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Abstract

Silicon has been the semiconductor material of choice in microelectronics industry since the
commercialization of Metal Oxide Semiconductor Field Effect Transistors (MOSFETs),
because it is a cheap, abundant material, with a native oxide of good quality and relatively
good properties for both electron and hole transport. However, with the reduction in size
of transistors, standard Si-based Complementary Metal Oxide Semiconductor (CMOS)
architectures face growing challenges and new architectures and materials start to appear
in the CMOS roadmap. Most recent nodes for Fully-Depleted Si-On-Insulator (FDSOI) or
FinFET technology introduced SiGe material in the channel, to allow stress engineering
and enhance hole transport in p-type MOS devices. III-V alloys such as InGaAs, are also
considered as potential candidates for n-type MOS devices.

Facing this variety of materials and compositions, together with new device archi-
tectures and new physical phenomena appearing at the nanoscale (such as source-drain
tunneling and quasi-ballistic transport), numerical models used in industry have to be
adapted and refined in order to predict and assist the development of the technology. In
this context, the qualitative comparison of the different MOSFET design architectures is
not straightforward and there might be no unique universal solution.

This PhD work aims at contributing to the development of numerical tools for ad-
vanced device simulation including alternative materials. It is a collaboration between
the industry (STMicroelectronics–Crolles) and research institutes (CEA–Grenoble and
IEMN–Lille). The modeling of advanced low-power MOSFET devices is investigated with
predictive, but efficient tools, that can be compatible with an industrial Technology Com-
puted Aided Design (TCAD) framework. In the first part of this document, a review of
numerical tools based on different approaches is given, as well as the challenges for the
simulation of MOSFET devices made with InGaAs or SiGe channels. In the second part,
the results of this thesis work are presented. The electronic properties of bulk materials
and nanostructures are investigated in the first Chapter with tools ranging from atomistic
tight-binding and empirical pseudo-potential to effective mass model. The electrostatic
properties of III-V Ultra-Thin Body and bulk capacitance are then investigated in the
second Chapter, including a description of the traps response. The transport properties
(low-field mobility and saturation velocity) of thin films and nanowires are investigated
in the third Chapter. Finally, the transport in linear and saturation regime of a tem-
plate FDSOI device is investigated in the fourth Chapter, based on two codes developed
at CEA/IEMN and STM: TB_SIM and UTOX respectively. The first one includes a full
quantum transport solver, based on the Non-Equilibrium Green Function (NEGF) for-
malism, while the second one includes a semi-classical Quantum-corrected Drift Diffusion
(QDD) solver, based on the resolution of closed- or open-boundary Schrödinger equation,
including a Kubo-Greenwood solver for the mobility.

This work makes use of a broad variety of approaches, models and techniques.
Physical-based tools are developed, allowing to improve in the predictive power of TCAD
models for devices with short-channel length and alternative channel materials.

Keywords: MOSFET, FDSOI, numerical models, quantum transport, InGaAs, SiGe.
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Résumé en français

Le silicium (Si) a été le matériau semiconducteur de choix dans l’industrie mi-
croélectronique depuis son commencement et l’invention du transistor MOS, car c’est un
matériau bon marché, abondant, qui possède une bonne interface avec son oxyde natif et
de relativement bonnes propriétés de transport d’électron et de trou. Cependant, alors
que la miniaturisation des composants se poursuit, les architectures CMOS (de l’acronyme
anglais: “Complementary Metal-Oxide-Semiconductor”) conventionnelles à base de Si font
face à des défis de plus en plus grands et de nouvelles architectures, ainsi que de nouveaux
matériaux, commencent à apparâıtre dans la feuille de route CMOS. Les nœuds les plus
récents pour les technologies FDSOI (pour “Fully-Depleted Si-On-Insulator”) ou FinFET
(“Fin Field-Effect-Transistor”) introduisent du SiGe dans le canal, afin d’améliorer le
transport des trous dans les dispositifs MOS de type p. Des alliages III-V, tels que l’InAs
ou le GaAs, sont également considérés comme des candidats potentiels pour les dispositifs
MOS de type n.

Face à cette diversité de matériaux et de compositions, ainsi que d’architectures de
dispositifs et de phénomènes physiques qui apparaissent à l’échelle nanoscopique (tels
que l’effet tunnel entre la source et le drain et le transport quasi-balistique), les modèles
numériques utilisés en industrie doivent être adaptés et raffinés, afin de pouvoir prédire
les performances et aider le développement de ces technologies. Dans ce contexte, la
comparaison qualitative de différentes architectures n’est pas évidente et il peut ne pas y
avoir de solution universelle unique.

Ce travail de thèse a pour but de contribuer au développement d’outils numériques
pour la simulation de dispositifs avancés à base de matériaux alternatifs au Si. C’est un
travail de collaboration entre l’industrie (STMicroelectronics à Crolles) et des instituts de
recherche (le CEA à Grenoble et l’IEMN à Lille). Le but de ce travail est l’investigation
et la modélisation de dispositifs MOSFET avancés pour des applications de basse puis-
sance, grâce à des outils prédictifs, mais efficaces et peu coûteux numériquement, qui
peuvent être compatibles avec un environnement de TCAD (“Technological Computer-
Assisted Design”) industriel. Dans la première partie de ce document, une revue des
outils numériques est donnée, mettant le doigt sur les défis inhérents à la simulation de
dispositifs MOSFET nanoscopiques à base de canaux InGaAs ou SiGe. Dans la deuxième
partie de ce document, les résultats de ce travail de thèse sont présentés. Les propriétés
électroniques des matériaux massifs et des nanostructures sont étudiées dans le premier
Chapitre, avec des outils allant de la méthode atomistique des liaisons fortes et des pseudo-
potentiels empiriques, au modèle de masse effective. Les propriétés électrostatiques des
capacités III-V massives et des films ultra-minces sont étudiées dans le deuxième Chapitre,
comprenant une description de la réponse des pièges d’interfaces. Les propriétés de trans-
port (mobilité effective à faible champ et vitesse de saturation) dans les films minces et
nanofils sont étudiées dans le troisième Chapitre. Finalement, le transport en régime
linéaire et saturé de dispositifs-modèles pour la technologie FDSOI est étudié dans le qua-
trième Chapitre, à l’aide de deux codes développés au CEA/IEMN et à STM: TB_Sim et
U2OXPP respectivement. Le premier code inclut un modèle de transport entièrement quan-
tique, basé sur les fonctions de Green hors équilibre (NEGF, pour l’acronyme de l’anglais:
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“Non-Equilibrium Green’s Function”). Le second code inclut un modèle semi-classique
de dérive diffusion quantique (QDD, pour l’acronyme de l’anglais: “Quantum-corrected
Drift-Diffusion”), basé sur la résolution de l’équation de Schrödinger avec conditions aux
limites ouvertes ou fermées, ainsi qu’un modèle “Kubo-Greenwood” pour les calculs de
mobilité.

Ce travail fait usage d’une large variété d’approches et de modèles différents. Des
outils basés sur une approche physique sont développés, permettant d’améliorer la ca-
pacité prédictive des modèles TCAD conventionnels, pour la modélisation des dispositifs
nanoscopiques à faible longueur de grille et à base de matériaux SiGe ou InGaAs.

Mots-clés: MOSFET, FDSOI, modèles numériques, transport quantique, InGaAs,
SiGe.
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les amis d’autres équipes: Matteo Causo, Benjamin Cabanes, Arthur Arnaud, Jihane
Boughaleb, Loic Gaben, Alexia Valery, Segolene Gourat, Loic et Carole Martel, Benoit
Legoix, Tuan, Krishna, Evan, Charly, . . .
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André Fonteles et Lya Sudario, Nicole Silva, Sayo et Mopelola Loto, Alva et Elsa Bruun,
HongCam Hoang, Laura Barboza, Germercy Paredes et Julien Armando, ZhiHua Fang,
Yu Fu, JiaYin Guan, Maya et Antonio Gasperini, Victoria Tovpeko, Howard Diehl, Abror
Karimov, Johannes Stroebel, Emma Reavley, Ruben Lopez, le small group (dont Simona
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书山有路勤为径，
学海无涯苦作舟。1

韩愈
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no matter as such! [. . .]”
Max Planck

1Partial translation: there is no royal road for learning [379], diligence is the path to the mountain of
knowledge [378].
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Context of the thesis

As the miniaturization of conventional low-power Complementary Metal Oxide Semicon-
ductor (CMOS) devices has recently been slowing down, numerous alternatives have been
introduced in order to continue to gain in performances. These alternatives include Fully-
Depleted Si-On-Insulator (FDSOI) and FinFET architectures, high-κ gate oxide and SiGe
source and drain regions.

However, regardless of these innovations, the physical size of the transistor will soon
face a limit, as seen in the last International Technology Roadmap for Semiconductors
(ITRS) report in 2015, that predicted the end of the scaling in 2021, with a gate length
of 10 nm [60, 140]. Moreover, the unit cost of the transistor has already plateaued since
the 28 nm node and with the introduction of FinFET architecture in the roadmap [262].

Fortunately for research, a number of challenges/unknowns remain and these innova-
tions bring new physical phenomena that require advanced fundamental studies. One main
challenge is the heat evacuation and, in a more general picture, the power consumption.
The reduction of the power consumption is particularly interesting for new applications
in area such as Internet of Thing, but also for the sake of power efficiency and lower
ecological impact. The main target for the reduction of the power consumption is the
reduction of the supply voltage Vdd. Therefore, potential candidates, including Tunnel
Field Effect Transistors (TFET) architecture and Ge and III-V channels materials, are
intensively studied for the future technological nodes.

One way to reduce the Vdd is to reduce the subthreshold swing (SS), theoretically lim-
ited by thermionic effects to a minimum value of 60 mV/dec in conventional architectures.
TFET architecture, based on quantum tunneling effect, can potentially reach lower SS
values, but faces numerous challenges and is not ready for mass production. Another way
to decrease the Vdd is to increase the ON-current, through the use of boosters and high-
mobility materials. In this view, InGaAs and SiGe materials are potential candidates to
replace Si as channel materials, due to their higher electron and hole mobility, respectively.

At the beginning of this PhD, SiGe materials were considered as potential candidates
for channel materials for p-type MOSFETs, in order to increase the ON-current through
stress engineering (in addition to source/drain stressors), and also to adjust the threshold
voltage. At the time of writing this document, while 14 nm FinFET remains with Si
channel, 22 nm FDSOI devices with SiGe channels are being introduced in the market by
GlobalFoundries [377] and SiGe channels are considered as viable solution for FinFET at
the 10 nm node [122].
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III-V MOSFETs

For n-type MOSFETs, III-V materials (particularly InGaAs alloys) were also considered as
potential candidates for low-power logic in future nodes, and were expected for a long time
to enter the market [380, 376]. Working InAs transistors can be found in the literature
from as early as in 1966 [40] and GaAs integrated circuits have been commercialized in
the 1980’s [131, 77]. More recently, InGaAs MOSFETs with good performances have been
reported in 2008 [394], followed briefly by the demonstration of III-V nanoscale devices
close to the state-of-the-art by Intel in 2009 [293], 2010 [295] and 2011 [294].

At the beginning of this PhD, a broad variety of architectures and solutions for III-V
MOSFETs were presented at the IEDM conference in 2013, going from planar devices [185,
5] to Trigate [139, 169, 170] and 3D nanowires arrays [355, 405]. At the time of writing this
document, InGaAs MOSFETs are still considered as potential candidates and numerous
papers continue to be published in this topic. However, as stated by del Alamo in Ref. [66],
“progress in recent times has been brisk, but much work remains to be done before III-
V CMOS can become a reality”. Indeed, while the progress of the process technologies
resolved some issues, some major problems remain, such as: i) their interfaces with oxide,
ii) the high contact resistance, iii) the co-integration of III-V nMOSFETs on 300 mm
CMOS production line, iv) their cost, v) the high variability and vi) contamination issues.

Aside from these process issues, intrinsic limitations can also occur in nanoscale devices
and it is thus not clear whether ideal InGaAs MOSFETs can outperform Si MOSFETs
in the architectures of the 14, 10 or 7 nm nodes. On the one hand, InGaAs MOSFETs
should operate close to the ballistic limit, where their high injection velocity would be a
good advantage. On the other hand, their low density-of-states and degraded electrostatic
integrity (due to their high dielectric constant) would require multi-gate architectures.
The increased tunneling probability due to their low effective mass would also limit the
minimum gate length.

In light of these uncertainties and the broad range of solutions and architectures, sim-
ulation studies are necessary to help define the roadmap and to predict the performances
of III-V MOSFETs in future nodes. In the last few years, several numerical studies aimed
at comparing InGaAs with strained-Si and Ge technologies for the 10 and 7 nm nodes,
using a broad variety of different approaches, such as quantum transport with [199] or
without scattering [271, 167], Monte Carlo approaches [191, 87], quantum-corrected drift-
diffusion [150, 317] and compact modeling [18, 134].

These numerous studies show the difficulty to model nanoscale transistors in a pre-
dictive manner, considering different channel materials and device architectures. In the
following section, we briefly introduce the different simulation tools available and numer-
ical challenges to simulate nanoscale devices.

Simulation tools

In a broad overview, devices simulation tools can be divided on the basis of two factors: the
accuracy of their description of the electronic structure, and the models used to describe
the transport and scattering interactions.
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Figure 1. Schematic of the two types of descriptions needed in a device solver
and examples of models. When going from up to down, both the accuracy and the
computation cost tend to increase.

On the first aspect, the band structure description may vary from accurate and time-
consuming ab initio codes to approximate and efficient effective-mass or classical solvers,
as sketched in Fig. 1. The accuracy of the semi-empirical approaches depends on the set
of fitting parameters used, that need to be extracted from ab initio simulations or from
experimental data. These parameters are usually provided by reference papers in the
literature for most common semiconductors, as detailed in Sec. 1.1.7 of Chapter 1.

On the second aspect, the transport description may go from full-quantum solvers
based on the Non-Equilibrium Green Function (NEGF) formalism, to classical Drift-
Diffusion (DD) solvers based on the moments of the Boltzmann transport equation (BTE).

Although many groups are working on numerical models and it would be vain to provide
a complete and exhaustive list of existing codes, some groups are particularly active in
the microelectronics domain and their codes can be considered as references. Commercial
tools used in Technology Computer Aided Design (TCAD) framework are usually based
on “fast” methods such as Drift-Diffusion. These tools include: Sentaurus Device suite
by Synopsys [213] and Minimos-NT from GlobalTCAD solutions [112] (recently acquired
by Sylvaco Group [323]).

More accurate codes are available in academic groups, usually requiring heavier com-
putational resources (super computers in many cases). These state-of-the-art solvers in-
clude quantum solvers based on the NEGF formalism and Multi-Subband Monte Carlo
(MSMC) solvers. For the NEGF codes, one can name: NEMO5 [243] and NanoMOS [241]
from G.Klimeck’s and M.Lundstrom’s group at Purdue University, OMEN from G.Klimeck’s
group at Purdue and M.Luisier’s group at ETHZ of Zürich [261], the code of M.Pala at
IMEP-LaHC in Grenoble [61] and TB_Sim from Y.M.Niquet and F.Triozon at CEA-LETI
and C.Delerue at IEMN-Lille [381]. For the MSMC codes, one can name the code of
D.Esseni, P.Palestri and L.Selmi at the University of Udine [365] and the code of F.Gamiz’
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group at the University of Granada [364]. Moreover, particle or ensemble Monte Carlo
codes are also used, such as MONACO from A.Bournel and P.Dollfus at IEF-Paris [230],
GARAND from Gold Standard Simulations (GSS) and A.Asenov’s group at the University
of Glasgow [104] and Archimedes GNU from J.M.Sellier at Purdue [12]. Finally, “bulk”
Monte Carlo codes, used to derive transport properties of bulk material, include: Damocles
developed by M.Fischetti and S.E.Laux at IBM/Stanford [63] and Sparta from F.Bufler
at Synopsys/ETHZ [333].

These advanced solvers are very often needed to model nanoscale MOSFET transistors
in a predictive manner, as conventional TCAD solvers used in industry are based on too
simplified models and face several issues [280]. However, their high computational cost
makes advanced solvers difficult to use in an industrial framework, without access to a
super-computer. Therefore, compromises need to be investigated to improve the physical
models and accuracy of TCAD solvers, while keeping their computational cost low, in
order to remain compatible with an industrial framework.

Among physical phenomena emerging in nanoscale transistors that need to be ac-
counted for in simulation tools, one can quote:

◦ Quantum confinement effects, along the MOS structure (leading to dark-space, sub-
bands creation and increase of the band gap);

◦ Quantum tunneling through the gate oxide, inducing gate leakage;

◦ Quantum tunneling along the transport direction (source-drain tunneling and band-
to-band-tunneling), hindering the OFF-current;

◦ Quasi-ballistic current, as a percentage of carriers flow across the device without any
scattering.

Moreover, to simulate channels made of alternative materials (InGaAs and SiGe),
additional effects need to be accounted for, such as:

◦ The multivalley character of the conduction band structure of III-As and Ge mate-
rials, as well as the non-parabolic dispersion of the lowest valley at the Γ point;

◦ The low density-of-states of the conduction band and the high traps densities at the
interfaces, influencing the electrical response (creation of inversion charge) as well
as the transport (additional scattering);

◦ The new scattering mechanisms, intrinsic to these materials, such as alloy disorder
and polar-optical-phonons.

Since standard models in TCAD tools usually rely on a classical density-of-states ex-
pression based on a single isotropic effective-mass (drift-diffusion model), several “empiri-
cal” corrections must be included to account for the effects listed above (in particular the
satellite valleys population and non-parabolicity of InGaAs materials). To avoid empirical
models and to improve the predictive power of TCAD tools, physical-based models can
be included instead [112], closing the gap between academic advanced solvers and con-
ventional TCAD solvers. The predictive tools that will be discussed in this work include
the resolution of the Schrödinger equation, coupled with physical models to derive the
transport parameters, such as the low-field effective mobility.
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Tools used in this work

In this work, two existing codes were used: UTOX, developed at STMicroelectronics by
D.Rideau and TB_Sim developed at CEA by Y.M.Niquet and F.Triozon and at IEMN by
C.Delerue.

UTOX is a code developed at STMicroelectronics in two different versions. Its Matlab
version includes the resolution of the Schrödinger equation in bulk materials and thin films
in the KP, TB and EPM approaches, together with valence force field models for phonons.
This version is used to model the materials properties in the bulk or in nanostructures
(such as the optical response and density-of-states). Another version, written in C/C++,
includes 1D (UTOXPP) and 2D (U2OXPP) Poisson-Schrödinger solvers, both linked to a
Graphic User Interface coded with the Qt-designer package. This version is used to model
the characteristics of planar devices (e.g., electrostatics, effective mobility and electrical
current). The U2OXPP package includes a Quantum-corrected Drift-Diffusion solver,
that can be used to model the current flowing in a MOSFET device. A schematic of a 2D
simulation is shown in Fig. 2.

Figure 2. Schematic of self-consistent loops in the U2OXPP solver.

TB_Sim is a code developed at CEA and IEMN in Fortran 90, including different
modules that can be used as tool boxes to build advanced codes. These modules include
sparse matrix format, efficient numerical algorithms for the resolution of linear systems
and eigenvalues equations, 1D, 2D and 3D Poisson and Schrödinger solvers within the KP
and TB approaches, energy relaxation within valence force field models, as well as tools for
the calculation of optical properties and resolution of the Boltzmann transport equation.
It also includes a geometrical NEGF solver that can be used to model the current in 3D
devices with an accurate description. Its cutting-edge parallel performances allow heavy
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simulations to run on super computers with good efficiency.
These two codes are often complementary and the cross-comparison of the results with

both codes allows benchmarking and validation of the numerical implementations, as well
as physical approximations.

During this PhD, new models have been implemented in these two codes. These
models include for UTOXPP: non-parabolic EMA, 8-band and extension of the full-band
KP models, polar-optical phonon scattering, resolution of 2D Schrödinger equation with
open and close boundary conditions and inclusion of phonon in a mode-space approach
(see Sec. 5.2 and the dedicated Chapters for more details about the models). For TB_Sim,
they include: non-parabolic EMA, polar-optical scattering in KP, atomistic alloy disorder
scattering in TB, generalized VFF model for phonons and resolution of BTE at high-field.

Objectives

The objective of this PhD is twofold: on the one hand, to investigate the physical prop-
erties of alternative materials and to compare different approaches for the band structure
calculation; on the other hand, to participate in the development of an industrial sim-
ulation framework for advanced FDSOI architectures, and to propose solutions for the
improvement of the prediction power of the conventional TCAD tools.

In this view, the strategy of the PhD was to build new codes and methodologies
to account for the effects mentioned above in a “light” approach, compatible with an
industrial TCAD framework. A variety of different approaches and models for the band
structure is used and compared, giving an overview of numerical models. The manuscript
is organized as follows.

In the first Chapter (1), the band structures of InxGa1−xAs (hereafter InGaAs) and
Si1−xGex (hereafter SiGe) materials are first investigated, by means of commonly used
empirical approaches, including EPM, TB, full-band KP and NP-EMA. The relevant pa-
rameters such as satellite valley position, effective masses and non-parabolic dispersion
are extracted and discussed. The band structures and the confinement effects in InGaAs
and SiGe thin films and nanowires are also discussed.

In the second Chapter (2), the capacitance of InGaAs bulk and UTBB MOSCAP
devices is simulated with NP-EMA and TB models and the results with the different
solvers are compared, for ideal devices without traps. The effects of non-parabolicity
and satellite valleys are discussed in particular. In the second part of the Chapter, the
knowledge of the traps distribution close to the interface with oxide is discussed, as well
as the different models that are able to treat them.

In the third Chapter (3), the effective mobilities of InGaAs and SiGe bulk and thin
films are investigated with KP models and the linearized Boltzmann transport equation.
The effective mobility and high-field drift velocity of SiGe nanowires are also investigated
with TB models.

Finally, in the fourth and last Chapter (4), two Quantum Drift-Diffusion (QDD) ap-
proaches are presented, and used to model the characteristics of a template Si FDSOI
device. The results are also compared with full-quantum solver (NEGF).
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Chapter 1

Band structure

The knowledge of the electronic band structure is the first brick which numerical models
are built on. As opposed to Si, the conduction band of Ge and many III-V materials
presents local minima (so-called valleys) at different symmetry points in the Brillouin zone
that can potentially contribute to the electronic transport, as depicted in Figure 1.1. The
accurate knowledge of the position of the satellite valleys and their effective mass is thus
relevant to transport, as well as their dependence on stress and confinement. Moreover,
the band structure of III-V materials close to the conduction band minimum at the Γ point
is generally non-parabolic, which makes the simple parabolic effective mass approach fail
at moderate inversion.

For these reasons, a first part of this work is devoted to the study of bulk band structure
and the extraction of relevant parameters through different physical models, such as the
Empirical Pseudo-potential Method (EPM), the Tight-Binding (TB) method and the full-
band k · p (KP) models. Although these models rely on empirical parameters fitted to
match the bulk experimental and/or first-principle band structure and effective masses,
they make use of different physical description and can be used in nanostructures to
describe the variation of the band structure with confinement, stress or alloy composition.

In this Chapter, we study the band structure of InGaAs and SiGe materials based on
these empirical models. We first present the models and the associated physical approxi-
mations. For a more complete description of these models, further information is found in
reference books about solid-state physics such as [13, 398, 83, 151] as well as more specific
references in the following sections. In-house existing codes are used to compute the band
structure with EPM, TB and KP models, with parameters taken from the literature and
eventually adapted. In particular, parameters for full-band KP models are extracted for
InAs and GaAs. Quantities such as effective mass, band gaps and density-of-states are de-
duced from these studies and compared with recent papers based on ab initio techniques.
The treatment of disordered alloys and the description of stress are finally discussed.
In the second part, we apply these models to confined nanostructures, such as thin films
and nanowires and study the influence of confinement on the band structure and elec-
tronic properties. The Effective-Mass Approximation (EMA) and 8-band KP models are
discussed and compared to atomistic TB. In particular, the different models to include
non-parabolic corrections in EMA (NP-EMA) are studied. These models are used in the
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1 – Band structure

other Chapters to compute the carrier mobility and transport in devices.
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Figure 1.1. Band structures of materials studied in this work: Si, Ge, GaAs and InAs,
obtained with NL-EPM model in UTOX with parameters from Ref. [51] (see text in
Sec. 1.1.7) reproducing experimental gaps and masses. Conduction bands are shown in
green, while valence bands are in red.
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1.1 – Band structure in bulk materials

1.1 Band structure in bulk materials

Let us first introduce the concept of “band structure” in a bulk material. In perfect
crystals, atoms are ordered periodically without defects and the wavefunction has the
form of Bloch waves [13, 398]:

ψnk(r) =
1√
Ω
unk(r)eikr (1.1)

where unk(r) = unk(r + R) is a periodic function rapidly oscillating with the period
of the crystal (R is a Bravais lattice vector, r is a real space vector, n is a quantum
number indexing the eigenstates and k is the wavevector of the state). In reciprocal
space, the periodicity of the crystal is depicted by a primitive cell that can be repeated in
all directions, namely the First Brillouin Zone (BZ).
In the case of Diamond and Zinc-Blende structures (the most stable crystalline structure
of Si and bulk III-As respectively), the crystal is composed of two face-center cubic lattices
imbricated together. The Wigner-Seitz cell (which is the smallest pattern from which the
infinite crystal can be reconstructed) depicted in Fig. 1.2(left) is composed of two atoms.
The bulk BZ in this case is shown in Fig. 1.2(right), together with high symmetry points
of the Oh point group (see, e.g., Ref. [13]).
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Figure 1.2. Left: Cubic cell of Silicon (Diamond structure). Atoms forming the
Wigner-Seitz cell are highlighted in red, while Bravais vectors are noted a1, a2 and
a3. a0 denotes the lattice constant. Right: First Brillouin Zone of Diamond and
Zinc-Blende crystalographic structures.

The energy dispersion of the system plotted on the BZ is called hereafter “band struc-
ture” and describes the available energy levels for each wavevectors k (in other words,
the eigenvalues of the crystal Hamiltonian). It can be computed from the resolution of
the Schrödinger equation, following some approximations that will be described in this
Chapter.
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1 – Band structure

1.1.1 Resolution of the stationary Schrödinger equation

All properties of solids are in principle described by the many-body Schrödinger equation:

{He +HL +HeL}ψ = Eψ (1.2)

where ψ is the many-body wavefunction and the Hamiltonian operators account for elec-
tron He, ion HL and electron-ion HeL contributions. This equation is unsolvable without
further approximations.
First, as lattice ions have a mass of several orders of magnitude higher than electrons
(∼ 10−27 versus 10−30 kg), we can consider the electrons moving very fast compared to
ions. This is the so-called Born-Oppenheimer (or “adiabatic”) approximation. In this
approximation, Equation (1.2) is separated into two equations:

(Te + Vee + VeL)φ = Eeφ (1.3)

(TL + VL + Ee)χ = Eχ (1.4)

where ψ ≡ φχ, Te and TL are the kinetic energy of electrons and lattice ions, respectively;
Vee, VeL and VL are the potential energy streaming from electron-electron, electron-ion
interaction and ionic potential, respectively. The first equation describes the electronic
part of the problem, which needs to be solved to obtain the band structure. We will dis-
cuss different approaches to treat electron-ion interactions in more details in Chapters 2
and 3, for the calculation of the lattice relaxation effects during capture and emission of
carriers on point defects (so-called multiphonon models) and electron-phonon scattering
mechanisms in transport.
Second, while many-body Hamiltonian can be used to compute the electron-electron in-
teractions [211, 219, 68], the problem is very soon intractable even for a few electrons. For
this reason, electrons are usually considered as independent, leading to a single particle
problem. The interactions of a single electron with the others is then treated in a mean-
field approximation, through a potential term Vs. The single-particle Hamiltonian thus
becomes:

H =
p̂2

2m0
+ Vs(r) (1.5)

where the first term is the kinetic energy of free electrons with mass m0 and momentum p
and Vs(r) is the screened potential energy of the crystal (accounting for interactions with
lattice ions, core and valence electrons).
However, even after these important approximations, the problem of solving electronic
band structure from the Schrödinger equation remains very heavy without further a pri-
ori hypothesis on the wavefunctions and atomic potential of the system. The different
hypotheses of the main models used in solid state physics will be introduced briefly in the
following subsections.

1.1.2 Ab initio methods

As their name indicates, ab initio (or equivalently first principle) methods allow the com-
putation of the fundamental electronic states with no fitting parameters. Popular ab ini-
tio codes are based on the Density-Functional Theory (DFT) leading to the Kohn-Sham
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1.1 – Band structure in bulk materials

Hamiltonian, describing non-interacting electrons in an effective potential (or mean-field)
that includes the external potential and Coulomb interaction between electrons. In these
models, the total energy of the system, including the exchange-correlation energy, is writ-
ten as a functional of the electronic density E[ρ]. The density itself can be expressed as
a function of the Kohn-Sham wavefunctions. Different functionals of the density can be
used to describe the many-body exchange and correlation terms in a tractable way. The
choice of the functional can influence the result. Moreover, the band gaps of semicon-
ductors and insulators are usually underestimated by DFT. However, corrections can be
applied through the Green function formalism (GW) or through newly developed Hybrid
Functionals (e.g., HSE), that are able to reproduce experimental band gaps. To improve
the efficiency of the calculation, core electrons are very often not included, but they are
recast into a pseudo-potential.
As these methods are not developed, nor used intensively during this work, we will not
go into further details. They, however, are very useful tools to obtain physical quantities
hard to measure experimentally. We will thus compare our results with those from ab
initio studies found in the literature whenever possible.

1.1.3 Empirical pseudo-potential method (EPM)

The theory of pseudo-potential is widely used in DFT to limit the number of electrons
in the self-consistent calculations. It consists in replacing the strongly oscillating po-
tential in the core region of the atom by a smooth pseudo-potential, associated with a
pseudo-wavefunction. The pseudo-potential is chosen so that the pseudo-wavefunction
matches the one of all electrons calculation far from the ions (at r > r0). The Empirical
Pseudo-potential Method (EPM), on the contrary, aims at describing valence electrons. It
resembles to ab initio pseudo-potentials, but only describes Fourier cœfficients of pseudo-
potential as empirical parameters whose values are fitted in order to reproduce the bulk
band structure. It has been first developped in solids in the early 1960’s and has been
used in 1976 by Chelikowsky and Cohen [50, 51] to compute the band structure of sev-
eral group IV and III-V semiconductors. This method describes the wavefunctions with a
plane-waves basis, evolving in a periodic potential described by a few empirical parameters
in the reciprocal space:

Vs(r) =
∑

G

V (G)eiG·r

where G is a reciprocal lattice vector and r is a real space vector. The periodic part of
Bloch function in Equation (1.1) is also expanded in plane waves:

uk(r) =
∑

G′

Ak(G′)eiG
′·r

The Schrödinger equation becomes:

~2

2m0
Ak(G)

(
k + G

)2
+
∑

G′

VG−G′Ak(G′) = EkAk(G) (1.6)
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1 – Band structure

where VG−G′ is given by:

VG−G′ =
1

Ω

∫

Ω
d3r e−iG·rVs(r)eiG

′·r

In the case of Zinc-Blende structure, the symmetry of the crystal helps to simplify this
term, which can be expressed as a function of symmetric (Vs) and anti-symmetric (Va)
form factors, depending only on the norm G [398]:

VG = Vs(G) cos(G ·R)− iVa(G) sin(G ·R)

In this local model, only six local form factors at particular G are sufficient to describe
the whole band structure when stress is not included (undeformed crystal). However the
wavefunctions need to be expanded on a significant number of plane waves (typically ∼200
planes waves), leading to a relatively high numerical cost compared to other semi-empirical
models. In addition, the approximation of local form factors is sometimes too restrictive
to capture the electronic structure and a “non-local” EPM model has been introduced
later [51], where the pseudo-potential are not only position dependent (through G), but
also energy-dependent (through the angular momentum l). This correction allows a more
accurate description of the band structure, but also adds a significant computational cost.
Finally, spin-orbit interactions can be introduced using additional terms in the Hamilto-
nian, following the expression given in Potz and Vogl (1981) [289].
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Figure 1.3. Charge density from 3s2 and 3p2 valence electrons in Si0.5Ge0.5 (left) and
GaAs (right) bulk crystals, obtained with local EPM model in the UTOX package and
parameters from Refs. [50] and [54] respectively (see text in Sec. 1.1.7).

Although this method is expensive numerically when the size of the system increases,
it is very efficient and accurate in bulk and small systems and gives a correct description
of the band structure at high energy. For example, the band structure of Si, Ge, GaAs and
InAs materials shown in Figure 1.1 were obtained with this method including “non-local”
corrections, using the in house solver UTOX.

It is interesting to mention here that both the local atomic potential and the charge
density of valence electrons can be recomposed in real space from this method. Figure 1.3
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1.1 – Band structure in bulk materials

shows an isocontour plot of the charge density of 3s2 and 3p2 valence electrons in Si0.5Ge0.5

ordered crystal and GaAs in the [11̄0] plane of the cubic crystal. We can observe that
the valence charge is mainly located at the center of the sp3 bonds in SiGe and no ionic
polarization is induced, while As atoms in GaAs attracts more valence charge, due to the
electronegativity difference between the two atomic elements. This is the signature of a
non-negligible ionic nature of the covalent bonding in III-As materials, which induces an
ionic polarization and is responsible for the polar-optical phonon scattering that will be
discussed in Chapter 3.

1.1.4 Tight-binding (TB)

The empirical Tight-Binding (TB) theory comes from the idea that atomic orbitals can
form a set of basis states on which crystal Bloch wavefunctions can be expressed. J.C.Slater
and G.F.Koster popularized this method in 1954 named Linear Combination of Atomic
Orbitals (LCAO) [327].

While the EPM projects the wavefunctions on plane waves, the TB method considers
the problem from the opposite viewpoint, writing the wavefunctions as a LCAO.
In this model, the crystal potential is written as:

Vs(r) = Vat(r) + ∆V (r)

where Vat(r) is the potential of an isolated atom at R = 0, and ∆V (r) =
∑

R/=0 Vat(r−R)
is the contribution of all other atoms (R denoting the position of an atom in the lattice).
The Bloch wavefunctions are written as:

ψnk(r) =
∑

β,η

ck,nβ,η
1√
N

∑

λ

eik·Rλβφη(r−Rλβ) (1.7)

where Rλβ = Rλ+ τβ is the position of the βth atom in unit cell λ, φη(r) is the ηth orbital
of an isolated atom and N is the number of unit cells. The eigenvalue Schrödinger problem
(after projection on 〈φη,λ,β| state) becomes:

∑

λ′,η′,β′

{
γλλ

′
β,β′,η,η′e

ik·(Rλ′β′−Rλβ)
}
ck,nβ′,η′ =

(
En(k)− Eη

)
ck,nβ,η (1.8)

where γλλ
′

β,β′,η,η′ = 〈φη,λ,β| ∆̂V
∣∣φη′,λ′,β′

〉
, Eη is the orbital energy. The overlap terms be-

tween different orbitals 〈φη,λ,β|φη′,λ′,β′〉 are neglected in TB model with an orthogonal
basis [195, 151]. The term γλλ

′
β,β′,η,η′ can be further simplified by neglecting the three sites

integrals [253]. The hopping integrals ({λ, β} /= {λ′, β′}) are then given as: V hop =

〈φη,λ,β| ˆVat(r−Rλ′β′)
∣∣φη′,λ′,β′

〉
. Finally, the crystal field integrals ({λ, β} = {λ′, β′}) and

orbital energy are both incorporated into the on-site energy Eonsite.
In empirical TB, Eonsite and V hop are fitting parameters. V hop is usually restricted to

nearest neighbors and only a few atomic orbitals per atom are considered. The two most
common TB models in the literature are using either a sp3 basis extending coupling to the
third nearest neighbors, or an sp3d5s∗ basis accounting for first nearest neighbors only.
The tenth orbital s∗ in the last model was introduced to account for coupling to outmost
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1 – Band structure

remote orbitals. This latter model will be used in this work. When spin-orbit coupling
is introduced, the matrix size reaches 20× the number of atoms considered, making this
model able to treat systems of several millions of atoms in a tractable way. Moreover
the atomistic description in TB model makes it a suitable model for nanostructures, as
the symmetry of the system is well described and reflected on the calculated electronic
properties. As the atomic orbitals are not explicitly described, the knowledge of the local
wavefunction and charge density are not available here.1

1.1.5 k · p theory (KP)

The k·p (hereafter KP) theory comes from the work of J.M.Lüttinger and W.Kohn, as well
as E.O.Kane, in the 1950’s to describe the valence and conduction band dispersion near
the Γ point. It comes from the application of the perturbation theory to solve Schrödinger
equation in a crystal around a point in the BZ.
When wavefunctions are taken as Bloch waves (Eq. (1.1)), Schrödinger equation can be
written as: {

p2

2m0
+ Vs(r) +

~2k2

2m0
+

~
m0

k · p̂
}
unk(r) = Enkunk(r)

The Hamiltonian in bracket can be split into two parts: the first two terms are the
Hamiltonian of the crystal at k = 0 and the last two terms include the k dependency
(note the term in k · p appearing and giving the name to the method). Without lost of
generality, one can write the eigenfunctions of the problem as a linear combination of the
states at k = 0:

unk(r) =
∑

m

cm(n,k)um0(r)

The eigenvalue problem becomes:

∑

m

cm(n,k)

{
(En0 − Enk +

~2k2

2m0
)δnm +

~
m0

k · 〈un0| p̂ |um0〉
}

= 0

The k-dependent part of Hamiltonian can then be treated as a perturbation:

Enk = En0 +
~2k2

2m0
+

~2

m2
0

∑

m/=n

| 〈um0|k · p̂ |un0〉 |2
En0 − Em0

Further, the number of basis states un0 (or number of bands n) are truncated to a
few states. This truncation makes the basis incomplete and wavefunctions can be non-
orthogonal. To solve this issue, remote bands have to be included in the derivation of the
Hamiltonian, and a re-normalization of the basis set is then performed [195]. As expected,
the more bands one explicitly treats, the more accurate the energy dispersion is described,
but the computation also becomes more expensive (especially when confined structure are

1Note that DFTB models were also recently used to compute the electronic states of big systems with
a description of the local density of charge, solving it self-consistently in an iterative way.
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1.1 – Band structure in bulk materials

considered). For materials with indirect band gap, it is usually convenient to use reference
basis function away from k = 0 point (for ∆ valleys in Si for instance), which is made in
the widely used 2-band KP models for Si.

Several models have been derived during the years, for different materials and with
different level of accuracy. These KP models can be divided into two categories: low-order
models, used to describe the valence or conduction band in a small portion of the BZ
and limited energy range, but that need only a few parameters and small matrix size and
are therefore widely used in device solvers; and high-order models, which are more time-
consuming and need a higher number of empirical parameters, but can describe the full-
band dispersion, over the entire BZ. The full-zone KP models can reach the same order of
accuracy as TB models for systems of the same size or even bigger, as they are “continuous”
models and the size of the mesh can be adapted. However the truncated pertubative
model doesn’t guarantee the periodicity of the band structure outside the first BZ and the
continuous model doesn’t account for the symmetry breaking in nanostructures. This can
be problematic when applied to confined structure, where “spurious” states can appear in
the band gap, as it will be discussed in the second part of the Chapter.2

We give here a rapid overview of the different low-order and high-order KP models. For
more details about the KP theory, the book of G.Fishman [95] gives a complete and broad
discussion of the history and derivations of the main KP models.

Low-order models

The first KP model published was used to describe the valence band, containing three
bands in bulk : so-called heavy holes (HH), light holes (LH) and spin-orbit split-off (SO)
bands. The reader can refer to Refs. [75, 209] for more details about these models. For
direct band gap materials such as III-As, the lowest conduction band can be added to this
set, leading to a 4-band KP model where the coupling between valence and conduction
bands in Γ is related to the optical parameter Ep. The reader can refer to Refs. [156,
19, 109] for reviews (see also Appendix A.1.1). This model allows a good description
of the strongly non-parabolic Γ valley in these materials and has been used to derive
expressions for the non-parabolic correction in EMA that are discussed in the second part
of this Chapter. For the conduction ∆ valleys of Si, a 2-band model was later developped
accounting for the coupling between the two closest ∆ equivalent valleys [129]. Compared
to EMA, this model improves the description of ∆ valleys at high energy, in particular
its non-parabolic character and can correctly describe the splitting of these valleys with
stress [340].
In device and transport solvers, low-order KP models are probably the most widely used,
due to their low computational cost and ease of implementation. They are thus very
useful expecially at low bias where carriers mainly lie close to the band edge (typically
up to ∼ 5 × kBT away from the band edge). However for high-field transport, carriers

2These spurious states appear in models where both negative and positive band dispersions are taken
into account (such as 8-band or full-zone KP models) and are coming from remote k states that are
projected in the 2D/1D Brillouin zone.
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1 – Band structure

are accelerated to higher energies, where low-order KP models fail to describe the band
structure [228].
Note that the simplest KP model is the Effective-Mass Approximation describing the
energy dispersion of a single band by the expression E(k) = ~k2

2m∗ . This expression is
similar to the kinetic energy of free electrons, where the electron mass has been replaced
by an effective parameter m∗ where all the interactions with the crystal are hidden.

High-order models

The models presented above are only describing the band structure close to a specific point
in the BZ, but fail to describe the band structure over the entire BZ and at high energy.
Full-zone KP models were later developped in 1966 by F.Pollak and M.Cardona [45], who
extended the models to a higher number of basis states in Γ. These models were later
extended to account for strain [35, 304, 229]. Altough 30 bands were originally used,
accounting for [000], [111] and [200] nearly-free electron states (see Refs. [398, 45] and
Fig. 1.4), different models were also developped accounting for 12, 14, 16 or 20 bands [95],
providing a wide range of models and accuracies, as well as parameters. Unfortunately,
among this wide range of models, only very few studies with reference parameters for both
GaAs and InAs were found [310, 299, 286]. For this reason, a parameterization of full-
band KP models for InAs and GaAs materials has been performed that will be presented
in the next section [237]. In this work, we extracted parameters for InAs and GaAs for the
30-band models, but also a 54-band model that will be described in more details below.

54-band KP model

As said earlier, full-band KP models were first derived accounting for the 15 states
corresponding to free-electron states with wavevectors [000], [111] and [200] [286, 304, 299],
leading to a 30-band model. This allows a good description of the band structure in most
of the high symmetry k points. However, at the particular K symmetry point, the states
with [220] free-electron wavevector lie at low energy and affect the local minimum, which
is poorly described by the 30-band KP model, where an additional smoothing function
had to be used to adapt the parameters near this point in previous works [304].

In order to improve this description, the 30-band Hamiltonian of Refs. [286, 304, 299]
is extended to account explicitely for the 12 states with wavevector [220] (see Ref. [286]),
leading to a 54-band Hamiltonian [237, 229]. These 12 extra bands are described in the
Hamiltonian by five energy levels at the Γ-point and seventeen matrix coupling elements
(for their definition, see Table A.4 in appendix). No additional spin-orbit terms are added
to the standard ones, as they increase the complexity and they are supposed to have a
negligible impact on the lowest energy band levels. For group Td materials such as InAs
and GaAs, additional non-zero matrix elements have to be accounted for compared to
Si and Ge, due to centrosymmetry breaking. Four extra imaginary coupling parameters
(S, S

′
, U and U

′
in Table A.4) and one extra SO term (∆Γ15Γ

25′l
) are thus added to the

standard 30-band Hamiltonian used for Si.
Following the matrix elements definition in Ref. [304], the 54-band matrix is given in
appendix and the coupling parameters are illustrated in Figure 1.4.
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1.1 – Band structure in bulk materials

Figure 1.4. Left: nearly free electron band structure in a periodic BZ with labels
of the Oh point group (figure taken from Ref. [286]). Right: KP matrix, according to
the definition in Appendix A.1.2. Elements of the 6-, 8-, 14-, 30- and 54-band models
are highlighted with different colors.

1.1.6 Si and Ge band structure

The Si band structure obtained with 30-band KP is shown in Figure 1.5(up) and compared
with ab initio and EPM calculations. The 30- and 54-band KP models are compared in the
near-K point region, in the inset of the figure. One clearly notes the presence of the (220)
band as low as 5 eV above valence band maximum in the K point, which was missing in
the 30-band model in Ref.[304]. Moreover, without smoothing function the 30-band model
predicts a conduction band edge in K that is too low, which is the reason why authors
of Ref. [304] introduced a non-physical interpolation of the parameters. Such pragmatic
approach is not needed with the 54-band KP model, which allows a better description of
the near-K-point region, while keeping a small computational cost. The computational
effort for a complete bulk band structure calculation is for both KP models approximately
two orders of magnitude lower than the one needed by non-local EPM method.
The Ge band structure obtained with 30-band KP is shown in Figure 1.5(down) and
compared with ab initio and EPM calculations. A smoothing function is used in the
30-band model to improve the agreement in the near-K-point region.
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Figure 1.5. Up: Bulk Si electronic band structure using 30-band KP model without
smoothing function, compared to DFT-G0W0 and NL-EPM calculations. Dashed-line blue
rectangle points out the (220) band effect in the near-K-region, where the 54-band KP model
is plotted and shows improvement compared to 30-band KP model (see Fig.1 of Ref. [304]).
Down: bulk Ge electronic band structure using 30-band KP model using smoothing function,
compared to DFT-G0W0 and NL-EPM calculations. Data taken from Refs. [304, 301],
computed with UTOX (KP and NL-EPM) and ABINIT [115] (DFT-G0W0).
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1.1 – Band structure in bulk materials

1.1.7 GaAs and InAs band structure

While intensive studies of the band structure and electronic parameters have been made for
bulk Si, Ge, as well as GaAs, some debates remain on InAs and InGaAs alloys, as pointed
out by Vurgaftman et al. (2001) [385] and O’Regan et al. (2010) [264]. In particular, the
position of the L and ∆ satellite valleys (local minima at L symmetry point and along
the Γ - X line respectively) is not clearly defined, as it is shown in the next paragraph.
The energy seperation between these conduction band local minima and the top of the
valence band will be labeled EL and EX hereafter. Some recent theoretical studies aims at
bridging the gap and complete the description [165, 46], but no clear consensus has been
found and only few experimental studies exist, mostly in the 1980’s. This difficulty and
lack of trustable reference is reflected by the broad dispersion and difference of predictions
found in the band structure given by different empirical models and parametrization for
bulk InAs, as illustrated in Figure 1.6. For GaAs, the two available EPM parametrizations
[51, 165] provide close values for band gaps. For InAs, the values of EX obtained with
the two EPM parametrizations of Refs. [51] and [165] are 1.4 and 2.1 eV respectively (see
Fig. 1.6), while the exhaustive ab initio calculations of Ref. [171] reports EX ranging from
1.65 to 2.09 eV and TB model with parameters from Jancu et al. (1998) [145] gives EX
around 2.18 eV (see Table 1.2). The only experimental value available to our knowledge
for EX is 1.9 eV [76].
Below, we give a quick overview of the recent theoretical studies and (often older) exper-
imental works to have more insight about the knowledge that is currently available on
these materials. We also present the different set of parameters available in the literature
for the empirical models considered.
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Figure 1.6. InAs band structure obtained with UTOX package based on the two NL-EPM
parametrizations of Refs. [51] and [165], and with TBSim package based on the TB
parametrization of Ref. [145]. The experimental value of Ref. [76] for EX is shown with the
black arrow. The NL-EPM models exhibit a clear difference, illustrating the controversy on
the position of satellite valleys.
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Experimental

While the exact full-band structure cannot be observed directly experimentally, several
methods can be used to extract relevant quantities such as band gaps and effective masses,
as well as a mapping of the eigenvalues for different k points in a region of the BZ. The
review paper of Vurgaftman et al. (2001) [385] considers a broad range of experimental
and theoretical papers, giving a good reference for the knowledge of the band structure
and electronic properties of most III-V materials. For the position of valleys in GaAs,
the authors mainly focus on the paper of Aspnes (1976) [14], who measured synchrotron
Schottky-barrier electroreflectance spectra and compared them with previous studies. We
note that the description of the valence band dispersion has been further refined by angle-
resolved photoemission studies in Chiang et al. (1980) [53], which are needed to extract
position of the satellite valleys from optical measurements of Aspnes. The corrected values
given in their work are reported in Table 1.2. For the effective mass, the values in Ref. [385]
are taken from Adachi [2].

For the position of satellite valleys in InAs, Vurgaftman et al. (2001) [385] gives no
experimental reference and points out the controversy on this value. However, the study
of Drube et al. (1987) [76] ought to be mentioned, which extracts the position of X valley
by inverse photoemission study, whose value is reported in Table 1.2. Another study from
Williams et al. (1986) [392] provides a complete study of the valence band dispersion of
InAs by angle-resolved photoemission. They can unfortunately not be compared with data
used by Drube [76] as the later article doesn’t give them explicitly. The effective mass of
lowest conduction band of InAs is also difficult to be extracted experimentally due to the
strong non-parabolicity. The value suggested by the compilation in Ref. [385] is in the
range of 0.021− 0.026 m0. The effective mass of satellite valleys is more uncertain and no
clear reliable experimental work was found.

Ab initio

DFT calculations on small band gaps semiconductors such as InAs are difficult to perform.
Indeed, standard DFT calculations usually predict InAs with negative band gap (s-like
states below the p-states, as explained in Ref. [173]), and GW correction may fail when it is
based on wavefunctions with an incorrect ordering. Hybrid functionals can be used to get
a correct band gap, but these methods unfortunately depend on the amount of Hartree-
Fock energy included in the functional, which can be adjusted to reproduce experimental
values (see the complete study in Ref. [171]).
Table 1.1 compiles the results from several recent studies on bulk InAs. While the band
gap remains relatively close to the experimental one (EΓ = 0.41 eV) in most cases (also
it is 0.1 eV below in the case of GW0 in Ref. [173]), the relative position of the satellite L
and X valleys are not matching in most studies and show a dispersion of ∼0.3 eV (> 20%)
and 0.58 eV (> 30%) resp. This broad range of values found with these advanced tools
show the difficulty to treat small band gap materials. However, one can conclude that
the L and X valleys are generally lying more than 1 eV above the conduction band edge.
Note that the early work of Zhu and Louie (1991) [406] offer values in the range of these
studies.
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1.1 – Band structure in bulk materials

Table 1.1. Band gaps at different k points in bulk InAs as found in ab initio studies in the
literature. All values are in eV and references are given in the first line.

Eg GW0 (PBE) [173] G0W
TC−TC
0 [171] HSE06 [171] HSE06 [163] QP [406]

EΓ 0.32 0.41 0.42 0.38 0.31

EL − EΓ 1.33 1.04 1.11 1.20 1.12

EX − EΓ 1.92 1.34 1.56 1.79 1.71

Parameters for models

The band gaps at 0 K calculated in this work with the different empirical models are
shown in Table 1.2 and difference with experimental values of less than 40 meV for all
relevant gaps is obtained (when experimental values are available). Effective masses are
also extracted by fitting the parabolic dispersion close to band extrema and shown in
Table 1.2. For these computations, we used parameters from the literature with some
adjustment when needed, as detailed below.

TB For the sp3d5s∗ TB model used in this work, Jancu et al. (1998) [145] and Boykin
et al. (2002/2004) [38, 39] provide two complete sets of parameters for a broad range
of semiconductors, including GaAs and InAs. The first set of parameters reproduces the
band structure at low temperature (0 K). These parameters are used to compute the
parameters in Table 1.2. Note that the third valley minimum in GaAs lies in X symmetric
point with this parametrization, while it is located at kx ∼ 0.86 [2π/a] in the other cases
(including EPM and KP calculations). For InAs, EX is about 0.5 to 0.6 eV higher than
other theoretical calculations, but closer to the experimental value. The second set of
parameters of Boykin [39] reproduces the band structure at room temperature and will be
used in Chapters 2 and 3. A more recent set of parameters for GaAs has been given by
Tan et al. (2014) [351] (and applied to nanostructures in Ref. [352]).

EPM A wide range of parameters for the local EPM can be found in the litterature. The
parameters used for the calculation of the valence charge density in Fig. 1.3 were taken
from Cohen and Bergstresser (1966) [54] for GaAs and InAs. For the non-local EPM
(NL-EPM), the reference paper of Chelikowsky and Cohen (1976) [51] gives a complete
parametrization for a wide variety of semiconductors, reproducing the band structure and
optical properties of these materials. This set of parameters is used for all calculations of
GaAs NL-EPM band structure. A more recent parametrization was published by Kim and
Fischetti (2010) [165] for InAs, GaAs and InGaAs alloys. As mentioned earlier, this latter
parametrization gives different satellite valleys positions for InAs compared to Ref. [51].
As the InAs band gap is in better agreement with experimental data in Ref. [165], we
choose this latter parametrization for all calculations of InAs NL-EPM band structure. In
all our calculations, the parameters for spin-orbit (SO) coupling were slightly modified, as

detailed in Appendix A.2. While m
∗(Γ)
e is overestimated for GaAs (which is also the case

in other EPM studies), all other masses lie within the experimental range of values.
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Table 1.2. Band gaps (with respect to valence band maximum), spin-orbit and effective
masses calculated for GaAs and InAs at T=0 K. All energies are expressed in eV and masses
in unit of m0. Experimental values are taken from Ref. [385], except when mentioned. KP
and NL-PM calculations are made with UTOX, while TBSim was used for TB (see text for
parameters references). Values in parentheses are calculated with 30-band KP.

GaAs InAs

Exp. TB EPM KP Exp. TB EPM KP

E
(Γ)
g 1.519 1.519 1.526 1.527 (1.527) 0.42 0.418 0.406 0.415 (0.405)

∆
(Γ)
SO 0.341 0.340 0.349 0.349 (0.349) 0.39 0.380 0.390 0.390 (0.390)

E
(L)
g 1.851 1.837 1.855 1.942 (1.835) N/A 1.691 1.122 1.128 (1.098)

E
(X)
g 2.181 1.989 2.115 2.162 (2.118) 1.902 2.176 1.442 1.456 (1.459)

E
(∆)
g – N/A 2.088 2.109 (2.058) N/A

m
∗(Γ)
e 0.067 0.067 0.083 0.074 (0.084) 0.026 0.023 0.026 0.028 (0.027)

m
∗(L)
e,l 1.9 1.44 1.85 1.41 (1.91) 0.64, 3.573 2.16 1.68 1.25 (1.43)

m
∗(L)
e,t 0.08 0.12 0.12 0.13 (0.14) 0.05, 0.123 0.11 0.10 0.11 (0.12)

m
∗(∆)
e,l 1.30 1.25 1.45 1.29 (1.17) 1.13, 1.983 1.69 2.31 0.82 (1.55)

m
∗(∆)
e,t 0.23 0.24 0.24 0.23 (0.23) 0.16, 0.283 0.28 0.19 0.21 (0.22)

m
∗(001)
hh 0.35 0.33 0.36 (0.36) 0.34 – 0.39 0.32 0.31 (0.31)

m
∗(110)
hh 0.64 0.65 0.68 (0.65) 0.58 – 0.98 0.65 0.58 (0.58)

m
∗(111)
hh 0.89 0.92 0.90 (0.84) 0.63 – 0.76 0.96 0.81 (0.80)

m
∗(001)
lh 0.090 0.086 0.098 (0.109) 0.027 – 0.042 0.029 0.033 (0.033)

m
∗(110)
lh 0.081 0.076 0.087 (0.096) 0.026 – 0.041 0.027 0.031 (0.032)

m
∗(111)
lh 0.078 0.073 0.084 (0.093) 0.014 – 0.026 0.028 0.031 (0.031)

mso 0.1165 0.161 0.198 0.09 – 0.15 0.095 0.106 (0.107)

1 Ref. [53]
2 Ref. [76]
3 Ref. [165] and references therein.

KP For full-zone KP models, Richard et al. (2004) [299] first gave a parametrization
for 30-band KP model for GaAs. Later, Ben Radhia et al. (2007) [292] gave parameters
for In-V materials. In this work, we derived parameters to be used for InAs, GaAs and
InGaAs alloys, using 30-band and the extended 54-band models presented above [237].

Parameters extraction for full-zone k · p model

To extract parameters for III-As, we use the NL-EPM calculation based on parameters
in Ref. [51] for GaAs and Ref. [165] for InAs, presented above. A non-linear optimization
algorithm using Nelder-Mead method is used to minimize the least-square error function
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Figure 1.7. Bulk electronic band structure for GaAs (up) and InAs (down) using 30-band,
54-band KP and NL-EPM models computed with UTOX.
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between KP and EPM eigenvalues on a complex and dense path throughout the Brillouin
zone, as shown in Fig. 1.7. We also tried to reproduce as closely as possible the
experimental values for known eigenvalues and effective masses, but some inaccuracy can
remain over 10 eV and below -6 eV.
Band structures obtained for GaAs and InAs are shown in Fig. 1.7 and corresponding
k ·p parameters are given in Table A.4 in appendix. Good agreement is found with EPM
results and experimental data in the energy range considered, especially for the Γ, ∆ and
L conduction valleys involved in electronic transport. Note that the 54-band KP model
allows a better description of the band structure in the near-K-point region, as mentioned
earlier, and reproduces more closely the band minimum in this region, which is too low in
the case of the 30-band KP model. The 30-band KP model also leads to a discontinuity
between eigenvalues of equivalent T and U points in BZ (as seen in Fig.1.7(b)). This
discontinuity can be decreased (if not removed for bands close to the band gap) with the
54-band model. Note however that we did not try to improve valence band description
below -5 eV, as it has no influence on transport.
The band gaps extracted from these parametrizations are shown in Table 1.2. While
GaAs effective mass in Γ is still too high, it is closer to experimental value for the 54-band
model and other effective masses are in line with the data mentioned in Refs. [165, 385].

Density-of-States

Finally, the Density-of-States (DOS) has been computed by integrating the band structure
over the 3D BZ with Gilat and Raubenheimer method [111]. The DOS obtained for GaAs
and InAs with the present 54-band KP and NL-EPM calculations are shown in Fig. 1.8
and compared to the NL-EPM calculations of Refs. [51] and [90]. As discussed in previous
section, the two EPM parametrizations for InAs give different values for indirect band
gaps. This discrepancy is visible in Fig. 1.8(b), where the first peak in conduction band
is shifted by ∼0.5 eV.
A zoom of the conduction band edge shows the very low DOS of the Γ conduction valley
and the abrupt change of DOS when satellite valleys are reached (around 1.85 eV for GaAs
and 1.1 eV for InAs). Although InAs has a lower DOS in the Γ conduction band, this
abrupt transition is less pronounced. This is due to its higher non-parabolicity and the
lower masses of the satellite valleys.
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Figure 1.8. Density-of-states of GaAs (up) and InAs (down) using 54-band KP
and NL-EPM models in the UTOX package. The data for the blue dotted lines were
taken directly from Ref. [90] for GaAs and [51] for InAs. Other NL-EPM data were
computed in this work, with parameters from Ref. [51] for GaAs and [165] for InAs
(see discussion in Sec. 1.1.7).
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1.1.8 Alloys: random supercell versus virtual crystal approximation

As mentioned in the Introduction, non-stœchiometric semiconductor alloys such as ternary
InxGa1−xAs and binary Si1−xGex start to emerge in the semiconductor industry. The de-
scription of these alloys adds a difficulty as the crystalline structure cannot be considered
as periodic anymore. In fact, it was found that the ordering of atoms in these crystals is
often close to a random arrangement. In this case, the band structure of random alloys is
not clearly defined, as the Bloch theorem is no longer applicable.
Two options are usually found in the literature for the calculation of the electronic struc-
ture of alloys: to build an atomistic random large supercell that won’t be affected too
much by periodic boundary conditions and to build a single unit cell crystal composed by
virtual atoms whose parameters are interpolated.

Atomistic description

In models with an atomistic description, such as DFT, TB or atomistic EPM, a random
crystal can be generated by building a large supercell with random distribution. For
ternary alloys such as InGaAs, only the elements of the cations sublattice (Ga and In)
are randomly distributed (see Fig. 1.9). When the supercell size is large enough, the spu-
rious effect of the periodic boundary condition becomes negligible and convergence can
be achieved. Studies on TB models showed that a good convergence is achieved with
very large supercell of typically >60,000 atoms for SiGe bulk materials [251], which is
clearly not possible to treat with DFT codes. In addition, the position of all atoms has
to be relaxed, which necessitates a force model and can be numerically expensive. Al-
gorithms have been proposed to generate Special Quasirandom Structures (SQS) with a
lower number of atoms which reproduce the electronic properties of larger random super-
cell calculations [409].
Another difficulty comes from the folding of the supercell band structure at the Γ point
which makes the position of satellite valleys inaccessible. To solve this issue, algo-
rithms have been proposed recently to unfold the BZ of supercell and map it to unit
cell states [37, 36, 223]. These algorithms allow the reconstruction of bulk band structure
and the determination of the satellite valley positions, but a big dispersion of eigenvalues
is found due to the randomness of the crystal, as found in Ref. [163].

Virtual Crystal Approximation (VCA)

In the Virtual Crystal Approximation, a virtual crystal is constructed for which the atomic
parameters are interpolated between the two elements, as shown in Figure 1.9. In this
case, the results for alloys depend on the chosen interpolation scheme. Purely linear
interpolation can be chosen, also known as Vegard’s law, but a bowing cœfficient has to be
introduced in the general case to be able to reproduce experimental results. For instance,
the parameters of InxGa1−xAs materials would be modified as:

PInGaAs = PInAsx+ PGaAs(1− x)−Bx(1− x) (1.9)

where B is the so-called bowing parameter, which is usually an additional fitting param-
eter.
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1.1 – Band structure in bulk materials

Figure 1.9. Sketch of two As anions with their neighboring III cations in the atomistic
random model (left) and virtual crystal approximation (right), where “III” designs a virtual
cation with interpolated parameters.

Si1−xGex band structure

Figure. 1.10(left) shows the band gap of SiGe alloys as a function of Ge content with
TB model with both a random supercell and VCA approach, compared to experimental
values. For the VCA calculation, the on-site and hopping parameters are interpolated
linearly and quadratically as a function of x, shown by the following equations:

Eon−siteV CA (x) = (1− x)Eon−siteSi,Si + xEon−siteGe,Ge ; (1.10)

V hop
V CA(x) = (1− x)2V hop

Si,Si + x2V hop
Ge,Ge

+x(1− x)(V hop
Si,Ge + V hop

Ge,Si), (1.11)

where ESi,Si, EGe,Ge, VSi,Si, VSi,Ge, VGe,Si and VGe,Ge are the atomistic TB parameters
for SiGe alloy as defined in Ref. [251]. The results with another VCA model, developed by
D.Rideau and detailed in Appendix A.3, are also shown in Fig. 1.10(left) under the label
“VCA model 2”. The band gap obtained with linear interpolation is also shown and a
linear variation as function of x is predicted, failing to reproduce the correct experimental
bowing.

InxGa1−xAs band structure

Figure 1.10(right) shows the direct band gap of InGaAs alloys as a function of In content
with TB model with both random and VCA approaches. NL-EPM results from Kim et al.
(2010) [165] are also shown and are in good agreement with TB calculation with random
supercell. Bowing cœfficients given in Ref. [202] were used for the VCA model, together
with binary parameters of Ref. [145]. The band gap dependence obtained with this model
is in close agreement with experimental and random supercell calculations. The band gap
obtained with linear interpolation is also shown in Fig. 1.10(right) and predicts a wrong
sign of bowing. This model should thus not be used.
As for InAs, an uncertainty on the position of satellite valleys remains for InGaAs alloys.
Below we present recent studies with DFT and different empirical models.
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Figure 1.10. Band gap of bulk unstrained Si1−xGex (left) and InxGa1−xAs (right) ma-
terials as function of x content with TB model in TBSim package. The VCA calculations
with different interpolation (see text) are compared with random supercell calculation. Ex-
perimental data are taken from Ref. [389] for Si1−xGex and Ref. [25] for InxGa1−xAs . The
values of InxGa1−xAs measured at 300 K were shifted up by 70 meV to reproduce 0 K
values. NL-EPM results from Ref. [165] are also shown for InxGa1−xAs .

Experimental As In0.57Ga0.43As is lattice matched with InP and has a wider gap than
pristine InAs, it has been particularly investigated in the litterature. In particular, Cheng
et al. (1982) [52] studied the position of the L valley by ultraviolet photoemission and
found a seperation of Γ and L valleys of EL−EΓ = 0.55 eV. For InGaAs alloys with other
compositions, the optical direct band gap, spin-orbit separation of split-off valence band
and lowest conduction effective mass has been studied by Berolo et al. (1981) [25].

DFT The treatement of alloys in DFT is particularly difficult, as the calculations become
very heavy when the number of atoms increases. However, very recent articles [118, 163]
perform calculations on InGaAs bulk materials, using Special Quasi-random Structures
allowing to use a smaller supercell (typically 16 to 32 atoms). Table 1.3 compiles the
band gaps and the position of satellite valleys found with these methods in In0.57Ga0.43As
alloy. It is interesting to note that the difference EL − EΓ found with the VCA approach
is generally higher than the supercell calculations. However, the experimental values
reported are lower than all the values reported here. Also note that Khomyakov et al.
(2015) [163] studied in particular the dependence of the band structure with In content
and gives bowing cœfficients B for EΓ, EL and EX of 0.55, 0.31 and 0.105 eV respectively
(obtained with HSE supercell calculations with 216 atoms).

EPM In Kim et al. (2010) [165], a VCA approach is used to compute the band structure
of InGaAs with NL-EPM. The position of the satellite valleys is plotted in Fig. 1.11. They
found bowing cœfficients for EΓ, EL and EX of 0.473, 0.399 and 0.421 eV resp. These
values match well the values obtained by DFT-HSE calculation above, except for EX .
It is important to mention that the position of satellite valleys in pristine InAs is very
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1.1 – Band structure in bulk materials

Table 1.3. Band gaps at different k points for bulk In0.53Ga0.47As as found
in ab initio studies in the litterature. All values are in eV and references are
given in the first line. To help comparison between methods, the satellite
valleys are refered to bottom of the conduction band. SQS refers to Special
Quasi-random Structures (with 16 atoms) as defined in Ref. [409] while SC
refers to cubic supercells (with 216 atoms).

Eg G0W0 [118] G0W0 [118] HSE06 [118] HSE06 [163]1 QP [406]

VCA SQS SC SC VCA

EΓ 0.92 0.87/0.84 0.92 0.71 0.80

EL − EΓ 0.72 0.99/1.07 0.99 0.87 0.83

EX − EΓ 1.04 1.19/1.20 1.13 1.40 1.27
1 The calculations in this reference were done for In0.5Ga0.5As.

different in the two cases: X valleys are higher in InAs than GaAs in the case of DFT-
HSE calculation, while it is the opposite in NL-EPM calculations. NL-EPM parameters
for the particular composition In0.57Ga0.43As have also been extracted by Dittrich et al.
(1999) [70], which found a separation EΓ−EL = 0.54 eV in agreement with experimental
value and the value reported in Kim et al. (2010) [165]. They also found a separation
EΓ−EX = 1.035 eV which is in good agreement with DFT-VCA calculations, but higher
than the values in Kim’s article of EΓ − EX = 0.804 eV.

TB For the position of the satellite valleys in TB, we use here the VCA approach, as
they are not available in the supercell calculation without unfolding methods. The direct
band gap shown in Fig. 1.10 allows to validate the VCA approach, with the interpolation
scheme of Ref. [202]. The X valleys of InAs are here higher than those of GaAs as shown
in Fig. 1.12. A negative bowing is found for EX of -0.15 eV, while the bowing for EL is
0.29 eV in relative good agreement with the value extracted from DFT and NL-EPM.

KP As KP are continuous models, only VCA approach can be used to compute the
band structures of alloys. Recently, parameters for InGaAs alloys have been published
for full-zone KP models. Parameters for the 40-band KP model are given in Yahyaoui et
al. (2013) [395], and parameters for the 30-band KP model for the specific In0.57Ga0.43As
have been extracted in Verreck et al. (2016) [384]. Yahyaoui [395] gives two parametriza-
tions for unstrained and strained InGaAs grown on GaAs buffers, and bowing cœfficient
for almost all parameters.
In our full-zone 54-band KP model, a more pragmatic linear interpolation is made for all
parameters, except for the energies Γ12 and ∆SO for which the experimental bowing coef-
ficients B suggested by Vurgafman et al. (2001) [385] are used (B = 0.477 eV for Γ12 and
0.15 eV for ∆SO). Although Ref. [385] also suggests a bowing coefficient for parameter P ,

an adequate tendency for the energy gap Eg and effective mass m
∗(Γ)
e is obtained without

bowing with the 54-band model, as shown in Fig. 1.11. Fitting back the band gaps EL(x)
and EX(x) with Eq. (1.9) gives bowing coefficients of 0.72 and 1 eV respectively, which
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are higher than the ones reported with previous models, but lie in the range of values

suggested by Vurgaftman et al. (2001). The difference with experimental results for m
∗(Γ)
e

can be due to temperature influence, as measurements were done at 300 K.
For the 30-band KP model, additional bowing coefficients had to be introduced on pa-
rameters P ′′′, Q′ and S (B = 0.78, 0.2 and 0.2 eV, respectively) in order to have a correct

bowing for m
∗(Γ)
e and band gaps. This can be due to the influence of remote bands not

included in this model, indicating that the 54-band KP model allows a more complete
description of alloys. The band gaps and effective masses with this model are also shown

in Fig. 1.11. Although m
∗(Γ)
e is higher than the experimental mass, the tendency is very

close to NL-EPM, from which the KP parameters were extracted.
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parameters from Ref. [145].
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1.1 – Band structure in bulk materials

1.1.9 Stress influence on band structure

Stress engineering has been widely used and studied in recent transistor nodes as tech-
nological boosters. Indeed, stress can have a big influence on the band structure, which
can be thus adequately “tuned” to favor low-effective mass carrier and improve transport
properties of both electrons and holes. In a general trend, compressive stress improves
hole transport, while tensile stress improves electron transport in Si, but the picture and
interaction can be very complex, especially in confined structures where an interplay exists
between the confinement and stress. For electron transport in III-V materials, the stress
is in general much less efficient, as the lowest valley lying in Γ is isotropic and single de-
generate. However, it can have an influence on the position of satellite valleys, which can
be populated at high gate or drain voltage. Some recent papers have studied the effect of
stress, using various approaches such as DFT, EPM, KP and TB [297, 46, 401].
The influence of stress on the transport is not studied in detail in this work, but we review
briefly below the incorporation of stress in the empirical models, as the knowledge of the
related deformation potential is of significant importance for electron-phonon coupling and
transport properties (see Chap. 3).

Atomistic description

In atomistic models, the description of stress is straightfoward, as it is directly translated
into a shift of the position of the atoms. In DFT codes, the charge redistribution due to
the atoms displacement is automatically accounted for in the self-consistent calculation
and the change of band structure with stress can be obtained with no further hypothesis.
On the other side, in empirical models it is part of the fitting parameters, which need to
be adapted. In general, the extra fitting parameters are adjusted in order to reproduce
the deformation potentials, taken from experiments or ab initio calculations in different
stress conditions (see the following subsection about deformation potential theory). These
models remain valid for small stress conditions only, and are not guaranteed to work at
large stress conditions (typically ε > 1%). The dependence of particular points in the BZ
under large stress conditions could be reproduced by more accurate parametrization in
TB and EPM models (see, e.g., Ref. [251]).

Deformation potential theory

The theory of deformation potential was introduced in the 1950’s [130, 20] and more
recently reviewed by Van de Walle (1989) [369] using ab initio tools to extract the param-
eters of different materials. In the first approximation, the influence of the displacement
of atoms in a strained crystal leads to a rigid shift of the band edges, modeled by a linear
model in terms of the components εij of the strain tensor. In the case of hydrostatic stress
(εxx = εyy = εzz = ε) the position of the conduction band edge at the Γ point is written
as [398]:

EΓ = E0
Γ + ac

(
∂V

V

)
= E0

Γ + 3acε
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where E0
Γ is its position in unstrained crystal and ac is the volume deformation potential.3

Experimentally, the absolute shift of the conduction band edge is difficult to measure and
optical measurements are often used to determine the band gap shift due to hydrostatic
pressure. This one is equal to the relative deformation potential of valence and conduction
band: ag = ac − av.
For degenerate bands, three deformation potentials are in principle needed to describe
not only the shift of energy, but also the degeneracy splitting induced by shear stress
component. For valence band, the pioneer work of Pikus and Bir [31] paved the way of de-
formation potential theory and derived expressions for these three deformation potentials.
The two additional deformation potentials bv and dv are defined by [369]:

δE001 = 2bv(εzz − εxx)

δE111 = 2
√

3dv(εxy)

where δE001 and δE111 are the shift of the average energy of the three topmost valence
band caused by strain in the [001] and [111] direction resp.
In the case of conduction band edges at ∆ and L symmetry points, two values are sufficient,
due to symmetry rules, and the model derived in Herring and Vogt (1956) [130] has been
the most widely used. It writes the energy shift of valley ν as [398]:

δEν = Ξdν(Tr{ε}) + Ξuν(k
′
ν · ε · kν)

where Ξd and Ξu are respectively the dilatation and uniaxial deformation potentials, Tr{}
is the trace and kν is the unit vector along the direction of the valley in reciprocal space.
The values of these deformation potentials for GaAs and InAs materials extracted from
experimental and theoretical studies in the literature are given in Tables 1.4 and 1.5. An
overall good agreement is found for ag, ac, b and d between all methods for these two
materials, as well as deformation potentials of satellite valleys.

The deformation potential theory is also used in transport to model the electron-
phonon interaction. In principle, the parameters extracted here are related to the acoustic
phonon deformation potential entering the calculation of intravalley scattering [398]. How-
ever, although a direct relation theoretically exists between the stress-driven parameters
and the ones entering the electron-phonon coupling elements [161], these values can present
a net difference (see parameters and discussion in Chap. 3).

The deformation potentials for In0.57Ga0.43As material are presented in Table 1.6. An
overall good agreement is found for b and d parameters. Note however that Khomyakov et
al. (2015) [163] predicts a lower value for ag compared to experimental values given in Vur-
gaftman [385], which was extracted from People (1988) [278] and Wilkinson (1990) [391].
This leads to an inverse sign in the bowing parameter for ag: B = +2.34 eV extracted

3Note that in the majority of the cases (if not all), the conduction band edge at Γ is shifted up to higher
energy for compressive hydrostatic stress and down to lower energy for tensile stress. In what follows, we
will use the convention of negative ε for compressive stress, and positive ε for tensile stress, implying a
negative ac.
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Table 1.4. Deformation potentials of GaAs obtained from experimental and ab initio
studies in the literature. All values are in eV.

Reference ag ac bv dv Ξd,X − av Ξu,X Ξd,L − av Ξu,L

Exp. [385, 283] -8.5 -7.7 -2 -4.8 N/A

Exp. [43, 109] -9.77 -7.1 -1.7 -4.55 N/A

DFT-LDA [369] -8.33 -7.17 -1.9 -4.23 – 8.61 – 14.26

DFT-HSE [163] -8.54 – -2 -4.4 -1.35 8.22 -8.38 15.1

Table 1.5. Deformation potentials of InAs obtained from experimental and ab initio studies
in the literature. All values are in eV.

Reference ag ac bv dv Ξd,X − av Ξu,X Ξd,L − av Ξu,L

Exp. [385] -6 -5.08 -1.8 -3.6 N/A

Exp. [43, 109] -6 -5.4 -1.8 -3.6 N/A

DFT-LDA [369] -6.08 -5.08 -1.55 -3.10 – 4.5 – 11.35

DFT-HSE [163] -5.97 – -1.68 -3.8 -0.16 4.83 -6.86 12.5

Table 1.6. Deformation potentials of In0.57Ga0.43As obtained from experimental and ab
initio studies in the literature. All values are in eV.

Reference ag ac bv dv Ξd,X − av Ξu,X Ξd,L − av Ξu,L

Exp. [385, 278, 391] -7.79 -6.96 – – N/A

Exp. (lin. interp.) [109] -7.76 -6.2 -1.75 -4.04 N/A

DFT-HSE [163] -6.81 – -1.79 -3.9 -0.22 5.15 -7.09 12.9

from experimental data compared to −1.47 eV from DFT-HSE study. A possible expla-
nation given by Ref. [163] is the questionable interpolation method used to extract elastic
constants in InGaAs in the extraction procedure from experimental studies.

TB The influence of stress on the TB parameters is usually described with the use of a
power law, also called “Harrison law” in reference to the complete study of Harrison [125].
The nearest-neighbor (NN) hopping integrals are assumed to vary as:

V = V0

(
d0

d

)η

where d and d0 are the NN distances in the stressed and relaxed structure respectively, and
the η exponent is called Harrison parameter. This model has been refined in Niquet et al.
(2009) [251] for the treatment of large stress in SiGe alloys, adding correcting parameters
on the on-site and hopping terms labeled α, β and γ.
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EPM In strained structures, the reciprocal lattice vector are affected by the distortion
of the cubic lattice [302]:

G′ =
G

1̄ + ε̄

where 1̄ is the unit tensor and ε̄ is the strain tensor.
This implies that, to describe the influence of stress, one has to know the value of the
local form factors Vs and Va at G′ (norm of G′). From the six local form factors at the
unstrained G2 = 3, 4(8) and 11, different expressions are derived to describe the whole
V (G) curve in the literature, using sometimes complicated interpolation functions (see,
e.g., Refs. [99] and [308] for Si and Ge). For InGaAs alloys, Kim et al. (2010) [165] used
spline cubic functions, fitting the slope of the curve by fixing the form factors at G± 0.01
[2π/a0]. Note that Kim et al. (2002) [166] pointed out that the deformation potentials ac
and av in polar materials are not well described if local parameters are only modified as
presented above, because the stress also induces charge redistribution and changes in the
screening potential included in Va and Vs. The authors thus include an additional fitting
parameter in their model, which is not accounted for in the parametrization of Ref. [165].

KP The pioneer work of Bir and Pikus [95, 284] studied the influence of stress in the
pertubative k · p framework and derived expression for stress elements. It is included
as extra terms in the Hamiltonian. When spin-orbit and strain-effect are included, the
Schrödinger equations thus becomes:

{Hkp +Hso +Hstrain}ψnk(r) = Enkψnk(r) (1.12)

The strain Hamiltonian has been derived for 30-band KP models in Rideau et al.
(2006) [304], but to our knowledge no complete set of parameters exists for InAs and
GaAs materials to describe stress. In Neffati et al. (2012) [242] as well as Verreck et al.
(2016) [384], the strain in 30-band model for III-V materials is deduced from the 8-band
model with no additional strain parameters.

The effect of strain in the 8-band KP model is presented in Appendix A.1.1. Note
that it was found in the recent work of Rau et al. (2016) [297] that the standard value of
deformation potential used in 8-band KP fail to reproduce stress dependence prediction
of DFT and TB models and need to be re-calibrated. Unfortunately, the re-calibration
was not provided in their work.
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1.2 Band structure in nanostructures

In this second section, the electronic properties of quasi-1D (nanowires) and quasi-2D (thin
films) nanostructures are investigated. These structures are of technological importance
considering the novel architectures of scaled devices, where the channel in FDSOI/FinFET
devices reaches thickness/width of a few nanometers. In particular, NanoWires FET
(NWFETs) and Gate-All-Around (GAA) devices are considered for future nodes, allow-
ing an improved electrostatic control and better scalability [84].
The theory of envelope function and the construction of the BZ and Hamiltonian in a con-
fined structure are first discussed. Then band structures of InAs and GaAs thin films and
nanowires are investigated with TB, KP and NP-EMA models with hard-wall boundary
conditions. The models and derivations of non-parabolic corrections in the confinement
direction are discussed and the lowest subband energy of Γ valley and effective masses are
extracted.

1.2.1 Confinement effect on band structure

In FDSOI MOS structures, insulators with large band gap surrounding the thin semi-
conductor channel produce a confining potential. This can be seen in the Figure 1.13,
where the conduction and valence band edges profile along a FDSOI structure is shown.
When the size of the channel layer reaches the characteristic wavelength of carriers, the
wavefunctions are affected by the confining potential and quantum confinement starts to
play an important role. Electrical confinement can also be induced by the perpendicular
electric field applied by the gate. This effect will be discussed in the next Chapter, treating
the electrostatics of MOSFET structures.

This quantum confinement affects the band structure, projecting the bulk 3D BZ in
lower dimensionality, along with the creation of “subbands”. The projection of the bulk
BZ and position of ∆ and L valleys for different confinement orientations are schematically
drawn in Figure 1.14. The different subbands and envelope functions associated in the
confined FDSOI structure are also shown in Figure 1.13. This projection of the BZ can
be seen as a sampling of the bulk band structure for each discrete ki vectors (i supposed
as a confined direction) labeling the different “subbands”.

TB

In the case of atomistic methods, the physical confinement is taken into account explic-
itly in real space, by constructing a supercell with hard-wall boundary conditions. In
unconfined direction(s), standard periodic boundary conditions are applied, as in bulk
simulations. In reciprocal space, the supercell construction induces a folding (or projec-
tion) of the BZ and the transport can occur only along the unconfined direction(s).
Now, there are different ways to construct the boundary conditions at the nanostructure
surface. Lee et al. (2004) [178] presented two methods to apply closed-boundary condi-
tions by raising the energy of either surface atoms or dangling bonds of these atoms, to
avoid charge in the empty bonds. Niquet et al. (2000) [247] chose to passivate the dan-
gling bonds of surface atoms with H atoms, whose parameters can be eventually adapted
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Figure 1.13. Left: Cut of the conduction (blue) and valence (red) band profiles through
a FDSOI structure, in flat band conditions. We set a band offset between InAs and Al2O3

of 3.8 eV and a metal workfunction of 5 eV. Black dashed lines show the energy level of the
three lowest subbands in NP-EMA including WFP, and the envelope function associated is
plotted in solid lines (in arbitrary units). Right: Comparaison of the envelope functions of
the lowest subbands in a Si (001) slabs coming from ∆x,y (a) and ∆z (b) valleys obtained
with different empirical models (taken from Ref. [305]).
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Figure 1.14. Schematic drawing of the BZ in 2D systems and projection of ∆ (up) and L
(down) valleys (shown as white empty ellipsoids). The dotted lines are the projection of 3D
BZ on a plane, while solid lines are the 2D BZ of confined quasi-2D layers. 1D BZ is shown
with a blue solid line. The light blue ellipsoids show the position of valleys in a quasi-1D
confined structure in different orientations.

to emulate different physical phenomena, such as band edge and surface dipoles [254].
Unfortunately, it is more complicated to describe the interface with an oxide with TB
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models and the above boundary conditions cannot account for the finite band offset be-
tween semiconductor and oxide, inducing the wavefunction penetration (WFP) inside the
oxide. These effects are however non-negligible and affect the electrostatic properties of
MOSFET devices (such as capacitance), as it will be investigated in the next Chapter.

KP

In the case of “continuous” models, such as KP model, the construction of the Hamil-
tonian is in principle only valid in bulk materials, due to the choice of the basis for the
wavefunction expansion. In heterostructures, the envelope function approximation has
been widely used, together with the appropriate boundary conditions. Nonetheless, this
method can be questionable to model semiconductor/oxide interfaces, since it supposes
a slow varying potential (nearly constant at the scale of the crystal unit cell) and can
give different results compared with atomistic models [303, 305, 386, 82]. Moreover as
the periodicity of the bulk band structure is not assured in the KP model (perturbation
around one k point), the projection of the 3D BZ can lead to spurious states. We will
discuss the different boundary conditions and ways to filter these states below.

Envelope function approximation and Brillouin zone construction We recall
briefly the derivation of the envelope function and construction of BZ in confined systems.
The band offset due to the interface with oxides can be treated in first approximation as
a potential term Φ(r) in Schrödinger equation:

(H0 + Φ(r))ψ(r) = Eψ(r)

where H0 is the bulk Hamiltonian (Eq. (1.5)). In this case, the crystal symmetry is broken
and the Bloch functions are no longer valid. As for the KP theory in bulk, the basis set
for the development is taken as the wavefunctions at k = 0:

ψ(r) =
∑

n

Fn(r)un0(r) (1.13)

where Fn(r) is an envelope function. By considering both Φ(r) and Fn(r) slowly varying
in space, it allows to recover a Schrödinger-like equation on the envelope functions:

(
HKP + Φ(r)

)
Fn(r) = En(r)Fn(r) (1.14)

where HKP is the bulk KP Hamiltonian, function of KP matrix elements ∼ 〈un0| p̂ |un0〉
and where the terms ~k have been replaced by p̂ = −i~∇ and ~2k2 by p̂2 = −~2∇2.

In the particular case of 1D confinement in z (Φ(r) = Φ(z)), the envelope function is
given by FnKb(r) = eiKRfnKb(z).

4 The application of ∇̂ operator is thus twofold: i) in
the in-plane direction R = (x, y), it applies on plane waves and leads to the K · p terms

4We introduce here the notation: K and R are in-plane 2D vectors, z is a 1D coordinate in the
confinement direction and b is the index of subband.
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as in bulk, giving rise to a continuous energy dispersion versus K = (kx, ky); ii) in the
confinement direction z, it applies on the envelope function fnKb(z) and leads to a set of
differential equations that need to be solved to obtain the subband energy levels (indexed
by b). The envelope functions obtained in this way in EMA in Si thin films are compared
with TB calculations in Ref. [305], as shown in Figure 1.13.

Note that the confined structures considered (nanowires and slabs/thin films) are not
real 1D or 2D structures, as the crystal has a finite extension and a given geometry in the
confined direction(s). In some cases, it is interesting to construct a confined “Brillouin
zone” (see the discussion in Esseni et al. (2005) [82]). In particular, the extension of
the BZ in the confined direction will be important in the treatment of spurious states
explained below.

Boundary conditions The development above considers a potential well in an homo-
geneous medium (no variation of the KP parameters with space coordinates). In the case
of a real interface between two materials, the parameters are space-dependent and the un0

basis states for KP model differ between the two bulk materials. One way to match the
wavefunctions and Hamiltonian at the interfaces has thus to be determined.

A pragmatic way to do this was first proposed in the 1960’s by Harrison [124] and the
corresponding KP Hamiltonian was given by Ben-Daniel and Duke (1966) [23]. The 1D
EMA Schrödinger equation in this case is given by:

[
p̂z

1

2m∗(z)
p̂z + V (z)

]
f(z) = Ef(z)

where m∗(z) is discontinuous at the interface, but the envelope wavefunction f(z) remains
continuous, as well as the quantity [1/m∗(z)](∂f/∂z). Note that as p̂z and m∗(z) don’t
commute, the position of each operator is important.

In the case of KP models with more than one band, the correct operator ordering was
derived by Burt in 1992 [42] and applied to 8-band KP model by Foreman in 1993 [96],
leading to the so-called “Burt-Foreman” operator ordering. For a more detailed analysis
of the issue of operator ordering, one can refer to the PhD thesis of Veprek (2009) [374],
as well as practical examples in more recent studies [98, 136].

Spurious states As stated earlier, spurious states can appear in the simulation of het-
erostructures with KP models. These states are non-physical states that appear in confined
band structures, due to the non-periodicity of the bulk KP models. They appear in mod-
els where both negative and positive band dispersions are taken into account (such as
8-band or full-zone KP models) and are coming from remote k states that are projected
in the 2D/1D Brillouin zone. In the case of 8-band KP model, it was shown that dif-
ferent operator ordering and boundary conditions can affect the apparition of spurious
states [375, 49].

In this work, we follow the work of Refs. [151, 383] and filter the spurious state in the
reciprocal space. The idea consists in filtering the spurious states according to their spatial
frequencies. The Hamiltonian is projected on sin(kzz) and cos(kzz) testfunctions that

38



1.2 – Band structure in nanostructures

correspond to well-determined oscillations in the confinement direction.5 The maximum
oscillation frequency of the testfunctions depends on the number of testfunctions Ntst used
in the calculations, which can be more than a hundred to assure convergence. In this case,
the corresponding kz,max = Ntst2π

L goes outside the bulk BZ and/or beyond the domain of
validity of the KP parametrization, leading to spurious states. These states are avoided
by considering a “padding” zone: the real space length Lz is extended to L = Lz + Lpad

in order to keep the highest k in the range of the validity of the KP parametrization:
kz,max < kmax = 2π

a . The potential is then raised up in this “padding” region, allowing to
filter the spurious states for any KP models and to adjust the range of spatial oscillations
within the domain of validity of the KP parametrization.

NP-EMA

For the device modeling point of view, the great advantage of EMA over full-band empir-
ical models is that it gives an analytic expression for the E(k) dispersion. In this way, the
integration over k can be converted into an integration over the energy and the compu-
tation time is drastically decreased. For example, the knowledge of the wavefunctions at
the subband minima is then sufficient to compute the charge in a thin film or nanowire.
However, in III-V materials, the parabolic approximation fails as the energy dispersion
close to the Γ point is strongly non-parabolic, due to the coupling between conduction
and valence bands (see Figure 1.15). This analytic integration is in principle no longer
possible, and Schrödigner equation needs to be solved on a fine k mesh. To circumvent
this issue, some corrections have been derived to account for non-parabolic effect in a
simple analytic EMA model. In this model, the bulk energy dispersion is given as (see
Appendix A.1.1 for details about the derivation of this expression):

ε(k) =
1

2α

{
−1 +

√
1 + 4αγ(k)

}
(1.15)

where γ(k) = ~2k2
2m∗ . The dispersion obtained with this expression and the effect of non-

parabolicity on InAs band structure and subbands energy levels are schematically shown
in Fig. 1.15.

For confined structures, Schrödinger equation in the envelope function approximation
has to be solved and Eq. (1.15) leads to a kinetic energy operator that depends on k.
Indeed, the non-parabolicity couples the modes in the confinement direction to the trans-
verse modes (x, y) and makes it a priori necessary to solve a Schrödinger equation for each
in-plane (kx, ky) point. Further approximations need thus to be made to keep the analytic
advantage of EMA models and to obtain a simple NP-EMA model that is numerically effi-
cient. To avoid simplification, some studies proposed to solve the NP Schrödinger equation
by using iterative method [388, 146]. These methods were not used here for sake of com-
putation efficiency. We rather used analytical EMA models that include NP corrections

5Note that this new basis also allows to reduce the size of the KP matrix in big systems, where the
finite difference in real space has to be done on a fine mesh, and can thus be more computational efficient.
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Figure 1.15. Simple schema of the energy levels in thin film and bulk dispersion
obtained with EMA and NP-EMA models, using parameters of InAs Γ valley: m∗ =
0.023 m0, α = 2.6 and tch = 17 nm.

and keep the resolution as simple as parabolic EMA in numerical point of view. A few dif-
ferent models were proposed in the literature, such as the ones of Altschul et al (1992) [7],
Jungemann et al. 1993 [153], Fischetti and Laux (1993) or Jin et al. (2007) [149], with
different approximations. In this work, we use two models: Jungemann [153] and Jin [149]
models. In the first one, kinetic energy operator’s dependency on k is neglected and only
the in-plane E(kx, ky) dispersion takes into account NP corrections. In the second model,
the kinetic energy operator is projected on parabolic wave-functions, allowing to take into
account NP corrections in both transport and quantization direction. The position of µth

subband energy level is given in this model by:

ENPµ = Uµ +
1

2α

{
−1 +

√
1 + 4α(Eµ − Uµ)

}
(1.16)

where Eµ is the parabolic level and Uµ =
∫
|ζPµ (z)|2U(z)dz, with ζPµ the parabolic wave

function and U(z) the total potential energy.
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1.2 – Band structure in nanostructures

1.2.2 GaAs and InAs thin films

We compare in this section the TB and NP-EMA models in quasi-2D thin layers of GaAs
and InAs, corresponding to thin films in FDSOI technologies (confined along the gate
stack direction). As the treatment of boundary condition is still under debate and degree
of accuracy differs between the methods, we will consider free standing films with hard-wall
boundary conditions (the wavefunction is considered as zero outside the semiconductor).

TB

Semi-empirical atomistic sp3d5s∗ TB model with spin-orbit is used to compute the band
structure of InAs and GaAs nanostructures (thin films and nanowires). The hopping
and on-site parameters are taken from Ref. [38] and boundary conditions are set as in
Ref. [250], with a surface passivated with pseudo-H atoms. The coupling parameters of
these pseudo-H is chosen so that the surface states are well separated and lie far from the
conduction and valence band edges of the semiconductor. This leads to nearly hard-wall
boundaries and negligible wave-function penetration (WFP). This allows to compare the
different models without the influence of the up-to-now unresolved problem of semicon-
ductor/oxide interfaces.
The effective masses at the bottom of the subbands are extracted from the second deriva-
tive of the energy dispersion, calculated by the Hellman-Feynman theorem:

∂2E

∂k2
= 〈ψ| ˆ∂2H

∂k2
|ψ〉+ 2Re

{(
∂〈ψ|
∂k

)
∂H
∂k |ψ〉

}

Figure 1.16. Conduction band structure for tch of 3 nm (black solid lines) and 5 nm (red
dashed lines) for GaAs (left) and InAs (right) (001) thin films passivated with pseudo-H
atoms, obtained with TB model in TBSim [238].

The full band structure for thin films of InAs and GaAs confined in (001) direction
and film thicknesses tch = 2 and 5 nm are plotted in Figure 1.16. One first notes that the
lowest subband remains at the Γ point and the study of wavefunction symmetry shows
that it has the s-like character of the Γ bulk valley for thickness down to 2 nm.
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in GaAs (red) and InAs (blue) obtained by TB, as a function of film thickness. The arrows
show the transition where ∆z valleys become lower than Γ valley (see Fig. 1.16 and text).
Results from Ref. [190] are also shown in (b) for comparison.

The transport effective masses of the lowest subband for thin films with different
confinement orientations are plotted in Figure 1.17. Their dependence can be modeled

with an analytic formula used in compact models [134]: m(d) = mbulk

(
1 + d0

d

)
where d

is the confinement dimension (film thickness in this case) and d0 is a fitting parameter
(equal to 6.5 nm (2 nm) for InAs (GaAs) film confined in (001) orientations and 4.5 nm (1
nm) for InAs (GaAs) films confined in the two other orientations). The lowest conduction
band edge remains at the Γ point, but the effective mass in (001) films increases more
rapidly with confinement, maybe due to the influence of boundary conditions.

Figure 1.18(a) also shows the in-plane effective mass of the second subband in (001)
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1.2 – Band structure in nanostructures

films and the arrow shows the transition point where the ∆z bulk valley projected in the
2D BZ center has an impact on the 2nd subband. Figure 1.18(b) shows the “quantization
effective mass” recast from the energy shift of the subband. Indeed, in the case of infinite
quantum well, the wave-vector along the confinement direction (supposed along z axis) is
given by kz = nπ

tch
, where n ∈ N and tch is the thickness of the well. The energy level of

the different subbands can be expressed in a first approximation (parabolic model) as:

Ec,n = E0
c +

~2k2
n

2mz
= E0

c +
n2π2~2

2mzt2
(1.17)

where E0
c is valley minimum in bulk, n is the index of subband and mz is the effective

mass along the confinement axis z (defined here as the “quantization effective mass”). The
energy shift ∆Ec = Ec,1−E0

c as a function of 1/t2ch obtained by TB is plotted in Fig. 1.19,
and compared with the analytic parabolic formula above. As expected, the energy shift
extracted from TB doesn’t follow a 1/t2ch trend due to NP effects and the parabolic EMA
leads to strongly overestimated subband energies for films with tch < 10 nm. This is also
more pronounced for InAs than GaAs, due to its higher NP coefficient (see Table 1.7). To
better account for this effect, the bulk NP dispersion in Eq. (1.15) can be used to derive
an analytic expression of the subband energy [277], when no WFP is taken into account.
In that case, the subband energy level is approximated by:

Ec,n = E0
c +
−1 +

√
1 + 4α~2k2z

2mz

2α
= E0

c +
−1 +

√
1 + 2α ~2

mz

(
nπ
tch

)2

2α
(1.18)

where α is a non-parabolic coefficient and kz is defined as previously kz = nπ
tch

. The result
obtained with this expression is also plotted in Figure 1.19 and we see that a very good
agreement between the analytic model and TB can be found with a single effective mass
m∗ equal to the bulk one but with a boosted α parameter (see Table 1.7 and discussion
about NP-EMA model below).

NP-EMA

Subbands energy levels extracted with the NP-EMA model of Jin et al. (2007) [149] are
also plotted in Fig. 1.19, with parameters given in Table 1.7.

As explained above, the relation ∆E(1/t2ch) is no more linear due to NP effect. More-
over, in order to obtain good agreement with TB, the NP coefficient α has to be boosted
compared to the theoretical value given by Eq.(A.3). This observation together with the
different behavior in transport and quantization direction of m∗ extracted by TB indicates
that NP effects in transport and quantization directions may behave differently with con-
finement thickness and might thus need to be described with different NP coefficients. One
notes here the almost perfect agreement between the NP-EMA PS numerical resolution
and the analytic model in Eq. (1.18).

By comparing our results with the recent publication of Zerveas et al. (2016) [401], one
finds an overall good agreement with the different empirical method and ab initio tools,
including the simple NP-EMA. This tends to comfort our idea and validate the approach
used for device modeling, based on NP-EMA model.
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Figure 1.19. Lowest subband energy levels difference EΓ − EΓ(bulk) in GaAs (left,
Eg(bulk) = 1.41 eV) and InAs (right, Eg(bulk) = 0.37 eV) simulated with EMA and
NP-EMA models in UTOX and TB model in TBSim. Results do not include WFP effects.
Symbols are PS simulations, while lines are analytic results (see text).

Table 1.7. Parameters used for EMA and NP-EMA calculations, extracted from bulk TB
calculation with TBSim for InAs and GaAs and from Ref. [264] for InGaAs. α values in
parenthesis are extracted by fitting the TB data for confined structures (see text). For ∆
valley both transverse and longitudinal masses are given.

Material Valley Eg [eV] m∗ [m0] α [eV−1]

InAs Γ 0.37 0.023 2.6 (6)

In0.57Ga0.47As Γ 0.74 0.041 1.3

Γ 1.41 0.066 0.7 (4)

GaAs L 1.7 0.09 / 1.73 0.2

∆ 1.9 0.18 / 1.86 0.1

KP

The band structure obtained with 8-band KP model in InAs thin film in (001) confined di-
rection is compared with TB in Figure 1.20. The Burt-Foreman Hamiltonian was resolved
here in real-space in a finite difference scheme and a coupling parameter Ep = 18 eV. The
theoretical Ep = 20 eV leads to spurious solutions, as shown in Ref. [96]. The comparison
with TB model shows that the conduction band structure is well described with 8-band
KP model close to Γ point, but that the confinement effect on valence band is overesti-
mated. The spin splitting due to symmetry breaking effects in nanostructures, inducing
a lift of the spin degeneracy for k /= 0 in TB band structure, is also missing in the KP
description.
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Figure 1.20. Band structure around the Γ point of (001) InAs thin films with tch = 5 nm
obtained with 8-band KP (Ep = 18 eV) and TB models in TBSim package.

Moreover, the full-band structure over the entire 2D BZ of GaAs thin films in (001) con-
fined direction is also computed with the 27-band KP model (54-band without spin-orbit),
with a reciprocal space resolution of the Hamiltonian projected on sinusoidal functions,
allowing the filtering of the spurious states as explained above. The band structure is
shown in Figure 1.21 and compared with TB model. An overall good agreement is found
for the two models. Some discrepancies are found for the ∆z valleys projected in the Γ
point (second and third subbands of TB model) and the ∆x and ∆y valleys at the X point
which are lying lower in TB model with the parameters given by Jancu et al. (1998) [145].
This difference, also encountered in the bulk band structure, is due to the parametrization.
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Figure 1.21. Band structure of (001) GaAs thin films with tch = 3 nm obtained with
27-band KP and TB models in UTOX package.
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LCBB

Finally confined thin-film structures are simulated with a Linear Combination of Bulk
Band (LCBB) approach with local EPM bulk model and following the methodology of
Esseni et al. (2005) [82] and Rideau et al. (2007) [302, 303]. Unlike calculations in Si
and Ge, both conduction and valence bands need to be included in the LCBB calculations
in order to reproduce the correct position of the Γ valley in III-As materials, which in-
creases the difficulty and computational cost of this method. The results obtained and the
comparison with TB simulations for GaAs and In0.57Ga0.43As thin films with thickness of
tch = 3 nm are shown in Figure 1.22. A VCA approach is used for In0.57Ga0.43As materials
for both LCBB and TB calculations. A linear interpolation is used for EPM parameters,
while the interpolation method presented in Section 1.1.8 is used for TB.
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Figure 1.22. Band structure of (001) GaAs (left) and In0.53Ga0.47As (right) thin films
with tch = 3 nm obtained with LCBB (EPM) and TB models in UTOX package.

For the GaAs thin films, the lowest subbands lie at lower energy in LCBB compared
to TB. The energy difference between the lowest subbands at Γ and along the ∆ line
are is also reduced in LCBB compared to TB. These effects are probably due to the
bulk parameterization. For In0.57Ga0.43As thin films, an overall good agreement is found
between the two approaches for the lowest conduction bands. In the LCBB calculation,
the valley minimum along the ∆ line is shifted away from X symmetry point, while it
remains at X in the TB calculation, due to the parametrization used (as mentioned in
Section 1.1.4).

1.2.3 III-As and SiGe nanowires

The band structure and electronic properties of III-As and SiGe nanowires are investigated
in this section with an atomistic TB approach, with the sp3d5s∗ TB model in TB_Sim pack-
age and parameters for SiGe discussed in Section 1.1.8. The VCA and random supercell
approaches are compared in the case of SiGe NWs.

46



1.2 – Band structure in nanostructures

III-As NWs The conduction band edge and transport effective masses of the lowest sub-
band for InAs and GaAs nanowires with different orientations are plotted in Figure 1.23.
One notes that the variation of lowest subband effective mass is similar in the 〈110〉 and
〈111〉 directions, but increases more rapidly in the 〈001〉 direction. As for thin films, its
dependence can be modeled with the same analytic formula, where d is the wire radius in
this case and d0 is a fitting parameter (equal to 8 nm (3.5 nm) for InAs (GaAs) in 〈001〉
orientation and 4.5 nm (1.2 nm) for InAs (GaAs) NWs in the two other orientations).
The position of the conduction band edge is rather independent on the wire orientation,
as seen in Fig. 1.23, due to the isotropic character of the Γ valley and confirming that the
lowest subband remains from the bulk Γ valley.
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Figure 1.23. Transport effective mass mx (left) and conduction band edge (right) in InAs
and GaAs nanowires obtained with TB model in TBSim, as a function of wire radius.

SiGe NWs In Si and Ge materials, the conduction band minima are not isotropic any-
more and the influence of the confinement on the band structure can be more complex.
The band structures of pristine Si and Ge NWs with diameter d=8 nm and different orien-
tations are shown in Figure 1.24. Unlike III-As materials, the confinement direction affects
the character of the lowest conduction subband, whose effective mass and degeneracy are
summarized in Table 1.8.
In SiGe NWs, a discontinuity in the band gap and effective mass is found around x ' 0.8
as in the bulk case, as shown in Figure 1.25. The sharp transition can be accompanied
with a decrease (in the 〈110〉 and 〈111〉 orientations) or increase (in the 〈001〉 orientation)
of the effective mass of the lowest subband. The calculation with random distribution of
Si and Ge atoms is compared with the VCA model presented in the previous section and
a good agreement is found, especially for the effective mass of the lowest subband which
is the most relevant for transport (as discussed in the Chapter 3).
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Si NW subbands Ge NW subbands

Orientation A B A B C

〈001〉 ∆4 (0.22) ∆2 (0.91) ∆4 (0.20) ∆2 (0.85) L4 (0.60)
〈110〉 ∆2 (0.19) ∆4 (0.56) L2 (0.09) ∆4 (1.31) L2 (1.14)
〈111〉 ∆6 (0.44) - ∆6 (0.42) L3 (0.27) L1 (1.61)

Table 1.8. Properties of the NW subbands indicated in Fig. 1.24: Origin of the
subband (projected valley ∆ or L), degeneracy (subscript), and effective mass in
atomic unit (in parenthesis).
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Figure 1.24. Conduction band structure of pristine Si (left) and Ge (right) NWs
with 8 nm diameter oriented in 〈001〉 (a-b), 〈110〉 (c-d) and 〈111〉 (e-f) directions,
obtain with TB model in TBSim. Properties of the subbands indicated in each figure
are summarized in Table 1.8. The origin of the vertical energy axis is set to the top
of the bulk valence band.
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Figure 1.25. Band gap (up) and electron effective mass of the lowest subband (down) in
SiGe NWs with three orientation and diameters of 8nm (a-b), 4nm (c-d) and 2nm (e-f).
The symbols with solid lines are VCA calculations, while dashed lines are calculations with
random distribution of atoms (one hundred samples were randomly generated, the error bar
showing the minimum and maximum values obtained; see text for details). Valley labels in
the inset of (a) are defined in Fig. 1.24(a-b). Lines are guides to the eye.

1.3 Conclusion of the Chapter

In this Chapter, we investigated the electronic properties of bulk and confined InxGa1−xAs
and Si1−xGex materials. The effective masses and position of the different valleys as well
as the total density-of-states were extracted from the bulk band structure and the values
of deformation potentials were reviewed. This study gave us insight in the knowledge of
the electronic structure of these materials and the controversy on the position of satellite
valleys in InAs and InGaAs materials.
The effective mass and band structure of quasi-2D and quasi-1D nanostructures were
also computed with different approaches and the effect of the non-parabolicity in the
confinement direction in III-As thin films were discussed.

Moreover, different empirical models were introduced, that will be used along the next
Chapters for the calculation of electrostatic and transport properties. For electrostatic
calculations, presented in Chapter 2, the NP-EMA model will be used and compared with
atomistic TB to model capacitance in thin-films. For calculations of transport properties
presented in Chapter 3, NP-EMA and low-order KP models will be used to compute
the carrier low-field mobility in planar structures, while TB model will be used for the
calculation of carrier effective mobility and drift velocity at high field in nanowires. In
Chapter 4, quantum transport calculations in a whole device are performed within the
EMA and low-order KP model framework only.
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Chapter 2

Electrostatics and trap dynamics

In transistors based on Metal-Oxide-Semiconductor (MOS) structures, the current is en-
abled by the creation of a charge inversion in the channel. The switching capability of
the device is thus strongly dependent on the electrostatic characteristics of the structure,
namely the inversion charge achievable by the application of a gate voltage Vgs.
One of the major concern in III-V MOSFETs is the charge inversion achievable, which
is limited by the low density-of-states of the Γ valley available as well as the high traps
density present at the interface between III-V semiconductor and oxides. These effects
hinder the performance gain of their high electron mobility, as the overall current needs
both high carrier velocity and density: j = nv.
In this Chapter, the electrostatic characteristics of long-channel devices are investigated by
Poisson-Schrödinger simulations in the TB and NP-EMA approaches. The capacitances
obtained with the different models in bulk and Ultra-Thin Body and BOX (UTBB) ideal
devices (without traps) are compared with each other. In the second part of the Chapter,
the influence of trap response at room-temperature is discussed by analysis of experimen-
tal data of MOSCAP devices fabricated at CEA-LETI and the models available for the
simulation are exposed.

2.1 Capacitance of ideal MOS devices

2.1.1 Modeling strategy

Non-linear Poisson solver

When a difference of potential is applied at the two terminals of a MOS structure, the
system is polarized and a charge can be achieved in the semiconductor. At equilibrium,
the potential and the charges in the system must satisfy the Poisson equation:

∇ · (εrE) =
ρ(r)

ε0
(2.1)

where E = −∇V is the electric field and ρ = e(p − n + Nch) is the electric charge
density, accounting for electrons n and holes p free carriers and dopant concentration
Nch = ND − NA (ND and NA denoting the donor and acceptor ions resp.). For bulk
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2.1 – Capacitance of ideal MOS devices

MOSFET at low gate voltage Vgs, the quantum confinement is negligible and we can
consider a classical formula for the free carrier charge density:

n(r) = N3D
c F1/2

(
Ec(r)−EF

kBT

)
(2.2)

where N3D
c is the classical effective density-of-states related in bulk to the effective mass

m∗ through the relation (gs = 2 is the spin degeneracy):

N3D
c = gs

(
m∗kBT

2π~2

)3/2

and Fi(η) is the Fermi-Dirac integral of order i defined as:

Fj(η) =
1

Γ(j + 1)

∞∫

0

dt
tj

1 + exp (t− η)

The self-consistent resolution of Eqs. (2.1) and (2.2) can be performed with iterative
solvers, often referred to as “non-linear Poisson solvers”. The high non-linearity comes
from the exponential dependancy of the density over the potential and makes the conver-
gence of the system hard to assure. To get a good convergence, the system is transformed
into a set of linear equations solved iteratively, in a predictor-corrector scheme [359] (see,
e.g., Refs. [280, 131, 359] or [316] for details).

Poisson-Schrödinger solvers

When Vgs is increased, the electric field at the SC-oxide interface increases and produces
a V-shape potential profile. This electrical confinement leads to the creation of 2D elec-
tron gas (2DEG) and quantified energy levels (subbands). 2DEG can also be created
by physical confinement in thin-films or NWs. In these cases where the confinement is
strong, the subbands energy levels need to be computed through the resolution of the
Schrödinger equation. In order to simulate numerically, e.g., the capacitance of a MOS
structure, the Poisson and Schrödinger equations are then solved self-consistently in the
scheme presented in Figure. 2.1.
The free carrier charge density is here given at equilibrium as a function of the wavefunc-
tions ψσnK at wavevector K in the band n and with spin σ:

n(r) = −e
∑

n,K,σ

|ψσnK(r)|2 f
(
En(K)−EF

kBT

)
(2.3)

As mentioned in the previous Chapter, the use of the EMA simplifies greatly the calcula-
tion of the density, as an analytic relation between E and K exists and the wavefunctions
and energy levels at the Γ point are sufficient to determine the charge density. In this
case, the calculation of the charge density can be simplified as follows. First, the discrete
summation over in-plane wavevectors K is transformed into a continuous integral and

51



2 – Electrostatics and trap dynamics

the norm of the plane wave part of the wavefunctions are averaged, leading to a simple
renormalization factor 1/L2 and only the 1D envelope function φn(z) remains:

n(z) = −egs
∑

n

��L2

(2π)2

∫
d2K

1

��L2
|φn(z)|2 f

(
En(K)−EF

kBT

)
(2.4)

Then the analytic relation between E and K2 is used to transform the integral:
∫

d2K =

∫
2πm∗dE

~2

Finally, the definition of the Fermi-Dirac integrals shown above is used to obtain the
expression of the charge density:

n(z) = −e
∑

n

|φn(z)|2N2D
c F0

(
En(0)−EF

kBT

)
(2.5)

where the expression of the 2D effective density-of-state is used: N2D
c = gs

m∗kBT
2π~2 .

In the case of an anisotropic dispersion, as ∆ and L valleys that are modelled by ellipsoids
with transversal mass mt and longitudinal mass ml, the effective mass m∗ entering the
equation needs to be determined. A “density-of-states” effective mass m∗DOS =

√
mxmy

is defined in practice, where mx and my depend on the confinement orientation and their
relation to mt and ml can be determined through the change of coordinate references and
the “generalized effective mass approach” for arbitrary device orientation developped and
discussed in details in Refs. [83, 196, 296].

For NP-EMA models, the charge density calculated in the self-consistent loop is cor-
rected according to the model used. For Jin’s model, it is given by [149]:

n2D(z) = −egs
kBT

2π~2

∑

µ

mµ
d

{ [
1 + 2α(ENPµ − Uµ)

]
F0(η)

+ 2αkBTF1(η)
}
|ζµ(z)|2

where µ indexes the different valleys and subbands and mµ
d is the DOS effective mass.

The NP energy level ENPµ is determined through the relation given in the Chapter 1
Eq.(1.16). The charge density given by Jungemann’s model [153] follows the same
expression, replacing (ENPµ − Uµ) by EPµ .

In TB, this analytic transformation cannot be performed and the charge density must
be computed on the TB atomic mesh (zi being the position of the ith atom) by integration
over a refined K mesh on which the wavefunctions and energies are computed:

n(zi) = −e
∑

n,K,σ

|ψσnK(zi)|2f
(εn(K)−εF

kBT

)

where here |ψσnK(zi)|2 denotes the weight of the wavefunction on the atomic orbitals of
the atom at zi. This charge is then transferred (interpolated) to the Poisson solver, which
uses a finite difference square mesh, extended in the oxides and metal gate contacts.
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2.1 – Capacitance of ideal MOS devices

Numerical resolution: Newton-Raphson iteration scheme

The schematic Poisson-Schrödinger self-consistent loop is shown in Figure 2.1. A potential
guess V (z) is first set in Schrödinger equation and eigenvalues and eigenvectors are com-
puted. They are then used to compute the charge density and its derivative as a function
of the potential, and re-injected in the non-linear Poisson equation, in the framework of
a Predictor-Corrector Newton-Raphson scheme. In this scheme, the potential at the ith

step is computed from the previous (i− 1)th step as [280, 359]:

[
∇ · ε(r)∇+ δρi−1(r)

]
V i(r) = δρi−1(r)V i−1(r)− ρi−1(r) (2.6)

where δρ(r) = δρ(V,r)
δV (r) denotes the local derivative of the charge density with respect to the

potential (or Jacobian).

The self-consistent resolution of Poisson and Schrödinger equations resembles the non-
linear Poisson solver, where the charge density depends on the outputs from the eigenvalue
Schrödinger solver. In this case, the derivative of the density over the potential is not
analytic and needs to be performed numerically. Some approximations are usually used
to compute it.

Figure 2.1. Schema for the self-consistent resolution of Poisson and Schrödinger equations.

Another self-consistent scheme was used in Pereira (2015) [280], using an “effective”
density prefactor N3D

c in a non-linear Poisson solver, calculated from the Schrödinger
charge density. This can be useful when the Schrödinger equation is particularly
numerically expensive, or in the framework of Quantum Drift-Diffusion, as it will be
discussed in the Chapter 4.

In UTOXPP, the linear system for Poisson equation is solved with either a standard LU
factorisation technique or a Successive Over-Relaxation (SOR) method, as implemented
and discussed in Pereira (2015) [280]. Schrödinger equation is solved with either Lanzcos
or QR eigenvalues solvers, implemented in the Lapack package and libraries available for
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2 – Electrostatics and trap dynamics

C/C++. The self-consistency is assured by a predictor-corrector scheme presented above.
A simpler Kerker mixing was also used and compared in Pereira (2015) [280].

In TB_Sim, Poisson equation is solved with a conjugate gradient method. Schrödinger
equation is solved with a Jacobi-Davidson sparse matrix solver for TB and Lanczos solver
for EMA and KP models. The self-consistency is performed by a Newton-Raphson method
to insure convergence. DIIS (Direct Inversion of the Iterative Subspace) method has also
been used, using the errors vectors from the previous iterations (up to four) to extrapolate
the next iteration, thus improving the simple Kerker mixing.

2.1.2 Quantum and non-parabolic effects on C(V)

The structure of the Intel’s device of Radosavljevic et al. (2011) [294] is first simulated,
consisting in a 40 nm thick In0.57Ga0.43As channel with a front oxide with EOT=1.2 nm.
Figure 2.2(left) shows the capacitance simulated with classical non-linear Poisson solvers
(with a Maxwell-Boltzmann and Fermi-Dirac statistics) and Poisson-Schrödinger simula-
tions in the EMA and NP-EMA approximations. It is found that classical solvers with
parabolic models are unable to reproduce the quantum effects presented in III-V materials.
The use of Maxwell-Boltzmann statistic is clearly wrong, due to low density-of-states of
InGaAs and the high position of the Fermi-level inside the conduction band in accumula-
tion (positive gate to source bias Vgs), as pictured in Fig. 2.3. The discrepancy between
parabolic EMA model and classical simulation with Fermi-Dirac statistic can be explained
by the quantum effects such as the dark space (maximum of charge centroid shifted away
from interface, see Fig. 2.3) or wave function penetration (WFP) in the oxide (which is
higher in III-V than in Si, due to a stronger effective mass discontinuity at interface). The
first effect tends to decrease the quantum capacitance (as it increases the effective thick-
ness). This is the reason why classical simulation at moderate inversion overestimates
the capacitance. When the gate voltage is increased, the dark space decreases (due to
the electrical confinement pushing the maximum of charge towards the interface) and the
difference between classical and quantum capacitance decreases. The second effect tends
to increase the capacitance, as it is shown in Figure 2.2 where the simulation with (red)
and without (blue) WFP is compared. Note that similar results were found in Lind et al.
(2010) [188] in bulk MOSCAPs.

Figure 2.2(right) compares the experimental measurement done at 1 MHz in Radosavl-
jevic et al. (2011) [294] with the NP-EMA simulations with UTOXPP in-house solver and
another Poisson-Schrödinger solver developped at IMEP by Quentin Rafhay [133]. A small
discrepancy is found between the two solvers, probably due to the difference of treatment
for the WFP and effective mass interpolation [131]. A good match is obtained between
measurements and simulation in the NP-EMA approach, while parabolic EMA underes-
timates the C(V ), for both solvers. No traps are included in the simulation, indicating
that the Intel’s device figures surprisingly good semiconductor/oxide interface quality. Al-
though Ref. [294] gives no details about the nature of the high-κ material used for the
gate oxide, the previous paper from Intel presented at IEDM 2010 (Ref. [295]) mentions
TaSiOx used as a gate oxide, which could be a promising candidate for III-V MOSFETs.
As pointed out later by Stanojevic et al. (2015) [337], the gate stack used by Intel could
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solver including WFP and the experimental data from Ref. [294] (right).
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Figure 2.3. Left: Band diagram of the structure of Ref. [294] at Vgt = Vgs−Vth = 1 V
obtained with NP-EMA model in UTOXPP package. The charge distribution obtained
with NP-EMA and Classical model with Fermi-Dirac distribution are also shown at
Vgt = 1 V in arbitrary units (same scaling applied to both curves). Right: zoom of the
charge distribution, showing the darkspace (DS) due to quantum confinement and the
effect of WFP (reducing the DS).

actually be made of a layered structure made of Ta2O5 and SiO2 layers, which composition
was fitted to obtain a dielectric constant εTaSiOx = 8.97.

2.1.3 Bulk MOSCAPs

The capacitance of bulk MOSCAPs with semiclassical and Poisson-Schrödinger simulation
were already compared in Lind et al. (2010) [188], showing the importance to use non-
parabolic models to describe the capacitance of InAs and InGaAs MOSCAPs and obtaining
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a good agreement with experimental data. O’Regan et al. (2010) [264] modeled InGaAs
bulk MOSCAPs over a wider range of gate voltage with NP-EMA models with different
positions of satellite valleys and showed their effect on capacitance. However the recent
studies on DFT detailed in Chapter 1 showed that the satellite valleys probably lie higher
in energy than the values used in Ref. [264]. In this section, we compare NP-EMA and
TB calculation with experimental data measured at low temperature and high frequency,
in order to avoid the contribution of traps.

Experimental growth at CEA-LETI

Al2O3/In0.57Ga0.43As MOSCAPs structures were fabricated at CEA-LETI by the LTM
team (Mathilde Billaud and Hervé Boutry in particular). Different thicknesses (25, 27, 75
and 150 nm) of unintentionally doped (ND ' 1015 cm−3) In0.57Ga0.43As were epitaxially
grown by MOCVD on InP n-doped (001) substrates (ND ' 1 × 1018 cm−3). Different
surface treatment were performed to obtain a good surface quality (in particular a surface
cleaning process with a solution of NH4OH 4%). 8 nm of Al2O3 were then deposited by
Atomic Layer Deposition (ALD). Finally a Ni/Au metallic gate was deposited as contact.
Figure 2.4 shows a Transmission Electron Microscopy image of the crossection of the
MOSCAP structure. One can refer to Billaud et al. (2015) [29] for more details about the
fabrication and characterization.

Figure 2.4. Left: TEM image of the cross section of a In0.57Ga0.43As / Al2O3

MOSCAPs grown on InP substrates. The thickness of the In0.57Ga0.43As layer is
27 nm (reproduction from M.Billaud’s presentation at EUROSOI-ULIS 2015 [29]).
Right: schematic view of the simulated structure.

The capacitance of these structures is then measured with an Agilent impedance an-
alyzer in the frequency range from 100 Hz to 1 MHz connected with a cryostat for mea-
surement at low temperature down to 4 K.

The Al2O3 oxide deposited in this way is amorphous, but its quality and dielectric
constant can vary. In order to extract the dielectric constant of the film deposited, a
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2.1 – Capacitance of ideal MOS devices

series of samples with different oxide thickness has been grown and characterized. The
capacitance for 40, 60, 87 and 100 ALD cycles (corresponding to around 4.2, 5.9, 8.1 and
9.4 nm Al2O3 thicknesses as measured by ellipsometry) are shown in Figure 2.5. In a
simplest model, one can write the capacitance as:

1

Cg
=

1

Cs
+

1

Cox

where Cs = ε0εsc
DS is the semiconductor capacitance due to the darkspace DS and Cox =

ε0εox
tox

is the oxide capacitance. If one considers that Cs doesn’t vary strongly at high gate
voltage (not always true, as explained below), one can easily relate the slope of 1/Cmax
vs. tox to the dielectric constant of the oxide. The capacitance at Vg = 2 V for 50 and
300 K are plotted as a function of the oxide physical thickness in Figure 2.5, as well as the
linear fit of these curves. The dielectric constant extracted from these fits are εox = 8.16
and εox = 7.76 at 50 and 300 K respectively. In the literature, the dielectric constant of
dense amorphous Al2O3 deposited by ALD is usually close to 9 [309] but can vary from 8
to 10 [397, 28]. The low dielectric value can suggest that the deposited alumina presents
a high uncontrolled porosity [276].
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Figure 2.5. Left: gate capacitance at 100 kHz measured in sample with varying Al2O3

thicknesses at 50 K (symbols) and 300 K (lines). Right: 1/Cmax taken at Vg = 2 V as a
function of oxide thickness tox used to extract the dielectric constant (see text). εr = 8.16
is extracted at 50 K and εr = 7.76 at 300 K.

Moreover, the extraction technique based on a particular Vg can be questionable for
III-V, where no real saturation of the capacitance is obtained. The approximation of con-
stant Cs can thus be invalid because, unlike Si MOSCAPs, InGaAs MOSCAPs generally
present a higher darkspace and don’t reach Cox even at high Vg, due to their low DOS.
Moreover, due to the rather high variability in these devices, the threshold voltage Vth can
vary from different samples and the extraction of the maximum capacitance Cmax is not
straightforward. This technique was nonetheless used in several studies in the literature,
e.g., Refs. [404, 399].
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2 – Electrostatics and trap dynamics

Furthermore, some comparisons with simulation results are performed to better under-
stand this behavior and validate the parameter extraction. We suppose that at sufficiently
low temperature, the traps begin to have very long time response dynamic and can be
considered as “frozen” (or fixed charge). In this case, they don’t influence the shape of
the capacitance (acting mainly as a rigid horizontal shift) and one can recover the “ideal”
C(V ) obtained by the simulation without traps. The capacitance measured at 1 MHz for
different temperatures is presented in Figure 2.6. Measurements from 300 down to 4 K
show a decrease in accumulation capacitance and a steeper slope, indicating the lower
influence of traps. A similar behaviour was found in Ref. [74] for the temperature de-
pendency of Al2O3/In0.57Ga0.43As MOSCAPs. Note that a brutal shift in Vth is observed
when temperature is decreased from 100 to 75 K which reason is not well established. From
75 to 4 K, the Cg(Vg) curve doesn’t change significantly and their dispersion in frequency
is very small, indicating that the traps can be considered as frozen. The comparison be-
tween measurement at 10 K and 1 MHz and the simulated ideal C(V ) curve is shown on
Fig. 2.6. The simulations were performed with UTOXPP Poisson-Schrödinger solver in
the NP-EMA approximation accounting for the Γ valley and a non-parabolic cœfficient
α = 1.3, allowing a good description of the charge distribution. A good agreement is
found between experimental and simulation data with an alumina thickness of 8 nm and
a dielectric constant of 8, without traps. The threshold voltage was here adjusted to the
experimental value, as no particular attention was given to the metal workfunction (set to
5 eV in the simulation) or the fixed charge in the gate stack. The value of the capacitance
for negative voltage is due to the depletion of the InP layer and we find a good agreement
with the expected InP doping of 1018 cm−3. The small staircase observed around -0.2 V in
the measurements is not reproduced in the simulations and might be due to some artifacts
from the equipment.
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Figure 2.6. (a) Capacitance measurements for IGA2 sample at different temperature
at 1 MHz. NP-EMA simulations at low temperature obtained with UTOXPP package
are also shown. (b) Al2O3/In0.57Ga0.43As capacitance measured at low temperature
and high frequency (4 K and 1 MHz) matching well the ideal C(V ) without traps
simulated with UTOXPP package.
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In Figure 2.6(b) the measurement of Al2O3/In0.57Ga0.43As MOSCAPs grown on Si
(001) substrate are shown. The In0.57Ga0.43As thickness is here 75 nm and GaAs and
InP buffer layers were epitaxially grown on Si substrate to obtain an good quality of
In0.57Ga0.43As without defect. This makes the process compatible with the 300 mm CMOS
production plants (for more details, see Ref. [30]). The measurement at 4 K and 1 MHz
were performed up to higher voltage to investigate the influence of satellite valleys. The
drop of capacitance around Vgt = Vg−Vth = 3 V might be due to the dielectric breakdown
or the loss of contact (difficult to achieve at these low temperature) and no higher gate
voltage could be applied. The small instability around Vgt = 2 V is an artifact due to
the change of regime of the impedance analyzer. The simulation with NP-EMA models
were performed with the same band structure parameters as before, while the alumina
thickness and dielectric constant had to be slightly adjusted to reproduce the experiments
(tox = 8.5 nm and εox = 7.5). These values remain in the range extracted with the
above analysis on dielectric constant and the ellipsometry studies. When compared to
the experimental measurements, a good agreement is found up to Vgt = 3 V where only
the Γ valley is occupied. When ∆ and L satellite valleys are included in the simulation,
a bump appears in the capacitance when the Fermi-level reaches their energy, due to the
increase of density-of-states. The bump’s position depends on the position of satellite
valleys, which values are taken following Ref. [264]. For lower values (EL = 1.2 eV and
E∆ = 1.33 eV), the bump is around Vgt = 2.5 V, while for the higher values (EL = 1.49 eV
and E∆ = 1.98 eV) the bump is shifted to gate voltage higher than 4 V. Due to the
breakdown of the alumina oxide, the exact position of the satellite valleys could not be
extracted here, but the experimental Cg(Vg) curve shows that the satellite valley have to
lie higher than 0.6 eV above the conduction band edge, in agreement with the upper range
in Ref. [264] and DFT values given in Chapter 1.

2.1.4 Ultra-Thin Body and BOX (UTBB) MOSCAPs

In this section, TB and NP-EMA models are applied to UTBB MOSCAPs and compared.
The accurate description of physical confinement of the NP-EMA model discussed in
Chapter 1 is here extended to self-consistent calculation of C(V ) characteristics. The
structure presented in Fig. 2.7(a) is considered, consisting in a 5 nm thin semiconductor
film, a 1 nm Al2O3 front oxide (EOT ' 0.43 nm) and a 5 nm Al2O3 BOX. A sketch of the
atomistic cell used in TB calculations is also shown. Poisson and Schrödinger equations are
solved self-consistently in the 1D slice of the structure with TB and NP-EMA models. The
channel is made of InAs, GaAs or In0.57Ga0.43As materials and confinement orientation
is along the (001) direction in all cases. In order to compare the different models, fixed
boundary conditions were first used, as described in the previous Chapter.

Figure 2.7(b) compares the results in InAs UTBB MOSCAPs obtained with the in-
house UTOXPP solver and the IMEP PS solver, with parabolic EMA and NP-EMA
models and without WFP [133]. A good agreement with the different solvers is found
again in UTBB structures. The second bump in the capacitance corresponds to the point
where the second subband is populated, in agreement with subband position found in
Chapter 1. Parabolic EMA leads to flat stair-like capacitance with a bump at high Vg and
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Figure 2.7. Left: Sketch of UTB MOSCAP structure considered. Atomistic structure
used in TB is also shown. Right: Gate capacitance of InAs UTBB structure simulated with
in-house UTOX software and compared with IMEP-LAHC’s software [133].

strongly underestimates the capacitance compared to NP-EMA model.
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Figure 2.8. Capacitance of InAs UTBB MOSCAPs with tch = 5 nm and confinement in
the (001) direction, modelled with TB, Jin’s and Jungemann’s NP-EMA and EMA models.

Results obtained with TB model are shown in Figure 2.8, together with the NP-
EMA model of Jungemann [153]. One first notes that NP-EMA models proposed by
Jungemann [153] and Jin [149] give two different results. While the slope of the capacitance
is similar, if the subband energy levels are not corrected (in Jungemann’s NP-EMA model)
the bump is pushed to higher values and the Vth shift is not accounted for (up to 0.2 V
in this case). This model thus fails to capture the correct capacitance of InAs UTBB
MOSCAPs. On the other side, the agreement between Jin’s NP-EMA and TB models
is not perfect either. As it has been noted in Chapter 1, the second subband position
is still overestimated with NP-EMA Jin’s model compared to TB, unless α is boosted.

60



2.1 – Capacitance of ideal MOS devices

For boosted α, the bump position for InAs agrees well with TB, while the slopes still
have some discrepancy. Note that this phenomenon was not found in bulk InAs and
InGaAs MOSCAP [188] where the theoretical α could be used without correction of the
subband position to find good agreement with TB. This difference can be explained by
the enhanced NP effects by physical confinement and the need to treat NP quantization
effect with boosted α. The difference in boundary condition can also affect strongly the
results, as it will be discussed in the next section.
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Figure 2.9. Capacitance of III-V and Si UTBB MOSCAPs with tch = 5 nm
and confinement in the (001) direction, modeled with Jin’s NP-EMA model with
boosted α (left) and TB (right).

Figure 2.9 compares the capacitance of (001) films with channels made by III-V and
Si materials, obtained with NP-EMA and TB model. The voltage reference is set to the
flat-band voltage Vfb. One notes the clear Vth shift due to the different band alignments
and gaps, but also the different Cmax obtained and steep slope. InAs and In0.57Ga0.43As
channels display only half gate capacitance compared to Si, due to the low density-of-
state of the Γ valley, even with non-parabolicity with boosted α and population of other
subbands. In GaAs thin films, satellite L valleys become populated before the second
subband in Γ (as shown in Fig. 1.16), increasing the density-of-state. This leads to a
higher gate capacitance, reaching values close to Si UTBB at high gate voltage.

Boundary conditions

TB As discussed in Chapter 1, the parameters set for the H-passivation in TB can affect
the band structure of thin films. These parameters can also influence the charge density
present on the H passivating atoms and the self-consistent calculation of the Cg(Vg) char-
acteristics. Figure 2.10(a) plots the capacitance obtained with TB models with parameters
for In-H and As-H bonds from Y.-M.Niquet et al. (2002) [248], and with H-atoms on-site
parameters increased by 4 eV. When the on-site energy term is increased, less charge is
present on H-atoms, but they also become less efficient in passivating the surface. The
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agreement with NP-EMA model is here improved up to Vg ' 1.5 V, before the 2nd subband
become populated. However the results obtained with the two passivation parameters are
quite close.
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Figure 2.10. Left: influence of the TB parameters of H passivating atoms on the Cg(Vg)
curve. Right: influence of the wave-function penetration (WFP) on the NP-EMA Cg(Vg).

NP-EMA Figure. 2.10(b) shows the impact of the wave-function penetration (WFP)
on the Cg(Vg) characteristics of a InAs thin film. One notes that the WFP has a strong
impact on the Cg(Vg) characteristics: i) the accumulation capacitance is strongly increased
(almost doubled in the case of parabolic EMA) and ii) the Vth is also shifted to lower value,
resulting in a similar Vth value for both the EMA and NP-EMA models. This was expected,
as the energy subbands discussed in Chapter 1 show lower values when WFP is included
in the calculations. One thus concludes that the effect of WFP is important to account
for and that, in TB, an important goal for the future will be to have a proper description
of the oxide layer. Recent studies go in this direction, as, e.g., J.Li et al. (2016) [181].

62



2.2 – Capacitance with defects

2.2 Capacitance with defects

In the first part of this Chapter, the capacitance of MOS structures was computed for
bulk and UTBB devices. In these computations, ideal electrostatics was considered, with
defect-free materials and interfaces. In real devices, defects are always present in bulk
materials (oxide, semiconductor) as well as at their interfaces. These defects are usually
complicated to characterize and depend on the material crystallography, the possible diffu-
sion of species, the stress (induced by the fabrication process for example), the thermionic
budget endured during process, the chemical reaction and other mechanisms that can oc-
cur at atomic scale. These defects affect the capacitance measured experimentally, because
they are in many cases electrically charged. They are called “fixed charges” in the case
where their electric charge doesn’t vary with the applied gate voltage or signal frequency
(in the range on the experiment) and they will mainly act as an horizontal rigid shift of
the capacitance (i.e., a shift of threshold voltage Vth). This effect is not considered here,
as it doesn’t affect the shape of the capacitance, and we don’t try to extract the exact
Vth on our device (it is considered as a fitting parameter). In the case where the defects
interact with the inversion charge and capture or emit one (or more) free carrier(s), they
are called “traps”. The charge state of the defect is modified as a function of the gate volt-
age and/or frequency of the signal ν, inducing an additional capacitance Cit(Vg, ν) = ∂Qit

∂Vgs

(as shown in Fig. 2.11). This capacitance typically affects the shape of the static DC
capacitance as a stretch of the Cg(Vg) and an increase or decrease of Cmax [71]. It also
induces a frequency dispersion of the capacitance, due to the characteristic response time
of the traps [80].

CsCox

Cinv

Cit Gmaj

Gmin

1
Ctot

= 1
Cox

+ 1
Cs+Cinv+Cit

Figure 2.11. Schema of the electric equivalent circuit (capacitances C + conductances
G) of a MOS structure, including interface traps. It shows the trap capacitance Cit, the
oxide capacitance Cox as well as the capacitance due to depletion in the semiconductor
Cs and the darkspace Cinv.

In the following sections, we present different ab initio studies found in the literature
on the defects in III-As, oxides and their interfaces and discuss their influence on the
capacitance. We distinguish here two different categories of traps: interfacial traps and
border traps. We then present the model used to simulate the electrical response of a
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MOSCAP system in presence of traps, based on the multi-phonon approximation (MPA).
Finally we present some experimental and simulation studies for the extraction of trap
characteristics from Cg(Vg) measurements, focusing on the results from an experimental
team at CEA-LETI and the comparison with simulations performed with UTOXPP soft-
ware.
Note that the deposition process of oxide materials on In0.57Ga0.43As is still under im-
provement, as it can be observed from the number of papers presented on this topic at
the last Semiconductor Interface Specialists Conference (SISC) conference on December
2016. The electrical characterization of InGaAs/oxide MOSCAPs can thus differ from
samples to samples and the experimental understanding of these interfaces is still under
investigation. The role of these sections is thus more to give a bibliographic overview of
the studies and models available, rather than a complete study on this complex topic.

2.2.1 Point defects in III-As/oxide structures

We briefly present here a bibliography of DFT studies on defects in the oxide and at the
III-V/oxide interface. Let us first give two definitions for categories of traps that are often
used in the literature:

◦ “Border traps” is used to describe bulk traps inside the oxide, at a distance close
enough to interact with the charges inside the SC (in particular by tunnel effect).
These defects are the same as in the bulk oxide, but their position with regard to
the SC band edge depends on the band alignment of the two materials, that needs
to be determined.

◦ “Interfacial traps” or Dit, in the other side, is used for traps caused by the interface
formation between semiconductor and oxide. They can be due to surface defects
inherent to a particular interface model, to lattice mismatch or chemical reactions
between SC and oxide (this includes the diffusion of chemical species), leading to
dislocations or point defects such as dangling bonds or interstitial atoms. The defect
levels can be located in different energy ranges, inside the SC band gap, above the
conduction band minimum or below the valence band maximum. As the SC/oxide
interface usually extends over more than one monolayer (up to several nm in some
case, as in Ref. [147]), these defects can be located at a tunneling distance from the
inversion charge.

Note that the difference between these two denominations can be rather blurred in
reality, as the diffusion of species and the interface extension can be large and the high-κ
thickness are pushed down to only a few nanometers. In the literature, the “border traps”
denomination is sometimes used for any defect at a tunneling distance from the inversion
2DEG (thus differing from our definition).

Alumina Al2O3

Let’s first consider the case of bulk alumina Al2O3, which is probably the oxide material
the easiest to deposite on III-As SC. The band gap of amorphous alumina is around
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6.7 eV [175], while its crystaline phases have usually higher band gap: around 9 eV for
the high-density α phase (sapphire) [97], 7.9 eV for the κ phase [390] and 6.5 eV for
the γ phase [222]. L.Masoero (2012) [222] studied different point defects in the γ phase of
Al2O3 with DFT-LDA and G0W0 approaches, including H-related defects present in ALD-
deposited alumina with H2O precursors. It was found that the most stable electrically
active defects with energy levels in the band gap are H interstitial and O vacancy. Weber,
Janotti and Van de Walle (2011) [390] also studied numerous defects inside the bulk Al2O3

and its band alignment with III-As materials. They used HSE06 functionals and considered
the κ phase of Al2O3 that presents a similar density, but higher band gap compared to
amorphous Al2O3. They found that the Al interstitial and Al vacancy would certainly
produce fixed charges in the transistor gate stack (respectively positive and negative);
while the O vacancy would lead to thermodynamic levels in the energy range of the III-V
band gaps (from 0.74 below to 0.11 above the CBE of In0.57Ga0.43As for the (+2/+1) and
(+1/0) transitions). However, a more recent study by Colleoni et al. (2015) [57] studied in
details the band alignment of amorphous Al2O3 / GaAs interface with HSE06 functionals
and found a conduction band offset of 1.3 eV and valence band offset of 3.8 eV, in good
agreement with XPS experimental studies. This indicates that the position of III-As band
edges in Weber et al. (2011) were probably lying ∼ 1 eV too low and that the transition
associated with VO would probably lie slightly below the valence band of SC. In conclusion,
O vacancy can be potential border traps affecting the Cg(Vg) characteristics, acting as a
donor-type traps close to the SC valence band edge. H interstitials could also be present
in ALD Al2O3.

III-As/Al2O3 interface

Figure 2.12. Left: schema of possible defects at GaAs/Al2O3 interfaces. Right:
their thermodynamic energy levels calculated by Miceli and Pasquarello (2014)
(figures taken from Ref.[227]).

Interfacial traps are more difficult to model with DFT models, as it involves differ-
ent elements (Ga, In, As, Al and O), it requires an accurate interface model and it is
necessary to include a big number of atoms in the calculation. Moreover, the number of
possible defects is huge and clusters of defects can form, which are needed to explain the
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Fermi-level pinning at GaAs/Al2O3 inteface [55]. However, recent ab initio studies were
able to model III-V/high-κ interfaces and to study the interfacial defects. They mainly
focus on Ga dangling bonds and As-As dimer (antibonding states) [186, 226, 187] (see
Fig. 2.12). Lin and Roberston (2011) [186] studied a broad range of GaAs/high-κ inter-
faces, such as GaAs/HfO2, GaAs/Gd2O3 and GaAs/Al2O3. They studied the effect of
Ga- or As- terminated interface and the position of dangling bonds and As–As bonding.
They found that Ga-dangling bonds (DB) lie above conduction band edge (CBE) when
referred to InAs, GaAs or InP (about 0.3 eV above GaAs CBE). However, As–As anti-
bonding state lies at lower energy and can be slightly below the conduction band edge for
InAs. According to them, In-rich (001) InGaAs surfaces can be used to avoid these As–As
antibonding states. Miceli and Pasquarello (2014) [227] later studied more specifically
these two major interface defects between GaAs and Al2O3: the Ga dangling bond and
As-As dimer. They found in their calculations (correcting the gap with HSE06) that both
defects lead to a thermodynamic level about 0.3 eV below the CBE of GaAs, with different
nature (see Fig. 2.12): Ga DB leads to donor traps with transition (+1/0) while As-As
dimer leads to acceptor traps with transition (0/-1). Other recent studies investigated the
interface between Al2O3 and In0.53Ga0.47As alloy (Miceli (2013) [226] and Colleoni et al.
(2015) [56]). They found that the As–As antibonding state actually lies above InGaAs
CBE (see Ref. [354] and the next section for further discussion). This level was found to
be quite independent on the chemical environment in the InGaAs layer.

Remarks:
I) Note that the dielectric constant of Al2O3 is quite low for application in advanced
transistors technology which needs to achieve high capacitance together with low leakage
current (i.e. thick oxide). For this reason, high-κ materials such as HfO2 (ε ' 20), ZrO2

(ε ' 22 [135]), LaAlO3 (ε ' 20 − 27 [78]) or Ta2O5 (ε ' 25 [337]) are also intensively
investigated in the literature. The interface between In0.57Ga0.43As and these high-κ ma-
terials is usually less known than for In0.57Ga0.43As /Al2O3 and very few ab initio studies
exist on these interfaces.
II) Intensive experimental studies are moreover performed on the effect of surface treat-
ment to passivate point defect at the interface, such as the role of sulfur atoms (surface
treatment with (NH4)2S [4]); the use of plasma-PH3 passivation [347]; plasma-enhanced
ALD (PEALD) method [72] or plasma-O2 postoxidation treatment for the densification
of Al2O3 [177].
III) Note that the determination of the energy of a defect at an interface is a complex
problem and some discrepancy can remain among results. Moreover, in above mentioned
ab initio studies, perfect stœchiometry, abrupt interface and relaxed strain condition were
usually considered and only specific defects were treated. In supercell calculations, the
problem of interactions between defects in neighbor cells remains a critical issue. In
addition, in experimental devices, some additional chemical species can remain due to ex-
position to air or growth catalysts/precursors (such as H2O in case of Al2O3 ALD) leading
to additional defects. Interfaces are usually not abrupt and a transition layer can remain
(in particular Ga2O3 oxide are very often encounter at InGaAs/high-κ interfaces [319]).
A third additional effect can be due to local strain, influencing the energy levels of the
defect. For all these reasons, a rather broad distribution of trap energy levels is usually
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considered in the models, when macroscopic quantities such as capacitance are computed.
In our case, we will consider double-Gaussian profiles in position and energy, representing
a type of defects characterized by its intrinsic parameters, such as Huang-Rhys factor (as
explained below).

2.2.2 Influence of traps on electrostatics and capacitance

As it has been seen, different defects are usually present at InGaAs/oxide interfaces or
close to it, and some of them can interact with the inversion charge in the channel. This
interaction leads to a modification of the ideal Cg(Vg) curve, as it can be seen on Fig. 2.6(a)
and 2.13(a). As said in the section 2.2, traps in the band gap usually stretchout the Cg(Vg)
curve, while traps above the conduction band can increase the capacitance in accumulation,
as they induce an additional capacitance in parallel (see Fig. 2.11). As this transfer of
carriers between the delocalized states in SC (CB or VB) and the trap states is a dynamical
process, with a characteristic time, the modification of the AC capacitance depends on the
signal frequency, and a broad dispersion is often found in the measurements (Fig. 2.13(b)).
Note that in Fig. 2.13(b), the very broad dispersion with frequency at negative voltage is
mainly due to the non-radiative generation-recombination of minority carrier (holes in this
case) [80]. This non-radiative generation-recombination occurs through traps in the band
gap, and can be due to point defects inside the semiconductor itself (“intrinsic GR”), as
well as interfacial or border traps.
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Figure 2.13. Room temperature Cg(Vg) of In0.57Ga0.43As /Al2O3 MOSCAPs fabricated
and measured at CEA-LETI: experimental measurement is compared with simulated ideal
Cg(Vg) in (a), while the frequency dispersion is shown in (b).

To characterize these effects and take them into account in the simulation, it is im-
portant to understand the mechanism of charge transfer and the parameter associated,
such as the trap capture/emission cross section σc/e (or equivalently the capture/emission

rate τ−1
c/e). These parameters can then be used to model the non-radiative capture and

emission of carriers in the channel through the well-known Shockley-Read-Hall theory.
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Literature

Many recent studies have been published on the comparison between experimental and
simulation MOS capacitance, to extract information on traps. We can cite for exam-
ple: Djara et al. (2013) [71] from IBM, that extracted the traps distribution profile in
InGaAs/Al2O3 structure by fitting experimental DC Cg(Vg) curve with a simple model.
Later, Sereni et al. (2015A/B) [320, 318] used a multiphonon model to simulate AC
capacitance, conductance and leakage current measurement and extract traps profiles in
InGaAs/Al2O3 structures; Sereni et al. (2015C) [319] applied it to temperature measure-
ments at 300 and 400 K. IMEC also published very recent studies on the temperature
dependence of trap response, such as Vais et al. (2015A) [367] and Dou et al. (2014) [74].
In Vais (2015B) [368] the influence of the InGaAs thin film thickness is also investigated
and it is found that the InP buffer can influence the Cg(Vg) curve.
While Djara (2013) only extracted a distribution of traps projected on the interface (ef-
fective “Dit” profile) from DC characteristics, the very complete study of Sereni (2015)
managed to simulate both the Cg(Vg) and Gg(Vg) characteristics of In0.57Ga0.43As /Al2O3

systems over a broad range of frequencies with the traps distribution map in space and
energy reported on Figure 2.14.
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Figure 2.14. Left: traps distribution map in space and energy of In0.57Ga0.43As
/Al2O3/HfO2 MOSCAPs extracted from the fit of Cg(Vg) and Gg(Vg) profile for frequency
range from 100 Hz to 1 MHz (figure taken from Ref. [320]). Right: cuts along the horizontal
blue lines in left figure (data taken from Ref. [320]).

These studies can be used to characterize the usually accepted profiles for distribution
of traps in the In0.57Ga0.43As /Al2O3 system. Two different categories can be distin-
guished:

◦ Donors traps in the band gap, slightly closer to the SC valence band edge, that
are responsible for the stretch-out of the capacitance in DC and can influence the
dispersion in inversion and the GR, as it will be discussed later. In the study of
Sereni (2015), these traps seem to be mainly located inside the Al2O3 layer, at less
than 1 nm away from interface.
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◦ Acceptors traps in the conduction band, that are responsible for the dispersion
in frequency of the capacitance in accumulation Cacc, as well as its increase with
temperature. These traps are very important, as they are believed to deteriorate
the performance of the MOSFETs, inducing a pinning of the Fermi-level above the
SC CBE and preventing to achieve a high density of free carriers (see Taoka et al.
(2013) [354] and Caruso et al. (2014) [47], as well as the discussion below). However
it is not clear where these traps are located in space and how they communicate
with the free charges in the BC of the SC.

Some studies consider this second category of traps as border traps inside the oxide,
implying an interaction with SC free charge through tunneling. However the DFT stud-
ies presented above didn’t find point defects in the oxide fulfilling these characteristics
(acceptor character with transition energy about 0.3 eV above SC CBE). Some studies
consider them as interfacial traps, that can be due to the As–As antibounding defects
pointed out by DFT. Note that the key study of Taoka et al. (2013) [354, 353] shows that
these traps hinder the performance of MOSFETs. They found that the charge density
extracted by Cg(Vg) measurement overestimates the free electron density in the SC com-
pared to Hall measurements, which reaches a plateau around 5× 1012 cm−2. This can be
translated and explained by an exponential “effective” interfacial trap density profile that
reaches values of 1015 cm−2eV−1 about 0.3 eV above the SC CBE, where the Fermi-level
is pinned. This phenomenon was later modeled by Caruso et al. (2014) [47]. However,
it is not clear how a localized state can trap electron for the SC CB at the interface and
how it can interact with the SC free charge. An interesting study using a DFT/NEGF
approach was presented at ESSDERC 2016 by QuantumWise and showed how a local-
ized state can form at the In0.57Ga0.43As /Al2O3 interface without defects. Greene-Diniz
(2014) [119] also investigated this issue with DFT (HSE06) and determined a transition
energy about 0.7 eV above SC CBE for the (0/-1) transition of the As–As dimer. However,
it is difficult for DFT to model accurately system with a Fermi-level above SC CBE, as
excited states are not taken into account. Finally, 1/f -noise and charge pumping studies
have been performed to gain a deeper understanding of these defects. Scapirno (2014)
[314] investigated the role of border traps in the 1/f -like noise; Stemmer (2012) [342] and
Galatage (2014) [102] also investigated the frequency dispersion in positive bias regime
(accumulation of electrons) and both concluded that it is more probably due to interfa-
cial traps in the mid-gap region (or disorder-induced gap states – DIGS) communicating
through two-step process: i) tunneling of an electron from occupied traps to the gate, ii)
recombination of the remaining hole with an electron in the SC CB.

Considering the numerous studies performed on the topic, we will not here make a more
detailed review of these studies, but rather conclude that although many discrepancies can
be found in the literature (due to the large variety of interface quality, fabrication process,
extraction methods as well as strong variability of these devices), the vast number of
literature studies tends to distinguish two distributions of traps that affect respectively the
hole inversion Generation-Recombination process and the frequency dispersion of electron
accumulation in n-MOSCAPs.

In the next section we briefly discuss the modeling strategy to take into account the
trap dynamic in our solver, as well as how the calculation of the model parameters are done
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2 – Electrostatics and trap dynamics

through a multi-phonon theory. We then briefly present an early analysis of experimental
results obtained at LETI and a qualitative comparison with our simulations.

2.2.3 Model

The model to account for traps dynamics presented below comes from the work of
D.Rideau [306, 301], and part of the work of D.Garetto [105].

Electrostatics

First, let us introduce the rate equation:

δρT (x, t)

δt
= Φc(x, t)− Φe(x, t)− Φ̃c(x, t) + Φ̃e(x, t) (2.7)

relating the variation of the trap charge density ρT (x, t) in time with the electrons (holes)
capture and emission flows Φc(x, t) and Φe(x, t) (Φ̃c(x, t) and Φ̃e(x, t), respectively) at
position x and time t. These flows are depicted in Fig. 2.15.

Let us consider the left-hand term. Similarly to inversion charge, the trap charge
ρT (x, t) can be calculated in a general way using

ρT (x, t) = e

∫
dENT (x,E, t)fT (x, t, E − EF (x, t)) (2.8)

where fT (x, t, E − EF (x, t)) is the occupation function of the trap, i.e., the probability
that a trap placed at energy E and position x is occupied by an electron at time t. The
quasi-Fermi level at position x is indicated with EF (x, t). As mentioned earlier, traps
distribution NT (x) is taken as a 2D Gaussian distribution in space and energy in the
oxide layer. In this study degradation models are not investigated and thus NT has been
considered time independent NT (x,E, t) = NT (x,E).
Introducing Eq.(2.8) in Eq.(2.7), the rate equation can be rewritten as:

e

∫
NT (x,E)

∂fT (x, t, E − EF (x, t))

∂t
dE = (2.9)

∫ (
Φc(x,E, t)− Φe(x,E, t)− Φ̃c(x,E, t) + Φ̃e(x,E, t)

)
dE

Now the expression of the flows in the right-hand side of Eq. (2.7) can be expressed as
functions of the capture and emission rates τ−1

c and τ−1
e for electrons as:

Φc(x,E, t) = NT (x,E)
(

1− fT (x, t, E − EF (x, t))
)
τ−1
c (x,E, t)

Φe(x,E, t) = NT (x,E)fT (x, t, E − EF (x, t)) τ−1
e (x,E, t) (2.10)

and for holes as:

Φ̃c(x,E, t) = NT (x,E)fT (x, t, E − EF (x, t)) τ̃−1
c (x,E, t)

Φ̃e(x,E, t) = NT (x,E)
(

1− fT (x, t, E − EF (x, t))
)
τ̃−1
e (x,E, t) (2.11)
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Figure 2.15. Schema of the flow defined in our code and characterizing the charge transfer
between inversion chage and traps. Left: In the case where the trap energy level is below
semiconductor Fermi-level (black horizontal line), it is filled with an electron, and transfer
occurs through emission of electrons in CB (or capture of holes in VB). Right: When the
trap energy level is above the Fermi-level, it is filled with hole (empty of electron), and it
can capture electrons in CB (or emit holes in VB).

When these equations are inserted in Eq.(2.7), one can recognize a final equation very
similar to the Shockley-Read-Hall recombination model [322, 132]:

∂fT
∂t

= τ−1
e (1− fT )− τ−1

c fT

In order to model accurately the trapping mechanisms, the occupation function fT (x, t, E−
EF (x, t)) (or equivalently the quasi-Fermi level EF ) is determined through resolution of
this equation.

Finally, from this quantity, one can calculate the negative/positive trap charge caused
by e−/h+ occupying the trap using:

ρ̃T (x,E, t) = −efT (x, t, E − EF (x, t))NT (x,E, t)

ρT (x,E, t) = e(1− fT (x, t, E − EF (x, t), t))NT (x,E, t) (2.12)

This trapped charge later enters into the Poisson equation (2.1), which is solved self-
consistently with the Schrödinger equation in our 1D PS solver:

ρ(x, t) = e
(
p(x, t)− n(x, t) +Nch(x) +Nfixed(x)

)
+ ρT (x, t) (2.13)

where ρ(x, t) identifies the electric charge density at position x and time t, where Nfixed(x)
is the net concentration of fixed charges after degradation and ρT (x, t) the position-
dependent trapped charge density evolving in time.

Capture and emission parameters

In the case we exposed above, an important physical property has to be determined in order
to perform the resolution of Eq.(2.7): the capture/emission rates τ−1

c/e. These quantities
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2 – Electrostatics and trap dynamics

can be expressed in term of the capture cross section σ as [3, 110]:

τ−1
c = σQivth (2.14)

τ−1
e = σQitrapvth (2.15)

where Qitrap is the surface carrier concentration when EF equals the traps energy level ET
and vth is the average thermal velocity. The dependence of σ over the temperature can be
taken into account by the relation σ = σ0 exp(−E∗B/kBT ), where E∗B can be understood
as an effective activation energy of the process.
However, this way of doing hides the main physical phenomenon in one empirical parameter
that is unable to take into account effects such as lattice relaxation involved in multiphonon
assisted transitions (see discussion below). Moreover, it doesn’t describe accurately the
dependence of the capture and emission rates with the position in the oxide [105]. In
our model, the temperature, position and time dependent capture and emission rates are
written in terms of the capture/emission probabilities Wc/e,

τ−1
c (x, ẼT , t) =

∑

i

∫

2DBZ
Wc(x,εi(K), ẼT , t)f(x,εi(K), t)dK

τ−1
e (x,ET , t) =

∑

i

∫

2DBZ
We(x,εi(K), ET , t)(1− f(x,εi(K), t))dK (2.16)

where εi(K) is the energy of the ith subband at the 2D wavevector K and ET is the energy
level of the trap considered.

Non-radiative multiphonon theory

The transition probabilities Wc/e are determined through a model derived from multi-
phonon non-radiative theory. The application of the multiphonon theory to non-radiative
transitions is a complex and broad topic and we will not go into detailed description here,
nor show the derivation of Eq. (2.17) (see Appendix B for a general and short review). This
theory is used to describe the lattice relaxation involved in the charge trapping/detrapping
phenomenon. During the capture process, a carrier (electron or hole) is transferred from
the free state (conduction or valence band) to the defect level. This capture induces a
change of the electric charge of the defect, which affects the equilibrium coordinate of the
system (from QA to QB in the Figure 2.16).

A so-called configuration–coordinate diagram can be used to have a graphical illus-
tration of this phenomenon. Here the defect is supposed to be strongly coupled to one
single mode of vibration, which is defined by its single coordinate Q (see Appendix B)
and its phonon energy ~ω. In this picture, the harmonic total energy of the system in the
state A (where the trap is empty) and state B (where the trap is occupied) is plotted as
function of the normal coordinate Q, as shown in Figure 2.16. This plot shows the shift
in coordinate from the free state QA to the trapped state QB, as well as the relaxation
energy associated S~ω (also called Franck-Condon energy) which is released to the lattice.
This energy is intimately related to the Huang-Rhys factor S, defined as:

S~ω =
ω2

2
(QB −QA)2
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Figure 2.16. Configuration–coordinate diagram for a non-radiative emission Een

and capture Ecn of carrier from a free state A to a trap state B, illustrating the
relaxation energy S~ω.

The barrier energy for the capture E(cn) and emission E(en) processes are also evident in
the configuration–coordinate diagram, related to the point where the two parabola cross
at Qcn. For the capture barrier energy, one can write it as:

E(cn) =
ω2

2
(Qcn −Qa)2 =

(∆E − S~ω)2

4S~ω
From these two energies, one concludes that the process of transition from state A to
state B can be divided into the two processes in the classical view of the problem: i) first
the electron-phonon coupling part from Qa to Qcn; ii) then the lattice relaxation through
phonon-phonon interaction bringing Qcn to Qb. The second process being much faster, the
limiting transition is the one involving electron-phonon coupling. In quantum mechanics,
there is in addition also a certain probability of tunneling from A to B even if the system
has not reached the energy over the barrier.

From the energy difference ∆E and the Huang-Rhys factor S, the transition proba-
bilities and thus the capture and emission rates can be derived in a quantum mechanical
picture. The expression derived from this model for the capture probability is (see Ap-
pendix B and Ref. [105]):

Wc =
2π

~
R(∆E)|V |2


rS

(
1− ∆E

~ωS

)2

+ (1− r)
√(

∆E

~ωS

)2

+ 4n(n+ 1)


 (2.17)

where n is the Bose-Einstein distribution of phonons, ∆E = εi − ET is the total energy
released in the capture process (after thermodynamic equilibrium), |V |2 is the electronic
wavefunctions overlap and r is a fitting parameter. In practice, r is very close to 1 and
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2 – Electrostatics and trap dynamics

the second term in Eq. 2.17 can be usually neglected. The expressions of |V |2 and S as
a function of oxide parameters in the case of a simple model for the defect wavefunction
are given respectively in Eq. (B.4) and (B.5) in appendix. In our calculation, S is also
considered as a adjustable parameter and is fixed to 15 (a reasonable value for a deep
level [320, 244]). The term R(∆E) comes from the vibration overlap and is expressed
as [113]:

R(∆E) =
1

~ω
exp

[
−(2n+ 1)S +

∆E

2kT

]∑

m

Im(ξ)δ(m~ω −∆E) (2.18)

where m is the number of phonons involved in the transition, Im(z) is the reduced Bessel
function of order m, ξ = 2S

√
n(n+ 1) and δ is the Dirac delta function.

The cross section obtained with this model for characteristic defects at Si/SiO2 interface
is shown in Fig. 2.17.

Figure 2.17. Capture cross section maps in depth in oxide (a) and energy (b)
extracted from multiphonon model by Garetto (2012) [108] in an Si NMOS with 5nm
of SiO2. (Figure taken from Ref. [108])

2.2.4 Comparison with experiment

Literature studies of In0.57Ga0.43As /Al2O3 MOSCAPs and similar devices were reviewed
in Section 2.2.2. In this section, we present a study on the MOSCAPs devices fabricated
in LETI and characterized at low temperature in Section 2.1.3. The multi-phonon model
is used, as implemented in UTOXPP software. The model derived above has been used in
previous studies to simulate the influence of traps on the Cg(Vg) and Gg(Vg) in Si/SiO2

structure, in the framework of a Poisson-Schrödinger solver [108, 106, 107]. Although we
first suppose that this model can be extended to InGaAs/Al2O3 structures with the same
approximations made and same physics, the simulation of III-V MOS structures can be
more complex, as the interfaces suffer from numerous defects and we have less knowledge
about the microscopic nature of these defects. Moreover some additional effects can be
encountered, due to the low density-of-states and non-parabolic nature of III-V materials,
as well as interfacial traps inside the conduction band.
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2.2 – Capacitance with defects

Measurement at CEA-LETI

We showed a study of the capacitance of In0.57Ga0.43As /Al2O3 MOSCAPs at low tem-
perature and frozen traps condition in Section 2.1.3. A good agreement between theory
and experimental data was found with the extracted oxide parameters (dielectric constant
and physical thickness of alumina layer).
At higher temperature, a strong frequency dispersion is observed on the measurements,
due to the traps dynamical response (see Fig. 2.19). To study the influence and nature of
traps, further electrical characterization are performed on the same sample, as AC capac-
itance/conductance measurements at different frequencies (ranging from 1 kHz to 1 MHz)
and different temperatures (ranging from 4 to 300 K). Considering the high number of
data and the discrepancy in the measurements for different samples with the same pro-
cess, and also different measurements on the same sample, some care should be taken in
the interpretation of the data. It is not clear whether the discrepancy comes from errors
or artifacts in the measurements or from the aging of the samples, due to relaxation of
traps with long characteristic time for example. For this reason, we tried to reproduce
the dispersion of the measurements qualitatively only, rather than obtaining a perfect
quantitative agreement.

Simulation results

Figure 2.18 shows the dispersion of traps considered in this study. It represents a narrow
distribution with a spatial variance of 1 nm situated 2 Å away from the interface. Two
Gaussian distributions in energy are included: i) one distribution increasing inside the SC
CB and ii) one smaller distribution close to the SC VBE. The first distribution peaks at
about 4.5 × 1019 cm−3eV−1 and is set as acceptor traps. The second distribution peaks
at about 5 × 1019 cm−3eV−1 and is set as donor-type. These two distributions of traps
represent the two categories mentioned in Section 2.2.2 and the position in the oxide and
peak values of the Gaussian were adjusted to reproduce qualitatively the experimental
Cg(Vg).

A small-signal analysis is used with a 30 mV amplitude signal and frequencies in the
range of the measurement (1 kHz to 1 MHz). The same band structure and dielectric
parameters are used in the NP-EMA PS solver as the one used in Section 2.1.3. For the
parameters of the MPA model of Eq. (2.17), we set the phonon energy ~ω = 60 meV [319],
close to the value of the optical phonons in Al2O3. For the Huang-Rhys factor, we ar-
bitrarily choose S = 15, as its value for interface traps in In0.57Ga0.43As /Al2O3 is not
known and that the cross-section of these traps is also under debate [80]. The AC Cg(Vg)
characteristics obtained are shown on Figure 2.19 and compared with the experimental
measurement. A qualitative agreement is obtained with a frequency dispersion in accumu-
lation and inversion with the two distribution of traps considered. However the slope of
the capacitance at moderate accumulation is steeper in the simulation compared to the ex-
perimental one and the capacitance dispersion in accumulation is higher in the simulation
than in experiments.

Figure 2.20 shows the influence of the S factor when varied from 9 to 15 on the
accumulation AC Cg(Vg, ν) characteristics of the nMOSCAP considered. One observes
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Figure 2.19. Left: frequency dependent Cg(Vg) measured at 300 K. Right: simu-
lated Cg(Vg) at 300 K including two distributions of traps above CBE and close to
VBE shown in Fig 2.18.

that when S is decreased, the Cg(Vg, ν) curve presents an overall shift to the left (acting
as a shift of the threshold voltage Vth to lower gate voltage) and the influence of the traps
on the Cg(Vg) characteristics is generally found at higher frequency.

For the dispersion in inversion (negative Vgs), the trap-assisted generation of inver-
sion holes makes it difficult to distinguish between trap response and holes generation.
This generation of inversion charge was not taken into account in our solver, as infinite
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Figure 2.20. Small signal AC gate capacitance of nMOSCAP in accumulation (Vgs varying
from −0.2 to 0.8 V) for different values of Huang-Rhys factor S.

Figure 2.21. Small signal AC gate capacitance of nMOSCAP in inversion (Vgs varying
from −1 to 0 V) for a donor traps distribution close the VBE with a mean space Gaussian
located 1 nm and 2 Å away from the SC/oxide interface.

reservoirs of carriers are supposed to be available (which is not the case in experimental
MOSCAP devices without source/drain reservoirs). However, it is possible to introduce
this effect in the solver by “freezing out” the DC holes inversion charge during the AC small
signal simulations leading to a zero influence on capacitance, while the trap-assisted hole
generation-recombination signature was still taken into account through the multi-phonon
non-radiative transition model. It is interesting to note here that the distribution of traps
in the oxide was sufficient to reproduce the dispersion at inversion and the generation of
inversion charges, without generation-recombination centers in the III-As SC itself, which
should be incorporated in the model and probably influence the hole generation. This
shows that different traps distribution and parameters can be used to reproduce a Cg(Vg)
characteristics and that the traps distribution obtained with a similar fitting procedure
would probably not be unique, especially when the intrinsic parameters and atomic nature
of the traps are not well characterized.
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2 – Electrostatics and trap dynamics

The inversion AC Cg(Vg, ν) characteristics when the trap distribution is pushed away
from the interface are shown in Figure 2.21. One observes that when the trap distribution
is shifted from 2 Å to 1 nm away from the interface, the capacitance in inversion dras-
tically diminishes, due to the lower transition probability and thus lower hole generation
mechanism.

2.3 Conclusion of the Chapter

In this Chapter, we investigated the electrostatic characteristics of III-As/Al2O3

MOSCAPs. Classical, parabolic EMA, NP-EMA and atomistic TB PS simulations were
compared in the case of ideal MOSCAPs without traps and the important influence of
non-parabolicity and boundary conditions on the electrostatics in UTBB MOSCAPs were
investigated.
In the second part of the Chapter, a literature review of the knowledge of the traps in
In0.57Ga0.43As /Al2O3 structures and a model to take into account their effects on electro-
static Cg(Vg) characteristics were presented. A review of the state-of-the-art devices and
their interface quality was given, as well as models for the simulation of traps response.
This Chapter pointed out the limitations of different models in the simulation of the
electrostatics of III-V materials, as well as the intrinsic bottleneck of these materials con-
cerning the low DOS of their Γ valley. Due to this low DOS, the Fermi-level can travel far
inside the SC conduction band and can scan traps at high energy. These traps not only
induce a frequency-dispersion of the capacitance at positive Vg bias but also limit the free
carrier density achievable and thus the overall current of the device. In addition, elec-
trically active defects can affect the transport properties and current achievable through
Coulomb scattering, as pointed out in Refs. [331, 366].
In this Chapter, the gate capacitance of long-channel planar devices was considered. The
transport properties of long-channel devices and the electrostatics and transport properties
of short-channel devices will be investigated in the next two Chapters.

78



Chapter 3

Semi-classical transport

To model the diffusive transport in long-channel MOSFET transistors, the current is
usually given in terms of the low-field mobility and the high-field saturation velocity, de-
scribing the transport properties of the channel material. These properties may depend
on various parameters, such as the transverse electric field, the carrier density, the con-
finement, the doping concentration and the interface properties (surface roughness and
interface charges). Empirical models are often used in TCAD to account for these effects,
that introduce numerous fitting parameters and that need intensive calibration. More
advanced physical-based models can be used to predict and understand (de-embed) the
contribution of different scattering mechanisms on the overall mobility.

In this Chapter, the diffusive transport properties of electrons and holes in nanos-
tructures are investigated by means of semi-classical methods, based on the resolution of
the Boltzmann transport equation (BTE). The derivation of the low-field mobility based
on the relaxation time approximation (RTA) and the exact resolution of the linearized
BTE are first presented. The derivation of the scattering matrix elements for the main
mechanisms, such as Polar Optical Phonon (POP), Deformation Potential acoustic and
optical phonon, Surface Roughness (SR) and Ionized Impurity (Local Coulomb LC) are
then discussed within continuous KP and EMA models and used to compute the mobility
in planar FDSOI structures. The calculation of phonons and alloy disorder scattering
matrix elements in an atomistic TB approach is then presented and used to compute
the mobility in SiGe nanowires. The resolution of the BTE at high electric field is then
used to compute the saturation velocity of SiGe nanowires and to investigate the effect of
confinement, band structure and nanowire orientation on the saturation velocity.
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3 – Semi-classical transport

3.1 Low-field mobility

The mobility is an important parameter for electronic transport, linking the electric field
E with the average carrier velocity v, and thus with current j = nv. This relation can be
assumed to be linear at low electric field (low source-drain voltage Vds):

v = µE

This relation enters the calculation of the drift current of a MOSFET device in the linear
regime, in the simple drift-diffusion (DD) model, written for electrons as:

J = e(nµE +D∇n) (3.1)

where J is the total current, e the elementary charge, n the electrons carrier density and
D the diffusivity cœfficient. At high electric field (saturation regime), the relation is no
more linear. The drift velocity tends to saturate and the electronic transport (and satu-
ration current) depends on the so-called saturation velocity vsat, which will be discussed
in Section 3.2.1.

The low-field mobility is, at first approximation, given by the simple formula (predicted
by the classical Drude’s theory [13]):

µeff =
eτr
m∗

(3.2)

where τr is the momentum relaxation time and m∗ is the effective mass of the carrier.
The relaxation time expresses an average lapse of time between two collisions, changing
the energy and/or wavevector orientation of an electron. This quantity can be computed
with semi-classical or quantum pictures and is not trivial to extract. Moreover, Eq. (3.2)
is over simplified and, in an inversion layer in a scaled device, more accurate quantum
calculations of the mobility have to be performed. To calculate mobility at low field in an
inversion layer in a MOSFET device, the so-called “Kubo-Greenwood” formula is used in
our solver [88]:

µxy = − e
~

〈
τxvx

(
∂f

∂Ky

1

f

)〉

th

where x, y stands for the direction in the 2D plane, v is the group velocity and f is the
Fermi-Dirac distribution function. 〈.〉th denotes the thermal average:

〈ζ〉 =
∑

i,ν

gν
ni

∫
dK

(2π)2
ζ(K)fi(K)

where i is the index of the subband and ν the index of the valley. This formula comes
from the much more general linear response theory of the electric conductivity, derived
in the quantum transport framework in the work of Kubo (1957) [176] and Greenwood
(1958) [120].
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3.1 – Low-field mobility

3.1.1 Linearization of Boltzmann transport equation

The semi-classical formulation of the KG formula can be obtained from the linearization
of the Boltzmann transport equation (BTE):

∂fi
∂t

+ v · ∇rfi +
F

~
· ∇kfi =

∂fi
∂t

∣∣∣∣
col

(3.3)

where the right hand side of the equation is the collision term due to scattering mechanisms
(no generation-recombination processes are considered here), fi(k, r, t) is the carrier distri-
bution function of subband i, v(k) = 1

~∇kε is the group velocity and F = −e(E + v×B)
is the external Lorentz force (E and B being the electric and magnetic fields, resp.).
We usually assume a stationary, homogeneous distribution function fi = fi(k), and no
magnetic field applied. Under these assumptions (generally true for long-channel devices),
Equation (3.3) becomes:

−eE
~
· ∇kfi(k) =

∂fi
∂t

∣∣∣∣
col

(3.4)

Moreover, we can express the collision term as a function of transition rate matrix Sij as:

∂fi
∂t

∣∣∣∣
col

=
∑

j

Ω

(2π)d

∫
ddk′

(
Sji(k

′,k)
{
fj(k

′) [1− fi(k)]
}

− Sij(k,k′)
{
fi(k)

[
1− fj(k′)

] })
(3.5)

where the first term in the sum corresponds to in-scattering events (from state k′ in
subband j to state k in subband i) and the second term to out-scattering events (from
state (k,i) to state (k′, j) ), Ω is the volume considered, d is the dimensionality and Sij
can be determined using Fermi’s golden rule (first-order of the scattering perturbation):

Sij(k,k
′) =

2π

~
|Mij(k,k

′)|2δ(εj − εi ±∆ε) (3.6)

where δ is the Dirac delta function and Mij(k,k
′) is the matrix element of transition from

state k to k′ defined as:

Mij(k,k
′) =

〈
k′, j

∣∣ V̂ p |k, i〉 =
1

Ω

∫

Ω
ddr ψ†j(k

′, r)V p(r)ψi(k, r)

where V p is the perturbation potential, depending on the scattering mechanism considered.

To solve Equations (3.4) and (3.5), assumptions are made on the dependence of the
distribution function on the electric field. It is hereafter expanded to the first-order (lin-
earization of BTE). However, higher orders are needed to describe the distribution at
high electric field. To treat this case, the full Boltzmann equation can be solved in dif-
ferent ways, such as Monte Carlo simulation or using Spherical Harmonic functions to
expand distribution function in higher momenta. In our case, we will show how to solve
Equations (3.4) and (3.5) without further approximation in next section.
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3 – Semi-classical transport

Order zero

Under equilibrium, the distribution function f(k) is given by Fermi-Dirac statistics:

f0
i (k) =

1

1 + eβ(εi(k)−εF )

where εF is Fermi energy, and β = 1
kBT

. The terms in bracket in Equation (3.5) thus
become:

f0
j (k′)

[
1− f0

i (k)
]

=
1

1 + eβ(εj(k′)−εF )

eβ(εi(k)−εF )

1 + eβ(εi(k)−εF )

When no electric field is applied E = 0, Equation (3.4) equals zero and the detailed balance
equation is obtained by setting the integrand in Equation (3.5) to zero:

Sji(k
′,k)

{
f0
j (k′)

[
1− f0

i (k)
] }

= Sij(k,k
′)
{
f0
i (k)

[
1− f0

j (k′)
] }

Combining these two equations, one obtains:

Sji(k
′,k) = Sij(k,k

′)
f0
i (k)

[
1− f0

j (k′)
]

f0
j (k′)

[
1− f0

i (k)
]

= Sij(k,k
′)eβ(εj−εi)

(3.7)

This equation translates the fact that, in order to have equilibrium, the number of transi-
tions (i,k)→ (j,k′) must be equals to the number of opposite transitions (j,k′)→ (i,k).
It can be proved for each scattering mechanism by using time-reversal symmetry. In the
case of inelastic phonon scattering, the energy difference (εj − εi) is equal to the phonon
energy ~ω and the exponential term in Eq. 3.7 compensates the ratio of phonon occupa-
tion factors due to the difference between phonon emission and absorption processes (see
Sec. 3.1.2).

First order

The distribution function is now expanded at first order in E = Eu:

f1
i (k) = f0

i (k) + eEgi(k) (3.8)

The terms in bracket in Equation (3.5) now become 1:

(
f0
j + eEgj

) [
1−

(
f0
i + eEgi

)]
= f0

j

[
1− f0

i

]
+ eE

(
gj(1− f0

i )− gif0
j

)

Keeping only the first order, Equation (3.4) becomes:

− e
~

E · ∇kf
0
i =

∑

j

ρd

∫
ddk′ eE

(
Sji
{
gj
[
1− f0

i

]
− gif0

j

}
− Sij

{
gi
[
1− f0

j

]
− gjf0

i

})

1For sake of readability, we simplify here the notation, not writing explicitly the function variables
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3.1 – Low-field mobility

where ρd = Ω
(2π)d

. Simplifying by eE and re-arranging the terms in gi:

−1

~
u · ∇kf

0
i =

∑

j

ρd

∫
ddk′

(
gj
{
Sji
[
1− f0

i

]
+ Sijf

0
i

}
− gi

{
Sjif

0
j + Sij

[
1− f0

j

]} )

Now using chains rule for derivative and the definition of group velocity:

[u · v]
∂

∂ε
f0(εi) =

∑

j

ρd

∫
ddk′

(
gi
{
Sjif

0
j + Sij

[
1− f0

j

]}

− gj
{
Sji
[
1− f0

i

]
+ Sijf

0
i

})
(3.9)

This expression can be expressed as a linear system b = Ag where the matrix A is
composed of transition rate matrix and equilibrium distribution function. At first order,
the time reversal symmetry is conserved and one needs to add the condition of gi(k) =
gi(−k) to solve the system (i.e.

∑
k gi(k) = 0). This numerical resolution of this system

can be used to calculate the distribution function and to get the conductivity and mobility
from its first and second order momenta.

Relaxation time approximation

Another way to compute the mobility, often found in the literature, comes from the intro-
duction of a so-called relaxation time τ(k). It is indeed very common to see the collision
term expressed as:

∂f

∂t

∣∣∣∣
col

= −f(k)− f0(k)

τ(k)

where the parameter τ expresses the time that the distribution function needs to come
back to equilibrium and is related to the momentum relaxation time τr introduced in
Equation (3.2). In this approximation, BTE (3.4) becomes:

−eE
~
· ∇kf(k) = −f(k)− f0(k)

τ(k)

We will now assume that the relaxation time τ(k) = τ is isotropic and drop the function
variables in our notation. As before, the distribution function is considered to vary linearly
with the electric field E and Eq. (3.8) is used. Keeping terms in first order in E, it comes:

eE

~
∇kf0 =

eEg

τ

Simplifying by eE and using chain’s rule of derivative:

g

τ
=

u

~
∇kε

∂f0

∂ε
= [v · u]

∂f0

∂ε

Finally we obtain:

g = τvu
∂f0

∂ε
(3.10)
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3 – Semi-classical transport

where vu is the component of the group velocity in the direction of electric field and where
the derivative of f0

i over energy can be written as:

∂f0
i

∂ε
= −βf0

i (1− f0
i )

Now the scattering collision term in Eq. (3.5) can also be written as:

gi
τi

=
∑

j

Ω

(2π)d

∫
ddk′

(
Sji
{
gj
[
1− f0

i

]
− gif0

j

}
− Sij

{
gi
[
1− f0

j

]
− gjf0

i

})

After some algebra and using Eq. (3.10) and the zeroth-order balance equation (3.7), the
expression of scattering rate 1/τi can be obtained:

1

τi
=
∑

j

Ω

(2π)d

∫
ddk′Sij

1− f0
j

1− f0
i

(
1− �

�−β������
f0
j (1− f0

j )τjvu,j

�
�−β������
f0
i (1− f0

i )τivu,i

{

�
�
�

�
�f0

i

f0
j

1− f0
i

1− f0
j

})

=
∑

j

Ω

(2π)d

∫
ddk′Sij

1− f0
j

1− f0
i

(
1− τjvu,j

τivu,i

)
(3.11)

This last expression is commonly found in the literature, expressing the relaxation time for
a given subband i and a given scattering mechanism determined by Sij . Finally, writing
explicitly the expression of Sij , the scattering rate reads:

1

τi
=

2π

~
∑

j

Ω

(2π)d

∫
ddk′

∣∣∣
〈
k′, j

∣∣ V̂ p |k, i〉
∣∣∣
2
δ(εj − εi ± ~ω)

1− f0
j

1− f0
i

(
1− τjvu,j

τivu,i

)
(3.12)

At this step, there is no additional approximation and this equation is equivalent to
Eq. (3.9). As it still links τi with τj , this equation must be solved self-consistently, as
Eq. (3.9). To avoid this time-consuming treatment, the last term is often approximated
as: (

1− τjvu,j
τivu,i

)
= (1− cos θ) (3.13)

where θ is the scattering angle between vector k and k′. Moreover, for elastic scattering,
εi = εj and f0

i = f0
j so the distribution function term in Eq. (3.12) is set to 1. On the

other hand, for inelastic but isotropic scattering, one usually neglects the second term
in parenthesis and keep only the distribution function term. These approximations were
investigated in recent studies [214, 334] and found to be invalid in the case of anisotropic
and inelastic mechanisms, such as POP in III-V polar materials.
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3.1 – Low-field mobility

3.1.2 Scattering rates within KP models

We discuss below the different scattering mechanisms relevant to the transport properties
of InxGa1−xAs and Si1−xGex channels. These mechanisms include:

◦ the interaction with Polar-Optical Phonons (POP) through the Fröhlich potential,
which is the limiting mechanism in bulk polar materials such as III-V;

◦ the interaction with Non-Polar Phonons (PH) through the Deformation-Potential
theory, which includes the Acoustic and Optical Phonons and is the limiting mech-
anism in bulk covalent materials at room temperature;

◦ the interaction with Surface Roughness (SR) or interface roughness, which impor-
tance significantly increases when the front gate voltage increases (high inversion)
or the confinement increases (very thin channel);

◦ the Coulomb interaction with ionized impurities in the channel (Local Coulomb
LC) or remote charges in the gate stack (Remote Coulomb RC), which hinders
the mobility in highly doped materials or degraded gate stack, respectively. These
processes are particularly important at low inversion, where the screening of the
scattering potential is unefficient;

◦ the interaction with Alloy Disorder (AD) in random alloys, which particularly hin-
ders the mobility in SiGe bulk channels [91].

The dependence of some of the mechanisms on temperature and electric field is shown in
Figure 3.1.

μSR
μLC

μPH

μeff

Ninv

T

Figure 3.1. Left: Hall mobility in n-type GaAs with dopant concentrations: 5·1013 (a);
1·1015 (c) and 5·1015(e) cm−3, showing the temperature dependence of the different scat-
tering mechanisms (Figure taken from Ref. [344]). Right: schematic plot of the effective
low-field mobility in FDSOI devices as a function of the inversion charge Ninv for differ-
ent scattering mechanisms. The arrow shows the enhancement of electron-phonon coupling
when the channel thickness tch is decreased.
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Polar optical phonons

As said in the Introduction, to compute the effective mobility in a channel made of III-V
materials, it is necessary to take into account a scattering mechanism that is not present
in Si: the scattering of carriers by Polar-Optical Phonons (POP).

This mechanism comes from the creation of an oscillating electric field by lattice vibra-
tions in a polar crystal, such as III-V. The scattering potential describing this mechanism
in the bulk is the so-called Fröhlich potential [100, 101]:

VPOP(r) = e

{
~ωLO
2q2Ω

[
1

ε(∞)
− 1

ε(0)

]}1/2

eiqr
(
a+
−q + aq

)
(3.14)

where ωLO is the frequency of LO-phonons, ε(∞) and ε(0) are static and optical dielectric
constants, Ω is the volume considered, e is the electron charge, q and r are vectors in
reciprocal and real space respectively (q being the norm of q) and a+

−q and aq are the
phonon creation and annihilation operators. This potential can be obtained by solving
the equations of oscillating polarization, local electric field and atoms movement in pres-
ence of an electric field, keeping in mind the dielectric behavior of an ionic crystal and
the well-known Lyddane-Sachs-Teller relation that links phonon frequencies and dielectric
constants:

ε(0)

ε(∞)
=
ω2
LO

ω2
TO

In thin films of thickness T , the scattering matrix element for this mechanism is expressed
as (see Appendix C for the complete derivation):

|Mij(Q)|2 =

{
e2~ωLO

4S

[
1

ε(∞)
− 1

ε(0)

]}(
NLO +

1

2
∓ 1

2

)
Hi,j(Q)

Q

where S is the surface normalization factor, NLO is the phonon occupation factor, Q is
the norm of the in-plane phonon wavevector Q = K′−K and Hi,j is the overlap integral:

Hi,j(Q) =

T∫

0

dz1

T∫

0

dz2 ψi(z1)ψ†i (z2)ψj(z2)ψ†j(z1)e−Q|z1−z2|

From this expression, the momentum relaxation time in a 2DEG can be found for the
absorption and emission processes (respectively upper and lower signs) [285] (see Ap-
pendix C):

1

τPOP
i,j,ν (εi)

=
gsgνe

2m∗νωLO
8π~2

(
1

ε(∞)
− 1

ε(0)

)(
NLO +

1

2
∓ 1

2

)
1− f(εi ± ~ωLO)

1− f(εi)

× [1 + 2α(εi − Ui)]
2π∫

0

dθ
Hi,j,ν(Q±)

Q±

(
1− τjvu,j

τivu,i

) (3.15)

where gs is the spin degeneracy, ν the index of the valley with degeneracy gν , θ is the angle
between K and K′ and the term in square parenthesis accounts for the NP corrections [263]
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3.1 – Low-field mobility

(α being the NP cœfficient and Ui the averaged potential as computed in Eq. (1.16)). As
it decreases as 1/Q = 1/|K−K′|, this mechanism is treated as an intravalley scattering.
Moreover, as the main valley contributing to low-field mobility in III-V is the Γ valley, an
isotropic effective mass m∗ is considered here.

Note that in this approach, the bulk scattering potential is used, which is valid only in
the case where the dielectric response of the thin film environment can be approximate by
ε(∞) and ε(0) dielectric constants. This is generally not the case in nanostructures. In the
literature, one can find some recent publications performing simulations of mobility in III-
V nanostructures using Kubo-Greenwood formalism, such as O’Regan et al. (2010) [263],
Poljak et al. (2012) [285] and Marin et al. (2014) and (2015) [216, 215]. The treatment
of the POP scattering can sometimes differ from one study to another and some further
refinements can be included, in particular concerning the screening effects. O’Regan et
al. (2010) [263] included screening effects in the Random Phase Approximation for in-
teraction with bulk LO-phonons, while they include an additional scattering mechanism
for the interaction of carriers with surface-optical modes of phonons (SO-phonons) and
plasmons, which may influence the overall mobility in some cases. Another model to treat
POP scattering was also presented by Stanojevic (2015) [336, 337], using the properties of
the Poisson’s Green function to express the scattering by the dipole created by the polar
nature of phonons. In this way, the screening of the gate and dielectric environment was
correctly taken into account and treated in a continuous way. Beside, Marin investigated
the mobility in InAs [216, 217] and GaAs [215] nanowires and showed that the approxi-
mation in Eq. (3.13) is not valid for anisotropic and inelastic scattering mechanisms such
as POP, and that the coupled system must be resolved with iterative and linear system
solvers. This issue will be investigated in thin films in Section 3.1.3.

Deformation-potential theory: acoustic and optical phonons

In non-polar materials, the scattering with phonons remains the main limiting mechanism
at room temperature and moderate inversion, particularly by acoustic phonons. It is
generally described through the deformation potential theory, writing the electron-phonon
interaction for small atom diplacement within a linear development [83, 398]:

Ve−ions '
∑

α

(
∂He

∂Rα

)∣∣∣∣
Rα0

· δRα

where δRα is the displacement of the αth atom and Rα0 is its position at equilibrium. In
the case of long-wavelength acoustic phonon, the lattice deformation can be considered as
a strain field and the strain deformation potentials described in Chapter 1 Sec. 1.1.9 can
be used to compute the electron-acoustic phonon coupling (see Ref. [161] for the derivation
and expression linking the two quantities). In this case, the perturbative potential reads:

VAC = Dac(q · δR)

where Dac is the deformation potential in unit of [eV] (Dac = ac/v is the absolute strain
deformation potential for longitudinal acoustic (LA) mode), q is the phonon wavevector

87



3 – Semi-classical transport

and δR is the atomic displacement that can be expressed in term of phonon creation and
annihilation operators [398]. The momentum relaxation time in 2DEG in this case writes
(see Refs. [83, 206] for the complete derivation):

1

τLA
i,j,ν(εi)

=
gsm

∗
DOS,νkBTD

2
ac,ν

2~3ρv2
s

Fi,j,ν

∫ 2π

0
dθ(1− cos θ) (3.16)

where ρ is the material volume density and vs is the sound velocity of the acoustic phonons.
Fi,j,ν is the wavefunction form factor defined as:

Fi,j,ν,ν′ =

∫
dz|ψi,ν(z)|2|ψj,ν′(z)|2

This mechanism is treated as an elastic and intravalley (ν = ν ′) scattering. In the case of
an anisotropic elliptic valley, the DOS effective mass can be replaced inside the integration
over θ by the expression:

m∗DOS →
(

cos2 θ

mx
+

sin2 θ

my

)−1

In the case of optical phonon, the perturbative potential is written as:

VOP = Dop,qδR

where δR is the norm of the phonon displacement and Dop,q is the optical deformation
potential of the transition of wavevector q in units of [eV/Å]. The momentum relaxation
time in 2DEG for this mechanism writes (see Refs. [83, 206] for the complete derivation):

1

τOP
i,j,ν,ν′(εi)

=
gsm

∗
DOS,νD

2
op,ν

4ρ~2ωOP

(
NOP +

1

2
∓ 1

2

)
1− f(εi ± ~ωOP )

1− f(εi)
Fi,j,ν,ν′(1−cos θ) (3.17)

where ~ωOP is the optical phonon energy, the upper and lower sign are for the absorption
and emission of a phonon and Fi,j,ν is the same form factor as for AC phonons. This
mechanism involves the optical phonon energy and is thus inelastic. It can be either
intravalley or intervalley (ν and ν ′ different) interaction. The intervalley scattering and
its role in the high field velocity in III-V materials will be discussed in more details in the
Section D.

Although a constant optical energy is often considered (Einstein phonon), a simple
analytic expression is used here to describe the phonon band structure, following Refs. [228,
288]:

ω(q) = ωOP + vsq + cq2 (3.18)

Figure 3.2 shows the fit of the phonon band structure of GaAs and InAs materials from
experimental data from Refs. [346] and [265] resp. The parameters used are given in
Table 3.1. For intervalley scatterings, the LA and TA modes at the band edge are included
in the calculation in the Eq. (3.17) with energy extrapolated with this relation. The
values of deformation potentials are discussed in Section D. The calculation of phonon
band structures with more advanced models based on a Valence Force Field approach is
discussed later in Section 3.1.4 in the case of atomistic simulations.
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Figure 3.2. Phonons band structure of GaAs (left) and InAs (right) bulk materials
along [001] direction. Experimental data are in symbols and come from Strauch et al.
(1990) [346] for GaAs and Orlova et al. (1983) [265] for InAs. Lines are the fit with
Eq. (3.18) and parameters in Table (3.1).

Table 3.1. Parameters for the phonon band structure in Eq. (3.18).

Parameter GaAs InAs

LA TA LO TO LA TA LO TO

ωop [meV] 0 0 36.5 33.6 0 0 29.9 27.2

v [m/s] 4730 3350 0 -570 4000 2640 0 -100

c [×10−7 m2/s] -0.7 -1.8 -0.8 -0.31 -1 -1.4 -0.8 0

Note that, in this approach, bulk phonons are usually considered, while the confinement
effects in thin film affect the phonon band structure and can have an impact on the
mobility [73]. More importantly, the values of the deformation potentials used in thin
films have been under debate for long time [260], and it was found that the acoustic
deformation potential need to be increased in Si confined structure in order to reproduce
the mobility measured experimentally. In the case of electron mobility the value goes from
Dac = 10.2 eV in Si bulk MOSFET to 16.5 eV in Si FDSOI MOSFET. The reason for
this is still unknown, and more advanced atomistic models could not fully explain this
phenomenon [181]. In the case of III-V, it is not clear whether this is also the case.

Surface roughness

As it can be seen in Figure 3.1(b), the Surface Roughness is in most cases the main
scattering mechanism at high inversion charge, as the carriers are pushed close to the
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3 – Semi-classical transport

surface by the electric field. This mechanism is however not straightforward to treat in
a pertubative manner, as the potential barrier at the interface between SC and oxide
is important (of the order of several eV). Several models have been developed in the
literature, some of them very recently (e.g., Lizzit et al. (2014) [192] and Badami et al.
(2016) [17]) going beyond the original formulation of Prange and Nee (1968) [290]. In the
other side, non-perturbative quantum transport methods have also been used to model
the SR-mobility and can be used as reference for this mechanism, as they treat the surface
in a geometrical description without further approximation. Approaches going beyond the
first order perturbative Fermi golden rule have also been proposed recently [231], which
provide a more accurate description of the scattering mechanism. In our study, we follow
the derivation of Jin et al. (2007) [149], which extends the original derivation of Prange-
Nee with 2D corrections. In this approach, the scattering matrix elements are given by:

|Mij(q)|2 =
∣∣∣
[
ΓGPNij + Γq

ij

]
∆q

∣∣∣
2

where ΓGPNij is the matrix element given by the Generalized Prange Nee model:

ΓGPNij =− ~2

tch

∫
dz ψi(z)

∂

∂z

[
1

mz

∂ψj(z)

∂z

]

+

∫
dz ψi(z)

∂V (z)

∂z

(
1− z

tch

)
ψj(z)

+ (εi − εj)
∫

dz ψi(z)

(
1− z

tch

)
∂ψj(z)

∂z

and Γq
ij is the correction added by Jin et al. (2007) [149] to account for the charge

fluctuations, due to three different effects:

Γq
ij = V n

q + V σ
q + V im

q

where V n
q (z) accounts for the redistribution of electrons in 2DEG and is the main cor-

rection, V σ
q (z) accounts for the shift of the polarization charge at the interface and V im

q

is due to the fluctuation of the image charge potential. All these terms are included in
our calculation, following the derivation of Ref. [149], except the last term V im

q for sake of
computational simplicity. Indeed, this term requires a burdensome numerical integration
over k mesh, that forced authors of Ref. [149] to resort to a tabulation of the integral.
A roughness profile with an exponential auto-covariance function is considered in all cases,
yielding the following amplitude for the 2D spatial Fourier cœfficients::

〈
|∆q|2

〉
= π∆2Λ2(1 + q2Λ2/2)−3/2

where ∆ is the root mean square (rms) amplitude and Λ is the correlation length of the
surface roughness profile.
The momentum relaxation time is finally written as:

1

τSR
i,ν

=
gs

2~3π

∫ π

0
dθ m∗DOS,ν

|Mii,ν(q)|2
ε2
D(q)

(1− cos θ) (3.19)
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where εD(q) is the scalar screening factor of the dielectric function computed in Sec-
tion 3.1.2. This mechanism is treated as elastic, and only intravalley and intrasubband
transitions are considered (ν ′ = ν and j = i).

Ionized impurities

Coulomb interaction with ionized impurity in the channel is a major scattering mechanism
in highly doped regions such as access regions (which include source and drain, but also the
region below the spacer with a high gradient of doping concentration) and at low inversion
in the channel. In gate stack with high-κ materials, a high concentration of electrically
charged defects may be present in the gate stack, acting as remote scattering centers
and degrading the mobility at low inversion. This mechanism is referred to as remote
Coulomb (RC) scattering, as opposed to the scattering with ionized impurities referred
to as local Coulomb (LC). When the inversion charge increases, the free carriers are able
to efficiently screen the pertubative potential and both the LC-limited and RC-limited
mobilities increase significantly and become of low influence. These two mechanisms can
be treated by the mean of the Poisson Green function formalism, which was adopted in
this work. The Coulomb potential of a point charge located at z0 is here obtained by
resolving the equation:

[
∂

∂z
ε(z)

∂

∂z
− q2

]
G(q, z, z0) = −4πδ(z − z0)

where q is the norm of the wavevector parallel to the film, and G(q, z, z0) is the Poisson
Green function entering the calculation of the scattering matrix element of a point charge:

M0
ij(q, z0) = e

∫
dz ψ†j(z)ψi(z)G(q, z, z0)

The final scattering matrix elements for electric charges inside the semiconductor (ionized
impurities) Nch and electric charges (fixed charges or traps) inside the gate stack Nrc is
given by:

|Mij(q)|2 =

∫
dz0

[
|M0

ij(q, z0)|2Nch(z0) + |M0
ij(q, z0)|2Nrc(z0)

]

where N(z0) is the volumic density of fixed charges at position z0. By applying appropriate
boundary conditions for G(q, z, z0), the screening by the metal gate can be appropriately
accounted for, which has a strong impact for scaled high-κ thicknesses [245].
The momentum relaxation time is finally given as:

1

τ
LC/RC
i,j,ν,ν′

=
gs

2~3π

∫ π

0
dθ m∗DOS,ν

|Mij,νν′(q)|2
ε2
D(q)

(1− cos θ) (3.20)

This scattering mechanism is supposed to be elastic and can be either inter or intravalley.
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Screening effects

In Eqs. (3.19) and (3.20), the dielectric response of the system εD(q) comes into play for SR
and LC/RC mechanisms. In order to account for the screening effect of the free charge on
the scattering potential of these mechanisms, the dielectric response can be calculated in
the Random Phase Approximation (RPA). The effect of different approximations, such as
tensorial versus scalar and dynamical versus static screening were investigated intensively
in the literature (see, e.g., Toniutti et al. (2010) [357]). The effect of the coupling with
plasmon modes can also have a strong impact at high inversion, as seen in Ref. [85].
Here, the static scalar dielectric constant is computed with the formula:

εD(q) = 1 +
∑

i

Fii(q)Πii(q) (3.21)

where Πii(q) is the diagonal term of the polarization factor:

Πii(q) =
2gs

(2π)2

∫
dk

fi(k + q)− fi(k)

εi(k + q)− εi(k)

and Fii(q) is the diagonal term of the screening form factor:

Fii(q) =

∫
dz

∫
dz′ψi(z)ψ

†
i (z)G(q, z, z′)ψi(z

′)ψ†i (z
′)

Alloy scattering

The model to treat alloy disorder in continuous theory, in its most common form, is
derived from Nordheim (1931) [258] and describes the perturbation as hard spheres of
fixed potential. This model is somehow empirical and has been questioned by Fischetti
and Laux (1996) [92]. In particular, the value to choose for the “alloy potential” ∆UAD is
not clear and often used as a fitting parameter. It was shown later that this parameter can
be extracted from atomistic TB models [225]. The treatment of alloy disorder in atomistic
models will be discussed later in Section 3.1.4.

Other scattering mechanisms

Finally, let us mention that other scattering mechanisms should be taken into account in
some cases for the correct modeling of the carrier transport in advanced transistors. In
particular, it was shown that the use of SiO2/HfO2 high-κ gate stack in advanced nodes can
degrade the effective mobility in the channel [332]. This effect was attributed to different
mechanisms. In addition to the previously mentionned RC scattering, the Remote SR
scattering was investigated in Refs. [103, 249] and the Remote-Phonon scattering due to
polar-optical phonons in the high-κ polar material were studied in Refs. [93],[81] and [358].
Other scatterings were recently investigated by Z.P.Zeng (2016) [400], such as the dipole
fluctuations and the metal work function fluctuations. These last effects are particularly
important at low inversion, but mainly vanish at high inversion where the pertubative
potential is screened by the inversion charge. Apart from RC scattering, none of these
mechanisms were included in the present study, as their influence on the mobility in high
inversion is supposed to be low for the size considered.
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Combination

From the expressions (3.15) – (3.20) the scattering rate for each mechanism is computed
by integration over all final states (j, ν ′). These scattering rates are then put together
following a “Matthiessen” rule as:

1

τ
=
∑

m

1

τ (m)

where m indexes the scattering mechanisms (POP, PH, SR, LC, RC and/or AD) accounted
for. The mobility is finally computed with the KG formula:

µνxy =
e

kBT

1

nν

gsgv
(2π)2

∫
d2k τνxyv

ν
xv

ν
yf

0(εν)
(
1− f0(εν)

)

where vνλ = 1/~ ∂εν/∂kλ is the group velocity in the λth direction (λ = (x, y)) and nν is
the carrier density of valley ν. The total mobility tensor is finally given by:

µxy =
∑

ν

µνxynν∑
ν nν
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3.1.3 Mobility in planar thin films

In this section, we use the Kubo-Greenwood formalism described above to study the
mobility in UTBB structures. We study the hole mobility in Si and SiGe FDSOI structure
and the electron mobility in III-V UTBB structures.

We note here that the technologies are often compared in µ(Eeff) plots, where the
effective field Eeff is extracted from experimental data with the equation:

Eeff = e
Qdepl + ηQinv

εs
(3.22)

where the parameter η was given to be 1/2 in the case of electron and 1/3 for holes
in Si and Ge (as suggested in Takagi et al. (1994) [350]). This plot is used to recover
a so-called “universal” mobility behavior in bulk MOSFET. Note that the parameter η
can be extracted experimentally but its value remains quite controversial, as well as the
“universal” picture of the mobility in advanced architecture [62, 279]. When the effective
field at the interface or at the maximum of charge is extracted from the simulation, the
relation (3.22) would require a value for η closer to 1/2 for holes in bulk and FDSOI
MOSFET. This implies that the effective field and η parameters are not well defined
physically and should be regarded as “effective” empirical parameters. For III-V materials,
the value of η that should be used in order to recover a “universal” picture of the mobility
is not clear, as the dependence of POP mechanism on Eeff is different from the acoustic
phonon mechanism that limits the mobility in Si (see, e.g., Hiblot (2015) [131]). Sonnet
et al. (2011) [330, 329] investigated the mobility in InxGa1−xAs devices and found that a
value of η = 1/4 could recover a “universal” curve in bulk MOSFET. However, this study
was not mentioned in other papers. In particular the references used in Section 3.1.3 and
Figure 3.5 were performed before 2011 and they did not specify the value of η used in
their extraction. We chose to use the value advised by Takagi for electron mobility in Si
of η = 1/2, as it remains the most commonly used value for electron mobility extraction
from experimental split C-V method.

Electron transport in InxGa1−xAs : effect of approximation in the RTA

We investigate here the POP-limited mobility in planar UTBB devices, neglecting the
effect of SO phonons, but showing the importance of resolving the coupled system in
Eq. (3.9) (exact method) without approximation on the RTA in Eq. (3.12) (RTA method),
as pointed out by Ref. [216] in nanowires and explained above.

Figure 3.3 shows the scattering rate 1/τm for PH and POP scattering mechanisms in
an In0.57Ga0.43As film with thickness tch = 5 nm and 50 nm and parameters of Table 3.2.
One notes that the PH-limited scattering rate is constant in each subbands in 2DEG, as
expected from the Eqs. (3.16) and (3.17) and presents discontinuities at each subband
edges, due to the Van Hove singularities. Due to the strong confinement in 5 nm thin
film, the two first subbands from the Γ valleys are separated by 0.48 eV, leading to a long
flat plateau in the scattering rate. The first subband from the L valleys is about 0.6 eV
above the conduction band edge, where the scattering rate increases significantly. When
the gate voltage is increased from 0 to 0.7 V, the Fermi-level goes inside the conduction
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Table 3.2. Band structure and physical parameters used for the calculation of elec-
tron mobility in Figures 3.3 and 3.4. Deformation potentials are taken from Ref. [285]
for In0.57Ga0.43As and Refs. [89, 86] for GaAs.

GaAs In0.57Ga0.43As

m∗Γ [m0] 0.065 0.048
αΓ 0.7 (4) 1.3 (5)

m∗L [m0] 0.85 0.436
m∗∆,l/t [m0] 1.86/0.17 2.26/0.25

EL − EΓ [eV] 0.29 0.76
E∆ − EΓ [eV] 0.49 1.25

GaAs In0.57Ga0.43As

Dac,Γ [eV] 7.1 5.42
Dac,L [eV] 9.2 9.0
Dac,∆ [eV] 9.27 9.2

Dop,Γ−L [eV/Å] 5.25 5.43
ε(∞) [ε0] 10.9 11.6
ε(0) [ε0] 12.9 13.9
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Figure 3.3. Scattering rate for AC+OP deformation potential interaction (PH,left)
and Fröhlich interaction (POP,right) in a 5 nm In0.57Ga0.43As UTBB FDSOI at Vgs =
0 (black) and 0.7 V (red) as a function of energy of the initial state. The scattering
rate in a 50 nm In0.57Ga0.43As film is also plotted in grey up to 0.35 eV. Simulation
parameters are given in Table 3.2.

band but the scattering rate is not strongly affected here. In the case of the 50 nm
thick film, the confinement is weaker and the subband are much closer in energy to each
other. The scattering rate follows an overall

√
E trend, expected in bulk material with

3D density-of-state (see e.g. Ref. [206]). For POP-scattering, the scattering rate decreases
with increasing energy in each subbands, as it goes as 1/q in Eq. (3.15). One notes a
net discontinuity around 30 meV above the conduction band edge, corresponding to the
energy of LO phonons and the onset of the phonon emission processes. When the gate
voltage is increased above threshold, the scattering rate presents a dip at the Fermi-level
position, due to the occupation factor. The occupation factor term for absorption process
1−f(εi+~ω)

1−f(εi) in Eq. (3.15) also leads to an increase of the scattering rate between 0 and
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30 meV when the Fermi level goes above the conduction band edge.
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Figure 3.4. PH-limited (left) and POP-limited (right) electron mobility as a function of
electron sheet density for a In0.57Ga0.43As UTBB MOSFET with a channel thickness of
tch = 5 nm. The exact and RTA resolution are compared, together with the effect of the
angular term (1− cos θ) is Eq. (3.13).

Figure 3.4 shows the PH-limited and POP-limited mobility in In0.57Ga0.43As UTBB
FDSOI channels computed within the KG formalism, in the exact resolution of the linear
system and RTA approach. We consider here a gate stack with Equivalent Oxide Thickness
(EOT) of 1 nm and a SiO2 Burried OXide (BOX) of 25 nm. The channel thickness is 5 nm
and unintentionally doped. We consider only the [001] confinement orientation and the
transport along (100). However, as the Γ valley is isotropic and satellite valleys are not
populated under Vg = 1 V, the results should be similar in the other confinement and
transport directions. As expected, the PH-limited mobility is higher than POP-limited
mobility (about one order of magnitude higher) and has a low impact on the overall
mobility. Moreover, the exact and RTA results give an almost identical results for this
mechanism, as it doesn’t depends on q and is thus perfectly isotropic for the Γ valley. For
the POP-limited mobility however, the exact and RTA methods give two very different
results. The exact resolution of the linear BTE gives a mobility almost two times higher
than the isotropic RTA approximation, when the factor in Eq. (3.13) is totally neglected.
When the factor (1 − cos θ) is included in the calculation, the situation is improved and
the RTA result is closer to the exact resolution, but some small discrepancies remain.

Finally, the electron mobility as a function of effective field in In0.57Ga0.43As bulk
MOSFETs with all scattering processes is shown in Figure 3.5. The η parameter for the
calculation of effective field in Eq. (3.22) was set to 1/2. The SR parameters were adjusted
to reproduce the experimental values. Note that the r.m.s values used for SR are large,
which can be due to the limitations of the SR model used in our KG calculations, as
pointed out by Lizzit et al. (2014) [192, 17]. Moreover, the mobility in In0.57Ga0.43As
MOSFET structures is mainly impacted by the interfacial charges and surface roughness
parameters and far from the intrinsic POP-limited mobility (which is around 104 cm2/Vs).
The growth of an InP or InAlAs layer between the In0.57Ga0.43As channel and the gate
stack oxide can improved the mobility, as the defects and rough interface are pushed away
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Figure 3.5. Electron mobility in In0.57Ga0.43As MOSFET computed with KG solver
(lines) with parameters given in the right table compared with experimental values from
Oh et al. (2009) [259] (blue) and Lin et al. (2008) [184] (green).

from the inversion layer [403, 183, 24]. In the case of these “burried channels”, the mobility
can be increased to more than 6000 cm2/Vs, close to the POP-limited mobility. However,
the dielectric control by the gate is also reduced, as the equivalent EOT is increased.
An inversion charge can also form in the InP buffer layer, thus reducing the transport
properties of the device. Although interesting in a technological perspective, the detailed
study of these combined effects will not be discussed here, as they have been studied in
previous work [131].

Hole transport in Si

The mobility in pMOS FDSOI structures with channels made of Si is investigated by mean
of semi-classical KG approach and compared with the mobility extracted from NEGF
simulations. A 3-band KP model is used for the band structure of holes, with parameters
given in Table 3.3 on page 99.

The phonon-limited mobility is plotted in Figure 3.6. One single optical deformation
potential is used for all transition set to 15 eV/Å with a phonon energy of 62 meV, while
the acoustic deformation potential is set to 16.5 eV. The agreement between KG and
NEGF simulation is quite poor for phonon-limited hole mobility, while a good agreement
was found in the case for electron mobility (see Ref. [245]). This discrepancy could be
attributed to the inter-valley scattering between HH, LH and SO valence bands, which is
not account for in NEGF calculations.

The surface-roughness-limited mobility is plotted in Figure 3.7(left). In both KG
and NEGF simulation, an exponential profile is used, with ∆SR = 0.47 nm and ΛSR =
1.3 nm. The SR-limited mobility in NEGF was extracted by the inverse Mathiessen rule,
as explained in Ref. [257]. In this case, a good agreement is found between KG and
NEGF approach for channel of 7 and 5 nm. For the thinner channel of 3 nm, the KG
overestimates the mobility and the perturbative KG approach faces some issues at these
short scales. One can see in Figure 3.7(right) that the KG model doesn’t predict the
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Figure 3.6. Left: PH-limited mobility as a function of electron sheet density in Si pMOS
FDSOI devices with different channel thicknesses. Right: The agreement of KG simulation
with NEGF is improved when the acoustic deformation potential DAC is lowered to 14.2 eV
(the one used in NEGF is in all cases DAC = 16.5 eV). NEGF calculation are shown in
dashed lines, while KG simulation are shown with solid lines.

correct dependency of the mobility with the channel thickness, while the NEGF mobility
is in very good agreement with the experimental data of Uchida et al. (2002) [363]. The
mobility values are however quite close to experimental values with both models.
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Hole transport in Ge and SiGe

When SiGe is grown on top of a Si substrate, the lattice mismatch induces a biaxial
compressive stress inside the SiGe thin layer. This compressive stress is generally advan-
tageous for the hole mobility, due to the enhancement of the light-hole character of the
highest subband (decrease of the transport effective mass) and the band splitting between
light-hole (LH) and heavy-hole (HH) bulk valley (decrease of the intervalley scattering)
(see, e.g., Ref. [304]). On the other side, it is known that the alloy scattering plays in
important role in bulk SiGe materials and hinders the mobility compared to pristine Si
and Ge devices (see, e.g., Ref. [92]). It was shown in bulk materials that the mobility of
unstrained devices as a function of Ge concentration presents a U shape, with minimum
of mobility ranging from 30 to 50% of Ge [92, 193]. For strained SiGe layer grown on
Si, the minimum is shifted to lower values of Ge, around 15-20% and an improvement
of the total holes mobility over pristine Si is found only for xGe > 0.3. However, the
interplay of stress, alloy disorder, combined with the influence of the confinement in thin
SiGe-On-Insulator (SGOI) layers, can lead to complex behavior of the mobility and can
be difficult to predict in empirical models used in common TCAD solvers. Moreover, it is
not clear whether the bulk value of alloy scattering potential remains valid in SGOI thin
layers for 14FD application, where the random distribution of Si and Ge atoms can be
altered in the 6 nm thick channel and scattering potential parameter can be different. The
investigation of these effects with KG solvers is thus interesting and an important work in
this direction was done by Nier (2015) [245]. As evidenced in experimental studies, and
by the choice made by the microelectronics industry recently, adequate process flow allows
the fabrication of SGOI structures with high value of biaxial stress and the hole mobility
can be almost doubled in SiGe PMOS compared to Si PMOS with only 20% of Ge, as
shown in Ref. [11].

We show in Figure 3.8(left) the mobility of Si, Ge and SiGe bulk MOSFETs simu-
lated with the parameters given in Table 3.3 and compared to numerous experimental
works [301]. We used η = 1/3 for the extraction of the effective field in Eq. 3.22. A 6-band
KP model was used with a spin-orbit cœfficient ∆SO of 0.044 for Si and 0.29 for Ge. The
SR profile and fixed charge concentration were adjusted to reproduce the experimental
data. The value of deformation potential in bulk is used here [348, 92], which is lower that
the one for thin-films used in previous section, as mentioned in Sec. 3.1.2.

Table 3.3. Left: Physical-based parameters used in the KG solver for the calculation
of hole mobility [301]. Right: band structure and strain parameters for 3-band KP
models for Si and Ge materials.

Si Ge

∆SR [nm] 0.22 0.2
ΛSR [nm] 3 2.3

∆UAD [eV] 0.9
Dac [eV] 9.03 13
Dop [eV/Å] 10 10
~ωOP [meV] 57 64

Si Ge

L -6.64 -31.6
M -4.61 -5.2
N -8.68 -33.6

l -2.13 -3.75
m 4.14 4.95
n -8.24 -5.89
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Figure 3.8. Left: effective hole mobility computed with KG solver shown by symbols
for Si (blue), Ge (red) and Si0.07Ge0.93 strained devices (green) [301]. The lines show
experimental data from the following references: Joshi (2007) [152] and Takagi (1994) [350]
for Si, VanDenDaele (2011) [370], Riddet (2010) [300] and Joshi (2007) [152] for Ge and
Takagi (2006) [349] for SiGe. The effective field is computed with η = 1/3 (see text). Right:
effective hole mobility of biaxially stressed SGOI structures, as a function of the Ge content.
Symbols are measurements from STMicroelectronics devices. Solid lines are KG simulations
for different AD potentials [301]. Dashed lines are guides to the eye.

We see that KG calculations are able to reproduce the so-called “universal” hole mo-
bility tendency for both Si and Ge channels, with strain and different concentration of Ge.
Moreover, we see that the Ge mobility generally increases by a factor two compared to Si
mobility, and that strain greatly enhances this tendency to reach maximum mobility of
more than 1000 cm2/(V.s). Note that a discrepancy exists for pure Ge mobility among
different experimental studies, probably due to the different interface quality with oxide
or impurities in the channel. Also note the high value of the SR roughness correlation
length ΛSR used in Table 3.3.

Figure 3.8(right) shows the measured total holes mobility in biaxial compressive
strained channel in bulk MOSFET and SGOI MOSFET (for GO1 and GO2 architec-
ture) of STMicroelectronics (STM) as a function of Ge concentration. As it was found in
Andrieu et al. (2014) [11], the experimental measurements show a quasi-linear tendency
when Ge content is increased up to 40%, which is recovered with KG simulation. The
slope of the curve depends on the alloy scattering potential used in the calculation and a
slope in agreement with experiments for SGOI was recovered with ∆UAD = 0.9 eV. This
value is in good agreement with the one found for bulk materials in Ref. [92] and for SGOI
MOSFET in Ref. [11], but higher than the one found by the Monte Carlo calculation in
Ref. [228], which was ∆UAD = 0.4 eV. As mentioned earlier, the physical value for the al-
loy potential ∆UAD to be used in KG simulation is still controversial and atomistic model
such as the one presented in Sec. 3.1.4 is of high interest.
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3.1.4 Scattering rates within TB models

Tight-binding (TB) Hamiltonians, coupled with valence-force field models for the phonons,
have been used in recent papers to study the electron-phonon interaction in NWs [255,
200, 256] and thin films [181] in a fully atomistic description. In this approach, the scat-
tering matrix element are computed directly from the derivation of the TB Hamiltonian
with respect to the atom positions. It allows to investigate the phonon-limited mobility
without the need of deformation-potential parameters. Moreover, the alloy disorder (AD)
scattering can also be treated in an atomistic approach, following the work of Mehrotra
et al. (2011) [225].

In this section, we apply these methods to Si1−xGex and InxGa1−xAs NWs to investi-
gate the effect of AD on these systems. The phonon-limited mobility is also computed in
Si1−xGex systems and compared to the AD-limited mobility. For InxGa1−xAs nanowires,
the mobility is limited by POP scattering rather than a deformation potential type of
interaction [214]. This type of scattering could in principle be treated in a fully atomistic
TB approach, but requires the treatment of long-range Coulomb interaction that make
the calculation heavy and not easy to implement. While the Ewald summation technique
was proposed in bulk for the calculation of phonons [341], the separation between a long-
range and short-range interaction in nanostructures is less trivial and it is not guaranteed
to work. For these reasons, the electron-phonon coupling in III-V nanowires was not
investigated here and we limit the study to AD-limited mobility.

Non-polar phonons

The method used here is derived from previous works on pristine NWs [402, 255, 256]. An
atomistic sp3d5s∗ TB model is employed to determine the electronic band structure and
electron wave functions, and a valence-force field is used for the phonons. The sp3d5s∗

TB Hamiltonian were described and discussed in Chapter 1 Section 1.1.4 and we use the
parameters for SiGe and InGaAs materials given in Section 1.1.8.

The phonons states are computed by diagonalization of the dynamical matrix [180].
For Si and Ge materials, the VFF model developed by Vanderbilt (1989) [371] is used,
which includes bonds-centered interactions (no anharmonic terms were used here). The
parameters for Si are taken from Vanderbilt (1989) [371] while the ones for Ge are taken
from Tubino (1972) [362]. For III-V materials, the enhanced Keating model developed by
Steiger et al. (2011) [341] is used, considering the five atoms-centered interactions depicted
in Figure 3.9(a). The phonon band structure of GaAs obtained with this model is plotted
in Figure 3.9(b) using the parameter set of model P5/C from Ref. [341] and compared with
the experimental data of Ref. [346]. The parameters for InAs are taken from Salmani-
Jelodar et al. (2012) [312]. The Coulomb interaction term in the energy calculation
in Ref. [341] is not included in our calculation, because the treatment of this term in
nanostructures is complex and implies the description of the dielectric environment. In
the same way, the scattering with POP would necessitate more advanced implementation.
As said above, the phonon-limited mobility in III-V materials were not studied here and
only used to extract the AD-limited mobility.

In the case of alloys, we use the virtual crystal approximation (with parameters and
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Figure 3.9. Left: schema of the valence force field parameters used representing: (a)
bond stretching, (b) bond bending, (c) interaction of 2 neighbour bonds stretching, (d)
bond stretching + bending interaction and (e) coplanar bond bending interaction. Right:
Phonon band structure of GaAs obtained with EVFF models of Ref. [341] (P5/C parameter
set used in Fig.4 of Ref. [341]) compared to experimental band structure from Ref. [346].

models described in Chapter 1 Section 1.1.8) and a linear interpolation of valence-force
field parameters between pristine compounds. We have verified in test cases that the
electron mobility is almost identical (within 2%) if we consider a random alloy supercell to
calculate the phonons. In spite that the random distribution of Si and Ge masses strongly
affects the phonons spectra at high energy, it was also found in Ref. [240] that VCA is
sufficient to obtain correct electron-phonon scattering and mobility in bulk SiGe.

Once the electronic and phononic states are known, all possible electron-phonon (e-ph)
scattering events are searched by considering full phonon bands, and electron states up to
0.25 eV from the conduction band minimum. The e-ph scattering matrix elements that
enter the Fermi golden rule in Eq. (3.6) are given as [402]:

Mk,ν,ν′

q,j =
∑

α,i

1√
NMα

√
~

2ωq,j
e

(j)
α,i(q)

∑

β,η
β′,η′

(ck+q,ν′

β′,η′ )∗ck,νβ,η

×
∑

m,m′

eiKRmβe−i(k+q)Rm′β′
〈
φη′(r−Rm′β′)

∣∣ ˆ∂H

∂sηαi
|φη(r−Rmβ)〉

where the cœfficients ck,νβ,η and φη(r) describe the TB electron wavefunction as defined in

Chapter 1 Section 1.1.4 and e
(j)
α,i are the eigenvectors of the dynamical matrix.
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3.1 – Low-field mobility

Alloy disorder

AD scattering rates are calculated from VCA Bloch states, which are developed along a
random alloy supercell with Nk unit cells, where Nk is also the number of k-points consid-
ered in the Brillouin zone (from 420 to 1024, depending on the NW orientation [256]). Fol-

lowing Ref. [225], the AD scattering matrix elements are defined as
〈
ψfVCA

∣∣Halloy

∣∣ψiVCA

〉
,

where Halloy is the Hamiltonian of the random alloy supercell and ψ
i/f
VCA are the VCA

Bloch initial and final states. The squared norms of the scattering matrix elements are
averaged over 10 configurations of AD. This is sufficient to obtain good convergence of the
mobility. The scattering rate of each event is evaluated via the Fermi golden rule and the
total mobility is finally obtained by including all scattering rates into the linearized Boltz-
mann equation which is solved exactly. Due to the random generation of alloy supercells,
particular k vectors can be weakly scattered and travel almost ballistically when only AD
is considered (with a matrix elements associated clearly higher than others). These states
may induce an artificially high AD-limited mobility. The inclusion of phonon scattering
rates before the resolution of the Boltzmann equation helps to avoid this, as it leverages
the contribution of these states (which are scattered by phonons). Matthiessen rule can
then be used to obtain the AD-limited mobility alone.

Calculating scattering rates from the electronic states of random alloy supercells would
better capture disorder effects but would be problematic due to carrier localization [10].
This leads to an exponential decrease of the group velocities when increasing the supercell
length, [162, 201] thus to an exponential decrease of the mobility which is not physical at
room temperature. For this reason, electron-phonon and AD scatterings are both treated
as perturbations of the VCA Bloch states in alloyed NWs.

3.1.5 Mobility in nanowires

SiGe nanowires

In the complex case of SiGe NWs, the effect of alloy disorder (AD) on the hole mobility
has been studied with atomistic [162, 224] and k·p models [220] but phonon scattering was
only considered using approximate deformation potentials. Importantly, while AD is the
main source of scattering in bulk SiGe [92], electron-phonon interactions have comparable
influence in confined structures [224].

We investigate here the effects of both scattering mechanisms on the electron and
hole mobility in SiGe NWs using a fully atomistic description. While the hole mobility
in SiGe NWs is interesting in a technological point of view, electron mobility is also of
both technological and scientific interest for nMOS structures. Indeed, considering the
conduction band structure of Si and Ge NWs and the transition in valley described in
Chapter 1 Section 1.2.3, it is interesting to study how these effects will affect the intrinsic
electron mobility [234]. A quite similar study has been recently performed by another
group for two-dimensional SiGe structures [269, 270].

The phonon-limited hole mobility in SiGe NWs in different orientation (〈001〉, 〈110〉
and 〈111〉) is plotted in Figure 3.10(left) and compared to the results within the defor-
mation potential theory of Ref. [224]. We see that the phonon-limited mobility increases
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Figure 3.10. Left: hole mobility versus Ge concentration in SiGe NWs with d=5 nm
and orientation, compared to the results in the deformation potential approximation from
Ref. [224]. Right: hole mobility in the 〈001〉 direction for different diameters.

roughly monotonuously with the Ge concentration for all orientations. While the hole mo-
bility of pristine Si is in good agreement with Ref. [224], the hole mobility of pristine Ge is
generally higher in our calculation [255]. This might be due to the deformation potential
values chosen in Ref. [224]. As it was found in Ref. [255] for Ge NWs and Ref. [256] for
Si NWs, the NWs present higher hole mobility in the 〈111〉 direction for the diameters
considered, due to the light-hole character of the highest valence subband with an effective
mass m∗ < 0.1m0. The hole mobility of 〈001〉 SiGe NWs with diameters d = 2, 4 and 5 nm
is plotted in Figure 3.10(right) and shows the strong dependence of the phonon-limited
mobility with the NWs size, due to the enhanced e-ph coupling in small NWs.

The electron mobility of SiGe NWs for the same three orientations and diameters d =
2, 4 and 8 nm is plotted in Figure 3.11. In general, the phonon-limited electron mobility
of NWs with d = 8 nm is more or less constant with the increase of Ge concentration up to
0.8, after which the mobility increases in 〈110〉 and 〈111〉 NWs, but decreases in 〈001〉 NWs.
This sharp transition is intimately related to the transition from ∆ to L valleys studied
in Chapter 1 Section 1.2.3. The lowest subband transits from large effective mass valley
to low effective mass valley in 〈110〉 and 〈111〉 NWs (m∗e = 0.19 → 0.09 and 0.44 → 0.27
respectively), but this is reversed in 〈001〉 NWs (0.22→ 0.60). This behavior is preserved
in 4 nm NWs but the transition occurs at higher Ge concentation, consistently with our
analysis of the band structure and transition point in Chapter 1 Section 1.2.3. For 2 nm
NWs, the variation of mobility is very small for 〈001〉 and 〈110〉 oriented NWs, mainly
because of the stable effective mass. For 〈111〉 NWs, because of the change in effective
mass, there is an abrupt change in mobility at x ≈ 1.

In addition, the mobility in 4 nm and 8 nm NWs presents a marked dip at the transition
point, for all orientations including 〈001〉 (Fig. 3.11). The mobility suddenly decreases
when the subbands originating from ∆ and L valleys become close in energy in such a
manner that intervalley scattering is strongly enhanced. To study this effect, we performed
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Figure 3.11. Electron mobility versus Ge concentration in SiGe NWs of different diameter
and orientation: 〈001〉 (a), 〈110〉 (b) and 〈111〉 (c). Solid lines with filled symbols represent
the phonon-limited mobility, while dashed line with open symbols correspond to the mobility
including both e-ph and AD scattering. The AD-limited mobility is shown with dotted lines
and crosses for 〈111〉 NWs with d = 8 nm. The arrow shows the increasing diameter trend.

calculations including only transitions satisfying |kf | − |ki| < 0.2 × 2π/a in 〈001〉 NWs
with d = 4 nm. In this way, the intervalley transitions between subbands originating
from ∆ valleys and subbands from L valleys are omitted (the norm assures that the
transitions kf = −ki among subbands with same types are preserved). The results in
Figure 3.12(a) show that these transitions influence the mobility only close to the transition
point at x ≈ 0.9, as expected. When intervalley scattering is omitted, the dip of the
mobility at x = 0.9 is thus removed and the mobility drops monotonously from x = 0.8
to 1. To better understand the phonon modes involved in these transitions, we included
progressively intervalley transitions with phonon energy up to a cut-off value ~ω. The
mobility as a function of the cut-off value on intervalley scattering µ(~ω) is shown in
Figure 3.12(b). It evolves from the mobility without intervalley scattering to the one
including all transitions. In particular, sharp drops of mobility are specifically found at
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phonon energies around 9 and 24 meV. These modes corresponds to acoustic phonon
modes in bulk, which have energies of 8.6 (TA1), 9.4 (TA2) and 24.9 (LA) meV for the
intervalley wavevector q = k∆ − kL in bulk Ge. Two minors drops are also identified
at phonon energies around 31 and 38 meV, corresponding to optical phonons in the bulk
band structure. The same study was performed on SiGe NWs in 〈111〉 orientation and
d = 2 nm and shows similar phonon energies involved in the intervalley scattering.

0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

250

300

350

Ge content (−)

 

 

µ P
H

 (
cm

2 /V
s)

with intervalley scat
w/o intervalley scat (cut off q~0.2)

<001> d =4nm

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
60

80

100

120

140

160

180

200

220

Phonon energy (eV)

 

 

µ P
H

 (
cm

2 /V
s)

xGe = 0.9
xGe = 0.95

<001>
d =4nm

Figure 3.12. Left: phonon-limited electron mobility of 〈001〉 SiGe NWs with d = 4 nm,
with and without intervalley scattering. Right: phonon-limited mobility at Ge concentration
x = 0.9 and 0.95 as a function of the cut-off energy on intervalley scattering (see text). Sharp
drops of the mobility are clearly identified at phonons energy around 9 and 24 meV.

When the NWs diameter is decreased, the mobility is also strongly reduced, especially
for 〈001〉 and 〈111〉 orientations. Like in pristine NWs, this is due to confinement-enhanced
e-ph coupling. [255, 200, 256]

The effect of the AD scattering on the electron mobility is also shown in Fig. 3.11.
When the NWs diameter is decreased, AD scattering is also enhanced. But the AD-limited
mobility decreases less rapidly than the phonon-limited mobility. The contribution of the
AD scattering is non-negligible: at concentration x = 0.5, the mobility reduction with
respect to the phonon-limited mobility is around 40% for d = 8 nm, 35% for d = 4 nm and
25% for d = 2 nm. These ratio do not depend much on the NW orientation. However, it
is found that the sharp transition at the turning point remains when AD is included and
that e-ph scattering dominates in all the considered configurations.

Finally, note that SR scattering was not included in our calculation and may become
equally important or even dominant for small diameters or at high carrier density, as
shown by simulations of SR-limited mobilities in Si NWs, using effective mass [149, 339]
or TB models [281].

InGaAs nanowires

For InGaAs materials, the contribution of alloy-disorder scattering mechanism on the
electron mobility has been under investigation for a long time [189, 15, 126, 21], and
is still under debate. Some recent works consider this mechanism as negligible [263, 22],
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3.1 – Low-field mobility

while other works consider it should be included in the calculation [285] and might even be
dominant in some cases [218]. Moreover, there is no clear reference for the value of the alloy
disorder potential that should be used in KG calculations, in bulk as in nanostructures.
It is thus interesting to investigate this scattering mechanism with the atomistic model
presented above.

As stated earlier, the phonon-limited mobility is difficult to compute with atomistic
models, due to the polar nature of longitudinal optical modes in III-V materials. However,
the AD-limited can be obtained in thin nanowires, and can give insight on the strength of
this scattering mechanism in nanoscale devices.
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Figure 3.13. AD-limited mobility in InGaAs 〈001〉 nanowires with d = 5 nm
computed with atomistic model.

The AD-limited electron mobility computed in 〈001〉 InGaAs NWs with d = 5 nm
is shown in Figure 3.13 as a function of the In content. It was found that, as opposed
to SiGe NWs, the mobility doesn’t depend significantly on the nanowire orientation (not
shown), due to the isotropic nature of the Γ valley. One can see that the AD-limited
mobility presents a U -shape and varies significantly with In content: it is close to about
5,000 cm2/(Vs) for In content between 0.4 and 0.8, while it increases significantly for x
lower than 0.3 and reaches 25,000 cm2/(Vs) for x = 0.1.

For x = 0.5, the AD-limited electron mobility at low inversion is here≈ 5,400 cm2/(Vs),
which is about half of the value found in Ref. [218] in rectangular cross-sections of size
5 × 30 nm. This could indicate that, as mentioned in Ref. [218], the AD scattering
mechanism might be of same order as POP scattering mechanisms, or even dominant in
ultra small nanowires.

Note however that bulk phonons modes were used to compute the POP-limited mobil-
ity in Ref. [218] and that it should be interesting to investigate the effect of confinement
with an atomistic approach on the POP-limited mobility, in order to compare these two
mechanisms in more details.
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3 – Semi-classical transport

3.2 Saturation velocity

As said in Section 3.1, the low-field mobility describes the linear relation between the drift
velocity v and the electric field E. This expression is valid in steady state at low transverse
electric field E = Vds/Lg, where Vds is the source-drain voltage and Lg the channel length,
which is supposed to be long enough so that the electric field is constant under the gate.
When the electric field is increased, the linear relation breaks and the slope ∂v/∂E drops
until v eventually saturates. The Canali’s formula can be used to model this saturation
of velocity in a single-valley system:

v =
µ0E

1 + µ0E
vsat

(3.23)

where vsat is the saturation velocity and µ0 the low-field mobility. In the case of multi-
valley band structure, such as the case of GaAs, negative differential mobility effects can
occur, which might be better described by the extended Chang’s formula [48]:

v(E) =
µ0E(

1 +
(
µ0(E−E0)

vsat

)2
)1/2

(3.24)

where E0 is a critical field, where the curvature is inverted.
In bulk Si, the electron velocity saturates at about 107 cm/s (at 300 K) when the

electrons accelerated in one of the six equivalent conduction band valleys are dragged
back to lower energy states in another valley after emission of an optical phonon (see
Refs.[58, 141]). In bulk GaAs, the situation is much different because the conduction band
is made of a single low-mass valley and four heavy-mass valleys 0.3 eV higher in energy.
As a consequence, the velocity continuously increases with the field as long as the electrons
only occupy the lowest valley but reaches a maximum and then drops considerably when
electrons get scattered to heavy-mass valleys [143]. These features have been investigated
long ago in bulk materials and the velocity versus electric field curve in GaAs could be
used to explain the Gunn effect observed in these materials. This indicates that the
saturation velocity at high field strongly depends on the band structure at high energy,
on the intervalley scattering mechanisms and on the emission of optical phonons.

Note that the saturation velocity by emission of optical phonons is an important pa-
rameter for the modeling of MOSFET devices. In TCAD model, the saturation is often
taken into account by modifying the effective mobility at high field with the following
formula:

µ = µ0

{
1 +

(
µ0E

vsat

)β}−1/β

(3.25)

where β can be adjusted and the local electric field can be computed either from the
gradient of Fermi-level or electric potential (see Chapter 4). However, the vsat and β
parameters are often adjusted to reproduce the overall saturation of the current in scaled
devices in TCAD, which is due to different phenomena (pinch-off, injection velocity, . . .).
Moreover velocity overshoot can occur in short-channel devices where the transport is
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out-of-equilibrium and the carriers are accelerated to velocity higher than the theoretically
optical phonon saturation velocity. The extraction of vsat and its physical meaning can
thus be subject to interpretation, in particular when the effect of confinement on the high-
field transport properties and saturation velocity by emission of optical phonon are not
well known and understood.

It is thus interesting to study the saturation velocity by emission of phonons in a long-
channel NWs and thin film, in order to better understand this mechanism and its effect
on the saturation current, that will be investigated in the Chapter 4.

In this section, we first present the methodology used to compute the saturation veloc-
ity at high field, extending the resolution of Boltzmann equation presented in Section 3.1.
We then compare the results obtained with KP and TB methods in the case of Si NWs,
as well as the influence of the Ge content in SiGe NWs.

3.2.1 Methodology: resolution of Boltzmann transport equation (BTE)

Modelling high-field transport is a difficult task, mostly performed using Monte Carlo
methods in the case of bulk Si [141, 266] and Si layers [89, 154, 197]. In the latter case, sub-
bands induced by the confinement are considered in the envelope-function approximation.
More recently, Monte Carlo simulations have been applied to Si NWs using band structures
calculated in TB [382]. All these calculations assume that carriers are coupled to bulk
phonons. However, recent studies [201, 402, 200, 256] on the low-field transport in small-
diameter Si NWs based on fully-atomistic descriptions of electron and phonon states such
as the one presented in Section 3.1.4 show that carriers couple in a complex manner to
many phonon modes due to the strong confinement. In high-field transport, the situation
is even worse since, in principle, hot carriers have enough energy to excite phonon modes in
the whole spectrum. Therefore, it is interesting to explore high-field transport considering
all electron-phonon scattering processes.

Unlike precedent theoretical works that mainly employ Monte Carlo method to solve
BTEs, a non-linear equation solver (MINPACK) is used here to determine the distribution
function (occupation probability) directly, from Eqs. (3.4) and (3.5), considering uniform
transport along the NWs. In the case of NW, the BTE related to a given electronic state
i is repeated here:

−eE
~
∇kfi =

∑

j /=i

[Sjifj(1− fi)− Sijfi(1− fj)] (3.26)

where fi is the electron occupation probability in state i and the scattering rates Sij are
computed using the same method as in the previous section for low-field transport, using
Fermi golden rule in either KP or TB approaches (Sections 3.1.2 and 3.1.4 respectively).
The energy up to 1 eV from the band extrema are taken into account here, which was
found sufficient to compute the full distribution function and carrier velocity for electric
field up to 1 MV/cm. The gradients ∇kfi are evaluated numerically on a regular grid
of k in 1D. In addition to BTEs, we impose the charge conservation in the system (e.g.,∑

i fi = number of electrons). Hereafter, the carrier density is set to 106 cm−1. The BTEs
together with the extra equation are then solved exactly using MINPACK [232], which
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is a solver based on the Levenberg-Marquardt non-linear algorithm. The drift velocity is
finally given by v =

∑
i fivi/

∑
i fi.

3.2.2 Si nanowires

In this section, we investigate the drift velocity in Si NWs with small diameter that
have caught significant attention over the last decade [210, 393, 114]. The EMA and TB
approaches are first compared in 〈110〉 NWs. The influence of the temperature is then
discussed and results at 77 and 300 K are compared. The drift velocity is obtained by full
resolution of the non-linear BTE including the e-ph scattering matrix elements computed
within a continuous EMA method based on the deformation-potential theory or a full
atomistic TB approach described in the Section 3.1.4, including all possible electron-
phonon scattering processes. The same parameters as in the previous section are used for
TB model. For the EMA calculation, the acoustic deformation potential is set to 14.6 eV
and both f- and g-type phonons are considered with phonons energies and deformation
potential given in Ref. [257].
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Figure 3.14. Electrons drift velocity and mobility (inset) as a function of the strength of
the electric field in 〈110〉 Si NW at room temperature with different diameters computed
with continuous KP (left) and atomistic TB (right) approaches.

The drift velocity versus electric field in Si NWs in the 〈110〉 direction at room temper-
ature for different diameters is plotted in Figure 3.14, together with the effective mobility
defined as µ = v(E)/E. The vertical shift in the v(E) plots is due to the decrease of the
electron low-field mobility with the NW diameter, as found in the previous section. Similar
behavior is found in the EMA and TB approach, but the electron mobility is usually lower
in EMA than in TB, due to the enhanced value of the acoustic deformation potential (as
explained in Section 3.1.2). In all cases, when E is increased from 100 to 105 V/cm, v is
found to be increasing at low field, then saturating after a certain threshold, or eventu-
ally dropping after a maximum. The threshold field strength, from where the saturation
region starts, varies from wire to wire, and depends on the size of NW and temperature.

110



3.2 – Saturation velocity

−0.4 −0.2 0.0 0.2 0.4

k (2π/l)

1.2

1.3

1.4

1.5

1.6

1.7

E
(e
V
)

100 V/cm → 200 V/cm (b)

−0.4 −0.2 0.0 0.2 0.4

k (2π/l)

1.2

1.3

1.4

1.5

1.6

1.7

E
(e
V
)

10 kV/cm → 20 kV/cm (d)

Figure 3.15. Conduction band structure of a 〈110〉 Si NWs of 5 nm in diameter. The size
of the dots represents the change in the electron occupation probabilities at 77 K by varying
the strength of the electric field from 100 to 200 V/cm (b), or 10 to 20 kV/cm (d). Blue
dots indicate a decrease in the occupation probability, red dots an increase.

One generally notes that the drift velocity in the saturation regions is usually of the same
order. Therefore it is obvious to notice that wire with higher mobility has lower threshold
field strength, and its mobility starts to degrade at lower field (inset of Fig. 3.14). This
behavior is tightly related to the band structure of the 〈110〉 Si NW and the intervalley
scattering [182].

We discuss the case of the 5 nm Si NWs in details below, based on the atomistic TB
approach. In order to facilitate the analysis, we discuss the change of the distribution
function at low temperature (77 K). Indeed, the temperature widens the distribution
function and smoothens out the effects of valley transfer, which is less pronounced at room
temperature. The comparison between results at 77 K and 300 K is found in Fig. 3.16
and is discussed later.

With the presence of external electric field, the occupation probability of electron
departs from the Fermi-Dirac distribution, which results from the balance between carrier
acceleration by the electric field and carrier scattering by the phonons. At low electric
field, the distribution function looks (almost) symmetric with respect to the conduction
band minima; yet, the electric field accelerates and drags the electrons from the negative
to positive group velocity states. Some of these electrons are backscattered to the negative
group velocity states by the phonons. This can be seen in Fig. 3.15(left) where the change
of electron occupation probability is plotted on top of the Si NWs band structure and the
increase of carrier population with positive group velocity is clearly shown. At high electric
field, the distribution function becomes clearly asymmetric with respect to the conduction
band edge, most of the electrons being accelerated in the positive group velocity states.
When most of electrons are already in positive velocity states, further increase in electric
field does not help electrons to gain more velocity, but accelerate electrons to high-energy
states, which facilitate phonon emission. This can be seen in Fig. 3.15(right). In this
case, the average drift velocity eventually reaches a maximum and saturates. A few of
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the electrons are, however, transferred from the low mass valleys at k = 0 to the heavy
mass valleys at k ± 0.42× 2π/l. This intervalley process transfers electrons to state with
lower group velocity, similarly to the intervalley scattering responsible for the Gunn effect
in III-V bulk materials.

This analysis helps to explain why, unlike bulk Si, the saturation velocity may not be a
constant in Si NWs where the confinement leads to two different types of valleys separated
in energy and with different transport masses. This drop of the velocity after a peak value
is particularly pronounced at low temperature, where the distribution function is steeper
and the effect of valley transfer is more important. This is clearly seen in Figure 3.16,
where the drift velocity at 300 K and 77 K are compared for both electrons and holes.

In general, the drift velocity in the saturation region is comparable to that of bulk Si.
At 300 K, for a field of E = 105 V/cm, the drift velocity is 0.743 × 107 cm/s in 5 nm
diameter Si NW, somewhat below the bulk value of ∼ 107 cm/s. This reduction may be
explained by the stronger e-ph coupling in Si NWs [402, 256]. Following the same trend
as in bulk Si, the drift velocities at E = 105 V/cm slightly increase from 300 K to 77 K,
reaching 0.935× 107 cm/s [141].
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Figure 3.16. Drift velocity and mobility of electrons (a) and holes (b) as functions
of the strength of the electric field in 〈110〉 SiNW with diameter of 2 nm (dashed
line) and 5-nm (solid line) at 77 K (green lines with squared markers) and 300 K
(red lines with dotted markers).

The evolution of the distribution function of holes with respect to an increasing electric
field is analogue to that of electrons. As discussed in Section 3.1.5, the highest hole
subbands have a strong light-hole character in 〈110〉 Si NWs, leading to a high low-field
mobility. In a 5 nm NW, the first heavy hole subband is the fourth one, so that the splitting
between heavy and light-hole subbands is about 46 meV. At a very high electric field, the
holes can be transferred from the top light-hole to the nearby heavy-hole subbands, causing
the peak value and further decrease of the hole drift velocity, as seen in Figure 3.16(b).
At E = 105 V/cm, the hole drift velocity is v = 0.56 × 107 cm/s at T = 300 K and
v = 0.75 × 107 cm/s at T = 77 K for a 5 nm diameter Si NW. It is slightly smaller
than the drift velocity of electrons, although similar saturation velocities are expected for
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electrons and holes in the bulk Si (around 107 cm/s).
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Figure 3.17. Ratio µ(~ω)/µ calculated for electrons (a) and holes (b) in a 5-nm 〈110〉
SiNW. µ(~ω) is the mobility at 77 K (green lines) and 300 K (red lines) calculated taking
into account only the phonons with energy below ~ω and µ is the total mobility including
all phonons [µ ≡ µ(~ω > 65meV)]. The results are shown for E = 100, 500 and 1000 V/cm.

Figure 3.17 illustrates which phonon modes influence the drift velocity in these NWs.
We plot µ(~ω)/µ, where µ(~ω) is the mobility calculated including only the scattering
by phonons of energy below ~ω. In the bulk Si, the f -type intervalley scattering (e.g.,
X → Y,Z) is dominated by phonons with energies around 19, 47, and 59 meV, while
the g-type intervalley scattering (e.g., +Z → −Z) is dominated by phonons with energies
around 12, 19, and 62 meV [58, 144]. In the case of holes, the carriers are mostly coupled
to the acoustic phonons and to the LO/TO branches near Γ (~ω ' 62 meV). Clearly,
the active phonon modes in Si NWs belong to the same categories but are distributed in
broader ranges of energy because selection rules are partially lifted due to the confinement
(Fig. 3.17). Also, the role of the different modes is strongly dependent on the temperature
and electric field. At low field (100 V/cm), only low energy acoustic phonons contribute
to inelastic scattering at 77 K [402]. Phonons of increasing energy contribute progressively
when the field is increased. The influence of optical phonons (> 50 meV) becomes visible
only for E = 1 kV/cm. At high field, the mobility increases when more phonons are
taken into account, which seems rather counter-intuitive. It takes place because high-
energy phonons scatter carrier from high-mass to low-mass subbands. This is the case
in the conduction band of 〈110〉 Si NWs in which the valley with the smallest effective
mass is the lowest one (Fig. 3.15). Likewise, the emission of high-energy phonons packs
holes in the top light-hole bands and limits the population of the heavy-hole bands. At
300 K, all phonons have sizeable effect whatever be the field. Yet, the high energy phonons
backscatter carriers in the lowest sub-bands and limit the mobility at the low electric field,
while they again hinder valley transfer and increase the drift velocity at the high electric
field.
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3.2.3 SiGe nanowires

The resolution of the BTE and methodology presented in Section 3.2.1 is applied here
to SiGe NWs with different concentration and orientation, extending the atomistic study
of low-field electron mobility of Section 3.1.5. The e-ph scattering matrix elements are
computed with the TB fully atomistic approach and no AD scattering where included
here.
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Figure 3.18. Electron drift velocity versus electric field at 300 K for pristine Si (green)
and Ge (red) wires with diameter d=8 nm and in the 〈100〉 (a), 〈110〉 (b) and 〈111〉 (c)
orientations. The symbols are results from resolution of BTE with TB e-ph scattering
matrix elements, while lines are the fits with Canali’s formula Eq. (3.23).

Figure 3.18 shows the drift velocity versus electric field of electrons in pristine Si and
Ge NWs with diameter d=8 nm at room temperature and with different orientations.
The electric field could not be increased higher than 2 × 104 V/cm here, due to the
energy threshold used (0.25 eV) in the calculation of the scattering rates. A higher energy
threshold would unfortunately increase significantly the computational cost and needed
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memory for NWs with this size. 2 As it was studied in Section 3.1.5, the NW orientation
and Ge concentration strongly impacts the low-field mobility, due to their particular band
structure. In 〈001〉 orientations, Si NWs present a higher mobility, while in the other two
directions, Ge NWs present a higher mobility. This effect on low field mobility acts as a
rigid shift of the curves in Fig. 3.18.

At high field, the velocity of Ge NWs saturates and eventually drops to lower values
in 〈110〉 and 〈111〉 orientations, as it was observed in previous section in the case of 2 nm
〈110〉 Si NWs. This is due to the multivalley character of the Ge NWs band structure (see
Figure 1.24 in Section 1.2.3). This effect is less pronounced for Si NWs with d=8 nm, as
the splitting of the valley induced by confinement is less important. At room temperature,
the saturation velocity of electrons in bulk Ge is about 6×106 cm/s [142] and thus almost
two times lower than the one in bulk Si ( ∼ 1× 107 cm/s [141]). It also saturates at lower
critical field. Similar effect is found in NWs, where the saturation velocity in Ge NWs
is also generally lower than the one in Si NWs, as well as the critical field of the peak
velocity. In Figure 3.18, the fit of the v(E) curve using the Canali formula (Eq. (3.23))
is also shown in dashed lines. The fit matches generally quite well the TB simulations,
except for the case where the valley transfer is pronounced such as Ge NWs in 〈110〉 and
〈111〉 orientations, where the model cannot reproduce the peak velocity at field around
3× 103 V/cm.
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Figure 3.19. Low-field effective mobility µ0 (left) and saturation velocity vsat (right)
parameters as functions of the Ge content in SiGe NWs with d=8 nm and different orien-
tations. The saturation velocity was extracted by fitting the Canali formula on TB-BTE
results. The dotted lines are guide to the eye.

To perform these fits, the low-field mobility was fixed to the values calculated in
Section 3.1.5 for the same NWs and the vsat parameter was adjusted to minimize the

2The present calculation of the scattering rate took on average, for NWs in the 〈111〉 direction, 96 hours
on 64 CPUs and created ≈ 50 Go of data, for each Ge content.
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error between the model and the simulation over the range of field considered (E between
102 and 2× 104 V/cm). The procedure was applied to SiGe NWs with Ge concentration
varying from 0 to 1 and the value of the saturation velocity vsat extracted in this way
in plotted in Figure 3.19(right). As one can note, the saturation velocity extracted in
pristine Si and Ge NWs with d=8 nm is close to the value for bulk materials. Moreover,
as opposite to the low-field mobility, the saturation velocity in pristine NWs with different
orientations is similar.

When x is varied from 0 to 0.8, the saturation velocity variation is low and monotonous,
regardless on the orientation. However, as for the low-field mobility, the saturation velocity
shows strong variation at x ≈ 0.8, due to the transfer from ∆ to L valleys. When x is
increased to 0.9, the saturation velocity increases in 〈001〉 NWs while it decreases for
〈110〉 and 〈111〉 NWs. This trends is opposite to the low-field effective mobility shown
in Fig 3.19(left). Interestingly, the saturation velocity converges to a value close to the
bulk value for all direction in pristine Ge NWs. However, when different valleys are close
to each other in energy in such a way that intervalley is enhanced, the extraction of the
saturation velocity through the single-valley Canali formula is questionable and fails to
capture peaks in the v(E) curves as shown in Fig. 3.18. The saturation velocity extracted
for SiGe NWs with x between 0.8 and 1 can thus be erroneous due to the fitting procedure,
especially for 〈110〉 and 〈111〉 NWs.

3.3 Conclusion of the Chapter

In this Chapter, we investigated the low and high field transport properties of thin films
and nanowires made of Si1−xGex and InxGa1−xAs materials. Physical-based models based
on continuous (EMA and KP) or atomistic (TB) approaches were used to extract the
transport properties such as the low-field mobility and the high-field saturation velocity.

The exact resolution of the linearized BTE was discussed in the case of inelastic
anisotropic mechanisms such as POP and compared with the often used RTA approach.
The effect of alloy disorder scattering on the effective mobility in nanostructures was also
investigated. KG models were used to investigate effective mobility in UTBB devices and
to compare it with experimental measurements, while TB models were used to investi-
gate the mobility in NWs. The high field properties of Si NWs derived with these two
approaches were compared, and the TB simulations analyzed in details.

We show that in order to model the transport properties in channel materials such
as Si1−xGex and InxGa1−xAs it is necessary to include additional scattering mechanisms,
such as POP and AD, which can be challenging to describe accurately. Moreover, the
interplay between confinement and the different scattering mechanisms can be complex,
and the result difficult to predict. For these reasons, it is important to have sophisticated
physical-based models in order to predict the characteristics of an advanced device without
need of calibration. As it will be shown in the next and last Chapter, local empirical
mobility models sometimes fail to capture the correct mobility (e.g., in region below the
spacer) and physical-based models such as KG model can be incorporated in a TCAD
solver to compute transport parameters such as mobility and saturation velocity, in order
to have a good predictability.
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Chapter 4

Device simulation and quantum
transport

In the previous Chapters, the electronic properties and transport parameters used in
TCAD models, particularly relevant for long-channel devices, were simulated. However,
advanced short-channel devices feature particular characteristics and physical phenomenon
due to the short length of the channel, such as a lower electrostatic control by the gate,
source-drain tunneling and quasi-ballistic transport. The architecture of the access regions
also becomes essential in the correct modeling of the device performances. As discussed
in the Introduction, the standard classical models used in TCAD face prediction power
issues for nanoscale devices and several empirical models are needed to reproduce the
device characteristics.

In this Chapter, the different models used to simulate the whole device are first in-
troduced. The Quantum-corrected Drift-Diffusion (QDD) model based on the resolution
of the Schrödinger equation with closed or open boundary conditions is introduced in
particular. A physical-based approach is adopted, which involves the resolution of the
Schrödinger equation not only for the charge distribution density, but also for quantum
mechanical effects along the transport, such as source-drain tunneling. The extraction of
transport parameters such as low-field mobility and saturation velocity is also discussed.
In the second section, the QDD model is then used to simulate an FDSOI device. The
description of confinement and transport properties by means of models based on phys-
ical parameters is investigated and compared with empirical approaches. In the third
section, the quantum and ballistic features of transport in FDSOI structures are finally
investigated by means of QDD and Non-Equilibrium Green Function (NEGF) codes. The
saturation mechanisms in short-channel FDSOI devices are studied in particular.

4.1 Devices solvers

4.1.1 Overview of models

One can generally divide the tools used in device modeling in two categories: semi-
classical tools (such as Monte-Carlo (MC), Drift-Diffusion (DD) and Hydrodynamics
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(HD)) and quantum tools (such as Landauer-Büttiker, Quantum Transmission Bound-
ary Matrix (QTBM) and NEGF approaches). Studies have been performed to address the
discrepancies among these modeling techniques and predictions of transport in nanode-
vices [1, 268, 372]. These studies show that each method has advantages and shortcomings
(making each of them useful for a particular application) and that there is no perfect so-
lution to model any device. This section gives a brief introduction of the different models,
as well as the choice of models made in this work.

Semi-classical models

Semi-classical tools are based on the resolution of the BTE (keeping the spatial derivative
in Eq. (3.3) for non-homogeneous transport), either directly through Monte-Carlo algo-
rithm or after integration and derivation of macroscopic quantities. The most commonly
used models in TCAD are based on the method of moments, which allows a convenient
approximation of the BTE and an efficient and stable resolution. To derive these models,
the BTE (Eq. (3.3)) is multiplied by weighing functions (such as the carrier momentum p
(1st order), the energy ε (2nd order), pε (3rd order), ε2, . . .) and then integrated over the
k-space. A system of equations is thus obtained, which is usually under determined. In
order to solve and simplify this system, closure relations have to be introduced, implying
approximations on the physics. These models are called macroscopic, as they involve the
integration of BTE over the k-space and the moments obtained are related to macroscopic
quantities (such as the carrier density n, carrier velocity vs or the flux density). In the
simple Drift-Diffusion (DD) model, the moments of order 0 (direct integration of the BTE)
and 1st order are used, together with the approximation that the carrier are at thermal
equilibrium with the lattice, allowing to have a closure relation. In this model, the current
is given as [316, 117]:

Jn = e
[
nµnE +Dn∇rn

]

Jp = e
[
pµpE−Dp∇rp

] (4.1)

where J is the current, µ is the mobility, D is the diffusion coefficient, n and p are the
electron and hole densities (the indexes n and p stand for electrons and holes). D and µ
are related through the Einstein relation:

Di =
µikBT

e

where i = (n, p). When quasi-Fermi level φF is introduced, Eqs. (4.1) can be transformed
to:

Jn = enµn∇rφFn

Jp = epµp∇rφFp
(4.2)

The Hydrodynamic (HD) model includes additionally the 2nd order moment and allows
carrier temperature to be different from the lattice. The closure relation comes here
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from the conservation of the energy flux (Fourier law). Moments of higher orders can
be included to improve the models, such as it was done in Grasser et al. (2001) [116],
allowing to extend the accuracy of the models to shorter channels and get results close to
MC methods [372].

All the moment-based models usually make the assumption of a single-valley isotropic
effective mass and a local carrier density computed from the classical Maxwell-Boltzmann
statistics:

n(r) = 〈N 3D
c/v 〉 exp(η(r)) (4.3)

where 〈N 3D
c/v 〉 is the spatial average of the 3D carrier density-of-state of conduction band

(c) or valence band (v) and η = εFn(r)−εc(r)
kBT

for electrons and η =
εv(r)−εFp(r)

kBT
for

holes. Moreover, the calculation still involves transport parameters through the scattering
integrals (moments of the scattering operator). A local mobility is used in DD model, based
on empirical expressions that are fitted on experimental or advanced tools. For high-field,
the mobility is further modified through the Eq. (3.25) to account for saturation of the
velocity. Methods to compute moments of the inverse scattering operator to higher orders
have also been discussed in, e.g., Refs [274, 41], allowing to avoid empirical models.

The microscopic BTE equation can also be solved directly by mean of the well-known
stochastic Monte Carlo (MC) method. These MC models are widely used for the sim-
ulation of transport and allow a physical description of the scattering matrix elements
and the resolution of the BTE to any order. However, they require more heavy numeri-
cal resources, in particular when confinement effects are included in Multi-Subband MC
approaches [83, 356]. Moreover, the statistical description requires a large number of
particles and these methods generally suffer from noise under the threshold voltage [94].
Other methods for the resolution of the microscopic BTE exist, such as the Spherical
Harmonic Expansion (SHE) [316, 311], the use of wavelets [275] or the phase-space reso-
lution [335, 336] but they will not be discussed here.

Quantum-corrections can be included in these semi-classical models to account for
quantum mechanical properties such as quantum confinement and tunneling effects. Sev-
eral methods to include quantum-correction exist and the general justification of these
corrections can be obtained from the Bohmian interpretation of quantum mechanics and
the so-called Bohm potential. Models including these corrections are, e.g., Multi-Subband
Monte Carlo (MSMC) [356], Multi-Subband BTE [150] or Quantum-Corrected DD (see
below). These models generally involve the resolution of the Schrödinger equation and
the incorporation of quantum mechanical effects through an additional electric potential
to the classical one.

The Quantum-corrected DD (QDD) models will be discussed in more details in the next
section. The solver used in this work provides two different implementations [279, 280],
that will be detailed in Section 4.1.2. They are used to study the transport in FDSOI
devices in Sections 4.2 and 4.3.
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Quantum models

Quantum transport methods are also often encountered in the literature and are well suited
for the modeling of nanoscale devices, close to the quantum limit. Landauer-Büttiker for-
malism can be used to model quantum transport at an acceptable numerical cost, and can
be used to simulate ballistic devices. The interactions of carriers with ionized impurity
and surface roughness beyond the first-order perturbation (Fermi-golden rule) can also be
included [282, 281, 179]. Moreover, QTBM techniques allow to solve Schrödinger equa-
tion and describe quantum transport in open systems [167, 194]. However, to model real
device working at room-temperature, non-coherent and out-of-equilibrium transport has
often to be considered. NEGF formalism has been widely used and successfully applied to
study the transport in nanoscale devices in ballistic or diffusive regime [257, 34, 204, 203].
Atomistic (TB or DFT) band structures can be used to have an accurate description of
the electronic states [198] and the interactions of carriers can be treated in a geometri-
cal description in real-space (surface roughness) or through the self-consistent resolution
with Poisson equation (e.g., Coulomb interactions with ionized impurities). Electron-
phonon coupling can be included in these tools through self-energies, computed using the
self-consistent Born approximation (SCBA) and deformation potential theory. These self-
consistent iterations however increase the cost of the calculation and make the atomistic
description hardly applicable, while EMA/KP models are preferred (e.g., Refs. [257, 34]).
Moreover, in NEGF solvers, the electronic Green function is described in real-space G(r, r′)
and its size increases very quickly with the size of the simulation domain. Modespace ap-
proaches have been widely used to decrease this numerical cost, where the Green function
is projected on envelope function in the confinement direction and NEGF equations are
solved only in the transport direction (1D) [204, 246, 373]. While uncoupled modespace
approaches are efficient and allow to strongly reduce the numerical cost, they fail to de-
scribe the transport in inhomogeneous channels and coupled modespace approach need to
be used. These approaches generally require high computational cost and need to be run
on super-computers.

These models, discussed in more details in Section 4.1.3, are used to study the diffusive
character of transport in nanoscale devices in Section 4.3.

4.1.2 Quantum-drift diffusion (QDD)

In this work, we aim at using methods that are compatible with TCAD and numerically
efficient so they can run standalone on a single PC. In the same time, we try to avoid fitting
parameters and empirical models, to improve the predictability of TCAD and investigate
physical phenomenon involved in nanoscale devices.

In this context, it is important to investigate whether DD model can be used to model
the current in a nanoscale transistor, where quasi-ballistic and out-of-equilibrium trans-
port can occur. It was demonstrated by C.Jungemann et al. (2005) [155] that semi-
classical models based on the first order moments of the BTE fail to model the current
in a nanoscale transistor. However, it was also noted recently by M.Lundstrom et al.
(2015) [207] that the DD formalism can be surprisingly successful in TCAD simulations,
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provided that the parameters of the model are correctly extracted/calibrated. Quantum-
corrected DD (QDD) models were developed and applied to nanoscaled devices in studies
ten years ago [65, 239]. Their theoretical foundations were investigated in Baccarani
et al. (2008) [16], based on the interpretration of quantum mechanics of D.Bohm [33],
and it was shown that the ballistic and quantum features of transport occurring in the
nanoscale devices can be, in theory, accurately described by a QDD solver, “so long as
the mobility model implemented in the code accounts for subband formation, anisotropic
effective-masses and strain-induced subband splitting, if any” [16].

Overview of QDD models

We would like to highlight here that behind the label “Quantum Drift Diffusion”, we
can find a wide range of solutions: from the density-gradient corrected DD solver [213] to
multi-subband Poisson-Schrödinger DD solver [16], as well as sliced Schrödinger resolution,
coupled or not with KG solver [279, 157] and 2D Schrödinger resolution accounting for
source-drain tunneling (SDT) effects [239, 65].

In the density-gradient model, the carrier density is modeled as [9, 213]:

n = N 3D
c F1/2

(
εFn − εc − Λn

kBT

)
(4.4)

where:

Λn =
γ~2

5m∗DOS

∇2√n√
n

(4.5)

where γ is a fitting parameter. The parameter Λn acts as an additional driving force, or
potential energy, and can account for the quantum confinement in the direction perpen-
dicular to the transport (e.g. darkspace effect). This model is popular among users of
TCAD tools based on DD framework such as Sentaurus Device or PADRE. Other empir-
ical models included in these solvers are, e.g., the Modified Local Density Approximation
(MLDA) [267]. However, these models need to be calibrated and they are usually not well
suited for the transport direction (e.g. SDT).

Baccarani et al. (2008) [16] showed that, based on the formulation of D.Bohm [33],
the additional driving force (or “so-called” Bohm’s quantum potential) can be deduced
from the resolution of the Schrödinger equation. It is given in the confinement direction
y (perpendicular to the transport) in the EMA approach by:

Qi(y) = −~2

Ri

(
∇y ·

∇yRi
m∗y

)
= εi − U(y) (4.6)

where m∗y is the effective mass in confinement direction, U(y) is the classical potential
energy, εi is the energy of the subband i and Ri = |ψi(y)| is the norm of the enve-
lope wavefunction (interpreted in Bohm’s theory as the quantum field where the particles
evolve). In this case, the driving force depends on the subband index and a continu-
ity equation should be solved for each subband, with additional intersubband scattering
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terms, leading to a quite cumbersome computation. However, if the variation of the sub-
band energy along the transport direction x is equal for each subband, or if only one
subband is occupied, a single equation can be recovered:

Jn = µnn∇xε+ eDn∇xn (4.7)

where µn is the average of the subband effective mobilities: µn =
∑

i
µinn

i

n , n being the
total electron concentration n =

∑
i n

i and i the subband index. As the electric field
can be written as eE = ∇xε, this equation is equivalent to Eq. (4.1), provided that the
electron density is replaced here by a “quantum” electron density computed as:

n = nq =
∑

i

|ψi|2f
(
εi − εFn
kBT

)
(4.8)

For the self-consistent resolution of the Continuity and Poisson equations, the so-called
“Slotboom transformation” [328] is usually used, which requires a direct analytic relation
between n and φFn, such as Eq. (4.3). To include quantum-corrections from the models
mentioned above, the charge density in Eq. (4.4) or (4.8) is, in practice, recast into a
quantum potential energy Gn, which is the driving force added to the classical potential
energy in the DD equation. The expression of this quantum potential energy can be
determined by writing that:

nq(y) = 〈N 3D
c/v 〉 exp

(
εF − εc(y)−Gn(y)

kBT

)

= nc(y) exp

(−Gn(y)

kBT

)

The quantum potential energy is then obtained [280]:

Gn(y) = −kBT ln

(
nq(y)

nc(y)

)
(4.9)

A similar approach can be used to include an additional driving force (recast in the
electrostatic potential) in the direction of transport, as it was shown by severals studies
such as Refs. [239, 233, 64]. In these works, a generalized 2D Poisson-Schrödinger QDD
(PS-QDD) framework was derived, to model the quantum effects along the transport
direction (such as source-drain tunneling SDT). The quantum potential energy is here a
2D spatial function:

Gn(x, y) = −kBT ln

(
nq(x, y)

nc(x, y)

)
(4.10)

where the quantum charge is obtained from a 2D Schrödinger solver:

nq(x, y) =
∑

i

|ψi(x, y)|2f
(
εi − εFn
kBT

)
(4.11)

The penetration of the 2D wavefunction inside the potential barrier induced by the gate
creates here a strong ratio nq/nc, so that the potential energy Gn acts as a driving force
along the transport able to account for tunneling effects [64]. However the assumption
on the variation of the subband energy ∇xεi might not be satisfied here and a “multi-
subband” version of this model should be developed to be more rigorous.

122



4.1 – Devices solvers

Methodology adopted

In this work, an in-house PS-QDD solver is used, including quantum corrections and
physical models to compute the effective mobility. We developed a QDD framework,
where the non-linear Poisson and Continuity equations are solved self-consistently within
a Scharfetter-Gummel scheme [316, 315]. The resolution of the Schrödinger equation is
included in the self-consistent scheme, as sketched in Figure 4.1.

Figure 4.1. Schema of the self-consistent resolution of non-linear Poisson and Continuity
equations in a QDD framework, and the inclusion of Schrödinger resolutions.

In our QDD model [279], we use two different approaches. In the first approach, the
closed-boundary Schrödinger equation is solved in slices in the confinement direction y
(perpendicular to the channel). The Schrödinger equation is solved in 1D here, while the
Poisson and Continuity equations are solved in 2D, leading to what we called a “1.5D” PS
solver. In this case, the low-field mobility can be computed either by empirical models,
or by a KG approach based on the envelope function of the 1D Schrödinger solver (see
Section 3.1.2). In the second approach, the NEGF equation is projected on the envelope
functions of the slices and solved in an uncoupled modespace (MS) approach (see details
below in Section 4.1.3). An “apparent” position-dependent mobility is recovered from
the NEGF charge and current by inverting the DD equations, as explained in details in
the next subsections. This second approach allows to describe quantum effects in the
transport direction and brings a few improvements to the 2D PS-QDD model previously
implemented.
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Electrostatics The quantum potential energy that enters the Continuity equation is
computed as explained before, with Eq. (4.9) or (4.10). It depends on the ratio of quan-
tum density over classical density and includes the usual confinement (DS) effects near
SC/oxide interfaces, in both PS-QDD models used in this study. To be consistent with the
non-linear Poisson solver (blue box in Fig. 4.1), the density prefactor

〈
N3D

〉
used in the

Slotboom transformation and non-linear Poisson equation is also modified and computed
as [280]:

〈
N3D
q

〉
=

nq(x, y)

F1/2 ((εC − εF )/kBT )

The map of quantum corrected density factor obtained in this way is plotted in Fig. 4.2.

Figure 4.2. Effective density prefactor accounting for quantum corrections (see text for
details) in an FDSOI NMOS device at Vgs = 0.9 V and Vds = 50 mV.

Additionally, in the second QDD approach, the quantum potential computed with
Eq. (4.10) includes a driving force along the transport direction, and accounts for SDT
effects as explained in Ref. [65]. Note that previous studies with PS-based QDD models
were mainly based on the resolution of the closed boundary system. To account for effects
such as SDT in the transport direction, the limitation of the 2D Schrödinger equation is
twofold: the closed boundary condition imposes the quantum charge to be zero at the
quantum domain border, which implies a proper position of the simulation box. Addi-
tionally, the description of high Vds regime requires a big number of subbands (typically ≥
1000 in an architecture like Fig. 4.2 in saturation regime) to account for the high energy
difference between source and drain levels. This limits the methods to low source-drain
bias Vds (1 mV in Ref. [65]) or to ultra-thin devices (tch = 1.5 nm in Ref. [239]). The
present NEGF-based approach allows to investigate thicker channel devices at high Vds.

Transport parameters In the first PS-QDD approach used in this work, the low-field
mobility can be computed with KG solver, based on the outputs of the 1D Schrödinger
solver, as explained in Section 3.1.2. Although the KG solver increases the numerical cost
of the simulation, it allows to compute the mobility based on physical-based parameters
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4.1 – Devices solvers

and avoid empirical models and fitting parameters. It also allows to capture the effect
of confinement on the different scattering mechanisms. A similar approach was used in,
e.g., Stanojevic et al. (2015) [338]. This method allows to improve the prediction power
of device solvers for the low-field mobility used in linear regime.

However, it does not describe the saturation mechanisms and one still needs to adjust
the saturation velocity parameter to describe the current in saturation regime. Although
this parameter could be calculated with the methodology introduced in Section 3.2.1, it
would only describe the saturation of current through the emission of optical phonon and
would not capture the ballistic effect in short channel devices (e.g., the saturation due to
the injection velocity at the top-of-the-barrier [205]).

In the second PS-QDD approach used in this work, we propose to extract an “apparent”
position-dependent mobility from the NEGF current based on Scharfetter-Gummel DD
equations [316]. It corresponds to the mobility in a DD solver that gives the same overall
drain current as the NEGF solver. It can be computed by inverting the DD formula (4.1),
as detailed below. The first issue comes from the “non-locality” of the NEGF current,
which is an integrated value over the channel thickness. In the view to compute a local
mobility, the quantum current is first averaged over the NEGF charge distribution.

In the finite difference 2D mesh of a Scharfetter-Gummel scheme, the current density
in a given mesh node (i, j) can be established by their neighbor’s mid-nodes (see Ref. [316]
for the derivation of this expression):

Jn(i, j) =

√(
Jnx|i+1/2,j + Jnx|i−1/2,j

2

)2

+

(
Jny|i,j+1/2 + Jny|i,j−1/2

2

)2

(4.12)

where the 1/2 indexes denote mid-points nodes of the 2D mesh. The required electron
current density components of each of the intervals, which are the parameters of the
respective differential equations for the carrier concentrations, are evaluated to:

Jnx|i+1/2,j = Dn|i+1/2,jB|i+1/2,j

Jnx|i−1/2,j = Dn|i−1/2,jB|i−1/2,j

Jny|i,j+1/2 = Dn|i,j+1/2B|i,j+1/2

Jny|i,j−1/2 = Dn|i,j−1/2B|i,j−1/2

where Dn is the diffusivity cœfficient obtained from the Einstein relation Dn = µnkBT
e and

is given as a simple linear interpolation for the mid-interval. The functions B|i±1/2,j are
defined as:

B|i±1/2,j =
B (ϕ(i∓, j)− ϕ(i±, j))n(i∓, j)−B (ϕ(i±, j)− ϕ(i∓, j))n(i±, j)

∆x(i±)

where the Bernoulli functions are given by B(x) = x/(1 + exp(x)), ∆x is the mesh step
and the indexes i± = i + 1/2 ± 1/2 and i∓ = i − 1/2 ∓ 1/2. The function B|i,j±1/2 are
defined the same way, interchanging i with j. Eq. (4.12) is then further transformed into:

Jn(i, j) =

√√√√
(
µn(i, j)kBT

(
B|i+1/2,j +B|i−1/2,j

)

2e

)2

+

(
µn(i, j)kBT

(
B|i,j+1/2 +B|i,j−1/2

)

2e

)2

125



4 – Device simulation and quantum transport

And therefore:

µn(x, y) = 2Jn(x, y)

(
e

kBT

)3/2
√

1

B̃2(x, y)
(4.13)

where B̃2(x, y) is the average squared Bernouilli function calculated on the half-nodes of
a Scharfetter-Gummel scheme:

B̃2(x, y) = (B|i+1/2,j +B|i−1/2,j)
2 + (B|(i,j+1/2) +B|(i,j−1/2))

2

An “apparent” position-dependent mobility that is compatible with DD framework is ob-
tained in this way from the non-local NEGF current. Carrier-phonon interactions are
included in the MS-NEGF calculation, while other types of scattering that require a geo-
metrical description and greatly increase the numerically cost of the simulation, may be
later included via standard empirical models through a Matthiessen rule.

4.1.3 Non-equilibrium Green function (NEGF)

To study the validity of the QDD model and the diffusive character of nanoscale devices,
we will compare in Section 4.3 physical quantities extracted from QDD simulations to
the ones extracted from full-quantum NEGF simulations in linear and saturation regimes.
The NEGF solver used there is the one implemented in TB_Sim [381] in the EMA/KP
formalism and includes a geometrical description of the device in 3D, including surface
roughness and discrete dopants. Details about the code and its implementation can be
found in, e.g., Ref. [257].

In this work, we also perform NEGF simulation in the uncoupled modespace (MS-
NEGF) approach, with electron-phonon interactions included with local self-energies fol-
lowing Ref. [8]. This solver, implemented in U2OXPP code, is included in the PS-QDD
module and used to extract the “apparent” mobility through the method mentioned above.
Other scattering mechanisms are not included in this MS-NEGF solver, but may be in-
cluded a posteriori in the PS-QDD module, via Matthiessen rule.

The EMA is used for all calculations and will be assumed in the following derivations.

Some definitions

The electronic one-body Green’s function G(r, t, r′, t′) represents the probability to find
an electron at position r and time t when an electron was initially injected at position
r′ at time t′. For a time-independent Hamiltonian (no exterior perturbation), it is more
convenient to transform the time-resolved Green’s function into an energy-resolved Green’s
function G(r, r′,ε) [361]. This function allows to describe quantum transport. However
it needs to be extended to non-equilibrium Green function (NEGF) formalism to treat
systems driven out-of-equilibrium or polarized by, e.g., source-drain electrodes [160]. In
this subsection, we follow the definitions and derivations presented in Ref. [360].

The electronic stationary states are described by the retarded Green’s function:

Gr(ε) = lim
η→0+

[ε+ iη −H − Σr
L − Σr

R − Σr
PH ]−1 (4.14)
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4.1 – Devices solvers

where ε is the energy usually taken on a fine mesh, Σr
L and Σr

R are the self-energies of
left and right contacts resp., and Σr

PH is the self-energy of electron-phonon scattering.
H is the KP/EMA Hamiltonian of the simulation domain. The broadening of the states
induced by the contacts is related to the imaginary part of their self-energies, defined as:

ΓC = i(Σr
C − (Σr

C)†)

where C = (R,L). In the NEGF formalism, the lesser Green’s function is furthermore
introduced, defined as:

G<(ε) = Gr(Σ<
L + Σ<

R + Σ<
PH)Ga

where Ga = (Gr)† is the advanced Green’s function and Σ<
C are the lesser self-energies.

These are all complex operators. The lesser and retarded self-energies are related to each
other through the relation:

Σ<
C = iΓCf(ε− εFC)

where εFC is the Fermi-level energy at the contact considered (R or L).
From these quantities, the energy-resolved electronic density and electronic current

flowing from slice i to slice i′ (along the transport direction x) can be computed as [361]:

ρ(ε) = gνgs
1

2π
Im
{
G<(ε)

}
(4.15)

Ii(ε) = −gνgs
2e

h
Re
{

Tr
[
G<i′,i(ε)Hi,i′

]}
(4.16)

where Im, Re and Tr are the imaginary part, real part and trace operators respectively.
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.Å

−1
)

−30 −20 −10 0 10 20 30

z (nm)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

E
(e
V
)

0

1

2

3

4

5

6

7

8

C
u
rr
en
t
d
en
si
ty

(A
/e
V
)

×10−6

Figure 4.3. Occupied local density-of-states (left) and current density (right) maps in
an FDSOI NMOS device including acoustic electron-phonon coupling in saturation regime
(Vds = 0.9 V), computed with Eqs. (4.15) and (4.16).

In the following subsections, the methods to compute ΣC and ΣPH are presented. We
consider here a 2D cross-section of an FDSOI device, as sketched in Fig. 4.5 on page 131.
The device is supposed to be invariant in the width (z direction) and a k-space dispersion
can be considered in this direction, discretized on a mesh with step ∆kz = 2π

Lz
.
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4 – Device simulation and quantum transport

Contact self-energies

To account for open-boundary condition, contacts are included at the edge of the simula-
tion domain. These contacts are treated as quasi-infinite leads, coupled with the simulation
domain as depicted in Fig. 4.4. The influence of the contacts is included in the simulation
domain through the use of self-energies Σr

C , modifying the eigenvalues of the Hamiltonian
H and inducing a broadening of the energy levels, therefore enabling a current to flow
through the device.

Figure 4.4. Schema of contact leads coupled with the simulation domain through
coupling terms tL and tR.

In our case, the contacts are supposed quasi-infinite along the transport x direction,
and coupled with nearest neighbors only, with coupling matrices tL and tR. In the EMA
approach, the coupling between the last mesh point of left lead and the first mesh point
of the simulation domain is given by tL = ~2/(2m∗x∆x2) where ∆x is the mesh step. The
left contact self-energy, projected on one transverse mode, is analytic in this case:

ΣL(1) = −tLeik∆x

ΣL(x) = 0 ∀x > 1

where “1” is a point at the left edge of the simulation. The right contact self-energy ΣR

is given by:

ΣR(x) = 0 ∀x < Nx

ΣR(Nx) = −tReik∆x

where “Nx” is a point at the right edge of the simulation (Nx being the number of mesh
point in x direction in the simulation domain).

When a contact with a finite size along y direction in treated in real space or for
general KP models, the contact self-energies are not analytic. They need to be computed
numerically, with recursive methods. The decimation technique is used here to compute
them, following Ref. [313].

The self-energy calculations presented here can also be used in other open-boundary
solvers, such as QTBM. In our simulation, we include two electrodes contacts (source and
drain), but more contacts can be included in principle in the simulation [148].

Uncoupled modespace approach

As stated earlier, the real-space description of the Green’s function makes NEGF method
numerically expensive. For this reason, a mode-space approach is often used in NEGF
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4.1 – Devices solvers

studies in order to reduce the computational burden [204]. In this approach, the 2D
spatial Green’s function is projected on the closed-boundary eigenvectors perpendicular
to the transport (y direction) as:

Gi,i′,y,y′(ε, kz) =
∑

n,m

Gi,i′,n,m(ε, kz)ψin(y)ψi
′
m(y′) (4.17)

where i and i′ are slice indexes (i.e., position along the x direction), n and m are subband
indexes along the confinement y direction (so-called “modes”) and ψin(y) and ψi

′
m(y′) are

the eigenvectors in the slices obtained by solving the closed-boundary Schrödinger equa-
tion. Remember that the device is supposed to be invariant in the z direction, so the
dependency of the Green function on the transverse wavevector kz in this direction has
been introduced here.

In this way, the real-space Green’s function Gi,i′,y,y′ with size (Nx×Ny)
2 is reduced to

the mode-space Green’s function Gi,i′,n,m with smaller size (Nx ×Nm)2, where Nm is the
number of modes (that can be significantly smaller than Ny, as it was seen in Chap. 1).
The EMA Hamiltonian in the coupled mode-space approach is generally non-diagonal, as
the modes of different slices may be coupled to each other. However, in the case of a
homogeneous thin film, one can consider that the shape of the modes varies slowly along
the x direction:

ψin(y) ' ψi±1
n (y)

In this case, the EMA Hamiltonian H projected on the modes becomes block tridiagonal
and the equation of motion can be solved for each mode independently, leading to the
uncoupled mode-space approach and reducing the size of Hamiltonin for each equation to
(Nx)2 [373].

We have verified in the case of FDSOI device with homogeneous film thickness (no
raised source/drain) that the overall current obtained in the coupled and uncoupled mode-
space approaches is almost identical, even when electron-phonon coupling is taken into
account. When raised source/drain regions (thicker than the channel) are considered, the
uncoupled mode-space approach fails and the current obtained significantly differs from
the coupled mode-space and real-space approaches.

Phonon self-energy: self-consistent Born approximation (SCBA)

In this study, electron-phonon interactions are treated in the deformation-potential theory,
following Ref. [8]. The Dyson equation is used to solve the electron-phonon scattering self-
energy:

Gr = Gr0 +GrΣr
PH(Gr)Gr0

where Gr0 is the Green’s function of the un-pertubated system (no Σr
PH in Eq. (4.14)).

The energy dependencies have been omitted here. This equation can be solved iteratively,
leading to the so-called SCBA.

Phonon scattering processes are considered isotropic, leading to diagonal self-energies
in real space:

〈zi|
ˆ

Σ
r/<
PH (ε) |zi〉 = KPH 〈zi| ˆGr/<(ε) |zi〉 (4.18)
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where 〈zi| Â |zi〉 are Nx ×Nm matrices, zi is a point of the mesh in z direction and KPH

is a phonon coupling constant. In the case of acoustic phonon, it is related to the acoustic
deformation potential through:

KAC =
D2
ackBT

ρv2
s∆x∆y∆z

where ρ is the material density, vs is the sound velocity and ∆x∆y∆z is the volume of
a mesh node. As the device is invariant in z direction, it is more convenient to express
Eq. (4.18) in k-space:

Σ
r/<
PH (ε) = K ′PH ×

1

Nz

∑

kz

Gr/<(ε, kz) (4.19)

where we used the fact that the self-energy in k-space is independent of kz and equal to
the self-energy in real-space. The normalization of the coupling constant transforms here
as:

K ′PH = KPH∆zδk

where δk = 2π/Lz is the step in kz. The same derivation can be performed for intravalley
optical phonon and intervalley f- and g-processes.

Note here that these equations contain the coupling between the different kz-vectors
by phonons. Even if the Green’s functions are block diagonal in kz-space, the different
blocks interact at each self-consistent Born iteration through these phonon self-energies.
As opposed to Ref. [246], a numerical integration over kz is thus needed to account for
electron-phonon interactions in the NEGF formalism presented and an analytic integration
is not possible.
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4.2 – Poisson-Schrödinger-based QDD: linear regime

4.2 Poisson-Schrödinger-based QDD: linear regime

In this section, we perform simulations of a Si FDSOI PMOS structure corresponding to
nowadays technological node [235]. We compare “standard” TCAD simulations accounting
for empirical mobility and density-gradient (DG) models with PS-QDD simulations, where
the quantum confinement normal to the channel is taken into account by solving the
Schrödinger equation within the 3-band KP model, and the mobility is calculated with a
KG solver with PH, LC and SR scattering models (see Section 3.1.2 in previous Chapter).
The difficulty to calibrate the empirical models is pointed out and we show the need for
physical-based models in industrial TCAD framework. The impact of the mobility models
used in the LDD region on the overall current is also investigated, showing the difficulties
to tackle physical effects with empirical models depending only on local quantities.

4.2.1 Device considered: FDSOI PMOS architecture

The device simulated in this section and its geometrical parameters are given in Figure 4.5,
corresponding to the architecture of a FDSOI device in current technological node. The
gate stack is composed of 1 nm of SiON interfacial layer (IL) (ε = 6.6) and 1.8 nm of HfO2

(ε = 20), leading to an EOT of about 0.94 nm (for the so-called GO1 architecture). The
metal gate workfunction is set to 4.62 eV for unstrained Si device. The channel is 6 nm
thick and 24 nm long. The spacers are 6 nm long.

Parameters

Gate length 24 nm
Channel thickness 6 nm
SiON IL thickness 1 nm
HfO2 HK thickness 1.8 nm
SiO2 BOX thickness 20 nm

Spacer thickness 6 nm
Substrate orientation (001)
Transport direction 〈100〉

Figure 4.5. FDSOI device architecture used in this study, with a gate length Lg =
24 nm. A sketch of the device is shown in the left figure, while the geometrical
and physical parameters are detailed in the right table. The doping profile along
the horizontal x direction is also plotted in bottom left figure. The orange rectangle
shows the quantum simulation domain.

Although the width of the device was shown to affect the stress in the channel [27, 26],

131



4 – Device simulation and quantum transport

it is considered infinite in this study and the equations are solved only in 2D. Indeed,
the stress is considered as an input in the simulations, and the device are too wide to
induce a significant quantum confinement on the carrier (W ≈ 170 nm). An homogeneous
version of the device is considered, where the thickness is constant and equal to 6 nm in
the channel but also source and drain areas (no raised source and drain contacts). The
p-type doping profile along the source-drain transport direction x is depicted in Fig. 4.5
and is described by the following equation:

f(x) = 3 · 1020 1

1 + 10
x+6

4

1

1 + 10
x

1.5

where x is the direction of transport with the origin at the center of the channel and f(x)
is the acceptor doping concentration in [cm−3]. This equation was used to reproduce the
doping profile obtained by process simulations [280].

4.2.2 Charge confinement: Poisson-Schrödinger vs Density-Gradient

To benchmark the models and study the effect of charge confinement in the direction
perpendicular to the transport, the current obtained with our QDD is first compared with
SDevice solver in test cases (not quantitative). Figure 4.6 shows the transfer characteristics
of the FDSOI PMOS device with a constant mobility (set to 470.5 cm2(Vs)−1) and with
classical and quantum approaches. The simulation is performed with the TCAD SDevice
solver and the in-house U2OXPP solver.
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Figure 4.6. Transfer characteristics: drain current Ids versus gate voltage Vgs in linear
(Vds = −50 mV) and saturation regime (Vds = −0.9 V) with classical and quantum solvers.
The SDevice and U2OXPP solvers are compared, based on different quantum correction
approaches (see text). The left plot is in linear scale and the right plot in logarithmic scale.

The comparison of classical simulations allows to benchmark the solvers and validate
the implementation in the in house U2OXPP solver. The results obtained with both
solvers are very similar and give a current within < 7% difference.
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To account for quantum effects, the DG method is used in SDevice, while the resolution
of the Schrödinger equation with a 3-band KP model along the confinement y direction
is used in U2OXPP (with parameters given in Section 3.1.3 Table 3.3). 100 slices are
typically used perpendicular to the transport direction and along the 74 nm long device.
EMA model accounting for HH, LH and SO bands were also used and showed similar
results, providing that the DOS mass where properly set (not shown here). In Fig. 4.6,
it is found that the vertical quantum confinement in thin channels has an impact on the
overall current in both linear and saturation regimes. It reduces slightly the current at
high inversion and shifts the threshold voltage to more negative gate voltage, due to the
decrease of the energy of the highest valence subband due to confinement.

More importantly, the distribution of the charge density is strongly affected. Figure 4.7
shows the quantum charge and current density along an homogeneous channel at high
inversion (Vgs = −0.9 V) in the case of linear (Vds = −50 mV) and saturation (Vds =
−0.9 V) regime obtained with the U2OXPP PS-QDD solver with 3-band KP model.

Figure 4.7. Hole charge (up) and current (down) density maps in the orange rectangular
region of Fig. 4.5 at high-inversion (Vgs = −0.9 V) in linear (left, Vds = −50 mV) and
saturation (right, Vds = −0.9 V) regimes, obtained with self-consistent PS-QDD simuations.
Charge density is in unit of [m−3] (log scale) and current density is in [A/m2].

The cut of these distributions along the confinement y direction is plotted in Figure 4.8.
The maximum of charge and, as a consequence, the maximum of current density are
pushed away from the Si/SiO2 interface, due to the well-known dark-space effect (see
Section 2.1.2). In the DG approach, this distribution is strongly dependent on the γ
parameter entering Eq. (4.5), that needs to be fitted on PS simulations. The value used
here to reproduce 3-band KP simulation (γ = 7.9) is in good agreement with the one
extracted by Pons et al. (2013) [287]. Note that this value is only valid for holes in
the [001] confinement direction considered here, and needs to be adjusted for other wafer
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Figure 4.8. Hole charge (left) and current (right) density distributions cut in the middle
of the channel in the confinement direction. The classical and quantum resolutions are
compared, showing the effect of darkspace on both charge and current distributions. The
arrow indicates the effect of DG calibration, when the γ parameter entering Eq. (4.5) is
changed from 4 (default value) to 7.9 (calibrated value).

orientations, as it was shown in Ref. [287]. We found however that it doesn’t depend
strongly on the channel thickness and that the same γ value can be used for different
values of tch.

4.2.3 Mobility: empirical models vs Kubo-Greenwood

Two empirical models are used here: the Philips Model (PhuMob) [213, 172], taking into
account the PH and LC scattering in bulk materials (as function of temperature and
dopant concentration) and the Enormal model from Takagi et al. (1994) [350], taking into
account the effect of vertical effective field on PH and SR.

The PhuMob model describes the bulk PH- and LC-limited mobility with:

µPH = µmax

(
T

300

)−θ

µLC =

(
µ2
max

µmax − µmin

)(
NREF

Nch

)α( T

300

)3α−1.5

+

(
µmaxµmin
µmax − µmin

) ∣∣∣∣
−n− p
Nch

∣∣∣∣
(
T

300

)−0.5

where T is the temperature in [K], and µmax, µmin, θ, NREF and α are fitting parameters.
The first term in µLC takes into account the unscreened Coulomb scattering due to dopants
in the channel, while the second term models the impact of screening by the inversion
charge.
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4.2 – Poisson-Schrödinger-based QDD: linear regime

The Enormal model adds the two contributions:

µPH,normal = A

(∣∣∣∣
∇φ
0.1

∣∣∣∣
)αPH ( T

300

)−θPH

µSR = B

(∣∣∣∣
∇φ
0.1

∣∣∣∣
)αSR

where φ is the local potential and A,B, αPH , αSR and θPH are additional fitting parame-
ters.

These scattering mechanisms are finally combined with a Matthiessen rule:

1

µtot
=

1

µPhuMob
+

1

µEnormal

=
1

µPH
+

1

µLC
+

1

µPH,normal
+

1

µSR

The transfer characteristics obtained on the FDSOI device with SDevice and U2OXPP
solvers with the calibrated empirical models are shown on Fig. 4.9. Additional fitting
corrections are included in SDevice, such as an effective doping concentration for screening
of µLC and a slightly different Enormal model [213], which can explain the small discrepancy
observed for saturation current in linear scale, but an overall good agreement is found with
both solvers. The empirical parameters used here were fitted to reproduce experimental
data and can be found in Pereira (2015) [280].
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Figure 4.9. Same as Fig. 4.6 but with empirical models to compute the mobility.

The effect of the mobility model (empirical model or KG solver) is shown in Fig. 4.10.
PH, LC and SR scattering mechanisms are included in both models, fitted to reproduce the
mobility of long-channel bulk MOSFET devices. It is found that the current is increased
when KG solver is used to compute the mobility in FDSOI PMOS device, in both the linear
and saturation regimes (note that no saturation velocity was used in these simulations).
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Figure 4.10. Transfer characteristics in linear (Vds = −50 mV) and saturation
(Vds = −0.9 V) regime obtained with U2OXPP and using empirical models or KG solver to
compute the mobility. Quantum effects are accounted for by the resolution of 3-band KP
PS. The left plot is in linear scale and the right plot in logarithmic scale.

To better understand this effect, the mobility maps along the channel are shown in
Fig. 4.11. In empirical models, the mobility is local and is a function of x and y positions.
In KG solver, one value of mobility is resolved in each slice and a function of the transport
direction x alone.

Figure 4.11. Hole effective mobility maps obtained PS-QDD simulations with empirical
models (up) and KG solver (down) in the orange rectangular region of Fig. 4.5 at high-in-
version (Vgs = −0.9 V) in linear (left, Vds = −50 mV) and saturation (right, Vds = −0.9 V)
regimes. The same scale is used for each plot in unit of [cm2(Vs)−1].
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Figure 4.12. Hole effective mobility as a function of the transport x direction in the
FDSOI PMOS device in linear regime, obtained with PS-QDD simulation with empirical
models or KG solver. The empirical mobility are horizontally cut at different depths: at the
position of the maximum of charge in the channel (∼ 2 nm from the front interface) and
close to the back interface ( ∼ 5 nm from the front interface).
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Figure 4.13. Hole effective mobility as a function of the transport x direction in the
FDSOI device, in linear (left) and saturation (right) regimes, obtained with PS-QDD
simuulation with empirical models or KG solver. The blue lines are below threshold volt-
age (Vgs = −0.1 V) while red lines are at high inversion (Vgs = −0.9 V). A significant
discrepancy is found in the region below the spacer (x ∈ [19,25] nm and x ∈ [49,55] nm).

The horizontal cuts of these mobility maps are plotted in Fig. 4.12 and 4.13. The
different mobility models are first compared in linear regime. As stated earlier, the em-
pirical mobility depends on the depth (y position of the cut). While the agreement with
KG solver is rather good at the back interface, the mobility in the channel significantly
decreases close to the interface, due to the stronger electric field (taken into account in the
Enormal model). The mobility at the maximum of the charge, that contributes the most
to the overall current, is almost half of the one obtained with KG solver. This explains
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4 – Device simulation and quantum transport

why the overall current obtained with empirical models is lower than in KG simulation
(see Fig. 4.10), and shows the limitation of the empirical models in ultra-thin channels
where confinement effects are not treated with physical models.

In Fig. 4.13, one notes that the mobility in the channel decreases when Vgs increases, for
both models. However, the mobility decreases less significantly with empirical models than
expected with KG calculation. In addition, in the region below the spacer (x ∈ [19,25] and
[49,55] nm), the effective mobility variation is sharper with empirical models and closer to
the channel. This can be due to an inaccurate treatment of screening by empirical models
in this region, where the charge neutrality is not satisfied.

In saturation regime, the local empirical model shows a particular peak of mobility
close to the drain side, as shown in Figs. 4.11 and 4.13. This discontinuity is again caused
by the dependence of the Enormal model on electric field and is not physical.

4.3 NEGF vs QDD: saturation regime

In the previous section, PS-QDD model was used to model FDSOI PMOS device, includ-
ing KG solver to compute the low-field effective mobility. This model can be used to
accurately capture transport properties at low-field (linear regime), thus improving the
description of linear current (Ilin) through a physical-based model. However, to capture
the saturation current correctly (Isat), the mobility at high-field needs to be modified in
TCAD solvers, through the relation (3.25), which accounts for the saturation of the veloc-
ity. The saturation velocity parameter vsat entering this equation needs to be calibrated
and becomes an “apparent” effective parameter in nanoscale devices, accounting for both
saturation velocity (through optical phonon emission) and injection velocity (ballistic top-
of-the-barrier model [205]).

Moreover, the character of transport in nanoscale devices (diffusive or quasi-ballistic) is
still under debate and it is not clear whether DD is still applicable in recent nodes FDSOI
devices in a physical point of view [221]. In this context, a comparison between NEGF and
QDD simulations through local quantities such as quasi-Fermi level, mobility and velocity
can bring more direct understanding than just comparing current at terminals.

In this section, we try to answer both questions of whether DD framework can be
used to model transport in FDSOI devices and of how to extract the saturation velocity
from physical models [236]. For this purpose, we present a careful analysis of quantum
simulations in FDSOI NMOS devices and compare results with QDD simulations.

The device architecture is the same as previous section (see Fig. 4.5), except that
the doping in the source/drain contact is now of n-type (donor) and that the metal gate
workfunction is set to 4.385 eV. In the NEGF simulation, the SR is described geometrically
using an rms ∆SR = 0.37 nm and an exponential autocorrelation function with correlation
length ΛSR = 1.3 nm. Other parameters and details on the code can be found in Ref. [257].
QDD simulations are performed with our in-house QDD module of U2OXPP. Empirical
models are used for mobility, including the PhuMob and Enormal models described in
Sec. 4.2.3. The Schrödinger equation is solved in the EMA to compute the quantum
corrections, including all ∆ valleys.
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4.3 – NEGF vs QDD: saturation regime

4.3.1 Extraction of parameters from NEGF

We present here methods used to extract the quasi-Fermi level, the empirical mobility
and the velocity profiles from NEGF calculations. As these properties are not explicitly
described in NEGF, they have to be deduced from the NEGF density and current.

At low Vds, electrons are thermalized in the channel and the NEGF occupation fac-
tor, defined as the ratio between the occupied density of states and the total density of
states (LDOS) [257], follows a Fermi-Dirac distribution along the device, as depicted on
Fig. 4.14(left). It demonstrates that for low field, the concept of quasi Fermi level φF is
valid and can be extracted by fitting the occupation factor with a Fermi-Dirac distribution.
For high Vds, this method is not directly applicable, as the electrons do not thermalize
within the short channel, but a fraction remain at high energy at the drain side, as shown
in Fig. 4.14(right). The distribution function is thus far from an equilibrium Fermi-Dirac
function, due to this “hot electrons” tail in the distribution (containing about 10% of the
overall carrier density).
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Figure 4.14. Left: NEGF occupation factor at low field (Vds = 50 mV), showing a
Fermi-Dirac distribution. Right: NEGF occupation factor at high field (Vds = 0.9 V),
showing a non-equilibrium distribution with a high energy tail.

Once the quasi-Fermi level φF (x) has been extracted, the low-field mobility in the
channel can be computed from the relation:

J = nµ∇xφF
where J is the total current in [A/m], n the carrier density in [1/m2]. Another way to
analyze the mobility consists in using DD equation, as it has been discussed in Sect. 4.1.3.
Velocity profiles are finally extracted from NEGF results with the relation:

v(x) =
J(x)

en(x)
(4.20)
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4 – Device simulation and quantum transport

Linear regime

The difference in φF (x) profile between purely ballistic and diffusive transport (with
electron-phonon coupling) is shown in Fig. 4.15 in linear regime (Vds = 50 mV).
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Figure 4.15. Up: NEGF quasi-Fermi level profiles along the channel (x direction) at low
field (Vds = 50 mV) and high inversion (Vgs = 0.9 V), without scattering, with PH or
with PH+SR scattering. Down: NEGF surface carrier density n(x) with or without SR
scattering. The vertical dotted lines indicate, in order from left to right, the position of:
source contact, LDD left spacer, channel, LDD right spacer and drain contact.

The drop of φF is a good indicator of the main resistive parts of the device. In
both cases, a major drop of φF is found in the near-spacer region, where the quantum
resistance plays an important role [307]. In this region, there is a transition from a high
carrier density over doped source/drain to a confined inversion layer in the channel. In
addition, a constant-slope drop of φF (x) in the channel is observed in the diffusive case,
as the slope φF (x) is driven there by the mobility: ∇xφF ∼ J/nµ. This relation is not
relevant in the ballistic case and φF is almost flat in the channel in this case. A further
investigation has been performed including SR. The corresponding φF (x) and n(x) profiles
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4.3 – NEGF vs QDD: saturation regime

are also shown in Fig. 4.15. We see that SR does not impact significantly the shape of
the φF (x) profile, even though the density shows strong fluctuations along the device, as
expected.

Saturation regime

In the case of saturation regime (Vds = 0.9 V), the analysis of the quasi-Fermi level is
less meaningful, as explained in Section 4.3.1. The φF (x) and n(x) profiles in saturation
regime are shown in Fig. 4.16.
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Figure 4.16. Same as Fig. 4.15 but in saturation regime (Vds = Vgs = 0.9 V). Down: the
grey line also shows the electron density in linear regime with PH scattering, for comparison.

We found that the carrier density drops to low but not negligible value near the drain
contact, raising a debate whether the device works in pinch-off regime or not [396] (see
the discussion on the saturation mechanisms below, in Sec. 4.3.2). The inclusion of SR
induces again strong charge fluctuation, but does not change significantly the behavior of
φF (x) profiles.
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4 – Device simulation and quantum transport

4.3.2 Saturation mechanisms

The overall drain current obtained with NEGF simulation with the inclusion of the dif-
ferent scattering mechanisms is shown in Fig. 4.17. We see that the saturation current
Isat varies significantly in the different simulations, implying that the different scattering
mechanisms all impact Isat.
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Figure 4.17. Transfer characteristics in FDSOI NMOS devices in saturation (left) and
linear (right) regimes obtained with NEGF simulation with different scattering mechanisms
included. The effect of elastic and inelastic phonon is shown, as well as the impact of SR.

In a nanoscale device, the current at high Vds may be impacted by the different satu-
ration mechanisms:

◦ Pinch-off effect, which is an electrostatic effect also present in long-channel and is due
to the loss of the charge inversion close to the drain, which becomes negligible [221].

◦ Saturation of drift velocity through the emission of optical phonon, which was dis-
cussed in Sec. 3.2.1 and is due to the inelastic scattering of carriers. Note that when
the transport is driven out of equilibrium (e.g., in regions where high electric field
accelerates carriers rapidly), the velocity may locally excess the theoretical vsat [16].

◦ Saturation of the injection velocity close to the source (at the “top-of-the-barrier”),
due to the limited number of quantum channels available (see discussion in
Sec. 4.3.4). It is a band structure (or multi-subband) effect which limits the ve-
locity in ballistic devices.

It is interesting to note that the saturation current Isat in Fig. 4.17 is strongly impacted
by acoustic phonons, which is an elastic scattering and impacts mainly the electrostatics.
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4.3 – NEGF vs QDD: saturation regime

This tends to highlight the role (and existence) of pinch-off regime in this ultra-scaled
FDSOI NMOS device. However, these effects are usually not independent. For example,
the inclusion of scattering mechanisms in the “top-of-the-barrier” model may also influence
the role of injection velocity (see discussion in Sec. 4.3.4).

Scattering: emission of optical phonon

Below we analyze the description of the saturation velocity by emission of optical phonons
(second mechanism in the list) in the NEGF approach in long and short channels.

As it was discussed in Section 3.2.1, the velocity saturates at high field to the so-
called saturation velocity (equals to 1.07× 105 m/s for bulk Si). We investigate here this
effect with NEGF using a long channel device (Lg = 200 nm) with a frozen electric field
set constant along the channel and set to zero in the contacts (calculations performed
by Y.M.Niquet [252]). Acoustic and intervalley phonons scatterings are included. The
extracted velocities at different longitudinal fields with parabolic EMA and 2-band KP
models are shown in Fig. 4.18, together with the saturation velocity extracted from Canali’s
formula Eq. (3.23). It is found that the extracted vsat depends on the band structure model
and that the value obtained with 2-band KP (1.1×105 m/s) is in agreement with the bulk
experimental value (1.07× 105 m/s).
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Figure 4.18. Drift velocity versus electric field in FDSOI device extracted from NEGF
calculations, with two different band structure models. A long channel (Lg = 200 nm)
is considered with constant potential drop in the channel. The velocity in the channel is
extracted from Eq. (4.20). The lines are the fits with Canali’s formula Eq. (3.23) and the
parameters are given in the Table at the right.

Moreover, in ultra-scaled device at high Vds, an overshoot phenomenon can be observed
that consists in a local velocity v > vsat. This phenomena can be seen in Fig. 4.19 where the
NEGF velocity profile at Vds = 0.9 V extracted with Eq. (4.20) is plotted as a function
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4 – Device simulation and quantum transport

of position. One can see that, with PH scattering only, the carrier velocity increases
almost linearly in the channel and reaches values two times larger than the vsat obtained
in long-channel. The inclusion of SR lowers the velocity in the channel and the peak value
decreases from about 3 to about 2.5× 105 m/s.
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Figure 4.19. Velocity profile as a function of the position in the channel obtained with
NEGF simulation in the EMA with or without SR, in linear and saturation regimes. The
value of the saturation velocity in long-channel for EMA is shown and overshoot phenomenon
in saturation regime is evidenced.

4.3.3 QDD model: mobility extraction at high-field

Now comes the question of the relevance of QDD scheme in ultra-scale devices. In this
section, we compare NEGF and QDD simulations.

The φF (x) profile obtained with our QDD solver at low Vds is shown in Fig. 4.20(up)
and compared with NEGF simulations with the same scattering mechanisms included.
Despite that in NEGF the transport is treated at a quantum level, the included scattering
mechanisms produce a diffusion-like transport, characterized by a nearly linear φF profile
in the channel, comparable to QDD simulations. A small discrepancy between the two
models is found in the access region (below the spacer), where the NEGF simulations
predict a steeper drop of φF due to the quantum resistance [307].

A similar study at high Vds, based on φF (x) profile extracted from NEGF density, shows
that this latter quantity is also comparable to the QDD one (see Fig. 4.20(down)). Al-
though this quantity has not a clear physical signification in the case of out-of-equilibrium
transport, it is essential in the application of QDD model. One can argue that QDD
model could describe the transport in saturation regime, provided that the quantum and
non-equilibrium properties are correctly extracted from more advanced simulations. In
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Figure 4.20. Quasi-Fermi level profile obtained with NEGF in linear (Fig. 4.15(up)) and
saturation (Fig. 4.16(up)), compared with the ones obtained with QDD approach, including
PH, SR and IL scattering mechanisms with empirical models (PhuMob + Enormal).

Sec. 4.1.2, we proposed a method to go in this direction, by extracting an “apparent”
local mobility from simple NEGF simulations. We apply this method below to an FDSOI
NMOS device, from uncoupled modespace simulation including scattering with AC and
OP phonons in the U2OXPP software.

The mobility extracted from the NEGF current with the method exposed in Sec. 4.1.2
is shown in Fig. 4.21. We note here that this is valid only in the presence of electron-phonon
interaction, where the concepts of quasi-Fermi and mobility can be recovered (which do
not make sense in a pure ballistic solver). It is stressed here that the concept of “apparent”
mobility in this method is a local parameter driven by the DD equations and differs from
the empirical mobility computed by scattering rates for example. In Fig. 4.21(right), the
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drop of the mobility at high field in the channel is clearly seen, due to the saturation of the
velocity which is intrinsically taken into account in NEGF simulations when PH scattering
is included.
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Figure 4.22. “Apparent” position-dependent mobility extracted from NEGF current at
Vds =50 mV (left) and 0.9 V (right).

The PH-limited mobility extracted with this method is compared with the values
calculated with KG and empirical methods in Fig. 4.22. While similar results are obtained
in the channel at low Vds, the mobility in the channel is higher with KG and empirical
models at high Vds, due to the lack of saturation of the velocity. In the linear regime
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4.3 – NEGF vs QDD: saturation regime

(Fig. 4.22(left)), one notes that the KG and “NEGF” mobilities are also very similar in
the source/drain regions. In the region below the spacer, the KG method gives a mobility
higher than the extraction from NEGF current, because the quantum resistance of this
region is recast in this last one. The mobility obtained with empirical models differs
significantly from the two other methods in the source/drain regions, where it increases
instead of decreasing. In these regions, the normal effective field induced by the gate is
very low, while the carrier density increases of several orders of magnitude due to the
doping. As the semiconductor is strongly degenerate but the confinement is lower, the
KG mobility decreases due to the occupation factor and the higher density-of-state. This
effect is not accounted for in empirical models, that depends only on the normal electric
field1.

The same effect is observed in saturation regime in Fig. 4.22(right). Moreover, the
effect of saturation velocity model (Eq. (3.23)) on the KG mobility is shown. This em-
pirical model induces a decreasing mobility in the channel, dropping to values below
10−2 cm2/(Vs) close to the drain. On the other hand, the “apparent” mobility extracted
from NEGF simulation saturates uniformly (non-local model).

4.3.4 Ballistic effects: quantum resistance and injection velocity

In short-channel devices, the experimental “effective” mobility extracted from, e.g., split-
CV methods, has been found to decrease with the gate length of the device [110]. This
effect has been studied in several works and different explanations exist in the literature.

One of the reasons may be the ballistic resistance of the channel. Kim et al. (2013) [168]
and Kotlyar et al. (2015) [174] suggested to use an “apparent” mobility to take into account
ballisticity in DD solver, obtained by a simple Matthiessen rule:

1

µ
=

1

µbal(L)
+

1

µscat

where µbal(L) is the ballistic mobility in the channel, which is a linear function of the gate
length L and can be computed analytically (see below).

In this section, we present simple analytic models to analyze the ballistic current in
the low-field regime (governed by the ballistic mobility or, equivalently, the “quantum”
resistance), but also the high-field regime (governed by the injection velocity). While
models have been proposed to include the first effect in DD framework [44], we show that
the inclusion of the second effect at high-field is more difficult and may require models
such as the one of Ref. [336] or the MS-NEGF-based QDD scheme presented above.

In ballistic regime, the drain current can be obtained from the difference between
Fermi-Dirac distributions at source and drain:

Ids = − 2eW

(2π)2

∫

vx>0

d2k (fS(k)− fD(k)) vx(k) (4.21)

1Note that LC-limited mobility will be dominant in these regions and that this effect will not affect
significantly the results at the end.
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4 – Device simulation and quantum transport

where W and L are the width and length of the device, fS and fD are the Fermi-Dirac
distribution function evaluated at the source and drain, respectively, and vx is the drift
velocity of carrier along the transport direction x.

In the case of low Vds (linear regime), one can approximate:

fS − fD ' −eVds
∂f

∂ε

The ballistic resistance of the channel can then be written as:

1

Rbal
=
Ids
Vds

=
2e2W

(2π)2

∫

vx>0

d2k vx(k)
∂f

∂ε
(4.22)

In the case of EMA, this expression can be further simplified to:

1

Rbal
=

√
πm∗ykBTe

2W√
2π2~2

F−1/2 (η) (4.23)

where m∗y is the effective mass along the transverse direction y and η = εF−εn
kBT

. From this
expression, one can derive the ballistic mobility:

µbal =
L

eQinvWRbal
=

eL√
2πkBTm∗x

F−1/2(η)

F0(η)
(4.24)

where Qinv =

√
m∗xm

∗
ykBT

π~2 F0 (η).
The ballistic resistance computed in a Si FDSOI device with different channel thickness

obtained with the Eq. (4.22) is plotted in Fig. 4.23, for the case of electrons and holes.
It corresponds to the ballistic resistance of a long-channel, without accounting for access
region.

It is found that the ballistic “quantum” resistance doesn’t depend strongly on the
channel thickness and is well described by a simple formula (derived from Eq. (4.23) in
the case of Maxwell-Boltzmann statistics):

RbalW =

√
2πkBTm∗x
e2Qinv

(4.25)

However, it was found in Rideau et al. (2014) [307] that this quantum resistance (or
ballistic mobility) of the channel is not enough to explain the decrease of mobility with
the gate length observed in measurements. From the NEGF investigation in Sec. 4.3, we
found that the near-spacer regions are very resistive and contribute to about 50% of the
total resistance in the device considered at low Vds. Their contributions, as well as the
quantum resistance of the channel Rbal, are independent on the length of the device and are
both included in the “access” resistance Racc [34]. Both contributions also depend on the
overdrive voltage Vgt = Vgs−Vth (although the threshold voltage Vth relevant in these two
contributions might be different). We may conclude here that the apparent mobility drop
in short-channel is mainly due to the near-spacer region, where both quantum resistance
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Figure 4.23. Ballistic “quantum” resistance of long-channel for electrons (left) and holes
(right) computed with EMA and 6-band KP models, respectively. Symbols are numerical
calculations with Eq. (4.22) while lines are plotted with a simple model (Eq. (4.25)). [307]

and scattering with ionized impurity impact the carrier transport. This was also confirmed
in the detailed analysis of the role of scattering mechanisms in the near-spacer regions and
of the access resistance in Ref. [34].

In our second QDD model, the ballistic mobility is taken into account directly in the
quantum MS-NEGF resolution. The extracted “apparent” mobility thus contains both
ballistic and phonons contributions and additional empirical models can be added with a
Matthiessen rule:

1

µtot
=

1

µapp
+

1

µLC/SR

In this way, the resistive part of the near-spacer region may be correctly treated. However,
the self-consistent resolution of the MS-NEGF-based QDD scheme with the inclusion of
other scattering mechanisms through Matthiessen rule (such as LC and SR) has still to
be further investigated and will be discussed in the perspective of this work (see Sec. 5.3).

Now, let’s consider the case of saturation regime (high Vds). We can make a similar
derivation from the expression of current in Eq. (4.21). In this case, one make the ap-
proximation that all carriers flow from the source to the drain (the barrier is too high for
the carriers to scatter back from the channel to the source). As a result, the current now
becomes:

Ids = − 2eW

(2π)2

∫

vx>0

d2k fS(k)vx(k) (4.26)

The injection velocity (for one subband) can thus be expressed as:

vinj =
Ids

en+
s

=
2
∫
vx>0d2k fS(k)vx(k)∫

d2k fS(k)
(4.27)

where n+
s = ns/2 is the density of forward-directed electrons (with positive velocity). In

the case of EMA (m∗ = m∗x = m∗y) and Maxwell-Boltzmann statistics, it can be resumed
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to the simple model:

vinj =

√
2kBT

m∗π

This formula can be used to have a crude approximation of the injection velocity value in
a Si channel: vinj ' 1.2× 105 m/s, with a transport effective mass m∗ = 0.19m0.

As discussed in Sec. 4.3.2, the injection velocity is a key parameter for the current
saturation mechanism in ballistic devices. For short-channel devices, the virtual-source
model is very often used [205], where the saturation current in the channel is given as a
function of the injection velocity at the top-of-the-barrier, where the potential reaches a
maximum (zero transverse electric field):

Ids,sat = Cox (Vg − Vt) vinj
1− r
1 + r

The last term in this equation accounts for scatterings that may occur in the so-called
kBT -layer, i.e., the region close to the top-of-the-barrier where the carriers can still scatter
back to the source. The back-scattering cœfficient r is usually written as function of the
mean-free-path of carriers λ and the length of the kBT -layer LkT [208]:

r =
LkT

LkT + λ

This term will have an impact on the quasi-ballistic saturation current in nanoscale devices,
showing that the inelastic scattering mechanisms influence the saturation current, not only
through the saturation velocity caused by emission of optical phonon, but also through an
effective modification of the injection velocity in ballistic devices.

In our second QDD model, the injection velocity is also taken into account in the quan-
tum MS-NEGF resolution and depends on the band structure considered in the calcula-
tions. As the value of injection velocity is generally close to the optical-phonon saturation
velocity, these two mechanisms are difficult to distinguish.

4.4 Conclusion of the Chapter

In this Chapter, the device performances of a template FDSOI MOSFET device were
investigated, by mean of QDD and NEGF models. The nature of electron transport
in nanoscale device was studied and the assumptions in QDD models were discussed.
Physical-based QDD models were presented, in two different approaches:

◦ “1.5D” PS-QDD approach, including the resolution of the Schrödinger equation in
1D slices and a KG solver for the calculation of the low-field effective mobility;

◦ MS-QDD approach, including the resolution of uncoupled modespace NEGF equa-
tion and accounting for saturation mechanisms such as injection velocity and
electron-phonon inelastic interactions.
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It was pointed out, that at low Vds, the transport in the FDSOI device considered
remains mainly diffusive, while at high Vds the transport is driven out-of-equilibrium and
about 10% of carriers remain highly energetic at the drain contact.

This study finally showed that the three saturation mechanisms listed in Sec. 4.3.2 are
generally dependent on each other and may all contribute to some extent to the overall
saturation current in FDSOI devices. This makes it particularly challenging to derive
a simple model for high-field transport, that can be used in TCAD model to compute
Ids,sat without empirical and fitting parameters. Our attempt to improve the predictive
power of TCAD solvers at high-field implies here the resolution of quantum transport
equation through the NEGF framework, in order to extract transport parameters. The
1D resolution of this equation in the uncoupled modespace approach is not significantly
more numerically expansive than the resolution of the Schrödinger equation, but limits
the study to homogeneous channels without raised source/drain. Moreover, the SR and
LC scattering mechanisms cannot easily be included in the NEGF simulation without
increasing considerably the numerical cost of the simulation. They need thus to be included
via empirical or KG models, in the self-consistent MS-QDD scheme.
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Chapter 5

General conclusion of the thesis

“I am certain our children or grandchildren will not be using silicon [. . .]
The world is large; there must be a better material.”

Chenming Hu, quoted in Ref. [343]

“GaAs material is the material of the future, and will always remain so”
Old adage, quoted in, e.g., Refs. [212, 32]

5.1 Summary

During this PhD, a variety of different numerical tools were used, and sometimes modified
when needed, in order to compute the electronic and transport properties in devices made
of SiGe and InGaAs channel materials. One purpose of this PhD was to investigate the
properties of InGaAs and SiGe materials, such as their band structure, effective mobility
and traps density, as presented in the first three Chapters. One other purpose of this
PhD was to participate in the development of an industrial simulation framework, in a
“light” physical-based approach, allowing the improvements of the predictive power of
conventional TCAD solvers. This was done continuously during the PhD, and an example
of application is shown in Chapter 4.

Full-zone empirical models were used to compute the band structure (namely EPM, TB
and full-band KP models) and related quantities (density-of-states and effective masses).
It was found that the parameterizations available in the literature generally reproduce
well experimental data and give coherent positions of the band gap and effective masses
of these materials. While the positions of satellite valleys in InAs and In0.57Ga0.43As ma-
terials remain controversial, the general trend predicts them about 1 eV higher than the
conduction band edge, which means that satellite valleys should not contribute signifi-
cantly to transport in these materials. The analysis of gate capacitance measurements
at low-temperature of In0.57Ga0.43As /Al2O3 MOSCAPs with an EOT of ∼ 4 nm also
indicates that only the Γ valley is populated up to an overdrive voltage of 3 V. Two
parameterizations for full-zone KP models were also derived for InAs and GaAs.

The effect of the non-parabolicity of the Γ valley of III-As was investigated with atom-
istic TB and simpler NP-EMA models. In agreement with previous studies, it was found
that the non-parabolicity strongly impacts the gate capacitance in both bulk and UTBB
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MOSCAPs. The gate capacitance can be doubled compared to parabolic EMA calcula-
tions in the case of InAs thin films with ultra-scaled EOT (0.43 nm). However, the gate
capacitance value generally remains well below the ones of Si (for the same EOT), due
to the low density-of-states of the Γ valley. Higher capacitance values are only achievable
when satellite valleys are populated in GaAs thin films. It was also found that the NP
cœfficient used in NP-EMA models needs to be boosted in III-As thin films in order to
reproduce the energy levels obtained with TB.

A small signal analysis model was used to compute the gate capacitance at different
frequencies, which was compared to experimental data. The capture and emission rates
parameters were computed within a multi-phonon approximation approach and included
in a Poisson-Schrödinger solver. Such model could theoretically reproduce the gate ca-
pacitance and give insight on the traps distribution, based on a detailed knowledge of the
defect properties. However, the defects at the In0.57Ga0.43As /Al2O3 interface are still
under heavy investigation and the knowledge of their properties remains uncertain. It is
thus difficult to gain outputs from such an analysis, that uses microscopic properties (such
as the lattice relaxation and charge transfer) to compute macroscopic quantities (gate
capacitance).

For the transport properties, physical-based models based on the linearization of the
Boltzmann transport equation, referred to as the “Kubo-Greenwood” approach, were used
to compute the low-field effective mobility. The effective mobility in thin InGaAs and
SiGe films was compared with experimental data. These models were also included in a
Quantum-corrected Drift-Diffusion (QDD) solver, to compute the current in an FDSOI
pMOS device with Si channel. It was found that the empirical and the Kubo-Greenwood
approaches differ qualitatively in the region below the spacer, where the doping profile
changes significantly, together with the free charge distribution. This also affects the
current in both linear and saturation regime.

In the case of SiGe nanowires, the electron mobility in long-channels was investigated
in the absence of stress with atomistic models going beyond the deformation potential
theory. An abrupt change of mobility was found at the transition point, where the origin
of the lowest conduction subbands changes from ∆ to L valleys. This abrupt change
is directly linked with the band structure and the abrupt change of effective mass. It
depends on the nanowire orientation and the mobility decreases in 〈001〉 nanowires, while
it increases in 〈110〉 and 〈111〉 nanowires.

The high-field transport in Si and SiGe nanowires was also investigated through the
resolution of the homogeneous stationary Boltzmann transport equation. It was found
that the saturation velocity in small nanowires is close to the bulk value, and that the
threshold field and the drift velocity behavior are strongly affected by the confinement. In
particular, a peak value is observed in 〈110〉 nanowires, after which the velocity decreases,
due to valley transfer.

Finally, a full-quantum solver and a QDD approach were used to compute the current
characteristics in an FDSOI nMOS device and to analyze in detail the saturation mecha-
nisms in current technological node devices. It was found that, while the current remains
mainly diffusive in the linear regime, far from equilibrium transport occurs at high Vds.
This makes the saturation current difficult to describe in a drift-diffusion framework. A
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model, based on the resolution of a mode-space Green’s function approach, was proposed,
that could be used in an industrial TCAD framework and improve the predictive power
in the saturation regime.

5.2 Contributions

All along this PhD, several implementations have been made in STMicroelectronics’ solver
UTOX, as well as in CEA’s solver TB_Sim. The main implementations were made in order
to add models specific to InGaAs and SiGe materials, such as non-parabolic corrections
for the EMA model, the 8-band KP model and additional terms in the 30-band KP
Hamiltonian and the scattering through Fröhlich interactions and alloy disorder. Some
additional features were also added, such as the resolution of the Boltzmann transport
equation for the computation of the high-field drift velocity and the inclusion of the mode-
space model with phonon interactions in the quantum-corrected drift-diffusion model.
Other features were implemented but not used in this work, such as the resolution of the
Schrödinger equation in 2D in the multi-band KP models. Finally, the performances of
the UTOXPP solver on Windows and Linux machines were tracked and improved through
Google regression tests and Valgrind tool, for the improvement of the code efficiency.

The models used in Chap. 2 for capacitance simulation and the influence of traps
were implemented in previous work and were only used in this work, without further
implementation, except for the inclusion of non-parabolic corrections.

Although some models existed in the literature previously (NP-EMA, 8-band KP,
polar-optical phonon scattering), some of these implementations allow to perform inno-
vative simulations and bring additional understanding of physical phenomena present in
nanoscale transistors. The inclusion of Kubo-Greenwood model in a QDD solver allows to
improve the description of transport at low-field and was also adopted recently by commer-
cial tools, such as GlobalTCAD solutions. The resolution of open-boundary Schrödinger
equation within a QDD solver allows to simulate source-drain tunneling effects in thick
channels at high drain to source voltage, which was not possible with previous QDD
solvers. The resolution of BTE equation in an atomistic approach allows to investigate
the effect of full-band phonon scattering on the saturation velocity in long-channel devices.
The inclusion of alloy disorder in this approach also allows to simulate SiGe materials and
compare the influence of alloy disorder and phonon scattering.

Moreover, the ability to access a variety of different approaches, allowed to compare
and to give a status on state-of-the-art solvers, which was given, e.g., in Chap.1 for the
band structure of III-As materials.

5.3 Perspectives

As stated in the Introduction of this document, SiGe and InGaAs are considered as alter-
native solutions to Si channels, in order to boost the ON-current and decrease the supply
voltage and power consumption. At the time of writing this document, pMOSFET devices
with SiGe channel materials are starting to emerge in the market for logic applications.
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InGaAs channels are still considered as potential candidates for nMOSFETs and a number
of papers are published continuously on the topic.

While the field of research is continuously improving and the performances of InGaAs
MOSFETs are close to Si MOSFETs, the gain in performances achievable seems to be yet
too low to overcome the cost to introduce them into a production plant. Considering the
small window of potential applications, it is likely that InGaAs MOSFETs will not replace
the mass production of Si MOSFETs in CMOS fabs. However, these technologies might
have some applications for ultra-low-power devices, as well as radio-frequency transistors.

We can think of several future studies that can be performed on the topics addressed
during this PhD.

First, the quantum-corrected drift-diffusion tool developed partially during this PhD
and used to simulate an FDSOI device with Si channel could be used to simulate devices
with other architectures and channel materials. We believe that the physical description
included in the quantum-corrected drift-diffusion model would allow simulating the current
characteristics in a predictive manner and comparison of the performances of devices made
with different materials and architectures.

Considering the bulk band structure, intensive GW calculations could be performed
on top of Hartree-Fock or Hybrid Functional DFT calculations in order to study in more
details the band structure of InAs materials.

With regards to the knowledge of the traps distribution, the Deep-Level Transient
Spectroscopy (DLTS) study performed by an experimental team at CEA-LETI could be
analyzed in greater detail in order to gain more knowledge about the traps in the semicon-
ductor or close to the interface and their capture cross-sections and positions in energy.
Other experimental techniques, such as 1/f and Random Telegraph Noise (RTN) stud-
ies, should be explored to analyze the traps in the oxide or at the interface above the
conduction band edge of the semiconductor.

Finally, regarding the transport models, the atomistic approach could be extended to
include the description of polar-optical phonons and thus the mobility in III-V materials
could be modeled. This would allow the study of the effect of confined phonon band
structure on this mechanism. The resolution of the Boltzmann transport equation could
also be applied to these materials, to model the drift velocity at high field and study the
effect of confinement on the saturation velocity.
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Appendix A

Parameters for band structures
models

A.1 k · p models

A.1.1 Low order models

For many III-V materials, the lowest conduction band lies at the Γ point. For this reason,
8-band KP model is widely used to study III-V materials, which extends the 6-band KP
model for the valence band discussed in Chapter 1. However different formulations of the
8-band KP Hamiltonian exist in the literature, based on different renormalization and
different set of basis states used (e.g. Kane [156], Bahder [19] and Gershoni [109]). The
formulation used in this work is detailed here and preserves the conduction and valence
band effective masses, predicted from the Lüttinger-Kohn 6-band KP model.

8-band KP theory

Kane exposes for the first time a 4-band (no SO) KP model accounting for 3 degener-
ated valence bands (heavy holes, light holes and split-off) and 1 degenerated conduction
band in Γ. In this work, the 8-band KP matrix (with SO coupling) is written in the set
of basis states |S〉, |X〉, |Y 〉 and |Z〉 and given by 1:

H4×4 =




A′k2 iPkx iPky iPkz
−iPkx L′k2

x +M(k2
y + k2

z) N ′kxky N ′kxkz
−iPky N ′kxky L′k2

y +M(k2
x + k2

z) N ′kykz
−iPkz N ′kxkz N ′kykz L′k2

z +M(k2
x + k2

y)




where the quadratic coupling term have been omitted (B = 0). To account for band offset

1Note that we choose to include the factor ~2/(2m0) in the parameters given, so that all parameters
here are in units of [~2/(2m0)].
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between valence and conduction band the following matrix has to be added to H4×4:

HBO =




Ec 0 0 0

0 Ev + ~2
2m0

0 0

0 0 Ev + ~2
2m0

0

0 0 0 Ev + ~2
2m0




Due to the conduction-valence band coupling, the so-called Dresselhaus [75] parameters
L, M, N entering in the Hamiltonian H4×4 are modified as follow:

L
′

= −(γ
′
1 + 4γ

′
2 + 1) = L+

Ep
Eg

M
′

= −(γ
′
1 − 2γ

′
2 + 1) = M

N
′

= −6γ
′
3 = N +

Ep
Eg

where the γ
′
s are the modified Lüttinger parameters 2:

γ
′
1 = γ1 −

Ep
3Eg

γ
′
2 = γ2 −

Ep
6Eg

γ
′
3 = γ3 −

Ep
6Eg

Ep is the optical matrix parameter. The conduction mass mc is also changed with:

A′ =
1

mc
− 2

3

Ep
Eg
− 1

3

Ep
Eg + ∆SO

=
1

mc
− Ep

Eg + 2
3∆

Eg(Eg + ∆)

For the valence bands, effective masses in different direction are related to Lüttinger
parameters (or, with the convention used above, the modified parameters) by the relations:

1

m100
= γ1 ± 2γ2

1

m111
= γ1 ± 2γ3

1

m110
= γ1 ±

√
γ2

2 + 3γ2
3

2Note that for example Bahder [19] uses a different convention, in which the spin-orbit parameter is
included: replacing 3Eg → (3Eg + ∆) in each denominator in these expressions.
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Moreover, the spin-orbit split-off effective mass is given by [109]:

1

mSO
= γ1 − Ep

1
3∆

Eg(Eg + ∆)

The set of parameters used in our calculation are given in Tables A.1 and A.2. The band
structure obtained in InAs with UTOX and TB_Sim are compared on Fig. A.1. The same
band structure is obtained, validating our numerical implementation.

Figure A.1. Bulk band structure of InAs computed with UTOX (blue line) and TBSim
(black triangle) with parametres in Table A.1. Perfect match is observed.

Parameters InAs GaAs

mc [m0] 0.023 0.065
γ1 20.4 6.85
γ2 8.3 2.1
γ3 9.1 2.9

Eg [eV] 0.42 1.52
∆SO [eV] 0.38 0.34
Ep [eV] 22.2 (18) 25.7 (20)

Table A.1. Parameters for 8-band KP model, fitted on TB. For thin-films, the values in
parenthesis are used for Ep parameters to avoid spurious states in real space.

The stress in the 8-band KP model is taken into account by adding the following strain
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matrix to the k · p Hamiltonian [19, 95]:

Hstrain =




ac[exx + eyy + ezz] −iP∑j exjkj −iP∑j eyjkj −iP∑j ezjkj
iP
∑

j exjkj lexx +m(eyy + ezz) nexy nexz
iP
∑

j eyjkj nexy leyy +m(exx + ezz) neyz
iP
∑

j ezjkj nexz neyz lezz +m(eyy + exx)




where ac is the conduction band hydrostatic deformation potential and the parameters
l,m and n are related to the valence band deformation potentials av, b and d by:

av =
1

3
(l + 2m)

bv =
1

3
(l −m)

dv =
1√
3
n

The parameters used for stress in InxGa1−xAs are listed in Table A.2. They are
extracted from Gershoni et al. (1993) [109]. The band structure obtained with UTOX in
InGaAsP are compared with the ones presented in Gershoni et al. (1993) [109] with 2%
compressive biaxial strain on Fig. A.2.3 Band structure obtained with UTOX doesn’t take
into account the band splitting in k /= 0 due, according to Gershoni’s paper, to tetragonal
deformation of the crystalline cell with strain. Note that it was found in the recent work of
M.Rau et al. (2016) [297] that the standard value of deformation potential used in 8-band
KP fail to reproduce stress dependence prediction of DFT and TB models and need to be
re-calibrated. Unfortunately, the re-calibration was not provided in their work.

Parameters InGaAsP

mc [m0] 0.041
γ1 11.01
γ2 4.18
γ3 4.84

Eg [eV] 0.75
∆SO [eV] 0.356
Ep [eV] 25.3

ac [eV] -6.2
av [eV] 1.56
b [eV] -1.75
d [eV] -4.04

Table A.2. Parameters for 8-band KP model used for strain calibration on Gershoni [109].

3Note that the sign of hydrostatic strain parameter ac is here changed compared with the ones given in
Gershoni to be consistent with the conduction band shift, lowered in case of compressive (negative) strain.
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(a) No strain (b) 2% compressive biaxial strain in (001) plane.

Figure A.2. Bulk band structure of InGaAsP with parameters from Gershoni [109] given
in Table A.2 without (a) and with (b) compressive strain. Results of the Fig. 1 of Ref. [109]
are reported here with dots symbols and our calculations are shown with lines.

NP-EMA

One of the first effective mass model to describe non parabolic energy dispersion in
bulk semiconductors was proposed by Conwell and Vassel (1968) [59] to describe GaAs
band structure. Their derivation comes from the expression of Kane’s KP model [156],
valid in the approximation of band gap Eg much larger than spin-orbit splitting energy
(∆SO):4

ε(k) =
~2k2

2m0
+
Eg
2

(√
1 +

4Ep~2k2

2m0E2
g

− 1

)
(A.1)

where Ep = 2m0P
2/~2 is the optical coupling parameters of 8-band KP model. This

expression is rearranged and developed for small ε:

~2k2

2m0
= ε

[
Eg

Eg + Ep
+

E2
gε

(Eg + Ep)2
−

2E2
pε2

(Eg + Ep)2
+ . . .

]

When ε→ 0, RHS of this equation must be equal to εm∗/m0 to obtain the EMA solution.
Thus writing Eg/(Eg + Ep) = m∗/m0, one obtains finally the well-known non-parabolic
expression of the energy dispersion close to the valley minimum:

~2k2

2m∗
≡ γ(k) = ε [1 + αε+ . . .] (A.2)

4The expression given here was extracted from Ehrenreich et al. (1960) [79] and slightly differs from
the original expression.
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with the non-parabolic parameter:

α =
E2
p

Eg(Eg + Ep)2
=

1

Eg

(
1− m∗

m0

)2

(A.3)

Conwell and Vassell (1968) argues that the terms of higher order in the development
around ε = 0 are negligible and Eq.(A.2) is a good approximation for Γ valley until ε ∼ 1
eV above the conduction band minimum. Also, if one takes the first order development
only and writes the root of the quadratic expression, one obtains the dispersion relation:

ε(k) =
1

2α

{
−1 +

√
1 + 4αγ(k)

}

which will be useful in the derivation of confined models (see Chapter 1 Sec. 1.2.1). Note
that the effective mass in non-parabolic band structure now depends on wavevector k and
can be written as:

m(k) = m∗(1 + αε(k)) (A.4)

by equating the classical and quantum momenta p = mv = ~k; m∗ being the effective
mass at the valley minimum energy ε = 0.

A.1.2 High order models

The full-matrix of the 54-band model is given as follows:

H54
k·p =

[
H24×24

k·p H24×30
k·p

H30×24
k·p H30×30

k·p

]

where H30×30
k·p is the 30-band Hamiltonian (including Td group terms in red):

H30×30
k·p =




H2×2
Γ
1l

UH2×6
k T

′
H2×6
k 0 0 0 U

′
H2×6
k 0

H6×6
Γ
25l

QH6×6
k PH6×2

k 0 RH6×4
k 0 P

′′
H6×2
k

H6×6
Γ15

SH6×2
k TH6×2

k 0 Q
′
H6×6
k S

′
H6×2
k

H2×2
Γ
2l

0 0 P
′
H2×6
k 0

H2×2
Γ1u

0 0 0

H4×4
Γ12

R
′
H4×6
k 0

H6×6
Γ25u

P
′′′
H6×2
k

H2×2
Γ2u
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The 24 extra states are coupled through the matrix:

H24×24
k·p =




H2×2
Γ1e

0 0 TeH2×6
k 0

H4×4
Γ12e

Y eH4×6
k ZeH4×2

k 0

H6×6
Γ25e

0 AeH6×6
k

H6×6
Γ15e

QeH6×6
k

H2×2
Γ
25
′u




And these states are coupled to the 30-band states through the following matrix:

H30×24
k·p =




0 0 0 Te
′′
H2×6
k 0

0 0 Ae
′′
H6×6
k Qe

′′
H6×6
k 0

Te
′′′
H6×2
k Ze

′
H6×4
k 0 0 QeH6×6

k

0 0 0 0 Pe
′
H2×6
k

0 0 0 Te
′
H2×6
k 0

0 0 0 0 ReH4×6
k

0 0 Ae
′
H6×6
k Qe

′
H6×6
k 0

0 0 0 0 PeH2×6
k




The interactions are illustrated on Figure 1.4 and small matrices H6×2, H6×4, H6×6, H4×4

and H2×2 are given in Ref. [304].
Mind that we keep here the state indexes of Diamond structure introduced in Ref. [304].

The notation thus differs from Ref.[298]:

Γu2′ ↔ Γ6q

Γu25′ ↔ Γ7d−8d

Γ12′ ↔ Γ8−3

Γu1 ↔ Γ6u

Γ15 ↔ Γ7c−8c

Γl2′ ↔ Γ6

Γl25′ ↔ Γ7−8

Γl1 ↔ Γ6v

where the indexes u and l stand for “upper” and “lower” states, and the Zinc-Blende spin-
orbit degenerated 7 and 8 states are confounded in one state in the Diamond structure
(spin-orbit splitting is taken into account by additional terms). Γl1 and Γl25′ are valence
bands while all other states belong to the conduction band.

163



A – Parameters for band structures models

Table A.3. Energy levels in Γ used for the 54- and 30-band KP models. Letter
e indexes the 12 (220) bands.

Parameter (eV) GaAs InAs Si GaAs InAs

54-band 30-band

Γ1e 26.917 22.93 31.275

Γ12e 27.655 23.725 25.102

Γ25e 25.702 22.657 29.780

Γ15e 28.395 25.690 25.204

∆15e 0.065 0.077 0.044

Γ25′e 27.72 27.067 23.678

∆25′e -0.105 0.070 0

Γ2′u 12.752 11.686 15.384 12.752 11.686

Γ25′u 12.008 10.661 11.684 12.008 10.661

∆25′u 0.05 0.05 0.012 0.05 0.05

Γ12′ 9.900 9.551 8.707 9.900 9.551

Γ1u 6.787 6.847 8.736 6.787 6.847

Γ15 4.751 3.896 3.304 4.751 3.896

Γ2′l 1.526 0.415 4.096 1.526 0.415

∆2′l 0.2 0.217 0 0.2 0.217

Γ25′l 0 0 0 0 0

Γ1l -12.446 -12.794 -11.916 -12.446 -12.794

∆25′l 0.350 0.39 0.044 0.350 0.39

∆25′l−−25u 0 0.388 -0.022 0 0.388

164



A.1 – k · p models

Table A.4. Non-zero matrix terms of the momentum p̂ and their definitions for 54- and
30-band KP models. Letter e indexes the 12 (220) bands.

Parameter (a.u.) GaAs InAs Si GaAs InAs

54-band 30-band

P = ~
m 〈Γ25′l | p̂ |Γ2′l〉 1.2239 1.1170 1.2180 1.1407 1.1284

Q = ~
m 〈Γ25′l | p̂ |Γ15〉 1.1302 1.0340 1.0430 1.1367 1.0803

R = ~
m 〈Γ25′l | p̂ |Γ12′〉 0.5580 0.5985 0.5380 0.5887 0.5555

P
′

= ~
m 〈Γ25′l | p̂ |Γ2′u〉 0.2207 0.0820 -0.0159 0.1988 0.2718

P
′′

= ~
m 〈Γ25′u | p̂ |Γ2′l〉 0.1801 0.1477 0.1535 0.1237 0.2164

Q
′

= ~
m 〈Γ25′u | p̂ |Γ15〉 -0.5826 -0.6817 -0.6503 -0.6089 -0.5001

R
′

= ~
m 〈Γ25′u | p̂ |Γ12′〉 0.8852 0.7850 0.8598 0.8042 0.8527

P
′′′

= ~
m 〈Γ25′u | p̂ |Γ2′u〉 1.1860 1.0848 1.4852 1.3913 1.3246

T = ~
m 〈Γ1u | p̂ |Γ15〉 1.0250 1.1266 1.1637 1.0320 1.0758

T
′

= ~
m 〈Γ1l | p̂ |Γ15〉 0.3702 -0.4449 0.2520 0.1991 0.3536

S = ~
m 〈Γ15| p̂ |Γ2′l〉 -0.0008 -0.0421 – -0.0013 -0.0408

S
′

= ~
m 〈Γ15| p̂ |Γ2′u〉 -0.0031 -0.0679 – -0.0025 0.1681

U = ~
m 〈Γ1u | p̂ |Γ25′l〉 0.3373 0.3630 – 0.3209 0.3272

U
′

= ~
m 〈Γ1u | p̂ |Γ25′u〉 -0.1185 0.0385 – -0.1112 0.0430

Ae = ~
m 〈Γ25e | p̂ |Γ25′e〉 2.0852 2.2635 1.4990

Ye = ~
m 〈Γ12e | p̂ |Γ25e〉 1.0642 1.1634 0.9606

Ze = ~
m 〈Γ12e | p̂ |Γ15e〉 0.0026 0.0318 0.0025

Te = ~
m 〈Γ1e | p̂ |Γ15e〉 2.4442 1.0322 2.9834

Q
′′′
e = ~

m 〈Γ15e | p̂ |Γ25′e〉 1.3565 0.2262 1.6829

A
′
e = ~

m 〈Γ25e | p̂ |Γ25′u〉 -0.1138 -0.0718 -0.1579

A
′′
e = ~

m 〈Γ25e | p̂ |Γ25′l〉 0.2324 0.0273 0.2896

Pe = ~
m 〈Γ25′e | p̂ |Γ2′u〉 0.0005 0.0004 0.0299

P
′
e = ~

m 〈Γ25′e | p̂ |Γ2′l〉 -0.2105 -0.0110 -0.3530

Qe = ~
m 〈Γ25′e | p̂ |Γ15〉 0.0100 0.0050 0.1703

Q
′
e = ~

m 〈Γ15e | p̂ |Γ25′u〉 0.1530 0.0690 0.1258

Q
′′
e = ~

m 〈Γ15e | p̂ |Γ25′l〉 0.0872 0.0597 0.0066

Re = ~
m 〈Γ12| p̂ |Γ25′e〉 -0.0015 -0.0007 -0.0013

T
′
e = ~

m 〈Γ15e | p̂ |Γ1u〉 -0.0172 -0.1156 -0.0503

T
′′
e = ~

m 〈Γ15e | p̂ |Γ1l〉 -0.1808 -0.1045 -0.3486

T
′′′
e = ~

m 〈Γ15| p̂ |Γ1e〉 -0.0007 -0.0234 -0.0267

Z
′
e = ~

m 〈Γ12e | p̂ |Γ15〉 0.0058 0.0020 0.0054
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A.2 NL-EPM model

The parameters for non-local EPM calculations in this work have been taken from Kim
and Fischetti (2010) [165] for InAs, and Chelikowsky and Cohen (1976) [51] for GaAs.
The band structure obtained with these parameters is plotted in Fig. A.3. In order to
obtain a good agreement with experimental data for the direct band gap and position of
the split-off valence band, the SO parameters were slightly modified in this work. This
effect is also shown in Fig. A.3 and the SO parameters used are given in Table A.5.
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Figure A.3. Band structure of GaAs (left) and InAs (right) obtained with NL-EPM
model. The parameters are taken from Ref. [51] for GaAs and Ref. [165] for InAs. SO
parameters were slightly modified and are given in Table A.5.

GaAs InAs

α 1.35 0.74
µ 0.0008 0.00113

Table A.5. SO parameters used in this study to compute the NL-EPM band
structures in InAs and GaAs materials. Others NL-EPM parameters are taken from
Ref. [165] for InAs and Ref. [51] for GaAs.
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A.3 TB models

The parameters for TB models in Chapter 1 have been taken from Jancu et al. (1998) [145]
for III-V materials and Niquet et al. (2009) [251] for Si and Ge materials. For alloys, two
different interpolation procedures were used to simulate SiGe band structure in the VCA
approach and compared in Section 1.1.8. In the second model, developed by D.Rideau,
two atom types are defined (denoted atoms A and B), whose on-site parameters are
interpolated as follows [301]:

- For x < 0.5: A’s parameters are the ones of pristine Si, and B’s parameters are
linearly interpolated between Si and Ge;

- For x > 0.5: A’s parameters are linearly interpolated between Si and Ge; B’s pa-
rameters are the ones of pristine Ge.

The hopping parameters are interpolated as [273]:

V hop
A,B = (1− x)V hop

Si,Si

(
dSi
dV CA

)ηV CA
+ (x)V hop

Ge,Ge

(
dGe
dV CA

)ηV CA
− PA,B(1− x)x (A.5)

where ηV CA are the Harrison parameters of VCA crystal linearly interpolated such as:
ηV CA = (1 − x)ηSi + xηGe and dV CA is the nearest neighbor distance, interpolated as:
dV CA = (1−x)dSi+xdGe−0.0117(1−x)x. PA,B are bowing cœfficients fitted to reproduce
the correct bowing and given in Table A.6. This optimized model improves the agreement
with experimental and random supercell calculations, as shown in Fig. 1.10 in Sec. 1.1.8.

Parameters PA,B PB,A
Vspσ 0.06 -0.06
Vsdσ 0.1 -0.1
Vss∗σ -0.19 0.16
Vpdσ -0.02 0
Vpdπ 0.012 0.02
Vps∗σ 0.05 -0.1
Vds∗σ -0.05 -0.05

Table A.6. Bowing cœfficient entering Eq. (A.5) for the second VCA model to
reproduce the band gap of SiGe bulk material in Fig 1.10 [301]. PA,B denotes the
case where first orbital in the parameter’s name is on A atom and second orbital on
B atom, while it is the opposite for PB,A.
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Appendix B

Non-radiative multiphonon theory

Multiphonon theory is a complex and broad topic and we will not go into very detailed
description here, but rather discuss the different approximation made in the model, leading
to the expression of transition probabilities Wc/e given in Eq. (2.17). The derivation
written here is taken from the work of D.Rideau [306, 105], based in part on the book of
Stoneham [345] and references therein, as well as Goguenheim and Lannoo (1990) [113]
and Huang (1981) [137].
The starting point for quantum treatment of the problem is to use the Fermi golden rule
to write the transition probability as [113]:

Wc =
2π

~
Avn

∑

n′

|
〈
Ψjn′

∣∣ Ĉij |Ψin〉 |2δ(Ein − Ejn′) (B.1)

where Avn denotes the thermal average over the initial states, Ψin and Ψjn′ are the total
initial and final wavefunctions characterizing the system (electron + lattice) of respective
energies Ein and Ejn′ , composed of the electronic part wavefunction Φi and the vibrational
one χin. Cij is a perturbation coupling operator, mixing the two states.
The first approximation made is the so-called Born-Oppenheimer approximation (see
discussion in Section B.3), where the total wavefunction is written as: |ni〉 = Ψin =
Φi(r, Q)χin(Q). Q here represents the ensemble of normal coordinates Qj (j = 1, . . . ,3N
where N is the number of atoms). The electronic and phononic part of the wavefunction
are solutions of the equations:

(He +HeL(r))Φi(r, Q) = Wi(Q)Φi(r, Q))

(TL + VL +Wi(Q))χin(Q) = Ein(Q)χin(Q)

where He and HeL are the electronic and electron-lattice coupling Hamiltonians and TL
and VL are the kinetic energy and potential Hamiltonians of the lattice.
The second approximation is the harmonic approximation, where the electronic energy
Wi(Q) is written as a function of the normal coordinates Q as [69]:

Ein(Q) = Ein(Q(i)) +

3N∑

j=1

ω2
j

2

(
Qj −Q(i)

j

)2
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where Qij is the equilibrium lattice coordinate. In this approximation, the total energy
of the system Ein is also harmonic and follows the same dependency over Q (not demon-
strated here). The summation j runs over all phonons modes, characterized by frequencies
ωj and normal vectors en

j (where n is the number of atoms and en is a vector with 3 com-
ponents (x, y, z)). Recall that for a crystal with N atoms, the number of normal modes
associated is 3N . The normal coordinates Qj are defined as the coordinate describing the
movement of lattice atoms Sin as a function of the normal vectors:

Sn =
1

Mn

∑

j

Qjen
j

In our model (as well as most models in the literature), a so-called “single-mode” approx-
imation is used. This mode is defined by its phonon energy ~ω and its single coordinate
Q. This is as if all modes were considered as an average effective mode, which is believed
to be a good approximation in the case of optical phonons that all have relatively similar
and constant frequencies (flat band structure). This approximation is also valid in the
case where the transition occurs in a defect level which is mostly coupled to a single mode
of vibration. It greatly simplifies the problem, which is already not easily tractable.
The third approximation made is the linear electron-phonon coupling, writing the electron-
lattice Hamiltonian as [137]:

HeL =
∑

s

ω2
sus(r)Qs (B.2)

where us is the displacement of atoms and the sum over the phonon modes s is re-
introduced. This approximation is valid for small distortion of the lattice.
Using these approximations and following the derivation of Huang and Rhys (1950) [138],
the matrix element in Eq. (B.1) can be further simplified as (see Section B.3 and Ref. [137]
for discussion):

〈
Ψjn′

∣∣ Ĉij |Ψin〉 =
∑

s

〈
Φ0
j

∣∣ ˆus(r)
∣∣Φ0

i

〉 〈
χjn′

∣∣ ˆ
Qjs −Qis |χin〉

where Φ0
i,j are the eigenvectors of electronic Hamiltonian He alone in the equilibrium

lattice coordinates Qi,js . Given this expression, the transition matrix (B.1) reads:

Wc =
2π

~
Avn

∑

n′

∣∣∣∣∣
∑

s

Vs 〈χin| ˆ
Qjs −Qis

∣∣χjn′
〉
∣∣∣∣∣

2

δ(Ein − Ejn′) (B.3)

where Vs =
〈

Φ0
j

∣∣∣ ˆus(r)
∣∣Φ0

i

〉
takes into account the overlap of electronic wavefunctions

(which is a temperature independent term) and will be considered later.

B.1 Vibrational overlap

For the vibrational overlap, one can calculate it using second quantification operators and
expanding the vibrational states as χin =

∏3N
l=1 |inl〉 (nl being the number of phonons in
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the mode l = 1, . . . ,3N):

〈χin| ˆ
Qjs −Qis

∣∣χjn′
〉

= As

〈
ns

∣∣∣âs + â†s

∣∣∣n′s
〉∏

l /=s

〈
nl|n

′
l

〉

where As =
√

(~/2Msωs)Vs. Following Huang-Rhys (1950) [138], it is shown that [67]:

〈ni|nj〉 = 1− (nj + 1/2)Sj +O(S2
j )

where Sj is the Huang-Rhys factor, defined as:

S~ω =
1

2

∑

s

ω2
s(Q

j
s −Qis)2 =

1

2

∑

s

ω2
s

(〈
Φ0
j

∣∣ ûs
∣∣Φ0

j

〉
−
〈
Φ0
i

∣∣ ûs
∣∣Φ0

i

〉)2

As Sj is of order of 1/N (N being the number of atoms, supposed big), the terms of higher
order O(S2

j ) can be neglected, and one considers that the electron-phonon coupling is weak
between two harmonic oscillators close to each other, thus only terms with nj = ni − 1,
ni and ni + 1 are taken into account.
Taking all approximation together, the transition rate given in Eq. (2.17) is finally found
(after some algebra, not demonstrated here):

Wc =
2π

~
R(∆E)|V |2


rS

(
1− E0

~ωS

)2

+ (1− r)
√(

∆E

~ωS

)2

+ 4n(n+ 1)




where S is the Huang-Rhys factor, n is the Bose-Einstein distribution of phonons, ∆E =
εi−E0 is the total energy released in the capture process, |V |2 is the matrix element of the
perturbation due to relaxation of lattice atoms between free-state Φi and bound state Φj

wavefunction (the free state A and bound state B in the Chapter 2 corresponding to the
initial i and final j states in our derivation): |V |2 = |

〈
j0
∣∣ û
∣∣i0
〉
|2, and r = |VΛ|2/(S|V |2)

with |VΛ|2 = |
〈
j0
∣∣ û
∣∣i0
〉
|2
(∣∣〈j0

∣∣ û
∣∣j0
〉∣∣2 − |

〈
i0
∣∣ û
∣∣i0
〉
|2
)

. The term R(∆E) is expressed
as:

R(∆E) =
1

~ω
exp

[
−(2n+ 1)S +

∆E

2kT

]∑

m

Im(ξ)δ(m~ω −∆E)

where m is the the number of phonons involved in the transition, Im(z) is the reduced
Bessel function of order m, ξ = 2S

√
n(n+ 1) and δ is the Dirac delta function. Note

that the summation over the phonons mode s have been kept in the calculation until the
final expression, where the “single-mode” approximation for phonon has been introduced.
Note also that in this expression, the electronic overlaps are still unknown and present in
the calculation of S, |V |2 and |VΛ|2 (entering the calculation of r).

The cross-section as a function of temperature for defects level in the band gap of
GaAs, as characterized and measured by Ref. [128], are compared with results from the
current model in Figure B.1. As one can see, the temperature dependence of the process
is generally more complex than a simple Arrhenius-like exponential dependence. Fig-
ure B.1(a) shows the results obtained with different defects wavefunctions and a relatively
similar results is found for all wavefunctions considered (see next subsection for details
about the Billard-Ball model).
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Figure B.1. Left: Capture cross-section extracted from multiphonon theory with different
models for traps wavefunction as function of 1/T in GaAs for defects of types A and B
(unknown defects in the band gap, extracted from Ref. [128]). Right: Illustration of the
constant rigid shift to be applied to fit experimental values.

B.2 Electronic overlap

In order to calculate the electronic overlaps
〈

Φ0
i/j

∣∣∣ û
∣∣∣Φ0

i/j

〉
, the free state electronic wave-

function Φ0
i is taken from the Schrödinger solver in our model (note that in principle it

should be modified near the defect due to lattice distortion), while a simple Billiard-Ball
model was used for the defect wavefunction Φ0

j , written a function of defect radius rT
(defining a spherical potential well around the defect):

Φ0
j = (1/r

2/3
T )

Using this approximation, the electronic wavefunctions overlap |V |2 and the Huang-Rhys
factor S can be calculated [105]:

|V |2 = 5πS(~ω)2r2
T

∫ z+zT /2

z−zT /2
dz|φ(z)|2 (B.4)

S =
27

4(~ω)2(qDzT )3

D2
ph

Mrω/~
(B.5)

where rT = ~√
2m∗ox(Ec−ET )

, zT = rT
(

4π
3

)1/3
represents the edge of the cube with the same

volume as the defect sphere, qD = (6π2/a0)1/3 = (6π2/42/3)1/3 is the Debye cutoff wavevec-
tor, Dph is the deformation potential associated to the phonon mode with frequency ω and
φ(z) is the envelope function given by the resolution of the 1D KP Schrödinger equation.
In our model, Eq. (B.4) is used to determine the parameter |V |2 is all cases, while the
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B – Non-radiative multiphonon theory

Huang-Rhys factor can either be computed with Eq. (B.5) with the physical parameters
of the oxide or be given as an input parameter fixed for one specific distribution of defects.
This last option is used in our calculation and S is set for all traps to 15. The influence
on the C(V ) when S is varied from 9 to 15 is shown in Fig 2.20. The parameter r is used
as an adjustable parameter and always set to 1 in our calculations.
For a more detailed study on the derivations of parameters S, |V |2 and r with more refined
defect wavefunctions models and their influence on the capture/emission rates, the reader
is refered to the review in Ref. [306].

B.3 Derivation of MPA model: resolution of electronic over-
laps

In order to solve Eq. (B.1), two approximations are found in the literature: the static
coupling and the adiabatic approximation.

In the first case, proposed by Helmis (1956) [127] and Pässler (1974) [272] and consid-
ered in the studies of Goguenheim and Lannoo (1990) [113] and the recent DFT develop-
ments (e.g. Alkauskas et al. (2014) [6]), the electronic wavefunctions are calculated for a
fixed set of atomic positions R0 and supposed to be insensitive to the distortions of the
lattice. In this approximation, the transition probability is given by:

Wc =
2π

~
Avn

∑

n′

∣∣∣〈χin| Ĉij
∣∣χjn′

〉
Q

∣∣∣
2
δ(Ein − Ejn′) (B.6)

where Cij is now a coupling operator mixing only lattice vibrational wavefunctions and
defined in terms of “‘static” electronic wavefunctions Φ0

i and Φ0
j as:

Cij =
〈
Φ0
j

∣∣ ˆ∂HeL(r,Q)

∂Q

∣∣Φ0
i

〉
Q

where Φ0
i/j are the wavefunction at the relaxed atomic position R0 and HeL is the electron-

lattice coupling Hamiltonian.

In the second case, the adiabatic approximation takes into account an electronic basis
“moving” with respect to the atomic positions. To evaluate the Q-dependent electronic
states used to calculate the matrix element in Eq. (B.1), the so-called Condon approxima-
tion was first used [138]. In this approximation, the electronic wavefunctions are calculated
using first order perturbation theory, projecting the electron-lattice Hamiltonian on the
initial static states Φ0

i and Φ0
j :

Φi(r, Q) ≈ Φ0
i (r) +

∑

j

〈
j0
∣∣ Ĥel

∣∣i0
〉

W 0
i −W 0

j

Φ0
i (r)

However, this approximation leads to Q-independent Cij and gives wrong results (as
pointed out by Huang (1981) [137]). The solution to this was found in separating first
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the Hamiltonian HeL into a diagonal Hd
eL and non-diagonal Hnd

eL term and perform the
perturbation only on the non-diagonal term [137]:

Φi(r, Q) ≈ Φ0
i (r) +

∑

j

〈
j0
∣∣ ĤeL

∣∣i0
〉

W 0
i −W 0

j + (〈i0| ĤeL |i0〉 − 〈j0| ĤeL |j0〉)
Φ0
i (r) (B.7)

Note that in this approximation, the wave function Φ0
i are also solutions of:

(He +H0
eL +Hd

eL)Φ0
i (r) = (W 0

i +
〈
i0
∣∣ ĤeL

∣∣i0
〉
)Φ0

i (r)

One notes here that the effect of the lattice distortion is double:

- it applies a shift linear in Q to the electronic energy: Welec(Q) = W 0
i +

〈
i0
∣∣ ĤeL

∣∣i0
〉

- it mixes the
∣∣i0
〉

states due to the non-diagonal part of the Hamiltonian HeL.

This latter non-diagonal term will be the one responsible for the non-radiative transition
between electronics states (coupled through this term).
Finally, calculating the coupling operator Cij using this expression for the electronic state
gives the expression:

〈
χn′j

∣∣ Ĉij |χni〉 =

∫
χn′j(Q)

〈
j0
∣∣ ĤeL

∣∣i0
〉
χni(Q)dQ

Huang (1981) [137] shows that the transition matrix obtained with this non-Condon
adiabatic approximation surprisingly ends up to be the same as the one obtained by the
static approximation.
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Appendix C

Derivation of the POP momentum
relaxation time expression

In the case of 2D Electron Gas (2DEG), confined in z-direction, the slowly varying envelope
wave function is written as:

Ψi(K, r) = ψi(z)
1√
S
eiK·R

with ∫ T

0
dz|ψi(z)|2 = 1

where R and K are 2D vectors along the channel plane in real and reciprocal space and
the wavefunction are normalized in a box of surface S (relaxed dimension) and thickness
T (confined dimension along z direction). Now consider the transition matrix element
defined as (for fixed initial and final states (i,K) and (j,K′)):

|Mij(K,K′)|2 =
∑

q

|Mq
ij(K,K′)|2

where the sum runs over all phonons modes. Inserting Fröhlich potential’s expression, one
gets:

|Mq
ij(K,K′)|2 =

(
e

{
~ωLO
2q2Ω

[
1

ε∞
− 1

ε0

]}1/2
)2 ∣∣∣

〈
χ′,K′

∣∣ ˆ
eiq·r

(
a†−q + aq

)
|K, χ〉

∣∣∣
2

where χ =
∏
k |ink〉 is the phonon wavefunction of initial state (χ′ defined similarly for

the final state). The phonon overlap gives the emission:

|
〈
χ′
∣∣ ˆ
a†−q |χ〉 |2 = (N−q + 1)

and absorption terms:

|
〈
χ′
∣∣ âq |χ〉 |2 = Nq
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where N−q = Nq = NLO is the phonons occupation number (given by Bose-Einstein
distribution). Keeping only absorption term, the matrix elements read:

|Mq
ij(K,K′)|2 =

e2

q2

{
~ωLO
2ST

[
1

ε∞
− 1

ε0

]}
NLO

∣∣∣∣
∫

Ω
dr Ψ†i (r)eiq·rΨj(r)

∣∣∣∣
2

Using the fact that:
1

S

∫

S
d2R e−i(K

′−K+Q)·R = δK′,K−Q

the matrix element can be simplified to:

|Mq
ij(K,K′)|2 = e2 {. . .}NLO

Fi,j(qz)

q2
δK′,K−Q

where Fi,j(qz) is the form factor integral:

Fi,j(qz) =

∫

T

∫

T
dz1 dz2 ψi(z1)ψj(z2)eiqz |z1−z2|ψ†j(z1)ψ†i (z2)

Now, inserting this expression into the summation over phonon modes reads:

|Mij(K,K′)|2 =
∑

q

|Mq
ij(K,K′)|2 =

∑

Q

∑

qz

e2 {. . .}NLO
Fi,j(qz)

q2
δK′,K−Q

The discrete summation over phonon modes in z direction is then converted into a contin-
uous summation over wavevector qz (in the approximation of bulk LO phonon) with the
relation: ∑

qz

→ T

2π

∫ +∞

−∞
dqz

and the integration over qz can be inserted in the form factor and calculated analytically
with the residue theorem, giving the following relation [291]:

∫
dqz

eiqz |z1−z2|

q2
z +Q2

=

∫
dqz

eiqz |z1−z2|

(qz + iQ)(qz − iQ)
= π

e−Q|z1−z2|

Q

The matrix element thus reads:

|Mij(K,K′)|2 =
∑

Q

T

2π

∫
dqze

2 {. . .}NLO
Fi,j(qz)

q2
δK′,K−Q

=
�T

2�π
�π e

2

{
~ωLO
2S�T

[
1

ε∞
− 1

ε0

]}
NLO

Hi,j(Q)

Q

=

{
e2~ωLO

4S

[
1

ε∞
− 1

ε0

]}
NLO

Hi,j(Q)

Q

with the new overlap integral:

Hi,j(Q) =

T∫

0

dz1

T∫

0

dz2 ψi(z1)ψ∗i (z2)ψj(z2)ψ∗j (z1)e−Q|z1−z2| (C.1)
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and where Q is the norm of the in-plane phonon wavevector Q = K′ −K. Now, inserting
this expression in the scattering relaxation rate expression found above (Eq. (3.12)), one
obtains:

1

τPOP
i

=
��2π

~
∑

j

S

(2π)�2

∫
d2K ′|Mij(K,K′)|2δ(εj − εi + ~ωLO)

1− fj
1− fi

(
1− τjvu,j

τivu,i

)

=
1

2π�~
e2

�~ωLO
4

[
1

ε∞
− 1

ε0

]
NLO

∑

j

∫
d2K ′

Hi,j(Q)

Q
δ(εj − εi + ~ωLO)

1− fj
1− fi

(
1− τjvu,j

τivu,i

)

This expression can be used to compute directly the scattering rate in KP models. In the
case of EMA with an analytic expression linking ε and K, one can perform the transform:

∫ ∫
d2K ′ ⇒

∞∫

εedge

dεj

2π∫

0

dθ
m∗

~2

where εedge is the minimum of conduction band in the case of electrons and m∗ is the
effective mass of the isotropic valley considered. The scattering rate expression thus be-
comes:

1

τPOP
i,j (εi)

=
e2m∗ωLO

8π~2

[
1

ε∞
− 1

ε0

]
(NLO+1)δ(εj−εi+~ωLO))

1− fj
1− fi

2π∫

0

dθ
Hi,j(Q)

Q

(
1− τjvu,j

τivu,i

)

This final expression gives the scattering rate due to polar optical phonon, as mostly used
in the literature. General expression for absorption and emission (respectively upper and
lower signs) reads [285]:

1

τPOP
i,j,ν (εi)

=
gse

2m∗νωLO
8π~2

(
1

ε∞
− 1

ε0

)(
NLO +

1

2
∓ 1

2

)
1− f(εi ± ~ωLO)

1− f(εi)

× [1 + 2α(εi − Ui)]
2π∫

0

dθ
Hi,j,ν(Q±)

Q±

(
1− τjvu,j

τivu,i

) (C.2)

where the spin degeneracy gs and the index of the valley ν have been added, as well as
the term in square parenthesis to account for the NP corrections [263] (α being the NP
cœfficient and Ui the potential as computed in Eq. (1.16)).
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Appendix D

Intervalley transitions in III-V:
deformation potential

As said in Section 3.1.2, two types of interactions between carriers and lattice vibrations
can occur in an ionic crystal: deformation-potential interactions and Fröhlich-type interac-
tions. The Fröhlich potential is induced by LO-mode of phonons and goes like the inverse
of the phonon wavevector 1/q, making it an intravalley, long-range interaction. On the
other side, the deformation potential theory includes intervalley, short-range interactions,
which have been found to be important in system with a band structure with multiple
valleys, in particular at high field. These interactions scatter electrons between different
valleys with different effective masses and can have unexpected effects on the transport
properties at high field.

We present below a review of studies on deformation-potential parameters found in
the literature for GaAs and InAs for intervalley optical phonon. As said in Chapter 1
Section 1.1.9, the intravalley deformation-potential can be determined experimentally in
bulk devices based on the shift of electronic energy with stress, or through first-principle
calculations [408, 326, 369]. Intervalley deformation potentials however need more so-
phisticated methods and cannot be determined easily with first-principle or experimental
studies.

To our knowledge, only few experimental studies can be found in the literature, assess-
ing the intervalley deformation potential in GaAs by subpicosecond luminescence spec-
troscopy [321, 158, 123] or Raman scattering [164, 159]. In most cases however, only
scattering rates are deduced from measurements and the deformation potentials are ex-
tracted by mean of simulations (Monte Carlo) or models. Considering this uncertainty on
the extraction procedure, we turn to theoretical studies.

The first theoretical work on intervalley deformation potentials in GaAs has been
performed by Zollner and co-worker in 1990’s with an EPM approach. They first pointed
out the dependence of these parameters on initial and final electronic wavevector k [407,
408]. The Tables D.1 and D.2 summarize the value computed. In more recent papers by
Wang et al. (1992) and Sjakste et al. (2007) and (2013), the deformation potentials were
computed by mean of first-principle DFT solvers in the LDA approximation [387, 324, 325].
A good agreement between EPM and DFT is found for Γ − X1 transition, while a big
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difference is noted for Γ − X3
1. The disagreement with EPM values was attributed

in both papers to the more accurate treatment of electron redistribution and screening
potential in DFT calculations.

Table D.1. Theoretical intervalley deformation potential in GaAs in eV/Å.

References Transitions (phonon mode involved)

Γ↔ X3 Γ↔ X1 Γ↔ L1 X ↔ X L↔ L

LA LO LA LO LO LA LO

Zollner et al. (1989) [407] EPM 4.7 4.1 4.1 0.6 7.0 0.1 1.7

Zollner et al. (1990) [408] EPM 2.9 3.3 3.0 0.4 4.9 1.2 2

Wang et al. (1992)3 [387] DFT-LDA 4.1 0.6 - - - - -

Sjakste et al. (2013) [324] DFT-LDA 4.2 0.5 3.6 2.2 7.5 1.6 0.2

Table D.2. Theoretical intervalley deformation potential in InAs in eV/Å.

References Transitions (phonon mode involved)

Γ↔ X3 Γ↔ X1 Γ↔ L1 X ↔ X L↔ L

LO LA LA LO LA LA LO

Zollner et al. (1989) [407] EPM 2.8 3.2 2.5 1.4 3.6 1.4 0.7

Zollner et al. (1990) [408] EPM 2.2 2.0 1.7 1.0 2.5 1.1 4

Wang et al. (1992) [387] DFT-LDA 0.5 3.7 - - - - -

The analysis of the intervalley deformation potential is also historically linked with
Monte Carlo simulations and high field transport. For that reason, in the following we
compare the above theoretical data with the deformation potential extracted from Monte
Carlo high-field simulations. These parameters are usually extracted by fitting the velocity
versus electric field curve, based typically on scattering models exposed in Section 3.1.2 [89,
324]. For III-V materials, Fischetti and Laux (1991) [89] can be considered as a reference
paper, as it gives a broad review and range of parameters, that have been widely used
in recent KG calculations [263, 216, 215, 336]. The parameters extracted from Fischetti’s
paper are given in Table D.3. These parameters for a given transition are “effective”
deformation potentials accounting for all phonons modes contributions (LA, LO, TA and

1Note that the deformation potentials for GaAs presented in the original paper of Wang et al. [387]
were also reported in Sjakste et al. [324], but in an inverse order (transition Γ − X1 and Γ − X3 were
inverted). We chose to report them in this latter order here, for coherence in the results.
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Table D.3. Effective intervalley deformation potential in the considered III-V materials
extracted by Monte Carlo fits in eV/Å at 300K. [89, 86]

References Transitions
Γ↔ X Γ↔ L X ↔ X L↔ L

GaAs
Fischetti (1991a) [89] EPM – MC 5.48 5.25 2.99 5.94
Fischetti (1991b) [86] EPM NL 4.1 3.5 3.1 3.9
“Experimental” [159] PL + MC 8.2 [121] 6.5 [321], 7 [164]
“Effective” DFT [324] DFT-Conwell 7.9

InAs
Fischetti (1991a) [89] EPM – MC 6.35 5.59 3.36 6.35
Fischetti (1991b) [86] EPM NL 4.4 3.1 2.8 3.6

TO) with an overall “effective” frequency ωeff, defined in Fischetti’s paper as:

(Dq)2 = (DLAqLA)2 + (DTAqTA)2 + (DOP)2 (D.1)

where DLA, DTA and DOP are the fitted acoustical and optical deformation potentials (LO
and TO phonons are lumped in a single optical mode), and qm is the phonon wavevector
of the considered transition with phonon mode (m). The paper makes here the approxi-
mation of a flat optical phonon mode, characterized by a single frequency ωOP and linear
acoustical modes characterized with sound velocity vAC . As mentioned in Sjakste et al.
(2007) [324], the comparison of Monte Carlo “effective” deformation potential with the
deformation potentials extracted with DFT is not trivial and should be taken with care. In
particular, it depends on the chosen effective phonon frequency, but also the temperature
of the measurement. The averaging of the ab initio deformation potential over the final
wavevector k can also have a strong impact. In KG simulation, a single intervalley process
is often considered and these “effective” deformation potential are often used, as it was
done in Section 3.1.3.

179





Bibliography

[1] A. Abramo, L. Baudry, R. Brunetti, R. Castagne, M. Charef, F. Dessenne, P. Doll-
fus, R. Dutton, W. Engl, R. Fauquembergue, et al. A comparison of numerical
solutions of the Boltzmann transport equation for high-energy electron transport
silicon. IEEE Transactions on Electron Devices, 41(9):1646–1654, 1994.

[2] S. Adachi. GaAs and related materials: bulk semiconducting and superlattice prop-
erties. World Scientific, 1994.

[3] K. C. Akyel, L. Ciampolini, O. Thomas, D. Turgis, and G. Ghibaudo. Impact of
random telegraph signals on 6T high-density SRAM in 28nm UTBB FD-SOI. In
Solid State Device Research Conference (ESSDERC), 2014 44th European, pages
94–97. IEEE, 2014.

[4] A. Alian, G. Brammertz, R. Degraeve, M. Cho, C. Merckling, D. Lin, W.-E. Wang,
M. Caymax, M. Meuris, K. De Meyer, et al. Oxide trapping in the InGaAs–Al2O3

system and the role of sulfur in reducing the trap density. Electron Device Letters,
IEEE, 33(11):1544–1546, 2012.

[5] A. Alian, M. A. Pourghaderi, Y. Mols, M. Cantoro, T. Ivanov, N. Collaert, and
A. Thean. Impact of the channel thickness on the performance of ultrathin In-
GaAs channel MOSFET devices. In Electron Devices Meeting (IEDM), 2013 IEEE
International, pages 16–6. IEEE, 2013.

[6] A. Alkauskas, Q. Yan, and C. G. Van de Walle. First-principles theory of nonra-
diative carrier capture via multiphonon emission. Physical Review B, 90(7):075202,
2014.

[7] V. A. Altschul, A. Fraenkel, and E. Finkman. Effects of band nonparabolicity on
two-dimensional electron gas. Journal of applied physics, 71(9):4382–4384, 1992.

[8] M. Anantram, M. S. Lundstrom, and D. E. Nikonov. Modeling of nanoscale devices.
Proceedings of the IEEE, 96(9):1511–1550, 2008.

[9] M. Ancona and G. Iafrate. Quantum correction to the equation of state of an
electron gas in a semiconductor. Physical Review B, 39(13):9536, 1989.

[10] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev.,
109(5):1492, 1958.

[11] F. Andrieu, M. Casse, E. Baylac, P. Perreau, O. Nier, D. Rideau, R. Berthelon,
F. Pourchon, A. Pofelski, B. De Salvo, et al. Strain and layout management in
dual channel (sSOI substrate, SiGe channel) planar FDSOI MOSFETs. In Solid
State Device Research Conference (ESSDERC), 2014 44th European, pages 106–109.
IEEE, 2014.

181



Bibliography

[12] Archimedes. http://www.gnu.org/software/archimedes/.

[13] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Holt, Rinehart and Winston,
1976.

[14] D. Aspnes. GaAs lower conduction-band minima: ordering and properties. Physical
Review B, 14(12):5331, 1976.

[15] M. Auslender and S. Hava. On the calculation of alloy scattering relaxation time
for ternary III–V and II–VI semiconductors. Solid state communications, 87(4):335–
339, 1993.

[16] G. Baccarani, E. Gnani, A. Gnudi, S. Reggiani, and M. Rudan. Theoretical founda-
tions of the quantum drift-diffusion and density-gradient models. Solid-State Elec-
tronics, 52(4):526–532, 2008.

[17] O. Badami, E. Caruso, D. Lizzit, P. Osgnach, D. Esseni, P. Palestri, and L. Selmi.
An improved surface roughness scattering model for bulk, thin-body, and quantum-
well MOSFETs. IEEE Transactions on Electron Devices, 63(6):2306–2312, 2016.

[18] R.-H. Baek, D.-H. Kim, T.-W. Kim, C. Shin, W. Park, T. Michalak, C. Borst,
S. Song, G. Yeap, R. Hill, et al. Electrostatics and performance benchmarking
using all types of III–V multi-gate FinFETs for sub 7nm technology node logic
application. In VLSI Technology (VLSI-Technology): Digest of Technical Papers,
2014 Symposium on, pages 1–2. IEEE, 2014.

[19] T. B. Bahder. Eight-band kp model of strained zinc-blende crystals. Physical Review
B, 41(17):11992, 1990.

[20] J. Bardeen and W. Shockley. Deformation potentials and mobilities in non-polar
crystals. Physical Review, 80(1):72, 1950.

[21] G. Bastard. Self-consistent variational calculations and alloy scattering in semicon-
ductor heterojunctions. Surface Science, 142(1-3):284–289, 1984.

[22] B. Benbakhti, E. Towie, K. Kalna, G. Hellings, G. Eneman, K. De Meyer, M. Meuris,
and A. Asenov. Monte Carlo analysis of In0.57Ga0.43As implant-free quantum-well
device performance. In Silicon Nanoelectronics Workshop (SNW), 2010, pages 1–2.
IEEE, 2010.

[23] D. BenDaniel and C. Duke. Space-charge effects on electron tunneling. Physical
Review, 152(2):683, 1966.

[24] S. J. Bentley, M. Holland, X. Li, G. W. Paterson, H. Zhou, O. Ignatova, D. Macin-
tyre, S. Thoms, A. Asenov, B. Shin, et al. Electron mobility in surface-and buried-
channel flatband In0.57Ga0.43As MOSFETs with ALD al2o3 gate dielectric. IEEE
Electron Device Letters, 32(4):494–496, 2011.

[25] O. Berolo, J. C. Woolley, and J. Van Vechten. Effect of disorder on the conduction-
band effective mass, valence-band spin-orbit splitting, and the direct band gap in
III-V alloys. Physical Review B, 8(8):3794, 1973.

[26] R. Berthelon, F. Andrieu, S. Ortolland, R. Nicolas, T. Poiroux, E. Baylac, D. Du-
tartre, E. Josse, A. Claverie, and M. Haond. Characterization and modelling of
layout effects in SiGe channel pMOSFETs from 14nm UTBB FDSOI technology.
Solid-State Electronics, 128:72–79, 2017.

[27] R. Berthelon, F. Andrieu, P. Perreau, D. Cooper, F. Roze, O. Gourhant, P. Rivallin,
N. Bernier, A. Cros, C. Ndiaye, et al. A novel dual isolation scheme for stress and

182



Bibliography

back-bias maximum efficiency in FDSOI technology. In Electron Devices Meeting
(IEDM), 2016 IEEE International, pages 17–7. IEEE, 2016.

[28] M. Biercuk, D. Monsma, C. Marcus, J. Becker, and R. Gordon. Low-temperature
atomic-layer-deposition lift-off method for microelectronic and nanoelectronic appli-
cations. Applied Physics Letters, 83(12):2405–2407, 2003.

[29] M. Billaud, J. Duvernay, H. Grampeix, B. Pelissier, M. Martin, T. Baron, H. Boutry,
Z. Chalupa, M. Casse, T. Ernst, et al. Al2 O3/InGaAs interface study on MOS
capacitors for a 300mm process integration. In Ultimate Integration on Silicon
(EUROSOI-ULIS), 2015 Joint International EUROSOI Workshop and Interna-
tional Conference on, pages 113–116. IEEE, 2015.

[30] M. Billaud, J. Duvernay, H. Grampeix, B. Pelissier, M. Martin, S. David, C. Vallée,
Z. Chalupa, H. Boutry, T. Baron, et al. HfO2/Al2O3/InGaAs MOSCAP structures
and InGaAs plasma nitridation elaborated in a 300mm pilot line. ECS Transactions,
69(5):9–13, 2015.

[31] G. L. Bir, G. E. Pikus, P. Shelnitz, and D. Louvish. Symmetry and strain-induced
effects in semiconductors, volume 624. Wiley New York, 1974.

[32] J. S. Blakemore. Gallium Arsenide: Edited by John S. Blakemore. Number 1.
Springer Science & Business Media, 1961.

[33] D. Bohm. A suggested interpretation of the quantum theory in terms of “hidden”
variables. I. Physical Review, 85(2):166, 1952.

[34] L. Bourdet, J. Li, J. Pelloux-Prayer, F. Triozon, M. Cassé, S. Barraud, S. Mar-
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[246] D. Nikonov, H. Pal, and G. Bourianoff. Electron-phonon and spin scattering in
NEGF: Made simple, 2009.

[247] Y. Niquet, C. Delerue, G. Allan, and M. Lannoo. Method for tight-binding
parametrization: Application to silicon nanostructures. Physical Review B,
62(8):5109, 2000.

[248] Y. Niquet, C. Delerue, G. Allan, and M. Lannoo. Interpretation and theory of
tunneling experiments on single nanostructures. Physical Review B, 65(16):165334,
2002.

196



Bibliography

[249] Y. Niquet, I. Duchemin, V.-H. Nguyen, F. Triozon, and D. Rideau. Remote surface
roughness scattering in fully depleted silicon-on-insulator devices with high-κ/SiO2
gate stacks. Applied Physics Letters, 106(2):023508, 2015.

[250] Y. Niquet, A. Lherbier, N. Quang, M. Fernández-Serra, X. Blase, and C. Delerue.
Electronic structure of semiconductor nanowires. Physical Review B, 73(16):165319,
2006.

[251] Y. Niquet, D. Rideau, C. Tavernier, H. Jaouen, and X. Blase. Onsite matrix ele-
ments of the tight-binding hamiltonian of a strained crystal: Application to silicon,
germanium, and their alloys. Physical Review B, 79(24):245201, 2009.

[252] Y.-M. Niquet. Private communication.

[253] Y. M. Niquet. Etude des propriétés de transport de nanostructures de semiconduc-
teurs. PhD thesis, Lille 1, 2001.

[254] Y.-M. Niquet and C. Delerue. Band offsets, wells, and barriers at nanoscale semi-
conductor heterojunctions. Physical Review B, 84(7):075478, 2011.

[255] Y.-M. Niquet and C. Delerue. Carrier mobility in strained Ge nanowires. Journal
of Applied Physics, 112(8):084301, 2012.

[256] Y.-M. Niquet, C. Delerue, D. Rideau, and B. Videau. Fully atomistic simulations of
phonon-limited mobility of electrons and holes in 〈001〉−, 〈110〉−, and〈111〉−oriented
si nanowires. IEEE T. Electron. Dev., 59:1480, 2012.

[257] Y.-M. Niquet, V.-H. Nguyen, F. Triozon, I. Duchemin, O. Nier, and D. Rideau.
Quantum calculations of the carrier mobility: Methodology, Matthiessen’s rule,
and comparison with semi-classical approaches. Journal of Applied Physics,
115(5):054512, 2014.

[258] L. Nordheim. The electron theory of metals. Ann. Phys, 9:607, 1931.

[259] H. Oh, J. Lin, S. Suleiman, G. Lo, D. Kwong, D. Chi, and S. Lee. Thermally
robust phosphorous nitride interface passivation for InGaAs self-aligned gate-first
n-MOSFET integrated with high-k dielectric. In Electron Devices Meeting (IEDM),
2009 IEEE International, pages 1–4. IEEE, 2009.

[260] T. Ohashi, T. Tanaka, T. Takahashi, S. Oda, and K. Uchida. Experimental study
on deformation potential (Dac) in MOSFETs: Demonstration of increased Dac at
MOS interfaces and its impact on electron mobility. IEEE Journal of the Electron
Devices Society, 4(5):278–285, 2016.

[261] OMEN. https://engineering.purdue.edu/gekcogrp/software-projects/omen/.

[262] Z. Or-Bach. 28nm: The last node of Moore’s law. EE Times, 2014.
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