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General Introduction

This thesis falls under the field of combinatorial multi-objective optimiza-

tion, in particularly in the study of multi-objective problems under uncer-

tainty. It is conducted within the LARODEC laboratory of ISG Tunis and

the DOLPHIN research team of the CRISTAL laboratory of Lille1 University.

A Multi-objective Optimization Problem (MOP) is characterized by mul-

tiple conflicting objectives to be minimized or maximized simultaneously with

respect to a set of constraints. For example, the decision of a new car pur-

chase can be influenced by several incommensurable criteria such as the price,

the safety options, the driving comforts, the fuel consumption and so forth.

Usually, there is no unique solution that is optimal in terms of all these crite-

ria at the same time, but rather many incomparable car models. Hence, the

resolution of a MOP consists in finding a set of best compromise solutions

between the different objectives. This set represents, in the objective space,

the Pareto front from which the decision maker will subsequently choose one

final alternative to realize. A wide range methods and techniques exist in the

literature for solving combinatorial MOPs (Talbi, 2009 ; Gandibleux et al.,

2004 ; Liefooghe, 2009). However, such problems are often NP-hard, large-

scale and their resolution cannot be performed in an exact manner within a

reasonable time. Thus, different approximate methods are extensively used

to deal with them such as metaheuristics. In last years, these latters have

gained great popularity due to their efficiency to achieve good feasible solu-

tions in a reasonable time.

In addition, when dealing with practical applications, the massive amounts

of data are generally associated with unavoidable imperfections. In other

words, real-life problems are strongly connected to some uncertainties in in-
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General Introduction

puts, parameters and environmental data. In fact, uncertain data may result

from using unreliable information sources such as bad analysis or interpreta-

tion processes, faulty description, data incompleteness, ambiguity in percep-

tion and so on. Besides, it may be caused by poor decision maker opinions

due to any lack of its background knowledge, absence of information or even

difficulty of giving perfect qualification for some costly situations. Depend-

ing on the nature of uncertainty and the problem context, several tools have

been proposed such as, probability theory (Steele, 1997), fuzzy set theory

(Zadeh, 1965), evidence theory (Shafer et al., 1976) and possibility theory

(Dubois & Prade, 1988). These theories have started to play an important

role in treating uncertainty in the decision making problems. Indeed, the lit-

erature exposes many modeling approaches for reasoning under uncertainty

in many single-objective optimization problems. Nevertheless, this aspect is,

until today, not well considered in the multi-objective optimization context

that reflects more reality in every domain of our lives.

In this view, our research works will be interested in handling combinato-

rial multi-objective problems with uncertain inputs data. However, propaga-

tion of inputs uncertainty through the optimization process rises as a major

obstacle since it hampers the identification of efficient solutions. Most meth-

ods reported in this context simply transform such problems into crisp or

single-objective equivalents. In consequence, such transformation may affect

the problem results and decisions making. Therefore it is necessary to deal

with the uncertain multi-objective problem in its original version without

ignoring any of its characteristics.

In this thesis, we are focused on a specific type of uncertainty defined

by vagueness and ambiguity, where fuzzy sets serve as modeling tool. More

precisely, our aim is to address issues related to the effects of uncertainty

propagation in multi-objective setting:

1. Where does the effects of uncertainty propagation occur?

2. How to define new optimality concepts or to extend classical ones to

our uncertain multi-objective context?

3. How to design optimization algorithms for solving such very complex

problems?

4. What are the consequences in term of robustness?

To deal with previous questions, we firstly present a global view the different

contributions in this field. Then, we propose a new Pareto-based approach

to solve any multi-objective problem under uncertainty (Bahri et al., 2014a).

2
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The idea is to define new Pareto dominance relations for ranking the gen-

erated uncertain valued objectives. Thereafter, we suggest an extension of

the most population-based metaheuristics by incorporating uncertainty into

their search process (Bahri et al., 2014b). The second part of our work is

devoted to the sensitivity analysis of results. Thus, we provide a robustness

methodology for evaluating the performance of our extended algorithms in

presence of uncertainty (Bahri et al., 2016).

The document is structured in two parts (cf. Figure 1). The first one

(Chapter 1 and 2) covers the state of the art in multi-objective optimization

in both deterministic and uncertain contexts. The second part (Chapter 3 to

5) presents our research works and main contributions for the case of fuzzy

multi-objective problems. The detailed organization of chapters is described

as follows:

General Introduction  

Conclusion and Future Work 

State of the Art 

Contributions 

Chapter 1:  
Combinatorial  Multi-objective  
Optimization  

Chapter 2:  
Multi-objective Optimisation 
under Uncertainty 

Chapter 3:  
Pareto Dominance for Fuzzy 
Multi-objective Optimization 

Chapter 4:  
Fuzzy Pareto-based Optimization 
Algorithms 

Chapter 5:  
Fuzzy Multi-objective 
Robustness-based Approach 

uses 
introduces 
concludes 

Figure 1 – Thesis structure
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Chapter 1 presents a survey of the necessary background about multi-

objective optimization. Initially, it gives an overview of basic concepts, no-

tions and definitions essential for good comprehension of the global document.

Then, it outlines the different multi-objective methods, namely metaheuris-

tics in which we are interested. The chapter also presents the performance

assessment and development tools. Finally, it reports some applications of

MOPs, focusing on the vehicle routing problem as an example.

Chapter 2 addresses the uncertain context of multi-objective optimiza-

tion. It introduces the concept of uncertainty and briefly reviews the different

theories for modelling it. In addition, it gives a general description of uncer-

tain MOPs and discusses existing approaches related to such problems. The

chapter ends with a definition of an uncertain variant of the vehicle routing

problem treated in our case.

Chapter 3 contains our main contribution in terms of Pareto optimality

under uncertainty. It concentrates on the fuzzy modelling of uncertain MOPs

and analyses the impacts of fuzziness on the outcomes. In particular, it exam-

ines the case of MOP with fuzzy valued objectives and provides a formulation

of the problem. After that, it presents our proposal about how to define op-

timality in a fuzzy setting, namely the definition of new Pareto dominance

relations between triangular fuzzy numbers. These relations are illustrated

by some numerical examples and their relevance are then discussed.

Chapter 4 brings the algorithmic contributions. It focuses on the exten-

sion of multi-objective evolutionary algorithms, especially the Pareto based

ones, to our fuzzy context. In fact, the chapter starts by recalling the dif-

ferent steps of classical algorithms, describing their generic extensions and

presenting step by step the extension of two well known algorithms. There-

after, it demonstrates their application on a vehicle routing problem. An

experimental study is finally dressed for validating the performance of our

proposals.

Chapter 5 covers the robustness analysis of our work and gives a survey

of this concept. After briefly reviewing the existing robustness studies, the

chapter gives rise to a new robust approach for fuzzy multi-objective prob-

lems. The effectiveness of the proposed approach is demonstrated by a set

of test experiments conducted on the same vehicle routing problem.

We conclude this manuscript by different research perspectives that seem

interesting to continue this work.
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Chapter 1 : Combinatorial Multi-objective Optimization

1.1 Introduction

Multi-objective optimization is a well-studied research field encountered

in many academic and industrial applications such as in engineering, man-

ufacturing and logistics. It rises as a salient paradigm of decision making

in which the decision maker is always confronted with different conflicting

objectives. For instance, a good purchase choice is associated with several

factors like the price, the durability and the quality, etc. Hence, the most

common purpose is to choose the best trade-off among all these factors. In

that sense, it is practically impossible to find a single solution that opti-

mize all predefined objectives at the same time but rather many efficient

and incomparable solutions. Thus, the challenge of solving a combinatorial

multi-objective problem lies in the difficulty to find a set of optimal solu-

tions. Then if the number of multiple objectives and/or decision variables

grows, the problem becomes much more complex. A wide variety of resolu-

tion methods and techniques have been designed according to the complexity

and way of solving such a problems (Talbi, 2009 ; Liefooghe, 2009 ; Hwang

& Mausud, 2012).

This chapter presents fundamental prerequisites necessary for understand-

ing this research field as well as the multi-objective concepts, the resolution

methods and the performance assessment. The chapter is organized as fol-

lows. In Section 1.2, we give a brief introduction of some basic multi-objective

concepts. In Section 1.3, we highlight the main classes of multi-objective

resolution methods and in Section 1.4, we recall the major domains of appli-

cations. Finally, Section 1.5 presents a combinatorial multi-objective routing

problem that we will treat later.

1.2 Basics of multi-objective optimization

This section covers general concepts, background definitions and nota-

tions related to multi-objective optimization.

1.2.1 Terminology

An optimization problem involves making a best decision alternative be-

tween various possible ones. The chosen alternative should consider all avail-

9



Chapter 1 : Combinatorial Multi-objective Optimization

able constraints and optimizes the problem objective. The person(s) respon-

sible for taking such choices are called decision maker(s)(DM). The process

of identifying and deciding which alternative to choose at every step of the

problem solving is known as decision making process. This process consists

of several steps which are mainly: formulating and defining the problem,

developing a quantitative model for it, optimizing the model, validating the

obtained solutions and implementing one solution.

The term decision space represents the feasible region or search domain

used by decision makers to compare and choose among a range of solutions.

The objective space is defined by the set of outcomes called objective vectors.

Every point or solution in the decision space can map to a point in the

objective space which gives an evaluation of its quality. In the table 1.1, we

outline the most common notations to unify modeling for all optimization

problems.

Table 1.1 – Basic notations

Notation Explanation

S Decision space or feasible solution region

Y Objective space

d Number of decision variables

n Number of objectives

x = (x1, .., xd) Feasible solutions

y = (y1, .., yn) Objective costs or fitness values

f(x) Single Objective function

F (x) = (f1(x), . . . , fn(x)) Objectives vector

gi(x) ≤ bi Set of inequality constraints

hi(x) = 0 Set of equality constraints

Formally, an optimization problem is a mathematical program of the form:

Opt F (x) s.t. x ∈ S (1.1)

where Opt indicates the optimization sense (i.e. maximization or minimiza-

tion) of the objective vector F (x). If F (x) corresponds to a unique objective

function (F (x) = f(x)), the problem is termed single-objective optimiza-

tion problem (SOP). Otherwise, if it encapsulates two or more objectives

10
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(F (x) = (f1(x), . . . , fn(x))), the problem is called multi-objective optimiza-

tion problem (MOP). The decision variables x are numerical quantities from

the feasible decision space S. These quantities can be either continuous or

discrete variables depending on the problem structure. In consequence, opti-

mization problems are continuous when all decision variables are real values,

whereas they are called combinatorial when the variables take values from

a finite discrete set. Notice that, combinatorial optimization problems tend

to be harder to solve than continuous problems. In fact, a great number of

standard benchmarks are available for the continuous case because of its sim-

plicity and the availability of practical cases that can be formulated in linear

forms. On the other hand, there is a lack of benchmarks for combinatorial

optimization problems, which are usually difficult and require an exponential

time to be solved.

1.2.2 Definitions

Multi-objective optimization is the process of optimizing systematically

and simultaneously two or more conflicting objectives subject to certain con-

straints. Besides, contrary to the single-objective case, multi-objective opti-

mization does not restrict to find a unique global solution but it aims to find

a set of efficient solutions. The following definitions gives more details about

multi-objective concepts. Without a loss of generality, we only consider,

throughout this thesis, combinatorial minimization problems since the max-

imization can easily be deduced based on duality principle (i.e. maximizing

an objective function (f) is equivalent to minimizing (−f)).

Definition 1.1. Multi-objective optimization problem

A multi-objective optimization problem (MOP) is defined as follows:

min F (x) = (f1(x), f2(x), . . . , fn(x)) s.t. x ∈ S (1.2)

where F (x) is the vector of n objectives to be minimized: ∀i = {1, . . . , n}, fi :
Rn → R, the number of these objectives must be equal to at least two (n ≥ 2).

In a combinatorial MOP, the feasible region S becomes a discrete set

of solutions. Besides, F (x) maps the decision variables x from the decision

space to the objective space. As shown in Figure 1.1, to each decision variable

x ∈ S is assigned a cost function y ∈ Y that evaluates its quality:

F : S → Y ⊆ Rn, F (x) = y = (y1, . . . , yn) (1.3)
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Decision space  Objective space  

Figure 1.1 – Decision space vs Objective space

where Y = F (S) represents the feasible points (solutions) in the objective

space and yi = fi(x) is a point of this space that represents the solution

quality or fitness.

The objectives are often in conflict with each other (e.g., minimize cost

and maximize profit), so that it is practically impossible to have a unique

solution x∗ optimal for all the objectives: ∀i ∈ 1..n,∀x∗ ∈ S, fi(x∗) ≤ fi(x)).
Therefore, a MOP may have a set of efficient solutions and other concepts

of optimality should be applied to define a partial order relation between

the solutions, known as Pareto optimality. The Pareto optimality definition

comes from the dominance relations proposed initially by (Edgeworth, 1881)

and extended by (Pareto, 1971).

Definition 1.2. Pareto dominance

Let y = {yi, . . . , yn}, y′ = {y′i, . . . , y′n} ∈ Y be two different objective vectors.

~y dominates ~y′, denoted by y ≺ y′, iff:

∀i ∈ {1, . . . , n} : yi ≤ y′i ∧ ∃j ∈ {1, . . . , n} : yj < y′j (1.4)

This means that no component of ~y′ is smaller than the corresponding

component of ~y and at least one component of ~y is strictly smaller.

Definition 1.3. Pareto optimal solution

A solution x∗ is said to be Pareto optimal (i.e. efficient, non-dominated and

non-inferior solution) iff:

∀x ∈ S, F (x) ⊀ F (x∗) (1.5)
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This means that for every solution x, F (x) does not dominate F (x∗), so

that it is not possible to find a solution that improves the performances of

an objective without decreasing the quality of at least another objective.

Definition 1.4. Pareto optimal set

A Pareto optimal set S∗ is the set of Pareto optimal solutions defined by:

S∗ = {x ∈ S/∃x′ ∈ S, F (x′) ≺ F (x)} (1.6)

Definition 1.5. Pareto front

The image of the Pareto optimal set S∗ in the objective space is called Pareto

front PF ∗ defined by:

PF ∗ = {F (x), x ∈ S∗} (1.7)

Approximated front

True Pareto front

Figure 1.2 – Example of Pareto front

Finding the Pareto front is known to be a difficult task (Kao & Jacobson,

2008). In fact, identifying the Pareto optimal (non-dominated) solutions

is generally an NP-hard problem. Thus, the main goal is to identify an

approximation of the Pareto optimal set, from which the decision maker can

choose a best solution based on the current situation. A good approximation

of Pareto solutions should satisfy two properties:

1. Convergence and closeness to the Pareto optimal front.

2. Diversification of solutions around the Pareto front.

Figure 1.2 illustrates an example of approximated front having a very good

spread of solutions (uniform diversity) but a bad convergence, since solutions

are far from the true Pareto front.

13
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1.2.3 Multi-objective optimization and decision mak-

ing

In MOP, the decision making process involves finding a best alternative

decision in the face of multiple conflicting objectives. Indeed, solving such

a problem leads to generate a set of Pareto optimal solutions that help the

decision maker (DM) to select his preferred solution. For this reason, differ-

ent decision making support techniques are developed for introducing DM

preferences in the optimization process (Coello, 2000 ; Rachmawati & Dipti,

2006 ; Hwang & Mausud, 2012). The existing techniques can be classified

into three categories according to the moment when the DM is consulted: a

priori, a posterior or interactively during the search:

In the category of a-priori techniques, preferences are provided by the

DM before starting the optimization process. Indeed, the DM may give a rank

order of the objectives based on their importance or some preference levels.

Then, a Pareto optimal solution is generated by a single run to satisfy as

much as possible the DM preferences. Despite the rapidity of these methods,

it should be noticed that if the DM is not satisfied with the solution(s) found,

the process is simply restarted with another compromise.

Interactive techniques require the presence of the DM throughout the

search process. It is based on an iterative algorithm for the progressive

articulation of preference information. More precisely, at each iteration of

optimization process, the DM specifies his preferences to a particular solution

generated. After a number of interactions, the optimization process converges

to the final preferred solution.

For a-posteriori techniques, preference are not required before or dur-

ing the optimization process. In fact, after the generation of Pareto optimal

solutions, the DM implicitly chooses his adequate solution. Hence, it is rec-

ommended to enable the DM exploring the whole Pareto set (or a good

approximation of this set) according to his preferences. This helps him to

a have complete knowledge of the Pareto front and better apprehend the

arbitration operated between the different criteria.

In our study, we focused on the category of a-posteriori techniques where

the DM preferences are considered only after the overall optimization process.

This latter must be powerful in order to obtain a well-distributed Pareto

optimal set that guides the DM to make his best choice.
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1.3 Multi-objective resolution methods

Several resolution methods have been proposed to deal with multi-objective

problems depending on their complexity (Liefooghe, 2009 ; Talbi, 2009). In-

deed, multi-objective problems are typically NP-hard and their difficulty in-

creases with the growth of the number of variables and objectives (Curry

& Dagli, 2014). Various resolution methods have been developed in order

to tackle these problems. The existing methods can be classified into differ-

ent classes according to their effectiveness, applicability and problems com-

plexity (Liefooghe, 2009). Figure 1.3 describes a classification of the main

multi-objective methods (Talbi, 2009).

Multi-objective optimization  
                 methods      

Exact methods Approximate methods 

Heuristics Approximation  
algorithms 

Branch and Bound 
algorithms 

Dynamic 
programming  

Metaheuristics Specific Heuristics 

Population-based 
metaheuristics  

 

Single-solution based  
metaheuristics 

Figure 1.3 – Taxonomy of multi-objective methods

Exact methods such as branch and bound algorithms (Mavrotas & Di-

akoulaki, 1998), dynamic programming (Carraway et al., 1980), etc, have

been widely used to solve bi-objective optimizations problems. In fact, they

are known to be effective for small-sized problems. Their application leads

often to generate solutions whose optimality is guaranteed but are time con-
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suming. Hence, as soon as the number of objective functions or size of the

problem increase, exact methods become ineffective.

Alternatively, approximate methods have been designed to solve large-

size problems. The aim of these methods is to avoid complete enumeration

of the solution space and to provide approximate solutions (i.e. near op-

timal solutions) in a reasonable computational time. In this case, there is

no guarantee of reaching optimality. For instance, approximation algorithms

(Segev, 2007) have been used to achieve provable quality of solutions with re-

spect to the optimal, whereas heuristics have been intended to find promising

solutions but do not have an optimality guarantee on the obtained solutions.

Metaheuristics (Gandibleux et al., 2004 ; Talbi, 2009) are the most

practical approximate methods designed to solve almost all large and com-

plex multi-objective problems. Unlike specific heuristics which are problem-

dependent methods, metaheuristics are high-level problem-independent meth-

ods that can be used as a general methodology or guiding strategy in design-

ing underlying heuristics. They have received more and more popularity over

the years due to their efficiency and ability to offer a good trade-off between

solutions quality and computing time. A common classification of meta-

heuristics is based on two design criteria: Diversification (or exploration)

and Intensification (or exploitation):

— Single based metaheuristics (S-META): are intensification-based meth-

ods which focus on the search in a local region by exploiting the best

found solution. In this case, a single solution is often handled and

transformed during the optimization process. Examples of S-META

are the local search (Jaszkiewicz, 2002) and tabu search algorithms

(Hansen, 1997).

— Population based metaheuristics (P-META): are diversification-based

methods that allow to globally explore the search process and then

to generate diverse solutions. They are referred to as nature-inspired

metaheuristics, because they have been designed by drawing inspira-

tion from nature. In this case, a set of solutions called population is

evolved over many generations until reaching a good solution qual-

ity. The most popular P-METAs are multi-objective evolutionary al-

gorithms (MOEAs) (Coello et al., 2005) that imitate some natural

characteristics from biological evolution such as recombination and

mutation. This type of algorithms is at the core of our work.
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1.3.1 Common concepts in MOEAs

Multi-objective evolutionary computation becomes nowadays a very ac-

tive research field reflected by a rapidly increasing number of publications

(Veldhuizen & Lamont, 1998 ; Deb, 2001 ; Coello et al., 2005). In partic-

ular, a multi-objective evolutionary algorithm (MOEA) is one of the most

powerful stochastic search methodology that may handle large-scale MOPs

and generate multiple optimal solutions in one single optimization run. The

optimization process of an MOEA is based on the iterative adaptation of a

population until a pre-specified optimization goal as illustrated in Algorithm

1.1.

Algorithm 1.1 General MOEA template
Input : Initial population P0

Output: Best population found

begin
Initialize(P0);
Create(A);
t = 0;
while Not-Termination-Criteria (Pt, tmax) do
Evaluate(Pt, A);
Update(Pt, A);
P ′t := Select(Pt ∪ A);
P ′t := Reproduction(P ′t);
Pt+1 := Replace(Pt, P ′t); t = t+ 1;

end

end

The process starts with an initial population generated randomly. This

is followed by the evaluation of candidate solutions in the population and

the creation of an external population or archive to maintain only the non-

dominated solutions. Thereafter, a selection process is performed. However,

every solution is usually associated with a fitness value indicating its suit-

ability to the problem. The solutions with better fitness are selected and

then reproduced using variation operators (e.g., crossover and mutation) to

generate new offsprings. At the last step, a replacement scheme is applied to

determine which solutions in the population will survive from the offsprings

and the parents. These steps are iterated until a stopping criteria hold. Be-
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sides, two major questions must be addressed when designing an MOEA:

1- How to guide the search process towards the Pareto optimal set?

2- How to achieve a diverse and well distributed set of non-dominated

solutions?

Therefore, the aim is to obtain a set of efficient solutions that fulfills the

requirements of convergence and uniform diversity. To address these crite-

ria, all metaheuristics, especially MOEAs, are based on three main compo-

nents (Talbi, 2009): (a) Fitness assignment, (b) Diversity preserving and (c)

Elitism.

1.3.1.1 Fitness assignment

This component allows to guide the search algorithm toward Pareto op-

timal solutions for a better convergence. It associates a scalar-valued fitness

to each objective vector which represents a solution of the search space. The

fitness value measures the quality of solutions. According to the fitness as-

signment strategy, an interesting classification of metaheuristic approaches

can be highlighted:

� Scalar-based approaches

These approaches are based on the MOP transformation into one or

many single-objective problems. Therefore, single-objective methods

can simply be used to solve the problem and the optimization process

leads naturally to find only one solution. Hence, there is a deterio-

ration and loss of the diversity of obtained solutions. This class of

approaches includes, for example, the aggregation methods that use a

weighted sum function to combine all the objectives into a single ob-

jective function (Hwang & Mausud, 2012). In this case, the decision

maker should have necessary knowledge of his problem.

� Criterion-based approaches

The main idea of criterion-based approaches is to perform the search

space by treating the various objectives separately. These approaches

have often struggled to find compromise solutions since they focus on

the extreme portions of the Pareto front. For example, we can mention

the lexicographic methods that give a priority order on the objectives

to be addressed (Fishburn, 1974) and the algorithm VEGA (Vector

Evaluated Genetic Algorithm) based on a parallel selection process

(Shaffer, 1985).
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� Indicator-based approaches

These approaches are based on the use of performance quality indica-

tors to drive the search toward the optimal Pareto front. In particular,

the optimization goal is defined in terms of a binary quality indica-

tor I that can be regarded as an extension of the Pareto dominance.

Formally, the main goal may be defined as min I(A,R), where the

quantity I(A,R) reflects the difference in quality between an approx-

imation set A and a reference set R (which can be the Pareto optimal

set). One of the major advantages of indicator-based approaches is

that no diversity maintenance is required since it is implicitly con-

sidered in the performance definition. For example, we can cite the

algorithm IBEA (Indicator-based Multi-objective Evolutionary Algo-

rithm) (Zitzler & Künzli, 2004).

� Dominance-based approaches

These approaches rely on the concept of dominance optimality to guide

the search process. The objective vectors of solutions are scalarized

using a dominance relation. The advantage of such approaches is that

all the predefined objectives are treated equitably without any dis-

tinction or preference on one objective. This means that there is no

transformation of the MOP into a single-objective problem. However,

most of dominance-based approaches use the notion of Pareto opti-

mality within multi-objective evolutionary algorithms (MOEAs), since

these latter are able to provide a diverse set of optimal solutions in one

single run. In these algorithms, dominance-based ranking strategies

are usually applied to establish an order between the solutions. The

most commonly used ones are:

- Dominance-rank: In this strategy, each solution is associated with

a rank representing its fitness/quality. This rank is the number of

solutions in the population that dominates the concerned one. The

dominance-rank strategy was firstly used in the MOGA algorithm

(Multi-objective Genetic Algorithm) (Fonesca et al., 2003).

- Dominance-depth: This strategy consists in dividing the popula-

tion of solutions into different fronts. In fact, solutions in the first

front f1 belong to the best non-dominated set that receive rank 1,

those of the second front f2 (with rank 2) are non-dominated ex-

cept by solutions of f1, and so on. In a general way, the depth of a

solution corresponds to the depth of the front to which it belongs.
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This strategy is employed in the NSGA-II algorithm (Deb et al.,

2002).

- Dominance-count: The solution fitness value in this strategy cor-

responds to its dominance-count. This quantity represents the

number of solutions which are dominated by the concerned one.

A combination with the aforementioned strategies can be applied

in this case. For instance, in the SPEA2 algorithm (Zitzler et al.,

2001), both strategies of dominance-rank and dominance-count are

used.

1.3.1.2 Diversity preserving

This component is used to generate a diverse set of Pareto optimal so-

lutions so as to explore the whole decision or objective space on a global

scale. However, a loss of diversity is often observed in many metaheuristics,

especially in the P-META. This may be related to a bad initial choice of pop-

ulation, biased sampling or stagnation during the search progress. To over-

come this problem, diversity preservation techniques must be incorporated

into the metaheuristics such as the kernel method, the nearest neighbor tech-

nique, etc. The basic idea of these techniques is to measure the dispersion in

a given population and then to deteriorate solutions that have a high den-

sity in their neighborhood. The dispersion is often computed using distance

measures like the crowding distance. More details are given in (Talbi, 2009).

1.3.1.3 Elitism

This concept plays an important role in the performance of a metaheuris-

tic. It consists in the preservation and use of elite solutions in order to

improve the search performance. In general terms, elitism allows the best

solutions (e.g., Pareto optimal solutions) generated during the search to be

stored into an elite population, called archive. The archived high-quality so-

lutions can then be used to generate new solutions. Thus, elitism helps to

achieve faster and robust convergence toward he Pareto front. Finally, the

strategy applied in updating the archive may depend on a number of different

criteria such as the size of archive, the number of Pareto solutions, etc.

According to the techniques used for fitness assignment, diversity preserv-

ing and elitism, the MOEAs can be classified into different families. For in-
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stance, depending on the manner in which the archiving process is performed,

they can be divided into two groups, namely Non-elitist and Elitist MOEAs.

Another type of classification is the one based on the optimality techniques

that are used, namely Pareto-based and Non-Pareto-based MOEAs. In fact,

the class of Pareto-based MOEAs (or PMOEAs) rely on the concept of dom-

inance and Pareto optimality to deal with MOPs directly and without any

transformation. This class concerns us in this thesis. The most popular

examples of PMOEAs are the algorithms: SPEA2 (Strength Pareto Evo-

lutionary Approach 2) (Zitzler et al., 2001) and NSGA-II (Non-dominated

Sorting Genetic Algorithm II) (Deb et al., 2002). Finally, a discussion of the

various families and techniques of MOEAs can be found in (Zitzler et al.,

2000 ; Coello et al., 2007).

1.3.2 Software frameworks

Several frameworks dedicated to combinatorial multi-objective optimiza-

tion have been proposed in the literature such as MOEA (K. Tan et al.,

2000), jMetal (Durillo & Nebro, 2011), PISA (Bleuler et al., 2003), Par-

adisEO (Cahon et al., 2004), etc. These frameworks are distinguished accord-

ing to the programming language, the availability of metaheuristics, metrics

and parallel features. However, most of them are initially focused on single

optimization, providing only extensions to the multi-objective case.

Thereby, the major metaheuristics, parallel models and well-known qual-

ity metrics are all provided at once only within the ParadisEO framework 1

(Cahon et al., 2004). Furthermore, ParadisEO is an open source and white-

box object-oriented framework that offers flexible developments for almost all

types of optimization problems and algorithms (e.g., mono-objective, multi-

objective, parallel, hybrid, etc.). ParadisEO is represented as a generic soft-

ware based on the C++ templates and designed to be portable across both

Unix and Windows systems. This framework provides a rich set of template-

based classes which can be used by both non-specialist and optimization

experts. It can also be used by researchers to develop their own algorithms,

taking the advantages of code-reusing and extensibility. As shown in Figure

1.4, it is mainly composed of four modules:

1- ParadisEO-EO (Evolving Object) dedicated to the development of

1. http://paradiseo.gforge.inria.fr
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ParadisEO-PEO 

ParadisEO-MOEO ParadisEO-MO 

ParadisEO-EO 

Figure 1.4 – ParadisEO modules

population-based metaheuristics (P-META) in a single-objective op-

timization.

2- ParadisEO-MO (Moving Object) dedicated to the development of sin-

gle solution-based metaheuristics (S-META).

3- ParadisEO-MOEO (Multi-Objective EO) dedicated to the design of

multi-objective metaheuristics, especially for the P-META. It provides

the most common multi-objective techniques in order to facilitate the

use or extension of popular MOEAs such as IBEA, SPEA and NSGA

algorithms.

4- ParadisEO-PEO dedicated to the design of parallel and distributed

metaheuristics.

All the contributions in this thesis have been implemented using the MOEO

module of the ParadisEO framework.

1.4 Performance analysis

Performance analysis is an important and essential task when evaluating

and validating any multi-objective optimization method. In fact, a rigor-

ous manner to assess the performance of different metaheuristics consists of

the following steps: First, it is necessary to define the experimentation goals

such as examining the method results, comparing two methods, etc. Then,

performance indicators or metrics must be selected and performed to statis-

tically analyze the generated results. Finally, the performance results must
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be presented in a comprehensive way and an analysis is carried out con-

sidering the predefined goals. This section addresses the quality indicators

and the statistical validation dedicated to the multi-objective optimization

approaches.

1.4.1 Quality indicators

Several quality indicators have been proposed in the literature in order

to assess the performance of two sets or approximations of Pareto solutions

(Zitzler et al., 2003 ; Knowles et al., 2006). These latter can be classified

depending on several features:

- Arity (Unary/Binary): Unary indicators assign to each approximated

Pareto front a scalar value that represents its quality but cannot

determine whether a Pareto approximation is better that another.

Whereas, the binary indicators allow to measure and compare directly

the performance of two approximated Pareto fronts.

- Performance goals : Quality indicators can be distinguished accord-

ing to their performance goals: convergence (or closeness) toward the

optimal Pareto front or/and diversity of solutions along the front.

- Required parameters : Many quality indicators require the definition

of some parameters. These indicators can be divided into those that

need accurate knowledge (e.g., Optimal Pareto front, ideal point, . . . )

and those who require reference information provided by the user (e.g.,

reference set, reference point, etc.).

Table 2.2 summarizes the main features of some well studied quality in-

dicators namely the arity type, the goal achieved by the indicator and the

parameters required for its calculation. Usually, an analyzer can use a set

of indicators to ensure the performance assessment. In our experimentation,

we mainly use the two indicators: Hypervolume and Epsilon in order to eval-

uate the designed optimizers. In the following, A and B will denote two

approximation sets found by multi-objective metaheuristics, Z?
n denotes the

reference set (the optimal front).

1.4.1.1 Epsilon indicator

The family of epsilon indicators has been introduced by (Zitzler et al.,

2003) as a metric able to measure approximations quality in term of conver-
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Table 1.2 – Overview of some quality indicators

Indicator Name / Reference Arity Perf. Goal Parameters

IC Contribution Binary Convergence -

(Meunier et al., 2000)

IE Entropy Unary Diversity Niches number

(Basseur et al., 2002)

IER Error Ratio Unary Convergence/ Exact Pareto

(Veldhuizen & Lamont, 1998) Diversity front

I1
ε , Iε Epsilon Unary/ Convergence -

(Zitzler et al., 2003) Binary

IH , I−H Hypervolume Unary/ Convergence/ Reference point

(Zitzler et al., 2003) Binary Diversity

IMS Max. Spread Unary Diversity -

(Zitzler et al., 2003)

IS Spacing Unary Diversity -

(Knowles & Corne, 2002)

R2, R3 R-metric Binary Convergence/ Reference set,

(Hansen & Jaszkiewicz, 1998) Diversity Ideal point

gence. It is based mainly on the notion of epsilon efficiency and comprises

two versions in both unary and binary forms: Multiplicative epsilon indica-

tor and Additive epsilon indicator. The additive version is that we will used.

First, the binary additive ε-indicator, denoted Iε+, gives the minimum factor

by which an approximation set A has to be translated in the criterion space

to weakly dominate an approximation B. It is formally expressed by:

Iε+(A,B) = min
ε
{∀x ∈ B, ∃x′ ∈ A : x′ 4ε+ x}. (1.8)

As an extension of the Iε+, the unary additive epsilon indicator, denoted I1
ε+,

may be defined as follows:

I1
ε+(A) = Iε+(A,Z?

n). (1.9)

where Z?
n is the reference set and n is the number of objectives. Otherwise, an

I1
ε+ value less than or equal to 0 implies that the considered approximation A

weakly dominates the reference set Z?
n. Then as mentioned above, the goal of

this indicator is to evaluate the closeness of an approximation to the reference
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set or the true Pareto front. Therefore in the case of two approximations with

similar quality in terms of convergence, the most diversified one is preferred.

Finally, this indicator is sensitive with respect to the objective functions.

1.4.1.2 Hypervolume indicator

The hypervolume, proposed by (Zitzler et al., 2003), is considered as one

of the few indicators that measure the approximation quality in terms of

convergence and diversity at a same time. Typically, it belongs to the class

of hybrid metrics and exists in both unary and binary forms.

Approximation set A

Reference set R

Figure 1.5 – Unary versus binary Hypervolume indicator

Figure 1.6 – Hypervolume indicator

The unary indicator, denoted IH measures the volume (portion) of the

objective space dominated by a given approximation. The higher this volume

is, the better is the approximation. As shown in Figure 1.6, IH requires the

specification of a reference point zref which denotes an upper bound over

all the objectives. Otherwise, zref must be at least weakly dominated by

all the solutions of the considered approximation. As this point is usually

not known, it is mostly estimated as the worst possible value in the objective

space. Then, the volume IH represents the union of the hypercubes (bounded

by zref ).
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The binary variant of this indicator, the so-called hypervolume difference

I−H , measures the quality of a given approximation set A in comparison to a

reference set Z?
n. It computes the difference, in terms of the hypervolume,

between these two sets by measuring the portion of objective space weakly

dominated by Z?
n and not by A:

I−H(A) = IH(Z?
n)− IH(A) (1.10)

where smaller values correspond to higher quality in contrast to the unary

hypervolume IH (i.e., the closer I−H to 0, the better is the approximation).

1.4.2 Statistical validation

In recent years, statistical analysis has become a widespread and indis-

pensable phase for drawing reliable conclusions about the performance of

multi-objective optimizers. Otherwise, the goal of any statistical analysis

is to increase the clarity and objectivity of the interpretation and valida-

tion of results. Generally, several runs of the same algorithm and the same

problem instance are needed for a good performance analysis. Then, non-

parametric statistical tests can be applied depending on the objective of

analysis (Sheskin, 2003):

Comparison of the dominance rank of approximation sets: In

this case, classical tests can be simply used such as the Mann-Whitney rank

sum test for comparing two approximations or groups of data or the Kruskal-

Wallis test for comparing more than two approximations.

Comparison of the indicators results: For this type of comparison,

some protocol steps can be followed: First, consider a set of runs per problem

instance of designed algorithms, quality indicators are performed to empiri-

cally evaluate them. Once indicator results are reported, statistical tests are

then applied on the obtained I−values scalars. Two possible scenarios can

occur when comparing algorithms:

- Independent samples: A run of each algorithm is a completely inde-

pendent random sample. This means that the influence of one or more

random variable is not taking into consideration. The Mann-Whitney

or Kruskal-Wallis tests can be adopted.

- Matched samples: The parameters used for the runs of algorithms are

the same and then the generated samples are matched or paired. In
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this case, the Fisher permutation test or Wilcoxon signed-rank test

can be used.

1.5 Multi-objective optimization applications

Multi-objective optimization has a huge number of applications in various

domains such as telecommunication (Meunier et al., 2000), software engineer-

ing (Marler & Arora, 2004), bio-informatics (Handl et al., 2007), logistics and

transportation (Jozefowiez et al., 2008), scheduling (Basseur et al., 2002), etc.

As part of this thesis, we deal with routing problems belonging to the class of

NP-hard combinatorial optimization. In the following, we give an overview

of the problem that will be treated in next chapters.

The Vehicle Routing Problem (VRP), introduced more than four decades

ago by (Dantzig & Ramser, 1959), is one of the well-known combinatorial

optimization problems. It has received great attention over the last years

due to its considerable difficulty (NP-hard problem) and potential real-world

applicability in the area of distribution logistics and transportation systems.

The problem aims to find best routes of a fleet of vehicles in order to dis-

tribute customers’ demands with overall minimum travel cost. In general,

the VRP consists in giving a set of vehicles with limited capacities, one or

more common depots and several demands (or goods) for delivery to a set

of geographically distributed customers. It is often subject to several side

constraints related to customers, vehicles and routes. For instance:

� Customer constraints:

- Customer demands can be delivered and/or collected,

- Each customer is visited exactly once by only one vehicle,

- A customer can be served during a time window.

� Vehicle constraints:

- Vehicles can be homogenous or heterogeneous depending on their

identical or variable capacity,

- A vehicle starts from one or multiple depot(s) and terminates by

returning to the original depot(s).

- A required time for vehicles to deliver and/or collect goods.

� Routes constraints:

- The vehicle capacity should not be exceeded by the total demands

of customers during any route,
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- The service time plus the travel time should be smaller than a

preset constant,

- The total time of a feasible route must not exceed the maximum

time fixed a priori.

Different possible objectives may also be defined on this problem, for exam-

ple minimizing the total transportation cost, maximizing the variability of

routes, minimizing the number of vehicles required, etc. Depending on the

type of constraints and objectives, different variants of VRP exist in the lit-

erature . We present here the classical and basic variant called Capacitated

Vehicle Routing Problem and referred to as VRP. The problem consists in

designing routes for a set of homogeneous vehicles (having the same capacity

restriction) to service the customers at the least cost. This cost can be a

weighted function of the total traveled distance or total travel time. In the

CVRP, all the vehicles start from and end to a single central depot, all the

customers have deterministic demand quantities which are known in advance

and the total demands for every route must not exceed the vehicle capacity.

Formally, the VRP can be defined as an asymmetric graph G = (V,A)
where A denotes the arcs set and V = {0, 1, . . . , n} denotes the set of vertices

or nodes. The vertex 0 represents the central depot with vehicles K =
{1, . . . ,m} having the same capacity Q. Vertices C = V , 0 enumerate the

customers with their crisp demands. For each arc aij ∈ A is associated to a

transportation cost Cij that can be interpreted as the total traveled distance

or travel time spent to go from customer i to customer j. The classical

mathematical model is as follows:

min
n∑
i,j

m∑
k=1

Cijx
k
ij (1.11)

s.t.
∑n
i,j dmi x

k
ij ≤ Q, k ∈ K

where Cij is the travel cost from i to j, xkij is the decision variable that is

equal to 1 if a vehicle k travels directly from customer i to customer j, 0
otherwise, dmi represents the demand of the customer i and Q is the vehicle

capacity.

Example 1.1. Figure 1.7 illustrates an example of VRP with a central depot,

a set of 14 customers represented by nodes and a set of 3 vehicles having an

identical maximum capacity Q = 15. Each customer has a value associated

with it which represents the quantity supplied. Clearly, in this example, the
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Figure 1.7 – CVRP problem

vehicles perform three different routes that start and end at the same depot.

It is also shown that the total demands of visited customers by a route does

not exceed the limited vehicle capacity. For instance, consider the route 1,

the sum of supplied demands 5 + 2 + 1 + 3 + 2 = 13 is less than the maximum

capacity Q = 15.

However, practical routing problems are often much more complex than

the basic VRP. In the last years, several studies have investigated many vari-

ants of this problem (Golden et al., 2008 ; Ismail et al., 2011 ; Toth & Vigo,

2014). Figure 1.8 represents some VRP variants and their interconnections.

Every variant is an extension of the basic problem with some additional con-

straints (i.e. an arrow moving from variant A to variant B means that this

latter is an extension of A). Besides, a combination of two or more variants

can be treated as a VRP with further specific constraints.

For instance, the VRP with Time Windows (VRPTW) extends the VRP

by specifying a constraint of time windows in which the customers have to be

served. Otherwise, each customer has a given time interval within which the

delivery (or visit) must be made. The VRPTW has been extensively studied

and various solution techniques for such a problem have been proposed. An
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Figure 1.8 – Variants of VRP

overview of existing techniques is given by (Solomon, 1987).

The Stochastic VRP (SVRP) is another well-studied variant that has

great applicability to real-life situations. It covers all the VRPs in which

some inputs elements are stochastic such as the set of customer visited, the

demands at the vertices and/or the travel times. This problem has different

formulations: VRP with Stochastic Demands (VRP-SD), VRP with Stochas-

tic Customers (VRP-SC), VRP with Stochastic Customers and Demands

(VRP-SCD) and so on. A survey of methods and techniques used for SVRP

problems can be found in (Gendreau, Laporte, & Séguin, 1996).

Most of these variants are often limited to optimize one single objective

(e.g., the total transportation cost). Although, the majority of real-life rout-

ing applications are multi-objective by nature and require the satisfaction of

many conflicting objectives simultaneously (e.g., minimizing the total vehicle

travel distance and maximizing the expectation of customers’ degree satisfac-

tion). The different objectives in such problems may be classified according

to different factors, that are, the tour, the resources, and the node activity

as following:
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Objectives on tour: Regarding the tour, the most common objec-

tives are to reduce the tour costs in terms of travelled distance, required

time (Jozefowiez et al., 2008) or duration of the longest tour (makespan)

(Lacomme et al., 2006). These objective are important economic parame-

ters associated to fuel consumption. Another type of objective consists of

minimizing the disparity (imbalance) in the tour’s workloads of the vehi-

cles (Baños et al., 2013). The aim is so to induce an equilibration between

tours (i.e. tour balancing) by defining workloads as the number of visited

customers, the quantity of delivered goods, the time required, or the tour

length, etc.

Objectives on resources: The resources are mainly the vehicles and

the goods. For instance, minimizing the number of vehicles is one of the most

studied resources objectives (Ghoseiri & Ghannadpour, 2010). This objective

has often an economic significance such that fewer is the number of vehicles,

fewer is the investment. However, sometimes in real life applications, it is

impossible to reduce the cost by reducing the number of vehicles employed

by the company. Another objective related to vehicles consists of maximizing

their profit in terms of capacity or required time (Cordeau & Laporte, 2003).

On goods, the common objectives are minimizing the damage of perishable

goods or the risk related to the transportation of dangerous goods (Y. B. Park

& Koelling, 1989).

Objectives on node/arc activities: Most of studies including objec-

tives on nodes or arcs treat routing problems with time windows. In this case,

the time windows constraint can be replaced by an objective that minimize

the number of violated constraints or the total wait time caused by earliness

or lateness (Gupta et al., 2010). Another objective consists of optimizing the

access to the visited nodes by a set of unvisited nodes (Prins & Bouchenoua,

2005).

Additional types of objectives were thereby added to the above classi-

fication in order to cover the practical applications such as objectives on

customer satisfaction (Ribeiro & Lourenço, 2001), objectives on transporta-

tion of goods (Tavakkoli et al., 2012), objectives on driver or arrival time

consistency (Kovacs et al., 2014), etc. Moreover, a Multi-Objective VRP

(MO-VRP) arises in many real-life applications (Golden et al., 2008 ; Toth

& Vigo, 2014 ; Ghannadpour et al., 2014) such as commercial distribution or

collection of goods like restaurant delivery services, newspapers distribution,
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bank or postal deliveries, industrial waste management, and so on. Other

practical applications (Bowerman et al., 1995 ; J. Park & Kim, 2010) in-

volve school bus routing, transportation of handicapped persons, routing of

salespeople, security patrol services.

1.6 Conclusion

In this chapter, we have presented the fundamental background of de-

terministic multi-objective optimization, starting with classical definitions,

concepts and formulations to a literature review about existing resolution

methods and performance indicators. We have then focused some attention

on the most common multi-objective methods, namely metaheuristics by

giving an overview of their principle, main components and the used frame-

works to develop them. Finally, we have briefly described the VRP variants

as popular examples of combinatorial optimization problems. Next chapter

discusses the case of optimization under uncertainty in both mono-objective

and multi-objective contexts.
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2.1 Introduction

Uncertainty rises as one of the major issues in decision making since it

characterises almost all real-life problems and practical applications in which

the big amount of data provides certainly some inevitable imperfections.

These imperfections may occur from imprecision in information sources, in-

completeness of some training data, ambiguity or difficulty of giving sharp

observations and also from poor decision maker opinions. Then depend-

ing on the nature of imperfection, two types of uncertainty can be distin-

guished: Aleatory uncertainty (also called irreducible, objective or systemic

uncertainty) which is characterized by natural randomness and variability

that cannot be reduced by further efforts and Epistemic uncertainty (also

called reducible, subjective or cognitive uncertainty) associated with ambi-

guity, fuzziness or any lack of knowledge and information. However, the

uncertainty aspects have been intensively studied in the context of single-

objective optimization, whereas their combination with multi-objectivity as-

pects has not been deeply studied so far. Moreover, almost all existing ap-

proaches for uncertain multi-objective optimization have been often limited

to transform the problem into a crisp version or to reduce it into one or more

mono-objective problems (Teich, 2001 ; Paquete & Stützle, 2007 ; Liefooghe,

2009). In this thesis, we focus on the case of multi-objective problems with

epistemic uncertainty, especially in a fuzzy setting.

The chapter is organized as follows. Section 2.2 gives some basics of fuzzy

theory and possibility theory. Section 2.3 briefly discusses the specific case of

multi-objective optimization under uncertainty by formulating the problem

and reviewing some existing approaches in this field. Finally, section 2.4

describes an uncertain variant of multi-objective vehicle routing problems to

which we are interested.

2.2 Fuzzy and possibilistic frameworks

This section presents fundamental concepts of the two uncertainty frame-

works used in this work, namely fuzzy sets theory (Zadeh, 1965) and its

extension possibility theory (Dubois & Prade, 1988). Before introducing

these frameworks, let us first give some useful notations:

� Ω = {ω1, . . . , ωn} denotes the universe of discourse of a given problem,
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� Each element ω ∈ Ω is called an interpretation, a possible realization

or a state of Ω,

� A ⊆ Ω denotes a subset of variables from Ω,

� ai denotes any instance of Ai, means that if A = {A1, . . . , An} then

a = (a1, . . . , an).
� R ⊂ Ω denotes the universal set of real numbers.

2.2.1 Fuzzy sets theory

The theory of fuzzy sets was introduced by (Zadeh, 1965) as an extension

of dual logic and/or classical set theory. Over the years, it has been thor-

oughly studied through a large amount of scientific research and addressed

by various real-world applications. This theory provides a powerful natural

framework for handling ambiguity and vagueness arising from human lin-

guistic labels. Its main idea is that the classical bivalent reasoning (i.e., in a

crisp manner such as yes or no, 0 or 1) is unable to represent many situations

that involve natural language uncertainty (as induced by human think). For

instance, the linguistic qualifiers like ”expensive”, ”appropriate” or ”cheap”

have different perceptions which vary from one person to another. Hence,

the fuzzy logic proposes a flexible and suitable way to model any uncertain

vague information using an approximate reasoning. In this reasoning, every-

thing is interpreted as a matter of degree.

Example 2.1. Consider the example of vehicle speeds on expressways and

trunk roads. Suppose that a normal speed is about 100 km/h. In the crisp

logic, a maximum speed limit (for example S = 130 km/h) is often required

to decide whether it is high or low. Then, a speed of 131 km/h will be seen as

high (131 > 130), while a speed of 129 km/h will be seen as low (129 < 130).

On the other hand, fuzzy logic associates a set of degrees ∈ [0, 1] to qualify

each speed (see Figure 2.1). In this case, the speed is seen as high with a

degree 1 above 130 km/h, with a degree 0 under 50 km/h and with a degree

0.5 for 100 km/h. Besides, one can say that the speed of 129 km/h is high

with a degree 0.9 and low with a degree 0.1. We remark that the same speed

can have different degrees according to the given qualifier meaning (e.g., high

or low).
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Figure 2.1 – Fuzzy sets representing high vehicle speeds

2.2.1.1 Definitions

In the following, we present some basic definitions and notions in fuzzy

sets theory (Ayyub & Klir, 2006). Indeed, this theory is based on a gradual

aspect represented by a membership function (also called grade of member-

ship or degree of compatibility). This function indicates the degree that an

element ω, of the universal set Ω belongs to a given fuzzy set by ranging it

from 0 (perfect exclusion) to 1 (perfect inclusion).

Definition 2.1. Fuzzy set

A fuzzy set A in Ω is a non-empty set of ordered pairs that admits degrees

in the real interval [0, 1]. Formally, it is defined by means of a membership

function µA(ω) : Ω→ [0, 1] that has the following mathematical form:

µA(ω) =


fA(ω) ∀ω ∈ [a, b)
1 ∀ω ∈ [b, c]
gA(ω) ∀ω ∈ (c, d]
0 otherwise.

(2.1)

where a ≤ b ≤ c ≤ d ∈ A and fA(ω) : [a, b)→ [0, 1] and gA(ω) : (c, d]→ [0, 1]
are real-valued increasing and decreasing functions respectively.

Definition 2.2. Support

The crisp subset of fuzzy set A whose elements all have non-zero membership

degrees is called the support of A and defined as:

Supp(A) : {ω ∈ Ω|µA(ω) > 0} (2.2)
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Definition 2.3. Core

The core of fuzzy set A is the crisp subset of elements having membership

grade equal to 1 such that:

Core(A) : {ω ∈ Ω|µA(ω) = 1} (2.3)

Definition 2.4. α-cut

An α-cut or α-level of fuzzy set A (denoted [A]α) is the crisp subset of ele-

ments of the universe Ω whose membership values belong at least to the degree

α. That is:

[A]α = {ω ∈ Ω | µA(ω) ≥ α} (2.4)

The α-cut is defined by the set of all ω such that A(ω) is greater than

or equal to α. It is generally adopted as an effective tool for defining fuzzy

measures and performing different arithmetic operations on fuzzy sets.

Definition 2.5. Normal fuzzy set

A fuzzy set A is called normal or normalized if there exist an element ω ∈ R
such that:

sup
ω∈Ω

µA(ω) = 1 (2.5)

where sup denotes the high of A (largest membership grade). Otherwise, A

is considered as sub-normalized.

Definition 2.6. Convex fuzzy set

A fuzzy set A is said to be a convex set if there exist elements ω1, ω2 ∈ Ω
such that:

µA(λω1 + (1− λ)ω2) ≥ min(µA(ω1), µA(ω2)), λ ∈ [0, 1] (2.6)

Definition 2.7. Fuzzy number

A fuzzy set A is called a fuzzy number in the universal set R if:

(i) it is a normalized and convex fuzzy set,

(ii) has a non-empty and bounded support,

(iii) its membership function is piecewise continuous.

Example 2.2. Figure 2.2 illustrates examples of three linear shapes of fuzzy

numbers having a membership function ”around or close to 130” (Ex. the ve-

hicle speed limit). The shape in the left illustrates a triangular fuzzy number,

the shape in the middle represents a trapezoidal fuzzy number and the curve

at the right shows a bell-shape fuzzy number.
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Figure 2.2 – Examples of fuzzy shapes

The selection of an appropriate shape depends on the type of fuzzy data

to be represented. The most common and popular shape of membership

functions is triangular.

Definition 2.8. Triangular Fuzzy Number (TFN)

It is a fuzzy number represented with a triplet of values A = [a, â, a], where

[a, a] is the interval of possible valued called its support and â denotes its

modal or kernel value (i.e. the most plausible) as shown in Figure 2.3. This

representation is interpreted as a linear membership function µA(x) that holds

the following mathematical definition:

µA(x) =



x−a
â−a , a ≤ x ≤ â

1, x = â
a−x
a−â , â ≤ x ≤ a

0, otherwise.

(2.7)

Notice that, a triangular fuzzy number can be deduced from transfor-

mations of other shapes (like trapezoidal or rectangular fuzzy numbers)

by inducing linguistic modifiers, compositions, projections and other oper-

ations (Zadeh, 1965). For these reasons, TFNs are simple to implement, fast

for computation and usually employed as start functions for every problem

(Pedrycz, 1994).
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Figure 2.3 – Triangular Fuzzy Number

2.2.1.2 Fuzzy set properties and operations

Fuzzy subsets are often used with some mathematical properties in order

to describe vague/uncertain concepts. Therefore, various standard properties

(such as equality, inclusion, union, etc.) have been extended in the context

of fuzziness. Let A and B be two fuzzy sets:

1. Fuzzy Equality: A = B if ∀ω ∈ Ω : µA(ω) = µB(ω).
2. Fuzzy Inclusion: A ⊂ B if ∀ω ∈ Ω : µA(ω) ≤ µB(ω).
3. Fuzzy Intersection: ∀ω ∈ Ω : (A ∩B)(ω) = min(µA(ω), µB(ω)).
4. Fuzzy Union: ∀ω ∈ Ω : (A ∪B)(ω) = max(µA(ω), µB(ω)).
5. Fuzzy Complement: µAc(ω) = 1− µA(ω).
6. Fuzzy Cardinality: |A| = ∑

ω∈Ω µA(ω).
In the literature, the operators of fuzzy intersection and fuzzy union are re-

spectively referred as ”t-norms” and ”t-conorms” (Klir & Yuan, 1995). Notice

that, all previous properties are also applicable on fuzzy numbers in the same

manner.

Another important issue in fuzzy sets theory is the extension principle de-

scribed by (Zadeh, 1965) and developed later by (Yager, 1986). This principle

provides a mathematical way for extending the classical domain of a function

(arithmetic, relation...) to fuzzy sets. More formally, let F : Ω −→ R be a

real function with F(ω) = u, A be a fuzzy set in Ω and let µA(ω) be the

membership function for ω. Using the extension principle, the membership

for u is defined as:

µB(u) = sup{µA(ω)|F(ω) = u} (2.8)
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where B is the direct image of A mapped under of F(.) (i.e. B = F(A)).
Furthermore, the extension principle is particularly useful in the analysis

and arithmetics of fuzzy numbers. Based on this principle, the classical

arithmetic operations namely operation of addition, substraction, division

and multiplication are generalized for fuzzy numbers. Examples of operations

that can be performed on two triangular fuzzy numbers A = [a, â, a] and

B = [b, b̂, b] are:

(i) Addition: A+B = (a+ b, â+ b̂, a+ b)
(ii) Substraction: A−B = (a− b, â− b̂, a− b)
(iii) Symmetric image: −A = [−a,−â,−a]

In this scope, the α-cut can be used to state a fuzzy number under a

crisp interval of α-boundaries. Then, the arithmetic operation can be directly

applied on the interval of α-cuts. For instance, consider two fuzzy numbers

A and B and their α-cuts [A]α = [aLα, aRα ] and [B]α = [bLα, bRα ] respectively, a

standard addition operation is given by:

A+B = [A+B]α = [aLα + bLα, a
R
α + bRα ] (2.9)

2.2.2 Possibility theory

Possibility theory, issued from fuzzy theory, was initially introduced by

(Zadeh, 1978) and further developed by (Dubois & Prade, 1988). This theory

allows to handle uncertainty in a flexible and simple way as expressed by hu-

mans. Indeed, it represents an appropriate framework for experts to express

their partial belief numerically or qualitatively. In other words, possibility

theory deals with epistemic uncertainty in two ways, namely the quantita-

tive and qualitative settings. Before presenting the possibilistic aspects, let

us first give some meanings of the notion of possibility. Typically, the term

”it is possible that” can have several interpretations such as:

� It is feasible (or realizable) to do something.

� It is consistent (not contradictory or reasonable) to achieve an action

or event.

� It is plausible (believable or realistic) to be true.

According to these semantics, different levels of possibility could be expressed

either using possibility degrees (in quantitative setting) or using orderings on

the possible events (in qualitative setting). In this thesis, we focus on the

quantitative facet of possibility theory.
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Additionally, this theory is in complete accordance with the basic prin-

ciple of fuzzy logic where gradual membership properties are present. In

fact, starting from the idea of quantifying the membership of an element,

possibility theory is meant to provide a gradual possibilistic semantic to a

set of elements. Moreover, it can be used to quantify the possibility of an

element regarding a set by means of a possibility measure. For instance, the

definition of linguistic expressions such as ”high” or ”low” may refer to a set

of possible values in a specific context. Then, each value will be associated

with a possibility degree which quantifies how much this value is typical with

respect to the qualifier meaning.

2.2.2.1 Possibility distributions

The basic concept of possibility theory is the notion of possibility distri-

butions denoted by π and corresponding to a mapping from the universe of

discourse Ω to a given possibilistic scale. More precisely, a possibility distri-

bution is a function which associates to each element ωi of Ω, a value π(ω)
in a bounded and linearly valuation scale. This value is called a possibility

degree. In the quantitative sense, the scale is taken as a unit interval [0, 1]
encoding our knowledge on the real world which is generally ill known.

Moreover, possibility distributions are used as flexible constraints restrict-

ing the more or less possible values of a single-valued variable. In fact, a pos-

sibility distribution πv represents a state of knowledge about the unknown

values of variable v (ranging on Ω) distinguishing what is plausible from what

is less plausible. The quantity πv(ω) is the degree of possibility that v = ω.

It provides a restriction of the values of v with respect to some conventions

as described in Table 2.1. However, distinct values may have simultaneously

Table 2.1 – Possibility distribution πv

πv(ω) = 0 ω = v is impossible

πv(ω) = 1 ω = v is totally possible

πv(ω) > πv(ω′) ω = v is preferred to ω′ = v (or more plausible)

a degree of possibility equal to 1. Then, flexibility is determined by ranging

some values of πv(ω) between 0 and 1. Besides, the use of intermediary de-

grees of the possibility enable us to acknowledge that some values are more
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possible than others. It should also be noticed that a possibility distribution

πv(ω) is said to be normalized if there exist at least one state ω of Ω which

is totally possible as a value of v. In this case, Ω is assumed as the complete

range of v and thus maxω∈Ω{π(ω) = 1}. Otherwise, πv(ω) is considered as

sub-normalized. In what follows, we give some particular or extreme cases of

possibility distributions:

— Complete knowledge: ∃ωi ∈ Ω, π(ωi) = 1 and ∀ωi , ωj, π(ωj) = 0.

— Partial knowledge: ∀ωi ∈ A ⊆ Ω, π(ωi) = 1. If A is not a singleton

∀ωi < A, π(ωi) = 0.

— Total ignorance: ∀ωi ∈ Ω, π(ωi) = 1 (all values in Ω are possible).

2.2.2.2 Possibility and Necessity measures

A possibility distribution π on Ω enables events to be qualified in terms

of their plausibility and their certainty, by means of two dual measures: the

possibility Π and the necessity N . In fact, the expression ”it is not possible

that A is true”does not only mean that ”not A is possible”, but it also leads to

a stronger conclusion: “it is necessary that not A”. Conversely, the expression

”it is possible that A is true” does not entail anything about the possibility

nor the impossibility of not A. Hence, a distinction between the concepts of

possibility (plausibility) and necessity (certainty) of an event is defined using

the two dual measures Π and N .

Possibility measure Given a possibility distribution π, the possibility

measure of any subset A ⊆ Ω may be defined by:

Π(A) = max
ω∈A

πv(ω) (2.10)

Π(A) is called the possibility degree of A and it evaluates to what extent

it is possible that the actual value of v belongs to A. In classical way, this

measure evaluates at which level A is consistent (i.e. not contradictory) with

the knowledge represented by π (i.e. ω is a unique value). Table 2.2 gives

main properties of possibility measure in the case of classical normalized

distribution π.

On the other hand, if a fuzzy logic is adopted, a membership function µ

will be used instead of π and then Π(A) will be interpreted as a graded fuzzy

measure.

Π(A) = sup
ω∈A

µv(ω) (2.11)
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The evaluation provided by Π(A) corresponds to a degree of non-emptiness

of the intersection of subset A with the given fuzzy set.

Table 2.2 – Possibility measure Π

Π(A) = 1 and Π(¬A) = 0 A is certainly true

Π(A) = 1 and Π(¬A) ∈ [0, 1] A is somewhat certain

Π(A) = 1 and Π(¬A) = 1 total ignorance (A is unknown)

Π(A) > Π(B) A is a-priori more plausible than B

max(Π(A),Π(B)) = 1 A and ¬A cannot be both impossible

Necessity measure The necessity is a dual measure of the possibility Π.

Thereby, N(A) is defined with reference to the complementary set ¬A of that

under study as follows:

N(A) = 1− Π(¬A) = min
ω<A

(1− π(ω)) (2.12)

N(A) is called the necessity degree of A. It evaluates to extent we are certain

that the actual value of ω belongs to A. This measure corresponds at which

level A is certainly implied by the knowledge expressed by π. It represents the

certainty degree of A. Main properties of necessity measure are summarized

in Table 2.3. Similarly in fuzzy logic, the grade of membership µ will be used

as the possibility degree:

N(A) = 1− sup
ω<A

µv(ω) (2.13)

Table 2.3 – Necessity measure N

N(A) = 1 and N(¬A) = 0 A is certainly true

N(A) ∈ [0, 1] and N(¬A) = 0 A is somewhat certain

N(A) = 0 and N(¬A) = 0 total ignorance

min(N(A), N(¬A)) = 0 unique link existing between N(A)
and N(¬A)

Moreover, the duality of both measures implies the following relation:

Π(A) ≥ N(A). This relation is translated by two interpretations: The first
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one means that any subset about which we are certain, at least a little,

is completely possible (i.e. if N(A) , 0, then Π(A) = 1)). The second

interpretation means that we have no certainty about an event which is only

relatively possible (i.e. if Π(A) , 1, then N(A) = 0).

Two key axioms of ’maxitivity’ and ’minitivity’ complete the basics of

possibility theorty. Indeed, the possibility measures satisfy the basic ’maxi-

tivity’ property, while the necessity satisfy the dual property of ’minitivity’:

Π(A ∪B) = max(Π(A),Π(B)) (2.14)

N(A ∩B) = min(N(A), N(B)) (2.15)

These axioms represent a generalization of the basic disjunctive (or union

A∪B) and conjunctive (or intersection A∩B) fusion operators. They allow

the fusion of possibility and necessity degrees using t-norm and t-conorm

rules described below.

Example 2.3. Let π be a possibility distribution defined on Ω = {ω1, ω2, ω3, ω4}
such that π(ω1) = 0.4, π(ω2) = 0.7, π(ω3) = 1, π(ω4) = 0.1 and A =
{ω1, ω2}, the possibility and necessity degrees of A are:

Π(A) = max(0.4, 0.7) = 0.7 and N(A) = 1−max(1, 0.1) = 0.

2.2.2.3 Fusion rules in possibility theory

The fusion of pieces of information from different sources is an important

aspect having a potential application in many areas such as expert opinions

fusion, functions fusion, multiple results combination, and so on. A typology

of fusion (or merging) rules has been defined in the setting of possibility the-

ory, distinguishing rules that use the intersection between dependent pieces

of information, from rules that use the union operator between independent

information. In particular, the choice of a suitable merging rule is too re-

lated to the problem under study, the reliability of information sources and

the dependence between the different pieces of information. Thereby, two

well-known concepts can be captured: t-norms and t-conorms.

t-norms (or triangular norms) A t-norm is defined as a fusion function

of two variables from [0, 1]×[0, 1] to [0, 1]. Such function is associative, mono-

tonically increasing, and admits 1 as unit element (Dubois & Prade, 2000).

44



Chapter 2 : Multi-objective Optimisation under Uncertainty

Besides, t-norm has a context dependent behavior and it is mainly used for

a conjunctive fusion. Otherwise, the conjunctive fusion is commonly applied

to a set of reliable information sources which agree with each other. This

combination mode uses intersection between pieces of information to provide

the resulting fusion. Notice that it is also generalized to fuzzy sets. Examples

of t-norms are minimum-based rule and product-based rule. More formally,

given different pieces of information from n sources: πi, i = {1, . . . , n}, the

t-norm function used to merge them can be defined by:

πtnorm(ω) = ⊗i={1,...,n}πi(ω), ∀ω ∈ Ω (2.16)

where ⊗ is a t-norm operator which could be the min or the product. Thus,

the minimum-based rule is given by: a⊗ b = min(a, b)

t-conorms (or triangular conorms) A t-conorm is defined as an oper-

ation from [0, 1]× [0, 1] to [0, 1], satisfying the following properties: commu-

tativity, associativity, monotonicity and 0 is its unit element. It is mainly

used for a disjunctive fusion, especially when information sources disagree

and when reliability condition could not totally be checked (means that we

are enable to determine which source of information is the reliable). Oth-

erwise, the disjunctive mode assumes that if propositions are contradictory,

then it is better to consider the maximum consistent subsets of propositions

by assuming that the real proposition is one of them. This logic comes from

the fact that if propositions are very discarded (intersection gives the empty

set with t-norms very close to 0), it is more natural to say that one of them

may be reliable rather than to say that simply we are in a total conflict and

no proposition could be assumed. Formally, the t-conorm function is defined

by:

πtconorm(ω) = ⊕i={1,...,n}πi(ω), ∀ω ∈ Ω (2.17)

where ⊕ is a t-conorm operator such that: a⊕ b = max(a, b). Other refining

rules, combining t-norm and t-conorm concepts have been proposed for situ-

ations where sources may partially be in agreement and/or only some sources

are reliable.

Example 2.4. Let us reconsider the possibility distribution π in Example

2.3, suppose that another information source provides us the possibility dis-

tribution π′ such that π′(ω1) = 1, π′(ω2) = 0.4, π′(ω3) = 1 and π′(ω4) = 0.8.

If we use the t-norm to merge π and π′, for instance by taking ⊗ = min in
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Equation 2.16, we obtain:

πtnorm(ω1) = 0.4,

πtnorm(ω2) = 0.4,

πtnorm(ω3) = 1,

πtnorm(ω5) = 0.1.

Then, if we use the t-conorm to merge them, for instance by taking ⊕ = max
in Equation 2.17, we obtain:

πtconorm(ω1) = 1,

πtconorm(ω2) = 0.7,

πtconorm(ω3) = 1,

πtconorm(ω5) = 0.8.

The remaining of this chapter is devoted to the analysis of uncertainty in

multi-objective optimization problems.

2.3 Existing approaches for optimization prob-

lems under uncertainty

The aim of optimization problems under uncertainty is to optimize pre-

defined objective(s) while considering that some information are uncertain

and without knowing what their full effects will be. A literature review on

optimization under uncertainty can be found in (Rockafellar, s. d. ; Sahinidis,

2004 ; Diwekar, 2008 ; Petrone, 2011). Furthermore, this field reflects reality

in many areas of application and presents many issues that should be taken

into account such as:

- What are the sources of uncertainty ?

- How modeling and quantifying such uncertainty ?

- How propagating uncertainty through the optimization process ?

- What are their effects and consequences ?

- How to develop and perform a resolution method ?

- How to analyse the efficiency and performance of outcomes ?

These issues will be addressed one by one in this thesis. Firstly, we must

be aware of the different sources of uncertainty and their implications in the

process. Among others, some of these sources are the problem it-self, the

input variables, the parameters of the problem, the modeling assumptions

and the procedures for analysing the model. Then, once the uncertainties
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are quantified, it is necessary to analyze their effects before optimization.

Yet, the effects of uncertainty are generally related to the problem context,

the environmental factors and are in close connection with the uncertainty

sources. In fact, the global effect is that disturbances of the input data may

be propagated through the model to the quantities of interest. This effect is

usually the most critical and complex for realistic simulations since it may

hamper the identification of efficient outcomes. Otherwise, propagating un-

certainty may mislead the analyst into determining the optimal alternatives,

leading to a final bad choice. In that sense, the most interesting and challeng-

ing issue is how uncertainty propagation through the optimization process

can properly be taken into account.

Another important issue is the uncertainty inherent to the resolution

stage. The question is how to explore an uncertainty design space that leads

often to very large-scale and complex optimization models. Evidently, as a

deterministic optimization problem (i.e. the objective(s) are deterministic)

is already NP-hard and time-consuming, the problems of optimization under

uncertainty may lead to prohibitive computation. Therefore, their increasing

costs and complexity motivates more and more the scientific research efforts

to develop efficient resolution methods. In this context, a resolution method

may still contain some uncertainties due to its inability to provide exact re-

sults or to the lack of optimality proof. Some of research works for coping

with uncertainty in the context of single-objective optimization are shown in

table 2.4.

Table 2.4 – Uncertain single-objective design optimization

Method Authors and works

Mean-penalty model (F. Li et al., 2010)

Chance constrained model (P. Li et al., 2008)

Recourse Model (Dantzig, 1955)

Minimax regret model (Averbakh, 2000 ; Aissi et al., 2009)

Robustness/ Reliability (Agarwal, 2004 ; Beyer & Sendhoff, 2007)

based models (Gabrel et al., 2014)

However, despite the large number of contributions in this field, only few

studies have been made during the last years regarding the combination of
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uncertainty and multi-objectivity. In what follows, we review some existing

approaches in the field of multi-objective optimization under uncertainty.

Nowadays, this field has attracted increasing attention since it appears in

many real-life applications and poses several interesting challenges. Surveys

of related studies are given in (Klein et al., 1990 ; Fieldsend & Everson, 2005 ;

Goh & Tan, 2009 ; Petrone, 2011 ; Zhou et al., 2014).

In general, a MOP under uncertainty is characterized by the necessity of

optimizing simultaneously several conflicting objectives in presence of some

uncertain input data. However, taking into account uncertainty adds im-

portant challenges to the optimization of multiple objectives. One of these

challenges is how to identify the type of inevitable uncertainties and their im-

pacts on the results and optimal decision making. The purpose at this level

is to analyse the manner in which such uncertainties are propagated through

the optimization process. Usually, the quantum of propagation depends on

the nature of inputs uncertainty, their distributions and their transfer to the

outputs through the functional relationship. Obviously, uncertainty propa-

gation leads to an excessive increase in problem’s complexity and difficulty

for finding optimal solutions. In particular, the resolution stage will be much

more complicated since propagating uncertainties may affect the optimiza-

tion process and even the key elements of decision making such as preference

parameters, decision variables, constraints and/or objectives.

Many studies addressing the effects of uncertainty propagation in multi-

objective setting have focused on the case where uncertainty is assumed to

occur in the objective functions. Yet, uncertainty in the objectives presents a

critical and sensitive obstacle because it may influence the search process and

consequently hamper the identification of efficient solutions. A minimization

MOP with uncertain objectives may be defined as:

min F (x, ξ) = min[f1(x, ξ), f2(x, ξ), . . . , fn(x, ξ)] s.t. x ∈ X, ξ ∈ U (2.18)

where F is the set of objective functions that may depend on uncertainty

scenarios U, x is a decision variable vector from its admissible region X ⊆ Rn

and ξ = (ξ1, ξ2, . . . , ξq) is a vector of independent uncertain variables. Clearly,

the problem here is that each fi(x, ξ) is an uncertain quantity induced by ξ.

Once the uncertain scenarios and their effects are identified, the second

relevant challenge consists to find a suitable way for handling uncertainty in

multi-objective resolution methods. Nonetheless, very little research works
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have been proposed so far to deal with uncertain multi-objective optimiza-

tion. Besides, although uncertainty in the objective functions has gained

attention in recent years, the efforts devoted to this problem are still limited.

In Figure 2.4, we propose to classify the existing approaches according to

how the uncertain multiple objectives are managed.

   Handling Uncertainty in  
        Objective Functions   

Aggregation  
based  
approaches  

Approximation 
based 
approaches 

Indicator 
based 
approaches 

Robustness 
based 
approaches 

Interval 
based 
approaches 

Figure 2.4 – Taxonomy of approaches for MOPs with uncertain objectives

The first attempts to cope with uncertainty in objectives belong to the

category of aggregation-based approaches (Goncalves et al., 2009 ; Paquete &

Stützle, 2007). The basic idea of these traditional approaches is to combine

the multiple objectives into a single uncertain one. In other words, they con-

vert the MOP into a one or a set of single-objective problems. Furthermore,

the different objectives can be rewritten into an aggregate objective fA by

applying a weighted sum function as follows:

fA(x, ξ) =
∑

[f1(x, ξ), f2(x, ξ), . . . , fn(x, ξ)] (2.19)

In this case, the existing approaches designed for single-objective optimiza-

tion problems under uncertainty can simply be applied. For example, the

approaches cited previously in the table 2.4 can be applied to solve this

problem. Clearly, aggregation-based approaches have the advantage of sim-

plicity because they do not require a particular development for uncertain

multi-objective optimization. Yet, they still not efficient since they limit the

objective space, ignore the significant role of multi-objectivity and also re-

lationship between the conflicting objectives. In consequence, the obtained

results are very often useless and far from reality.
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The second category encloses approximation-based approaches that use

statistical functions to convert the uncertain objectives into their crisp equiv-

alents (Hughes, 2001 ; Teich, 2001). Otherwise, these approaches still abide

to the certainty of objectives and usually allow to carry out an approximation

of observed uncertainty. In this case, a statistical function may be applied

to approximate each objective function as follows:

Φ(f1(x, ξ)),Φ(f2(x, ξ)), . . . ,Φ(fn(x, ξ)) (2.20)

where Φ(.) denotes the statistical operator which can be the expected func-

tion E[.] with respect to ξ. This category includes also mean-value and mean-

penalty approaches (Kim & hyun Ryu, 2011 ; Meng et al., 2011). Commonly,

each objective is approximated by estimating the mean value of each random

sample. This allows to transform the uncertain MOP into a crisp problem

that can be resolved using standard deterministic multi-objective optimizers.

A major limit of approximation-based approaches is that the propagation

and effects of uncertainty are neglected. Yet, ignoring the uncertainty propa-

gation in the optimization process can lead to very poor decisions with often

misleading simulation results. It is therefore necessary to account for the re-

lationship between uncertain inputs and generated solutions, because if the

input data or parameters are highly uncertain, how can the optimizer simply

state that the outputs are exact values? It may be feasible only for simplicity

or other practical reasons as long as the optimization performance will not

be affected.

The third category includes different approaches (Basseur & Zitzler, 2006 ;

Liefooghe et al., 2010) that combine uncertainty of objectives and quality

indicators (i.e., real-valued functions which allow assessment of Pareto ap-

proximations). This combination is done by estimating indicator evaluations

for the uncertain objective vectors as:

I(f1(x, ξ), X∗), I(f2(x, ξ), X∗), . . . , I(fn(x, ξ), X∗) (2.21)

where X∗ = {x∗1, . . . , x∗r} is a variable reference set and I(.) stands for the

vector of indicator values that can be minimized or maximized depending

on the quality goal. For instance, in (Basseur & Zitzler, 2006), authors

proposed an indicator-based model to reflect the uncertainty of objectives.

More precisely, the objective vector is associated with uncertain distributions,

where the optimization goal is defined in terms of the ε−indicator values.
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Another category of approaches refers to the robustness aspect that will

be presented in Chapter5 (Deb & Gupta, 2005, 2006 ; Barrico & Antunes,

2006 ; Ehrgott et al., 2014). This aspect is connected to the idea that in

presence of uncertain inputs, the outputs should be relatively insensitive

(small uncertainty outputs). The robustness in objective functions can be

modeled as:

(f1(x, ξ), R1), (f2(x, ξ), R2), . . . , (fn(x, ξ), Rn) (2.22)

where Ri is the robustness criterion that should be maximized. It is defined

in terms of the variation of fi(x) regarding the uncertainty associated with

x. For instance, (Deb & Gupta, 2005) proposed to estimate the expected un-

certainty using Monte Carlo simulations based on effective objective function

that takes into account robustness. (Barrico & Antunes, 2006), a propagating

approach based on the concept of robustness degrees of uncertain objectives

is introduced. Similarly, reliability criterion R
γ

i can be used to optimize ob-

jectives which are uncertain with small chance of failure under predefined

acceptable level γ. For instance, (Coelho & Bouillard, 2011) suggested a

reliability based formulation within a multi-objective context.

However, the main drawback of robustness-based and indicator-based ap-

proaches is that they rely on the assumption of a priori knowledge about

decisive information such as the reference set of solutions or the robustness

confidence level. Evidently, if such information is inappropriate or incorrect,

the outputs of theses approaches can be misleading.

Further studies assume to display uncertainty of objectives through inter-

vals and thereby to perform the multi-objective optimization based on this

uniform distribution. These studies fall under the category of interval-based

approaches (Limbourg, 2005 ; Limbourg & Aponte, 2005). In this case, the

cost of evaluating f(x, ξ), namely Y is represented as intervals as:

F (x, ξ) = Y = ([y1, y1], . . . , [yn, yn]) (2.23)

where yi and yi are respectively lower and upper bounds of the corresponding

interval-valued function i. For instance, in (Limbourg & Aponte, 2005) au-

thors defined the uncertainty via intervals and then introduced an extension

of Pareto dominance for ranking the generated interval-valued solutions.
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2.4 Conclusion

In this chapter, we have surveyed the state of the art relative to combina-

torial optimization under uncertainty. In particular, we have focused on fuzzy

and possibilistic frameworks for representing the uncertainty aspect. Then,

we have discussed the major impacts of propagating uncertainty through the

optimization process.

In the second part of this chapter, we have introduced a classification of

the different existing approaches to handle an uncertain multi-objective prob-

lem. This classification shows that a multitude of researchers have addressed

this problem by either transforming it into a crisp problem or by reducing it

into a mono-objective one. Only few of them have developed interval models

to treat the problem without neglecting the uncertainty propagation.

Next chapters propose a new framework for dealing with the specific case

of MOPs with fuzzy-valued objectives. The proposed framework will tackle

the issue of extending classical multi-objective concepts, techniques and res-

olution methods to such fuzzy setting.
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3.1 Introduction

This chapter mainly focuses on the concept of Pareto dominance which

is crucial for comparing any two solutions in multi-objective optimization,

especially where the objectives are typically conflicting. In uncertain multi-

objective optimization, these objectives are often affected by uncertainty pre-

venting the use of deterministic Pareto dominance. However, propagating

uncertainty to the objectives is of extreme importance because it may affect

the whole dominance process and consequently the optimality of solutions.

As described in the previous chapter, several methods were proposed in the

literature in order to handle such a problem. Our interest concentrates on

the specific case of multi-objective optimization with fuzzy-valued objectives.

To this end, we propose a novel Pareto approach for classifying the generated

fuzzy solutions. Our approach is inspired by the paradigm of ranking fuzzy

numbers and uses the concepts of deterministic Pareto dominance.

This chapter is structured as follows: Section 3.2 attempts to explain our

motivations and gives a formal definition of the treated problem. Section

3.3 presents our proposal which is composed of two dominance stages. In

the first stage, mono-objective dominance relations are defined between two

triangular fuzzy numbers. In the second stage, a Pareto dominance is defined

for classifying vectors of fuzzy solutions. Finally, Section 3.4 discusses the

advantages of the proposed approach with some numerical examples.

3.2 Problem description

As mentioned in Chapter 1, the Pareto dominance concepts (Pareto, 1971)

are crucial when dealing with multi-objective optimization because we need

to maintain a set of non dominated solutions rather than only one. These

solutions often called Pareto optimal set correspond to a group of solutions

with compromise between different objectives (i.e. achieving the optimal

value for one objective requires some sacrifice of quality on at least one other

objective). This notion of optimality is based on intuitive discrimination of

what are the most good or desired alternatives among many others.

For multi-objective optimization under uncertainty, the purpose becomes

to find out best solutions within an uncertain context. Indeed, as explained

before, propagating uncertainty to the objectives should not be ignored or
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approximated. In this case, the generated solutions are disrupted by the

uncertainty type of objectives. In consequence, the classic Pareto concepts

cannot be used for comparing the uncertain outcomes. To this end, exten-

sions of the classic Pareto optimality have been discussed and addressed in

recent literature (Teich, 2001 ; Haubelt & Teich, 2003 ; Limbourg, 2005 ;

Silva & Yamakami, 2009 ; Hendriks et al., 2011). For instance, in (Teich,

2001 ; Haubelt & Teich, 2003), a probabilistic dominance based on intervals

is used to guide the selection process of Pareto-set. In (Limbourg, 2005 ;

Limbourg & Aponte, 2005), intervals of belief functions are used to repre-

sent the uncertain Pareto optimal solutions. Moreover, authors in (Silva &

Yamakami, 2009) involve uncertainty as fuzzy coefficients in the objective

functions. Then, an interval-based abstraction is introduced to generate the

Pareto optimality of candidate solutions. However, all of these works con-

sider intervals on objectives and use Pareto analysis between interval-valued

outcomes. Consequently, the solutions are represented by finite bounding-

boxes in the objective space as shown in Figure 3.1, where each rectangular

represents one solution.

f1 

f2 

Figure 3.1 – Examples of interval-based solutions

One of the most interesting questions is how to analyse the Pareto op-

timality when uncertainty is modeled by non-crisp intervals. In fact, a rep-

resentation of uncertain quantities can be defined by means of possibility
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distributions or fuzzy sets. Unfortunately, it is not easy to compare among

two or more non-crisp intervals, possible sets and/or fuzzy numbers. In the

following subsection, we give more details about the problem of our inter-

est, especially the choice of using fuzzy numbers and their impact on the

optimality process.

3.2.1 Fuzzy MOP formulation

We address here multi-objective optimization problems with fuzzy data

in which fuzziness can be associated with the linguistic vagueness, polysemy

or ambiguity of information due to limited knowledge. In particular, we focus

our attention on fuzzy numbers which are frequently used to represent the

approximate reasoning of linguistic values in many real-world applications

(Heilpern, 1997). Nevertheless, as fuzziness can have infinite interpretations,

there are different shapes of fuzzy numbers to model this fuzziness like trian-

gular, trapezoidal or rectangular. The choice of an appropriate fuzzy shape

depends entirely on the type of imperfect data and the problem size. This

choice plays substantial role in the design and the overall optimization pro-

cess of any multi-objective problem.

The most common and popular shape is a Triangular Fuzzy Number (or

TFN) depicted using the straight line membership functions and denoted as

A = [a, â, a]. As defined in Chapter 2, this linear shape has the advantages

of simplicity, smoothness and concise notation (Pedrycz, 1994). Moreover, it

can be deduced from transformation of other fuzzy shapes such as trapezoidal,

rectangular, etc. For instance, a trapezoidal fuzzy number [a1, a2, a3, a4] is

called a TFN if a2 = a3. Therefore, the practical aspect of the handling

of TFNs encourages us to consider them when dealing with fuzzy multi-

objective problems.

In particular, we suppose that fuzzy inputs data in our problems are

modeled with the triangular shape. Then as explained before, propagating

fuzziness through the optimization process should not be ignored because

this may distort the results. Otherwise, fuzziness in inputs data will clearly

has great influence over the way a MOP is designed and optimized. Thus

we should first consider this fuzziness when designing the multi-objective

problem and then predict their unavoidable impacts on the search process.

In that sense, we should analyse the effects of the triangular fuzzy shape on
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MOPs, especially on the problem outcomes and their optimality. Hence, the

objective functions in such problems will be disrupted by the triangular fuzzy

shape. Let us assume that a minimization MOP with triangular fuzzy-valued

objectives is defined as follows:

Definition 3.1. Triangular fuzzy MOP

min F (xτ ) = (f1(xτ ), f2(xτ ), . . . , fn(xτ )) s.t. x ∈ X, τ ∈ R (3.1)

Where F (xτ ) is the vector objective functions to be minimized, which are

disrupted by the triangular form τ from the universal set R of fuzzy numbers.

In the objective space, the vector F can be defined as a fuzzy cost function that

represents the fitness of solutions by assigning a triangular-valued objective

vector Y τ :

F : X → Y ⊆ (R× R× R)n,

F (xτ ) = Y τ =


y1 = [y1, ŷ1, y1]
y2 = [y2, ŷ2, y2]

...

yn = [yn, ŷn, yn]


(3.2)

It is clear that this formulation is a fuzzy counterpart of the classical

MOP definition given in Chapter 1 (Definition 1.1). Figure 3.2 shows an

example of triangular solutions in a bi-objective space.

In this case, the solutions are modeled by a set of triangles (i.e. vectors of

triangular fuzzy numbers), where each triangle represents one fuzzy solution.

Subsequently, once the form of problem solutions is predicted, the issue now

is how to explore the optimality process between them. Yet, the classical

Pareto concepts cannot be used in this case since they are only meant for

deterministic case (i.e. when the solutions are exact values).

To this end, a need for special optimality aspects capable to handle the

generated solutions of triangular fuzzy values is evident. Before describing

our proposal, it is necessary to present another important aspect of fuzzy

ranking.

3.2.2 Ranking Fuzzy numbers

In practical use of fuzzy numbers, a comparison procedure is frequently

required to check and analyse the relationship between them. Usually, one
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f1 

f2 

Figure 3.2 – Examples of triangular solutions

fuzzy number needs to be evaluated and compared with the others in order

to make a classification of different values. This aspect of fuzzy ranking

has been widely discussed by many researchers (Bortolan & Degani, 1985 ;

Chen, 1985 ; Choobineh & Li, 1993 ; Cheng, 1998 ; Yao & Wu, 2000) and

still receives great attention in recent years (Chu & Tsao, 2002 ; Abbasbandy

& Asady, 2006 ; Y.-M. Wang, 2009 ; Ezzati et al., 2012 ; Boulmakoul et al.,

2013).

Table 3.1 lists some of existing methods by specifying the used ranking

concept and the type of fuzzy shapes to be compared or sorted. For instance,

the method of (Chen, 1985) is based on the concept of Max/Min functions

to determine the order of triangular or trapezoidal fuzzy numbers, the or-

dering index of (Choobineh & Li, 1993) is related to area between the left

and right barriers of any fuzzy number, the centroid-index method proposed

by (Cheng, 1998) consists on calculating the distance of centroid points as

order quantities, (Abbasbandy & Asady, 2006) used sign distance to rank

triangular or trapezoidal shapes and (Y.-M. Wang, 2009) pointed out the

notion of α level set to define ordering between any type of fuzzy numbers.

However, almost each method may contain some shortcomings such as

inconsistency with human intuition, requirement of complicated calculations,

difficulty of interpretation or indiscrimination in many situations. It is so
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Table 3.1 – Fuzzy ranking methods

Concept Fuzzy numbers Authors/Refs

Max/Min sets Triangular or (Chen, 1985)

Trapezoidal

Ordering index All types (Choobineh & Li, 1993)

Centroid index Triangular or (Cheng, 1998)

Trapezoidal

Sign distance Triangular or (Abbasbandy & Asady, 2006)

Trapezoidal

Ranking based All types (Y.-M. Wang, 2009)

on α-level sets

obvious that there is no single best method which may recover all these limits.

Moreover, although the existing methods have been successfully applied for

ranking fuzzy numbers, they are not powerful when we need to compare at

least two vectors of fuzzy numbers. In other words, they are not enough to

compare fuzzy-valued solutions in the multi-objective setting.

After presenting the problem details, we will now describe our proposal

inspired from the classical Pareto concepts and the fuzzy ranking aspect.

3.3 Pareto optimality for fuzzy MOPs

In this section, we propose a new Pareto dominance for handling optimal-

ity in any MOP with fuzzy data, especially with triangular-valued objectives.

Then as multi-objectivity usually involves problems with only two objectives,

each solution here is a vector of two triangular fuzzy numbers (TFNs).

Hence, our proposal, called fuzzy Pareto dominance, is composed of two

main phases which are: (i) the definition of mono-objective dominance rela-

tions between two TFNs; (ii) the determination of Pareto optimality condi-

tions based on the types of mono-objective dominance found for both objec-

tives.
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3.3.1 Mono-objective dominance between two TFNs

At this stage, our aim is to define a dominance ordering between two

triangular fuzzy numbers (TFNs). First, it is important to note that all

possible topological relationships between two TFNs A = [a, â, a] and B =
[b, b̂, b] may be covered by only four different situations illustrated in Figure

3.3, namely: Fuzzy disjoint, Fuzzy inclusion, Fuzzy weak overlapping and

Fuzzy overlapping.

Fuzzy Disjoint 

Fuzzy Weak-Overlapping Fuzzy Overlapping 

Fuzzy Inclusion 

Figure 3.3 – Possible topological situations for two TFNs

Taking these situations into account, we propose three mono-objective

dominance relations which are: Total dominance (≺t), Partial strong-dominance

(≺s) and Partial weak-dominance (≺w).

Definition 3.2. Total dominance

Let y = [y, ŷ, y] ⊆ R and y′ = [y′, ŷ′, y′] ⊆ R be two triangular fuzzy numbers.

y dominates y′ totally or certainly, denoted by y ≺t y′, iff:

y < y′ (3.3)

This dominance relation represents the fuzzy disjoint situation between

two triangular fuzzy numbers and it imposes that the upper bound of y is

strictly inferior than the lower bound of y′ as shown in Figure 3.4.
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1 
        

µ 

Figure 3.4 – Total dominance

Definition 3.3. Partial strong-dominance

Let y = [y, ŷ, y] ⊆ R and y′ = [y′, ŷ′, y′] ⊆ R be two triangular fuzzy numbers.

y strong dominates y′ partially or uncertainly, denoted by y ≺s y′, iff:

(y ≥ y′) ∧ (ŷ ≤ y′) ∧ (y ≤ ŷ′) (3.4)

1 
        

µ 

Figure 3.5 – Partial strong-dominance

This dominance relation appears when there is a fuzzy weak-overlapping

between both triangles and it imposes that firstly there is at most one inter-

section between them and secondly this intersection should not exceed the

interval of their kernel values [ŷ, ŷ′] as shown in Figure 3.5.

Definition 3.4. Partial weak-dominance

Let y = [y, ŷ, y] ⊆ R and y′ = [y′, ŷ′, y′] ⊆ R be two triangular fuzzy numbers.

65



Chapter 3 : Pareto Dominance for Fuzzy Multi-objective Optimization

y weak dominates y′ partially or uncertainly, denoted by y ≺w y′, iff we have:

1. Fuzzy overlapping

[y < y′ ∧ y < y′] ∧
[(ŷ ≤ y′ ∧ y > ŷ′) ∨ (ŷ > y′ ∧ y ≤ ŷ′) ∨ (ŷ > y′ ∧ y > ŷ′)]

(3.5)

2. Fuzzy Inclusion

(y < y′) ∧ (y ≥ y′) (3.6)

1 
        

µ  1 

1 
        

µ  2 

1 
        

µ  3 

1 
        

µ  4 

Figure 3.6 – Partial weak-dominance

In this dominance relation, the two situations of fuzzy overlapping and

inclusion may occur. Figure 3.6 presents four examples of possible situation.

For cases (1) and (2) where both numbers are overlapped, we may conclude

that y partially weak dominates y′ using Equation 3.5. For cases (3) and

(4), where y′ is included into y, a situation of incomparability is identified.

In fact, the partial weak-dominance relation cannot discriminate all possible
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cases and leads often to some incomparable situations. In order to discrimi-

nate these cases, we suggest to use the middle value positions (the kernel or

most plausible value) as an additional criterion of comparison. This may be

formally defined by:

ŷ − ŷ′ =
{
< 0, y ≺w y′
≥ 0, y and y′ can be incomparable.

Clearly, we remark that an incomparable situation is identified if we have

ŷ− ŷ′ ≥ 0. At this level, the kernel criterion which consists in comparing the

discard between both fuzzy triangles will be applied as follows:

y ≺w y′ ←→ (y′ − y) ≤ (y′ − y)

Similarly, it is obvious that:

y′ ≺w y ←→ (y′ − y) > (y′ − y).

It is easy to check that in the mono-objective case, we obtain a total pre-

order between two triangular fuzzy numbers, contrarily to the multi-objective

case, where the situation is more complex and it is common to have some

cases of indifference.

3.3.2 Fuzzy Pareto dominance

Our goal now is to determine an optimal ordering on the set of fuzzy

solutions, where each solution is represented by a vector of triangular fuzzy

numbers. Thus, we propose to use the mono-objective dominance relations,

defined previously, in order to rank separately the triangular fuzzy values

of each objective function. Then depending to the dominance types found

for all objectives, we define the Pareto optimality between the triangular

fuzzy solutions, which are represented by vectors of triangular fuzzy numbers.

Hence, three Pareto relationships are introduced: Strong Pareto dominance

(≺SP ), Weak Pareto dominance (≺WP ) and Case of indifference (‖).

Definition 3.5. Strong Pareto dominance

Let Y and Y ′ be two triangular fuzzy solutions. Y strong Pareto dominates

Y ′, denoted by Y ≺SP Y ′ iff:

∀i ∈ 1, . . . , n : [yi ≺t y′i ∨ yi ≺s y′i] ∨
∃i ∈ 1, . . . , n : [yi ≺t y′i ∨ yi ≺s y′i] ∧ ∀j , i : [yj ≺s y′j ∨ yj ≺w y′j]

(3.7)
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Figure 3.7 – Strong Pareto dominance

The strong Pareto dominance holds if either yi total dominates or par-

tial strong dominates y′i in all the objectives (see Figure 3.7-(a): y1 ≺t
y′1 and y2 ≺t y′2), either yi total dominates y′i in one objective and par-

tial strong dominates it in another (Fig.-(b):y1 ≺s y′1 and y2 ≺t y′2 ), or at

least yi partial strong dominates y′i in one objective and weak dominates it

in another (Figure 3.7-(c),(d): y1 ≺s y′1 and y2 ≺w y′2).

Definition 3.6. Weak Pareto dominance

Let −→y and −→y ′ be two triangular fuzzy solutions. −→y weak Pareto dominates
−→y ′, denoted by −→y ≺WP

−→y ′, iff:

∀i ∈ 1, . . . , n : yi ≺w y′i (3.8)

68



Chapter 3 : Pareto Dominance for Fuzzy Multi-objective Optimization

f2 

f1 

Y’ 

Y 

Figure 3.8 – Weak Pareto dominance

The weak Pareto dominance holds if yi weak dominates y′i in all the

objectives (see Figure 3.8). Yet, a case of indifference (defined below) can

occur if there is a weak dominance with inclusion type in all the objectives

(see Figure 3.9).

Definition 3.7. Case of indifference

Two triangular fuzzy solutions are indifferent or incomparable, denoted by
−→y ‖−→y ′, iff:

∀i ∈ 1, . . . , n : yi ⊆ y′i (3.9)

f2 

f1 

Y’ 

Y 

Figure 3.9 – Case of indifference
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3.4 Numerical examples

We present in Figure 3.10 some examples to illustrate the advantages

of our mono-objective dominance for ranking triangular fuzzy numbers by

comparing our results with some other ranking methods.

(1) (2) (3)

3 5 6 7 90.1 0.6 0.80.2 0.5 0.90.5 31 6 7 10

A
A AB

B

B

Figure 3.10 – Mono-objective dominance examples

Example 3.1. Consider the two triangular fuzzy numbers A = [0.5, 3, 7]
and B = [1, 6, 10] in Figure 3.10-(1). The ranking order found by most of

methods like Cheng’s distance (Cheng, 1998), Chu’s index (Chu & Tsao,

2002), Wang’s centroid index (Y.-M. Wang, 2009) and kaufman’s left and

right scores (Kaufmann & Gupta, 1988), is A ≺ B. By using our dominance

method (Definition 3), it is easy to check that A weak dominates B partially

(A ≺w B). Therefore, the ranking order in our case is the same as other

tested methods (A ≺ B).

Example 3.2. Consider the two triangular fuzzy numbers A = [0.1, 0.6, 0.8]
and B = [0.2, 0.5, 0.9] (see Figure 3.10-(2)). By using some ranking methods

such as Yao’s signed distance (Yao & Wu, 2000), Chu’s index (Chu & Tsao,

2002) and Abbas’s sign distance (Abbasbandy & Asady, 2006), the ranking

order is A ≈ B. This is the shortcoming of previous methods that rank

two different fuzzy numbers equally. However, by applying our dominance

method, we observe at the first step, that the discrimination between A and B

is not possible using Definition 3, since the kernel condition gives 0.6−0.5 ≥
0. At this level, we use the discard criterion (0.2 − 0.1 = 0.9 − 0.8) which

leads to conclude that A partial weak dominates B, and consequently A ≺ B.
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Example 3.3. Consider the two triangular fuzzy numbers A = [3, 6, 9] and

B = [5, 6, 7] (see Figure 3.10-(3)). Almost the majority of ranking methods

such as (Yao & Wu, 2000 ; Chu & Tsao, 2002 ; Abbasbandy & Asady, 2006 ;

Y.-M. Wang, 2009) failed to discriminate two fuzzy numbers having the same

symmetrical spread, as for this example A ≈ B, whereas (Ezzati et al., 2012)

prefer the ranking order B ≺ A and consider this choice as reasonable re-

sult, since it agrees with human intuition. By using our dominance method,

we conclude that B partial weak dominates A (B ≺w A), since the discard

criterion gives: 5 − 3 > 7 − 9. Thus, we obtain the same rational result

B ≺ A.

From these examples, we conclude that our mono-objective dominance

method can effectively rank two triangular fuzzy numbers and produces rea-

sonable and intuitive results to the well-defined problems of indiscrimina-

tion, that have failed to be ranked by some previous ranking methods. The

next example presents a comparison of our Pareto dominance relations with

the interval-based optimality proposed by (Limbourg, 2005 ; Limbourg &

Aponte, 2005).

Example 3.4. Figure 3.11 illustrates 4 possible cases between a pair of so-

lutions S1 and S2 in a two-dimensional objective space. For each case, we

intend to determine the type of dominance relation between both solutions by

using:

- The Limbourg’s interval-based Pareto optimality, denoted by <IP ,

- Our fuzzy Pareto dominance relations, denoted by ≺SP for strong

Pareto dominance, ≺WP for weak Pareto dominance and ‖ for the

case of indifference.

In that sense, every solution in our case is represented by a triangular

fuzzy shape (colore in light and dark gray), that is a vector of two TFNs

(respectively for objectives f1 and f2). For instance, in Figure 3.11-(c1),

S1 = ([2, 4, 9][1, 3, 6]) and S2 = ([8, 10, 13][5, 9, 12]). On the other hand, by

applying the interval-based approach, every solution will be represented by

a rectangular shape (with dotted lines), that is a vector of intervals as for

example in (c1): S1 = ([2, 9][1, 6]) and S2 = ([8, 13][5, 12]).

(c1) is the case where S1 is lower than S2 in both f1 and f2. By using

the interval-based optimality (Limbourg & Aponte, 2005), the lowest solution

is preferred and thus S1 <IP S2. In our fuzzy context, we can clearly deduce

that S1 ≺SP , because S1 strong dominates S2 in all the objectives.
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Figure 3.11 – Pareto dominance examples

In cases (c2) and c3, S1 is better than S2 in one objective but greater than

it or incomparable in the other. In (Limbourg & Aponte, 2005), authors state

that these cases depend heavily on the decision maker choice. Otherwise, this

latter can interpret them as situations of indifference or use a preference-

based decision.

Yet, by applying our fuzzy Pareto optimality, we conclude that S1 ≺WP S2

in both cases, because S1 strong dominates S2 in f1 and weak dominates it

in f2. For instance in (c2), we have S11 = [2, 3, 9] ≤s S21 = [8, 10, 13]
and S12 = [7, 9, 12] ≤w S22 = [2, 10, 11] with respect to their kernel values

comparison, i.e., (9− 10) ≤ 0.

Likewise, (c4) represents always a case of incomparability because one

solution encloses the other. Thus, we have S1‖S2.

72



Chapter 3 : Pareto Dominance for Fuzzy Multi-objective Optimization

From these examples, we remark that our fuzzy Pareto dominance can

successfully discriminate incomparable solutions in some critical decision

cases. This is mainly due to the flexibility that our approach offers by giving

us the choice between weak and strong dominance relation. This may also be

explained by the use of the kernel values of our triangular fuzzy distributions

as comparison criteria in the cases of indifference. In general, we may con-

clude that our fuzzy Pareto approach offers a better classification and more

accurate knowledge comparing with the interval-based approach.

3.5 Conclusion

In this chapter, we have contributed to the search for Pareto optimal so-

lutions in presence of uncertain objective functions. First, as we have focused

on the specific case of MOPs with fuzzy-valued objectives, a survey of some

fuzzy ranking methods was conducted. Thereafter, we have suggested new

mono-objective dominance relations between a pair of TFNs inspired from

the fuzzy ranking reasoning. Through the use of these new dominance rela-

tions, a Pareto optimality between fuzzy solutions (i.e. vectors of TFNs) was

proposed. Finally, some numerical examples have shown the main advan-

tages of our proposal. The next chapter details our second contribution that

aims mainly to use our fuzzy Pareto optimality for extending multi-objective

optimization algorithms.
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4.1 Introduction

As noted in the first chapter, multi-objective evolutionary algorithms

(MOEAs) have proved to be as the most popular and powerful methods

for solving all combinatorial MOPs. However, in EMO (Evolutionary Multi-

objective Optimization) community, the problematic of including uncertainty

in resolution methods is often ignored by most of researchers. Usually, they

are limited to transform the uncertain MOP into a mono-objective or de-

terministic problem and then to simply resolve it using the classical deter-

ministic algorithms. To this end, our interest consists in providing a new

evolutionary approach able to solve any fuzzy MOP with fuzzy-valued objec-

tives. Especially, we intend to incorporate fuzziness in the search process of

Pareto-based MOEAs. In this setting, there are many aspects to pursue such

as the Pareto optimality, the diversity and convergence criteria, the solutions

distribution, the computational costs, etc. This work is an attempt to tackle

the evolutionary computation domain in fuzzy environment.

The rest of this chapter is structured as follows. Section 4.2 describes the

main components of PMOEAs and presents in detail the well-studied SPEA2

and NSGAII algorithms. Section 4.3 presents the techniques adopted for

extending these algorithms to our fuzzy context. Section 4.4 demonstrates

the usefulness of our approach through the resolution of a practical Multi-

objective Vehicle Routing Problem with Time Windows and Fuzzy Demands

and Section 4.5 shows the experimental analysis and gives on overview of

achieved results.

4.2 Pareto-based MOEAs

This section provides a unified view of PMOEAs and then focuses on two

algorithms that we are interested in.

4.2.1 Components description

Almost all PMOEAs follow the main steps described in the flowchart

given in Figure 4.1. This description is inspired from the MOEA process

flowchart proposed in (Liefooghe, 2009).
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Figure 4.1 – General scheme of PMOEAs

� Step 1: Initialisation

The first and important step performed by an PMOEA is the initial-

ization which consists in generating the initial population. This phase

affects the outcomes quality in terms of diversity and convergence.

In fact, the initialization is done by taking randomly or according to

given diversity functions a sample of individuals (i.e. solutions) to fill

up the population.
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� Step 2: Performance Evaluation

This step is the first search direction that determines the overall per-

formance of algorithm. Otherwise, the search procedure will be mis-

guided if the performance evaluation is inaccurate. The aim is to eval-

uate solutions in the objective space using a performance measure, so

called fitness or dummy function. At each generation, a fitness value

is so assigned to each solution in order to ensure its quality.

� Step 3: Pareto-based fitness assignment

This step is the guiding mechanism of the algorithm. It is based

on the use of Pareto dominance as fitness assignment strategy. At

every generation of PMOEA, solutions are ranked in the search process

using the dominance relationship. This rank represents the quality of

solutions in terms of convergence and guides the population toward

non-dominated set.

� Step 4: Environmental selection/Diversity

In order to prevent premature convergence provided by privileging

non-dominated solutions, an environmental selection phase is usually

applied. This step aims to guarantee a uniformly distributed approxi-

mation set. Otherwise, the best dispersed solutions over the objective

space are selected at each generation. The selection is invoked by

applying a diversity preserving technique. Such technique is often

based on a given distance measure for estimating the density between

solutions.

� Step 5: Archiving/Elitism

This step consists in storing and/or updating best non-dominated in-

dividuals found during the search process in an external population

so-called archive. This latter prevents the loss of solutions during

the optimization process. Depending on the PMOEA parameters (i.e.

elitist or non elitist algorithms), there are many types of archiving

such as: no archive, an unbounded archive, a bounded archive or a

fixed-size archive.

� Step 6: Stopping condition

Defining one or more stopping conditions is not trivial because this

has a significant impact on the computational algorithm costs. In

PMOEAs, stopping criteria may be simply related to a certain number

of iterations or evaluations. For instance, a criterion may be defined

to analyze the Pareto approximations yielded by different iterations
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and consequently to check the progress of optimization process.

� Step 7: Mating Selection

In this step, pairs of solution sets are selected for the mating pool.

This means that the mutated sets will be used to form the parents of

recombination operations. Usually, the mating selection strategy is a

deterministic binary tournament between two random solutions.

� Step 8: Variation

Variation operators are used to progress the search space by manip-

ulating the solutions encoding. In particular, these operators are ap-

plied to some parent solutions in order to recombine and/or change

them and thereafter to produce new solutions called offsprings popula-

tion. PMOEAs are mainly based on two genetic operators: crossover

(or recombination) and mutation.

� Step 9: Replacement

In the replacement step, survivors are selected from both current and

offspring populations. For instance, an elitist replacement strategy

consists of preserving only the best solutions with respect to a prede-

fined population size. For that, the worst solution is iteratively deleted

until reaching the required group size of solutions.

Depending on the problem design and properties, simple modifications on

this unified scheme are introduced to model the different existing PMOEAs.

Such modifications basically appear at the fitness assignment step, the di-

versity preservation technique and the elitism strategy which are the three

key components for every MOEA. Table 4.1 summarizes the components of

two well-known algorithms, namely NSGAII (Deb et al., 2002) and SPEA2

(Zitzler et al., 2001) as instances of the general PMOEA scheme. In the

following, we present in more detail the principle of each algorithm.

4.2.2 NSGA-II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al.,

2002) is one of the most popular PMOEAs for solving MOPs. Its popularity

is often associated to its low computational complexity, explicit technique

for diversity preserving and the no-archive strategy. Contrary to its original

version NSGA (Srinivas & Deb, 1994), it does not use a fitness sharing mech-

anism for diversity preserving, but rely on a crowded comparison procedure.
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Table 4.1 – NSGAII vs. SPEA2 components

NSGAII SPEA2

Step 1 random initial population random initial population

Step 2 dominance-depth strategy dominance-rank/count strategy

Step 3 Pareto-based fitness Pareto-based fitness

Step 4 crowding-diversity technique nearest neighbor method

Step 5 no archive fixed size archive

Step 6 number of generations number of generations

Step 7 binary tournament binary tournament

Step 8 crossover and mutation crossover and mutation

Step 9 elitist replacement generational replacement

The principle of NSGAII is as follows. At each generation, solutions from

the current population are ranked in terms of two criteria (i.e. convergence

and diversity). In this setting, two ordering operations are performed. The

first ordering represents the quality of solutions in terms of convergence and

consists in consists in assigning a fitness value to every solution. For that,

a fitness assignment procedure based on the dominance-depth and Pareto

relationship is applied. More precisely, all population individuals are subdi-

vided into several fronts using the Pareto dominance. The non-dominated

solutions belonging to the first front are the best efficient set and assigned

a large fitness value. Then, those of the second front are assigned a smaller

fitness value, and so on. This process is repeated until classifying the whole

population.

The second ordering represents the density estimation or local quality of

solutions surrounding a particular point in the i-th front they belong to. At

this stage, NSGAII uses a diversity preserving technique based on a Crowding

distance CD in order to evaluate solutions belonging to the same ranking

level (i.e. with identical fitness values). Formally, the normalized CD of a

solution is the sum of its individual objectives’ distances, that in turn are

the differences between the solution and its closest neighbors.

CD(i) =
∑
i=1..n

(fi(i+ 1)− fi(i− 1))/(fmaxi − fmini ) s.t. i ∈ F (4.1)

where fi(i+1) and fi(i−1) are the neighbor objective values of i−th objective,

n is the number of objectives ,fmaxi and fmini are respectively the population
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maximum and minimum objective values and F is the i−th front to which

solutions are associated. Notice that, the first and last solutions in the rank

(i.e. those with smallest and largest objective values) have a CD equal to

infinity. By considering both ordering criteria, a solution is said to be better

than another one if it has the best fitness value (i.e. the better rank), or in

case of equality (i.e. belong to the same front) if it is located in the least

crowded region (i.e. lower CD value).

Subsequently, the mating selection step is a deterministic tournament

strategy between two random solutions. At the replacement step, only the

best solutions survive with respect to the appropriate population size. It

should be noted here that the distinctive feature of NSGAII lies in using the

crowded-comparison procedure as truncation operator to reduce the popu-

lation in the environmental selection step and in considering it as a second

selection criteria when two solutions have the same rank in the tournament

selection step. Another important feature is that this algorithm does not

use an explicit archive for the archiving operation, but it only considers an

intermediate population to store efficient solutions found during the search.

4.2.3 SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA2) is an improved

version of SPEA algorithm (Zitzler et al., 2000), where a mixed strategy

of fitness ranking is adopted (Zitzler et al., 2001). Otherwise, SPEA2 uses

a Pareto-based fitness assignment which incorporates both rank and count

dominance strategies. In this way, at each iteration, every individual is as-

signed a strength value which is proportional to the number of solutions

dominated by it according to the Pareto approach. Then, the fitness of an

individual F t is computed as the sum of its strength dominators. It is impor-

tant to note that fitness is to be minimized, i.e. a non-dominated solutions

yields a zero fitness value Ri = 0. Then, in the case of identical solutions

(i.e. having the same fitness values), a density factor is added in SPEA2 to

discriminate between them and to preserve their diversity. This density is

estimated by means of a nearest neighbor method. This method consists in

calculating for each solution the Euclidean distance to its kth nearest neigh-

bor and then in adding the reciprocal value to the fitness vector. This means

that the neighborhood density corresponds to the inverse of distance to the

kth nearest solutions. Formally, the Euclidean distance EU between two
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solutions (i.e. deterministic objective vectors) y1 and y2 is given by:

EU(y1, y2) =
√√√√ n∑
i=1

(y1i − y2i)2 (4.2)

Once all solutions have their fitness values, a binary tournament selection

with generational replacement is applied to create the mating pool. During

the selection process, SPEA2 uses an external fixed size archive to store the

offspring non-dominated solutions. This means that the number of stored

external solutions is constant over time and so if the predefined archive size

is higher than the number of non-dominated solutions, the archive will be

filled up by dominated solutions. SPEA2 has potential features that makes

it different from other algorithms. This uniqueness lies mainly in its mixed fit-

ness assignment strategy that reduces the number of selected non-dominated

solutions without destroying the efficiency of the Pareto-optimal front, its

density estimation technique based on neighborhood strategy and the use of

both intermediate and external populations to store elite/non-elite solutions.

After presenting the algorithms details that are of our interest, the issue

now is how to extend them to uncertain data environments. In fact, all ex-

isting PMOEAs assume that all inputs and outputs are deterministic values.

Then as we focus our study on multi-objective problems (MOP) with fuzzy

data, the goal becomes to propose optimization algorithms able to cope with

fuzziness. The next section presents our proposal.

4.3 Extended PMOEA for fuzzy MOPs

Our contribution here is to design optimization algorithms for handling

any MOP with fuzzy-valued objectives. The basic idea is to exploit the com-

mon steps from the general PMOEA scheme and then adapt them to the fuzzy

context. As mentioned before, the overall PMOEA process is most strongly

influenced by three main components: Pareto dominance relationship, di-

versity preserving strategy and archiving/elitism technique. It is therefore

necessary to adapt each of theses components in order to enable such algo-

rithms working in a fuzzy context.

First, knowing that in a MOP with fuzzy-valued objectives, solutions are

usually affected by fuzziness. In addition, we remember that in our case

the encoding type of objective functions is a triangular fuzzy shape (see
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Equation 3.2 in chapter 3). Consequently, every solution is composed of

a vector of triangular fuzzy numbers (TFNs). This kind of fuzziness will

be propagated step by step in the PMOEA optimization proces. In the

initial step, a population with a set of triangular fuzzy solutions is randomly

sampled. These solutions should then be evaluated and ranked based on

Pareto dominance concepts. However as the classical Pareto concepts can

only be applied between exact (or crisp) solutions, we propose to use our

new fuzzy Pareto dominance relations introduced in the previous chapter.

Next, once all fuzzy solutions are ranked, the local density will be es-

timated in the selection step by measuring the distance between neighbor

solutions. Such a distance measure is typically applied between exact values.

At this level, we need clearly a specific measure for computing distance be-

tween fuzzy values. Thereafter, the archiving tool must also be able to store

the selected fuzzy solutions. The remaining steps still unchanged because

they are independent to the type of solutions.

Following these remarks, any PMOEA can be extended to our fuzzy con-

text by integrating these modifications into the search process. In this work,

we illustrate the fuzzy extension on the two popular algorithms: NSGAII

(Deb et al., 2002) and SPEA2 (Zitzler et al., 2001). These two algorithms

have proved to be very powerful tools for multi-objective optimization. Due

to their population-based nature, they are able to generate multiple optimal

solutions in a single run with respect to the good convergence and diversifi-

cation of obtained solutions.

4.3.1 E-NSGAII

To extend NSGAII, we propose at the first stage to replace the standard

Pareto by our new fuzzy Pareto dominance defined in the previous chap-

ter. This modification allows to ensure the fitness assignment ranking in a

fuzzy setting. At the second stage, we provide an adaptation of the diver-

sity preserving technique where a crowded-comparison procedure is applied.

This procedure is based on a Crowding distance CD that serves to get a

discrimination of solutions having the same rank level (see Equation 4.1).

However, this distance cannot remain unchanged in our fuzzy context

since it depends directly on the differences between objective values. Then

as our objective functions are vectors of triangular fuzzy numbers (or TFNs),
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the distance measure must be adapted to fuzziness. Thus, we simply propose

to approximate these objectives by computing their expected values before

applying the Crowding distance. Indeed, the distance between each pair

of objective values will be then substituted by the differences between the

corresponding expectations. Formally, the Expected value E of a given trian-

gular fuzzy number yi = [yi, ŷi, yi] is calculated using the following formula

(Z. Wang & Tian, 2010):

E(yi) = (yi + 2× ŷi + yi)/4 (4.3)

Notice that, we do not need a fuzzy extension of the elitism technique because

there is no archive. Finally, the two simple refinements at fitness assignment

and diversity preserving steps are incorporated into the search process of

NSGAII. We denote by E-NSGAII the new algorithm detailed in Algorithm

4.1.

4.3.2 E-SPEA2

Similarly to the previous algorithm, we first suggest to integrate our fuzzy

Pareto dominance relations in the SPEA2 fitness assignment strategy. Then

as detailed before, SPEA2 uses a nearest neighbor density estimation tech-

nique which allows a more precise guidance of the search process. This tech-

nique requires an Euclidean distance to preserve diversity in the population.

However knowing that Euclidean distance should be applied only between

two exact vectors (see Equation 4.2) and as solutions in our case are vectors

of TFNs, we should replace this latter by a specific fuzzy distance.

Therefore, we choose to use the so-called Bertoluzza metric (Bertoluzza

et al., 1995) in order to compute the distance between two fuzzy solutions

based on α-cut principle. More precisely, given two vectors of TFNs y =
(y1, ..., yn) and y′ = (y′1, ..., y′n) such that yi = [yi, ŷi, yi] and y′i = [yi′, ŷi′, yi′],
the Bertoluzza metric is first applied to compute distances between every pair

of fuzzy numbers yi and y − i′. Then, we propose to compute the weighted

mean of the overall distances d(yi, y′i) in order to estimate the final distance

between both vectors D(y, y′). Formally, it is given by:

d
θ
(yi, y′i) =

√∫ 1

0
(mid(y

iα
)−mid(y′

iα
))2 + θ (spr(y

iα
)− spr(y′

iα
))2dα (4.4)

where yiα denotes the α-cut of yi defined as as an α level set (or bijection)

associating for any α ∈ [0, 1] a bounded interval [yiα , yiα ], mid(y
iα

) = 1
2(yiα +
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yiα) denotes the midpoint of yiα , spr(y
iα

) = 1
2(yiα − yiα) is the spread (or

radius) of yiα and θ ∈ [0, 1] is a parameter that allows us to weight the effect

of the deviation between spreads. For a sake of simplicity, we will consider

in our case the 0-cut level (α = 0) where yi0 = [yi0 , yi0 ] = [yi, yi] is the

topological support of yi and we choose a parametrization with the value

θ = 1
2 .

By using this fuzzy distance, the distance to each k-nearest fuzzy solution

can be estimated in order to select the well-distributed solutions. Thereafter,

unlike the NSGAII algorithm, SPEA2 uses a regular population and also an

external storage, the so-called archive. Thus, we need to extend this archive

to the triangular fuzzy space in order to enable it keeping the best triangular

solutions during the optimization process.

In next steps, namely mating selection, variation and replacement remain

unchanged in our fuzzy context. The above extensions are integrated into

the search process of SPEA2 and leads to a new version called E-SPEA2 and

described in Algorithm 4.2.
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Algorithm 4.1 E-NSGAII
Input : Initial population P

Maximum number of generations T

Output: Best non-dominated set

begin
Initialization. create a random population P of N fuzzy solutions;

repeat
Evaluation. calculate fitness values of solutions in P using

dominance-depth strategy;

Fitness Assignment. rank all solutions in P using the fuzzy Pareto

dominance;

Environmental Selection. select the non-dominated fuzzy solutions

based on their expected crowding values and copy them in an exter-

nal population P ′;

if size of P ′ exceeds N then
add the least crowded solutions to P ′;

else if size of P ′ is less than N then
set P ′ with dominated solutions;

else
the environmental selection is completed;

end

Elitism. update P ∪ P ′
until Stopping condition. Number of generations > T or another crite-

rion is satisfied

Mating Selection. perform a binary crowded tournament selection to

select parents from P ′;

V ariation. apply job order crossover (JOX) and simple swap mutation

operators;

Replacement. replace old population by the resulting offspring popula-

tion members.
end
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Algorithm 4.2 E-SPEA2
Input : Initial population P

Archive A

Maximum number of generations T

Output: Best non-dominated set

begin
Initialization. create a random population P of N fuzzy solutions and

create an empty triangular archive of fixed size M ;

repeat
Evaluation. calculate fitness values of solutions in P and A based on

dominance-count and rank strategy;

Fitness Assignment. rank solutions in population and archive using

the fuzzy Pareto dominance;

Environmental Selection. copy all non-dominated solutions from P

to the triangular archive A;

if size of A exceeds M then
A is pruned by means of a clustering procedure;

else if size of A is less than M then
fill A with best dominated solutions;

else
the environmental selection is completed;

end

Elitism. update A;
until Stopping condition. Number of generations > T or another crite-

rion is satisfied;

Mating Selection. perform a binary tournament selection with replace-

ment on A to fill the mating pool;

V ariation. apply job order crossover (JOX) and simple swap mutation

operators;

Replacement. replace old population by the resulting offspring popula-

tion members.
end
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4.4 Application on a multi-objective VRPTW

with fuzzy demands

This section provides a formal definition and mathematical formulation

of the problem we seek to solve, namely the Multi-objective Vehicle Routing

Problem with Time Windows and Fuzzy Demands (MO-VRPTW-FD).

4.4.1 Problem definition

MO-VRPTW-FD is an NP-hard and well-studied problem that can be

defined as a combination of two variants namely, VRP with Time Windows

(VRPTW) and Stochastic VRP (see Figure 1.8), where the customer de-

mands are not stochastic but fuzzy and many conflicting objectives are to be

optimized.

The problem can be modeled with a weighted graph G(V,A) with an arc

set A and a set of vertices V = {0, 1, . . . , n}, where the vertex 0 represents

the central depot. Let V − {0} be the set of customer vertices and let K =
{1, . . . ,m} be the set of homogenous vehicles having a limited capacity Q

which must not be exceeded. Note that, each vehicle k ∈ K has a symmetric

distance Di,j to travel from a customer i to customer j. A feasible route

is usually defined by the set of served customers starting and ending at the

depot vertex 0, i.e., that is r = {0, 1, . . . , n, 0}. In our case, every customer

has a fuzzy demand value dm represented with a triangular fuzzy number. In

that sense, the exact demand is only known when the vehicle arrives at the

customer location. Additionally, customers should be served within a fixed

interval of time [ei, li], the so-called time window. For sake of simplicity,

there is no demands and service times for the depot.

For this problem, two objective functions have to be minimized which

are respectively, the total traveled distance D and total tardiness time T .

Indeed, the tardiness time objective is associated to the failure to respect

the time windows constraint, in particular when the service time exceeds its

upper bound. On the other hand, the traveled distance objective depends

mainly on the vehicle capacity constraint. This latter imposes that the total

of customer demands is less than or equal to the vehicle capacity. Then if

the constraint is not satisfied, the delivery fails and causes wasted costs in

terms of distance.
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Figure 4.2 illustrates an example with a central depot, 3 vehicles having

a maximum capacity Q = 10 and a set of 8 customers represented by nodes.

Each customer i = 1 . . . 8 has a demand expressed by a triangular fuzzy

number dm = [dm, d̂m, dm] (e.g. fuzzy demand of customer 1 is dm1 =
[2, 7, 11]). However, in this case, we cannot directly determine if the capacity

constraint is satisfied or not, since the customer’ demands are fuzzy values.

For instance, consider the customer 7 with fuzzy demand dm7 = [8, 10, 13],
we cannot check if dm7 is lower, equal or higher than Q = 10 in order to

estimate the traveled distance. This figure illustrates also a case of routes

failure (represented with dotted lines) when we suppose that vehicle 1 cannot

serve its second customer with its remaining capacity. Thus, the vehicle must

return to the depot to load and then goes back to serve its last customer.

Depot  

2 

4 

6 7 

3 

1 

8 

dm2=[3,7,9] 

dm4=[2,4,7] 

dm6=[3,5,8] 

5 

2 

dm7=[8,10,13] 

dm3=[1,6,8] 

dm5=[6,8,12] 

dm8=[4,6,10] 

dm1=[2,7,11] 

Figure 4.2 – MO-VRPTW-FD problem

In general, there are three possible situations in order to avoid a route

failure:

- Customer demand is lower than the vehicle capacity, i.e., dmi < Q:

The vehicle serves the current customer c and then moves to the next

one c+ 1.

- Customer demand is equal to the vehicle capacity, i.e., dmi = Q: The
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vehicle leaves the depot 0 to serve the first customer c with its total

capacity, it returns to the depot to load and then serves the next

customer c + 1. This is so-called a priori optimization strategy. In

this situation, the traveled distance is given by:

D(r) = D0,1 + ∑c−1
i=1 Di,i+1 +Dc,0 +D0,c+1 + ∑c−1

i=c+1Di,i+1 +Dn,0

- Customer demand is higher than the vehicle capacity, i.e., dmi > Q:

The vehicle serves the customer c with its remaining capacity, goes to

the depot to load, returns back to the same customer c to deliver the

remaining quantity and then moves to the next customer c + 1. The

traveled distance is given by:

D(r) = D0,1 + ∑c−1
i=1 Di,i+1 +Dc,0 +D0,c +Dn,0

Yet, as the demand of each customer is a triangular fuzzy number dmi =
[dmi, d̂mi, dmi], we propose to verify separately the capacity constraint satis-

faction for the triplet of its demand values. Hence, the traveled distance will

be computed three times for the lower, middle and upper demand values and

consequently obtained as a triangular variable D = [D, D̂,D]. Typically, it

should be noticed that the travel time depends on the corresponding traveled

distance to serve customers. Then as distance in our context is obtained as

a triangular fuzzy variable, the total tardiness time will be also disrupted by

this fuzzy form T = [T , T̂ , T ].

4.4.2 Mathematical formulation

The MO-VRPTW-FD can be formulated as follows:

Notations:

- dmi denotes the fuzzy demand of a customer i ∈ V − {0},
- Q denotes the loading capacity of each vehicle k ∈ K,

- ei and li are respectively the lower and upper bounds of the time

window of vertex i (i.e., depot or customers),

- ai and bi refers respectively to the arrival and departure times to vertex

i,

- tij refers to the travel time from vertex i to j,

- si is the customer service time which corresponds to the time of goods

loading/unloading,

- wi is the waiting arrival time at customer i,

- Di,j is the traveled distance between vertices i and j,

- Ti is the delay or tardiness time at vertex i,
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Decision variable:

xkij =
{

1 if the arc(i, j) ∈ A is used by a vehicle k

0 otherwise

Objective functions:

min (f1(x) =
∑

(i,j)∈A
Dij x

k
ij , f2(x) =

∑
i∈V

Ti) (4.5)

s.t. ∑
k∈K

∑
j∈V

xkij = 1 ∀i ∈ V − {0} (4.6)

∑
i∈V−{0}

dmi

∑
j∈V

xkij ≤ Q ∀k ∈ K (4.7)

∑
j∈V

xk0j = 1 ∀k ∈ K (4.8)

∑
i∈V

xkiu −
∑
j∈V

xkuj = 0 ∀u ∈ V − {0}, ∀k ∈ K (4.9)

xkij(bi + si + tij − bj) ≤ 0 ∀(i, j) ∈ A, ∀k ∈ K (4.10)

wi =
{

0 if ai ≥ ei
ei − ai otherwise.

(4.11)

Ti =
{

0 if bi ≤ li
bi − li otherwise.

(4.12)

The following equations represent the problem constraints to be satisfied:

— Equation (4.5) gives the objective functions which are respectively the

minimal total traveled distance and the minimal total tardiness time.

— Equation (4.6) states that every customer is visited just once and by

one vehicle.

— Equation (4.7) is the vehicle capacity constraint which imposes that

the total customer demands cannot exceed the vehicle capacity Q.

— Equations (4.8) and (4.9) require that each vehicle leaves depot once,

leaves a customer u after completing its service, and returns next to

the depot.

— Equation (4.10) states that vehicle k cannot arrive at customer j before

bi + si + tij if it travels from i to j.
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— Equations (4.11) and (4.12) assumes that the time window [ei, li] of

vertex i can be not respected. Then if a vehicle arrives before the

lower bound ei, it must wait a while waiting time wi. Otherwise, if it

leaves after the upper bound of its time window li, a delay or tardiness

time Ti is resulted.

4.5 Experimental design

The extended E-SPEA2 and E-NSGAII algorithms were applied on the

MO-VRPTW-FD problem and implemented in C++ using the ParadisEO

framework, especially with the MOEO module under Linux (Liefooghe et

al., 2007). For a fair comparison and evaluation, all tested algorithms share

the same base parameters such as the chosen variation operators, the initial

population, the random seed, etc.

4.5.1 Benchmarks

To the best of our knowledge, there is no common benchmark available in

the literature for stochastic VRPs (K. C. Tan et al., 2007). Hence, to evaluate

our model with fuzzy customer demands, we create a new benchmark for

MO-VRPTW-FD by adapting the problem instances provided by (Solomon,

1987), which is a popular reference for evaluating most methods designed for

VRPTW. Our interest is focused on the larger benchmark of 100-customers

that includes a total of 56 different problems. Each problem is composed

of 100 geographically distributed customers, a unique depot and a fleet of

homogenous vehicles having a same capacity Q=60 and a constant speed

fixed to 1 (distance unit/time unit). The travel times between customers is

proportional to the corresponding Euclidean distances between them.

According to the customer distribution and time-windows size, these

problems are classified into 6 categories, namely C1, C2, R1, R2, RC1, RC2.

For instance, the category C corresponds to a uniform geographic distribution

of customers in clusters, the category R corresponds to a random generation

of customers and the category RC represent a mix of random and clustered

customers. Besides, the notation 1 or 2 associated with the name letters

indicate the size of time windows. Problems belonging to categories C1, R1

and RC1 have a very tight time windows and allow a short service horizon
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(i.e. a low capacity of vehicles) with few customers per route (approximately

5 to 10). In contrast, problems in R2, C2 and RC2 have large time windows

which are often hardly constraining and permit many customers (more than

30) to be visited per route. Each problem differs also with respect to the

percentage of customers with time windows (density of 25, 50, 75 and 100

%), their positions and restrictions. For example, in R104 (belonging to the

category-type R1), the customers are uniformly distributed in the space with

a time density of 25 %. In RC205, the customers are dispersed in a mixed

way (uniform and clusters) and every customer has a time window (time

density is 100 %).

Thereafter, we propose to adapt the 56 Solomon’s problem to our fuzzy

context by applying the following methodology: The basic idea is to gener-

ate for each deterministic instance its fuzzy sampled version, in which each

crisp demand values is replaced by its corresponding fuzzy value. As shown

in Figure 4.3, the kernel value (d̂m) for each triangular fuzzy demand dm is

firstly kept the same as the crisp demand value dmi of the current instance.

Then, the lower (dm) and upper (dm) bounds of this triangular fuzzy de-

mand are uniformly sampled at random in the intervals [50%dm, 95%dm] and

[105%dm, 150%dm], respectively. The new fuzzy instances are labeled with

names preceded by the word ”Fuzz” like Fuzz-C101, Fuzz-R101, Fuzz-RC101,

etc

Crisp dm

[50% dm, 95% dm] [105% dm, 150% dm]

Figure 4.3 – Fuzzy sampled demand
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4.5.2 Experimental protocol

To assess the performance of both E-SPEA2 and E-NSGAII algorithms,

we have conducted a set of experiments that can be divided into 2 tests:

(i) First, we aim to examine the ability of our extended algorithms to

tolerate fuzziness versus their crisp versions.

(ii) Second, we aim to compare the quality of generated front approxima-

tions of both proposed algorithms.

In these experiments, we have used the 56 fuzzy instances sampled uni-

formly at random from the classical Solomon’s instances. Each fuzzy in-

stances is tested on the following four algorithms executed 30 times: C-

SPEA2 and C-NSGAII are respectively the crisp SPEA2 and NSGAII al-

gorithms considering only the core (i.e. the most plausible value) of fuzzy

demands, E-SPEA2 and E-NSGAII are the extended algorithms considering

the triangular fuzzy representation of demands (i.e. the triplet of values)

and propagating fuzziness to the objective functions. For each algorithm, a

set of 30 runs per instance was performed with random initial populations

of size=100 evolving across 1000 generations; crossover rate of 0.8 and mu-

tation rate of 0.1. Thereafter, with 4 algorithms tested on 56 instances and

repeated 30 runs, we have done 4×56×30=6720 runs. Hence, we obtained,

for every test instance, 30 sets of optimal solutions that represent Pareto front

approximations. Each solution shows the minimum total traveled distance

and total tardiness time for an efficient vehicles route. However, the solu-

tions obtained for the C-SPEA2 and C-NSGAII algorithms are represented

by a set of exact numbers, while for the E-SPEA2 and E-NSGAII algorithms

the solutions returned are vectors of triangular fuzzy numbers. Examples of

front approximations found for the instance Fuzz-C101 using each of algo-

rithms E-SPEA2 and E-NSGAII are shown respectively in Figures 4.4 and

4.5. The illustrated fronts represent a set of triangular fuzzy solutions. For

instance, the bold triangle in Figure 4.4 represents a solution with minimum

total distance (the green side) equal to [2413, 2515, 2623] and total tardiness

time (the red side) equal to [284312, 295280, 315322].
In order to evaluate and compare the quality of the generated front ap-

proximations for every test instance, we use the following multi-objective

quality indicators (detailed in Chapter 1):

- Unary hypervolume indicator IH to measure the approximations qual-
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ity of each of C-SPEA2, C-NSGAII, E-SPEA2 and E-NSGAII algo-

rithms. This indicator is to be maximized.

- Binary hypervolume difference I−H and additive ε-indicator Iε+ to com-

pare the performance of implemented algorithms. Both indicators are

to be minimized.

Yet, as these indicators are performed only on exact approximation samples,

we propose to defuzzify the triangular fuzzy solutions of E-SPEA2 and E-

NSGAII algorithms by computing their expected values (see Equation 4.3).

As the computation of hypervolume and epsilon indicators usually require a

reference set Z?
n (or a reference point zref for the unary case), we propose

to follow the experimental steps given in (Knowles et al., 2006): We first

consider Z?
n as the set of non-dominated solutions extracted from the union of

all front approximations. Then, we compute zmax = (zmax
1 , zmax

2 ), where zmax
1

and zmax
2 denote the upper bounds of both objective functions in the whole

non-dominated fronts. The reference point used for the unary hypervolume

IH is fixed to zref = (1.05× zmax
1 , 1.05× zmax

2 ).
Subsequently, by applying the quality indicators with respect to the ref-

erence set (or reference point), we transform our solutions to samples with

I-values scalars. In this way, we reach a single I-value for each test run per al-

gorithm. For instance, according to the maximum hypervolume value found

with the unary hypervolume metric, we can evaluate the quality of every

algorithm outputs (i.e. higher IH value indicates a better front approxima-

tion). Thereby, by analyzing the change in the set of IH values provided

for 30 runs per test instance, we can realize whether the extended algorithm

(E-SPEA2 and E-NSGAII) are capable to tolerate the fuzziness comparing

with their crisp versions (C-SPEA2 and C-NSGAII).

Afterwards, the binary I−H and Iε+ indicators are applied to compare the

performance for each pair of algorithms (w.r.t the reference set). Similarly,

since 30 runs per algorithm have been performed, we obtain 30 hypervol-

ume differences and 30 epsilon measures for each test instance. Once all

these I-values are computed, we need to use a statistical analysis in order

to compare them and so obtain valid statements about their quality. Since

both algorithms share the same parameters for all the runs such as the initial

population, the random seed, the variation operators, etc, the resulted ap-

proximations can be considered as matched samples. To this end, we use the

Wilcoxon-signed rank test with a P-value=0.5% for a pairwise comparison

between them. Consequently, for every test instance and according to the
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indicator under consideration (i.e. I−H or Iε+), this statistical test indicates

if the approximation samples obtained by a given algorithm are significantly

better than the ones of another algorithm, or if there is no significant differ-

ence between both.

Notice that, all the experimental tests have been conducted using the

PISA 1 performance assessment tool suite (Bleuler et al., 2003).

4.5.3 Computational results

Figures 4.6 and 4.7 summarize the unary hypervolume results for the four

implemented algorithms by using box-plots, such that each box presents 30

hypervolume values from the 30 runs of a corresponding algorithm on one

test instance. Then as we have a total of 56 tested fuzzy instances, we present

in these figures only the box-plots for 12 sampled fuzzy instances such as:

Fuzz-C101, Fuzz-C104, Fuzz-C201, etc. The box-plots for other instances are

completely similar and exhibit the same trend.

More precisely, by examining the behaviour of plotted boxes between the

accumulated hypervolume values, we can assert the quality of our extended

algorithms E-SPEA2 and E-NSGAII and compare them with the crisp algo-

rithms C-SPEA2 and C-NSGAII. Taking a look at the Figure 4.6, we can

intuitively compare the C-SPEA2 and E-SPEA2 algorithms based on their

boxes of hypervolume values. In fact, it is not difficult to realize that the

boxes of crisp C-SPEA2 are very large, in the sense that their hypervolume

values vary from instance to instance (approximately from 0.3 to 1.1). Also,

we can remark that the E-SPEA2 boxes are better (higher) than those of

C-SPEA2, because they are less variable (i.e. vary slightly from 0.6 to 1.2)

and look identical for all the illustrated instances.

In the same way, a comparison between the C-NSGAII and E-NSGAII

algorithms is shown in Figure 4.7. Indeed, from the illustrated box-plots, we

can easily observe that the boxes of the crisp algorithm are larger than those

of the extended one. Otherwise, the E-SPEA2 has high and less dispersed

hypervolume values varying from 0.5 to 1.2, whereas the C-NSGAII has hy-

pervolume values varying from 0.2 to 1.1. These remarks leads us to conclude

that for all the sampled fuzzy instances, E-SPEA2 and E-NSGAII are less

sensitive to fuzziness and so converge better than C-SPEA2 and C-NSGAII.

1. http://www.tik.ee.ethz.ch/pisa/assessment.html
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This may be explained by the fact that taking into account all the three ver-

tices of a triangular fuzzy demand instead of only consider the most plausible

demand in the crisp algorithms, provide more accurate approximations and

consequently a better estimate of the algorithm quality.

Table 4.2 and 4.3 present the performance comparison of four algorithms,

namely C-SPEA2, C-NSGAII, E-SPEA2 and E-NSGAII, in solving the MO-

VRPTW-FD. These algorithms are compared on 18 random selected fuzzy

instances with respect to both binary I−H and Iε+ indicators and using the

Wilcoxon-signed rank test (with a P-value less or equal to 0.05). For each

test instance, either the algorithm located at a specific row significantly dom-

inates the algorithm located at a specific column (≺), either it is significantly

dominated (�) or there is no significant difference between both (≡). Ob-

serving the results based on both indicators, E-SPEA2 statistically outper-

forms the three other algorithms with respect to both I−H and Iε+, excepting

for the Fuzz-RC204, Fuzz-R110 and Fuzz-RC208 instances where there is no

significant difference between both algorithms E-SPEA2 and E-NSGAII algo-

rithms. Another exception is for the Fuzz-C103 and Fuzz-RC106 instances,

where the E-NSGAII obtained better results than E-SPEA2 with respect to

the Iε+ indicator.
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Figure 4.4 – Example of E-SPEA2 solutions for Fuzz-C101
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Figure 4.5 – Example of E-NSGAII solutions for Fuzz-C101

98



Chapter 4 : Fuzzy Pareto-based Optimization Algorithms

Fuzz-C101 Fuzz-R101 Fuzz-RC101 

Fuzz-C104 Fuzz-R104 Fuzz-RC104 

C-SPEA2 C-SPEA2 C-SPEA2 E-SPEA2 E-SPEA2 E-SPEA2 

Fuzz-C201 Fuzz-R201 Fuzz-RC201 

Fuzz-C204 Fuzz-R204 Fuzz-RC204 

0.4 

0.6 

0.8 

1.0 

1.2 

H
yp

er
vo

lu
m

e 

0.4 

0.6 

0.8 

1.0 

1.2 

 0.2 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

 0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

0.2 

Figure 4.6 – Hypervolume results of C-SPEA2 and E-SPEA2
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Figure 4.7 – Hypervolume results of C-NSGAII and E-NSGAII
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Table 4.2 – Algorithms comparison according to the I−H indicator

Instances Algorithms C-SPEA2 E-SPEA2 C-NSGAII E-NSGAII

Fuzz-C101
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-C201
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R101
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R201
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -

Fuzz-RC101
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-RC201
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -

Fuzz-C104
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-C204
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R104
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R204
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -

Fuzz-RC104
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-RC204
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -

Fuzz-C103
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-C207
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R110
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -

Fuzz-R208
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-RC106
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-RC208
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -
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Table 4.3 – Algorithms comparison according to the Iε+ indicator

Instances Algorithms C-SPEA2 E-SPEA2 C-NSGAII E-NSGAII

Fuzz-C101
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-C201
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R101
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R201
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-RC101
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-RC201
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-C104
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-C204
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ ≺ ≺ -

Fuzz-R104
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R204
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ ≺ ≺ -

Fuzz-RC104
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-RC204
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -

Fuzz-C103
E-SPEA2 ≺ - ≺ �
E-NSGAII ≺ ≺ ≺ -

Fuzz-C207
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-R110
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -

Fuzz-R208
E-SPEA2 ≺ - ≺ ≺
E-NSGAII ≺ � ≺ -

Fuzz-RC106
E-SPEA2 ≺ - ≺ �
E-NSGAII ≺ ≺ ≺ -

Fuzz-RC208
E-SPEA2 ≺ - ≺ ≡
E-NSGAII ≺ ≡ ≺ -
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4.6 Conclusion

This chapter was devoted to present our algorithmic contribution, espe-

cially in the field of multi-objective evolutionary computation. In fact, an

extension of the two most popular algorithms, namely SPEA2 and NSGAII,

was proposed in order to enable them handling any MOP with fuzzy-valued

objectives. The usefulness of extended algorithms was illustrated through

the resolution of a practical VRP problem and their performance assessment

was validated by means of some experimental tests. The computational

results were straightforward and encouraging for multi-objective problems

confronted with fuzziness. Yet, the robustness of obtained results cannot be

evaluated using standard performance indicators. So in the next chapter, we

will introduce a new robustness approach for validating our proposals.
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5.1 Introduction

Facing increased competition in designing uncertain optimization meth-

ods, robustness aspect becomes necessary for sensitivity analysis and perfor-

mance validation. This aspect can be defined as the ability of a resolution

method to remain unaffected despite potential perturbations due to uncer-

tain parameters. Various concepts and techniques associated with robustness

have been more and more discussed in the literature during the last few years.

In most of existing approaches (Aissi et al., 2009 ; Kasperski & Kulej, 2009),

robustness is evaluated based on the most pessimistic (i.e. worst case) sce-

nario. Some other approaches such as the β-robustness approach (Palacios et

al., 2014) consider that the pessimistic way of performance analysis is limited

in the sense that it may be extremely conservative when the worst case is not

crucial and so an overall acceptable performance is preferred. Unfortunately,

almost all these approaches are restricted to a single-objective context and

often fail to consider the robustness requirement for real-world applications.

Otherwise, there are very few approaches regarding the robustness in multi-

objective setting (Deb & Gupta, 2006 ; Bader & Zitzler, 2010), where the

goal becomes to achieve a set of solutions that are not only optimal but also

safe, reliable and robust. The purpose of this chapter is to contribute to

the search of robust optimal solutions in fuzzy multi-objective optimization.

This is achieved through three main phases: the generalization of standard

β-robustness concepts to the fuzzy multi-objective context, the extension of

our fuzzy Pareto dominance for integrating robustness and the refinements

of our previously proposed algorithms in order to enable them converging

towards robust solutions.

The chapter is structured as follows. Section 5.2 explains our motivation

behind this contribution and gives some definitions related to the robustness

aspect. Section 5.3 provides a survey and discussion of the most prominent

robustness approaches. Section 5.4 presents our novel approach and finally,

Section 5.5 describes the experimental study in the case of the MO-VRP-FD

problem.

5.2 Motivation

Most of studies in the field of non-deterministic optimization tackle the

issue of designing efficient methods able to cope with uncertainty propaga-
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tion. These methods are of great importance as they consider the not-perfect

reality of practical applications. Their performance is usually examined in

terms of solution costs or optimality, but their robustness has long been ne-

glected by researchers. Remember that in the previous chapters, our main

task was to find optimal solutions for multi-objective problems that are sub-

ject to fuzziness. To this end, fuzzy optimization algorithms were developed

to explicitly consider this fuzziness within the search process. Afterwards,

in order to evaluate the generated fuzzy solutions, we have firstly defuzzified

them into crisp solutions and then simply applied the classical multi-objective

quality indicators. Yet, these latter are often not sufficient to analyse un-

expected variations in the obtained solution(s) or to detect the potentially

responsible factor. Although the classical indicators should not be used to

evaluate such problems, it should also not defuzzify the generated solutions

since this can lead to lose a part of information and consequently to decrease

their quality. Otherwise, the decision maker is not able to judge the robust-

ness of defuzzified or approximated outputs. Therefore, the assessment of

robustness is required in our study to conduct a complete sensitivity analysis

and draw further conclusions about our methods.

Robustness plays a central role in the field of optimization and decision

making under uncertainty. In its general form, this notion refers to the ability

to favor flexibility in any unexpected situation or unpredictable changes in

problem data, components or environments. It is intuitively connected to the

idea that in presence of potential uncertainties, the decision making process

should remain steady (i.e. with the minimal damage or loss of efficiency).

Several interpretations of robustness are made in theoretical and algorithmic

contexts such as a robust decision, robust solution or robust algorithm. In

addition, two cases of robustness evaluation can be distinguished depending

on the moment and way in which it is performed (Sevaux & Sörensen, 2004):

- At the end of development phase: It may be interpreted as a sensi-

tivity test or conclusion of method validation. Then, if the method

is concluded not to be robust, further efforts should be made for re-

optimizing or redeveloping it.

- During the optimization phase: It can be an analytical procedure

performed during the optimization phase or development of a method.

In this case the robustness of solution(s) is guaranteed, in the sense

that remain optimal or feasible under all variations.

For our context, robustness refers to the second case, where it is a part
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of the optimization method intended to be robust. This combination of

optimization and robustness leads to the so-called robust optimization (Ben-

Tal et al., 2009). In general, robust optimization may be defined as an

extension of classical optimization methods in which a robustness procedure

is incorporated. It can also be defined as an optimal design proved relatively

insensitive to any perturbations of inputs data and where the most robust

solution is sought.

In multi-objective setting, the goal of robust optimization becomes to find

a set of solutions that are optimal, flexible and reliable against uncertainty

(Soares, Adriano, et al., 2009). Afterwards, most formulations of robustness

in multi-objective context cover the following situations:

- modification of the objective values or constraints to account for ro-

bustness;

- definition of robustness as an objective function to be maximized;

- use of additional robustness constraints to restrict the search process.

The next section gives an overview of the state of the art relative to robustness-

based optimization approaches.

5.3 Robust optimization approaches

The approaches to cope with robustness in the literature are multiple

and varied, notably those related to the issue of finding robust solution(s) for

practical optimization problems. The first study was published by (Soyster,

1973) which assumes that robustness is evaluated according to the most pes-

simistic scenario. Afterwards, (Kouvelis & Yu, 1997) suggested a robust

deviation approach that uses the notion of regret 1. Moreover, in (Aissi et

al., 2009 ; Kasperski & Kulej, 2009), a minimax criteria is used to seek ro-

bust solutions having the best possible performance in the worst case (by

minimizing the maximum possible regrets of solutions).

The pessimistic way of analysis in these classical approaches leads often

to a rapid and systematic convergence toward robust solutions. Yet, it may

be deemed as extremely conservative when the worst case is not crucial, in

the sense that it is not possible to configure the amount of targeted robust-

ness against uncertainty (known as level of conservatism). In (Bertsimas &

1. defined as the difference between the best minimum cost and the second minimum

for every problem solution

108



Chapter 5 : Fuzzy Multi-objective Robustness-based Approach

Sim, 2004), the authors proposed the use of a conservativeness degree when

looking for robust solutions. This degree, specified by the decision maker,

imposes that the total amount of perturbations are less than it. Thereafter,

(Bertsimas & Nohadani, 2010) defined a target robustness according to the

minimal cost of the worst outcomes and then used it to adjust the conserva-

tiveness of his optimization method.

Another important and thoroughly studied concept is the subjectivity of

robustness. In fact, robustness is strongly subjective and so it is essential

to explicitly define the tradeoff between satisfactory performance and re-

grettable impacts. Therefore, several researches such as (Daniels & Carrillo,

1997 ; Maeda & Kawachi, 2001 ; Palacios et al., 2014) proposed to take into

account the subjective aspect of robustness through a target level specified

by the decision maker. Their main idea is that rather than gambling on the

possible performance, it may be more efficient to make a level on the overall

acceptable performance and then to state the confidence in being able to

achieve that level. Among the frequently used approaches for this kind of

subjective robustness, we focus in this thesis on the β-robustness approach

(Daniels & Carrillo, 1997) which consists in maximising the likelihood that

a solutions’s actual performance is not worse than a given threshold. Most

of these approaches can only deal with specific single-objective problems for

which they have been developed.

Only some of them were recently extended to the multi-objective set-

ting such as the minimax robustness approach (Ehrgott et al., 2014) and

the concepts of robustness degrees (Barrico & Antunes, 2006). For example,

in (Soares, Guimarães, et al., 2009 ; Rivaz & Yaghoobi, 2013), a minimax-

based robust procedure is employed for checking Pareto optimal solutions in

the context of interval-valued objectives. On the other hand, a number of

approaches are designed to cope with robustness in multi-objective optimiza-

tion. As mentioned before, the robustness evaluation is often incorporated

in the optimization method by modifying the objective values and/or con-

straints. For instance, in (Deb & Gupta, 2005 ; Gunawan & Azarm, 2005,

2005), the multi-objective search process is restricted with respect to prede-

fined constraints of robustness. In (Jin & Sendhoff, 2003 ; M. Li et al., 2005),

the authors tried to design robust multi-objective evolutionary algorithms by

treating robustness as an additional objective. In (Deb & Gupta, 2006), the

authors considered the robustness in both constraints and objectives by fixing

a predefined limit of variation and using the mean objective values. Thereby,
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the incorporation of robustness as additional constraints and/or objectives

is also suggested in (Bader & Zitzler, 2010) through an hypervolume-based

evolutionary algorithm. Notice that, the main advantage of using evolution-

ary algorithms in most of these approaches is that they provide a trade-off

between robustness and optimality in a computational run-time.

Unlike the existing approaches, the approach we propose is a combina-

tion of β-robustness concepts, multi-objective evolutionary optimization and

fuzzy aspect. To the best of our knowledge, there was no similar work done in

the robust optimization field that brings these aspects together. Note that,

in the light of our previous achievement, the following issues concerning ro-

bustness arise:

(i) How defining robustness in a fuzzy multi-objective context?

(ii) How integrating robustness into the previously proposed algorithms?

(iii) How checking if the obtained solutions are sufficiently robust?

5.4 Robustness approach for fuzzy MOPs

In this section, we present a new generic approach able to determine

robust optimal solutions for any multi-objective problem with fuzzy-valued

objectives. The proposed approach is comprised of three main steps:

1. defining new β-robustness concepts in a fuzzy multi-objective context;

2. extending our fuzzy Pareto dominance to consider robustness criteria;

3. refining our previous algorithms to seek robust optimal solutions.

Each of these steps is described in detail in the following sub-sections.

5.4.1 New β-robustness concepts

Our proposal retains the basic idea of β−robustness approach (Daniels &

Carrillo, 1997) and tries to generalize it for dealing with fuzzy multi-objective

optimization. In fact, β-robustness consists in maximizing the confidence

that a solution’s actual quality is not worse than the overall acceptable level

of performance. This very general definition was often reformulated to em-

phasize single-objective problems in specific areas such transportation and

scheduling (Maeda & Kawachi, 2001 ; Palacios et al., 2014 ; Pishevar &

Tavakkoi-Moghaddam, 2014). Besides, it includes two important components
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which are the quality (or cost) of solution related to the objective values and

the performance level (or threshold) usually provided by an expert opinion.

In the following, we present our proposal to refine the usual definitions and

concepts of β-robustness to our fuzzy multi-objective context. In particular,

our aim is to achieve a set of β-robust solutions with respect to the fuzziness of

multiple objectives. For the sake of simplicity and without loss in generality,

we suppose that we have any MOP with two fuzzy-valued objectives to be

minimized. Then, β-robust solutions will be redefined as follows:

Definition 5.1. Let f1(x) and f2(x) be two objective functions expressed with

triangular fuzzy numbers, then: β-robust solution is a solution with certain

confidence that the cost in terms of both objective values f1 and f2 will be less

than a given threshold level.

A question then arises; how choosing a confidence threshold in such multi-

objective context ? In real-life problems, this threshold is often provided by

expert(s). Yet as in our case we are treating only synthetic problems, such

threshold is not always available. Thereby, knowing that the objectives in

a MOP are usually considered to be independent from each other (i.e., they

depend only on the decision variable), we suggest to define a threshold to

each objective as follows:

Definition 5.2. Let A = [a, â, a] and B = [b, b̂, b] be the best known objective

values for f1(x) and f2(x) respectively and let f ∗1 and f ∗2 be their predefined

thresholds, then the confidence threshold or level for each of objectives is

estimated separately by:

f ∗1 = â+ TF × (a− â), f ∗2 = b̂+ TF × (b− b̂) (5.1)

where TF is a given tightness factor of best possible performance.

A parametric analysis is performed to select TF which consists of examin-

ing the variability and closeness of triangular fuzzy values to the peaked ones

(i.e. the most plausible values). An approximation is said ”tight” within fac-

tor TF < 1 if the level of conservatism against fuzziness is computationally

safe with respect to the crisp situation.

Then our goal is to maximise the confidence that the objective costs f1

and f2 of each solution will certainly or necessarily be less than their fixed

thresholds f ∗1 and f ∗2 , respectively. In other words, we intend to maximize
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the necessity that each objective value lies within its confidence level. This β-

robustness reasoning can be formulated in the possibilistic setting (Dubois &

Prade, 1998) as the necessity measure (Equations 2.12 and 2.13 in Chapter 2).

In fact, the necessity measure N corresponds to the certainty degree of any

subset of knowledge and gives a pessimistic view in decision making. Hence,

we propose to use this measure for estimating the necessary robustness. More

precisely, we propose to compute the β-robust degrees, denoted βiN , which

are equivalent to the necessity measure that every objective value will be

lower than its given threshold. Notice that, these degrees must be computed

with respect to the triangular fuzzy shape of different objectives. Formally,

the necessity degree N that a triangular objective value x = [x, x̂, x] is less

than a real number r is given by:

N(x ≤ r) =


1 if x < r
r−x̂
x−x̂ if x̂ ≤ r ≤ x

0 if x̂ > r.

(5.2)

Then suppose we have computed the βN degrees for each solution w.r.t both

objectives f1 and f2, i.e. β1
N = N(f1 ≤ f ∗1 ) and β2

N = N(f2 ≤ f ∗2 ), we

need to check if a solution has a good necessary robustness based on its βN
values. Remember that an important property of necessity measure is the

’minitivity’ w.r.t. conjunction N(A ∩ B) = min(N(A), N(B)). Thus, we

propose to aggregate the set of βN degrees of each solution as follows:

(β1
N ∩ β2

N) = min (β1
N , β

2
N) (5.3)

This aggregation allows us to make a decision based on the most pessimistic

value given by the minimum necessary robustness. Thereafter, to avoid

achieving a solution with low βN values, we propose to enhance them with

an interval of desired robustness level [R, 1] where R expresses the decision

maker’s attitude. Therefore, we define the necessary robustness as follows:

Definition 5.3. A solution s with both objective values f1 and f2 is said to

be necessarily βN -robust w.r.t. thresholds f ∗1 and f ∗2 respectively, iff:

β1
N = N(f1 ≤ f ∗1 )∧β2

N = N(f2 ≤ f ∗2 )∧βN(s) = min (β1
N , β

2
N) ∈ [R, 1] (5.4)

Example 5.1. Let us consider an example of βN -robustness evaluation with

a set of 4 solutions {s1, s2, s3, s4} and a confidence parameter R = 0.5 to
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suppose that the attitude of decision maker is neither pessimistic nor op-

timistic. Two degrees (β1
N , β

2
N) are assigned to each solution as follows:

s1 : (0.30, 0.60), s2 : (0.55, 0.80), s3 : (0.95, 0.15) and s4 : (0.75, 1.00). Then

in order to find the necessarily robust solutions, we need to check for every

one if the minimum of its both βN degrees is within the interval [0.5, 1]. Thus,

we clearly remark that solutions s1 and s3 are not sufficiently βN -robust be-

cause βN(s1) = min(0.3, 0.6) = 0.3 < [0.5, 1] and βN(s3) = 0.15 < [0.5, 1].
On the other hand, solutions s2 and s4 are judged as necessary robust since

they reach the desired level of robustness (i.e. the minimum value of their

βN degrees is higher than R = 0.5).

Subsequently, as the necessity and possibility are inter-definable (i.e. in

the sense that if N , 0, then Π = 1), we may conclude that by maximising

the necessary robustness of any solution, we are also maximising its possible

robustness denoted βΠ(s). Obviously, we have:

Definition 5.4. A solution s is said to be possibly β-robust, i.e. βΠ(s) = 1,

if its necessary robustness βN(s) ∈ [R, 1] is satisfied.

Finally, the βN and βΠ can be seen as lower and upper bounds of the

degree that s is β-robust and so we may deduce that:

Definition 5.5. If s is necessarily and possibly β-robust w.r.t. the predefined

thresholds, then we have:

∀i = {1, 2}, βiN(s) ≤ βi(s) ≤ βiΠ(s) (5.5)

It is important to note that the proposed β-robustness concepts can be

used not only to evaluate the optimal solutions in case of fuzzy multi-objective

optimization, but also solutions that are not optimal. In other words, a

not optimal solution can be robust if its βN degrees are within the desired

level of robustness. Yet, the major difficulty of multi-objective optimization

lies in finding robust optimal solutions, especially the robust Pareto set. In

the following, we propose to combine both aspects of robustness and Pareto

optimality.

5.4.2 Robust Pareto optimality

We shall begin here by defining the aspect of robust Pareto optimality

and its related properties. In general, Pareto dominance is devoted to rank
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solutions according to their quality (objective values), but it cannot discrim-

inate between the robust ones. Thus, a major question is, whether to deploy

robustness concepts for achieving a robust Pareto optimal set ?

Usually, a Pareto optimal solution is called robust if it remains optimal

against any uncertainty and there is no better solution dominated it. In our

case, a solution is robustly Pareto optimal if and only if it is feasible, non-

dominated and the sensitivity of its objective values to fuzziness is minimal.

Intuitively, we may conclude that our previously proposed Pareto dominance

relations are not enough to evaluate the robustness of fuzzy solutions. How-

ever, as we have proposed above new concepts to analyse their robustness,

the issue now is how to combine them with the Pareto optimality aspect.

At this stage, we have to check that for any Pareto optimal solution there

is no negative impacts on its feasibility, optimality and reliability in the face

of fuzziness. The idea is so to consider the robustness as an additional con-

straint to improve the Pareto ranking. More precisely, we suggest to extend

our fuzzy Pareto dominance for integrating the β-robustness concepts. Re-

member that we have three relations detailed in Chapter 3: Strong Pareto

dominance (≺SP ), Weak Pareto dominance (≺WP ) and Case of indifference

(‖). Their extension leads to the following new definitions:

Definition 5.6. Robust strong Pareto dominance

Let Y and Y ′ be two triangular fuzzy solutions, βN(Y ) and βN(Y ′) be their

necessary robustness degrees. Y strongly and robustly Pareto dominates Y ′,

denoted by Y ≺Srob Y ′ iff:

Y ≺SP Y ′ ∧ βN(Y ) ≥ βN(Y ′) (5.6)

This means that if a solution Y is preferred over Y ′ according to the

dominance relation ≺SP , and its necessary robustness degree is higher than

or at least equal to that of Y ′, then Y ≺Srob Y ′ must hold.

Definition 5.7. Robust weak Pareto dominance

Let Y and Y ′ be two triangular fuzzy solutions, βN(Y ) and βN(Y ′) be their

necessary robustness degrees. Y weakly and robustly Pareto dominates Y ′,

denoted by Y ≺Wrob Y
′ iff:

[Y ≺WP Y
′ ∧ βN(Y ) ≥ βN(Y ′)] ∨ [Y ‖Y ′ ∧ βN(Y ) > βN(Y ′)] (5.7)

In this case, we propose to consider in addition to the relation ≺WP ,

the case of indifference between two solutions. Indeed, if the incomparable
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solutions can be discriminated by their βN degrees, then there exists a relation

of ≺Wrob. On the other hand, the solutions remain incomparable if their βN
degrees are equal.

Definition 5.8. Case of indifference

Two triangular fuzzy solutions are indifferent or incomparable, denoted by−→
Y ‖rob

−→
Y ′, iff:

Y ‖Y ′ ∧ βN(Y ) = βN(Y ′) (5.8)

The issue now is how to use and incorporate these robust Pareto domi-

nance into the optimization process.

5.4.3 Algorithmic refinements

This section describes our idea to extend the optimization algorithms pro-

posed in Chapter 4, namely E-SPEA2 and E-NSGAII, by the consideration

of robustness. In particular, we shall refine some features for integrating

our methodology of robustness evaluation, as well as the new robust Pareto

dominance into the search process of our algorithms. The aim behind these

refinements is to develop robust optimization algorithms, in the sense that

they are able to find robust optimal solutions for any multi-objective problem

with fuzzy-valued objectives. It should be specified that the discussion to fol-

low focuses only on the necessary robustness βN since the possible robustness

βΠ can always be deduced from the dual relationship.

First, we suggest to consider the new β−robustness concepts at the eval-

uation step of both algorithms (see Algorithms 4.1 and 4.2). Conventionally,

this step requires the use of fitness measures to evaluate the solutions at every

generation or iteration. At this level, we propose to replace the fitness value

assigned to each of solutions by its degree of necessary robustness, specifically

with the minimum of its βN degrees (Equation 5.3). This helps to improve

the fitness-based process and guide the evaluation of solutions according to

their robustness. In general, at the first iteration, a set of solutions are ran-

domly generated to initialize a population and then evolved until reaching a

stopping criterion. Yet, these initial solutions have usually a poorer quality,

with relatively high objective values. Thus, they probably will yield very

bad βN -based fitness values, in the sense that their corresponding robustness

degrees are closer or equal to zero for any reasonable threshold. As a con-
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sequence, this will prevent the algorithm from converging more quickly to

robust solutions.

Taking into account these considerations, we propose to use the method-

ology of ”adaptive” thresholds proposed by (Palacios et al., 2014). This

methodology consists in progressively providing a set of successive smaller

thresholds with linearly decreasing approximations. More precisely, in order

to avoid returning zero-βN values, we suggest to begin the evaluation of our

initial population with two first thresholds f 0
1 and f 0

2 taken as most pes-

simistic of the best objective values. Subsequently, at each generation, the

populations and thresholds are evolved progressively with more demanding

values until reaching the best or optimal ones f ∗1 and f ∗2 . These latter re-

main unchanged in the last generations and are thereby used to re-evaluate

the solutions according to their necessary βN robustness.

Afterwards, in the next step, a Pareto-based fitness-assignment strategy

is performed to evaluate the solutions in terms of convergence. It might

be possible here to simply use our Pareto dominance relations proposed in

Chapter 3 for ranking the fuzzy solutions and then to apply the robustness

evaluation methodology on the solutions found. This means that robustness

is applied only on the set of non-dominated solutions. In such context, so-

lutions which are incomparable, equivalent or closest to the Pareto-optimal

front are not considered. Our aim, however, is to enable the optimization al-

gorithms achieving β−robust optimal solutions. To this end, the new robust

dominance relations are then integrated into the search process of each algo-

rithm, especially into the fitness-assignment strategy. The major advantage

of these relations is that it can discriminate between some cases of indifference

by using the robustness criteria. The environmental selection, variation and

replacement steps of each algorithm remain unchanged. Finally, we denote

by R-SPEA2 and R-NSGAII the robust version of E-SPEA2 and E-NSGAII

algorithms.

5.5 Experiments in case of MO-VRPTW-FD

To illustrate our robustness approach, we have applied the R-SPEA2 and

R-NSGAII algorithms for solving the MO-VRPTW-FD problem. The algo-

rithms were implemented using the ParadisEO-MOEO module (Liefooghe et

al., 2007) and with the same base parameters of our previous developments.

116



Chapter 5 : Fuzzy Multi-objective Robustness-based Approach

5.5.1 Experimental robustness analysis

Our aim of solving the MO-VRPTW-FD problem becomes here to find

robust optimal routes for a fleet of identical vehicles which serve a set of

customers within limited time windows and whose demands are assumed

to be triangular fuzzy numbers. Then as the sequence of customers and

service times depend primely on the amount of demands to be delivered, our

both objectives of minimizing the total traveled distance and total tardiness

time are clearly affected by the fuzziness of demands and so obtained as

D = [D, D̂,D] and T = [T , T̂ , T ], respectively.

By following the steps of our robustness approach, the β−robust routes

are interpreted as those having a certain confidence that the cost in terms of

traveled distance D and tardiness time T will be less than given thresholds

D∗ and T ∗, respectively. Next, the objective thresholds are computed based

on the best found solutions for D and T (Equation 5.1) and a given tightness

factor TF . The parametric analysis used to determine TF consists on:

- considering the best routes achieved using exact demands (i.e. the

middle values) as estimate of the crisp situations;

- examining the variation of routes induced by particular triangular

fuzzy demands comparing with the crisp ones;

- quantifying the degree of conservatism that less perturbed routes have

as the tightness factor.

In our case, the most appropriate TF value for best possible performance is

estimated at 0.75. Notice that, the thresholds are updated along a number of

generations from relatively pessimistic values D0 > D1 > D2 . . . until optimal

ones D∗ and T ∗ that remain invariable in the last generations. Once the

thresholds are fixed, the necessary robustness of each routes is conceptualized

in two βN degrees: β1
N = N(D ≤ D∗), β2

N = N(T ≤ T ∗). Remember

that, the route is called necessarily β-robust if it reaches the desired level of

robustness (i.e. min (β1
N , β

2
N) ∈ [R, 1]). At this level, we supposed that a

sufficient robustness should be at least equal to R = 0.4. This conservative

choice (neither extremely optimistic nor pessimistic) allows us to keep a large

number of possible robust solutions.

The experiments were conducted by applying the proposed robust al-

gorithms R-SPEA2 and R-NSGAII on the 56 sampled fuzzy Solomon’s in-

stances. We have also used the same algorithmic parameters namely, the

initial population of size=100, crossover rate=0.8, mutation rate=0.1 and
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maximum number of generations=1000 from which the last 100 use the D∗

and T ∗ values. Both algorithms have been executed 30 times on each of 56

test instances, thus we have 2× 56× 30 = 3360 runs.

For empirical assessment, we have adapted the method given in (Palacios

et al., 2014) to our problem. The principle of this method is to assess the

”real” robustness of solutions using a Monte-Carlo simulation based on fuzzy

semantics. In fact, suppose we have solved the MO-VRPTW-FD, the fuzzy

routes found are often considered as a-priori solutions of the problem. How-

ever, in practical use of these routes, it is impossible to predict the exact total

traveled distance or tardiness time since they depend on the demands which

are not known yet. In other words, the ”real” routes with the exact quantity

of demands are only determined upon arrival at the customer’s locations.

Moreover, each fuzzy route corresponds to an ordering of customers that can

be used to estimate the possible a-posteriori realizations of the problem.

In this setting, the behaviour of customers sequence found on a given

fuzzy instance were evaluated on a set of deterministic samples, representing

the K a-posteriori solutions of the fuzzy test instance. More precisely, we

have randomly generated for each fuzzy instance, 10 deterministic versions

by simulating exact demands according to probability distributions coherent

with the triangular fuzzy demands. Thereafter, the found ordering of cus-

tomers were used with the simulated exact demands to process our problem

objectives. This allowed us to obtain precise routes with ”real” total traveled

distance and tardiness time that may be under or above the thresholds D∗

and T ∗. To this end, we have considered the whole set of sampled deter-

ministic instances to obtain the different possible values of both objectives

and then computed the proportion n of those values which are below ac-

tually bellow the fixed thresholds. This gives us an empirical evaluation of

the real robustness n-rob of found routes, where a good degree of βN should

correspond to a high n.

5.5.2 Results

Table 5.1 summarizes the results of our algorithms R-SPEA2 and R-

NSGAII on a set of 14 instances of the fuzzy Solomon’s benchmark. Each

row corresponds to one of these instances tested on each of both algorithms.

Notice that, the remaining instances produce fairly similar results to those
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shown below. In fact, the column, with header best, reports for each algo-

rithm and instance, the best solution found across 30 runs. Every solution

corresponds to the minimum traveled distance Dmin and tardiness time Tmin

obtained respectively as triangular fuzzy numbers (the triplet of values be-

tween braces). The next column shows the thresholds of both objectives,

denoted D∗ and T ∗, that will be used later for estimating the robustness

of solutions. Additionally, the fifth and sixth columns report the expected

values of the average and worst solution in 30 runs (using Equation 4.3 in

Chapter 4). The last column shows the average time (in seconds) taken by

each algorithm on every tested instance in a single run.

As we can see from the available results, the R-SPEA2 algorithm obtains

the best-so-far solutions in all instances, even the expected values of average

and worst solutions found are better than those obtained with the R-NSGAII

algorithm. According to run times, both algorithms require considerably less

time (i.e. approximately between 6 and 10 seconds).

Table 5.2 contains the results of robustness evaluation on the same set

of fuzzy instances. It first reports, for each test instance, the necessary

βN robustness of the best solution in 30 runs, by showing the β1
N [best] and

β2
N [best] degrees computed for our two objectives Dmin and Tmin respectively,

in addition to the min value between them min(β1
N , β

2
N)[best]. The next two

columns correspond each to the min βN values obtained on that instance

for the average and worst solutions. Finally, the last column presents the

robustness degree of simulated proportion n.

As we can observe, the βN degrees of best solutions are very similar

and greatly exceed our desired level of robustness R = 0.5. These high

results (equitably ≥ 0.7) may be explained by the fact that the robustness

is computed w.r.t the corresponding thresholds typically estimated using the

best solutions. Obviously, these latter yield good necessary robustness, such

as for the Fuzz-RC208 instance that have min(β1
N , β

2
N)[best] = 0.879. Then

observing the min of βN degrees of the average solutions, we remark that

R-SPEA2 provides better results than R-NSGAII in all cases: the min βN
values for R-SPEA2 are within the interval [0.35, 0.6], while those for R-

NSGAII are relatively less than 0.5. Thereby, even for the worst solutions,

the necessary βN robustness is always > 0 for both algorithms and so the

possible robustness βΠ is 1 for all test instances. Besides, the simulated real

robustness values n-rob are always 1 or ideally close to 1 even when βN is
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low. This means that the traveled-distance and tardiness-time values for all

simulations are below the fixed thresholds. In that sense, we may conclude

that the robustness we are looking for in our solutions is satisfiable.

Table 5.3 presents the performance assessment of our two robust algo-

rithms compared between each other and also with the previously proposed

algorithms, namely E-SPEA2 and E-NSGAII, based on both quality indica-

tors I−H and Iε+. The experimental protocol is as described in Chapter 4,

where either the results of the algorithm located at a specific row are sig-

nificantly better ≺ than those of the algorithm located at a specific column,

either they are worse � or there is no significant difference between them ≡.

The results show that R-SPEA2 and R-NSGAII outperform the algorithms E-

SPEA2 and E-NSGAII for all the instances with regard to hypervolume and

epsilon indicators. This leads us to conclude that thanks to the robustness

improvement, the new algorithms provide more competitive and better solu-

tions when compared to our previous algorithms, and obviously to their crisp

versions. In addition, we remark that R-NSGAII is always outperformed by

R-SPEA2 for all cases. The only exception is for the instances Fuzz-RC204

and Fuzz-R210 where there is no difference between both algorithms.
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Table 5.1 – Results on fuzzy Solomon’s instances

Instances Algorithms Best (Dmin, Tmin) D∗ T ∗ E[Avg] E[Worst] T(s)

Fuzz-C102 R-SPEA2 [2129 2413 2507] [262635 284312 294875] 2483.50 292234.25 [2482 287963] [2576 299843] 5.56

R-NSGAII [2205 2389 2607] [281441 292133 306015] 2552.50 302544.50 [2497 299203] [2672 302310] 6.80

Fuzz-R102 R-SPEA2 [2880 3156 3430] [182149 209616 210160] 3361.50 210024.00 [3198 212882] [3318 219764] 6.63

R-NSGAII [3069 3337 3531] [211509 236599 238249] 3482.50 237836.50 [3389 237093] [3512 240121] 6.92

Fuzz-RC102 R-SPEA2 [3025 3427 3562] [202639 216923 220078] 3528.25 219289.25 [3471 219410] [3534 224121] 9.05

R-NSGAII [3325 3628 3784] [241511 245359 264805] 3745.00 259943.50 [3599 249985] [3647 260012] 8.25

Fuzz-C108 R-SPEA2 [2207 2515 2841] [261220 280740 291204] 2759.50 288588.00 [2587 284867] [2719 291631] 7.27

R-NSGAII [2289 2647 2897] [288421 305147 313595] 2834.50 311483.00 [2652 303797] [2842 312340] 7.29

Fuzz-R108 R-SPEA2 [2252 2351 2447] [136902 146717 152084] 2423.00 150742.25 [2355 149655] [2498 152416] 7.94

R-NSGAII [2308 2401 2597] [157788 181982 183792] 2548.00 183339.50 [2466 178643] [2576 184921] 8.03

Fuzz-RC108 R-SPEA2 [2786 3043 3103] [169400 199616 200720] 3088.00 200444.00 [3098 198231] [3154 212431] 6.73

R-NSGAII [2788 3156 3304] [182149 202546 210160] 3267.00 208256.50 [3197 200350] [3208 219918] 6.82

Fuzz-C204 R-SPEA2 [2053 2174 2410] [246105 266436 266773] 2351.00 266688.75 [2254 267413] [2420 276191] 7.17

R-NSGAII [2246 2298 2718] [274781 293399 296129] 2613.00 295446.50 [2411 298472] [2679 305359] 7.43

Fuzz-R204 R-SPEA2 [2234 2436 2641] [96838 115068 120569] 2589.75 119193.75 [2475 118185] [2563 120171] 7.78

R-NSGAII [2477 2609 2658] [114350 120872 149695] 2645.75 142489.25 [2636 127644] [2788 143123] 8.17

Fuzz-RC204 R-SPEA2 [2070 2307 2512] [200458 221067 235948] 2460.75 232227.75 [2338 223569] [2398 231180] 9.12

R-NSGAII [2125 2312 2520] [200663 221503 235558] 2468.00 232044.25 [2376 228960] [2416 239860] 8.93

Fuzz-C207 R-SPEA2 [1972 2085 2320] [280387 302111 306841] 2261.25 305658.50 [2186 302678] [2263 308726] 6.63

R-NSGAII [2079 2093 2522] [300816 304768 335222] 2414.75 327608.50 [2213 319331] [2397 329312] 7.04

Fuzz-R207 R-SPEA2 [2478 2567 2780] [140607 143727 159027] 2726.75 155202.00 [2670 149772] [2797 151245] 8.21

R-NSGAII [2477 2609 2758] [152531 161085 169531] 2720.75 167419.50 [2683 169850] [2731 179121] 8.54

Fuzz-RC207 R-SPEA2 [2496 2963 3075] [172808 198734 196968] 3047.00 197409.50 [2899 201811] [3047 219425] 9.97

R-NSGAII [2555 2986 3269] [197901 219777 224925] 3198.25 223638.00 [3040 229505] [3194 230085] 9.19

Fuzz-R210 R-SPEA2 [2471 2648 2908] [139557 150051 165074] 2843.00 161318.25 [2698 158311] [2787 170012] 9.15

R-NSGAII [2461 2648 2912] [145001 150526 167455] 2846.00 163222.75 [2725 157733] [2876 171290] 9.47

Fuzz-RC208 R-SPEA2 [2167 2422 2569] [300746 315986 353844] 2552.50 344379.50 [2472 326410] [2559 346941] 8.75

R-NSGAII [2361 2607 2707] [356369 357209 370401] 2682.00 367103.00 [2597 369702] [2607 381056] 8.92
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Table 5.2 – Robustness evaluation of R-SPEA2 and R-NSGAII

Instances Algorithms β1
N [best] β2

N [best] min(β1
N , β

2
N )[best] min(β1

N , β
2
N )[Avg] min(β1

N , β
2
N )[Worst] n−rob

Fuzz-C102 R-SPEA2 0.750 0.750 0.750 0,548 0.339 0.986

R-NSGAII 0.749 0.750 0.749 0.499 0.291 0.955

Fuzz-R102 R-SPEA2 0.751 0.752 0.751 0.443 0.254 0.989

R-NSGAII 0.750 0.750 0.750 0.403 0.185 0.941

Fuzz-RC102 R-SPEA2 0.754 0.750 0.750 0.389 0.217 0.964

R-NSGAII 0.750 0.750 0.750 0.358 0.187 0.931

Fuzz-C108 R-SPEA2 0.750 0.754 0.750 0.374 0.333 0.975

R-NSGAII 0.748 0.749 0.748 0.305 0.256 0.945

Fuzz-R108 R-SPEA2 0.750 0.750 0.750 0.423 0.276 0.898

R-NSGAII 0.741 0.744 0.741 0.375 0.255 0.886

Fuzz-RC108 R-SPEA2 0.750 0.750 0.750 0.499 0.326 0.951

R-NSGAII 0.750 0.749 0.749 0.428 0.304 0.902

Fuzz-C204 R-SPEA2 0.750 0.750 0.750 0.370 0.213 0.979

R-NSGAII 0.746 0.750 0.746 0.364 0.189 0.945

Fuzz-R204 R-SPEA2 0.748 0.749 0.748 0.435 0.285 0.889

R-NSGAII 0.743 0.745 0.743 0.356 0.154 0.874

Fuzz-RC204 R-SPEA2 0.813 0.754 0.754 0.491 0.292 0.923

R-NSGAII 0.754 0.746 0.746 0.424 0.170 0.904

Fuzz-C207 R-SPEA2 0.750 0.750 0.750 0.571 0.362 0.897

R-NSGAII 0.749 0.750 0.749 0.497 0.227 0.883

Fuzz-R207 R-SPEA2 0.750 0.750 0.750 0.470 0.233 0.878

R-NSGAII 0.746 0.748 0.746 0.368 0.183 0.869

Fuzz-RC207 R-SPEA2 0.750 0.755 0.750 0.416 0.248 0.953

R-NSGAII 0.750 0.753 0.750 0.365 0.195 0.947

Fuzz-R210 R-SPEA2 0.753 0.749 0.749 0.531 0.257 0.896

R-NSGAII 0.750 0.745 0.745 0.448 0.169 0.884

Fuzz-RC208 R-SPEA2 0.887 0.879 0.879 0.547 0.318 0.996

R-NSGAII 0.750 0.755 0.750 0.449 0.274 0.994
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Table 5.3 – Algorithms performance comparison

I−
H Iε+

Instances Algorithms E-SPEA2 R-SPEA2 E-NSGAII R-NSGAII E-SPEA2 R-SPEA2 E-NSGAII R-NSGAII

Fuzz-C102 R-SPEA2 ≺ - ≺ ≡ ≺ - ≺ ≺
R-NSGAII ≺ ≡ ≺ - ≺ � ≺ -

Fuzz-R102 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-RC102 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-C108 R-SPEA2 ≺ - ≺ ≡ ≺ - ≺ ≺
R-NSGAII ≺ ≡ ≺ - ≺ � ≺ -

Fuzz-R108 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-RC108 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-C204 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-R204 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-RC204 R-SPEA2 ≺ - ≺ ≡ ≺ - ≺ ≡
R-NSGAII ≺ ≡ ≺ - ≺ ≡ ≺ -

Fuzz-C207 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-R207 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-RC207 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -

Fuzz-R210 R-SPEA2 ≺ - ≺ ≡ ≺ - ≺ ≡
R-NSGAII ≺ ≡ ≺ - ≺ ≡ ≺ -

Fuzz-RC208 R-SPEA2 ≺ - ≺ ≺ ≺ - ≺ ≺
R-NSGAII ≺ � ≺ - ≺ � ≺ -
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Chapter 5 : Fuzzy Multi-objective Robustness-based Approach

5.6 Conclusion

In this chapter, we have pointed out the difficulties faced when ignoring

robustness in our previous achievements and then focused on defining new

robustness concepts in a fuzzy multi-objective context. In addition, we have

addressed the algorithmic issues in order to incorporate the robustness into

the search process of our previous algorithms. The proposed robustness ap-

proach have been applied on the same VRP problem as in chapter 4. The

experimental study carried out on a set of fuzzy sampled instances shows

that we have successfully get the robust optimal solutions of the problem.
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Conclusion and future work

Amongst the most challenging scientific problems, multi-objective opti-

mization under uncertainty is today present as an active research area re-

flecting reality. Indeed, real-life problems are multi-objective by nature as

they usually consider several conflicting objectives simultaneously. Besides,

they are often subject to different types of uncertainty whose ignorance may

cause misleading results.

However, from our deep survey of existing works relative to this area,

we have identified that almost all of them have been limited to reduce such

an uncertain multi-objective problem into one or more mono-objective sub-

problems or even to transform it into a deterministic equivalent while neglect-

ing the uncertainty propagation to the model parameters and/or outputs.

Hence, there is a significant need for new concepts, techniques and methods

capable to handle the problem as-is without any transformation.

Through this Ph.D. thesis, we have contributed to the design of a generic

framework for combinatorial multi-objective problems with fuzzy data, es-

pecially expressed by means of triangular fuzzy numbers and propagated to

the objective functions. Our major contributions are three-fold:

The first one focuses primarily on the limitation of classical multi-objective

concepts in dealing with fuzziness. In fact, we have proposed a novel Pareto

approach for ranking the fuzzy outcomes generated in our case. On the one

hand, this approach offers the possibility to rank a pair of triangular fuzzy

numbers in a mono-objective context. On the other hand, it provides a

Pareto ranking between two fuzzy solutions represented by vectors of trian-

gular fuzzy numbers.

As second contribution, we have introduced a fuzzy extension of two well-
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known Pareto-based evolutionary algorithms. In particular, we have first

incorporated our Pareto dominance relations into their fitness assignment

strategy. Thereafter, we have extended the specific diversity preservation

and elitism techniques of each algorithm in order to enable them working

in a fuzzy search space. The main advantage of our proposed algorithms is

the flexibility of their application to any multi-objective problem with fuzzy-

valued objectives. In our study, we have applied them to resolve a bi-objective

vehicle routing problem with fuzzy demands. The experimental results show

that our algorithms are efficient in terms of front approximation quality and

outperform their classical crisp versions.

The third contribution concerns the definition of a new robustness ap-

proach in fuzzy multi-objective setting. The aim of our proposal was to

find robust optimal solutions taking into account a given performance level.

To this end, we have introduced new robustness concepts with an evalua-

tion procedure based on the attitude of decision maker. Subsequently, we

have improved our fuzzy Pareto dominance relations by incorporating a ro-

bustness criterion. All these refinements have been next integrated into the

previous algorithms to lead them achieving robust outcomes. Our approach

have been illustrated on the vehicle routing problem and evaluated using

some experimental tests. Finally, we have obtained encouraging results in

terms of solutions quality and efficiency.

These original contributions have managed to combine four important re-

search fields, namely the field of multi-objective optimization, the fuzzy logic

domain, the evolutionary computation domain and the field of robustness.

Thereby due to the novelty of our proposals in these fields, there are still

many open questions and perspectives to investigate.

As short-and-mean term perspectives, we intend to improve what has

been already achieved in this thesis. Indeed, our proposed framework has

proved to be successful and adaptable to a variety of fuzzy multi-objective

problems. In that sense, it could be further enhanced for new issues such as:

- The refinement of our proposed Pareto approach and algorithms to

consider other popular fuzzy shapes like trapezoidal fuzzy numbers.

- The fuzzy extension of commonly used multi-objective quality indica-

tors like the hypervolume metric. This allows us not only evaluating

the generated solutions without defuzzifying them, but also provides

an accurate and better performance assessment.
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- The comparison of our framework with existing works in order to

ensure a complete experimental evaluation.

As long term perspectives, we attempt to apply our framework on more

complex combinatorial optimization problems. For instance, we could con-

sider a multi-objective vehicle routing problem containing more than one

fuzzy inputs data, like fuzziness in both customer demands and number of

vehicles. It would also be interesting to investigate a real-world applica-

tion for example in the domain of Electric Vehicle Routing Problems with

Recharging Stations.
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Jaszkiewicz, A. (2002). Genetic local search for multi-objective combinatorial

optimization. European Journal of Operational Research, 137 (1), 50-

71.

Jin, Y., & Sendhoff, B. (2003). Trade-off between performance and ro-

bustness: an evolutionary multiobjective approach. In International

Conference on Evolutionary Multi-Criterion Optimization (EMO’03)

(pp. 237–251).

Jozefowiez, N., Semet, F., & Talbi, E.-G. (2008). Multi-objective vehicle

routing problems. European Journal of Operational Research, 189 (2),

293-309.

Kao, G. K., & Jacobson, S. H. (2008). Finding preferred subsets of

pareto optimal solutions. Computational optimization and applications,

Springer , 40 (1), 73-95.

Kasperski, A., & Kulej, M. (2009). Choosing robust solutions in discrete op-

timization problems with fuzzy costs. Fuzzy Sets and Systems , 160 (5),

667-682.

Kaufmann, A., & Gupta, M. M. (1988). Fuzzy mathematical models in

engineering and management science (Elsevier Science Inc., Ed.).

Kim, S., & hyun Ryu, J. (2011). The sample average approximation method

for multi-objective stochastic optimization. In Proceedings of the Win-

134



Bibliography

ter Simulation Conference (WSC) (p. 4021-4032).

Klein, G., Moskowitz, H., & Ravindran, A. (1990). Interactive multiobjec-

tive optimization under uncertainty. Management Science, INFORMS ,

36 (1), 58-75.

Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 4). Prentice

hall New Jersey.

Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated

sets. In Proceedings of the IEEE Congress on Evolutionary Computa-

tion CEC’02 (Vol. 1, p. 711-716).

Knowles, J., Thiele, L., & Zitzler, E. (2006). A tutorial on the performance

assessment of stochastic multiobjective optimizers. Tik report , 214 ,

327-332.

Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applica-

tions. luwer Academic Press, Boston.

Kovacs, A. A., Golden, B. L., et al. (2014). Vehicle routing problems in

which consistency considerations are important: A survey. Networks,

Wiley Online Library , 64 (3), 192–213.

Lacomme, P., Prins, C., & Sevaux, M. (2006). A genetic algorithm for a

bi-objective capacitated arc routing problem. Computers & Operations

Research, 33 (12), 3473-3493.

Li, F., Wu, T., Hu, M., & Dong, J. (2010). An accurate penalty-based

approach for reliability-based design optimization. Research in Engi-

neering Design, 21 (2), 87-98.

Li, M., Azarm, S., & Aute, V. (2005). A multi-objective genetic algorithm for

robust design optimization. Proceedings of the 7th annual conference

on Genetic and evolutionary computation, 771–778.

Li, P., Arellano-Garcia, H., & Wozny, G. (2008). Chance constrained pro-

gramming approach to process optimization under uncertainty. Com-

puters & Chemical Engineering , 32 (1), 25-45.

Liefooghe, A. (2009). Methodes pour l’optimisation multiobjectif: Approche

cooperative, prise en compte de l’incertitude et application logistique
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Palacios, J. J., González-Rodŕıguez, I., Vela, C. R., & Peinador, J. P. (2014).

β-robust solutions for the fuzzy open shop scheduling. In International

Conference on Information Processing and Management of Uncertainty

(IPMU’14) (Vol. 442, pp. 447–456).
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