2
[Var(Aij + Aij′)− Var(Aij)− Var(Aij′)] ·

Then, using Lemma 3.2 and the above result, we obtain:
cov(Aij, Aij′) ≥ σ2(p+ λ2

jj′ − (µij + µij′)
2)− σ2(p+ λ2

ij − µ2
ij)− σ2(p+ λ2

ij′ − µ2
ij′)

≥ −σ2
(
p+ 2µijµij′ + λ2

ij + λ2
ij′ − λ2

jj′

)
· (3.9)

Concerning the lower bound of E(AijAij′), we have:
E(AijAij′) = cov(Aij, Aij′) + E(Aij)E(Aij′)

≥ −σ2
(
p+ 2µijµij′ + λ2

ij + λ2
ij′ − λ2

jj′

)
+ 2σ2µijµij′

≥ −σ2
(
p+ λ2

ij + λ2
ij′ − λ2

jj′

)
·
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Lemma 3.5. A lower bounds of E(A2
ijAij′) and E(A2

ij′Aij) are given by:
E(A2

ijAij′) ≥ −σ2
(
p+ λ2

ij + λ2
ij′ − λ2

jj′

)
−
√

2σµij′ ,

E(A2
ij′Aij) ≥ −σ2

(
p+ λ2

ij + λ2
ij′ − λ2

jj′

)
−
√

2σµij·

Proof.
A2
ijAij′ ≥ (Aij − 1)Aij′ as A2

ij ≥ Aij − 1

≥ AijAij′ − Aij′ ·
Thus,

E
(
A2
ijAij′

)
≥ E(AijAij′)− E(Aij′)·

Lemma 3.4 leads:
E(A2

ijAij′) ≥ −σ2
(
p+ λ2

ij + λ2
ij′ − λ2

jj′

)
−
√

2σµij′ ·
Similarly, we obtain:

E(A2
ij′Aij) ≥ −σ2

(
p+ λ2

ij′ + λ2
ij − λ2

jj′

)
−
√

2σµij·

3.5 Calculation of the expectation value of error ∆

Using equations (3.5) and (3.7), we have:
eij = d2

ij + a2A2
ij − 2adijAij· (3.10)

We suppose that the p components of vectors εi, for all i = 1, . . . , n are identically
independent random variables and normally distributed. Using Lemma 3.2, we obtain:

E(eij) = d2
ij + 2a2σ2(p+ λ2

ij)− 2
√
πaσdijL

p
2
−1

1
2

(
−
λ2
ij

2

)
·

where λij =
1√
2σ
‖Xi + θi −Xj − θj‖2·

Hence, the expectation of error ∆ is equal to:

E(∆) =
∑

1≤i<j≤n

[
d2
ij + 2a2σ2(p+ λ2

ij)− 2
√
πaσdijL

p
2
−1

1
2

(
−
λ2
ij

2

)]
· (3.11)

3.6 Calculation of variance value of error ∆

The variance of ∆ is given by:
Var(∆) = Var(

∑
1≤i<j≤n

eij)

=
∑

1≤i<j≤n

Var(eij) +
∑

1 ≤ i < j ≤ n

1 ≤ i′ < j′ ≤ n

cov(eij; ei′j′)

As cov(eij, ei′j′) = 0, if (i, j) ∩ (i′, j′) = ∅ we obtain:
Var(∆) =

∑
1≤i<j≤n

Var(eij) + 2
∑

1≤i<j<j′≤n

cov(eij, eij′)· (3.12)
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To calculate Var(∆) it is necessary to calculate Var(eij) and cov(eij; eij′) for all couples
(i, j) and (i, j′) with 1 ≤ i < j < j′ ≤ n.

3.6.1 Calculation of Var(eij)

We have from Equation (3.10):
eij = d2

ij + a2A2
ij − 2adijAij·

The definition of variance is:
Var(eij) = E(e2

ij)− (E(eij))
2· (3.13)

Let begin by the calculation of E(e2
ij).

e2
ij =

(
d2
ij + a2A2

ij − 2adijAij
)2

= d4
ij + a4A4

ij + 6a2d2
ijA

2
ij − 4ad3

ijAij − 4a3dijA
3
ij·

The expectation of e2
ij is then given by:

E(e2
ij) = d4

ij + a4E(A4
ij) + 6a2d2

ijE(A2
ij)− 4ad3

ijE(Aij)− 4a3dijE(A3
ij)· (3.14)

Using lemma 3.2, we can obtain all the terms of the moments presented in Eequation
(3.14). Then, we obtain the variance by replacing each term with their value in Equation
(3.13) and we obtain:
Var(eij) = a4E(A4

ij) + 4a2d2
ijE(A2

ij)− 4a3dijE(A3
ij)− a4(E(A2

ij))
2 − 4a2d2

ij(E(Aij))
2

+4a3dijE(A2
ij)E(Aij)·

3.6.2 Calculation of cov(eij, eij′)

Now, we want to calculate cov(eij, eij′). The definition of the covariance is given by:
cov(eij, eij′) = E(eijeij′)− E(eij)E(eij′)· (3.15)

To calculate the expectation E(eijeij′), we firstly calculate eijeij′ :
eijeij′ =

(
d2
ij + a2A2

ij − 2adijAij
) (
d2
ij′ + a2A2

ij′ − 2adij′Aij′
)

= d2
ijd

2
ij′ + a2d2

ijA
2
ij′ − 2ad2

ijdij′Aij′ + a2d2
ij′A

2
ij + a4A2

ijA
2
ij′

−2a3dij′A
2
ijAij′ − 2adijd

2
ij′Aij − 2a3dijAijA

2
ij′ + 4a2dijdij′AijAij′·

Passing to the expectation, we obtain:
E(eijeij′) = d2

ijd
2
ij′ + a2d2

ijE(A2
ij′)− 2ad2

ijdij′E(Aij′) + a2d2
ij′E(A2

ij) + a4E(A2
ijA

2
ij′)

−2a3dij′E(A2
ijAij′)− 2adijd

2
ij′E(Aij)− 2a3dijE(AijA2

ij′) + 4a2dijdij′E(AijAij′) ·

(3.16)

Using the five lemmas presented in section 3.4.1, we can bound E(eijeij′) in a way to
obtain an upper bound of the covariance cov(eijeij′). We note Bijj′ the upper bound of
E(eijeij′). So, returning to Equation (3.12), we obtain:

Var(∆) ≤
∑

1≤i<j≤n

(
E(e2

ij)− E(eij)
2
)

+ 2
∑

1≤i<j<j′≤n

Bijj′ − 2
∑

1≤i<j<j′≤n

E(eij)E(eij′)·
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3.7 Application

This random model of multidimensional fitting has been applied in the sensometrics do-
main. This relatively young domain concerns the analysis of data from sensory science in
order to develop a product by linking sensory attributes to ingredients, benefits, values
and emotional elements of the brand to design products that meet the sensory quality
preferences of sensory-based consumer segments [15]. This analysis of product character-
istics among consumers gives an overview of the positive and negative aspects of products
and aid the companies to better meet consumer tastes. So, the problem here is to fit the
consumers scores to the product configuration given by the experts in order to find the
ideal sensory profile of a product. Thus, two matrices are at disposal, one contains the
consumer scores of products and the second the sensory profile of products given by the
experts.
Several modelling techniques have been applied in sensory analysis domain like preference
mapping which is the must popular of them. They can be divided into two methods:
internal and external analysis [13]. These methods have as objective to visually assess the
relationship between the product space and patterns of preference [12]. In our application,
we want to use the random model of multidimensional fitting to match as well as possible
the sensory profile to the consumers preference of a product. White corn tortilla chips
and muscadine grape juice data sets are used in our application.

3.7.1 Data description

White corn tortilla chips data set has been studied in [15] where 80 consumers rated 11

commercially available toasted white corn tortilla chip products for overall liking, appear-
ance liking, and flavor liking. The names of these 11 tortilla chip products and their
labels are given in the Table 3.1. Moreover, a group of 9 Spectrum trained panelists
evaluated apperance, flavor and texture attributes of tortilla chips using the Spectrum
Method [13] (Sensory Spectrum Inc., Chantham, NJ, U.S.A.). This data set is available
at "http://www.sensometric.org/datasets" and it is composed from consumers notes
table and panelists notes table. The first table is constructed after asked each consumer
to evaluate liking, appearance, flavor and texture of each tortilla chips sample on a 9-point
dedonic scale and the saltiness on 5-point ’JustAboutRight’ (JAR) (for more information
about the scale, visit "http://www.sensorysociety.org/knowledge/sspwiki/Pages/
The209-point20Hedonic20Scale.aspx"). The second table is obtained after the evalu-
ation of the 9 panelists for flavor, texture and appearance attributes of all the chips and
after that the calculation of the average score for each attribute. The total number of
attributes studied in panelists notes table is 37, we note some of them: sweet, salt, sour,
lime, astringent, grain complex, toasted corn, raw corn, masa, toasted grain. . .
The application of our method requires a target and reference matrices. The target matrix

http://www.sensometric.org/datasets
 http://www.sensorysociety.org/knowledge/sspwiki/Pages/The209-point20Hedonic20Scale.aspx
 http://www.sensorysociety.org/knowledge/sspwiki/Pages/The209-point20Hedonic20Scale.aspx
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is given by the panelists notes table, so the dimension of this matrix is 11 × 37 and the
reference matrix is a matrix of dimension 11 × 11 and contains the Euclidean distances
between the different tortilla chip samples calculated using the consumers notes table.

Muscadine grape juice data set is well studied in [16], and it is composed from the scores
of 61 consumers and the average score for 15 attributes given by 9 panelists. This data is
available at "http://www.sensometric.org/datasets". Consumers evaluated 10 mus-
cadine grape juices for overall impression, appearance, aroma, color, and flavor. The name
of the 10 studied muscadine grape cultivars are given in the Table 3.2. These 10 juices
are examined for aroma, basic tastes, aromatics, feeling factors by the group of Sensory
Spectrum trained panelists. Likewise to white corn tortilla chips data set, this data set
is composed from two tables: consumers notes table and panelists notes table. The first
table contains the consumers evaluation of overall impression, appearance, aroma, color
and flavor on the 9-point hedonic scale and the second one contains the average score for
each attribute after evaluation of the 9 panelists for the basic taste, aromatics and feeling
factors attributes for all muscadine juices.

The target matrix here is a matrix of dimension 10 × 15 constructed by the average
score given by the panelists and the reference matrix is a matrix of dimension 10 × 10

constructed by the Euclidean distances between the consumers scores for the different
cultivars of muscadine grape juices. To quote some of the studied attributes: sweet, sour,
cooked muscadine, cooked grape, musty, green unripe, floral apple/pear, fermented . . .

Tortilla Chip names abb.
Best Yet White Corn BYW
Green Mountain Gringo GMG
Guy’s Restaurant Rounds GUY
Medallion White Corn MED
Mission Strips MIS
Mission Triangle MIT
Oak Creek Farms-White Corn OAK
Santita’s SAN
Tostito’s Bite Size TOB
Tom’s White Corn TOM
Tostito’s Restaurant Style TOR

Table 3.1: White corn tortilla chip product
names and labels

Muscadine juice names abb.
Black Beauty BB
Carlos CA
Granny Val GV
Ison IS
Nestitt ME
Commercial Red CR
Commercial White CW
Southern Home SH
Summit SUM
Supreme SUP

Table 3.2: Muscadine grape juice names
and labels

http://www.sensometric.org/datasets
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3.7.2 Experimental setup

Random model of multidimensional fitting method is applied in the independent and de-
pendent cases of the components of vectors εi for i = 1, . . . , n. The presence of Laguerre
polynomial L

p
2
−1

1
2

(
−λ2ij

2

)
in the objective function of problem (P1) complicates the opti-

mization and makes the computation time too long. A way to simplify the optimization
resolution is to calculate before the optimization a large set of Laguerre polynomial values
corresponding to a large possible values of λ2

ij as the Laguerre polynomial presented in
the expectation of the error ∆ is related to the value of λ2

ij. So we define Z a set in R
which contains many possible values of λ2

ij that can be used during the optimization. For
all 1 ≤ i < j ≤ n, the value of λ2

ij is proportional to the distance ‖Xi+θi−Xj−θj‖2
2
thus

the set Z is related to the data set by the value of d2
ij for all i, j as the objective of our

optimization problem is to approach ‖Xi + θi −Xj − θj‖2 to dij. Therefore, we define Z
as follows: Z = [−d2/(4σ2) + `, 0] where d2 is the mean of squared distances dij and ` is a
value which gives the length of Z and related to the maximal value of d2

ij in order to cover
the largest possible values of λ2

ij. The increment between the elements of Z is taken equal
to 10−2. After that, during optimization, each value of λ2

ij calculated with a particular θi
and θj is replaced by the nearest value in Z and the Laguerre polynomial value associated
to this value is injected directly in the objective function. This simplification gives results
close to the results obtained directly by optimizing (P1) and reduce thousandth times the
resolution time.
Moreover, the choice of σ and the scale parameter a are crucial to obtain good results.
Therefore, the value of σ is taken equal to the mean of the p standard deviation calculated

on the target matrix X, so we can write σ =

∑p
k=1 σk
p

. Concerning the parameter a, we

calculate it using the following algorithm:

Algorithm 2
Initialization: Θ0 = (θ0

1| . . . |θ0
n) = (0| . . . |0).

for t = 1 to N2 do
Solve problem (Pa) : min

a∈R+

∑
1≤i<j≤n

(dij − a‖Xi + θt−1
i −Xj − θt−1

j ‖)2.

Solve problem (Pθ) : min
(θ1,...,θn)∈Rp

∑
1≤i<j≤n

(dij − at‖Xi + θi −Xj − θj‖)2.

Θt = (θt1, . . . , θ
t
n) solution of problem (Pθ).

end for

NLopt library (Version 2.4.2) [11] implanted in language C a free/open-source library is
used to solve problem (P1) as this problem is a non-linear and non-convex optimization
problem. In this library, numerous algorithms exist to solve such non-linear optimization
problems. In our application, we choose Sbplx algorithm which is based on Subplex
method [18] that is a generalization of Nelder-mead simplex.
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Concerning simulation algorithm, the covariance matrix Σ is given by the covariance of
matrixX multiply by a constant c. The parameter ξ presented in the proposal distribution
is taken equal to 10−4. Concerning the temperature parameter, we take it equal to T =

100. Moreover, during simulation, the number of iterations is taken equal to N1 = 300.

3.7.3 Results

3.7.3.1 Optimization results

First, we want to define the different values of parameters a, σ and ` for the two data
sets. Table 3.3 gives these values:

a σ `

White corn tortilla chips 26.37 0.55 1000

Muscadine grape juices 36.9 0.64 1000

Table 3.3: The values of parameters a, σ and ` for the two data sets.

The values of a for the two data sets are calculated using algorithm 2. Figure 3.2 depicts
the trace plots of the value of a at each iteration for the two data sets. We show clearly
that the value of a converge to an optimal value. Concerning the value of `, a choice
of 1000 for the two data set can be reasonable as the maximum value of the squared
distances in the two data sets is in the range of 1000.

Number of iterations
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Muscadine grape juice

Figure 3.2: The trace plots of the results of the algorithm 2 for tortilla chips and muscadine
grape juice data sets.

After parameters determination, the statistical test developed in Section 3.2.2 has been
applied to perform the interest of the displacements of the points. The values of the ratio

R =
Var(∆)

(∆0 − E(∆))2
calculated for the two data sets are given in the Table 3.4. As the two

values of R for the two data sets are smaller than 0.05, so the statistical test is significant
for α = 0.05. Therefore we reject the null hypothesis (H0) and we accept the alternative
hypothesis (H1). Thus, the movements of points i and j through vectors θi and θj are
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R
White corn tortilla chips 0.0239

Muscadine grape juices 0.0153

Table 3.4: The values of R for white corn tortilla chips and muscadine grape juices data
sets.

necessary to approach the distances ‖Xi + θi−Xj− θj‖ to dij for all 1 ≤ i < j ≤ n. After
the statistical test, problem (P1) has been solved using different values of regularization
parameter η.
Tables 3.5 and 3.6 show the different values of the expectation of error ∆ and the number
of non-null displacements θik after optimization for different values of η obtained after
optimization. We remark that when η increases, the number of displacements decreases
and when η becomes too large, the number of displacements tends to zero and nothing
moves.

White corn tortilla chips

η E(∆) #(θik 6= 0)

0 438896 407

10 438892 405

102 444855 401

103 393359 397

104 447001 360

105 709809 233

2× 105 1450193 190

4× 105 4558334 153

6× 105 8229189 121

7× 105 12330002 109

106 19927843 87

107 229240376 0

Table 3.5: The values of E(∆) and
the number of non-null displace-
ments for different values of η for
tortilla chips data set.

Muscadine grape juices

η E(∆) #(θik 6= 0)

0 127845 150

10 127845 149

102 127845 147

103 127952 133

4× 103 128799 128

6× 103 130641 116

8× 103 140656 98

104 168285 86

2× 104 276341 54

4× 104 551644 28

105 1336073 10

106 3517594 0

Table 3.6: The values of E(∆) and
the number of non-null displace-
ments for different values of η for
muscadine juices data set.

A way to choose the value of η is to determine the number of misplaced points which
must be moved to fit the distances. To find these misplaced points, we use the criterion
of selection points ρi presented in Section 3.2.1.
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Table 3.7 shows the values of this criterion. We have seen that for a fixed real number
% between 0 and 1, if ρi > % we consider i as misplaced point. So, by taking % = 0.1 for
the two data sets, we can detect 3 misplaced points for white corn tortilla chips and 4 for
muscadine grape juices which is equivalent to 3 × 37 = 111 values of θik 6= 0 for tortilla
chips and 4× 15 = 60 for muscadine juices. Then, by referring to Tables 3.5 and 3.6, we
choose the value of η that gives a number of displacement close to that obtained using
the criterion ρi for tortilla chips and muscadine juices. Indeed, for tortilla chips data set,
a value of η equal to 7× 105 gives a number of displacements equal to 109 displacements
that is close to 111. Similarly, we choose η = 2×104 for muscadine juices data set. Noted
that by changing the value of %, we can detect more misplaced points so this choice must
be reasonable.

i 1 2 3 4 5 6 7 8 9 10 11

ρi D1 0.0640 0.1253 0.0706 0.0700 0.0931 0.0865 0.1270 0.0811 0.0828 0.1088 0.0908

D2 0.0960 0.0589 0.0601 0.0900 0.0966 0.1483 0.0954 0.1028 0.132 0.1197

Table 3.7: The values of criterion ρi for the 11 white corn tortilla chips samples (D1) and
the 10 muscadine grape juices (D2). The bold values corresponds to the values where
ρi > 0.1.

Besides, if the number of desirable displacements is fixed by the user then it is not needed
to compute the ratio ρ and, in the same way, we can choose the value of η. So, the choice
of η is always related to the objective which is aimed at.

The objective of the study is to determine the acceptable attributes categories of white
corn tortilla chips and muscadine grape juices. Using our method we want to determine
the product characteristics that must be changed to match with the consumers preference.

As we have seen we are interested in our method to fit the characteristics of product
to the consumer acceptance rates, so null displacements can be interpreted as consumers
satisfaction. Globally, for each categories of attributes, we can calculate the proportion
of the null displacements. This proportion is given by:

pC =
number of (θik = 0) in category CD
total number of θik in category CD

where D = {D1,D2}, CD1
∈ {Flavor, Texture, Appearance} is the category of white corn

torilla chips (D1) and CD2
∈ { Basic tastes, Aromatics, Fellings factors } is the category

of muscadine grape juices (D2). For each data set, the proportion pC is calculated from
Table 3.8 or Table 3.9.
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White Corn Tortilla Chips
BYW GMG GUY MED MIS MIT OAK SAN TOB TOM TOR

Flavor
Sweet 0 0 0 1.2451 0 0 −0.9751 0 1.6118 1.3805 0

Salt 0 1.6930 0 1.9880 0 0 1.5206 0 0 0 0

sour 0 0 0 0 0 0 −2.7781 0.7170 0 0 0

Astringent 0 1.8238 0 0 −1.3989 0 0 0 0 −0.6097 1.8035

Grain complex 0 −1.3154 1.5591 2.3519 0 0 0 0 0 0 0

Raw corn 0 −1.9829 0 0 0 0 −2.8642 0 0 0 0

Masa 0 0 0 0 1.4716 0 −1.6456 0 0 −1.4004 0

Toasted grain 0 −1.2323 −1.3444 0 0 0 −0.4043 1.4624 1.0626 0 −1.5607

Heated oil 0 0 0 0 0 0 2.0665 0 0 −1.6899 0

Scorched 0 0 0 0 −3.1855 0 0 0 0 0 0

Cardboard 0.3165 1.3200 0 −1.9339 0 0 0 1.3330 1.6492 0 0

Texture
Oily/ greasy lip −1.1890 1.4904 0 0 0 0 0 0 0 −1.5958 0

Loose particles −1.8266 1.9488 0 0 0 0 0 0 0 0 0

Hardness 0 −2.3640 0 0 0 0 0 0 0 0 0

Crispness 0 1.3160 0 0 0 0 1.2906 0 −1.2140 0 −1.8826

Cohesiveness of mass 1.6169 −1.2832 0 0 0 0 −1.7938 0 0 0 −1.5653

Roughness of mass −1.2758 1.3458 0 0 0 0 0 0 0 −1.8818 0

Moistness of mass 0 −1.2495 0 0 0 1.7023 −1.8192 0 0 0 0

Moisture absorption 0.9027 0 0 0 −1.4304 −1.7818 0 0 0 1.0449 0

Persistence of crisp −2.2752 0 0 0 0 0 0.1331 0 −1.3031 0 0

Toothpack 0.1483 0 0 0 0 2.6819 0 0 −0.5108 0 0

Appearance
Degree of Whitenes 0 2.5915 0 0 0 1.9849 0 0 0 0 0

Grain Flecks −0.8481 1.7684 0 0 0 1.7982 0 0 0 0 0

Char Marks 0 −1.1166 0 0 0 0 0 0 1.5467 0 1.5647

Micro Surface Particles 0 1.6609 0 0 0 0 0 0 0 −1.9241 0

Amount of Bubbles 0 0 0 0 0 0 0 0 −1.7983 0 1.0500

Table 3.8: The values of displacements θik where i = 1, . . . , 11 is the corn tortilla chip
sample and k is the attributes of flavor, texture, appearance categories. Only the detected
descriptive attributes are given in this table.

Tortilla attributes
Categories P

C

Flavor 0.71

Texture 0.72

Appearance 0.78

Muscadine attributes
Categories P

C

Basic tastes 0.70

Aromatics 0.60

Feeling factors 0.50

Table 3.10: The proportion values for different attributes categories for white corn tortilla
chips and muscadine grape juices.

The proportion values for different categories for the two data sets are given in the Table
3.10. For white corn tortilla chips, the flavor, texture and appearance attributes cat-
egories have approximatively the same proportion values that it is equal in average to
0.75. So, 25% of the characteristics products must be moved to make the products char-
acteristics as acceptable as possible by the consumers. Thus, we can conclude that the
overall characteristics of tortilla chips are well accepted by the consumers. Concerning
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Muscadine grape juices
BB CA GV IS ME CR CW SH SUM SUP

Basic tastes
Sweet −1.1850 0.5018 0.6948 0 0 0 0 0 0 0

Sour −1.0612 0.2443 0 0 0 −1.0543 0 0 0 0

Aromatics
Cooked muscadine −0.1948 0 0 0 0 −0.4885 0.4100 0.5171 0 0

Cooked grape 0 −0.5705 0 0 0 −0.6065 0 0 −0.8350 0

Musty 0 −0.6460 0 −0.4153 0.7202 0 0.0497 0 0 0

Green/unripe 0 0.3416 0 0 0 0 0 −0.3443 0 0

Floral 0 0.4433 0.4345 0 −0.9344 0 −0.5002 0.4070 −0.9426 0

Apple/Pear −1.0636 0 0.5652 0 0 −0.4278 0 0 0 0.6464

Fermented −1.2588 0 0 0 0 −0.7521 0 0 0.3882 0

Metallic 0 0.6494 0 −1.1046 0.6358 0.6547 0 0.6520 −0.7677 0

Feeling factors
Astringent 0.3984 0 0 −0.8488 0 0.3228 0.7118 0 0 0.4081

Table 3.9: The values of displacements θik where i = 1, . . . , 10 is the 10 muscadine grape
juices and k is the attributes of basic tastes, aromatics, feeling factors categories. Only
the detected descriptive attributes are given in this table.

muscadine grape juices, we notice that the basic tastes attributes are the most acceptable
attributes among the two other attributes categories as just 30% of the attributes must be
changed to fit the consumer scores. Whereas, 40% and 50% of the aromatics and feeling
factors attributes categories must respectively be changed to make these characteristics
acceptable by the consumers.

3.7.3.2 Simulation results

Algorithm 1 has been applied to the two data sets. The constant cmultiplied by covariance
matrix of data is taken equal to 10−3 for the two data sets.

Figure 3.3 shows that the minimal value of error ∆ obtained by simulation is equal to
18129 after 150 iterations for the white corn tortilla chips and 4838 after 50 iterations
for the muscadine grape juices. The results of displacements for these two data sets are
given in Figure 3.4 and 3.5. In these figures, we compare the displacements obtained by
simulation with those obtained by optimization of problem P0 (without penalization term)
as the parsimonious choice of displacements is not taken into account in the simulation
algorithm.
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Figure 3.3: trace plot of the error ∆ using algorithm 1 for white corn tortilla chips and
muscadine grape juices data sets.

This comparison between optimization and simulation results indicates that using sim-
ulation technique we have succeeded in finding similar displacements with a value of ∆

smaller than the value of the expectation calculated in the independent case. What is
interesting here that the displacement obtained after simulation is not very different for
most of the points. The important displacements obtained in the optimization and simula-
tion results are close. So by taking some threshold to detect the important displacements,
we can detect the same important displacements in two different ways.

3.7.4 Discussion

Several papers in food quality and preference domains study the relation between con-
sumers preference and the characteristics of products in order to find the must acceptable
characteristics of these products by the consumers [7]. Preference mapping techniques can
be applied using just the consumers rates for each product, we address ’internal prefer-
ence mapping’, or by taking an additionally data describing the products with a series of
criteria, we address ’external preference mapping’ [3]. As our method based on the fitting
of two matrices so the comparative with external preference mapping should be more
explicative. The main objective to external preference mapping is to fit the individual
consumer rates to the products configuration by using one of the different regression mod-
els among which the quadratic surface model is popular [4]. Meullenet in his paper [14]
indicates that the preference mapping is determined by operating a partial least squares
(PLS) regression model and the application of Jackknife optimization. This model is
used to predict the consumer attributes acceptance. So, the prediction here is related to
something subjective whereas our method gives displacements that can be interpretable
without introducing subjective effects. Moreover, the displacement of attributes for each
product can be interpretable alone or by taking all the categories of attributes. Thus,
using our model we can find a new and simple methodology to determine the preference
mapping of products.
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Figure 3.4: The displacements for the different attributes of the 11 tortilla chip samples
obtained by optimization and simulation.

3.8 Conclusion

We have presented a new model of multidimensional fitting method by taking into account
random effects. First, the random model of MDF with a penalized form is presented.
Second, a statistical test indicates the significance of the displacements of the points.
Then, optimization and simulation algorithms are developed to find these displacements.
The application of this method in the sensometrics domain shows the simplest explanation
of the sensory profiles of products according the consumers preference. Finally, MDF in
their deterministic and random model can be also used when the data contains missing
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Figure 3.5: The displacements for the different attributes of the 10 muscadine grape juices
obtained using optimization and simulation.

data. A pretreatment of this data before the application of MDF method to replace these
missing values will not impinge the results.
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Chapter 4

Projection under pairwise distance
control

In this chapter, we have developed a new dimensionality reduction method defined as
a non-linear projection method that takes into account the projection quality of each
projected point in the reduced space, this quality being directly available in the same
scale as this reduced space. More specifically, this novel method allows a straightforward
visualization data in R2 with a simple reading of the approximation quality, and provides
then a novel variant of dimensionality reduction.

4.1 Introduction

In chapter 1, it was seen that a large data dimensionality reduction and data visualization
methods have been proposed to drop the difficulties associated to the high dimensional
data. Principal component analysis, multidimensional scaling (MDS), scatter plot matrix,
parallel coordinates and Sammon’s mapping are some of the known used methods.
Scatter plot matrix, parallel coordinates and Sammon’s mapping methods are widely used
to visualize multidimensional data sets. The first two methods have as inconvenient that
when the number of dimensions grows, important dimensional relationships might not be
visualized. Concerning Sammon’s mapping method, the inconvenient is similar to that
found in PCA and MDS from the point of view of projection quality. Indeed, the quality of
projection assessed by the percentage of variance that is conserved or by the stress factor
is a global quality measure and takes only into account what happens globally but in
some projection methods like PCA, a local measure is defined to indicate the projection
quality of each projected point taken individually. This local measure is evaluated by
the squared cosine of angle between the principal space and the vector of the point. A
good representation in the projected space is hinted by high squared cosine values. This
measure is useful in cases of linear projection as happens in PCA but cannot be applied



74 4. Projection under pairwise distance control

to the case of non-linear projection.
In this chapter, we propose a new non-linear projection method that projects the points

in a reduced space by using the pairwise distance between pairs of points and by taking
into account the projection quality of each point taken individually. This projection
leads to a representation of the points as circles with a different radius associated to
each point. Henceforth, this method will be called "Projection under pairwise distance
control". The main contributions of this study are to give a simple data visualization
in R2 with a straightforward interpretation and provide a new variant of dimensionality
reduction. First, the new projection method is presented in Section 2. Then, in Section
3, the algorithms used in the resolution of optimization problems related to this method
are illustrated. Next, Section 4 shows the application of this method to various real data
sets. Finally, Section 5 concludes this work.

4.2 Projection under pairwise distance control

Let us consider n points given by their pairwise distance noted dij for i, j ∈ {1, . . . , n}.
The task here is to project these points using distances into a reduced space Rk by
introducing additional variables, called hereafter radii, that indicate to which extent the
projection of each point is accurate. The local quality is then given by the values of the
radii. A good quality projection of point i is indicated by a small radius value noted ri.
It will be important to note that both units of dij’s and ri’s are identical, allowing direct
comparison.
Before developing our method, an overview of principal component analysis (PCA) is
presented to highlight the interest of our method.

4.2.1 Principal Component Analysis (PCA)

PCA method is the most used method in the data visualization and dimensionality re-
duction. This method is a linear projection technique applied when the data is linearly
separable. PCA problem can be stated as an optimization problem involving the squared
Euclidean distances [14]. This optimization problem is the following:

PPCA :


min

A∈Mp×q

∑
1≤i<j≤n

|d2
ij − ‖Ayi − Ayj‖2|

s.t. rank(A) = k

AAT = Ip
where yi ∈ Rp is the original coordinates vector of point i, d2

ij is the squared distance for
couple (i, j) given by ‖yi− yj‖2 and A is the projection matrix of dimension q × p with q
is the reduced space dimension.
By construction, PCA cannot take into account non-linear structures, since it describes
the data in terms of a linear subspace. Furthermore, the only measures used to evaluate
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the projection quality of points are the squared cosines values which can only be used
in the case of linear projection. Thus, the individual control of projection is no more
guaranteed using non-linear projection method.
Moreover if we consider now n variables r1, . . . , rn ∈ R+, the sum of which bounds the
objective function, the PCA optimization problem PPCA can be equivalently rewritten as:

PPCA :



min
r1,...,rn∈R+,A∈Mp×q

n∑
i=1

ri

s.t.
n∑
i=1

ri ≥
1

n− 1

∑
1≤i<j≤n

|d2
ij − ‖Ayi − Ayj‖2|

rank(A) = k

AAT = Ip

Then, we can observe that the constraint on
∑n

i=1 ri can be modified to have a stronger
control on each dij in the following way: |dij − ‖xi − xj‖| ≤ ri + rj where xi and xj are
projection coordinates of points i and j. Here the projection coordinates are not obtained
necessarily by linear projection anymore.

Our new non-linear projection method that controls individually the projection of
points is developed hereafter.

4.2.2 Our proposed method

Let x1, . . . , xn be the coordinates of the projected points in Rk. Radii are an important
element of the paper introduced to assess how much the distance between two projected
points (i, j) given by ‖xi − xj‖ is far from given distance dij. Indeed, radii (ri, rj) for
couple (i, j) are small when ‖xi − xj‖ is close to dij. Figure 4.1 depicts this idea: for all
points i, j ∈ {1, . . . , n} the projected point of each point i belongs to a sphere with center
xi and radius ri such that ‖xi − xj‖ − ri − rj ≤ dij ≤ ‖xi − xj‖+ ri + rj.

xi xj

ri rj

dij

• •

Figure 4.1: Examples of radii for bounding the original distance dij

This idea can be expressed by finding the value of radii that satisfy these two constraints:

•
n∑
i=1

ri is minimum.
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• dij ∈ {‖xi − xj‖ − ri − rj, ‖xi − xj‖+ ri + rj}, for 1 ≤ i < j ≤ n.

The projection under pairwise distance control problem can be written as the following
optimization problem:

Pr,x :

 min
r1,...,rn∈R+,x1,...,xn∈Rk

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj, for 1 ≤ i < j ≤ n

Of course, by fixing the coordinates vectors xi for all i ∈ {1, . . . , n}, using principal
component analysis or any other projection method, the problem can easily be solved in
(r1, . . . , rn) using linear programming. This problem can be written as follows:

Pr :

 min
r1,...,rn∈R+

n∑
i=1

ri

s.t |dij − ‖xi − xj‖| ≤ ri + rj, for 1 ≤ i < j ≤ n
We can remark that a solution of Pr always exists. Indeed, to satisfy the constraints it is
enough to increase all ri. Besides, solving Pr with fixed coordinates (x1, . . . , xn) does not
lead in general to the optimum of problem Pr,x.

4.2.3 Visualization example

Let us apply our projection method to a simple example by taking a tetrahedron with
all pairwise distance equal to 1. For problem Pr, the coordinates xi for i = 1, . . . , 4

are obtained using multidimensional scaling. Using linear and non-linear optimization
packages in Matlab respectively for problems Pr and Pr,x give a value of

∑n
i=1 ri equal to

0.7935 for problem Pr and 0.4226 for Pr,x. Figure 4.2a corresponds to the first solution
and Figure 4.2b corresponds to the second one. In Figures 4.2a and 4.2b, we depict circles
with different radii. The circle color is related to the radius values, the shades of gray lie
between white and black in the descending direction of the radius values. The smaller
the radius, the darker circle. The points that have circles with small radii are considered
as well projected points. Note that the points that are represented as points and not
circles are very well projected, having radii almost equal to zero. In Figure 4.2a, half of
the points is well projected whereas the other half have large radii indicating that they
are not well projected. In Figure 4.2b just one circle appears marking that the projection
quality using problem Pr,x is better than Pr.

4.2.4 Link with other methods

We have seen Multidimensional fitting (MDF) is a method that modifies the coordinates
of a set of points in order to make the distances calculated on the modified coordinates
similar to given distances on the same set of points.
The objective function of MDF problem is given by:∑

1≤i<j≤n

|dij − ‖xi − xj‖|.
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Figure 4.2: Projected points after solving Pr and Pr,x. (a) shows the projection obtained
from the solution of Pr using MDS and (b) shows that obtained from the solution of Pr,x.

Property 4.1. Problem Pr,x is bounded below by
1

n− 1

∑
1≤i<j≤n

|dij − ‖xi − xj‖| where

x1, . . . , xn is the optimum of the associated MDF problem.

Proof. By summing all the constraints of problem Pr,x we obtain:

∑
1≤i<j≤n

|dij − ‖xi − xj‖| ≤
∑

1≤i<j≤n

ri + rj = (n− 1)
n∑
i=1

ri

So,
n∑
i=1

ri ≥
1

n− 1

∑
1≤<i<j≤n

|dij − ‖xi − xj‖|, which concludes the proof.

4.3 Lower Bound of the optimization problem of the
projection under pairwise distance control method

Minimization problem Pr,x is too hard to be solved exactly. A way to assess how good a
solution is, is to provide a lower bound on the objective function. Then, if the bound is
close to the best found solution, we can conclude that this solution is fixed. Thus, in this
section we present such a lower bound of problem Pr,x.
Let x1, · · · , xn; r1, · · · , rn a feasible solution of Pr,x andM ∈ R such thatM = max

(i,j)
‖ xi − xj ‖.

We consider three functions noted f , g, h depending on M as follows:

• f(M) =

√(
1− n

3

)
M2 +

1

n− 1

∑
i<j

d2
ij −M .

• g(M) = |M − dmax|.

• h(M) = min
i<j

max
k<l;k,l 6=i,j

min
{
L1
ijkl;L

2
ijkl

}
·

where:
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• dmax = max
1≤i<j≤n

{dij},

• L1
ijkl = max

{
djk − dkl

2
;
djl − dkl

2
; |dij −M |

}
,

• L2
ijkl = max

{
dik − dkl

2
;
dil − dkl

2
; |dij −M |

}
.

Using results presented in section 4.3.1.2, we can write:

n∑
i=1

ri ≥ f(M)

n∑
i=1

ri ≥ g(M)

n∑
i=1

ri ≥ h(M)·

Consequently,
n∑
i=1

ri ≥ max{f(M); g(M);h(M)}· (4.1)

The inequality (4.1) is true for all solutions of Pr,x particularly for the optimal solution.
Thus:

n∑
i=1

ropti ≥ max{f(M); g(M);h(M)}· (4.2)

Hence, the lower bound is given by:
n∑
i=1

ropti ≥ min
M

max{f(M); g(M);h(M)} for all feasible solutions·

Given M , a lower bound of problem Pr,x is derived. Afterwards, a bound free of M is
given by minimizing the bounds depending on M .

4.3.1 Construction of function f , g and h

Three function are used to find a lower bound of our objective function. The construction
of function f requires the use of the result presented in Lemma 4.2 cited bellow. Therefore,
we have presented first of all some results shown as lemmas and corollary and then we
have defined the three functions.

4.3.1.1 Two Lemmas used

Let (C) be a circle with center O and radius r. Let consider n points with coordinates
x1, · · · , xn such that for all i = 1, . . . , n, ‖xi − O‖ ≤ r and having g as center of gravity.
This hypothesis is used in Lemma 4.1 and Corollary 4.1.

Lemma 4.1. For all points x1, . . . , xn, we have:

‖xi −O‖ = r when
n∑
i=1

‖xi − g‖2 is maximum .
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Proof. Let A and B two points among the n points such that A is inside the circle (C) and
B belonging (C). The point A and B have as coordinates (a1, a2) and (r, 0) respectively.
We want to show that by moving B by small movements along the circle, we can approach
the point A to the circle border increasing thus the inertia

∑n
i=1 ‖xi − g‖2.

We note B′, A′ the new positions after movements of B and A respectively. Let θ be the
angle between (OB) and (OB′), uθ the displacement of B and (a′1, a

′
2) the coordinate of

point A′.
Approaching A to the circle border requires the opposite movements of A and B with
equal length. This constraint is necessary to keep the center in the same position. We
distinguish two cases:

1- A having a2 < 0.

2- A having a2 > 0.

The two cases are illustrated in Figure 4.3.

O B

B′

θ u+
θ

A

A′

•

•
•
•

O B

B′

θ
u−θ

A

A′

•

•
•
•

case 1 case 2

Figure 4.3: Representation of movements of points A and B in cases 1 and 2.

For case 1, A in the lower half of the circle requires that B moves positively with angle

θ ∈ [0; π
2
]. In this case, the vector uθ is given by: u+

θ =

(
cos θ − 1

sin θ

)
and the inner

product 〈u+
θ , AA

′〉 is given by:
〈u+

θ , AA
′〉 = (a′1 − a1)(cos θ − 1) + (a′2 − a2) sin θ· (4.3)

Here, we have a′1 ≥ a1 and a′2 ≤ a2 that imply a′1− a1 ≥ 0 and a′2− a2 ≤ 0. Moreover, we
have 0 ≤ cos θ ≤ 1 and sin θ ≥ 0 that give 〈u+

θ , AA
′〉 < 0.

For case 2, A in the upper half of the circle requires that B moves negatively with

angle θ ∈ [3π
2
, 2π]. In this case, the vector uθ is given by: u−θ =

(
cos θ − 1

− sin θ

)
and the

inner product is given by:
〈u−θ , AA

′〉 = (a′1 − a1)(cos θ − 1)− (a′2 − a2) sin θ (4.4)
Here, we have a′1 ≥ a1 and a′2 ≤ a2 that imply a′1− a1 ≥ 0 and a′2− a2 ≤ 0. Moreover, we
have 0 ≤ cos θ ≤ 1 and sin θ ≤ 0 that give 〈u−θ , AA′〉 < 0.
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Corollary 4.1. The center of gravity g of x1, . . . , xn is the center of circle (C) i.e. O = g

when
∑n

i=1 ‖xi − g‖2 is maximum.

Proof. We have:
n∑
i=1

‖xi − g‖2 =
n∑
i=1

‖xi −O +O − g‖2

=
n∑
i=1

‖xi −O‖2 +
n∑
i=1

‖O − g‖2 + 2
n∑
i=1

(xi −O)′(O − g)

=
n∑
i=1

‖xi −O‖2 +
n∑
i=1

‖O − g‖2 + 2n(g −O)′(O − g)

=
n∑
i=1

‖xi −O‖2 + n‖O − g‖2 − 2n‖O − g‖2

=
n∑
i=1

‖xi −O‖2 − n‖O − g‖2

All the points belong to the circle (C) as a result of Lemma 4.1. So, ‖xi −O‖2 is fix and

equal to r2. Thus, maximizing inertia
n∑
i=1

‖xi−g‖2 amounts to minimize ‖O−g‖2. Then,

the minimum of ‖O − g‖2 is zero so that O = g.

Lemma 4.2. If
∑n

i=1 ‖ xi− g ‖2 is maximum for points x1, . . . , xn under constraints, for
all couple (i, j), ‖xi − xj‖ ≤ M , then an upper bound of

∑n
i=1 ‖ xi − g ‖2 is given by:

nM2

3
·

Proof. Let (C) be the smallest circle containing the n points with coordinates x1, . . . , xn.
We consider three points noted A,B and C among the n points and having xA, xB and
xC as coordinates . We suppose that A, B and C belong to the circle (C) and the
distance between B and C is equal to M i .e. ‖xB − xC‖ = M . By hypothesis, we have
‖xA−xB‖ ≤M . We note θ the angle between (AB) and (BC). Figure 4.4 illustrates the
situation.

If θ >
π

3
then ‖xA − xB‖ ≤ M and ‖xA − xC‖ > M . By reversing the role of xB and xC

we get θ =
π

3
. So, A = A′ (A′ is at the position indicated in figure 4.4) and then r =

M√
3
.

Now, if we consider n points y1, . . . , yn and using Lemma 4.1 and Corollary 4.1, the
maximum of the inertia

∑n
i=1 ‖ yi − g ‖2, under the constraint that y1, . . . , yn are inside

(C) is equal to nr2 = n
M2

3
. Thus, the maximum of

n∑
i=1

‖ xi − g ‖2 is upper bounded by

n
M2

3
.
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Figure 4.4: Representation of the points on the circle.

4.3.1.2 The three functions

Function f(M) Using the constraints of problem Pr,x, we have:
dij ≤ ‖ xi − xj ‖ +ri + rj

d2
ij ≤ (‖ xi − xj ‖ +ri + rj)

2∑
i<j

d2
ij ≤

∑
i<j

‖ xi − xj ‖2 +
∑
i<j

(ri + rj)
2 + 2

∑
i<j

(‖ xi − xj ‖)(ri + rj)∑
i<j

d2
ij ≤

∑
i<j

‖ xi − xj ‖2 +
∑
i<j

(ri + rj)
2 + 2M

∑
i<j

(ri + rj) as ‖ xi − xj ‖≤M ·(4.5)

Let g be the center of gravity of the projected points x1, . . . , xn, so:
‖ xi − xj ‖ = ‖ xi − g − xj + g ‖
‖ xi − xj ‖2 = ‖ xi − g ‖2 + ‖ xj − g ‖2 +2(xi − g)′(xj − g)∑

i<j

‖ xi − xj ‖2 =
∑
i<j

(
‖ xi − g ‖2 + ‖ xj − g ‖2

)
+ 2

∑
i<j

(xi − g)′(xj − g)·

As
∑
i<j

(xi − g)′(xj − g) = 0 then:

∑
i<j

‖ xi − xj ‖2 = (n− 1)
n∑
i=1

‖ xi − g ‖2 · (4.6)

Replacing equation (4.6) in (4.5) gives :

(n− 1)
n∑
i=1

‖ xi − g ‖2 +
∑
i<j

(ri + rj)
2 + 2M

∑
i<j

(ri + rj)−
∑
i<j

d2
ij ≥ 0· (4.7)

The quantity
∑n

i=1 ‖ xi− g ‖2 is the inertia of the projected points x1, . . . , xn. As long as
we want to conserve the initial information, the inertia must be maximal under constraints
‖xi − xj‖ ≤M for all 1 ≤ i < j ≤ n.
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Recalling equation (4.7) and by using Lemma 4.2, we obtain:
n(n− 1)

3
M2 +

∑
i<j

(ri + rj)
2 + 2M

∑
i<j

(ri + rj)−
∑
i<j

d2
ij ≥ 0

n(n− 1)

3
M2 + (n− 1)

(
n∑
i=1

ri

)2

+ 2(n− 1)M
n∑
i=1

ri −
∑
i<j

d2
ij ≥ 0

(
n∑
i=1

ri

)2

+ 2M

(
n∑
i=1

ri

)
+
n

3
M2 − 1

n− 1

∑
i<j

d2
ij ≥ 0· (4.8)

The discriminant of equation (4.8) is given by: ∆ = 4
(

1− n

3

)
M2 +

4

n− 1

∑
i<j

d2
ij and as

ri ≥ 0, ∀i = 1, . . . , n we get:
n∑
i=1

ri ≥
√(

1− n

3

)
M2 +

1

n− 1

∑
i<j

d2
ij −M ·

We note f(M) =

√(
1− n

3

)
M2 +

1

n− 1

∑
i<j

d2
ij −M ·

Function g(M) Two situations are possible:

1. ∃(i′, j′) such that ‖ xi′ − xj′ ‖= M , that gives:
ri′ + rj′ ≥‖ xi′ − xj′ ‖ −di′j′ ≥M − di′j′ ≥M − dmax·

As
n∑
i=1

ri ≥ ri′ + rj′ , we obtain:

n∑
i=1

ri ≥M − dmax

2. ∃(i∗, j∗) such that di∗j∗ = dmax, that gives:
ri∗ + rj∗ ≥ di∗j∗− ‖ xi∗ − xj∗ ‖≥ dmax −M ·

Then, we obtain:
n∑
i=1

ri ≥ dmax −M ·

Hence:
n∑
i=1

ri ≥ |M − dmax|· (4.9)

We note g(M) = |M − dmax|.

Function h(M) Let us consider four distinct points i, j, k and l. We suppose that there
is a couple (i, j) such that ‖xi − xj‖ = M and one of their coordinates is equal to zero
(xi = 0 or xj = 0). We distinguish two cases:

1. xi = 0.

2. xj = 0.
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Case 1: For xi = 0, we take xj = αxk + βxl with α, β ∈ [0, 1]. The constraints related
to these four points are the following:

|‖xj‖ − dij| ≤ ri + rj (C1)

|‖xk‖ − dik| ≤ ri + rk (C2)

|‖xl‖ − dil| ≤ ri + rl (C3)

|‖xj − xk‖ − djk| ≤ rj + rk (C4)

|‖xj − xl‖ − djl| ≤ rj + rl (C5)

|‖xk − xl‖ − dkl| ≤ rk + rl (C6)

Firstly, using constraints (C4) and (C6) we obtain:

2
n∑
t=1

rt ≥ djk − dkl + ‖xk − xl‖ − ‖xj − xk‖·

Additionally, as xj = αxk + βxl with α, β ∈ [0, 1], then
‖xk − xj‖ = ‖xk − αxk − βxl‖ = ‖(1− α)xk − βxl‖ ≤ ‖xk − xl‖,

which gives
n∑
t=1

rt ≥
djk − dkl

2
· (4.10)

Secondly, using constraints (C5) and (C6) we obtain:

2
n∑
t=1

rt ≥ djl − dkl + ‖xk − xl‖ − ‖xj − xl‖·

As ‖xl − xj‖ ≤ ‖xk − xl‖ we obtain:
n∑
t=1

rt ≥
djl − dkl

2
· (4.11)

Thirdly, constraint (C1) and initial hypothesis ‖xi − xj‖ = M lead to:
n∑
t=1

rt ≥ |dij −M |· (4.12)

Consequently, equations (4.10), (4.11) and (4.12) involve:
n∑
t=1

rt ≥ max

{
djk − dkl

2
;
djl − dkl

2
; |dij −M |

}
denoted L1

ijkl

Case 2: For xj = 0, we take xi = αxk + βxl with α, β ∈ [0, 1]. By analogy with case 1,
we obtain:

n∑
t=1

rt ≥ max

{
dik − dkl

2
;
dil − dkl

2
; |dij −M |

}
denoted L2

ijkl·

Due to the choice of one case among cases 1 and 2, we take the minimum of L1
ijkl and

L2
ijkl. Thus:

n∑
t=1

rt ≥ min
{
L1
ijkl;L

2
ijkl

}
·

Moreover, for a given i, j, this inequality is verified. So that:
n∑
t=1

rt ≥ min
i<j

max
k<l;k,l 6=i,j

min
{
L1
ijkl;L

2
ijkl

}
·
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We note h(M) = min
i<j

max
k<l;k,l 6=i,j

min
{
L1
ijkl;L

2
ijkl

}
·

By applying this bound to the tetrahedron example, the three functions are plotted.
The result is shown in Figure 4.5. The lower bound is equal to 0.1276 forM = 1.1276 and
as we have seen the minimum obtained by solving Pr,x is equal to 0.4226 so the solution
of problem Pr,x is three time smaller than the bound, that is not bad.

M

0 0.5 1 1.5 2

∑
r i

0

0.5

1

1.5

f

g

h

Figure 4.5: The curves of the three functions f, g and h. Functions g and h are equal due
to the fact that all distances are equal to 1 . The minimal intersection is given by the
black circle for M = 1.1276 and

∑n
i=1 ri > 0.1276.

4.4 Optimization tools

4.4.1 Initialization point of problem Pr,x

Different resolutions of problem Pr,x can be obtained using different initial values of matrix
X. Three possible initial values can be used. The first of them is the matrix obtained by
PCA or another projection method. In what follows, we present two other possibilities.

Initial point using squared distances The optimization problem Pr,x can be changed
by taking the squared distances between points instead of the distances. Rewriting r2

i as
Ri, the problem is changed into

PR,x :

 min
R1,...,Rn∈R+,x1,...,xn∈Rk

n∑
i=1

Ri

s.t. |d2
ij − ‖xi − xj‖2| ≤ Ri +Rj, for 1 ≤ i < j ≤ n.
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The transformation is interesting as if the constraints of problem PR,x are satisfied, the
constraints of problem Pr,x will also be satisfied. Indeed:

|d2
ij − ‖xi − xj‖2| ≤ Ri +Rj = r2

i + r2
j

⇒ (dij − ‖xi − xj‖) (dij + ‖xi − xj‖) ≤ r2
i + r2

j ≤ (ri + rj)
2

⇒ |dij − ‖xi − xj‖|2 ≤ (ri + rj)
2

⇒ |dij − ‖xi − xj‖| ≤ (ri + rj)·
That way problem PR,x can serve as an initial step for solving problem Pr,x.

Initial point using improved solution of problem Pr First, we give two properties
which provide a way to improve the optimization results of problem Pr,x.

Property 4.2. Let us consider a point xi such that for an index j, the following inequality
is saturated :

|dij − ‖xi − xj‖| ≤ ri + rj,

and the other inequalities involving i are not saturated. Then, the corresponding solution
can be improved by moving xi along the direction xj−xi to decrease ri and |dij−‖xi−xj‖|.

Proof. The above condition means that xi is rewritten xi + a(xj − xi) with a ∈ R and
we look for a such that |dij − ‖xi + a(xj − xi) − xj‖| < ri + rj. In particular a ≤ 0 if
dij − ‖xi − xj‖ ≥ 0 and a > 0 otherwise. Let us now consider the other inequalities
corresponding to index pairs (i, k) with k 6= j. For each of them, either ∃a ∈ [a

′

k, a
′′

k] with
a
′

k < 0 and a′′k > 0 such that
|dij − ‖xi + a(xj − xi)− xj‖| ≤ ri + rj,

as these constraints are unsaturated. Finally, if we take a different from 0 in [a
′
, a
′′
] with

a
′

= maxk a
′

k and a
′′

= mink a
′′

k, all constraints involving i get unsaturated so that ri
can be decreased, decreasing so the objective function. Depending on whether a must be
negative or positive, we take a = a

′ or a = a
′′ respectively.

Another manner to improve the resolution of problem Pr,x is to effectuate a scale
change by multiplying the coordinates xi, for i = 1, . . . , n, by a constant a ∈ R. Thus,
the new optimization problem is given by:

Pr,a :


min

r1,...,rn,a∈R+

n∑
i=1

ri

s.t. |dij − a‖xi − xj‖| ≤ ri + rj

Property 4.3. Let r1, . . . , rn;x1, . . . , xn be a feasible solution of Pr,x, if ∃a such that

η(a) <
n∑
i=1

ri with η(a) =
∑

1≤i<j≤n

|dij − a‖xi − xj‖|, then ∃ r̃1, . . . , r̃n a solution of Pr,a

such that
n∑
i=1

r̃i <

n∑
i=1

ri.
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Proof. Let us consider r1, . . . , rn;x1, . . . , xn a feasible solution of problem Pr,x and a, r̃1, r̃2, . . . , r̃n

the optimal solution of Pr,a. For the solution of Pr,a, for each point i, we have a certain
saturated constraint associated to point k noted Cik(i), otherwise it would not be an
optimum. So, we have:

|di1 − a‖xi − x1‖| ≤ r̃i + r̃1

...
|dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i)

...
|dij − a‖xi − xj‖| ≤ r̃i + r̃j

...
|din − a‖xi − xn‖| ≤ r̃i + r̃n.

Then, |dik(i) − a‖xi − xk(i)‖| = r̃i + r̃k(i) ≥ r̃i. By summing all points i, for i = 1, . . . , n,
we obtain:

n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑
i=1

r̃i.

Thus ∑
1≤i<j≤n

|dij − a‖xi − xj‖| ≥
n∑
i=1

|dik(i) − a‖xi − xk(i)‖| ≥
n∑
i=1

r̃i.

Note η(a) =
∑

1≤i<j≤n

|dij − a‖xi− xj‖|, then if η(a) <
n∑
i=1

ri there is a solution of Pr,a such

that
n∑
i=1

r̃i <
n∑
i=1

ri.

The new initial point is then given by using these two properties as follows:

• firstly, improve the solution of Pr using property 4.3 by solving Pr,a.

• secondly, improve the solution of Pr,a using property 4.2.

4.4.2 Algorithm 1

Using the different initial values of matrix X presented above, we solve now problem
Pr,x. For this task, we introduce a new algorithm denoted algorithm 1 which gives the
best solution that can be obtained using the different initial values cited above. This
algorithm is consisted of two steps: initialization step and optimization step and it is
presented as follows:
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Algorithm 3
Input: D: distance matrix, N : number of iterations.
Initialization step
Project the points using PCA or MDS.
Solve Pr using an interior-point method. Obtained solution: (XPr , rPr ).
Solve PR,x using an active-set method and starting from the solution of Pr obtained at
the previous step. Obtained solution: (XPR,x , RPR,x ).
X0 ← XPR,X .
for t = 1 to N do
Solve Pr,a starting from X0 using an interior-point method.
Improve the solution of Pr,a using property 1. Obtained solution: (XI

Pr,a ,r
I
Pr,a).

X0 ← XI
Pr,a .

end for
Optimization step
Optimize Pr,x using an active-set method and starting from X0, XPr and XPR,x .
Choose the minimal solution obtained by these three different starting points.

4.4.3 Algorithm 2

Problem Pr,x is a hard problem, so it is natural to resort to stochastic optimization
methods. In the present case, Metropolis-Hastings algorithm [11] allows us to build a
Markov chain with a desired stationary distribution. The only delicate part is the choice
of the proposal distribution and the necessity to solve a Pr problem at each iteration. In
details, this Metropolis-Hastings algorithm requires:

1- A target distribution:

The target distribution is related with the objective function of problem Pr,x and it
is given by:

π(s) ∝ exp

(
−E(x)

T

)
,

with E an application given by:
E : Rn 7−→ R

x = (x1, . . . , xn) 7−→ E(x) = Solution of problem Pr with x fix.
The variable T is the temperature parameter, to be fixed according to the value
range of E.

2- A proposal distribution:

The choice of the proposal distribution is very important to obtain interesting re-
sults. It should be chosen in such a way that the proposal distribution gets close to
the target distribution. The proposal distribution q(X → .) has been constructed as
follows, giving priority to the selection of points involved in saturated constraints:
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– For each point i, choose a point j(i) with probability equal to:

Pj(i) =
λ exp

(
−λ(ri + rj(i) − |dij(i) − ‖xi − xj(i)‖|)

)
n∑

k=1,k 6=i

λ exp (−λ(ri + rk − |dik − ‖xi − xk‖|))
·

– Choose a constant cij(i) using Gaussian distribution Nk(0, σ).

– Generate a matrix X∗ by moving each vector xi of matrix X t−1 as follows:

∗ If dij(i) − ‖xi − xj(i)‖ > 0 then x∗i = xi + |cij(i) |Li.
∗ else x∗i = xi − |cij(i) |Li.

with Li =
xi − xj(i)
‖xi − xj(i)‖

.

3- A linear optimization problem:

For the matrix X generated in each iteration, we solve the linear optimization
problem Pr.

4.5 Numerical application

The presented projection method has been applied to different types of real data sets so
as to illustrate its generality.

4.5.1 The data

Four real data sets are used and divided into three categories:

• Quantitative data: Iris and car data sets.

• Categorical data: Soybean data set.

• Functional data: Coffee data set.

The Iris data set [1] is a famous data set and is presented to show that the projection is
as expected. This data set contains 3 classes of 50 instances each, where each class refers
to a type of iris plant. The four variables studied in this data set are: sepal length, sepal
width, petal length and petal width (in cm). Car data set [15] is a data set studied in
the book of Saporta (Table 17.1, page 428). This data set describes 18 cars according to
various variables (cylinders, power, length, width, weight, speed).
The soybean data set [16] from UCI Machine Learning Repository characterizes 47 soy-
bean disease case histories defined over 35 attributes. Each observation is identified by
one of the 4 diseases: Diaporthe Stem Canker (D1), charcoal Rot (D2), Rhizoctonia Root
Rot (D3) and Phytophthora Rot (D3).
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The coffee data set is a time series data set used in chemometrics to classify food types.
This kind of time series is seen in many applications in food safety and quality insurance.
This data set is taken from UCR time Series Classification and Clustering website [7].
Coffea Arabica and Coffea Canephora variant Robusta are the two species of coffee bean
which have acquired a worldwide economic importance and many methods have been
developed to discriminate between these two species by chemical analysis [6].

4.5.2 Experimental setup

In practice, we have tested our method on the different data sets by solving the optimiza-
tion problem Pr,x using algorithm 1 and also the proposed Metropolis-Hastings algorithm
(algorithm 2). Each time, a distance matrix is required. For the quantitative data, we
compute the Euclidean distance between points yi, for i = 1, . . . , n, by the known formula

dij =

√√√√ p∑
k=1

(yik − yjk)2. For categorical data, the distance between two soybean diseases

(i, j) is given through Eskin dissimilarity (or proximity) measure [5] computed by the

formula pij =

Q∑
t=1

wtp
t
ij where ptij =


1

n2
k

n2
k + 2

if it = jt

else
, ptij is the per-attribute Eskin

dissimilarity between two values for the categorical attribute indexed by t, wt is the weight
assigned to the attribute t, Q is the number of attributes and nt is the number of values
taken by each attribute. Then, using the formula which transforms the dissimilarity into
similarity: pij = 1 − sij, the distances can be given by the standard transformation for-
mula from similarity to distance: dij =

√
sii − 2sij + sjj. On top of that, to compute the

distances between the curves of functional data, we have chosen a measure of proximity
similar to that studied in [10]. In this article, the authors develop a proper classification
designed to distinguish the grouping structure by using a functional k-means clustering
procedure with three sorts of distances. So, in our work we choose one of these three
proximity measures forasmuch their results are similar. Thus, the proximity measure cho-

sen between two curves Fi and Fj is the following: d0(Fi, Fj) =

√∫
T

(F 0
i (t)− F 0

j (t))2dt.

This measure is calculated using the function metric.lp() of the fda.usc package for the
R software.

To solve the different optimization problems, we have used the optimization toolbox
in MATLAB. For problems Pr and Pr,a, we apply firstly PCA – for quantitative data –
or MDS – for categorical and functional data – and then a linear programming package is
used to solve the optimization problems using an interior-point algorithm. Problems Pr,x
and PR,x are non-linear optimization problems, therefore we use a non-linear program-
ming package to solve it selecting the active-set algorithm to obtain the best values of
(x1, . . . , xn) and (r1, . . . , rn). This iterative algorithm is composed of two phases. In the
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Table 4.1: Optimization solution of problem Pr,x for different data sets.

∑
r Algo 1
i

∑
rMH
i Lower Bound

Iris 16.19 17.2 1.07
Cars 3.27 3.35 1.21

Soybean 3.98 3.93 0.29
Coffee 21.68 21.97 0.89

first phase (the feasibility phase), the objective function is ignored while a feasible point
is found for the constraints. In the second phase (the optimality phase), the objective
function is minimized while feasibility is maintained [17].

Our proposed Metropolis-Hastings algorithm can provide a good solution if parameters
λ, σ and T are chosen adequately. For instance, λ should be such that the points belonging
to unsaturated constraints are chosen with small probabilities. Therefore, we take it equal
to 100. For the other parameters σ and T , we take their values respectively in a range
from 0.01 and 100.

As we have mentioned in the section of visualization, the visualization of the projection
of each point i in R2 is presented as a circle having xi as center and ri as radius so as
the projected point belongs to this circle and this is the specificity of our method. For
each data set, we show the circles obtained for each point after resolution of optimization
problem Pr,x. To compare the projection quality of our representation with that obtained
by PCA, we use the squared cosine values as PCA projection quality. Furthermore, the
lower bound defined in section 4.3 is each time computed.

4.5.3 Results

4.5.3.1 Visualization data in R2

The optimization results for these four data sets are given in Table 4.1. For each data,
we give the algorithm 1 and Metropolis-Hastings results with which initial starting point
is used in algorithm 1. The lower bound value for each data set is also given in this table.
We observe that in one case (cars), this lower bound indicates that the found solution
is not far from the optimum but in the other cases, it seems that the lower bound while
providing a good starting point can be improved.
Figures 4.6 and 4.7 depict the results of projection under pairwise distance control for
quantitative data. This projection is compared with the projection given by PCA by
plotting the projection of the points indexed by their squared cosine values.
In the projection of Iris data set showed in Figure 4.6b, it is interesting to remark that
appealingly two areas are well separated. This corresponds to the well-known fact that
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Figure 4.6: Projection of Iris data set. (a) and (b) show the projection quality using PCA
and projection under pairwise distance control methods respectively. Two well separated
groups can be observed.
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Figure 4.7: Projection of car data set. (a) and (b) show the projection quality using PCA
and projection under pairwise distance control methods respectively. For PCA, the values
of the quality are given between parentheses near each car.
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Iris versicolor and virginica are close whereas the species Iris setosa are more distant.

Concerning car data set, the projection of points using projection under pairwise dis-
tance control is given in Figure 4.7b. The expensive cars as "Audi 100", "Alfetta-1.66",
"Dastun-200L", "Renault 30" are well-separated from the low-standard cars as "Lada-
1300", "Toyota Corolla", "Citroen GS Club", "Simca 1300". We remark that the expen-
sive cars are located on the right and low-standard one are located on the left.

By comparing the projection quality for each method presented in Figures 4.6 and 4.7 for
these two data sets, we can say that our method projected the points without giving any
importance to any group. Indeed, Figure 4.6a depicts a group with small values of quality
measure and a group with high values of quality measure whereas the radii obtained by
projection under pairwise distance control method are distributed in an equivalent way.
Additionally, from Figure 4.7b, we can assert that the projected points obtained using
projection under pairwise distance control method are well separated as there is any
intersection between the circle. Moreover, the pairwise distances are significant in our
method and give an interpretation on the position between points whereas the distances
between the projected points using PCA are not interpretable as the cosine values can
not be interpreted as distances. This is the particular strength of our method. Hence,
projection under pairwise distance control suggests an absolute interpretation whereas
PCA gives a relative one. From this, we can conclude from Figure 4.7b that there is a big
difference between the two cars "Toyota" and "Renault 3" as the distances between this
two cars is very important. Conversely, the distance between "Lada1300" and "Citroen"
cars are small indicating then the closeness of these two cars. Note here that these two
cars are very well projected leading to a very good interpretation.

For the qualitative and functional data sets, it is necessary to verify that the matrix B
obtained by MDS method is semi-definite positive to use the squared cosine as quality
measure because the starting point of optimization is obtained from MDS. After that, in
case of positiveness of matrix B, we can calculate the quality measure. In the projection
of the soybean data set, four classes have been shown in Figure 4.8 and each class contains
the diseases number of the class. But basically, the whole set of points can be divided
in two large classes. Indeed, It is clear that class 2 is well separated from the others
classes as there is no intersection between the circles of class 2 and the circles of others
classes. Moreover, class 1 can be considered as well separated class from classes 3 and 4

if we do not take into account the point D∗3. Classes 3 and 4 are not at all well separated
as we can exhibit that there are different intersections between the circles of these two
classes. This result is figured in [16] which lists the value "normal" for the first two classes
and "irrelevant" for the later two classes. The comparison of projection under pairwise
distance control result with PCA is not possible for this data set because the matrix B is
not semi-definite positive.

The coffee data set has been studied in several articles ([6, 3]) and different classification
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Figure 4.8: Projection under pairwise distance control for soybean dat set. Four groups
are presented, indexed by D1, D2, D3 and D4.

methods have shown the different groups contained in this data set using our method
and PCA. We can see clearly in Figure 4.9 the grouping structure that is obtained. In
Figure 4.9b, we show that we have succeeded in differentiating the Arabica from Robusta
coffee. These two classes are clearly presented, the first class indexed by 1 corresponding
to Arabica coffee and the second one indexed by 2 corresponding to Robusta coffee. These
classes are not well separated by comparing with the results of quantitative data, since
there are many intersections. Therefore, the representation of the points as circles and
not as coordinates points gives more information about the real class of points and shows
the points who have the possibility to be misplaced in a class.

Figure 4.9a shows the projection quality using PCA. As all the eigenvalues of matrix B
are positive, so we can compute the quality measure given by PCA. Comparing the pro-
jection quality of PCA and projection under pairwise distance control given respectively
by Figures 4.9a and 4.9b, we can observe that the quality of projection of the set of points
is pretty steady.

Additionally, Metropolis-Hastings has been applied to these data sets. The trace plots of
the optimization problem Pr,x are shown in Figure 4.10 after 5000 iterations. Returning
to Table 4.1, we can exhibit that Metropolis-Hastings algorithm solutions are very close
to those obtained using the optimization package of Matlab and reciprocally. Thus, the
obtained radii should be close to the optimum.
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Figure 4.9: Projection of coffee data set. (a) et (b) show the projection quality using
PCA and projection under pairwise distance control respectively. Two clusters indexed 1

and 2 indicate respectively Arabica and Robusta classes.
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Finally, we present the lower bound computed from the three functions described in
Section 3. The lower bound is taken by the minimal intersection of these functions.
Returning to Table 4.1, it is clear that the value of the bound is small compared to
the value of the solution obtained by algorithm 1 and Metropolis-Hastings. Thus, this
bound while providing a good starting point, should be improved. Note that this bound
for tetrahedron example gives also good results as algorithm 1 provides a solution three
times smaller than the bound.
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Figure 4.10: Trace plots of Metropolis Hastings for different data sets. The x-axis corre-
sponds to the iteration number and y-axis to the value of

∑n
i=1 ri.

4.5.3.2 Dimensionality reduction results

One of high-dimensional data studies objectives is to choose from a large number of
variables those which are important for understanding the underlying phenomena of study.
So, the aim will be to reduce the dimension rather than to visualize data in R2. So, our
method can also serve to reduce the number of variables by taking into account the
minimal value of

∑n
i=1 ri.

Here, we have solved the problem Pr,x using the different possible dimension values. We
have plotted in Figure 4.11 the values of

∑n
i=1 ri as a guide for choosing the reduced

number of variables. This figure shows the values of
∑n

i=1 ri for the different data sets
using different dimensions. It is clear to see that the value of

∑n
i=1 ri decreases when the

dimension increases.



97

The main problem which is widely posed in dimension reduction methods is the determi-
nation of the number of components that are needed to be retained. Many methods have
been discussed in the literature [12, 4] to determine the dimension of reduced space relying
on different strategies related to the good explanation or the good prediction. So, with
our method the choice of the reduced space dimension is related to the locally projection
quality of points and how much the user is interested by the projection quality of points.
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Figure 4.11: The scree plot of
∑n

i=1 ri for different dimensions for the four data sets.

Concerning the quantitative data sets (Iris and car), if the main objective of the user
is to obtain a very good projection quality then a choice of three components against 4

for iris and 6 for cars can be a good choice as the value of
∑n

i=1 ri is small and there is
not a big difference between this value for this dimension and the values for the higher
dimensions. For coffee data set, a dimensionality reduction from 56 sample time series
down to 6 simple extracted features is considered as a good choice. The same idea can
be seen for soybean data set, a reduced space dimension equal to 4 can be considered as
efficient reduced space.
Moreover, a comparison of our results with the existent results shows a coherence between
them. For Iris data set, [8] and [13] conclude that the number of variables can be reduced
to 2 as the petal length and petal width variables are the most important variables among
all variables. Similarly, this result can be seen for car data set. Saporta in his book
[15] (Table 7.4.1 page 178) notices that the conservation of two dimensions leads to the
explanation of 88% of inertia. So, these results seem very similar to our results, the
important decrease is located between dimensions 1 and 2. The other decreases are
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negligible for these two data sets. Selection variables is studied on time series coffee data
set in [2]. Using several analysis methods, the number of selected variables ranges between
2 and 13. This result is also seen using our method, a number of reduced variables taken
between 2 and 9 gives a good quality projection of the points. Concerning soybean data
set, Dela Cruz shows in his paper [9] that the 35 attributes can be reduced to 15 and here
with our method, we have succeeded to reduce the attributes to 6 by having a very good
projection.
Hence, the presented results confirm that we can reduce the dimension non-linearly and
still keep a way of assessing as reasonable number of dimensions and that is efficient as a
dimensionality reduction method.

4.5.4 Advantages of projection under pairwise distance control
method

As we have seen, our presented method has several advantages. To summarize:
firstly, it is a non-linear projection method which takes into account the projection quality
of each point individually. Secondly, the distances between projected points are related
to the initial distances between points offering a way to interpret easily the distances
observed in the projection plane. Thirdly, the quality distribution between the points
seems to be evenly distributed.

4.6 Conclusion

The purpose of this chapter was to outline a new non-linear projection method based on
a new local measure of projection quality. Of course, in some projection methods a local
measure is given but this measure cannot be applied unless in cases of linear projections,
and even then it is not suitable for graphical representation.
The quality of projection is given here by additional variables called radii, which enable to
give a bound on the original distances. We have shown that the idea can be written as an
optimization problem in order to minimize the sum of the radii under some constraints.
As the solution of this problem cannot be obtained exactly, we have developed different
algorithms and proposed a lower bound for the objective function.
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Conclusion

This thesis contributes to provide two new multivariate data analysis methods. Specifi-
cally, this thesis deals with the dimensionality reduction and visualization.

Fitting distances was the motivation of the MDF method presented in chapters 2
and 3. We considered two matrices, target and reference matrices, which the proposal
method fit the distance matrix computed after modification of the coordinates of the
target matrix to the reference matrix containing pairwise distance and resulting then an
optimization problem where the objective function is the mean square error. Moreover,
to avoid unnecessary modifications, we have added a combined penalty term to the mean
square error and we have chosen a good regularization parameter to obtain good results.
At this stage, a real application coming from molecular biology has been treated. Two
different conformations, before and after some biological reaction, for a same protein have
compared in order to detect the amino acids that undergo an important movements after
the reaction. Penalized MDF method allowed to identify the parts of the protein which
have moved significantly between the two conformations.

Furthermore, in chapter 3 we have introduced the random effect to the modification
vectors and the objective function is not the mean square error as this quantity is a random
value. The modification vectors are obtained in one hand by minimizing the expectation
of the mean square error and on the other hand by simulating of the error. A statistical
test has been introduced to assess how much the transformation is significative.
The objective function of the minimization problem for the random model of MDF is
obtained using the expectation of the non-central chi and chi-squared distributions. Con-
cerning the simulation, we have used Metropolis-Hastings and for that, we have developed
a good proposal distribution adapted to our problem. The application of this method in
the sensometrics domain shows the simplest explanation of the sensory profiles of products
according the consumers preference.

Chapter 4 is dedicated to present a new projection paradigm focused on non-linear
projection and takes into account the local quality projection. Projection under pair-
wise distance control is the method presented in this chapter, it offers a straightforward
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visualization and interpretation of data in the reduced space as the distances between
the projected points is related to the initial distances. The problem of this method is
written as an optimization problem and different ways have been developed to solve this
problem by using two different algorithms and a lower bound of the objective function.
Moreover, we show that this method can be applied to reduce the dimension non-linearly
and still keep a way of assessing a reasonable number of dimensions which is efficient as
a dimensionality reduction method. The application of this method have made on quan-
titative, qualitative and functional data and the results are compared to those obtained
using PCA to show that local projection quality is distributed evenly between the points
and the interpretation is very easy compared with PCA as this quality can be interpreted
as distances.
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Perspectives

The work presented in this thesis has an interesting potential for future research:

• Perspectives on chapters two and three:

In chapters 2 and 3,we have presented the Multidimensional Fitting method that
transforms a target matrix to make it fit to a reference matrix by using deterministic
and random models.

MDF method in their penalized deterministic model and random model has been
applied to quantitative data set. More studies can be developed to adapt MDF
method to qualitative and functional data.

Moreover, an interesting problem posed by biologists is a topic of further research
that can be inspired from MDF method. Indeed, three kinds of distance matrix
are given in order to describe the distances between the populations: the resistance
distance, the geographical distance and the graph distance. The idea is to find the
best distance matrix that fits better the genetic distances between populations. As
first idea, we want to compare the Laplacian matrix for each distance matrix graph
by fitting the Laplacian matrix of the genetic distance matrix, using the phyloge-
netic tree, to the Laplacian matrix of the other distances matrices. This project is
proposed by Jean-François Arnaud from "laboratoire de génétique et évolution des
populations végétales" and Vincent Castric from "laboratoire évolution, écologie et
paléontologie" at Lille university.

• Perspectives on chapter four:

In chapter 4, we have presented a new non-linear projection method that takes
into account the local projection quality. Projection under pairwise distance control
method used a lower bound to assess how good a solution is. We have seen that the
lower bound values obtained on the application is not very good so further research
is needed to improve the lower bound in order to assess how close the algorithms
are from the minimum.

Besides, data visualization is an important step in many studies specially with big
data. Using our method with these data makes the resolution of the optimization
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problem computationally costly. As a perspective, further studies will be needed
to simplify the optimization and reduce the computing time. In this topic, "Trans-
manche knowledge" is a big data project to predict the risk of flow problems in the
port of Calais in function of time. The data used in this project is hour by hour
data for each day over several years. The visualization of these data is important
to understand more the underlying phenomenons. This work could be the starting
point to understand the data.
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