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Abstract 

      Phononic crystals and acoustic metamaterials are artificial structured materials which 

provide a promising way to manipulate acoustic/elastic waves with many novel potential 

applications. The aim of this work is to design new acoustic artificial structured materials and 

discover new properties. After an introduction to the state of the art, the second chapter 

designs actively controlled multilayers with piezoelectric resonant structures. The 

corresponding transmission and effective properties can be tuned by changing the electric 

boundary conditions of the piezoelectric materials. The third chapter develops 

homogenization methods for phononic crystal plates and demonstrates for the first time the 

possibility of controlling simultaneously all the fundamental Lamb waves. The full control 

method developed here is applied to the design of various gradient index lenses that can 

exhibit several functionalities such as wave focusing or wave beaming. A new elastodynamic 

homogenization theory, known as Willis constitutive theory, is also investigated which can 

offer more precise description of wave behaviors in periodic inhomogeneous media than the 

classical elasticity theory. The forth chapter designs a new type of phononic 

crystal/metamaterial plate with hollow pillars that exhibits several new localized modes, such 

as whispering-gallery modes, inside both Bragg and low frequency band gaps. These modes 

can be actively tuned by filling the hollow parts with a liquid for which the height or the 

temperature is controlled. The fifth chapter proposes acoustic metasurface consisting of a 

single pillar or one line of pillars deposited on a thin plate. Local resonances of dipolar and 

monopolar symmetries can be characterized which are very sensitive to the pillar’s geometric 

parameters. We study the amplitude and phase of the waves resulting from the scattering of an 

incident wave by the pillars and show that they can be described as dipolar or monopolar 

waves emitted by the pillar resonators as acoustic sources. 
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Résumé 

      Les cristaux phononiques et métamatériaux acoustiques sont des matériaux structurés 

artificiels qui fournissent un moyen prometteur pour manipuler les ondes 

acoustiques/élastiques avec de nombreuses applications potentielles nouvelles. Le but de ce 

travail est de concevoir de nouveaux matériaux structurés artificiels acoustiques et découvrir 

de nouvelles propriétés. Après une introduction à l'état de l'art, le chapitre 2 propose des 

multicouches actives à base de structures piézoélectriques résonnantes. Leur transmission et 

leurs propriétés effectives peuvent être contrôlées activement en changeant les conditions 

limites électriques des matériaux piézoélectriques. Le chapitre 3 développe des méthodes 

d'homogénéisation pour une plaque de cristal phononique et montre pour la première fois la 

possibilité de contrôler simultanément la propagation de toutes les ondes fondamentales de 

Lamb. La méthode est appliquée à la conception de lentilles à gradient d'indice avec plusieurs 

fonctionnalités pour les phénomènes de focalisation et transmission directive. De plus, une 

nouvelle théorie élastodynamique d'homogénéisation, connus sous le nom de théorie de Willis, 

est développée pour permettre une description plus précise des ondes dans les milieux 

inhomogènes périodiques que la théorie classique d'élasticité. Le chapitre 4 propose un 

nouveau type de cristal phononique en plaque à base de piliers creux qui met en évidence de 

nouveaux modes fortement localisés, tels que les modes de galerie, aussi bien dans le gap de 

Bragg que dans un gap à basse fréquence. Ces modes peuvent être activement accordés en 

remplissant les parties creuses des piliers avec un liquide dont on contrôle la hauteur ou la 

température. Le chapitre 5 propose une métasurface acoustique comportant un pilier unique 

ou une ligne de piliers déposés sur une plaque mince. Ces piliers ont des modes de résonance 

dipolaires et monopolaires qui sont très sensibles aux paramètres géométriques des piliers. 

Nous étudions en détail l'amplitude et la phase des ondes émises lorsqu'une onde incidente est 

diffusée par les piliers et montrons qu'elles peuvent être décrites comme des ondes dipolaires 

et monopolaires émises par les piliers résonnants comme sources d'ondes acoustiques. 
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1.1 Phononic crystals 

      Light and sound are two of the most important carriers of information for our society and 

daily lives[1]. In recent decades, technological revolutions enable us to manipulate and control 

two particles, photons and phonons, with functionalities beyond discoveries found in nature 

realized by man-made materials. Initially inspired by an analogy with the quantum 

mechanical band theory of solids in which electronic waves interact with a periodically 

arranged atomic lattice to form energy bands separated by bandgaps[2], photonic crystals were 

proposed by Yablonovitch[3] and John[4] in 1987 in which the atoms are replaced by 

macroscopic media with differing dielectric constants and the periodic potential is replaced by 

a periodic dielectric function. Photonic crystals with band gaps can prevent light from 

propagating in certain directions. Differing from electromagnetic waves which only have 

transverse polarization, elastic waves propagating in a solid have both longitudinal and 

transverse polarizations, being harder to design band gap. The search for structures with 

elastic band gaps began with theoretical work by Sigalas and Economou[5] at the University of 

Heraklion in Greece in 1992, considering in-plane elastic wave propagation in periodic 

structures consisting of identical spheres placed periodically within a host homogeneous 

material. Later, they used gold cylinders embedded in a beryllium host and incorporated out 

of plane shear waves[6].  The term “phononic crystals” was first proposed  by Kushwaha, 

Halevi, Dobrzynski and Djafari-Rouhani[7] at the University of Lille in France in 1993 when 

studied out of plane waves in a periodic array of nickel alloy cylinders in an aluminum alloy 

matrix.  

      Phononic crystals are artificial materials consisting of periodic inhomogeneous elastic 

medium that can manipulate the flow of sound in air, of acoustic waves in fluids and of elastic 

waves in solids. The notion “phonon” may be interpreted as a discrete particle-like quantity of 

acoustic wave in a solid[8]. In fact, an atom will exerts a force on its neighbors when it is 
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displaced from its equilibrium position, which causes a special wave of lattice distortion that 

propagates through the solid, as a “phonon”[9]. The propagation of acoustic waves in a 

phononic crystal is governed by the Bloch or Floquet theorem from which one can compute 

the band structure (dispersion relationship) in the corresponding Brillouin zone[10]. In their 

band structure, phononic crystals can exhibit band gaps which prohibit the propagation of 

waves. In periodic systems, the origin of a band gap is so-called Bragg mechanism, based on 

the destructive interference of the scattered waves by the inclusions, which needs the path 

difference between the interfering waves must be equal to an integer multiple of their 

wavelength[9]. As the path difference depends on the lattice constant of a crystal, when the 

wavelength is comparable to the lattice constant, such Bragg scattering mechanism occurs. In 

addition, band gaps can also come from the avoided crossing of two bands of the same 

symmetry in the low frequency range, at least one of the two bands originates from localized 

resonance modes of the individual particles, named as hybridization gaps[11]. In some degrees, 

such band gap is in the field of acoustic metamaterial, which originates from the concept of 

locally resonant sonic materials induced by Sheng and his colleagues[12]. From Fig. 1.1, one 

can easily figure out the difference between the mechanisms of Bragg band gap and 

hybridization band gap. Bragg band gaps require structural periodicity, however, 

hybridization band gap can persist with structural disorder[13].  

 

Figure 1.1 Schematic representation of Bragg and hybridization gaps[11] 
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      The position and width of the band gap depend on the direction of the waves since the 

path difference relies on the angle of incidence[9]. Gaps may occur for particular directions of 

the wave vector, but they can also span the whole Brillouin zone so that for any polarization 

and any incidence angle, the propagation of waves is forbidden[10]. Endeavors are taken to 

seek the absolute band gaps in the past two decades. Generally, to open a wide acoustic band 

gap, it requires two main conditions: one is a large contrast in physical properties (density and 

acoustic velocity) between the inclusions and the host matrix; the other is a sufficient filling 

ratio of inclusions[14]. The type of lattice[15] and the choice of solid and liquid component as 

matrix and inclusions will also affect the band gaps.  

      Phononic and photonic crystals share many analogies: the elastic parameters and density 

of phononic crystals are the analogue of dielectric and magnetic constants of photonic crystals. 

In photonic crystal devices, the manipulation of the electromagnetic spectrum is achieved by 

wide range of frequencies (over 14 orders of magnitude) control, ranging from position 

emission tomography (PET) scanning at frequency 1020 Hz to amplitude-modulation (AM) 

radios at 106 Hz. In phononic crystal devices, it would be valuable to achieve a similar degree 

of control[16]. As the band structure is scalable with the dimensions of unit cell, phononics 

play a role in a wide range from Hz to THz, shown in Fig. 1.2. A great deal of works has been 

devoted to the propagation of waves in the range of sonic (kHz) and ultrasonic (MHz) 

frequencies in the past two decades [8, 17-19]. In the range of infrasound (Hz) frequency, surface 

elastic wave (Rayleigh wave) can be controlled to improve soil seismic performances[20]. 

Recently, the challenge has been to fabricate phononic crystals in nano-meter scale to control 

hypersound in GigaHertz regime, known as hypersonic crystals[21-23]. In such frequency range, 

the wavelength of electromagnetic wave is comparable to that of acoustic wave. The study of 

simultaneous control of photonic and phononic band gap in the same frequency zone attracts 

increasing attention, which leads to the term phoXonic crystals[24-28]. By reducing the 
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periodicity to the nanometer scale, phononic crystals can be applied to control heat [29, 30], 

since heat vibrations oscillate at TeraHertz regime. Phononic crystals fabricated with 

periodicities ranging from meter to nanometer, are able to manipulate the phonon spectrum in 

the frequency range from 1 Hz to 1012Hz, a range of 12 orders of magnitude. 

 

Figure 1.2 The phononic spectrum[16] 

      Phononic crystals make it possible to control and manipulate acoustic/elastic waves with 

many potential applications: I) Negative refraction and superlens. Generally for common 

materials, it is impossible to design a lens to offer an image with details better than half a 

wavelength. A superlens with negative refraction effect can overcome this limit, which can be 

realized if the phase velocity and group velocity have opposite directions in phononic 

crystals[31, 32]. In fact, by analyzing band structures and equifrequency surfaces, positive, zero 

and negative refractions are possible depending on the angle of incidence[33]. Backward 

propagation can also be observed when phase and group velocities are anti-parallel[34]; II) 

acoustic diode. With counterpart of the electronic diode, acoustic diode also allows waves 

passing in one direction but not in the opposite direction[35, 36], which opening novel 

applications such as biomedical ultrasound imaging and noise reduction; III) waveguide and 

filtering. Any route of waveguide[37-39] and any frequency of filter[40, 41] can be designed by 

well choosing passing frequencies located at the band gap of the background phononic 

crystals; IV) acousto-optic interaction devices. In the same wavelength range of acoustic and 

electromagnetic waves, both “blind” and “deaf” material can be designed[25]. Opto-

mechanical on-chip device is also possible with the connectivity of phononic and photonic 
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propertites[42, 43]. V) heat control. With the help of periodically nanostructured phononic 

crystals, one can use coherent band structure effects to control phonon thermal conductance 

[29, 44, 45]. 

1.2 Acoustic metamaterials 

      Phononic crystals with Bragg scattering mechanism has band gaps where the wavelength 

is comparable to the lattice constant. In the audible regime, the wavelength of sound ranges 

from centimeter to meter, which requires the unit cell size of phononic crystals has the same 

scale, that limits its applications due to the bulky samples. The emergence of acoustic 

metamaterials not only solved the problem of sample size but also introduced new 

functionalities not found previously[2].  

      Acoustic metamaterials are not well defined until now. From a point of common sense, 

acoustic metamaterials are engineered materials whose properties derive from their structure 

rather than from their composition. For normal materials in nature, their mass density and 

bulk modulus are positive, known as right-handed material. If one may imagine both of mass 

density and bulk modulus are negative simultaneously, the wave equation still allows wave 

propagation, but in the left handed coordinate system, named as left-handed material or 

metamaterial. In such case, its refractive index is also negative, which has a different original 

mechanism from negative refraction of phononic crystals as explained before.  

      The first work on acoustic metamaterial dates back to 2000, when Sheng and his 

colleagues designed a matrix of silicon-coated metallic spheres embedded in epoxy and 

realized a transmission dip at very low frequency zone resulted from local resonance[12]. The 

local resonance is characterized by relative motions of constituents internal to the background 

matrix. The effective mass density at local resonance either diverges to an extreme large value 

or turns to a negative value, so that waves are strongly attenuated causing near-total 
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reflection[46]. In contrast, if the deformations involves relative compression-extensional 

motion, it’s the effective bulk modulus becomes frequency-dependent, which was first 

demonstrated by Fang et al on ultrasound by a waveguide shunted by a chain of Helmholtz 

resonators[47]. The effective mass density and bulk modulus behaviors are associated with the 

symmetry of motions. Li and Chan first figured out that dipolar mode contributes to the 

inertial response and monopolar mode generates compressive/expansive motion[48]. By 

combining these two resonant modes, it is able to realize negative effective mass density and 

bulk modulus simultaneously [49-52].  

      Different from the Bragg scattering mechanism, the relevant wavelength at the local 

resonance can be orders of magnitude larger than the size of unit cell, as shown in Fig. 1.3A, 

which especially helps manipulate acoustic waves in liquids more efficiently. Metamaterial 

moves to the left when pushed toward the right if the effective mass density is negative and 

expands upon compression when the compressibility gets negative, as illustrated in Fig. 1.3B 

and C. In liquids, acoustic wave is longitudinal wave. Owing to the same mathematical form 

with electromagnetic wave, two constitutive parameters can be mapped as ρ ε→ and

1κ µ− → , where ,ρ κ are mass density and bulk modulus for acoustic longitudinal wave, 

respectively, ,ε µ  are dielectric constant and magnetic permeability for electromagnetic wave, 

respectively. The extraordinary phenomena of electromagnetic metamaterials can also be 

developed for acoustic metamaterials hand in hand, such as negative refraction[53, 54], 

superlensing[55] and cloaking[56, 57].  
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Figure 1.3 (A) Schematic representation of local resonance[2], (B) and (C) Schematic illustration of the 
dynamic behaviors of locally resonant metamaterials with negative effective mass density and bulk 

modulus[58] 

      One of the acoustic metamaterial family is acoustic metasurface. Liang and Li proposed a 

space-coiling structure consisting of complex labyrinth passages which is deep subwavelength 

in their cross sections[59]. The coiled-up passages introduce larger phase delays, and can be 

properly designed to exhibit novel effects, such as negative refraction[59, 60], near-zero index[61, 

62], Dirac-like dispersion[63, 64]. However, these coiled-up structures are impedance mismatch 

to incident wave, causing some challenges for the transmission configuration. By designing 

horn-like structure[65-67] or using resonance[68, 69], one can improve the impedance coupling. Li, 

Qi and Assouar[70] proposed a metascreen-based acoustic passive phased array which keeps 

impedance matching and provides a fully shifting phase for sub-wavelength spatial resolution. 

Li and Assouar further designed metasurfaces for perfect absorber with deep subwavelength 

thickness[71] and acoustic collimated self-accelerating beam[72].  

      Some modern concepts such as topological matter and parity-time symmetry can also be 

realized by acoustic meta-crystals. Topologic states in electronic materials include the 

quantum Hall effect and topological insulators. A phase transition associated with phonon 
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Hall effect is observed in dielectrics with Raman spin-phonon coupling[73]. Phononic crystals 

with topologically nontrivial band gaps through the breaking of time-reversal symmetry, can 

result in protected one-way elastic edge waves[74-76].Topological notions can also characterize 

the topological phase of mechanical isostatic lattices[77] or periodic acoustic systems[78-80]. 

1.3 GRIN and pillar type acoustic artificial structures 

      In a specific case, both Bragg and low frequency band gaps can be found in one type of 

acoustic metamaterials, which consists of a periodic array of pillars on a plate[81, 82]. Because 

of the dual aspect, great deals of efforts have been devoted to such structural system in the 

past few years. Wang, Laude and Wang[83] proposed a 1D structure made of acoustic pillar 

resonantors grafted onto a waveguide, which can also exhibit both Bragg and low frequency 

band gaps. To enhance the local resonance, Assouar and Oudich[84] used double-sides stubbed 

plate.	Bilal and Hussein[85] designed pillars on a plate patterned by a periodic array of holes to 

enlarge low frequency gap. Assour et al. studied hybrid phononic crystal plates composed of 

periodic stepped pillars and periodic holes which can also generate lower and wider acoustic 

gap because the acoustic waves are scattered by both of the pillars and holes[86].  	Coffy et 

al.[87] tailored a pillar-based plate displaying an extra wide band gap starting at very low 

frequency together with an extreme low frequency band gap.	Shu et al. designed a double 

tubular pillars showing an enlargement of band gap[88]. The feature of local resonance pursues 

many different objectives.	Zhao et al numerically and experimentally focused the lowest anti-

symmetric Lamb waves with a gradient index lens enhanced by local resonance of silicon 

pillars[89]. Addouche et al demonstrated super resolution imaging for surface acoustic waves 

using pillar-based structure displaying negative refractive index[90].	Colombi et al showed a 

locally resonant metamaterial made of pillars arranged on a sub-wavelength scale whose 

dynamic properties are similar to those of forest-trees and can induce large frequency 



10	
	

bandgaps for Rayleigh waves at tens of Hz[20]. Davis and Hussein found that thermal 

conductivity can be reduced by local resonance of nanopillars using molecular simulations[45].	

Alonso-Redondo et al demonstrated that the hybridization gap is less sensitive to periodicity 

and can even persist with structural disorder of colloidal particles[11]. Therefore, the topics of 

pillar structures and low frequency band gaps have become an active domain for diverse 

fundamental and applied studies in the field of phononic crystals and acoustic metamaterials. 

      The field of phononic crystals and acoustic metamaterials provides a promising 

background for the realization of artificial inhomogeneous materials, as has been widely 

demonstrated in the literatures [12, 47, 91-94]. The propagation of mechanical waves can be 

tailored by means of gradient index (GRIN) devices consisting of locally inhomogeneous 

materials in which the refractive index is a function of the spatial coordinates. Therefore, 

waves follow curved trajectories that can be properly designed if the position-dependent 

parameters of the medium are chosen according to specific laws. GRIN devices, which are 

well known in optics[95], are recently receiving increasing attention in the field of phononic 

crystals and metamaterials, since the artificial nature of these structures allows for an easy 

design of inhomogeneous materials.  

By locally changing the filling fraction in phononic crystal, gradient index flat lens was 

designed[96] and experimentally characterized[97] in a plate or air[98]. Coupling the flexural 

resonant mode of pillars and the vibration mode in phononic crystal, GRIN metalens can 

focus a spot less than half a wavelength[89].  Omnidirectional broadband acoustic absorber or 

acoustic black hole with acoustic impedance matching can also be realized[99-102]. Some other 

omnidirectional lenses, e.g. Luneburg lens, Maxwell lens, Eaton lens, are also designed for 

acoustic and elastic waves[103-105].   

The major drawback for the realization of these inhomogeneous devices for elastic waves is 

that, unlike acoustic waves, the propagation of elastic waves, either in bulk materials or plates, 
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presents three polarizations, which propagate at different speeds. Their design has been done 

so far for only one of these polarizations, which obviously hinders the full functionality of the 

devices for applications like cloaking, absorption or even energy harvesting. The dispersion 

characteristics of these polarizations are in general different, so that the design of refractive 

index working for all of them, even in the low frequency limit, is obviously a challenging 

problem. 

      Phononic crystals and acoustic metamaterials are rapidly evolving new physical 

understandings and diverse functions in the coming years, especially new discoveries in 

photonic crystals and electromagnetic metamaterials. Given the progress over the past 

decades, the future of acoustic artificial structured materials is promising. 

1.4Thesis organization 

      The central theme of this thesis is to design and characterize acoustic artificial structured 

materials for potential applications in acoustic/elastic control. The thesis is organized into six 

chapters. Besides the current chapter which presents a general introduction of phononic 

crystals and acoustic metamaterials, the other five chapters are organized as following: 

      The second chapter proposes a resonant structure of a hard-core coated by piezoelectric 

composite materials as an acoustic metamaterial, in which negative effective mass density and 

elastic modulus are simultaneously achieved. The double negativity, appearing within a 

certain range of the filling ratio, is numerically demonstrated by the switch of the electric 

boundary from open to close. The bandwidth of the negative effective elastic modulus is 

sensitive to the piezoelectric constant e33. The multi-unit acoustic metamaterial offers the 

advantages of broadening the double-negativity domain and of reducing the primary 

frequency, while the cut-up frequency remains the same as that of the single unit cell. 
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      The third chapter first presents two methods for the design of gradient index devices for 

elastic waves in plates, despite the fact that for different Lamb modes, their dispersion 

relations are managed by different elastic constants. The first method allows the simultaneous 

control of the anti-symmetric and symmetric Lamb modes, depending on an effective medium 

theory developed for the anti-symmetric mode working with Kirchhoff equation; the second 

method allows the design of devices to control the three fundamental Lamb modes, based on 

the homogenization of the bulk phononic crystal with Plane Wave Expansion (PWE) method. 

Then, developing the latter PWE method, we demonstrate the realization of the so-called 

“Willis” medium in the local approximation by breaking the symmetry in the unit cell. The 

properties of “Willis” medium plate are further explored. 

      The forth chapter first investigates the properties of a phononic crystal plate with hollow 

pillars and introduces the existence of quadrupolar whispering-gallery modes (WGMs). By 

tuning the inner radius of the hollow pillar, these modes can merge inside both of Bragg and 

low frequency band gaps, deserving phononic crystal and acoustic metamaterial applications. 

These modes can be used as narrow pass bands for which the quality factor can be greatly 

enhanced by the introducation of an additional cylinder between the hollow pillar and the 

plate. Then, filling the hollow parts with a fluid gives rise to new localized modes, which 

depend on the physical properties and height of the fluid. These modes can be actively 

controlled by several parameters, such as the physical properties of liquid, liquid’s height, 

temperature. We further propose a new type of phononic crystal plate consisting of hollow 

pillars on a bar-connected plate, whose Bragg band gap can be tuned to be much wider and 

extended to sub-wavelength region and low frequency gap can be moved to extreme low 

frequency range. Such a structure can generate quadrupolar, hexapolar and octopolar WGMs 

inside the band gaps with very high confinement. We discuss the functionality of these 
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phononic crystal plates for the purpose of multiplexer devices, sensing the acoustic properties 

of liquid and wireless communication.  

The fifth chapter investigates an acoustic metasurface, considering a single pillar and a line of 

identical pillars on a thin plate, and studies their interaction with anti-symmetric Lamb wave. 

Local resonances are exhibited as bending and compression modes, which are sensitive to the 

geometric parameters of the pillars.  The amplitude and phase of scattering waves emitted by 

the pillars at resonances are studied for the cases when bending and compression modes are 

separated or superposed. Especially, the analysis of amplitude and phase of transmitted wave 

for one line of pillars at the superposed resonant frequency demonstrates a new transmission 

with phase shift π as induced by out of phase emitted wave.  

The last chapter summaries all works in this thesis and gives some perspectives.  
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Chapter 2 

Tunable Acoustic Metamaterials with 

Piezoelectric Resonant Structures 

 

 

 

The content of this chapter was published in:  

Yabin Jin, Bernard Bonello, Yongdong Pan. Acoustic metamaterials with piezoelectric 
resonant structures. Journal of Physics D: Applied Physics. 47 (24), 245301, 2014.  
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2.1 Introduction 

      Acoustic metamaterials (AMs) are engineered materials whose properties derive from 

their structure rather than from their composition[106]. They are of particular interest in terms 

of both basic science and applications since they could exhibit novel phenomena including 

acoustic cloaking[107-112], sound attenuation[113-115] and acoustic superlens[116-119]. Realizing 

negative acoustic parameters is one of the primary goals of the researches on AMs[60]. In this 

context, the concept of negativity of the effective properties relies both on the dynamic 

response of an effective medium and to the phase changes of the dynamic response induced 

by the resonances. The most attractive structures for AMs, are composite systems with 

resonant structural units. They are usually formed from a hard-core material coated by a soft 

material and they can exhibit negative effective bulk modulus and/or negative effective mass 

density in certain frequency ranges[12]. However, the dimensions of the resonators must be 

much less than the wavelength of the incident acoustic wave in the host media so that both 

mass density and bulk modulus can be defined through homogenization theories[120]. Several 

methods have been developed to study these hetero-structures, including the plane wave 

expansion method[7], the multiple scattering theory[121], the finite difference time domain[122], 

and the method for retrieving the effective acoustic properties from reflection and 

transmission coefficients that both can be measured experimentally[123]. The key features of 

AMs can be captured for a one-dimensional (1D) multilayered medium[124], because it can 

provide an excellent model for the rigorous and physical analysis of the dynamic properties. 

      However, most of the works that have been made on this topic were focusing on the study 

of the passive AMs with fixed material properties whose double negative effective properties 

are inherently dispersive and negative only over a narrow frequency band, resulting in limited 

applications, e.g. acoustic cloaking and sub-wavelength focusing. To overcome the inherent 

limit of the frequency bandwidth, active AMs with tunable material properties have been 
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proposed to achieve the double negative properties in a large frequency range[125, 126]. The 

active AMs, consisting of an array of fluid chambers with piezoelectric wall, have tunable 

homogenized properties through the variation of the applied electrical voltage. Moreover, it 

can overcome the frequency bandwidth limitation of passive techniques[127]. AMs consisting 

of layers of electrically charged nano or micro particles exposed to an external magnetic field 

are designed with tunable properties by controlling both the magnetic field and/or the 

electrical charges[128]. Another design of active AMs controlled by an actuator has been 

presented to have a stable response with a tunable double negative frequency band[129-131]. 

Recently, a cell architecture of active acoustic metafluids has been shown to be allowed for 

the independent tune of the effective material parameters[132]. The effective mass density 

profile of surface bonded AMs can be tailored from different AM cells, using the piezoelectric 

actuator to excite acoustic wave[133]. Piezoelectric materials with periodically modulated 

properties were investigated as examples of Helmholtz resonant metamaterials or metafluid. 

However, less attention has been paid to the active control of effective material parameters 

using resonant structures and piezoelectric materials. It was found that the electrical boundary 

of the piezoelectric material may significantly affect the propagation of the elastic waves due 

to the introduction of the piezoelectricity[134]. The band gaps can be tuned as well, owing to 

the fact that the piezoelectricity allows for the transduction of the energy between acoustic 

and electric fields. PZT based materials are components of ultrasound transducers, ceramic 

capacitors and surface acoustic wave actuators. 

      In this chapter, an active AM of hardcore coated by piezoelectric composite materials is 

proposed to exhibit negative effective mass density and elastic modulus simultaneously. A 

single unit of this active AM is first supposed to be a 1D structure of a lead plate sandwiched 

by the piezoelectric composite materials. A modified recursively algorithm[135] is applied to 

calculate the transmission and reflection coefficients of the incident acoustic wave, and the 
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equivalent theory of wave propagation in homogeneous media is applied to retrieve the 

effective acoustic properties. The double-negativity can be achieved through the switch of the 

electric circuit from open to close, and the resonances are excited through the vibration of the 

piezoelectric layers for a certain filling ratio. It is further demonstrated that the resonances 

may be enhanced by stacking AM units, which in turn leads to the broadening of the 

frequency band where the negative properties arise. This approach provides some interesting 

applications, which may be realized over a fixed narrow band, such as acoustic cloaks and 

sub-wavelength resolution lenses. AMs being still at an early stage of development, no 

experimental data are available to date. Numerical methods like FEM could be very useful to 

verify the theoretical findings of this work, and it is planned as the next step of our research. 

2.2 Theoretical formulations 

For the ease of understanding, a steady pressure wave (P) is considered propagating 

through single- or multi- units of 1D AMs along z coordinate, as shown in Fig. 2.1. It is 

supposed that the AMs are multilayered media, and that the P wave is excited in the layer (I) 

at normal incidence along the z coordinate. The wave propagates through the AMs, and is 

then detected in the layer (II). Both layers I and II are made of the same fluid material, e.g. 

water. It is further supposed that the AM unit is made of layers with different thicknesses and 

materials, both layers A and C are made of the same piezoelectric material and have identical 

thicknesses whereas layer B is made of lead. The elastic wave propagating within the medium 

(A+B+C) could resonantly excite the inclusions into vibration only if the sound velocity of 

material A and C is smaller than the sound velocity of material B by at least two orders of 

magnitude. Therefore, the sound velocity of material A and C must be considered to be no 

more than a few m/s. The most common and realistic choice of the soft material is silicone 

rubber, which has phase speed two orders of magnitude lower than those of typical solids. 
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Effort has been tried to assemble the existing piezoelectric materials with this type of AMs, 

including PZT and PVDF, but no observable difference is found when changing the electric 

conditions. Thus, the piezoelectric material is supposed to be a composite material, whose 

elastic constants are those of silicone rubber and whose piezoelectric constants are those of 

PZT4 polarized along the z coordinate (see table 2.1). It should be possible to elaborate this 

soft piezoelectric material studied in our article by embedding piezoelectric ceramic PZT 

particles into the silicone rubber matrix. The total thickness of the AM unit cell is 

h=hA+hB+hC, and the filling ratio of the hardcore is β=hB/h. 

 

 

Figure 2.1 Scheme of P wave propagating through single-unit (a) and multi-unit (b) actively switched AMs, 
where layers in grey are piezoelectric materials and layers in white are lead 

 

Table 2.1. Material properties of piezoelectric material and lead 
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The constitutive equations of the transversely isotropic piezoelectric or elastic materials 

can be written as[136] 

, , ,

, , ,

( ) / 2 -

( ) / 2+
pq pqrs r s s r pqr r

r pqr p q q p rs s

c u u e

D e u u

σ ϕ
ε ϕ

= +⎧⎪
⎨ = +⎪⎩      

(2.1)
 

where p, q, r, s = x, y, z; cpqrs, epqr, εrs are the elastic, piezoelectric and the dielectric constants 

respectively; φ stands for the electric potential; Dr is the electric displacement; σpq is the stress; 

ur is the displacement; a comma followed by the subscript s means the space differentiation 

with respect to the s coordinate. The corresponding constitutive equations for layers A, B, C 

can be found just by replacing the material properties. Since the considered P wave shows its 

invariance along y coordinate, we have uy=0, σyz=σzy= σxy=σyx=σyy =0.  

A. Single layer  

For the transversely isotropic piezoelectric or elastic materials, the displacement and 

electric potential satisfy the general forms of the dynamic differential equations as followings: 

2

,2

, 0

p
pq q

p p

u

t
D

ρ σ
⎧ ∂
⎪ =
⎨ ∂
⎪ =⎩       

(2.2)

 

The polarized direction of the piezoelectric material is parallel to the direction of layer’s 

thickness, so that the components of the displacement field ux, uz and the electric potential φ 

are assumed to have the forms 
( - )( , , ) ( ) xi k x t

x xu x z t u z e ω= , ( ) ( ) ( ), , xi k x t
z zu x z t u z e ω−= ,

( - )( , , ) ( ) xi k x tx z t z e ωϕ ϕ= , where ux(z), uz(z) and φ(z) are the corresponding amplitude of ux, uz 

and φ; i  is the unit imaginary number; ω  is the angular frequency; kx is the wave number 

along the x coordinate.  
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For the electrically closed circuit boundary, the electric potential ϕ  is zero everywhere 

on the interfaces and hence 0ϕ ϕ+ −= = , where the superscripts “+” and “-” stand for the 

propagation along the positive and negative z directions, respectively. Generalized 

displacement vector =( , , )close T
x z zu u DU and stress vector =( , , )close T

xz zzσ σ ϕΣ  are further defined. 

Therefore, the state-vector equation could be derived as[137] 

( , )xkz
ω⎛ ⎞ ⎛ ⎞∂ =⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

U U
A

∑ ∑      
(2.3) 

where ( )A ,close
xk ω is the system matrix 
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ik c ik e c
ik e

ik e c k e c
k

k c ik ik

ik
ik c e

ε

ε
ω

ρω

ρω

− −⎛ ⎞
⎜ ⎟− Ω Δ Δ⎜ ⎟
⎜ ⎟− − +⎜ ⎟
⎜ ⎟− Ω Ω
⎜ ⎟
⎜ ⎟− −
⎜ ⎟− Ω − Δ Δ⎝ ⎠

  (2.4.1)

 

 

and 11 31 1 31 2( )c c c e= − Ω + Ω , 2
1 31 33 13 33 33 33 33( ) / ( )e e c e cε εΩ = + + , 2

33 33 33=c eεΔ + , 

2
2 13 33 33 31 33 33 33( ) / ( )c e c e cε εΩ = − + . 

      For the electrically open circuit boundary, the electric displacement D  is zero on the 

interfaces and hence 0z zD D+ −= = . Generalized displacement and stress vectors

=( , , )open T
x zu u ϕU and =( , , )open T

xz zz zDσ σΣ are thus defined. The corresponding matrix system 

is 
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    (2.4.2) 

 

B. Multilayer of A-B-C units     

      To the solid sandwich structures shown in Fig. 2.1, the transfer matrix between different 

layers has to been derived. The general solution of Eq. (2.3) is 

1
1 2

1 3 4
( , )

n n n
n

xn n n
k ω

+

+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∑ ∑ ∑⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

M MU U U
M

M M    
(2.5) 

with M ( , )n
xk ω  being the transfer matrix from n th layer to (n+1)th layer.  Here, the 

superscript denotes the position along the z coordinate of the general displacement and stress, 

and 1( , ) ( )n n n n
xk ω −=M X E X  is a 6×6 propagator matrix; Mg (g=1, 2, 3, 4) is the 3×3 sub-

matrix at left top, right top, left bottom and right bottom of ( ),n
xk ωM ; = ( )

ndn diag e αλE  is the 

diagonal matrix and λα is the eigenvalues of the matrix ( ),n
xk ωA , X is the corresponding 

eigenvector; and nd is the width of nth layer. Eq. (2.5) can be rewritten as 

1 1
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2 1 3 4 1 3
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S
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∑ ∑

∑ ∑   
(2.6) 

where nS  is the compliance matrix for nth layer.  
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Assume the total layer number for the sandwiched acoustic mematerial is n+1. If we get the 

total compliance matrix for n layers, then the total 6×6 compliance matrix 1n+ST  for 1n +  

layers is derived as[138] 

( ) ( )
( ) ( )

1 11 1 1 1 1 1
1 2 1 4 3 2 1 4 31

1 11 1 1
3 1 4 3 4 3 1 4 2

STn n n n n n n n n
n

n n n n n n n n n

− −+ + + + + +
+

− −+ + +

⎛ ⎞+ − − −⎜ ⎟
= ⎜ ⎟
⎜ ⎟− − −⎝ ⎠

S S S S S ST S ST
ST

ST ST S S ST ST ST S ST
 

 
(2.7) 

where gST (g=1,2,3,4) is the 3×3 sub-matrix in left top, right top, left bottom and right bottom 

of 1n+ST . Until now, through the above compliance matrix, one can calculate the 

displacements from the first layer to the last layer of AM. As seen in Fig. 2.1, the AM is 

embedded in the liquid lays I and II, so that it needs further to match the normal displacement 

equivalent condition at the solid-liquid interface. 

	C. Transmission and reflection from liquid layer I and II 

    For the structure depicted in Fig. 2.1, the pressure  in the semi-infinite spaces I and II can 

be expressed as  

( - ) ( - )0 -
- -

( - ) ( - )- -
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x x
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(2.8) 

    The corresponding displacements for media I and II can be derived from Eq. (2.8) as 
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in which 2 2 2= -x fk cη ω  is the wave number along the z coordinate; a+  and a−  are the 

amplitudes of the pressure wave along positive and negative z directions (including z=0), 

respectively; b+  is the amplitude of the pressure wave at z=H along positive z direction. 

    Considering Eq. (2.6), the normal displacements on the left and right interfaces of the AM 

unit cell satisfy  

0 0
22 25

52 55

z zz
H H
z zz

u st st
st stu

σ

σ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠         

(2.10)
 

where glst (g, l=2, 5) is the gth row and lth column element of the total compliance matrix ST. 

    Acknowledging the boundary conditions that the displacement zu  is continuous along the 

interfaces between AM unit and fluid, the following equations can be found: 

0 0
z

H H
z

u u

u u

⎧ =⎪
⎨

=⎪⎩          
(2.11)

 

    Then, substituting Eq. (2.9) and (2.10) into Eq. (2.11) leads to the relations: 
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(2.12)
 

    The transmission and reflection coefficients beingT b a+ +=  and -R a a+=  respectively, 

they can be obtained from Eq. (2.12) as 
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-0 1 +
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η η ω ρ η ω ρ
η ω ρ

−⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
     (2.13) 

D. Effective elastic parameters     
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The acoustic impedance Z and refractive index n are derived as[123] 

( )2 21 2 ,Z R R Tα= − + −   ( )i log 2 xn m k Hγ π= − +                (2.14) 

where ( ) ( )22 2 2 2 21 4 , 1 2R T T R T Tα γ α= − − − = − + +m ; m is the branch number of the cos-1 

function. 

    According to the theory of acoustics in homogeneous media, the effective dynamic 

properties of the AMs can be obtained from n and Z, and are expressed as[139] 

,effE Zv=  /eff Z vρ =             (2.15) 

where c pv n=  is the effective velocity of the elastic wave and cP is the velocity of the P 

wave. 

2.3 Effective properties of acoustic metamaterials 

First to confirm the theoretical formulation, the effective properties are calculated for the 

single unit cell with the thickness hA=hC=1mm, hB=0.5mm, and the filling ratio β=20%. The 

amplitude and the phase of the transmission coefficient are shown in Fig. 2.2. It can be 

observed that the transmission coefficient has an amplitude peak value near 1 and a 180-

degrees phase shift at fh=5.675 kHzmm for electrically closed condition, while they nearly 

remain the same over their respective frequency range for electrically open condition. The 

180-degrees phase shift gives an evidence of a resonance. The effective mass density and the 

elastic modulus are further displayed in Fig. 2.3 for the electrically closed or open conditions. 

The real parts of effective mass density and elastic modulus are normalized to volume average 

values ρ0 and E0, respectively. Under the electrically closed condition, both real parts of the 
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effective mass density and the elastic modulus are negative at fh=5.675 kHzmm and remain 

less than zero in the frequency ranges (5.675, 14.000) kHzmm and (5.675, 5.825) kHzmm 

respectively (blue lines in Fig. 2.3a and 2.3b). The corresponding imaginary parts are also 

displayed in the lower panel as Fig. 2.3c and 2.3d. However, the double negativity does not 

appear under the electrically open condition (red lines in Fig. 2.3a and 2.3b). This clearly 

demonstrates that the effective mass density and elastic modulus can be easily controlled by 

switching the electrical boundaries and that the AM can be actively switched on and off easily. 

However, it should be noticed that the effective mass density and elastic modulus are obtained 

for the wave propagation perpendicular to the layered structures only. For the focus of this 

work, the resonances in the high frequency range are not presented, as they are more 

complicated and less important than the primary resonance. It is the same for the mechanical 

resonances of the interleaved rubber and lead layers, as they are also in the high frequency 

range. 

 

Figure 2.2 Amplitude (solid) and phase (dotted) of the transmission coefficient under the electrically open 
(red) or closed (blue) status for a single unit AM 
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    The electrical boundary of the piezoelectric material can significantly affect the 

propagation of the elastic waves. More generally, integrating a piezoelectric material in an 

AM would have many advantages. Indeed, similarly to the phononic crystals whose filling 

ratio and band gap can both be tuned by applying an electrical field, the lateral dimensions 

and the resonant frequencies of the resonators could be externally controlled. Actually, the 

elastic constants of the material are strengthened by the piezoelectric tensor components and 

the sound velocity along certain directions can be affected by a few percent. However, this is 

not the main reason why incorporating a piezoelectric material in an AM deserves special 

attention. Indeed, since the negative properties of an AM relate to the relative movement of 

the inclusions and the matrix, controlling the phase of the displacement is of primary 

importance. The propagation of an elastic wave in a piezoelectric material goes along with the 

propagation of an electromagnetic field, which, under some conditions of polarization, can 

couple with the elastic field. Under the electrically closed status, in the piezoelectric material 

the Dz and c33 are coupled, which means that along z direction, the electric field is coupled 

with elastic field. As a result of this coupling, a phase shift, that could be realized by simply 

short-circuiting the electrodes on the piezoelectric element, affects the propagation of the 

elastic wave and produces a resonance. On the contrary, this coupling disappear when the 

electric boundary is open as Dz=0. In the context of the investigation of AM, this makes the 

effective properties different from the conventional passive AMs since they could be actively 

controlled in the former case. 

      It is important to notice that the frequency domain of negative effective elastic modulus is 

very narrow, only 0.150 kHzmm. This can be explained by both phases of the effective mass 

density and the elastic modulus as shown in Fig. 2.3. At the resonance frequency, an about 

100 degrees phase shift instead of 180 degrees is observed. This will be discussed below 

when the multi-unit AM will be investigated.  
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Figure 2.3 Upper panel: normalized real part (solid) and phase (dotted) of the effective mass density (a) 
and elastic modulus (b) under the electrically open (red) or closed (blue) status for a single unit AM; lower 

panel: the same as upper panel but for imaginary part 

In contrast to the effective mass density, negative effective elastic modulus can only be 

obtained for certain filling ratio. As shown in Fig. 2.4, the effective properties are related to 

the filling ratio. When the filling ratio increases from 0.1 to 0.5, the minimum real parts of 

both effective mass density and elastic modulus increase up to the maximum values of ~-0.9 

and ~0.2 respectively. The real part of the effective elastic modulus becomes positive when 

the filling ratio β is 30%. It is well known that Q factor characterizes the bandwidth of the 

resonator24. The high filling ratio brings high Q factor, indicating a lower relative rate of 

energy loss as compared to the stored energy of the oscillating system and a narrow range of 

frequencies at the resonant frequency, the vibration of the piezoelectric material plays an 

important role in the phase shift of the effective properties. When the filling ratio β is large 
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enough, the piezoelectric material structure cannot realize the resonance as required by the 

negative effective elastic modulus. 

 

Figure 2.4 The minimum real part of effective mass density (solid) and elastic modulus (dotted) for 
different filling ratios 

It is to be noted that the piezoelectric constants have a significant effect on the negative 

bandwidth of the effective properties. We have investigated the influence of the piezoelectric 

constants 13 33,e e and 15e  to outline this sensitivity. We found that the bandwidth of the 

negative effective elastic modulus can be changed by the variation of 33e when the filling ratio 

is 20%, as shown in Fig. 2.5. The blue lines correspond to the frequency regions where the 

effective elastic modulus is negative. We varied 33e  from 10 to 60 C/m2, with a step of 10 

C/m2. The bandwidth when 33e  is 10, 20 or 30 C/m2 remains the same as that obtained with 

the original real value of 15.080 C/m2 , i.e. (5.675, 5.825) kHzmm. The bandwidth enlarges at 

33 40e =  C/m2 and narrows at 33 50e =  C/m2, and even it splits into two parts at 33 60e =  C/m2. 

This result shows how sensitive is the negative bandwidth of the effective elastic modulus to 

the piezoelectric constant 33e .  
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Figure 2.5 Effect of the piezoelectric 33e on the negative bandwidth of effective elastic modulus effE  

  Actually, if only single unit AM is inserted in the path of the elastic wave propagation, the 

phase shift of the effective properties at resonance is less than 180 degrees, which leads to a 

narrow frequency domain of double negativity. One efficient way to enlarge this frequency 

domain is to construct a multi-units AM. The effective mass density and elastic modulus of 

such a multi-units AM are displayed in Fig. 2.6. The computations were done for two (blue 

lines), three (black lines) and ten (green lines) stacked units. The frequency range of the 

negative effective mass density for two-units AM extends in the interval (3.750, 14.000) 

kHzmm, as shown in Fig. 2.6a. It is larger than the range (5.675, 14.000) kHzmm (red lines) 

that was calculated for the single unit AM. For the three-units AM, the effective mass density 

is negative for two frequency ranges, (2.583, 4.667) and (5.675, 14.000) kHzmm. The 

frequency range of the negative effective elastic modulus for two- or three- units AM extends 

to (3.750, 5.750) kHzmm and (2.667, 4.833) kHzmm, respectively (see Fig. 2.6b). As 

mentioned before, the resonance of the single unit AM is weak, because the phase shift of 

effective properties is less than 180 degrees at resonant frequency. When stacking the AM 

units, the phase shift at the first resonance is 180 degrees. The stacking of several AM units 
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contributes to the new resonances, which are demonstrated by the phase shifts in Fig. 2.6c and 

2.6d. It is also interesting to note that the number of resonances is equal to the number of unit 

cells due to mutual interactions and dynamic response among them. 

    

 

Figure 2.6 Under the electrically closed status for one- (red), two- (blue), three- (black) and ten- (green) 
unit AM: real part of the effective mass density (a) and elastic modulus (b); phase of the effective mass 

density (c) and elastic modulus (d) 

In addition, increasing the number of AM units will reduce the frequency of the first 

resonance whereas the frequency of the last resonance remains unchanged. Since several AM 

units are coupled, the multi-unit AM, has multi resonances the first of which is strictly defined 

and the followings get attenuated as the phase shift may be less than 180 degrees. Figure 2.6 

also implies that the intrinsic resonance mechanism of a single unit AM defines the cut-up 

resonant frequency width of multi-units AM. The multi resonances broaden the frequency 

range of negative effective properties and reduce the frequency of the first resonance at the 
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same time, as shown in Fig. 2.6 and 2.7. Figure 2.7 indicates that the double negative 

bandwidth divides into more parts and turns into lower frequency with the increase of the 

number of stacked unit. 

 

Figure 2.7 Effect of the number of unit on the double negative bandwidth 

2.4 Conclusions    

    In this chapter, an active AM with resonances is proposed to exhibit double negativity over 

a certain frequency range by switching the electrical boundaries of the piezoelectric material. 

Analytical models were developed and analyzed. When the filling ratio β exceeds a certain 

value, the negative effective elastic modulus cannot be achieved. The piezoelectric constant 

e33 has an influence on the negative bandwidth of effective elastic modulus. The resonance 

could be strengthened to broaden the frequency band of the negative effective properties, 

through the stacking of the multi AM units. The proposed multi-units AMs are found to lower 

the first resonant frequency, while the cut-up frequency of the last resonance remains 

unchanged. The number of resonances and segments of double negative bandwidth increase 

with the number of stacked unit cells. 
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3.1 Introduction  

      The control of the propagating characteristics of mechanical (acoustic and elastic) waves 

in linear media is a challenging problem with a wide variety of applications, since this control 

allows the design of acoustic or elastic lenses[96, 97, 105, 140-142], omnidirectional absorbers[99, 103, 

143], cloaking devices[107, 112, 144] or hyperlenses[117]. The propagation of mechanical waves can 

be tailored by means of inhomogeneous materials, as it is well known that in these media 

waves follow curved trajectories that can be properly designed if the position-dependent 

parameters of the medium are chosen according to specific laws. However, it is obvious that 

natural materials cannot provide these specific position-dependent parameters. Therefore, 

their realization has to be achieved artificially. 

      In this context, the field of phononic crystals[145, 146] and metamaterials[147] provides a 

promising background for the realization of artificial inhomogeneous materials, as has been 

widely demonstrated in the literature[46, 47, 91-94]. 

      Gradient index (GRIN) devices consist of locally inhomogeneous materials in which the 

refractive index is a function of the spatial coordinates; therefore, waves follow curved 

trajectories that can be properly designed to focus the energy at a specific point. GRIN 

devices, which are well known in optics[95], are recently receiving increasing attention in the 

field of phononic and sonic crystals, since the artificial nature of these structures allows for an 

easy design of inhomogeneous materials. 

      Effectively, phononic crystals are essentially periodic arrangements of solid inclusions in 

an elastic matrix (fluid background for sonic crystals). They behave, in the low frequency 

limit, as homogeneous materials with effective constitutive parameters which depend mainly 

on the filling fraction of the inclusions[91]. Then, by locally changing this parameter according 

to some specific law, we can create an artificially inhomogeneous material which will work as 

a gradient index device. Following this approach, a wide variety of inhomogeneous devices 
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have been proposed, such as GRIN flat lenses[94, 96, 98, 140, 141], acoustic beam modifiers[148], 

omnidirectional refractive devices[105, 142] or absorber[99, 143], and acoustic or elastic cloaks[107, 

144], which are indeed a new type of advanced gradient index device. 

      In the case of GRIN devices for solids, the main applications arise in the propagation of 

guided waves, such as Lamb or Love waves in plates and substrates[149]. However, these 

systems present several propagation modes and polarizations, whose dispersion relations are 

different in general. The main effort so far in this domain has been focused on the design of 

GRIN devices for the control of the lower order Lamb mode in thin plates, i.e., for the control 

of flexural waves, based on either non-resonant[97, 133, 150] or resonant[151-153]  structures, and 

less attention has been given to the other vibrational modes. 

      The focusing of elastic waves in plates or substrates is interesting for applications such as 

vibration detection or energy harvesting, in which the interest remains in collecting all the 

possible energy carried out by these waves. However, it must be taken into account that the 

excitation of a vibration in a plate will be composed of a linear combination of all the 

vibrational, so that the design of refractive devices for an individual polarization only will 

have limited efficiency or utility. The dispersion characteristics of these polarizations are in 

general different, so that the design of refractive devices working for all them, even in the low 

frequency limit, is obviously a challenging problem. 

      In the second section of this chapter, a step towards this full control of vibrational modes 

is given, by exploiting an interesting property of the two lower order Lamb modes, which is 

the fact that they are connected by means of the so called “plate velocity.” It is found that this 

relationship is valid not only for isotropic plates but also for phononic crystal plates in the low 

frequency limit. Therefore, it is shown that it is possible to design GRIN devices for the 

simultaneous control of these two modes in a broadband frequency region. Since the 

dispersion relation of flexural modes is dependent on the plate thickness h, in contrast to the 
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dispersion relation of the first symmetric Lamb mode, the realization of the GRIN devices is 

based on the simultaneous variation of the filling fraction of the phononic crystal and the 

thickness of the plate in space. 

      Two devices are proposed and numerically studied: A flat GRIN lens and a Luneburg lens. 

The objective of these two devices is similar, which is focusing an incoming plane wave at a 

specific point. The design of these devices working for the two lower order Lamb modes 

suggests that any low frequency Lamb wave generated in a thin plate will be focused at the 

same point, so that these structures have potential applications for energy harvesting or small 

vibration detection. 

      The method developed in the second section allows the simultaneous control of two of the 

three fundamental plate modes[154], namely the anti-symmetric (A0) and symmetric (S0) Lamb 

modes. This simultaneous control was based on an effective medium theory developed for the 

A0 mode[153] working with Kirchhoff equation[155], which is a two-dimensional equation 

describing the propagation of flexural waves in thin plates. The mentioned theory can be 

applied as well to the control of the S0 mode given that the refractive indexes of these two 

modes are related by means of the same elastic constants and the thickness of the plate, 

however the refractive index of the third plate mode, named the shear horizontal (SH0) mode, 

cannot be controlled by this approach, given that it depends on different elastic constants that, 

in general, cannot be changed independently. Due to the extraordinary difficulty required to 

work on homogenization using plate theories including the shear mode[156], we propose in the 

third section an alternate approach, based on the homogenization of the bulk phononic crystal. 

      In the third section a homogenization theory for phononic crystals is developed and 

applied to the homogenization of phononic crystal plates, which provides the solution of the 

refractive indexes of the three modes. It is shown then that by means of a complex unit cell, 

consisting of a circular inclusion with a hole in its center, it is possible to design 
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independently the refractive index of the three fundamental plate modes. The method is 

applied to the design of a flat gradient index lens, a Luneburg lens and a Maxwell lens 

working identically for the three modes. Finally, to illustrate the advantage of the method, a 

more advanced multi-lens device is designed, which works as a Luneburg lens for the S0 and 

the SH0 modes while it works as a Maxwell lens for the A0 mode. Numerical simulations by 

COMSOL support their functionality in a broadband frequency region. 

      In the forth section, beam splitters are proposed for the control of the vibration of elastic 

plates. These devices have been widely studied in photonics[157-159] or atom optics[160, 161], and 

have been also designed for acoustic waves by using phononic crystals, utilizing the so-called 

self-collimation effect[162-164]. Beam splitters have also been proposed for flexural waves[105] 

based on graded phononic crystals, but their generalization to control the other two 

fundamental modes (the symmetric and shear modes) requires a more complicated approach, 

since the propagation of these waves is managed by different elastic constants. 

      Effectively, the propagation of elastic waves in a homogeneous plate is composed of three 

polarizations, namely anti-symmetric, symmetric and shear-horizontal modes, with different 

propagation velocities for each polarization. Gradient index devices typically are designed for 

only one of these polarizations, which hinder the full functionality of them for some specific 

applications. Also, while the flexural mode typically can be scattered and controlled in a plate 

without mode conversion, the symmetric and shear modes are in general coupled together, 

therefore the design of gradient index devices for only one of them will result in an important 

loss of efficiency, since some energy will be converted to the other mode. This inconvenience 

can be avoided by means of the design of multimodal devices. 

      In the fifth section, we investigate the elastodynamic homogenization theory, or known as 

“Willis” constitutive theory, which was exhibited by J. R. Willis[165-168] and offers more 

precise description of wave behaviors in periodic inhomogeneous media[169-172]. In theory, the 
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Willis material properties can be realized by designing microstructures with internal spring-

mass-gyroscopes[168] or material with inhomogeneous pre-stresses[173]. However, proposed 

methods of calculating these proper dynamic effective medium parameters are very 

complicated[171, 174-176]. The PWE method[177] implemented in the last section for phononic 

crystal homogenization obtains the “Willis” term, which includes tensorial mass density and 

stiffness, and an additional coupling tensor, in a simpler way. Mathematically, we also 

demonstrate the realization of a “Willis” medium by breaking the symmetry in unit cell, e.g. 

chiral unit cell. Despite the non-zero value of “Willis” term, it is found that the “Willis” term 

does not play a role in the bulk phononic crystal dispersion. By introducing boundary 

conditions, we explore the non-classical dispersion properties of a “Willis” plate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38	
	

3.2  Simultaneous control of the S0 and A0 Lamb modes 

3.2.1 Refractive devices for the S0 and A0 modes 

      Phononic crystals are periodic arrangements of solid inclusions in an elastic matrix, and 

phononic crystal plates are a special case of these structures in which a finite “slide” of the 

phononic crystal is taken. Fig. 3.1 shows an illustration of these two structures: In blue and at 

the left, a two dimensional arrangement of elastic cylinders embedded in an elastic matrix; at 

the right, we can see how a finite slide of this infinite periodic system has been taken. 

      In the low frequency limit, phononic crystals behave like homogeneous materials with 

some effective parameters, and the same is expected for phononic crystal plates, as it is 

illustrated in the lower part of Fig. 3.1. Therefore, it is expected that the effective parameters 

of the phononic crystal and the phononic crystal plate are the same. 

      The above statement has a non-trivial implication in terms of symmetry: A two-

dimensional phononic crystal like the one shown in Fig. 3.1 will behave, in the low frequency 

limit, as an anisotropic solid, with tetragonal anisotropy in the most general case or 

transversal isotropy in the case of a triangular arrangement of inclusions. Therefore, the 

homogenization of phononic crystal plates has to be done taking into account that the 

effective plate will be a “slice” of a tetragonal material[149]. 

 

Figure 3.1 Schematic view of the homogenization procedure for phononic crystals and its relationship with 
phononic crystal plates 
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      This work is focused on controlling the propagation of the two lower order Lamb modes 

of a plate, the S0 mode and the A0 mode (also named the flexural mode). In Ref[153], it was 

developed an effective medium theory for the propagation of the A0 mode in a phononic 

crystal plate, and in this work it is shown that, given the special relationship between the 

propagation properties of the S0 and the A0 mode, the mentioned theory can be applied to both 

modes. 

The dispersion relation of Lamb waves in elastic plates can be found in Ref[149]. It is 

shown that in the low frequency limit, defined by means of wavelengths k > h, where h is the 

thickness of the plate, the dispersion relation for the S0 mode is linear and given by 

p Sv kω =                                                              (3.1) 

while for the A0 mode it is parabolic and given by 

2

12
p

A

v h
kω =                                                           (3.2) 

with vp being the so called “plate velocity.” These expressions show the interesting property 

that the dispersion relation of the A0 mode depends on the plate’s thickness h, and it is directly 

related with the dispersion relation of the S0 mode by means of the plate velocity vp. In this 

work, this relationship between the dispersion relation of the two modes will be exploited, and 

homogenized two-dimensional phononic crystals will be employed for that purpose. 

The above expressions are valid for the vibrations of a homogeneous and isotropic plate. It 

must be figured out if they can also be applied to phononic crystal plates in the low frequency 

limit. The analysis of Lamb waves in anisotropic plates is complex, but in the specific case of 

tetragonal materials, which is the case considered here, it can be demonstrated (see Appendix 

A) that expressions (3.1) and (3.2) are valid but the plate velocity must be given by 

2
2 1311

11 33

(1 )p
ccv
c cρ

= −                                                      (3.3) 

where cij stands for the ij element of the stiffness tensor of the plate. 
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In Ref.[153] , the effective parameters for the propagation of flexural waves in plates with a 

periodic arrangement of inclusions were obtained. It was found the dispersion relation in 

terms of the effective rigidity D* and mass density *ρ  

2* * *
2 4 4 4

* * * 2(1 ) 12
b b b

b b b b b

D E hD D Dk k k
h h v

ω
ρ ρ ρ ρ ρ

= = =
−

                           (3.4) 

where the quantities with the bar mean that they are relative to the background. The above 

expression allows identifying 

*
2

* 2(1 )
b

p
b b

EDv
vρ ρ

=
−

                                                  (3.5) 

so that by means of the effective medium theory we can obtain the effective plate’s velocity. 

Usually, the dispersion relation is given as a function of / 2 ta cω π  as a function of ka, with a 

being the lattice constant and 2 /t b bc µ ρ= . In that case, knowing that / 2(1 )b b bE vµ = + , we 

get, for the antisymmetric mode, 
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                               (3.6) 

And for the symmetric one 
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ω
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=
−

                                        (3.7) 

Figures 3.2 shows the dispersion curves obtained by the FEM method (red dots) of a square 

and triangular arrangement of inclusions in an Aluminum plate, respectively. The upper 

panels show results for holes and the lower panels show results for lead inclusions (see 

Ref.[153] for material’s parameters). The radius of the inclusions is Ra = 0.3a and the thickness 

of the plate is h =0.1a, where a is the lattice constant. The blue-continuous line shows the 

dispersion curves employing Eqs. (3.6) and (3.7). It is clear that there is a perfect agreement 

between the homogenization theory and the numerical calculation. 
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Figure 3.2 Left Panel: Dispersion curves for a phononic crystal plate consisting of a square lattice of 
holes (upper panel) and of lead inclusions (lower panel) of radius Ra=0.3a in an Aluminum plate of 

thickness h=0.1a , where a is the lattice constant. Red dots show the curves computed by finite element 
method and blue lines show the dispersion relation of the homogenized plate, which is tetragonal for this 

geometry; Right Panel: Same as in left panel but in this case the inclusions are in a triangular 
arrangement. The effective medium is transversely isotropic now 

      The propagation of waves in a medium is determined by the dispersion relation, but the 

refraction of waves when passing from one medium to another one is determined by the ratio 

between the wavenumbers in the two media, which defines the index of refraction. Then, 

according to Eqs. (3.7) and (3.6), it is easy to check that if a wave propagating in medium 1 

(plate of thickness h1) changes to medium 2 (plate of thickness h2), the refractive index for the 

S0 mode will be 

1

2

p
S

p

v
n

v
=                                                               (3.8) 

while for the A0 mode will be 
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p
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=                                                              (3.9) 

which shows that nS and nA are related as 
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2
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h

=                                                              (3.10) 
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      It has been assumed that the two media are two different plates, with different materials 

and thickness. The above expression shows that, although the dispersion relation for the two 

modes is different, with different frequency dependence, their refractive indices are closely 

related, with the remarkable result that, if the thickness of the two media is chosen as h1 = h2nS, 

it will be found that the refractive index of the S0 and the A0 mode is the same. 

      This interesting property will be exploited here to design of a refractive device identically 

for the two modes. Equation (3.9) was exploited in Ref[142] for the design of GRIN devices for 

the A0 mode based on thickness variations, and in Ref[153] for the design of GRIN devices for 

the same mode but based on filling fraction variations. In this work, a combination of these 

two effects, together with Eq. (3.10), will be employed to design GRIN devices for the A0 and 

the S0 mode, simultaneously. 

      Two devices, a gradient index lens and a Luneburg lens, are proposed in this work based 

on the combination of graded phononic crystals and thickness variations. These devices have 

been already studied for flexural waves, and here it is proposed their design to work 

simultaneously for the two fundamental Lamb modes. 

      A GRIN lens consists in a rectangular device in which the refractive index is a function of 

the distance to the lens’ axis, and it is given by[96] 

0( ) sech( )n y n yα=                                                      (3.11) 

      If the variation of the index is along the y direction, a wave travelling along the x axis and 

arriving to the device is focused at a distance f =�/2�. Similarly, a Luneburg lens consists in a 

circular device in which the refractive index is a function of the distance to the center of the 

lens and given by[95] 

2( ) 2 ( / )Ln r r R= −                                                  (3.12) 



43	
	

where RL is the radius of the lens. The Luneburg lens is an omnidirectional device in which 

any plane wave arriving at its surface is focused on the diametrically opposed border of the 

lens. 

      Phononic crystal based GRIN devices consist in the realization of the above variations of 

the refractive index by varying the physical properties of the inclusions. In the low frequency 

limit, phononic crystals behave like homogeneous materials with some effective parameters 

which are function of the inclusions’ properties and sizes, and then a rectangular or circular 

region of a phononic crystal can be properly designed to satisfy the above position-dependent 

refractive indices. 

      The design of this type of devices requires of a proper effective medium theory which 

gives the effective refractive index of the phononic crystal as a function of the physical 

properties of the inclusions. In the present case, this theory is the recently developed 

homogenization theory for flexural waves (A0 mode) which can be used to obtain the 

refractive index of the A0 mode[153]. In the framework of this theory, the propagation of waves 

is described in terms of the rigidity Db of the plate and its mass density �b. If in the plate there 

is a phononic crystal, the theory gives the effective rigidity D∗  and mass density ρ ∗  relative 

to those the background Db and �b. Recall Eq. (3.5), it has been shown that the plate’s velocity 

in the phononic crystal region is related with this theory by 

2
* 2(1 )

b
p

b b

EDv
vρ ρ

∗
=

−
                                                           (3.13) 

so that from the homogenization theory for flexural waves it is possible to deduce the plate’s 

velocity, and consequently, the refractive index not only for the A0 mode but also for the S0 

mode. 

      The design procedure for the GRIN lens is as follows. First, an inclusion located at R�= (x�, 

y�)�is selected, and the expected refractive index at that position is computed by means of Eq. 



44	
	

(3.11). Then by means of Eq. (3.8), it is obtained the corresponding plate velocity. Equation 

(3.13) relates the plate velocity with the filling fraction of the inclusion, thus from this 

equation we solve for the required filling fraction at the given position, which automatically 

defines the radius of the inclusion. The procedure is repeated to all the inclusions in the plate, 

so that the design of the full GRIN lens is finally completed. Notice that it has been employed 

the effective medium theory for flexural waves to obtain the effective parameters, but taking 

Eq. (3.8) for the design of the lens means that the GRIN designed works only for the S0 mode. 

      The key point in this work is that, after having designed the refractive device for the S0 

mode, it is possible to modify the plate’s thickness in the region of the device in a way that 

the refractive device works also for the A0 mode. This can be done by means of a position 

dependent thickness of the plate as h2(y) = hb/nS(y), where hb is the thickness of the plate in the 

background (i.e., outside the lens region). Following Eq. (3.10), this condition implies that 

nA(y) = nS(y), so that the refractive index of the two modes is identical and, therefore, the 

GRIN lens will work properly for the two modes. 

3.2.2 Numerical results 

      The designed flat GRIN lens consists of a square arrangement of lead inclusions with 

lattice constant a in a silicon plate of thickness h=a, with �a = 11.34 kg/m3, Ea=16 GPa, and va 

= 0.44 being the mass density, Young’s modulus, and Poisson’s ratio, respectively, for lead 

and �b = 2.33 kg/m3, Eb=150 GPa, and vb = 0.28 being the corresponding parameters for 

silicon. The rectangular region of the phononic crystal is selected as having Ny=15 rows and 

Nx=30 columns, which defines a lens of height Ly = 15a and length Lx =30a. 

      Figure 3.3 shows COMSOL simulations of the interaction of the GRIN lens with the S0 

and A0 polarizations. Upper panels show the expected GRIN design in which the thickness of 

the plate in the rectangular phononic crystal region is position-dependent, while mid panels 
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show the GRIN lens without the mentioned thickness variation. Left panels correspond to the 

normalized z component of the displacement field for the A0, and the right ones to the S0 mode, 

where it is plotted the normalized x component of the displacement field. Given that the 

performance of the device depends on the wavelength of the field rather than on the frequency, 

simulations are shown for frequencies that the two modes have the same wavenumber ka=1, 

which corresponds to ωa/ct = 1/ sqrt(12) for the A0 mode and ωa/ct   = 1 for the S0 one. It can 

be seen that the device works properly for the two modes and the focusing point is identical in 

both situations. It can also be seen that the field distribution is not the same for the two modes, 

given that, although the A0 mode can be scattered almost without interaction with other Lamb 

modes, the S0 mode tends to excite SH0 waves, hence the displacement field is not the same. 

In other words, this theory provides the refractive index for the two modes, but not the mode’s 

dynamics. Simulations in the mid panels, where the thickness variation has been removed and 

the plate has a constant thickness hb, show that although the S0 mode is not affected (as 

expected), the A0 mode it is, given that the field distribution is different now. 

      Figure 3.3, lower panel, shows the normalized field distribution along the central axis of 

the lens and for the four situations described before. It is clear that the field profile and 

focusing point are nearly the same for the two modes when the thickness of the plate is 

position-dependent, but when the thickness is kept constant the A0 mode is different, which 

clearly verifies the role of the thickness variation.  
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Figure 3.3 Upper panels: Field distribution for ka=1 for a A0 polarized (left) and a S0 (right) polarized 
plane waves interacting with the gradient index lens where the thickness of the plate is designed for the 

simultaneous focusing of the two Lamb modes. Middle panels: Same as the left-upper panels but now the 
thickness of the plate is constant throughout the lens, so that the focusing of the A0 mode is different than 
for the S0 mode. Lower panels: Normalized field distribution along the x axis and for y=0 (central axis of 
the lens) for the S0 mode with thickness variation (black continuous line) and without thickness variation 

(blue dashed line), and for the A0 mode with thickness variation (red dashed-dotted line) and without 
thickness variation (magenta dotted line). It is seen that the thickness variation does not affect the S0 mode, 

while for the A0 mode it changes the focusing point, making it identical to that of the S0 mode 

      For some applications, we may expect the waves arriving from all directions for which an 

omnidirectional device can be more efficient. The Luneburg lens described in Eq. (3.12) is a 

good example of an omnidirectional refractive device. Figure 3.4 shows the performance of a 

Luneburg lens of radius RL = 10a, designed in the same way as the GRIN lens to work for the 

two modes (inclusions are now arranged in a triangular lattice, which is more suitable for 

circular clusters). The upper-left panel shows the real part of the normalized z component for 

the A0 polarization and the upper-right panel shows the real part of the normalized x 

component for the S0 polarization. The lower panel shows the absolute value of these fields 
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along the axis of the lens. As before, the wavelength for the two fields is ka=1. From all the 

plots, it can be seen how a focusing point near the border of the lens occurs, as expected. 

 

Figure 3.4 Upper panel: Real part of the field distribution for the A0 (left) and S0 (right) polarizations 
interacting with a Luneburg lens designed by means of phononic crystal with a thickness variation. Lower 
panel: Absolute value of the field distribution along the y=0 line. Vertical dashed lines show the radius of 

the lens 

      In the previous simulations, it has been shown the performance of the two devices when 

working at the same wavenumber, but different frequencies, for the two modes. However, for 

a practical application it is necessary to see the performance of the lens at the same frequency. 

Figure 3.5 shows a COMSOL simulation of the GRIN lens working at the frequency ωa/ct = 

1.22, left panel for the A0 mode and right panel the S0 one. We can see how the focusing point 

is nearly the same for the two modes, while it is better defined for the A0 mode where the 

wavelength is 3.6aλ ≈ , while for the S0 mode this wavelength is 7.7aλ ≈ . Similar results 

were also found for the Luneburg lens. 

      It must be pointed out that this type of devices is typically limited by two wavelengths. In 

the lower limit, it is found that for wavelengths larger than the typical size of the device the 

diffraction dominates over refraction, and the device’s focusing properties are altered. In the 

upper limit, it is found that for wavelengths shorter than 3 or 4 times the lattice constant, the 
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phononic crystal is no longer homogeneous, and the effective medium model cannot be 

applied. Given that this wavenumber region is well defined, but that the corresponding 

frequency region is not the same for the two modes, the frequency region in which the device 

works properly for the two modes will be shorter than that in which it works individually. The 

lower panel of Figure 3.5 shows the dispersion relation for the S0 mode (red-dashed line) and 

for the A0 mode (blue-continuous line). The two vertical lines define the wavenumber region 

in which the performance of the device is expected. The frequency region in which the device 

will work properly for the two modes is limited: below for the mode which has the larger 

wavelength, that is, the S0 mode; above for the A0 mode, given that it has the shorter 

wavelength. These limits are shown in the figure by the red-dashed and blue-continuous 

horizontal lines, respectively. The horizontal black-dotted-dashed line shows the frequency at 

which the simulations were performed. It is seen that there is still a broadband frequency 

region in which the device can work properly for the two modes. 

 

Figure 3.5 Field distributions for the interaction of A0 mode (upper-left) and the S0 mode (upper-right) 
working at the same frequency but different wavenumbers. Lower panel: Dispersion relation ω  −  k for the 

A0 (blue-continuous line) and the S0 (red-dashed line). Vertical lines show the wavenumber region in 
which the GRIN lens would work properly; horizontal red-dashed and blue-continuous lines show the 
frequency region in which the device will work properly for the two modes. The horizontal dotted line 

shows the frequency at which the simulations in the upper panels have been performed 
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These refractive devices have applications by themselves, but their design for several modes 

suggests their application for energy harvesting or vibration detection. Effectively, any 

perturbation excited in a plate will be composed of all the possible modes, so that the efficient 

conversion or detection of this energy will require of a multimodal device. The above results 

show that the simultaneous control of two different vibrational modes is possible in a 

broadband frequency region. Although the mechanism exploited in this work is unique for 

Lamb waves given their special relationship, it suggests that other methods can be applied for 

more vibrational modes. For instance, a unit cell with two inclusions could be designed to 

simultaneously control the refractive index of the S0 and SH0 modes by locally changing the 

radius of each inclusion, although new effective medium theory including all Lamb waves 

should be developed in this case, which is beyond the objective of the present work. 

 

 

 

 

 

 

 

 

 

 

 



50	
	

3.3 Full Control of Elastic Waves in Plates 

3.3.1 PWE Homogenization method 

Recall the basic PWE method from literature[177]. The equation of motion of an 

inhomogeneous solid is given by the classic elastodynamic equation[149], with harmonic time 

term ignored  

2
i j ijkl k lu c uρω− = ∂ ∂                                                   (3.14) 

with ui as the components of the displacement field and cijkl as the components of the stiffness 

tensor. If the solid is homogeneous, the dispersion relation can be obtained by assuming 

plane-wave propagation with wave vector k=kn, with k being the wave number and n being 

the unit vector paralleling to the propagating direction. Thus the equation of motion becomes  

2 2
i iI IJ Jj ju k n C n uρω =                                            (3.15) 

Now ui and CIJ are in Voigt notation. The dispersion relation is the root of the determinant of 

the matrix Γ  defined as 

2 2
ij ij iI IJ Jjk n C nρω δΓ = −                                      (3.16) 

Phononic crystals consist of periodic arrangements of inclusions in an elastic matrix, with ρ(r) 

and cijkl(r) being periodic functions of the spatial coordinates. By applying the Bloch theorem 

and using the plane wave expansion method, the dispersion relations are the solutions of the 

eigenvalue equation 

( ) ( ) ( ) ( )2 G G
G G G IJ Gi iI Jj j

u k G C k G uω ρ ′−
′ ′ ′− ′= + +               (3.17) 

where the terms with G in subscript and superscript are the Fourier components. The G is the 

reciprocal lattice vector. The above equation can be expressed as 

2
GG G GG GN Mω ′ ′ ′ ′=u u                                     (3.18) 

Where  
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( )GG G G ijij
N ρ δ′ ′−=                                                   (3.19) 

( ) ( ) ( )G G
GG IJij iI Jj

M k G C k G′−
′ ′= + +                                    (3.20) 

The average of the displacement vector is given by the G=0 component of uG, therefore it can 

be derived by  

2 2
00 0 0 00 0 0G G G GN N M Mω ω ′ ′ ′ ′+ = +u u u u                                   (3.21) 

2 2
0 0 0 0G GG G G GG GN N M Mω ω ′ ′ ′ ′+ = +u u u u                                  (3.22) 

Hereafter, the matrix elements labeled with G do not include the term G=0, as extracted from 

the above equations. Re-write the second equation as 

( ) ( )12 2
0 0 0G GG GG G GM N M Nω ω

−

′ ′ ′= − − −u u                                (3.23) 

Then substitute into the first equation, we have 

( ) ( )2 2 2 2
00 0 0 0 00 0 0 0 0 0G G G G G G G G G GN N M N M M M Nω ω χ ω χ ω′ ′ ′ ′⎡ ⎤− − − + − =⎣ ⎦u      (3.24) 

With 

( ) ( ) 12,GG
lm GG GG lm

k M Nχ ω ω
−′

′ ′≡ −                                       (3.25) 

So that the dispersion relation is obtained from the zeros of the determinant of the matrix Γ 

defined as 

( ) ( )2 2 2 2
00 0 0 0 00 0 0 0G GG G G G GG G GN N M N M M M Nω ω χ ω χ ω′ ′ ′ ′Γ = − − − + −     (3.26) 

The matrix Γ offers more suitable description about the composite of phononic crystals, from 

which we can find one set of elements independents on wave vector 

( )00 ijij
N ρδ=                                                      (3.27) 

( )0G G ijij
N ρ δ′ ′−=                                                  (3.28) 

( )0G G ijij
N ρ δ=                                                    (3.29) 
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With 0Gρ ρ == being the mass density average value of the unit cell. Meanwhile, another set 

of elements contains wave vector, 

( )00 iI IJ Jjij
M k C k=                                                          (3.30) 

( ) ( )0 IJ

G
G iIij Jj

M k C k G′−
′ ′= +                                            (3.31) 

( ) ( )0 IJ

G
G Jjij iI

M k G C k= +                                               (3.32) 

With 0G
IJC C ==  being the average value of the components of the stiffness tensor in the unit 

cell. By re-organizing the dependence of the wave vector and frequency, the matrix Γ can be 

expressed in the form 

( )2 2 †
ij ij iI IJ Jj iI Ij iJ Jjk n C n k n S S nω ρ ω∗ ∗Γ = − − +                          (3.33) 

With 

( ) ( )2, ,GG
ij ij G ij Gk kρ ω ρδ ω ρ χ ω ρ′∗

′−= +                              (3.34) 

( ) ( ) ( )( ), ,G GG G
IJ IJ IL lm MJLl mM
C k C C k G k k G Cω χ ω′ ′∗ − ′= − + +             (3.35) 

( ) ( ) ( ), ,G GG
Ij IL lj GLl
S k C k G kω ω χ ω ρ′ ′− ′= +                         (3.36) 

These expressions are valid for all frequency and wave number. It is well known that for low 

frequencies phononic crystals behave like homogeneous materials with some effective 

parameters (mass density *ρ  and stiffness tensor *
IJC ). In the low frequency and local limit, 

0ω →  and 0k→ , thus the effective elastic constants are simplified as 

*ρ ρ=                                                                 (3.37) 

*

, 0 , , ,

G GG G
IJ IJ IL Ll lm mM MJ

G G L l m M
C C C G G Cχ′ ′−

′≠

′= − ∑ ∑                                (3.38) 

It must be pointed out that the above theory is valid for 1, 2 or 3-dimensional phononic 

crystals, being the dimensions of the G vector the only difference for each periodicity.  

 



53	
	

      A phononic crystal plate is a two-dimensional periodic arrangement of inclusions in an 

elastic plate, and it has also been shown that for low frequencies these structures behave like 

homogeneous elastic plates. However, the analysis of the dispersion relations of these 

structures is more complex than that of their bulk counterparts, given that we require 

additional equations to satisfy boundary conditions, therefore the homogenization of these 

structures is a more complicated problem[178]. The authors have recently studied the 

focalization of the symmetric and antisymmetric Lamb modes in a phononic crystal plate[154] 

assuming that, in the low frequency limit, this plate can be considered a “finite slice” of a 

two-dimensional phononic crystal, and an excellent agreement was found in the comparison 

of the respective dispersion curves. Therefore, it is possible to homogenize the bulk phononic 

crystal by means of equations (3.37) and (3.38), and analyze the vibrations of homogeneous 

plates with the given effective parameters. Although this study was done for the 

antisymmetric (A0) and symmetric (S0) Lamb modes, here its validity will be demonstrated for 

the three fundamental Lamb modes. 

      As an example, let us consider a triangular arrangement with lattice constant a of gold 

shell-hole structure, with inner radius Ra = 0.2a and outer radius Rb = 0.4a, in an Aluminum 

matrix (see elastic parameters in Table 3.1 and schematics of the unit cell in Fig. 3.6). In the 

low frequency limit this arrangement of inclusions behaves like a transversely isotropic solid 

whose effective parameters can be computed using equations (3.37) and (3.38) and are given 

in Table 3.1. If we take a plate of thickness h of such an effective solid, the dispersion relation 

of the three fundamental modes in the low frequency limit is isotropic and given by the 

following equations[154] 

* 2 * 2
66 SHC kρ ω =                                                              (3.39) 

*2
* 2 * 213

11 * *
11 33

(1 ) S
CC k
C C

ρ ω = −                                                    (3.40) 
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*2 2
* 2 * 413

11 * *
11 33

(1 )
12 A

C hC k
C C

ρ ω = −                                                  (3.41) 

with kX being the wavenumber of the X mode, for X = SH, S, A. Figure 3.7 shows the 

comparison of the full dispersion relation of the phononic crystal plate computed with 

COMSOL (black dots) with the dispersion relation obtained by means of equation (3.39)-

(3.41) (red lines) for plate’s thickness h = 0.1a, 0.5a and h = a in left, center and right panels, 

respectively. It is clear how in the low frequency limit the plate can be described by the 

effective medium theory developed for bulk phononic crystals, which in turns simplifies 

considerably the calculations and also allows for the design of refractive devices, as will be 

shown in the following section. 

 

Figure 3.6 Unit cell employed in the design of GRIN devices, consisting of a triangular arrangement of 
gold inclusions of radius Rb with holes of radius Ra in an Aluminium matrix 

 

 

Table 3.1 Elastic parameters of the materials used in the text 



55	
	

 

Figure 3.7 Dispersion relations for a phononic crystal consisting of a triangular lattice of gold shell - hole 
structure with inner radius Ra = 0.2aand outer radius Rb = 0.4a in an aluminum plate of 

thickness h = 0.1a, h = 0.5a and h = a, corresponding to the left, middle and right panels, respectively. 
Black dots show the curves calculated by COMSOL and red lines show the dispersion relations obtained 

by equations (3.39)-(3.41) with effective parameters in Table 3.1 

3.3.2 Simultaneous Control of the Fundamental Plate Modes 

      When a wave passes from a given medium I to a different one II it suffers refraction. The 

condition for refraction is derived by imposing conservation of the wavenumber in the 

direction parallel to the plane dividing the two media, and this condition defines the refractive 

index as the ratio between the wavenumber in the two media[179]. From expression (3.39)-

(3.41) we find that the refractive indexes of the three fundamental modes are therefore given 

by 

II
SH

SH I
SH

kn
k

=                                                              (3.42) 

II
S

S I
S

kn
k

=                                                               (3.43) 

2
I

A S II

hn n
h

=                                                            (3.44) 

where it has been assumed that medium I(II) is a plate with elastic parameters labeled by I(II) 

and thickness hI (hII). We can see therefore that the thickness of the plate can be used to 

control the refractive index of the A0 mode independently of the other two modes. Besides, we 
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see that while the elastic constants defining the refractive index of the A0 and S0 mode are the 

same, the refractive index SH0 mode depends on the *
66C  component of the stiffness tensor. 

      The design of gradient index devices is typically done by choosing one material for the 

background, another for the inclusions, and then the refractive index is a function of the filling 

fraction (radius) of the inclusions, that is, n = n(R0). In this work we have three refractive 

indexes to design, however the refractive index of the A0 mode will be designed by changing 

the relative thickness of the plate and using equation (3.44), so that actually we have to design 

only nS and nSH. If we had only one degree of freedom, that is, the radius of the inclusion R0, 

we could choose for instance nS and then determine the corresponding value of R0, since nS = 

nS(R0), but then the refractive index of the SH0 mode would be imposed, so that we need an 

additional degree of freedom to choose independently nS and nSH. 

      We propose the structure shown in Fig. 3.6, in which an Aluminum matrix is perforated 

by a triangular arrangement of gold inclusions of radius Rb with a hole at its center of radius 

Ra (see materials’ parameters in Table 3.1). The effective parameters of such a phononic 

crystal will therefore be a function of both Rb and Ra, which will allow us, as will be 

explained later, the independent tuning of the three refractive indexes. 

      Figure 3.8 shows the “phase diagram” of this material, in which we make a sweep of Rb � 

(0, 0.5a) and Ra � (0, Rb), with a being the lattice constant of the arrangement. All the 

possible values that take nS and nSH are shown in this diagram. This diagram can be used as an 

inverse design tool: We choose a given value for the desired refractive index for the two 

modes lying in the diagram, then we find the corresponding values for Ra and Rb, to later use 

expression (3.44) to determine the thickness of the plate that give us the desired value for nA, 

so that we are capable of independently tune the three refractive indexes, obviously under the 

limitations given by the phase diagram depicted in Fig. 3.8. 



57	
	

 

Figure 3.8 Phase diagram showing all the possible values for the effective refractive indexes for 
the SH0 and S0 modes obtained by varying the radius of the holes and the inclusions. The red-dashed line 
shows the condition nSH = nS, showing that it is possible the design of refractive devices identical for these 

two modes 

3.3.3 Numerical Examples 

      This part is devoted to illustrating the power of the presented method to design gradient 

index devices working simultaneously for all three fundamental plate modes. The design 

procedure is identical for all these devices: First we decide the device, defined by means of a 

position-dependent refractive index; second, we define the positions of a cluster of inclusions, 

according to the device’s geometry (a square slab for a flat GRIN and a circular cluster for a 

Luneburg or Maxwell lenses), with a large enough number of inclusions to avoid diffractive 

effects (see discussion below); third, we select the inclusion α and compute the desired radii 

Ra and Rb. For the computation of these values we need to know the desired refractive indexes 

for the S0 and SH0 modes at the position rα, and then use the data of the phase diagram shown 

in Fig. 3.8 which relates the refractive index with the radius of the hole and inclusion. Finally, 

once we have selected Ra and Rb, by means of equation (3.44) we choose the thickness of the 

plate at that position to obtain the desired refractive index for the A0 mode. It has to be noticed 

that this design method allows for creating refractive devices for the three modes, but not 

necessarily the same device for the three modes, given that it can be used to tune 

independently the three indexes. Therefore, although from the practical point of view it 
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appears better to design devices focusing all the energy at the same point for one kind of lens, 

we propose in our last example the realization of a multi-lens device working as a Luneburg 

lens for the S0 and SH0 modes and as a Maxwell lens for the A0 mode. 

      Figure 3.9 shows a COMSOL simulation of the first example considered in this work. It 

consists in a long GRIN flat lens as described in several works[96, 154], in which the refractive 

index is a function of the distance y to the center of the lens and it is given by 

( ) ( )0sechn y n yα=                                                      (3.45) 

In this specific case, the lens is made of 15 rows and 34 columns of inclusions arranged in a 

triangular lattice, oriented in such a way that the vertical distance between inclusions equals 

the lattice constant a, therefore it has a height Ly = 15a and a width Lx = 17 3a. The plate has 

a thickness h = a in the background (recall that the device has a position-dependent thickness). 

The simulations show the total displacement field when an external plane wave of a given 

polarization propagates through the x axis and it arrives to the device. Results shown in the 

left, central and right panels correspond to the S0, SH0 and A0 modes, respectively, and they 

are computed at the same frequency ωa/2πct = 0.178, which corresponds to wavenumbers kSa 

= 0.65, kSHa = 1.11 and kAa = 1.5. The dotted red lines display the size of GRIN flat lens, 

where the focusing points are demonstrated near the center as expected for all three modes. 

 

Figure 3.9 GRIN flat lens made with a slab of 15 rows and 34 columns of gold-hole inclusions in an 
Aluminum plate of thickness h = a. Simulations are shown at the same frequency ωa/2πct = 0.178, which 

corresponds to wavenumbers kSa = 0.65, kSHa = 1.11 and kAa = 1.5, whose corresponding field distributions 
are shown in left, central and right panels 
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      We can see how the quality of the focusing point depends on the wavenumber of the 

incident field, given that it will be limited by diffraction and size effects. Effectively, it is 

commonly assumed in phononic crystals based devices that the limit of validity is the “low 

frequency limit”, however in those situations in which we have more than one mode 

propagating through the material, this limit has to be properly analyzed. The homogenization 

limit is indeed a propagation regime in which the wavelength of the propagating field is larger 

than the typical distance between scatterers, so that the field actually detects an average 

medium and cannot distinguish individual scatterers. Therefore, it is the wavelength of the 

field and not its frequency the relevant quantity, for this reason, for the same frequency, the 

different modes will have different wavelengths, and therefore different responses. 

      In general, there are two physical phenomena relating the validity of the functionality of 

the device. The upper limit in wavelength is limited by the fact that this wavelength should be 

smaller than the size of the device, so that the refraction effect dominates over diffraction, this 

limit can obviously be controlled by increasing the size of the device and, therefore, the 

number of inclusions; The lower limit in wavelength is determined by the validity of the 

homogenization theory, which requires a wavelength typically larger than at least 3 or 4 times 

the lattice constant. These limits are not strictly defined and are only approximate; however it 

is obvious that for the same device they will be at different frequencies for the three modes, 

although it is clear that there will be a frequency region in which these conditions hold for the 

three modes. 

      The second example considered in this work is a Luneburg lens, which consists of a 

circular lens in which the refractive index depends on the position to the center of the lens 

as[95] 

( ) ( )22 / cn r r R= −                                               (3.46) 
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      This refractive index is designed in such a way that any plane wave arriving to the lens is 

focused at the diametrically opposed border of it. It is therefore an omnidirectional device, as 

it is isotropic and radially symmetric. Its realization is identical to that of the GRIN lens, but 

this time we use a circular cluster of inclusions of radius Rc = 10a. Figure 3.10 shows a 

COMSOL simulation in which a plane wave of a given polarization impinges the cluster from 

the left, and it is therefore focused at the opposite side of the cluster. The simulations show 

the real part of the component of the displacement field dominant for each polarization (ux for 

the S0 mode, uy for the SH0 mode and uz for the A0 mode) and they are performed as in the 

previous example at the same frequency ωa/2πct = 0.24, corresponding to kSa = 0.87, kSHa = 

1.5, and kAa = 1.74, shown in left, central and right panels, respectively. From the simulations 

it is clear the path followed by the wavefront which is finally focused at the border of the lens, 

as expected. 

 

Figure 3.10 Luneburg lens of radius Rc = 10a with about 300 inclusions. Simulations are shown 
at ωa/2πct = 0.24, which corresponds to wavenumbers kSa = 0.87, kSHa = 1.5, and kAa = 1.74, whose 

corresponding field distributions are shown in left, central and right panels 

      The following example is similar to the previous one, but this time the proposed 

omnidirectional device is a Maxwell lens[95], whose refractive index is given by 

( ) ( )( )22 / 1 / cn r r R= +                                                (3.47) 

      The Maxwell lens is designed in a way that a point source excited at one border of the lens 

is focused at the opposite side of it. The design method is the same as for the Luneburg lens, 
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and Fig. 3.11 shows the real part of the results of the simulations performed with COMSOL. 

The point source for each polarization is excited as a body force in the x, y and z direction for 

the S0, SH0 and A0 modes, respectively. 

 

Figure 3.11 Maxwell lens of radius Rc = 10a with about 300 inclusions. Simulations are shown 
at ωa/2πct = 0.178, which corresponds to wavenumbers kSa = 0.65, kSHa = 1.11, and kAa = 1.5, whose 

corresponding field distributions are shown in left, central and right panels 

      As before, the plots show the real part of the dominant component of the displacement 

field for each polarization. The source is excited at x = −10a at the same frequency ωa/2πct = 

0.178, corresponding to kSa = 0.65, kSHa = 1.11 and kAa = 1.50, shown in left, central and right 

panels, respectively. The focusing points are identically located at the x = 10a border for the 

three modes, which shows the good performance of the device. 

      The above simulations show the performance of the method for the simultaneous control 

of the three fundamental modes, although the three devices work identically for the three 

modes. However, the method does not require that the refractive index profile be the same for 

the three modes, since each refractive index can be tuned independently, which means that a 

device can be designed as working as one type of lens for one mode and as different one for 

another mode. 

      To demonstrate the power of the present method, a multi-lens device is designed to 

behave as a Luneburg lens for the S0 and SH0 modes and as a Maxwell lens for the A0 mode. 

Figure 3.12 shows the real part of the dominant component of the displacement field for each 
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polarization, but this time the simulations were made at the same wavenumber ka = 1.5, in 

this way it is easier to compare the field distributions and performance of the device. This 

wavenumber corresponds to reduced frequencies ωa/2πct of 0.41, 0.24 and 0.17 for the S0, 

SH0 and A0 modes respectively. We see how the device behaves as a Luneburg lens for the S0 

and SH0 modes while it behaves as a Maxwell lens for the A0 polarization. 

 

Figure 3.12 Luneburg and Maxwell lens working at the same wavenumber for the three modes ka = 1.5 
which corresponds to the frequencies ωa/ct = 0.41, 0.24 and 0.17 for the S0, SH0 and A0 polarizations, 

respectively 
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3.4 Multimodal and omnidirectional beam splitter  

3.4.1 Design of beam splitters for all the fundamental Lamb modes 

      We focus on beam splitters, consisting in circular lenses of radius Rc in which the 

refractive index depends only on the distance to the center of the lens. The profile of the 

refractive index of beam splitters is designed in such a way that when a plane wave arrives at 

the device it is divided into two beams, each one propagating with a deflection angle θ or -θ 

with respect to the initial incident direction. The refractive index profile as a function of the 

distance r to the lens’ center is obtained from the solution of the equation[95] 

( ) ( )1 2/ 2 / 0c cr R n r R nα α−− + =                                                    (3.48) 

where α defines the deflection angle as θ =π/α, and Rc is the radius of the lens.  

      The solution of equation (3.48) with α =2, 3, and 6, which corresponds to deflection 

angles of θ =90° , 60°, and 30°, respectively, are shown in the left panel of Fig. 3.13. The 

refractive index is 1 at the border of the lens, and it increases towards the center. For a given 

position, the refractive index of a smaller deflection angle is less than that of bigger deflection 

angle, and it is clear that as we move to the center of the lens the device becomes more 

“demanding”, in the sense that a higher refractive index is required. The horizontal line in the 

figure shows the maximum refractive index that can be achieved with our complex unit cell, 

and it is clear from this figure that for 60° and 90° the inner part of the lens will not be 

properly designed, since the required index cannot be achieved. The numerical simulations 

presented within the next section will show that the effect of these imperfections is not 

important for the performance of the lens.  

      Finally, in order to design nA = nSH =nS, the variation of the thickness of the lens requires 

hlens = hb/nS, where hb is the thickness of the homogeneous plate. In the right panel of Fig. 3.13 

it is shown the relative thickness hlens/hb as a function of the radial coordinate for deflection 
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angle θ=90° , 60°, and 30°. The lens requires a reduction between the 50% and 20% of its 

thickness, which is something achievable in practice although it obviously depends on the 

scale of fabrication.  

      Next part shows some numerical simulations for a beam splitter of deflection angle of 60°, 

designed according to the method presented before. 

 

Figure 3.13 Left Panel: the refractive index as a function of the radial coordinate for beam splitters with 
deflection angles 30° (cyan dotted line), 60° (red dotted line), and 90° (blue dotted line). Right panel: the 
corresponding plate’s thickness as a function of the radial coordinate for these three deflection angles 

3.4.2 Numerical Simulations 

      The realization of the beam splitter is done by means of a circular cluster of hole-gold-

shell inclusions embedded in a triangular lattice of lattice constant a. The circular cluster has a 

radius Rc =10.5a and a background thickness hb =0.5a. Inside the lens the position-dependent 

thickness and inner-outer radius are designed so that the refractive indexes of the three modes 

meet the profiles of the selected deflection angle shown in Fig. 3.13. Therefore we follow the 

design procedure explained in our previous work for the Luneburg and Maxwell lenses.  

      The performance of the beam splitter is studied numerically by the commercial FEM 

software COMSOL Multiphysics®. The plane wave for each polarization is excited as a 

boundary force in the x, y, z directions for the S0, SH0, and A0 modes, respectively, while the 

propagating direction is set along the x-axis. The excitation of the field is selected so that the 
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three modes present the same wavenumber kSa= kSHa= kAa=1, which corresponds to reduced 

frequency ωSa/(2πvt)=0.307, ωSHa/(2πvt)=0.157, ωAa/(2πvt)=0.068, respectively, where 

vt=3249m/s is the transverse bulk velocity of Aluminum.   

      Figure 3.14 shows the results for the 60° beam splitter working for the A0 mode. Since this 

mode is not coupled to others, only the z component of the displacement field is different than 

zero. The left panel shows the real part of the displacement when a boundary force in the z 

direction is applied. It is clear from the figure that there is a splitting of the field towards the 

+/-60° directions, although the interference pattern in the near field can hinder the effect. 

 

Figure 3.14 Real part of uz component (left) and the corresponding Fourier Transform (right) for A0 mode 
excitation. In the left panel, the red dotted line is the domain of beam splitter; in the right panel, two red 

dotted lines stand for the 60° deflection angle 

      The splitting effect can be better seen in the Fourier Transform of the field depicted in the 

right panel of Fig. 3.14. It is clear that in the kx - ky space a hot spot appears for the angles +/-

60°, plus the hot spot in the forward direction. The latter cannot be avoided since it is a result 

of the optical theorem[105]. 

      In Fig. 3.15, left panels show the real field of the ux (upper) and uy (bottom) components 

when the boundary force is excited along the x, which corresponds to the S0 mode excitation. 

The right panels show the Fourier transforms of the ux (upper) and uy (bottom) components. 

The upper panels show the same result for the x component as for the z component shown in 

Fig. 3.14. However we can see how the y component of the displacement field is also 
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deflected towards the +/-60° directions. The reason for this effect is that since the 

displacement field is bent 60°, now the S0 polarization is not predominantly located along the 

x direction, but it will have two components ux and uy. However for the uy component there is 

no “incident” field, so that the scattered field is purely along the deflection angle, without the 

forward field predicted by the optical theorem. 

 

Figure 3.15 Real part of ux component (upper-left) and the corresponding Fourier Transform (upper- 
right) for S0 mode excitation; Real part of uy component (lower-left) and the corresponding Fourier 

Transform (lower- right) for the same S0 mode excitation. In the left column, the red dotted line is the 
domain of beam splitter; in the right column, two red dotted lines stand for the 60° deflection angle 

      Similar results are also observed for SH0 polarization excitation, as seen in Fig. 3.16. The 

upper panel is the real part of ux in the left and its Fourier transform in the right, while in the 

lower panel the results are shown for uy component of displacement. The deflected SH0 waves 

are dominated by both of ux and uy, in which ux mainly originates from the scattering effect as 

directed along the 60° deflection angle. 
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Figure 3.16 shows the same effect but for the SH0 polarization, so that we have to exchange the x and y 
components in the interpretation of the field 

      Therefore the designed device works as a beam splitter for the three fundamental plate 

modes, as can be seen from the Fourier transform of the near field patterns. Additionally, due 

to the vectorial nature of the excited field, when excited by the S0 or SH0 fields we obtain a 

split beam with no forward scattered field in the y and x directions, respectively, which are 

different from the GRIN devices for flat lens, Luneburg lens or Maxwell lens. The latters 

focus wave energy in the same direction as incident angle. The presented beam splitter in this 

work is to diverge wave energy in different angles with respect to incident wave, exhibiting 

new behaviors as shown above and bringing better understandings of the full control of waves. 

The multimode beam splitter shows great potentials in energy harvesting application.  
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3.5 Theory of ‘Willis’ medium  

3.5.1 Basic introduction of Willis medium 

The constitutive equation and the equation of equilibrium for classic elastic materials are  

C=σ ε                                                           (3.49) 

2div 0ρω+ =σ u                                                    (3.50) 

Where σ , ε and, C are stress, strain and stiffness tensors, respectively.  

For Willis medium, the two equations are modified as 

C i Sω= +σ ε u                                                       (3.51) 

2 †div 0i Sρω ω+ + =σ u ε                                                (3.52) 

With S as a coupling Willis form, which provides more precise description of wave behaviors 

in periodic inhomogeneous media.  In periodic structures, the PWE method developed in Sec. 

3.5.2 offers a full expression of the Willis form, as 

( ) ( ) ( ), ,G GG
Ij IL lj GLl
S k C k G kω ω χ ω ρ′ ′− ′= +                                    (3.53) 

In the epoxy-rubber-lead infinite medium, the elements of Willis form are zero in the local 

case when k=0, however, they will behave as a resonant component in non-local situation[177].  

      In this section, we will demonstrate that in the local ( 0k→ ) and low frequency ( 0ω → ) 

limit, if the geometry of the unit cell is symmetric, the values of elements in Willis form are 

zero, 0S ≡ . On the contrary, if break the geometric symmetry in the unit cell, the Willis form 

becomes non-zero, 0S ≠ , so that we can realize a Willis medium in the local and low 

frequency limit.  

      However, if the Willis medium with non-symmetric geometry, e.g. chiral structure, is 

infinite in two-dimensional system, the Willis form S appears with its conjugate form †S , and 

the summation of them is always zero, † 0S S+ = , indicating that the Willis form won’t affect 
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the corresponding dispersion curves. By introducing boundary conditions for this infinite 

Willis medium, as a Willis plate, the Willis form will has influence on the corresponding 

dispersion curves, from which it is shown the realization of a Willis plate by breaking the 

symmetry in the unit cell.  

      The realization of a Willis plate makes it interesting to investigate its vibrating properties, 

which will be demonstrated in details in the Sec. 3.5.3. 

3.5.2 Realization of a” Willis” plate by non-symmetric phononic crystals 

      The wave equation in a general phononic crystal is given by 

2
i j ijkl k lu C uρω− = ∂ ∂                                                             (3.54) 

where both ρ and Cijkl are periodic functions of the spatial coordinates. In Ref[169, 177] it was 

demonstrated that a phononic crystal can be described, in the low frequency limit, as a Willis 

medium, in which the wave equation is given by 

( )2 2 †
ij j iI IJ Ji iI Ij iJ Jj ju k n C n k n S S n uω ρ ω∗ ∗⎡ ⎤= + +⎣ ⎦                                       (3.55) 

with the mass density ijρ∗  being a tensorial quantity and where the additional coupling tensor 

SIj has been introduced. 

      It is found that these parameters can be easily computed by means of the Fourier 

coefficients of the periodic functions defining the crystal, and the expressions found are as 

follows 

( ) ( ) ( )'

'

2 '

, 0

GG
ij ij ij

G G

G Gρ ρδ ω ρ χ ω ρ∗

≠

= + −∑                                     (3.56) 

( )' '

'

'

, , ,, 0

G GG G
IJ IJ IL Ll lm mM MJ

L l m MG G

C C C G G Cχ ω∗ −

≠

= − ∑ ∑                                  (3.57) 

( ) ( )' '

'

'

,, 0

G GG
Ij IL Ll lj

L lG G

S C G Gω χ ω ρ−

≠

= ∑ ∑                                          (3.58) 
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with the bar quantities being the average in the unit cell, ρ (G) and G
ILC  the Fourier 

components of the mass density and the stiffness tensor, respectively, LlG the matrix 

associated to the reciprocal lattice vector G, following Voigt notation, and ( )'GG
lmχ ω  the 

interaction matrix defined as 

( ) ( )'

' '

12 ', , 0GG
lm GG GG lm

M N G Gχ ω ω
−

= − ∀ ≠                                       (3.59) 

where M and N are given by 

( ) ( )'
'

ijGG ij
N G Gρ δ= −                                                (3.60) 

( ) '

'
'G G

iI IJ JjGG ij
M G C G−=                                                   (3.61) 

      The χ matrix is the quantity giving the resonant effective parameters. It must be pointed 

out that, in the static limit this χ matrix is simply the reciprocal of the matrix M. In this limit 

also the mass density becomes the average in the unit cell and the S tensor is zero. However, 

near a resonance the term 2Nω makes this quantity singular for specific values of ω , that is, 

resonant. Let us try to understand the nature of these resonances. 

      Assume that we know the eigenvalues kλ and eigenvectors kυ of the matrix 2M Nω− . 

We know then that the inverse of this matrix can be expanded by means of the eigen-

decomposition theorem, thus we have that 

( )
†12 k k

k k

M N υ υχ ω
λ

− ⊗= − =∑                                          (3.62) 

      Given that 2M Nω−  is actually a Hermitian matrix. It was shown that[177], since for low 

frequencies this matrix is actually a perturbation of the M matrix, perturbation theory can be 

used to relate the eigenvalues kλ  with frequency. Thus, defining ku and 2/kC a as the 

eigenvectors and eigenvalues of the M matrix, respectively, 

2/k k kMu C a u=                                                      (3.63) 
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      If 2Nω− is a perturbation of the matrix M, we have that the eigenvalues and eigenvectors 

kλ and kυ are given by  

2 2/k k kC aλ ω ρ≈ −                                                    (3.64) 

2
k k kl l

l
u a uυ ω≈ − ∑                                                   (3.65) 

where (assuming † 1k ku u⋅ = ) 

†
k k ku Nuρ =                                                      (3.66) 

†

2 2/ /
k l

kl kl
k l

u Nua
C a C a

δ=
−

                                              (3.67) 

which ensures as well that † 1k ku u⋅ = . The above results allow us to approximate χ as 

( )
†

2 2/
k k

k k k

u u
C a

χ ω
ω ρ

⊗≈
−∑                                              (3.68) 

      This interesting result shows that the resonant frequencies kω are determined by the ratio 

of the eigenvalues 2/kC a  of the matrix M and by the perturbation term kρ . Also, the 

coupling of these resonances with the different constitutive parameters is defined by the 

symmetry of the eigenvectors ku  of the matrix M. Effectively, near the kth resonance we have 

that 

( ) ( ) ( )''

2 2/
mG klGGG k

lm
k k

u u

C a
χ ω

ω ρ

∗

≈
−

                                                 (3.69) 

We can now define 

0
( ) ( )( )i k iG k

G
A G uρ

≠

=∑                                                    (3.70) 

0
( ) ( )G

I k IL Ll lG k
G

B C G u
≠

=∑                                                  (3.71) 

and then near the kth resonance the effective parameters are given by 
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2

2 2 2( ) ( ) ( )
/ij i k j k

k k

A A
C a a

ωρ ω
ω ρ

∗ ∗≈
−

                                    (3.72) 

2 2 2

1( ) ( ) ( )
/IJ I k J k

k k

C B B
C a a

ω
ω ρ

∗ ∗≈
−

                                    (3.73) 

2 2 2( ) ( ) ( )
/Ij I k j k

k k

S B A
C a a

ωω
ω ρ

∗≈
−

                                    (3.74) 

      Let us assume a non-chiral phononic crystal. Given the symmetry of these systems, we 

know that the Fourier components satisfy G GF F− = , then it is easy to demonstrate (see the 

Appendix B) that the eigenvectors Gu satisfy 

G Gu u− = ±                                                          (3.75) 

which implies two types of solutions, ( ) 0i kA ≠ and ( ) 0I kB = when G Gu u− = , and ( ) 0i kA =

and ( ) 0I kB ≠ when G Gu u− = − . The former induces a resonant mass density, while the latter 

induces a resonant stiffness tensor. The two cases imply that the Willis tensor SIj is equal to 

zero. 

      Therefore, in this approximation, that is, in the low frequency limit and the local 

approximation, to have 0IjS ≠ we need both ( ) 0i kA ≠ and ( ) 0I kB ≠ , which is only possible if 

we break the symmetry of the lattic in such a way that G GF F− ≠ , that is, if the lattice is non-

symmetry, such as chiral. 

      For symmetric unit cell, 0IjS = . Both of 2D infinite medium and a finite plate medium, at 

the low frequency, the shear-horizontal mode only depends on the effective 66c
∗  (see Eq. (A5) 

in Appendix A), bringing the same shear-horizontal dispersion curves. Here, 66c
∗  is the 

effective value of 66c in the limit of homogenization. As shown the unit cell in Fig. 3.17, the 

square inclusion is made of rubber ( 31300 /kg mρ = , E=2.7e-4GPa, v=0.499), which is 

embedded in an epoxy matrix ( 31180 /kg mρ = , E=4.35GPa, v=0.37). From the comparison 
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of dispersions, we can observe that the branches of shear-horizontal mode for infinite medium 

and a finite plate are superposed before deviation as they depend on the same elastic constant 

without Willis term, as indicated by the black arrow. 

 

Figure 3.17 Left: unit cell in square array, with the square inclusion as rubber embedded in the epoxy 
matrix; Right: dispersion curves of 2D infinite medium (black line) and a finite plate medium with a 

thickness h=0.1a (red dot) 

      In Fig 3.18, the unit cell is typical chiral geometry as demonstrated widely[180-182], with the 

blue chiral inclusion made of rubber embedded in an epoxy matrix. Now the Willis term 

0IjS ≠ . For infinite Willis medium, the Willis term does not affect dispersion curves, as 

demonstrated in Appendix C, which means the shear-horizontal mode, at the low frequency 

range, still depends on the effective 66c
∗ . However, for a finite Willis plate, the Willis term will 

change the dispersion curves due to the existing of boundary conditions (see Eq.(3.111) and 

more details in Appendix D), so that at the low frequency range, the shear-horizontal 

dispersion is different from that of infinite medium, as shown the black arrows in Fig 3.18. 
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Figure 3.18 Left: chiral unit cell in square array, with the chiral inclusion as rubber embedded in the 
epoxy matrix; Right: dispersion curves of 2D infinite medium (black line) and a finite plate medium with a 

thickness h=0.1a (red dot) 

3.5.3 The properties of ‘Willis’ plate 

      As the Willis plate can be realized by breaking the symmetry in the phononic crystal plate 

unit cell, it deserves further investigation about the properties of Willis plate. The generalized 

constitutive equations and the equation of equilibrium in Willis form for infinite medium are  

C i Sω= +σ ε u                                                       (3.76) 

2 †div 0i Sρω ω+ + =σ u ε                                                (3.77) 

      Substitute the constitutive equation into the equation of equilibrium, we have (see the 

Appendix C) 

2 22 2 2 2 2
23 31 2 2 1 1

11 12 13 66 44 12 2 2
1 2 1 3 1 2 1 31 2 3

( ) ( ) 0
u uu u u u uc c c c c u

x x x x x x x xx x x
ρω∂ ∂∂ ∂ ∂ ∂ ∂+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
    (3.78) 

2 22 2 2 2 2
23 32 1 1 2 2

66 12 11 13 44 22 2 2
1 2 1 2 2 3 2 31 2 3

( ) ( ) 0
u uu u u u uc c c c c u

x x x x x x x xx x x
ρω∂ ∂∂ ∂ ∂ ∂ ∂+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
    (3.79) 

2 2 22 2 2 2
23 3 31 2 1 2

44 44 13 13 33 32 2 2
1 3 2 3 1 3 2 31 2 3

( ) ( ) 0
u u uu u u uc c c c c u

x x x x x x x xx x x
ρω∂ ∂ ∂∂ ∂ ∂ ∂+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
    (3.80) 

      From the above equation, one can find that the Willis term †,S S do not affect the equation 

of motion for infinite medium. Thus, we consider the equation of motion for a finite plate 

with upper and lower boundary conditions in the following. 

      Let us consider the wave propagation in a plate along 1x  direction and assume that 

2
2
0, 0k

x
∂ = =
∂

                                                        (3.81) 

      Assume the material is transversely isotropic, the general equations of motion are  

( )
22 2

2 31 1
1 11 44 13 442 2

1 31 3

uu uu c c c c
x xx x

ρω ∂∂ ∂− = + + +
∂ ∂∂ ∂

																										(3.82) 
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2 2

2 2 2
2 66 442 2

1 3

u uu c c
x x

ρω ∂ ∂− = +
∂ ∂

																																													(3.83) 

( )
2 2 2

2 3 3 1
3 33 44 13 442 2

1 33 1

u u uu c c c c
x xx x

ρω ∂ ∂ ∂− = + + +
∂ ∂∂ ∂

																									(3.84) 

Define ( ) ( )1 1 3 3
2 1 3 2, i k x k xu x x A e +=  and substitute into eq. (3.83), we obtain  

2 2 2 266
3 1

44 44

ck k
c c
ρα ω= = −                                            (3.85) 

So that u2 can be re-written as 

( ) 3 3 3 3 1 1
2 1 3 2 2, ( )ik x ik x ik xu x x A e B e e−= +                                     (3.86) 

Now define ( ) ( )1 1 3 3
1 1 3 1, i k x k xu x x A e += and ( ) ( )1 1 3 3

3 1 3 3, i k x k xu x x A e += , substitute into Eq. (3.82) 

and (3.84), then 

( )
( )

2 2 2
11 1 44 3 13 44 1 3 1

2 2 2
313 44 1 3 33 3 44 1

0
c k c k c c k k A

Ac c k k c k c k

ρω

ρω

⎛ ⎞− − − + ⎛ ⎞⎜ ⎟ =⎜ ⎟⎜ ⎟− + − − ⎝ ⎠⎝ ⎠
                  (3.87) 

where 

( )( )2 2 2 2 2
33 44 11 1 44 12

3
33 44

4

2

b b c c c k c k
k

c c

ρω ρω− ± − − −
=                       (3.88) 

( ) ( ) ( )22 2 2 2 2
33 11 1 44 44 1 13 44 1b c c k c c k c c kρω ρω= − − − − − +                   (3.89) 

2
3k  has two solutions, which can be defined as 2β and 2γ . On the other hand, the relationship 

between A1 and A3 is  

( )
2 2 2

11 1 44 3
3 3 1 1

13 44 1 3
( )

c k c kA f k A A
c c k k

ρω − −
= =

+
                             (3.90) 

where  
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3 ,k β γ= ± ±                                                       (3.91) 

The general form of u1 and u3 can be expressed as 

3 3 3 3 1 1
1 1 3 1 1 1 1( , ) ( )i x i x i x i x ik xu x x A e B e C e D e eβ β γ γ− −= + + +                  (3.92) 

3 3 3 3 1 1
3 1 3 3 3 3 3( , ) ( )i x i x i x i x ik xu x x A e B e C e D e eβ β γ γ− −= + + +                 (3.93) 

with 

3 3 1( )A f k Aβ β= =                                               (3.94) 

3 3 1 1( )B f k B f Bββ= = − = −                                        (3.95) 

3 3 1( )C f k Cγ γ= =                                               (3.96) 

3 3 1 1( )D f k D f Dγγ= = − = −                                         (3.97) 

      Instead of exponential function, displacements can be transformed as trigonometric 

function, as 

( ) ( ) 1 1
1 1 3 1 1 3 1 1 3 1 1 3 1 1 3, ( )cos ( )cos ( )sin ( )sin ik xu x x A B x C D x i A B x i C D x eβ γ β γ= + + + + − + − (3.98) 

( ) ( ) 1 1
2 1 3 2 2 3 2 2 3, ( )cos ( )sin ik xu x x A B x i A B x eα α= + + −                 (3.99) 

( ) ( ) 1 1
3 1 3 3 3 3 3 3 3 3 3 3 3 3 3, ( )cos ( )cos ( )sin ( )sin ik xu x x A B x C D x i A B x i C D x eβ γ β γ= + + + + − + − (3.100) 

      The above three displacements can be arranged into symmetric and anti-symmetric forms.  

      For symmetric form, we have 

( ) ( ) ( )1 1 1 1' '
1 1 3 1 1 3 1 1 3 1 3 1 3, ( )cos ( )cos cos cosik x ik xu x x A B x C D x e A x C x eβ γ β γ= + + + = + (3.101) 

( ) 1 1 1 1'
2 1 3 2 2 3 2 3, (( )cos ) ( cos )ik x ik xu x x A B x e A x eα α= + =                     (3.102) 

( ) ( ) 1 1
3 1 3 3 3 3 3 3 3, ( )sin ( )sin ik xu x x i A B x i C D x eβ γ= − + −                     (3.103) 

also 
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( ) ( ) ( )1 1 1 1' '
3 1 3 1 1 3 1 1 3 1 3 1 3, ( )sin ( )sin sin sinik x ik xu x x if A B x if C D x e if A x if C x eβ γ β γβ γ β γ= + + + = +

(3.104) 

where 

' ' '
1 1 1 1 1 1 2 2 2, ,A A B C C D A A B= + = + = +                                     (3.105) 

      For anti-symmetric form, we have 

( ) ( ) ( )1 1 1 1' '
1 1 3 1 1 3 1 1 3 1 3 1 3, ( )sin ( )sin sin sinik x ik xu x x i A B x i C D x e iB x iD x eβ γ β γ= − + − = + (3.106) 

( ) ( ) ( )1 1 1 1'
2 1 3 2 2 3 2 3, ( )sin sinik x ik xu x x i A B x e iB x eα α= − =                       (3.107) 

( ) ( ) 1 1
3 1 3 3 3 3 3 3 3, ( )cos ( )cos ik xu x x A B x C D x eβ γ= + + +                         (3.108) 

also 

( ) ( ) ( )1 1 1 1' '
3 1 3 1 1 3 1 1 3 1 3 1 3, ( )cos ( )cos cos cosik x ik xu x x f A B x f C D x e f B x f D x eβ γ β γβ γ β γ= − + − = +

(3.109) 

The boundary conditions of the plate at 3x h= ±  are  

( )31
33 13 33 31 1 32 2 33 3

1 3
0uuc c i s u s u s u

x x
σ ω∂∂= + + + + =

∂ ∂
                      (3.110) 

 ( )2
23 44 41 1 42 2 43 3

3
0uc i s u s u s u

x
σ ω∂= + + + =

∂
                           (3.111) 

( )3 1
13 44 51 1 52 2 53 3

1 3
( ) 0u uc i s u s u s u
x x

σ ω∂ ∂= + + + + =
∂ ∂

                         (3.112) 

Obviously, one can see that by introducing the boundary conditions, the Willis terms can 

affect those stresses in the above equations, which further results in a change in dispersion 

relation. 

Substitute the symmetric displacements into boundary conditions,  

3

' ' '
33 1 1 2 2 3 1 0s s s

x h Q A Q A Q Cσ = = + + =                                 (3.113) 
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3

' ' '
23 4 1 5 2 6 1 0s s s

x h Q A Q A Q Cσ = = + + =                                 (3.114) 

3

' ' '
13 7 1 8 2 9 1 0s s s

x h Q A Q A Q Cσ = = + + =                                 (3.115) 

The eigen equation for symmetric mode is (see the Appendix D for details) 

1 2 3

4 5 6

7 8 9

0

s s s

s s s s

s s s

Q Q Q

D Q Q Q

Q Q Q

= =                                                      (3.116) 

Ds=0 is the eigen equation with ω  and 1k . The zero values of the eigen equation gives the 

dispersion relationship ( )1kω −  of the symmetric mode of this Willis plate. 

      Substitute the anti-symmetric displacements into boundary conditions,  

3

' ' '
33 1 1 2 2 3 1 0a a a

x h Q B Q B Q Dσ = = + + =                                    (3.117) 

3

' ' '
23 4 1 5 2 6 1 0a a a

x h Q B Q B Q Dσ = = + + =                                    (3.118) 

3

' ' '
13 7 1 8 2 9 1 0a a a

x h Q B Q B Q Dσ = = + + =                                    (3.119) 

Similarly, the eigen equation for anti-symmetric mode is (see the Appendix D for details) 

1 2 3

4 5 6

7 8 9

0

a a a

a a a a

a a a

Q Q Q

D Q Q Q

Q Q Q

= = 																																																					(3.120) 

The zero values of the eigen equation gives the dispersion relationship ( )1kω −  of the anti-

symmetric mode of this Willis plate. 

      First for non Willis plate, such as a Silicon plate( 10
11 16.6 10c = × Nm-2, 10

12 6.4 10c = ×  Nm-2,

10
44 7.96 10c = ×  Nm-2), we can get the dispersion curves from COMSOL (black dots)and 

compare with the ones which by solving 0, 0a sD D= =  (red dots from 0sD = , blue dots 

from 0aD = ). As shown in Figure 3.19, the results of COMSOL simulations and analytical 

calculations are exactly the same. 
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Figure 3.19 Dispersion of Silicon plate. Black dots are results computed by COMSOL; Blue and red lines 
are calculated by solving the eigen equations (3.116) and (3.120), respectively 

      As illustrated in the previous part, Willis medium can be realized by constructing a non-

symmetric unit cell, especially a chiral structure. Now we assume that a Willis medium has a 

Willis term Sijk=Sεijk, with εijk as the Levi-Civita symbol. εijk is 1 if (i, j, k) is an even 

permutation of (1, 2, 3), is -1 if it is an odd permutation, and is 0 if any index is repeated. If 

we define different Willis values in the eigen equations (3.116) and (3.120), the results shown 

in Fig. 3.20 demonstrate how Willis term affects the dispersion curves. When Willis term has 

a small value s/c44=i0.01sm-1, the dispersions almost keep the same. When Willis term 

increases from s/c44=i0.1 sm-1 to s/c44=i0.7 sm-1, significant changes happen to the dispersion 

curves, as shown the evolution in Fig 3.20. 
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Figure 3.20 Dispersion comparisons for s/c44=i0.01 sm-1 (upper left), i0.1 sm-1 (upper right), i0.3 sm-1 
(lower left), i0.7 sm-1 (lower right). Black dots are dispersions of Silicon plate computed by COMSOL; 
Blue and red lines are calculated by solving the eigen equations (3.116) and (3.120) with Willis terms, 

respectively 
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3.6 Conclusion 

      In this chapter, we first showed that simultaneous control of the S0 and A0 Lamb modes by 

means of a graded index phononic crystal, combined with a properly designed thickness 

variation of the plate, is possible. This control has been done here by designing a GRIN flat 

lens and a Luneburg lens, and it has been shown a good performance of these devices when 

interacting with both S0 polarized wave and A0 one. These devices work properly in a 

broadband frequency region for the two modes, so that it is in this frequency region where 

most of the applications are expected. Other gradient index devices are easily envisioned, and 

its extension to the control of the SH0 mode or other type of guided modes is also likely. 

      Secondly, we presented a method for the design of refractive devices working 

simultaneously for the three fundamental Lamb modes in thin plates. The method is based on 

the PWE homogenization of phononic crystal plates, studied here as finite slices of phononic 

crystals. A complex unit cell is employed to simultaneously control the refractive index of the 

three modes, together with thickness variations of the plate, the system has therefore enough 

degrees of freedom to independently tune the refractive indexes of the three modes. The 

performance of the method is demonstrated by means of the design of a flat gradient index 

(GRIN) lens and a circular Luneburg and Maxwell lens working simultaneously for the three 

modes. Also, a more advanced device is shown which consists in a circular lens working as a 

Luneburg lens for the S0 and SH0 polarizations and as a Maxwell lens for the A0 one. 

      Then, we implemented this method to design beam splitters working simultaneously for 

all fundamental plate modes. These devices consist of circular lenses in which the refractive 

index is a function of the distance to the center of the lens, designed in such a way that a plane 

wave is deflected a given angle independently of its initial direction, therefore the device is 

omnidirectional. The inhomogeneous refractive index is implemented by means of graded 

phononic crystals, and the multimodal operation is achieved by a combination of a complex 
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unit cell and thickness variations of the plate. Numerical simulations are performed for a 

beam splitter of 60° of deflection angle, and it is shown that the device properly deflects the 

incoming wave independently of its initial polarization.  

      The performance of these gradient index devices is broadband, since it is designed in the 

framework of a homogenization theory in the quasi-static limit. The presented method can be 

efficiently employed to the design of devices for the control or harvesting of mechanical 

energy, since it allows the full control of vibrations excited in a finite elastic plate. 

Additionally, given the scalable nature of the presented method, this work can be applied to 

beam forming and energy harvesting in nano or micro scale. 

      In the last section, we showed that the PWE homogenization method for phononic crystals 

includes the so-called “Willis” term. Mathematically and numerically, it is further proved that 

“Willis” medium can be realized by breaking the symmetry in the unit cell. The “Willis” term 

does not affect the dispersion in bulk medium, but in finite plates. The dispersion properties of 

“Willis” plate are also derived and analytically studied. By gradually increasing the value of 

“Willis” term, we demonstrate how the plates’ dispersions change. 
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4.1 Introduction 

Phononic crystals (PCs)[6, 7, 17, 18], or acoustic band gap materials, constituted of a 

periodic arrangement of inclusions embedded in a matrix, are receiving increasing attention 

for elastic/acoustic wave control and have found several fields of applications such as 

waveguiding[183, 184], filtering[185], acoustic lensing[96, 154, 186, 187], fluid sensing[188, 189]…. Beside 

the two dimensional infinite crystal and the control of bulk elastic waves, the interest of the 

phononic community has turned to the control of waves confined on the surface of a half 

infinite PC[190, 191] or propagating in finite PC plates. The latter geometry has been studied by 

considering either periodic inclusions[192, 193], in particular holes, in a slab or a periodic array 

of pillars on top of the plate[81, 82]. It has been shown that the pillar structure exhibits two types 

of band gaps resulting either from Bragg scattering when the wavelength is in the order of the 

lattice parameter (Bloch theorem[194]) or from local resonances of the pillars at large 

wavelength[81, 82, 195]. It can then be described respectively as a PC or as an acoustic 

metamaterial. In acoustic metamaterials[2, 196], the band gap known as low frequency or 

hybridization band gap originates from the avoided crossing of two bands in the low 

frequency range or sub-wavelength, where at least one of the two bands come from localized 

resonant modes of inclusions. The presence of local resonances can generate dynamic 

responded behaviors, negative effective mass density or elastic modulus, which do not exist in 

natural materials. Because of their novel properties, acoustic metamaterials become an active 

field of research with various potential applications, such as super-resolution and focusing[197-

199], absorption[114, 200], and cloaking[107, 112, 201]. 

Because of this dual aspect, a great deal of works has been devoted to these structures, 

and different objectives have been pursued. Playing with the nature of the constitutive 

material, Oudich et al.[202] have shown the opening of very low resonant absolute band gaps in 
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a plate covered with one or two layers of stubs made of soft rubber. Assouar and Oudich[84]  

reported that by using double-sides stubbed phononic plates locally resonant band gap could 

be enlarged. Bilal and Hussein[85] designed pillars on a plate patterned by a periodic array of 

holes which can enhance the local resonance. Assour et al. studied hybrid phononic crystal 

plates composed of periodic stepped pillars and periodic holes which can also generate lower 

and wider acoustic gap because the acoustic waves are scattered by both of the pillars and 

holes[86]. Coffy et al. [87] designed a strip consisting of periodic pillars deposited on a tailed 

beam, enabling the generation of a ultra-wide band gap resulting from both Bragg scattering 

and local resonance. Midtvedt et al. [203] considered a graphene membrane that is deposited on 

top of a square lattice of cylindrical pillars to exhibit coupled localized modes with nonlinear 

dynamics. Changing the geometry of the pillar, Hsu[204] investigated numerically the 

propagation of Lamb waves through an array of stepped resonators on a thin slab. 

Experimentally, Achaoui et al.[205] reported on the propagation of surface guided waves in a 

periodic arrangement of pillars on a semi-infinite medium. Using Brillouin light scattering 

experiments, Graczykowski et al.[206] showed significant changes in the hypersonic phonon 

propagation due to the presence of local resonances in phononic crystal made of square lattice 

of holes and pillars in/on silicon membrane. The negative properties of the low frequency 

modes have also been considered[89, 90, 207, 208] for focalization applications. El Hassouani et 

al.[209]  studied theoretically the simultaneous existence of phononic and photonic band gaps in 

a periodic array of silicon pillars deposited on a homogeneous thin silica plate for potential 

optomechanical applications. Finally, Davis et al.[45] introduced the concept of a locally 

resonant nanophononic metamaterial for thermoelectric energy conversion. Therefore, since 

the early papers in this topic[81, 82], pillar structures have become a useful platform for many 

fundamental and applied investigations in the frame of phononic crystals and acoustic 

metamaterials. 
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In the second section, we theoretically explore the existence and some functionalities of 

the pillar structure when the latter are constituted by hollow cylinders. Indeed, the hollow 

cylinders can display whispering gallery modes (WGM) whose quality factors can be greatly 

enhanced when the slab is separated from the hollow pillar by a second thin cylinder. Thus, 

the pillar is constituted by two layers and the WGM confined in the upper layer interacts very 

weakly with the modes propagating in the slab. Let us mention that whispering gallery modes 

date back to the works of Rayleigh[210] in the field of acoustics followed the observation in St. 

Paul’s Cathedral. The recent interest in the literature is about high Q optical WGM resonators 

which can play a very significant role in photonics for applications in sensing[211] or 

photovoltaic[212]. Recent studies report the potentiality of these modes in the field of phononic 

crystal. Li et al[213] immersed an isolated tube in liquid medium and showed that WGMs can 

exhibit a narrow periodic transmission dip with a high quality factor while Kaproulias[214] 

considered the disk geometry for sensing application. The main recent interest in WGMs is 

related to the excitation of acoustic modes in optical WGM resonators via stimulated 

backward Brillouin scattering (SBS)[215, 216]. In this context, acoustic whispering gallery 

modes have been recently investigated in spherical and cylindrical resonators within the 

theory of elasticity[217]. The displacement fields of the modes studied in this work have similar 

shapes as the one reported in those previous papers, hence the denomination of whispering 

gallery modes we adopted here. As mentioned above, the novelty of the modes proposed here 

is to allow a strong degree of confinement inside the pillars and a high quality factor, hence 

allowing several applications related to the manipulation of the acoustic waves such as 

guiding and filtering, both in the range of the Bragg and low frequency gaps. 

Additionally, hollow pillars on a plate give rise to the possibility of filling the hollow 

parts with a liquid, which creates new modes for the manipulation of acoustic waves, in 

particular allowing their active control by changing the height of the fluid or its temperature. 
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Jin et al.[218] and Popa et al. [219] reported that the acoustic properties of PCs and acoustic 

metamaterials can be actively tuned by piezoelectric structures. Wang et al.[220]  used 

nonlinear pre-deformation to tune the band gap with local resonant structures. With infiltrated 

liquids in the hollow pillars, another actively controlled phononic crystal can be proposed 

since for instance the mass density and acoustic velocity of the liquids change with 

temperature, which will be shown in the third section. 

In forth section, we investigate several novelties of a structure with hollow pillars on a 

membrane. First of all, we assume that the pillars are connected by thin bars instead of being 

deposited on a full plate. This produces both a significant widening and lowering of the Bragg 

gap as well as a decrease in the frequency of the low frequency gap. Then, the utilization of 

hollow pillars allows the occurrence of several new types of WGM with quadrupolar, 

hexapolar and octopolar symmetries falling in the band gap. Some of these modes can easily 

reach very high quality factors. Finally, new localized modes appear in the band gaps when 

the hollow pillars are filled with a liquid opening the way to sensing and filtering applications. 
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4.2 Control whispering-gallery modes in hollow pillars 

4.2.1 Whispering-gallery modes 

We consider a structure made of a square lattice of hollow pillars deposited on a thin 

homogeneous plate with a periodicity in the (x, y) plane. The z-axis direction is chosen 

perpendicular to the plate. The elementary unit cell is presented Fig.4.1 in which the 

geometrical parameters are the lattice constant a, the height h of the hollow pillars and the 

thickness e of the plate. r and ri correspond respectively to the outer and inner radius of the 

hollow pillar. The complete structure is made of silicon, assuming a cubic symmetry with the 

crystallographic axes oriented along the coordinate axes x, y and z. The elastic constants are 

c11 = 166 GPa, c12 = 64 GPa and c44 = 79.6 GPa, and the mass density is � = 2330 kg/m3. 

All dispersion and transmission curves have been computed using the finite element code 

COMSOL Multiphysics®. Periodic boundary conditions are applied on each side of the unit 

cell, in the (x, y) plane. The dispersion and transmission curves will be presented as a function 

of the reduced frequency, ωa/2πvt where vt = 4678 m/s is the transverse bulk velocity of 

silicon along x. 

 

Figure 4.1 (a) 3D-schematic view of the elementary unit cell constituting the phononic crystal (PC) 
made of finite hollow pillars deposited on a thin homogeneous plate. The lattice constant is a and the 
thickness of the plate is e. The hollow pillar has a height h and an inner and outer radius respectively 

denoted ri and r. (b) Periodic boundary conditions are applied in the (x, y) plane on each side of the unit 
cell, constituting a periodic crystal with a square array symmetry for which the first Brillouin zone and its 

irreducible part is presented 

(b)(a)
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Before presenting the results for the hollow pillars on plate, we have calculated as a 

reference the band structure of the native phononic crystal containing filled cylinders of 

silicon (ri = 0). The choice of the geometrical parameters is done in order to obtain two wide 

absolute band gaps, one at the Bragg frequency regime and the second in the low frequency 

range[81]. In figure 4.2(a), we present the dispersion curves calculated along the direction ΓX 

of the Brillouin zone with e/a = 0.1, h/a = 0.55 and r/a = 0.42. With this set of parameters, we 

obtain two wide absolute band gaps around the respective reduced frequency 0.2 (red area) 

and 0.6 (blue area). The low frequency band gap is due to local resonances of the pillars at a 

wavelength almost 10 times larger than the lattice constant a. The Bragg gap comes from the 

periodicity of the crystal and the collective scattering effects between the pillars. These 

reduced geometrical parameters (e/a, h/a, and r/a) will be kept fixed in the rest of the paper. 

Figure 4.2 shows the evolution of the dispersion curves as a function of the inner radius. 

The introduction of the hollow cylinders gives rise to two new dispersion branches labeled ‘1’ 

and ‘2’ that do not exist in the native phononic crystal. By increasing ri/a from 0 to 0.35 they 

move towards lower frequencies.  
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Figure 4.2 Dispersion curves of the hollow pillars on a thin silicon plate in the ΓX direction of the 
first irreducible Brillouin zone in two reduced frequency ranges ([0; 0.9] for (a, b, c) and [0; 0.4] for (d, e, 
f)) with different inner radii (a) ri/a = 0, (b) ri/a = 0.145, (c) ri/a =0.25, (d) ri/a = 0.30, (e) ri/a = 0.32, (f) ri/a = 

0.35. The thickness of the plate is e/a = 0.1, the outer radius r/a = 0.4 and the height h/a = 0.45. The 
hatched areas correspond to the low (red) and Bragg (blue) absolute band gaps of the native crystal. The 

‘1’ and ‘2’ branches come from the hollow pillar structure 

At ri/a = 0.145 (figure 4.2(b)) the two branches appear inside the Bragg gap while the gap 

boundaries and the branches below are almost unaffected. When increasing ri/a to 0.25 (figure 

4.2(c)), the two branches cross the lower edge of the Bragg gap and the branch labeled 1 

interacts with the Lamb waves situated just below the reduced frequency 0.40. For higher 

values of ri/a, the two branches still move downwards while new modes progressively appear 

at higher frequencies. At higher ri/a (not shown) the Bragg gap gets closed. For ri/a = 0.30 to 

0.35, the frequencies of the two branches continue decreasing and cross the low frequency 

gap. However, at these low frequencies, the modes interact with the Lamb waves of the plate 

and do not give rise to isolated branches as it was the case in the Bragg gap. We shall see in 

the next section how to make them flat by a better confinement of the modes and therefore 

make the structure useful for both phononic crystal and acoustic metamaterial applications. 
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Despite the fact that these branches are slightly dispersive due to their interaction with the 

Lamb waves in the plate, they still remain nearly flat (i.e. with a small group velocity) and 

one can recognize that they are essentially WGM modes of the hollow cylinders as shown in 

the displacement field maps of Figure 4.3(a) corresponding to ri/a = 0.145. For such modes, 

the acoustic path around the hollow pillar should be a multiple integer of the wavelength, here 

equal to 2 for both modes. Figure 4.3(b) represents a top view of the component Uz of the 

displacement field. It brings to light the main difference between the two modes that explain 

the existence of two separates frequencies. While mode '2' is almost totally confined inside 

the hollow pillar, mode '1' strongly interact with the four ‘first neighbors’ hollow cylinders of 

the unit cell via the plate. 

 

Figure 4.3 (a) Representation of the displacement field distribution and the deformation of the unit 
cell at the frequency of the Whispering Gallery Mode (WGM) ‘1’ and mode ‘2’ at the Γ  point for ri/a = 
0.145. (b) Top view representation of the component Uz of the displacement field for the two modes. (c) 

Evolution of the frequency of mode ‘1’ and ‘2’ as a function of the inner radius ri of the hollow pillar. The 
blue (resp. red) dashed lines represent the boundaries limits of the Bragg (resp. low frequency) band gap 

(a)

(c)

(b)
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Although the modes studied here have a quadrupolar shape, we have also identified 

higher frequency modes with hexapolar or octopolar symmetries that fall outside the range of 

the band gap. Let us mention that modes of dipolar or quadrupolar symmetries have also been 

studied in other context of acoustic metamaterials[221, 222]. We have also compared the 

frequencies and shapes of our WGM’s with those obtained when the pillars are almost 

isolated from each other, namely by assuming a period which is 10 times higher than in the 

above calculations. It is found that the results are insensitive to the pillar separation, not only 

for quadrupolar but also for higher hexapolar or octopolar modes. Of course the resonance 

frequencies will change if the membrane at the bottom of the pillar is removed because 

depending on the WGM, its displacement field is more or less affected by the presence of the 

membrane. 

Figure 4.3(c) summarizes the behavior of the two WGM’s as a function of the inner 

radius of the hollow pillar. Both the WGM’s frequencies decrease as the inner radius 

increases. This behavior can be understood if noticing that higher values of the average radius 

<r> = (r+ri)/2 increases the acoustic path along the perimeter 2�<r> of the cylinder. As a 

result, when ri/a = 0.145 (resp. 0.35), the whispering eigenmodes '1' and '2' fall in the middle 

of the Bragg (resp. low frequency) gap.  

In order to show the filtering capacity of the structure based on WGM’s, we calculate the 

transmission spectrum through a finite PC plate containing 5 rows of hollow pillars. Perfect 

matching layers (PML) are applied at the entrance and the exit of the slab to avoid any 

reflections from the external edges. Periodic boundaries conditions are applied along y-

direction, on each side of the unit cell. The incident wave is the A0 Lamb wave of the plate, 

propagating along the x-axis, and launched by applying a harmonic displacement Uz in the (y, 

z) plane in front of the crystal. To determine the transmission coefficient, the displacement 
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field is recorded in the far field behind the PC, and then normalized to the displacement field 

propagating in the homogeneous plate. 

As stated above, the choice of ri/a = 0.145 appears as the best because of the frequencies 

of the WGM’s being in the center of the Bragg gap. We represent in figure 4.4 the 

transmission coefficient as a function of frequency, together with the dispersion curves. One 

can notice a relatively narrow transmission peak associated with WGM ‘1’ while WGM ‘2’ 

does not transmit. This result can be understood on the basis of symmetry consideration. 

Indeed, the incident wave A0 is symmetric with respect to the symmetry plane (x, z). Thus, it 

can only excite WGM ‘1’ which has the same symmetry and not WGM ’2’ which is 

antisymmetric with respect to this plane. Then, the latter appears as a deaf band[223, 224] in the 

transmission spectrum. 

 

Figure 4.4 Dispersion curve (left) and transmission spectrum of the antisymmetric Lamb wave (right) 
through the hollow cylinder phononic crystal with inner radius ri/a = 0.145. The blue dashed lines 

represent the boundaries of the Bragg gap 

4.2.2 Whispering modes with high quality factor and narrow band filtering  

      In the previous section, we have shown that WGMs can be used as a tunable band filter in 

the Bragg and low frequency band gaps of the phononic crystal. In this section, we shall show 

how the quality factor of the WGM-based transmitted wave can be significantly increased. 

Indeed, the width of the transmission peak, or accordingly the width of the narrow band 

associated with WGM ‘1’ in Fig. 4.4, are related to its interaction with the Lamb waves of the 
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plate as can be seen from the maps of the displacement field (Fig. 4.3). To enhance the 

confinement of the WGM without changing significantly the associated field, we insert a 

silicon solid cylinder of height l at the basis of the hollow pillar (see the red block in the inset 

of Fig. 4.5(a)).  

      We show in Fig. 4.5(b) the dispersion curves in the range [0.4; 0.8] as a function of the 

reduced height l/h of the added cylinder when h/a = 0.45. We can observe that the two 

branches associated to the WGM’s become more and more flat as l/h increases, which is the 

signature of a better confinement of the modes inside the unit cell. To quantify the role of the 

added cylinder on the pass band, we have calculated the quality factor /Q f f= Δ  where f is 

the central frequency of the pass band and Δf the full width at half maximum of the 

transmission peak. Figure 4.5(a) shows a significant increase in the quality factor with 

increasing the reduced height l/h. For l/h = 0.64, the quality factor reaches Q = 280, i.e. more 

than 10 times the value obtained without the additional cylinder, paving the way to a high 

resolved narrow pass band device for filtering applications.  

      Increasing now the inner radius to ri/a = 0.35 we shift the two WGMs in the vicinity of 

the low frequency band gap. As previously, we insert the silicon solid cylinder of height l at 

the basis of the hollow pillar. The Fig. 4.5(c) represents the dispersion curve in the low 

frequency regime for l/a = 0; 0.22 and 0.44. One can see that, when l/h increases, the 

interaction of the branches '1' and '2' with the Lamb modes decreases, reaching finally to a 

localization of the two WGMs in the middle of the narrow low frequency band gap when l/h = 

0.54. 
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Figure 4.5 (a) (Inset) Schematic cross section of the unit cell with the added full silicon cylinder of 
height l (red block) with h/a=0.45, e/a=0.1 and r/a=0.4. (Graph) Evolution of the quality factor of the 

narrow pass band based on the WGM ‘1’ as a function of l/a, (ri/a = 0.145). (b) Dispersion curves 
magnified in the Bragg gap range ([0.4; 0.8]) for different value of l/a. (c) Dispersion curves magnified in 

the low frequency gap range ([0; 0.4]) for different value of l/a 

4.2.3 Multiplexing devices based on tunable waveguides and cavities 

As reported in Fig. 4.3(c), the position of the narrow pass band is very sensitive to the 

inner radius of the hollow pillar. Actually, the narrow pass band can cover the full Bragg gap 

(i.e. the reduced frequency range [0.55, 0.7]) when ri/a is varied from 0.145 to 0.155. For a 

mixed system composed of different inner radii, different narrow pass bands inside the Bragg 

gap are expected. We propose to use this property for the design of a new kind of mono and 

multichannel wavelength division multiplexers by inserting appropriate waveguides and 

cavities in a PC slab. A similar property was earlier proposed in a 2D phononic crystal 

constituted by hollow cylinders filled with different liquids[40]. For the sake of computational 

convenience, the height of the added cylinder is fixed to l/a = 0.2 (l/h = 0.36) in the following 

calculations, leading to a Q factor of 100. 

A. Multichannel wavelength multiplexer 
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We first consider (inset of Fig. 4.6(a)) a (5×5) supercell with periodic conditions along 

y-axis and PML in the direction of propagation x. The phononic plate contains two linear 

waveguides separated from each other by one row of filled cylinders to prevent significant 

leakage between the guides. The waveguides are constituted by two rows of hollow pillars 

with the radius ri
(a)/a = 0.145 and ri

(b)/a = 0.160 for the waveguides ‘a’ and ‘b’ respectively. 

We probe the transmission of the waveguides by launching the A0 Lamb wave in front of the 

PC. The transmission spectrum, displayed in Fig. 4.6(a), features two narrow pass bands 

occurring at the reduced frequencies 0.543 and 0.581, inside the band gap. These values 

significantly differ from those obtained with the perfect hollow pillar phononic plate (Fig. 

4.3(c)). This means that the effect of confinement inside the waveguide on the transmission 

peak is far from being negligible while the narrowness of the pass bands is preserved. As seen 

in the displacement field distributions of Fig. 4.6(b), the two narrow pass bands correspond 

respectively to the transmitted wave through the waveguide ‘a’ and ‘b’. We then have created 

a multichannel wavelength multiplexer. 

 

Figure 4.6 (a) (Inset) Schematic representation of the multichannel wavelength multiplexer. (Graph) 
Transmission spectrum of the antisymmetric Lamb wave when the radius of the hollow pillars inside 
waveguide ‘a’ and ‘b’ are ri

(a)/a = 0.145 and ri
(b)/a = 0.160. (b) Displacement field distributions at the 

frequency of the two narrow pass bands ‘a’ and ‘b’ 
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B. Monochannel wavelength multiplexer 

Next, we consider the propagation at the frequencies of two narrow passbands through 

one single waveguide composed of alternating hollow cylinders with two different radii (see 

inset in Fig. 4.7(a)) of ri
(c)/a = 0.145 and ri

(d)/a = 0.140. The transmission spectrum is 

presented Fig 4.7(a) in which one can see the occurrence of two narrow passbands at the 

reduced frequencies f(c) = 0.571 and f(d) = 0.590. This means that it becomes possible to 

transport two different wavelengths through the same channel. The elastic wave transmission 

comes from evanescent waves inside the slab, which in turn allows for the overlapping of the 

elastic fields between two next nearest neighbors hollow pillars with identical radii. The 

waveguide then allows for the tunneling, and therefore to the propagation of the elastic wave. 

Figure 4.7(b) sketches the displacement field at the frequencies f(c) and f(d) where the 

enhancement of the fields inside the hollow pillars is clearly observable for both radii.  

 

Figure 4.7 (a) (Inset) Schematic representation of the monochanel wavelength multiplexer. (Graph) 
Transmission spectrum of the antisymmetric Lamb wave when consecutive hollow pillars inside the 
waveguide have radii of ri

(c)/a = 0.145 and ri
(d)/a = 0.140. (b) Displacement field distributions at the 

frequency of the two narrow pass bands ‘c’ and ‘d’ 

C. Compact multiplexer based on linear cavity 

Another way to obtain high-Q resonators is to create an infinite linear cavity oriented 

perpendicularly to the direction of propagation. The inset of Fig. 4.8(b) shows the unit cell of 

(a) (b)
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a periodic structure which contains two lines of hollow pillars surrounded from each side by 

one line of solid cylinders. The unit cell has a finite size along x-axis and periodic in the y-

direction. The cavity is constituted by two different hollow pillars with respective radii ri/a(e) 

= 0.145 and ri/a(f) = 0.140. The transmission of the antisymmetric Lamb wave launched in the 

x-direction and presented in Fig. 4.8(a), shows that the structure supports two narrow pass 

bands at f(e)
 = 0.561 and f(f)

 = 0.578 respectively (Fig. 4.8(b)). Note that the confinement of the 

elastic energy is achieved by using only one PC layer embedding the cavity region, and 

leading to an extremely compact multiplexer filter with high Q factor. 

 

Figure 4.8 (a) Transmission spectrum of the antisymmetric Lamb wave when the radius of the hollow 
pillars inside waveguide are ri

(e)/a = 0.145 and ri
(f)/a = 0.140. (b) (Inset) Schematic representation of the 

compact wavelength cavity multiplexer. (Graph) Displacement field distributions at the frequency of the 
two narrow pass bands ‘e’ and ‘f’ 

4.2.4 Sub-wavelength waveguide 

This last section deals with an application of the WGMs inside the low frequency band 

gap. As established previously, the two modes can be localized inside the narrow low 

frequency band gap as far as we chose a large inner radius (ri/a = 0.35). The second condition 

is to add a solid silicon cylinder of thickness l/h = 0.49 between the hollow pillar and the plate 

to get the dispersion branches almost flat. Under these conditions and the set of others 

geometrical parameters h/a = 0.45, r/a = 0.4, and e/a = 0.1, we have obtained the dispersion 

(a) (b)
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curve of the perfect phononic crystal made of hollow pillars on plate presented Fig. 4.9(a). 

We then built the design of the sub-wavelength waveguide by replacing one row of the perfect 

phononic crystal with hollow pillars. The transmission spectrum of the anti-symmetric Lamb 

wave depicted Fig. 4.9(b) shows the transmission of a very narrow peak at the reduced 

frequency 0.19. As seen Fig 4.9(c), the transmission comes from the excitation of the WGM 

‘1’ on top of the hollow cylinders.  

 

Figure 4.9 (a) Dispersion curve in the low frequency range [0; 0.4] corresponding to the perfect phononic 
crystal made of hollow pillars on plate with the set of geometrical parameters ri/a = 0.35, l/h = 0.49, h/a = 

0.45, r/a = 0.4, and e/a = 0.1. (b) Transmission spectrum of the antisymmetric Lamb wave through the 
waveguide of hollow pillars inserted inside a full silicon pillar crystal. (b) Displacement field distributions 

at the reduced frequency 0.19 corresponding to the narrow pass bands ‘g’ 
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4.3 Localized modes actively controlled by fluid filling  

4.3.1Further properties of whispering-gallery modes 

A PC of a square lattice with a periodicity a in the (x, y) plane is considered which 

consists of a periodic array of hollow pillars deposited on a thin plate (Fig. 4.10a). A full 

cylinder separates the hollow part from the plate in order to increase the confinement of the 

studied modes. The scheme in Fig. 4.10a shows the geometrical parameters, namely the lattice 

constant a, the thickness of the plate e, the height of confinement l, the height of the hollow 

pillar h, its inner radius ri and outer radius r. The entire structure is made of cubic silicon, with 

the elastic constants c11 = 166 GPa, c12 = 64 GPa, c44 = 79.6 GPa, the mass density �=2330 kg 

m-3.  The crystallographic axis [100] and [010] have been chosen respectively parallel to the 

phononic crystal axis x and y. In the (x, y) plane, periodic boundary conditions are applied on 

each side of the unit cell. Dispersion and transmission curves are calculated by the finite 

element code COMSOL Multiphysics® and presented as a function of the reduced frequency 

ωa/2πvt where vt =Sqrt (0.5×(c11- c12)/�) is the transverse velocity of sound in silicon along the 

[110] direction in the (001) plane.  

 

Figure 4.10 (a) Schematic view of PC unit cell in the square array consisting of hollow pillars 
deposited on a thin homogeneous plate with an additional cylinder of height l at the basis to improve 
the confinement of the modes in the hollow pillars. a is the lattice constant, e is the thickness of plate, 

h is the height of hollow pillar, ri and r are the inner and outer radius of the hollow pillar, 
respectively. (b) The irreducible first Brillouin zone of the square lattice 
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With an appropriate choice of the geometrical parameters (r/a=0.4, h/a=0.45, e/a=0.1), 

the native PC with full pillars deposited on a thin plate can exhibit two absolute band gaps, 

one at the Bragg frequency regime and the other at low frequency regime [81]. By introducing 

an inner hole in the pillar, two new branches of WGMs with quadrupolar shape occur in the 

dispersion curves that do not appear in the native PC; their fields are localized in the upper 

part of the pillars, around the hollow. The quality factor of the WGMs can be further 

increased by adding a full cylinder between the hollow pillar and the plate, so that the elastic 

energy is better confined in the hollow pillar part [39]. This new structure was first studied in 

the previous section. In this section we give some additional results. 

    In Fig. 4.11, we present more detailed properties of the WGMs. In the left panel, the black 

dotted lines are dispersion curves calculated along the ΓX and ΓM directions of the first 

Brillouin zone with geometric parameters ri/a=0.145, r/a=0.4, h/a=0.45, e/a=0.1, l/a=0.2. 

With this set of parameters, the Bragg and low frequency band gaps still appear along ΓX 

direction while it only remains a Bragg band gap along ΓM direction. In the Bragg band gap, 

two branches of WGMs occur, marked as branch ‘1’ and ‘2’. Two transmission spectra along 

each direction are associated with two different incident waves, namely the fundamental anti-

symmetric A0 Lamb (blue curve) and the symmetric S0 (red curve) Lamb waves. Although 

some mode conversion can occur at the exit of PnC, the transmitted wave keeps essentially its 

original character. Only WGM1 gives rise to a narrow transmitted pass band in both ΓX and 

ΓM directions, more significantly with anti-symmetric Lamb wave excitation, marked as peak 

‘A’ and ‘B’. In the right panel of Fig.4.11, we show the displacement fields of the dominant 

Uz component (displacement along z axis) for peak ‘A’ and ‘B’. The excitation inside the PC 

is symmetric with respect to an xz plane, perpendicular to the pillars and parallel to the 

propagation direction. This is in accordance with the symmetry of the incident wave (either A0 

or S0) with respect to such a plane. In contrast, to obtain a transmission at the frequency of 



102	
	

WGM2, it would be necessary to have an incident wave which has an antisymmetric profile 

with respect to this plane, which means -/+ force in the unit cell along the y direction. To 

explain the higher transmission of WGM1 with the A0 rather than S0 incident wave, it should 

be noticed that the x and y components of its displacement field are mainly localized in the 

upper part of the pillar, around the hollow part, while the z component extends down to the 

bottom of the pillar and is therefore sensitive to a vertical motion in the membrane. However, 

in some other frequency ranges such as [0.2; 0.4], the transmission is much higher with S0 

rather than A0 excitation.  

 

Figure 4.11 Left panel:  Dispersion curves of the confined hollow pillars on a thin silicon plate in the 
ΓX and ΓM directions of the first irreducible Brillouin zone in the reduced frequency range [0; 0.75]. 
On each side of the dispersion curves we give the corresponding transmission spectra in blue and red 
respectively for which the incident wave is either anti-symmetric A0 or symmetric S0. The Bragg and 
low frequency band gaps are marked as red and blue rectangular hatched regions, respectively. The 

geometric parameters are chosen as ri/a=0.145, r/a=0.4, h/a=0.45, e/a=0.1, l/a=0.2; Right panel: Uz 
component of the displacement fields with the anti-symmetric A0 Lamb wave excitation at 

transmission peak A along ΓX direction and peak B along ΓM direction; Uz component of the 
displacement fields of WGM1 and WGM2 at Γ point 

      Figure 4.12 left panel presents the evolution of the two WGMs as a function of the inner 

radius of the hollow pillar. Both WGMs' frequencies decrease when increasing the inner 

radius. Indeed, it is noteworthy that a higher value of the average radius <r> = (r + ri) / 2 of 

the shell around the hollow increases the acoustic path along the perimeter 2π<r> of the 

cylinder. As a result, when ri/a = 0.145 (resp. 0.35), the WGM '1' and '2' fall in the middle of 

the Bragg (resp. low frequency) gap[39]. We also calculate the corresponding quality factor for 
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the WGM 1, Q = f/Δf, where f is the central frequency of the pass band and Δf is the full width 

at half maximum of the transmission peak. The right panel of Fig. 4.12 shows a significant 

increase in the quality factor when increasing the reduced height l/a of the pillar basis. For l/a 

= 0.35, the quality factor is Q = 280, which is more than 10 times the value obtained without 

the additional cylinder, paving the way to a high resolved narrow pass band device for 

filtering applications[39].  

 

Figure 4.12 Left panel: the frequency evolution of the WGM 1 and 2 as a function of the inner radius 
of the hollow pillar. The upper frequency range limited by two horizontal cyan lines is the Bragg 

band gap of background full PnCs (h/a=0.45, r/a=0.4, l/a=0) and the lower one is the low frequency 
band gap. Right panel: The quality factor of the WGM 1 grows when increasing the confinement 

height l/a 

      The WGMs with high quality factors are applied to different kinds of multiplexers, based 

on monochannel or multichannel waveguides or cavity. In Fig.4.13, we show a multichannel 

waveguide consisting of waveguide i with inner radius ri/a=0.12 and waveguide j with inner 

radius rj/a=0.11. The transmission peaks for waveguide i and j are located at reduced 

frequency 0.654 and 0.678, respectively. Besides, an efficient sub-wavelength waveguide is 

also demonstrated as the WGMs can be tuned in the low frequency band gap[39].  
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Figure 4.13 The multichannel wavelength multiplexer: Left panel: Transmission spectrum of the 
antisymmetric Lamb wave when the inner radius inside waveguides i and j are ri/a =0.12 and rj/a 

=0.11; Right panel: Displacement field distributions at the frequency of the two narrow pass bands i 
and j. The geometric parameters of the multiplexer are h/a=0.45, r/a=0.4, l/a=0.2, e/a=0.1 

4.3.2 Active control of the WGMs and new localized modes   

    The objective of this section is to discuss how the filling of the holes with a liquid can 

affect or tune the WGMs and more interestingly gives rise to the occurrence of new localized 

modes in the band gap which are much sensitive to the presence of the fluid. The latter can be 

tuned with the physical and geometrical properties of the fluid, in particular its height. To 

avoid capillary or surface tension effects, it would be more adapted to work with holes of sub-

millimeter size in the MHz regime. However, it should be pointed out that filling of few tens 

nm size holes in hypersonic PC has been performed by micro-fluid ejection technique and 

their phonon dispersion curves measured by Brillouin light scattering experiments (see for 

instance ref. [225, 226]).   

    In Fig. 4.14, we show the dispersion curves of the phononic crystal when the holes are 

filled with water for a few values of the inner radius ri. For water, the mass density is � =998 

kg m-3 and speed of sound is c = 1490ms-1. Let us start with the inner radius ri/a=0.17. The 

modes labeled 1 and 2 are the quadrupolar WGMs discussed in the previous section. However, 

the filling of the holes with water has the effect of giving rise to two new sets of localized 

modes in the band gap. One set, labeled Mc1 and Mc2, corresponds to compressional vibrations 

inside the liquid column almost independently of the solid; they will be discussed in detail in 
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next part. The other set called Mliq is a doubly degenerate new mode which is essentially 

associated to the presence of the liquid and appears in the band gap under some conditions on 

the geometrical parameters. The strongest vibration of this mode occurs in the liquid where 

the displacement field is one order of magnitude higher than in the solid part. When 

decreasing the inner radius ri/a of the pillars from 0.17 to 0.11 (Fig. 4.14), the WGM1,2 as 

well as Mliq see their frequency increasing and going outside the band gap, while the 

frequencies of Mc1 and Mc2 remain unchanged because they are dictated by the height of the 

fluid. 

      

Figure 4.14 Dispersion curves of the hollow pillars on a thin silicon plate in the ΓX direction with 
different inner radii (left) ri/a=0.11, (middle) ri/a=0.14, (right) ri/a=0.17. The other geometric 

parameters are h/a=0.45, r/a=0.4, l/a=0.2, e/a=0.1 

As a complementary view, we show in upper panel of Fig. 4.15, how the localized modes, 

namely WGM1,2, Mc1,2 and Mliq, behave when changing either the inner radius of the hollow 

pillars or the height hw of the fluid filling the hollow part of the pillar of total height h. In the 

upper-left panel, one can see in accordance with Fig.4.14 that with an increasing inner radius, 

WGM1,2 and Mliq decrease to lower frequencies, passing out of the Bragg band gap of the 

full PC (h/a=0.45, r/a=0.4, l/a=0). On the other hand, Mc2 is practically insensitive to the 

inner radii, as the compressional mode in the liquid is only related to the height of the liquid 

(see discussion in next part). In the upper-right panel of Fig. 4.15, we present the evolution of 
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those localized modes as a function of the height hw of water filling the pillar of total height h 

when the inner radius is ri/a = 0.19. The liquid compressional modes Mc1,2 are very sensitive 

to hw whereas the Mliq decreases through the Bragg band gap when hw/h increases from 0.3 to 

1. The latter mode can be then a good candidate to be tuned gradually by changing the height 

of water. The vibration of this mode is presented in the lower panel of Fig. 4.15, both in the 

solid and liquid part. One can see that the elastic and acoustic fields are mainly oriented along 

the diagonal direction of the square lattice. The vibration in the solid is mostly localized at the 

top of the pillar although there are still some displacements left in the plate. In the liquid part, 

the pressure field behaves like a dipolar motion, with -max and +max along the same diagonal 

direction.  

Finally, let us notice that the quadrupolar WGM1,2 can also be tuned by the height of 

water, but with very small shifts. It should be noticed that WGM1,2 are essentially originating 

from the solid pillars in the absence of the liquid. Even with filling the holes, their acoustic 

energy remains mostly localized in the solid region surrounding the hollow part, although the 

vibration in the liquid becomes not negligible. This penetration of the wave into the liquid 

should soften the mode and decrease its frequency, although the effect remains small with 

water. In Fig. 4.19 we shall see that filling the holes with mercury which has a much higher 

impedance than water, and therefore comparable to silicon, will affect more strongly the 

frequency of WGMs.    
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Figure 4.15 Upper-left panel: evolution of WGM1 (black dotted line), WGM2 (red dotted line), Mc1 
(cyan dotted line), Mc2 (blue dotted line), Mliq (green dotted line) as a function of inner radius when 
the hollow pillars are fully filled with water (hw/h=1). The two horizontal pink dotted lines are the 

limits of Bragg band gap of the full PnC; Upper-right panel: evolution of WGM1 (black dotted line), 
WGM2 (red dotted line), Mc1 (cyan dotted line), Mc2 (blue dotted line), Mliq (green dotted line) as a 

function of the height of filling water hw/h when the inner radius is ri/a=0.19. Lower panel: 
representation of the acoustic (pressure) and elastic (displacement) field of the mode Mliq respectively 
in the fluid and solid part for hw/h=1 (left) and hw/h=0.5 (right) when ri/a=0.19. The other geometric 

parameters are h/a=0.45, r/a=0.4, l/a=0.2, e/a=0.1 

4.3.3 Compressional modes along the height of the liquid 

In this section, we discuss the modes called Mc in the previous section, which are 

associated to vertical motion inside the fluid. Due to the high impedance mismatch between 

most of the liquids and a hard solid, these modes are mainly localized inside the fluid. We 

give two illustrations about the sensitivity of these modes to the physical properties of the 

liquid and the variation of its parameters as a function of temperature.  

First, it should be noticed that if the holes are filled with a liquid such as water which has 

a very smaller impedance than silicon, the frequency of the compressional modes are given 

with a very good precision by the resonance frequencies of a tube of height hliq with rigid 

lateral boundaries, rigid bottom boundary and free upper boundary. The expressions of the 

frequencies are then fn = (2n+1)c / 4 hliq, where n is the resonance number (0, 1, 2, 3, ...), c is 
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the speed of sound in the fluid; this means that the height can accommodate stationary waves 

at λ/4, 3λ/4,… 

    In Fig.4.16, the hollow pillar filled with water has geometric parameters as h/a=0.4, 

r/a=0.39, ri/a=0.1, hw/h=1, l/a=0.1. The first and the second compressional liquid frequencies 

are fc1 = 0.197 and fc2 = 0.587, corresponding to a wavelength λc1/h = 4 and λc2/h = 4/3, 

respectively, as shown clearly in the pressure distributions in the left panel. The set of 

geometric parameters are chosen to move the WGMs to higher frequencies outside of the 

Bragg band gap. From the right panel, the first compressional liquid mode is at the edge of the 

low frequency band gap while the second one is in the middle of the Bragg band gap. We 

focus on the second compressional liquid mode, as the Bragg band gap is broader and more 

potential in the applications. 

 

Figure 4.16 Left panel: 3D-schematic view of the pressure fields in water of the Mc1 (left-lower) and Mc2 
(left-upper) compressional modes; Right panel: Dispersion curves of the PC with geometric parameters 

h/a=0.4, r/a=0.39, ri/a=0.1, hw/h=1, l/a=0.1, e/a=0.1 along ΓX direction 

In a first example, we consider a set of mixtures of water and 1-propanol at different 

molar ratio x. We use the mass density and speed of sound at different molar ratio x as shown 

in Table 4.1 from refs[188, 189].   
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Table 4.1 Density and speed of sound of a mixture of water and 1-propanol at different molar ratio x 

The Mc2 in the Bragg band gap is isolated, allowing a phononic sensor application to 

sense the probed parameters on a sufficiently broad frequency range. The efficiency of the 

phononic sensor is detected by changing the physical properties of the filled liquid in the 

hollow pillar. Six kinds of liquids are employed to test the efficiency[188, 189]. Figure 4.17 left 

panel presents the evolution of the Mc2 induced transmission peaks as a function of the 

acoustic velocity. It is observed that the transmission peaks are very sensitive to the acoustic 

velocity of the infiltrated liquid, with high quality factors Q = f/Δf larger than 1000. Figure 

4.17 right panel shows the relationship between the frequency of transmission peak and the 

corresponding acoustic velocity. In order to qualify the sensitivity, a common measurement is 

to calculate the slope of the lines in the right panel, named sensitivity S, as S =Δf/Δc, where 

Δf is the difference of the reduced frequencies of two infiltrated liquids and Δc = (cliq
i-cliq

j)/vt 

is the difference of the reduced velocities of two infiltrated liquids by dividing to the 

transverse velocity of silicon vt to have a dimensionless quantity. The average of S is 1.761, 

with a deviation 2.53% for the minimum and 0.87% for the maximum. 
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Figure 4.17 Left panel: Evolution of the second liquid compressional mode induced transmission 
peak (lines, corresponding to the left y-axis) and quality factor (dots, corresponding to the right y-
axis) as a function of the acoustic velocity of filled liquid. The geometric parameters are h/a=0.4, 

r/a=0.39, ri/a=0.1, hliq/h=1, l/a=0.1, e/a=0.1. Right panel: The frequency of transmission peak 
corresponds to the acoustic velocity of different fluids 

Furthermore, it is well known that the mass density and acoustic velocity of water will 

change if we vary the temperature of the liquid. We take the mass density and the acoustic 

velocity of water at different temperatures as shown in Table 4.2 from ref[41]. The temperature 

affects the elastic constant of silicon one order of magnitude lower than for the liquid[227] . So 

we assume that the temperature of solid background of the PC is kept fixed at the room 

temperature and the thermal property of the water in the hollow pillars is isolated from the 

solid background. The geometric parameters of the PC are h/a=0.4, r/a=0.39, ri/a=0.1, hw/h=1, 

l/a=0.1. By tuning the temperature of water from 0°C to 70°C, the frequency of the Mc2 

increases with its corresponding quality factor decreasing, as shown in Fig.4.18. In the range 

of [0°C; 50°C], the frequency moves significantly in the step of 10°C. Therefore, tuning the 

temperature of the infiltrated liquid is another way to actively control the Mc2 induced 

transmission peak.  
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Table 4.2. Mass density and acoustic velocity of water at various temperatures 

 

Figure 4.18 Varied frequencies (blue triangular dots) and corresponding quality factors (red circle 
dots) of the second liquid compressional mode by tuning the temperature of water in the holes. The 

geometric parameters are h/a=0.4, r/a=0.39, ri/a=0.1, hw/h=1, l/a=0.1, e/a=0.1 

4.3.4 Influence of filling the holes with mercury on whispering gallery 

modes     

    The common liquids have very small impedance comparing to silicon. However, there is 

one liquid in nature, namely mercury, whose impedance is even a bit higher than silicon. We 

also studied the behavior of WGM1 as a function of the inner radius when the holes are filled 

with mercury of different heights and compare the results with the case of water. Fig.4.19 

presents that at each inner radius, the upper end of the vertical bar is the frequency of WGM1 

when the inner hole is empty and the lower end is the frequency when the inner hole is 

entirely filled with liquid; the red dotted bars are for mercury and, as a matter of comparison, 
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the blue dotted bars for water. For mercury, the mass density is �=13,600 kg m-3 and speed of 

sound is c = 1490ms-1. The upper frequency range limited by two horizontal cyan lines is the 

Bragg band gap of background full PCs (h/a=0.45, r/a=0.4, l/a=0) and the lower one is the 

low frequency band gap. The tunable frequency range of the WGM1 increases when the inner 

radius becomes larger, as the corresponding filling ratio ϕ = Ahole / Apillar increases, where 

Ahole, Apillar are the area of inner hole and whole pillar, respectively. For a given inner radius, 

the tunable frequency range for mercury is wider than that for water due to the fact that the 

impedance Zm = �c of mercury is much larger than the impedance of water, even larger than 

that of silicon. In the Bragg band gap, mercury plays a more important role in actively 

controlling the WGM1.  

 

Figure 4.19 Varied range of WGM 1 frequency when the holes are respectively empty or fully filled 
with the liquid: water (blue dotted lines) and mercury (red dotted lines), corresponding to different 

inner radii. The other geometric parameters are h/a=0.45, r/a=0.4, l/a=0.2. The upper frequency 
range limited by two horizontal cyan lines is the Bragg band gap of background full PnCs (h/a=0.45, 

r/a=0.4, l/a=0) and the lower one is the low frequency band gap 

    Due to the fact that the property of the liquid is easier to control than that of the solid, we 

can realize an active control of the PC’s functionalities, such as waveguiding or sensing. In 

Fig. 4.20, we present the evolution of the WGM1 frequency and its corresponding quality 

factor by changing the height of the fluid in the holes. To be specific, by increasing the height 

of mercury, the frequency of WGM1 moves to lower values, plotted in blue triangle dots, 
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especially in the range hm/h > 0.4. The red dots show that the quality factor of WGM1 does 

not change too much within the range hm/h =[0; 0.6] and increases from 140 at hm/h=0.6 to 

210 at hm/h=1. The regime where the WGM1 changes significantly with respect to hm still 

locates in the Bragg band gap, allowing for the realization of an actively tuned multichannel 

wavelength multiplexer.  

 

Figure 4.20 The evolutions of the WGM 1 frequency (blue triangle dots) and its corresponding 
quality factor (red circle dots) as a function of the filled mercury height. The geometric parameters 

are h/a=0.45, r/a=0.4, l/a=0.2, ri/a=0.11 

    To illustrate the latter application, we consider a 5×6 super cell with periodic conditions 

applied in the y axis and Perfect Matched Layer applied in the direction of propagation x, as 

shown the inset of Fig.4.21 left panel. The PC contains two separated waveguides c and d, 

which are constituted by two rows of the same hollow pillars filled with mercury at hm
c/h=0.4 

and hm
d/h=0.9, respectively. The geometric parameters for the two waveguides are h/a=0.45, 

r/a=0.4, l/a=0.2, ri/a=0.11. The background full cylinders have parameters as h/a=0.45, 

r/a=0.4, l/a=0. The transmission is detected by exciting the anti-symmetric Lamb wave in 

front of the PC. In the left panel, two narrow pass bands c and d appear in the Bragg band gap 

at reduced frequency 0.66 and 0.61, respectively. The higher height of mercury significantly 

shifts the transmission frequency to a lower value inside the band gap. The corresponding 
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displacement field distributions in the solid silicon are presented in the right panel of Fig. 4.21, 

showing a multichannel wavelength multiplexer behavior.  

 

Figure 4.21 The multichannel wavelength multiplexer: Left panel: Transmission spectrum of the 
antisymmetric Lamb wave when the filled mercury heights inside waveguide c and d are hm

c/h=0.4 
and hm

d/h=0.9; Right panel: Displacement field distributions at the frequency of the two narrow pass 
bands c and d. The geometric parameters of the multiplexer are h/a=0.45, r/a=0.4, l/a=0.2, ri/a=0.11 
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4.4 Phononic crystal plate with hollow pillars connected by thin 

bars  

4.4.1 Band structure and whispering-gallery modes 

The phononic crystal studied in this paper is constituted by a square array of hollow 

pillars on a tailored plate where the pillars are connected to each other by a thin bar. A unit 

cell of the structure is depicted in Fig. 4.22. The confinement, and hence the quality factor, of 

the WGM localized at the top of the hollow pillars can be increased by possibly adding a full 

cylinder at their bottom. The geometrical parameters are the lattice constant a, the plate’s 

thickness e, the width of the bars b, the height of confinement full pillar l, the height of hollow 

pillar h and their inner radius ri and outer radius r. The whole unit cell is made of cubic silicon, 

with elastic constants c11=166GPa, c12=64GPa, c44=79.6GPa and the mass density �=2330 

kgm-3. The crystallographic axes [100] and [010] of silicon are chosen parallel to the x and y 

axes, respectively. Periodic boundary conditions are set to each side of the unit cell in the (x, 

y) plane. Dispersion curves as well as transmission curves are calculated by the finite element 

code COMSOL Multiphysics® as a function of reduced frequency ωa/2πvt, where vt =4678 

ms-1 is the transverse velocity of acoustic wave in silicon along the [110] direction in the (001) 

plane. 
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Figure 4.22 Left: 3D-schematic view of the unit cell: hollow pillar with inner radius ri, outer radius r and 
height h, together with a confinement full cylinder with height l at its basis, deposited on a tailored plate 
(thickness e) with four identical bars (width b); Right: the irreducible Brillouin zone of the square lattice 

      The band structure of the phononic plate mainly depends on the width of the connecting 

bars b. In Fig. 4.23, we show the dispersion curves of the full pillar (ri/a=0) deposited on 

tailored plate with b/a=1 (full plate) at left and b/a=0.1 at right, along both ΓX and ΓM 

directions. The other geometric parameters are r/a=0.4, h/a=0.45, e/a=0.1, l/a=0.2. At left 

for the case of b/a=1, an absolute Bragg band gap with center reduced frequency at ωca/2πvt 

=0.593 and an absolute low frequency band gap with center reduced frequency at ωca/2πvt 

=0.160 are presented. We define a relative size of a band gap[85] as Δω/ωc, where Δω is the 

gap width. The relative sizes for the Bragg band gap and low frequency band gap are 0.359 

and 0.111, respectively. Between the two gaps, there are two flat branches, named as branches 

‘aa’ and ‘bb’, which are respectively associated with the rotation of the pillars and with 

vibrations localized at the corners of the unit cell. Two inserts clearly show the displacement 

fields of branch ‘aa’ and ‘bb’ at Γ point. The red and dark blue colors in the displacement 

fields represent the maximum and 0 values, respectively, which are the same for all the 

calculations in this paper. 

In the right panel of Fig. 4.23, with a very narrow connecting bars b/a=0.1, the branch 

‘bb’ can be avoided because there is no matter at the corners of the unit cell contrary to the 

case considered in the left panel of Fig. 4.23. In addition, the unit cell with narrow bars makes 

the pillars easier to rotate or bend, so that the branch ‘aa’ and those related with torsion or 

bending will move to lower frequency regions. Therefore, from the dispersion curves, one can 

notice an extra absolute wide gap (light pink colored area) and one extreme low frequency 

gap along ΓX direction (dark pink colored area). The extreme low frequency gap along ΓM 

direction cannot be maintained. Since the branch ‘aa’ moves to a lower frequency and 

branches related with bending become more flat, the original absolute Bragg gap extends to a 
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very low frequency value (sub-wavelength region) with relative size increased to 1.223 and 

the low frequency band gap even moves to extreme low frequency regions in ΓX direction 

with the relative size 0.508. Such dispersion properties bring great potentials in sub-

wavelength studies in the field of acoustic metamaterials. 

 

Figure 4.23 Dispersion curves of a phononic crystal plate consisting of the full cylinder (ri/a=0) on the 
tailored plate with the width of bars as b/a=1 (left) and b/a=0.1 (right) in the ΓX and ΓM directions of the 

first irreducible Brillouin zone in the reduced frequency range [0; 1]. Two inserts are pointed to two 
branches labeled ‘aa’ and ‘bb’ at left, respectively, where the red and dark blue colors represent the 

maximum and 0 values, respectively. At right, the light pink colored area and dark pink colored area 
present the extra wide gap and extreme low frequency gap, respectively. The geometric parameters are 

r/a=0.4, h/a=0.45, e/a=0.1, l/a=0.2 

      The band gap diagram in Fig. 4.24 shows the evolutions of the Bragg band gap and low 

frequency gap in both ΓX (blue lines) and ΓM (red lines) directions as a function of the width 

of connecting bars b. For ΓX direction, as shown by blue lines, the lower edge of the Bragg 

gap continuously shifts downwards when decreasing b/a while its upper edge first shifts 

downwards until b/a=0.8, then increases to higher frequency ranges for lower values of b/a. 

As a result, the bandwidth of the Bragg gap turns to be much wider when b/a has a small 

value, for instance the width becomes about 0.6 in reduced frequency when b/a=0.1. On the 

other hand, the upper edge of low frequency gap keeps almost the same value when b/a is 

within [0.4; 1]. Then when b/a decreases to lower values, the low frequency gap moves to 

extreme low frequency range. For ΓM direction, as shown in red lines, the Bragg gap firstly 

becomes narrower when b/a changes from 1 to 0.8, then it even divides into two parts when 

b/a=0.7, afterward it significantly becomes wider (similar to the behavior along ΓX direction) 
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for lower values of b/a down to 0.1. The low frequency band gap can be maintained for b/a in 

the range [0.4; 1], whereas it disappears when b/a is smaller than 0.4. To conclude, by 

decreasing b/a, the absolute Bragg band gap firstly becomes narrower then turns to be much 

wider and extends to sub-wavelength range; the absolute low frequency band gap can be 

maintained when b/a is not smaller than 0.4, otherwise the gap is kept only along ΓX 

direction and moves to extreme low frequency ranges. 

 

Figure 4.24 Band gap diagram of the phononic crystal plates with different widths of the bars (b/a is from 
0.1 to 1). The blue lines stand for band gaps along ΓX direction and the red lines stand for band gaps 

along ΓM direction 

To be noted, in Ref[86] , hybrid phononic crystal plates can also generate low and wide 

acoustic forbidden bands because the acoustic waves are scattered by both of the pillars and 

holes. The bottom limit of Bragg band gap can be extended to lower frequencies by a factor of 

2 (from 52 kHz to 28 kHz), however the low frequency band gap becomes closed. In our new 

system, by narrowing the width of the connected bars, we allow the pillars to bend and rotate 

more easily, so the branches related with bending and torsion will become more flat and move 

to lower frequency range, such as branch ‘aa’. Meanwhile, in the narrowed tailored plate, 

there is no matter at the corners of original full square plate, so the branch ‘bb’ can be 

suppressed. It results a widening and lowering the Bragg band gap whose bottom limit can be 

extended from reduced frequency 0.44 to 0.2. Meanwhile the low frequency band gap can be 

maintained and moved to lower frequency range. Let us also notice that, the Bragg band gap 
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can widened as much as 3 times (about 2 times in the Ref[86]) while remaining clean of any 

other branches inside.  

In the following we shall investigate the properties and applications of the WGM 

confined at the top of hollow pillars in the case where the width of the connecting bars is 

fixed to b/a=0.1, considering a modulation of the inner radius of the pillars. Figure 4.25 

summarizes the behavior of new modes that appear in the dispersion curve, i.e. quadrupolar 

(black dot-line), hexapolar (red dot-line) and octopolar (green dot-line) WGMs as a function 

of the inner radius ri of the hollow pillar. Their corresponding displacement distributions are 

respectively given in Fig. 4.25. The quadrupolar WGM already falls at the top of the extra 

wide bang gap for a very small inner radius of ri/a=0.05, then its frequency decreases until 

0.165 when ri/a=0.37 before slightly increasing for the highest radii. Hexapolar and octopolar 

WGM's penetrates into the band gap only when ri/a > 0.25 and ri/a > 0.31 respectively. Their 

frequencies also decrease when the inner radius increases until they leave the band gap for ri/a 

around 0.38. It is worth noticing that the occurrence of several WGM's in the band gap is 

made possible by the new geometry adopted in this work where the pillars are connected by 

thin bars. In the case of pillars on a full plate[39, 228] only the quadrupolar WGM appear in the 

main band gap whereas the other WGM's remain always above the gap. Another point to 

mention is that all the three orders of WGMs reach the sub-wavelength domain with reduced 

frequencies about 0.2~0.3, but they do not enter the extreme low frequency band gap 

delimited by two solid pink lines. We shall see in section 4.4.2 that filling the hollows with a 

liquid can also give rise to localized modes in the low frequency gap.  
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Figure 4.25 Evolution of WGMs frequencies with quadrupolar (black dot-line), hexapolar (red dot-line) 
and octopolar (green dot-line) shapes as a function of inner radius ri/a. The wide (resp. low frequency) 

band gap in ΓX direction is delimited by two horizontal dotted (resp. solid) pink lines. The inserts show 
the displacement fields of the three polar-shapes of WGMs with inner radius ri/a=0.35 at reduced 

frequency 0.176, 0.294 and 0.498, which corresponds to quadrupolar, hexapolar and octopolar shape, 
respectively. Other geometric parameters are b/a=0.1, r/a=0.4, h/a=0.45, e/a=0.1, l/a=0.2 

Figure 4.26 presents the dispersion curves and transmission spectra of phononic crystal 

plates where the inner radius is chosen to respectively emphasize the quadrupolar, hexapolar 

and octopolar WGMs around the reduced frequency 0.35. In the transmission calculations, 

each phononic crystal contains 6 unit cells along the propagation direction x, whereas it is 

infinite along y direction with periodic conditions applied between neighboring cells. The 

calculation area along x is delimited by Perfect Matched Layers (PML) on both sides. The 

incident wave launched towards the phononic crystal is an A0 Lamb mode of the plate. In the 

left dispersion curve of Fig. 4.26, two separate quadrupolar WGMs appear between the 

reduced frequency 0.3 and 0.4. That two modes present the same whispering-gallery shape 

inside the hollow cylinder but differentiate from each other by a rotation of 45 degree. 

However, the higher one cannot give rise to a transmission, as its displacement profile does 

not have the appropriate symmetry with respect to the incident plane wave[228]. Indeed it is to 

be noted that the localized bands in the dispersion of phononic crystal plate can be excited if 

the symmetry of the source is consistent with the symmetry of the localized mode. The 

transmitted peak of the lower mode appears at the reduced frequency 0.34. We also calculate 

its corresponding quality factor, Q = f / Δf = 398, where f is the central frequency of the pass 
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band and Δf is the full width at half maximum of the transmission peak. Below the dispersion 

and transmission spectra, we report the total displacement field calculated at the frequency of 

the peak from which one can clearly see the quadrupolar whispering-gallery mode which 

propagates through the hollow phononic crystal. 

For the hexapolar WGMs shown in the middle of Fig. 4.26, two close branches exist but 

now almost at the same frequency. The difference between the two modes comes from a 

rotation of 30 degree in their displacement field. The transmitted peak appears at the reduced 

frequency of 0.329, inside the gap, and the quality factor reaches a theoretical value larger 

than 15,000, which is much higher than that of the quadrupolar WGM.  

The same scheme of calculations has been followed for the octopolar WGM and is 

reported in the right panel of Fig. 4.26. In this case, keeping the same geometrical parameters 

than in the previous case, we get a quality factor higher than 15000. Moreover, this mode can 

still display a high quality factor of 2185 even if the height of the confinement l/a is reduced 

from 0.2 to only 0.05. 

 

Figure 4.26 Dispersion curves and transmission spectra for respectively quadrupolar, hexapolar and 
octopolar WGM's. Left: ri/a=0.25, l/a=0.2; Middle:  ri/a=0.34, l/a=0.2; Right:  ri/a=0.36, l/a=0.05.  In each 

panel, the displacement field distributions at the bottom correspond to the arrowed transmitted peak. 
Other geometric parameters are r/a=0.4, h/a=0.45, e/a=0.1, b/a=0.1 

To illustrate the functionality of the above structure for guiding and filtering applications, 

we design a multichannel wavelength multiplexer consisting of a 5×6 super cell as shown in 
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the insert of Fig. 4.27. If the localized mode of waveguide locates in the band gap of 

background phononic crystals and it has the same symmetry in displacement distribution as 

incident wave, then a pass band can be found in the corresponding transmission. The 

phononic crystal plate contains two different linear waveguides separated from each other by 

one row of full pillars to avoid leakage between the waveguides. The inner radius of the 

hollow pillars inside the waveguide P1 and P2 are respectively ri
P1/a=0.27 and ri

P2/a=0.34 

with the other geometric parameters r/a=0.4, h/a=0.45, e/a=0.1, b/a=0.1, l/a=0.2. The 

transmission spectrum, displayed in the left panel of Fig. 4.27, features two narrow passing 

bands P1 and P2 located in the band gap at the reduced frequencies 0.299 and 0.329. In the 

right panel of Fig. 4.27, it is shown that the transmission pass bands P1 and P2 are induced by 

quadrupolar and hexapolar WGMs, respectively. This can be seen from the shape of the 

displacement fields in waveguides P1 and P2 which are quadrupolar WGM in waveguide P1 

and hexapolar WGM in waveguide P2. Their respective quality factors are 180 and 19200. As 

the hexapolar WGM is more confined, its maximum displacement is much larger than 

quadrupolar WGM (by a factor of 17 for their maxima). For this reason the vibrations 

associated with the incident and transmitted fields in the plate are too small to be presented 

with the same color bars in the case of the hexapolar mode in waveguide P2. 
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Figure 4.27 Left panel: (Inset) Schematic representation of the multichannel wavelength multiplexer; 
(Graph) The transmission spectrum of the anti-symmetric Lamb wave when the inner radius of the 

hollow pillars in the waveguides P1 and P2 are ri
P1/a=0.27 and ri

P2/a=0.34. Right panel: Displacement field 
distributions at the frequency of the two peaks P1 and P2, which correspond to quadrupolar and 

hexapolar WGMs, respectively 

4.4.2 Tunable properties by liquid filling 

In this section we investigate the existence and tuning of localized modes in the band 

gaps when the hollow parts of the pillars are partly or fully filled with a liquid. The tuning 

parameters may be the nature or the height of the fluid as well as the temperature, which can 

change the acoustic properties of the fluid. The localized modes may originate from the 

WGM's of the solid structure modified by the presence of the liquid or result essentially from 

the presence of the fluid. In a first part, we consider the special case of the mercury whose 

impedance is close to that of the solid silicon while having a much lower acoustic velocity 

and show the possibility of localized mode in the low frequency gap. In a second part, we 

investigate the case of usual fluids with density close to 1000 kg.m-3 and acoustic velocities in 

the range of 1000~2000 m/s and discuss both the tuning of the WGM's as well as the 

existence of new modes induced by the fluid.  
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      For mercury, the mass density is ρ =13,600 kg.m-3, and the speed of sound is c =1490m.s-1. 

In Fig. 4.28, the hollow parts of the pillars are fully filled with mercury, i.e. hm/h=1. As can be 

seen in the band diagram, the two-close quadrupolar WGMs become very close to each other, 

moving to the center of the extreme low frequency band gap,. In the transmission spectrum, 

one can see only one transmitted peak at the reduced frequency of 0.057 and a Q factor of 134. 

This peak corresponds to the quadrupolar mode which presents the appropriate symmetry 

with respect to the incoming wave, as discussed above. So, for a constant value of the inner 

radius (ri/a =0.37), the device presents the opportunity to tune the frequency of the 

quadrupolar mode in a wide range of frequency, from 0.165 when the hollow cylinders are 

empty (see figure 4.25) to 0.057 when the hollow cylinders are fully filled with mercury. The 

lower panel of Fig. 4.28 presents separately the displacement field distribution in the solid 

part (left) and the pressure field in the liquid (right) at the frequency of the transmission peak 

‘p’. One can see that the quadrupolar whispering-gallery mode is localized, as previously, 

inside the solid but presents an interaction with the liquid via the interface. It means that the 

sensitivity of the mode depends strongly from the strength of that solid/liquid interaction. 

The localized mode around 0.1 is hexapolar WGM which can also produce a very narrow 

transmission peak in the broad pass bands, with a quality factor more than 30 times than that 

of quadrupolar WGM, as also seen in the discussion of Fig. 5. At the frequency of 0.025, the 

S0 and SH0 branches deviate and also become flat near X point, however, they cannot 

generate a significant transmission as the dominant components of their displacement field are 

in plane while the dominant component of the A0 incident wave is out of plane. 
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Figure 4.28 Upper panel: Dispersion curves (left) and transmission curve (right) for quadrupolar WGMs 
inside the extreme low frequency band gap when the hollow part is fully filled with mercury. The 

geometric parameters are ri/a =0.35, r/a=0.4, h/a=0.45, e/a=0.1, b/a=0.1, l/a=0.2, hm/h=1. Lower panel: 
displacement (left) and pressure (right) distributions in solid and liquid, respectively, for the reduced 

frequency at peak 'p' 

In the next part, we assume that the hollows are filled with water whose mass density ρ 

=998 kg.m-3 and speed of sound c =1490m.s-1 are close to those of most common liquids. 

Figure 4.29 gives the evolution of the localized modes in the main band gap as a function of 

the height hliq of the water when the inner radius of the hollow is very small (ri/a =0.05). First, 

one can recognize the quadrupolar WGM at the reduced frequency of 0.8 (black solid line) 

which is almost independent of the amount of liquid, owing to the large difference between 

the acoustic velocities and impedances in water and in silicon. For this small inner radius, the 

other orders of WGMs occur at higher frequencies, above the upper limit of the gap. Beside, 

two other localized branches appear in the gap which can be identified as the fundamental and 

first order compressional modes (Mc0 and Mc1) along the height of the liquid. Their 

frequencies can be easily identified as the resonance frequencies of a tube of height hliq with 

rigid lateral boundaries, a rigid bottom boundary and a free upper boundary. The expression 

of resonances for such a simple model of acoustic tube is fn=(2n+1)c/4hliq, where n is the 

resonance order (0,1,2,3,…).  

Because of the localization of the acoustic pressure, Mc0 and Mc1 are very sensitive to the 

liquid’s height, with a good correspondence between the analytical expression and actual 
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behaviors. Mc0 decreases throughout the extra wide band gap when hw/h increases from 0.20 

to 0.85, meaning that the device presents a good candidate for tuning gradually the frequency 

of the transmitted peak by changing the height of water.  

 

Figure 4.29 Evolution of quadrupolar WGMs (black dot-line), Mc0 (cyan dot-line) and Mc1 (blue dot-line) 
as a function of water filling height hw/h. The inserts show the pressure distributions in the liquid for the 
fundamental and the first order compressional modes. The two horizontal dotted pink lines (resp. solid 
pink lines) show the limits of the extra wide band gap (resp. extreme low frequency band gap). Other 

geometric parameters are ri/a =0.05, r/a=0.4, h/a=0.45, e/a=0.1, b/a=0.1, l/a=0.2 

      The above modes originated mainly either from the solid structure or from the filling 

liquid. We show now the occurrence of new coupled (Solid / Liquid) modes that result from 

the interaction between the solid and liquid when one increases the inner radius ri/a. Figure 

4.30 shows the evolution of the localized modes, including modes Mc0, Mc1, WGM4 

(quadrupolar), WGM6 (hexapolar), WGM8 (octopolar), as well as two new branches called 

S/L1 and S/L2, when varying the inner radius of the hollow pillars. The quadrupolar, 

hexapolar and octopolar WGMs have similar shapes as the ones shown in Fig. 4.25. For 

compressional Mc0 and Mc1 modes, when the inner radius ri/a is no larger than 0.3, the silicon 

hollow pillars can be regarded as rigid comparing to filled water, so that their frequencies do 

not depend on the inner radius. However, if ri/a is larger than 0.3, the silicon wall of the 

hollow pillars become thinner, and cannot be regarded as totally rigid, which results in a slight 

decreasing of the frequencies of Mc0 and Mc1 modes. Besides, there are other localized Solid / 
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liquid modes, namely S/L1 and S/L2, whose pressure fields are presented in the liquid parts 

and displacement fields are presented in the solid parts, as shown in the right panel of Fig. 

4.30. In general, the S/L1 and S/L2 also decrease when increasing the inner radius. These 

modes where the vibrations penetrate in both the solid and the liquid appear to be sensitive to 

both the inner radius of the pillars and the height of the fluid. This possibility of tuning them 

with two different parameters can make them useful in different applications such as sensing 

or waveguiding.  

 

Figure 4.30 Left panel: Evolution of localized modes Mc1, Mc2, WGM4, WGM6, WGM8, S/L1 and S/L2as 
a function of the inner radius ri when the hollow pillars are fully filled with water (hw/h=1). The two 
horizontal dotted pink lines are the limits of the extra wide gap. Right panel: Representation of the 

pressure and displacement fields for the modes S/L1 and S/L2, respectively. Other geometric parameters 
are r/a=0.4, h/a=0.45, e/a=0.1, b/a=0.1, l/a=0.2 
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4.5 Conclusions 

      In this chapter, we firstly theoretically investigated the vibration properties of a phononic 

crystal plate with hollow pillars on top. The computed dispersion curves show the occurrence 

of two new branches of dispersion that do not appear in the native phononic crystal. These 

branches originate from the excitation of quadrupolar whispering gallery modes (WGM’s) 

circulating around the upper boundary of the hollow pillar. By changing the inner radius of 

the hollow cylinder, we have been able to tune the frequencies of the WGM’s inside the 

Bragg band gap. Through the computation of the transmission coefficient of an anti-

symmetric Lamb wave, we have shown that one of the WGM gives rise to a transmitted pass 

band that can be used as a filter. The quality factor of the filter has been further improved by 

inserting a solid cylinder in between the plate and the hollow pillar. We then applied the high 

resolved filter to different kind of multiplexers, based on multichannel or monochannel 

waveguides or cavity. We also showed that the WGMs can reach the low frequency range, 

adding new type of elastic field localization inside the resonators, with the opportunity to 

perform interactions with the existing low frequency band gap. The demonstration of an 

efficient sub-wavelength waveguide with high quality factor has been done.  

      Then, we studied the dispersion and transmission excited by both anti-symmetric and 

symmetric Lamb waves along ΓX and ΓM directions, and found that the WGM1 can be well 

excited by anti-symmetric Lamb wave and generate a narrow pass band. Then we filled the 

inner holes with liquids and figured out that the frequency of WGM1 decreases while the 

corresponding quality factor increases with the height of liquid. We discussed a functionality 

to design an active multichannel wavelength multiplexer by tuning the height of liquids in the 

waveguides. Besides, a simple theoretical model is provided to explain the compressional 

liquid modes in the hollow pillars. These modes are isolated in the broad Bragg band gap with 

high quality factors larger than 1000, and applied to design a phononic sensor to sense a 
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mixture of water and 1-propanol at different molar ratio x with a high efficiency. By 

increasing the temperatures in the infiltrated liquid, the frequency of the second 

compressional mode moves to higher frequencies, realizing an active control.  

       Finally, we presented a new type of tailored phononic crystal plate whose unit cell is 

constituted by pillars connected by thin bars instead of being deposited on a full plate. By 

narrowing the bars, the Bragg band gap becomes much wider and extends to sub-wavelength 

region while the low frequency gap moves to extreme low frequency region. We have shown 

that the structure can generate several types of whispering-gallery modes (WGMs), namely 

quadrupolar, hexapolar and octopolar, inside the band gaps. Especially, the hexapolar or 

octopolar WGMs have very high quality factors. If the hollow pillars are filled with liquids, 

WGMs can further decrease to extreme low frequency gaps, and become useful in the 

applications of acoustic metamaterials. The localized compressional liquid modes can be 

tuned by changing the height of filling liquid and analyzed by a simple physical model, which 

proved to be a good candidate in applications as it can be gradually tuned through the whole 

extra wide gap. Finally we found that the liquid-filling hollow pillars give rise to other 

coupled modes, localized both in the solid and the liquid S/L1 and S/L2 in the extra wide 

band gap, with dipolar shape pressure fields in liquid. Each type of mode could find different 

physical applications with respect to the nature of the liquid and/or the solid. The phononic 

crystal plate with higher orders of WGMs and localized compressional and dispolar-shape 

liquid modes can be applied to wireless communication and sensing with the possibility of 

active control, such as tuning the filling liquid height and temperature.  

     Pillars or hollow pillars in micro/nano scale can be fabricated by various technologies, 

such as reactive ion etching[229], photoelectrochemical etching[230], and using chemically 

etched silica needles as templates[231]. The experimental technique can be carried out based on 

laser generation by Nd: YAG laser and detection of acoustic pluses by Michelson 
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interferometer[232] or interdigital transducers which can be fabricated by a standard 

lithography process[233].  
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Chapter 5  

Scattering property by Pillar-Type 
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5.1 Introduction 

      Locally resonant sonic materials are artificially structured composites designed to exhibit 

negative effective mass density and/or elastic constants at some frequencies[2]. They are based 

onto the insertion into a background (3D) or on a free surface (2D) of local resonators having 

lateral sizes much smaller than the wavelength of the elastic wave so that homogenization 

theories applied. Unusual responses are then observed: the material expands upon 

compression when the compressibility gets negative and moves in the left when pushed 

toward the right if the mass density is negative. Although the periodicity is not a requirement, 

these resonators are generally regularly arranged and therefore Bragg scattering may occur 

when the acoustic wavelength is of the order of the spacing between the inclusions. Beside 

this expected feature, flat bands related to the normal modes of the resonators occur in the 

band structure at much lower frequencies as compared to the Bragg band gap. This property 

was first recognized in the seminal work of Liu et al.[12] and further exploited by  Li and  

Chan[48] who demonstrated the double negativity in a phononic crystal made of rubber spheres 

arranged in a fcc lattice in water. In both systems, the negative compressibility resulted from a 

monopolar resonance of the rubber spheres, whereas a dipolar resonance yielded to the 

negative mass density. Very recently, negative density in a liquid foam[234] and negative 

acoustic index in Mie resonators made of random suspension of soft silicone rubber micro-

beads[58, 235] have been demonstrated. Both parameters become negative when the motion of 

the centers of mass of the resonators is 180° out-of-phase with respect to the waves 

propagating in the background. If moreover the geometrical parameters of the crystal 

(diameter of the spheres, filling ratio…) are chosen in such a way that the mass density and 

the compressibility are both negative in the same frequency band, the elastic waves become 

propagative. However all these unique properties are achievable only because the speed of 

sound in the soft rubber or in the bubbly liquid is of a few tens of m.s-1, lower by orders of 
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magnitude than the speed of sound in the epoxy matrix[12, 236] or in the water background[48]. 

Actually, the smaller is the contrast in sound speeds, the smaller is the wavelength in the 

embedding matrix at resonance and the phononic crystal can no longer be viewed as an 

effective medium. Very few materials exhibit such low elastic parameters and seeking for 

resonators made of a material commonly used in nano or micro-fabrication, whose lateral 

dimensions are much smaller than the wavelength, and that allow controlling the propagation 

of elastic waves in solids, is therefore of primary importance for designing new acoustical 

metamaterials.  

      Actually, these properties can be found in some phononic crystals that may exhibit local 

resonances at frequencies below the Bragg band gap, giving rise to one or several forbidden 

bands in a frequency range where the wavelength is much larger than the period. This has 

been demonstrated both numerically and experimentally, with 1D stripes periodically 

engraved on the surface of a lithium niobate substrate[237] and more recently with 2D 

phononic crystals made of a periodical array of cylindrical pillars deposited on a thin and 

homogeneous slab[81, 82, 195, 208, 238-240]. Inspired by the connection between negative dynamic 

properties and the symmetry of resonant modes[48], the latter structure deserves special 

attention as a pillar can exhibit both compressional (monopolar) and bending (dipolar) 

resonances. Moreover, the resonant frequencies can be easily tuned through a proper choice of 

the height and/or the diameter of the pillar. Finally, since the compressional resonant 

frequency (monopolar) and the bending resonant frequency (dipolar) are mainly sensitive to 

the height and to the diameter respectively, they can be tuned almost independently from each 

other.  

      Given their potential to serve as local resonators in an all-solid elastic metamaterial, we 

have investigated in this work their dynamic properties.  The theoretical calculations are done 

in the collaboration with the experiments carried out by Rémi Marchal[241] . We have 
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successively considered a single pillar and a line of identical pillars on a thin plate. In both 

cases, the resonators as well as the plate were made of silicon. We have studied both 

numerically and experimentally their interaction with a Lamb wave propagating in the plate 

when the frequency is tuned to a resonant frequency.  We more specifically point out how 

both the amplitude and the phase of the wave are affected by the scattering on top of single 

pillar, or one line of pillars, upon excitation on either a compressional or a bending eigenmode. 

We show in particular that for either of both modes, the pillars behave as secondary sources 

that emit in the plate a wave 180° out-of-phase with the Lamb wave. We investigate the 

conditions in which a zero, or on the contrary a maximum, of the transmission through the 

line of pillars, results from the superposition of both waves. 

      The main objectives and conclusions of this chapter are to clarify the scattering properties 

of an incident wave: amplitude and phase of the scattered wave as a function of the frequency 

especially in the vicinity of resonances. 

5.2 Resonant property  

      The goal of this section is to provide in a comprehensive way a numerical study of the 

vibrationnal states of a single pillar deposited on a membrane with a thickness t (see Fig. 5.1). 

This study will be the fundament of the further investigation coming in the following sections. 

We have considered the effect of the usual geometrical parameters, namely the height h and 

the diameter d of the pillar. We also investigate the effect of the angle θ, varying from 0° for a 

straight cylinder to higher values then reaching to a truncated inverse conical shape of the 

pillars. The whole system is made of cubic silicon, with elastic constants c11=166GPa, 

c12=64GPa, c44=79.6GPa and the mass density ρ =2330 kgm-3. The crystallographic axis [100] 

and [010] are chosen parallel to the x and y axes, respectively. Dispersion curves as well as 

transmission curves are calculated by the finite element code COMSOL Multiphysics® as a 
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function of reduced frequency ωa/2πvt, where vt =4678 m.s-1 is the transverse velocity of 

acoustic wave in silicon along the [110] direction in the (001). 

The experimental technique we used is based on laser generation and detection of acoustic 

pulses within a broad spectrum. Ultrashort light pulses of 35 ps issued from a frequency-

doubled (532 nm) Q-switched Nd:YAG laser were focused on the sample as a bright fringe 

~5 mm long and ~50 µm across, through a cylindrical lens. As a result of photoelastic 

processes, elastic waves with a broad spectrum were excited in turn. The accurate 

determination of the excited spectrum is a challenging task that involves the knowledge of 

several physical parameters including the photoelastic tensor of silicon and the time 

dependence of the optical pulse. However, a rough estimation that does not account for the 

duration of the optical pulse consists of admitting that the largest acoustic wave number is 

related to the lateral size of the focus through lk π≈max ; the highest frequency in the 

spectrum is therefore given by l
V
2max ≈ν  where V is the surface velocity in silicon; we thus 

estimate that the spectrum extended up to about 50 MHz. In all the experiments described in 

this article, the source was located a few millimeters ahead from the pillar or from the line of 

pillars. 

The time dependence of the surface displacements was recorded at any point of the sample, 

on the plate as well as on top of a pillar, using a Michelson interferometer described in Ref[232]. 

In short, the technique consists of focusing one beam of the interferometer on the sample with 

a microscope objective to a spot of∼5µm, whereas the reference beam is reflected by an 

actively stabilized mirror. A loop feedback device allowed the setting of optical path 

differences to λ/4 (modulo λ), therefore achieving optimum sensitivity and a linear response to 

the normal displacements at the surface of the sample. The microscope and the sample were 

both mounted on translation stages in such a way that the probe beam could be scanned across 

the sample over a maximum area of 25 × 25 mm2, with absolute and relative precisions of 
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∼10 and ∼1 µm, respectively. The interference pattern was collected by a high-speed 

photodetector and digitized at 500 MSs−1 by a digital oscilloscope. The frequency response of 

the device was flat between 20 kHz and the cutoff frequency of the photodiode which was set 

to ~50 MHz in order to match the maximum frequency in the spectrum. This noncontact 

technique allowed us to record the displacements normal to the surface as small as a few pm 

and hence to resolve fine details of the interaction between the acoustic waves and a pillar or a 

line of pillars. 

      In the numerical model depicted in Fig.5.1, we have considered a full silicon model where 

the pillar is grafted at the middle of a circular membrane surrounded with a Perfectly Matched 

Layer (PML) to avoid any reflections from the boundary of the plate. We have investigated 

the behavior of the pillar under the excitation of anti-symmetric Lamb wave A0, launched 

from an oscillating force applied normally to the surface of the plate, along the line ‘AB’ 

parallel to the crystallographic direction <100> of silicon. The numerical model used to 

compute the resonances of the pillar perfectly mimics the experimental scheme presented 

below: an oscillating force is applied normally to the surface of the plate, and the resulting 

displacements are monitored as a function of the frequency on five different points on top of 

the pillar. Experimentally only the component out-of-plane Uz of the displacement field can 

be measured and therefore we have investigated the propagation of the anti-symmetric Lamb 

mode A0 since it features a large out-of-plane component.  In the following results, only Uz is 

plotted as no conversion is observed after the interaction of the incident wave with the 

structure, i.e. the ratio Uz/Ux is conserved. 
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Figure 5.1  Numerical model used for the finite element calculation of a full silicon structure made of a 
pillar on top of a plate with a thickness t. The line ‘AB’ represents the incident source polarized with 

respect to the anti-symmetric Lamb wave A0. Perfectly Matched Layers (PML) are applied all around the 
membrane. The inset magnifies the pillar and reports the geometrical parameters h, d and θ  together with 

the different positions used for the detection 

      The excellent sensitivity of the experimental technique is a requirement to a complete 

characterization of the resonant frequencies of the single pillar. We show as a black line in 

Fig. 5.2a the time dependence of the normal displacements recorded close to the edge (point 

labeled 4 in Fig. 5.2b) on top of a single pillar (d=150µm, h=257µm) on a slab (t=145µm), 

after an anti-symmetric Lamb wave has been excited a few mm away from the pillar (red line 

in Fig. 5.2a). Similar measurements were taken in five different locations (black line in 

Fig. 5.2a), along a line either parallel to the excitation wave front (points 1, 2, 3 in Fig. 5.2b) 

or perpendicular to it (points 4, 2, 5). The spectral amplitudes, normalized to the amplitude of 

the excitation wave, are displayed in Fig.5.2c. As expected from the polarization of the 

normal modes, the line joining points 4 and 5 is a node for both the first bending mode (B1) 

and second bending mode (B2) and therefore the signals recorded in 1, 2, and 3 only result 

from the first compressional mode (C1). It manifests itself in the spectrum by a broad peak 

centered at 6 MHz with amplitude twice the amplitude of the incident Lamb wave. 

 

Figure 5.2 (Color online) (a) Normal displacement on the plate, measured close to the excitation area (red 
line – up shifted for clarity) and on the center of the pillar (black line). (b) Microscope image of the Silicon 
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pillar. The numbers indicate the points where measurements were made. (c) Spectral amplitudes 
measured on top of the pillar. The data are normalized by the amplitude of the Lamb wave on the plate 

      We first consider an isolated cylindrical pillar (θ = 0°) with the following set of 

geometrical parameters: h = 245 µm, t = 145 µm and d = 50 µm. Fig. 5.3(a) reports the 

displacement field Uz of single pillar as a function of the frequency in which the red curve 

reports the summation of the amplitudes |Uz| recorded with the detectors (4 + 5) while the 

black curve represents the difference (4 - 5). The same implement is also carried out for one 

line of pillar (the distance between two pillars is e=200µm) as marked in blue and green 

curves, respectively. One can see the occurrence of three peaks of resonances. Each peak can 

be unambiguously ascribed to an eigenmode of the pillar with the help of the associated 

displacements. Actually, bending modes along y-axis are characterized by an out-of-phase 

displacement between points 4 and 5 while no displacement are expected along the line 

joining the points 1 and 3 which corresponds to a node. On the other hand, the normal 

displacements associated to a compression mode are uniform on top of the pillar, leading to 

zero displacement for the difference (4 - 5) and full amplitude for the summation (4 + 5). It 

results that the summation (4 + 5) highlights the compression mode of the pillar (labeled C1) 

while the difference (4 - 5) is representative of the bending modes, labeled B1 and B2. For 

more details in the modes characterization, one can see Appendix E. Comparing the same 

modes of single pillar and one line of pillars, for diameter d=50µm, the frequencies of B1 and 

B2 are almost the same while the relative amplitude of single pillar is larger than that of one 

line of pillar; however, for the compression mode C1, the frequency of one line of pillar is a 

bit larger and so is the relative amplitude.  

      The situation is more complex in Fig. 5.3(b), calculated for another set of geometrical 

parameters: h = 245 µm, t = 145 µm and d = 100 µm for which the mode B2 gets close to C1 

and only the bending mode B1 can be unambiguously detected. Actually, the second peak 

centered at ~7 MHz results from interplay of compression C1 and bending B2 modes and there 
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is no pure compression or bending anymore. The method based on the summation and the 

difference is the way to represent independently the contribution of each mode. For 

compression C1 mode, the frequency of one line case is also a bit higher than single case and 

the relative amplitude of one line case is still a bit larger than single case. The frequencies of 

B2 and C1 are superposed for single case, while they are still separated for one line case. The 

results from the comparison of single and one line cases show that there is a slight coupling 

among neighboring pillars when the single pillar is arranged into a line.   

      Finally, Fig. 5.3(c) shows a representation of the bending mode B1, B2 and the 

compression mode C1 when all frequencies are clearly separated (as parameters in Fig. 5.3(a)). 

In the following of the research, we will use the specific properties of the modes in term of 

monopolar for the compression mode and dipolar for the bending ones. 

 

Figure 5.3 (a) Amplitude of the component Uz of the displacement field on top of the pillar considering the 
difference (4 -5) (black curve for single pillar and green curve for one line of pillar) and the summation (4 
+ 5) (red curve for single pillar and blue curve for one line of pillar) with the geometrical parameters h = 

245 µm, t = 145 µm and d = 50 µm. (b) Same as (a) with the geometrical parameters h = 245 µm, t = 
145 µm and d = 100 µm. (c) Snapshot of the involving bending and compression pillar modes when all 

frequencies are clearly separated (h = 245 µm, t = 145 µm and d = 50 µm) 

      Due to localization of the mechanical resonances inside the pillar, the frequencies and 

amplitudes of these modes depend on the geometrical parameters of the pillar. As seen Fig. 
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5.3(a) and (b), increasing the diameter of the pillar from 50 µm to 100 µm leads to widen the 

peaks, shifts the bending modes to higher frequencies and keeps almost unchanged the 

compression mode C1. In other words, the three resonances strongly depend on the diameter 

and manifest themselves by sharp peaks, amplitude and frequencies variations in the spectrum.  

      To get an overview of the behavior of these modes with respect to the geometrical 

parameters, we start Fig. 5.4(a) with the evolution of their frequencies as a function of the 

diameter of the pillar for different heights (color scale). Looking at the black curves (h = 266 

µm), one can see that the evolution of the bending mode B2 is strongly dependent of the 

diameter while the compression mode C1 stays almost at the same frequency. These two 

different behaviors result in the crossing of the two curves into a specific working point, Wp, 

for which the two modes B2 and C1 get the same frequency. For example, in this case, Wp is 

captured at 7.23MHz, for a diameter d = 78µm. The behavior of the frequencies of the modes, 

together with the evolution of Wp, is reported as a function of the height (Fig. 5.4(a)) and the 

thickness of the plate (Fig. 5.4(b)).  

      It will be shown in the next section that during the sample fabrication, etching process 

results in a quasi-conical shape of the silicon pillars, specially when the diameters are small. 

Therefore, we investigated the effect of the conicity on the eigen frequencies values (Fig. 

5.4(c)). One can see that, changing θ from 0° to 6°, both the eigemodes and the working point 

Wp strongly shift to the low frequencies, showing how sensitive the eigen frequencies are with 

respect to this parameter.  

      Regardless of the modes, compression or bending, the eigen frequencies decrease for 

increasing height, increasing angle, and thinner plate. However, besides the effects of the 

dimensions of the pillar, the purpose of the research is to focus on the physical properties we 

can get when the modes are clearly separated or when the pillar works at the point Wp, i.e. 

when the two modes B2 and C1 are at the same value. It should be adressed that in Fig. 5.4 we 
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take out from the representation the torsional mode that appears in the same frequncey range. 

Such a mode cannot be characterized by Uz component and excited experimentally. We do not 

consider it in the following. 

	

Figure 5.4 Evolution of the eigen frequencies of modes B1, B2, and C1 of single pillar as a function of both 
the diameter (from 20 to 180 µm) and, in color scale, (a) the height h (t = 145 µm, θ  = 0°), (b) the thickness 

t (h = 246 µm, θ  = 0°), and (c) the angle θ  (t = 145 µm, h = 256µm) 

      We mimic an experimental sample (d=96µm on top of pillar) in the numerical calculation 

and compare the superposed frequencies of B2 and C1. During the etching process, the sample 

pillar is a quasi-conical shape, which is also carefully sculptured for the numerical model, as 

shown insets in Fig 5.5. The characterized resonant frequency of bending (black line) and 

compression (red line) modes from experiment and simulation are displayed in the left and 

right panels of Fig 5.5, respectively, with a perfect match. To conclude, the quasi-conical 

shape only has an effect in resonant frequency, shifting to lower frequency range comparing 

to straight pillars ( 0θ = o) with other same geometric parameters. Besides, comparing the 

right panel of Fig 5.5 and Fig. 5.3(b), for both B2 and C1, the width of the half peak of conical 

case is smaller than that of straight pillar. In the following part of numerical calculations, we 

study systems with straight pillars (without conical angle) in order to feature the physical 
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behaviors, including amplitude and phase information of scattered waves for isolated pillar 

and one line of pillars. 

		
Figure 5.5 Comparison of superposed B2 and C1 frequencies between experimental sample and numerical 

model	

      We further complete the investigation of the far field transmission T of an anti-symmetric 

Lamb wave launched perpendicular to a periodic line of pillars. The Fig. 5.6(a) shows the unit 

cell used for the finite element calculation. PML are applied at the entrance and the exit of the 

slab to avoid any reflections from the external edges while periodic boundaries conditions 

(PBC) are applied along x-direction, on each side of the unit cell to build the infinite periodic 

line of pillars. The resonant frequencies of bending and compression modes are presented 

figure 5.6(b) for different values of the lattice parameter a. All calculations have been done 

with the geometrical parameters fixed to h = 256 µm, t = 145 µm, and θ = 0°. Fig. 5.6(b) 

shows that the resonances are almost independent of the lattice parameter a, indicating the 

idea of weak interaction between resonators.   
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Figure 5.6 (a) 3D representation of the unit cell used for the calculation of the transmission through a line 
of pillar. The boundaries of the unit cell are defined with the usual periodic conditions (PBC) and the 

Perfectly Matched Layers (PML) (b) Evolution of the frequencies of modes B1, B2, and C1 as a function of 
both the diameter (from 20 to 180 µm) and, in color scale, the lattice parameter a (t = 145 µm, h = 256 µm, 

and θ  = 0°). 

    To clarify the interaction between B2 and C1 for one line of pillar, we calculate the 

evolution of their dispersion curves as a function of diameter. In the dispersion calculation, to 

mimic the situation of one line of pillars, the periodicity along y direction is chosen 10 a, 

making two neighboring pillars in y direction enough far away, where a=200µm. As shown in 

Fig. 5.7, the black arrow indicates the branch of B2 and the brown arrow indicates the branch 

of C1.When the diameter is 90µm, the two branches along ΓX direction cut each other. As the 

diameter increasing, the two branches get closer and their frequencies at Γ point are 

superposed when the diameter is 112µm. Thereafter, the B2 branch passes C1, and they 

separate. The trend of the frequency evolution with diameter obeys the results in Fig. 5.6 (b). 

The behaviors of B2 and C1 dispersion curves show that these two modes are nearly 

independent to each other. 
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Figure 5.7 Evolution of B2 (black arrow) and C1 (brown arrow) dispersion branches as a function of 
diameter. B2 first cut C1, then pass by to higher frequency range 

5.3 A single pillar with separated modes 

      First we consider a single pillar, which has separate bending and compression modes, with 

geometric parameters d =50µm, t =145µm, h =245µm, θ =0°. When an incident 

monochromatic A0 wave is launched towards a single pillar, the amplitudes at the top of the 

pillar increase in the vicinity of a resonance frequency. In Fig. 5.8, the phase information of 

points 4 and 5 at the top of single pillar is displayed for separated modes when diameter is 

50µm. For a bending mode (B1 or B2), points 4 and 5 are respectively in positive and negative 

quadrature with the incident wave. Their phase changes are π when traversing the resonance. 

For the compression mode, all the points including points 4 and 5 on top of the pillar vibrate 

in phase. They are also in phase with the incident wave for a frequency below the resonance, 

and become out of phase for a frequency after the resonance. Thus, their phase changes are 

also π when traversing the resonance. 
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Figure 5.8 The phase of point 4 and 5 on top on the pillar when crossing B1 (left), B2 (middle) and C1 (right) 

      From Fig. 5.3(a), one can see the separated modes of single pillar case, fB1=0.796 MHz, 

fB2=4.59 MHz and fC1=7.02 MHz. The full wave field in the plate at each resonance can be 

regarded as a summation of the incident wave and an emitted wave by the vibrating pillar. So, 

emitted wave can be obtained as subtracting the full waves by the incident background wave. 

As the illustration in Fig. 5.1, the isolated pillar is located at the center of a plate. The 

diameter of the plate is 1600 µm, much larger than that of the pillar. The amplitude of emitted 

wave at B1, B2 and C1 are displayed in Fig. 5.9 left, middle and right, respectively, where the 

circle is the region of the whole plate. For bending modes, the isolated pillar vibrates in y 

direction, so that it emits waves along y direction. From the left and middle of Fig. 5.9, the 

field distribution at B1 is broader than that at B2, because the wavelength of emitted wave at 

B2 is smaller than that at B1. For C1 resonance, the emitted field distribution spreads in 

radiation along the distance to the center pillar.  
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Figure 5.9 Amplitude of emitted wave by the vibrating pillar at the frequencies of B1, B2 and C1, 
corresponding to the left, middle, and right panel, respectively. The geometric parameters are d =50µm, t 

=145µm, h =245µm, θ  =0°. 

At each resonance, the emitted wave behaves as a point source, so that its amplitude 

should decrease as a function of square root of the distance to the pillar sqrt(r). The 

normalized amplitude of emitted wave Amp/Ampmax along the y direction crossing the pillar 

center at B1, B2 and C1 are as shown in the left panel of Fig 5.10. We further multiply the 

normalized amplitude of emitted waves by sqrt(r) and get a numerical vibration near a 

constant. Such operations are implemented for B1, B2 and C1 modes corresponding to right 

panel of Fig. 5.10, from which the numerical vibrations after operation for different modes are 

almost near a constant, demonstrating that the pillar in resonant vibration plays a role of point 

source to emit waves.  

 

Figure 5.10 Left panel: Normalized amplitudes of emitted waves at B1, B2, and C1; Right panel: Multiply 
the amplitudes by sqrt(r), getting numerical vibrations near a constant. 

      In order to study in more details about emitted waves, we detect a point 500µm away 

behind the pillar and plot real and imaginary values of the corresponding emitted waves at this 

position induced by B1, B2 and C1, as shown in left panel of Fig. 5.11. Here, the emitted 

waves are normalized with respect to the incident wave. The red, green and blue curves are 

ellipse-like shapes. In this complex plot, if a point locates at the +x, +y, -x and –y axes, it 

means that the phase of emitted wave with respect to the incident wave at the corresponding 

frequency is 0, π/2, π/-π and –π/2, respectively. To show in more details, five frequencies in 

the vicinity of resonances are plotted for each resonance in the second, third and the last panel 
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of Fig. 5.11. The ellipse induced by B1 is emitted wave in the frequency range (0.77, 0.81) 

MHz.  It cuts the –x axis at x = -1.03 when f =0.7962MHz (at this frequency the emitted wave 

is out of phase with respect to incident wave) with a maximum amplitude as 1.04, which 

shows that the amplitude of emitted wave is a bit larger than the amplitude of incident wave at 

this out of phase frequency. Therefore the vibration detected at this frequency is dominated by 

emitted wave after a cancellation between emitted and incident waves. Consequently, in the 

right panel we can observe clearly that the phase of total wave at f=0.7962MHz with respect 

to ranges far away from the resonance reaches π. In the vicinity of origin point, the B1 

induced ellipse approaches the origin point very closely, so that the phase shift of emitted 

wave before and after B1 resonance is π, as shown the black curve in the right first panel.  

      For B2 and C1 resonances, the corresponding green (4.1~4.9MHz) and blue (6.15~9MHz) 

ellipses cut the –x axis at x=-0.21 (f=4.59MHz) and x = -0.1 (f=7.3MHz), with maximum 

amplitudes as 0.31 and 0.17, respectively. After the interaction between the emitted wave and 

incident wave, the vibrations at the detected point are still dominated by the incident wave, 

but with some phase shift, as seen in the total waves curves in the right panel. These two 

ellipses are close to the origin point, but not as close as the B1 induced ellipse, so the phase 

shift of emitted wave before and after B2 or C1 resonance is close to π, but not exactly π, as 

shown in the black curves in the right first panel.  
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Figure 5.11 First panel: The left is complex plots of emitted wave induced by B1 (red), B2 (green) and C1 
(blue), the right is the phase of emitted (black) and total (red) waves; Second panel: The left is complex 

plots of emitted wave induced by B1 (red), the right is the phase of total (red) waves; Third panel: Similar 
plot as in the second panel but for B2; Last panel: Similar plot as in the second panel but for C1 

      In Fig. 5.10, it is shown that the vibrating single pillar plays as a source emitting waves at 

the resonance and the amplitude of emitted wave decreases with the distance to the pillar. On 
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the other hand, the amplitude of incident wave is steady in a homogeneous plate without any 

pillar. Therefore, emitted waves induced by resonant pillar at different positions will have 

different amplitudes. To valid it, we especially detect a point 250µm away behind the single 

pillar (only for this figure), and the corresponding amplitude should be higher than that in Fig. 

5.11. From the left panel of Fig. 5.12, the green and blue ellipses are obviously much bigger 

than those in Fig. 5.11. The red, green and blue ellipses cut the –x axis at x=-1.04, x=-0.37 and 

x = -0.14, with maximum amplitudes as 1.05, 0.48, and 0.34, respectively. Similar results can 

be found as analyzed in Fig. 5.11.  

 

Figure 5.12 Same results as in Fig 5.11 but for a detected point 250µm away behind the single pillar 

5.4 A single pillar with superposed modes 

The situations of Wp point in Fig. 5.4 are the superposition of B2 and C1 modes. The 

localized modes of pillar, especially bending modes, are very sensitive to pillar’s geometric 

parameters, such as diameter and height. By tuning the diameter of the pillar, keeping other 

geometric parameters fixed, we can achieve B2 and C1 in the superposition when diameter of 

single pillar is d=100 µm, with fB1=1.42 MHz, fB2/C1=6.93 MHz, as shown in Fig. 5.3(b). 

      Figure 5.13 presents the phase of points 4 and 5 on top of the single pillar in the vicinity 

of resonances. Their behaviors for B1 resonance are similar to that in Fig. 5.8. However, the 
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B2/C1 resonance has aspects both of bending and compression modes, so that the vibrations of 

points at the top of pillar are not in phase any more, especially for points 4 and 5 due to the 

combination of bending and compression. When traversing the resonance, there is obvious 

phase difference between points 4 and 5, as clearly shown in the right panel. 

 

Figure 5.13 The phase of point 4 and 5 on top on the pillar when crossing B1 (left) and B2 / C1 (right)       

      To evaluate the property of emitted waves by the B2/C1 mode, we show the normalized 

amplitudes of emitted waves by B1 and B2/C1 modes in the left of Fig. 5.14. In the right panel, 

we also multiply their amplitudes by sqrt(r), obtaining numerical vibrations near a constant. 

The emitted waves by the superposition modes follow the same energy law, acting as waves 

generated from a point source and spending with a decrease in amplitude as a function of 

sqrt(r). 

 

Figure 5.14 Left panel: Normalized amplitudes of emitted waves by B1 and B2/C1 modes; Right panel: The 
results of multiplying their amplitudes by sqrt(r) 
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      In Fig. 5.15, the maximum normalized amplitudes of emitted waves induced by B1 and 

B2/C1 resonances are 0.92 and 0.41, respectively. They cut the –x axis at x=-0.85 and x=-0.22, 

respectively. It is important to point out that the shape of cyan line is like one overlapped 

ellipse by two small ones. Its maximum amplitude 0.41 is larger than individual B2 and C1, as 

shown in Fig. 5.11. Besides, the 0.92 maximum amplitude of emitted wave induced by B1 is 

smaller than that in Fig. 5.11, this is due to the fact that the vibration of the single pillar with 

d=100µm is less strong than that with d=50µm, as one can see the relative amplitude on top of 

pillar in Fig. 5.3. In the middle and lower panels of Fig. 5.15, we show 5 frequencies on the 

ellipse and the corresponding phase of total wave for B1 and B2/C1 resonances. 

 

 



152	
	

 

Figure 5.15 Upper panel: The left is complex plots of emitted wave induced by B1 (red), B2 / C1 (cyan), the 
right is phase of emitted (black) and total (red) waves; Middle Panel: the left is complex plots of emitted 
wave induced by B1 (red), the right is phase of total (red) waves; Lower panel: the left is complex plots of 

emitted wave induced by B2 / C1 (cyan), the right is phase of total (cyan) waves 

5.5 One line of pillars with separated modes 

      For one line of pillars, with geometric parameters d =50µm, t =145µm, h= 245µm, θ =0°, 

bending and compression modes are separated as in case of isolated pillar. From Fig 5.16, the 

red line stands for compression mode and black line stands for bending mode. For each 

resonant mode, there is a dip in the transmission curve as marked by the green line. The color 

of dispersion curves indicates the quantity 2 2 2 2 2 2/x y z x y z

pillar unitcell

u u u dV u u u dVΩ = + + + +∫ ∫ , which means 

the percentage of elastic energy localized in the pillar over the whole unit cell. To mimic one 

line of pillar, the size of unit cell taken in the dispersion calculation is a×10a, with periodic 

boundary conditions applied in x and y axis. As one can see, the resonances in the left 

correspond well to the resonant flat branches in the right dispersion curves. The transmissions 

at each resonant frequency are TB1=0.08, TB2=0.41, TC1=0.04. The color flat branch between 

B2 and C1 in the dispersion curve is the torsion mode, which cannot be excited by anti-

symmetric Lamb incident waves. 
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Figure 5.16 Transmission (green), compression mode (red) and bending mode (black) for one line of d=50 
µm as well as the corresponding dispersion curve. The color bar means the percentage of vibration in the 

pillar part over the whole geometry. The black and red modes curves are divided by 33 in order to be 
shown with transmission in the same figure 

      For the phase of points 4 and 5 on top of the pillar shown in Fig. 5.17, they have almost 

the same behaviors as in the single pillar case in Fig. 5.8. For a bending mode (B1 or B2), 

points 4 and 5 are respectively in positive and negative quadrature with the incident wave. 

Their phases change also by π when traversing the resonance. For the compression mode, all 

the points including points4 and 5 on top of the pillar vibrate in phase. They are in phase with 

the incident wave for a frequency below the resonance, and become almost out of phase for a 

frequency after the resonance. Thus, their phase changes are also approximately π when 

traversing the resonance. 

 

Figure 5.17 The phase of point 4 and 5 on top on the pillar when crossing B1 (left), B2 (middle) and C1 
(right) 
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      The first row of Fig. 5.18 is the plot of complex value of emitted waves in the frequency 

range [0, 10] MHz, including B1, B2 and C1 resonances, with respect to the incident waves. 

The shape of complex value for each resonance is also ellipse-like shape. The frequency 

ranges beyond resonances are located close to the origin point as the pillar almost does not 

emit waves, as marked by the black star in the center point. The maximum amplitudes of 

emitted waves induced by B1, B2 and C1 resonance are 0.92, 0.59 and 0.96, respectively. Also, 

the three ellipses cut the –x axis at x=-0.92, x=-0.59 and x=-0.96, respectively. Comparing the 

transmission values in the case of one line of pillars, we can claim that, at a given position, the 

incident and emitted waves at the resonant frequencies are out of phase, so that if the 

amplitude of emitted waves exactly equals that of incident waves, the resulted transmission is 

0. With different amplitudes of emitted wave, the phases of transmitted waves have different 

shifts near resonances, as shown in the right panel of Fig. 5.18. One point to be noted, the 

three ellipses of emitted waves by one line of resonant pillars very closely approach the origin 

point (but not exactly cross the origin point), and they have well symmetries with respect to 

the x axis, thus the phase of emitted wave far from the resonances with very small amplitude 

is π/2 phase shifted with respect to the incident wave.   

      The second, third and last rows of Fig. 5.18 present several frequencies in the vicinity of 

B1, B2 and C1 resonance, respectively, on the emitted ellipses as well as its corresponding 

phase of transmitted waves. 
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Figure 5.18 The first row: in the left is the complex plots of emitted wave induced by B1 (red), B2 (green) 
and C1 (blue), in the right is the phase of emitted wave (black) and transmitted wave (red); The second, 
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third and forth rows are frequency dots in the vicinity of B1, B2 and C1 resonances, respectively, on the 
emitted ellipses as well as the phase of transmitted wave  

5.6  One line of pillars with superposed modes 

      For one line of pillar, with geometric parameters d=112µm, t =145µm, h= 245µm, θ =0°, 

B2 and C1 are superposed, which is clearly exhibited in the left panel of Fig. 5.20. The phase 

of points 4 and 5 on top of the pillar, as shown in Fig. 5.19, is similar to that in Fig. 5.13. 

Especially for B2/C1, points 4 and 5 are not in phase because of the aspect of bending 

vibration as compared to the compressional vibration. 

 

Figure 5.19 The phase of point 4 and 5 on top on the pillar when crossing B1 (left) and B2 / C1 (right) 

      The amplitudes of transmission at B1 and B2/C1 resonances are TB1=0.21 and TB2/C1=0.57. 

The amplitude characterizations at the top of pillars as black and red curves are divided by 10, 

in order to be presented in the same figure. In the right panel of Fig. 5.20, the shapes of 

complex plots for B1 and B2/C1 induced emitted waves are ellipse-like, showing their 

maximum amplitudes as 0.79 and 1.57, respectively, which are also the points cutting the –x 

axis. So the emitted wave at the resonant frequency is out of phase with incident wave. The 

most interesting point here is that the B2/C1 induced emitted waves at the out of phase 

frequency have bigger amplitude than incident waves, which enables transmission, but with a 

π phase shift with respect to the incident wave. The transmission at the B2/C1 resonant 
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frequency is 0.57 and its corresponding phase is π with respect to the incident wave as this 

transmission is dominated by emitted wave (as shown in Fig. 5.21). Besides, the phase shift of 

emitted wave induced by B2/C1 before and after the resonance is also about π, as the cyan 

ellipse approach very closely the origin point. Because of the symmetry with respect to x axis, 

the phase of emitted wave at all the non resonant frequency ranges is also about π/2 or -π/2, as 

shown in Fig. 5.21. 

 

Figure 5.20 Left panel: Transmission and amplitude characterizations (divided by 10) of one line of pillars 
with d=112µm; Right panel: Complex plots of emitted wave induced by B1 (red), B2/C1 (cyan) modes. 

 

Figure 5.21 Black line is the phase of emitted wave; red line is the phase of the total wave at the same point 
in the far field 

5.7 Discussion        

      To study in more details the case of B2 and C1 superposed resonances, we further show 

one line of pillars with diameters d=90, 92 95, 112, 115 and 120µm in Fig. 5.22. All mode 
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characterizations are divided by 80 in the left panel in order to compare with transmission. 

For d=90µm, the complex plot of emitted wave induced by this superposed resonance is 

heart-shape, which cut the –x axis at x=-0.989 which causes a transmission dip 0.011 at 

f=7.15MHz. As the cut point does not reach x=-1, although the transmission is very small at 

this frequency, but the phase of transmitted wave cannot reach π or – π, as shown in the 

corresponding right panel. From d=92µm to 95 µm, the heart-shape merges into quasi-ellipse 

and cuts the –x axis over x=-1, so that there is new transmission contributed by emitted wave 

and the phase of transmitted wave as correspond to the incident wave reaches π or – π at the 

corresponding frequency where it cuts the –x axis. When d=112µm, the mode characterization 

curves for B2 and C1 are exactly superposed which has a minimum value x=-1.57 for the cyan 

ellipse cutting the –x axis, and contributes to a maximum new transmission 0.57 at the 

corresponding frequency. From d=112µm to 120 µm, the B2 mode moves to a bit higher 

frequency than C1 mode. When d= 120µm, the cyan ellipse cuts the –x axis at x=-1.54 which 

contributes a new transmission 0.54.  
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Figure 5.22 Left panel: Transmission (green) and modes characterization (divided by 80) (black for 
bending and red for compression) as well as dispersion curves of one line of pillars; Middle panel: 

complex plot for B2/C1 resonance; Right panel: phase of transmitted (red) and emitted (black) waves 

      From Fig. 5.6, one can observe that the resonant frequencies are very weakly sensitive to 

the lattice parameter. Therefore, the infinite adding of single emitted wave along x direction 

with a periodicity a will produce the similar result that from one real line of pillars, as 
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managed by Huygens-Fresnel principle[179]. Fig. 5.23(a) is the phase distribution of emitted 

wave by a single pillar at the frequency of C1, which corresponds to Fig.5.6. In Fig. 5.23(b), 5 

of the same emitted waves are added with an inter-distance a. The central 5 dots stand for the 

positions of pillars. The adding of emitted waves makes the total emitted wave more flat at the 

middle. In Fig. 5.23(c), same operation is taken as in (b) but for 9 single emitted waves. From 

the phase in the middle 9-pillar part, we can see the total emitted wave at the edge in y 

direction is nearly a plane wave. Fig. 5.23(d) presents the real one line of 9 pillars located at 

the center and its lattice parameter is also a. The sizes of square for the all figures are the 

same, 6000µm×6000µm. From phase (upper panel) and amplitude (lower panel), the results 

of artificial 9 pillars and the real one line of 9 pillars are almost the same, producing a quasi-

plane wave at 1 ~ 2 wavelength away from the center in y direction. The procedure in this 

figure proves that the resonances are almost independent of lattice parameter and the total 

emitted wave by adding infinite single emitted wave is a plane wave.  

 

Figure5. 23 Phase (upper panel) and amplitude (lower panel) of (a) emitted wave at the frequency of C1 as 
shown in Fig. 5.9; (b) adding 5 single emitted wave at C1, with the inter-distance as lattice parameter 

a=200µm; (c) similar as in (b) but adding 9 single emitted wave at C1; (d) one real line of 9 pillars 
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5.8 Conclusion 

      In this chapter, we proposed acoustic metasurfaces consisting of a single pillar or one line 

of pillars deposited on a thin plate. Numerically and experimentally, we detected amplitude 

and phase information of points on top of pillar and in far field on the plate, characterizing the 

local resonances of bending and compression in the sub-wavelength ranges. The local 

resonances are very sensitive to the geometric parameters, such as the diameter, height and 

conical angle of pillars, making the superposition of bending and compression possible. For a 

single pillar, we studied the scattering properties when bending and compression resonances 

are separated and superposed, and found that the scattered waves in the close vicinity of 

resonances can have a π shift with respect to incident wave, which corresponding to the real-

imaginary plot of emitted wave cutting the –x axis. For the superposed resonance of bending 

and compression, the phase of scattering waves also has a π shift at the frequency of cutting 

the –x axis, and the scattering wave has a larger amplitude than those in separated case. For 

one line of pillars, from both dispersion and transmission, it is found that local resonances 

cause transmission dips. Due to the different positions where the emitted wave complex plots 

cut the –x axis, the transmission dips have differences in amplitude and phase. When the 

bending and compression resonances are superposed, the amplitude of scattering waves is  

bigger than that of incident waves at the corresponding out of phase frequency, resulting in a 

new transmission dominated by emitted wave with out of phase property respecting to the 

incident wave. Finally, we demonstrated that how the ellipses of bending and compression 

resonances get emerged from separated case for one line of pillars. Adding the compressional 

emitted wave by single pillar with a periodicity to mimic one line of pillars, the result of this 

artificial assembling approaches a plane wave, which is almost the same result of one real line 

of pillars, proving that the resonances of the pillar are almost independent to each other 
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6.1General conclusions 

      Acoustic artificial structured materials, namely phononic crystals and acoustic 

metamaterials, offer opportunities to control acoustic/elastic waves in limitless ways. In this 

thesis, we focus on the design and characterization of new kinds of these materials.  

      Firstly, an active acoustic metamaterial with piezoelectric resonant structures is proposed 

to exhibit double negativity (effective mass density and elastic modulus) over a certain 

frequency range. By switching the electric boundaries of the piezoelectric material, the 

negative properties can be actively controlled. The resonance could be strengthened to 

broaden the frequency band of the negative effective properties through the stacking of the 

multi units, also lowering the first resonant frequency. The number of resonances and 

segments of double negative bandwidth increase with the number of stacked units.  

      Secondly, we used newly developed homogenization method to discover the simultaneous 

control of S0 and A0 Lamb modes or even the full control of the fundamental Lamb modes.  

An approximating and simple method is proposed to fast calculate the effective phononic 

crystal plate by considering a plate as a finite slice of bulk medium. A GRIN flat lens, 

Luneburg lens and Maxwell lens are designed and numerically simulated to valid the 

simultaneous control of Lamb waves. Also, a more advanced device is shown which consists 

in a circular lens working as a Luneburg lens for the S0 and SH0 modes and as a Maxwell lens 

for the A0 mode. Besides focusing energy, the method is further implemented to design beam 

splitters to diverge wave energy in different angles with respect to incident wave. The 

performance of these gradient index devices is broadband, since the method is based on 

homogenization theories in the quasi-static limit. The presented methods can be efficiently 

employed to the design of devices for the control or harvesting of mechanical energy, as it 

allows the full control of vibrations excited in a finite elastic plate.  
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      The homogenization method employed to control the Lamb wave exhibits an additional 

coupling tensor S, corresponding to the “Willis” term as proposed by J. R. Willis. We proved 

that the value of “Willis” term is non-zero if breaking the symmetry in the unit cell, realizing 

a “Willis” medium. However, in the local approximation, it is found that the “Willis” S terms 

do not affect the dispersion of bulk Willis medium as they appear in conjugate pair in 

dispersion equations. Due to the existing of boundary conditions, we showed the dispersion of 

SH0 mode of “Willis” plate is different from the corresponding in-plane mode of “Willis” 

bulk medium, as the clear evidence of Willis plate. We further analytically developed the 

calculation of dispersion of “Willis” plate, and exhibited the significant changes to the 

dispersion curves if changing the value of the “Willis” S term. 

      Thirdly, we investigated the vibration properties of phononic crystal plates with hollow 

pillars deposited on top. Due to the introduction of inner hole in the pillars, new branches 

originating from the excitation of quadrupolar whispering-gallery modes (WGMs) appear in 

the both Bragg and low frequency band gaps. The frequency of the WGMs can be tuned by 

changing the inner radius, and the quality factor can be improved by inserting a full cylinder 

as a confinement between the hollow pillar and the plate. The occurrence of WGM gives rise 

to a transmitted pass band that can be used as a high resolved filter, which are further applied 

to design different kinds of multiplexers, based on multichannel or monochannel waveguide 

or cavity. By filling liquids in the hollow pillars, the phononic crystal plate exhibits new 

localized modes originating from the compression of liquids or coupling of the dipolar-shape 

vibration of liquid and solid. These localized modes can be actively tuned by controlling the 

kinds of liquid, the height of liquid or temperature, which can be applied to sense acoustic 

properties of different liquids.  

      A new type of tailored phononic crystal plate was also presented, whose unit cell is 

constituted by pillars connected by thin bars instead of being deposited on a full plate. By 
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narrowing the bars, the Bragg band gap becomes much wider and extends to sub-wavelength 

region while the low frequency gap moves to extreme low frequency region. Such new 

structure can generate high orders of WGMs, namely quadrupolar, hexapolar and octopolar 

shapes, inside band gaps. Higher order of WGMs has higher quality factor. The phononic 

crystal plate with higher orders of WGMs and localized compressional and dipolar-shape 

coupling modes can be applied to wireless communication and sensing with the possibility of 

active control. 

      Finally, we proposed acoustic metasurfaces consisting of a single pillar or one line of 

pillars deposited on a thin plate. Local resonances of dipolar and monopolar in the sub-

wavelength ranges can be characterized, which are very sensitive to the geometric parameters 

of the pillar, such as diameter, height and conical angle. The scattered waves by resonances 

have a π shift with respect to incident wave. For one line of pillars, from both dispersion and 

transmission, it is found that local resonances cause transmission dips as the results of the 

interaction between out of phase scattering and incident waves. By tuning the pillar’s 

geometric parameters, the dipolar and monopolar resonances can be superposed, which 

scattering waves have larger amplitude comparing to their separated cases. For one line of 

pillars, the amplitude of out of phase scattering waves at superposed resonance is bigger than 

that of incident waves at the corresponding resonant frequency, resulting in a new 

transmission with out of phase property. 
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6.2Perspective 

      The study of piezoelectric superlattice is carried out by the normal incidence in the 

Chapter 2. The case of oblique incidence is expected to be investigated in future, as it will 

bring more parameters, such as kx, into the coupling matrix. The negative properties may also 

depend on the angle of incidence. Besides, bias voltage can be further applied to the 

piezoelectric materials to play an active role in tuning parameters.  

      The gradient index devices have much potential in controlling acoustic/elastic waves, such 

as absorption, focusing and deflection. The absorption application deserves to be further 

studied with structures like acoustic black hole. The method developed in this work for 

controlling all the fundamental Lamb waves can help to improve the absorbing functionality 

as the acoustic black hole can absorb all fundamental Lamb modes despite the fact that mode 

conversion happens during the source excitation or wave interaction with the devices. The 

experimental examples of GRIN devices with multimode control are expected to be carried 

out.  

      The study on Willis medium attracts more attention recently. The theory developed in this 

work offers a promising way to investigate the properties of Willis medium. The non-local 

phononic crystals are Willis medium, where the non-local property, including the behaviors 

along each dispersion curve, deserves to be studied in details. For local chiral phononic 

crystals, they also behave as Willis medium, especially in the case of a Willis plate. The 

symmetry of Willis term, as well as solving the dispersion eigen-equations with different 

Willis terms should be studied further. The essential properties of the symmetry in Willis term 

matrix is also deserve to be figured out. The transmission property between normal medium 

and Willis medium is also very interesting. It is expected that, even the longitudinal wave 

with normal incidence into the Willis medium will excite both of longitudinal and transverse 

waves, which is different from normal elastic case. 
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      The phononic crystal plates with pillars have great physical potential in novel phenomena. 

By arranging the positions and shapes of two lines of pillars, Fano resonance is expecting to 

be observed. Instead of designing the geometry of a pillar with bending and compressional 

resonances at the same frequency, two different pillars at in the same unit cell which one’s 

bending resonance and the other’s compressional resonance are superposed can be studied 

further. Input external energy, such as force on top of pillars or bias voltage for piezoelectric 

pillars, how the resonant behaviors and scattering properties change is very interesting to be 

paid attention. Comparing with the periodic arrangement of pillars on the plate, the properties 

of band gaps, vibration and transmission of disordered pillars should be studied in next steps. 

      For one line of pillars, when the bending resonance is tuned to pass compressional 

resonances, the slope of B2 dispersion changes from positive to negative, which is similar to 

the negative refraction property. Such possible connection can be further studied in future. In 

the current work, all the geometric systems are made of the same solid material. The different 

choices of materials for pillar and plate can also be studied. By introducing a hollow part in 

the single pillar or one line of pillars, the properties of bending and compressional resonances 

may change, and also new resonant mode can appear, such as whispering-gallery mode. 

Besides, the existing of hollow part can be filled by another solid material or liquid, their 

resonant properties can be further actively controlled by tuning the filling parameters, such as 

the kinds of material, the filling hight or even temperature. 
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Appendix A: Lamb waves in anisotropic plates 

Let us consider the propagation of Lamb waves in tetragonal plates[149]. The wave is 

assumed to be propagating along the x axis with wave number k, but the wave-vector has also 

z component denoted by b. Thus, for a tetragonal material, the equations of motion are 

2 2 2
1 11 44 1 13 44 3( ) ( )u c k c u c c k uρω β β= + + +                                (A1) 

2 2 2
2 66 44 2( )u c k c uρω β= +                                                          (A2) 

2 2 2
3 44 33 3 13 44 1( ) ( )u c k c u c c k uρω β β= + + +                               (A3) 

The solutions of the above equations can be divided into the SH mode 

2 2
,

ˆ ˆs ikx si z

s
u u e e xβ

=+ −

= ∑                                                       (A4) 

where 

2 2 2
66 44c k cρω β= +                                                       (A5) 

And 

the mixed modes 

1 1 1 3
1,2 , 1,2 ,

ˆ ˆ ˆa asi z si zas ikx as ikx
a

a s a s
u u e e x sY u e e xβ β

= =+ − = =+ −

= +∑ ∑ ∑ ∑                        (A6) 

Where the two values aβ with a=1, 2 are the positive solutions of the secular equation 

2 2 2 2 2 2 2 2 2
11 44 44 33 13 44( )( ) ( ) 0a a ac k c c k c c c kρω β ρω β β− − − − − + =        (A7) 

and 

2 2 2
11 443

1 13 44( )

a
a

aa
a

c k cuY u c c k
ρω β

β
− −= =
+

                                      (A8) 

From the mixed modes Equation (A6), we can use Euler equation and expend the equation 

 ( ) ( )cos sinai z
a ae z i zβ β β= +                                          (A9) 

then the displacement can be separate into two uncoupled symmetry and anti-symmetry 

modes, 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2
1 1 1 1 1 2 1

1 1 2 2
1 1 1 1 1 1 2 2 3

ˆ ˆcos cos

ˆsin sin

ikx ikx
S

ikx ikx

u u u e z u u e z x

i u u e Y z i u u e Y z x

β β

β β

− −

− −

⎡ ⎤= + + +⎣ ⎦
⎡ ⎤+ + + +⎣ ⎦

                  (A10) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2
1 1 1 1 1 2 1

1 1 2 2
1 1 1 1 1 1 2 2 3

ˆ ˆsin sin

ˆcos cos

ikx ikx
A

ikx ikx

u i u u e z i u u e z x

u u e Y z u u e Y z x

β β

β β

− −

− −

⎡ ⎤= − + −⎣ ⎦
⎡ ⎤+ − + −⎣ ⎦

                   (A11) 

For the symmetry mode, boundary conditions are 

( )
33 /2 33 3 3 13 1 1

13 /2 44 3 1 1 3

0

0
z h

z h

c u c u

c u u

σ
σ

=

=

= ∂ + ∂ =

= ∂ + ∂ =
                                     (A12) 

which in matrix form is 

( ) ( )

( ) ( )

( )
( )

1 1
1 33 1 1 13 2 33 2 2 13 1 1

2 2
1 1

44 1 1 1 44 2 2 2

cos( ) cos( )
2 2 0

sin( ) sin( )
2 2

ikx

ikx

h hi c Y c k i c Y c k u u e

h h u u ec kY c kY

β β β β

β β β β

−

−

⎛ ⎞+ + ⎛ ⎞+⎜ ⎟
⎜ ⎟ =⎜ ⎟
⎜ ⎟+⎜ ⎟− − − − ⎝ ⎠⎜ ⎟⎝ ⎠

    (A13) 

if the determinate of the left part matrix be zero, then we get the dispersion relation equation 

( )
( )

( )
( )

1 233 1 1 13 33 1 1 13

1 1 1 1 1 2

cos / 2 cos / 2
0

sin / 2 sin / 2
h hc Y c k c Y c k

kY h kY h
β ββ β

β β β β
+ +

− =
+ +

                (A14) 

in the limit of low hβ , ( )1cos / 2 1hβ = , ( )1 1sin / 2 / 2h hβ β= , (A14) can be simplified as  

( )13 2 2 1 1 0c k Y Yβ β− =                                             (A15) 

Substitute the 1Y  and 2Y  

( ) ( ) ( )2 2 2 2 2 2 2 2 2
13 33 11 33 13 13 44 11 33 44 2 1 0c c c c k c k c c k c k c cρω ρω β β⎡ ⎤− + + − − − =⎣ ⎦        (A16) 

As 2 2
2 1β β−  cannot be 0, its left part is 0 

( ) ( )( )2 2 2
13 44 33 13 11 33 0c c c c c c kρω− − − =                              (A17) 

finally obtain the linear dispersion relation for symmetry mode 

2
2 213

11
11 33

1
cc k
c c

ρω
⎛ ⎞

= −⎜ ⎟⎜ ⎟⎝ ⎠
                                             (A18) 

Or 
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2 2 2
pv kω =                                                         (A19) 

With 

2
2 1311

11 33

(1 )p
ccv
c cρ

= −                                                 (A20) 

which for an isotropic material recovers the well known plate velocity for the symmetric 

Lamb mode. 

For the anti-symmetry mode, imposing the same boundary conditions, we have 

( ) ( )

( ) ( )

( )
( )

1 1
1 33 1 1 13 2 33 2 2 13 1 1

2 2
1 1

44 1 1 1 44 2 2 2

sin( ) sin( )
2 2 0
cos( ) cos( )

2 2

ikx

ikx

h hc Y c k c Y c k u u e

h h u u eic kY ic kY

β β β β

β β β β

−

−

⎛ ⎞− − − − ⎛ ⎞−⎜ ⎟
⎜ ⎟ =⎜ ⎟
⎜ ⎟−⎜ ⎟+ + ⎝ ⎠⎜ ⎟⎝ ⎠

         (A21) 

if the determinate of the left part matrix be zero, then we get the dispersion relation equation 

( )
( )

( )
( )

1 233 1 1 13 33 1 1 13

1 1 1 1 1 2

sin / 2 sin / 2
0

cos / 2 cos / 2
h hc Y c k c Y c k

kY h kY h
β ββ β

β β β β
+ +

− =
+ +

                    (A22) 

Substitute 1Y  and 2Y , it can be arranged as  

 ( )
2 2 2 2
13 44 13 33 11 33 44 33

2 2 2
13 11

( )( 1) tan / 2 0a a
a a

a a

c c c c c k c c c h
c c k

β ρω β β
β ρω

⎡ ⎤+ − − +− =⎢ ⎥− +⎣ ⎦
∑         (A23) 

Multiplying the above equation by 

      2 2 2 2 2 2
13 11 13 11( )( )a bc c k c c kβ ρω β ρω− + − +                               (A24) 

and defining the functions 

( ) ( )2 2 2
1 33 13 44 13 33 11,P k c c c c c c kω ρω= + + −                             (A25) 

( ) 2 2
2 11,P k c kω ρω= −                                                   (A26) 

The dispersion relation becomes 

( ) ( )2 2 2 2
1 2 1 13 2 33 44 13 33 441 tan / 2 0a

b a a b a a
a

PP Pc P c c c c c hβ β β β β β⎡ ⎤− + − − =⎣ ⎦∑        (A27) 

Given that aβ  and bβ are the solutions of the secular equation (A7), they satisfy 
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( )2 2
2 442 2

33 44
a b

P c k
c c

ρω
β β

−
=                                           (A28) 

( ) ( )22 2 2
44 44 33 2 13 442 2

33 44
a b

c c k c P c c k
c c

ρω
β β

− + + +
+ =                    (A29) 

Then the dispersion relation can be cast as 

( ) ( )( ) ( ) ( )2 2 2 2 2 2 2
13 33 11 33 111 tan / 2 0a

b a a
a

c c c k c c k hρω β ρω ρω β β⎡ ⎤− − + − − =⎣ ⎦∑      (A30) 

In the low limit of ω  and k, the dispersion relation kω − is not linear. ω  approaches to 0 

faster than k. Expanding the tangent function, we have  

( ) ( ) ( ) ( )
2 2

2 2 2 2 2 2 2 2 2 2
13 33 11 11 1 0

12 12b a a b a b a b
h hc c c cβ β β β ρω β β β β⎛ ⎞

− − + − + + =⎜ ⎟
⎝ ⎠

       (A31) 

Neglecting the 2 2
a bβ β+  in the second term, it is simplified as 

( )
2

2 2 2 2
13 33 11 11 0

12 a b
h c c c cβ β ρω− + =                                        (A32) 

If we approximate  

2 2 411

33
a b

c k
c

β β ≈                                                   (A33) 

The final dispersion relation is  

2 2
2 413

11
11 33

1
12

c hc k
c c

ρω
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

                                    (A34) 

Or 

2 2
2 4

12
pv h kω =                                                    (A35) 

which for an isotropic plate is the well known dispersion relation for anti-symmetric or 

flexural waves. 

 



172	
	

Appendix B: Properties of the Eigenvectors of M 

The matrix M is a Hermitian matrix, therefore its eigenvalues are real. Also, it is known that 

the Fourier components satisfy G GF F ∗
− = , means that 

' 'G G GG
M M ∗

− −
=                                                                     (B1) 

' 'GG G G
M M ∗

− −
=                                                          (B2) 

We can now express the eigenvalue equation for M as 

' ' ' '

' ' ' '

GG G G G G

G G GG G G

M M u u
M M u u

λ−
∗ ∗
− − −

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
                                      (B3) 

or to simplify the notation 

 

aa ab

ab aa

M M u u
M M v v

λ∗ ∗

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
                                         (B4) 

The above eigenvalue equation can be expressed as 

aa abM u M v uλ+ =                                                      (B5) 

ab aaM u M v vλ∗ ∗+ =                                                      (B6) 

taking the complex conjugate of the above and exchanging the order of the equations, we get 

aa abM v M u vλ∗ ∗ ∗+ =                                                  (B7) 

ab aaM v M u uλ∗ ∗ ∗ ∗ ∗+ =                                                  (B8) 

which shows that the eigenvector ( , )v u∗ ∗ has the same eigenvalue as the eigenvector ( , )u v , 

so that they differ only in a phase factor ie φ , then we have 

iv e uφ ∗=                                                              (B9) 

or 

i
G Gu e uφ ∗

− =                                                          (B10) 
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For the specific case of a symmetric lattice, that is, if we can find a unit cell such that 

G GF F− = , we have that the matrix M becomes real symmetric, so that it is possible to find 

always real eigenvectors, so that the phase factor should be π or 0, in other words, in this case 

we have that 

G Gu u− = ±                                                            (B11) 
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Appendix C: Equation of motions of bulk Willis medium 

Re-call the constitutive equation and the equation of motion in Eq. (3.76) and (3.77),  

C i Sω= +σ ε u                                                       (3.76) 

2 †div 0i Sρω ω+ + =σ u ε                                                (3.77) 

substitute Eq. (3.76) into Eq. (3.77), the first equation component is  

21311 12
1

1 2 3

† † † † † †3 3 31 2 2 1 2 1
511 12 13 14 16

1 2 3 2 3 1 3 1 2
[ ( ) ( ) ( )] 0

u
x x x

u u uu u u u u ui s s s s s s
x x x x x x x x x

σσ σ ρω

ω

∂∂ ∂+ + +
∂ ∂ ∂

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂+ + + + + + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

     (C1) 

Expand the stress, we have 

22 2
† † †3 3 31 2 1 2 1 2

11 12 13 11 12 13 11 16 152
1 2 1 3 1 1 1 1 1 11

2 2
† † †32 1 1 2 1 2

66 61 62 63 16 12 142
1 2 2 2 2 2 22
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ω ω

ω ω

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂+ + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂∂

3

2
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† † †3 3 31 1 2 1 2
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2
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( ) ( ) ( )

0

u
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ω ω
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∂

∂ ∂ ∂∂ ∂ ∂ ∂ ∂+ + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂

+ =

(C2) 

Arrange the above equation as 

22 2
† † †3 31 2 1 2

11 12 13 11 12 1311 16 152
1 2 1 3 1 1 11

2 2
† † † 32 1 1 2

66 61 62 6316 12 142
1 2 2 2 22
2 2
3 1
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u uu u u uc c c i s s s s s s
x x x x x x xx

uu u u uc i s s s s s s
x x x x xx

u uc
x x x

ω

ω
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∂ ∂ ∂ ∂ ∂ ∂ ∂∂
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∂ ∂ ∂
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∂ ∂ ∂
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       (C3) 

For each group of Willis terms in the above equation, we have 

† †
11 11111 111,s s s s= =  

† †
12 11216 112,s s s s= =  

† †
13 11315 113,s s s s= =  
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† †
61 12116 121,s s s s= =  

† †
62 12212 122,s s s s= =  

† †
63 12314 123,s s s s= =  

† †
51 13115 131,s s s s= =  

† †
52 13214 132,s s s s= =  

† †
53 13313 133,s s s s= =  

For each pair of the above group,  

† 0ijkijks s+ =                                                             (C4) 

The above expression means that although the Willis terms appear in the equation of motion 

for bulk Willis medium, it always exist with its conjugated term and the summation of them is 

zero.  

Thus, the equation of motion becomes 

2 22 2 2 2 2
23 31 2 2 1 1

11 12 13 66 44 12 2 2
1 2 1 3 1 2 1 31 2 3

( ) ( ) 0
u uu u u u uc c c c c u

x x x x x x x xx x x
ρω∂ ∂∂ ∂ ∂ ∂ ∂+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
    (C5) 

As one can see, the equation of motion finally is independent of Willis terms. 

The second equation component of the results of substituting Eq. (3.76) into Eq. (3.77) is 

2 2
† † † 32 1 1 2

66 61 62 6321 26 252
1 2 1 1 11

22 2
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1 2 2 3 2 2 22
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∂ ∂ ∂ ∂ ∂∂

∂ ∂∂ ∂ ∂ ∂+ + + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂∂
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∂ ∂ ∂
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      (C6) 

For each group of Willis terms in the above equation, we have 

† †
61 21121 211,s s s s= =  
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† †
62 21226 212,s s s s= =  

† †
63 21325 213,s s s s= =  

† †
21 22126 221,s s s s= =  

† †
22 22222 222,s s s s= =  

† †
23 22324 223,s s s s= =  

† †
41 23125 231,s s s s= =  

† †
42 23224 232,s s s s= =  

† †
43 23323 233,s s s s= =  

Similarly, the equation of motion finally becomes 

2 22 2 2 2 2
23 32 1 1 2 2

66 12 11 13 44 22 2 2
1 2 1 2 2 3 2 31 2 3

( ) ( ) 0
u uu u u u uc c c c c u

x x x x x x x xx x x
ρω∂ ∂∂ ∂ ∂ ∂ ∂+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
   (C7) 

The third equation component of the results of substituting Eq. (3.76) into Eq. (3.77) is 

2 2
† † †3 31 1 2

44 51 52 5331 36 352
1 3 1 1 11
22

† † †3 32 1 2
44 41 42 4336 32 342

2 3 2 2 22
22 2
31 2

13 13 33 2
1 3 2 3 3

( ) [( ) ( ) ( ) ]

( ) [( ) ( ) ( ) ]

u uu u uc i s s s s s s
x x x x xx

u uu u uc i s s s s s s
x x x x xx

uu uc c c
x x x x x

ω

ω

∂ ∂∂ ∂ ∂+ + + + + + +
∂ ∂ ∂ ∂ ∂∂

∂ ∂∂ ∂ ∂+ + + + + + + +
∂ ∂ ∂ ∂ ∂∂

∂∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂

† † † 31 2
31 32 3335 34 33

3 3 3
2
3

[( ) ( ) ( ) ]

0

uu ui s s s s s s
x x x

u

ω

ρω

∂∂ ∂+ + + + +
∂ ∂ ∂

+ =

    (C8) 

† †
51 31131 311,s s s s= =  

† †
52 31236 312,s s s s= =  

† †
53 31335 313,s s s s= =  

† †
41 32136 321,s s s s= =  

† †
42 32232 322,s s s s= =  
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† †
43 32334 323,s s s s= =  

† †
31 33135 332,s s s s= =  

† †
32 33234 332,s s s s= =  

† †
33 33333 333,s s s s= =  

2 2 22 2 2 2
23 3 31 2 1 2

44 44 13 13 33 32 2 2
1 3 2 3 1 3 2 31 2 3

( ) ( ) 0
u u uu u u uc c c c c u

x x x x x x x xx x x
ρω∂ ∂ ∂∂ ∂ ∂ ∂+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
        (C9) 

As a conclusion, from (C5), (C7) and (C9), the final form of equation of motion for bulk 

Willis medium is not affected by Willis terms. 
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Appendix D: Dispersion eigenequations of Willis plate 

For the eigen equation of symmetric mode 

1 2 3

4 5 6

7 8 9

0

s s s

s s s s

s s s

Q Q Q

D Q Q Q

Q Q Q

= =                                                                (D1) 

where 

1 13 1 33 31 33cos cos cos sinsQ ic k h ic f h i s h s f hβ ββ β β ω β ω β= + + −  

2 32 cos
sQ i s hω α=  

3 13 1 33 31 33cos cos cos sinsQ ic k h ic f h i s h s f hγ γγ γ γ ω γ ω γ= + + −  

3 13 1 33 31 33cos cos cos sinsQ ic k h ic f h i s h s f hγ γγ γ γ ω γ ω γ= + + − 	

5 44 42sin cossQ c h i s hα α ω α= − + 	

6 41 43cos sinsQ i s h s f hγω γ ω γ= − 	

7 44 1 44 51 53sin sin cos sinsQ c k f h c h i s h s f hβ ββ β β ω β ω β= − − + − 	

8 52 cos
sQ i s hω α= 	

9 44 1 44 51 53sin sin cos sinsQ c k f h c h i s h s f hγ γγ γ γ ω γ ω γ= − − + − 	

Assume s terms are zero in the expression and consider it as a normal medium. 

1 13 1 33cos cossQ ic k h ic f hββ β β= +  

2 0sQ =  

3 13 1 33cos cossQ ic k h ic f hγγ γ γ= +  

4 0sQ = 	

5 44 sinsQ c hα α= − 	

6 0sQ = 	
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7 44 1 44sin sinsQ c k f h c hβ β β β= − − 	

8 0sQ = 	

9 44 1 44sin sinsQ c k f h c hγ γ γ γ= − − 	

Then 

1 5 9 3 5 7 5 1 9 3 7( ) 0s s s s s s s s s s s sD Q Q Q Q Q Q Q Q Q Q Q= − = − =                      (D2) 

5 44 sin 0sQ c hα α= = ,		 , 0, 1, 2,...n n
h
πα = = ± ± 																													(D3)	

Eq. (D3) is the dispersion relation for the SH mode. 

1 9 3 7 0s s s sQ Q Q Q− =                                                         (D4)	

13 1 33 1 13 1 33 1( )( ) tan ( )( ) tanc k c f k f h c k c f k f hβ γ γ ββ γ γ γ β β+ + = + +              (D5) 

We  have 

2 2 2 2 2
33 11 33 1 33 44 13 13 44 1

33 13 1
13 44 1

( )
( )

c c c k c c c c c kc f c k
c c kγ

ρω γγ − − + +
+ =

+
 

2 2 2 2 2
33 11 33 1 33 44 13 13 44 1

33 13 1
13 44 1

( )
( )

c c c k c c c c c kc f c k
c c kβ

ρω ββ − − + +
+ =

+
 

2 2 2
11 1 13

1
13 44( )
c k ck f
c cγ

ρω γγ
γ

− +
+ =

+
 

2 2 2
11 1 13

1
13 44( )
c k ck f
c cβ

ρω ββ
β

− +
+ =

+
 

So 

2 2 2 2 2 2 2 2
11 1 13 33 11 33 1 33 44 13 13 44 1

2 2 2 2 2 2 2 2
11 1 13 33 11 33 1 33 44 13 13 44 1

( )[ ( ) ]tan

( )[ ( ) ]tan 0

c k c c c c k c c c c c k h

c k c c c c k c c c c c k h

ρω γ ρω β γ

ρω β ρω γ β

− + − − + + −

− + − − + + =
        (D6) 

Eq. (D6) gives the exact dispersion of symmetric Lamb mode. 

In the limit of low 1/ , ,h h kβ γ ω , the expression can be simplified as 

2 2 2 2 2
33 13 33 11 1[ ( ) ]( ) 0c c c c kρω γ β+ − − =                                      (D7) 
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A linear dispersion relation is also obtained as 

2
2 213

11 1
11 33

(1 )
cc k
c c

ρω = −                                                          (D8) 

	

For the eigen equation of anti-symmetric mode 

 

1 2 3

4 5 6

7 8 9

0

a a a

a a a a

a a a

Q Q Q

D Q Q Q

Q Q Q

= = 																																																														(D9)	

where 

1 13 1 33 31 33sin sin sin cosaQ c k h c f h s h i s f hβ ββ β β ω β ω β= − − − +  

2 32 sin
aQ s hω α= −  

3 13 1 33 31 33sin sin sin cosaQ c k h c f h s h i s f hγ γγ γ γ ω γ ω γ= − − − +  

4 41 43sin cosaQ s h i s f hβω β ω β= − + 	

5 44 42cos sinaQ ic h s hα α ω α= − 	

6 41 43sin cosaQ s h i s f hγω γ ω γ= − + 	

7 44 1 44 51 53cos cos sin cosaQ ic k f h ic h s h i s f hβ ββ β β ω β ω β= + − + 	

8 52 sin
aQ s hω α= − 	

9 44 1 44 51 53cos cos sin cosaQ ic k f h ic h s h i s f hγ γγ γ γ ω γ ω γ= + − + 	

Assume s terms are zero in the expression and consider it as a normal medium. 

1 13 1 33sin sinaQ c k h c f hββ β β= − −  

2 0aQ =  

3 13 1 33sin sinaQ c k h c f hγγ γ γ= − −  

4 0aQ = 	
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5 44 cosaQ ic hα α= 	

6 0aQ = 	

7 44 1 44cos cosaQ ic k f h ic hβ β β β= + 	

8 0aQ = 	

9 44 1 44cos cosaQ ic k f h ic hγ γ γ γ= + 	

Then 

	 1 5 9 3 5 7 5 1 9 3 7( ) 0a a a a a a a a a a a aD Q Q Q Q Q Q Q Q Q Q Q= − = − = 																										(D10)	

5 44 cos 0aQ ic hα α= = ,	
(1 / 2 ) , 0, 1, 2,...n n

h
πα += = ± ± 																											(D11)	

Eq. (D11) is also the dispersion relation for the SH mode. 

1 9 3 7 0a a a aQ Q Q Q− =                                                  (D12) 

gives the dispersion for anti-symmetric Lamb mode. 
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Appendix E Modes Characterization 

1. Define two orthogonal states α and β  which correspond to a compression and a bending, 

respectively. Assume that these two states are coupled into two other states: 

1 cos sinψ θ α θ β= +                                                    (E1) 

2 sin cosψ θ α θ β= − +                                                 (E2) 

For instance, if 0θ = , we have 1ψ α= and 2ψ β= , indicating that they are separated. 

2. Assume that the coupling of these states with an incident field induces at the top of pillar a 

vibration defined by 

1 2
1 2

i iAe Beψ ψψ ψ ψ= +                                                 (E3) 

Which depends on the strength of the coupling and the phase shift. 

Substitute Eqs. (E1) and (E2) into Eq. (E3), ψ can be written as 

1 2 1 2cos sin sin cosi i i iAe Be Ae Beψ ψ ψ ψψ θ θ α θ θ β⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦               (E4) 

3. Since α  has the same displacement at points “4” and “5”, while β  has the opposite 

displacement at the points “4” and “5”. 

For point “4”, we can write like ψ in Eq. (E4). 

( )4ψ ψ=                                                                      (E5) 

For point “5”, there is 

( )
1 2 1 2

5 cos sin sin cosi i i iAe Be Ae Beψ ψ ψ ψψ θ θ α θ θ β⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦             (E6) 

Therefore,  

( ) ( )
( )

1 2
4 5

4cos sin
2

i iAe Beψ ψ
ψ ψ

θ θ α
+

⎡ ⎤= −⎣ ⎦                            (E7) 
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( ) ( )
( )

1 2
4 5

4sin cos
2

i iAe Beψ ψ
ψ ψ

θ θ β
−

⎡ ⎤= +⎣ ⎦                            (E8) 

The above two equations mean that with <4+5> and <4-5>, we recover the displacement of 

the compressional and bending modes at point “4”. The only point is that there is a coefficient 

(complex number) in front of ( )4α  and ( )4β  that define the strength of the two quantities. 

4. For simplicity, if we assume that the two modes comressional and bending do not couple to 

each other and behave as independent modes, that means 0θ =  results in 1ψ α≡  and 

2ψ β≡ . Then 

( ) ( )
( )

1
4 5

42
iAeψ

ψ ψ
α

+
=                                               (E9) 

( ) ( )
( )

2
4 5

42
iBeψ

ψ ψ
β

−
=                                             (E10) 

A  and B  express the strength of the compressional and bending modes couple with the 

incident waves. These excitations can have a phase shift between them. 
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