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Résumé 

Ce travail de thèse propose un modèle numérique complet pour l'écoulement transitoire 

des eaux souterraines dans les milieux poreux et fracturés et son application sur l’analyse 

de la stabilité des pentes sous l’effet d’une diminution du niveau de l’eau dans un réservoir. 

L’écouement de l’eau dans les milieux fracturés est complexe, en raison de la présence d'un 

grand nombre de fractures et de fortes variations dans les propriétés géométriques et 

hydrauliques de ces milieux. 

La thèse est organisée en six chapitres. 

Le premier chapitre pésente les problèmes abordés et les objectifs de la thèse. Le 2nd 

chapitre présente une synthèse des analyses numériques de l'écoulement dans les milieux 

fracturés et de ses effets sur la stabilité des pentes.  

Le 3ème chapitre présente le développment d’un modèle numérique d'écoulement 

transitoire saturé dans des milieux fracturés avec une surface libre en utilisant la méthode 

des éléments composites (CEM). Le 4ème chapitre présente un modèle numérique 

d'écoulement transitoire à saturation variable, dans les milieux fracturés à l'aide du CEM. 

Le 5ème chapitre présente une étude de la stabilité des pentes sous l’effet de variation 

des paramètres hydrauliques et de résistance des sols, et da géométrie des pentes. 

Le 6ème chapitre présente une étude paramétrique de l'influence des caractéristiques de 

fracture sur l'écoulement transitoire et la stabilité d’une pente soumise à des conditions de 

diminution. 

Mots-clés: écoulement des eaux souterraines; milieux fracturés; écoulement à saturation 

variable; surface libre; méthode élément composite; stabilité de la pente; méthode 

d'équilibre limite; vidange rapide
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Abstract 

This thesis presents a comprehensive numerical method for analyzing transient 

groundwater flow in porous and fractured media and its application to the analysis of the 

stability of soil and rock slopes subjected to transient groundwater flow induced by reservoir 

drawdown conditions. Compared to that of porous media, the analysis of flow in fractured 

media is relatively complex, due to the presence of a large number of fractures and strong 

variations in geometric and hydraulic properties. 

The thesis is organized in six chapters.  

Chapter 1 presents the issues to be addressed and the thesis objectives. Chapter 2 

discusses basic theories related to the numerical analysis of groundwater flow in fractured 

media and its effects on slope stability. 

Chapter 3 develops the numerical model of transient, saturated flow in fractured media 

with a free surface using the composite element method (CEM). Chapter 4 presents the 

numerical model of transient, variably-saturated flow in fractured media using the CEM. 

Chapter 5 includes an investigation of the stability of homogeneous soil slopes under 

drawdown conditions, depending on the drawdown rate, hydraulic and strength parameters 

of soils, and slope geometry. 

The last chapter presents a parametric study on the influence of fracture characteristics 

on transient flow and stability of layered rock slope subjected to drawdown conditions. 

Keywords: groundwater flow; fractured media; variably-saturated flow; free surface; 

composite element method; slope stability; limit equilibrium method; rapid drawdown 
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Summary 

The study of groundwater flow in fractured media can be distinct from that of flow in 

porous media due to the complex geologic configurations of fractured media. In modelling 

study of flow in fractured media, the discrete fracture approach is a preferable approach 

because it has the potentiality to describe the fractures in more detail. However, the 

difficulty of using this approach is the explicit representation of the geometry of fractured 

media, which, in numerical modelling, refers to the discretization of the fractured media 

into computational meshes. The composite element method (CEM) has a prominent 

advantage on the discretization, so it is quite suited for developing the numerical model of 

groundwater flow in fractured media, which is the first task of this work. The analysis of 

groundwater flow often plays an important role in the solution of slope stability problems. 

The drawdown condition is a common scenario in slope stability. However, the current 

investigations for the drawdown condition are not deep enough. One of the main reasons is 

that the pore-water pressures within the slopes during drawdown are not accurately 

estimated. The second task of this work is to use the developed numerical model to obtain 

accurate pore-water pressures and then to make reasonable evaluation for the stability of 

slopes subjected to drawdown conditions. The above contents are presented in Chapter 1. 

In Chapter 2, some basic problems involved in the numerical analyses of groundwater 

flow in fractured media and its effects on slope stability are considered. In the aspect of the 

groundwater flow in fractured media, the basic law of single fracture flow, the modelling 

approaches for flow in fractured media, the composite element method for analyzing 

discretely-fractured media, and the flow characteristics of variably-saturated system, are 

respectively discussed. The problems existing in the previous modelling studies of flow in 

fractured media are pointed out, as well as the capability of the CEM in solving these 

problems. Then, the research progress of the CEM in analyzing the fractured media is given 

a certain introduction. In the aspect of the effects of groundwater flow on slope stability, 

three actions of groundwater on slope stability are described, and the limit equilibrium and 

the numerical methods for stability analysis are summarized. Particular mention is made of 

the importance of the reservoir’s rapid drawdown to slope stability analysis. The discussion 

of these problems provides theoretical bases for subsequent studies. 

In Chapter 3, a three-dimensional numerical model for simulating transient, saturated 
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flow in fractured media with a free surface is constructed using the CEM. The model does 

not require generation of specific elements for representing fractures, but, instead, inserts 

the fractures into the elements so as to form the composite elements. The governing equation 

for the composite element containing both fractures and matrix is derived by using the 

variational principle. It provides accurate descriptions of fracture flow, matrix flow and 

exchange of water between fractures and matrix. The relevant solution algorithms are 

presented, including those of CEM pre-processing, numerical integral calculation, treatment 

of boundary conditions and solving large, sparse, symmetric system of equations. In 

particular, an iterative scheme for locating the shifting free surface is introduced. The 

validity and reliability of the model are verified by a synthetic example. The capability of 

the model is demonstrated by simulations of the flow problems in complicated fractured 

aquifers. 

In Chapter 4, the CEM is used to further develop the numerical model for simulating 

transient, variably-saturated flow in fractured media. Since the constitutive relations 

(saturation‒pressure head and relative permeability‒saturation relations) for fractures may 

be highly linear and different than those for matrix, a fast and stable iterative scheme using 

under-relaxation technique is implemented to solve the variably-saturated flow equations. 

The techniques of mass matrix lumping and adaptive time stepping are used to further 

enhance accuracy and efficiency. The effectiveness of the developed model is verified by 

simulations of one-dimensional infiltration into dry soils and the synthetic example which 

was discussed in Chapter 3 and simulated by assuming water flowing only in the saturated 

zone with a shifting free surface. The simulation results are compared with the semi-

analytical solution and those obtained from a commercial software COMSOL. Several 

illustrative problems that demonstrate the complexity of variably-saturated flow in fractured 

aquifers are presented in the end of this chapter. 

In Chapter 5, the stability of homogeneous soil slopes under reservoir drawdown 

conditions is studied. The composite element modelling of transient, saturated flow with a 

free surface (assuming non-deforming slope media) is used to calculate the transient free 

surfaces and pore-water pressure distributions in the slopes during reservoir drawdown. 

Using the calculated pore-water pressure distributions, the limit equilibrium analyses are 

then conducted to derive the variations of the safety factor of homogeneous soil slopes 

during drawdown. It has been found from the theoretical analyses of transient flow and slope 

stability that the variation of safety factor of the slopes during drawdown depends on the 
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hydraulic index k/(Syv) and the strength index c’/(γHtanφ’). Therefore, these two indexes 

are employed in systematically investigating the influence of various drawdown rates and 

material parameters on transient flow and stability of homogeneous soil slopes. These 

investigation results serve for the formulation of criteria for judging rapid drawdown 

conditions. In this criteria, the rapid drawdown is defined as the one which results in more 

than 4% reduction in the safety factor of homogeneous soil slopes during reservoir 

drawdown. Hopefully, this criteria can be adopted in engineering practice. 

In Chapter 6, the stability of layered rock slopes under reservoir drawdown conditions 

is studied. These slopes are assumed to contain one group of evenly spaced, parallel and 

persistent fractures (inter-layers). Due to the presence of the fractures, the transient flow 

processes in the slopes under drawdown conditions are different from those in the 

homogenous soil slopes studied in Chapter 5. This chapter conducts a parametric study 

using the CEM, to specially investigate the influence of various geometric characteristics of 

the fracture group on transient flow in the layered rock slopes during drawdown. These 

characteristics include fracture aperture, spacing, and dip angle. Then, the pore-water 

pressures obtained by transient flow simulations are used as groundwater conditions for 

slope stability analyses to obtain the variation of the safety factor of the layered rock slopes 

during drawdown. The investigation results provide quantitative verification of the impact 

of the reservoir drawdown on the stability of rock slopes with certain geological structure 

features. Since there are a large number of factors that may control groundwater flow in 

rock slopes, it is only possible in this work to study one of the simplest rock slope types (i.e., 

layered rock slope with persistent fractures), and to give a small amount of quantitative 

verification. However, the methodologies, including the CEM and the combined CEM-LEM 

analysis approach, are available for further investigations of the stability of complex rock 

slopes that suffer from the reservoir drawdown conditions.
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Chapter 1 Introduction 

1.1 Introduction and motivation 

Groundwater flow is a ubiquitous phenomenon in the Earth’s crust, and the analysis of 

this phenomenon plays an important role in solution of many geotechnical problems, 

especially those concerning the stability analyses of slopes. Compared to that in porous 

media, flow of groundwater in rocky media (which are usually fractured) is relatively 

complex. The complexity is mainly resulted from the presence of a large number of fractures 

and the strong variations in geometric and hydraulic properties, such as fracture aperture, 

shape, orientation, position, and hydraulic conductivity. Thus, different—though in many 

cases complementary—theories and methods must be considered. This thesis is aimed at 

developing a comprehensive numerical method for analyzing groundwater flow in porous 

media and fractured media. Then, the method is applied to the problem of the stability 

analyses of soil and rock slopes subjected to groundwater flow, which is the second aim of 

this thesis. 

The modelling is a significant component for understanding the hydraulic behavior of 

the media. The finite element method (FEM) [Zienkiewicz et al., 1966] is the most 

commonly used method for flow analysis. According to different ways of fracture 

simulation, the existing numerical models for solution of flow in fractured media can be 

grouped into two categories: one is the implicit (continuum) model which takes the impact 

of fractures into the hydraulic properties of equivalent porous media but ignores their exact 

positions (e.g. [Barenblatt et al., 1960; Warren and Root, 1963; Snow, 1969; Duiguid and 

Lee, 1977; Long et al., 1982; Peters and Klavetter, 1988; Narasimhan and Pruess, 1988; 

Carrera et al., 1990]); the other is the explicit (discrete fracture) model which uses special 

elements to exactly simulate the geometric and hydraulic properties of fractures (e.g. [Louis, 

1972; Schwartz et al., 1983; Andersson et al., 1984; Andersson and Dverstorp, 1987; Cacas 

et al., 1990; Hyman et al., 2015]). The former can be applied into large-scale engineering 

problems with a large number of fractures, whereas the latter has the potentiality to describe 

the fractures in more detail and hence gives more accurate solution. 

From the practitioner’s point of view, the main difficulty in the explicit simulation of 

fractures is to generate finite element meshes representing the heterogeneous media, which 

are used to solve various engineering problems based on the FEM. This arises from two 

aspects: 
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 On the one hand, there are a large number of fractures with different sizes and that 

are interlaced mutually. 

 On the other hand, the specific elements representing fractures have definite nodes 

in their location, and some of these nodes should be the common ones of the 

surrounding rock elements.  

The difficulty, along with complex configuration of geotechnical structures such as dam 

foundation, rock slope and underground cavern, leads to time-consuming and tedious pre-

processing work. 

The composite element method (CEM) [Chen et al., 2002] has been proposed to solve 

the difficulty discussed above, and has been implemented for rock fractures, rock bolts, 

drainage holes and cooling pipes [Chen and Qiang, 2004; Chen et al., 2004a, 2004b, 2011; 

Chen and Feng, 2006; Hou et al., 2015]. A prominent feature of the CEM is to place the 

fractures, or bolts, or drainage holes, or cooling pipes inside the elements. In this way less 

restraint is imposed on the mesh generation for complicated geotechnical structures with 

considerable amount of fractures, bolts, drainage holes and cooling pipes. The first task of 

this work is to use the CEM to develop numerical model of groundwater flow in complex 

fractured media. This model can be placed into a category of the explicit model, because 

the fractures are explicitly simulated within the composite elements. If there are no fractures, 

the CEM can be automatically degenerated into the FEM, which is another prominent 

feature of the CEM, and then, the model can be used to solve flow problems in porous media. 

It has been widely recognized that groundwater flow—or specifically speaking, its 

resulting actions—have a significant effect on the stability of slopes [Hodge and Freeze, 

1977]. The pore-water pressure undermines the stability by diminishing the shear strength 

on the potential slip surface. The pore-water pressure in tension cracks or nearly vertical 

fissures also reduces the stability by additional slip driving forces. In general, the vast 

majority of natural slopes have stabilized after long-term geological effects (including long-

term steady flow of groundwater). However, when slopes are subjected to surrounding 

environmental changes, such as rainfall infiltration or reservoir level fluctuation, the pore-

water pressures in the slopes will change, thus changing the original balance situation. For 

a slope originally approaching or being in a limit stability state, this change may cause the 

instability of the slope. Estimation of pore-water pressures plays an important role in the 

slope stability analysis.  

Landslide induced by rapid drawdown of reservoir is one of the common geological 

hazards. When the reservoir level is high, the hydrostatic pressures help to stabilize the slope 
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adjacent to the reservoir. A reduction of the reservoir level has two effects: a decrease in the 

external stabilizing hydrostatic pressures and a modification of the internal pore-water 

pressures. If the reservoir level is lowered rapidly, the pore water within the slope cannot 

drain in time so that the pore-water pressures in the slope still remain high values. This may 

lead to the temporarily increased hydraulic gradients and cause that the stability of the slope 

cannot be sustained. Eventually a failure occurs. 

Stability analysis of the slope subjected to reservoir’s rapid drawdown condition has 

become one of the most important considerations in the design of embankment dam and the 

stabilization of reservoir bank slope [National Development and Reform Commission of 

P.R. China, 2006; U.S. Army Corps of Engineers, 2003]. However, the current stability 

computations for rapid drawdown condition are mostly based on certain assumptions, thus 

resulting in insufficient understanding of the impact of reservoir drawdown on the slope 

stability. The main assumptions and the resulting insufficiency are as follows:  

 Firstly, the concept of “sudden drawdown” (or “fully rapid drawdown”) is widely 

used for slopes with various hydrogeological, and soil and rock conditions [Wright 

and Duncan, 1987]. The so-called “sudden drawdown” refers to the change in 

reservoir level happening without allowing the time needed for drainage of slope 

soils or rocks, and thus the groundwater level or the free surface in the slope 

maintains the original position. However, the rate of drainage is actually related to 

the slope material type and the drawdown rate. If the material is a clayed soil with 

weak permeability or the drawdown rate is relatively fast, the “sudden drawdown” 

condition will be easy to reach because of poor drainage condition. On the contrary, 

if the medium is a sandy soil or highly fractured rock with strong permeability or 

the drawdown rate is relatively slow, the water can readily drain and thus the 

“sudden drawdown” will not occur. In either cases, the assumption of “sudden 

drawdown” can lead to conservative evaluation of the stability of slope, which will 

result in project waste. 

 Secondly, even considering the change of the groundwater level in slope during 

reservoir drawdown, most prior studies simply substitute a hydrostatic distribution 

of pore-water pressures derived by the groundwater level for a hydrodynamic 

distribution of pore-water pressures [Rinaldi et al., 2004]. The empirical method 

[U.S. Army Corps of Engineers, 1970] approximates the height of the free surface 

by the values of the material hydraulic conductivity, porosity and the drawdown 

rate. The approximated free surface is then used for constructing the “static” flow 
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nets and estimating the pore-water pressures. These pore-water pressures may be 

inaccurate, given that they are changing with the time factor. Moreover, if the 

hydraulic conductivity of slope material exhibits anisotropy or heterogeneity, this 

approximation for the free surface as well as the construction for the flow nets 

would produce bigger error.  

 Thirdly, in examining rock slopes containing fractures, the rock masses are 

frequently assumed as continua similar to the soils, and the flow and stability 

analysis methods used for soil slopes are applied to the rock slopes. This renders 

that the influence of the fractures within rock slopes on groundwater flow and the 

slope stability cannot be reasonably estimated, thus affecting the final evaluation 

results for the stability.  

Based on these considerations, the second task of this work is to use the developed 

numerical model of groundwater flow to accurately estimate the pore-water pressures in soil 

and rock slopes during reservoir drawdown and thus to make more reasonable evaluation of 

the stability of the slopes. 

1.2 Objectives and scope 

On impel of the above two motivations, the overall objectives of this work are twofold: 

(i) to develop the numerical model of groundwater flow in fractured media using the CEM; 

and (ii) to investigate the stability of soil and rock slopes under reservoir drawdown 

conditions. In the investigation, groundwater flow in the slopes is simulated by using the 

numerical model, and then stability analyses are conducted by applying the limit 

equilibrium method and using pore-water pressure distributions obtained by the flow 

simulations. 

It is worthwhile noting that groundwater flow within the slope subjected to reservoir 

drawdown condition is actually a transient process. In developing the numerical model of 

flow in fractured media, special consideration is given to transient groundwater flow 

problem. Moreover, two kinds of descriptions of transient flow problems are considered: 

one is of transient, saturated flow with a free surface and the other is of transient, variably-

saturated flow. The difference between them is briefly stated as follow: 

 In modelling transient, saturated flow with a free surface, only the saturated zone 

is treated and the effect of the unsaturated zone on flow in the saturated zone is 

approximated by using the concept of delayed yield.  
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 In modelling transient, variably-saturated flow, the saturated and unsaturated 

zones are simultaneously treated by using the variably-saturated flow equation (i.e. 

Richards’ equation).  

Obviously, the latter has a stronger describing ability than the former. However, a 

common difficulty in treating both zones simultaneously is that a great deal more data, such 

as capillary pressure characteristics, relative permeability and initial state of saturation, are 

required for the unsaturated zone than are required for the saturated one. Since such data is 

often difficult to obtain and most of the engineering problem is primarily concerned with 

flow in the saturated zone, the analysis of transient, saturated flow with a free surface has 

obtained more application [Neuman and Withersppon, 1971]. In investigating the stability 

of slopes under drawdown conditions, the numerical model developed for transient, 

saturated flow with a free surface will be employed to estimate the free surface and pore-

water pressure distributions within the slopes. In addition, given that increasing attentions 

are focused on the unsaturated fractured rock recently from the urgent need to safely dispose 

of radioactive waste, several example problems involving complex fractured aquifers will 

also be discussed. 

1.3 Outline of thesis 

This work is subsequently organized as follows: 

Following this chapter, chapter 2 considers some basic problems involved in the 

numerical analyses of groundwater flow in fractured media and its effects on the slope 

stability. The discussion of these problems provides theoretical basis for subsequent studies. 

Chapter 3 develops the numerical model for simulating transient, saturated flow in 

fractured media with a free surface. The composite element formulation and the solution 

algorithms are presented. In particular, an iterative scheme is introduced to locate the 

transient free surface. The effectiveness of this model is verified by a synthetic example and 

simulations of flow in complicated, saturated fractured aquifers. 

Chapter 4 develops the numerical model for simulating transient, variably-saturated 

flow in fractured media. The constitutive relations for fractures and matrix are first 

discussed, as well as the fracture-matrix interaction mechanisms in the variably-saturated 

flow. Then, the composite element formulation are established. To solve the variably-

saturated flow equations an iterative scheme is introduced. Finally, verification examples 

are presented, along with illustrative problems that demonstrate the complexity of variably-
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saturated flow in fractured aquifers. 

Chapter 5 studies the stability of homogeneous soil slopes under reservoir drawdown 

conditions. The numerical model for transient, saturated flow with a free surface is used to 

calculate the transient free surface and pore-water pressure distributions in the slopes during 

drawdown. Using the pore-water pressure distributions as input groundwater conditions, the 

stability analyses are performed to derive the variations of the safety factor of slopes. The 

influences of various factors, including the drawdown rate, hydraulic and strength 

parameters of the soils and slope geometry on transient flow and the stability of 

homogeneous soil slopes, are investigated in detail. As a result, quantitative relationships 

between the drawdown condition and its resulting slope behaviors are established. 

Chapter 6 studies the stability of layered rock slopes under reservoir drawdown 

conditions. Due to the presence of the fractures, the transient flow in the rock slopes is 

different from that in homogeneous soil slopes. A parametric study is conducted using the 

CEM in order to specially investigation the influence of fracture characteristics on transient 

flow processes as well as pore-water pressure distributions within the layered rock slope 

subjected to drawdown conditions. The stability analyses of the slopes are subsequently 

performed to determine the variations of the safety factor during drawdown.  

Finally, conclusions from the conducted studies and recommendations for future 

research are presented in Chapter 7.  
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Chapter 2 Basic Considerations 

2.1 Introduction 

This chapter considers some basic problems involved in the analyses of groundwater 

flow in fractured media and its effects on slope stability. In the aspect of the groundwater 

flow in fractured media, four key issues are examined. They are: (i) flow through single 

fractures; (ii) flow in fractured media; (iii) composite element method; and (iv) flow in 

variably-saturated systems. In the aspect of the effect of groundwater flow on slope stability, 

two following issues are examined: (i) effects of groundwater on slope stability; and (ii) 

stability analysis methods. For each of these issues, a brief description is provided, as well 

as the existing research findings. In addition, at the end of the examination on each issue, it 

will be answered that “how this work will take into account or deal with this issue?”. 

2.2 Flow through single fractures 

2.2.1 Classical cubic law 

A single fracture is the basic element of a fracture system, hence the analysis of flow 

in fractured media must begin with that of flow through a single fracture. The classical view 

of a single fracture considers a pair of smooth, parallel plates, as shown in Figure 2.1(a). 

From the Navier-Stokes equations for slow, non-turbulent flow of an incompressible 

Newtonian fluid, equation has been derived by Snow [1969] for the volumetric flow through 

unit width of the smooth, parallel-plate fracture, qf, that is: 

 

3

12

w
f

b
q J




   (2.1) 

where b is the fracture aperture, γw is water unit weight, μ is the viscosity of water and J is 

the hydraulic gradient. Equation (2.1) is referred to as the cubic law, because the volumetric 

flow is proportional to the cube of the fracture aperture. Clearly, the cubic law is only 

applicable to the case of slow laminar flow. In case that flow be non-linear or turbulent, 

Equation (2.1) will no longer be applicable.  

According to the cubic law and Darcy’s law which relates the flow rate to the hydraulic 

conductivity and the hydraulic gradient, the hydraulic conductivity for a single smooth, 

parallel-plate fracture, kf, can be given by: 
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2.2.2 Correction of the cubic law 

The parallel-plate model and the cubic law are attractive in predicting flow through 

fractures, due to the inherent simplicity. However, natural fractures often have rough walls 

and variable apertures that control flow and distribution of water in fracture surface, as 

shown in Figure 2.1(b). If the cubic law is applied to these fractures, it needs to be corrected 

to include the impact of the roughness.  

Many researchers have proposed their own corrected formulas by experimental or 

theoretical research [Lomize, 1951; Louis, 1969; Neuzil and Tracy, 1981; Tsang and 

Witherspoon, 1981, 1983; Barton et al., 1985; Brown, 1987]. In these formulas, the cubic 

law’s accuracy is improved by either incorporating a correction factor C or utilizing a 

hydraulically equivalent fracture aperture bc, as follows: 

 

3 3

    or    
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C

 

 
    (2.3) 

Due to the diversity of fracture rough walls and the difference between experimental 

conditions, the corrected formulas of the cubic law proposed are different, and they have 

some certain one-sidedness in analyzing flow in single rough-walled fractures. In table 1.1, 

there is a list of some results of C and bc expressions. 

 

Figure 2.1 Conceptual models of a single fracture: (a) a pair of smooth, parallel plates; and 

(b) a pair of rough-walled surfaces [Brush, 2001] 
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Table 2.1 Some expressions of C and bc 

Author Expression of C or bc Statement 

Lomize [1951] 1.5

max1 6.0( / )C e b   e: absolute asperity height 

bmax: maximum aperture Louis [1969] 1.5

max1 8.8( / 2 )C e b   

Neuzil and Tracy [1981] 3 3

0
( )dcb b f b b



   
f(b): probability density function of 

aperture Tsang and Witherspoon 

[1981] 

max max3 3

0 0
( )d ( )d

b b

cb b f b b f b b    

Brown [1987] 1 0.9exp( 0.56 )c vb b C    
b : mean aperture 

Cv: variable coefficient of aperture 

Barton et al. [1985] 2 2.5JRCc mb b   
bm: mechanical aperture 

JRC: joint roughness coefficient 

 

Another approach to improve the cubic law’s accuracy is to consider explicitly the 

spatial variability in aperture that results in what is known as the local cubic law 

[Zimmerman et al., 1991; Nicholl et al., 1999; Wang et al., 2015]. The local cubic law 

represents the latest development level of investigation of flow in rough-walled fractures. 

From the local cubic law, the volumetric flow through a single fracture varies as the cube 

of the fracture aperture. It has been postulated by majority of theoretical and numerical 

studies of single fracture flow that local flow magnitudes are well described by the Reynolds 

equation [David, 1993; Unger and Mase, 1993; Brown et al., 1995; Mourzenko et al., 1995], 

which implies that local flow magnitudes are proportional to the cube of the local aperture; 

and hence the name “local cubic law”. However, several recent simulation studies have 

indicated that the local cubic law assumption might be wrong in many cases. Moreover, 

even if the local cubic law is adequate, it is not clear how the aperture to be used for this 

estimate should be measured [Berkowitz, 2002]. 

For both approaches, the measurement of the fracture aperture is necessary. For a single 

fracture used for experimental research, Hakami and Barton [1991], Hakami and Larsson 

[1996] and Detwiler et al. [1999] employed the transparent replicas of single fractures, and 

measured the aperture by the techniques of injection of fluorescent expoxy or transmitted 

light. Yet, these techniques are difficult to implement for measurement of the fracture 

aperture in situ.  , the concepts of mean aperture, mechanical aperture and hydraulically 

equivalent aperture are proposed, as used in the corrected cubic law in Table 2.1. The 

laboratory or field hydraulic tests are often carried out for actual fractures. After obtaining 

the volumetric flow, the fracture aperture can be reversely determined according to the cubic 
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law, which is considered as the hydraulically equivalent aperture. This hydraulically 

equivalent aperture is not the real fracture aperture, but it reflects the impact of the fracture 

wall roughness on the discharge capacity of single fracture at a deeper level. 

In this work, fracture will be treated as a medium with the hydraulic conductivity 

obtained by Equation (2.2), using the hydraulically equivalent aperture. 

2.3 Flow in fractured media 

2.3.1 From single fractures to fractured media 

In Section 2.2, single fracture flow equations have been established. Consider a group 

of evenly spaced, parallel and identical fractures of infinite length in a matrix block. The 

flow magnitude though the fractured media in the direction parallel to fractures can be 

derived by summation of contributions from fractures and matrix (assuming that the matrix 

is permeable). Since the hydraulic conductivity for individual fractures is generally much 

higher than that for the matrix, flow through the fractured media occurs mainly along 

fractures. However, as the number of fractures increases and the distribution of fractures 

becomes irregular, zones of high and low fracture density will develop, resulting in great 

variation in hydraulic conductivity for the media. Such variation is due to spatial variations 

in fracture aperture, density, length, and fracture connectivity, and of course difference in 

conductivities of the fractures and the matrix. This eventually leads to a high heterogeneity, 

increasing difficulty of analysis of flow in fractured media. 

2.3.2 Modelling approaches for flow in fractured media 

This section describes the main approaches used for modelling groundwater flow in 

fractured media. Clearly, the main issue is how to describe the heterogeneity associated with 

fractures. A number of modelling approaches exist, but most can be divided into three types: 

the equivalent porous media approach, the dual porosity approach, and the discrete fracture 

network approach. In the equivalent porous media approach, hydraulic properties of the 

fractured media are modelled using equivalent coefficients such as hydraulic conductivity 

and specific storage, and effective porosity to represent the volume-averaged behavior of 

many fractures within a rock mass. Thus, the details of individual fractures need not be 

known. This is in direct contrast to the discrete fracture network approach where the details 

of individual fractures are explicitly accounted for. In the dual porosity approach, equivalent 

porous media properties are separately assigned for fracture and matrix, and an exchange 
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function based on a simplified fracture geometry is used for transfer of water between the 

two porous media. The former two approach can be placed into a category of the implicit 

approach because individual fractures are not explicitly treated in both approaches; in 

contrast, the latter can be placed into a category of the explicit approach. Table 2.2 provides 

a concise summary of the advantages and disadvantages of each approach. It draws on 

discussions presented by National Research Council [1996] and Cook [2003], both of which 

make more exhaustive summaries of this topic. 

In conclusion, each modelling approach has its own advantages and limitations. When 

deciding which approach to be taken, one should consider the three key factors: (i) whether 

the study is concerned with bulk flow; (ii) the steady or transient nature of the problem; and 

(iii) the scale of interest (local or regional). For flow problems concerned with bulk average 

volumetric behavior over larger scales, an equivalent porous media approach will usually 

suffice. The approach works best for steady flow systems, whereas it is inadequate for 

transient systems. This is because of the assumption that the flow dynamics between 

fractures and matrix are locally at equilibrium, and that does not match the fact that 

differences in the hydraulic properties of fractures and matrix can cause different response 

times to transient process. A dual porosity approach accounts for the disequilibrium by 

allowing water exchange between matrix and fracture. However, a subject of debate using 

this approach is how to define the exchange function representing water transfer between 

porous media, which strongly affects the modelling results [Huyakorn et al., 1983]. 

Difficulties in both the approaches can arise when working at local scales where important 

fractures controlling the flow system are not explicitly included in the modelling. In such 

cases, a discrete fracture network model may be employed as the smaller scale of the study 

usually permits the conducting fractures to be identified and explicitly included in the model. 

2.3.3 The use and weakness of discrete fracture network model 

So far, the discrete fracture network model has been well developed and has gradually 

become an indispensable model for analyzing flow in fractured media. The discrete fracture 

network model can be used not only to improve our understanding of the flow dynamics in 

fractured media [Wang and Narasimhan, 1985], but also to derive equivalent hydraulic 

parameters required in continuum modelling based upon the explicit characterization of 

fractures [Finsterle, 2000; Wang et al., 2002; Chen et al., 2008; He et al. , 2013]. 

Nevertheless, the use of this model has a major weakness: it requires an accurate 

representation of the geometry of fractures. This weakness is particularly striking in  
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Table 2.2 Advantages and disadvantages of each modelling approach for flow in fractured 

media (refer to [National Research Council,1996] and [Cook, 2003]) 

Model type Advantages Disadvantages 

Equivalent 

porous 

media 

(i) Simplest approach with lowest 

data requirements; 

(ii) If desired, high fracture 

density zones can be simulated 

as zones with higher porosity 

and hydraulic conductivity; 

(iii) Most suitable for large-scale 

applications of steady flow. 

(i) Limited application to transient flow 

problems; 

(ii) Assumes that REV† can be defined. 

Reliable predictions can only be made at 

scales greater than or equal to the scale of 

the assumed REV. Determination of the 

hydraulic parameters at these scales can 

be difficult. 

Dual 

porosity 

(i) Suitable for systems where 

matrix has high porosity and 

permeability; 

(ii) Allows water exchange 

between fractures and matrix; 

(iii) Can account for different 

hydraulic responses in 

fractures and in matrix caused 

by transient changes. 

(i) Tendency to over regularize and simplify 

the geometry; 

(ii) Difficult to quantify the parameters 

needed as input to this model; 

(iii) Needs to define an exchange function 

accounting for water transfer between 

porous media; 

(iv) Assumes that REV can be defined. 

Reliable predications can only be made at 

scales greater than or equal to the scale of 

the assumed REV. 

Discrete 

fracture 

network 

(i) Explicit representation of 

individual fractures and 

fracture flow; 

(ii) May allow flow in matrix and 

water exchange between 

matrix and fractures; 

(iii) Good for conceptual process 

understanding; 

(iv) Useful in determining 

equivalent continuum 

parameters based upon explicit 

characterizations. 

(i) Requires the most detailed field 

knowledge; 

(ii) Requires powerful computational power 

to analyze complex fractured media, 

including to discretize the complex 

fractured areas and to solve equations 

with tens to hundreds of thousands of 

unknowns. 

†REV is a contraction of representative elementary volume. 

 

analyzing complex, irregular domains and complicated fracture networks. Different 

representation approaches have been used in past studies of flow in discretely-fractured 
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media. A brief discussion of the existing approaches and their problems is stated in the 

following paragraph. 

The matrix is assumed to be impermeable in some studies [Cacas et al., 1990; 

Mustapha and Mustapha, 2007], where flow only takes place along one-dimensional (1D) 

intersections of two-dimensional (2D) fractures. An impermeable matrix simplifies the 

fracture discretization because only the 2D fractures require discretization. However, the 

low-permeability matrix cannot be neglected in many cases, especially for studies involving 

solute transport. Therrien and Sudicky [1996] introduced a discretization approach for three-

dimensional (3D) fractured media. The approach discretized the fractures by using 2D 

elements and discretized the matrix by using 3D elements. These 2D fracture element must 

be faces of neighboring matrix elements. This discretization is meaningful for simulation of 

flow in fractured media, because the common node approach ensures the continuity of 

hydraulic head at the fracture-matrix interface and no leakage terms are required to account 

for water exchange between fractures and matrix. Graf and Therrien [2008] developed a 

technique to realize such a discretization. With this technique, the matrix was first 

discretized into tetrahedrons, and then the embedded fractures were approximated by the 

faces of the tetrahedrons. However, this technique requires considerable transformations of 

the fractures in order to reduce complex configurations. Recently, a new and more efficient 

method to discretize 3D fractured media was proposed by Mustapha et al. [2011]. Using 

this method, the fractures were first discretizes into a 2D finite element mesh with triangles 

and then tetrahedron elements representing matrix were generated to fill the 3D domain 

surrounded by the faces of the fracture elements. Unfortunately, this method still could not 

change the fact that the complex geometry of fractures greatly limits the mesh division.  

For the purposes of this work, the discrete fracture network model is selected, and the 

composite element method that requires less restraint on the mesh generation for complex 

fractured media will be used to realize this model. 

2.4 Composite element method 

2.4.1 Basic principle of the CEM 

The CEM is a new numerical method, developed from the FEM. In the FEM, each 

element represents only one material. For heterogeneous areas with multiple materials, the 

corresponding finite elements must be set on different material areas, which is inconvenient 

for mesh division. For example, if the rocks contain large numbers of fractures, or anchors, 
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or drainage holes, or cooling pipes, the difficulty of mesh dividing and the pre-processing 

workload will drastically increase. The CEM overcomes this inconvenience by setting the 

embedded sub-elements. In the CEM, a heterogeneous area is treated as a homogenous area 

for meshing. Then the generated mesh certainly will have a number of elements that contain 

multiple materials. For elements that contain only one material, they are ordinary finite 

elements and can also be considered as degraded composite elements. For elements that 

contain more than one materials, they are defined as composite elements, and each material 

area within the composite elements is defined as a sub-element. The composite element 

consists of multiple sub-elements and the interfaces between them. 

Figure 2.2 shows two types of composite elements. In Figure 2.2(a), a closed area 

contained within the element is defined as a sub-element, denoted as Sub-element 1. The 

area in which Sub-element 1 is removed from the element is defined as another sub-element, 

denoted as Sub-element 2. Two sub-elements are linked through the interface. This type 

element is typical of an element containing an anchor bolt, or a drainage hole, or a cooling 

pipe. In Figure 2.2(b), a composite element is divided into four sub-elements due to the 

insertion of two fractures. Four sub-elements are mutually independent, and neighboring 

sub-elements are linked through the fracture interfaces between them. It needs to be pointed 

out that these two composite elements have the same outer contours as the finite elements, 

but their internal sub-elements can have any shapes.  

 

Figure 2.2 Two types of composite elements and their internal sub-elements 

Theoretically, the number of sub-elements in a composite element is unlimited. For a 

composite element containing l sub-elements, it will be assigned to l sets of nodal variables 

(which refer to nodal displacements in stress-strain analysis, nodal temperatures in thermal 

analysis, and nodal hydraulic heads in flow analysis). Variables within each sub-element 

are defined by interpolation, using nodal variables of the sub-element and shape function 
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associated with these nodes. Variables within each interface are defined by using the 

variables of two adjacent sub-elements, and ensuring the continuity of the variables between 

the two sub-elements as well as the conservation of energy. According to the variational 

principle, the governing equations for each sub-element and each interface within the 

composite element can be derived separately. Then, these equations are integrated together 

to form a unified equation for the whole composite element. Solving the composite element 

equation means implementing simulations of all internal sub-elements and interfaces. 

2.4.2 Research progress of the CEM 

The CEM has been successively used for the stress-strain, thermal and flow analyses. 

Here are some of the existing research progress with breakthroughs. The stress and 

deformation of the rock mass reinforced with mortar anchor was the first to use CEM for 

analysis [Chen et al., 2003]. Within a composite element, the anchor bolt, the mortar and 

the rock were denoted by three sub-elements, respectively. The anchor—mortar contact 

surface and the rock—mortar contact surface were denoted by two interfaces, respectively. 

Through these sub-elements and interfaces, mechanical behaviors of the corresponding 

media and contact surfaces were accurately simulated. Chen and Qiang [2004] developed 

the composite element method for analyzing the stress and strain of fractured rock mass. 

The rock sub-elements within composite elements, formed by the incision of fractures, 

could have any shapes. The elasto-viscoplastic deformation of these rock sub-elements and 

the fracture interfaces was simulated explicitly within the composite elements. Since the 

cooling pipe and the drainage hole are cylindrical media similar to the anchor bolt, Chen et 

al. [2011] presented the composite element model for simulating the temperature field in 

mass concrete structure with cooling pipes; Chen et al. [2004] presented the composite 

element model for simulating the flow field in dam with drainage holes. Chen and Feng 

[2006] and Chen et al. [2010] then applied the CEM to the analysis of flow in fractured rock 

mass. However, their work was limited to simulation of steady, saturated flow and only 

simple situations where fractures are either small in number or regularly distributed were 

involved.  

This work continues to develop the CEM in order to analyze transient, saturated and 

transient, variably-saturated flow in complex, fractured media. 

2.5 Flow in variably-saturated systems 

The current understanding of flow processes in the fractured unsaturated zone is 
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limited [Hendrickx and Flury, 2001]. The difficulty inherent in measuring hydraulic 

properties in an unsaturated fracture has resulted in a paucity of experimental data at the 

fracture scale. Detailed measurements of flow through unsaturated fracture replicas [Su et 

al., 1999] have demonstrated the highly variable nature of the flow system dynamics in both 

time and space. Under partially saturated conditions, there are complex relationships 

between pressure, saturation and hydraulic conductivity in both the matrix and the fracture 

network. As a result, fractures could serve as either preferential flow pathways or as 

capillary barriers in the unsaturated zone [Wang and Narasimhan, 1985], depending on 

saturation conditions. It is therefore difficult to distinguish whether the matrix or the 

fractures represent the predominant flow system. In addition, given the relatively large 

porosity and small pore sizes in the matrix compared to the fracture, there is the potential 

for significant imbibition of water from the fractures into the matrix in variably-saturated 

flow process. The varying hydraulic properties of the matrix and fractures create a dynamic 

system with the fracture-matrix interaction. 

Valuable insight into the hydraulic behavior of the fractured media has been derived 

through the use of numerical modelling tools [Kwicklis and Healy, 1993; Simunek et al., 

2003; Cey et al., 2006]. Wang and Narasimhan [1985] developed a numerical model to 

simulate variably-saturated flow in discretely-fractured geologic material. They used the 

integrated finite-difference technique to solve for the drainage of a regularly fractured 

matrix block in three dimensions. They assumed that the fractures are rough-walled, with 

variable apertures characterized by a gamma probability distribution. The fracture walls 

were taken to be in contact when the aperture at any point in the fracture plane was smaller 

than a defined cutoff aperture. Effective, macroscale constitutive relationships for fracture 

saturation, permeability and contact area as functions of pressure head were then developed 

based on the aperture probability distribution function and the fact that the portions of the 

fractures with apertures larger than the saturation cutoff aperture would be dry. Flow along 

the fractures was described by a generalized cubic law and a phase-separation constriction 

factor was used to represent the resistance to flow caused by entrapped air. Richards' 

equation and Van Genuchten [1980] relationships were used to describe the flow in the 

matrix. Other studies that considered variably-saturated flow include those of Dykhuizen 

[1987] and Peters and Klavetter [1988] who developed numerical models based on the 

double porosity conceptualization, Therrien and Sudicky [1996] who presented a numerical 

model based on the discrete fracture network conceptualization, and Nitao and Buscheck 

[1991] who presented an analytical solution where matrix imbibition is treated as a 1D 
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process. 

This work aims to present a new numerical model based on the CEM and the discrete 

fracture network conceptualization, for the solution of variably-saturated groundwater flow 

in fractured media. 

2.6 Effects of groundwater on slope stability 

2.6.1 Mechanical action of groundwater 

The critical role that groundwater plays in the stability of slopes was recognized by 

Terzaghi [1923] in his effective stress law. He showed that the relationship between the 

presence of groundwater and the strength of many natural materials could be expressed in a 

modified form of Coulomb's law: 

 tanec       (2.4) 

where 

 =e t u     (2.5) 

and σe is effective stress, σt is total stress, u is pore-water pressure, τ is shear strength, c’ is 

effective cohesion, φ’ is effective angle of internal friction. 

It is clear from Equations (2.4) and (2.5) that a slope stability analysis carried out in 

terms of effective stress requires an understanding of the distribution of the pore-water 

pressures in the slope, and this understanding implies a knowledge of the groundwater flow 

system.  

2.6.2 Softening and erosion actions of groundwater 

Groundwater may have softening and erosion actions on slope soil or rock. On the one 

hand, the cohesion degree between particles as well as the friction coefficient may decrease 

under water lubrication, which reduces the shear strength. On the other hand, a circulating 

water flow in the slope may develop in response to repeated changes in the external 

environment, probably causing lixiviation of fine particles. This may eventually result in 

local instability where the toe of slope is undermined, or a block of rock is loosened. 

2.6.3 Rapid reservoir drawdown 

Reservoir bank slopes and embankment dams may become saturated by water flow 

during prolonged high reservoir stages. If subsequently the reservoir level is drawn down 

faster than pore water can escape, unbalanced seepage forces result. Stability analyses are 
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routinely performed to calculate the safety factor of slopes subjected to this condition. In 

general, analyses for this condition are based on the conservative assumptions that: (i) the 

reservoir level is lowered instantaneously from the maximum to minimum pool elevation; 

(ii) little or no drainage occurs in the slopes while the reservoir level is being lowered. The 

condition that meet these two assumptions is called “sudden drawdown”. Where sudden 

drawdown assumption appears to be excessively conservative, considering possible 

drawdown rate and the permeability of proposed slope materials, analyses for relatively 

incompressible materials may be performed for expected drawdown rate and pore-water 

pressures determined from flow analyses to evaluate effective stresses. 

This work is intended to present a detailed discussion on the effects of various 

drawdown conditions on groundwater flow systems and slope stability. The mechanical 

action of groundwater, in the form of pore-water pressures, will be taken into account. The 

softening and erosion actions of groundwater will not be taken into account. 

2.7 Stability analysis methods 

2.7.1 Limit equilibrium methods 

Limit equilibrium methods are widely used for slope stability analysis, which looks at 

the sliding mass as a rigid body passing forces without deformation [Chen, 2003; Chen et 

al., 2005]. Based on the equilibrium conditions with respect to forces and/or moments, the 

reaction forces on the slip surfaces and the corresponding safety factor which represents the 

ratio between the driving and resisting forces can be computed. The major advantages with 

the limit equilibrium methods are simplicity in computation algorithm, full of experiences 

in parametric evaluation, and the selection of allowable safety factor. One of the major 

disadvantages with the limit equilibrium methods is that the deformation that in some 

situations could be important cannot be obtained. 

Basically, the limit equilibrium analysis methods fall into two main categories: 

methods that deal with structurally controlled planar or wedge slides and methods that deal 

with circular or nearly circular failure surfaces in “homogeneous” materials. Many of these 

methods have been practiced for many years and can be convinced as reliable. Table 2.3 

lists the limit equilibrium methods and indicates what equilibrium conditions are required 

for each method. Table 2.4 gives a summary of the inter-slice forces included and the 

assumed relationships between the inter-slice shear and normal forces. The variants of limit 

equilibrium methods listed in Table 2.3 (or Table 2.4) may be selectively employed with 
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regard to the following considerations: (i) for nearly homogenous slopes, the theoretic and 

experimental studies show that the most dangerous slip surface is nearly circular, and the 

safety factor is not sensitive when the failure surface has small deviation from the arc, and 

therefore, the circular slip surface may be assumed and the classical Swedish arc method or 

the Bishop method may be employed; (ii) for slopes dominated by discontinuities, the slip 

surface is usually multi-planar or curvilinear; the residual thrust method, the Sarma method, 

the Bishop method, and the Janbu method may be exercised [Chen, 2015]. 

Table 2.3 Equilibrium conditions required for each limit equilibrium method [Chen, 2015] 

Method 
Overall Slice 

Moment Vertical force Horizontal force Moment Force 

Sweden arc Yes Yes No No Yes 

Bishop No No Yes No Yes 

Simplified Bishop Yes No No No Yes 

Janbu No No Yes Yes Yes 

Residual thrust method No No No No Yes 

Morgenstern-Price Yes Yes Yes Yes Yes 

Spencer Yes Yes Yes Yes Yes 

Sarma No No No No Yes 

 

Table 2.4 Inter-slice force characteristics and relationships for each limit equilibrium 

method [Chen, 2015] 

Method 
Inter-slice 

shear (X) 

Inter-slice 

normal (E) 

Inclination of X/E resultant, and X-

E relationship 

Sweden arc No No No inter-slice forces 

Bishop No Yes Horizontal 

Simplified Bishop No Yes Horizontal 

Janbu Yes Yes 
Applied line of thrust and moment 

equilibrium of slice 

Residual thrust 

method 
Yes Yes 

Inclination of the bottom slip surface of 

the upper slice 

Morgenstern-Price Yes Yes Variable; user function 

Spencer Yes Yes Constant 

Sarma Yes Yes X=c’+E·tanφ’ 

 

2.7.2 Numerical methods 

Recently, numerical methods for slope stability analysis have become prevalent. 
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Methods, such as FEM, discrete element method, discontinuous deformation method, block 

element method and numerical manifold method, are used for such modeling. The 

advantage of numerical modeling over the limit equilibrium modeling is that it can be used 

to simulate progressive failure and ongoing displacement in addition to simple factor of 

safety [Chen 2006; Zhou et al. 2007]. Numerical modeling also can be used to determine 

the factor of safety of a complex slope in which a number of failure mechanisms (modes) 

can exist simultaneously or where the mechanism of failure may change as progressive 

failure occurs. However, realistic input information for numerical model and correct 

interpreting the output results are paramount for the successful computation in the context 

of large-scale slopes, which require well-trained skills and full understanding of the slopes 

concerned. 

In this work, the simplified Bishop method will be employed to compute the safety 

factor of homogenous slopes against circular sliding; and the Janbu method will be 

employed to compute the safety factor of layered slopes against planar sliding. 

2.8 Conclusions 

This chapter has discussed some basic problems involved in the analyses of 

groundwater flow in fractured media and its effects on slope stability. In the aspect of the 

groundwater flow in fractured media,  

 First, the basic law of single fracture flow which is known as the classical cubic 

law, and two approaches to improving the cubic law’s accuracy are introduced. 

The generalized cubic law based on the concept of a hydraulically equivalent 

fracture aperture is used more in analysis of single fracture flow. By combining 

the generalized cubic law with Darcy’s law, the hydraulic conductivity for single 

fractures can be derived.  

 Then, three classes of modelling approaches for flow in fractured media are 

expounded respectively, as well as their advantages and limitations. Compared 

with the continuum approaches, the discrete fracture network model has the 

potentiality to describe the fractures in more detail, so it is more suitable for the 

development of understanding of the flow dynamics in fracture-matrix systems. 

However, the use of this model requires to overcome a difficulty in discretization 

of the fractured media. The CEM employed in this thesis can well solve this 

difficulty.  
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 Next, the basic principles and the research progress of the CEM are discussed. It 

is particularly pointed out that the CEM has not yet been used to solve transient, 

saturated or variably-saturated flow problems in complex fractured media.  

 Finally, the characteristics of flow in the unsaturated zone which can be different 

from those in the saturated zone are briefly described, as well as some recent 

research achievements.  

In the aspect of the effect of groundwater flow on slope stability,  

 First, three actions of groundwater, including mechanical, softening and erosion, 

are briefly described. Particular mention is made of the importance of rapid 

drawdown condition to slope stability analysis.  

 Then, the limit equilibrium methods and numerical methods for stability analysis 

are introduced respectively. The limit equilibrium methods have been widely used 

because of the simplicity in computation algorithm 

The discussion of these problems provides theoretical bases for subsequent studies. 
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Chapter 3 Composite Element Method for Modelling Transient, 

Saturated Flow in Fractured Media with a Free Surface 

3.1 Introduction 

There are many different ways to classify groundwater flow. According to whether the 

flow elements (e.g., hydraulic head and flow velocity) change with time, flow is classified 

into steady flow and transient flow. According to whether the flow domain has a free surface 

boundary, flow is classified into confined flow and unconfined flow. According to whether 

the saturation within the domain is changed, flow is classified into saturated flow and 

variably-saturated flow. Besides, according to the type of media within the domain, flow is 

classified into porous media flow and fractured media flow. These classification ways make 

the study of groundwater flow have different emphases. In fact, steady flow, confined flow, 

and saturated flow can respectively viewed as a special case of transient flow, unconfined 

flow and variably-saturated flow. The method used for transient flow generally permits 

analysis of steady flow as long as the parameters associated with the time terms in the 

governing equations are zeroed. Also, the method for unconfined flow allows for analysis 

of confined flow as long as the free surface is not specified. And the method for variably-

saturated flow allows for analysis of saturated flow as long as the saturation-related 

parameters are taken as fixed values. Thus, the method used for transient, unconfined and 

variably-saturated flow is the most complete method for solving groundwater flow problems. 

Unconfined flow can be incorporated into variably-saturated flow because the free 

surface boundary in the unconfined flow essentially divides the flow domain into two zones: 

saturated zone where saturation is equal to one and unsaturated zone where saturation is less 

than one. The reason why there are still a number of studies that deal with unconfined flow 

is that in some cases the researchers are concerned only with flow in the saturated zone. 

Moreover, increasing the analysis of flow within the unsaturated zone means increasing the 

difficulty of solving the problem and requiring more data for the unsaturated zone. These 

data may include the initial state of saturation, rates of infiltration for both air and water, 

viscosities and densities of both fluids, capillary pressure characteristics for each part of the 

flow domain, relative permeability, and the absolute permeability of each part of the system 

[Green et al., 1970]. Since the groundwater hydrologist rarely has such data available in 

working in specific field problems and therefore is not able to analyze flow directly in the 
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unsaturated zone. Neuman and Witherspoon [1970, 1971] presented a numerical method for 

analyzing transient flow in porous media with a free surface. They assumed that the water 

flow occurred only in the saturated zone and the effect of the unsaturated zone on the 

transient position of the free surface was taken into account by using the concept of delayed 

yield which was proposed by Boulton [1954]. According to Boulton’s concept, when the 

free surface falls, drainage is not instantaneous and some water is delayed in its downward 

movement. Neuman and Witherspoon [1970] established equations for the velocity of the 

movement of free surface, and stated that the velocity normal to itself at which the free 

surface falls (or rises) was equal to the velocity of water that is discharged into (or added 

from) the unsaturated zone normal to the free surface. Similar studies of transient saturated 

but unconfined flow in porous media also include Taylor and Brown [1967], Desai and Li 

[1983], Purkey [2006], etc. However, according to the author’s knowledge, so far, there are 

relatively less studies on transient, saturated flow in fractured media with a free surface. 

In Chapter 1 and Section 2.3 of Chapter 2, it has been explained that groundwater flow 

in fractured media can be simulated by either explicitly or implicitly accounting for the 

fractures. The distinctions between the explicit and implicit approaches as well as their 

advantages and disadvantages have been described in detail in the previous chapters, and 

are not repeated here. It is worth emphasizing that the explicit approach has a unique 

advantage in characterizing the heterogeneity of fractured media and is therefore adopted in 

this work. Wang [1993], Jing et al. [2001] and Jiang et al. [2013] studied the numerical 

models for simulating transient, saturated flow in discretely-fractured media with a free 

surface, but they almost all only considered flow in the fractures whereas ignored flow in 

the matrix. Therefore, it is necessary to further develop a comprehensive numerical model 

for simulating transient, saturated flow in the fracture-matrix systems. 

The main difficulties in the explicit simulation of fractured media are: to generate a 

computational mesh that accurately represents the geometry of the fractured media; and to 

efficiently solve the discretized equations with tens to hundreds of thousands of unknowns 

associated with this mesh. The CEM is a new numerical method developed from the FEM. 

It inherits all the advantages of the FEM, for example, it can describe a range of complex 

geometry, boundary conditions, material properties and complicated physical processes. 

Meanwhile, the CEM can resolve the difficulty in discretizing the complex fractured media 

by interpolating the fractures into the elements. Due to the simplicity of the mesh used, the 

CEM usually requires less computing amount than the FEM in solving the same fractured 

media flow problem, which may result in higher computational efficiency. This property 
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has been demonstrated in many previous studies on the CEM [Chen and Feng, 2006; hen et 

al., 2010; Hou et al., 2015]. 

The purpose of this chapter is to use the CEM to develop the numerical model for 

simulating transient, saturated flow in fractured media with a free surface. The main 

contents include: (i) mathematical descriptions of transient, saturated flow problem; (ii) 

composite element model construction; (iii) relevant solution algorithms, including the CM 

pre-processing, the treatment of the free surface and the seepage face, etc.; (iv) verification 

example; and (v) simulations of flow problems in complicated, saturated fractured aquifers. 

3.2 Mathematical descriptions of transient, saturated flow problem 

By considering the compressibility of media skeleton, grains and pore water, and 

neglecting the acceleration and inertial effect, the governing equations for transient, 

saturated flow of groundwater can be expressed as: 
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where h=z+P, h is hydraulic head, z is elevation head, P is pressure head, Ss is specific 

storage, q is any source density in flow domain  , t is the elapsed time, and k is saturated 

hydraulic conductivity tensor. 

There are four types of boundaries possible in   (see Figure 3.1). They are 

respectively the prescribed head (Dirichlet-type) boundary Γ1, the prescribed flux 

(Neumann-type) boundary Γ2, free surface F and seepage face S. The corresponding 
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where h1 is the prescribed head on Γ1, g is the prescribed flux across Γ2. On the free surface 

F, the hydraulic head is equal to the elevation head, as given by the first line in Equation 

(3.4). The second line in Equation (3.4) represents the velocity of the free surface. It is 

established based on the property that groundwater flow does not cross the free surface. So 

the velocity of the groundwater flow normal to the free surface must equal the velocity of 
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the free surface normal to itself [Li and Jiao, 2003; Mao, 2003]. A schematic diagram for 

the relationship is exhibited in Figure 3.1, where Sy is specific yield, defined as the ratio of 

the volume of water that an unconfined aquifer will release from storage by gravity to the 

total volume of saturated aquifer, θ is angle of the normal direction of the free surface to the 

elevation direction, and n is an unit vector normal to the boundaries concerned. On the 

seepage face S, water is in contact with air, thus h=z. 

 

Figure 3.1 Cross section of an unconfined fractured aquifer with four types of boundaries: 

the prescribed head boundary Γ1, the prescribed flux boundary Γ2, free surface F and 

seepage face S 

Equation (3.1) is subject to initial condition: 
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t
h h


   (3.6) 

where h0 represents the initial values of hydraulic head. 

According to variational principle, the solution of Equations (3.1)-(3.5) can be 

converted into an optimization problem of the functional as follow: 
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And the prescribed head boundary conditions in Equations (3.2), (3.4) and (3.5) should be 

satisfied separately. The finite element method (FEM) is usually used to discretize the 

variational function in Equation (3.7) as well as the head boundary conditions. However, it 

is noted that the free surface and seepage face are unknown beforehand. To solve this 

problem, an iterative scheme [Desai, 1976; Zhang et al., 1988] is generally introduced. This 

study presents an iterative scheme, which is based on the initial flow method proposed by 

Zhang et al. [1988] to locate the free surface under steady flow condition and is modified 
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here to locate the shifting free surface under transient flow condition. Details on the 

implementation will be discussed in Section 3.4.3.  

3.3 Composite element model construction 

3.3.1 Hydraulic head within composite element 

The composite element method (CEM) is used to numerically formulate transient, 

saturated flow in fractured media with a free surface. The finite element mesh should be 

firstly generated to discretize the simulation domain. Then, the insertion of fractures into 

the mesh transforms some finite elements into composite elements by geometric 

calculations. Figure 3.2 shows a composite element inserted by two fracture surfaces. The 

composite element has the same patterns as a finite element, such as hexahedron, whereas 

the internal matrix sub-elements denoted by ei (i=1,2,…) can take on arbitrary shapes. The 

interfaces between two matrix sub-elements ei and ej (j=1,2,…) are used to represent the 

fracture fragments, denoted by fij (i≠j). 

 

Figure 3.2 A composite element containing four matrix sub-elements and four fracture 

fragments 

According to the CEM theory [Chen, 2006], within each matrix sub-element ei, the 

hydraulic head 
ieh  is defined as: 

  
ieh 

ieNh   (3.8) 

where 
ieh  is a set of nodal hydraulic heads for ei, which are located on the whole element 

nodes, and N is shape function associated with the nodes. With respect to the composite 
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element in Figure 3.2, the number of nodes is four times the number of nodes of a finite 

element. 

Within each fracture fragment fij, the hydraulic head 
ijfh  is defined by using the 

average of 
ieh  and 

jeh at the fracture fragment. And, the hydraulic gradient within the 

fracture fragment, normal to itself, is assumed to be constant, given that the fracture aperture 

is usually quite small. Thus, the hydraulic head within the fracture fragment linearly varies 

along its normal direction. To simplify the formula derivation, a separate coordinate system 

- f f fo x y z  for each fracture fragment is established, where fz -axis is perpendicular to the 

fracture fragment and points upward, fy -axis is in the fracture fragment and points out the 

direction of dip, and fx -axis is determined by right-hand rule. Then, the hydraulic gradient 

along fx -, fy - and fz -axis, and the derivative of hydraulic head with respect to time in 

fij can be expressed by: 
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  (3.9) 

3.3.2 Composite element formulation 

By substituting Equation (3.8) into Equation (3.7), the variational principle in matrix 

sub-element ei leads to: 
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in which 
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where ie
  is matrix sub-element domain, F ie  and 2

ie
  are respectively free surface 

and the prescribed flux boundary in ie
 , 

ie
k , 

iseS  and 
iyeS  are respectively the 

hydraulic conductivity tensor, specific storage and specific yield of ei, and 
ieg  represents 

the prescribed flux across 2
ie

 , including the leakage flux across the fracture-matrix 

interface from fij to ei, denoted as ,ij if eg . 

Likewise, by substituting Equation (3.9) into Equation (3.7), the variational principle 

in fracture fragment fij leads to: 
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in which 
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where ijf
  is fracture fragment surface, F ijf

c  is the curve of intersection between free 

surface and fracture fragment, 
fijf xk , 

fijf yk  and 
fijf zk  are the principle values of the 

hydraulic conductivity tensor along fx -, fy - and fz -axes, 
ijsfS  and 

ijyfS  are 
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respectively specific storage and specific yield of fij, and 
ijfg  is the leakage flux across 

the fracture-matrix interface from from ei and ej to fij, equal to , ,( )
ij i ij jf e f eg g  . 

By assembling Equations (3.10) for all matrix sub-elements and Equations (3.12) for 

all fracture fragment within the composite element, the final composite element equation 

can be expressed as follows: 
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in which 
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where l is the number of matrix sub-elements within the composite element. It is worth 

mentioning that the leakage fluxes across the fracture-matrix interface are cancelled out 

while superimposing the contributions at each node in the composite element. This implies 

that, the resulting assessment of the exchange fluxes is not biased by specification of the 

fracture-matrix water leakage terms. If l=1, Equation (3.14) will automatically be 

degenerated into the finite element equation, i.e., the coefficient matrixes contain only one 

sub-matrixes 
111  e

K K , 
111  e

S S , and 
111  e

Y Y , the nodal vectors contain only one sub-

vectors 
1eh , and 

1
t eh , and the right-hand vector contains only one sub-vector d1. 

Summation over all composite element and finite elements in domain yields the final 

system of equation, which has the following form: 
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Using the implicit time difference scheme, one obtains: 
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where Δtn+1=tn+1-tn is the time step, 1n
h  and n

h  are respectively the hydraulic head 

vectors at time nodes n+1 and n. 

3.4 Relevant solution algorithms 

3.4.1 CEM pre-processing 

The main feature of the CEM is to simulate fractures within the composite elements. 

For how to seek out the composite elements and how to divide the elements into matrix sub-

elements and fracture fragments, a special CEM pre-processor has been developed in 

previous work [Qiang, 2005]. This pre-processor consists of two functions: generating a 3D 

finite element mesh for the simulation domain without the fractures, and inserting the 

fractures into the generated mesh. As the fractures have been removed, the discretization of 

the simulation domain becomes simple and it can be realized by using a commonly used 

mesh generation technology [Qin et al., 2009]. The following paragraphs describe only the 

algorithms involved in inserting the fractures into a mesh. 

Figure 3.3 provides the workflow of the pre-processor to insert the fracture surfaces 

into a finite element mesh. It contains three main modules: searching composite elements, 

forming sub-elements and fracture fragments within composite elements, and subdividing 

sub-elements and fracture fragments into multiple regular hexahedrons and quadrangles. 

The input data is the information of mesh topology and fracture geometry. The output result 

is the information needed for the CEM calculation. The algorithm of each module is briefly 

described as follows. 

Search composite elements. The intersections between the fracture surface and the 

edges of each element are checked. If the fracture ends inside the element, it shall be 

stretched or trimmed toward the element’s face. If the fracture surface exactly passes 

through the edge of element, it should be moved a little bit to implement such an intersection. 

The composite element is determined where no less than two edges are intersected with the 

fracture surface.  

Form matrix sub-elements and fracture fragments within composite elements. In each 

determined composite element, the fracture fragment is formed by connecting the 

intersection points of the fracture surface and the element edges in clockwise (or counter 

clockwise) direction. On each side of the fracture fragment, the incised element faces and 

the fracture fragment constitute a new matrix sub-element. If there are more than one 

fracture surfaces intersecting the composite element, the matrix sub-elements and fracture 
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fragments will be further divided, in other words, the intersections between the new-inserted 

fracture surface and the edges of matrix sub-elements need also to be calculated. Until all 

fracture surfaces are inserted into the mesh, the last module will not be executed.  

Subdivide sub-elements and fragments into hexahedrons and quadrangles. The 

purpose of the subdivision is to make the sub-elements and fragments becoming aggregates 

of several regular bodies and faces. In this way, when calculating the integral terms of the 

matrix sub-elements and the fracture fragments (respectively in Equations (3.11) and (3.13)), 

they can be derived by superimposing the integrals over respective internal regular 

hexahedrons and quadrangles. 

 

Figure 3.3 Workflow of the pre-processor to insert the fracture surfaces into the generated 

mesh 

3.4.2 Numerical integral calculation 

The Gaussian integral is adopted to calculate the coefficient matrixes (i.e., K, S and Y) 

and right-hand vectors (i.e., d) in Equations (3.11) and (3.13). As mentioned above, the 

matrix sub-elements and fracture fragments have been divided into multiple hexahedrons 
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and quadrangles. Thus, it is required to first calculate the integrals over these hexahedrons 

and quadrangles, and then to sum them to obtain the integrals over entire sub-elements and 

fracture fragments. 

For a volume integral, the basic formula of the Gaussian integral [Zhu, 1998] is: 
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where A(x,y,z) represents the integrand function over Ω, o-ξηζ is the local coordinate system 

obtained by coordinate transformation from o-xyz, i, j, and m are the serial numbers of the 

Gaussian points in ξ, η, and ζ directions, n is the number of the Gaussian points taken in 

each direction, thus the total number of the Gaussian points in the integral area Ω is n3, 

A(ξ,η,ζ) is the integrand function value at the Gaussian point, ai, bj, and cm are the weight 

coefficients inξ, η, and ζ directions, and J is the Jacobian matrix generated by the coordinate 

transformation, expressed as: 
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where x , y , and z  are respectively a set of nodal coordinates in x, y, and z directions, 

and N is shape function which is the same as that in Equation (3.8). The method of the 

Gaussian integral for the volume integral and for the area integral is identical except for the 

difference in dimensionality; hence the formula for the area integral is omitted here. 

It should be noted that the shape function used in the composite element, which is for 

either the coordinate function or the hydraulic head function, is defined relative to the whole 

element, whereas the Gaussian points in a small hexahedron of the sub-element or in a small 

quadrangle of the fracture fragment are defined relative to the hexahedron or quadrangle 

itself. For the whole composite element, these Gaussian points can be any points within the 

element, and their local coordinates are unknown in advance. Therefore, the local 

coordinates of the Gaussian points need to be first reversely calculated according to their 

global coordinates, and then the shape function and the Jacobian matrix at these Gaussian 

points are determined. This is the difference between the CEM and FEM in dealing with the 

numerical integral. Details on the numerical integral method in the CEM can be found in 

the literature [Feng, 2006]. 
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3.4.3 Treatment of boundary conditions 

As in the FEM, the Dirichlet-type and Neumann-type boundary conditions are treated 

by assigning the fixed heads and fluxes onto the nodes forming the boundaries. However, 

within the composite element containing multiple sub-elements and multiple sets of nodes, 

only the sets of nodes related to the boundary are imposed to have the fixed head or flux. 

The initial flow method [Zhang et al., 1988] is introduced to locate the transient 

position of the free surface. In each time step, the “initial load vector” Q is calculated by the 

following equation to correct the free surface: 
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where K  and S  indicate the matrixes obtained by accumulating the contributions of the 

Gaussian points in the unsaturated zone (where the elevation is greater than the hydraulic 

head). Add Q into the right-hand vector in Equation (3.17), leading to the resulting 

calculating equations: 
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It should be noted that this iterative procedure is carried out on the assumption that all 

the other boundaries (including the prescribed head boundary, the prescribed flux boundary, 

and seepage face) are known. However, in most cases, the seepage face is unknown 

beforehand. Before the iteration begins, the boundary conditions on the potential seepage 

face should be predesignated. The results after iteration should be checked to remain 

consistent with the predesignated conditions. If there is an inward flux into the domain at 

the node on the seepage face, the node will be turned into a no-flux one in next iteration. If 

the hydraulic head at the node on the no-flux boundary is greater than its elevation, the node 

will be turned into a seepage face node in next iteration. All the nodes forming the potential 

seepage face are adjusted until each of them achieves convergence. This procedure to 

locating seepage face was proposed by Neuman [1973] and later modified by Cooley [1983]. 

The convergent criterion for the iterative scheme is established as follow: 

 , 1 , , 11 1 1m m mn n nn  



 



  h h h h   (3.22) 

where 11,n m 
h , ,1 mn

h  are respectively the hydraulic head vectors at iteration m+1, m and 

at time node n+1, n
h  is the calculated hydraulic head vector at the previous time node n, ε 

is tolerance error and 

  is the infinite norm operator. If Equation (3.22) is satisfied within 
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the specified maximum number of iterations, the value of 11,n m 
h  is accepted as the 

solution to Equation (3.21) at time node n+1 and the next time step proceeds. Or else, the 

time step will be reduced by half and the calculation will be restarted at the new time step. 

3.4.4 Solving large sparse symmetric equations 

The resulting system of equations, i.e., Equation (3.21), is solved by an iterative solver 

combining symmetric successive over relaxation and preconditioned conjugate gradient 

which has been developed and shown to be efficient and robust for solving large, sparse and 

symmetrical linear equations [Lin, 1997].  

3.5 Verification example 

The formulation and solution algorithms mentioned above have been implemented into 

a computer program CEM_SATFLOW for simulating transient, saturated flow in fractured 

media with a free surface. To verify the program, a synthetic example is used below. 

3.5.1 Flow in a synthetic fractured rock mass 

The cubic mass shown in Figure 3.4 is 10 m in width, and there are six orthogonal, 

connected fractures with aperture of 1 mm in the mass. The initial state of flow throughout 

the domain is steady with the hydraulic head h0=10 m. The origin of coordinates is located 

on left bottom corner. In case 1: at time t≥0, the hydraulic head h=20 m is imposed at left 

side (x=0) and the hydraulic head h=10 m remains unchanged at right side (x=10 m). In case 

2: at time t≥0, the hydraulic head at x=10 m is suddenly lowered to zero and this side 

becomes potential seepage face, whereas the hydraulic head at x=0 is equal to 10 m. The 

else sides are no-flux boundaries. To verify the accuracy, the results calculated by composite 

element model presented in this chapter will be compared with those by the well-tested, 

FEM-based software COMSOL. 

The required parameters are: for matrix, the hydraulic conductivity is 10-10 m·s-1, the 

specific storage is 10-5 m-1 and the specific yield is 0.001; and for fractures, the hydraulic 

conductivity is 10-5 m·s-1, which is five orders of magnitude higher than matrix, the specific 

storage is 10-5 m-1 and the specific yield is 0.01. The domain is discretized using 12 nodes 

in each of the directions, for a total of 1,728 nodes and 1,331 elements (see Figure 3.5(a)). 

Fractures are then incorporated into the mesh by the pre-processor. There are 602 composite 

elements to be identified, which contain two, four or eight matrix sub-elements. In the 

composite elements a set of nodal heads are assigned for each matrix sub-element. The total 
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number of nodal hydraulic heads is 4,096. A constant time step of 1 h is used. In case 2 

involving unconfined flow, the tolerance error of the convergent criterion is prescribed to 

be 0.001 and the prescribed maximum number of iterations is 50. 

 

Figure 3.4 Synthetic fractured rock mass 

 

Figure 3.5 Two computational meshes respectively used in (a) composite element model, 

and (b) COMSOL 

Simulation by COMSOL based on the FEM is meanwhile performed to verify the 

present composite element model. The thin-layer elements with large area-thickness ratio 

are employed to discretize fractures. To ensure the quality of the finite element mesh used 

in COMSOL, the nodal spacing is smaller near fractures and gradually larger further from 

fractures. This results in a domain with a total of 6,624 nodes and 5,324 elements (see Figure 

3.5(b)). Obviously, the unknowns to be calculated using COMSOL are more than those 

using composite element model. However, it is noted that COMSOL does not provide the 

simulation of saturated but unconfined flow. As an alternative, the Richards’ Equation 

Module [COMSOL AB, 2011] for simulating variably-saturated flow is adopted. The 
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description of transient, variably-saturated flow in fractured media will be provided in next 

chapter. Now the readers just need to know when the capillary effect is not significant or 

only significant near the free surface, the simulation results using the two flow equations 

are close. The additionally required parameters for COMSOL are: for matrix, the saturated 

water content and residual water content are respectively assumed to be 0.01 and 0.001; and 

for fractures, the saturated water content and residual water content are respectively 0.2 and 

0.01. The constitutive relations (saturation–pressure head and relative permeability–

saturation) for fractures and matrix are assumed to be the same, and evaluated by Van 

Genuchten‒Mualem (VGM) model with the fitting parameters α= 2 m-1, n=2 and m=0.5. 

Case 1: transient, saturated flow under confined condition 

The simulation of transient, saturated flow under confined condition is carried out up 

to a time value equal to 100 h. The total CPU time for 100 time steps using composite 

element model is 1.15 min on the Intel Xeon X5660, 2.80GHz, and the COMSOL is 2.60 

min. Figure 3.6 shows the evolution of the hydraulic head on vertical profile y=5 m using 

composite element model. The nearly identical results using COMSOL are obtained and not 

shown here. It is clearly seen from Figure 3.6 that the responses of fracture flow and matrix 

flow to the change of the left side are different. Due to high permeability of fractures, the 

growth of the hydraulic head in fractures propagates much faster than that in matrix. At the 

initial stage, e.g., t=1 h, 5 h, 15 h and 25 h, matrix flow with lower hydraulic head values is 

separated by fractures flow. Water flows down the hydraulic gradient, from fractures to 

surrounding matrix. Until about t=95 h a disequilibrium does not vanish, and the new steady 

flow is formed. The evolution of the hydraulic head in Figure 3.6 illustrates that (i) 

preferential flow occurs along fractures, and (ii) the interactions between fracture flow and 

matrix flow play an important role in the process of water flow to the final equilibrium 

following the change of hydraulic conditions. 

Figure 3.7 compares the distributions of the hydraulic head along the horizontal 

centerline (y=5 m, z=5 m) at different times obtained with composite element model and 

COMSOL. Excellent agreements are shown. The hydraulic head values at fractures (at x=3 

m and x=7 m) are greater than those in surrounding matrix. At final time, a uniform 

distribution of head varying from 20 m to 10 m is achieved. 

Case 2: transient, saturated flow under unconfined condition 

The simulation of transient, saturated flow under unconfined condition is firstly  
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Figure 3.6 Evolution of the hydraulic head on the profile y=5 m using composite element 

model in case 1 

performed up to 10 d with the constant time step of 1 h, and afterwards, is extended to a 

time value of 1000 d with the constant time step of 10 d. For each time step the iterative 

process will continue until the prescribed convergence criterion is satisfied or the number 

of iterations reaches the prescribed maximum. The total CPU time for 339 time steps using 
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Figure 3.7 Comparisons of the hydraulic head distributions along the centerline at 

different times obtained with (a) composite element model, and (b) COMSOL in case 1 

composite element model is 8.75 min. The convergence of the iteration occurred typically 

after three to five iterations within most time steps. While using COMSOL, the CPU time 

is 20.05 min. Figure 3.8 shows the evolution of the hydraulic head on y=5 m using composite 

element model, in which free surfaces are depicted by solid lines. For comparison purpose, 

the free surfaces obtained with COMSOL are drawn by dotted lines. It can be seen from 

Figure 3.8 that there are some disagreements in the free surfaces obtained with composite 

element model and COMSOL. This can be explained by the use of different governing 

equations and therefore different solution procedures. Even so, the whole development of 

the hydraulic head field as well as the shifting of free surface with time appears much the 

same. Initially, the free surface drops only at fractures but remains at the top of the domain 

in most of matrix. At about t=10 d, the hydraulic head close to the bottom is nearly steady, 
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Figure 3.8 Evolution of the hydraulic head on the profile y=5 m using composite element 

model in case 2 

but the shifting of free surface still goes on. A relatively smooth free surface would be 

achieved at t=1000 d. 

Figure 3.9 presents fluxes of inflow, outflow and drainage in the domain obtained with 

composite element model and COMSOL. They are roughly consistent with each other. The 
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cause of bringing the difference has be explained above. In the end of transient flow, a steady 

flux equal to 0.02 m3·d-1 is expected to be achieved, corresponding to the new steady state. 

It is worthwhile pointing out that in case 2, the less time is spent on the CPU running using 

composite element model than COMSOL. This is because on the one hand, the less amount 

of nodal heads are to be calculated using composite element model; and on the other hand, 

the governing equations of saturated unconfined flow is known to be less complicated than 

those of variably-saturated flow used in COMSOL. 

 

Figure 3.9 Comparisons of inflow, outflow and drainage fluxes in the domain obtained 

with (a) composite element model, and (b) COMSOL in case 2 

3.6 Simulations of flow problems in complicated, saturated fractured aquifers 

3.6.1 Flow in a 2D fracture network 

A two-dimensional aquifer containing a stochastic fracture network is analyzed in this 
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example. The problem involves groundwater flow through the fractured aquifer to the 

pumping wells, and was presented by Woodbury and Zhang [2001] who used the finite 

element method combining the Lanczos reduction technique for modelling transient, 

saturated flow. A direct comparison with results published in the literature can directly be 

made. Figure 3.10 shows the geometry of the problem. The simulation domain is 200 m in 

the x-axis, 100 m in the z-axis and a unit thickness in the y-axis. Fracture characteristics 

described by Woodbury and Zhang [2001] are used in this study. There are two orthogonal 

groups of fractures in the aquifer: one being parallel to the x-axis and the other parallel to 

the z-axis. Both groups of fracture have the same aperture equal to 3.0×10-5 m. 

The boundary conditions for the problem consist of a specified hydraulic head of 10 m 

along the entire right side (x=200 m) and the lower half left side (x=0, z=0-50 m). The top 

and bottom boundaries are impermeable. Initially, the hydraulic head throughout the domain 

is equal to 10 m. Two pumping wells are located in the aquifer, the first at x=139.89 m, z=77 

m with a pumping rate equal to 200 m3·y-1, and the second at x=62.68 m, z=48.17 m with a 

pumping rate equal to 150 m3·y-1. The whole simulation domain is assumed under confined 

condition. For fractures, the hydraulic conductivities are given by cubic law. Thus, the 

hydraulic conductivities of fractures are equal to 2.3196×104 m·y-1. The specific storage of 

fractures is 10-3 m-1. For matrix, the transmissivity and storage coefficient are 3.1536×10-2 

m2·y-1 and 0.03 respectively. 

The simulation domain is discretized into a regular finite element mesh containing 

13,284 elements and 27,058 nodes. By incorporating fractures into the mesh, 5,905 

composite elements are determined, and the remaining 7,379 are original finite elements. 

The total number of nodal heads are 61,234. A constant time step of 0.01 y is used and the 

simulated time period is 3 y. Hence a total of 300 time steps are calculated. 

The CPU time using the composite element model is 34.93 min. Figure 3.10 shows the 

hydraulic head distribution after three-year pumping obtained with the composite element 

model. It can be seen that there is preferential flow down the fractures. The lowest hydraulic 

head in the domain occurs at the locations of the pumping wells. With the increase in 

distance to the wells, the hydraulic head gradually increases to external boundary head of 

10 m. These results are basically consistent with those reported in literature [Woodbury and 

Zhang, 2001]. But due to the use of relatively sparse computational mesh in this study, the 

degree of preferential flow down fractures obtained with the composite element model 

appears to be a little less prominent. By refining the mesh or increasing the number of 

Gaussian points in matrix sub-elements and fracture fragments, the accuracy will be 
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improved and approaches that of the finite element approximation. This feature has also 

been discovered by Chen et al. [2010] and other researchers [He and Chen, 2006]. However, 

the readers should be reminded that when using the CEM, less effort is made on dividing 

the computational mesh because fractures are taken into account separately. A relatively 

simple, regular mesh which means the less number of unknowns to be calculated can always 

be available if the accuracy is satisfied, even for a very complicated problem. In such 

problems, the use of the composite element model would be highly advantageous. 

Oppositely, the finite element approximation becomes difficult to implement in terms of the 

discretization for fractures. Analysis of the next problem will demonstrate this advantage of 

the composite element model. 

 

Figure 3.10 Hydraulic head distribution in the domain after three-year pumping obtained 

with the composite element model 

3.6.2 Transient groundwater flow in a rock slope following reservoir rapid 

impounding 

The last example concerns a field-scale problem of transient flow of groundwater in a 

fractured rock slope after reservoir rapid impoundment. The geometry of rock slope and 

computational mesh are shown in Figure 3.11, where a unit thickness is taken into account. 

According to the field geological survey [Jiang et al., 2013], the slope is seated on the fresh 

or slightly weathered plagioclase granite. The magnitude of hydraulic conductivity for rock 

matrix is 10-12 m·s-1. There are four groups of fractures in the rock slope, whose statistical 

parameters and probability models are listed in Table 3.1. The stochastic fracture networks 

are generated by the Monte Carlo method, one of which containing 1,817 fractures is 
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analyzed here (see Figure 3.11(a)). 

 

Figure 3.11 Fractured rock slope: (a) geometry, and (b) computational mesh 

Table 3.1 Parameters of four groups of fractures and their probability models 

Fracture 

group 

Length/m  Dip angle/°  Aperture/mm 
Mean 

spacing/m 
Mean 

values 
Variance 

Probability 

model 
 
Mean 

values 
Variance 

Probability 

model 
 
Mean 

values 
Variance 

Probability 

model 

1 25.97 0.52 Normal  74.27 10.00 Normal  0.20 0.10 Lognormal 2.18 

2 31.00 0.92 Normal  110.00 15.00 Normal  0.15 0.75 Lognormal 1.30 

3 17.52 0.52 Normal  110.43 10.00 Normal  0.20 0.10 Lognormal 3.56 

4 11.13 0.92 Normal  65.49 15.00 Normal  0.15 0.75 Lognormal 7.39 

 

The hydraulic conductivities for fractures in group 1 and group 4 are assumed to be 

1.3×10-5 ms-1, and for fractures in group 2 and group 3 are 2.1×10-4 ms-1. Of all the 

fractures the specific storage and the specific yield are equal to 10-6 m-1 and 0.01, 

respectively. The specific storage and the specific yield of rock matrix are assumed to be 

10-5 m-1 and 0.001, respectively. Suppose groundwater level at right side of the slope equal 

to 200 m. The left side is submerged by reservoir water. An initial steady flow is developed 

under a lower reservoir level equal to 62.2 m. The corresponding boundary condition is that 

the hydraulic head at the lower left side is equal to be 62.2 m, and the higher left side is the 

potential seepage face. At a certain point in time the slope is subjected to reservoir rapid 

impounding. The reservoir level is suddenly rise to 142.2 m. Distribution of groundwater 

flow in the fractured rock slope is changed. 

The slope is discretized into 1,504 elements and 3,184 nodes (see Figure 3.11(b)). By 

executing the CEM pre-processing program, 1,494 composite elements are sought out. The 

total number of unknowns in the system is 103,686. A steady flow simulation using the 



 

52 

composite element model is firstly performed. Based on the results of initial steady 

hydraulic head, simulation of transient flow up to the time value of 1000 d is carried out. 

The time discretization adopted is the same as case 2 in simply synthetic example. For the 

iteration procedure, the convergence criterion is 0.01 and the maximum number of iterations 

is 30. 

The total CPU time taken to solve steady flow is 34.18 min and to solve transient flow 

is 8 h 11.60 min. Figure 3.12 shows the distribution of the hydraulic head in the rock slope 

before and after reservoir rapid impounding. It is seen from Figure 3.12 that at t=0, the 

hydraulic head smoothly varies from 62.2 m at left side to 200 m at right side. After the 

reservoir level is raised to 142.2 m it begins to grow. Meanwhile, the free surface shifts 

upward, resulting in a gradually expanded saturated zone. Figure 3.13 shows the velocity 

vectors of groundwater in the slope. At the initial time, the groundwater velocities adjacent 

to reservoir point out of the slope because the reservoir level is lower than the free surface 

in slope. Water flows into the slope after the rise of reservoir level, which has been clearly 

indicated by the profile of groundwater velocity vectors at t=10 d, where there are some 

inward velocity vectors. These inward velocity vectors mostly vanish at t=100 d. The 

groundwater velocities keep decreasing until the end of the simulated period. It is found that 

they are heterogeneous in the fractured rock slope. The velocities at fractures are greater 

than those at rock matrix. These results illustrate that fractures dominate groundwater flow, 

and rock matrix with relatively large porosity play a major role of storing water that flows 

down fractures. The interactions between the two flow systems are varying temporally and 

spatially. 

3.7 Conclusions 

A composite element model for simulating transient, saturated flow in fractured media 

with a free surface has been constructed. The model has the following features: (i) fractures 

do not need to be discretized into specific elements but are inserted into elements 

representing matrix according to their geometric positions, thereby forming the composite 

elements containing both matrix sub-elements and fracture fragments; (ii) in each composite 

element, governing equations for matrix sub-element and of fracture fragment are 

respectively established, and they are linked through the fracture-matrix interface, finally 

constituting an integrated composite element equation; and (iii) the composite element 

equation has the same form as the conventional finite element one, thus the techniques used 
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Figure 3.12 Evolution of the hydraulic head in the fractured rock slope using the 

composite element model 

to solve the finite element equation can be directly applied into the composite element 

solution. Specifically, when superimposing the contributions from matrix sub-elements and 

fracture fragments at each node in the composite element the leakage fluxes across the 

fracture-matrix interface achieve self-balancing. Therefore, no special calculation is needed 

to consider the fracture-matrix interaction. 

The effectiveness of the composite element model was firstly verified by a simply 

synthetic example. Results were compared with those obtained with the well-tested, FEM-

based COMSOL. Unlike the composite element model, fractures need to be individually 

discretized while using COMSOL, increasing the complexity of the computational mesh. 

The impact of the mesh complexity would be embodied in time consumption of the solution. 

In the first case concerning transient, saturated flow under confined condition, the difference 

in CPU time using the composite element model and COMSOL was not obvious. Also, 

excellent agreements between the two results were shown. For the second case concerning  
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Figure 3.13 Groundwater velocity vectors in the fractured rock slope obtained with the 

composite element model 

transient, saturated flow under unconfined condition, the simulation of transient, variably-

saturated flow was constrainedly implemented in COMSOL because COMSOL could not 

provide that of transient, saturated but unconfined flow. Naturally, there were some 

disagreements in the results obtained with the composite element model constructed in this 

chapter and COMSOL, but a basic fact could be confirmed that the velocity of the free 

surface at fractures was greater than in matrix and much longer time than the case under 

confined condition was needed to reach the final equilibrium. It needs to be particularly 

mentioned that in practice, when the capillary effect in the unsaturated zone is not significant, 

the use of equations of transient, saturated flow with a shifting free surface takes precedence 

over the use of equations of transient, variably-saturated flow, not only because of the less 

nonlinearity of governing equations but also because of the easier accessibility to the 
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specific yield compared to the constitutive relations under variably-saturated condition. 

The CEM pre-processing program for automatic discretization of the simulation 

domain has been introduced. In fact, only matrix domain is discretized. Fractures are later 

incorporated into the generated mesh. In this way, the intersection calculations with each 

small, regular element are mainly performed, which are believed to be more efficient than 

the generation of specific elements for fractures. In the first illustrative problem that was 

described by Woodbury and Zhang [2001], the distribution of the fracture network was not 

very complicated because two groups of fractures were orthogonal. The simulation results 

were nearly consistent with those reported in the literature. To highlight the advantage of 

the composite element model, the problem concerning a rock slope containing four groups 

of randomly distributed fractures was discussed. The results of the hydraulic head and 

groundwater velocity demonstrated that fractures with high permeability are dominant flow 

pathways, while rock matrix with relatively large porosity have a capacity for storing water 

that flows down fractures.  
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Chapter 4 Composite Element Method for Modelling Transient, 

Variably-Saturated Flow in Fractured Media 

4.1 Introduction 

In recent years, problems involving groundwater flow in variably-saturated fractured 

media have received increasing attention. One primary reason for this is the need to evaluate 

the suitability of a site for near surface disposal of highly radioactive waste. Another reason 

is the need to evaluate the impact of an existing waste disposal site on surrounding 

groundwater system and its environment [Huyakorn and Thomas, 1984]. Both types of 

evaluation require a thorough understanding of groundwater flow in variably-saturated 

fractured media. Due to the difference of hydraulic characteristics between fractures and 

matrix, and the complexity of the geometric configurations of natural fractured media, the 

groundwater flow regimes can be very complicated. The computer simulation using 

numerical models is the most effective and indispensable research means. 

Similar to the saturated flow, the variably-saturated flow in fractured media may be 

simulated using either the implicit approaches including the equivalent porous media 

approach and the dual porosity approach or the explicit approach that is the discrete fracture 

network approach. However, the appropriateness of using the implicit approaches for 

simulations of variably-saturated flow in fractured media appears to be less than that of 

using the implicit approaches for simulations of saturated flow in fractured media. This is 

due to the fact that the differences in the capillary pressure characteristics and the hydraulic 

conductivities between fractures and matrix often result in a high degree of heterogeneity in 

the unsaturated fracture-matrix flow systems. Field and laboratory experiments in natural 

unsaturated fractured rock masses have demonstrated strong evidence of channeling and 

obviously preferential flow paths in individual fractures and in fracture networks 

[Neretnieks et al., 1982; Neretnieks, 1993]. Thus, the explicit approach is considered to be 

conceptually preferable than the implicit approaches for simulations of variably-saturated 

flow in fractured media. 

A number of discrete fracture network models have been developed in the literature 

[Rasmussen and Evans, 1989; Cacas et al., 1990; Mustapha and Mustapha, 2007; Erhel et 

al., 2009; Berrone et al., 2013; Hyman et al, 2015], but most of them did not account for 

flow in matrix. Cey et al. [2006] in their study on infiltration processes in fractured soils 
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indicated that the incorporation of matrix flow is necessary even in situations where fracture 

dominated flow occurs. The model that is currently widely accepted and applied is the 

discretely-fractured porous media model proposed by Therrien and Sudicky [1996] based 

on the control volume finite element method [Therrien et al., 2005]. In this model, fractures 

are discretized into 2D elements; the porous matrix are discretized into 3D elements; and 

the two elements have common nodes at the fracture-matrix interface. In other words, the 

fractures are forcibly discretized to the faces of the adjacent porous matrix elements. 

Therrien and Sudicky [1996] established the finite element equations for variably-saturated 

flow in fractured media on the basis of this mesh. According to the author’s understanding, 

it is not easy to generate such a mesh, especially if the number of fractures is large or their 

distribution is complex. The geometric characteristics of the fracture network strongly 

restrict the mesh generation. Although Mustapha et al. [2011] has presented a relatively 

efficient method to discretize the fractured media, there is still a need to remove or replace 

the locally complex geometric configurations of fractured media. More details on the 

discretization method of Mustapha et al. [2011] has been presented in Section 2.3.3 of 

Chapter 2.  

As mentioned many times earlier, the CEM has a unique advantage in dealing with the 

discretization of the fractured media. Moreover, its capability to simulations of transient 

saturated flow problems in fractured media has been demonstrated in Chapter 3. As a 

continuation of Chapter 3, this chapter studies the application of CEM to solution of 

transient, variably-saturated flow in fractured media. The main contents include: (i) 

mathematical descriptions of transient, saturated flow problem; (ii) composite element 

model development, including the establishment of the constitutive relations for matrix and 

fractures and the fracture-matrix interaction area factor, and the formulation of the CEM; 

(iii) key techniques for improving numerical accuracy and efficiency, including under-

relaxation iteration, mass matrix lumping, and adaptive time stepping techniques; (iv) 

verification examples; and (iv) simulations of flow problems in complicated, variably-

saturated fractured aquifers. 

4.2 Mathematical descriptions of transient, variably-saturated flow problem 

A modified Richards’ equation is used to describe transient, variably-saturated flow, 

as follow: 
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where Sw=θ/θs is saturation, θ is water content, θs is saturated water content which is equal 

to the porosity, C=θs·dSw/dh, C is specific moisture capacity, kr=kr(Sw) is relative 

permeability, and the remaining parameters have the same meanings as mentioned above. 

Equation (4.1) is subjected to boundary conditions as given in Equations (3.2)-(3.3) and 

initial conditions in Equation (3.6).  

The variational principle can convert the solution of Equation (4.1) together with 

boundary conditions into a functional optimization problem below: 
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Unlike that in transient, saturated but unconfined flow, the free surface in transient, variably-

saturated flow is no longer the unknown boundary to be determined but is directly achieved 

as part of the solution of Equation (4.2). Collection of the points at which P=0 forms the 

free surface.  

4.3 Composite element model development 

4.3.1 Constitutive relations for matrix and fractures 

In order to solve the variably-saturated flow equation, the constitutive relations, i.e., 

saturation‒pressure head and relative permeability‒saturation relations, must be established. 

Generally, the Van Genuchten [1980] and Brooks-Corey [1964] models are adopted to 

describe the constitutive relations for matrix. The saturation‒pressure head relations in the 

two models are respectively expressed as: 
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where Se=(θ-θr)/(θs-θr) is effective saturation, θr is residual water content, α, n and m are the 

fitting parameters. Then based on theory of Mualem [1976], the relative permeability‒

saturation relations are respectively given by: 
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where m=1-1/n. Vogel et al. [2001] have pointed out that when n is small, i.e., n<1.5 (which 

is typical of fine-grained soil), the use of the VGM model may induce numerical instability. 

To eliminate the instability they put forward the modified forms of Equations (4.3) and (4.5), 

as follows: 
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where Pmin is the prescribed minimum pressure head, and 
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Note that the parameters Pmin and θmin have no real physical meaning and are just used to 

modify the shapes of the saturation and relative permeability curves. In this study, the VGM 

and modified VGM models are respectively used for matrix with n<1.5 and n≥1.5. 

Natural fractures have variable apertures that are expected to be important for their 

hydraulic properties under variably-saturated condition, where the capillary pressure 

(negative pressure) is the function of pore size. A number of researches have been made on 

the relationship between the variable aperture of a single fracture and its hydraulic 

parameters. The research methodologies cover laboratory measurement (e.g., [Reitsma and 

Kueper, 1994], [Persoff and Pruess, 1995]), theoretical analysis (e.g., [Wang and 

Narasimhan, 1985], [Zhou et al., 1998) and numerical experiment (e.g., [Pruess and Tsang, 

1990], [Vandersteen et al., 2003]). The following is a brief description of each of the 

methodologies. 

Reitsma and Kueper [1994] made use of a laboratory technique to investigate the 

relation between fluid saturation and capillary pressure of a rough-walled limestone fracture. 

In their experiment, oil and water were respectively used as non-wetting and wetting phase. 

The measured capillary pressure curves were represented by the standard constitutive 

relations including the VGM and BCM models. Wang and Narasimhan [1985] constructed 

a general statistical theory for flow along the fractures and generated the synthetic 
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expressions describing the relations between fracture saturation, hydraulic conductivity and 

pressure head based on aperture distributions. Pruess and Tsang [1990] used a stochastically 

generated network of the variable fracture aperture to numerically investigate two-phase 

flow through a rough-walled fracture. Results were obtained according to the invasion 

percolation model for determining the relations of saturation‒pressure head and relative 

permeability‒saturation.  

In this study, the constitutive relations for fractures are based on the work of Wang and 

Narasimhan [1985]. In addition, the VGM model or the tabular data will also be used to 

describe the constitutive relations for the fractures in some examples. 

4.3.2 Fracture-matrix interaction area factor 

In contrast to the saturated zone in which water move rapidly along fractures, the 

fractures with apertures larger than the size of matrix pores will desaturate first during the 

drainage process, and the bulk of water will be through interconnected pores in the matrix. 

Under this condition, as water moves from one matrix block to another, the drained or 

unsaturated portions of the fractures will reduce the area available for water flow from one 

matrix block to another matrix block. Wang and Narasimhan [1985] explained this 

phenomenon and suggested using an effective area factor to account for the changes of the 

fracture-matrix interaction area when the fractures desaturate. In developing the composite 

element model, the effective area factor will be taken into account. Details on the 

implementation will be discussed in the next section. 

4.3.3 Composite element formulation 

The composite element equation for transient, variably-saturated flow in fractured 

media is derived by the variational analysis. Similar to that in Section 3.3.2, by substituting 

Equation (3.8) into Equation (4.2), the variational principle within matrix sub-element ei 

can result in: 
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where 
irek  

iweS  and 
ieC  are respectively relative permeability, saturation and specific 

moisture capacity of ei. 

By substituting Equation (3.9) into Equation (4.2), the variational principle within 

fracture fragment fij can result in: 
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where 
ijrfk , 

ijwfS  and 
ijfC  are respectively relative permeability, saturation and specific 

moisture capacity for fij. As mentioned above, water flow between two adjacent matrix sub-

elements is only through the portions of the fracture fragment that remain saturated. Thus, 

the integral area corresponding to the normal hydraulic conductivity of the fracture fragment 

(i.e., 
ij ff zk ) should be multiplied by the effective area factor to reflect the change of the 

fracture-matrix interaction area with the saturation or the pressure head. 

By assembling Equations (4.11) for all matrix sub-elements and Equations (4.13) for 

all fracture fragment within the composite element, the final composite element equation 

can be expressed as: 
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in which  
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and the expressions of Kii, Kij and di are the same as given in Equation (3.15). Equation 

(4.14) can be abbreviated as: 
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Using the implicit time difference scheme, Equation (4.16) becomes: 
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4.4 Key techniques for improving numerical accuracy and efficiency 

4.4.1 Under-relaxation iteration 

Since the material hydraulic conductivity (referring in particular to kr) and storage 

properties (referring in particular to Sw and C) are the functions of the hydraulic head, the 

composite element equations are nonlinear and an iterative scheme is required for the 

solution process. The Picard method is commonly applied, in which the hydraulic head 

calculated from the previous time node is directly used to define the material properties at 

current time node. It is found that numerical instability often occurs in the calculated 

hydraulic head while using the Picard method. Tan et al. [2004] have pointed out that the 

incorporation of under-relaxation technique in the iterative process can improve the 

convergence efficiency and stability, and it has been used in this implementation. The 

specific iteration steps are as follows: 

Step 1: In each time step, the initial hydraulic head is estimated by the linear 

extrapolation approach: 
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When n=0, n
h  indicates the initial condition for transient analysis. 

Step 2: Then, in each iteration, an under-relaxation technique is used, whereby the 

material properties are defined at the midpoint of the time step, that is, the average of the 

hydraulic heads calculated from the previous time node and from the previous iteration at 
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the current time node. The definition of this hydraulic head is expressed as: 

  1 2, 1 1, 2n m n n m   h h h   (4.19) 

where 1 2, 1n m 
h  is the hydraulic head vector used to defined the material properties at 

iteration m+1 and time node n+1. Equation (4.19) is not strictly applied to define dSw/dh 

(contained in C). The chord slope rather than the tangent slope of the saturation–pressure 

head curve is believed to be more robust, whereby dSw/dh is estimated by the ratio of the 

change in saturations to the change in hydraulic heads from the previous time node to the 

previous iteration at current time node. When the two hydraulic heads are nearly identical, 

dSw/dh is calculated from the tangent slope of the saturation–pressure head curve at 

1 2, 1n m 
h  in Equation (4.19) 

Step 3: If Equation (3.22) is satisfied within the specified maximum number of 

iterations, 1n
h = 11,n m 

h ; otherwise the time step is reduced and the calculation will be 

restarted.  

4.4.2 Mass matrix lumping 

It is found that the coefficient matrix due to C/Δtn+1 of Equation (4.17) would be ill-

conditioned if Δtn+1 is very small, thus affecting the accuracy of the solutions. To solve this 

problem, a mass matrix lumping technique is employed, whereby the non-diagonal elements 

of the mass matrix C are centralized to the diagonal elements. The matrixes 
ie

C  and fij
C  

in Equations (4.11) and (4.13) are replaced by the expressions: 
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4.4.3 Adaptive time stepping 

An adaptive time stepping scheme proposed by Forsyth and Sammon [1986] has been 

incorporated into the solution procedure. After obtaining the hydraulic heads at time nodes 

n and n-1, n
h  and 1n

h , the next time step Δtn+1 in Equation (4.17) is determined 

according to: 
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where h* is the expected value of the hydraulic head change within a time step. When the 

hydraulic head experiences a relatively small change, the use of Equation (4.21) allows the 
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selection of the greater time step to achieve efficiency. If the iteration cannot converge 

within the prescribed maximum number of iterations, half of the time step will be taken into 

account. 

4.5 Verification examples 

The composite element formulation and the key techniques described above have been 

implemented into the computer program CEM_UNSATFLOW for simulating transient, 

variably-saturated flow in fractured media. Three examples are now presented to verify the 

program. The first example involves one-dimensional infiltration into dry soils which was 

widely used in previous numerical studies [Celia et al., 1990; Rathfelder and Abriola, 1994; 

Lehmann and Ackerer, 1998]. The results obtained with the present composite element 

model are compared with the semi-analytical solution developed by Philip [1957]. The 

second example uses the one that has been described in Section 3.5. The results recalculated 

by the present composite element model are compared with those presented in Chapter 3, 

and with those obtained from COMSOL. The last example involves the vertical drainage of 

a 3D fractured tuff column and was presented by Wang and Narasimhan [1985]. Results 

obtained with the present model are compared to results published in Wang and Narasimhan 

[1985]. 

4.5.1 1D infiltration into dry soil 

The length of the soil profile is taken to be 30 cm. Initially, the pressure head 

throughout the profile is -1000 cm. At time t≥0, water infiltrates steadily through the upper 

boundary. The boundary conditions are as follows: the hydraulic heads at upper boundary 

and at lower boundary are -75 cm and -1000 cm respectively.  

The required parameters are: the saturated hydraulic conductivity is 0.00922 cm/s, the 

saturated water content and the residual water content are 0.368 and 0.102, and the specific 

storage is 0. The VGM model is used to describe the constitutive relations with the fitting 

parameters α= 0.0335 m-1 and n=2. The profile is discretized using a uniform element size 

of 0.25 cm. All the elements are finite elements. The time step is fixed to be 50 s. The 

tolerance error is prescribed to be 10-6 and the prescribed maximum number of iterations is 

100. Simulation of transient, variably-saturated flow is carried out up to a time value equal 

to 6 h. There are a total of 432 time steps to be calculated. 

Figure 4.1 presents the distributions of the pressure head along depth at time t=6 h 

obtained by implementing the Picard and under-relaxation iterative schemes. These results 



 

67 

are compared with the semi-analytical solution of Philip [1957]. It can be seen from Figure 

4.1 that there is good agreement between the results obtained by the Picard and under-

relaxation iterative schemes. However, compared with the results of the Picard iteration, the 

calculated pressure head distribution using the under-relaxation iteration is closer to Philip’s 

solution. Compare the numbers of iterations required to achieve convergence when using 

the two iterative schemes, shown in Figure 4.2. It is clear that when using the under-

relaxation iterative scheme, convergence occurs almost within ten iterations in each time 

step; however, when using the Picard method, it takes more than ten iterations to achieve 

convergence. From the above, it can be concluded that the under-relaxation iterative scheme 

not only provides the higher computational efficiency but also yields the more accurate 

results than the commonly-used Picard method. 

4.5.2 Flow in a synthetic fractured rock mass 

The composite element model developed in this chapter is used to recalculate case 2 in 

the example described in Section 3.5. The results are compared with those calculated by 

COMSOL and those given in Chapter 3. Figure 4.3 shows the evolution of the hydraulic 

head and the free surface with time on section y=5 m. For comparison, the free surfaces 

obtained by COMSOL are also plotted in Figure 4.3, shown by dotted lines. It is observed 

from Figure 4.3 that the free surfaces calculated by the present composite element model 

are very close to the free surfaces obtained from COMSOL. Figure 4.4 compares three sets 

of inflow, outflow and drainage fluxes respectively obtained by the composite element 

models developed in Chapter 3 and in Chapter 4, and COMSOL. As can be seen from Figure 

4.4, the composite element model developed in this chapter produces the results that are 

closer to the COMSOL results than the model in Chapter 3. This results are expected, 

because both the present composite element model and COMSOL are based on the Richards’ 

equation to simulate transient, variably-saturated flow in the fractured rock mass. The 

results also prove the accuracy of the present composite element model. 

4.5.3 Vertical drainage of a fractured tuff column 

The composite element model is used to simulate transient, variably-saturated flow 

problem in the Yucca mountain tuff, which was described by Wang and Narasimhan [1985]. 

The tuff matrix contains two groups of vertical fractures and one group of horizontal 

fractures. The aperture and spacing for vertical fractures are 0.24 mm and 0.22 m, and for 

horizontal fractures are 0.31 mm and 0.48 m. The three groups of fractures are mutually  
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Figure 4.1 Distributions of the pressure head along depth at t=6 h 

 

Figure 4.2 Number of iterations in each time step required to achieve convergence 

orthogonal and partition the matrix into blocks, as shown in Figure 4.5. Due to the symmetry 

of the system, only one vertical column is taken into accounted. The dimension of the 

column is 0.44 m×0.44 m×1.44 m. The column is initially saturated, the flow was static and 

the pressure head is everywhere zero. At t≥0, the pressure head at the bottom is reduced to 

-112 m, and all other boundaries are impermeable. Under this condition, transient flow in 

the column is triggered and the saturated state is transitioned to the unsaturated state. The 

simulation results will be compared with those reported in Wang and Narasimhan [1985].  
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Figure 4.3 Evolution of the hydraulic head on the profile y=5 m using composite element 

model in case 2 (recalculated by simulating transient, variably-saturated flow) 

The required parameters are as follows: for tuff matrix, the saturated hydraulic 

conductivity is 3.24×10-10 m/s, the saturated and residual water contents are 0.09 and 

8.64×10-5, respectively, the specific storage is 10-6 m-1, and the constitutive relations for 

matrix are described by the VGM model; for vertical fractures, the saturated hydraulic  
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Figure 4.4 Comparisons of inflow, outflow and drainage fluxes in the domain obtained 

with the two composite element models respectively developed in Chapter 3 and in 

Chapter 4 and COMSOL 

 

Figure 4.5 A fractured tuff column 

conductivities are 4.71×10-2 m/s and for horizontal fractures, the saturated hydraulic 

conductivities are 7.85×10-2 m/s, given by Equation (2.2). The saturated water content for 

fractures is 1.0, and the specific storage for fractures is 4.4×10-6 m-1. Wang and Narasimhan 

[1985] derived the relations between fracture saturation, relative permeability, effective area 

factor and pressure head from an aperture distribution model. These relations are compiled 

into the program CEM_UNSATFLOW to accurately calculate the hydraulic conductivities 

of the fractures and the effective area of the fracture-matrix interaction. To facilitate the 

readers to read, the constitutive relations and effective area factor are plotted in Figure 4.6. 
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Figure 4.6 Relations between (a) saturation, (b) relative permeability, and (c) effective area 

factor and pressure head 



 

72 

The column is discretized using 25 nodes along x- and y-axes and 32 nodes along z- 

axis, and thus a computational mesh with 20,000 elements and 22,308 nodes is generated. 

By running the CEM pre-processor, 4,130 composite elements are found. The total number 

of nodes for all composite and finite elements is 33,300. Using the adaptive time stepping 

scheme, the expected value of the hydraulic head change for a single time step is 1.0 m. The 

tolerance error is 0.01. The simulation of transient, variably-saturated flow is carried out up 

to the final time value equal to 105 y. 

Two cases of flow in the column are simulated: flow in a fractured tuff column (case 

1); and flow in a tuff matrix column without fractures (case 2). In case 1 and case 2, a total 

of 283 and 222 time steps are respectively required to reach the final time value. The 

comparisons of the results obtained with the present model (shown by lines) and those of 

Wang and Narasimhan [1985] (shown by symbols) are presented in Figures 4.7(a) and 4.7(b), 

which respectively present the variations of the pressure head with time at four different 

points in the above two cases. The four points are located on section y=0.22 m, of which A 

lies at the center of the matrix block, B lies at the middle of the vertical fracture, C and D 

are at the middles of the upper and lower horizontal fractures respectively. It can be seen 

from Figure 4.7 that there is a very good agreement between the results obtained and those 

reported by Wang and Narasimhan [1985]. At the initial moment, the pressure head at all 

observation points is only slightly reduced. Starting from a certain time node, the pressure 

head begins to decrease significantly. The time at which the pressure head begins to decrease 

significantly in case 1 is later than in case 2, which indicates that the presence of the fractures 

delays the propagation of the pressure head change in the column. When t≥10-2 y, the 

variation curves of the pressure head are basically the same in both cases. This means that 

as the saturation decreases flow will be mainly controlled by the matrix. At the point D 

closer to the bottom, the pressure head is less than the pressure heads at other three points. 

At the points A and B with the same elevation, the pressure heads are approximately 

identical. 

4.6 Simulation of flow problem in complicated, variably-saturated fractured 

aquifer 

4.6.1 Transient flow in an aquitard-aquifer system under recharge and pumping 

The distribution of fractures in realistic aquifers are usually random and complex. The 

problem of groundwater flow in a 3D aquitard-aquifer system containing a complex fracture  
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Figure 4.7 Variations of the pressure head with time at four given points in (a) case 1, and 

(b) case 2 

network, described by Therrien and Sudicky [1996], is used to demonstrate the capability 

of the present composite element model. The system is comprised of a 10-m-thick aquitard 

overlying a 3-m-thick aquifer. The horizontal extent of the domain is 90 m in the x-direction 

and 90 m in the y-direction. The aquitard contains three mutually orthogonal groups of 

stochastic fracture. Assume that the fracture surfaces are rectangular in shape, and all 

vertical fractures originate at the top of the aquitard. The statistical parameters and 

probability models for the distribution of fractures are given in Table 4.1. Using the Monte 

Carlo method, one stochastic fracture network that contains 337 fractures is generated, as 

shown in Figure 4.8. Some of the vertical fractures fully penetrate the aquitard and the others 

do not. Additionally, there is a fully-penetrating pumping well in the center (at x=45 m and 

y=45 m) of the aquifer. 



 

74 

 

Figure 4.8 A aquitard-aquifer system 

Table 4.1 Parameters of three groups of fractures and their probability models 

Fractur

e group 

Length/m Width/m 

Location 

Dip 

direction 

/° 

Dip 

angle

/° 

Apertur

e 

/μm 

Num Mean 

value 

Varia

nce 

Probability 

model 

Mean 

value 

Varia

nce 

Probability 

model 
 

1 8.0 2.0 Lognormal 8.0 2.0 Lognormal Uniform 0 0 30 127 

2 8.0 2.0 Lognormal 5.4 5.4 
Negative 

exponential 
Uniform 0 90 35 108 

3 8.0 2.0 Lognormal 6.0 6.0 
Negative 

exponential 
Uniform 90 90 25 102 

 

Suppose that steady flow has already been formed in the system prior to the start of 

pumping. The corresponding boundary conditions are: the recharge flux across the upper 

boundary of aquitard is equal to 1.0×10-4 m/d; the hydraulic heads at x=0 and x=90 m are 

9.05 m and 8.85 m, respectively; and the other boundaries are no-flux boundaries. The 

pumping starts at t≥0 and the pumping rate in the well is fixed at 175 m3/d. In the meantime, 

the recharge flux across the upper boundary is reduced to 5.0×10-5 m/d, and the other 

boundary conditions remain unchanged. The composite element model developed in this 

chapter is firstly used to simulate steady, variably-saturated flow in the system in order to 

obtain the initial hydraulic head distribution; and is then used to simulate transient, variably-

saturated flow under the effect of pumping. To simplify the simulation difficulty, the 

groundwater flux distribution along the well is assumed to be uniform. That is, the nodal 

fluxes along the well screen are identical, and their sum equals the total pumping rate. 

For the aquitard, the saturated hydraulic conductivity is 1.0×10-10 m/s, the porosity is 

0.4 and the specific storage is 10-3 m-1; and for the aquifer, the saturated hydraulic 
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conductivity is 1.0×10-4 m/s which is six orders of magnitude larger than the aquitard matrix, 

the porosity is 0.35 and the specific storage is 10-4 m-1. The saturated hydraulic 

conductivities for the three groups of fractures are 6.57×10-4 m/s, 8.94×10-4 m/s and 

4.56×10-4 m/s respectively, as given by Equation (2.2). The constitutive relations used to 

describe variably-saturated flow in the aquitard, aquifer, and fractures are presented in Table 

4.2. During the numerical simulation, if the computed pressure head falls between the given 

two data points in Table 4.2, the corresponding saturation is determined by the linear 

interpolation method. Similarly, if the computed saturation falls between the given two data 

points in Table 4.2, the corresponding relative permeability is determined by the linear 

interpolation method. 

Table 4.2 Tabular data describing the saturation‒pressure head and relative permeability‒

saturation relations 

Material 
Saturation‒pressure head  Relative permeability‒saturation 

Pressure head/m Saturation  Saturation Relative permeability 

Aquitard 

-100 0.26  0 0 

-60 0.31  0.352 10-5 

-10 0.557  0.465 10-4 

-6.5 0.65  0.61 10-3 

-4.5 0.7  0.76 10-2 

-2.3 0.8  0.9 1.2×10-1 

-0.1 0.985  0.945 3.4×10-1 

0 1.0  1 1 

Aquifer 

-100 0.02  0 0 

-12 0.1  0.185 10-4 

-3.5 0.2  0.28 10-3 

-1 0.35  0.428 1.2×10-2 

-0.5 0.57  0.648 1.1×10-1 

-0.35 0.725  0.81 3.7×10-1 

-0.1 0.917  0.888 5.8×10-1 

0 1.0  1 1 

Fracture 

-1.5 0.29  0.2399 0 

-0.225 0.29  0.24 1.7×10-3 

-0.15 0.3  0.33 2.51×10-2 

0 1.0  1 1 

 

The discretization of the domain is such that 40 nodes are used along x-axis, 40 nodes 
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along y-axis and 11 nodes along z-axis. This yields a total of 20,172 nodes and 17,600 

elements, of which 5,418 are composite elements. The total number of nodes for all the 

composite elements and finite elements is 35,594. In the transient, variably-saturated flow 

simulation, the expected value of the hydraulic head change in an individual time step is 

0.01 m and the tolerance error is 0.01. The simulation will end if a time value is exceeding 

600 d. 

Due to the presence of fractures, the recharge flux distribution at the nodes on the top 

surface of the system is not uniform. To simulate this property, the redistribution elements 

proposed by Therrien and Sudicky [1996] are used on this top surface. These redistribution 

elements have very thin thickness and adequately high hydraulic conductivity so that the 

water entering as recharge redistributes itself by flowing laterally on the surface in the 

regions where vertical hydraulic conductivity is low. The thickness of the redistribution 

elements is taken as 0.05 m and the hydraulic conductivity value is designated as 1.25×10-

5 m/s. This combination of thickness and hydraulic conductivity produces a transmissivity 

that allows optimal flux redistribution for the system. It is found that a further increase in 

the transmissivity value of the redistribution elements does not affect the results. 

The initial, steady hydraulic head distribution at section y=45 m is shown in Figure 

4.9(a). The hydraulic head pattern is seen to be irregular in the aquitard due to the presence 

of the fractures. The same type of erratic hydraulic head pattern was found by Therrien and 

Sudicky [1996]. It can also be seen that groundwater will generally flow from the fractures 

into the matrix except in the case of those fractures that extend downward to intersect the 

more permeable, underlying aquifer. 

The distribution of the hydraulic head at y=45 m after 500 d pumping are presented in 

Figure 4.9(b). It can be observed from Figure 4.9(b) that groundwater flows toward the 

pumping well and the minimum hydraulic heads occur at the pumping well. Figure 10 shows 

the location of the free surface after 500 d pumping. The reader is remaindered that prior to 

pumping, the system is fully saturated and that the free surface is located near the top of the 

aquitard. It can be seen that the combined effect of pumping and the reduced recharge rate 

has caused desaturation of the upper portion of the fractures that intersect the top of the 

aquitard, with greater perturbations in the free surface occurring near those fractures that 

fully penetrate the aquitard. This enhanced decline of the free surface is due to the 

drawdown in the aquifer from pumping which propagates along the fully-penetrating 

fractures. The desaturation occurs firstly in the fractures and then extends laterally to the 

surrounding matrix. As fractures desaturate, they are no longer acting as the preferential 
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flow pathways and become barriers to water flow. In this case, groundwater flow tends to 

be through matrix pores.  

The above results are consistent with those reported in the literature [Therrien and 

Sudicky, 1996]. It is worth emphasizing again that the present composite element model 

places the fractures into the elements, thus greatly reducing the difficulty of the mesh 

generation. When analyzing multiple random fracture networks, the use of the composite 

element model does not require to regenerate the computational mesh, but rather to find the 

new composite elements by running the CEM pre-processor. 

 

Figure 4.9 Contours of the hydraulic head at y=45 m (a) initially, and (b) after 500 d 

pumping 

4.7 Conclusions 

The composite element model has been further developed to simulate transient, 

variably-saturated flow in fractured media. In order to solve the variably-saturated flow 

equation, an iterative scheme with under-relaxation has been adopted. The nonlinearity 

involved in the variably-saturated flow problem is resulted from the nonlinear relations  
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Figure 4.10 Location of the free surface after 500 d pumping 

between the saturation, relative permeability and the pressure head, which is different the nonlinearity 

resulted from the unknown free surface boundary in the saturated, unconfined flow problem. 

In this chapter, the techniques of mass matrix lumping and adaptive time stepping are 

specially incorporated to improve the accuracy and efficiency of the solution process. 

The effectiveness of the composite element model and the solution algorithms has been 

verified by three examples. Firstly, the one-dimensional infiltration problem in dry soil was 

analyzed using the composite element model. The comparisons between the under-

relaxation iterative scheme, the Picard method and the semi-analytical solution showed that 

the under-relaxation iterative scheme had better computational accuracy and efficiency than 

the Picard method. Then, the composite element model together with the proposed key 

techniques was applied into the synthetic example that had been discussed in Chapter 3. The 

results obtained by the present composite element model were closer to the COMSOL 

results than those in Chapter 3. This results were expected, because both the present model 

and COMSOL were based on the Richards’ equation to simulate transient, variably-

saturated flow in fractured media. Finally, an example of the vertical drainage of a fractured 

tuff column described by Wang and Narasimhan [1985] was presented. The validity of the 

present model is further validated by comparing with the results obtained by other numerical 

simulator. 

The problem of transient flow in an aquitard-aquifer system under pumping was 

simulated using the developed composite element model. The simulation results clearly 

showed the complexities of variably-saturated flow in the fractured system. The 

complexities were mainly manifested in the facts that: (i) the fracture interconnectivity 

could create erratic hydraulic head distribution patterns; and (ii) depending on the 
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relationships between saturation, relative permeability and pressure head for the fractures 

and the matrix, groundwater flow could be controlled by either the fractures or the matrix. 

These results illustrated the necessity for an explicit and coupled simulation of the flow 

processes occurring in both the fractures and the matrix. 
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Chapter 5 Investigation of Stability of Homogeneous Soil Slopes 

Under Drawdown Conditions 

5.1 Introduction 

A large number of engineering practices have shown that the reservoir drawdown can 

have a significant impact upon the stability of slopes adjacent to the reservoir. During the 

drawdown of reservoir level, pore water in slope soils or rocks drains from the slope. But 

when the soil or rock hydraulic conductivity is weak, pore water cannot drain soon so that 

the decline of the free surface within the slope lags behind the lowering of the reservoir 

level. In this case, transient flow that is detrimental to slope stability results. The seepage 

forces generated by transient flow reduce the effective stress between soil or rock particles, 

thus reducing the shear strength on the potential slip surface and endangering the stability 

of slope. Moreover, the faster the reservoir drawdown, the more obvious the hysteresis of 

the free surface decline, and the greater the impact on slope stability. In actual engineering, 

it is essential to prevent the occurrence of slope instability due to the rapid drawdown of 

reservoir. 

Many scholars attempted to establish the index that judges the rate of reservoir 

drawdown and to use the index to evaluate the effect of reservoir drawdown on slope 

stability [Gu, 2000]. In their studies, the reservoir drawdown is divided into rapid drawdown 

and slow drawdown. The rapid drawdown is considered to endanger the stability of slope, 

and the slow drawdown is considered not to affect the stability of slope. Schnitte and Zeller 

as early as 1957 proposed the index k/(Syv), where k is hydraulic conductivity, v is drawdown 

rate, and Sy is specific yield which indicates the amount of water that saturated soils will 

release from storage by gravity. They obtained the following conclusions through 

experiment: when k/(Syv)≤0.1, the drawdown is considered “rapid” because the decline of 

the free surface is very slow; when k/(Syv)>10, the drawdown is considered “slow” because 

the free surface is brought down nearly simultaneously with the reservoir level. Systakov in 

1960 pointed out that the judgment index should also include the slope ratio m, and 

concluded that: when k/(m2Syv)<0.05, the drawdown can be identified “rapid”. Besides, 

some scholars [Shi and Zheng, 2003; Zheng et al., 2004; Liu et al., 2005; Duan and Xie, 

2009] established the relationship between k/(Syv) and the height of the free surface after 

drawdown by analyzing transient flow within slope. For the homogenous earth dam and the 
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core wall dam with poor drainage conditions in the upstream slope, the following 

conclusions are drawn in Chen [2015]: when k/(Syv)≤0.1, the height of the free surface at 

end of drawdown is greater than 90% of total drawdown level, so “rapid” drawdown is 

considered; when k/(Syv)>60, the drawdown is called “slow” because the height of the free 

surface is less than 10% of total drawdown level; when 0.1<k/(Syv)≤60, the height of the 

free surface is between 10% and 90% of total drawdown level, so the drawdown is termed 

“moderate”. The above are actually based on the relative height of the free surface after 

drawdown to define “rapid”, “slow” and “moderate” drawdown, respectively. 

However, the reservoir drawdown ultimately affects the stability of slope, therefore the 

judgment of the rate of reservoir drawdown should even more be linked with the stability 

of slope. Consider such a fact that: when the reservoir drawdown just causes a slight 

reduction in the slope safety factor (denoted by SF) and SF is still greater than 1.0 after 

drawdown, the effect of reservoir drawdown can usually be ignored; on the contrary, when 

the drawdown results in a significant reduction in SF and SF is reduced below 1.0 after 

drawdown, the stability of slope under this drawdown needs to be given special attention. 

Obviously, the former situation occurs when the drawdown is “slow”; and the latter situation 

occurs when the drawdown is “rapid”. From the perspective of ensuring slope stability, the 

“rapid” and “slow” drawdown can be redefined as follows: rapid drawdown causes SF to 

reduce beyond the acceptable range; and slow drawdown does not. This definition is more 

explicit than the previous one that is based on the relative height of the free surface. In the 

slope stability analysis, only the drawdown condition that is judged as “rapid” drawdown 

needs to be checked. 

From the above discussion on the judgment of the rate of reservoir drawdown, it is not 

difficult to find that the factors that influence slope stability include: reservoir drawdown 

rate, hydraulic parameters (k and Sy) of slope material, slope geometry, drainage condition 

and shear strength parameters. Although there have been some understandings about the 

influence of these factors on the free surface during drawdown, there is still a lack of 

quantitative description of the ultimate influence of these factors on the slope safety factor. 

The use of specific index, such as k/(Syv), to evaluate the impact of reservoir drawdown and 

even to establish the quantitative relationship between the index and the resulting slope 

behaviors are of great practical significance for the design and reinforcement of the reservoir 

slope. These are the intentions for performing this investigation. 

The main task of this investigation is to quantify the influences of various reservoir 

drawdown rates, material hydraulic and strength parameters, and slope geometries on slope 
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stability safety factor. The results of the investigation are used to produce the criterion for 

judging rapid drawdown and slow drawdown. Unlike those in the “old” criterion given by 

Chen [2015], the rapid drawdown and slow drawdown in this “new” criterion are 

distinguished according to the relative reductions of the SF they cause. It should be noted 

that the objects investigated in this chapter are limited to the case where the homogeneous 

soil slopes are subjected to potential circular sliding failures. The other types of slopes and 

possible failure modes, such as layered rock slopes and potential planar sliding failures, will 

be discussed in the next chapter.  

In this investigation, the transient flow in the slope is first simulated by applying the 

CEM. Using the pore-water pressures obtained by transient flow modelling, the limit 

equilibrium stability analyses are subsequently conducted to evaluate the variation of the 

safety factor of slopes during drawdown. These two analyses are treated in a completely 

uncoupled manner, similar to the approach adopted by Desai [1977]. However, advances 

have been made recently to fully couple flow and deformation analyses including 

consolidation of slope media with the numerical technique [Berilgen, 2007; Pinyol et al., 

2008], but this approach is often costly at the expense of computation time and complicated 

numerical implementation. Thus, the uncoupled transient flow and stability analyses 

approach is preferred here due to its simplicity and effectiveness. 

The main contents in this chapter include: (i) theories and approaches used for this 

investigation, including the analyses of transient flow and slope stability, and the design 

specifications for allowable SF and acceptable reduction in SF of reservoir slopes; (ii) 

investigation of drawdown in homogeneous soil slopes, involving the decline of the free 

surface within slopes and the variation in SF of slopes during drawdown; and (iii) charts for 

quick judgment of rapid drawdown in homogeneous soil slopes. 

5.2 Theories and approaches used for this investigation 

5.2.1 Analysis of transient flow in a 2D slope 

The numerical model of transient, saturated flow with a free surface established in 

Chapter 3 is used to simulate the transient flow in the slope under reservoir drawdown 

condition. Take the slope of the unit thickness to study. The boundary conditions are as 

follows: the hydraulic head on the slope face below the reservoir level is equal to the water 

level elevation; the slope face above the reservoir level is potential seepage face; and the 

other boundaries are impermeable. Assume that the slope is initially fully saturated and that 
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the hydraulic head is everywhere equal to full reservoir level elevation.  

For the homogenous, isotropic and non-deforming soils, the hydraulic conductivity at 

arbitrary points can be described by a constant k and the specific storage Ss is equal to 0. 

Equations (3.1) can be reduced to the following expression: 

   0, inh      (5.1) 

which is well known as Laplace’s equation. It is clear that the solution to Equation (5.1) is 

independent of the value of the hydraulic parameters. The influence of the parameters on 

transient flow simulation is reflected in the solution to the free surface equation as follow: 

  
F

T cos , on FySh
h

k
t





  n   (5.2) 

Equations (5.2) may explain why the decline of the free surface during drawdown depends 

on the index k/(Syv). The index k/(Syv) is used below to systematically investigate the 

influence of various drawdown rates and material hydraulic parameters on transient flow in 

homogeneous soil slopes. 

5.2.2 Analysis of slope stability with respect to circular sliding 

The simplified Bishop’s method [Bishop and Morgenstern, 1960] is used for slope 

stability analysis. Figure 5.1 shows the forces acting on a slice through the sliding mass 

enclosed by a circular slip surface. Note that the sliding mass is partially submerged by 

reservoir. In order to be able to directly utilize the simplified Bishop’s formula for the safety 

factor, a substitution approach proposed by Chen [2003] is used to convert the mass with 

partial submergence to the one without submergence. Using this approach, the reservoir 

water line is extended to intersect the circular slip surface (as shown by dotted line). Thus 

the sliding mass is divided into two parts: above and below the reservoir level. For the part 

below, the external hydrostatic force acting on the slope face is equivalent to the resultant 

force of the water weight in the same volume as this part of sliding mass and the static pore-

water pressures acting on the slip surface of this part below. As such, the formula for solving 

the safety factor SF can be expressed by: 
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  (5.3) 

where W’=W-Ww, W is the total weight of a slice, Ww is the weight of water in the part of 

the slice below reservoir level (as shown by the shaded area in Figure 5.1), U’=U-Us is the 

resultant force of the excess pore-water pressures on the slice base, equal to the resultant 
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force of the pore-water pressures U minus the resultant force of the static pore-water 

pressures Us, ψ is the angle between the slice base and the horizontal plane and δ is the slice 

width. The rest of forces acting on the slice include the horizontal forces on the left and right 

sides En, En+1, the normal force on the slice base N and the shear force along the slice base 

T. 

 

Figure 5.1 Forces acting on a slice through the sliding mass enclosed by a circular slip 

surface 

To illustrate the parameters influencing SF, the expressions of W=γδhn, Ww=γwδhs, 

U=uδ/cosψ and Us=γwδhs/cosψ, where γ is unit weight of sliding mass, assumed to be 

uniform, hn is the slice height, hs is the submergence depth and u (u=P·γw) is the pore-water 

pressure, are substituted into Equation (5.3) and the linear dimensions are expressed as ratios 

of the slope height H. As a result, Equation (5.3) becomes: 
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(5.4) 

From Equation (5.4), it is concluded that SF/tanφ’ depends on the strength parameter 

combination c’/(γHtanφ’) and the pore-water pressure in dimensionless form u/(γH), for the 

given slope geometry and drawdown condition.  

A limit equilibrium stability analysis program SLOPE/W [GEO-SLOPE/W 

International Ltd., 2008] is employed, adopting Bishop Simplified method. In SLOPE/W, 

the pore-water pressures or pressure heads at discrete points are specified from the results 

of transient flow simulation using the CEM; the circular slip surfaces are specified by the 

grid and radius approach, and the final slip surface is the one that yields the lowest safety 
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factor. 

5.2.3 Design specifications for allowable SF and acceptable reduction in SF  

In several design specifications, the allowable safety factors which are the minimum 

required safety factors of reservoir slopes are designated. Table 5.1 is taken from “Design 

specification for slope of hydropower and water conservancy project, DL/T 5353-2006” set 

by National Development and Reform Commission of P.R. China [2006]. In Table 5.1, the 

reservoir slopes are divided into three grades from high to low: I, II and III, based upon its 

belonging pivotal project grade, the position of the slope in the pivot, the project service life 

and the harm extent of a failure. The permanent situation mainly refers to the normal 

operation condition, corresponding to longer-term steady flow under various reservoir levels 

between maximum storage and dead reservoir level. The temporary situation include the 

construction, repair conditions and other temporary condition during operation, 

corresponding to transient flow under a temporary change of water environment. As for the 

two situations, the design safety factors from limit equilibrium analysis cannot be lower 

than the values specified in Table 5.1. 

It is noticed from Table 5.1 that the design safety factors applying to the temporary 

situation are generally lower than those applying to the permanent situation. Taking I-grade 

slope for example, the upper bound of the design safety factors for temporary situation (1.15) 

is about 8% lower than that for permanent situation (1.25). For II-grade slope, it is about 4% 

reduction in the upper bound of the design safety factor from permanent (1.15) to temporary 

situation (1.10). This reveals that the slope is allowed to have less safety margin against a 

temporary situation, e.g., rapid drawdown of reservoir. In case that the reservoir drawdown 

causes more than 8% or 4% reduction in the critical safety factor of I-grade or II-grade 

slopes (compared to the safety factor under permanent situation), it becomes the control 

condition for the design of slope; otherwise, the reservoir drawdown can be neglected and 

the permanent situation dominates the design of slope. Taking into account the 

aforementioned division for the drawdown conditions, this percentage can be taken as the 

critical value of the relative reduction in the safety factor caused by rapid drawdown and 

slow drawdown. Note that these safety factors should represent the minimum or critical 

safety factors in respective conditions. 

In this study, rapid drawdown and slow drawdown are judged by examining whether 

or not the relative reduction in the minimum safety factor exceeds 4%. It is apparent that 

the judgment basis is relatively strict for I-grade slope which allows a maximum of 8% 
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reduction in the minimum safety factor for slow drawdown. Additionally, for III-grade slope, 

the design safety factors applying to permanent and temporary situations are the same and 

relatively low, so the reservoir drawdown must be checked in any case and can be considered 

always “rapid”. 

Table 5.1 Allowable safety factors for slopes at reservoir area [National Development and 

Reform Commission of P.R. China, 2006] 

Grade of slope 

at reservoir area 

Working status 

Permanent situation 

(normal operation) 

Temporary situation (construction, repair or other 

temporary situation during operation) 

I 1.25-1.15 1.15-1.05 

II 1.15-1.05 1.10-1.05 

III 1.05-1.00 1.05-1.00 

 

5.3 Investigation of drawdown in homogeneous soil slopes 

A drawdown problem in a homogenous soil slope is illustrated in Figure 5.2, showing 

the free surface and a potential slip surface. The slope is located on the impervious 

foundation and the origin of coordinates is on the left bottom. The left boundary is 

impermeable. Some basic parameters are defined in Figure 5.2, including the reservoir 

drawdown level HD, the relevant lowing of the free surface at left boundary ΔHD, the slope 

crest width L and slope ratio m (m=cotβ, where β is slope angle). Considering the initial 

reservoir level at the slope crest, with a constant drawdown rate v the reservoir level drops 

along slope face. The transient flow in the slope is triggered, changing the slope safety factor. 

In the followings, the slope geometries are relative slope crest width L/H=1.2 and slope ratio 

m=2. 

 

Figure 5.2 A drawdown problem in a homogenous soil slope 
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5.3.1 The decline of the free surface within slopes during drawdown 

The representative values of k/(Syv) are selected based on the field and laboratory 

measurements for various types of geological materials summarized by Singhal and Gupta 

[2010], shown in Table 5.2. The minimum and maximum values, k/Sy=0.05 m/d and 

k/Sy=500 m/d, respectively correspond to a weak pervious soil with k=0.0005 m/d and 

Sy=0.01 (typically, a clayed soil), and a strong pervious soil with k=50 m/d and Sy=0.1 

(typically, a gravel soil). Consider the drawdown rate v equal to 0.5 m/d. Thus the value of 

k/(Syv) ranges from 0.1 to 1000. The transient, saturated flow simulation arrives at the one-

to-one correspondence between k/(Syv) and the evolution of the free surface (and the pore-

water pressure distribution) with different relative drawdown levels HD/H. 

Table 5.2 Input parameters for drawdown analyses of homogeneous soil slopes shown in 

Figures 5.3 and 5.5 

Parameters Values Unit 

k/Sy 0.05 0.5 5 50 500 ‒ m/d 

k/(Syv) for v=0.5 m/d 0.1 1 10 100 1000 ‒ ‒ 

c’/γH 0.01 0.05 0.1 0.2 0.3 0.36 ‒ 

c’/(γHtanφ’) for φ’=20° 0.03 0.14 0.27 0.55 0.82 1.00 ‒ 

 

Figure 5.3 presents the calculated free surfaces under conditions of k/(Syv)=0.1, 1, 10, 

100 and 1000. It can be observed from Figure 5.3 that the decline of the free surface lags 

behind obviously the lowering of the reservoir level when k/(Syv) is smaller, for instance 

k/(Syv)=0.1, 1 and 10. As k/(Syv) increases, the free surface declines at a growing velocity 

and stabilizes nearly instantaneously to the new reservoir level under condition of 

k/(Syv)=1000. These results can be easily understood, because the larger value of k/(Syv) 

means the relatively stronger hydraulic conductivity k of slope soils, less delayed yield from 

storage Sy, and slower reservoir drawdown rate v, which are all beneficial to quick decline 

of the free surface following the lowering of reservoir level. 

The relative height of the free surface at left boundary, (HD-ΔHD)/HD, and at end of 

drawdown (i.e., HD/H=1) can be achieved from Figure 5.3. The relation between k/(Syv) 

and (HD-ΔHD)/HD at end of drawdown is depicted in Figure 5.4. The Bezier curve is used 

to fit and interpolate the data point. This relation, of course, is negative. According to the 

definitions of rapid drawdown, slow drawdown and moderate drawdown given by Chen 

[2015], the following conclusions can be drawn: (i) when k/(Syv)≤1, the reservoir drawdown 

is judged as rapid drawdown due to (HD-ΔHD)/HD≥90%; (ii) when k/(Syv)>370, the reservoir  
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Figure 5.3 The calculated free surfaces at different drawdown levels HD/H under 

conditions of k/(Syv)=0.1, 1, 10, 100 and 1000 

 

Figure 5.4 Relation between k/(Syv) and (HD-ΔHD)/HD at end of drawdown 

drawdown is judged as slow drawdown due to (HD-ΔHD)/HD<10%; and (iii) when 
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1<k/(Syv)≤370, the reservoir drawdown is judged as moderate drawdown due to 10%≤(HD-

ΔHD)/HD<90%. Give an example to illustrate the significance of these conclusions, as 

follows: for a drawdown rate v of 0.5 m/d, in clayed soils with k/Sy=0.05 m/d, the slope 

behaviors correspond with those under rapid drawdown in terms of k/(Syv)≤1; yet in gravel 

soils with k/Sy=500 m/d, the slope behaviors correspond with those under slow drawdown 

in terms of k/(Syv)>370. Thus, particular attention should be paid on the stability of clayed 

soil slope in this drawdown case. 

5.3.2 The variation in SF of slopes during drawdown 

The unit weight of slope soils γ is assumed to be 20 kN/m3. Relatively large c’/(γHtanφ’) 

values are typical of low slopes in soils with small internal friction angle, e.g., 

c’/(γHtanφ’)=0.851 when c’=30 kPa, H=10 m and φ’=10°; and relatively small c’/(γHtanφ’) 

values describe high slopes in soils with low cohesion and large internal friction angle, e.g., 

c’/(γHtanφ’)=0.021 when c’=10 kPa, H=50 m and φ’=25°. Hence, the stability computation 

results should be presented for values of c’/(γHtanφ’) ranging from 0 to 1.0 (in Table 5.2). 

Figure 5.5 presents the variations of the computed SF/tanφ’ with HD/H under 

conditions of k/(Syv)=0.1, 1, 10, 100 and 1000, when c’/(γHtanφ’)=0.137 (c’/γH=0.05 and 

φ’=20). For comparison, the results for fully rapid drawdown and fully slow drawdown are 

provided in Figure 5.5. They can be understood as the conditions of k/(Syv)=0 and k/(Syv)=∞, 

respectively. The SF/tanφ’ variation with HD/H for fully slow drawdown also represents 

that for steady flow under reservoir level varying from the maximum to none. It can be seen 

from Figure 5.5 that the reservoir drawdown results in the decrease in SF/tanφ’ as a whole. 

This indicates that the decreased external hydrostatic loads have a proportionately greater 

destabilizing effect than the increased shear strength due to the decrease in the pore-water 

pressures. When k/(Syv)≥10, SF/tanφ’ increases slightly at the higher drawdown levels HD/H, 

which reveals that the effect of the increased shear strength starts to prevail over that of the 

decreased external hydrostatic loads. The observed minimum or critical SF/tanφ’ occurs at 

a relative drawdown level HD/H between 0.7 and 0.8. Moreover, the larger k/(Syv), the 

greater SF/tanφ’ is reached for a given HD/H value. 

The reduction in the minimum SF/tanφ’ during drawdown relative to that during steady 

flow when c’/(γHtanφ’)=0.137 can be determined from Figure 5.5. Figure 5.6 presents the 

relation between k/(Syv) and the relative reduction in minimum SF (that equals the relative 

reduction in minimum SF/tanφ’) caused by drawdown. Undoubtedly, with the increase in 

k/(Syv), the relative reduction in minimum SF decreases. According to whether or not the 



 

93 

relative reduction in the minimum SF exceeds 4%, rapid drawdown and slow drawdown are 

renewedly judged by k/(Syv)≤61 and k/(Syv)>61. The same procedures can be carried out to 

establish the judgment criteria for different values of c’/(γHtanφ’). It is observed from 

Figure 5.6 that the smaller c’/(γHtanφ’) is, the larger critical value of k/(Syv) is, in other 

words, the greater value interval of k/(Syv) corresponding to rapid drawdown. This can be 

explained by the fact that the variable pore-water pressures influence only the frictional 

strength due to φ’ but cohesive strength due to c’. Therefore, if c’/(γHtanφ’) is smaller, that 

is, the frictional strength occupies major portion of total shear strength compared to the 

cohesive strength, the stability will be more significantly influenced by the drawdown. In 

this case, the slope behaviors are more likely to approach those under rapid drawdown. The 

critical values of k/(Syv) vary within the interval [15,74]. 

 

Figure 5.5 Variations of the computed SF/tanφ’ with HD/H, under conditions of 

k/(Syv)=0.1, 1, 10, 100 and 1000, when c’/(γHtanφ’)=0.137 

5.3.3 Comparisons between old and new criteria for judging rapid drawdown 

The conditions for rapid drawdown and slow drawdown in homogeneous soil slopes 

with L/H=1.2 and m=2 are charted in Figure 5.7. The different regions in the chart are 

defined as follows. 

In an "old” criterion， 

Region 1—rapid drawdown: k/(Syv)≤1, the height of the free surface at end of 

drawdown is more than 90% of total drawdown level, and customarily, stability analysis of 

slope under fully rapid drawdown is performed. 

Regions 2 and 3—moderate drawdown: 1<k/(Syv)≤370, the height of the free surface  
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Figure 5.6 Relation between k/(Syv) and relative reduction in minimum SF caused by 

drawdown 

 

Figure 5.7 Conditions for rapid and slow drawdown in homogeneous soil slopes with 

L/H=1.2 and m=2 

at end of drawdown is between 10% and 90% of total drawdown level, and analysis of slope 

stability subjected to transient flow is carried out as design routine. 

Region 4—slow drawdown: k/(Syv)>370, the height of the free surface at end of 

drawdown is less than 10% of total drawdown level, and stability analysis of slope under 
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drawdown can be neglected. 

In a “new” criterion， 

Regions 1 and 2—rapid drawdown: k/(Syv)≤λ, where λϵ[15,74] is dependent on 

c’/(γHtanφ’), the critical safety factor of slope under drawdown is expected to reduce by 

more than 4% of that under steady flow, and thus stability analysis for the drawdown 

condition dominates the design of slope. 

Regions 3 and 4—slow drawdown: k/(Syv)>λ, the critical safety factor of slope under 

drawdown is expected to reduce by less than 4% of that under steady flow, and thus stability 

analysis for the steady flow condition dominates the design of slope. 

It is interesting to note from Figure 5.7 that the region of moderate drawdown in a 

conventional criterion has been divided into two parts and separately merged into the 

regions of rapid drawdown and slow drawdown in the new criterion. If the critical safety 

factor of slope under drawdown condition is allowed to reduce by more than 4% (e.g., 8% 

for I-grade slope), the dividing line will move toward the left, which means the less 

drawdown cases distinguished as rapid drawdown. 

5.4 Charts for quick judgment of rapid drawdown in homogeneous soil slopes 

A series of charts are produced in Figure 5.8 to facilitate the judgment of rapid and 

slow drawdown in homogeneous soil slopes with various relative slope crest widths and 

slope ratios; they are L/H=0, 0.4, 0.8, 1.2 and 1.6, and m=1, 1.5, 2, 2.5 and 3. The steep 

slopes (with small m values) are typical of reservoir or river bank slopes, whereas the gentle 

slopes (with large m values) can be the upstream slopes of earth dams (with nearly vertical 

central cores on the downstream sides). The information of data points in Figure 5.8 are 

provided in Table 5.3 for quick and easy reference. 

Each dividing line in Figure 5.8 divides the k/(Syv)~c’/(γHtanφ’) space into two regions: 

left region—rapid drawdown and right region—slow drawdown. It can be found that the 

region of rapid drawdown (or the critical value of k/(Syv)) becomes larger with the growth 

of relative crest width L/H and slope ratio m. This finding makes sense, because the slopes 

with gentle slope face and wide slope crest have relatively poor drainage conditions, 

rendering the stability greatly impaired by reservoir drawdown. In the slope stability 

analysis, the rapid drawdown condition must be examined; and in the reservoir operation 

management, the drawdown rate shall be chosen following the principle of forming the slow 

drawdown condition.  
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(To be continued) 



 

97 

 

 

Figure 5.8 Charts for quick judgment of rapid and slow drawdown in homogeneous soil 

slopes with different geometrical features 

Table 5.3 Values of k/(Syv) and c’/(γHtanφ’) for quick judgment of rapid and slow 

drawdown in homogeneous soil slopes with different geometrical features 

(a) m=1 

c’/(γHtanφ’) 

k/(Syv) 

L/H=0 L/H=0.4 L/H=0.8 L/H=1.2 L/H=1.6 

RD† SD‡ RD SD RD SD RD SD RD SD 

0.027 ≥12.8 <12.8 ≥17 <17 ≥25   <25  ≥34 <34 ≥43 <43 

0.137 ≥5.7 <5.7 ≥12 <12 ≥17   <17  ≥24 <24 ≥30 <30 

0.275 ≥3.7 <3.7 ≥8.7 <8.7 ≥12   <12  ≥17 <17 ≥22 <22 

0.549 ≥2.5 <2.5 ≥6.2 <6.2 ≥8.2  <8.2 ≥11 <11 ≥13 <13 

0.824 ≥2 <2 ≥4.5 <4.5 ≥5.8  <5.8 ≥7.1 <7.1 ≥8.3 <8.3 
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1.000 ≥1.8 <1.8 ≥3.8 <3.8 ≥5.1  <5.1 ≥6.1 <6.1 ≥6.7 <6.7 

(b) m=1.5 

c’/(γHtanφ’) 

k/(Syv) 

L/H=0 L/H=0.4 L/H=0.8 L/H=1.2 L/H=1.6 

RD SD RD SD RD SD RD SD RD SD 

0.027 ≥27 <27 ≥36 <36 ≥46 <46 ≥55 <55 ≥64 <64 

0.137 ≥15 <15 ≥23 <23 ≥32 <32 ≥40 <40 ≥47 <47 

0.275 ≥9.9 <9.9 ≥16 <16 ≥23 <23 ≥30 <30 ≥36 <36 

0.549 ≥5.5 <5.5 ≥9.3 <9.3 ≥13 <13 ≥17 <17 ≥22 <22 

0.824 ≥4.4 <4.4 ≥6.4 <6.4 ≥8.6 <8.6 ≥11 <11 ≥15 <15 

1.000 ≥4 <4 ≥5.3 <5.3 ≥6.9 <6.9 ≥8.8 <8.8 ≥12 <12 

(c) m=2 

c’/(γHtanφ’) 

k/(Syv) 

L/H=0 L/H=0.4 L/H=0.8 L/H=1.2 L/H=1.6 

RD SD RD SD RD SD RD SD RD SD 

0.027 ≤51 >51 ≤60 >60 ≤65 >65 ≤74 >74 ≤88 >88 

0.137 ≤31 >31 ≤40 >40 ≤52 >52 ≤61 >61 ≤68 >68 

0.275 ≤20 >20 ≤28 >28 ≤38 >38 ≤46 >46 ≤55 >55 

0.549 ≤9.3 >9.3 ≤16 >16 ≤22 >22 ≤27 >27 ≤35 >35 

0.824 ≤5.8 >5.8 ≤10 >10 ≤15 >15 ≤18 >18 ≤22 >22 

1.000 ≤4.8 >4.8 ≤8.5 >8.5 ≤11 >11 ≤15 >15 ≤19 >19 

(d) m=2.5 

c’/(γHtanφ’) 

k/(Syv) 

L/H=0 L/H=0.4 L/H=0.8 L/H=1.2 L/H=1.6 

RD SD RD SD RD SD RD SD RD SD 

0.027 ≥64 <64 ≥72 <72 ≥82 <82 ≥90 <90 ≥98 <98 

0.137 ≥50 <50 ≥55 <55 ≥63 <63 ≥73 <73 ≥79 <79 

0.275 ≥33 <33 ≥42 <42 ≥50 <50 ≥57 <57 ≥63 <63 

0.549 ≥16 <16 ≥28 <28 ≥33 <33 ≥39 <39 ≥44 <44 

0.824 ≥8.4 <8.4 ≥17 <17 ≥21 <21 ≥25 <25 ≥29 <29 

1.000 ≥6.3 <6.3 ≥12 <12 ≥17 <17 ≥21 <21 ≥25 <25 

(e) m=3 

c’/(γHtanφ’) 

k/(Syv) 

L/H=0 L/H=0.4 L/H=0.8 L/H=1.2 L/H=1.6 

RD SD RD SD RD SD RD SD RD SD 

0.027 ≥82 <82 ≥94 <94 ≥103 <103 ≥115 <115 ≥126 <126 

0.137 ≥66 <66 ≥72 <72 ≥80 <80 ≥90 <90 ≥98 <98 

0.275 ≥45 <45 ≥56 <56 ≥63 <63 ≥70 <70 ≥78 <78 
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0.549 ≥30 <30 ≥37 <37 ≥43 <43 ≥48 <48 ≥54 <54 

0.824 ≥18 <18 ≥24 <24 ≥29 <29 ≥33 <33 ≥38 <38 

1.000 ≥13 <13 ≥18 <18 ≥25 <25 ≥29 <29 ≥33 <33 

†RD indicates rapid drawdown; ‡SD indicates slow drawdown. 

 

5.5 Conclusions 

A rapid drawdown of reservoir can result in the temporary increase in hydraulic 

gradients which may not be withstood by adjacent soil or rock slopes and thus failures occur. 

In the design of reservoir bank slopes, stability analysis with regard to rapid drawdown must 

be performed. A conventional criterion for the judgment of rapid drawdown was set prior 

to stability analysis, which made use of the index k/(Syv) and established the relation 

between k/(Syv) and the relative height of free surface at end of drawdown to total drawdown 

level. The rapid drawdown in this criterion was defined as the one during which the height 

of free surface remains more than 90% of total drawdown level, and was believed to be 

detrimental to slope stability. Given that the ultimate concern is the effect on slope stability, 

it would be better to relating the index k/(Syv) directly to the relative reduction in the safety 

factor caused by drawdown. As such, this chapter suggests a new criterion for judging rapid 

drawdown which is defined as the one causing more than 4% reduction in the critical safety 

factor compared to the critical safety factor under steady flow.  

Consider homogeneous soil slopes against circular shear failure. The composite 

element modelling of transient, saturated flow with a free surface is used to estimate the 

transient free surfaces and pore-water pressure distributions in slopes during drawdown. 

Using the calculated pore-water pressure distributions as groundwater conditions, the limit 

equilibrium stability analyses are subsequently performed to evaluate the variations of the 

safety factor of slopes. The main conclusions can be summarized as follows: 

(1) In the new criterion, the dividing line for distinguishing rapid drawdown from slow 

drawdown falls into the moderate drawdown region in the conventional criterion. This new 

criterion takes into account the reservoir drawdown effect on the ultimate stability of slope. 

It can provide a practical guide to quickly judge if there is a need for the drawdown analysis 

in the design of slope stabilization as well as reservoir operation. 

(2) The judgment basis for rapid drawdown that causes more than 4% reduction in the 

critical safety factor compared to the critical safety factor under long-term steady flow, is 

stipulated only for II-grade slope in the Chinese design specification. If a higher safety factor 

has been designated to the slope under steady flow condition and hence a greater reduction 
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in the critical safety factor is allowed for the slope subjected to reservoir drawdown (i.e. I-

grade slope), the criterion for judging rapid drawdown needs to be revised accordingly. 

(3) It should be noted that the case of cohesionless slope material (c’=0) is not involved 

in this analyses, since the most critical failure mechanism approaches slide along a planar 

surface.  

(4) All the results of the drawdown analyses of homogeneous soil slopes in this study 

can be equally accessible to highly fractured or weak rock slopes, in which rock masses are 

commonly assumed to be homogeneous, isotropic and modelled as Mohr-Coulomb 

materials. 
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Chapter 6 Investigation of Stability of Layered Rock Slopes Under 

Drawdown Conditions 

6.1 Introduction 

Layered structure is one of the most prevalent structures in rock masses. The rock 

structures refer to naturally occurring breaks in the rock such as bedding planes, joints and 

faults (which are termed here as fractures) [Hoek and Bray, 1981]. According to the 

relationship between slope and fracture occurrence, the layered rock masses have been 

divided into horizontally bedded, dipping away slightly and deeply bedded, and dipping in 

bedded rock masses [Sun, 1993], shown in Figure 6.1. The type of layered rock mass largely 

determines the failure mode. In the horizontally bedded rock slope, the possibility of shear 

failure is small because the dip angle of fractures or rock layers is lower than internal friction 

angle. Consequently, the horizontally bedded rock slope shows the higher stability. In the 

dipping away consequent bedded rock slope, the steeper of the dip angle of fractures, the 

lower the stability is. The typical failure mode of this type has been identified as planar 

shear failure along weak interlayers or fractures. However, if the fractures deeply dip away 

the slope, the failure mode may be characterized by a buckling failure [Chen et al., 2005]. 

The dipping in bedded rock slope generally has the higher stability than that of the dipping 

away consequent bedded rock slope. The failure of the dipping in bedded rock slope may 

manifests as a topping failure. Both bulking and toppling failure modes typically occur in 

rock masses with steeply dipping large-scale fractures or in highly foliated rock masses 

[Pritchard and Savigny, 1991; Sjoberg, 2000]. The mechanisms leading to bulking and 

toppling failures, particularly the formation of the failure surfaces, are not clearly defined. 

This is partly due to insufficient observational data and partly due to inadequate analytical 

treatment of these failure modes. 

In the previous chapter, the stability of homogenous slopes against circular shear 

failure under drawdown conditions has been investigated. In these slopes, the size of 

individual rock blocks is very small compared to that of entire slope, and these blocks do 

not have reciprocal occlusal relationships in shapes. Thus, the resulting slides occur along 

the circular slip surfaces on the whole. This chapter continues to investigate the stability of 

layered rock slopes against planar shear failure under drawdown conditions. Fractures 

within the slopes are assumed to strike parallel to, but dip less than the slope face. 
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Table 6.1 Classification of layered rock mass and associated failure mode (referring to 

[Chen, 2015], and slightly modified) 

Geologic structure Typical profile Failure mode 

Layered structure 

Horizontal 

 

High stability 

Slightly 

dipping away 

 

Planar sliding 

 

Deeply 

dipping away 

 

Buckling 

 

Dipping into 

 

Toppling 

 

Fractured structure† 

 

Circular sliding 

 

†The typical profile and failure mode for fractured structure are also provided for visual comparison with 

those for layered structure. 
 

6.2 Analysis of slope stability with respect to planar sliding 

The forces acting on the sliding mass enclosed by a planar slip surface are shown in 

Figure 6.1. From the static equilibrium condition, the safety factor SF representing the ratio 

between the driving and resisting forces can be computed by the following formula: 

  
1

cos tan
sin sin

H
c W U

W
SF  

 

 
       

   (6.1) 

where wW W W   , W  is the total weight of the sliding mass, wW  is the water weight 
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in the part of the sliding mass below reservoir level, sU U U    is the sum of the excess 

pore-water pressures acting on the planar slip surface, equal to the sum of the pore-water 

pressures U  minus the sum of the static pore-water pressures sU  on the slip surface, and 

ψ is the angle between the planar slip surface and the horizontal plane. The rest of forces 

acting on the sliding mass include the normal force N  on the slip surface and the shear 

force T  along the slip surface. 

Like in Section 5.2.1, the substitution of expressions of W =γH2(cotψ-cotβ)/2, wW =

W ·γw/γ(1-HD/H)2, U =uH/sinψ and sU =γwH2/2sinψ(1-HD/H)2 into Equation (6.1) 

concludes that SF/tanφ’ is the function of c’/(γHtanφ’) and u/(γH) if slope geometry and 

drawdown condition are given.  

The limit equilibrium stability analysis program SLOPE/W is employed, adopting 

Janbu Simplified method. This method is equivalent to Equation (6.1). In SLOPE/W, the 

planar slip surfaces are specified with a series of data points along a given fracture surface; 

and the pore-water pressures on the slip surface are specified from the results of transient 

flow simulation using the CEM.  

 

Figure 6.1 Forces acting on a sliding mass enclosed by a planar slip surface 

6.3 Investigation of drawdown in layered rock slopes 

Consider a group of evenly spaced, planar, parallel and persistent fractures in a layered 

rock slope, as shown in Figure 6.2. The slope has the geometries with L/H=0.8, m=0.5 and 

H=55 m. While the reservoir level is lowered, the external stabilizing hydrostatic pressures 

decrease, or to say, the effective weight of the sliding mass W   in Equation (6.1) increases. 

This may result in the potential sliding mass enclosed by the fracture surface intersecting 
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the slope face to be activated. In the following study, the variations of the pore-water 

pressure distribution and the safety factor of the slope during drawdown will be examined. 

The fracture surface passing through the slope toe (AA’ in Figure 6.2) is specified as the 

potential slip surface. 

 

Figure 6.2 A drawdown problem in a layered rock slope containing one group of fractures 

dipping away the slope 

6.3.1 Parameters influencing transient flow in layered rock slopes 

For stability analysis of the layered rock slope, transient flow simulation is essential. 

The basic parameters defining transient flow in slope have been identified to be the 

hydraulic conductivity and the specific yield, as discussed in Section 5.3.1. The rock masses 

consist of rock matrix and fractures, so the simulation results of transient flow in the rock 

slope will be affected by the hydraulic parameters of both media. 

In most rock types, the hydraulic conductivity for rock matrix km is very low. For 

example, the hydraulic conductivity for intact granite and basalt is about 10-4 m/d to 10-7 

m/d. Groundwater flow in these rock masses occurs predominately along the fractures 

because the hydraulic conductivity for fractures kf is usually several orders of magnitude 

larger than the rock matrix. The characteristics of the fractures have a major influence on 

the hydraulic conductivity for the rock masses. For instance, the fracture aperture b (which 

is actually b2) determines the magnitude of the hydraulic conductivity for individual 

fractures; the fracture spacing d represents the change in the conductivity in the direction 

perpendicular to the fracture surfaces; and the fracture dip angle ψ specifies the direction of 

the principle hydraulic conductivity. 

The specific yields for rock matrix Sym and for fracture Syf respectively refer to the ratios 

of volume of water that saturated rock matrix and fracture will yield by gravity to the total 
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matrix and fracture volumes. In a layered rock mass, the volumetric fractions of rock matrix 

ηm and fractures ηf can be respectively expressed as: 

Matrix volume
1

Total bulk volume
m b d     

Fracture volume

Total bulk volume
f b d    

Then, the average specific yield for the rock mass Sy,aver is derived by: 

 ,y aver m ym f yfS S S     (6.2) 

Obviously, if the fracture aperture b (usually in the range of millimeters to micrometers) is 

much smaller than its spacing d, i.e., ηf is very small, Sy,aver will be mainly contributed by 

ηmSym and the contribution of ηfSyf is negligible. On the contrary, if ηf is not so small, both 

contributions of ηmSym and ηfSyf should be accounted for Sy,aver. At this time, the rock mass 

is generally viewed as a continuum with anisotropy. The specific yield for limestone and 

dolomite is 0.001 to 0.1; and the specific yield for basalt is 0.02 to 0.1 [Singhal and Gupta, 

2010]. 

In many of the reported work [Snow, 1969; Wyllie and Mah, 2004; Dong et al., 2006], 

analysis of flow in rock masses was carried out assuming the rock masses are continua. For 

rock masses containing one group of parallel, smooth, clean fractures, the equivalent 

hydraulic conductivity kequi is given by [Davis, 1969]: 

 

3

12

f w
equi m m

k b b
k k k

d d




      (6.3) 

where kequi is parallel to this group of fractures. As is known, the continuum approach is 

incapable of representing flow through individual fractures, which may yield inaccurate 

estimation of pore-water pressures in the vicinity of the fractures. In the following study, 

the CEM that follows the discrete fracture approach will be used, not only to obtain a more 

accurate pore-water pressure distributions in layered rock slopes, but also to show under 

what circumstance the discrete simulation of the fractures is essential. 

6.3.2 Parameter setting and analysis protocols 

It has been learned from the previous section that the aperture, spacing and dip angle 

of the fracture group and the specific yield of the rock matrix are the main parameters that 

influence transient groundwater flow in the layered rock slopes. Due to the small range of 

Sym value, this study focuses on the investigation of the characteristics of the fracture group. 

The hydraulic conductivity and the specific yield for rock matrix are assumed to be 



 

107 

constant and equal 5.0×10-5 m/d and 0.001, respectively. Different fracture apertures b, 

spacings d and dip angles ψ are adopted separately in three sets of parametric analyses, 

shown in Table 6.2. The specific yield for fractures is assumed to be 0.1. In fact, a change 

in the value of Syf will not affect the simulation results. The drawdown rate is fixed at 0.5 

m/d. After obtaining the pore-water pressures, the stability analyses are performed to 

estimate the variation of SF of the slopes during drawdown. The required parameters are: 

γ=25 kN/m3, c’/γH =0.1, and φ’=20° (c’/(γHtanφ’)=0.851). Please note that this study does 

involve the discussion on judgment of rapid drawdown and slow drawdown, according to 

either relative height of the free surface or relative reduction of the critical SF, for the 

layered rock slopes, due to the complexity of the groundwater distribution pattern. 

Table 6.2 Input parameters for parametric analyses of fracture characteristics shown in 

Figure 6.3-6.7 

Parameter 
Aperture 

b/μm 

Spacing 

d/m 

Dip angle 

ψ/° 

Equivalent hydraulic 

conductivity for the 

fracture group kfb/d/m·d-1 

Remarks 

Different 

fracture 

apertures 

12.1 2.5 50 5.0×10-5 
1. The slope geometry 

is: L/H=0.8, m=0.5, 

and H=55.0 m; 

2. The drawdown rate 

v equals to 0.5 m/d; 

3. The parameters for 

stability analysis 

are: γ=25 kN/m3, 

c’/(γHtanφ’)=0.851 

when c’/γH =0.1, 

and φ’=20°. 

26.1 2.5 50 5.0×10-4 

56.1 2.5 50 5.0×10-3 

121.0 2.5 50 5.0×10-2 

Different 

fracture 

spacings 

41.4 1.0 50 5.0×10-3 

56.1 2.5 50 5.0×10-3 

70.7 5.0 50 5.0×10-3 

89.1 10.0 50 5.0×10-3 

Different 

fracture dip 

angles 

56.1 2.5 30 5.0×10-3 

56.1 2.5 40 5.0×10-3 

56.1 2.5 50 5.0×10-3 

56.1 2.5 60 5.0×10-3 

 

6.3.3 Sensitivity analyses of fracture characteristics 

(1) Sensitivity analysis of fracture aperture 

Since the hydraulic conductivity for single fractures is proportional to the second 

power of the fracture aperture, a small variation in the aperture can significantly change the 

conductivity and hence flow in the rock slopes. For investigating the sensitivity of transient 

pore-water pressure distribution to the fracture aperture, four fracture apertures 
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corresponding to four orders of magnitude equivalent hydraulic conductivities for the 

fracture group (i.e., kfb/d), ranging from 5.0×10-5 m/d to 5.0×10-2 m/d (in Table 6.1), are 

considered. Except for the fracture aperture, the fracture spacing and the fracture dip angle 

are specified as 2.5 m and 50°, respectively.  

The calculated free surfaces and the hydraulic head distributions at end of drawdown 

in the slopes with different fracture apertures are presented in Figure 6.3. It is seen that when 

the fracture aperture is larger, which means the fracture hydraulic conductivity is higher, 

the free surface and the contours of hydraulic head are more obviously elongated in the 

fracture dipping direction, as shown in Figures 6.3(c) and 6.3(d). In these cases, the position 

of the free surface is far from the slope face and the pore-water pressures acting on the slip 

surface AA’ are relatively low.  

 

Figure 6.3 Free surfaces and contours of the hydraulic head at end of drawdown in the 

layered rock slopes with different fracture apertures: (a) b=12.1 μm; (b) b=26.1 μm; (c) 

b=56.1 μm; and (d) b=121.0 μm 

The effects of the fracture aperture on the variation of SF of slopes during drawdown 

are shown in Figure 6.4. As expected, for a given relative drawdown level HD/H, the 

computed SF/tanφ’ increases as the fracture hydraulic conductivity increases. The increase 

of SF/tanφ’ is attributed to the decrease in the pore-water pressures and consequent increase 
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in shear strength on the slip surface. These SF/tanφ’ values of the layered rock slopes with 

different fracture apertures during drawdown are higher than those in the case of fully rapid 

drawdown, because the fractures within the slopes somehow play a role in accelerating the 

drainage of the slope media. 

 

Figure 6.4 Variations of the computed SF/tanφ’ with HD/H for the layered rock slopes with 

different fracture apertures: (a) b=12.1 μm; (b) b=26.1 μm; (c) b=56.1 μm; and (d) 

b=121.0 μm 

(2) Sensitivity analysis of fracture spacing 

To investigate the influence of the fracture spacing on transient flow and the stability 

of slopes, four fracture spacings ranging from 1.0 m to 10.0 m are adopted. The equivalent 

hydraulic conductivity of the fracture group is specified to be 5.0×10-3 m/d. The related 

fracture apertures are given in Table 6.1. 

Figure 6.5 presents the free surfaces and hydraulic head contours at end of drawdown 

in the layered rock slopes with different fracture spacings. It can be observed that the 

patterns of the free surface and the hydraulic head contours are almost the same where the 

fracture spacing is smaller than 2.5 m. If assuming the rock masses are continua and the 

equivalent hydraulic parameters defined by Equations (6.3) and (6.4) are adopted, the 

simulation results of the hydraulic head in the slopes (not shown) are close to those shown 

in Figure 6.5(a). This implies that the rock masses containing densely distributed fractures 

act hydraulically as the homogeneous media with identical, anisotropic hydraulic 

conductivity. However, as the fracture spacing increases, the phenomenon that the water 

flow is forced to look for the preferential paths, i.e., the fractures, is gradually prominent. 
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Explicit representations of fracture flow using the discrete approach will be essential. As 

seen from Figure 6.5, the free surfaces in cases of d=5.0 m and d=10.0 m obviously curve 

at the fractures and they are lowered below the slip surface AA’.  

 

Figure 6.5 Free surfaces and contours of the hydraulic head at end of drawdown in the 

layered rock slopes with different fracture spacings: (a) d=1.0 m; (b) d=2.5 m; (c) d=5.0 

m; and (d) d=10.0 m 

Figure 6.6 shows the variations of the computed SF/tanφ’ with HD/H. Due to the role 

of drainage of the fractures, the stability of the slope during drawdown is greatly improved. 

The SF/tanφ’ of slopes with d=5.0 m and d=10.0 m at HD/H=1 is equal to that under fully 

slow drawdown. 

(3) Sensitivity analysis of fracture dip angle 

In addition to the conditions shown in Figure 6.3 and Figure 6.5 that respectively relate 

to the aperture and spacing of the fracture group, the other groundwater flow conditions that 

relate to various fracture dip angles may be involved. In the analyses below, four fracture 

dip angles ranging from 30° to 60° are considered; the fracture spacing is assumed to be 2.5 

m; and the equivalent hydraulic conductivity of the fracture group equals 5.0×10-3 m/d 

(shown in Table 6.1). 

The free surfaces and hydraulic head contours at end of drawdown corresponding to  
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Figure 6.6 Variations of the computed SF/tanφ’ with HD/H for the layered rock slopes with 

different fracture spacings: (a) d=1.0 m; (b) d=2.5 m; (c) d=5.0 m; and (d) d=10.0 m 

 

Figure 6.7 Free surfaces and contours of the hydraulic head at end of drawdown in the 

layered rock slopes with different fracture dip angles: (a) ψ=30°; (b) ψ=40°; (c) ψ=50°; 

and (d) ψ=60° 

the fracture dip angles equal to 30°, 40°, 50° and 60° are shown in Figure 6.7. It can be seen 

from Figure 6.7 that, in the layered rock slope with fractures dipping at 30°, the free surface 
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has a flat gradient and the values of hydraulic head are relatively small, which illustrates 

that groundwater within the rock masses can readily drain; whereas, in the layered rock 

slope with fractures dipping at 60°, the position of the free surface and the hydraulic head 

values are high, which can be explained since flow to the slope face is inhibited by the 

fractures almost parallel to the slope face. Stability analyses for these conditions are omitted 

here, given the differences in the potential failure modes; they may be sliding failures along 

the fractures in cases of ψ=30°, 40°, 50° and buckling failure in case of ψ=60°. However, 

combining the above discussions with the results in Figure 6.7, the readers can easily 

speculate that the stability of slopes with fractures nearly parallel to the slope face during 

drawdown would be greatly reduced.  

6.4 Conclusions 

The stability of layered rock slopes under drawdown conditions has been investigated. 

Due to the presence of the fractures, the hydraulic conductivity and the specific yield for 

rock masses are heterogeneous, so that transient flow in the slopes during drawdown cannot 

be simply estimated by using the index k/(Syv), which is proposed in the previous chapter. 

In this chapter, a parametric study is conducted to investigate the influences of various 

characteristics of the fracture group on transient flow regimes and the stability of slopes. 

The main conclusions can be summarized as follows: 

(1) The CEM provides accurate simulations of transient groundwater flow in the 

fractured rock slopes. The calculated pore-water pressures can be introduced in stability 

analyses to obtain the variations of the safety factor of slopes during drawdown. 

(2) Different fracture characteristics lead to different pore-water pressure distributions 

in the slopes. In comparing cases of different fracture apertures and fracture dip angles, it 

can be shown that groundwater readily drain from the slopes where the fracture aperture 

(which is actually fracture conductivity) is large and the fracture dipping is nearly horizontal; 

and in contrast, high pore-water pressures will develop where the fracture conductivity is 

low and the fracture dipping is nearly parallel to the slope face. 

(3) The necessity of discrete simulation of fracture flow to analyses of transient flow 

and hence slope stability is emphasized in comparing cases of different fracture spacings 

but identical equivalent hydraulic conductivity of the fracture group.  

(4) It is worthwhile mentioning that, in the real world, rock types and details of 

structural geology such as distribution and persistence of fracture groups within a slope are 
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varied. All of these features have an influence on transient flow regime in the slope. It is 

only possible in this study to draw some basic law by analyzing simple slopes, such as 

homogeneous slopes (in Chapter 5) and layered slopes (in Chapter 6). 

(5) However, when the hydraulic conductivity of one group of fractures is much higher 

than the other groups, the slopes can have similar behaviors to layered slopes; when the 

hydraulic conductivities of different fracture groups in all directions are close, the behaviors 

of the slopes can approach those of homogeneous slopes. For analyses of these slopes, the 

results in Chapter 5 and Chapter 6 provide important references. Furthermore, the 

methodology employed herein can be applied to these analyses. 
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Chapter 7 Conclusions and Recommendations 

7.1 Conclusions 

This thesis mainly has done four aspects of research work, and the relevant conclusions 

and contributions are presented as follows. 

(1) Modelling transient, saturated flow in fractured media with a free surface  

 The composite element model for transient, saturated flow in fractured media with 

a free surface has been constructed. The model has the following advantages due 

to the use of the CEM: (i) the mesh generation is not restricted by the geometry of 

fractures; (ii) the model is capable of accurate descriptions of fracture flow, matrix 

flow and exchange of water between fractures and matrix; and (iii) if there is no 

fracture, the model will automatically be degenerated into the finite element model.  

 Relevant solution algorithms have been proposed, including those for CEM pre-

processing, numerical integral calculation, treatment of boundary conditions and 

solving large, sparse, symmetric system of equations. All of them have been 

implemented into a computer program CEM_SATFLOW. 

 The effectiveness of the model and program has been verified by comparing the 

example results generated by CEM_SATFLOW with those from a commercial 

software COMSOL. 

 The capability of the composite element model has been demonstrated by 

simulations of the flow problems in complicated, saturated fractured aquifers. 

Moreover, the simulation results provide valuable insight into the hydraulic 

behavior of saturated fractured media and the free surface configuration in 

fractured media. 

(2) Modelling transient, variably-saturated flow in fractured media 

 The composite element model has been further developed for transient, variably-

saturated flow in fractured media. The model also has the advantages stated in the 

above first point.  

 The concept of an effective interaction area has been incorporated in the model to 

account for changes in the fracture-matrix interaction area when fracture 

desaturates. 
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 An iterative procedure with under-relaxation has been applied to solve the 

variably-saturated flow equations. Meanwhile, the techniques of mass matrix 

lumping and adaptive time stepping have been introduced to improve the accuracy 

and efficiency of solution processes. All of them have been implemented into a 

computer program CEM_UNSATFLOW. 

 The effectiveness of the model and program has been verified by comparing the 

example results generated by CEM_UNSATFLOW with the semi-analytical 

solution and those from COMSOL. 

 The simulation results of flow in complicated, variably-saturated fractured 

aquifers have demonstrated the highly variable nature of the unsaturated fracture-

matrix flow systems, and illustrated the necessity of an explicit and coupled 

description of the flow processes in both the fractures and matrix. 

(3) Investigation of stability of homogenous soil slopes under drawdown conditions 

 The CEM provides accurate simulations of transient flow in the slopes. The 

calculated pore-water pressures can be introduced into limit equilibrium analyses 

to obtain the variation of the safety factor of slopes during drawdown. 

 It has been found that SF/tanφ’ of slopes during drawdown depends on k/(Syv) and 

c’/(γHtanφ’).  

 By relating k/(Syv) and c’/(γHtanφ’) to the relative reduction in the safety factor, a 

“new” criterion for judging rapid drawdown results. The stability analysis for the 

rapid drawdown dominates the design of slope. 

 A series of charts for quick judgment of rapid drawdown in homogeneous soil 

slope have produced. 

(4) Investigation of stability of layered rock slopes under drawdown conditions 

 A parametric study of the fracture characteristics has provided a quantitative 

description of the influence of different fracture characteristics on the pore-water 

pressure distributions and the safety factor of layered rock slopes under drawdown 

conditions. 

7.2 Recommendations for future research 

This work has shown some need for continued research. More specifically, the 

following issues need to be addressed. 
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 The composite element models assume that the fracture has tangential and normal 

hydraulic conductivities. Naturally, the estimation of the conductivities has a 

direct effect on the modelling results. How to obtain the hydraulic parameters for 

the fractures and whether it is reasonable to apply these parameters to the present 

composite element models still need further study and demonstration.  

 The main feature of the CEM is dividing the element into multiple sub-elements 

based on the fracture surface. However, in some special cases, such as where the 

fracture surface coincides with the face of element or where the fracture surface 

ends in the interior of the element, the CEM pre-processor requires some special 

handling, such as moving or stretching the fracture surface. How to coordinate the 

geometrical relationship between the fractures and the mesh elements to realize 

the division of composite elements is a difficult problem to solve in the CEM pre-

processing. 

 In simulating transient flow in the slopes subjected to drawdown conditions, only 

flow in the saturated zone is considered and flow in the unsaturated zone is 

neglected. In view of the influence of the matrix suction in the unsaturated soils or 

rock masses on the shear strength, it is necessary to demonstrate the difference in 

the slope stability safety factor due to neglect and consideration of the unsaturated 

zone. 

 The limit equilibrium analysis has its own shortcomings, so how to combine the 

CEM with the better stability analysis method such as the FEM is worthy of further 

study. 

 In addition, the deformation of the slope soil or rock mass may have a certain effect 

on transient flow and stability of slope. The use of coupled transient flow and 

deformation analyses together with the stability analysis to investigate the 

drawdown problems is the direction of future work. 
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