
Grascomp
École Doctorale Sciences Pour l’Ingénieur, Université de Lille Nord-de-France

THÈSE

préparée dans le cadre d’une cotutelle
pour obtenir le grade de

Docteur en Sciences de l’Ingénieur de l’Université de Mons
Docteur en Informatique et applications de l’Université de Lille

présentée et soutenue publiquement par

Jan Gmys

le 19 décembre 2017

Heterogeneous cluster computing for many-task exact
optimization - Application to permutation problems

devant le jury composé de

Patricia Stolf, Maître de conférence HDR Université Toulouse Jean-Jaurès
Imen Chakroun, Researcher IMEC
Pierre Manneback, Professeur Université de Mons
Frédéric Semet, Professeur École Centrale de Lille
Andrzej Jaszkiewicz, Professeur Poznan University of Technology

Rapporteurs Franck Cappello, Senior Researcher Argonne National Laboratory (USA)
Farouk Yalaoui, Professeur Université de Technologies Troyes

Directeurs Daniel Tuyttens, Professeur Université de Mons
Nouredine Melab, Professeur Université de Lille

Co-directeur Mohand Mezmaz, Chargé de Recherche Université de Mons

2

3

Remerciements

Je tiens d'abord à exprimer ma profonde gratitude à mes promoteurs Daniel Tuyt-
tens, NouredineMelab etMohandMezmaz. Je voudrais les remercier d'avoir guidé,
en tant qu'équipe en parfait accord, mes premiers pas dans le monde de la recher-
che, pour tout le soutien et la confiance qu'ils m'ont apporté depuis le début. C'est
une très grande chance d'avoir pu travailler avec eux pendant ces trois dernières
années, dans un cadre où j'ai toujours trouvé la bonne humeur, la confiance, une
dose saine d'exigence et d'ambition, la curiosité et l'envie de comprendre. Cet es-
prit d'équipe formidable, dans lequel j'ai pu réaliser ma thèse, est sans doute l'in-
grédient secrèt de son succès. Au risque de ressembler au joueur qui repond aux
journalistes après avoir marqué un but important, je veux dire très sincèrement :
merci à eux, ils ont fait un travail extraordinaire et c'est en grande partie grâce à
eux que j'ai pu écrire et défendre cette thèse.

Mes remerciements sincères vont également à Pierre Manneback et Frédéric
Semet d'avoir participé à mon comité d'accompagnement et au jury, à Franck Cap-
pello et Farouk Yalaoui de m'avoir fait l'honneur de rapporter cette thèse, ainsi
qu'à Patricia Stolf, Andrzej Jaszkiewicz et Imen Chakroun d'avoir accepté de faire
partie de mon jury. Je suis également reconnaissant à cette dernière pour son
implémentation de la borne du flowshop, sur laquelle j'ai pû bâtir, comme sur le
code IVM de Rudi Leroy et B&B@Grid de Mohand Mezmaz. Merci à tous les gens
du département IG, de l'Université de Lille et d'Inria Lille pour toutes les discus-
sions intéressantes, pour les conseils, demarches administratrives, blagues, tra-
jets, clopes, repas et/ou boissons partagés - j'espère que chacun.e se reconnaîtra!

Aussi, ce travail n'aurait pas vu le jour sans mes parents et mes grand-parents.
Même si cette affirmation peut paraître évidente, je veux les remercier du fond du
coeur ici, ainsi que toute ma famille, mes amis et toutes les personnes qui m'ont
aidé d'une manière ou d'une autre et ont contribué à rendre ces trois dernières
années plus agréables.

Enfin, je voudrais remercier Juliette pour sa patience et son amour, d'avoir tou-
jours cru en moi et de mettre la lumière dans ma vie tous les jours.

Acknowledgements

First of all, I would like to expressmy gratitude towardsmy doctoral advisors Daniel
Tuyttens, Nouredine Melab and Mohand Mezmaz. Adding up perfectly as a team,
they have guidedme onmy first steps as a researcher, showingme all the support
and trust that I needed to grow and learn. I was very lucky to have the privilege,
throughout these last three years, to work with them in a environment where I
always found a good mood, trust, a healthy dose of ambition, curiosity and the
desire to understand. This extraordinary team-spirit is without a doubt the secret

4

ingredient for the success of this thesis. At the risk of sounding like a player being
interviewed after a game-winning goal, I'd like to say, sincerely : I have to give a
lot a credit to my team of advisors, who did an amazing job, and it is in very large
parts thanks to them that I was able to write and defend this thesis.

I also would like to thank Pierre Manneback and Frédéric Semet for their parti-
cipation in my accompanying and dissertation committees, thank Franck Cappello
and Farouk Yalaoui for doing me the honor to report this thesis, and also thank
Patricia Stolf, Andrzej Jaszkiewicz and Imen Chakroun for agreeing to be part of
my dissertation committee. I would also like to acknowledge the latter for her im-
plementation of the flowshop lower bound, on top of which I was able to build, like
on the IVM code of Rudi Leroy and B&B@Grid of Mohand Mezmaz.

Thanks to all the people from the IG department, from University Lille 1 and In-
ria Lille for all the interesting discussions, helpful advice, paperwork, shared jokes,
journeys, cigarettes, meals and/or drinks.

Also, this work would not have been possible without my parents and grand-
parents. Even though this statement may seem rather obvious, I would like to
thank them from the bottom of my heart, as well as all my family, friends, and all
persons that helped me in one way or another and contributed to making the last
three years more pleasant.

Finally, I want to thank Juliette for her patience and love, for always believing in
me and for putting light in my life every single day.

5

Abstract:

Branch-and-Bound (B&B) is a tree-based exploration method for exactly solving com-
binatorial optimization problems by implicit enumeration of the solution space. B&B
dynamically generates large irregular search trees which need to be processed in par-
allel as only very small problem instances can be solved within a reasonable amount
of time on a sequential computer. The latest Top500 ranking of the world’s largest su-
percomputers confirms the tendency towards heterogeneous systems including GPUs
and multi-core/many-core processors as main building blocks. This thesis revisits the
design and implementation of B&B for hybrid multi-core and multi-GPU platforms, from
single-node systems to large-scale heterogeneous high performance computing clusters.
Although B&B is a generic method, the design of parallel B&B is strongly influenced by
both the characteristics of the tackled problem and the target architecture. The focus
is put on permutation-based combinatorial problems, using the Flowshop Scheduling
Problem (FSP), the Quadratic Assignment Problem (QAP) and the 𝑛-Queens puzzle
problem as test-cases.

An innovative data structure dedicated to permutation problems, called Integer-
Vector-Matrix (IVM) is used for the efficient storage and management of the pool of sub-
problems instead of conventional data structures (e. g. stacks, deques, priority queues).
The principle of parallel IVM-based B&B is to have several independent B&B processes
use their private IVM for the exploration of different parts of the search space, which
are compactly encoded as intervals. Several IVM-based parallel B&B algorithms are
presented in this thesis. For shared-memory multi-core processors, we propose a hybrid
multi-core-GPU B&B that can use available GPU devices for the acceleration of the bound-
ing operator, which is often the most time-intensive part of B&B. Targeting GPUs and
single-node multi-GPU systems, we present the first B&B algorithm that runs entirely on
the GPU, using different parallelization models for coarse- and fine-grained permutation
problems. In order to exploit heterogeneous clusters with multiple distributed GPUs
and multi-core CPUs, both approaches are combined using the master-worker paradigm.

In order to balance the workload IVM-based B&B processes exchange intervals in
a work stealing approach. Indeed, considering the highly irregular nature of B&B, one
of the main challenges is the dynamic distribution of subproblems (nodes of the B&B
tree) among a large set of processors. The design of efficient work stealing strategies is
therefore a central contribution of this thesis. Interval-based work stealing strategies
are proposed for multi-core B&B, including its GPU-accelerated variant and for GPU-
centric B&B, performing work stealing inside the GPU. Using hierarchical work stealing
approaches, inter-GPU and inter-node load balancing approaches are proposed for

6

single-node multi-GPU systems and hybrid distributed clusters.
A second major challenge raised by the irregularity of B&B is the efficient use of single-

instruction multiple-data processing at the instruction-level, as well as the minimization
of detrimental effects from irregular memory access patterns. Targeting Intel multi-
core and many-integrated core (MIC) processors, a vectorizable implementation of the
FSP bounding operator is proposed. In order to improve control flow efficiency and
reduce instruction replay overhead, alternative mapping schemes are presented for the
GPU-centric B&B.

Extensive experimental evaluations are performed using the three test-cases, revealing
input-dependent behaviors. Results demonstrate the scalability of the approach at
different levels, with respect to the number of CPU cores, GPU cores, GPU devices and
heterogeneous compute nodes. In particular the use of multi-GPU systems and large
clusters allows to solve instances whose exact resolution is otherwise impractical. For a
class of 20 jobs-on-20 machines FSP instances with sequential execution times between
15 minutes and 22 hours, the resolution time using four GPUs ranges from 1 second
to 1 minute, i. e. an improvement of three orders of magnitude compared to a single
CPU core. A large FSP instance, defined by 50 jobs and 20 machines, whose resolution
requires 25 days of processing on more than 300 CPU cores is solved within 9 hours on a
cluster containing 36 GPUs.

Keywords:

Branch-and-Bound, Combinatorial optimization, High-performance computing, GPU
computing, Permutation problems

7

Résumé:

L’algorithme Branch-and-Bound (B&B, en Français, séparation et évaluation) est fréquem-
ment utilisé pour la résolution exacte de problèmes d’optimisation combinatoire. Il s’agit
d’une méthode de recherche arborescente qui procède par énumération implictite de
l’ensemble de solutions. L’algorithme génère des arbres de recherche souvent très larges
et fortement irréguliers qui doivent être explorés en parallèle, car seules des petites in-
stances peuvent être résolues en un temps raisonnable sur une machine séquentielle. Le
dernier classement mondial des supercalculateurs les plus puissants (Top500) confirme
que ces derniers tendent à être de plus en plus hétérogènes, combinant processeurs multi-
core, many-core et processeurs graphiques (GPUs). Dans cette thèse nous réexaminons la
conception et l’implémentation d’algorithmes B&B sur de larges plateformes hétérogènes
de calcul haute performance. En dépit de sa généricité, la conception d’algorithmes
B&B parallèles est fortement influencée par les caractéristiques du problème résolu et de
l’architecture ciblée. Nous nous concentrons sur des problèmes combinatoires définis
sur l’ensemble des permutations. Le problème d’ordonnancement Flow-Shop (FSP),
le problème d’affectation quadratique (QAP) et le problème des 𝑛-dames sont utilisés
comme cas d’étude.

Une structure de données originale (appelée IVM ou Integer-Vector-Matrix) dédiée
aux problèmes de permutation est utilisée pour le stockage et la gestion efficaces du pool
de sous-problèmes (noeuds de l’arbre). Dans le B&B parallèle basé sur IVM, plusieurs
processus B&B indépendants explorent en parallèle différentes parties de l’espace de
recherche en utilisant leur structure IVM privée. Chaque partie de l’espace de recherche
assigné à un processus B&B est encodée de manière compacte sous forme d’un intervalle
de nombres factoriels.

Plusieurs algorithmes B&B basés sur IVM sont présentés dans cette thèse. Pour des
processeurs multi-coeurs à mémoire partagée, nous proposons un algorithme hybride qui
utilise les GPUs disponibles pour l’accélération de l’évaluation de sous-problèmes, celle-ci
étant souvent la partie la plus coûteuse en temps. Ciblant les GPUs et les systèmes multi-
GPUs, nous proposons le premier algorithme B&B executé entièrement sur l’accélérateur,
utilisant deux modèles de parallélisation adaptés aux problèmes à granularité fine et
grossière. Pour l’exploitation de clusters hétérogènes à mémoire distribuée, les approches
multi-core et GPU sont combinées en les intégrant dans un modèle fermier-travailleur.

Afin d’équilibrer la charge de travail dynamiquement, les processus B&B basés sur
IVM s’échangent des intervalles en utilisant une approche de vol de tâches. A cause
de la nature fortement irrégulière et imprévisible de l’algorithme B&B, la répartition
dynamique de sous-problèmes parmi l’ensemble des processeurs représente en effet un

8

des défis majeurs. Par conséquent, la conception de stratégies de vol de tâches occupe une
place centrale dans cette thèse. Des strategies de vol de tâches basées sur les intervalles de
nombres factoriels sont proposées pour le B&B multi-core (accéléré par GPU) et pour le
B&B basé sur GPU, équilibrant la charge à l’intérieur du GPU. En utilisant une approche
hiérarchique du vol de tâches, des mécanismes d’équilibrage de charge inter-GPUs et
inter-noeuds sont proposés pour des systèmes multi-GPUs et pour des clusters hybrides
à mémoire distribuée.

L’utilisation efficace du traitement “instruction unique, données multiples” (SIMD) est
un second défi posé par l’irrégularité inhérente à l’algorithme B&B. En effet, la divergence
de contrôle et les accès mémoire irréguliers dégradent fortement la performance du
traitement SIMD, qui est un levier de performance important au niveau des instructions.
Ciblant l’exploitation des registres SIMD des processeurs multi-core et MIC, une nouvelle
implémentation vectorisable de la borne inférieure utilisée pour le FSP est présentée. Pour
reduire les effets négatifs de la divergence de contrôle sur l’efficacité du traitement par
GPU, des mappings alternatifs pour l’implémentation sur GPU des différents opérateurs
B&B sont présentés.

Des évaluations expérimentales approfondies utilisant les trois cas d’étude ont été
effectuées, révélant l’impact du problème résolu sur le comportement des algorithmes.
Les résultats expérimentaux démontrent une bonne scalabilité des approches proposées
à plusieurs niveaux: par rapport au nombre de coeurs CPU et GPU, par rapport au
nombre de GPUs utilisés et par rapport au nombre de noeuds hétérogènes dans le B&B
distribué.

En particulier, l’utilisation de systèmes multi-GPUs et de larges clusters de GPUs
permet une résolution d’instances de problèmes qui serait impraticable séquentiellement.
Pour une classe d’instances du FSP (20×20) avec un temps de résolution entre 15 minutes
et 22 heures sur un seul coeur CPU, le temps de résolution sur 4 GPUs est compris entre
1 seconde et 1 minute, soit trois ordres de grandeur plus court. Une très grande instance
du FSP définie par 50 jobs et 20 machines, dont le temps de résolution séquentiel est
estimé à 22 ans, est résolue en 9 heures sur un cluster de calcul équipé de 36 GPUs.

Mots clés

Branch-and-Bound parallèle, Optimisation combinatoire, Caclul haute performance,
Processeurs Graphiques, Problèmes de Permutation

9

Contents

Contents 9

Introduction 12

1 Parallel Branch-and-Bound algorithms 19
1.1 Introduction . 20
1.2 Solving permutation combinatorial optimization problems 21
1.3 Branch-and-Bound algorithms . 22

1.3.1 Terminology and general description 23
1.3.2 Models for parallel Branch-and-Bound 25
1.3.3 Challenges in parallel Branch-and-Bound 28

1.4 Computing Environments . 31
1.5 Related work . 36

1.5.1 B&B for multi-core CPUs . 36
1.5.2 B&B for Graphics Processing Units 38
1.5.3 Hybrid and distributed parallel B&B 40

1.6 Test-cases: Permutation-based COPs . 41
1.6.1 Flowshop Scheduling Problem (FSP) 41
1.6.2 Quadratic Assignment Problem (QAP) 43
1.6.3 𝑛-Queens Problem . 44
1.6.4 B&B tree analysis of the test problems 45

2 IVM-based B&B for multi-/many-core systems 50
2.1 Introduction . 52
2.2 IVM-based parallel Branch-and-Bound . 52

2.2.1 IVM-based serial B&B . 52
2.2.2 Position vector: factoradic numbers 55
2.2.3 Work units: intervals of factoradics 57

10 Contents

2.2.4 Work unit communication . 59
2.3 Work stealing for IVM-based B&B on multi-core CPUs 61

2.3.1 Work stealing using factoradic intervals 62
2.3.2 Victim selection policies . 62
2.3.3 Granularity policies . 65

2.4 Accleration of bounding operator . 66
2.4.1 GPU acceleration . 66
2.4.2 Vectorization of the FSP bounding procedure 68

2.5 Experiments . 70
2.5.1 Evaluation of data structures for B&B 71
2.5.2 GPU-acceleration of the bounding operator 73
2.5.3 Evaluation of Work Stealing Strategies 74
2.5.4 Performance evaluation on Intel Xeon Phi 78
2.5.5 MC-B&B: performance on different multi-core CPUs 81

2.6 Conclusions . 82

3 GPU-centric Branch-and-Bound 85
3.1 Introduction . 87
3.2 Discussion of design choices . 88
3.3 GPU-B&B and GPU-backtracking . 92

3.3.1 GPU-B&B: 2-level parallelization 92
3.3.2 Thread-data mapping and branch divergence reduction 97
3.3.3 GPU-BT: 1-level parallelization . 101

3.4 Work stealing strategies for GPU-B&B . 103
3.4.1 Victim Selection policies . 103
3.4.2 Work stealing for multi-GPU-B&B 107

3.5 Experiments . 108
3.5.1 Evaluation of Mapping approaches 108
3.5.2 Evaluation of Work Stealing strategies 112
3.5.3 Scalability analysis . 114
3.5.4 Multi-GPU-B&B performance evaluation 118
3.5.5 Hybrid CPU-multi-GPU-B&B . 123

3.6 Conclusions . 125

4 Branch-and-Bound for hybrid HPC clusters 128
4.1 Introduction . 129
4.2 B&B for hybrid clusters . 129

11

4.2.1 B&B@Grid . 129
4.2.2 Design of hybrid distributed B&B 131
4.2.3 Redundant exploration . 133
4.2.4 Implementation of worker process 135

4.3 Experiments . 138
4.3.1 Experimental protocol . 138
4.3.2 Resolution of very large problem instances 138
4.3.3 Scalability: Ouessant . 143
4.3.4 Hybrid CPU/GPU scalability . 146
4.3.5 Solving other 50×20 FSP instances 148

4.4 Conclusion . 149

5 Conclusions and Perspectives 151

List of Figures 169

List of Tables 171

A Appendix I
A.1 Tree sizes . I
A.2 Lower bounds: complexities . I
A.3 Hardware . II

Introduction

Permutation-based optimization or constraint satisfaction problems frequently arise
in industrial and economic applications such as routing, scheduling and assignment.
Solving such problems consists in finding one or several permutation(s) that minim-
ize/maximize1 a given cost function or, respectively, satisfy a given set of constraints.

In this thesis we address NP-hard combinatorial optimization problems. Heuristic
approaches are able to find near-optimal solutions in a reasonable amount of time,
but they fail in general to find optimal solutions. Conversely, exact methods allow to
find the optimal solution(s) with a proof of optimality, but the required computation
power can be very huge. One of the most used exact methods to solve COPs is the
Branch-and-Bound (B&B) algorithm. B&B implicitly enumerates all possible solutions
by dynamically constructing and exploring a tree. This is done using four operators:
branching, bounding, selection and pruning. Using the branching operator, the algorithm
recursively decomposes the problem into smaller subproblems. A bounding function is
used to compute lower bounds on the optimal cost of these subproblems. Using these
lower bounds, the pruning operator discards subproblems from the search that cannot
lead to an improvement of the best solution found so far. The tree-traversal is guided
by the selection operator which returns the next subproblem to be processed according
to a predefined strategy (e.g. depth-first search). Due to the pruning of branches the
explored tree is highly irregular and unpredictable in size and shape.

Although the lower bound-based pruning mechanism of B&B significantly reduces
the number of explored nodes, B&B algorithms often generate very large trees. Using
a single processing core only small or moderately-sized instances can be solved in a
reasonable amount of time. For this reason, over the last decades, parallel computing
has been revealed as an attractive way to deal with larger instances.

Over the past 20 years we have witnessed an impressive evolution of computing
technologies. Computer architects, programmers and researchers are moving towards

1. Without loss of generality the minimization case is considered in this thesis.

12

13

heterogeneous (or hybrid/collaborative) computing which aims at matching the require-
ments of each application to the strengths of the different architectures present in a
heterogeneous computing system [MV15]. The biannual list of the most powerful super-
computers in the world, Top500 [16], reveals that advances in computer system design,
microprocessor architecture, memory subsystem and networking allow to deliver factor
2 performance increase every 18 − 24 months. While a similar growth is predicted over
the next 10 years, this is being achieved through a huge increase in hardware complex-
ity [GR14]. The cost of moving data, in terms of energy and time, is often greater than
the cost of computations, although memory subsystems have evolved to an impressive
level of complexity [Dre07]. As energy-efficiency has become a key issue, the trend
towards more complex and more heterogeneous HPC systems is likely to continue. The
rise of low-power processors and system-on-chip (SoC) designs, driven by the mobile-
device market, indicate that future HPC systems are likely to contain a large number of
heterogeneous, more or less powerful components [GR14]. An increasing number of
heterogeneous components (and lower operating voltages) may lead to higher failure
rates, calling for fault-tolerant algorithms and highly efficient communication schemes,
to cite just two of the tremendous challenges that lie ahead in the field of HPC [Cap09;
CGG+14].

The B&B algorithm can be used to solve basically any type of COP. Despite the gener-
icity of B&B, the nature of the problem being solved has a strong impact on fundamental
design and implementation decisions. In particular, the choice of the most suitable
parallelization model and of the most suitable target architecture is determined mainly
by the computational characteristics of the node evaluation function. Knowing that
billions of nodes need to be evaluated, if possible in parallel, the following questions are
crucial. Is the operation of evaluating a node very time and/or memory-consuming?
Memory or compute-bound? Parallelizable, vectorizable? The research advances that
have been made over the last decade, exploring the use of GPUs for B&B algorithms
illustrate how the problem-dependent answers to these questions impact design choices.

One parallelization approach consists in generating large pools of nodes on the
host CPU and offloading them to the GPU, where the nodes are evaluated in paral-
lel. This approach has been applied for instance to the Flowshop Scheduling Problem
(FSP) [CMMB13; VDM13] and Knapsack problems [LE12]. To reduce the data volume
transferred between host and device, the branching and pruning operators are also
implemented on the device [Cha13]. Using multiple streams in order to overlap data
transfers and careful tuning of the size of offloaded pools [Cha13] help further decrease
the overhead incurred by CPU-GPU communications.

14 Introduction

For problems where the node-evaluation cost is relatively low this approach becomes
less efficient, as data transfers and the sequential selection and insertion of nodes become
bottlenecks. For such fine-grained applications an approach that focuses on performing
the search itself in parallel on the GPU is preferred. It consists in exploring the B&B tree
on the CPU until a predefined cutoff depth, storing all frontier nodes in a data structure.
After this initial search, this set is sent to the GPU and each node in this set is used as a
root for a concurrent exploration of the associated subtree. For instance, this approach has
been successfully applied to the 𝑛-Queens [LLW+15], the Traveling Salesman [CMNL11]
and Multiproduct Batch Plant problems [BHG15]. However, such approaches fail to
explore highly irregular trees efficiently, as they rely on a static workload repartition.

This thesis deals with the mapping of the B&B algorithm onto heterogeneous comput-
ing systems. The focus is put on solving large instances of three well-known permutation-
problems, the Flowshop Scheduling Problem (FSP), the Quadratic Assignment Problem
(QAP) and the 𝑛-Queens Problem. These three use cases present different characteristic
features and we aim at matching the algorithm with the heterogeneous target architecture
in a transparent way for any of the three test-problems. The computing environments con-
sidered are shared-memory multi-core CPUs, Many-Integrated Core (MIC) processors,
Graphics Processing Units (GPU) and hybrid clusters integrating these three processing
units.

As for other algorithms, data structures play a major role in the performance of a B&B
algorithm [MR90]. In [Ler15], a data structure using an Integer, a Vector and a Matrix
(called IVM) was introduced as an alternative for linked-list-based data structures which
are conventionally used in B&B algorithms for permutation problems. In [Ler15], Leroy
compares IVM with linked-list-based data structures from a theoretical point of view
and experimental results reported in [MLMT14] show that IVM, compared to linked-lists
(LL), allows to reduce the amount of time spent in managing the pool of subproblems as
well as memory requirements for storing this pool. The B&B algorithms for multi-core,
many integrated core (MIC), GPU and hybrid clusters integrating the former three, which
are developed in this thesis are based on the IVM data structure.

The addressed issues and proposed contributions are summarized in the following:

• In [Ler15; MLMT14] IVM has only been applied to the Flowshop Scheduling Prob-
lem (FSP) and the experimental evaluation is limited to the cost of managing the
pool of subproblems. Therefore, our first contribution consists in validating the
IVM data structure by revisiting the approach considering other permutation

15

problems, namely the Quadratic Assignment Problem (QAP) and the 𝑛-Queens
Problem. In order to establish the utility of IVM for permutation problems in gen-
eral, it is important to investigate with problems that present different characteristic
features, in particular the shape of the explored tree and the computational com-
plexity of the node evaluation function. Indeed, the performance of B&B is strongly
influenced by these two problem-dependent parameters.

• We present an IVM-based multi-core algorithm (MC-B&B) for these three prob-
lems, as well as work stealing strategies using intervals of factoradics as work
units exchanged between threads. Based on MC-B&B, we propose a hybrid GPU-
accelerated multi-core B&B algorithm (GMC-B&B). In addition to the parallel
exploration of the B&B tree, each thread in GMC-B&B concurrently offloads sub-
problems to the GPU, where the corresponding lower bound values are computed
in parallel. Work stealing strategies for dynamic load balancing are revisited for
the accelerated algorithm. For comparison, equivalent linked-list based versions of
both algorithms are implemented and experimentally compared to the IVM-based
approach.

• Another challenging issue related to B&B for multi-core CPUs is vectorization. In
addition to being composed of multiple cores, almost all modern CPUs provide
vector instruction sets (e. g. AVX, ARM NEON, AVX2, AVX-512) operating on 128,
256 resp. 512 bit registers (allowing 4, 8 resp. 16 32-bit operations to be performed
in one cycle). In order to make full use of the processing capabilities of multi-core
CPUs, the computationally intensive parts of an algorithm should be vectorized.
In some cases this can be automatically achieved through compiler support, while
other cases require rethinking the algorithmic structure of the code. For the FSP,
the CPU implementation of the lower bounding procedure is revisited and a
vectorization mechanism is proposed.

• We propose a (multi-)GPU-based B&B algorithm (GPU-B&B) that implements
the entire algorithm as well as load balancing mechanisms on the GPU. To the
best of our knowledge it is the first B&B algorithm to perform the entire search
process on the GPU. At the core of GPU-B&B is the IVM data structure, whose
small and constant memory footprint is better suited to GPUs than conventional
LL-based data structures. Using IVM, thousands of tree explorations are performed
in parallel and the evaluation of nodes is in turn parallelized to add a second level
of fine-grained parallelism. The implementation of B&B on GPU is challenging
because its irregular nature contrasts with the regularity of the GPU architecture

16 Introduction

and execution model. Indeed, irregular instruction flow and unstructured memory
access patterns are highly detrimental to the performance of GPU processing, as
they cause bandwidth penalties and instruction serialization. As a well-informed
choice of the thread-data mapping can minimize these effects, different mapping
schemes are proposed for the four B&B operators.

• The choice of the best parallelization model depends on the problem being solved.
When the application is computationally dominated by a relatively costly bounding
procedure (e. g. FSP, QAP) the two-level parallelization of GPU-B&B is well-suited,
because the overhead incurred by handling the nested level is compensated by
performance gains. However, for fine-grained problems with inexpensive node
evaluation functions, like in heuristic backtracking algorithms [RK93], parallel node
evaluation is inefficient. For the efficient resolution of fine-grained permutation
problems on GPUs we propose a GPU-based backtracking algorithm (GPU-BT).
In contrast to the 2-level GPU-B&B, workers perform multiple iterations of B&B
within the same kernel until the number of idle worker reaches a critical threshold
and a load balancing phase is triggered.

• Dynamic load balancing is a crucial component of parallel tree search algorithms.
As GPU-B&B completely bypasses the CPU and performs massively parallel searches
on irregular trees, it is necessary to design and implement an efficient mechan-
ism for load balancing inside the GPU. Adapting CPU-based approaches like the
work stealing strategies used in MC-B&B to the GPU is not straightforward, as
these approaches require locking and mutual exclusion mechanisms, unavailable
or inefficient on GPUs. Therefore, the work stealing mechanism for IVM-based
B&B is rethought and adapted to the single-instruction multiple-data (SIMD)
execution model of the GPU and multi-GPU systems. We propose five work
stealing strategies to tackle the problem of work load imbalance inside the GPU.
These strategies use different topologies (e. g. ring and hypercube), victim selection
policies and mechanisms to adapt themselves to the different phases of the paral-
lel exploration process (ramp-up and shutdown). The proposed load balancing
approach is used by both variants of the algorithm.

• In order to solve very large permutation COPs, like the 50-job FSP instance 𝑇𝑎056 [Tai93]
which requires 22 CPU-years to be solved to optimality, all available resources of a
hybrid GPU- and/or MIC-accelerated cluster must be used. For that purpose we re-
visit the B&B@Grid approach [MMT07] on heterogeneous clusters combining
multi-core CPUs and GPUs. The original B&B@Grid approach is a fault-tolerant

17

and highly scalable algorithm designed for computational grids. In this master-
worker approach, workers in this algorithm are single-core processors. The design
of the coordinator process which distributes work units across distributed compute
nodes is revisited with the goal of including GPU devices, MIC and multi-core
processors. We evaluate the proposed hybrid distributed B&B algorithm (HD-B&B)
on a cluster with a total of 130 000 GPU cores located at the IDRIS2 institute.

This thesis is organized in four chapters.

Chapter 1 introduces all the background and prerequisites necessary to the compre-
hension of the global document, namely the B&B algorithm, associated data structures
and the FSP, QAP and 𝑛-Queens problems. The introduction of the algorithm and the
test-cases is completed by a preliminary analysis of the sequential B&B algorithm. This
introductory chapter also provides an overview of the different computing environments
and the main features of the respective architectures. It contains a summary of the major
parallelization strategies for B&B, a literature overview and synthesis of existing work
dealing with parallel B&B classified by the target computational platform (GPU and
MIC many-core processors, multi-core systems, computational grids and hybrid cluster
systems).

Chapter 2 contains our contributions targeting multi-core systems, including the
many-integrated core (MIC) architecture. First, it introduces the sequential IVM-based
B&B algorithm, followed by the parallel IVM-based B&B for multi-core processors and
associated work stealing strategies. Then, it describes the GPU-accelerated multi-core
algorithm and the extension of the work stealing strategies to the hybrid MC-B&B. After
presenting the approach that consists in accelerating the bounding operator on GPU,
its acceleration through vectorization is addressed. The presence of obstacles for the
automatic compiler-assisted vectorization of the most time-consuming parts is discussed.
The proposed solutions include a vectorizeable re-implementation of the lower bound
for the FSP. In the last section of this chapter, a detailed experimental study evaluates and
compares the presented algorithms. We evaluate the performance of the (accelerated)
multi-core algorithm, comparing its linked-list and IVM-based implementations for the
three test problems. The efficiency of the vectorization approaches and the proposed
work stealing strategies is also evaluated and discussed. Finally, a scalability analysis on
different multi-core processors concludes this chapter.

2. Institut du développement et des ressources en informatique scientifique

18 Introduction

Chapter 3 deals with the GPU-centric implementation of B&B. It starts by discuss-
ing and exposing fundamental design choices and challenges related to the constraints
imposed by the SIMD execution model and the hierarchical memory organization of
GPUs. The remainder of this chapter is organized in three parts: (1) a description of
both variants of the GPU-centric B&B algorithm (2) a description of the GPU-based work
stealing approach, including its extension to multi-GPU systems and (3) the experimental
evaluation of the GPU-B&B algorithm. First, the implementation of the GPU-centric B&B
algorithm using a two-level parallelization is presented, providing details on the imple-
mentation of each operator. A particular focus is put on the issue of branch divergence:
the sources of branch divergence are identified and thread-to-data mappings that help
solving this issue are presented. Then, the challenges faced by the two-level GPU-B&B
when dealing with fine-grained permutation problems are identified and an alternative,
single-level variant of the algorithm is presented. The following section addresses the
crucial issue of load balancing inside the GPU. It contains a general description of the
approach, followed by a presentation of five work stealing strategies for GPU-based work
stealing and an hierarchical work stealing approach for inter-GPU load balancing in
multi-GPU systems. In the final part of this chapter, the performance of the proposed
GPU-B&B algorithm is evaluated. Experiments are performed with the three test-cases
on a multi-GPU system composed of four GPUs.

Chapter 4 presents a hybrid distributed B&B algorithm based on the B&B@Grid
approach. It starts by describing the original B&B@Grid approach, upon which the
proposed HD-B&B algorithm is build. In order to enable the use of multi-core and
many-core-based workers in B&B@Grid, a redefinition of work units is proposed and
the implications of this modification are discussed. A detailed description of the master
and worker processes is provided, focusing on the revisited communication scheme.
Finally, HD-B&B is experimented on three different GPU-enhanced clusters with up
to 36 GPUs.The experimental evaluation includes scalability and stability analysis and
concludes by a perspective on solving very large, unsolved FSP instances.

Finally, in Chapter 5 some concluding remarks are drawn and some future extensions
of the proposed approaches are presented.

Chapter 1

Parallel Branch-and-Bound
algorithms

Contents
1.1 Introduction . 20

1.2 Solving permutation combinatorial optimization problems 21

1.3 Branch-and-Bound algorithms . 22

1.3.1 Terminology and general description . 23

1.3.2 Models for parallel Branch-and-Bound . 25

1.3.3 Challenges in parallel Branch-and-Bound 28

1.4 Computing Environments . 31

1.5 Related work . 36

1.5.1 B&B for multi-core CPUs . 36

1.5.2 B&B for Graphics Processing Units . 38

1.5.3 Hybrid and distributed parallel B&B . 40

1.6 Test-cases: Permutation-based COPs . 41

1.6.1 Flowshop Scheduling Problem (FSP) . 41

1.6.2 Quadratic Assignment Problem (QAP) . 43

1.6.3 𝑛-Queens Problem . 44

1.6.4 B&B tree analysis of the test problems . 45

19

20 Chapter 1. Parallel Branch-and-Bound algorithms

1.1 Introduction

Combinatorial optimization problems (COP) consist in finding an object within a finite
(or countably infinite) set which is optimal according to a given criterion.

Formally, a COP can be defined as a couple (𝑋, 𝑓), where 𝑋 is the search space and
𝑓 ∶ 𝑋 → 𝑅 the objective function to be minimized1. Constraints that must be fulfilled
by a feasible solution 𝑥 ∈ 𝑋 can be incorporated in the definition of the search space 𝑋
or the objective function 𝑓 . The objective function 𝑓 takes its values in a totally ordered
set, usually the set of real numbers or integers. The value 𝑓 (𝑥) measures the cost (e. g.
quality, time, benefit) of solution 𝑥 ∈ 𝑋. The goal is to find one or multiple solution(s)
𝑥⋆ ∈ 𝑋 that is (are) feasible and for which 𝑓 (𝑥⋆) ≤ 𝑓 (𝑥), ∀𝑥 ∈ 𝑋.

Many COPs can be modeled as optimization problems defined on sets of permutations.
For instance, the solution of a permutation-based COP may represent:

• a scheduling of a set of jobs, such that the completion time of a manufacturing
product is minimized (a scheduling problem),

• an assignment of facilities to locations such that the placement cost is minimized
(an assignment problem),

• a planning of routes such that the total length of the routes is minimized (a traveling
salesman problem).

In such problems candidate solutions are permutations of 𝑛 integers 1, 2, … , 𝑛. The
number 𝑛 represents the number of jobs to schedule, the number of facilities to assign, etc.
and is referred to as the problem size. As the set of permutations of size 𝑛 is of cardinality
𝑛!, the search space associated with a permutation-based COP is usually very large, even
for values of 𝑛 that may seem moderate. While a permutation problem of size 5 could be
easily solved by enumerating all 120 feasible solutions, this approach becomes clearly
unfeasible for problems of size 50 or 100 which admit about 3 × 1064, respectively 10158

candidate solutions.
This thesis focuses on permutation-based COPs. In particular, we address NP-hard

hard permutation-based COPs. Three permutation-based problems are used as test-
cases: the Permutation Flowshop Scheduling Problem (FSP), the Quadratic Assignment
Problem (QAP) and the 𝑛-Queens problem. A detailed introduction of these problems is
provided later, in Section 1.6 of this chapter. Formally, the 𝑛-Queens problem is not an
optimization problem, because it consists in finding (all) feasible solutions and no notion

1. Without loss of generality we consider the minimization case: the maximization of 𝑓 is equivalent to
the minimization of −𝑓.

21

of optimality is defined. However, one may model this constraint satisfaction problem as
a COP by defining the objective function as a constraint-checking function which assigns
0 to feasible and 1 to infeasible solutions.

1.2 Solving permutation combinatorial optimization problems

Approaches to solving COPs can be classified into two main categories: exact and ap-
proximate methods [Tal09]. Approximate methods aim at finding near-optimal solutions
in a reasonable amount of time, exploring parts of the solution space where good quality
solutions are expected to be found. Among the most used approximate methods are
metaheuristics. Roughly described, metaheuristics are general-purpose optimization
methods that require limited problem-specific information. Metaheuristics are either
single solution-based or population-based. While the former consider a single initial
solution which is iteratively improved (e. g. Hill-Climbing, Simulated Annealing), the
latter operate on a set of solutions which are collectively or independently improved
(e. g. Evolutionary Algorithms, Ant Colonies). However, heuristics and metaheuristics
provide no error quantification. Even if a heuristic method finds the/an optimal solution
it does not provide a certificate of optimality. Knowledge of exact solutions to benchmark
instances for COPs is therefore valuable for assessing the quality of a heuristic method
for a class of problems. Also, some highly cost-critical applications may benefit from
closing even small optimality gaps.

While high-quality solutions to COPs can often be found within a few seconds, exact
solving may require a huge amount of time and computational resources. This is due to
the enumerative nature of exact methods, which require, in the worst case, a number
of iterations which grows exponentially with the problem size. The most naive exact
method consists in completely enumerating the solution space. For obvious reasons this
is only feasible for very small problem sizes. A more sophisticated and widely used
exact method is the branch-and-bound (B&B) algorithm. B&B dynamically builds and
explores a tree using four operators: branching, bounding, selection and elimination.
The B&B approach recursively decomposes the problem into smaller subproblems for
which lower bounds on their optimal solution are computed. Based on these lower
bounds the elimination operator discards unpromising subproblems which have lower
bounds greater than the best solution found so far. This is also known as pruning of tree
branches or fathoming of parts of the search space. A detailed description of the B&B
algorithm is provided in Section 1.3 of this chapter.

Many other exact resolution methods are B&B-like tree-search algorithms. Besides

22 Chapter 1. Parallel Branch-and-Bound algorithms

simple B&B there are two main variants: branch-and-cut (B&C) and branch-and-price
(B&P). There are other less known variants of B&B such as branch-and-peg [GGS04],
branch-and-win [PC04], and branch-and-cut-and-solve [CZ06]. This list is certainly not
exhaustive. It is also possible to consider a divide-and-conquer algorithm as a B&B
algorithm, as it is enough to remove the pruning operator from B&B. Some authors
consider B&C, B&P, and the other variants as different algorithms than B&B and use B&X
to refer to algorithms like B&B, B&C, B&P, etc. In this document B&B refers to simple
B&B or any of its variants. Backtracking is a fundamental paradigm frequently used to
solve constraint satisfaction problems and can also be interpreted as a special case of a
depth-first search (DFS) B&B algorithm. The difference is that backtracking does not use
a bounding operator to detect unpromising nodes. However it may incorporate pruning
mechanisms, for instance based on evaluating the feasibility of a subproblem, which can
be seen as a binary bounding function.

Compared to complete enumeration the pruning of branches significantly reduces
the size of the explored tree. However, for many COPs the execution time of B&B
significantly increases with the input size and only small or moderately sized instances
can be practically solved with sequential algorithms. For this reason, the use of parallel
computers is an attractive way to deal with larger instances of COPs. One might argue
that there is no point in applying B&B to NP-hard COPs, unless we have an exponential
number of processors for parallel processing. However, the approach may actually
perform well for a given problem and parallel computing may provide the necessary
computing power to solve instances up to a certain size. Running times for B&B are
very hard to predict because it requires an estimate of the tree-size. This means that the
decision whether an exact algorithm for a given problem is useful, can only be founded
on empirical data.

The combination of approximate and exact methods is a promising approach. For
instance, metaheuristics can be used to accelerate the search process of B&B, and B&B
may provide candidate solutions that improve the quality of the approximate method.
As the focus of this thesis is put on the efficient design of B&B on parallel computers, we
refer the reader to [Meh11; Tal09] for more information on this subject.

1.3 Branch-and-Bound algorithms

This section provides a comprehensive overview of the B&B algorithm. As we focus on
permutation-based problems, it is assumed in the following that B&B is applied to solve
a permutation problem.

23

1.3.1 Terminology and general description

The B&B algorithm proceeds by implicit enumeration of all the solutions of the problem
being solved. Exploration of the space of potential solutions (search space) is performed
by dynamically building a tree where:

• The root node represents the initial problem to be solved (the search space 𝑋).

• Internal nodes represent subproblems of the initial problem (subspaces 𝑆 ⊂ 𝑋).

• Leaf nodes are possible solutions.

A complementary and useful point of view is to consider B&B as a method for iterat-
ively constructing solutions. Suppose B&B is applied to solve a permutation problem of
size 4 which consists in finding an optimal scheduling of the jobs {1, 2, 3, 4} 2. If none
of the jobs is fixed at a particular position, all 4! permutations can be attained from this
state. This initial state corresponds to the root node and will be denoted /1234/. The
jobs written before the first slash symbol (“/”) are scheduled at the beginning, jobs
behind the second (“/”) symbol are scheduled at the end, and jobs in between are not
yet scheduled. A possible way of constructing candidate solutions is to fix each of the
unscheduled jobs successively at the first, second, third position, and so on. At the
first level this yields four internal nodes 1/234/, 2/134/, 3/124/, 4/123/. The number of
scheduled jobs in an internal node is called its depth or its level. A leaf node is a node in
which all jobs are scheduled, for example 234//1, or simply 2341. Both points of view,
recursive “partitioning of search space” on the one hand and iterative “construction of
solution” on the other, provide equivalent descriptions of the B&B tree and vocabulary
related to both is used interchangeably.

All nodes generated and not yet processed are kept in a data structure. In the be-
ginning this data structure contains only the initial problem. The algorithm saves the
best solution found so far (also called the incumbent) as well as the associated cost (also
referred to as the upper bound). The latter is either initialized at ∞ or at the cost of a
feasible solution known beforehand (for instance, found by an approximate method).
This upper bound can be improved from an iteration to another. At each iteration of the
algorithm:

• The bounding operator is used to compute a lower bound on the minimal cost
of a subproblem. In order to include the possibility of applying the algorithm
to constraint satisfaction problems, the bounding operator is frequently called

2. Throughout the remainder of this thesis we will refer to the elements of a permutation as jobs.

24 Chapter 1. Parallel Branch-and-Bound algorithms

node evaluation function in this document. The node evaluation function solely
depends on the problem being solved. There are essentially two possible modes of
evaluation, called lazy and eager evaluation [CP99]. In the eager evaluation mode
bounds are computed as soon as nodes are generated, i.e. bounding is called after
the branching operator. In the lazy evaluation mode bounds are only computed
if really necessary, i.e. after selection and before the branching operator. The
algorithms presented in this thesis use the eager evaluation mode.

• The pruning operator uses the lower bound value of a subproblem to decide
whether it is kept in the data structure for further exploration or discarded from
the search. Infeasible subproblems and problems whose lower bound is greater
than the best solution found so far can be eliminated.

• The branching operator divides a subproblem into several smaller, pairwise dis-
joint subproblems. In general, this is achieved by partitioning the search space
into smaller subspaces on which the same optimization problem is defined. The
internal nodes generated by branching a node 𝐴 are called 𝐴’s children. For per-
mutation problems, a possible branching scheme consists in assigning all untried
alternatives to a fixed position in the permutation. This is known as polytomic
branching [Rou87], in contrast to dichotomic branching, which generates two chil-
dren per node. The following polytomic branching scheme is used in this work.
Two sets of children nodes are generated, by fixing jobs at the first free position
at the beginning and at the end, respectively. Both sets are evaluated and the
set which is likely to lead to a smaller B&B tree is retained (based on a heuristic
estimate). Generated subproblems are added to the data structure which is used to
store unexplored subproblems.

• The selection operator chooses the next subproblem to be expanded among all
pending subproblems. This choice follows a predefined exploration strategy. The
selection of a node could be based on its depth, which leads to a depth-first ex-
ploration strategy (DFS). In DFS the entire subtree rooted in the current node is
fathomed before another node is processed. A best-first selection strategy could
also be used. It is based on the presumed capacity of the selected node to yield
good solutions. However, memory requirements for pure best-first search are often
excessive. DFS prescribes no particular order of exploration among sibling nodes.
Therefore, nodes on the same level can be processed in increasing order according
to their lower bounds. Unless indicated differently the B&B algorithms presented
are based on this best-bound DFS exploration strategy.

25

Whenever the algorithm reaches a valid solution, this latter is evaluated and compared
to the best solution found so far. If an improvement of this latter is possible, it is updated.
The algorithm stops when the selection operator fails to choose a node to expand because
the pool of pending nodes is empty. At the end of this dynamic exploration process the
best found solution is proven to be optimal.

The size of the explored B&B tree strongly depends on the quality of the bounding
operator, i.e. the tightness of the lower bounds. Moreover, for a given bounding function
the tree size also depends on the rate at which the upper bound decreases towards the
optimal cost - in other words, on the search strategy defined by the selection operator.

If the algorithm is initialized at an optimal solution 𝑥⋆, then B&B explores exactly
the nodes 𝑥 for which 𝐿𝐵(𝑥) < 𝑓 (𝑥⋆)3. Independently from the search strategy, these
nodes must be explored in order to prove the optimality of 𝑥⋆. The tree formed by these
(critical) nodes is called the critical tree.

1.3.2 Models for parallel Branch-and-Bound

The parallelization of B&B is well-studied and different classifications have been pro-
posed [Mel05; TdB92; GC94]. The taxonomy presented in this subsection is the one
from [Mel05] which is based on the classification of Gendron and Crainic [GC94]. Four
models are identified: (1) parallel tree exploration, (2) parallel evaluation of bounds, (3)
parallel evaluation of a bound, and (4) multi-parametric.

Parallel tree exploration model

In the parallel tree exploration model several disjoint search subspaces (branches of the
B&B tree) are explored in parallel. This means that all four operators, selection, branching,
bounding and pruning, are applied in parallel to different subproblems. This can be
done either synchronously or asynchronously. In synchronous mode the B&B algorithm
has several phases in which the B&B processes perform their exploration independently.
The B&B operators are applied in parallel to multiple data (e. g. work pools, nodes,
lower bounds). Between these phases exploration processes are synchronized and can
exchange information, such as the best solution found so far. In asynchronous mode the
B&B processes communicate in an unpredictable manner.

Among the four models, the parallel tree exploration model is the most frequently
used. One of the reasons is that the degree of parallelism in this model can be very

3. Or 𝐿𝐵(𝑥) ≤ 𝑓 (𝑥⋆), if the goal is to find all optimal solutions, not only one. For all problems considered
in this thesis, except 𝑛-Queens, the goal is to find one optimal solution and/or prove its optimality.

26 Chapter 1. Parallel Branch-and-Bound algorithms

high, especially when solving large instances. Each B&B process holds one or several
work units which correspond to subspaces of the total search space. The number of
explorers that can be kept busy simultaneously therefore depends on (1) the rate at which
new subproblems are generated and (2) the efficient assignment of subproblems to B&B
processes. In both modes, synchronous and asynchronous, load balancing is one of
the main issues raised by this model. Indeed, as the B&B tree is highly irregular, some
branches contain much more work than others. Among other issues are the placement
and management of the set of pending subproblems. Especially in distributed contexts,
the communication of the best solution found so far and termination detection also
become challenging.

This parallelization model alters the order in which nodes are explored and therefore
the size of the explored tree. A parallel tree exploration B&B may indeed find an optimal
solution much faster than its sequential counterpart, or, on the contrary, expand much
more nodes to find such a solution. In other words, in parallel tree-search B&B the
number of expanded non-critical nodes does not only depend on the search strategy, but
also on other factors, like work load distribution and communication schemes. Therefore,
in synchronous and asynchronous parallel tree exploration B&B speedup anomalies may
occur [DKT95].

Aside from the potentially very high degree of parallelism, the popularity of this
parallelization approach is also due to its genericity. As this model does not affect
the bounding operator, it can be applied to any COP without prior knowledge of its
characteristics, at least in principle. Therefore, this model is used by most frameworks
that aim at facilitating the implementation of B&B algorithms. This parallelization model
corresponds to the ”type 2” (tree-based) parallelism in the classification of Gendron and
Crainic [GC94]. It falls in the category of ”high-level” parallelization in the classification
of Trienekens and de Bruin [TdB92].

Parallel evaluation of bounds model

Another source of parallelism is the parallel evaluation of bounds. After the decomposi-
tion of a node all its children may be evaluated in parallel. The degree of parallelism in
this model depends on the branching scheme and varies according to the depth of a node
in the tree. In order to reach a high degree of parallelism the selection and branching
operators can be applied multiple times until a pool of children nodes is large enough
to be efficiently evaluated in parallel [Cha13]. This model leads to more fine-grained
parallelism than the parallel tree exploration model. It is well-suited in cases where
the evaluation is costly. Moreover, if the node evaluation is regular (in the sense that

27

each node represents approximately the same amount of work), it is well-suited for
Single Instruction-Multiple Data (SIMD) processing. This model can be nested inside
the parallel tree exploration model. As the previous model, this model is generic in the
sense that it requires no knowledge of the particular problem being solved. If nodes are
evaluated directly after their generation, this model does not change the amount of work
done or the shape of the B&B tree.

(a) Parallel tree exploration model

B&B

Node

Evaluation

agents

Evaluated

bound

(b) Parallel evaluation of bounds model

Figure 1.1: Illustration of main parallelization models used in this thesis.

Parallel evaluation of a bound/solution model

At an even lower level, the evaluation of a bound or solution itself may be parallelized in
some cases. This depends on the possibility of parallelizing the node evaluation function
that is used. As this model only modifies the bounding operator it can be nested inside
both previous models to add a third level of parallelism. For problems with a very
compute intensive bounding function the model may also be used alone. The parallel
evaluation of a bound model has no impact on the search trajectory. Like the previous
model, it is also known as ”node-based” [GC94] or ”low-level” [TdB92] parallelization.

Multi-parametric model

Of the four identified models the multi-parametric model is the less studied one. It is
a coarse-grained parallelization that consists in launching multiple independent B&B
processes that explore the same search space with different algorithm parameters. For
instance, the different B&B algorithms may use different branching schemes or selection
strategies. In [KK84] only one of the B&B algorithms uses the actual current upper bound
(𝑈𝐵) while the others are 𝜖-approximations using 𝑈𝐵 − 𝜖 (𝜖 > 0) as upper bound. In this

28 Chapter 1. Parallel Branch-and-Bound algorithms

model redundant explorations are very likely to occur.

1.3.3 Challenges in parallel Branch-and-Bound

Irregularity. Most of the difficulties that arise when implementing a parallel B&B al-
gorithm are direct consequences of the algorithm’s irregularity. In each of the four
presented parallelization models irregularity manifests itself in a different way. Because
of the unpredictable pruning of branches, some subproblems require much more compu-
tation time than others, which leads to load imbalance. As subproblems are dynamically
assigned to processing units at runtime, dynamic load balancing is a requirement for
an efficient exploitation of the available computing resources. The parallel evaluation
of nodes yields a more fine-grained and often more regular workload. However, the
evaluation of nodes may require a variable amount of time, depending on the problem
being solved and the depth of each node.

The search space management as well as the problem-dependent node evaluation
subroutines are often characterized by highly irregular control flows. In a permutation
problem the memory accesses during node evaluation depend on the partially construc-
ted solution. Many accesses are therefore masked and have irregular and unpredictable
strides. Diverging instruction flows and random memory access patterns are well-known
to be major obstacles to SIMD processing. This may compromise the efficient usage of
GPUs and/or vector processing units - two of the main factors that have increased the
performance of HPC systems over the last decade.

Work pool management. We call work pool the data structure that is used to store
generated and not yet evaluated subproblems. A subproblem is usually implemented as
a structure containing all information necessary for its evaluation. The role of the work
pool is essentially to allow the insertion/retrieval of subproblems. Moreover, the work
pool may maintain subproblems in a certain order, facilitating the implementation of a
search strategy. For instance, DFS corresponds to processing nodes in last-in first-out
(LIFO) order and is therefore naturally implemented by a stack. Best-first search is usually
implemented using priority queues. In general, priority queues offer good flexibility,
because it is enough to change the sorting criterion to implement another search strategy.

In parallel B&B there are different strategies for implementing the work pool. One
approach is to use a single centralized work pool, concurrently accessed by all workers to
pick subproblems for branching/evaluation. In shared memory systems all workers con-
currently access the same work pool to get subproblems. After branching the subproblem
each worker (thread) inserts the evaluated and non-pruned children into the pool. In

29

single-pool approaches synchronization between workers to gain exclusive access to the
pool is inevitable. These concurrent accesses may create a bottleneck and memory con-
tention, limiting the scalability of the approach. In distributed memory configurations
the single pool strategy is implemented using the master-worker paradigm. Again, the
scalability of this approach is limited as the master process becomes a bottleneck.

Multiple-pool approaches aim at solving this issue by using several pools. There are
variants of multiple pool B&B algorithms. The most popular are collegial, grouped and
mixed [GC94]. In the collegial variant each worker has its private pool. The grouped
approach uses one shared pool for a group of workers and the mixed variant combines
both approaches using a hierarchy of pools. Multiple pool strategies alleviate the bottle-
neck problem that occurs in single-pool approaches but they raise the issue of balancing
the workload between multiple pools. Also, the sharing of knowledge among workers,
like the best known solution and termination detection, become non-trivial. Generally
speaking, multiple pool approaches require more sophisticated communication models
than single pool approaches.

Load balancing. While the single work-pool approach implicitly balances the work
load among workers, multiple-pool approaches require explicit dynamic load balancing.
Over the last decade work stealing [BL99] has been widely adopted as a standard way to
distribute tasks among workers. In the context of B&B tasks are subproblems (nodes
of the B&B tree). In a work stealing algorithm, each thread uses a double-ended queue
(deque) for storing tasks. Locally, a thread uses the tail of its deque as a stack, popping
tasks to execute and pushing newly generated tasks onto the stack. When a thread’s
deque is empty it becomes a thief and steals tasks from the head of another thread (called
victim). Expressed in terms of a multiple-pool B&B algorithm, when a work pool is empty,
one thread associated with the pool steals nodes from another work pool.

There are mainly two reasons for using deques in work stealing approaches. The
first is that stealing tasks from the head of the deque may allow the victim thread to
continuously work on the deque’s tail without being slowed down by steal operations
(work-first principle [FLR98]). A first non-blocking work stealing deque that prevents
contention during concurrent operations was proposed by Arora, Blumofe, and Plaxton
[ABP01]. Dinan et al. [DLS+09] propose a work-stealing deque partitioned into a local and
a public portion using a periodically updated pointer. This data structure, called a split-
queue, allows lockless accesses to both portions of the deque and requires locking only
for updating the split-pointer. The scalability of this work stealing using split-queues
has been demonstrated on up to 8 192 distributed processing cores. In [ACR13] it is

30 Chapter 1. Parallel Branch-and-Bound algorithms

reported that concurrent deque operations require expensive memory fences, which has
led to recent interest in implementations of work stealing with non-concurrent (private)
data structures [ACR13; vDvdP14]. The second reason concerns the granularity of the
work stealing mechanism. In B&B, like in many task parallel applications, nodes at the
bottom of the task stack (i.e. older tasks) represent a larger amount of work as recently
spawned tasks on top of the stack. Granularity (i.e. the number of nodes that are stolen)
is one of the characteristic features of a work stealing strategy, together with the policy
of selecting the work stealing victim. A recent survey of work stealing methods for
scheduling parallel computations can be found in [YH17].

Data Structures. The two previous paragraphs illustrate the central role of the data
structure used for the storage of the huge number of subproblems. As mentioned, work
pools are usually implemented as stacks, deques or priority queues. Operations on the
B&B tree, like node selection, insertion of branched nodes and work transfers between
multiple pools are implemented as push and pop operations on dynamic sized data
structures. We generically refer to this type of dynamic data structure as linked-lists (LL).

Using such data structures has many advantages. For instance, it is relatively easy
to adapt B&B to different problems by changing the definition of a node. Similarly, the
search strategy can be modified easily, for instance by using a different sorting criterion
for a priority queue. However, departing from the general case of B&B, the particular
structure of a class of problems can be exploited, making it possible to use other types of
data structures.

For example, a DFS-B&B applied to a 0 − 1 integer COP could use a single bit array
of length 𝑛 (problem size) and an integer 𝑑 indicating the current depth of the search.
The values of the bit array up to depth 𝑑 represent the current partial solution and on
each level the algorithm successively tries the alternatives 0/1. Branching consists in
incrementing the current depth 𝑑. Backtracking is performed by decrementing 𝑑 and
incrementing the bit array. The basic idea is that it is not necessary to explicitly store
all frontier nodes, because they can be deduced from the current active node. It should
be emphasized that this is possible because the maximal B&B tree (which would be
explored if no pruning was used) is known in advance, and the exploration order (DFS)
is deterministic.

For permutation problems the structure of the search space can also be exploited to
design alternative data structures for DFS-B&B. One example are bitsets, which allow
a very compact implementation of DFS [SRR08; Ric97]. For instance, DFS-B&B for
permutation problems can be implemented using only one vector and two integers for

31

the search procedure. A vector is used to store the current partial solution and the first
integer indicates the current depth of the search. The second integer is seen as a bitset that
keeps track of already scheduled jobs. The bit 𝑘 of this second integer is set if and only if
job 𝑘 is already scheduled. Searching the B&B tree in depth-first order is performed by
incrementing the positions of the vector while using the integer to check whether a partial
solution is valid. Such a bitset-based approach has a very small and constant memory
footprint. Bitset-based sequential implementations of backtracking can be extremely
fast, for instance for solving the 𝑛-Queens problem [Zon02; PE17; Som]. However, it is
unclear how dynamic load balancing could be performed with such bitset-based data
structures. Also, as only one node is generated at once, it does not seem possible to use
the parallel evaluation of bounds model.

The so-called Integer-Vector-Matrix (IVM) data structure [MLMT14] is an innovative
data structure dedicated to solving permutation-based COPs. In terms of flexibility and
compactness, IVM can be seen as a compromise between bitsets and linked-lists. IVM
is more flexible than bitsets, but less compact. It is more compact than LL-based data
structures, but offers less flexibility. IVM uses an integer to indicate the current depth of
the search, a vector to indicate the path of the current node, and a matrix to store the
unscheduled jobs at each level. Like bitset-based B&B, IVM-based B&B can be performed
with constant memory requirements. IVM also allows to define splittable work units -
intervals - which can be exchanged between workers to implement dynamic load balan-
cing. In [Ler15] the advantages of using IVM in multi-core B&B algorithms, compared to
conventional linked-list, are shown theoretically and experimentally. The reported res-
ults show that, for 20 × 20 FSP instances, IVM-based B&B consumes on average 60 times
less memory, requires about 9 times less CPU time for pool management, performs less
context switches and produces less page faults than its LL-based counterpart. However,
IVM does not offer the same flexibility as LL-based data structures: as mentioned, IVM
is dedicated to permutation-problems and depth-first search.

All algorithms presented in this thesis are based on the IVM data structure. A detailed
description of IVM and the IVM-based B&B algorithm are provided in Section 2.2.

1.4 Computing Environments

High Performance Computing (HPC) technologies are evolving at high pace and archi-
tectures of computing systems become increasingly complex. The programmer has to
understand the hierarchical organization of these machines in order to take advantage of
the full computing power they are able to provide. A detailed technical description of

32 Chapter 1. Parallel Branch-and-Bound algorithms

the hardware used in this thesis, or a discussion of current and future developments in
HPC goes beyond the scope of this chapter. However, the design of algorithms presented
in this thesis is, to a large extend, guided by the architecture of the targeted computing
platform. Therefore, this section attempts to provide some context, giving a brief outline
of current trends and challenges in HPC and a succinct description of the hardware
used in this thesis. There is abundant literature discussing the impressive evolution
of computing systems over recent years, for example [GR14; EBS+11; Dre07; KDK+11;
Mär14; OHL+08], to cite only a few. Appendix A.3 lists the main technical specifications
of computing devices used in this document.

Energy efficiency of computing systems has become very important. When CPUs had
a single processing core, performance increase was mainly achieved by increasing the
clock frequency and through improved instruction pipelining. As increasing frequencies
led to unsustainable power consumptions, over the past ten years performance was
improved by using multiple cores running at slightly lower frequencies. This is made
possible by the shrinking manufacturing process (2004: 90 nm, 2017: 14 nm) and the
subsequent growth of transistor count. In the latest edition (June 2017) of the biannual
TOP500 [16] ranking of the worlds fastest supercomputers no system has less than 4 CPU
cores per socket and more than half of the systems in the TOP500 list have at least 12 cores
per socket or more. The 𝑥200 generation of Intel’s Xeon Phi processors (code-named
Knight’s Landing) are composed of more than 60 cores operating at a base frequency of
1.4 GHz each.

In order to increase core-level performance, in recent years the trend has been to use
wider SIMD vector instructions. Most modern multi-core processors have instruction set
extensions, allowing to operate simultaneously on multiple data objects residing in the
same registers. Therefore it becomes increasingly important to exploit data parallelism
(SIMD) besides instruction-level parallelism (ILP) and thread-level parallelism (TLP). For
instance, Intel’s Xeon Phi processors provide 512-bit wide vector registers, allowing up
to 16 single-precision operations to be performed in one clock cycle. Launched in 2008,
the AVX (up to 256-bit) vector extensions for x86 processors can substantially improve
per-core performance, provided the compute-intensive portions of the executed code
allow SIMD processing.

Including all these levels of parallel processing capability, the theoretical single-
precision peak performance of a multi-core processor is given by:

#cores × clock rate × #instructions/cycle

33

This shows that, without efficient exploitation of thread-level parallelism and, if possible,
data parallelism one can only achieve a small fraction of the theoretical peak performance.

A major issue is that the speed and efficiency of the memory subsystem is not im-
proving proportionally to the advances in processors. The cost of moving data is usually
greater than the cost of performing operations on it [GR14]. Besides bandwidth, an
important aspect of the memory subsystem is latency, the minimum amount of time
required to fetch a single piece of data from main memory. For both, CPUs and GPUs,
latencies for accessing main memory are counted in hundreds of clock cycles. Main
memory latency can be hidden by prefetching cache lines into different levels of the
cache hierarchy, bringing data closer to the processor. However, this requires predictable
memory accesses and applications with scattered, irregular memory access patterns are
often latency-bound. In order to deal with this issue, many CPUs use a large portion of
the chip for complex management, like speculation, resolution of data dependencies and
out-of-order execution of instructions. A study has shown that the energy consumption of
these ”overhead” operations is as high as 36% of the total dynamic energy consumption,
even more than the energy consumption of data movements (∼ 25%) [KGKH13].

GPUs, in contrast, use a large number of smaller, in-order cores which execute groups
of threads in lockstep (SIMD). Compared to CPUs, a much larger part of the chip area is
dedicated to ALUs, and L1 and L2 caches are much smaller. Generally speaking, GPUs
deal with the memory latency issue by combining fast context-switching and massive
multi-threading. The instruction scheduler issues warps 4 from a pool of resident warps,
prioritizing threads which have their input data ready. This means that a large number
of threads are launched - for instance, the maximum number of resident threads in
Nvidia’s Pascal GPUs exceeds 100 000 threads. However, streaming multiprocessor (SM)
occupancy (ratio of active warps to maximum number of warps per SM) is not the only
criterion for achieving good performance on GPUs.

The reality is much more complex than the brief outline provided here. Understand-
ing how GPUs hide latencies and modeling GPU performance are active fields of research
([Vol16; Li16] are two recent dissertations on these topics, containing much more detailed
descriptions of GPU architecture than we could provide).

GPU computing. For a long time, GPU computing has been used to speed up image
and video processing. Since 2006, with the introduction by Nvidia of its Cuda software
toolkit the use of GPUs has been extended to numerous other application domains

4. group of (32) threads, in CUDA terminology. Until now all CUDA capable device have a warp size of
32.

34 Chapter 1. Parallel Branch-and-Bound algorithms

including combinatorial optimization. The popularity of Cuda is due to its simplicity as
it is an extension of the C language with data parallel features. The principle is easy: the
programmer writes a code for one thread (kernel) and can instantiate it on a large number
of threads to allow massive parallel computing on GPU. In addition, Cuda is portable
between successive generations allowing transparent scalability of Cuda applications.

Before the Cuda parallel model is presented, let us recall the hardware architecture
of a GPU device. As shown in Figure 1.2, a GPU is a coprocessor, coupled to a CPU
through a PCI Express bus5. In the Cuda vocabulary, the processor is called “host” and
the GPU is called “device”. The GPU is composed by a set of streaming multi-processors
(SM) including each a pool of 32-bit or 64-bit SIMD processors (processing cores).

For instance, a Pascal P100 GPU device contains 56 SMs of 64 Cuda cores for a total
of 3 584 Cuda cores. A GPU is also composed of several memories including global and
local off-chip memories, and a shared memory, registers and a cache memory. These
memories have different characteristics in terms of size and access latency. For instance,
the global memory is big and has a long latency while registers are small and fast memor-
ies.

Figure 1.2: Hardware view: GPU = coprocessor of CPU.

From software programming point of view, as illustrated in Figure 1.3 a GPU Cuda-
based parallel program is composed of two parts: a “host” part and a “device” part. The
host part is a serial or weakly parallel code because the number of CPU cores is small
compared to the number of GPU cores. The device part is massively parallel because a
GPU contains from hundreds to thousands of processing cores.

During the execution of a parallel program the host issues kernels to one or more
streams, for execution on the GPU device. Each stream is a first-in first-out (FIFO) queue

5. For x86 CPUs the connectivity is only through PCI Express, for now. For Power8 CPUs, full NVLink
connectivity may replace PCI Express.

35

of kernels and other Cuda calls, and multiple streams can be used concurrently. Kernels
are executed according to a two-level parallelism: at the higher level the processors
(SMs) execute the thread kernel according to the Single Program Multiple Data (SPMD)
model. At the lower level (intra-SM), the threads are executed according to the Single
Instruction Multiple Data (SIMD) or Single Instruction Multiple Thread (SIMT) model.
Indeed, inside each processor the instruction flow composing a thread kernel is executed
according to the SIMD model.

Figure 1.3: Software view: Parallel program = weakly parallel/serial host code + massively
parallel device code.

The programmer configures the kernel launch by specifying several parameters: the
hierarchical organization of threads into grids of blocks of threads, the amount of shared
memory allocated to each block of threads and the stream to which the kernel is issued.

Grids are 1𝐷 or 2𝐷 arrays of blocks and blocks are 1𝐷, 2𝐷 or 3𝐷 arrays of threads.
The thread organization corresponds to the organization of application data which are
often vectors, matrices or volumes. As shown in Figure 1.4, the blocks are assigned to
the SMs by the Cuda runtime. Inside each SM each block is split into warps, i. e. pools
of 32 threads. Warps are scheduling units, i. e. the threads are executed in lockstep by
pools of 32. This allows to overlap the memory access latency by computation. Context
switching is very fast as each thread has its own registers.

To sum up, from algorithmic and software programming point of view at least three
issues should be addressed: (1) the optimization of the data transfer between CPU and
GPU; (2) the optimization of the data placement on the hierarchy of memories of the GPU
having different sizes and latencies; and (3) thread or branch divergence management
especially for irregular applications.

36 Chapter 1. Parallel Branch-and-Bound algorithms

Figure 1.4: Software view: Parallel program = grid(s) of block(s) of threads executed as warps of
32 threads.

1.5 Related work

The design of parallel B&B algorithms is strongly influenced by the target architecture
and the characteristics of the problem being solved [BHP05]. Therefore, and in spite of
the simple, generic formulation of B&B, a large number of parallel algorithms have been
proposed for different problems and architectures. Gendron and Crainic [GC94] provide
a complete, but over twenty year old survey of parallel B&B.

1.5.1 B&B for multi-core CPUs

Because of the simple basic formulation of B&B it is interesting to have a framework that
allows users to easily customize B&B to solve their problems. Many software frameworks
have been proposed, including Bobpp [Men17; Bob], PEBBL [EHP15] and PICO [EPH01],
parts of the ACRO project [ACR], ALPS/BiCePS [RLS04], BCP and SYMPHONY, which
are parts of the COIN-OR project [COI].

This list includes only those frameworks which appear to be maintained at the time
of writing. B&B frameworks establish an interface between the user and the parallel
machine by defining abstract types for search tree nodes and solutions. As a user, one
provides concrete implementations of these types as well as branching and bounding
procedures, while the framework handles more generic parts of parallel B&B. The men-
tioned frameworks differ by the variant(s) of B&B they provide, the type of parallel
model they propose and the parallel programming environment. These frameworks
are usually designed as multilayered class libraries, integrating additional features by
building on top of existing layers. For example, BiCePS is build on top of ALPS to provide
data-handling capabilities required for implementing relaxation-based B&B, and PEBBL

37

began its existence as the “core” layer of the parallel mixed integer programming (MIP)
solver PICO.

The older versions of these frameworks are often based on master-worker approaches.
In order to avoid that the master processor becomes a bottleneck, hierarchical organiza-
tions revealed more efficient than pure master-worker implementations [EHP15; Men17;
BMT12a]. In these approaches groups of workers form ”clusters”, cooperating locally
and interacting with the master through a form of middle management. The idea is
to improve locality and relieve the master process by introducing hubs, each handling
several workers (master-hub-worker approach). In general, the role of hubs consists in
providing work to a set of workers and coordinating the search process locally, while
limiting interaction with the master and worker processes. For the PEBBL framework
near-linear speedups on over 6 000 CPU cores are obtained for large B&B trees and node
evaluation costs of about 10 seconds [EHP15].

Recently Herrera et al. [HSH+17] compared three implementations of a global optim-
ization (GO) B&B algorithm using different levels of abstraction: the Bobpp framework,
Intel Thread Building Blocks and a custom Pthread implementation. While they find the
Bobpp implementation easiest to code, the authors show that the two other solutions
offer better scalability for the used test-case. For the optimized test functions, the au-
thors report node processing rates of about 1 million nodes per second (Mn/s) for the
sequential version of their custom implementation on a 2 GHz Sandy Bridge CPU.

Evtushenko, Posypkin, and Sigal [EPS09] present a software platform called BNB-
Solver, allowing the use of serial, shared memory and distributed memory B&B. The
proposed approach uses a global work pool and local work pools for each thread. Each
thread stores generated subproblems in its local pool during N B&B iterations. After N
iterations a part of the local nodes are transferred to the global pool. When the local pool
of a thread is empty, the thread attempts to take nodes from the global pool and blocks if
the global pool is empty. The algorithm terminates when the global pool is empty and
all threads are blocked. The authors compare the performance of BNB-Solver with the
ALPS and PEBBL frameworks and obtain results similar to Herrera et al. [HSH+17], in
the sense that, for a knapsack-problem (with a reported sequential node processing rate
in the order of 1 Mn/s) BNB-Solver outperforms both frameworks.

Casado et al. [CMGH08] propose two schemes for parallelizing B&B algorithms for
global optimization on shared memory multi-core systems, Global- and Local-PAMIGO
(Parallel advanced multidimensional interval analysis global optimization). Both al-
gorithms are parallelized using POSIX threads. In Global-PAMIGO, threads share a
global work pool and therefore a synchronization mechanism is used for mutually ex-

38 Chapter 1. Parallel Branch-and-Bound algorithms

clusive accesses to the pool. For Local-PAMIGO, where thread has its own pool of
subproblems, a dynamic load balancing mechanism is implemented. A thread stops
when its local pool of subproblems is empty. When the number of running threads is
less than the number of available cores, and a thread has more than one subproblem in
its local pool it creates a new thread and transfers a portion of its pool to the new thread.
Local-PAMIGO ends when there exists no more running threads, and Global-PAMIGO
ends when the global pool is empty. The authors report profiling results for PAMIGO
which show that memory management represents a large percentage of the computa-
tional burden. As a very large number of subproblems are created in a relatively short
amount of time, the kernel needs to satisfy memory allocation and deallocation requests
from all threads, creating memory contention.

The vast majority of parallel B&B algorithms in the literature store subproblems in one
or several pool(s) implemented as linked-lists (e. g. priority queues, stacks, deques). As
mentioned, a multi-core B&B based on the IVM data structure was proposed in [MLMT14;
LMMT07]. Because of the direct relevance for this thesis, sequential and multi-core IVM-
based B&B are presented in the beginning of Chapter 2.

1.5.2 B&B for Graphics Processing Units

The study of Jenkins et al. [JAO+11] provides a good overview of the challenges faced
when implementing parallel backtracking on GPUs. Most of their conclusions from
the investigation of GPU-based backtracking paradigm remain valid for B&B algorithm
using a depth-first search strategy. A fine-grained parallelization of the search space
exploration and/or the node evaluation is necessary in order to make use of the GPU’s
massive parallel processing capabilities. This strongly depends on the nature of the
problem being solved and on the choice of the parallelization model. Other critical
factors include latency hiding through coalescence, saturation, and shared memory
utilization [JAO+11]. Generally speaking, the algorithmic properties of B&B, irregularity
of the search space, irregular control flow and memory access patterns are at odds with
the GPU programming model. Also, memory requirements for backtracking and B&B
algorithms are often difficult to estimate and may exceed the amount of memory available
on GPUs. Several approaches for GPU-accelerated B&B algorithms have been proposed.
These approaches correspond to different parallelization models and their design is often
motivated by the nature of the problem being solved. According to the characteristics of
the bounding function one may distinguish among approaches for fine-, medium- and
coarse-grained problems.

The GPU-B&B and backtracking algorithms for fine-grained problems proposed

39

in [CMNL11; CNNdC12; FRvLP10; LLW+15; RS10; ZSW11] perform massively parallel
searches on the GPU, based on the parallel tree exploration model. The evaluation
of a node for the 𝑛-Queens problem in [FRvLP10; LLW+15; ZSW11] requires only a
few registers of memory and only a couple of bit-operations. The lower bound for
the Asymmetric Traveling Salesman Problem (ATSP) used in [CMNL11; CNNdC12] is
incrementally obtained by adding the cost of the last visited edge to the current cost and
therefore has a complexity of 𝒪(1). It requires an access to the distance matrix which can
be stored in constant or texture memory. The size of the problems being solved is < 20 for
both the ATSP and the 𝑛-Queens problems. These algorithms for fine-grained problems
share a common approach: the search is split in two parts, an initial CPU-search and a
final GPU-search. The upper tree of depth 𝑑𝑐𝑢𝑡𝑜𝑓 𝑓 is processed in sequential or weakly
parallel manner on CPU, generating a set of active nodes at depth 𝑑𝑐𝑢𝑡𝑜𝑓 𝑓. This active set
is sent to the GPU, where the lower part of the tree is processed in parallel. Each node of
the active set is used as root node for an independent search, which is mapped either
to a thread or a warp. This approach requires very careful tuning of the cutoff depth,
which strongly influences granularity and load balance.

Because of varying thread granularities, one of the major issues faced by such ap-
proaches is load imbalance. In all of these works the GPU search is performed without
dynamic load balancing. However, as noted by Rocki and Suda [RS10], if ”a job is divided
into sufficiently many parts, an idle processor will be instantly fed with waiting jobs”
and the ”GPU’s Thread Execution Manager performs that task automatically”. This
approach assumes two things: first, the initial CPU search is able to generate a large
amount of nodes in a reasonable amount of time, and second, the work distribution
among independent B&B searches is not too irregular.

For many COPs the cost of the bounding operator is very high, compared to the rest of
the algorithm. For instance, the most used lower bounding function for the FSP consumes
97 − 99% of the sequential execution time [MCB14]. However, the cost of evaluating
one node is sufficiently small to be efficiently performed by a single GPU-thread. We
therefore refer to this type of problem as medium-grained. For these problems, existing
GPU-accelerated B&B algorithms in the literature use the GPU to evaluate large pools
of subproblems in parallel [CMMB13; VDM13; LE12]. They use conventional stacks or
queues to store and manage the B&B tree on the host, offloading the parallel evaluation
of bounds to the device. Indeed, for these problems substantial speedups can be achieved
despite sequentially performing pool management on the host. Substantial efforts have
been made to port larger portions of the algorithm to the GPU and to reduce overheads
incurred by data transfers between CPU and GPU. For instance, branching nodes on the

40 Chapter 1. Parallel Branch-and-Bound algorithms

device allows to copy only parent nodes to the GPU. Similarly, pruning evaluated nodes
on the device reduces the sequential portion and requires only the transfer of non-pruned
children nodes back to the host. Further performance improvements can be obtained
by overlapping data transfers with GPU computations, as for example in [VDM13]. For
fine-grained problems this approach is likely to perform poorly.

For coarse-grained problems the best way to use the GPU may be as an accelerator
for the bounding function itself. In [ABE+16] a GPU-accelerated B&B algorithm for the
jobshop scheduling problem is proposed. The approach also offloads subproblems to
the GPU but uses a block-based parallelization for each node evaluation. The number of
subproblems that need to be offloaded in order to saturate the GPU is therefore smaller
than for medium-grained problems. A GPU-accelerated algorithm for problems with
linear programming bounds is proposed in [MCA13]. Using a GPU-based LP-solver to
accelerate this type of problems is very challenging. However, the authors report that
for large problems above a certain density threshold their hybrid GPU-accelerated solver
outperforms the sequential CLP solver of the open-source COIN-OR library.

1.5.3 Hybrid and distributed parallel B&B

There are very few works on the parallelization of B&B using multiple GPUs and CPUs
in distributed heterogeneous systems. In [VDM13] a linked-list-based fully distributed
hybrid B&B algorithm combining multiple GPUs and CPUs is proposed. As a test-case
20 jobs-on-20 machines FSP instances are used on a platform composed of 20 GPUs and
128 CPUs. For load balancing a random work stealing mechanism is used. The authors
propose an adaptive granularity policy to adapt the quantity of stolen nodes at runtime
to the normalized computing power of thief and victim. The algorithm is based on a
2-level parallel model, using GPUs for parallel evaluation of lower bounds. In order
to reduce CPU-GPU communication overhead, an asynchronous implementation with
overlapping host and device computations is proposed. Experimentally, near linear
mixed scalability is shown up to 20 GPUs and 128 CPUs. In [CMMT13] the combined
usage of multi-core and GPU-processing is investigated. An experimental comparison of
concurrent and cooperative approaches shows that the cooperative approach improves
the performance with respect to a GPU-only approach while the concurrent approach
is not beneficial. Among other issues, the authors identify the reduction of CPU-GPU
communication overhead as a major challenge and propose overlapping communication
schemes and auto-tuning of the offloaded pool sizes to answer this challenge.

Some of the largest known exact resolutions of COPs have been performed using
the Master-Worker paradigm in combination with grid computing technologies (e. g.

41

nug30 [ABGL02]). The B&B@Grid platform [MMT07] uses an interval-encoding for work
units which significantly reduces the size of messages communicated in distributed B&B.
Designed for volatile computing environments, B&B@Grid is fault-tolerant thanks to
its checkpointing mechanism. As B&B@Grid constitutes the foundation of the hybrid
distributed B&B presented in this thesis, the approach is described in more detail in in
Chapter 4. In [BMT12b] an adaptive multi-layer hierarchical master-worker approach is
applied to the B&B algorithm, using FSP as a test-case. The proposed approach evolves
as new resources join the computation, and integrates three types of processes, a super-
master, masters and workers. Results obtained at the scale of up to 2 000 CPUs show that
the multi-layered hierarchical approach clearly outperforms single-layered and classical
Master-Worker approach in terms of efficiency for instances smaller than Ta056, as it
minimizes bottlenecks at the level of the master and reduces idle time of the workers.
In [BMT14] the authors extend their approach, proposing a fault-tolerance mechanism.

1.6 Test-cases: Permutation-based COPs

As mentioned, the nature of the permutation problem to be solved has a strong impact
on the performance of the B&B algorithm. Using different test-cases allows to better
understand the algorithm’s behavior and reveals its strengths and weaknesses depending
on the tackled problem. In this thesis, three permutation-based problems are considered:
Flowshop Scheduling Problem (FSP), Quadratic Assignment Problem (QAP), 𝑛-Queens.
The used node evaluation functions have different computational complexities and
memory requirements.

1.6.1 Flowshop Scheduling Problem (FSP)

The FSP is the main test-case considered in this thesis. It is defined by a set of 𝑛 jobs and
𝑚 machines, arranged in a certain order. As illustrated in Figure 1.5, jobs are processed
according to the chain production principle, meaning that a job cannot be processed on
a machine 𝑗 before it has finished processing on all upstream machines 0, 1, ⋯ , 𝑗 − 1. The
𝑛 jobs have to be processed in the same order on each machine, and the processing of a
job cannot be interrupted: solutions are therefore naturally encoded by permutations.

A 𝑚 × 𝑛 processing time matrix contains the time required for a machine to finish
the processing of a job. The goal is to find a permutation schedule that minimizes the
total processing time called makespan. In [GJS76], it is shown that the minimization of
makespan is NP-hard from 3 machines upwards. The lower bound proposed by Lageweg,
Lenstra, and Kan [LLK78] is used in our bounding operator. This bound is known for its

42 Chapter 1. Parallel Branch-and-Bound algorithms

M3

M2

M1 J2

 J2

 J4 J5 J1 J3 J6

 J5 J1

 J1

 J4 J6 J3

 J2 J4 J5 J6 J3

Figure 1.5: Example of a solution of a flowshop problem instance defined by 𝑛 = 6 jobs and
𝑚 = 3 machines.

good results and has complexity of 𝒪(𝑚2𝑛 log 𝑛). This lower bound is mainly based on
Johnson’s theorem [Joh54] which provides polynomial time procedure for finding an
optimal solution for solving the 2-machine FSP.

The most used benchmark instances used in the literature are the ones defined
by Taillard [Tai93]. These instances are divided into 12 groups: 20 × 5 (i.e. group of
instances defined by 20 jobs and 5 machines), 20 × 10, 20 × 20, 50 × 5, 50 × 10, 50 × 20,
100 × 5, 100 × 10, 100 × 20, 200 × 10, 200 × 20, and 500 × 20. In each group, 10 different
instances are generated. For each instance, the duration of each job on each machine
is randomly generated by [Tai93]. The instances of the 6 groups where the number of
machines is equal to 5 or 10 (i.e. 20 × 5, 20 × 10, 50 × 5, 50 × 10, 100 × 5, 100 × 10, and
200 × 10) are easy to solve. For these instances, the used bounding operator gives such
good lower bounds that it is possible to solve them in few seconds using a sequential
B&B.

Instances where the number of jobs is equal to 50, 100, 200, or 500, and the number
of machines is equal to 20 (i.e. 50 × 20, 100 × 20, 200 × 20, and 500 × 20) are very hard
to solve. The only instance defined with 50 jobs and 20 machines exactly solved up to
this day is Ta056. It’s resolution using B&B@Grid [MMT07] lasted 25 days, exploiting
on average of 328 processors at 97% efficiency, i. e. its sequential computation time is
estimated at 22 years. In many of our experiments we use the group of instances where
the number of machines and the number of jobs are equal to 20. The resolution of the
instances on a sequential computer is feasible but consumes enough computing time to
justify the use of parallel processing. For these instances Table 1.1 shows the size of the
critical tree, the time spent by a sequential B&B for exploring these trees (on E5-2630v3)
and the corresponding node processing rate (in decomposed nodes/sec). As throughout
the entire document, tree sizes and processing rates refer to the number of decomposed
nodes, meaning that eliminated nodes are not counted. The units n/s, kn/s and Mn/s are
used to designate 1, respectively 103 and 106 decomposed nodes per second. To ensure
that exactly the critical tree is explored the B&B algorithm is initialized at the (known)
optimal solution. Therefore the B&B proves the optimality of this solution. Solving all 10

43

of Taillard’s 20 × 20 instances requires 63 hours of sequential processing time, one third
of which is used to solve the largest of these instances, Ta023.

Table 1.1: Size of the critical B&B tree of Taillard’s instances Ta021-Ta030 (#decomposed nodes),
corresponding sequential exploration times (in seconds, on Xeon E5-2630v3 CPU) and node
processing rates.

Instance 21 22 23 24 25
#Nodes (in 106) 41.4 22.1 140.8 40.1 41.4
T𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 6h38m 3h10m 21h31m 5h22m 6h51m
n/s 1 734 1 927 1 822 2 069 1 680

Instance 26 27 28 29 30
#Nodes (in 106) 71.4 57.1 8.1 6.8 1.6
T𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 9h22m 7h38m 1h14m 0h59m 0h15h
n/s 2 117 2 074 1 822 1 892 1 888

1.6.2 Quadratic Assignment Problem (QAP)

The QAP was introduced by Koopmans and Beckmann [KB57] in 1957 as a mathematical
model for the allocation of indivisible economic activities. It consists in assigning 𝑛
facilities to 𝑛 locations, given a 𝑛 × 𝑛 distance matrix (𝑑𝑖𝑗) and the flow between facilities
in a flow matrix (𝑓𝑖𝑗). The objective is to find an optimal assignment that minimizes the
total cost, which is given by the sum of distances multiplied by flows.

The QAP can be formulated as an optimization problem on the set of permutations
of 𝑛 integers 1, 2, … , 𝑛. In this formulation the positions in the permutation represent
the 𝑛 locations. In this formulation the QAP writes:

min
𝜋∈𝑆𝑛

∑
𝑖

∑
𝑗

𝑓𝑖𝑗𝑑𝜋(𝑖)𝜋(𝑗)

Figure 1.6 illustrates a solution of a QAP of size 𝑛 = 3. A review for this problem
including different mathematical formulations, applications and a complete state-of-the-
art of exact and heuristic methods applied to the QAP can be found in [LdAB+07].

We use the well-known Gilmore-Lawler lower bound (GLB) for the QAP. This bound
is used very frequently, although the quality of GLB deteriorates rapidly as the problem
size increases [LPRR94]. The GLB is obtained by the resolution of based on the resolution
of a linear sum assignment problem (LSAP) which can be solved using the so-called
Hungarian Algorithm. The computational complexity of GLB is 𝒪(𝑛3). We use different
instances of size 𝑛 = 16 to 𝑛 = 20 from the QAPLIB library [BKR97] as test-cases.

44 Chapter 1. Parallel Branch-and-Bound algorithms

Figure 1.6: Illustration of the QAP for for 𝑛 = 3.

1.6.3 𝑛-Queens Problem

The 𝑛-Queens problem is frequently used as a test-case for constraint programming
algorithms. It consists in placing 𝑛 non-attacking queens on a 𝑛 × 𝑛 chessboard. At least
two variants of the problem exist: finding one valid configuration and enumerating all
valid solutions. We use the version of 𝑛-Queens that consists in finding all valid solutions.
𝑁-Queens is easily modeled as a permutation problem: position 𝑖 of a permutation of size
𝑛 designates the column in which a queen is placed in row 𝑖. The encoding of a solution
as a permutation of size 𝑛 ensures that exactly 𝑛 queens are placed on the board and that
the ”exactly-one” constraints on rows and columns are satisfied. In other words each
𝑛-element permutation represents a valid solution of a 𝑛-Rooks problem. Therefore, to
evaluate the feasibility of a (partial) solution, it is enough to check for diagonal conflicts
among the already placed queens. The board configuration (a permutation) is the only
data structure needed for evaluating a node. For a partial solution of depth 𝑑, conflicts
on the left and right diagonals with the 𝑑 previous pieces need to be checked, i.e. 2𝑑
equality checks are performed. Thus, the evaluation of a node has complexity 𝒪(𝑛). In
Figure 1.7 the 𝑛-Queens problem, modeled as a permutation problem, is illustrated. On
the left-hand side (Figure 1.7a) a partial solution is shown. While there is no diagonal
conflict in this subproblem, it is impossible to place a non-attacking queen in the next
unoccupied row (row 6). Upon detecting this, the algorithm will backtrack to the last
untried valid alternative, i. e. place the queen in row 5 in column 8. Figure 1.7b on the
right-hand side shows a valid board configuration for 𝑛 = 8.

It is easy to adapt B&B to solve this constraint satisfaction problem. Instead of
searching for optimal solutions the goal is to find all valid solutions. Instead of a lower
bound on the optimal cost of a subproblem it is enough to use a node evaluation function

45

that assigns the value 0 to feasible (partial) solutions and 1 to infeasible (partial) solutions.
Initializing the algorithm at the upper bound 0 and pruning only in the case of strict
inequality, the number of leaf nodes visited by B&B equals the number of valid board
configurations.

For 𝑛 ≤ 14 the 𝑛-Queens problem can be solved within a fraction of a second by a
sequential algorithm. The size of the explored tree grows exponentially, so we consider
the 𝑛-Queens problem for 𝑛 = 15–19. Permutations are only constructed from the
beginning: because of symmetries the tree size cannot be reduced by constructing
solutions from both ends. Several symmetries could be used to reduce the size of the
explored tree. However, we only make use of one axial symmetry (i.e., restricting the
queen in the first row to columns 1, 2 , …, ⌊ (𝑛+1)

2 ⌋), which divides the size of the search
space by two.

(a) Feasible subproblem with no
feasible children.

(b) Valid solution.

Figure 1.7: Illustration of the 𝑛-Queens problem for 𝑛 = 8. On the left side of the board the
permutation representing the board configuration is shown.

1.6.4 B&B tree analysis of the test problems

Preliminary experiments have been performed with a sequential B&B in order to il-
lustrate the unpredictable, irregular nature of the workload and highlight differences
between the three test-problems. Figure 1.8 illustrates the critical trees corresponding
to the 11-Queens, 𝑛𝑢𝑔15 and 𝑇𝑎020 instances. The trees have approximately the same
number of nodes, despite very different problem sizes (11, 15 and 20 for 11-Queens,
𝑛𝑢𝑔15 and 𝑇𝑎020 respectively). Each point in Figure 1.8 represents a decomposed node.

46 Chapter 1. Parallel Branch-and-Bound algorithms

The x-Axis shows its relative position, among all possible subproblems arranged in
increasing lexicographical order, and the y-Axis shows its depth. Each point is plotted
with transparency, so the darker a node appears in the figure, the higher the density of
critical nodes in its neighborhood.

The figure illustrates the efficiency of the pruning mechanism for the three problems.
For the 11-Queens instance about 3

1 000 of all possible subproblems are visited, for 𝑛𝑢𝑔15
only 1

107 and for 𝑇𝑎20 about 1
1015 . Of course, one can not extrapolate these numbers to

all instances of the respective problem, but the behavior illustrates the strong problem-
dependent variability of the workload generated by B&B. One can see in Figure 1.8a that
for 11-Queens a relatively regular tree is developed. Indeed, some of the symmetries of
the chessboard, which we chose not to exploit, can be observed in the structure of the tree.
As reflected by the good results for parallel backtracking applied 𝑛-Queens [LLW+15],
a static repartition of active nodes at a certain depth may result in relatively low load
balance.

(a) 11-Queens
(151 810 nodes)

(b) QAP: nug15
(174 201 nodes)

(c) FSP: Ta020
(157 761 nodes)

Figure 1.8: Illustration of the critical trees associated with three problem instances of small size.

From Figures 1.8c and 1.8b it is clear that a static work repartitioning approach is
likely to perform poorly for FSP and QAP problem instances. The FSP lower bounding
mechanism allows to efficiently prune branches in the upper part of the tree, while a
few nodes develop deep and large subtrees, concentrating most of the workload. For
the selected QAP instance, the GLB lower bound is too weak for subproblems close to
the root. Therefore, the upper part of the B&B tree is large, as the pruning operator only
becomes effective at approximately mid-level of the tree. As mentioned, one must be
very careful when generalizing to other instances of the same problem. However, the
trees developed for other (small-sized) instances of the same problems are very similar.

47

As mentioned before, the duration of a node evaluation is a critical parameter in B&B.
One cannot assume, in general, that each node evaluation requires an equal amount of
time, even within the same tree. Using two QAP and two FSP instances, Figure 1.9 shows
for 100 000 randomly sampled subproblems the time spent for computing a lower bound
on their optimal cost. The two pairs of instances are selected because of the difference
in node processing speed (elapsed time/processed nodes) that can be measured for
sequential execution, despite equal problem sizes. For QAP instances of the esc class
the measured node processing rates are 4 to 10 times higher than for nug instances of
the same size. As shown in Table 1.1 the sequential resolution of Ta024, resp. Ta021, is
performed at an average processing speed of 2069 n/s, resp. 1734 n/s.

In Figure 1.9 the time required for evaluating a node is plotted in function of its depth
and marginal histograms show the distribution of nodes according to their depth and
evaluation cost. For the two QAP instances, on the left-hand side (Figure 1.9a), one can
observe that the cost for node evaluation decreases as nodes are closer to the leaves. This
is due to the fact that the lower bounding procedure includes the resolution of a linear
sum assignment problem whose size is equal to the number of unassigned facilities. As
one can see in the histogram on the top, the majority of nodes in the critical tree of nug16a
is found at depth 7, while for esc16d it is depth 10. Consequently, the average cost for
evaluating a node is lower for esc16d. Moreover, one can observe that even the evaluation
of nodes at the same depth requires more time for nug16a. The most likely explanation
is that for the nugent instance, and the associated input flow and distance matrices the
LSAPs are more difficult to solve but produce better lower bounds.

For the two FSP instances, on the right-hand side (Figure 1.9b), the distribution
of nodes according to their depth is almost identical. However, as illustrated in the
histogram on the right, the average time required for evaluating a node of Ta024 is lower,
which can explain the higher node processing rate achieved for this instance. For all
four instances one can observe that the evaluation time for a node of a given depth is
also subject to considerable fluctuation. In this example, the node evaluation cost for the
FSP problems is on average more than five times higher than for QAP - the exact values
depend on instance and problem size.

Figure 1.10 shows the results for the 𝑛-Queens problem, using instance size 𝑛 =
14, 17, 20. The node distribution according to depth and evaluation cost is very similar
for the three instance sizes. This indicates that the structure of the explored B&B tree is
not substantially changing as its size grows exponentially according to 𝑛. One can notice
that the average time spent for evaluating one node is about two orders of magnitude
lower than for the two QAP instances. The node evaluation function returns as soon as

48 Chapter 1. Parallel Branch-and-Bound algorithms

(a) QAP: esc16d and nug16a (b) FSP: Ta021 and Ta024

Figure 1.9: Illustration of node evaluation cost for two QAP instances of size 𝑛 = 16 and two FSP
instances of size 𝑛 = 20, 𝑚 = 20. B&B is initialized at optimal solution. Results are shown for
100 000 randomly sampled node evaluations.

the first diagonal conflict is detected, therefore the cost for this function is also variable.

49

Figure 1.10: Illustration of node evaluation cost for 𝑛-Queens instances (𝑛 = 14, 17, 20). Results
are shown for 100 000 randomly sampled node evaluations.

Chapter 2

IVM-based B&B for
multi-/many-core systems

Contents
2.1 Introduction . 52

2.2 IVM-based parallel Branch-and-Bound . 52

2.2.1 IVM-based serial B&B . 52

2.2.2 Position vector: factoradic numbers . 55

2.2.3 Work units: intervals of factoradics . 57

2.2.4 Work unit communication . 59

2.3 Work stealing for IVM-based B&B on multi-core CPUs 61

2.3.1 Work stealing using factoradic intervals . 62

2.3.2 Victim selection policies . 62

2.3.3 Granularity policies . 65

2.4 Accleration of bounding operator . 66

2.4.1 GPU acceleration . 66

2.4.2 Vectorization of the FSP bounding procedure 68

2.5 Experiments . 70

2.5.1 Evaluation of data structures for B&B . 71

2.5.2 GPU-acceleration of the bounding operator 73

2.5.3 Evaluation of Work Stealing Strategies . 74

2.5.4 Performance evaluation on Intel Xeon Phi 78

50

51

2.5.5 MC-B&B: performance on different multi-core CPUs 81

2.6 Conclusions . 82

Related Publications
• Gmys Jan, Leroy Rudy, Mezmaz Mohand, Melab Nouredine, Tuyttens Daniel,

“Work stealing with private integer-vector-matrix data structure for multi-core
branch-and-bound algorithms” in Concurrency & Computation : Practice & Experience,
28, 18, 4463-4484 (2016), https://doi.org/10.1002/cpe.3771

• Melab Nouredine, Gmys Jan, Mezmaz Mohand, Tuyttens Daniel, “Multi-core
versus many-core computing for many-task Branch-and-Bound applied to big
optimization problems” in Future Generation Computer Systems (2017), https://
doi.org/10.1016/j.future.2016.12.039

https://doi.org/10.1002/cpe.3771
https://doi.org/10.1016/j.future.2016.12.039
https://doi.org/10.1016/j.future.2016.12.039

52 Chapter 2. IVM-based B&B for multi-/many-core systems

2.1 Introduction

The objective of this chapter is to present the design and implementation of the IVM-based
B&B algorithm for multi-core and many-core systems (MC-B&B). A GPU-accelerated
approach, GMC-B&B, is presented, as well as a revisited vectorized implementation of
the FSP bounding procedure.

Section 2.2 provides a detailed description of the Integer-Vector-Matrix (IVM) data
structure and the serial IVM-based B&B algorithm. In Section 2.3 the parallel MC-B&B,
based on the parallel tree exploration model, is introduced. This section also introduces
factoradic work units and presents interval-based work stealing strategies. Besides
improving parallel efficiency, the greatest potential for increasing the performance of
B&B lies in the acceleration of the bounding operation.

In Section 2.4 two approaches for accelerating node evaluation are proposed. On
multi-core systems equipped with GPUs the bounding operator can be accelerated by
offloading this operator to the GPU. This approach, including a work stealing mechanism
for the GPU-accelerated MC-B&B (GMC-B&B), is presented in Subsection 2.4.1. Potential
for acceleration also lies in the vector processing units (VPU) of modern multi-core CPUs.
In order to make use of AVX and the 512-bit vector extensions of Intel’s Many Integrated
Core (MIC) architecture, the implementation of the bounding operator for FSP is revisited
in Subsection 2.4.2.

One primary goal of this chapter is the validation of the IVM data structure for other
permutation problems than FSP, the only problem to which IVM has been applied until
now. The presented algorithm includes CPU- and GPU-versions of node evaluation
function for FSP, QAP and 𝑛-Queens. In order to assess the utility of using IVM in
multi-core B&B algorithms, experimental results from extensive testing with all three
test-cases are reported in Section 2.5. Finally, in Section 2.6 conclusions from this chapter
are drawn.

2.2 IVM-based parallel Branch-and-Bound

2.2.1 IVM-based serial B&B

The working of the IVM data structure is best explained with an example. Figure 2.1
illustrates a pool of subproblems that could be obtained when solving a permutation
problem of size 𝑛 = 4 with a DFS-B&B algorithm. On the left-hand side, Figure 2.1a
shows a tree-based representation of this pool. The parent-child relationship between
subproblems is designated by dashed gray arrows. As introduced in Subsection 1.3.1,

53

jobs before the “/” symbol are scheduled while the following jobs remain to be sched-
uled. Horizontal and vertical solid lines represent the linked-list data structure storing
unexplored (solid black) nodes. On the right-hand side (Figure 2.1b) the corresponding
IVM indicates the next subproblem to be solved.

In the example, the root node /1234 is decomposed into four subproblems by per-
forming all possible assignments of unscheduled jobs to the first position. The example
assumes that the first subproblem 1/234 has either been pruned or the branch has been
fully explored. Therefore the second node, 2/134, was selected and decomposed, gener-
ating subproblems 21/34, 23/14 and 24/13. Again, the example assumes that the first of
these subproblems has been completely processed. Therefore, the data structure contains
at this point four unexplored nodes in the following order : 23/14, 24/13, 3/124, 4/123
This order corresponds to DFS with lexicographical ordering for nodes of the same depth.

It is unknown in advance which nodes are visited, but the relative order is completely
determined by the ordered DFS search. Using this fact, IVM indicates the next subprob-
lem to process without explicitly storing all generated pending nodes. The integer 𝐼 of
IVM gives the level (number of scheduled jobs −1) of this subproblem. The values of
the so-called position vector 𝑉 point to the jobs selected at each level. In other words, at
each level (up to the current one) the vector 𝑉 contains the index of the selected node
among its sibling nodes. The matrix 𝑀 contains the jobs that remain to be scheduled at
each level: all 𝑛 jobs (for a problem with 𝑛 jobs) in the first row, 𝑛 − 1 jobs in the second
row, and so on. In the example, the first row contains jobs 1, 2, 3, 4 and the second row
contains jobs 1, 3 and 4 because job 2 is scheduled at the first level. The next subproblem
to be solved can be decoded by reading from level 0 to 𝐼 the jobs in the matrix 𝑀 indicated
by the vector 𝑉. Thus, the IVM shown in Figure 2.1b indicates 23/14 as the next node to
process.

(a) Tree representation

2 3 411

1 1 3 4
1

(b) Integer-Vector-Matrix

Figure 2.1: Example of a permutation problem of size 4.

To use the IVM data structure in the B&B algorithm, some of the B&B operators are

54 Chapter 2. IVM-based B&B for multi-/many-core systems

revisited as follows:

• The branching operator consists in copying the jobs - except the selected one,
pointed by 𝑉 - from the current row into the next one. An illustration of the
IVM-based branching operator is shown in Figure 2.3.

In order to allow the scheduling of jobs at both extremities of the partial permuta-
tions an additional vector with binary values is used (not shown in Figure 2.3).
This vector (called direction vector) indicates whether a selected job is placed in the
beginning or the end of the partial schedule. For instance, if the IVM shown in the
example of Figure 2.1 is completed with the direction vector 1000, then the current
subproblem is 3/14/2. Moreover it should be noted that the jobs in each row can be
stored in any order. For instance, the jobs in each row could be ordered according
to the lower bounds of the corresponding subproblems. For the sake of simplicity,
increasing lexicographic order is used in the previous example.

• Pruned nodes should be ignored by the selection operator. In order to flag a cell
as ”pruned” its value is multiplied by −1. With this convention the branching
procedure actually consists in copying the absolute values to the next row, i.e.
copying both −𝑗 and 𝑗 as 𝑗.

• To select a subproblem the values of 𝐼 and 𝑉 are set accordingly. Depth-first search
is implemented as follows: vector 𝑉 is incremented at position 𝐼 until a non-pruned
cell is found or the end of the row is reached. If the end of the row is reached (i. e.
𝑉[𝐼] = 𝑛−𝐼), then the algorithm ”backtracks” to the previous level by decrementing
𝐼 and again incrementing 𝑉. Figure 2.2 shows an illustration of the IVM-based
DFS selection operator and Algorithm 1 provides the pseudo-code of a procedure
implementing this operator.

LL IVM

se
le

ct
io

n

Figure 2.2: Illustration of IVM-based selection operator.

Each cell of IVM represents one node of the B&B tree. Therefore, the compact form
of IVM reduces the worst-case memory requirements for the storage of the work pool by
a factor 𝑛.

55

LL IVM

be
fo

re
br

an
ch

in
g

af
te

rb
ra

nc
hi

ng

upper bound : 50

Figure 2.3: Illustration of IVM-based branching operator.

It should be emphasized that IVM can only be used for depth-first type search
strategies. Indeed, the design of IVM assumes that any subproblem is completely ex-
plored before another subproblem on the same level is processed, which corresponds to
the definition of depth-first search. However, IVM imposes no order restriction for jobs
on the same level.

The sequential IVM-based B&B algorithm terminates when an attempt is made to
move right after the last cell of the first row, in other words, when 𝑉[0] = 𝑛. Equivalently,
this termination condition can be expressed by comparing the value of the position
vector to a maximal allowed value, represented by a vector of length 𝑛, referred to as the
end-vector. In Algorithm 1 this termination condition is included in Line 3.

2.2.2 Position vector: factoradic numbers

When running a B&B algorithm, the values of the vector 𝑉 are continuously updated. As
described in the selection procedure (Algorithm 1), when the end of row is reached the
algorithm backtracks to the previous level. Therefore, at level 𝐼 = 0, 1, … , 𝑛 − 1 the value
of 𝑉 is bounded by 𝑉[𝐼] < 𝑛 − 𝐼. In the example of Figure 2.1b, the vector is equal to 0000
when the algorithm points to the first solution of the B&B tree, and equal to 3210 when it
points to the last solution. Between these values, the vector successively takes the values
0010, 0100, 0110, 0200, 0210, … , 3210. For each of these values, the algorithm points to a
different solution. There are 24 possible values because there are 24 solutions (i.e. 4!).

56 Chapter 2. IVM-based B&B for multi-/many-core systems

Algorithm 1 Serial select-and-branch
1: kernel select-and-branch
2: state←EMPTY
3: while (positionVector ≤ endVector) do ▷ termination condition
4: if (row-end) then ▷ (𝑉[𝐼] > 𝐼)?
5: cell-upward ▷ 𝐼 − −; 𝑉[𝐼] + +
6: else if (cell-eliminate) then ▷ 𝑀[𝐼, 𝑉[𝐼]] < 0?
7: cell-rightward ▷ 𝑉[𝐼] + +
8: else
9: state←EXPLORING

10: break
11: end if
12: end while
13: if (state=EXPLORING) then
14: generate-next-line ▷ branch
15: end if
16: end kernel

These 24 position-vector values correspond to the numbering of the 24 solutions using a
special numbering system, called factorial number system [Knu97]. The factorial number
system, also called factoradic, is a mixed radix numeral system adapted to numbering
permutations. Applied to the numbering of permutations the French term numération
factorielle is used in 1888 [Lai88].

In the factorial number system, the weight of the 𝑖𝑡ℎ position is equal to 𝑖!, contrary to
the decimal number system, where the weight of the 𝑖𝑡ℎ position is equal to 10𝑖. While in
the decimal number system, the highest digit allowed for each position is 9, in the factorial
number system, the highest digit allowed for the 𝑖𝑡ℎ position is equal to 𝑖. Therefore, the
digit of the first position, reading from right to left, is always 0.

The factorial number system satisfies the conditions of what Cantor called a simple
number system (einfaches Zahlensystem) in [Can69], i.e. a number system in which each
positive integer has a unique representation. A sufficient condition for such a system is
the following [Can69]: for all 𝑖 = 0, 1, 2, ..., the weight of the 𝑖𝑡ℎ position 𝑤𝑖 must divide
the next weight 𝑤𝑖+1 without remainder and the highest digit allowed at the 𝑖𝑡ℎ position
𝜆𝑖 is equal to 𝑤𝑖+1

𝑤𝑖
− 1.

In particular, the set of 𝑛-digit factorial numbers can be put in bijection with the subset
[0, 𝑛![∶= 0, 1, ..., 𝑛! − 1. A 𝑛-digit factoradic number 𝑎(!) is transformed to its decimal form
𝑎(10) as follows:

𝑎(10) =
𝑛−1
∑
𝑖=0

𝑎(!)
𝑖 × 𝑖!

The conversion of a decimal number to its factorial form is obtained by performing
successive euclidean divisions.

57

2.2.3 Work units: intervals of factoradics

As mentioned, in the parallel tree exploration model several independent B&B processes
explore different parts of the B&B tree in parallel. Because of the highly irregular and
unpredictable shape of the tree the latter tree should be dynamically distributed among
B&B processes at runtime. To achieve this we have revisited the work stealing paradigm
for IVM-based B&B. The challenge here is twofold:

• Defining work units and the way they are communicated (this subsection and
Subsection 2.2.4)

• Defining victim selection and granularity policies to manage the stealing operations
performed on these work units. (Section 2.3)

Based on the properties of the position-vector 𝑉 we say that a serial B&B algorithm
applied to a permutation problem of size 𝑛 explores the interval [0, 𝑛![. In the parallel
version of B&B, it is possible to have two B&B processes 𝑇1 and 𝑇2 that explore intervals
[0, 𝑥[and [𝑥, 𝑛![respectively. As the repartition of work (nodes to decompose) in these
intervals (work units) is unpredictable and irregular, it is impossible to determine a
number 𝑥 a priori such that both processes finish the exploration at the same time. If
𝑇1 finishes exploring its interval before 𝑇2 (meaning that 𝑉1 = 𝑥), then 𝑇1 attempts to
steal a portion of 𝑇2’s remaining interval. In order to achieve load balance, 𝑇1 and 𝑇2
can exchange intervals until the entire interval [0, 𝑛![is explored. This approach can be
generalized to an arbitrary number of B&B processes: In the IVM-based work stealing
approach, when a B&B process has an empty interval it becomes a thief and attempts to
steal a portion of the interval from another B&B process - called the victim.

The principle of IVM-based parallel B&B can be summarized as follows:

• The resolution of a problem of size 𝑛 corresponds to the exploration of the interval
[0, 𝑛![, representing the search space.

• Multiple independent B&B processes explore the interval [0, 𝑛![in parallel. The
interval [0, 𝑛![is partitioned into smaller, mutually disjoint intervals which are
assigned to independent B&B processes; Each of these B&B processes uses its
private IVM data structure to explore an interval [𝐴, 𝐵[⊂ [0, 𝑛![.

• Work units exchanged between IVM-based B&B processes are intervals. These in-
tervals can be equivalently expressed in factoradic or in decimal form. In factoradic
form, the extremities of an interval [𝐴, 𝐵[represent the starting position vector

58 Chapter 2. IVM-based B&B for multi-/many-core systems

(i. e., IVM is initialized at 𝑉 = 𝐴) and the end vector (i. e. the work unit is empty
when 𝑉 = 𝐵).

• There is a one-to-one correspondence between a B&B process and the IVM structure
it uses to explore exactly one interval [𝐴, 𝐵[. When describing interaction between
B&B processes we will sometimes use the term “IVM” to designate, by extension,
the B&B process which uses it. For instance, we say that ”IVM 𝑘 steals a portion
of IVM 𝑗’s interval” confounding IVM-based B&B processes and the private data
structures used by these processes.

Conventionally, in a LL-based B&B work units exchanged between threads (or pro-
cesses) are sets of nodes. In such approaches, only nodes that were generated by the
branching operator are exchanged. Using interval-based encoding for work units, the
load balancing mechanism divides intervals units and distributes them among B&B pro-
cesses. While intervals correspond to sets of nodes, and vice-versa, an important difference
between both types of work units should be noted: In contrast to LL-based approaches, in
the IVM-based approach work units are not generated by the B&B exploration processes
but only by the load balancing mechanism.

Figure 2.4: Illustration of parallel tree exploration using three B&B processes and interval-based
work units.

Figure 2.4 illustrates the repartition of the full search tree for a problem of size 𝑛 = 4
among three B&B processes. The interval [0, 4![is split into three parts. Each of these
parts is explored independently by one B&B process using its private IVM structure.

As mentioned, when a B&B process has finished the exploration of its interval it
attempts to steal a portion of another interval.

The communication of work units between B&B processes requires the two following
procedures:

• a procedure for splitting an interval [𝐴, 𝐵[into two parts, [𝐴, 𝐶[and [𝐶, 𝐵[,

59

• and a procedure to initialize an IVM structure from a position vector 𝑉 = 𝐶.

2.2.4 Work unit communication

In this subsection two alternative procedures for the communication of work units
between IVM-based B&B processes are described. An illustration of both procedures is
shown in Figure 2.5.

(a) Arithmetic interval splitting

(b) Subtree-based interval splitting

Figure 2.5: Illustration of work unit splitting.

Work unit splitting at an arbitrary position: An integer interval [𝐵, 𝐸[can be split at
any integer 𝐶 that is convex linear combination of 𝐵 and 𝐸, i. e. 𝐶 = ⌊(1 − 𝛼)𝐴 + 𝛼𝐵⌋ , 0 <
𝛼 < 1. The computation of a splitting point 𝐶 can be performed either by using decimal
arithmetic operations or by implementing elementary arithmetic operations for factoradic
numbers. The granularity of this procedure is controlled by the value of 𝛼. In the example
shown in Figure 2.5a, the interval of the victim is split in two parts of equal size, setting
𝛼 = 0.5.

60 Chapter 2. IVM-based B&B for multi-/many-core systems

In both cases it is necessary to have a procedure that initializes the IVM data structure
at an arbitrary valid position vector 𝑉 = 𝐶. For that, it is not enough to build the matrix
by iterative application of the branching operator, selecting the jobs pointed by 𝑉, because
the information about pruned nodes is lost.

Initialization of the IVM structure at any position vector 𝑉 = 𝐶 can be achieved
as follows. Starting from 𝐼 = 0 all nodes pointed by 𝑉 are expanded, bounded and
pruned until the last line is reached, i. e. until 𝐼 = 𝑛. In other words, 𝑛 iterations of a
modified B&B algorithm, selecting the subproblems indicated by 𝑉, are performed. As
this initialization procedure involves the bounding operator, initialization overhead can
become significant.

A first observation can be made: this initialization process can actually be stopped
when 𝑉 points to a pruned subproblem. This reduces the number of initialization steps
considerably. A second observation allows to further decrease the amount of time spent
in initialization: Suppose that an IVM structure was used to explore an interval [𝐵, 𝐸[
and that it has reached the end of this task, that is 𝐵 = 𝐸. Let 𝑙 be the level at which the
exploration stopped. Now we want to initialize this IVM at a new position 𝑉 = �̃�. If
𝐵[𝑖] = �̃�[𝑖] for 𝑖 = 0, 1, ..., 𝑘 with 𝑘 < 𝑙, then these first 𝑘 lines of the matrix 𝑀 are already
correctly initialized. The initialization process described before can thus begin at 𝐼 = 𝑘.

Subtree-based work unit splitting. In [Ler15] a method for exchanging work units
between IVM-based B&B processes without initialization is proposed. This procedure is
based on splitting the interval of the victim IVM directly in its factoradic form, without
converting it to decimals. In addition to the new position and end vectors, an initialized
matrix is transferred from the victim IVM to the thief IVM. Figure 2.5b illustrates this
procedure. The transfer of a work unit from IVM 𝑆 (Sender) to IVM 𝑅 (Receiver) can be
performed as follows.

1. Let [𝐵𝑆, 𝐸𝑆[be the interval to split. Let 𝑙 be the smallest index such that 𝐵𝑆[𝑙] ≠
𝐸𝑆[𝑙].

2. For 𝑖 = 0, 1, … , 𝑙 − 1, copy row 𝑖 of IVM from 𝑆 to 𝑅 (position, end, direction vectors
and matrix).

3. Split tree at level 𝑙 by choosing 𝐶 such that 𝐵𝑆[𝑙] < 𝐶 ≤ 𝐸𝑆[𝑙]. For the receiving
IVM 𝑅, set 𝐵𝑅[𝑙] = 𝐶 and 𝐸𝑅[𝑙] = 𝐸𝑆[𝑙]. For the sending IVM 𝑆, 𝐸𝑆[𝑙] = 𝐶 − 1.

4. For 𝑖 = 𝑙 + 1, … , 𝑛 − 1, set 𝐸𝑆[𝑖] = 𝑛 − 𝑖 − 1 and 𝐵𝑅[𝑖] = 0.

61

5. The receiving IVM 𝑅 is now initialized and exploration can start at level 𝑙. Therefore
𝐼𝑅 is set to 𝐼𝑅 = 𝑙.

This initialization method proposed by Leroy [Ler15] requires no additional compu-
tation of bounds. Therefore it reduces the overhead induced by work stealing operations,
compared to the previously introduced initialization procedure. Another important
advantage of this method is that it avoids redundant computations. Indeed, if intervals
are split at arbitrary points, some subproblems may be decomposed redundantly, as
illustrated by the overlapping tree portions in Figure 2.4. In this example, thread T1
explores interval [0000, 1100[and thread T2 explores [1110, 2110[, which may cause
redundant computation of bounds along the frontier 11𝑋𝑋.

However, there are also disadvantages. Especially in a distributed memory setting the
size of data transfers should be kept low. Indeed, this is the primary motivation for using
interval-encoded work units [MMT07]. Also, in the subtree-based interval splitting, the
granularity is controlled in a coarser way because full subtrees are communicated. This
method is similar to stack-splitting strategies where nodes (and implicitly the subtrees
rooted in these nodes) are transferred from non-empty to empty pools. Dividing intervals
by the first method allows a finer control of granularity.

We use the second (subtree-based) work splitting method for communicating work
units via shared-memory and the first method in distributed memory contexts.

2.3 Work stealing for IVM-based B&B on multi-core CPUs

There are mainly two ways to increase the efficiency of a given parallel B&B algorithm.
The first is to improve the distribution of work among processing units (achieve good load
balance) and the second is to improve the usage of each individual processing unit. Load
balancing aims at maximizing the benefits of parallelizing the exploration of the B&B
tree by reducing idle time. Ideally, all processing units are kept busy without additional
overhead, solving a given instance 𝑃 times faster when using 𝑃 identical processing units
instead of one.

The second factor is in fact a sequential optimization of the B&B algorithm. As shown
in Section 1.6.4, for typical instances of the three considered test cases, the bounding
operator is called millions of times. Moreover, for the FSP and QAP problems it is by
far the most time consuming part of the algorithm, consuming up to 99% of sequential
execution time in the case of FSP.

In substance, both these objectives can be pursued independently, even though faster
node evaluation can make load balancing more difficult, as it becomes harder to hide com-

62 Chapter 2. IVM-based B&B for multi-/many-core systems

munication overhead. In the following, we first present our load balancing approach for
IVM-based multi-core and many-core B&B. Then, in Section 2.4, we present approaches
aiming at the acceleration of the bounding operator, using GPUs as accelerators and
leveraging vector processing capabilities of multi-core CPUs.

2.3.1 Work stealing using factoradic intervals

A work stealing strategy can be defined by two major components: a victim selection
policy and a granularity policy. The victim selection policy determines how a thief
thread 𝑅 chooses its victim 𝑆. The granularity policy determines the amount and which
part of work thread 𝑅 steals from thread 𝑆. An ideal victim selection strategy is one
which (1) chooses the victim 𝑆 with the largest amount of work, (2) and makes this choice
as rapidly as possible. A good granularity policy reduces the number of work stealing
operations, meaning that it allows both victim and thief to work as long as possible
without initiating another work stealing event.

2.3.2 Victim selection policies

In this Subsection, four victim selection policies are described. As pseudo-code for these
policies is shown in Algorithm 2. Two of them, the random and ring policies, have a low
computational complexity and require no access to shared data structures or knowledge
about the global workload repartition. The two other selection policies, namely the largest
and the honest policies, use simple heuristics which aim at selecting a stealing victim
holding a large or difficult piece of work. These policies use the available information
about the workers’ activity and require some additional computation as well as protected
accesses to shared data structures.

• Ring victim selection policy: In this deterministic policy, threads are connected to
each other with an unidirectional ring. A thread 𝑅 always steals from its precedent
thread 𝑅′. If the thread 𝑅 is different from the thread 1, then the thread 𝑅′ is equal
to the thread 𝑅 − 1. Otherwise, the thread 𝑅′ is equal to the thread 𝑇, where 𝑇
is the number of threads. In this policy, the work stealing attempt of a thread 𝑅
is a blocking event when thread 𝑅′ has no work. In this case, the work stealing
request will be satisfied when the thread 𝑅′ will receive work. This policy is
also used, for instance, in [KRR88]. If the thread numbering is matched with the
underlying architecture the deterministic nature of this policy can be used to reduce
communication costs. As shown in function choose-ring (Algorithm 2, Line 12), the
cost of the victim selection function is very low. No locking or access to shared

63

Algorithm 2 Pseudocode of the victim selection policies for MC-B&B.
1: function choose-thread(R, strategy)
2: switch strategy do
3: case RING:
4: return choose-ring(R)
5: case RANDOM:
6: return choose-random(R)
7: case LARGEST:
8: return choose-largest(R)
9: case HONEST:

10: return choose-honest(R)
11: end function
12: function choose-ring(R)
13: if (R=1) then
14: return 𝑇
15: else
16: return (𝑅 − 1)
17: end if
18: end function
19: function choose-random(R)
20: while true do
21: R’←random(1,T)
22: if (has-work(R’) AND (R’≠R)) then
23: return R’
24: end if
25: end while
26: end function
27: function choose-largest(R)
28: max-size←0
29: for all R” ∈ {1, 2, ..., 𝑇} AND (R”≠R) do
30: if (size(R”)> max-size) then
31: R’←R”
32: max-size←size(R”)
33: end if
34: end for
35: return R’
36: end function
37: function choose-honest(R)
38: remove(rank-threads,R)
39: while not-empty(rank-threads) do
40: R’←pop-front(rank-threads)
41: if (has-work(R’) then
42: push-back(rank-threads,R)
43: return R’
44: end if
45: end while
46: end function

64 Chapter 2. IVM-based B&B for multi-/many-core systems

data structures is required for this selection strategy: the only information an idle
worker needs to select a victim is its own thread/process-ID. The main issue of this
strategy is that work units may not propagate fast enough through the ring.

• Random victim selection policy: The random selection policy is provably effi-
cient [BL99] and the most frequently used in the literature. In this policy, a victim
thread 𝑅′ is selected uniformly at random when a thread 𝑅 initiates a work stealing
operation. Unlike the ring policy, this work stealing operation is not a blocking
event. In other words, the thread 𝑅 continues to choose other threads randomly
until it finds a thread with a non-empty interval or linked-list. The state variable
of the randomly selected victim, indicating whether work is available, should be
accessed atomically.

• Largest victim selection policy: In a B&B algorithm, it is often impossible to
determine the “hardness” of a work item. This policy is based on a simple heuristic
to choose the thread with the most difficult work to finish. Indeed, the largest
policy assumes that probably the larger the size of a work is, the more difficult this
work will be. Therefore, this policy computes the amount of work of each thread,
chooses the thread with the biggest size, and returns the rank 𝑅′ of this thread. In
the linked-list-based approach, the size of a linked-list is equal to the number of
nodes it contains, and in the interval-based approach, the size of an interval [𝐴, 𝐵[
is equal to 𝐵 − 𝐴. As shown in function choose-largest (Algorithm 2, Line 27), this
policy has a higher computational complexity than the three other victim selection
policies. In particular a thief requires locked accesses the length or size variable of
each busy worker. Moreover, each thread periodically (and atomically) updates
this quantity. Although this polling may compromise the scalability of this strategy,
good results for this policy are reported in [ASW+14].

• Honest victim selection policy: This strategy is based on another heuristic to
determine the thread with the most difficult work to finish. The heuristic assumes
that if a thread 𝑅1 has stolen work less recently than a thread 𝑅2, then the thread
𝑅1 has probably a work which is more difficult than the work of the thread 𝑅2.
Therefore, the thread 𝑅 steals the work from the thread victim 𝑅′ which is the
least recent thief. As shown in function choose-honest (Algorithm 2, Line 27), this
policy has a higher computational complexity than the ring and random policies
but a smaller computational complexity than the largest policy. In the largest
victim selection policy, it is important to compute the amount of work of each pool
and computing the size of any pool is a blocking operation for the thread which

65

owns this pool. In the honest victim selection policy, one operation of removing
is performed on the rank-threads list, and this operation is a non-blocking. The
operations on the global rank-threads list must be protected by locks.

2.3.3 Granularity policies

When a thread 𝑅′ is contacted by a thread 𝑅, the thread 𝑅 must determine the amount
and which part of work to steal from its victim thread 𝑅′.

• Steal half policy: This policy indicates that the thread 𝑅 steals the second half
of the work of the thread 𝑅′ and leaves the other half for the thread 𝑅′. In the
linked-list-based approach, the work of a thread 𝑅′ is constituted by a set of 𝑁
nodes. The thread 𝑅 steals the last 𝑁/2 nodes and leaves the other nodes for the
thread 𝑅′. Nodes are always stolen from the tail, i.e. from the end which is opposite
to the working end of the private deque. While in the interval-based approach,
the work of a thread 𝑅′ is constituted by an interval [𝐴, 𝐵[. The thread 𝑅 steals
the interval [(𝐴 + 𝐵)/2, 𝐵[and leaves the interval [𝐴, (𝐴 + 𝐵)/2[for the thread
𝑅′. Leaving the first half of the interval [𝐴, 𝐵[avoids the thread 𝑅′ to initialize its
matrix and vectors.

• Steal T𝑡ℎ policy: Theoretically, steal half policy may not be appropriate for certain
victim selection policies. Suppose, for instance, four threads where thread 1 has a
certain amount of work 𝑊, and threads 2, 3 and 4 have completed their work. The
amount of work 𝑊 may be the number of nodes or the size of the interval. In a ring
selection, the threads 2, 3 and 4 steal work from the threads 1, 2 and 3, respectively.
Using the steal half policy and the ring selection, the amounts of work 𝑊/2, 𝑊/4,
𝑊/8 and 𝑊/8 are allocated to the threads 1, 2, 3 and 4, respectively. Steal 𝑇𝑡ℎ policy
indicates that the thread 𝑅 leaves 𝑊/𝑇 of the work to its thread victim 𝑅′, where
𝑇 is the number of threads, and steals (𝑇 − 1)𝑊/𝑇 of the work. In the previous
example, using steal 𝑇𝑡ℎ policy and the ring selection allocate the amount of works
𝑊/4, 3𝑊/16, 9𝑊/64 and 27𝑊/64 to the threads 1, 2, 3 and 4, respectively. For this
example, steal T𝑡ℎ policy gives a better granularity than the steal half policy. In our
experiments, steal T𝑡ℎ policy is tested only for the ring selection. Indeed, steal half
policy seems to be theoretically appropriate for the other victim selection policies.

66 Chapter 2. IVM-based B&B for multi-/many-core systems

2.4 Accleration of bounding operator

2.4.1 GPU acceleration

One way to accelerate a multi-core B&B algorithm is to offload the bounding operation to
one or several many-core accelerators, like GPUs. This approach is promising under the
condition that the node evaluation fits the accelerators execution mode. As the offloading
requires data preparation and transfers, the bounding operation should be substantially
accelerated in order to compensate for the incurred overhead. The accelerator can be used
to parallelize the lower bound function itself or to evaluate several generated subproblems
in parallel. We choose the parallel evaluation of bounds model which is more generic
and can, in principle, be applied to any node evaluation function. This introduction of a
second level of parallelism concerns only the bounding operator, which is performed in
three phases.

The first phase consists in copying the generated subproblems to the device. Secondly,
a kernel function is launched which performs the evaluation of the subproblems on
the device. The host thread needs to wait for the completion of this kernel since it
produces lower bounds which are needed for the pruning operation. In order to avoid
breaking the asynchronous execution of the parallel tree exploration, the CPU threads
should be able to perform these operations concurrently. The number of CPU cores
is usually higher than the number of GPUs available, so GPU devices are shared by
multiple threads. Fortunately, modern GPUs support multi-threaded kernel offloading.
For instance, nVidia’s Hyper-Q technology1 allows the concurrent launching of up to 32
kernels from different CPU-threads (depending on multiprocessor availability).

In order to accelerate the bounding operation effectively, the number of offloaded
subproblems must be sufficiently high. However, the quantity of subproblems generated
by one IVM may not yield an acceptable GPU-occupancy, unless the computation of a
bound is also parallelized. To solve this issue, the number of B&B processes handled per
thread may be increased, partially violating the paradigm of the parallel tree exploration
model. In that case, instead of handling a single B&B process, each thread applies the
branching, selection and pruning operators sequentially to 𝑀 pools. This approach is
schematically represented in Figure 2.6. The parameter 𝑀 needs to be adjusted in function
of the average number of subproblems generated per pool, the hardware constraints of the
accelerating device and the relative cost of the bounding operator with respect to the rest
of the algorithm. A good value for parameter 𝑀 should be determined experimentally.

1. Introduced with CUDA compute capability 3.5; in this thesis we consider NVIDIA’s CUDA program-
ming toolkit, but of the concepts and conclusions should remain valid for OpenCL.

67

It also becomes necessary to equilibrate the work load among the 𝑀 pools handled by
the same thread. An intra-thread work redistribution phase must therefore be added to
the algorithm and the work stealing strategies need to be adapted to this. With respect to
the work stealing strategies defined in the previous subsection the pools belonging to the
same thread behave like a single ”super-pool”, meaning that a thread attempts to steal
work from another thread only if all its local work is exhausted. During a work stealing
operation pool number 𝑘 of the thief thread steals from pool number 𝑘 of the victim
thread according to the granularity policy. Using this convention the work stealing for
𝑀 > 1 is consistent with the work stealing for 𝑀 = 1.

In order to ensure work load balancing among pools belonging to the same thread
a work repartitioning phase is introduced. In this phase work stealing is mimicked
inside a thread, sequentially. For this intra-thread load balancing the largest policy with
steal-half granularity is used. This strategy seems the most appropriate in this context:
the honest policy makes no sense in a sequential context, the ring policy may favor pools
with numbers within a certain range. As the pool sizes are locally available it also seems
unnatural to reduce the cost of victim selection by choosing randomly.

The adapted work stealing for the hybrid CPU-GPU B&B is summed up by the
following rules:

• Rule 1 For intra-thread work stealing, only the largest policy with steal half granu-
larity is used.

• Rule 2 A work stealing operation between a thread 𝑅 and a selected victim thread 𝑅′

is defined as follows: the 𝑘𝑡ℎ pool of thread 𝑅 tries to steal work from the 𝑘𝑡ℎ pool
of thread 𝑅′ according to the defined granularity policy.

• Rule 3 A hierarchical work stealing approach is applied: Intra-thread has priority
over inter-thread load balancing. Therefore a thread 𝑅 attempts to steal a thread 𝑅′

only if all of its 𝑀 pools are empty.

• Rule 4 The steal T𝑡ℎ granularity policy applies only to the ring topology.

With these additional rules the work stealing strategies for MC-B&B, described in Sub-
sections 2.3.2-2.3.3 also apply to the hybrid GPU-accelerated algorithm. For instance,
using work stealing strategy random-1/2 in the hybrid CPU-GPU-algorithm means: when
all pools inside a thread 𝑅 are empty, thread 𝑅 attempts to steal from a randomly chosen
thread 𝑅′ (Rule 3). If 𝑅′ has non-empty pools 𝑘𝑅′

𝑖 , half of the work in those pools is
transferred to pools 𝑘𝑅

𝑖 of thread 𝑅 (Rule 2). Moreover each thread balances the work
load among its 𝑀 pools internally using largest-1/2 strategy.

68 Chapter 2. IVM-based B&B for multi-/many-core systems

M...2

M...2

M...2

M...2

M...2

Nodes

Bounds

Nodes

Bounds

Nodes

Nodes

Nodes

Bounds

Bounds

Bounds

1

1

1

1

1

1

evaluate

evaluate

evaluate

evaluate

evaluate

Figure 2.6: Illustration of the GPU-accelerated multi-core B&B (GMC-B&B).

2.4.2 Vectorization of the FSP bounding procedure

Another opportunity for accelerating multi-core B&B algorithms are the vector processing
extensions available in most modern CPUs. There are different approaches for achieving
vectorization, depending on the structure of the targeted portion, ie the node evaluation
function. If the appropriate flags are passed to the compiler it will attempt to auto-
vectorize the code. This may succeed if the node evaluation function is more or less
trivially vectorizable. At a lower level, the programmer may insert pragmas, giving hints
to the compiler and at an even lower level explicit vector instructions may be used to
rewrite the node evaluation function.

We focus on the lower bounding function of the FSP. In particular, we target the most
compute-intensive portion of the lower bound function and its main data-dependencies.
The pseudo-code for the lower bound function, is given in Algorithm 3.

This compute-intensive portion of code is the inner for-loop (Algorithm 3, Lines 7-13)
which consumes about 70% of the bounding time. The body of this inner loop is ex-
ecuted 𝑛2×(𝑛−1)

2 times, 𝑛 being the number of jobs. Regarding data dependencies, the
statement in Line 11, including a dependency of current 𝑡𝑚𝑝1 on 𝑡𝑚𝑝1 from previous
iterations prevents vectorization (the Intel compiler 𝑖𝑐𝑐 does not auto-vectorize it and
the vectorization report signals this dependency). In addition, except for Line 15 the
iterations of the outer loop are independent (private variables: tmp0, tmp1, ma0, ma1).
However, only the inner loop may be vectorized 2.

In order to use the vector processing abilities for this portion of the code the order of

2. http://d3f8ykwhia686p.cloudfront.net/1live/intel/CompilerAutovectorizationGuide.pdf

69

Algorithm 3 Computation of lower bound (un-vectorized)
input: subproblem = {permutation, nbFixed (#jobs fixed)}, constant data (MM, JM, PTM, LM)
output: lower bound (LB) of subproblem

1: 𝑛 := #jobs
2: function compute LB
3: RM, QM, SM ← InitTabs(permutation, nbFixed)
4: LB ← 0
5: for (k = 0 → 𝑁(𝑁−1)

2) do
6: tmp0, tmp1, ma0, ma1 ← InitFun(k, nbFixed, MM, RM)
7: for (j = 0 → 𝑛) do ▷ ∼ 70% of time
8: job←JM[k][j]
9: if (SM[job]==0) then

10: tmp0 += PTM[ma0][job]
11: tmp1 = max(tmp1, tmp0 + LM[k][job]) + PTM[ma1][job]
12: end if
13: end for
14: tmp1←EndFun(tmp0, tmp1, k, nbFixed, QM)
15: LB = max(tmp1, LB)
16: end for
17: return LB
18: end function

the nested loops must be inverted. The vectorized lower bound function is illustrated in
Algorithm 4.

For auto-vectorization by the compiler it is preferable to write small separate loops,
rather than merging into a single loop. The outer loop is thus split into 3 separate serial
loops and a max-reduce operation (Line 21) in order to isolate the k-dependent instruc-
tions from the inner-loop. The cost to pay for this is to declare the scalars 𝑡𝑚𝑝0, 𝑡𝑚𝑝1, 𝑚𝑎0
and 𝑚𝑎1 as arrays (resp. 𝑇𝑚𝑝0, 𝑇𝑚𝑝1, 𝑀𝑎0 and 𝑀𝑎1) of size 𝑁(𝑁−1)

2 . In an environment
with small last-level caches and/or few registers this strategy can therefore be highly
detrimental to performance. We have indeed implemented this vectorized version of the
bounding function on the GPU and observed severe performance degradation (these
intermediate variables are no longer stored into registers).

In order to improve performance and assist the compiler in vectorizing the loops
all arrays are aligned at 64 byte boundaries. For static arrays this is achieved by using
__attribute__((aligned(64))). For dynamically allocations the _mm_malloc function
is used and the statement __assume_aligned(arr, 64) informs the compiler immedi-
ately before the concerned loop that the starting address of array arr is a multiple of 64
bytes. Even with the highest optimization level activated (−𝑂3) the Intel compiler (𝑖𝑐𝑐)
still needs the hint “#pragma ivdep” to vectorize the inner loop (Line 10) successfully.
The reason for this is the conditional ”if”-statement which causes diverging execution
flows between SIMD lanes. The two other for-loops are auto-vectorized.

70 Chapter 2. IVM-based B&B for multi-/many-core systems

Algorithm 4 Computation of lower bound (vectorized)
input: subproblem = {permutation, nbFixed (#jobs fixed)}, constant data (MM, JM, PTM, LM)
output: lower bound (LB) of subproblem

1: 𝑛 := #jobs
2: function compute LB vectorized
3: RM, QM, SM ← InitTabs(permutation, nbFixed)
4: LB ← 0
5: for (k = 0 → 𝑛(𝑛−1)

2) do
6: Tmp0[k], Tmp1[k], Ma0[k], Ma1[k] ← InitFun(k, nbFixed, MM, RM)
7: end for
8: for (j = 0 → J) do ▷ permute loop-order
9: #pragma ivdep

10: for (k = 0 → 𝑛(𝑛−1)
2) do ▷ inner loop vectorizable

11: job←JM[j][k] ▷ transpose JM
12: if (SM[job]==0) then
13: Tmp0[k] += PTM[Ma0[k]][job]
14: Tmp1[k] ← max(Tmp1[k], Tmp0[k] + LM[k][job]) + PTM[Ma1[k]][job]
15: end if
16: end for
17: end for
18: for (k = 0 → 𝑛(𝑛−1)

2) do
19: Tmp1[k]←EndFun(Tmp0[k], Tmp1[k], k, nbFixed, QM)
20: end for
21: LB←max-reduce(Tmp1[])
22: return LB
23: end function

2.5 Experiments

In this section we report the experimental results for the algorithms presented in this
chapter. All experiments are run on a computer composed of two 8-core Haswell
E5-2630v3 processors, and four GeForce GTX 980 GPUs. Unless specified otherwise,
the compiler gcc 5.4 is used with optimization level −𝑂2 and version 7.5 of the CUDA
toolkit is used.

For all runs the initial upper bound is set to the optimal cost, in order to evaluate
the performance of the algorithm in the absence of speedup anomalies. Indeed such
an initialization ensures that B&B explores exactly the critical tree in order to prove the
optimality of the initial upper bound.

The execution times for different problem instances vary strongly because of vary-
ing tree sizes and node evaluation costs. In order to present experimental results for
instances of different size in a comparable manner, most results are reported in terms
of achieved node processing speed, defined as the rate of decomposed nodes per second

(total number of decomposed nodes
elapsed time (sec)). We recall that the units n/s, kn/s and Mn/s are

71

used to designate respectively 1, 103 and 106 decomposed nodes per second.

2.5.1 Evaluation of data structures for B&B

Figure 2.7 shows the number of nodes decomposed per second for the multi-core LL-
and IVM-based B&B algorithm without bounding acceleration. The node processing rate
is computed by dividing the number of nodes decomposed by the elapsed walltime for
completing the exploration of the tree. Using this metric, rather than raw computation
time, allows a better comparison of performance achieved for instances of different size.
The reader interested in the actual resolution time can divide the number of explored
nodes (given in Appendix A.1) by this rate.

For example, the critical tree of 𝑇𝑎028 is composed of 8 088 505 nodes. Using 32
threads, the IVM-based MC-B&B decomposes ≈40 kn/s, so the elapsed walltime for
exploring this tree is ≈ 200 seconds (instead of 4 440 seconds or 1.8 kn/s for its sequential
counterpart).

LL 16 thd IVM 16 thd
LL 32 thd IVM 32 thd

FSP - multi-core: node processing rates using LL/IVM

no
de

s/
se

c

0

10k

20k

30k

40k

50k

Flowshop instance

Ta021
Ta022

Ta023
Ta024

Ta025
Ta026

Ta027
Ta028

Ta029
Ta030

Ta042

(a) Flowshop

QAP - multi-core: node processing rates using LL/IVM

no
de

s/
se

c

0
100k
200k
300k
400k
500k
600k
700k
800k

QAP instance

nug17
chr20c

tai17a
esc16d

nug18
scr20

had20
esc16a

esc16c
nug20

LL 16 thd IVM 16 thd
LL 32 thd IVM 32 thd

(b) QAP

Figure 2.7: Node processing rates for IVM- and LL-based multi-core B&B solving FSP and QAP
instances using 2 Intel Xeon E5-2630v3 CPUs.

Comparing the achieved node processing rates for different FSP instances one can
notice that similar rates are achieved for instances Ta021-Ta030. The node processing
rates achieved for FSP instances of size 20 × 20 vary between 27–33 kn/s for 16 threads
and 37–45 kn/s for 32 threads (using hyperthreading capabilities). Variations between
instances are due to different tree shapes and variable node evaluation costs, as shown
by the analysis of the sequential algorithm in Subsection 1.6.4. Comparing LL- and IVM-
based implementations for FSP one can notice that the IVM-based B&B outperforms its
LL-based counterpart only by an insignificant margin.

In contrast to FSP, for the QAP the node processing rate varies strongly depending
on the instance being solved. As for the FSP, these variations are not due to the size of

72 Chapter 2. IVM-based B&B for multi-/many-core systems

the explored tree (in Figure 2.7b the QAP instances on the x-axis are sorted in increasing
order according to the size of the explored critical tree). Instead, it appears the instance
class has a strong influence on the processing speed.

For instance, solving the nug instances nug17-20, node processing rates around
100 kn/s are measured, while the esc instances are solved with processing rates up
to 7 times higher. This is due to the nature of the GLB bound which is used by the
bounding operator for the QAP. The computationally intensive part of this bounding
procedure consists in solving a Linear Assignment Problem, using an implementation
of the Kuhn-Munkres algorithm with 𝒪(𝑛3) worst-case complexity. Depending on the
coefficient matrix, and thus on the input flow and distance matrices, this step requires a
variable amount of computation.

These variations allow one to make the following observation. For instances where
the node evaluation function has a lower cost, the relative speedup of the IVM-based
B&B over its LL-based counterpart is higher. This can be explained by the fact that the
relative importance of the pool management is higher. As IVM allows a more efficient
handing of the pool of subproblems, the effect on the total execution time becomes more
noticeable.

nQueens - multi-core: node processing rates using LL/IVM

no
de

s/
se

c

0

10M

20M

30M

40M

n-Queens instance

NQ14
NQ15

NQ16
NQ17

LL 16 thd IVM 16 thd
LL 32 thd IVM 32 thd

Figure 2.8: Node processing rates for IVM- and LL-based multi-core B&B solving 𝑛-Queens
instances using 2 Intel Xeon E5-2630v3.

The node processing rates for 𝑛-Queens problems with 𝑛 = 14-17 are shown in
Figure 2.8. For this problem, the IVM-based algorithm spends less than 1/3 of the total
execution time for the evaluation of subproblems. Therefore, the management of the
work pool, including selection, branching and pruning of subproblem, is critical. As one

73

can see in Figure 2.8 the IVM-based algorithm outperforms its LL-based counterpart by
at least a factor 3×.

2.5.2 GPU-acceleration of the bounding operator

The GPU-accelerated multi-core algorithm presented in Subsection 2.4 requires tuning of
the number of B&B processes handled per CPU thread (𝑀), i.e. the size of the offloaded
pool. An ad-hoc value can be determined as follows. For 32 CPU-threads and 4 available
GPUs (GTX980) the maximum number of resident GPU-threads in the system is

4 GPU × 16 SM/GPU × 2048 threads/SM = 131 072 threads.

Supposing that 𝑛 nodes are evaluated per average node decomposition 3, for a 20-job in-
stance, setting 𝑀 ≥ 131 072

20×32 ≈ 200 should be a good configuration for 𝑀. Figure 2.9 shows
the elapsed walltime for solving instance Ta028 using the LL and IVM-based algorithms
with different values for 𝑀. According to this figure, for all following experiments using
GMC-B&B, the number of IVM (resp. LL) per thread is set to 𝑀 = 600.

GPU-accelerated B&B : Ta028

se
co

nd
s

0

5

10

15

20

M (#IVM/LL per thread)
0 200 400 600 800 1,000

IVM
LL

Figure 2.9: Calibration of parameter 𝑀 (B&B processes handled by each thread. FSP instance:
𝑇𝑎028, 32 threads, 4 GPUs, random-1/2 (IVM) and random-1 (LL) work stealing strategies.

In Figure 2.10 the performance of the IVM-based GMC-B&B is evaluated and com-
pared to its LL-based counterpart. On the x-Axis, Figure 2.10 shows the node processing
rates achieved by the IVM-based GMC-B&B for FSP instances Ta021-Ta030 and several
QAP instances. On the y-Axis it shows the ratio between the execution time of the

3. The analysis of the sequential algorithm in Subsection 1.6.4 shows that this is a realistic estimate for
FSP, if the generation of two candidate children sets begin and end is taken into account.

74 Chapter 2. IVM-based B&B for multi-/many-core systems

IVM-based algorithm and its LL-based counterpart (𝑇𝐿𝐿/𝑇𝐼𝑉𝑀, which is equivalent to the
ratio between node processing rates). In order to improve the readability of Figure 2.10
it contains an inlet, zooming on the lower left part of the Figure.

One can make several observations. First, one can notice a correlation between the
node processing rate and the ratio 𝑇𝐿𝐿/𝑇𝐼𝑉𝑀. As previously shown by comparing the
non-accelerated MC-B&B for FSP, QAP and 𝑛-Queens, this ratio increases with the node
processing rate. Again, this is due to the fact that the algorithm spends less time in the
bounding operation and more in managing the pool of subproblems.

For the FSP, node processing rates between 0.9 and 1.5 Mn/s are attained. This is
22-37× higher than the average attained by the 32-threaded MC-B&B. For the FSP, the
IVM-based algorithm is on average 1.37× faster than its LL-based counterpart.

One can also notice, that the acceleration for instance Ta030 is less efficient than for
the other FSP instances. While the multi-core processing speed for Ta030 is equivalent to
that of other instances (see Figure 2.7a), it is about 1.5× lower for the GPU-accelerated
algorithm. This is due to the relatively small size of the explored B&B-tree (1.6×106 nodes).
The resolution of Ta030 lasts about 15 minutes using a sequential algorithm and 41
seconds using 32 threads on 16 CPU-cores for a speedup of almost 22×. Using the GPU-
accelerated multi-core B&B, Ta030 is solved in 1.8 seconds, i. e. about 500× faster than
the sequential resolution. For such a short execution time, the ramp-up and shut-down
phases can not be neglected. In fact, the algorithm terminates before the load balancing
mechanism can efficiently distribute the search space among all 32 × 600 = 19 200 IVMs.

Furthermore, one can observe that the node processing rates for most QAP instances
(except the esc class) are lower than the ones for the FSP instances. We recall that for
the non-accelerated MC-B&B it is the contrary (cf. Figure 2.7). This indicates that the
GPU-acceleration of the QAP bounding operator is much less efficient than for the FSP.
Indeed, compared to the 32-threaded multi-core B&B the acceleration factors for the
QAP range from 6 to 10× (instead of 22 to 37× for FSP).

For the 𝑛-Queens problem it does not make sense to offload the computation of
bounds, which consumes only 1/3 of the total execution time (for IVM). Besides the fact
that one could not expect more than 1.5× speedup, the cost of copying subproblems to
the device is most likely larger than the very low evaluation cost.

2.5.3 Evaluation of Work Stealing Strategies

MC-B&B: Table 2.1 compares the five work stealing strategies, honest-1/2, random-1/2,
largest-1/2, ring-1/2 and ring-1/T for the IVM-based MC-B&B (without GPU-acceleration).
FSP instance Ta030, QAP instance nug16a and the 16-Queens problem are used as test-

75

had18

nug17

chr20c

nug18

scr20

tai17a

ta021
ta022 ta024

ta025

ta026
ta027ta028

ta029

ta030

ta023

1.1

1.2

1.3

1.4

1.5

500.0k 1.0M 1.5M

esc16c

esc16e
esc16g

esc16a

GPU-accelerated multi-core (32 + 4)

ra
tio

 IV
M

/L
L

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

Processing rate (nodes/sec)
0 1M 2M 3M 4M 5M 6M

FSP 20x20
QAP

Figure 2.10: Node processing rates for IVM-based GPU-accelerated MC-B&B and ratio with
LL-based counterparts (32 threads on 2×E5-2630v3 + 4×GTX980, 𝑀 = 600 pools per thread).
Notice that a zoom on the lower left corner is shown.

cases. In Table 2.1 the column on the left indicates the instance being solved, the number
of decomposed nodes (i. e. the size of the critical tree), as well as the measured sequential
execution time and processing speed (in kn/s). All reported results are averages obtained
from 5 independent executions. In order to evaluate the scalability of the proposed work
stealing approach up to 32 threads, results are reported for 16 and 32 threads. The goal
is also to verify whether the proposed multi-core B&B algorithm can take benefit from
the CPUs hyper-threading capabilities.

Three metrics are considered to evaluate the efficiency of the work stealing strategies.

• The speedup compared to a sequential execution using a single thread on the same
system, computed as 𝑇1

𝑇𝑝
where 𝑇𝑝 designates the parallel execution time using 𝑝

threads.

• The cumulated time (over all threads) that is spent waiting for new work. For each
work stealing operation this timer starts before the victim receives a request and
stops after the request is answered or the algorithm terminates. Therefore, the total
waiting time also gives an upper bound on the time spent by all threads to answer
requests.

• The relative load imbalance (RLI) metric [SG97] is computed as follows:

𝑅𝐿𝐼 =
𝑊𝑚𝑎𝑥 − 𝑊𝑡𝑜𝑡

𝑝

𝑊𝑚𝑎𝑥
= 1 −

𝑊𝑡𝑜𝑡
𝑝𝑊𝑚𝑎𝑥

,

76 Chapter 2. IVM-based B&B for multi-/many-core systems

where 𝑊𝑡𝑜𝑡 = ∑ 𝑊𝑖, 𝑊𝑚𝑎𝑥 = max 𝑊𝑖 with 𝑊𝑖 the number of nodes decomposed
by thread 𝑖, and 𝑝 the number of threads. It should be noted that the number
of decomposed nodes is an imprecise measure for the amount of ”useful work”
because nodes require a variable amount of time for evaluation. However, if we
suppose that threads spend, on average, an equivalent amount of time per node
evaluation, this should metric should still be a valid indicator for comparing the
achieved load balance. A value of 𝑅𝐿𝐼 = 0 means that all threads have decomposed
exactly the same amount of nodes, i.e. 𝑊𝑚𝑎𝑥 = 𝑊𝑖 = 𝑊𝑡𝑜𝑡/𝑝. Supposing that the
most heavily loaded thread performs twice as many node decompositions as the
average, the value of RLI is equal to 0.5. If one thread does all the work, then RLI
equals its maximum value 1 − 1

𝑝 .

From Table 2.1, one can observe that - in most configurations - the ring-1/2 and
ring-1/T strategies are both clearly inferior to the three other strategies. An exception
is the application of the algorithm to the FSP test-case using 16 threads. In that case,
using ring-1/T allows to also reach near-linear speedup and good load balance. However,
using 32 threads, the same strategy achieves only 20.5× speedup compared to 22.4× using
honest-1/2, random-1/2 or largest-1/2. For all test-cases one can observe that the performance
of the ring-1/T strategy degrades when using 32 instead of 16 threads. Indeed, when
increasing the number of threads from 16 to 32, the cumulative waiting time and load
imbalance increase dramatically for both ring strategies. This indicates that the scalability
of ring selection policy is limited. For all test-cases the 1/T granularity policy is clearly
better suited for the ring topology than the 1/2 granularity.

A comparison of the three better-suited work stealing strategies, honest-1/2, random-1/2
and largest-1/2, shows that they perform similarly for the FSP and QAP test cases. Using 16
threads, the three strategies achieve near-linear speedup ratios of 14.8× to 15.7×. Using 32
threads, the exploitation of hyperthreading capabilities allows to speed up the execution
by an additional 25% for 𝑛-Queens and 40% for the FSP.

Differences between these three strategies become apparent for the fine-grained
16-Queens problem. Using the largest strategy and 16 threads, a speedup of 13.4× is
reached, compared to 15.2× using the honest strategy. The relatively poor performance
of the largest strategy is observed despite low waiting times and good load balance
according to the RLI metric. This is most likely due to the higher computational overhead
of the largest selection policy, which becomes significant compared to the very low node
evaluation cost. It also appears that the honest victim selection policy is particularly well
adapted to the 𝑛-Queens problem. Indeed, for all strategies one can observe that the
achieved speedup decreases as the granularity (cost of evaluating one node) becomes

77

finer, except for the honest-1/2 strategy.

GMC-B&B: Table 2.2 reports the experimental results obtained for the GPU-accelerated
MC-B&B using the five adapted work stealing strategies. For all experimentations 32
threads are used. Each thread has its own CUDA stream and threads are mapped to
GPUs in round-robin fashion. No particular measures are taken to control the affinity of
threads to cores, in particular with respect to NUMA effects.

As explained, offloading the node evaluation for the 𝑛-Queens problem is not envi-
sioned because it consumes less than half of the algorithms total execution time. For the
FSP results are reported as averages over three groups, small, medium and large, as shown
in the first column of Table 2.2. The objective is to analyze how the total workload (tree
size) impacts the considered metrics. Three QAP instances are selected: scr20, nug18
and esc16a. For the first two instances, scr20 and nug18, B&B develops a critical tree of
almost the same size, about 25×106 nodes. For the third QAP instance, esc16c, the critical

Table 2.1: Comparison of work stealing strategies for MC-B&B using 𝑝 = 16, 32 threads
(2×E5-2630v3). RLI = relative load imbalance = 1 − 𝑊𝑡𝑜𝑡/𝑝𝑊𝑚𝑎𝑥

instance 𝑝 honest-1/2 random-1/2 largest-1/2 ring-1/2 ring-1/T

𝑇𝑎030
nodes:
1.6 M nodes
sequential:
899 sec
1.8 kn/s

𝑇1/𝑇𝑝
16 15.7 15.6 15.4 10.0 15.6
32 22.4 22.4 22.4 10.3 20.5

Elapsed (sec) 16 57.4 57.5 58.4 89.6 57.6
32 40.2 40.1 40.1 87.5 43.9

Wait (sec) 16 0.3 0.6 0.9 470 3.5
32 1.3 0.7 0.2 1 915 187

RLI
16 0.09 0.09 0.10 0.33 0.08
32 0.10 0.10 0.12 0.67 0.18

𝑛𝑢𝑔16𝑎
nodes:
0.84 M nodes
sequential
103 sec
8.2 kn/s

𝑇1/𝑇𝑝
16 14.9 14.8 14.8 8.3 14.6
32 19.7 19.8 19.7 7.3 17.4

Elapsed (sec) 16 6.9 7.0 7.0 12.7 7.1
32 5.2 5.2 5.2 14.6 5.9

Wait (sec) 16 0.07 0.04 0.05 96 2.5
32 0.33 0.32 0.30 360 41

RLI
16 0.14 0.16 0.18 0.53 0.21
32 0.17 0.19 0.21 0.79 0.43

16-Queens
nodes:
1.1 G nodes
sequential:
489 sec
2216 kn/s

𝑇1/𝑇𝑝
16 15.2 13.1 13.4 3.2 8.7
32 17.0 16.8 16.0 3.0 10.8

Elapsed (sec) 16 32.1 37.4 36.7 172.7 57.3
32 28.8 29.1 30.6 183.2 46.7

Wait (sec) 16 5.7 75.4 8.6 2 260 368
32 5.3 67.6 12.1 5 355 871

RLI
16 0.04 0.16 0.08 0.80 0.40
32 0.02 0.10 0.02 0.89 0.59

78 Chapter 2. IVM-based B&B for multi-/many-core systems

tree is more than 14 times larger (356×106 nodes) but its processing requires (for most
work stealing strategies) an execution time equivalent to the one of scr20. In other words,
compared to scr20 the node processing speed for esc16c is approximately 14 times higher.

Table 2.2 does not show acceleration factors compared to either a sequential CPU
execution or a single-threaded GPU-accelerated execution. The reason is that these
numbers would not be very meaningful, considering that the presence of idle threads
frees GPU-resources for active threads, and improves the processing speed of the latter.
In all experiments the number of IVMs per thread is fixed to 𝑀 = 600 according to
Figure 2.9. Using a lower value for 𝑀 does not improve the overall execution time, but it
improves the acceleration compared to using a single CPU-thread with GPU-acceleration,
as it reduces competition among threads for shared GPU resources. Instead, Table 2.2
shows the achieved node processing rate (in Mn/s).

As for the MC-B&B algorithm, the two ring-based strategies are clearly outperformed
by the honest-1/2, random-1/2 and largest-1/2 strategies among which only marginal differ-
ences are observed. For instance, one can notice that largest-1/2 allows to reach about 10%
higher node processing rate when solving small FSP instances. Solving medium-sized,
respectively large-sized FSP instances the three better performing strategies all allow to
reach an average processing rate of 1.33 Mn/s, respectively 1.42 Mn/s.

Again, the ring strategy yields better results with the 1/T granularity policy than
with the 1/2 granularity policy. The results reported in Table 2.2 are obtained on a
4-GPU system composed of 4 Maxwell GTX980 devices. In [GLM+16] we performed
similar experiments using a single Kepler K20m device. While the results reported
therein are qualitatively the same, the performance gap between the ring-1/T and the
better work stealing strategies is narrower. This is due to the fact that the algorithm
presented in [GLM+16] uses the interval-splitting procedure which generates more
computational overhead, but allow a finer control of the stealing granularity - as discussed
in Subsection 2.2.4. Using the subtree-based interval splitting procedure, control of the
work stealing granularity is too coarse to make the ring strategy work efficiently.

2.5.4 Performance evaluation on Intel Xeon Phi

To evaluate the vectorization of the FSP bounding function we compare the time spent
for the resolution of instance Ta030 using different compiler options. Table 2.3 shows
the time required for solving Ta030 using (1) the original version of the bounding func-
tion (Algorithm 3), (2) the modified bounding function (Algorithm 4) with disabled
vectorization (-no-vec), (3) the modified bounding function with enabled vectorization
(-xHost).

79

Table 2.2: Comparison of work stealing strategies for GPU-accelerated MC-B&B using 𝑝 = 16, 32
threads (2×E5-2630v3 + 4 GTX980). RLI = relative load imbalance = 1 − 𝑊𝑡𝑜𝑡/𝑝𝑊𝑚𝑎𝑥

instance honest1/2 random1/2 largest1/2 ring1/2 ring1/T

Ta028, 029, 030
Avg: 5.5×106 nodes

Mn/s 1.09 1.14 1.23 0.63 0.91
Wait (sec) 5.5 3.4 2.7 207 105
RLI 0.36 0.37 0.21 0.91 0.78

Ta021, 022, 024, 025
Avg: 36.2×106 nodes

Mn/s 1.33 1.33 1.34 0.87 1.10
Wait (sec) 7.4 4.3 4.2 988 531
RLI 0.10 0.12 0.05 0.86 0.72

Ta023, 026, 027
Avg: 89.8×106 nodes

Mn/s 1.44 1.42 1.42 0.94 1.21
Wait (sec) 8.2 4.1 4.5 2 185 1 055
RLI 0.07 0.07 0.03 0.86 0.70

scr20
25.3×106 nodes

Mn/s 0.37 0.38 0.38 0.31 0.35
Wait (sec) 34.2 8.8 10.0 1 975 888
RLI 0.12 0.08 0.05 0.85 0.61

nug18
25.0×106 nodes

Mn/s 0.64 0.64 0.64 0.52 0.58
Wait (sec) 16.3 7.7 7.0 1 160 588
RLI 0.11 0.10 0.06 0.85 0.66

esc16c
356.1×106 nodes

Mn/s 5.35 5.47 5.68 2.87 4.09
Wait (sec) 3.2 2.3 3.2 2 835 1 156
RLI 0.02 0.06 0.03 0.84 0.60

All experiments are performed with the maximum number of available hardware
threads, i.e. 32 threads on the dual-socket Xeon system and 240 threads on Xeon Phi
5110P. The random-1/2 strategy is used. The compiler is Intel icc, version 17.0.

As shown in Table 2.3, when vectorization support is disabled, the original version of
the FSP bounding function is faster than the new one. On Xeon Phi the proposed imple-
mentation of the bounding operator is even more than twice as slow when vectorization
support is disabled. This can be explained by the increased memory requirements of the
revisited bounding operator. However, enabling AVX-256 vectorization, the revisited
implementation of the bounding function allows an improvement of +24.7% compared
to the initial version. On Xeon Phi the vectorization allows to an improvement of +42.3%
compared to the non-vectorized implementation of the bounding operator.

Table 2.3: Resolution time (in seconds) for FSP instance Ta030 using original non-vectorized (old),
proposed non-vectorized (new -no-vec) and proposed vectorized lower bounding procedure
(new -vect). Xeon: 2×E5-2630v3, Xeon Phi: 5110P. Compiler: Intel icc 17.0

old new -no-vec new -vect

2×Xeon (32 threads) 36.0 41.1 27.1
Xeon Phi (240 threads) 42.5 98.6 24.5

80 Chapter 2. IVM-based B&B for multi-/many-core systems

The second part of our experiments on Xeon Phi concern the scalability of MC-B&B.
As the experiments with up to 32 threads conducted in the previous subsection do not
reveal any significant performance differences between the random, largest and honest
work strategies, we verify whether they become more apparent for a larger number
of threads. For each of the three work stealing strategies FSP instance 𝑇𝑎030 is solved
using 1, 15, 30, 60, 120, 180 and 240 threads. The achieved parallel efficiency is shown
in Figure 2.11. Parallel efficiency is computed as 𝑇1

𝑝𝑇𝑝
, where 𝑝 designates the number

of threads (IVMs) and 𝑇𝑝 is the measured execution time using 𝑝 threads on Xeon Phi
5110P.

As one can see in Figure 2.11, the algorithm scales linearly up to 60 threads, which
equals the number of cores of Xeon Phi 5110P. For more than 60 threads, the parallel
efficiency decreases and drops to 0.44, for a speedup of 106× using 240 threads. Again,
no significant difference between the three work stealing strategies can be observed.
The same performance evaluation for QAP instances 𝑒𝑠𝑐16𝑎 and 𝑛𝑢𝑔18 leads to almost
identical results, i.e. linear scalability up to 60 threads and 0.44 efficiency for 240 threads.
For the sake of readability those results are not shown in Figure 2.11.

106x
101x

89x

59x29.6x14.8x

Parallel efficiency on Xeon Phi 5110P : Ta030

T 1
/p

T p

0

0.5

1

#threads
0 60 120 180 240

largest-1/2
honest-1/2
random-1/2

Figure 2.11: Parallel efficiency (𝑇1
𝑝𝑇𝑝

) obtained for work stealing strategies oldest, random and largest
solving FSP instance Ta030 on Intel Xeon Phi 5110P. For QAP instances nug18 and esc16a almost
identical results are obtained. The labels show the parallel speedup 𝑇1/𝑇𝑝 (𝑇𝑝: execution time
using 𝑝 threads on Xeon Phi 5110P, 𝑇1 = 2 607 sec). Average over 5 runs.

Figure 2.12 shows the parallel efficiency obtained when solving 15-Queens on Xeon
Phi using up to 240 threads. In contrast to the FSP and QAP problems, efficiency is
lower than 1 even for less than 60 threads and the three work stealing strategies behave
differently. In accordance with the results reported earlier in Table 2.1, best efficiency is
obtained when using the honest-1/2 strategy. Using 60 threads, for this strategy a speedup
of 53× is observed, against 48× for largest-1/2 and 45× for random-1/2. Using 240 threads,
each of the three strategies allows to reach a speedup of 80× for 0.33 efficiency.

81

13x 26x 53x

59x
66x

71x
73x 80x 80x

Parallel Efficiency on Xeon Phi 5110P: 15-Queens

T 1
/p

T p

0

0.5

1

#threads
0 60 120 180 240

largest-1/2
honest-1/2
random-1/2

Figure 2.12: Parallel efficiency (𝑇1
𝑝𝑇𝑝

) for work stealing strategies oldest-1/2, random-1/2 and largest-1/2

for 15-Queens. The labels show the parallel speedup 𝑇1/𝑇𝑝 (𝑇𝑝: execution time using 𝑝 threads
on Xeon Phi 5110P, 𝑇1 = 735 sec). Average over 10 runs.

2.5.5 MC-B&B: performance on different multi-core CPUs

In this subsection we evaluate the performance of the IVM-based MC-B&B on different
multi-core processors and the many-core Xeon Phi 5110P processor. Only the random-1/2

strategy is considered. The goal of this subsection is to compare the performance reached
by MC-B&B on different multi-core architectures.

In Figure 2.13, the node processing rate (in kn/s) obtained for FSP instance Ta028 and
the following configurations is shown.

(1) 2×E5-2680v4 (Broadwell, 2 × 14 cores@2.4 GHz), not vectorized, gcc 5.4

(2) 2×E5-2630v3 (Haswell, 2 × 8 cores@2.4 GHz, AVX2), vectorized, Intel icc 17.0

(3) 2×E5-2630v3 (Haswell, 2 × 8 cores@2.4 GHz), not vectorized, gcc 5.4

(4) 2×Power8+ (2 × 10 cores@2.86 GHz, SMT8), not vectorized, IBM xlc++ 13.1

(5) 5110P Xeon Phi (60 cores@1.05 GHz, 512-bit SIMD) , vectorized, icc 17.0

More detailed hardware specifications are provided in Appendix A.3.
The fine dashed lines in Figure 2.13 show the respective linear speedups, based on

the node processing rate achieved on a single core. The left-hand side shows the three
Xeon CPU configurations and the right hand side shows the Xeon Phi and dual-Power8+
configurations. One can notice that near-linear speedup is achieved up to the number
of cores on all Xeon and Xeon Phi processors. In terms of single core performance, at
equal clock rates the configuration (1) performs slightly better than configuration (2),

82 Chapter 2. IVM-based B&B for multi-/many-core systems

Ta028
10

3 n
od

es
/s

ec

0

50

100

150

#threads
0 10 20 30 40 50 60

3
2
2
3
2
3
4
5
2
3

2x8-core Haswell, gcc, no-vec
2x8-core Haswell, icc, vect
2x14-core Broadwell, gcc, no-vec

Ta028

0

50

100

150

#threads
0 50 100 150 200 250

2xPower8, xlc++
Xeon Phi 5110P, icc -mmic

Figure 2.13: Node processing speed (in kn/s), solving FSP instance Ta028 (8 088 505 nodes).

even though the latter is vectorized. This indicates that the performance of MC-B&B
(applied to FSP) can benefit from larger caches (35 MB vs. 20 MB) in configuration (1).
Best overall performance is achieved in configuration (4) using 160 hardware threads.

2.6 Conclusions

In this chapter, we have revisited the design and implementation of B&B algorithms
for multi-core and many-integrated core (MIC) architectures. We have presented a
parallel multi-core B&B algorithm (MC-B&B) based on an innovative data structure,
called Integer-Vector-Matrix (IVM).

IVM is a compact data structure, dedicated to permutation problems, which allows
to store and manage the pool of subproblems more efficiently than conventional data
structures (e. g. stacks, deques, priority queues) referred to as linked-lists (LL). Existing
IVM-related works in the literature compare IVM-based and LL-based parallel B&B for
multi-core systems and show that IVM significantly reduces memory requirements and
pool management time. Also, previous works have shown that the work stealing mech-
anism using factoradic-based work units achieves good load balance while requiring less
inter-thread synchronization time than node-based work stealing mechanisms. However,
the IVM-based B&B algorithm has been only been applied to the FSP, for which pool
management amounts for barely 1% of the sequential execution time. Consequently,
using IVM instead of conventional data structures has not allowed a significant reduction
of the algorithm’s execution time. The following points summarize our contributions
presented in this chapter.

83

• A first contribution consists in revisiting and validating of the IVM data structure
by applying it to other permutation problems, showing experimentally that IVM-
based B&B algorithms can perform significantly better than LL-based ones. Namely,
in addition to FSP, we applied the IVM-based B&B to the QAP and the 𝑛-Queens
puzzle problem. An extensive experimental evaluation using these problems in
addition to FSP shows that the question whether a B&B application can benefit
from using IVM essentially depends on the granularity of the tackled problem, i.e.
the cost of evaluating a subproblem.

• We have proposed a hybrid GPU-accelerated version of the MC-B&B algorithm
(GMC-B&B). GMC-B&B accelerates the bounding operations performed by each
thread by offloading the computation of lower bounds to the GPU. Using the FSP as
a test-case, we show that even when the sequential execution time of B&B is strongly
dominated by the evaluation of subproblems, an efficient implementation of the
pool management can become important. Indeed, for the FSP the cost of evaluating
subproblems can be reduced dramatically by offloading this computation to GPUs,
increasing the relative importance of handling the subproblems and thus the
benefits of using IVM.

• As the performance of accelerator devices like Intel Xeon Phi heavily relies on
512-bit wide vector processing units, the bounding operator for the FSP is revisited
and an efficient vectorization mechanism is proposed.

• Besides increasing per-thread performance through the use of many-core accel-
erators, the focus of this chapter is put on maximizing parallel efficiency by the
means of efficient load balancing mechanisms. In the IVM-based approach, work
units exchanged between threads are intervals of factoradics instead of sets of
nodes. For the MC-B&B and its GPU-accelerated extension GMC-B&B five work
stealing strategies are presented. These factoradic-based work stealing schemes
are characterized by different victim selection and granularity policies. For all
three test-cases, QAP, FSP and 𝑛-Queens the work stealing strategies are evaluated
experimentally, with and without GPU-acceleration and at different scales.

A summary of the main experimental results is given in the following.

• For FSP and QAP, MC-B&B scales linearly almost linearly on up to 28 threads
on dual-socket multi-core CPU systems and up to 60 threads on Xeon Phi. Fur-
thermore, the MC-B&B takes good benefit from hyperthreading/SMT capabilities:

84 Chapter 2. IVM-based B&B for multi-/many-core systems

on Intel Xeon processors improvement rates of about 30% are observed. On 20
IBM Power8+ cores MC-B&B reaches speedups of 50× and more, exploiting 8-way
simultaneous multithreading.

• For the very fine-grained 𝑛-Queens problem, the IVM-based MC-B&B algorithm
allows to explore 3 times as many nodes per second as its linked-list (LL) based
counterpart. Solving more coarse-grained problems like FSP or QAP, less than
+10% improvement is observed. For the GMC-B&B algorithm significant improve-
ments ranging from 1.2× to 2.5× are observed even for these problems.

• The GPU-acceleration considerably speeds up the exploration process. For FSP,
GMC-B&B achieves 30-40 times higher node processing rates than MC-B&B without
GPU-acceleration. The lower bounding procedure for QAP is less suited for parallel
evaluation on the GPU, with acceleration factors between 6× and 10×.

• The vectorized version of the FSP lower bounding procedure is about 1.3× faster
than the non-vectorized version using 256-bit AVX2 vector instructions, respectively
1.7× using 512-bit vector instructions on Intel Xeon Phi. This relatively low gain
from vectorization can be explained, at least partly, by a highly irregular, thus
inefficient memory access pattern in the bounding function.

Chapter 3

GPU-centric Branch-and-Bound

Contents
3.1 Introduction . 87

3.2 Discussion of design choices . 88

3.3 GPU-B&B and GPU-backtracking . 92

3.3.1 GPU-B&B: 2-level parallelization . 92

3.3.2 Thread-data mapping and branch divergence reduction 97

3.3.3 GPU-BT: 1-level parallelization . 101

3.4 Work stealing strategies for GPU-B&B . 103

3.4.1 Victim Selection policies . 103

3.4.2 Work stealing for multi-GPU-B&B . 107

3.5 Experiments . 108

3.5.1 Evaluation of Mapping approaches . 108

3.5.2 Evaluation of Work Stealing strategies . 112

3.5.3 Scalability analysis . 114

3.5.4 Multi-GPU-B&B performance evaluation 118

3.5.5 Hybrid CPU-multi-GPU-B&B . 123

3.6 Conclusions . 125

85

86 Chapter 3. GPU-centric Branch-and-Bound

Related publications
• Gmys Jan, Mezmaz Mohand, Melab Nouredine, Tuyttens Daniel, “IVM-based

Work Stealing for Parallel Branch-and-Bound on GPU” in Parallel Processing and
Applied Mathematics (PPAM’15). Lecture Notes in Computer Science, 9573, 548-558
(2016), https://doi.org/10.1007/978-3-319-32149-3_51 [Best Paper Award in
workshop on GPU computing at PPAM’15]

• Gmys Jan, Mezmaz Mohand, Melab Nouredine, Tuyttens Daniel, “IVM-Based
parallel branch-and-bound using hierarchical work stealing on multi-GPU systems”
in Concurrency & Computation : Practice & Experience, (Special Edition PPAM’15)
(2016), 29(9), https://doi.org/10.1002/cpe.4019.

• Gmys Jan, Mezmaz Mohand, Melab Nouredine, Tuyttens Daniel,“A GPU-based
Branch-and Bound algorithm using Integer-Vector-Matrix data structure”, In Parallel
Computing, (Special Issue: Theory and Practice of Irregular Applications), Vol. 59, 2016,
p. 119-139, ISSN 0167-8191, https://doi.org/10.1016/j.parco.2016.01.008.

• Pessoa Tiago Carneiro, Gmys Jan, Melab Nouredine, de Carvalho Junior Fransisco
Heron, Tuyttens Daniel, “A GPU-based Backtracking Algorithm for Permutation
Combinatorial Problems” in International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP’16). Lecture Notes in Computer Science, 10048, 310-324
(2016), https://doi.org/10.1007/978-3-319-49583-5_24

https://doi.org/10.1007/978-3-319-32149-3_51
https://doi.org/10.1002/cpe.4019
https://doi.org/10.1016/j.parco.2016.01.008.
https://doi.org/10.1007/978-3-319-49583-5_24

87

3.1 Introduction

In this chapter the B&B algorithm is revisited for GPUs. In contrast to the previously
presented GPU-accelerated algorithm, this chapter deals with a GPU-centric implement-
ation of B&B, meaning that it completely bypasses the CPU. To the best of our knowledge,
the IVM-based GPU-B&B algorithm presented in this chapter is the first to perform
all four B&B operators on the device. The key to achieving this is to use the IVM data
structure for pool management, which is much better suited for GPUs than dynamic
linked-list data structures.

Section 3.2 motivates fundamental design choices for the proposed implementation,
taking alternative designs into account and considering hardware characteristics as well
as memory requirements for the three test-cases, FSP, QAP and 𝑛-Queens. In Section 3.3
a detailed description of the implementation is provided, considering different mappings
of the algorithm. Two variants of the GPU-centric algorithm are proposed, both based
on the parallel tree exploration model. In addition to parallel tree exploration, the first
variant uses a second level of parallelism, where generated nodes are evaluated in parallel.
The second variant is designed for fine-grained problems where the addition of a second
level is inefficient, using the parallel tree exploration model alone. Challenges addressed
in this section include the reduction of thread divergence which results from control
flow irregularities and the placement of data in the hierarchical GPU memory.

A central issue for both variants of GPU-B&B is the implementation of load balancing
mechanisms on the device. Section 3.4 presents five work stealing strategies for the
GPU-centric B&B. We propose a GPU-based trigger-mechanism which adapts these
work stealing strategies to the 1-level GPU-B&B variant for fine-grained problems. Fur-
thermore, in order to enable GPU-B&B to exploit multi-GPU systems an hierarchical
work stealing approach is proposed for inter-GPU load balancing. An approach for load
balancing in a hybridized version combining MC-B&B and GPU-B&B is presented.

Finally, in Section 3.5 the GPU-centric B&B is experimented, using the FSP, QAP
and 𝑛-Queens problems as test-cases. The experimental study includes an evaluation of
different mapping choices, a comparison of work stealing strategies and an analysis of
scalability and stability. The performance of multi-GPU-B&B and its hybridization with
MC-B&B is also evaluated.

88 Chapter 3. GPU-centric Branch-and-Bound

3.2 Discussion of design choices

In the previous chapter we presented a GPU-accelerated approach for the MC-B&B
algorithm, where the parallel evaluation of lower bounds is offloaded to the GPU. In
order to reduce the amount of data transferred to the device only parent nodes are
offloaded and branching is performed on the device. Is such approaches it is challenging
to find an optimal value for the size of the offloaded pool (i.e. the number of IVMs per
thread), because it requires finding a compromise between GPU occupancy and host-
device communication overhead. To solve this problem, [Cha13] propose an auto-tuning
heuristic which automatically adjusts the size of the offloaded pool at runtime. Similar to
our approach presented in the previous chapter, [VDM13] use streams and asynchronous
copies to overlap pool management and GPU-based bounding. However, the efficiency of
these approaches also depends on the problem being solved, in particular on the amount
of work performed per transferred piece of data. Indeed, in order to hide communication
overhead and overlap sequential host processing with parallel node evaluations, the
offloaded workload must be large enough. An alternative is the implementation of
the entire algorithm on the device. This eliminates all CPU-GPU communication and
reduces the sequential portion of the algorithm to initialization and output. Especially
problems with less costly a node evaluation functions, like 𝑛-Queens, could benefit from
such an implementation.

One of the key features of IVM is its constant memory footprint. As dynamic memory
allocations in device-code are known to perform very poorly, this makes IVM much more
suitable to GPU than LL data structures. The basic idea is to allocate a fixed number (𝑇) of
IVM structures and all data required for bounding in device memory before starting the
exploration process. Then, the 𝑇 IVMs are used to explore the interval [0, 𝑛![in parallel,
without requiring any further allocations or host-device data transfers. In the following
we analyze memory requirements of the IVM-based B&B and provide further motivation
of fundamental design choices.

Memory requirements

The dynamic allocation of memory on the GPU heap is possible, but the efficient and
scalable implementation of SIMD-parallel memory allocators is still an active field of
research [VH15; WWWG13]. Moreover, using LL-based data structures there is a risk that
the size of the work pool(s) exceeds the size of available global memory. Assuming that
nodes are encoded using 1-byte integers, the size of a node is at least 𝑛 bytes. The work
pool of one DFS-B&B process may contain up to 𝑛×(𝑛−1)

2 nodes, which amounts to 𝑛3−𝑛2

2

89

bytes, i.e. ∼500 kB for a problem of size 𝑛 = 100. Using parallel tree exploration, this
number has to be multiplied by the number of independent B&B processes. Assuming
that this number equals the number of maximal concurrent threads on a GTX980 GPU,
a LL-based parallel B&B algorithm would require up to ∼ 32 000× 500 kB=16 GB of
memory, which exceeds the 6 GB of on-board memory.

In contrast to LL data structures, IVM needs only one allocation of contiguous memory.
For a problem instance with 𝑛 jobs, the storage of the matrix requires 𝑛2 bytes of memory
(for 𝑛 < 127, using 1-byte integers). Moreover, 3𝑛 bytes are needed to store the position-,
end- and direction-vectors, 1 byte to store the integer and 𝑛 bytes to store permutations
before calling the bounding operator. In total, the IVM data structure requires a constant
amount of 1 + 4𝑛 + 𝑛2 bytes of memory, i. e. 10.4 kB per IVM for 𝑛 = 100 and 332 MB for
32 000 IVMs .

It is also possible to store only the upper triangular part of the matrix, requiring
1 + 4𝑛 + 𝑛(𝑛+1)

2 bytes per IVM. However, this is only beneficial if this allows storing the
IVM structures in shared or global memory where they would otherwise not fit in. Also,
using 1-byte instead of 4-byte integers is an unnecessary optimization unless it allows to
fit some data structures in shared memory. The kernels and device functions presented
in the following sections are templated and can be instantiated for different integer types.

From a programming perspective the IVM-structures are easy to handle. The com-
ponents of all IVMs are merged into single, one-dimensional arrays. In other words, a
structure-of-arrays (SoA) layout is used, in constrast to the multi-core implementation
which uses AoS. For instance, solving a 𝑛-job instance using 𝑇 IVM structures, the matrices
are stored in a one-dimensional array matrices of size 𝑇 × 𝑛2, allocated in global device
memory. The element 𝑀(𝑖, 𝑗) of the k𝑡ℎ IVM is accessed by matrices[indexM(i,j,k)],
where indexM is a wrapper-function defined as in Equation (3.1).

𝑖𝑛𝑑𝑒𝑥𝑀(𝑖, 𝑗, 𝑘) = 𝑘 × 𝑛 × 𝑛 + 𝑖 × 𝑛 + 𝑗 (3.1)

For many problems, like the FSP and QAP, some read-only arrays are needed for the
computation of lower bounds. Depending on the problem and the problem size, this
read-only data may be stored in the GPUs constant memory space – residing in global
device memory but accessed through a cache on each streaming multiprocessor. The
amount of memory required for the bounding operation, depending on the problem, is
shown in Table A.2. Some of the data structures used for the bounding may be loaded
to shared memory during the computation of the lower bounds. For the FSP, the issue
of finding the best placement of data structures in the hierarchical GPU memory is

90 Chapter 3. GPU-centric Branch-and-Bound

addressed in [Cha13].
The amount of shared memory used per block can be allocated at kernel launch-

time. In contrast, the size and type of arrays residing in constant memory must be
known at compile-time. Therefore, in order to use constant memory for the bounding
data structures, it is unfortunately necessary to create different executables for different
problems/problem sizes.

Parallelization model

The parallel tree exploration model is used because of its potentially very high degree of
parallelism. The question remains whether the subproblems generated by each IVM at
each iteration are evaluated sequentially or in parallel.

Nesting the parallel evaluation of bounds model in the parallel tree exploration
yields a finer granularity during the bounding phase. As each IVM generates a different
number of subproblems at each iteration, this is likely to produce a more regular work
load. It also increases the degree of parallelism, meaning that less IVMs are needed
to reach sufficient GPU occupancy. For instance, the maximum number of concurrent
threads on the GTX980 GPU is 32 768 (16 SM×max. 64 warps/SM×32 threads/warp).
Although in some cases higher performance can be reached at lower occupancy [Vol16],
at least 25 − 50% GPU occupancy should be achieved. Therefore, using the parallel tree
exploration model alone, at least 𝑇 = 10 000 IVMs should be used. On the other hand, if
generated subproblems are evaluated in parallel and if each IVM generates on average
10 subproblems per iteration, then 𝑇 = 1 000 IVMs are enough to reach the same level of
occupancy during the bounding operation. Keeping the number of IVM structures low
also facilitates load balancing.

However, the two-level parallelization can only be beneficial if the node evaluation is
at least costly enough to hide the overhead incurred by the second level. Therefore, two
variants of GPU-B&B are proposed:

• GPU-B&B : using a two-level parallelization model, designed for costly bounding
functions, like the ones used for FSP and QAP.

• GPU-BT : using the parallel tree exploration model alone, designed for B&B with
cheap node evaluation functions, like 𝑛-Queens. We call this variant GPU-BT - for
GPU-backtracking - because DFS-B&B with very simple node evaluation functions
is also known as heuristic backtracking [RK93].

91

Global synchronization

Let’s assume for the moment that all four B&B operators can be efficiently implemented
on the device. Is it preferable to implement the entire algorithm in one monolithic kernel
or to have separate kernels for each operator? In other words : should the outer while-
loop of the B&B algorithm be placed inside a B&B kernel or should it be placed around
separate select, branch, bound and prune kernels?

There are strong arguments in favor of the monolithic solution, which corresponds to
the programming paradigm known as “Persistent Threads” (PT) programming [GSO12].
The idea of the PT programming style is to launch the maximum number of threads
that can be resident on the device and keep them alive throughout the entire applic-
ation. One advantage of this solution is that it avoids kernel launch overhead. The
asynchronous launching of an empty kernel is a very low-cost operation, in the order
of a few microseconds1, so the pure kernel launch overhead can be neglected for many
kernel workloads. However, for very fine-grained workloads kernel launch overhead
may become relevant. Moreover, the loading of data from global memory to shared
memory, registers and caches should be included in the kernel launch overhead, because
only global, constant, and texture memory spaces are persistent across kernel launches
by the same application. Indeed, the advantage of using a single B&B kernel is that
frequently used data structures need to be loaded from global memory only once and can
reside in registers, shared memory, L1 and L2 caches for the duration of the algorithm.

There are also arguments in favor of the multiple-kernel solution, or rather, against the
PT programming solution. We recall that the parallel tree exploration model requires load
balancing between independent B&B processes, each represented by one IVM2. There-
fore synchronization between arbitrary threads is necessary. In other words, a global
synchronization barrier is needed. Although CUDA does not natively provide inter-block
synchronization primitives, such barriers have been proposed in the literature [XF10].
The proposed GPU-synchronization primitive uses atomic compare-and-swap opera-
tions to construct a shared mutex barrier and avoid deadlocking by ensuring a one-to-one
mapping between SMs and the thread blocks – which corresponds to the paradigm of PT
programming. Indeed, if one thread block is pending because the other blocks occupy
all SMs, the resident blocks will wait on the barrier forever, because the pending block
has no chance of reaching it. Ensuring that a kernel never uses more blocks than can

1. https://www.cs.virginia.edu/~mwb7w/cuda_support/kernel_overhead.html (accessed: Oct 6,
2017)

2. In GPU-B&B, contrary to the multi-core algorithm, a B&B process does not necessarily correspond to
one thread, but rather to a distinct portion of data, namely an IVM structure. In the following, we designate
by “IVM” the data structure, as well as the logical independent B&B exploration process.

https://www.cs.virginia.edu/~mwb7w/cuda_support/kernel_overhead.html

92 Chapter 3. GPU-centric Branch-and-Bound

be concurrently scheduled on the device (called a maximal launch) may be difficult. As
occupancy is partially determined by register and shared memory usage, even a slight
code change may require changing the kernel configuration. Also, porting the code to a
different device may require readjusting the kernel configuration. Moreover, the register
usage of the bounding operators for QAP and FSP are quite high, limiting the maximal
launch configuration and the degree of concurrency.

For these reasons, we choose to avoid this solution, which leaves implicit synchroniza-
tion through kernel termination as the only possibility to achieve global synchronization.
Finally, breaking the algorithm into multiple kernels allows the individual optimization
of each operator: different mappings and memory layouts can be used for each operator,
without considering performance trade-offs between different parts of the algorithm.

To summarize, while the option of using a single monolithic B&B kernel is attractive,
it limits the flexibility of adapting the algorithm to different problems, makes it more
difficult to write portable code and may compromise other performance optimization
opportunities. Therefore, we decide to follow the classical CUDA programming model
where global synchronization is achieved through kernel termination.

3.3 GPU-B&B and GPU-backtracking

According to the discussion in Section 3.2, the B&B while-loop is placed around multiple
kernels which implement tree-exploration and load balancing phases. In this section
two variants of the exploration phase are presented. Subsection 3.3.1 presents the GPU-
B&B variant using a two-level approach combining the parallel tree exploration and the
parallel evaluation of bounds model. In Subsection 3.3.2 different mapping schemes for
GPU-B&B are presented. Subsection 3.3.3 presents the GPU-backtracking for fine-grained
permutation problems.

3.3.1 GPU-B&B: 2-level parallelization

At each point of the algorithm an IVM can be in one of three states: exploring, empty or
initializing. Figure 3.1 provides an overview of the GPU-B&B algorithm in the form of a
flowchart.

The algorithm starts by reading user-defined parameters (e. g. problem size (𝑛,
problem and instance to solve, number of used IVMs (𝑇)) and initializes all required
data structures on the GPU (e. g. IVM data structures, constant data used in bounding
operation). After the initialization, exploration and load balancing phases alternate until
the termination condition is met.

93

Figure 3.1: Flowchart of GPU-centric B&B algorithm.

The load balancing phase consists of victim selection and work transfer. In this phase,
IVMs in the empty state can switch to the initialization or exploring state 3.

The exploration phase consists of four kernels: goToNext , decode , bound and prune.
The selection and branching operators are merged into a goToNext kernel, which consists
in performing the next node decomposition for all non-empty IVMs. The kernel decode
reads the IVM structures and produces subproblems of the form 2/13/4 which can be
evaluated by the bounding operator. Kernels bound and prune implement the B&B
operators corresponding to their names.

Moreover, an auxiliary kernel prepareBound is used to build the mapping for the
bounding operation (explained later on in Subsection 3.3.2). In this phase, the best
solution found so far is determined by a min-reduce of the best solutions found by all
IVMs. In the same reduction procedure the termination of the algorithm is detected by

3. This depends on the initialization procedure that is used (see Subsection 2.2.4).

94 Chapter 3. GPU-centric Branch-and-Bound

searching the maximum of a per-IVM state variable where the empty state is encoded
as 0 and the two other states as 1. In order to stop iterating through the B&B loop this
information needs to be copied to the host at each iteration. Therefore, at the end of
each exploration phase a boolean variable indicating the end of the search is copied from
device to the host. In order to monitor the algorithm’s progress some counter variables,
like the number of active IVMs, are also copied to the host. In the following a detailed
description of these kernels is provided.

Selection and Branching kernel

The goToNext kernel corresponds to the selection and branching operators. Algorithm 5
shows the pseudo-code of this kernel. It performs the selection operator for both, ex-
ploring and initializing IVMs. It also updates the IVM-states if necessary. For each
exploring IVM it performs the select-and-branch procedure described in Chapter 2,
Algorithm 1. If an exploring IVM finds no promising node (Algorithm 5, Line 14), then
its state variable is set to empty. If the end of an IVM’s initialization process is detected
(Algorithm 5, Line 5) it switches to exploring. It is possible that, within one iteration, an
empty IVM receives an interval, finishes initializing and returns to the empty state.

As explained in Subsection 2.2.4, the initialization process differs from the normal
exploration process only in the selection operator. The initialization-selection consists in
choosing the node pointed by the position-vector. Thus, only the generate-next-line
branching procedure is performed by IVMs in the initializing state. Each IVM is handled
by a single thread, as the operations that modify each IVM structure are essentially
of sequential nature. This kernel contains a high number of conditional instructions
depending on the state of an IVM as well as on its current depth in the B&B tree. In order
to avoid thread divergence the mapping of threads onto the IVM structures (Algorithm 5,
Line 3) must be chosen carefully. This mapping is discussed in Subsection 3.3.2.

Bounding kernels

The bounding kernel is designed to work in combination with the polytomic branching
scheme described in Subsection 1.3.1. We recall that a parent node is decomposed in two
sets of children nodes, one obtained by fixing unscheduled jobs in the beginning, and
one by fixing them in the end. In the bounding kernel all generated children nodes in
both sets are evaluated, but only the set for which the average lower bound is higher
is retained. The set with the higher average lower bound is likely to develop smaller
subtrees as the pruning of branches is more likely to occur.

95

Algorithm 5 Kernel: goToNext
1: kernel goToNext
2: thdIdx ← blockIdx.x*blockDim.x + threadIdx.x
3: ivm← map(thdIdx) ▷ Map threads to IVMs
4: if (state[ivm]=init) then
5: if (init-finished(ivm)) then
6: state[ivm]← exploring
7: else
8: generate-next-line(ivm) ▷ branch
9: end if

10: end if
11: if (state[ivm]=exploring) then
12: select-and-branch(ivm) ▷ Alg. 1
13: if (exploration-finished(ivm)) then
14: state[ivm]← empty
15: end if
16: end if
17: end kernel

The computation of the lower bounds is performed by a device function computeLB.
This device function is a sequential implementation of the lower bounding procedure,
which returns a lower bound (LB) value for a subproblem provided in the form 2/13/4
(schedule= 2134, limit1= 0, limit2= 3). In principle any lower bounding procedure
can be used in place of computeLB.

Each thread is responsible for the computation of one bound. It is not necessary to
generate all subproblems before calling this kernel. Instead, a pointer to the father nodes
is passed as parameter to the kernel. Using a mapping policy, detailed in Subsection 3.3.2
each thread generates a distinct subproblem from the father node and computes its lower
bound. These lower bound values are stored and atomically added to the values sumBegin
and sumEnd, which are used to decide which decomposition is retained. For each father
subproblem of depth 𝐼, the lower bounds for 2 × (𝑛 − 𝐼) = 2 × (limit2 − limit1 − 1)
children are computed. The parent-children relation and the bounding procedure are
illustrated in Figure 3.2.

The number of active threads in the bounding kernel is therefore given by

2 × todo = 2 ×
𝑇

∑
𝑖𝑣𝑚=0
𝑖𝑣𝑚≠∅

(𝑛 − row[𝑖𝑣𝑚]) ≤ 2 × 𝑇 × 𝑛.

At a given iteration, this quantity depends unpredictably on the number of non-empty
IVMs and on their depth in the B&B tree. The maximum 2 × 𝑇 × 𝑛 occurs in the case
where all IVMs have non-empty intervals at level 0.

96 Chapter 3. GPU-centric Branch-and-Bound

begin end

2 3 41

limit 1 limit 2

unscheduled jobs

sum begin sum endbounddecode

6

1 2

IVM R-1

1 2

2 3 41 5 6

atomic

add

IVM subproblem

(father)

2

1 2 3 4 5 6

IVM R+1

2 3 41

IVM R

subproblems

(children)

lower bounds

map

1 Thread / IVM 2x(#jobs-line) threads / IVM

4 32 1

1 3 42

1 34 2

3 12 4

1 2 4 3

4 2 3 1

1 2 3 4

4

1 2 3 4

line

Figure 3.2: Illustration of the decode and bounding phases for GPU-B&B

Each thread that computes a lower bound must be provided the following information:
(1) on which IVM it is working, (2) which unscheduled job it is scheduling and (3) on what
end of the partial permutation to schedule. A static mapping of threads onto potentially
generated children nodes (thus launching 2×𝑇 × 𝑛 threads at each invocation) is possible.
As this mapping is critical for the performance of the bounding kernel, and thus for
the entire algorithm, a remapping phase should precede the calling of the bounding
kernel. Building such a mapping generates extra overhead which must be kept low. The
mapping and implementation details of the bounding kernel are further discussed in
Subsection 3.3.2.

Elimination kernel

In a first step the pruning kernel compares the values sumBegin and sumEnd for each IVM.
Depending on this comparison it uses the set of lower bounds costBegin or costEnd to
perform the pruning of nodes. Then the corresponding nodes, i. e. the cells in row 𝐼 of
the matrix, are sorted according to the corresponding lower bounds.

The sorting is performed sequentially. In this case, a simple, memory efficient sorting
procedure is needed. We compared the performance of different sorting algorithms
for small arrays of < 100 elements and found that “stupid sort” [Sar10] (also known
as “gnome sort”) is the best suited for this purpose. An important advantage of this
algorithm is that it requires only space for a single auxiliary variable.

97

After sorting, the pruning operation itself consists in multiplying the corresponding
cell in the matrix by −1 if the associated lower bound is greater than the best found
solution so far. This kernel is the computationally less intensive one.

3.3.2 Thread-data mapping and branch divergence reduction

Control flow refers to the order in which the instructions, statements or function calls are
executed in a program. This flow is determined by conditional and loop instructions, e. g.
while-do , switch-case , if-then-else. If the control flow of threads within the same warp
diverges, i. e. if they follow different execution paths, the execution of these threads is
serialized. This serialization of executions for threads in the same warp is called thread
divergence or branch divergence. The following piece of code is an example where branch
divergence is likely to occur:

if(state[threadIdx.x] == 1)
for(int i=0; i<line[threadIdx.x]; ++i)

foo(i);

The if-condition and the for-loop termination condition depend on values indexed
by the thread identifier threadIdx.x. Unless these values are identical for all threads
inside a warp, branch divergence occurs. Threads for which the if-condition evaluates to
false are disabled until their control flow re-converges with the other threads. Among
those threads who execute the for-loop, the iteration-count may vary and threads with
lower iteration-counts are disabled while the thread(s) with the highest count complete
the loop. The negative impact of thread divergence is difficult to quantify, because it
depends on the actual time spent in the diverging branches. For example, if one half of
a warp execute 100 iterations of the for-loop and the other half 101 the penalty is less
significant compared to the situation where the other half would execute only 1 iteration.
The example illustrates how thread divergence is related to the mapping of threads onto
data.

Compactified mapping for the bounding kernel

The most straightforward approach probably consists in mapping each thread onto a child
subproblem directly from its threadId. This naive approach is shown in Algorithm 6.

For instance, launching 2 × 𝑛 × 𝑇 threads (Line 1), the first 𝑛 × 𝑇 threads place
unscheduled jobs in the beginning, the second 𝑛 × 𝑇 threads in the end (𝑛 designates
the problem size and 𝑇 the number of IVM structures). Regardless of the IVM’s state

98 Chapter 3. GPU-centric Branch-and-Bound

or current depth in the tree, 2 × 𝑛 threads are reserved for each IVM. Each thread is
assigned an IVM to work on and a job to schedule, like shown in Line 3. The approach of
Algorithm 6 has several disadvantages. The if-conditionals in Line 5 and Line 6 mask
many of the launched threads, precisely 2 × 𝐼 threads per father subproblem of depth
𝐼, plus 2𝑛 threads per empty IVM. Moreover, different lanes in the same warp work on
different IVMs, thus thread divergence occurs due to different values of limit1 and
limit2. If 𝑇 × 𝑛 is a multiple of 32 (warp-size), then the if-else conditional (Line 7 and
Line 11) does not cause any thread divergence.

Algorithm 6 Kernel: static-bound
Input: parent nodes (schedule, limit1, limit2)
Output: lower bounds begin, lower bounds end, sums of lower bounds

1: kernel naive-bound(< 2 × 𝑛 × 𝑇 threads >)
2: thId←blockIdx.x*blockDim.x + threadIdx.x
3: ivm← (thId/2𝑛) job← (thId mod 𝑛) dir← (thId/2) ▷ static mapping
4: load: schedule𝑡ℎ𝑑 ← schedule[ivm]
5: if (state[ivm] ≠ empty) then ▷ for all non-empty IVM do:
6: if (limit1[ivm] < job < limit2[ivm]) then ▷ for all unscheduled jobs do:
7: if (dir == 0) then ▷ evaluate begin
8: swap(schedule𝑡ℎ𝑑[limit1[ivm]+1], schedule𝑡ℎ𝑑[job])
9: LB-begin[ivm][job]←computeLB(schedule𝑡ℎ𝑑)

10: sum-begin[ivm] += LB-begin[ivm][job] ▷ atomic add
11: else if (dir == 1) then ▷ evaluate end
12: swap(schedule𝑡ℎ𝑑[limit2[ivm]-1], schedule𝑡ℎ𝑑[job])
13: LB-end[ivm][job]←computeLB(schedule𝑡ℎ𝑑)
14: sum-end[ivm] += LB-end[ivm][job] ▷ atomic add
15: end if
16: end if
17: end if
18: end kernel

Algorithm 7 Kernel: remapped-bound
Input: parent nodes (schedule, limit1, limit2), ivm-map, job-map
Output: lower bounds begin, lower bounds end, sums of lower bounds

1: kernel remapped-bound(< 2 × todo threads >)
2: thId←blockIdx.x*blockDim.x + threadIdx.x
3: dir← thId mod 2)
4: ivm←ivm-map[thId/2]
5: job←job-map[thId/2]
6: load: schedule𝑡ℎ𝑑 ← schedule[ivm]
7: toSwap←(1-dir)*(limit1[ivm]+1) + dir*(limit2[ivm]-1)
8: swap(schedule𝑡ℎ𝑑[toSwap], schedule𝑡ℎ𝑑[job])
9: LB[dir][ivm][job]←computeLB(schedule𝑡ℎ𝑑)

10: sum[dir][ivm] += LB[dir][ivm][job] ▷ atomic
11: end kernel

99

The goal of the remapping procedure which prepares the bounding is to build two
maps ivm-map and job-map which contain, for todo threads, the information which IVM
to work on and which job to swap. Using an even/odd pattern these maps provide suffi-
cient information for both groups of threads. After building these maps, the bounding
kernel (as shown in Algorithm 7) is called with 2 × todo threads, where:

• threads 0 and 1 work on IVM ivm-map[0], swapping job job-map[0] respectively
to begin/end,

• threads 2 and 3 work on IVM ivm-map[1], swapping job job-map[1] respectively
to begin/end,

• ...

• threads 2×todo−2 and 2×todo−1 work on IVM ivm-map[todo-1],...

The remapped bounding kernel is launched at each iteration with a kernel configura-
tion of 2×todo/blockDim+1 blocks (simplified in Algorithm 7) which is adapted to the
workload. The proposed approach is known as stream compaction in the literature. It
reduces the number of idle lanes per warp as well as the number of threads launched
per kernel invocation. Any thread divergence resulting from the begin-end distinction
should also be avoided, as this involves a serialization of the costly computeLB procedure.
To achieve this, the bodies of the if-else conditional (Algorithm 6, Lines 5-17) can be
merged into a single one (Algorithm 7, Lines 7-10). Two different arguments of the same
type, occurring on the right-hand side of a statement can often be refactored into a single
one, like in Algorithm 7, Line 7. The different arrays on the left-hand side are merged into
larger ones. This allows to merge the statements of Lines 9, 10 and 13, 14 of Algorithm 6
into single statements (Algorithm 7, Lines 9, 10). The separation of data within these
merged arrays is assured by indexing with the variable dir, which evaluates differently
for even/odd threads.

The computational cost of building the maps ivm-map and job-map sequentially
is prohibitive. Preliminary experiments show that sequential construction consumes
more than 25% of the total execution time on the device, and more than 8% on the host
(including data transfers).

Figure 3.3 shows an example with 𝑇 = 4 IVMs which illustrates how the maps
ivm-map and job-map are build in parallel on the GPU. First, all active IVMs write the
number of jobs that remain to be scheduled (limit2 - limit1 - 1) to an auxiliary

100 Chapter 3. GPU-centric Branch-and-Bound

array todo-per-IVM of length 𝑇. Then, the prefix-sum of the elements in todo-per-IVM
is computed. The operation prefix-sum is defined as

𝑝𝑟𝑒𝑓 𝑖𝑥 − 𝑠𝑢𝑚 ∶ [𝑎0 𝑎1 𝑎2 ... 𝑎𝑛] ↦ [0 𝑎0 (𝑎0 + 𝑎1) (𝑎0 + 𝑎1 + 𝑎2) …
𝑛−1
∑
𝑖=0

𝑎𝑖].

Efficient parallel CUDA-implementations for this operation have been proposed in the
literature [HSO07]. The result of this operation indicates for each IVM 𝑘 at which position
of ivm-map and job-map the data of IVM 𝑘 starts to be written. Thus, the mapping can
be build completely in parallel. Addition of the last values in todo-per-IVM and the
computed prefix-sum given the total number of jobs to be scheduled for all IVMs, used
for configuration of the bounding kernel.

Figure 3.3: Illustration of the remapping phase for the bounding kernel (Algorithm 7).

Reducing thread divergence in the IVM-management kernels

The IVM-management kernels share, goToNext, decode and prune require a single
thread per IVM. The naive approach consists in launching 𝑇 threads and mapping
thread 𝑘 on IVM 𝑘, for 𝑘 = 0, 1, ..., 𝑇 − 1 (see Algorithm 8). Given the high number of
conditional instructions in the IVM-management kernels it is very unlikely that all 32
threads in a warp follow the same execution path if this mapping is used. Indeed, in these
kernels control flow divergence results from different IVM-states, different numbers of
scheduled jobs at both ends of the active subproblem and from the search for the next
node which requires an unknown number of iterations. An alternative mapping, shown
in Algorithm 9, can solve this issue.

An entire warp is assigned to each IVM, so all threads belonging to the same warp
follow the same execution path. This strategy goes in the opposite direction of the stream

101

Algorithm 8 Mapping 1
1: kernel kernel(< 𝑇 threads >)
2: ivm←blockIdx.x*blockDim.x + threadIdx.x
3: do-something-with(ivm)
4: end kernel

Algorithm 9 Mapping 2
1: kernel kernel(< warpsize × 𝑇 threads >)
2: thId←blockIdx.x*blockDim.x + threadIdx.x
3: ivm←thId/32
4: thPos←thIdmod32
5: //use up 32 threads per IVM for load-

ing data to shared memory
6: if (thPos == 0) then
7: do-something-with(ivm)
8: end if
9: end kernel

compaction approach proposed for the bounding kernel. As only one thread per IVM is
needed, all lanes in a warp except this first are masked. Thus, the kernels are launched
with 32 times as many threads as necessary (i.e. 32× T). Using this mapping, the overhead
induced by thread divergence completely disappears (although technically, the disabled
threads are diverging at Line 6 of Algorithm 9). The drawback is obviously the launching
of 31𝑇 idle threads.

However, using the two-level parallel model, the degree of parallelism in the pool
management kernels is much lower than in the bounding kernel. This, and the fact
that the control flow irregularity is very high, justifies the approach of using 1 warp per
IVM. Moreover, using only 4-8 IVM structures per block allows to store them in shared
memory without limiting the theoretical device occupancy. Also additional threads can
be used to load more efficiently from global to shared memory.

3.3.3 GPU-BT: 1-level parallelization

As mentioned, for problems with computationally inexpensive node evaluation functions
the parallelization of the bounding phase, as described in the previous section, is not
useful. Instead, better performance could be obtained by merging all kernels of the
exploration phase into a single kernel. This also means that in order to reach sufficiently
high device occupancy, many more IVMs should be used than in the 2-level GPU-B&B.
In GPU-BT the evaluation of nodes is not parallelized and directly performed after
the generation of subproblems.The B&B while-loop is also moved inside the kernel. A
pseudo-code for the GPU-BT exploration phase is shown in Algorithm 10.

As discussed in Section 3.2, the kernel must terminate in order to perform global
load balancing. This can be achieved by using a trigger mechanism. A global counter is
initialized at 0 and reset to 0 before each exploration phase. During the exploration phase
this global counter is incremented for each IVM whose interval is empty. At each iteration

102 Chapter 3. GPU-centric Branch-and-Bound

all threads check the value of this counter and break out of the while-loop if it is greater
than the value of a statically defined threshold trigger= 𝛾 × 𝑛𝑏𝐼𝑉𝑀 (0 ≤ 𝛾 < 1), i.e. as
soon as more than 𝛾 × 100% of IVMs are empty. This means that the tree exploration
kernel terminates only if at least trigger explorers have finished exploring their interval.

This approach is similar to the static trigger mechanism proposed by [KK94] for
solving the 15-puzzle on the CM-2 SIMD computer. A one-to-one mapping between
threads and IVMs is used (Algorithm 10, Line 8) and each thread sequentially evaluates
generated subproblems (Line 13). As the number of generated subproblems per IVM is
variable, this for-loop results in thread divergence. An alternative that could be viable
for some problems is to map IVMs to warps and parallelize the bounding operation at
warp-level. This can be the best choice for some problems, like in [RS10], where the node
evaluation is SIMD-parallelizeable at full warp-size.

Depending on problem size and hardware, some parts of IVM can reside in shared
memory. For problems of size 𝑛 ≤ 20, we decided to load the vectors of length 𝑛,
position, end and schedule to shared memory. For 𝑛 = 20 and blocksize 128 this
amounts to 7 680 B of shared memory per block. On the GTX980 GPU, 96 kB of shared
memory are available per SM. Therefore the number of resident blocks is limited to
⌊ 96

7.68⌋ = 12, which corresponds to 1536
2048 = 0.75 occupancy4.

It is possible to make this choice automatically, querying device properties, problem
size and desired upper bound for occupancy. A parameter corresponding to different data
placements can be passed to the kernel, which declares and initializes shared memory
pointers accordingly. As this version was tested on a Maxwell GPU of compute capability
5.2 only the configuration cited above was used. However, to improve portability an
automated mechanism should be implemented5.

4. For the considered compute capability, the maximum number of resident threads equals 2 048
5. It can not be assumed that the amount of available shared memory per multiprocessor increases

from one compute capability to another. For example, the maximum amount of shared memory per
multiprocessor is 96 kB for compute capability 5.2, 64 kB for 5.3-6.0 and again 96 kB for 6.1

103

Algorithm 10 GPU-backtracking: exploration phase
1: function explore
2: cudaMemset : count𝑑𝑒𝑣 ← 0
3: kernel«<nbIVM threads»>explore(count,trigger)
4: cudaMemcpy : countℎ𝑜𝑠𝑡 ← count𝑑𝑒𝑣
5: return (countℎ𝑜𝑠𝑡 = 𝑇 ?) ▷ (countℎ𝑜𝑠𝑡 = 𝑇) ⇔ all 𝑇 IVM empty
6: end function
7: kernel explore(count,trigger)
8: ivm ← blockIdx.x*blockDim.x+threadIdx.x
9: //load to shared memory

10: repeat
11: if (not-interval-empty(ivm)) then
12: go-to-next(ivm)
13: for (k in #generated-nodes(ivm)) do
14: bound and prune(ivm)
15: end for
16: state[ivm] ← exploring
17: else
18: state[ivm] ← empty
19: atomicIncrement(count);
20: break;
21: end if
22: until (count<trigger)
23: end kernel

3.4 Work stealing strategies for GPU-B&B

Both variants, GPU-B&B and GPU-BT use the same load balancing mechanism. The
load balancing phase is carried out in two steps. First, in a victim selection step a one-
to-one mapping of empty IVMs onto suitable victim IVMs is built. Then, in the steal
kernel empty IVMs acquire work in parallel from the corresponding victim IVMs. The
thief-to-victim mapping must satisfy the following conditions.

To avoid unpredictable behavior, it must guarantee that no victim-IVM is selected
twice during the same work stealing phase. Also, only IVMs in the exploring state are
allowed to be selected as work stealing victims. Moreover, the victim selection should
(1) induce minimal overhead, meaning that the mapping must be built in parallel, (2)
select victim IVMs whose intervals are likely to contain more work than others, (3) serve
a maximum of empty IVMs during each work stealing phase.

3.4.1 Victim Selection policies

Most of the work stealing strategies proposed for IVM-based multi-core B&B are not
directly transposable to the synchronous GPU-B&B. An exception is the ring strategy.

104 Chapter 3. GPU-centric Branch-and-Bound

Indeed, each empty IVM 𝑘 can independently attempt to steal work from its neighbor
(𝑘 − 1) mod 𝑇, avoiding the situation where an IVM is selected twice. In the following
we present victim selection strategies which are based on the ring strategy and aim
at overcoming its drawbacks. An array victim-map of length 𝑇 is used to encode the
thief-to-victim mapping, where victim-map[i]=j indicates that IVM 𝑖 steals from IVM 𝑗.

Ring-based strategies

Ring: In this selection-policy an empty IVM 𝑘 ∈ {1, ..., 𝑇} tries to steal a portion of work
from IVM (𝑘 − 1)%𝑇. If the state of IVM (𝑘 − 1)%𝑇 is exploring, then work can be stolen
and victim-map[k] is set to (𝑘 − 1)%𝑇. Like for asynchronous work stealing, stealing all
but 1/T𝑡ℎ of the victim’s interval is a more suitable granularity policy than one-half. This
topology connects IVMs in a directed ring and its diameter is equal to 𝑇. Starting with
the entire interval at IVM 0, this strategy requires at least 𝑇 iterations until all IVMs have
acquired work. Despite the fact that the Ring strategy is trivially parallelizeable the work
distribution process remains inherently sequential, due to queuing of inactive IVMs.

Search: The idea behind this strategy is to perform successive selection attempts with
increasing stride, meaning that an empty IVM 𝑘 attempts to select (𝑘 − 1)%𝑇, (𝑘 − 2)%𝑇,
... , (𝑘 − 𝑆)%𝑇 successively. After each selection attempts all threads must synchronize,
therefore a stride parameter is added to the selection kernel which is launched 𝑆 times.
In order to avoid multiple selections, a per-IVM boolean flag is set to true for successfully
matched thief-victim pairs. Searching the entire ring (𝑆 = 𝑇) results in excessive overhead,
so the value must be fixed at a lower level. For experimental purposes the value is fixed
at 𝑆 = ⌊√𝑇⌋. Following the same reasoning as for the Ring strategy, work is stolen with

granularity 1/√𝑇. Using this value the diameter is reduced to √𝑇 and it requires at least
as many work stealing phases for all IVMs to acquire work.

Large: The experimental results for multi-core B&B have shown that stealing from
the largest interval effectively reduces the number of work stealing operations. This
requires computing the length of each interval. In order to avoid the costly operation of
sorting the IVM-IDs by their corresponding interval-lengths, the mean interval-length is
computed prior to the victim selection phase. Having an interval larger than average is
added as a criterion for the eligibility of an IVM as a work stealing victim.

Adding this length-criterion increases the probability that no victim is found in the
search window of fixed length 𝑆. Therefore the parameter 𝑆 is allowed to float between
𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥. If more than 10% of IVMs are empty, then 𝑆 is multiplied by 2, otherwise

105

𝑆 is divided by 2 (if greater than 1). The goal of this approach is to adapt the work
stealing (and the associated overhead) to the phase of the algorithm. The idea is to
aggressively load balance during the ramp-up and shut-down phases, while reducing
overhead during a relatively stable phase where work stealing operations occur only
occasionally. As large intervals are selected, work is stolen with 1/2 granularity.

Adapt: There is no particular reason for starting the search at 𝑘 − 1 mod 𝑇. The Adapt
strategy shifts the beginning of the search window by the current value for 𝑆 at the
beginning of each work stealing phase.

The four work stealing strategies are described in Algorithm 11 and correspond to
different choices for a set of parameters.

Algorithm 11 Ring-based victim selection policies for GPU-based work stealing
1: switch strategy do
2: case Ring:
3: B = 1; S = 0; C = 0;
4: case Search:
5: B = 1; S = √𝑇, C = 0;
6: case Large:
7: B = 1; 10 < S < T, C = 1;
8: case Adapt:
9: B = iter%T; 10 < S < T; C = 1;

10: function selectVictim(B, S, C)
11: for (k = B → B+S) do
12: try-select<<<T threads>>>(k, victim-map, C,...)
13: end for
14: end function
15: kernel try-select(k, victim-map, C,...)
16: ivm ← blockIdx.x*blockDim.x + threadIdx.x
17: if (state[ivm]=empty) then
18: V ← (ivm-k)mod 𝑇
19: if (state[V]=exploring AND flag[V]= 0 AND length[V]>C*meanLength) then
20: victim-map[ivm]← V
21: flag[V]← 1
22: end if
23: end if
24: end kernel

Hypercube-based strategies

Hypercube. All work stealing strategies presented until now are based on a directed
ring-topology. Other topologies are possible. In a 2D-ring or torus topology, for instance,
the IDs of 𝑇1 × 𝑇2 IVMs are written as couples (𝑟1,𝑟2) (0 ≤ 𝑟𝑖 < 𝑇𝑖) with IVM (𝑟1,𝑟2)

106 Chapter 3. GPU-centric Branch-and-Bound

successively trying to steal from its two neighbors (𝑟1 − 1 (mod 𝑇1), 𝑟2) and (𝑟1, 𝑟2 − 1
(mod 𝑇2)).

This can be further generalized, writing an IVM-ID as a m-tuple (𝛼𝑚, 𝛼𝑚−1, … , 𝛼𝑖, … , 𝛼1)
(0 ≤ 𝛼𝑖 < 𝐿𝑖). Connecting all workers whose ID differ in exactly one digit, i.e., that are
within Hamming distance 1, a 𝑚-dimensional hypercube is obtained. In general the
nodal degree in this topology is ∑𝑚

𝑖=1(𝐿𝑖 − 1). If we have ∀𝑖 ∶ 𝐿𝑖 = 𝑝 (meaning the the
IVM-IDs are written in base 𝑝) each of the 𝑇 = 𝑝𝑚 IVMs has 𝑚(𝑝 − 1) neighbors.

In the proposed Hypercube victim selection strategy all IVMs attempt to select one of
its neighbors. Again, this selection is performed iteratively: first all IVMs try to select
the neighbor according to the first ID-coordinate, then according to the second, and so
on. This assures that no double selection can occur. In Algorithm 12 the pseudo-code for
the Hypercube selection policy is shown.

Algorithm 12 Victim selection: Hypercube
1: function select-hypercube
2: for (i : 1 → m) do
3: for (j : 1 → L𝑖-1) do
4: select-hyper<<<T threads>>>(i,j,...)
5: end for
6: end for
7: end function
8: kernel select-hypercube(i, j, ...)
9: ivm ← blockIdx.x*blockDim.x + threadIdx.x

10: if (state[ivm]=empty) then
11: %%% ▷ V is an integer ∈ [0, 𝑇 − 1]
12: V ← (𝛼𝑚, … , (𝛼𝑖 − 𝑗) mod 𝐿𝑖, … , 𝛼1)
13: if ((state[V]=exploring) ∧ (flag[V]= 0) ∧ (length[V]>meanLength)) then
14: victim-map[ivm]← V
15: flag[V]← 1
16: end if
17: end if
18: end kernel

To make the pseudo-code more readable the operation in Line 12 of Algorithm 12 is
written in terms of hypercube ID-coordinates. However, in practice it should be carried
out in terms of integer operations. To do this (𝛼𝑚, … , 𝛼1) with 0 ≤ 𝛼𝑖 < 𝐿𝑖 is seen as
a number in a number system where the 𝑖𝑡ℎ position has weight 𝑤1 = 1, 𝑤𝑖 = ∏𝑖−1

𝑗=1 𝐿𝑖.
Using these weights 𝑤𝑖 each IVM-ID 𝑟 = 0, … , 𝑇 − 1 has a unique representation 𝑟 =
∑𝑚

𝑖=1 𝛼𝑖𝑤𝑖 [Can69] and we have that:

107

The operation {return (𝛼𝑚, … , (𝛼𝑖 − 𝑗) (mod 𝐿𝑖), … , 𝛼1)

is equivalent to
⎧{
⎨{⎩

return 𝑟 − 𝑗 × 𝑤𝑖, if 𝑟
𝑤𝑖

(mod 𝐿𝑖) ≥ 𝑗

return 𝑟 − 𝑗 × 𝑤𝑖 + 𝐿𝑖 × 𝑤𝑖, otherwise

For 𝑇 = 𝐿𝑚𝐿𝑚−1 ⋯ 𝐿1 IVMs a m-dimensional hypercube topology can therefore be
defined using two tables: [𝐿𝑚, 𝐿𝑚−1, … , 𝐿1] and the weights [𝑤𝑚, 𝑤𝑚−1, … , 𝑤1]. Al-
though the algorithm is not limited to any particular number of IVM structures, we
use only powers of 2 as values for 𝑇 and we choose the 𝐿𝑖’s such that the product
𝑇 = 𝐿𝑚𝐿𝑚−1 ⋯ 𝐿1 contains the factor 4 as many times as possible but not the factor 2. For
example, using 𝑇 = 512 = 29 IVMs, a 4-dimensional hypercube topology is defined by
the tables {𝐿𝑖} = [8, 4, 4, 4] and {𝑤𝑖} = [26, 24, 22, 1].

3.4.2 Work stealing for multi-GPU-B&B

multi-GPU: In order to extend the presented GPU-B&B algorithm to multiple GPUs
sharing the same host it is necessary to deal with inter-GPU load balancing and sharing
of the best solution found so far.

In the multi-GPU algorithm several threads execute GPU-B&B asynchronously. Be-
fore launching the threads, the number of detectable GPU devices is queried and GPUs
are assigned to threads in round-robin fashion. Each thread issues kernel launches and
CUDA copy instructions to a different stream. Therefore, the number of used threads
can exceed the number of detected devices, although this might not necessarily be useful.
All threads run GPU-B&B with a common configuration. In particular, the number of
used IVM structures 𝑇 is identical.

Obviously, static distribution of the interval [0, 𝑛![among the GPUs will result in
poor performance due to load imbalance. The proposed load balancing scheme for the
multi-GPU algorithm uses a hierarchical work stealing approach, meaning that local work
stealing (inside each GPU) has a strict priority over inter-GPU work stealing operations.
In this approach an inter-thread work stealing attempt will only be initiated by a thread
if all its 𝑇 IVMs are empty. To select another thread, a random victim selection strategy
is used.

An inter-thread work stealing operation is defined as for the GPU-accelerated al-
gorithm presented in Subsection 2.4.1: the 𝑖𝑡ℎ IVM of the thief attempts to steal the right
half-interval from IVM 𝑖 of the victim GPU.

108 Chapter 3. GPU-centric Branch-and-Bound

hybrid multi-GPU/multi-CPU: Typically the number of CPU cores is higher than the
number of GPUs attached to the host. Thus, the GPU-centric multi-GPU B&B does not
exploit the full processing capabilities of the system, as the host CPU remains mostly
idle.

In addition to the GPU-controlling threads, CPU-based B&Bthreads can be used. If
CPU- and GPU-explorers are used, device-to-host (D2H) and host-to-device (H2D) work
stealing operations must be defined. These operations must take into account that a
CPU-explorer thread handles a single IVM structure while a GPU explorer handles 𝑇
IVM structures.

• In a H2D work stealing operation a part of the host’s interval is send to the GPU and
assigned to IVM 0 of the thief GPU. In order to take into account the heterogeneity
of the thief and the victim the granularity policy can be adjusted according to the
relative power of the explorers.

For instance, a thief steals [(1 − 𝛾)𝐴 + 𝛾𝐵, 𝐵] where 𝛾 ∈ [0, 1] is set to 1/𝑘 if the
thief is 𝑘 times more powerful than the victim. We experiment the steal-half and
the steal-1/k granularity policies.

• Finally, a D2H work stealing operation is defined as follows: the thief (host) ran-
domly selects one of the victim’s IVMs and checks the status of its interval. If the
status is empty the steal attempt fails. Otherwise, the thief steals the whole interval,
including the IVM structure. This seems reasonable as this interval represents on
average only 1/𝑇𝑡ℎ of the victim’s total amount of work. Moreover, this aims at
reducing the overhead for the victim GPU: it uses an asynchronous copy to send
the stolen IVM to the thief and sets the status of the corresponding IVM-ID to
empty.

3.5 Experiments

As in the previous ones all experiments in this section are performed with an initial
upper bound equal to the optimal solution, which ensures that B&B explores exactly the
critical tree associated with an instance.

3.5.1 Evaluation of Mapping approaches

In this subsection the two mapping schemes, presented in Subsection 3.3.2, are compared
to each other in terms of elapsed execution time of the algorithm. The experiments in

109

this subsection are performed using an NVIDIA Tesla K20m GPU based on the Kepler
(GK110) architecture. The compiler is gcc version 4.8.3 with optimization level -02 and
version 6.5.14 of the CUDA Toolkit is used. As the execution model and warp size have
not changed in subsequent architectures we believe the results remain valid for more
recent architectures. For the evaluation of the mapping schemes the number of IVMs is
set to an ad-hoc value of 𝑇 = 768.

Bounding kernel The dynamic remapping scheme for the bounding kernel (Algorithm 7)
is referred to as remap, the static mapping (Algorithm 6) as static. Figure 3.4 shows the
total elapsed time for solving instances Ta021-Ta030. For both mappings and for each
instance it shows the portion of time spent in the kernel bound, in the IVM-management
kernels (share, goToNext, decode and prune) as well as in the remapping phase (for
remap). As the building of the mapping consumes only 0.9% of computation time, this
portion is barely visible in Figure 3.4. Table 3.1 shows total elapsed time as well as the
time spent in the different phases of the algorithm as an average over the 10 FSP instances
Ta021-Ta030.

 0

 500

 1000

 1500

 2000

S-21
M

-21

--- S-22
M

-22

--- S-23
M

-23

--- S-24
M

-24

--- S-25
M

-25

--- S-26
M

-26

S-27

M
-27

--- S-28
M

-28

--- S-29
M

-29

--- S-30
M

-30

ti
m

e
 (

s
e
c
)

instance

manage-IVM
remap
bound

Figure 3.4: Execution time for instances Ta021-Ta030 for thread-data mappings static (S) and remap
(M) for the kernel bound. All results are for one Nvidia K20c GPU (Kepler) using 𝑇 = 768 IVM.

The compacted mapping remap is clearly advantageous as it reduces the average time
spent in the bound kernel by a factor 1.9×. As the bounding operation amounts for more

110 Chapter 3. GPU-centric Branch-and-Bound

Table 3.1: Average elapsed time (in seconds) and average repartition of execution time among
bounding, IVM management and remapping phases. Average taken over instances Ta021-Ta030.

elapsed walltime bound manage remap
Mapping sec sec % sec % sec %

static 696.4 632.9 89.4 63.5 10.6 0.0 0.0
remap 395.7 329.1 82.0 63.4 17.1 3.4 0.9

than 80% of the total execution time, the latter decreases by a factor 1.7×. The overhead
induced by compacting the mapping at each iteration is largely compensated by these
performance gains. Indeed, thanks to the parallelization of this phase using the parallel
prefix sum, the remapping operation amounts for less than 1% of the elapsed time.

Using the more compact mapping remap instead of static improves the control flow
efficiency6 (CFE) of the kernel. For static the average CFE is 0.43, meaning that for an
executed instruction on average more than half of the execution slots are wasted. For
the mapping remap the average CFE is 0.83 - the launched warps are used almost twice
as efficiently. The number of warps launched at each kernel call is 960 for mapping
static, which exceeds theoretical maximum of 13 × 64 = 832 resident warps for the K20m.
The average number of warps launched with mapping remap is 300 (average per kernel
call and per instance), the average maximum (per instance) being 825 warps and the
minimum 4.

IVM management kernels. In this subsection the two mapping schemes for the IVM-
management kernels are evaluated and compared to each other. The kernels concerned
by these mapping schemes are the IVM-management kernels (share, goToNext, decode
and prune). Figure 3.5 shows the time spent for completing the exploration with both
mapping schemes. Both, version one-thread-per-IVM (𝑀1) and version one-warp-per-IVM
(𝑀2) use the same bounding kernel (with remapping). Although the time spent man-
aging the IVM structures is moderate compared to the bounding operation, the mapping
𝑀2 allows a reduction of the total execution time by a factor 1.1× compared to the map-
ping 𝑀1. With respect to 𝑀1, mapping 𝑀2 decreases the share of IVM-management
operations from 18% to 7.5%. Table 3.2 shows the average duration per call of the kernels
bound (in msec), goToNext and decode (in 𝜇sec) and their respective share of the elapsed
time (in %). The kernels prune and share amount for at less than 2% of total execution
time, so they are not evaluated.

6. defined as the ratio between the number of active threads (not predicated off) and the maximum number
of threads per warp for each executed instruction (𝐶𝐹𝐸 = not_predicated_off_thread_inst_executed

32*inst_executed)

111

 0

 200

 400

 600

 800

 1000

 1200

M
1-21

M
2-21

M

1-22

M
2-22

M

1-23

M
2-23

M

1-24

M
2-24

M

1-25

M
2-25

M

1-26

M
2-26

M

1-27

M
2-27

M

1-28

M
2-28

M

1-29

M
2-29

M

1-30

M
2-30

ti
m

e
 (

s
e
c
)

instance

bound(s)
manage(s)

Figure 3.5: Execution time for instances Ta021-Ta030 for different mapping choices in IVM-
management kernels.

The mapping 𝑀2 allows to use the supplementary lanes for efficient loading of the
IVM structures into shared memory. In order to dissociate the impact of shared memory
usage from the impact of remapping, the profiling of mapping 𝑀2 is performed with
and without shared memory usage.

Table 3.2: Duration of different kernels per call (in 𝜇sec or msec), percentage of total elapsed time
(%) and instruction replay overhead (IRO%), total execution time of GPU-B&B. Average values
for instances Ta021-Ta030.

goToNext decode bound elapsed
Mapping 𝜇sec % IRO% 𝜇sec % IRO% msec % sec

1 thread/IVM 380 10.0 40.6 168 4.4 40.3 3.07 82.0 395.7
1 warp/IVM 130 4.0 14.0 94 2.8 14.7 3.07 91.1 364.2

1 warp/IVM (shared) 85 2.6 7.9 79 2.4 12.4 3.06 92.5 356.6

Table 3.2 also shows the instruction replay overhead (IRO%)7, which is a measure for
instruction serialization (due to memory operations, like cache misses). These results
show that the fact of spacing the mapping to 1 warp=1 IVM also substantially improves

7. defined as 𝐼𝑅𝑂% = 100% × instructions_issued−instructions_executed
instructions_issued

112 Chapter 3. GPU-centric Branch-and-Bound

the memory access pattern. It should be noted that the control flow efficiency drops
from a poor average 0.22 for 𝑀1 to 0.03 ≈ 1/32 for 𝑀2 - as intended. Table 3.3 shows,
for the different kernels, the number of branch instructions executed (per call average)
and the number of branches that are evaluated differently across a warp. The results
show that, as intended, undesired thread divergence completely disappears. Only
instance Ta022 is evaluated as one instance sufficiently illustrates the behavior. The

Table 3.3: Per-call average of branch instructions executed and diverging branches (incremented
by one per branch evaluated differently across a warp). Test-case: FSP instance Ta022.

kernel goToNext decode share prune
Mapping branch diverge branch diverge branch diverge branch diverge

1 thread/IVM (M1) 11 592 802 5 875 860 851 15 404 121
1 warp/IVM (M2) 59 921 1 536 62 020 768 3 655 0 3 131 768

=2×#IVM =#IVM =#IVM

divergent_branch counter indicates that the average number of diverging branches is a
multiple of the number of IVMs. Indeed, the counter increments by one at the instruction
if(thId%32 == 0) (Algorithm 9, line 6) which masks all but the leading thread in each
warp. However, as the remaining 31 lanes of the warp are simply waiting for lane 0
to complete, no significant serialization of instructions occurs. Besides showing that
the spaced mapping 𝑀2 is better adapted to the IVM-management kernels, the results
presented in this subsection illustrate that performance metrics for thread divergence or
control flow must be interpreted very carefully.

3.5.2 Evaluation of Work Stealing strategies

For the evaluation of work stealing strategies, a first series of experiments is performed
using a single NVIDIA Tesla K20m GPU, version 5.0.35 of the CUDA Toolkit and only
FSP instances Ta021-Ta030. The number of used IVMs is fixed at 𝑇 = 768.

Table 3.4 shows the exploration time for work stealing strategies ring, search, large and
adapt. For comparison Table 3.4 also shows the execution time obtained with MC-B&B
using 32 threads (2xE5-2630v3). For all instances, best performances are achieved with
the adapt strategy, which allows to complete the exploration on average 4.2 times faster
than MC-B&B. Comparing the different work stealing strategies, one can see that the
adapt strategy is less sensitive to varying instance-sizes and shapes. Adapt provides a
relative speedup of 3.3 − 4.5× over MC-B&B, while the spread 1.0 − 3.6× is much larger
for the ring strategy.

113

Table 3.4: Exploration time (in seconds) for solving flowshop instances Ta021-Ta030. Using
𝑇 = 768 IVM on Kepler K20m GPU. For comparison, the execution time of MC-B&B using 32
threads (2xE5-2630v3) with random-1/2 work stealing is shown.

MC-B&B ring search large adapt
Inst. ×106 nodes Time Time Rate Time Rate Time Rate Time Rate

21 41.4 1 062 386 2.8 338 3.1 280 3.8 250 4.3
22 22.1 526 247 2.1 229 2.3 146 3.6 129 4.1
23 140.8 3 631 1 002 3.6 934 3.9 915 4.0 813 4.5
24 40.1 884 359 2.5 254 3.5 255 3.5 219 4.0
25 41.4 1 073 431 2.5 327 3.3 280 3.8 250 4.3
26 71.4 1 547 459 3.4 443 3.5 429 3.6 384 4.0
27 57.1 1 294 404 3.2 370 2.6 336 3.9 301 4.3
28 8.1 202 120 1.7 79 1.9 59 3.4 52 3.9
29 6.8 164 95 1.7 88 2.5 50 3.3 42 3.9
30 1.6 40 39 1.0 36 1.1 20 2.0 12 3.3
Avg 43.1 1 043 354 2.9 310 3.4 277 3.8 245 4.2

We propose to use the following metric for measuring the efficiency of a load balancing
scheme for IVM-based synchronous parallel B&B.

IVM-efficiency = 100% ×
#decomposed nodes

#iterations × T

As an average over all iterations and all IVM structures, IVM-efficiency indicates the
share of IVMs that perform useful work. It is computed as a ratio of the ideal number of
iterations (#Nodes

𝑇) over the number of performed iterations, expressed as a percentage.
Table 3.5 shows the IVM-efficiency for the four strategies ring, search, large and adapt. The
results show that the adapt strategy is close to the optimal case where IVM-efficiency=
100%. On average only 2.5% of the 𝑇 = 768 IVMs are either empty or initializing. This is
a good indicator for the scalability of the approach, meaning that the adapt work stealing
strategy is capable of handling a larger number of IVMs. This is particularly important
because the number of cores in successive GPU generations continues to increase.

Table 3.5: Average percentage of IVMs in exploring state (IVM-Efficiency)

Ta021 Ta022 Ta023 Ta024 Ta025 Ta026 Ta027 Ta028 Ta029 Ta030 Avg

Ring 52.0 38.4 74.5 48.2 45.6 71.0 63.9 24.6 29.1 14.8 46.2
Search 67.4 46.3 84.2 84.2 73.8 80.4 79.0 53.8 36.7 19.9 62.5
Large 93.3 92.9 93.4 93.2 93.3 93.2 93.4 91.5 90.4 76.4 91.1
Adapt 99.4 98.9 99.8 99.4 99.3 99.7 99.5 96.8 96.8 85.3 97.5

Next, the overhead induced by load balancing is evaluated. Figure 3.6 shows, for the
four strategies, the average time spent in different phases of the algorithm. In all cases the

114 Chapter 3. GPU-centric Branch-and-Bound

bounding phase consumes > 85% of the total execution time. Using the ring strategy, on
average 327 seconds are spent in the bounding kernel, against 226 seconds for the adapt
strategy. This corresponds to the increased efficiency of that kernel (Table 3.5). Compared
to ring, the search-window of length 𝑆 = 27 significantly improves IVM-efficiency – at the
cost of spending ≈ 3% instead of ≈ 0.1% in victim-selection. The large strategy further
improves the work load balance, but victim-selection amounts for ≈ 9% as the average
value for the auto-tuned parameter 𝑆 increases to 110. Extending large to adapt only
slightly improves the load balancing, but, more importantly, as the average 𝑆 decreases
to 15, the cost of victim selection decreases to < 2%. Using a fixed number of IVMs
(𝑇 = 768), the adapt strategy clearly outperforms the ring, search and large strategies.
Considering the low overhead of this strategy there is no reason to believe that this
conclusion changes for larger values of 𝑇.

Execution time breakdown

W
S

st
ra

te
gy

adapt

large

search

ring

seconds
0 50 100 150 200 250 300 350 400

bound
manage
select
transfer
other

Figure 3.6: Average elapsed time for solving instances Ta021-Ta030 and its repartition among
different phases of the algorithm

3.5.3 Scalability analysis

In this subsection the scalability of the proposed GPU-B&B and GPU-BT algorithms is
evaluated. By that we mean in particular the scalability of work stealing mechanism,
i. e. their ability to keep IVMs busy as the number of IVMs and GPUs increases. In the
following, only the adapt and hypercube strategies are evaluated and all three test-cases
are used. All experiments are run on a computer composed of two 8-core E5-2630v3
processors, and four GeForce GTX 980 GPUs. The four Maxwell GPUs, based on the
GM204 architecture are of compute capability 5.2. and version 7.5 of the CUDA Toolkit
is used.

115

The analysis of the scalability of both strategies serves at the same time as experimental
calibration of the number of IVMs used per GPU (𝑇). The number of used IVM structures
per GPU should not be tuned independently from the used load balancing mechanism.
Indeed, there is no point in adding more IVMs if the load balancing mechanism fails
to keep them busy. One the other hand, if a work stealing strategy allows to use more
IVMs efficiently, increasing 𝑇 may improve the performance of the algorithm. Moreover,
the workload, i. e. the size and shape of the explored B&B tree and the granularity of the
problem should be taken into account, as these factors strongly influence the performance
of a given work stealing approach.

Ta021 (41.4x106nodes)

M
n/

s

0.0

0.5

1.0

1.5

2.0

2.5

#IVM (log2T)
8 10 12 14 16

-- Hypercube --
GPUx1
GPUx2
GPUx4

-- Adapt --
GPUx1
GPUx2
GPUx4

(a) FSP - Ta021 (initialized at optimal solution),
41.4×106 nodes

17-Queens (4.2x109 nodes)

M
n/

s

0

200

400

600

800

1,000

#IVMs (log2)
8 10 12 14 16

-- Hypercube ---- Hypercube --
GPUx1GPUx1
GPUx2GPUx2
GPUx4GPUx4

-- Adapt ---- Adapt --
GPUx1GPUx1
GPUx2GPUx2
GPUx4GPUx4

(b) 17-Queens, 4.2×109 nodes

Figure 3.7: Node processing rate (in Mn/s) for different values of T (#IVMs) and 1, 2 and 4
GPUs. The dotted lines show the results for the adapt strategy and the solid lines for the hypercube
strategy

Figures 3.7 and 3.8 show the node processing rates (respectively in Mn/s and kn/s)
achieved for different values of 𝑇 (𝑇 = 2𝑛, 𝑛 = 9, 10, … , 15) and the adapt and hypercube
work stealing strategies. The results are shown for 1, 2 and 4 GPUs without using the
CPU cores for exploration. The results on the left-hand side (Figure 3.7a) are obtained
for FSP instance Ta021, using the 2-level GPU-B&B algorithm. On the right-hand side
(Figure 3.7b) the achieved node processing rates are shown for the 17-Queens problem,
using the 1-level GPU-BT algorithm. As an ad-hoc value, the work stealing trigger for
GPU-BT is set to 𝑇/10. In Figure 3.8 two QAP instances with different node evaluation
costs are shown (nug18 and esc16a).

These problem instances are used because they are large enough to justify the use of
a multi-GPU system and small enough to be solved repeatedly to collect experimental
data. For example, instance Ta021 requires over 20 minutes of processing using the 16
CPU-threads and about 90 seconds using a single GPU. As one can see in Figure 3.7,

116 Chapter 3. GPU-centric Branch-and-Bound

nug18 (24.9x106 nodes)
10

3 n
od

es
/s

ec

200

400

600

800

#IVM
256 1,024 4,096 16,384 65,536

Hypercube
4
3
2
1

Adapt
4
3
2
1

(a) QAP: nug18 (24.9×106 nodes)

esc16a (96.3x106 nodes)

10
3 n

od
es

/s
ec

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000

#IVM
256 1,024 4,096 16,384 65,536

Hypercube
4
3
2
1

Adapt
4
3
2
1

(b) QAP esc16a (94.2×106 nodes)

Figure 3.8: Node processing rate (in Mn/s) for different values of T (#IVMs) and 1, 2 and 4
GPUs. The dotted lines show the results for the adapt strategy and the solid lines for the hypercube
strategy. QAP instances nug18 and esc16a.

both work stealing strategies allow to achieve similar performances for a single GPU,
especially when a small number of IVMs is used (𝑇 < 4096(= 212)).

For small values of 𝑇 the adapt strategy allows slightly better performances than
hypercube, in particular for instance 17-Queens and esc16a, i. e. the more fine-grained of
the four test-instances. However, as the number of IVMs increases, the hypercube strategy
clearly outperforms the adapt strategy. As the number of GPUs increases (meaning that
the total number of IVMs increases) this effect is even more visible.

For both work stealing strategies and algorithm variants, the node processing rates
increase according to the number of IVMs up to 𝑇 = 214. However, when the adapt
strategy is used the processing speed increases at a lower rate for 𝑇 ≥ 212 and decreases
when 𝑇 > 214 IVMs are used. This can be explained by the fact that the cost of the victim
selection increases significantly as the increasing number of IVMs causes the strategy
to search in larger windows. This is not the case in the hypercube-based strategy which
contacts a constant number of IVMs to select a work stealing victim.

Figures 3.7 and 3.8 show that the hypercube strategy is better suited for the multi-
GPU-B&B algorithm, and especially for GPU-BT. Using hypercube, during the solution
counting of 17-Queens almost 1 billion (109) nodes per second are decomposed when
using 4 GPUs and 32 768 IVMs per GPU, i. e. 131 072 IVMs in total. This is about 50%
more than the best rate achieved with the adapt strategy which stagnates at 600 Mn/s for
16 384 IVMs.

Calibration of work stealing trigger: For GPU-BT a threshold for the static work steal-
ing trigger must be defined. In the previous paragraph we used 𝑇/10 as an ad-hoc value

117

for this threshold, meaning that an intra-device work stealing phase occurs only if 10%
of the IVMs have empty intervals. The number of IVMs per GPU is set to 𝑇 = 32 768.
Using 17-Queens for calibration, Figure 3.9 shows the variation of the node processing
speed according to the value of the work stealing trigger. For finding all 95 815 104 valid
configurations of the 17-Queens problem, a total of 4.2 × 109 valid partial board con-
figurations is decomposed into smaller subproblems. For inter-GPU load balancing a
random-1/2 work stealing strategy is used.

17-Queens (4224x106 nodes - 32768 IVM/GPU)

no
de

s/
se

c

0

2e+08

4e+08

6e+08

8e+08

1e+09

work stealing trigger
0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000

#GPU
1
2
3
4

Figure 3.9: Performance of multi-GPU-BT algorithm for 17-Queens problem, for varying work
stealing threshold and one to four GPUs. T=32 768 IVM, dots show average over 5 runs, error
bars show standard deviation.

One can see that the performance depends strongly on the calibration of the triggering
mechanism. The use of this mechanism is clearly beneficial compared to a no-trigger
algorithm. Indeed, a trigger value equal to 0 corresponds to a trigger-less version of the
algorithm, where a load balancing phase is launched at each iteration. However, careful
calibration is necessary, as a too large value deteriorates the algorithm’s performance.
For both test cases and a single GPU a factor 10 can be gained by using the triggering
mechanism and setting is to a suitable value.

The results shown in Figure 3.9 are averaged values over 5 runs and error bars show
standard deviation. In both figures one can notice that the results obtained for 3 and
especially 4 GPUs are noisy. Analysis of the execution time breakdown reveals that
the variation in execution time corresponds mainly to a variation in waiting time. This
is due to the use of the random strategy in combination with the trigger mechanism.
The random victim selection for inter-GPU work stealing naturally introduces some
randomness in the obtained results. However, this effect is amplified by the use of the
trigger-mechanism. While a GPU is in the midst of a node expansion phase it cannot
respond to incoming requests. Nevertheless, this GPU can still be selected as a work

118 Chapter 3. GPU-centric Branch-and-Bound

stealing victim, and the thief thread needs to wait until the selected victim returns to the
CPU.

To overcome this issue it would be necessary to send a signal to the victim device,
requesting an interruption of the current kernel execution. However, to the best of
our knowledge, CUDA currently provides no guarantee for data coherence between a
running kernel and concurrent data transfers. These results demonstrate, on the one
hand, that the triggering mechanism can be used to accelerate the exploration process.
On the other hand they show that it requires careful tuning, especially in a multi-GPU
setup.

Ideally, the need for tuning the trigger threshold should be avoided by adjusting
the trigger value dynamically, based on the duration of exploration and load balancing
phases, as in [KK94]. In all the following experiments the work stealing threshold is set
to 𝑇

3 .

3.5.4 Multi-GPU-B&B performance evaluation

In this subsection the scalability with the number of GPUs is evaluated and the perform-
ance of the multi-GPU-B&B and BT algorithms is compared to the (GPU-accelerated)
MC-B&B algorithm presented in the previous chapter. The three test-cases are used for
evaluation.

FSP: Figure 3.10 shows execution time for the largest 20-jobs-on-20-machines instance
Ta023 using 1, 2 and 4 GPUs with varying number of IVMs per GPU. Notice that both
axis are in log scale. One can see that time decreases linearly with the number of GPUs
used. Using 512 IVMs the instance is solved in about 512 seconds on a single GPU and
in about 128 seconds on 4 GPUs. Using 64 times as many IVMs, the resolution time on a
single GPU is about 256 seconds on one, and 64 seconds on 4 GPUs. Furthermore, using
more than 8 192 IVMs per GPU provides only marginal improvement.

In Table 3.6 we report the achieved node processing rates for the ten instances Ta021–
Ta030 (in kn/s). In order to better show the impact of the instance-size, the instances
are sorted in an increasing order according to the number of nodes explored (shown
in the second column). Device initialization (e. g. cudaMalloc, cudaSetDevice, cudaEn-
ablePeerAccess calls) amounts to about 0.5 seconds for one GPU and surprisingly lasts
up to 4 seconds when done in parallel by four POSIX threads using one device each. This
depends on the driver version, toolkit version, the operating system and other factors,
which is why device initialization time is excluded from the reported results.

119

 64

 128

 256

 512

 1 2 4

T
im

e
 (

s
e

c
)

#GPUs

Exploration time Ta023 (140.8M nodes)

#IVM/GPU
512

1024
2048
4096
8192

16384
32768

Figure 3.10: FSP instance Ta023 (140.8×106 nodes, 21.5 hours sequential execution time): Execu-
tion time for varying number of GPUs and IVMs per GPU.

All results are obtained using the hypercube strategy for intra-GPU work stealing,
random-1/2 for inter-GPU work stealing and 16 384 IVMs per GPU. Table 3.6 also shows the
processing speed achieved by MC-B&B using 32 threads on two 8-core E5-2630v3 CPUs,
with and without GPU-acceleration. According to the experimental results reported in
Chapter 2, this multi-core version is 18×–20× faster than its sequential counterpart.

For example, when solving FSP instance Ta030, the multi-core algorithm decomposes
40.5 kn/s without GPU-acceleration and 939 kn/s when 4 GPUs are used to accelerate the
bounding operation (as in Chapter 2, using 𝑀 = 600 IVMs per CPU thread). GPU-B&B
achieves 556 kn/s using a single GPU and 1737 kn/s using 4 GPUs, which is 3.1 times
more than using a single device. All results for the GPU algorithm are averaged over
three runs.

For the ten flowshop instances Ta021-Ta030 the 4-GPU-B&B allows to decompose on
average 2178 kn/s which is 52 times more than its multi-core counterpart, 4 times more
than the single-GPU algorithm and about 1 000× more than the sequential version of
MC-B&B algorithm. Compared to the GPU-accelerated MC-B&B algorithm presented in
Chapter 2, GPU-B&B is on average 1.7 times faster, exploiting an equivalent number of
GPUs on the same platform.

For all FSP instances, except the smallest (which lasts less than 1 second using 4 GPUs),
the algorithm achieves near-linear speedup on up to 4 GPUs. In the 2-level variant of the
algorithm each launch of the bounding kernel is configured with a different block-size,

120 Chapter 3. GPU-centric Branch-and-Bound

according to the current load. Using multiple GPUs changes the kernel configurations in
a way which is beyond the control of the programmer. The effect may, in some cases be
beneficial, which can explain the slightly super-linear speed-ups which can be observed
when comparing the 4-GPU and single-GPU execution times.

Solving FSP instance Ta022 using 4 GPUs, the algorithm spends 87.6% of the 9.9
seconds execution time in the bounding phase, 1.8% in intra-device WS, 0.7% of the time
waiting for work on the inter-device level, and about 10% in the selection, reduction,
remapping and pruning kernels.

Table 3.6: Node processing rates (in kn/s) obtained when solving FSP instances Ta021–Ta030,
using one to four GPUs, work stealing strategy: Hypercube/Random. For comparison the node
processing speed obtained with the 32-threaded MC-B&B and GMC-B&B (random-1/2 work
stealing) are shown.

Inst #nodes MC-B&B GMC-B&B GPUx1 GPUx2 GPUx3 GPUx4
×106 kn/s kn/s kn/s kn/s 𝑇1𝐺𝑃𝑈

𝑇2𝐺𝑃𝑈
kn/s 𝑇1𝐺𝑃𝑈

𝑇3𝐺𝑃𝑈
kn/s 𝑇1𝐺𝑃𝑈

𝑇4𝐺𝑃𝑈

30 1.6 40.5 939 556 1 042 1.9 1 479 2.7 1 739 3.1
29 6.8 41.3 1 275 556 1 099 2.0 1 643 3.0 2 145 3.9
28 8.1 39.9 1 213 533 1 032 1.9 1 555 2.9 2 027 3.8
22 22.1 42.0 1 325 532 1 066 2.0 1 597 3.0 2 206 4.0
24 40.1 45.3 1 465 594 1 174 2.0 1 748 2.9 2 420 4.1
21 41.4 39.0 1 292 523 1 011 1.9 1 532 2.9 2 117 4.0
25 41.4 38.6 1 230 489 958 2.0 1 442 3.0 1 975 4.0
27 57.1 44.1 1 511 610 1 211 2.0 1 825 3.0 2 423 4.0
26 71.3 46.1 1 438 578 1 142 2.0 1 711 3.0 2 314 4.0
23 140.8 38.8 1 302 536 1 029 1.9 1 534 2.9 2 178 4.1

AVG 43.1 41.6 1 299 551 1 077 2.0 1 607 2.9 2 155 3.9

QAP: Table 3.7 shows the node processing rates obtained when solving QAP instances
nug16a, nug18, nug20, had20 and scr20 using one to four GPUs. Like for FSP, the processing
speed of the 32-threaded MC-B&B algorithm is shown.

Comparing these results to those obtained for FSP, one can notice that the acceleration
factors with respect to the MC-B&B algorithm are significantly less important. For
example, solving nug20 MC-B&B reaches 83 kn/s while GPU-B&B decomposes 118 kn/s
using a single device and 472 kn/s using 4 GPUs. Like for FSP, GPU-B&B scales linearly
with the number of GPUs (up to 4 devices). However, the relative speedup over MC-B&B
using 32 threads is only 1.4× for a single GPU and 5.6× using four GPUs, i.e. about 10
times less than for FSP.

For the six considered QAP instance, GPU-B&B explores the tree on average 5.3 times
faster than the 32-threaded MC-B&B. Interestingly, this is only slightly more than the
acceleration factor obtained by offloading the computation of bounds to the GPU. For all

121

Table 3.7: Node processing rates (in kn/s) obtained when solving QAP instances had20, scr20,
nug20, nug18, nug16a, esc16c, using one to four GPUs, work stealing strategy: Hypercube/Random.
For comparison the node processing speed obtained with the 32-threaded MC-B&B and GMC-
B&B (random-1/2 work stealing) are shown.

Inst #nodes MC-B&B GMC-B&B GPUx1 GPUx2 GPUx3 GPUx4
×106 kn/s kn/s kn/s kn/s 𝑇1𝐺𝑃𝑈

𝑇2𝐺𝑃𝑈
kn/s 𝑇1𝐺𝑃𝑈

𝑇3𝐺𝑃𝑈
kn/s 𝑇1𝐺𝑃𝑈

𝑇4𝐺𝑃𝑈

had20 69.9 64 311 81 163 2.0 244 3.0 324 4.0
scr20 25.3 68 376 109 217 2.0 324 3.0 431 3.9
nug20 362.6 83 469 132 263 2.0 395 3.0 526 4.0
nug18 25.0 111 638 182 364 2.0 542 3.0 720 3.9
nug16a 0.84 153 819 248 483 2.0 660 2.7 825 3.3
esc16c 356.0 675 5 473 1 597 3 099 1.9 4 608 3.8 6 122 3.8
AVG 139.9 192 1 348 392 765 2.0 1 129 2.9 1 491 3.8

tested QAP instances, GPU-B&B outperforms GMC-B&B, but the margin is much smaller
than the 1.7× acceleration observed for FSP. Indeed, using the GPU-accelerated MC-B&B
algorithm on average 1348 kn/s are decomposed, against 1491 kn/s for GPU-B&B, i.e. on
average GPU-B&B is only about 10% faster than the GPU-accelerated version of MC-B&B.

Examination of the execution time breakdown for the two small instances Ta030 and
nug16a, shown in Table 3.8, illustrates and explains this problem-dependent discrepancy.
In terms of decomposed nodes, the tree associated with FSP instance Ta030 is about twice
as large as the one associated with nug16a. However, for both instances the exploration
time with GPU-B&B is approximately the same, divided in approximately the same
proportions between bounding, IVM-management and load balancing operations. In
other words, the node processing rate for the FSP instance is about twice as high as for
QAP - despite the fact that a sequential node evaluation on CPU is more costly for FSP.
As a consequence of the very efficient acceleration of the FSP bounding operation, the
algorithm spends proportionally more time managing the IVM structures and balan-
cing the workload, while for the QAP this part remains relatively small and/or can be
efficiently hidden by overlapping computations. Indeed, as one can see in Table 3.8, for
Ta030 GMC-B&B algorithm spends about 50% of time handling and sharing subproblems,
while the share is only 20% for nug16a. As GPU-B&B essentially accelerates these parts of
the algorithm by implementing the entire algorithm on the device, solving FSP allows a
better acceleration than QAP. It should be noted that the cost of transferring subproblems
to the device is rather negligible, and that the acceleration provided by GPU-B&B over
GMC-B&B is a result of massively parallelizing a larger portion of the code.

122 Chapter 3. GPU-centric Branch-and-Bound

Table 3.8: Execution time breakdown for FSP instance 𝑇𝑎030 and QAP instance 𝑛𝑢𝑔16𝑎 using
GPU-B&B and GPU-accelerated MC-B&B.

Instance Ta030 nug16a

Algorithm #Nodes 1 648 102 841 732

GPU-B&B

𝑇𝑡𝑜𝑡𝑎𝑙 1.04 1.02
Average 𝑇𝑏𝑜𝑢𝑛𝑑/thread 0.89 0.93
Average 𝑇𝑚𝑎𝑛𝑎𝑔𝑒/thread 0.06 0.05
Average 𝑇𝑙𝑜𝑎𝑑𝑏𝑎𝑙/thread 0.08 0.04

GMC-B&B

𝑇𝑡𝑜𝑡𝑎𝑙 1.68 1.04
Average 𝑇𝑏𝑜𝑢𝑛𝑑/thread 0.85 0.81
Average 𝑇𝑚𝑎𝑛𝑎𝑔𝑒/thread 0.72 0.18
Average 𝑇𝑙𝑜𝑎𝑑𝑏𝑎𝑙/thread 0.11 0.05

𝑛-Queens: Table 3.9 reports the achieved node processing rates (in Mn/s) for the
𝑛-Queens (𝑛 = 15-19) problem counting the total number of solutions. As shown in the
second column of Table 3.9 the size of explored tree grows exponentially according to
the instance size 𝑛. Results for 𝑛 < 15 are not shown as these instances are solved within
a fraction of a second. For 𝑛 > 19 and the execution time exceeds the imposed time limit
of 30 minutes using a single GPU.

In order to compare the performance of our GPU algorithm to CPU-based perform-
ances, Table 3.9 also shows the processing rates obtained a highly optimized sequential
𝑛-Queens algorithm [Som] using bit patterns, similar to the 𝑛-Queens program presented
in [Ric97]. This algorithm is the fastest sequential algorithm for 𝑛-Queens we were
able to find in the literature. For 𝑛 = 15 − 18 this algorithm decomposes on average
83.7 Mn/s which is approximately 35−70× faster than our sequential IVM-based version
for 𝑛-Queens8. Using 32 threads MC-B&B achieves about 30 Mn/s, i. e. 30× less than
GPU-BT. For large 𝑛-Queens instances (𝑛 = 18, 19) our 4-GPU-BT algorithm is capable of
decomposing up to 1 billion nodes per second, finding all solutions to the 19-Queens
problem within 4 minutes.

Profiling shows that the work stealing approach generates small overhead: For larger
instances the portion of time spend in work stealing is lower, as explorers run out of
work less frequently.

8. The bitset-based 𝑛-Queens implementation uses bit-level parallelism to evaluate nodes with 𝒪(1)
computational complexity. Our IVM-based 𝑛-Queens implementation evaluates nodes with complexity
𝒪(𝑛).

123

Table 3.9: Node processing rates (in Mn/s) obtained when solving 𝑛-Queens (𝑛 = 15−19) using
one to four GPUs, work stealing strategy: hypercube+random.

Inst #nodes CPU GPUx1 GPUx2 GPUx3 GPUx4
×106 Mn/s Mn/s Mn/s 𝑇1𝐺𝑃𝑈

𝑇2𝐺𝑃𝑈
Mn/s 𝑇1𝐺𝑃𝑈

𝑇3𝐺𝑃𝑈
Mn/s 𝑇1𝐺𝑃𝑈

𝑇4𝐺𝑃𝑈

15-Queens 91 63.41) 232 364 1.6 397 1.7 437 1.9
16-Queens 563 86.41) 286 497 1.7 633 2.2 710 2.5
17-Queens 4 224 95.11) 290 555 1.9 748 2.6 952 3.3
18-Queens 29 350 89.81) 281 567 2.0 779 2.8 999 3.6
19-Queens 242 419 n/a 274 522 1.9 770 2.8 1 040 3.8

AVG 55 329 83.71) 273 501 1.8 665 2.4 827 3.0
1) sequential bitset-based backtracking algorithm (Jeff Somers[Som], on E5-2630v3, gcc 15.0).

3.5.5 Hybrid CPU-multi-GPU-B&B

To conclude this experimental section, the efficiency of the hybrid multi-core/multi-
GPU-B&B algorithm is evaluated. As shown by the experimental results reported in the
previous sections, a single GPU can be used to process about 0.5 Mn/s when solving FSP
instances of the group Ta021–Ta030. This rate is approximately 250 times higher than the
processing rate of a sequential CPU-based algorithm. Hence there is little potential for
accelerating the 4-GPU algorithm by using the 16 available CPU-cores in addition to the
GPUs. However, in the perspective of integrating the GPU-based B&B algorithm in a
larger hybrid cluster-system, the study of this smaller hybrid setup may provide useful
insights.

The obtained experimental results show that the proposed approach for the hybrid
multi-core/multi-GPU algorithm raises granularity issues. For host-to-device work
stealing operations, we have tested both granularity policies described in Subsection 3.4.2.
Besides the steal-1/2, we tested the policy where a CPU-based work stealing victim keeps
only the 1/200𝑡ℎ part of its interval when the thief is a GPU. For both granularity policies our
experiments show that the hybrid algorithm is on average slightly slower than its multi-
GPU-only counterpart. More importantly, the results show that the hybrid algorithm
is less robust than the multi-GPU algorithm. For example, performing 40 resolutions
of 17-Queens using the 4-GPU algorithm an average execution time of 4.55 seconds
±2.87% (relative standard deviation) is obtained. For 40 resolutions of the same instance
with the hybrid algorithm (4 GPU + 16 CPU) the obtained average execution time is
4.67 seconds ±6.10%, meaning that the hybrid algorithm is less robust than the B&B
using multi-GPU only. This robustness problem is amplified when only 1 GPU is used
in combination with 16 CPU-explorers. In Table 3.10 the average elapsed time for 100
resolutions of FSP instance Ta028 is shown for the different combinations of 1 / 4 GPUs

124 Chapter 3. GPU-centric Branch-and-Bound

and 0 / 16 CPUs. The obtained average is shown with the relative standard deviation
(100%× standard-deviation/mean) and the observed minimum and maximum values.
While the obtained minimum values are lower for the hybrid algorithm, an average
slowdown and less robustness is observed. For a single GPU combined with 16 CPUs
two extreme values are observed, one execution lasting 46.0 seconds, one 27.9 seconds.

These results can be explained with the help of Figure 3.11, showing the evolution
of the workload in each GPU (in terms of active IVMs) during the resolution of FSP
instance Ta022. The left-hand side (Figure 3.11a) corresponds to a resolution without
CPU-explorers and the right-hand side (Figure 3.11b) to a resolution using 16 CPU-
explorers in addition to the 4 GPUs.

Ta022 - 4 GPU

ex
pl

or
in

g
IV

M

0

4k

8k

12k

16k

time
0 5 10

GPU#1
GPU#2
GPU#3
GPU#4

(a) GPU-only

Ta022 - 4 GPU + 16 CPU

ex
pl

or
in

g
IV

M

0

4k

8k

12k

16k

time
0 5 10

GPU#1
GPU#2
GPU#3
GPU#4

(b) Concurrent GPU/CPU

Figure 3.11: Evolution of workload (#IVMs in exploring state) during the resolution of Ta022.

A comparison of both shows that, in the presence of CPU-explorers the GPUs run
out of work more frequently, because they give away work units which are too large and
they need to recover later. As mentioned we attempt to deal with this issue by cutting the
work units into different chunk sizes. However, it is impossible to know in advance how
much work each interval actually contains. These results show that the hybrid approach
which consists in treating CPU and GPU workers symmetrically is questionable because
it threatens the robustnessy of the algorithm. While the presented multi-GPU approach
shows good results in a multi-GPU-only system, a master-worker approach could be a
better approach for dealing with heterogeneous workers.

125

Table 3.10: Averaged execution times for FSP instance Ta028 (100 executions) for comparing the
multi-GPU only and the hybrid algorithm (using 16 CPU threads)

GPUx1 GPUx4
t𝑎𝑣𝑔 t𝑚𝑖𝑛 t𝑚𝑎𝑥 t𝑎𝑣𝑔 t𝑚𝑖𝑛 t𝑚𝑎𝑥

no CPU (+0 CPU) 14.7±0.7% 14.6 14.9 3.9±0.6% 3.87 3.96
hybrid (+16 CPU) 16.1±22.1% 14.4 46.2 4.4±2.8% 3.84 5.09

3.6 Conclusions

In this chapter we presented the design and implementation of GPU-B&B, a GPU-centric
algorithm that implements all four B&B operators on the device. To the best of our
knowledge it is the first B&B algorithm to run entirely on the GPU. This eliminates data
transfers and reduces the portion of sequential or weakly parallel host code. Two variants
of the algorithm are proposed, both based on the IVM data structure. Both alternate
exploration and work stealing phases, implemented as GPU kernels, until the interval
[0, 𝑛![is completely explored.

• GPU-B&B has two levels of parallelism, nesting the parallel evaluation of bound
inside the parallel tree exploration model. On the upper level different parts of
the B&B tree are explored simultaneously, performing the IVM-based branching,
selection and pruning operators in parallel. For each IVM the bounding operator is
in turn parallelized, refining the granularity in the performance-critical bounding
phase. At the junction of the two levels a remapping phase is introduced in order
to adapt the configuration and the mapping of the bounding kernel to the variable
workload.

• GPU-BT (GPU-backtracking) performs parallel tree exploration without paral-
lelizing the evaluation of nodes. It is designed for permutation-problems with
computationally inexpensive node evaluation functions like, for instance, check-
ing the feasibility of a subproblem with respect to constraints. In order to avoid
overhead from kernel launches, GPU threads in GPU-BT are semi-persistent, in
the sense that each thread performs several B&B iterations within the same kernel,
whose termination is triggered when a threshold of idle threads is attained.

The implementation of irregular tree search algorithms like B&B on GPUs is challen-
ging because the irregular nature of the algorithm is at odds with the SIMD execution
model and other architectural constraints. In particular, we identified two challenges
raised when revisiting the design and implementation of parallel B&B on GPUs. The

126 Chapter 3. GPU-centric Branch-and-Bound

first one consists in finding suitable mappings of threads onto the data, i.e. IVM struc-
tures and subproblems, in order to reduce thread divergence and detrimental effects
of irregular memory access patterns. We propose alternative mapping schemes for the
selection, branching and pruning operators on the one hand, and for the bounding oper-
ator on the other. The second addressed issue is the implementation of an efficient load
balancing mechanism inside the GPU. As the entire exploration process is implemented
on the GPU, load balancing must be performed inside the device. A GPU-based work
stealing mechanism, rarely addressed in the literature, which is used by both variants of
the GPU-B&B algorithm, is proposed. It consists of a victim selection phase in which
IVMs with empty intervals are mapped in parallel onto IVMs with non-empty intervals
and a parallel work transfer phase. Different strategies for data-parallel work stealing
are presented, based on different topologies, victim selection criteria and granularity
policies. Furthermore, we proposed a hierarchical work stealing approach that performs
load balancing on the inter-GPU level, enabling GPU-B&B to be executed on multi-GPU
systems.

An experimental study using three different permutation problems (FSP, QAP and
𝑛-Queens) as test-cases revealed strengths and weaknesses of the GPU-B&B centric
approach. Some of the main experimental results are summarized in the following.

• Using 4 Maxwell GPUs the proposed GPU-B&B algorithm solves FSP instances
which require 15 minutes of sequential processing in less than 1 second and larger
problems that require 21.5 hours of sequential computation in 1 minute. While
for the FSP speedups of 60× and more are observed, compared to 32-threaded
MC-B&B, acceleration factors for the QAP are about 10 times lower. This can be
explained by the irregularity and higher memory requirements of the lower bound
used for QAP.

• For the fine-grained 𝑛-Queens problem up to 109 nodes per second are decomposed
by the multi-GPU-BT algorithm. This is about than 10× more than the fastest CPU
algorithms exploiting bit-level parallelism and about 30× more than our custom
MC-B&B 𝑛-Queens implementation. The proposed trigger mechanism substantially
increases the performance of GPU-BT, but its tuning is challenging. Adjusting the
trigger threshold dynamically would be a useful improvement of the approach.
Also, the fact that GPUs cannot answer work stealing requests during the prolonged
exploration phase raises stability issues.

• The proposed hypercube-based load balancing mechanism allows to handle over
100 000 IVMs on a single device efficiently. A hierarchical work stealing approach

127

efficiently extends GPU-B&B and GPU-BT to multi-GPU systems, allowing linear
scalability with the number of GPUs (up to 4) for all but the smallest instances of
the three test-problems.

• Compared to the GMC-B&B offloading approach, the GPU-centric approach allows
an acceleration of 1.5×-1.8× for the FSP. For the QAP the benefit of implementing
the entire algorithm on the GPU is less clear, as only 10% performance improve-
ment over GMC-B&B are observed. For fine-grained problems like 𝑛-Queens the
massive parallelization of the search itself seems to be the only viable GPU-based
approach. To further summarize these results, the benefits that can be taken from
implementing the entire B&B algorithm depend to a large extend on the irregularity
and the memory requirements of the node evaluation function.

Chapter 4

Branch-and-Bound for hybrid HPC
clusters

Contents
4.1 Introduction . 129

4.2 B&B for hybrid clusters . 129

4.2.1 B&B@Grid . 129

4.2.2 Design of hybrid distributed B&B . 131

4.2.3 Redundant exploration . 133

4.2.4 Implementation of worker process . 135

4.3 Experiments . 138

4.3.1 Experimental protocol . 138

4.3.2 Resolution of very large problem instances 138

4.3.3 Scalability: Ouessant . 143

4.3.4 Hybrid CPU/GPU scalability . 146

4.3.5 Solving other 50×20 FSP instances . 148

4.4 Conclusion . 149

128

129

4.1 Introduction

This chapter presents a hybrid distributed version of the B&B algorithm (HD-B&B) for
large-scale heterogeneous clusters or grids, integrating multi-core, many-core and graph-
ics processing units. HD-B&B is based on the B&B@Grid platform [MMT07]. B&B@Grid
allows to efficiently partition the B&B tree search among distant computing nodes, which
host one or several workers. Each worker explores a portion of the search space (an
interval) using a sequential B&B. Thus, while compute nodes in B&B@Grid may be
composed of multi-core processors, the latter are seen as a collection of mono-core pro-
cessors. Therefore, B&B@Grid is revisited with the goal of adapting it to heterogeneous
computing platforms.

4.2 B&B for hybrid clusters

4.2.1 B&B@Grid

The B&B@Grid platform is designed for solving large scale COPs on computational grids.
B&B@Grid is based on the farmer-worker approach and uses an interval-based encoding
of work units which efficiently reduces communication costs. The approach also includes
efficient load balancing, fault tolerance and termination detection mechanisms. While
exchanged work units are intervals, like in the IVM-based approaches, the workers
execute conventional LL-based B&B processes. The conversion between lists of nodes
and intervals is performed using two operations: fold and unfold. The fold operator
deduces an interval from a list of pending nodes, and the unfold operator deduces an
unique and minimal list of pending nodes from an interval.

Each B&B process explores an interval of node numbers, and manages the local best
solution found so far. The coordinator keeps a copy of all not yet explored intervals, and
manages the global best solution found so far. Figure 4.1 gives an example with three
B&B processes and a coordinator. In this example, three intervals are being explored,
and the fourth one is currently not explored by a B&B process.

When a worker joins the computation or a B&B process has no more local work left,
it contacts the coordinator. The farmer answers the request by sending either a non-
assigned interval, or the right half of the largest currently explored interval to the worker.
Even when local work is still available, workers periodically inform the coordinator about
their work progress (according to a fixed, user-defined period). The worker folds its
current list of pending nodes and sends the corresponding interval to the coordinator.

Upon reception of an interval [𝐴, 𝐵[and its unique identifier, the coordinator updates

130 Chapter 4. Branch-and-Bound for hybrid HPC clusters

Figure 4.1: Illustration of B&B@Grid with three B&B processes and coordinator (from [MMT07]).

the copy [𝐴′, 𝐵′[of the interval. This update consists in an intersection of both intervals.
Indeed, since the last synchronization both intervals [𝐴, 𝐵[and [𝐴′, 𝐵′[may have evolved.
A B&B process, working on [𝐴, 𝐵[increments the value of 𝐴 and leaves 𝐵 unchanged.
The coordinator, responsible for load balancing, decrements the value of 𝐵′ and leaves
𝐴′ unchanged.

The importance of these periodic checkpointing operations is twofold. On the one
hand, in the case of node failure the last copy of the interval becomes available for other
workers. Also, the checkpointing mechanism periodically saves the set of unexplored
intervals to a file, allowing to restart in case of coordinator failure. On the other hand, a
worker must be informed if the right half of its interval is assigned to another B&B process.
As B&B@Grid uses a pull-approach, where all communications are worker-initiated,
periodic polling is the only way to achieve this. The longer a worker proceeds with the
exploration without contacting the coordinator, the likelier it becomes that some parts of
the search space are explored redundantly. Indeed, in the worst case a worker explores
its entire interval even though parts of it have also been assigned to other workers.

B&B@Grid has been successfully used to find and prove the exact solution of an
unsolved 50 jobs/20 machines FSP instance (Ta056). The initial upper bound was set to
3 680, which was proven to be equal to the optimal cost (3 679) plus one [MMT07]. The
exploration process lasted 25 days, using up to 1 900 processors, belonging to 9 distinct
clusters of the french experimental Grid’50001 platform. On average 328 processors are
exploited with an average usage rate of 97%, while the farmer processor is exploited
only 1.7% of the time. Despite setting the worker’s checkpointing period at 3 minutes,
the rate of redundant exploration is less than 0.4%.

1. https://www.grid5000.fr

https://www.grid5000.fr

131

4.2.2 Design of hybrid distributed B&B

The experimental results for the hybrid shared-memory B&B reported in Subsection 3.5.5
indicate that load balancing among workers with very disparate computing power is
challenging. In particular, the work-first principle should guide the design of load
balancing mechanisms. Using a farmer-worker model the burden of servicing work
requests is taken off the workers.

As illustrated in Figure 4.2, in HD-B&B workers execute different variants of the
B&B algorithm, depending on the underlying hardware. For instance, a GPU can host
one or more GPU-B&B processes, a vectorized version of MC-B&B can run on a Xeon
Phi processor, and so on. B&B processes use a variable number of IVM-structures
(“threads”). However, heterogeneous worker processes use the same communication
scheme to exchange work units with the coordinator. The coordinator is unaware of the
worker’s type.

Figure 4.2: Illustration of HD-B&B, integrating IVM-based GPU-B&B and MC-B&B introduced
in Chapters 2 and 3.

Locally, IVMs perform a synchronous or asynchronous parallel exploration of the
assigned work unit. Using multi-threaded workers and local work stealing, an interval
may be locally split into several intervals. The following example illustrates this situation.
When the interval [0, 20[is assigned to a worker using 4 threads, exploration and load
balancing may reduce this interval to [3, 5[∪[6, 10[∪[13, 15[– or to any other finite
disjoint union of up to 4 integer intervals included in [0, 20[.

With respect to B&B@Grid, work units are redefined at the coordinator-level. In
HD-B&B a work unit is a collection of integer intervals contained in [0, 𝑛![, where 𝑛 is the

132 Chapter 4. Branch-and-Bound for hybrid HPC clusters

problem size. This collection of intervals is interpreted as a finite union of 𝑁 intervals:

work unit 𝑊 =
𝑁
⋃
𝑖=0

[𝐴𝑖, 𝐵𝑖[, where ∀𝑖 ∶ [𝐴𝑖, 𝐵𝑖[⊂ [0, 𝑛![(4.1)

Basically any parallel B&B algorithm that has a procedure for initializing the al-
gorithm at any work unit can be used as a worker in HD-B&B. However, there are a few
assumptions to be made about workers:

• Workers explore sets of intervals. For each worker 𝑤 there is a number 𝑁𝑤,𝑚𝑎𝑥 that
indicates the maximum number of intervals the worker can handle.

• All workers explore intervals in a consistent way. By that, we mean each interval
corresponds to an unambiguous portion of the B&B tree. This requirement can
easily be missed. For example, when a worker sorts nodes at the same depth by the
corresponding lower bound values, there must be a consistent handling of equal
values. In other words, the sorting algorithm must be exactly the same. In the case
workers use different bounding operators, lexicographic DFS should be used.

In order to perform checkpointing and load balancing the coordinator uses two
operations: intersection and division (in the sense of splitting) of work units. These
operations are adapted to work units as defined in Equation 4.1.

Work unit intersection. The intersection of two intervals is done by considering the
maximum between both start points and the minimum between both end points, as
shown in Equation 4.2.

[𝐴, 𝐵[∩[𝐴′, 𝐵′[= [𝑚𝑎𝑥(𝐴, 𝐴′), 𝑚𝑖𝑛(𝐵, 𝐵′)[(4.2)

The intersection of two arbitrary unions of intervals requires pairwise intersection of
the intervals contained in both unions, as shown in Equation 4.3.

(
𝑁
⋃
𝑖=0

[𝐴𝑖, 𝐵𝑖[) ∩ ⎛⎜
⎝

𝑀
⋃
𝑗=0

[𝐴′
𝑗, 𝐵′

𝑗[
⎞⎟
⎠

=
𝑁
⋃
𝑖=0

𝑀
⋃
𝑗=0

([𝐴𝑖, 𝐵𝑖[∩[𝐴′
𝑗, 𝐵′

𝑗[) =

𝑁
⋃
𝑖=0

𝑀
⋃
𝑗=0

[𝑚𝑎𝑥(𝐴𝑖, 𝐴′
𝑗), 𝑚𝑖𝑛(𝐵𝑖, 𝐵′

𝑗)[
(4.3)

From a programming point of view Equation 4.3 is a permutable double for-loop over
both sets of intervals. Therefore the intersection of work unit is performed with quad-

133

ratic complexity 𝒪(𝑀𝑁) instead of 𝒪(1) (where 𝑀 and 𝑁 are the number of intervals
contained in both operands).

Only few assumptions can be made on the nature of the intersected work units, but
they can help reduce the number of interval-intersections performed. An interval in the
currently processed work unit has a non-empty intersection with at most one interval in
the copy of this work unit. A break-statement can therefore be used to stop the execution
of the inner for-loop once this interval is found. Moreover, if both sets are sorted with
appropriate sorting algorithm, the intersecting interval can be found by dichotomic
search in log 𝑁 steps. The complexity of the intersection operator can therefore be
reduced to 𝒪(𝑁 log 𝑁)

Work unit splitting. The splitting of multi-interval work units is defined almost as in
the GPU-accelerated MC-B&B algorithm (Chapter 2) and multi-GPU-B&B (Chapter 3).
In addition, one must take into account that each worker has a fixed maximum capacity
𝑁𝑤,𝑚𝑎𝑥 of intervals it can handle. This means that a worker can be assigned less, but not
more than 𝑁𝑤,𝑚𝑎𝑥 intervals. Worker attach this number to every message transmitted to
the coordinator.

Let 𝑊 =
𝑁
⋃
𝑖
[𝐴𝑖, 𝐵𝑖[be the work unit selected for splitting by the coordinator. If the

number of intervals contained in this work unit (𝑁) is larger than or equal to the requested
number 𝑁𝑤,𝑚𝑎𝑥, then the right half of the first 𝑁𝑤,𝑚𝑎𝑥 intervals in 𝑊 forms the new work
unit. In the contrary case (𝑁 < 𝑁𝑤,𝑚𝑎𝑥) the right half of the first 𝑁 intervals is the new
work unit.

To sum up, 𝑊 is split in two parts 𝑊′ and 𝑊″ as shown in Equation 4.4. In the load
balancing process the coordinator replaces 𝑊 by 𝑊′ and attributes 𝑊″ to the requesting
worker.

𝑊 =
𝑚𝑖𝑛(𝑁,𝑁𝑤,𝑚𝑎𝑥)

⋃
𝑖

[𝐴𝑖, 𝐶𝑖[

𝑊′ =
𝑚𝑖𝑛(𝑁,𝑁𝑤,𝑚𝑎𝑥)

⋃
𝑖

[𝐶𝑖, 𝐵𝑖[, where 𝐶𝑖 =
𝐴𝑖 + 𝐵𝑖

2

(4.4)

4.2.3 Redundant exploration

As mentioned earlier, in the load balancing scheme used by B&B@Grid, redundant
exploration of intervals may occur. The original B&B@Grid algorithm is based on the
assumption that the amount of redundant work is small because workers only increment

134 Chapter 4. Branch-and-Bound for hybrid HPC clusters

the begin of their interval, while work is only stolen from the end. This assumption
does not hold in HD-B&B when workers are allowed to locally divide their assigned
work units. In fact, with single-interval work units redundant exploration occurs only
occasionally and the amount becomes negligible for large instances. When the same
load balancing scheme is used in HD-B&B redundant exploration occurs systematically.
Table 4.1 illustrates how redundant exploration for both types of work units occurs.

Table 4.1: Illustration of redundant tree exploration in B&B@Grid and HD-B&B.

t=1 t=2 t=3

B&
B@

G
rid

H
D

-B
&

B

The upper row of Table 4.1 illustrates the case of single-interval work units like in
B&B@Grid. In the example, worker 1 explores the interval [0, 20[while worker 2 is idle.
Worker 2 contacts the coordinator and is assigned the right half [10, 20[of the work unit
[0, 20[. In the meanwhile, worker 1 continues exploring its interval: in the example up to
position 13, before worker 1 contacts the coordinator for checkpointing. In this case, the
interval [10, 13[is explored redundantly by workers 1 and 2. The lower row illustrates
the case of locally splittable multi-interval work units like in HD-BB. In contrast to the
previous example, worker 1 explores interval [0, 20[in parallel by splitting it into 4 parts,
for instance [0, 5[, [5, 10[, [10, 15[, [15, 20[. Therefore, the second half [10, 20[is explored
almost immediately after the reception of interval [0, 20[. In contrast to the single-interval
case, one cannot expect that the ratio of performed redundant work decreases as the
size of the explored tree increases. Instead, it seems reasonable to expect the amount of
redundant work to increase with the number of IVMs used per worker, independently
from the tree-size.

In preliminary experiments using FSP instance 𝑇𝑎022 (22.1M nodes) we observed

135

more than 60% of redundant exploration with 20 GPU-workers (128 IVMs per worker)
and 12% with 20 CPU-workers (4 IVMs per worker). A moderate, but insufficient decrease
of redundant exploration is observed when increasing the tree-size.

The proposed approach to tackle this issue is based on the following idea. The origin
of redundant exploration, as illustrated in the second row of Table 4.1, is the local load
balancing mechanism which performs interval splitting without informing the coordin-
ator. If local interval-splitting operations were performed simultaneously in the copies
held by the coordinator, the load balancing mechanism would be conceptually equivalent
to the single-interval B&B@Grid approach. In a distributed memory environment this is
not possible. However, workers can inform the coordinator about local work stealing
operations directly after performing them. The implementation of a worker process,
more precisely, the interface used for communication with the coordinator, is described
in the following subsection.

4.2.4 Implementation of worker process

As discussed in the previous subsection, redundant search space exploration can be
avoided by updating the coordinator’s copy of a work unit as soon as this work unit is
locally partitioned. Therefore, in HD-B&B, a local load balancing operation triggers a
communication with the coordinator. This considerably increases the communication
overhead. For example, in the case of a GPU-worker, a communication operation includes
the following steps: (1) copy factoradic intervals from device to host, (2) convert factoradic
to decimal intervals, (3) send work unit to coordinator, (4) wait for answer, (5) check
if local work needs to be updated and (6) perform update if necessary. Only steps (1)
and (6) require synchronization with the currently explored work unit (in the factoradic
form, used by the worker) and steps (2)–(5) can be performed independently from the
exploration process.

In order to decrease communication overhead for the worker, HD-B&B uses asyn-
chronous communications. Each worker is composed of one communicator thread and
one exploration thread. Figure 4.3 shows a flowchart illustrating a B&B process using a
communication thread for asynchronous communications with the coordinator. Solid
black lines indicate the control flow of both threads and dashed lines show some of the
more important data dependencies. In particular it indicates the flow of work units from
the B&B exploration thread to the coordinator and back.

If some conditions (named CONTACT in Figure 4.3) are met and if the communicator
thread is in the READY-state, the worker thread writes its current intervals to a buffer.

136 Chapter 4. Branch-and-Bound for hybrid HPC clusters

Also written to the communication buffer are: the best solution found so far, exploration
statistics, the work unit’s identifier (ID) and the maximal number of intervals (𝑁𝑤,𝑚𝑎𝑥)
that can be handled by the worker. After writing to the buffer, the exploration thread
unlocks the waiting communication thread by incrementing a binary semaphore, and
resumes exploring its work unit.

Even if the CONTACT conditions are met again, the exploration thread does not
re-fill the buffer until the communication thread finishes the current task and raises its
READY-flag. There are two possible outcomes of the communication operation: either
the worker thread needs to update its local work unit or not. If an update is available,
the communication thread waits until the exploration thread has applied this update.
Otherwise, the communicator thread does not interrupt the worker thread and sets its
READY flag to true.

The parallel B&B exploration performed by the worker thread can be any of the
parallel B&B algorithms described in this thesis. The subroutine called ”parallel B&B
exploration” in Figure 4.3 incorporates local load balancing and returns whenever the
conditions for contacting the server are met or an update is available. The CONTACT
conditions determine how frequently a worker checkpoints. Assuming that the commu-
nication thread is waiting, a checkpoint operation is triggered if one of the following is
true.

1. No more work is locally available. This is the case when all intervals of the work
unit are empty. The worker needs to contact the server to request new work.

2. The server has not been contacted for a time longer than a user-defined fixed time
period. The coordinator should be regularly informed about the progress of the
exploration. By default, this parameter is set to 30 seconds.

3. The best found solution has been improved. It is important to communicate this
information as soon as possible to all participating processes because it makes the
pruning mechanism of all explorers more efficient.

4. A local load balancing operation was performed. Especially when the worker
uses a large number of IVMs this condition may trigger communications very
frequently. In order to limit the amount of communications, workers perform local
load balancing phases only if more than 20% of IVMs are empty.

These conditions are checked at each iteration of the local exploration process. In
addition, the local B&B process checks at each iteration whether an update is available.

137

Figure 4.3: Flowchart illustrating a HD-B&B worker process composed of a worker thread
and a communicator thread. Solid lines represent control flow and dashed lines show data
dependencies. For the sake of clarity some implementation details have been spared out.

138 Chapter 4. Branch-and-Bound for hybrid HPC clusters

4.3 Experiments

4.3.1 Experimental protocol

In previous experiments we mainly used the 20x20 Taillard instances (Ta021-Ta030)
because they are large enough to require parallel computing, but small enough to be
solved within a couple of minutes by a GPU accelerated algorithm. The largest of these
instances, Ta023, requires 21.5 hours of sequential processing using a single CPU core
and is solved within 1 minute on a 4-GPU shared memory system. For experimentations
on larger, distributed GPU-equipped systems this instance is too small. Most of the
Taillard instances defined by 50 jobs, 20 machines (Ta051-Ta060) seem too large to be
solved within a reasonable amount of time on the available machines. We have used
these 50 jobs-on-20 machines instances to generate smaller instances using the following
procedure.

1. Initialize HD-B&B for a resolution of instance 𝑇𝑎0𝑋 (with 𝑋 = 51, … , 60 and
best known upper bound). Then, run HD-B&B using a single GPU-worker (with
4 096 IVMs) and save remaining intervals to a file after 1, 2, …, 5 hours (coordinator
checkpointing).

2. Read 𝐹𝑋
ℎ , the set of intervals remaining after the exploration of instance 𝑋 after ℎ

hours. Perform the operation 𝐸𝑋
ℎ = [0, 𝑁![/𝐹𝑋

ℎ .

3. Instance 𝑇𝑎0𝑋-ℎ consists in exploring the search space 𝐸𝑋
ℎ with the processing time

matrix defined by base instance 𝑇𝑎0𝑋.

As no improvement of the initial upper bound occurs in step 1, different explorations of
the search subspace defined by 𝐸𝑋

ℎ visit the same number of nodes.
For the implementation of arbitrary precision integers the GNU Multiple Precision

Arithmetic Library (GMP2) is used. For inter-node communication TCP/sockets are
used.

4.3.2 Resolution of very large problem instances

To the best of our knowledge, of the 10 Taillard instances defined by 50 jobs and 20 ma-
chines (Ta051-Ta060), Ta056 is currently the only one for which the best known solution
is proven to be optimal. As mentioned, the optimal solution of Ta056 was found and
proven in 2006 using B&B@Grid [MMT07]. The resolution required 25 days of processing,

2. https://gmplib.org/

https://gmplib.org/

139

exploiting on average 328 processors distributed on 9 clusters of the French experimental
testbed Grid’5000. This result is used as a reference for the three resolutions of Ta056
which are performed under identical initial conditions. As in the B&B@Grid experiment
reported in [MMT07] the initial upper bound is set to the optimal cost plus one unit, i.e.
3 680, which allows one to verify the correctness of the algorithm.

The following three resolutions of Ta056 found the same optimal cost (3 679), and the
same optimal solution.

1. Using the GPU-B&B algorithm on a shared memory 4-GPU system (gpu-8k) at
the Mathematics and Operations Research Department (UMONS). The system is
composed of a dual-socket 8-core Haswell (E5-2630v3) CPU and 4 Maxwell (GTX
980) GPUs. Thus, gpu-8k has 16 CPU cores and 8 192 CUDA cores in total.

2. Using HD-B&B on the chifflet cluster of the Grid’5000 site in Lille3. The cluster is
composed of 8 nodes, with 10-Gigabit/s SFP+ interfaces and 768 GB memory per
node. Each node is composed of two 14-core Broadwell (E5-2680v4) CPUs and two
Pascal (GTX 1080Ti) GPUs. In total, chifflet has 224 CPU cores and 57 344 CUDA
cores.

3. Using HD-B&B on the prototype ouessant cluster located at the Institut du dévelop-
pement et des ressources en informatique scientifique (IDRIS4). The ouessant cluster is
composed of 12 OpenPower ”Minsky” nodes (S822LC). Each of the 12 ”Minsky”
nodes is composed of two POWER8+ 10-core CPUs and 4 Pascal (P100) GPUs, fully
connected via NVLink. Nodes are interconnected by 100-Gigabit/s Mellanox EDR
IB Coherent Accelerator Processor Interface (CAPI). In total, Ouessant has about
170 000 CUDA cores and 240 CPU cores. For technical reasons, in our experiments
only 9 of the 12 nodes were available.

The measured resolution time for instance Ta056 is illustrated in Figure 4.4.

Execution time A first GPU-accelerated resolution of Ta056 was performed on gpu-8k.
The algorithm finds and proves the optimality of the cost 3 679 in approximately 228 hours
(9.5 days). This is about 2.6× faster than the 2006 resolution using B&B@Grid. Based
on this result and hardware specifications one can try to predict the execution time on
chifflet and ouessant. Chifflet has 7.0× as many CUDA cores as gpu-8k, which run at 1.3×

3. Some experiments presented in this chapter were carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr).

4. http://www.idris.fr/

https://www.grid5000.fr
http://www.idris.fr/

140 Chapter 4. Branch-and-Bound for hybrid HPC clusters

600

228

23.5 9

Resolution time for Flowshop instance Ta056
t (

da
ys

)

0

5

10

15

20

25

30

t (
ho

ur
s)

0

100

200

300

400

500

600

700

2006 2015 2017 2017

3
2

≈300 CPU cores
≈0.75 TFLOPS (SP, Rpeak)
≈6000 kWh

≈8000 GPU cores
≈18.4 TFLOPS (SP, Rpeak)
≈190 kWh

≈60000 GPU cores
≈170 TFLOPS (SP, Rpeak)
≈140 kWh

≈130000 GPU cores
≈380 TFLOPS (SP, Rpeak)
≈110 kWh

Figure 4.4: Resolutions of FSP instance Ta056, initialized at “optimal cost plus one”. 2006:
B&B@Grid ([MMT07]), 2015: multi-GPU-B&B@gpu-8k (Chapter 3), 06/2017: HD-B&B@chifflet,
08/2017 HD-B&B@ouessant.

higher base clock frequencies. Assuming good scalability of HD-B&B and neglecting
higher memory bandwidth and clock speeds, one can expect to reduce the execution
time on chifflet by a factor 7.0×1.3 = 9.1, i. e. to 25 hours. Using 9 nodes of ouessant, about
130 000 CUDA cores with a base clock frequency of 1 328 MHz are available. Following
the same reasoning, one can expect to solve instance Ta056 in about 12 hours, i.e. 18.6
times faster than on gpu-8k.

Of course, these estimations cannot be completely accurate as they neglect commu-
nication costs and architectural differences like HDM2 stacked memory of the P100
GPUs. The actual elapsed wall time measured for both resolutions is smaller than these
predictions, but approximately in accordance with them. On chifflet, Ta056 is solved
in less than a day (23.5 hours), on ouessant in 9 hours. Compared with the B&B@Grid
resolution, the execution time is reduced by a factor of about 65×. Compared to the
estimated sequential execution time of 22 years, the execution time is reduced by at least
four orders of magnitude.

Energy Figure 4.4 also indicates an approximate value for the energy consumption of
each resolution. These values are based on the Thermal Design Power (TDP) of CPUs
and GPUs, as listed by the respective vendors. For example, the GTX 980 GPU is listed
with a TDP of 165 W and the host Xeon CPUs with 85 W, so an indicative value for the
energy consumption is given by (4 × 165 + 2 × 85)W × 228ℎ ≈ 190 kWh.

For the 2006 resolution using B&B@Grid the energy consumption can only be roughly
estimated. About 2/3 of processors in the computational pool exploited by B&B@Grid in

141

2006 are AMD Opteron dual-core CPUs, 90 nm feature size, with clock rates between 2.0
and 2.2 GHz. The remaining 1/3 are Intel Pentium 4 and Celeron mono-core processors
with similar clock rates. The most energy-efficient models of this type of CPUs are listed
with TDP values below 60 W, but most have TDPs of about 80 W. Taking into account
that most CPUs are dual-core, an optimistic estimation for the energy consumption is
328 processors × 30𝑊 × 25d × 24h/d ≈ 6000 kWh.

For chifflet a measured value is available for comparison, as power monitoring is
provided by the Ganglia tool. As shown in Figure 4.5, the Ganglia power monitoring
indicates that power remained approximately constant at 5.4 kW during the entire ex-
ploration process. For 23.5 hours of processing this amounts to an energy consumption
of 130 kWh, which is close to the TDP-based estimation of 140 W shown in Figure 4.4.

Figure 4.5: Power monitoring on Chifflet during the resolution of Ta056. NB: in this run HD-B&B is
initialized with ”optimum plus 2” as the initial upper bound, which explains the longer execution
time, compared to Figure 4.4.

Load balance Figure 4.6 illustrates the workload repartition among GPU- and CPU-
based workers, in terms of decomposed nodes. In addition to four GPU-workers,
on each ouessant node one multi-threaded CPU-based worker with 160 IVM is used
(2 × 10 cores × 8 threads).

In this configuration, each multi-core B&B process decomposes on average about
1

10 the amount of nodes decomposed by an average GPU-B&B. Using 4 times as many
GPU-based workers as multi-core workers, in total less than 3% of node decompositions
are performed on a CPU. One can see in Figure 4.6 that workers of the same type perform
a roughly equal amount of work. However, a node decomposition represents a variable
amount of work. Therefore, the number of decomposed nodes is only an approximative
indicator for load balance.

Another indicator for the load imbalance throughout the execution is the number

142 Chapter 4. Branch-and-Bound for hybrid HPC clusters

HD-B&B: Resolution of Ta056 - Work repartition

D
ec

om
po

se
d

no
de

s

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

Worker

gpu4
gpu8

gpu12
gpu16

gpu20
gpu24

gpu28
gpu32

gpu36
cpu4

cpu8

3
2

Figure 4.6: Number of nodes decomposed per worker. Resolution of Ta056 on 9 “Minsky” nodes
(ouessant), using 9×(4 GPU-based workers with 16 384 IVM + 1 CPU-based worker with 160
IVM).

of work allocations (work stealing operations). A worker only requests new work from
the coordinator when no more work is locally available. This indicator does not take
into account local load distribution. The results indicate that workers run out of work
very rarely. During the resolution on gpu-8k only 80 device-to-device work stealing
operations were performed during 9.5 days of execution time, i. e. on average a work
stealing operation occurs only every three hours, knowing that most operations occur in
the beginning and the end of the exploration process.

On chifflet, using 16 GPUs and no CPU-workers, the coordinator performs 519 work
unit allocations and about 60 000 checkpointing operations (work unit intersections).
During the 23.5 hours (1 400 minutes) of execution, the coordinator spends approximately
5 minutes processing worker requests. The remaining 1 395 minutes the farmer processor
is idle, as the coordinator waits for incoming messages. In other words, the farmer
processor is exploited only 0.4% of the time, which is lower than for B&B@Grid, where
the farmer is exploited 1.7% of the time.

These metrics change significantly for the hybrid resolution on ouessant. In order to
balance the workload between 36 GPUs and 9 multi-core CPUs, more than 33 000 work
unit allocations and 3 500 000 checkpointing operations are performed. In that case the
farmer processor is exploited 7% of the time, i. e. 38 minutes out of 9 hours.

Tree size Unfortunately, for the gpu-8k resolution, the number of decomposed nodes is
not available because of a technical problem (counter overflow). The tree exploration on
chifflet required 174.3 × 109 node decompositions, on ouessant 175.8 × 109. In [MMT07]
the reported number of “explored nodes” is 6.508 × 1012. We believe that this number
refers to the number of computed lower bounds. This explanation seems plausible

143

because of the following. Based on these numbers, one can deduce the average number
of bounds computed per node decomposition (6.5×1012

175×109 = 37.14). Further taking into
account that solutions are build from both ends, the average depth of a decomposed
node is 37.14

2 = 18.57. Extrapolating from typical tree-shapes of 20-job instances 18.6 is a
plausible average node-depth for 50-job instance Ta056.

Table 4.2: Exploration statistics for resolution of FSP instance Ta056

gpu-8k chifflet ouessant

GPUs 4×GTX 980 16×GTX 1080 Ti 36×P100
CPUs 0 0 18×Power8+
decomposed nodes n/a 174.3 × 109 175.8 × 109

elapsed time 229.0 h 23.5 h 9.0 h
𝑇𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟 n/a 5.1 min 38.2 min
Coordinator exploitation (%) n/a 0.36% 7.1%
#checkpoints n/a 61 100 3 568 368
#work allocations n/a 519 33 387

4.3.3 Scalability: Ouessant

In this subsection HD-B&B is experimented with 6 of the “5-hour” instances, Ta053-5,
Ta054-5, Ta055-5, Ta057-5, Ta058-5 and Ta059-5, generated as described in Subsection 4.3.1.
All experiments are performed on the ouessant cluster, using up to 36 Pascal P100 GPUs,
distributed on 9 nodes.

Figure 4.7 shows the experimental results for 1, 4, 8, 16, 24 and 36 GPUs as averages
over the six instances. The four Subfigures 4.7a, 4.7b, 4.7c, 4.7d respectively show the rate
of redundant node decompositions, the speedup achieved with 𝑝 GPUs compared to a
single GPU, the number of checkpoint operations and a breakdown of the coordinator
activity.

One can notice in Figure 4.7a that the rate of redundant node decompositions increases
according to the number of GPUs. On a single GPU no redundant node exploration
occurs and the number of explored nodes, identical from one execution to another, is
used as the reference value. Using 36 GPUs, about 0.8% of node decompositions are
redundant.

Figure 4.7b shows the elapsed time (in minutes) in blue on the right y-Axis and the
speedup with respect to a single GPU in black on the left y-Axis. The red dashed line
corresponds to linear speedup with the number of GPUs. The average execution time
on a single P100 GPU is about 220 minutes. Using 36 GPUs the average execution time
decreases to approximately 7.5 minutes, which corresponds to a relative speedup of

144 Chapter 4. Branch-and-Bound for hybrid HPC clusters

% redundant nodes
%

0

0.2

0.4

0.6

0.8

#GPU
0 8 16 24 32

(a) Rate of redundant decomposed nodes.

1
4

7.8

15.1

21.6

30

GPU-speedup

T 1
/T

p

0

8

16

24

32

m
in

0

100

200

300

#GPU
0 8 16 24 32

(b) Elapsed time and speedup over 1 GPU.

checkpoint operations

#o
pe

ra
tio

ns

0

5k

10k

15k
#o

pe
ra

tio
ns

/s
ec

0

10

20

30

40

#GPU
0 8 16 24 32

checkpoint (intersect)
divisions

(c) Number of checkpointing operations.

Master process

%
 e

la
ps

ed
 ti

m
e

0
5

10
15
20
25
30
35
40

se
co

nd
s

0

50

100

150

200

#GPU
0 8 16 24 32

Read/Write (Send-Buffer)
Divide
Intersect
Other Checkpoint

(d) Exploitation of coordinator process. Lines
show the time (in seconds) and bars the percent-
age of total elapsed time.

Figure 4.7: Evaluation of HD-B&B on cluster chifflet. Results are shown as averages over FSP
instances Ta053-5, Ta054-5, Ta055-5, Ta057-5, Ta058-5 and Ta059-5. Using 𝑇 = 16 384 IVM per
GPU and hypercube work stealing strategy for intra-GPU load balancing.

30× over a single GPU, for 83% efficiency. The efficiency rate depends on the size of the
solved problem instance and is studied later on in this subsection.

In Figure 4.7c the number of checkpoint operations (work unit intersections) and
work unit divisions performed by the coordinator is shown in black on the left y-Axis.
The number of operations per second is shown in blue on the right y-Axis. Naturally,
as the number of GPUs increases the number of work unit allocations (resulting from
the division of existing work units) also increases. For the considered scale, the rate
of increase appears to be constant. A checkpoint operation that results in a work unit
division is counted for both metrics. Therefore the number of checkpoint operations is
always greater than the number of divisions. One can see that the number of checkpoints
increases faster than the number of divisions. However, using more GPUs does not ne-

145

cessarily increase the number of checkpoint operations. Indeed, if all workers contact the
coordinator in fixed and regular intervals, and if the elapsed time decreases linearly with
the number of GPUs, then the total number of checkpoint operations would remain con-
stant. In contrast, the results show that workers contact the coordinator more frequently,
which is a consequence of more frequent local work stealing operations. At near-linear
acceleration factors, the rate at which the coordinator performs checkpoint operations
increases quadratically. Many checkpoint operations are performed by replacing the
coordinator’s copy by the current work unit (if the copy wasn’t modified remotely).

Figure 4.7d focuses on the activity of the coordinator, which is split into four parts
measured separately. The absolute time (in seconds) spend in these parts is represented
by solid lines. Stacked bars represent this time as a percentage of the total elapsed
time. Messages are sent and received in the form of a sequence of characters (string-
stream), which must be written/read to/from valid work units. This manipulation of
the send-buffer consumes 65-90% of the coordinator’s processing time (decreasing with
the number of GPUs). This overhead is significant and should be reduced. Rewriting
communication routines with MPI, instead of socket programming, in order to take
advantage of optimized derived datatypes [Sun+03] may be a necessary modification of
HD-B&B. As the number of GPUs increases, the coordinator spends a greater portion
of time actually treating the requests. For 36 GPUs, work unit intersection, division
and other checkpoint operations (e. g. periodically saving all work units to the disk)
each consume 10-12% of the coordinator’s time. In total, the coordinator is exploited
40% of the time when 36 GPUs are used. At this rate it is likely that incoming requests
from workers are queuing up, causing the coordinator to become a bottleneck. This
exploitation rate is about 100 times higher than the rate observed during the resolution
of Ta056, which lasts approximately 80 times longer.

In order to evaluate the impact of the instance size on the efficiency of HD-B&B
the scaling experiment corresponding to Figure 4.7b is repeated with smaller instances
Ta053-n, 𝑛 = 1, 2, 3, 4, 5. Figure 4.8 shows the obtained node processing rates (in Mn/s) on
the left-hand side (Figure 4.8a) and GPU-efficiencies on the right-hand side (Figure 4.8b).
GPU-efficiency is defined analogous to the conventional parallel efficiency definition,
replacing processors with GPUs.

The smallest of these instances, Ta053-1 is solved in 25 minutes on a single P100
GPU and the largest, Ta053-5, lasts for 220 minutes on a single device. Unsurprisingly,
efficiency and node processing rates increase as the size of the explored tree increases. In
order to exploit all 36 available GPUs efficiently (> 70%), the FSP instance to be solved
should at least require 109 node decompositions (Ta053-3, requiring 2 hours of processing

146 Chapter 4. Branch-and-Bound for hybrid HPC clusters

on a single GPU). For smaller instances, the repartition of the search space, represented
by the interval [0, 𝑛![, among 36 × 16 384 ≈ 600 000 IVMs incurs too much overhead.
Even for instance Ta053-3, solved in 4.5 minutes on 36 GPUs, each IVM decomposes on
average only ∼ 1 500 subproblems.

Node processing rate

10
6 n

od
es

/s
ec

0

1

2

3

4

5

#GPU
0 8 16 24 32

7
2
3
4
5
6

linear
Ta53-1
Ta53-2
Ta53-3
Ta53-4
Ta53-5

(a) Average node processing rate (in Mn/s).

Efficiency

G
PU

-e
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

#GPU
0 8 16 24 32

Ta53-1
Ta53-2
Ta53-3
Ta53-4
Ta53-5

(b) GPU-efficiency for 𝑝 GPUs (𝜂 = 𝑇1
𝑝𝑇𝑝

).

Figure 4.8: Resolution of instances Ta053-n (n=1,2,3,4,5) on ouessant.

4.3.4 Hybrid CPU/GPU scalability

As shown in Figure 4.6, in a hybrid resolution of large FSP instances, the largest part
of the total workload is processed by the Pascal GPUs, which provide much higher
node processing rates than the multi-core CPUs. In that sense, and considering the
FSP test-case, the ouessant and chifflet clusters are highly unbalanced systems. In this
case, the exploitation of available CPU cores provides at best a marginal acceleration of
the exploration process. This situation may change when a different problem is solved,
or another heterogeneous platform is targeted. In order to evaluate the scalability of
HD-B&B with GPUs and CPUs further experiments are performed on the ’kepler’ cluster
located at the Mathematics and Operations Research Department at UMONS University.

• Kepler is a cluster of 20 low-power system-on-a-chip (SoC) devices. Each of the
20 nodes is a Nvidia Tegra K1 SoC featuring a 32-bit quad-core ARM Cortex-A15
CPU and a Kepler GK20A GPU containing 192 CUDA cores. Tegra K1 is primarily
designed for graphics intensive mobile applications, like gaming, and is used in
different tablet computers. Therefore, battery lifetime is a main design objective
and Tegra K1 has a TDP of less than 10 W.

We evaluate the scalability of HD-B&B as follows. For a given problem instance, the
node processing rate (in nodes/sec) on a single CPU (resp. GPU) is measured. Based on

147

these rates the expected node processing rate on a system using 𝑛 GPUs and 𝑚 CPUs is
deduced. The efficiency on a (𝑛 GPU+𝑚 CPU) system is expressed as a percentage of
this achieved rate. Formally, let 𝛼 and 𝛽 be the node processing rates achieved by a single
CPU (resp. GPU), and let 𝜏𝑚,𝑛 be the processing speed measured for a system composed
of 𝑚 CPUs and 𝑛 GPUs. The efficiency 𝜂𝑚,𝑛 for this configuration is computed as

𝜂𝑚,𝑛 =
𝜏𝑚,𝑛

𝑚𝛼 + 𝑛𝛽 × 100%

.

For instance, solving 𝑇𝑎022 on a single CPU (resp. GPU) a node processing rate
of 𝛼 = 4.90 𝑘𝑛/𝑠 (resp. 14.12 𝑘𝑛/𝑠) is achieved. Using 8 GPUs and 4 GPUs, the same
instance is solved with an average node processing rate of 131.6 𝑘𝑛/𝑠. Supposing linear
scalability with CPUs and GPUs one can expect to achieve a node processing rate of
8×14.12+4×4.90 = 132.6 𝑘𝑛/𝑠. In this case, HD-B&B reaches an efficiency of 𝜂4,8 = 99.2%.

Table 4.3 reports the efficiency 𝜂𝑚,𝑛 achieved for 𝑚, 𝑛=4, 8, 12, 16, 20 solving FSP
instance Ta022. The results shown in this table are averages over 5 independent runs
and the relative standard deviation (RSD) is shown on the right-hand side. The initial
runs on one CPU (resp. GPU) were also performed 5 times. The two tables on top
(Tables 4.3a and 4.3b) show results using 128 IVMs per GPU, the two bottom tables
(Tables (4.3c and 4.3d) show results for 1024 IVMs per GPU. Each MC-B&B process is
a 4-threaded (4-IVM) exploration process. The coordinator process runs on a reserved
node (without concurrent exploration processes) except for the runs where #CPUs=20 or
#GPUs=20.

The node processing rates for individual workers are the following: (1) 4.90 kn/s
for a MC-B&B worker, (2) 14.12 kn/s for GPU-B&B with 𝑇 = 128 and (3) 22.10 kn/s for
GPU-B&B with 𝑇 = 1024. For reference, we recall that the sequential processing rate on a
Intel E5-2630v3 CPU is about 1.93 kn/s. For 𝑇 = 128, resp. 𝑇 = 1024 IVMs, the maximal
rate of the hybrid system is therefore 380 kn/s, resp. 540 kn/s. Using all 20 nodes, the
achieved processing rates is 293 kn/s (𝜂20,20 = 77%) , resp. 373 kn/s (𝜂20,20 = 69%),
meaning that Ta022 is solved in 75, resp. 59 seconds.

For all configurations less than 2% of nodes is explored redundantly. However, one
can observe that execution time variability is significant, especially when the number of
CPUs is high and the number of GPU is low. A more detailed analysis of exceptionally
slow explorations reveals that a high number of work allocations occur in the shutdown
phase. While this indicates a better robustness for larger instances, experimental con-
firmation is needed. Although a threshold below which work units are not divided, an

148 Chapter 4. Branch-and-Bound for hybrid HPC clusters

GPU x

Eff 0 4 8 12 16 20
C

PU
x

0 95 91 86 82 79
4 100 103 93 87 82 78
8 98 99 95 87 81 77
12 96 91 89 89 84 79
16 94 89 89 84 84 78
20 92 86 85 81 79 77

(a) 𝜂𝑚,𝑛 - Ta022 - 128 IVM/GPU

GPU x

Eff 0 4 8 12 16 20

C
PU

x

0 0.1 0.8 0.6 0.7 2.3
4 0.1 3.4 0.2 2 1.8 1.2
8 0.2 4.3 5 2.5 4.2 1.8
12 0.4 8.9 6.9 3.4 6.9 5.2
16 0.2 11.4 7.7 8.9 7.5 4.5
20 0.7 6.5 11.2 3.6 9.2 5.9

(b) RSD - Ta022 - 128 IVM/GPU
GPU x

Eff 0 4 8 12 16 20

C
PU

x

0 96 90 86 81 81
4 100 88 87 83 78 75
8 102 84 83 82 78 73
12 100 79 88 76 75 71
16 101 77 87 77 78 72
20 99 83 77 79 73 69

(c) 𝜂𝑚,𝑛 - Ta022 - 1024 IVM/GPU

GPU x

Eff 0 4 8 12 16 20

C
PU

x

0 0.8 1.3 0.9 1.1 0.9
4 0.1 2.1 2.9 2.4 2.3 1.5
8 0.2 2.5 7.7 2 4.7 4.2
12 0.4 1 1.5 4.5 4.6 4.7
16 0.2 9.6 3.7 4.7 3.8 2.3
20 0.7 13.2 11.7 3.1 8 3

(d) RSD - Ta022 - 1024 IVM/GPU

Table 4.3: Mixed GPU-CPU efficiency and Relative Standard Deviation (RSD) for resolution of
FSP instance Ta022 (22.1×106 nodes) using 20 Tegra K1. The upper (resp. lower) row shows
results for 𝑇 = 128 (resp. 𝑇 = 1024) IVMs/GPU. Average efficiency and RSD over 5 runs.

efficient handling of the shutdown phase revealed challenging.

4.3.5 Solving other 50×20 FSP instances

To the best of our knowledge, the only 50 jobs-on-20 machine FSP instances exactly solved
up to day is 𝑇𝑎056. The irregularity of the B&B-tree associated with the resolution of an
instance makes it extremely difficult to estimate its size and thus the computing power
required. In order to get an idea of the computational effort required to solve instances
from the group Ta051-Ta060, we performed partial explorations of these instances, defin-
ing a cutoff depth 𝑑. All nodes at depth 𝑑 are treated as leaf nodes which do not improve
the upper bound. Performing successive explorations with increasing cutoff depth 𝑑
(𝑑 = 1, 2, 3, … , 𝑑𝑚𝑎𝑥) allows to obtain the number of frontier nodes at each level up to
𝑑𝑚𝑎𝑥. Figure 4.9 shows the size of partial trees for instances Ta052, Ta057, Ta055 and Ta056.
The other instances of this group are not shown because they have significantly higher
branching factors in the upper part of the tree.

Based on a comparison of partial trees up to depth 14, the smallest instance after
Ta056 is Ta057. The partial tree up to depth 14 developed for Ta057 is 21 times bigger
than the one of Ta056. For Ta052 the partial tree of depth 𝑑 = 14 it is 108× bigger than for
Ta056, with a size that almost equals 1/10𝑡ℎ of the entire Ta056 tree.

149

Partial tree size for 50 jobs-on-20 machines flowshop instances
(initialized at best known solution)

Tr
ee

 s
iz

e
(#

no
de

s)

100

1e+04

1e+06

1e+08

1e+10

1e+12

Depth
0 10 20 30 40 50

Ta52 measured
Ta56 measured
Ta57 measured
Ta55 measured
Ta52 estim
Ta56 estim
Ta57 estim

117x ?

21x

Figure 4.9: Partial exploration of 50 × 20 Taillard instances.

Based on this information we attempt to estimate the tree size five levels further, as
follows. Over depths 9-14 the average rate at which the branching factor decreases is
computed and applied to predict the branching factors for levels 15-20. The result is
shown in Figure 4.9, leading to the estimation that “most attainable” of these unsolved
instances Ta057 is at least 100 times larger than Ta056. One indicator for an approximate
correctness of that estimate is that the method predicts that the number of nodes per
depth for Ta056 peaks at 𝑑 = 19 - and we know that the average depth of a node during
the resolution of Ta056 is 18.5.

Based on these estimations, exactly solving 𝑇𝑎057 on a platform equivalent to ouessant
requires at least one full month of computation. One factor which may decrease this
estimate and which is completely unpredictable is a decrease of the best known solution,
as the current one may not be optimal. This might cause the algorithm to terminate
earlier than expected. Indeed, for all three resolutions of Ta056 that were performed, the
optimal solution was found after more than 90% of the total execution time had elapsed.

4.4 Conclusion

In this chapter we revisited the design of B&B@Grid to enable the integration of GPU-,
MIC- and multi-core-based workers. When B&B@Grid was designed most components
of computational grids were mono-core and dual-core CPUs. Today, 10 years later, large-
scale HPC platforms are becoming increasingly heterogeneous, integrating GPUs and
CPUs with larger core-counts.

The extension of B&B@Grid to HD-B&B, the proposed B&B for hybrid distributed

150 Chapter 4. Branch-and-Bound for hybrid HPC clusters

HPC clusters, includes the redefinition of work units and a modification of the com-
munication scheme to allow asynchronous checkpointing operations that overlap with
worker computations.

A very large FSP instance defined by 50 jobs and 20 machines, Ta056, was success-
fully solved on GPU-equipped clusters with a total of up to 130 000 GPU cores. A first
resolution of this instance was performed in 2006, using B&B@Grid to exploit on average
328 processors in a computational grid during 25 days. Using HD-B&B the resolution of
Ta056 was performed in 9 hours on a cluster composed of 36 GPUs. Low exploitation
rates of the master process and experiments performed with smaller instances are in-
dicators for the good scalability of HD-B&B. For a set of 50-job FSP instances requiring
3.7 hours of computation on a single GPU, a relative speedup of 30× is achieved on 36
GPUs, solving these instance in 7.5 minutes on average. HD-B&B was also experimented
on a “mini-cluster” of 20 systems-on-a-chip designed for mobile devices. Experimental
results show that the availability of efficient data types for inter-node communication is
a key component for the performance of the central coordinator process.

Chapter 5

Conclusions and Perspectives

The latest Top500 ranking confirms that hybrid high performance computing technologies
combining multi-core and many-core processors is the road towards exascale computing.
In the near future, manufacturers will have to focus on upgrading the memory subsystem
in order to reduce the cost, in terms of time and energy, of memory operations. This is
likely to make the hierarchical organization of memory even more complex, requiring the
awareness of programmers and efficient data structures. Also, the trend towards smaller
low-power cores may well continue as the simplification of control logic bears potential
energy savings and microprocessor technology is increasingly driven by the mobile
market. The design and implementation of efficient algorithms for those computing
environments is challenging.

In this thesis the focus is put on exact combinatorial optimization using tree search
algorithms. Based on an innovative data structure dedicated to permutation problems,
called Integer-Vector-Matrix (IVM), we have revisited the design and implementation of
Branch-and-Bound (B&B) algorithms on heterogeneous platforms combining multi-core
processors, many-core GPU and MIC coprocessors. As B&B is highly irregular its imple-
mentation is particularly challenging in computing environments where performance
relies on SIMD processing and regular memory access patterns. In conjunction with the
hardware architecture, the problem being solved strongly impacts the performance, and
thus the design of B&B. Three well-known permutation-based problems, the Flowshop
Scheduling Problem (FSP), the Quadratic Assignment Problem (QAP) and the 𝑛-Queens
puzzle problem are used as case studies. These three elements, the architecture of HPC
platforms, the characteristics of the problem being solved and the B&B algorithm itself,
i. e. associated data structures and parallelization models constitute the frame of this
work. The ideal situation of a B&B capable of solving many different combinatorial

151

152 Chapter 5. Conclusions and Perspectives

optimization problems efficiently, exploiting a wide range of heterogeneous platform
components, serves as a guiding point at the horizon.

The cornerstone of the proposed algorithms is the IVM data structure, which is used
for the storage and management of subproblems, instead of conventional linked-list (LL)
data structures. In IVM-based parallel B&B several independent exploration processes
use their private IVM structure to explore parts of the search tree and exchange intervals
of factoradics to achieve load balance.

As a first contribution we proposed a hybrid GPU-accelerated version of multi-core
parallel B&B (GMC-B&B). The bounding operator is accelerated by asynchronously
offloading the computation of lower bounds to the GPU. Four different work stealing
strategies for IVM-based GMC-B&B were proposed. The approach is implemented for
the FSP and QAP and, for comparison, the equivalent approach is implemented using
a double-ended queue (deque) for the storage and management of subproblems. Also
aiming at the acceleration of the bounding operator in MC-B&B, we revisit the FSP
bounding procedure and propose a vectorizeable implementation of the bound, enabling
MC-B&B to exploit the 512-bit vector processing units of Intel Xeon Phi MIC processors.

A second major contribution is the first implementation of the entire parallel tree
exploration process, including load balancing, on the GPU. The proposed GPU-centric
approach (GPU-B&B) requires minimal exchange of information between host and device
and all B&B operators are performed massively in parallel on the GPU. We proposed
two variants of GPU-B&B.

A first variant uses a two-level parallelization combining parallel tree exploration
with the parallel evaluation of bounds model. It is designed for problems like FSP or QAP
whose execution time is dominated by the bounding operator. The algorithm consists
of alternating load balancing and exploration phases. The latter is implemented as a
series of kernels which correspond to different operators and between which workers are
implicitly synchronized. Two major challenges were identified and appropriate solutions
were proposed. On the one hand, performance can be improved by choosing an efficient
mapping of threads onto the data, such that detrimental effects resulting from thread
divergence and irregular memory access patterns are alleviated. In particular, GPU-B&B
handles the two levels of parallelism by introducing an efficient remapping phase at the
interface of both levels. On the other hand, the implementation of all B&B operators on
the device makes it necessary to design a GPU-based load balancing mechanism.

A second variant uses the parallel tree exploration model without a second parallel-
ization level. It is designed for problems with inexpensive node evaluation functions
as they may appear in DFS backtracking algorithms, where a relatively inexpensive

153

heuristic function is used to decide whether a subproblem is discarded or kept for ex-
ploration. This second variant is therefore called GPU-BT. In contrast to the two-level
GPU-B&B algorithm, GPU-BT reduces kernel launch overhead and improves shared
memory usage by implementing all operators in a single exploration kernel, and workers
perform multiple iterations per kernel launch. When a critical level of idle workers is
detected a trigger mechanism launches a load balancing phase which uses the same
work stealing strategies as the two-level GPU-B&B. Our contribution for solving the
issue of load imbalance are five GPU-based work stealing strategies, which vary in the
underlying topology and the victim selection policy.

As a the third main contribution of this thesis we revisit the design of B&B@Grid, a dis-
tributed fault-tolerant B&B platform that uses interval-encoding to exchange work units
between workers and the master-process. The result is HD-B&B, a hybrid distributed
B&B-algorithm, integrating multi-core and many-core-based B&B-workers. HD-B&B
can efficiently exploit the computing power provided by GPU-enhanced heterogeneous
clusters for exactly solving COPs. The resolution of FSP instance Ta056, requiring 22
years of sequential execution time demonstrates this. Using B&B@Grid its resolution on
328 CPU cores requires 25 days, with near-perfect efficiency over 97%. Using HD-B&B
on a cluster containing a total of 130 000 GPU cores, the resolution time for this instance
is reduced to 9 hours.

One of the main objectives of this thesis was to investigate whether the IVM data
structure can be used to build more efficient parallel B&B algorithms for heterogeneous
large-scale computing platforms. The presented experimental results show that the an-
swer to that question strongly depends on the input and the target platform. In general,
the results show that fine-grained problems with computationally inexpensive node
evaluation functions can benefit most from using IVM. For multi-core-based parallel B&B,
acceleration factors greater than 3× are observed for the 𝑛-Queens problem, comparing
the IVM-based algorithm to its LL-based counterpart. For more coarse-grained problems
like FSP and QAP, the choice of the data structure, IVM or LL, has no significant impact
on the execution time. This changes, when the bounding operator is accelerated by
evaluating subproblems in parallel on the GPU. In this case, the IVM-based algorithm
outperforms its LL-based counterpart by a factor 1.2×-2.6× for a set of FSP and QAP
instances. As the node evaluation cost for 𝑛-Queens is already very low, there is no point
in offloading this computation to GPU. Using the IVM data structure for storage and
management of subproblems allows to implement all B&B operators on the GPU and
completely bypass the CPU for computations. While this would have been impossible

154 Chapter 5. Conclusions and Perspectives

- or highly inefficient - with LL-based data structures, the question is whether such a
GPU-centric approach has significant advantages over hybrid CPU-GPU approaches.
Again, the answer is clearly affirmative for fine-grained problems (e. g. 𝑛-Queens) as
they can take the most benefit from massively parallelizing the selection, branching and
pruning operators. For the FSP, whose associated bounding operator is well-suited for
GPU processing, the GPU-centric B&B is about 1.7× faster than the offloading approach,
solving 20-jobs-on-20-machines instances up to 1 000 times faster than a sequential al-
gorithm (using 4 GPUs with total of 8 192 GPU cores). In contrast, the resolution of
QAP instances benefits only marginally from implementing the entire algorithm on GPU,
allowing an average improvement of 10%. This can be attributed to the fact that the
SIMD-parallel evaluation of bounds for QAP-subproblems (using the GLB lower bound)
is less efficient than for FSP.

As future research directions for this work, we have identified some challenging
perspectives summarized in the following:

• The experimental results obtained for the hybrid distributed B&B (HD-B&B) in-
dicate that the algorithm is scalable on larger GPU-enhanced clusters. We plan to
verify this by attempting the resolution of previously unsolved FSP instances on a
large GPU-equipped supercomputer, like the current number three in the Top500
ranking, Piz Daint. In order to further improve scalability of the approach, the
master process, usually running on a multi-core CPU, should be parallelized. Also,
the checkpointing mechanism should be revisited. HD-B&B uses the checkpointing
mechanism inherited from B&B@Grid, making the approach tolerant against node
failures. However, as a large portion is shifted to lower levels it becomes important
to make the approach fault-tolerant against failures at the GPU and multi-core
level.

• Implementing the entire B&B process on the GPU leaves the host CPU cores avail-
able for other computations. In all configurations experimented in this thesis, using
these cores concurrently with the GPU revealed inefficient. In the perspective of us-
ing GPU-B&B to solve multi-objective COPs these cores could be used to cooperate
with the GPU-based exploration process, for instance for maintaining the Pareto
archive.

• The IVM data structure revealed itself particularly well-suited for fine-grained
permutation problems. For example, sampling methods based on the optimiza-
tion of latin hypercubes can be modeled as (multi-)permutation problems. As a

155

future research direction we plan to revisit the IVM-based algorithm to enable the
resolution of multi-permutation problems.

• The experimental results obtained for the hybrid distributed B&B indicate that
the algorithm is scalable on larger GPU-enhanced clusters. We plan to verify this
by increasing the number of used GPUs and attempt the resolution of previously
unsolved FSP instances.

• Experimental results showed strong performance variations according to the used
node evaluation function. As a future research direction we plan to investigate
the use of different bounds for the same problem, matching implementations with
underlying hardware.

A challenging improvement of the HD-B&B algorithm consists in implementing
a library of lower bounds for the same problem, in order to enable the different
workers to use the node evaluation function which is the best fit for the underlying
hardware.

156 Chapter 5. Conclusions and Perspectives

International Publications

International Journals

1. Gmys Jan, Leroy Rudy, Mezmaz Mohand, Melab Nouredine, Tuyttens Daniel,
“Work stealing with private integer-vector-matrix data structure for multi-core
branch-and-bound algorithms” in Concurrency & Computation : Practice & Experience,
28, 18, 4463-4484 (2016), https://doi.org/10.1002/cpe.3771.

2. Gmys Jan, Mezmaz Mohand, Melab Nouredine, Tuyttens Daniel,“A GPU-based
Branch-and Bound algorithm using Integer-Vector-Matrix data structure”, In Parallel
Computing, (Special Issue: Theory and Practice of Irregular Applications), Vol. 59, 2016,
p. 119-139, ISSN 0167-8191, https://doi.org/10.1016/j.parco.2016.01.008

3. Gmys Jan, Mezmaz Mohand, Melab Nouredine, Tuyttens Daniel, “IVM-Based
parallel branch-and-bound using hierarchical work stealing on multi-GPU systems”
in Concurrency & Computation : Practice & Experience, (Special Edition PPAM’15)
(2016), 29(9), https://doi.org/10.1002/cpe.4019

4. Melab Nouredine, Gmys Jan, Mezmaz Mohand, Tuyttens Daniel, “Multi-core
versus many-core computing for many-task Branch-and-Bound applied to big
optimization problems” in Future Generation Computer Systems (2017), https://
doi.org/10.1016/j.future.2016.12.039

5. Pessoa Tiago Carneiro, Gmys Jan, de Carvalho Junior Francisco Heron, Melab
Nouredine, Tuyttens Daniel, “GPU-Accelerated Backtracking Using CUDA Dynamic
Parallelism” in Concurrency & Computation: Practice & Experience, Https://doi:
10.1002/cpe.4374, (2017, accepted, in production)

International Conferences

1. Gmys Jan, Mezmaz Mohand, Melab Nouredine, Tuyttens Daniel, “IVM-based
Work Stealing for Parallel Branch-and-Bound on GPU” in Parallel Processing and
Applied Mathematics (PPAM’15). Lecture Notes in Computer Science, 9573, 548-558
(2016), https://doi.org/10.1007/978-3-319-32149-3_51 [Best Paper Award in
workshop on GPU computing at PPAM’15]

2. Pessoa Tiago Carneiro, Gmys Jan, Melab Nouredine, de Carvalho Junior Fransisco
Heron, Tuyttens Daniel, “A GPU-based Backtracking Algorithm for Permutation
Combinatorial Problems” in International Conference on Algorithms and Architectures

https://doi.org/10.1002/cpe.3771
https://doi.org/10.1016/j.parco.2016.01.008
https://doi.org/10.1002/cpe.4019
https://doi.org/10.1016/j.future.2016.12.039
https://doi.org/10.1016/j.future.2016.12.039
Https://doi:10.1002/cpe.4374
Https://doi:10.1002/cpe.4374
https://doi.org/10.1007/978-3-319-32149-3_51

157

for Parallel Processing (ICA3PP’16). Lecture Notes in Computer Science, 10048, 310-324
(2016), https://doi.org/10.1007/978-3-319-49583-5_24

https://doi.org/10.1007/978-3-319-49583-5_24

Bibliography

[16] TOP500.org, 2016. [Online]. Available: http://www.top500.org.

[ABE+16] D. Adel, A. Bendjoudi, D. El-Baz, A. Z. Abdelhakim, et al., “Gpu-based
two level parallel b&b for the blocking job shop scheduling problem.,”
2016. [Online]. Available: http://dl.cerist.dz/handle/CERIST/794.

[ABGL02] K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth, “Solving large
quadratic assignment problems on computational grids,” Mathematical
Programming, vol. 91, no. 3, pp. 563–588, 2002.

[ABP01] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for
multiprogrammed multiprocessors,” Theory of Computing Systems, vol. 34,
no. 2, pp. 115–144, 2001.

[ACR] ACRO, A common repository for optimizers, sandia national laboratories, https:
//software.sandia.gov/trac/acro/, Accessed: 2017-09-23.

[ACR13] U. A. Acar, A. Chargueraud, and M. Rainey, “Scheduling parallel programs
by work stealing with private deques,” in Proc. of the 18𝑡ℎ ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser. PPoPP ’13,
Shenzhen, China: ACM, 2013, p. 10. [Online]. Available: http://doi.acm.
org/10.1145/2442516.2442538.

[ASW+14] T.-H. Ahn, A. Sandu, L. T. Watson, C. A. Shaffer, Y. Cao, and W. T. Baumann,
“A framework to analyze the performance of load balancing schemes
for ensembles of stochastic simulations,” International Journal of Parallel
Programming, vol. 43, no. 4, pp. 597–630, 2014.

[BHG15] A. Borisenko, M. Haidl, and S. Gorlatch, “Parallelizing branch-and-bound
on gpus for optimization of multiproduct batch plants,” in International
Conference on Parallel Computing Technologies, Springer, 2015, pp. 324–337.

158

http://www.top500.org
http://dl.cerist.dz/handle/CERIST/794
https://software.sandia.gov/trac/acro/
https://software.sandia.gov/trac/acro/
http://doi.acm.org/10.1145/2442516.2442538
http://doi.acm.org/10.1145/2442516.2442538

159

[BHP05] D. A. Bader, W. E. Hart, and C. A. Phillips, “Parallel algorithm design for
branch and bound,” Tutorials on Emerging Methodologies and Applications in
Operations Research: Presented at INFORMS 2004, Denver, CO, vol. 76, 2005.

[BKR97] R. E. Burkard, S. E. Karisch, and F. Rendl, “Qaplib–a quadratic assignment
problem library,” Journal of Global optimization, vol. 10, no. 4, pp. 391–403,
1997.

[BL99] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computa-
tions by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5, pp. 720–
748, 1999.

[BMT12a] A. Bendjoudi, N. Melab, and E.-G. Talbi, “An adaptive hierarchical master–
worker (ahmw) framework for grids—application to b&b algorithms,”
Journal of Parallel and Distributed Computing, vol. 72, no. 2, pp. 120–131,
2012.

[BMT12b] A. Bendjoudi, N. Melab, and E.-G. Talbi, “Hierarchical branch and bound
algorithm for computational grids,” Future Gener. Comput. Syst., vol. 28,
no. 8, pp. 1168–1176, Oct. 2012, issn: 0167-739X. doi: 10.1016/j.future.
2012.03.001. [Online]. Available: http://dx.doi.org/10.1016/j.
future.2012.03.001.

[BMT14] A. Bendjoudi, N. Melab, and E.-G. Talbi, “FTH-B&B: A Fault-Tolerant
Hierarchical Branch and Bound for Large Scale Unreliable Environments,”
IEEE Transactions on Computers, vol. 63, no. 9, pp. 2302–2315, 2014.

[Bob] Bobpp, Bobpp framework, université de versailles, http://www.prism.uvsq.
fr/~blec/bobpp/main.html, Accessed: 2017-09-23.

[Can69] G. Cantor, Ueber die einfachen zahlensysteme, 1869.

[Cap09] F. Cappello, “Fault tolerance in petascale/exascale systems: Current know-
ledge, challenges and research opportunities,” The International Journal of
High Performance Computing Applications, vol. 23, no. 3, pp. 212–226, 2009.

[CGG+14] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward
exascale resilience: 2014 update,” Supercomputing frontiers and innovations,
vol. 1, no. 1, pp. 5–28, 2014.

[Cha13] I. Chakroun, “Parallel heterogeneous branch and bound algorithms for
multi-core and multi-gpu environments,” PhD thesis, Université Lille 1,
2013.

https://doi.org/10.1016/j.future.2012.03.001
https://doi.org/10.1016/j.future.2012.03.001
http://dx.doi.org/10.1016/j.future.2012.03.001
http://dx.doi.org/10.1016/j.future.2012.03.001
http://www.prism.uvsq.fr/~blec/bobpp/main.html
http://www.prism.uvsq.fr/~blec/bobpp/main.html

160 Bibliography

[CMGH08] L. G. Casado, J. Martinez, I. Garcı́a, and E. M. Hendrix, “Branch-and-
bound interval global optimization on shared memory multiprocessors,”
Optimization Methods & Software, vol. 23, no. 5, pp. 689–701, 2008.

[CMMB13] I. Chakroun, M. Mezmaz, N. Melab, and A. Bendjoudi, “Reducing thread
divergence in a GPU-accelerated branch-and-bound algorithm,” Concur-
rency and Computation: Practice and Experience, vol. 25, no. 8, pp. 1121–1136,
2013, issn: 1532-0634. doi: 10.1002/cpe.2931.

[CMMT13] I. Chakroun, N. Melab, M. Mezmaz, and D. Tuyttens, “Combining multi-
core and gpu computing for solving combinatorial optimization prob-
lems,” Journal of Parallel and Distributed Computing, vol. 73, no. 12, pp. 1563–
1577, 2013.

[CMNL11] T. Carneiro, A. Muritiba, M. Negreiros, and G. Lima de Campos, “A New
Parallel Schema for Branch-and-Bound Algorithms Using GPGPU,” in
23rd International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2011, pp. 41–47. doi: 10.1109/SBAC-PAD.2011.
20.

[CNNdC12] T. Carneiro, R. H. Nobre, M. Negreiros, and G. A. L. de Campos, “Depth-
first search versus Jurema search on GPU branch-and-bound algorithms:
A case study,” NVIDIA’s GCDF - GPU Computing Developer Forum on XXXII
Congresso da Sociedade Brasileira de Computação (CSBC), 2012, issn: 2175-2761.

[COI] COIN-OR, Computational infrastructure for operations research, https://www.
coin-or.org/documentation.html, Accessed: 2017-09-23.

[CP99] J. Clausen and M. Perregaard, “On the best search strategy in parallel
branch‐and‐bound:best‐first search versus lazy depth‐first search,” Annals
of Operations Research, vol. 90, no. 0, pp. 1–17, Jan. 1999, issn: 1572-9338.
doi: 10.1023/A:1018952429396. [Online]. Available: https://doi.org/
10.1023/A:1018952429396.

[CZ06] S. Climer and W. Zhang, “Cut-and-solve: An iterative search strategy
for combinatorial optimization problems, artificial intelligence,” vol. 170,
pp. 714–738, 2006.

[DKT95] A. De Bruin, G. A. Kindervater, and H. W. Trienekens, “Asynchronous par-
allel branch and bound and anomalies,” in International Workshop on Parallel
Algorithms for Irregularly Structured Problems, Springer, 1995, pp. 363–377.

https://doi.org/10.1002/cpe.2931
https://doi.org/10.1109/SBAC-PAD.2011.20
https://doi.org/10.1109/SBAC-PAD.2011.20
https://www.coin-or.org/documentation.html
https://www.coin-or.org/documentation.html
https://doi.org/10.1023/A:1018952429396
https://doi.org/10.1023/A:1018952429396
https://doi.org/10.1023/A:1018952429396

161

[DLS+09] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha,
“Scalable work stealing,” in Proc. of the Conference on High Performance Com-
puting Networking, Storage and Analysis, Article No. 53, ser. SC ’09, New
York, NY, USA: ACM, 2009. [Online]. Available: http://doi.acm.org/10.
1145/1654059.1654113.

[Dre07] U. Drepper, “What every programmer should know about memory,” Red
Hat, Inc, vol. 11, p. 2007, 2007.

[EBS+11] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Bur-
ger, “Dark silicon and the end of multicore scaling,” in ACM SIGARCH
Computer Architecture News, ACM, vol. 39, 2011, pp. 365–376.

[EHP15] J. Eckstein, W. E. Hart, and C. A. Phillips, “Pebbl: An object-oriented frame-
work for scalable parallel branch and bound,” Mathematical Programming
Computation, vol. 7, no. 4, pp. 429–469, 2015.

[EPH01] J. Eckstein, C. A. Phillips, and W. E. Hart, “Pico: An object-oriented frame-
work for parallel branch and bound,” Studies in Computational Mathematics,
vol. 8, pp. 219–265, 2001.

[EPS09] Y. Evtushenko, M. Posypkin, and I. Sigal, “A framework for parallel large-
scale global optimization,” Computer Science-Research and Development,
vol. 23, no. 3-4, pp. 211–215, 2009.

[FLR98] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of
the cilk-5 multithreaded language,” in Proc. of the ACM SIGPLAN 1998
conference on Programming language design and implementation, ser. PLDI
’98, New York, NY, USA: ACM, 1998, p. 11. [Online]. Available: http:
//doi.acm.org/10.1145/277650.277725.

[FRvLP10] F. Feinbube, B. Rabe, M. von Löwis, and A. Polze, “Nqueens on cuda:
Optimization issues,” in Parallel and Distributed Computing (ISPDC), 2010
Ninth International Symposium on, IEEE, 2010, pp. 63–70.

[GC94] B. Gendron and T. Crainic, “Parallel Branch and Bound Algorithms: Survey
and Synthesis,” Operations Research, vol. 42, pp. 1042–1066, 1994.

[GGS04] B. Goldengorin, D. Ghosh, and G. Sierksma, “Branch and peg algorithms
for the simple plant location problem,” Computers & Operations Research,
vol. 31, pp. 241–255, 2004.

http://doi.acm.org/10.1145/1654059.1654113
http://doi.acm.org/10.1145/1654059.1654113
http://doi.acm.org/10.1145/277650.277725
http://doi.acm.org/10.1145/277650.277725

162 Bibliography

[GJS76] M. R. Garey, D. S. Johnson, and R. Sethi, “The Complexity of Flowshop and
Jobshop Scheduling,” English, Mathematics of Operations Research, vol. 1,
no. 2, pp. 117-129, 1976, issn: 0364765X.

[GLM+16] J. Gmys, R. Leroy, M. Mezmaz, N. Melab, and D. Tuyttens, “Work stealing
with private integer–vector–matrix data structure for multi-core branch-
and-bound algorithms,” Concurrency and Computation: Practice and Exper-
ience, n/a–n/a, 2016, cpe.3771, issn: 1532-0634. doi: 10.1002/cpe.3771.
[Online]. Available: http://dx.doi.org/10.1002/cpe.3771.

[GR14] M. Giles and I. Reguly, “Trends in high-performance computing for en-
gineering calculations,” Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, vol. 372, no. 2022,
p. 20 130 319, 2014.

[GSO12] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads style
gpu programming for gpgpu workloads,” in Innovative Parallel Computing
(InPar), 2012, IEEE, 2012, pp. 1–14.

[HSH+17] J. F. R. Herrera, J. M. G. Salmerón, E. M. T. Hendrix, R. Asenjo, and L. G.
Casado, “On parallel branch and bound frameworks for global optim-
ization,” Journal of Global Optimization, Mar. 2017, issn: 1573-2916. doi:
10.1007/s10898-017-0508-y. [Online]. Available: https://doi.org/10.
1007/s10898-017-0508-y.

[HSO07] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan) with
cuda,” in GPU Gems 3, H. Nguyen, Ed., Addison Wesley, Aug. 2007.

[JAO+11] J. Jenkins, I. Arkatkar, J. D. Owens, A. Choudhary, and N. F. Samatova,
“Lessons learned from exploring the backtracking paradigm on the gpu,”
in Proceedings of the 17th International Conference on Parallel Processing -
Volume Part II, ser. Euro-Par’11, Bordeaux, France: Springer-Verlag, 2011,
pp. 425–437, isbn: 978-3-642-23396-8. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2033408.2033458.

[Joh54] S. M. Johnson, “Optimal two- and three-stage production schedules with
setup times included,” Naval Research Logistics Quarterly, vol. 1, no. 1,
pp. 61–68, 1954, issn: 1931-9193. doi: 10.1002/nav.3800010110.

[KB57] T. C. Koopmans and M. Beckmann, “Assignment problems and the loca-
tion of economic activities,” Econometrica: journal of the Econometric Society,
pp. 53–76, 1957.

https://doi.org/10.1002/cpe.3771
http://dx.doi.org/10.1002/cpe.3771
https://doi.org/10.1007/s10898-017-0508-y
https://doi.org/10.1007/s10898-017-0508-y
https://doi.org/10.1007/s10898-017-0508-y
http://dl.acm.org/citation.cfm?id=2033408.2033458
http://dl.acm.org/citation.cfm?id=2033408.2033458
https://doi.org/10.1002/nav.3800010110

163

[KDK+11] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “Gpus
and the future of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17,
Sep. 2011, issn: 0272-1732. doi: 10.1109/MM.2011.89.

[KGKH13] G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in 2013 IEEE
International Symposium on Workload Characterization (IISWC), Sep. 2013,
pp. 56–65. doi: 10.1109/IISWC.2013.6704670.

[KK84] V. Kumar and L. N. Kanal, “Parallel branch-and-bound formulations for
and/or tree search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6,
pp. 768–778, Nov. 1984, issn: 0162-8828. doi: 10 . 1109 / TPAMI . 1984 .
4767600. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.
1984.4767600.

[KK94] G. Karypis and V. Kumar, “Unstructured tree search on simd parallel
computers,” IEEE Transactions on Parallel and Distributed Systems, vol. 5,
no. 10, pp. 1057–1072, 1994.

[Knu97] D. Knuth, “The Art of Computer Programming, Volume 2: Seminumerical
Algorithms,” Reading, Ma, p. 192, 1997, ISBN=9780201896848.

[KRR88] V. Kumar, V. N. Rao, and K. Ramesh, “Parallel depth first search on the
ring architecture,” Austin, TX, USA, Tech. Rep., 1988.

[Lai88] C.-A. Laisant, “Sur la numération factorielle, application aux permuta-
tions,” Bulletin de la Société Mathématique de France, vol. 16, pp. 176–183,
1888.

[LdAB+07] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and
T. Querido, “A survey for the quadratic assignment problem,” European
journal of operational research, vol. 176, no. 2, pp. 657–690, 2007.

[LE12] M. Lalami and D. El-Baz, “GPU Implementation of the Branch and Bound
Method for Knapsack Problems,” in IEEE 26th Intl. Parallel and Distributed
Processing Symp. Workshops PhD Forum (IPDPSW), Shanghai, CHN, May
2012, pp. 1769–1777. doi: 10.1109/IPDPSW.2012.219.

[Ler15] R. Leroy, “Parallel branch-and-bound revisited for solving permutation
combinatorial optimization problems on multi-core processors and copro-
cessors,” PhD thesis, Université Lille 1, 2015.

[Li16] A. Li, “Gpu performance modeling and optimization,” PhD thesis, Tech-
nische Universiteit Eindhoven, 2016.

https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/IISWC.2013.6704670
https://doi.org/10.1109/TPAMI.1984.4767600
https://doi.org/10.1109/TPAMI.1984.4767600
http://dx.doi.org/10.1109/TPAMI.1984.4767600
http://dx.doi.org/10.1109/TPAMI.1984.4767600
https://doi.org/10.1109/IPDPSW.2012.219

164 Bibliography

[LLK78] B. J. Lageweg, J. K. Lenstra, and A. H. G. R. Kan, “A General Bounding
Scheme for the Permutation Flow-Shop Problem,” Operations Research,
vol. 26, no. 1, pp. 53–67, 1978. doi: 10 . 1287 / opre . 26 . 1 . 53. eprint:
http://dx.doi.org/10.1287/opre.26.1.53.

[LLW+15] L. Li, H. Liu, H. Wang, T. Liu, and W. Li, “A parallel algorithm for game
tree search using gpgpu,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 8, pp. 2114–2127, Aug. 2015, issn: 1045-9219. doi:
10.1109/TPDS.2014.2345054.

[LMMT07] R. Leroy, M. Mezmaz, N. Melab, and D. Tuyttens, “Work stealing strategies
for multi-core parallel branch-and-bound algorithm using factorial num-
ber system,” in Proceedings of Programming Models and Applications on
Multicores and Manycores, ser. PMAM’14, Orlando, FL, USA: ACM, 2007,
111:111–111:119, isbn: 978-1-4503-2657-5. doi: 10.1145/2560683.2560694.

[LPRR94] Y. Li, P. M. Pardalos, K. Ramakrishnan, and M. G. Resende, “Lower bounds
for the quadratic assignment problem,” Annals of Operations Research,
vol. 50, no. 1, pp. 387–410, 1994.

[Mär14] C. Märtin, “Multicore processors: Challenges, opportunities, emerging
trends,” in Proceedings of Embedded World Conference, Germany, 2014. [On-
line]. Available: https://www.hs-augsburg.de/Binaries/Binary20964/
Multicore-Embeddedfinal-revised.pdf.

[MCA13] X. Meyer, B. Chopard, and P. Albuquerque, “A branch-and-bound al-
gorithm using multiple gpu-based lp solvers,” in 20th Annual International
Conference on High Performance Computing, Dec. 2013, pp. 129–138. doi:
10.1109/HiPC.2013.6799105.

[MCB14] N. Melab, I. Chakroun, and A. Bendjoudi, “Graphics processing unit-
accelerated bounding for branch-and-bound applied to a permutation
problem using data access optimization,” Concurrency and Computation:
Practice and Experience, vol. 26, no. 16, pp. 2667–2683, 2014, issn: 1532-0634.
doi: 10.1002/cpe.3155.

[Meh11] M. Mehdi, “Parallel hybrid optimization methods for permutation based
problems,” PhD thesis, Université du Luxembourg / Université Lille 1,
2011.

[Mel05] N. Melab, Contributions à la résolution de problèmes d’optimisation combinatoire
sur grilles de calcul, LIFL, USTL, Thèse HDR, Nov. 2005.

https://doi.org/10.1287/opre.26.1.53
http://dx.doi.org/10.1287/opre.26.1.53
https://doi.org/10.1109/TPDS.2014.2345054
https://doi.org/10.1145/2560683.2560694
https://www.hs-augsburg.de/Binaries/Binary20964/Multicore-Embeddedfinal-revised.pdf
https://www.hs-augsburg.de/Binaries/Binary20964/Multicore-Embeddedfinal-revised.pdf
https://doi.org/10.1109/HiPC.2013.6799105
https://doi.org/10.1002/cpe.3155

165

[Men17] T. Menouer, “Solving combinatorial problems using a parallel frame-
work,” Journal of Parallel and Distributed Computing, 2017, issn: 0743-7315.
doi: http://dx.doi.org/10.1016/j.jpdc.2017.05.019. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0743731517301764.

[MLMT14] M. Mezmaz, R. Leroy, N. Melab, and D. Tuyttens, “A Multi-Core Parallel
Branch-and-Bound Algorithm Using Factorial Number System,” in 28th
IEEE Intl. Parallel & Distributed Processing Symp. (IPDPS), Phoenix, AZ:
May 2014, pp. 1203–1212. doi: 10.1109/IPDPS.2014.124.

[MMT07] M. Mezmaz, N. Melab, and E. G. Talbi, “A grid-enabled branch and bound
algorithm for solving challenging combinatorial optimization problems,”
in 2007 IEEE International Parallel and Distributed Processing Symposium,
Long Beach, CA, Mar. 2007, pp. 1–9. doi: 10.1109/IPDPS.2007.370217.

[MR90] B. Mans and C. Roucairol, “Concurrency in priority queues for branch and
bound algorithms,” INRIA, Tech. Rep. RR-1311, Oct. 1990, Projet PARADIS.
[Online]. Available: https://hal.inria.fr/inria-00075248.

[MV15] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing
techniques,” ACM Comput. Surv., vol. 47, no. 4, 69:1–69:35, Jul. 2015, issn:
0360-0300. doi: 10.1145/2788396. [Online]. Available: http://doi.acm.
org/10.1145/2788396.

[OHL+08] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[PC04] R. Pastor and A. Corominas, “Branch and win: Or tree search algorithms
for solving combinatorial optimisation problems,” Top, vol. 1, pp. 169–192,
2004.

[PE17] T. B. Preußer and M. R. Engelhardt, “Putting queens in carry chains, n o̱27,”
Journal of Signal Processing Systems, vol. 88, no. 2, pp. 185–201, Aug. 2017,
issn: 1939-8115. doi: 10.1007/s11265-016-1176-8. [Online]. Available:
https://doi.org/10.1007/s11265-016-1176-8.

[Ric97] M. Richards, “Backtracking algorithms in mcpl using bit patterns and
recursion,” University of Cambridge, Computer Laboratory, Tech. Rep.,
1997. [Online]. Available: http://www.cl.cam.ac.uk/~mr10/backtrk.
pdf.

https://doi.org/http://dx.doi.org/10.1016/j.jpdc.2017.05.019
http://www.sciencedirect.com/science/article/pii/S0743731517301764
http://www.sciencedirect.com/science/article/pii/S0743731517301764
https://doi.org/10.1109/IPDPS.2014.124
https://doi.org/10.1109/IPDPS.2007.370217
https://hal.inria.fr/inria-00075248
https://doi.org/10.1145/2788396
http://doi.acm.org/10.1145/2788396
http://doi.acm.org/10.1145/2788396
https://doi.org/10.1007/s11265-016-1176-8
https://doi.org/10.1007/s11265-016-1176-8
http://www.cl.cam.ac.uk/~mr10/backtrk.pdf
http://www.cl.cam.ac.uk/~mr10/backtrk.pdf

166 Bibliography

[RK93] V. N. Rao and V. Kumar, “On the efficiency of parallel backtracking,” IEEE
Transactions on parallel and distributed systems, vol. 4, no. 4, pp. 427–437,
1993.

[RLS04] T. K. Ralphs, L. Ladányi, and M. J. Saltzman, “A library hierarchy for imple-
menting scalable parallel search algorithms,” The Journal of Supercomputing,
vol. 28, no. 2, pp. 215–234, 2004.

[Rou87] C. Roucairol, “A parallel branch and bound algorithm for the quadratic
assignment problem,” Discrete Applied Mathematics, vol. 18, no. 2, pp. 211–
225, 1987.

[RS10] K. Rocki and R. Suda, “Parallel minimax tree searching on gpu,” in Parallel
Processing and Applied Mathematics: 8th International Conference, PPAM 2009,
Wroclaw, Poland, September 13-16, 2009. Revised Selected Papers, Part I, R.
Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 449–456, isbn: 978-3-
642-14390-8. doi: 10.1007/978-3-642-14390-8_47. [Online]. Available:
https://doi.org/10.1007/978-3-642-14390-8_47.

[Sar10] H. Sarbazi-Azad, Stupid Sort: A new sorting algorithm, Newsletter. Com-
puting Science Department, Univ. of Glasgow (599), [Accessed October,13
2017], Oct. 2010. [Online]. Available: http://sharif.edu/~azad/stupid-
sort.PDF.

[SG97] R. Sakellariou and J. R. Gurd, “Compile-time minimisation of load im-
balance in loop nests,” in Proceedings of the 11th international conference on
Supercomputing, ACM, 1997, pp. 277–284.

[Som] J. Somers, The N Queens Problem - a study in optimization, http://users.
rcn.com/liusomers/nqueen_demo/nqueens.html, Accessed: 2017-10-08.

[SRR08] P. San Segundo, D. Rodrı́guez-Losada, and C. Rossi, “Recent developments
in bit-parallel algorithms,” in Tools in Artificial Intelligence, InTech, 2008.

[Sun+03] X.-H. Sun et al., “Improving the performance of mpi derived datatypes by
optimizing memory-access cost,” in Cluster Computing, 2003. Proceedings.
2003 IEEE International Conference on, IEEE, 2003, pp. 412–419.

[Tai93] E. Taillard, “Benchmarks for basic scheduling problems,” Journal of Opera-
tional Research, vol. 64, pp. 278–285, 1993.

[Tal09] E.-G. Talbi, Metaheuristics: From Design to Implementation, 1st ed. John Wiley
& Sons, Inc., Jul. 2009, isbn: 978-0-470-27858-1.

https://doi.org/10.1007/978-3-642-14390-8_47
https://doi.org/10.1007/978-3-642-14390-8_47
http://sharif.edu/~azad/stupid-sort.PDF
http://sharif.edu/~azad/stupid-sort.PDF
http://users.rcn.com/liusomers/nqueen_demo/nqueens.html
http://users.rcn.com/liusomers/nqueen_demo/nqueens.html

167

[TdB92] H. W. Trienekens and A. de Bruin, “Towards a taxonomy of parallel branch
and bound algorithms,” 1992.

[VDM13] T.-T. Vu, B. Derbel, and N. Melab, “Adaptive Dynamic Load Balancing in
Heterogenous Multiple GPUs-CPUs Distributed Setting: Case Study of
B&B Tree Search,” in 7th International Learning and Intelligent OptimizatioN
Conference (LION), Catania, Italy: Lecture Notes in Computer Science, Jan.
2013. [Online]. Available: https://hal.inria.fr/hal-00765199.

[vDvdP14] T. van Dijk and J. C. van de Pol, “Lace: Non-blocking split deque for
work-stealing,” in European Conference on Parallel Processing, Springer, 2014,
pp. 206–217.

[VH15] M. Vinkler and V. Havran, “Register efficient dynamic memory allocator
for gpus,” Computer Graphics Forum, vol. 34, no. 8, pp. 143–154, 2015, issn:
1467-8659. doi: 10.1111/cgf.12666. [Online]. Available: http://dx.doi.
org/10.1111/cgf.12666.

[Vol16] V. Volkov, “Understanding latency hiding on gpus,” PhD thesis, University
of California, Berkeley, 2016.

[WWWG13] S. Widmer, D. Wodniok, N. Weber, and M. Goesele, “Fast dynamic memory
allocator for massively parallel architectures,” in Proceedings of the 6th
workshop on general purpose processor using graphics processing units, ACM,
2013, pp. 120–126.

[XF10] S. Xiao and W.-c. Feng, “Inter-block gpu communication via fast barrier
synchronization,” in Parallel & Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, IEEE, 2010, pp. 1–12.

[YH17] J. Yang and Q. He, “Scheduling parallel computations by work stealing:
A survey,” International Journal of Parallel Programming, Jan. 2017, issn:
1573-7640. doi: 10.1007/s10766-016-0484-8. [Online]. Available: https:
//doi.org/10.1007/s10766-016-0484-8.

[Zon02] Q. Zongyan, “Bit-vector encoding of n-queen problem,” SIGPLAN Not.,
vol. 37, no. 2, pp. 68–70, Feb. 2002, issn: 0362-1340. doi: 10.1145/568600.
568613. [Online]. Available: http://doi.acm.org/10.1145/568600.
568613.

https://hal.inria.fr/hal-00765199
https://doi.org/10.1111/cgf.12666
http://dx.doi.org/10.1111/cgf.12666
http://dx.doi.org/10.1111/cgf.12666
https://doi.org/10.1007/s10766-016-0484-8
https://doi.org/10.1007/s10766-016-0484-8
https://doi.org/10.1007/s10766-016-0484-8
https://doi.org/10.1145/568600.568613
https://doi.org/10.1145/568600.568613
http://doi.acm.org/10.1145/568600.568613
http://doi.acm.org/10.1145/568600.568613

168 Bibliography

[ZSW11] T. Zhang, W. Shu, and M.-Y. Wu, “Optimization of n-queens solvers on
graphics processors,” in Proceedings of the 9th International Conference on
Advanced Parallel Processing Technologies, ser. APPT’11, Shanghai, China:
Springer-Verlag, 2011, pp. 142–156, isbn: 978-3-642-24150-5. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2042522.2042533.

http://dl.acm.org/citation.cfm?id=2042522.2042533

List of Figures

1.1 Illustration: Parallelization models . 27
1.2 Hardware view: GPU = coprocessor of CPU. 34
1.3 Software view: Parallel program = weakly parallel/serial host code +

massively parallel device code. 35
1.4 Software view: Parallel program = grid(s) of block(s) of threads executed

as warps of 32 threads. 36
1.5 Flowshop illustration . 42
1.6 Illustration: QAP . 44
1.7 Illustration: 𝑛-Queens . 45
1.8 B&B tree irregularity . 46
1.9 Node evaluation irregularity : QAP, FSP 48
1.10 Node evaluation irregularity : 𝑛-Queens 49

2.1 Tree representations: IVM/LL . 53
2.2 IVM-based B&B: selection operator . 54
2.3 IVM-based B&B: branching operator . 55
2.4 Illustation: interval-based parallel tree exploration 58
2.5 Illustration: Communication of work units 59
2.6 Illustration: GPU-accelerated B&B . 68
2.7 Multi-core FSP/QAP: IVM vs. LL-based B&B 71
2.8 Multi-core 𝑛-Queens: IVM vs. LL-based B&B 72
2.9 GMC-B&B: Tuning pool size . 73
2.10 GPU-MC-B&B: IVM vs. LL . 75
2.11 MC-B&B: Parallel efficiency on Xeon Phi (FSP/QAP) 80
2.12 MC-B&B: Parallel efficiency on Xeon Phi (15-Queens) 81
2.13 MC-B&B: Scalability . 82

3.1 Flowchart of GPU-centric B&B algorithm. 93

169

170 List of Figures

3.2 Illustration: parallel evaluation of bounds in GPU-B&B 96
3.3 Illustration of the remapping phase for the bounding kernel (Algorithm 7).100
3.4 GPU-B&B - mapping the bounding kernel: Ta021-Ta030 109
3.5 GPU-B&B - mapping IVM-management kernels : Ta021-Ta030 111
3.6 GPU-B&B work stealing strategies: overhead analysis 114
3.7 Multi-GPU-B&B: Calibration of number of IVMs (Adapt vs. Hypercube,

FSP/𝑛-Queens) . 115
3.8 Multi-GPU-B&B: Calibration of number of IVMs (Adapt vs. Hypercube,

QAP) . 116
3.9 Calibration of trigger mechanism . 117
3.10 Multi-GPU-B&B: scaling . 119
3.11 Hybrid CPU-GPU-B&B : Workload monitoring 124

4.1 Illustration of Master-Worker model in B&B@Grid 130
4.2 Illustration of HB-B&B . 131
4.3 Flowchart of worker process in HD-B&B 137
4.4 Resolution of 50-job FSP instance Ta056 140
4.5 HD-B&B: Ganglia energy monitoring . 141
4.6 HD-B&B: Resolution of Ta056 - Work repartition 142
4.7 Scale HD-B&B . 144
4.8 HD-B&B: Impact of instance size . 146
4.9 Partial tree size for 50 × 20 FSP instances 149

List of Tables

1.1 Sequential execution time Ta021-Ta030 . 43

2.1 MC-B&B : Comparison of work stealing strategies 77
2.2 GMC-B&B : Comparison of work stealing strategies 79
2.3 Comparison of vectorized/non-vectorized FSP lower bound 79

3.1 GPU-B&B - mapping for bounding kernel: time breakdown 110
3.2 IVM-management: instruction replay overhead 111
3.3 Profiling thread divergence: Ta022 . 112
3.4 Comparison of GPU-B&B work stealing strategies : Execution time Ta021-

Ta030 . 113
3.5 Comparison of GPU-B&B work stealing strategies : IVM-efficiency . . . 113
3.6 multi-GPU-B&B: Performance comparison with MC-B&B and GMC-B&B

- FSP . 120
3.7 multi-GPU-B&B: Performance comparison with MC-B&B and GMC-B&B

- QAP . 121
3.8 GPU-B&B vs GMC-B&B : execution time breakdown 122
3.9 multi-GPU-B&B: Performance comparison with MC-B&B and GMC-B&B

- 𝑛-Queens . 123
3.10 Averaged execution times for FSP instance Ta028 (100 executions) for

comparing the multi-GPU only and the hybrid algorithm (using 16 CPU
threads) . 125

4.1 Redundant exploration in HD-B&B . 134
4.2 Exploration statistics for resolution of FSP instance Ta056 143
4.3 HD-B&B: Resolution of Ta022 using 20 Tegra K1 SoC 148

171

172 List of Tables

A.1 Number of decomposed nodes in critical tree (B&B initialized at optimal
solution) . I

A.2 Complexities and memory requirements : node evaluation II

Appendix A

Appendix

A.1 Tree sizes

Table A.1: Number of decomposed nodes in critical tree (B&B initialized at optimal solution)

instance #decomposed nodes instance #decomposed nodes

Ta021 41 417 881 nug16a 841 732
Ta022 22 068 771 nug16b 444 579
Ta023 140 848 940 nug17 4 817 638
Ta024 40 067 821 nug18 24 971 333
Ta025 41 440 440 nug20 362 626 645
Ta026 71 376 390 chr20c 5 418 529
Ta027 57 111 463 tai17a 7 809 792
Ta028 8 088 505 esc16a 96 305 057
Ta029 6 778 450 esc16c 356 056 705
Ta030 1 648 102 esc16d 13 375 109
14-Queens 13 496 479 esc16e 768 344 897
15-Queens 90 634 738 esc16g 301 589 057
16-Queens 563 208 896 had18 3 145 954
17-Queens 4 224 112 371 had20 69 910 557
18-Queens 29 349 876 934 scr20 25 337 809
19-Queens 242 419 099 083 rou20 1 371 489 830

A.2 Lower bounds: complexities

I

ii Appendix A. Appendix

Table A.2: Computational complexities and memory requirements of node evaluation functions
used for FSP, QAP and 𝑛-Queens. 𝑚 = #machines, 𝑛 = problem size

FSP QAP 𝑛-Queens
Complexity 𝒪(𝑛2𝑚 log 𝑚) 𝒪(𝑛3) 𝒪(𝑛)

Read-only memory (×|𝑖𝑛𝑡|) (𝑛 + 1)𝑚2 − 𝑚 2𝑛2 –
Read-Write memory (×|𝑖𝑛𝑡|) ∼ 4𝑛 ∼ 𝑛2 1

A.3 Hardware

The following devices are used in the experimental evaluations.

• Intel Xeon E5-2630v3: (Haswell), 8 cores, 16 threads, 2.40 GHz base frequency,
20 MB L3 Cache, 85 W TDP, 59 GB/s max. memory bandwidth. AVX 2.0 vector
instruction extensions, 22 nm technology.

• Intel Xeon E5-2680v4: (Broadwell), 14 cores, 28 threads, 2.40 GHz base frequency,
35 MB L3 Cache, 120 W TDP, 76.8 GB/s max. memory bandwidth. AVX 2.0 vector
instruction extensions, 14 nm technology.

• Intel Xeon Phi 5110P: (Knight’s Corner), 60 cores, 240 threads, 1.053 GHz, 30 MB
L2 cache, 225 W TDP, 320 GB/s max. memory bandwidth. IMCI (512-bit) vector
instruction extensions, 22 nm technology.

• IBM Power System (S822LC ”Minsky” node)

– 2×Power8+: 10 cores/CPU, 80 threads/CPU (SMT8), 2.86 GHz, 8 MB L3 /
16 MB L4 Cache, 225 W TDP, 230 GB/s max. memory bandwidth 128 Go,
22 nm technology.

– Nvidia Tesla P100 GP100 (Pascal), 3 584 CUDA cores, 1328 MHz base clock,
16 GB VRAM, HBM2 memory, 720 GB/s max. memory bandwidth, 300 W
TDP, 16 nm technology.

• Nvidia Tesla K20m: GK110 (Kepler), 2 496 CUDA cores, 705 MHz base clock, 225 W
TDP

• Nvidia GeForce GTX 980: GM204 (Maxwell), 2 048 CUDA cores, 1126 MHz base
clock, 165 W TDP

• Nvidia GeForce GTX 1080Ti: GP102 (Pascal), 3 584 CUDA cores, 1481 MHz base
clock, 250 W TDP, 11 GB VRAM, 22 nm technology.

iii

• Nvidia Tegra K1 System on a chip, 32-bit quad-core ARM Cortex-A15 MPCore R3,
Kepler GPU (1 SM, 192 CUDA cores), TDP 8 Watt.

iv Appendix A. Appendix

	Title
	Remerciements / Acknowledgements
	Abstract
	Résumé
	Contents
	Introduction
	Chapter 1 : Parallel Branch-and-Bound algorithms
	1.1 Introduction
	1.2 Solving permutation combinatorial optimization problems
	1.3 Branch-and-Bound algorithms
	1.3.1 Terminology and general description
	1.3.2 Models for parallel Branch-and-Bound
	1.3.3 Challenges in parallel Branch-and-Bound

	1.4 Computing Environments
	1.5 Related work
	1.5.1 B&B for multi-core CPUs
	1.5.2 B&B for Graphics Processing Units
	1.5.3 Hybrid and distributed parallel B&B

	1.6 Test-cases: Permutation-based COPs
	1.6.1 Flowshop Scheduling Problem (FSP)
	1.6.2 Quadratic Assignment Problem (QAP)
	1.6.3 n-Queens Problem
	1.6.4 B&B tree analysis of the test problems

	Chapter 2 : IVM-based B&B for multi-/many-core systems
	2.1 Introduction
	2.2 IVM-based parallel Branch-and-Bound
	2.2.1 IVM-based serial B&B
	2.2.2 Position vector: factoradic numbers
	2.2.3 Work units: intervals of factoradics
	2.2.4 Work unit communication

	2.3 Work stealing for IVM-based B&B on multi-core CPUs
	2.3.1 Work stealing using factoradic intervals
	2.3.2 Victim selection policies
	2.3.3 Granularity policies

	2.4 Accleration of bounding operator
	2.4.1 GPU acceleration
	2.4.2 Vectorization of the FSP bounding procedure

	2.5 Experiments
	2.5.1 Evaluation of data structures for B&B
	2.5.2 GPU-acceleration of the bounding operator
	2.5.3 Evaluation of Work Stealing Strategies
	2.5.4 Performance evaluation on Intel Xeon Phi
	2.5.5 MC-B&B: performance on different multi-core CPUs

	2.6 Conclusions

	Chapter 3 : GPU-centric Branch-and-Bound
	3.1 Introduction
	3.2 Discussion of design choices
	3.3 GPU-B&B and GPU-backtracking
	3.3.1 GPU-B&B: 2-level parallelization
	3.3.2 Thread-data mapping and branch divergence reduction
	3.3.3 GPU-BT: 1-level parallelization

	3.4 Work stealing strategies for GPU-B&B
	3.4.1 Victim Selection policies
	3.4.2 Work stealing for multi-GPU-B&B

	3.5 Experiments
	3.5.1 Evaluation of Mapping approaches
	3.5.2 Evaluation of Work Stealing strategies
	3.5.3 Scalability analysis
	3.5.4 Multi-GPU-B&B performance evaluation
	3.5.5 Hybrid CPU-multi-GPU-B&B

	3.6 Conclusions

	Chapter 4 : Branch-and-Bound for hybrid HPC clusters
	4.1 Introduction
	4.2 B&B for hybrid clusters
	4.2.1 B&B@Grid
	4.2.2 Design of hybrid distributed B&B
	4.2.3 Redundant exploration
	4.2.4 Implementation of worker process

	4.3 Experiments
	4.3.1 Experimental protocol
	4.3.2 Resolution of very large problem instances
	4.3.3 Scalability: Ouessant
	4.3.4 Hybrid CPU/GPU scalability
	4.3.5 Solving other 50	imes 20 FSP instances

	4.4 Conclusion

	Chapter 5 : Conclusions and Perspectives
	Bibliography
	List of Figures
	List of Tables
	Appendix A
	A.1 Tree sizes
	A.2 Lower bounds: complexities
	A.3 Hardware

	source: Thèse de Jan Gmys, Lille 1, 2017
	d: © 2017 Tous droits réservés.
	lien: lilliad.univ-lille.fr

