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Notations

Notations concerning sets:

- R+ is the set {λ ∈ R, λ ≥ 0}.
- R∗ is the set {λ ∈ R, λ 6= 0}.
- Rn×m denotes the set of real n×m matrices.

- Rn×n denotes the set of real n× n matrices.

- Conv{S} indicates the convex hull of the set S.

- Conv{S} denotes the closed convex hull of a set S.

- int{S} refers to the interior of a set S.

- S denotes the closure of a set S.

- Vert{S} indicates the set of vertices of a set S.

- card(S) refers to the cardinal of a set S.

- For a positive definite matrix P ∈ Rn×n and a positive scalar γ, E(P, γ) indicates the

ellipsoid

E(P, γ) = {x ∈ Rn : xTPx ≤ γ}.

- For all positive scalar r, B(0, r) denotes the closed ball of radius
√
r:

B(0, r) = E(I, r) = {x ∈ Rn : xTx ≤ r}.

- Let S ⊂ Rm be a finite set of vectors. The minimum argument of a given function

f : S −→ R is noted by

argmin
x∈S

f(x) = {y ∈ S : f(y) ≤ f(z), ∀z ∈ S}.
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Notations

- For a positive integer N , we denote by IN the set {1, . . . , N}.
- ∆N stands for the unit simplex

∆N =

{
β =

[
β(1), . . . , β(N)

]T
∈ RN :

N∑

i=1

β(i) = 1, β(i) ≥ 0, i ∈ IN

}
.

Notations concerning matrices:

- M−1 stands for inverse of a non-singular square matrix M

- MT refers to the transpose of a matrix M .

- M � 0 (resp. M � 0) means that the square matrix M is positive (resp. negative)

semi-definite.

- M ≻ 0 (resp. M ≺ 0) means that the square matrix M is positive definite (resp. nega-

tive definite).

- eig(M) denotes the eigenvalues of the square matrix M .

- eigmin(M) and eigmax(M) are used to refer to the minimum and maximum eigenvalue

respectively of a square matrix M .

- I stands for the identity matrix of appropriate dimension.

- M(i) refers to the i-th row of a matrix M .

- ∗ denotes the elements that can be deduced by symmetry in a symmetric matrix.

- M(i,j) refers to the element of the i-th row and the j-th column of a matrix M .

- 0 indicates the null scalar or the null matrix of appropriate dimension.

- Re(eigj(M)) denotes the real part of the j-th eigenvalue of the square matrix M .

Notations concerning vectors:

- x(i) refers to the i-th row of a vector x.

- xT refers to the transpose of a vector x.

- ‖.‖ denotes the Euclidean norm for a vector.

- A vector v ∈ Rm is said to be strictly positive if for all i ∈ Im v(i) > 0.

Notations concerning functions:

- A class K function is a function f : [0, a) → [0,+∞) which is strictly increasing, and

such that f(0) = 0.

- A class K∞ is a class K function such that a = +∞ and limt→+∞ f(t) = +∞.
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Notations

- A C1 function is a continuously differentiable function.

Notations concerning scalars:

- |a| denotes the absolute value of a scalar a.

- sign(x) refers to the sign function of x ∈ R.
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Résumé

Cette thèse est dédiée au problème de la stabilisation des systèmes affines à commutation.

L’objectif est de concevoir des lois de commutation dépendantes de l’état qui stabilisent

le système en boucle fermée. Premièrement, un aperçu de quelque résultat existant dans

la littérature est présenté. Ensuite, un résultat général permettant la synthèse de lois de

commutations pour la stabilisation des systèmes nonlinéaires affines en entrée est proposé.

La particularisation de ce résultat aux cas des systèmes affines à commutation et des sys-

tèmes linéaires à temps invariant avec une commande à relais a permis de synthétiser des

lois de commutations garantissant leur stabilité asymptotique locale ou globale en boucle

fermée. Des surfaces de commutations linéaires et nonlinéaires sont proposées en utilisant

des fonctions de Lyapunov quadratiques et non-quadratiques. Grâce à l’utilisation des

fonctions de Lyapunov commutées une méthode numérique basée sur des LMIs permet-

tant la conception de surfaces de commutations nonlinéaires est proposée. Une méthode

permettant la synthèse de lois de commutations robustes vis-à-vis des perturbations sur

les mesures est également développée. Enfin, le problème de la synthèse de lois de com-

mutations basée-observateur est considéré. Des conditions de stabilisation asymptotique

locale et globale sont développées. Les lois de commutations conçues dépendent de l’état

reconstruit en utilisant un observateur du type Luenberger. De plus, le principe de sépa-

ration est démontré pour les systèmes affines à commutation ainsi que pour les systèmes

linéaires temps invariant avec une commande à relais.

Mots-clés: Systèmes affines à commutation, commande basée-observateur, lois de

commutation dépendantes de l’état, stabilité de lyapunov, commande à relais, robustesse.
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Abstract

This thesis is dedicated to the stabilization problem of switched affine systems with state-

dependent switching laws. First, an overview of some existing results is proposed. In

order to define the closed-loop system’s solutions and to analyse its behaviour over the

switching surfaces, the Filippov formalism is used. The stabilization problem is addressed

using a Lyapunov approach which allows deriving numerical approaches based on LMIs.

Second, a general framework for the design of a switching control in the case of nonlinear

input-affine systems is proposed. The application of the obtained results to switched

affine systems and LTI systems with a relay controller led to the design of full state-

dependent switching controllers which ensure either local or global asymptotic stability

of the closed-loop systems. Thanks to switching (Lur’e type) Lyapunov functions, a

numerical approach based on LMIs that allows to derive a nonlinear stabilizing switching

law and to provide an estimation of a non ellipsoidal domain of attraction is proposed.

Third, a design approach of robust state-dependent switching laws for switched affine

systems stabilization is proposed. The robustness property is studied with respect to

bounded exogenous disturbances that affect the state measurements which are used for

the design of the switching laws. Finally, observer-based switching controllers are designed

to guarantee both local and global asymptotic stability of the closed-loop system. Using

both quadratic and non-quadratic Lyapunov functions, linear and nonlinear switching

surfaces are designed. The derived switching surfaces depend on the estimated state

which is computed by a Luenberger observer. For both switched affine systems and LTI

systems with relay controller, the separation principle is proved.

Keywords: Switched affine systems, relay feedback control , LTI systems, observer-

based switching laws, state-dependent switching laws.
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General introduction

Hybrid systems represent dynamical systems that exhibit simultaneously continuous and

discrete dynamics [4], [43], [44], [46], [52]. Switched systems represent a popular class of

hybrid systems [54], [77], [76], [78], [102], [103], [107], [109]. They consist of a family of

continuous-time subsystems and a rule 1 orchestrating the switching among them. The

design of the switching rule is one of the most important problems in the switched system

community. Even thought a large variety of results addressed this problem for the case

when the family of subsystems shares a common equilibrium point, few results cover the

case when each of the subsystem presents a different fixed point. In the present work, we

are interested in the switching rule design problem for the case of switched affine systems

[1], [16], [26], [51], [87], [95]. This class of switched systems has attracted the interest of

the research community since its study has direct applications in various domains: power

electronics (for example DC/DC and AC/DC converters), electromechanical systems, etc..

However, the control of switched affine systems presents some difficulties: fast switch-

ing, presence of non standard equilibrium points (the different subsystems do not neces-

sarily share a common equilibrium), sliding dynamics, zeno behaviour, etc. Such problems

have been studied in mathematics, in the more general context of discontinuous dynami-

cal systems [5], [6], [8], [21], [84] . Their study is quite delicate since for such systems it is

required to use more general concepts of solutions than the classical one, in order to take

into account the dynamics over the discontinuities.
1also called switching law, representing the discrete dynamic.
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General introduction

Goals

The main objective of this thesis is to provide new methods for the design of state-

dependent switching laws that guarantee the stability of the closed-loop switched affine

systems at the origin. We intend to propose stabilization criteria for the challenging case

when the individual subsystems are not stable and do not share a Hurwitz convex com-

bination of their evolution matrices. The classical relay control for LTI systems is also

considered as a particular case. Using Filippov’s formalism, we will handle both sliding

dynamics and non-standard equilibrium points which spring out by fast switching. Both

quadratic and non-quadratic Lyapunov functions will be utilized in order to provide design

approaches for linear and nonlinear switching surfaces that ensure the local asymptotic

stability of the closed-loop switched affine system. Ellipsoidal and non-ellipsoidal estima-

tions of the domains of attraction will also be investigated. Furthermore, we will study

under which conditions the global stabilization may be achieved. The robustness with

respect to exogenous perturbations will be analysed. Finally, we will also consider the

stabilization of switched affine systems using observer-based switching laws. An investi-

gation concerning the separation principles for both LTI systems with relay and switched

affine systems will be led.

Structure of the thesis

The thesis is organized as follows:

Chapter 1

The first chapter provides an overview of the recent results on the stabilization of switched

affine systems with state-dependent switching laws. First, the concept of solutions, the

notion of equilibrium point and the stability concepts necessary for the comprehension

are provided while considering the Filippov framework. Then, the problems that can

be encountered in the study of the class of switched affine systems are presented using

pedagogical examples. Finally, recent results concerning the design of stabilizing state-

dependent switching for this class of systems are presented. Using the Filippov formalism

PhD thesis 2



General introduction

some of these results are reproved. The advantages and disadvantages of each approach

are analysed in order to point out the problems that are still open.

Chapter 2

In the second chapter, a new approach for the design of state-dependent switching laws is

proposed. Thanks to the use of non-quadratic Lyapunov functions a method allowing the

design of nonlinear switching surfaces and the enlargement of the domain of attraction

with respect to the approach provided in [55] is developed. LMI criteria are given in

order to design the switching law and provide an estimation of a non-ellipsoidal domain

of attraction. Using the properties of Lur’e type Lyapunov functions, a constructive

approach based on LMIs is provided in order to derive state-dependent switching laws

ensuring the global asymptotic stability of the closed-loop switched affine systems. The

approach is then particularised to the stabilization of the simpler class of LTI systems

with relay controllers. Numerical methods allowing the design of a relay controller have

been provided. Moreover, a general framework for the design of a relay control for the

class of nonlinear input-affine systems is provided.

Chapter 3

The third chapter provides a method for the stabilization of switched affine systems with

perturbed state-dependent switching laws. The method considers the perturbation in the

states measurements. Qualitative conditions for stability are developed. In addition, a

numerical approach based on LMIs which allows to derive state-dependent switching laws

and to enlarge the domain of attraction or diminish the size of the chattering zone is

given. The results are particularized to provide a method to design a relay control for

LTI systems stabilization with perturbed measurements.

Chapter 4

In the last chapter, the problem of observer-based switching laws design is considered to

ensure local asymptotic stability of the origin of switched affine systems. A Luenberger

PhD thesis 3



General introduction

observer is used to design both linear and nonlinear switching surfaces dependent on the

estimated state. LMI conditions are proposed in order to allow a numerical implementa-

tion of the results. Considering a particular property of the switching Lyapunov function,

LMI conditions ensuring the global asymptotic stability of the closed-loop switched affine

system to the origin are equally provided. The proposed approaches are then particu-

larized to the case of stabilization of LTI systems by an observer-based relay feedback

controller. It has been equally shown that for both LTI systems with a relay controller

and switched affine systems the separation principle holds.

Personal publications

The research exposed in this thesis can be found in the following publications:

Journals

• Zohra Kader, Christophe Fiter, Laurentiu Hetel, and Lotfi Belkoura, «Non-quadratic

stabilization by a relay control», provisionally accepted as a regular paper, with mi-

nor revisions in Automatica.

• Zohra Kader, Christophe Fiter, Laurentiu Hetel, and Lotfi Belkoura, «Stabilization

of switched affine systems with disturbed state-dependent switching laws», Interna-

tional Journal of Robust and Nonlinear Control, 2017, https://doi.org/10.1002/

rnc.3887.

International conferences

• Zohra Kader, Christophe Fiter, Laurentiu Hetel, and Lotfi Belkoura, «Non-quadratic

stabilization of switched affine systems », 20th IFAC World Congress, Toulouse,

France, 2017.

• Zohra Kader, Christophe Fiter, Laurentiu Hetel, and Lotfi Belkoura, «Stabilization

of LTI systems by relay feedback controller with disturbed measurements», Ameri-

can Control Conference, Boston, USA, 2016.
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• Zohra Kader, Christophe Fiter, Laurentiu Hetel, and Lotfi Belkoura, «Observer-

based relay feedback controller design for LTI systems», European Control Confer-

ence, Aalborg, Denmark, 2016.
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Chapter 1

State of the art

Over this chapter we will consider the following class of switched affine systems:

ẋ = Aσ(x)x+ bσ(x),

y = Cσ(x)x,
(1.1)

where x ∈ Rn is the vector of the state variables, y ∈ Rp is the vector of the outputs,

Ai ∈ Rn×n, Ci ∈ Rp×n and bi ∈ Rn×1 are the matrices describing the N subsystems, and

σ : Rn −→ IN = {1, . . . , N} represents the switching law. We are interested in the design

of state-dependent switching laws stabilizing system (1.1). More exactly we are interested

in the design of state-dependent switching laws σ as piecewise constant functions. In the

literature the closed loop system (1.1) is called piecewise affine system [65], [66], [82].

However, in this case σ is assumed to be given, while in our case we have to design it.

System (1.1) is a particular class of discontinuous dynamical systems [21]. Indeed,

switched systems with state-dependent switching laws are differential equations with dis-

continuous right-hand side. For this class of systems classical solutions or solutions in the

sense of Carathéodory [7] may not exist. For differential equations with discontinuous

right-hand side, several concepts of solutions can be found [10], [21], [48], [49]. Over this

thesis the concept of solutions which was initially proposed by Filippov in the sixties will

be used. Before focusing on some basic results for the stabilizability of switched systems,

the next section aims to introduce the concept of solutions, the notion of equilibrium

points, and the stability concepts for discontinuous dynamical systems.

PhD thesis 6



CHAPTER 1. STATE OF THE ART

1.1 Solution concept and stability notions

For a given function σ(x), system (1.1) is a subclass of the more general class of dynamical

systems with discontinuous right-hand side given as

ẋ = X (t, x), (1.2)

with X : R+ × Rn −→ Rn locally bounded and discontinuous.

Since the sixties, the study of discontinuous systems in the form (1.2) received a wide

interest from many researchers in mathematics and in control theory. This interest is

motivated by the fact that (1.2) can represent different classes of physical systems in

various application domains, where the discontinuity can be connected to the physical

nature of the system : power electronic converters [9], [29], [56], mechanical systems with

dry frictions [20], [116], aerospace [39], [40], ..., etc. It can also be introduced intentionaly

in the feedback loop in order to ensure desirable properties such as in sliding mode [32],

[89], [115], relay [30], [59], [91], [114], or adaptive control [18], [73]. From the mathematical

point of view, discontinuous systems can present several difficulties and challenges, among

which we can mention the problem of existence and uniqueness of the solutions, the

presence of non-linear phenomena such as sliding motion, limit cycles, chattering and

zeno behaviour - see for instance [32], [45], [63], [64], [115], and the references therein.

Among the existing frameworks the formalism developed by Filippov is well suited for their

modelling and analysis, since it takes into account the discontinuities and the behaviour

of the systems over them - see for instance the tutorial of Cortès [21]. In the following,

we present the notions of solutions, equilibrium points, and stability of discontinuous

systems. In fact, it seems convenient to start by the exposition of these notions for the

class of time-invariant systems which is simple. These notions are then provided for the

case of time-varying systems.

1.1.1 Time-invariant discontinuous systems

In order to highlight the most important concepts involved in our study and to present

the main contribution of this work, we consider the class of time-invariant discontinuous

PhD thesis 7



CHAPTER 1. STATE OF THE ART

systems. The notions of stability and equilibrium points are defined as well as the notion

of solutions of discontinuous differential equations.

Solution concept

Let us consider the following time-invariant dynamical system

ẋ = X (x), (1.3)

with X : Rn −→ Rn locally bounded and discontinuous. The Filippov’s formalism as-

sociates to the differential equation (1.3) a set-valued map taking into account all the

possible values of the derivative. This is possible by considering the convex hull of the

possible trajectories over the discontinuities. Then, solutions are constructed using differ-

ential inclusions [5]. The differential inclusion associated to the differential equation (1.3)

is given by

ẋ(t) ∈ F [X ](x), (1.4)

The set-valued map F [X ](x) is computed from the differential equation (1.3) using the

construction given in [36] such that

F [X ](x) =
⋂

δ>0

⋂

µ(S)=0

Conv{X (B̆(x, δ)\ S)}, ∀x ∈ Rn. (1.5)

Here, we denote by Conv the closed convex hull, B̆(x, δ) is the open ball centered at x of

radius
√
δ, and finally S is a set of measure µ(S) = 0 (in the sense of Lebesgue). In the

sequel, we note F [X ](x) the set-valued map associated to the system (1.3). We consider

the solutions of (1.3) (or of (1.4)) in the sense of Filippov given as follows :

Definition 1 (Filippov solution [36]): Consider system (1.3) and its associated differential

inclusion (1.4). A Filippov solution of the discontinuous systems (1.3) over the interval

[ta, tb] ⊂ [0,∞) is an absolutely continuous mapping ς : [ta, tb] −→ Rn satisfying:

ς̇(t) ∈ F [X ](ς(t)), for all most all t ∈
[
ta, tb

]
(1.6)

with F [X ](x) given by (1.5).

The existence of at least one solution for some initial condition of the differential

inclusion (1.4) is guaranteed for all x ∈ Rn if F is locally bounded and takes nonempty,

compact and convex values [36].
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The use of Filippov solutions is motivated by the fact that there exist differential

equations with discontinuous right-hand side which do not admit classical solutions.

Example 1: Switched affine system which does not admit classical solutions

Consider the following discontinuous system

ẋ = X (x) =





−1, if x > 0,

1, if x ≤ 0
(1.7)

which is discontinuous at x = 0. Note that this example represents a basic switched

affine system (1.1) with A1 = A2 = 0 and b1 = −b2 = −1. Suppose that there exists a

classical solution of the differential equation (1.7) : a continuously differentiable function

x : [0, t1] → R which satisfies (1.7) with x(0) = 0 . Therefore, ẋ(0) = X (0) = 1 which

implies that for all t sufficiently small, x(t) > 0 and hence ẋ(0) = X (x) = −1 which

contradicts the fact that t → ẋ is continuous. Therefore, no classical solution starting

from 0 exists. On the other hand, to the discontinuous equation (1.7) we may associate

the following differential inclusion

ẋ ∈ F [X ](x) =





−1, if x > 0,

Conv{−1, 1}, if x = 0

1, if x < 0.

(1.8)

• if x(0) = 0 then the function x : [0, ∞) → R of (1.7), with x(t) = 0 satisfies

the differential inclusion (1.8), that it represents a Filippov solution according to

Definition 1.

Depending on the initial condition x(0), the Filippov solutions of system (1.7) can

be constructed as follows:

• if x(0) > 0, then x : [0,∞) → R is given by

x(t) =





x(0)− t, if t ≤ x(0),

0, if t ≥ x(0);

• if x(0) < 0, then x : [0,∞) → R is given by

x(t) =





x(0) + t, if t ≤ −x(0),
0, if t ≥ −x(0).
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The following example illustrates different phenomena that can be encountered in the

case of switched affine systems and it shows how the Filippov formalism is applied to the

case of switched affine systems with two modes and a quadratic partitioning of the state

space.

Example 2: Sliding modes occurrence in switched affine systems

Let us consider the following switched affine system




ẋ = A1x+ b1, if xTΓx < 0,

ẋ = A2x+ b2, if xTΓx ≥ 0,
(1.9)

where x =
[
x(1) x(2)

]T
∈ R2,

A1 =


3 −1

4 −1


 , A2 =


−1 −3

−1 0


 , b1 =


0
2


 , and b2 =


 0

−2


 .

Here, Γ =


10 −20

1 −0.2


 is the matrix characterizing the switching surfaces.

Let us define the following regions Ri, i ∈ {1, 2}

R1 = {x ∈ R2 : xTΓx < 0},

and

R2 = {x ∈ R2 : xTΓx ≥ 0}.

We have 



R1 ∩R2 = ∅,
R̄1 ∪ R̄2 = R2.

(1.10)

Using these relations, the differential inclusion associated to system (1.9) is given as follows

ẋ ∈ F [X ](x) =





A1x+ b1, if x ∈ R1,

A2x+ b2, if x ∈ R2,

Conv{A1x+ b1, A2x+ b2}, if x ∈ R̄1 ∩ R̄2.

(1.11)

Figure 1.1 shows the phase plot of system (1.9). From Figure 1.1 we can observe the two

situations which appear when the trajectories of system (1.11) reach switching surfaces.

For example, the trajectory originating at x =
[
4 4

]T
(represented with a black line)
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Figure 1.1: Sliding mode-Example 2

passes through the switching surfaces several times. When the trajectory reaches the

switching surfaces at the point
[
2.41 1.31

]T
, it evolves according to a sliding mode: it

stays on the switching surface and it follows a convex combination of the neighbouring

vector fields. Contrary to the classical concept of solution, solutions in the sense of

Filippov take into account the presence of sliding modes. For every x(0) starting on the

switching surfaces, there exists α(x) > 0 such that the instantaneous velocity of x is given

by

ẋ = α(x)(A1x+ b1) + (1− α(x))(A2x+ b2), (1.12)

and x is an absolutely continuous function satisfying the differential inclusion (1.11).

Equilibrium points

Considering solutions in the sense of Filippov, we provide extensions of the notions of

equilibrium points and stability in the case of differential inclusions in the following sec-

tion.

Definition 2 (Equilibrium point): The point x̄ ∈ Rn is said to be an equilibrium point

of the differential inclusion (1.4) if 0 ∈ F [X ](x̄).

Applying this definition we will see that an equilibrium point of a subsystem of a

PhD thesis 11
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Figure 1.2: Phase plot of the subsystem

ẋ = A1x+ b1-Example 3
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Figure 1.3: Phase plot of the subsystem

ẋ = A2x+ b2-Example 3

switched system is not necessarily an equilibrium point of the switched system and vice

versa. The following example illustrates this phenomena.

Example 3: Equilibrium points of switched affine systems

In order to illustrate the notion of equilibrium points which are obtained by switching,

let us reconsider Example 2. The phase plots of the subsystems ẋ = A1x + b1 and

ẋ = A2x+ b2 of system (1.9) are respectively depicted in Figures 1.2 and 1.3. Figure 1.4

shows the phase plot of system (1.9) and its equilibrium point.

From Figure 1.4 we can see that the switched affine system (1.9) has an equilibrium

point x̄ =
[
0 0

]T
(red point) obtained by switching, since 0 ∈ Conv{b1, b2}. Note that

x = 0 is not an equilibruim for ẋ = A1x+ b1 or for ẋ = A2x+ b2. We can also note that

the equilibrium points of the subsystems x̄1 = −A−1
1 b1 and x̄2 = −A−1

2 b2 (represented

with green stars) do not constitute equilibrium points of the switched affine system since

they are «hidden»by the state space partition.

Considering the above definitions we are now able to provide the stability concepts

used in this work. Without loss of generality, we consider the case where the equilibrium

point is the origin, because of the fact that any equilibrium point x∗ 6= 0 can be shifted to

the origin by using the change of coordinates x̄ = x−x∗. This coordinate transformation

will be shown for switched affine systems in Section 1.3.
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Figure 1.4: Phase plot of the switched affine system (1.9) illustrating its equilibrium

point-Example 3

Stability notions

Definition 3: The equilibrium point x̄ = 0 of the differential inclusion (1.4) is said to be

:

1. stable, if for any ǫ > 0, there exists δ > 0 such that for all Filippov solutions x(t)

of (1.4), ‖x(0)‖ < δ =⇒ ‖x(t)‖ < ǫ, ∀t ≥ 0,

2. locally asymptotically stable, if it is stable and there exists a set D ⊂ Rn, 0 ∈
int{D}, such that for all Filippov solutions x(t) of (1.4) with x(0) ∈ D, x(t) −→ 0

when t −→ ∞,

3. locally exponentially stable with a decay rate α (or locally α-stable) if there

exist a set D ⊂ Rn, 0 ∈ int{D}, and strictly positive scalars κ and α such that for

all Filippov solutions x(t) of (1.4) with x(0) ∈ D,

‖x(t)‖ ≤ κe−αt ‖x(0)‖ , ∀t ≥ 0. (1.13)

A set D satisfying one of these properties is usually called an estimation of the domain

of attraction.
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The Lyapunov stability approach is the most used stability tool for linear and nonlinear

systems. This method has been generalised by Filippov to the case of discontinuous

dynamical systems (see for instance Theorem 1, page 153 in [36]). The principle of the

Lyapunov stability approach remains the same in the case of discontinuous systems. The

Lyapunov stability approach uses a function V : Rn −→ R+ which depends on the system’s

state to analyse the stability of an equilibrium point. This function is called a candidate

Lyapunov function. There exists a large variety of books addressing the Lyapunov stability

analysis of nonlinear systems - see for instance [8], [74], etc. Here, we recall the sufficient

conditions for stability of discontinuous systems provided in [36] and [8].

Theorem 1: Let x̄ = 0 be an equilibrium point of system (1.4) and D a domain such

that 0 ∈ int{D}. Let V : D −→ R be a continuously differentiable function such that

V (0) = 0, V (x) > 0, ∀x ∈ D \ {0} (1.14)

sup
ς∈F [X ](x)

∂V

∂x
ς ≤ 0, ∀x ∈ D \ {0}. (1.15)

Then, x̄ = 0 is locally stable. Furthermore, if

sup
ς∈F [X ](x)

∂V

∂x
ς < 0, ∀x ∈ D \ {0}, (1.16)

then, x̄ = 0 is locally asymptotically stable. Moreover, if there exists a positive scalar α

such that

sup
ς∈F [X ](x)

∂V

∂x
ς ≤ −2αV (x), ∀x ∈ D, (1.17)

then, the equilibrium point x̄ = 0 is locally α-stable with a decay rate α. Finally, x̄ = 0

is said to be unstable if it is not stable.

Conditions of global stability have been provided in [8] and are reported in the following

theorem.

Theorem 2: Consider system (1.4). Assume that there exists a strict Lyapunov function

V : Rn → R such that for some functions a, b, c ∈ K∞,

a(‖x‖) ≤ V (x) ≤ b(‖x‖), ∀x ∈ Rn, (1.18)

sup
ς∈F [X ](x)

∂V

∂x
ς ≤ −c(‖x‖), ∀x ∈ Rn, (1.19)

then the origin of system (1.4) is globally asymptotically stable.
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1.1.2 Time-varying discontinuous systems

In this document we will also consider time-varying systems with discontinuous right-hand

side given by

ẋ = X̄ (t, x), x(t0) = x0, (1.20)

where X̄ : Rn × R+ → Rn is locally bounded and discontinuous.

To this system we associate the following time-varying differential inclusion

ẋ ∈ F [X̄ ](t, x), x(t0) = x0, (1.21)

with

F [X̄ ](t, x) =
⋂

δ>0

⋂

µ(S)=0

Conv{X̄ (t, B̆(x, δ)\ S)},∀x ∈ Rn, t ∈ R+. (1.22)

The notion of Filippov solutions of a time-varying differential inclusion is recalled here-

after.

Solution concept

Definition 4 (Filippov solution): Consider the differential inclusion (1.21). A Filippov

solution of the discontinuous system (1.21) over the interval [ta, tb] ⊂ [0,∞) is an abso-

lutely continuous mapping ς(t) : [ta, tb] −→ Rn satisfying:

ς̇(t) ∈ F [X̄ ](t, ς(t)), for almost all t ∈ [ta, tb], (1.23)

with F [X̄ ](t, x) given by (1.22).

A differential inclusion has at least one solution if the set-valued map F [X̄ ](t, x) is

nonempty, locally bounded, closed, convex, and F is upper semicontinuous on x, t [5], [8],

[21], [36].

Equilibrium point

For the time-varying system (1.21), the notion of equilibrium points is given as follows:

Definition 5 (Equilibrium point): x̄ is said to be an equilibrium point of the differential

inclusion (1.21) if 0 ∈ F [X̄ ](t, x̄) for all t ≥ t0 ≥ 0.

Hereafter the notions of stability of the origin of time-varying discontinuous systems

are introduced.
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Stability notions

The stability notions of the origin of system (1.21) depends on the initial time t0 and are

defined in the following.

Definition 6 (Stability concepts): The equilibrium point x̄ = 0 of the differential inclu-

sion (1.21) is said to be :

1. uniformly stable, if for any ǫ > 0, there exists δ > 0, independent of t0, such that

for all Filippov solutions x(t) of (1.21), ‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ǫ, ∀t ≥ t0 ≥ 0,

2. locally uniformly asymptotically stable, if it is uniformly stable and there

exists a set D ⊂ Rn, 0 ∈ int{D}, such that for all Filippov solutions x(t) of (1.21)

with x(t0) ∈ D, x(t) −→ 0 when t −→ ∞,

3. locally uniformly exponentially stable with a decay rate α (or locally uni-

formly α-stable), if there exist a set D ⊂ Rn, 0 ∈ int{D}, and strictly positive

scalars κ independent of t0, and α such that for all Filippov solutions x(t) of (1.21)

with x(t0) ∈ D,

‖x(t)‖ ≤ κe−α(t−t0) ‖x(t0)‖ , ∀t ≥ t0 ≥ 0. (1.24)

A set D satisfying one of these properties is usually called an estimation of the domain

of attraction.

Let us recall that sufficient conditions for the local uniform asymptotic stability of the

origin of systems modelled by a differential equation with a discontinuous right hand side

ẋ = X̄ (t, x) have been given in [36].

Theorem 3: Let x̄ = 0 be an equilibrium point of system (1.21) and a domain D such

that 0 ∈ int{D}. Let W1, W2, and W3 be continuous positive definite functions and

V : D × R+ → R a strict Lyapunov function such that

V (t, 0) = 0, V (t, x) ≥ 0, ∀x 6= 0, t ≥ t0 ≥ 0, (1.25)

W1(x) ≤ V (t, x) ≤W2(x), (1.26)

and

sup
ς∈F(t,x)

{
∂V

∂t
+
∂V

∂x
ς

}
≤ −W3(x), ∀x ∈ D \ {0}, ∀t ≥ 0. (1.27)
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Then, x̄ = 0 is locally uniformly asymptotically stable.

For the case of uniform exponential stability the same conditions have to be verified

while considering a particular form of W3 such that W3(x) = 2αV (t, x) where α is a

positive scalar.

We may remark that in the literature there exist results about stability of discontin-

uous systems at the origin, when considering non-smooth Lyapunov functions - see for

instance [8] and the references therein. Here we only consider the case where the Lyapunov

functions are C1.

1.2 Stabilization of switched systems: difficulties and

challenges

Over this thesis we are concerned with the study of switched affine systems where the

switching laws are available for control and used to stabilize the switched system. More

precisely, we are interested in the design of state-dependent switching laws ensuring the

stability of switched systems, along with the construction of Lyapunov functions that

prove it. This problem is very challenging. Several difficulties must be considered. As we

will see further, depending on the switching law the switched systems can be stable or

unstable (Example 4). Moreover, even when the individual subsystems of the switched

system are all stable, switching among them can have a destabilizing effect (See Examples

5 and 7). Finally, the stability of the sliding modes must be considered when designing

the switching laws (see Example 6).

Example 4: Switching results in either stable or unstable systems

Consider the following switched affine system



ẋ = A1x+ b1, if xTΓx > 0,

ẋ = A2x+ b2, if xTΓx ≤ 0,
(1.28)

where x ∈ R2

A1 =


 1 1

−1 −4


 , A2 =


 1 5

−1 −1


 , b1 =


−1

1


 , and b2 =


 1

−1


 . (1.29)
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Figure 1.5: Phase plot of the subsystem

ẋ = A1x+ b1-Example 4
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Figure 1.6: Phase plot of the subsystem

ẋ = A2x+ b2-Example 4

The phase plot of the subsystems are represented in Figures 1.6-1.5.

Here Γ is a matrix which characterizes the switching surfaces. The simulations are

performed for two values of Γ:

Γ = Γ1 =


 1 −6

−200 −10


 , and Γ2 = −Γ1.

Let us define the regions Ri, i ∈ {1, 2} for the switched affine system (1.28) such that

R1 = {x ∈ R2 : xTΓx > 0},

and

R2 = {x ∈ R2 : xTΓx ≤ 0}.

We have 



R1 ∩R2 = ∅,
R̄1 ∪ R̄2 = R2.

(1.30)

The phase portraits of the switched affine system (1.28) with Γ = Γ1, and Γ = Γ2 are

reported in Figures 1.7 and 1.8, respectively. From Figures 1.7-1.8, we can observe that

depending on the switching law, we can obtain either a system which seems asymptotically

stable (Figure 1.8) or a system which seems unstable (Figure 1.7) at the origin.
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Figure 1.7: Phase plot of the switched

affine system (1.28), (1.32) with Γ = Γ1-

Example 4

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5 R1

R1 R2

R2

x(1)

x
(2

)

Figure 1.8: Phase plot of the switched

affine system (1.28), (1.32) with Γ = Γ2-

Example 4

Example 5: Unstable switched affine system obtained by switching among

stable systems

Consider the following switched affine system




ẋ = A1x+ b1, if x(1)x(2) ≤ 0,

ẋ = A2x+ b2, if x(1)x(2) > 0,
(1.31)

where x =
[
x(1) x(2)

]T
∈ R2

A1 =


−5 −30

4 −5


 , A2 =


−5 −4

30 −5


 , b1 =


1
1


 , and b2 = −b1. (1.32)

The phase portraits of the subsystems ẋ = A1x + b1 and ẋ = A2x + b2 are depicted in

Figures 1.9 and 1.10 while Figure 1.11 represents the phase plot of the resulting switched

system.

Let us define the regions Ri, i ∈ {1, 2} for the switched affine system (1.31) such that

R1 = {x ∈ R2 : x(1)x(2) ≤ 0},

and

R2 = {x ∈ R2 : x(1)x(2) > 0}.
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Figure 1.9: Phase plot of the subsystem

ẋ = A1x+ b1-Example 5

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

x(1)

x
(2

)

Figure 1.10: Phase plot of the subsystem

ẋ = A2x+ b2-Example 5
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Figure 1.11: Phase plot of the switched system (1.31)-Example 5

From Figure 1.11 we can observe that even if the subsystems are stable, the switched

systems seems to be unstable at the origin. Therefore, if the switching law is not chosen

in an appropriate manner the system solution may diverge.

The following example shows a case where the two subsystems are unstable, however

by taking into account sliding dynamics we may obtain a switched affine system which

seems to be stable at the origin.
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Figure 1.12: Phase plot of the subsystem

ẋ = A1x+ b1-Example 6
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Figure 1.13: Phase plot of the subsystem

ẋ = A2x+ b2-Example 6

Example 6: Stabilization to an equilibrium point obtained by sliding modes

Let us consider the switched affine system (1.28) with

A1 =


0 −1

4 1


 , A2 =


−1 −3

−1 0


 , b1 =


1
1


 , b2 =


−1

−1


 , and Γ = Γ3 =


−1 6

200 10


 .

(1.33)

We can observe that both subsystems ẋ = A1x + b1 and ẋ = A2x + b2 are unstable

(see Figures 1.12-1.13). Note that the origin is not a common equilibrium point of the

subsystems. However, 0 ∈ Conv{b1, b2}. Therefore, it represents an equilibrium point of

the differential inclusion. Moreover, the phase plot given in Figure 1.14 seems to indicate

that the origin is asymptotically stable: for any initial condition the system state reaches

the surface x = 0 and slides on it towards the origin.

The following example illustrates the fact that depending on the switching law and

considering sliding modes the trajectory of the obtained switched system can be stable or

unstable at the origin.

Example 7: Switching results on unstable sliding modes

Let us consider the switched affine system




ẋ = A1x+ b1, if xTΓx > 0,

ẋ = A2x+ b2, if xTΓx ≤ 0,
(1.34)
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Figure 1.14: Phase plot of the switched system (1.28), (1.33) with Γ = Γ3-Example 6

where

A1 =


 −1 1.6

−15 −1


 , A2 =


−1 −15

1.6 −1


 ,

b1 =


 28

−21


 , b2 = −b1, and Γ =


1 0

1 0


 .

(1.35)

Let us define the regions Ri, i ∈ {1, 2} for the switched affine system (1.34) such that

R1 = {x ∈ R2 : xTΓx > 0},

and

R2 = {x ∈ R2 : xTΓx ≤ 0}.

We have 



R1 ∩R2 = ∅,
R̄1 ∪ R̄2 = R2.

(1.36)

We can observe that both subsystems ẋ = A1x + b1 and ẋ = A2x + b2 are stable

(see Figures 1.15-1.16). Note that the origin is not a common equilibrium point of the

subsystems. However, 0 ∈ Conv{b1, b2}. Therefore, it represents an equilibrium point of

the differential inclusion. The phase plot given in Figure 1.17 seems to indicate that the

origin is unstable: the trajectories starting (or reaching) the switching surfaces can either
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Figure 1.15: Phase plot of the subsystem

ẋ = A1x+ b1-Example 7
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Figure 1.16: Phase plot of the subsystem

ẋ = A2x+ b2-Example 7
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Figure 1.17: Phase plot of the switched system (1.34), (1.35)-Example 7

switch to the regions R1 and R2 or slide on the surfaces away from the origin. Therefore,

in order to avoid these situations the design approaches of switching laws must take into

account the behaviour of the switched affine system over the switching surfaces (sliding

modes) which is allowed by the Filippov formalism.

The above examples seem to indicate that it is possible to stabilize a switched system to

the origin by designing a suitably constrained switching law even if all the subsystems are

unstable and do not share a common equilibrium point. However, a particular attention
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has to be given to sliding dynamics. Here, we intend to address this switching law design

problem in a formal manner. Using the Filippov formalism and the Lyapunov theory we

will focus on designing stabilizing switching laws. Before presenting our results we provide

as follows a short overview of some of the existing results about stabilizing state-dependent

switching laws design.

1.3 Some stabilization conditions for switched affine

systems

Let us consider the class of switched affine systems given as follows:

˙̃x = Ãσ(x̃)x̃+ b̃σ(x̃) = X̃ (x̃), (1.37)

with x̃ ∈ Rn is the vector of the state variables, Ãi, i ∈ {1, 2} are the evolution matrices

of the subsystems, b̃i ∈ Rn represent the affine terms, and σ(x̃) is the switching law.

The majority of the existing results in the literature considers the case of autonomous

systems, in which the state of the switched system must be steered to a common equi-

librium point of all the component subsystems (or at least of some of them). In what

follows and in our results we consider the case where the equilibrium point is obtained

by switching among the subsystems. Very few results were concerned with this case. The

first methods for the stabilization of this class of systems have been proposed by [16]

while the cases of linear switched systems and nonlinear switched systems with common

equilibria have been extensively studied in the literature [76], [78], [103], [106].

Consider the differential inclusion associated to (1.37)

˙̃x = F [X̃ ](x̃), (1.38)

with
F [X̃ ](x̃) = Conv{Ãix̃+ b̃i, i ∈ IN}

=
N∑

i=1

(Ãix̃+ b̃i)β(i).
(1.39)

From Definition 2, a necessary condition for x̃ to be an equilibrium is that there exists
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β∗ ∈ ∆N such that

F [X̃ ](x̃∗) =
N∑

i=1

(Ãix̃
∗ + b̃i)β

∗
(i) = 0. (1.40)

Therefore, when the matrix
∑N

i=1 Ãiβ
∗
(i) is invertible the equilibrium point x̃∗ of system

(1.37) must satisfy x̃∗ = −(
∑N

i=1 Ãiβ
∗
(i))

−1
∑N

i=1 β
∗
(i)bi. The Filippov formalism allows the

description of both the equilibrium points of the subsystems (β∗ ∈ Vert(∆N )) and the

equilibrium points induced by fast switching (β∗ ∈ ∆N , β
∗ /∈ Vert(∆N)). Without loss

of generality, we consider the case where the equilibrium point is the origin. Note that

any prescribed equilibrium point can be shifted to the origin via a change of coordinate

x = x̃− x̃∗. Then, system (1.37) becomes

ẋ = Aσ(x)x+ bσ(x) = Xaff (x), (1.41)

with Ai = Ãi, bi = Ãix̃
∗+ b̃i, ∀i ∈ IN and

∑N
i=1 β(i)bi = 0 i.e. x∗ = 0 satisfies the necessary

condition to be an equilibrium point in the origin.

Considering these notions, next we intend to presents an overview of some recent

results on the stabilization of switched affine systems at the origin.

1.3.1 Existence of a Hurwitz convex combination

Case of switched linear systems

Before presenting this approach for the class of switched affine systems, we present the

idea for the simpler class of linear switched systems, while considering the concept of

Filippov solutions.

In the sequel, for fi ∈ R with i ∈ IN = {1, 2, . . . , N}, we note

argmin
i∈IN

{fi} = {i ∈ IN , fi ≤ fj, ∀j ∈ IN},

and we define the set

∆N =

{
β =

[
β(1) . . . β(N)

]T
∈ RN : β(i) ∈

[
0, 1

]
,

N∑

i=1

β(i) = 1

}
.

Let us consider the linear switched system given by

ẋ = Aσ(x)x = X (x), (1.42)
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with x ∈ Rn the states variables. The matrices Ai ∈ Rn×n, i ∈ IN , are the evolution

matrices of the N subsystems. We suppose that they are not Hurwitz. Then, they satisfy

the relation

max
j∈{1,2,...,n}

Re(eigj(Ai)) ≥ 0, ∀i ∈ IN . (1.43)

The function σ : Rn −→ IN is the stabilizing switching law.

Using these notations and the definitions provided in the first section, in what follows

we present pioneering results based on the Lyapunov stability theory for the design of

state-dependent switching laws in order to stabilize switched linear systems. This con-

structive method of stabilizing state-dependent switching laws for the linear switched

system (4.119) has been provided in [119]. It has been shown in [119] that the existence

of a Hurwitz convex combination of the matrices Ai, i ∈ I2 implies the existence of a

stabilizing state-dependent switching law. A quadratic Lyapunov function proves the sta-

bility of the origin of the closed-loop switched system. In the following, the main results

given in [119] are presented by considering the solutions of the closed-loop system in the

sense of Filippov (defined in Section 1).

Theorem 4: (adapted from [119]) Consider the system (4.119) with N = 2. Assume

that there exists β∗ ∈ [0, 1] such that the convex combination A(β∗) := β∗A1+(1−β∗)A2

is Hurwitz.

Therefore, the switching law

σ(x) ∈ argmin
i∈{1, 2}

{
xT (AT

i P + PAi)x
}
, (1.44)

with P T = P ≻ 0 the matrix satisfying

AT (β∗)P + PA(β∗) ≺ 0, (1.45)

stabilizes globally asymptotically the switched linear system (4.119) at the origin.

Proof. For system (4.119) with the switching law (1.44), we define the regions Ri, i ∈
{1, 2} such that

Ri = {x ∈ Rn : xT (AT
i P + PAi)x < xT (AT

j P + PAj)x, ∀j ∈ {1, 2} \ {i}}.
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We have 



R1 ∩ R2 = ∅,
R̄1 ∪ R̄2 = Rn.

With these relations, the differential inclusion (1.4) and the set-valued map defined in

(1.5) associated to the closed-loop system (4.119), (1.44), are given by:

ẋ ∈ F [X ](x) =





{A1x} , if x ∈ R1,

{A2x} , if x ∈ R2,

Conv {A1x,A2x} , if x ∈ R̄1 ∩ R̄2.

(1.46)

For all x ∈ Rn we define

I∗(x) =
{
i ∈ {1, 2} : xT (AT

i P + PAi)x ≤ xT (AT
j P + PAj)x, ∀j ∈ {1, 2}

}
.

We have then:

I∗(x) =





{1} , if x ∈ R1,

{2} , if x ∈ R2,

{1, 2} , if x ∈ R̄1 ∩ R̄2.

Using this notation, we have

F [X ](x) = Conv
i∈I∗(x)

{Aix}. (1.47)

The set-valued map (1.47) is locally bounded, has a nonempty, compact and convex values.

Therefore, the differential inclusion (1.46) admits at least one solution x(t).

Consider the candidate Lyapunov function V (x) = xTPx, with P = P T ≻ 0 satisfying

(1.45). We want to show that the closed-loop system is stabilized by the switching law

(1.44). In order to show this, it is sufficient to prove that

sup
ς∈F [X ](x)

∂V

∂x
ς < 0 (1.48)

for all x 6= 0.

From (1.45) we have:

β∗xT (AT
1 P + PA1)x+ (1− β∗)xT (AT

2 P + PA2)x < 0, ∀x 6= 0. (1.49)

Since β∗ > 0 and 1− β∗ > 0, we deduce that

∀x 6= 0, ∃i ∈ IN , xT (AT
i P + PAi)x < 0, (1.50)
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and then

∀x 6= 0, ∀i ∈ I∗(x), xT (AT
i P + PAi)x < 0. (1.51)

It comes:

• if x ∈ R1, I∗(x) = {1} and F [X ](x) = {A1x}. From (1.51), we obtain

sup
ς∈F [X ](x)

∂V

∂x
ς = xT (AT

1 P + PA1)x < 0, (1.52)

and then (1.48) is verified for all x ∈ R1.

• If x ∈ R2, I∗(x) = {2} and F [X ](x) = {A2x}. From (1.51), we obtain

sup
ς∈F [X ](x)

∂V

∂x
ς = xT (AT

2 P + PA2)x < 0, (1.53)

and then (1.48) is verified for all x ∈ R2.

• If x ∈ R̄1 ∩ R̄2, we have I∗(x) = {1, 2} and

F [X ](x) = Conv {A1x,A2x} =
{
βA1x+ (1− β)A2x : β ∈ [0, 1]

}
.

Consequently, we have

sup
ς∈F [X ](x)

∂V

∂x
ς = sup

β∈[0,1]
{xT (AT (β)P + PA(β))x}. (1.54)

Since the set [0, 1] is compact, we have

sup
β∈[0,1]

{xT (AT (β)P + PA(β))x} = max
β∈[0,1]

{xT (AT (β)P + PA(β))x}, (1.55)

and then, for all x 6= 0, the inequality

sup
β∈[0,1]

{xT (AT (β)P + PA(β))x} < 0 (1.56)

is verified, if and only if

xT (AT (β)P + PA(β))x < 0 (1.57)

is verified for all β ∈ [0, 1].
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Since I∗(x) = {1, 2} we deduce from (1.51) that

xT (AT
i P + PAi)x < 0, ∀i ∈ {1, 2}. (1.58)

Thus, since β > 0 and 1− β > 0, we obtain

βxT (AT
1 P + PA1)x+ (1− β)xT (AT

2 P + PA2)x < 0. (1.59)

The equation (1.57) is then verified for all β ∈ [0, 1]. Therefore, the relation (1.48)

is verified for all x 6= 0, and thus the origin of the closed-loop system (4.119), (1.44)

is globally asymptotically stable.

Remark 1: The method proposed in Theorem 4 is based on the existence of a quadratic

Lyapunov function. When a stabilizing switching law exists while ensuring the decay of

a quadratic Lyapunov function, we usually say that the system is quadratically stable.

The feasibility of (1.45) allows the design of the switching law (1.44). We may remark

that (1.45) is a Bilinear Matrix Inequality (BMI) with variables β and P . In order to

solve (1.45) we have to proceed in two steps. Firstly, we need to find the vector β∗

such that A(β∗) is Hurwitz. Secondly, for β = β∗ we have to solve the Linear Matrix

Inequality (LMI) (1.45) with the variable P using the existing solvers on Matlab or another

programming language.

In the following we provide an illustrative example of this method.

Example 8: Consider the linear system (4.119) with matrices

A1 =


0 −1

4 1


 , and A2 =


−1 −3

−1 0


 . (1.60)

One can verify that the open-loop linear systems are unstable (the eigenvalues of the

matrices A1 and A2 are 0.5 ± 1.9365i and −2.3, 1.3 respectively). Considering β∗ = 1
2
,

such that the convex combination of the matrices Ai, i ∈ I2 is Hurwitz, We obtain the

following solution of (1.45)

P =


95.23 65.86

65.86 338.1


 . (1.61)

PhD thesis 29



CHAPTER 1. STATE OF THE ART

−50 0 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

x(1)

x
(2
)

Switching surfaces

Figure 1.18: Phase plot

Figure 1.18 shows the phase plot of the closed-loop switched system. From Figure 1.18

we can observe that starting from any point in the state space, the trajectories of the

closed-loop switched system (4.119), (1.60), (1.44), (1.61) converge asymptotically to the

origin.

The result of Theorem 4 has been extended in [33] to show that for the case N = 2, the

existence of a Hurwitz convex combination of the matrices A1 and A2 is a necessary and

sufficient condition of the existence of a stabilizing state-dependent switching law which

ensure the decay of a quadratic Lyapunov function. The result has been proved by using

the S-procedure Lemma. Feron [33] also extends the result to the case where the state of

the switched system (4.119) is not fully available to measurement.

A sliding mode controller has also been proposed by Wicks and coauthors in [118]

using the same hypothesis of existence of a Hurwitz convex combination of matrices

Ai, i ∈ I2. A hybrid controller has been proposed in the same paper and provides a

chattering-free switching strategy by using the hysteresis loop behaviour : the basic idea

consists on defining two new switching surfaces, R′
1 near the boundary of R1 and R′

2

near the boundary of R2 and selecting the switching law to ensure that switching occurs

only when the state attempts to cross the boundary R′
i, i ∈ {1, 2} in a direction leaving

the cone. State trajectories crossing the boundary upon entering the cone do not cause

switching.
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The result in Theorem 4 has been also generalized in [90] to the case of the switched

systems having N subsystems. Hereafter, we present this result while considering Filippov

solutions of the closed-loop switched linear system.

Theorem 5: (adapted from [90]) Consider the system (4.119) with σ(x) ∈ IN . Assume

that there exists β∗ ∈ ∆N such that the convex combination

A(β∗) =
N∑

i=1

β∗
(i)Ai (1.62)

is Hurwitz.

Then, the switching law

σ(x) ∈ argmin
i∈IN

{
xT (AT

i P + PAi)x
}
, (1.63)

with a matrix P T = P ≻ 0 such that
N∑

i=1

β∗
(i)(A

T
i P + PAi) ≺ 0, (1.64)

stabilizes globally asymptotically system (4.119) at the origin.

Proof. Form the closed-loop system (4.119), (1.63), we define the regions Ri for i ∈ IN

as

Ri =
{
x ∈ Rn : xT (AT

i P + PAi)x < xT (AT
j P + PAj)x, ∀j ∈ IN \ {i}

}
. (1.65)

We have 



Ri ∩Rj = ∅, i 6= j
⋃

i∈IN
R̄i = Rn.

In addition, for all x ∈ Rn we define

I∗(x) =
{
i ∈ IN : xT (AT

i P + PAi)x ≤ xT (AT
j P + PAj)x, ∀j ∈ IN

}
. (1.66)

The set-valued map for all x ∈ Rn and i ∈ I∗(x) is given by

F∗[X ](x) = Conv
i∈I∗(x)

{Aix}. (1.67)

We can remark that the following relation is satisfied

F [X ](x) ⊆ F∗[X ](x). (1.68)
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The set-valued map F∗[X ](x) is locally bounded, takes nonempty, compact and convex

values, then for each initial condition x(0), the differential inclusion ẋ ∈ F∗[X ](x) admits

at least one solution. This is also true for the differential inclusion ẋ ∈ F [X ](x) by

considering the relation (1.68).

Consider the candidate Lyapunov function V (x) = xTPx with P = P T ≻ 0 satisfying

(1.64). We want to prove that the origin of the closed-loop system (4.119), (1.63) is

globally asymptotically stable. In order to show this, it is sufficient to prove that

sup
ς∈F [X ](x)

∂V

∂x
ς < 0, ∀x 6= 0 (1.69)

is satisfied.

From (1.68), to prove (1.69), it is sufficient to show that

sup
ς∈F∗[X ](x)

∂V

∂x
ς < 0, (1.70)

for all x 6= 0.

From (1.64), we have:

∀x 6= 0,
N∑

i=1

β∗
(i)x

T (AT
i P + PAi)x < 0. (1.71)

Since β∗ ∈ ∆N , it comes

∀x 6= 0, ∃i ∈ IN , x
T (AT

i P + PAi)x < 0, (1.72)

then

xT (AT
i P + PAi)x < 0, ∀i ∈ I∗(x), ∀x 6= 0. (1.73)

From this last equation, we obtain (for all x 6= 0):

• if I∗(x) = {i}, x ∈ Ri and F∗[X ](x) = F [X ](x) = {Aix}.

From (1.73), we have

sup
ς∈F∗[X ](x)

∂V

∂x
ς = xT (AT

i P + PAi)x < 0, (1.74)

and then (1.70) is verified when card(I∗(x)) = 1.
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• If card(I∗(x)) > 1, we define the set of vectors β such that

∆∗
N(x) = {β ∈ ∆N : β(i) = 0, i /∈ I∗(x)}.

We have

F∗[X ](x) = Conv{Aix, i ∈ I∗(x)} =

{
N∑

i=1

β(i)Aix : β ∈ ∆∗
N(x)

}
(1.75)

consequently, we get

sup
ς∈F∗[X ](x)

∂V

∂x
ς = sup

β∈∆∗
N(x)

{
N∑

i=1

β(i)x
T (AT

i P + PAi)x

}
. (1.76)

Since the set ∆∗
N(x) is compact we have

sup
β∈∆∗

N(x)

{
N∑

i=1

β(i)x
T (AT

i P + PAi)x

}
= max

β∈∆∗
N(x)

{
N∑

i=1

β(i)x
T (AT

i P + PAi)x

}
.

(1.77)

Consider then β ∈ ∆∗
N(x). Using (1.75), since for all i ∈ IN \ I∗(x) we obtain

β(i) = 0, then from (1.73) for all i ∈ I∗(x) we have

N∑

i=1

β(i)x
T (AT

i P + PAi)x =
∑

i∈I∗(x)

β(i)x
T (AT

i P + PAi)x < 0. (1.78)

Equation (1.78) is verified for all vector β ∈ ∆N∗(x), from (1.76), and (1.77) we have

sup
ς∈F∗[X ](x)

∂V

∂x
ς < 0, (1.79)

for all x 6= 0 and card(I∗(x)) > 1.

Then, the origin of the closed-loop system (4.119), (1.63) is globally asymptotically

stable.

One should remark that for the case of switched systems with N subsystems Theorem

5 provides sufficient only stabilizability criteria.

The results presented above are based on the existence of a stable convex combination

A(β∗). However, in general, finding a stable convex combination is an NP-hard problem

[14], [105]. There are classes of systems for which no stable convex combination exists

and a stabilizing switching law may be obtained [76].
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Case of switched affine systems

The pioneering results in the stabilization of switched affine systems have been provided

in [16]. Based on the existence of a Hurwitz convex combination of the matrices Ai, this

approach can be considered as a direct extension of the proposed methods in [33], [119]

to the case of switched affine systems. This result is presented in the following while the

solutions are understood in the sense of Filippov.

Theorem 6: (adapted from [16]) Consider system (1.41) with the switching law σ(x) ∈
IN and the notations:

A(β) =

N∑

i=1

β(i)Ai,

b(β) =
N∑

i=1

β(i)bi,

(1.80)

with β ∈ ∆N . Suppose that there exists β∗ ∈ ∆N such that A(β∗) is Hurwitz and

b(β∗) = 0.

Then, the switching law

σ(x) ∈ argmin
i∈IN

{xT (AT
i P + PAi)x+ 2bTi Px}, (1.81)

with P = P T ≻ 0 a matrix satisfying
N∑

i=1

β∗
(i)(A

T
i P + PAi) < 0, (1.82)

stabilizes globally asymptotically the origin x̄ = 0 of the switched system (1.41).

Proof. For the closed-loop system (1.41), (1.81), we define the regions Ri for i ∈ IN by

Ri = {x ∈ Rn : xT (AT
i P + PAi)x+ 2bTi Px < xT (AT

j P + PAj)x+ 2bTj Px, ∀j ∈ IN \ {i}}.
(1.83)

We have 



Ri ∩Rj = 0, i 6= j,

∪
i∈IN

R̄i = Rn.

For all x ∈ Rn let us also define the set of minimizers where the switching controller (1.81)

takes values as follows:

I∗(x) = {i ∈ IN : xT (AT
i P + PAi)x+ 2bTi Px ≤ xT (AT

j P + PAj)x+ 2bTj Px, ∀j ∈ IN}.
(1.84)
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Then, the set-valued map F∗[Xaff ](x) for all x ∈ Rn and i ∈ I∗(x) is given by

F∗[Xaff ](x) = Conv
i∈I∗(x)

{Aix+ bi}. (1.85)

We can remark that the set-valued map associated to the system (1.41) F [Xaff ](x) (com-

puted using (1.5) and F∗[Xaff ](x) satisfy the following relation

F [Xaff ](x) ⊆ F∗[Xaff ](x). (1.86)

The set-valued map F∗[Xaff ](x) is locally bounded, takes nonempty, compact and convex

values. Hence, considering the inclusion (1.86), we have that both ẋ ∈ F∗[Xaff ](x) and

ẋ ∈ F [Xaff ](x) admit at least one solution .

Let us consider the quadratic Lyapunov function V (x) = xTPx with P = P T ≻ 0

satisfying (1.82). We want to show that the origin of the closed-loop system (1.41), (1.81)

is globally asymptotically stable. To show this, it is sufficient to prove that

sup
ς∈F [Xaff ](x)

∂V

∂x
ς < 0, ∀x 6= 0. (1.87)

Considering (1.86), in order to prove (1.87), it is sufficient to show that

sup
ς∈F∗[Xaff ](x)

∂V

∂x
ς < 0, ∀x 6= 0. (1.88)

From (1.82), we have:

∀x 6= 0,

N∑

i=1

β∗
(i)x

T (AT
i P + PAi)x < 0. (1.89)

Considering the condition b(β∗) =
∑N

i=1 β
∗
(i)bi = 0, we obtain

∀x 6= 0,
N∑

i=1

β∗
(i)(x

T (AT
i P + PAi)x+ 2bTi Px) < 0. (1.90)

Since β∗ ∈ ∆N , we deduce that

∀x 6= 0, ∃i ∈ IN , x
T (AT

i P + PAi)x+ 2bTi Px < 0, (1.91)

and then

∀i ∈ I∗(x), ∀x 6= 0, xT (AT
i P + PAi)x+ 2bTi Px < 0. (1.92)

From the last inequalities, we get (for all x 6= 0):
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• if I∗(x) = {i}, x ∈ Ri and F∗[Xaff ](x) = F [Xaff ](x) = {Aix+ bi}. From (1.92) we

have

sup
ς∈F∗[Xaff ](x)

∂V

∂x
ς = xT (AT

i P + PAi)x+ 2bTi Px < 0, (1.93)

therefore (1.88) is verified in the case where card(I∗(x)) = 1.

• if card(I∗(x)) > 1, let us define the set ∆∗
N(x) of vectors β, such that

∆∗
N(x) = {β ∈ ∆N : β(i) = 0, i /∈ I∗(x)}.

Using this we obtain

F∗[Xaff ](x) = Conv{Aix+ bi, i ∈ I∗(x)} =

{
N∑

i=1

β(i)
(
Aix+ bi

)
: β ∈ ∆∗

N(x)

}
.

(1.94)

This leads to

sup
ς∈F∗[Xaff ](x)

∂V

∂x
ς = sup

β∈∆∗
N(x)

{
N∑

i=1

β(i)(x
T (AT

i P + PAi)x+ 2bTi Px)

}
. (1.95)

Thanks to the fact that ∆∗
N(x) is compact, we have

sup
β∈∆∗

N(x)

{
N∑

i=1

β(i)(x
T (AT

i P + PAi)x+ 2bTi Px)

}

= max
β∈∆∗

N(x)

{
N∑

i=1

β(i)(x
T (AT

i P + PAi)x+ 2bTi Px)

}
.

(1.96)

with β ∈ ∆∗
N . Since β(i) = 0 for all i ∈ IN \ I∗(x), from (1.92) and using (1.94), for

all i ∈ I∗(x) we have

N∑

i=1

β(i)(x
T (AT

i P + PAi)x+ 2bTi Px) =
∑

i∈I∗(x)

β(i)(x
T (AT

i P + PAi)x+ 2bTi Px) < 0.

(1.97)

Since equation (1.97) is verified for all vector β ∈ ∆∗
N(x), from (1.95), and (1.96) we

have

sup
ς∈F∗[Xaff ](x)

∂V

∂x
ς < 0, (1.98)

for all x 6= 0 and card(I∗(x)) > 1. Then, the origin of the closed-loop system (1.41),

(1.81) is globally asymptotically stable.
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Note that just as for Theorem 5, the conditions in Theorem 6 are only sufficient.

Necessary and sufficient conditions for quadratic stabilization have been also provided for

the case of switched affine systems with two subsystems in [16]. The article equaly presents

a hybrid approach for the design of switching laws where the occurrence of sliding modes

is avoided. This approach has been extended in [57] to the case of switched affine systems

stabilization with a sampled-data switching law. Based on the use of Lyapunov-Krasovskii

functionals, this method ensures the robustness with respect to sampling, implementation

imperfections like jitters, and uncertainties. LMI conditions have been provided in order

to optimize the Lyapunov function choice. An alternative approach for stabilization of

switched affine systems is proposed in [113]. However, this approach also depends on the

existence of a Hurwitz convex combination of the matrices Ai, i ∈ IN .

Note that, when there are more than two subsystems, it is possible to search a pair of

subsystems satisfying the hypothesis of Theorem 6. However, the switching law depends

on the equilibrium point selected by the operator. The matrix P must be computed for

every selected equilibrium point. An approach which avoids this problem will be presented

in the next section.

1.3.2 Existence of a common quadratic Lyapunov function

This approach is inspired from the theory of stability analysis of switched systems with

arbitrary switching laws based on the existence of a common quadratic Lyapunov fuc-

tion [24], [77], [83]. It is also related to the existing results in the stability analysis and

stabilization of linear differential inclusions [17]. The main idea is that if the individual

subsystems of the switched system share a common quadratic Lyapunov function guaran-

teeing their stability then, there exists a state-dependent switching law which stabilizes

globally asymptotically the switched system at the origin. The result is presented in the

following while considering the solutions of the switched system in the sense of Filippov.
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Theorem 7: (adapted from [26]) Consider system (1.41) with the switching law σ ∈ IN

and the notation

b(β) =

N∑

i=1

β(i)bi, (1.99)

with β ∈ ∆N . Suppose that there exists β∗ ∈ ∆N such that b(β∗) = 0. Then, the origin

of system (1.41) with the switching law

σ(x) ∈ argmin
i∈IN

xTPbi, (1.100)

with P = P T ≻ 0 satisfying

AT
i P + PAi ≺ 0, ∀i ∈ IN , (1.101)

is globally asymptotically stable.

Proof. For the closed-loop system (1.41), (1.100), we define the regions Ri for i ∈ IN by

Ri = {x ∈ Rn : xTPbi < xTPbj , ∀j ∈ IN \ {i}}. (1.102)

We have 



Ri ∩Rj = 0, i 6= j,

∪
i∈IN

R̄i = Rn.

For all x ∈ Rn let us also define the set of minimizers where the switching controller

(1.100) takes values as follows:

I∗(x) = {i ∈ IN : xTPbi ≤ xTPbj, ∀j ∈ IN}. (1.103)

Then, the set-valued map F∗[Xaff ](x) for all x ∈ Rn and i ∈ I∗(x) is given by

F∗[Xaff ](x) = Conv
i∈I∗(x)

{Aix+ bi}. (1.104)

We can remark that the set-valued map associated to the system (1.41) F [Xaff ](x) (com-

puted using (1.5) and F∗[Xaff ](x) satisfy the following relation

F [Xaff ](x) ⊆ F∗[Xaff ](x). (1.105)

The set-valued map F∗ is locally bounded and takes nonempty, compact and convex

values then, we can deduce that both ẋ ∈ F∗[Xaff ](x) and ẋ ∈ F [Xaff ](x) admit at least

one solution by considering relation (1.105).
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Consider the quadratic Lyapunov function V (x) = xTPx with P = P T ≻ 0 satisfying

(1.101). We want to show that the origin of the closed-loop system (1.41), (1.100) is

globally asymptotically stable. To prove this, it is sufficient to show that

sup
ς∈F [Xaff ](x)

∂V

∂x
ς < 0, ∀x 6= 0. (1.106)

To prove this, considering (1.105), it is sufficient to show that

sup
ς∈F∗[Xaff ](x)

∂V

∂x
ς < 0, ∀x 6= 0. (1.107)

From (1.101), for all x 6= 0 we have

xT (AT
i P + PAi)x < 0, ∀i ∈ IN . (1.108)

Considering the condition b(β∗) =
∑N

i=1 β
∗
(i)bi = 0, we obtain

∀x 6= 0,

N∑

i=1

β∗
(i)(x

T (AT
i P + PAi)x+ 2bTi Px) < 0. (1.109)

Since β∗ ∈ ∆N , we deduce that

∀x 6= 0, ∃i ∈ IN , x
T (AT

i P + PAi)x+ 2bTi Px < 0, (1.110)

and then

∀i ∈ I∗(x), ∀x 6= 0, xT (AT
i P + PAi)x+ 2bTi Px < 0. (1.111)

Let us define the set ∆∗
N(x) of vectors β, such that

∆∗
N(x) = {β ∈ ∆N : β(i) = 0, i /∈ I∗(x)}

Using this we obtain

F∗[Xaff ](x) = Conv{Aix+ bi, i ∈ I∗(x)} =

{
N∑

i=1

β(i)(Aix+ bi) : β ∈ ∆∗
N(x)

}
. (1.112)

This leads to

sup
ς∈F∗[Xaff ](x)

∂V

∂x
ς = sup

β∈∆∗
N(x)

{
N∑

i=1

β(i)(x
T (AT

i P + PAi)x+ 2bTi Px)

}
. (1.113)
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Thanks to the fact that ∆∗
N(x) is compact, we have

sup
β∈∆∗

N(x)

{
N∑

i=1

β(i)(x
T (AT

i P + PAi)x+ 2bTi Px)

}

= max
β∈∆∗

N(x)

{
N∑

i=1

β(i)(x
T (AT

i P + PAi)x+ 2bTi Px)

}
.

(1.114)

with β ∈ ∆∗
N . Since β(i) = 0 for all i ∈ IN \ I∗(x), from (1.111) and using (1.112), for all

i ∈ I∗(x) we have

N∑

i=1

β(i)(x
T (AT

i P +PAi)x+2bTi Px) =
∑

i∈I∗(x)

β(i)(x
T (AT

i P +PAi)x+2bTi Px) < 0. (1.115)

Since (1.115) is verified for all vector β ∈ ∆∗
N(x), from (1.113) and (1.114), we have

sup
ς∈F∗[Xaff ](x)

∂V

∂x
ς < 0, (1.116)

for all x 6= 0 and card(I∗(x)) > 1. Then, the origin of the closed-loop system (1.41),

(1.100) is globally asymptotically stable.

Remark 2: The switching law (1.100) presents some advantages :

• the switching surfaces are simple and amenable for practical purposes;

• the matrix P = P T ≻ 0 does not depend on the vector β∗ associated to the equi-

librium point x̃∗ selected by the designer. Then, the same P (when one exists) and

therefore the same switching law can be used to stabilise any selected equilibrium

point.

However, the existence of the switching law proposed in Theorem 7 depends on the fea-

sibility of the set of N LMIs (1.101) with respect to the variable P = P T ≻ 0, which

induces some conservatism. In addition, even if the equilibrium point of the switched

affine system is a stable common equilibrium point of all the individual subsystems a

common quadratic Lyapunov function satisfying (1.101) may not exist [19], [24]. In fact

this condition is more conservative then the existence of a Hurwitz convex combination

of the matrices Ai, i ∈ IN .
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The switching law proposed in Theorem 7 allows the appearance of sliding modes.

Therefore, in order to avoid this behaviour and ensure the implementability of this switch-

ing controller in real system applications, an extension of this method to the design of

hybrid switching law has been provided in [1]. More precisely, in [1] the switched affine

system has been modelled in the context of a hybrid dynamic system [43] and sliding

modes are precluded by introducing hysteresis. The method has been equally extended to

the case of stabilizing observer-based switching laws design in [120]. In the same sperit,

assuming that the switched affine system is incrementally stable, a numerical approach

based on the construction of symbolic abstraction have been provided in [42]. This ap-

proach allows the use of the techniques developed in the areas of supervisory control

of discrete-event systems for the design of stabilizing state-dependent switching laws for

switched affine systems.

1.3.3 Existence of a continuous stabilizer

The results presented above are based either on the existence of a Hurwitz convex combi-

nation of the matrices Ai or on the stability of all subsystems component of the switched

system which are assumptions difficult to satisfy. In addition, the existing results treat

the global stabilization case. However, there exist switched systems where only local

stabilization can be possible. Recently, a design method of state-dependent switching

laws allowing the local stabilization of switched affine systems at the origin even when no

Hurwitz convex combination of the matrices Ai exists has been proposed in [55] and it is

presented in the following.

It has been shown in [55] that the stabilization of switched affine systems can be

reformulated as a classical stabilization problem of a nonlinear input-affine system with

an input constrained to take values in a finite set of vectors. The result is presented in

the following.

Proposition 1: [55] Consider the switched affine system (1.41), β∗ ∈ ∆N a vector satis-

fying
N∑

i=1

β∗
(i)bi = 0, (1.117)
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and a set of vectors V(β∗) = {vi, i ∈ IN} ⊂ Rm, where m = N − 1, vi = M(ψi − β∗),

with i ∈ IN , and M =
[
Im×m , 0m×1

]
. Then, system (1.41) can be rewritten as an

interconnection of the nonlinear input-affine system of the form

ẋ = f(x) +G(x)u, u ∈ Rm, (1.118)

with the discontinuous controller

u = kd(x), kd : Rn −→ V(β∗) (1.119)

where

kd(x) = vσ(x), (1.120)

and the functions f(x) =
∑N

i=1 β
∗
(i)Aix = A(β∗)x, G(x) =

[
g1(x) , . . . , gm(x)

]
with

gj(x) = (Aj − AN)x+ (bj − bN ), j ∈ Im.

This result means that designing a switching law σ stabilizing the switched affine

system (1.41) at the origin leads to constructing a discontinuous controller kd such that

the nonlinear input-affine system (1.118) is locally asymptotically stable at the origin.

Using the reformulation of the switched affine system as a nonlinear input-affine system

and the existence of a continuous controller stabilizing (locally or globally) the nonlinear

system, it has been shown in [55] that a state-dependent switching law can be derived. In

other words: the existence of a continuous controller implies the existence of a switching

law which can be designed by embedding locally the behaviour of a continuous controller.

Theorem 8: [55] Consider system (1.41) (or equivalently system (1.118)). Suppose that

1. There exists β∗ ∈ ∆N , β∗
(i) > 0, ∀i ∈ IN such that

∑N
i=1 β

∗
(i)bi = 0.

2. System (1.118) is locally asymptotically stabilizable at the origin by the continuous

controller u(x(t)) = k(x), with k(0) = 0.

Then there exists a C∞ function defined in the set B(0, r), r > 0, V (0) = 0, V (x) > 0,

∀x 6= 0, a positive scalar γ ∈ (0, r], and a switching law

σ(x) ∈ argmin
i∈IN

2xTP (Aix+ bi). (1.121)
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such that

max
y∈F(x)

∂V

∂x
y < 0, (1.122)

is verified for all x ∈ B(0, γ) \ {0}.
Then, the switched system (1.41) with the switching law (1.121) is locally asymptoti-

cally stable at the origin.

This methodology can be interpreted as an approach based on the existence of a

state-dependent convex combination of the matrices Ai. The restriction concerning the

existence of a Hurwitz convex combination can be relaxed and easily avoided. However,

the approach can only guarantee local asymptotic stabilization.

A constructive method based on LMIs that allows the design of the switching law and

the estimation of the domain of attraction has also been proposed in [55]. Using the result

of Proposition 1, system (1.41) can be rewritten as follows:

ẋ = A(β∗)x+Bu+D(u)x, (1.123)

with B =
[
b1 − bN , . . . , bN−1 − bN

]
, D(u) = (G(x) − B)u and u ∈ V(β∗). A direct

consequence of the model (1.123) is the fact that if the pair (A(β∗), B) is stabilizable then

the switched system is locally stabilizable at the origin.

Using the fundamental theorem of polytopes [122], the set Conv{V(β∗)} is a convex

polytope described by a finite number nl of vectors li ∈ Rm, i ∈ Inl
such that

Conv{V(β∗)} = {u ∈ RN : lTi u ≤ 1, i ∈ Inl
}. (1.124)

Assuming that the pair (A(β∗), B) is stabilizable and considering the term D(u) as a

perturbation, an LMI approach allowing the design of state-dependent switching laws

which ensures the local exponential stability of the closed loop switched affine system at

the origin and providing an ellipsoidal estimation of the domain of attraction is presented

in the following proposition:

Proposition 2: [55] Consider the switched affine system (1.41) and (1.118) with u taking

values in V(β∗), and satisfying (1.124). If there exist a matrix Q−1 = P = P T ≻ 0 and a

positive scalar χ > 0 such that

(A(β∗) +D(vi))
TQ+Q(A(β∗) +D(vi))− χBBT ≺ −2αQ, ∀i ∈ IN , (1.125)
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
rI I

I Q


 ≻ 0, (1.126)

and 
 1 χ

2
lTj B

T

χ
2
Blj Q


 ≻ 0, ∀j ∈ Inl

(1.127)

where α > 0 and r > 0 are positive scalars. Then, the switched affine system (1.41) with

the switching law

σ(x) ∈ argmin
i∈IN

xTQ−1(Aix+ bi), (1.128)

is locally asymptotically stable at the origin. Moreover, the estimated domain of attraction

E(P, 1) = {x ∈ Rn : xTPx ≤ 1}, (1.129)

includes the ball B(0, 1√
r
) and there exists a positive scalar κ such that

|x(t)|2 ≤ κe−2χt |x(0)| , ∀x(0) ∈ E(P, 1). (1.130)

The feasibility of the LMI conditions (1.125) and (1.127) ensures that the switching law

(1.128) emulates the behaviour of the stabilizing continuous controller k(x) = Kx with

K = −χ
2
BTQ−1 in the domain of attraction E(P, 1). i.e, the derivative of the quadratic

Lyapunov function along the Filippov solutions of the closed-loop switched affine system

(1.41), (1.128) is negative for all x ∈ E(P, 1) ⊂ Conv{V(β∗)}. The LMI (1.126) implies

the inclusion B(0, 1√
r
) ⊂ E(P, 1) and can be used to optimize the domain of attraction by

solving the standard convex optimization problem

inf r subject to (1.125), (1.126), (1.127).

In addition, the feasibility of the set of LMIs (1.125), (1.126), (1.127) ensures that the

trajectories of the system starting in the domain of attraction E(P, 1) converges to the

origin with a decay rate χ equal to the decay rate guaranteed by the continuous controller

k(x) = Kx. Finally, we may remark that these conditions are only sufficient.
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1.4 Further notes on stability and stabilization of switched

systems

The closed-loop switched affine system represents a piecewise affine system. There exist

elegant results on the stability analysis and stabilization of this class of systems - see for

instance [37], [65], [88], [94], [96], [97], [98], and the references therein. However, it is not

clear how they can be used in a constructive manner for designing stabilizing switching

laws.

The literature concerning the particular case of switched linear systems is quite exten-

sive. We can point to the surveys of [28], [76], [78], [103], [106] and the references therein

for detailed treatment of this particular case. We mention however some recent results

that have not been included in these surveys. When the system admits Caratheodory

solutions (no sliding mode is possible) we point to the results based on Lyapunov Metzler

inequalities given in [41]. However, it is not clear if the results hold when all types of

sliding dynamics are represented [53], [75]. We can equaly mention the work in [22], [35],

[34], and [67] for the discrete-time case and also the work in [38] and [62] based on sliding

modes conditions.

Next to the results presented here, some methods have been provided in the literature

for specific devices where the underlying model is a switched affine system. See for example

the sliding mode approach presented in [104] for power converters. Other control design

methodologies using discrete time models [51], model predictive control (MPC) [11], or

optimal control [12], [87], [93], [101] can equally be interesting for the reader.

1.5 Conclusion

The goal of this chapter is to provide an overview of the existing stabilization methods

of switched affine systems. Some previous results did not specify the concept of solutions

that they use, we have then reproved them using the Filippov formalism. The research

on switched affine systems is still widely open. In this thesis we will particularly focus on

methods using the nonlinear affine formulation presented in Section 1.3.3. More precisely,
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in Chapter 2, a switching controller is designed in order to ensure the local asymptotic

stability of the closed-loop switched affine system at the origin. A numerical method

based on LMI conditions allowing the design of nonlinear switching surfaces is provided

by using non-quadratic Lur’e type Lyapunov functions. Local asymptotic stability of the

closed-loop system at the origin is guaranteed in a non-ellipsoidal domain of attraction.

Furthermore, sufficient conditions for the global asymptotic stability of switched affine

systems are provided even though no Hurwitz convex combination of the evolution ma-

trices of the individual subsystems exist. Moreover, a general result is proposed for the

class of nonlinear input-affine systems. Finally, the developed method is particularized

to the simpler case of LTI systems stabilization with a relay controller. In Chapter 3, we

study the stabilization problem for the class of switched affine systems with a disturbed

state-dependent switching law. Since the states measurements are in general subject to

perturbations and noises, we propose a robust switching law design method. Qualitative

conditions for the stability of the closed-loop switched system are given. A constructive

method based on LMIs allowing the design of a stabilizing switching law and the optimiza-

tion of the size of the domain of attraction or of the chattering zone is provided. Since,

Linear Time Invariant (LTI) systems with relay controllers are a simpler class of switched

affine systems, the obtained results are then particularized to deal with their stabilization

problem. Since the state variables in real systems are not always fully available to mea-

surements, Chapter 4 deals with the stabilization problem by an observer-based switching

control. A general result is proposed for the case of switched affine systems. An observer-

based switching controller is designed in order to ensure the local asymptotic stability of

the closed-loop system. Both quadratic and non-quadratic Lyapunov functions are used

to derive linear and nonlinear switching surfaces dependent on the estimated state while

using a Luenberger observer. Constructive methods based on LMI conditions are given

in order to allow a numerical implementation of the proposed approaches. Estimations of

ellipsoidal and non-ellipsoidal domains of attraction are provided. Moreover, LMI condi-

tions which allow the design of nonlinear switching surfaces dependent on the estimated

state ensuring the global asymptotic stability of the closed-loop switched affine system

at the origin are provided. Finally, the result is applied to the particular case of LTI
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systems with an observer-based relay feedback control. Finally, we provide a separation

principle for both LTI systems with relay controllers and switched affine systems while, to

the best of our knowledge, the separation principle exists only for systems with continuous

controller [99] and thus can not be applied to these classes of systems.
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Non-quadratic stabilization

In this chapter, we consider the stabilization problem of switched affine systems using non-

quadratic Lyapunov functions. A general result is proposed for the case of nonlinear input-

affine systems. A switching controller is designed in order to ensure the local asymptotic

stability of the closed-loop system at the origin. Then, the result is applied for the

class of switched affine systems. A numerical method based on LMI conditions allowing

the design of nonlinear switching surfaces is provided by using non-quadratic Lur’e type

Lyapunov functions. Local asymptotic stability of the closed-loop system at the origin

is guaranteed in a non-ellipsoidal domain of attraction. Moreover, sufficient conditions

for the global stability of switched affine systems are provided even though no Hurwitz

convex combination of the evolution matrices of the individual subsystems exist. Finally,

the developed method is particularized to the simpler case of LTI systems stabilization

with a relay controller.

2.1 Preliminaries and problem statement

Consider the following system

ẋ = Ax+
m∑

k=1

(Nkx+ bk)u(k), (2.1)

with x ∈ Rn and u(k) the k-th component of the input u. The input u is only allowed to

take values in the set V = {v1, . . . , vN} ⊂ Rm. A ∈ Rn×n, B =
[
b1, . . . , bm

]
∈ Rn×m,

PhD thesis 48



CHAPTER 2. NON-QUADRATIC STABILIZATION

and Nk ∈ Rn×n are the matrices describing the system. It has been demonstrated in [55]

(see Proposition 1 in Chapter 1) that the class of switched system (2.1) is quite general

in the sense that any switched affine system

ẋ = Ãσ(x)x+ b̃σ(x),

σ ∈ IN ,
(2.2)

with Ãi ∈ Rn×n and b̃i ∈ Rn×1 the matrices describing the subsystems, can be represented

in the form (2.1) (see Proposition 1 in [55]).

In the sequel we assume that:

A-1 The pairs (A(vi), B), for all i ∈ IN with A(vi) = A+
∑m

k=1Nkvi(k) are simultaneously

quadratically stabilizable by a linear state feedback k(x) = Kx. This means that

there exist matrices K and P = P T ≻ 0 and a positive scalar α such that

A(vi)
T
clP + PA(vi)cl ≤ −2αP, ∀i ∈ IN , (2.3)

with A(vi)cl = A(vi) +BK.

A-2 The set int{Conv{V}} is nonempty and the null vector is contained inside (0 ∈
int{Conv{V}}).

Note that for any finite set V = {v1, v2, . . . , vN} there exists a finite number nl of

vectors li ∈ R1×m, i ∈ Inl
such that

Conv{V} = {u ∈ Rm : liu ≤ 1, ∀i ∈ Inl
}. (2.4)

Note also that typical control sets V are often of the form

V = Vert{P(c)}, (2.5)

where the hyper-rectangle P(c), with c a strictly positive vector, is given by

P(c) =




u =




u(1)
...

u(m)


 ∈ Rm :

∣∣u(k)
∣∣ ≤ c(k), ∀k ∈ Im




. (2.6)
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However, we want to keep the problem formulation as general as possible. Note that

since A.2 holds, even for more general sets V there exists a vector c ∈ Rm such that the

hyper-rectangle satisfies P(c) ⊆ Conv{V}. In the sequel, we will consider such a vector c

and use the notation (2.6) to prove the results.

This section deals with the stabilization problem of system (2.1). We consider a

controller given by

u(x) ∈ argmin
v∈V

Γ(x, v), (2.7)

where the mapping Γ : Rn × V −→ R characterizes the switching surfaces.

This formulation encompasses the classical sign function in the classical relay feedback

controller of LTI systems. Indeed, if V = {−v, v} with v > 0 and Γ(x, v) = xTΨv for

some Ψ ∈ Rn×m, we get

u(x) ∈ −vsign(ΨTx) =





{v} if ΨTx < 0,

{−v, v} if ΨTx = 0,

{−v} if ΨTx > 0.

(2.8)

The interconnection (2.1), (2.7) can be rewritten as

ẋ = X (x) = Ax+

m∑

k=1

Nkxu(k) +Bu(x). (2.9)

Note that this is a differential equation with a discontinuous right hand side [21], [36].

Therefore, considering the solutions in the sense of Filippov, we are interested in the study

of the following problem:

Problem 1. Given system (2.1) under Assumptions A-1 and A-2 and the set V,

design a switching law (2.7) such that the closed loop system is locally asymptotically

stable in some domain D.

In [55] (see Proposition 2, Section 1.3.3), assuming A-2 and

A-1’ There exist a positive definite matrix Q and positive scalars χ and α such that

A(vi)Q+QA(vi)
T − χBBT � −2αQ, ∀i ∈ IN , (2.10)

a switching law ensuring the local exponential stability of the closed-loop system at the

origin with a decay rate α is derived by embedding locally the behaviour of the continuous

controller k(x) = Kx with K = −χ
2
BTQ−1.
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Note that A-1’ is equivalent to A-1 (this is similar to what is presented in [17] page 112).

An ellipsoidal estimation of the domain of attraction is equally given using a quadratic

Lyapunov function V (x) = xTPx with P = Q−1 : E(P, γ) where γ is computed such that

E(P, γ) does not cross the convex hull

Cv(K) = {x ∈ Rn : liKx ≤ 1, ∀i ∈ Inl
}, (2.11)

where li, i ∈ Inl
are vectors defined in (2.4), which leads to γ ≤ min

i∈Inl

(liKQK
T lTi )

−1 .

Nevertheless, considering a quadratic Lyapunov function and an ellipsoidal estimation of

the domain of attraction introduces some conservatism in the proposed method [13].

Here we would like to provide a more general design procedure using non-quadratic

Lyapunov functions to compute nonlinear switching surfaces and larger non-ellipsoidal

domains of attraction. Moreover, a numerical approach based on LMI conditions is de-

veloped in order to derive state-dependent switching laws ensuring the global asymptotic

stability of switched affine systems at the origin even though no Hurwitz convex combi-

nation of the matrices Ãi, i ∈ IN exist i.e, the matrix A of system (2.1) is not Hurwitz.

As it is explained in this section and in Section 1.3.3 there is an explicit relation between

nonlinear input-affine systems with discontinuous controller and switched affine systems.

Therefore, in the next section a general theoretical result on the stabilization of this class

of systems is provided.

2.2 A general theoretical result

Before considering the case of switched affine systems, here we provide a general result

for input-affine nonlinear systems stabilization with a relay controller.

The method uses the existence of a locally stabilizing continuous control to design the

switching controller.

Consider the following nonlinear input-affine system

ẋ = f(t, x) + g(t, x)u(t, x) = X̄ (t, x), (2.12)

where f : R+ ×D −→ Rn, g : R+ ×D −→ Rn×m are Lipschitz functions in x on R+ ×D
and piecewise continuous in t, and where D ⊂ Rn is a domain such that 0 ∈ int{D}. The

input u takes values in the set V = {v1, . . . , vN} ⊂ Rm.
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Using the definitions presented in Chapter 1, we are now able to provide sufficient

conditions for the stabilization of the nonlinear time-varying system (2.12) by relay con-

troller.

Theorem 9: Consider the nonlinear system (2.12) and Assumption A-2. Assume that

there exists a continuous controller k(t, x) such that k(t, x) ∈ Conv{V} and g(t, x)k(t, x)

is Lipschitz in x on R+ ×D and piecewise continuous in t, for all x ∈ D and for all t ≥ 0.

Assume that there exists a continuously differentiable function V : R+ × D −→ R such

that

W1(x) ≤ V (t, x) ≤W2(x), (2.13)
∂V

∂t
+
∂V

∂x

{
f(t, x) + g(t, x)k(t, x)

}
≤ −W3(x), ∀t ≥ 0, ∀x ∈ D, (2.14)

where W1, W2 and W3 are continuous positive definite functions on D. Then, the origin

of system (2.12) with the discontinuous controller

u(t, x) = kd(t, x) ∈ argmin
v∈V

∂V

∂x
g(t, x)v, ∀t ≥ 0, ∀x ∈ D, (2.15)

is locally uniformly asymptotically stable. Moreover, the set LV (η
∗) = {x ∈ Rn : V (t, x) ≤

η∗, ∀t ≥ 0} ⊆ D with η∗ = max{η > 0 : LV (η) ⊆ D} is an estimation of the domain of

attraction.

Proof. We would like to prove that the origin of the closed-loop system

ẋ = f(t, x) + g(t, x)kd(t, x) (2.16)

is locally uniformly asymptotically stable when solutions are understood in the sense of

Filippov. Since ∂V
∂x

and g(t, x) are continuous, then Conv
{
argmin

v∈V
∂V
∂x
g(t, x)v

}
is upper

semicontinuous. Therefore, we consider the following differential inclusion [36], [47], [85]

ẋ ∈ F(t, x), (2.17)

with

F(t, x) = Conv
{
f(t, x) + g(t, x)ud : ud ∈ argmin

v∈V

∂V

∂x
g(t, x)v

}
. (2.18)

The origin of the differential inclusion (2.17) is locally uniformly asymptotically stable if

for a given Lyapunov function V (t, x) we have

sup
ς∈F(t,x)

{
∂V

∂t
+
∂V

∂x
ς

}
≤ −W3(x), ∀t ≥ 0, ∀x ∈ D. (2.19)
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Thanks to the fact that k(t, x) ∈ Conv{V} for all t ≥ 0 and for all x ∈ D, there exist N

scalars ρi(t, x) ≥ 0, i ∈ IN with
∑N

i=1 ρi(t, x) = 1 such that

k(t, x) =

N∑

i=1

ρi(t, x)vi. (2.20)

Considering (2.20) and replacing k(t, x) by
∑N

i=1 ρi(t, x)vi, in (2.14) we obtain

∂V

∂t
+
∂V

∂x

(
f(t, x) + g(t, x)

N∑

i=1

ρi(t, x)vi

)
+W3(x) ≤ 0. (2.21)

Then, using the fact that
∑N

i=1 ρi(t, x) = 1, we get

N∑

i=1

ρi(t, x)

(
∂V

∂t
+
∂V

∂x

(
f(t, x) + g(t, x)vi

)
+W3(x)

)
≤ 0, (2.22)

for all t ≥ 0 and for all x ∈ D.

Let us define the function

F (t, x, vi) =
∂V

∂t
+
∂V

∂x

(
f(t, x) + g(t, x)vi

)
+W3(x). (2.23)

Since ρi(t, x) ≥ 0, ∀i ∈ IN and from inequality (2.22), it can be inferred that the inequality

F (t, x, vi) ≤ 0, ∀x ∈ D, ∀t ≥ 0 (2.24)

holds at least for one index i(t, x) ∈ IN . We can then define the switching controller as

follows

kd(t, x) ∈ argmin
vi∈V

F (t, x, vi) = argmin
vi∈V

∂V

∂x
g(t, x)vi. (2.25)

Let us define the set of minimizers corresponding to the controller (2.25) as follows

I∗(t, x) =

{
i ∈ IN :

∂V

∂x
g(t, x)(vj − vi) ≥ 0, ∀j ∈ IN

}
. (2.26)

Consider the set valued map given by

F∗(t, x) = Conv{f(t, x) + g(t, x)vi : i ∈ I∗(t, x)}. (2.27)

Since

argmin
v∈V

{
∂V

∂x
g(t, x)v

}
⊆ {vi : i ∈ I∗(t, x)} (2.28)
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is satisfied, according to the definition of I∗(t, x) in (2.26), one can show that

F(t, x) ⊆ F∗(t, x), (2.29)

with F(t, x) defined in (2.18) and F∗(t, x) defined in (2.27).

Considering the relation (2.29), in order to prove (2.19), it is sufficient to show that

sup
ς∈F∗(t,x)

{
∂V

∂t
+
∂V

∂x
ς

}
≤ −W3(x), ∀t ≥ 0, ∀x ∈ D. (2.30)

Let us define the following set of vectors

∆∗(t, x) = {β ∈ ∆N : β(i) = 0, ∀i ∈ IN \ I∗(t, x)}. (2.31)

We have then

F∗(t, x) = Conv{f(t, x) + g(t, x)vi : i ∈ I∗(t, x)}

=

{
f(t, x) + g(t, x)

N∑

i=1

β(i)vi : β ∈ ∆∗(t, x)

}
.

(2.32)

Consequently, since ∆∗(t, x) is compact, we obtain

sup
ς∈F(t,x)

{
∂V

∂t
+
∂V

∂x
ς

}
≤ sup

ς∈F∗(t,x)

{
∂V

∂t
+
∂V

∂x
ς

}

= sup
β∈∆∗(t,x)

{
∂V

∂t
+
∂V

∂x

(
f(t, x) + g(t, x)

N∑

i=1

β(i)vi

)}

= max
β∈∆∗(t,x)

{
∂V

∂t
+
∂V

∂x

(
f(t, x) + g(t, x)

N∑

i=1

β(i)vi

)}
.

(2.33)

Therefore, to prove (2.19) it is sufficient to show that

max
β∈∆∗(t,x)

{
∂V

∂t
+
∂V

∂x

(
f(t, x) + g(t, x)

N∑

i=1

β(i)vi

)}
≤ −W3(x), (2.34)

for all t ≥ 0 and for all x ∈ D.

Let β ∈ ∆∗(t, x). Since β(i) = 0 for all i ∈ IN \ I∗(t, x), from (2.23), (2.24) (which is

verified at least for one i ∈ IN , and then for all i ∈ I∗(t, x)), and (2.26), we can deduce

that

∂V

∂t
+
∂V

∂x

(
f(t, x) + g(t, x)

N∑

i=1

β(i)vi

)
=

N∑

i=1

β(i)

{
∂V

∂t
+
∂V

∂x

(
f(t, x) + g(t, x)vi

)}

≤ −W3(x).

(2.35)
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Therefore, (2.34) (and thus (2.19)) is satisfied, and the origin of system (2.12) with the

controller (2.15) is locally uniformly asymptotically stable.

In addition, the level set LV (η) = {x ∈ Rn : V (t, x) ≤ η, ∀t ∈ R+} of the Lyapunov

function V can be considered as an inner estimation of the domain of attraction if η is

such that LV (η) ⊆ D.

The control principle given in Theorem 9 can be used to provide constructive methods

of stabilizing state-dependent switching laws design. Using a non-quadratic Lyapunov

function, a tractable LMI approach providing an estimation of the domain of attraction

and stabilizing nonlinear switching surfaces is given in the following for switched affine

systems.

2.3 Stabilization of switched affine systems

As follows we particularise the result of Theorem 9 to the case of switched affine systems.

Our first objective is to enlarge the domain of attraction with respect to the result provided

in [55] by using non-quadratic Lyapunov functions. The second goal of this section consists

on providing a constructive approach of state-dependent switching laws ensuring the global

asymptotic stability of the class of switched affine systems at the origin.

2.3.1 Switching law design for local stabilization

In this section we provide numerical tools for nonlinear switching surfaces design using

switching Lyapunov functions of the form

V (x) = xTPx− 2

m∑

k=1

∫ K(k)x

0

φ(k)(s)Ω(k,k)ds, (2.36)

with K satisfying (2.10), P ∈ Rn×n a symmetric positive definite function, Ω a diagonal

positive definite matrix, and φ : Rm −→ Rm a nonlinear function defined for all y ∈ Rm

as φ(y) =
[
φ(1)(y(1)), . . . , φ(m)(y(m))

]T
∈ Rm, with

φ(k)(σ) =





c(k) − σ if σ > c(k),

0 if −c(k) ≤ σ ≤ c(k), ∀σ ∈ R.

−c(k) − σ if σ < −c(k).
(2.37)
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This Lyapunov class of functions has been used for various nonlinearity types (see for

instance [17], [74], [110] and references therein). They have the following properties.

Lemma 1: [111] Consider w1 ∈ Rm and w2 ∈ Rm. If (w1−w2) ∈ P(c), with P(c) defined

in (2.6), then

φ(w1)
TM(φ(w1) + w2) ≤ 0, (2.38)

for any diagonal positive definite matrix M ∈ Rm×m.

Lemma 2: [60] The Lur’e function (2.36) satisfies the inequality

xTPx ≤ V (x) ≤ xT (P +KTΩK)x, ∀x ∈ Rn. (2.39)

Lemma 3: For any y ∈ Rm, y + φ(y) ∈ P(c), with P(c) defined in (2.6).

Proof. Let y ∈ Rm and i ∈ Im. Three cases arise:

1. If y(i) > c(i), then y(i) + φ(i)(y(i)) = c(i).

2. If −c(i) ≤ y(i) ≤ c(i), then y(i) + φ(i)(y(i)) = y(i).

3. If y(i) < −c(i), then y(i) + φ(i)(y(i)) = −c(i).

Therefore, for any i ∈ Im, |y(i) + φ(i)(y(i))| ≤ c(i), and thus y + φ(y) ∈ P(c).

Considering these properties we are able to develop the following result.

Theorem 10: Consider system (2.1) and assume that A-1’ (or equivalently A-1) and A-2

hold. If there exist a symmetric positive definite matrix P ∈ Rn×n, two diagonal positive

definite matrices Ω ∈ Rm×m and M ∈ Rm×m, a matrix Υ ∈ Rm×n, and a strictly positive

vector τ ∈ Rm such that for all i ∈ IN

A(vi)

T
clP + PA(vi)cl PB −ΥT − A(vi)

T
clK

TΩ

∗ −2M − ΩKB − (ΩKB)T


 ≺ 0, (2.40)

and 
 P M(k,k)K

T
(k) −ΥT

(k)

M(k,k)K(k) −Υ(k) τ(k)c
2
(k)


 � 0, ∀k ∈ Im, (2.41)

where K = −χ
2
BTQ−1 and A(vi)cl = A+

∑m
k=1Nkvi(k) +BK, then system (2.1) with the

switching law

u(x) ∈ argmin
v∈V

(xTP − φ(Kx)TΩK)Bv (2.42)
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is locally asymptotically stable at the origin.

An estimation of the domain of attraction is given by

LV (r
−1) = {x ∈ Rn : V (x) ≤ r−1}, (2.43)

where V is a Lur’e candidate Lyapunov function defined in (2.36) and r ≥ max
k∈Im

{
τ(k)

M2
(k,k)

}
>

0.

Proof. The idea of the proof is to show that if A-1’ and A-2 hold and the LMIs (2.40)

and (2.41) are feasible then the decay of the function V in the domain LV (r
−1) is ensured

by switching among the elements of the set V. This will be shown in three steps. In

the first step, we associate a differential inclusion to system (2.1), (2.7) and provide some

sufficient conditions for local asymptotic stability. In the second step, we show that the

feasibility of LMI (2.40) ensures the decay of the Lyapunov function in a domain D̃ around

the origin. Finally, we will show that if the LMI (2.41) is feasible then the Lyapunov

function decreases in the positive invariant domain LV (r
−1) ⊆ D̃ which constitutes an

inner estimation of the domain of attraction.

First, to the closed-loop system (2.9), we associate the differential inclusion

ẋ ∈ F [X ](x), (2.44)

with F [X ](x) is a set valued map, which can be computed using the construction proposed

in [36] as

F [X ](x) =
⋂

δ>0

⋂

µ(S)=0

Conv{X (B̆(x, δ))\ S}, ∀x ∈ Rn, (2.45)

where B̆(x, δ) is the open ball centred on x with radius δ, and S is a set of measure (in

the sense of Lebesgue) µ(S) = 0.

From Lemma 2, one can see that the Lur’e candidate Lyapunov function V is positive

definite.

In order to prove the local asymptotic stability of system (2.1), (2.42) in the domain

LV (r
−1), it is sufficient to demonstrate that

sup
ς∈F [X ](x)

∂V

∂x
ς < 0, ∀x ∈ LV (r

−1) \ {0}, (2.46)

where F [X ](x) is defined in (2.45) and LV (r
−1) in (2.43).
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Let us define for all x ∈ Rn the set of indexes I∗(x) corresponding to the set of

minimizers in which the controller (2.42) takes values:

I∗(x) = {i ∈ IN : (xTP − φ(Kx)TΩK)B(vj − vi) ≥ 0, ∀j ∈ IN}. (2.47)

We associate to this set of indexes the set ∆∗(x) of vectors defined for all x ∈ Rn as

∆∗(x) = {β ∈ ∆N : β(i) = 0, ∀i ∈ IN \ I∗(x)}. (2.48)

Using (2.47) and (2.48) the set valued map F [X ](x) in (2.45) satisfies

F [X ](x) ⊆ F∗[X ](x), (2.49)

with

F∗[X ](x) = Conv
i∈I∗(x)

{
Ax+

m∑

k=1

Nkxvi(k) + Bvi

}

=
{
Ax+

m∑

k=1

Nkxv(k)(β) +Bv(β) : β ∈ ∆∗(x)
}
,

(2.50)

where v(β) =
∑N

i=1 β(i)vi.

From (2.49) and (2.50), and using the fact that ∆∗(x) is compact, we have

sup
ς∈F [X ](x)

∂V

∂x
ς ≤ sup

ς∈F∗[X ](x)

∂V

∂x
ς = sup

β∈∆∗(x)

{
∂V

∂x

{
Ax+

m∑

k=1

Nkxv(k)(β) +Bv(β)

}}

= max
β∈∆∗(x)

{
∂V

∂x

{
Ax+

m∑

k=1

Nkxv(k)(β) +Bv(β)

}}
.

(2.51)

Thus, in order to show (2.46), it is sufficient to prove that we have

max
β∈∆∗(x)

{
∂V

∂x

{
Ax+

m∑

k=1

Nkxv(k)(β) +Bv(β)

}}
< 0, ∀x ∈ LV (r

−1) \ {0}. (2.52)

The LMI (2.40) is equivalent to

zT


 A(vi)

T
clP + PA(vi)cl PB −ΥT − A(vi)

T
clK

TΩ

BTP −Υ− ΩKA(vi)cl −2M − ΩKB − (ΩKB)T


 z < 0, (2.53)

for all z ∈ Rn+m \ {0} and i ∈ IN .
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Considering the vector zT =
[
xT φ(Kx)T

]
and G = M−1Υ , inequality (2.53) leads

to

xT
((
A(vi) +BK

)T
P + P

(
A(vi) +BK

))
x

+ φ(Kx)T
(
BTP −MG− ΩK

(
A(vi) +BK

))
x

+ xT
(
PB −GTMT −

(
A(vi) +BK

)T
KTΩ

)
φ(Kx)

+ φ(Kx)T
(
− 2M − ΩKB − BTKTΩ

)
φ(Kx) < 0, ∀x ∈ Rn \ {0}, ∀i ∈ IN .

(2.54)

Let us consider the notation κ(x) = Kx + φ(Kx). According to Lemma 3, for any

x ∈ Rn, we have κ(x) ∈ P(c) ⊆ Conv{V}. Therefore, there exist N positive scalars ρj(x),
∑N

j=1 ρj(x) = 1 such that

κ(x) = Kx+ φ(Kx) =
N∑

j=1

ρj(x)vj . (2.55)

Using this property in (2.54), we obtain

2xTP
(
A(vi)x+B

N∑

j=1

ρj(x)vj

)
− 2φ(Kx)TΩK

(
A(vi)x+B

N∑

j=1

ρj(x)vj

)

− 2φ(Kx)TM
(
φ(Kx) +Gx

)
< 0, ∀x ∈ Rn \ {0}, ∀i ∈ IN .

(2.56)

From (2.47), for any x ∈ Rn and i ∈ I∗(x) we have
(
xTP − φ(Kx)TΩK

)
B
(
vj − vi

)
≥ 0, ∀j ∈ IN . (2.57)

By adding and subtracting the term 2
∑N

j=1 ρj(x)(x
TP − φ(Kx)TΩK)B(vj − vi) to

(2.56), we obtain

2xTP
(
A(vi)x+Bvi

)
− 2φ(Kx)TΩK

(
A(vi)x+Bvi

)
− 2φ(Kx)TM

(
φ(Kx) +Gx

)

+ 2

N∑

j=1

ρj(x)
(
xTP − φ(Kx)TΩK

)
B
(
vj − vi

)
< 0, ∀x ∈ Rn \ {0}, ∀i ∈ IN .

(2.58)

Then, multiplying (2.58) by β(i) with i ∈ IN , and summing the N elements, we obtain

2xTP
(
A(v(β))x+Bv(β)

)
− 2φ(Kx)TΩK

(
A(v(β))x+Bv(β)

)

− 2φ(Kx)TM
(
φ(Kx) +Gx

)

+ 2

N∑

j=1

ρj(x)
(
xTP − φ(Kx)TΩK

)
B
(
vj − v(β)

)
< 0, ∀x ∈ Rn \ {0}.

(2.59)
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with (
xTP − φ(Kx)TΩK

)
B
(
vj − v(β)

)
≥ 0, ∀j ∈ IN , ∀β ∈ ∆∗(x). (2.60)

Applying Lemma 1, with w1 = Kx and w2 = Gx, and using the definition of P(c) in

(2.6), we have

φ(Kx)TM
(
φ(Kx) +Gx

)
≤ 0, ∀x ∈ A, (2.61)

with

A = {x ∈ Rn :
∣∣(K(k) −G(k))x

∣∣ ≤ c(k), ∀k ∈ Im}. (2.62)

Note that ∂V
∂x

= 2xTP − 2φ(Kx)TΩK. Therefore, taking this into account, as well as

(2.59) and (2.60), we deduce that

max
β∈∆∗(x)

{
∂V

∂x

(
A(v(β))x+Bv(β)

)}
≤ max

β∈∆∗(x)

{
∂V

∂x

(
A(v(β))x+Bv(β)

)}

− 2φ(Kx)TM
(
φ(Kx) +Gx

)

+ 2
N∑

j=1

ρj(x)
(
xTP − φ(Kx)TΩK

)
B
(
vj − v(β)

)

< 0, ∀x ∈ A \ {0}.
(2.63)

In order to show (2.52) (and thus (2.46)), we will now prove that LV (r
−1) ⊆ A.

By multiplying (2.41) from both sides by


I 0

0 (M(k,k))
−1


 and considering again G =

M−1Υ, we obtain 
 P KT

(k) −GT
(k)

K(k) −G(k)
τ(k)

M2
(k,k)

c2(k)


 � 0, ∀k ∈ Im. (2.64)

Considering a scalar r ≥ max
k∈Im

{ τ(k)
M2

(k,k)

} > 0, from (2.64), we obtain


 P KT

(k) −GT
(k)

K(k) −G(k) rc2(k)


 � 0, ∀k ∈ Im. (2.65)

This last inequality leads to

xT
(
K(k) −G(k)

)T
(c2(k))

−1
(
K(k) −G(k)

)
x ≤ xT

P

r−1
x, ∀x ∈ Rn, (2.66)

which is equivalent to the inclusion

E(P, r−1) ⊆ A. (2.67)
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Applying Lemma 2, we also have

xTPx ≤ V (x) ≤ xT (P +KTΩK)x. (2.68)

Which leads to the double inclusion

E(P +KTΩK, r−1) ⊆ LV (r
−1) ⊆ E(P, r−1). (2.69)

Thus, from (2.69) and (2.67) we obtain

LV (r
−1) ⊆ A. (2.70)

Therefore, using (2.70) and (2.63), we have shown (2.52), and therefore (2.46) is verified,

which ends the proof.

Remark 3: Theorem 10 provides LMI conditions for the stabilization of system (2.1)

instead of using the existence of a Hurwitz convex combination the appraoch requires

that the pairs (A(vi), B) are all simultaneously stabilizable. The method generalizes the

conditions of Proposition 2 provided in Chapter 1 using a switched Lyapunov function

that allows to enlarge the estimation of the domain of attraction. It will be shown in the

following example that the estimation of the domain of attraction always encompasses the

one provided with the approach in [55]. With respect to the result provided in Proposition

2 which uses the existence of a continuous stabilizer Theorem 10 is based on the existence

of the continuous controller (2.55) which corresponds to a more general saturation of

linear controller.

Example 9: In order to illustrate the performance of the proposed control method, we

consider the switched affine system (2.1) with matrices

A =


1 2

4 −5


 , B =


 15 1

−1 −5


 , N1 =


 1 −5

0.5 2


 , N2 =


 −1 5

−0.5 −2


 ,

and the controller u which takes values in the set

V =






30
30


 ,


 30

−30


 ,


−30

30


 ,


−30

−30





 .

One can verify that the open-loop linear system is unstable (the eigenvalues of the

matrix A are 2.12 and −6.12). Choosing a decay rate α = 0.5, we design the linear
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Figure 2.1: Evolution of the state variables of system (2.1), (2.42)-Example 9

switching law proposed in [58] in order to stabilize the system to the origin. We obtain

the following solutions of (2.10)

Q =


 0.0629 −0.0068

−0.0068 0.0042


 (2.71)

and χ = 0.1.

We deduce then

K =


12.61 −8.843

6.73 69.34


 (2.72)

with an estimation of the ellipsoidal domain of attraction E(P, γ) where γ = 54.1602 and

P = Q−1. Based on Theorem 10, we design a nonlinear switching law by solving LMIs

(2.40) and (2.41) for P = Q−1 and K as given in (2.71)-(2.72) and a vector c satisfying

(2.6) such that c(1) = c(2) = 30.

We obtain

Ω =


1.075 0

0 0.34


 and r−1 = 209.85.

As we can see from Figure 2.2, the obtained trajectories starting in the domain of

attraction LV (r
−1) converge to the origin. We can also note that, the domain of attraction
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Figure 2.2: Phase plot of system (2.1), (2.42)-Example 9

LV (r
−1) is larger than the ellipsoidal domain of attraction E(P, γ) obtained by the method

proposed in [55]. The nonlinear switching surfaces and the convex hull Cv(K) defined

in (2.11), which limits the domain of attraction in the approach in [55], are equally

represented. The evolution of the state variables starting at x(0) = [0.32, 0.56]T are

presented in Figure 2.1. We can observe that the state converges to zero.

In this section a constructive method based on LMIs allowing the design of nonlin-

ear switching surfaces is proposed. A larger non-ellipsoidal estimation of the domain of

attraction is given. In what follows, LMI conditions allowing the computation of state-

dependent switching laws which ensures the global asymptotic stability of closed-loop

switched affine systems at the origin is provided.

2.3.2 Switching law design for global stabilization

In order to provide LMI conditions for global stabilization of system (2.1), we use the

following property of the nonlinearity φ.

Lemma 4: [110] Consider w1 = w2 = w ∈ Rm, the nonlinearity φ(w) defined in (2.37)

satisfies the inequality

φ(w)TM (φ(w) + w) ≤ 0, (2.73)
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for any vector w ∈ Rm and any matrix M ∈ Rm×m such that

c(k)M(k,k) ≥
m∑

k 6=j,j=1

c(j)|M(k,j)|, ∀k ∈ Im. (2.74)

Remark 4: Following the method proposed in [23], the condition (2.74) can be rewritten

as an LMI given by

c(k)M
+
(k,k) ≥

m∑

k 6=j,j=1

c(j)

(
M+

(k,j) +M−
(j,k)

)
, ∀k ∈ Im, (2.75)

with M =M+ −M−, M+
(k,j) =M+

(j,k) ≥ 0, M−
(k,j) =M−

(j,k) ≥ 0 and M−
(k,k) = 0.

Considering this property, we are able to state the following result.

Theorem 11: Assume that A-1 and A-2 hold. Consider system (2.1). If there exist a

symmetric positive definite matrix P ∈ Rn×n, a diagonal positive definite matrix Ω ∈
Rm×m, and symmetric matrices M+ and M− with non-negative entries such that LMI

(2.40) and

c(k)M
+
(k,k) ≥

m∑

k 6=j,j=1

c(j)

(
M+

(k,j) +M−
(j,k)

)
, ∀k ∈ Im. (2.76)

are satisfied with Υ = MK, M = M+ −M− and M−
(k,k) = 0, ∀k ∈ Im, then system (2.1)

with the switching law (2.42) is globally asymptotically stable.

Proof. Considering Υ =MK and M =M+ −M−, LMI (2.40) becomes

A(vi)

T
clP + PA(vi)cl PB − ((M+ −M−)K)T −A(vi)

T
clK

TΩ

∗ −2(M+ −M−)− ΩKB − (ΩKB)T


 ≺ 0, ∀i ∈ IN . (2.77)

Following the same steps as in Theorem 10, one can show that the feasibility of LMI

(2.77) together with (2.76) ensures that

max
β∈∆∗(x)

{
∂V

∂x

(
A(v(β))x+Bv(β)

)}

≤ max
β∈∆∗(x)

{
∂V

∂x

(
A(v(β))x+Bv(β)

)}
− 2φ(Kx)T

(
M+ −M−)(φ(Kx) +Kx

)

+ 2

N∑

j=1

ρj(x)
(
xTP − φ(Kx)TΩK

)
B
(
vj − v(β)

)
< 0, ∀x ∈ Rn.

(2.78)

It follows immediately from the last inequality that

max
β∈∆∗(x)

{
∂V

∂x

(
A(v(β))x+Bv(β)

)}
< 0, ∀x ∈ Rn. (2.79)

which end the proof.
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Remark 5: In the case where w1 = w2 = Kx andM is a diagonal matrix, condition (2.73)

is globally satisfied (see for instance [110], page 41). In this case the existence of a positive

diagonal matrixM , a symmetric positive definite matrix P and a diagonal positive definite

matrix Ω satisfying LMI (2.40) suffices to conclude on the global asymptotic stability of

the closed-loop system (2.1), (2.42).

Example 10: In order to illustrate the performance of the proposed control method, we

consider the switched affine system (2.2) with matrices

Ã1 =


1 0

0 −1.9


 , Ã2 =


0.5 −1

0.5 −1


 , b̃1 =


1
1


 , and b̃2 =


−10

10


 . (2.80)

Choosing β∗ = 1
3

and following the method proposed in Proposition 1, system (2.2), (2.80)

is rewritten in the form (2.1) with

A =




2
3

−2
3

1
3

1.3


 , B =


 31.53

−28.47


 , N =




1
3

2
3

−1
3

−0.6


 , (2.81)

and the controller u which takes values in the set

V =

{
−1

3
,
2

3

}
.

One can verify that the matrix A is not Hurwitz (the eigenvalues of the matrix A are

0.55 and −1.18). Therefore, the existing method in the literature [16], [26], [113] can not

be used to stabilise the system. Choosing a decay rate α = 3.7, we obtain the following

solution of (2.10)

Q =


 1.89 −2.57

−2.57 3.76


 (2.82)

and χ = 0.021.

We deduce then

K =
[
−0.9 −0.53

]
. (2.83)

Based on Theorem 11, we design a nonlinear switching law by solving LMIs (2.76) and

(2.77) for K as given in (2.83) and a vector c satisfying (2.6) such that c(1) = c(2) =
1
3
.

We obtain

Ω = 3.83, P =


0.67 0.43

0.43 0.43


 , and M = 1.61.
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Figure 2.5: Phase plot of system (2.1), (2.42)-Example 10

Simulations are performed for different initial conditions x(0) =
[
35 0

]T
, x(0) =

[
−45 40

]T
,

x(0) =
[
20 −50

]T
, and x(0) =

[
−25 −40

]T
. The different trajectories are reported

in the phase plot given in Figure 2.5 together with the nonlinear switching surface. The

evolution of the state variables starting at x(1)(0) = −25 and x(2)(0) = −40 are depicted

in Figures 2.3-2.4.

As we can see from Figures 2.5-2.4, the obtained trajectories starting from different
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initial conditions in the state space converge to the origin.

The results provided in this section can be directly applied to the problem of relay

feedback control design for LTI systems. Indeed, relay systems can be considered as

switched affine systems where the matrices Ãi, i ∈ IN do not switch. This idea is developed

in the next section.

2.4 LTI systems with relay control

As follows we particularize the proposed method to the case of LTI systems with relay

control.

Consider the linear system with a relay feedback control given as follows

ẋ = Ax+Bu, (2.84)

with x ∈ Rn, and an input u which takes values in the set V = {v1, . . . , vN} ⊂ Rm.

A ∈ Rn×n and B ∈ Rn×m are the matrices describing the system.

This class of systems presents the simplest class of switched control systems [76].

They are widely used in different application fields - see for instance [50], [79], [117],

[121]. They are motivated by their use in simple electrical (DC-DC converters) [29], [31],

electromechanical [3], [114], and aerospace applications [39], [40]. They are also used for

quantization errors modelling in digital control [76], [86], delta-sigma modulator design

in signal processing [100], and controllers auto-tuning [50].

Relay systems are known for being simple, efficient and robust [32], [59], [92]. Various

approaches have been proposed for relay feedback control design in the literature, both in

the space domain and in the frequency domain - see for instance [15], [59], [91], and [92].

However, the problem of relay feedback control design is still widely open.

Just as for the case of switched affine systems, in what follows we assume that:

A-3 The pair (A,B) is stabilizable. This means that there exists a matrix K such that

the closed-loop matrix Acl = A+BK is Hurwitz.

A-4 The set int{Conv{V}} is nonempty and the null vector is contained inside (0 ∈
int{Conv{V}}).
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Recently, in [58] a constructive method for a relay feedback controller design is given.

Assuming A-4 and

A-3’ There exist a positive definite matrix Q and positive scalars χ and α such that

AQ+QAT − χBBT � −2αQ, (2.85)

it is proved that system (2.84) with a switching law (2.7) is locally exponentially sta-

ble with a decay rate α. Note that A-3’ is equivalent to A-3. In that paper ([58]), a

linear switching function is considered: Γ(x, v) = − 2
χ
xTKT v with K = −χ

2
BTQ−1. An

ellipsoidal estimation of the domain of attraction is equally given using a quadratic Lya-

punov function. Nevertheless, considering a quadratic Lyapunov function, linear switch-

ing surfaces and an ellipsoidal estimation of the domain of attraction introduces some

conservatism in the proposed method [13].

Here by applying the developed approach in Theorem 10 to the class of LTI systems,

we would like to provide a design procedure of relay control using non-quadratic Lyapunov

functions. This approach allows to compute nonlinear switching surfaces and to provide

non-ellipsoidal estimations of the domain of attraction. Moreover, A constructive method

based on LMI criteria allowing the design of nonlinear state-dependent switching laws

ensuring the global asymptotic stability of the closed-loop system at the origin is provided.

Since relay systems represent a simpler class of switched affine systems, the results in

Theorem 10 can be directly applied for deriving a relay feedback control stabilizing locally

the closed-loop system at the origin with a larger estimation of a non-ellipsoidal domain

of attraction. The result is as follows:

Corollary 1: Consider system (2.84) and assume that A-3’ (or equivalently A-3) and

A-4 hold. If there exist a symmetric positive definite matrix P ∈ Rn×n, two diagonal

positive definite matrices Ω ∈ Rm×m and M ∈ Rm×m, a matrix Υ ∈ Rm×n, and a strictly

positive vector τ ∈ Rm such that
A

T
clP + PAcl PB −ΥT − AT

clK
TΩ

∗ −2M − ΩKB − (ΩKB)T


 ≺ 0 (2.86)

and 
 P M(i,i)K

T
(i) −ΥT

(i)

M(i,i)K(i) −Υ(i) τ(i)c
2
(i)


 � 0, ∀i ∈ Im, (2.87)
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where K = −χ
2
BTQ−1 and Acl = A + BK, then the origin of system (2.84) with the

switching law

u(x) ∈ argmin
v∈V

(xTP − φ(Kx)TΩK)Bv (2.88)

is locally asymptotically stable.

An estimation of the domain of attraction is given by

LV (r
−1) = {x ∈ Rn : V (x) ≤ r−1}, (2.89)

with V a Lur’e candidate Lyapunov function given by

V (x) = xTPx− 2
m∑

j=1

∫ K(j)x

0

φ(j)(σ)Ω(j,j)dσ, (2.90)

and r ≥ max
i∈Im

{
τ(i)

M2
(i,i)

}
> 0.

Remark 6: Note that since K is known and satisfies (2.85), inequalities (2.86) and (2.87)

are affine in the matrix A. Then, the approach can be directly extended to the case of

LTV systems with A varying in a convex polytope. In this case the condition should only

be checked on the vertices of the polytope.

Example 11: In order to illustrate the performance of the proposed control method, we

consider the linear system (2.84) with matrices

A =


0 1

1 0


 and B =


 0 1

−1 0.5


 ,

and the controller u which takes values in the set

V =






25
25


 ,


 25

−25


 ,


−25

25


 ,


−25

−25





 .

One can verify that the open-loop linear system is unstable (the eigenvalues of the matrix

A are −1 and 1). Choosing a decay rate α = 2.5, we design the linear switching law

proposed in [58] in order to stabilize the system to the origin. We obtain the following

solutions of (2.85)

Q =


0.101 0.073

0.073 0.172


 (2.91)
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Figure 2.6: Phase plot of system (2.84), (2.88)-Example 11

and χ = 1.6. We deduce then

K =


−4.5 6.2

−8.4 1.4


 (2.92)

with an estimation of the ellipsoidal domain of attraction E(P, γ) where γ = 109.2 and

P = Q−1. Based on Theorem 10, we design a nonlinear switching law by solving LMIs

(2.86) and (2.87) for P = Q−1 and K as given in (2.91)-(2.92) and a vector c satisfying

(2.6) such that c(1) = c(2) = 25. We obtain

Ω =


0.9 0

0 4.34


 and r−1 = 2.05× 103.

As we can see from Figure 2.6, the obtained trajectories starting in the domain of at-

traction LV (r
−1) converge to the origin. We can also note that, the domain of attraction

LV (r
−1) is larger than the ellipsoidal domain of attraction E(P, γ) obtained by the method

proposed in [58]. The nonlinear switching surfaces and the convex hull Cv(K) defined in

(2.11), which limits the domain of attraction in the approach in [58], are equally repre-

sented.

Assume now that the state matrix is affected by polytopic uncertainties :

A(t) ∈ Conv{A1, A2}, ∀t ≥ 0, (2.93)
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with

A1 =


0 1.5

1 0


 and A2 =


0 1

1 0.5


 .

First, considering α = 1.5 and the method in [58], we solve the LMI (2.85) to obtain

a common quadratic Lyapunov function for both subsystems 1 and 2. We obtain the

following parameters of the linear switching law :

Q =


8.66 0.22

0.22 10.8


 , χ = 54.25, and K =


−0.064 2.52

−3.1 −1.194


 .

An estimation of the ellipsoidal domain of attraction is given by E(Q−1, γ) with γ = 6.23.

Next we solve the LMIs (2.86) and (2.87) simultaneously for all system vertices, with

the same matrices P = Q−1, K and c(1) = c(2) = 25. Then, we compute a Lur’e Lyapunov

function for the subsystems 1 and 2 (A1 and A2) using (2.90). We design the nonlinear

switching law (2.88) with

Ω =


0.11 0

0 0.18


 .

An estimation of the domain of attraction (2.89) is obtained with r−1 = 42.72. For our

simulations we consider

A(t) =

(
sin(x(1)(t) + x(2)(t)) + 1

2

)
A1 +

(
1− sin(x(1)(t) + x(2)(t)) + 1

2

)
A2.

Figure 2.7 shows the trajectories of the closed-loop system in the phase plot for different

initial conditions together with the non-ellipsoidal domain of attraction LV (r
−1) including

the domain E(P, γ) obtained with the method proposed in [58].

Here, we have proposed a constructive LMI-based method to design nonlinear state-

dependent switching laws stabilizing locally asymptotically the LTI system to the origin.

A larger non-ellipsoidal estimation of the domain of attraction has also been provided.

The result of global stabilization provided in Theorem 11 can equally be adapted to the

stabilization problem of the class of LTI systems with a relay controller as follows.

Corollary 2: Assume that A-3 and A-4 hold. Consider system (2.84). If there exist a

symmetric positive definite matrix P ∈ Rn×n, a diagonal positive definite matrix Ω ∈
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Figure 2.7: Phase plot of system (2.84), (2.88) with polytopic uncertainties-Example 12

Rm×m, and symmetric matrices M+ and M− with non-negative entries such that

A

T
clP + PAcl PB − ((M+ −M−)K)T − AT

clK
TΩ

∗ −2(M+ −M−)− ΩKB − (ΩKB)T


 ≺ 0, ∀i ∈ IN . (2.94)

and

c(k)M
+
(k,k) ≥

m∑

k 6=j,j=1

c(j)

(
M+

(k,j) +M−
(j,k)

)
, ∀k ∈ Im. (2.95)

are satisfied with Υ = MK, M = M+ −M− and M−
(k,k) = 0, ∀k ∈ Im, then the origin of

system system (2.84) with the switching law (2.88) is globally asymptotically stable.

Example 12: Let us consider the buck converter [9] shown in Figure 2.8.

The state-space model for the state vector x̄ =
[
iL vc

]T
(iL the inductor current and

vc the capacitor voltage) is described by :

˙̄x = Āx̄+ B̄ū (2.96)

with

Ā =


 0 1

L

1
Cc

−1
RCc


 , B̄ =




1
L

0


 , and ū ∈ V̄ = {0, E}.

Here we consider the numerical values L = 2mH, Cc = 470µF, E = 15V, and R =

10Ω. One can note that the eigenvalues of the open loop system are purely imaginary
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iL

vc

ū

E

L

Cc RD

H

Figure 2.8: Buck converter

(±103 × 1.03i). We want to stabilize the system to the equilibrium point x̄∗ = −Ā−1B̄β∗

which correspond to iL = 0.16µA and vc = 7.5V . Using the transformation from [55]

(see Proposition 1 in Chapter 1) and the change of coordinates x = x̄− x̄∗, system (2.96)

becomes

ẋ = Ax+Bu, (2.97)

with A = Ā, u ∈= {−1
2
, 1
2
}, and B =




E
L

0


. We can remark that system (2.97) sat-

isfies Assumptions A-3 and A-4. Therefore, we can design a relay feedback controller.

Considering a decay rate α = 3.55, the LMI (2.85) is feasible with

K =
[
−3.2 0.4078

]
.

Considering the obtained matrices K and c = 1
2
, we can design a nonlinear switching law.

The set of LMIs (2.94)-(2.95) is feasible with :

P =


1.52 0.2

0.2 0.56


 , Ω = 0.09, and M = 357.93.

Figures 2.9-2.10 show the evolution of the state variables starting at
[
0.5, 27.5

]T
. We

can remark that the trajectories converge to the equilibrium point x̄∗.
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Figure 2.9: Evolution of the state vari-

able iL-Example 12
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Figure 2.10: Evolution of the state vari-

able Vc-Example 12

2.5 Conclusion

This chapter presented a new approach for the design of state-dependent switching laws.

In the case of switched affine systems, non-quadratic Lyapunov functions have been used

to develop a method allowing the computation of nonlinear switching surfaces and the

enlargement of the domain of attraction. LMI criteria have been given in order to design

the switching law and provide an estimation of a non-ellipsoidal domain of attraction.

Using the properties of the Lur’e type Lyapunov function, an LMI-based approach has

been developed in order to derive state-dependent switching laws ensuring the global

asymptotic stability of the closed-loop switched affine systems. The approach have been

then particularised to the stabilization of the simpler class of LTI systems with relay con-

trollers. Numerical methods allowing the design of a relay controller have been provided.

Moreover, a general framework for the design of a relay control in the class of nonlinear

input-affine systems has been provided.
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Chapter 3

Stabilization of switched affine systems

with disturbed state-dependent

switching laws

In this chapter we investigate the stabilization problem for a class of switched affine

systems with a state-dependent switching law. Since the states measurements are in

general subject to perturbations and noises, we propose a robust switching law design

method. Qualitative conditions for the stability of the closed-loop switched system are

given. A constructive method based on BMIs is provided. This method allows the design

of the switching surfaces, the enlargement of the domain of attraction or the minimization

of the size of the chattering zone. The results are then particularized to the stabilization

of Linear Time Invariant (LTI) systems by a relay controller.

3.1 Preliminaries and problem statement

Consider the following system

ẋ = Ax+
m∑

k=1

(Nkx+ bk)u(k), (3.1)

with x ∈ Rn and u(k) the k-th component of the input u. The input u is only allowed

to take values in the set V = {v1, . . . , vi, . . . , vN} ⊂ Rm, with i ∈ IN . A ∈ Rn×n,
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B =
[
b1, . . . , bm

]
∈ Rn×m, and Nk ∈ Rn×n are the matrices describing the system.

In the sequel we assume that:

A-1 The pair (A,B) is controllable, which implies that there exists a matrix K such that

the closed-loop matrix Acl = A+BK is Hurwitz.

A-2 The set int{Conv{V}} is nonempty, and the null vector is contained inside (0 ∈
int{Conv{V}}).

This chapter deals with the stabilization of system (3.1) in the case of a disturbed

switching law. We consider a controller inspired from the min-switching strategies in [25],

[61], [90] given by

u(x+ e(t)) ∈ argmin
v∈V

(x+ e(t))TΓv, (3.2)

where e is an exogenous unknown disturbance considered as a measurable and bounded

function from R+ to Rn satisfying

e(t)T e(t) ≤ ē, (3.3)

with ē its upper bound. The matrix Γ ∈ Rn×m characterizes the switching hyperplanes

of the control and will take a particular form, in the sequel, obtained using the Lyapunov

theory.

The closed-loop system (3.1), (3.2) is modeled by a differential equation with discon-

tinuous right hand-side [21]. Consequently, in order to study the stability of the system

we will consider the Filippov solutions [36] based on the use of differential inclusions [5].

The interconnection (3.1), (3.2) is the closed-loop system modeled by a discontinuous

differential equation of the form

ẋ = Ax+

m∑

k=1

(Nkx+ bk)ũ(k)(t, x) = f(t, x), (3.4)

where ũ(k)(t, x) is the k-th component of ũ(t, x) =




ũ(1)(t, x)
...

ũ(m)(t, x)


 = u(x+ e(t)).

To the discontinuous closed-loop system (3.4) we associate the differential inclusion

ẋ ∈ F(t, x), (3.5)

PhD thesis 76



CHAPTER 3. STABILIZATION OF SWITCHED AFFINE SYSTEMS
WITH DISTURBED STATE-DEPENDENT SWITCHING LAWS

with F(t, x) a set-valued map which can be computed using the construction given in [8],

[36] such that

F(t, x) =
⋂

δ>0

⋂

µ(S)=0

Conv{f(t, B̆(x, δ)\ S)}, ∀x ∈ Rn, t ∈ R+, (3.6)

where Conv is the closed convex hull, B̆(x, δ) is the open ball centered on x with radius
√
δ, and S ⊂ Rn with µ(S) its measure in the sense of Lebesgue. Hereafter, we call F(t, x)

the set-valued map associated to the discontinuous system (3.4).

Over this chapter the following notion of stability will be used.

Definition 7 (Rǫ-stability): Consider positive scalars R and ǫ, such that ǫ < R. Assume

that there exists a matrix P = P T ≻ 0 such that for all Filippov solutions x(.) of system

(3.4) with x(0) ∈ E(P,R), the value of the state x(t) converges to E(P, ǫ) as t goes to

infinity. Then, system (3.4) is said to be Rǫ-stable from E(P,R) to E(P, ǫ).

This notion of stability is adapted from [92], where it was used for relay systems with

input delays. Considering this notions, in this chapter we are interested in studying the

following problem:

Problem 1. Given system (3.1) under Assumptions A.1 and A.2, the set V, and a

perturbation e satisfying (3.3), design a robust state-dependent switching law (3.2) such

that the closed-loop system is Rǫ-stable in a domain D.

The closed-loop system (3.1), (3.2), (3.3) is affected by a bounded disturbance in the

actuator. First, in Section 3.2, we show that there exists a switching control law such that

system (3.1) is Rǫ-stable for small enough perturbations. Then, in Section 3.3, we provide

BMI-based stability conditions that allow the design of a stabilizing switching law, the

maximization of the size of the domain of attraction or the minimization of the size of

the chattering zone. Finally, in Section 3.4, since relay systems are a simpler subclass of

switched affine systems, the obtained results are particularized to the case of LTI systems

stabilization by a relay controller.
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3.2 Qualitative conditions for the robust stabilization

of switched affine systems

This section deals with the Rǫ-stabilization of system (3.1) under bounded input distur-

bances. Assumptions A.1 and A.2 are used to prove that there exists a switching control

law such that the system is Rǫ-stable.

Theorem 12: Assume that A.1 and A.2 hold. Then there exist positive scalars R, ǫ,

a matrix P = P T ≻ 0, and a switching control law u(x + e(t)) such that system (3.1)

is Rǫ-stable from E(P,R) to E(P, ǫ), for an input perturbation e satisfying (3.3) with a

sufficiently small bound ē.

Proof. Since the pair (A,B) is controllable then for any α > 0, there exists a gain K and

a matrix P = P T ≻ 0 such that

AT
clP + PAcl � −2αP, (3.7)

with Acl = A+BK is Hurwitz. Consider system (3.1) and the switching law

u(x+ e(t)) ∈ argmin
v∈V

G(x, e(t), v), (3.8)

with G : Rn×Rn×V → R defined as G(x, e(t), v) = (x+e(t))T
∑m

k=1(Nk(x+e(t))+bk)v(k).

Just as we did in (3.5) we associate to the closed-loop system (3.1), (3.8) a differential

inclusion

ẋ ∈ F̃(t, x). (3.9)

Consider the function V such that V (x) = xTPx. We want to prove that there exists ē

such that if (3.3) is satisfied then

sup
y∈F̃(t,x)

∂V

∂x
y ≤ −2χV (x), (3.10)

for some χ > 0 in a domain D ⊂ Rn which will be determined.

In order to prove these results, we rewrite the system (3.1) as

ẋ = Ax+Bu+ w(x, u), (3.11)

with w(x, u) =
∑m

j=1Njxu(j).
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The main idea of the proof of Theorem 12 is to show that for a sufficiently small and

bounded perturbation e satisfying (3.3), the decay of the function V in some domain D
can be ensured by switching among the elements of the set V. This will be proved in the

following in three steps. In Step 1, we associate a differential inclusion to system (3.4) and

provide some sufficient conditions for Rǫ-stability. Then, in Step 2, for a decay rate α and

a static gain K satisfying (3.7) stability conditions of system (3.11) are given, considering

the term w(x,Kx) as a perturbation. Finally, in Step 3, based on the results from Steps 1

and 2, we use the property of existence of a static linear stabilizer to design the switching

surface such that the Lyapunov function V decreases over the domain of attraction E(P, γ)
until its reaches the chattering ball E(P, ǫ), which proves the Rǫ-stability of system (3.1),

(3.8), (3.3).

Step 1 : Explicit stability condition based on Filippov differential inclusions

We define for any z ∈ Rn the set of indexes I∗(z) such that

I∗(z) = {i ∈ IN : zT
m∑

k=1

(Nkz + bk)(vj(k) − vi(k)) ≥ 0, ∀j ∈ IN}, (3.12)

which corresponds to the set of minimizers of u(z) defined in (3.8).

To I∗(z) we associate for all z ∈ Rn the set ∆∗(z) of vectors defined by

∆∗(z) = {β ∈ ∆N : β(i) = 0, ∀i ∈ IN \ I∗(z)}. (3.13)

Using (3.12) and (3.13), the set valued map F̃(t, x) in (3.9) satisfies

F̃(t, x) ⊆ F̃∗(t, x), (3.14)

with
F̃∗(t, x) = Conv

i∈I∗(x̄e(t))
{Ax+Bvi + w(x, vi)}

= {Ax+Bv(β) + w(x, v(β)) : β ∈ ∆∗(x̄e(t))} ,
(3.15)

v(β) =
∑N

i=1 β(i)vi, and x̄e(t) = x+ e(t).

Therefore, from (3.14) and in order to show (3.10), it is sufficient to prove that for

some positive scalar χ we have

sup
y∈F̃∗(t,x)

∂V

∂x
y ≤ −2χV (x), (3.16)
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in some domain D ⊂ Rn to be determined.

From (3.15), and using the fact that the set ∆∗(z) is compact for all z ∈ Rn, we have

sup
y∈F̃∗(t,x)

∂V

∂x
y = sup

β∈∆∗(x̄e(t))

{
∂V

∂x

(
Ax+Bv(β) + w(x, v(β))

)}

= max
β∈∆∗(x̄e(t))

{
∂V

∂x

(
Ax+Bv(β) + w(x, v(β))

)}
.

(3.17)

Then, showing (3.16) is equivalent to proving that for some χ > 0

max
β∈∆∗(x̄e(t))

{
∂V

∂x

(
Ax+Bv(β) + w(x, v(β))

)}
≤ −2χV (x), (3.18)

in a domain D ⊂ Rn to be determined below.

Step 2: Stability properties with a continuous controller

Here we will study the robustness properties of system (3.11) with linear state feedback

ū = Kx based on the linearized model. These properties will be useful for redesigning a

switching controller. Before showing (3.18), it is useful to prove that

∂V

∂x
(Aclx+ w(x,Kx)) ≤ −αV (x), (3.19)

is satisfied in a neighbourhood of the origin where Acl satisfies (3.7) for some α and P ,

and w(x,Kx) =
∑m

j=1Njx(Kx)(j).

From inequality (3.7), we obtain

∂V

∂x
(Aclx) ≤ −2αV (x), ∀x ∈ Rn.

Using this, (3.19) becomes

∂V

∂x
(Aclx+ w(x,Kx)) ≤ −2αV (x) + 2xTPw(x,Kx), ∀x ∈ Rn, (3.20)

Furthermore, for some scalar ̺ > 0 we have

‖w(x,Kx)‖ =

∥∥∥∥∥
m∑

k=1

Nkx(Kx)(k)

∥∥∥∥∥ ≤ ̺ ‖x‖2 , ∀x ∈ Rn.

Therefore, we can show that

∀ ˆ̺> 0, ∃ ˜̺> 0 : ‖w(x,Kx)‖ ≤ ˆ̺‖x‖ , ∀ ‖x‖ < ˜̺.
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Then, from Cauchy-Schwarz inequality, we get

xTPw(x,Kx) ≤
∥∥xTP

∥∥ ‖w(x,Kx)‖ ≤ ˆ̺‖P‖ ‖x‖2 , ∀ ‖x‖ < ˜̺.

Thus for all ‖x‖ < ˜̺, we have

∂V

∂x
(Aclx+ w(x,Kx)) ≤ −2αV (x) + 2xTPw(x,Kx)

≤ −(2αV (x)− 2ˆ̺‖P‖ ‖x‖2).
(3.21)

Therefore, (3.19) is satisfied for all x such that ‖x‖ < ˜̺ if we can ensure that

−(2αV (x)− 2ˆ̺‖P‖ ‖x‖2) ≤ −αV (x),

which is verified if

ˆ̺≤ αeigmin(P )

2 ‖P‖ . (3.22)

Note that for given α and P satisfying inequality (3.7), ˆ̺ can always be chosen as small

as possible (this only constrains x in a neighbourhood B(0, ˜̺2) of the origin) such that

(3.22) is verified.

In the next step we will see how the property (3.22) is useful for the design of a

switching law.

Step 3: Switching controller reconfiguration

Note that, since Assumption A-2 holds, then there exists a neighbourhood of the origin

E(P, γ) with γ > 0 such that for all x ∈ E(P, γ) we have

Kx ∈ Conv{V}.

Therefore, for all x ∈ E(P, γ) there exist positive scalars ρj(x), j ∈ IN , such that
∑N

j=1 ρj(x) = 1 and

Kx =

N∑

j=1

ρj(x)vj . (3.23)

In the development that follows we consider that E(P, γ) ⊆ B(0, ˜̺2) (we can always choose

a constant γ satisfying this inclusion). We can also consider the case where (3.19) and
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(3.23) are verified (i.e. for all x ∈ E(P, γ) ⊆ B(0, ˜̺2)). From (3.12), for all i ∈ I∗(x̄e(t))

with x̄e(t) = x+ e(t), we have

(
x+ e(t)

)T
P

m∑

k=1

(
Nk(x+ e(t)) + bk

)(
vj(k) − vi(k)

)
≥ 0, ∀j ∈ IN .

Then, for any β ∈ ∆∗(x̄e(t)) we have

(
x+ e(t)

)T
P

m∑

k=1

(
Nk(x+ e(t)) + bk

)(
vj(k) − v(β)(k)

)
≥ 0, ∀j ∈ IN .

Multiplying this last inequality by ρj(x) for j ∈ IN (ρj(x) defined in (3.23)) and summing

the N elements, we obtain

2
(
x+ e(t)

)T
P

m∑

k=1

(
Nk(x+ e(t)) + bk

)(
(Kx)(k) − v(β)(k)

)
≥ 0.

Adding this to the left part of (3.18), it comes

max
β∈∆∗(x̄e(t))

{
∂V

∂x

(
Ax+Bv(β) + w(x, v(β))

)}

≤ max
β∈∆∗(x̄e(t))

{
xT
(
AT

clP + PAcl

)
x+ 2xTPw(x,Kx) + 2xTP

m∑

k=1

Nke(t)
(
(Kx)(k) − v(β)(k)

)

+2eTP
m∑

k=1

Nkx
(
(Kx)(k) − v(β)(k)

)
+ 2eTP

m∑

k=1

Nke(t)
(
(Kx)(k) − v(β)(k)

)

+2eTPB
(
Kx− v(β)

)}
.

(3.24)

Then, using (3.19) we get

max
β∈∆∗(x̄e(t))

{
∂V

∂x

(
Ax+Bv(β) + w(x, v(β))

)}

≤ max
β∈∆∗(x̄e(t))

{
−αV (x) + 2xTP

m∑

k=1

Nke(t)
(
(Kx)(k) − v(β)(k)

)
+ 2eTPB

(
Kx− v(β)

)

+2eTP

m∑

k=1

Nkx
(
(Kx)(k) − v(β)(k)

)
+ 2eTP

m∑

k=1

Nke(t)
(
(Kx)(k) − v(β)(k)

)}
.

(3.25)

Let us define v̄(k) = max
x∈E(P,γ)

{(∑N
j=1 ρj(x)vj

)
(k)

− max
β∈∆∗(x̄e(t))

{
v(β)(k)

}}
. From (3.23), we

have

max
β∈∆∗(x̄e(t))

{
(Kx)(k) − v(β)(k)

}
= max

β∈∆∗(x̄e(t))




( N∑

j=1

ρj(x)vj

)
(k)

− v(β)(k)



 ≤ v̄(k),∀k ∈ Im.

(3.26)
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Thus, using (3.26), from (3.25) we obtain that for all x ∈ E(P, γ) ⊆ B(0, ˜̺2),

max
β∈∆∗(x̄e(t))

{
∂V

∂x

(
Ax+Bv(β) + w(x, v(β))

)}

≤ −αV (x) + 2xTP

m∑

k=1

Nkv̄(k)e(t) + 2eTPBv̄ + 2eTP

m∑

k=1

Nkv̄(k)x+ 2eTP

m∑

k=1

Nkv̄(k)e(t).

(3.27)

Recall [17] that for any positive number θ

2aT b ≤ 1

θ
aTa + θbT b, ∀a, b ∈ Rn. (3.28)

Applying (3.28) to the terms 2eTΞx, 2xTΞe with Ξ = P
∑m

k=1Nkv̄(k) and 2eTPBv̄, with

θ1 = η, a1 = e, b1 = Ξx, θ2 = η−1, a2 = ΞTx, b2 = e,

and θ3 = η, a3 = e, b3 = PBv̄,

we obtain the following inequality

− αV (x) + 2xTP
m∑

k=1

Nkv̄(k)e(t) + 2eTPBv̄ + 2eTP
m∑

k=1

Nkv̄(k)x+ 2eTP
m∑

k=1

Nkv̄(k)e(t)

≤ −αV (x) + 3η−1eT e+ 2ηxTΞTΞx+ ηv̄TBTPPBv̄ + 2eTΞe.

(3.29)

Let us define ζmax = eigmax(Ξ
TΞ)˜̺2, κmax =

√
eigmax(Ξ

TΞ), and ξmax = v̄TBTPPBv̄. We

have

xTΞTΞx ≤ ζmax, ∀x ∈ B(0, ˜̺2),

eTΞe ≤ κmaxe
T e, ∀e ∈ Rn.

Then, considering ē a positive scalar satisfying (3.3), we obtain from (3.29)

− αV (x) + 2xTP
m∑

k=1

Nkv̄(k)e(t) + 2eTPBv̄ + 2eTP
m∑

k=1

Nkv̄(k)x+ 2eTP
m∑

k=1

Nkv̄(k)e(t)

≤ −αV (x) + (3η−1 + κmax)ē+ 2ηζmax + ηξmax

(3.30)

for all x ∈ E(P, γ) ⊆ B(0, ˜̺2).
From (3.27) and (3.30) , in order to prove (3.18), it is sufficient to show that there

exists χ > 0 such that in some domain D := E(P, γ) \ E(P, ǫ) ⊆ B(0, ˜̺2) we have

−αV (x) + (3η−1 + κmax)ē + 2ηζmax + ηξmax ≤ −2χV (x). (3.31)

PhD thesis 83



CHAPTER 3. STABILIZATION OF SWITCHED AFFINE SYSTEMS
WITH DISTURBED STATE-DEPENDENT SWITCHING LAWS

Therefore, we can show that if we take 0 < χ < α
2
, and sufficiently small ē and η, we have

(3.31) (and thus (3.10)) which is satisfied for all x ∈ E(P, γ) \ E(P, ǫ) ⊆ B(0, ˜̺2), with

ǫ :=
(3η−1 + κmax)ē + ηξmax + 2ηζmax

α− 2χ
< γ. (3.32)

In conclusion, system (3.1), (3.8) with perturbation (3.3) is Rǫ-stable from E(P,R) to

E(P, ǫ) with R = γ and ǫ given in (3.32), if the bound ē on the perturbation is small

enough.

Remark 7: From the proof of Theorem 12, (see equation (3.32)), we can note that the

size of the level set E(P, ǫ) depends on the upper bound of the disturbance. Furthermore,

it depends also on the upper bound of the control value (the terms ξmax, ζmax, and κmax

depend on v̄ defined in (3.26)). Then, the size of the chattering ball E(P, ǫ) increases with

the amplitude of the control vector.

In Theorem 12 we have shown that there exists a switching law such that the system

is Rǫ-stable for a small enough perturbation. In the following, we propose a constructive

numerical implementation based in BMIs that allows to design such a controller.

3.3 A constructive method using controller redesign

The first result (Theorem 12) has a qualitative nature. As we have seen in the proof

of Theorem 12, it is possible to use the property of existence of a linear static feedback

to redesign switching surfaces for system (3.1), (3.2), (3.3). In practice, it is useful to

find a constructive procedure which, for desired domain of attraction and chattering ball,

provides a switching law which ensures the Rǫ-stability. Here we would like to ensure that

the domain of attraction contains the ball B(0, rγ) of radius √
rγ and that the chattering

zone is included in a ball B(0, rc) of radius
√
rc. In this section a numerical approach

to deal with the design problem is given, ensuring this property. A BMI solution is

proposed hereafter. In order to express the result, note that for any finite set of vectors

V = {v1, . . . , vN} ⊂ Rm, there exists a finite number nh of vectors hi ∈ R1×m, i ∈ Inh
,

such that

Conv{V} = {u ∈ Rm : hiu ≤ 1, i ∈ Inh
}.
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To provide constructive numerical conditions, we rewrite the system (3.1) as

ẋ = Ax+Π(u)x+Bu, (3.33)

with Π(u) =
∑m

i=1Niu(i).

Theorem 13: Assume that A.2 holds. Consider the closed-loop system (3.1), (3.2), (3.3)

with Γ = PB, P a design parameter, and positive scalars rc and rγ such that rc < rγ and

χ > 0. Consider K such that Acl = A+BK is Hurwitz. If there exist ǫ1 > 0, ǫ2 > 0, ǫ3 > 0,

c > 0, γ > 0 and P = P T ≻ 0 such that

1.

M(vi) =




Mi PBK 0

∗ −ǫ3I −PBvi
∗ ∗ −ψ


 � 0, ∀i ∈ IN , (3.34)

with
Mi = (Acl +Π(vi))

TP + P (Acl +Π(vi)) + (2χ+ ǫ1 − ǫ2)P,

ψ = −ǫ1c+ ǫ3ē + ǫ2γ,
(3.35)

2.

P −KThTi γhiK ≻ 0, ∀i ∈ Inh
, (3.36)

3.

P � γ

rγ
I, (3.37)

4.

P � c

rc
I, (3.38)

5.

c < γ, (3.39)

then the system (3.1), (3.2) is Rǫ-stable from E(P, γ) to E(P, c). Furthermore, B(0, rγ) ⊆
E(P, γ) and E(P, c) ⊆ B(0, rc).

Proof. We want to prove that if the set of inequalities (3.34)-(3.39) is feasible, then the

closed-loop system (3.1), (3.2) is Rǫ-stable from E(P, γ) to E(P, c). It is sufficient to prove
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that the function V defined by V (x) = xTPx satisfies

sup
y∈F∗(t,x)

∂V

∂x
y ≤ −2χV (x), ∀x ∈ E(P, γ) \ E(P, c),

with F∗(t, x) defined in (3.15).

Let us define the set Cv(K) as

Cv(K) = {x ∈ Rn : hiKx < 1, i ∈ IN}.

From (3.36) we have

xTKThTi hiKx < xT
P

γ
x, ∀i ∈ Inh

, ∀x ∈ Rn,

and thus, the ellipsoid E(P, γ) satisfies

E(P, γ) ⊂ Cv(K). (3.40)

Inequality (3.34) is equivalent to

zTM(vi)z ≤ 0, ∀z ∈ R2n+1.

Considering the vector zT = (x, e, 1)T , this leads to

xT ((Acl +Π(vi))
TP + P (Acl +Π(vi)))x+ (2χ− ǫ2 + ǫ1)x

TPx+ 2eTPBKx

− 2eTPBvi − ǫ3e
T e− ǫ1c+ ǫ2γ + ǫ3ē ≤ 0, ∀x ∈ Rn, ∀e ∈ Rn, ∀i ∈ IN .

(3.41)

Note that for all x ∈ Cv(K), there exist N positive scalars ρj(x), j ∈ IN ,
∑N

j=1 ρj(x) = 1

such that

Kx =

N∑

j=1

ρj(x)vj . (3.42)

Since the constraint (3.40) is satisfied, then using (3.41) and (3.42), we obtain

xT ((A+Π(vi))
TP + P (A+Π(vi)))x+ (2χ− ǫ2 + ǫ1)x

TPx+ 2eTPB
N∑

j=1

ρj(x)vj

+ 2xTPB

N∑

j=1

ρj(x)vj − 2eTPBvi − ǫ3e
T e− ǫ1c+ ǫ2γ + ǫ3ē ≤ 0, ∀x ∈ E(P, γ), ∀e ∈ Rn,
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∀i ∈ IN , which leads to
N∑

j=1

ρj(x){2xTP (A+Π(vi))x+ 2xTPBvj + (2χ− ǫ2 + ǫ1)x
TPx− ǫ3e

T e

+ 2eTPB(vj − vi)− ǫ1c + ǫ2γ + ǫ3ē}

≤ 0, ∀x ∈ E(P, γ), ∀e ∈ Rn, ∀i ∈ IN .

By adding and subtracting the term 2
∑N

j=1 ρj(x)x
TPB(vj − vi), we get

N∑

j=1

ρj(x){2xTP (A+Π(vi))x+ 2xTPBvi + (2χ− ǫ2 + ǫ1)x
TPx

+ 2(x+ e(t))TPB(vj − vi)− ǫ3e
T e− ǫ1c+ ǫ2γ + ǫ3ē}

≤ 0, ∀x ∈ E(P, γ), ∀e ∈ Rn, ∀i ∈ IN .

(3.43)

For z ∈ Rn, we define I∗(z) and ∆∗(z) as in (3.12), (3.13). By construction, we see that

∀i ∈ I∗(x+ e(t)), ∀j ∈ IN , (x+ e(t))TPB(vj − vi) ≥ 0. (3.44)

Furthermore, inequality (3.39) guarantees the fact that E(P, c) ⊂ E(P, γ). Then, for

x ∈ E(P, γ)\E(P, c), it is clear that xTPx > c, and xTPx ≤ γ. Therefore, taking this into

account, as well as (3.44) and the fact that eT e ≤ ē (according to (3.3)), we can deduce

from (3.43) that

∂V

∂x
(Ax+Bvi +Π(vi)x) ≤ −2χV (x), ∀i ∈ I∗(x+ e(t)), ∀x ∈ E(P, γ) \ E(P, c).

Then, using the same arguments as in Theorem 12, we can show that

sup
y∈F(t,x)

∂V

∂x
y ≤ max

β∈∆∗(x̄e(t))

∂V

∂x
(Ax+Bv(β)+Π(v(β))x) ≤ −2χV (x), ∀x ∈ E(P, γ) \E(P, c),

(3.45)

with v(β) =
∑N

i=1 β(i)vi, which ends the proof. Note that inequality (3.37) is equivalent

to the constraint

B(0, rγ) ⊂ E(P, γ),

where B(0, rγ) is the ball of radius √rγ, and inequality (3.38) is equivalent to the constraint

E(P, c) ⊂ B(0, rc),

where
√
rc is the radius of the ball B(0, rc). These constraints are used for the optimization

of either the chattering ball E(P, c) or the domain of attraction E(P, γ) (see Remark 8).
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Remark 8: The method uses the property of the existence of linear state feedback with

gain K in order to design the switching surfaces Γ. Designing a static gain K for systems

as (3.1) is a classical problem. Numerical methods have been proposed in [2], [112]. To

solve the conditions of Theorem 13 as an LMI problem for a given gain K such that

Acl = A + BK is Hurwitz P , c, and γ are taken as LMI variables. The parameter χ in

Theorem 13 corresponds to the system’s decay rate from E(P, γ) to E(P, c). A line search

can be used to find rc and rγ, and parameters ǫ1, ǫ2, and ǫ3. An optimization algorithm

can then be used to maximize rγ or minimize rc. Note that when the conditions of

Theorem 13 are satisfied, the continuous controller ū = Kx ensures a decay rate of at

least 2χ + ǫ1 − ǫ2. In this paper we only provide sufficient conditions for the design of a

switching controller while the measurements are affected by perturbation. The proposed

conditions are not necessary. What we show is that, if the LMIs are satisfied for a given

gain K and a decay rate χ, then a locally stabilizing switching controller is obtained with

guaranteed estimations of the domain of attraction and chattering zone. The approach is

based on the inclusion F̃(t, x) ⊆ F̃∗(t, x) (equations (3.14), (3.15) used in (3.45)) which

might be a source of conservatism. The polytopic modelling of the bilinear term can also

introduce some conservatism.

In Sections 3.2 and 3.3, stability conditions of the closed-loop system have been given.

In order to show the efficiency of the developed method, numerical implementations have

been performed. The results are reported in the following.

Example 13: Single-input system

Consider the switched affine system

ẋ = Ãσx+ b̃σ,

σ ∈ I2 = {1, 2},
(3.46)

with

Ã1 =


0.3 1

1 0.3


 , Ã2 =


−0.1 1

−1
3

−0.1


 , b̃1 =


1.5

6


 , and b̃2 =


−0.5

1


 .

Considering the result in [55] (see Chapter 1, Section 1.3.3), this system can be refor-
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mulated as a bilinear system (3.1) with

u ∈ V = {v1, v2} = {0.75,−0.25}, N =


 0.4 0

1.3333 0.4


 , A =


0 1

0 0


 , and B =


2
5


 .

Note that the proposed methods in the literature can not be used to stabilize the system

since there exist no convex combination of the matrices A1 and A2 [16], [26]. We consider

a gain K =
[
−0.4, −0.44

]
computed by pole assignment such that the eigenvalues of

A + BK are {−1,−2} (A + BK is Hurwitz) and a desired decay rate χ = 0.15. Using

the results from Theorem 13, we can design a switching law (3.2) that makes the system

(3.1), (3.2), (3.3) Rǫ-stable for a given bound ē on the perturbation. Then, implementing

an optimization algorithm as discussed in Remark 8 allows the minimization of the ball

B(0, rc) containing the chattering zone. The results obtained for various values of ē are

given in Table 3.1. For ē = 10−4 for example, we find that the LMIs from Theorem 13

are feasible for

rγ = 1.5, rc = 0.14, γ = 0.0589, c = 0.0027, P =


 0.03 0.0091

0.0091 0.03


 ,

and with the parameters ǫ1 = 0.71, ǫ2 = 0.1, and ǫ3 = 1.1980× 102. Simulations are per-

formed for different initial conditions x(0) =
[
−0.92, 1.28

]T
, x(0) =

[
−0.12, 1.4

]T
,

x(0) =
[
−1.28, −0.08

]T
, x(0) =

[
0.32, −1.4

]T
, x(0) =

[
1.12, −1.08

]T
, x(0) =

[
1.36, −0.12

]T
, x(0) =

[
0.84, 0.84

]T
, x(0) =

[
−0.68, −0.96

]T
and a perturbation

e(t) =
√
ē
[
sin(3t), cos(3t)

]T
. The different trajectories are reported in the phase plot

given in Figure 3.1, while the state variables starting at x(0) =
[
−0.92, 1.28

]T
are

presented in Figure 3.2.

Using the above design method, a switching law is derived and the domain of at-

traction is successfully estimated. From the simulation results, it can be seen that for a

sufficiently small perturbation, the states variables starting in the domain of attraction

E(P, γ) converge to a small neighbourhood E(P, c) of the origin and oscillate indefinitely

around it. This confirms the theoretical results. Note that, in Figure 3.1 is reported the

sliding surface of the system free of perturbation (xTΓ = 0). We can remark that the

sliding surface in the presence of the perturbation is variable since its depends on the

perturbation dynamics and variations ((x+ e)TΓ = 0).
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Table 3.1: Chattering ball radius rc obtained for different values of ē

ē 5× 10−5 10−4 5× 10−4 10−3 5× 10−3 10−2

rc 0.1 0.14 0.55 0.69 1.1 1.4

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5E(P, γ)
B(0, rγ)

E(P, c)

B(0, rc)

x
2

x1

xTΓ = 0

Kx = v2

Figure 3.1: Phase portrait of the closed-loop system with E(P, γ) an estimation of the

domain of attraction, and E(P, c) the chattering zone-Example 13.

Example 14: Multi-input system

Consider system (3.1) with

A =


 8 1.5

1.5 −3


 , B =


8 −3

2 1


 , N1 =


 0 0

0.1 0.2


 , N2 =


0 0

0 0.2


 ,

and

u ∈ V =






5
5


 ,


 5

−5


 ,


−5

5


 ,


−5

−5





 .

The eigenvalues of A are {−3.2, 8.2} hence the open-loop system (3.1) is unstable. Note

the requirements from [26] and [16] are not satisfied since the matrix A is not Hurwitz.

Therefore, the methods in these articles can not be used to stabilize the system. Consider
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Figure 3.2: State variables x1 and x2-Example 13

the gain

K =


−1.0714 −0.6429

0.6429 −1.2143




such that the matrix A + BK is Hurwitz (the gain K is computed by pole assignment

such that the eigenvalues of A + BK are { -5.5, -2.5}). Applying the method developed

above with a decay rate χ = 2, a switching law is designed to stabilize the system in the

presence of a perturbation bounded by ē = 10−4. An algorithm of minimization of rc with

a line search to find the parameters ǫ1, ǫ2, ǫ3, rγ and rc is implemented.

Using our algorithm of optimization we find that the LMIs are feasible for

rγ = 13.2, rc = 1.6, γ = 0.2728, c = 0.0324, P =


 0.02 −0.0001

−0.0001 0.021


 ,

and with parameters ǫ1 = 0.7250, ǫ2 = 0.1, and ǫ3 = 1.1980× 102.

Simulations are performed for different initial conditions:

x(0) =
[
1.3, 3.2

]T
, x(0) =

[
−3.4, −0.8

]T
, x(0) =

[
0, 3.5

]T
, x(0) =

[
3, 1.5

]T
,

x(0) =
[
3.5, −0.1

]T
, x(0) =

[
−3.1, 1.4

]T
, x(0) =

[
3.4, 0.9

]T
, x(0) =

[
−3.5, 0.1

]T
,

x(0) =
[
−3, 2

]T
, x(0) =

[
−1.7, 3

]T
, x(0) =

[
1.9, −0.6

]T
, x(0) =

[
1.74, 2

]T
, x(0) =

[
1.5, −3.1

]T
, x(0) =

[
−2.97, −1.9536

]T
, x(0) =

[
2.83, −1.93

]T
, and a perturbation
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Figure 3.3: State variables x1 and x2-Example 14
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Figure 3.4: Phase portrait of the closed-loop system with E(P, γ) an estimation of the

domain of attraction, and E(P, c) the chattering zone-Example 14.

e(t) =
√
ē
[
sin(3t), cos(3t)

]T
. The different trajectories are reported in the phase plot

given in Figure 3.4, while the state variables starting at x(0) =
[
3.4, 0.9

]T
are presented

in Figure 3.6.
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It is obvious that if the bilinear term vanishes, system (3.1) will model an LTI system

with a relay controller. Then, the obtained results in this section can be directly particu-

larized to derive stabilizing relay controllers for LTI systems when the measurements are

disturbed. This idea is developed in the next section.

3.4 Robust LTI systems stabilization by a relay feed-

back control

Let us consider the linear system

ẋ = Ax+Bu, (3.47)

with x ∈ Rn and an input u which takes only values in the set V = {v1, . . . , vN} ⊂ Rm.

A ∈ Rn×n, and B ∈ Rn×m are the matrices describing the system. We assume A-2 and

A-3 the pair (A,B) is stabilizable.

The results in Theorem 12 can be applied to derive a stabilizing relay controller of the

form (3.2) for the class of LTI systems when the measurements are affected by disturbances

satisfying (3.3). Sufficient conditions for the existence of such a controller are given in

the following.

Corollary 3: Assume that A.2 and A.3 hold. Then there exist positive scalars R and ǫ

and matrices P = P T ≻ 0 and Γ = PB such that the system (3.47) with control (3.2) is

Rǫ-stable from E(P,R) to E(P, ǫ) for a perturbation (3.3) with a sufficiently small bound

ē.

Proof. Since the pair (A,B) is stabilizable then there exists a gain K such that Acl =

A + BK is Hurwitz. Furthermore, for all δ > 0 there exists a matrix P = P T ≻ 0

satisfying

AT
clP + PAcl � −2δP. (3.48)

Consider the closed-loop system (3.47), (3.2), (3.3) and the associated differential inclusion

(1.4).

PhD thesis 93



CHAPTER 3. STABILIZATION OF SWITCHED AFFINE SYSTEMS
WITH DISTURBED STATE-DEPENDENT SWITCHING LAWS

We want to prove that for Γ = PB there exists ē such that if eT e ≤ ē then

sup
y∈F(t,x)

∂V

∂x
y ≤ −2αV (x), (3.49)

for some α > 0 in a domain D ⊂ Rn which will be determined.

We define for any z ∈ Rn the set of index I∗(z) such that

I∗(z) = {i ∈ IN : zTPB(vj − vi) ≥ 0, ∀j ∈ IN}. (3.50)

To I∗(z) we associate for all z ∈ Rn the set ∆∗(z) of vectors defined by

∆∗(z) = {β ∈ ∆N : βi = 0, ∀i ∈ IN \ I∗(z)}. (3.51)

Using (3.50) and (3.51), the set valued map F(t, x) in (1.5) satisfies

F(t, x) ⊆ F∗(t, x), (3.52)

with
F∗(t, x) = Conv

i∈I∗(x̄e(t))
{Ax+Bvi}

={Ax+Bv(β) : β ∈ ∆∗(x̄e(t))},
(3.53)

v(β) =
∑N

i=1 βivi, and x̄e(t) = x+ e(t).

Therefore, in order to show (3.49), it is sufficient to prove that for some positive scalar

α we have

sup
y∈F∗(t,x)

∂V

∂x
y ≤ −2αV (x), (3.54)

in some domain D ⊂ Rn to be determined.

From (3.53), and using the fact that the set ∆∗(z) is compact for all z ∈ Rn, we have

sup
y∈F∗(t,x)

∂V

∂x
y = sup

β∈∆∗(x̄e(t))

{
∂V

∂x
(Ax+Bv(β))

}

= max
β∈∆∗(x̄e(t))

{
∂V

∂x
(Ax+Bv(β))

}
.

(3.55)

Then, showing (3.54) is equivalent to prove that for some α > 0

max
β∈∆∗(x̄e(t))

{
∂V

∂x
(Ax+Bv(β))

}
≤ −2αV (x), (3.56)

in a domain D ⊂ Rn to be determined below.
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From inequality (3.48), we obtain

∂V

∂x
(Aclx) ≤ −2δV (x), ∀x ∈ Rn. (3.57)

Note that, since the set Conv{V} is nonempty and the null vector is contained in its

interior (0 ∈ int{Conv{V}}), then there exists a neighborhood of the origin E(P, γ) with

γ > 0 such that for all x ∈ E(P, γ) we have

Kx ∈ Conv{V}. (3.58)

Therefore for all x ∈ E(P, γ) there exist positive scalars ρj(x), j ∈ IN , such that
∑N

j=1 ρj(x) = 1 and

Kx =

N∑

j=1

ρj(x)vj . (3.59)

In the development that follows, we consider the case where (3.57) and (3.59) are verified

(i.e. for all x ∈ E(P, γ)). From (3.50), for all i ∈ I∗(x̄e(t)) we have

(x+ e(t))TPB(vj − vi) ≥ 0, ∀j ∈ IN . (3.60)

Then, for any β ∈ ∆∗(x̄e(t)) we have

(x+ e(t))TPB(vj − v(β)) ≥ 0, ∀j ∈ IN . (3.61)

Multiplying this last inequality by ρj(x) for j ∈ IN (ρj(x) defined in (3.59)) and summing

the N elements, we obtain

(x+ e(t))TPB(Kx− v(β)) ≥ 0. (3.62)

Adding this to the left part of (3.56), it comes

max
β∈∆∗(x̄e(t))

{
∂V

∂x
(Ax+Bv(β))

}
≤ max

β∈∆∗(x̄e(t))
{xT (AT

clP + PAcl)x

+ 2eTPBKx− 2eTPBv(β)}.
(3.63)

Then, using (3.57), we get

max
β∈∆∗(x̄e(t))

{xT (AT
clP + PAcl)x+ 2eTPBKx− 2eTPBv(β)}

≤ max
β∈∆∗(x̄e(t))

{
−2δV (x) + 2eTPBKx− 2eTPBv(β)

}
.

(3.64)
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Then, in order to prove (3.56) in some domain D ⊆ E(P, γ), from (3.64) it is sufficient to

show that for some α > 0

max
β∈∆∗(x̄e(t))

{
−2δV (x) + 2eTPBKx− 2eTPBv(β)

}
≤ −2αV (x). (3.65)

Recall that for any positive number θ

2aT b ≤ 1

θ
aTa + θbT b, ∀a, b ∈ Rn. (3.66)

Applying (3.66) to the terms 2eTPBKx and −2eTPBv(β), with

θ = η, a1 = e, b1 = PBKx, (3.67)

and

θ = η, a2 = e, b2 = −PBv(β), (3.68)

we obtain the following inequality

max
β∈∆∗(x̄e(t))

{
−2δV (x) + 2eTPBKx− 2eTPBv(β)

}
≤ −2δV (x) + 2η−1eT e

+ηxTKTBTPPBKx

+η max
β∈∆∗(x̄e(t))

{
vT (β)BTPPBv(β)

}
.

(3.69)

Note that there exist ζmax > 0 and ξmax > 0 such that

xTKTBTPPBKx ≤ ζmaxV (x), ∀x ∈ Rn,

max
β∈∆∗(x̄e(t))

{
v(β)TBTPPBv(β)

}
≤ ξmax.

(3.70)

Also, with ē a positive scalar satisfying (3.3), thus from (3.69) we obtain

max
β∈∆∗(x̄e(t))

{
−2δV (x) + 2eTPBKx− 2eTPBv(β)

}
≤ −2δV (x) + 2η−1ē

+ η(ζmaxV (x) + ξmax).

(3.71)

Then, (3.71) is verified (and consequently (3.49)) if there exists α > 0 such that

−2δV (x) + 2η−1ē + η(ζmaxV (x) + ξmax) ≤ −2αV (x), (3.72)

which is satisfied if 



−δV (x) + 2η−1ē + ηξmax ≤ 0,

−δ + ηζmax + 2α ≤ 0.
(3.73)
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Therefore, if we take 0 < α < δ
2

and

0 < η ≤ −2α + δ

ζmax
, (3.74)

then for a sufficiently small ē and η, we have (3.72) (and thus (3.49)) is satisfied for all

x ∈ D := E(P, γ) \ E(P, c(ē)), with

xTPx ≤ c(ē) :=
2η−1ē + ηξmax

δ
< γ. (3.75)

Therefore, system (3.47), (3.2), (3.3) is Rǫ-stable from E(P, γ) to E(P, c) with R = γ and

ǫ = c(ē).

Remark 9: From the proof of Corollary 3, equation (3.75), we can note that the size

of the level set E(P, ǫ) depends on the upper bound of the disturbance. Furthermore, it

depends also on the upper bound of the control value. Then, the size of the chattering

ball E(P, ǫ) increases with the amplitude of the control vector.

Remark 10: In Corollary 3, the upper bound ē of the disturbance is assumed to be

sufficiently small in order to ensure the resolvability of the stabilization problem. The

existence of solutions may be preserved despite the large value of ē.

A constructive method allowing the numerical implementation of this result can be

derived as in the previous section by reformulating the stability conditions as BMIs.

The result in Theorem 13 is particularized to relay controllers design for LTI systems

stabilization when the state variables are affected by disturbances in the following.

Corollary 4: Assume that A.2 holds. Consider the linear closed-loop system (3.47),

(3.2), (3.3) with Γ = PB, P a design parameter, and positive scalars c, rc, rγ, γ such that

rc < rγ and α > 0. The matrix A + BK is Hurwitz. If there exist ǫ1 > 0, ǫ2 > 0, ǫ3 > 0

and P = P T ≻ 0 such that

1.

M(vi) =




M PBK 0

∗ −ǫ3I −PBvi
∗ ∗ −ψ


 � 0, ∀i ∈ IN , (3.76)
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with
M = AT

clP + PAcl

+(2α + ǫ1 − ǫ2)P,

ψ = −ǫ1c+ ǫ3ē + ǫ2γ,

2.

P −KThTi γhiK ≻ 0, ∀i ∈ Inh
, (3.77)

3.

P � γ

rγ
I, (3.78)

4.

P � c

rc
I, (3.79)

5.

c < γ, (3.80)

are feasible, then the system (3.47), (3.2) is Rǫ-stable from E(P, γ) to E(P, c) for a per-

turbation e satisfying (3.3). Furthermore, B(0, rγ) ⊆ E(P, γ) and E(P, c) ⊆ B(0, rc).

Remark 11: To compute the LMI solution, for a given gain K such that (A,B) is

stabilizable, P , c, and γ are taken as LMIs variables. A line search can be used to find

the radius rc and rγ and a gridding to find the parameters ǫ1, ǫ2, and ǫ3. Optimization

algorithm can then be used to maximize rγ or minimize rc.

Remark 12: In Corollary 4 the controller gain K is supposed to be given such that the

closed-loop continuous system matrix A + BK is Hurwitz. The choice of the controller

gain K has an influence on the size of the domain of attraction E(P, γ) and the chattering

domain E(P, c). Although the main contribution here is the switching law design, one

can use the results in Corollary 4 to co-design the controller gain K and the switching

hyperplane characterizing matrix Γ (and domains E(P, c) and E(P, γ)) by using recursive

LMI optimization algorithms for example the one used in [110].

The following example illustrates the efficiency of the proposed method.

Example 15: Consider the linear system (3.47) with

u ∈ V = {−v, v} = {−3, 3},
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and matrices

A =


−1 0.3

0.5 1


 and B =


1
1




Consider the static gain K =
[
0.2295, −2.7897

]
computed using non robust approach

given in [60]. The eigenvalues of A are −1.0724, and 1.0724 hence the open-loop linear

system is unstable. Applying the method developed above, a relay feedback controller

is designed to stabilize the system in the presence of a bounded perturbation e(t) =
√
ē×

[
sin(5t), cos(5t)

]T
with ē = 0.5 × 10−4 and considering a decay rate α = 0.4. An

algorithm of minimization of c with a line search to find the parameters ǫ1, ǫ2, ǫ3, rγ and

rc is implemented.

The LMIs are feasible for

rγ = 1.1, rc = 0.1, γ = 3.8112, c = 0.0922, P =


1.0397 −0.5053

∗ 3.3555


 ,

and with parameters ǫ1 = 1.4216, ǫ2 = 0.02, andǫ3 = 1.1980× 103.

The computer simulations are realized for an initial condition x(0) =
[
1.5, 0.4

]T
, and

are reported in Figures 3.5-3.6.

As we can see from Figures 3.5 and 3.6, the states starting in the domain of attraction

converge to a neighborhood of the origin and remain in it. In other words, from Figure

3.5 we can see that the states starting in the largest level set E(P, γ) contained in the

convex Cv(K) evolve until reaching the smallest level set E(P, c) surrounding the origin.

The states stay bounded and oscillate around the origin indefinitely as it can be seen from

Figure 3.6 and this confirms the provided results.

3.5 Conclusion

This chapter has provided a method for the stabilization of switched affine systems with

perturbed state-dependent switching laws. The method considers the perturbation in

the states measurements. Qualitative conditions for stability have been developed. In

addition, a numerical approach which allows to design of the switching surfaces and

to enlarge or diminish the size of the chattering zone has been provided. The results
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have been particularized to provide a method for relay control design for LTI systems

stabilization. The efficiency of the proposed method has been shown using numerical

PhD thesis 100



CHAPTER 3. STABILIZATION OF SWITCHED AFFINE SYSTEMS
WITH DISTURBED STATE-DEPENDENT SWITCHING LAWS

examples and computer simulations.

In the future, the approach may be improved in various manners. For example, it is

of interest to considerer the bilinear terms in the switching law design method. In order

to reduce the chattering, we can try to extend the approach to the case of min-switching

stategy with min-dwell time condition. In this direction we can follow the approach in

[58] or the one proposed in [27].
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Chapter 4

Observer-based state-dependent

switching law design

In this chapter we consider the stabilization problem by an observer-based switching

control. First, a general result is proposed for the case of switched affine systems. An

observer-based switching controller is designed in order to ensure the local stability of

the closed-loop system. Both quadratic and non-quadratic Lyapunov functions are used

to derive linear and nonlinear switching surfaces dependent on the estimated state while

using a Luenberger observer. A constructive method based on LMI conditions is given

in order to allow a numerical implementation of the proposed approach. Estimations of

ellipsoidal and non-ellipsoidal domains of attraction are provided. In addition, we propose

a numerical approach based on LMIs which allows the design of nonlinear switching

surfaces dependent on the estimated state that guarantee the global asymptotic stability

of the closed-loop switched affine systems at the origin. Moreover, the result is applied

to the particular case of LTI systems with an observer-based relay feedback control. A

separation principle is proved for both LTI systems with relay controller and switched

affine systems when, to the best of our knowledge, no separation principle exist for these

classes of systems in the literature. Finally, illustrative examples are provided in order

to show the efficiency of the proposed methods and simulations are performed for a Buck

converter structure.
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4.1 Preliminaries and problem statement

Consider the following system

ẋ = Ax+
m∑

k=1

(Nkx+ bk)u(k), (4.1)

with x ∈ Rn and u(k) the k-th component of the input u. The input u is only allowed to

take values in the set V = {v1, . . . , vN} ⊂ Rm. A ∈ Rn×n, B =
[
b1, . . . , bm

]
∈ Rn×m,

and Nk ∈ Rn×n are the matrices describing the system. In this chapter, we consider the

case where only a part of the state is measured, and the output is defined as

y = Cx. (4.2)

We assume that:

A-1 The pairs (A(vi), B), for all i ∈ IN with A(vi) = A+
∑m

k=1Nkvi(k) are simultaneously

quadratically stabilizable by a linear state feedback k(x) = Hx. This means that

there exist matrices H and P1 = P T
1 ≻ 0 and a positive scalar αH such that

Acl(vi)
TP1 + P1Acl(vi) ≤ −2αHP1, ∀i ∈ IN , (4.3)

with Acl(vi) = A(vi) +BH .

A-2 The set int{Conv{V}} is nonempty and the null vector is contained inside (0 ∈
int{Conv{V}}).

A-3 The pairs (A(vi), C), for all i ∈ IN with A(vi) = A+
∑m

k=1Nkvi(k) are simultaneously

quadratically detectable. This means that there exist matrices L and P2 = P T
2 and

a positive scalar αo such that

Ao(vi)
TP2 + P2Ao(vi) � −2αoP2, ∀i ∈ IN , (4.4)

with Ao(vi) = A(vi) + LC.

Recall that for any finite set V = {v1, v2, . . . , vN} there exists a finite number nl of

vectors li ∈ R1×m, i ∈ Inl
such that

Conv{V} = {u ∈ Rm : liu ≤ 1, ∀i ∈ Inl
}. (4.5)
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Note also that typical control sets V are often of the form

V = Vert{P(c)}, (4.6)

where the hyperrectangle P(c), with c a strictly positive vector, is given by

P(c) =




u =




u(1)
...

u(m)


 ∈ Rm :

∣∣u(k)
∣∣ ≤ c(k), ∀k ∈ Im




. (4.7)

As in Chapter 2, we can consider a more general set V for which there exists a vector

c such that P(c) ⊆ Conv{V}. In the sequel, we will consider such a vector c and use the

notation (4.7) to prove the results.

In this case we provide a method for the stabilization of system (4.1) by an observer-

based switching controller given by

u(x̂) ∈ argmin
v∈V

Γ(x̂, v). (4.8)

The estimated state x̂ ∈ Rn is computed by the full-order Luenberger state observer [80],

[81] 



˙̂x = A(vi)x̂+Bu+ L(ŷ − y),

ŷ = Cx̂
(4.9)

with A(vi) = A +
∑m

k=1Nkvi(k).

Our objective is to provide conditions which guarantee the existence of a mapping

Γ(x̂, v) (which characterizes the switching surfaces of the control law) and of a matrix L

(the observer gain) such that the closed-loop system

ẋ
˙̂x


 =


A(vi) 0

−LC A(vi) + LC




x
x̂


+


B
B


 u (4.10)

with the control law (4.8) is locally exponentially stable at the origin.

Using the augmented state

ξ =


x̂
e


 =


 0 I

−I I




x
x̂


 , (4.11)
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where e = x̂− x is the estimation error, the interconnection (4.1), (4.9) can be written as

the augmented closed-loop system




ξ̇ =


A(vi) LC

0 A(vi) + LC


 ξ +


B
0


u(x̂),

y =
[
C −C

]
ξ,

(4.12)

which leads to 



ξ̇ = Ã(vi)ξ + B̃ū(ξ) = X̃ (ξ),

y =
[
C −C

]
ξ,

(4.13)

where Ã(vi) =


A(vi) LC

0 A(vi) + LC


, B̃ =


B
0


, and

ū(ξ) = u
([
I 0

]
ξ
)
= u(x̂) ∈ argmin

v∈V
Γ
([
I 0

]
ξ, v
)
. (4.14)

In a similar way as in the full state feedback case we associate a differential inclusion

ξ̇ ∈ F [X̃ ](ξ), (4.15)

to the system (4.13), (4.14) with the set valued map F [X̃ ](ξ) designed as

F [X̃ ](ξ) =
⋂

δ>0

⋂

µ(S)=0

Conv{X̃ (B̆(ξ, δ))\ S},∀ξ ∈ R2n, (4.16)

where B̆(ξ, δ) is the open ball centred on ξ with radius δ, and S is a set of measure (in

the sense of Lebesgue) µ(S) = 0.

In this chapter we study the following problem:

Problem. Considering system (4.1), (4.2) and given a set V, and Assumptions A-

1, A-2 and A-3, design an observer-based switching controller such that the closed-loop

system is asymptotically stable in some domain D.

Since the state variables in real systems are not always fully available to measurements,

here we generalize the approach proposed in Chapter 2 to observer-based controller de-

sign. In Section 4.2, qualitative conditions for the existence of a stabilizing switching law

dependent on the estimated state are provided while using a Luenberger observer. Con-

structive methods based on LMIs allowing the design of linear and nonlinear switching
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surfaces and the estimation of the domain of attraction are provided. Using the properties

of Lur’e type Lyapuvov functions, a numerical approach based on LMIs is also developed.

This method allows the design of nonlinear switching surfaces that ensure the global

asymptotic stability of the closed-loop switched affine system at the origin. In Section

4.3, we particularize the results to the case of LTI systems with an observer-based relay

controller. Among other notable results, we prove that a separation principle holds for

both LTI and switched affine systems.

4.2 Observer-based switching law design

In this section, we first provide conditions for the existence of a switching law dependent

on the estimated state which ensures the local asymptotic stability of the closed-loop

system to the origin. Then, we propose constructive methods based on LMIs allowing

the design of the switching surfaces. Estimations of the domains of attraction (ellip-

soidal and non-ellipsoidal) are provided by using quadratic and non-quadratic Lyapunov

functions. Finally, a numerical approach allowing the global asymptotic stability of the

closed-loopsystem at the origin is developed.

4.2.1 Qualitative existence conditions

This section deals with the local exponential stabilization of system (4.13), (4.14) and

equivalently with the local exponential stabilization of system (4.1), (4.2), (4.9) by the

switching law (4.8). Assumptions A.1, A.2 and A.3 are used to prove that there exist a

switching mapping Γ and an observer gain L such that the system is locally exponentially

stable. The results are given in the following.

Theorem 14: Assume that A.1, A.2, and A.3 hold. Then there exist a mapping Γ(x̂, v) =

x̂TΨv (characterizing the switching hyperplanes) and a matrix L (the observer gain) such

that system (4.13), (4.14) (or equivalently the closed-loop system (4.1), (4.2), (4.8), (4.9))

is locally exponentially stable at the origin.

Proof. Since all the pairs (A(vi), B), i ∈ IN are simultaneously stabilizable by a linear

state feedback, then there exist a static gain H , a scalar αH > 0 and a symmetric positive
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definite matrix P1 such that

Acl(vi)
TP1 + P1Acl(vi) � −2αHP1, ∀i ∈ IN , (4.17)

where Acl(vi) = A(vi) + BH with A(vi) = A +
∑m

k=1Nkvi(k). Likewise, since all the

pairs
(
A(vi), C

)
, i ∈ IN are simultaneously quadratically detectable, then there exist an

observer gain L, a scalar αo > 0 and a symmetric positive definite matrix P2 such that

Ao(vi)
TP2 + P2Ao(vi) � −2αoP2, ∀i ∈ IN , (4.18)

where Ao(vi) = A(vi) + LC with A(vi) = A +
∑m

k=1Nkvi(k).

We want to prove that the system (4.13), (4.14) is locally exponentially stable in some

domain D around the origin. Let us consider the quadratic Lyapunov function

V (ξ) = ξTPξ (4.19)

with the 2n× 2n matrix

P =


P1 0

0 λP2


 (4.20)

with a scaling term λ > 0 to be determined later. We want to show then that taking

Γ(x̂, v) = x̂TΨv in (4.8), such that

Ψ = P1B =
[
I 0

]
PB̃ (4.21)

with B̃ defined in (4.13) and for some positive scalar α we have

sup
y∈F [X̃ ](ξ)

∂V

∂ξ
y ≤ −2αV (ξ), (4.22)

in a domain D ⊂ R2n to be determined.

For each x̂ ∈ Rn we define the set of minimizers in which the control (4.8) takes values

(with Γ(x̂, v) = x̂TΨv). This corresponds to defining minimizers in which the control

(4.14) takes values. We may remark that

x̂TΨv = x̂TP1Bv = ξT


I
0


PB̃v. (4.23)

Therefore, we only need to look for minimizers of the right hand term in (4.23).
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We define for any z ∈ R2n the set of indexes I∗(z) such that

I∗(z) =
{
i ∈ IN : zTPB̃(vj − vi) ≥ 0, ∀j ∈ IN

}
, (4.24)

with B̃ defined in (4.13). To I∗(z) we associate for all z ∈ R2n the set ∆∗(z) of vectors

defined by:

∆∗(z) = {β ∈ ∆N : βi = 0, ∀i ∈ IN \ I∗(z)} . (4.25)

Using (4.24) and (4.25), the set valued map F [X̃ ](ξ) in (4.16) satisfies

F [X̃ ](ξ) ⊆ F∗[X̃ ](ξ) (4.26)

with
F∗[X̃ ](ξ) = Conv

i∈I∗(ξ)
{Ã(vi)ξ + B̃vi}

= {Ã(v(β))ξ + B̃v(β) : β ∈ ∆∗(ξ)},
(4.27)

with v(β) =
∑N

i=1 βivi.

Consider the gain H satisfying (4.17). From (4.26) and (4.27) and using the fact that

∆∗(ξ) is compact, we have

sup
y∈F [X̃ ](ξ)

∂V

∂ξ
y ≤ sup

y∈F∗[X̃ ](ξ)

∂V

∂ξ
y

= sup
β∈∆∗(ξ)

{
∂V

∂ξ

{
Ã(v(β))ξ + B̃v(β)

}}

= max
β∈∆∗(ξ)

{
∂V

∂ξ

{
Ã(v(β))ξ + B̃v(β)

}}
.

(4.28)

Thus, in order to show (4.22), it is sufficient to prove that for some scalar α > 0 we have

max
β∈∆∗(ξ)

{
∂V

∂ξ

{
Ã(v(β))ξ + B̃v(β)

}}
≤ −2αV (ξ), (4.29)

in a domain D to be determined.

Note that, since Assumption A-2 holds, then there exists a neighborhood of the origin

E(P, γ) ⊂ R2n, with γ > 0 such that for all ξ =


x̂
e


 ∈ E(P, γ), we have

Hx̂ = Hξ ∈ Conv{V}, (4.30)

with H =
[
H 0

]
.
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Therefore, for all ξ ∈ E(P, γ) there exist scalars ρj(ξ), j ∈ IN such that
∑N

j=1 ρj(ξ) = 1

and

Hξ =
N∑

j=1

ρj(ξ)vj. (4.31)

From (4.24), for all i ∈ I∗(ξ) we have

ξTPB̃(vj − vi) ≥ 0, ∀j ∈ IN . (4.32)

Then, for any β ∈ ∆∗(ξ), we have

ξTPB̃(vj − v(β)) ≥ 0, ∀j ∈ IN . (4.33)

Then, considering (4.31), and multiplying the last inequalities by ρj(ξ) and summing the

N elements we obtain

ξTPB̃(Hξ − v(β)) ≥ 0. (4.34)

Adding this to the left part of (4.29), it comes

max
β∈∆∗(ξ)

{
∂V

∂ξ

{
Ã(v(β))ξ + B̃v(β)

}}

≤ max
β∈∆∗(ξ)

{
2ξTP{Ã(v(β))ξ + B̃v(β)}

}
+ 2ξTPB̃(Hξ − v(β))

= 2
∂V

∂ξ


Acl(v(β)) LC

0 Ao


 ξ = 2

∂V

∂ξ
(Ãcl(v(β))ξ) = 2ξTPÃcl(v(β))ξ.

(4.35)

Thus, in order to show (4.22), it is sufficient to prove that

2ξTPÃcl(v(β))ξ ≤ −2αV (ξ), ∀ξ ∈ E(P, γ), (4.36)

which holds if

ÃT
cl(v(β))P + PÃcl(v(β)) � −2αP. (4.37)

Note that

ÃT
cl(v(β))P + PÃcl(v(β)) + 2αP =

Acl(v(β))

T + P1Acl(v(β)) + 2αP1 P1LC

(LC)TP1 λ(Ao(v(β))
TP2 + P2Ao(v(β)) + 2αP2)


 .

(4.38)

Applying the Schur complement, the matrix (4.38) is negative if

Ao(v(β))
TP2 + P2Ao(v(β)) + 2αP2 � 0 (4.39)
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and
(Acl(v(β))

TP1 + P1Acl(v(β)) + 2αP1)

− 1

λ
P1LC[2αP2 + Ao(v(β))

TP2 + P2Ao(v(β))]
−1(LC)TP1 � 0.

(4.40)

Since (4.17) and (4.18) are satisfied and β ∈ ∆∗(x), it is obvious that if we take α ≤
min(αH , αo), and λ large enough both inequalities are verified.

In Theorem 14 we have shown that there exists a switching law depending on the

estimated state such that the closed-loop switched affine system is locally exponentially

stable at the origin. In the following we provide a constructive method based on LMIs that

allows to design such a controller and provide an estimation of the domain of attraction.

In addition, using switching Lyapunov functions, LMI conditions allowing the design

of nonlinear switching surfaces when the state is not fully available for measurement is

proposed while using a Luenberger observer.

4.2.2 A constructive method for observer-based nonlinear switch-

ing surfaces design for switched affine systems stabilization

Here we are interested in finding a constructive procedure providing a mapping Γ and

an observer gain L such that the closed-loop system (4.13), (4.14) (or equivalently (4.1),

(4.2), (4.8), (4.9)) is locally exponentially stable at the origin. We would also like to

provide an estimation of the domain of attraction. In what follows, a numerical approach

to deal with the design problem is given. An LMI solution is proposed hereafter.

For H ∈ Rm×2n, let us define the set Cv(H) as follows

Cv(H) = {ξ ∈ R2n : liHξ ≤ 1, ∀i ∈ Inl
}, (4.41)

where li is given in (4.5).
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Theorem 15: Assume that A.1, A.2, and A.3 hold. Consider a tuning parameter α > 0.

1. If there exist positive definite matrices Q1 ∈ Rn×n and P2 ∈ Rn×n, and scalars θ1 > 0

and θ2 > 0 such that

Q1A(vi)
T + A(vi)Q1 − θ1BB

T � −2αQ1, ∀i ∈ IN , (4.42)

A(vi)
TP2 + P2A(vi)− θ2C

TC � −2αP2, ∀i ∈ IN (4.43)

then, system (4.1), (4.2), (4.9) with the switching law

u(x̂) ∈ argmin
v∈V

x̂TΨv, (4.44)

is locally α-stable with Ψ = Q−1
1 B and L = −θ2

2
P−1
2 CT .

2. If in addition we consider λ > 0 such that

Acl(vi)

TP1 + P1Acl(vi) + 2αP1 P1LC

∗ λ(Ao(vi)
TP2 + P2Ao(vi) + 2αP2)


 � 0, ∀i ∈ IN ,

(4.45)

with Acl(vi) = A(vi)− θ1
2
BBTQ−1

1 and Ao(vi) = A(vi) + LC, then an estimation of

the domain of attraction is given by E(P, γ∗) with P =


Q

−1
1 0

0 λP2


,

γ∗ ≤ min
i∈Inl

(liHP−1HT lTi )
−1, (4.46)

and H =
[
H 0

]
, with H = −θ1

2
BTQ−1

1 .

3. If there exist positive definite matrices P1 ∈ Rn×n, Q2 ∈ Rn×n, and positive scalars

θ1 and θ2 such that the LMIs (4.42), (4.43) are feasible for some α > 0, and if

there exist two symmetric positive definite matrices P̃1 ∈ Rn×n and P̃2 ∈ Rn×n, two

diagonal positive definite matrices Ω̃ ∈ Rm×m and M̃ ∈ Rm×m, a matrix Υ̃ ∈ Rm×n

and a strictly positive vector τ̃ ∈ Rm such that



Acl(vi)
T P̃1 + P̃1Acl(vi) P̃1LC P̃1B − Υ̃T −Acl(vi)

THT Ω̃

∗ Ao(vi)
T P̃2 + P̃2Ao(vi) −CTLTHT Ω̃

∗ ∗ −2M̃ − Ω̃HB − (Ω̃HB)T


 ≺ 0,∀i ∈ IN ,

(4.47)
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and 
P̃1 M̃(k,k)H

T
(k) − Υ̃T

(k)

∗ τ̃(k)c
2
(k)


 � 0, ∀k ∈ Im, (4.48)

with L = −θ2
2
P−1
2 CT , Acl(vi) = A(vi)− θ1

2
BBTQ−1

1 , H = −θ1
2
BTQ−1

1 , and Ao(vi) =

A(vi) + LC,

then system (4.1), (4.2), (4.9) with the switching law

u(x̂) ∈ argmin
v∈V

(x̂T P̃1 − φ(Hx̂)T Ω̃H)Bv (4.49)

is locally asymptotically stable.

An estimation of the domain of attraction is given by

LV (η
−1) = {ξ ∈ R2n : V (ξ) ≤ η−1}, (4.50)

with

V (ξ) = ξT P̃ ξ − 2

m∑

k=1

∫ H(k)ξ

0

φ(k)(σ)Ω̃(k,k)dσ, (4.51)

ξ =


x̂
e


, P̃ =


P̃1 0

0 P̃2


, H =

[
H 0

]
, and η ≥ max

k∈Im

{
τ̃(k)

M̃2
(k,k)

}
.

Proof. 1. Consider positive definite matrices Q1, P2, and positive scalars θ1, θ2 such that

(4.42), (4.43) hold. Then, we want to prove that the closed-loop system (4.13), (4.44),

with Ψ = Q−1
1 B and L = −θ2

2
P−1
2 CT , is locally α-stable in some domain D ⊂ R2n around

the origin.

We can remark that the feasibility of (4.42) implies that the inequality

Acl(vi)
TP1 + P1Acl(vi) � −2αP1, ∀i ∈ IN (4.52)

is verified with P1 = Q−1
1 , and Acl(vi) = A(vi)− θ1

2
BBTQ−1

1 (see for instance [17]).

Similarly, the feasibility of LMI (4.43) implies that the inequality

Ao(vi)
TP2 + P2Ao(vi) � −2αP2, ∀i ∈ IN (4.53)

is verified with L = −θ2
2
P−1
2 CT and Ao(vi) = A(vi) + LC. Let us consider the quadratic

Lyapunov function V (ξ) = ξTPξ, with P =


Q

−1
1 0

0 λP2


 and λ > 0.
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Following the same steps as in the proof of Theorem 14 we can show that if we take

λ large enough, the Lyapunov function V ensures the stability of the closed-loop system

(4.1), (4.9), (4.44) in the domain E(P, γ).
2. It is now required to estimate the domain of attraction for system (4.13) with the

switching law (4.44). Thus, we want to determine a scalar γ∗ characterizing the ellipsoid

E(P, γ∗) such that

sup
ς∈F [X̃ ](ξ)

∂V

∂ξ
ς ≤ −2αV (ξ), ∀ξ ∈ E(P, γ∗). (4.54)

For a given decay rate α and if LMIs (4.42) and (4.43) are feasible, then from the

result above, there exist at least one scalar λ satisfying the inequality (4.45).

Considering such a scalar λ, our objective here is to provide an estimation E(P, γ∗) of

the domain of attraction such that

E(P, γ∗) ⊆ Cv(H), (4.55)

with Cv(H) defined in (4.41). Note that, if the set E(P, γ∗) satisfies (4.55), then according

to (4.5), one will have that for all ξ ∈ E(P, γ∗), Hξ ∈ Conv{V}.
For this inclusion to hold it is both necessary and sufficient that none of the hyperplanes

liHξ = 1, i ∈ Inl
crosses the level set E(P, γ∗). Note that for any i ∈ Inl

, the minimum of

V along the hyperplane {ξ ∈ R2n : liHξ = 1} is given as (see [17])

min
liHξ=1

ξTPξ = min
i∈Inl

(liHP−1HT lTi )
−1. (4.56)

We can remark that by taking γ∗ as

γ∗ ≤ min
liHξ=1

ξTPξ = (liHP−1HT lTi )
−1, (4.57)

the inclusion (4.55) is verified and E(P, γ∗) is thus an estimation of the domain of attrac-

tion.

3. The aim here is to show that if there exist positive definite matrices Q1, P2, and

positive scalars θ1 and θ2 satisfying (4.42) and (4.43) and the LMIs (4.47) and (4.48) are

feasible with H = −θ1
2
BTQ−1

1 and L = −θ2
2
P−1
2 CT , then the closed-loop system (4.1),

(4.2), (4.9), (4.49) is locally asymptotically stable in the domain of attraction LV (η
−1).
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Recall that we associate to the closed-loop system (4.13), (4.49) the differential inclu-

sion (4.27), which is locally asymptotically stable in the domain LV (η
−1) if

sup
ς∈F [X̃ ](ξ)

∂V

∂ξ
ς < 0, ∀ξ ∈ LV (η

−1) \ {0}. (4.58)

Thanks to the particular structure of the matrices P̃ =


P̃1 0

0 P̃2


, H =

[
H 0

]
, and

B̃ =


B
0


, we can show that

(x̂T P̃1 − φ(Hx̂)T Ω̃H)Bv = (ξT P̃ − φ(Hξ)T Ω̃H)B̃v. (4.59)

Let us first define for all ζ ∈ R2n the set of minimizers in which the controller (4.49) takes

values:
I∗(ζ) = {i ∈ IN :

(ζT P̃ − φ(Hζ)T Ω̃H)B̃(vj − vi) ≥ 0, ∀j ∈ IN

}
.

(4.60)

To this set of indexes, we associate the set of vectors ∆∗(ζ) defined for all ζ ∈ R2n as

∆∗(ζ) = {β ∈ ∆N : β(i) = 0, ∀i ∈ IN \ I∗(ζ)}. (4.61)

Using (4.60) and (4.61) we obtain that the set valued map F [X̃ ](ξ) satisfies the following

relation

F [X̃ ](ξ) ⊆ F∗[X̃ ](ξ), (4.62)

with
F∗[X̃ ](ξ) = Conv{Ã(vi)ξ + B̃vi : i ∈ I∗(ξ)}

=
{
Ã(v(β))ξ + B̃v(β) : β ∈ ∆∗(ξ)

}
,

(4.63)

where v(β) =
∑N

i=1 β(i)vi. Thus, using the same argument as in the first part of proof we

can show that to prove (4.58) it is sufficient to show that

max
β∈∆∗(ζ)

{
∂V

∂ξ

(
Ã(v(β))ξ + B̃v(β)

)}
< 0, ∀ξ ∈ LV (η

−1) \ {0}. (4.64)

Considering the particular structure of matrices H =
[
H 0

]
, P̃ =


P̃1 0

0 P̃2


, B̃ =


B
0


,
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and Ỹ =
[
Υ̃ 0

]
, we can show that (4.47) is equivalent to


Ãcl(vi)

T P̃ + P̃ Ãcl(vi) P̃ B̃ − ỸT − Ãcl(vi)
THT Ω̃

∗ −2M̃ − Ω̃HB̃ − (Ω̃HB̃)T


 ≺ 0, ∀i ∈ IN . (4.65)

From (4.65) we have for all Ξ ∈ R2n+m \ {0}

ΞT


Ãcl(vi)

T P̃ + P̃ Ãcl(vi) P̃ B̃ − ỸT − Ãcl(vi)
THT Ω̃

∗ −2M̃ − Ω̃HB̃ − (Ω̃HB̃)T


Ξ < 0, ∀i ∈ IN . (4.66)

Considering Ξ =


 ξ

φ(Hξ)


 with ξ ∈ R2n \ {0} and G = M̃−1Ỹ , (4.66) leads to

(2ξT P̃ − 2φ(Hξ)T Ω̃H)((Ã(vi) + B̃H)ξ + B̃φ(Hξ))− 2φ(Hξ)TM̃(φ(Hξ) + Gξ)

< 0, ∀ξ ∈ R2n \ {0}, ∀i ∈ IN .
(4.67)

Let us consider the notation k(ξ) = Hξ + φ(Hξ). According to Lemma 3, for any ξ ∈
R2n, we have k(ξ) ∈ P(c) ⊆ Conv{V}. Therefore, there exist N positive scalars ρj(ξ),
∑N

j=1 ρj(ξ) = 1 such that

k(ξ) = Hξ + φ(Hξ) =
N∑

j=1

ρj(ξ)vj. (4.68)

Using this property in (4.67), we get

(2ξT P̃ − 2φ(Hξ)T Ω̃H)(Ã(vi)ξ + B̃

N∑

j=1

ρj(ξ)vj)− 2φ(Hξ)TM̃(φ(Hξ) + Gξ)

< 0, ∀ξ ∈ R2n \ {0}, ∀i ∈ IN .

(4.69)

From (4.60), for all i ∈ I∗(ξ) we have

(ξT P̃ − φ(Hξ)T Ω̃H)B̃(vj − vi) ≥ 0, ∀j ∈ IN . (4.70)

Therefore, by adding and subtracting the term

2
∑N

j=1 ρj(ξ)(ξ
T P̃ − φ(Hξ)T Ω̃H)B̃(vj − vi) to (4.69), we obtain

(2ξT P̃ − 2φ(Hξ)T Ω̃H)(Ã(vi)ξ + B̃vi)− 2φ(Hξ)TM̃(φ(Hξ) + Gξ)

+ 2

N∑

j=1

ρj(ξ)(ξP̃ − φ(Hξ)T Ω̃H)(vj − vi) < 0, ∀ξ ∈ R2n \ {0}, ∀i ∈ IN .
(4.71)
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Thus, for all β ∈ ∆∗(ξ) we obtain

(2ξT P̃ − 2φ(Hξ)T Ω̃H)(Ã(v(β))ξ + B̃v(β))− 2φ(Hξ)TM̃(φ(Hξ) + Gξ)

+ 2

N∑

j=1

ρj(ξ)(ξP̃ − φ(Hξ)T Ω̃H)(vj − v(β)) < 0, ∀ξ ∈ R2n \ {0},
(4.72)

with

(ξT P̃ − φ(Hξ)T Ω̃H)B̃(vj − v(β)) ≥ 0, ∀j ∈ IN . (4.73)

Applying Lemma 1 with w1 = Hξ, w2 = Gξ and using the definition of P(c) in (4.7),

we have

φ(Hξ)TM̃(φ(Hξ) + Gξ) ≤ 0, ∀ξ ∈ Ã, (4.74)

with

Ã = {ξ ∈ R2n :
∣∣(H(k) − G(k))ξ

∣∣ ≤ c(k), ∀k ∈ Im}. (4.75)

Note that ∂V
∂ξ

= 2ξT P̃ − 2φ(Hξ)T Ω̃H. Therefore, taking this into account, as well as

(4.72) and (4.74), we obtain

max
β∈∆∗(ξ)

{
∂V

∂ξ

(
Ã(v(β))ξ + B̃v(β)

)}
≤ max

β∈∆∗(ξ)

{
∂V

∂ξ

(
Ã(v(β))ξ + B̃v(β)

)}

− 2φ(Hξ)TM̃(φ(Hξ) + Gξ)

+ 2

N∑

j=1

ρj(ξ)(ξP̃ − φ(Hξ)T Ω̃H)(vj − v(β))

< 0, ∀ξ ∈ Ã.

(4.76)

In order to show (4.64) (and thus (4.58)), we will now prove that LV (η
−1) ⊆ Ã.

Considering the same arguments as in Theorem 10 we can show that (4.48) is equiva-

lent to 
 P̃1 HT

(k) − G̃T
(k)

H(k) −G(k) ηc2(k)


 � 0, ∀k ∈ Im. (4.77)

Applying the Schur complement to (4.77), we obtain

P̃1

η−1
− (H(k) − G̃(k))

T (c2(k))
−1(H(k) −G(k)) � 0, ∀k ∈ Im. (4.78)
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Since P̃2 ≻ 0 and η > 0 then (4.78) leads to



P̃1
η−1 − (H(k) − G̃(k))

T (c2(k))
−1(H(k) −G(k)) 0

0 P̃2

η−1


 � 0, ∀k ∈ Im, (4.79)

which is equivalent to



P̃1

η−1 0

0 P̃2

η−1


−


(H(k) − G̃(k))

T

0


 (c2(k))

−1
[
H(k) − G̃(k) 0

]
� 0, (4.80)

for all k ∈ Im.

For all ξ ∈ R2n and G = M̃−1Ỹ =
[
G̃ 0

]
, (4.80) leads to

ξT
P̃

η−1
ξ − ξT (H(k) − G(k))

T (c2(k))
−1(H(k) − G(k))ξ ≥ 0, ∀k ∈ Im. (4.81)

From this we obtain the inclusion

E(P̃ , η−1) ⊆ Ã. (4.82)

In addition, according to Lemma 2, we have

ξT P̃ ξ ≤ V (ξ) ≤ ξT P̄ ξ, (4.83)

where P̄ =


P̃1 +HTΩH 0

0 P̃2


.

This leads to

E(P̄ , η−1) ⊆ LV (η
−1) ⊆ E(P̃ , η−1). (4.84)

Thus, from (4.84) and (4.82), we have

LV (η
−1) ⊆ Ã. (4.85)

From this and using (4.76) we have shown that

sup
ς∈F [X̃ ](ξ)

∂V

∂ξ
ς ≤ max

β∈∆∗(ξ)

{
∂V

∂ξ

(
Ã(v(β))ξ + B̃v(β)

)}

< 0, ∀ξ ∈ LV (η
−1) \ {0},

(4.86)

which ends the proof.
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Remark 13: In Theorem 15, we have provided LMI conditions for the stabilization of

system (4.1) when the state variables are not fully available to measurements. Instead of

the existence of a Hurwitz convex combination of the evolution matrices of the individual

subsystem of the augmented switched affine system, the proposed approach here requires

that the pairs (A(vi), B) are all simultaneously quadratically stabilizable and the pairs

(A(vi), C) are simultaneously quadratically detectable. The approach generalizes the

method proposed in the Proposition 2 provided in Chapter 1 to the case of observer-

based state-dependent switching laws design. The method proposed in Chapter 2 using

non-quadratic Lyapunov functions to enlarge the domain of attraction is equally extended

to the design of nonlinear switching surfaces dependent on the estimated state.

Remark 14: We can remark that (4.42) and (4.43) do not share cross LMI variables, thus

they can be solved separately. Therefore, the control law matrix Ψ and the observer gain

L designed independently ensures the stabilization of the closed-loop system at the origin.

This shows that the separation principle holds in the case of switched affine systems.

Remark 15: The feasibility of the set of conditions (4.42)-(4.43) allows the design of

the matrix Ψ for the switching law and the observer gain L separately, and equations

(4.45) and (4.46) provide an estimation E(P, γ∗) of the domain of attraction such that

any solution of the closed-loop system (4.13), (4.44) starting in the domain of attraction

E(P, γ∗) converges to the origin exponentially with a decay rate α.

The numerical implementation can be done in two steps. First, LMIs (4.42)-(4.43) are

solved to find the matrices P1, θ1, P2, θ2, L, and Ψ. In the second step, λ is computed

from (4.45) and then the estimation of the domain of attraction can be computed using

the equation (4.46). An optimization of the domain of attraction can be done by using

recursive LMI algorithms.

In addition the feasibility of LMIs (4.47), (4.48) allows the design of nonlinear switching

laws dependent on the estimated states ensuring the local asymptotic stability of the origin

in a larger non-ellipsoidal domain of attraction.

Remark 16: The feasibility of the LMIs (4.42)-(4.43) is guaranteed for a sufficiently

small α since Assumptions A-4 and A-5 hold. Thus, for a sufficiently small decay rate α,

since system (4.1) is stabilizable, there exist a gain H such that A(vi) +BH are Hurwitz
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and a symmetric positive definite matrix P = Q−1 satisfying (4.42). Likewise, since

system (4.1) is detectable then there exist a gain L such that A(vi)+LC are Hurwitz and

a symmetric positive definite matrix P2 verifying (4.43) for a sufficiently small decay rate

α.

Example 16: Consider system (4.1), (4.2) with

A =


1 3

4 −5


 , B =


 15 1

−1 −5


 , N1 =


 1 −5

0.5 2


 , N2 =


 −1 5

−0.5 −2


 , C =

[
1 0

]
,

and

u ∈ V =






1
1


 ,


 1

−1


 ,


−1

1


 ,


−1

−1





 .

One can easily check that the open-loop system is unstable. In order to illustrate the result

in Theorem 15, both observer-based linear and nonlinear switching laws are designed.

Linear switching law

Choosing a decay rate α = 3.5, LMIs (4.42) and (4.43) and inequalities (4.45) and

(4.46) are feasible with

Q1 =


 33.19 −13.33

−13.33 19.73


 , P2 =


3.38 2.19

2.19 5.79


 , θ2 = 6.43× 102, θ1 = 4.1,

L = 102 ×
[
−1.25, 0.47

]T
, λ = 1.05× 104, γ∗ = 2.3.

Simulations of the behaviour of the augmented closed-loop system (4.13), (4.44) are per-

formed for the initial conditions x(0) =
[
−2 1

]T
, and x̂(0) =

[
0 0

]T
and Figures 4.1-4.2

report the obtained results.

We can see from Figures 4.1-4.2 that the trajectory originating in the domain of

attraction of the closed-loop system converges to the origin and remains therein. The

linear switching surfaces dependent on the real state and the phase plot of the closed-

loop system are represented in Figure 4.1. Figure 4.2 represents the phase plot of the

observer and the linear switching surfaces dependent on the estimated state. We can

observe that the trajectory starting at the origin hit the switching surfaces several times

and evolves until reaching the origin. Comparing Figure 4.2 to Figure 4.1 we can remark

that the linear switching surfaces dependent on the real state do not coincide with the
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Figure 4.1: x(1) and x(2) in the phase plot-Example 16
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Figure 4.2: x̂(1) and x̂(2) in the phase plot-Example 16

linear switching surfaces dependent on the estimated state. This is due to the fact that x̂

converges to x exponentially.

Nonlinear switching law

In order to design the nonlinear switching law (4.49) stabilizing the system (4.13), we

solve the LMIs (4.47) and (4.48) for the same matrices H and L already obtained in the
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Figure 4.3: x(1) and x(2) in the phase plot-Example 16

first part of the example and c(1) = c(2) = 1. We obtain

P̃1 =


12.4 4.43

4.43 7.5


 , P̃2 = 108 ×


2.7 2.9

2.9 7.5


 , M̃ = 103 ×


0.19 0

0 8.9


 ,

Ω̃ = 102 ×


0.024 0

0 7.2


 , Υ̃ = 103 ×


0.35 0.19

1.7 5.7


 , τ̃ = 104 ×


2.87
0.12


 , and η−1 = 1.2.

Simulations are performed for the same initial conditions as in the linear switching law

case. The results are reported in Figures 4.3-4.4.

From Figures 4.3-4.4 we can observe that the trajectories originating in the domain of

attraction of the closed-loop system converges to the origin and remains therein. The non-

linear switching surfaces dependent on the real state and the phase plot of the closed-loop

system are depicted in Figure 4.3. Figure 4.4 represents the phase plot of the observer

and the nonlinear switching surfaces dependent on the estimated state. We can observe

from Figure 4.4 that the trajectory starting at the origin hit the nonlinear switching sur-

faces dependent on the estimated state several times and evolves until reaching the origin.

Comparing Figure 4.4 to Figure 4.3 we can remark that the nonlinear switching surfaces

dependent on the real state do not coincide with nonlinear switching surfaces dependent

on the estimated state. This is due to the fact that x̂ converges to x asymptotically (x̂

converges to x when t converges to infinity).
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Figure 4.4: x̂(1) and x̂(2) in the phase plot-Example 16

The approach proposed in this section ensures only local stability of the closed-loop

system at the origin. In the next section, using the properties of the Lur’e type Lyapunov

functions, a constructive method of nonlinear switching surfaces dependent on the esti-

mated state and ensuring the global asymptotic stability of the closed-loop system at the

origin are provided.

4.2.3 Global stabilization

Here we provide an LMI approach for the design of nonlinear switching surfaces that ensure

the global asymptotic stability of the closed-loop system at the origin. The switching law

depends on the estimated state computed using a Luenberger observer.

Theorem 16: Assume that A-1, A-2 and A-3 hold. If LMIs (4.42)-(4.43) are feasible and

there exist a symmetric positive definite matrix P̃ ∈ R2n×2n, a diagonal positive definite

matrix Ω̃ ∈ Rm×m, and symmetric matrices M̃+ and M̃− with non-negative entries such

that LMI



Acl(vi)
T P̃1 + P̃1Acl(vi) P̃1LC P̃1B − Υ̃T −Acl(vi)

THT Ω̃

∗ Ao(vi)
T P̃2 + P̃2Ao(vi) −CTLTHT Ω̃

∗ ∗ −2M̃ − Ω̃HB − (Ω̃HB)T


 ≺ 0,∀i ∈ IN

(4.87)
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and

c(k)M̃
+
(k,k) ≥

m∑

k 6=j,j=1

c(j)

(
M̃+

(k,j) + M̃−
(j,k)

)
, ∀k ∈ Im. (4.88)

are satisfied with Υ̃ = M̃H , M̃ = M̃+ − M̃− and M̃−
(k,k) = 0, ∀k ∈ Im, then system (4.1),

(4.2), (4.9) with the switching law (4.49) is globally asymptotically stable at the origin.

Proof. The proof of this theorem follows the same steps as the one of Theorem 15. For

Gξ = Hξ, thanks to the feasibility of LMI (4.88) the inequality (4.74) becomes

φ(Hξ)TM̃(φ(Hξ) +Hξ) ≤ 0, ∀ξ ∈ R2n. (4.89)

Therefore, if (4.87) is feasible, using (4.89) and the same arguments as in the proof of

Theorem 15, inequality (4.76) becomes:

max
β∈∆∗(ξ)

{
∂V

∂ξ

(
Ã(v(β))ξ + B̃v(β)

)}
≤ max

β∈∆∗(ξ)

{
∂V

∂ξ

(
Ã(v(β))ξ + B̃v(β)

)}

− 2φ(Hξ)TM̃(φ(Hξ) +Hξ)

+ 2
N∑

j=1

ρj(ξ)(ξP̃ − φ(Hξ)T Ω̃H)(vj − v(β))

< 0, ∀ξ ∈ R2n.

(4.90)

From this last inequality, we have shown that

sup
ς∈F [X̃ ](ξ)

∂V

∂ξ
ς ≤ max

β∈∆∗(ξ)

{
∂V

∂ξ

(
Ã(v(β))ξ + B̃v(β)

)}

< 0, ∀ξ ∈ R2n,

(4.91)

which ends the proof.

Since LTI systems with relay controllers are a particular class of switched affine sys-

tems, in the following we particularize the results of this section to the case of LTI systems

stabilization with an observer-based relay feedback control.

4.3 Observer-based relay control for LTI systems

Consider the LTI system given by

ẋ = Ax+Bu (4.92)
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In this section, we consider the case where the state variables are not fully available

to measurements. The output is defined as

y = Cx. (4.93)

For this particular case Assumptions A-1 and A-3 are reduced to

A-4 The pair (A,B) is stabilizable. This means that there exists a matrix H such that

Acl = A+BH is Hurwitz.

A-5 The pair (A,C) is detectable. This means that there exists a matrix L such that

Ao = A+ LC is Hurwitz.

As for the case of switched affine systems, in this case we provide a method for the

stabilization of system (4.92), (4.93) by an observer-based relay feedback controller given

by

u(x̂) ∈ argmin
v∈V

Γ(x̂, v). (4.94)

Similar to the switched affine systems case, the estimated state x̂ ∈ Rn is computed by

the full-order Luenberger state observer [80], [81]




˙̂x = Ax̂+Bu+ L(ŷ − y),

ŷ = Cx̂.
(4.95)

Our goal consists first in providing conditions that guarantee the existence of a mapping

Γ(x̂, v) (which characterizes the switching surfaces of the control law) and a matrix L (the

observer gain) as well as a numerical approach allowing the design of an observer-based

relay controller such that the closed-loop system





ξ̇ = Ãξ + B̃ū(ξ) = X̃ (ξ),

y =
[
C −C

]
ξ,

(4.96)

where ξ =


x̂
e


 with e = x̂− x, Ã =


A LC

0 A+ LC


, B̃ =


B
0


, and

ū(ξ) = u
([
I 0

]
ξ
)
= u(x̂) ∈ argmin

v∈V
Γ
([
I 0

]
ξ, v
)
, (4.97)

is locally asymptotically stable at the origin.
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4.3.1 Local stabilization

We particularize the result provided in Theorem 14 to the case of observer-based relay

controller design for LTI systems stabilization. Qualitative conditions for the existence of

a mapping Γ (characterizing the switching surface) and of an observer gain L such that

system (4.96), (4.97) (or equivalently (4.92), (4.93), (4.94), (4.95)) is locally exponentially

stable at the origin are provided. The result is reported in the following.

Corollary 5: Assume that A-2, A-4, and A-5 hold. Then there exist a mapping Γ(x̂, v) =

x̂TΨv (characterizing the switching hyperplanes) and a matrix L (the observer gain) such

that the origin of system (4.96), (4.97) (or equivalently of the closed-loop system (4.92),

(4.93), (4.94), (4.95)) is locally exponentially stable.

Here we want to provide a constructive procedure to derive a mapping Γ and an ob-

server gain L such that the origin of the closed-loop system (4.96), (4.97) (or equivalently

(4.92),(4.93), (4.94), (4.95)) is locally exponentially stable. We would also like to provide

an estimation of the domain of attraction. The application of the result in Theorem 15

to the particular case of relay feedback controller reveals an interesting property of relays

systems. Indeed, in this section we will show that the separation principle holds in the

case of observer-based relay controller design for LTI systems stabilization. To the best

of our knowledge, no separation principal exists in the literature for the case of relay

systems.

Corollary 6: Assume that A-2, A-4, and A-5 hold. Consider a tuning parameter α > 0.

1. If there exist positive definite matrices Q1 ∈ Rn×n and P2 ∈ Rn×n, and scalars θ1 > 0

and θ2 > 0 such that

Q1A
T + AQ1 − θ1BB

T � −2αQ1, (4.98)

ATP2 + P2A− θ2C
TC � −2αP2, (4.99)

then, the origin of system (4.92), (4.93), (4.95) with the switching law

u(x̂) ∈ argmin
v∈V

x̂TΨv, (4.100)

is locally α-stable with Ψ = Q−1
1 B and L = −θ2

2
P−1
2 CT .
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2. If in addition we consider λ > 0 such that

A

T
clP1 + P1Acl + 2αP1 P1LC

∗ λ(AT
o P2 + P2Ao + 2αP2)


 � 0, (4.101)

with Acl = A− θ1
2
BBTQ−1

1 and Ao = A+ LC, then an estimation of the domain of

attraction is given by E(P, γ∗) with P =


Q

−1
1 0

0 λP2


,

γ∗ ≤ min
i∈Inl

(liHP−1HT lTi )
−1, (4.102)

and H =
[
H 0

]
with H = −θ1

2
BTQ−1

1 .

3. If there exist positive definite matrices P1 ∈ Rn×n, Q2 ∈ Rn×n, and positive scalars

θ1 and θ2 such that the LMIs (4.98), (4.99) are feasible for some α > 0, and if

there exist two symmetric positive definite matrices P̃1 ∈ Rn×n and P̃2 ∈ Rn×n, two

diagonal positive definite matrices Ω̃ ∈ Rm×m and M̃ ∈ Rm×m, a matrix Υ̃ ∈ Rm×n

and a strictly positive vector τ̃ ∈ Rm such that



AT
clP̃1 + P̃1Acl P̃1LC P̃1B − Υ̃T −AT

clH
T Ω̃

∗ AT
o P̃2 + P̃2Ao −CTLTHT Ω̃

∗ ∗ −2M̃ − Ω̃HB − (Ω̃HB)T


 ≺ 0 (4.103)

and 
P̃1 M̃(i,i)H

T
(i) − Υ̃T

(i)

∗ τ̃(i)c
2
(i)


 � 0, ∀i ∈ Im, (4.104)

with L = −θ2
2
P−1
2 CT , Acl = A − θ1

2
BBTQ−1

1 , H = −θ1
2
BTQ−1

1 , and Ao = A + LC,

then the origin of system (4.92), (4.93), (4.95) with the switching law

u(x̂) ∈ argmin
v∈V

(x̂T P̃1 − φ(Hx̂)T Ω̃H)Bv (4.105)

is locally asymptotically stable.

An estimation of the domain of attraction is given by

LV (η
−1) = {ξ ∈ R2n : V (ξ) ≤ η−1}, (4.106)

with

V (ξ) = ξT P̃ ξ − 2

m∑

j=1

∫ H(j)ξ

0

φ(j)(σ)Ω̃(j,j)dσ, (4.107)
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ξ =


x̂
e


, P̃ =


P̃1 0

0 P̃2


, and η ≥ max

i∈Im

{
τ̃(i)

M̃2
(i,i)

}
.

Remark 17: We can observe that (4.98), (4.99) do not share cross variables, thus they

can be solved separately. Therefore, the control law matrix Ψ and the observer gain L can

be designed independently, which shows that the separation principle holds in the case of

LTI systems with relay controllers.

Example 17: Numerical example: single input system

Consider the linear system (4.92) with

u ∈ V = {−v, v} = {−5, 5}, (4.108)

and matrices

A =


−1.6 1.7

1.5 2


 , B =


0
1


 , and C =

[
1, 0
]
. (4.109)

The eigenvalues of A are −2.2, and 2.6 thus the open-loop linear system is unstable.

Considering a decay rate α = 5.5 an observer-based relay feedback controller is designed

to stabilize the system to the origin.

After the implementation of the set of LMIs (4.98)-(4.99), we find that they are feasible

for

θ = 486.8634, Q1 =


 1.4334 −4.7050

−4.7050 28.6001


 ,

µ = 348.4742, P2 =


 37.3918 −5.4278

−5.4278 1.0098


 .

(4.110)

Then, we compute the observer gain

L =
[
−21.2 −113.98

]T
, (4.111)

and the matrix characterizing the switching hyperplanes

Ψ =
[
0.25 0.076

]T
. (4.112)

The computer simulations are performed for the initial conditions x(0) =
[
1, 0.5

]T
,

and x̂(0) =
[
0 0

]T
(ξT =

[
0 0 −1 −0.5

]T
) and the results are reported in Figures

4.5-4.9.
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Figure 4.5: Real state x1 and its estimate x̂1-Example 17
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Figure 4.6: Real state x2 and its estimate x̂2-Example 17

As we can see from Figures 4.5 and 4.6, the states are exactly estimated and they

converge to the origin and remain therein. From Figure 4.7, we can remark that the

observation errors converge to zero exponentially, and then the estimated states converge

to the real states. In Figure 4.9 the observer’s phase portrait is presented together with

the switching hyperplane x̂TΨv = 0. We can observe that the trajectory initialized at

zero evolves until reaching the switching hyperplane and it slides over it. The hyperplane
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Figure 4.7: Observation errors e = x̂− x-Example 17
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Figure 4.8: x1 and x2 in the phase plot-Example 17

xTΨv = 0 and the phase plot of the closed-loopsystem (4.96), (4.97) are presented in

Figure 4.8. Comparing Figure 4.8 and Figure 4.9, we can see that the hyperplane xTΨv =

0 does not coincide exactly with the hyperplane x̂TΨv = 0. This is due to the fact that x̂

converges to x when t tends to infinity. In simulations, the trajectory of the closed-loop

system reaches first the hyperplane x̂TΨv = 0 which tends to xTΨv = 0 as t goes to

infinity and slides over it until reaching the origin.
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Figure 4.9: x̂1 and x̂2 in the phase plot-Example 17

Corollary 6 only provides sufficient conditions for local stabilization of LTI system

by an observer-based relay control. In the next section, we apply the results provided

in Theorem 16 to the case of relay control. LMI conditions which allows the design of

nonlinear switching surfaces dependent on the estimated state that ensures the global

asymptotic stability of the closed-loop system at the origin are provided.

4.3.2 Global stabilization

Here we particularize the result of Theorem 16 to the case of observer-based relay con-

troller design for LTI systems stabilization. LMI conditions allowing the design of non-

linear switching surfaces that ensure the global asymptotic stability of the closed-loop

system at the origin are provided. The estimations of the state variables used in the

design of the switching surfaces are computed using a Luenberger observer.

Corollary 7: Assume that A-2, A-4 and A-5 hold. Consider system (4.92). If LMIs

(4.98)-(4.99) are feasible and there exist a symmetric positive definite matrix P̃ ∈ R2n×2n,

a diagonal positive definite matrix Ω̃ ∈ Rm×m, and symmetric matrices M̃+ and M̃− with
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Figure 4.10: Buck converter

non-negative entries such that LMI



AT
clP̃1 + P̃1Acl P̃1LC P̃1B − Υ̃T − AT

clH
T Ω̃

∗ AT
o P̃2 + P̃2Ao −CTLTHT Ω̃

∗ ∗ −2M̃ − Ω̃HB − (Ω̃HB)T


 ≺ 0 (4.113)

and

c(k)M̃
+
(k,k) ≥

m∑

k 6=j,j=1

c(j)

(
M̃+

(k,j) + M̃−
(j,k)

)
, ∀k ∈ Im. (4.114)

are satisfied with Υ̃ = M̃H , M̃ = M̃+ − M̃− and M̃−
(k,k) = 0, ∀k ∈ Im, then system

(4.92), (4.93), (4.95) with the switching law (4.105) is globally asymptotically stable at

the origin.

The feasibility of (4.113)-(4.114) ensures the decay of the Lur’e Lyapunov function in

each point of the state space. The LMI (4.114) is obtained as in the case of full state

feedback provided in Chapter 2, by using the property of the nonlinearity φ given in

Lemma 4.

Example 18: Numerical example: Buck converter

Let us consider the buck converter [9] shown in Figure 4.10. The state-space model

for the state vector x̄ =
[
iL vc

]T
(iL the inductor current and vc the capacitor voltage)
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is described by :

˙̄x = Āx̄+ B̄ū (4.115)

with

Ā =


 0 1

L

1
Cc

−1
RCc


 , B̄ =




1
L

0


 , and ū ∈ V̄ = {0, E}.

Here we consider the numerical values L = 2mH, Cc = 470µF, E = 15V, and R = 10Ω.

One can note that the eigenvalues of the open loop system are purely imaginary (±103 ×
1.03i). Here we want to stabilize the system to the equilibrium point x̄∗ = −Ā−1B̄β∗

which correspond to iL = 0.16µA and vc = 7.5V . Using the transformation from [55] and

the change of coordinates x = x̄− x̄∗, system (4.115) becomes

ẋ = Ax+Bu,

y = Cx,
(4.116)

with A = Ā, u ∈= {−1
2
, 1
2
}, C =

[
0 1

]
, and B =




E
L

0


 . We can remark that system

(4.116) satisfies Assumptions A-1, A-2 and A-3. Therefore, we can design an observer-

based relay feedback controller.

First, using Corollary 6, we can show that the system (4.116) with a relay controller

is locally asymptotically stable. Considering a decay rate α = 2.55, LMIs (4.98)-(4.99)

are feasible with

Q1 =


 1.33 −7.79

−7.79 55.81


 , P2 =


 0.005 −0.002

−0.002 0.0015


 , θ1 = 20.1, θ2 = 4.6× 106,

Ψ = 103 ×


2.05
0.3


 , L = 103 ×


−3.378

−7


 , and H =

[
−0.6 0.98

]
.

Considering the obtained matricesH and L and c = 1
2
, we can design a nonlinear switching

law depending in the estimated states (4.105). We obtain :

P̃1 =


1.47 0.21

0.21 0.037


 , P̃2 = 108 ×


 5.41 −2.07

−2.07 5.27


 ,

Ω̃ = 0.35, Υ̃ = 102 ×
[
−0.72 1.075

]
, M̃ = 1.11× 102, τ̃ = 1.24,
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Figure 4.11: Evolution of the state variables and their estimates-Example 18

with an estimation of the domain of attraction (4.106) given by η−1 = 9.94×103. Simula-

tions are performed for the initial conditions x̂ =
[
0 0

]T
and x =

[
1 15

]T
. The results

are reported in Figure 4.11, which shows that the estimated state converges to the real

state and they both converge to the equilibrium point.

Second, one can also verify that the LMIs (4.113)-(4.114) from Corollary 7 are feasible

for the same values of L and H . This means that the asymptotic stability is global.

4.4 Conclusion

This chapter has considered the problem of observer-based switching law design to ensure

local asymptotic stability of the origin of switched affine systems. A Luenberger observer

is used to design both linear and nonlinear switching surfaces dependent on the estimated

state. LMI conditions are proposed in order to allow a numerical implementation of the

results. Considering a particular property of the switching Lyapunov functions, LMI con-

ditions ensuring the global asymptotic stability of the closed-loop switched affine system

at the origin have been also provided. The proposed approaches have been then partic-

ularized to the case of stabilization of LTI systems by an observer-based relay feedback

controller. For both LTI systems with a relay controller and switched affine systems it
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has been equally shown that the separation principle holds.
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This thesis was devoted to the study of the stabilization problem of switched affine systems

with state-dependent switching laws. A particular interest was given to the stabilization

of switched affine systems with unstable component subsystems which do not share a

Hurwitz convex combination of their evolution matrices. The Filippov formalism has

been used to define the solutions of the closed-loop system, and it allows the analysis of

the system’s behaviour on the switching surfaces. To solve the stabilization problem, a

Lyapunov-based approach which enables to derive numerical approaches based on LMIs

has been proposed.

First, the state feedback stabilization problem of switched affine systems has been

considered. In this context, the existing methods, using quadratic Lyapunov functions,

only allow the local stabilization of the closed-loop switched affine system in a guaranteed

ellipsoidal domain of attraction. Here, using a general framework for the class of nonlinear

input-affine systems, a full state-dependent switching controller has been designed in order

to ensure both the local and global asymptotic stability of the closed-loop system. Thanks

to switching (Lur’e type) Lyapunov functions, a numerical approach based on LMIs has

been developed. This approach allows to derive a nonlinear stabilizing switching law.

In what concerns the local stabilization, the method allows to compute a larger non-

ellipsoidal estimation of the domain of attraction, compared to the ellipsoidal estimation

obtained using quadratic Lyapunov functions. The results have been particularized to the

stabilization of LTI systems with a relay feedback control.

Second, the design problem of robust state-dependent switching laws for switched affine

systems stabilization has been investigated. The robustness property has been studied

with respect to bounded exogenous disturbances that affect the state measurements which
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are used for the design of the switching laws. A constructive method based on LMIs

which allows to derive the robust switching laws and to maximize the size of the domain

of attraction or minimize the size of the chattering zone have been proposed. The results

have been equally particularized to the case of LTI systems for which a design method of

robust relay controllers has been provided.

Finally, the stabilization issue of the class of switched affine systems by an observer-

based switching laws has been considered. An observer-based switching controller has

been designed to guarantee the local asymptotic stability of the closed-loop system. Us-

ing both quadratic and non-quadratic Lyapunov functions, linear and nonlinear switching

surfaces have been designed. The derived switching surfaces depend on the estimated

state which is computed by a Luenberger observer. Numerical approaches based on LMIs

have been proposed in order to allow the design of the stabilizing switching laws and

the estimation of the domains of attraction. Both conditions for local and global asymp-

totic stabilization of switched affine systems have been provided. The obtained results

have been then applied to the particular class of LTI systems with observer-based relay

controllers. Along with the notable proposed results we have shown that the separation

principle holds for both LTI systems with relay controllers and switched affine systems.

The results proposed in this thesis can be extended in several directions, which makes

the perspectives that emerge from this work multiple.

First, in order to take into account the potential implementations imperfections such

as jitters, uncertainties, etc, and to reduce chattering, one can extend the proposed ap-

proaches to the case of min-switching stategy with dwell time condition. In this direction

one can follow the approach in [58] or the ones in [1] and [27]. The approach proposed

in [42] based on the construction of finite abstraction [108] can be also used for the same

purposes.

Second, even though numerical results have been provided, there is still place for

improvement. The conditions provided in this work could be relaxed by taking into

account in a more accurate manner the underlying bilinear model, using nonlinear control

methods. Furthermore, piecewise quadratic Lyapunov functions [65] could be useful for

the same goal. In this case, a particular attention must be given to the differentiability
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of the Lyapunov function on the switching surfaces and its decay after each switching

instant [8], [36].

As another research direction, in the case of disturbed switching laws, one can also

consider an extended observer to estimate the perturbation and derive a robust stabilizing

approach. In this context, other types of observers can be used instead of the Luenberger

observer.

Finally, in this thesis, we have considered the problem of stabilizing state-dependent

switching laws design for the class of switched affine systems. The extension of the pro-

posed methods to the more general class of switched nonlinear systems with autonomous

and controlled switching would be of a great interest. For example, the study of such sys-

tems could be useful in Networked Control Systems, for instance in the internet congestion

problem. This constitutes a challenging issue.
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Introduction générale

Les systèmes dynamiques hybrides ont la particularité de présenter des dynamiques con-

tinues et discrètes simultanément [4], [43], [44], [46], [52]. Les systèmes à commutation

constituent une classe populaire des systèmes hybrides [54], [77], [76], [78], [102], [103],

[107], [109]. Ils sont composés d’une famille de sous-systèmes continus et d’une loi qui

orchestre la commutation entre eux. La synthèse de la loi de commutation est un prob-

lème très important dans la communauté des systèmes à commutation. Bien que le cas

où les différents sous-systèmes partagent le même point d’équilibre soit très largement

étudié et qu’une grande variété de résultats a été déjà publiée, très peu de résultats ex-

istent dans le cas où les sous-systèmes n’ont pas le même point d’équilibre [1], [16], [26],

[51], [87], [95]. Dans ce travail nous sommes intéressés par la synthèse de lois de com-

mutation pour les systèmes affines à commutation. L’étude de cette classe de systèmes

est motivée par leur présence dans différents domaines d’applications : l’électronique de

puissance (convertisseurs DC/DC, AC/DC,. . . ), l’électromécanique, etc. Toutefois, la

commande des systèmes affines à commutation exhibe plusieurs difficultés : commuta-

tions rapides, présence de points d’équilibres non-standards (les points d’équilibres des

différents sous-systèmes ne sont pas forcément un point d’équilibre du système à com-

mutation), dynamiques de glissement, phénomène de Zénon, etc. Ces problèmes ont été

étudiés en mathématiques dans le cas plus général des systèmes dynamiques discontinus

[5], [6], [8], [21], [84]. Leur étude est très délicate puisqu’elle requièrte l’utilisation d’un

concept de solution plus général que le concept classique des solutions pour permettre la

prise en considération des dynamiques du système sur les surfaces de commutations.
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Objectifs

L’objectif principal de cette thèse est de proposer de nouvelles approches pour la synthèse

de lois de commutation dépendantes de l’état garantissant la stabilité à l’origine des

systèmes affines à commutation en boucle fermée. Tout au long de cette thèse nous

allons développer des critères de stabilisation pour les systèmes affines à commutation

dont les sous-systèmes ne sont pas stables, ne partagent pas le même point d’équilibre,

et ne possèdent pas de combinaison convexe stable de leurs matrices d’évolutions. Le cas

particulier des systèmes linéaires invariants dans le temps avec commande à relais sera

également traité. Tout d’abord, en utilisant le formalisme de Filippov, les dynamiques de

glissements ainsi que les points d’équilibres non standard seront considérés. Des fonctions

de Lyapunov quadratique et non-quadratique seront utilisées pour proposer des méthodes

constructives de surfaces de commutation linéaires et non linéaires assurant la stabilité

locale des systèmes affines à commutation en boucle fermée. Le problème de l’estimation

de domaines d’attractions ellipsoïdal et non-ellipsoïdal sera également abordé. Ensuite,

nous nous intéresserons à l’étude des conditions sous lesquelles la stabilité globale des

systèmes affines à commutation peut être assurée par une loi de commutation dépendante

de l’état. De plus, la robustesse vis-à-vis des perturbations externes sera analysée. Enfin,

le problème de synthèse de lois de commutation basées-observateurs est considéré. Une

étude concernant le principe de séparation dans les cas des systèmes affines à commutation

et des systèmes linéaires invariants dans le temps avec commande à relais sera aussi menée.

Structure de la thèse

Le document est organisé comme suit:

Chapitre 1

Le premier chapitre présente un aperçu des résultats récents sur la stabilisation des sys-

tèmes affines à commutation par une loi de commutations dépendante de l’état. Tout

d’abord, le concept de solutions, la notion de points d’équilibre ainsi que les concepts de

stabilité nécessaires à la compréhension de ce manuscrit sont présentés en considérant le
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formalisme de Filippov. Ensuite, les problèmes qui peuvent être rencontrés dans l’étude

des systèmes affines à commutation sont montrés à l’aide d’exemples illustratifs. Enfin, les

résultats récents concernant la synthèse de lois de commutation stabilisantes dépendantes

de l’état sont exposés. En utilisant le formalisme de Filippov, certains de ces résultats

sont redémontrés. Les avantages ainsi que les inconvénients de chacune des différentes

approches sont détaillés afin de mettre en évidence les problèmes qui restent ouverts.

Chapitre 2

Dans le deuxième chapitre, nous considérons le problème de stabilisation des systèmes

affines à commutation définis par

ẋ = Ax+

m∑

k=1

(Nkx+ bk)u(k), (4.117)

avec x ∈ Rn est le vecteur d’état et u(k) le k-ième élément du vecteur d’entrée u. L’entrée

u est restreinte à prendre des valeurs dans l’ensemble fini de vecteurs V = {v1, . . . , vN} ⊂
Rm. A ∈ Rn×n, B =

[
b1, . . . , bm

]
∈ Rn×m, et Nk ∈ Rn×n sont les matrices décrivant la

dynamique du système.

Grâce à l’utilisation de fonctions de Lyapunov non quadratiques (de type Lur’e) don-

nées sous la forme

V (x) = xTPx− 2

m∑

k=1

∫ K(k)x

0

φ(k)(s)Ω(k,k)ds, (4.118)

avec φ(.) ∈ Rm une fonction discontinue (voir Figure 4.12), une nouvelle approche de

synthèse de lois de commutation dépendantes de l’état qui stabilisent le système affine

à commutation en boucle fermée est proposée. Cette méthode permet la construction

de surfaces de commutation non linéaires et l’élargissement du domaine d’attraction par

rapport au cas de la stabilisation quadratique. Des critères du type LMI sont proposés

afin de construire la loi de commutation et de fournir une estimation non ellipsoïdalle du

domaine d’attraction. De plus, en utilisant les propriétés des fonctions de Lyapunov du

type Lur’e, des conditions LMIs sont développées pour permettre la synthèse de lois de

commutation dépendantes de l’état qui assurent la stabilisation globale du système affine

à commutation en boucle fermée. Finalement, les résultats sont particularisés au cas des

systèmes linéaires invariants dans le temps avec commande à relais definis par
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φ(i)(y(i))

y(i)ymax

−ymax

Figure 4.12: Nonlinéarité sector

ẋ = Ax+Bu,

u ∈ V = {v1, . . . , vN} ⊂ Rm.
(4.119)

Une nouvelle méthode de synthèse de commande à relais est proposée. De plus, un

résultat général de stabilisation des systèmes non linéaires affines en l’entrée avec une

commande à relais definis par

ẋ = f(t, x) + g(t, x)u(t, x),

u ∈ V = {v1, . . . , vN} ⊂ Rm
(4.120)

est développé.

Chapitre 3

Le troisième chapitre est consacré à la synthèse de lois de commutation dépendantes de

l’état perturbé. La méthode proposée considère des perturbations externes additives aux

variables d’état mesurés. Des conditions qualitatives de stabilité du système affine en

boucle fermée sont développées. De plus, une méthode numérique basée sur des LMIs est

proposée et permet la synthèse de lois de commutation robuste ainsi que l’élargissement

du domaine d’attraction ou la diminution de la zone de recouvrement. Le résultat est
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finalement particularisé au cas des systèmes linéaires invariants dans le temps avec une

commande à relais robuste.

Chapitre 4

Ce dernier chapitre est dédié à l’étude du problème de la synthèse de lois de commutation

dépendantes de l’état estimé pour assurer la stabilité asymptotique locale des systèmes

affines à commutation en boucle fermée. Un observateur du type Luenberger est util-

isé pour concevoir des lois de commutation linéaires et non linéaires dépendantes des

variables d’état estimées. Ensuite, des conditions LMIs sont proposées pour permettre

l’implémentation numérique des résultats. De plus, en se basant sur les propriétés des

fonctions de Lyapunov commutées, des conditions LMIs sont proposées pour permettre la

construction de lois de commutation dépendantes de l’état estimé et qui assure la stabilité

asymptotique globale du système affine à commutation en boucle fermée. Les résultats

obtenus sont par la suite particularisés au cas des systèmes linéaires temps invariant avec

une commande à relais basée-observateur. Enfin, le principe de séparation est prouvé pour

le cas des systèmes affines à commutation ainsi que pour le cas particulier des systèmes

linéaires invariants dans le temps avec commande à relais.

Conclusions et perspectives

Cette thèse a été dédiée à l’étude du problème de stabilisation des systèmes affinés à

commutation avec des lois de commutation dépendantes de l’état. Un intérêt particulier

a été accordé à la stabilisation des systèmes affines ayant des sous-systèmes instables qui ne

partagent pas de combinaison convexe stable de leurs matrices d’évolution. Le formalisme

de Filippov a été utilisé pour définir les solutions du système en boucle fermée, et permet

l’analyse du comportement du système sur les surfaces de commutation. Pour résoudre

le problème de stabilisation, une approche basée sur la théorie de stabilité de Lyapunov

qui permet de dériver des approches numériques basées sur des LMIs a été proposé.

Tout d’abord, le problème de stabilisation des systèmes affines à commutation a été

pris en considération dans le cas où toutes les variables d’état sont accessibles à la mesure.
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Dans ce contexte, les méthodes existantes, basées sur l’utilisation des fonctions de Lya-

punov quadratiques, ne permettent que la stabilisation locale du système affine à commu-

tation en boucle fermée dans un domaine d’attraction ellipsoïdal. Dans ce travail, nous

proposons un résultat général pour la stabilisation d’une classe de systèmes non-linéaire

affines en l’entrée. De plus, une loi de commutation dépendante de l’état a été conçue

pour assurer la stabilité asymptotique locale ou la stabilité globale des systèmes affines à

commutation en boucle fermée. Grâce aux fonctions de Lyapunov (de type Lur’e), une

approche numérique basée sur des LMIs a été développé. Cette approche permet de con-

cevoir une loi de commutation non linéaire stabilisante. En ce qui concerne la stabilisation

locale, la méthode permet de calculer une plus grande estimation du domaine d’attraction,

par rapport à l’estimation ellipsoïdale obtenu à l’aide des fonctions de Lyapunov quadra-

tiques. Les résultats ont été particularisés au cas de la stabilisation des systèmes LTI avec

une commande à relais.

Ensuite, le problème de la synthèse de lois de commutation robustes dépendantes de

l’état qui assurent la stabilité des systèmes affines à commutations a été étudié. La pro-

priété de robustesse a été étudiée par rapport aux perturbations externes qui affectent

les mesures de l’état utilisés dans la conception des lois de commutation. Une méthode

constructive basée sur des conditions LMI a été proposée. Cette approche permet de syn-

thétiser les lois de commutation robustes et de maximiser la taille du domaine d’attraction

ou de minimiser la taille de la zone de chattering. Les résultats ont été également particu-

larisés aux cas des systèmes LTI pour lesquels une méthode de conception de contrôleurs

à relais robustes a été fournie.

Enfin, la question de la stabilisation de la classe des systèmes affines à commuta-

tions par une loi de commutation basée-observateur a été prise en considération. Dans

ce contexte, une loi de commutation basée-observateur a été conçue pour garantir la sta-

bilité asymptotique locale du système en boucle fermée. En utilisant des fonctions de

Lyapunov quadratiques et non quadratiques, des surfaces de commutations linéaires et

non linéaires ont été synthétisées. Les lois de commutation développées dépendent des

variables d’état estimées qui sont calculées par un observateur de type Luenberger. Des

approches numériques basées sur des LMIs ont été proposées pour permettre la conception
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des lois de commutations stabilisantes et l’estimation des domaines d’attraction. Des con-

ditions de stabilisation asymptotique locale et globale des systèmes affines à commutation

ont été fournies. Les résultats obtenus ont ensuite été appliqués à la classe particulière

des systèmes LTI avec une commande à relais basée observateur. Enfin, nous avons mon-

tré que le principe de séparation est vérifié dans les deux classes de systèmes LTI avec

contrôleurs à relais et systèmes affines à commutation.

Les résultats proposés dans cette thèse peuvent être étendus dans plusieurs directions,

ce qui rend les perspectives qui émergent de ce travail multiples.

Premièrement, afin de prendre en compte les imperfections d’implémentations poten-

tielles telles que les incertitudes, la perte de paquets de communication etc., et pour

réduire les commutations à très hautes fréquences, on peut étendre les approches pro-

posées au cas de commutation avec un temps de séjour minimum. Dans ce contexte on

peut suivre l’approche proposée dans [58] ou celles dans [1] et [27]. L’approche proposée

dans [42], basée sur la construction d’abstraction finie [108], peut également être utilisée

pour le même objectif.

Deuxièmement, même si des résultats numériques ont été fournis, il existe encore des

points à améliorer. Les conditions proposées dans ce travail pourraient être assouplies en

prenant en compte de manière plus précise le modèle bilinéaire sous-jacent et en utilisant

des méthodes issues de la commande des systèmes non linéaires. En outre, les fonctions

de Lyapunov quadratiques par morceaux [65] pourraient être utiles pour le même objectif.

Dans ce cas, une attention particulière doit être accordée à la différentiabilité de la fonction

Lyapunov sur les surfaces de commutation et sa décroissance après chaque instant de

commutation [8], [36].

Une autre direction de recherche intéressante, dans le cas de lois de commutation per-

turbées, serait de considérer un observateur étendu pour estimer la perturbation et dériver

une approche de stabilisation robuste. Dans ce contexte, d’autres types d’observateurs

peuvent être utilisés à la place de l’observateur de type Luenberger.

Enfin, dans cette thèse, nous avons étudié le problème de la conception des lois de

commutation dépendantes de l’état permettant la stabilisation de la classe des systèmes

affines à commutation. L’extension des méthodes proposées à la classe la plus générale de
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systèmes non linéaires à commutation autonomes serait d’un grand intérêt. Par exemple,

l’étude de tels systèmes pourrait être utile dans les systèmes de contrôle en réseau, tel

que le problème de congestion sur Internet.
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