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ABSTRACT 

In harsh environments resulting from natural disasters or industrial accidents, reducing 

human interventions by increasing robotic operations is desirable. The main challenges to 

be considered are not only that the robots should be able to go over long distances and 

operate for relatively long periods, but also make the global system tolerant to actuators’ 

failures. In this thesis, to overcome these challenges, systems composed of multi-linked 

two-wheel drive (2WD) mobile robots are considered. The objective of these multi-robot 

systems is to asymptotically track a reference trajectory, despite the presence of actuator 

faults. In this thesis, we design original Fault Tolerant Control (FTC) schemes. Some of 

them are passive methods, i.e. robust control laws to given failures, and other ones are 

active FTC which include a Fault Diagnosis (FD) algorithm that detects, localizes and 

estimates the faults, and adapts the control actions to the faulty situations. 

Several passive FTC strategies are proposed to deal with the unknown failure pattern 

matrix in the dynamic control law. Firstly, multiple dynamic controllers are designed for 

two-linked 2WD mobile robots, each one aiming at compensating a specific combination 

of actuator faults; a switching mechanism selects the proper controller. Secondly, a control 

solution which is well-suited for 𝑛-linked robots (𝑛 ≥ 2) is presented. The provided 

solution is based on transforming the considered model into the canonical chained form, 

then a recursive technique is used to derive the kinematic control law. Based on this, 

multiple dynamic controllers are designed considering all possible failure cases. From 

these dynamic controllers, an appropriate one is selected to generate the applied control 

signal by the control switching mechanism. Thirdly, in order to design a FTC for multi-

linked 2WD mobile robots with friction and actuator faults, the same kinematic control law 

is used, but another dynamic control which does not use the control switching mechanism 

is proposed. To cover all possible actuator failures and to deal with friction, a multi design 

integration based adaptive method is proposed. 

An active FTC scheme is designed where a nonlinear adaptive observer is used to 

estimate the actuator faults, which are modeled as multiplicative and additive faults 

changing the torque inputs on the wheels, and also to estimate the states of the system, 



making the non-measured states available for the feedback control law. The proposed 

active FTC scheme provides fault estimation and fault tolerance. 

Simulation results are presented all along the thesis to verify the validity of the proposed 

control algorithms and to show the performance of the FTC schemes. 

 

 

Keywords: Fault-tolerant control; Fault diagnosis; Chained form; Multi-linked mobile 

robots, Mobile robotics, Modeling. 
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Notations 

The following table describes the different acronyms used in this manuscript. 

Acronym Description of the acronym 

 
FTC 

FD 

WMR 

JPL 

CAMPOUT 

2WD 

4WD 

FDD 

FDI-PC 

DOF 

Fault Tolerant Control 

Fault Diagnosis 

Wheeled Mobile Robot 

Jet Propulsion Laboratory 

Control Architecture for Multirobot Planetary Outposts 

Two-Wheel Drive 

Four-Wheel Drive 

Fault Detection and Diagnosis 

Fault Detection, Isolation and Path Correction 
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Chapter content 

This chapter introduces the objectives and motivations of the thesis, the considered 

problems and challenges and provides the requirements to derive solutions. Different kinds 

of articulated mobile robots are described. A review of the relevant literature on wheeled 

mobile robots and multi-linked wheeled mobile robots are presented. Afterwards, the 

research questions and objectives that this thesis aims to solve are discussed. Finally, the 

organisation of the thesis and the contributions in each chapter are outlined. 

1.1 Multi-linked mobile robots 

1.1.1 Motivation to use multi-linked mobile robots 

The applications of Wheeled Mobile Robots (WMR) have expanded steadily over the last 

two decades, including planetary exploration, search and rescue, demining, and operation 

in remote and hazardous environments as shown in Fig. 1.1. However, these complex 

systems, which have numerous sensors and actuators, could never be immune to system 

faults, which may result in mission failures [1]. So, some sort of strategy must be adopted  

 

Figure 1.1: Different applications of wheeled mobile robots [2, 3]. 
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to mitigate the effect of the faults. 

Due to the harsh environment, it is difficult, even impossible, to send human operators 

to repair a faulty robot. However, in the situation where there are partial failures and 

degradation in some subsystems, instead of aborting the mission, one may decide that the 

group of robots operates at lower efficiencies, or even completes parts of the whole mission 

with a smaller set of available resources. To achieve this, we need fault tolerant control 

systems, where the robots continue to operate despite the occurrence of faults. 

Let us consider the following illustrative example. On March 2011, a severe nuclear 

accident happened after that a very strong earthquake and accompanying tsunami have 

impacted the Fukushima Daiichi Nuclear Power Plants. An enormous amount of 

radioactive particles were released at the plant site, and the environmental conditions 

accordingly were very harsh [4]. In this emergency situation, the objective of the first 

disaster response mission was to assess the damages to the target environment. However, 

the site was very dangerous for humans because of the potential for high radiation 

exposure. Therefore, the exploration using mobile robot technologies was crucial [5]. 

Mobile robots were used extensively to explore the environment at Fukushima Nuclear 

Power Plants, as well as to try to regain control of the plant and conduct decontamination 

in selected areas.  

However, robots were frequently impaired by the following reasons [6]: 

1) Mobility limitations arose when robots were faced with obstructions such as rubble 

piles, tree roots, and doors. 

2)  The presence of radiation results in degraded electronics and cameras within a few 

meters of highly radioactive material. 

3) Mission durations were short due to the limited battery lives of robots, while robots 

that were charging continuously throughout their missions had very limited ranges. 

4) Blocked transmissions caused by buildings and degradation of communication 

networks created difficulties in communicating with robots. 

However, the hardware reliability, communication systems, and sensors were 

considered inadequate for operations as part of the disaster response effort in Fukushima. 

It was impossible to know without testing how long the equipment in the robots could 

operate in such an extreme environment [7]. 
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For two years after the accident occurred in Fukushima, more than thirty robots have 

been deployed to the Fukushima area (or site). In these, five robots could not return and 

some robots could not complete the mission because of some faults [8]. Rendering robots 

more tolerant to faults, more nimble, more autonomous, less vulnerable to radiation, able 

to negotiate obstacles, and to evolve in hazardous environments with fewer support 

requirements would be helpful to avoid the consequences of a nuclear disaster such as in 

Fukushima. 

One of the possibilities to reduce, even avoid the effect of faults in the robots that were 

sent to the Fukushima Daiichi Nuclear Power Plants would have been to link two or more 

robots together. This is because compared to one alone robot, a multi-robot system has 

intrinsic fault tolerance ability due to the redundant actuators and sensors, can carry more 

easily needed supplies and equipments, and can carry more heavy loads. 

There are many potential advantages of a group of robots over a single robot including 

greater flexibility, adaptability, robustness, sharing the sensor data, and operating in 

parallel [9]. These advantages are enforced when the robots are physically linked. 

Furthermore, added interests will result in the cooperating robots when the tasks are 

inherently too complex for a single system. Comparing with one single and large system, 

multi-robot systems can be simpler, more flexible, and fault-tolerant systems. 

A short summary describing some important multi-robot capabilities is given below [10]: 

• Distribution: work in many places at the same time. 

• Multitasking: execute a myriad of tasks simultaneously. 

• Fault tolerance: superposition of functions in order to maintain the overall 

functionality even in the case of the loss of some functions. 

• Flexibility: the operationality can be changed very easily just rearranging the 

robots. 

• Cost-effectiveness: taking advantage of small cheap robots with different (and 

possibly low) capabilities, the group of (linked-) robots can deal with difficult 

missions that could require one expensive big complex robot. 

  In summary, multi-robot systems can often deal with tasks that are difficult, if not 

impossible, to be accomplished by a single robot. A multi-linked robot has most of the 

advantages of the multi-robot systems, furthermore, it has other advantages. 
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Hence, when using mobile robots in harsh environments, one strategy in order to 

mitigate the effect of the faults is to send some swarm robotics. If we have a redundant 

number of robots, even if some robots are lost due to failures they will still be able to 

perform autonomously some operations such as bring some equipment’s or help human 

operators in rescue and repairing missions.  

Taking cues from nature, like ants that are linked when they are bringing together a big 

object, swarm manipulation commonly consists of many small robots working 

cooperatively toward a similar goal but with little information of their fellow robots. Each 

robot of the swarm is a fully autonomous mobile robot capable of performing basic tasks 

such as autonomous navigation, perception of the environment and grasping of objects 

[11]. 

A swarm-bot is a group of mobile robots, equipped with a gripper, also known as s-

bots, that can connect each s-bot to the other. A swarm-bot is more suitable to deal with 

missions that are hard to do for a unique s-bot. As shown in Fig. 1.2, the physically linked 

system can overcome a ground gap or carry heavy loads, which could not be performed by 

a single s-bot [12]. 

This swarm robotics are effective in certain conditions, but there is a risk of damaging 

the robot or the transported object if unsafe magnitudes of force are applied. The robots are 

subject to tremendous stress under those conditions and internal failures often occur. 

In the following are presented some control problems with the multiple cooperative 

robots including, tracking control, force control or grasping or transporting objects.  

 

 

Figure 1.2: Multiple swarm robotics [12]. 
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     In [13, 14] the NASA Jet Propulsion Laboratory (JPL) developed an autonomous multi 

robot system, under hard constraints on power, mass, communication, and computing, to 

help infrastructure construction for exploration of Mars. Two heterogeneous holonomic 

mobile robots (physically linked through a shared payload), with independent four-wheel 

drive and steering motors, a four degree-of-freedom arm, and a gripper with a 3-axis force 

torque sensor, operated autonomously using a leader-follower control architecture called 

CAMPOUT (Control Architecture for Multirobot Planetary Outposts) [13]. 

In this NASA application, one of the main tasks of the two robots is the transportation 

of long beams for building structures. The two robots, as shown in Fig. 1.3, move into 

transport formation and orient themselves toward the goal location. The advantages of 

using multiple versus a single robot for such tasks are: efficient use of system resources, 

parallel execution of multiple tasks, complementary capabilities provided by a group of 

robots, reliability and fault-tolerance to failure of individual components (including failure 

of single robots). 

Jet Propulsion Laboratory has successfully demonstrated the effectiveness of this 

control system in their planetary robotics laboratory through experiments [13, 14]. 

However, the controller was designed without considering fault-tolerant control methods. 

In [15], the authors proposed a re-configuration strategy for the controllers of the 

healthy mobile robots, assigning to them the tasks that were going to be lost when there is 

a faulty robot. For this team of mobile robots, each of them has the same risk to fail. If 

some robots are faulty, they will become obstacles which makes the rescue mission more 

difficult and less efficient to be performed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Multiple wheeled mobile robots [14]. 
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The robots need to independently detect and isolate internal failures and utilize the 

remaining functional capabilities to automatically overcome the limitations imposed by the 

failures. In this case, identifying the faults and adopting a strategy for the compensation of 

their effects are highly recommended in order to guarantee the accomplishment of the tasks 

with satisfactory performance. 

Fault diagnosis for robots is a complex problem, because the set of possible faults is 

very large; actuators' and sensors' faults, environment conditions are uncertain; and there 

is limited computation time and power.  

Two-wheel drive (2WD) mobile robots are often used in multiple cooperative robotic 

systems due to their low cost, simplicity, efficiency, and flexibility. However, such a robot 

becomes uncontrollable when an actuator is totally faulty, which results in the free rolling 

of the wheel or a blocking in a fixed position with undesirable frictions with the ground. 

To avoid such an uncontrollable situation, additional actuators are needed. 

One possible solution is to physically link multiple 2WD mobile robots. This physical 

interaction between robots makes the global system more tolerant to total failures of 

actuators and thus provides ability to complete a mission in presence of actuator faults, 

rather than aborting the entire mission. The robots may be linked initially or when needed. 

Multi-linked 2WD mobile robots are similar to a tractor-trailer, as shown in Fig. 1.4. 

Indeed, they can be understood as equivalent systems when the multi-linked system has 

just one actuated robot. These robotic systems can accomplish dexterous and complex tasks 

which are impossible to realize by a single robot, improve the performance and create a lot 

of advantages. The potential advantages of such system are flexibility (robots may be 

 

 

 

 

 

 

 

 

Figure 1.4: Tractor-trailer mobile robots [16]. 
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attached or separated very easily), improvement of the disturbance-rejection capabilities, 

robustness to failure, adaptability, intrinsic system redundancy, moving facilities in harsh 

environments and fault tolerance. As an over-actuated system, the linked robots system can 

reconfigure itself when partial faults occur, to be able to continue the mission. 

In this work, the 2WD mobile robots are physically linked to deal with faulty actuators. 

This architecture can carry the faulty WMRs up to their targets, without missing any of 

them, guaranteeing the availability of their specialized tools and instruments, which might 

be essential for the mission. The physically linked 2WD mobile robots system is a kind of 

articulated mobile robot which will be described in the next section. 

1.1.2 Articulated mobile robots 

An articulated mobile robot consists of linked elements, similar to a snake with active 

wheels providing propulsion. These kinds of robots can easily adapt themselves to 

aggressive terrains and pass through many kinds of obstacles. This is possible because of 

their joint servomechanisms, that give them a great mobility, allowing to move in open 

fields or to crawl in restricted spaces such as pipes. Thus, the articulated robots are 

recommended in many search and rescue missions inside buildings [17]. 

The connection of multiple active wheeled vehicles in a train-like configuration is a 

common strategy to increase the traction. Applications in this field are reported since 1950, 

as for example the enormous trains from R. G. LeTourneau Inc shown in Fig. 1.5, with 

enhanced traction provided by electric motors that are attached to each wheel [17]. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Application of articulated wheeled vehicle (one of the R. G.  

LeTourneau trackless trains LCC-1) [17]. 



Chapter 1. General Introduction 

 

 8 

In the following we present some strategies of the work with articulated mobile robots, 

including self-reconfigurable robots, tractor-trailer mobile robots and snake robots. We are 

also going to present the multi-linked 2WD mobile robot as an advanced tractor-trailer 

mobile robot and as a kind of articulated mobile robots. 

The self-assembly as the examples shown in Fig. 1.6, is another useful concept, where 

the core idea is the use of modular robots that have the capability of autonomously 

connecting one to the other. By this way, the missions can be performed by a connected 

structure or by a group of single modules, accordingly to the necessities, as for example 

the requirements imposed by the ground conditions [18]. 

Modular self-reconfigurable robot systems have the promise of making significant 

technological advances to the field of robotics in general. Their characteristics of high 

versatility, high value, and high robustness may lead to a radical change in automation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Articulated mobile robots [18, 19, 20]. 
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A tractor-trailer mobile robot is another kind of articulated mobile robot system, as 

shown in Fig. 1.7, a tractor with multiple passive trailers which is the simplest kind of 

articulated mobile robots [3]. The passive trailers have two main advantages, including: 1) 

Low cost, since no additional costs have to be paid on the actuators of the trailers. 2) The 

passive trailers can be extended more easily, if more trailers are required, they can be 

directly hooked to the rear part of the system [16]. 

However, the major drawbacks of the passive trailers are that they require more space 

to travel and more traction power for the tractor. Another drawback is that the overall width 

of the system increases with the number of the trailers, making difficult the turning 

movements. If additional trailers are hitched, the maximal lateral deviation of the trailers 

from the trajectory of the tractor may increase. This may result in a collision between the 

additional trailers and the obstacles. As a result, the path replanning has to be considered. 

Furthermore, due to the added trailers, the robot may fail to find a collision free path in 

replanning [16]. 

On the other hand, active trailers can be used. There exist two types of active trailers. 

A first type is to actuate wheels of trailers, where the connecting joints are passive, and 

two-wheel drive (2WD) robots can be used as active trailers. By using this type of active 

trailers, accurate path following control can be achieved. The second type is to actuate the 

connecting joints, as the work in [16, 21] where the wheels of the trailer are passively 

driven. By appropriate actuation of the connecting joints, the mobile robot can move 

without wheel actuation, by snake like motions.  

 

 

Figure 1.7: Tractor-trailer mobile robots [21, 22]. 
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In summary, compared with the active trailers, the passive trailers have much less 

manoeuvrability, which is the biggest problem of the passive trailers from the viewpoint of 

real application. Moreover, actuator faults in the tractor can make the tractor-trailer useless. 

Snakes are a good inspiration for systems that need to locomote in rough environments. 

That's because they have a great adaptability that allows them to overcome different kinds 

of barriers, such as stones, holes, or others. Then, robotic systems that can imitate the 

motion of biological snakes are very attractive for applications that face the same motion 

limitations, such as those arising from natural disasters [23]. This robot configuration is 

shown in Fig. 1.8.  

Physical links between robots, are essential for solving many collective tasks. For 

example, connecting several robots results in increasing the system power which leads to 

be able to carry heavy loads. Also, for navigation on a rough terrain, physical links can 

serve to pass across wide gaps. More important, multi-linked wheeled mobile robots 

provide actuator and sensor redundancies which improve the fault tolerance of the system. 

If some robots are faulty, the other ones may link to them and can help continue moving. 

By physically linking multiple 2WD mobile robots and building an over-actuated system, 

those ones with faulty motors may stay usable. Using this concept of linked robots makes 

the mobile system more flexible, more efficient and gives better fault tolerance capabilities 

to faults. 

Robustness refers to the ability of a system to be insensitive to external disturbances 

while fault tolerance refers to the ability of a system to detect and compensate for system  

 

Figure 1.8: Snake robots [24]. 
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Figure 1.9: Multi-linked 2WD mobile robots. 

failures. Requiring robustness and fault tolerance in a cooperative architecture emphasizes 

the need to build multi-linked wheeled mobile robots that reduce their vulnerability to 

individual robot faults. 

In order to exploit these fault tolerance capabilities, efficient control algorithms have 

to be used. Designing such Fault Tolerant Control Schemes for multi-linked wheeled 

mobile robot systems, as shown in Fig. 1.9, is the objective of this thesis. These FTC 

algorithms may either include a Fault Diagnosis (FD) layer (we speak about Active FTC 

in that case) or do not use any FD (we qualify this as Passive FTC).  

1.1.3 Literature review of FTC and FD for multi-linked mobile robots 

This section presents a review of the relevant literature on control design methods for 

wheeled mobile robots and multi-linked wheeled mobile robots in order to put a foundation 

for our work and justify the new developments made in this thesis. First, a review on 

trajectory tracking control of wheeled mobile robots will be presented, followed by a brief 

review on trajectory tracking control of multiple mobile robots. Then several Fault Tolerant 

Control (FTC) and Fault Detection and Diagnosis (FDD) algorithms with application to 

mobile robots and multi-linked mobile robots will be presented. 

Some control problems were studied for autonomous navigation of wheeled mobile 

robots, examples are trajectory tracking, path following, and point stabilization. In this 
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thesis, we focus ourselves on trajectory tracking control for a wheeled mobile robot and 

multi-linked wheeled mobile robots. Trajectory tracking control of a mobile robot refers to 

the actual position/orientation of a mobile robot converging to a reference path which may 

be fixed or generated by a moving target. 

The 2WD mobile robots are known to be nonholonomic systems, which are 

characterized by kinematic constraints that are not integrable, i.e., the constraints cannot 

be written as time derivatives of some functions of the generalized coordinates [25]. 

Based on whether a kinematic model or a dynamic model is used to describe the system 

behaviour, the tracking control problem is classified as either a kinematic or a dynamic 

tracking control problem. Using kinematic models of nonholonomic mobile robots, 

different approaches such as neural networks [26], neural-fuzzy [27], backstepping [28], 

have been proposed to solve the tracking control problem. These solutions rely on the 

assumption that the control inputs, usually motor voltages, instantaneously establish the 

desired robot velocities. Based on the dynamic feedback linearization and the differential 

flatness concept, the dynamic controllers are proposed in [29] and [30]. This outlook totally 

ignores the robot dynamics and is usually known as perfect velocity tracking [31].  

In contrast, dynamic control schemes are based on a full dynamic model which captures 

entirely the behaviour of the real mobile robot by accounting for dynamic effects due to 

mass, inertia, and friction, which are otherwise neglected by kinematic control. In [32], the 

dynamic tracking problem of a wheeled mobile robot is studied, and a neural network based 

controller is proposed. The dynamic tracking control problem of nonholonomic mobile 

robot with uncertainties in both kinematics and dynamics is proposed in [33]. In [34] and 

[35] the dynamic tracking problem of a class of the nonholonomic system with unknown 

parameters has been considered. 

For a multibody vehicle which consists of a unicycle-like tractor with multiple trailers, 

a survey on the various control strategies may be found in [36]. In [37] the controllability 

of these systems has been studied; the concept of flatness for multibody mobile robot has 

been discussed in [38]; and nonholonomic motion planning has been discussed in [39]. In 

[40], the method to facilitate the design of the controller, is based on coordinate and input 

transformations to another equivalent control system with a simpler structure (known as 

chained system).  
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Several authors have studied the kinematic control design methods. In [41] an 

alternative idea to stabilize nonholonomic systems that is based on so-called transverse 

functions was presented, and the tracking control for double steering tractor-trailer mobile 

robots with on-axle hitching was studied in [16]. A kinematic and dynamic control scheme 

is developed in [42] for a tractor with one trailer, and in [43] for a tractor with two trailers. 

However, these control methods are developed without considering actuator faults. 

Two bibliographical reviews on FTC design methods may be found in [44], [45], and 

various effective design methods are presented for different applications in [46-48]. 

Fault tolerant control schemes were proposed for mobile robots, see for examples [49-

53] and the references therein. Fault detection and diagnosis (FDD) and fault tolerant 

control (FTC) topics for such vehicles were discussed in [49], [50]. A sensor fault 

accommodation scheme is presented in [51]. A sliding mode FTC using a fault hiding 

approach based on the kinematic model of a nonholonomic mobile robot is presented in 

[52]. A fault-tolerant controller design method is presented in [53], as a two-step procedure 

to provide alternative steering and reuse the nominal controller in a way that resembles a 

crab-like driving mode. Three fault modes are injected (one, two, and three failed steering 

joints) in the real wheeled planetary rovers to evaluate the response of the non-reconfigured 

and reconfigured control systems in face of these faults. 

In the field of wheeled mobile robotics, the subject of faults occurring in wheeled 

locomotion has attracted significant attention because of its vital impact on the 

functionality for a robot [54]. A robust adaptive fault-tolerant control approach for WMR 

is presented in [55], to deal with time-varying unknown control gain and parametric/non-

parametric uncertainties of WMR, together with output constraints and 

actuation/propulsion failures. A hybrid fault adaptive control is designed to accommodate 

partial faults and degradation for 2WD robots in [56]. An adaptive fault tolerant control for 

2WD mobile robots under partial loss of actuator effectiveness is presented in [57]. In [58], 

both kinematic and dynamic models are considered to detect faults under uncertainties on 

the mechanical parameters of the 2WD mobile robots. Sensors, actuators, controller, and 

communication faults are considered in [59] and a fault-tolerant controller for a wheeled 

mobile robot dealing with agricultural environments is designed. In [60-62], fault tolerant 

control design methods for four-wheel drive (4WD) mobile robots are discussed. 
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Besides the fault compensation, Fault Diagnosis (FD) also must be considered, both for 

maintenance purposes, in order to make repairs and prevent a total failure of the system, or 

to improve the control law, in order to act more precisely against the fault effects. Fault 

diagnosis includes three tasks, namely fault detection (determining whether there is a fault 

in the system, in addition to the time at which the fault occurs), fault isolation (determining 

the location of the faulty component), and fault estimation (providing information about 

the type, size, and shape of the fault) [63]. 

Several books ([64], [65], [66]) and survey papers ([67], [68], [69]) make extensive 

reviews on fault diagnosis methods. In [70], the methods are categorized into model-based, 

signal-based, knowledge-based, hybrid, and active fault diagnosis.  

The observer-based methods play a key role in model-based fault diagnosis. Such 

techniques were considered for WMR diagnosis in [71], where an observer-based actuator 

fault detection and isolation method is proposed following the approach presented in [72]. 

In [73], it is suggested to combinate two approaches, namely local model networks for 

modeling and change-detection algorithms for residual generation. This provides an 

efficient method for fault detection and diagnosis, and is applied on the wheels subsystem 

of a 2WD mobile robot. A model-based actuator fault diagnosis for a four-wheel skid 

steering mobile robot was presented in [74]. In [75], a multiple-fault diagnosis method for 

a mobile robot system in the presence of hide effect, is proposed. In [76], it is developed a 

discrete event dynamic system diagnosis to cope with two faulty conditions in an 

autonomous mobile robot task. A fault diagnosis algorithm that estimates the abnormal 

conditions before a breakdown occurs is presented in [77]. 

In [78], multiple models of the robot are used, each one corresponding to a specific 

sensor or actuator fault and the state estimation is performed with Kalman filters. In [79], 

a model-based Fault Detection, Isolation and Path Correction Module (FDI-PC) is 

presented, for 2WD robots. Simulation results demonstrate that a robot is able to navigate 

in an indoor building after a fault occurs on one of its wheels by compensating the effects 

of the fault with corrective input signals. In [80], a neural network is trained when the robot 

is operating normally and then trained again when the robot is operating under different 

faults. The results show that the neural network is able to detect the occurrence of faults. 
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1.2 Thesis objectives 

Fault detection and diagnosis (FDD) and fault tolerant control (FTC) are increasingly 

important for wheeled mobile robots (WMRs), especially those moving in unknown 

environments. Fault detection, diagnosis, and accommodation play a key role in the 

operation of WMRs. Due to the importance of reliability and safe operation of WMRs, 

FDD & FTC are developed in this thesis for multi-linked 2WD mobile robots under 

unknown environments. 

One of the fundamental issues in the motion of mobile robots is trajectory tracking, 

which can be achieved with minimal error by the aid of a proper feedback controller. In 

case of faulty actuators, trajectory tracking with acceptable performance requires a fault 

tolerant feedback control law. 

One can notice that there are very few literatures on fault diagnosis and fault tolerant 

control design for multi-linked mobile robots [81, 82, 83]. In these work, only the case of 

two linked robots is treated. 

The objective of the presented thesis is to develop passive and active fault tolerant 

control schemes for multi-linked 2WD mobile robots, to asymptotically track a 

reference trajectory, despite the presence of actuator faults. 

Three different fault compensation strategies are developed: 

1) Switching between multiple dynamic control laws, each one compensating a 

specific actuator fault.  

2) Using an adaptive control law with a multi integration mechanism that 

incorporates the compensation of all the considered faults. 

3) Using a nonlinear adaptive observer which can estimate the actuator gains, the 

additive faults and the state variables. The estimated variables are used to update 

the dynamic control law and guarantee the trajectory tracking under faulty 

conditions. 

The faults addressed in this thesis include mechanical component faults, such as broken 

motors, and faults due to environmental interactions, such as a wheel introducing friction. 

This thesis involves modeling, simulation variables and parameters, parameter estimation, 

and control design tasks. 
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1.3 Original contributions 

The original contributions of the presented thesis are follows: 

1) The configuration of 𝑛 (𝑛 > 1) physically linked 2WD mobile robots is proposed 

to deal with the actuator faults. 

2) The kinematic and dynamic models of multi-linked 2WD mobile robots are 

proposed. 

3) FTC compensation schemes are designed for multi-linked 2WD mobile robots 

(two or more linked 2WD mobile robots): 

• One proposed solution is based on converting the kinematic model of the 

multi-linked 2WD mobile robots into the canonical chained form. It 

consists in transforming the nonlinear model into an equivalent linear one 

through a change of variables and a feedback transformation. The main 

difficulty is to find the diffeomorphism (state transformation) used to 

transform the kinematic model into the chained form. 

• A recursive algorithm is proposed to design the kinematic controller for 

𝑛 (𝑛 > 1) linked robots to guarantee that all the system’s states converge 

to their desired trajectories. 

• Dynamic control laws including actuator fault are designed, each of 

which is related to one specific failure pattern matrix. If the failure pattern 

which is used in the controller is consistent with the actual one, then the 

applied control signal can ensure the desired system performance. In the 

following, different strategies are proposed including multiple dynamic 

controllers and adaptive fault tolerant dynamic controller.  

4) For failure compensation, multiple dynamic controllers are designed considering 

all possible failure cases. Among these dynamic controllers, an appropriate one 

is selected using the control switching mechanism and applied to ensure the 

desired system performance. 

5) An adaptive fault tolerant dynamic controller based on a multi-design integration 

method is proposed to overcome, on one hand, the problem of uncertain system 
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friction and, on the other hand, the problem of multiple actuator faults while 

ensuring the overall system stability and asymptotic tracking properties. 

6) An adaptive nonlinear observer is proposed to estimate the actuator faults, which 

are modeled as multiplicative and additive faults changing the torque inputs on 

the wheels, and also to estimate the states of the system, making the non-

measured states available for the feedback control law. The estimated actuator 

gains and state variables are used to update the dynamic control law. 

1.4 Thesis outline: 

The outline of the thesis is given below 

• Chapter 1: The motivations, contributions, literature review and thesis outline are 

presented in this chapter. 

• Chapter 2: The description and modeling of multi-linked 2WD mobile robots are 

presented in this chapter. The transformation of the state representation into the 

chained form is also introduced [84, 85, 86]. 

• Chapter 3: This chapter presents two passive fault tolerant control methods, 

including multiple dynamic controllers [85, 86] and adaptive fault tolerant dynamic 

controller [84] for the purpose of actuator fault compensation in multi-linked 2WD 

mobile robots. Simulation results are presented to show the efficiency of the 

proposed passive FTC methods. 

• Chapter 4: This chapter presents active fault tolerant control methods in multi-

linked 2WD mobile robots including actuator fault estimation and compensation 

using a nonlinear adaptive observer. The observer is used to estimate both the 

actuator faults and the states of the system to be able to construct the feedback 

control. Simulation results are presented to show the efficiency of the proposed FD 

observer and active FTC method. 

• Chapter 5: This chapter concludes the thesis and discusses potential improvements 

of the presented methods and possible future research developments in fault 

diagnosis and fault tolerant control for multi-linked 2WD mobile robots. 
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Chapter content 

This chapter is dedicated to the models used in the current research. First, the kinematic 

and the dynamic models of a 2WD mobile robot are given, followed by the model of the 

system actuators. Then a methodology is described to obtain the kinematic and dynamic 

models of a multi-linked mobile robots system. The models are first derived for a simple 

case with two-linked 2WD mobile robots. In the sequel, the model is extended to the case 

of three-linked 2WD mobile robots in order to show the effect of adding one new robot. 

This will emphasize the difficulties in multi-linked robots modeling when three-linked 

robots and more are considered. The models of 𝑛-linked 2WD mobile robots are thus 

proposed. Then, a diffeomorphism is proposed to transform the initial state space 

representation of the kinematic model into the canonical chained form. This new state 

space representation will emphasize the link between the kinematic and dynamic models 

which will be used for the FTC design. The actuator fault model is finally presented. 

2.1 Introduction  

The motion of a mechanical system can be described by a set of dynamic equations, 

containing the forces or torques the system is subjected to. The dynamics of a mechanical 

system has been discussed in numerous scholar literatures related to engineering mechanics 

and analytical mechanics. The study of this subject is important due to the problem of 

controlling the system, which is in contact with its environment. Indeed, the design of a 

controller for such system depends heavily on the mathematical model. 

Many researchers have developed methodologies for the kinematic and dynamic 

modeling of wheeled mobile robots. An extensive study of this subject was published in 

[87]. In [88], structural properties and a classification of the kinematic and dynamic models 

for wheeled mobile robots are presented. The relation between the rigid body motion of 

the robot and the steering and drive rates of wheels was developed in [89] based on 

nonholonomic constraint as, for example, rolling without sliding. 

A systematic method for kinematic and dynamic modeling of a three-wheeled 2-DOF 

mobile robot was presented in [90]. In [91, 92], the kinematics and a set of differential 

equations for the dynamics modeling of a wheeled mobile robot are presented. Using a 
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recursive formulation, the kinematic model of wheeled mobile robots with a global 

singularity analysis is carefully discussed in [93]. 

In general, the dynamic model of a 2WD mobile robots is derived from the Euler-

Lagrange equations [94-97], Newton’s laws of motion [98, 99] or Kane’s method [100]. 

The classical assumptions are ideal rigid body dynamics, flat and horizontal ground 

surface, zero-wheel slip and no friction [101]. 

For the case of tractor-trailer mobile robots, the kinematic models of the tractor with 

and without steering trailer are presented in [102] and the dynamic model of the tractor 

with steering trailer is presented in [103]. The kinematic and dynamic models of the tractor 

with one trailer are presented in [42]. These models of a tractor with 𝑛 trailers are presented 

in [104]. 

2.2 Nonholonomic constraint 

Nonholonomic systems are nonlinear systems that frequently appear in robotics (for 

instance, mobile robots, robot manipulators, wheeled vehicles and underwater robots). To 

perform locomotion of mobile robots the use of wheels is the most common mechanism. 

If we suppose that the wheels are rolling without slipping (classical hypothesis), the mobile 

robot can only move in a direction perpendicular to the axle connecting the wheels. For 

instance, a classical car can reach any final position in its non-constrained plane, but it can 

never move sideways. Hence, it requires to perform a series of maneuvers (such as parallel 

parking) to reach the desired state [105]. 

The motion of many mechanical systems is subjected to constraints on the position and 

the velocity. These constraints restrict the motion of the system by limiting the set of paths 

which the system can follow. Generally speaking, a constraint is said to be holonomic if it 

restricts the motion of the system in a smooth hypersurface in the (unconstrained) 

configuration space 𝑄 [106]. 

It will be convenient to adopt some terms and notations from the differential geometry, 

so this smooth hypersurface is called a manifold. Locally, a holonomic constraint can be 

represented as a set of algebraic constraints on the configuration space, as follows 

 ℎ𝑖  (𝑞) = 0,        𝑖 = 1, 2,⋯ , 𝑘 (2.1) 
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where 𝑞 is the generalized coordinate vector, and ℎ𝑖  is a mapping from 𝑄 to ℝ which 

restricts the motion of the system. The dimension of the manifold on which the motion of 

the system evolves is 𝑛 − 𝑘. We assume that the constraints are linearly independent and 

consequently the matrix 

 
𝜕ℎ

𝜕𝑞
=

[
 
 
 
 
𝜕ℎ1

𝜕𝑞1
⋯

𝜕ℎ1

𝜕𝑞𝑛

⋮ ⋱ ⋮
𝜕ℎ𝑘

𝜕𝑞1
⋯

𝜕ℎ𝑘

𝜕𝑞𝑛]
 
 
 
 

 (2.2) 

is full row rank (i.e., det (
𝜕ℎ

𝜕𝑞
) ≠ 0). 

Since holonomic constraints define a smooth hypersurface in the configuration space, 

it is possible to “eliminate” these constraints by choosing a set of coordinates 

corresponding to this surface. These new coordinates parameterize all allowable motions 

of the system and are not subject to any further constraints. 

More generally, for a system with the configuration space 𝑄, velocity constraints of the 

following form may be considered 

 𝜔𝑖(𝑞)𝑞̇ = 0,        𝑖 = 1, 2,⋯ , 𝑘 (2.3) 

where the 𝜔𝑖(𝑞) are row vectors. We assume that the 𝜔𝑖 are linearly independent at each 

point 𝑞 ∈ ℝ𝑛, since if they are not, the dependent constraints may be eliminated. Each 𝜔𝑖 

describes one constraint on the directions in which 𝑞̇ is permitted to take values. 

We say that the 𝑘 Pfaffian constraints of the form of equation (2.3) are integrable if 

there exist functions ℎ𝑖: ℝ
𝑛 → ℝ, 𝑖 =  1,⋯ , 𝑘 such that 

 ℎ𝑖  (𝑞(𝑡)) = 0   ⟺  𝜔𝑖(𝑞)𝑞̇ = 0,      𝑖 = 1, 2,⋯ , 𝑘 (2.4) 

Thus, a set of Pfaffian constraints is integrable if it is equivalent to a set of holonomic 

constraints. As a consequence, an integrable Pfaffian constraint is often called a holonomic 

constraint, although strictly speaking the former is described by a set of velocity constraints 

and the latter by a set of functions. A set of Pfaffian constraints is said to be nonholonomic 

if it is not equivalent to a set of holonomic constraints [106]. 

A car is an example of a system with nonholonomic constraints. The kinematics of a 

car is constrained because the front and rear wheels are only allowed to roll and spin, but 

not to slide sideways. As a consequence, the car itself is not capable of sliding sideways, 
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or rotating in place. Despite this, we know from our own experience that we can park an 

automobile at any position and orientation. Thus, the constraints are not holonomic since 

the motion of the system is unrestricted. Finding an actual path between two given 

configurations is an example of a nonholonomic motion planning problem. Note that 

equation 2.4 is not satisfied for the car. 

If the system is nonholonomic, the number of Degrees of Freedom (DOF) (or the 

number of independent velocity) is equal to the number of independent generalized 

coordinates minus the number of nonholonomic constraints [105]. 

Throughout the thesis, we assume that the wheels satisfy the nonholonomic constraints 

relative to the pure rolling conditions at each contact wheel/ground, without slipping 

effects. This implies that we suppose that the contact forces between the ground and the 

wheels take the right values allowing the satisfaction of these conditions; this is an ideal 

model. In reality, the contact forces appear as a consequence of local slipping, according 

to phenomenological contact force models. Using a singular perturbation approach, it can 

be shown that these slipping effects correspond to fast dynamics, i.e., to dynamical effects 

with characteristic times that are quite short with respect to the dynamics of the global 

motion of the robot, and can therefore be neglected, at least when using the ideal model for 

control design purpose [3]. 

Assumption 2.1 [3]: For the linked mobile robots, we assume that the wheels satisfy the 

nonholonomic constraints relative to the pure rolling conditions at each contact 

wheel/ground, without slipping effects. This implies that the contact forces between the 

ground and the wheels take the right values allowing the satisfaction of these conditions. 

2.3 Kinematic and dynamic models for 2WD mobile robots 

Modeling of a 2WD mobile robot consists of kinematic and dynamic modeling in addition 

to the modeling of the system actuators. Kinematic modeling deals with the geometric 

relationships that govern the system and studies the mathematics of motion without 

considering the affecting forces. On the other hand, dynamic modeling is the study of the 

motion in which forces and energies are modeled and included. Actuator modeling is 

needed to find the relationship between the control signal and the mechanical system’s 

input [107]. 
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2.3.1 Kinematic modeling 

A 2WD mobile robot, as shown in Fig. 2.1, consists of two individually propelled wheels 

and a third wheel called castor wheel needed for mobile robot stability, that can move 

freely in space. By adjusting the power applied to each motor, the robot can go forward, 

rotate in place or perform movement on any arbitrary curve in plane. 

Consider a differential drive mobile robot which has two wheels, with radius 𝑅, placed 

at a distance 𝐿 from the robot center. The center of mass of the robot is assumed to be 

located at a distance 𝑎 from the center of the driving wheels axis. (𝐴, 𝑥𝑟 , 𝑦𝑟) is the reference 

frame fixed to the mobile robot and (𝐴, 𝑥𝑙 , 𝑦𝑙) is the global inertial reference frame. The 

mobile robot has a total mass 𝑚 and a moment of inertia 𝐼𝑐 around its center of mass. The 

configuration of the robot, can be described by five generalized coordinates 

 𝑞 = [𝑥𝑐, 𝑦𝑐, 𝜃, 𝜑𝑟 , 𝜑𝑙]
𝑇 (2.5) 

where (𝑥𝑐, 𝑦𝑐) are the coordinates of the center of mass in the inertial reference frame, 𝜃 is 

the heading angle of the robot, and (𝜑𝑟, 𝜑𝑙) are the rotation angles of respectively the right 

and left driving wheels. 

The translational velocity 𝜐 and rotational velocity 𝜔 of the 2WD mobile robot, in the 

local frame, are found using the velocities of the right and left driving wheels 

 𝜐 =
𝑅

2
(𝜑̇𝑟 + 𝜑̇𝑙) (2.6) 

 𝜔 = 𝜃̇ =
𝑅

2𝐿
(𝜑̇𝑟 − 𝜑̇𝑙) (2.7) 

 

 

 

 

 

 

 

 

 

Figure 2.1: 2WD mobile robot. 
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The nonholonomic constraint of the 2WD mobile robot states that the robot can only 

move in the direction normal to the axis of the driving wheels, i.e., the mobile robot satisfies 

the conditions of pure rolling and non-slipping. 

The no lateral slip constraint is given by 

 𝑦̇𝑐 cos 𝜃 − 𝑥̇𝑐 sin 𝜃 − 𝑎𝜃̇=0 (2.8) 

where 𝑦̇𝑐 and 𝑥̇𝑐 are of the robot’s center of mass. This constraint means that the velocity 

of the robot center 𝐴 is in the direction of the symmetry axis and the motion along the 

orthogonal axis does not exist.  

The pure rolling constraint is expressed by the following two equations 

 𝑥̇𝑐 cos 𝜃 + 𝑦̇𝑐 sin 𝜃 + 𝐿𝜃̇= 𝑅𝜑̇𝑟 (2.9) 

 𝑥̇𝑐 cos 𝜃 + 𝑦̇𝑐 sin 𝜃 − 𝐿𝜃̇= 𝑅𝜑̇𝑙 (2.10) 

This constraint shows that the driving wheels do not slip.  

To summarize, the three nonholonomic constraints can be written in the following 

form: 

 𝐴(𝑞)𝑞̇ =0 (2.11) 

where 

 𝐴(𝑞) = [
− sin 𝜃 cos 𝜃 −𝑎 0 0
cos 𝜃 sin 𝜃 𝐿 −𝑅 0
cos 𝜃 sin 𝜃 −𝐿 0 −𝑅

] (2.12) 

2.3.2 Dynamic modeling 

We now derive the dynamic equations for the 2WD mobile robots. The energy-based 

Lagrangian approach can be used to derive the dynamic model of the 2WD mobile robot 

which is represented in the following general form [108]: 

 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞̇) + 𝐺(𝑞) = 𝐵(𝑞)𝜏 + 𝐴𝑇(𝑞)𝜆 (2.13) 

where 

𝑀(𝑞) ∈ ℜ3×3 is the symmetric positive definite inertia matrix, 𝐶(𝑞, 𝑞̇) ∈ ℜ3×1 is the 

centripetal and Coriolis forces matrix, 𝐹(𝑞̇) is the surface friction matrix, 𝐺(𝑞) is the 

gravitational vector,  𝐵(𝑞) ∈ ℜ3×2 is the input transformation matrix, 𝜏 ∈ ℜ2×1 is the 

vector of control torques, 𝐴(𝑞) ∈ ℜ3×1 is the system constraint matrix, 𝜆 ∈ ℜ2×1 is the 

Lagrange multipliers vector. 
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Because the trajectory of the mobile robot is constrained to the horizontal plane, i.e., 

since the system cannot change its vertical position, its potential energy 𝑈 remains 

constant. This provides the elimination of the gravity term in the dynamic equation: 

 𝐺(𝑞) =0 (2.14) 

Assuming that the surface friction may be neglected, we have   

 𝐹(𝑞̇) = 0 (2.15) 

The system in equation (2.13) can be transformed into a more proper representation for 

control and simulation purposes. From (2.6)-(2.10) we can obtain 

 𝑞̇ =

[
 
 
 
 
𝑥̇𝑐

𝑦̇𝑐

𝜃̇
𝜑̇𝑟

𝜑̇𝑙 ]
 
 
 
 

= 𝑆(𝑞)𝜂=

[
 
 
 
 
𝑐𝑜𝑠 𝜃 −𝑎𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑎𝑐𝑜𝑠 𝜃
0 1
1
𝑅

𝐿
𝑅

1
𝑅

−𝐿

𝑅 ]
 
 
 
 

[
𝜐
𝜔
] (2.16) 

where 𝜐 is the longitudinal velocity of the robot along the axis of symmetry and 𝑆(𝑞) is the 

forward kinematic matrix. 

It can be proved that 

 𝑆(𝑞)𝑇𝐴(𝑞)𝑇 =0 (2.17) 

The above equation is useful to eliminate the constraint term from the main dynamic 

equation as shown in the following procedure.  

Differentiating equation (2.16), we have 

 𝑞̈=𝑆̇(𝑞)𝜂 + 𝑆(𝑞)𝜂̇ (2.18) 

Substituting the above equation in (2.13) results in the following equation: 

 𝑀(𝑞)𝑆̇(𝑞)𝜂 + 𝑀(𝑞)𝑆(𝑞)𝜂̇ + 𝐶(𝑞, 𝑞̇)𝑆(𝑞)𝜂 = 𝐵(𝑞)𝜏 + 𝐴𝑇(𝑞)𝜆 (2.19) 

In order to eliminate the constraint 𝐴𝑇(𝑞)𝜆, equation (2.19) is left-multiplied by 𝑆(𝑞)𝑇 

it gives: 

 
[𝑆(𝑞)𝑇𝑀(𝑞)𝑆(𝑞)]𝜂̇ + [𝑆(𝑞)𝑇𝑀(𝑞)𝑆̇(𝑞) + 𝑆(𝑞)𝑇𝐶(𝑞, 𝑞̇)𝑆(𝑞)]𝜂

= 𝑆(𝑞)𝑇𝐵(𝑞)𝜏 + 𝑆(𝑞)𝑇𝐴𝑇(𝑞)𝜆 
(2.20) 

which is equivalent to 
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[𝑆(𝑞)𝑇𝑀(𝑞)𝑆(𝑞)]𝜂̇ + [𝑆(𝑞)𝑇𝑀(𝑞)𝑆̇(𝑞) + 𝑆(𝑞)𝑇𝐶(𝑞, 𝑞̇)𝑆(𝑞)]𝜂

= 𝑆(𝑞)𝑇𝐵(𝑞)𝜏 
(2.21) 

This equation may be rewritten as: 

 𝑴̅(𝒒)𝜼̇ + 𝑪̅(𝒒, 𝒒̇)𝜼 = 𝑩̅(𝒒)𝝉 (2.22) 

where 

 𝑀̅(𝑞) = 𝑆(𝑞)𝑇𝑀(𝑞)𝑆(𝑞) (2.23) 

 𝐶̅(𝑞, 𝑞̇) = 𝑆(𝑞)𝑇𝑀(𝑞)𝑆̇(𝑞) + 𝑆(𝑞)𝑇𝐶(𝑞, 𝑞̇)𝑆(𝑞) (2.24) 

 𝐵̅(𝑞) = 𝑆(𝑞)𝑇𝐵(𝑞) (2.25) 

2.3.3 Actuator modeling  

DC motors are the main type of actuators used in mobile robots. Consequently, it is 

important to analyze and integrate their dynamics into the mobile robot model. There are 

two types of DC motors:  

1) Field current controlled.  

2) Armature current controlled. 

In a field current controlled motor, the armature current 𝑖𝑎 is kept constant while the 

field current is controlled using field voltage 𝑣𝑓 signals. 

On the other hand, in an armature current controlled motor, the armature voltage 𝑣𝑎 is 

the signal to control the armature current while keeping the field current 𝑖𝑓 constant. 

Consequently, we have the following equations for the DC motor model: 

 𝜏𝑚 = 𝑘𝑚𝑖𝑎 (2.26) 

 𝑣𝑎 = 𝑘𝑏𝜔𝑚 (2.27) 

where 

𝜏𝑚 is the rotor torque. 

𝑖𝑎 is the armature current. 

𝜔𝑚 is the angular speed of the motor. 

The parameters 𝑘𝑚 and 𝑘𝑏 are the torque constants and the back Electromotive Force 

(EMF) constant respectively. Note that with consistent units, 𝑘𝑚 = 𝑘𝑏 in the case of ideal 

electrical to mechanical energy conversion at the motor rotor. Armature current controlled 

DC motors are more common choice in mobile robots. 
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The equation for the armature rotor circuit is as follows: 

 𝑣𝑎 = 𝑅𝑎𝑖𝑎 + 𝐿𝑎

𝑑𝑖𝑎
𝑑𝑡

+ 𝑣𝑏 (2.28) 

where  

𝑣𝑎  is the supply voltage to the armature. 

𝑣𝑏  is the back e.m.f. voltage.  

𝑅𝑎 is the resistance of the armature winding. 

𝐿𝑎 is the leakage inductance in the armature winding. 

It should be noted here that the leakage inductance is usually neglected.  

The mechanical equation of the motor as shown in Fig. 2.2, is obtained by applying the 

Newton’s second law as follows: 

 𝐽𝑚
𝑑𝜔𝑚

𝑑𝑡
= 𝜏𝑚 − 𝜏𝑙 − 𝑏𝑚𝜔𝑚 (2.29) 

where  

 𝐽𝑚 is the rotor inertia. 

𝑏𝑚 is the equivalent damping constant of the rotor. 

𝜏𝑙 is the load torque of the motor rotor. 

Equations (2.26), (2.27), (2.28) and (2.29) represent the model of the DC motor. 

However, their effect on the system dynamic will be neglected in the future FTC design 

methods because the dynamic of this actuator is faster compared with the robot dynamic. 

However, this model has been integrated in the simulation scheme to have simulation 

results as close as possible to actual system behaviour.  

 

Figure 2.2: Equivalent circuit of a DC motor with a free body attached. 
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2.4 Modeling of multi-linked 2WD mobile robots 

In this section, a methodology is presented to obtain the kinematic and dynamic models of 

multi-linked systems. First, the models are derived for the simple case with two-linked 

2WD mobile robots. In the sequel, the idea is extended to the case of three-linked robots 

in order to show the effect of adding one new robot. Then, the model is generalized for 𝑛-

linked robots. 

2.4.1 Modeling of two-linked 2WD mobile robots 

In this subsection, the kinematic and dynamic models are given for a two-linked 2WD 

robots system. For each robot, the front passive caster is omitted and the two rear wheels 

are actuated. The orientation of the first robot is independent (the physical link rotates 

freely at the attached point), but in the other robot the orientation is constrained by the fixed 

link. 

It can be seen in Fig. 2.3, the configuration of a system with two physically linked 2WD 

mobile robots. For the 𝑖th (𝑖 = 1, 2) robot, 𝑃𝑖 is the centered point between the wheels, 𝐶𝑖 

is the geometrical center of mass, 𝑎𝑖 is the distance between 𝑃𝑖 and 𝐶𝑖, 𝑏𝑖 is half of the 

distance between the wheels, 𝑟𝑖 is the radius of the wheels, 𝜃𝑖 is the orientation of the robot, 

and 𝜏𝑖𝑙 and 𝜏𝑖𝑟 are the control torques applied to the left and right actuated wheels, 

respectively. In addition, 𝑑 is the distance between 𝑃1 and 𝑃2, frame 𝑂𝑋𝑌 is the inertial 

frame, and (𝑥, 𝑦) denotes the position of 𝑃2 in frame 𝑂𝑋𝑌. 
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Figure 2.3: Two-linked 2WD mobile robots. 
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This system can be represented by the generalized coordinate vector 

 𝑞 = [𝑥, 𝑦, 𝜃2, 𝜃1]
𝑇 (2.30) 

Note that 𝑞, 𝑥, 𝑦, 𝜃2 and 𝜃1 are time-dependent signals but the time variable is omitted 

in the notation for sake of simplicity. 

2.4.1.1 Kinematic modeling 

Let 𝜐1 and 𝜐2 be the linear velocities of 𝑃1 and 𝑃2, which also denote the linear velocities 

of the two robots, respectively, with 𝜐2 = 𝜐1 cos(𝜃1 − 𝜃2). 

The output of the kinematic model is the generalized coordinate 𝑞 and the input is 

conveniently defined as 𝜂 = [𝜐2, 𝜔1] 
𝑇, where 𝜐2 is the linear velocity of robot 2 and 𝜔1 is 

the angular velocity of robot 1. Thus, the kinematic equations of the two linked 2WD 

mobile robots shown in Fig. 2.3 are given by 

 𝑥̇ = 𝜐2 cos 𝜃2 (2.31) 

 𝑦̇ = 𝜐2 sin 𝜃2 (2.32) 

 𝜃̇2 =
𝜐2

𝑑
tan(𝜃1 − 𝜃2) (2.33) 

 𝜃̇1 = 𝜔1 (2.34) 

The kinematic equations in (2.31) -(2.34) can be rewritten as 

 𝒒̇ = 𝑺(𝒒)𝜼 (2.35) 

where 𝑆(𝑞) ∈ ℜ4×2 is given by 

 𝑆(𝑞) = [cos 𝜃2 sin 𝜃2

1

𝑑
tan(𝜃1 − 𝜃2) 0

0 0 0 1

]

𝑇

 (2.36) 

Let (𝑥1, 𝑦1) be the position of 𝑃1, we have 𝑥̇1 = 𝜐1 cos 𝜃1  and 𝑦̇1 = 𝜐1 sin 𝜃1. Then 

with (2.31) and (2.32), the system constraints are 

 𝑥̇1 sin 𝜃1 − 𝑦̇1 cos 𝜃1 = 0 (2.37) 

 𝑥̇ sin 𝜃2 − 𝑦̇ cos 𝜃2 =0 (2.38) 

with 𝑥1 = 𝑥 + 𝑑 cos 𝜃2 and 𝑦1 = 𝑦 + 𝑑 sin 𝜃2, equation (2.37) can be rewritten as 

 𝑥̇ sin 𝜃1 − 𝑦̇ cos 𝜃1 − 𝜃̇2𝑑 cos(𝜃1 − 𝜃2) = 0 (2.39) 

Then (2.38) and (2.39) can be expressed as 
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 𝐴(𝑞)𝑞̇ =0 (2.40) 

where 𝐴(𝑞) ∈ ℜ2×4 is the system constraint matrix given by 

 𝐴(𝑞) = [
𝑠𝑖𝑛 𝜃1 −𝑐𝑜𝑠 𝜃1 −𝑑 𝑐𝑜𝑠(𝜃1 − 𝜃2) 0

𝑠𝑖𝑛 𝜃2 −𝑐𝑜𝑠 𝜃2 0 0
] (2.41) 

Furthermore, the kinematic model respects the natural orthogonal complement property 

 𝑆(𝑞)𝑇𝐴(𝑞)𝑇 = 0 (2.42) 

which is related to the nature of the constraints. 

In many applications, the kinematic model of a WMR is sufficient to design a controller 

for trajectory tracking with satisfactory performance. However, many nonholonomic 

systems in reality have non-negligible dynamics, therefore a dynamic model of the system 

must be taken into account, in order to properly deal with the actuator faults changing the 

torque inputs. 

2.4.1.2 Dynamic modeling 

From the Lagrange method, the differential equation governing the dynamics of the two 

physically linked 2WD mobile robots is derived as: 

 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)= 𝐵(𝑞)𝜏 + 𝐴(𝑞)𝑇𝜆 (2.43) 

where 

𝑀(𝑞) ∈ ℜ4×4 is the system inertia matrix, 𝐶(𝑞, 𝑞̇) ∈ ℜ4×1 is the matrix that multiplied by 

𝑞̇ gives the centripetal and Coriolis forces vector, 𝐵(𝑞) ∈ ℜ4×4 is the input transformation 

matrix, 𝜏 ∈ ℜ4×1 is the vector of control torques. 𝐴(𝑞) ∈ ℜ2×4 is the system constraint 

matrix, 𝜆 ∈ ℜ2×1 Lagrange multipliers vector. 

𝑀(𝑞) =

[
 
 
 
 
 

𝑚1 + 𝑚1 0

0 𝑚1 + 𝑚1

−(𝑎2𝑚2 + 𝑑𝑚1) sin 𝜃2 (𝑎2𝑚2 + 𝑑𝑚1) cos 𝜃2

−𝑎1𝑚1 sin 𝜃2 𝑎1𝑚1 cos 𝜃1

 

−(𝑎2𝑚2 + 𝑑𝑚1) sin 𝜃2 −𝑎1𝑚1 sin 𝜃2

(𝑎2𝑚2 + 𝑑𝑚1) cos 𝜃2 𝑎1𝑚1 cos 𝜃1

𝑚2𝑎2
2 + 𝑚1𝑑

2 + 𝐼𝑚2 𝑎1𝑑𝑚1 cos(𝜃1 − 𝜃2)

𝑎1𝑑𝑚1 cos(𝜃1 − 𝜃2) 𝑚1𝑎1
2 + 𝐼𝑚1 ]

 
 
 
 
 

 



Chapter 2. System Modeling and Model Transformation 

 

 31 

𝐶(𝑞, 𝑞̇)=

[
 
 
 
 
 
−𝑎1𝑚1𝜃̇1

2 cos 𝜃1 − (𝑎2𝑚2 + 𝑑𝑚1)𝜃̇2
2 cos 𝜃2

−𝑎1𝑚1𝜃̇1
2 𝑠𝑖𝑛 𝜃1 − (𝑎2𝑚2 + 𝑑𝑚1)𝜃̇2

2 𝑠𝑖𝑛 𝜃1

−𝑎1𝑑𝑚1𝜃̇1
2 sin(𝜃1 − 𝜃2)

𝑎1𝑑𝑚1𝜃̇2
2 sin(𝜃1 − 𝜃2) ]

 
 
 
 
 

 

𝐵(𝑞) =

[
 
 
 
 
 
 
 
 

𝑐𝑜𝑠 𝜃1

𝑟1

𝑐𝑜𝑠 𝜃1

𝑟1

𝑐𝑜𝑠 𝜃2

𝑟2

𝑐𝑜𝑠 𝜃2

𝑟2
𝑐𝑜𝑠 𝜃1

𝑟1

𝑐𝑜𝑠 𝜃1

𝑟1

𝑐𝑜𝑠 𝜃2

𝑟2

𝑐𝑜𝑠 𝜃2

𝑟2
𝑑 𝑠𝑖𝑛(𝜃1 − 𝜃2)

𝑟1

𝑑 𝑠𝑖𝑛(𝜃1 − 𝜃2)

𝑟1

𝑏2

𝑟2
−

𝑏2

𝑟2
𝑏1

𝑟1
−

𝑏1

𝑟1
0 0

]
 
 
 
 
 
 
 
 

 

where 𝑚1 and 𝑚2 are the masses of the robot 1 and robot 2, and 𝐼𝑚1 and 𝐼𝑚2 are the 

corresponding inertia parameters.  

The details to obtain 𝑀(𝑞), 𝐶(𝑞, 𝑞̇) and 𝐵(𝑞), are given in Appendix A and B. 

Substituting (2.35) into (2.43), and left-multiplying by 𝑆(𝑞)𝑇, 𝐴(𝑞)𝑇𝜆 is eliminated 

with (2.42). Then, the dynamic equation (2.43) becomes 

 𝑴̅𝟏(𝒒)𝜼̇ + 𝑴̅𝟐(𝒒)𝜼 + 𝑪̅(𝒒, 𝒒̇) = 𝑩̅(𝒒)𝝉 (2.44) 

where  

 𝑀̅1(𝑞) = 𝑆(𝑞)𝑇𝑀(𝑞)𝑆(𝑞) (2.45) 

 𝑀̅2(𝑞) = 𝑆(𝑞)𝑇𝑀(𝑞)𝑆̇(𝑞) (2.46) 

 𝐶̅(𝑞, 𝑞̇) = 𝑆(𝑞)𝑇𝐶(𝑞, 𝑞̇) (2.47) 

 𝐵̅(𝑞) = 𝑆(𝑞)𝑇𝐵(𝑞) (2.48) 

2.4.2 Modeling of three-linked 2WD mobile robots 

With the objective to derive in the next section the kinematic and dynamic models for a 𝑛-

linked 2WD robots system (where 𝑛 is any integer greater than 2), let first consider the 

case of three-linked robots. For each robot, the front passive caster is omitted and the two 

rear wheels are actuated. The leader robot is robot 1, while the followers are robots 2 and 

3. The orientations of robots 2 and 3 are consistent with the physical links, but the 

orientation of robot 1 is independent. The configuration of the whole system is completely 

described by 𝑞 = [𝑥, 𝑦, 𝜃3, 𝜃2, 𝜃1]. 
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2.4.2.1 Kinematic modeling 

The nonholonomic nature of a mobile robot is related to the assumption that the wheels 

of the mobile robots roll without slipping. They are subject to nonholonomic constraints 

involving the velocity. The system constraints take the matrix form as follows 

 𝐴(𝑞)𝑞̇ = 0 (2.49) 

where 

 𝐴(𝑞) = [

𝑠𝑖𝑛 𝜃3 −𝑐𝑜𝑠 𝜃3 0 0 0

𝑠𝑖𝑛 𝜃2 −𝑐𝑜𝑠 𝜃2 −𝑑2 𝑐𝑜𝑠(𝜃2 − 𝜃3) 0 0

𝑠𝑖𝑛 𝜃1 −𝑐𝑜𝑠 𝜃1 −𝑑2𝑐𝑜𝑠(𝜃1 − 𝜃3) −𝑑1 𝑐𝑜𝑠(𝜃1 − 𝜃2) 0

] (2.50) 

The kinematic equations of three-linked mobile robots, as shown in Fig. 2.4, are given 

by  

 𝒒̇ = 𝑺(𝒒)𝜼 (2.51) 

where 𝜂 = [𝜐3 𝜔1]𝑇, 𝜐3 is the linear velocity of robot 3, and 𝜔1 the rotational velocity of 

robot 1. and the matrix 𝑆(𝑞)  

 𝑆(𝑞) = [𝑐𝑜𝑠 𝜃3 𝑠𝑖𝑛 𝜃3

1

𝑑2
𝑡𝑎𝑛(𝜃2 − 𝜃3)

1

𝑑1
𝑡𝑎𝑛(𝜃1 − 𝜃2) / 𝑐𝑜𝑠(𝜃2 − 𝜃3) 0

0 0 0 0 1

]

𝑇

 (2.52) 

Moreover, we can show the following, which describes the natural orthogonal 

complement property 
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Figure 2.4: Three-linked 2WD mobile robots. 



Chapter 2. System Modeling and Model Transformation 

 

 33 

 𝑆(𝑞)𝑇𝐴(𝑞)𝑇 =0 (2.53) 

2.4.2.2 Dynamic modeling 

The dynamic model of three mobile robots with fixed links can be obtained using the 

Lagrange method in matrix form as 

 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇) = 𝐵(𝑞)𝜏 + 𝐴(𝑞)𝑇𝜆 (2.54) 

where 

𝑀(𝑞) ∈ ℜ5×5 is the system inertia matrix, 𝐶(𝑞, 𝑞̇) ∈ ℜ5×1 is the centripetal and Coriolis 

forces vector, 𝐵(𝑞) ∈ ℜ5×6 is the input transformation matrix, 𝜏 ∈ ℜ6×1 is the vector of 

control torques. 𝐴(𝑞) ∈ ℜ3×5 is the system constraint matrix, 𝜆 ∈ ℜ3×1 Lagrange 

multipliers vector. 

Matrices 𝑀(𝑞), 𝐶(𝑞, 𝑞̇) and 𝐵(𝑞) in (2.54) are 

𝑀(𝑞) =

[
 
 
 
 
 
 

𝑚1 + 𝑚2 + 𝑚3 0

0 𝑚1 + 𝑚2 + 𝑚3

−[(𝑚1 + 𝑚2) 𝑑2 + 𝑎3𝑚3] 𝑠𝑖𝑛 𝜃3 [(𝑚1 + 𝑚2)𝑑2 + 𝑎3𝑚3] 𝑐𝑜𝑠 𝜃3

−[𝑑1𝑚1 + 𝑎2𝑚2] 𝑠𝑖𝑛 𝜃2 [𝑑1𝑚1 + 𝑎2𝑚2] 𝑐𝑜𝑠 𝜃2 

𝑎1𝑚1𝑠𝑖𝑛 𝜃1 𝑎1𝑚1𝑐𝑜𝑠 𝜃1

 

−[(𝑚1 + 𝑚2) 𝑑2 + 𝑎3𝑚3] 𝑠𝑖𝑛 𝜃3 −[𝑑1𝑚1 + 𝑎2𝑚2] 𝑠𝑖𝑛 𝜃2 𝑎1𝑚1𝑠𝑖𝑛 𝜃1

[(𝑚1 + 𝑚2)𝑑2 + 𝑎3𝑚3] 𝑐𝑜𝑠 𝜃3 [𝑑1𝑚1 + 𝑎2𝑚2] 𝑐𝑜𝑠 𝜃2 𝑎1𝑚1𝑐𝑜𝑠 𝜃1

(𝑚1 + 𝑚2)𝑑2
2 + 𝑚3𝑎3

2 + 𝐼𝑚3 (𝑑1𝑚1 + 𝑎2𝑚2)  𝑑2 𝑐𝑜𝑠(𝜃2 − 𝜃3) 𝑎1𝑚1𝑑2 𝑐𝑜𝑠(𝜃1 − 𝜃3)

(𝑑1𝑚1 + 𝑎2𝑚2)  𝑑2 𝑐𝑜𝑠(𝜃2 − 𝜃3) 𝑚1𝑑1
2 + 𝑚2𝑎2

2 + 𝐼𝑚2 𝑎1𝑚1𝑑1 𝑐𝑜𝑠(𝜃1 − 𝜃2)

𝑎1𝑚1𝑑2 𝑐𝑜𝑠(𝜃1 − 𝜃3) 𝑎1𝑚1𝑑2 𝑐𝑜𝑠(𝜃1 − 𝜃3) 𝑚1𝑎1
2 + 𝐼𝑚1 ]

 
 
 
 
 
 

 

𝐵(𝑞) =

[
 
 
 
 
 
 
 
 
 
 
 

𝑐𝑜𝑠 𝜃1

𝑟1

𝑐𝑜𝑠 𝜃1

𝑟1

𝑐𝑜𝑠 𝜃2

𝑟2

𝑐𝑜𝑠 𝜃2

𝑟2

𝑐𝑜𝑠 𝜃3

𝑟3

𝑐𝑜𝑠 𝜃3

𝑟3
𝑠𝑖𝑛 𝜃1

𝑟1

𝑠𝑖𝑛 𝜃1

𝑟1

𝑠𝑖𝑛 𝜃2

𝑟2

𝑠𝑖𝑛 𝜃2

𝑟2

𝑠𝑖𝑛 𝜃3

𝑟3

𝑠𝑖𝑛 𝜃3

𝑟3
𝑑2 𝑠𝑖𝑛(𝜃1 − 𝜃3)

𝑟1

𝑑2 𝑠𝑖𝑛(𝜃1 − 𝜃3)

𝑟1

𝑑2 𝑠𝑖𝑛(𝜃2 − 𝜃3)

𝑟2

𝑑2 𝑠𝑖𝑛(𝜃2 − 𝜃3)

𝑟2

𝑏3

𝑟3

𝑏3

𝑟3
𝑑1 𝑠𝑖𝑛(𝜃1 − 𝜃3)

𝑟1

𝑑1 𝑠𝑖𝑛(𝜃1 − 𝜃3)

𝑟1
−

𝑏2

𝑟2
−

𝑏2

𝑟2
0 0

𝑏1

𝑟1
−

𝑏1

𝑟1
0 0 0 0

]
 
 
 
 
 
 
 
 
 
 
 

 

𝐶(𝑞, 𝑞̇) = [𝐶𝑖𝑗]5×1 
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where 

𝒄𝟏𝟏 = −[(𝑚1 + 𝑚2)𝑑2 + 𝑎3𝑚3] 𝜃̇3
2 𝑐𝑜𝑠 𝜃3 (𝑑1𝑚1 + 𝑎2𝑚2)𝜃̇2

2 𝑐𝑜𝑠 𝜃2 −𝑎1𝑚1𝜃̇1
2 𝑐𝑜𝑠 𝜃1. 

𝒄𝟐𝟏 = −(𝑑1𝑚1 + 𝑎2𝑚2)𝑑2𝜃̇2
2 𝑠𝑖𝑛(𝜃2 − 𝜃3) − 𝑎1𝑚1𝑑2𝜃̇1

2 𝑠𝑖𝑛(𝜃1 − 𝜃3) 

+2(𝑑1𝑚1 + 𝑎2𝑚2𝑑2𝜃̇2𝜃̇3𝑠𝑖𝑛. 

𝒄𝟑𝟏 = −(𝑑1𝑚1 + 𝑎2𝑚2)𝑑2𝜃̇2
2 𝑠𝑖𝑛(𝜃2 − 𝜃3) − 𝑎1𝑚1𝑑2𝜃̇1

2 𝑠𝑖𝑛(𝜃1 − 𝜃3) + 2(𝑑1𝑚1+𝑎2𝑚2) 

𝑑2𝜃̇2𝜃̇3𝑠𝑖𝑛(𝜃2 − 𝜃3) + 2𝑎1𝑚1𝑑2𝜃̇1𝜃̇3 𝑠𝑖𝑛(𝜃1 − 𝜃3). 

𝒄𝟒𝟏 = −(𝑑1𝑚1 + 𝑎2𝑚2)𝑑2𝜃̇3
2 𝑠𝑖𝑛(𝜃2 − 𝜃3) − 𝑎1𝑚1𝑑2𝜃̇1

2 𝑠𝑖𝑛(𝜃1 − 𝜃2) + 2𝑚1𝑑1𝜃̇1𝜃̇3 

𝑠𝑖𝑛(𝜃1 − 𝜃2). 

𝒄𝟓𝟏 = 𝑎1𝑚1𝑑2𝜃̇3
2 𝑠𝑖𝑛(𝜃1 − 𝜃2) + 𝑎1𝑚1𝑑1𝜃̇2

2 𝑠𝑖𝑛(𝜃1 − 𝜃2). 

In order to remove the Lagrange multipliers, substituting from the derivative of (2.51) 

into (2.54), and multiplying by 𝑆(𝑞)𝑇, the system dynamic equation takes the following 

form 

 𝑴̅𝟏(𝒒)𝜼̇ + 𝑴̅𝟐(𝒒)𝜼 + 𝑪̅(𝒒, 𝒒̇)= 𝑩̅(𝒒)𝝉 (2.55) 

where 

 𝑀̅1(𝑞) = 𝑆(𝑞)𝑇𝑀(𝑞)𝑆(𝑞) (2.56) 

 𝑀̅2(𝑞) = 𝑆(𝑞)𝑇𝑀(𝑞)𝑆̇(𝑞) (2.57) 

 𝐵̅(𝑞) = 𝑆(𝑞)𝑇𝐵(𝑞) (2.58) 

 𝐶̅(𝑞, 𝑞̇) = 𝑆(𝑞)𝑇𝐶(𝑞, 𝑞̇) (2.59) 

2.4.3 Modeling of 𝒏-linked 2WD mobile robots 

We will now express the kinematic and dynamic models of 𝑛-linked robots (𝑛 > 2) as an 

extension of the models derived for three linked robots. 

The following notations are used in the sequel. For the 𝑖th (𝑖 = 1, 2, … , 𝑛) robot: 𝑃𝑖 is 

the center between two actuated wheels, 𝐶𝑖 is the center of mass, 𝑎𝑖 is the distance between 

𝑃𝑖 and 𝐶𝑖, 𝑏𝑖 is half of the distance between two actuated wheels, 𝑟𝑖 is the radius of wheels, 

𝜃𝑖 is the orientation of the robot, and 𝜏𝑖𝑙 and 𝜏𝑖𝑟 are the control torques applied to the left 

and right actuated wheels, respectively. In addition, 𝑑𝑖 is the length of the physical links, 

the frame 𝑂𝑋𝑌 is the inertial frame, (𝑥, 𝑦) denotes the coordinates of point 𝑃𝑛 that is the 

middle point of robot 𝑛 (the last one) rear wheels. 
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Figure 2.5: Multi-linked 2WD mobile robots. 

2.4.3.1 Kinematic modeling 

The configuration of the system, as shown in Fig. 2.5, can be expressed with the 

generalized coordinates vector 

 𝑞 = [𝑥, 𝑦, 𝜃𝑛, 𝜃𝑛−1, … , 𝜃1] 
𝑇 (2.60) 

The main feature in kinematic models of wheeled mobile robots is the presence of 

nonholonomic constraints due to the rolling without slipping conditions between the wheels 

and the ground. The system constraints take the matrix form as follows 

 𝐴(𝑞)𝑞̇ = 0 (2.61) 

where 

𝐴(𝑞) =

[
 
 
 
 
 

𝑠𝑖𝑛 𝜃𝑛

𝑠𝑖𝑛 𝜃𝑛−1

𝑠𝑖𝑛 𝜃𝑛−2

⋮
𝑠𝑖𝑛 𝜃2

𝑠𝑖𝑛 𝜃1

−𝑐𝑜𝑠 𝜃𝑛

−𝑐𝑜𝑠 𝜃𝑛−1

−𝑐𝑜𝑠 𝜃𝑛−2

⋮
− 𝑐𝑜𝑠 𝜃2

−𝑐𝑜𝑠 𝜃1

0
−𝑑𝑛𝑐𝑜𝑠(𝜃𝑛−1 − 𝜃𝑛)
−𝑑𝑛𝑐𝑜𝑠(𝜃𝑛−2 − 𝜃𝑛)

⋮
−𝑑𝑛𝑐𝑜𝑠(𝜃2 − 𝜃𝑛)
−𝑑𝑛𝑐𝑜𝑠(𝜃1 − 𝜃𝑛)

 

 

0
0
0
⋮
0
0

⋯
⋯
⋯
⋮

−𝑑2𝑐𝑜𝑠(𝜃2 − 𝜃3)
−𝑑2𝑐𝑜𝑠(𝜃1 − 𝜃3)

0
0
0
⋮
0

−𝑑1𝑐𝑜𝑠(𝜃1 − 𝜃2)

0
0
0
⋮
0
0]
 
 
 
 
 

 (2.62) 
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The kinematic equations of the multi mobile robots with fixed links, are given by 

 𝒒̇ = 𝑺(𝒒)𝜼 (2.63) 

where  𝜂 = [𝜐𝑛 𝜔1]𝑇; 𝜐𝑛 is the linear velocity of robot 𝑛, and 𝜔1 is the rotational velocity 

of robot 1, and the matrix  𝑆(𝑞) 

 𝑆(𝑞)=

[
 
 
 
 
 
 
 
 
 

𝑐𝑜𝑠 𝜃𝑛 0
𝑠𝑖𝑛 𝜃𝑛 0

1

𝑑𝑛−1
𝑡𝑎𝑛(𝜃𝑛−1 − 𝜃𝑛) 0

⋮ ⋮
1

𝑑𝑛−𝑘−1
𝑡𝑎𝑛(𝜃𝑛−𝑘−1 − 𝜃𝑛−𝑘) /∏ 𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑖+1)

𝑛−1
𝑖=𝑛−𝑘 0

⋮ ⋮
1

𝑑1
𝑡𝑎𝑛(𝜃1 − 𝜃2)/∏ 𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑖+1)

𝑛−1
𝑖=1 0

0 1]
 
 
 
 
 
 
 
 
 

 (2.64) 

where (𝑘 = 2, 3, … , 𝑛 − 2). 

Moreover, the natural orthogonal complement property is expressed as 

  𝑆(𝑞)𝑇𝐴(𝑞)𝑇 =0 (2.65) 

2.4.3.2 Dynamic modeling 

The dynamic model of multi mobile robots with fixed links can be obtained using the  

Lagrange method in matrix form as 

 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)= 𝐵(𝑞)𝜏 + 𝐴(𝑞)𝑇𝜆 (2.66) 

where  

𝑀(𝑞) ∈ ℜ(𝑛+2)×(𝑛+2) is the symmetric, positive definite matrix, 𝐶(𝑞, 𝑞̇) ∈ ℜ(𝑛+2)×(1)  is 

the centripetal Coriolis matrix, 𝐵(𝑞) ∈ ℜ(𝑛+2)×(2𝑛) is the input transformation matrix, 𝜏 ∈

ℜ(2𝑛)×(1) is the vector of control torque. 𝐴(𝑞) ∈ ℜ𝑛×(𝑛+2) is the system constraint matrix, 

𝜆 ∈ ℜ𝑛×1 is the Lagrange multipliers vector. The matrices and vectors in (2.64) are given 

by 

 𝑀(𝑞) = [𝑚𝑖𝑗], 𝑖 and 𝑗 𝜖  {1, 2, ⋯ , 𝑛 + 2 } (2.67) 

 𝐶(𝑞, 𝑞̇) = [𝑐𝑖] , 𝑖 𝜖  {1, 2, ⋯ , 𝑛 + 2 } (2.68) 

 𝐵(𝑞) = [𝑏𝑖𝑗], 𝑖 𝜖  {1, 2,⋯ , 𝑛 + 2 },  𝑗 𝜖  {1, 2,⋯ , 2𝑛 } (2.69) 
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The details to obtain 𝑀(𝑞), 𝐶(𝑞, 𝑞̇) and 𝐵(𝑞), are given in Appendix C and D, 

respectively. 

In order to remove the Lagrange multipliers, substituting from the derivative of (2.63) 

into (2.66), and multiplying by 𝑆(𝑞)𝑇, the system dynamic equation takes the following 

form 

 𝑴̅𝟏(𝒒)𝜼̇ + 𝑴̅𝟐(𝒒)𝜼 + 𝑪̅(𝒒, 𝒒̇)= 𝑩̅(𝒒)𝝉 (2.70) 

where 

 𝑀̅1(𝑞) = 𝑆(𝑞)𝑇𝑀(𝑞)𝑆(𝑞) (2.71) 

 𝑀̅2(𝑞) = 𝑆(𝑞)𝑇𝑀(𝑞)𝑆̇(𝑞) (2.72) 

 𝐵̅(𝑞) = 𝑆(𝑞)𝑇𝐵(𝑞) (2.73) 

 𝐶̅(𝑞, 𝑞̇) = 𝑆(𝑞)𝑇𝐶(𝑞, 𝑞̇) (2.74) 

When we aim to control a system using two models (kinematic and dynamic one for the 

same system), a link (in the form of a diffeomorphism) must be found between the control 

vectors of the two models in order to elaborate the control signals to be applied on the real 

system. 

In the case of two-linked mobile robots, the diffeomorphism is simple to be found. But 

in the case of more than two robots, it is much more difficult. One solution is to use the 

transformation of the kinematic model into the canonical chained form which permits to 

find relatively simply the searched diffeomorphism. We have chosen to use the canonical 

chained form in order not only to find the needed diffeomorphism but also to design more 

easily the control law. 

2.5 Model transformation into the canonical chained form 

The commonly used approach for controller design of a nonholonomic system is to convert, 

with appropriate state and input transformations, the original system into a canonical form 

for which the controller design can be carried out more easily. One of the commonly used 

canonical form for robotic systems is the so-called chained form, where derivative of each 

state depends on the state directly above it [109, 110, 111, 112]. 
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A special chained form is the two-input chained form which is expressed as follows 

𝜉̇1 = 𝛼1 

𝜉̇2 = 𝛼2 

𝜉̇3 = 𝜉2𝛼1 

⋮ 

 𝜉̇𝑚 = 𝜉𝑚−1𝛼1 (2.75) 

where 𝜉 = (𝜉1, 𝜉2, … , 𝜉𝑚) is the state, 𝛼1, 𝛼2 are the two virtual control inputs, and 𝑚 is 

the number of the states. 

The two-input case is sufficiently broad to cover most of the kinematic models of 

practical wheeled mobile robots. For information on the other multi-chain forms, the reader 

is referred to [111], where these canonical forms were originally introduced. 

The motivations to transform the initial state model into the canonical chained form are: 

1) To determine a diffeomorphism, to link the kinematic and dynamic controllers for 

𝑛-linked 2WD mobile robots (𝑛 ≥ 2). 

2) To design easily a backstepping control law, which allows controlling each state of 

the system. 

In the next subsection, inspired by the exact linearization method of a nonlinear 

model presented in [110], we give a theorem which expresses the way to transform the 

kinematic model of a 𝑛-linked robots system into the chained form. 

2.5.1 Transformation of the kinematic model of 𝒏-linked robots into the chained form 

In this subsection, we give a theorem to derive the diffeomorphism which is used to 

transform the multi-linked 2WD mobile robots system in equation (2.63) into a chained 

form. 

In [40], Sordalen shows how to transform the kinematic model of a car with 𝑛 trailers 

into the chained form. We apply his method here for a 𝑛-linked 2WD mobile robots system. 

The following assumption is needed: 
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Assumption 2.2: The state 𝑞 = [𝑥, 𝑦, 𝜃𝑛, 𝜃𝑛−1, … , 𝜃1] 
𝑇 is in a neighbourhood 𝐷 of the 

origin where 𝐷 is given by 

 (𝑥, 𝑦) ∈ 𝑅2 

𝜃𝑖 ∈ (−
𝜋

4
+ 𝜖,

𝜋

4
− 𝜖 ),   𝑖 ∈   {1,⋯ , 𝑛) 

where 𝜖 is a small constant.  

Let us introduce the transformed input 𝜐 as  

 𝜐 = 𝑐𝑜𝑠𝜃𝑛 𝜐𝑛 = 𝑐𝑜𝑠𝜃𝑛 ∏𝑐𝑜𝑠(𝜃𝑗−1 − 𝜃𝑗)

𝑛

𝑗=2

𝜐1 (2.76) 

The transformed input 𝜐 is the velocity of robot 𝑛 in the 𝑥-direction. This 

transformation from 𝜐1 to 𝜐 is non-singular and smooth in 𝐷, where 𝜐1 is the linear velocity 

of robot 1 and it is considered as a virtual input to the system. The other virtual input is the 

angular velocity of the robot 1, 𝜔1. 

The linear velocity of robot 𝑖, 𝜐𝑖 can be written as 

 𝜐𝑖 = 𝑐𝑜𝑠(𝜃𝑖−1 − 𝜃𝑖) 𝜐𝑖−1 = ∏𝑐𝑜𝑠(𝜃𝑗−1 − 𝜃𝑗)

𝑖

𝑗=2

𝜐1 (2.77) 

for 𝑖 ∈ {2,⋯ , 𝑛}  

Then equation (2.77) can be rewritten using equation (2.76) as follows 

 𝜐𝑖 =
1

𝑐𝑜𝑠𝜃𝑛 ∏ 𝑐𝑜𝑠(𝜃𝑗−1 − 𝜃𝑗)
𝑛
𝑗=𝑖+1

𝜐 =
1

𝑝𝑖(Ɵ𝑖)
𝜐 (2.78) 

for 𝑖 ∈ {1,⋯ , 𝑛}  

where  

 Ɵ𝑖 ≜ [𝜃𝑖 , ⋯ , 𝜃𝑛 ]
𝑇 (2.79) 

 𝑝𝑖(Ɵ𝑖) ≜ 𝑐𝑜𝑠𝜃𝑛 ∏ 𝑐𝑜𝑠(𝜃𝑗−1 − 𝜃𝑗)

𝑛

𝑗=𝑖+1

= ∏𝑐𝑜𝑠(𝜃𝑗 − 𝜃𝑗+1)

𝑛

𝑗=𝑖

 (2.80) 

where 𝜃𝑛+1 ≜ 0. 

Equation (2.78) then gives 𝜐 = 𝑝1(𝜃1)𝜐1. 

Inspired by [40], we can now give the following theorem 
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Theorem 2.1: The following nonlinear change of coordinates, 𝜉 = 𝜙(𝑞), and feedback 

transformation, 𝛼 = 𝐺(𝑞)𝜂, convert locally the kinematic model (2.63) of the 𝑛-linked 2WD 

mobile robots system into the chained form (2.75) 

The change of coordinates, 𝜉 = 𝜙(𝑞), is given by 

 𝜉1 = 𝑥 (2.81) 

 𝜉2 =
𝑡𝑎𝑛(𝜃1 − 𝜃2) 

𝑐2(𝜃2)
+ 𝑟2(𝜃2) (2.82) 

⋮ 

 𝜉𝑖 =
𝑡𝑎𝑛(𝜃𝑖−2 − 𝜃𝑖−1) 

𝑐𝑖(𝜃𝑖−1)
+ 𝑟𝑖(𝜃𝑖−1) (2.83) 

⋮ 

 𝜉𝑛 =
𝑡𝑎𝑛(𝜃𝑛−1 − 𝜃𝑛) 

𝑑𝑛−1𝑐𝑜𝑠3𝜃𝑛
 (2.84) 

 𝜉𝑛+1 = 𝑡𝑎𝑛𝜃𝑛 (2.85) 

 𝜉𝑛+2 = 𝑦 (2.86) 

where  

 𝑐𝑖(𝜃𝑖−1) = ∏𝑐𝑜𝑠𝑗−𝑖+3(𝜃𝑗−1 − 𝜃𝑗)𝑑𝑛+𝑖−𝑗 = 𝑝𝑖−1
2 (𝜃𝑖−1) ∏ 𝑑𝑗𝑝𝑗(𝜃𝑗)

𝑛

𝑗=𝑖−1

𝑛+1

𝑗=2

 (2.87) 

 𝑟𝑖(𝜃𝑖−1) =
𝜕𝜉𝑖+1

𝜕𝜃𝑖
𝑓𝑖(𝜃𝑖−1) (2.88) 

 𝑓𝑖(𝜃𝑖−1) =
1

𝑑𝑖

𝑡𝑎𝑛(𝜃𝑖−1 − 𝜃𝑖)

𝑝𝑖(𝜃𝑖)
 (2.89) 

The feedback transformation of the inputs, 𝛼 = 𝐺(𝑞)𝜂, is given by  

 𝛼1 = 𝑝1(𝜃1)𝜐1 (2.90) 

 𝛼2 =
1

𝑐𝑜𝑠2(𝜃1 − 𝜃2)𝑐2(𝜃2)𝜔1
+𝑟1(𝜃1)𝑝1(𝜃1)𝜐1 (2.91) 
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The proof of Theorem 2.1 is given in Appendix E. 

By this way, we have all the parameters and we can build the model given by (2.75).  

2.5.2 Illustration for three-linked robots 

Let us consider the kinematic model of three-linked 2WD mobile robots (2.51). This model 

has a triangular structure, which can be transformed into the chained form. Equation (2.51) 

can be expressed as follows: 

 𝑞̇=𝑔1(𝑞)𝜐3 + 𝑔2(𝑞)𝜔1 (2.92) 

where 𝑞 = [𝑥, 𝑦, 𝜃3, 𝜃2, 𝜃1] 
𝑇, 

𝑔1(𝑞) = [𝑐𝑜𝑠 𝜃3 , 𝑠𝑖𝑛 𝜃3 ,
1

𝑑2
𝑡𝑎𝑛(𝜃2 − 𝜃3) ,

1

𝑑1

𝑡𝑎𝑛(𝜃1 − 𝜃2)

𝑐𝑜𝑠(𝜃2 − 𝜃3)
, 0]

𝑇

 

𝑔2(𝑞) = [0, 0, 0, 0,1]𝑇 

where 𝜐3 is the linear velocity of robot 3, 𝜔1 is the angular velocity of robot 1, and the 

𝑔1(𝑞), 𝑔2(𝑞) are smooth linearly independent vector field.  

Applying Theorem 2.1, the following change of coordinates is considered 

 𝜉1 = 𝑥 (2.93) 

𝜉2 =
𝑡𝑎𝑛(𝜃1 − 𝜃2)

𝑑1𝑑2𝑐𝑜𝑠4𝜃3 𝑐𝑜𝑠3(𝜃2 − 𝜃3)
+

1

𝑑2
2𝑐𝑜𝑠4𝜃3

𝑡𝑎𝑛(𝜃2 − 𝜃3) 

 . [3 𝑡𝑎𝑛 𝜃3𝑡𝑎𝑛 (𝜃2 − 𝜃3)𝑠𝑒𝑐
2(𝜃2 − 𝜃3)] (2.94) 

 𝜉3 =
𝑡𝑎𝑛(𝜃2 − 𝜃3)

𝑑2𝑐𝑜𝑠3𝜃3
 (2.95) 

 𝜉4 = 𝑡𝑎𝑛𝜃3 (2.96) 

 𝜉5 = 𝑦 (2.97) 

together with the following input transformations 

 𝛼1 = 𝜐3 𝑐𝑜𝑠 𝜃3 (2.98) 

 𝛼2 = 𝛽1𝜐3 + 𝛽2𝜔1 (2.99) 
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where  

𝛽1 =
1

𝑑1𝑑2
𝑠𝑒𝑐4𝜃3𝑡𝑎𝑛(𝜃1 − 𝜃2)𝑠𝑒𝑐

4(𝜃2−𝜃3)[
1

𝑑1
(3𝑡𝑎𝑛(𝜃2 − 𝜃3)𝑡𝑎𝑛(𝜃1 − 𝜃2)) 

+
1

𝑑2
(6𝑡𝑎𝑛𝜃3𝑠𝑖𝑛(𝜃2 − 𝜃3) − 2𝑡𝑎𝑛(𝜃2 − 𝜃3)𝑠𝑖𝑛(𝜃2 − 𝜃3) −𝑠𝑒𝑐(𝜃2 −𝜃3))] 

+
1

𝑑1𝑑2
𝑠𝑒𝑐4𝜃3𝑠𝑒𝑐

2(𝜃1−𝜃2)𝑠𝑒𝑐
3(𝜃2 − 𝜃3) 

𝛽2 =
1

𝑑1𝑑2
𝑠𝑒𝑐4𝜃3𝑠𝑒𝑐

2(𝜃1−𝜃2)𝑠𝑒𝑐
3(𝜃2 − 𝜃3) 

This transformation is a local diffeomorphism around the configurations for which the 

angle of each robot and the angles between each adjacent robot are different from (𝜋/2). 

When applying the transformation to the system model in (2.92), we get the following 

system in chained form: 

𝜉̇1 = 𝛼1, 

𝜉̇2 = 𝛼2, 

𝜉̇3 = 𝜉2𝛼1, 

𝜉̇4 = 𝜉3𝛼1, 

 𝜉̇5 = 𝜉4𝛼1 (2.100) 

2.6 Actuator fault model for multi-linked 2WD mobile robots 

In this section, the actuator fault model is given for multi-linked 2WD mobile robots. Two 

types of actuator faults are considered: 1) Partial loss of effectiveness of the wheel motor; 

2) Some motors totally lose power which will introduce additional frictions. 

These actuator faults for one motor can be modeled as 

 𝝉𝒋(𝒕) = 𝝈𝒋(𝒕)𝒖𝒋(𝒕) + 𝒖̅𝒋,          𝑡 ≥ 𝑡𝑗 (2.101) 

for 𝑗 = 1𝑟, 1𝑙,⋯ , 𝑛𝑟, 𝑛𝑙, where 𝑢𝑗  is the applied control signal, 𝑡𝑗 > 0 is the unknown fault 

occurring time instant, 0 ≤  𝜎𝑗  ≤  1 is the unknown actuation effectiveness, and 𝑢̅𝑗  is the 

unknown friction value that is introduced by the fault. Note that, the time interval of each 

faulty case is supposed to be long enough, and 𝜎𝑗 and 𝑢̅𝑗  are piecewise constant. 
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One can remark that equation (2.101), is composed of two terms, one related to the 

direct effect of the faults, the second one caused by the resulting frictions. 

The actuator fault model in (2.101) can describe many types of practical faults. For 

example, 𝜎𝑗 = 1 and 𝑢̅𝑗 = 0 represents the no fault situation; 𝜎𝑗 = 0 and 𝑢̅𝑗 = 0  denotes 

that the motor loses its power but can rotate freely; 𝜎𝑗 = 0 and 𝑢̅𝑗 ≠ 0 is the situation when 

the motor introduces an additional friction between the wheel and the surface; 0 <  𝜎𝑗  <

 1  denotes partial loss of effectiveness faults, which may be caused by some interturn faults 

(open circuit or short circuit) or a low busbar voltage; and 𝑢̅𝑗 ≠ 0 denotes the friction in 

the bearing. On the other hand, this fault model can also describe the following two classic 

faults: 𝜎𝑗   denotes a multiplicative fault while 𝑢̅𝑗  denotes an additive fault. 

Consider that all actuators may be potentially faulty. The control torque vector in 

equation (2.70) becomes 

 𝜏(𝑡) = 𝜎(𝑡)𝑢(𝑡) + 𝑢̅(𝑡) (2.102) 

where 𝜏 = [𝜏1𝑟 , 𝜏1𝑙, 𝜏2𝑟 , 𝜏2𝑙 , ⋯ , 𝜏𝑛𝑟 , 𝜏𝑛𝑙  ]
𝑇 is the torque vector generated by the motors, 

𝑢 = [𝑢1𝑟 , 𝑢1𝑙 , 𝑢2𝑟 , 𝑢2𝑙 , ⋯ , 𝑢𝑛𝑟 , 𝑢𝑛𝑙  ]
𝑇 is the control signals vector to be designed, 𝜎 = 

diag{𝜎1𝑟 , 𝜎1𝑙, ⋯ , 𝜎𝑛𝑟 , 𝜎𝑛𝑙} is the uncertain control effectiveness matrix, and 𝑢̅ =

[𝑢̅1𝑟 , 𝑢̅1𝑙 , 𝑢̅2𝑟 , 𝑢̅2𝑙 , ⋯ , 𝑢̅𝑛𝑟 , 𝑢̅𝑛𝑙  ]
𝑇 is the friction vector caused by actuator faults. 

Assumption 2.3: The dynamic subsystem in (2.70) for 𝑛-linked 2WD mobile robots has two 

control input (𝜐𝑛, 𝜔1) to be controlled. Then, for the fault compensation design, the 

following actuation redundancy condition needs to be satisfied 

 𝒓𝒂𝒏𝒌(𝑩̅𝝈) = 𝟐 (2.103) 

where, 𝜐𝑛 is the linear velocity of robot 𝑛, and 𝜔1 is the rotational velocity of robot 1. 

Remark 2.1: For two-linked 2WD mobile robots as case study, with 𝐵̅(𝑞) in (2.48), the 

compensable fault cases satisfying the redundancy condition in (2.103) are: 

1) Fault free case with four actuated wheels. 

2) One actuator fails with three remaining actuated wheels. 

3) Two actuators fail with two remaining actuated wheels.  
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However, for case 3), if the two failed actuators are in robot 2, then the system is similar 

with a tractor-trailer system [42], and the faults may be tolerated; if each robot has one 

faulty actuator, then the faults are also compensable; but if the two failed actuators are both 

in robot 1, then the faults are un-compensable, because in this case, 𝑟𝑎𝑛𝑘(𝐵̅𝜎) = 1 with 

𝜎 = diag{𝜎1r, 𝜎1l, 𝜎2r, 𝜎2l} and 𝜔1 is uncontrollable. 

Key technical issues: The key feature of the control problem is that the failure time 𝑡𝑗, the 

failure pattern 𝜎𝑗, and the friction 𝑢̅𝑗  are unknown, that is, the feedback control law does 

not know which component is faulty but is still expected to be able to achieve the desired 

performance for the closed-loop system. 

An observer will be used later on chapter 4, to estimate the actuator gains, the additive 

faults and the state variables and update the feedback control law to improve the 

performance of the controlled system. 

2.7  Conclusion 

In this chapter, a brief review of modeling issues for mobile robots and multi-linked 

wheeled mobile robots was presented. Then the kinematic and dynamic models for a 2WD 

mobile robot and multi-linked 2WD robots were introduced. The different models which 

have been introduced in this chapter will be used in the following chapters to design the 

FTC laws. Finally, the actuator fault model and the transformation method of the multi-

linked 2WD mobile robots system model into the chained form was presented.  

After describing the system with an appropriate model, it is possible to design control 

schemes that guarantee the tracking performance under nonfaulty and faulty situations. 

Different FTC strategies are presented in the next chapters. Chapter 3 presents passive FTC 

approaches, which may be viewed as robust control schemes w.r.t the faults, while chapter 

4 presents active control algorithms which use a fault diagnosis information.  
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Passive Fault Tolerant Control 
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Chapter content 

This chapter is devoted to passive FTC techniques for 𝒏-linked 2WD mobile robots. 

Firstly, a multiple model actuator failure compensation scheme for two-linked 2WD mobile 

robots is developed in subsection 3.2 to compensate for actuator failures, consisting of a 

kinematic controller, multiple dynamic controllers and a control switching mechanism, 

which ensure system stability and asymptotic tracking properties. 

Secondly, a control solution which is well-suited for 𝑛-linked (𝑛 > 2) 2WD mobile 

robots (we will start with the case of three-linked robots and further generalize for 𝑛-linked 

robots), is presented in subsection 3.3.1. The provided solution is based on the chained 

form model introduced in chapter 2. After that, a recursive technique is used to derive the 

kinematic control law. Based on this, multiple dynamic controllers are designed 

considering all possible failure cases. From these dynamic controllers, an appropriate one 

is selected to generate the applied control signal by the control switching mechanism using 

multiple reconstruction dynamic signals to ensure desired system performance. 

Thirdly, in subsection 3.3.2, in order to design a FTC for multi-linked 2WD mobile 

robots with friction and actuator faults, the same kinematic control law which is designed 

in Section 3.3.1 is used, but the dynamic control is different. Therefore, a new adaptive 

actuator failure compensation scheme is developed using a multi-design integration 

method. We employ adaptive laws to compensate for uncertain friction coefficients and 

faults in order to adapt online the single control law and to avoid the control switching 

mechanism used in the previous sections. 

3.1 Introduction 

Recently there has been a growing interest in the design and development of advanced 

feedback control laws for mobile robots. To achieve high precision path tracking control 

for a wheeled mobile robot, many advanced control approaches have been proposed in the 

last decade [113, 114]. These methods can be classified based on whether the wheeled 

mobile robot is described by a kinematic model or a dynamic model. The tracking control 

problem is therefore classified as either a kinematic or a dynamic tracking control problem.  

The purpose of the kinematic controller is to produce velocity set point for the mobile 

robot to make the tracking error between the real and the reference trajectories converge to 
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zero. In many applications, the kinematic model of a wheeled mobile robot is sufficient to 

design a controller for trajectory tracking with satisfactory performance. However, in order 

to properly deal with the actuator faults changing the applied torque, a dynamic model of 

the system should be taken into account. The backstepping controller [27] is one of the 

earliest kinematic level controllers. To improve the overall performance of the 

backstepping controller and to guarantee the asymptotic convergence of the mobile robot 

with different reference trajectories, adaptive kinematic controllers have been proposed in 

[115]. There are also other kinematic control schemes presented in [116-119], which would 

not fall into the category of adaptive and backstepping controllers but provide stable 

tracking control structures dealing only with robot velocities. 

The kinematic controller is designed in the following. For the simple case of two-linked 

robots, the kinematic controller is designed using a simple diffeomorphism. For more than 

two-linked robots, we use the chained form model derived from the initial kinematic model, 

as it was shown in chapter 2, and the controller is designed using a recursive technique 

based on the classical integrator backstepping method [120]. 

The dynamic controllers may be of different types, for example adaptive controllers, 

robust controllers, robust adaptive controllers and feedback linearization controllers. The 

dynamic adaptive controllers in [121-123], are adaptive extensions of the kinematic 

backstepping controller to deal with the unknown parameters. The dynamic robust 

controllers are designed to deal with uncertainties and disturbances [124] and use sliding 

mode [125, 126] and 𝐻∞ [127] techniques. There are also some proposed controllers which 

have both robust and adaptive properties and use a combination of an intelligent controller 

and a sliding mode controller [128, 129]. The last group of dynamic controllers, uses the 

feedback linearization control, to compensate for the nonlinear system dynamics (see for 

instance [130]). 

A dynamic controller which is also a torque controller is next designed based on the 

system dynamics such that the velocity of the mobile robot converges to the generated 

desired velocity. We are going to use an adaptive control algorithm whose principle may 

be found in the reference [131], considering two different fault compensation strategies: 

switching between multiple dynamic control laws, each one compensating a specific fault 

of a predefined set of actuator faults; designing an adaptive control law with a multi-
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integration mechanism that incorporates the compensation of all the sets of predefined 

faults in just one control law. 

3.2 Actuator FTC compensation for the case of two-linked robots 

In this subsection, the multiple model actuator failure compensation scheme is developed 

for two-linked 2WD mobile robots. 

3.2.1 Problem formulation  

The kinematic model for a two-linked 2WD mobile robots [83] was derived in Section 

2.4 (see chapter 2), and is recalled below 

 𝑥̇ = 𝜐2 cos 𝜃2 (3.1) 

 𝑦̇ = 𝜐2 sin 𝜃2 (3.2) 

 𝜃̇2 =
𝜐2

𝑑
tan(𝜃1 − 𝜃2) (3.3) 

 𝜃̇1 = 𝜔1 (3.4) 

Fault-tolerant control objective 1  

The fault-tolerant control objective 1 is to develop an actuator failure compensation scheme 

for two-linked 2WD mobile robots to asymptotically track a reference motion, despite the 

presence of some actuator failures. In other words, the control objective is to design a 

control signal 𝑢(𝑡) to guarantee that all closed-loop system signals are bounded and 

lim𝑡→∞(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, lim𝑡→∞(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0 and lim𝑡→∞(𝜃2(𝑡) − 𝜃𝑑(𝑡)) = 0 

in the presence of uncertain 𝜎(𝑡), where 𝑥𝑑, 𝑦𝑑, 𝜃𝑑 are reference trajectories.  

The reference motion can be generated by a virtual robot as follows: 

 𝑥̇𝑑 = 𝜐𝑑 cos 𝜃𝑑 (3.5) 

 𝑦̇𝑑 = 𝜐𝑑 sin 𝜃𝑑 (3.6) 

 𝜃̇𝑑 = 𝜔𝑑 (3.7) 

where 𝜐𝑑 and 𝜔𝑑 are the linear velocity and angular velocity of the reference robot, 

respectively. By choosing appropriate 𝜐𝑑, 𝜔𝑑 and initial values 𝑥𝑑(0), 𝑦𝑑(0), 𝜃𝑑(0), the 

desired reference trajectories 𝑥𝑑, 𝑦𝑑 and 𝜃𝑑 are determined. In this section, we consider the 

tracking problem (as described in [32]) of a two-robot system. 

The following assumption is given for the reference trajectories. 
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Figure 3.1: Multiple-model actuator failure compensation control scheme, for the case of 

two-linked 2WD mobile robots. 

Assumption 3.1: The reference trajectories 𝑥𝑑, 𝑦𝑑 and 𝜃𝑑, the velocities 𝜐𝑑, 𝜔𝑑, and their 

derivatives are continuous and uniformly bounded, and 𝜐𝑑 ≠0. 

Remark 3.1: In Assumption 3.1, it is imposed that 𝜐𝑑 ≠0 to avoid singularity in the 

controller for the trajectory tracking of the mobile robots. On the other hand, in order to 

stop the vehicle when the tracking mission is completed, the controller should be disabled.  

Remark 3.2: The control objective 1 is focused on the tracking task for the rear robot, and 

the front robot can be seen to help the rear one to track the reference trajectory. The reason 

is the following: the states x, y are chosen to be the position of the rear robot (see chapter 

2), based on which, the kinematics and dynamics are modelled, then the control scheme is 

designed. Furthermore, the position of the front robot can also be chosen as the states x 

and y, but the kinematic and dynamic models will change correspondingly. In this case, 

the control scheme should be redesigned. 

Design issues. Since the failure pattern matrix 𝜎 is uncertain, in this section, we will 

develop a multiple model control scheme covering all possible 𝜎 to achieve the fault-

tolerant control objective 1, the structure of which is shown in Fig. 3.1. Our failure 

compensation control design employs three steps:  

Step 1: For the kinematic equations, the linear velocity 𝜐2 and the angular velocity 𝜔1 

can be seen as intermediate control signals. So, we first design a kinematic control law  

𝜂𝑐 = [𝜐2𝑐, 𝜔1𝑐] 
𝑇, such that when it is applied, the desired control performance can be 

ensured. 
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Step 2: Then, multiple controllers are designed, each of which is designed using one 

possible failure pattern matrix. If the failure pattern used in the applied controller, is 

consistent with the actual one, the applied control signal can ensure (𝜂(𝑡) − 𝜂𝑐(𝑡)) → 0  

as 𝑡 goes to infinity and also can guarantee the desired system performance. 

Step 3: Finally, a control switching mechanism is established to select an appropriate 

controller to generate the applied control signal 𝑢. 

3.2.2 Fault-tolerant control design 

 In this subsection, a multiple model actuator fault compensation scheme is developed for 

two-linked robots, which consists of three parts as shown in Fig. 3.1. 

3.2.2.1 Kinematic controller design 

Kinematic control law: 

Define the output tracking error as 

 𝑒̃ = (

𝑒̃𝑥

𝑒̃𝑦

𝑒̃𝜃

) = (

𝑥 − 𝑥𝑑

𝑦 − 𝑦𝑑

𝜃2 − 𝜃𝑑

) (3.8) 

and a transformation matrix as 

 𝑇𝑒 = (−
cos 𝜃𝑑 sin 𝜃𝑑 0
sin 𝜃𝑑 cos 𝜃𝑑 0

0 0 1

) (3.9) 

Then, a new error is defined as 

 𝑒 = [𝑒𝑥 𝑒𝑦 𝑒𝜃]𝑇 = 𝑇𝑒𝑒̃ (3.10) 

Note that, since det [𝑇𝑒] = 1 which means that 𝑇𝑒 is nonsingular, lim𝑡→∞ 𝑒(𝑡) = 0 implies 

lim𝑡→∞ 𝑒̃(𝑡) = 0. With (3.1) -(3.4), (3.5)-(3.7) and (3.8)-(3.10), we have 

 𝑒̇𝑥 = 𝜔𝑑𝑒𝑦 + 𝜐2 cos 𝑒𝜃 − 𝜐𝑑 (3.11) 

 𝑒̇𝑦 = −𝜔𝑑𝑒𝑥 + 𝜐2 sin 𝑒𝜃 (3.12) 

 𝑒̇𝜃 =
𝜐2

𝑑
tan(𝜃1 − 𝜃2) − 𝜔𝑑 (3.13) 

To develop a kinematic control law 𝜂𝑐 = [𝜐2𝑐, 𝜔1𝑐] 
𝑇 for 𝜂 = [𝜐2, 𝜔1] 

𝑇, we introduce 

the following diffeomorphism: 
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 𝑧1 = 𝑒𝑥 (3.14) 

 𝑧2 = 𝑒𝑦 (3.15) 

 𝑧3 = tan 𝑒𝜃 (3.16) 

 𝑧4 =
𝑡𝑎𝑛(𝜃1 − 𝜃2)

𝑑 𝑐𝑜𝑠3 𝑒𝜃
−

𝜔𝑑

𝜐𝑑𝑑 𝑐𝑜𝑠2 𝑒𝜃
+ 𝑒𝑦 (3.17) 

and an input transformation: 

 𝛼 = [
𝛼1

𝛼2
]=[

𝜐2 cos 𝑒𝜃 − 𝜐𝑑

𝑧̇4
] (3.18) 

Then, the derivatives of 𝑧1, 𝑧2, 𝑧3 and 𝑧4 are 

 𝑧̇1=𝜔𝑑𝑧2 + 𝛼1 (3.19) 

 𝑧̇2=−𝜔𝑑𝑧1 + (𝜐𝑑 + 𝛼1)𝑧3 (3.20) 

 𝑧̇3=𝜐𝑑(𝑧4 − 𝑧21) + (𝑧4 − 𝑧2 +
𝜔𝑑

𝜐𝑑
(1 + 𝑧3

2)) (3.21) 

 𝑧̇4=𝛼2 (3.22) 

The detailed computations to derive (3.19)-(3.22) are given in Appendix F.  

From (3.17) and (3.18), we can obtain 

 𝛼 = 𝑇𝛼𝜂 + 𝑓𝛼 (3.23) 

where 𝑇𝛼 ∈ ℜ2×2 and 𝑓𝛼 ∈ ℜ2 are given in Appendix G.  

Define a virtual kinematic control signal 

 𝛼𝑐 = 𝑇𝛼𝜂𝑐 + 𝑓𝛼 (3.24) 

and the velocity tracking error as 

 𝜂𝑒 = 𝜂 − 𝜂𝑐 (3.25) 

Then, we have 

 𝛼𝑒 = [𝛼1𝑒 ,  𝛼2𝑒]
𝑇 = 𝛼 − 𝛼𝑐 = 𝑇𝛼𝜂𝑒 (3.26) 

Now, we design the virtual kinematic signal 𝛼𝑐 = [𝛼1𝑐,  𝛼2𝑐]
𝑇as 

 𝛼1𝑐 = −𝑘1(𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑
(1 + 𝑧3

2))) (3.27) 
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 𝛼2𝑐 = −𝑘2𝜐𝑑𝑧3 − 𝑘3𝑧4 (3.28) 

where 𝑘1> 0, 𝑘2 > 0 and 𝑘3 are chosen to be constant gains. Note that, if 𝜐𝑑 is too small, 

then 𝛼1𝑐 may be very large which will result in a bad system transient response. So, for the 

practical situation, the reference velocity 𝜐𝑑 should be chosen as an appropriate one that 

can contribute to a smooth system transient response. From (3.24), the kinematic control 

law is 

 𝜼𝒄 = 𝑻𝜶
−𝟏(𝜶𝒄 − 𝒇𝜶) (3.29) 

The expression of 𝑇𝛼 will be given in the overall system performance analysis. 

Preliminary analysis:  

For the preliminary analysis of the performance of the designed kinematic control law, we 

choose a positive-definite function as 

 𝑉1 =
1

2
(𝑧1

2 + 𝑧2
2 + 𝑧3

2 +
1

𝑘2
𝑧4
2) (3.30) 

With (3.19)-(3.22), the time derivative of 𝑉1 is 

𝑉̇1=𝑧1𝜔𝑑𝑧2 + 𝑧1𝛼1 − 𝑧2𝜔𝑑𝑧1 + 𝑧2𝜐𝑑𝑧3 + 𝑧2𝛼1𝑧3 + 𝑧3𝜐𝑑𝑧4 − 𝑧3𝜐𝑑𝑧2 

+𝑧3𝛼1𝑧4 − 𝑧3𝛼1𝑧2 +
𝑧3𝛼1𝜔𝑑(1 + 𝑧3

2)

𝜐𝑑
+

𝑧4
𝑘2

𝛼2 

= (𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑

(1 + 𝑧3
2)))𝛼1 + 𝜐𝑑𝑧3𝑧4 +

𝑧4
𝑘2

𝛼2 

= (𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑

(1 + 𝑧3
2)))𝛼1𝑐 + 𝜐𝑑𝑧3𝑧4 +

𝑧4
𝑘2

𝛼2𝑐 

 +(𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑

(1 + 𝑧3
2)))𝛼2𝑒 +

𝑧4
𝑘2

𝛼2𝑒 (3.31) 

Letting  𝑓𝜂 = [𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑
(1 + 𝑧3

2)),
𝑧4

𝑘2
]𝑇 and substituting (3.27), (3.28) and (3.26) 

into (3.30) yield 

 𝑉̇1 = −𝑘1(𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑

(1 + 𝑧3
2)))2 −

𝑘3

𝑘2
𝑧4
2 + 𝑓𝜂

𝑇𝑇𝛼𝜂𝑒 (3.32) 

If there was no term 𝑓𝜂
𝑇𝑇𝛼𝜂𝑒, then 𝑉̇1 would be nonpositive. To eliminate this term and 

ensure desired system performance, we will design a dynamic controller in the next section. 
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3.2.2.2 Multiple dynamic controllers design  

Since the faults are uncertain, which will cause an uncertainty of the control gain, it is 

difficult to ensure system stability and asymptotic tracking properties by using a single 

control law. To cover all possible failure patterns, we will design one specific control law 

for each failure pattern. Then, we will establish a control switching mechanism to select an 

appropriate control law to be the applied one. 

Multiple dynamic control laws:  

Substituting (2.102) into (2.44) (see chapter 2), we have the following dynamic equation 

when actuator failures are considered: 

 𝜂̇ = −𝑀̅1
−1𝑀̅2𝜂 − 𝑀̅1

−1𝐶̅ + 𝑀̅1
−1𝐵̅𝜎𝑢 (3.33) 

where 𝑢 = [𝑢1𝑟 , 𝑢1𝑙, 𝑢2𝑟 , 𝑢2𝑟]
𝑇 is the applied control signal to be designed.  

With (3.25), the time derivative of the velocity tracking error is 

 𝜂̇𝑒 = −𝑀̅1
−1𝑀̅2𝜂 − 𝑀̅1

−1𝐶̅ + 𝑀̅1
−1𝐵̅𝜎𝑢 − 𝜂̇𝑐 (3.34) 

Let 𝜎(𝑘), 𝑘 = 1, 2, … ,𝑁, denote the 𝑘𝑡ℎ possible failure matrix satisfying actuation 

redundancy condition (2.103), where 𝑁 is the number of all possible failure pattern 

matrices that are under consideration. Then, the dynamic control law corresponding to 𝜎(𝑘) 

is designed as 

 𝒖(𝒌) = (𝑴̅𝟏
−𝟏𝑩̅𝝈(𝒌))

+
[−𝒌𝟒𝜼𝒆 − 𝑻𝜶

𝑻𝒇𝜼 + 𝑴̅𝟏
−𝟏𝑴̅𝟐𝜼 + 𝑴̅𝟏

−𝟏𝑪̅ + 𝜼̇𝒄] 
(3.35) 

for  𝑘 = 1, 2, … ,𝑁, where 𝑘4 > 0 is chosen to be constant, and (𝑀̅1
−1𝐵̅𝜎(𝑘))

+
 is the 

generalized inverse matrix satisfying 𝑀̅1
−1𝐵̅𝜎(𝑘)(𝑀̅1

−1𝐵̅𝜎(𝑘))
+

= 𝐼2. The performance of 

the dynamic control law in (3.35) is given next. 

Performance analysis: The performance of the designed dynamic control laws is given by 

the following lemma. 

Lemma 3.1: If the applied control law matches with the actual failure pattern matrix, i.e., 

𝜎 = 𝜎(𝑎) and 𝑢 = 𝑢(𝑎) for 𝑎 = 1, 2, … ,𝑁, then the boundedness of all closed-loop signals 

is ensured, and 𝑙𝑖𝑚𝑡→∞(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, 𝑙𝑖𝑚𝑡→∞(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0 and 

𝑙𝑖𝑚𝑡→∞(𝜃2(𝑡) − 𝜃𝑑(𝑡)) = 0 and 𝑙𝑖𝑚𝑡→∞(𝜂(𝑡) − 𝜂𝑐(𝑡)) = 0. 

Proof: Consider 𝜎 = 𝜎(𝑎) and 𝑢 = 𝑢(𝑎), and choose the global Lyapunov function 

candidate as 
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 𝑉2(𝑎) = 𝑉1 +
1

2
𝜂𝑒
𝑇𝜂𝑒 (3.36) 

Deriving equation (3.36) and using (3.32) and (3.34) lead to 

𝑉̇2(𝑎) = −𝑘1(𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑

(1 + 𝑧3
2)))2 −

𝑘3

𝑘2
𝑧4
2 + 𝑓𝜂

𝑇𝑇𝛼𝜂𝑒 

+𝜂𝑒
𝑇[−𝑀̅1

−1𝑀̅2𝜂 − 𝑀̅1
−1𝐶̅  + 𝑀̅1

−1𝐵̅𝜎(𝑎)𝑢 − 𝜂̇𝑐] 

= −𝑘1(𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑

(1 + 𝑧3
2)))2 −

𝑘3

𝑘2
𝑧4
2 

 +𝜂𝑒
𝑇(𝑇𝛼

𝑇𝑓𝛼−𝑀̅1
−1𝑀̅2𝜂 − 𝑀̅1

−1𝐶̅  + 𝑀̅1
−1𝐵̅𝜎(𝑎)𝑢 − 𝜂̇𝑐) (3.37) 

Substituting the dynamic control law in (3.35) with 𝑘 = 𝑎 in the equation (3.37), we 

have 

 𝑉̇2(𝑎) = −𝑘1(𝑧1 + 𝑧3(𝑧4 +
𝜔𝑑

𝜐𝑑

(1 + 𝑧3
2)))2 −

𝑘3

𝑘2
𝑧4
2 − 𝑘4𝜂𝑒

𝑇𝜂𝑒 ≤ 0 (3.38) 

where (𝑧1, ⋯ , 𝑧4) are the variables which we used to derive the kinematic control law.  

The proof of equation (3.38) is as follows: 

𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝜂𝑒 , (𝑧1 + 𝑧3(𝑧4 + (𝜔𝑑 𝜐𝑑)⁄ (1 + 𝑧3
2))) ∈ 𝐿∞, and 𝑧4, 𝜂𝑒, (𝑧1 + 𝑧3(𝑧4 +

(𝜔𝑑 𝜐𝑑)⁄ (1 + 𝑧3
2))) ∈ 𝐿2. The definitions of 𝐿∞ and 𝐿2 can be found in [131]. It follows 

from (3.16) and (3.17) that cos 𝑒𝜃 ≠ 0 and tan(𝜃1 − 𝜃2)∈ 𝐿∞ meaning cos(𝜃1 − 𝜃2) ≠ 0. 

Then, from Appendix F, (3.11)-(3.29) and (3.33)-(3.35), we can obtain: 𝑇𝛼 is bounded and 

nonsingular, and 𝑓𝛼, 𝛼𝑐, 𝛼𝑒, 𝛼, 𝜂𝑐, 𝜂, 𝑧̇1, 𝑧̇2, 𝑧̇3, 𝑧̇4, 𝛼̇𝑐, 𝜂̇𝑐, 𝑢(𝑘), 𝜂𝑒̇, 𝛼̇𝑐, 𝛼̇ ∈ 𝐿∞ which also 

means that the time derivative of (𝑧1 + 𝑧3(𝑧4 + (𝜔𝑑 𝜐𝑑)⁄ (1 + 𝑧3
2))) is bounded. 

According to Barbalat’s lemma [131], it is concluded that all closed-loop signals are 

bounded, and (𝑧1 + 𝑧3(𝑧4 + (𝜔𝑑 𝜐𝑑)⁄ (1 + 𝑧3
2))), lim𝑡⟶∞ 𝑧4 = 0 and lim𝑡⟶∞ 𝜂𝑒 = 0, 

which also implies lim𝑡⟶∞ 𝛼𝑒 = 0 and lim𝑡⟶∞ 𝛼𝑐1 = 0 with (3.26) and (3.27) meaning 

lim𝑡⟶∞ 𝛼1 = 0. 

From (3.22), we have 𝑧̈4 = 𝛼̇2=𝛼̇2𝑐 + 𝛼̇2𝑒 ∈ 𝐿∞ with 𝛼̇2𝑐, 𝛼̇2𝑒 ∈ 𝐿∞, which means that  

𝑧̇4 is uniformly continuous, together with lim𝑡⟶∞ ∫ 𝑧̇4(𝜏)
𝑡

0
𝑑𝜏 = 𝑧4(∞) − 𝑧4(0) =

−𝑧4(0), we can further obtain lim𝑡⟶∞𝑧̇4 = lim𝑡⟶∞𝛼2 = lim𝑡⟶∞(𝛼2𝑐 + 𝛼2𝑒)=0  

according to Barbalat’s lemma. Then, with lim𝑡⟶∞𝛼𝑒, lim𝑡⟶∞ 𝑧4 = 0, 𝛼2𝑐 = −𝑘2𝜐2𝑧3 −

𝑘3𝑧4 and |𝜐𝑑| > 0, we have  lim𝑡⟶∞ 𝛼2𝑐 = 0 and lim𝑡⟶∞ 𝑧3 = 0, it follows that 

lim𝑡⟶∞ 𝑧1 = 0 with lim𝑡⟶∞(𝑧1 + 𝑧3(𝑧4 + (𝜔𝑑 𝜐𝑑)⁄ (1 + 𝑧3
2))). 



Chapter 3. Passive Fault Tolerant Control 

 

 56 

On the other hand, from 𝑧̇3 = 𝜐𝑑(𝑧4 − 𝑧2) + 𝛼1(𝑧4−𝑧2 + (𝜔𝑑 𝜐𝑑)⁄ (1 + 𝑧3
2))) in 

(3.21), we have 𝑧̈3 ∈ 𝐿∞. Similarly, lim𝑡⟶∞𝑧̇3 = 0 is ensured according to Barbalat’s 

lemma. Then, we can further obtain that lim𝑡⟶∞ 𝑧2 = 0 with lim𝑡⟶∞ 𝑧4 = 0, 

lim𝑡⟶∞ 𝛼1 = 0 and |𝜐𝑑| > 0. 

Finally, all the closed loop system signals are uniformly bounded, furthermore 

lim𝑡⟶∞ 𝑧𝑖(𝑡) = 0 , (𝑖 = 1, 2, 3, 4) and lim𝑡⟶∞(𝜂(𝑡) − 𝜂𝑐(𝑡)) = 0, which also means 

lim𝑡→∞(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, lim𝑡→∞(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0 and lim𝑡→∞(𝜃2(𝑡) − 𝜃𝑑(𝑡)) = 0 

with the diffeomorphism in (3.14)-(3.16) and the transformation in (3.10). 

This concludes the proof of lemma 3.1.                                                                                ∎ 

Remark 3.3: Choosing small controller parameters 𝑘1, ⋯, 𝑘4 may lead to a smooth system 

transient response but with a slow convergence speed of the tracking errors, while 

choosing large ones may contribute to fast convergent tracking errors but with a large 

transient response. To fully utilize these properties, 𝑘1, ⋯, 𝑘4 are chosen empirically. The 

system may be first simulated with different sets of parameters (small ones and large ones), 

then we can choose the most appropriate set that may ensure a good smooth system 

transient response and with an acceptable convergence speed of the tracking errors. 

Since the failure pattern is uncertain, that is, we do not know which 𝜎(𝑘), 𝑘 = 1, 2, … ,𝑁, 

matches with the actual 𝜎, a control switching mechanism is needed to select the most 

appropriate control law 𝑢(𝑘) from (3.35) as the applied control signal 𝑢. 

3.2.2.3 Control switching mechanism design:  

To develop the control switching mechanism, we first reconstruct the velocity vector 𝜂 for 

each possible 𝜎(𝑘), 𝑘 = 1, 2, … ,𝑁. Then, multiple cost functions are calculated from the 

reconstruction errors, and are employed to generate the control switching signal. So, the 

design of the switching mechanism includes the following three steps: 

Step 1. Signal reconstruction: We first reconstruct the velocity vector 𝜂 for all possible 

𝜎(𝑘), 𝑘 = 1, 2, … ,𝑁. Let us start with the dynamic equations in (3.33):  

 𝜂̇ = −𝑀̅1
−1𝑀̅2𝜂 − 𝑀̅1

−1𝐶̅ + 𝑀̅1
−1𝐵̅𝜎𝑢 (3.39) 

Choosing a stable filter 
1

𝑠+𝛾
 with 𝛾 > 0 and adding to both sides of equation (3.39), we 

have 
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Figure 3.2: Structure of the control switching mechanism. 

 
𝑠

𝑠 + 𝛾
[𝜂](𝑡) =

1

𝑠 + 𝛾
[−𝑀̅1

−1𝑀̅2𝜂 − 𝑀̅1
−1𝐶̅](𝑡) +

1

𝑠 + 𝛾
[𝑀̅1

−1𝐵̅ 𝜎𝑢 ](𝑡) (3.40) 

where 𝜂̇(𝑡) = 𝑠[𝜂](𝑡) and 
1

𝑠+𝛾
[𝜒](𝑡) denotes the output of the filter 

1

𝑠+𝛾
 with the input 𝜒(𝑡) 

[131].  

From (3.40), it can be further obtained 

 𝜂(𝑡) =
𝛾

𝑠 + 𝛾
[𝜂](𝑡) +

1

𝑠 + 𝛾
[−𝑀̅1

−1𝑀̅2𝜂 − 𝑀̅1
−1𝐶̅](𝑡) +

1

𝑠 + 𝛾
[𝑀̅1

−1𝐵̅ 𝜎𝑢](𝑡) (3.41) 

For each possible 𝜎(𝑘), 𝑘 = 1, 2, … .𝑁, we reconstruct a signal as follows 

 𝜂̂(𝑘)(𝑡) =
𝛾

𝑠 + 𝛾
[𝜂](𝑡) +

1

𝑠 + 𝛾
[−𝑀̅1

−1𝑀̅2𝜂 − 𝑀̅1
−1𝐶̅](𝑡) +

1

𝑠 + 𝛾
[𝑀̅1

−1𝐵̅ 𝜎(𝑘)𝑢 ](𝑡) (3.42) 

Define the reconstruction error, as shown in Fig. 3.2, as follows 

 𝜂̃(𝑡) = 𝜂(𝑡) − 𝜂̂(𝑡) (3.43) 

Then, consider that the actual failure pattern matrix is 𝜎(𝑎), then with (3.41) and (3.42), 

the matched reconstruction error takes the form of 

 𝜂̃(𝑎)(𝑡) = 0 (3.44) 

and the unmatched reconstruction errors take the form of 
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 𝜂̃(𝑏)(𝑡) =
1

𝑠 + 𝛾
[𝑀̅1

−1𝐵̅𝜎(𝑎)𝑢 − 𝑀̅1
−1𝐵̅𝜎(𝑏)𝑢](𝑡) (3.45) 

for 𝑏 = 1, 2, …𝑁, 𝑏 ≠ 𝑎, which may be not zero as compared with the matched 

reconstruction error. 

Step 2. Multiple cost functions: For the cost functions, as shown in Fig. 3.2, calculated 

from the reconstruction errors, it is common to use quadratic error cost functions, which 

are chosen as 

 𝐽(𝑘)(𝑡) = 𝜂̃(𝑘)
𝑇 (𝑡)𝜂̃(𝑘)(𝑡) (3.46) 

for 𝑘 = 1, 2, … .𝑁. 

Step 3. Control signal selection: The control switching, is implemented by comparing all 

the cost functions in (3.46), and determining the index 𝑘 corresponding to the minimum 

one, that is 

 𝑘(𝑡) = arg min
k=1,2,….N

 𝐽(𝑘)(𝑡) (3.47) 

Thus, we can select which 𝜎(𝑘) should be put in the dynamic control signal. Then the 

corresponding control law is selected as the applied control signal from (3.35), that is 

 𝑢(𝑡) = 𝑢(𝑘)(𝑡) (3.48) 

Moreover, for practical robots, a waiting time 𝑇𝑚𝑖𝑛 will be employed between every 

two switchings to prevent arbitrary fast switching. 

3.2.2.4 Overall system performance analysis  

This mobile robot system composed of two-linked 2WD robots may be in different failure 

situations. To deal with these actuator faults, multiple dynamic control laws and multiple 

nonnegative cost functions are designed, each of which matches with one possible failure 

situation. The control switching mechanism is implemented by comparing all the cost 

functions and applying the control law corresponding to the minimum one. The cost 

function matching with the actual system is theoretically zero which is the minimum value. 

So, the matched control law will be selected, which can ensure system stability and 

asymptotic tracking properties. In some specific situations, an unmatched control law may 
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be selected. This means that the corresponding unmatched cost function is minimum. In 

this case, the selected unmatched control law can also ensure the desired system 

performance. Therefore, the desired performance of the overall system is ensured by the 

developed multiple model-based control scheme. 

The performance of the overall system is given as follows: 

Theorem 3.1: The developed multiple-model actuator failure compensation control 

scheme, constituted by the kinematic control law in (3.27) and (3.28), multiple dynamic 

control laws in (3.35) and the control switching mechanism implemented by (3.47) and 

(3.48) with multiple reconstructed signals in (3.42) and multiple cost functions in (3.46), 

applied to two-linked 2WD mobile robots, guarantees that all closed-loop signals are 

bounded and 𝑙𝑖𝑚𝑡→∞(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, 𝑙𝑖𝑚𝑡→∞(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0 and 

𝑙𝑖𝑚𝑡→∞(𝜃2(𝑡) − 𝜃𝑑(𝑡)) = 0, despite the presence of actuator faults whose time of 

occurrence and pattern are not known. 

Proof: Consider 𝜎 = 𝜎(𝑎). From (3.44) and (3.46), we have 𝐽(𝑎) = 0 for the matched cost 

function. But for the unmatched functions 𝐽(𝑏), 𝑏 = 1, 2, …𝑁, 𝑏 ≠ 𝑎, these zero properties 

may not hold due to (3.45). Since all cost functions are nonnegative, the matched cost 

function will generically become smaller than the other ones. Then, the matched control 

law 𝑢(𝑎) will be selected as the applied one with (3.47) and (3.48). According to Lemma 

3.1, the selected control law can guarantee that all closed-loop signals are bounded and  

lim𝑡→∞(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, lim𝑡→∞(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0 and lim𝑡→∞(𝜃2(𝑡) − 𝜃𝑑(𝑡)) =

0, despite the presence of actuator failures. This is the generic (generally true) matched 

case. On the other hand, if the unmatched control law 𝑢(𝑏), 𝑏 ≠ 𝑎 is selected as the applied 

one meaning  𝐽(𝑏)(𝑡) ≤ 𝐽(𝑎), then there is a time interval [𝑇1, 𝑇2] such that 𝐽(𝑏)(𝑡) = 0 for 

𝑡 ∈ [𝑇1, 𝑇2], as 𝐽(𝑎)(𝑡) = 0. From (3.45), 𝐽(𝑏)(𝑡) = 0 means 𝑀̅1
−1𝐵̅ 𝜎(𝑎)𝑢(𝑏) −

𝑀̅1
−1𝐵̅ 𝜎(𝑏)𝑢(𝑏) = 0 for 𝑡 ∈ [𝑇1, 𝑇2], together with 𝑀̅1

−1𝐵̅𝜎(𝑏)𝑢(𝑏) = 𝑀̅1
−1𝐵̅𝜎(𝑎)𝑢(𝑎) =

−𝑘4𝜂𝑒 − 𝑇𝛼
𝑇𝑓𝛼 + 𝑀̅1

−1𝑀̅2𝜂 + 𝑀̅1
−1𝐶̅ + 𝜂̇𝑐, it also means that: if 𝜎(𝑎) but 𝑢(𝑏) is selected, 

then 𝑢(𝑏) has the same control effectiveness for the dynamic system in (3.33) as compared 

with the matched control law 𝑢(𝑎).  

This concludes the proof of Theorem 3.1.                                                                           ∎ 
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Remark 3.4: The designed multiple model control scheme can also be applied when some 

actuator faults occur and disappear, i.e. intermittent faults. On the other hand, we would 

like to point out that the time intervals between every two different faulty cases should be 

long enough. This hypothesis means that the status of the actuators will not change quickly, 

which is also reasonable for actual robots. Moreover, for practical robots, an artificial 

waiting time 𝑇𝑚𝑖𝑛 > 0 (as in [132]) may be employed between every two-control 

switchings to prevent arbitrarily fast switching. The proposed multiple-model control 

scheme only employs the switching of control signals, but not a switched system that will 

act among several subsystems. On the other hand, the control switchings in this section are 

independent on the waiting time but depend on the cost function-based control switching 

mechanism. So, we call 𝑇𝑚𝑖𝑛 as a waiting time but not as a dwell-time that needs to be 

designed for switched systems. 

3.2.3 Simulation studies  

To verify the effectiveness of the developed multiple model failure compensation scheme 

for two differentially driven wheeled mobile robots with fixed link, a simulation study is 

presented. 

Simulation conditions 

In this simulation studies, we assume that the two wheeled driven robots are the one used 

in [34], then the physical parameters of the two robots are chosen as: 𝑎1 = 𝑎2 = 0.3 𝑚, 

𝑏1 = 𝑏2 = 0.75 𝑚, 𝑟1 = 𝑟2 = 0.15 𝑚, 𝑚1 = 𝑚2 = 30 𝑘𝑔, 𝐼𝑚1 = 𝐼𝑚2 = 15.625 𝑘𝑔 ∙ 𝑚2. 

The length of the link between the two robots is assumed to be 𝑑 = 1.7 𝑚. The reference 

trajectory are generated by (3.5)-(3.7), with 𝜐𝑑 = 0.5 𝑚/𝑠, and 𝜔𝑑 = 0.1 𝑟𝑎𝑑/𝑠. 

In order to verify the failure compensation effectiveness of the developed multiple 

model control scheme, the following fault cases are simulated: 

• no fault: 𝜎(1) = diag{1, 1, 1, 1}, 0 ≤ t < 20s; 

• 𝜏1𝑟 fails: 𝜎(2) = diag{0, 1, 1, 1}, 20s ≤ t < 50s; 

• 𝜏1𝑟, 𝜏2𝑙 fail: 𝜎(3) = diag{0, 1, 1, 0},  50s ≤ t < 80s; 

• 𝜏2𝑙 fails: 𝜎(4) = diag{1, 1, 1, 0},  80s ≤ t < 110s; 

• 𝜏2𝑟, 𝜏2𝑙, fail: 𝜎(5) = diag{1, 1, 0, 0}, t ≥ 110s. 
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There are five failure pattern matrices satisfying the actuation redundancy condition 

(see equation 2.103 in chapter 2), covering the cases of fault free, one actuator fails, both 

two actuators of robot 2 fail, and one actuator of each robot fails. Then we need five control 

laws in (3.35), reconstructed signals in (3.45) and cost functions in (3.46).  

The initial conditions are chosen as: 

𝑥𝑑(0) = 0,      𝑦𝑑(0) = 0,       𝜃2(0) = 0 deg,      𝜃1(0) = 0 deg,    𝜐2(0) = 0,   𝜔𝑑 = 0. 

The control gains are chosen as: 

𝑘1 = 10, 𝑘2 = 2, 𝑘3 = 0.5  and 𝑘4 = 3000, and the waiting time between every two 

switchings is 𝑇𝑚𝑖𝑛 = 0.01𝑠. 

Simulation results 

We apply the developed multiple model failure compensation control scheme to two-linked 

mobile robots. The following simulation results are obtained. 

Fig. 3.3, shows the positions of robot 2, reference robot and robot 1, Fig. 3.4, shows the 

tracking errors of robot 2. From them, we can see that the desired system stability and 

asymptotic tracking properties are ensured despite the presence of uncertain actuator 

failures. Fig. 3.5 and Fig. 3.6, show the control torques generated by the wheels in robot 1 

and robot 2, respectively, from which we can see that the actuator failures are consistent 

with the failure cases in simulation conditions.  

Fig. 3.7, shows the orientation error between two robots. Fig. 3.8, shows the control 

switching index, the sequence of which is 1 → 3 → 2 → 3 → 4→ 5. We can see that the 

control switching index matches with the actual failure pattern index, although there is 

some wrong switchings at some short time intervals after the failure occurring time 

instants. The wrong control switching does not affect system stability and asymptotic 

tracking properties, which is consistent with the unmatched case in the proof of Theorem 

3.1. 
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Figure 3.3: Robot trajectories in (x,y) plane. 

 

Figure 3.4: Tracking errors: 𝑥 − 𝑥𝑑, 𝑦 − 𝑦𝑑 and 𝜃2 − 𝜃𝑑. 
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Figure 3.5: Control torques generated by the robot 1. 

 

 

Figure 3.6: Control torques generated by the robot 2. 
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Figure 3.7: Orientation error between two robots. 

 

 

Fig. 3.8: Control switching index. 
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3.3 Actuator FTC compensation for the case of three-linked robots 

In this section, a control solution which is well-suited for more than two-linked 2WD 

mobile robots (𝑛 >  2) is presented, where 𝑛 is the number of robots. In the previous 

section, considering the case of two-linked robots it was found a diffeomorphism relating 

the kinematic and dynamic controllers. However, it is very difficult to find in the same way 

a diffeomorphism for more than two-linked 2WD mobile robots. Furthermore, even if we 

can find this diffeomorphism, the control objective will be always designed only for the 

last robot of the 2WD multi-linked mobile robots. In order to overcome these limitations, 

we are going to present in the sequel a solution that is based on the chained form 

representation of the kinematic model. 

3.3.1 Multiple model actuator FTC compensation for three-linked robots 

In this subsection, in order to achieve the desired control objective, we propose a 

compensation control scheme, consisting of a kinematic control and a dynamic control. 

The provided solution is based on the transformation of the kinematic model of a multi-

linked 2WD mobile robots system into the chained form [85] that was presented in chapter 

2. Then, the recursive technique is used to derive the kinematic control law. Based on this, 

multiple dynamic controllers are designed considering all possible failure cases. From 

these dynamic controllers, an appropriate one is selected to generate the applied control 

signal by the control switching mechanism using multiple reconstruction dynamic signals 

to ensure desired system performance. 

3.3.1.1 Problem formulation  

The kinematic model for a three-linked 2WD mobile robots were derived in Section 

2.4 (see chapter 2), and is recalled below 

 𝑥̇ = 𝜐3 cos 𝜃3 (3.49) 

 𝑦̇ = 𝜐3 sin 𝜃3 (3.50) 

 𝜃̇3 =
𝜐3

𝑑2
tan(𝜃2 − 𝜃3) (3.51) 

 𝜃̇2 = 𝜐3 𝑡𝑎𝑛(𝜃1𝑑 − 𝜃2)/ (𝑑1𝑐𝑜𝑠(𝜃2 − 𝜃3)) (3.52) 

 𝜃̇1 = 𝜔1 (3.53) 
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Fault-tolerant control objective 2 

The fault-tolerant control objective 2 is to develop an actuator failure compensation scheme 

for three-linked 2WD mobile robots to asymptotically track a reference motion, despite the 

presence of some actuator failures. In other words, the control objective is to design a 

control signal 𝑢(𝑡) to guarantee that the closed-loop system signals are bounded and 

lim
𝑡⟶∞

(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝜃3(𝑡) − 𝜃3𝑑(𝑡)) = 0, 

lim
𝑡⟶∞

(𝜃2(𝑡) − 𝜃2𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝜃1(𝑡) − 𝜃1𝑑(𝑡)) = 0, in the presence of uncertain 𝜎(𝑡), 

where 𝑥𝑑, 𝑦𝑑, 𝜃3𝑑, 𝜃2𝑑, 𝜃1𝑑, are reference trajectories. 

Remark 3.5: Notice that in the fault-tolerant control objective 1 presented in subsection 

3.2.1.2, only parameters of the rear robot were considered in the control objective. The 

fault-tolerant control objective 2 presented here considers the control of each robot of the 

multi-linked system.  

3.3.1.2 Trajectory generation for three-linked 2WD mobile robots 

In this subsection, firstly, a feasible trajectories generation method for three-linked 2WD 

mobile robots is proposed. Secondly, the tracking ability of the trajectories is ensured while 

guaranteeing the controllability of the system and avoiding the system singularities. 

Feasible desired trajectories are given in terms of the Cartesian positions of the point 

𝑃3 (the middle point of robot 3 rear wheels) and are denoted as 𝑥𝑑 and 𝑦𝑑. Consequently, 

the state space vector 𝑞 and system kinematic input vector 𝜂 can be expressed algebraically 

as a function of the flat outputs and their derivatives up to a certain order [37]. A desired 

output trajectory is feasible if and only if it is a solution of the kinematic model [38]. 

Let us consider a given desired trajectory 𝑥𝑑, 𝑦𝑑. This trajectory is feasible if it is 

possible to find 𝜐3𝑑, 𝜃3𝑑, 𝜃2𝑑, 𝜃1𝑑 and 𝜔1𝑑 such that the following system is fulfilled. 

 𝑥̇𝑑 = 𝜐3𝑑 𝑐𝑜𝑠 𝜃3𝑑 (3.54) 

 𝑦̇𝑑 = 𝜐3𝑑𝑠𝑖𝑛 𝜃3𝑑 (3.55) 

 𝜃̇3𝑑 =
𝜐3𝑑

𝑑2
𝑡𝑎𝑛(𝜃2𝑑 − 𝜃3𝑑), (3.56) 

 𝜃̇2𝑑 = 𝜐3𝑑 𝑡𝑎𝑛(𝜃1𝑑 − 𝜃2𝑑)/ (𝑑1𝑐𝑜𝑠(𝜃2𝑑 − 𝜃3𝑑)) (3.57) 

 𝜃̇1𝑑 = 𝜔1𝑑 (3.58) 
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Necessary conditions for (𝑥𝑑, 𝑦𝑑) to be a feasible trajectory are (𝜃2𝑑 − 𝜃3𝑑) ≠ (𝜋/2), 

and (𝜃1𝑑 − 𝜃2𝑑) ≠ (𝜋/2). Moreover, if 𝑥𝑑 or 𝑦𝑑 are not constant, 𝜐3𝑑 must be different 

from 0. 

From the equations (3.54) and (3.55), it can be concluded that: 

 𝜃3𝑑 = ATAN2{𝑦̇𝑑, 𝑥̇𝑑} (3.59) 

Using the equation (3.56), we can get: 

 𝜃2𝑑 = 𝜃3𝑑 + atan(𝑑2𝜃̇3𝑑/𝜐3𝑑) (3.60) 

Using the equation (3.57), we can get: 

 𝜃1𝑑 = 𝜃2𝑑 + 𝑎𝑡𝑎𝑛 ((𝑑1𝜃̇2𝑑 𝑐𝑜𝑠(𝜃2𝑑 − 𝜃3𝑑))/𝜐3𝑑)  (3.61) 

Also, equations (3.54) and (3.55) yield: 

 𝜐3𝑑 = √𝑥̇𝑑
2 + 𝑦̇𝑑

2 (3.62) 

Differentiating equations (3.54) and (3.55), and combining the results so as to eliminate 
𝜐̇3𝑑, we obtain: 

 𝜃̇3𝑑 =
(𝑦̈𝑑𝑥̇𝑑 − 𝑥̈𝑑𝑦̇𝑑)

𝜐3𝑑
2  (3.63) 

Putting equations (3.59), (3.63) into equation (3.60), we obtain: 

 𝜃2𝑑 = ATAN2{𝑦̇𝑑, 𝑥̇𝑑}atan (
𝑑2(𝑦̈𝑑𝑥̇𝑑 − 𝑥̈𝑑𝑦̇𝑑)

𝜐3𝑑
3 ) (3.64) 

Differentiating equation (3.64), we obtain: 

 𝜃̇2𝑑 = 𝜃̇3𝑑 +
𝑑2𝜐3𝑑(𝑦𝑑𝑥̇𝑑 − 𝑥𝑑𝑦̇𝑑)𝜐3𝑑

2 − 3(𝑦̈𝑑𝑥̇𝑑 − 𝑥̈𝑑𝑦̇𝑑)(𝑥̇𝑑𝑥̈𝑑 + 𝑦̇𝑑𝑦̈𝑑)

𝜐3𝑑
6 + 𝑑2

2(𝑦𝑑𝑥̇𝑑 − 𝑥𝑑𝑦̇𝑑)2
 (3.65) 

Differentiating equation (3.61), we obtain: 

 𝜃̇1𝑑 = 𝜃̇2𝑑 +
𝑑

𝑑𝑡
[
𝑑1𝜃̇2𝑑𝑐𝑜𝑠(𝜃2𝑑 − 𝜃3𝑑)

𝜐3𝑑
] (3.66) 

Equations (3.59)-(3.66) express the constraints that the desired states and reference 

velocities must fulfill to make the desired trajectory a feasible trajectory. 

Assumption 3.2: The reference trajectory 𝑥𝑑 , 𝑦𝑑 , 𝜃3𝑑 , 𝜃2𝑑 , 𝜃1𝑑 and reference velocity and 

their derivatives are continuous and uniformly bounded. Moreover, reference velocity does 

not tend to zero as 𝑡 ⟶ ∞. 
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𝑞 = [𝑥, 𝑦, 𝜃3, 𝜃2, 𝜃1]
𝑇  

𝑞 

𝜉 = [𝜉1 , 𝜉2, 𝜉3 , 𝜉4 , 𝜉5]
𝑇  

𝜂 = [𝜐3 𝜔1]𝑇  

 

Figure 3.9: Block diagram of the fault compensation control scheme with coordinate and 

feedback transformations, for the case of three-linked mobile robots. 

Design issues: The structure of the proposed actuator fault compensation scheme is 

shown in Fig. 3.9. To design such a fault tolerant control scheme, the following steps need 

to be solved:  

1. The use of the chained form state-space permits to design a recursive technique, 

which allows controlling each variable of the state of the system, in order to derive 

the virtual kinematic control signal 𝛼𝑐. This is not possible using the same method 

used for the two-linked mobile robots to find the diffeomorphism. 

2. The desired kinematic control law 𝜂𝑐 is designed such that the desired control 

performance can be ensured. 

3. Multiple dynamic controllers are designed, each of which is designed using one 

possible failure pattern matrix. If the failure pattern which is used for the controller 

design is consistent with the actual one, then the applied control signal can ensure  

𝜂 ⟶ 𝜂𝑐 and the desired system performance. 

4. Finally, the control switching mechanism is used to select the appropriate controller 

in order to generate the applied control signal 𝑢. 

This scheme exhibits the following differences with the preceding control scheme for 

two-linked 2WD mobile robots in Fig. 3.1: 

1) The canonical chained form model is used as introduced in chapter 2. 

2) backstepping technique is used to derive the kinematic control law. 
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3.3.1.3 Fault-tolerant control design 

In this subsection, a multiple model actuator fault compensation scheme is developed for 

three-linked robots, as shown in Fig. 3.9. 

3.3.1.3.1 Kinematic controller design 

In order to derive the kinematic control, we use a recursive technique which appears to be 

an extension of the popular integrator backstepping idea to derive the kinematic control 

law for trajectory tracking. 

Let us consider the kinematic model of the three-linked 2WD mobile robots. Applying 

the algorithm proposed in [40], using the change of coordinates in Section 2.5.2, the 

kinematic model of the system has the following chained form  

𝜉̇1 = 𝛼1, 

𝜉̇2 = 𝛼2, 

𝜉̇3 = 𝜉2𝛼1, 

𝜉̇4 = 𝜉3𝛼1, 

  𝜉̇5 = 𝜉4𝛼1 (3.67) 

where 𝜉 = (𝜉1, 𝜉2, … , 𝜉5)  is the state and 𝛼1, 𝛼2 are the two control inputs.  

The desired trajectory 𝜉𝑑 = (𝜉1𝑑, 𝜉2𝑑, … , 𝜉5𝑑) is generated after the change of 

coordinates, by applying 

𝜉̇1𝑑 = 𝛼1𝑑, 

𝜉̇2𝑑 = 𝛼2𝑑 , 

𝜉̇3𝑑 = 𝜉2𝑑𝛼1𝑑, 

𝜉̇4𝑑 = 𝜉3𝑑𝛼1𝑑, 

  𝜉̇5𝑑 = 𝜉4𝑑𝛼1𝑑 (3.68) 

where 𝛼𝑑 = (𝛼1𝑑, 𝛼2𝑑) are the reference control inputs.  

Denote the tracking error as 𝜉𝑒 = 𝜉 − 𝜉𝑑. It is directly established that the 𝜉𝑒 dynamics 

errors satisfy the following differential equations 
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𝜉̇1𝑒 = 𝛼1 − 𝛼1𝑑 

𝜉̇2𝑒 = 𝛼2 − 𝛼2𝑑 

𝜉̇3𝑒 = 𝜉2𝑒𝛼1𝑑 + 𝜉2(𝛼1 − 𝛼1𝑑) 

𝜉̇4𝑒 = 𝜉3𝑒𝛼1𝑑 + 𝜉3(𝛼1 − 𝛼1𝑑) 

 𝜉̇5𝑒 = 𝜉4𝑒𝛼1𝑑 + 𝜉4(𝛼1 − 𝛼1𝑑) (3.69) 

Our objective is to find a bounded smooth kinematic control law such that the system in 

equation (3.67) tracks the smooth reference desired trajectory in equation (3.68). Toward 

this end, the following tracking control problems is addressed.  

Definition 3.1: The tracking control problem will be said to be semi globally solvable [120] 

for system (3.67) if, given any compact set 𝑆 ∈ ℝ5 containing the origin, we can design 

appropriate continuous time-varying state feedback controllers of the form 𝛼1 = 𝜇1(𝜉) and 

𝛼2 = 𝜇2(𝜉), such that for any initial tracking error 𝜉𝑒(0) = 𝜉(0) − 𝜉𝑑(0) in 𝑆, all the 

signals of the closed loop system (3.69), 𝛼1 and 𝛼2 are uniformly bounded over [0,∞). 

Furthermore  

 lim𝑡⟶∞|𝜉(𝑡) − 𝜉𝑑(𝑡)| = 0 (3.70) 

Kinematic control law: 

The main purpose of this subsection is to design the kinematic control laws 𝛼1 and 𝛼2 for 

trajectory tracking of the considered system. 

First, an error dynamic is considered for the tracking problem, second, a change of 

coordinates is proposed and system (3.69) is rearranged into a triangular form so that the 

integrator backstepping can be applied. 

Denote 𝜉𝑑 = (𝜉2𝑑, ⋯ , 𝜉4𝑑) and let Φ1(. ; 𝜉𝑑): ℝ
5 → ℝ5 be the mapping defined by 

𝑧1 = 𝜉5𝑒 − [𝜉4𝑒 + 𝜉4𝑑]𝜉1𝑒 

𝑧2 = 𝜉4𝑒 − [𝜉3𝑒 + 𝜉3𝑑]𝜉1𝑒 

𝑧3 = 𝜉3𝑒 − [𝜉2𝑒 + 𝜉2𝑑]𝜉1𝑒 

𝑧4 = 𝜉2𝑒 

 𝑧5 = 𝜉1𝑒 (3.71) 

As it can be checked, Φ1(. ; 𝜉𝑑) is a global diffeomorphism for each 𝜉𝑑 ∈ ℝ3 [120] and 

its inverse Φ1
−1(𝑧; 𝜉𝑑) is given by 
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𝜉1𝑒 = 𝑧5 

𝜉2𝑒 = 𝑧4 

𝜉3𝑒 = 𝑧3 + [𝑧4 + 𝜉2𝑑]𝑧5 

𝜉4𝑒 = 𝑧2 + [𝑧3+𝑧4𝑧5 + 𝜉2𝑑𝑧5 + 𝜉3𝑑]𝑧5 

 𝜉5𝑒 = 𝑧1 + [𝑧2+(𝑧3 + 𝑧4𝑧5 + 𝜉2𝑑𝑧5 + 𝜉3𝑑)𝑧5 + 𝜉4𝑑]𝑧5 (3.72) 

The tracking error dynamics is transformed into the following system 

𝑧̇1 = 𝛼1𝑑𝑧2 − 𝜉3(𝛼1 − 𝛼1𝑑)𝑧5 

𝑧̇2 = 𝛼1𝑑𝑧3 − 𝜉2(𝛼1 − 𝛼1𝑑)𝑧5 

𝑧̇3 = 𝛼1𝑑𝑧4 − 𝛼2𝑧5 

𝑧̇4 = 𝛼2 − 𝛼2𝑑 

 𝑧̇5 = 𝛼1 − 𝛼1𝑑   (3.73) 

The backstepping algorithm is inspired by the one described in [120].  

Let us formulate the backstepping design scheme for the system (3.73). In this aim, we 

need to consider an intermediate virtual control functions 𝛽𝑖(1 ≤ 𝑖 ≤ 3), which would 

make the subsystem stabilizable. 

Step 1: Consider the 𝑧1 subsystem of system (3.73) 

 𝑧̇1 = 𝛼1𝑑𝑧2 − 𝜉3(𝛼1 − 𝛼1𝑑)𝑧5  (3.74) 

Suppose the variable 𝑧2 is a virtual control input and the variables 𝛼1𝑑 and 𝑧5 are time-

varying functions.  

Set 𝑧1̅ = 𝑧1. Along the solutions of system (3.73), the time derivatives of the positive 

definite and proper functions 

 𝑉1(𝑧1̅) =
1

2
𝑧1̅
2  (3.75) 

satisfies 

 𝑉̇1 = 𝛼1𝑑𝑧1̅𝑧2 − 𝑧1̅𝜉3(𝛼1 − 𝛼1𝑑)𝑧5 (3.76) 

Let us choose 𝛽1(𝑧1) as follows  

 𝛽1(𝑧1)=𝑧2 + 𝑧2̅ (3.77) 
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with 𝛽1(𝑧1) = 0, is a stabilizing function for the system (3.74) whenever 𝑧5 = 0. 

Equation (3.76) becomes 

 𝑉̇1 = 𝛼1𝑑𝑧1̅𝑧2̅ − 𝑧1̅𝜉3(𝛼1 − 𝛼1𝑑)𝑧5 (3.78) 

In the next steps, we apply the same procedure as step 1 recursively for the subsystem 

(𝑧1, … , 𝑧5) of system (3.73). The outputs of these steps are the functions (𝛽2, 𝛽3), which are 

necessary for the computation of 𝛼1 and 𝛼2 in the steps 4 and 5. 

Step 2: We apply the same procedure as step 1 for the (𝑧1, 𝑧2) subsystem of system (3.73) 

with 𝑧3 viewed as a virtual control input. To achieve this goal, let us choose the function 

 𝑉2(𝑧1̅, 𝑧2̅) = 𝑉1(𝑧1̅) +
1

2
𝑧2̅
2 (3.79) 

Differentiating the function 𝑉2 along the solutions of system (3.73) yields 

 𝑉̇2 = − 𝑧1̅𝜉3 + 𝑧2̅𝜉2 − 𝑧2̅
𝜕𝛽1

𝜕𝑧1
𝜉3 (𝛼1 − 𝛼1𝑑)𝑧5 + 𝛼1𝑑𝑧2̅  𝑧1̅+𝑧3 −

𝜕𝛽1

𝜕𝑧1
𝑧2  (3.80) 

Let us choose 

 𝛽2(𝑧1, 𝑧2) = −𝑧1̅ +
𝜕𝛽1

𝜕𝑧1
𝑧2 (3.81) 

 𝑧3̅ = 𝑧3 − 𝛽2(𝑧1, 𝑧2) (3.82) 

It follows that 

 𝑉̇2 = − 𝑧1̅𝜉3 + 𝑧2̅𝜉2 − 𝑧2̅
𝜕𝛽1

𝜕𝑧1
𝜉3 (𝛼1 − 𝛼1𝑑)𝑧5 + 𝛼1𝑑𝑧2̅𝑧3̅ (3.83) 

Step 3: We consider now the (𝑧1, 𝑧2, 𝑧3) subsystem of system (3.73), the time derivative 

of the following function 

 𝑉3(𝑧1̅, 𝑧2̅, 𝑧3̅) = 𝑉2(𝑧1̅, 𝑧2̅) +
1

2
𝑧3̅
2 (3.84) 

satisfies 

𝑉̇3 = − 𝑧1̅𝜉3 + 𝑧2̅𝜉2 − (𝑧2̅
𝜕𝛽1

𝜕𝑧1
𝜉3 + 𝑧3̅

𝜕𝛽2

𝜕𝑧1
𝜉3 +𝑧3̅

𝜕𝛽2

𝜕𝑧2
𝜉2)  

 . (𝛼1 − 𝛼1𝑑)𝑧5 − 𝑧3̅𝑧5𝛼2 + 𝛼1𝑑𝑧3̅  𝑧2̅ + 𝑧4 − (
𝜕𝛽2

𝜕𝑧1
𝑧2 +

𝜕𝛽2

𝜕𝑧2
𝑧3)  (3.85) 

Let us choose 
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 𝛽3(𝑧1, 𝑧2, 𝑧3) = −𝑧2̅ +
𝜕𝛽2

𝜕𝑧1
𝑧2 +

𝜕𝛽2

𝜕𝑧2
𝑧3 (3.86) 

 𝑧4̅ = 𝑧4 − 𝛽3(𝑧1, 𝑧2, 𝑧3) (3.87) 

It follows that 

𝑉̇3 = 𝑧4̅𝑧3̅𝛼1𝑑 − 𝑧3̅𝑧5𝛼2  

 − 𝑧1̅𝜉3 + 𝑧2̅𝜉2 − (𝑧2̅
𝜕𝛽1

𝜕𝑧1
𝜉3 + 𝑧3̅

𝜕𝛽2

𝜕𝑧1
𝜉3 + 𝑧3̅

𝜕𝛽2

𝜕𝑧2
𝜉2) (𝛼1 − 𝛼1𝑑)𝑧5 (3.88) 

Step 4: Let us consider the (𝑧1, 𝑧2, 𝑧3, 𝑧4) subsystem of (3.73) and let us choose the function 

 𝑉4(𝑧1̅, 𝑧2̅, 𝑧3̅, 𝑧4̅) =  𝑉3(𝑧1̅, 𝑧2̅, 𝑧3̅) +
1

2
𝑧4̅
2 = ∑

1

2
𝑧𝑖̅
2

4

𝑖=1

 (3.89) 

According to (3.73) and (3.88), the time derivative of 𝑉4 along the solutions of (3.73) 

satisfies 

𝑉̇4 = 𝑧4̅  𝛼1𝑑𝑧3̅ + 𝛼2 − 𝛼2𝑑 − (
𝜕𝛽3

𝜕𝑧1
𝛼1𝑑𝑧2 +

𝜕𝛽3

𝜕𝑧2
𝛼1𝑑𝑧3 +

𝜕𝛽3

𝜕𝑧3
𝛼1𝑑𝑧4)  

−  𝑧3̅ − 𝑧4̅
𝜕𝛽3

𝜕𝑧3
 𝛼2𝑧5 −  𝑧1̅𝜉3 + 𝑧2̅𝜉2 − (𝑧2̅

𝜕𝛽1

𝜕𝑧1
𝜉3 + 𝑧3̅

𝜕𝛽2

𝜕𝑧1
𝜉3 + 𝑧3̅

𝜕𝛽2

𝜕𝑧2
𝜉2) 

 −(𝑧4̅
𝜕𝛽3

𝜕𝑧1
𝜉3 + 𝑧4̅

𝜕𝛽3

𝜕𝑧2
𝜉2) (𝛼1 − 𝛼1𝑑)𝑧5 (3.90) 

We can obtain 𝛼2 by applying the following control law 

 𝛼2 = 𝛼2𝑑 − 𝑐4𝑧4̅ − 𝛼1𝑑𝑧3̅ +
𝜕𝛽3

𝜕𝑧1
𝛼1𝑑𝑧2 +

𝜕𝛽3

𝜕𝑧2
𝛼1𝑑𝑧3+

𝜕𝛽3

𝜕𝑧3
𝛼1𝑑𝑧4 (3.91) 

where 𝑐4 > 0 is chosen to be constant, we obtain: 

 𝑉̇4 = −𝑐4𝑧4̅
2 − (𝑧3̅ − 𝑧4̅

𝜕𝛽3

𝜕𝑧3
)𝛼2𝑧5 − ∆1(𝛼1 − 𝛼1𝑑)𝑧5 (3.92) 

where ∆1(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝜉𝑑) is a smooth function given by 

 ∆1=  𝑧1̅𝜉3 + 𝑧2̅𝜉2 − (𝑧2̅
𝜕𝛽1

𝜕𝑧1
𝜉3 + 𝑧3̅

𝜕𝛽2

𝜕𝑧1
𝜉3 +𝑧3̅

𝜕𝛽2

𝜕𝑧2
𝜉2) − (𝑧4̅

𝜕𝛽3

𝜕𝑧1
𝜉3 + 𝑧4̅

𝜕𝛽3

𝜕𝑧2
𝜉2)  (3.93) 

Step 5: In the final step, the objective is to design 𝛼1 such that 𝑧1̅, 𝑧2̅, 𝑧3̅, 𝑧4̅ and 𝑧5 converge 

to zero. Toward this end, consider the positive definite and proper function 𝑉5 which serves 

as Lyapunov function candidate for the complete system (3.73)  
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 𝑉5(𝑧̅) =  
1

2
𝑧1̅
2 +

1

2
𝑧2̅
2 +

1

2
𝑧3̅
2 +

1

2
𝑧4̅
2 +

𝜅

2
𝑧5
2  (3.94) 

where 𝜅 > 0 is a design parameter. 

Differentiating 𝑉5 along the solutions of (3.73) gives 

 𝑉̇5 = −𝑐4𝑧4̅
2 + 𝑧5(𝜅 − ∆1) [(𝛼1 − 𝛼1𝑑) − (𝑧3̅ − 𝑧4̅

𝜕𝛽3

𝜕𝑧3
)𝛼2]  (3.95) 

By choosing the following control law 

 𝛼1 = 𝛼1𝑑 + (𝜅 − ∆1)
−1  −𝑐5𝑧5 + (𝑧3̅ − 𝑧4̅

𝜕𝛽3

𝜕𝑧3
)𝛼2  (3.96) 

with 𝑐5 > 0, is a chosen constant, we obtain 

 𝑉̇5(𝑧̅) = −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2  (3.97) 

Thus 𝑉̇5 is negative which proves the stability of the controlled system (3.73). The 

described five steps permit us to find the kinematic control laws 𝛼1 and 𝛼2 which produce 

input signals (or set points) signals for the dynamic controller in the next section. 

Preliminary analysis 

In this section, we prove the tracking control performance for system (3.67). 

Proposition 3.1: Assume that 𝜉𝑖𝑑(2 ≤ 𝑖 ≤ 4), 𝛼𝑑 , and 𝛼̇1𝑑 are bounded over [0,∞). Then, 

the tracking control problem is semi globally solvable for system (3.67). This means that 

using coordinates transformation and applying the design procedure described in the above 

section to system (3.73), given any compact neighborhood 𝑆 of the origin in ℝ5, we can 

find a sufficiently large 𝜅 > 0 so that, for any initial conditions 𝜉𝑒(0) in 𝑆, all the solutions 

of the closed loop system, (3.69), (3.91), and (3.96) are uniformly bounded. Furthermore, 

if 𝛼1𝑑(𝑡) does not converge to zero, we have 𝑙𝑖𝑚
𝑡⟶+∞

|𝜉𝑒(𝑡)| = 0.  

The idea of the proof proposition 3.1 may be found in paper [120]. 

As we mentioned before, the main purpose of this subsection is to design the kinematic 

control laws 𝛼1 and 𝛼2 in (3.91) and (3.96) for trajectory tracking of the considered system 

in (3.73). 

From the transformation of parameters, we can obtain 

 𝛼 = 𝑇𝛼𝜂  (3.98) 

where 

𝑇𝛼11 = 𝑐𝑜𝑠 𝜃3,                   𝑇𝛼12 = 0, 
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𝑇𝛼21 =
1

𝑑1𝑑2
𝑠𝑒𝑐4𝜃3𝑡𝑎𝑛(𝜃1 − 𝜃2)𝑠𝑒𝑐

4(𝜃2 −𝜃3)[
1

𝑑1
3𝑡𝑎𝑛(𝜃2 − 𝜃3)𝑡𝑎𝑛(𝜃1 − 𝜃2)  

   +𝑠𝑒𝑐2(𝜃1 − 𝜃2) +
1

𝑑2
(6𝑡𝑎𝑛𝜃3𝑠𝑖𝑛(𝜃2−𝜃3) − 2𝑡𝑎𝑛(𝜃2 − 𝜃3)𝑠𝑖𝑛(𝜃2 − 𝜃3) 

−𝑠𝑒𝑐(𝜃2 − 𝜃3))],   

𝑇𝛼22 = (1/𝑑1𝑑2)𝑠𝑒𝑐
4𝜃3𝑠𝑒𝑐

2(𝜃1 − 𝜃2)𝑠𝑒𝑐
3(𝜃2 − 𝜃3)  

Define a virtual kinematic control signal 

 𝛼𝑐 = 𝑇𝛼𝜂𝑐  (3.99) 

and the velocity tracking error 

 𝜂𝑒 = 𝜂 − 𝜂𝑐  (3.100) 

Then we have 

 𝛼𝑒 = 𝛼 − 𝛼𝑐 = 𝑇𝛼𝜂𝑒  (3.101) 

Now, we design the virtual kinematic control law 𝛼𝑐 as 

 𝛼2𝑐 = 𝛼2𝑑 − 𝑐4𝑧4̅ − 𝛼1𝑑𝑧3̅ +
𝜕𝛽3

𝜕𝑧1
𝛼1𝑑𝑧2 +

𝜕𝛽3

𝜕𝑧3
𝛼1𝑑𝑧3 +

𝜕𝛽3

𝜕𝑧3
𝛼1𝑑𝑧4  (3.102) 

 𝛼1𝑐 = 𝛼1𝑑 + (𝜅 − ∆1)
−1 [−𝑐5𝑧5 + (𝑧3̅ − 𝑧4̅

𝜕𝛽3

𝜕𝑧3
)𝛼2𝑐]  (3.103) 

where 𝑐4 > 0 and 𝑐5 > 0 are chosen to be constant.  

From equation (3.99) the kinematic control law is 

 𝜼𝒄 = 𝑻𝜶
−𝟏𝜶𝒄  (3.104) 

Substituting (3.101), (3.102) and (3.103) into equation (3.97) yields 

 𝑉̇5 = −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 + 𝑧5(𝑘 − ∆1)𝛼𝑒1 + 𝑧5 (𝑧4̅
𝜕𝛽3

𝜕𝑧3
− 𝑧3̅) 𝛼𝑒2  (3.105) 

By letting the 𝑓𝜂 = [𝑧5(𝜅 − ∆1), 𝑧5 (𝑧4̅
𝜕𝛽3

𝜕𝑧3
− 𝑧3̅)]

𝑇

we get 

 𝑉̇5 = −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 + 𝑓𝜂
𝑇𝑇𝛼𝜂𝑒  (3.106) 

It is clear that from this equation if 𝑓𝜂
𝑇𝑇𝛼𝜂𝑒 → 0, then 𝑉̇5 ≤ 0, which means that the system 

is stable. To implement this and to ensure desired system performance, a dynamic 

controller will be designed in the next section. 
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3.3.1.3.2 Multiple dynamic controller design 

Since the failures are uncertain it is difficult to ensure system stability and asymptotic 

tracking by using a single control law. To cover all possible failure patterns, we will design 

one specific control law for each failure pattern. Then, we will establish a control switching 

mechanism to select an appropriate control law to be the applied one. 

Dynamic control laws 

We are going to design the dynamic control law using the same control structure presented 

for the case of two-linked mobile robots. For three-linked mobile robots, the differences 

are in the dimensions of the matrices 𝑀̅1, 𝑀̅2, 𝐶̅, and 𝐵̅ and on the parameters related to the 

kinematic controller 𝑓𝜂, 𝑇𝛼, 𝜂𝑐. 

Then, the dynamic control law is 

 𝒖(𝒌) = (𝑴̅𝟏
−𝟏𝑩̅𝝈(𝒌))

+
[−𝒄𝟔𝜼𝒆 − 𝑻𝜶

𝑻𝒇𝜼 + 𝑴̅𝟏
−𝟏𝑴̅𝟐𝜼 + 𝑀̅1

−1𝐶̅ + 𝜼̇𝒄] 
(3.107) 

for 𝑘 = 1, 2, … ,𝑁, where 𝑐6 > 0 is chosen to be constant, and (𝑀̅1
−1𝐵̅𝜎(𝑘))

+
is a 

generalized inverse matrix. 

Performance analysis  

The performance of the designed dynamic control laws is given as follows 

Lemma 3.2: If the applied control law matches with the actual failure pattern matrix, i.e., 

𝜎 = 𝜎(𝑎) and 𝑢 = 𝑢(𝑎)  for 𝑎 = 1, 2, … ,𝑁,  then the boundedness of all closed loop signals 

is ensured, and 𝑙𝑖𝑚
𝑡⟶∞

(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, 𝑙𝑖𝑚
𝑡⟶∞

(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0, 𝑙𝑖𝑚
𝑡⟶∞

(𝜃3(𝑡) −

𝜃3𝑑(𝑡)) = 0, 𝑙𝑖𝑚
𝑡⟶∞

(𝜃2(𝑡) − 𝜃2𝑑(𝑡)) = 0, 𝑙𝑖𝑚
𝑡⟶∞

(𝜃1(𝑡) − 𝜃1𝑑(𝑡)) = 0 and  𝑙𝑖𝑚
𝑡⟶∞

(𝜂(𝑡) −

𝜂𝑐(𝑡)) = 0. 

Proof: Consider 𝜎 = 𝜎(𝑎) and 𝑢 = 𝑢(𝑎) and choose the global Lyapunov function as 

follows 

 𝑉6(𝑎) = 𝑉5 +
1

2
𝜂𝑒
𝑇𝜂𝑒  (3.108) 

Deriving equation (3.108) and using (3.106) and (3.34) lead to 

 𝑉̇6(𝑎) = −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 + 𝑓𝜂
𝑇𝑇𝛼𝜂𝑒+𝜂𝑒

𝑇[−𝑀̅−1𝑀̅2 𝜂 − 𝑀̅1
−1𝐶̅ + 𝑀̅−1𝐵̅ 𝜎𝑢 − 𝜂̇𝑐] (3.109) 

Substituting the dynamic control law in (3.107) with 𝑘 = 𝑎 in the equation (3.109), we 

have 
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 𝑉̇6(𝑎) = −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 − 𝑐6𝜂𝑒
𝑇𝜂𝑒 ≤ 0 (3.110) 

where (𝑧1, ⋯ , 𝑧5) are used to derive the kinematic control law, 𝜂𝑒 is the velocity tracking 

error. 

The proof of equation (3.110) is as follows: 

𝑧1, 𝑧2,  𝑧3, 𝑧4,  𝑧5, 𝑧1̅, 𝑧2̅, 𝑧3̅, 𝑧4̅, 𝜂𝑒 ∈ 𝐿∞, and  𝑧4̅, 𝑧5, 𝜂𝑒 ∈  𝐿2. The definitions of 𝐿∞ and 

𝐿2 can be found in [131]. It follows from equations (2.89), (2.90) and (2.91), that 𝑐𝑜𝑠 𝜃3 ≠

0, 𝑐𝑜𝑠(𝜃2 − 𝜃3) ≠ 0 and 𝑡𝑎𝑛(𝜃1 − 𝜃2) ∈ 𝐿∞ which means 𝑐𝑜𝑠(𝜃1 − 𝜃2) ≠ 0. Then from 

the equations (3.69), (3.73), and also from (3.99)-(3.104) and (3.107), we obtain the 

following: 𝑇𝛼 is bounded and nonsingular, and 𝛼𝑐, 𝛼𝑒 , 𝛼, 𝜂𝑐 , 𝜂𝑒, 𝜂, 𝑧̇1, 𝑧̇2, 𝑧̇3, 𝑧̇4, 𝑧̇5, 𝑧1̇̅, 𝑧2̇̅, 

𝑧3̇̅, 𝑧4̇̅, 𝛼̇𝑐, 𝜂̇𝑐, 𝑢(𝑘), 𝜂̇, 𝜂̇𝑒 , 𝛼̇, 𝛼̇𝑒 ∈ 𝐿∞.  

According to Barbalat’s Lemma [131], it is concluded that all the closed loop system 

signals are bounded, and lim
𝑡⟶∞

𝑧4̅ = 0, lim
𝑡⟶∞

𝑧5 = 0 and lim
𝑡⟶∞

𝜂𝑒 = 0, which also implies 

lim
𝑡⟶∞

𝛼𝑒 = 0. With equation (3.101) and according to the proposition 1, we have 

lim
𝑡⟶∞

𝑧1 = 0, lim
𝑡⟶∞

𝑧2 = 0, lim
𝑡⟶∞

𝑧3 = 0, lim
𝑡⟶∞

𝑧4 = 0, lim
𝑡⟶∞

𝑧5 = 0, lim
𝑡⟶∞

𝑧1̅ = 0, lim
𝑡⟶∞

𝑧2̅ =

0, lim
𝑡⟶∞

𝑧3̅ = 0, lim
𝑡⟶∞

𝑧4̅ = 0, and |𝛼1𝑑| ≥ 0, then we can further obtain lim
𝑡⟶∞

𝛼2𝑐 = 𝛼2𝑑 

from equation (3.102), it follows that lim
𝑡⟶∞

𝛼2 = 𝛼2𝑑, and also lim
𝑡⟶∞

𝛼1𝑐 = 𝛼1𝑑 and from 

equation (3.103), it follows that lim
𝑡⟶∞

𝛼1 = 𝛼1𝑑.  

Finally, all the closed loop system signals are uniformly bounded, furthermore 

lim
𝑡⟶∞

𝑧𝑖(𝑡) = 0, (𝑖 = 1,… 5) and lim
𝑡⟶∞

𝜉𝑖𝑒(𝑡) = 0, (𝑖 = 1,… 5) and lim
𝑡⟶∞

(𝜂(𝑡) − 𝜂𝑐(𝑡)) =

0, which also means lim
𝑡⟶∞

(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝜃3(𝑡) −

𝜃3𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝜃2(𝑡) − 𝜃2𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝜃1(𝑡) − 𝜃1𝑑(𝑡)) = 0. 

This concludes the proof of lemma 3.2.                                                                                ∎ 

3.3.1.3.3 Control switching mechanism design  

As the actual failure pattern matrix is unknown, the system equation for 𝜂 will be 

reconstructed considering all the possible fault scenarios. Then, in the next steps, the fault 

failure pattern matrix that gives the best signal reconstruction will be selected in order to 

select the most suitable control signal. So, the steps presented in subsection 3.2.2.3 can be 

used. 
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3.3.1.3.4 Overall system performance analysis 

Theorem 3.2: The developed multiple-model actuator failure compensation control 

scheme, constituted by the kinematic control law in (3.102) and (3.103), multiple dynamic 

control laws in (3.107) and the control switching mechanism implemented by (3.47) and 

(3.48) with multiple reconstructed signals in (3.42) and multiple cost functions in (3.46), 

applied to three-linked 2WD mobile robots, guarantees that all closed-loop signals are 

bounded and 𝑙𝑖𝑚
𝑡⟶∞

(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, 𝑙𝑖𝑚
𝑡⟶∞

(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0, 𝑙𝑖𝑚
𝑡⟶∞

(𝜃3(𝑡) − 𝜃3𝑑(𝑡)) =

0, 𝑙𝑖𝑚
𝑡⟶∞

(𝜃2(𝑡) − 𝜃2𝑑(𝑡)) = 0, 𝑙𝑖𝑚
𝑡⟶∞

(𝜃1(𝑡) − 𝜃1𝑑(𝑡)) = 0, despite the presence of actuator 

failures that are uncertain in time instants and patterns. 

Proof: Consider 𝜎 = 𝜎(𝑎) From (3.44) and (3.46), we have 𝐽(𝑎) = 0 for the matched cost 

function. But for the unmatched functions 𝐽(𝑏), 𝑏 = 1, 2, …𝑁, 𝑏 ≠ 𝑎, these zero properties 

may not hold due to (3.45). Since all cost functions are nonnegative, the matched cost 

function will generically become smaller than the other ones. Then, the matched control 

law 𝑢(𝑎) will be selected as the applied one with (3.47) and (3.48). According to Lemma 

3.2, the selected control law can guarantee that all closed-loop signals are bounded and  

lim
𝑡⟶∞

(𝑥(𝑡) − 𝑥𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝑦(𝑡) − 𝑦𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝜃3(𝑡) − 𝜃3𝑑(𝑡)) = 0, 

lim
𝑡⟶∞

(𝜃2(𝑡) − 𝜃2𝑑(𝑡)) = 0, lim
𝑡⟶∞

(𝜃1(𝑡) − 𝜃1𝑑(𝑡)) = 0, despite the presence of actuator 

failures. This is the generic (generally true) matched case. On the other hand, if the 

unmatched control law 𝑢(𝑏), 𝑏 ≠ 𝑎 is selected as the applied one meaning  𝐽(𝑏)(𝑡) ≤ 𝐽(𝑎), 

then there is a time interval [𝑇1, 𝑇2] such that 𝐽(𝑏)(𝑡) = 0 for 𝑡 ∈ [𝑇1, 𝑇2], as 𝐽(𝑎) = 0. From 

(3.45), 𝐽(𝑏)(𝑡) = 0 means 𝑀̅1
−1𝐵̅ 𝜎(𝑎)𝑢(𝑎) − 𝑀̅1

−1𝐵̅ 𝜎(𝑏)𝑢(𝑏) = 0 for 𝑡 ∈ [𝑇1, 𝑇2], together 

with 𝑀̅1
−1𝐵̅𝜎(𝑏)𝑢(𝑏) = 𝑀̅1

−1𝐵̅𝜎(𝑎)𝑢(𝑎) = −𝑐6𝜂𝑒 − 𝑇𝛼
𝑇𝑓𝜂 + 𝑀̅1

−1𝑀̅2𝜂 + 𝑀̅1
−1𝐶̅ + 𝜂̇𝑐, it also 

means that: if 𝜎(𝑎) but 𝑢(𝑏) is selected, then 𝑢(𝑏) has the same control effectiveness as 

compared with the matched control law 𝑢(𝑎).  

This concludes the proof of Theorem 3.2.                                                                                ∎ 

3.3.1.4 Simulation studies 

In this simulation studies, we assume that the three wheeled driven robots are the ones used 

in [34], then the physical parameters of the three robots are chosen as: 𝑎1 = 𝑎2 = 𝑎3 =
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0.3 𝑚, 𝑏1 = 𝑏2 = 𝑏3 = 0.75 𝑚, 𝑟1 = 𝑟2 = 𝑟3 = 0.15 𝑚, 𝑚1 = 𝑚2 = 𝑚3 = 30 𝑘𝑔, 𝐼𝑚1 =

𝐼𝑚2 = 𝐼𝑚3 = 15.625 𝑘𝑔 ∙ 𝑚2. The length of the link between each two robots is assumed 

to be 𝑑 = 1 𝑚. 𝑥𝑑 , 𝑦𝑑 , 𝜃3𝑑 , 𝜃2𝑑 , 𝜃1𝑑 , 𝜐3𝑑 and 𝜔1𝑑, are the reference trajectories with 

𝑥𝑑(0) = 𝑦𝑑(0) = 𝜃3𝑑(0) = 𝜃2𝑑(0) = 𝜃1𝑑(0) = 0. In order to verify the fault 

compensation effectiveness of the developed multiple model scheme, the following fault 

cases are simulated 

• No fault: 𝜎(1) = diag{1, 1, 1, 1, 1, 1}, 0 ≤ t < 20s; 

• 𝜏1𝑟 fails: 𝜎(2) = diag{0, 1, 1, 1, 1, 1}, 20s ≤ t < 40s; 

• 𝜏2𝑙, 𝜏3𝑙 fail: 𝜎(3) = diag{1, 1, 1, 0, 1, 0}, 40s ≤ t < 60s; 

• 𝜏1𝑙,𝜏2𝑟 , 𝜏3𝑟 fail: 𝜎(4) = diag{1, 0, 0, 1, 0, 1}, 60s ≤ t < 80s; 

• 𝜏1𝑙 , 𝜏2𝑟, 𝜏2𝑙, 𝜏3𝑟 fail: 𝜎(5) = diag{1, 0, 0, 0, 0, 1},  t ≥ 80s. 

There are 5 failure patterns satisfying the actuation redundancy condition. Then we 

need 5 control laws in (3.107), reconstructed signals in (3.42) and cost functions in (3.46). 

The initial conditions are chosen as: 𝑥(0) = 𝑦(0) = 0.5, 𝜃3(0) = 𝜃2(0) = 𝜃1(0) =

30 𝑑𝑒𝑔, and the control gains are chosen as: 𝐶4 = 𝐶5 = 𝐶6 = 2 and  𝜅 = 5.  

Fig. 3.10, shows the positions of robots 1, 2, 3 and reference trajectory, and Fig. 3.11, 

shows the tracking errors of all the states. From them, we can see that the desired system 

stability and asymptotic tracking are ensured despite the presence of actuator failures. 

Fig. 3.12, shows the control torques generated by the wheels in robot 1, robot 2, and 

robot 3 respectively, from which we can see that the actuator failures are consistent with 

the failure cases in simulation conditions. 

Fig. 3.13, shows the control switching index, the sequence is 1→2→3→4→5. We can 

see that the control switching index matches with the actual failure pattern index, although 

there is some wrong switching at some short time intervals after the failure occurring time 

instants. This wrong control switching does not affect system stability and asymptotic 

tracking properties. For the short time interval after 20s, in which the control signal has a 

wrong switching to 3, this case is consistent with the unmatched case in the proof of 

Theorem 3.2. 

 



Chapter 3. Passive Fault Tolerant Control 

 

 80 

 

Figure 3.10: Robot trajectories in (x, y) plane. 

 

 

Figure 3.11: Tracking errors. 
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Figure 3.12: Control torques generated by robot 1, robot 2 and robot 3. 

 

 

 

 

Figure 3.13: Control switching index. 
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3.3.2 Multi-design integration based adaptive FTC for three-linked robots 
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Figure 3.14: Block diagram of the fault compensation control scheme with coordinate and 

feedback transformations, for the case of three-linked robots. 

In this subsection, a multi-design integration based adaptive actuator failure compensation 

scheme is developed for three linked 2WD mobile robots including a kinematic controller 

and a dynamic controller.  

In order to design a FTC for three-linked 2WD mobile robots with friction and actuator 

faults, the same kinematic control law proposed in subsection 3.3.1 is used, but the dynamic 

control avoid the control switching mechanism used in the multiple dynamic controllers 

method. These frictions and actuator faults introduce additional uncertainties, especially 

the uncertainties of the control gain. To cover all possible actuator faults and to deal with 

uncertainties, a multi design integration based adaptive method is used. We employ 

adaptive laws to compensate uncertain friction coefficients and faults, in order to adapt 

online the single control law. 

3.3.2.1 Problem formulation and fault-tolerant control objective 3 

Our fault-tolerant control objective 3 is to design a feedback control signal 𝑢(𝑡) for the 

system despite the presence of actuator faults that satisfy redundancy condition, such that 

all the closed loop system signals are bounded and the system output 𝑞(𝑡) tracks a given 

reference output 𝑞𝑑(𝑡) = [𝑥𝑑 , 𝑦𝑑 , 𝜃3𝑑 , 𝜃2𝑑 , 𝜃1𝑑], in the presence of actuator faults. 

Design issues: The structure of the proposed actuator fault compensation scheme is shown 

in Fig. 3.14. To design such a fault tolerant control scheme, the following steps need to be 

solved: 
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1. The kinematic controller is the same as presented in Section 3.3.1. 

2. For the dynamic controller, a multi-design integration based adaptive method is 

employed, to handle the problems of uncertain system friction and multiple actuator 

faults. 

Remark 3.6: The possible failure patterns of the three-linked 2WD mobile robots during 

the system operation, which satisfy the redundancy condition, are the fault free case and 

the multiple fault cases where up to any four actuators are simultaneously faulty. 

Key technical issues: The key feature of our actuator fault compensation scheme, as shown 

in Fig. 3.14, is the use of multiple control designs (which are capable of dealing with 

individual faults) and a control integration to form the composite control law. To handle 

system uncertainties and faults, both the control designs and their integration mechanism 

are adaptively updated based on the system performance errors, without using an explicit 

fault diagnosis algorithm. 

3.3.2.2 Fault-tolerant control design 

In this subsection, in order to achieve the desired control objective 3, we propose an 

adaptive compensation control scheme, consisting of a kinematic and dynamic control 

design. The structure of the proposed scheme is shown in Fig. 3.14. 

3.3.2.2.1 Kinematic controller design 

The design of the kinematic control is based on the transformation of model into the 

chained form. 

The chained form of the kinematic model [40] and a recursive technique based on the 

classical integrator backstepping [120] give the following kinematic control law already 

presented in Section 3.3.1: 

 𝜼𝒄 = 𝑻𝜶
−𝟏𝜶𝒄 (3.111) 

where 𝑇𝛼 and 𝛼𝑐 as described in section 3.3.1 are 

 𝑇𝛼 =  
𝑇𝛼11 𝑇𝛼12

𝑇𝛼21 𝑇𝛼22
  (3.112) 
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 𝛼𝑐 = [
𝛼1𝑐

𝛼2𝑐
] (3.113) 

This kinematic control law is a function of the measured and desired generalized 

coordinates 𝑞 and 𝑞𝑑, respectively. It is shown in previous section, that a dynamic 

controller can be applied in jointly with (3.111) in order to assure closed loop stability and 

performance. In the sequence, a suitable dynamic controller is presented. 

3.3.2.2.2 Dynamic controller design 

To cover all possible faults and to handle the uncertainties of system frictions and faults, a 

multi-design integration based adaptive dynamic controller is developed in this subsection. 

Multi design integration 

Substituting (2.102) into (2.55) (see chapter 2), the multi-robot system dynamic is described 

by the following dynamic equation when considering actuator faults as follows 

 𝜂̇ = −𝑀̅1
−1𝑀̅2𝜂 − 𝑀̅1

−1𝐶̅ + 𝑀̅1
−1𝐵̅𝜎𝑢 + 𝑀̅1

−1𝐵̅𝑢̅𝑓 (3.114) 

where 𝑢̅𝑓 = (𝐼6 − 𝜎)𝑢̅ is the unknown friction value that is introduced by loss of control 

failure, and 𝑢 = [𝑢1r, 𝑢1l, 𝑢2r, 𝑢2l, 𝑢3r, 𝑢3l]
T is the control signal to be designed. 

Let 𝜎(𝑘), 𝑘 = 1, 2, … ,𝑁 denote the 𝑘th possible fault pattern matrix satisfying actuation 

redundancy condition, where 𝑁 is the number of all possible fault pattern matrices that are 

under consideration.  

For each 𝜎(𝑘), a corresponding dynamic control signal 𝑢(𝑘) is designed such that the 

desired system performance can be ensured if  𝑢 = 𝑢(𝑘) and 𝜎 = 𝜎(𝑘). Then, to cover all 

possible failure patterns, a nominal multi-design integration based dynamic signal is 

constructed as follows  

 𝑢∗ = ∑𝜒(𝑘)𝑢(𝑘)

𝑁

𝑘=1

 (3.115) 

where  

 𝜒(𝑘) = {
1 if 𝜎 = 𝜎(𝑘)   

0 otherwise
 (3.116) 

with 𝜒(𝑘) may be 1 or 0, equation (3.115) can be rewritten as 



Chapter 3. Passive Fault Tolerant Control 

 

 85 

 𝑢∗=∑ diag{𝜒(𝑘)1𝑟 , 𝜒(𝑘)1𝑙, 𝜒(𝑘)2𝑟 , 𝜒(𝑘)2𝑙
𝑁
𝑘=1 , 𝜒(𝑘)3𝑟 , 𝜒(𝑘)3𝑙}𝑢(𝑘) (3.117) 

where 

𝜒(𝑘)1𝑟 = 𝜒(𝑘)1𝑙 = 𝜒(𝑘)2𝑟 = 𝜒(𝑘)2𝑙 = 𝜒(𝑘)3𝑟 = 𝜒(𝑘)3𝑙 

Since the actual failure pattern 𝜎 is uncertain, 𝜒(𝑘) is also uncertain for 𝑘 = 1, 2, … , 𝑁. Let 

𝜒̂(𝑘) denote the estimates of 𝜒(𝑘), and 𝑢̂̅𝑓 denotes the estimate of 𝑢̅𝑓, and where 𝑘 =

1, 2, … ,𝑁. Then the dynamic control law is designed to deal with such uncertainties as 

follows  

 𝒖 = ∑𝝌̂(𝒌)𝒖(𝒌)

𝑵

𝒌=𝟏

 (3.118) 

where 

 𝜒̂(𝑘) = diag{𝜒̂(𝑘)1𝑟 , 𝜒̂(𝑘)1𝑙, 𝜒̂(𝑘)2𝑟 , 𝜒̂(𝑘)2𝑙 , 𝜒̂(𝑘)3𝑟 , 𝜒̂(𝑘)3𝑙} is the estimated matrix that will be 

described later.  

The time derivative of the velocity tracking error in (3.25) is 

 𝜂̇𝑒 = 𝜂̇ − 𝜂̇𝑐 (3.119) 

Substituting (3.114) into (3.119), we get the following equation 

 𝜂̇𝑒 = −𝑀̅1
−1𝑀̅2𝜂 − 𝑀̅1

−1𝐶̅ + 𝑀̅1
−1𝐵̅𝜎𝑢 + 𝑀̅1

−1𝐵̅𝑢̅𝑓 − 𝜂̇𝑐  (3.120) 

Then, the dynamic control signal 𝑢(𝑘) is designed as 

 𝒖(𝒌) = (𝑴̅𝟏
−𝟏𝑩̅𝝈(𝒌))

+
[−𝒄𝟔𝜼𝒆 − 𝑻𝜶

𝑻𝒇𝜼 + 𝑴̅𝟏
−𝟏𝑴̅𝟐𝜼+𝑴̅𝟏

−𝟏𝑪̅ − 𝑴̅𝟏
−𝟏𝑩̅𝒖̂̅𝒇 + 𝜼̇𝒄] (3.121) 

for 𝜎(𝑘), 𝑘 = 1, 2, … , 𝑁, where 𝑐6 > 0 is chosen to be constant, and (𝑀̅1
−1𝐵̅𝜎(𝑘))

+
 is a 

generalized inverse matrix satisfying 𝑀̅1
−1𝐵̅𝜎(𝑘) (𝑀̅1

−1𝐵̅𝜎(𝑘))
+

=𝐼3. 

Remark 3.7: Some elements of some 𝑢(𝑘) may be zero. For example, if 𝜎(𝑘) =

𝑑𝑖𝑎𝑔{0, 1, 1, 1, 1, 1} and (𝑀̅1
−1𝐵̅𝜎(𝑘))

+
= 𝜎(𝑘)(𝑀̅1

−1𝐵̅)𝑇(𝑀̅1
−1𝐵̅𝜎(𝑘)(𝑀̅1

−1𝐵̅)𝑇)
−1

, then 

𝑢(𝑘)1𝑟 = 0. In this sense, some 𝜒̂(𝑘) in (3.131) can be simplified. For instance, for 𝜎(𝑘) =

𝑑𝑖𝑎𝑔{0, 1, 1, 1, 1, 1}, 𝜒̂(𝑘) = {0, 𝜒̂(𝑘)1𝑙 , 𝜒̂(𝑘)2𝑟 , 𝜒̂(𝑘)2𝑙, 𝜒̂(𝑘)3𝑟 , 𝜒̂(𝑘)3𝑙}; and for 𝜎(𝑘) =

𝑑𝑖𝑎𝑔{0, 1, 1, 1, 1, 0}, 𝜒̂(𝑘) = {0, 𝜒̂(𝑘)1𝑙 , 𝜒̂(𝑘)2𝑟 , 𝜒̂(𝑘)2𝑙, 𝜒̂(𝑘)3𝑟 , 0}. 
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Let 𝑢̂̅𝑓 denote the estimate of 𝑢̅𝑓, and 𝜒̂(𝑘) denote the estimates of 𝜒(𝑘), where 𝑘 =

1, 2, … ,𝑁. Define the estimation error as  

𝑢̃̅𝑓 = 𝑢̅𝑓 − 𝑢̂̅𝑓 ,  

𝜒̃(𝑘)1𝑟 = 𝜒(𝑘) − 𝜒̂(𝑘)1𝑟 ,     𝜒̃(𝑘)1𝑙 = 𝜒(𝑘) − 𝜒̂(𝑘)1𝑙 , 

𝜒̃(𝑘)2𝑟 = 𝜒(𝑘) − 𝜒̂(𝑘)2𝑟 ,     𝜒̃(𝑘)2𝑙 = 𝜒(𝑘) − 𝜒̂(𝑘)2𝑙, 

 𝜒̃(𝑘)3𝑟 = 𝜒(𝑘) − 𝜒̂(𝑘)3𝑟 ,     𝜒(𝑘)3𝑙 = 𝜒(𝑘) − 𝜒̂(𝑘)3𝑙 (3.122) 

for 𝑘 = 1, 2, … ,𝑁. Then, substituting (3.117), (3.118) and (3.121) into (3.120), we have 

𝜂̇𝑒 = −𝑀̅1
−1𝑀̅2𝜂 − 𝑀̅1

−1𝐶̅ + 𝑀̅1
−1𝐵̅𝜎𝑢∗ + 𝑀̅1

−1𝐵̅𝑢̅𝑓 − 𝜂̇𝑐 + 𝑀̅1
−1𝐵̅𝜎(𝑢 − 𝑢∗)  

𝜂̇𝑒=−𝑐6𝜂𝑒 − 𝑇𝛼
𝑇𝑓𝜂+𝑀̅1

−1𝐵̅𝑢̃̅𝑓 − ∑ (𝑀̅1
−1𝐵̅)𝑐1𝜎1𝑟𝜒̃(𝑘)1𝑟𝑢(𝑘)1𝑟

𝑁
𝑘=1  

 

−∑ (𝑀̅1
−1𝐵̅)𝑐2𝜎1𝑙𝜒̃(𝑘)1𝑙𝑢(𝑘)1𝑙

𝑁
𝑘=1  −∑ (𝑀̅1

−1𝐵̅)𝑐3𝜎2𝑟𝜒̃(𝑘)2𝑟𝑢(𝑘)2𝑟
𝑁
𝑘=1  

 

−∑(𝑀̅1
−1𝐵̅)𝑐4𝜎2𝑙𝜒̃(𝑘)2𝑙𝑢(𝑘)2𝑙

𝑁

𝑘=1

− ∑(𝑀̅1
−1𝐵̅)𝑐5𝜎3𝑟𝜒̃(𝑘)3𝑟𝑢(𝑘)3𝑟

𝑁

𝑘=1

 

 −∑(𝑀̅1
−1𝐵̅)𝑐6𝜎3𝑙𝜒̃(𝑘)3𝑙𝑢(𝑘)3𝑙

𝑁

𝑘=1

 (3.123) 

where  (𝑀̅1
−1𝐵̅)𝑐𝑖 (𝑖 = 1,… , 6) denotes the 𝑖th column vector of matrix 𝑀̅1

−1𝐵̅. 

Adaptive law 

Based on the error equation in (3.123), we now design the adaptive law to construct the 

control signal 𝑢(𝑘) in (3.121), as 

 𝑢̇̂̅𝑓 = Γ𝑓 + (𝑀̅1
−1𝐵̅)𝑇𝜂𝑒 (3.124) 

where  Γ𝑓 = Γ𝑓
𝑇 ∈ ℜ6×6 is the positive-definite adaptation gain matrix that is chosen to be 

constant. 

To construct the dynamic control law 𝑢 in (3.118), the adaptive law of 

𝜒̂(𝑘)1𝑟 , 𝜒̂(𝑘)1𝑙  , 𝜒̂(𝑘)2𝑟 , 𝜒̂(𝑘)2𝑙, 𝜒̂(𝑘)3𝑟 and 𝜒̂(𝑘)3𝑙 are chosen as  
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𝜒̇̂(𝑘)1𝑟 = −𝛾𝑘1𝑟𝑢(𝑘)1𝑟𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐1 + 𝑓𝑘1𝑟, 

𝜒̇̂(𝑘)1𝑙 = −𝛾𝑘1𝑙𝑢(𝑘)1𝑙𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐2 + 𝑓𝑘1𝑙, 

𝜒̇̂(𝑘)2𝑟 = −𝛾𝑘2𝑟𝑢(𝑘)2𝑟𝜂𝑒
𝑇(𝑀̅−1𝐵̅)𝑐3 + 𝑓𝑘2𝑟, 

𝜒̇̂(𝑘)2𝑙 = −𝛾𝑘2𝑙𝑢(𝑘)2𝑙𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐4 + 𝑓𝑘2𝑙, 

𝜒̇̂(𝑘)3𝑟 = −𝛾𝑘3𝑟𝑢(𝑘)3𝑟𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐5 + 𝑓𝑘3𝑟, 

 𝜒̇̂(𝑘)3𝑙 = −𝛾𝑘3𝑙𝑢(𝑘)3𝑙𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐6 + 𝑓𝑘3𝑙, (3.125) 

for 𝑘 = 1, 2, … ,𝑁, where 𝛾𝑘1𝑟 > 0, 𝛾𝑘1𝑙 > 0, 𝛾𝑘2𝑟 > 0, 𝛾𝑘2𝑟 > 0, 𝛾𝑘3𝑟 > 0, and 𝛾𝑘3𝑙 > 0, 

are the adaptation gains. 

Standard parameters projection functions [131] 𝑓𝑘1𝑟, 𝑓𝑘1𝑙, 𝑓𝑘2𝑟, 𝑓𝑘2𝑙, 𝑓𝑘3𝑟 and 𝑓𝑘3𝑙 are set to 

ensure the boundedness of the parameters errors 𝜒̃(𝑘)1𝑟, 𝜒̃(𝑘)1𝑙, 𝜒(𝑘)2𝑟, 𝜒̃(𝑘)2𝑙, 𝜒̃(𝑘)3𝑟, 𝜒̃(𝑘)3𝑙 

that are defined in the following. Let 

𝑝𝑘1𝑟 = −𝛾𝑘1𝑟𝑢(𝑘)1𝑟𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐1, 

𝑝𝑘1𝑙 = −𝛾𝑘1𝑙𝑢(𝑘)1𝑙𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐2, 

𝑝𝑘2𝑟 = −𝛾𝑘2𝑟𝑢(𝑘)2𝑟𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐3, 

𝑝𝑘2𝑙 = −𝛾𝑘2𝑙𝑢(𝑘)2𝑙𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐4, 

𝑝𝑘3𝑟 = −𝛾𝑘3𝑟𝑢(𝑘)3𝑟𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐5, 

 𝑝𝑘3𝑙 = −𝛾𝑘3𝑙𝑢(𝑘)3𝑙𝜂𝑒
𝑇(𝑀̅1

−1𝐵̅)𝑐6 (3.126) 

The projection functions are given as follows  

 𝑓𝑘𝑗 =

{
 
 

 
 

0,

if 𝜒̂(𝑘)𝑗 ∈ (0,1), or

if 𝜒̂(𝑘)𝑗 = 0 and  𝑝𝑘𝑗 ≥ 0, or

if 𝜒̂(𝑘)𝑗 = 1 and  𝑝𝑘𝑗 ≤ 0,

−𝑝𝑘𝑗, otherwise

 (3.127) 

Lemma 3.3: The adaptive laws in (3.126) with the projection functions in (3.127) for 𝑘 =

1, 2, … ,𝑁 guarantee that 
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1) 𝜒̂(𝑘)1𝑟 , 𝜒̂(𝑘)1𝑙  , 𝜒̂(𝑘)2𝑟 , 𝜒̂(𝑘)2𝑙 , 𝜒̂(𝑘)3𝑟 , 𝜒̂(𝑘)3𝑙 ∈ [0,1].  

2) 𝜒̃(𝑘)1𝑟𝑓𝑘1𝑟 ≥ 0, 𝜒̃(𝑘)1𝑙𝑓𝑘1𝑙 ≥ 0, 𝜒̃(𝑘)2𝑟𝑓𝑘2𝑟 ≥ 0, 𝜒̃(𝑘)2𝑙𝑓𝑘2𝑙 ≥ 0, 𝜒̃(𝑘)3𝑟𝑓𝑘3𝑟 ≥ 0, and 

𝜒̃(𝑘)3𝑙𝑓𝑘3𝑙, ≥ 0. For 𝑘 = 1, 2, … ,𝑁.  

Proof: The proofs for the six adaptive laws are similar. Take 𝜒̂(k)1r as an example. 

Choose the initial estimate value as 𝜒̂(𝑘)1𝑟(0) ∈ (0,1). The projection functions in (3.127) 

with 𝑗 = 1𝑟 ensure 𝜒̂(𝑘)1𝑟(𝑡) ∈ (0,1), and  

 (𝜒(𝑘)1𝑟 − 𝜒̂(𝑘)1𝑟)𝑓𝑘1𝑟 = 𝜒̃(𝑘)1𝑟𝑓𝑘1𝑟 ≥ 0     (3.128) 

that is analyzed for the following three cases 

1) If 𝜒̂(𝑘)1𝑟 = 0 and 𝑝𝑘1𝑟 < 0, then 𝜒(𝑘)1𝑟 − 𝜒̂(𝑘)1𝑟 ≥ 0 and 𝑓𝑘1𝑟 = −𝑝𝑘1𝑟 > 0, which 

means (3.128) is ensured. 

2) If 𝜒̂(𝑘)1𝑟 = 1 and 𝑝𝑘1𝑟 > 0, then 𝜒(𝑘)1𝑟 − 𝜒̂(𝑘)1𝑟 ≤ 0 and 𝑓𝑘1𝑟 = −𝑝𝑘1𝑟 < 0, which 

also means (3.128) is ensured. 

3) Otherwise, we have  𝑓𝑘1𝑟 = 0, then (3.128) is ensured. 

Similarly, we can also obtain the same properties for the other five adaptive laws. The 

proof is completed.                                                                                                                  ∎ 

3.3.2.2.3. Stability analysis 

In this subsection, the overall system performance is given as follows. 

Theorem 3.3: For three-linked mobile robots subject to actuator failures, the proposed 

multi-design integration based adaptive actuator failure compensation control scheme, 

constituted by the kinematic control law in (3.111), and dynamic control law in (3.118) with 

multiple control signals in (3.121) and updated with projection adaptive laws in (3.124) and 

(3.125), can guarantee the boundedness of all the closed loop signals and asymptotic 

tracking despite the actuator failures. 

Proof: According to remark 3.6, there are five compensable cases: no fault and cases from 

one faulty actuator up to four simultaneously faulty actuators. Therefore, the performance 

of the system is analyzed as follows 

1) No fault: Let us consider the Lyapunov function candidate as   
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𝑉6 = 𝑉5 +
1

2
𝜂𝑒
𝑇𝜂𝑒 +

1

2
𝑢̃̅𝑓

𝑇Γ𝑓
−1𝑢̃̅𝑓 +

1

2
[∑𝜎1𝑟𝛾𝑘1𝑟

−1

𝑁

𝑘=1

𝜒̃(𝑘)1𝑟
2 + ∑𝜎1𝑙𝛾𝑘1𝑙

−1

𝑁

𝑘=1

𝜒̃(𝑘)1𝑙
2

+ ∑𝜎2𝑟𝛾𝑘2𝑟
−1

𝑁

𝑘=1

𝜒̃(𝑘)2𝑟
2 + ∑𝜎2𝑙𝛾𝑘2𝑙

−1

𝑁

𝑘=1

𝜒̃(𝑘)2𝑙
2  

 +∑𝜎3𝑟𝛾𝑘3𝑟
−1

𝑁

𝑘=1

𝜒̃(𝑘)3𝑟
2 + ∑𝜎3𝑙𝛾𝑘3𝑙

−1

𝑁

𝑘=1

𝜒̃(𝑘)3𝑙
2 ] (3.129) 

Then, the derivative of 𝑉6 is 

𝑉̇6 = 𝑉̇5 + 𝜂𝑒
𝑇𝜂̇𝑒 + 𝑢̃̅𝑓

𝑇Γ𝑓
−1𝑢̇̃̅𝑓 + ∑ 𝛾𝑘1𝑟

−1 𝜒̃(𝑘)1𝑟 𝜒̇̃(𝑘)1𝑟

𝑁

𝑘=1

+ ∑𝛾𝑘1𝑙
−1 𝜒̃(𝑘)1𝑙 𝜒̇̃(𝑘)1𝑙

𝑁

𝑘=1

+ ∑𝛾𝑘2𝑟
−1 𝜒̃(𝑘)2𝑟 𝜒̇̃(𝑘)2𝑟

𝑁

𝑘=1

+ ∑𝛾𝑘2𝑙
−1 𝜒̃(𝑘)2𝑙 𝜒̇̃(𝑘)2𝑙

𝑁

𝑘=1

 

 +∑𝛾𝑘3𝑟
−1 𝜒̃(𝑘)3𝑟 𝜒̇̃(𝑘)3𝑟

𝑁

𝑘=1

+ ∑𝛾𝑘3𝑙
−1 𝜒̃(𝑘)3𝑙 𝜒̇̃(𝑘)3𝑙

𝑁

𝑘=1

 (3.130) 

Substituting (3.106) and (3.119)-(3.125) into (3.130), and with  𝑢̇̃̅𝑓 = −𝑢̇̂̅, 𝜒̇̃(𝑘)1𝑟 =

−𝜒̇̂(𝑘)1𝑟 , 𝜒̇̃(𝑘)1𝑙 = −𝜒̇̂(𝑘)1𝑙 , 𝜒̇̃(𝑘)2𝑟 = −𝜒̇̂(𝑘)2𝑟 , 𝜒̇̃(𝑘)2𝑙 = −𝜒̇̂(𝑘)2𝑙 , 𝜒̇̃(𝑘)3𝑟 = −𝜒̇̂(𝑘)3𝑟 , and  

𝜒̇(𝑘)3𝑙 = −𝜒̇̂(𝑘)3𝑙,  

we have 

𝑉̇6 = −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 − 𝑐6𝜂𝑒
𝑇𝜂𝑒 − ∑𝛾𝑘1𝑟

−1 𝜒̃(𝑘)1𝑟𝑓𝑘1𝑟 − ∑ 𝛾𝑘1𝑙
−1 𝜒̃(𝑘)1𝑙𝑓𝑘1𝑙

𝑁

𝑘=1

𝑁

𝑘=1

 

−∑𝛾𝑘2𝑟
−1 𝜒̃(𝑘)2𝑟𝑓𝑘2𝑟 − ∑𝛾𝑘2𝑙

−1 𝜒̃(𝑘)2𝑙𝑓𝑘2𝑙

𝑁

𝑘=1

− ∑ 𝛾𝑘3𝑟
−1 𝜒̃(𝑘)3𝑟𝑓𝑘3𝑟

𝑁

𝑘=1

𝑁

𝑘=1

 

 −∑𝛾𝑘3𝑙
−1 𝜒̃(𝑘)3𝑙𝑓𝑘3𝑙

𝑁

𝑘=1

 (3.131) 

together with the second property in Lemma 3.3, we obtain 

 𝑉̇6 ≤ −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 − 𝑐6𝜂𝑒
𝑇𝜂𝑒  ≤ 0        (3.132) 

The proof of equation (3.132) is as follows: 

𝑧1, 𝑧2,  𝑧3, 𝑧4,  𝑧5, 𝑧1̅, 𝑧2̅, 𝑧3̅, 𝑧4̅, 𝜂𝑒 ∈ 𝐿∞, and all estimates are bounded, and  𝑧4̅, 𝑧5, 𝜂𝑒 ∈

 𝐿2. The definitions of 𝐿∞ and 𝐿2 can be found in [131]. It follows from equations (2.89), 
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(2.90) and (2.91), that 𝑐𝑜𝑠 𝜃3 ≠ 0, 𝑐𝑜𝑠(𝜃2 − 𝜃3) ≠ 0 and 𝑡𝑎𝑛(𝜃1 − 𝜃2) ∈ 𝐿∞ which 

means 𝑐𝑜𝑠(𝜃1 − 𝜃2) ≠ 0.  

Then from equations (3.69), (3.73), and also from (3.99) -(3.104) and (3.107), and 

according to Barbalat’s Lemma [131], it is concluded that all the closed loop system signals 

are bounded, and lim𝑡⟶∞ 𝑧4̅ = 0, lim𝑡⟶∞ 𝑧5 = 0 and lim𝑡⟶∞ 𝜂𝑒 = 0, which also implies 

lim𝑡⟶∞𝛼𝑒 = 0, with equation (3.101). and also, we have lim𝑡⟶∞ 𝑧1 = 0, ⋯, 

lim𝑡⟶∞ 𝑧5 = 0, lim𝑡⟶∞ 𝑧1̅ = 0, ⋯, lim𝑡⟶∞ 𝑧4̅ = 0, and |𝛼1𝑑| ≥ 0. Then we can further 

obtain lim𝑡⟶∞ 𝛼2𝑐 = 𝛼2𝑑 from equation (3.102), it follows that lim𝑡⟶∞ 𝛼2 = 𝛼2𝑑, and 

also lim𝑡⟶∞ 𝛼1𝑐 = 𝛼1𝑑 and from equation (3.103), it follows that lim𝑡⟶∞ 𝛼1 = 𝛼1𝑑.  

Finally, we can conclude that all the closed loop system signals are uniformly bounded, 

furthermore lim𝑡⟶∞ 𝑧𝑖(𝑡) = 0, (𝑖 = 1,… 5) and lim𝑡⟶∞(𝜂(𝑡) − 𝜂𝑐(𝑡)) = 0, which also 

means lim𝑡⟶∞(𝑞(𝑡) − 𝑞𝑑(𝑡)) = 0 

2) One actuator fails: Suppose the left actuator of robot 1 is faulty, that is  σ =

diag{1, 0, 1, 1, 1, 1} with σ(1l) = 0. In this case, we consider the Lyapunov function 

candidate as 

𝑉6 = 𝑉5 +
1

2
𝜂𝑒
𝑇𝜂𝑒 +

1

2
𝑢̃̅𝑓

𝑇Γ𝑓
−1𝑢̃̅𝑓 +

1

2
[∑𝜎1𝑟𝛾𝑘1𝑟

−1

𝑁

𝑘=1

𝜒̃(𝑘)1𝑟
2 + ∑𝜎1𝑟𝛾𝑘1𝑟

−1

𝑁

𝑘=1

𝜒̃(𝑘)1𝑟
2  

 +∑𝜎2𝑙𝛾𝑘2𝑙
−1

𝑁

𝑘=1

𝜒̃(𝑘)2𝑙
2 + ∑𝜎3𝑟𝛾𝑘3𝑟

−1

𝑁

𝑘=1

𝜒̃(𝑘)3𝑟
2 +∑𝜎3𝑙𝛾𝑘3𝑙

−1

𝑁

𝑘=1

𝜒̃(𝑘)3𝑙
2 ] (3.133) 

Then, according to (3.106), (3.120) -(3.125) and Lemma 3.3, we have  

 𝑉̇6 ≤ −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 − 𝑐6𝜂𝑒
𝑇𝜂𝑒  ≤ 0       (3.134) 

Note that, although there is no 𝜒̃(𝑘)1𝑙 for 𝑘 = 1, 2, … , 𝑁, in (3.133) they are also bounded 

according to the first property in Lemma 3.3 Then, from (3.134), we can conclude that 

stability and asymptotic tracking are established compared with first case (fault free case). 

The performance analysis of the system for the other cases with one fault is similar. 

3) Two actuators fail: Suppose the left wheel of robot 1 and the right wheel of robot 2 

are faulty, that is σ = diag{1, 0, 0, 1, 1, 1} with σ(1l) = 0, σ(2r) = 0. The following 

Lyapunov function candidate is chosen here 
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𝑉6 = 𝑉5 +
1

2
𝜂𝑒
𝑇𝜂𝑒 +

1

2
𝑢̃̅𝑓

𝑇Γ𝑓
−1𝑢̃̅𝑓 +

1

2
[∑𝜎1𝑟𝛾𝑘1𝑟

−1

𝑁

𝑘=1

𝜒̃(𝑘)1𝑟
2 +∑𝜎2𝑙𝛾𝑘2𝑙

−1

𝑁

𝑘=1

𝜒̃(𝑘)2𝑙
2  

 +∑𝜎3𝑟𝛾𝑘3𝑟
−1

𝑁

𝑘=1

𝜒̃(𝑘)3𝑟
2 + ∑𝜎3𝑙𝛾𝑘3𝑙

−1

𝑁

𝑘=1

𝜒̃(𝑘)3𝑙
2 ] (3.135) 

Then, according to (3.106), (3.120) -(3.125) and Lemma 3.3, we have  

 𝑉̇6 ≤ −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 − 𝑐6𝜂𝑒
𝑇𝜂𝑒 ≤ 0 (3.136) 

Which denotes that the desired system stability and asymptotic tracking properties are 

ensured. The performance analysis for the other cases with two faulty actuators is similar. 

4) Three actuators fail: Suppose the left wheel of robot 1, the right wheel of robot 2, 

and the right wheel of robot 3 are faulty, that is 𝜎 = diag{1, 0, 0, 1, 0, 1} with 𝜎(1𝑙) =

0, 𝜎(2𝑟) = 0, 𝜎(3𝑟) = 0, we consider the Lyapunov function candidate as  

𝑉6 = 𝑉5 +
1

2
𝜂𝑒
𝑇𝜂𝑒 +

1

2
𝑢̃̅𝑓

𝑇Γ𝑓
−1𝑢̃̅𝑓

1

2
[∑𝜎1𝑟𝛾𝑘1𝑟

−1

𝑁

𝑘=1

𝜒̃(𝑘)1𝑟
2  

 ∑ 𝜎2𝑙𝛾𝑘2𝑙
−1

𝑁

𝑘=1

𝜒̃(𝑘)2𝑙
2 + ∑𝜎3𝑙𝛾𝑘3𝑙

−1

𝑁

𝑘=1

𝜒̃(𝑘)3𝑙
2 ] (3.137) 

Then, according to (3.106), (3.120) -(3.125) and Lemma 3.3, we have  

 𝑉̇6 ≤ −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 − 𝑐6𝜂𝑒
𝑇𝜂𝑒  ≤ 0       (3.138) 

From equation (3.138), we can conclude that the closed-loop stability and asymptotic 

tracking can be established. The performance analysis for the other cases with three faulty 

actuators is similar. 

5) Four actuators fail: Suppose the left wheel of robot 1, the right wheel of robot 2, 

and the right and left wheel of robot 3 are faulty, that is σ = diag{1, 0, 0, 1, 0, 0} with 

σ(1l) = 0, σ(2r) = 0, σ(3r) = 0, σ(3l) = 0, we consider the Lyapunov function 

candidate as  

𝑉6 = 𝑉5 +
1

2
𝜂𝑒
𝑇𝜂𝑒 +

1

2
𝑢̃̅𝑓

𝑇Γ𝑓
−1𝑢̃̅𝑓 

 +
1

2
[∑σ1rγk1r

-1

N

k=1

χ̃(k)1r
2 +∑σ2lγk2l

-1

N

k=1

χ̃(k)2l
2 ] (3.139) 

Then, according to (3.106), (3.120) -(3.125) and Lemma 3.3, we have  
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 𝑉̇6 ≤ −𝑐4𝑧4̅
2 − 𝑐5𝑧5

2 − 𝑐6𝜂𝑒
𝑇𝜂𝑒  ≤ 0  (3.140) 

From equation (3.140), it can be concluded that the closed-loop stability and asymptotic 

tracking can be established. 

3.3.2.3 Simulation studies 

The case of two-linked 2WD mobile robots 

To verify the effectiveness of the developed multi-design integration based adaptive 

actuator fault compensation scheme for two-linked 2WD mobile robots, the following 

simulation study is presented. 

1) Simulation conditions: In this simulation, we assume that each of the two robots is the 

one used in [34], then the physical parameters are 𝑎1  =  𝑎2  =  0.3 𝑚, 𝑏1  =  𝑏2  =

 0.75 𝑚, 𝑟1  =  𝑟2  =  0.15 𝑚,𝑚1  =  𝑚2  =  30 𝑘𝑔, 𝐼𝑚1  =  𝐼𝑚2  =  15.625 𝑘𝑔 ∙ 𝑚2. The 

length of the link is assumed to be 𝑑 =  1.7 𝑚.  

To verify the system tracking property, an eight-like reference trajectory and a circle 

reference trajectory are considered, the velocities 𝜐𝑑 and 𝜔𝑑 are chosen as: 

𝜐𝑑 = 0.5 m/s, 𝜔𝑑 = 0.5 rad/s 

for the circle reference trajectory; and 

𝜐𝑑 = √0.81𝑐𝑜𝑠2(0.3𝑡) + 0.5625𝑐𝑜𝑠2(0.15𝑡) m/s, 𝜔𝑑 =
𝑓𝜔𝑟1(𝑡)−𝑓𝜔𝑟2(𝑡)

𝜐𝑑
2  rad/s 

for the eight-like reference trajectory, where  

𝑓𝜔𝑟1
(𝑡) = 0.2025 sin(0.3t) cos(0.15t), 𝑓𝜔𝑟2

(𝑡)= −0.10125 sin(0.15t) cos(0.3t). 

Then, 𝑥𝑑 ,  𝑦𝑑 and 𝜃𝑑 are generated by: 𝑥̇𝑑 = 𝜐𝑑 cos 𝜃𝑑, 𝑦̇𝑑 = 𝜐𝑑 sin 𝜃𝑑, 𝜃̇𝑑 = 𝜔𝑑, with 

𝑥𝑑(0) =  𝑦𝑑(0) = 0 and 𝜃𝑑(0)  =  45 deg.  

In order to verify the fault compensation effectiveness of the developed adaptive control 

scheme, the following fault cases are simulated. 

• no fault: 𝜎(1) = diag{1, 1, 1, 1}, for 0 ≤ t < 10s; 

• 𝜏1𝑟 fails: 𝜎(2) = diag{0, 1, 1, 1}, 𝜏1𝑟 = 0, 10s ≤ t < 20s; 

• 𝜏1𝑟, 𝜏2𝑙 fail: 𝜎(3) = diag{0, 1, 1, 0}, 𝜏1𝑟 = 0, 𝜏2𝑙 = −2 Nm, 20s ≤ t < 30s; 

• 𝜏2𝑙 fails: 𝜎(4) = diag{1, 1, 1, 0}, 𝜏2𝑙 = −2 Nm, 30s ≤ t < 40s; 

• 𝜏2𝑟, 𝜏2𝑙, fail: 𝜎(5) = diag{1, 1, 0, 0}, 𝜏2𝑟 = −1 Nm, 𝜏2𝑙 = −2 Nm,  t ≥ 40s. 
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There are 5 fault pattern matrices which satisfy the actuation redundancy condition, 

covering the cases of fault free, one actuator fails, both two actuators of robot 2 fail, and 

one actuator of each robot fails. 

The initial conditions are chosen as: 𝑥(0) = 0, 𝑦(0) = 1 𝑚, 𝜃2(0) = 10 𝑑𝑒𝑔, 𝜃2(0) =

0, 𝜐2(0) = 0, 𝜔1(0) = 0, 𝜒̂(1)(0) = diag{1, 1, 1, 1}, 𝜒̂(2)(0) = 𝜒̂(3)(0) = 𝜒̂(4)(0) =

𝜒̂(5)(0) = 04 × 4, and 𝑢̅𝑓 = [0, 0, 0, 0]𝑇 .  

The adaptation gains are chosen as: Γ𝑓 = 𝐼4, and 𝛾𝑘1𝑟 = 𝛾𝑘1𝑙 = 𝛾𝑘2𝑟 = 𝛾𝑘2𝑙 = 1 for k = 

1, 2, 3, 4, 5. The control gains are chosen as: 𝑘1 = 10,  : 𝑘2 = 10, 𝑘3 = 2 and 𝑘4 = 10 for 

the eight-like reference; 𝑘1 = 1,  : 𝑘2 = 1, 𝑘3 = 0.2 and 𝑘4 = 20 for the circle reference 

trajectory. 

Remark 3.8: For actual situations, choosing small adaptation gains in the adaptive laws 

and control gains in the control laws may contribute to a smooth system transient response 

but make the tracking errors converge slowly, while choosing large ones may shorten the 

convergence time of the tracking errors but result in a large transient response. To fully 

utilize such advantages and disadvantages, parameters may be fixed empirically. The 

controlled system may be simulated with different parameter gains (small ones and large 

ones). We may choose the most appropriate ones to be applied, which can ensure a good 

smooth system transient response and an acceptable convergence speed of tracking errors. 

2) Simulation results: The developed multi-design integration based adaptive actuator 

fault compensation scheme is applied, and the following simulation results are given to 

show its effectiveness. 

Fig. 3.15 and 3.19 show the positions of the robot 2, the reference robot and the robot 

1. Fig. 3.16 and Fig. 3.20 shows the tracking errors. Fig. 3.17 and Fig. 3.21 show the 

orientation error between two robots, from which we can see that 𝜃1 − 𝜃2 does not go to 
𝜋

2
 

that guarantees the nonlinearity of 𝑇𝛼 in 3.124. Fig. 3.18 and Fig. 3.22 show the control 

torques generated by the four wheels, which are consistent with the faulty cases in 

simulation conditions. From them, we can see that the desired system stability and 

asymptotic tracking properties are ensured by the developed multi-design integration based 

adaptive fault compensation scheme for both the circle and the eight-like reference 

trajectories, despite the presence of some actuator faults. 
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Figure 3.15: Robot trajectories for the circle reference in (X, Y) plane 

 

 

Figure 3.16: Tracking errors for the circle reference. 
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Figure 3.17: Orientation error between two robots for the circle reference. 

 

Figure 3.18: Control torques for the circle reference. 
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Figure 3.19: Robot trajectories for the eight-like reference in (X, Y) plane. 

 

Figure 3.20: Tracking errors for the eight-like reference. 
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Figure 3.21: Orientation error between two robots for the eight-like reference. 

 

Figure 3.22: Control torques for the eight-like reference. 
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The case of three-linked 2WD mobile robots 

In this simulation studies, we assume the three wheeled driven robots are the one used in 

[34], then the physical parameters of the three robots are chosen as: 

𝑎1 = 𝑎2 = 𝑎3 = 0.3 𝑚, 𝑏1 = 𝑏2 = 𝑏3 = 0.75 𝑚, 𝑟1 = 𝑟2 = 𝑟3 = 0.15 𝑚, 𝑚1 = 𝑚2 =

𝑚3 = 30 𝑘𝑔, 𝐼𝑚1 = 𝐼𝑚2 = 𝐼𝑚3 = 15.625 𝑘𝑔 ∙ 𝑚2. The length of the link between each 

two robots is assumed to be 𝑑 = 1 𝑚.  

The reference trajectory is generated by (6)-(13) with 𝑥𝑑(0) = 𝑦𝑑(0) = 𝜃3𝑑(0) =

𝜃2𝑑(0) = 𝜃1𝑑(0) = 0. 

In order to verify the fault compensation effectiveness of the adaptive scheme, the 

following failure cases are simulated: 

• no fault: 𝜎(1) = diag{1, 1, 1, 1, 1, 1}, 0 ≤ 𝑡 < 20𝑠; 

• 𝜏1𝑟, fails: 𝜎(2) = diag{0, 1, 1, 1, 1, 1}, 𝜏1𝑟 = 0, 20𝑠 ≤ 𝑡 < 40𝑠; 

• 𝜏1𝑟,𝜏3𝑙, fail: 𝜎(3) = diag{0, 1, 1,1, 1, 0}, 𝜏1𝑟 = 0, 𝜏3𝑙 = −2 𝑁𝑚 ,40𝑠 ≤ 𝑡 < 60𝑠; 

• 𝜏3𝑙, fails: 𝜎(4) = diag{1, 1, 1, 1, 1,0}, 𝜏3𝑙 = −2 𝑁𝑚, 60𝑠 ≤ 𝑡 < 80𝑠; 

• 𝜏3𝑟 , 𝜏3𝑙, fail: 𝜎(5) = 𝑑𝑖𝑎𝑔{1, 1, 1, 1, 0, 0}, 𝜏3𝑟 = −1 𝑁𝑚, 𝜏3𝑙 = −2 𝑁𝑚,  𝑡 ≥ 80𝑠. 

     There are 5 failures pattern satisfying the actuation redundancy condition, covering the 

cases of fault free, one actuator fails, one actuator of robots 1 and 3 fails, one actuator of 

robot 3 fails, both two actuators of robot 3 fail. 

The initial conditions are chosen as: 𝑥(0) = 𝑦(0) = 0.5, 𝜃3(0) = 𝜃2(0) = 𝜃1(0) =

30 𝑑𝑒𝑔. The adaptation gains are chosen as: Γ𝑓 = 𝐼6, and 𝛾𝑘1𝑟 = 𝛾𝑘1𝑙 = 𝛾𝑘2𝑟 = 𝛾𝑘2𝑙 =

𝛾𝑘3𝑟 = 𝛾𝑘3𝑙 = 1, for 𝑘 = 1, 2, 3, 4, 5. The control gains are chosen as: 𝐶4 = 𝐶5 = 𝐶6 = 2 

and  𝜅 = 5. 

Fig. 3.23, shows the positions of robot 1, 2, 3 and reference trajectory. Fig. 3.24, shows 

the control torques generated by the wheels in robot 1, robot 2, and robot 3 respectively, 

from which we can see that the actuator faults are consistent with the fault cases in 

simulation conditions. 

Fig. 3.25, shows the tracking errors of the states. Fig. 3.26, shows the orientation error 

between each two robots. From them, we can see that the desired system stability and 

asymptotic tracking are ensured despite the presence of actuator faults. 
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Figure 3.23: Robot trajectories in (x, y) plane. 

 

 

 

Figure 3.24: Control torques generated by robot 1, robot 2 and robot 3. 
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Figure 3.25: Tracking errors. 

 

 

Figure 3.26: Orientation errors between each two robots. 



Chapter 3. Passive Fault Tolerant Control 

 

 101 

3.4 Design steps of a passive FTC for 𝒏-linked 2WD mobile robots (𝒏>1) 

In this section, we summarize the steps to design the passive FTC scheme for 𝑛-linked 

2WD mobile robots (for any 𝑛 > 1). 

1) The kinematic model of multi-linked 2WD mobile robots is first transformed into 

the chained form (transformation of coordinates). It consists in transforming the 

nonlinear model into an equivalent linear one through a change of variables and a 

feedback transformation. The transformation of the kinematic model into the 

chained form has been presented for 𝑛-linked robots in chapter 2, Section 2.5, page 

38 (Theorem 2.1). It has been applied for three-linked robots in Section 2.5.1, page 

41. 

2) A recursive algorithm is used to design the kinematic controller for 𝑛 (𝑛 > 1) 

linked robots to guarantee that all the system’s states converge to their desired 

trajectories [86]. This algorithm is presented in Section 3.3, page 71, for three-

linked robots. The same methodology may be applied easily for any 𝑛-linked 

robots. 

3) General dynamic control laws including actuator fault have to be finally designed, 

each of which is designed using one possible failure pattern matrix. If the failure 

pattern which is used in the controller is consistent with the actual one, then the 

applied control signal can ensure the desired system performance. Different 

dynamic control laws may be chosen including, multiple dynamic fault tolerant 

controllers in Section 3.3.1, page 76 and adaptive fault tolerant dynamic controller 

in Section 3.3.2, page 85, both applied for three-linked robots. 

3.5 Conclusion 

In this chapter, a brief review of tracking control for mobile robots and multi-linked 

wheeled mobile robots was first presented. Then, based on the transformation of the 

kinematic model into the chained form, the kinematic controller was designed for two-

linked and three-linked 2WD mobile robots. 

For fault compensation, a multiple model dynamic controller is designed. Two 

techniques are proposed to apply the correct dynamical control law. A control switching 
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mechanism is first used, then a multi-integration based adaptive law is proposed. The 

effectiveness of the proposed passive FTC methods have been illustrated using numerical 

simulations. 

The fault tolerant control methods that were presented in this chapter are passive ones 

and do not give any information on the faults that occur. This information on the faults 

would be useful for maintenance operations. Moreover, only limited fault cases may be 

considered with such passive FTC techniques. In the next chapter, we propose an Active 

FTC technique which includes a fault estimation observer and adapts the control action to 

the faulty case.
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Chapter content 

An Active Fault Tolerant Control scheme is presented and designed in this chapter for 

multiple physically-linked mobile robots. A nonlinear dynamic observer is used not only to 

estimate the actuator fault signal (to realize the Fault Diagnosis) but also to estimate the 

states that are needed in the feedback control law. 

Firstly, we consider a system with three 2WD mobile robots subject to multiplicative 

and additive actuators faults. Secondly, we generalize the method for 𝑛 mobile robots, for 

any 𝑛 > 1. 

4.1 Introduction 

In general, a number of different faults may occur in complex systems like mobile 

robots, and the likelihood of multiple faults occurrence increases in harsh operating 

environments. 

In systems and control research, various theoretical results and methodologies on fault 

diagnosis have been proposed during the last two decades. These results aim to improve 

system reliability and fault tolerance, specifically by detecting, isolating, identifying and 

accommodating faults in linear and non-linear centralized and distributed systems, utilizing 

model-free and model-based approaches [133-135]. The problem of joint estimation of 

non-measured states, system's parameters and fault signals in linear and nonlinear state 

space systems with observers has motivated a lot of work for adaptive and fault tolerant 

control [134], [136]. 

The observer-based methods play a key role in model-based fault diagnosis [137]. Such 

techniques were considered for WMR (Wheeled Mobile Robots) diagnosis in [71], where 

an observer is designed for actuator fault detection, isolation and estimation, following the 

approach presented in [72]. 

Based on the fault information, a fault tolerant control is designed to compensate for the 

effect of faults. By estimating the fault, it is possible to change the control input to 

accommodate the fault in operation [138]. 
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4.2 FD and FTC in three-linked 2WD mobile robots 

In this section, an actuator fault estimation and compensation scheme in a three-linked 

2WD mobile robots system is designed. For the reference trajectory tracking, the control 

scheme which was proposed in Section 3.3.1, is adopted where a kinematic controller and 

a dynamic controller are associated. An observer is used to estimate the actuator 

multiplicative faults corrupting the applied torques, and also to estimate the non-measured 

states of the system, which are needed to apply the feedback control law. The dynamic 

control law is modified by incorporating the faults and the system states estimations. 

4.2.1 Problem formulation  

The kinematic and dynamic models for a three-linked 2WD mobile robots were derived 

in Section 2 of Chapter 2, and are recalled below 

Kinematic model: 

 𝑞̇ = 𝑆(𝑞)𝜂 (4.1) 

Dynamic model: 

 𝑀̅1(𝑞)𝜂̇ + 𝑀̅2(𝑞)𝜂 + 𝐶̅(𝑞, 𝑞̇) = 𝐵̅(𝑞)𝜏 (4.2) 

where 

𝑞 = [𝑥, 𝑦, 𝜃3, 𝜃2, 𝜃1], is the generalized coordinate vector; 𝜂 = [𝜐3 𝜔1]𝑇, where 𝜐3 is the 

linear velocity of robot 3, and 𝜔1 is the rotational velocity of robot 1; the matrices 𝑀̅1(𝑞), 

𝑀̅2(𝑞), 𝐶̅(𝑞, 𝑞̇), and 𝐵̅(𝑞) are given pages 33 and 34. 

Two types of actuator faults are considered: 1) Partial loss of effectiveness of the wheel 

motor, that can make it impossible to apply the torque input corresponding to the control 

signals; 2) Some motors totally lose power or are stuck which will introduce additional 

frictions. This actuator malfunction can be seen as a multiplicative and additive fault 

modeled as  

 𝜏(𝑡) = 𝜎(𝑡)𝑢(𝑡) + 𝑢̅ (4.3) 

where 𝜏 = [𝜏1𝑟 , 𝜏1𝑙, 𝜏2𝑟 , 𝜏2𝑙 , 𝜏3𝑟 , 𝜏3𝑙 ]
𝑇 is the torque vector generated by the motors, 𝑢 =

[𝑢1𝑟 , 𝑢1𝑙 , 𝑢2𝑟 , 𝑢2𝑙 , 𝑢3𝑟 , 𝑢3𝑙  ]
𝑇 is the control signals vector to be designed, 𝜎 = diag{𝜎1𝑟 , 𝜎1𝑙,

𝜎3𝑟 , 𝜎3𝑙} is the uncertain control effectiveness matrix, and 𝑢̅ =

[𝑢̅1𝑟 , 𝑢̅1𝑙 , 𝑢̅2𝑟 , 𝑢̅2𝑙 , 𝑢̅3𝑟 , 𝑢̅3𝑙  ]
𝑇 is the friction vector caused by actuator faults. 
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Figure 4.1: Active fault tolerant control scheme for fault estimation. 

In the following, based on the proposed actuator fault model (4.3), some fault scenarios 

are discussed. The fault-free situation can be represented by 𝜎𝑗 = 1 and 𝑢̅𝑗 = 0; the loss of 

control is given by 𝜎𝑗 = 0 and it is associated with a freely rotating wheel or a stuck motor, 

represented by 𝑢̅𝑗 = 0 or 𝑢̅𝑗 ≠ 0, respectively; 0 < 𝜎𝑗 < 1 denotes partial loss of 

effectiveness of the actuator. 

Using Assumption 2.3 defined in Chapter 2 page 43, the dynamic subsystem in (4.2) for 

three-linked 2WD mobile robots has two control inputs (𝜐3, 𝜔1) to be controlled. 

Fault-tolerant control and diagnosis objectives 

The control objective is to asymptotically track the reference trajectory, despite the 

presence of actuators’ faults, and the diagnosis objective is to estimate the actuators faults. 

The control objective can take advantage of the fault estimation, using this information to 

update the control law. 

The control design is based on the approach proposed in Section 3.3.1 of Chapter 3. The 

same kinematic control law is adopted here but a different version of the dynamic control 

law is proposed.  

In Section 3.3.1 of Chapter 3, multiple dynamic controllers are designed, each one 

aiming at the compensation of a specific combination of actuators faults, then a switching 

mechanism selects the proper controller. Besides the undesirable effects of a control 

switching, by this way only a finite set of possible faults, i.e., 𝜌𝑘(𝑡) takes its values in a 

discrete set, can be considered. On the other hand, here we propose to use an Active FTC 
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scheme, as shown in Fig. 4.1, which is composed of an adaptive nonlinear observer and an 

adaptive dynamic control law that uses the estimated fault values for the 

compensation/accommodation of a set of possible continuous faults, i.e., 𝜌𝑘(𝑡) takes any 

value in the interval [0, 1]. A general scheme for this diagnosis and FTC scheme can be 

seen in Fig. 4.1. Moreover, we consider here that only the generalized coordinates 𝑞 are 

measured and the velocities 𝑞̇ and 𝜂 used in the control law are estimated by the observer.  

The kinematic controller is designed using a transformation of coordinates (chained 

form) in combination with a recursive method (backstepping) to derive the control law as 

in Section 3.3.1 of Chapter 3. The dynamic controller is designed to guarantee system 

stability and also fault accommodation. The nonlinear adaptive observer provides estimates 

of the system states and the parameters related to the actuator faults, both used in the 

dynamic control law and available for fault diagnosis.  

4.2.2 Nonlinear adaptive observer and fault diagnosis 

4.2.2.1 State-space representation of the system 

Let us introduce the following state-space representation of a nonlinear system 

𝑥̇ = 𝐴𝑥(𝑡) + 𝜑(𝑢(𝑡), 𝑥(𝑡), 𝜌̅) 

 𝑦(𝑡) = 𝐶𝑥(𝑡) (4.4) 

where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector, 𝑢(𝑡) ∈ ℝ𝑚  is the control input, 𝑦(𝑡) ∈ ℝ𝑝 is the 

system output, 𝜑(𝑢(𝑡), 𝑥(𝑡), 𝜌̅) ∈ ℝ𝑛 is a nonlinear function; 𝐴 ∈ ℝ𝑛×𝑛 and 𝐶 ∈ ℝ𝑝×𝑛 are 

time-independent system matrices. 

For the three-linked mobile robots described by the kinematic and dynamic models 

given in (4.1) and (4.2) respectively, we can define the state variables 𝑥1 = 𝑞 and 𝑥2 = 𝑞̇ 

such that the state vector is 𝑥 = [𝑥1
𝑇 𝑥2

𝑇]𝑇. The output vector of the system is 𝑦 = 𝑞 = 𝑥1 

which means that only the generalized coordinates are measured.  

From (4.1), (4.2) and (4.3), it is easy to express a state-space representation of the system 

in the form of (4.4) considering 

 𝐴 = [
05×5 𝐼5×5

05×5 05×5

], 𝐶 = [𝐼5×5 05×5] (4.5) 
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 𝜑(𝑢, 𝑥, 𝜌̅) = [𝜑1(𝑢, 𝑥, 𝜌̅)
𝑇 𝜑2(𝑢, 𝑥, 𝜌̅)

𝑇]𝑇 (4.6) 

where 𝜌̅ = [𝜌𝑇 , 𝑢̅𝑇]𝑇, 𝐼5×5 is a 5 × 5 identity matrix, 05×5 is a null square matrix of 

dimension 5, and 

𝜑1(𝑢, 𝑥, 𝜌̅) = 05×1 

𝜑2(𝑢, 𝑥, 𝜌̅) = 𝑆(𝑥1)(𝑀̅1
−1(𝑥1)(−𝑀̅2(𝑥1)(𝑆

+(𝑥1)𝑥2 − 𝐶̅(𝑥1, 𝑥2) + 𝐵̅(𝑥1)𝜎̅𝑣)) 

 +𝑆̇(𝑥1)𝑆
+(𝑥1)𝑥2 (4.7) 

where 𝜎 = [diag(𝜌), diag(𝑢̅)] and 𝑣 = [𝑢𝑇 , 1, 1, 1, 1, 1, 1]𝑇. 

Note that 𝑆+(. ) represents the pseudo-inverse of 𝑆(. ). 

4.2.2.2 Nonlinear adaptive observer 

A nonlinear adaptive observer was proposed in [136] to estimate the state 𝑥 and parameter 

𝜌̅ in a nonlinear system (4.4) which respects the following Assumption 4.1. 

Assumption 4.1: Considering the nonlinear system represented by (4.4):  

(a) The state 𝑥, the control signal 𝑢 and the unknown parameters 𝜌 are bounded. 

(b) The function 𝜑(𝑢, 𝑥, 𝜌̅ ) is Lipschitz with respect to 𝑥 and 𝜌̅, uniformly in 𝑢.  

(c)  The nonlinear parameterization 𝜑(𝑢, 𝑥, . ) is one to one. 

Remark 4.1 [136]: The following notations are adopted for the subsequent definition of the 

observer equations:  

(a) Given Θ > 0, it is defined: 

 ∆Θ = 𝑑𝑖𝑎𝑔  𝐼𝑃,
1

Θ
𝐼𝑃, ⋯ ,

1

Θ𝑞−1
𝐼𝑝  (4.8) 

(b) Considering 𝐴 and 𝐶 as in (4.4), 𝑆𝑜 is the solution of: 

 𝑆𝑜 + 𝐴𝑇𝑆𝑜 + 𝑆𝑜𝐴 − 𝐶𝑇𝐶 = 0 (4.9) 

(c) ∀𝑦̃(𝑡)𝜖 ℝ𝑚, 𝐾(𝑦̃(𝑡)) = 𝑘1tanh (𝑘0𝑦̃(𝑡)) with 𝑘1, 𝑘0 > 0, is a function that 

satisfies 

 𝑦̃𝑇(𝑡)𝐾(𝑦̃(𝑡)) ≥
1

2
𝑦̃𝑇(𝑡)𝑦̃(𝑡) (4.10) 
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Theorem 4.1 [136]: Considering the class of nonlinear systems (4.4) with Assumption 4.1 

and adopting the notations and definitions in Remark 4.1, the estimations 𝑥  of the states 𝑥 

and 𝜌  of the parameters 𝜌̅ can be given by the nonlinear adaptive: 

𝑥 ̇(𝑡) = 𝐴𝑥 (𝑡) + 𝜑(𝑢(𝑡), 𝑥 (𝑡), 𝜌 (𝑡)) − Θ∆𝜃
−1(𝑆𝑜

−1 + Υ(𝑡)𝑃(𝑡)Υ𝑇(𝑡))𝐶𝑇𝐾(𝑦̃(𝑡)) 

𝜌 ̇ = −Θ𝑃(𝑡)Υ𝑇(𝑡)𝐶𝑇𝐾(𝑦̃(𝑡)) 

Υ̇(𝑡) = Θ(𝐴 − 𝑆𝑜
−1𝐶𝑇𝐶)Υ(𝑡) + ∆Θ

𝜕𝜑

𝜕𝜌
(𝑢(𝑡), 𝑥 (𝑡), 𝜌 ) 

 𝑃̇(𝑡) = −Θ𝑃(𝑡)Υ𝑇(𝑡)𝐶𝑇𝐶Υ(𝑡)𝑃(𝑡) + Θ𝑃(𝑡) (4.11) 

with Υ(𝑡) ∈ ℝ𝑛×𝑚, 𝑃(𝑡)∈ ℝ𝑚×𝑚, Υ(0) = 0, 𝑃(0)=𝑃𝑇(0) > 0, and 𝑦̃(𝑡) = 𝑦(𝑡) − 𝐶𝑥 (𝑡). 

The proof of Theorem 4.1 may be found in [136]. 

4.2.2.3 Fault estimation 

As we mentioned in subsection 4.2.1, the actuators faults are directly related to the 

actuators gains 𝜌 and additive terms 𝑢̅. Thus, the estimation of 𝜌̅ = [𝜌𝑇 , 𝑢̅𝑇]𝑇 provided by 

the nonlinear adaptive observer (4.11) can be also interpreted as a fault estimation. Notice 

that it is possible to estimate simultaneous faults in all the actuators, multiplicative and 

additive ones. Although, as discussed in this subsection, the system requires a minimum 

number of actuators to provide sufficient torques, which limits the set of possible faults. 

4.2.3 Fault tolerant control design  

4.2.3.1 Kinematic controller 

The chained form of the kinematic model introduced in Chapter 2, Section 2.5 [40] and a 

recursive technique based on the classical integrator backstepping [120] give the following 

kinematic control law which was described in chapter 3: 

 𝜂𝑐 = 𝑇𝛼
−1(𝛼𝑐 − 𝑓𝛼) (4.12) 

where 𝑇𝛼, 𝑓𝛼 and 𝛼𝑐 are given in Section 3.3 of chapter 3 (see equations 3.98, 3.102, and 

3.103 in chapter 3). This kinematic control law is a function of the measured and desired 

generalized coordinates 𝑞 and 𝑞𝑑, respectively. The parameters of this kinematic controller, 

as well as a performance analysis, are described in details in Section 3.3 of chapter 3. 
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4.2.3.2 Dynamic controller  

Let us consider the dynamic control law as in Section 3.3, equation 3.121. The control 

signal is given by 

 𝑢 = (𝑀̅1
−1𝐵̅𝜎)+[−𝑐6𝜂𝑒 − 𝑇𝛼

𝑇𝑓𝜂 + 𝑀̅1
−1𝑀̅2𝜂+𝑀̅1

−1𝐶̅ − 𝑀̅1
−1𝐵̅𝑢̅+ 𝜂̇𝑐] (4.13) 

where 𝑓𝜂 = [𝑧5(𝜅 − (𝑧3 + 2𝑧1)𝜉3 − (2𝑧4 + 5𝑧1)𝜉2), 𝑧5(−𝑧1 − 𝑧3)]
𝑇 with 

(𝜅, 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝜉2, 𝜉3) being as referred in section 3.3. 

The control law (4.13) depends on the unknown parameter 𝜎 and 𝑢̅. 

The nonlinear adaptive observer (4.11) provides estimates of 𝜎 and 𝑢̅ that can be used 

in the dynamic control law. 

From (4.1) it can be seen that 𝑥2 = 𝑆(𝑥1)𝜂, which means that 𝜂 = 𝑆+(𝑥1)𝑥2. It is 

assumed that just the state 𝑥1 is measured (𝑦 = 𝑥1). Also, an estimation of the state 𝑥2 is 

provided by the observer. So, an estimation of  𝜂 can be given by 𝜂̂ = 𝑆+(𝑥1)𝑥 2. Based on 

the estimated signals 𝑥 2, 𝜂̂ and also 𝜎  and 𝑢̂̅ the dynamic control law can be reformulated 

as: 

 𝑢 = (𝑀̅1
−1𝐵̅𝜎 )+[−𝑐6𝜂̂𝑒 − 𝑇𝛼

𝑇𝑓𝛼 + 𝑀̅1
−1𝑀̅2𝜂̂ + 𝑀̅1

−1𝐶̅ − 𝑀̅1
−1𝐵̅𝑢̂̅ + 𝜂̇𝑐] 

(4.14) 

where 𝜂̂𝑒 = 𝜂̂ − 𝜂𝑐.  

4.2.4 Simulation studies 

The case of two-linked 2WD mobile robots 

We consider a two-linked 2WD mobile robots system, where each of the two 2WD mobile 

robots are as described in [34]. The parameters of the robots are: 𝑎1 = 𝑎2 = 0.3 𝑚, 𝑏1 =

𝑏2 = 0.75 𝑚, 𝑟1 = 𝑟2 = 0.15 𝑚, 𝑚1 = 𝑚2 = 30 𝑘𝑔, 𝐼𝑚1 = 𝐼𝑚2 = 15.625 𝑘𝑔 ∙ 𝑚2. The 

length of the link between the two robots is 𝑑 = 1 𝑚. 

In order to verify the effectiveness of the fault compensation control and the fault 

estimation, the actuators' faults described in Table 4.1 is considered. Only the actuator 1𝑟 is 

healthy at the beginning of the simulation but at time 35 (s) the gain of this actuator also 

changes to totally lose effectiveness. 

The parameters of the kinematic and dynamic controllers are chosen as 𝑘1 = 1 𝑘2 = 1, 

𝑘3 = 0.2 , and 𝑘4 = 20. The initial conditions are 𝑥1(0)  =  𝑞(0)  =  [0, 1, 0]𝑇 and 
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𝑥2(0)  =  𝑞̇(0)  =  [0, 1, 0]𝑇. For the observer, the initial conditions are 𝑃(0)  =  0.1𝐼4×4, 

𝑥(0)  =  [0, 0, 0, 0, ]𝑇, 𝜌(0)  =  [1, 1, 1, 1], 𝑢̅  =  [0, 0, 0, 0]; the other parameters are 𝑘0  =

 𝑘2  =  1 𝑎𝑛𝑑 Θ =  1.6. The parameter Θ is freely selected in order to provide convergence. 

The simulation was performed in MATLAB/SIMULINK with total simulation time 𝑇 =

70 [𝑠], sampling time  𝑇𝑠 =  10 [𝑚𝑠], and solver ode4 (runge-kutta). 

Fig. 4.2(a) shows the reference trajectory in plane (𝑥, 𝑦), which is defined for robot 2, 

and the achieved trajectories for each robot. Despite the severe actuators' faults profile, it 

can be seen that the controlled system asymptotically tracks the desired trajectory. The 

tracking error 𝑞𝑑 − 𝑞 is presented in Fig. 4.2(b).  

The nonlinear adaptive observer provides accurate state estimations as shown in Fig. 

4.3(a). At time 𝑡 = 35 [𝑠], due to the faults, a transient behavior appears, which is shown 

in Fig. 4.3(b). 

The estimated multiplicative and additive actuators faults can be seen in Fig. 4.4(a) and 

Fig. 4.4(b), respectively. It is clear that the estimated values of 𝜌 and 𝑢̅ converge to the 

actual values described in TABLE 4.1.  

The simulations were performed considering a saturation of the torque signals at 5 [N. 

m]. So, the increasing values during the transients, as shown in Fig. 4.5 and Fig. 4.6, are 

truncated at 5 [N. m], but rapidly decreases to small values.  

Fig. 4.7 and Fig. 4.8, show the linear and angular velocities of each robot. 

 

Table 4.1: Actuators' faults. 

0 ≤ 𝑡 < 35 35 ≤ 𝑡 ≤ 70 

𝜌1𝑟 = 1 𝜌1𝑟 = 1 

𝜌2𝑙 = 1 𝜌2𝑙 = 0 

𝜌2𝑟 = 1 𝜌2𝑟 = 0.8 

𝜌2𝑙 = 0.5 𝜌2𝑙 = 0.5 

𝑢̅1𝑟 = 0 𝑢̅1𝑟 = −0.5 

𝑢̅1𝑙 = 0 𝑢̅1𝑙 = 0 

𝑢̅2𝑟 = 0 𝑢̅2𝑟 = 0 

𝑢̅2𝑙 = 0 𝑢̅2𝑙 = 0 
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 (a) Trajectories (reference, robot 1 and robot 2) in the plane 𝑥 − 𝑦. The control objective 

is the reference tracking by robot 2. 

 

 

(b) Transient behavior of the tracking error between reference and simulated trajectories. 

Figure 4.2: Trajectories of the mobile robots and tracking errors 
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(a) State estimation error. 

 

(b) Zoom of the state estimation error.  

Figure 4.3: State estimation error. 
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(a) Estimated 𝜌 

 

(b) Estimated 𝑢̅. 

Figure 4.4: Estimations of 𝜌 and 𝑢̅. 
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Figure 4.5: Applied torques and control signals of robot 1. 
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Figure 4.6: Applied torques and control signals of robot 2. 
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Figure 4.7: Linear velocities of robot 1 and robot 2. 

 

 

Figure 4.8: Angular velocities of robot 1 and robot 2. 
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The case of three-linked 2WD mobile robots 

We consider now a three-linked 2WD mobile robots system, where each of the three 2WD 

mobile robots are as described in [34]. The parameters of the robots are: 𝑎1 = 𝑎2 = 𝑎3 =

0.3 𝑚, 𝑏1 = 𝑏2 = 𝑏3 = 0.75 𝑚, 𝑟1 = 𝑟2 = 𝑟3 = 0.15 𝑚, 𝑚1 = 𝑚2 = 𝑚3 = 30 𝑘𝑔, 𝐼𝑚1 =

𝐼𝑚2 = 𝐼𝑚3 = 15.625 𝑘𝑔 ∙ 𝑚2. The length of the link between each two robots is 𝑑 = 1 𝑚. 

In order to verify the effectiveness of the fault compensation control and the fault 

estimation, the actuators' faults described in Table 4.2 are considered. We are considering 

a fault condition characterized by a severe loss of effectiveness (multiplicative fault), 

without considering friction (additive fault). The control objective is that each robot should 

track a sinusoidal trajectory. Only the actuator 1𝑟 is healthy at the beginning of the 

simulation but at time 1100 (s) the gain of this actuator also changes. 

The parameters of the kinematic and dynamic controllers are chosen as 𝐶4 = 2, 𝐶5 = 2, 

𝐶6 = 5 and 𝜅 = 5. For the observer, the chosen parameters are 𝜃 = 0.9 and 𝑘0 = 𝑘1 = 1. 

The parameter Θ is selected in order to provide convergence. 

The reference trajectories for the generalized coordinates 𝑞 are sinusoidal ones. Fig. 4.9 

(a), shows the trajectories in plane (𝑥, 𝑦): desired, simulated (output of the controlled 

system) and estimated. Despite the severe faults, the controlled system asymptotically 

tracks the desired planar trajectory. Considering the full vector 𝑞 and the desired trajectory 

𝑞𝑑 = (𝑥𝑑, 𝑦𝑑 , 𝜃3𝑑 , 𝜃2𝑑 , 𝜃1𝑑), a detailed view of the tracking error is presented in Fig. 4.9 

(b).  

The nonlinear adaptive observer provides accurate state estimation as shown in Fig. 4.10 

(a), where the state estimation error is shown during the transient response at the beginning 

of the simulation (𝑡 < 50 (𝑠)). At time 𝑡 =  220 (𝑠), due to the faults, a transient behavior 

appears, which is shown in Fig. 4.10 (b). 

The estimated actuator gains can be seen in Fig. 4.11 and Fig. 4.12. It is clear that the 

estimated values of 𝜌 converge to the actual values described in TABLE 4.2. We can see 

in Fig 4.13, the filtered version of the estimations, using a first-order low-pass filter whose 

transfer function is 1/(30s+1). The estimations are filtered to make the signal smooth and 

reduce the rapid oscillations. It will also be useful to reduce the noise influence and the 

high-frequency disturbances in practical situation. These filtered estimations are used in 

the feedback controller. 
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The control signals have relatively high values during the first transient, as shown in 

Fig. 4.14, Fig. 4.15 and Fig. 4.16, but rapidly decrease to small values. The linear and 

angular velocities of each robot are shown in Fig 4.17 and 4.18. 

 

Table 4.2: Actuators' faults. 

0 ≤ 𝑡 < 220 220 ≤ 𝑡 ≤ 400 

𝜌1 = 1 𝜌1 = 0.8 

𝜌2 = 0.3 𝜌2 = 0.3 

𝜌3 = 0.4 𝜌3 = 0.4 

𝜌4 = 0.2 𝜌4 = 0.2 

𝜌5 = 0.1 𝜌5 = 0.1 

𝜌6 = 0.7 𝜌6 = 0.7 
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 (a) Trajectories (reference, simulated) in the plane 𝒙 − 𝒚. 

 

 (b) Tracking error between reference and simulated trajectories. 

Figure 4.9: Trajectories of the mobile robots and tracking errors. 
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(a) State estimation error - the transient behavior after the change in 𝜌1. 

 

 

(b) State estimation error – zoom on the transient behavior at the initial time instants. 

Figure 4.10: State estimation error. 
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Figure 4.11: Estimated 𝜌 (unfiltered). 

 

Figure 4.12: Estimated 𝜌 (filtered). 
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(a) Control signals at first transitory behavior. 

 

(b) Control signals with zoom in the 𝑦-axis emphasizing the behavior after the transient.  

Figure 4.13: Control signal. 
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Figure 4.14: Comparison torque-control of robot 1. 
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Figure 4.15: Comparison torque-control of robot 2. 
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Figure 4.16: Comparison torque-control of robot 3. 
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Figure 4.17: Linear velocities of robot 1, 2 and robot 3. 

 

Figure 4.18: Angular velocities of robot 1, 2 and robot 3. 
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4.3 Generalization of FD and FTC for 𝒏-linked 2WD mobile robots 

The active FTC method which has been designed for three-linked 2WD mobile robots in 

Section 4.2, can be directly generalized for 𝑛-linked 2WD robots for any 𝑛 greater than 

one. For the reference trajectory tracking, the control scheme developed in Chapter 3 is 

adopted, the dynamic control law is modified by incorporating the faults and system states 

estimations. The observer is used to estimate the multiplicative and additive actuator faults 

corrupting the applied torques, and also to estimate the non-measured states of the system, 

which are needed to apply the feedback control law. 

4.3.1 Nonlinear adaptive observer and fault diagnosis 

For the 𝑛-linked 2WD mobile robots described by the kinematic and dynamic models 

given in Section 2.4.3, in equations (2.63) and (2.70) respectively, we choose the state 

variables 𝑥1 = 𝑞 and 𝑥2 = 𝑞̇. The state vector of the system is 𝑥 = [𝑥1
𝑇 𝑥2

𝑇]𝑇. Then, using 

(2.63), (2.70), and also the actuator fault model given for 𝑛-linked 2WD mobile robots in 

(2.102), it is possible to give a state-space representation of the system in the form of (4.6) 

with 

𝑥̇ = 𝐴𝑥(𝑡) + 𝜑(𝑢(𝑡), 𝑥(𝑡), 𝜌̅) 

 𝑦(𝑡) = 𝐶𝑥(𝑡) (4.15) 

where  

 𝐴 = [
0𝑁×𝑁 𝐼𝑁

0𝑁×𝑁 0𝑁×𝑁

], 𝐶 = [𝐼𝑁 0𝑁×𝑁] (4.16) 

 𝜑(𝑢, 𝑥, 𝜌) = [𝜑1(𝑢, 𝑥, 𝜌)
𝑇 𝜑2(𝑢, 𝑥, 𝜌)

𝑇]𝑇 (4.17) 

where 𝐼𝑁 is a 𝑁 × 𝑁 identity matrix, the zeros in 𝐴 and 𝐶 are matrices of proper dimensions 

such that 𝐴 ∈ ℝ2𝑁×2𝑁  and 𝐶 ∈ ℝ𝑁×2𝑁,  

and 

𝜑1(𝑢, 𝑥, 𝜌) = 0𝑁×1 

𝜑2(𝑢, 𝑥, 𝜌) = 𝑆(𝑥1)(𝑀̅1
−1(𝑥1)(−𝑀̅2(𝑥1)(𝑆

+(𝑥1)𝑥2 − 𝐶̅(𝑥1, 𝑥2) 

 +𝐵̅(𝑥1)𝜎𝑢)) + 𝑆̇(𝑥1)𝑆
+(𝑥1)𝑥2 (4.18) 
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where 𝑁 is the dimension vector of the generalized coordinates of the system 𝑞, and 𝑁 =

𝑛 + 2. 

4.3.1.1 Nonlinear adaptive observer 

A nonlinear adaptive observer as proposed in [136] is used to estimate the state 𝑥 and 

parameter 𝜌̅ in a nonlinear system (4.4) which respects the properties given in Assumption 

4.1, Remark 4.1, and Theorem 4.1 in the Section 4.2.   

4.3.1.2 Fault estimation 

As we mentioned in subsection 4.2.1, the actuators faults are directly related to the 

actuators gains 𝜌 and additive terms 𝑢̅. Thus, the estimation of 𝜌̅ = [𝜌𝑇 , 𝑢̅𝑇]𝑇 provided by 

the nonlinear adaptive observer (4.11) can be also interpreted as a fault estimation. Notice 

that it is possible to estimate simultaneous faults in all the actuators. Although, as discussed 

in subsection 4.2.1, the system requires a minimum number of actuators to provide 

sufficient torques, which limits the set of possible faults. 

4.3.2 Fault tolerant control design 

The control design is based on the approach proposed in Section 3.2.1 of Chapter 3. For 

the kinematic control law, a generalization of the FTC for 𝑛-linked 2WD mobile robots 

can be performed as discussed in Chapter 3, Section 3.4. By this way, the kinematic 

controller is designed using a transformation of coordinates (chained form) [40] in 

combination with a recursive method (backstepping) [120]. 

General dynamic control laws including actuator fault are designed, each of which is 

designed using one possible failure pattern matrix. If the failure pattern which is used in 

the controller is consistent with the actual one, then the applied control signal can ensure 

desired system performance. We can find different dynamic control law including, multiple 

and adaptive fault tolerant dynamic controllers. 

The nonlinear adaptive observer gives estimates of the system states and the parameters 

related to the actuator faults, both are used in the dynamic control law and available for 

fault diagnosis. By this way, the proposed control and diagnosis scheme allows fault 

estimation and fault tolerant control. 
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4.4 Conclusion 

The nonlinear adaptive observer adopted in this work is capable of estimating actuators 

multiplicative and additive constant faults on 𝑛 physically linked 2WD mobile robots. In 

the control scheme composed of a kinematic and a dynamic controller, the estimated 

actuator faults and the estimated state-space variables are used to update the dynamic 

control law, guaranteeing trajectory tracking with fault tolerance. By this way, the 

proposed control and diagnosis scheme allows fault estimation and fault tolerant control. 

We illustrated the effectiveness of the overall approach by simulations for two-linked and 

three-linked robots.
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CHAPTER 5   

Conclusions and Future Work 

The work presented in this manuscript was dedicated to the trajectory tracking control 

of multi-linked 2WD mobile robots with actuator faults. The different passive and active 

fault tolerant control schemes that have been proposed are based on common theoretical 

tools related to WMR kinematic and dynamic models, and also nonlinear adaptive control, 

and nonlinear adaptive observer theories. The proposed passive and active FTC schemes 

have been validated in simulation for two-linked and three-linked 2WD robots. 

One of the contributions of this thesis concerns to the development of a general control 

strategy for the multi-linked 2WD mobile robots to compensate for actuator fault. The 

configuration of 𝑛 (𝑛 > 1) physically linked 2WD mobile robots was proposed in Chapter 

2, Section 2.4 to deal with the actuator faults. The kinematic and dynamic models of the 

multi-linked 2WD mobile robots have been proposed, and a generalization of the FTC 

compensation method for multi-linked 2WD mobile robots was elaborated in Chapter 3, 

Section 3.4. Using a chained form representation, a recursive algorithm was proposed to 

design the kinematic controller for 𝑛 linked robots to guarantee that all the system’s states 

converge to their desired trajectories. Furthermore, a general dynamic control law 

including actuator fault was designed considering the unknown failure pattern matrix. 

Different passive FTC strategies were proposed to deal with the unknown failure 

pattern matrix in the dynamic control law. 

A multiple model actuator failure compensation scheme for two-linked 2WD mobile 

robots was developed in Chapter 3, Section 3.2, to compensate for actuator failures, 

consisting of a kinematic controller, multiple dynamic controllers and a control switching 

mechanism, which ensure system stability and asymptotic tracking properties. Indeed, the 

approach proposed for the design of the kinematic controller is suitable only for the specific 

case of two-linked 2WD mobile robots. A diffeomorphism relating the kinematic and 

dynamic controllers was found. However, it is very difficult to find in the same way a 

diffeomorphism for more than two-linked 2WD mobile robots. Furthermore, even if we 
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can find this diffeomorphism, the control objective will be always designed only for the 

last robot of the 2WD multi-linked mobile robots. Moreover, the switching mechanism in 

the dynamic controller can produce undesirable effects on the control signal. As a 

consequence, a control solution which is well-suited for 𝑛-linked (𝑛 > 2) 2WD mobile 

robots was presented in Chapter 3, Section 3.3.1. The provided solution is based on the 

chained form model introduced in Chapter 2, Section 2.5. Using the transformed system 

representation, a recursive technique was proposed in Chapter 3, Section 3.3.1 to derive 

the kinematic control law. The fault compensation is provided by multiple dynamic 

controllers that are designed considering a fixed set of possible failure cases. Although 

providing a kinematic controller adequate for the 𝑛-linked system, this method still has the 

switching problem related to the dynamic controller. Besides, the method does not consider 

model uncertainties and disturbance inputs, as for instance the friction. 

In order to design a FTC for multi-linked 2WD mobile robots with friction and actuator 

faults, the same kinematic control law derived in Chapter 3, Section 3.3.1 is used, but the 

dynamic control is different. Therefore, a multi-design integration based adaptive actuator 

failure was presented in Chapter 3, Section 3.3.2, to avoid the control switching mechanism 

and also conveniently deal with the friction. Nevertheless, this multi-design integration-

based method is still based on a fixed discrete set of possible failure pattern matrices. 

The control methods presented in passive FTC do not give any information on the faults 

that occur. This information on the faults would be useful for maintenance operations. 

Moreover, only limited fault cases were considered with the passive FTC techniques. In 

order to improve the work on this direction, an Active Fault Tolerant Control scheme was 

presented and designed in Chapter 4. A nonlinear dynamic observer was used not only to 

estimate the actuator fault signal but also to estimate the states that are needed in the 

feedback control law. 
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Future work 

Based on existing researches, this thesis gives some preliminary solutions for FTC and 

FD for multi-linked 2WD mobile robots with actuator fault. However, some problems are 

still not solved in the thesis. They are presented as follows: 

We worked only with simulations, without experiments with the real robots, which 

should be an obvious extension of this work. During the thesis period we have not been 

able to apply the different FTC algorithms on real robots because in our experimental 

platform composed of TurtleBot 2 robots, it was not possible to access the wheel motors 

control inputs. Recently, we have bought new TurtleBot 3 robots which makes it possible 

to access these control signal. 

In order to guarantee the robustness of the controllers, the uncertainties related to the 

kinematic and dynamic model should be taken into account. In future works, adaptive 

robust control design methods for nonlinear systems, such as in [139], should be applied 

to the multi-linked 2WD mobile robots. Other FTC technique that could be used, for 

instance sliding mode control as in [126, 140], predictive control as in [141], to improve 

and give better performance.  

The robot configuration that we considered has the form of a snake-like robot (or a 

tractor-trailer), with a leader and followers. However, many other configurations for the 

linked mobile robots could be used, such as star-like, triangular, etc. The leader-follower 

based configurations have the disadvantage of requiring that the leader must have at least 

one actuator working, a limitation that could be solved by a different configuration that 

doesn't require a leader. 

Another limitation of the FTC laws proposed in this thesis is that they are designed 

without considering the saturation of the controller. Methods including constraints of the 

control signal in the controller design [142] may be useful to overcome this problem and 

should be considered in future works. 

We worked only with the actuator faults. Other types of faults, such as sensor fault, 

communication faults, component faults, etc., can also be included in the FTC and FD 

scheme. For example, the observer used in the Active FTC scheme proposed on this thesis 

could be modified, as suggested in [143, 144], in order to simultaneously estimate actuator 

and sensor faults. 
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APPENDIX A 

INPUT TRANSFORMATION MATRIX 𝐵(𝑞) IN (2.43) 

Define the unit vectors for the directions of the two robots in forward movements as 

 𝑈1 = [𝑐𝑜𝑠 𝜃1 , 𝑠𝑖𝑛 𝜃1]
𝑇 ,      𝑈2 = [𝑐𝑜𝑠 𝜃2 , 𝑠𝑖𝑛 𝜃2]

𝑇 (A.1) 

where  𝑐𝑜𝑠 𝜃𝑖 and 𝑠𝑖𝑛 𝜃1 (𝑖 = 1, 2) are the components in the X and Y directions, 

respectively. Then, the control force and torque vectors generated by actuators are  

𝐹1 =
𝜏1𝑟 + 𝜏1𝑙

𝑟1
𝑈1,         𝐹2 =

𝜏2𝑟 + 𝜏2𝑙
𝑟2

𝑈2 

 𝑀𝑡1 =
𝜏1𝑟−𝜏1𝑙

𝑟1
𝑏1 ,      𝑀𝑡2 =

𝜏2𝑟−𝜏2𝑙

𝑟2
𝑏2 (A.2) 

where 𝑀𝑡𝑖 (𝑖 = 1, 2) are in the 𝑍 direction. 

Let   

 𝑟𝑝1 = [𝑥 + 𝑑 𝑐𝑜𝑠 𝜃2 , 𝑦 + 𝑑 𝑠𝑖𝑛 𝜃2]
𝑇 ,      𝑟𝑝2 = [𝑥, 𝑦]𝑇 (A.3) 

be the position vectors of 𝑃1 and 𝑃2. Then, the variation of the work done by the applied 

generalized forces is  

 𝛿𝑊 = 𝐹1
𝑇𝛿𝑟𝑝1 + 𝐹2

𝑇𝛿𝑟𝑝2 + 𝑀𝑡1𝛿𝜃1 + 𝑀𝑡2𝛿𝜃2   (A.4) 

where 𝛿𝑟𝑝1, 𝛿𝑟𝑝2, 𝛿𝜃1 and 𝛿𝜃2 are variations of 𝑟𝑝1, 𝑟𝑝2, 𝜃1, and 𝜃2.  

With 𝑞 = [𝑥, 𝑦, 𝜃2, 𝜃1]
𝑇, equation (A.4) can be rewritten as  

𝛿𝑊 = 𝐹1
𝑇
𝜕𝑟𝑝1

𝜕𝑞
𝛿𝑞 + 𝐹2

𝑇
𝜕𝑟𝑝2

𝜕𝑞
𝛿𝑞 + 𝑀𝑡1

𝜕𝜃1

𝜕𝑞
+ 𝑀𝑡2

𝜕𝜃2

𝜕𝑞
 

 = 𝑄𝑇𝛿𝑞   (A.5) 

where 𝛿𝑞 is the variation of 𝑞, and  

 𝑄 = (
𝜕𝑟𝑝1

𝜕𝑞
)
𝑇

𝐹1 + (
𝜕𝑟𝑝2

𝜕𝑞
)
𝑇

𝐹2 + (
𝜕𝜃1

𝜕𝑞
)
𝑇

𝑀𝑡1 + (
𝜕𝜃2

𝜕𝑞
)
𝑇

𝑀𝑡2   (A.6) 

is the vector of the generalized forces corresponding to the generalized system coordinates. 

Therefore, the injection matrix is given as 

 𝐵(𝑞) =
𝜕𝑄

𝜕𝜏
  (A.7) 

where 𝜏 = [𝜏1𝑟 , 𝜏1𝑙, 𝜏2𝑟 , 𝜏2𝑙] is the control torque vector.
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APPENDIX B 

SYSTEM INERTIA MATRIX 𝑀(𝑞) AND CORIOLIS FORCES VECTOR 𝐶(𝑞, 𝑞̇) IN 

(2.43) 

Define the position vectors of 𝐶1 and 𝐶2 as  

𝑟𝑐1 = 𝑟𝑝1 + 𝑎1𝑈1 

= [𝑥 + 𝑑 𝑐𝑜𝑠 𝜃2 + 𝑎1 𝑐𝑜𝑠 𝜃1 , 𝑦 + 𝑑 𝑠𝑖𝑛 𝜃2 + 𝑎1 𝑠𝑖𝑛 𝜃1]
𝑇 

 𝑟𝑐2 = 𝑟𝑝2 + 𝑎2𝑈2 = [𝑥 + 𝑎2 𝑐𝑜𝑠 𝜃2 , 𝑦 + 𝑎2 𝑠𝑖𝑛 𝜃2]
𝑇      (B.1) 

The system kinematic energy is  

 𝑇(𝑞, 𝑞̇) =
1

2
(𝑚1𝑟̇𝑐1

𝑇 𝑟̇𝑐1 + 𝑚2𝑟̇𝑐2
𝑇 𝑟̇𝑐2 + 𝐼𝑚1𝜃̇1

2 + 𝐼𝑚2𝜃̇2
2)   (B.2) 

The time derivative of 𝑟𝑐1 and 𝑟𝑐2 can be written as 

 𝑟̇𝑐1 =
𝜕𝑟𝑐1

𝜕𝑞
𝑞̇ = 𝑇1𝑞̇ ,    𝑟̇𝑐2 =

𝜕𝑟𝑐2

𝜕𝑞
𝑞̇ = 𝑇2𝑞̇ (B.3) 

where 𝑇1 and 𝑇2 are the Jacobian matrices. Then, the system kinematic energy in (B.2) can 

be rewritten as 

𝑇(𝑞, 𝑞̇) =
1

2
(𝑚1𝑞̇

𝑇𝑇1
𝑇𝑇1𝑞̇ + 𝑚2𝑞̇

𝑇𝑇2
𝑇𝑇2𝑞̇ + 𝐼𝑚1𝜃̇1

2 + 𝐼𝑚2𝜃̇2
2) 

 =
1

2
𝑞̇𝑇𝑀(𝑞)𝑞̇   (B.4) 

where  

 𝑀(𝑞) = 𝑚1𝑇1
𝑇𝑇1 + 𝑚2𝑇2

𝑇𝑇2 + diag{0, 0, 𝐼𝑚1, 𝐼𝑚2}   (B.5) 

is the inertia matrix that is symmetric positive definite. 

The Lagrange formulation for the system is  

 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
= 𝑄 + 𝐴𝑇(𝑞)𝜆   (B.6) 

From (B.4), we have  

 
𝜕𝑇

𝜕𝑞̇
= 𝑀𝑞̇   (B.7) 

Then,  
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𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
=  𝑀𝑞̈ + 𝑀̇𝑞̇ −

𝜕𝑇

𝜕𝑞
 

 = 𝑀𝑞̈ + 𝐶(𝑞, 𝑞̇)   (B.8) 

where  

 𝐶(𝑞, 𝑞̇) = 𝑀̇𝑞̇ −
𝜕𝑇

𝜕𝑞
   (B.9) 

is the centripetal and Coriolis vector.
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APPENDIX C 

INPUT TRANSFORMATION MATRIX 𝐵(𝑞) IN (2.69) 

Define the unit vectors for the directions of the 𝑛 robots in forward movements as 

 𝑈1 = [𝑐𝑜𝑠 𝜃1 , 𝑠𝑖𝑛 𝜃1]
𝑇 , 𝑈2 = [𝑐𝑜𝑠 𝜃2 , 𝑠𝑖𝑛 𝜃2]

𝑇 , ⋯, 𝑈𝑛 = [𝑐𝑜𝑠 𝜃𝑛 , 𝑠𝑖𝑛 𝜃𝑛]
𝑇 (C.1) 

where  𝑐𝑜𝑠 𝜃𝑖 and 𝑠𝑖𝑛 𝜃1 (𝑖 = 1, 2,⋯ , 𝑛) are the components in the X and Y directions, 

respectively.  

The control force and torque vectors generated by actuators are  

𝐹1 =
𝜏1𝑟+𝜏1𝑙

𝑟1
𝑈1,   𝐹2 =

𝜏2𝑟+𝜏2𝑙

𝑟2
𝑈2, ⋯,  𝐹𝑁 =

𝜏𝑛𝑟+𝜏𝑛𝑙

𝑟𝑛
𝑈𝑛 

 𝑀𝑡1 =
𝜏1𝑟−𝜏1𝑙

𝑟1
𝑏1 ,   𝑀𝑡2 =

𝜏2𝑟−𝜏2𝑙

𝑟2
𝑏2, ⋯,     𝑀𝑡𝑁 =

𝜏𝑛𝑟−𝜏𝑛𝑙

𝑟𝑛
𝑏𝑛 (C.2) 

where 𝑀𝑡𝑖 (= 1, 2,⋯ , 𝑛) are in the 𝑍 direction. 

Let   

 𝑟𝑝1 = (𝑥 + ∑ 𝑑𝑖 𝑐𝑜𝑠 𝜃𝑖
𝑛
𝑖=1 )Î + (𝑦 + ∑ 𝑑𝑖 sin 𝜃𝑖

𝑛
𝑖=1 )Ĵ,     𝑟𝑝𝑛 = [𝑥, 𝑦]𝑇 (C.3) 

The variation of the position vector (C.3) can be written as  

 𝛿𝑟𝑝1 = (𝛿𝑥 − ∑ 𝑑𝑖 sin𝜃𝑖
𝑛
𝑖=1 𝛿𝜃𝑖)Î + (𝛿𝑦 + ∑ 𝑑𝑖 cos 𝜃𝑖

𝑛
𝑖=1 𝛿𝜃𝑖)Ĵ, 𝛿𝑟𝑝𝑛 = [𝛿𝑥, 𝛿𝑦]𝑇 (C.4) 

be the position vectors of 𝑃1, ⋯,  𝑃𝑛. Then, the variation of the work done by the applied 

generalized forces is  

 𝛿𝑊 = 𝐹1
𝑇𝛿𝑟𝑝1 + 𝐹2

𝑇𝛿𝑟𝑝2 + ⋯+ 𝐹𝑁
𝑇𝛿𝑟𝑝𝑛 + 𝑀𝑡1𝛿𝜃1 + 𝑀𝑡2𝛿𝜃2 + ⋯+ 𝑀𝑡𝑁𝛿𝜃𝑛   (C.5) 

where 𝛿𝑟𝑝1, 𝛿𝑟𝑝2, ⋯, 𝛿𝑟𝑝𝑛 and 𝛿𝜃1, 𝛿𝜃2, ⋯, 𝛿𝜃𝑛 are variations of 𝑟𝑝1, ⋯, 𝑟𝑝𝑛, and 𝜃1, ⋯, 

𝜃𝑛. With 𝑞 = [𝑥, 𝑦, 𝜃𝑛, 𝜃𝑛−1, … , 𝜃1] 
𝑇, equation (C.5) can be rewritten as  

𝛿𝑊 = 𝐹1
𝑇
𝜕𝑟𝑝1

𝜕𝑞
𝛿𝑞 + 𝐹2

𝑇
𝜕𝑟𝑝2

𝜕𝑞
𝛿𝑞 + ⋯+ 𝐹𝑛

𝑇
𝜕𝑟𝑝𝑛

𝜕𝑞
𝛿𝑞 + 𝑀𝑡1

𝜕𝜃1

𝜕𝑞
+ 𝑀𝑡2

𝜕𝜃2

𝜕𝑞
+ ⋯+ 𝑀𝑡𝑛

𝜕𝜃𝑛

𝜕𝑞
 

 = 𝑄𝑇𝛿𝑞   (C.6) 
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where 𝛿𝑞 is the variation of 𝑞, and  

 𝑄 = (
𝜕𝑟𝑝1

𝜕𝑞
)
𝑇

𝐹1 + ⋯+ (
𝜕𝑟𝑝𝑛

𝜕𝑞
)
𝑇

𝐹𝑛 + (
𝜕𝜃1

𝜕𝑞
)
𝑇

𝑀𝑡1 + ⋯+ (
𝜕𝜃𝑛

𝜕𝑞
)
𝑇

𝑀𝑡𝑛   (C.7) 

is the vector of the generalized forces corresponding to the generalized system coordinates. 

Therefore, the injection matrix is given as 

 𝐵(𝑞) =
𝜕𝑄

𝜕𝜏
  (C.8) 

where 𝜏 = [𝜏1𝑟 , 𝜏1𝑙, 𝜏2𝑟 , 𝜏2𝑙 , ⋯ , 𝜏𝑛𝑟 , 𝜏𝑛𝑙] is the control torque vector. 
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APPENDIX D 

SYSTEM INERTIA MATRIX 𝑀(𝑞) IN (2.67) AND CORIOLIS FORCES 𝐶(𝑞, 𝑞̇) IN 

(2.68) 

Define the position vectors of 𝐶1 and 𝐶𝑛 as  

𝑟𝑐1 = 𝑟𝑝1 + 𝑎1𝑈1 

= [𝑥 + 𝑑 𝑐𝑜𝑠 𝜃2 + 𝑎1 𝑐𝑜𝑠 𝜃1 , 𝑦 + 𝑑 𝑠𝑖𝑛 𝜃2 + 𝑎1 𝑠𝑖𝑛 𝜃1]
𝑇 

 𝑟𝑐𝑛 = 𝑟𝑝𝑛 + 𝑎𝑛𝑈𝑛 = [𝑥 + 𝑎𝑛 𝑐𝑜𝑠 𝜃𝑛 , 𝑦 + 𝑎𝑛 𝑠𝑖𝑛 𝜃𝑛]
𝑇      (D.1) 

The system kinematic energy is  

 𝑇(𝑞, 𝑞̇) =
1

2
∑ {𝑚𝑖𝑟̇𝑐𝑖

𝑇 𝑟̇𝑐𝑖 + 𝐼𝑚𝑖𝜃̇𝑖
2}𝑛

𝑖=0    (D.2) 

The time derivative of 𝑟𝑐1, ⋯ , 𝑟𝑐𝑛 can be written as 

 𝑟̇𝑐1 =
𝜕𝑟𝑐1

𝜕𝑞
𝑞̇ = 𝑇1𝑞̇ ,    𝑟̇𝑐𝑛 =

𝜕𝑟𝑐𝑛

𝜕𝑞
𝑞̇ = 𝑇𝑛𝑞̇ (D.3) 

where 𝑇1, ⋯, 𝑇𝑛 are the Jacobian matrices. Then, the system kinematic energy in (D.2) can 

be rewritten as 

 𝑇(𝑞, 𝑞̇) =
1

2
∑ {𝑚𝑖𝑞̇

𝑇𝑇𝑖
𝑇𝑇𝑖𝑞̇ + 𝐼𝑚𝑖𝜃̇𝑖

2}𝑛
𝑖=0    (D.4) 

where  

 𝑀(𝑞) = ∑ {𝑚𝑖𝑇𝑖
𝑇𝑇𝑖

𝑛
𝑖=0 } + diag({0, 0, 𝐼𝑚1, 𝐼𝑚2, ⋯ , 𝐼𝑚𝑛})   (D.5) 

is the inertia matrix that is symmetric positive definite. 

The Lagrange formulation for the system is  

 
𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
= 𝑄 + 𝐴𝑇(𝑞)𝜆   (D.6) 

From (D.4), we have  
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𝜕𝑇

𝜕𝑞̇
= 𝑀𝑞̇   (D.7) 

Then,  

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
=  𝑀𝑞̈ + 𝑀̇𝑞̇ −

𝜕𝑇

𝜕𝑞
 

 = 𝑀𝑞̈ + 𝐶(𝑞, 𝑞̇)   (D.8) 

where  

 𝐶(𝑞, 𝑞̇) = 𝑀̇𝑞̇ −
𝜕𝑇

𝜕𝑞
   (D.9) 

is the centripetal and Coriolis vector. 
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APPENDIX E 

PROOF OF THEOREM 2.1 

The kinematic model for 𝑛-linked 2WD mobile robots were derived in Section 2.4.3 (see 

chapter 2), and is 

 𝑞̇ = 𝑆(𝑞)𝜂 (E.1) 

where  

 𝜂 = [𝜐 𝜔1]𝑇 

System (E.1) can be represented (locally) as follows 

𝑥̇ = 𝜐 

𝜃̇1 = 𝜔1 

𝜃̇2 =
1

𝑑2

𝑡𝑎𝑛(𝜃1 − 𝜃2) 

𝑝2(𝜃2)
𝜐 

⋮ 

𝜃̇𝑖 =
1

𝑑𝑖

𝑡𝑎𝑛(𝜃𝑖−1 − 𝜃𝑖) 

𝑝𝑖(𝜃𝑖)
𝜐 

 𝑦̇ = 𝑡𝑎𝑛𝜃𝑛𝜐 (E.2) 

for  𝑖 ∈ {1,⋯ , 𝑛} 

where 𝜐 is given by (2.76).  

Let us denote, for  𝑖 ∈ {1,⋯ , 𝑛} 

 𝑓𝑖(𝜃𝑖−1) =
1

𝑑𝑖

𝑡𝑎𝑛(𝜃𝑖−1 − 𝜃𝑖)

𝑝𝑖(𝜃𝑖)
 (E.3) 

This means that we can write  

 𝜃̇𝑖 = 𝑓𝑖(𝜃𝑖−1)𝜐 (E.4) 

After a reordering of the state variables, we denote the state by the vector 

[𝜉1, 𝜉2, ⋯ , 𝜉𝑛+2] 
𝑇 = [𝑥, 𝑦, 𝜃𝑛, 𝜃𝑛−1, … , 𝜃1] 

𝑇 

which has dimension 𝑛 + 2.  
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We note from (E.2) that this kinematic model has a special triangular structure where 𝜉̇𝑖 is 

not a function of 𝜉1, ⋯, 𝜉𝑖−2, where 𝑖 ∈ {3,⋯ , 𝑛 + 2} 

and let us define 

 𝜉𝑛+3 = 𝑦 (E.5) 

Using (E.2), the differentiation (E.5) with respect to time gives 

 𝜉̇𝑛+3 = 𝑦 ̇ = tan 𝜃𝑛 𝜐 (E.6) 

We get 𝜉̇𝑛+3 = 𝜉𝑛+2𝜐 by choosing 

 𝜉𝑛+2 = tan𝜃𝑛 (E.7) 

Using (E.2), the differentiation of (E.7) with respect to time gives 

 𝜉̇𝑛+2 =
1 

𝑐𝑜𝑠2𝜃𝑛
𝜃̇𝑛 =

𝑡𝑎𝑛(𝜃𝑛−1 − 𝜃𝑛) 

𝑑𝑛𝑐𝑜𝑠3𝜃𝑛
𝜐 (E.8) 

We get 𝜉̇𝑛+2 = 𝜉𝑛+1𝜐 by choosing 

 𝜉𝑛+1 =
𝑡𝑎𝑛(𝜃𝑛−1 − 𝜃𝑛) 

𝑑𝑛𝑐𝑜𝑠3𝜃𝑛
 (E.9) 

It can be shown by induction that 𝜉̇𝑖+2 = 𝜉𝑖𝜐 by choosing 

 𝜉𝑖 =
𝑡𝑎𝑛(𝜃𝑖−2 − 𝜃𝑖−1) 

𝑐𝑖(𝜃𝑖−1)
+ 𝑟𝑖(𝜃𝑖−1) (E.10) 

for  𝑖 ∈ {2,⋯ , 𝑛} where  

 

 
𝑐𝑖(Ɵ𝑖−1) = ∏𝑐𝑜𝑠𝑗−𝑖+3(𝜃𝑗−1 − 𝜃𝑗)𝑑𝑛+𝑖−𝑗 = 𝑝𝑖−1

2 (𝜃𝑖−1) ∏ 𝑑𝑗𝑝𝑗(Ɵ𝑗)

𝑛

𝑗=𝑖−1

𝑛+1

𝑗=1

 (E.11) 

 𝑟(Ɵ𝑖−1) =
𝜕𝜉𝑖+1

𝜕𝜃𝑖
𝑓𝑖(Ɵ𝑖−1) (E.12) 

where  𝑖 ∈ {1,⋯ , 𝑛}. This means that 𝜉𝑖 = 𝜉𝑖(𝜃𝑖−2). 

Assume that (E.10) is satisfied for 𝑖 = 𝑚. Equations (2.80), (E.2), (E.11) and (E.12) imply 
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𝜉̇𝑚 =
𝜕𝜉𝑚

𝜕𝜃𝑚−2
𝜃̇𝑚−2 +

𝜕𝜉𝑚
𝜕𝜃𝑚−1

𝜃̇𝑚−1 

=
1

𝑐𝑜𝑠2(𝜃𝑚−2 − 𝜃𝑚−1)𝑐𝑚(𝜃𝑚−1)
 

=
1

𝑑𝑚−2

𝑡𝑎𝑛(𝜃𝑚−3 − 𝜃𝑚−2)

𝑝𝑚−2(𝜃𝑚−2)
𝜐 +

𝜕𝜉𝑚
𝜕𝜃𝑚−1

𝑓𝑚−1(𝜃𝑚−2)𝜐 

= (
𝑡𝑎𝑛(𝜃𝑚−3 − 𝜃𝑚−2)

𝑐𝑚−1(𝜃𝑚−2)
+ 𝑟𝑚−1(𝜃𝑚−2)) 𝜐 

Note from (2.80) and (E.10) that  

𝑐𝑚−1 = 𝑐𝑜𝑠2𝛼𝑚−2𝑐𝑚𝑑𝑚−2𝑝𝑚−2 

= 𝑐𝑜𝑠2𝛼𝑚−2𝑝𝑚−1
2 ( ∏ 𝑑𝑗𝑝𝑗

𝑛

𝑗=𝑚−1

)𝑑𝑚−2𝑝𝑚−2 

= 𝑝𝑚−2
2 (𝜃𝑚−2) ∏ 𝑑𝑗𝑝𝑗(𝜃𝑗

𝑛

𝑗=𝑚−2

) 

where 𝛼𝑚−2 = 𝜃𝑚−2 − 𝜃𝑚−1, 𝑐𝑚 = 𝑐𝑚(𝜃𝑚−1), and 𝑝𝑗 = 𝑝𝑗(𝜃𝑗). 

We have thus shown that if 𝜉𝑖 is given by (E.9) for 𝑖 = 𝑚 then  

𝜉̇𝑚 = 𝜉𝑚−1𝜐 

Let choose 𝜉𝑚−1 as in (E.9) with 𝑖 = 𝑚 − 1. It remains to show that if 𝜉𝑛 is given by (E.9) 

with 𝑖 = 𝑛 and 𝜉𝑛−1 is given by (E.8) then 

𝜉̇𝑛+1 = 𝜉𝑛𝜐 

From (E.2), (E.9), (E.11) and (E.12), we get 

𝜉̇𝑛+1 =
𝜕𝜉𝑛+1

𝜕𝜃𝑛−1
𝜃̇𝑛−2 +

𝜕𝜉𝑛+1

𝜕𝜃𝑛
𝜃̇𝑛 

=
1

𝑐𝑜𝑠2(𝜃𝑛−1 − 𝜃𝑛)𝑑𝑛𝑐𝑜𝑠3𝜃𝑛
 

=
1

𝑑𝑛−1

𝑡𝑎𝑛(𝜃𝑛−2 − 𝜃𝑛−1)

𝑐𝑜𝑠 𝜃𝑛 𝑐𝑜𝑠(𝜃𝑛−1 − 𝜃𝑛)
𝜐 +

𝜕𝜉𝑛+1

𝜕𝜃𝑛
𝑓𝑛(𝜃𝑛−1)𝜐 

= (
𝑡𝑎𝑛(𝜃𝑛−2 − 𝜃𝑛−1)

𝑐𝑛(𝜃𝑛−1)
+ 𝑟𝑛(𝜃𝑛−1))𝜐 
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This means that  

𝜉̇𝑛+1 = 𝜉𝑛𝜐 

by choosing 

 𝜉𝑛 =
𝑡𝑎𝑛(𝜃𝑛−2 − 𝜃𝑛−1) 

𝑐𝑛(𝜃𝑛−1)
+ 𝑟𝑛(𝜃𝑛−1) (E.13) 

Therefore, 𝜉𝑖 is given by (E.9) for all 𝑖 ∈ {1,⋯ , 𝑛} and the transformation (2.81)-(2.91) (see 

chapter 2) imply that  

𝜉̇𝑖 = 𝜉𝑖−1𝜐,          ∀𝑖 ∈ {3,⋯ , 𝑛 + 3} 

To complete the proof, we have shown that  

𝜉̇2 = 𝛼2,       𝜉̇1 = 𝛼1 

𝜉2 is given by (E.9) with 𝑖 = 2. 

By differentiating (E.9), we obtain  

𝜉̇2 =
𝜕𝜉2
𝜕𝜃0

𝜃̇1 +
𝜕𝜉2
𝜕𝜃1

𝜃̇2 

=
1

𝑐𝑜𝑠2(𝜃1 − 𝜃2)𝑐2(𝜃2)
𝜔 +

𝜕𝜉2
𝜕𝜃2

𝑓1(𝜃1)𝜐 

=
1

𝑐𝑜𝑠2(𝜃1 − 𝜃2)𝑐2(𝜃1)
𝜔 + 𝑟1(𝜃1)𝑓1(𝜃1)𝜐1 

since 𝜐 = 𝑝1(𝜃1)𝜐1. This implies that the transformation (2.91) (see chapter 2) implies  

 𝜉̇2 = 𝛼2 (E.14) 

From (E.6) it follows directly that  

 𝜉̇1 = 𝛼1 (E.15) 

By choosing 𝜉1 = 𝑥 and 𝛼1 = 𝜐 = 𝑝1(𝜃1)𝜐1.  

Finally one can conclude that the transformation (2.81)-(2.86) implies that  

𝜉̇1 = 𝛼1 

𝜉̇2 = 𝛼2 

𝜉̇1 = 𝜉2𝛼1 

 

⋮ 
 𝜉̇𝑛 = 𝜉𝑛𝛼1 (E.16) 
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APPENDIX F 

DIFFEOMORPHISM IN (3.19)-(3.22) 

It is easy to obtain 𝑧̇1, 𝑧̇2 and 𝑧̇4 from (3.11)-(3.18). From 𝑧3 = tan 𝑒𝜃 in (3.16) and with 

(3.15), (3.17), and (3.18), we have  

𝑧̇3 =
1

cos2 𝑒𝜃
𝑒̇𝜃 =

𝜐2 tan(𝜃1 − 𝜃2)

𝑑cos2 𝑒𝜃
−

𝜔𝑟

cos2 𝑒𝜃
 

=
tan(𝜃1 − 𝜃2)

𝑑 cos3 𝑒𝜃
𝜐2 cos 𝑒𝜃 −

𝜔𝑟

𝜐𝑟cos2 𝑒𝜃
𝜐2 cos 𝑒𝜃 +

𝜔𝑟

𝜐𝑟cos2 𝑒𝜃

(𝜐2 − 𝜐𝑟) 

= (𝑧4 − 𝑧2)𝜐2 cos 𝑒𝜃 +
𝜔𝑟

𝜐𝑟cos2 𝑒𝜃
𝛼1 

 = 𝜐𝑟(𝑧4 − 𝑧2) + 𝛼1 (𝑧4 − 𝑧2 +
𝜔𝑟

𝜐𝑟
(1 + 𝑧3

2))   (F.1) 
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 APPENDIX G 

OBTAINING 𝑇𝛼 AND 𝑓𝛼 IN (3.23) 

From 𝑧4 =
tan(𝜃1−𝜃2)

𝑑cos2 𝑒𝜃
−

𝜔𝑑

𝜐𝑑cos2 𝑒𝜃
 in (3.17), and with (3.3), (3.4), (3.12) and (3.13), we have 

𝑧̇4 =
1

cos2 𝑒𝜃
=

(𝜃̇1 − 𝜃̇2)

cos2(𝜃1 − 𝜃2)
cos2 𝑒𝜃 + 3 tan(𝜃1 − 𝜃2) cos

2 𝑒𝜃 sin 𝑒𝜃𝑒̇𝜃

𝑑cos2 𝑒𝜃
 

−
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2 𝑒𝜃 − 𝜔𝑑(𝜐̇𝑑cos
2 𝑒𝜃 −2𝜐𝑑 cos 𝑒𝜃 sin 𝑒𝜃𝑒̇𝜃)

𝜐𝑑
2cos4 𝑒𝜃

+ 𝑒̇𝑦 

=
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𝜐2

𝑑
tan(𝜃1 − 𝜃2)

𝑑cos3 𝑒𝜃 cos2(𝜃1 − 𝜃2)
+

3 tan(𝜃1 − 𝜃2) sin 𝑒𝜃 (
𝜐2

𝑑
tan(𝜃1 − 𝜃2) − 𝜔𝑑)

𝑑cos4 𝑒𝜃
 

−
𝜔̇𝑟

𝜐𝑑cos
2 𝑒𝜃

+
𝜔𝑑𝜐̇𝑑

𝜐𝑑
2cos2 𝑒𝜃

−
2𝜔𝑑 sin 𝑒𝜃 (
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𝑑
tan(𝜃1 − 𝜃2) − 𝜔𝑑)

𝜐𝑑cos
3 𝑒𝜃

− 𝜔𝑑𝑒𝑥 + 𝜐𝑑 sin 𝑒𝜃 

= (
3 tan2(𝜃1 − 𝜃2) sin 𝑒𝜃
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−
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−

2𝜔𝑑 tan(𝜃1 − 𝜃2) sin 𝑒𝜃
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1
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together with 𝛼1 = 𝜐2 cos 𝑒𝜃 − 𝜐𝑑 and 𝛼2 = 𝑧̇4, we can finally obtain  

𝛼 = [
𝛼1

𝛼2
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  (G.2) 

where  

𝑇𝛼11 = cos 𝑒𝜃, 𝑇𝛼12 = 0, 

𝑇𝛼21 =
3 tan2(𝜃1 − 𝜃2) sin 𝑒𝜃

𝑑2cos4 𝑒𝜃
−

tan(𝜃1 − 𝜃2)

𝑑2cos3 𝑒𝜃 cos2(𝜃1 − 𝜃2)
−

2𝜔𝑑 tan(𝜃1 − 𝜃2) sin 𝑒𝜃
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,    𝑓𝛼1 = −𝜐𝑑,  
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Diagnostic et commande tolérante aux fautes pour un système de robots 

mobiles liés physiquement 

Résumé: Dans les environnements difficiles résultant de catastrophes naturelles ou d'accidents 

industriels, des robots mobiles peuvent être utilisés pour réduire les interventions humaines. Ces robots 

doivent pouvoir parcourir de longues distances, suivre des trajectoires précises, transporter des matériels 

et instruments, tout en étant robustes aux perturbations et aux défaillances éventuelles de leurs 

composants (capteurs, actionneurs).  

Dans cette thèse, nous considérons des systèmes composés de robots mobiles à deux roues motrices 

(2WD), reliés physiquement entre eux. Nous proposons des lois de commande permettant au système 

multi-robot de suivre une trajectoire de référence malgré la présence de défauts d'actionneurs. 

Différentes commandes tolérantes aux fautes (FTC: Fault Tolerant Control) sont proposées. Certaines 

sont des commandes dîtes passives, qui sont conçues pour être robustes à des défauts actionneurs 

sélectionnés, d’autres sont dîtes actives puisqu’elles intègrent un algorithme de diagnostic (observateur 

adaptatif non linéaire) qui détecte, localise et estime les défauts. 

Des résultats de simulation sont présentés tout au long de la thèse pour vérifier la validité et montrer les 

performances des algorithmes de commande tolérante proposés. 

Mots clés: Commande tolérante aux fautes, Diagnostic, Forme chainée, Système multi-robot, 

Robotique mobile, Modélisation. 

Fault Diagnosis and Fault Tolerant Control Design for Physically Linked 

2WD Mobile Robots Systems 

Abstract: In harsh environments resulting from natural disasters or industrial accidents, reducing 

human interventions by increasing robotic operations is desirable. The main challenges to be considered 

are not only that the robots should be able to go over long distances and operate for relatively long 

periods, but also make the global system tolerant to actuators’ failures. In this thesis, to overcome these 

challenges, systems composed of multi-linked two-wheel drive (2WD) mobile robots are considered. 

The objective of these multi-robot systems is to asymptotically track a reference trajectory, despite the 

presence of actuator faults. In this thesis, we design original Fault Tolerant Control (FTC) schemes. 

Some of them are passive methods, i.e. robust control laws to given failures, and other ones are active 

FTC which include a Fault Diagnosis (FD) algorithm (nonlinear adaptive observer) that detects, 

localizes and estimates the faults, and finally adapt the control actions to the faulty situations.  

Simulation results are presented all along the thesis to verify the validity of the proposed control 

algorithms and to show the performance of the FTC schemes. 

Keywords: Fault-tolerant control; Fault diagnosis; Chained form; Multi-linked mobile robots, Mobile 

robotics, Modeling. 
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