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Abstract
Nowadays, Worldline, a major IT company, develops application that are dealing
with an increasing amount of critical data with a source code is more and more
complex. To the stay in the race against its competitors, Worldline has to increase
the quality of its projects. One transversal team of the company has for main mis-
sion to enhance project quality. By joining this team, we performed an audit of
several projects of the company to identify how to avoid project failure. Relying
on project metadata analysis, interviews, survey, and literature study, this audit
drew no final conclusion. However, it highlighted a need to enhance testing usage.

To test every piece of code is compulsory to avoid project failure. In industry
and more specifically in Worldline, automation of tests has begun to ensure the
proper behavior of their applications. But, ensuring the execution of all tests after
a change can be a costly operation requiring several hours. However, in a daily
development process, developers can not run all the tests after a change to check
the impact of their modifications. Feedback on the changed code is delayed and
developer have to spent time to discover the potential bugs. A late feedback can
potentially lead to the failure of a project.

The solution generally proposed in literature consists in reducing the number
of tests to run by selecting only the ones related to the last changes made by the
developer. The approach selects a suitable and small set of tests to detect potential
regression in the application behavior.

Test selection approaches have their own advantages and drawbacks. These ap-
proaches need to be studied in the context of Worldline and consequently adapted
to suit developers habits. Before integrating such an adapted test selection ap-
proach, a study of the testing behavior of the developers have been done to get
their current test selection usage. This study will monitor all the tests launched by
the developers during their everyday development tasks.

Based on the study of the Worldline environment, we developed a tool for the
developers aiming to perform test selection. It is adapted to the developers habits
and is directly usable by them. The goal is also to study the impact of this tool
on their behavior. We hope that the test selection approach that is packaged in a
tool adapted to the Worldline developers will bring a change in their development
process.

Keywords: Software Maintenance, Testing, Automated Test Selection, Indus-
trial
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Résumé
De nos jours, Worldline, une importante société d’informatique, développe des
applications qui traitent un nombre croissant de données critiques avec un code
source de plus en plus complexe. Pour rester dans la course contre ses concurrents,
Worldline doit améliorer la qualité de ses projets. Une équipe transversale de la
société a pour mission principale d’améliorer la qualité des projets. En rejoignant
cette équipe, nous avons réalisé un audit sur plusieurs projets de l’entreprise afin
d’identifier comment éviter l’échec des projets. En se basant sur une analyse de
métadonnées, des interviews, des sondages, et une étude de la littérature, cet audit
n’a finalement tiré aucune conclusion. Cependant, il a mis en lumière le besoin
d’améliorer l’utilisation des tests.

Effectivement, tester chaque partie du code est requis pour éviter l’échec du
projet. Dans l’industrie, et plus spécifiquement à Worldline, l’automatisation des
tests a commencé dans le but de maîtriser le comportement des applications. Mais,
s’assurer de l’exécution de tous les tests après un changement peut être une opéra-
tion coûteuse requérant plusieurs heures. Le retour sur le code changé est retardé
et le développeur perd du temps pour découvrir les potentiels bogues. Ainsi, un
retour tardif peut potentiellement amener le projet à l’échec.

La solution généralement proposée dans la littérature consiste à réduire le nom-
bre de tests à lancer en sélectionnant seulement ceux relatifs aux derniers change-
ments effectués par le développeur. L’approche sélectionne un jeu de tests ré-
duit et approprié qui détectera de potentielles régressions dans le comportement
de l’application.

Chaque approche de sélection de tests a ses propres avantages et inconvénients.
Elles ont donc besoin d’être étudiées dans le contexte de Worldline et adaptées
en conséquence pour convenir aux habitudes des développeurs. Avant d’intégrer
une telle approche, une étude a été faite pour connaître les habitudes actuelles des
développeurs vis-à-vis de la sélection de tests. Cette étude surveille tous les tests
lancés par les développeurs pendant leurs tâches quotidiennes de développement.

Grâce à l’étude de l’environnement de Worldline, nous avons développé un
outil pour les développeurs visant à effectuer la sélection des tests. Il est adapté
aux habitudes des développeurs et leur est directement utilisable. Le but est aussi
d’étudier l’impact de cet outil sur leur comportement. Nous espérons que cette ap-
proche de sélection de tests ainsi contenue dans un outil adapté aux développeurs
de Worldline, apportera des changements dans leur processus de développement.

Mots-clés: Maintenance Logicielle, Tests, Sélection Automatisée de Tests, In-
dustrie





Contents

1 Introduction 1
1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Our Approach in a Nutshell . . . . . . . . . . . . . . . . . . . . . 3
4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5 Structure of the Dissertation . . . . . . . . . . . . . . . . . . . . 4
6 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Motivation 7
1 Predicting the Health of a Project . . . . . . . . . . . . . . . . . . 7

1.1 Systematic Literature Review . . . . . . . . . . . . . . . 8
1.2 Data mining . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Developers Insight on Project Quality . . . . . . . . . . . . . . . 22
2.1 Survey Description . . . . . . . . . . . . . . . . . . . . . 22
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 State of the Art 31
1 Test Selection Approaches . . . . . . . . . . . . . . . . . . . . . 31

1.1 Control Flow Graph Approaches . . . . . . . . . . . . . . 32
1.2 Dynamic versus Static: Pros and Cons . . . . . . . . . . . 33
1.3 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . 34
1.4 Test Selection Approach . . . . . . . . . . . . . . . . . . 35

2 Tooling for Test Selection . . . . . . . . . . . . . . . . . . . . . . 36
2.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . 37
2.2 Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Testing Habits of Developers . . . . . . . . . . . . . . . . . . . . 39
3.1 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . 39
3.2 Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Comparison of Approaches to Select Tests from Changes 45
1 Taxonomy of Issues . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.1 Proposed Classification of Issues . . . . . . . . . . . . . . 46
1.2 Third-Party Breaks . . . . . . . . . . . . . . . . . . . . . 47



viii Contents

1.3 Multi-program Breaks . . . . . . . . . . . . . . . . . . . 49
1.4 Dynamic Breaks . . . . . . . . . . . . . . . . . . . . . . 50
1.5 Polymorphism Breaks . . . . . . . . . . . . . . . . . . . 52

2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1 Case Study Protocol . . . . . . . . . . . . . . . . . . . . 53
2.2 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 Dynamic and Static Approaches Tooling . . . . . . . . . 58
2.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 60
3.1 RQ1 – Third-Party Breaks Impact . . . . . . . . . . . . . 60
3.2 RQ2 – Dynamic Breaks Impact . . . . . . . . . . . . . . 60
3.3 RQ3 – Polymorphism Breaks Impact . . . . . . . . . . . 62
3.4 RQ4 – Impact of Combining Solutions . . . . . . . . . . 62
3.5 RQ5 – Weighting of Results with the Number of Commits 64
3.6 RQ6 – Aggregation of the Results by Commit . . . . . . . 66
3.7 Overall Conclusions . . . . . . . . . . . . . . . . . . . . 68

4 Evaluation of Validity . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . 69
4.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . 70
4.3 External Validity . . . . . . . . . . . . . . . . . . . . . . 71

5 Comparison to Other Works . . . . . . . . . . . . . . . . . . . . 71
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Study of Developers’ testing behavior in a Company 75
1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 75

1.1 Research questions . . . . . . . . . . . . . . . . . . . . . 75
1.2 Experimental protocol . . . . . . . . . . . . . . . . . . . 76
1.3 Filtering and Massaging Data . . . . . . . . . . . . . . . 77
1.4 Automatic Test Selection . . . . . . . . . . . . . . . . . . 80
1.5 Interviews with the Participants . . . . . . . . . . . . . . 80

2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 82
2.1 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . 82
2.2 RQ1: How and why developers run tests? . . . . . . . . . 84
2.3 RQ2: How do developers react to test runs? . . . . . . . . 88
2.4 RQ3: How and why developers perform test selection? . . 89

3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . 91
3.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . 92
3.3 External Validity . . . . . . . . . . . . . . . . . . . . . . 92

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



Contents ix

6 Impact of the Usage of the Test Selection Tool 95
1 Test Selection Plugin . . . . . . . . . . . . . . . . . . . . . . . . 95

1.1 General Overview . . . . . . . . . . . . . . . . . . . . . 96
1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 98

2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 100
2.2 Interviews Description . . . . . . . . . . . . . . . . . . . 102

3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 104
3.1 Global Results . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 Individual Results . . . . . . . . . . . . . . . . . . . . . 106

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusion & Perspectives 109
1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.1 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.2 Academic . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A Appendix 115
1 Analysis of Project Data . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 117





List of Figures

2.1 Projection of the project metrics on the first and the second princi-
pal components . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Correlation matrix between each metric of the sample . . . . . . . 17
2.3 Impact of each metric on the sample . . . . . . . . . . . . . . . . 19
2.4 Question 1: On a daily basis, on which criteria do you base yourself

to assess the health of your project? . . . . . . . . . . . . . . . . 24
2.5 Question 2: For you, what items are contributing to project success? 25
2.6 Question 3: Which actions should be taken to improve project health? 25
2.7 Question 4: What are the items that are contributing to project failure? 27
2.8 Question 5: In order to improve project health, could a tool help

you to: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Question 8: Which items block you from doing automated tests? . 29
2.10 Question 9: Regarding tests and software quality, which items can

help you in the improvement of your project? . . . . . . . . . . . 30

3.1 Test Selection Simple Case . . . . . . . . . . . . . . . . . . . . . 33

4.1 Libraries Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Anonymous Classes Case . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Delayed Execution Case . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Annotation Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 External Test Case . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Dynamic Execution Case . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Attribute Direct Access . . . . . . . . . . . . . . . . . . . . . . . 52
4.8 Tests Selection Approach Through Interfaces . . . . . . . . . . . 53
4.9 Boxplot of the distribution of the Moose w/ att. & anon. & polym.

& delayed exec. study considering all Java methods individually.
The diamonds represent the mean value of the metric (presented in
Table 4.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.10 Boxplot of the distribution of the Moose w/ att. & anon. & polym.
& delayed exec. study considering a weighting of Java methods
with the number of commits they appear in . . . . . . . . . . . . 64

4.11 Boxplot of the distribution of the Moose w/ att. & anon. & polym.
& delayed exec. study considering Java methods grouped in commits 68



xii List of Figures

5.1 A test/code session with three agglomerated test sessions (AT1,
AT2, AT3) themselves comprising several test sessions (T1, . . . ,
T7), themselves comprising several tests (t1, . . . , t7). C1 and C2
are commits, C1 being the direct ancestor of C2. All events after
C1 occur on the same project by the same developer. . . . . . . . 78

5.2 Relation between the number of automatic and manual test selec-
tion (left Gligoric et al. [2014], right our case study) . . . . . . . . 90

6.1 Test Selection Tool Workflow . . . . . . . . . . . . . . . . . . . . 97
6.2 Display Window for Selected Tests in Eclipse . . . . . . . . . . . 98
6.3 Test Selection Tool Workflow . . . . . . . . . . . . . . . . . . . . 99

A.1 Correlation matrix between each metric of the sample . . . . . . . 116



List of Tables

2.1 Description of the Systematic Literature Review . . . . . . . . . . 9
2.2 Description of the Interviewees . . . . . . . . . . . . . . . . . . . 13
2.3 Statistical summary of the metrics used for the analysis . . . . . . 16

3.1 Approaches Criteria Matrix . . . . . . . . . . . . . . . . . . . . . 36
3.2 Tools Criteria Matrix . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Criteria Matrix for Study of Developer Test Behavior . . . . . . . 40

4.1 Global metrics of projects P1, P2 and P3 . . . . . . . . . . . . . . 57
4.2 Comparison of the static approaches to the dynamic one for test

case selection considering all Java methods individually . . . . . . 61
4.3 Comparison of the static approaches to the dynamic one with a

weighting of Java methods with the number of commits they appear in 65
4.4 Comparison of the static approaches to the dynamic one to test case

selection, considering Java methods grouped in commits . . . . . 67
4.5 Comparison of the static approaches to the dynamic one to select

the tests after a method change . . . . . . . . . . . . . . . . . . . 72

5.1 Descriptive Statistics per Participant . . . . . . . . . . . . . . . . 81
5.2 Descriptive statistics on the three case studies . . . . . . . . . . . 83
5.3 Descriptive statistics per developer . . . . . . . . . . . . . . . . . 83
5.4 Comparison of our results with those of the Worldline Case Study.

(When computing number of tests per session, we give results for
test sessions and agglomerated sessions to match Beller et al.’s case
study). Histograms are in log scale . . . . . . . . . . . . . . . . . 85

5.5 Test Duration and the number of execution of each test . . . . . . 86

6.1 Descriptive Data of the Participants . . . . . . . . . . . . . . . . 101
6.2 Testing Behavior Description for each Participant . . . . . . . . . 101





CHAPTER 1

Introduction

Contents
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1 Context

Competition between IT companies is tough. Each company wants to attract client
projects, implement, and maintain them. But, this has a cost: to ensure the suc-
cess of a project, the employees have to ensure that the client has the requested
application in time, within budget, and with all the desired features implemented.
Nowadays, applications of Worldline, a major IT company, are dealing with an in-
creasing amount of critical data, and their source code is more and more complex.
To stay in the race, the company has to reinvent itself continually.

One transversal team of the company has for mission to provide tools, expertise
and support to the development teams. The goal of this team is to ease the day to
day work of developers in particular, and enhance project quality in general. By
joining this team, we performed an audit of several projects of the company to try to
identify how to avoid project failure. This audit, described in the first chapter of this
thesis, relies on project metadata analysis, interviews, survey, and literature study.
The root causes of project failure identified mainly point the lack of communication
between the client and the project team. However, as a byproduct, the audit also
highlighted a need to enhance testing practice.

To avoid failure, testing every piece of code is compulsory. But, for a long
time, applications had to be tested manually: no support was given to the devel-
opers to test complex application automatically. Despite the fact that this practice
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still exists, developers began, in industry Bertolino [2007], and more specifically
at Worldline, to automate tests to ensure the proper behavior of their applications.
But, at Worldline, these tests take too much time to be executed frequently. Having
yet no knowledge on how testing is practiced in the company, we hypothesized that
this execution often happens only at night thanks to continuous integration tool-
ing. Thus, tests do not provide immediate feedback; they fail in one of their main
missions. To convince the transversal team of imposing a change in development
practices of thousands of developers, we needed hard data on the pros and cons of
the impact of launching tests sooner to give developers faster feedback.

2 Problem

At Worldline, ensuring the execution of all tests after a change can be a costly oper-
ation requiring several hours. However, in a daily development process, developers
can not run all the tests after a change to check the impact of their modifications.
This operation may require installing, configuring and updating databases or oth-
ers environments as well as testing abnormal running conditions such as timeout
on server connection. They do not have time to do that due to stress and deadlines
in the project. Consequently, we observed that developers very often skip tests
during the day and run them only at night thanks to continuous integration servers.
But, that is not a viable solution. Feedback on the changed code should be fast to
help identify the potential bugs more quickly. Delayed feedback harms software
development and can potentially lead to the failure of a project.

In this manuscript, we focus on two kinds of automated tests: customer tests
and developer tests (based on the test taxonomy of Meszaros [2007]).

• “A customer test verifies the behavior of a slice of the visible functionality of
the overall system. The system under test may consist of the entire system or
a fully functional top-to-bottom slice of the system”.

• “An unit test is a test that verifies some small parts of the overall system.
What turns a test into a unit test is that the system under test is a very small
subset of the overall system and may be unrecognizable to someone who is
not involved in building the software. In contrast to a customer test, which is
derived almost entirely from the requirements and which should be verifiable
by the customer.”

These two kinds of tests can be found at Worldline. However, in case of time
pressure, the customer tests (checking customer requirements) take priority and the
unit tests are left apart. To avoid this, some best practices are defined at Worldline.
They state that the developers should:

• Cover at least 80% of source code with automated tests.
• Use Continuous Integration to compile and test their application.
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• Follow a “git workflow”, i.e., use branches and pull requests to integrate their
features.

However, a great deal of freedom is also given to the developers and project leaders
to choose their own technology stack, development technique, strategy, etc. Thus
for example, agile methods or Test Driven Development are progressively used
inside the company but remain marginal at the moment of this writing. Worldline
being a huge company, no deep analysis has been performed to identify the projects
following these best practices or not. In our study of different projects, we found
that they were often laid aside.

A solution generally proposed in literature to get faster feedback on the changed
code consists in reducing the number of tests to run by selecting only the ones
related to the last changes made by the developer. The approach selects a suitable
and small set of tests to detect potential regression in the application behavior. We
expect that such a test selection approach could change the habits of the Worldline
developers. Two consequences of this change are foreseen: first, they will not
relaunch all the tests of the application each time; second, they will be encouraged
to run tests more often.

Among test selection approaches, two suit our needs: static and dynamic. The
static approach creates a model of the source code and explores it to find links
between changed methods and tests. The dynamic approach records invocations of
methods during the execution of test scenarios. These two approaches have their
own advantages and drawbacks that need to be studied in the context of Worldline
and consequently adapted. Moreover, to convince the company of the impact of
such approaches on the work of its developers, we need, first, to study their habits
before using it and, second, to compare them with their new practices, i.e., adopting
an adapted test selection approach.

However, to be relevant, this study has to be performed on as many developers
as possible, for the longest period possible,. . . Also, these studies have to be per-
formed without extra cost for the developers, i.e., included in their development
environment and not delay any of their activities.

3 Our Approach in a Nutshell

In our goal to change developers habits by introducing test selection, our first ac-
tion is to shape a test selection approach adapted to the Worldline environment.
Worldline is the European leader in the payments and transactional services indus-
try. Its applications have to take care of a substantial amount of financial transac-
tions. A plethora of libraries and frameworks are used. It can impede some test
selection approaches to operate. Furthermore, the Java programming language is
mainly used. Despite this language being statically typed, thus facilitating a static
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approach, some particularities of the language like inheritance or reflexivity, could
be a problem for test selection (see Chapter 4). So, these specificities have to be
considered to propose an adapted test selection solution.

Another constraint, due to the industrial context of this study, is that our exper-
iments should be perceived by developers as being transparent, and certainly not
as disturbing their usual work. A study of the testing behavior of the developers
is mandatory to get their current test selection usage before integrating such a test
selection approach. This study will monitor all the tests launched by the developers
during their everyday development tasks.

Based on the study of the Worldline environment from a technical point of view,
we will develop an adapted tool. It will take into account the identified issues and
will be directly usable by the developers. The underlying goal is also to study the
impact of this tool on their behavior. We hope that the test selection approach that
is packaged in a tool adapted to the Worldline developers will bring a change in
their development process.

So, the research question of the thesis is: Can we improve the testing habits of
Worldline developers by giving them faster feedback on their source code modifi-
cations?

The hidden assumption behind this research question is that by improving test-
ing habits, we will ultimately improve the chances of success of the projects. How-
ever, this assumption will not be formally tested because of time constraints.

4 Contributions
The main contributions of this thesis are:

• An audit of the developers awareness about project success and failure and
root causes of software failure at Worldline.

• A classification of problems that may arise when trying to identify the tests
that cover a method. We give concrete examples of these problems and list
some possible solutions.

• A field study on how Worldline developers use tests in their daily practice,
whether they use tests selection and why they do. Results are reinforced by
interviews with developers involved in the study.

• A study of the usage of our test selection tool on the developers.

5 Structure of the Dissertation
The structure of the dissertation is:

• Chapter 2 describes the motivation of the dissertation: it studies the ability
of metrics to predict project success and gather the insights of the developers
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about project health.
• Chapter 3 gives the state of the art about test selection approaches and the

study of developers habits.
• Chapter 4 presents issues of the test selection approaches, the methodolo-

gies to resolve them, and the impact of their resolution on the test selection
approaches.

• Chapter 5 describes the experiment on testing habits of Worldline’s develop-
ers and gives results on their usage.

• Chapter 6 evaluates the usage of a test selection tool on the Worldline devel-
opers through data analysis and interviews.

• Chapter 7 concludes and gives perspectives for future works.
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CHAPTER 2

Motivation

Contents
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2 Developers Insight on Project Quality . . . . . . . . . . . . . . . 22

Despite testing being the main topic of my thesis, it was not the first. We began
to focus on using big data to predict the failure of Worldline development projects.

1 Predicting the Health of a Project

Project teams create a lot of data: process metrics, bug reports, source code, con-
tinuous integration artefacts, production metrics, social network communications,
etc. On the other hand, big data approaches are becoming predominant in com-
panies. Worldline would like to take advantage of data science, and especially
statistics, to help them evaluate the health of their projects. To monitor projects
health pro-actively, they would like to mine past projects data, e.g., metrics on
software, bugs, budget, production issues, performance, team communications,. . . ,
and provide alerts to take action on the project. The hope is that some software
metrics could be tracked to predict failure risks or confirm good health. If a factor
of success is found, managers could anticipate projects failures and take early ac-
tions to help or to monitor closely the project, allowing one to act in a preventive
mode rather than a corrective one. Finding the right metrics in the whole data set
is challenging and applying it on a given project ahead of time even more.

For IT projects management, two main approaches are used at Worldline: the
Agile and the Waterfall processes. Agile development is still marginal: little data
is available. A Waterfall process is more frequently used in Worldline, this will be
the case for all the projects analyzed in this chapter. When the waterfall process is
used, Worldline assesses project health according to three items: resources, sched-
ule, and scope. Resources, are measured in man-days. They are provisioned at
the beginning of the project. A project that does not respect the allocated resources
has a decreasing health and is said to be in slippage. The slippage is the number
of man-days a project uses in excess to the initially provisioned resources. The
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schedule is defined with the client as a series of milestones. An example of mile-
stone can be a release of the application to the client. These milestones should be
respected to avoid a decrease of the project health. The scope of the application is
defined at the beginning of the project with the client. If a project does not deliver
the required features at a given milestone, project health decreases too. Thereby,
if the project respects the initial provisioned resources and schedule, and, provides
the features required by the client, then the project is in good health. Otherwise, if
one of the three items is not respected, the project is in bad health. But the health of
the project is only an assessment during the project without possibility to anticipate
it.

To find relationship inside the available data, we reviewed literature on project
success predicted by data mining. Second, we experimented with more than 10
project metrics on 50 real world, closed-source, projects of Worldline to find corre-
lation. Third, we realized interviews with project managers to find indicators that
could be linked to project health.

1.1 Systematic Literature Review

1.1.1 Methodology

To identify previous work that could have already proposed relationships between
project health and some project metrics, we reviewed the literature. As defined by
the guidelines of Keele et al. [2007], we first stated the following research question:
“What metrics could help predict the success or failure of a project?” and defined
a structure for the research questions:
Population: Projects
Intervention: Predict success or failure with metrics
Comparison: Cross projects
Outcome: Metrics used
Context: Industrial
From this structure, we defined the query to use in scientific articles databases:

“Predict AND Project AND metric AND software AND (success OR failure)”

We searched in the main data sources for our domain (software engineering):
IEEEXplore, ACM, Science Direct, Springer Link, and Wiley. For each data source,
we searched the keywords in the meta data.

The results then need to be filtered to select only the papers related to the re-
search question. We performed a three step process to select the relevant papers:
the first selection was on the title only, the second one was on abstract, and the
last one was on the full text of the article. Moreover, we included only the papers
in English and peer-reviewed, and, excluded the short papers and papers that do
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not study real projects. For one paper, we were not able to access its full text,
and discarded it from the study. Table 2.1 summarizes the count of the papers we
obtained.

Table 2.1: Description of the Systematic Literature Review

Data source Results
Selection on

Title Abstract Full Text
IEEExplore 7 3 2 0
ACM 189 52 11 4
Science Direct 128 9 4 3
Springer Link 1370 45 15 7
Wiley 2 2 2 0
Total 1696 111 34 14

For the 14 selected papers, we answered these questions:
• What is the title of the paper?
• Who are the authors?
• Is the paper a Conference or Journal paper?
• What is the kind of the project (open source, company, or students)?
• What is the company name (if applicable)?
• How many projects are implied in the study?
• What are the used techniques to predict the success or the failure of the

project?
• What are the metrics used for the prediction?
• Is a comparison made with other prediction models? Which ones?
• What is the accuracy of the approach?
• What are the results? (i.e., the metrics that predict the success or failure)
• What are the conclusions?

This helped us organize the papers and report them.

1.1.2 Results

Fitzgerald et al. [2012] studied seven open-source projects to predict project failure.
They first analyzed the discussion between project participants and extract metrics.
Then, they used them as input of classification algorithms. The authors conclude
that building early prediction model can provide a positive value to a project.

Fukushima et al. [2014] built predictive models with 11 open source projects.
They studied within project and cross project predictions thanks to 14 managerial
and related to source code metrics. They conclude that it is not because a model
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is able to strongly predict within project that it can predict well in a cross project
context.

Cai et al. [2005] classified 18 open source and student applications thanks to
source code metrics. This classification is made through summation model, product
model, Bayesian belief network among others. According to the authors, these
models are intuitive and easy to construct. However, their prediction accuracy is
not high.

Jureczko and Madeyski [2010] applied clustering and neural networks approa-
ches on 38 open source, industrial, and students projects. They used source code
metrics. The authors obtain a classification of the projects in two clusters. One
contains only proprietary projects with a heavy weight development process, a suc-
cessfully installation in the customer environment, some manual testing, and a use
of databases. The other includes proprietary and open source applications with a
use of SVN and Jira or Bugzilla, a medium size international team, an automation
of the testing process, and where databases are not used. The authors conclude that
the identified clusters are far from covering all projects. If clusters are correctly
identified, the within cluster prediction will be better than cross cluster predictions.

Turhan et al. [2013] used naive Bayes classifiers on 41 open source and in-
dustrial projects with 19 metrics related to complexity, control flow, and software
size. The authors concluded that by adding cross project prediction in their within-
project model, the results are enhanced, but lightly. The study also found that
collecting data from other projects is adding extra effort.

Ratzinger et al. [2007] used eight industrial projects with linear regression, re-
gression trees, and classifier to predict defects. They used 63 evolution metrics
related particularly to the size of the project, the team, the complexity of existing
solutions,. . . According to the authors, multiple aspects such as time constraints,
process orientation, team related and bug-fix related features play an important
role in defect prediction models. They conclude that size and complexity measures
have not a major impact on defect-proneness prediction, but people-related issues
are important.

Nagappan et al. [2006] described how they apply statistical methods to predict
bugs after delivery to the client. They mined five C++ Microsoft applications,
including Internet Explorer 6 and DirectX, then correlated 31 code metrics with
post-release project failure data. They used module metrics (number of classes or
functions), functions metrics (number of lines, parameters, called functions, calling
functions, and cyclomatic complexity,...), and class metrics (number of classes,
superclasses, subclasses, and classes coupled). By doing statistical analysis, they
found, for each project, a set of metrics related to post-release bugs. But, this set is
changing from one project to the other. As project failure has to be anticipated, the
ideal is to find a unique set of metrics suitable for any project.

Zimmermann et al. [2009] had for goal to predict class defect from both metrics
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from source code and project environment. They extracted data from 12 products:
closed-source from Microsoft projects, like DirectX, Windows Core File system
manager, SQL Server 2005 and Windows kernel, and, open-source like Apache
Tomcat, Eclipse, Firefox. Several versions of each system were used for a total of
28 datasets. On each version, 40 metrics were gathered. Concerning source code
metrics, Zimmermann et al. used variables ranging from churn (i.e., added, deleted,
and changed lines) to cyclomatic complexity. As project environments metrics,
they take for example: the domain of the application, the company developing the
project, the kind of user interface, the operating system used, the language used,
the number of developers. For each metric, they computed median, maximum and
standard deviation at project level. Their empirical study gave the following results:
on 622 cross-predictions between project tested, only 3.5% of the couples can pre-
dict each other. For instance, some models for open-source software projects (Fire-
fox, Tomcat, Eclipse,...) are strong predictors for some closed-source projects but
do not predict the other open-source projects. Some other open-source projects
cannot be predicted by any of the models in their study. On the closed-source side,
they found models for some projects such as File System that can predict some
other closed-source projects. However, they also found models for some projects
such as Internet Explorer, Windows Kernel, and DirectX that do not predict other
projects. There is no way to know in advance which project’s model can predict
the other projects.

Piggot and Amrit [2013] used open-source software to predict project success.
Within the 38 variables analyzed, numerical metrics such as the number of down-
load, of developers or posts in forum better explain success than time-invariant
metrics such as license used or the operating system supported. They succeeded to
obtain an accuracy of 40% with an exact classification.

Debari et al. [2008] concluded that success is helped when the project team
does not use new technology for a project and when the customer is well involved
in the requirement specifications.

For Verner et al. [2007], project success is linked to the proper elicitation of
the requirements and the accuracy of project cost estimation deduced from these
requirements. Success is also acquired by managing correctly the exits of project
developers and by avoiding to add new developers too late (e.g., to meet an aggres-
sive schedule).

Cerpa et al. [2016] concluded that what makes the project success is: good
working atmosphere for the developers, good communication inside the team and
with the customer, good requirements definition, and good staffing management.
The working environment has also an impact on the project success.

Wohlin and Andrews [2005] found key success drivers to identify similar projects.
The authors concluded that it is a challenge to identify similar projects to predict
success of new projects. The perception of the impact of a variable on the predic-
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tion model may change over time: the first projects considered for prediction may
have to be re-evaluated to ensure that the model keeps a good precision.

1.1.3 Summary

None of these studies is very encouraging. Some of these studies show that it is
possible to create a statistical model from one project and have good results by
applying it to another project, but they have no way to know in advance if it is
going to work.

Each study has its own model (adapted to its context) to predict the success or
the failure of the projects. And, each model relies on its own metrics set, even if
some metrics can appear in several models. So, finding a set of metrics that can be
applied to any project seems unlikely.

Development environments between companies and open-source are different.
One is driven by the money and the time, the other is more independent. Moreover,
picking the right set of metrics is a major concern. Many metrics exist around
projects and depending on the environment, they could be inadequate. We decided
to make our own experiment with the company data and metrics.

1.2 Data mining
1.2.1 Methodology

To find what data would be good candidates for our project health predictor, we
interrogated seven project leaders on how they manage projects. This was done
through unstructured interviews. Each participant is briefly described in Table 2.2
where names are fictitious. The population for the survey was Project leaders and
Quality managers of Worldline: they have a high level view on how the projects
they supervise are managed. Project leaders manage the project team and distribute
the tasks among its members; Quality managers ensure that the projects follow their
process. Quality managers have not a fixed team and can be allocated to any project
in Worldline.

We had difficulties to find participants for the interviews, but succeeded in find-
ing people from several Business Units (BU) of the company. A business unit is a
group of several project teams working in the same business sector. There are three
Business Units in Worldline: Merchants Services, Financial Services, and Mobility
and e-Transactional Services.

Considering the small number of participants and the very specific purpose
of the interviews (discover information on possible predictors available for the
projects), we did not see a need for a formal analysis of the interviews result.

There is no standardized form to log project information through the company.
However, we found in one business unit some standardized Excel files logging
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Table 2.2: Description of the Interviewees
Name Job position Experience (years) Team size
Erin Quality Manager 25 N/A
Frank Project Leader 17 20
Grace Project Leader 6 3
Heidi Project Leader 10 5
Mallory Quality Manager 9 N/A
Oscar Project Leader 19 75
Pat Quality Manager 23 N/A

business information that we analyzed (see the metrics list below). These projects
follow the same development process. Monthly, project leaders fill Excel sheets
containing information on their project, bugs encountered, budget already spent,
and budget remaining for the rest of the project. Some of the sheets are not filled
correctly, because no automatic validity check is made. For instance, the budget or
the number of bugs reported can be erroneous. The project can still be in a build
phase, e.g., not delivered to the client. In this case, the number of post release bugs
is not set in the sheet, then we decided to discard the Excel file of this project. It
was the case for around half of the projects.

We used an Excel parser to convert Excel data into a Moose1 model. Moose
is a Pharo2 based extensive platform for software and data analysis. This plat-
form, based on meta-modeling principles, offers multiple services ranging from
importing and parsing data, to modeling, measuring, querying, mining, and build-
ing interactive and visual analysis tools.

The usefulness of such a model is to standardize the data and make it acces-
sible in one place. Once the data are modelised thanks to Moose, we conduct the
statistical analysis with R3.

R is an open-source platform to apply statistics tools and algorithms on a large
set of data. It is widely used by statisticians to perform data analysis.

In the Excel sheets, we have 12 project metrics available for each month:
Bugs recorded and categorized in terms of:

Seriousness: critical, major, minor. A critical bug impedes the usage of a
functionality of the application whereas a minor bug can be a misplaced
button in the user interface. A major bug is in between.

Testing phases: qualification, acceptance, or production steps. These met-
rics correspond to the number of bugs found in each phase. The qualifi-

1Bhatti et al. [2012]
2Black et al. [2009]
3R Core Team [2013]
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cation testing phase is done by the company employees while the other
steps are led by the client. The production testing is realized in real
conditions with the end-users.

Budget: We found two metrics related to it:
Predicted project budget: It is the budget (in man-days) set at the begin-

ning of the project. For each month an estimate of the budget is done
depending on the progress of the project and the number of developers
working on it during the month.

Realized project budget: It is the budget effectively spent during the month
on the project. It is known only at the end of the month, whereas the
predicted project budget is determined at the beginning of the month.

Slippage: Two metrics to characterize it:
Delta between predicted and realized budget: (man-days of slippage). It

measures the number of man-days that the project deviates in the month.
Whether there is slippage or no slippage: There is slippage when the project

has at least one month in slippage.
Number of months in slippage: number of months in the project where there

is slippage.
If the value is positive, the project has lost days during this month, else it has
“saved” some days.

Project name length: It is the number of characters in the project name. It is
intended as a “placebo” metric. We compare all results to this metric to see
if they can give a better result.

From this data, we computed the following metric:

Delta between the number of qualification and acceptance bugs: For the exper-
iment, we compute this metric as a difference between the number of qualifi-
cation bugs (company employees testing) and the number of acceptance bugs
(client testing). As the qualification and acceptance tests aren’t made by the
people of the same company, we expect a delta between both values. If the
delta is positive, there are more qualification bugs, which is good because
it is the project team and not the client who found the bugs. If the delta is
negative, more acceptance bugs are found than qualification ones. This will
be damaging for the project because of the decrease of the client confidence.

We also added the number of intermediate releases in a project. Projects are
split in releases. They represent a milestone in the development of the application.
We expect that these milestones may work as “small projects”, making the whole
project easier to manage and anticipate potential slippage.

As project leaders consider slippage as the most important metric to assess the
health of their projects, we used the three metrics related to it. We decided to
compare slippage metrics to metrics related to bug number and budget data.
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1.2.2 Data Filtering

We used data from 44 projects from 2012 to 2015 to analyze their correlation with
slippage. Unfortunately, earlier data were not available. Indeed, normalization of
project monitoring has been adopted recently in the department of Worldline where
this data were extracted.

Each month, a file is created for each project. Due to the various durations
of the projects 1 076 files are available. Each file recalls the data of the previous
months since the beginning of the year. So, the December files are enough to get all
data for a year. Moreover, data are not complete for more than half of the projects.
Consequently, we mined 91 files corresponding to 19 projects.

By the value of their metrics, several projects can have a great influence on
the sample. These outliers have to be identified then removed. Statistical methods
advise to take out these kinds of extreme values to have a better sample to analyze.
We carried a Principal Component Analysis (PCA) to identify these outliers. The
PCA algorithm extracts from the initial variables, principal components. Principal
components are linearly uncorrelated variables and represents concisely the initial
set of variables. The benefit of this analysis is to identify groups of variables and
which one are related to the slippage metrics.

Figure 2.1, shows the impact of each individual (project) of the sample on the
two first components, i.e., it is the linear projection of the individual on the two
components. The first principal component is put on the abscissa and the second
on the ordinate. Each point or cross is the projection of the metrics of a project on
the two first principal components. In this way, we can determine the outliers. As
shown, the two projects represented by crosses are far from the other projects (at
the left of the figure). They are the extreme values. We ignored these projects in
our study.

1.2.3 Correlation Matrix Results

To have a first intuition, we correlate all metrics described in section 1.2 whose
principal characteristics are detailed in Table 2.3.

Figure 2.2 is a correlation matrix of all metrics we analyzed. The crossing of
one column and one row shows the correlation value between both variables. It
highlights whether there is a linear dependency between 2 variables. If the value
is close to 1 or -1, the variables are correlated. In this case, it is likely that the
evolution of one will impact the other. The variables are independent if the values
are close to 0. The value is negative if variables are correlated but evolve in opposite
directions, this kind of correlation is represented by a minus in the cell. As the
sample of project is small, we use the Spearman correlation. On the matrix, a
lighter colored cell means that the correlation is closer to 0 (no correlation), a darker
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Figure 2.1: Projection of the project metrics on the first and the second principal
components

Table 2.3: Statistical summary of the metrics used for the analysis
Metric Min Mean Median Max
# Qualification bugs 0 20.3 4.0 81
# Acceptance bugs 0 18.3 1 193
# Production bugs 0 8.1 0 120
# Critical bugs 0 12.4 3 101
# Major bugs 0 17.5 11 92
# Minor bugs 0 16.9 7 81
# Total bugs 0 46 25 274
∆ Qualif. & accept. -112 1.9 0 55
Predicted project budget 31 881 411 4700
Realized project budget 63 947 432 5210
# Months in slippage 0 38.9 34 80
# Man-days of slippage -60 65.8 32 510
# Intermediate releases 6 18.7 18 31
Project name length 6 18.9 19 32
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colored one is closer to 1 or −1 (correlation). The correlation values are detailed
in Figure A.1 of Appendix A.

Critical bugs
Major bugs
Minor bugs

Qualification bugs
Acceptance bugs

Total bugs
Production bugs

Qualif. & Accept.

Predicted budget
Realized budget

M n*Days of slippage
Month in slippage

Is slippage

Intermediate releases
Project Name length

C
ri
ti
c
a

l 
b

u
g

s
M

a
jo

r 
b

u
g

s
M

in
o

r 
b

u
g

s

Q
u

a
lif

ic
a

ti
o

n
 b

u
g

s
A

c
c
e

p
ta

n
c
e

 b
u

g
s

T
o

ta
l 
b

u
g

s
P

ro
d

u
c
ti
o

n
 b

u
g

s

Q
u

a
lif

. 
&

 A
c
c
e

p
t.

P
re

d
ic

te
d

 b
u

d
g

e
t

R
e

a
liz

e
d

 b
u

d
g

e
t

M
n

*D
a

y
s
 o

f 
s
lip

p
a

g
e

M
o

n
th

 i
n

 s
lip

p
a

g
e

Is
 s

lip
p

a
g

e

In
te

rm
e

d
ia

te
 r

e
le

a
s
e

s
P

ro
je

c
t 

N
a

m
e

 l
e

n
g

th

a

a

✂ 1

✂ 0.8

✂ 0.6

✂ 0.4

✂ 0.2

0

0.2

0.4

0.6

0.8

1

-

-

-

-

Figure 2.2: Correlation matrix between each metric of the sample

This matrix shows three blocks of correlated variables. First, we can infer a
strong correlation between all kind of bugs (the darker square at the top left of
the matrix) except the number of bugs in production. These bugs are not strongly
correlated to the others.

The metric representing the delta between the qualification and acceptance bugs
is lightly correlated to the other ones. The correlation is not strong enough to be
considered (between −0.19 and 0.30).

Second, we can also see, in the middle block, correlations between the budget
variables: the realized budget and the predicted budget. The number of man-days
between the initial and final budget is also not correlated to the slippage ones but
correlated to the budget metrics. This last correlation might be due to the fact that
the bigger a project is, the more difficult it is to predict the budget. A long project
is more likely subject to deviations.

Third, it seems also that two slippage metrics (number of month in slippage
and if there is slippage or not) are significantly correlated together. The other,
the man-days of slippage, is not linked to the others. However, the number of
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intermediate releases is correlated to these slippage metrics. If more intermediate
releases are present in the project, the more slippage there is on the project. It might
be the decomposition in group of functionalities that is difficult to determine by the
project managers.

Finally, our placebo metric is not correlated to the number of months in slippage
(−0.25) according to Hopkins’ guidelines [Hopkins, 1997]. The opposite would
have been intriguing or even alarming.

However, as shown by the matrix, there is no link between the 3 groups of
variables i.e., the bugs, the budget, and the slippage.

In the light of this analysis, we can conclude that there is no link between the
slippage and any other studied variable.

1.2.4 PCA Analysis Results

PCA describes more finely the data of the sample than the correlation matrix, in the
way that it discovers the internal relationships of the variable. Figure 2.3 displays
its result. On the two axes, the first principal component follows the abscissa and
the second the ordinate. The abscissa aggregates non-production bug metrics, the
ordinate aggregates slippage metrics.

Each arrow represents a variable, the longer the arrow the more this variable is
correlated to these two principal components. If the arrow is in the same direction
of a principal component, e.g., the first component and the arrow representing the
number of critical bugs, both variables are correlated. On the contrary, if the ar-
row is orthogonal to the component, the variable represented by the arrow is not
correlated to the component, e.g., the bug component and the number of slipping
months.

For exploratory studies, the normality of the distribution is not required for the
PCA. Furthermore, we do not use the PCA results to perform statistical tests [Jol-
liffe, 1986]. Therefore, we do not need to check that our data are normally dis-
tributed.

In our analysis, the first principal component synthesize 43.41% of the vari-
ability of the sample and the second 17.51%. It means that almost 60% of the
variability of the sample is summarized by these two principal components, i.e.,
by a linear combination of these two variables, we are able to retrieve 60% of the
original data.

The PCA defines four groups of metrics. First, we have the metrics linked to the
bugs at the right of Figure 2.3: Critical bugs, Major bugs, Acceptance bugs, Total
number of bugs, Qualification bugs, Minor bugs, and Delta between the number of
qualification bugs and acceptance bugs (this latest variable is negatively correlated
to the others).

Second, Months in slippage, Is slippage, Intermediate releases, and Production
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bugs variables constitute another group. Despite Production bugs variable is in this
group, it is less correlated with the others. Production bugs are bugs revealed by the
final customer. A possible explanation, is that if the project is already in slippage,
developers are hurried to make the final release, they bypass the best practices, and
do not test completely their application. Some bugs are consequently revealed in
production. As the PCA shows a finer representation of the data than the correlation
matrix, it is possible that a low correlation on the PCA does not appear on the
correlation matrix. For example, the relation between the production bugs and the
months in slippage are not revealed in the correlation matrix, but is revealed in the
PCA.

Third group of metrics, we have the project name length. It is negatively corre-
lated to the slipping metrics. So the shorter the project name is, the more slippage
it had. It is alone in its group.

Fourth group of metrics, we can suppose that the two other variables represent-
ing the budget (Budget realized, and Delta between predicted and realized budget)
make a group of the non-influential variables. The arrows related to these metrics
are short on the representation.

As we have the metrics on the intermediate releases, we conducted the same
experiment. In the Excel files, only 59 can be used for analysis among the 720.
Actually, it is more difficult to get all the metrics for the intermediate releases
because the proper filling of the Excel sheets is more complex. After removing
outliers, we found the same results than with the complete projects.

To summarize, the correlations we found are quite trivial. Like the papers from
the literature survey, we were not able to link the bugs and the budget metrics we
used with the slippage metric, considered as an indicator of project health.

1.3 Interviews

As the data analysis and literature review did not show any significant link between
project health and project metrics, we conducted four unstructured interviews with
experienced project leaders of the company. Frank, Grace, Heidi, and Mallory from
the first interviews (see Table 2.2) accepted to answer our questions again. They
come from different business units, which allow us to get several points of view on
the company. The interviewees gave their feeling on what impacts project health,
i.e., success or failure, what are their problems during project development, how
they detect them and how they resolve them.

Each interview lasted one hour and was decomposed in two parts. First, we
presented briefly the research topic and the context of the study to the interviewee.
Second, in an open discussion, we tried to acquire and understand the managers’
experience on their project successes and failures. Considering the very small num-
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ber of interviews (four), we did not see the need to apply a formal synthesis of their
answers. In these interviews, we identified the following root causes of project
failure:
Delay at the beginning of the project: if the client decides to begin the project

later, the project team is ready to work but is not paid by the client. Conse-
quently, the company spends money and the relationship with the client will
deteriorate.

Lack of collaboration between the team and the client: if the team and the client
do not know each other well, the collaboration will be difficult and the project
is more likely to fail.

Absence of team cohesion: if the members of the project team do not support
each other, the cohesion is weaker and the project has significantly more
chance to fail.

Misunderstanding the specifications: if the project team does not understand what
the client says and fails to transcribe it in his own technical language, the
project will progress with difficulty.

Lack of domain knowledge: if the project team does not know the “language” of
the client, the project has more chances to fail.

Change of the framework during the development: if the technical tools or the
framework, that the project team uses, change, it will cost more to the project.

Lack of experience with the used frameworks: a team without experience on tools
or frameworks will be not capable of moving the project faster.

Bypass the qualification tests: if the team does not test its application before de-
livery to the client, the client will be unhappy because some functionalities
will not work and some tension in the project team will appear. As a conse-
quence, the client will find more bugs in the application.

These root causes cannot be mined in project artefacts.

1.4 Conclusion

We conducted a study to check whether software metrics can be related to project
failure. The study of literature shows that the metrics extracted from a project
cannot be used on another one. The mining of data we have done on company’s
projects showed no link between project success and data. Moreover, the interviews
we conducted shows that the metrics linked to success cannot be found by mining
project data.

As all these studies intervene a posteriori on projects, it seems random for a
new project to know which metric or set of metrics could be used to assess success.
Predictive analysis will not work well if it is not possible to know a priori which
statistical model to use. In this case, there is no utility at all to mine them to predict
the health of a project.



22 Chapter 2. Motivation

Moreover, thanks to the interviews we made, we extracted some topics that are
of interest for the project leaders of Worldline: communication, external frame-
works, software quality, and tests. To generalize the results of these interviews
from four project leaders to all the project members of Worldline, we made a large
survey to obtain Worldline’s project members insight on project quality.

2 Developers Insight on Project Quality
To get a better point of view on the feelings of the project members about project
failure and success root causes, we made a survey for developers, team managers,
and architects of Worldline France. Everyday, they are confronting the same prob-
lems, loosing time trying to solve them, with or without success. If a generalization
can be made, then solving the problem will be interesting for the company in terms
of cost savings and wellbeing of the employees.

As health of the project is still an essential factor for Worldline, we focused
the survey on the factors that influence the health of the project we discovered
previously.

2.1 Survey Description

The participation to the survey is on voluntary basis. To make project members
of Worldline answering it, we sent mails to more than 1000 project members and
posted on the company social network. We also sent a reminder on both media
one month after the first sent and succeed to have 131 project members that anony-
mously answered to the poll. With 11 questions, the survey took 15-20 minutes to
be filled. Questions have been first tried on several beta testers to be sure that they
are correctly formulated and understandable, and, conclusions can be draw from
the answer. In this survey of 11 questions, seven are focused on the health of the
project (the items for each question can be found in the related Figure):

i. On a daily basis, on which criteria do you base yourself to assess the health
of your project? (Figure 2.4)

ii. For you, what are the items that are contributing to project success? (Fig-
ure 2.5)

iii. Which actions should be taken to improve project health? (Figure 2.6)

iv. What items are contributing to project failure? (Figure 2.7)

v. What are you expecting of a tool that could help you to improve project
health? (Figure 2.8)



2. Developers Insight on Project Quality 23

vi. Which items block you from doing automated tests? (Figure 2.9)

vii. Regarding tests and software quality, which items can help you in the im-
provement of your project? (Figure 2.10)

The four others questions describe the respondents in the purpose to cross data:
company department, responsibilities, years of experience, years of experience in-
side the company.

The first seven questions are based on a likert scale. For each of these questions,
several affirmations are given and the respondents must answer his agreement or
not in a scale to define his feeling. The scale specifies several answers to a given
affirmation: e.g., strongly disagree, disagree, agree, strongly agree. Moreover, we
choose likert scales with an even number of answers. It forces the respondents to
have a distinct opinion and to make his mind on one side: agree or disagree.

For each question, the respondents is able to answer “NA” if the question is
“Not applicable" or if it does not want to give an answer (“No Answer”). Also,
each question can be commented to give an other option or opinion.

2.2 Results

For each question, we focus only on the three or four items with the highest score.
Consequently, others conclusions that could be drawn from this survey will not be
explained nor studied here.

2.2.1 On a Daily Basis, on Which Criteria do you Base Yourself to Assess the
Health of a Project?

It seems that being ahead of time on the schedule is at least an important criteria to
measure the health of a project for 93% of the respondents (see Figure 2.4). The
relation with the client comes in second place with 86% that think it is an important
criterion. In third position comes the software quality with 84%. Fourth is the
number of bugs detected in customer acceptance with 81%. The bugs detected in
customer acceptance are bugs that should be avoided by the developers. They give
a low opinion of the project team to the client and can damage the relation between
them.

A high number of bugs in customer acceptance shows a lack of quality in the
software. The interviews of our previous study concluded that a root cause of the
failure of the project is the high number of bugs listed by the clients. This survey
confirms this first intuition. While we are not able to manage the relation with the
client in this study, reducing the number of bugs seems to be obtainable by helping
the developers to check their application before releasing to the client.
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Figure 2.4: Question 1: On a daily basis, on which criteria do you base yourself to
assess the health of your project?

2.2.2 For you, what are the Items Contributing to Project Success?

We want to understand what makes a project succeed. As first factor, understand-
ing of the client specifications is essential for the respondents, 98% thinks that this
influences project success (see Figure 2.5). As second factor, communication is
important for the respondents, the communication in the project team and its cohe-
sion (resp. 96% and 95%), and the expertise of the project leader (93%) have an
influence on project success. As third factor comes tests before release and source
quality (with resp. 87% and 81%). It is important to note that almost half of the
respondents thinks that running tests before release has a high influence (whereas
other figures are only about influence). However, 76% of the respondents think
that having automated tests has an influence of the project success. Like the pre-
vious question, communication between the project entities and the definition of
the specifications with the client is out of reach of our study. However, we can
improve project quality and make sure that the tests are launched before releasing
to the client.
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Figure 2.5: Question 2: For you, what items are contributing to project success?

Figure 2.6: Question 3: Which actions should be taken to improve project health?
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2.2.3 Which Actions Should be Taken to Improve Project Health?

The first action that should be taken to improve project health is to call the busi-
ness unit (81%) (see Figure 2.6). Each business unit has experts, by opposition
to transversal experts (TO and SDCO experts). BU experts are specialists of the
business domain and can solve the issues most frequently encountered in the busi-
ness unit. TO experts manage the production infrastructure and can help solving
related issues. SDCO experts provide support in software and methodology. They
are experienced enough to know how to solve the most frequent issues they en-
counter in the Business Unit. They can indeed help to straighten up the situation of
the project. Putting in place development tools is also important for improving the
health of the project (81%). Developers want tools that ease the development of the
application. Good development tools avoid to the developers to write unnecessary
code or help them finding a solution to their problem faster.

In third and fourth position came the increase of the project duration. Firstly
is the increase of the tests phase duration (73%) and secondly the overall project
duration (64%). During the testing phase some critical bugs can be discovered.
Moreover, when project is in slippage, the testing phase tends to be shortened or
bypassed. From the previous study (see Section 1.3), we identified the delay at the
beginning of a project as a root cause of project failure. If there is such a delay,
the project duration is shortened and we can suppose that project members will not
have enough time to develop the application. Thus, failure is more likely.

2.2.4 What are the Items that are Contributing to Project Failure?

We took exactly the same criteria that the question: “For you, what are the Items
Contributing to Project Success?”. But, we inverted them to focus on project fail-
ure instead of project success. A criterion can contribute to the success of the
project, but its absence can have no impact on its failure. That is why, we added
this question. 90% of the respondents thinks that lack of communication in the
team has a prominent place in the failure of the project (see Figure 2.7). The lack
of tests before a release has also an influence on the project failure (88% of the
respondents).

2.2.5 In Order to Improve Project Health, what is the Purpose of the Tool
that Could Help you?

The goal is to know what tool the developers would like to have to improve the
health of the project they are working on. Following the project quality is the most
desired feature (86%) (see Figure 2.8). Such a tool implies to provide a dashboard
to the project leaders. This way, they can monitor main metrics on their projects. A
transversal team of Worldline supplies already the project teams with tools allowing
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Figure 2.7: Question 4: What are the items that are contributing to project failure?
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Figure 2.8: Question 5: In order to improve project health, could a tool help you
to:
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to monitor the project quality. Maybe, the tools are not adapted for their usage that
requires specific plugins, or project leaders do not want to use them.

Testing is the second item that can improve the project health. For the respon-
dents, the useful problems that a tool can help to resolve are: Identify the impact
of code changes on tests (86%), manage the progress of test execution during in-
ternal testing phase (85%), and generate automatic tests (83%). Help testing the
projects is an item desired by the developers. We also concluded with our previous
interviews (see Section 1.3) that spending too few time on the tests had a negative
impact on the project success.

2.2.6 Which Items Block you from Doing Automated Tests?

Figure 2.9: Question 8: Which items block you from doing automated tests?

Lack of time, lack of training, and lack of knowledge are the main blockers
with resp. 78%, 68%, and 67% of respondents who thinks that these items block
them from doing automated tests (see Figure 2.9). Indeed, like shown in previous
questions, the lack of time is frequent in projects. Initiatives have been set up to
train people and add knowledge on this topic.

2.2.7 Regarding Tests and Software Quality, which Items can Help you in
the Improvement of your Project?

Automation of tests execution and detection of tests after a code change are the
2 items that are found useful with resp. 91% and 87% (see Figure 2.10). These
items are important for the developers. However, the automation of test execution
is complex to set up, due to the high number of frameworks used for testing in
Worldline, to the complexity of the applications and to the use of legacy code. The
training of the developers is in progress but still not generalized. Knowledge is also
not shared easily between the projects teams.
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Figure 2.10: Question 9: Regarding tests and software quality, which items can
help you in the improvement of your project?

From previous questions, developers thinks that the automation of the execution
of the tests is important. Moreover, as they lack time to test their application, they
often bypass this step. The second item, detecting the tests after a code change,
could allow them to spend less time to test their application.

2.3 Conclusion
To conclude, we made a survey on 131 projects members of Worldline (developers,
architects, project leaders. . . ). This survey confirms the results of our previous
experiment at a higher scale: The understanding of the specifications by the client
is primordial, as is the communication between the project team and the client
and inside the team. The testing of an application is also an important topic that
can make the success of the application. However, testing requires time. But,
interviewees said that when the schedule is shortened on the project, testing is the
first part of the project that is bypassed, as it is the last part done on a project. From
the last question of the survey, it seems that detecting automatic tests after a code
change can help project members to improve their project. So, they will be able to
shorten the test execution duration and, consequently, improve the quality of their
application before delivering to the client.

Proposing such a tool to the developers can help them to ensure the health of
their project. We hope that this would motivate them to make more automatic tests
and test more often.

But at first, test selection approaches have to be designed for Worldline envi-
ronment: first by respecting the constraints of the language and frameworks they
use, second, by knowing the testing behavior of Worldline developers to ensure a
good adaptation of the tool to their practices.
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To design a specific test selection approach for Worldline’s projects environ-
ment, literature needs to be studied. In a first part, we analyzed test selection
approaches, then we compared some tools available for test selection in the IDE of
the developers, and finally looked into studies on the monitoring of developers on
software testing.

1 Test Selection Approaches
Test case selection techniques aim to reduce the number of test cases to execute af-
ter modifying code in order to avoid to launch all the test cases and spend less time
to test their application. Test cases are selected if they are relevant to the changed
parts of the system under tests [Yoo and Harman, 2012]. Thus, the selection is not
only temporary (i.e., specific to the current version of the program) but also focused
on the identification of the modified parts of the program. More formally, follow-
ing Rothermel and Harrold [1993], the selection problem is defined as follows:

Definition Test case selection problem
Given: The program, P, the modified version of P, P’ and some test cases, T.
Problem: Find a subset of T , T’, with which to test P’.

Literature (e.g., Engström et al. [2008, 2010], Ernst [2003]) recognizes several
types of approaches for test case selection. Kazmi et al. [2017] classify them in
five main techniques:
Mining and Learning According to Kazmi et al. [2017], it is the most frequently

studied approach. Genetic Algorithms are used to select the tests. They use
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learning algorithms which can lead to optimal solutions. But, a part of ran-
domization has to be added in the approach, thus, they do not give exact
results. These approaches do not scale well and thus cannot be used in com-
panies: Kazmi et al. [2017] advances that “Mining and learning techniques
have several drawbacks like small size datasets and high computational cost
that made it unattractive to industry players.”

Model Based Testing In this approach, UML diagrams are used as ground to se-
lect the tests. This kind of approach works only if the source code is synchro-
nized with the model. In Worldline, UML generation is used at the beginning
of the project. Nevertheless, keeping the model and the source code in syn-
chronization is challenging. Even if the project has taken the approach to use
UML code generation at the beginning of the project, later, only the source
code is changed. The model is not updated and cannot be used to retrieve the
tests.

Program Slicing These are the pioneer Regression Test Selection (RTS) tech-
niques. They simplify the program such as to omit test cases that do not
produce new and different execution traces. This approach lacks exactness
and have been only applied to small or medium-sized data sets, which are
mostly procedural applications. It is consequently not appropriate for World-
line projects that use object oriented languages.

Control Flow Graph based RTS These techniques are based on flow control of
programs, workflow of programs behavior, or functions. These approaches
are stable and are adapted to existing tests because they focus on already
implemented program flow.

Oracle based RTS These approaches try to predict the effectiveness of the test
suites for future uses. To be efficient, these approaches need an history of the
launched tests. For Ekelund and Engström [2015], an history of 100 build is
the optimum. But, such an history is not available for the Worldline projects.
However, we compare in Chapter 6 the Control Flow Graph approaches to
the one of Ekelund and Engström [2015]

Consequently, the Control Flow Graph approaches seem the best to the World-
line problem of test selection. We focus our literature study on it.

1.1 Control Flow Graph Approaches

The general idea is the following: a test depends on a piece of source code if, by
launching this test, the piece of code is executed. It can be directly executed through
method calls. After a piece of code is changed, the test case selection technique
should select only the tests depending on this piece. For this purpose, the approach
navigates the control flow graph back from this piece to the tests that depend on it.
Figure 3.1 illustrates this principle for two methods and two tests. testMethod1
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depends on method1 and method2 (for example testMethod1 calls method1
and method2), testMethod2 depends on method2.

testMethod1 method1

testMethod2 method2

Method dependency

Test depending on

the changed method

Changed method

Test

Figure 3.1: Test Selection Simple Case

This is, of course, a simplified example, in real cases, the dependency graph
is much larger and deeper, or, some other factors may make it very difficult for a
given approach to find out which tests depend on a piece of code.

Control Flow Graph approaches are split into two categories: Dynamic and
Static approaches.

The dynamic approach consists in executing the tests and recording the code
executed during each test. This is the execution trace of a test. A test depends on a
piece of code if this piece of code is in its execution trace. For example, by using
this approach on Figure 3.1, a dynamic model contains a mapping for method1
to testMethod1, and for method2 to testMethod1 and testMethod2.
If method1 is modified, the mapping stored in the model is used to select only
testMethod1.

The static approach does not require executing the tests. It relies on com-
puting the dependency graph from the source code or some representation of it
(e.g., bytecode for Java). Several dependency graphs can be used [Biswas et al.,
2011, Engström et al., 2008, 2010]: Data dependency graph, Control dependency
graph, Object relation diagram, etc. For example, by considering arrows in Fig-
ure 3.1 as calls between methods, a static approach will create a static model of the
source code where method1 callers are testMethod1, and method2 callers
are testMethod1 and testMethod2. If method1 is modified, thanks to the
static model, the testMethod1 caller is selected. Note that in real projects, the
call graph is much deeper and recursion is used until a test is found.

1.2 Dynamic versus Static: Pros and Cons

Ernst [2003] argues that a static approach guarantees generalization of the results
for future executions. This approach usually results in a superset of all actual ex-
ecutions as some combination of cases might seem possible when looking at the
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code, but actually impossible in real cases. On the other hand, dynamic approach
results in a subset of all actual executions as only some examples are actually run
among all the possible executions from a static point of view.

Ernst [2003] also argues that the dynamic approach is as fast as the program
execution and does not require costly analyses. It must be noted that in our experi-
ments with the Jacoco tool (see Chapter 4), we found a perceptible increase in time
of up to one hour (from an initial five hours) needed to run only the tests. A static
approach uses an abstract representation of program state that looses information
but is more compact and easier to manipulate than a more faithful dynamic model.

Beszedes et al. [2012] found that the dynamic approach is less reliable if the
dynamic model is not updated frequently. Some code addition or modification can
impact the accuracy of the approach if tests are not run again to recompute their
new execution trace. However, updating the execution traces after each change is
in complete opposition with test case selection that aims to reduce the test set, and
avoids launching all the tests. Therefore, a compromise must be found between an
up to date dynamic model (to get good results) and actual test selection. Finally, if
the test setup (executed before all tests) or an instruction of a test fails, the execution
is stopped and only a part of the code is exercised.

Ekelund and Engström [2015] consider that the creation of a static model can
sometimes be a drawback. In case of large systems, representing the whole source
code can be costly. Ekelund and Engström had to give up static approaches be-
cause of static model creation time. This statement should be nuanced with our
experiments, where running static approaches is 12 times faster than running the
tests with Jacoco, i.e., about 30 minutes versus six hours.

After an analysis of 36 studies on test case selection, Engström et al. [2010]
conclude that the empirical evidence for differences between the techniques is not
very strong, and sometimes contradictory. As summary, there are no bases to select
a technique as superior to the other. Techniques have to be tailored to specific
situations.

But, Legunsen et al. [2016] evaluated static test case selection against dynamic
one. Static RTS could be more beneficial than dynamic test case selection for sys-
tems with long-running tests, non-determinism, or real-time constraints. It shows
promising results when used at the right granularity.

1.3 Evaluation Criteria

We need to choose between the existing Control Flow Graph approaches to find
one adapted to Worldline. Some criteria are used to compare them:
Granularity. Different kinds of granularity can be considered [Engström et al.,

2010] from individual instructions (e.g., Rothermel and Harrold [1993]) to
modules (e.g., White and Leung [1992]) or external components (e.g., Will-
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mor and Embury [2005]) passing through functions/methods (e.g., Elbaum
et al. [2003], Zheng et al. [2007]) and classes (e.g., Hsia et al. [1997], White
et al. [2005]). Using a smaller granularity gives better precision but is more
costly [Engström et al., 2010].

Evaluation. The evaluation of the approach can concern open-source or closed
source projects. Both kind of projects can have their own particularities that
change the result for the comparison of the approaches.

Approach. The approach used to select the tests, whether it is a static or a dynamic
one.

Object Oriented Programing (OOP) Friendly. A large part of the programs de-
veloped in Worldline uses Java and C++ which are Object Oriented Lan-
guages. The appropriated test selection approach must take in consideration
the specificities of the language. Some issues are specific to OOP while some
others are not present (e.g., the pointers in C).

1.4 Test Selection Approach

Some software representations can be used as basis for static analysis: First, Badri
et al. [2005] present a static approach for predictive change impact analysis. It is
based on control call graphs but it is more precise than the standard approaches
based on call graphs. No execution of the program is required and this kind of
approach may be used for test selection. They do not consider the specificities of
object-oriented systems in their study.

Jász et al. [2008] compare several control flow approaches they defined (SEA,
Static Execute After, and SEB, Static Execute Before) to a traditional one: System
Dependence Graph (SDG). These graphs represent dynamic dependencies between
the call of methods. Whereas SDG uses both control and data dependencies, SEA
and SEB use only control flow. The authors carried out a study on four open source
projects (Valgrind, gcc, gdb and Mozilla), where source code is written mainly
with procedural languages (C++ or C). Their experiments conclude that SEA and
SEB precision is lower but computation is more efficient than SDG. Jász et al.
approaches could be used to represent the source code at a lower granularity level.

Ekstazi is a lightweight RTS technique [Gligoric et al., 2015]. This tool is based
on a dynamic approach and tracks dynamic dependencies of tests on files. Ekstazi
is able to select regression tests from a changed method. It is now integrated in
some popular open-source projects like Apache Camel. Evaluated on 32 open-
source projects, Ekstazi allows to reduce globally the testing time of 32%, and
reduces it of 54% for longer running test suites. Moreover, an experiment on 20
revisions per projects on around 20 Java projects is performed at class and method
granularity. The ratio of selected tests is lower at method granularity (8%) than
at class granularity (11%). However, testing time is a lot more reduced in case
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of class granularity. Furthermore, the approach requires to run all the tests which
could lead to a lost of time.

Hurdugaci and Zaidman [2012] developed TestNForce, a tool integrated in Mi-
crosoft Visual Studio that shows to the user the unit tests to relaunch after a change.
The goal is to help developers better co-evolve test and production source code.
The tool works on C# applications thanks to an instrumentation of the binaries af-
ter a compilation of the source code. Each time a test is launched, its coverage is
recorded. But, building such a coverage takes a long time: 28 minutes are needed
for a project containing 344 unit tests. This tool has been tested in an experiment
with 8 students of the Delft University of Technology. Participants were asked to
try the tool on a given project and perform a set of defined programming tasks.
Students found the tool useful for their test maintenance activities with a score of
4.5 on a 5-point likert scale. They also found that the normal usage of TestNForce
is not an hindrance in the development process. But, a feature has been imple-
mented to prevent commit to the repository if the tests related to the changes are
not executed or updated. According to the authors, the presence of this feature has
decreased the average score hindrance of 2.125 on 5.

Soetens et al. [2013] propose a static approach at method granularity based
on the FAMIX meta-model. Their approach relies on real change sets gathered
in commits. For each of these change sets, their static approach is compared to
a dynamic one used as reference. The dependency graph they use only contains
links between methods. Two open-source applications (PMD and Cruisecontrol)
are used as input data for their experiment. 1% of the test cases is selected for both
applications. They obtain respectively for each application a recall of 77% and
58% and a precision of 84% and 83% (see Section 2.4 for the definitions).

These approaches are summarized in Table 3.1.

Table 3.1: Approaches Criteria Matrix
Granularity Evaluation Approach OOP Friendly

Badri et al. [2005] Instruction Open-source Static No
Jász et al. [2008] Instruction Open-source Static No
Gligoric et al. [2015] Instruction Open-source Dynamic Yes
Hurdugaci and Zaidman [2012] Method Open-source Dynamic Yes
Soetens et al. [2013] Method Open-source Static Yes

2 Tooling for Test Selection
Some test selection tools are already available for the developers but are not yet
propagated inside the company, e.g., Infinitest or Clover. We identified some tools
that can interest the company and classified them with criteria to compare them.
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2.1 Evaluation Criteria
To evaluate the tools selecting tests, we defined several criteria. The goal is to
identify in a second part which tool would be more appropriate to the Worldline
environment. The criteria we used are:
Approach. It defines the approach of the test selection. The goal being to com-

pare static and dynamic approach, this criteria is important to know which
approaches have to be compared together.

IDE Integration. If the test selection tool can be integrated in the IDE of the de-
velopers, the selected tests can be launched automatically. If this feature is
proposed, the tool could be directly suggested to the developers.

Open-Source. For our study, we will need to understand the internals of the tool
and possibly modify it. If some issues or some blockers are revealed, an
open-source tool eases these modifications.

Licensing. The cost of the plugin should be taken in account for the evaluation of
the tool. A tool with a charged license cannot be envisaged for Worldline.

2.2 Tooling
The following tools are described just after and are positioned in the criteria matrix
in Table 3.2.

Jacoco
Jacoco1 aims to compute the test coverage of an application [Lingampally et al.,

2007]. For this purpose, the Java Virtual Machine (JVM) is instrumented by adding
an agent to add behavior to the source code and to record method dependencies
during the tests execution. No recompilation nor modification of the source code
is needed. However, a synthesis of the results is needed after the execution. It
can have an impact on the execution time. For instance, for the studied projects in
Chapter 4, about one hour is needed for this synthesis for each project. The test
coverage tooling is integrated in the IDE, but a test selection tooling based on this
approach does not yet exists.

However, the data provided by Jacoco is not directly usable for test selection
because information concerning the executed tests are mixed up. Quite a bit of
modifications had to be done to transform it in an actual test selection tool.

1http://eclemma.org/jacoco/
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Clover
Clover2 is a Java Code Coverage Analysis application. The application was

made open source in 2017, source code was not available during my thesis. This
tool uses a source code instrumentation technique like Jacoco then records pre-
cisely what is executed when tests are run. The detailed test coverage reports help
developers easily identify areas where the testing is weak, enabling them to write
optimal tests.

The user triggers the test selection when he pushes a button. All the tests that
cover the last changes are then selected. However, tests should be first launched to
know their coverage of the source code to be selected for automatic launching. As
any dynamic approach, the tests selected by the tool have to be launched and their
coverage updated in the model to stay up to date.

Infinitest
Infinitest3 is a test selection plugin which analyses the bytecode using a static

approach. Integrated in a Java IDE (Eclipse or Intellij), it intends to do test case
selection, but, through the experimentation we made on complex projects, we saw
that the algorithm is slow. This algorithm relies on an internal representation of the
application source code. This representation must be computed each time the IDE
starts. A project of 300K lines of code can take several hours to load. So, it is not
satisfactory considering Worldline projects size.

Infinitest works at class granularity level. For a given class, it gathers all ref-
erences to other classes (i.e., the classes of the methods invoked, the types used,
the annotation types. . . ) and thus provides a graph of class dependencies. It also
selects tests at the class level, that is to say not individual test methods, but their
classes.

Moose
Moose4 [Ducasse et al., 2000] is a tool allowing test selection in a static way.

It analyses the source code. Moose relies on the FAMIX meta-model [Ducasse
et al., 2011] and proposes to represent source code entities in a model. This model
gathers entities such as packages, classes, methods, and the links between them
(invocations, references, inheritances, and accesses). A method dependency graph,
linking a changed method to the tests, is thus available.

Moose is a tool dedicated to pure static analysis, and so does not need any
compilation of the source code. However, the source code has to be parsed to create
the model. This parsing can take up to several minutes for large applications. In our

2https://confluence.atlassian.com/clover/
3http://infinitest.github.io/
4http://www.moosetechnology.org/
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experiment done in Chapter 4, the result overhead was smaller than for the other
approaches.

Table 3.2: Tools Criteria Matrix

Strategy IDE
Integration Open-Source Licensing

Clover Dynamic Yes No5 Charged
Ekstazi Dynamic No No Free
Jacoco Dynamic No Yes Free

Infinitest Static Yes Yes Free
Moose Static No Yes Free

3 Testing Habits of Developers
We need to enhance our comprehension of our industrial environment and to en-
sure that the practices of Worldline developers are known. Observational studies
monitor and conduct interviews with the developers to acquire their behavior inside
their IDE.

3.1 Evaluation Criteria
We defined criteria to classify the papers of the literature:
Participants. Studies have mainly three types of participants: students, employ-

ees, or open-source developers. Literature showed that conclusions might be
different in those environments Zimmermann et al. [2009].

Project Size. The size of the application on which the studies are based can lead
to different results too.

Recording. Another criteria is the detail level of the recording. Only the test op-
erations can be logged, or other interactions with IDE can be added.

Interviews. The studies can report some interviews on the participants of the ex-
periment. It give more weight to the results and confirm the quantitative
results the recording gave.

# Participants. The number of participants to the study. The more participants the
study includes, the more the results can be generalized.

Language. Depending of the programming language the developers use, their be-
havior about testing can be different. Some languages are more prone to be
tested than others.

5Open sourced in April 2017
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3.2 Studies

Table 3.3 summarizes the studies on developer testing behavior we identified in the
literature.

Table 3.3: Criteria Matrix for Study of Developer Test Behavior
Participants Project Size Recording Detail level Interviews # Participants Language

Munir et al. [2014] Industrials Small N/A Yes 31 Java
Kasurinen et al. [2010] Industrials Various N/A Yes 55 N/A

Runeson [2006] Industrials Various N/A Yes 24 N/A
Pham et al. [2014] Students Small N/A Yes 97 Java
Pinto et al. [2012] Open-source Various N/A No N/A Java

Zaidman et al. [2011] Open-source +
Indus.

Various N/A Yes 6 Java

Amann et al. [2016] Industrials Large Interactions No 84 C#
Gligoric et al. [2014] Stud. + Indus. Mainly small Tests + Interactions No 14 Java

Beller et al. [2015] Open-source +
Stud. + Indus.

Various Tests + Interactions No 416 Java

Munir et al. [2014] made a controlled experiment to compare the impact of
Test-Driven Development (TDD) on internal code quality, external code quality and
productivity against Test-Last-Development (TLD). Thirty-one developers from in-
dustry, with at least one year of experience, were asked to develop code according
to user stories. Fifteen were assigned to TLD tasks and 16 to TDD. Results of
the experiment clearly indicate that TLD is easy to use (100% answers) and eas-
ier than TDD (86% of the answers). TLD will also be selected as the first choice
development method for 38% of the participants. The authors conclude that TDD
adoption requires not only a strict discipline to actually write the test first but also
an adequate and sufficient training in improving developers skill set in testing.

Kasurinen et al. [2010] interviewed 55 industrials from 31 companies and stud-
ied 12 software systems in development. Their survey revealed that organizations
use automated testing only in 26% of their test cases. Based on their study of
the literature, it is considerably less than the authors expected. The results indi-
cate that test automation is in demand in software organizations. The lack of a
global strategy for applying automation was also evident in many organizations
they interviewed. These observations also indicate communication gaps between
stakeholders of the overall testing strategy, especially developers and testers.

Runeson [2006] conducted a survey on companies employees. The goal was
twofold. First the survey aims to clarify through interviews what is a unit test.
Second, the survey evaluates the strengths and weaknesses of unit tests. Seventeen
industrials participated to a focus group and 15 filled in a questionnaire. In total, 24
unique industrials where interviewed from several companies. A clear and shared
definition of unit testing enables to better determine the role and responsibilities of
the involved stakeholders. Interviewees report the complexity to test GUI modules,
to identify the unit to test and to maintain tests.
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Pham et al. [2014] conducted a study with 97 computer science students and
made interviews to explore their attitudes regarding testing in a collaborative soft-
ware project. Students tend to push test automation to the end of the project and
consequently avoid to have a test suite during the development. The authors explain
that it is mainly because of lack of time that they do not become productive with
testing. We felt the same behavior with the employees of the company. Due to the
tight schedules, testing is often left out. However, a majority of the interviewees
think that the tests are essential in the development of their applications.

Pinto et al. [2012] proposed a technique to study test suite evolution. They
developed a tool named TestEvol that mines source code repositories to study these
evolutions. An empirical study was done on six Java open source software of the
real world: Gson, PMD, JFreeChart, JodaTime, Commons Lang and Commons
Math. According to the study, modifying tests to make them pass corresponds
to only 23% of the test changes. The authors also conclude that failing tests are
deleted not because they are difficult to fix, but because they are obsolete. New
tests are added to check bug fixes, test new functionality, and validate changes
made to the code.

Zaidman et al. [2011] studied the co-evolution between production code and
test code. They conceived a tool to visualize these co-changes to help developers
better know their practices and improve them. The authors analyzed three projects:
two open-source, Checkstyle and ArgoUML, and one industrial, SIG. They sur-
veyed 2 persons on each project to gather their insights. The authors’ case studies
do not emphasize an increase in testing activity before major releases, but periods
of intense testing in the development’s history.

Amann et al. [2016] studied the general usage of the Visual Studio IDE. They
tracked the interactions with the tool of 84 professional C# developers in an in-
dustrial environment, combining 6 300 hours of work time. They found that unit-
testing tools are rarely used. They mention a tool (NCrunch) that automatically
runs tests on identified code changes and displays the results. They estimated that
9 developers (11%) used this tool for a total of 21 developer days (2%6) whereas
testing tools are “used on little more than a fourth of all developer days.” NCrunch
(only available for VisualStudio) matches the solution we wish to implement in
the company: it runs tests in the background to pro-actively give feedback to the
developers. However, Amann et al. [2016] describe their test selection mechanism
as still experimental and very rudimentary7. We have no information to explain its
low adoption in the experiment, but foremost, we have no information on its con-
sequences on the testing habits of the developers. Nevertheless, it has to be noticed
that Visual Studio 2017 newly integrates a tool that automatically selects the tests

6Our statistics from their numbers.
7From their web page http://www.ncrunch.net/documentation/concepts_engine-modes, 08/23/2016
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to relaunch after source code modifications.

Beller et al. [2015] study the usage of the IDEs by the developers to understand
“When, How, and Why Developers Test”. They report on a large scale, field study,
with 416 software engineers. They monitor the actions of developers in their IDE
thanks to their tool named Watchdog. Anyone could take part in this case study,
and it seems that most of the projects were open source but there are also students
and industrial projects. Their findings are:

• A majority of the developers rarely test in their IDE (note that they could run
tests outside of the IDE). The authors raise several reasons: there are often
no preexisting tests for the developers to modify, developers are not aware of
existing tests, or testing is too time-consuming or difficult to do. This would
indicate that testing is not a common practice. This is a preconception that
we have about the company.

• Quick tests do not lead to more test executions. Developers selected test
cases whatever the duration.

• Some failing tests are fixed later: 50% of the test repairs happen within
10 minutes whereas 75% within 25 minutes. This indicates a good test prac-
tice: tests results are considered. On the other hand, 25% of the failing tests
take a long time to be corrected.

Gligoric et al. [2014] compares manual and automated test selection. They as-
sessed how developers manually select tests and compare this manual selection to
an automatic one. They conclude that there is a need for better automated test se-
lection techniques that integrate well with developer IDEs. For their study, Gligoric
et al. use a group of 14 developers composed of five professional and nine students.
They asked them to install a plugin in their IDE which records code changes and
test executions. It is possible that students are better trained on regression testing
techniques that developers of the company. This paper focuses more on RTS than
the previous one and their main findings are:

• Test selection is frequently done (59% of the test executions), and most of
the time, the ratio of tests selected is less than 20%. It is important to see that
developers routinely perform test selection. We wonder if it applies in our
context;

• There is a low correlation between the amount of code changed immediately
before a test session and the number of manually selected tests in that session.
This finding is in opposition with Beller observations.

• Manual selection results in more tests executed than automated selection in
73% of the cases and results in less tests executed in 27% of the cases. This
shows that manual RTS miss to run some potential failing tests. This could
be improved by an automated tool. We need to see whether this is the case
in the company too.
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4 Conclusion
Our conclusions from the literature study: first, control flow graph approaches
seems to answer well our need for test selection for Worldline’s environment. Two
types of approaches exists, the dynamic and the static one. Literature do not con-
clude on the prevalence of one above the other. Our own study have to be done to
chose.

Second, tooling for test selection must be adapted to satisfy the Worldline con-
text. Especially, Jacoco, Infinitest and Moose seems to be good candidates to this
adaptation.

Third, studies on developers behavior about testing mainly involve open-source
systems or students and may not apply to Worldline. However, their methodology
is interesting and can be used as basis for comparison, especially the studies of
Beller et al. [2015], Gligoric et al. [2014]. We decided to take inspiration from
these papers for our study in Chapter 5.
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We need first to find the best approach to select tests adapted to Worldline envi-
ronment. We saw that, in the literature, two main approaches are proposed: static
and dynamic. The static approach creates a model of the source code and explores
it to find links between changed methods and tests. The dynamic approach records
invocations of methods during the execution of test scenarios. Understanding the
issues brought by each approach in the Worldline environment is important.

First, we propose a classification of problems that may arise when trying to
identify the tests that cover a method. Then, we give concrete examples of these
problems and list some possible solutions. We also evaluate other issues such as
the impact on the results of the frequency of method modifications or considering
groups of methods instead of single ones. The goal is to know whether or not static
approach can be used instead of the dynamic one for Worldline projects.

1 Taxonomy of Issues
To have a test case selection tool adapted to the Worldline environment, we had to
evaluate existing approaches.

As most of the projects of the company are written in Java, we therefore limited
ourselves to this language or at least to the Object-Oriented paradigm.

The projects use diverse tools and frameworks, that can be off-the-shelf (EJB,
Hibernate, Spring, Tomcat. . . ) or proprietary (in-house development). Also these
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projects typically use a client/server architecture for the web. Finally, the projects
often access databases (mainly Oracle and MySQL) through Hibernate.

Part of the applications are generated through some kind of Model Driven De-
velopment (MDD) approach (for more information on MDD see Kent [2002]).
Biswas et al. [2011] describe some approaches for test case selection in the pres-
ence of MDD. We will not work with them, instead we consider source code rep-
resentations. This is justified because we found that often in industrial projects, the
code has been manually modified after a first generation and is no longer synchro-
nized with the model.

Because of these particularities used in the studied project of Worldline, we
were confronted with different issues. We are presenting them here, classified in
four categories.

1.1 Proposed Classification of Issues

Problems in test case selection approaches arise when there is a break in the depen-
dency graph representing the system. Such breaks may occur for several reasons.
In our case, we identified four categories of reasons. Note that this list might not
be exhaustive but contains all the issues we encountered in the company. More
concretely, we ran our test selection approach on different projects, evaluated the
selected tests and tried to understand why tests were missing. From the different
cases, we build the following classification. Some categories may be specific to the
static or dynamic approaches.

Third-party breaks: The application uses external libraries or frameworks for
which the source code is not available. In this case, a static analysis of the
code cannot trace dependencies through the third-party code execution.

Multi-program breaks: The application consists of several co-operating programs
(e.g., client/server application). In this case, an analysis focused on one sin-
gle program cannot trace dependencies into the other program.

Dynamic breaks: The application contains code treated as data (e.g., lambda-
expressions or reflexive API). Specific instructions allow to execute this code
in another location than its definition. In this case, an analysis of the source
code cannot yield the dependencies that will occur at execution.

Polymorphism breaks: The application uses polymorphism. In this case, a de-
pendency analysis may reach a class on which nobody else depends because
all dependencies point to a superclass of it.

We now describe the issues we were faced with while investigating with some
selection tools.
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1.2 Third-Party Breaks

Third-party breaks are encountered when external source code is used in the ap-
plication. Third-party can be frameworks or libraries. This category only impacts
static approaches because dynamic approaches can still find in their execution
traces the application methods called by the third-party.

This issue is actually protean, i.e., can take several shapes. In some cases, we
found that it could be bypassed (see below), in other cases, not so easily.

1.2.1 External Source Code

Context. In a static approach context, using frameworks or libraries may lead to the
impossibility to deduce the dependencies from this part of the application.

Example. Figure 4.1 illustrates this problem. One supposes that methodC has
changed. The dependency chain cannot be traced back through the library. On the
opposite side of the dependency chain, testMethod depends on the library.

testMethod Library methodC

Desired back trace

Changed method

Retestable test

Method dependency
Library source code

Figure 4.1: Libraries Case

Possible solution. In Java, the dependency graph can be analysed and built from
the compiled code. Fortunately, Java bytecode is a somehow high-level language.
We investigated with a tool implementing such a mechanism. In other languages,
or for tools working on the source code, this might be a more serious issue.

1.2.2 Anonymous Classes

Context. It is accepted behavior in Java development to implement a callback
mechanism through anonymous classes. For example, in GUI frameworks (Swing,
SWT, Android), clicking on a button results in a call, by the framework, to a spe-
cific method of the application (callback). Very often, this method is implemented
by an anonymous class, defined in another method of the application.

Example. Figure 4.2 exposes this issue. Test method testMethod depends
on methodA which defines and instantiates AnonymousClassB. The method
anonymousMethodB on the other hand depends on methodC, but this last one
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is never explicitly called from methodA. The dependency between testMethod
and methodC can only be deduced if the containment link (link between methodA
and AnonymousClassB) is included in the dependency graph. For test case se-
lection, it is not important that methodA never actually calls methodC, all that
is important is that testMethod depends on methodC, a dependency that the
solution can discover accurately.

testMethod

methodA

AnonymousClassB

anonymousMethodB

Desired back trace

Method dependencyChanged method

Retestable test

methodC

Figure 4.2: Anonymous Classes Case

Proposed Solution. It would be easy in this case to modify the static analysis
tool to include containment links in the dependency graph, whether for all classes
or only in the case of anonymous classes.

1.2.3 Delayed Execution

Context. This case is very similar to the previous one in its description, but the
solution is different. In this issue, a class implements the Callable interface
and, as such, implements the call method. This method can itself be called asyn-
chronously according to different mechanisms (Future, Thread. . . ).

Example. Figure 4.3 illustrates this issue. testMethod depends on methodA
which depends on the CallableImpl constructor. CallableImpl imple-
ments Callable by implementing the call method. Finally, call depends on
methodB. methodA uses an engine to perform the asynchronous task by adding
the callable class and fetching the result. In this case, there is no static dependency
between the methodA and call, which breaks the dependency graph.

Proposed Solution. It is possible to identify a chain of dependencies going
back to a call method in a class implementing the Callable interface. The
static analysis tool may be modified to prolong this dependency chain from the
class implementing the Callable interface to the method that instantiates it. The
reminder of the chain does not pose a problem and can be traced back to the tests
that depend on this method.
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testMethod

methodA{

  engine.add(new CallableImpl());

  engine.getResult();

}
methodB

Method dependency

Desired back trace
Changed method

Retestable test

Interface realization

CallableImpl

call

Callable

<<Interface>>

Figure 4.3: Delayed Execution Case

1.3 Multi-program Breaks
Multi-program breaks arise when two applications, from two distinct execution en-
vironments, interact. This category impacts both dynamic and static approaches,
however, solutions for static approaches seem more practical.

1.3.1 Dynamic Calls Through Annotations

Context. Some methods are called through source code annotations. It happens,
for example, when the application is composed of a client and a server side. The
server side usually exposes some methods callable by the client. For example, Java
J2EE defines, on the server side, objects representing database tables which can be
used by a client application, through a lookup mechanism.

Example. Figure 4.4 describes the client/server problem. testMethod de-
pends on methodClient which uses methodServer through a remote call.
This call is possible thanks to the annotation @Remote defined on ClassServer.

testMethod methodClient

ClassServer

methodServer
@Remote

Desired back trace

Dynamic server class dependency
Method dependency

Changed method

Retestable test

Figure 4.4: Annotation Case

Possible Solution. The mapping between the client and the server classes in
a dynamic approach requires to synchronize and join the execution traces of the
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client and the server for each individual test. With a static approach, there are
usually markers in both applications (e.g., @Remote on the server side) that allow
to deduce the remote calls. Another possibility would be to consider a hybrid
approach using both static and dynamic analyses.

1.3.2 External Tests

Context. In some cases, an external framework provides its own automated tests
that call the developed application (e.g., SoapUI1). In this case, it can be difficult
to instrument the code to know which test is running and to compute its execution
trace. For a static analysis approach, the problem is similar to a third-party break.

Example. Figure 4.5 illustrates the problem. An external test externalMethod
exercises methodB, contained in the program under test.

methodB

Method dependency

Desired back trace

Changed method

Retestable test

ProgramExternal Tests

externalMethod

Figure 4.5: External Test Case

Possible Solution. In this case, a pure dynamic approach may not be able to
solve this issue because it might be difficult to separate the execution traces of each
test. Again, a hybrid approach could potentially solve this issue.

1.4 Dynamic Breaks

Dynamic breaks arise when pieces of code are treated as data with specific instruc-
tions to execute it when needed. A break might occur because the execution can
be located in an entirely different location than the definition of the code. This
category of issue only impacts static approaches.

1.4.1 Dynamic Execution

Context. Some programming languages, for example with a reflexive API like Java,
allow developers to invoke code dynamically from a string.

1http://www.soapui.org
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Example. Figure 4.6 illustrates the problem. testMethod depends on methodA
which invokes dynamically methodB. Despite the invocation, there is no link in
the dependency graph between methodA and methodB.

testMethod

methodA {

  meth = getMethod("methodB");

  meth.invoke();

}

methodB

Method dependency
Desired back trace

Changed method

Retestable test Dynamic dependency

Figure 4.6: Dynamic Execution Case

Possible Solution. In this case, a pure static approach would be difficult in
a generic case. However, uses of the reflexive API are very rare in the project
studied.

1.4.2 Lambda-Expression

Lambda-expressions are anonymous methods. They can be passed as method pa-
rameters and therefore executed anywhere. In Java, they can be used since ver-
sion 8, but many other languages also support them.

At first sight, it seems to be an issue for a static approach because the lambda-
expression can be executed anywhere in the program. However, to be used, a
lambda-expression has to be declared. It means that a test depending on it must
first invoke the method declaring it. Therefore, we are back to normal static analy-
sis position considering that a possible call is equivalent to an actual call.

Another view on the problem is to consider that lambda-expressions are recent
in Java, and as such not present in legacy code. They are also more advanced
programming artefacts that would not be found in typical information systems used
in Worldline.

1.4.3 Attribute Automatic Initialization

Context. The declaration of an attribute may include its initialization through a
method call. This call is performed directly in the class and not in a method scope
when a new instance is created. As such, the dependency might be to the class
itself and not the method called during the initialization.
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Example. Figure 4.7 illustrates this problem. testMethod has a dependency
to methodA which creates an instance of ClassB. This class defines a class at-
tribute, named attribute, which is initialized with the return of methodB.

testMethod

methodA {

   ClassB b = new ClassB();

}
methodB

ClassB

attribute = methodB();

Desired back trace

Class initialization
Method dependency

Changed method

Retestable test

Figure 4.7: Attribute Direct Access

Proposed Solution. This kind of dynamic execution can be solved in a static
way. For the classes that exhibit this problem (attribute initialization by calling a
method), the creation of instances (use of new) should be treated as a dependence
to the method.

1.4.4 Static Attribute Initialization

This issue is a variation of the previous problem where attribute is static. The
solution is the same because the static attribute is likely initialized only when the
class is actually used (through a call to new).

1.5 Polymorphism Breaks

Polymorphism breaks are specific to object-oriented applications. This category of
issue only impacts static approaches.

Context. In order to specify the public methods of a class, developers often use
interfaces declaring these methods. The methods of the class are not called as such
but through a receiver with the interface as its type. This problem is also encoun-
tered in case of inheritance where a subclass can override a superclass method.

Example. Figure 4.8 presents the problem. testMethod depends on Class-
Interface.method. And ClassImpl.method depends on methodA.
ClassImpl implements ClassInterface. This implementation link is ab-
sent in the dependency graph.

Proposed Solution. The static analysis tool can be modified to include the im-
plementation link in the dependency graph to trace back the dependency chain. In



2. Experimental Setup 53

testMethod

<<Interface>>

method

ClassImpl

method methodA
Method dependency

Desired back trace

Changed method

Retestable test

Interface realization

ClassInterface

Figure 4.8: Tests Selection Approach Through Interfaces

more complex cases, e.g., with several superclasses, all the links to the potential
overridden methods are added to the model.

2 Experimental Setup

To ensure that our approach of test selection is adapted to the Worldline environ-
ment, we made a case study with large representative projects, written in Java. The
idea is to evaluate the static approach versus a dynamic baseline, and, the impact
of the various problems identified in Section 1. We used existing open-source tools
that solve these problems. This section presents the tools and software projects
used to carry out these case studies.

2.1 Case Study Protocol

To analyze the test selection approaches, we considered changes and navigate the
model. As depicted in all the previous Figures, we navigate the model at a method
level, instead of a class, instruction or package one. The idea was to strike a balance
between accuracy of the selection on one hand and processing time and size of data
model on the other hand.

We will not investigate the impact of the multi-program breaks (Section 1.3)
because we could not compute the required baseline on which to compare to. As
we saw, this category of problems impacts the dynamic approach which is used to
create the baseline.

For each issue identified above, we study how its resolution impacts the test
selection approach in terms of: Number of Selected Tests, Precision, Recall, and
F-Measure (these metrics are rigorously defined in Section 2.4). So, the Research
Questions are the following:
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RQ1: What is the impact of the resolution of the third-party break issues (see
Section 1.2) on the test selection approach?

RQ2: What is the impact of the resolution of the dynamic break issues (see Sec-
tion 1.4) on the test selection approach?

RQ3: What is the impact of the resolution of the polymorphism break issues (see
Section 1.5) on the test selection approach?

RQ4: What is the impact of combining the solutions to different problems on the
test selection approach?

RQ5: What is the impact of changing the same method repeatedly (as occurs in
real life) on the test selection approach?

RQ6: What is the impact of considering real commits (that change several meth-
ods jointly) on the test selection approach ?

RQ5 and RQ6 are important for the application of the approach for the com-
pany. Developers rarely modify only one piece of software at the same time. So,
combining several methods and compare it to real changes is important. As real
changes, we considered commits in project repositories.

All case studies follow the same pattern that we will illustrate with RQ1. To
assess the impact of the third-party breaks, we will compare the results of two
similar studies: one bypassing the problem, the other not. Test coverage is given
by the dynamic approach (Jacoco tool) that is our baseline. The coverage from
Jacoco for the baseline is close to be perfect because our version of the source code
never actually changes. The baseline is only computed once. Results on the impact
of the third-party breaks issue involve:

i. We fixed one version of the source code on which we work. This version
never changes, all changes are virtual. No new model is created from the
changed source code, but we only consider, at model level, that a method
have been changed. We will ask the question “If Java method m() was
changed, would we be able to identify the tests that cover it?” This deci-
sion was necessary because fetching the source code and the dependencies,
recompiling, and running the tests for one version is resource intensive and
could not be computed in reasonable time and space for such a large study.

ii. We consider as “changed” each Java method of the application that is covered
by at least one test. Using a static approach, we try to identified the test cases
covering this Java method.

iii. From the test cases identified, we compute different metrics (see Section 2.4)

iv. The metric values are averaged over all Java methods (covered by at least
one test) to produce a result for the static approach considered.
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v. The same process is repeated for all static approaches and we compare their
respective results to answer the research question. The difference in the re-
sults is considered as the impact of the problem that one of the two static
approaches solves.

To answer RQ1, we apply one static tool (Infinitest) that can overcome the third
party break issue and another one (Moose) that cannot.

To answer RQ2, RQ3, and RQ4, we apply the same static tool (Moose) includ-
ing or not the solutions to the different problems considered. For RQ4 (combining
all solutions), we will not be able to include the solution to the third party break
issue, because it cannot be easily done with Moose.

To answer RQ5, we apply both static tools (Infinitest and Moose) on all Java
methods. The difference in the two static approaches is in the way the metric results
are averaged (Step iv.). In one case, we use a weighted mean where each Java
method has a weight corresponding to the number of commits (in the history of the
system) where it appears in. A Java method must appear in at least in one commit
(at its creation) but may be modified frequently (more than one hundred times for
some cases). The weighted mean is considered more realistic as in any system, all
methods are not changed with the same frequency. Thus, methods changed more
frequently will have more impact on the result.

Finally for RQ6, we apply the same static tools (Infinitest and Moose) on all
Java methods in one case and all system commits in the other case. As for RQ5,
we use all commits in the history of the system that touched at least one method
appearing in the version of the code we use. Commits differ from individual meth-
ods in that they may change many Java methods (up to 125 in one case). Commits
can give better results because some Java methods with good results can “cover”
for other Java methods in the same commit with unsatisfying results. For exam-
ple, one Java method suffering from a polymorphism break would still see its own
tests identified because another Java method not suffering from this problem was
changed in the same commit. Again commits are considered more realistic than
individual Java methods. We study past commits on one single code version where
oracle is calculated. As commits impact several methods, we consider the union
of the selected tests for each method to compute the metrics. We believe this is
acceptable because they still indicate that several Java methods were changed to-
gether and we would like to know if we would be able to identify all the tests if that
were the case again.

2.2 Projects

To perform our investigations, we selected three projects (P1, P2 and P3) of World-
line that we considered representative of the projects of the company in terms of
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size and technologies used. P1 and P2 are financial applications with more than
400 KLOC (Kilo Lines Of Code). P1 is a service (in term of Service Oriented
Architecture, SOA) dealing with card management. P2 is an issuing banking sys-
tem based on SOA and reusing the card management system developed in P1 (P2
uses P1 as a third party). P3 has no relation with the two other projects, and is an
e-commerce application. P2 and P3 test suites are mainly composed of integration
tests, that ensure the good behavior of the application with its dependencies and
the database. P1’s test suite mainly includes unit tests that guarantee the results
of its algorithms. In these projects, each test is a Java method using JUnit2. In
project P1, the external code is mainly composed of libraries. Projects P2 and P3
use frameworks, including P1, making frequent use of inversion of control3 and
sub-classing. Table 4.1 gives some detailed metrics on the size of the projects and
their test suites:

KLOC Core: thousands of lines of code implementing the features of the appli-
cation, excluding the tests;

KLOC Test: thousands of lines of code to test the behaviour of these features;
KLOC Covered Core: thousands of lines of code covered by at least one test;
#Green Tests: number of tests that are green on the version of the application

considered for our investigations;
#Method: total number of methods in the application;
#Covered Methods: number of methods with at least one line of code covered;
Avg Methods/Test: average number of covered methods by test;
Avg Tests/Methods: average number of tests covering a method which is covered

by at least one test;
#Commits: number of commits for each project;
Avg Methods/Commit: average number of core methods changed by commit;
Repository Creation: year of creation of the repository (remember however that

we only consider commits touching a method that still exist in the fixed code
version).

P1, P2 and P3 are big applications (hundreds of KLOC). P1 includes 5,323
valid tests; P2, 168; and P3, 3,035. In P1, the tests cover 4,720 methods (48%),
in P2, only 3,261 methods (6%), and in P3, 8,143 methods (18%). One could
think that these are rather low coverage values (particularly P2). Two facts may
explain this. First, the projects are old. They date from a period when there was
a less strong emphasis on automated testing in the company and manual testing
was prevailing. Second, we could not use all the tests, either because they were
based on specialized tooling that we could not instrument (see Section 1.3.2), or
because they failed. For these projects, only the tests handled by the dynamic

2http://junit.org/
3The client does not call the framework but the framework calls the client.
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Table 4.1: Global metrics of projects P1, P2 and P3
Metric P1 P2 P3
KLOC Core 447 716 302
KLOC Tests 184 48 74
KLOC Covered Core 97 49 74
#Green Tests 5,323 168 3,035
#Method 9,808 56,661 45,671
#Methods Covered 4,720 3,261 8,143
Test Coverage 48% 6% 18%
Avg Methods/Test 83 134 152
Avg Tests/Method 54 2 35
#Commits 2,217 467 2,115
Avg Methods/Commit 24 129 37
Avg Files/Commit 7 18 17
Repository Creation 2009 2015 2009

approach, are considered for the study, i.e., those that run without crashing. We
were surprised to find that some tests in each project were failing outright. This
impedes to use the dynamic approach (no execution trace) and thus to use them in
our studies. According to Pinto et al. [2012], tests that fail in such a new version
tend to be deleted not because they are difficult to repair, but because they are
obsolete. In their study, the authors found that failing tests are more often deleted
(1,594 instances of deletions, 59%) than repaired (1,121 instances of repairs, 41%).

The values of the KLOC Covered Core and #Green Tests metrics, in Table 4.1,
only take these tests into account. P1 and P3 are 6 years older than P2, with respec-
tively 2,217, 467, and 2,115 commits that we considered. P2 is actually a rework
on some legacy code dating back from 2010. However, we were not able to recover
the commits from the early version of the project. These projects are still alive and
evolving regularly.

Test execution (compilation and test execution included) requires 3 hours for
P1; 2 hours for P2; and 30 minutes for P3. This only includes the tests that we are
considering in our studies (i.e., excluding broken tests). This time is mainly due to
the setup of each test (database population, server startup and configuration); test
data volume; and the fact that there are abnormal conditions tests (timeout).

Commits seem rather big for P2, there are more than 100 methods, and 18 files
by commit.
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2.3 Dynamic and Static Approaches Tooling

For this study, we used the open-source tools defined in Section 2.2. All these tools
had to be modified to allow comparing them in our study. They deal with the whole
program at once whereas we want to evaluate the selection change by change.

For Jacoco, we modified the tool in order to separate information relative to
each test and thus know which test covers which Java methods. An aspect has been
implemented to start the recording at the beginning of each test and serialize the
coverage results at the end. The method dependencies associated to each test are
thus available.

Infinitest has been modified to be used in a standalone mode rather than through
an IDE, and, in Moose, approaches for test selection has been implemented on its
static model.

2.4 Metrics

An optimal test selection approach selects the smallest set of all test cases covering
a change. Biswas et al. [2011] use two characteristics of the test case selection
approaches to evaluate if they are safe and precise. An approach is safe if it selects
all the tests that reveal a modification. An approach is precise if it selects only tests
that reveal modifications of source code and not other tests. Therefore according
to these definitions, all test case selection techniques will exhibit some level of
imprecision, the tests selected can traverse a changed method but may not reveal
its modification. A safe approach has a recall of 1 and a precise approach has a
precision of 1.

According to the case study protocol (Section 2.1), the methods are not changed
but considered as such each in turn. As a consequence, the dynamic approach is
both precise and safe: all the tests selected by the dynamic approach cover the
changes; no other test covers a given change.

Due to the issues we identified, static approaches may miss some tests covering
a change and select others that do not cover it. To compare the approaches, we
focus on the quality of the test selection approach using four metrics that can be
computed from the traditional quantities:

• True Positives (TP ) is the number of tests selected by the static approach
(study) and the dynamic approach (baseline);

• False Positives (FP ) is the number of tests selected only by the static ap-
proach;

• False Negatives (FN ) is the number of tests selected only by the dynamic
approach;

• True Negatives (TN ) is the number of tests selected neither by the dynamic
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nor by the static approaches.
From these quantities we compute the following metrics: Selected tests, Preci-

sion, Recall, and F-Measure.
Selected tests represents the number of tests selected by the approach as a ratio of

the number of selected tests to the total number of tests. This metric corre-
sponds to 1− cost reduction criteria. The cost reduction criteria [Engström
et al., 2010] computes the decrease in the number of tests. A cost reduction
criteria value close to 1 means that the number of tests to relaunch is small
compared to all the tests of the application. On the other hand, a value close
to 0 means that the approach selects almost all the tests.

Selected tests =
TP + FP

TP + FN + TN + FP
Precision is the fraction of retrieved tests that are retestable (see Section 1.1). A

high precision means that the static approach selects essentially tests that
cover the changed method.

Precision =
TP

TP + FP

Recall is the fraction of retestable tests that are retrieved. A high recall means that
the approach is safe and that the tests covering a given changed method are
selected by the static approach.

Recall =
TP

TP + FN

F-Measure is the harmonic mean of Precison and Recall to show the overall per-
formance of an algorithm.

F -Measure =
2 ∗Recall ∗ Precision
Recall + Precision

Priority will be given to a higher Recall to make sure one does not overlook a
test that could discover a bug in the changed code. However, achieving good recall
is easy by selecting many tests. This would show up in the Precision and Selected
tests metrics. We must remember that our goal is ultimately to be able to give rapid
and useful feedback to the developer right after he commits a change. So, better
Precision would mean no useless test run. But Precision typically comes at the
expense of Recall, so good Precision could also mean some needed tests would not
be run, and, therefore, we could not give any guarantee to the software engineers
about the quality of their development. This would defeat the purpose of testing
the application.

Furthermore, as it is, our investigations show than we select a very small per-
centage of the entire test suite often less than a hundred tests. In these circum-
stances, we give preference to Recall to ensure more accurate feedback.
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3 Results and Discussion

This section presents our case study results to answer the six research questions.
Table 4.2 gives the metrics for each static approach. Figure 4.9 represents the
boxplots based on the last line of Table 4.2.

3.1 RQ1 – Third-Party Breaks Impact

To answer this Research Question, we consider Infinitest (that overcomes this is-
sue) and Moose (that does not). Because Infinitest works at the class level, we
do the same for Moose. Two characteristics of Infinitest had to be replicated in
our study to allow comparison with this tool. First, Infinitest works at class level,
dependencies in the code are projected at class level (e.g., an invocation between
two methods is raised up as a dependency between the classes containing these
methods). Second, Infinitest uses class imports to select tests, consequently, direct
inheritance, invocations, accesses, and references to classes are taken into account.
We created a “Moose for Infinitest” version where we raise dependencies at the
class level and follow the inheritance, access, and reference links in addition to the
invocation links.

Infinitest has higher Selected tests for the three projects, but the difference with
“Moose for Infinitest” is low. For P1 and P3, the Precision is worse and the number
of tests selected decreases and P2 behaves as would be expected (higher Precision
when there are less tests selected). There might be some special condition on P1
and P3 that makes them behave this way. One explication is the presence of more
inheritance or accesses than in P2. P2 extends the classes of P1 to implement
specific features.

Recall is better for Infinitest for the three projects (resp. 72%, 66%, and 44%)
which is normal since it selects more tests. The difference however is small as will
be seen when looking at the next metric.

F-Measure is more consistent and gives better results for the three projects to
Moose (not solving the third party breaks).

Based on the F-Measure results, one could conclude that there is no urgent need
to solve the Third Party Break issue on our three projects. The Recall results are
slightly lower (from 72% to 70% for P1; from 66% to 63% for P2; and from 44%
to 41% for P3), but this could be acceptable since the time to run the selected tests
will be shorter.

3.2 RQ2 – Dynamic Breaks Impact

For this Research Question, three Moose approaches, at method granularity level
and that bypass different dynamic break issues are investigated. They are to be
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compared with the Moose approach at method granularity level (line “Moose (meth-
ods)” in Table 4.2).

For the three projects, we see almost no change between Moose solving one
of the specific Dynamic Break issues and Moose not solving any issue. The only
exception is slightly more Selected tests for P2 when solving the Attribute Auto-
matic Initialization (Section 1.4.3) issue, followed by significantly better Precision,
Recall and consequently F-Measure.

The first conclusion would be that it is mostly useless to try to solve these
issues. We will see however in Section 3.4 that issues may be intertwined and that
solving only one alone might not be enough.

3.3 RQ3 – Polymorphism Breaks Impact

For this Research Question, the Moose approach at method granularity is compared
to the Moose approach (at the same granularity) bypassing the polymorphism issue.

The three projects have more Selected tests in the Moose with Polymorphism
approach than in the base approach. Precision improves significantly for P2 and
P3 and remains equal for P1. Again an improvement here is unexpected since we
selected more tests. Recall improves drastically for P1, from 36% to 91% and
significantly for P2 and P3. And of course F-Measure improves also for the three
projects.

The conclusion is that it was very important to solve this specific issue in our
cases. P1 particularly shows excellent results, with > 90% Recall, a still good
Precision (43%, about half of the selected tests do cover the changed method) and
a similarly good rate of Selected tests. This can be explained by the high usage of
Java interfaces in the projects. Interfaces are used to express the methods of the
class callable from outside frameworks.

3.4 RQ4 – Impact of Combining Solutions

For this research question, we look at Moose approaches combining solutions for
anonymous classes, delayed execution, polymorphism, and dynamic break issues.
This will be compared to the bare Moose approach at method granularity with
no solution implemented, as well as other Moose approaches with any individual
solution included.

The combination of all implemented solutions gives very good results. Overall,
the results for P1 and P3 are similar to the ones of the previous study (RQ3, Section
3.3) and P2 is showing more Selected tests, much better Precision, Recall, and F-
Measure.

Results for P2 show that combining solutions to several issues at the same time
improves the situation in a way that would not be expected if one looks at the
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individual results of each solution. The conclusion we draw from this is that issues
are intertwined and must be solved jointly.

Another conclusion is that by answering all the issues (minus the Third Party
Breaks that Moose cannot solve easily), we end up with very good results, Preci-
sion ranges from 34% (P3) to 61% (P2), and Recall ranges from 41% (P3) to 91%
(P1). These results position the static approach as a viable solution to the test case
selection problem.

Selected testsSelected testsSelected testsSelected testsSelected testsSelected testsSelected testsSelected testsSelected tests PrecisionPrecisionPrecisionPrecisionPrecisionPrecisionPrecisionPrecisionPrecision RecallRecallRecallRecallRecallRecallRecallRecallRecall
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Figure 4.9: Boxplot of the distribution of the Moose w/ att. & anon. & polym.
& delayed exec. study considering all Java methods individually. The diamonds
represent the mean value of the metric (presented in Table 4.2)

Figure 4.9 shows as boxplots the distribution of the data of our last study con-
sidering all java methods independently. For example, the boxplot for the Precision
of P1 means that the minimum reached is 0%, the maximum is 100%, the median
is around 30%, and first and third quartiles are close to 10% and 85%. The mean is
represented with a diamond. On the Figure, the distribution of the Precision of P2,
and the Recall of P2 and P3 is “binary”. Almost all the values are equal to 100% or
0% (only in 25% of the cases, Precision (resp. Recall) has an intermediary value).
This can happen, for example, with methods covered by only one test: either the
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test is found by the approach (Recall = 100%) or not (Recall = 0%). For Precision,
this happens, for example,when only one test is impacted after a modification: ei-
ther it was selected (Precision = 100%) or not (Precision = 0%). In this case of
“binary” results, the median is of less value because it will be either 100% or 0%.
Here, the mean gives a better estimation of the central value of the results.

Sometimes, the static approach selects up to 62% of the test suite. This behavior
can happen if a method that is often called is modified.
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Figure 4.10: Boxplot of the distribution of the Moose w/ att. & anon. & polym. &
delayed exec. study considering a weighting of Java methods with the number of
commits they appear in

3.5 RQ5 – Weighting of Results with the Number of Commits

For this study, we summarized the results in a new table (Table 4.3) that should
be compared to the first one. Figure 4.10 represents the boxplots based on the
last line of Table 4.3. Although we give the results of all studies for the sake
of completeness, we will be focusing on the last line in our discussion. In these
new studies, the results of each methods are weighted according to the number of
commits the method appears in (Section 2.1). The idea is that the most committed
Java methods could have consistently good (or bad) results.
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In summary, the results (last lines of Tables 4.2 and 4.3) are not very different.
This new study consistently brings marginal decrease in Precision and Recall and
small increase in Selected tests. Since the value for one given method is the same
in both studies, the difference, on average, can only come from the weighting of
the methods results and, therefore, it seems that “bad” methods would have higher
weight.

This would suggest that the methods where static approaches only select the
wrong tests are more frequently committed. This is not good news, but the dif-
ferences are small (typically one percentage point) and would need to be more
formally tested in a specific case study. Moreover, Figure 4.10 results are almost
the same as those presented in Figure 4.9 which reinforces the small impact of the
changes.

3.6 RQ6 – Aggregation of the Results by Commit

To answer this last Research Question, we again replicate all studies, but working
with commits instead of individual methods. All the results are summarised in
Table 4.4 but we will concentrate on the last line and compare it to the one in Table
4.2. Figure 4.11 represents the boxplots based on the last line of Table 4.4.

The first observation regards the number of Selected tests. Since commits com-
prise many Java methods (average for P1 is 24, for P2 it is 129, see Table 4.1), it is
expected that more tests would be selected. This is the case with our baseline (Ja-
coco) with a larger percentage of all tests selected (P1, from 0.8% to 8%; P2, from
1% to 21%; P3, from 0.4% to 14%). This is an increase in the range of an order
of magnitude. However, we see that the static approaches (mainly at the method
granularity level) tend to exhibit a smaller increase in the number of selected tests
(P1, from 3% to 4%; P2, from 0.8% to 3%; P3, from 2% to 6%). So even-though
the static approaches selected more tests, one could conclude that they are actually
more selective than necessary here: P1 and P3 improve their Precision (resp. from
43% to 55%; and from 34% to 49%), but P2 decreased (from 61% to 45%). So
good news for P1 and P3, that are more selective but also more precise.

Being more selective, the Recall results were bound to worsen: the approaches
select less tests than they should according to our baseline. This is what happens
with P1 and P2 (resp. from 91% to 81%; and from 64% to 45%), but P3, which
previously had the lower Recall, improved it (from 41% to 56%).

One conclusion is that it does not seem to be the case that one Java method in
a commit “covers” for another one. That might indicate that the commits touch
various concerns for which different subsets of tests are necessary. That would be
coherent with the large size of the commits that we already mentioned.

Moreover, results presented in Figure 4.11 are different than those of Figure 4.9.
The distribution of the Precision tends to increase while the Recall decreases ex-
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Figure 4.11: Boxplot of the distribution of the Moose w/ att. & anon. & polym. &
delayed exec. study considering Java methods grouped in commits

cepted for P3.
Considering commits instead of individual Java methods also means that Java

methods are weighted, just like in the preceding study. We saw a very small wors-
ening of the results (more tests selected and recall decreasing) when weighting the
Java methods and this could account for a part of the bad results here: it is possible
that Java methods with bad results are committed more often than the other ones.

3.7 Overall Conclusions

We draw three overall conclusions from these investigations.
First, issues highlighted in Section 1.1 might be intertwined. This means that

finding the tests from a given method can exhibit several of the issues we identified.
This implies that solving only one of the issues would not allow to identify all the
tests that cover this method. Intertwining may be influenced by the development
patterns used in the application.

Second, issues do not have the same impact on the projects. This might be the
consequence of different coding conventions or rules. For example the attribute ini-
tialization issue (Section 1.4.3) is not present in P1. In contrast, the polymorphism
issue has a high impact on P1’s results. In P1, external libraries are largely used.
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In Java such uses occur through calls to implementation and interfaces. Dynamic
breaks only impact P2 due to the specificity of the application to make batches of
operations. Such issues might be helped by establishing better coding conventions.

Third, considering commits instead of individual Java methods tend to worsen
the results with approaches that are too selective to keep the same level of good re-
sults. The large size of the commits might be an important factor in this behaviour.

Another conclusion from Section 1.1 would be that even in one category, issues
can unfortunately be very different and require each a specific solution.

4 Evaluation of Validity

This section discusses the validity of our case study using validation scheme de-
fined by Runeson and Höst [2009]. The construct validity, the internal validity, the
external validity, and the reliability are presented.

4.1 Construct Validity

Construct validity indicates whether the studied operational measures really repre-
sent what is investigated according to the research question. The purpose of this
study is to evaluate pros and cons of different approaches for test case selection
and compare static and dynamic approaches to select the optimal test set to execute
after a change in the application.

Metrics Validity
Four metrics have been chosen: the ratio of selected tests, the Precision, the

Recall and the F-Measure. These metrics are considered relevant in Biswas et al.
[2011] and Engström et al. [2010]. There might be an issue with our cost reduction
metric which does not consider execution time but number of test selected.

Another point related to the time gain that one may hope from test selection
is linked to the initialization of the tests. Indeed, a part of the total time to test is
caused by long initialization. This initialization can occur for the entire test suite,
for each test-class (annotation @BeforeClass in JUnit 4) or each test-method
(annotation @Before in JUnit 4). Selecting tests has the potential to reduce the
@BeforeClass and @Before initializations. We performed a small study with
one commit that led to 43 test-methods selected (on a total of 5,323) in 7 test-
classes (on a total of 392). Resulting testing time was 13 min: 4 min for the first
test-class (including global initialization + @BeforeClass) and 1 to 3 minutes
for each successive test-class (including only their respective @BeforeClass).
Based on this result, we assume that, for this project, test selection will allow to
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reduce testing time because all initializations are not done globally but also on a
test-class or test-method basis.

Granularity Level Validity
For these case studies, we mainly considered a method granularity. We used

class granularity only for RQ1 where our comparison basis was at class level.
By comparing both approaches, the cost reduction for Moose/class is much

worse than Moose/method. The precision is also worse, but, recall improves. For
P1, the percentage of selected tests goes from 19% in the case of Moose/class to
0.4% in the case of Moose/method. For P2 and P3, these percentages are respec-
tively around 2% in the case of Moose/class and 0.1% in the case of Moose/method.
Moose/class execution time is around 34 minutes for P1 (down from an original 3
hours), and around 3 minutes for P2 and less than one minute for P3. These execu-
tion time values are good. As we want to have a high Recall and a small set of tests
selected, we have yet no clear argument to choose the best granularity level. On
one hand, as exposed before, the time required to initialize tests is a concern. Part
of this initialization is performed once for each test class. For this part, working at
class level would be a good choice as there would be little additional gain in term of
time from selecting only some test methods. But this kind of generalization cannot
be done on all projects of Worldline. It is also possible that each test sets up its
own environment. In this case, running all the tests of the chosen class will make
developers loose time by launching un-relevant tests (precision for Moose/class is
worse than for Moose/method).

4.2 Internal Validity

Internal validity indicates whether no other variables except the studied ones im-
pacted the result.

There was an issue with anonymous classes that, obviously, cannot be identified
by their name from one study to the other. For this reason, their methods have not
been considered as “changed” in the studies.

We have been careful to test every solution independently of the other before
combining them. Our modifications of Infinitest and Jacoco did not introduce un-
wanted errors in the results of these two tools as we did not touch the algorithm
parts but how they are run on the tests.

Finally, Tengeri et al. [2016] argue that Jacoco which is based on bytecode
instrumentation may produce erroneous results compared to source code instru-
mentations methods. Jacoco misses some really covered methods. At first, the
difference in the overall percentage of both approaches presented by Tengeri et al.
might not seem too big (between 0.5 – 8.5%), but relative to the actually covered
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elements, the difference can be as high as 24%. However, on a per-test and per-
method levels, it can have bigger impact. According to Tengeri et al. [2016], the
delta on the coverage can be explained by another way to handle the project sub-
modules, instrumentation issues, or errors in name encoding. By using the same
tool, the confidence in the results stays the same whatever the tests covering a
method: the instrumented bytecode will result in the same executed code, the han-
dling of the project submodules, and the name encoding will stay the same. This
issue may impact precision and recall of a method only if it is supposed as marked
by Jacoco and the coverage of one test that should be related to this method, is not
detected by the tool.

4.3 External Validity

External validity indicates whether it is possible to generalize the findings of the
study.

We are fully aware that our results cannot be easily generalized as such and took
precautions to present them in their true context. The results presented in this paper
involves only three Java projects of one company. These three projects are different
considering their size, number of tests, test coverage, and used frameworks and
annotations. Moreover, they face different issues (e.g., P1 does not present the
attribute initialization issue).

Some of the issues discussed in Section 1.1 are fully independent of the pro-
gramming language: such as external source code, testing exercised by external ap-
plications, or dynamic execution. Other issues, such as anonymous classes, delayed
execution, dynamic call through annotations, attribute automatic initialization, are
specific to Java.

5 Comparison to Other Works

Two other studies [Ekelund and Engström, 2015, Soetens et al., 2013] implement
tests selection approaches and provide the same metrics as for our case study (se-
lected tests, precision, and recall). Table 4.5 gathers the results of these studies.

Soetens et al. [2013] propose a static approach at method granularity based on
the FAMIX meta-model. Their approach relies on real change sets gathered in com-
mits. For each of these change sets, their static approach is compared to a dynamic
one used as reference. The dependency graph they use only contains links between
methods. Two open-source applications (Cruisecontrol and PMD) are used as input
data for their study. For both applications, 1% of the test cases is selected. They
obtain respectively, for each application, a recall of 77% and 58%, and a precision
of 84% and 83%. These results are better than our Moose/method approach. First,
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Table 4.5: Comparison of the static approaches to the dynamic one to select the
tests after a method change

Project/Approach Selected Tests Precision Recall

Our Approach
P1 4% 55% 81%
P2 3% 45% 45%
P3 6% 49% 56%

Soetens et al. PMD 1% 83% 58%
Cruisecontrol 1% 87% 77%

Ekelund and Engström Wide approach 37% 1.5% 95%
Ekelund and Engström Narrow approach 4% 7.4% 79%

P1 and P2 are larger projects than PMD and Cruisecontrol that counts around 20
times less lines of code. Second, P1 and P2 use a lot of frameworks and libraries
which does not seems to be the case for PMD and Cruisecontrol. However, by
solving all the previously identified issues, we obtain results close to Soetens et al.
in terms of recall: despite our precision being much lower (close to 30% less), we
achieve a better recall for P1 with 81%. So, resolving the issues seems to improve
the recall, to select more tests and to lower the precision. Our approach is coherent
with the one of the authors and could be used by the developers of Worldline.

Ekelund and Engström [2015] select tests based on test result history. This
history archives changes at package granularity and corresponding test results for
each build of the application (i.e., the execution of all the test cases by a continu-
ous integration server). Such an approach has been defined since no other existing
approach based on source code, bytecode, or dynamic analysis was possible due
to the huge size of the studied application that counts several million of lines of
code. When a package changes, thanks to history data mining, the authors know
the potentially affected tests and select them. These tests are the ones that failed at
least once when, in the past, this package changed (narrow approach) or whatever
the package changed (wide approach). The accuracy of the selection algorithm is
related to the number of builds used. However, considering a too large history may
introduce noise in the selection mechanism since the source code may have evolved
a lot. The authors found that the algorithm is optimal for a history containing 100
builds. This approach is language independent and uses few resources but relies on
a history of the build results. Such a history does not often exist in companies and
requires time and effort to be built. In the case of the wide approach, the ratio of
selected tests reaches 37%, the precision and the recall are respectively 1.5% and
95%. In the case of the narrow approach, only 4% of the tests are selected with a
precision of 7.4% and a recall of 79%. The studies of Ekelund and Engström lead
to recall with the same order of magnitude than our project P1. However, precision
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results are very low, because they work at package level. In Worldline, such an ap-
proach is complex to put in place: yet, no history of the test execution is recorded.
Having the test history for all the projects of the company is costly because, first,
some the projects tests are not launched on integration servers, second, the main-
tainers of these servers do not like to see such an history stored: it congests the
hard drives.

6 Conclusion
To reduce the number of tests the developers have to run after a change in their
source code, we investigated different approaches on three Java projects of the
company. These projects counts several thousands of lines of code. For adapt-
ing the test selection approach to Worldline developers, we met several issues that
we generalized and categorized. Solutions to these issues were also proposed and
implemented.

From the case studies we carried out, we draw three conclusions: First, the
issues we discovered might be intertwined which means that a given method can
exhibit several of the issues we identified. As a consequence, solving only one of
the issues would not allow to identify all the tests that cover this method. Several
solutions need to be combined together to fully resolve any of the issues. Inter-
twining may be influenced by the development patterns used in the application.
Second, problems do not have the same impact on the projects. Despite that they
have a common ground, each project deviates from the common guidelines and
uses its own frameworks. It can influence the test selection. However, in Java, the
polymorphism problem is recurring and solving it has a great impact on the test
case selection results. And third, even in one category, issues can unfortunately be
very different and each requires a specific solution. For example, Polymorphism
Break requires to find the superclasses of a modified class whereas Attribute Auto-
matic Initialization Break requires to search for uses of instance variables.

Among the considered approaches, the dynamic one has been considered an
accurate baseline. However, this approach has two major drawbacks: First, it is not
generic and so depends strongly on the data used for the tests. Second, if a test is
failing, it cannot be selected by this approach.

To put in practice the test selection, the static approach with all the known
drawbacks resolved seems to give results close to the dynamic one. Moreover, it
brings some advantages: tests do not have to be launched to establish a baseline
at the beginning of the test selection, and, to ensure the good selection of the tests
during the modifications of the source code.
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Reports on developers behavior about testing in the literature involve highly
distributed open-source projects, or are based on a study of students programmers.
As a company might behave differently, we want to enhance our comprehension of
its environment. A secondary purpose is to collect base data to detect the possible
impact of future automated test selection actions. To fulfill these goals, we studied
Worldline developers by taking inspiration from experiments of two papers of the
literature [Beller et al., 2015, Gligoric et al., 2014], described in Chapter 3. Both
studies establish a baseline to compare to. Our following field study describes how
often the developers use tests in their daily practice, whether they use tests selection
and why they do it or not. Results are reinforced by interviews with developers
involved in the study.

1 Experimental Setup
This section presents the research questions that we set and the methodology to
answer them.

1.1 Research questions
The two experiments in Beller et al. [2015], Gligoric et al. [2014] seem to answer
well our need of studying the habits of developers: the first paper characterizes
how developers use tests in their daily work, and the second one characterizes how
developers can use RTS to provide faster feedback after modifying a piece of code.
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However, both experiments also had characteristics that did not fit well into our
context and that might render their conclusions useless to us. Neither study is
made in an industrial context: Beller et al. [2015] use open-source, students, and
industrial developers, and, Gligoric et al. [2014] use students and industrials. From
these studies, we only kept the questions of interest. We set the following research
questions for our case study:
RQ1: How and Why Developers Run Tests?

This research question mostly take inspiration from both papers. It is decom-
posed as follows:
RQ1.1 Do developers test their code changes?
RQ1.2 How long does a test run take?
RQ1.3 Do quick tests lead to more test executions?
RQ1.4 Do developers practice test selection?
RQ1.5 What are common scenarios for manual RTS?

RQ2: How Do Developers React to Tests Run?
This research question stems from the paper of Beller et al. [2015]:
RQ2.1 How frequently tests pass and fail?
RQ2.2 How long does it take to fix a failing test?

RQ3: How and Why Developers Perform Test Selection?
This last research question includes most of the questions from the paper of
Gligoric et al. [2014]:
RQ3.1 Does manual test selection depend on size of test suites?
RQ3.2 Does manual test selection depend on size of code changes?
RQ3.3 How does manual test selection compare with automated one, in

terms of precision and safety?

1.2 Experimental protocol

Participation to the case study was voluntary. We advertised it on the internal mail-
ing of Worldline and we set up a lottery to attract more volunteers. We also did as
much advertising as possible through our network of relations. Participants had to
download and install the plugin we developed (see after). The plugin made data
collection completely transparent for the participants which was a strong require-
ment for them. We also kept anonymous the data collected. This way, participants
know that the managers cannot retrace the developers who do not run enough tests.

For data collection, we needed information on the test runs and from the source
code (to compute code changes). One difficulty is that the development environ-
ments of the company are heterogeneous. Developers can code in the IDE of their
liking (usually Eclipse or IntelliJ), and use different frameworks to run their tests
(usually JUnit or Maven). The versions of all these tools are also not always the
same.
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Developers were very concerned that the participation to the case study should
not add any burden or delay to their normal work. This, combined with the hetero-
geneous aspect of the developers environments, limited the data we could collect.
It made it very difficult to log data with the same level of detail as the two papers
we compare to (down to keyboard and mouse events for Beller et al. [2015]). This
in turn impacted how well we could answer some questions (see Section 1.3). We
collected test information through a plugin that was developed for Eclipse and for
IntelliJ. It logs the same data:
Developer id: A unique id given to the developer;
Project name: Referring to the Eclipse or IntelliJ project;
Repository URLs: The names of the source code repositories related to the project,

one project can be stored on several repositories;
Repository version: The source code version in the repository, i.e., commit id of

the last checkout/update/pull request;
Test session start: Timestamp (date and time) of the launch of the test runner;
Test session end: Timestamp at the end of the last test execution;
Tests executed: The list of each test executed in the session with the following

details:
Fully qualified method name: The name of the test method with its class

and package;
Test duration: The duration of the method execution;
Test status: The result of the test: PASS, FAIL (wrong assert), ERROR (un-

expected exception), or SKIPPED (e.g. annotated with @Ignore in
JUnit);

The plugins record the tests sessions (if they are launched from within the IDEs)
and send the data to a server. The plugins look for either JUnit runs or Maven runs.
Tests run out of IDEs are not logged. This can be a concern, primarily for Maven,
as it is rarer to run JUnit stand-alone.

1.3 Filtering and Massaging Data

As usual for in vivo case studies, filtering and massaging data to get meaningful
answers, was a major task. Because of the way we collected data — this in turn
dictated by a strong requirement from the company and the developers —, some
information was not readily available, e.g., the code changes are not recorded by
the plugin but extracted from the source version repository. We discuss here the
hypotheses we had to make.

Test session. Gligoric et al. [2014] define a test session as a run of at least
one test between two sets of code changes. Beller et al. [2015] split developers
work in Eclipse sessions: from the opening of the IDE until its closing. They see
Eclipse sessions as natural dividers between work tasks and between work days.
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Next, they subdivide sessions in intervals. A JUnitExecution interval is created at
the invocation of the JUnit runner (or Maven test build) and ended when another
interval starts (e.g., typing interval).

For this experiment, we defined a test session as one execution of the JUnit test
runner or of a Maven test job. They can be composed of one or several tests. In
Figure 5.1, test sessions are represented by T1, . . .T7.

Time

AT1 AT3AT2

T2T1 T3 T4 T5 T6 T7C2C1

5mn 5mn 5mn

t1 t2 t3 t4 t1 t5 t6 t1 t2 t3 t4 t6 t7

Figure 5.1: A test/code session with three agglomerated test sessions (AT1, AT2,
AT3) themselves comprising several test sessions (T1, . . . , T7), themselves com-
prising several tests (t1, . . . , t7). C1 and C2 are commits, C1 being the direct
ancestor of C2. All events after C1 occur on the same project by the same devel-
oper.

Let us consider a developer wanting to run two specific tests from two different
classes. With JUnit, the options are either to run all the tests of the project or
run independently the two tests. Developers often choose the second option. This
means we will have two test sessions. However as far as test selection is concerned,
we would like to consider that there was only one “session” including the two tests.
However, because we are considering test selection and the tools used are not well
suited for it, we have to introduce another concept:

Agglomerated test session. An agglomerated test session is a set of successive
tests sessions in the history of a project. Beller et al. also consider test session
(called JUnitExecution) and agglomerated test session (called Test Session). Be-
cause we do not log every interaction in the IDEs (keyboard or mouse events), we
need an heuristic to bound the agglomerated sessions. Two successive test sessions
on the same project from the same developer id will be agglomerated as long as:

• The two test sessions occur within a fixed time frame (we chose 5 minutes).
Beller et al. [2015] have a similar heuristic with their “reading interval”
backed by an inactivity timeout of 16 seconds. In Figure 5.1, AT2 and AT3

are two separate agglomerated test sessions because the time frame between
test sessions T4 and T5 is greater than 5 minutes.

• No single test occurs twice in an agglomerated session. The idea here is that
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if a developer runs a test, then changes the code (which we cannot see), then
reruns the test to check if it works, we do not want to group both execution
of the test as a single group of tests. Gligoric et al. [2014] had the same issue
but they can verify whether the developer coded between two executions of
the same test or not. This issue is discussed in Session 3. In Figure 5.1, AT1

and AT2 are separate agglomerated sessions because T3 repeats a test also
included in T1.

Another important issue was to determine what code was being tested. Because
we only monitor test sessions and commits (represented as circle in Figure 5.1),
it is difficult to know exactly what was the source code tested. For the research
questions that require this information (mainly those relating to test selection), we
had to use another heuristic and a subset of all the test sessions.

Test/Code session. A Test/Code session is a test session that we could asso-
ciate with a commit, and thus with the source code that was tested. For this, we
group together test sessions and commits that occur on the same project, by the
same developer id, and within a time frame of five minutes (similar to the agglom-
erated test session). This is the case for AT3 in Figure 5.1. The five minutes
threshold was chosen after manually looking at a number of test sessions and com-
mits that were close. The main difference with “Agglomerated test sessions" is that
Test/code sessions are associated to commits whereas “Agglomerated test sessions"
were computed independently.

Additionally there may be other test sessions (AT1 and AT2 in Figure 5.1)
between a test/code session (AT3) and its ancestor commits (C1). Test sessions
carry a commit identifier (see Section 1.2). If a Test/Code session (AT3) has a
ancestor commit (C1) whose identifier is associated to test sessions (e.g., T1), then,
this test session will be added to the Test/Code session. The scenario envisioned
here is: the developer does a checkout/update/pull request, changes the code, tests
it, makes further changes, tests it more, and finally commits it. In this case, we
group the test sessions in the Test/Code session and we assume they all test the
code that was committed. This last step is independent of any five minutes interval.
This (partial) dismiss of the five minutes threshold is the other difference between
“Agglomerated test sessions” and “Test/Code sessions”. In the end, everything
after C1 in Figure 5.1 is considered one single test/code session.

Code change. We use the test/code sessions to compute code changes. We
compare the code in the commits of a test/code session (C2, final code) to the code
in the direct ancestor of these commits (C1, original code).

Amount of code changes. Some research questions require to evaluate the
amount of code changed. This will be estimated as the textual (line based) diff
between two versions of code. Gligoric et al. [2014] used the number of AST node
differences between two versions of the code, but because of the size of the projects
and the number of projects, it was intractable for us to use the same solution.
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1.4 Automatic Test Selection

To answer research question RQ3.3, we must compare manual test selection done
by the developers (corresponding to the tests they launched) with what they should
have selected given the changes to the code. For this, we compute code changes
(see above) and what tests exercise these parts. We used the Moose static approach
solution at a method granularity level as described in the previous chapter. This
approach solves all the issues we identified and has the best precision and recall
among the ones tested. If one of the methods of the project is affected by a code
change, the associated test should be selected and re-launched to check the validity
of the change. Our oracle is not perfect but still is a good approximation for a static
approach as shown in the previous chapter.

1.5 Interviews with the Participants

To extract more insight from the participants of this experiment, we conducted an
interview at the end as suggested by Wohlin et al. [2000]. This study is a mixed
analysis as described by Tashakkori and Teddlie [1998]. It is used to add insights
on the quantitative data thanks to a qualitative analysis. We followed the guidelines
of Hove and Anda [2005] to report the context of the interviews.

1.5.1 Participants

Participants all originate from Worldline. We asked among the employees that
installed and used the test recorder plugin if they wanted to be interviewed. The
participation to the interviews is on voluntary basis. So, the participants are coming
from the 32 developers that previously installed the plugin. We asked them by
emails to contact us to be interviewed. However, in front of the low number of
answers (only one), we decided to contact all the participants one by one to conduct
the interview. On the 32 participants to the previous experiment, 11 participants
accepted to take part in the interviews. No monetary compensation was given.
These 11 interviews are described in Table 5.1. They are all developing in Java and
are using Eclipse or IntelliJ as their IDE. They reported between 4 and 30 years of
experience in IT and 4 to 28 in the company.

1.5.2 Study Setting

On face to face in their office, or through video conferences, we conducted 20-30
minutes discussions to realize the interviews. 13 questions have been designed to
bring insight for each research question where quantitative data have been already
studied. After a brief description of themselves and a quick presentation of their
project, we asked them the questions:
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Table 5.1: Descriptive Statistics per Participant

Years of Experience Job Position
in IT in Worldline on the project

Alice 9 5 2 Developer

Carol 5 5 3 Architect
Dave 4 4 4 Developer
Eve 9 9 2 Developer
Ivan 30 27 10 Developer
Justin 7 4 2.5 Developer
Plod 20 20 1 Developer
Steve 4 4 2 Developer
Trent 30 25 4 Technical Leader
Walter 28 28 0.5 Technical Leader
Zoe 20 18 0.1 Technical Leader

• Do you consider that your application is sufficiently tested? Why?
• How do you proceed with the tests? Do you test at each change? Before a

commit? Along the developments? At the end of the developments? Before
releasing to the client? . . . Before a change, do you check that the tests are
passing?

• What are the difficulties do you encounter to test your application?
• What kind of tests are you launching (Unit, Integration...)?
• Do you launch tests outside the IDE? Why?
• How do you choose the tests to launch?
• How frequently are you faced with a feeling of lack of tests in your applica-

tion?
• Are you trying to tests all the changes you made on your application?
• For what reasons would you not test a change?
• What is your behavior in front of a failing test? Do you check whether it was

green before? Do you correct it? Delete it? Ignore it? Modify it?
• Literature Gligoric et al. [2014] details two strategies to relaunch the tests

when some are failing:
– Launch the tests one by one until it is passing and go to the next one;
– Launch a same group of tests until they are all succeeding;

Does your behavior fit itself in one of these groups?
• How do you explain the huge number of green tests versus the low number

of tests that fails?
• Do you have the feeling to launch some tests needlessly?
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This questionnaire was designed to focus on each of our research question.
It was allowed to answer the questions in any order. Depending on the discus-

sion flow, we preferred to let the respondent answer a question and come back to a
miss one after.

The interviewer was the developer of the plugin recording the tests. He has a
good knowledge on testing and the Worldline development processes.

1.5.3 Data Collection

To collect the data of the interview, only notes were taken of the answers to the
questions. The interviewer was able to write all the answers of the interviewee
on paper while conducting the discussion. The discussion flow has not been inter-
rupted.

1.5.4 Data Analysis

For each question, the analysis of the data consists in two steps, the first is to
identify the topics that can be extracted from all the interviews. The goal is to
obtain a list of topics that answer the question. The second step consists in merging
resembling topics and weighting each one with the number of interviewees that
share the same point of view. This data extraction was filled into an Excel sheet for
a better analysis of the data.

The result of the interviews are integrated in each research question to explain
the quantitative results found by monitoring the developers. We compiled the in-
terviews and drew conclusions.

2 Results and Discussion
We now present our results obtained by monitoring the Worldline employees and
comparing them to the ones obtained in the literature.

2.1 Case Studies

These results were obtained between April 20th, 2016 and March 8th, 2017. Ta-
bles 5.2 and 5.3 present some descriptive statistics on the case studies.

We have 32 participants in 64 different projects which sets us in between both
other case studies, closer to the paper of Beller et al. [2015].

We have more test sessions (14 686) than Beller et al.’s paper (3 424) with fewer
participants (see also session/developer). We also have an order of magnitude more
single test executions compared to Beller et al.’s paper (153 763 for us; 10 840

for them). This can already be seen as a good indication for test practices in the
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Table 5.2: Descriptive statistics on the three case studies

Beller et al.
[2015]

Gligoric et al.
[2014]

Worldline
case study

# Developers Executing Tests 48 14 32

# Projects 73 17 64

# Test sessions 3 424 5 757 14 686

# Agglomerated sessions − − 13 611

# Test executions 10 840 264 562 153 763

# Unique Tests − 6 560 15 249

Tests / Session 3.2 45.9 10.5

Sessions / Developer 71.3 411.2 458.9

Study Duration (months) 4 3 10

company. But comparisons are made difficult by the fact that we do not know what
development principles are used in each environment, i.e., open-source, student,
and industrial.

We are also intermediary in the number of single test executions per test session
(10.5) and above all for the number of sessions per developer (458.9). This number
of test sessions per developer is higher than the open and closed source projects
which is a good sign for the company.

Table 5.3: Descriptive statistics per developer

Min Q1 Median Q3 Max Histogram

Calendar Days 1 60 193 241 326
summaryOnNumberOfDaysOfCollectionData

NumberOfDaysOfCollectionData

F
re

q

Activity Days 1 6 23 54 140
summaryOnNumberOfActivityDays

summaryOnNumberOfActivityDays

F
re

q

Sessions 3 32 192 706 2343
summaryOnNumberOfSessions

NumberOfSessions

F
re

q

Sess./Activity Day 1 3 8 18 110
summaryOnNumberOfSessionsByDay

NumberOfSessionsByDay

F
re

q

As an additional indication, we give in Table 5.3 statistics for developers of our
case study: number of days of collecting data, number of test sessions, and num-
ber of sessions per day where tests have been made (activity days), all developers
combined. We note that developers participated in the case study for more than 5
months on average and did 61.7 testing sessions per activity day. From this last
number, it seems that testing is well implanted in company’s developers daily prac-
tice. However, by running the interviews, it seems that in a majority of projects of
the company, developers do not run tests automatically during the development but
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only manually or at the integration testing step. There is no figure on the number of
developers running automatic tests in the company: only developers running tests
installed the plugin.

2.2 RQ1: How and why developers run tests?

2.2.1 RQ1.1 Do developers test their code changes?

For this question, we evaluate whether there is a correlation between the number of
test runs and the number of changes to source code. We used Spearman correlation
as our data do not follow a normal distribution. For Worldline, the correlation is
weak ρ = 0.20 confirming that more code changes do not lead to more tests.

Beller et al. [2015] differentiate the number of changes to test code from num-
ber of changes to production code. They correlated them both to the number of test
runs. They have a good correlation (ρ = 0.66) with test code changes, and a weak
one (ρ = 0.38) for production code.

From the interviews, nine developers want to test all the changes they made in
the application. However, some pieces of software like human machine interfaces,
insertion databases, dataset creation, or complex systems require specific testing
frameworks. These frameworks are difficult to put in place due to a lack of training
and time to understand it. Moreover, six Worldline developers confess that they do
not run tests after minor changes, and six because of a lack of time.

2.2.2 RQ1.2: How long does a test run take?

We observe that 50% (median) of our test sessions finish in less than 3 sec. and over
75% (third quartile) of tests sessions finish within 16 seconds (results are similar
for agglomerated sessions with respectively 3 and 18 sec.). Moreover, 9.4% of
the test sessions take longer than 1 minute and 5.0% take longer than two minutes
(respectively 10% and 5.6% for the agglomerated sessions). Detailed results can
be found in Table 5.4. In general, tests sessions are short.

We measured a maximum duration of the test sessions of 4 h 23. In this session,
only one test was launched. Other executions of this test take few seconds to run.
But, the results being anonymous, it is not possible to ask the developer for more
information on this long duration.

Beller et al. report that 50% of their test sessions finish in less than 0.5 seconds
and over 75% of the sessions finish within 5 seconds. For their test sessions, 7.4%
take longer than one minute and 4.8% take more than two minutes. They conclude
that most of the test sessions are short.

Results are comparable, orders of magnitude are the same excepted the dura-
tion of the test sessions. On this point, one could hypothesize that tests are broader



2. Results and Discussion 85

Ta
bl

e
5.

4:
C

om
pa

ri
so

n
of

ou
r

re
su

lts
w

ith
th

os
e

of
th

e
W

or
ld

lin
e

C
as

e
St

ud
y.

(W
he

n
co

m
pu

tin
g

nu
m

be
r

of
te

st
s

pe
r

se
ss

io
n,

w
e

gi
ve

re
su

lts
fo

rt
es

ts
es

si
on

s
an

d
ag

gl
om

er
at

ed
se

ss
io

ns
to

m
at

ch
B

el
le

re
ta

l.’
s

ca
se

st
ud

y)
.H

is
to

gr
am

s
ar

e
in

lo
g

sc
al

e

m
in

Q
1

m
ed

ia
n

Q
3

m
ax

un
it

H
is

to
gr

am

R
Q

1.
2

Te
st

se
ss

io
n

W
or

ld
lin

e
(t

es
ts

es
s.

)
0

1.
0

3.
0

16
.0

15
82

0.
0

se
co

nd
te

st
S

es
si

on
D

ur
at

io
n

te
st

S
es

si
on

D
ur

at
io

n

Freq

du
ra

tio
n

W
or

ld
lin

e
(a

gg
lo

m
.)

0
1.

0
3.

0
18

.0
15

82
0.

0
se

co
nd

ag
gl

om
er

at
ed

Te
st

S
es

si
on

D
ur

at
io

n

ag
gl

om
er

at
ed

Te
st

S
es

si
on

D
ur

at
io

n

Freq

B
el

le
r

0
0.

03
0.

5
3.

4
73

.8
se

co
nd

R
Q

1.
4

Pe
rc

en
ta

ge
of

W
or

ld
lin

e
0

1.
2

4
17

.8
10

0
%

su
m

m
ar

yO
fT

es
tS

el
ec

tio
nB

yS
es

si
on

su
m

m
ar

yO
fT

es
tS

el
ec

tio
nB

yS
es

si
on

Freq

ex
ec

ut
ed

te
st

s
B

el
le

r
0

1
1

12
.5

10
0

%

R
Q

2.
2

Ti
m

e
to

fix
W

or
ld

lin
e

0
3.

1
4

98
1.

0
1

04
2.

0
35

9
60

0
m

in
ut

e
de

la
yT

oF
ix

Te
st

de
la

yT
oF

ix
Te

st

Freq

fa
ili

ng
te

st
s

B
el

le
r

0
1.

7
65

.1
25

.0
4

88
1

m
in

ut
e



86 Chapter 5. Study of Developers’ testing behavior in a Company

in scope in our company. We confirmed through the interviews that seven partici-
pants are executing more customer tests than developer tests. Worldline customer
tests require to set up a database and have a higher number of method tested than
developer tests. Five developers said that the tests take time to be executed.

2.2.3 RQ1.3: Do quick tests lead to more test executions?

To answer this question, we evaluate the correlation between test execution length
and the number of times tests are executed. The expectation is that short tests
will be executed more often, thus the correlation value is expected to be negative.
However, in Worldline study, Spearman correlation value was ρ = 0.20. Beller
et al. get a positive correlation value of ρ = 0.26. Both lead to the conclusion that
there is no correlation.

These answers are contrary to expectation, faster tests are not executed more
often (corollary: longer tests are not executed less often). This was one of our
hypotheses to try to improve test practice in the company and it does not hold.

Interviewed peoples seem to launch the tests that cover the part of the appli-
cation they changed without distinction of the duration of the test. One of the
interviewees said that long tests were not frequently executed. As an additional
verification, we decided to apply another statistical test. We grouped the tests by
their duration: tests of less than 10 sec.; tests between 10 & 20 sec.; . . . (see Ta-
ble 5.5). Then, we verified whether the median number of executions of the groups
were different with a Wilcoxon statistical test. The only statistically valid differ-
ence is between group 1 and group 2. But, it must be noted that group 1 contains
many more data than the other groups. This could affect the results.. We could not
show any significant difference between any of the other group. Consequently, we
cannot accept on our data that long tests are executed less often.

Table 5.5: Test Duration and the number of execution of each test

<10” 10”- 20” 20”-30” 30”-1’ > 1’
# Tests 1404 243 84 65 78
Median # of executions 5 8 8 12 7

2.2.4 RQ1.4: Do developers practice test selection?

For Worldline, we report 58% of the agglomerated sessions with only one test,
24.5% with more than 5 tests, and 4.0% with more than 50 tests. We can reach the
conclusion that developers of the company practice test selection.
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Beller et al. report that 87% of test sessions include only one test case, 6.2%
include more than 5 tests, and 2.9% more than 50 tests. From this, they concluded
that their developers did practice test selection. Gligoric et al. report 3 594 test
sessions (62.4%) with only one test.

It seems Worldline’s developers and those in the second paper’s case study Glig-
oric et al. [2014] select less “aggressively”, i.e., with fewer test sessions consisting
of only one test.

For Worldline, in 50% of the test sessions, 4% of the available tests of the
project are selected, in 75%, 17.8% are selected (See Table 5.4).

Beller et al. further note that in 50% of the test sessions, only 1% of the avail-
able tests of the project are selected, and in 75% of the cases, 12.5% are selected.

For us, almost all the tests (> 95% of all the tests) are selected in 1.8% of the
test sessions, and, for Beller et al., all tests are launched in 3.7% of the cases

So developers of the company select more tests than those of the first paper
when they select, but they execute all the tests available much less often, almost
always doing test selection.

We report that test selection occurs in 81.4% of the studied test sessions, be-
tween Gligoric et al. (59.19%) and Beller et al. (about 96.3%1). Finally we report
an average selection ratio (number of executed tests divided by number of available
tests) of 8.8%. For Gligoric et al. this ratio is almost the same with 9.0%. So again,
it seems that Worldline developers tend to select more tests when they select.

Thanks to the interviews, we identified several profiles of testers (a developer
can have several profiles): Six developers run all the tests of the module or subpro-
ject where the modification has been made. It is the preferred solution if the tests
are fast, else, developers select more rigorously the tests. Six developers run tests
based on naming conventions: test class has the same name than the application
class. According to the interviews, in another group gathering 7 developers, they
select tests according to their feelings and experience. The testers feel they know
what tests are potentially affected by the latest changes. Finally, we found three de-
velopers using the call graph available in the IDE to retrieve the tests to relaunch.
It is an advanced approach to select the tests.

2.2.5 RQ1.5: What are common scenarios for manual RTS?

Gligoric et al. [2014] identified two common patterns for test selection:
• “After one or more tests fail, developers usually start making code changes

to fix those failing tests and keep re-running only those failing tests until they
pass. After all the failing tests pass, the developers then run most of, or all
the available tests to check for regressions.”

1Our statistics from their numbers
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• “[Developers] fix tests one after another, re-running only a single failing test
until it passes.”

By analyzing the data, we found these two patterns in our company. In the
interviews, developers said that they launch tests one-by-one to avoid side effects
between the tests. They also run semi-automatic tests one-by-one: they run the
tests injecting data in database automatically and check manually the result. But
both scenarios are equally frequent and depend of the current step of the workflow
the developer is into. Launching groups of failing tests is made when the tests are
jointly failing and cover the same feature(s) of the application. One-by-one launch
is frequently used when only one feature needs to be checked and there is only one
test associated to it.

2.3 RQ2: How do developers react to test runs?

2.3.1 RQ2.1: How frequently tests pass and fail?

For Worldline, on 153 763 tests executions, the ratio of failing tests is 13% (20 272),
and the ratio of passing tests is 83% (127 704). We can also report 4% (5 787) of
skipped tests. In Beller et al. [2015], on 10 840 tests executions, 65% (7 047) fail
and 35% pass successfully.

We found a much lower ratio of failing tests in our case study. By interviewing
Worldline developers, we can propose some explanations:

• The tests are launched and followed up. This shows better testing practice in
the company that does appear in Beller et al. [2015].

• The tests are passing because they miss assertions to check the behavior of
the application. So in reality, the test should fail.

• The tests are not really tests but are launching scripts to insert fields to set up
the database.

But, ten developers of Worldline said that they fix tests when they are failing. This
also explains the high number of green tests.

2.3.2 RQ2.2: How long does it take to fix a failing test?

In the Worldline case study, around 12% (1 780) of the tests are never fixed. For
the failing tests that get fixed, 50% are resolved in approximatively 20 minutes and
75% within approximately 17 hours 20 minutes. The maximum duration that we
observed to fix a test is 249 days, 17 hours and 20 minutes, almost the duration of
the entire case study (322 days).

In Beller et al. [2015], for 70% of the tests (2 051), the authors observed at
least one successful execution and 30% have no successful execution. Therefore a
significant part of the tests are never fixed. For the 2 051 failing tests that are fixed
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at some point, 50% are executed again with success within 10 minutes and 75%
within 25 minutes.

Results for this question can also be found in Table 5.4.
Our longer delays could be caused by the fact that the tests in the company

are broader in scope. They mainly implies complex environment with database or
external applications. As already discussed in RQ1.2, broader tests would make it
more difficult to pinpoint the error when they fail.

2.4 RQ3: How and why developers perform test selection?

2.4.1 RQ3.1: Does manual test selection depend on size of test suites?

On all Worldline projects we studied, all developers performed test selection. On
the other hand, we have an average of 254.1 tests per project with a minimum of 1

and a maximum of 2 216. We can conclude that developers performed manual test
selection regardless of the size of their test suites. In Gligoric et al. [2014], almost
all developers performed manual test selection, and they also had a wide range
of test suite sizes. They further report an average of 174.3 tests per project; the
minimum was 6 tests, and the maximum was 1 663 tests. The authors finally add
that “considering that these projects are of small to medium size, and because they
exhibit manual [test selection], [they] expected that developers of larger projects
would perform even more manual [test selection].”

Through our interviews, it appears that the test selection depends of the number
of changes they made. The projects are frequently split into modules and each
module contains its own tests. So, if a change occurs in one of the modules, the
developer relaunches all the tests of the module. If the developer knows which test
is related to the part he changed, he selects only few tests to be relaunched.

2.4.2 RQ3.2: Does manual test selection depend on size of code changes?

We consider the relationship between the size of recent code changes and the num-
ber of tests that developers select in each test session. For Worldline, the correla-
tion value is ρ = 0.11, so we can conclude that there is no correlation. For Gligoric
et al. [2014], their correlation value is ρ = 0.28 which also means that there is no
correlation.

The conclusion from this research question is that one would expect developers
to run more tests after large code changes or to perform more test selection when
there are more tests in a project. The findings go against both assumptions. We
may relate this to RQ1.3 where we noted that faster tests did not lead to more
execution and to RQ3.1 where developers avoid to select tests that takes more than
one minute to run. There seems to be convergence of evidences that, contrary to
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our hypotheses, test selection and execution are not significantly influenced by the
duration of the tests or their number.

Interviews conclude that developers are potentially running more tests if the
changes they made are in several modules: they run the tests of all modules im-
pacted. But, most of the time, changes are located in only one module.
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Figure 5.2: Relation between the number of automatic and manual test selection
(left Gligoric et al. [2014], right our case study)

2.4.3 RQ3.3: How does manual test selection compare with automated one,
in terms of precision and safety?

We present the comparison of manual versus automated test selection in a dot plot
(Figure 5.2, right). Numbers of expected tests selected (automatic test selection)
are represented on the Y axis, and number of actually selected tests (manual test
selection), on the X axis. The desired behavior would be to have all points on
the diagonal x = y. Points above the diagonal indicate that the manual selection
missed some tests (low recall, assuming the tests selected are all correct). Points
below the diagonal indicate that the manual selection chose undesirable tests (low
precision, assuming no needed tests were missed). Our study reports a correlation
of ρ = 0.16 between the two metrics which confirms the visual impression of no
correlation.

Gligoric et al. [2014] whose data are on the left side of Figure 5.2, conclude
also to the absence of correlation with a value of ρ = 0.18.

Our case study can further report a precision of 37.43% (ratio of selected tests
that are correct) and a recall of 28.77% (ratio of required tests that were selected)
which should be considered low results. The conclusion is that manual test selec-
tion is not accurate, which was expected.

From the interviews, developers said that they do not always carefully select
tests: sometimes they are launching more tests than required (they relaunch all the
tests to test the whole application), or not enough tests (to test only the algorithm
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they just implemented). When the modification in the source code is minor or deals
with a graphical part of the application, developers do not always run the associated
tests. All of the interviewees said that are not launching useless tests.

3 Threats to Validity

This section discusses the validity of our case study using validation scheme de-
fined by Runeson and Höst [2009]. The construct validity, the internal validity, and
the external validity are presented.

3.1 Construct Validity

Construct validity indicates whether the studied measures really represent what is
investigated according to the research questions. The purpose of this study is to
evaluate the behavior of developers of the company about testing.

We detected that developers may use “false” tests as a standalone application
to run a server and make manual tests. We manually removed these by looking at
all test sessions longer than 10 minutes and having only one or two tests. It could
be the case that such tests are still present in our data for example if they were
launched as part of a session with three tests but removing them all would require
manually analyzing every test (little less than 7 000).

The plugin records only the execution of JUnit and Maven test sessions if they
are launched from within the IDEs. If other tests runners are launched from outside
the IDE (less probable for JUnit than for Maven), we would have no trace of that.
This is a common issue that Beller et al. [2015], Gligoric et al. [2014] also had.
However, the question was asked in the interviews. It appears that most of the
automated tests are launched by the developers in their IDEs. Only a couple of
developers are running tests through a maven command line. But it is mostly to
deploy the application or because the tests are too long.

The presence of continuous integration is another bias that can persist in the
case study. Despite the fact that developers should launch the tests locally to avoid
committing potential bugs and propagate them to their colleagues, they tend to
delegate this validation to the continuous integration. Consequently, fewer tests are
made locally and potential bugs are dispatched to the others developers of the team.

Associating tested code and test sessions is still a real issue. The ideal solution
would be to record all the source code for each test session. But this would mean
a much more intrusive plugin that we are reluctant to install on the developers
computers for now. One action that we may take would be to check whether our
current (imperfect) solution makes a noticeable difference in the result compared to
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a “perfect” one. This can actually only impact the results on the computed precision
of the test selection.

3.2 Internal Validity

Internal validity indicates whether no other variables except the studied one im-
pacted the result.

The developers know that they are under study, Hawthorne effect2 may have
taken place [Mayo, 1933].

The sample may be biased towards developers who are actively interested in
testing because participation was voluntary. In this sense, our results could be an
overestimation of the real testing practices.

Between the start of the study to its end, six participants left the company. To
encourage participation of less testing aware participants, we organized a lottery
(Beller et al. did the same), but it only brought four additional participants.

3.3 External Validity

External validity indicates whether it is possible to generalize the findings of the
study.

Participants to the case study all originated from the same IT company or from
the same language community. This would point toward a real threat to general-
ization. However, the fact that we make our case study close to the Beller et al.
[2015], Gligoric et al. [2014] ones, in different conditions, and mostly confirmed
their results, seems to be a good enough guarantee.

As Beller et al. [2015], Gligoric et al. [2014], all projects we studied are in
Java (as 80% of the projects developed in the company). This can be an issue to
generalize on other programming languages where testing is more difficult.

Moreover, testing practices of 32 Worldline employees during more than 10
months were studied. It is a case study of the partial state of testing in a major IT
company and can be difficult to generalize to other companies.

4 Conclusion
A first step before providing the Worldline developers with a test selection tool is
to know their behavior about testing. So, this empirical study was inspired from
two previous case studies [Beller et al., 2015, Gligoric et al., 2014]. Our study
took place in an industrial, closed source context, whether Gligoric et al. [2014]
case study was conducted with students (mainly), and Beller et al. [2015] one was

2Tendency of people to work harder and perform better when they participate in an experiment.
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conducted on various projects including open-source and students projects in the
other case [Beller et al., 2015]. Thus it was not clear whether their conclusions
applied to industrial closed source environments. We could confirm many findings
of both papers, thus giving more weight to their conclusions. Our conclusions are:

• Test practice in the company is better compared to practice described in
Beller et al. [2015] with open-source, students and industrials. It was unex-
pected but could be biased by the voluntary participation to the experiment;

• Developers do perform test selection, mostly reducing the test suite to one
test (more than half of the test sessions ran only one test). This is coherent
with previous findings;

• Manual test selection is not accurate, many impacted tests are not launched
after a change (recall=29%) and others are whereas they did not need to (pre-
cision=37%). We noted a tendency to err on the side of minimality rather
than safeness. This is in contrast with the reports from Gligoric et al. [2014]
(73% of the sessions executed more tests than an automated RTS would
have);

• Contrary to intuition, amount of test execution or test selection do not depend
on the size of the test suite nor on the duration of the tests: Shorter tests are
not executed more often, and the number of test runs is not impacted by the
total number of tests available in a project. Interviews confirmed that tests
are actually selected on their ability to confirm the quality of a code change.
This is good news at it reinforces the need to provide adequate test selection
mechanisms to help software developers getting faster and better feedback.

Now, with the testing approach adapted to the Worldline developers, and a better
knowledge of their current testing behavior, we are able to propose them a tooling
allowing them to be more efficient in their everyday work.
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In previous chapters, we saw that there is no tooling adapted to the Worldline
environment to perform test selection. In our goal to try to improve testing behav-
ior, we developed a tool implementing the features we found missing. The goal
of this tool is to change the developers’ development process. Chapter 2 showed
that one of the causes of project failure is the bypassing of tests. We hope with our
tool that developers will launch more tests. These tests should be compatible with
the changes the developers made in their source code. To know if such a tool can
achieve this goal, we evaluated its usage through data analysis and interviews of
the Worldline developers that participated in the study.

1 Test Selection Plugin
A test selection approach selects the tests that exercise the changes the developer
made. The approach should provide fast feedback to be used by the developers in
their daily tasks. So, as soon as the developer writes code, the tool has to be able
to select the possibly impacted tests and launch them.

Developers are writing code inside their IDE. Swapping the application to get
the results of test selection would make the development process more complex.
On the other hand, the IDE integrates the test runner and project configuration
which are already configured by the developer. An external tool cannot access
this information whereas a test selection plugin integrated in the IDE can. We
consequently developed such an IDE plugin. In a first part, we describe the main
features of it and, in a second part, we detail the implementation.
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1.1 General Overview

1.1.1 Purpose

The purpose of the test selection tool is to automatically select the tests related to
the source code developers changed. We expect that the tool will encourage them to
test their applications more often. Furthermore, their test sessions should become
more complete and more frequent.

But, to encourage developers to use the plugin, it should be adapted to the
constraints of Worldline’s developers whose time is scarce. So, the time to learn
how to use the tool should be reduced to a minimum: the plugin has to be simple
to install and to use. Developers should be able to install it like any other plugin.
It should not cause any slow down in the development process. Such a slow down
could make the developers stop using the plugin or uninstall it. Developers use
both Eclipse and IntelliJ. Thus, we developed a plugin for each IDE.

1.1.2 Test Selection Approach

In Chapter 5, we saw that developers tends to err on the side of minimality instead
of safeness in their test selection. That is to say, they prefer to run less tests than
all the tests that might be affected by the changes they made. We also saw that
developers often reduce their test suite to only one test. Their test selection is not
accurate and many possibly impacted tests are not launched after a modification
(only 29% of the tests that should be launched, are really launched). So developers
miss opportunities to run tests that may potentially fail. Such tests failures will be
detected only after some time, for example, the following day as a result of the
integration, and developer will loose time to find its root cause.

Between the approaches to select tests at our disposal (see Chapter 4), the static
approach navigates through all the possible paths from the changed source code
parts to the impacted tests. As explained, it will select more tests than a dynamic
approach.

On the contrary, a dynamic approach is more precise and will select less tests.
But it requires to relaunch all the tests at the beginning of the development session,
or to update regularly the mapping between tests and source code after changes.
As already said, executing all the tests may take hours on some projects of the
company. Such a wait is not acceptable. Consequently, we choose to use a static
approach rather than a dynamic one.

In order to be more accurate in the test selection and not spread useless infor-
mation to the developers, we decided to integrate in our plugin an approach at a
method granularity. So, only the exercised tests methods are selected by such an
approach and not the other tests methods of the exercised classes as it would be in
the class granularity approach.
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1.1.3 Tool Operation

The workflow that we want to provide is the following: The tool listens to file
changes in the IDE. As soon as the user saves a source code file in the IDE, test
selection is triggered, tests are executed, and test results are listed in the interface.
This workflow is the default one and other strategies are defined to change it (these
strategies are defined later). Figure 6.1 describes this process: an event, depending
on the selected “Test Selection Strategy”, triggers the test selection, then, depend-
ing on the “Test Execution Strategy”, the tests selected are launched or not, and test
execution results are displayed in the interface.

Event Display

- At each change

- After 5 minutes

- On commit change

- Never / Do nothing

Test Selection Test Execution
- Automatically

- Manually

Figure 6.1: Test Selection Tool Workflow

Some “Test Selection Strategies” are implemented to trigger the selection of
test depending on the action of the user:
At each change. This is the default strategy for test selection. The exercised tests

are selected immediately after a change in the source code (save, file up-
date,...).

After 5 minutes. All changes are recorded. Every five minutes, test selection is
triggered on all the recorded changes. The five minutes threshold was chosen
arbitrarily as a reasonnable delay to allow for some work to be done while
not having too much to test at a time.

On commit change. Test selection is triggered when the developer commits inside
the IDE. Changes are considered since the last test selection.

Never / Do nothing. Test selection is not triggered, but changes are recorded. As
soon as another strategy is selected, these changes are considered for next
test selection.

The “Test Execution Strategy” allows the developer to run the tests as soon as
the test selection has been computed. There are only two choices: the test execution
is launched automatically, or, a list of tests to run is created: the user can then
execute the tests of the list manually when he is ready.

1.1.4 User Interface

An example of the display of the tests execution for Eclipse is shown in Figure 6.2.
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The “Test Execution Strategy” appears as a checkbox labeled “Auto run se-
lected tests” which is checked by default. If the developer decides to disable au-
tomatically execution, tests are still listed and a button allows to launch them on
demand.

The list contains the name of the launched tests, their launching timestamp,
their Eclipse project and the color corresponding to the test result: Green stands
for test passing, yellow for assertion failure, and red for error. The color is gray
while tests are not launched. This interface also allows the user to select a different
strategy for the test selection (combo box on the left).

Figure 6.2: Display Window for Selected Tests in Eclipse

1.2 Architecture

1.2.1 Client Server application

The test selection plugin has to be written in Java. But, we would like to reuse the
test selection algorithms we implemented in Moose (see Chapter 4). So, we created
a REST API as a bridge between both to exchange information.

Moreover, Moose is a standalone application that takes almost 100MB of disk
storage. Shipping this application to the computer of the developer would have
been too invasive. Consequently, Moose was installed on an internal server of the
company, where each developer plugin requests the list of tests to select.

1.2.2 Workflow

Figure 6.3 illustrates the workflow of the test selection tool. On the client side of
the plugin, a model of the source code is created before any change occurs in the
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IDE startup
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Figure 6.3: Test Selection Tool Workflow
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environment of the developer. This First Model is created at the IDE startup to
ensure that no change is missing. It is then sent to the server as baseline.

Then, the developer makes changes in his source code. Only the changes done
inside the IDE can be logged by the plugin. Following the selection strategy (see
Section 1.1.3), the plugin triggers a new parsing of the source code and generates
a new model. This new model is sent to the server and loaded into the Moose
application. It represents the model of source code changed by the developer.

The server now contains two versions of the source code, one without the
changes of the developer, and another with. The changes between the two mod-
els are computed to finely identify the modifications that occurred on the source
code. Famix Diff is a tool based on Moose to compute changes between models.
It is based on the algorithm described by Xing and Stroulia [2005] to detect the
structural changes between two versions of a modelised object-oriented software.

Then, the test selection approach is made following the Moose approach at
a method granularity which takes into account all the problems we defined in
Chapter 4. This test selection is performed by navigating the new model from
the changes computed by Famix Diff

The list of selected tests is sent back to the IDE plugin and displayed to the
user. Depending on the execution strategy selected, the tests are executed or not.
Since the majority of Worldline’s developers use JUnit to write the tests, we execute
them with the JUnit runner integrated in the IDE. After the execution of the tests,
the display is updated to show the actual results of the tests.

A new cycle can start again with the last model as basis.

2 Case Study

The plugin described in the previous section was announced by email, few de-
velopers installed it. We analyzed the change in their development processes by
analyzing data and interviewing the developers.

2.1 Data Analysis

To the 32 developers from the initial experiment, we sent emails and direct mes-
sages. Once every developer answered, only six accepted to install the plugin. This
low number can be explained by some turnover in the company. One of the 6 par-
ticipants who installed the plugin, launched a few tests and dropped the experiment
the day he installed it. He did not see an immediate interest in it. We discarded his
data in the experiment. Another one was on a mission on a project where he has to
improve the testing process of the project team. It seemed a perfect candidate for
us. However, we encountered some problems due to very large number of lines of
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code of the project. When the plugin was fixed after couple of weeks, his mission
was finished. He then went to a new project where he is not launching automatic
tests anymore. Consequently, we have data for only four developers.

To protect their anonymity, we will named them Alice, Bob, Charlie, and David.
Some descriptive data on their background can be found in Table 6.1.

Table 6.1: Descriptive Data of the Participants

Job position
Years of

Experience Team size

Alice Senior Developer 5 6
Bob Senior Developer 3 3
Charlie Junior Developer 3 6
David Junior Developer 2 12

Table 6.2 depicts for each user the following data:
Number of days. The number of days between the first day the developer launches

a test and the last one.
Number of manual test executions. The number of tests executed manually, i.e.,

by clicking on a button.
Number of automatic test executions. The number of tests executed automati-

cally, i.e., selected by the plugin and launched automatically.
Total number of executed tests. The total number of tests executed.
Activity days. The numbers of days the developer launch at least one test (auto-

matic or manual).

Table 6.2: Testing Behavior Description for each Participant

# days
# activity

days
# manual test

executions
# automatic test

executions
Alice 89 11 78 (57%) 59 (43%)
Bob 17 4 40 (49%) 41 (51%)
Charlie 35 6 83 (92%) 7 (8%)
David 14 3 9 (100%) 0 (0%)

All the participants kept the default test selection strategy which is to launch
the test selection at each modification they made in their source code. In this study,
we acquired too few data to study it from a statistical point of view. The number of
participants and the number of test executions are too low: only 4 developers took



102 Chapter 6. Impact of the Usage of the Test Selection Tool

part in the study. We consequently preferred to analyze the participants’ behavior
independently one from the other and reinforce this study by interviewing them.

In the following, we describe how the qualitative study with developers’ inter-
views was planned and we detail the individual results for each developer.

2.2 Interviews Description
The study consisted in semi-structured interviews with the participants who in-
stalled our test selection tool. All of them (four) accepted to answer our questions.
These interviews only aimed to explain the few quantitative results we had. Two
types of questions were defined: one part is general for all the interviewees, the
other is specific for each participant based on the data we collected and the ques-
tion they raised.

2.2.1 Global Questions

The general questions we asked to all the participants are the following:

i. What do you think of the relevance of the selected tests? More specifically,
four possibilities exist:

• Selected tests are correct but some others are missing (good precision,
bad recall)

• All impacted tester are present but there are too much (bad precision,
good recall)

• Some test are missing and some are wrongly selected (bad precision,
bad recall)

• Yes, there are exactly the tests that should be selected (good precision,
good recall)

ii. The tool suggests several strategies for the selection and execution of the
tests. Did you use them all? Would another test selection or execution strat-
egy like to suggest?

iii. Did your development process change?

• Do you launch more or less test than before?
• Do you commit more or less often?
• Do you write more or less tests? Do you modify the existing tests to

insert new assertions?

iv. Do you find it easier to fix the tests? Is the debugging of the test faster?

v. Do you trust more your committed source code? Or the code committed by
the others?
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vi. Do you have others comments, questions?

2.2.2 Individual Questions

For each participant, we did a specific analysis. We consequently added some
questions on some specific points to clarify.

Alice
Alice is one of the first users who installed the test selection plugin. At the

same time, she executes tests both manually and thanks to the automatic execution
of the plugin.

We discovered that the test selection algorithm sometimes selects a skipped test
that she never launches manually. A skipped test is annotated with @Ignore by
developers who do not want to launch them. It is often tests that are deprecated
due to recent changes in the application. Despite this test covers the changes in her
application, Alice chooses to ignore this test and not enable it. We added a specific
question:

• Why are you skipping several times a test that is selected by the tool?

Bob
Despite the fact that Bob used the tool during 17 days and manually launched

some tests, all the tests executed returned an error status. The goal of test execution
being to ensure that the application is error free, the presence of only failing tests
cannot give any confirmation on its quality. Consequently, we expect that some
automated tests he launches are passing. Moreover, he launches other tests than the
one suggested by the tool. The questions we would ask to him specifically are:

• You seem to launch complementary tests that are not selected by the tool.
Why are you launching them?

• All the tests you launched with the tool installed are failing. Why?
• What did you expect from automatic testing then?

Charlie
Charlie deactivated automatic execution of the tests. Only seven tests out of 90

he launches are executed automatically. We can hypothesize that the tests selected
are not accurate or are too intrusive for his usage. We asked him these specific
questions:

• Why did you deactivate the automatic execution of the tests the tool suggests
after the changes you made?

• Do you think that test selection was not reliable?
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David
David also deactivated the automatic launching of the tests after their selection

by the tool. He used the tool on only three days in a 14 days period and uninstalled
it. The questions we ask to him are:

• Why did you deactivate the automatic execution of the tests the tool suggests
after the changes you made?

• Do you think that test selection was not reliable?
Three of the interviews took place through audio-conferences. They lasted 10

to 15 minutes.. The last one was a face to face meeting. All four participants to the
experiment agreed to be interviewed.

3 Results and Discussion

We first give some global results on the interviews, and then, we detail for each
participant the specific questions we asked them.

3.1 Global Results

On the four developers, three declared they used the tool only a few days: Bob
and David found that it slowed their development process due to a high usage of
computing resources on their laptop. We did not establish this issue during our first
trials: the projects of the company are diversified and we did not tested on large
enough projects. Charlie used it but as he is leaving the company soon, he will not
continue to write tests after the experiment. The fourth, Alice, used a lot more the
tool and still uses it.

3.1.1 What do you think of the relevance of the selected tests?

Three developers found that the test selection had a high recall and a high precision,
i.e., all the tests that are selected correspond to the changes made and there is no
missing test that should be relaunched. Charlie thinks that test selection is “pretty
cool” and Bob finds that it is “coherent” which the selection he would have made.
However, for David, there is too much tests selected. Some tests are not related to
the latest changes he made. We are not able to say if it is an issue in the approach
or if the developer is mistaken: we do not monitor the changes that lead to the
selected tests. One bias of the static solution is indeed to select more tests. Call
graph navigation can give results that are outside of the knowledge of the developer.
He will not see a direct relation between the source code and the test, but there is
one.
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3.1.2 Did your development process change?

For the four participants, the development process did not change. They are not
committing more or less. They do not modify the tests by adding new assertions to
ensure that their code is well covered. Three of them said that they are not writing
more tests due to tight project schedule. The other one, Charlie, tends to write
more tests. The plugin encouraged him to keep focused on the tests during the
development and keep them up to date. For Alice, the tool gives her a visual help
on the modifications of her source code.

Only the developer that really used the plugin found a real advantage to his
current development tasks. Maybe the study is too short to observe a change in the
developers process.

3.1.3 Do you find it easier to fix the tests? Is the debugging of the test faster?

Our plugin enables an immediate feedback on the code changed if it is tested.
Consequently, if tests fail, the developer still has in mind the change he just made.
He does not need time to remind the changes he made and why.

For two developers, it is not easier to fix the tests. It just helps to select the tests
to relaunch. Alice and Bob found a real advantage to the tool. The two developers
take less time to identify the failing tests and to modify the related source code.
They anticipate potential future failures and are more reactive. It is possible that
this fast feedback on the tests allows the developers to not loose time reading again
their source code and remembering which part they modified.

3.1.4 Do you trust more your committed source code? Or the code commit-
ted by the others?

Alice, Bob, and Charlie, said they trust more the code they committed. It is not
the case for David. For the first three, they find it reassuring that tests are passing
before committing. Bob said that he knows it is a best code practice he shall apply
in his developments.

If other developers of their team also used the plugin, Alice, Bob, and Charlie
would trust more the code. For Alice, this trust is also assured by setting up a con-
tinuous integration process launching tests periodically. Our tool adds confidence
because continuous integration is only launched during the night: modifications on
the source code of the other developers are not checked during the day. Develop-
ers may share bugs inside the team. Moreover, it is possible that our test selection
plugin decreases the number of failing tests on the continuous integration.
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3.2 Individual Results

Alice
Alice said she deactivated the automatic test execution. She prefers to choose

manually when the tests should run. It is too heavy in the process to run it at each
file save. Features are often implemented on several files, so, launching the test
selection in between is not interesting.

Alice skipped tests because they call external programs that are not mocked.
The mocking is used to fake the answers of method results that are not implemented
but should be used to make the application work. More time is required to modify
the tests to make them passing again. They do not have this time yet on her project.

Bob
Bob did not change the test execution or selection strategies in the test selection

tool. However, he said that a problem in the source code cannot be revealed if
the tests are launched too early. A feature in the source code often needs to be
implemented in several classes. If the tests are launched as soon as the first class is
modified, they fail because changes in other classes are mandatory to make them
pass. As Alice, Bob made modifications on several files before trying to compile
again and launch the tests. Current strategies of the tools are not adapted to this
behavior. Several file saves should be taken into account before triggering test
selection. New strategies could be proposed in the tool to avoid this frustration.

For Bob, all the tests selected by the tool ended in error because JUnit runs
are not configured in his environment. Actually, he uses Maven to launch the tests
instead of JUnit. But Maven does not allow to perform fine test selection with-
out using advanced features which are complex to set up. Consequently, the tool
provided him a list of tests to watch but he was not able to launch them.

Charlie
As Alice and Bob, Charlie found that the triggering of the test selection is

too frequent when he modifies several files. He prefers to launch manually the test
execution when he finishes to implement some features. Moreover, some automatic
tests are integration tests that are too heavy to be launched often. He suggested to
set up a filter in the tool to remove these long tests from the selection.

David
David did not know about the strategy to select the tests, so he used the one by

default at each save of a file. He deactivated the automatic execution of the tests
and launch them manually when he finished the implementation of a feature. He
said that there are too much tests impacted by his modifications and he prefers to
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launch them himself. That way, his development process is not disturbed by the
tool.

However, his test selection is more efficient with the tool. He also finds that he
should write and launch more tests. According to Hurdugaci and Zaidman [2012],
a tool that emphasizes the tests covering a changed method is more adapted to help
developers to test their applications.

4 Conclusion
To try to improve testing behavior of Worldline developers, we developed a new
tool allowing them to automatically select tests on their projects after each code
change. Few Worldline developers installed the plugin. Considering the lack of
data, we decided to perform interviews with the four developers which installed
the test selection plugin.

They have mixed opinions about the test selection tool: On the one hand, they
spent less time to find the tests they should relaunch after a modification in their
source code. But, on the other hand, the test selection tool slows the developers in
their daily tasks when tests executions are performed at unappropriated moments.
as we expected. Finally, the developers suggested some improvements:

• Add some test selection strategies,
• Improve the computing performance of the tests to relaunch.

But, they are all ready to continue to use this tool when they are making tests.
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1 Summary

Worldline is struggling to attract client projects. For this, the company needs to
ensure success of its projects. One transversal team of the company, whose goal is
to provide tools, expertise, and support to the other company teams, has for mission
to enhance the project quality. Therefore, this thesis has for goal to identify causes
of project failure and find solution to avoid them.

Chapter 2 first presented a study to check whether software metrics can be
linked to project failure. Through literature study, mining of project data, and
interviews of project leaders, we showed that metrics linked to success cannot be
found. All these studies intervene a posteriori on projects. Consequently, it seems
impossible for a new project to identify which metric or set of metrics could be
used to assess success. Thanks to this study, we were able to extract some topics
that are of interest for the project leaders of Worldline: communication, external
software frameworks, software quality, and tests.

To check these results to more Worldline developers, we conducted another
survey on 131 projects members of Worldline to obtain their insights on project
quality. As a conclusion, it seems that selecting automatic tests after a code change
can help project members to improve their project.

These studies are in Blondeau et al. [2015a,b].
Test selection approaches have to be designed for Worldline environment by

respecting the constraints of the language and frameworks they use. Second, the
testing behavior of Worldline developers have to be known to ensure a good adap-
tation of the tool to their practices.



110 Chapter 7. Conclusion & Perspectives

Chapter 3 studies the state of the art. First, it showed that control flow graph
approaches for test selection answer our need for Worldline. Among these ap-
proaches, two types exist: the static and the dynamic one. Literature does not
conclude on the prevalence of the one above the other. Second, tooling for test se-
lection has to satisfy the Worldline environment, existing tools are not tailored to it.
Third, while studying developers behaviors, literature mainly implies open-source
applications or student, which may not apply to Worldline. However, methodolo-
gies presented in it are interesting and are used as basis for comparison.

Chapter 4 presents the issues encountered by test selection approaches due
to the particularities of the Worldline environment, the methodologies to resolve
them, and the impact of their resolution on the test selection approach. We con-
cluded that: First, the issues we discovered might be intertwined which means
that a given selection method can exhibit several of the issues we identified. As
a consequence, solving only one of the issues would not allow to recover all the
tests that cover this method. However, by solving several issues at once, we are
able to fully resolve any of the issues. Second, problems interact differently on the
projects. Each project follows its own guidelines and uses its own frameworks that
can influence the test selection. But test selection based on static approach gives
satisfying results. This work is described in Blondeau et al. [2015c, 2016a,b].

Chapter 5 describes the experiment about testing habits of Worldline’s devel-
opers. It gives results on their usage. This empirical study was inspired by two
previous case studies [Beller et al., 2015, Gligoric et al., 2014]. Our conclusions
are:

• Test practice in the company is better than what is described in Beller et al.
[2015] with open-source, students, and industrials. It was an unexpected
conclusion compared to the one of Chapter 2, where one root cause of project
failure was the bypass of the qualification tests. But, this conclusion could
be biased by the voluntary participation to the experiment;

• Developers do perform test selection, mostly reducing the test suite to one
test (more than half of the test sessions ran only one test);

• Manual test selection is not accurate, many impacted tests are not launched
after a change (recall=29%) and others are whereas they did not need to
(precision=37%). We noted a tendency to err on the side of minimality rather
than safeness.

• Contrary to intuition, amount of test execution or test selection does not de-
pend on the size of the test suite nor on the duration of the tests: Shorter tests
are not executed more often, and the number of test runs is not impacted
by the total number of tests available in a project. This is good news at it
reinforces the need to provide adequate test selection mechanisms to help
software developers getting faster and better feedback.

This study is described in length in Blondeau et al. [2017].
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In Chapter 6, we tried to improve testing behavior of Worldline developers.
For this, we developed a new tool allowing them to automatically select tests on
their projects. Few Worldline developers installed the plugin. In light of the ab-
sence of data, we decided to focus on the qualitative part by performing interviews
with the four developers that installed the test selection plugin. Their opinions are
mixed about the test selection tool: On the one hand, they spent less time to find
the tests they should relaunch after a modification in their source code. But, on
the other hand, the test selection tool slows three developers on four in their daily
tasks when tests executions are performed at inappropriate moments. Finally, the
developers suggested some improvements: add some test selection strategies and
improve the computing performance of the tests to relaunch. But, they are all ready
to continue to use this tool when they are making tests.

2 Contributions
The main contributions of this thesis are:

• An audit about software quality and root causes of project health. Developers
were interviewed and surveyed to fulfill this goal.

• A classification of problems that could appear when trying to identify the
tests related to a method change. Concrete examples of these problems and
possible solutions are listed. These problems were identified from Worldline
projects but remain relevant for Object Oriented projects in general, and Java
ones in particular.

• A field study on how Worldline developers launch tests in their daily practice,
whether they select tests and why they do it. This study in industrial context
has been compared to ones on open source projects. Moreover, results are
reinforced by interviews with developers involved in the study.

• A test selection tool adapted to the environment of Worldline. This tool can
be used in closed contexts, i.e., IT companies using Java on huge projects.
This tool has also been replicated in the Pharo development environment (see
Section 3.2).

3 Future Work
We separate future work on industrial and academic points of view.

3.1 Industrial
From an industrial point of view, the results of the surveys and interviews of the
developers gave a new glance on the practices of the company, regarding testing but
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also on software quality in general. Some of the results will inspire the transver-
sal team. The survey concludes that project failure could be decreased by a better
understanding of the specification by the client, an improvement of the communi-
cation between the project team and the client, and, inside the project team.

Nowadays, Agile methodologies try to solve these communication issues by
setting up regular meetings, by adding a frame between the client and the team,
and by giving directives to manage the development tasks inside the team. So,
the Agile approach seems adapted to the problems encountered by the Worldline
developers. The transversal team has now arguments to justify such an approach.

The test selection plugin was not really used by the developers of Worldline.
We think that the critical mass of users was not reached to establish a momentum.
By convincing more developers to install the plugin, and to use it, we hope to get
interesting results and make developers win time in the long term. Effectively, the
ones that installed it decided to continue to use it during their developments. It
gives them a visual feedback on the tests that they should relaunch and forces them
to think about testing during the whole development of the application. They are
more confident in their code and, with a complete team using our test selection
plugin, they would be more confident in the code written by the others. How-
ever, some features are lacking and the plugin can be improved to better match the
requirements of the developer teams. Moreover, other maintainers of the plugin
should be trained. The goal is that the knowledge of test selection keeps living
inside Worldline.

Our work was presented to the Worldline’s testing community. Despite the
fact that there were few participants to the experiment, Worldline testers have been
introduced to test selection. Interviews and surveys have shown that this topic is
significant for the developers in terms of software quality. Liveliness around this
topic have to be pursued.

By interviewing developers and analyzing our data, we saw that developers
were not launching tests every day. Actually, at Worldline, most of the tests are
made manually and developers loose time executing them. Automatic tests could
avoid this loss. Therefore, initiatives have been launched to automatize the tests,
i.e., to implement the manual tests into automatic ones. But, it is a long term issue
because the test automation debt is substantial. To add faster automated tests on
the projects, an idea is to generate automatically the tests. As soon as a developer
changes an uncovered piece of code, one can suggest him to generate automatically
a test covering the change. It will improve the coverage of the application.

3.2 Academic

From an academic point of view, the studies on the developers made in Chapter 5
were extended to another environment than the Worldline one: the Pharo commu-
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nity. In this open source community, developers seem more prone to writing and
launching tests during the development. Pharo is a live environment: all the objects
can be modified by the user and provide an immediate result. It gives the possibility
to the user to break easily any part of the application. Moreover, the language is dy-
namically typed. It gives more freedom for the developers but it adds potential type
matching issues. For these reasons, the need for testing is more than mandatory to
keep the environment in a flawless state. We studied this environment which led
to a research paper: Verhaeghe et al. [2017]. We conclude that Pharo developers
run often their tests: they run twice more tests than in the Worldline study. They
also practice test selection depending of the duration of the tests and select tests by
their relevancy. Compared to Gligoric et al. [2014] and Beller et al. [2015] where
the analysis where on various Java communities, we studied the behavior of the
developers within another language, Pharo, in a smaller but uniform community.

Test selection may be a first step of the coevolution between the tests and the
application source code. Test selection allows us able to match the tests with their
source code and vice-versa when a piece of code is changed by the developer. If
the associated tests are passing, the behavior of the application does not change and
the modification is trustworthy (assuring that the tests cover well the code). Else,
if the tests are failing, the change impacted negatively the application. Another
change has to be made to reestablish the coherence of the application: either by
modifying the test, or a part of the program. An approach for the coevolution of
the source code and the tests could advise the developer on possible modifications
to perform to make the tests green again. This approach would spare developers
hours of investigation to discover the root causes of a bug.
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1 Analysis of Project Data
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