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Abstract

Friction brakes are subjected to important developments aiming to increase their energetic efficiency and
durability on the one hand and, on the other hand, decrease their maintenance costs and their impacts
on the environment (noise, particle emissions,etc.). In these applications, the contact interface between
the rotating part of the brake and the static one, is central to its functioning as it presents the location of
heat dissipation, thermal exchanges and mechanical interactions. Indeed, these phenomena are a source of
wear, leading thus to the constant modification of the contact surface and material properties which may
affect the braking performances. To address these issues, the current approach used by manufacturers,
which is based on feedback tests, is expensive and inefficient against the new technical and environmental
requirements. Besides, experiments can not give precise measures of contact surface data. Hence, theo-
retical modeling and numerical simulations can help to fill this gap.
The main objective of this work is to propose a numerical strategy consisting of modeling contact appli-
cations like brakes with realistic assumptions made at the contact interface by considering micro-contact
phenomena, unlike the classical approaches which assume perfect contact conditions. This challenge has
been overcome by building a methodology which associates a large scale Finite Element model of the
system and several refined micro-contact models considering only the interface and covering the thermal,
mechanical and wear features.
At micro-scale modeling, contact analysis has been performed with semi-analytic approaches considering
the real contact area for a given topography. The thermal and the mechanical features are both considered
and the contact problem is solved by means of quadratic programming. The case of a normal gradient
of properties has also been investigated, which is often encountered in case of severe thermal loadings.
Moreover, the evolution of surface roughness has been considered by modeling wear with Archard’s law.
From the micro-scale analysis, several contact parameters have been calculated such as contact stiffness,
thermal conductance, wear volume, heat distribution, etc. The dependency of all these parameters on
many physical properties has been investigated.
Thereafter, these parameters have been integrated into a Finite Element large scale model using an em-
bedding strategy which conserves the surface flatness at the system scale and considers the effects of
roughness and its evolution. With this technique, the contact phenomena complexity is transformed into
homogenized contact laws and parameters that are integrated into the macro-scale model. The advantage
is the considerable reduction of computation time while maintaining the precision of calculations in com-
parison to classical Finite Element ones. This multi-scale methodology has been used for dynamic and
thermo-mechanical analysis of braking systems with the aim of evaluating their performances considering
micro-scale issues. With this strategy, the interaction between non uniform surface and system behavior
is clearly shown. The results of numerical simulations highlight the impact of the contact interface and
its evolution on the braking performances, and vice versa.
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Résumé
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Résumé

Les freins à friction font l’objet d’importants développements visant à améliorer d’une part leur efficacité
énergétique et leur durabilité, et d’autre part, réduire leurs coûts de maintenance ainsi que leurs impacts
environnementaux. Dans ces applications, l’interface de contact entre la partie statique du frein et sa par-
tie mobile, est importante dans leur fonctionnement, puisqu’elle présente l’endroit où est dissipée l’énergie
et où se produisent des échanges thermiques et des interactions mécaniques. De plus, ces phénomènes sont
à l’origine de l’usure, conduisant ainsi à une évolution continue de la surface de contact et des propriétés
des matériaux, ce qui peut influencer les performances du système. Afin de traiter ces problèmes, les
industriels se basent actuellement sur des retours d’expériences de type essai/erreur qui sont coûteuses
et peu efficaces face aux nouvelles exigences et réglementations. De plus, les mesures expérimentales
sont difficilement accessibles dans les aires de contact. Ainsi, la modélisation numérique présente une des
solutions alternatives permettant de diminuer le nombre d’essais et de mieux cerner les phénomènes de
contact.
L’objectif principal de cette thèse est de proposer une stratégie numérique consistant à modéliser des sys-
tèmes, présentant un contact mécanique tel qu’un frein à friction, avec des hypothèses réalistes au niveau
du contact consistant à considérer les phénomènes se produisant à l’échelle microscopique. Ce challenge
a été surmonté en développant une méthodologie qui associe un modèle Éléments Finis macroscopique du
système et plusieurs modèles micro qui considèrent l’interface de contact réelle et ses aspects thermique
et mécanique ainsi que son usure.
A l’échelle microscopique, la modélisation du contact a été faite en se basant sur des approches semi-
analytiques qui considèrent l’aire de contact réelle pour une topographie donnée. Les aspects thermique
et mécanique sont tous les deux considérés et le problème est résolu avec des techniques d’optimisation
sous contraintes. Le cas d’un matériau à gradient de propriétés normal à la surface a été aussi considéré,
qui est souvent rencontré dans le cas de sollicitations thermiques sévères L’usure est modélisée par la loi
d’Archard. Á partir de ces calculs, l’évolution de plusieurs paramètres physiques a été étudiée, tels que
la raideur de contact, l’aire de contact réelle, la conductance thermique, la distribution de chaleur, la
température de surface, etc.
Ensuite, ces paramètres ont été intégrés dans un modèle macroscopique en utilisant une stratégie d’enrichis-
sement qui conserve la planéité des surfaces de contact tout en considérant l’effet de la rugosité et de
son évolution. Avec cette technique, la complexité des phénomènes de contact est traduite par des
paramètres/lois de contact homogénéisés qui sont intégrés dans le modèle macroscopique. L’avantage de
cette méthode est la réduction considérable du temps de calcul en comparaison à des calculs Éléments
Finis complets, tout en accédant à des informations locales précieuses. Cette stratégie de modélisation
multi-échelle a été adoptée pour l’analyse dynamique et thermo-mécanique des systèmes de freinage afin
d’évaluer leurs performances prenant en compte l’effet de l’interface de contact. Avec cette stratégie, les
interactions entre l’interface et le système sont bien éclaircies. Les résultats des simulations numériques
montrent l’impact de l’interface et de son évolution sur les performances du frein et vice-versa.
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General introduction

0.1 Context of the thesis
The transport domain has been subjected to important developments in the recent years. For instance,
the progress achieved in railway and automotive sectors helped to increase the maximal speed. However,
the operating speed is limited to much lower values. For example, a vehicle could reach easily a speed
of 200km/h while the speed limit on highways is 130km/h. These limitations are related to transport
operating costs and maintenance which increase with the operating speed.
To overcome this obstacle, for instance, the manufacturers seek to improve braking systems by reducing
their weights and numbers, and increasing their efficiency and life cycle. Nevertheless, the improvement
of braking systems is subjected to environmental requirements related to noise pollution and particle
emissions. A compromise has therefore to be found between the different needs and requirements.
Most brakes commonly use friction to absorb the mechanical energy and inhibit the motion of the system.
In friction brakes, the braking action is generally performed by pressing together the surface of a static
friction material into a rotating solid (e.g. an axle or a wheel). This contact surface is central to the
braking action, as it represents the location where several complex and prominent phenomena occur.
On one hand, friction transforms mainly the kinetic energy into heat. The consequence is a rise of tem-
perature reaching high levels that cause wear at the interface and possible degradation of the contacting
materials (damage, fracture, etc.). Furthermore, air quality is also affected by particle emissions origi-
nating from wear. Thus, the knowledge of surface temperature is of high interest, as it allows to choose
efficiently the friction brake materials, and thus reduce the maintenance costs and increase their perfor-
mance (durability, etc.).
On the other hand, during braking, a small part of energy may be converted into acoustic energy, con-
tributing to noise pollution. Indeed, it has been shown that the contact interface between the disc and
the friction material generates numerous kinds of high-pitched noises, of whom squeal is the most encoun-
tered. For instance, in the automotive industry, even if squeal does not significantly affect performances,
such noise causes a high customer complaints warranty cost each year. Thus, the understanding of the
system dynamics is prominent to study the noise generation propensity.
The contact interface is therefore involved in many issues affecting braking performances. Actually, to
face up these issues, manufacturers implemented solutions which are mainly based on the use of feed-
back based tests and the empirical trial/error methods. Such method leads to complex friction material
development. This kind of methods reflects a lack of a real understanding of the mechanisms governing
friction brakes needing a high number of trial tests which is very costly and inefficient in front of the new
technical and environmental requirements.
Furthermore, the phenomena occurring in the interface are of high complexity since they cover many areas
of physics like thermic, mechanics and tribology. To deal with such a problem, small-scale experiments
are of great interest, allowing a real understanding of contact interface phenomena. However, despite
the recent advances in measuring techniques, it is difficult to set up an experiment within the contact
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area to measure surface data (temperature, pressure, contact area, etc). Thus, theoretical modeling and
numerical simulations can help to fill this gap.
In the recent years, with the development of computational tools, several numerical strategies covering
various aspects such as dynamics and thermo-mechanics, have been proposed for braking systems model-
ing. However, even if these aspects have been well handled from a structural point of view, there are still
some points related to contact phenomena, which are often simplified or not considered at all.
In fact, on one side, the classical modeling approaches consider only the scale of brake components and
assume that the contact interface is smooth and perfect, neglecting thus the effects of roughness, thermal
and stress localizations, wear and many other features happening in several scales smaller than the brake
system’s scale.
On the other side, contact phenomena have been widely studied using various analytical and numerical
models, by targeting a particular physic (mechanical, electrical, thermal, etc.) and choosing the appro-
priate scale (meso, micro or nano-scale). Nevertheless, such models do not consider the system’s induced
interactions.
Thus, this work objective is to propose a numerical strategy going beyond the existing ones by considering
the contact complex phenomena at the system’s scale and the different couplings presents in the system
(mechanics, thermal, tribology, etc.). This is a real challenge as it allows to take an important step to-
ward developing realistic numerical strategies that can be integrated into the industrial design processes.
Indeed, the developed approach should not only consider the real contact phenomena but also provide
results within a reasonable computational time.
With the purpose of bringing the reader into the contact phenomena issues, the following section presents
these points from a physical point of view. Afterwards, existing modeling solutions are briefly presented,
as they will be discussed, in detail, in the following chapters of this thesis. Finally, the modeling strategy
proposed in this work will be presented.

Figure 1: (a) TGV braking system (b) Microscopic image of a friction material surface [Roussette et
al.(2001)]

0.2 The contact problem : physical point of view
The contact problem is one of the most relevant issues in engineering applications. A proper understanding
of the contact mechanisms is crucial in the design process. Contact between two solids allows transferring
mechanical loads, heat and electrical power in some applications. These exchanges are performed from
one solid to another through the contact surface. The knowledge of the contact area is of great interest,
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as it influences these exchanges.
Real surfaces are generally non-smooth, thus the real contact area is much smaller than the nominal one.
Indeed, real solids have rough surfaces, and make contact only at separated zones where the asperities of
the two mating surfaces are in contact. Thus, the interactions between the contacting solids are mainly
performed through these micro zones.
Therefore, contact forces are concentrated in these areas and, in case of the presence of a thermal gradient,
heat flows mainly throw these zones and marginally through the air contained in these gaps and radiation.
As the contact load increases, the gap between the two surface decreases and the contact area increases.
This evolution affects both the stiffness and the thermal conductance of the contact, and certainly depends
on the surface topography, and both thermal and mechanical loads, with respect to material properties.
In sliding contact problems, which is the case of braking systems, frictional forces appear in the real
contact zones as a resistance to the sliding motion. As it is commonly known, the largest percentage of the
frictional energy is transformed into a thermal energy through several mechanisms (plastic deformations,
atomic scale interactions, etc.). As a consequence, high elevations of temperature occur near to the contact
area. Since the micro-contact zones are very small, the temperatures and stresses near to them would be
severe, and could damage the material, accelerate the wear process and change the material properties by
overheating[Archard(1959), Furey(1964), Kennedy(1984), Bos and Moes(1995)]. Moreover, the thermal
expansion around contact zones can give birth to the phenomenon known as thermoelastic instability
which disturbs the pressure and temperature distribution [Barber(1969)]. Therefore, the knowledge of
the mechanisms that originate heat generation, their location and the ability to measure or predicate
surface temperature, is important to avoid material failure.
Furthermore, high temperatures may lead to melting which cause wear with sliding. In addition, the
wear process can be accentuated by micro-cracks due to high stresses and chemical transformations if the
environment is corrosive [Meng(1995), Masen(2005)]. Moreover, there is several types of wear : adhesive,
abrasive, corrosive and fatigue (see Fig.2). Generally, in real contact systems, wear does not take place
through a single mechanism [Kato(2000)]. However, with regard to many factors (material properties,
dynamic behavior, environment, etc), it may be possible that one or more of these types are the dominant
ones. Thus, to estimate correctly the material loss, it is necessary to know the dominant mode with
respect to the system, the contact situation and material properties.
The main consequence of wear is the change of the contact surface topography due to material removal.
The removed material debris integrate what is commonly known as the "tribologic circuit" (see Fig.3).
Indeed, a part of surface debris circulates within the contact interface while another one is ejected from
the contact system. The part remaining inside the contact system can either continue its circulation or
be compacted to form a thin layer called "third body". As sliding continues, this third body is in turn
fragmented progressively and its debris recirculate within the interface. Thus, this circuit traduces the
cycle life of a particle from its creation to its ejection from the system or the end of the sliding motion if
the particle is still within it [Eriksson et al.(1999)]. Fig.4 illustrates a 3D image of a worn surface. In this
image, we can remark the presence of what is namely called "contact plateaus". These zones correspond
either to the compacted third body zones or the worn zones of the surface.
The presence of the third body modifies the exchanges between the contacting solids, as it represents an
additional obstacle at the interface. Moreover, the complexity of the third body lies in the various states
in which it exists. Indeed, the third body presents the wear particles, the agglomerated debris that can
be at different stages and the compacted ones. Thus, its physical properties depend surely on its state.
Surface roughness is implicated in several issues. Its evolution during contact affects the dynamic behavior
of the system [Bergman(1998), Eriksson et al.(2002)]. As is shown in [Eriksson et al.(1999)], the change of
surface roughness leads to a change of the pressure and temperature distributions, these two factors having
the major impact on the generation of brake squeal. Indeed, squeal appears mainly when the system is
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Figure 2: Classification of wear modes and their interrelations [Kato(2000)]

Figure 3: Schematic of the tribologic circuit in a sliding frictional contact [François et al.(2006)]

unstable. This is the case when the deformation energy of the system is higher than the dissipated one and
the contact interface is involved in the dissipation process [Fieldhouse and Newcomb(1996)]. For instance,
Fig. 5 shows a hologram of an unstable mode of a braking system reconstructed using interferometry.
Furthermore, the increase of the real contact area with friction, by wear and third body compaction, leads
to an increase of the friction coefficient [Bergman et al.(1999)]. As a consequence, the squeal generation
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Figure 4: 3D image of a worn rough surface obtained with white light interferometry [Eriksson et al.(1999)]

increases dramatically with friction (see Fig.6). Thus, the contact surface evolution plays a key role in
squeal generation.

Figure 5: Fieldhouse and Newcomb’s reconstructed hologram of a squealing disc brake system [Fieldhouse
and Newcomb(1996)]

Furthermore, thermal contact phenomena originate a thermal gradient which may cause thermal damage
and early failures. Indeed, surface topography and thermal expansions lead to localized contact areas
and hot spots [Dufrénoy and Weichert(1995), Majcherczak et al.(2006)]. For detailed informations about
the classification of these gradients and their characteristics, the reader may refer to [Dufrénoy and
Weichert(1995)]. The shape and the size of these hot spots depend on many factors and control the shape
of cracks, surface degradations and transformations and the flow of wear debris. Besides, the rheology
of the resultant third body plays a key role in speed accommodation [Majcherczak et al.(2006)]. For
instance, in Fig.7 are shown surface cracks induced in a rotating system developed by [Majcherczak et
al.(2007)]. Thus, to prevent the initiation of these cracks and to understand the way as they spread, it is
interesting to estimate correctly these gradients and their resulting stresses.
Physics in the contact interface is of high complexity. This brief and non-exhaustive review does not
present all the contact phenomena features. Indeed, here, our concern is only focused on some meso and
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Figure 6: Gradual change of the disc surface and corresponding friction and squeal generation curves
[Bergman et al.(1999)]

Figure 7: Orientation of surface cracks in the mobile side of a sliding contact for two kind of materials
(a: C35 steel and b: sapphire) [Majcherczak et al.(2006)]

micro-scale issues. But in fact, the contact complexity goes beyond these scales to cover the atomic scale.
For instance, friction and adhesion are related to inter-atomic potentials [Landman et al.(1993)].
In the contact surface take place several phenomena which are linked to each other. As we can see, their
effects on the functioning of the system are considerable. In the next paragraph, are presented some
modeling solutions for these phenomena.
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0.3 The contact problem : modeling solutions

0.3.1 Contact modeling of rough surfaces : mechanical and thermal aspects

Many different models have been proposed to solve the contact mechanics problem. The first contact
model goes back to the pioneering work of Hertz (1882). As is well known, his theory considers the
frictionless smooth contact between two elastic solids with curved surfaces. Only since the middle of the
twentieth century, researchers made many advancements in contact phenomena like friction, adhesion and
roughness. For instance, surface roughness effects have been highlighted by the experiments of [Bowden
and Tabor(1939)], by measuring the electrical conductance for a wide range of loads. Their results allow to
estimate the contact area and confirm that the real contact area is very small comparing to the apparent
one.
Surface roughness analysis is the first step when dealing with the contact problem. Its characterization can
be performed either with statistical approaches or fractal techniques [Abbot and Firestone(1933), Longuet-
Higgins(1957), Nayak(1971)]. Besides, numerical surfaces can be generated with surface parameters ob-
tained from measurements. For instance, the spectral density or the auto-correlation function can both
be used to generate random rough samples [Persson et al.(2005)].

Figure 8: Two rough fractal surfaces generated numerically using the power spectrum density [Yang and
Persson(2008)]. The two samples correspond to two different surface scales

With the statistical surface parameters, several contact theories have been proposed [Archard(1953),
Greenwood and Williamson(1966), Bush et al.(1975)]. These works consider a rough surfaces as a ran-
dom set of spherical or parabolic asperities. However, these models suffer from many weaknesses such as
their dependencies on the surface statistical parameters and several simplifying assumptions, for instance
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the non-consideration of interactions between asperities. Nevertheless, these theories have been improved
through the last years [Ciavarella et al.(2006)] and have been very successful until the end of the twentieth
century.

Figure 9: Contact between smooth sphere and rough plane. (a) Schematic of the problem, (b) Actual
contact spots for steel ball pushed against glass block [Greenwood and Tripp(1967)]

With the increasingly advancement in computing industry, the use of numerical methods has become
very important in the last years. Contact modeling has been one of the most treated topics. Using con-
strained optimization techniques, this problem has been solved with the Finite Element Method (FEM)
[Wriggers(2006)]. Smooth contact has been extensively studied in many applications while the rough
contact problem is poorly explored since the needed computational time to address it increases with
roughness[Pei(2005)]. Indeed, a highly refined mesh is necessary to perform a precise estimation of a
rough contact evolution, which can be extremely costly in terms of time, especially for industrial research.
Another numerical technique has been also used to solve the rough contact problem, which consists of
meshing only the surface and define the so-called influence coefficients[Johnson(1987), Willner(2008)].
The problem is solved with optimization methods. The most important point of this method is its rapid-
ity comparing to FEM. This method can also be accelerated with the Fast Fourier Transform [Gallego
et al.(2010)]. Moreover the frictional contact problem can also be treated with this method in a coupled
way such as in [Willner(2008)] or by decoupling the normal problem and the tangential one such as in
[Gallego et al.(2010)]. Nevertheless, from these works, it seems that the tangential behavior have a rel-
atively negligible effect on contact properties like the real area and wear. Indeed, the elastic tangential
deformations are much lower comparing to the normal ones, the latter define mainly the contact area and
the normal pressure. The tangential deformations can change the shape of the pressure distribution but
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the total normal load remains almost the same [Willner(2008)].
Furthermore, other methods have been used to solve the rough contact problem like the continuum
approach of [Persson et al.(2002)] which is based on the surface spectral density. Indeed, he derives a
diffusion-like equation for the stress distribution. This approach is interesting as it exhibits the multi-scale
nature of the rough contact problem. Besides, the dynamic molecular approach have been also used for
rough contact modeling [Almqvist et al.(2011)], which is a particle based approach. However, this method
is limited to the contact problem at the atomistic scale since it needs a huge amount of computation time.

Contact mechanics modeling allows defining the real contact area distribution. The knowledge of the
contact area is beneficial for several contact features such as heat conduction [Cooper et al.(1969), Mi-
kic(1974), Yovanovich(2005)] and generation [Tian and Kennedy(1994), Vick(2001)]. For these thermal
issues, the most used theoretical framework is the method of heat sources that allows getting thermal
solutions for simple geometries like circles and squares [Blok(1937), Carslaw and Jaeger(1959), Zeng et
al.(1997)]. From these elementary solutions, rough contact modeling can be solved by superposing all
heat sources [Chao and Trigger(1956), Coulibaly et al.(2014)]. Other numerical methods have been also
used to solve the thermal contact problem [Laraqi(1996), Laraqi et al.(2009), Sadowski et al.(2010)], but
often considering a simplified geometry of the surface.

0.3.2 Third body modeling

While the above cited approaches are dedicated to rough contact modeling from a static point of view,
other approaches are used for the third body, which is a dynamic problem. Most of these methods are based
on particle interactions. For instance, the Discrete Element Method (DEM)[Renouf et al.(2004), Renouf et
al.(2011)] considers the third body as a flowing granular medium made from rigid or deformable particles.
While this approach does not account for the large scale interactions between the contacting bodies, an
improved approach called “Non Smooth Contact Dynamics" [Moreau(1986)] has been used in [Nhu(2017)]
combining the FEM for contact bodies deformation and the DEM for the third body particles.
Other approaches are also used for the third body flowing issue such as the Cellular Automaton[Muller
and Ostermeyer(2007)]. In this method, the medium is seen as a discrete set of cells having different states
and linked to each other by many rules controlling the evolution of the third body. The state of each cell
is defined by the state of its neighboring cells. An enhancement of this method is the Movable Cellular
Automaton approach[Psakhie et al.(2001), Dimitriev et al.(2010)] which consists of pairing two cells by
a state corresponding to their chemical bonds. Thereafter, a general equation is obtained to describe the
motion of the automaton considering the links between the cells and the force of inter-cell interaction. To
solve the problem, a response function is introduced to consider the material behavior (elastic, plastic,
etc.) by linking the cell deformation to stress.

0.3.3 Braking system modeling

Concerning braking simulations, contact modeling is often simplified by considering only flat surfaces.
The FEM has been widely used to solve this problem. For instance, braking systems modeling has been
performed in [Newcomb(1960), Day and Newcomb(1988), Kao et al.(2000), Dufrénoy and Weichert(2003),
Naidoo(2014), Mann(2017)] by considering a perfect contact. Furthermore, by reducing the degrees of
freedom, other minimal approaches have been also proposed for the purpose of studying the dynamic
behavior of the system. For instance, with mode Lock-in theory, the stability of frictional systems has
been analyzed using simplified mass-spring systems [Hoffmann et al.(2002), Magnier et al.(2014)].
Since the scale of roughness is lower than the system’s scale, there are several approaches allowing to
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consider roughness effects [Zavarise et al.(1992), Bandeira et al.(2004), De Lorenzis and Wriggers(2013)].
The interesting point is that there is no need to mesh finely the contact surface. Indeed, the surface is flat
and contact interface laws or parameters, traducing the micro-contact evolution, are integrated into a large
scale model of the studied system. Besides, it considers both of the interface and the system behaviors and
allows to reduce the computation time. For instance, [Wriggers and Reinelt(2009)] proposed a multi-scale
strategy to compute a homogenized coefficient of friction that reflects the influence of roughness on a
frictional contact. This kind of methods are of great interest and will be addressed in this thesis.

Figure 10: A finite element model of a complete braking system [G. Vermot des Roches(2011)]

Figure 11: A finite element modeling strategy to compute a homogenized friction coefficient [Wriggers
and Reinelt(2009)]

In addition to this brief review of the existing methods for contact modeling, complementary detailed
reviews will be presented in the thesis chapters. With regard to the contribution of this work, the built
modeling strategy is based on the different approaches described before. The choice of a method instead
of another one depends on two main factors : the accuracy and the computation time.
In what follows, we present the objectives and the main lines of the realized work in this thesis.

0.4 Aim of the thesis
The aim of this thesis is to build a strategy which allows modeling large scale contact problems considering
interface phenomena occurring at lower scales. The establishment of the strategy needs :
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• The definition of the surface scale and the related contact phenomena;

• The development of contact models which consider these phenomena;

• The development of a strategy which integrates the interface behavior into a large scale numerical
model.

In this thesis, the surface scale is the one of roughness (meso and micro scale). At this scale, contact
modeling allows analyzing the evolution of contact properties under the effect of contact phenomena
(thermal and mechanical loadings). Then, the calculated parameters are incorporated in a large scale
numerical model of the system. In what follows, the latter two points are presented.

0.4.1 Micro-contact modeling

At the roughness scale, the first step in contact modeling is the definition of the real contact area. This
will be done using several contact mechanics models. These models relate the load to area and displace-
ments. With respect to the existing modeling solutions, the different models presented in this thesis
are inspired from the semi-analytic asperity based models which consider interactions between asperities
and the numerical models which discretize only the surface using the so-called influence coefficients. The
Finite Element Method will be used as a verification tool of the developed models.
Furthermore, these models consider that the material is homogeneous. But, as noted earlier, there are
material transformations occurring near to the interface (damage, phase change,etc.). In order to consider
these transformations, we examine the case when a gradient of material properties emerges with heating
and mechanical loadings. In this work, this gradient is considered to be normal to the interface. Moreover,
due to the lack of informations about the way the material properties are varying, an in-depth material
gradient has been introduced to describe various situations. Furthermore, the solid having a gradient of
material properties will be assimilated as a multi-layered solid. Thus, the solid will be discretized in the
normal direction to the interface into many layers, as explained later.
Another feature which has to be included is the surface roughness evolution due to wear in sliding con-
tacts. For this, we consider that wear process occurs according to Archard’s law. Here, many simplified
assumptions have been considered to realize this objective. First, the contact is assumed to be perfectly
sliding and the frictional forces are supposed not to cause elastic deformations within the solid, which
means that friction is assumed not to change the contact area. Besides, the tribological circuit is not
studied, thus wear debris flow, circulation and compaction will not be included in this thesis.
Once the contact area is defined, the thermal phenomena are studied by considering heat conduction and
heat generation phenomena. These problems are also solved with the same philosophy adopted for the
contact mechanics problem. The heat conduction problem is solved under stationary conditions by consid-
ering either homogeneous materials or a material properties gradient. With regard to the problem of heat
generation, the problem is solved, under transient conditions, using the heat source method. Both works
consider only a discretized surface. From these two works, the thermal conductance, surface temperatures
and the distribution of heat are found for a given load, velocity, roughness and material properties. Note
that, at this scale, thermal expansion, which can modify the contact area, is not considered.
Thus, with regard to the contact phenomena, this thesis will focus on the surface evolution under mechan-
ical loads and wear. The thermal contact study provides the thermal conductance and heat partition, and
allows to compute surface temperatures that can be used in wear modeling (e.g. a wear rate depending
on temperature). With respect to the existing modeling solutions, many improvements and new solutions
are presented in this thesis. The developed approaches are based on half-space solutions, potential theory,
heat source method, integral transforms and optimization techniques. The studied surface samples are
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generated with fractal methods using a spectral density. Several examples are presented with the aim to
show the efficiency of the proposed models.

0.4.2 Multi-scale embedding strategy

In order to integrate the micro-scale calculations into a large scale model of a system, an embedding
strategy is developed in this thesis which consists of defining, for each zone of the studied surface, a
homogenized interface parameter/law obtained from the micro-contact analysis. These parameters are :
stiffness, thermal conductance and the heat coefficient partition. They depend on both mechanical and
thermal loadings and wear. As regards the friction coefficient, it will be fixed at both scales.
Two applications of this work strategy will be presented :

• The first one aims to investigate the interface effect on the dynamic behavior of a complete braking
system using the Finite Element Method. The calculations are based on a quasi-static analysis which
is followed by a complex modal analysis. The idea is to analyze the stability of the system modes
using mode Lock-in theory for a given contact situation. Here, only the mechanical features are
analyzed by considering only the contact stiffness. Note that, in this application, surface roughness
does not evolve (wear is not considered).

• In the second study, we present a FEM thermo-mechanical analysis of a pin-on-disc system. Here, all
the micro-scale studied features are integrated. The aim of this work is to evaluate the temperature
field in the system considering surface evolution. Besides, the analysis is transient and the macro-
scale thermal expansion is considered, which could affect the contact area. Compared to the first
application, here, there is a time evolution of the contact surface with wear and temperature.

Through these two applications, the aim is to show the different features of the multi-scale strategy pro-
posed in this work. The results highlight the role of the interface in defining the system’s response.
Finally, this work presents an important step toward numerical modeling of contact applications consid-
ering a realistic contact interface behavior.

0.5 Outline of the thesis
The outline of this thesis follows the path of the strategy presented above. The different elements of this
work are shown in Fig.12. The thesis can be divided into two parts. The first part deals with the contact
mechanics problem while the second aims to investigate the thermal contact issues.
In Part 1, Chapter 1 describes the development of the multi-scale model for the contact mechanics
problem considering roughness. This chapter is divided into two parts. The first part deals with the
micro contact problem and the second one describes how the interface behavior is embedded
into a Finite Element model using the strategy proposed in this work. At this point, the contact
analysis is done for homogeneous solids.
In Chapter 2, the analysis is extended by considering a gradient of material properties by modeling the
rough contact of multi-layered solids. The asperity based model proposed in Chapter 1 is extended to
cover the case of the gradient using integral transforms and the transfer matrix technique.
In Chapter 3, a contact mechanics analysis is performed considering wear process. In this chapter, a
different approach is used to solve the contact problem and wear is modeled using Archard’s law. Here, the
surface is fully discretized contrary to the asperity based approaches developed in the previous chapters.
The case of a gradient of properties is also investigated.
Finally, Chapter 4 comes at the end of Part 1 to present the first application of the proposed strategy.
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Indeed, a Finite Element analysis of a complete brake system is performed, considering the interface
behavior. In this chapter, the study is done with the aim to show the influence of roughness on mode
Lock-in of a braking system.
Part 2 begins by Chapter 5 which deals with the problem of the stationary heat conduction in
presence of roughness. The case of the in depth gradient is also considered. While this chapter
considers only the steady problem and a static contact, Chapter 6 extends the study to cover the transient
thermal problem of sliding contact with frictional heat generation. For both chapters, the real
contact area is considered from contact mechanics calculations presented in Part1. In these two chapters,
a parametric study is presented with the aim to define the influence of each of the contact parameters.
Finally, at the end of Part 2, in Chapter 7, a thermo-mechanical analysis of a pin-on-disc system is
described. Here, the multi-scale strategy is used and both thermal and mechanical features of the contact
are considered. Moreover, surface evolution due to wear is also considered. An example is presented for
a given load and velocity, with the aim to highlight the effects of the time evolution of the interface.
Of course, there are still many features that are not addressed in this thesis. Also, there are many
weaknesses arising from many simplified assumptions that should be improved in future works. This is
why the main results and assumptions are recalled at the end of this thesis, and the prospects and possible
improvements are proposed.

Figure 12: Outline of the thesis
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Transition
The first part of this thesis is related to the contact mechanics issues. Its first chapter is dedicated to

the modeling of the normal contact of rough surfaces and homogeneous solids.
In this chapter, the contact mechanics problem is solved considering surface asperities and their inter-
actions. The asperities are considered either spherical or elliptical and the problem solving is done by
minimizing an objective function. Thereafter, the micro-contact behavior is integrated into a large scale
numerical model using an embedding strategy based on the penalty method.
Finally, several examples are presented and compared with the Finite Element Method results, with the
objective of showing the efficiency of the proposed strategy.
This chapter presents the first step towards the implement of the complete multi-scale strategy proposed
in this thesis.

This figure presents the complete plan of this thesis. The first chapter position is highlighted by a blue
box in the background.
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Abstract
An efficient methodology is proposed for the analysis of frictionless contact between rough surfaces.

The surface is described by parabolic asperities which deform according to Hertz Theory. The problem is
solved considering interactions between elliptic contact zones. Such analysis provide interface laws that
are incorporated into a macroscopic numerical model where contact surfaces are flat. This operation is
done by means of Love solution for elastic half spaces and the penalty method.
A numerical example of this multi-scale method is presented to show its robustness. In comparison with
a purely numerical model where roughness is explicitly described, the proposed strategy provides good
results and saves a considerable amount of time.

keywords : Surface roughness, Hertz theory, Contact mechanics, Finite element method.

1.1 Introduction
Contact mechanics is a fundamental problem in mechanical engineering. It provides necessary informa-
tion to design safely many systems involving two or more bodies that are contacting each other, such as
braking systems, blade-abradable seals and many others.
The first work in this domain dates back to 1882 with the pioneering Hertz theory. This theory describes
the frictionless contact between two elastic curved surfaces. However, real surfaces are rough, thus the
real contact area is very small compared to the apparent one. The problem is of permanent concern since
the real contact area and the stress distribution affect a large number of physical properties such as fric-
tion, heat transfer and wear. For example, the topography of brake lining surfaces has a strong influence
on thermal and braking noise issues, and can change the dynamic behavior of this systems[Hetzler and
Willner(2012), Heussaff et al.(2012), Magnier et al.(2014)].
Surface roughness can be seen as a random process, therefore, the random process theory is used for its
analysis. Statistical parameters such as the average roughness and the root mean square are commonly
used to describe surface height fluctuations against the center-line [Abbot and Firestone(1933)]. More-
over, one of the most interesting surface characteristics is the power spectral density [Nayak(1971)]. It
allows to characterize the periodicities and the fractal nature of surface roughness in the frequency domain
[Persson et al.(2005)]. Furthermore, a surface can be seen as a set of asperities. Thus, the surface analysis
goes through the geometrical properties of these asperities [Greenwood and Williamson(1966), Bush et
al.(1975)]. For instance, the asperities of fractal rough surfaces have been characterized using a special
method in [Bigerelle et al.(2004)]. The concept of their approach is to reformulate the notion of roughness
peaks by linking the surface curvature to the observation scale.
With regard to contact mechanics of rough surfaces, the first consistent model was proposed by [Green-
wood and Williamson(1966)]. Their model deals with the contact between a deformable rough surface and
a rigid flat surface. They assumed that roughness can be described as a spatial distribution of spherical
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asperities with the same radius of curvature and randomly distributed heights (see Fig.1.1). The contact
on asperities is described by Hertz theory and interactions between asperities are neglected.
A more general model was proposed by [Bush et al.(1975)]. They studied the elastic contact between
an isotropically rough surface and a flat surface by assuming that the cap of each asperity is replaced
by a paraboloid having the same height and principal curvatures as the asperity’s summit. The basic
assumption is to consider a random process of asperity summit heights and principal curvatures, and that
each asperity deforms according to the Hertzian solution for elastic non-conforming smooth surfaces (see
[Johnson(1987)]). The model is based on statistical analyses of isotropic randomly rough surfaces (see
[Longuet-Higgins(1957), Nayak(1971)]).
This class of models has the advantage of simplicity and speed, and can be used to evaluate the in-
fluence of roughness parameters on the surface behavior and obtain some significant correlations as in
[Yastrebov et al.(2015), Zahouani et al.(2009)]. However there are many limitations which arise from the
following approximations: the dependency of statistical roughness parameters on the sampling length, the
geometrical approximation of asperities shapes and the non-consideration of interaction effect [Persson
et al.(2002), Yastrebov et al.(2015)]. Nevertheless, these models have been enriched by many authors.
For example, the interaction between asperities has been included by means of semi-analytical models
[Ciavarella et al.(2006), Ciavarella et al.(2008), Yastrebov et al.(2011)]. Otherwise, a multi-scale approach
has been developed by [Persson et al.(2002), Persson et al.(2005)] which considers only the spectral den-
sity of the surface. Using this theory, one can obtain the distribution of contact stresses and the contact
real area corresponding to a given scale that is controlled by a magnification factor. Comparing to multi-
asperity models, Persson’s theory gives the exact result when there is a perfect contact. Within this
theory, it is not possible to give a full description of contact zones distribution because the only informa-
tion that is used is the surface spectral density.
In the last few years, there were many improvements in numerical simulations of contact between rough
surfaces. Two main techniques can be distinguished: the finite element method and the half-space solu-
tion. In the first class of methods, the problem is solved using optimization methods [Wriggers(1995)]
and the computational time is high since surface discretization must be enough fine to capture all rough-
ness details. Using this method, elastic contact and elasto-plastic contact have been analyzed in [Hyun et
al.(2004), Pei(2005)], the results obtained are quite similar to analytic predictions. Finite element method
(FEM) was also used in many works to define some micro mechanical contact laws that are embedded
in macroscopic models. In those approaches a RVE (Representative Volume Element) is defined and
many calculations are made to get a macroscopic physical quantity depending on roughness. For exam-
ple, in [Yastrebov et al.(2011)], a phenomenological contact model based on finite element calculations
has been proposed to rapidly analyze the plastic contact of a rough surface. Similarly, in [Wriggers and
Reinelt(2009), De Lorenzis and Wriggers(2013)] a multi-scale approach has been developed to obtain an
homogenized coefficient of friction that reflects the roughness’s influence on a frictional contact.
Comparing to FEM methods, the second class of numerical methods is more attractive because of its
reduced computational time. In those methods, only the surface is discretized and the solid is consid-
ered as a half space. The resolution is done using [Boussinesq(1885)] solution for elastic half spaces. This
technique has been used in many works (see [Björklund and Andersson(1994), Putignano et al.(2012), Will-
ner(2008), Zahouani et al.(2009)]) and provide very accurate results. Using the FFT technique, a fast
version of this method, has been developed in [Leroux et al.(2010)] to model the contact of heterogeneous
half spaces, and in [Gallego et al.(2010)] to model the fretting problems.
One of the most important issues treated by contact theories is the interface gap evolution against a
normal force. For a perfect contact, the gap is always equal to zero, which is not true for real surfaces.
The gap evolution can be characterized by analyzing contact stiffness. This parameter influences many
mechanical and physical properties such as thermal and electric conductivity [Patewska et al.(1992)].
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The influence of the gap evolution has been considered in many works. In [Hetzler and Willner(2012)],
the gap’s influence on the dynamic behavior of a braking system has been tested using Greenwood and
Williamson theory. Also, using Persson’s theory, the same parameter has been considered in [Dapp et
al.(2002)] to evaluate the leakage in seal systems. Experimentally, the gap evolution has been analyzed
in [Lorenz et al.(2010)] and been compared to contact theories. The experiments results show that multi-
asperity models fail to give a reasonable estimation of the load-gap relationship even for large separations
and that Persson’s theory is more accurate. This is due to the fact that interactions are not considered
in the multi-asperity models.
In the present work, our interest is focused on some mechanical systems such as friction brakes where
contact area evolves continuously, and the size and the distribution of contact zones influence drastically
the global behavior of the surrounding components [Eriksson et al.(2002), Magnier et al.(2014)]. The main
purpose is to propose a numerical strategy allowing to consider contact roughness in a large-scale model,
in particular the interface gap evolution. As mentioned before, the explicit meshing of contact roughness
in this kind of models is computationally expensive, so there is clearly a need to define a multi-scale
homogenization strategy allowing to consider roughness effect. Moreover this multi-scale homogenization
technique must be done zone by zone, so that each zone has its local contact properties. Hence the
implementation of such technique allows to get some sort of macroscopic contact localizations depending
only on the size and the geometry of each homogenized zone.
Therefore, the strategy that is proposed in this paper, incorporates two mains steps. The first one is to
analyze the micro-mechanical behavior of an interface involving rough surfaces. The second one aims to
integrate this behavior in a macroscopic numerical model.
In the first step, the analysis of the evolution of contact stresses against contact kinematics taking into
account the surface roughness, is performed using a semi-analytic contact model inspired from the work
of [Ciavarella et al.(2006)]. More precisely, the surface is considered as a discrete set of asperities and
the interaction effect is included using an analytic solution for surface displacements in an elastic half
space. This choice is motivated by the fact that this model fulfills two main criteria : speed and accuracy.
Furthermore, this model is distinguished from the classical models by its discrete formulation and the
consideration of interactions. The use of a discrete formulation is important because it is necessary to
know accurately the localization of contact points. Comparing to the paper of [Ciavarella et al.(2006)],
the problem is solved using a different iterative scheme and also, the model is generalized to cover the
case of elliptic contact, which provide a more realistic description of the contact geometry. An example is
then presented to analyze the evolution of some relevant quantities such as the real contact area, contact
stresses and kinematics.
The second step is to use the results issued from the semi-analytic model and to integrate them into a
large-scale (macroscopic) model. Indeed, one of the most practical ways is to consider that the surface
is flat, and then, the numerical model is embedded by the interface constitutive law (see [Bandeira et
al.(2004), Wriggers(1995), Zavarise et al.(1992)]). Comparing to these works, this operation is done zone
by zone, and each zone has it owns parameters, and also, an intermediate step is added to consider the
geometry of each zone. Theoretically, the penalty method [Kikuchi and Song(1981)] is used which gives
an approximation of contact pressure by linking it to the interface’s normal gap. Moreover, the contact
laws are recomputed using Love solution for elastic half spaces [Love(1929)]. This operation is important
as it allows to consider the geometry of the homogenized zone and to ensure that the large-scale model
has the same response as the original microscopic model, as will be detailed in section 1.4.
Finally, a numerical example is selected to show the ability of the proposed strategy. It concerns an elastic
block with a rough surface which is compressed against a rigid solid having a flat surface. Comparisons
will be done with another numerical model where roughness is explicitly described.
This strategy allows a macroscopic description of the interface evolution, provides a more accurate analy-
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sis of the physical phenomena in the numerical large-scale model and saves a considerable amount of time.
One of the most interesting points of this method is that the global response of the system is not very
dependent on the contact interface mesh which makes this technique easily integrated into the industrial
large scale numerical models.

Figure 1.1: The Greenwood-Williamson theory of contact of rough surfaces. The roughness is described
by spherical asperities of equal radius R. gn is the separation distance between the mean plane and the
rigid flat surface.

1.2 Contact models

1.2.1 Hertz theory

Let us recall some basic results within the Hertz theory framework. This theory describes the frictionless
contact between a paraboloidal body and a flat surface considered as an elastic half spaces with smooth
surfaces (see Fig.1.2). Hertz theory gives exact solution as long as strains are small. Let us denote E1 and

Figure 1.2: Hertzian contact between an elastic paraboloid and a flat plan. Contact area spreads into an
elliptic zone while the deflection δ is growing

E2 the Young modulus of the solids and ν1 and ν2 the corresponding Poisson ratios. We also introduce
the equivalent radius R given by R = (R′R”)

1
2 , where R′ and R” are defined as the principal relative radii

of curvature and their expressions are given in [Johnson(1987)].
Assuming that a normal compressive load P is applied to the two bodies. The initial point of contact
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spreads into an elliptical surface, having semi-axis a and b (a > b), thus we introduce the eccentricity

e =

√
1− b2

a2 .
If δ design the mutual approach on the center of contact area, one can show that

P = 4
3E
∗R

1
2 F1 (e) δ

3
2 (1.1)

where 1
E∗

= 1− ν2
1

E1
+ 1− ν2

2
E2

,

F1 (e) = π

e
√

2

[( 1
1− e2E (e)−K (e)

)
(K (e)− E (e))

] 1
4
K (e)−

3
2

where K (e) and E (e) are respectively the complete elliptic integrals of the first and the second kind.
The eccentricity depends only on R′ and R” and is approximately given by [Johnson(1987)]

e =

√√√√1−
(
R”
R′

) 4
3

(1.2)

Contact area may be written
A = πab = πA1 (e)Rδ (1.3)

where A1 (e) =
√

1− e2
(2K (e)F1 (e)

π

)2
.

and the pressure distribution is

pn (x, y) = 3
2
P

A

√
1−

(
x

a

)2
−
(
y

b

)2
(1.4)

In the simpler case of solids of revolution (a = b, R′ = R” and e = 0), contact area is circular and
F1 (e) = A1 (e) = 1. The pressure distribution read

pn (x, y) = pn (r) = 3
2
P

A

√
1−

(
r

a

)2
(1.5)

where r is the radial distance r =
√
x2 + y2.

The coefficients F1 (e) and A1 (e) are plotted in Fig.1.3. For high values of e, these coefficients affect clearly
the force and contact area, indeed, using the formulas for circular contact may lead to overestimating
contact area and to underestimating the total force.

1.2.2 Contact models for rough surfaces

The basic idea behind the classical contact models, such as [Greenwood and Williamson(1966), Bush
et al.(1975)], is to relate quickly and easily the surface response to a few statistical parameters issued
from surface measurements. However, those models neglect interaction effects and their results depend
strongly on the choice of the statistical parameters. Furthermore, a numerical accurate analysis of rough
contact becomes rapidly expensive since a high number of contact points is needed to efficiently simulate
the problem [Pei(2005), Yastrebov et al.(2011)].
In what follows, two contact models are proposed. Globally, the surface description came from the classical
statistical contact models. In both of them, the surface is seen as a discrete system of elliptic or circular
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Figure 1.3: Evolution of the coefficients F1 (e) and A1 (e) in terms of the contact eccentricity e

asperities and the summit of each of them has a specific height and radius of curvature. Thus, the response
of the surface is given by a discrete summation over all the contacting asperities.
The first model neglects interaction effects, and hence the asperities deform independently. In the second
model, the displacement of each asperity depends on the Hertzian pressures applied in the other contacting
asperities, thus a nonlinear system of equations is obtained and is solved using an iterative scheme. This
approach was proposed first by [Ciavarella et al.(2006)]. They consider a circular contact over asperities
and they solved the problem using an incremental correction. However, in real surfaces, the asperities are
not symmetric, and as shown in Fig.1.3, the symmetric assumption may mislead to a wrong estimation of
contact area and force. Hence, the model is generalized to consider the elliptic contact and the resolution
is performed with a truncated Newton algorithm [Nash(2000)].

1.2.2.1 Discrete model without interaction

Considering a rigid flat surface which is moved vertically with a motion δ against a rough surface of an
elastic body. Let us denote zM the maximum height of the rough surface and zi the height of the ith
asperity, the displacement of the ith asperity is given by:

wi = 〈δ − (zM − zi)〉 (1.6)

where < . > is the positive part of its operand.
The total force and the real contact area are obtained by adding the contribution of all the contacting
asperities, hence they are respectively given by:

F = 4
3E
∗
N∑
i

R
1
2
i F1 (ei)w

3
2
i (1.7)

A = π
N∑
i

RiA1 (ei)wi (1.8)

where N is the total number of the asperities.
The average normal separation between the two faces is:

gn = (zM − z̄)− δ (1.9)
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where z̄ is the height of the mean plane (z̄ = 1
N

N∑
1
zi). The simple version of this model is to consider

that asperities are symmetric, hence the coefficients A1 and F1 are both considered equal to 1.

1.2.2.2 Discrete circular contact with interaction

The main idea of this approach is to consider that the displacement of each asperity is a consequence of
all the contact strengths applied on asperities. If the surface is supposed to be approximately flat out of
asperities domain and that the contact is Hertzian, the normal displacement in every point of the surface
is given by [Johnson(1987)]

Uz (r) =


1
R

(
a2 − r2

2

)
if r ≤ a

1
πR

[(
2a2 − r2

)
arcsin

(
a

r

)
+ a

√
r2 − a2

]
else.

Thus, the displacement of each asperity is obtained by summing the displacements due to the contacting
asperities. If n is the number of the supposed contacting asperities and wk the displacement of the kth
asperity, then wk reads

wk =
n∑
i=1

Gi (rik) (1.10)

where

Gi (rik) =


a2
i

Ri
if i = k

1
πRi

[(
2a2

i − r2
ik

)
arcsin

(
ai
rik

)
+ ai

√
r2
ik − a2

i

]
else

and rik is the horizontal distance between the kth and the ith asperity.
Furthermore, the displacement should satisfy this kinematic conditions:

wk ≥ δ − (zM − zk) (1.11)

The equality in Eq.1.11 means that the asperity is in contact (see the kth asperity in Fig.1.4), while
the strict inequality signifies that the asperity is not in contact (see the jth asperity), and in this case,
the height of this asperity has changed due to interaction effects. Hence, it is not known if an asperity
is in contact or not, unlike the previous model(i.e without interaction) where the number of contacting
asperities depends only on the vertical motion δ.
Solving the problem is to find a distribution of contact dimensions a = (a1, a2, ..., an) satisfying contact
conditions (Eq.1.11). The obtained system of equations is non linear and is solved using a suitable iterative
scheme.
Practically, we write the objective function defined by

O (a) =
n∑
k=1

(wk − δ + (zM − zk))2 (1.12)

The resolution of the contact problem is equivalent to the minimization of the objective function provided
that contact dimensions respect contact kinematics. The function O is bounded and twice continuously
differentiable. The minimization is performed using a Newton algorithm:
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Figure 1.4: Geometry of a rough interface, only asperities are in contact and the gap distance between
the interface center line and the rigid flat surface decreases while the vertical motion δ is increasing

• The solution a verify J (a) = 0, where J is the gradient vector of O,

• The function O is approximated by

O (a + δa) = O (a) + J.δa + 1
2 δa

tH (a) δa (1.13)

where H is the Hessian matrix,

• From an initial guess a0, the iterates are consecutively computed by

ai+1 = ai + δa (1.14)

where δa is the solution of the linear system of equations

H (ai) δa = −J (ai) (1.15)

The convergence of the algorithm is quadratic as long as the initial guess a0 is near to the solution.
However, the resolution of the linear system (Eq.1.15) may be very costly, especially when the number
of asperities increases. An alternative solution consists in using one of the truncated-Newton methods
[Nash(2000), Nash(1985)]. In this case, an iterative method is used to approximately solve the Newton
equations (Eq.1.15). Indeed, the matrix H−1 is not exactly computed but just estimated with a variable
tolerance. Hence, the resolution of the global problem falls into two loops: an outer iteration for the
non-linear optimization problem, and an inner iteration for the Newton equations.
In order to solve Eq.1.15, the linear conjugate-gradient method [Powell(1977)] is usually used. The use
of this method is justified because the Hessian matrix is always symmetric, and is definite positive at a
local minimizer of the problem.
Once the contact dimensions vector a has been calculated, the force and contact area are computed
automatically using a discrete sum. Then, the normal gap is estimated by subtracting the vertical
displacement of every point from the rigid body motion of the flat surface. In what follows, an extension
to the case of elliptic contact is presented.
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1.2.2.3 Discrete elliptic contact with interaction

The general structure of the algorithm remains unchanged. However, the displacement field must be
recalculated in order to take into account the elliptical shape of contact area.
From the theory of [Boussinesq(1885)], the normal displacement of the surface reads

Uz (x, y) = 1
πE∗

∫
pn (ζ, η)

ρ
dζdη (1.16)

where pn is the normal pressure and ρ =
√

(x− ζ)2 + (y − η)2

It then follows from the potential theory [Johnson(1987)] that the surface normal displacement due to an
ellipsoidal distribution of pressure (see Eq.1.4) applied to an elliptic region is given by

Uz (X,Y ) = p0ab

2E∗
∫ ∞
λ1

(
1− X2

a2 + w
− Y 2

b2 + w

)
dw

[(a2 + w) (b2 + w)w]1/2 (1.17)

where p0 is the pressure at the center of the loaded region, a and b are loaded region dimensions and λ1
is the positive root of the equation

X2

a2 + λ
+ Y 2

b2 + λ
= 1 (1.18)

within the loaded area λ1 is taken to be zero;
X and Y are the local relative coordinates in the principal directions.
From Eq.1.17, the surface displacement may be written

Uz (X,Y ) = 2
πR

.

(
π

2
1

K (e)F1 (e)2/3

)3 (
L−MX2 −NY 2

)
(1.19)

where K (e) and F1 (e) are specified in Eq.1.1, and

L = a3

2

∫ ∞
λ1

dw
[(a2 + w) (b2 + w)w]1/2

M = a3

2

∫ ∞
λ1

dw[
(a2 + w)3 (b2 + w)w

]1/2

N = a3

2

∫ ∞
λ1

dw[
(a2 + w) (b2 + w)3w

]1/2

Using integration by substitution, these integrals may be expressed in term of elliptic integrals

L = a2 [K (e)− F (φ1, e)] (1.20)

M = 1
e2

[
(K (e)− F (φ1, e))− E

(
π

2 − φ2, e

)]
(1.21)

N = 1
e2

[ 1
1− e2 (E (e)− E (φ1, e))− (K (e)− F (φ1, e))

]
(1.22)

where F (φ, e) and E (φ, e) are respectively the incomplete elliptic integrals of the first and the second
kind;
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and φ1 = tan−1
(√

λ1
b

)
, φ2 = tan−1

(√
λ1
a

)
;

Within contact area, φ1 and φ2 are taken to be zero, and in that case, the expressions are the same as
those given by Johnson[Johnson(1987)],i.e.

L = a2K (e) , M = 1
e2 [K (e)− E (e)] , N = 1

e2

[ 1
1− e2E (e)−K (e)

]
The displacement field corresponding to an elliptic contact is plotted in Fig.1.5 and is compared to the
circular contact solution. The difference between the two fields is more important in the major axis
direction, and decreases far from the contact zone. Nevertheless, the main difference between the two
assumptions is the contact area size.
From Hertz theory, it is known that the eccentricity e depends only on the geometry of the contacting
bodies (see Eq.1.2). If the major semi axis a is known, the minor one can be deduced automatically
according to the relation b = a

√
1− e2.
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Figure 1.5: Graphical representation of the vertical displacement for a given elliptic contact area. The
asymmetry of this field decreases far from the center of contact area

Let us now consider the contact of a rough surface, similarly to the case of the circular contact, the normal
displacement at the kth asperity is

wk =
n∑
i=1

Gi (∆Xik,∆Yik) (1.23)

where

Gi (∆Xik,∆Yik) =


1
Ri
.

(
π

2
ai

K (ei)F1 (ei)

)2
if i = k

2
πRi

.

(
π

2
1

K (ei)F1 (ei)2/3

)3 (
Li −Mi∆X

2
ik −Ni∆Y

2
ik

)
else
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and ∆Xik = Xi − Xk, ∆Yik = Yi − Yk, and the triplet (Li,Mi, Ni) is computed according to Eqs.1.20,
1.21 and 1.22.
The solution scheme is exactly the same as the one used for the circular contact case. The vector a of
major semi-axis of contact zones is the only unknown of the problem.

1.3 Example
In order to illustrate the results obtained with the proposed contact models, some calculations were
performed on 3D numerical rough surfaces. These surfaces were generated using fractal techniques. Here
their geometrical parameters are presented and the evolution of some relevant quantities like contact area
and contact mean pressure are analyzed.

1.3.1 Surfaces

Many rough surfaces are approximately self-affine fractals, which means that their statistical properties
are unchanged if a scale change is made. One of the most useful tools to characterize a self-affine surface
is the spectral density. One can show that for that kind of surfaces, this quantity reads approximately
(see [Persson et al.(2005)])

S (k) = S0 |k|−2(H+1) (1.24)

where S0 is a constant and H is the Hurst exponent which is related to the fractal dimension Df = 3−H.
A randomly rough surface can be generated with any given spectral density [Persson et al.(2005)]

h(x) =
∑

k
B (k) ei.(

2π
L

k.x+φ(k)) (1.25)

where B (k) = 2π
(
S(k)
A0

)1/2
, A0 is the surface area, L is the root square of A0 and φ (k) are independent

random variables which are uniformly distributed in the interval [0, 2π[.
In this section, the contact analysis is made on a square surface with dimensions of 1mm×1mm. Roughness
is generated according to Eq.1.25. Two sets of parameters are used. In the first one, Set 1, the surface
have the same characteristics in both directions. In the second one, Set 2, the cut-off wave vectors are
modified so that the asperities are highly eccentric.
The spectral density used in this study is plotted in Fig.1.6(a). Its parameters were computed basing
on surface measurements of a brake pad (see [Naidoo(2014)]). An example of a possible realization of
roughness using the parameters presented in Tab.1.1 is shown in Fig.1.6(b).

Area A0 (mm2) H upper wave-vector kmax lower wave-vector kmin
Set 1 1 0.95 10 2
Set 2 1 0.95 kx,max = 7 2

ky,max = 12 2

Table 1.1: Fractal rough surfaces parameters

The next step is to compute the geometrical properties of asperities summits. These points are identified
as local maxima, where each summit is higher than the neighboring points, of which there are eight. Then,
principal radius of curvature are calculated as the inverse of Hessian matrix eigenvalues. This matrix is
computed on the summit and is given approximately means of the finite difference method. Subsequently,
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(a) (b)

Figure 1.6: (a) Power spectral density of a rough surface (b) Example of a generated rough surface for
the parameters specified in Tab.1.1 (Set 1)

the principal directions are also computed as the eigenvectors of this matrix. Then, this geometrical data
and the elastic parameters (E = 4GPa and ν = 0.15) are taken as models input data.

1.3.2 Results

Considering that one of those surfaces is in contact with a rigid flat plan. The rigid face is moved
normally against the elastic surface with a given motion δ. In this paragraph, results from the various
models described in section 1.2.2 are presented. Specifically, the analysis concerns the evolution of

• The fraction of the real contact area defined by :A/A0;
• The contact mean pressure pn defined by: F/A0;
• The surface separation g;

where A is the real contact area and F the total force.
In Fig.1.7 and Fig.1.9, the results obtained with four different models are presented. The curves show a
typical result for a realization issued from Set 1 and from Set 2. The four models are

• (1) Discrete elliptic contact, i.e the elliptic model with interaction;
• (2) Discrete circular contact, i.e the circular model with interaction;
• (3) Elliptic contact without interaction;
• (4) Circular contact without interaction

Obviously, the concern here is how the elliptic hypothesis and the interactions affect the predicted values
of the contact interface properties. First of all, let us consider the first set (Set 1); it is clear that the
elliptic shape of contact does not change the response of the surface. This was quite predictable because
in this set, the surface has the same properties in both directions thus the eccentricity is not sufficiently
high to influence the pressure distribution and the contact dimensions.
With regard to the evolution of contact mean pressure against the rigid motion and the separation (see
Fig.1.7: i and ii), the models neglecting interaction, overestimate the mean pressure and hence contact
area. This is due to the fact that the consideration of interactions reduce the number of the contacting
asperities.
Otherwise, an interesting behavior can be seen in Fig.1.7(iii); the contact area- mean pressure rela-
tionship is almost linear for the four models and it seems that this behavior is preserved despite the
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Figure 1.7: Results obtained for a surface from Set 1 using four different models

non-consideration of interactions. The coefficient of proportionality κ is plotted in Fig.1.7 (iv). Note that
this parameter is defined by A/A0 = κ(〈|∇h|2〉)−1/2pn/E

∗, where 〈|∇h|2〉 is the average square slope of
the surface. As shown in that figure, all the models predict the same law. For a contact area fraction
less than 1.5%, there is no proportionality because there are a few contacting asperities and hence the
non-linear Hertzian behavior is still predominant. When contact pressure exceeds 6MPa, which corre-
sponds to an area fraction equal to 1.5%, the parameter κ is roughly equal to 2.2. This value is not far
from some theoretical predictions such as in the theory of [Bush et al.(1975)] (κ = 2.5), and some recent
numerical works [Putignano et al.(2012), Yastrebov et al.(2015)].
Another interesting point is that the linearity between the mean pressure and contact area covers a wide
range of areas that extend from 1.5% to 3.5%. With regards to the literature, this behavior can be
analyzed by calculating Nayak’s parameter which is defined by α = m0m4/m

2
2, where mi is the moment

of the ith order of the spectral density. Here, the value of this parameter is 2.6 which is a small value
comparing to real surfaces; nevertheless the linearity should be limited to very small contact area, i.e less
than 1% (see [Putignano et al.(2012), Yastrebov et al.(2015)]) which is not the case here.
Hence, it seems that this non-conventional result tend to confirm that the consideration of interactions
does not play a major role in the prediction of linearity between contact area and mean pressure. Indeed,
some calculations were achieved on 20 different realizations using the same parameters considered for Set
1. In Fig.1.8, the evolution of contact mean pressure versus contact area fraction, and the parameter κ
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are plotted for the models which does not include the interaction effect. Once again the elliptic assump-
tion does not affect the results. Also we clearly see that for the different realizations, the parameter κ
converges towards values ranging between 2.34 and 2 for a fraction of contact area higher than 5% which
is not far from the predictions of [Bush et al.(1975)] theory. Once more, the linearity is not valid for small
contact area.
Now, regarding the second set (Set 2), a different observations can be made. In Fig.1.9 ((i) and (ii)), it
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Figure 1.8: Results obtained for 20 realizations from Set 1 using two different models

can be seen that the consideration of the elliptic shape affects only slightly the prediction of the surface
behavior. This is due to the fact that the distances between asperities are much bigger than contact
dimensions, hence the displacements are quasi symmetric (see Fig.1.5). Indeed, if a point is located far
from an asperity center(i.e a, b << X, Y ), the variable λ1 can be approximated by

λ1 ' X2 + Y 2 (1.26)

Therefore, the solution is quasi-symmetric far from the center of contact zone, and this can be easily
seen in Fig.1.5. Furthermore, the consideration of interactions changes drastically the rigid motion -
mean pressure relationship. Again, the slope of this curve has decreased because interactions reduce the
number of contacting asperities.
As regards the evolution of contact area versus the mean pressure (see Fig.1.9 (iii)), interactions do

not change the results and there is not a clear linearity between the two quantities. For this sample,
Nayak’s parameter is equal to 3, which is slightly higher than the previous one (Set 1) but remains small
comparing to real surfaces.
On the other hand, the influence of the elliptic hypothesis is remarkable. Indeed, as mentioned above,
the circular assumption overestimates the area and underestimates the pressure. Thus, as shown in that
figure, the slope of the predicted curves issued from the circular models is bigger than the elliptic models
one. The parameter κ is plotted in Fig.1.9. Comparing to the first set (Set 1), κ converges slowly. The
predicted values for the elliptic models are between 2 and 3 for a fraction of contact area higher than
1.5%.
From this example, it is clear that the consideration of the elliptic geometry affects strongly the contact
area estimation when a surface has a highly eccentric asperities. Furthermore, the linearity between con-
tact area and pressure is clearly not predicted.
As summary, we can see that the results obtained with the different presented models are in good accor-
dance with many classical results. The most important point is that interactions affect clearly the slope
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Figure 1.9: Results obtained for a surface from Set 2 using four different models

of the pressure-motion curve, and hence must be considered. The consideration of elliptic contact is only
necessary when a surface contains a highly eccentric asperities. In the second part of this paper, one of
the discrete models considering interactions is selected to embed a numerical model. In particular, the
pressure-motion curve is used to define a contact law representing roughness effect. The main steps of
the methodology are presented in the next section.

1.4 A numerical interface embedding strategy
The aim of this work is to integrate the microscopic behavior of the contact interface in a macroscopic
numerical model. Indeed, roughness will not be represented physically in the model but only included via
contact laws. Hence, we obtain an embedded/homogenized numerical model where roughness is implicitly
present.
In this section, some basic principles of the numerical modeling of a frictionless contact problem are
recalled, then the principle behind this strategy and its different steps will be detailed.

1.4.1 A brief overview on the numerical treatment of frictionless contact problem

Different topics are involved when contact problems have to be simulated numerically. The first is to
formulate the geometrical contact conditions. In detail, it concerns the normal gap distance of the
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(a) (b)

Figure 1.10: Graphical representation of contact laws: Penetration is not allowed in Kuhn tucker condition
(a) while in the penalty method (b) contact constraints are violated and penetration depends on contact
pressure

interface gn and pn the normal contact pressure. Indeed, in a continuum model, it is not allowed that two
different points occupy the same position in space. It comes that for two contacting bodies, no boundary
point of the first body penetrates in the other. Moreover, there is no contact pressure where there is no
contact. These constraints lead to the following statement

gn ≥ 0, pn ≥ 0, pn.gn = 0 (1.27)

which is well known as Kuhn-tucker condition for frictionless contact problems (see Fig.1.10 (a)).
Within the finite element framework, solving the contact problem goes through the derivation of the weak
form of equilibrium including contact, and the minimization of a variational problem which is constrained
to Kuhn-tucker condition [Wriggers(1995)]. The virtual work of contact forces can be expressed in terms
of contact kinematics and surface tractions. The kinematics of contact surfaces are related directly to the
displacements of the contacting bodies while the tractions are unknown.
Several methods are used to compute surface tractions and solve contact problem, with respect to the
impenetrability constraint. In this paper we shall focus on regularization methods and more exactly the
penalty method [Kikuchi and Song(1981)]. This technique pairs up the contact normal pressure with the
gap distance with a law of proportionality

pn = kn < −gn > (1.28)

where kn is the penalty coefficient (see Fig.1.10 (b)) .
Hence it comes that the virtual work of contact forces depends only on the displacements field.
In this formulation a penalty term due to constraint condition is added to the weak form and the contact
problem becomes unconstrained. The global scheme of resolution is performed by choosing a suitable
discretization of contact surface, and an iterative algorithm to minimize the virtual work[Kikuchi and
Song(1981), Wriggers(2006)].
The penalty method leads to a solution letting the violation of contact constraints (Eq.1.27). To avoid
large penetrations, the penalty coefficient has to be chosen enough large. However, this choice may lead
to an ill-conditioning of the global matrix.

1.4.2 Embedding strategy principle

Let us consider a large-scale numerical model of two bodies which are in contact. One of them is rigid
and the other one is elastic (see Fig.1.11-(a)). The penalty method is used to enforce contact constraints
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and the contact interface is divided into a complementary set of patches, where each patch represents the
roughness standing inside it (see Fig.1.11-(b)). Since surface roughness is described only by asperities,
each patch corresponds to a discrete subset of asperities.
Following one of the contact models described before, the mean contact pressure in each patch can be
related to the local vertical motion. The strategy that we propose, is to consider that the large scale
model’s interface is flat and smooth for each patch, and to use the contact laws instead of the penalty
method. Indeed, this yields to a modified penalty term which represent roughness effect, and hence, the
penalty coefficient is not chosen arbitrary but is depending on contact pressure (see Fig.1.11-(c)). This
approach was proposed first in many works (e.g [Zavarise et al.(1992), Bandeira et al.(2004)]). Comparing
to these works, the interface laws are defined considering the geometry of each patch and its interacting
asperities. Indeed, these points were not considered in the mentioned works and are definitely important
to preserve the same behavior in micro and macro contact models.
Following this strategy, for a given motion of the rigid body, the total force calculated in the large-scale
model must be the same as the one calculated in the microscopic model, and to ensure this, it is necessary
to define a convenient gap-contact pressure law for each patch.

Figure 1.11: Schema of the proposed strategy: (a) the large scale problem, (b) the real interface geometry
and patches distribution, and (c) the embedded model where the interface is embedded with contact laws

For example, let us take a rectangular patch (of dimensions 2a and 2b) and suppose that this patch is
embedded by a law linking the contact mean pressure to the normal gap. For a given motion of the rigid
body, making contact over that patch is equivalent to apply a uniform pressure pn on it (Fig.1.12), thus
it follows from Love model[Love(1929)] that the vertical displacement of the elastic body surface reads
approximately

U (x, y) = L (a, b, x, y) pn
πE∗

(1.29)
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where

L (a, b, x, y) = (x+ a) ln

(y + b) +
√

(y + b)2 + (x+ a)2

(y − b) +
√

(y − b)2 + (x+ a)2


+ (y + b) ln

(x+ a) +
√

(y + b)2 + (x+ a)2

(x− a) +
√

(y + b)2 + (x− a)2


+ (x− a) ln

(y − b) +
√

(y − b)2 + (x− a)2

(y + b) +
√

(y + b)2 + (x− a)2


+ (y − b) ln
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With respect to the rigid motion δ, the normal gap distance reads

gn (x, y) = δ − U (x, y) = δ − L (a, b, x, y) pn
πE∗

(1.31)

From this equation and with respect to the contact law pn = f(gn), the contact pressure is iteratively
computed. However, it is not guaranteed to find the same contact pressure associated to the motion δ,
because the Eq.1.31 might be different from the contact law linking gn to pn. In other words, for a given
motion δ, if the contact model predicts a gap evolution which is different from the one given in Eq.1.31,
the pressure will be different, and hence, the total force will not be the same.

Figure 1.12: Analogy between the effect of a contact law defined on a patch and a uniform pressure
applied on it. The contact stresses act like a uniform pressure pn and the elastic displacements U in the
elastic body are given from Love model

In order to get the equivalence between the two models, the law which links the contact pressure with
the rigid motion δ must be respected. So it is necessary to compute a new gap according to Eq.1.31.
Therefore, the strategy proposed here read as follows:

• For a given δ, the corresponding force F is computed using one of the micro mechanical models (see
section 1.2.2) and then the normal contact pressure read pn = F/A, where A is the patch area,
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Figure 1.13: Numerical models : (a) Geometry of the problem, (b) the surface mesh in the numerical
reference model (6.105 hexahedron elements) and (c) the flat surface mesh in the embedded numerical
models(4.104 hexahedron elements ).

• Following Love model[Love(1929)], the gap gn is computed according to Eq.1.31, and the contact
law is then defined by the couple (gn, pn)

As stated before, this step is crucial since it makes possible the consideration of patch’s geometry. The
procedure is done zone by zone so that an interface law is defined for each patch of the surface. Comparing
to numerical approaches, the operation is very fast since the semi-analytic contact model is used. The Love
solution is only valid when the patches geometry is rectangular and when their size are much smaller than
the total surface dimensions. The procedure can be generalized to cover the general case of quadrilateral
and triangular contact elements, without any difficulty. In the latter case, Boussinesq solution for normal
load over a triangular area is used.

1.5 Numerical examples

1.5.1 Numerical models

Considering an elastic cube and a rigid flat surface (Fig.1.13-(a)). The rigid surface is moved normally
against the cube with a given motion. Two numerical models are proposed:

• (1) Numerical reference model: A first model where roughness is explicitly (or finely) meshed. In
order to get an accurate solution, the model contains 6.105 hexahedron elements and the Augmented
Lagrangian formulation is used to enforce the contact constraints. This method is more accurate
and is less dependent on the choice of its parameters. The contact elements are of the type surface
to surface (see Fig.1.13-(b)).

• (2) Embedded/Homogenized numerical model: In the second model, the interface is flat. The
surface is divided into Nx ×Ny square patches. For each patch, the contact interface is embedded
with a contact law using the discrete circular model with interaction and the strategy described
above. Furthermore, surface to surface discretization type is used and the mesh density is very small
compared to the first model (4.104 hexahedron elements, see Fig.1.13-(c)).
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1.5.2 Results

All the numerical analysis are performed with the commercial Finite Element code Abaqus/Standard
6.13. We compare both analytic and numerical results. In the embedded model, three simulations are
performed considering various number of patches.
In Fig.1.14, the evolution of contact mean pressure versus the motion of the rigid plan is presented. It is
clear that the solution without interaction overestimates the mean pressure. The discrete analytic results
(with interaction) match with the numerical model predictions. With regard to the embedded models,
the results are consistent with those predicted by the numerical reference model.
The size of patches has a little influence on the total surface behavior. Indeed, there is small differences
varying from 0% to 3%. This is due to the way the interface laws are defined. Indeed, each patch
represents the asperities that are inside it, and the interaction between the asperities coming from various
patches is slightly different from interactions between patches.

Figure 1.14: Numerical and analytic predictions of the contact mean pressure versus the vertical motion
of the rigid body

In Fig.1.15, the distribution of contact normal stresses corresponding to δ = 8µm, is shown for the different
models. In Fig.(a), (b) and (c), it is clear that the number of the contacting asperities is the same. In the
elliptic model, the shape and the orientation of contact zones are consistent with the numerical reference
model.
The real contact area is very small compared to the apparent one (approximately 4%). In the numerical
model, contact area is slightly larger due to the mesh size effect.
On the other hand, the distribution of contact stresses, in the three embedded models (Fig.1.15: (d),
(e) and (f)), depends on the patch size. The higher the number of patches, the more precise the contact
stresses distribution is. The contacting patches correspond to the zones where asperities are in contact
hence, each patch describes macroscopically the micro mechanical behavior of the asperities standing inside
it. The mean pressure remains approximatively the same as shown in Fig.1.14, despite the differences in
contact stresses distribution.
As regards the computational time, It has been reduced significantly. For the numerical reference model,
the computational time is 3 hours whereas it does not exceed 15 minutes for the embedded models and
10 minutes for the semi-analytic models.
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Figure 1.15: Contact normal stresses (MPa) distribution for different models: (a) the numerical reference
model, (b) and (c) the analytic models, and (d) and (e) and (f) the embedded numerical models where
roughness is modeled by contact laws

Conclusion
In this work, various contact models of rough surfaces have been presented. Using Hertz theory, an
elliptic contact approximation of non symmetric asperities has been proposed which provides a more
realistic description of contact stresses distribution. The results show that the predictions of the model
are quite similar to the circular model one’s for isotropic surfaces. But when this is not the case, the
symmetric circular models overestimate contact area.
Interactions play a key role in the prediction of the surface behavior. Indeed, the results obtained with
the model including interactions shows a good correlation with a highly meshed finite element model.
However, regarding contact area, interactions seem to not affect its evolution versus the contact pressure.
In the second part, a useful simulation tool to model macroscopically a rough contact, has been proposed.
Indeed, the surface is divided into patches each one representing the asperities which are inside it. Then
an interface law is defined for each patch using a specific strategy which involves Love solution for elastic
half spaces.
The numerical analysis shows consistent results. The size of patches does not affect the global surface
response but has an influence on the contact stresses distribution. Such a strategy allows to integrate
roughness effect in a large scale contact model and gives approximately the same global response as a
highly meshed model, with a very reduced computational time.
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Transition
The first chapter was devoted to the analysis of the normal contact of rough surfaces between homo-

geneous solids. However, the material beneath the surface is subjected to thermal and mechanical loads
which induce within it a gradient of material properties. This gradient is normal to the contact surface.
Consequently, the material can be considered as a multi-layered system where each layer is homogeneous.
Thus, this chapter is dedicated to the modeling of rough contact of multi-layered solids.
To do that, an asperity based model is developed using the Hankel transform and the transfer matrix tech-
nique. The obtained results are verified with the Finite Element Method calculations and the effects of
solid layers are highlighted.
Hence, this chapter complements the micro-contact model developed in the first chapter by introducing the
effect of a gradient of properties.

This figure presents the complete plan of this thesis. This chapter position is highlighted by a blue box
in the background.
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Abstract
A new numerical model is proposed to investigate the normal contact of multi-layered solids with

rough surfaces. The Hankel transform and the transfer matrix technique are used to solve the problem
of the deformation of a multi-layered solid. Then, the normal contact of an asperity is solved with Abel
transform. Using this solution, an asperity-based contact model of rough surfaces is developed consid-
ering interactions between asperities. Numerical results are presented and compared to finite element
calculations. The present model provides good results. The effects of interactions and the solid layers
properties are discussed.

keywords : Contact analysis, surface roughness, multi-layered solid, Hankel transform, transfer
matrix technique.

2.1 Introduction
Contact mechanics is of high interest in many engineering systems. For many of them, if two solids are in
contact the real contact area is much smaller than the apparent one due to surface roughness. The inter-
face behavior and the contact area has a great effect on system performance [Hetzler and Willner(2012)].
Naturally, the contact interface behavior depends on the roughness of the contacting solids and their
mechanical properties. A contact model considering surface roughness goes first through the description
of surface roughness. For this purpose, the random process theory is commonly used to compute some rel-
evant statistical parameters [Longuet-Higgins(1957), Nayak(1971)] and fractal techniques are often used
to characterize the multi-scale nature of rough surfaces [Majumdar and Tien(1990), Persson et al.(2005)].
There is a wide range of normal contact theories with rough surfaces. The classical contact theories are
based on the concept of asperity which was first introduced by [Archard(1957)]. The basic idea of these
theories is that contact occurs only on the top of these asperities. The well-known theory of [Greenwood
and Williamson(1966)] represents the basis of all the asperity-based models. This theory assumes that
roughness can be described as a spatial distribution of spherical asperities having the same curvature
radius and a randomly distributed heights. The asperities deform according to Hertz theory. An im-
provement of this theory has been proposed by [Bush et al.(1975)]. They consider that each asperity is
approximated by a paraboloid having the same geometric parameters as the asperity. The basic idea is
to consider a random process of asperity heights and curvatures.
These models have achieved many results of great interest and have been successful for many years.
However there is some weaknesses arising from the dependency on the statistical parameters and the
non-consideration of interactions between asperities. Nevertheless, many improvements have been pro-
posed by different authors. For instance, interactions have been included using semi-analytic approaches
[Ciavarella et al.(2006), Waddad et al.(2016)]. Considering interactions is in particular important for the
cases close to full contact situation.
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The contact problem can also be solved by means of numerical methods. Using the finite element method,
the problem is solved with optimization techniques and the region near to contact surfaces has to be finely
meshed to guarantee a good accuracy [Pei(2005), Wriggers(2006)]. In return, the method is very costly
in terms of CPU time which might be restrictive.
Another method is to consider the solid as a half space and solve the problem using the so-called influence
coefficients [Johnson(1987), Willner(2008)]. Following this approach, only the surface is discretized which
saves considerably CPU time. Using the Fast Fourier Transform (FFT), a fast version of this method,
has been developed in [Gallego et al.(2010)].
The various existing models are focused on the contact surface geometry and consider that the solid is
elastic and homogeneous, which is obviously not always true. Solids could be heterogeneous and could
undergo several transformations under thermal and mechanical loadings and notably the subsurface ma-
terial is the most exposed to these loadings. Hence, the bulk material properties change constantly and
could affect the contact interface behavior. In several works, the material properties effect have been
investigated. The plastic contact have been analyzed in [Wang et al.(2013)] using the influence matrix
coefficients, and in [Kogut and Etsion(2002)] with the finite element method. Material heterogeneities
have been considered in [Leroux et al.(2010)] to model fretting problems.
In many problems, the material beneath the surface can be considered as multi-layered, such as coating
and composites. Moreover, in braking applications and hot forging tools, there is material transforma-
tions leading to the appearance of a gradient of material properties near to contact interfaces. Thus, these
properties vary in the direction normal to the contact surface. Consequently, in some way, the material
can be considered as a multi-layered system where each layer is homogeneous and perfect continuity is
assumed at the interface layers.
To the best of our knowledge, the contact problem involving rough surfaces with multi-layered solids
has so far received a few attention. The contact between an ellipsoid and a layered half space has been
studied numerically in [Plumet and Dubourg(1998)]. In [Mao et al.(1997), Cole and Sayles(1992)], a
Green function approach has been used to analyze a 2D sliding contact problem including friction. In
[Peng and Bhushan(1996), Cai and Bushan(2005)], Papkovich-–Neuber potentials with a Fast Fourier
Transform scheme (FFT), have been used to study the rough contact problem of elastic and plastic solids.
These studies were carried on solids having a maximum of three layers. The problem is solved using the
influence matrix method of which the coefficients are obtained by solving a linear system of equations.
This system is obtained from the continuity conditions at the interface layers. Under such an approach,
it is very complicated to extend the technique to cover the general case of multi-layers.
An interesting approach has been proposed by [Yue(1996)] who has investigated the contact problem
of a multi-layered solid submitted to the indentation of a rigid circular plate using the transfer matrix
technique([Singh(1986), Ernian(1996)]) and both the Fourier transform and Hankel transform properties
[Sneddon(1995)] to obtain a Fredholm integral equation which is solved to obtain a closed-form solution
for the contact problem. The main advantage of this technique is the ability to relate directly surface
stresses to surface displacements which is very useful in solving contact and surface loading problems.
In this paper, a rough contact model of multi-layered solids is proposed based on the transfer matrix tech-
nique [Ernian(1996)] and the works of [Sneddon(1965), Yue(1996)]. First, by making use of the transfer
matrix technique, the surface displacements are expressed in terms of surface stresses for a multi-layer
problem. Second, a contact model of an axially symmetric asperity is developed by extending the solutions
proposed by [Sneddon(1965), Yue(1996)]. Subsequently, by considering the classical multi-asperity surface
description, the contact asperity model is used to solve the rough contact problem including interactions
between asperities. Finally, typical results are presented and compared to Finite Element calculations.
In particular, the effect of the solid layers elastic properties and the asperities interactions are discussed.
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2.2 Surface loading of multi-layered elastic solid : the transfer matrix
technique

2.2.1 General framework

Considering an isotropic elastic medium (z ≥ 0) laterally unbounded. There is no body forces, the static
equilibrium of the solid can be written as follows

σij,j = 0 (2.1)

where σ is the Cauchy stress tensor.
The deformation in the solid is assumed to be infinitesimal, thus, the strains εij are related to the
displacements ui by

εij = 1
2 (ui,j + uj,i) (2.2)

The constitutive based material has elastic properties varying with depth z. Thus, one can consider
the solid as a multi-layered system of unbounded horizontal layers, where each layer has its own local
properties (see Fig.2.1).
For the kth layer, the constitutive equation between stresses σij and strains εij is expressed by Hooke’s
law

σij = 2µk
(
εij + νk

1− 2νk
εqqδij

)
(2.3)

where µk is the shear modulus, νk is the Poisson’s ratio and δij is the Kronecker symbol.
Solving the contact problem is to express the displacements and the stresses in the contacting regions of
the top surface of the solid (z = 0). For that issue, the problem is solved through the Hankel integral
transform and the transfer matrix technique.

Figure 2.1: Schematic of a multi-layered elastic solid under surface loads

2.2.2 The transfer matrix technique

Let us consider the axis of symmetry of an isotropic elastic medium as the z-axis. The governing equations
are presented as follows in cylindrical coordinates (r, θ, z). The problem is solved in the case of axially
symmetric deformation and all field variables are independent of θ.
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Considering the stress vector defined by Tz = [σrz, σθz, σzz]t and the displacements vector u = [ur, uθ, uz]t.
Let us introduce the following set of solution representation using the Hankel integral transform

w =

wξwη
wz

 =
∫ +∞

0

−J1 (ρr) /ρ 0 0
0 J1 (ρr) /ρ 0
0 0 J0 (ρr)

 .u rdr

τ =

τξτη
τz

 =
∫ +∞

0

−J1 (ρr) /ρ 0 0
0 J1 (ρr) /ρ 0
0 0 J0 (ρr)

 .Tz rdr

It is well known that this set of variables satisfies the two decoupled first order differential equations

d
dz

[
wη
τη

]
=

 0 1
µ

µρ2 0

[wη
τη

]

d
dz


wz
ρwξ
τz/ρ
τξ

 =



0 νρ

1− ν
(1− 2ν) ρ
2µ (1− ν) 0

−ρ 0 0 ρ

µ
0 0 0 ρ

0 2µρ
1− ν − νρ

1− ν 0




wz
ρwξ
τz/ρ
τξ



The global solution of this system is an eigenvalue extraction problem and can be written in the following
form [

wη
τη

]
= Z1

[
Aη
Bη

]
and


wz
ρwξ
τz/ρ
τξ

 = Z2


Az
Aξ
Bz
Bξ


where Az , Aη, Bη, Bz, Aξ and Bξ are constants and the matrices Z1 and Z2 are given in Appendix A.
Considering that the medium is an unbounded horizontal layer of which the thickness is h. The superscript
(+) (resp. (−)) is used for the top layer surface variables (resp. the bottom one). One can show that

[
w

(+)
η

τ (+)
η /ρ

]
= Tη

[
w

(−)
η

τ (−)
η /ρ

]
and


w

(+)
z

ρw
(+)
ξ

τ
(+)
z /ρ

τ
(+)
ξ

 = Tzξ


w

(−)
z

ρw
(−)
ξ

τ
(−)
z /ρ

τ
(−)
ξ

 (2.4)

where Tzξ and Tη are the transfer matrices of the layer and are given in Appendix A.
Now let us consider a multi-layered body made of N horizontal layers. The 1st layer is on the top of the
solid and the N th layer lies on a homogeneous half space that can be either rigid or elastic. Considering
the perfect continuity between the parallel layers, then the displacement field u and the stress vector Tz

are both continuous. Using the transfer matrices, one can obtain the following set of equations

[
w

(0)
η

τ (0)
η /ρ

]
= T(1)

η ...T(N)
η︸ ︷︷ ︸

R
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]
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τ
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Figure 2.2: Schematic of an elastic layer of which the deformations and the stresses are given by the
transfer matrix technique

From these equations, it can be seen that the transformed stresses and displacements of the top surface
of the 1st layer can be related directly to those of the bottom surface of the N th layer by the mean of
the matrices S and R. These matrices are given by a simple product of the transfer matrices of the
intermediate layers as shown in these equations.
In order to solve the problem, the boundary conditions in the bottom face are used. Following many
algebraic operations, one can show that

w
(0)
z

ρw
(0)
ξ

w
(0)
η

 = F


τ

(0)
z /ρ

τ
(0)
ξ

τ
(0)
η /ρ

 , where F =

F11 F12 0
F21 F22 0
0 0 F33

 (2.5)

The matrix F is called the transfer matrix of the body. The matrix coefficients depend on the bottom
surface boundary conditions and are given in Appendix B.
In Eq.2.5, one can see that surface displacements are related directly to surface loads using the matrix F.
More clearly, if a general surface loading is applied to the top surface z = 0, one can compute the real
displacements automatically using the inverse Hankel transform of Eq.2.5.
At last, it has to be noticed that the transfer matrix can also be formulated in Cartesian coordinates with
the use of Fourier integral transform.
In what follows, the normal elastic contact problem of an axially symmetric asperity is solved by making
use of the transfer matrix and integral transforms.

2.3 Elastic contact of an axially symmetric asperity

2.3.1 General contact problem

Considering a multi-layered solid, the top surface shape of the solid contains an asperity which is described
by a function z = f (r). The small-slope approximation is considered. The asperity is compressed normally
against a rigid plan with a vertical motion δ. Just as in Hertz theory, a circular contact zone appears and
has a radius a. Also, no shear stresses are considered.
The boundary conditions of the problem are :

• Inside the contact: uz (r) = δ − f (r) , 0 ≤ r ≤ a

• Outside the contact: σzz (r) = 0, a ≤ r

As shown in the previous section, using the transfer matrix technique, one can show that

wz = F11 (ρ) (τz/ρ)
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Using inverse Hankel transform, the boundary conditions can be written as follows

• Inside contact:
uz(r) = δ − f (r) =

∫ +∞

0
F11 (ρ) τz (ρ) J0 (ρr) dρ , 0 ≤ r ≤ a (2.6)

• Outside contact: ∫ +∞

0
τz (ρ) J0 (ρr) ρdρ = 0 , a ≤ r

Let us denote
α = lim

ρ→∞
1

F11 (ρ)
One can show that for any given boundary conditions, we have

α = µ1
ν1 − 1

where µ1 et ν1 are the elastic parameters of the first layer.
Consequently, we introduce the kernel kz defined by

kz (ρ) = αF11 (ρ)− 1

Then Eq.(2.6) becomes

α (δ − f (r)) =
∫ +∞

0
τz (ρ) J0 (ρr) dρ+

∫ +∞

0
kz (ρ) τz (ρ) J0 (ρr) dρ , 0 ≤ r ≤ a (2.7)

In order to solve this singular integral equation, we will refer to the earlier works of [Sneddon(1965),
Yue(1996)]. Therefore, the auxiliary function φ is introduced by

τz (ρ) =
∫ a

0
φ (x) cos (ρx) dx (2.8)

We also introduce the Abel transform A defined by

A (f (x) , r) = 2
π

∫ r

0

f (x)√
r2 − x2

dx

Knowing that
J0 (ρr) = A (cos (ρx) , r)

then ∫ +∞

0
τz (ρ) J0 (ρr) dρ = A

(
π

2φ (x) , r
)

and ∫ +∞

0
kz (ρ) τz (ρ) J0 (ρr) dρ = A

(∫ +∞

0

∫ a

0
kz (ρ) φ (x) cos (ρx) cos (ρr) dxdρ, r

)
Hence equation (2.7) may be written as an Abel integral equation

A
(
π

2φ (x) +
∫ +∞

0

∫ a

0
kz (ρ) φ (x) cos (ρx) cos (ρr) dxdρ, r

)
= α (δ − f (r))
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Making use of the inverse Abel transform A−1 and the integration by parts, one can obtain
π

2φ (r) +
∫ +∞

0

∫ a

0
kz (ρ) φ (x) cos (ρx) cos (ρr) dxdρ = α

(
δ − f (0)−

∫ r

0

r f ′ (x)√
r2 − x2

dx
)

After normalization, a Fredholm equation of the second order is obtained

φa (s) +
∫ 1

0
Ka (s, t)φa (t) dt = G (s) (2.9)

where
Ka (s, t) = 2

π

∫ +∞

0
kz(ρ/a) cos (ρs) cos (ρt) dρ

and
φa (u) = π

2φ (a.u)

and
G (s) = α

(
δ − f (0)− a

∫ s

0

s f ′ (at)√
s2 − t2

dt)
)

Solving Eq.(2.9) is done numerically by a quadrature technique. Indeed, by choosing an interpolation
base, the equation can be written in a matrix format

φ+ K.φ = G
and then

φ = (I + K)−1 G
Once the auxiliary function φa is computed, one can calculate the total normal force P by

P = −4a
∫ 1

0
φa (t) dt (2.10)

At last, all surface stresses and displacements can be deduced using Hankel transform properties. In
particular, we have

• The normal stress

σzz (s) = 2
πa

(
φa (1)√
1− s2

−
∫ 1

s

φ′a (t)√
t2 − s2

dt
)
... s = r/a ≤ 1

If f is smooth, contact stress vanishes at the edge of contact zone (r = a), hence, it comes that
φa (1) = 0 and

σzz (s) = − 2
πa

∫ 1

s

φ′a (t)√
t2 − s2

dt ... s = r/a ≤ 1 (2.11)

• Contact radius a in the case where f is smooth

δ = f (0) + a

∫ 1

0

f ′ (at)√
(1− t2)

dt+ 1
α

∫ 1

0
Ka (1, t)φa (t) dt (2.12)

• The normal displacement outside contact area

uz (s) = 2
απ

∫ 1

0
φa (t)

( 1√
s2 − t2

+
∫ ∞

0
kz (ρ/a) cos(ρt)J0 (ρs) dρ

)
dt

where s = r/a > 1
It is important to state that the solution of [Sneddon(1965)] of elastic half spaces can be deduced by
considering kz = 0, whereas the solution given by [Yue(1996)] can be retrieved by choosing f = 0, which
corresponds to the flat contact case. In other words, the proposed solution is an extension of both solutions
to cover the axially symmetric frictionless contact problem of multi-layered solids.
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2.3.2 Contact solution for a parabolic asperity

Considering the case of an asperity of parabolic shape. In this case, by taking the origin on the symmetry
axis, the function f is given by

f (r) = r2

2R
Hence the Fredholm equation (2.9) becomes

φa (s) +
∫ 1

0
Ka (s, t)φa (t) dt = α

(
δ − (as)2

R

)
(2.13)

In this equation, the unknown is the contact radius a. Eq.(2.13) is solved iteratively starting from an
initial trial value which can be chosen for instance from Hertz theory a0 =

√
R.δ.

In order to illustrate the results obtained with this model, some calculations have been performed on a
single asperity model of a two-layered solid (see Fig.2.3). The asperity is in contact with a rigid flat plan
that is moved vertically against the asperity with a given displacement δ.

Figure 2.3: Schematic of the single asperity model. The asperity is compressed vertically with a displace-
ment δ. The solid is composed of two elastic layers.

The total height of the solid is H = 1mm and the elastic modulus of the first layer is E1 = 4GPa. Both
of these quantities are fixed in this study, while the first layer thickness h is varied as well as the second
layer modulus E2. The Poisson ratio ν = 0.15 is the same for both layers.
The obtained results are compared to finite element calculations and Hertz theory. The latter corresponds
to the case of a homogeneous half space. The idea is to evaluate the accuracy of the model comparing to
FEM calculations and to enhance the role of the sub-layers parameters.
The evolution of the total force P with the displacement is presented in Figs.2.4 -2.6. In Fig.2.4, the
elastic modulus ratio E2/E1 is varied from 1 to 10 and the thickness h is fixed at 100µm. As we can see,
the predicted force deviates from Hertz theory predictions when the ratio E2/E1 increases. For the unit
ratio, there is a slight difference which is due to boundary conditions effect. Moreover, comparing the
model predictions with finite element results (marked by FEM in the figure and drawn by dashed lines)
show a good consistency.
In Fig.2.5, the effect of the first layer thickness is highlighted. The predicted results match FEM results.
The less the thickness is, the more the results deviate from Hertz theory. Additionally, the curve plotted
in Fig.2.6 shows the predicted values for different values of asperity radius and fixed elastic parameters.
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Once again, there is a good consistency between the obtained results and FEM values.
As summary, the proposed contact solution is in good accordance with FEM calculations and the force-
displacement evolution is affected by the layers properties and thicknesses. In the following, the contact
solution is simplified and used to model the normal contact of rough surfaces considering solid layers.
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2.4 Contact of rough surfaces

2.4.1 An approximate asperity contact model

In the previous section, a contact model of asperities has been presented. In order to make use of this
model, some simplifications are proposed. First, let us consider a parabolic asperity. The derivation of
the Fredholm integral equation 2.9 gives

dφa
ds (s) +

∫ 1

0

∂Ka

∂s
(s, t)φa (t) dt = −α2a2s

R

Since ∂Ka

∂s
(0, t) = 0, one can deduce that dφa

ds (0) = 0
Hence, by considering that the function φa is a 2nd order polynomial, one can write

φa (s) = φa (0)
(
1− s2

)
Using this simplified form and based on Eq.(2.9), φa (0) and δ are respectively given by

φa (0) = αδ

1 +
∫ 1

0
Ka (0, t)

(
1− t2

)
dt

(2.14)

δ = a2

R
+ φa (0)

α

∫ 1

0

(
1− t2

)
Ka (1, t) dt (2.15)

Making use of the two last equations, one can write

φa (0) = αa2

R
χ (a) and δ = a2

R
ζ (a)
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where ζ and χ are functions of a

χ (a) = 1

1 +
∫ 1

0

(
1− t2

)
(Ka (0, t)−Ka (1, t)) dt

ζ (a) =
(

1 +
∫ 1

0

(
1− t2

)
Ka (0, t) dt

)
χ (a)

Finally, the following approximated expressions are deduced:

• The total normal force P
P = −8

3 αχ (a) a
3

R
(2.16)

• The normal stress σzz
σzz (r) = 4α

πR
χ (a)

√
a2 − r2 if r ≤ a (2.17)

• The normal displacement is then given by

uz (r) =


1

2R
(
2a2ζ (a)− r2

)
if r ≤ a

χ (a)
πR

[(
2a2 − r2

)
arcsin

(
a

r

)
+ a

√
r2 − a2 + g (a, r)

]
else.

(2.18)

where g (a, r) = 4
∫ ∞

0
kz (ρ) J0 (ρr) sin(aρ)− aρ cos(aρ)

ρ3 dρ

By using this simplified form, one can express all the variables as a function of the contact radius a,
which is very helpful for the case of rough surfaces as it will be presented in the next section. But before
tackling the problem of rough surfaces, the parameters χ and ζ are plotted in Figs.2.7-2.8 for the same
configurations studied in the previous section. For small values of contact radius a, these parameters are
close to 1. In this case, the predicted values of the total force is almost the same as those predicted by
Hertz theory.
Increased ratio E2/E1 and or decreased h/H both lead to too much small values of ζ corresponding to
too much large contact radius for a given displacement, and to too much large values of χ which results
in more important force values.
These parameters can be seen, in a certain manner, as sub-layer impact coefficients. Indeed, if the sub-
layers have elastic parameters that are very different from those of the first one or if the first layer is
very thin, these coefficients will influence strongly the contact behavior, which is the case in the predicted
curves shown in Figs.2.4-2.6.
As stated before, this approximate solution is obtained using a 2nd order approximation of the auxiliary
function. In Fig.2.9, the relative error between the total force predicted using the approximate solution
and the one issued from the theory is drawn for the same tested configurations. As we can see, the
maximum relative error does not exceed 1% except for the case of the thinnest layer (h = 50µm) where
the value of 4% is reached, which is still acceptable.
The approximation introduced in this paragraph is of great importance because it significantly simplifies
the asperity contact model. Using this approximation a multi-asperity contact model is presented in the
following section.
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Figure 2.8: Evolution of the functions χ and ζ for the case E2 = 10GPa

2.4.2 A multi-asperity contact model

In this section, we are dealing with the contact problem between a rough surface and a flat one. The
following geometric description is similar to the ones given in [Ciavarella et al.(2006), Waddad et al.(2016)].
The body containing the rough surface is elastic and is considered as a multi-layered solid. The flat
surface is rigid and is moved normally with a displacement δ with respect to the rough surface. Within
the framework of a multi-asperity approach, the normal displacement in every point is a consequence
of all the contact strengths applied on surface asperities. Taking into account the interactions between
asperities, the displacement of each asperity is obtained by summing the displacements due to all the
contacting asperities.
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Figure 2.9: The relative error between the theoretical predictions of the total force and those of the
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Figure 2.10: Geometry of rough contact problem within a multi-asperity approach. Contact occurs only
on asperities and the contact area shape in an asperity is circular.

If N is the number of the supposed contacting asperities, the displacement wk of the kth asperity reads

wk =
N∑
i=1

Gi (rik) (2.19)
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where

Gi (rik) =


a2
i

Ri
ζ (ai) if i = k

χ (ai)
πRi

[(
2a2

i − r2
ik

)
arcsin

(
ai
rik

)
+ ai

√
r2
ik − a2

i + g (ai, rik)
]

else

where rik is the horizontal distance between the kth and the ith asperity.
Let us denote zM the maximum height of the rough surface and zi the height of the ith asperity, the
prescribed displacement of the ith asperity is given by:

δk = 〈δ − (zM − zk)〉 (2.20)

where < . > is the positive part of its operand.
Solving the problem is to find a distribution of contact dimensions a = (a1, a2, ..., aN ) satisfying contact
conditions : wk ≥ δk.
The equality means that the asperity is in contact while the strict inequality signifies that the asperity is
not in contact, and in this case, the change of the asperity height is due to interaction effects.
Unlike our previous work [Waddad et al.(2016)], where the problem has been solved using a direct method
based on the minimization of an objective function based on contact kinematic conditions, the present
problem is solved with a variational method consisting in minimizing of the total complementary energy
of the solid [Johnson(1987)]

UE = 1
2

∫
Γc
p.uz dS −

∫
Γc
p.δ dS (2.21)

where Γc is the contact zone, p is the contact pressure field and δ is the prescribed displacement field.
For a given asperity, the internal energy is given by

∫
Γj
p.uz dS = −4αχ (aj)

πRj

∫
Γj

√
a2
j − r2

N∑
l

Gl (rlj) dS

= −8α
3

χ (aj) a3
j

Rj

 N∑
l 6=j

Gl (rlj) +
a2
j

Rj

(
ζ (aj)−

1
5

)
and the prescribed displacements work is∫

Γj
p.δ dS = −8α

Rj
χ (aj)

∫
Γj

√
a2
j − r2

(
δj −

r2

2Rj

)
rdr

= −8α
3

χ (aj) a3
j

Rj

(
δj −

1
5
a2
j

Rj

)

Hence the total complementary energy on all the asperities is given by

UE = −4α
3

N∑
j

χ (aj) a3
j

Rj

 N∑
l 6=j

Gl (rlj) +
a2
j

Rj

(
ζ (aj) + 1

5

)
− 2δj

 (2.22)

For the special case of a homogeneous half space ξ = ζ = 1, this energy reads

UE = −4α
3

N∑
j

a3
j

Rj

 N∑
l 6=j

Gl (rlj) + 2
5
a2
j

Rj
− 2δj

 (2.23)
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The problem is solved by minimizing the system total energy under the constraints a ≥ 0. A Newton
likewise method is used to minimize this quantity [Nash(2000)].
Once the optimal contact radius distribution is found, the total force and the real contact area are obtained
by adding the contribution of all the contacting asperities, hence they are respectively given by

P = −8
3 α

N∑
i

χ (ai)
a3
i

R
(2.24)

A = π
N∑
i

a2
i (2.25)

The normal separation between the two faces is

gn = (zM − z̄)− δ (2.26)

where z̄ is the height of the mean plane.
As stated before, this model considers the interactions between asperities. A simple form can be proposed
to cover the case where interactions are not considered. Indeed, by neglecting the interaction terms Gj ,
the contact radius for each asperity can be computed from the following equation

δi = a2
i

Ri
ζ (ai)

This formula can be obtained directly from contact kinematic conditions.

2.5 Results
As an example, the normal contact of a two-layered elastic solid with a rigid plan is investigated. The
surface of the solid is rough (see Fig.2.11). For instance, surface roughness is kept fixed while the solid
layer parameters are varied. For each configuration, the obtained results are compared to finite element
calculations in the same manner as it was done for the single asperity problem (see section 2.3.2). More-
over, the effect of the solid parameters and interactions is discussed.
The dimensions of the surface sample are 1mm × 1mm. Roughness is generated numerically using nu-
merical techniques based on surface spectral density [Persson et al.(2005)]. The surface asperities are
identified as local maxima. Their geometrical properties are computed using finite difference method.
In the finite element model (FEM model), illustrated in Fig.2.12, the solid is meshed with 6.105 hex-
ahedron elements. The convergence of the numerical models has been checked and the number of the
considered elements is high enough to capture all surface details. The contact problem is solved us-
ing Augmented Lagrangian formulation [Wriggers(2006)]. All the numerical analysis are performed with
Abaqus/Standard 6.13.
The results from various models are shown in Fig.2.13 and Fig.2.14. The first layer thickness is h = 100µm,
its modulus is fixed at E1 = 4GPa and the ratio E2/E1 is varied from 1 to 10.
The variation of the dimensionless contact pressure pn/E∗1 (where E∗1 = −2α is the equivalent elastic
modulus of the first layer) with normal separation gn is shown in Fig.2.13. At first sight, there is a good
accordance between the proposed model predictions and finite element results. One also can see that the
impact of the sub-layer properties is considerable. It is also noticeable that the evolution between the
logarithm of pn/E∗1 and gn is almost linear except for the case of small loadings, and this for the different
tested configurations.
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Figure 2.11: Schematic of the model. On the left, the surface roughness is illustrated and on the right,
the solid geometry is shown. The following parameters are considered : H = 1mm and E1 = 4GPa

Figure 2.12: Schematic of the finite element model. The two-layered solid is meshed with 6.105 hexahedron
elements. The first layer thickness is h = 100µm.

In Fig.2.14, the evolution of the real contact area fractions A/A0 with the quantity pn/E∗1 is presented.
The numerical predictions are in good agreement with the model results. The contact area - mean pressure
relationship is almost linear except for the case of very small fractions of contact area (A/A0 ≤ 0.5%).
However, the most interesting observation that can be made is that this evolution is marginally affected
by the sub-layer modulus. Indeed, the first layer modulus is the same for all the considered configurations
and the introduced function χ is equal to 1 (see Figs.2.7- 2.8), independently of the sub-layer modulus.
Therefore, the pressure level which is controlled by function χ (see Eq.2.17), is kept fixed with respect to
contact area. Thus, this evolution is mainly affected by roughness and the first layer modulus.
From these examples, it is clear that the elastic properties of the sub-layers have a considerable influence
on the separation-load relation but little affect on the contact area-load evolution. It seems that this
relationship depends only on the first layer modulus which was fixed in this study.
Another interesting point to be investigated is the interaction effect on the system response. Up to now,
the complete model considering interactions has been tested and results are in good accordance with FEM
calculations. In what follows, the results from the complete model (that is indicated as " I model ") are
compared to the simplified model which does not consider interaction (indicated as " N model ").
The evolution of pn/E∗1 with normal separation gn is shown for both models in Fig.2.15. As we can
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Figure 2.13: Evolution of the dimensionless contact pressure with the normal separation. Comparison
between FEM results and the model predictions.
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Figure 2.14: Evolution of the fraction of the contact real area with the dimensionless contact pressure.
Comparison between FEM results and the model predictions.

see, the contribution of interactions depends on the solid parameters, and in this example, it is the ratio
E2/E1. For the homogeneous case (E2/E1 = 1), interactions affect clearly the curve. Regarding the
other cases (E2/E1 > 1), interactions has little effect on the studied curve. Thus, the consideration of
interactions has an insignificant effect on the load-separation curve in the latter cases. Indeed, for these
cases, function g introduced in Eq.2.18 has a great effect on interaction terms. For instance, for the case
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where E2/E1 = 10, these terms are almost equal to 0 and there is no need to consider interactions.
Hence one can conclude that the major influence of the sub-layers properties on the interface behavior
lies in the interactions between asperities. This conclusion is only valid for the case of small loads and
contact areas. It is also worth to notice that the influence of interactions is not only dependent on the
sub-layers properties but also on the first layer thickness.
Regarding the evolution of the real contact area with loading (see Fig.2.16), we observe that interactions
do not affect this evolution. This remark have been already made in many works studying the effect of
interactions on loading-area evolution (see [Ciavarella et al.(2006), Waddad et al.(2016)]).
With regard to the computational time, the new contact model provides results within few minutes. The
fully discretized solution obtained with the finite element method is more computationally expensive.
Thus the present model is numerically efficient.
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Figure 2.15: Evolution of the dimensionless contact pressure with the normal separation. Comparison
between the complete model and the one which does not consider interactions

Conclusion
In this work, a contact model of rough surfaces and multi-layered solids has been proposed. The model
is based on a multi-asperity surface description. The transfer matrix technique has been used to express
surface displacements as functions of the surface loads. Then, making use of Abel and Hankel transforms,
a contact model of parabolic asperities has been developed. At the asperity scale, results show that the
sub-layer properties affect clearly the load-displacement curve.
By making use of a second order approximation of the asperity model, a contact model of rough surfaces
has been developed. The obtained results have been compared to finite element calculations. A good
agreement has been observed between the two methods.
As an example, a two-layered solid with a rough surface has been studied. Results show that the sub-layer
properties strongly affect the contact interface stiffness but much less the load-area evolution. The latter
depends essentially on surface roughness and the first layer properties. With regard to stiffness, the sub-
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Comparison between the complete model and the one which does not consider interactions.

layers properties have a great influence on interaction terms which affects the load-separation evolution.
Indeed, it has been shown that in some cases, the interactions between asperities can be neglected, while
in the homogeneous case, interactions must be considered even in the case of small loads and contact
areas.
Finally, this model can be used to embed large scale numerical models with the aim to consider the effect
of roughness and a normal gradient of properties using the approach presented in our first work [Waddad
et al.(2016)].
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Appendix A

- Elastic matrices

Z1 = exp (ρz) .
[

1 exp (−2ρz)
µρ −µρ exp (−2ρz)

]
and

Z2 =



1
2µ exp (ρz) 1

2µ exp (−ρz) 1
2µ

(
z − 2 (1− ν)

ρ

)
exp (ρz) 1

2µ

(
z + 2 (1− ν)

ρ

)
exp (−ρz)

1
2µ exp (ρz) − 1

2µ exp (−ρz) 1
2µ

(
z + (1− 2ν)

ρ

)
exp (ρz) 1

2µ

(
−z + (1− 2ν)

ρ

)
exp (−ρz)

exp (ρz) − exp (−ρz)
(
z − 1

ρ

)
exp (ρz)

(
−z − 1

ρ

)
exp (−ρz)

exp (ρz) exp (−ρz) z exp (ρz) z exp (−ρz)


- Transfer matrices of a layer

Tη = 0.5 exp (ρh) .

 1 + exp(−2ρh) − 1
µ

(1− exp(−2ρh))
−µ (1− exp(−2ρh)) 1 + exp(−2ρh)


and

Tzξ = µ

1− ν (T1 cosh (ρh) + T2 sinh (ρh)) (2.27)

where

T1 =



1− ν
µ

−ρh2µ
ρh

4µ2 0
ρh

2µ
1− ν
µ

0 − ρh

4µ2

ρh 0 1− ν
µ

−ρh2µ
0 −ρh ρh

2µ
1− ν
µ


& T2 =



−ρh2µ
1− 2ν
µ

−3− 4ν
4µ2

ρh

4µ2
ρh

2µ
ρh

2µ − ρh

4µ2 −1− ν
2µ2

−1 ρh −ρh2µ −ρh2µ
−ρh −1 −1− 2ν

µ

ρh

2µ



Appendix B
The transfer matrix that relates surface displacements to surface loads can be expressed as follows

F =

F11 F12 0
F21 F22 0
0 0 F33


The matrix coefficients are obtained from boundary conditions. Two cases are examined here :
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- Case of an elastic half space

The multi-layered solid lies on an elastic half space. Thus, the half space parameters A(N+1)
η , A(N+1)

z and
B

(N+1)
z vanish. It follows that[

F11 F12
F21 F22

]
= 1
N44N32 −N34N42

[
N12 N14
N22 N24

] [
N44 −N34
−N42 N32

]

and
F33 = M12

M22

where N = S.Z(N+1)
2 (ZN ) and M = R.Z(N+1)

1 (ZN )

- Case of a rigid half space

If the multi-layered solid lies on a rigid half space, the displacements w(N)
η , w(N)

ξ and w(N)
z are set to be

zero. One can deduce that
F33 = R12

R22

and [
F11 F12
F21 F22

]
= 1
S44S33 − S34S43

[
S13 S14
S23 S24

] [
S44 −S34
−S43 S33

]
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Transition
The two first chapters of this part were dedicated to the modeling of the normal contact using an

asperity based model. In the following chapter, we are interested in wear modeling.
In comparison to the previous chapters, the contact problem is solved here by discretizing the contact
surface into square elements. This choice is motivated by the fact that this approach is less dependent
on the shape of asperities and can be accelerated using the FFT technique, regardless the high number of
degrees of freedom comparing to mutli-asperity approaches. Besides, this approach is of practical use for
wear modeling because it avoids the complexity and the non-linearity of asperities models.
Thus, in this chapter we propose a different approach to solve the contact problem considering both rough-
ness and a gradient of properties. As regards wear modeling, the Archard’s model is used.
Note that friction forces are calculated directly using Coulomb’s law and that they are assumed not to
affect the contact area.

This figure presents the complete plan of this thesis. The position of this chapter is highlighted by a
blue box in the background.
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Abstract
The present work aims to analyze the wear process of rough surfaces for homogeneous and multi-

layered solids. First, the contact problem is solved numerically with a variational approach based on the
influence matrix technique. The terms of this matrix are obtained with Fourier transform and the transfer
matrix technique for multi-layered solids. Wear modeling is performed using Archard’s law and the total
surface wear is obtained by micro-contact. Finally some examples are presented. The effect of wear on a
rough surface is presented and the effect of surface layers on wear is highlighted.

keywords : Contact analysis, surface roughness, wear, multi-layered solid, Fourier transform, transfer
matrix technique

3.1 Introduction
In sliding contact systems, the knowledge of the real contact area is of high importance since it affects
the global behavior of the system [Dufrénoy et al.(2016), Hetzler and Willner(2012)]. As is well known,
the contact area depends on the mating surfaces roughness. Yet the initial surface roughness is affected
by contact loads and wear. In fact, a progressive damage and material removal is caused by frictional
interactions between the contacting surfaces. Thus, surface wear affects the real contact area which con-
sequently may harm the efficiency and the durability of the global process.
There are several types of wear : abrasive, adhesive, corrosive, etc. Wear types are conditioned by many
physical phenomena such as micro-fractures, melting or chemical effects. The dominant wear mode de-
pends on the sliding distance, a lubricated or a dry contact, friction conditions, material properties and
environmental parameters, which affect the amount of wear volume[Kato(2000), Kato(2002)].
Wear modeling has been the subject of many works. A large variety of wear models are described in
[Meng(1995)] based on theoretical and experimental works existing in the literature. From these models,
the amount of the worn volume can be expressed as a function of contact load, sliding distance and a
coefficient depending on material properties and wear mode. Concerning rough surfaces, a micro-contact
model of abrasive wear has been proposed by [Masen(2005)] by considering that micro-contact spots act
as abrasive entities. The abrasive action of a single micro-contact is based on experimental investigations.
Therefore, the macroscopic wear volume is found by summing the volumetric wear of each individual
micro-contact zone.
The difficulty in wear modeling is that there is no universal model that can be applicable to all situa-
tions[Williams(1999)]. Most of the existing models are empirical. Nevertheless, it appears that most of
wear mechanisms (e.g. abrasive and adhesive modes) can be described, using simplified description of the
considered mechanism, by a linear law defining a steady wear volume with sliding and characterized by a
constant wear rate [Archard(1953), Kato(2002)]. In this case, wear volume is proportional to the normal
load and the sliding distance. Yet, wear rate depends on the governing mechanisms of wear and has to be
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identified with appropriate experiments. For instance, wear rate corresponding to adhesive wear of metals
have been quantified, by [Archard(1953)], depending on the operating conditions and material properties.
In this work, our interest is focused on the contact between a disk brake and a composite material. Our
aim is to analyze the evolution of surface roughness with wear process. For this, we use a linear law, like
Archard’s one, which is based on a wear rate coefficient issued from the literature. The real challenge is
to solve the contact mechanics problem for a given surface roughness. To do this, we simplify the study
by considering that the tangential behavior is rigid. This means that the tangential deformations are
not considered and that the contact area depends only on the normal ones. This hypothesis have been
made to simplify the resolution of the contact problem. Moreover, from several works like [Gallego et
al.(2010), Willner(2008)], it appears that the effect of the tangential behavior, on wear and contact area,
is very limited comparing to the normal one. Furthermore, it is assumed that the contact is fully sliding,
thus the shear stresses are obtained directly for normal stresses using a friction coefficient. So, the current
issue here is to solve the normal contact problem and find the pressure distribution.
The normal contact mechanics of rough surfaces have been extensively studied using the classical asperity
based models of [Greenwood and Williamson(1966), Bush et al.(1975)]. In the same framework, interac-
tion between asperities have been considered by [Ciavarella et al.(2006), Waddad et al.(2016)]. The finite
element method has been also used by [Pei(2005), Waddad et al.(2016)] but remains very costly. An inter-
esting approach is to consider the solid as a half space and solve the problem using the so-called influence
coefficients [Johnson(1987), Willner(2008)]. Following this approach, only the surface is discretized which
saves considerably CPU time. Using the Fast Fourier Transform (FFT), a fast version of this method has
been developed in [Gallego et al.(2010)]. Note that the frictional contact has been considered in [Gallego
et al.(2010), Willner(2008)], and from the obtained results, it appears that the frictional forces have little
effect on the pressure and the contact area distribution.
In the above cited models, the studied solids were considered as homogeneous half spaces. However, in
many problems, the material beneath the surface can be considered as multi-layered, such as coating and
composites. Moreover, in braking applications, there are material transformations leading to the appear-
ance of a gradient of material properties near to the contact interface. Thus, these properties vary in the
direction normal to the contact surface (see Fig.3.1). Consequently, in some way, the material can be
considered as a multi-layered system where each layer is homogeneous and perfect continuity is assumed
at the interface layers.
To the best of our knowledge, the contact problem involving rough surfaces with multi-layered solids
has so far received a few attention. In [Peng and Bhushan(1996), Cai and Bhushan(2005)], Papkovich-
–Neuber potentials with a Fast Fourier Transform scheme (FFT), have been used to study the rough
contact problem of elastic and plastic solids. These studies were carried on solids having a maximum
of three layers. The problem is solved using the influence matrix method of which the coefficients are
obtained by solving a linear system of equations. However, under such an approach, it is very complicated
to extend the technique to cover the general case of multi-layers. An interesting approach has been pro-
posed in [Yue(1996)] who has investigated the contact problem of a multi-layered solid submitted to the
indentation of a rigid circular plate using the transfer matrix technique [Singh(1986), Ernian(1996)] and
both the Fourier transform and Hankel transform properties to obtain a Fredholm integral equation which
is solved to obtain a closed-form solution for the contact problem. Based on this concept, we recently
developed a contact model [Waddad et al.(2017a)] considering surface asperities and solid layers.
In this work, we aim to investigate the effect of wear on a rough surface of a multi-layered solid. As is
aforementioned, wear is modeled with Archard’s law using a constant wear rate. Moreover, wear volume
is obtained by summing the volumetric wear of each individual micro-contact [Masen(2005)]. In or-
der to solve the contact problem, the approach based on influence coefficients and FFT technique is used
[Gallego et al.(2010)]. These coefficients are obtained with the transfer matrix technique [Singh(1986), Er-
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nian(1996)]. Finally, a contact analysis is performed to highlight the effects of solid layers.

Figure 3.1: Schematic of a multi-layered elastic solid under surface loads

3.2 Global framework and general assumptions
Considering two solids in a sliding frictional contact, the first solid is rigid and its surface is smooth and
plane. For the second one, a linear elastic behavior is considered and the contact surface is rough. More-
over, a general normal load P is applied to enforce contact, and the first solid is sliding with a predefined
velocity while the other one is static (see Fig.3.2).
In this work, many simplifications have been considered : The contact zone is small with respect to
the dimensions of both solids. Also, there is no coupling between the normal contact problem and the
tangential one and the complete sliding regime is considered in all the contact points. Thus, the contact
area is not affected by shear stresses and tangential deformations are neglected. Moreover, the Coulomb’s
friction law is adopted with a fixed friction coefficient.
Initially, the contact surface contains only asperities. Due to wear, the contacting asperities break down
and a new contact zones are formed. The worn zones are relatively flat comparing to the asperities cur-
vature. These zones are namely called ”plateaus”. Therefore, the contact is made on the plateaus and
the asperities which remain intact.
When contact occurs, the surface deforms. The normal displacement uz in every surface point depends
on the contact normal stresses p on asperities and plateaus. These stresses fulfill the balance equation
P =

∫
Γc
p dS, where Γc is the contact zone. Furthermore, a prescribed displacement δ occurs automat-

ically in every contact point. This displacement differs from a point to an other depending on surface
topography.
To solve the contact problem, we use a variational approach consisting in minimizing the total comple-
mentary energy of the solid [Willner(2008), Gallego et al.(2010)]

UE = 1
2

∫
Γc
p.uz dS −

∫
Γc
p.δ dS (3.1)

Solving the contact problem leads to find the contact pressure field minimizing UE subject to contact
constraints and balance equation. To achieve this, an iterative scheme is used and a motion-driven
strategy is considered. Indeed, starting from a test motion δr prescribed to the first solid, the prescribed
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displacement δ of the surface is deduced from the surface geometry, and the contact problem can be solved
considering contact constraints. Then, the equilibrium balance is checked. If the equilibrium is fulfilled,
the problem is solved. If not, the prescribed motion δ is changed consequently. This operation is repeated
until the balance equilibrium is reached.
Up to now, the basic elements of the strategy have been presented. The expression of the energy has been
given in a continua way. The next section presents the discretized form of the problem. Two cases are
considered : The first one concerns homogeneous solids while the second one is dealing with multi-layered
solids.

Solid 2

Solid 1

Contact interface

Contact 
zones mesh

Square elements

Sliding
Load

Figure 3.2: Real contact interface. The contact surface is discretized into square elements of the same
size.

3.3 Modeling of the contact mechanics problem

3.3.1 Discretization of the contact problem

The contact surface is discretized into small squares of uniform size. Within a single square, the pressure
field is assumed to be constant. The normal displacement for any surface point (x, y) reads

uz (x, y) =
Np∑
k=1

pkL (x, y, xk, yk) (3.2)

where Np is the number of surface squares, pk is the pressure applied on the kth square, (xi, yi) are the
coordinates of the centers of squares, and L is the interaction term (or influence coefficient). L (x, y, xk, yk)
corresponds to the normal displacement of the point (x, y) induced by a unit pressure applied on the kth
square element. For homogeneous solids, this function is derived from the classical potential theory
[Johnson(1987)]. More exactly, interaction terms for squares are given by Love theory. For multi-layered
solids, these terms are obtained with the transfer matrix technique [Singh(1986), Ernian(1996)].
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Now, let us denote zM the maximum height of the surface and zi the height of the ith contact point. The
prescribed displacement of the ith contact point reads

δi = 〈δr − (zM − zi)〉 (3.3)

where δ is the rigid solid motion induced by the total load P , and < . > is the positive part of its operand.
Using the expressions of interaction terms, the discretized form of the energy reads

UE = 1
2

Np∑
i

Np∑
k

pipkAiLki −
Np∑
i

piAiδi (3.4)

where pi is the pressure, Ai is the square area and Lki is the interaction terms (or the influence coefficients).
The total load P reads then

P =
Np∑
i

piAi (3.5)

The contact problem is solved if the pressure field minimizes the energy and satisfies the constraints of
the problem: pi ≥ 0.

3.3.2 Interaction terms for homogeneous solids

In this case, interaction terms are derived from the classical potential theory [Johnson(1987)]. More
exactly, these coefficients have been obtained by Love and are expressed by

Lik = G (xik, yik, li) +G (yik, xik, li)−G (−xik, yik, li)−G (−yik, xik, li)

where li is the square half width, (xik, yik) are the relative coordinates of the kth element in the basis
located at the ith element and dik is the corresponding distance and the function G reads

G (x, y, l) = (x+ l)
π E∗

ln

(y + l) +
√

(y + l)2 + (x+ l)2

(y − l) +
√

(y − l)2 + (x+ l)2


where E∗ is the equivalent modulus of the solid.

3.3.3 Interaction terms for multi-layered solids

In this case, the transfer matrix technique is used to compute interaction terms. This technique consists
in the construction of a matrix linking surface displacements to surface loads using Fourier integral
transforms. In this paragraph, we present only some key points of this method.
Let us consider an isotropic medium (z ≥ 0) laterally unbounded. The material which forms the solid
have an elastic properties which vary with depth z. Using the Fourier integral transform, we introduce
the transformed variables of the stress vector defined by Tz = [σxz, σyz, σzz]t and the displacements vector
u = [ux, uy, uz]t

w =

wξwη
wz

 =
∫ +∞

0

i ξ/ρ2 i η/ρ2 0
i η/ρ2 −i ξ/ρ2 0

0 0 1

 . exp [i (ξx+ ηy)] u dx dy
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τ =

τξτη
τz

 =
∫ +∞

0

i ξ/ρ2 i η/ρ2 0
i η/ρ2 −i ξ/ρ2 0

0 0 1

 . exp [i (ξx+ ηy)] Tz dx dy

where ρ2 = ξ2 + η2.
The transformed variables are a solution of an eigenvalue problem. If the medium is an unbounded
horizontal layer we can show that these variables satisfy the following equations

[
w

(−)
η

τ (−)
η /ρ

]
= Tη

[
w

(+)
η

τ (+)
η /ρ

]
and


w

(−)
z

ρw
(−)
ξ

τ
(−)
z /ρ

τ
(−)
ξ

 = Tzξ


w

(+)
z

ρw
(+)
ξ

τ
(+)
z /ρ

τ
(+)
ξ

 (3.6)

where the superscript (+) (resp. (−) ) is used for the top layer surface variables (resp. the bottom one)
and Tzξ and Tη are the matrices of the layer.
Now let us consider a multi-layered solid formed by N horizontal layers. Considering the perfect continuity
between layers, the displacement field u and the stress vector Tz are both continuous. Using the layers
matrices, one can obtain the following set of equations

[
w

(0)
η

τ (0)
η /ρ

]
= T(1)

η ...T(N)
η︸ ︷︷ ︸

R

[
w

(N)
η

τ (N)
η /ρ

]
and


w

(0)
z

ρw
(0)
ξ

τ
(0)
z /ρ

τ
(0)
ξ

 = T(1)
zξ ...T

(N)
zξ︸ ︷︷ ︸

S


w

(N)
z

ρw
(N)
ξ

τ
(N)
z /ρ

τ
(N)
ξ


where the superscript (0) (resp. (N) ) is used for the top solid surface variables (resp. the bottom one).
These equations relate the transformed stresses and displacements of the top surface of the 1st layer to
those of the bottom surface of the N th layer by means of the matrices S and R.
In order to solve the problem, the boundary conditions in the bottom face are used. Indeed, the N th layer
lies on a half space which can be either rigid or elastic. Following many algebraical operations, one can
show that 

w
(0)
z

ρw
(0)
ξ

w
(0)
η

 = F


τ

(0)
z /ρ

τ
(0)
ξ

τ
(0)
η /ρ

 , where F =

F11 F12 0
F21 F22 0
0 0 F33

 (3.7)

The matrix F coefficients depend on the bottom surface boundary conditions and are given in Appendix
B.
By ignoring the tangential components, one can deduce from Eq.3.7 that

w(0)
z = F11 (ρ) τ (0)

z (3.8)

Using this equation, interaction terms can be deduced by inverse integral transforms. Indeed, the inter-
action term corresponds to the case of a unit pressure applied on the square. By defining a grid of the
surface, one can obtain the interaction terms by reversing Eq.3.8

L = IFFT (F11)

where IFFT is the Inverse Fast Fourier transform.
Note that L is not computed analytically but only computed numerically in the grid points.
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3.3.4 Numerical solving of the contact problem

Now that interaction terms have been expressed, the discretized form of the energy can be written in a
matrix format

UE = 1
2
tpLp− tpδ (3.9)

Using an iterative method, for example Newton or the conjugate gradient, the minimization problem is
performed and pressure can be calculated. For more details about optimization, the reader may refer to
these works ([Peng and Bhushan(1996)],[Gallego et al.(2010)]).
Otherwise, it is interesting to note that the normal displacement is a discrete convolution of the pressure
field and the operator of interactions uz = L ∗ p. Thus, the matrix product can be replaced by the
convolution equation. Furthermore, convolution can be accelerated with the FFT technique which is of
practical interest comparing to a matrix product.
Now that the different key points of the contact problem solving method have been presented, the next
section is devoted to wear modeling strategy.

3.4 Wear modeling
As is aforementioned, wear is modeled with Archard’s law. At the scale of a contact point, the wear depth
dh corresponding to a small sliding distance is

dh = kw µ pdS (3.10)

where kw is the wear rate coefficient and dS is the sliding distance.
By considering N slide increments, the wear depth hN for a given contact point is

hN =
N∑
j=1

dhj =
N∑
j=1

kw µ p
j dSj

Here the friction coefficient and the wear rate are assumed to be constant.
The total slide is

SN =
N∑
j=1

dSj

The total wear volume is obtained by summing all the elementary wear volumes

WN =
Np∑
i=1

Aih
N
i

3.5 Numerical analysis of the evolution of a rough surface under wear
process

In this section, a numerical analysis is performed on a rough surface with the aim of investigating the
effect of wear. This surface is generated with fractal technique which is based on the spectral density
[Persson et al.(2005)]. Here, the spectral density is a power law, of which the fractal dimension is 0.8.
The cutoff wave vectors are 2 and 10. The studied surface is shown in Fig.3.5. For information, its root
mean square (RMS) is 6 µm.
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3.5.1 Wear step effect on the model predictions

As an example, we consider the sliding contact between two homogeneous solids S1 and S2. The material
properties of both solids are presented in Tab.3.1. The normal pressure is fixed at p = 1 MPa. The
friction coefficient is µ = 0.4 and the total sliding distance is S = 10 mm. Besides, we consider that only
S1 is worn. The wear rate kw of S1 is 10−12 Pa−1.

E (GPa) ν

Solid S2 220 0.33
Solid S1 4 0.15

Table 3.1: Elastic and thermal properties of Solid S2

In this part, we analyze the effect of wear step on the total wear process. To do this, the sliding distance
is divided into N small increments (=wear steps), ranging from 200 to 600. Fig.3.3 shows the evolution of
the contact area with the sliding distance for different wear steps. Besides, wear depth evolution is shown
in Fig.3.4. One can see that beyond N = 300, there is no effect of wear step on the predicted contact
area. This number is high enough to get a good convergence of the obtained results. For N = 200, the
contact area is underestimated and wear depth is overestimated.
Furthermore, the slope of the wear depth evolution decreases as the sliding distance increases. This is
quite predictable since contact area increases, the concentration of contact stresses decreases in contact
zones. This affects consequently the wear depth intensity but not the volume which remains constant
according to the wear model equation.
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Figure 3.3: Evolution of contact area with slid-
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Figure 3.4: Evolution of wear depth with sliding
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The evolution of surface roughness is illustrated through Figs.3.5-3.6. In the first one, the initial roughness
is shown. The associated displacement field and pressure field are shown below it. In the second one,
the final surface is presented. On can remark the presence of some flat zones corresponding to the worn
asperities of the surface. The growth of contact area is also considerable as illustrated also in Fig.3.3.
Indeed for the same prescribed pressure, the contact area has increased from 1% to 13% at the final state.
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As regarding the local pressure distribution and the normal displacement, their maximum level decreases
drastically. As a direct consequence, the stiffness will certainly increases considerably.
In this part, the evolution of a rough surface under wear process has been analyzed. The effect of wear
step has been highlighted. The two contacting solids were homogeneous. In the following part, the contact
between a two-layered solid and a homogeneous solid is considered. In particular, the effect of the solid
layer is studied.
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Figure 3.5: Surface data for the initial surface
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3.5.2 Case of a two-layered solid

In this section, we consider the same elastic properties for S2. The solid S1 contains two layers. The first
layer is the one on the top of the solid. Its thickness is fixed at 200µm while its modulus E1 is varied
from 4 to 1 GPa. The second layer one is E2 = 4 GPa. Moreover, 400 wear steps have been considered
so that the wear process is not affected by this variable. This section aims to highlight the effect of the
surface layer modulus on the wear process.
The evolution of the contact area with the sliding distance is shown in Fig.3.7. The contact area is higher
for the case of E2/E1 = 4. The wear depth evolution is presented in Fig.3.8. As can be seen, the slope
of its evolution decreases progressively. The wear depth decreases while E2/E1 increases. This can be
explained by the fact that the local pressure level decreases with E2/E1, which corresponds to the case
of a compliant surface layer (E1 < E2). In Fig.3.9, is shown the wear volume evolution. Since the wear
rate has been maintained constant in this example, the wear volume is unaffected by the surface layer
modulus. However, one should expect that this coefficient value depends certainly on the surface layer
modulus, which consequently may affect the amount of wear volume. Nevertheless, the case of a compliant
surface layer could be beneficial by reducing the amount of wear and increasing the contact area. In that
sense, increasing the thickness of a compliant surface layer will lead to the same conclusions as the studied
example.
The contact stiffness is also affected by wear. In Fig.3.10, is shown the evolution of the contact pressure
pn with the gap gn for different worn state of the surface, and for the case of E2/E1 = 1. One can see
that the slope of this evolution increases with sliding. This corresponds to an expansion of the contact
area with sliding, and has been clearly illustrated in Figs.3.5-3.6.

0 2 4 6 8 10
Slide S (mm)

0

5

10

15

20

A
r
e
a
 (
%
)

E2/E1 =1

E2/E1 =2

E2/E1 =4

Figure 3.7: Evolution of the contact area with
sliding

0 2 4 6 8 10
Slide S (mm)

0

2

4

6

8

10

h
 (
µ
m
)

E2/E1 =1

E2/E1 =2

E2/E1 =4

Figure 3.8: Evolution of the maximal wear
depth with sliding

Conclusion
In this work, surface evolution under wear process has been analyzed for both homogeneous and multi-
layered solids. First of all, contact analysis has been performed, considering surface roughness, with an
approach based on influence coefficients method and the FFT technique. For homogeneous solid bodies,
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the influence coefficients are obtained from Love theory, while for multi-layered solids, these coefficients
are calculated with Fourier transform and the transfer matrix technique. Within this framework, the con-
tact problem is solved with a variational approach consisting in minimizing the elastic potential energy.
Once the contact problem is solved, wear is modeled based on Archard’s law. The total wear volume
is obtained by summing all the elementary wear volumes. These volumes are calculated from the local
contact pressure field, frictional sliding parameters and a wear rate coefficient.
The results of the model focused on the effect of the wear step increment and the presence of solid layers.
For the first parameter, it has been shown that choosing an adequate wear step the process of wear is un-
affected. This parameter depends certainly on the wear rate coefficient with respect to friction coefficient
and sliding distance. As regards the influence of solid layers, it has been shown that a compliant surface
layer decreases the local pressure, stiffness and the amount of wear, and increases the contact area.
Finally, it should be noted that some improvements of the present work can be done, in particular by
considering temperature rise due to frictional sliding and a wear model based on surface temperature.
Indeed, the high temperatures encountered in sliding systems could accelerate the process of wear which
undoubtedly will affect the model results. Furthermore, an appropriate wear coefficient should be con-
sidered for multi-layered solids when compared to homogeneous solids. Indeed, this coefficient depends,
among other factors, on the stiffness of the surface layer.
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Transition
Micro-contact modeling has been addressed in the previous chapters. This chapter comes as an

application of the multi-scale strategy proposed in this thesis. Indeed, the contact interface behavior is
integrated into a macroscopic numerical model of a braking system. The objective here is to evaluate the
impact that could have the interface roughness on the dynamic behavior of the system (i.e complex modal
analysis).
In this way, the contact model and the embedding methodology, both developed in the first chapter, are
used in this work. Note that the micro-contact model conserves the same methodology as the first chapter,
except for the solving method which is performed here by minimizing the complementary energy instead of
the kinematic objective function introduced in the first chapter. Several surface samples are analyzed and
the link between the interface behavior and the modal coupling is highlighted.
At last, this work can be enriched by considering also the effect of a gradient of properties and/or wear.
Two features that were discussed in the previous chapters.

This figure presents the complete plan of this thesis. This chapter position is highlighted by a blue box
in the background.
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Abstract
During friction it is well known that the real contact area is much lower to the theoretical one and that

it evolves constantly during braking. This can influence drastically the system performance. Conversely
the system behavior modifies the loading conditions and consequently the contact surface area. This
interaction between scales is well-known for the problematic of vibrations induced by friction but also for
the thermo-mechanical behavior. Indeed, it is necessary to develop models combining a fine description
of the contact interface and a model of the whole brake system. This is the aim of the present work.
A multi-scale strategy is proposed to integrate the microscopic behavior of the interface in a macroscopic
numerical model. Semi-analytical resolution is done on surface patches at the contact scale while FEM
solution with contact parameters embedded the solution at the micro-scale is used. Surface asperities are
considered at the contact interface. As an example, the multi-scale model is used to perform a complex
value analysis with the aim of identifying modal coupling in NVH simulations. With this model the
interaction between non uniform surface and the system dynamic behavior is clearly shown. The contact
surface variations clearly affect the modal coupling and therefore noise propensity.

keywords : Disc Brake, Surface Roughness, Finite Element Modeling, Complex Modal Analysis,
NVH Analysis

4.1 Introduction
Braking performance simulation is a huge challenge as it needs to consider coupling between several
physics (mechanics, thermal, tribology, etc.) and between several scales. It is now well known that
there is a strong interaction between phenomena at the contact interface and the global system behavior.
For instance, recent works about friction-induced vibration for braking applications have shown that the
contact distribution plays a key role in the determination of unstable frequencies leading to squeal [Heussaff
et al.(2012), Magnier et al.(2014)]. In particular, experimental works[Bergman et al.(1999), Renault et
al.(2012)] have shown that the topography of the pad/disc interface has a major influence on brake squeal
generation.
From a numerical point of view, considering micro-scale contact phenomena and the macro-scale global
system with many components, is a complex challenge especially for braking analysis as the problem varies
during the application. Usually only one scale is considered, the other one is simplified, for instance, in
[Hetzler and Willner(2012)] with a rough contact model but a simplified discrete model of the system or in
[Heussaff et al.(2012)] with a FEM model of the system but limited modeling of the interface. Therefore,
it is necessary to develop an efficient multi-scale strategy to model this complex systems. This is the aim
of the present work.
As regards the problem of micro-scale contact simulation between rough surfaces, the first models are based
on the concept of asperity which was first introduced in [Archard(1957)]. Thus, the surface is described
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by a statistical distribution of asperities and the contact occurs only on the top of these asperities.
The asperities are spherical[Greenwood and Williamson(1966)] or approximated by a paraboloid[Bush et
al.(1975)]. The contact problem is then solved by assuming that asperities deform according to Hertz
theory. These models have achieved many results of great interest and have been successful for many
years. However there is some weaknesses arising from their dependency on the statistical parameters
and the non-consideration of interactions between asperities. Nevertheless, many improvements have
been proposed by different authors. For instance, interactions have been included using semi-analytic
approaches in [Ciavarella et al.(2006), Waddad et al.(2016)].
Numerical methods have been also used to solve the rough contact problem. With the finite element
method, the problem has been solved with optimization techniques and the region near to contact surfaces
has to be finely meshed to guarantee a good accuracy [Pei(2005), Hyun et al.(2004), Wriggers(1995)]. In
return, the method is very costly in terms of CPU time which might be restrictive. Another method
is to consider the solid as a half space and solve the problem using the so-called influence coefficients
[Johnson(1987), Willner(2008)]. Following this approach, only the surface is discretized which saves
considerably CPU time. Using the Fast Fourier Transform (FFT), a fast version of this method, has been
developed in [Leroux et al.(2010)] to model the contact of heterogeneous half spaces, and in [Gallego et
al.(2010)] to model the fretting problems.
In the present work, our interest is focused in friction brakes where contact status evolves continuously,
and the size and distribution of contact zones influence drastically the global behavior of the surrounding
components [Eriksson et al.(2002), Magnier et al.(2014)]. The main purpose is to propose a numerical
strategy that allows to consider contact roughness in a large-scale model. As mentioned before, the
explicit meshing of contact roughness in this kind of models is computationally expensive, so it is needed
to define a multi-scale homogenization strategy allowing to consider roughness effects. For this aim,
we use an approach developed in [Waddad et al.(2016)]. This multi-scale homogenization technique
is done zone by zone, so that each zone has its local contact properties. The implementation of this
technique allows to get a macroscopic contact localizations depending only on the size and the geometry
of each homogenized zone. The strategy incorporates two mains steps. The first one is to analyze the
micro-mechanical behavior of an interface involving rough surfaces. The second one aims to integrate
this behavior in a macroscopic numerical model. An asperity based model inspired from [Ciavarella et
al.(2006)] and improved in [Waddad et al.(2016)], is used to describe surface displacements under contact
stresses at the micro-scale. This model is computationally efficient comparing to purely numerical models.
At the macro-scale a flat interface is considered, and then enriched by contact laws taking into account
the microscopic mechanical behavior. This strategy has been verified in [Waddad et al.(2016)] and its
main steps are briefly described in this work.
With this multi-scale strategy, a complex modal analysis is performed on a complete braking system. By
analyzing several surface topographies, the influence of the pad/disc interface behavior on the system
dynamic behavior, is highlighted.

4.2 Multi-scale modeling of contact interface

4.2.1 Global strategy

Considering a rigid plan making contact with an elastic body represented by a cube in Fig.4.1. Let us take
a zone from the contact interface. By zooming in on this zone, the real surface is rough. The aim of this
work is to integrate the microscopic interface behavior in large scale numerical modeling. Since roughness
scale is much smaller than the structure’s one, modeling strategy will consider that the interface is perfect
and embed it with a contact law that traduces its behavior (see Fig.4.2(a))
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For that purpose, the strategy will build on the penalty method. this technique pairs up contact pressure
pn to the interface gap gn by contact stiffness Kn, and we write: pn = Kn(gn).gn. The objective here is to
identify the contact law by choosing properly this parameter. The choice is made depending on surface
roughness and its geometry.
Practically, contact surface is divided into many zones, where each zone has its proper geometry and
roughness. For each zone, stiffness is computed using a micro-contact model that considers material
properties and roughness. Indeed, on one hand, by choosing a convenient micro model, one can express
the contact pressure pn in terms of real displacement δr. On the other hand, one can calculate the elastic
displacement δp corresponding to perfect contact situation (see Fig.4.2(b)). Thus, from the two situations,
one can compute the gap by gn = δr−δp, and from this equation, one can deduce the stiffness by a simple
inversion and derivation operations.
Using this technique, the microscopic behavior of an interface is easily integrated in a large scale nu-
merical model and a macroscopic accurate description of the interface is achieved in a relatively small
computational time. In what follows, a micro-contact model is proposed to analyze the real interface
evolution.

Solid 1

Solid 1

Real surface

Contact interface

Roughness

Figure 4.1: Real contact interface

Solid 1

Solid 1

Real surface

Contact interface

Roughness

Figure 4.2: Schematic of the proposed strategy

4.2.2 Micro-contact model

Surface roughness can be seen as a random set of parabolic asperities (see Fig.4.3). When contact occurs,
surface asperities deform elastically and an elliptic contact zones appear above them. The contact is
mainly concentrated on the asperities. In order to solve the elastic contact problem considering surface
asperities, we use a variational approach that consists in the minimization of the complementary potential
energy UE

UE = 1
2

∫
Γc
p.uz dS −

∫
Γc
p.δ dS (4.1)

where Γc is the contact zone, uz is the displacement field and p is the pressure field and δ is the prescribed
displacement field.
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Considering the solid body as an elastic homogeneous half space and using Hertz theory to describe the
contact at the scale of an asperity, the potential energy reads

UE = 2E∗
3

Na∑
j=1

a3
j

Rj

Na∑
l 6=j

Glj + 6
5
a2
j

Rj
− 2δj


where E∗ is the equivalent modulus, aj is the asperity contact radius, Rj is the asperity radii of curvature,
δj is the prescribed displacement and the interaction term Glj reads

Gik =
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2Ri
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ik
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+
√
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ik
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where dik is the distance between the kth and the ith asperity.
In this model, the contact zones are considered circular. The elliptic shape can be considered using
the same approach by introducing the eccentricity of the contact area and elliptic integrals [Waddad et
al.(2016)]. Nevertheless, we consider that the circular shape is sufficient and enough precise to describe
the contact geometry.
Solving the contact problem is to minimize UE subject to aj ≥ 0. Once these variables are determined,
the total load is expressed by

P = 4
3E
∗
Na∑
j=1

a3
j

Rj

Note that this model is slightly different from the original model proposed in [Waddad et al.(2016)].
Here the minimization is performed on the potential energy while in the first model, the minimization is
done for the objective function defined on a purely kinematic contact conditions. Nevertheless, the two
approaches provide approximately the same results.
The couple (P, δ) gives a full description of the interface behavior considering asperities and is used to
embed the large scale numerical model as explained before.

Figure 4.3: A rough surface is formed by asperities which are approximated by elliptic paraboloids
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4.3 Multi-scale modeling of a braking system including contact inter-
face behavior

The aim of this section is to present the numerical model of a braking system which considers the contact
interface behavior using the multi-scale strategy aforementioned. The global objective of this model is to
investigate numerically the influence of contact interface modeling on the dynamic behavior of the braking
system.

4.3.1 Numerical model presentation

A 3D finite element model is adopted for the braking system. This model is composed from many
structural elements. Essentially, there is a knuckle, a caliper, a piston, an anchor, a disc and two pads
maintained by two backplates (see Fig.4.4). The action of braking consists in making into contact the
two pads with the rotating disc in order to create friction that retards the rotation. For this to happen,
a hydraulic system is used to transfer a pressurized fluid into the caliper-piston system inter-area. Thus,
the pressure applied on the piston and the caliper is used to squeeze the two backplate-pad systems
against the disc. The pressure that is considered in this work is P = 10 bar. The disc is rotating with a
constant velocity ω = 5 rad.s−1 which corresponds to braking at low velocity (see Fig.4.4). As regards the
boundary conditions, the displacements are blocked in the knuckle extremities and the disc inner annular
face. With regard to material properties, the disc is made from cast iron, the braking pads are made
from composite materials. For the other components, different types of steel are used. The whole model
is composed from 229000 elements (tetrahedral and hexahedron elements) and 359000 nodes. The mesh
element size is of 10 mm for the disk, the anchor, the knuckle and the caliper. For the other components,
which are relatively small, the mesh size is comprised between 2 mm and 5 mm.

Disc

Caliper

Pad

Anchor

Backplates
piston

Knuckle

Backplate

Figure 4.4: Braking system numerical model

The numerical analysis is divided into two major steps: the first one is a quasi-static analysis which
consists in applying progressively the load P while the disc is rotating. At the end of this step, a steady
state braking situation is achieved. The second step is to realize a complex modal analysis under contact
conditions with sliding friction. The objective here is to extract the complex eigenvalues and the complex
mode shapes of the entire system. A special attention is devoted to the study of unstable modes. Indeed,
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due to friction contribution, two neighboring modes, which are close to each other in frequency range, can
merge together and one of them becomes unstable, and the system components " are said to be locking
in to each other "[Tuchinda et al.(2001)].
As the model contains several components, the connection between a component and an other have to be
defined appropriately. Thus, tie elements are introduced between each pad and its backplate to ensure
the perfect adherence between them. Additionally, contact elements are introduced between the other
components connections. A frictional contact is considered and the penalty method is used to enforce
contact constraints (e.g. Signorini law) except for the two contact zones between the disc and the two
pads. These zones are the main object of this study and their modeling is presented in the following
section.

Quasi-static Analysis Contact pressure

Eigenmodes and 
eigenfrequencies

Complex Modal Analysis

Disc brake components

Load: P = 10 Bar, Rotation : ω = 5 rad.s-1

ω

Disc

Mode Lock-in

Caliper

KnucklePad

Disc- Pad
Interface

Surface

Surface roughness

Interface law

Interface embedding

Loading Numerical Analysis Steps

Anchor

piston

2 interfaces

Micro-Contact
model

Figure 4.5: Braking system multi-scale modeling strategy

4.3.2 Pad/disc interfaces modeling

The main issue of this work is the braking pad/disc interfaces modeling. In order to highlight the effect
of these interfaces, two kind of models are proposed. In the first one, the contact is assumed to be perfect
and the penalty method is chosen for this purpose. The contact is frictional and the friction coefficient is
set at 0.4. Thus, the interface normal behavior is not considered in this model.
The second kind considers the interface behavior. In this case, the interface is assumed to be rough.
To simplify the study, only the roughness of the friction pads are considered and the disc surface is
flat. Basing on the multi-scale strategy presented in the first section (see Fig.4.5), the interface behavior
is integrated into the model. Moreover, a frictional behavior is also considered with the same friction
coefficient used for the first model. Besides, it is important to note that it is assumed that the interface
normal behavior does not account of the frictional effect.
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Otherwise, roughness profile can differ from a pad to another depending on many factors such as the
manufacturing process or the wear process. In order to evaluate the effect of roughness on the system’s
response, several surface samples are considered. These surfaces have been generated numerically using
fractal techniques[Persson et al.(2005)]. Therefore, 6 cases are considered, and for each case, the two
surface pads are different but have the same statistical parameters in terms of the root mean square σ
and the quadratic mean Rq. The surface properties are summarized in Tab.4.1. Moreover, Figures 4.6-4.9
show a sample from 4 cases. As it can be seen, from the table and these figures, roughness amplitude
decreases from Case 0 to Case 5.

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5
Rq(µm) 11.8 5.7 4.9 4.3 3.9 3.5
σ(µm) 5.5 2.7 2.3 2.0 1.8 1.6

Table 4.1: Statistical parameters of the studied surfaces
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Figure 4.6: Case 0
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Figure 4.7: Case 1
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Figure 4.8: Case 3
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Figure 4.9: Case 5

In what follows, the results obtained with the model considering a perfect contact between pads and
the disc, will be designed by " perfect contact ". The ones that are embedded by contact laws are named "
case " followed by the number’s case. Before proceeding to analyze the braking system dynamic behavior,
we present a numerical compression test of the brake pads. This test has been carried out to evaluate
the normal stiffness of the pad. To fulfill this task, the compression has been performed by prescribing a
normal displacement to a rigid flat in contact with the top surface of the studied pad. Also, the bottom
face is bonded to the backplate which is maintained fixed. Besides, the contact interface have been
modeled using the main strategy of this work.
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Fig.4.10 shows the displacement obtained, with the compression test, for one of the studied cases. Also,
the mean contact pressure evolution with the normal displacement is presented in Fig.4.11. For each case,
one can distinguish two curves : the dashed one corresponding to the outer pad and the continuous one
for the inner pad.
The contact stiffness is identified as the slope of the plotted curves. From this figure, we can see that
contact stiffness increases from case 0 to case 5. The perfect contact case corresponds to the maximal
stiffness that can be reached. In the latter case, the evolution is linear while in the other cases is not. This
non-linearity corresponds to a continuously growing contact area as the pressure increases. Moreover, the
variation of stiffness from a case to another is mainly linked to the surface root mean square σ. Indeed,
as σ increases, the real contact area and the stiffness decreases accordingly.
The following section presents the results obtained with the proposed multi-scale strategy. Results are
illustrated and discussed with the aim of highlighting the interface role in the dynamic behavior of the
global system.
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Figure 4.10: The displacement field (mm) in a braking pad and its backplate in a compression test
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Figure 4.11: Evolution of the contact mean pressure with the prescribed displacement for the different
studied cases
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4.4 Results and discussion

In this section, the results issued from quasi-static analysis (first step) and complex modal analysis (sec-
ond step) are presented. Beginning with the first step, Fig.4.4 shows the pressure distribution for both
the inner and the outer pad and this for three configurations increasing roughness (perfect surface, case
5, case 0). One can see clearly how the pressure distribution varies from an interface to another one.
For the embedded models, the pressure field is highly heterogeneous and this is a consequence of stiffness
heterogeneity. Indeed, stiffness is defined for each surface element using the multi-scale strategy.
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Figure 4.12: Contact pressure in both brake pads for the perfect contact case, case 5 and case 0

Additionally, we can observe that there is a macroscopic contact orientation. For the inner pad, the max-
imum pressure is obtained in the upper central zone, whereas, on the outer pad, the maximum pressure
is reached in the upper right zone. Comparing to embedded models, this macroscopic distribution is
globally conserved despite of stiffness heterogeneity. This can be explained by the fact that the backplate
maintaining the inner pad is in contact with the piston in a centered zone, while the other one is in
contact with the anchor in two remote zones. Moreover, considering the sliding effect, the pressure shape
is distorted according to the sliding direction.
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Finally, with regard to pressure intensity, we can see that the maximum value depends on roughness
scale. For small standard deviations, the maximum pressure is not far from the one obtained with perfect
contact simulations (around 1.5 MPa). For higher standard deviations, the pressure field is concentrated
on few macroscopic zones and the maximum pressure is around 2 MPa.
Now, regarding complex modal analysis results, Fig.4.13 shows the real part of complex frequencies against
the imaginary part for all the studied surfaces. At first sight, one can see that the eigenfrequencies are
affected by the contact interface behavior. Furthermore, the predicted unstable modes differ from a case
to another one. These modes are characterized by a strictly positive eigenfrequency real part.
In order to analyze the evolution of instability for the different cases, the unstable modes are highlighted
in Fig.4.14. One can distinguish the unstable modes (illustrated by full bars), which are characterized by
positive real parts, and the potentially unstable modes (corresponding to dashed bars), which are char-
acterized by two neighboring modes that are very close in frequency range but remain stable. Roughness
amplitude decreases from case 0 (see blue bars in the bottom part of the illustration) to the perfect contact
(see black bars at the top part of the same figure). One can see a large variability of the distribution of
the unstable and potentially unstable modes according to the surface.
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Figure 4.13: Eigenfrequency real part evolution with imaginary part

Globally the unstable modes are obtained in a high frequency range, for which the braking pads have
generally more influence. Some of the potentially modes remains for all the studied cases such as mode
20 and mode 32. In these cases the pads have a global displacement with low deformation, and hence the
coupling is not possible and the interface behavior has no influence. On the other hand, the instability
of some modes is strongly affected by the interface behavior like modes 51 and 66 and many others.
Some unstable modes are illustrated in Fig.4.15. These modes as can be seen in this figure correspond
to bending vibrations of the pads which are often coupled to nodal diameter based modes of the disk. It
has also to be noticed that some cases have a common number for an unstable eigenmode which does not
correspond necessary to the same shape.
Results for perfect contact strongly differs from case 5 as between case 1 and case 0 to a lesser extent. It
has to be related to contact stiffness effect. Indeed, contact stiffness of the perfect contact case and case
0 strongly differ to the other ones as illustrated in Fig.4.11. Moreover, contact stiffness controls contact
forces which accordingly affect bending vibrations of the brake pads.
An example of surface roughness influence can be illustrated with the unstable modes close to 7 kHz.
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Figure 4.14: Unstable modes evolution across eigenmodes for the different studied cases

When increasing roughness, there is an unstable mode at a frequency close to 7.5 kHz (for perfect con-
tact) which decreases when roughness increases until a value close to 7 kHz for cases 2 to 0. In fact the
eigenmode differs from one case to another, as illustrated in Fig.4.15 showing mode 62 for case 1 and
mode 64 for cases 4 and 5. Note that there is any unstable mode for case 3.
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Figure 4.15: Some unstable modes for the different studied cases

In order to better appreciate the influence of roughness, an analysis of shape correlation between the dif-
ferent studied cases is done using the Modal Assurance Criterion (MAC) [Allemang(2003)]. The MAC
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is a matrix of correlation where each term is given by

(MAC)i,j =
|{y1

i }T {y2
j }|2

{y1
i }T {y1

i }{y2
j }T {y2

j }

where {yai } is the eigenvector of the case a and mode i and T {y} is the conjugate transpose of y.
In Fig.4.16 and Fig.4.17, one can see that for small standard deviations (case 5) the eigenvectors are quite
correlated to the ones with perfect contact surface. This correlation decreases remarkably for surface 0
corresponding to higher roughness standard deviation. Moreover, the correlation decreases for both cases
as the frequency increases.
From the MAC matrix, the correlation coefficient MMAC can be defined for the ith eigenvector by

(MMAC)i = max
j

((MAC)i,j)

This coefficient gives an information on the jth eigenvector which is the most correlated to the ith
eigenvector. Moreover, it is also of interest to study the evolution of MMAC through the different
modes. Indeed, it is interesting to evaluate this parameter in an averaging sense so that we can highlight
the fluctuation and the trend of the considered parameter. For this purpose, the cumulative moving
average of a series xi is defined by

x̄n = 1
n

n−1∑
k=0

xn−k

In Fig.4.18, is shown the evolution of the MMAC for the different modes. The correlation is computed
by comparing the eigenmodes from the embedded models to the perfect contact one. From this figure,
one can see that several modes have a weak correlation with the studied cases modes. The difference is
more relevant for large standard deviations which is the case for case 0. Additionally, Fig.4.19 shows the
corresponding cumulative moving average. As can be seen, the cumulative correlation is decreasing with
modes for all these cases. Indeed, in the first 20 modes, modal shapes are almost similar to those obtained
for perfect contact model.
Thus, the MAC analysis suggests that there is many eigenmodes without significant correlation with the
perfect contact case. Therefore, this study tends to confirm that some new eigenvectors can be found
by changing the surface parameters. However it is not sure that these new modes come from the two
pads or the other components. In order to highlight the effect of the friction pads into the apparition
of new eigenmodes, the strain energy distribution is presented in Fig.4.20. As is shown in this figure, the
brake pads contains only a small part of the elastic strain energy and most of strain energy is stored in
the disc and/or the other components. The part of energy that is stored into the pads increases with the
frequency. The strain energy results are meaningless in terms of reported quantities. But its evolution
through the different cases, gives us an information on how the interface behavior can affect the repartition
of the energy. Fig.4.21 provides the strain energy distribution between the two pads for three cases. By
analyzing the two figures, it seems that the energy contained in brake pads increases with frequency and
more especially for some unstable modes of high frequency (e.g. mode 66 for perfect contact case, modes
64 and 86 in case 5, and modes 62 and 66 and 83 in case 0). Thus, the strain energy analysis confirms
that the pads are involved in the instabilities and therefore the influence of contact pressure heterogeneity
due to roughness.
By linking, the different results of the modal analysis with roughness parameters and stiffness values, one
can remark that surfaces ranging from 1 to 5, have a quite similar parameters and thus their dynamic
behavior is nearly the same, while surface 0 and perfect contact models had remarkably different behav-
iors. By decreasing the roughness amplitude, stiffness increases and the dynamic behavior is becoming
increasingly similar to a perfect contact model.
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Figure 4.16: Mac between the perfect contact
and case 5
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Figure 4.18: Maximum correlation coefficient
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Figure 4.19: Mean cumulative coefficient

4.5 Conclusion
An efficient simulation tool has been proposed to describe a realistic contact surface at a micro scale in
a macro model of a complete brake system. This multi-scale model combines a semi-analytical resolution
of the contact on contact elements embedded in a FEM simulation of the macro model. At the surface,
roughness asperities are considered in order to introduce realistic phenomenon of asperity deformation
under contact forces. For the resolution at the micro-scale, the solid body is considered as an elastic
homogeneous half space, potential theory is used to describe surface displacements under contact stresses.
At the macro-scale a perfect interface is considered, enriched by the microscopic mechanical behavior.
An application to squeal noise propensity has been described on a disc braking system. A rough surface of
asperities is introduced at the friction interface. Parametric analysis of topology has been done. Results
show that braking system instabilities are strongly affected by the interface behavior. By changing the
contact parameters, some unstable modes become stable, and some eigenvectors can emerge. Also it can
be observed that surfaces with very small deviations had a similar dynamic behavior to a perfect contact
situation. In the opposite case, the variability of the dynamic behavior is more relevant especially at high
frequencies for which the pad behavior is more influent. The multi-scale strategy has been described here
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Figure 4.20: Strain energy distribution
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Figure 4.21: Strain energy in the two pads

for mechanical analysis but it can be extended to thermal analysis. Evolution of the interface can also be
considered to introduce loading history effect and more complex mechanisms at the interface.
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Transition
The first part of this thesis aimed to investigate the contact mechanics problem of rough surfaces and

the integration of the mechanical behavior into macro-scale numerical models using an embedding strategy
developed in its first chapter. Besides, an application of the proposed strategy has been presented in the
last chapter.
The second part of this thesis deals with the thermal features of rough contact modeling. Indeed, thermal
exchanges are taking place in the contact interface. The presence of roughness and a change of material
near to the interface modifies surely the heat conduction and the temperature field.
The idea of the following chapter is to study the steady heat conduction considering a static rough contact
and the presence of a gradient of material properties near to the interface. The contact area is defined
based on the contact mechanics model which has been presented in chapter 3. The obtained results are
verified by Finite Element calculations. Also, a parametric study is performed to highlight the role of each
physical parameter that could influence the process of heat conduction.
Note that the thermal expansion is not considered in this work.

This figure presents the complete plan of this thesis. The position of this chapter is highlighted by a
blue box in the background.
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Heat conduction in multi-layered solids
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Heat conduction in multi-layered solids with rough surfaces
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Abstract
The present study aims to investigate the heat conduction between multi-layered solids with rough

surfaces. An efficient numerical method is proposed to predict the thermal conductance of this kind of
materials considering surface roughness. The Fourier transform and transfer matrix technique are used to
solve the problem of surface heating of multi-layered solids. Using the same techniques, the contact area
is obtained by solving the problem of surface loading. Based on this framework, the heat flowing through
the contact interface is computed by solving a linear system. The obtained results are fully discussed
and compared to Finite Element results carried out in the present study. The efficiency of the method is
also highlighted. The effects of many parameters such as layers physical properties, roughness and local
thermal resistance are investigated.

keywords : Thermal contact conductance, surface roughness, multi-layered solid, Fourier transform,
transfer matrix technique

5.1 Introduction
Heat conduction between solid bodies in contact is a challenge in many engineering fields. Experimental
studies have shown that temperature of the mating surfaces are not equal. This is the direct consequence
of contact interface roughness. Indeed, contact occurs only at a few discrete zones surrounded by intersti-
tial gaps. Hence heat flows through these contact zones and the air contained in these gaps and radiation.
The two latter mechanisms are generally of secondary significance and are not studied in this work.
The temperature jump at the interface is said to be a result of the presence of a thermal contact resis-
tance. The inverse of this property is the thermal contact conductance. This quantity is equivalent to
the amount of heat flowing per unit of area through the interface for a unit temperature jump.
The thermal contact conductance has been extensively investigated. The theoretical framework was
firstly proposed in the pioneering works of [Cooper et al.(1969), Mikic(1974)]. Indeed, this property was
evaluated considering surface roughness and the heat conduction problem was first solved by deriving a
solution for the single contact problem and then extended to cover the case of multiple contact zones. The
conducted studies aimed to evaluate the evolution of the contact pressure with the thermal conductance
relationship considering surface parameters (distribution of surface height peaks, geometry of the profile,
etc.) [Cooper et al.(1969)] and deformations modes (elastic and plastic deformations for both asperities
and substrate) in [Mikic(1974)]. As a result of these studies, it has been shown that the influence of
statistical surface parameters depends on the deformation mode considered and the thermal conductance
depends strongly on the contact stiffness especially for the case of small loads. Therefore, contact me-
chanics is strongly involved in thermal conductance computation.
Contact mechanics of rough surfaces has been widely studied, starting with classical asperity-based
models [Greenwood and Williamson(1966), Bush et al.(1975)] up to more improved models [Persson
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et al.(2002), Ciavarella et al.(2006)] or numerical methods requiring just surface discretization [Will-
ner(2008), Gallego et al.(2010)]. Within asperity-based models, the thermal contact was studied in
[McWaid and Marschall(1992), Salgon et al.(1997)]. Asperity interactions was also considered in [Bahrami
et al.(2005)] which is the missing key point of the oldest models. Indeed, asperities interactions reduce
contact area and thus influence the thermal conductivity. Some improvements can also be consulted in
a recent review paper [Yovanovich(2005)] such as the consideration of the elasto-plastic behavior, the
presence of gas in the gap interface and phase evolution effect. The above-cited models deal with contact
problems considering small contact areas. For high fractions of contact areas, an analytical model of
thermal contact conductance have been proposed by [Sadowski et al.(2010)]. Their model expresses the
contact conductance as a function of the real contact and the local thermal contact resistance. However,
the contact area distribution has been obtained from purely geometric considerations which neglect the
mechanical behavior of the surface.
In the last decades, there were many improvements in numerical simulations of contact between rough
surfaces. In [Zavarise et al.(1992)], the thermal contact conductance was computed combining radiation
and gas effects and surface roughness. The obtained contact conductance was integrated into a thermo-
mechanical finite element model. Within the same framework, a thermo-mechanical computational ho-
mogenization technique of interfaces with rough surfaces was developed in [Temizer and Wriggers(2010)].
This approach was used in [Temizer(2011)] to study random rough surfaces and evaluate the interface
temperature jump in relationship with contact pressure. Nevertheless, this kind of methods is expensive
since a high number of contact points is needed to efficiently simulate the problem. Within a purely
thermal point of view, the finite volume method was employed to compute the thermal contact resistance
in a sliding contact [Salti and Laraqi(1999)], but with a simplified geometry.
The various existing models are focused on the contact surface geometry and consider that solids are
homogeneous. Experimentally, it has been observed that, under thermal loadings, the contacting solids
undergo several transformations especially near to contact interfaces. These solid transformations can be
seen as a solid having a gradient of material properties. Thus, the appearance of a gradient of material
properties has to be considered in the theoretical study of both thermal and mechanical contact problems.
In this work, the gradient of properties is considered only in the normal direction to the interface. Thus,
the material can be considered as a multi-layered solid where each layer has its local properties. The con-
tact mechanics of multi-layered solids has been studied in few works (e.g. [Peng and Bhushan(1996), Cai
and Bhushan(2005)]). Recently, a new contact model was proposed in [Waddad et al.(2017a)] which is
based on the transfer matrix technique developed in [Singh(1986), Ernian(1996)]. This method can be
easily extended to study the thermal contact problem using the Fast Fourier transform (FFT).
The aim of this work is thus to propose an efficient modeling strategy of heat conduction in multi-layered
solids with rough surfaces. First, the contact area is computed with a semi-analytic approach developed
in [Waddad et al.(2017a)] using the transfer matrix technique. Second, the transfer matrix technique is
formulated for the thermal surface heating problem and the thermal contact is solved by meshing the
surface and FFT technique. The effect of a local thermal resistance is also considered. Indeed, even at
low scales, the continuity of temperature is not guaranteed. This is principally due to the presence of
wear particles, oxides and lubricants, etc.[Sadowski et al.(2010)]. Notice that the thermal and the me-
chanical problems are considered to be decoupled, hence no thermoelastic deformations will be considered
in this work. Finally, a parametric study is presented and the obtained results are compared to finite
element calculations. In particular, the effects of solid layers, roughness and the local thermal resistance
are highlighted.
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5.2 Global framework
Considering two solids S1 and S2 in contact. The temperature of their extremities are fixed at θl1 and θl2
respectively. If θl1 6= θl2, heat flows from the hot solid to the cold one through the interface (see Fig.5.1).
Therefore, for each of the two solids, the contact interface is considered as a source of heat acting on the
superior face of each body.
Solving the thermal contact problem consists in finding the amount of heat flowing through the contact
interface for a given contact area. If we assume that the surface is the only source of heat, the solid
temperature θ is expressed as a function of surface heating φ. In order to solve the thermal contact
problem, the surface heating problem has to be solved first.
For this aim, let us suppose that the surface is discretized into Np small squares of the same size. The
heat flux acting on each single square is assumed to be uniformly distributed on it. The solid temperature
is then calculated as a combination of all variations of temperature due to all the fluxes acting on the
surface

θ (x, y, z) =
Np∑
i=1

φiT (x− xi, y − yi, z) (5.1)

where φi is the heat flux on the square i, (xi, yi) are the coordinates of square centers and T is the
temperature elevation at the solid point (x, y, z) that is due to the flux distributed over the ith element.
The temperature θ can be seen as a discrete convolution of the heat flux φ and the function T

θ = T ∗ φ (5.2)

By making use of the Fast Fourier transform FFT, one can show that the temperature field reads

θ = IFFT (FFT (T ) .FFT (φ)) (5.3)

where IFFT is the Inverse Fast Fourier transform.
Solving the thermal loading problem consists in expressing T as a function of the material properties and
the heated zone geometry. T is the elementary solution corresponding to the case of heat supplied over a
square area. In what follows, the surface heating problem of multi-layered solids is presented.

5.3 Surface heating of multi-layered solids
Let us begin by reminding the Heat equation for steady state heat transfer and the Fourier law which are
expressed respectively by

∆θ = 0 (5.4)
and

Φ = −κgrad θ (5.5)
We introduce the following set of solution representation using Fourier transform

V =
∫∫

θ (x, y, z) exp [i (ξx+ ηy)] dξdη

and
φ = −

∫∫
Φz (x, y, z) exp [i (ξx+ ηy)] dξdη

From Heat equation we found
∂2V

∂z
= ρ2V
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Figure 5.1: Schematic of a contact interface. Heat flows through the micro-contact zones. These zones
are discretized into square elements with the same size. Heat flowing through the air contained in the
interface is neglected.

where ρ =
√
ξ2 + η2 and from Fourier law

φ = κ
∂V

∂z

The global solution of this problem is an eigenvalue extraction problem and can be written in the following
form [

V
φ/ρ

]
= Z

[
Y1
Y2

]
where Y1 and Y2 are constants and the matrix Z reads

Z = exp (ρz) .
[

1 exp (−2ρz)
κ −κ exp (−2ρz)

]

Considering that the solid is an unbounded horizontal layer of which the thickness is h. The superscript
(+) is used for the top surface variables while (−) is for the bottom ones. One can prove that[

V (−)

φ(−)/ρ

]
= R

[
V (+)

φ(+)/ρ

]
(5.6)

where R is the transfer matrix of the layer and is given by

R = 0.5 exp (ρh) .

 1 + exp(−2ρh) −1
κ

(1− exp(−2ρh))
−κ (1− exp(−2ρh)) 1 + exp(−2ρh)


Now let us consider a multi-layered body formed by N horizontal layers. The 0th layer is on the top of the
solid and the N th layer is on the bottom part of the solid. Considering the perfect continuity between the
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parallel layers, the temperature field θ and the flux φ are both continuous. Using the transfer matrices,
one can deduce that [

V (0)

φ(0)/ρ

]
= R(1)...R(N)︸ ︷︷ ︸

M

[
V (N)

φ(N)/ρ

]

Figure 5.2: Schematic of a multi-layered system

Figure 5.3: Schematic of a layer

To solve the thermal loading problem, one has to make use of boundary conditions at the bottom
surface. For instance, we suppose that θ(N) = 0, which corresponds to zero temperature at the bottom
surface of the solid, and we obtain

V (0) = M12
M22

(
φ(0)/ρ

)
Thus, one can finally write

V (0) = F (ρ)φ(0)

where F is the solid transfer function.
Using the inverse Fourier transform, the temperature field can be obtained for any given thermal loading
and especially for the case of heat acting over a square area. Indeed, the transfer function F is the Fourier
transform of the function T mentioned in Eq.5.2. Finally, to reduce the computation time, the FFT
technique is used and only the transfer function is computed instead of the function T .
As an example, a two-layered solid is illustrated in Fig.5.4. The solid height is fixed to 1mm and the
first (resp. second) layer conductivity is equal to κ1 = 10Wm−1K−1 (resp. κ2 = 50Wm−1K−1). The
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first layer thickness h varies from 100 to 500 µm. About boundary conditions, a heat flux φ0 is applied
to a square zone whose size is a = 200µm and centered at the top surface. Fig.5.5 shows the surface
temperature profile for Y = 0, Z = 0 and X ranging from −100µm to 100µm. One can see in this
figure, the perfect accordance between results obtained from the present method and those of the Finite
Element Method (FEM). One can also notice the increase of temperature with the increase of the first
layer thickness.
Figs 5.6-5.7 show the temperature field in depth for h = 100 µm and h = 200 µm. One can see the
differences in temperature levels especially in the near-surface zone. The corresponding flux lines are also
shown in Figs 5.8-5.9.

Heated zone 

1 mm 

1 mm 
1 mm 

Figure 5.4: Schematic of surface heating problem. The solid contains two layers.

−0.4 −0.2 0.0 0.2 0.4
X/a

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

κ
1
T
/
a
φ
0

h=100µm 

h=100µm - FEM

h=200µm 

h=200µm - FEM

h=500µm 

h=500µm - FEM

Figure 5.5: Temperature profile for the case : κ1 = 10Wm−1K−1, κ2 = 50Wm−1K−1 - Comparison with
FEM calculations

Now that the surface heating solving technique has been detailed, the thermal contact problem solving
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Figure 5.6: Sub-surface temperature field for
h = 100µm
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Figure 5.7: Sub-surface temperature field for
h = 200µm
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Figure 5.8: Heat flux lines for h = 100µm
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Figure 5.9: Heat flux lines for h = 200µm

strategy is presented in the next section.

5.4 Thermal contact of multi-layered solids

5.4.1 Contact area definition

Before tackling the thermal contact problem, we would first give a brief insight of contact area definition.
The real contact area depends on the mechanical loads maintaining solids in contact and their elastic
properties. The transfer matrix technique has been used to solve the loading problem of multi-layered
solids [Singh(1986), Ernian(1996), Waddad et al.(2017a)] in a similar way to the thermal problem. Within
this framework, the normal displacement U is expressed as a discrete convolution of the contact pressure
p and a special function L which is obtained from the Fourier transform of the transfer function.
Solving the contact mechanics problem is to solve an equation of the type

p ∗ L = δ

where δ is the prescribed displacement field which depends on surface roughness and boundary conditions.
The contact pressure must satisfy the condition p ≥ 0 for all the assumed contacting points. Once found,
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the contact area can be defined.

5.4.2 Thermal contact problem

Considering φ1 (resp. φ2) the heat flowing through the solids S1 (resp. S2), we have

φ1 + φ2 = 0

Assuming the small-slope hypothesis, the contact surfaces can be simplified to flat surfaces with multiple
contact spots. As we have presented in the earlier sections, the surface temperature of both solids are
expressed as a discrete convolution of the applied heat, thus we have

θ1 = T1 ∗ φ1 + θl1

θ2 = T2 ∗ φ2 + θl2

where θi is the surface temperature and Ti is the temperature function of Si (i = 1, 2).
In order to solve the contact problem, an assumption have to be made on the continuity of the temperature
field at the interface. Indeed, the continuity of temperature means that temperatures are equal in the
contact zone θ1 = θ2, leading to the following equation

(T1 + T2) ∗ φ1 = θl2 − θl1 (5.7)

However, it is well known that, even at this scale, the temperature is not continuous. Indeed, by looking
at much smaller scales, a contact zone is composed from multiple contact zones and also wear debris that
are circulating at the interface. The discontinuity of temperature can be inserted in the model by defining
a local contact resistance expressed by a function f that relies the gap between surface temperatures θ1
and θ2 to the flux φ1

θ2 − θ1 = f (φ1)
Thus, we have in this case

(T1 + T2) ∗ φ1 + f (φ1) = θl2 − θl1 (5.8)
Solving the thermal contact problem consists in finding the heat flux φ1 flowing in the solid S1 and
satisfying Eq.(5.8). Once calculated, the total thermal contact conductance per unit area is given by

Kt = Φ1
S . (θl2 − θl1) (5.9)

where S is the surface area and Φ1 is the total heat flowing through the surface of S1

Φ1 =
∫∫

S
φ1dS

The interface thermal conductance Ki can thus be deduced from Kt by

Ki = 1
1
Kt
− 1
Kp

where Kp is the thermal conductance which corresponds to the perfect contact case.
With regard to the function f , the simplest way is to consider it linear f (φ1) = Rφ1, with R the local
thermal resistance. The value of R depends on many parameters such as material properties, friction and
wear rate. In this study, we will consider it as a parametric coefficient which will be varied to evaluate
its effect on the total thermal conductance.
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5.4.3 Solving method

The convolution Eq.(5.8) is equivalent to a matrix equation that can reads

TΦ1 = Θ (5.10)

In order to solve Eq.(5.10), the contact problem is transformed into a minimization problem by defining
the objective function F

F (Φ1) = 1
2
tΦ1TΦ1 − tΦ1Θ (5.11)

Besides, from the contact area, an additional equation is obtained, which is of the type

PΦ1 = 0 (5.12)

The matrix P defines the contact constraints prescribed by the real contact area geometry. The shape of
P is (Np, Nr), with Nr the number of surface squares which are in contact. In this matrix, the entry 1
corresponds to a non-contacting point while the entry 0 is for those in contact. This additional equation
defines the contact constraints.
Using an iterative method, for example Newton or the conjugate gradient, the minimization problem
is performed and heat and surface temperature can be calculated. It should be noted that the same
technique is used to solve the contact mechanics problem. For more details, the reader may refer to these
works [Peng and Bhushan(1996), Cai and Bhushan(2005), Gallego et al.(2010)].
In the following, results of this approach are illustrated and compared to finite element calculations. A
parametric study is also performed so that the impact of contact interface and solid layers is shown.

5.5 Numerical example

5.5.1 Model presentation

In this section, we consider two elastic solid cubes in normal contact (see Fig.5.10). A rough interface
is considered between the two cubes and their volume is 1mm3. The contact surface is discretized into
150× 150 elements. Hence, the unit square dimensions are 6.66× 6.66µm2. This size is sufficient for the
considered scale of roughness. Indeed, a comparison has been performed with this size and a coarser one
(10× 10µm2) and the results were the same.
The first solid is made from a highly conductive material, noted here S2, and its properties are summa-
rized in Tab.5.1. The other one, noted her S1, is a two-layered solid of which the physical properties are
varied in this study. Indeed, several case studies are done with the purpose of analyzing the influence of
solid layers on the thermal conductance.
Roughness is obtained from numerical surface generation techniques which are based on surface spec-
trum[Persson et al.(2002)]. Indeed, a random rough surface can be generated with any given spectral
density. Here, the spectral density is a power law, of which the fractal dimension is 0.8. The cutoff wave
vectors are 2 and 10. In this work, the roughness profile has been fixed for the first case studies. The root
mean square (RMS) of the considered surface is 6 µm. The effect of roughness will be investigated later.
In this simulation, the solid S2 is moved normally against the other cube with a motion δ2. The bottom
face of the second cube is fixed δ1 = 0. Once contact occurs, different temperatures are prescribed at
both solids extremities (see Fig.5.10). For instance, in this study, we choose θl1 = 0◦C and θl2 = 1◦C.
The lateral bounds are free from any prescribed heat conditions, thus no heat goes through these faces.
Thermal dilations are not considered in this study.
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Two procedures are compared : The first one is the present model strategy and the second one is the
Finite Element Method (FEM). In what follows, several case studies are presented. The local thermal
resistance is not considered except if we clearly mention it in the case study description. In the FEM
model, 5.105 elements are used to discretize the multi-layered solid.

Contact 
interface

1 mm

1 mm

1 mm1 mm

Figure 5.10: Schematic of the studied configuration. Two solid cubes in contact and surface roughness is
generated numerically

Es (GPa) νs κs (Wm−1K−1)
Solid S2 220 0.33 50

Table 5.1: Elastic and thermal properties of Solid S2

5.5.2 An illustrative case study

An illustrative example is presented in this paragraph. The considered solid properties are summarized
in Tab.5.2. As we can see, it is the case where the two layers have the same physical properties.

E1 (GPa) E2 (GPa) κ1 (Wm−1K−1) κ2 (Wm−1K−1) h (µm)
4 4 10 10 500

Table 5.2: Elastic and thermal properties of the two-layered solid in the first study

Before analyzing the results of the thermal contact study, a brief overview is provided to highlight the
contact mechanics results. For δ2 = 10 µm, the contact pressure (resp. the normal displacement) are
presented in Fig.5.11 (resp. Fig.5.12). From these figures, we can see the distribution and the geometry
of contact zones. The contact is mainly concentrated on some asperities. At the scale of an asperity, the
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Figure 5.11: Contact pressure distribution for solid
S1 and δ2 = 10µm
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Figure 5.12: Normal displacement for solid S1 and
δ2 = 10µm

contact shape is almost elliptic. The real contact area is very small compared to the apparent one (less
than 2%).
With regard to the thermal contact, the evolution of the total conductance with contact pressure is
shown in Fig.5.13 for the two considered procedures (Finite Element Method "FEM" and the "present
model"). The two predicted curves are in good agreement. The curve slope decreases while the pressure
is increasing. A high slope corresponds to the case of small contact pressures and contact area. In this
case, there is few contacting asperities and thus the heat is concentrated on these asperities. Increasing
the contact area leads to a decrease in heat concentration.
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Figure 5.13: Real contact area evolution with contact pressure for the illustrative case study : κ1 = κ2 =
10Wm−1K−1

The temperature distribution for this case study is illustrated in Fig.5.15 for the two-layered solid and
Fig.5.14 for solid S2. The temperature is constant within contact zones and is equal to 0.83. Also, since
solid S2 is the hot one, contact zones are thus the coldest ones within it, and inversely, contact zones in
the other cube are the hottest ones. Between the two surfaces, we can also see the discrepancy in the
temperature gradient. Indeed, the temperature in solid S2 is varying from 0.90 to 0.83 ◦C which is much
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smoother than the second solid where temperature is ranging between 0.83 and 0.53 ◦C. This difference
is essentially due to the relatively weak conductivity of the second solid.
Now, let us take a look at the sub-surface temperature and heat flux lines. Fig.5.16 shows the temperature
field for the plane associated to axis 1 (see Figs.5.14-5.15 to see the localization of this axis). This plane
cuts the surface at two contact zones. As we can see, the same remark concerning the gradient of
temperature is observable in this figure. In this plane, contact is made only in two zones. On the left
of the figure (X ≤ 0.1mm), a temperature elevation is observed at the surface. This elevation is due to
another contact zone which is not visible in this cut plane. In Fig.5.17, flux lines are shown for the same
cut plane. Heat is flowing, in the direction normal to surface, through contact zones from the hottest
solid to the coldest one. The constriction of the flux lines is also observable near to contact zones. Far
from the two contact zones, we can also see the curved flux lines from the other contact zones which are
not visible in this plane.
As regards the computational time, it has been reduced considerably. The FEM calculations are very slow
comparing to the present model strategy. Indeed, the thermal problem resolution has been done within
few minutes for both strategies because the contact area is fixed for this step. But the contact mechanics
problem has been solved within 5 hours with the FEM strategy whereas this time was approximately 20
min for the present model.
Now that the illustrative case has been presented, the following presents a parametric study with the aim
to study the effect of solid layers, surface roughness and local thermal resistance on the total thermal
conductance. In most cases, results from the present model are compared to FEM results with the aim
to evaluate the efficiency of the model.
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Figure 5.14: Surface temperature of solid S2
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Figure 5.15: Surface temperature of the two-
layered solid S1

5.5.3 Parametric study

- Influence of the first layer thermal properties

In this case study, the thermal properties are varied while the elastic parameters are kept fixed. Tab.5.3
presents the considered parameters for this study. As we can see, the first layer conductivity is decreased
from 10 to 2.5 Wm−1K−1 while the second layer conductivity is fixed at 10 Wm−1K−1. The result
analysis is devoted to the contact pressure p relationship with the total thermal conductance Kt (see
Fig.5.18).
At first sight, FEM results fit well with the present model predictions. Also, the decrease of the first layer
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Figure 5.16: Temperature field in the cross-
section: axis 1
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Figure 5.17: flux lines in the cross-section: axis
1

E1 (GPa) E2 (GPa) κ1 (Wm−1K−1) κ2 (Wm−1K−1) h (µm)
Case 1 4 4 10 10 -
Case 2 4 4 5 10 500
Case 3 4 4 2.5 10 500

Table 5.3: Elastic and thermal properties of the two-layered solid in the first study

conductivity leads to the decrease of the thermal conductance. In Tab.5.4, Kt values for a pressure equal to
3MPa are presented for the 3 cases. The decrease of the conductance is followed by an increase of surface
temperature Ts. This temperature corresponds to the one reached in contact zones and is constant.
Comparing Ts to Tp the surface temperature of the perfect contact, we can see that the temperature
reached in contact zones remains the same despite roughness. This is due to the fact that temperature is
prescribed at both solids extremities.
It is of interest to compare Kt to the thermal conductance corresponding to the perfect contact case Kp

which is independent of the pressure. As we can see, the ratio Kt/Kp is decreasing from 0.45 to 0.33. Thus
we can deduce from this study that the thermal conductance is mainly influenced by the conductivity of
the first layer.

κ1/κ2 Kt (103Wm−2K−1) Ts (◦C) Kp (103Wm−2K−1) Tp (◦C) Kt/Kp

Case 1 1 3.75 0.83 8.33 0.83 0.45
Case 2 0.5 2.24 0.88 5.88 0.88 0.38
Case 3 0.25 1.24 0.93 3.70 0.93 0.33

Table 5.4: Summarized results for the present case study : the effect of the first layer thermal properties
is highlighted.

- Influence of the first layer thermal and elastic properties

In the last paragraph, only thermal properties were changed from one case to another. In the present
case, both thermal and elastic properties of the first layer are decreased in such a way that the ratios
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Figure 5.18: Thermal conductance evolution with contact pressure for the present case study : κ2 =
10Wm−1K−1, h = 500µm and E2 = E1 = 4GPa

κ1/κ2 and E1/E2 are kept equal. The different parameters are summarized in Tab.5.5.

E1 (GPa) E2 (GPa) κ1 (Wm−1K−1) κ2 (Wm−1K−1) h (µm)
Case 1 4 4 10 10 -
Case 2 2 4 5 10 500
Case 3 1 4 2.5 10 500

Table 5.5: Elastic and thermal properties of the two-layered solid in the first study

As is shown in Fig.5.19, the reduction of κ1/κ2 leads to a decrease ofKt. Comparing to the last case study,
the reduction of Kt is less but is still significant. This different behavior is mainly due to the variation of
the first layer elastic modulus E1. Indeed, the contact pressure with real contact area evolution has been
modified and thus the contact area is not the same for the three cases. In Fig.5.20, this evolution is shown
for the three cases. One can see that the slope of this evolution is almost constant and increases while the
first layer modulus is decreasing (from 1% to 4.5%). Moreover, this evolution-slope is almost inversely
proportional to the first layer modulus. In other words, with respect to contact area, the pressure level is
fully controlled by the first layer modulus.
Therefore, the ratio Kt/Kp was affected by the mechanical properties of the first layer(see Tab.5.6). Com-
paring to the last study, we can see how these properties influenced drastically the thermal conductance
by affecting the contact area. Additionally, as regards surface temperature within contact zones, the latter
is only affected by boundary conditions and material thermal properties.
At last, one have to keep in mind that ratios κ1/κ2 and E1/E2 are kept equal in this study. One should
expect different behaviors if these ratios were different.

- Influence of the first layer thickness

In the two last studies, the influence of material properties has been studied. In this case study, thermal
and elastic properties are kept fixed and the first layer thickness h is varied from 100 to 500 µm (see
Tab.5.7). Also the ratios κ1/κ2 and E1/E2 are both kept fixed at 0.25.
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Figure 5.19: Thermal conductance evolution with contact pressure for the present case study : κ2 =
10Wm−1K−1, h = 500µm and κ1/κ2 = E1/E2
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Figure 5.20: Real contact area evolution with contact pressure for the present case study : κ2 =
10Wm−1K−1, h = 500µm and E1/E2 = κ1/κ2

Similarly to the last cases, the evolution of Kt with pressure p is illustrated in Fig.5.21. Once again,
FEM results match the present model results. Tab.5.8 shows different results for the three considered
thicknesses. One can see that with increasing h, the conductanceKt is decreasing and surface temperature
is increasing. This evolution was expected since the first layer conductivity is weaker than that of the
second layer. The ratio Kt/Kp is also increasing with h. This behavior is totally linked to solids elastic
properties and the first layer thickness.
From these studies, we can see how the properties and the thickness of the solid layers affect the thermal
conductance. With respect to contact pressure, elastic properties have an impact on the real contact area
which subsequently affects the conductance.
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κ1/κ2 (= E1/E2) Kt (103Wm−2K−1) Ts (◦C) Kp (103Wm−2K−1) Tp (◦C) Kt/Kp

Case 1 1 3.75 0.83 8.33 0.83 0.45
Case 2 0.5 3.20 0.88 5.88 0.88 0.54
Case 3 0.25 2.46 0.93 3.70 0.93 0.66

Table 5.6: Summarized results for the second case study : the effect of the first layer properties is
highlighted.

E1 (GPa) E2 (GPa) κ1 (Wm−1K−1) κ2 (Wm−1K−1) h (µm)
Case 1 1 4 2.5 10 100
Case 2 1 4 2.5 10 200
Case 3 1 4 2.5 10 500

Table 5.7: Elastic and thermal properties of the two-layered solid in the second study
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Figure 5.21: Thermal conductivity evolution with contact pressure for the case : κ1 = 2.5Wm−1K−1,
E1 = 1GPa and E1/E2 = κ1/κ2 = 0.25

h(µm) Kt (103Wm−2K−1) Ts (◦C) Kp (103Wm−2K−1) Tp (◦C) Kt/Kp

Case 1 100 3.27 0.87 6.67 0.87 0.49
Case 2 200 3.10 0.89 5.55 0.89 0.55
Case 3 500 2.46 0.93 3.70 0.93 0.66

Table 5.8: Summarized results for the present case study : the effect of the first layer thickness is
highlighted.

- Influence of roughness

The present paragraph presents results concerning 10 random rough surfaces considering 2 configurations
(see Tab.5.9). The elastic properties have been fixed at 4GPa for both layers. The surfaces have been
generated with fractal techniques [Persson et al.(2002)]. The fractal dimension has been slightly varied
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from one sample to another and the same cutoff wave vectors have been conserved (2 and 10). Thus, the
scale of asperities does not change for all the studied samples while the root mean square (RMS) varies
from one case to another. The main objective of this case study is to evaluate the influence of solid layers
on the thermal conductance through many surface topographies.
In Fig.5.22, are shown the evolution of Kt for different surface samples. For both cases, the continuous line
corresponds to the averaged response, which is computed with a linear interpolation. The gap between
the two lines is conserved for the different samples. For p = 3MPa, the evolution of Kt with the RMS
of the studied samples is shown in Fig.5.23. One can see that, for both cases, the conductance decreases
slightly with the increase of surface RMS. This is essentially due to the fact that the real contact area
decreases with the increase of the RMS, with respect to contact pressure (see Fig.5.24).

E1 (GPa) E2 (GPa) κ1 (Wm−1K−1) κ2 (Wm−1K−1) h (µm)
Case 1 4 4 10 10 500
Case 2 4 4 5 10 500

Table 5.9: Elastic and thermal properties of the two-layered solid considered is this case study
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Figure 5.22: Thermal conductance evolution with contact pressure for 10 surface samples. Material
properties are those of cases 1 and 2

- Influence of the local thermal resistance

Now that the effect of solid layers and roughness have been discussed, it is interesting to investigate the
influence of a local thermal resistance. For this purpose, the first illustrative case study is considered (see
section 5.5.2) and a thermal resistance R, ranging from 0 to 10−6m2K/W , is added. Note that a local
resistance equal to 10−6m2K/W corresponds to a local conductance equal to 106Wm−2K−1. This value
is 1000 times higher than the effective conductance of the bulk material, as can be seen in the first case
study (see Fig.5.13). In Fig.5.25 the evolution of the total conductance with contact pressure is presented.
One can see that the impact of the resistance is significant. The increase of R leads undoubtedly to a
decrease of the total conductance. At this point of the study, we cannot link the value of this resistance
to a real contact state. The objective here was only to introduce a gap between the contacting solids
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Figure 5.23: Evolution of the thermal conductance
with RMS for p = 3MPa using 10 surface sam-
ples. The continuous lines represent the interpola-
tion between the different points
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Figure 5.24: Evolution of the contact area with
RMS σ for p = 3MPa using 10 surface samples.
The continuous line represents the interpolation
between the different points

surface temperatures and identify its effect on heat conduction. This gap could be a consequence of a
lower scale imperfect conduction which, for instance, can result from the presence of wear debris. As we
can see in the last figure, the impact of the local resistance can be no less important than the presence of
a thin layer near to the interface.
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Figure 5.25: Evolution of the thermal conductance with contact pressure for different values of the local
thermal resistance.

Conclusion
In this work, the heat conduction between multi-layered solids considering roughness has been studied.
For this purpose, the Fourier transform has been used to express surface temperature as a function of



5.5 Numerical example 126

surface heating. Using the same technique, the contact area is defined by solving the contact mechanics
problem. Afterwards, the thermal contact problem is expressed as a linear system of which the unknown
is the heat flowing through the contact interface. This system is numerically solved with optimization
techniques and the obtained results provide surface temperature and thermal conductance considering
roughness and solid layers.
As a case example, the contact of a two-layered solid with a layered one has been studied. Through
various illustrations, the results of the present model have been compared to Finite Element calculations
and a good agreement has been found between the two methods. Furthermore, the computational time
has been reduced significantly. For the FEM calculations, the computational time is about 5h whereas it
does not exceed 30 min for the present model.
Moreover, the studied cases demonstrate the great impact of roughness, solid-layers and local thermal
resistance on the thermal conductance. It is shown that the elastic properties and roughness define the
contact area distribution. Therefore, in addition to layers conductivities, the thermal behavior is affected
by all of this parameters. In particular, reducing the first layer elastic modulus leads to an increase of
both the contact area and the thermal conductance. However, if the modulus decrease is followed by
a conductivity decrease, the thermal conductance can decrease depending on the ratio between layers
modulus and conductivities.
Furthermore, several surface samples have been studied. The effect of roughness, quantified by the
standard deviation, has been presented. It has been shown that increasing the standard deviation leads
to a diminution of contact area and thermal conductance, with respect to contact pressure.
Concerning the local thermal resistance, its effect has been highlighted. From a physical point of view,
more tools are needed to quantify properly this quantity.
Finally, it should be noted that some improvements of the present model can be done, in particular by
considering thermoelastic deformations which can affect contact area. Furthermore, the quantification
of the local thermal resistance has to be addressed in future works. Also, the consideration of interface
convection will also represent an interesting perspective for this work.
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Transition
In the previous chapter, stationary heat conduction has been analyzed in a static contact. The role of

roughness and a gradient of properties has been highlighted.
In braking systems, the contact interface is the place where kinetic energy is transformed into frictional
heat energy. Subsequently, high temperatures are reached within the interface. Hence, the aim of this
chapter is to investigate the effect of surface roughness on this process.
This problem is solved using a transient approach based on the heat source method and the FFT method.
The contact area is defined by the contact mechanics model presented in chapter 3. With this model,
several case studies are presented.
Furthermore, heat conduction between remote temperatures is also considered in the steady version of the
proposed model. The effects of heat conduction are also discussed.
Like the previous chapter, the thermal expansion is not considered in this work.

This figure presents the complete plan of this thesis. The placing of this chapter is highlighted by a blue
box in the background.
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Abstract
Knowledge of surface temperature is of high interest in the study of sliding contact problems. Indeed,

it is largely accepted that the frictional energy is transformed into heat, which in turn lead to a rise of
temperature in the contact interface that can influence the system performances. The aim of this article is
to present a thermal contact model allowing to study the rise of temperature in sliding contact problems.
The transient frictional heating problem is analyzed using the heat source method and discrete convolution
method. The produced heat is computed based on a contact mechanics model which considers surface
roughness. Heat is generated either within the surface or within a thin interface layer. The continuity
of the temperature field is enforced within the interface layer. From this, a linear system is obtained
and solved with optimization techniques. Moreover, the Fast Fourier Transform is used to accelerate the
computational process. Several case studies are presented with the aim to investigate the effects of many
parameters on surface temperature such as roughness, velocity, contact area, properties of the interface
layer and boundary conditions.

keywords : Sliding contact, Heat partition, Transient analysis, Surface temperature, Roughness,
Heat source method, Fourier transform

6.1 Introduction
In sliding contact systems, the largest part of the frictional energy is transformed into heat. It is commonly
agreed that this phenomenon is linked to plastic deformations occurring at the sub-surface zone near
to contact interface[Furey(1964), Kennedy(1984)]. However, others claim that heat production takes its
origins from the atomic-scale interactions within the top atomic layers of the contacting surfaces[Landman
et al.(1993)]. Thus, the exact location of heat production is not known for sure and depends most likely
on the sliding situation.
Since real contact occurs only on some randomly distributed small zones, severe temperatures, resulting
from frictional energy, are reached within these zones. These temperatures are a source of wear and local
damages which could affect the tribological behavior of contact interface [Archard(1959)]. The reader
may refer to the survey paper written by [Blok(1963)] for further details on this phenomena, and also
a recent review paper of [Denape and Laraqi(2000)] which details modeling methods and experimental
techniques for surface temperature measurement.
Most of the theoretical models of temperature rise in sliding contact are based on heat source method
which was developed in the pioneering works of [Blok(1937), Carslaw and Jaeger(1959)]. From this
method, several analytic solutions were proposed to study stationary and moving heat sources of different
geometries [Zeng et al.(1997), Hou and Komanduri(2000)].
Using this technique, single contact problems have been widely studied. In [Tian and Kennedy(1994)],
analytical and approximate solutions of maximum and average surface temperatures were obtained for
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several geometries. The contact problem has been solved using [Blok(1937)] postulate which considers
that the maximum surface temperature is equal for the two solids. In [Laraqi(1996)], the thermal contact
resistance, considering the solid velocities, has been formulated for a rectangular contact area. Within the
same framework, steady temperatures of circular and elliptic contact have been obtained by matching the
surface temperature of both solids in [Bos and Moes(1995)]. In [Komanduri and Hou(2001)], a functional
analysis approach has been used to solve the problem of a sliding system modeled as an infinite long band
heat source. Using Hankel transform, a pin-on-disc contact has been analyzed in [Laraqi et al.(2009)] and
the obtained results have been compared to analytical results from [Tian and Kennedy(1994)].
The above cited works consider a perfect contact geometry which is not convenient for studying heat
generation in real tribological systems. Several works have used the concept of multiple asperities. Heat
flows into solids through these asperities. In most of these works, these zones are uniformly distributed
within the interface and are of rectangular shape. The temperature rise in each asperity is calculated
using the heat source method considering its shape. For well separated contact spots, this technique
has been used by [Chao and Trigger(1956)] to study the tool chip interface during metal cutting. In
[Barber(1970)], general solutions of conduction between sliding solids have been addressed considering
many configurations such as large scale cooling effects and sub-surface heat generation. In [Vick(2001)],
the thermal contact was studied considering two rectangular zones. More recently, the same concept has
been used in [Coulibaly et al.(2014)] by considering a uniformly distributed contact zones. In the two last
works, a Green function has been computed using analytical solutions taking into account the thermal
interactions between surface asperities.
Numerical methods have been also used for the contact problem. In [Salti and Laraqi(1999)], the finite
volume method and a relaxation iterative method were employed to study the contact considering solid
velocities and roughness using a uniformly distributed rectangular contact cells. In [Sadowski et al.(2010)],
the Finite Element Method has been used to evaluate the contact thermal resistance for a static contact
and realistic surface topographies.
The real challenge in studying the thermal contact for sliding systems is to be able to compute the real
transient temperature distribution within an acceptable computational time. The main issues that have
to be studied are the maximal surface temperatures and heat partition between the two solids. These
issues are naturally affected by the contacting solids velocities, properties and boundary conditions. In
this work, the effect of the real contact area and the interface conditions are also studied. Indeed, even
if the exact location of heat generation is not known, in this work, two modes of heat generation are
considered. In the first one, a surface heat generation is considered and the perfect continuity between
both solids surface temperature is supposed. In the second one, heat is generated within a very small
fictive layer that is modeled as a system of many thermal resistances and capacitances. Thus a gap of
temperature can emerge between the two solids. The reason that is behind this approach is that even at
the scale of the real contact area, the conduction of heat can be disturbed by wear particles and oxides,
etc. The thermal properties of these elements are not known experimentally, so they will be considered
as computational parameters.
In order to address the above-cited issues, the thermal contact study is conducted, in this work, based
on heat source method. Indeed, using the Fast Fourier transform (FFT) and the discrete convolution
technique, the transient contact problem is solved by matching surface temperatures point by point and
using optimization techniques. The process of matching temperatures depends on the profile of heat
generation (volume or surface heat). The studied surfaces are realistic fractal samples and are generated
numerically using a power-law spectral density. The contact area is obtained using an asperity-based
contact mechanics model developed in [Waddad et al.(2016)]. The amount of heat is obtained from the
work of frictional forces which is determined from the friction coefficient, the velocity and the contact
pressure.
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As is aforementioned, several case studies are performed to show the effect of all the cited issues on heat
partition and the rise of surface temperature. First results are focused on the thermal contact without
consideration of boundary conditions. The latter corresponds to heat flowing through the two solids which
can be caused by remote prescribed temperatures. In the last section, the steady conduction induced by
these remote temperatures will be considered.
The originality of this work is the ability to consider a realistic thermal contact problem. Comparing to
the existing approaches, this work makes use of the classical heat source method and extends it to cover
the rough contact case. Moreover, the FFT technique makes the problem resolution very fast comparing
to numerical methods such as the Finite Element Method. Furthermore, many interesting features have
been considered such as the interface parameters, the volumetric profiles of heat generation and the
consideration of non-zero infinity temperatures. The obtained results are of high interest as they are used
in wear modeling and thermo-mechanical simulations for instance.

6.2 Analytic solutions for thermal loading of moving and static homo-
geneous solids

6.2.1 Surface heating of a fixed semi-infinite region

Let us consider an infinite solid, initially at zero temperature and an instantaneous point source of heat
at time t = 0. The temperature field T that satisfies heat equation is given by [Carslaw and Jaeger(1959)]

T (r, t) = Qχ

8κ (πχ)3/2
1
t3/2 exp

(
− r2

4χt

)
where Q is the quantity of heat liberated, χ is the thermal diffusivity, κ is the thermal conductivity and
r is the distance from the source (see Fig.6.1).
Now considering that there is no heat flow across a diametrical plane of the solid (z = 0), which is the
case of a semi infinite solid, the temperature with an instantaneous point source reads

T (r, t) = Qχ

4κ (πχ)3/2
1
t3/2 exp

(
− r2

4χt

)
In this case all the heat is directed into one side.
If heat is supplied to the semi-infinite solid at a steady rate q distributed over a finite area S, the
temperature distribution is then given by

T (x, y, z, t) = qχ

4κ (πχ)3/2

∫ t

0

dt′

(t− t′)3/2

∫∫
S

exp
(
− r2

4χ (t− t′)

)
dξdη (6.1)

where q is the heat flux density liberated per unit of time and space and r =
√

(x− ξ)2 + (y − η)2 + z2.
If heat is introduced over a rectangular area 2a× 2b, the temperature is

T (x, y, z, t) = qχ

4κ (πχ)3/2

∫ t

0

dt′

(t− t′)3/2

∫ a

−a

∫ b

−b
exp

(
−(x− ξ)2 + (y − η)2 + z2

4χ (t− t′)

)
dξdη (6.2)

By making a substitution, we found
T (x, y, z, t)

q

4κπ1/2

=I
(
x+ a, y + b, z,

1
2
√
χt
,∞
)

+ I

(
x− a, y − b, z, 1

2
√
χt
,∞
)

− I
(
x− a, y + b, z,

1
2
√
χt
,∞
)
− I

(
x+ a, y − b, z, 1

2
√
χt
,∞
)
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where
I (α, β, γ, l, L) =

∫ L

l
exp

(
−γ2v2

)
erf (αv) erf (βv) dv

v2

Using integration by parts, The integral I reads for the case of steady state temperature

I (α, β, γ, 0,∞) = α√
π

ln
(
β +

(
α2 + β2 + γ2)1/2

−β + (α2 + β2 + γ2)1/2

)
+ β√

π
ln
(
α+

(
α2 + β2 + γ2)1/2

−α+ (α2 + β2 + γ2)1/2

)

− 2 γ√
π

tan−1
(

αβ

γ (α2 + β2 + γ2)1/2

)

From this solution, the integral I can be calculated for the transient case by subtraction

I

(
α, β, γ,

1
2
√
χt
,∞
)

= I (α, β, γ, 0,∞)− I
(
α, β, γ, 0, 1

2
√
χt

)
(6.3)

and the transient term is estimated numerically.

Figure 6.1: Schematic of the point source of
heat in a half space

Figure 6.2: The amount of heat qdt′ is emitted
at time t′

6.2.2 Surface heating of a rotating semi-infinite region

Now let us consider that heat is produced at a fixed point by which a uniformly moving medium flows
(see Fig.6.3). Suppose that a quantity qdt′ of heat was emitted at time t′ at the fixed point of space
(xc, yc, 0) (see Fig.6.2). We calculate the temperature at the fixed point (x, y, z) at time t.
Considering the solid rotation, the position of any point of the solid at time t is given by

X(t) = R cos(s (t) + φ)

Y (t) = R sin(s (t) + φ)

where R is the distance from the center of rotation, s (t) is the angular position which is time dependent
and φ is an arbitrary fixed angle.
Assume that the point (x, y, z) was at time t′ at (x′, y′, z), we have

x′ = x cos
(
s(t)− s(t′)

)
+ y sin

(
s(t)− s(t′)

)
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y′ = y cos
(
s(t)− s(t′)

)
− x sin

(
s(t)− s(t′)

)
Hence, the temperature at time t at the point (x, y, z) with the heat qdt′ emitted at t′ is [Carslaw and
Jaeger(1959)]

dT = qχdt′

4κ (πχ(t− t′))3/2 exp
(
−(x′ − xc)2 + (y′ − yc)2 + z2

4χ(t− t′)

)
Therefore, the temperature elevation due to heat emitted between 0 and t is given by

T (x, y, z, t) = qχ

4κ (πχ)3/2

∫ t

0

dt′

(t− t′)3/2 exp
(
−(x′ − xc)2 + (y′ − yc)2 + z2

4χ(t− t′)

)

Using a substitution, we obtain

T (x, y, z, t) = q

κπ3/2

∫ √4χt

0

dv
v2 exp

(
−(x′ − xc)2 + (y′ − yc)2 + z2

v2

)

where
x′ = x cos

(
s

(
t− v2

4χ

)
− s (t)

)
− y sin

(
s

(
t− v2

4χ

)
− s (t)

)

y′ = y cos
(
s

(
t− v2

4χ

)
− s (t)

)
+ x sin

(
s

(
t− v2

4χ

)
− s (t)

)
If heat is distributed over a rectangular area 2a× 2b, the temperature field is then

T (x, y, z, t) = q

κπ3/2

∫ √4χt

0

dv
v2 .

∫ a

−a
dξ.

∫ b

−b
dη exp

(
−(x′ − xc − ξ)2 + (y′ − yc − η)2 + z2

v2

)
(6.4)

which is equivalent to

T (x, y, z, t) = q

4κπ1/2

∫ √4χt

0
dv exp

(
−z

2

v2

)
.

(
erf
(
x′ − xc + a

v

)
− erf

(
x′ − xc − a

v

))
.

(
erf
(
y′ − yc + b

v

)
− erf

(
y′ − yc − b

v

)) (6.5)

From this formula, the temperature field is calculated using numerical integration techniques (for e.g.
Gaussian quadrature).
In the following, the analytic formulas are illustrated and the effect of velocity is highlighted.

6.2.3 Illustration of the analytic solutions

Before tackling the contact problem, we propose some illustrations of the presented-above equations. In
this paragraph, we consider the case where the angular velocity ω either decreases linearly or remains
constant with time. These cases are the most encountered in sliding contact applications, for e.g. friction
brakes, where braking is applied to maintain the speed or to slow it.
Thus, the angular velocity reads

ω(t) = ds
dt (t) =


ω1 − ω0
t0

t+ ω0 if t ≤ t0
ω1 else.

(6.6)
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Figure 6.3: Schematic of a rotating solid heated through a fixed source on its surface

By integration, the angular position reads

s (t) =


ω1 − ω0

2t0
t2 + ω0 t if t ≤ t0

ω1 t+ ω0 − ω1
2 t0 else.

(6.7)

and by derivation, the angular acceleration is

dω
dt (t) =


ω1 − ω0
t0

if t ≤ t0
0 else.

(6.8)

These formulas correspond to a linear variation of velocity from ω0 to ω1 within the interval time [0, t0].
Beyond t0, the velocity is fixed at ω1. In Fig.6.4, several profiles of the angular position s are presented
for different cases. For all of these cases, t0 is fixed at 10s and the velocity ω1 is varied from ω0 to 0. In
the same figure, we can also see the case where the velocity remains constant (i.e ω1 = ω0). In Fig.6.5,
the impact of the velocity profile on the time evolution of the abscissa X is highlighted.
For the present study, the chosen parameters are summarized in Tab.6.1. The heat density q is introduced
over a rectangular zone of which the dimensions are 2a × 2b. This quantity is assumed to be constant
in this part. Note that, in real applications, this quantity depends on the velocity which is not the case
here. Figures 6.6-6.15 present the evolution of the dimensionless temperature, defined by κT

a q
, for the

different studied cases. Additionally, the dimensionless velocity, commonly named Peclet number, defined
by Pe = Rω a

χ
, is indicated in the different curves.

In Fig.6.6, the evolution with time of the temperature in the center of the heated zone is shown. The
velocity ω is fixed at 100 rad.s−1 and the radius is varied from 0 to 20 cm. The surface temperature at
t = 1ms is plotted in Fig.6.7 for Y/a ranging from −2 to 8. As can be seen in both figures, the temperature
level decreases with the increase of Rc. Also, the shape of the temperature profile is deformed by the solid
velocity. Subsequently, the maximal temperature is not reached in the center of the heated zone (y = yc),
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Table 6.1: The considered parameters of the study
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but rather at the exit of the heated zone.
In Figs 6.8-6.9, the radius is fixed at 10cm and the angular velocity ω is fixed at time but varied from 0 to
100 rad.s−1. Just like the previous paragraph, the same remarks can be made here. Indeed, by increasing
the radius or the angular velocity, the Peclet number increases, the level of temperature decreases and
the position of the maximal temperature deviates from the center of the heated zone. Moreover, it is well
known that the steady temperature is reached rapidly for high velocities. This can be seen in Figs 6.6-
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6.8.
In Figs 6.10-6.13, are shown the temperature levels for the cases where the angular velocity is time-
dependent. Here, the initial velocity is fixed at ω0 = 10 rad.s−1, the radius at Rc = 10cm and t0 = 100ms.
The final velocity ω1 is varied from 10 to 0 rad.s−1. The last case corresponds to a deceleration of
−10m.s−2 which corresponds to the maximal deceleration that can be reached in automotive braking
systems for instance. For the different cases, the angular position is plotted in Fig.6.10. The temperature
evolution with time of the center point is plotted in Fig.6.11. As can be seen, the reached temperature level
is almost the same for t ≤ 10ms. As the velocity decreases, the temperature increases. The maximum
level of temperature is the one reached for the static case. The temperature profile is shown for t = 6ms
(resp. t = 100ms) in Fig.6.12 (resp.6.13). As the velocity increases, the shape of the temperature profile
becomes less distorted.
Furthermore, as an example, the temperature spatial distribution is shown in Figs 6.14-6.15 for a constant
velocity ω = 100 rad.s−1 and a 2ms of steady heating. The surface temperature is presented in Fig.6.14.
The curvature of the temperature profile corresponds to the angular position of the heated zone which is
placed here in the axis y = 0. In Fig.6.15 is shown the temperature distribution beneath the heated zone.
From this figure we see that the temperature decreases very rapidly as z ≤ 0. Thus, the heat entering
the moving body beneath the heat source is concentrated in a thin zone.
In this section, the analytical solution obtained with heat source method have been presented. In the
following, this method is used to study the transient surface temperature in sliding contact problems.

6.3 The transient temperature and heat distribution in sliding contact
problems

6.3.1 General equations

The frictional heat is generated at the interface and its distribution depends on the physical nature of
contact interactions. The contact interface is considered as a source of heat which is distributed over the
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superior face of each body
φ = φ1 + φ2

where φ is the total rate of heat generated at the interface and φ1 and φ2 are the rates of heat flowing
through the solids S1 and S2.
The real contact area is small compared to the contacting bodies dimensions, thus it is possible to
approximate the system to two semi-infinite regions. The surface temperature of each of the two solids
(θ1 and θ2) can be related to the heat flowing into them by the functions F1 and F2

θ1 = F1 (φ1)

θ2 = F2 (φ2)
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where F1 and F2 depend on the physical properties of the contacting solids.
In this work, we consider that there is a gap between the surface temperature of the contacting solids.
This gap of temperature corresponds to the presence of an interface layer made from surface debris.
Moreover, heat can be generated inside this zone as its exact generation place is not known exactly. Also,
we suppose that the functions F1 and F2 are linear. Thus, one can deduce the following equation

(F1 + F2 )(φ1) = (F2) (φ) + θ1 − θ2 (6.9)

The temperature gap θ1− θ2 will be expressed later as a function of φ1 and φ. The obtained expressions
will depend on the physical properties of the interface zone and the mode of heat generation. The unknown
of this equation is φ1.
This equation is spatial and temporal. In order to solve it, we propose a strategy that transforms it into
a spatial equation which is more easy to resolve. For this aim, we propose the following strategy :
We consider the time step t = tN and we introduce λ defined by

λ (t) = φ1 (t) if t ≤ tN and λ (t) = φ1 (tN ) else.

This means that λ is equal to φ1 in space and time except for the case where time t exceeds tN , where λ
remains constant. Besides, we introduce ψ defined by ψ = φ1 − λ, then

ψ (t) = 0 if t ≤ tN and ψ (t) = φ1 (t)− φ1 (tN ) else.

Hence ψ corresponds to the flux increment applied from time t = tN .
From Eq.6.9, we obtain

(F1 + F2 )(λ) + (F1 + F2) (ψ) = F2 (φ) + θ1 − θ2 (6.10)

Hence
(F1 + F2 )(ψ) = F2 (φ)− (F1 + F2 )(λ) + θ1 − θ2 (6.11)
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Figure 6.16: Schematic of the real contact interface. Heat is generated within the real contact zones

This equation relates the flux ψ applied from time t = tN to the total flux φ and λ. If the flux φ1 is
known for t ≤ tN , λ will be also known and we can compute from Eq.(6.11) the flux ψ and deduce φ1 at
time t > tN .
Following this reasoning, φ1 is assumed to be known for t ≤ tN and ψ is constant within the time
interval [tN , t]. Therefore, the problem is solved incrementally, where at each time increment, the flux ψ
is computed and the flux φ1 is updated so that the flux λ can be computed for the next time step, and
so on.
The total flux acting on the surface of the solid Si (i = 1, 2) reads then

Φi =
∫
S
φidS

Therefore, the coefficient of heat partition reads

pi = Φi
Φ

where Φ = Φ1 + Φ2 is the total heat generated at the interface.
Now that the key elements of the solving strategy have been presented, the discretized form of the problem
is presented and more details about the gap of temperature are given in the following.

6.3.2 Discretization of the contact problem

Considering one of the contacting solids. Suppose that the surface is heated at many regions. The surface
temperature θ is expressed as a function of surface heating φ

θ (x, y, t) = F (φ (x, y, t))

In order to solve the thermal contact problem, the surface is discretized into Nxy = Nx×Ny small squares
of the same size (see Fig.6.17). The studied interval of time [0, t] is also discretized into Nt equal small
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intervals (see Fig. 6.18). The heat flux acting on each single square is assumed to be uniformly distributed
on it. Thus, the flux φ reads

φ (x, y, t) =
Nxy∑
i=1

Nt∑
k=1

1i (x, y) 1k (t)φik

where 1i is the indicator function of the space domain [xi − d, xi + d] × [yi − d, yi + d], (xi, yi) are the
coordinates of the ith surface element center, d is the half dimension of the element, 1k is the indicator
function of the time interval [tk, t] and φik is the flux increment applied on the ith square and emitted
steadily from the instant tk.
The solid temperature is then calculated as a combination of all the temperature variations due to all the
fluxes acting on the surface

F (φ (x, y, t)) =
Nxy∑
i=1

Nt∑
k=1

1k (t)T (x− xi, y − yi, t− tk) φik (6.12)

where T (x− xi, y − yi, t− tk) is the temperature elevation at the surface point (x, y) which is due to the
unit flux applied over the ith element from time tk to t. Relative expressions of T have been presented in
section 6.2.1 for fixed solids and in section 6.2.2 for moving solids.
The total heat flux applied on the surface at time t reads then

Φ (t) =
Nxy∑
i=1

Nt∑
k=1

1k (t)φik (6.13)

In what follows, T1 (resp. T2) corresponds to the solid S1 (resp. S2).
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Figure 6.17: Surface grid used to solve the ther-
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6.3.3 Expression of the gap of temperature: the thermal resistance and capacitance,
and profiles of heat generation

In this work, we consider that heat is generated inside a thin interface layer which is comprised between
the contact zones of both surfaces. Thus, heat can be distributed within this layer and there will be a
temperature jump between the two solids. In the following, the gap of temperature θ1 − θ2 is expressed
as a function of the heat distribution and the physical properties of the interface.
Let us consider the ith contact point. At this point, there is a temperature jump and heat is generated
within the thin layer according to a given mode of generation. In this work, we propose that this zone
is modeled as a system of n thermal components (see Fig.6.19). Additionally, generation of heat is
represented by a discrete set of heat sources φl distributed along the layer. The total heat generated at
this contact point is thus given by

φik =
l=n∑
l=0

φlik

For φ1, we will make use of the decomposition introduced in section 6.3.1, i.e
φ1 = ψ + λ

Thus, we introduce the following space-time discretization of ψ and λ

ψ (x, y, t) =
Nxy∑
i=1

Nt∑
k=1

1i (x, y) 1k (t)ψik

and

λ (x, y, t) =
Nxy∑
i=1

Nt∑
k=1

1i (x, y) 1k (t)λik

In the ith point and at the scale of the lth component, there is a jump of temperature θliN − θl−1
iN at time

t = tN . This jump of temperature can be modeled as a local thermal resistance (see Fig.6.19(a)) or a
system combining a thermal resistance and a thermal capacitance (see Fig.6.19(b)).
For the first case, the jump of temperature of the lth component reads

θliN − θl−1
iN = Rl

N−1∑
k=1

ϕlik

where ϕlik is the flux which goes through the component at time t = tk and Rl is the thermal resistance.
For the second case, a thermal capacitance C l is introduced and the temperature reads

θliN − θl−1
iN =

N−1∑
k=1

(
1− exp

(
− tN − tk

RlC l

))
Rl ϕlik

This exponential law is chosen based on a phenomenological description of thermal phenomena. Indeed,
the capacitance represents the mass effect. As long as C l increases, the time necessary to reach the steady
state increases.
Considering the presence of heat sources, we have

ϕl−1
ik − ϕ

l
ik = φl−1

ik

From these equations, we found that the gap of temperature in the ith point at t = tN reads

(θ2 − θ1)iN =
N−1∑
k=1

n∑
m=1

(
1− exp

(
− tN − tk
RmCm

))
Rm(ψik+λik)−

N−1∑
k=1

n−1∑
m=0

m∑
l=0

(
1− exp

(
− tN − tk
Rm+1Cm+1

))
Rm+1φlik
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Figure 6.19: Schema of the interface

6.3.4 Solving of thermal contact problem

The contact problem can now be solved by replacing the different functions by their discrete expressions.
Considering the jth point and the time step tN+1 where 0 ≤ N < Nt, the equation (6.11) reads

Nxy∑
i=1

N∑
k=1

ψik (T1 + T2) (xj − xi, yj − yi, tN+1 − tk) +
N∑
k=1

n∑
m=1

(
1− exp

(
− tN+1 − tk

RmCm

))
Rmψjk

=
Nxy∑
i=1

N∑
k=1

l=n∑
l=0

φlikT2 (xj − xi, yj − yi, tN+1 − tk) +
N∑
k=1

n−1∑
m=0

m∑
l=0

(
1− exp

(
− tN+1 − tk
Rm+1Cm+1

))
Rm+1φljk

−
Nxy∑
i=1

N∑
k=1

λik (T1 + T2) (xj − xi, yj − yi, tN+1 − tk)−
N∑
k=1

n∑
m=1

(
1− exp

(
− tN+1 − tk

RmCm

))
Rmλjk

Since ψ = 0 for t < tN , we have

Nxy∑
i=1

ψiN (T1 + T2) (xj − xi, yj − yi, tN+1 − tN ) +
n∑

m=1

(
1− exp

(
− tN+1 − tN

RmCm

))
RmψjN

=
Nxy∑
i=1

N∑
k=1

l=n∑
l=0

φlikT2 (xj − xi, yj − yi, tN+1 − tk) +
N∑
k=1

n−1∑
m=0

m∑
l=0

(
1− exp

(
− tN+1 − tk
Rm+1Cm+1

))
Rm+1φljk

−
Nxy∑
i=1

N∑
k=1

λik (T1 + T2) (xj − xi, yj − yi, tN+1 − tk)−
N∑
k=1

n∑
m=1

(
1− exp

(
− tN+1 − tk

RmCm

))
Rmλjk

(6.14)

By reporting this equation in each contacting point, the following matrix equation is obtained

ANΨN = ΦN −ΛN (6.15)
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where

ANij = (T1 + T2) (xj − xi, yj − yi, tN+1 − tN ) +
n∑

m=1

(
1− exp

(
− tN+1 − tN

RmCm

))
Rmδij (6.16)

and

ΦNj =
Nxy∑
i=1

N∑
k=1

l=n∑
l=0

φlikT2 (xj − xi, yj − yi, tN+1 − tk) +
N∑
k=1

n−1∑
m=0

m∑
l=0

(
1− exp

(
− tN+1 − tk
Rm+1Cm+1

))
Rm+1φljk

(6.17)
and

ΛNj =
Nxy∑
i=1

N∑
k=1

λik (T1 + T2) (xj − xi, yj − yi, tN+1 − tk)+
N∑
k=1

n∑
m=1

(
1− exp

(
− tN+1 − tk

RmCm

))
Rmλjk (6.18)

and δij is the Kronecker symbol.

6.3.5 Solving scheme

In order to solve this equation, the matrix equation problem is transformed into a minimization problem
by defining the objective function f

f
(
ΨN

)
= 1

2
t
(
ANΨN −ΦN + ΛN

)
.
(
ANΨN −ΦN + ΛN

)
(6.19)

This form has been chosen rather than
1
2
tΨNANΨN − tΨN

(
ΦN −ΛN

)
because the matrix AN is not symmetric. This asymmetry is due to the velocity.
The gradient of f reads

∇f = tAN
(
ANΨN −ΦN + ΛN

)
(6.20)

Besides, the real contact area has to be considered to solve the thermal contact problem. For this aim, the
contact mechanics problem is first solved using optimization techniques (the reader may refer to [Waddad
et al.(2016)] for more details). Then, the contact area and the contact pressure field can both be defined.
From the contact pressure pn, the frictional heat can be computed by

φ = µpnV

where µ is the friction coefficient and V is the linear velocity.
From the contact area, an additional equation is obtained, which is of the type

PΨN = 0 (6.21)

The matrix P defines the contact constraints prescribed by the real contact area geometry. The shape of
P is (Nxy, Nr), with Nr the number of surface squares which are in contact. In this matrix, 1 corresponds
to a non-contacting point while 0 is for those in contact.
Besides, it is of interest to note that the matrix AN is time-independent because the time step tN+1− tN
remains the same for N ranging from 1 to Nt. Thus, this matrix is computed at the beginning of the



6.3 The transient temperature and heat distribution in sliding contact problems 146

simulation.
Furthermore, the minimization technique has been chosen to avoid the computational cost of direct
inversion of the matrix system in Eq.(6.15) which could become tremendous if a fine mesh is used. Thus
a Newton algorithm is used to optimize the function f , which is a gradient based method, considering
the constraints (6.21). Moreover, the computation of f and its gradient requires the construction of the
matrix AN and a matrix product. These two operations require a considerable memory storage and could
increase considerably the computational time.
In order to increase the efficiency of the model, the matrix product is replaced by a discrete convolution
and the Fast Fourier transform (FFT). For more details, the reader may refer to this work [Gallego et
al.(2010)]. However, considering the velocity effect, the convolution technique is just an approximation of
the matrix product. Indeed, the coefficients ofAN depends on the distance separating the contact point to
the center of rotation. Nevertheless, in this work, the convolution has been used because the dimensions of
the contact area are meaningless when compared to the radius of rotation Rc (i.e Rc � Lx and Rc � Ly).
This restrictive approximation has been used only to make benefits from the many advantages of the
discrete convolution.
Therefore, using the FFT and the discrete convolution, the function f reads

f
(
ΨN

)
= 1

2
t
(
F−1

(
F
(
AN

)
.F
(
ΨN

))
−ΦN + ΛN

)
.
(
F−1

(
F
(
AN

)
.F
(
ΨN

))
−ΦN + ΛN

)
(6.22)

where F is the FFT operator and F−1 is the inverse of the FFT.
As summary of this paragraph, we present the main steps of the thermal contact algorithm solving :

1. Definition of the studied geometry, surface roughness and physical properties;

2. Space-time discretization;

3. Computation of contact area Ar and pressure pn using a contact mechanics model;

4. Computation of heat space-time distribution φ;

5. Solving of the thermal contact problem :
- Computation of the matrix AN from Eq.(6.16)
- for N = 1...tNt :

(a) ΦN and ΛN are respectively computed from Eq.(6.17) and Eq.(6.18);
(b) ΨN is found by minimizing the objective function f (see Eq.(6.19) or Eq.(6.22));
(c) φ1 and φ2 are computed at t = tN ;
(d) Computation of Φ1 and Φ2 and deduction of p1 and p2;

- Computation of surface temperature T1 and T2;

6.3.6 The special case of a perfect contact : equal surface temperatures in contact
zones

In this case, the gap of temperature vanishes in all the contact points and the different matrices involved
in the contact problem read

ANij = (T1 + T2) (xj − xi, yj − yi, tN+1 − tN )
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ΦNj =
Nxy∑
i=1

N∑
k=1

l=n∑
l=0

φlikT2 (xj − xi, yj − yi, tN+1 − tk)

ΛNj =
Nxy∑
i=1

N∑
k=1

λik (T1 + T2) (xj − xi, yj − yi, tN+1 − tk)

The next section is dedicated to the results of the thermal contact problem. Several case studies are
analyzed. The effect of velocity, contact area, roughness and the gap of temperature induced by contact
local imperfections and the heat generation profile, are all studied in the following section.

6.4 Results and case studies

6.4.1 Model presentation

We consider a solid cube S2 in contact with a rotating solid S1 (see Fig.6.20). The dimensions of the
contact zone and its localization with respect to the center of rotation are presented in Tab.6.2. The disk
surface is flat while the static solid surface is rough, and its dimensions are 1mm × 1mm. Roughness
is obtained from numerical surface generation techniques [Persson et al.(2002)] which are fractal based.
Indeed, a self-affine surface is generated using a power-law spectral density. The surface sample considered
in this study is illustrated in Fig.6.21. The fractal dimension is 0.59, the cutoff wave vectors are 2 and 10
and the surface is Gaussian with a root mean square equal to 6.49µm.
The surface is discretized into 150 × 150 square elements. Hence, the unit square dimensions are 6.66 ×
6.66µm2. This size is sufficient for the considered scale of roughness. Indeed, a comparison has been
done using this size and a coarser one (10× 10µm2) and the results were practically identical. Thus, the
present work concerns only the results obtained with the refined size (i.e 6.66× 6.66µm2). Furthermore,
the material properties of both solids are presented in Tab.6.2 and the coefficient of friction is µ = 0.4.
In this simulation, the solid S2 is moved in the normal direction against the rotating solid S2 with a motion
δ. Thermo-mechanical deformations are not considered in this study. Using, the contact mechanics model,
The contact area and the contact stress distribution have been computed. In Fig.6.22, the distribution of
contact pressure is presented. The contact is localized on a few small contact zones. The fraction of the
real contact area is 1.48%. The displacement that has been prescribed is δ = 10µm. The displacement
field in the surface of S2 is shown in Fig.6.23.
In the following, several case studies are presented to study heat partition and surface temperature
evolution.

yc (mm) xc (mm) Lx (mm) Ly (mm) µ

70.7 70.7 1 1 0.4

Table 6.2: Position of S2 and the dimensions of the contact zone

χ (m2/s) κ (W.m−1.K−1) E (GPa) ν

Solid S1 10−5 50 220 0.33
Solid S2 35.10−7 5 4 0.15

Table 6.3: The contacting solids thermal and mechanical properties
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Figure 6.20: Schema of the interface
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Figure 6.21: Profile of the studied fractal sur-
face. The root mean square is 6.49µm. The
fractal dimension is 0.59 and the cutoff wave
vectors are 2 and 10
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Figure 6.22: Contact pressure distribution for
δ = 10µm
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Figure 6.23: Normal displacement field for δ =
10µm

6.4.2 Parametric study : case of a perfect contact

In this section, several case studies are presented with the purpose of analyzing the influence of velocity,
load and roughness on heat distribution in the interface. For these case studies, perfect contact conditions
are considered. Indeed, the continuity of temperature field is assumed within all contact points. The
presence of an interface layer will be considered latter. In the different studies, the analysis concerns the
evolution of the maximal temperature Tmax with time t and the contact area fraction (%). Also, the parts
of heat that go within each of the contacting solids are studied.
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6.4.2.1 Influence of the velocity

In this case study, the velocity of S1 is varied from 1 to 100 rad.s−1. Thus, the amount of heat produced
is constant within time. The studied interval of time is [0, 4.5ms]. For a fraction of contact area equal to
1.48%, the evolution of the coefficients of heat partition p1 and p2 with time is presented in Fig.6.24. As
we can see, for the different velocities, almost 95% of heat goes to S1. The part of heat p1 increases with
velocity. The evolution of the coefficients p1 and p2 is time dependent for t ≤ 2ms. For t ≥ 2ms, heat
partition is almost steady. In the same figure, the slope of the evolution of both heat partition coefficients
is shown. These curves confirm the observations made before.

Case 1 Case 2 Case 3 Case 4
ω (rad.s−1) 1 10 50 100

Table 6.4: Angular velocity for the 3 studied cases

In order to evaluate the influence of the contact area on heat partition, we analyzed the thermal contact
for different amounts of contact area. The amount of heat released for the different configurations is
presented in Fig.6.25. The total heat depends on the contact pressure which increases with the contact
area. Hence, the heat released increases with contact area.
In Fig.6.26 are shown the evolution of p1 and p2 with the contact area for the different velocities. These
coefficients have been calculated for a time step for which the heat distribution is steady. As we can
see from this figure, heat distribution is slightly affected by contact area. This slight variation of heat
partition can be due to weak thermal diffusion for the case of very small contact areas. Thus, heat
partition is mostly affected by velocity and the thermal properties of the contacting solids rather than
the contact area.
With regard to surface temperature, Fig.6.27 presents the evolution of the steady maximal temperature
Tmax with the contact area. It is clear that both of contact area fraction and velocity affect this quantity.
Indeed, increasing the contact area leads to increasing the pressure level. The increase of velocity and/or
pressure results in a rise of the amount of heat released, and subsequently, the temperature level.
The distribution of surface temperature for both solids is shown in Figs.6.28-6.29. The velocity considered
here is 100rad.s−1. The maximal temperature that is reached is 451◦C. One can remark the distortion
of the temperature field on the mobile side of the interface. The direction of the hot zones is parallel to
the velocity vector.
In this case study, it is shown that, for a fixed velocity within time, a steady state is reached within a time
less than 1ms and that heat partition is strongly affected by velocity and thermal properties. Besides,
velocity and contact area affect more the maximal reached temperature.

6.4.2.2 Influence of the velocity profile

In the previous case study, the velocity has been fixed, thus the amount of heat was constant within time.
In this case study, we consider that solid S1 was rotating at t = 0 with ω0 = 10 rad.s−1. As contact is
created at t = 0, the velocity decreases linearly according to Eq.(6.6) until it reaches a new velocity ω1 at
t = t0. In this case study, t0 is fixed at 100ms while ω1 is varied from 5 to 0 rad.s−1 (see Tab.6.5). For
ω1 = 0rad.s−1, the deceleration is −10m.s−2. The studied interval of time is [0, 200ms].
For this case study, we consider a fraction of contact area equal to 1.48%. In Fig.6.30 is shown the amount
of heat Φ released within the time for the three considered cases. For t ≤ 100ms, heat is decreasing linearly
with velocity until t reaches 100ms. From 100ms, heat is constant.
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Figure 6.27: Evolution of the maximal steady
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In Fig.6.31, the time evolution of Φ1 and Φ2 is presented. It is clear that these quantities decrease with
the decrease of Φ. For ω1 = 0, at t = 100ms, one can see that the sign of Φ1 has changed. This means
that heat is flowing from S1 to S2. This is essentially due to the absence of a heat source outside the two
solids, so the solid S1 gives heat to S2 to maintain the thermal equilibrium. A similar observation can
also be made for ω1 = 1. Here, the source of heat is insufficient and the maintain of the equilibrium is
ensured by the heat flowing from the mobile side to the static one.
In Fig.6.32 are shown the coefficients of heat partition. For ω1 = 5 rad.s−1, the evolution of these
coefficients is not affected. For the other cases, this evolution is considerable. As we can see, the decrease
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Figure 6.29: Surface temperature of solid S2
(Static side)

of the velocity is followed by a decrease of p1 and an increase of p2. However, from the moment when the
release of heat is constant, heat partition evolution retrieves progressively its initial evolution. This was
predictable as the generation of heat becomes stable.
The maximal temperature evolution within time is presented in Fig.6.33. As the heat released within
time decreases, the temperature decreases. For the case where the velocity vanishes at t0 = 100ms, the
temperature elevation almost vanishes in just 100ms. For the other cases, a steady temperature is reached
within 100ms. This temperature is the same as the one reached if the final velocity has been considered
from t = 0.
The temperature field at t = 108ms is presented in Fig.6.34 (resp. Fig.6.35) for the surface of the mobile
solid (resp. the static solid). The considered final velocity here is ω1 = 0. As we can see, the shape of the
temperature distribution, at the scale of an asperity, is distorted in the mobile side of the contact. Indeed,
the decrease of velocity leads to a reverse of the direction of heat flowing throw the mobile solid in several
zones. These zones correspond to the side of asperities that get into contact first, which here corresponds
to the left side of asperities. Therefore, this reverse heat leads to a local diminution of temperature in
these zones.
From this case study, the effect of the velocity profile has been highlighted. It is shown that heat partition
is transient when velocity evolves in time. When velocity attempts a steady state, the heat partition
becomes steady.

Case 1 Case 2 Case 3
ω0 (rad.s−1) 10 10 10
ω1 (rad.s−1) 5 1 0
t0 (ms) 100 100 100

Table 6.5: Parameters of the velocity profile (Eq.(6.6)) for the 3 studied cases
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Figure 6.31: Time evolution of heat distribution
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6.4.2.3 Influence of the ratio between conductivities

In the above case studies, the ratio between the two solid conductivities (k = κ2/κ1) was fixed at 0.1.
By making some algebraical operations, it is easy to show, for the case of a perfect contact, that heat
partition depends on this ratio with respect to the velocity. Of course, the temperature level is inversely
proportional to the solid conductivity with respect to the heat applied. Therefore, in this paragraph, our
interest is focused only on the influence of this ratio on heat partition.
The ratio k is varied from 0.1 to 2 and velocity is fixed within time. In Fig.6.36 (resp. Fig.6.37) is
shown the evolution of heat coefficient p1 with contact area, for a large time, and for an angular velocity
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ω = 10 rad.s−1 (resp. 100 rad.s−1). From these figures, one can see that the ratio k affects strongly
heat distribution. Indeed, p1 decreases if k increases and this for the whole range of the considered
contact areas. This is because if k increases, the second solid will need more heat to respect the thermal
equilibrium between the two solids.
Moreover, it appears that p1 is affected by the contact area. This dependency, as can be seen from the
two figures, is amplified by increasing k with respect to velocity. Thus the influence of the contact area
on the thermal equilibrium between the two solids depends on the ratio between their conductivities.
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6.4.2.4 Influence of roughness

In the present paragraph, the effect of roughness is studied. For this aim, 10 different random samples
have been generated numerically with different geometrical parameters. These samples are characterized
by their root mean squares (RMS). Comparing to the previous sample, the same cutoff wave vectors have
been conserved while the amplitude and the fractal dimension have been slightly changed. This means
that the scale is the same for all the studied samples while the root mean square varies. In this study,
the velocity is fixed within time.
First, the contact area evolution with the contact pressure is presented in Fig.6.38 for the different samples.
From this figure, the discrepancy between the mechanical response of the different surfaces is clear. With
regard to heat distribution, the evolution of heat partition coefficients is shown in Fig.6.39. It is clear
from this figure that the different studied surfaces give approximately the same thermal response. The
maximum difference does not exceed 1% which is meaningless with respect to heat coefficients.
However, the very low impact of roughness on heat distribution is not observed for the local maximal
temperatures. The evolution with the contact area of this quantity is shown in Fig.6.40 for all the studied
surfaces. One can see the difference in maximal temperature levels for the different surfaces. Indeed, the
maximal temperature is directly linked to the maximum local pressure reached within the contact area
with respect to velocity.
In Fig.6.41, the maximal temperature evolution with the root mean square is shown for a mean pressure
equal to 3 MPa. As we can see, the maximal temperature tends to increase with the RMS. Indeed, RMS
is high for surfaces having small asperities (small radius of curvature). Thus, for these small asperities, a
high pressure is reached and so on for the local temperature.
Up to now, the perfect contact conditions have been considered and a surface heat generation has been
considered. In what follows, we consider a temperature jump at the interface and many volume profiles
of heat generation are examined.
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6.4.3 Influence of the gap of temperature

In this section, the gap between the temperature of the two surfaces is considered. Several profiles of
heat generation are investigated. Also, the effects of the local thermal resistance and capacitance are
highlighted. To simplify the study, these parameters are fixed within the interface.

6.4.3.1 Influence of the heat generation profile

The exact location of the produced heat is not known for certain, many profiles of heat generation can
be imagined. Therefore, we propose in this study 3 examples of heat distribution within a contact point
(see Fig.6.42). A surface heat distribution in a plane between the two contacting points can be studied
(see Fig.6.42(a)). A volume heat distribution is also possible within the interface layer. This heat can
be distributed uniformly (see Fig.6.42(b)) or in a linear way (see Fig.6.42 (c)). In the linear case, the
maximum of heat would be near to the sliding solid. For the three considered profiles, a study has been
performed on the same sample studied in the first case study with a velocity of 100 rad.s−1. The contact
area is fixed at 1.48 %. For the interface, 10 components are considered. For each one of them, the
capacitance C is 104 and the resistance R is 10−8.
In Fig.6.43, the heat partition coefficients evolution with time is shown. As we can see, these coefficients
are slightly affected by the profile of heat generation. However, it is clear that the volume heat generation
leads to a decrease in the amount of heat that goes into the sliding solid. With regard to the maximal
temperature (see Fig.6.44), the maximal temperature is reached in the static solid and especially for the
case where heat is distributed uniformly within the interface. This is quite predictable, since in this case
an important part of heat is created near to the static solid. Comparing to the other cases, the largest
part of heat is generated near to the sliding solid, thus a considerable part goes to the sliding solid.

6.4.3.2 Influence of the thermal resistance

In this case study, we consider a volume uniformly distributed profile of heat and the capacitance is fixed
at 104 for the 10 components of the interface. The thermal resistance has been varied and its impact on
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Figure 6.42: Heat generation profiles: (a) a plane heat distribution (b) a uniform distribution of heat and
(c) a linear distribution of heat
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Figure 6.43: Time evolution of heat partition
coefficients for the 3 studied profiles
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Figure 6.44: Influence of the profile of heat gen-
eration on the maximal reached temperature in
both sides

the heat partition (resp. the maximal temperature) is highlighted in Fig.6.45 (resp. Fig.6.46). As we can
see, the augmentation of the thermal resistance leads to a slight decrease of p1. Subsequently, the gap
between the maximal temperature of the two surfaces expands as the resistance increases. Additionally,
the temperature evolution with time becomes low as long as the resistance decreases.

6.4.3.3 Influence of the thermal capacitance

In this case, the resistance is fixed at 10−8 and the capacitance is varied. Also, heat is uniformly distributed
within the interface volume. As we can see from Fig.6.47, the capacitance affects heat partition only for
t ≤ 0.5ms. After this time, heat partition reaches a steady state. With regard to the maximal temperature
evolution with time, shown in Fig.6.48, the effect of the capacitance is remarkable. Increasing this quantity,
increases the time necessary to reach the steady temperature. The gap of temperature reached at the
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Figure 6.45: Influence of the thermal resistance
on the time evolution of heat partition coeffi-
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Figure 6.46: Influence of the thermal resistance
on the maximal temperature in both sides

end is the same for all the studied cases. This is normal, as the gap is fully controlled by the thermal
resistance.
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Figure 6.47: Influence of the thermal capaci-
tance on the time evolution of heat partition
coefficients
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Figure 6.48: Influence of the thermal capaci-
tance on the maximal temperature in both sides

From these studies, the effect of the properties of the interface and the heat generation profiles have
been examined. As we can see, the interface influences slightly the heat partition, but the gap between
the maximal temperature reached in the two solids is clearly affected. However, one must keep in mind
that the ratio between the two solids conductivities is fixed here at 0.1. And as it has been presented in
the previous section, this ratio can affect drastically the thermal balance. Thus, one could expect a major
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impact of the interface parameters on heat partition if this ratio changes.
Furthermore, by these case studies, the objective was clearly to test the sensitivity of the thermal contact
problem to the assumptions considered in the interface. Besides, the interface parameters have been
introduced to get more realistic results based on a more realistic contact conditions. However, the choice
of these parameters presents a difficulty that has to be overwhelmed in future works by using more
sophisticated numerical tools that go beyond the considered scale in this study and a refined description
of the physical phenomena occurring at these scales. In the next section, heat conduction induced by the
presence of remote prescribed temperatures is studied.

6.5 The steady heat conduction in a sliding contact : consideration of
non-zero infinity temperatures

In this section, we consider the stationary heat conduction in a sliding contact. Indeed, in the previous
section, the studied system was isolated. Thus, the temperature rise takes its origin only from the heat
produced at the interface. However, in real systems, this can not be true. Heat can flow from remote
sources and/or temperature may not vanish far from the interface. This can influence the process of heat
partition.
In this work, as the solids are assumed to be semi-infinite regions, it is assumed that the temperatures at
infinity are non-zero and that the velocity is constant. These temperatures induce a large-scale constricted
heat that flows into the two solids through the interface. Of course, this assumes that these temperature
are enough remote to be affected by the interface. Therefore, in addition to the heat source present at
the interface, there is a heat flowing throw the interface which is produced by the temperatures at the
infinity.
In order to solve this problem, we can dissociate the two thermal problems. First, the heat genera-
tion problem can be solved using the same approach described in the above section but with a little
adjustment to consider only the steady state. Second, the conduction problem is solved by matching
the surface temperature at each point and reversing the heat flow direction using the idea proposed by
Barber[Barber(1970)].
Combining the two solutions and considering that there is no gap of temperature between the two surfaces,
we obtain

(F s1 + F s2 )(φ1) = F s2 (φ) + θ0
2 − θ0

1 (6.23)

where F s1 (resp. F s2 ) is respectively the steady version of F1 (resp. F2) and θ0
1 (resp. θ0

2) is the temperature
at the infinity of solid S1 (resp. S2).
The surface temperatures of S1 (resp. S2) reads

θ1 = F s1 (φ1) + θ0
1

(
resp. θ2 = F s2 (φ2) + θ0

2

)
(6.24)

Eventually, the presence of a thin interface layer can also be considered but it is not the object of this
section. The contact problem is solved using the same technique of optimization. The different variables
are spatially discretized and the discrete convolution is used instead of the matrix product. The objective
function is given by

f
(
Φ1

N
)

= 1
2
t (FΦ1 −Θ) . (FΦ1 −Θ) (6.25)

where
Fij = (T1 + T2) (xj − xi, yj − yi,∞)
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Θj =
Nxy∑
i=1

φiT2 (xj − xi, yj − yi,∞) + θ0
2 − θ0

1

Unlike the transient problem treated in the last section, the thermal equilibrium equation is only spatial.
Hence, no temporal scheme is needed to solve this problem. The minimization of the objective function is
performed with quadratic programming as it has been presented in section 6.3.5. In the following, some
results are presented and the effect of heat flowing from non-zero infinity temperatures is highlighted.

6.5.1 Results

We consider the same model studied in section 6.4. In order to highlight the effect of non vanishing
temperatures at infinity, different values of them are considered in this study. In Tab.6.6 are summarized
the values of these boundary temperatures. Two constant velocities are considered : 10 and 100 rad.s−1.
In Figs.6.49-6.50, are shown the evolution of the coefficient of heat partition p1 with the contact area, for
the two studied velocities. From these figures, we can see that p1 increases as long as θ0

1 is great than θ0
2

(cases C1-C4), and the reverse is also true (cases C5-C8). Indeed, if θ0
1 > θ0

2, heat will flows from S1 to
S2, and if we consider the heat source at the interface, the part of heat that goes to S1 will be less than
the one corresponding to zero temperature at infinity, and thus p1 will decrease. If θ0

1 < θ0
2, an additional

part of heat will go to S1, and thus p1 will increase.
Furthermore, we can see that increasing the contact area decreases the effect of infinity temperatures.
This is essentially due to the fact that increasing contact area, leads to an increasing in the heat generated
at the interface. Subsequently, the distribution of heat becomes less dependent on infinity temperatures.
Moreover, the influence of these temperatures depends on the velocity. Indeed, the heat supplied at the
interface for 100 rad.s−1 is greater than the one flowing from solid boundaries. Thus, the effect of infinity
temperatures is marginal in this case. But for 10 rad.s−1, the amount of heat generated is less than the
one induced by infinity temperatures.
Therefore, heat distribution is affected by the thermal balance between heat generated at the interface
and heat flowing from solid boundaries. Consequently, the surface temperature is modified. Figs.6.51-6.52
present the evolution of the maximal temperature with the contact area, for the same case studies. As we
can see, if θ0

1 > θ0
2 the maximal temperature is increasing with θ0

1, but if θ0
1 < θ0

2, the maximal temperature
is almost not affected except if the contact area is relatively very small. The impact of conduction depends
not only on infinity temperatures but also the ratio between the two solid conductivities. Indeed, the
relatively high conductivity of S1 (κ1 = 10 κ2) makes the gradient of temperature in S1 lower than the
one in S2. Thus, the offset of temperature, that is observed in these figures, exists only if S1 is hotter
than S2 (i.e θ0

1 > θ0
2). Moreover, if the velocity is weak or the contact area is very small, the mechanism

which is predominant is the conduction between solid boundaries and the surface temperature level is
prescribed by infinity temperatures. For instance, this is the case for case C8 and ω = 10 rad.s−1 and a
contact area less than 0.6%.

Cases C1 C2 C3 C4 C5 C6 C7 C8
θ0

1 (◦C) 1 10 50 100 0 0 0 0
θ0

2 (◦C) 0 0 0 0 1 10 50 100

Table 6.6: The temperatures at the infinity for the different case studies
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Figure 6.49: Evolution of heat coefficient parti-
tion p1 with contact area for ω = 10 rad.s−1
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Figure 6.50: Evolution of heat coefficient parti-
tion p1 with contact area for ω = 100 rad.s−1
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Figure 6.51: Impact of remote temperatures on
the maximal temperature with contact area for
ω = 10 rad.s−1
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Figure 6.52: Impact of remote temperatures on
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Conclusions
In this work, heat partition and surface temperature in sliding contact problems have been studied using
a numerical model based on heat source theory. In this model, surface roughness and velocity are both
considered. Also, heat is produced within the contact surface or a thin layer introduced between the two
contacting solids. The problem is discretized and is transformed into a linear system that is solved with
optimization techniques. FFT technique is used to reduce the computational time. Moreover, the effect
of remote prescribed temperatures has been also introduced in the steady state problem.
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Through a parametric study, outcomes such as the evolution of the maximal temperature and the coeffi-
cients of heat partition, have been presented and show plausible behaviors.
From the obtained results, it has been shown that heat partition essentially depends on solids velocities
and the ratio between their conductivities. With regard to the contact area, it has been shown that its
effect is mainly controlled by this ratio. Also, several surface samples have been studied and the effect
of roughness, quantified by the standard deviation, has been presented. As is shown, roughness affects
slightly heat distribution, but influences the maximal reached temperature. Moreover, the consequences
of a time-dependent velocity have been highlighted. Both heat partition and the maximal temperature
are highly affected by the transient decrease of velocity.
Furthermore, the effect that can engender a volume heat production and/or the presence of wear debris
have been considered by introducing a thin small layer at the interface. This interface has been modeled
by a set of thermal components composed from a thermal resistance and a capacitance. Heat is generated
within this components. A case study has been realized to highlight the effect of the profile of heat
generation and the presence of the layer. Different profiles of heat generation have been tested and it
appears that they influence only the jump of temperature at the interface. Also, results show that the
jump between the two surfaces temperature is mainly controlled by the thermal resistance. Also, the mass
effect that slows the temperature rise is also induced by the capacitance. However, from a physical point
of view, more tools are needed to identify properly the properties of the interface layer and the profile of
heat generation.
Otherwise, these results have been obtained for an isolated case where the only source of heat is the inter-
face. As it is not the case for real systems, in the last part of this work, remote prescribed temperatures
have been considered. Results show that a temperature difference between solid remote boundaries causes
a heat flowing through the interface which affect considerably heat partition and the temperature field.
Finally, many improvements can be done to the present model, in particular thermo-mechanical coupling
between the shear process and frictional heat generation. Also, in this work, it is supposed that all the
frictional energy is converted to heat, which is not 100 % true. Indeed, only a major part transforms to
heat and its amount may depend on several mechanisms that have to be identified properly.
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Transition
Contact mechanics and wear issues have been studied in Part 1 of this thesis. The two first chapters

of Part 2 deal with the thermal contact problem. This chapter aims to integrate these features into a large
scale numerical model of a sliding contact system, with the objective of studying their effects on the system
behavior.
Hence, in this chapter, we present a multi-scale strategy which embeds a macro-scale Finite Element model
with surface parameters obtained from micro-contact calculations. These parameters evolve constantly as
wear continues modifying the surface geometry. The different steps of the methodology are highlighted
in this chapter and the micro-contact models are briefly presented, as they were already presented in the
previous chapters.
As an application, a thermo-mechanical analysis of a pin-on-disc system is conducted. The results show
the influence of interface phenomena on contact data such as temperature and pressure.

This figure presents the complete plan of this thesis. The placing of this chapter is highlighted by a blue
box in the background.
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Abstract
This work presents a multi-scale strategy for thermo-mechanical simulation of sliding systems taking

into account contact phenomena occurring at much lower scales than the system’s one. At macro-scale, a
finite element model is considered to model the system interactions considering a thermo-elastic behavior.
At micro-scale, based on our previous works, the thermal and mechanical contact problems are solved
considering surface roughness and wear. For this aim, the surface is discretized into a grid of square
elements and the discrete convolution technique is used with the FFT to accelerate the solving scheme.
Concerning wear, Archard’s law is used with a wear rate coefficient depending on temperature. From
these models, contact parameters such as stiffness and heat partition coefficient are integrated into the
macro-scale model, and this for each surface element. Moreover, the solving scheme is transient allowing
to update the surface topography under wear effect.
As an example, this multi-scale strategy is used to study the thermo-mechanical behavior of a pin-on-disc
system. With this model, the influence of the interface behavior and wear on the system response, are
clearly shown. Conversely this strategy gives results locally, close to the physical mechanisms involved in
the contact. A comparison is performed with a classical model considering perfect contact conditions.

keywords : Contact analysis, Surface Roughness, Multi-scale Approaches, Finite Element Modeling,
Wear, Thermo-mechanical Analysis, FFT technique

7.1 Introduction
In frictional systems, as brakes, the contact interface behavior has a key role on performances. Indeed,
the contact interface is the location where kinetic energy is transformed into frictional heat energy. As
a consequence, high temperatures, resulting from frictional heat, are reached within these zones. This
heating induces wear and local damages that could affect and change the tribological behavior of the
contact interface [Archard(1959)]. Furthermore, wear is also responsible of a continuous modification
of the contact interface by redistributing the contact area during loading. This evolution modifies the
contact conditions and subsequently the interaction between the system components. Thereby, in a
braking system, the contact surface and local temperatures vary according to the combination of heating
and dilation but also wear which is itself influenced by temperature.
In this regard, the aim of the present work is to present an efficient numerical strategy of thermo-
mechanical system simulation which considers the contact interface evolution, in order to highlight the
impact of the contact interface on the thermo-mechanical behavior of the process and conversely.
From a numerical point of view, the main challenge is to propose a framework which considers both the
macro-scale interactions between the system components, and on the other side, the interface phenomena
occurring at a lower scale than the system’s one (i.e meso and micro-scale). Usually only the macro-scale
is considered while the other one is neglected. For example, in [Newcomb(1960), Day and Newcomb(1988),
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Kao et al.(2000), Dufrénoy and Weichert(2003)], thermo-mechanical modeling have been performed by
considering a flat contact with a perfect interface. Contact modeling at this stage is limited to flat surfaces
because the explicit meshing of contact roughness in this kind of models is computationally expensive.
Thus, the strategy that we propose in this work allows to consider contact phenomena in large-scale
modeling. Furthermore, in these strategies, the heat released at the interface is distributed between the
contacting solids using a heat coefficient calculated from the thermal effusivity. However, this approach
does not consider the velocity and the real contact area effect on heat partition.
As regards the problem of micro-scale contact mechanics simulation between rough surfaces, most of the
contact models use the concept of surface asperities introduced in the classical work of[Greenwood and
Williamson(1966)]. Many improvements of this model have been proposed, for instance by including
interactions of asperities[Ciavarella et al.(2006), Waddad et al.(2016)]. Other multi-scale approaches
have been developed with spectral density [Persson et al.(2005)]. Numerical methods have been also
used to solve the rough contact problem, using optimization techniques, either with the finite element
method[Pei(2005)] or the discretized half space theory[Willner(2008)]. The latter presents the advantage
of a reduced CPU time especially if the Fast Fourier Transform (FFT) is used to accelerate the solving
scheme[Gallego et al.(2010)]. The concept of this method has been extended to model the rough contact
of multi-layered solids [Waddad et al.(2017b)].
Furthermore, the thermal contact of rough surfaces has been the subject of many works. For the static
contact, the theoretical framework was firstly proposed in the pioneering works [Cooper et al.(1969),
Mikic(1974)]. For sliding contacts, most of the works are based on the method of heat sources which was
developed in the works of [Blok(1937), Carslaw and Jaeger(1959)]. Based on this technique, we proposed
a numerical approach that takes into account both heat conduction and heat generation [Waddad et
al.(2017d)]. This model uses the FFT technique and optimization schemes.
The surface temperature is crucial for micro-contact analysis as it can be used to estimate the wear
volume. Indeed, the high temperatures reached within the contact surface lead to wear. As regards wear
modeling, a large variety of wear models has been proposed in [Meng(1995)] based on several theoretical
and experimental works that exist in the literature. From these models, the amount of worn volume can
be expressed as a function of contact load, sliding distance and a wear rate that depends on material
properties and wear mode. However, the difficulty in wear modeling is that there is no universal model
that can be applied to all situations[Williams(1999)]. Indeed, most of the existing models are empirical.
Nevertheless, it appears that most of the wear mechanisms (e.g. abrasive and adhesive modes) can be
described with Archard’s law [Archard(1953), Kato(2002)]. In this case, wear volume is proportional
to the normal load and the sliding distance. Yet, wear rate depends on the type of wear and has to be
identified with appropriate experiments. For instance, wear rate corresponding to adhesive wear of metals
has been quantified by [Archard(1953)], depending on the operating conditions and material properties.
In this work, we propose a multi-scale numerical strategy which considers both macro and micro-scale
features. As an application, a thermo-mechanical analysis of a pin-on-disc system is performed. At
macro-scale a finite element model is developed for the system. As mentioned before, the explicit meshing
of contact roughness in this kind of models is computationally expensive, so the studied contact surface
remains flat. Then, the system’s model is embedded, with the contact surface behavior, using an approach
developed in [Waddad et al.(2016)]. This multi-scale homogenization technique is done zone by zone, so
that each zone has its local contact properties. The implementation of this technique allows to get a
macroscopic contact localizations depending only on the size and the geometry of each homogenized zone.
The strategy incorporates three mains steps. First, the micro-contact modeling is performed with the
mechanical, thermal and wear modeling strategies that we have developed in the previous works (see
[Waddad et al.(2016), Waddad et al.(2017a), Waddad et al.(2017b), Waddad et al.(2017c), Waddad et
al.(2017d)]). From micro-scale modeling, the computed parameters are integrated into the macro-scale
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model [Waddad et al.(2016)]. Then, a transient thermo-mechanical analysis is performed. At the end of
this step, a second micro-scale analysis is conducted to analyze the surface evolution. After this step, the
time is updated and a new analysis is performed taking into account the new surface topography and
the initial temperature field for this time step. The different steps of the strategy are presented in the
first section. Then, the micro-contact modeling features are briefly described. The results obtained, with
this strategy, on a pin-on-disc system, are presented in the last section. Besides, a comparison with a
numerical model considering a perfect contact is performed with the aim to highlight the interface role
on the system behavior.

7.2 Presentation of the multi-scale modeling strategy

7.2.1 Global strategy

The aim of this work strategy is to integrate the contact interface behavior in a macroscopic numerical
model without representing the real interface topography (see Fig.7.1). This choice is motivated by the
fact that there is a large gap between the system’s scale and the roughness one where the micro contact
interface phenomena are taking place. For this reason, the contact interface is flat in the macro-scale
model but embedded with many parameters that traduce the real surface behavior.
In this work, our focus is on the thermo-mechanical modeling of frictional sliding systems. Comparing to
the classical approaches, the architecture of our work incorporates additional steps which take into ac-
count the micro-contact behavior and the interaction between the contact interface and the global system
behavior.
The architecture of this work is presented in Fig.7.2. Starting from a numerical large scale model and
initial time t, the studied surface is identified and its initial topography is defined either from real surface
measurements or numerical tools of surface generation (for e.g. fractal techniques). During a time step
∆t and using the real surface topography, a micro contact analysis is done to define interface parameters
that are integrated into a large scale thermo-mechanical analysis where the interface is flat(embedding
strategy). This analysis is transient and covers the interval time ∆t. Subsequently, a post process of
the macro-scale stresses and temperatures issued from this calculation are integrated into a micro-scale
post analysis. The objective of this step is to evaluate the impact of the macro-scale behavior on the
contact interface, by considering wear process for instance. At the end of this step (i.e at t + ∆t), the
time of simulation is updated and a new micro-contact analysis is performed to evaluate the new interface
parameters, and so forth until the time simulation ends.
As we can see, this strategy is made from multiple loops made from sequential steps where there is a
continuous exchange between the macro-scale analysis and the micro-scale modeling. Note that the con-
tact surface is divided into many zones, where each zone has its proper geometry and roughness. Thus,
the micro-contact analysis is performed for each zone separately. Nevertheless, the interactions between
these zones are considered in a macroscopic way. Indeed, the contact pressure (resp. the heat) applied in
the other zones causes a displacement (a temperature elevation) in the considered surface element. This
is what we call "macro-scale" interactions that are induced by the macro-scale contact system. In the
micro-contact analysis, these features are considered as boundary conditions and are assumed not to be
affected by the micro-contact analysis.
In order to give more details on the proposed strategy, Figs.7.3, 7.5 and 7.4 highlight each of the main
steps of the model. In Fig.7.3, the micro-contact analysis is presented. In this step, the contact mechan-
ics problem is solved and both the contact stiffness and the local contact pressure are identified using
roughness parameters and material properties. Using the contact pressure and sliding parameters, the
frictional heating problem is solved and heat partition coefficients and surface temperature are expressed
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Figure 7.1: Schematic of a sliding contact application with the multiscale strategy. The real contact
area is affected by roughness and its evolution with sliding. At the macro-scale, the surface is flat but
embedded by the interface behavior considering roughness.

Figure 7.2: Architecture of the numerical strategy
of contact modeling

Figure 7.3: Steps of the micro-contact analysis
which defines contact parameters
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as a function of the contact pressure. At the end of this step, for each zone of the studied surface, the
large scale numerical model is embedded with the computed interface parameters.
Fig.7.4 presents the large scale numerical analysis steps. It consists of a sequentially decoupled thermo-
mechanical analysis. In this model, the static contact problem under sliding conditions is first solved.
Then, the thermal transient problem is solved by converting the total power of contact shear stresses
into heat. Heat is partitioned according to heat coefficient partition computed with the micro-contact
model. Subsequently, the contact problem is solved by considering thermal expansion due to the rise of
temperature. This operation is performed for a time step δt. At the end, the time is updated and the
two operations are repeated sequentially until the total time increment ∆t is reached. Furthermore, it is
important to note that the two solids are mechanically connected by contact stiffness but their thermal
degrees of freedom are totally disconnected. Indeed, heat is distributed directly using the heat partition
coefficients that are issued from micro-contact calculations. Thus, the thermal conductance parameter is
not used as it will go for the cooling stage which is not analyzed in this work.
From this macro-scale simulation, the post-process is done to obtain the distribution of contact pressure
and the temperature. These data will serve to perform a micro-contact post analysis as presented in
Fig.7.5. Indeed, for each contact zone, using the macro-scale pressure, the local pressure is obtained from
the contact mechanics model. Using the thermal model, the micro-scale local surface temperature is ob-
tained taking into account the macro-scale temperatures. The latter are uniform within the studied zone.
With both these calculations, the micro contact data are computed based on macro-scale interactions.
Then, the surface topography is modified by considering the wear process. Indeed, wear is modeled with
Archard’s law using a wear rate coefficient depending on the surface temperature. Besides, wear analysis
is conducted within the whole time step (from t to t + ∆t) to consider a progressive evolution of the
surface during this step time.
Once the surface of each contact zone is updated, the time is incremented and a new simulation is per-
formed with the new surface topography. Note that the temperature obtained with the macro-scale
simulation is integrated into both the subsequent macro-scale and micro-scale simulation as an initial
temperature field.
Otherwise, it is important to note that several simplified assumptions have been considered : the friction
coefficient is fixed, only one surface is worn, the thermal expansions are not considered at micro-scale and
the micro-contact mechanics model does not consider the effect of friction on the contact distribution.
Nevertheless, the two last points are considered at the macro-scale simulation level. In the following, a
brief review of the micro-contact models is presented.

7.2.2 Micro-contact modeling

In order to solve the micro-contact problem for each zone of the contact surface, the surface of the
considered zone is discretized into a grid made from Nxy = Nx ×Ny small squares having the same size
(see Fig.7.6). The studied interval of time [0, t] is also discretized into Nt equal small intervals. The surface
height, the stresses and the heat flux in each single square are assumed to be uniformly distributed on
it. The material of the solid can be either homogeneous or heterogeneous by considering a multi-layered
solid.
Several approaches can be used to solve the contact problem. In this work, we use the approach developed
in [Waddad et al.(2017d)]. This model is based on the discrete convolution and the FFT technique. Indeed,
the pressure is a discrete convolution of the surface displacements. The problem is solved by minimizing
a functional depending on the contact pressure and taking into account contact constraints.
By reporting the same concept to treat the thermal contact problem, both the thermal conduction and
heat generation problems have been analyzed in [Waddad et al.(2017b), Waddad et al.(2017c)]. In the
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Figure 7.4: Steps of the macro-scale thermo-
mechanical analysis

Figure 7.5: Steps of the micro-contact post anal-
ysis which updates the surface geometry

heat generation problem, the released energy is computed from the work of the frictional forces. Friction
forces are computed from normal forces via a fixed friction coefficient. Here, we assume that friction
does not modify the contact area and that the contact is entirely sliding. The interface is considered as
a source of heat which is distributed over the superior face of each body. Moreover, the solving scheme
is performed by matching the temperatures at the interface. Thus, within the real contact area, the
temperature of the disc is equal to the temperature of the other solid. Additionally, remote temperatures
are also considered as boundary conditions. By introducing an external heat, these temperatures could
affect the heat distribution[Waddad et al.(2017c)].
As regards wear modeling, this process is modeled with Archard’s law using a wear rate coefficient. The
volume of wear is obtained by summing the volumetric wear of each individual micro-contact [Waddad
et al.(2017d)]. Moreover, this coefficient depends on the local temperature of each micro-contact point.
Indeed, wear increases with the temperature elevation caused by the frictional sliding. Otherwise, the
volume of wear is assumed to leave the contact entirely. Therefore, no debris circulation and compaction
are considered.
As is mentioned before, the micro-contact calculations are performed by considering the effect of the
pressure and heat in the other surface elements in a homogenized way as boundary conditions. Note that
this feature has not been considered in the previous works.
In the next section, we present a thermo-mechanical simulation considering the interface behavior and its
evolution. The sliding contact application is a pin-on-disc system.
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Figure 7.6: Schematic of the grid used for each surface element. The surface dimensions are Lx ×Ly and
contain Nx ×Ny square elements

7.3 Description of the numerical model

7.3.1 Numerical model of a pin-on disc system

A 3D finite element model is proposed for a pin-on disc system which has been developed from a bench
test designed in our laboratory [Duboc(2013)]. The model is made of several components. Essentially,
there is a pin-housing, a disc and a friction pin maintained by a thin plate (see Fig.7.1 and 7.7). At the
remote extremities of the thin plate a normal load F = 200N is applied which permits to enforce contact
between the pin and the disc.
Additionally, lateral displacements are blocked in the plate extremities and the disc is rotating with a
constant velocity ω = 200 rpm. The outer radius of the disc is 107.5mm and the inner one is 12.5mm.
This corresponds to a dissipated power P = 3.75kW which is constant in time. Contact is maintained for
a period t = 30s, thus the total dissipated energy is 0.1MJ .
The pin-housing, the thin plate and the disc are made of steel while the pin is made of a sintered material
used for braking applications. Material properties are reported in Tab.7.2. The whole model is composed
of 22100 hexahedron elements and 29800 nodes. For the pin, the mesh element size is fixed to 1× 1 mm2.
As regards thermal boundary conditions, the initial temperature is T0 = 20◦C. Moreover, the convection is
not considered, as its influence is limited during the heating sequence. Thus, thermal diffusion simulation
is conducted under adiabatic conditions. Note that all the parameters are reported in Tab.7.1.
As the model contains several components, the connection between a component and an other has to be
defined appropriately. Thus, tie elements are introduced between the pin and the thin plate, and between
the pin-housing and the plate, to ensure the perfect continuity between them. The contact between the
disc and the pin, of which the dimensions are 20 × 20mm2, is the main issue of this work. In order to
highlight the effect of this interface, two kinds of models are proposed :

• In the first one, the contact is assumed to be perfect and the penalty method is chosen for this
purpose. The contact is frictional and the friction coefficient is fixed to 0.4. Thus, the interface
behavior is not considered in this model. Here, the classical thermo-mechanical modeling approach
is adopted and no attention will be accorded to the interface effect (see Fig.7.4). Moreover, heat
is distributed between the contacting solids using a constant and uniform heat partition coefficient
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and wear is not considered.

• In the second kind, the interface behavior is considered. In this case, the interface is assumed to
be rough. To simplify the study, only the roughness of the friction pin is considered and the disc
surface is flat. Basing on the multi-scale strategy presented in the first section (see Figs.7.1-7.2), the
interface behavior is integrated into the model. Moreover, a frictional behavior is also considered
with the same friction coefficient used for the first model. For micro-scale calculations, each surface
element is discretized into 50× 50 elements. Thus, the size of each square element is 20× 20µm2.

Furthermore, the surface roughness of the pin has been generated numerically using fractal techniques[Persson
et al.(2005)]. The root mean square (RMS) is 10.35µm. The cutoff wave vectors are 1 and 50 and the
fractal dimension is 0.6. The surface used in this study is shown in Fig.7.8.
As regards wear, the wear rate coefficient evolves depending on temperature. The evolution of this pa-
rameter is shown in Fig.7.9. The estimation of this parameter has been obtained from the experiments
realized by [Mann(2017)] on the material used for the pin. Indeed, the weight loss of a sample has been
measured during braking tests at different temperatures. From the loss of material, the wear rate has
been deduced. As we can see from this figure, wear increases with temperature especially above 200◦C.

Figure 7.7: Schematic of the pin-on-disc model. The dimensions of the contact interface are 20× 20mm2

Rmin (mm) Rmax (mm) ω(rpm) T0 (◦C) µ F (N) Nx Ny Nt N t(s)
80 100 200 20 0.4 200 50 50 10 50 30

Table 7.1: Parameters of the study

7.3.2 Results

For the two considered models (perfect contact and embedded contact), simulation results are presented
in this section. For both cases, the contact pressure is shown for t = 0.6s and t = 30s in Fig.7.10. With
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χ (m2/s) κ (Wm−1K−1) E (GPa) ν α (K−1)
Friction Pad 8.3.10−6 35 5 0.3 5.10−6

Other components 10−5 50 220 0.3 10−5

Table 7.2: The contacting solids thermal and mechanical properties

Figure 7.8: Schematic of the rough surface considered in this study. The surface height is comprised
between −45 and 45 µm and the root mean square is 13µm
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Figure 7.9: Evolution of the wear rate coefficient with the temperature level

regard to the case of perfect contact, the obtained distribution of pressure is classical, corresponding to
the case of a static frictional contact, for which the maximal pressure is reached at the inner side of the
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leading edge of the surface. The introduction of the interface behavior modifies the pressure distribution.
As we can see, the contact pressure is concentrated within few zones which represent the macroscopic
contact area. Furthermore, the consideration of wear reduces the maximum pressure and the contact load
is better distributed with wear. Indeed, in the embedded model, the maximal pressure decreases with
time from 6 MPa to 2.73 MPa after 30 s of contact, while in the perfect contact model, the pressure is
quasi-steady since wear is not considered.
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Figure 7.10: Evolution of the contact pressure in the frictional pin for the perfect contact case and the
rough contact case

In Fig.7.11 are shown the corresponding surface temperatures for the two simulations. The high tem-
peratures are reached in the zones where the contact pressure is locally high. For both simulations,
considering the pressure distribution, the heated zones do not cover all the contact area. With thermal
diffusion, the temperature increases with time in the zones where the pressure is weak. At (t = 30 s), the
maximal temperature is 50◦C for the embedded model whereas for the perfect contact case its value is
64◦C. Initially (t = 0.6 s), as we can see, the maximal temperature was reached in the embedded model
rather than the perfect contact model. This evolution can be explained by the fact that in the embedded
model, the pressure was high initially. With wear, the decrease of pressure in the initially loaded zones
and the increase of pressure in the new contact zones, both have led to a reduced elevation of the maximal
temperature comparing to the perfect contact model, where the pressure, subsequently the released heat,
are both stabilized.
The temperature level depends mainly on the heat partition coefficients. As regards this parameter, the
percentage of heat going to the friction pin depends on the radial position of the surface element and
pressure. The maximal, minimal and mean coefficients evolution with time, for each surface element, are
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shown in Fig.7.12. These coefficients correspond to the case of the embedded model and are obtained
from micro-contact calculations. As can be seen from this figure, this percentage is quasi steady ranges
from 10 to 21 % while the mean coefficient is 14%. On the other side, for the perfect contact model,
the heat partition coefficient has been fixed to 14% corresponding thus to the mean coefficient of heat
partition obtained from micro-contact calculations. The reason of this choice is to avoid a considerable
gap of temperatures between the two models. However, if we had chosen a less coefficient as the one
calculated from the thermal effusivity, this coefficient would be fixed to 4% which in turn would have led
to lower levels of temperature. In this case, the maximal temperature in the perfect contact model would
be 31◦C instead of 64◦C. The difference between the two methods is due to the fact that micro-contact
calculations are performed by matching the temperature at the interface considering the velocity and the
real contact area. In contrast, the coefficient computed with effusivity does not consider these aspects.
Other interesting informations are the micro maximal pressure and temperatures. These variables are
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Figure 7.11: Evolution of the surface temperature in the frictional pin for the perfect contact case and
the rough contact case

obtained from micro calculations and concern only the embedded model. Fig.7.14 (resp. Fig.7.15) shows
the evolution of the maximal pressure (resp. the maximal temperature) with time. In the same graphs,
the evolution of the corresponding macroscopic values is also shown.
On one side, as we can see from these curves, the micro-contact variables decrease with time until they
reach a stabilized evolution, while the macroscopic ones vary slightly. The sharp decrease of the micro
data is essentially due to wear. Indeed, wear leads to the creation of flat zones in place of the initial
asperities, leading thus to well distributed mechanical and thermal loads. Also, one can remark that the
maximal micro temperature approximates the macro scale one, as time continues forward. On the other
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ficient with time for the embedded model
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Figure 7.13: Macro-scale wear map in the embed-
ded model

side, the slight increase of the macro-scale temperature is due to the diffusion process and the decrease
of pressure.
The micro-contact analysis is prominent since it gives an information about the evolution of local data
which are a source of local damage and melting. Thus, the FEM model plays a key role in defining
the macro-scale interactions between the different contact zones, while the micro-contact analysis gives a
refined response at the scale of surface asperities.
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Figure 7.14: Evolution of the maximal pressure
at both scales for the embedded model
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Furthermore, Fig.7.16 presents the evolution of wear volume during contact and Fig.7.17 the correspond-
ing maximal wear depth. From the two figures, one can see that wear is maximal in the beginning, then
the slope of its evolution decreases with time. The maximal wear depth at 30 s is 28µm and the total
wear volume is 38.106µm3. The decrease of these quantities follows the decrease of both pressure and
temperature. Thus, wear becomes steady with time within this interval of time. Moreover, Fig.7.13 shows
a macro-scale wear map of the contact surface at the end of simulation. The distribution of wear volume
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corresponds to contact zones where the pressure and temperature are high.
Otherwise, one could expect a different evolution if, for instance, the studied interval time or the rotating
speed or the load were greater than the ones considered in this study. Indeed, as shown in the different
figures, and especially the ones that show the distribution of pressure and temperature fields, the variation
of these fields is a bit soft and there is no sharp changes in the macro distribution of the contact. Hence,
it will be interesting to go beyond the loading parameters chosen for this simulation. In addition, the
surface roughness RMS evolution is shown in Fig.7.18. From this graph, one can see that the initial RMS
has been reduced by almost 0.2µm which is too low comparing to the roughness amplitude of the surface.
Hence, the rough surface has been subjected to mild wear during 30 s of contact.
Furthermore, for the embedded model, the surface temperature of the disc is shown in Fig.7.19. Com-
paring to the pin surface, the rise of temperature is very low. Nevertheless, it is important to note that
micro-contact calculations predict the same surface temperature for the disc and the pin, which is not the
case at macro-scale calculations. Also, the shape of temperature field looks like hot bands or rings. Note
that this gradient of temperature is similar to the one obtained with the perfect contact model. Also, one
can see that there is many large thermal localizations which are mainly due to the disc size mesh, which
is larger than the one considered for the friction pin.
Finally, concerning the computational time, this simulation has been performed within almost 6 days.
At each time increment, the micro-contact calculations are parallelized and last almost 60min while the
macro-scale analysis lasts about 2h. For information, these calculations have been performed with a
machine containing 5 multi-core processors, where each processor contains 16 cores.
The consideration of the micro-contact phenomena have increased the computational time by almost 30%
of the necessary time for a classical macro-scale calculation. As the simulation was focused specially on
the pin surface, the disc data analysis needs a more refined mesh to capture precisely the thermal gradient
on its surface, which in turn will considerably increase the computational time.
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Figure 7.16: Wear volume evolution through the
simulation of the embedded model. The to-
tal cumulated wear volume at 30s of braking is
38.106µm3
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7.4 Conclusions
A multi-scale thermo-mechanical strategy has been presented in this work to model complex systems
including frictional contact. This strategy considers both the system’s scale and the local contact interface
behavior and evolution. The interface modeling is devoted to thermal, mechanical and wear issues.
At the macro-scale, a classical FEM approach considering a flat contact between the mating solids,
thermal expansion and boundary conditions, is adopted. In order to integrate the micro-contact features,
the studied interface is embedded with several parameters issued from micro-contact calculations like heat
partition coefficients and contact stiffness and conductance.
Micro-contact modeling has been extended from previous works. Some aspects and assumptions of the
models that we have used in this study have been briefly presented. Basically, these models consist
of discretizing the surface and using the discrete convolution with the FFT technique. The thermal
and mechanical problems are both solved with constrained optimization algorithms. As regards wear
modeling, the classical Archard’s model was used with a wear rate coefficient depending on temperature.
As an example of the strategy, we have presented a pin-on-disc system that is used to characterize materials
for braking application. A sliding contact sequence has been studied considering the interface evolution.
The obtained results show a smooth and slight variation of macro-contact data. By contrast, the micro-
contact analysis shows a considerable decrease of micro-contact data (local pressure and temperature)
with time due to wear, which is stabilized within few seconds. Moreover, the consideration of micro-
contact analysis gives additional informations on thermal and stress localizations, wear volume spatial
distribution and time evolution.
The multi-scale strategy proposed in this work exhibits the strong interactions presents between the
interface scale and the system’s one during time. It constitutes an efficient basis toward more realistic
modeling approaches of contact applications. Indeed, several improvements can be done, in particular by
considering micro-scale thermal expansions that could modify the contact area. Moreover, wear modeling
can be improved by considering an appropriate wear model/wear rate for the studied contact system.
Furthermore, the wear volume is assumed to leave entirely the contact zone, while it is well known that a
considerable part of wear particles integrate what is commonly known as the tribologic circuit. Finally, the
evolution of material properties has not been considered in this work. For instance, it will be interesting
to investigate, in future works, the case where a gradient of properties already exist using a micro-contact
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model adequate to this situation as the one we have developed in the previous works.
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Conclusions and prospects

The development of efficient, reliable and durable friction brake systems remains one of the most essential
challenges in the urban transportation industry. In these applications, the contact interface separating
the static part and the moving part is central to the system functioning, as it represents the place where
the mechanical energy is dissipated.
Clearly, friction transforms energy into heat, leading thus to increasing temperature which can be harmful
to the disc and the friction material (wear, damage, cracks, etc.). Also, a small part of energy can be
converted into acoustic energy contributing to noise pollution (e.g. squeal). Thus, the knowledge of the
phenomena governing in the contact interface is crucial to improve braking systems with respect to the
different requirements to which they are subjected.
As regards the contact interface, when two solids are mating with each other, the real contact area is
much smaller than the apparent one. The knowledge of this area is important as it influences the different
exchanges between them (e.g. bearing load and heat transfer). In fact, solid bodies have rough surfaces,
leading thus to the creation of separated contact spots where the asperities of the mating surfaces are in
contact. Hence, these exchanges are mainly performed through these spots. Furthermore, the real contact
area evolves constantly considering contact phenomena (e.g. thermal and mechanical loadings and wear).
In particular, material removal due to wear, modifies the surface topography and consequently affects
the contact interactions. Conversely the system modifies the loading conditions and consequently the
contact surface area. This interaction between scales plays a key role in the system behavior and should
be considered in its development.
To address contact issues, manufacturers had implemented solutions which are based on the use of feedback
based tests. However this kind of methods is very costly and inefficient in front of the new technical
and environmental requirements. Furthermore, experiments can not measure contact surface data (e.g.
temperature, pressure, contact area, etc). Therefore, theoretical modeling and numerical simulations can
help to fill this gap, benefiting thus from the recent advances in the computing industry.
Thus, the objective of the present work is to propose a numerical strategy consisting in modeling macro-
scale contact applications like braking systems with realistic assumptions made at the contact interface
considering micro-contact phenomena, unlike the classical approaches which assume surface flatness and
perfect contact conditions. This challenge has been overcome by building a methodology which associates
a large scale Finite Element model of the system and several refined micro-contact models considering
only the interface and covering the thermal, mechanical and wear features.
To address the problematic of the thesis, we analyzed in the first part the contact mechanics issue, while
in the second one, we studied the thermo-mechanical contact behavior. In the two parts, we presented
the key elements of micro-contact modeling and analyzed their predictions. Then, contact applications
have been studied with the aim of investigating the role of the interface in their behavior.
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In the first chapter of the thesis, we developed a contact model that considers surface asperities as
elliptic paraboloids which interact with each other. The analysis is performed by minimizing an objective
function based on contact kinematic constraints. The obtained results point out the role of interactions
in defining contact stiffness. Moreover, the predictions of the micro-contact model are consistent with the
classical contact theories. Thereafter, this model has been used to embed a numerical large scale model
using a non-linear stiffness of the penalty method. This strategy has been verified with finely meshed
Finite Element resolutions. Also the computational time was considerably reduced from several hours to
a few minutes.
In the second chapter, the micro-contact model has been extended to study the case of solids with a
normal gradient of elastic properties. This model considers the material as a multi-layered system and
uses the concept of the transfer matrices. Then, the one asperity problem has been solved with Abel
transform. The obtained solution has been used to develop a contact model for rough surfaces. Here
again, the results have been compared to Finite Element calculations. Besides, the effect of the elastic
properties of solid layers on stiffness and contact area has been shown.
Since the contact is sliding in braking systems, the effect of wear has been introduced by assuming a fully
sliding state. Also, it has been assumed that friction forces do not modify the contact area. Thus, we
adopted the Coulomb’s law of friction to calculate the frictional work responsible for wear. Furthermore,
wear has been modeled with Archard’s law considering a wear rate coefficient. Here, the total volume of
wear is obtained by summing all the volumetric volumes at contact points. Furthermore, to solve this
problem, we considered that the surface is discretized into many square elements instead of asperities.
This choice has been made to take advantage of the linearity of this solution and to avoid the complexity
of analytic terms in asperity based solutions. Moreover, the FFT technique has been used to accelerate
the resolution scheme.
With this model, two parametric studies have been carried out with the aim of showing the effect of wear
step and the influence of solid layers on wear. In particular, results show that a compliant surface layer
decreases the local pressure, stiffness and the amount of wear, and increases the contact area.
The last chapter of the first part has been devoted to study the influence of the contact interface on
the dynamic behavior of a complete brake system. The objective of this work was to identify the effect
of surface roughness on modal coupling that could lead to instabilities in the presence of friction. For
this, a Finite Element Analysis of a complete brake has been conducted using the embedding strategy
presented in the first chapter. This analysis consisted in a quasi-static stress analysis followed by a complex
eigenvalue analysis to identify the system frequencies and modes. These calculations have been performed
on several samples. From the results, the link between the interface behavior and the modal coupling
was clearly shown. Indeed, braking system instabilities are strongly affected by the interface behavior.
The modification of contact parameters may conduct some unstable modes to become stable and some
eigenvectors to lock-in. Moreover, it has been observed that the variability of the dynamic behavior is
more relevant especially at high frequencies for which the friction pad behavior is more influent.

After analyzing the mechanical aspects of the contact problem in the first part, we addressed the
thermal features in the second part, with the objective of studying the thermo-mechanical behavior of
sliding contact systems.
In the fifth chapter, heat conduction through a rough interface has been analyzed considering a static con-
tact, a steady state and a normal gradient of thermal and mechanical properties. This problem has been
solved using Fourier transform and the transfer matrix technique to consider the gradient of properties.
The obtained results have been compared to FEM calculations and a good agreement has been found
between the two methods. A parametric study has been carried out and the studied cases demonstrate
the great impact of roughness, solid-layers and local thermal resistance on the thermal conductance.
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Thereafter, the frictional transient heat generation has been considered in the penultimate chapter. This
problem has been solved with the heat source method and the FFT. From this model, heat partition
coefficients and surface temperature have been computed for several case studies considering roughness,
velocity profile, contact interface conditions, heat profile, etc. The results show that heat partition es-
sentially depends on solids velocities and the ratio between the contacting solids conductivities. Also the
contact area seems to slightly affect this parameter but affects mainly the surface temperature. Further-
more, it has been shown that the thermal phenomena are very fast. Indeed, the maximal temperature is
reached within few milliseconds if the rate of heat is steady within time.
Moreover, heat conduction in sliding contact problems, has been analyzed under stationary assumptions
considering a gap of bulk temperature between the two bodies in contact. Results show that a tempera-
ture difference between solids causes a heat flowing through the interface which affects considerably the
partition of heat and the temperature field. For low velocities, this additional heat has a major impact on
surface temperature. If the speed or the contact area are high, the frictional heat increases which reduces
considerably the impact of heat conduction on the distribution of heat.
Finally in the last chapter, a multi-scale analysis of a pin-on-disc system is presented, considering all the
studied micro-contact features in this thesis. At the macro-scale, a classical FEM approach considering
a flat contact between the mating solids has been adopted. Then the interface has been embedded with
contact parameters obtained with micro-contact calculations like heat partition coefficients, contact stiff-
ness and conductance. The role of the micro-contact behavior in modifying the contact pressure and the
temperature fields is clearly shown. Moreover, the micro-scale calculations give information on local con-
tact surface data, considering the macro-scale interactions, which is hardly feasible from an experimental
point view.

From the results of this thesis, we clearly highlight the role of the micro-contact features in the
definition of the macro-scale system behavior. Nevertheless, to improve this research work, there are
considerable key points that have to be addressed in future works. First, to get more reliable results, it is
necessary to perform more parametric studies by varying several parameters such as roughness, material
properties, loading and velocity. In particular, with regards to surface roughness, all the calculations
have been performed on some numerical samples generated with a given spectrum density. It would be
interesting to realize more parametric studies on real measured surfaces and to extend the study to cover
a broad range of wave vectors.
Second, regarding the multi-scale modeling strategy, some of the main points that could be enhanced are
reported in the following :

• The computational time could be more optimized. This could be done by modeling only the steady
thermal micro-contact problem. Indeed, the micro-contact phenomena are very fast comparing to the
macro-scale ones. Thus, the consideration of the steady problem should not influence significantly
the obtained solution. Conversely, this will reduce considerably the computational time necessary
for micro-contact calculations.

• The macro-scale thermal boundary conditions consider that the external faces are free from any
prescribed heat conditions. This aspect was not considered in the thermal micro-contact problem as
the medium at this scale is considered as a half space. Therefore, to improve this point, the solution
considering bulk temperatures effect could be used for this issue. These temperatures are induced
by heat accumulation which could differ between the two bodies.

• The friction material is heterogeneous and has a complex behavior that has not been addressed
in this study as we focused on the surface effect and only the normal gradient of properties was
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studied. In fact, friction materials contain several components with different sizes and behaviors.
With loading effects, the friction material properties evolve considerably (damage and visco-elasto-
plastic behavior). Thus, it will be worthy to address these features as they could modify the contact
properties.

• With the high localized temperatures reached within the micro-scale contact interface, the thermal
expansion could be considered as it could affect the contact area and the distribution of contact
stresses.

Other features that could be also considered, at mid-term, concern wear and the third body modeling.
These points are listed below :

• Wear modeling could be improved with a convenient law considering material properties and the
predominant wear mechanisms (abrasion, adhesion,etc.). This can be performed by analyzing these
mechanisms at more refined scales using for instance particle based methods. The chosen scale
depends on the material properties and the predominant mechanism of wear. Besides, this could
result in an additional embedding which considers these low scales.

• Wear volume is assumed to leave entirely the contact interface while a part of it integrates the tribo-
logical circuit. The circulation of wear debris, the creation of the third body by their compaction and
its damage modifies the contact dynamic and temperature. Modeling of the third body is strongly
linked to wear modeling, as wear mechanisms define the process of material removal. Therefore, it
is interesting to propose a strategy to model these issues.

Finally, experimental tests must be conducted to measure the different physical parameters used in this
work, and then, the multi-scale strategy can be verified by comparing simulation results with experimental
measurements conducted in dyno tests for instance.
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