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Abstract

Machine learning is a rapidly growing field both in the number of the employed methods and

also in the number of databases available to users and their usages. Classification, which is a

task mainly addressed by machine learning, is thus affected by this evolution. For example,

the problem of decentralized learning (data divided into distinct subsets on networked nodes)

encourages the creation of global systems based on classifier ensembles. For this reason, this

thesis addresses the problem of multi-classifier systems or classifier ensembles. The goal

of my research is then the design of multi-classifier systems that provide a certain level of

robustness (performance at least equivalent to the maximally accurate classifier of the system

but in a context of wider usage). To this end, we propose two solutions that are the main

contributions of the thesis. The first one is a possibilistic approach based on a combination of

possibility distributions computed from confusion matrices using a Tnorm function, while the

second is a probabilistic approach based on a combination of conditional probabilities using

a Copula function. By setting the unique hyperparameter of each of these by grid search, we

are able to either explicitly capture some of the statistical dependency relationship between

the predictions of the individual classifiers or to circumvent the hypothesis of independence

between the latter which is a key point in obtaining the desired robustness.





Résumé

L’apprentissage automatique est un domaine en forte croissance à la fois dans le nombre

de méthodes employées mais aussi dans le nombre de bases de données à disposition

des utilisateurs et dans les usages de ces derniers. La classification, qui est une tâche

essentiellement abordée par l’apprentissage automatique, est ainsi affectée par cette évolution.

Par exemple, la problématique de l’apprentissage décentralisé (données réparties en sous-

ensembles distincts sur des noeuds en réseau) incite à créer des systèmes globaux basés sur

des comités de classifieurs. Pour cette raison, on traite dans cette thèse la problématique des

systèmes multi-classifieurs ou bien les comités de classifieurs. L’objectif de mes travaux de

recherche est alors la conception des systèmes multi-classifieurs qui assurent un certain niveau

de robustesse (performances au moins équivalente au meilleur classifieur du comité mais

dans un contexte d’utilisation plus large). A cette fin, nous proposons deux solutions qui sont

les principales contributions de la thèse. La première est une approche possibiliste basée sur

une combinaison des distributions de possibilité calculées à partir des matrices de confusion

à l’aide d’un fonction Tnorme, tandis que la deuxième est une approche probabiliste basée

sur une combinaison de probabilités conditionnelles à l’aide d’une fonction Copule. En

réglant l’unique hyperparamètre de chacun de ces fonctions de combinaison par recherche

par quadrillage (grid search), nous sommes capables soit de capturer explicitement une partie

de la relation de dépendance statistique entre les prédictions des classifieurs du comité soit

de contourner l’hypothèse d’indépendance entre ces derniers ce qui est un point clé dans

l’obtention de la robustesse souhaitée.
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ĉ The decision and the prediction function

X ,Y Random variables of the input and the class labels respectively

W A weight matrix

b A bias vector

Φ The mapping function for dimension transformation

θθθ A set of parameters

J(θθθ ) The cost function for logistic regression algorithm

Dtrain Training set

Dval Validation set

ntrain Number of samples in Dtrain

nval Number of samples in Dval



xx List of Symbols

sigm Sigmoid function

H Hidden layer in the neural net

O Output layer in the neural net (Softmax)

los The cross entropy loss function for neural network

Reg Regularizer

K Number of classifiers

M Confusion matrix of a classifier

Tλ The parametrized t-norm function

λ̂ Estimated parameter

C The copula function

W Minimal bound of the copula function

M Maximal bound of the copula function

G Vector of cumulative marginal distributions

F Cumulative joint distribution

c Density of the copula function



xxi

List of Acronyms

AI Artificial intelligence

MCS Multiple Classifier System

SVM Support Vectors Machine

CNN Convolutional Neural Network

k-nn k-nearest neighbors

LDA Linear Discriminant Analysis

QDA Quadratic Discriminant Analysis

Prec Precision of a classifier

Rec Recall of a classifier

Acc Accuracy of a classifier

Sensi Sensitivity of a classifier

Speci Specificity of a classifier

ROC Receiver Operating Characteristic

AUC Area Under Curve

EoC Ensemble of Classifiers

BKS Behavior Knowledge Space

RSM Random Subspaces Method

ECOC Error Correcting Output Codes

MCMC Markov chain Monte Carlo





General introduction

Artificial intelligence (AI) is the collection of theories and techniques that allow to simulate

human intelligence using machines. It involves different concepts such as extracting infor-

mation from data in order to learn (i.e. discover patterns), fusing information and making

decisions. A philosophical debate is still open about the name −artificial intelligence− since

the term «intelligence» involves different concepts such as creativity or emotion which a

humanly programmed machine does not possess. Also, the term «artificial» conveys the idea

that what the machine does is not real. A widely accepted understanding of the terminology

is the following: an artificially intelligent machine interacts with its environment and makes

autonomous decisions as if it were intelligent (but these seemingly autonomous decisions

are just the consequences of cleverly written code lines). In spite of this controversy, the

influence of artificial intelligence on today’s society and on the future of human kind has

been growing dramatically in the past few years due to recent research developments. It

is at present time a major political issue and several governments have started to address

specifically this question. As other previous powerful technologies did (e.g. steam engines,

electricity, computers), artificial intelligence will have a strong impact on human society

in everyday life domains such as economics and finance, security, human relations and

interactions, education, healthcare, transports and so on.

In the economical field, artificial intelligence is modifying economical models at national

or international scales because of the growing role that play intelligent machines in the

production line. In the wake of Industry 4.0, manufacturers are now able to deliver high

quality services and products, where high precision and special care is demanded and some

plants are operational with minimal human supervision. But artificial intelligence impact

is not limited to industry. For example, it is used in agriculture as well to predict diseases

in agricultural parcels by taking advantages of features such as meteorological conditions.

Artificial intelligence has been also deeply rooted in finance and banking for over a decade.

Many banks and financial consulting companies benefit from the advantages that offer a

group of computerized tools (algorithms) in artificial intelligence. For instance, artificial
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intelligence is used to anticipate the risk that a client withdraws his financial funds from a

bank, or to detect frauds in card payment transactions.

In our daily lives, artificial intelligence has also already been having a significant impact

in human interactions especially with the growth of the number of users of social networks

such as Facebook, Twitter, Whatsapp and other similar applications. When these latter

emerged, these networks were meant only to facilitate communication between people (from

potentially different nations and different backgrounds). Yet, the economical model of these

companies involve the exploitation of users’ activities which are recorded and saved to build

very large databases. Such a large amount of data lead to scientific challenges which are

now referred to as «big data». Social network users now receive personalized advertisement

and are automatically identified in pictures they upload. Of course, artificial intelligence in

daily life is not limited to social networks. We now have personal assistants which can be

commanded by voice and self-driving cars are entering our streets.

In spite of the advantages artificial intelligence may offer (automation of tedious tasks,

increased safety and efficiency), it can be argued that it also comes with a number of risks if

it is not closely regulated and supervised by legal means or control agencies. Recently, two

use cases of artificial intelligence have been highlighted in this scope. The first one deals

with autonomous cars but also applies to more general situations. Indeed, what decision must

the car make if it must choose between two options each of which may be fatal to either the

driver or to a nearby pedestrian? There already are reported fatal car accidents involving an

autonomous car. This is both an ethical and legal matter that is unresolved. It is not even

clear who should be held reponsible for such a tragic situation (the car as legal person, the

car company, the programmer or the car owner because he or she agreed the terms by the

time the car was bought). The second recently debated topic is the exploitation of artificial

intelligence by the armament industry and many companies are now committing themselves

not to develop such applications.

Without denying the importance and the relevance of these debates, we envisage artificial

intelligence only for the scientific challenges it raises in terms of data analysis and processing

as part of this PhD. Just like many other past scientific contributions, this is up to governments

to make sure that these contributions are utilized in an ethical and safe way. In this thesis,

we are interested in the development of machine learning which is at the core of artificial

intelligence. Machine learning is about the usage of statistical and computerized techniques

to allow the computer to «learn» and discover patterns in the data that might be valuable

for a specific application. Machine learning involves solving many types of problems such

as supervised, unsupervised, reinforcement, semi-supervised and active learning problems.



3

In supervised learning, the learner is given a set of example/answer pairs and must identify

a mapping from the space where example live to the set of possible answers. When these

possible answers are categories, one speaks of a classification task. When the answers live in

a continuum of values, one speaks of a regression task. For instance, the examples may be

vectors depicting a bank customer with entries like age, income, indebtedness, and so on. If

the bank tries to learn a function that predicts if a loan should be granted or not, then this is

classification. If the bank tries to learn a function that predicts which amount of money can

be loaned, then this is regression.

In the unsupervised setting, one must solve the same problem from examples (inputs) only.

The answers to which these examples must be mapped are not known and one must discover

patterns from input distribution solely. It is consequently, in general, a more challenging

class of problems. When the set of answers are categories, the task that consists in finding the

mapping from examples to answers is called cluster analysis or clustering in which similar

objects are pooled in a cluster. Another task that received considerable attention in the past

decade is the derivation of recommender systems. These systems try typically to suggest a

number of items to a website user given his/her previous interest in other items and given the

history of other users who had interest in the same items. The algorithms allowing to build

a recommender system share a number of aspects from both supervised and unsupervised

techniques but it is a research topic of its own.

A new type of machine learning algorithms that has gained popularity in the last few

years is reinforcement learning. Reinforcement learning concepts are inspired from animal

psychology and were later applied in automatic and computer science. According to Sutton

and Barto [93], reinforcement learning is about learning to take decisions (or actions) given

its current state by maximizing a quantifiable reward signal. This is the main difference with

supervised learning where the data is presented to the algorithm in terms of (input, label) pairs.

However, in the former, there is no label and we just provide to the algorithm the obtained

reward following the chosen action. The learning process is done by iteratively trying

sequences of actions and getting rewards until the integrated reward signal is maximized.

A popular reinforcement learning framework is the Markovian decision process setting

where states are random variables and state transitions following decisions (i.e. actions) are

also random. This is convenient when one must learn in an uncontrolled environment. A

welcoming playground for these types of algorithms are games with planification issues. For

instance, Deepmind developed an algorithm called AlphaGo based on reinforcement learning

that is capable to play Go game. In 2017, AlphaGo defeated the Go game world champion.
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Semi-supervised learning is a category of algorithms that are middle ground between

supervised and unsupervised learning. The algorithms of this category use a small amount of

labeled data (supervised) and a large amount of unlabeled data (unsupervised). In general, the

algorithm benefits of unlabeled data to achieve better prediction performances than the one

obtained if only the labeled data subset is used to train the model. Ideally, we would like the

semi-supervised algorithm to achieve a level of performance close to a supervised algorithm

if we knew the labels of each data point. A simple method to perform semi-supervised

learning is pseudo-labeling which is divided in three steps. First, we train the model on

the small amount of labeled data then we use the trained model to predict the labels of the

unlabeled data. Finally, we re-train the model on the whole dataset (with known or estimated

labels) as in supervised learning. The main motivation of such algorithms is the difficulty of

labeling a large amount of data because it demands a human expert intervention, or a special

equipment which is costly and tedious.

Active learning is quite similar to semi-supervised learning in the sense that it uses a

bunch of labeled and unlabeled data. The idea of active learning is to allow the algorithm to

decide which training sample it wants to be labeled in order to be trained on. In other words,

an algorithm inspects first an amount unlabeled data, then it requests which samples should

be labeled. After that, an expert annotates (labels) the selected samples (by the algorithm)

and sends it back to the algorithm for a supervised training session. This process (algorithm

training)←→(expert labeling) is then iteratively repeated until we obtain the final model. In

spite of its clear definition, active learning is not trivial. The main difficulty lies in how the

algorithm selects (or not) a sample to be labeled by the expert. In active learning, a current

model selects the most informative samples to be labeled by the expert. This is called the

query selection strategy. There exist many of them such as uncertainty sampling and query

by committee. In the former, the current model selects samples for which it is the most

uncertain about. For instance, the current model can be tested on the unlabeled data and

samples for which the model is the least certain are selected. In the latter, an ensemble of

classifiers are trained on the current labeled data then applied on the unlabeled data. The

samples that create the highest level of disagreement in the ensemble are selected.

In this manuscript, our interest is limited to supervised learning and specifically to

classification. When a learner, i.e. a training algorithm, is run on data it produces a prediction

function that maps examples to the finite set of answers. This function is also called a classifier.

The aim of this thesis is to achieve robust classification with respect to performances suhc

as the classification accuracy which is the proportion of correctly classified objects over the

total number of objects to be classified. Several types of robustnesses can be sought:
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• robustness to data distribution variability: one can try to derive a method that is

suboptimal but always significantly better than random guess. Such a method could be

used as reference as compared to near optimal models that need to be built for each

task specifically.

A second justification for such methods is that sometimes, one cannot make assump-

tions on some parameters or aspects of the classification problem. For example, in

these seminal work, we are interested in learning from decentralized datasets. If D

denotes a matrix whose columns are the training examples (as column vectors), there

are many situations in which a learner will have access to a limited number of lines

or a limited number of columns of D . If we can use several learners trained from a

partition of the data, we need to make the corresponding classifier collaborate to merge

their predictions efficiently.

• robustness to parameter tuning: a robust learner performances should not change

drastically when the parameters of the algorithm change softly.

To derive robust classification methods, we propose to investigate and build Multiple Classi-

fier Systems (MCS) in this PhD.

A multiple classifier system (MCS) is composed of at least two classifiers whose indi-

vidual responses about an object are fused to elaborate a final combined decision about the

label that will be assigned to the object. Once trained, multiple classifiers provide multiple

learning functions which offer, if they are efficiently combined, more learning capacity to

the final model and introduce more options on the class label of an object. However, this

advantage depends on the presence of diversity in the learned functions which is crucial to

build an MCS with powerful discriminative performances.

A common definition of diversity relates to the differences in predictions that a multiple

classifier system can produce but there is no a formal precise definition of diversity. Diversity

can be induced in several ways but the decentralized setting is, in general, a favorable context

for diversity because the classifiers are trained on different data points or features. However,

training a set of diverse classifiers does not achieve statistical independence of the classifier

outputs. The level of dependency between classifier predictions is highly variable and has

its roots in the distribution of the data as well as on the capacities of the training algorithms.

For instance, in the decentralized setting, if we split data points uniformly at random and

apply the same training algorithms on each data subset, then we will obtain highly dependent

predictions. If we split data points so that data subsets are in disjoint regions of the feature

space, then the predictions will be far less dependent. Also, dependency is difficult to
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measure using a single statistic. For example, it is well known that Pearson’s coefficient can

grasp linear dependence but fails to characterize other forms of dependence. In this work,

we examine parametric models of dependency between classifiers and propose classifier

combination techniques that take into consideration the hidden relations between classifiers

and adapt itself to it.

Let alone dependency, classifier fusion method should be able to adjust the impact of

each classifier on the final decisions. Intuitively, contextual information such as classifier

individual performance estimates are relevant features to build a combination rule. Indeed,

such information express the degree of confidence that can be given to a classifier’s decision

and we should downweight those classifiers with poor performances.

Contextual performances or contextual data might be given by several individual perfor-

mance criteria of the classifiers computed on a validation set (a subset of training examples

set aside to that end). Typical criteria are accuracy, recall, precision, area under ROC curve

or compound ones such as the F-measure. These criteria differ in the amount and the nature

of the provided information about a classifier performance. Most of these measures are

derived from confusion matrices which encapsulate a finer granularity on a classifier ability

to yield correct predictions. Also known as error matrix, it provides information about the

classification performances observed on the validation set. The size of a confusion matrix is

m×m where m is the number of labels. The rows refer to the true labels and the columns

refer to the predicted labels. In a confusion matrix, an element of coordinate (i, j) is the

number of samples whose true label is the ith class but were assigned to the jth class by the

classifier.

A principled way to aggregate classifier is to estimate the distribution of the true class label

given the classifier predictions. This distribution is related to the conditional distributions

of each classifier prediction given the true class. We can derive (frequentist) estimates of

these latter distributions from confusion matrices. This probabilistic combination does not

necessarily require probabilistic classifiers. Note that the larger the validation set is, the more

accurate are the estimations of these probability distributions.

Summarizing the above paragraphs, the originality of these seminal works lies in the

ability of the proposed classifier combination methods to adapt itself to classifier dependency

while taking into account their individual performances to achieve robust fusion. We also

want to the combination process to have (at most) polynomial complexity in the both the

number of possible class labels and the number of aggregated classifiers.

This manuscript is organized in 3 chapters. Following the general introduction, the

first chapter is dedicated to a review of the state of the art in classifier combination. We
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first present some common classification algorithms and the motivations behind classifier

combinations. Then we present a wide range of combination techniques including some well

known algorithms such as voting, Borda counts and ensemble methods. We also present

trainable fusion algorithms that learn the combination rule and finally we discuss fusion

approaches in different uncertainty frameworks.

In the second chapter, we present the first contribution of this thesis. As previously

mentioned, the goal of this PhD is to derive robust multiple classifier systems that are

able to manage the dependency between classifiers and make use of contextual data in

the combination algorithm. Conditional probability distributions computed from confusion

matrices are good candidates as contextual data since they allow to determine which classifiers

perform well and have tractable memory complexity. Using Bayes theorem and under

conditional independence assumptions, these distributions allow the inference of the posterior

probability through which a label is assigned to an unseen test sample. To circumvent

those unrealistic independence assumptions, we propose to carry over the problem to the

possibilistic framework in which a consensus possibility distribution can be obtained by

invoking combination rules that are computationally tractable and do not resort to a parameter

space with a very high dimension. The possibility theory is an alternative to probability

theory as uncertainty framework. It is highly coupled to a form of modal logic in which

propositions are assigned a graded epistemic state of truth. If a proposition is known to be

true then we are totally confident in that proposition as if it had been assigned probability

one. However, if a proposition is not known to be true, then it does not mean that it is false.

In a probabilistic version of the model, we would only be able to say that the probability of

the proposition belongs to the unit interval. In this framework, we investigate a t-norm based

combination rule family. This family is parametrized by a hyperparameter that is tuned via

grid search. This method is tested on public datasets and compared to a benchmark of other

combination approaches. A statistical study is carried out to validate these experimental

results. A classifier fault tolerance study entails the chapter in order check the sensitivity of

each combination method in the benchmark to noisy information.

In the third chapter, we present another approach to combine classifiers. In contrast to

the t-norm based possibilistic method proposed in chapter 2, this approach does not demand

any problem transfer to another uncertainty framework but instead performs the combination

within the probabilistic framework. Under 0-1 loss, the optimal classification rule based

on classifier outputs consists in maximizing the probability of the true class label given

the predicted class labels issued by the classifiers. The evaluation of all these conditional

distributions has an exponential complexity in the number of classifiers. To circumvent
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this problem, we propose to apply Bayes rule and to compute the joint distribution out of

marginal distributions obtained from confusion matrices using a copula function which

is a probabilistic model that capture the dependence between random variables which are

classifier outputs in our situation. In this chapter, we examine two types of copulas: the

parametrized Gaussian copula and the independent copula. The latter is equivalent to making

conditional independence assumptions so that the joint distribution is the product of the

marginals and we retrieve a well known combination scheme. The parameters of the Gaussian

copula are entries of a correlation matrix. We investigate only a subset of these possible

matrices so that there is only one parameter to tune to regulate the level of dependence among

classifier outputs (like in the possibilistic approach). We also carry a number of numerical

experiments on public datasets to assess the relevance of this Gaussian copula model. In

this third chapter, we focus on experiments in a decentralized setting where each learner has

access to a subset of training data points. A comparison with the possibilistic approach is

proposed.

Finally, we entail this manuscript with a conclusion where we comment on the contri-

butions of these seminal works and enumerate several interesting perspectives and future

research directions.



Chapter 1

State-of-the art on classifier combination

1.1 Introduction

Classification is a supervised machine learning task consisting of assigning objects (inputs) to

discrete categories (classes). A very large literature is devoted to algorithmic solutions for this

task. Building a single robust classifier is challenging because classification is an ill-posed

problem in the sense that one is trying to retrieve a prediction function from only a finite set of

noisy input-output pairs known as the training set. Multiple classifiers have been introduced

to provide different levels of capacity1 and robustness making them more or less appropriate

to a given dataset and also to a given application. For instance, Convolutional Neural

Networks (CNNs) are performing very well on large datasets containing input signals such as

images [63] but random forests or SVMs are still achieving state-of-the-art performances on

datasets in which inputs are categorical entries [39],[74]. Consequently, there is no general

solution to all classification problems, as a result known from the famous «no free lunch

theorem».

As the arsenal of classification algorithms increased dramatically, it became more and more

tempting to use several classifiers and then combine their decisions to gain in accuracy and

avoid the burden of choosing the right one. Note that a combination of classifiers remains

itself a classifier and the no free lunch theorem also applies to it. There is no hope for a

universally optimal classifier but one can achieve other forms of robustness that we will

later discuss. One of the simplest fusion methods is to perform majority voting on the set of

predicted classes delivered by each classifier.

In this thesis, we focus on classifier fusion at the decision (or output) level. Fusion is indeed

1The capacity of a model learned by an algorithm corresponds to the intuition of the size of the functional
space in which we pick the prediction function.
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also possible at intermediate stages. For instance, several features can be extracted from the

original inputs using supervised or unsupervised methods. The set of features is concatenated

into an input feeding another classifier. This can be particularly useful in multi-task learning

where a first task (face pose recognition) learns useful representations for another task

(facial landmark detection) [107]. More generally, computing a new representation of input

examples from a set of raw features is known as feature fusion.

A relevant categorization of classifier output natures is found in [101] where the authors

identify three natures of output information:

• elementary outputs (the output of the classifier is a single label),

• ranked outputs (the output of the classifier is a list of labels ranked from most probable

to least probable),

• and scored outputs (the classifier assigns a degree of confidence to each class label).

It is possible to switch to the first (respectively second) nature from the third one by selecting

the class with highest score (respectively by ranking class labels according to their score).

In case of tied scores, this may no longer be possible but it may be useful to perform reject

in these circumstances which means to give a classifier the possibility to recommend not to

classify a sample because of an excessive level of uncertainty. Thus scored outputs are more

informative and consequently many classifiers provide score-based outputs. For the sake of

adaptability, a classifier combination approach should be designed for elementary outputs

and we are in line with this requirement in the approaches introduced as part of this thesis

and that will be presented in chapter 2 and 3.

In this chapter, we first present the classification problem in section 1.2 and a collection of

the most widely used supervised learning algorithms where some of which will serve as base

classifier for combination. In section 1.3 we explain the motivations of our work and give

some generalities about classifier combination. In sections 1.5,1.6, 1.7 and 1.8 we review a

wide range of combination schemes. We start with classical combination techniques and then

we review some widely used ensemble methods such as bagging and boosting. In section 1.7

we present another category of fusion algorithms that learn combination parameters or rules

such as stacking, mixture models and mixture of experts. Afterwards, we review classifier

combination methods under uncertainty, i.e. probabilistic, evidential and fuzzy frameworks.

Finally we entail this chapter with a conclusion in which we position the contributions of

this thesis with respect to the state-of-the-art.
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1.2 Classification problem statement

In this section, we explain in detail some learning algorithms that were employed in our pro-

posed combination algorithms as a part of this thesis. In particular, we present some classical

classification methods such as support vector machines, k-nearest neighbors, discriminant

analysis classifiers and neural networks. We also present decision trees, naive Bayes classifier

and logistic regression that are used in the experiments involving the proposed combination

approaches. Even though we only used probabilistic classifiers (in the sense that they output

conditional probabilities) in these experiments, the proposed combination methods in this

thesis are not restricted to this category of learners but can be also applied on deterministic

classifiers.

1.2.1 Notations

Let Ω denote a set of m class labels Ω = {c1,..,cm} and crej denote that the artificial tag

assigned to test samples rejected by a classifier in case this latter is trained with a reject

option. Each ci represents one label or class and Ω is the set of all labels. Let x denote an

input example with d entries. Most of the time, x is a vector and lives in Rd but sometimes

some of its entries are categorical data and x lives in an abstract space X which does not

necessarily have a vector space structure. Without loss of generality, we suppose that x is a

vector in the rest of this manuscript unless stated otherwise.

A classification problem consists in determining a prediction function ĉ that maps any

input x with its actual class y ∈ Ω. This function is obtained from a training set Dtrain which

contains pairs
(

x(i),y(i)
)

where y(i) is the class label of example x(i). Given a classifier, the

label y assigned to the input x is denoted by ĉ(x).
As explained in the introduction, the predictive function ĉ(x) may be written as a compo-

sition between a decision function and the classifier output. Indeed, if the classifier produces

ranked outputs, the decision function should select the top one class. When classifiers rely on

discriminative or generative models (e.g. logistic regression, naive Bayes, etc.), the outputs

are predictive probabilities of the classes given the input p(Y = ci|X = x) where X is the

random variable capturing the variability in the inputs and Y the random variable capturing

the variability in the classes. In this case, a result from decision theory states that selecting

the class with the highest predictive probability minimizes the 0-1 expected loss. Note that a

probabilistic aggregation of classifiers does not necessarily require that classifiers are also

themselves probabilistic therefore we do not make such an assumption in what follows.
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1.2.2 Classification algorithms

In this subsection, we present some supervised learning algorithms. According to the

nature of outputs, classifiers can be categorized into probabilistic, which produce scored

outputs, and deterministic which do not produce scored outputs. For instance, decision trees,

neural networks, logistic regression, naive Bayes and discriminant analysis classifiers are

all probabilistic since they produce predictive conditional probabilities of class labels given

the input while support vector machines and k-nearest neighbors are deterministic since they

produce a decision (along with a score) and they are not originally built on any probabilistic

framework. Note that k-nearest neighbors classifier has been extended to the probabilistic

framework [75],[48],[97] in contrary to support vector machines classifiers which do not

have any probabilistic counterpart.

Supervised classification methods can be also categorized into parametric and non-

parametric according to the model that they rely on. Non parametric algorithms such as

k-nearest neighbors and decision trees do not make any explicit assumptions about the model

underlying the mapping from inputs to class labels while parametric algorithms do make such

assumptions. For example, naive Bayes, logistic regression, discriminant analysis classifiers

and neural networks are parametric algorithms and the class of functions that can learned by

them is captured by a vector of parameters. Besides, being non parametric does not mean the

absence of model hyperparameters which adjust the learning process in contrary to model

parameters which allow the model to predict. For instance, the weight matrice entries in a

neural network are parameters of the model while the learning rate and the number of hidden

layers are hyperparameters. To recap, a non parametric algorithm may have hyperparameters

such as k-nearest neighbors whose hyperparameter is the number of neighbors k.

Before introducing classification algorithms, we give the definitions of two important notions

in machine learning overfitting and regularization:

• Overfitting: this phenomenon occurs when a classifier learns the function that fit

exactly the training data but does not generalize well in the sense that unseen examples

at traning time are not well classified. The main reason behind overfitting is the lack of

a sufficient amount of training data especially when the model involves a large number

of parameters to learn.

• Regularization: this technique is one of the solutions to mitigate overfitting. It consists

in penalizing some values of the parameters and therefore it controls the flexibility of

the model which reduces the risk of overfitting the training data.
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The above notions will be mentioned later in the presentation of the classifiers In the rest of

this subsection, we present 7 different classifiers:

k-nearest neighbors classifier

k-nearest neighbors (k-nn) is a simple classification algorithm that assigns labels to new

instances based on a metric (figure 1.1). The algorithm finds the k closest (in the sense of

the metric in question) training samples to a new instance x and then performs a majority

voting on the k training labels of the neighbors to predict the label of x. Usual metrics are

Euclidean, Minkowski or Mahalanobis distances [19]. Beside being simple to implement and

not requiring an explicit training phase, k-nn does not demand any parameter learning and

it is based uniquely on local information. However, the test phase can be computationally

consuming as the computation cost of the metric is polynomial in the dimensionality of

the inputs and one needs to compute ntrain distances. In a big data context, k-nn is thus not

recommended.

• •

•
•
••

• •
•

•

•

••
•••

•

Fig. 1.1 Illustration of k-nn algorithm. A simple majority vote assigns the test sample (black
dot) to the red label for k = 5 (solid line circle). However, if k = 7 (dashed line circle) the
sample will be assigned to the blue label.

Figure 1.1 gives an illustration of the principle of the k-nn algorithm.

Decision trees

Decision trees are graphical models belonging to early machine learning approaches. Sim-

ilarly to other algorithms, they may be used for both regression and classification tasks,

where they are called regression and classification trees respectively. In a decision tree, each

node represents a feature (attribute), each branch represents a decision to make based on

a feature value as compared to a threshold and each leaf is class label. Decision trees are

built sequentially by splitting the training set into pure subsets, e.g. subsets having the same

label on the leaves, with respect to the features. In other words, we learn a partition of the

features space in which each feature space region is a hypercube. A famous algorithm to

construct a decision tree is ID3 which defines a splitting rule (which attribute to split on and
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as compared to which threshold) based on purity of the resulting subsets using Shanon’s

entropy and information gain. Probabilities involved in entropy computation are calculated

frequentistically for each subset. Information gain fuses then entropy measures for all subsets

under every node. The attribute having the highest information gain is selected to split on.

Decision trees are not computationally expensive since the cost is logarithmic in the number

data points used during the construction. Besides they are simply understood and interpreted.

On the other hand, they are prone to overfitting especially when dealing with high dimen-

sional feature spaces. In spite of its easy construction, a small variation in learning samples

may yield a completely different tree but fortunately a decision tree ensemble can insure a

certain level of stability. For instance, Brieman [7] studied the effect of Bagging (explained

later section 1.6) in reducing instability and concluded that the efficiency of bagging might

be more clear if the classifiers are instable. Similarly, Skurichina [91] conducted a large

number of experiments to stabilize classifiers using bagging.

Example 1. Suppose a 2-dimensional dataset describing a car weight (heavy, light) and

horsepower (high, low). The aim is to predict whether the car has a high or low mileage.

During training, an algorithm defines which feature is the next to split on. In this tree, the

nodes are the features, the branches are possible feature values and the leaves are class labels

(see Figure 1.2 for an illustration).

Weight

HorsepowerHigh mileage

High mileageLow mileage

lightheavy

highlow

Fig. 1.2 Illustration of a learned decision tree. The first split is done on the feature weight and the
second split is done on a feature horsepower. The leaves represent the class labels (binary).

Naive Bayesian classifier

The naive Bayesian classifier is a probabilistic classifier whose decision rule is based on Bayes

theorem. It «naively» assumes that all features describing a target value are independent
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given that target value. However, this assumption is not true in reality since features might be

correlated because they describe the same object. Considering a d-dimensional input vector

x = (x1, ..,xd) and y a given target value (label), by applying Bayes theorem, we have:

p(Y = y|x) =
p(y).p(x|Y = y)

p(x)
, (1.1)

=
p(y).p(x1, ..,xd|Y = y)

p(x1, ..,xd)
, (1.2)

∝ p(y).p(x1, ..,xd|Y = y). (1.3)

Assuming class conditional independence between all entries of x given y, the posterior

probability is given by:

p(Y = y|x) ∝ p(y)
d

∏
i=1

p(xi|Y = y). (1.4)

The decided label is then the one that maximizes p(Y = y|x):

ĉ(x) = argmax
y∈Ω

p(y)
d

∏
i=1

p(xi|Y = y). (1.5)

If we do not have any prior on the class distribution p(y) a frequentest computation can be

used on the learning dataset to estimate these latter. To estimate each attribute distribution

p(xi|Y = y), one has to propose a model and estimate its parameters. For binary and discrete

feature values Bernoulli and Multinomial models are natural choices because they are the

canonical distributions induced by the sampling procedure. In the continuous case, a classical

hypothesis is that data are normally distributed. Thus, a Gaussian distribution may be fitted

for each feature and each class label. Since proving the efficiency of a combination method

is our main goal, we are not much interested in deriving very accurate models. Thus, we

assume that features are normally distributed in each experiment involving a naive Bayes

classifier.

Support vector machines

Support vector machines (SVMs) are deterministic models used for supervised binary classi-

fication tasks. In its simplest form, SVM are considered as linear classifiers since they build

a separating (d-1)-dimensional hyperplane S to assign labels to d-dimensional input vectors.

Extensions to more than two class settings are possible by resorting to an ensemble method



16 State-of-the art on classifier combination

that combines several such hyperplanes. Typical policies consist in building «one versus all»

or «one versus one» base classifiers. SVM learning function is computed by maximizing the

distance between the hyperplane and the closest training input vector for each label (Figure

1.3). These training inputs are called support vectors and the minimal distance in question is

called the margin.

Let us assume that we address a binary classification problem where an input vector x
has entries living in Rd , and the true label y of x belongs to the set {−1,+1}. A hyperplane

S can be written as:

wt ·x+b = 0 (1.6)

where w is the normal vector to S , |b|||w|| is the distance from the hyperplane to the origin and

(·) the dot product. We define here two specific hyperplanes (figure 1.3) passing through the

closets points in each class and their equations can be reformulated as follows:

S1 : wt ·x+b =+1 =⇒ Points on or above S1 are assigned to y1 =+1 (1.7)

S2 : wt ·x+b =−1 =⇒ Points on or below S2 are assigned to y2 =−1 (1.8)

x2

x2

w
t ·x

+
b=

0
w
t ·x

+
b=

1

w
t ·x

+
b=
−1

2∥w∥

b∥w∥

w

S2

S1

S

Fig. 1.3 Illustration of a linear SVM for a binary classification problem. (Figure originally
coded in Latex by Yifan Peng and slightley modified [yif])
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The learning procedure of an SVM relies on the maximization of the margin. Regardless

of the value of b, the margin is always equal to 2
||w|| and one aims to maximize this distance

such that S «comfortably» separates data points of class yi for i ∈ {1,2} thus two conditions

must be respected:

w ·x+b≥+1 if y =+1

w ·x+b≤+1 if y =−1

}
=⇒ y(wt ·x+b)≥ 1. (1.9)

Therefore, the optimization problem is: Maximizing 2
||w|| subject to y(wt ·x+b)≥ 1. Obvi-

ously, the previous formulation is limited to the case where data points are linearly separable

but fortunately the extension of the method to non linearly separable datasets is not problem-

atic. We need to introduce slack variables which will quantify to what extent a given example

violates the margin. The cost function is modified so that the sum of those violations remains

reasonably small.

When dataset are not overlapping but the optimal frontier is not linear, another very nice

extension consists in projecting input vectors into a new (usually of higher dimension than the

original space) feature space where they are easily discriminated using a linear classification

rule. This embedding is done via the following mapping:

Φ : Rd −→ Rd′s.t. d′ ≥ d (1.10)

Learning a classification rule in Rd′ might be computationally expensive since it requires

to compute the transformation Φ and then perform the operations in Rd′ . However, there

is a way to overcome this issue known as the kernel trick. At both training and test time,

the SVM setting requires only to compute the inner products Φ(x)t ·Φ(x′) for some x and

x′ ∈ Rd . One can define a function Kern such that:

Kern(x,x′) = Φ(x)t ·Φ(x′). (1.11)

This function is called a kernel. The advantage of this trick is that the computation of Kern

is moderate, even if computing images of inputs through Φ are costly. A popular example

of kernels is the radial basis function for which it can be proved that the corresponding Φ

function for this kernel send inputs to an infinite dimensional space.
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Linear and Quadratic discriminant analysis classifiers

Discriminant analysis classifiers (LDA and QDA) are probabilistic generative models. In

such a model, a model of the joint distribution of (X,Y ) is learned. A test sample x is

assigned to the class label with the highest predictive probability p(Y = y|x):

ĉ(x) = argmax
y∈Ω

p(Y = y|x) (1.12)

= argmax
y∈Ω

p(x|Y = y)× p(Y = y)
p(x)

(1.13)

For a binary classification problem Ω = {0,1}, discriminant analysis classifiers assume that

conditional probabilities p(x|Y = y) have a multivariate normal distribution with density:

p(x|Y = 0) =
1

(2π)
d
2 |ε0|

1
2

exp(−1
2
(x−µ0)

t · ε−1
0 · (x−µ0)), (1.14)

p(x|Y = 1) =
1

(2π)
d
2 |ε1|

1
2

exp(−1
2
(x−µ1)

t · ε−1
1 · (x−µ1)), (1.15)

where (µi,εi) are the mean vector of size d and the covariance matrix for class i.

Linear discriminant analysis adds the homoscedasticity assumption, i.e. covariance matrices

are identical ε0 = ε1, which simplifies the computation and yields a linear decision boundary

function. If the covariance matrices are not identical, the surface boundary is a parabola and

thus the resulting model is the quadratic discriminant analysis (QDA).

Logistic regression classifier

Logistic regression is a parametric probabilistic discriminative model relying on the sigmoid

or logistic function sigm which maps real-valued numbers into the unit interval. As a

discriminative model, it learns predictive probabilities of class labels given an example only.

Denote x an input vector of d dimensions and θθθ a set of real parameters concatenated as a

vector. A logistic regression maps a linear combination of the input entries into a non linear

output which is the predictive probability:

p(Y = y|x) = sigm(θθθ t ·x) = 1
1+ e−θθθ

t ·x . (1.16)

The set of parameters is learned from the training data Dtrain using maximum likelihood

estimation which is formally equivalent to minimizing a logarithmic cost function J(θθθ). The
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usage of the mean-squared error to learn logistic regression (as in linear regression) yields to

a non convex cost function and thus increases the chance of getting stuck in a local optimum.

In a binary classification problem, the expression of J(θθθ) is given by:

J(θθθ) =
1

ntrain

ntrain

∑
i=1

(−y(i) log(p(Y = y(i)|x(i)))− (1− y(i)) log(1− p(Y = y(i)|x(i)))). (1.17)

where ntrain is the number of training samples, x(i) is the ith training sample and y(i) is the

corresponding label. This cost function is the negative log-likelihood when cross entropy

is employed as loss function between the estimated probabilities and the true class labels.

Since the objective function is convex, a gradient descent is then used to find the parameters

of the model θ̂θθ = min
θθθ

J(θθθ). The update of the parameters can be done once for all training

samples or sequentially using mini-batches of training data.

Neural networks

Neural networks is a large family of machine learning algorithms that can be used for

supervised tasks. The basic building block of a neural network is a neuron which is a

computational unit. Each neuron in a neural network is pre-activated by a linear function and

then mapped by a (usually) non-linear activation function such as the logistic function sigm:

Pre(x) = b+wt ·x : Preactivation function (1.18)

Act(x) = sigm(b+wt ·x) : Activation function (1.19)

where w is a weight vector and b is a scalar (called bias or intercept). Since the discriminative

power of a single neuron is limited, multilayer neural networks were proposed to increase

the classification capacity.

A multilayer neural network consists of an input layer, an output layer which corresponds

to class label probabilities and at least one intermediate hidden layer. The computation

operations inside each neuron remain the same as in equations 1.18 and 1.19. In a fully

connected neural net with L layers, there are L−1 weight matrices and L−1 intercept vectors

gathering the parameters connecting a layer vector of activations with its input vector. Each

weight matrix W contains of a set of weight vectors w and an intercept vector b contains a

set of intercepts values.



20 State-of-the art on classifier combination

...
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x1

x2

x3

xd

H1

Hu

O1
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Input

layer l0

Hidden

layer l1

Ouput

layer l2

+1

W (1)
12

b(1)u +1

Fig. 1.4 A neural network with 3 layers {l0, l1, l2}. The hidden layer l1 contains u units,
which is a hyperparameter of the model. The sizes of W(1) and W(2) is u× d and m× u
respectively. (Figure originally coded in Latex by Mark Wibrow and slightly modified [Mar])

Figure 1.4 shows a simple neural network architecture in which there is only one hidden

layer. The activations of the hidden and the output layers are given by the vectors H and O
respectively. For both layers l1 and l2, we associate two bias vectors b(1) and b(2).

The hidden layer can be expressed by:

H = sigm(b(1)+W(1) ·x). (1.20)

The output layer is computed via a softmax function that produces a vector of posterior

probabilities p(Y = y|x) of size m:

O =

(
eZ1

m
∑
j=1

eZ j

. . .
eZm

m
∑
j=1

eZ j

)
with Z j = b(2)j +w(2)

j. ·H, (1.21)

where w(2)
j. is the jth line vector in W(2). As in other probabilistic models, ĉ(x)= argmax

y∈Ω

Oy .

Training a neural network consists in optimizing the set of parameters θθθ = {W(1),b(1),W(2),b(1)}.
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The objective function is essentially the same as in logistic regression. In general, it writes

Q(θθθ) =
ntrain

∑
i=1

los(ĉ(x),y)+αReg(θθθ) (1.22)

where los is the cross entropy loss function and Reg is a regularizer that penalizes some

values of θθθ and α is a hyperparameter to regulate the strength of the regularization. Thus,

we are looking for θθθ opt = argmin
θθθ

Q(θθθ).

Training a neural net is done using the gradient decent optimization techniques which

updates the weights using all training examples. There are other versions such as batch

gradient decent where we update the weights using subsets of training examples and stochas-

tic gradient decent that updates the weights for every training sample. Since neural nets

have multiple layers, there are many compositions of activation functions hidden in the

probabilities p(Y = y|H) and there is no closed form expressions for the gradient of Q with

respect to each parameter. Fortunately, the famous backpropagation algorithm allows to

perform the gradient update of each parameter in a numerically efficient way starting with

parameters of the last layer and progressively updating the parameters of each preceding

layer.

1.2.3 Evaluation of classification performances

A principled way to evaluate classifier performances is to derive their frequentist probabilities

of success on a validation set Dval. A validation set also contains pairs
(

x(i),y(i)
)

that are

not exploited during the training phase: Dval∩Dtrain = /0. The size of the validation set is

denoted by nval. Of course, practitioners are given a limited number of labeled examples

and therefore choosing a large validation set is at the expense of the training set. When the

estimated performances are not meant to be used to tune hyperparameters or a combination

method (as in our case), a test set is used in place of a validation set. The test set is disjoint

from both the validation and train sets. The performances computed from the test set are

only meant to compare classification methods within a given benchmark. In the sequel, we

present a number of performance criteria computed from a validation set.

The probabilities derived for a classifier from the validation set are estimations of the

conditional probabilities p(ĉ = c j|Y = ci). All these probabilities are derived from the
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confusion matrix M of the classifier:

M =


nval
∑

i=1
Ic1

(
y(i)

)
Ic1

(
ĉ
(

x(i)
))

. . .
nval
∑

i=1
Ic1

(
y(i)

)
Icm

(
ĉ
(

x(i)
))

... . . . ...
nval
∑

i=1
Icm

(
y(i)

)
Ic1

(
ĉ
(

x(i)
))

. . .
nval
∑

i=1
Icm

(
y(i)

)
Icm

(
ĉ
(

x(i)
))

 ,

where Ici is the indicator function for class ci. The rows and columns refer to the actual and

predicted classes respectively. The element Mi j is the number of examples whose true label

is ci but were classified as c j by the classifier. The number nval,i of examples of class ci in

the validation set is given by the sum of elements in the ith row. Normalizing each row by

these numbers yields the estimated probabilities

p̂(ĉ = c j|Y = ci) =
Mi j

∑
m
j=1 Mi j

=
Mi j

nval,i
. (1.23)

Standard classification performance criteria are also computable from M(k). Precision is

defined as:

Preci =
Mii

∑
m
j=1 Mi j

=
Mii

nval,i
. (1.24)

The precision rate of class ci is interpreted as the probability that a randomly selected example

whose predicted class is ci has a true label ci.

Similarly the recall of class c j is the probability that a randomly selected example whose

true label is c j, is predicted as c j:

Rec j =
M j j

∑
m
i=1 Mi j

. (1.25)

Finally, the global accuracy of the classifier is given by

Acc =
∑

m
i=1 Mii

∑
m
i=1 ∑

m
j=1 Mi j

=
∑

m
i=1 Mii

nval
. (1.26)

Receiver operating characteristic (ROC) curves are also an important model evaluation

tool. A ROC curve is a graphical plot that illustrates the performance of a binary classifier

and can be used to compare a set of classifiers. Before explaining the ROC curve we need

to clarify the notions of specificity and sensitivity in machine learning classification tasks.

Considering a binary classification problem Ω = {c1,c2}, the sensitivity and specificity are
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the recall values for class c1 and c2 respectively:

Sensi =
M11

M11 +M21
(1.27)

Speci =
M22

M12 +M22
. (1.28)

The ROC curve shows the plot of (1−speci) on the horizontal axis against the sensitivity

on the vertical axis and thus we need a set of (1−speci, sensi) points. When constructing

the confusion matrix, we chose a regular cut-off threshold probability2 of 0.5, this means

that a sample is assigned to ci if p(Y = ci|x)> 0.5 and thus we obtain one pair (1-specificity,

sensitivity). When the cost of misclassifying examples from class c1 is not the same as the

cost of misclassifying an example of class c2, other threshold values are used and we obtain

a set of points allowing to construct the ROC curve.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6
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1− speci

se
ns
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Classifier
Random

Fig. 1.5 An example of ROC curve.

Examples of ROC curve are given for a random and trained classifier in figure 1.5. The

diagonal red line corresponds to the random classifier. Another measure that can be extracted

from this plot is the Area under the ROC curve (AUC). Suppose we focus on the score s (e.g.

the estimated probability in a logistic regression) returned by the classifier for the class c2.

The AUC is then the probability that a randomly chosen example from class c2 obtains a

value of s greater than the one obtained by a randomly chosen example from class c1. In the

2This threshold is the one corresponding to the classification rule relying on argmax
y∈Ω

p(Y = y|x) for proba-

bilistic classifiers.
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ideal case, we would like to have the blue curve as far as possible from the red line whose

AUC is 1/2.

Another interesting classifier evaluation measure is the F-score which combines the

precision and the recall measures by computing their harmonic average:

F-score =
2

1
Precision +

1
Recall

. (1.29)

The previous measures evaluating classifier performances are very important indicators on

classifier decision reliability. It may be useful for a user to take them into consideration when

combining classifiers because they somehow reflect a degree of confidence on a classifier

decision regarding a test sample. Precision, recall, accuracy, AUC and F-score are all types

of the contextual information issued from confusion matrices of a given classifier. In this

seminal work, we are particularly interested in classifiers combination using contextual

information represented by entire confusion matrices since they are more informative than

point valued criteria.

1.3 Why do we combine classifiers?

In machine learning, the most important aspect of each classification algorithm is its ability

to generalize which means its ability to correctly label an unseen test sample using acquired

knowledge from training data. From the no free lunch theorem [99], we know that there is

no universally optimal classification algorithm and consequently there is a vast literature

on supervised learning techniques. When practitioners have to go for a given algorithm or

model for their data and when they try multiple classifiers on a given problem, an idea comes

in mind: why not combining the decisions of those classifiers to get better generalization

performances ?

Based of different insights from the state of the art, we discuss in this section the above

question and we try to give some motivations underlying classifier combination and shed

light on the circumstances in which it has a significant added value. Many works were

dedicated in the last two decades to classifiers fusion under different circumstances and

have been experimentally and theoretically demonstrated the efficiency of such methods

[7, 36, 8, 9, 101, 78, 84].

We discuss first a number of aspects argued by Dietterich [24] in the particular context

of Ensemble of Classifiers (EoC), which consists in combining homogeneous classifiers i.e.

classifiers that are instances of the same generic model. According to him, there are several
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causes accounting for a classifier failure. These issues can be categorized in three types of

limitations: statistical, representational and computational.

Bias-Variance tradeoff

• Statistical limitation: Supposing a space F containing all possible decision functions

that can be learned by a given model. One may see the learning algorithm as a

procedure selecting the best function fopt ∈F having the maximal generalization

ability. This statistical limitation arises when having a small dataset because if we

drew several datasets of the same size, each of them would converge to quite different

decision functions. In other words, there is large variance in the decision function

selection process. However, creating an ensemble of classifiers denoted by Ftrain and

aggregating their decisions by a voting approach or averaging may decrease the risk of

choosing a poor classifier.

• Representational limitation: The (expected) distance between the learned function

and the optimal one is large because the model is too simple to learn near optimal

functions. In other words, the ensemble F does not contain fopt but fortunately we

can extend3 F by combining classifiers in Ftrain. The representational limitation is

equivalent to a bias.

The Bias-variance tradeoff is a common difficulty in machine learning since usually a low

bias goes with a high variance and a low variance goes with a high bias. The two types of

limitations are illustrated in figure 1.6.

•

• •
••

F
Ftrain

(a) Statistical limitation

•

• •
••

F
Ftrain

(b) Representational limitation

Fig. 1.6 Illustration of the statistical (left) and the representational (right) limitations . Black
dots (•) represent learnt decision functions, the blue dot (•) corresponds to the combination
of elements in Ftrain and the red dot (•) represents fopt. (figure inspired from [24])

3The capacity of an ensemble can be greater than the capacity of the base classifiers.
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Computational limitation

Beside the variance-bias tradeoff, some classification algorithms face computational issues.

This is due to the fact that many of them get stuck in local optima when looking for the

optimal decision function fopt in F . Dietterich [24] gives examples of neural nets or decision

trees whose optimal training is NP-hard. However, EoC offers a solution for this problem

since the starting point for the research of fopt can change with every classifier and thus the

risks to get stuck in a local optima decreases. From multiple starting points, one is able to

cover many regions in F and thus circumvent the local optima problem.

•

• •
••

F
Ftrain

Fig. 1.7 Computational limitation. (figure inspired from [24])

Other motivations

The previous motivations concerning statistical, representational and computational limita-

tions are essentially oriented for homogeneous classifier combination settings in which each

base classifier has the same capacity. When combining heterogeneous classifiers, the base

classifiers may have very different capacities. Some may overfit while other may underfit. In

this case, combination can act as a soft model selection procedure by identifying a subset of

models that are neither overfitting nor underfitting.

A user who is working for the first time with the machine learning library Scikit-learn

in Python will face dozens of algorithms that can be applied, and experience difficulties to

choose one without prior knowledge. Actually, this is an important advantage of multiple

classifier systems because we may hope to construct a methodology involving less human

expertise in the choice of classification algorithms and achieve satisfying performances.

In machine learning real-life applications, a classification task might be very complex

(e.g. identifying objects in images : there are virtually an infinity of objects and there may

be several objects in an image). If the problem is too complex, it makes sense to break it in

simpler classification problems and solve them separately, then combine solutions e.g. train
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classifier to recognize some specific classes (dog, train, bike, chair, ..) or subsets of classes

(animals, vehicles, furniture, etc.).

1.4 Insights on classifier combination

In this section, we present some generalities to bear in mind when combining classifiers.

Specifically, we investigate the taxonomy of the fusion scheme concerning the nature of

the combined information, the combination rule, the types of individual classifiers and the

structure of the combination. Then, we discuss the importance of diversity in a multi-classifier

system and review some methods from the literature to induce it.

1.4.1 Specification of a classifier combination

Four questions are helpful to determine the perspective from which we are attacking the

combination problem:

• Q1: What nature of output information is to be combined ?

• Q2: What types of classifiers are to be combined ?

• Q3: What combination rule is used to combine decisions ?

• Q4: What is the structure of this combination ?

If these questions are answered, it becomes easier to identify state-of-the-art methods to

choose from or to compete with. The possible answers to (Q1) are presented in the introduc-

tion of this chapter.

Fusion methods lying on classifiers deriving from the same classification algorithm are

called homogeneous combination approaches (e.g. random forest uses decision trees) or

ensemble methods.

A standard approach in this category is bagging (bootstrap aggregating) introduced for the

first time by Breiman in [7] and developed later in [9, 8]. Another very popular ensemble

method is boosting [85] whose most widely used implementation is AdaBoost [36]. Bagging

and boosting were well explored and examined by the machine learning community in the

last two decades. Recently, a new boosting design that makes use of linear programming

support vector machines (LPSVM) was introduced in [79].
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If the fusion panel contains different classifiers, then we talk about heterogeneous combi-

nation approaches i.e. combining a neural network and a decision tree. These two types

of panels (homogeneous and heterogeneous) are the main categories of multiple classifier

systems arising from (Q2) .

Let alone the types of combined classifiers, combination methods are also categorized

with respect to the rule allowing decision fusion. The two main categories are deterministic

[67, 72] versus probabilistic approaches [17, 101, 57, 70] which are two possible answers

to (Q3) . By probabilistic approaches, we mean that the classification function relies on

the maximization of the class probability distribution. Note that in [72], Lecué uses a

convex combination to aggregate binary classifiers therefore this contribution belongs to the

deterministic approach category. However, the author uses probabilistic arguments to prove

that the investigated combinations minimize the excess hinge risk with optimal convergence

rates.

Classifier combination can also be performed within other uncertainty frameworks which

may be alternatives to probability theory such as fuzzy logic [14] or related to probability

theory such as the belief function framework [81]. In the original paper of Dempster, belief

functions are obtained by plugging a probability measure with a multi-valued mapping. Other

authors advocate that the theory is self-contained and need not to be built upon probabilistic

objects.

Concerning combination architecture (Q4), we mean how classifiers are organized as a

network and connected to the fusion process. There are three main categories of topology:

parallel, sequential or a hybrid combinations. In parallel fusion, the base classifiers work

independently (Figure 1.8), they may be trained with inputs living in different feature spaces

and the feature vectors may or may not be derived from the same raw training examples.

However, the output of a given classifier cannot serve as input for another classifier. See

[67],[47],[101] for reviews containing illustrative examples of parallel classifier fusion

techniques. In sequential (serial) fusion, elementary classifiers are stacked in a sequential

way and the decision of one classifier depends on a previous decision. Some class labels

are eliminated at each classification step until one class is left. Kittler et al. addressed this

problem in [59] by giving theoretical formulations of such combinations usually organized

into coarse to fine classifications as shown in fig 1.9. Hybrid hierarchical fusion consists in a

mix of parallel and sequential architectures (see fig 1.10). In [58], hybrid hierarchical fusion

was used for the recognition of handwritten words on bank checks and achieves lower error

rates.
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Input

Classifier 2Classifier 1 Classifier 3

c1 c2 c2

⊕

Combined output

Fig. 1.8 Parallel combination of three classi-
fiers. The predicted classes delivered by the
classifiers are the inputs of the fusion operator.

Input

Classifier 1

{c1,c2} or {c3,c4}

Classifier 2 Classifier 3

Combined output Combined output

Fig. 1.9 Serial combination of three classifiers. The
first classifier assigns the input to a set of candidate
classes then the second classifier refines the classifi-
cation to a single class using both the first classifier
output and the input. The response of the first classi-
fier can be viewed as a multiplexer.

Input

Classifier 1

{c1,c2}

Classifier 2

Classifier 3

c1

c1

⊕ Combined output

Fig. 1.10 Hybrid hierarchical combination of three classifiers.
Classifiers 2 and 3 are built upon input and classifier 1 in a serial
fashion. The outputs of classifiers 2 and 3 are combined using a
fusion operation in a parallel fashion.
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1.4.2 The need of diversity in responses

Designing a multiple classifier system (MCS) requires special care in the choice of individual

classifiers so as to achieve higher classification accuracy or obtain more robust algorithms.

For instance, surely a panel of linear classifiers trained on the same dataset will converge

to very close separating hyperplanes and combining very similar decision rules is doomed

to achieve average results. Thus, diversity is a guiding rule to design an efficient multiple

classifier system.

The notions of diversity and independence are closely related but the separating line in

between is still unclear. However, we might not expect that a highly dependent classifier pool

outputs very diverse responses since dependent classifiers will certainly produce correlated

responses. In this section, we discuss the ways of measuring diversity as well as the methods

to induce diversity in classifier responses.

Brow et al. [10] advocates that inducing diversity in a classifier ensemble can be done

in two ways. The first way is explicit and it is based on the optimization of the diversity

metric over a pool of classifiers. The second one is implicit and it consists in generating

classifiers using different mechanisms and hoping to have significant independence in their

responses. This is usually done by training them on different learning data samples or on

different region of the features space.

Diversity measures

In [100], the authors divided diversity metrics into pairwise and non-pairwise metrics. Using

pairwise diversity measures, we build an MCS by optimizing a diversity measure averaged

on each pair in the classifier ensemble. Examples of such measures are kappa-statistics

[76] or Q-statistic [10]. Other types of measure can be also employed to build the multiple

classifier system such as double-fault measure [69, 41] which is the proportion of test samples

for which two classifiers give both incorrect answers. Disagreement [89] is defined as the

proportion of test samples for which two classifiers produce different outputs such that one

of them responds correctly. A non-pairwise diversity measure has a one versus all scheme

therefore it compares a classifier output to all other classifiers in the system. In this family,

we can cite the entropy measure used by Cunningham and Carney [16] and the coincident

failure diversity [88]. More details about different types of diversity measures can be found

in [44],[62],[34] and [100].
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Implicit diversity induction schemes

The second category of diversity induction involves some implicit approaches based on the

manipulation of either the input data, the output decisions or the types of classifiers.

In their survey [100], Wozniak et al. formulated the following taxonomy for data

manipulation:

• Partitioning the data points: this allows to train individual classifiers on different

training sets. Even though learning samples are somehow correlated, we keep a certain

level of diversity in classifier responses using different training data that might be

obtained by a split or by a random sampling of learning samples as in Bagging [7–9].

In some experiments in chapter 3, we split the dataset so that, for each subset of data

sharing the same class label, each split belongs to non overlapping regions of the

feature space. In this case, the base classifiers have the ability to specialize themselves

and are thus a lot more diverse than in the bootstrap sampling scheme used in bagging.

• Selecting subsets of features: again, base classifiers are thus trained on different

datasets in the sense that they have access to different pieces of information for each

training example. Thus, decision functions have different domains and if the features

are weakly correlated then we achieve diversity. A popular strategy in this vein is to

randomly select the subset of those features selected to train each base classifier. This

strategy is known as the random subspaces method [46]. Another strategy consists in

selecting the maximally accurate individual classifier for each partition in the feature

space [5, 50, 61]. In this setting, features are not randomly sampled but clustered using

some existing algorithms such as Kuncheva’s algorithm [65] and the adaptive splitting

proposed in [53].

• Modifying classifier outputs: MCS can enjoy another form of diversity by asking each

classifier to discriminate only a subset of classes.To recover a decision granularity of

the whole set of classes, it is necessary to design a specific information fusion strategy.

A famous approach in this category are one-vs-all classifiers in which case the problem

of multi-class classification problem is decomposed into binary classification problems.

The classifier will choose between a given label and the remaining labels. The error-

correcting output codes method [25] also belongs to this family of approaches. In

this setting, each label has a codeword (sequence of binary values) and then binary

classifiers are built to produce a codeword for each test sample. The chosen label is

the one having the closest hamming distance to the test sample codeword.
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Diversity can be easily created for classifier ensembles that are based on different learners.

However, individual classifiers can be based on the same classification algorithm. In this case,

hyperparameter values are different, i.e. a pool of decision trees with different maximum

depth, or a pool of neural nets with different weight initializations. The pool can be also

constructed with heterogeneous classifiers i.e. combining a neural network, a decision tree

and a support vector machine. But to obtain diversity one should select training algorithms

relying on pretty different hypotheses sets from which they select their decision functions.

Intuitively, we induce diversity because combining very correlated outputs may be as

informative as using a single classifier and thus the fusion process is not justified. Note that

creating diversity leads to a decrease in the dependence between classifiers but it does not

wipe it out completely. Therefore, in addition to our comment in section 1.2.3 explaining that

the combination algorithms proposed in this thesis utilize contextual information represented

by confusion matrices to achieve better classification performances, the second original idea

of these seminal works is to design combination algorithms accounting for dependences in

classifier outputs. In particular, we propose in the following chapters two parameterized

combination techniques where the parameter captures the level of dependence between

classifiers.

1.5 Classical combination algorithms

In the sequel of this chapter, we review combination algorithms starting with some of the

earliest methods introduced in this field. We introduce in the following subsections some

variants of voting and Borda counts fusion methods. We also present the Behavior Knowledge

Space (BKS) fusion algorithm.

In the remainder of this manuscript, we denote by ĉk(x) the decision of the kth classifier

about the test sample x and by K the number of classifiers to be combined.

1.5.1 Voting approaches

An obvious way to reconcile a pool of decisions is to resort to a voting system. Several

variants of voting schemes can be employed for classifier fusion and some of them can

integrate contextual information such as individual classifier accuracies. The idea behind the

voting principle is based on the intuition that the higher the number of classifiers is, the more

likely to have a correct final decision. Popular voting schemes are the following ones:
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• Unanimity voting is a system in which the combined decision is the label ci if all

individual classifier decisions are ci , otherwise the combined classifier rejects the

input x.

ĉ(x) = ci ⇐⇒ ĉk(x) = ci ∀k ∈ {1, ..,K} (1.30)

• Modified unanimity voting is a system in which the combined decision is the label ci if

all individual classifier decisions are either ci or crej, otherwise the combined classifier

rejects the input x. In other words, no classifier should predict c j ̸= ci.

ĉ(x) = ci ⇐⇒ ĉk(x) ∈ {crej,ci} ∀k ∈ {1, . . . ,K} (1.31)

• Majority voting is a system in which the combined decision is the label ci if the

number of classifiers predicting ci is maximal.

Voting methods were widely explored in the literature. It is found in numerous papers as

a reference method to compare with. In [101], voting methods were studied using four

elementary classifiers trained on the U.S. Zipcode database. A threshold on the number of

votes of the selected final label is considered in the paper. Voting was also tested in [60], on

the M2VTS database (speech and videos of humans) and on the CEDAR-CDROM database

for handwritten digits recognition found on envelops provided by the US Postal Service,

using four classifiers. It led to higher accuracies and outperformed some of the examined

probabilistic combination rules applied on the posterior probabilities of the classifiers in this

study. Although, fusion voting-based methods are based on a strong and logical intuition

they are not very robust in the sense that we need a lot of base classifier to perform well

in order to take correct decisions. Matan [78] studied the discrimination ability of majority

voting ensembles and defined upper and lower bounds of their classification performances in

terms of individual classifier performances.

1.5.2 Borda and wBorda counts

Borda counts is a rank-based combination scheme where each classifier ranks the classes

(candidates) according to their chances to be the correct (true) class. Each rank associated to

a score starting from m−1 for the first rank to 0 for the last one where m is the total number

of classes. In a second time, the sum of the scores that each class has received is calculated,

and the class label achieving highest accumulated score is the ensemble prediction. There

may be ties, i.e. several class labels maximizing the accumulated score in which case, an
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additional algorithmic step is necessary to resolve the tie. A baseline strategy consists in

randomly picking one of the label with maximal cumulative score. The Borda method was

developed by a French politician named Jean-Charles de Borda in the quest for a genuinely

democratic electoral system. It is used currently to elect the deputies in the Republic de

Nauru and the Republic of Slovenia.

Example 2. Suppose there are four candidate class labels Ω = {c1,c2,c3,c4} . For three

classifiers whose decision functions are (ĉ1, ĉ2 and ĉ3) Borda counts works as follows: Each

classifier ĉk ranks the class labels (Table 1.1) and then the sum of accumulated scores of each

label is calculated (Table 1.2)

Classifiers Labels ranking

ĉ1 c2− c3− c1− c4

ĉ2 c3− c1− c2− c4

ĉ3 c3− c2− c1− c4

Table 1.1 Ranks of the four candidates (labels)

Candidate Score

c1 1+2+1 = 4

c2 3+1+2 = 6

c3 3+3+2 = 8

c4 0+0+0 = 0
Table 1.2 Candidates and their accumulated points

Borda counts is considered to be one of the simplest non-linear combination algorithm.

In some cases (mostly when the number of classifiers is large) a conflict can be observed

between the opinion of the majority and the decision deduced using Borda’s method. That

issue was evoked by Parker in [80]. In Borda counts the difference in scores for every two

consecutive candidates ranked by a single classifier is one so that all the candidates are

"equally distant" and distributed in a uniform manner on the same axis but this hypothesis is

not always justified. For instance, a probabilistic classifier may assign very high probabilities

to two labels and very low probability to two other labels (e.g. for a three classes classification

problem, with probabilities 49%, 48% and 3%; obviously, when applying Borda counts

combination method, having a unit in difference between every consecutive labels does not

seem to reflect the classifier level of confidence). Parker advocates that it may be beneficent

sometimes to ignore the uniformity assumption and weight the ranks instead. Fishburn [33]
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argues that contextual knowledge issued from confusion matrices can be used to estimate

those weights. Assigning such weights to candidate labels is considered as a generalization

of the uniform Borda counts and usually referred to as wBorda.

Example 3. Considering m class labels, when uniformity is applied, an item of rank r

will be assigned a score equal to m− r but in wBorda it can be assigned a score equal

to (m− r)×w(r−1) where w is the weight. The difference between Borda and wBorda is

illustrated in Figure 1.11:

c1

0

c2

1

c3

2 Scores

wBorda
c1

0

c2

w
c3

2 Scores

Borda

Fig. 1.11 Comparison between Borda and wBorda ranking for one classifier which assigns to
class label c1,c2 and c3 the rank 3, 2 and 1 respectively. By convention, the class label with
rank 1 is the one preferred by the classifier. In regular Borda counts, the scores obtained by
c1, c2 and c3 is 0, 1 and 2 respectively but in wBorda c1 will get (3-3)×w2 = 0, c2 will get
(3-2)×w1 = w and c3 will get (3-1)×w0 = 2.

1.5.3 Behavior-knowledge space

Huang and Suen [51, 52] proposed the Behavior-Knowledge Space (BKS) method that has

the advantage not to rely on prerequisite hypotheses such as statistical independence of

classifier outputs.

By definition a BKS is a K−dimensional space where the kth dimension is related to

the kth classifier. On each dimension k, m decisions can be taken which corresponds to all

possible labels in Ω . For each test sample x, we obtain a vector of decisions (ĉ1(x), .., ĉK(x))
which corresponds to a point in the BKS. For each point out of the mK possible ones, we keep

track of the number of training samples mapped to this point as well as their class labels.

BKS is built at training time and it has mK nodes to be learned. Thus, the method does

not scale well in either the number of base classifiers or the number of classes as there may

be some configurations that are never visited. To decide the class of a test sample, the outputs

(ĉ1(x), .., ĉK(x)) are obtained and mapped to the corresponding BKS node. The predicted

label is the one with the highest number of occurences in this node (Figure.1.12).
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Fig. 1.12 A BKS containing 9 nodes arising from three classes Ω = {•;•;•} and two
classifiers. From this BKS, we understand that when both classifier predict •, then most of
the time, the correct answer is •. When ĉ1 predict • while ĉ2 predicts •, then most of the
time, the correct answer is •.

1.6 Ensemble methods

In this section, we present homogeneous classifier combination methods, i.e. methods in

which the base classifiers are instances of the same learning algorithm. A textbook example

of homogeneous classifier fusion are random forests which are ensembles of decision trees.

In the literature, those methods are often referred to as « ensemble methods » as opposed

to heterogeneous combination referred to as « multiple classifier systems ». In this seminal

work, we comply with this terminology, however, we use the term « ensemble of classifiers »

for either homogeneous or heterogeneous combinations. The distinction between these latter

is either clear from context or made explicit. As we mentioned earlier, there is little interest

in training classifiers of the same type on the same training set because they will produce

the same learning function. Consequently ensemble methods are closely related to diversity

induction methods.

In her book entitled «Combining Pattern Classifiers», Kuncheva [67] established a

taxonomy for ensemble methods. She considered four possible levels of induction: Data

level, Feature level, Classifier level and Combination operator level. Bernard [6] advocates

that the fourth level corresponds to the information fusion paradigm and not really to a

category of ensemble methods. Let us review the three other levels:

• Data level: This set of methods rely on the construction of several (sub-)datasets on

which base classifiers will be separately trained. Such a philosophy was supported by
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Xu in [101] to mitigate the independence problem between the base classifiers. Two

very well known methods in this category are Bagging [7–9] and Boosting [85, 79].

• Feature level: Each base classifier has access to all training examples but for each

example only a predefined subset of the features can be used. Assigning a subset of

feature of each base classifier is the most challenging aspect of such ensemble methods.

In this level we can cite Ho [46] who introduced the feature bagging method (also

known as Random Subspaces) where base classifiers are trained on randomly selected

features.

• Classifier level: For a given training algorithm, a simple way to obtain a homogeneous

ensemble of classifiers is to use several hyperparameter values to run a training session

for each value. For instance, we can create an ensemble of k-nearest neighbors

classifiers by using several value of k.

In the rest of this section, we present some well known ensemble methods. In particular, we

present the basic versions of Bagging, Boosting , Random subspaces and Error-correcting

output codes approaches.

1.6.1 Bagging

The ensemble method referred to as Bagging performs the combination at the data level.

Several datasets are obtained by sampling uniformly at random r examples from the original

dataset. The probabilities to select a given example in the original dataset does not evolve

from a sampling step to another. For a sampled dataset having the same size as the original

set (r = ntrain), it is expected to get approximately 63% of the observations of the original

examples (Figure 1.13).

Bagging (Bootstrap Aggregating) is based on the non-parametric Bootstrap sampling

technique which is a statistical method used to analyze the variability of an estimate and

quantify its uncertainty (by computing confidence intervals for instance). Intuitively, if

the estimate values are close whenever we use a different dataset (obtained by draws with

replacement from the original sample), then we can have a high level of confidence in the

estimate. This idea is valid if the empirical distribution is a good approximation of the true

population distribution.

After sampling, each classifier is trained on a single bootstrap sample. The decision of

all classifiers is often combined using majority voting.
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Original training set

Random sampling
with replacement

Bootstraps samples

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9)

x(1) x(6) x(4) x(5) x(4) x(3) x(2) x(7) x(9)

x(4) x(7) x(3) x(5) x(6) x(9) x(7) x(8) x(8)

x(9) x(2) x(3) x(4) x(2) x(9) x(7) x(1) x(8)

x(5) x(2) x(5) x(3) x(5) x(1) x(4) x(9) x(7)

x(2) x(4) x(1) x(9) x(6) x(7) x(7) x(7) x(2)

⊕

Fig. 1.13 Illustration of the Bagging principle. Each input x is a training sample.

1.6.2 Boosting

Boosting is a family of algorithms that can be seen as a set of solutions to the question

proposed by Kearns’s [55]: «can an ensemble of weak learners create a stronger one?». A

classifier whose discriminative power is slightly stronger than a random one is called a weak

learner. Thus a trained weak learner L yields classifiers with accuracy rates that are slightly

above 1
2 in a binary classification problem.

In fact, Boosting is a sequential homogeneous combination method where a set of

classifiers, that are iteratively computed in a way that the kth classifier ĉk focuses on correctly

classifying those examples misclassified by the previous classifiers ĉk−1, .., ĉ1 The base

classifiers are linearly combined: ĉc = ∑
K
k=1 βk.ĉk where βk are combination parameters

known in closed form (see Algorithm 1). To allow a given base classifier to focus on some

training examples, a weight D(i)
k is assigned to each data point x(i). Weights are also known

in closed form. Note that the weak learner L needs to be able to be run using a weighted loss

instead of the usual loss but it is not a major difficulty in general. The algorithm starts with

classifier ĉ1 that is trained on a uniform distribution of all classes on the original dataset, i.e.

all weights are constant one. The weights are then updated based on the errors of prediction in

a way to increase the weight of the learning data that has been misclassified by this classifier,

while simultaneously decreasing the weights of the well classified data. Thus, we gradually

specialize classifiers.

In his famous paper, Schapire [85] proved the surprising equivalence of the notions of

weak and strong learnability which theoretically means that a strong learner can be obtained

from weak learners. He then introduced his first recursive boosting algorithm. A more
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advanced boosting algorithm was presented later by Schapire and Freund [36]. The first

version, AdaBoost.M1 is described in algorithm 1.

Algorithm 1: Adaptive Boosting (AdaBoost)

Data: Weak learner L , Dtrain{x(i),y(i)}ntrain
i=1 , K

1 for i ∈ {1, . . . ,ntrain} do
2 D(i)

1 = 1
ntrain

/* Uniform initialization of the weights */

3 for k ∈ {1, . . . ,K} do
4 Call L (Dtrain,D

(1)
k , . . . ,D(ntrain)

k ) /* learning ĉk */

5 ε̂k = ∑i:ĉk(x(i))̸=y(i) D(i)
k /* Compute the error at the kth iteration */

6 if ε̂k > 0.5 then
7 Abort loop and discard ĉk
8 else
9 Compute coefficient βk =

ε̂k
1−ε̂k

10 for i ∈ {1, . . . ,ntrain} do
11 if ĉk(x(i)) = y(i) then
12 D(i)

k+1 = D(i)
k ×βk

/* Update the weights D */
13 else
14 D(i)

k+1 = D(i)
k

15 Renormalize weights so that ∑
ntrain
i=1 D(i)

k+1 = 1

16 Return mapping x→ argmax
y∈Ω

∑k:ĉk(x)=y log 1
βk

/* Combined classifier */

1.6.3 Random subspaces

The idea of the random subspace method (RSM) also known as feature bagging is quite

similar to "ordinary" bagging but instead of sampling uniformly at random examples with

replacement, we sample features with the same mechanism [46, 47, 11]. The principle of this

method consists in training the classifiers in random subspaces of dimensionality lower than

the dimensionality of the original space. Ho [46] proved that the best results are obtained

when the original space dimensionality is approximately reduced by a half.

One of the advantages of the random subspaces method lies in its ability to insure stability

in classification. Input vectors in high dimensional spaces are notoriously more difficult to

discriminate, a phenomenon often referred to as the curse of dimensionality. An example
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of RSM is illustrated in Figure 1.14, where 4 features out of 9 are sampled to train three

individual classifiers.

Original training set
6 samples with 9 dimensions (6×9)

x(1)1 x(1)2 x(1)3 x(1)4 x(1)5 x(1)6 x(1)7 x(1)8 x(1)9

x(2)1 x(2)2 x(2)3 x(2)4 x(2)5 x(2)6 x(2)7 x(2)8 x(2)9

x(3)1 x(3)2 x(3)3 x(3)4 x(3)5 x(3)6 x(3)7 x(3)8 x(3)9

x(4)1 x(4)2 x(4)3 x(4)4 x(4)5 x(4)6 x(4)7 x(4)8 x(4)9

x(5)1 x(5)2 x(5)3 x(5)4 x(5)5 x(5)6 x(5)7 x(5)8 x(5)9

x(6)1 x(6)2 x(6)3 x(6)4 x(6)5 x(6)6 x(6)7 x(6)8 x(6)9

x(1)1 x(1)3 x(1)7 x(1)4

x(2)1 x(2)3 x(2)7 x(2)4

x(3)1 x(3)3 x(3)7 x(3)4

x(4)1 x(4)3 x(4)7 x(4)4

x(5)1 x(5)3 x(5)7 x(5)4

x(6)1 x(6)3 x(6)7 x(6)4

x(1)1 x(1)2 x(1)3 x(1)4

x(2)1 x(2)2 x(2)3 x(2)4

x(3)1 x(3)2 x(3)3 x(3)4

x(4)1 x(4)2 x(4)3 x(4)4

x(5)1 x(5)2 x(5)3 x(5)4

x(6)1 x(6)2 x(6)3 x(6)4

x(1)5 x(1)2 x(1)5 x(1)9

x(2)5 x(2)2 x(2)5 x(2)9

x(3)5 x(3)2 x(3)5 x(3)9

x(4)5 x(4)2 x(4)5 x(4)9

x(5)5 x(5)2 x(5)5 x(5)9

x(6)5 x(6)2 x(6)5 x(6)9

⊕

Fig. 1.14 Illustration of the Random subspace principle. Each x(i) is an input, i.e. a training
sample vector with 9 dimensions (9 features). Four features out of nine are sampled for three
individual classifiers.
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1.6.4 Error correcting output codes

Error-correcting output codes (ECOC) [26] are a meta-classifier algorithm belonging to

ensemble methods. It solves multiclass classification problems by breaking them into mini

binary classification ones. It consists in representing each class label by a codeword (string

of «0» and«1») of length K where K is also the number of classifiers involved in the fusion.

Then, each classifier discriminates between two subsets of Ω and outputs a binary value

representing a subset of labels. The resulting codeword of a test sample x must be of length

K. To decide the label of x, we choose the label having the closest codeword to the obtained

codeword of x in term of Hamming distance (number of unequal bits).

The number of bits to encode class labels is always greater than necessary. We need at

least log2 m bits to encode m class labels. If we choose more bits, we can hope for a form of

robustness arising from the redundancy of the base classifier decisions.

Example 4. Let Ω = {c1,c2,c3,c4} denotes the set of class labels (m = 4). One can construct

the following codeword table using an ensemble of 7 classifiers {ĉ1, .., ĉ7}.

Labels ĉ1 ĉ2 ĉ3 ĉ4 ĉ5 ĉ6 ĉ7

c1 1 1 1 1 1 1 1

c2 0 0 0 0 1 1 1

c3 0 0 1 1 0 0 1

c4 0 1 0 1 0 1 0
Table 1.3 Error-correcting output codes for a four-class problem.

Using these arbitrary codewords, each label is encoded by 7 bits. During learning, each

classifier ĉk is trained to discriminate two subsets of classes. For instance, ĉ5 learns to

discriminate between {c1,c2} and {c3,c4}. A test example x may be mapped to a codeword

that is not in table 1.3 and we use Hamming distance to decide to which label x it belongs.

1.7 Trainable fusion approaches

In this section we discuss another category of algorithms that address the classifier combina-

tion problem by training a second stage classifier that learns to perform the fusion. In contrast

to other methods such as voting,bagging or Borda counts, these algorithms pass through

a training phase where the combination rule or the combination parameters are explicitly

deduced from data. In this category, we explore in particular stacking approaches, mixture
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models and mixture of experts. However, we may find many other combination schemes

−with a learning phase− that can fall in this category of methods such as boosting.

1.7.1 Stacking approaches

Stacking [98, 95, 96, 86] is about learning the combination rule from several sets of base

classifier outputs. The stacking framework consists of two levels: a base classification level

and a meta-classifier level. In the base level, individual classifiers are built on training data

from Dtrain (as usual). Each trained base classifier classifies examples from a validation

set to constitute a new training set whose samples are classifier outputs. In the meta-level,

these vectors are used to train the meta-classifier which maps base classifier outputs to the

predicted class.

The aim of the first level is to produce a training set to learn the combination rule.

Depending on the output type of the base classifiers, the entries of each example of the

second stage training set are either class labels, class ranks or class probabilities. Classifier

outputs of the first level are concatenated to form second stage input training vectors for the

meta classifier regardless of the possible variability in the output types. The meta-classifier

has to cope with this rather arbitrary way of embedding classifier outputs into an artificial

feature space. The difficulty in stacking combination approaches lies, similarly as in BKS, in

the imbalanced aspect of the second stage training set. Alleging classifier outputs are just

class labels, there may be configurations that are never visited at training time but occur at

test time. To prevent such a situation, it may be tempting to choose a large validation set but

this is at the expanse to the training set and the base classifier accuracies.

Ting and Witten [95] concatenated posterior probability distributions resulting from a

classifier stacking in the first level to build training input vectors for the meta-classifier. They

discussed the usage of multi response linear regression to learn the combination rule and

demonstrated that it outperforms other classification techniques [95]. An interesting approach,

proposed in [96] by Todorovski et al., employs properties of the posterior distribution, such

as entropy, as input feature vectors to learn a meta-decision tree classifier. The authors report

that their method outperforms other combination techniques such as bagging and boosting.

Dzeroski and Zenko [31] showed in a comparative study that combining heterogeneous

classifiers by stacking yields to close performances as compared to classifier selection by

cross validation.
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Logistic

regression

Logistic

regression

Logistic
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Dtrain

ĉ1

ĉ2

ĉ3

Dval

Concatenation New training set

Fig. 1.15 Illustration of logistic regression stacking principle for K = 3. The base classifiers
are first learned on Dtrain to get ĉ1, ĉ2 and ĉ3. Then they are applied on Dval and the outputs
are concatenated to get a new training set on which a new logistic regression classifier is
trained to obtain the combination learning function ĉc.
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1.7.2 Mixture models

Mixture models can also be regarded as combination training methods. These models rely on

the estimation of the predictive distribution which is alleged to be a mixture of distributions.

A mixture model is a convex combination of multiple predictive distributions, each produced

by a probabilistic classifier and controlled by a set of parameters θθθ kkk. Suppose we have to

combine K classifiers, each producing a predictive distribution pθθθ kkk
(Y = y|x) where k is the

index of the kth classifier. The combined predictive distribution reads:

pΘΘΘ(Y = y|x) =
K

∑
k=1

wk pθθθ kkk
(Y = y|x) (1.32)

where {w1, ..,wK} are the combination parameters (
K
∑

k=1
wk = 1 and wk ≥ 0,∀k) and ΘΘΘ =

{θθθ kkk, ..,θθθ kkk,w1, ..,wK} is the set of all parameters in the mixture. For instance, a mixture

model of logistic regression classifiers will have as θθθ kkk the parameters of the kth logistic

regression while a mixture of Gaussians will have as θθθ kkk the mean and the variance of

the normal distribution. Since mixture model demands predictive probabilities thus it is

impossible to build them using deterministic classifiers i.e. support vector machines or

nearest neighbors. All parameters are jointly estimated from the training set Dtrain using

Expectation-Maximization algorithm (EM) and we do not take some data out of the training

set to build a validation set. EM is a procedure that computes estimates of ΘΘΘ by introducing a

latent variable Z which has a multinomial distribution and represent the identity of the model

component from which a pair (x,y) arises. The EM procedure relies on two macro-steps. The

first one, called the E-step, consists in finding the expectation4 of the complete log likelihood

function. The likelihood function is expressed by:

L (ΘΘΘ) =
ntrain

∏
i=1

p(y(i),z(i)|x(i),ΘΘΘ). (1.33)

In the second step, the M-step, we find the value of ΘΘΘ that maximizes the log likelihood using

gradient ascent. Even though it insures convergence, the EM procedure does not guarantee

convergence to the maximum likelihood estimate. For detailed explanation we recommend

the book of Casella and Berger [13].

4This expecatation consists in integrating out Z which we do not observe.
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1.7.3 Mixture of experts

Mixtures of experts [77] were introduced in the early 90’s. Mixtures of experts are quite

similar to mixture models in spirit but they differ in the fact that the combination parameters

{wk}K
1 , also called mixing weights, are input-dependent. In fact, mixtures of experts can

be seen as a generalization of mixture models but instead of keeping the same weights ,

we change them with respect to the input value. In this context, we call the set of mixing

weights {wk}K
1 gating functions. Usually, the relation linking mixing weights with inputs is a

Softmax function:

wi
k(x

(i)) =
evt

k·x(i)

K
∑

k′=1
evt

k′ ·x(i)
(1.34)

where V = [v1 . . .vK] the set of parameters of allowing to compute wi
k(x

(i)) and thus the

resulting combined predictive distribution, for a sample x(i), is given by:

pΘΘΘ(Y = y|x(i)) =
K

∑
k=1

wi
k(x

(i)).pθθθ kkk
(Y = y|x(i)) (1.35)

The key idea of this setting is to let the gating functions decide what expert should have the

greatest impact on the combination for each sample. This allows local specialization of the

experts where each of them is specialized in a region of the input space where it has the

maximal individual accuracy.

In this approach, the set of the whole model parameters ΘΘΘ = {θθθ 111, ..,θθθ KKK,V} is learned on

Dtrain using the EM algorithm as in mixture models.

1.8 Fusion approaches within uncertainty frameworks

This section is dedicated to fusion approaches within an uncertainty framework. In particular,

we review some of the existing combination methods in the probabilistic, evidential and

fuzzy frameworks. Even though we are interested in combining classifiers based on their

estimated performances, the algorithms of this section are not restricted to this setting but

they encompass other combination approaches that may be based on different types of scored

outputs.
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1.8.1 Probabilistic classifier combination

Simple combination algorithms such as majority voting and Borda counts work relatively

well in many applications but they suffer from a major limitation which is the absence of

any contextual information guiding the fusion toward more reliable solutions. Contextual

information can have many forms. A popular type of contextual data are the individual

performances of the classifiers. Indeed, given an estimation of the classifier performances,

one can try to design a fusion approach so that successful classifiers have a greater impact

on the aggregated results than those with limited success. Contextual information can be

integrated as part of weighted voting algorithms. Yet it is not always clear how to compute

the weights and if this way to integrate contextual data is justified. However, a clever way to

benefit from contextual information consists in integrating it in the combination within an

uncertainty framework such as the probabilistic framework especially if contextual informa-

tion is probability distributions. The reason is that the probabilistic framework provides a

panel of probabilistic rules permitting to easily manipulate probability distributions.

In this section, we review three probabilistic combination categories of methods. We start

with a review of the mainstream approaches in probabilistic fusion, then we introduce two

classes of probabilistic pooling methods and we entail this section with some combination

techniques within the Bayesian paradigm.

A baseline probabilistic approach

In subsection 1.2.3, we explained that confusion matrices characterize the performances

of a classifier. These latter can be exploited to combine classifiers as part of deterministic

algorithms. For instance, they were used by Giompapa et al. [43] to break ties in majority

voting classifier combination applied to naval target classification. In a sequential architecture,

Jeong et al. [54] select a set of candidate classes based on the confusion matrix of a first

level classifier. A second level classifier then evaluates how likely each member of this set is

to be the true class. This approach was applied to handwritten Korean character recognition.

Taking inspiration from [101], Parker [80] uses confusion matrices to rank class predictions

for classifiers producing elementary outputs. A weighted Borda vote is then used to aggregate

rankings.

In contrast with the above mentioned approaches, we focus in the following paragraphs

on probabilistic solutions relying on confusion matrices in order to combine classifiers. Thes

solutions allow to achieve a form of optimality in regard to objective functions such as

expected loss. Let us now formalize classifier combination in terms of probabilistic calculus.
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Our goal is to estimate the following conditional aggregated distribution

p(y|ĉ1(x), ĉ2(x), .., ĉK(x)) . (1.36)

Knowing this distribution, example x is classified as

ĉ(x) = argmax
y∈Ω

p(y|ĉ1(x), ĉ2(x), .., ĉK(x)) . (1.37)

For the sake of equation concision, we will denote by ĉk either the prediction function learned

by the classifier k or the prediction of this classifier for some arbitrary input x.

Applying Bayes rule, the aggregated distribution writes

p(y|ĉ1, ĉ2, .., ĉK) =
p(ĉ1, ĉ2, .., ĉK|y)
p(ĉ1, ĉ2, .., ĉK)

p(y) (1.38)

∝ p(ĉ1, ĉ2, .., ĉK|y)p(y). (1.39)

When K is large, the estimation of the joint conditional distributions p(ĉ1, ĉ2, .., ĉK|y) is

intractable as it involves (m+1)K parameters. Simplifying hypotheses are needed. Assuming

class conditional independence of classifier predictions, we obtain

p(y|ĉ1, ĉ2, .., ĉK) ∝ p(ĉ1|y)× p(ĉ2|y)× ..× p(ĉk|y)× p(y)

∝ p(y)
K

∏
k=1

p(ĉk|y).
(1.40)

The class distribution p(y) is a multinomial distribution Y ∼Mult(πππ). The vector πππ contains

the class probabilities and the maximum likelihood estimate (MLE) for each entry is

πi =
nval,i

nval
. (1.41)

The training set can also be exploited to obtain more accurate estimations. Of course, more

elaborate estimates as the MLE can be derived. A prior distribution on πππ can be introduced to

obtain a maximum a posteriori estimate. Since most datasets usually have the same number

of class members, p(y) is most often a uniform distribution.

Let PΩ denote the simplex of probability distributions over Ω. A combination rule in

this context is a mapping from (PΩ)
K →PΩ. For instance, from an information fusion
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perspective, equation (1.40) is a multiplicative conjunctive combination rule applied to

classifier performance probabilities which are derived from confusion matrices.

This is the probabilistic baseline approach to fuse classifiers based on performance

probabilities. Examples of applications of this approach are given in [43, 94]. In the next

chapters, this approach will be referred to as «the Bayes rule approach» and it will be one of

the combination methods in the benchmark used in the numerical experiments.

There are, of course, many alternatives to the mainstream approach. In the following

paragraphs, we introduce other schemes that may be applied for combining classifiers.

In particular, we present probability distribution combination methods and the Bayesian

classifier fusion technique. For both categories, we review the state-of-the-art and highlight

some interesting contributions.

Probabilistic opinion pooling

The problem of retrieving a consensus probability distribution from a panel of distributions

is not new and the first investigations in this field date back to Laplace [71]. An overview

of the state-of-the-art on probability distribution combination rules is given in a review by

French [35] and in the book of Lee [73]. The construction of combination rules is in general

justified by means of desirable properties for the rules. Such properties are for instance the

ability of the combination to commute with marginalization or with plugging a prior using

Bayes theorem. Let f denote a some probability combination rule. Two popular classes of

probability distribution combination rules are:

• logarithmic opinion pools: f (p1, .., pK) ∝
K
∏

k=1
pak

k , ak ≥ 0,

• linear opinion pools: f (p1, .., pK) =
K
∑

k=1
ak pk, ak ≥ 0 and

K
∑

k=1
ak = 1

Where each ak is a scalar. In the logarithmic opinion pool, distribution multiplications should

be understood as element-wise multiplications. Some extensions of these rules have been

proposed in the literature. For instance, Ranjan et al. [82] reformulated the linear opinion

pool by inserting the cumulative density function of a beta distribution Bα,β as follows:

f (p1, .., pK) = Bα,β

K
∑

k=1
ak pk and standard linear pooling is retrieved for α = β = 1. The

authors claim that their Beta linear pooling achieves better performances than standard

linear pooling in the estimation of the probability of precipitation forecasts. Other existing

probabilistic combination approaches are given in [4].
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The set of probability distributions {pk}K
k=1 to be pooled is a general set of probabilities

and it is not restricted to certain type of distributions. In our classifier combination problem,

these distributions are the predictive probabilities {p(y|x,θθθ kkk)}K
k=1 or the conditional prob-

abilities drawn from confusion matrices like ({p(y|ĉk)}K
k=1 or {p(ĉk|y)}K

k=1. These latter

represent different types of contextual information.

Obviously, the multiplicative rule (
K
∏

k=1
pk) is a member of the logarithmic opinion pools.

In both these classes, the weights ak capture a form of reliability in the estimates of the

distributions pk. Unless one has prior knowledge concerning the weights, these are not easy

to determine. One can estimate them from data [64, 45] but this means that the validation set

will be split again. In addition, the split used to obtain weights ak must contain a sufficient

number of data points to jointly estimate K parameters. This is a form of stacking.

Bayesian classifier combination

The Bayesian framework is an attractive way to combine classifiers since it has proved to lead

to more accurate and robust estimates in many applications. Kim and Ghahramani [57] adapt

a probabilistic model introduced by Dawid and Skene [17] for classifier output fusion under

independence assumption. The classification output ĉk of the kth classifier is a random variable

and the conditional distribution of ĉk given Y = y is multinomial: ĉk|y∼Mult
(

θθθ
(k)
y

)
. In other

words, the performance probabilities are the parameters θ
(k)
y,i and their estimations derived

from the confusion matrices are their MLE estimates. Let Dagg denote the dataset whose

elements are tuples
(

ĉ1

(
x(i)

)
, .., ĉK

(
x(i)

)
,y(i)

)
for

(
x(i),y(i)

)
∈ Dval. Under classifier

independence assumption, the likelihood writes as

p
(
Dagg|θθθ (1)

1 , ..,θθθ (K)
m ,πππ

)
=

nval

∏
i=1

πy(i)

K

∏
k=1

θθθ
(k)
y(i),ĉk(x(i))

. (1.42)

The authors propose a Bayesian treatment consisting of using hierarchical conjugate

priors on the parameters of all conditional distributions p(ck|y) as well as on the class

distribution p(y). The conjugate priors for θθθ
(k)
y and for πππ are Dirichlet: θθθ

(k)
y ∼ Dir

(
ααα

(k)
y

)
and πππ ∼Dir(βββ ). A second level of priors is proposed for the parameters ααα

(k)
y . The conjugate

prior distribution of each ααα
(k)
y is exponential. Gibbs and rejection sampling are then necessary

to infer these parameters.

Finally, Kim and Ghahramani extend this model in order to take into account dependencies

between classifiers. They propose to use a Markov random field as model of classifier output
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interactions. The main limitation of this method is the high computational cost caused by

MCMC and rejection sampling. Other related Bayesian approaches are reviewed in [15].

Another approach was introduced by Lacoste et al. in [70]. They have a pragmatic vision

of the problem where one looks for the best classifier in terms of generalization performances

instead of the one that best explains Y given X = x. Let Z denote the random variable

representing the index of the best classifier c⋆. The best classifier is the risk minimizer:

c⋆ = argmin
1≤z≤K

R(cz) , (1.43)

R(c) = EX ,Y [L(c(x) ,y)] , (1.44)

where L is a loss function. Instead of deriving p(y|ĉ1, .., ĉK), they propose to focus on

inferring Z and then obtain the following predicting distribution:

p(c⋆ (x) = y|x) = ∑
1≤z≤K

p(Z = z) p(c⋆ (x) = y|x,z) , (1.45)

= ∑
1≤z≤K

p(Z = z)Iy (cz) . (1.46)

This distribution is obtained by marginalizing out Z and the estimated class for example x
is the one maximizing this distribution. In order to apply this decision function, we must

estimate p(Z = z) from the validation set. To that end, let us also consider the 0-1 loss Lz,i

incurred by choosing classifier cz and applying it to example x(i) from Dval. This loss can

be regarded as a Bernoulli random variable with parameter R(cz). By defining priors on the

losses and on the risks, standard Bayesian inference allows to estimate the distribution of

the risks given all losses observed in Dval. Finally, p(Z = z) is obtained by Monte Carlo

approximation. If ones draws ns samples of the risks given the losses, the probability that

Z = z is approximately the number of times that cz achieves minimum risk over ns.

The approach of Lacoste et al. is intuitive and also guided by classifier performances in

terms of risks instead of confusion matrices. It is less computationally demanding than the

models proposed by Kim and Ghahramani. In these seminal works, we aim at introducing a

classifier combination method with lower computational complexity and in particular that

does not rely on any Monte Carlo step.

1.8.2 Evidential classifier combination

The theory of belief functions, a.k.a evidence theory of Dempster-Shafer [21, 87] (D-S)

theory is a welcoming playground to build ensemble methods as it generalizes probability
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and set theory while providing a number of aggregation operators. Besides, it also gener-

alizes possibility theory which will be our combination framework in the next chapter. In

the DS framework, uncertainty about the outcome of events is most often rendered using

mass functions which can be understood as a way to encode (lower and upper) bounds on

probabilities. The information carried by confusion matrices can also be used to build a

mass function for each classifier. After combining these latter, decision making may also be

made via expected utilities relying on the Choquet integral of capacities5 that are in bijective

correspondence with the mass function although this is not the only option.

Xu’s et al. approach [101] is one of the very first methods introducing classifier combi-

nation in the belief function framework. Mass functions were the same across all classes

for each classifier. For each base classifier, the accuracy and the error rate are used as the

respective masses assigned to ĉi (x) and to Ω\{ĉi (x)}. The remaining mass is assigned to

Ω (ignorance) as the base classifiers have optionally a reject class. Mass functions are then

combined using Dempster’s rule of combination6. A set of decision functions involving a

thresholding procedure are also presented in the paper for decision making.

Another interesting approach is the one introduced by Rogova [84]. The author combines

several neural networks within the D-S theory using information about the classification

power of a classifier, i.e. the distance (proximity measure) between the output vector

(predicted class probabilities) and reference vectors. Each vector is a mean computed across

outputs of a classifier fed with validation samples belonging to a given class. For each class

c j, Rogova builds two mass functions from each proximity measure (one supporting Y = c j

the other supporting Y ̸= c j). After combining these 2m mass functions, the resulting belief

function is a probability distribution. The choice of the distance function and the computation

of the reference vector is not obvious. A similar idea of combining classifiers based on a

proximity measure between the output and a reference vector is also proposed in [3].

More recently, Burger et al. [12] introduced a multi-label SVM obtained by fusing

multiple binary SVM classifiers. They utilized belief functions to partially mitigate a loss of

information that they argue to occur when combining binary SVMs using voting systems.

They build belief functions from fuzzy sets. For each binary SVM and each class, full

class membership is assumed outside of the SVM margin while membership progressively

decreases as drifting apart from the margin border. The belief functions are combined using

Dempster’s rule so the relative confidence of each classifier is taken into account in the

decision making.

5A capacity is a non-additive probability measure.
6A popular aggregation operator for belief functions introduced and justified by Dempster himself [21].



52 State-of-the art on classifier combination

Reformat and Yager [83] also transform classifier outputs into belief functions. They use

criteria such as accuracy from training data and from validation data. The mass functions thus

obtained are combined using Dempster’s rule and an ordered weighted averaging operator.

Another approach by Quost et al. [81] is also worth mentioning. The authors proposed to

combine classifiers based on a rule that is borrowed from fuzzy set theory, i.e. the t-norm

rule, and they resolve the combination problem within the belief function theory framework.

They build mass functions from classifier outputs and then combine these functions using a

parametric t-norm based rule. They propose to determine the parameter λ of the t-norm using

model selection via a validation set. In the next chapter, we introduce a new combination

method that shares some aspects of Quost et al. approach:

• we combine possibility distributions and every such distribution is by definition a

special type of belief function,

• we also use a parametric t-norm to combine these distributions,

• we also tune the parameter of the t-norm using a validations set.

However, there also several discrepancies:

• they cluster the classifiers according to their dependencies then they learn one λ for

each cluster combination and another λ for merging the mass functions obtained from

each cluster while (for now) we only examined batch combination schemes,

• the t-norm is an ingredient to derive a combination rule in the sense of belief functions

but it is not a combination rule of its own,

• we build specifically possibility distributions from confusion matrices while Quost et

al. convert the output of probabilistic classifiers in belief functions,

• they combine separable belief functions which, in general, are not formally equivalent

to possibility distributions.

Quite recently in [22], class wise precision and recall (obtained from confusion matrices)

are taken as basic ingredients to build mass functions in the framework of belief function

theory. Dempster’s rule is used to combine all mass functions (for each class and each

base classifiers) and the final mass function is transformed into a probability distribution for

decision making.

A limitation of the theory of belief functions is computational complexity as the domain

of mass functions is the power set 2Ω while both probability and possibility values can be

computed from distributions whose domain is Ω.
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1.8.3 Fuzzy classifier combination

Fuzzy set theory [103, 104] was designed by Lotfi Zadeh in the mid 60’s. In his founding

paper [103], Zadeh defined a fuzzy set as «a class of objects with a continuum of grades of

membership». Thus, he replaced the dominant binary philosophy, i.e. an element belongs

or not to a set, with a gradual philosophy. In other words, each element in a fuzzy set has a

membership value determining to what extent the element belongs to the set in contrary to

«crisp sets» that include elements whose membership functions are equal to 0 or 1. Fuzzy set

theory was conceived to present «soft» classification of elements which is more adapted to

the way people create categories in natural language. Thanks to Fuzzy set theory, possibility

theory [105] was later introduced to handle incomplete information in natural language.

Classifier combination has also been examined in the fuzzy set theory community. Cho

and Kim [14] introduce a method for combining multiple neural networks using fuzzy

integrals. For each class, the output scores of the neural nets are used to build a function

which is integrated using the fuzzy integral w.r.t a fuzzy measure drawn from each individual

classifier performance on the training set. After m such integrations, the predicted class is

the one with the highest integrated measure. The fact that the training set leads to optimistic

accuracy estimation is not discussed.

In [56], Keller et al. present a similar approach. However, they consider more general

fuzzy integrals in which usual min and max operators are replaced with a t-norm and a

t-conorm. The two previous approaches rely on base classifiers that can deliver classification

scores, e.g. probabilistic classifiers.

In line with above approaches (but tailored for a given application), Gader et al. [38]

proposed a method for combining three classifiers for a handwritten word recognition task.

The authors combined the outputs of a hidden Markov model with those of a fuzzy hidden

Markov model and a segmentation-based classifier. They used the ranking of the top 5

possible lexicons produced by each classifier to heuristically compute the density7 functions

that are necessary to compute fuzzy integrals which are the decision functions. Choquet

integral reported higher classification accuracy as compared to Sugeno integral based fusion

or other rank-based combination schemes such as Borda and weighted Borda counts.

Another classical work relying on a fuzzy set theoretic step is the decision template

approach [68]. It also relies on base classifiers yielding classification scores. If si denotes

the score functions for the ith classifier, the vector [s1 ( x) , . . . ,sK (x)]t is called the decision

profile of the example x. At training time, the class wise averages of profiles are computed

7in the sense of fuzzy measures
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and are called decision templates. At test time, the predicted class is the one for which the

similarity between the profile of the test sample and one of the m templates is maximal. If

scores functions are seen as membership functions, then similarities can be computed using

aggregation operators for fuzzy sets.

The usefulness of fuzzy fusion for AdaBoost ensemble classifiers was studied in [66]. The

author recursively constructs an AdaBoost ensemble classifier by computing fuzzy densities

which, when fixed, are used to find fuzzy integrals to take a final decision. Multilayer neural

nets with one hidden layer were employed as elementary classifiers during an experimental

comparison of fuzzy and non-fuzzy combination algorithms. The results demonstrate the

benefits of fuzzy integrals in the combination allowing to yield better performances than

those of individual classifiers. Again, boosting is a particular form of aggregation which

is different from the problem we address in this thesis in which we cannot act on the base

classifiers which are taken as granted.

1.9 Conclusion

This chapter constitutes the state-of-the-art of this thesis. First, we stated the classification

problem and briefly reviewed some learning algorithms addressing this problem. We then

expressed some general motivations for combining classifiers. The major motivations

concerns statistical, representational and computational limitations as explained in section

1.3. These limitations may be prevented by a classifier aggregation. In addition, there are

other motivations about the usefulness of combination based solutions like breaking complex

classification problems in simpler ones and also like alleviating the difficulty of choosing

a classification algorithm without prior knowledge. In sections 1.5, 1.6, 1.7 and 1.8, we

presented some well known combination methods that are summarized in table 1.4. The

majority of them rely on base classifiers that are trained independently which is also the case

for our contributions in the following chapters where we develop classifier fusion methods

within two different uncertainty frameworks.

We decided to follow a similar track as the baseline probabilistic combination approach

presented in subsection 1.8.1 that consists in estimating the joint conditional distribution (eq

1.36). However, without independence assumption, the problem involves many parameters

which is computationally costly and may cause overfitting. But if we assume independence,

statistical dependence in classifier decisions is unfortunately neglected.

In this thesis, we intend to design novel combination methods that take advantage

of confusion matrices and in particular of the conditional distributions issued from these
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matrices. The proposed approaches are also conceived to handle statistical dependence

between classifiers which has several roots such as correlated training samples or the usage

of classifiers of the same type i.e. homogeneous classifier combination. Thus, our original

contributions are introduced in chapters 2 and 3 where two novel techniques are developed.

In the chapter 2, we propose to carry over the combination problem to the possibilistic

framework. To that end, each conditional probability distribution is transformed into a

possibility distribution. In possibility theory, many combination rules are available in the

literature and they do not involve computational difficulties. In particular, we investigate

parametrized t-norm based rules. The t-norm parameter is denoted λ and is a hyperparameter.

It is a scalar which we set using cross validated grid search to regulate the level of dependency

between classifiers.

In the chapter 3, we overcome the computation of the joint conditional distribution using

copula functions which are statistical models that handle dependencies between variables.

We take advantage of Sklar’s theorem which compute the joint conditional distribution out

of marginal conditional probabilities (from confusion matrices). We investigate Gaussian

copulas because they allow tractable combinations even if K is large. Similarly as for the

possibilistic approach, Gaussian copulas have a single hyperparameter that regulates the level

of dependencies between the variables ĉk|y and this hyperparameter is also tuned by grid

search.
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Table 1.4 Summarizing table for some combination approaches reviewed in this chapter.



Chapter 2

Possibilistic t-norm based combination

2.1 Introduction

The aim of this PhD is to develop new classifier fusion approaches in order to obtain better

generalization performances especially in situations where the dataset is distributed (as in

the decentralized learning setting) and we cannot make assumptions on the mechanisms

governing the partitioning of the data. To achieve this task, we propose to follow two

principles:

• make use of contextual information (either provided or estimated from a validation

set) in the combination scheme. We will typically use such information to derive

confidence level that can be given to an individual classifier within a panel.

• adapt the combination rule to the dependence between classifiers.

The type of contextual information considered in this manuscript is the one contained in

confusion matrices or related classifier performance pieces of information. Concerning

dependency, most of existing approaches rely on classifier independence assumptions as a

prerequisite. However, in practice, this assumption is very unlikely to be verified as classifiers

tend to perform well in the same region of the input space. When two classifiers are highly

dependent, they may excessively influence the combination result toward a given solution.

One solution to circumvent unjustified overconfidence is to resort to idempotent combination

operators. In the framework of possibility theory, the entrywise minimum of possibility

distributions is an idempotent operator. In this chapter, we propose a combination approach

that consists in carrying over the classifier fusion problem to the possibilistic framework.

In this framework, we examine t-norm based combination for possibility distributions as a
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flexible class of models that are robust to classifier dependence. We demonstrate through

several experiments that our possibilistic combination approach achieves competing gen-

eralization performances as compared to reference methods. We also include a classifier

fault tolerance study at the end of this chapter in which the added value of the proposed

approach is highlighted. Also, it should be stressed that although we discuss probabilistic or

possibilistic aggregation of classifiers we do not require that classifiers are also themselves

probabilistic or possibilistic therefore the combination mechanism considered applies to any

type of base classifier. Also, for the sake of interpretability of the numerical results, we

carry out our experiments on homogeneous ensembles but the approach is not limited to this

setting and can also combine heterogeneous ensembles.

In the following section, we further justify the benefits of possibilistic approaches in the

problem of classifier combination relying on classifier individual performances in parallel

architectures. Section 2.3 presents the possibility theory framework and the proposed t-norm

based possibilistic classifier combination. Section 2.4 contains several numerical experiments.

For seven different standard public datasets, we compare the aggregation performances for

three different classifier ensembles.

2.2 Combination problem statement

Our goal is to reconcile the predictions delivered by our ensemble of classifiers. If we picture

the set of those predictions as a vector, we can build a second stage classification step, or

meta-classifier that falls in the scope of the problem stated in the previous chapter. Indeed,

under 0-1 loss, the optimal decision rule consists in maximizing the following probabilities

w.r.t. y

p(y|ĉ1(x), ĉ2(x), .., ĉK(x)) . (2.1)

If ĉ denotes the aggregated prediction function, example x is classified as

ĉ(x) = argmax
y∈Ω

p(y|ĉ1(x), ĉ2(x), .., ĉK(x)) . (2.2)

We could think of estimating p(y|ĉ1, ĉ2, .., ĉK) based on the validation set just as the dis-

tributions {p(ĉk|y)}K
k=1 (or confusion matrices) are estimated. However, this frequentist

estimation problem is much more challenging. Indeed, each such distribution has m parame-

ters and there are mK such distributions. So we see that the dimensionality of the problem

does not scale well in both m and K.
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Applying Bayes formula, we have

p(y|ĉ1(x), ĉ2(x), .., ĉK(x)) ∝ p(ĉ1(x), ĉ2(x), .., ĉK(x)|y)× p(y) . (2.3)

Class probabilities can be derived from the confusion matrices but again, the estimation

of conditional joint distributions p(ĉ1(x), ĉ2(x), .., ĉK(x)|y) has the same complexity as the

estimation of the posterior.

Linear complexity can be achieved by making conditional independence assumptions

that allow each conditional joint distribution to factorize as the product of its marginals, that

is

p(y|ĉ1(x), ĉ2(x), .., ĉK(x)) ∝ p(y)×
K

∏
k=1

p(ĉi(x)|y) . (2.4)

In this approach, which will be referred to as the Bayes rule approach, we see that the

probabilities derived from confusion matrices allow to derive the aggregated classification

rule. Unfortunately, the independence assumptions are obviously not justified because the

classifiers output are highly correlated. Indeed, examples that are difficult to classify correctly

for classifier ĉi is usually also difficult to classify correctly for classifier ĉ j. This means

that the aggregate classifier will this time underfit. The dependence between classifiers has

its roots in several causes like for instance learning on shared examples, use of classifiers

of the same type, correlation between training examples. This accounts for the fact that

misclassifications for each ĉk occur most of the time with the same inputs. This observation

also motivated the derivation of boosting since this technique tries to circumvent this issue

by building (incrementally) a new classifier focusing on correctly classifying examples that

were misclassified by the others.

The above analysis justifies the need for models with higher capacity than the Bayes rule

approach but less than the frequentist approach. In this scope, an idea is to use a probability

distribution pooling model [35], i.e. to choose a parametric combination rule fθθθ such that

p(y|ĉ1(x), ĉ2(x), .., ĉK(x)) = fθθθ (p(y|ĉ1), .., p(y|ĉK)) , (2.5)

where θθθ is a vector of parameters which can be estimated using the validation set.

As outlined in 1.8.1, there are two main probability distribution combination model:

the linear and the logarithmic opinion pool. Each of these models is justified by a number
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of axiomatic properties. In both cases, the dimensionality of the parameter space is K.

There are algorithmic solutions [64, 45] in the literature allowing to learn parameters θθθ in a

machine learning context. However, these algorithms are either suboptimal or involve costly

optimization steps.

In this chapter, we intend to derive an approach that achieves better computational

tractability. We propose to carry over the combination problem to the possibilistic framework.

To that end, each conditional probability distribution p(y|ĉk (x) = ci) is transformed into a

possibility distribution π(k,ci)(y) where ci ∈Ω. In possibility theory, many combination rules

are available in the literature and they do not involve computational difficulties. In particular,

we investigate parametrized t-norm based rules. The t-norm parameter is denoted λ and is a

hyperparameter. It is a scalar which we set using cross validated grid search. Having set λ ,

the ensemble consensus possibility distribution writes

π
(ens,x)(y) = Tλ

(
π
(1,ĉ1(x))(y), . . . ,π(K,ĉK(x))(y)

)
, (2.6)

where Tλ denotes a t-norm. The range of values for λ allows to visit different models with

variable treatments of input distribution dependency.

But since π(ens,x) is not a probability distribution, we need to use another decision

theoretic setting than the minimization of expected loss against the posterior distribution.

Gilboa [42] showed that expected loss can also be computed in terms of Choquet integral

against non additive monotone measures (i.e. capacities). Following this philosophy, we will

use the following decision rule

ĉ(x) = argmax
y∈Ω

π
(ens,x) (y) . (2.7)

It is noteworthy that the range of values visited for λ allows the proposed approach to

fulfill our requirement of trade-off learning capacity as compared to the Bayes rule and

frequentist approaches. In particular, for the t-norm family considered later in section 2.3,

one value of λ achieves t-norm idempotence which offers a correct treatment of the maximal

dependency situation in which each ĉi are K copies of the same decision function. Indeed, in

this case we have π(ens,x) = π(1,ĉ1(x)) = . . .= π(K,ĉK(x)) and we make our decisions as if we

had only one base classifier. Other values will capture lower levels of dependencies between

the base classifiers.

The proposed method is presented in details (nature of the transformation and t-norms)

in the next section.



2.3 T-norm based possibilistic combination of classifiers 61

2.3 T-norm based possibilistic combination of classifiers

In this section, we give a detailed presentation of the proposed possibilistic approach to

dependent classifier combination. As previously mentioned, suitable t-norm rules for pos-

sibility measures combination will be used to aggregate classifier decisions based on their

estimated performances. We first recall basic notions of possibility theory as an uncertainty

representation framework and its connections with probability theory, then we present the

t-norm based combination process.

2.3.1 Basic background on possibility theory

Possibility theory was introduced by Zadeh in [102] and further developed by Dubois and

Prade [29] with the motivation to offer a well-defined and formal mathematical representation

for linguistic statements that permits handling imprecise or vague information. For instance,

the word cheap can be given a large set of values according to everyone’s subjective definition

and context of cheapness. Possibility values can be interpreted as degrees of feasibility of

event occurrence. An important difference with probability theory is that high possibility

values are non-informative while high probability values are. Indeed, a very high possibility

for event A means that, should A occur or not, we would not be surprised. If A has a very high

probability mass, then we would surprised that A does not occur. Conversely, low possibility

and probability values are both informative as they both indicated that an occurrence of A is

unlikely.

Possibility theory is also related to the theory of belief functions as it can be proved

that if a mass function is consonant (i.e. it has nested focal elements), then it is in bijective

correspondence with a possibility distribution. More generally, possibilities are a special

class of imprecise probabilities which is a framework in which probability values can only be

bracketed by two bounds. Indeed, the uncertainty of an event in the possibilistic framework is

better upraised by a pair of values (possibility and necessity) which can be seen as probability

bounds.

Possibility theory has its roots in fuzzy set theory. Indeed, suppose T is the set of events

B⊆Ω that are true and U is the set of undecided events (those that are neither true nor false).

Suppose also that T and U are fuzzy, then the necessity is the membership function of T

and the possibility is the membership function of T ∪U .

In the classifier combination approach introduced as part of this Ph.D., we are in line

with the imprecise probability theoretic interpretation of possibilities and several comments

in the remainder of this chapter are a consequence of this choice.
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Possibility distributions

In possibility theory, possibility distributions are the simplest class of objects that entirely

capture all information on our uncertainty. A possibility distribution π maps each element

in the universe of discourse to the unit interval [0,1] whose extreme values correspond to

impossible and totally possible states. The set of admissible probability distributions with

the upper and lower bound constraints induced by the possibility π is denoted by Pπ ⊆PΩ.

If any state ci ∈Ω has a possibility degree equal to 1, then this state (i.e. this class), is

totally possible and by convention the possibility distribution π is said to be normalized.

The imprecise probability interpretation is only valid if possibility distributions are normal

otherwise we would have p(Ω) < 1 for some probability distribution p in Pπ . We can

distinguish two particular situations of zero and full certainty when dealing with a possibility

distribution:

1. Full certainty: ∃ci ∈Ω, π(ci) = 1 and π(c j) = 0, ∀ c j ̸= ci.

2. Zero certainty (ignorance): π(ci) = 1, ∀ci ∈Ω.

For the sake of equation concision, we will use πi to denote π(ci) when necessary.

Possibility and necessity measures

A typical aspect of possibility theory and other theories compatible with imprecise proba-

bilities is the presence of two measures to describe uncertainty: necessity and possibility.

A necessity measure accounts for justified degrees of belief on each event in light of the

available information. The corresponding possibility measure evaluates to what extent one

can still say that an event is possible in the absence of any contradictory information. The

necessity and possibility measures are respectively the lower and upper probabilities in the

imprecise probability interpretation. Given a subset A of Ω, a possibility measure is given by:

Π(A) = max
ci∈A

π(ci) (2.8)

which means that the possibility of a subset A is equal to the maximum possibility degree

in this subset. A possibility measure is thus maxitive: Π(A∪B) = max(Π(A),Π(B)) as

opposed to probability measures which are summative. Observe that this property accounts

for the fact that the possibility distribution is enough information to compute the possibility

measure of any subset.
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The necessity measure is given by:

N(A) = 1−Π(Ā) = inf
ci /∈A

(1−π(ci)) (2.9)

Where Ā is the complement of A in Ω. The necessity measure is such that: N(A∩B) =

min(N(A),N(B)) and, in the normalized case, we have that Π(Ω) = N(Ω) = 1 and Π( /0) =

N( /0) = 0.

Probability-Possibility transformation

As justified in subsection 2.2, we need to convert conditional probability distributions

into possibility distributions in order to achieve our classifier fusion goal. Remembering

that the distributions in question are objective probabilities, the recommended choice is a

transformation due to Dubois and Prade [28] which preserves the statistical information

contained in the probabilities.

Considering a discrete probability distribution p on Ω, we can always permute the indexes

of the elements of Ω such that the set of probability values is sorted in descending order:

pi ≥ pi+1 for any i < m and where pi denotes p(ci). The transformation reads

πi =


1 if i = 1

πi−1 if i > 1 and pi = pi−1
m
∑
j=i

pi otherwise

. (2.10)

This transformation is reversible [30] (in the sense that p can recovered from π). It

produces a normalized possibility distribution. If p is uniform, then p is mapped to a constant

one π . If p is a Dirac mass then p is mapped to itself. It also has three important properties

[27]:

• consistency: ∀A⊆Ω, Π(A)≥ p(A) where Π is the possibility measure spanned by π .

So Π is a well defined upper probability.

• preference preservation: ∀(ci,c j) ∈ Ω2, pi > p j ⇔ πi > π j, so there is a form of

compatibility between the preferences encoded by π and those encoded by p.

• maximal specificity: π achieves maximal specificity among those possibility distri-

butions consistent and preserving preferences with p. Considering two possibility
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distribution π(1) and π(2), the possibility distribution π(1) is said to be more informa-

tive than π(2), denoted π(1) ⪯ π(2), if ∀i ∈ {1; . . . ;m}, π(1)(ci) ≤ π(2)(ci). We also

have π(1) ⪯ π(2)⇔P
π(1) ⊆P

π(2) which offers an intuitive justification regarding the

ability of relation ⪯ to capture informational content levels.

In the sequel, we will denote by π(k,ci) (y) the possibility distribution obtained from

p(y|ĉk (x) = ci) via the mechanism described in this subsection.

2.3.2 T-norm based combination

As outlined in 2.2, after obtaining the possibility distributions π(k,ci) (for all k ∈ {1, . . . ,K}
and all i ∈ {1, . . . ,m}), we need some mean to aggregate these latter in order to obtain a

single possibility distribution that will allow us to make a decision as to which class example

x belongs to. This possibility distribution can be regarded as a consensus summarizing the

information encoded in each π(k,ĉk(x)). The consensus possibility distribution is denoted by

π(ens,x). So in this subsection, we essentially examine candidate combination rules in the

possibilistic framework allowing to compute π(ens,x).

Combining dependent classifier decisions requires extra care. Suppose two classifiers

are identical (same training algorithm run on the same dataset) and consequently we have

ĉk = ĉk′ for some k ̸= k′. The solutions supported by this pair of redundant classifiers will

have an unjustified impact on the pooled ones. One possibility to circumvent this problem is

to resort to idempotent rules which will count functions ĉk and ĉk′ as one.

Conversely, it can also be argued that two learning algorithms trained on different datasets

may converge to very close decision functions ĉk ≈ ĉk′ . In this case, the classifier outputs

are also dependent but the fact that they reinforce some candidate solutions appears to be

justified because these outputs have their origins in different evidence. This well known

information fusion phenomenon calls for an adaptive fusion acting as a trade-off between

idempotent rules and rules with reinforcement.

As previously mentioned, we investigate t-norm operations Tλ as candidate combination

rules:

π
(ens,x) (y) = Tλ

(
π
(1,ĉ1(x)) (y) , . . . ,π(K,ĉK(x)) (y)

)
,∀y ∈Ω. (2.11)

This choice is compliant with our goal as it offers a continuum of combination rules involving

an idempotent one (minimum rule) and a reinforcing one (multiplicative rule). This coverage

is allowed by setting a single hyperparameter λ . Since it is not possible to predict whether

indempotence or reinforcement will be beneficial for a given classifier combination problem,
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we propose to learn λ from data through a cross-validation procedure. This will allow the

selected t-norm to capture the appropriate behavior.

In the remainder of this section, we give necessary backgrounds on t-norms and present

the t-norm family we recommend for classifier combination. A triangular norm, or t-norm, is

a well defined aggregation operator for possibility distributions as it is a mapping defined as

follows :
Tλ :[0,1]× [0,1]−→ [0,1]

(a,b)−→ Tλ (a,b)
(2.12)

This is sufficient to ensure that an element-wise combination of two possibility distributions

using a t-norm yields a possibility distribution. Note that this distribution may no longer

be normalized. We can renormalize the distribution by dividing it by its maximal value. If

this maximal value is null, then by convention, the renormalized distribution is constant one

(ignorance). In practice, this is not necessary as we maximize the distribution to classify an

example. This is only desirable in order to preserve the imprecise probability interpretation.

Besides, A t-norm is commutative, associative and has 1 as neutral element. Using these

properties, one is able to build a n-ary operator (also denoted Tλ ) as

Tλ : [0,1]n −→ [0,1]

(a1, ..,an) −→ Tλ (a1, ..,an) = Tλ (a1, ..,Tλ (an−1,an))
(2.13)

Any t-norm also possesses the monotonicity property which writes as follows: for any

a,b,c,d ∈ [0,1] such that a≤ c and b≤ d, then Tλ (a,b)≤ Tλ (c,d).

There are many t-norm families that are worth being investigated, but in this chapter

we limit our choice to Aczel-Alsina t-norm family since the differences in performances of

different t-norms families are not significant (proof in Appendix A). A non exhaustive list of

t-norm families are presented in Appendix A. The mathematical expression for Aczel-Alsina

family is given by

Tλ (a,b) = e−(|loga|λ+|logb|λ )
1
λ . (2.14)

For Aczel-Alsina family, the parameter λ has range [0;+∞]. The limiting rules are respec-

tively the drastic rule (if a= 1,Tλ (a,b) = b and if b= 1,Tλ (a,b) = a otherwise Tλ (a,b) = 0)

and the minimum rule. We can verify that for λ = 1, we obtain Tλ (a,b) = ab (multiplicative

rule). Observe that the Bayes rule and the multiplicative rule approaches coincide only if

classes and predicted classes by each classifier have a uniform probability distribution, which

has little chance to occur in practice.
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Fig. 2.1 Aczel-Alsina t-norm representation with respect to the parameter λ

A 3D-plot of t-norm for certain values of λ shows the influence of this parameter on the

shape of the mapping Tλ (Figure 2.1). For a given pair (a,b), Figure 2.1d shows that when λ

is equal to 1 the t-norm intersects the multiplicative rule while the minimum rule is retrieved

for large values of λ .

The fact that Aczel-Alsina family leads to tractable and well defined combinations of

possibility distributions are not sufficient to qualify it as a legitimate information fusion

operation. To that end, we give the following informational content argument: the consensus

possibility distribution obtained from Aczel-Alsina t-norm combination is idempotent when

λ →+∞ and progressively allows confidence reinforcement in predictions as λ decreases.

In mathematical terms, if π(1) and π(2) are two consistent input possibility distributions, i.e.
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∃ci ∈Ω s.t. π(1) (ci) = π(2) (ci) = 1 and λ < λ ′, then we have

π
(λ ) ⪯ π

(λ ′), (2.15)

where π(λ ) and π(λ ′) are the consensus distributions obtained respectively from Tλ and Tλ ′ .

This is an immediate consequence of the fact that when input distributions are consistent

there is no need to renormalize and that Tλ is an increasing function w.r.t. λ . In conclusion,

the fusion model can select an idempotent rule if the classifiers are extremely dependent or it

can deliver a result with increased informational content as we also have

P
π(λ ) ⊆P

π(1) ∩P
π(2). (2.16)

This follows from the fact that the least informative consensus distribution is achieved for

λ =+∞ and this distribution is the entrywise minimum of the input distributions.

When input distributions are not consistent (which may happen when classifiers disagree),

these results no longer hold because the renormalization might lead to poorly informative

consensus distributions. For instance, if input distributions are indicator functions of two

different classes, then, after renormalization, P
π(λ ) = PΩ. In general, the Aczel-Alsina

t-norm combination yields a consensus possibility distribution that is a compromise in light of

the inconsistent messages encoded by the input distributions. In particular, as a consequence

of the monotonicity of t-norms, we always have the following preference preservation

property regardless of input distribution consistency:

π
(1) (ci)≥ π

(1) (c j
)

and π
(2) (ci)≥ π

(2) (c j
)
⇒ π

(λ ) (ci)≥ π
(λ )

(
c j
)
. (2.17)

2.3.3 Hyperparameter tuning

One of the advantages of the proposed t-norm combination rule is the presence of a single

parameter to set, making the combination process more computationally tractable than other

rules which involve a number of parameters that is linear in the number of classifiers such as

linear or logarithmic opinion pool.

To ensure that a relevant value of λ is selected, we perform grid search for parameter

λ and retain the value producing maximal accuracy on the validation set. This value is our

estimate of λ denoted by λ̂ . This raises the question of the grid definition especially when λ

lives in an unbounded interval as in our case. It has been experimentally validated that a grid

resolution below 0.1 is not necessary which also accounts for the robustness of the proposed
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method. Also, as illustrated in Figure 2.1d , there is no need to investigate very high values

for λ as Tλ (as a function of λ ) converges rapidly. Once λ̂ is obtained, we re-train each

classifier on the whole dataset (training and validation) and we aggregate their outputs at test

time using T
λ̂

.

Before moving to the experimental section of this chapter, we summarize our global

combination approach in Algorithm 2. A less formal version of the same procedure is also

given in Algorithm 3. This algorithm has the following inputs: a training dataset Dtrain, a

validation dataset Dval, a set of supervised learning algorithms {train-algk}K
k=1, a t-norm Tλ

and a set which is denoted by gridλ of predefined values for the hyperparameter λ .

Algorithm 2: T-norm based possibilistic combination model (training)

Data: Dtrain, Dval, {train-algk}K
k=1, Tλ , and gridλ

1 for k ∈ {1, . . . ,K} do
2 Run train-algk on Dtrain to learn ĉk
3 Estimate p(y|ĉk = ci) using (1.23) and Dval

4 Obtain π(k,ci) (y) from p(y|ĉk = ci) using (2.10)

5 for λ in gridλ do
6 for

(
x(i),yi

)
∈Dval do

7 π(ens,x(i))← Tλ

(
π(1,ĉ1(x(i))), . . . ,π(K,ĉK(x(i)))

)
8 Obtain ĉ

(
x(i)

)
using (2.7)

9 Acc(λ )← Acc(λ )+ 1
nval
× Iy(i)

(
ĉ
(

x(i)
))

10 λ̂ ← argmax
λ∈gridλ

Acc(λ )

11 for k ∈ {1, . . . ,K} do
12 Run train-algk on Dtrain∪Dval to learn ĉk

13 return ĉ1, . . . , ĉK,π
(1,1), . . . ,π(K,m) and λ̂

For more reliable estimates, it is recommended to embed Algorithm 2 in a cross-validation

loop to split the initial dataset into Dtrain and Dval as we do in the experiments. After λ̂ is

obtained, re-training the ĉk’s on Dtrain∪Dval is an optional step. Finally, the selection of

λ̂ in Algorithm 2 is performed by maximizing the estimated accuracy Acc(λ ) but other

performance criteria could be used instead.
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Algorithm 3: T-norm based possibilistic combination model (training)

Data: Dtrain, Dval, {train-algk}K
k=1, Tλ , and gridλ

1 for k ∈ {1, . . . ,K} do
2 Run train-algk on Dtrain to learn ĉk
3 Estimate probability distribution p(y|ĉk = ci) using confusion matrices
4 Obtain possibility distributions π(k,ci) (y) using Dubois Prade (2.10)

5 for λ in gridλ do
6 for

(
x(i),yi

)
∈Dval do

7 Combine possibility distributions π(k,ci) (y) using Tλ to obtain π(ens,x(i))

8 Obtain ĉ
(

x(i)
)

using (2.7)

9 Compute accuracy Acc(λ )

10 λ̂ ← argmax
λ∈gridλ

Acc(λ )

11 for k ∈ {1, . . . ,K} do
12 Run train-algk on Dtrain∪Dval to learn ĉk

13 return ĉ1, . . . , ĉK,π
(1,1), . . . ,π(K,m) and λ̂

2.4 Application on real datasets

This section contains several experimental results assessing the benefits of our possibilistic

classifier combination approach. We also comment on the statistical validation of the results.

2.4.1 Datasets

To demonstrate the effectiveness of the proposed possibilistic aggregation method, we tested

it on 7 datasets from the UCI repository and the Scikit-learn python library. They exhibit

differences in the number of examples, number of classes and in the number of features.

The selected datasets are: Digits, Waveform, Cancer, CNAE, MNIST, Wine, Segments.

Table.2.1 gives more details on their specificities. Repeated performance discrepancies across

heterogeneous datasets are featuring the ability of an ensemble method to be applicable in

different applicative contexts.

2.4.2 Base classifiers

Three classification algorithms have been chosen to yield the information sources for the

classification tasks: decision trees, naive Bayesian and logistic regression. The differences in
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Datasets # samples # features # classes
Digits 1797 64 10

Waveform 5000 21 3
Wine 178 13 3

Cancer 801 20531 5
Segments 2310 19 7

CNAE 1080 856 9
MNIST 70000 784 10

Table 2.1 Dataset specifications

the classification philosophy for each algorithm is the reason behind our choice. Decision

trees are learned using a non-parametric algorithm, logistic regression is a discriminative

probabilistic classifier while naive Bayesian is a generative probabilistic classifier.

For each type of classifier, a homogeneous ensemble with parallel architecture of K = 3

classifiers is built, i.e. three decision trees, three logistic regressions or three naive Bayes

classifiers but no mix of those. Appendix C gives the details of the chosen hyperparameter

values and optimization techniques (when applicable) for each algorithm. Each member in

the ensemble has identical initial settings however they do not see the same data and thus

converge to different decision functions ĉk.

In short, the choices made for each algorithm consists in making them working moderately

well as absolute performance values do not matter here. Indeed, relative performances

among combination methods is what we seek as a fusion should work regardless of the

parametrization quality.

2.4.3 Desirable experimental conditions to assess combination perfor-
mances

Experiment design to compare classifier combination methods must take into account the

following points:

• We need to avoid situations in which one of the base classifiers dominates the others in

every aspects otherwise we should perform classifier selection, not fusion. Selection

can be viewed as a special class of fusion but it can usually be achieved at a much

lower computational cost.

• The base classifiers should preferably be weak, i.e. underfit the data. In this situation,

fusion allows to visit a larger hypothesis set than those of base classifiers and we
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can hope for improved accuracy. This is actually the basic idea of boosting which

aggregates weak homogeneous classifiers in a sequential scheme to produce a strong

ensemble. Ensemble methods can also mitigate overfitting but performance discrepan-

cies will usually not have the same order of magnitude as in the underfitting case and

thus it is harder to achieve statistical significance.

Some hyperparameter choices reflect our will to underfit. The maximum depth parame-

ter of the classification trees is set to 3. Logistic regression is a linear model and naive

Bayes relies on unrealistic class conditional independence assumptions which make

these two prone to underfitting.

• The classifiers should learn from complementary pieces of information and yield

diverse decision functions. Obviously, combining three nearly identical functions is

pointless. We propose to train the base classifiers on mutually exclusive subsets of

features to make them diverse enough. The next subsection details this procedure.

Note that making them learn on different datasets does not imply a dramatically higher

independence of their outputs as there are redundant information across features.

2.4.4 Implemented experimental protocol

As justified in the preceding paragraphs, it is necessary to (artificially) create diversity in

classifier decisions so that the fusion process has the ability to bring an added value. Thus,

after a random shuffle of the example entry indexes, we train the three base classifiers on

three mutually exclusive sets of attributes in the feature space. Let ϕ denote a permutation

on {1; . . . ;d} where d is the dimensionality of input space. Any example x(i) is split into

three smaller examples x(i,k), k ∈ {1;2;3} in this way

x(i,1) = x(i)
ϕ(1):ϕ( d

3)
, x(i,2) = x(i)

ϕ( d
3+1):ϕ( 2d

3 )
and x(i,3) = x(i)

ϕ( 2d
3 +1):ϕ(d)

. (2.18)

In the above equation, we assume that d is a multiple of K = 3 for simplicity. If not,

the floor function should be used to obtain an integer. In other words, this experimental

protocol is similar to the random space method [46] if we drew d
K examples uniformly

without replacement.

Splits are repeated over 100 iterations to allow reliable performance estimations. After

each feature split, we wrap algorithm in a stratified 2 fold cross valiation (CV) loop (train/test

split) so that half of the data points are used for performance evaluation only. Another level
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of CV is applied to the train set to obtain Dtrain and Dval (see Algorithm 2). We use a 10 fold

stratified CV for this second loop.

2.4.5 Combination method performances

The performances of the t-norm based possibilistic combination of classifiers is compared

with the following benchmark of approaches :

• minimum rule based possibilistic combination,

• multiplicative rule based possibilistic combination,

• Bayes rule approach,

• weighted voting combination based on accuracies,

• meta classifier trained using stacking,

• classifier selection based on cross validated estimation of accuracies,

• maximally accurate individual classifier,

• centralized classifier trained on all training data.

Minimum and multiplicative rule approaches are equivalent to the t-norm based combina-

tion for specific values of λ . They are thus interesting to monitor to prove that adding one

degree of liberty corresponding to the choice of λ is useful and that automatically tuning λ

by cross validation works. The Bayes rule and the voting approaches are gold standards in

the class of classifier ensemble methods. Since we are combining classifiers, a comparison

with a learned fusion method is interesting. Thus, we examine the performances of stacking.

Classifier selection allows us to show that, in general, fusion is more efficient than selection.

We also provide the performances of the maximally accurate individual classifier, i.e. a

classifier selection performed by an oracle which has access to the true performances (not

estimations of these), and of the centralized classifier trained on all the data.

Results of classification trees, logistic regressions and naive Bayes classifiers are pre-

sented in tables 2.3, 2.4 and 2.5 respectively. For each experiment, the best accuracy is in bold

characters. It is clear that the possibilistic t-norm combination outperforms the possibilistic

minimum rule in the majority of the situations. Similarly, it outperforms stacking approach

and the standard weighted vote very often. The t-norm possibilistic combination also achieves

higher accuracy than classifier selection (except for the segments dataset when combining
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naive Bayes base classifiers). The oracle classifier selection has more competitive results

but is still outperformed by our approach in a majority of experiments. The oracle classifier

selection is anyway just a reference and cannot be implemented in practice. However, the

possibilistic t-norm combination method is always outperformed by the probabilistic Bayes

rule and it achieved comparable results with the possibilistic product rule. This indicates that

the proposed experimental protocol induces a low level of dependency between classifiers

even when the combined base classifiers are homogeneous.

Classifiers Poss. t-norm Poss. mult. Poss. min Proba. Bayes Stacking Weighted Vote Clf. Selection

Classification trees 2.71 2.28 4.42 1 6.14 4.85 5.57

Logistic regression 2.42 2.14 4.85 1.14 6.23 3.55 4.71

Naive Bayesian 3 2.28 5 1 6.57 4.71 5.71

Table 2.2 Average ranking of the combination methods across the seven datasets.

As expected, all combination approaches showed modest performances as compared to

the centralized classifier because the latter has the advantage of observing all the training

data in contrast to other methods that are only learned on limited fractions of the data. A

striking exception to this conclusion can be observed for the decision tree ensembles. We

believe this is explained by the drastic parametrization we chose (maximal depth = 3) which

implies that the centralized decision tree underfits while ensembles can converge to more

complex decision functions. In order to have a better view of the results and to draw strong

conclusions, we present the rankings of all combination (and selection) approaches across all

datasets for each classifier triplets. Obviously, the results of the table 2.2 demonstrate that the

possibilistic t-norm combination has the third rank in average among all other combination

methods (including classifier selection).

In addition, in many experiments, the classification accuracy discrepancies are greater

than the corresponding standard deviations. Nevertheless, a statistical analysis is necessary

to upraise their significance. We comment on this point in the next subsection. Also, each

method classifies test samples in a meaningful way as compared to a random classifier. Some

of the learned ensembles or base classifiers are nonetheless weak but remember that we

have designed the experiments in this aim because the point here is to compare combination

methods not to achieve state-of-the-art classification performances on each dataset.

In conclusion, these experiments demonstrate that the Bayes rule combination and the

product rule outperform our proposed approach in the situation induced by the experimental

protocol. We think that this protocol induces high independence levels−by training classifiers
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on disjoint feature sets− for which a rule involving reinforcement is very suitable. To prove

the interest of our method, the level of dependence in classifier decisions sould be increased.

To do so, we decided to add to the ensemble of classifiers, a number of copies of a dummy

classifier. This modification in the experimental protocol is actually very interesting because

it allows to examine the robustness of the proposed method at two levels. The first one

is the robustness to the dependency level because adding copies of the same classifier

certainly increase dependency. The second one is the robustness to fault tolerance since

dummy classifier decisions can be considered as noisy information. The results of these new

experiments are provided in section 2.5.

Method Digits Waveform Cancer CNAE Segments Wine MNIST
Poss. t-norm 67.85 ± 3.38 75.23 ± 1.08 90.76 ± 2.82 47.07 ± 4.38 73.63 ± 5.75 88.79 ± 4.04 62.62 ± 1.65

Poss. mult. 68.77 ± 3.13 75.31 ± 1.00 91.55 ± 2.85 46.06 ± 4.83 73.49 ± 5.48 92.65 ± 2.42 62.63 ± 1.58

Poss. min. 63.18 ± 3.43 63.86 ± 2.35 90.25 ± 2.68 45.43 ± 4.77 73.35 ± 5.59 86.17 ± 3.57 58.78 ± 1.16

Proba. Bayes 72.01 ± 2.61 75.51 ± 0.93 92.40 ± 2.85 56.56 ± 3.52 75.49 ± 6.53 93.34 ± 2.11 64.59 ± 1.24

Stacking 34.21 ± 4.61 70.51 ± 1.56 85.20 ± 3.45 32.40 ± 5.98 59.82 ± 7.50 80.41 ± 8.95 37.20 ± 3.65

Weighted Vote 53.05 ± 3.62 75.08 ± 1.06 88.69 ± 0.57 30.92 ± 4.58 61.48 ± 6.07 92.35 ± 2.37 44.44 ± 1.65

Clf. Selection 47.97 ± 3.28 69.08 ± 1.21 86.72 ± 1.08 31.20 ± 2.19 61.73 ± 5.08 81.98 ± 6.16 43.37 ± 0.92

Max. Ind. Clf. 49.97 ± 2.61 70.10 ± 0.90 87.76 ± 1.01 33.27 ± 1.45 62.37 ± 4.69 89.94 ± 2.36 43.37 ± 0.92

Centralized Clf. 44.78 ± 2.57 70.89 ± 0.75 87.18 ± 0.66 35.02 ± 0.86 58.37 ± 2.80 89.49 ± 2.60 43.37 ± 0.92

Table 2.3 Average accuracies (± standard deviations) of the combination of three decision
trees with limited maximum depth (=3) over 100 iterations.
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Method Digits Waveform Cancer CNAE Segments Wine MNIST
Poss. t-norm 89.91 ± 1.27 83.24 ± 0.64 99.81 ± 0.06 84.08 ± 2.21 90.70 ± 1.23 88.85 ± 3.40 88.20 ± 0.07

Poss. mult. 91.32 ± 0.67 83.34 ± 0.60 99.81 ± 0.06 85.21 ± 1.42 90.68 ± 1.38 90.06 ± 3.21 86.46 ± 0.0005

Poss. min. 84.64 ± 1.09 71.59 ± 1.15 99.76 ± 0.05 76.43 ± 2.26 89.43 ± 1.25 87.84 ± 3.35 81.09± 0.0005

Proba. Bayes 91.46 ± 0.67 83.44 ± 0.57 99.81 ± 0.06 89.31 ± 1.20 91.15 ± 1.23 91.47 ± 1.84 87.46 ± 0.0

Stacking 31.33 ± 3.88 74.24 ± 3.41 61.95 ± 6.26 28.35 ± 3.56 49.62 ± 4.88 59.83 ± 9.14 48.21 ±0.009

Weighted Vote 89.46 ± 0.88 83.26 ± 0.69 99.81 ± 0.06 79.11 ± 2.20 86.02 ± 2.60 88.45 ± 3.54 77.54 ± 0.0003

Clf. Selection 85.89 ± 2.20 78.09 ± 1.59 99.81 ± 0.07 72.15 ± 3.79 85.83 ± 3.76 85.72 ± 4.73 84.68 ± 0.0005

Max. Ind. Clf. 86.85 ± 1.63 78.70 ± 1.29 99.84 ± 0.07 73.86 ± 3.05 86.26 ± 3.42 88.96 ± 2.55 84.68 ± 0.0006

Centralized Clf. 95.12 ± 0.44 86.52 ± 0.23 99.82 ± 0.06 93.47 ± 0.52 92.20 ± 0.27 94.85 ± 1.19 90.75 ± 0.0002

Table 2.4 Average accuracies (± standard deviations) of the combination of three logistic
regression classifiers 100 iterations.

Method Digits Waveform Cancer CNAE Segments Wine MNIST
Poss. t-norm 79.13 ± 2.47 79.59 ± 0.81 83.46 ± 2.00 78.93 ± 2.81 84.21 ± 2.13 92.10 ± 2.71 64.64 ± 1.11

Poss. mult. 79.90 ± 2.45 79.91 ± 0.76 84.59 ± 1.43 80.39 ± 1.82 83.57 ± 2.47 94.80 ± 1.86 64.55 ± 1.08

Poss. min. 74.17 ± 2.62 70.98 ± 2.04 78.78 ± 2.06 70.80 ± 2.39 82.81 ± 2.33 90.66 ± 2.73 60.37 ± 1.08

Proba. Bayes 82.10 ± 1.93 80.00 ± 0.80 88.52 ± 1.42 86.23 ± 1.36 85.31 ± 1.92 95.13 ± 1.61 66.72 ± 1.10

Stacking 59.57 ± 5.41 78.16 ± 1.08 73.77 ± 4.97 61.52 ± 4.90 75.77 ± 4.07 86.58 ± 9.30 43.88 ± 1.89

Weighted Vote 69.36 ± 3.21 78.51 ± 0.74 83.98 ± 1.37 70.04 ± 2.20 73.11 ± 1.93 94.78 ± 1.77 46.90 ± 1.06

Clf. Selection 67.43 ± 5.23 75.88 ± 1.82 77.57 ± 2.42 65.33 ± 3.68 77.26 ± 4.35 89.92 ± 3.47 50.67 ± 2.02

Max. Ind. Clf. 68.35 ± 4.40 76.57 ± 1.37 79.60 ± 1.46 66.83 ± 2.70 77.83 ± 3.97 93.29 ± 1.73 50.67 ± 2.02

Centralized Clf. 83.43 ± 1.24 80.93 ± 0.10 81.62 ± 2.01 90.02 ± 0.99 79.71 ± 0.50 96.90 ± 1.08 50.67 ± 2.02

Table 2.5 Average accuracies (± standard deviations) of the combination of three naive
Bayesian classifiers with Gaussian class conditional distribution over 100 iterations.

2.4.6 Statistical validation

To draw reliable conclusions based on the experiments presented in the previous subsection,

we use a statistical test to validate the significance of performance discrepancies between
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the t-norm fusion method and concurrent approaches (multiplicative, minimum, Bayes

rules, stacking, weighted voting, selected and maximally accurate base classifiers and the

centralized classifier). To that end, we apply a Wilcoxon signed-rank test.

The Wilcoxon signed-rank test scope is to compare repeated measurements of two

variables in order to decide if there is a statistically significant difference in the two series

of measurements. It is a non parametric hypothesis test in which differences between pairs

of values are computed and interpreted according to two pre-defined hypotheses (null and

alternative hypotheses denoted by H0 and H1). The outputs of the test are a statistic (roughly

speaking the sum of the ranks) and a p-value. The two series of measurements in our case

are the series of accuracies of two approaches. The detailed tables are presented in Appendix

B. Each table contains 5 columns: name of the dataset, the value of the statistic, the p-value,

the conclusion of the test (i.e. passed or not) and the outperforming classification method if

the test is passed. Note that we considered a threshold of 5% to reject the null hypothesis,

i.e. if p-value ≤ 0.05. Having a p-value below this threshold means that the examined series

of accuracies is highly unlikely under the null hypothesis which is thus rejected. The null

hypothesis in this test states that the distribution of accuracy signed differences is symmetric.

Pairs of methods # ✓ # ✗ #t-norm wins #t-norm loses #tie
t-norm vs. Mult. 16 5 3 12 1
t-norm vs. Min 21 0 21 0 0

t-norm vs. Bayes 21 0 0 20 1
t-norm vs. Stacking 21 0 21 0 0

t-norm vs. Weighted vote 20 1 16 3 1
t-norm vs. Clf. Selection 21 0 21 0 0
t-norm vs. Max. Ind. Clf. 20 1 17 3 0

t-norm vs. Centralized Clf. 19 2 9 10 0
Table 2.6 Synthetic summary of Wilcoxon tests. Detailed tables are found in B.

Table 2.6 summarizes pairwise comparisons between the t-norm based possibilistic approach

to each concurrent one. The Wilcoxon signed-rank test shows that the results of the previous

subsection are statistically validated since in the majority of the situations the test is passed.

The t-norm possibilistic rule achieves better accuracies than many approaches except for

Bayes combination. The t-norm also showed comparable results to the possibilistic product

rule. Thus, the conclusions of the previous subsection are confirmed.
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2.5 Classifier fault tolerance study

In order to check the tolerance of the combination to noisy information, we carry out several

experiments in which we inject unreliable information sources. For each experiment, we

kept the previous base classifier pool, i.e. decision trees, naive Bayes classifiers and logistic

regressions, but we added a number of dummy classifiers1 to the classifiers pool. We began

by adding one dummy classifier to the three base classifiers and progressively add up to 25

copies of this dummy classifier.

Rankings of each method, for each situation, are presented in tables 2.7, 2.8 and 2.9. The

performances of the possibilistic multiplicative and the probabilistic Bayes rules are degraded

as the amount of noisy information increases, i.e. adding {1, ..,25} dummy classifiers. This

is probably due to the fact that these two combination rules are based on «multiplicative

type of operations» which is a non-idempotent operation and reinforces the impact of

irrelevant predictions each time a new dummy classifier is added. In contrast, the possibilistic

minimum rule obtains better ranks when we increase the number of dummy classifiers.

This is compatible with the previous conclusion since the minimum rule is an idempotent

operation which takes into consideration only once the same noisy information regardless

how many copies of the dummy classifier are added. As expected, as we increased the

number of dummy classifiers the weighted vote shows very poor performances as compared

to other approaches. The t-norm possibilistic combination achieves better performances than

the Bayes rule and the multiplicative possibilistic rules in case of high amount of noise while

it achieves better performances than the minimum rule in case of low amount of noise. This

is due to its flexibility and ability to adapt itself to different dependency levels between the

classifiers thanks to the parameter λ . In addition, the variation in the ranking of the t-norm

approach across the lines in tables 2.7, 2.8 and 2.9 is smoother the Bayes and possibilistic

minimum approaches which seems to be a form of compromise and robustness. Observe

that when a large number of dummy classifiers is added, the minimum possibilistic rule

outperforms the t-norm approach which tends to show that the estimation of λ is suboptimal

in these experiments.

It is also obvious that the t-norm is better ranked than the stacking approach for the three

different classifier ensembles. However, the classifier selection becomes more competitive

than other combination approaches, as the amount of noisy information increases. This is

1A dummy classifier assigns all test samples to the most frequent class in the training set. We used the
implementation from the python Scikit-learn library 0.17.1 sklearn.dummy.DummyClassifier()
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due to the fact that the selection process discards completely noisy information in contrast to

combination methods that take them into consideration.

In order to get better insights of the results, we present the variation of accuracies for

each dataset for the three classifier ensembles (decision trees, logistic regressions and the

naive Bayesian classifiers). For the sake of clarity, we provide the accuracies of the most

competitive methods among all approaches according to the ranking tables, thus stacking and

weighted vote are excluded from these figures. Accuracies are presented in Figure 2.3 where

the x−axis represents the number of added dummy classifiers and the y−axis represents the

accuracy. The legend of the figures are in the caption.

By observing the variation of accuracies as the amount of noise increases, we notice that

the possibilistic product rule and the probabilistic Bayes rules have the largest variations

while the t-norm possibilistic rule, the minimum rule and the classifier selection manage

themselves to be more robust.

Classifier fault tolerance experiments demonstrate that the proposed approach obtains

some of the best accuracies among other combination methods when noisy information

sources are injected in classifier decisions (except for the MNIST dataset). In addition, it

has been outlined that a classifier selection might be more advantageous than a combination

technique when there is a high level of noise and also that a better estimation method of

the parameter λ could be envisaged. Actually, the estimated accuracies used in classifier

selection could be used to discard irrelevant classifiers before performing classifier fusion.

In conclusion, the experiments of section 2.4.5 showed that multiplication-based rules

(Bayes rule and possibilistic product rule) achieve higher performances than the possibilistic

t-norm rule due to the low level of dependency induced by the experimental protocol.

However, the modification of the protocol −by adding dummy classifiers− proved that

the t-norm possibilistic rule achieves more stable performances than all other combination

rules (including classifier selection). This allows us to deduce that the proposed approach is

suitable to combine dependent classifiers thanks to its parameter λ and also tolerant to the

presence of noisy classifiers. Thus, the major benefit of the t-norm possibilistic rule is the

robustness which was previously claimed in the manuscript.
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Classifiers Poss. t-norm Poss. mult. Poss. min Proba. Bayes Stacking Weighted Vote Clf. Selection
Base + 1 dummy 2.43 2.86 4.43 1.0 6.43 5.29 5.57

Base + 2 dummies 2.86 3.86 3.71 1.0 5.86 6.43 4.29
Base + 3 dummies 3.14 4.71 2.86 1.0 5.14 7.0 4.14
Base + 4 dummies 2.86 5.14 2.57 1.43 5.0 7.0 4.0
Base + 5 dummies 3.29 5.86 2.43 1.57 4.29 7.0 3.57
Base + 6 dummies 3.0 5.86 2.43 2.0 4.14 7.0 3.57
Base + 7 dummies 2.86 5.86 2.29 2.29 4.14 7.0 3.57
Base + 8 dummies 2.86 6.0 2.29 2.43 4.0 7.0 3.43
Base + 9 dummies 3.0 6.0 2.29 2.57 4.0 7.0 3.14
Base + 10 dummies 2.86 6.0 2.29 2.57 4.0 7.0 3.29
Base + 11 dummies 2.43 5.14 2.14 2.43 3.29 6.0 2.57
Base + 12 dummies 2.57 5.14 2.14 2.57 3.14 6.0 2.43
Base + 13 dummies 2.57 5.14 2.14 2.57 3.14 6.0 2.43
Base + 14 dummies 2.43 5.14 2.0 2.86 2.86 6.0 2.71
Base + 15 dummies 2.29 5.14 2.0 3.14 2.86 6.0 2.57
Base + 16 dummies 2.57 5.14 1.71 3.0 2.86 6.0 2.71
Base + 17 dummies 2.71 5.14 2.14 2.86 2.71 6.0 2.43
Base + 18 dummies 2.43 5.14 2.0 3.0 2.71 6.0 2.71
Base + 19 dummies 2.71 5.14 2.43 3.0 2.57 6.0 2.14
Base + 20 dummies 2.71 5.14 2.0 3.14 2.71 6.0 2.29
Base + 21 dummies 2.71 5.29 2.14 3.14 2.71 5.86 2.14
Base + 22 dummies 2.71 5.29 2.0 3.14 2.71 5.86 2.29
Base + 23 dummies 2.71 5.29 2.0 3.14 2.71 5.86 2.29
Base + 24 dummies 2.57 5.29 1.86 3.43 2.71 5.86 2.29
Base + 25 dummies 2.43 5.29 2.0 3.29 2.71 5.86 2.43

Table 2.7 Average ranking of the combination methods across the seven datasets. The base
classifiers are a triplet of classification trees to which dummy classifiers are added.
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Classifiers Poss. t-norm Poss. mult. Poss. min Proba. Bayes Stacking Weighted Vote Clf. Selection
Base + 1 dummy 2.86 2.86 5.71 1.14 6.71 4.14 4.57

Base + 2 dummies 3.43 3.71 5.0 1.14 6.43 5.43 2.86
Base + 3 dummies 3.71 4.86 3.71 1.14 5.43 7.0 2.14
Base + 4 dummies 3.43 5.14 3.43 1.29 5.43 7.0 2.29
Base + 5 dummies 3.29 5.29 3.29 1.57 5.29 7.0 2.29
Base + 6 dummies 3.57 5.43 3.14 1.57 5.0 7.0 2.29
Base + 7 dummies 3.57 5.43 2.86 1.86 5.0 7.0 2.29
Base + 8 dummies 3.43 5.57 2.71 2.0 4.86 7.0 2.43
Base + 9 dummies 3.29 5.57 2.71 2.14 4.86 7.0 2.43
Base + 10 dummies 3.43 5.57 2.57 2.0 4.86 7.0 2.57
Base + 11 dummies 2.57 4.86 2.57 2.14 3.86 6.0 2.0
Base + 12 dummies 2.71 4.86 2.43 2.14 3.71 6.0 2.14
Base + 13 dummies 2.57 4.86 2.29 2.29 3.57 6.0 2.43
Base + 14 dummies 2.57 4.86 2.29 2.29 3.57 6.0 2.43
Base + 15 dummies 2.57 4.86 2.29 2.29 3.57 6.0 2.43
Base + 16 dummies 2.71 5.0 2.14 2.29 3.43 6.0 2.43
Base + 17 dummies 2.57 5.0 2.14 2.43 3.43 6.0 2.43
Base + 18 dummies 2.57 5.0 2.0 2.57 3.43 6.0 2.43
Base + 19 dummies 2.57 5.0 2.43 2.57 3.43 6.0 2.0
Base + 20 dummies 2.43 5.14 2.43 2.71 3.43 5.86 2.0
Base + 21 dummies 2.43 5.14 2.43 2.71 3.43 5.86 2.0
Base + 22 dummies 2.43 5.14 2.43 2.86 3.29 5.86 2.0
Base + 23 dummies 2.43 5.14 2.43 2.86 3.29 5.86 2.0
Base + 24 dummies 2.29 5.14 2.29 3.14 3.29 5.86 2.0
Base + 25 dummies 2.71 5.14 2.29 2.71 3.29 5.86 2.0

Table 2.8 Average ranking of the combination methods across the seven datasets. The base
classifiers are a triplet of logistic regressions to which dummy classifiers are added.
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Classifiers Poss. t-norm Poss. mult. Poss. min Proba. Bayes Stacking Weighted Vote Clf. Selection
Base + 1 dummy 2.71 3.14 5.86 1.0 6.0 4.86 4.43
Base + 2 dummy 3.57 3.57 4.57 1.0 5.57 6.71 3.0
Base + 3 dummy 3.43 5.29 3.43 1.14 5.14 7.0 2.57
Base + 4 dummy 3.71 5.43 3.14 1.29 4.86 7.0 2.57
Base + 5 dummy 3.29 5.57 2.86 1.43 5.0 7.0 2.86
Base + 6 dummy 3.43 5.57 2.71 1.43 5.0 7.0 2.86
Base + 7 dummy 3.29 5.57 2.43 2.0 5.0 7.0 2.71
Base + 8 dummy 3.29 5.71 2.43 2.0 4.86 7.0 2.71
Base + 9 dummy 3.29 5.86 2.43 2.0 4.86 7.0 2.57
Base + 10 dummy 3.29 6.0 2.43 2.0 4.71 7.0 2.57
Base + 11 dummy 2.71 5.0 2.29 1.86 4.29 6.0 1.86
Base + 12 dummy 2.71 5.0 2.14 2.0 4.43 6.0 1.71
Base + 13 dummy 2.43 5.0 1.86 2.29 4.43 6.0 2.0
Base + 14 dummy 2.57 5.14 1.71 2.29 4.29 6.0 2.0
Base + 15 dummy 2.57 5.0 1.71 2.29 4.43 6.0 2.0
Base + 16 dummy 2.57 5.0 1.71 2.29 4.43 6.0 2.0
Base + 17 dummy 2.43 5.0 1.86 2.29 4.43 6.0 2.0
Base + 18 dummy 2.29 5.14 1.71 2.57 4.43 5.86 2.0
Base + 19 dummy 2.57 5.14 2.0 2.57 4.29 5.86 1.57
Base + 20 dummy 2.57 5.14 2.0 2.57 4.29 5.86 1.57
Base + 21 dummy 2.43 5.14 1.86 2.86 4.29 5.86 1.57
Base + 22 dummy 2.43 5.14 2.14 2.57 4.29 5.86 1.57
Base + 23 dummy 2.57 5.14 1.86 2.71 4.29 5.86 1.57
Base + 24 dummy 2.29 5.14 1.86 3.0 4.29 5.86 1.57
Base + 25 dummy 2.43 5.14 1.71 3.0 4.29 5.86 1.57

Table 2.9 Average ranking of the combination methods across the seven datasets. The base
classifiers are a triplet of naive Bayesian to which dummy classifiers are added.
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(a) Digits (decision trees) (b) Digits (log. reg.) (c) Digits (naive Bayesian)

(d) Waveform (decision trees) (e) Waveform (log. reg.) (f) Waveform (naive Bayesian)

(g) Cancer (decision trees) (h) Cancer (log.reg.) (i) Cancer (naive Bayesian)

(j) Wine (decision trees) (k) Wine (log. reg.) (l) Wine (naive Bayesian)

(m) Segments (decision trees) (n) Segments (log. reg.) (o) Segments (naive Bayesian)

(p) CNAE (decision trees) (q) CNAE (log. reg.) (r) CNAE (naive Bayesian)



2.5 Classifier fault tolerance study 83

(a) MNIST (decision trees) (b) MNIST (log. reg.) (c) MNIST (naive Bayesian)

Fig. 2.3 Global accuracies for all datasets. The t-norm rule (—), Bayes rule (—), possibilistic
product rule (—), minimum rule (—), classifier selection (—).
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2.6 Conclusion

This chapter presents the first original contribution of this Ph.D. We propose a new classifier

combination strategy based on the estimated performances of the base classifiers. The

estimated performances are conditional probabilities of the true class label given the label

prediction issued by a base classifier. They are obtained via cross validation and they are

derived from confusion matrices. In order to make optimal decision on the true class label

given all the classifier predictions, one needs to maximize the probability of the true class

label given the predicted ones. This maximization is not possible with limited complexity

unless one makes unrealistic conditional independence assumptions. In this approach, we

propose to circumvent independence assumptions by transposing the combination problem

in the possibility theory framework. In this framework, we can apply parametrized t-norm

rules to aggregate information contained in the confusion matrices. The proposed method

is flexible regarding two important aspects: the parameter of the t-norm allows a variety

of treatments of dependence issues and there is no pre-requisite on the base classifiers

constituting the ensemble.

The method was tested on 7 datasets with the Aczel-Alsina t-norm family and homoge-

neous ensembles of three classifiers. Several supervised learning algorithms have been tested

to train the base classifiers. The results report a significant accuracy increment for our possi-

bilistic approach to dependent classifier combination as compared to 3 other combination

methods (possibilistic minimum rules, weighted vote and stacking) and to classifier selec-

tion. Our approach achieves close levels of performances as compared to the possibilistic

multiplicative rule and is outperformed by the probabilistic Bayes rule approach because the

information delivered by the base classifiers is not very redundant in this experiment. The

experiments also show that the t-norm parameter can be efficiently tuned by cross validation,

i.e. without human user supervision.

A classifier fault tolerance study was also carried out in this chapter to check the sensitivity

of each method to noisy information. We kept the panel of classifiers as in the aforementioned

experiments, i.e. triplets of decision trees, naive Bayesian and logistic regression classifiers,

but we added a number of dummy classifiers to the pool. The results show that the possibilistic

t-norm combination achieves better robustness among the approaches in the benchmark. This

robustness lies in the ability of the proposed method to adapt itself to the level of dependency

between classifiers and cope with poorly accurate ones.

In the following chapter, we introduce another combination approach that relies on

copulas which are functions to handle statistical dependency between variables. In this
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approach, we use a parametrized copula to model the dependency between classifiers. We

keep following the first principle evoked in the introduction of this chapter which is the

usage of contextual information in the fusion schemes. In contrast to this chapter, our next

contribution with respect to dependent classifier combination remains in the probabilistic

framework.





Chapter 3

Probabilistic copula based combination
approach

3.1 Introduction

In this thesis, we place ourselves in a decentralized learning context where we aim at

introducing scalable fusion schemes achieving better performances in terms of generalization

error or robustness as compared to other common combination approaches as well as to

classifier selection approaches.

Following the analysis of the state of the art in classifier combination that we carried out

in chapter 1, we enumerate two requirements:

(i) the usage of contextual information as basic ingredient in the fusion process,

(ii) the ability of the proposed method to adapt itself to the statistical dependence between

classifiers.

In contrast to the t-norm combination approach which is introduced in chapter 2 and formal-

ized using the possibilistic framework, we propose in this chapter a probabilistic model of

classifier aggregation.

In this probabilistic approach, each base classifier is first trained on a fraction of the

training dataset. These fractions may or may not overlap and no assumption is made in this

regard. In a second time, we select a probabilistic classification rule relying on the base

classifier predictions. We investigate a model relying on conditional probabilities of classifier

outputs given the true class of an input. These distributions can be used as building blocks to

classify unseen examples as those maximizing class probabilities given all classifier outputs
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[18, 57]. The originality of our approach consists in resorting to copula functions to obtain a

relatively simple model of joint conditional distributions of the base classifier outputs given

the true class.

The next section gives a formal presentation of the classifier combination probabilistic

model studied in this chapter. We also provide elementary background on copulas. In Section

3.3.2, our new probabilistic classifier aggregation model relying on Gaussian copulas is

introduced. The performance of this approach in both classification accuracy and robustness

is assessed in section 3.5 where we carry several numerical experiments on both synthetic

and real data sets. Section 3.5.4 presents a similar statistical validation as the one of chapter

2 and finally a conclusion entails the chapter.

3.2 Combination problem statement

We address an aggregation problem which consists in predicting the class label of an example

x from the set of predictions ĉ1(x), . . . , ĉK(x) issued by K base classifiers. Under 0-1 loss,

the optimal decision rule is

ĉ(x) = argmax
y∈Ω

p(y|ĉ1(x), . . . , ĉK(x)) , (3.1)

= argmax
y∈Ω

p(ĉ1(x), . . . , ĉK(x)|y)× p(y) . (3.2)

As said previously, an estimation of the joint distributions p(ĉ1(x), . . . , ĉK(x)|y) (for

y ∈Ω) on a validation set is not a good choice because the dimensionality of the parameter

space grows exponentially with K (the number of base classifiers). Since the size of a

validation set is usually limited, then we would not be able to avoid overfitting. A simple

solution to circumvent this question is to make conditional independence assumptions in

which case linear complexity in K can be achieved:

ĉ(x) = argmax
y∈Ω

p(y)×
K

∏
i=1

p(ĉi(x)|y) . (3.3)

We remind the readers that the above classification rule is referred to as the «Bayes rule

approach» throughout this manuscript. In spite of the unrealistic aspect of the independence

assumptions allowing to derive this approach, we will see that it achieves nice classification

accuracy on several occasions. We believe this is explained by the same reason as the one
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behind naive Bayes classifier efficiency. This model is an efficient technique although it also

relies on unrealistic independence assumptions. Indeed, the inadequacy of these assumptions

is compensated by a dramatic reduction of the number of parameters to learn making the

technique less prone to overfitting.

The Bayes rule approach takes into account the individual performances of the base

classifiers which are featured by the probabilities p(ĉi(x)|y) and this already fulfills one

of the fundamental requirements that we have stated in the introduction of this chapter.

The second requirement is to obtain a model that adapt itself to the level of dependency

between base classifiers. The Bayes rule approach fails to possess this flexibility. In the

review of the state-of-the-art that we carried out in chapter 1, we mentioned a work by Kim

and Ghaharamani [57] in which they propose to infer the parameters of each distribution

involved in (3.3) using a hierarchical Bayesian model. Moreover, they also introduce two

extended models that take into account classifier dependencies. The first idea they develop is

to introduce hidden Bernoulli variables depicting the difficulty to classify each training data

point. If the point is hard to classify, the model is the same as before otherwise confusion

matrices are tied across classifiers. In this latter case, the probabilities p(ĉi(x)|y) are not

learned from data but instead they are set to

p(ĉi(x)|y) =

ε if ĉi(x) = y

1− ε otherwise
, (3.4)

where ε is a hyperparameter living in (0;1] and for all i ∈ {1, . . . ,K}. Although this idea

drifts apart from the independence assumptions, it is more a semi-local model in the input

space than a model with an explicit component addressing the classifier dependency question.

Such an explicit solution is proposed in their second idea which consists in a Markov random

field in which each pair of classifier is a clique of the graphical model. In any of these models,

one must resort to MCMC and rejection sampling in order to make the solution operational.

We argue that the dependency can be efficiently taken into using simpler models with better

computational tractability.

In this chapter, we intend to derive such a model for the joint conditional distributions

p(ĉ1(x), ĉ2(x), .., ĉK(x)|y). We propose to decompose each of these distributions using a

copula function C which is a cumulative distribution with uniform marginals. In a nutshell,

this decomposition allows to separate dependency information embodied by the copula

function from individual classifier information (captured by the marginals). The growing

popularity of copula functions stems from Sklar’s theorem which asserts that, for every
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random vector L∼ f , there exist a copula C such that F = C ◦G where F is the cumulative

version of distribution f and G is a vector whose entries are the cumulative marginals

Gk (a) = F (∞, . . . ,∞,a,∞, . . . ,∞) for any a in the k-dimensional domain of f . However, for

some reasons that will be explained later in section 3.3.2, we will use another version of this

theorem that is based on the density c of the copula C . Using this version of Sklar’s theorem,

we obtain directly the density of the joint conditional probability distribution instead of its

cumulative version.

The proposed method is presented in details (how to compute the joint distributions) in

the next section.

3.3 Copula based probabilistic combination of classifiers

In this section, we give a detailed presentation of the proposed probabilistic copula-based

approach to dependent classifier combination. As previously mentioned, suitable copula

functions for describing random variable dependencies will be used to aggregate classifier

decisions based on their estimated performances. We first recall the basic background of

copula functions and then we present the combination process.

3.3.1 Basic background about copulas

In this subsection, some necessary copula related notions are introduced. We first give

some notations. Let (x,y) ∈ R2 denote of pair of real variables and let Dx = [x1;x2] and

Dy = [y1;y2] denote two closed intervals to which belong x and y respectively.

2−increasing function

The Cartesian product Dx×Dy = [x1;x2]× [y1;y2] defines a rectangle A in R2 whose vertices

are (x1,y1), (x1,y2), (x2,y1) and (x2,y2). If the domain of a function F is a subset of R2 and

its co-domain is a subset of R, then F is called a 2-place real function.

Definition 3.3.1. Let F denote a 2-place real function and A the rectangle whose vertices

are defined by the Cartesian product Dx×Dy. The F-volume (Figure 3.1) of A is computed

as follow:

VF(A) = F(x1,y1)+F(x2,y2)−F(x1,y2)−F(x2,y1). (3.5)

Moreover, F is 2-increasing if VF(A)≥ 0 for all rectangles A belonging to the domain of F .
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x

F

y

(x1,y1)

(x1,y2)

(x2,y1)

(x2,y2)
F(x1,y1)

F(x1,y2)

F(x2,y1)

F(x2,y2)

Fig. 3.1 A 3d view of F-volume computation of the rectangle in the horizontal plane.

Grounded function

Suppose that the domain of some function F is a subset of R2 defined as the Cartesian

product of two closed interval: Dx×Dy = [x1;x2]× [y1;y2], then F is grounded iff F(x,y1) =

F(x1,y) = 0 for any (x,y) ∈ Dx×Dy.

Margins

Let x2 and y2 denote the upper bounds of two closed intervals Dx and Dy whose Cartesian

product is the domain of some function F . The function F has two margins that are

respectively functions Marg1 and Marg2 given by:

• Marg1(x) = F(x,y2) for any x ∈ Dx,

• Marg2(y) = F(x2,y) for any y ∈ Dy.

Copulas

Building upon the aforementioned concepts, we can now introduce first sub-copulas which

are 2-increasing, grounded functions with specific margins.

Definition 3.3.2. Considering a bivariate function C ′ : Dx×Dy −→ D, s.t Dx ⊆ D, Dy ⊆ D
and {0,1} ⊂ Dx,Dy, then C ′ is a (2 dimensional) sub-copula if:

1. C ′ is 2-increasing,
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2. C ′ is grounded,

3. ∀(x,y) ∈ Dx×Dy, C ′(x,1) = x and C ′(1,y) = y.

Eventually, a copula is formally defined as follows:

Definition 3.3.3 (Analytical definition). Considering a (2 dimensional) sub-copula C : Dx×
Dy −→ D, the function C is a (2 dimensional) copula iff Dx = Dy = D.

The above definition is the analytical version of the definition of copulas and it does

not relate to probability theory. However, copulas are almost essentially used within this

framework. Indeed, in 1959, Sklar [90] introduced copulas for the first time to model the

dependence between random variables from the joint probability distribution. Copulas are

functions that offer a way to relate marginal distributions to the multivariate distribution. The

probabilistic version of the definition of copulas is the following

Definition 3.3.4 (Probabilistic definition). A (K dimensional) copula C is the restriction

to [0;1]K of the multivariate cdf1 of a random vector U, called a copula representer, whose

marginals are uniformly distributed on [0;1].

The analytical version of the definition of copulas is easily generalized to the K dimen-

sional case. We can now state Sklar’s theorem:

Theorem 1 (Sklar’s theorem). Suppose F is a bivariate (multivariate in a general case) cdf

of the pair of random variables (X ,Y ) and G1 and G2 are the marginal cdfs of X and Y

respectively, then there is a copula function C satisfying the following equality,

F(x,y) = C (G1(x),G2(y)), (3.6)

for any (x,y) in the domain of F.

Reciprocally, if C is a copula and G1 and G2 are the univariate cdfs of X and Y , then F

is the associated joint cdf for the pair (X ,Y ).

A corollary derived from theorem 1 is given as follows:

Corollary 3.3.1 (Corollary of Sklar’s theorem). Let F , G1, G2 and C denote the same

functions as defined in theorem 1, and suppose G1 and G2 are continuous, then, for any

(x,y) ∈ [0;1]2, we have,

C (x,y) = F(G−1
1 (x),G−1

2 (y)) (3.7)

1cumulative distribution function.
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where G−1
1 (x) = inf{u s.t. G1(u) ≤ x} and G−1

2 (y) = inf{v s.t. G2(v) ≤ y} are the quantile

functions.

The corollary is an important result in practice since it allows to construct a dependency

model between two variables knowing their joint and marginal cumulative distribution

functions. We also deduce that, in the continuous case, there is only one copula satisfying

Sklar’s theorem.

There exist also a version of Sklar’s theorem that is based on the density c of the copula

C (w.r.t. a reference measure). It is expressed by:

Corollary 3.3.2 (Sklar’s theorem - density version). Suppose f is the density of a bivariate

(multivariate in a general case) distribution of a pair (X ,Y ) of random variables and f1 and

f2 are the marginals of f . Let G1 and G2 denote the cumulative marginals of f , then there is

a copula function C whose density c satisfies the following equality:

f (x,y) = c(G1(x),G2(y))× f1(x)× f2(y), (3.8)

for any (x,y) in the domain of f .

Reciprocally, if c is the density of a copula and G1 and G2 are the univariate cdfs of X

and Y , then f is the associated multivariate joint distribution for (X ,Y ).

This version will be used in our classifier combination model where f will be replaced by

one of the K dimensional joint conditional distributions p(ĉ1, . . . , ĉK|y). Note that we will

use the same copula for any y ∈Ω.

Fréchet-Hoeffding Bounds

We present in this subsection two important functions in the context of copula analysis:

Fréchet-Hoeffding bounds.

Theorem 2 (Fréchet-Hoeffding bounds). Let C denote a 2-dimensional copula, then for

every (x,y) ∈ [0;1]2, C is bounded by two copulas M and W , called Fréchet-Hoeffding

bounds, resulting in the following inequality:

W (x,y) = max(x+ y−1,0)≤ C (x,y)≤min(x,y) = M (x,y). (3.9)
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Moreover, since F(x,y) = C (G1(x),G2(y)) according to theorem 1, we also have that

max(G1(x)+G2(y)−1,0)≤ F(x,y)≤min(G1(x),G2(y)),

⇔W (G1(x),G2(y))≤ F(x,y)≤M (G1(x),G2(y)) (3.10)

In the K dimensional case (K > 2), the function W is no longer a copula while M

remains so. This theorem is important in the study of copulas because it allows to frame any

copula C (Figure 3.2). Indeed the Fréchet-Hoeffding bounds are featuring specific extreme

dependency relations:

• M is the only possible copula when X = Y . In this case, we have

p(X = a,Y = b) =

p(X = a) = p(Y = b) if a = b

0 otherwise
. (3.11)

In terms of cumulated distribution, we obtain

F (a,b) = p(X ≤ a,Y ≤ b) , (3.12)

= p(X ≤min{a;b}) , (3.13)

= min{p(X ≤ a) ; p(X ≤ b)} , (3.14)

= M (a,b) . (3.15)

• Suppose for simplicity that X and Y are binary variables and by convention their

codomain is {0;1}. W is the only possible copula when X = 1−Y . In this case, we

have

p(X = a,Y = b) =

p(X = a) = p(Y = b) if a ̸= b

0 otherwise
. (3.16)
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In terms of cumulated distribution, we obtain

F (a,b) = p(X ≤ a,Y ≤ b) , (3.17)

= p(X ≤ a,X ≥ 1−b) , (3.18)

=



1 if a = b = 1

0 if a = b = 0

p(X = 1) if a = 1 and b = 0,

p(X = 0) if a = 0 and b = 1

, (3.19)

= W (a,b) . (3.20)

( , )

Contour Plot

( , )

Contour Plot

( , )

Contour Plot

Fig. 3.2 Contour plot of Fréchet-Hoeffding bounds.

As opposed to the extreme dependency relations embodied by the Fréchet-Hoeffding

bounds, the independence assumption is captured by the so called independent copula. This

copula is such that its density is the constant one function on [0;1]2. Indeed, under this

condition, we see that equation (3.8) boils down to the product of the marginals.

3.3.2 Copulas and classifier combination

As outlined in 3.3.1, the popularity of copulas stems from Sklar’s theorem (theorem 1). In

this theorem, if the cumulative multivariate distribution that we wish to decompose using

a copula is continuous, then the copula is unique. However, when we deal with discrete

random variables as in our classification problem, the non-uniqueness of the copula raises

some identifiability issues [40, 32]. This means that there are many copulas capturing the

same statistical relationship between the random variables under study. Without denying
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the importance of these issues, we argue that, from a pattern recognition standpoint, what

essentially matters is to learn a model that generalizes well. For instance, there are also

identifiability issues for neural networks [92] which do not prevent deep nets to achieve

state-of-the-art performance in many applications.

In this approach, we investigate parametric copula families to derive a model for the

conditional joint distributions p(ĉ1(X), . . . , ĉK(X)|y) where X is the random vector capturing

input uncertainty. Parametric copulas with parameter vector λ are denoted by Cλ but most of

the time λ is a scalar and we will work with one such family in the sequel. A difficulty in

the quest for an efficient ensemble method is that we must avoid working with cumulative

distributions because the computational cost to navigate from cumulative to non-cumulative

distributions is prohibitive. Let G denote a vector whose entries are values of the marginal

cdfs of each variable ĉi(X)|y :

G(z) =


p(ĉ1(X)≤ z1|y)

...

p(ĉK(X)≤ zK|y)

 , where z =


z1
...

zK

 is a tuple in Ω
K. (3.21)

We can compute Radon-Nikodym derivatives of Cλ ◦G w.r.t. a reference measure but

again since we work in a discrete setting we will not retrieve closed form expression for the

joint distribution we want to infer for an arbitrary large number of classifiers.

As a workaround, we propose to embed each discrete variable ĉk (X) |y in the real interval

[0;m[. Let fy : RK → R+ be a probability density (w.r.t. Lebesgue) whose support is

[0;m[K and such that for any z ∈ ΩK , we have fy (a) = p(ĉ1 (X) = z1, . . . , ĉK (X) = zK|y)
for any vector a in the unit volume Vz = [z1−1;z1[× . . .× [zK−1;zK[. This means that fy

is piecewise constant and it can be understood as the density of some continuous random

vector whose quantized version is equal in distribution to the tuple (ĉ1 (X) |y, . . . , ĉK (X) |y).
Moreover, if f (k)y is the kth marginal density of fy, we also have f (k)y (a) = p(ĉk (X) = z|y)
for any a ∈ [z−1;z[ and any z ∈ {1; . . . ;m}. For any z ∈ΩK , according to this continuous

random vector vision of the problem, we can now thus write

p(ĉ1 = z1, . . . , ĉK = zK|y) = cλ (u)×
K

∏
k=1

p(ĉk = zk|y) , (3.22)

u =
[
F1,y (z1) , . . . ,FK,y (zK)

]
(3.23)

where cλ is the density of Cλ and Fk,y is the cumulative distribution of variable ĉk (X) |y. This

construction is not dependent on the (arbitrary) way in which the elements of Ω are indexed.
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Among parametric copula families, the only one with a closed form density for arbitrary

large K is the Gaussian copula. The density of a Gaussian copula [106] is given by

Cλ (u) =
1
|R|1/2 exp

(
−1

2
vT ·

(
R−1− I

)
·v
)
, (3.24)

where R is a correlation matrix, I is the identity matrix and v is a vector with K entries such

that vk =Q(uk) where Q is the quantile function of a standard normal distribution. The copula

parameters in this case are the correlation matrix entries. Estimating the entries of this matrix

is not trivial. We will therefore choose a simplified model and take R = λ1+(1−λ )I where

1 is the all-one matrix. In this model, each diagonal entry of R is 1 and each non-diagonal

entry is λ :

R =


1 λ . . . λ

λ
. . . . . . ...

... . . . . . . λ

λ . . . λ 1

 . (3.25)

The dependency between classifier outputs is regulated by λ which is a scalar living in( −1
K−1 ;1

)
. We also make the assumption that correlation matrices are tied across conditionings

on Y = y. The K×m cumulative distributions Fk,y are evaluated using estimates of the vectors

[p(ĉk = c1|y) . . . p(ĉk = cm|y)]T which are drawn from confusion matrices.

Observe that when λ = 0, the copula density is constant one and the proposed model

boils down to the independent case (1.40) which is referred to as the Bayes rule approach in

this manuscript.

3.4 Hyperparameter tuning

Now that we have introduced all the ingredients to build our new ensemble method, let

us explain how it can be implemented efficiently in practice. The only crucial remaining

problem is to tune the parameter λ of the parametric copula. This parameter summarizes the

dependency information between each pair of random variables (ĉk (X) |y ; ĉk′ (X) |y).
Since we have only one parameter to set, we can use a grid search on the interval( −1

m−1 ;1
)

using the validation set and select λ̂ as the value achieving maximal accuracy

on this validation set. In the experiments, we use an evenly spaced grid (denoted gridλ )

containing 101 values. The copula-based combination algorithm is given in Algorithm 4. A

less formal version of the same procedure is also given in Algorithm 5.
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In Algorithm 4, Ix denotes the indicator function of the singleton {x}. We also denote

by θθθ
(k)
y the parameter vector of size m of conditional distributions: θθθ

(k)
y =

[
θ
(k)
y,1 . . .θ

(k)
y,m

]T

where θ
(k)
y,i = p(ĉk = ci|y) and πππ the parameter vector of class distributions of size m: πππ =

[πc1, . . . ,πcm ] where πci = p(Y = ci). Using a validation set, The vectors of parameters

πππ and
{

θθθ
(1)
1 , . . . ,θθθ (K)

m

}
are estimated using the Laplace add-one smoothing which is the

conditional expectation of the parameters given the data in a Dirichlet-multinomial model.

As opposed to maximum likelihood estimates, it avoids zero counts which are numerically

speaking problematic. It is also recommended to maximize the log-version of (3.1) which is

numerically more stable.

Algorithm 4: Copula-based combination model (training)

Data: Dtrain, nval, gridλ and {train-algk}K
k=1

1 Select nval data points from Dtrain to build Dval
2 D ′train←Dtrain \Dval
3 for k ∈ {1, . . . ,K} do
4 Run train-algk on D ′train to learn ĉk

5 for y ∈ {c1, . . . ,cm} do

6 πy←
1+

nval
∑

i=1
Iy(y(i))

m+nval

7 for k ∈ {1, . . . ,K} do
8 for j ∈ {1, . . . ,m} do

9 θ
(k)
y, j ←

1+
nval
∑

i=1
Iy(y(i))Ic j(ĉk(x(i)))

m+
nval
∑

i=1
Iy(y(i))

10 Fk,y
(
c j
)
←

[
1− Ic1

(
c j
)]
×Fk,y

(
c j−1

)
+θ

(k)
y, j

11 for λ ∈ gridλ do
12 Obtain ĉ by pipelining (3.2) and (3.22) using ĉ1, . . . , ĉK,πππ,θθθ

(1)
1 , . . . ,θθθ (K)

m and λ

13 Acc(λ )←
nval
∑

i=1
I
y(i)(ĉ(x(i)))

nval

14 λ̂ ← argmax
λ∈gridλ

Acc(λ )

15 Obtain ĉ by pipelining (3.2) and (3.22) using ĉ1, . . . , ĉK,πππ,θθθ
(1)
1 , . . . ,θθθ (K)

m and λ̂

16 return ĉ

Finally, one can optionally retrain the classifiers on Dtrain after λ̂ is estimated. Since

Dtrain is larger then D ′train =Dtrain \Dval, it allows training algorithms to converge to possibly

slightly better decision functions. Training them initially on Dtrain is however ill-advised as
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Algorithm 5: Copula-based combination model (training)

Data: Dtrain, nval, gridλ and {train-algk}K
k=1

1 Select nval data points from Dtrain to build Dval
2 D ′train←Dtrain \Dval
3 for k ∈ {1, . . . ,K} do
4 Run train-algk on D ′train to learn ĉk

5 for y ∈ {c1, . . . ,cm} do
6 Compute prior on probabilities p(y)
7 for k ∈ {1, . . . ,K} do
8 for j ∈ {1, . . . ,m} do
9 Compute probability distributions p(ĉk = c j|y)

10 Compute cumulative probability distributions F(ĉk = c j|y)

11 for λ ∈ gridλ do
12 Obtain ĉ using (3.2) and (3.22) and λ

13 Compute accuracy Acc(λ )

14 λ̂ ← argmax
λ∈gridλ

Acc(λ )

15 Obtain ĉ using (3.2) and (3.22) and λ̂

16 return ĉ

the parameter estimates would be biased. In the next section, where we present numerical

results, we use this optional step.

3.5 Application on synthetic and real datasets

In this section, the performance of the copula-based combination approach is assessed in

terms of classification accuracy and robustness on both synthetic and real datasets. We also

comment on the statistical validation of the results.

3.5.1 Experimental settings

To achieve good assessment of the performance of the proposed combination method, it is

necessary to train classifiers in a situation where aggregation has a genuine added value. In

a decentralized learning context, desirable experimental conditions to assess combination

performances can stated as follows:
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(i) There is diversity in the trained base prediction functions ĉk. Indeed, if the base

classifiers converge to almost identical functions then the aggregate will not be much

different from them either. To ensure a form of diversity, we make the assumption that

data is distributed across the network of base classifiers in a non-iid way, that is, each

base classifiers only sees inputs that belong to a given region of the feature space. This

is a realistic situation as the data stored in a network node might be dependent on the

geographic location of this node for instance.

(ii) Base classifiers are weak. Since we are evaluating a fusion method, what matters is

not to maximize the global classification performance but instead to maximize the

performance increment between the base classifiers and the ensemble. One way to

allow this is to combine base classifiers with limited capacity, i.e. weak classifiers as

in boosting [37]. We decided to use logistic regression on each local data set as this

algorithm yields a linear decision frontier. Also, logistic regression has the advantage to

have no hyperparameter to tune making the conclusions from the experiments immune

to this issue. This is also the reason why we do not use a regularized version of this

algorithm.

We also need to assess the ability of our approach to be implemented in a decentralized

learning setting. In each experiment, we assume that the network load budget is equal to

10% of the overall data. So each node sends 10% of its private data to a central node. The

cost of sending functions ĉi is of several magnitude order lower than the cost of data transfer.

We compare the new approach to the following state-of-the-art or reference methods:

• Bayes rule approach ((1.40)).

• classifier selection based on accuracies,

• maximally accurate individual classifier,

• weighted vote combination based on accuracies,

• meta classifier trained using stacking,

• and a centralized classifier trained on all data.

Each method relying on base classifier accuracies uses the data sent on the central node

as validation set to estimate these accuracies. The validation set is also used as part of

stacking to generate inputs for the second stage training. We also use a logistic regression
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for this second stage and input entries are predicted classes from each base classifier. The

maximally accurate individual classifier and the centralized classifier are not applicable in the

decentralized setting but they are relevant references as part of a benchmark for comparison.

Concerning the copula-based model, we examine the simplified Gaussian copula where the

copula hyperparameter is estimated by grid search from the validation set.

3.5.2 Experiments on synthetic data

Using synthetic data sets is advantageous in the sense that, in the test phase, we can generate

as many data as we want to obtain very reliable estimates of classification accuracies. We ex-

amine three different data generation processes from sklearn python library: Moons, Blobs

and Circles. Each of these processes yields non-linearly separable data sets as illustrated in

Figure 3.3.

Dataset specifications and generation procedure

The Moons and Circles data sets are binary classification problems while Blobs involves

three classes. For each problem, the data set is partitioned into disjoint regions of the input

space as specified in Figure 3.3 and consequently we combine two base classifiers for the

Blobs data set and three base classifiers for the others. Also, in each case, input vectors live

in R2.

The Moons data set consists in two half-circles to which a Gaussian noise is added.

For each half-circle, one of its extremal point is the center of the other half-circle. The

covariance matrix of the noise in our experiment is 0.3× I where I is the identity matrix.

Before adding this noise, we also randomized the position of sample points on the half circle

using a uniform distribution while the baseline sklearn function samples such points with

fixed angle step. The Blobs data set is also obtained using a slightly different function than

its sklearn version. It generates a data set from four 2D Gaussian distributions centered

on each corner of a centered square whose edge length is 4. Each distribution covariance

matrix is I. The examples generated by the distributions whose expectations are (−2;−2)

and (2;2) are assigned to class c1. Each remaining Gaussian distribution yields examples

for either class c2 or c3. Finally, the Circles data set consists in sampling with fixed angle

step two series of points from centered circles with radius 0.5 and 1. A Gaussian noise with

covariance matrix 0.15× I is added to these points.
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(a) Moons (b) Blobs

(c) Circles

Fig. 3.3 Synthetic data sets and their partitions into feature space regions.

Combination method performances

To evaluate the accuracy of a classifier or classifier ensemble trained on a data set drawn

from any of the above mentioned generating processes, we drew test points from the same

process until the Clopper-Pearson confidence interval of the accuracy has length below 0.2%

with confidence probability 0.95. For each generating process, we repeated this procedure

3000 times to estimate the expected accuracy across data set draws.

The estimated expected accuracies and the estimated accuracy standard deviations are

given for each classification method of the benchmark in Tables 3.1 and 3.2 for ntrain = 200

and ntrain = 400 respectively. Best performances are in bold except for the accuracies of the

optimal classifier (which is always the highest) that are provided as indicators of the best

performance that can be achieved on these datasets. In these experiments, the copula-based

method is the top 1 for the Blobs and Circles data sets. For the Moons dataset, it is the top

2 method when n = 400 and top 3 when n = 200. Observe that when n = 200, the top 2

method is the Bayes rule approach. Since the copula based approach generalizes this latter,

we can assume that the validation set was not big enough to select a value of λ that at least
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Method Moons Blobs Circles
Gauss. Copula 80.57±4.68 93.15±4.83 84.49±4.51

Bayes rule 83.46±2.91 91.14±7.27 79.32±6.70

Stacking 81.07±3.89 69.87±5.37 70.20±8.08

Weighted Vote 84.60±2.20 82.43±11.02 50.50±0.05

Clf. Selection 79.25±3.51 72.34±0.37 62.38±0.32

Max. Ind. Clf. 79.25±1.67 72.34±0.36 62.38±0.32

Centralized Clf. 84.99±0.55 88.49±0.42 50.02±0.49

Optimal Clf. 91.50±0.0 95.50±0.0 94.50±0.0

Table 3.1 Classification accuracies for several synthetic data sets and several classifier or
classifier ensembles. (ntrain = 200)

Method Moons Blobs Circles
Gauss. Copula 86.75±3.07 94.39±0.96 86.39±1.11

Bayes rule 86.43±3.28 93.78±2.48 84.54±4.45

Stacking 85.32±4.08 71.70±2.61 78.19±6.95

Weighted Vote 87.83±1.19 78.72±9.96 50.50±0.0

Clf. Selection 79.67±2.14 72.43±0.27 62.50±0.05

Max. Ind. Clf. 80.66±1.08 72.45±0.22 62.50±0.06

Centralized Clf. 85.22±0.45 88.72±0.42 50.01±0.5

Optimal Clf. 91.50±0.0 95.50±0.0 94.50±0.0

Table 3.2 Classification accuracies for several synthetic data sets and several classifier or
classifier ensembles. (ntrain = 400)

makes the copula based approach performing as well as Bayes rule. Most importantly, the

copula based method and the Bayes rule approach are obviously more robust since they never

perform poorly on any data set. While the weighted vote method is the top 1 for the Moons

data set, it completely crashed on the Circles data set and converges to a random classifier.

Another result which is surprising at first sight, is that the centralized classifier is some-

times outperformed by some decentralized ensembles. This is actually well explained by the

deterministic way in which input spaces are partitioned. Indeed, the partitions are cleverly
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chosen so that a combination of linear decision frontiers fits intuitively a lot better the data

than a single linear separation does. In other words, ensembles have a larger VC dimension2

and visit a larger hypotheses set. One may wonder to which extent it would be possible to

purposely partition data sets in such a relevant way to reproduce such conditions in more

general situations. This is however beyond the scope of the experiments presented in this

chapter in which we address decentralized learning, a setting where we take distributed data

as is and we cannot reorganize them.

3.5.3 Experiments on real data

To upraise the ability of the benchmarked methods to be deployed in a decentralized learning

setting, we also need to test them on sets of real data. This subsection presents a number of

such experiments.

Dataset specifications

Since decentralized learning is essentially useful in a big data context, we chose three rather

large public data sets: 20newsgroup, MNIST and Satellite. The specifications of these data

sets are reported in Table 3.3. Example entries from the 20newsgroup data set are word

counts obtained using the term frequency - inverse document frequency statistics. We reduced

the dimensionality of inputs using a latent semantic analysis [20] which is a standard practice

for text data. We kept 100 dimensions. Also, as recommended, we stripped out each text

from headers, footers and quotes which lead to overfitting. For both MNIST and Satellite,

we kept them unchanged.

Datasets # samples # features # classes Input type Class type Source
20newsgroup 18846 100 after red. 20 text text topic Sklearn

101631 before red.

MNIST 70000 784 10 image digit Sklearn

Satellite 6435 36 6 multi-spectral soil type UCI repository
image features

Table 3.3 Real data set specifications

2The Vapnik-Chervonenkis (VC) dimension is an integer featuring the ability of decision functions learned
by a training algorithm to shatter a finite number of data points. When the VC dimension is high, an algorithm
can learn complex decision functions.
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Implemented experimental protocol

Unlike synthetic data sets, we need to separate the original data set into a train set and a test

set. To avoid a dependency of the reported performance w.r.t train/test splits, we perform

2-fold cross validation (CV). Also, we shuffle at random examples and repeat the training

and test phases 500 times.

To comply with the diversity condition, we distributed the training data over network

nodes using the following procedure: for each data set, for each class,

1. apply principal component analysis to the corresponding data,

2. project this data on the dimension with highest eigenvalue,

3. sort the projected values and split them into K subsets of cardinality ni/K where ni is

the proportion of examples belonging to class ci.

For each subset of the data assigned to the same class, each base classifier has access to

examples in a region that is disjoint from those accessed by the other classifiers. We argue

that this way of splitting data is somehow adversarial because some nodes may see data that

are a lot easier to separate than it should and will consequently not generalize very well.

Combination method performances

Average accuracies over random shuffles and CV-folds are given in Tables 3.4, 3.5 and 3.6

for K = 2, 10 and 50 nodes respectively. Best accuracies are in bold font in the tables. Note

that for real datasets the optimal classifier does not exist and thus it cannot be found in the

tables of results.

In these experiments, decentralized ensemble methods have difficulties to compete with

a centralized classifier except for the copula-based method or the Bayes rule approach

when K is rather large. This is presumably because PCA-based data splits do not allow to

discover better decision frontiers. We observe that the weighted vote ensemble, the Bayes

rule approach and the copula-based ensemble have a tendency to achieve higher accuracies

as K increases. An exception to this conclusion is the Satellite data with K = 50 nodes.

Remember that given that we use a 2-fold-CV, each node has access to 64 data points only

in this case while they must learn 101 parameters. So it is not surprising that, after some

point, increasing K is at the expense of the ability of base classifiers to avoid overfitting. As

opposed to ensemble methods, classifier selection seems to be more efficient when K is small

which is not adapted to a decentralized learning setting.
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Method 20newsgroup MNIST Satellite
Gauss. Copula 47.96±1.2 68.68±2.10 78.29±2.19

Bayes rule 48.08±1.16 68.42±2.04 78.66±2.13

Stacking 17.09±3.38 37.83±4.12 64.02±2.18

Weighted Vote 47.97±1.25 66.71±1.70 78.05±1.81

Clf. Selection 47.96±1.25 66.71±1.70 78.05±1.81

Max. Ind. Clf. 48.87±0.88 67.23±1.46 79.25±1.38

Centralized Clf. 58.19±0.36 90.65±0.33 83.16±0.40

Table 3.4 Classification accuracies for several real data sets and several classifier or classifier
ensembles. (K = 2 classifiers)

Method 20newsgroup MNIST Satellite
Gauss. Copula 49.06±0.64 85.86±1.17 82.99±0.83

Bayes rule 49.19±0.64 85.77±1.30 83.21±0.68

Stacking 14.47±1.13 41.47±2.90 70.16±3.35

Weighted Vote 50.17±0.65 82.46±1.54 81.99±0.80

Clf. Selection 37.35±1.38 66.26±1.57 77.83±2.04

Max. Ind. Clf. 38.25±0.68 67.24±0.76 79.10±1.16

Centralized Clf. 58.19±0.36 90.65±0.33 83.16±0.40

Table 3.5 Classification accuracies for several real data sets and several classifier or classifier
ensembles. (K = 10 classifiers)

Most importantly, we see that the copula-based method does not perform poorly on any

dataset as compared to other decentralized approaches which is in line with the robustness

observed in the synthetic data set experiments.

3.5.4 Statistical validation

To draw reliable conclusions based on the experiments on synthetic and real data in the

previous subsection, we apply a Wilcoxon signed-rank test as in chapter 2. We validate

the significance of performance discrepancies between the Gaussian copula-based fusion

method and concurrent approaches (Bayes rule, stacking, weighted vote, selected classifier,
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Method 20newsgroup MNIST Satellite
Gauss. Copula 50.16±0.69 87.83±0.93 75.04±1.06

Bayes rule 50.26±0.61 87.78±0.96 75.08±0.96

Stacking 17.95±0.92 55.56±1.84 55.23±2.76

Weighted Vote 52.06±0.46 84.45±1.34 75.61±0.62

Clf. Selection 34.89±1.25 69.30±1.40 63.73±2.66

Max. Ind. Clf. 35.90±0.65 69.64±1.23 66.33±1.43

Centralized Clf. 58.19±0.36 90.65±0.33 83.16±0.40

Table 3.6 Classification accuracies for several real data sets and several classifier or classifier
ensembles. (K = 50 classifiers)

maximally accurate individual classier, centralized classifier and optimal3). The detailed

tables are presented in Appendix D. We kept the same form of the tables as those of chapter

2. We also kept the threshold of 5% for the p-value to reject the null hypothesis.

Pairs of methods # ✓ # ✗ #t-norm wins #t-norm loses #tie
Gauss. copula vs. Bayes rule 15 0 8 7 0
Gauss. copula vs. Stacking 15 0 14 1 0

Gauss. copula vs. Weighted vote 14 0 12 2 0
Gauss. copula vs. Clf. Selection 14 1 14 0 0
Gauss. copula vs. Max. Ind. Clf. 15 0 12 3 0

Gauss. copula vs. Centralized Clf. 15 0 5 10 0
Gauss. copula vs. optimal Clf. 6 0 0 6 0

Table 3.7 Synthetic summary of Wilcoxon tests. Detailed tables are found in D.

Table 3.7 summarizes pairwise comparisons between the Gaussian copula-based probabilistic

approach to each concurrent one. Except for the optimal classifier which is unreachable

in reality, we notice that the proposed approach achieves statistically significant higher

accuracies and thus the conclusions of the previous subsection are confirmed.

3For only synthetic datasets.
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3.5.5 Comments on the copula type

In both synthetic and real data sets, the Bayes rule approach and the Gaussian copula-based

method achieve comparable accuracies most of the time which seems to suggests that using

the Gaussian copula one has a limited interest. There are three situations in which significant

performance discrepancies are observed. The first one is the Moons data set when ntrain = 200.

We argue that the Gaussian copula-based ensemble fails to correctly estimate its parameter

λ as performance levels are reversed when ntrain = 400 and the validation set has now 40

elements instead of 20.

The other situations are the Circles data set when either ntrain = 200 or ntrain = 400. In

this case, we see that the Bayes rule approach fails to keep up with the Gaussian copula

one regardless of how many points the validation set contains. In conclusion, the Gaussian

model does offer increased robustness as compared to the independent one provided that

the validation set size allows to tune correctly λ . Remember that when λ = 0, both models

coincide, so if we have enough data and if being independent is really what works best, then

there is no reason why we should not obtain λ̂ = 0.

3.5.6 Comparison between the possibilistic and the probabilistic ap-
proaches

In this section, we proceed to a comparison between the two parametrized approaches

proposed in thesis (chapter 2 and 3). The first approach is a t-norm based combination

method that lies in the possibilistic framework while the second one is a Gaussian copula-

based combination method that lies in the probabilistic framework. For both approaches

, the inputs are contextual data extracted from confusion matrices and both of them are

controlled by a parameter that allows the adaptation of the combination rule to classifier

dependencies. We present the comparison in two subsections. In the first one, we compare

our two contributions on the basis of the experiments carried out in chapter 2 and in the

second one we compare them on the basis of the experiments carried out in this very chapter.

A statistical validation is provided in Appendix E.

Comparison with respect to chapter 2

In the following paragraphs, we use the same experimental protocol as in chapter 2 where

three classifiers are trained on mutually exclusive sets of attributes. Details of the experimen-

tal protocol are found in section 2.4.4. We tested the copula-based approach on the same
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datasets used in the experiments of the previous chapter (Digits, Waveform, Wine, Cancer,

CNAE, Segments and MNIST) using three classifier ensembles of different base classifiers

(Classification trees, logistic regressions and Gaussian naive Bayes classifiers).

Results of classification trees, logistic regressions and naive Bayes classifiers are pre-

sented in tables 3.8, 3.9 and 3.10 respectively.

Method Digits Waveform Cancer CNAE Segments Wine MNIST
Poss. t-norm 67.85 ± 3.38 75.23 ± 1.08 90.76 ± 2.82 47.07 ± 4.38 73.63 ± 5.75 88.79 ± 4.04 62.62 ± 1.65

Gauss. copula 65.86 ± 4.68 62.16 ± 5.17 89.01 ± 3.93 54.05 ± 4.95 72.17 ± 6.21 80.31 ± 4.06 60.39 ± 0.016

Table 3.8 Average accuracies (± standard deviations) of the combination of three classifica-
tion trees over 100 iterations.

Method Digits Waveform Cancer CNAE Segments Wine MNIST
Poss. t-norm 89.91 ± 1.27 83.24 ± 0.64 99.81 ± 0.06 84.08 ± 2.21 90.70 ± 1.23 88.85 ± 3.40 88.20 ± 0.0700

Gauss. copula 79.94 ± 1.37 69.50 ± 4.95 90.39 ± 1.17 77.14 ± 2.73 80.51 ± 4.94 79.47 ± 5.88 77.87 ± 0.0004

Table 3.9 Average accuracies (± standard deviations) of the combination of three logistic
regression classifiers over 100 iterations.

Method Digits Waveform Cancer CNAE Segments Wine MNIST
Poss. t-norm 79.13 ± 2.47 79.59 ± 0.81 83.46 ± 2.00 78.93 ± 2.81 84.21 ± 2.13 92.10 ± 2.71 64.64 ±1.110

Gauss. copula 78.55 ± 2.50 71.12 ± 5.41 82.52 ± 2.05 76.63 ± 2.11 78.73 ± 5.52 84.76 ± 5.23 56.21 ± 0.152

Table 3.10 Average accuracies (± standard deviations) of the combination of three naive
Bayesian classifiers with Gaussian class conditional distribution over 100 iterations.

Comparison with respect to chapter 3

In the following paragraphs, we use the same experimental protocol as in chapter 3 where

different logistic regression ensembles are combined in a decentralized setting. We also keep

both real and synthetic datasets described in 3.5.3 and 3.5.2.

Results of logistic regression ensembles for synthetic and real datasets are shown in tables

3.11, 3.12, 3.13, 3.14 and 3.15 respectively.
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Method Moons Blobs Circles
Poss. t-norm 81.59±0.03 87.44±0.106 81.62±0.065

Gauss. Copula 80.57±4.68 93.15±4.830 84.49±4.510
Table 3.11 Classification accuracies for several synthetic data sets and several classifier or
classifier ensembles. (ntrain = 200)

Method Moons Blobs Circles
Poss. t-norm 86.68±0.03 93.70±0.04 85.68±0.03

Gauss. Copula 86.75±3.07 94.39±0.96 86.39±1.11
Table 3.12 Classification accuracies for several synthetic data sets and several classifier or
classifier ensembles. (ntrain = 400)

Method 20newsgroup MNIST Satellite
Poss. t-norm 45.91±0.01 67.93±0.02 77.76±0.02

Gauss. Copula 47.96±1.20 68.68±2.10 78.29±2.19

Table 3.13 Classification accuracies for several real data sets and several classifier or classifier
ensembles. (K = 2 classifiers)

Method 20newsgroup MNIST Satellite
Poss. t-norm 38.87±0.02 84.96±0.013 79.55±0.014

Gauss. Copula 49.06±0.64 85.86±1.17 82.99±0.83

Table 3.14 Classification accuracies for several real data sets and several classifier or classifier
ensembles. (K = 10 classifiers)

Method 20newsgroup MNIST Satellite
Poss. t-norm 35.66±0.022 86.90±0.01 71.03±0.036

Gauss. Copula 50.16±0.69 87.83±0.93 75.04±1.06

Table 3.15 Classification accuracies for several real data sets and several classifier or classifier
ensembles. (K = 50 classifiers)

Comments on the comparison results

In the previous subsections, we performed comparisons between the two proposed approaches

introduced as part of this seminal works (the t-norm possibilistic approach and the Gaussian

copula-based approach). According to result tables, we remark that the possibilistic approach
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outperforms the copula based combination when the dataset is divided with respect to feature

indices while the copula based combination seems to achieve higher accuracies when the

dataset is divided with respect to example indices.

An important conclusion that can be drawn from this is that none of the proposed

approaches subsumes the other one, i.e. we know that there are circumstances in which one

of them is more relevant than the other and conversely. Unfortunately, we are not able to

precisely (or at least roughly) identify those situations in which the copula based method

should be preferred as well as those situations in which the t-norm based method should be

preferred. Intuitively, we cannot generalize the conclusion of the above comparison in terms

of feature/example splits of the dataset. Indeed, remember that in the experiments where the

dataset is split the Bayes rule approach outperforms the t-norm based method and that the

copula based method encompasses the Bayes rule approach. The moderate performances of

the copula based approach in these experiments is thus probably explained by an inaccurate

estimation of the copula parameter λ .

However, we can comment on the sensitivity of both methods with respect to their main

hyperparameter λ . The monotonicity of the function that carries out the fusion (either the

t-norm or the copula) with respect to this parameter plays a major role in the classification

performances because a minor modification of the parameter value (such as a bad estima-

tion of the parameter for instance) may have a strong impact on the final decision of the

combination method. The following example is an attempt to get insights regarding this

question.

Example 5. In this example, we examine the dataset displayed in Figure 3.4a. This dataset

is similar to the Blobs dataset that we used in the experiments on synthetic data that are

reported in this chapter. This dataset is also sampled from four 2D Gaussian distributions,

each of which is centered on a corner of a centered square whose edge length is equal to 4.

The same number of examples is generated by each Gaussian distribution. However, in the

dataset examined in this example the input space region corresponding to the blue class is

easier to characterize. Indeed, one only needs to examine the 1st entry of an example and if

this latter is negative then we must assign it to the blue class.

Suppose that two classifiers ĉ1 and ĉ2 were trained respectively using only the first or

only the second entry of training examples. Suppose also that they converged to the following

decision functions:
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• ĉ1 assigns an example to the blue class whenever x1 < 0. Otherwise, it can randomly

assigns a test sample to either the brown or the cyan class. So the accuracy of ĉ1 is

around 0.75.

• ĉ2 assigns an example to the cyan class whenever x2 < 0. Otherwise, it assigns a test

sample to the brown class and consequently it always fails to recognize members of

the blue class. Its accuracy is thus around 0.5.

Figures 3.4b and 3.4b give the accuracies as functions of λ obtained by combining ĉ1

and ĉ2 using the t-norm possibilistic approach and the copula based approach respectively.
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(a) A simple 2D dataset with three classes. The
optimal classification rule consists in assigning the
blue class to examples such that x1 < 0, the brown
class when x1 and x2 > 0 and the cyan class other-
wise.

(b) Parametrized Aczel Alsina t-norm accuracy
w.rt. λ .

(c) Parametrized Gaussian copula accuracy w.rt.
λ .

In Figure 3.4c, we notice that the best accuracy is achieved when λ is close to 0, which is

what we expected because the Gaussian distributions have diagonal covariance matrices and

thus ĉ1 (X) and ĉ2 (X) are independent random variables. In Figure 3.4b, we observe that

the multiplicative rule (λ = 1) is one of the value that achieves the best accuracy. Obviously,

the range of values of λ that achieves maximal accuracy is larger for the t-norm than for the

copula.

Two different standpoints can be advocated. On the one hand, we can conclude that

the t-norm based approach is more robust to incorrect adjustments of the hyperparameter
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λ in the sense that moderate variations of this latter will not translate into poorly accurate

aggregated decision functions. On the other hand, we see that the set of learnable functions

for the t-norm based approach is more limited than for the copula based approach. So the

copula based approach has apparently a greater capacity. Altough one example is not enough

to completely solve this question, it seems that when the dataset is not very large, the t-norm

based approach should be preferred over the copula based approach because in this situation

it is likely that a cross validation grid search will not produce a very reliable estimate of λ .

Conversely, when the dataset is large enough, the copula based approach should be preferred

because it allows to examine a larger number of aggregated decision functions. Finally,

this comparison confirms the robustness of the t-norm possibilistic approach to parameter

estimation which is in line with the previous conclusions in chapter 2.

3.6 Conclusion

This chapter presents the second original contribution of this our seminal works. In this

chapter, we introduce a new ensemble method that relies on a probabilistic model. Given a set

of trained classifiers, we evaluate the probabilities of each classifier output given the true class

on a validation set. We use a Gaussian copula to retrieve the joint conditional distributions of

these latter which allow us to build an ensemble decision function that consists in maximizing

the probability of the true class given all classifier outputs.

We assess the benefits this new approach by showing that it fits a decentralized learning

setting which is a modern concern in a big data context. The approach is validated through

numerical experiments on both synthetic and real data sets. We show that a Gaussian

copula based ensemble achieves higher robustness than other ensemble techniques and can

compete or outperform a centralized learning in some situations. A statistical validation

study was carried out using Wilcoxon sign-ranked test. The results report a statistically

significant accuracy increment for our Gaussian copula-based approach to dependent classifier

combination as compared to 3 other combination methods and to classifier selection. The

tuning of the parameter of the copula can be done using cross validation without user

supervision.
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Outcomes of the thesis

In these seminal works, we addressed the problem of constructing robust combination

methods for dependent classifiers that are suitable in a decentralized setting, i.e. when the

data is spread across nodes in a network and we can only exchange a limited fraction of the

subsets stored in a each node. Each node may have access to a limited number of features

or to a subset of the training examples or both. The robustness that is sought consists in

achieving high accuracy levels regardless of the way the training data is distributed in the

network.

To achieve this task, we set two specifications: the first one consists in using contextual

information (extracted from confusion matrices) that reflects the confidence level that can be

given to an individual classifier within a classifier ensemble while the second one deals with

the ability to adapt the combination rule to the level of statistical dependency in classifier

decisions. The problem was studied within two different uncertainty frameworks in which

we proposed two original combination schemes (chapters 2 and 3) that are compliant with the

previous specifications. These two approaches are the main contributions of this thesis. For

both approaches, the starting point of our reasoning stems from Bayes rule that allows the

computation of the joint conditional distribution of classifier predictions given the true label.

A simple way to compute this distribution relies on condtional independence assumptions

allowing to decompose it into a product of the marginal conditional distributions and the

class distribution. This procedure is referred to as the Bayes rule approach in this manuscript.

Although these hypotheses make the computation easier and takes into account individual

classifier performances, they are patently unrealistic. Indeed, most classifiers (when trained

independently) will produce the same predictions in the same regions of the input space and

are consequently obviouly dependent.

When the classifiers are independent, a product-based combination rule such as the Bayes

rule approach is very suitable since it considers that the information given by the classifiers
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are complementary and if many classifiers are confident that example x should be classified

as a member of class y, then our confidence after combination should be higher than those of

the individual classifiers. We call a combination of this kind, a rule that allows reinforcement.

However, if the classifiers are highly dependent a recommended combination rule is an

idempotent one, meaning that it does not capture the same information twice so if several

classifiers have the same level of confidence that example x should be classified as a member

of class y, then after combination our level of confidence is no higher. Thus, to correctly

model the dependence between classifiers we proposed two approaches that are based on

parametrized combination rules which allow more flexibility in the models by visiting a

continuum of rules ranging from indempotent ones to reinforcing ones.

The manuscript was organized in three chapters. In chapter 1, we presented a short state

of the art of classification algorithms. We then presented the motivations behind classifier

combination. Those motivations are related to some limitations when using a single classifier

which are mainly dealing with statistical, computational and representational aspects. We

also reviewed thoroughly classifier combination approaches which are sorted in the following

categories: classical combination algorithms, ensemble learning and trainable fusion methods.

Finally, we exposed a state of the art of classifier combination within different uncertainty

frameworks such as probability, belief functions and fuzzy set theories. In the second and

third chapters, we presented the proposed combination methods. In both chapters, we first

explained the theoretical foundations of the combination approach and then we carried out

some experiments to validate the efficiency of the new method. We note that both approaches

are not restricted to given type of classifiers (heterogeneous combination).

The first main contribution is a novel classifier combination approach designed in the

possibilistic framework. The new method is based on a parametrized t-norm rule, namely the

Aczel-Alsina t-norm family, that combines contextual information represented by conditional

probabilities of the true class label given the label prediction issued by a base classifier. The

experiments in chapter 2, demonstrated the robustness of the new method as a dependent

classifiers combination model and, especially as a fault tolerant approach (when irrelevant

classifiers are added in the ensemble). We believe that thanks to the t-norm parameter the

dependency between classifiers is modeled efficiently. In this possibilistic approach, the

t-norm parameter allows to navigate between the product rule and the minimum rules which

are suitable in the cases of low and high dependence respectively. The parameter is tuned by

a cross validation on a grid search.

The second main contribution is another novel classifier combination approach designed

in the probabilistic framework. It is based on a parametrized Gaussian copula to model statis-
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tical dependency between classifier decisions. In this approach, we build the combination

model by relying on Sklar’s theorem that demands two types of contextual information: the

estimated conditional probabilities of the predictions given the true label and a multivariate

function having necessary properties to qualify as a copula. Thanks to this theorem, we are

able to estimate the joint conditional probability that is the core of the decision rule. We

carried out several experiments involving the new method and it showed its efficiency as

compared to benchmarked approaches. The parameter of the Gaussian copula was tuned by

cross validation in a similar way as for the possibilistic approach. The reported performances

induced by this approach have shown increased sensitivity with respect to the parameter of

the rule than the t-norm approach.

By the end of this manuscript, we attain the main objective of this thesis that consists in

developing robust combination approaches that are able to apparaise statistical dependency

between classifiers and are applicable in a decentralized setting. However, there is room for

improvements and a number of aspects of the proposed approaches deserves to be examined

in future research works.
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Perspectives

At the end of these seminal works, several research directions can be envisaged. Some

directions are immediate extensions of the proposed approaches while others are more

general and concern other combination schemes as well.

Perspectives related to the proposed approaches

As any model, the proposed approaches have a number of limitations and can be improved

with respect to several aspects. We believe that future works should be focused on the

following points:

• As previously indicated, the t-norm and the copula based approaches depends on

a parameter λ that is able to capture the statistical dependency between classifiers.

However, in our experiments we used a single parameter to combine all classifiers in

the ensemble which is not optimal since there may exist different levels of dependency

between different subsets of classifiers. For instance, given a panel of 5 classifiers

in which 3 are highly dependent and the others are independent, a single parameter

will surely find it difficult to capture the two levels of dependency. To solve this issue,

one can target a sequential or a hierarchical combination procedure. In a sequential

combination of classifiers, two classifiers are first combined, then the resulting classifier

is combined with the third classifier in the ensemble and so on. In a hierarchical

combination process, we first separate the classifiers in different sets according to

their level of dependency then we combine the classifiers of each set and finally we

re-combine the resulting classifiers. This idea is somewhat similar to an approach

by Quost et al. [81] in which they used unsupervised techniques to cluster classifiers

thereby deriving the desired hierarchy. A challenge in both these extensions of our

contributions is that several parameters need to be estimated and a mere grid search

does no longer suffice.

• The approaches presented in this thesis are global methods meaning that they use

the same combination rule for all test samples which is advantageous in terms of the

simplicity as compared to local methods where the contributions of each classifier

individually is input dependent. However, in order to obtain better performances,

local information is intuitively beneficial. There are several possibilities to integrate

local information in the combination process. Generally speaking, we would like to

obtain probabilities p(y|ĉ1 (x) , . . . , ĉK (x) ,x) instead of p(y|ĉ1 (x) , . . . , ĉK (x)) as in
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our approaches. If the classifiers are probabilistic, their output gives access to estimates

of p(y|x). By restricting the type of classifiers in the ensemble to probabilistic ones, it

seems feasible to use local information.

General perspectives related to classifier combination

The last perspective in the wake of these seminal works deals with classifier combination and

deep learning. Indeed, deep neural networks have proved in many applicative fields that they

can efficiently learn complex decision functions (with many non linearities). An interesting

research direction is to use deep nets as the second stage classifier in a stacking approach.

This second stage classifier can be fed with inputs whose entries would be classifier decisions,

contextual information or other types of classifier-related data. The difficulty in this regard

is to derive an efficient network architecture. Intuively, the architecture should process in

a different way categorical data such as classifier decisions and continuous data such as

classifier confidence levels.
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Appendix A

Families of t-norms

This appendix is a non exhaustive list of t-norm families. Since we are interested in

parametrized t-norms, we only list those that depend on a parameter. Besides Aczel-Alsina,

T-norm Formula Parameter interval

Schweizer–Sklar
Tλ (a,b)

min(a,b)
(aλ +bλ −1)

1
λ

a.b
max(0,(aλ +bλ −1)

1
λ )

TD(a,b)

λ =−∞

−∞ < λ < 0
λ = 0
0 < λ <+∞

λ =+∞

Frank
Tλ (a,b)

min(a,b)
a.b
TLuk(a,b)

logλ

(
1+ (λ a−1).(λ b−1)

λ+1

)
λ = 0
λ = 1
λ =+∞

λ ∈]0;+∞[/{1}

Dombi
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TD(a,b)
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1

1+
(
( 1−a

a )λ+( 1−b
b )λ

) 1
λ

λ = 0
λ =+∞

0 < λ <+∞

Yager
Tλ (a,b)

TD(a,b)
max(0,1− ((1−a)λ +(1−b)λ )

1
λ )

min(a,b)

λ = 0
0 < λ <+∞

λ =+∞

Table A.1 Specifications of t-norms families.

we present four parametrized families of t-norms : Schweizer–Sklar, Frank, Dombi and Yager

t-norm families. Their mathematical formulas as well as the interval of their parameters are
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presented in Table A.1. Note that TD(a,b) is called the Drastic t-norm (if a = 1,T(a,b) = b

and if b = 1,T(a,b) = a otherwise T(a,b) = 0) and TLuk(a,b) is called the Lukasiewicz

t-norm (T(a,b) = max(0,a+b−1)).
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Fig. A.1 Plots of different t-norm families for a fixed input pair (0.4,0.6).

As indicated in section 2.3.2, the differences in performances between different families

of t-norms are not significant. This is actually due to the fact that they are parametrized.



131

Indeed, given a large grid of the parameter λ , the range of the outputs {Tλ (a,b)}gridλ
of an

arbitrary pair of inputs (a,b) is highly overlapping across different families of t-norm. For

instance, let us consider the pair (0.4,0.6) and plot Tλ (a,b) for the four t-norms rule in the

previous table. The plots are presented in Figure A.1. We obviously see that except for Frank

family, other t-norms outputs belong to the interval [0.0,0.4] whose bounds correspond to

the drastic and the minimum rule which are the ultimate smallest and the ultimate largest

t-norms [23]. Besides the minimum and the drastic rules are reachable for Schweizer–Sklar,

Dombi and Yager families for every (a,b) ∈ [0,1]2. However, for Frank family, the bounds

are the Lukasiewicz and the minimum t-norms. Thus, its range of outputs {Tλ (a,b)}gridλ

is slightly smaller than the one of other families. In conclusion, the usage of Aczel-Alsina,

Schweizer–Sklar, Dombi or Yager families will induce close performances since all values

between the drastic and the minimum rule are reachable for all pairs of inputs. In theory, for

Frank family, the performances are expected to be different. In practice, we have run similar

experiments as in chapter 2 using Franck t-norm and slightly poorer results were observed.





Appendix B

Detailed Wilcoxon signed-rank test
results for t-norm approach

This appendix gives detailed statistical test results for the statistical significance analyses

carried out in 2.4.6. In 2.4.5, we combined homogeneously three different types of classifiers

for 7 datasets therefore we obtain two series of 21 accuracies for each pair of compared

methods. The green check mark in the tables indicates that the test is passed while the red

cross indicates the opposite. If the test is passed, we can look for the best method in tables

2.3, 2.4 and 2.5, otherwise the result is undecided. Each of the following table contains 5

columns: name of the dataset, the value of the statistic, the p-value, the conclusion of the test

(i.e. passed or not) and the outperforming classification method if the test is passed. Two

approaches may have tied performances even though the test is passed because a distribution

can be asymmetric and have a null expectation. So an experiment is really conclusive when

the test is passed and expected accuracies are different.

Dataset stat p-value CCl Best method
Digits 994.0 0.0 ✓ Multiplicative

Waveform 1941.5 0.35 ✗ Undecided
Cancer 1373.0 0.0 ✓ Multiplicative
CNAE 1567.5 0.0009 ✓ t-norm

Segments 2312.0 0.46 ✗ Undecided
Wine 161.0 0.0 ✓ Multiplicative
Mnist 2426.0 0.86 ✗ Undecided

Table B.1 Wilcoxon test for t-norm and multiplicative rule. Classifiers are decision trees.
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Dataset stat p-value CCl Best method
Digits 2.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 757.0 0.0 ✓ t-norm
CNAE 889.0 0.0 ✓ t-norm

Segments 1384.0 0.0 ✓ t-norm
Wine 437.0 0.0 ✓ t-norm
Mnist 2.0 0.0 ✓ t-norm

Table B.2 Wilcoxon test for t-norm and minimum rule. Classifiers are decision trees.

Dataset stat p-value CCl Best method
Digits 1.0 0.0 ✓ Bayes

Waveform 1122.0 0.0 ✓ Bayes
Cancer 115.0 0.0 ✓ Bayes
CNAE 0.0 0.0 ✓ Bayes

Segments 371.0 0.0 ✓ Bayes
Wine 109.0 0.0 ✓ Bayes
Mnist 0.0 0.0 ✓ Bayes

Table B.3 Wilcoxon test for t-norm and Bayes rule. Classifiers are decision trees.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 63.0 0.0 ✓ t-norm
CNAE 9.0 0.0 ✓ t-norm

Segments 14.0 0.0 ✓ t-norm
Wine 306.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table B.4 Wilcoxon test for t-norm and stacking rule. Classifiers are decision trees.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 1223.0 0.0 ✓ t-norm
Cancer 680.0 0.0 ✓ t-norm
CNAE 1.0 0.0 ✓ t-norm

Segments 0.0 0.0 ✓ t-norm
Wine 404.0 0.0 ✓ Weighted vote
Mnist 0.0 0.0 ✓ t-norm

Table B.5 Wilcoxon test for t-norm and weighted vote. Classifiers are decision trees.
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Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 122.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 82.0 0.0 ✓ t-norm
Wine 1407.0 0.00012 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table B.6 Wilcoxon test for t-norm and classifier selection. Classifiers are decision trees.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 392.0 0.0 ✓ t-norm
CNAE 1.0 0.0 ✓ t-norm

Segments 82.0 0.0 ✓ t-norm
Wine 1902.0 0.03 ✓ Max. Ind. Clf.
Mnist 0.0 0.0 ✓ t-norm

Table B.7 Wilcoxon test for t-norm and maximally accurate individual classifier. Classifiers
are decision trees.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 225.0 0.0 ✓ t-norm
CNAE 1.0 0.0 ✓ t-norm

Segments 0.0 0.0 ✓ t-norm
Wine 2091.0 0.135 ✗ Undecided
Mnist 0.0 0.0 ✓ t-norm

Table B.8 Wilcoxon test for t-norm and centralized classifier. Classifiers are decision trees.

Dataset stat p-value CCl Best method
Digits 17.0 0.0 ✓ Multiplicative

Waveform 902.5 0.046 ✓ Multiplicative
Cancer 1.0 0.0 ✓ tie
CNAE 1131.5 0.025 ✓ Multiplicative

Segments 2390.0 0.64 ✗ Undecided
Wine 1594.0 0.00095 ✓ Multiplicative
Mnist 0.0 0.0 ✓ t-norm

Table B.9 Wilcoxon test for t-norm and multiplicative rule. Classifiers are logistic regressions.
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Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 629.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 142.0 0.0 ✓ t-norm
Wine 1301.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table B.10 Wilcoxon test for t-norm and minimum rule. Classifiers are logistic regressions.

Dataset stat p-value CCl Best method
Digits 36.0 0.0 ✓ Bayes

Waveform 759.5 0.0 ✓ Bayes
Cancer 1.0 0.0 ✓ tie
CNAE 0.0 0.0 ✓ Bayes

Segments 923.0 0.0 ✓ Bayes
Wine 510.0 0.0 ✓ Bayes
Mnist 0.0 0.0 ✓ t-norm

Table B.11 Wilcoxon test for t-norm and Bayes rule. Classifiers are logistic regressions.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 0.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 0.0 0.0 ✓ t-norm
Wine 0.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table B.12 Wilcoxon test for t-norm and stacking. Classifiers are logistic regressions.

Dataset stat p-value CCl Best method
Digits 1477.0 0.0003 ✓ t-norm

Waveform 1326.0 0.74 ✗ Undecided
Cancer 1.0 0.0 ✓ tie
CNAE 65.0 0.0 ✓ t-norm

Segments 0.0 0.0 ✓ t-norm
Wine 2306.0 0.451 ✗ Undecided
Mnist 0.0 0.0 ✓ t-norm

Table B.13 Wilcoxon test for t-norm and weighted vote. Classifiers are logistic regressions.
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Dataset stat p-value CCl Best method
Digits 47.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 53.5 0.0 ✓ tie
CNAE 0.0 0.0 ✓ t-norm

Segments 79.0 0.0 ✓ t-norm
Wine 1089.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table B.14 Wilcoxon test for t-norm and classifier selection. Classifiers are logistic regres-
sions.

Dataset stat p-value CCl Best method
Digits 74.0 0.0 ✓ t-norm

Waveform 0.0 0.0 ✓ t-norm
Cancer 1.0 0.0 ✓ Max. Ind. Clf.
CNAE 0.0 0.0 ✓ t-norm

Segments 79.0 0.0 ✓ t-norm
Wine 2493.0 0.912 ✗ Undecided
Mnist 0.0 0.0 ✓ t-norm

Table B.15 Wilcoxon test for t-norm and maximally accurate individual classifier. Classifiers
are logistic regressions.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ Centralized

Waveform 0.0 0.0 ✓ Centralized
Cancer 1581.0 0.212 ✗ Undecided
CNAE 0.0 0.0 ✓ Centralized

Segments 108.0 0.0 ✓ Centralized
Wine 1.0 0.0 ✓ Centralized
Mnist 0.0 0.0 ✓ Centralized

Table B.16 Wilcoxon test for t-norm and centralized classifier. Classifiers are logistic
regressions.
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Dataset stat p-value CCl Best method
Digits 874.0 0.0 ✓ Multiplicative

Waveform 600.0 0.0 ✓ Multiplicative
Cancer 732.0 0.0 ✓ Multiplicative
CNAE 901.0 0.416 ✗ Undecided

Segments 1391.0 0.0 ✓ t-norm
Wine 401.0 0.0 ✓ Multiplicative
Mnist 1378.0 0.0 ✓ t-norm

Table B.17 Wilcoxon test for t-norm and multiplicative rule. Classifiers are Gaussian naive
Bayesian.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 1.0 0.0 ✓ t-norm
Cancer 6.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 242.0 0.0 ✓ t-norm
Wine 460.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table B.18 Wilcoxon test for t-norm and minimum rule. Classifiers are Gaussian naive
Bayesian.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ Bayes

Waveform 752.0 0.0 ✓ Bayes
Cancer 0.0 0.0 ✓ Bayes
CNAE 0.0 0.0 ✓ Bayes

Segments 242.0 0.0 ✓ Bayes
Wine 297.0 0.0 ✓ Bayes
Mnist 0.0 0.0 ✓ Bayes

Table B.19 Wilcoxon test for t-norm and Bayes rule. Classifiers are Gaussian naive Bayesian.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 104.5 0.0 ✓ t-norm
Cancer 3.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 4.0 0.0 ✓ t-norm
Wine 1030.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table B.20 Wilcoxon test for t-norm and stacking. Classifiers are Gaussian naive Bayesian.
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Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 72.0 0.0 ✓ t-norm
Cancer 1878.0 0.026 ✓ Weighted vote
CNAE 7.0 0.0 ✓ t-norm

Segments 0.0 0.0 ✓ t-norm
Wine 511.0 0.0 ✓ Weighted vote
Mnist 0.0 0.0 ✓ t-norm

Table B.21 Wilcoxon test for t-norm and weighted vote. Classifiers are Gaussian naive
Bayesian.

Dataset stat p-value CCl Best method
Digits 1.0 0.0 ✓ t-norm

Waveform 19.0 0.0 ✓ t-norm
Cancer 13.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 46.0 0.0 ✓ t-norm
Wine 155.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table B.22 Wilcoxon test for t-norm and classifier selection. Classifiers are Gaussian naive
Bayesian.

Dataset stat p-value CCl Best method
Digits 0.0 0.0 ✓ t-norm

Waveform 19.0 0.0 ✓ t-norm
Cancer 57.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 48.0 0.0 ✓ t-norm
Wine 1405.0 0.00011 ✓ Max. Ind. Clf.
Mnist 0.0 0.0 ✓ t-norm

Table B.23 Wilcoxon test for t-norm and maximally accurate individual classifier. Classifiers
are Gaussian naive Bayesian.
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Dataset stat p-value CCl Best method
Digits 44.0 0.0 ✓ Centralized

Waveform 29.0 0.0 ✓ Centralized
Cancer 659.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ Centralized

Segments 16.0 0.0 ✓ t-norm
Wine 22.0 0.0 ✓ Centralized
Mnist 0.0 0.0 ✓ t-norm

Table B.24 Wilcoxon test for t-norm and centralized classifier. Classifiers are Gaussian naive
Bayesian.
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Hyperparameters of base classifiers

This appendix gives a few implementation details for the reproducibility of experiments

presented in section 2.4. We used classifier implementation from the python Scikit-learn

library 0.17.1. Except for the maximal depth parameter of decision trees which is set to 3, all

other parameters are left to default values. Note that we use a naive Bayes classifier with

Gaussian class conditional densities. More precisely, the classifiers are instantiated as :

• decision tree : sklearn.tree.DecisionTreeClassifier(max_depth = 3), the

split criterion is Gini impurity (CART algorithm),

• logistic regression : sklearn.linear_model.LogisticRegression(), the the reg-

ularization parameter is 1 and the corresponding penalty is in norm L2,

• naive Bayes : sklearn.naive_bayes.GaussianNB(), class probabilities are ML

estimates.

When best accuracy is sought for a given dataset, each hyperparameter should preferably

be tuned using a cross validated grid search as we do for λ but to assess combination method

performances, we argue that it is preferable to avoid tweaking these parameters too much as

the conclusions would be dependent on the method used to that end. In addition, the fusion

should be efficient regardless of base classifier hyperparameter values.





Appendix D

Detailed Wilcoxon signed-rank test
results for copula approach

This appendix gives detailed statistical test results for the statistical significance analyses

carried out in 3.5.4. In 3.5.2 and 3.5.3, we combined homogeneously three logistic regression

classifiers for 3 synthetic and 3 real datasets with different number of training samples and

different numbers of base classifiers therefore we obtain two series of 15 accuracies for each

pair of compared methods.

The green check mark in the tables indicates that the test is passed while the red cross

indicates the opposite. If the test is passed, we can look for the best method in tables 3.1, 3.2

for synthetic datasets and 3.4, 3.5 and 3.6 for real datasets., otherwise the result is undecided.

Each of the following table contains 5 columns: name of the dataset, the value of the statistic,

the p-value, the conclusion of the test (i.e. passed or not) and the outperforming classification

method if the test is passed. Two approaches may have tied performances even though the

test is passed because a distribution can be asymmetric and have a null expectation. So an

experiment is really conclusive when the test is passed and expected accuracies are different.

The wilcoxon results for the real dataset are presented in section D.1 and those for synthetic

datasets are presented in section D.2.
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D.1 Wilcoxon results for synthetic dataset

Dataset stat p-value CCl Best method
Blobs (Ntrain = 200) 866659 0.0438 ✓ Gaussian copula
Blobs (Ntrain = 400) 431483 0.0 ✓ Gaussian copula
Circles (Ntrain = 200) 0.0 0.0 ✓ Gaussian copula
Circles (Ntrain =400) 0.0 0.0 ✓ Gaussian copula
Moons (Ntrain =200) 113161.5 0.0 ✓ Independent copula
Moons (Ntrain =400) 56518 0.0 ✓ Gaussian copula

Table D.1 Wilcoxon test for Gaussian and independent copulas-based models. Classifiers are
logistic regressions.

Dataset stat p-value CCl Best method
Blobs (Ntrain = 200) 599 0.0 ✓ Gaussian copula
Blobs (Ntrain = 400) 0.0 0.0 ✓ Gaussian copula
Circles (Ntrain = 200) 0.0 0.0 ✓ Gaussian copula
Circles (Ntrain =400) 0.0 0.0 ✓ Gaussian copula
Moons (Ntrain =200) 902066 0.0 ✓ Stacking
Moons (Ntrain =400) 34017 0.0 ✓ Gaussian copula

Table D.2 Wilcoxon test for Gaussian copulas-based model and stacking. Classifiers are
logistic regressions.

Dataset stat p-value CCl Best method
Blobs (Ntrain = 200) 2602 0.0 ✓ Gaussian copula
Blobs (Ntrain = 400) 0.0 0.0 ✓ Gaussian copula
Circles (Ntrain = 200) 2983 0.0 ✓ Gaussian copula
Circles (Ntrain =400) 0.0 0.0 ✓ Gaussian copula
Moons (Ntrain =200) 1084254.5 0.0 ✓ Gaussian copula
Moons (Ntrain =400) 16294 0.0 ✓ Gaussian copula

Table D.3 Wilcoxon test for Gaussian copulas-based model and classifier selection. Classifiers
are logistic regressions.
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Dataset stat p-value CCl Best method
Blobs (Ntrain = 200) 88239.5 0.0 ✓ Gaussian copula
Blobs (Ntrain = 400) 2362 0.0 ✓ Gaussian copula
Circles (Ntrain = 200) 23 0.0 ✓ Gaussian copula
Circles (Ntrain =400) 0.0 0.0 ✓ Gaussian copula
Moons (Ntrain =200) 3500.0 0.0 ✓ Weighted vote
Moons (Ntrain =400) 6 0.0 ✓ Weighted vote

Table D.4 Wilcoxon test for Gaussian copulas-based model and weighted vote. Classifiers
are logistic regressions.

Dataset stat p-value CCl Best method
Blobs (Ntrain = 200) 430415 0.0 ✓ Gaussian copula
Blobs (Ntrain = 400) 20936 0.0 ✓ Gaussian copula
Circles (Ntrain = 200) 10.0 0.0 ✓ Gaussian copula
Circles (Ntrain =400) 0.0 0.0 ✓ Gaussian copula
Moons (Ntrain =200) 383666.5 0.0 ✓ Centralized classifier
Moons (Ntrain =400) 1097058.5 0.0 ✓ Gaussian copula

Table D.5 Wilcoxon test for Gaussian copulas-based model and centralized classifier. Classi-
fiers are logistic regressions.

Dataset stat p-value CCl Best method
Blobs (Ntrain = 200) 3596 0.0 ✓ Gaussian copula
Blobs (Ntrain = 400) 0.0 0.0 ✓ Gaussian copula
Circles (Ntrain = 200) 3068 0.0 ✓ Gaussian copula
Circles (Ntrain =400) 0.0 0.0 ✓ Gaussian copula
Moons (Ntrain =200) 1365479 0.0 ✓ Gaussian copula
Moons (Ntrain =400) 42095 0.0 ✓ Gaussian copula

Table D.6 Wilcoxon test for Gaussian copulas-based model and maximally accurate individual
classifier. Classifiers are logistic regressions.

Dataset stat p-value CCl Best method
Blobs (Ntrain = 200) 3596 0.0 ✓ Optimal
Blobs (Ntrain = 400) 0.0 0.0 ✓ Optimal
Circles (Ntrain = 200) 3068 0.0 ✓ Optimal
Circles (Ntrain =400) 0.0 0.0 ✓ Optimal
Moons (Ntrain =200) 1365479 0.0 ✓ Optimal
Moons (Ntrain =400) 42095 0.0 ✓ Optimal

Table D.7 Wilcoxon test for Gaussian copulas-based model and optimal classifier. Classifiers
are logistic regressions.
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D.2 Wilcoxon results for real dataset

Dataset stat p-value CCl Best method
MNIST (K = 2) 16452 0.0 ✓ Gaussian copula
MNIST (K = 10) 35381.5 0.0 ✓ Gaussian copula
MNIST (K = 50) 12636 0.0 ✓ Gaussian copula

20newsgroup (K = 2) 27189 0.0 ✓ Independent copula
20newsgroup (K = 10) 9999.5 0.0 ✓ Independent copula
20newsgroup (K = 50) 17341.5 0.0 ✓ Independent copula

Satellite (K = 2) 25353 0.0 ✓ Independent copula
Satellite (K = 10) 22866.5 0.0 ✓ Independent copula
Satellite (K = 50) 54056.5 0.03693 ✓ Independent copula

Table D.8 Wilcoxon test for Gaussian and independent copulas-based models. Classifiers are
logistic regressions.

Dataset stat p-value CCl Best method
MNIST (K = 2) 0.0 0.0 ✓ Gaussian copula

MNIST (K = 10) 0.0 0.0 ✓ Gaussian copula
MNIST (K = 50) 0.0 0.0 ✓ Gaussian copula

20newsgroup (K = 2) 0.0 0.0 ✓ Gaussian copula
20newsgroup (K = 10) 0.0 0.0 ✓ Gaussian copula
20newsgroup (K = 50) 0.0 0.0 ✓ Gaussian copula

Satellite (K = 2) 0.0 0.0 ✓ Gaussian copula
Satellite (K = 10) 0.0 0.0 ✓ Gaussian copula
Satellite (K = 50) 0.0 0.0 ✓ Gaussian copula

Table D.9 Wilcoxon test for Gaussian copula-based model and stacking. Classifiers are
logistic regressions.
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Dataset stat p-value CCl Best method
MNIST (K = 2) 1.0 0.0 ✓ Gaussian copula

MNIST (K = 10) 0.0 0.0 ✓ Gaussian copula
MNIST (K = 50) 0.0 0.0 ✓ Gaussian copula

20newsgroup (K = 2) 57514.5 0.151 ✗ Undecided
20newsgroup (K = 10) 0.0 0.0 ✓ Gaussian copula
20newsgroup (K = 50) 0.0 0.0 ✓ Gaussian copula

Satellite (K = 2) 44480 0.0 ✓ Gaussian copula
Satellite (K = 10) 0.0 0.0 ✓ Gaussian copula
Satellite (K = 50) 0.0 0.0 ✓ Gaussian copula

Table D.10 Wilcoxon test for Gaussian copula-based model and classifier selection. Classi-
fiers are logistic regressions.

Dataset stat p-value CCl Best method
MNIST (K = 2) 1.0 0.0 ✓ Gaussian copula

MNIST (K = 10) 0.0 0.0 ✓ Gaussian copula
MNIST (K = 50) 0.0 0.0 ✓ Gaussian copula

20newsgroup (K = 2) 57514.5 0.151 ✗ Undecided
20newsgroup (K = 10) 27.5 0.0 ✓ Gaussian copula
20newsgroup (K = 50) 0.0 0.0 ✓ Gaussian copula

Satellite (K = 2) 44661. 0.0 ✓ Gaussian copula
Satellite (K = 10) 3461.5 0.0 ✓ Gaussian copula
Satellite (K = 50) 11846.5 0.0 ✓ Gaussian copula

Table D.11 Wilcoxon test for Gaussian copula-based model and weighted vote. Classifiers
are logistic regressions.

Dataset stat p-value CCl Best method
MNIST (K = 2) 0.0 0.0 ✓ Centralized classifier
MNIST (K = 10) 0.0 0.0 ✓ Centralized classifier
MNIST (K = 50) 0.0 0.0 ✓ Centralized classifier

20newsgroup (K = 2) 0.0 0.0 ✓ Centralized classifier
20newsgroup (K = 10) 0.0 0.0 ✓ Centralized classifier
20newsgroup (K = 50) 0.0 0.0 ✓ Centralized classifier

Satellite (K = 2) 0.0 0.0 ✓ Centralized classifier
Satellite (K = 10) 42506.5 0.0 ✓ Centralized classifier
Satellite (K = 50) 0.0 0.0 ✓ Centralized classifier

Table D.12 Wilcoxon test for Gaussian copula-based model and the centralized classifier.
Classifiers are logistic regressions.
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Dataset stat p-value CCl Best method
MNIST (K = 2) 2420.0 0.0 ✓ Max. Ind. Clf.

MNIST (K = 10) 0.0 0.0 ✓ Gaussian copula
MNIST (K = 50) 0.0 0.0 ✓ Gaussian copula

20newsgroup (K = 2) 11851 0.0 ✓ Max. Ind. Clf.
20newsgroup (K = 10) 0.0 0.0 ✓ Gaussian copula
20newsgroup (K = 50) 0.0 0.0 ✓ Gaussian copula

Satellite (K = 2) 30188.5 0.0 ✓ Max. Ind. Clf.
Satellite (K = 10) 0.0 0.0 ✓ Gaussian copula
Satellite (K = 50) 0.0 0.0 ✓ Gaussian copula

Table D.13 Wilcoxon test for Gaussian copula-based model and the maximally accurate
individual classifier. Classifiers are logistic regressions.
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Detailed Wilcoxon signed-rank test
results for copula and t-norm
comparison

E.1 Wilcoxon test results related to section 3.5.6

Dataset stat p-value CCl Best method
Digits 1.0 0.0 ✓ t-norm

Waveform 1122.0 0.0 ✓ t-norm
Cancer 115.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ Gauss. copula

Segments 371.0 0.0 ✓ t-norm
Wine 109.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table E.1 Wilcoxon test for Gaussian copula-based model and the t-norm approach. Classi-
fiers are decision trees.
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Dataset stat p-value CCl Best method
Digits 36.0 0.0 ✓ t-norm

Waveform 759.5 0.0 ✓ t-norm
Cancer 1.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 923.0 0.0 ✓ t-norm
Wine 510.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table E.2 Wilcoxon test for Gaussian copula-based model and the t-norm approach. Classi-
fiers are logistic regressions.

Dataset stat p-value CCl Best method
Digits 0.0 0.034 ✓ t-norm

Waveform 752.5 0.0 ✓ t-norm
Cancer 0.0 0.0 ✓ t-norm
CNAE 0.0 0.0 ✓ t-norm

Segments 242.0 0.0 ✓ t-norm
Wine 297.0 0.0 ✓ t-norm
Mnist 0.0 0.0 ✓ t-norm

Table E.3 Wilcoxon test for Gaussian copula-based model and the t-norm approach. Classi-
fiers are Gaussian naive Bayesian .
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E.2 Wilcoxon test results related to section 3.5.6

Dataset stat p-value CCl Best method
MNIST (K=2) 46633.0 0.0 ✓ Gauss. copula

MNIST (K=10) 17879.0 0.0 ✓ Gauss. copula
MNIST (K=50) 6574.5 0.0 ✓ Gauss. copula

20newsgroup (K=2) 2703.5 0.0 ✓ Gauss. copula
20newsgroup (K=10) 0.0 0.0 ✓ Gauss. copula
20newsgroup (K=50) 0.0 0.0 ✓ Gauss. copula

Satellite (K=2) 33093.5 0.0 ✓ Gauss. copula
Satellite (K=10) 0.0 0.0 ✓ Gauss. copula
Satellite (K=50) 304.5 0.0 ✓ Gauss. copula

Table E.4 Wilcoxon test for Gaussian copula-based model and the t-norm approach. Classi-
fiers are logistic regressions .

Dataset stat p-value CCl Best method
Blobs Ntrain = 200 1352927.5 0.0 ✓ Gaussian copula
Blobs Ntrain = 400 613274.0 0.0 ✓ Gaussian copula
Circles Ntrain = 200 1206413.0 0.0 ✓ Gaussian copula
Circles Ntrain = 400 961941.5 0.0 ✓ Gaussian copula
Moons Ntrain = 200 1518125.0 0.0 ✓ t-norm
Moons Ntrain = 400 938542.0 0.0 ✓ Gaussian copula

Table E.5 Wilcoxon test for Gaussian copulas-based model and t-norm approach. Classifiers
are logistic regressions.


	Titre
	Acknowledgements
	Abstract
	Résumé
	Table of contents
	List of figures
	List of tables
	List of Symbols
	List of acronyms
	General introduction
	1 State-of-the art on classifier combination
	1.1 Introduction
	1.2 Classification problem statement
	1.2.1 Notations
	1.2.2 Classification algorithms
	1.2.3 Evaluation of classification performances

	1.3 Why do we combine classifiers?
	1.4 Insights on classifier combination
	1.4.1 Specification of a classifier combination
	1.4.2 The need of diversity in responses

	1.5 Classical combination algorithms
	1.5.1 Voting approaches
	1.5.2 Borda and wBorda counts
	1.5.3 Behavior-knowledge space

	1.6 Ensemble methods
	1.6.1 Bagging
	1.6.2 Boosting
	1.6.3 Random subspaces
	1.6.4 Error correcting output codes

	1.7 Trainable fusion approaches
	1.7.1 Stacking approaches
	1.7.2 Mixture models
	1.7.3 Mixture of experts

	1.8 Fusion approaches within uncertainty frameworks
	1.8.1 Probabilistic classifier combination
	1.8.2 Evidential classifier combination
	1.8.3 Fuzzy classifier combination

	1.9 Conclusion

	2 Possibilistic t-norm based combination 
	2.1 Introduction
	2.2 Combination problem statement
	2.3 T-norm based possibilistic combination of classifiers
	2.3.1 Basic background on possibility theory
	2.3.2 T-norm based combination
	2.3.3 Hyperparameter tuning

	2.4 Application on real datasets
	2.4.1 Datasets
	2.4.2 Base classifiers
	2.4.3 Desirable experimental conditions to assess combination performances
	2.4.4 Implemented experimental protocol
	2.4.5 Combination method performances
	2.4.6 Statistical validation

	2.5 Classifier fault tolerance study
	2.6 Conclusion

	3 Probabilistic copula based combination approach
	3.1 Introduction
	3.2 Combination problem statement
	3.3 Copula based probabilistic combination of classifiers
	3.3.1 Basic background about copulas
	3.3.2 Copulas and classifier combination

	3.4 Hyperparameter tuning
	3.5 Application on synthetic and real datasets
	3.5.1 Experimental settings
	3.5.2 Experiments on synthetic data
	3.5.3 Experiments on real data
	3.5.4 Statistical validation
	3.5.5 Comments on the copula type
	3.5.6 Comparison between the possibilistic and the probabilistic approaches

	3.6 Conclusion

	Conclusion and perspectives
	References
	Appendix A Families of t-norms
	Appendix B Detailed Wilcoxon signed-rank test results for t-norm approach
	Appendix C Hyperparameters of base classifiers
	Appendix D Detailed Wilcoxon signed-rank test results for copula approach
	D.1 Wilcoxon results for synthetic dataset
	D.2 Wilcoxon results for real dataset

	Appendix E Detailed Wilcoxon signed-rank test results for copula and t-norm comparison
	E.1 Wilcoxon test results related to section 3.5.6
	E.2 Wilcoxon test results related to section 3.5.6


	source: Thèse de Mahmoud Albardan, Université de Lille, 2018
	d: © 2018 Tous droits réservés.
	lien: lilliad.univ-lille.fr


