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GÉNIE CIVIL

Sujet de la thèse
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Abstract

The objective of this thesis aims to explore the effective mechanical behaviors of porous

materials involved with pore or inclusion problem. The key point to this problem is to

homogenize such a highly heterogenous material incorporating more physical geometry

information at a given scale and coupling with the interactions among different scales. In

this work, several typical microstructures of rock-like materials are respectively considered

here covering multiscale constituents. We sought to determine how the presence of pores

and inclusion with different morphologies influences the macroscopic elastic, plastic flow

and time-dependent behaviors. For this propose, a multiscale homogenization procedure

for nonlinear behavior is proposed based on a Fast Fourier Transform(FFT) homogeniza-

tion method to upscale the local behavior from the micro-scale transition to meso-scale

and then to macroscale. Firstly, a class of porous material with two population of pores

at two separated scales are investigated. The effect of the ratio between meso-porosity

and micro-porosities on its macroscopic elastic properties and plastic yield are specially

analysed and compared with the closed-form solutions. Secondly, due to a limitation to

obtain an analytical criterion for the materials with both pores and inclusions configured

at same scale, particular attentions are focused on the anisotropic behavior induced by

the pore and inclusion geometry characters. We provide a reference numerical solution

of plastic yield stresses evolution for this class of materials covering the effect of pore

and inclusion geometrical characters like the volume fractions, distributions, aspect ra-

tios, orientations and so on. Thirdly, We shall consider a class of three-scale materials

with the inclusion embedded at meso-scale and pores configured at micro-scale. An u-

nified multi-scale homogenization method is developed to account for the instantaneous

and time-dependent behavior. Hence, we will focus on the effect of geometrical characters

of meso-inclusion on the macroscopic plastic yield and viscoplastic deformations. Finally,

a macroscopic criterion is obtained to consider a porous material with double porosities

and inclusions by using the modified secant method. To estimate the failure of rock-like

materials, a time-dependent damage plastic model is developed. Comparisons between

numerical results and experimental data show that this model can well characterize its

effective behavior with complex micro-structures.





Résumé

L’objectif de cette thèse est d’explorer les comportements mécaniques efficaces des

matériaux poreux impliqués dans les problèmes des pores ou d’inclusion. Le point es-

sentiel de ce problème consiste à homogénéiser un matériau très hétérogène en intégrant

davantage d’informations de géométrie physique à une échelle donnée et en les couplant

aux interactions entre différentes échelles. Dans ce travail, quatre microstructures typ-

iques de matériaux semblables à la roche sont respectivement considérées ici et couvrent

différents constituants. Nous avons cherché à déterminer comment la présence de pores

et l’inclusion avec différentes morphologies influencent les comportements élastiques, plas-

tiques et dépendants du temps macroscopiques. Pour cette proposition, une procédure

d’homogénéisation multi-échelles pour le comportement non linéaire est proposée sur la

base d’une méthode d’homogénéisation par Transformation de Fourier Rapide (FFT) pour

augmenter le comportement local de la micro-échelle à la méso-échelle puis à la macro-

échelle. Tout d’abord, une classe de matériau poreux avec deux populations de pores à

deux échelles séparées est étudiée. L’effet du rapport entre la méso-porosité et la micro-

porosités sur son rendement élastique et plastique macroscopique est spécialement analysé

et comparé aux solutions sous forme fermée. Deuxi èmement, en raison d’une limita-

tion pour obtenir un critère analytique pour les matériaux avec à la fois des pores et

des inclusions configurés à la même échelle, des attentions particulières sont focalisées

sur le comportement anisotrope induit par les caractères géométriques des pores et des

inclusions. Nous fournissons une solution numérique de référence pour l’évolution des

contraintes de rendement plastique pour cette classe de matériaux couvrant l’effet des

caractères géométriques des pores et des inclusions tels que les fractions volumiques, les

distributions, les proportions, les orientations, etc. Troisièmement, nous allons considérer

une classe de matériaux à trois échelles avec l’inclusion intégrée à l’échelle méso et les pores

configurés à l’échelle micro. Une méthode d’homogénéisation unifiée à plusieurs échelles est

développée pour prendre en compte le comportement instantané et dépendant du temps.

Nous allons donc nous intéresser à l’effet des caractères géométriques de la méso-inclusion

sur le rendement plastique macroscopique et les déformations viscoplastiques. Enfin, un

critère macroscopique général est obtenu pour considérer la matrice poreuse de forme el-

liptique et l’inclusion rigide distribuée de manière aléatoire en utilisant la méthode de

la sécante modifiée. Pour estimer la défaillance des matériaux semblables à la roche, un

modèle en plastique endommagé en fonction du temps est développé. Les comparaisons

entre les résultats numériques et les données expérimentales montrent que ce modèle peut

bien caractériser son comportement efficace avec des micro-structures complexes.
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Notations

Tensor notations

a scalar . simple contraction

a vector : double contraction

a second-order tensor ⊗ tensor product

A fourth-order tensor I fourth-order identity tensor

δ second-order identity tensor K = I− J

J = 1
3δ ⊗ δ

Ei fourth order transverse isotropic tensors

(a⊗ b)ijkl = aijbkl

(a⊗b)ijkl = 1
2(aikbjl + ailbjk)



vi Notations

Common parameters

Cm elastic stiffness tensor of the solid matrix

Sm elastic compliance tensor of the solid matrix

Cr fictitious elastic stiffness tensor of r − th phase

Cmaxr elastic stiffness tensor of the hardest phase

Cminr elastic stiffness tensor of the softest phase

Chom homogenized drained elastic stiffness tensor

Shom homogenized drained elastic compliance tensor

Ar strain concentration tensor of r − th phase

Pr Hill tensor of r − th phase

Pd the corresponding distribution tensor

Phom Hill tensor of homogenized phase

Sr Eshelby’s tensor

fr volume fraction of r − th phase

Γ0 Green tensor

Σeq the macroscopic equivalent stress

Σm the macroscopic mean stress



General Introduction

The Callovo-Oxfordian (COx) argillite, is well known as a potential host rock for

the geological repository of radioactive wastes. Because of its good geological properties

characterized by the absence of major fractures, low permeability, and high mechanical

strength. The mineral composition and pores of Cox argillite are observed by the SEM

image as shown in Fig.1. The main minerals of Cox argillite are consisted of three com-

ponents: clay minerals, quartz, and calcite grains. A series of experimental investigations

has been carried out by the French Agency for Nuclear Waste Management (Andra) re-

garding the mineralogical composition, microstructural analysis, and mechanical, thermal,

and hydraulic properties of Cox argillite ([Robinet et al., 2012, Zhang et al., 2012, Zhang

et al., 2014, Menaceur et al., 2015, Armand et al., 2017, Liu et al., 2018]). From these

experimental results, it is found that the macroscopic behaviors of Cox argillite are inher-

ently related to mineralogical composition and microstructural morphology as well as the

porosity. The presence of clay minerals can increase the overall deformability of argillite

due to the plastic deformation of the clay matrix. However, the fine-grained carbonates

seems to cause the opposite trend of clayey matrix with respect to the amount of carbon-

ate present [Klinkenberg et al., 2009]. Meanwhile, the mechanical behavior becomes more

brittle due to the increase in the calcite and quartz content ([Hu et al., 2014]).

22                                                                                                                            CHAPITRE 1 

englobés dans une matrice composée de minéraux argileux, celle-ci contient également des 

grains de carbonates micritiques (taille inférieure à quelques microns). Les grains de quartz et 

la matrice argileuse présentent des niveaux de gris relativement proches. L’échantillon HTM 

01147 présente visuellement une granulométrie des minéraux non argileux plus élevée que 

l’échantillon EST 26095. 

 

 

 

Fig. 1.3 : Images MEB en mode électrons rétrodiffusés acquises pour (a) HTM 01147 

grossissement × 100 (1 µm/pixel) et (b) EST 26095 grossissement × 350 (0,3 µm/pixel). 

L’image (b) est constituée de 12 images voisines assemblées sous Photoshop  pour former 

une mosaïque d’images (4500 × 2400 pixels).  
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Figure 1: Mineral composition of the Cox argillite by SEM image from [Robinet, 2008].

On the other hand, most composite materials are multi-scale in nature, such as rock,
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concrete, metals and polymers, which are characterized as multi-phase porous materials.

With the development of digital imaging techniques, their complex microstructure can be

directly visualized and quantified across multiple scales. For instance, the mineralogy and

microscopic features of shales reported by [Saif et al., 2017a, Saif et al., 2017b] consists

of organic matter (kerogen), fine clay structures, inorganic mineral grains and pores at

multi-scales. Its complexity is demonstrated in the compositional heterogeneity of the

each mineral compositions as well as the microstructure of the pore, which mainly govern

its macroscopic behavior. Full-field properties and effective mechanical behaviors involved

with multi-scale characterization of these materials can be determined by experimental

techniques to study the characteristics of microstructure and local mechanisms at small

scales ([Uchic et al., 2006]), also can be estimated by using different homogenization meth-

ods on a representative unit-cell([Eshelby, 1957,Mori and Tanaka, 1973,Ponte Castañeda

and Willis, 1995, Michel and Suquet, 2004, Moulinec and Suquet, 1998, Ponte Castañeda,

2002,Özdemir et al., 2008,Matous et al., 2017]). Experimental and numerical studies have

demonstrated that porous materials have some remarkable properties including pressure

sensitivity, anisotropy and time dependent behaviors are related to the physical features

of microstructure with embedded pores and mineralogical compositions.

On the other hand, analytical solutions for porous materials also have well been devel-

oped. Following the study of [Gurson, 1977] who presented a well investigation on strength

homogenization for porous materials with a von Mises matrix , various nonlinear homoge-

nization techniques have been employed to explore closed-form strength criteria for ductile

porous media ([Castañeda, 1991,Michel and Suquet, 1992,Gologanu et al., 1994,Gologanu

et al., 1993, Garajeu and Suquet, 1997, Monchiet et al., 2011, Monchiet et al., 2014]. For

rock-like materials such as rock, concrete and soil, which exhibiting significant friction-

al properties, assessments of the macroscopic strength properties were inspired by the

previous work for nonlinear homogenization theories. The solid matrix obeyed typical

Drucker-Prager criterion with one population of voids has been developed which main-

ly concerned the consideration of porosity, matrix compressibility, plastic anisotropy and

so on ([Guo et al., 2008, Maghous et al., 2009, Ortega et al., 2011, Shen et al., 2017b]).

Based on these work, some extended to the modeling of porous material reinforced with

rigid particles([Shen et al., 2013,He et al., 2013]) or multi-scales materials([Vincent et al.,

2009a, Ortega and Ulm, 2013, Shen et al., 2014, Shen and Shao, 2016b, Shen and Shao,

2016a]). With a multi-step homogenization procedure, the microstructure features like

porosity and inclusion volume fraction characterized by each well separated scales can

be explicitly taken into account, while these closed-form analytical models are usually
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not feasible for complex microstructure. Moreover, the influences of interactions between

voids and other microstructure physical information (void shapes, sizes, orientation and

distribution, etc.), cavitation, local stress and strain concentrations are not so easily to be

considered simultaneously in a criterion and limit to determine a periodic microstructure

that is statistically similar to the actual microstructure under consideration.

In order to accurately estimate overall response of heterogeneous material, a FFT-

based homogenization method proposed by [Moulinec and Suquet, 1994] devoted to the

evaluation of physical properties for periodic boundary conditions to overcome the u-

nit cell problem of complex microstructures ([Jiang and Shao, 2012], [Lebensohn et al.,

2012], [Li et al., 2016], [Moulinec and Suquet, 1998], [Vincent et al., 2014b]). Particu-

lar attention have been focused on the convergence of FFT iterative schemes([Eyre and

Milton, 1999], [Michel et al., 2001], [Monchiet and Bonnet, 2012], [Moulinec and Sil-

va, 2014]) and significant progresses have been well considered for various applications

such as linear and nonlinear elastic homogenization([Gélébart and Mondon-Cancel, 2013],

[Kabel et al., 2014]), nonlinear elasto-plastic([Jiang and Shao, 2012]) and viscoplastic

behavior([Lebensohn et al., 2012]), Darcy problem([Monchiet et al., 2009]) and crack pre-

diction([Li et al., 2012]). Despite this computational homogenization technique do not

lead to a closed-form constitutive equations, but make it possible to introduce detailed

microstructural information including mechanical properties and physical properties such

as different sizes, regular and irregular of pores shape, random distribution and other more

complex microstructure.

The main objective of this thesis is to estimate the effective properties for heterogenous

materials involved with different multiscale microstructure features. To this end, the

FFT-based homogenization method is employed and will be extended to take into account

effects of pore and inclusion geometry characters on the macroscopic elastoplastic and

time dependent behaviors. The present thesis is composed of the following Chapters.

Chapter I will recall the classical analytical homogenization methods for effective

elastic stiffness estimations and recent developments of homogenized strength criteria for

porous materials with von-Mises and Drucker-Prager type matrix. Then the estimations

predicted by different homogenization methods will be presented. To solve the multi-scale

problem proposed in this work, the Fast Fourier Transform homogenization method is

employed and basic knowledge of this method will be introduced. Then its efficiency and

accuracy will be validated by comparison with the finite element method.

Chapter II will present a two-step homogenization procedure to describe the elastic-

plastic behavior of a class of materials with two populations of pores at two separated
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scales using FFT-based homogenization techniques. This method is firstly verified by

the finite element method to confirm its accurate estimations of macroscopic behaviors of

porous materials with two populations of pores. With the help of the proposed method,

the microstructure with different porosity ratios f/φ between two populations of pores

but having a given total porosity is specially investigated. The emphasis is put on relative

roles of both families of pores on the macroscopic elastic and plastic responses. In partic-

ular, the simulated results are compared with the existed closed form solutions.

Chapter III is devoted to a numerical study of the microstructure with both inclusions

and pores embedded at same scale. We will focused on the anisotropy properties induced

by the pore and inclusion geometry. Two specially arrangements of inclusions and pores

are considered. The evolution of macroscopic elastic modulus and plastic yield stress with

respect to pore and inclusion geometrical characters are presented and discussed in detail.

Finally, we will apply this framework to predict the macroscopic yield stresses of Berea

sandstone and compare with the experimental data.

Chapter IV is focused on a class of rock-like materials with meso inclusions and micro

pores configured at different scales. The aim of this chapter is to study effects of inclu-

sions and pores on plastic and viscoplastic deformation of rock-like materials. A two-step

homogenization procedure is also established to consider unified instantaneous plastic and

time dependent behavior. A series of numerical results are presented to investigate the

effects of inclusion geometrical characters like elastic stiffness, shape, aspect ratio, ori-

entation as well as inclusion volume fraction and porosity on macroscopic plastic yield

stress and creep deformation. Finally, we applied the proposed model to simulate the

time-dependent behavior of COx claystone in creep and relaxation tests.

Chapter V is aiming to establish a multi-scale elastoplastic damage model to determine

the macroscopic mechanical behavior for the geomaterials containing complex multi-scale

features. To this end, we will employ the work of [Maghous et al., 2009] and [Shen and

Shao, 2016a] to develop a general strength criterion considering the elliptic form porous

matrix and randomly distributed rigid inclusions. Typically, due to the fact that the fail-

ure of geomaterial always include strain softening behavior, it is assumed that the rock

failure is a time-dependent progressive damage process, we will introduce a rate-dependent

damage model to describe the degradation effect on the elastic and plastic behavior. Based

on these studies, we will apply this damage constitutive relation on the claystone and Vaca
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Muerta shale rock to account for the effect of multi population of inclusions and pores

configured in a porous matrix. The modeling results will be compared with the triaxial

compressible experimental data.
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2 Homogenization methods of hetergenous materials

1 Classical homogenization theory for elastic composites

Heterogeneity is in nature of engineering materials. Generally, such a heterogenous

material often appears to be homogeneous at a enough larger length scale than that of

their constituents. Following a theoretical interest focused on that how assemble the

heterogenous characters to represent an ”effective” or ”average” properties and which

characters dominate this, the elastic behavior is of the prime interest for the researchers

to seek for the more accurate estimations of macroscopic stiffness tensor. In this section,

several classical homogenization methods for elastic constant estimation will be recalled.

Generally, the effective elastic properties in most cases cannot be determined exactly

due to the complexity of microstructure and its random arrangement. One approach is

to estimate them using rigorous upper and lower bounds. [Voigt, 1889] adopted isotropic

strain assumption to obtain the estimation of the effective composite stiffness matrix as

the weighted volume average of the stiffness matrices of constituent phases. In addition,

according to the isotropic stress assumption, [Reuss, 1929] estimated the effective com-

posite compliance matrix as the weighted volume average of the compliance matrices of

constituent phases. [Hill, 1952] has proven that for isotropic constituent phases and com-

posites, Voigt estimation and Reuss estimation, respectively, provide the upper and lower

bounds for the effective bulk and shear moduli of composites. A narrower upper and lower

bounds was obtained based on the Hashin shtrikman variational principle ([Hashin and

Shtrikman, 1962,Hashin and Shtrikman, 1963]), by respectively choosing the homogeneous

reference material with modulus tensor C0 to be equal to the ”maximum” and ”minimum”

modulus tensors of the phases Cr. Then it was generalized for random composites and

nonlinear composite ([Willis, 1977,Willis, 1983] and [Talbot and Willis, 1985]).

a) Bound of Voigt and Reuss:

V oigt : Ar = I, Chomvogit =

N∑
r=1

frCr

Reuss : Br = I, ShomReuss =

N∑
r=1

frC−1
r

(I .1)

b) Bound of Hashin-Shtrikman:

upper bound : THS+
r = [Cr + Cmaxr (S−1

r − I)]−1Cmaxr S−1
r

AHS+
r = THS+

r (

N∑
r=1

frTHS+
r )−1

ChomHS+ =

N∑
r=1

frCrAHS+
r

(I .2)
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lower bound : THS−r = [Cr + Cminr (S−1
r − I)]−1Cminr S−1

r

AHS−r = THS−r (

N∑
r=1

frTHS−r )−1

ChomHS− =
N∑
r=1

frCrAHS−r

(I .3)

Since the excellent work of Eshelby [Eshelby, 1957] who developed an elegant formalism

to determine the elastic solution of a single inclusion embedded in an infinite matrix of

material with uniform exterior loading. The classical dilute scheme is the primary use

of this theory based on the eigenstrain concepts for the prediction of effective modulus.

It requires the assumption that the inhomogeneities or inclusions in the composite are

dilutely distributed in the homogeneous matrix. Due to fact that the effect of stress-field

interactions between inclusions is negligible, thus it is generally not suit for high fraction

of inclusion configured composites. However, this method provides a good basis for the

development of many approximation methods. Since then, to account for the interactions

between inclusions, a so-called self-consistent method is proposed by [Hill, 1965b].

Different from the dilute method, in the standard Self-Consistent method, the idea is

that the Eshelby equivalent principle is applied with respect to homogenized medium, not

for the matrix. Unfortunately, the self-consistent method can produce negative effective

bulk and shear responses, for voids, with pore volume fractions of 50% and higher. For

rigid inclusions, it produces infinite effective bulk responses for any volume fraction and

infinite effective shear responses above 40% ([Zohdi and Wriggers, 2008]). This method

also has various extensions, such as differential self consistent (DSC) scheme and iterative

self consistent (ISC) scheme.

Another widely used mean-field homogenization method named Mori Tanaka method

([Mori and Tanaka, 1973]). This method has also developed in the framework of Es-

helby’s inclusion theory [Eshelby, 1957] to correlate averaged stresses and strains of the

constituents with those of the matrix in a composite. Meanwhile, it is known that for

composites with randomly oriented microcracks or disks, the Mori-Tanaka method vio-

lates the corresponding rigorous bounds of the Hashin Shtrikman type ([Ponte Castañeda

and Willis, 1995,Zheng and Du, 2001]) and fails to satisfy a necessary symmetry require-

ment. In this case, the Mori Tanaka estimate is generally lack of accuracy for non-dilute

concentrations of non-spherical inclusions.

Motivated by this reason, [Ponte Castañeda and Willis, 1995] precisely considered

both the role of the inclusions interaction and spatial distribution with respect to two

independent function in the framework of Hashin-Shtrikman principle. The idea is based
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on correlation functions of inclusion pairs, which can characterize the inclusion distribution

to the second order in a statistical sense. However, it seems to have practically difficulties

to give an explicit expression if the inclusion distribution is not identical.

Although these methods have limitations to some special cases, all the schemes provide

efficient and straight forward algorithms for the prediction of elastic constants. For each

scheme, the strain concentration tensor and effective stiffness tensor are respectively taken

the following forms.

a) Dilute scheme estimations:

Adlr = [I + Pr(Cr − Cm)]−1

Chomdl = Cm +

N∑
r=2

fr(Cr − Cm)Adlr
(I .4)

b) Mori-Tanaka scheme estimations:

AMT
r = Adlr [

N∑
s=1

fsAdls ]−1

ChomMT =

N∑
r=1

frCrAMT
r

(I .5)

c) PCW scheme estimations:

APCWr = [I + Pr : (Cr − Cm)]−1 : [fmI +

N∑
s=1

fs[I + Ps : (Cs − Cm)]−1]−1

ChomPCW = Cm + (I−
N∑
r=1

fr[(Cr − Cm)−1 + Pr]−1 : Pd)−1 :

N∑
r=1

fr[(Cr − Cm)−1 + Pr]−1

(I .6)

d) Self consistent scheme estimations:

ASCr = [I + Phom(Cr − Chom)]−1

ChomSC = Cm +
N∑
r=2

fr(Cr − Cm)ASCr
(I .7)

As an example, the effective elastic properties of a two-phase composite with spherical

rigid inclusion is estimated. A direct comparison of effective bulk and shear modulus

predicted by these classic homogenization methods has been shown in Fig.I .1. At a first

view, significant differences are presented for each other. It should be pointed out that

the Mori Tanaka method is consistent with the Hashin Shtrikman lower bound for a two-

phase matrix-rigid inclusion composite. However, for the porous material, the MT method
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estimation is corresponding to the Hashin Shtrikman upper bound. On the other hand,

the PCW microstructure for the MT model indicates that the MT moduli could be found

from the PCW formulation, but this would require a spatial distribution that is identical

to the oriented inclusion shape ([Hu and Weng, 2000]).
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Figure I .1: A comparison of effective bulk and shear modulus predicated by differ-

ent classical homogenization methods: for matrix, Em=5GPa, vm = 0.15; for inclusion:

Ei=100GPa, vi = 0.15
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2 Strength homogenized criteria for heterogenous materials

2.1 Plastic criteria for porous materials with spherical voids

2.1.1 Case of Von Mises matrix

Concerning the upscaling of strength behavior of porous material, the pioneering work

of Gurson ([Gurson, 1977]) initially developed a widely accepted strength criterion for

a hollow sphere with a von-Mises matrix based on a limit analysis method. Though

taking into account two velocities corresponding to a homogenous strain rate and the

cavity expansion, this model covers the exact solution of the hollow sphere subjected to a

hydrostatic loading.
Σ2
eq

σ2
0

+ 2f cosh(
3

2

Σm

σ0
)− 1− f2 = 0 (I .8)

Since then, based on this framework, it has been followed up by lots of researchers

who provide various improvements and extensions to the original Gurson model to better

reproduce the unit cell modeling ([Tvergaard, 1981,Tvergaard and Needleman, 1984,Golo-

ganu et al., 1993,Gologanu et al., 1994,Gologanu et al., 1997]). Later, [Castañeda, 1991]

adopted a variational method, assuming that the effective energy potentials of nonlin-

ear composites was in terms of the corresponding energy potentials for linear comparison

composites with the same microstructural distributions. The obtained criterion has the

following form:

(1 +
2

3
f)

Σ2
eq

σ2
0

+
9

4
f

Σ2
m

σ2
0

− 1− f2 = 0 (I .9)

This criterion was later improved by [Michel and Suquet, 1992] incorporating exactly

a closed-form solution of a hollow sphere under hydrostatic tension.

(1 +
2

3
f)

Σ2
eq

σ2
0

+
9

4
(
1− f
ln(f)

)2 Σ2
m

σ2
0

− (1− f)2 = 0 (I .10)

[Monchiet et al., 2007] used an Eshelby-like trial velocity fields to determine the macro-

scopic dissipation. The following criterion is proposed:

Σ2
eq

σ2
0

+ 2f cosh(

√
9

4

Σ2
m

σ2
0

+
2

3g(f)

Σ2
eq

σ2
0

)− 1− f2 = 0 (I .11)

[Shen et al., 2015a] adopted the framework of the Stress Variational Homogenization

(SVM) involving Hill’s variational principal coupled to the homogenization concepts. By

using a new statically admissible stress field, the new criterion improved the one proposed
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by [Cheng et al., 2014] and derived a more accurate value for the pure shear loading case.

The closed form formula is given as follows:√
P0(f)

(1− f + P1)2

Σ2
eq

σ2
0

+
9

4ln(f)2

Σ2
m

σ2
0

ξ(ζ)− 1 = 0 (I .12)

where P0(f), P1 and ξ(ζ) are functions with J3 and f :
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Figure I .2: A comparison of plastic surfaces with different criteria

With these criteria in hand, a series of plastic yield surfaces are predicted by these

criteria. The results are presented in Fig.I .2 for different porosities. Remarkably, except

for the one proposed by [Castañeda, 1991], all the criteria cover the exact solution for

hydrostatic loading. Then for a higher porosity, the model of [Castañeda, 1991] is gradually

closed with the model of [Monchiet et al., 2007].
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2.1.2 Case of Drucker-Prager matrix

Above, the mentioned macroscopic criteria are mainly for ductile porous materials.

For geomaterial, it always behaves as a pressure-sensitive properties. Many works have

been well established for this class of porous materials with Drucker-Prager matrix. [Guo

et al., 2008] obtained an expression of the macroscopic criterion for a hollow sphere with

a Drucker-Prager type matrix by means of limit analysis technique, having the following

form:

[
Σeq/σ0

Θ(Σ, T, f)
]2 + 2f cosh[γ−1 ln(1− 3T

Σm

σ0
)]− 1− f2 = 0 (I .13)

where Θ(Σ, T, f) = 1− 3T
σ0(1−f)1−s/2 .

[Maghous et al., 2009] considered the strain heterogeneity in the solid phase and derived

a new criterion for frictional geomaterials. The strategy of this resolution implements

a non-linear homogenization technique based on the modified secant method. So the

following criterion is derived:

F =
1 + 2f/3

α2
Σ̃2
d + (

3f

2α2
− 1)Σ̃2

m + 2(1− f)hΣ̃m − (1− f)2h2 = 0 (I .14)

[Shen et al., 2017b] incorporated a trial velocity field for spheroidal void. A macro-

scopic criterion for a porous material having spheroidal void was established based on a

kinematical limit analysis. For a particular case of the matrix with a spherical void, the

model is reduced to the following form:

[
Σeq/σ0

1− 3T
(1−f)

Σm
σ0

]2 + 2f cosh[
2T + sgn(Σm)

2T
ln(1− 3T

Σm

σ0
)]− 1− f2 = 0 (I .15)

The theorial surfaces predicted by previous mentioned criteria are shown in Fig.I .3 for

different porosities. As shown in Fig.I .3, the estimations between [Shen et al., 2017b] and

[Guo et al., 2008] are closed. They have found to be a well agreement with the numerical

lower and upper bounds ([Pastor et al., 2010,Shen et al., 2017b]).

The above criteria are mainly corresponding to an isotropic case. In order to consider

anisotropy induced by the spheroidal pores, criteria considering oblate and prolate pores

have also been developed with different type of matrix, so the aspect ratio of pores can be

taken into account. The detailed criteria can be referred to the references [Gologanu et al.,

1993,Gologanu et al., 1994,Monchiet et al., 2014,Shen et al., 2011,Shen et al., 2017b].
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Figure I .3: Plastic yield surfaces predicted by different criteria for different porosities

with: T = 0.1, and α =
√

6T

2.2 Plastic criteria for matrix-inclusion materials

[Barthélémy and Dormieux, 2004] have proposed an analytical approach for the strength

homogenization of cohesive-frictional matrix materials rigid inclusions as expressed in e-

q.(I .16). The main idea of this approach is to replace the corresponding limit analysis

by a equivalent viscous problems, so the modified secant method is used to determine the

yield surface.

Σd +

√
1 + 3

2φ

1− 2
3φα

2
α(Σm − σ0) = 0 (I .16)
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Later [Maghous et al., 2009] extended this model concerned with local non-associated

plastic behavior. The methodology considered the macroscopic limit stress states as a

sequence of viscoplastic problems which solution leads asymptotically to the set of macro-

scopic limit stress states. The microscopic velocity solution of this nonlinear viscous prob-

lem is characterized by an effective strain rate. So the following criterion was obtained.

Σd + α

√
1 +

3

2
φ

√
1− 2

3φβ
2

1− 2
3φαβ

(Σm − σ0) = 0 (I .17)

where β is the dilatancy coefficient and α defines as the frictional coefficient. φ is the

volume fraction of inclusions.

[Ortega et al., 2011] incorporated the linear comparison composite (LCC) theory [Cas-

tañeda, 1991, Castaneda, 1992], though resolving the strength properties of the hetero-

geneous medium by estimating the effective properties of a suitable linear comparison

composite with same microstructure. A new criterion contained Drucker-Prager solid and

rigid inclusions was derived:

Σd + α

√
(1− φ)M II

2− α2KII(1− φ)
(Σm − σ0) = 0 (I .18)

where M II and KII are the inclusion morphology factors related with the selected ho-

mogenization methods of effective modulus.

3 Fast Fourier Transform based homogenization method

As presented in previous section, the analytical solutions are mainly forcused on the

effect of porosity on the macroscopic mechanical behavior, and a few studies concerns

the shape effect. However, it is not easy to obtain an exactly analytical solution which

can consider all the geometrical information of microstructure. The evolutions of local

field is largely affected by the microstructure geometry. For this reason, it is necessary to

introduce a computational method to predict the macroscopic behavior as accurately as

possible.

3.1 Basic knowledge of FFT-based method

Materials with periodic microstructure can be represented by a periodic arrangement

of similar unit cells. One only needs to pick up the detail mechanical behavior of one

unit cell so that the macroscopic properties of whole structure can be represented. So the

periodic boundary condition should be considered for the computations. According to the
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presentation of previous section, the closed form solutions are mainly determined by the

porosities. In this context, the Fast Fourier Transforms (FFT) homogenization method

is introduced here which was proposed by Moulinec and Suquet [Moulinec and Suquet,

1994,Moulinec and Suquet, 1998]. This method operates on regular spatial grids and can

directly be applied to analyze RVE with complex microstructure by direct using image

technique. Moreover, it is efficient for numerical resolution of the cell problem arising

in homogenization of periodic media. Here the basic framework of this method will be

presented.

3.1.1 Description of local problem

To begin with, considering the unit cell with complex microstructure subjected to a

macroscopic strain E under periodic boundary condition. Due to the local heterogeneous

setting of the microstructure, the microscopic strain field strongly depends on the location

of microscopic material points x. Therefore, the local strain field ε(x) at each point can be

decomposed into a spatially average strainE which would act in a completely homogeneous

microstructure and a fluctuation stain field ε∗(x) that accounts for the heterogeneities of

the microstructure.

ε(x) = E + ε∗(x) (I .19)

where the average strain denotes E = 〈ε(x)〉. The strain fluctuation field ε∗(x) is compat-

ible with the fluctuating displacement field u∗(x). According to the kinematical relations,

it is taken the following form:

ε(u∗(x)) =
1

2
(∇u∗(x) + (∇u∗(x))T ) (I .20)

Thus, the displacement field at each material point x reads as follow:

u(x) = E · x+ u∗(x) (I .21)

Due to the fact that the u∗(x) and ε(u∗(x)) are periodic, which implies that their

averages over the total volume vanish:

〈u∗(x)〉 =
1

Ω

∫
Ω
u∗(x)dV = 0

〈ε∗(x)〉 =
1

Ω

∫
Ω
ε∗(x)dV = 0

(I .22)

In fact, the solution of this local problem is governed by the equilibrium equations,

local constitutive relations and boundary condition. So the following the local boundary
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value problem is summarized:
σ(x) =

∂ω

∂ε
(x) ∀x ∈ Ω

divσ(x) = 0 ∀x ∈ Ω, u∗#, σ · n−#

ε(x) = 1
2(∇u∗(x) +∇Tu∗(x)) +E ∀x ∈ Ω

(I .23)

In this relations, the symbol # denotes the periodic condition while −# the anti-

periodic one.

3.1.2 Lippmann-Schwinger Equation

Before solving the heterogeneous problem previous mentioned , let us consider a aux-

iliary problem that a reference homogeneous linear elastic medium with stiffness C0 sub-

jected to a polarization field τ (x). The local stress field can read as follows:

σ(x) = C0 : ε∗(x) + τ (x) (I .24)

Meanwhile, the equilibrium equation and kinematical relations also should be satisfied,

so we have:

div(C0 : ∇u∗(x)) + div(τ (x)) = 0 (I .25)

In this relation, the divergence of τ can be considered as a body force acting in the

whole microstructure. Hence, we can reduce the problem to find the fluctuation field in an

equilibrated homogeneous medium with constant stiffness C0 subjected to its body force

div(τ (x)). An alternative method by making use of the relevant Green’s function of the

problem can refer to the solution of (I .25) by solving the following equation:

ε∗(x) = −
∫

Ω
Γ0(x,y)τ(y)dy (I .26)

where the last term of (I .26) is defined as the convolution on the Green’s function Γ0 and

the porarization field τ :

Γ0 ∗ τ =

∫
Ω

Γ0(x,y)τ(y)dy (I .27)

So the problem can be simply reformulated as:

ε∗(x) = −Γ0 ∗ τ (I .28)

which is known as the Lippmann-Schwinger equation. It is convenient to solve this by

transforming (I .28) into Fourier space based on using the convolution theorem with:

ε̂∗(ξ) = −Γ̂(ξ)0 : τ̂ (ξ) ξ 6= 0; ε̂(0) = 0 (I .29)
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where ξ is the coordinates in Fourier space. Similarly, the local problem also can be

transformed into Fourier space, which can read as:
σ̂ij(ξ) = iC0

ijklξhû
∗
k(ξ) + τ̂ij(ξ)

iσ̂ij(ξ)ξj = 0

ε̂jk =
i

2
(ξj û

∗
k(ξ) + ξkû

∗
j (ξ))

(I .30)

where i =
√
−1. Combining the first two equation in (I .30), so we have:

iσ̂ij(ξ)ξj = −K0
ik(ξ)û∗k + iτ̂ijξj = 0 (I .31)

where K0
ik(ξ) = C0

ijkhξhξj , then one can get that:

K0
ik(ξ)û∗k = iτ̂ijξj (I .32)

We defined N0(ξ) as the inverse of K0(ξ), Hence, û∗k can be expressed as:

û∗k = iK0−1
ki (ξ)τ̂ijξj = iN0

ki(ξ)τ̂ijξj (I .33)

Substitute (I .33) into last equation in (I .30), one can get

ε̂(ξ) = −1

4
(N0

hi(ξ)ξjξk +N0
ki(ξ)ξjξk +N0

hj(ξ)ξiξk +N0
kj(ξ)ξiξh)τ̂ij (I .34)

If the reference medium is isotropic with the Lame coefficients λ0 and µ0. The stiffness

tensor C0 can be taken the following form:

C0
ijkh = λ0δijδkh + µ0(δikδjh + δihδjk) (I .35)

Combing with the formulations (I .29), (I .34) and (I .35). We can get the explicit

expression of Γ0 in Fourier space as the following form:

Γ̂khij(ξ) =
1

4µ0|ξ|2
(δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh
|ξ|4

. (I .36)

According to previous analysis, the local problem considered in Section 3.1.1 can be

reduced to the homogenous reference material with elastic stiffness C0 subjected to a

average macroscopic strain E and a polarization stress τ (x). For elastic problem, the

local stress is expressed as:

σ(x) = C(x) : ε(x)

= C0 : ε∗(x) + τ (x)
(I .37)
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where τ (x) = C0 : E + δC : ε(x), δC = (C(x)− C0). Following the solution of previous

auxiliary problem, we can get that:

ε∗(x) = −Γ0 ∗ τ

= −Γ0 ∗ (δC : ε)− Γ0 ∗ (C0 : E)

= −Γ0 ∗ (δC : ε) = ε(x)−E

(I .38)

Then in Fourier space, it is given as:

ε(x) = −Γ0(ξ) : τ (ξ) ξ 6= 0; ε̂(0) = E (I .39)

3.1.3 Unit cell Discretization and Fast Fourier Transformation

Now we are proceeding to state the discrete Fourier transform(DFT) techanique. The

definition of discrete Fourier transform(DFT) is quite similar with the basic Fourier trans-

form. The sequence of N complex numbers x0, x1, ..., xN−1 is transformed into another

sequence of N complex numbers according to the DFT formula:

Xξ =

N−1∑
n=0

xn · e−iξn/N (I .40)

where the N-point inverse DFT(IDFT) is defined as follows:

xn =
1

N

N−1∑
n=0

Xξ · eiξn/N (I .41)

For three dimensional problems in this work, the DFT formula in three dimensional

problem is given by:

Xξiξjξk =

Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

xklm · e−iξik/Nxe−iξj l/Nye−iξkm/Nz (I .42)

xklm =
1

NxNyNz

Nx−1∑
k=0

Ny−1∑
l=0

Nz−1∑
m=0

Xξiξjξk · e
iξik/Nxeiξj l/Nyeiξkm/Nz (I .43)

The Fast Fourier Transform technique will be employed here to compute the DFT and

produces exactly the same result as implementing the DFT definition directly. A FFT

rapidly computes such transformations by factorizing the DFT matrix into a product

of sparse (mostly zero) factors. As a result, it manages to reduce the complexity of

computing the DFT from O(n2), which arises if one simply applies the definition of DFT,

to O(n log n), where n is the data size. By using this technique, the resolution of the

numerical homogenization problem requires to discretize the unit cell into a regular grid
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composed of N1×N2×N3 voxels in three dimensions. The coordinates of voxels in the real

space are denoted by xp(i1, i2, i3) which are linked to the coordinates in the Fourier space,

ξp(i1, i2, i3). The number of points in each direction depends on the choice of resolution.

In a three dimensional case, the coordinates of voxel are given by:

xp(i1, i2, i3) = ik ·
Tk
Nk

, ik = 0, 1, . . . , Nk−1, k = 1, 2, 3 (I .44)

The corresponding frequencies in Fourier space are:

ξp(i1, i2, i3) = (ik −
Nk − 1

2
)

1

Tk
, ik = 0, 1, . . . , Nk−1, k = 1, 2, 3 (I .45)

when Nk is even, and when Nk is odd:

ξp(i1, i2, i3) = (ik −
Nk

2
+ 1)

1

Tk
, ik = 0, 1, . . . , Nk−1, k = 1, 2, 3 (I .46)

3.1.4 Numerical algorithm

To compute the local and overall responses of heterogenous materials with complex

microstructure, Moulinec and Suquet [Moulinec and Suquet, 1994, Moulinec and Su-

quet, 1998] proposed a basic iterate algorithm. This method afterwards extended by

various accelerated algorithms to overcome its low convergence rate ([Eyre and Milton,

1999, Michel et al., 2001, Monchiet and Bonnet, 2012, Brisard and Dormieux, 2010, Ze-

man et al., 2010, Moulinec and Silva, 2014]. The mathematical analysis of such schemes

was summarized by [Moulinec and Silva, 2014] and a unified scheme was developed as
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following:

Iterate i+ 1 The previous εi(x) and σi(x), E are known

1) sia(x) = σi(x) + (1− β)C0 : (εi(x))

sib(x) = ασi(x)− βC0 : (εi(x))

2) ŝib(ξ) = F(sib(x))

3) êib(x) = −Γ0(ξ) : ŝib(ξ) ∀ξ 6= 0, ε̂ib(0) = βE

4) eib(x) = F(εib(ξ))

5) ei+1(x) = (c(x) + c0)−1 : (sia(x) + eib(x))

6) σi+1(x) = c(x) : ei+1(x)

7) Convergence tests :

εequilibrium =
‖div(σi+1)‖2
‖σi+1‖

=

√∑
ξ |ξ · σ̂i+1(ξ)|2

‖σ̂i+1(0)‖

εload =
‖〈ei+1 −E〉‖
‖E‖

εcompatibility =
maxξ(maxj=1,...,6|ĉi(ξ)|)√∑

ξ êij(ξ) : ê∗ij(ξ)

(I .47)

In has been known that when α = β = 1, the above algorithm is corresponding to the

augmented Lagrangian scheme ([Michel et al., 2001]). For the case α = β = 2, the above

algorithm is corresponding to the iterative schemes proposed by [Eyre and Milton, 1999].

They are both the special cases of the method of [Monchiet and Bonnet, 2012]. Actually,

the above united algorithm is suitable for linear case. For nonlinear case, it needs special

analysis.

3.2 Comparison with the FEM solution

For the purpose of validation, the accuracy of the FFT-based method is verified by

comparing with reference solutions obtained from finite element simulations. The basic

scheme is adopted here for nonlinear case following the study of [Jiang and Shao, 2012].

A simplified porous medium is considered with a porosity f = 10%: a cubic unit cell

containing a centered spherical pore (Fig.I .4). These two methods adopt totally different

strategies to discretize the structure. The FEM method meshes the structure with certain

shape of elements (37040 hexagonal elements in Figure I .4-a). On the contrary, the FFT-

based method discretizes the structure with regular voxels (128× 128× 128 voxels in Fig.

I .4-b).
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(a) (b)

Figure I .4: Microstructure with a centered spherical void: porosity f = 10%. (a) FEM

mesh with 37040 hexagonal elements; (b) FFT discritization with regular 128× 128× 128

voxels.

The solid matrix in Fig. I .4(a) and Fig. I .4(b) is characterized by von Mises criterion

with an isotropic plastic hardening:

F = σeq − (σ0 +Hγm) = 0 (I .48)

where σeq indicates the equivalent stress and computed as σeq = (3
2s : s)1/2. s is the

deviatoric part of the stress σ. H and m are two plastic hardening parameters. The

plastic variable γ is determined by an associated plastic flow rule:

ε̇p = λ̇
∂F

∂σ
=

3

2
γ̇
s

σeq
, γ̇ = λ̇. (I .49)

Table I .1: Elastic and plastic parameters of the solid matrix

E(GPa) ν σ0(MPa) H(MPa) m

10.0 0.25 45.0 150.0 0.5

The elastic and plastic parameters of the solid phase for the two methods are given in

Table I .1. The unit cell is subjected to a uniaxial strain tension along its 3rd axis and the

prescribed macroscopic strains are: E33 > 0, E11 = E22 = E12 = E23 = E31 = 0. In order

to compare the accuracy and efficiency of these two methods, five different types of mesh

for FEM method and five different sorts of resolution for FFT-based method are performed

as shown in the Table I .2. All calculations were performed with parallelization of multiple

processors on an x64-based Dell computer with 8 processors: Intel(R) Core(TM) i7-4790

CPU @3.6GHz.
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Table I .2: Computational CPU time between FFT method and FE solution.
Comparison between FEM and FFT method 

All  computations  are  performed  with  parallelization  of  multiple  processors  (maximum  8  processors  and  16G  memory).  The 

computational efficiency of the two methods is compared in the Table below. It can be seen that as the mesh/resolution is coarse, the 

consummation of CPU time for both methods is almost on the same level (see the first three rows). However, as the resolution of FFT 

increase largely to four times of nodes number of FEM, the CPU time of FFT is still much less than that of FEM. 

 

 

 

 

FFT FEM 

Resolution(N) Points CPU time(s)  p (MPa) Error(%) Mesh Nodes CPU time(s)  p (MPa) Error(%) 

8 512 388.2 63.1 1.54 1 1920 409.1 71.1 10.92 

16 4096 1341.8 64.3 0.31 2 17810 8982.9 67.3 4.99 

32 32768 13578.9 63.3 1.25 3 40887 50393.0 65.5 2.18 

64 262144 25908.9 63.7 0.62 4 215850 454392.0 64.5 0.62 

128 2097152 226831.0 63.9 0.31 5 313324 877980.0 64.1 -- 
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Figure I .5: Comparison of CPU time and stress-strain curves between FFT method and

FEM solution with the different mesh and resolution
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Figure I .6: Comparison of stress-strain curves between FFT method and FEM solution

with the most fine mesh and resolution.



Conclusions 19

For the matter of efficiency, the CPU time consumption for different meshes and reso-

lutions are illustrated in Figure I .5(a). As expected for the both methods, the CPU time

is increasing with the nodes and resolution. However, for a higher resolution and a large

number of nodes, the FFT method exhibits a faster efficiency than the FEM method as

presented in the Table I .2.

Meanwhile, it is also worth noting that the FFT method is able to provide a good

accuracy with a relative low resolution, for example, with a resolution of 32 × 32 × 32

voxels, which makes the FFT method more efficient since the accuracy of the FEM requires

a much larger number of nodes. Therefore, it is obvious that the FFT method is more

efficient than the finite element method.

To complete computational results, the same structure, a cubic unit cell with a centered

spherical void, with a porosity f = 15% is also performed. As shown in Fig.I .6, the

numerical results predicted by the two methods are in good agreement. Therefore, the

FFT-based method will be adopted for the following studies in this work.

4 Conclusions

In this chapter, we have recalled a brief introduction of the classical elastic homoge-

nization methods and the well known homogenized strength criteria for the heterogenous

material with Von Mises and Drucker-Prager type matrix. The effective elastic properties

and macroscopic plastic yield surfaces predicted by different methods are also presented.

The closed-form solutions are mainly depended on the porosity or the inclusion volume

fraction, while the detailed microstructure geometrical information couldn’t be accurately

considered. For this reason, the Fast Fourier transform method is introduced here, and

its accuracy and efficiency have been validated by the Finite element method. Further,

combing the analytical solution and the FFT-based method, a multi-scale homogenization

procedure will be developed in the proceeding chapters to estimate the full-field mechanical

properties of porous materials across multi-scale characters.
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Summary

Many engineering materials contain families of pores at different scales. In this chapter,

a numerical homogenization analysis method is developed to describe the effective elastic

and plastic properties of a class of porous materials with two populations of pores at

two separated scales. The solid phase at the micro-scale is described by the Drucker-

Prager criterion. An analytical plastic criterion is used for the effective plastic criterion

of the porous matrix with the micro-porosity. The influence of the meso-porosity, which

is embedded in the homogenized porous matrix, is investigated by developing a numerical

method based on the Fast Fourier Transform (FFT ). With this two-step homogenization

method in hand, a series of numerical assessments are performed. The relative roles of

both families of pores on the macroscopic elastic properties and plastic yield stresses for

a given total porosity are particularly investigated and compared with existing analytical

solutions. Moreover, the proposed numerical method is applied to describe the local strain

fields under various loading paths.

1 Introduction

Different types of porous materials with embedded voids at different scales, such as

rocks, concrete materials, composites and polymers, are widely used in a range of engineer-

ing applications. Based on experimental investigations of characteristics of microstructure

and local mechanisms, it is required to estimate effective mechanical properties of these

materials by using different analytical and numerical homogenization methods. The es-

timation of effective properties are generally performed on a representative unit-cell of

material microstructure. In the framework of analytical homogenization of porous mate-

rials, it is indispensable to mention the pioneer’s work performed by [Gurson, 1977] who

established an analytical strength criterion for porous materials with a von-Mises type solid

matrix and one population of spherical voids by using a limit analysis technique. Starting

from this, different kinds of nonlinear homogenization techniques have been developed for

the determination of effective strength criteria of porous materials. For instance, effective

strength criteria for porous materials with a Drucker-Prager type pressure sensitive solid

matrix and one population of spherical voids have been established in [Guo et al., 2008]

and [Maghous et al., 2009]. Similar studies for other types of solid matrix have also been

conducted by [Pastor et al., 2013] and [Cazacu et al., 2014]. Different extensions of these

criteria have been proposed in recent years mainly in order to consider void shape effects,

plastic matrix anisotropy ([Gologanu et al., 1993]; [Gologanu et al., 1994]; [Monchiet et al.,
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2006]; [Shen et al., 2015b]; [Shen et al., 2017a]). Some studies have focused on porous

materials reinforced with rigid particles ([He et al., 2013]; [Shen and Shao, 2016a]).

On the other hand, pore distributions are generally complex in real materials and

several families of pores can be found at different scales. To investigate the relative effects

of each pore family and interactions between different families of pores, one considers here

the case of porous materials with two families of pores at two different scales, for instance,

the micro-porosity at the microscopic scale and the meso-porosity at the mesoscopic scale.

By using two-step homogenization procedures, some previous studies have contributed

to the establishment of analytical macroscopic strength criteria for this class of porous

materials, for instance [Vincent et al., 2009a]; [Ortega and Ulm, 2013]; [Shen et al., 2014]

and [Shen and Shao, 2016b].

However, in all analytical homogenization methods, strong assumptions are generally

introduced on the description of microstructure in order to perform mathematical calcu-

lations. Some assumptions, especially on the size and shape of voids, may lead to a bad

approximation of effective properties of real materials. Therefore, the validity of analytical

models is usually questionable for materials with a complex microstructure. Moreover, in-

teractions between voids and other heterogeneities, for example mineral inclusions, cannot

be easily taken into account in analytical micro-mechanical models.

In order to represent real microstructure as closely as possible, different kinds of full-

field simulations have been developed in recent years. Among them, a FFT -based nu-

merical homogenization method has been proposed by [Moulinec and Suquet, 1994] for

the estimation of effective mechanical properties of composite materials with a strong mi-

crostructure contrast. This method has been extended and applied to other engineering

materials ([Moulinec and Suquet, 1998]; [Jiang and Shao, 2012]; [Lebensohn et al., 2012];

[Vincent et al., 2014b]; [Li et al., 2016]). The efficiency of the FFT based method has been

demonstrated in various situations, for instance, elastic materials ([Gélébart and Mondon-

Cancel, 2013]; [Kabel et al., 2014]), nonlinear plastic materials([Jiang and Shao, 2012]),

viscoplastic materials ([Lebensohn et al., 2012]), Darcy’s conduction problems ([Monchiet

et al., 2009]) and cracking modeling ([Li et al., 2012]). A particular attention has been paid

on the numerical convergence of this method for nonlinear problems ([Eyre and Milton,

1999]; [Michel et al., 2001];[Monchiet and Bonnet, 2012]; [Moulinec and Silva, 2014].

In this study, a FFT based multi-scale numerical model is proposed to describe the

macroscopic mechanical behavior of a class of porous materials with two populations of

pores at two different scales. One of the aims here is to explore the relative roles of two

families of pores on the effective elastic properties and plastic yield stresses of porous ma-
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terials. For this purpose, the results obtained with the proposed numerical model will be

compared with those obtained in the previous studies by analytical homogenization tech-

niques [Shen et al., 2014] and [Shen and Shao, 2016a]. As a complementary contribution

to existing studies, we shall investigate in depth the effects of interactions between the

two populations of pores on the elastic and plastic properties of materials. We extend this

method to the material with compressible porous matrix, both local and overall responses

of double porous materials under various loading paths will be studied .

The paper is organized as follows. The general framework of the two-step numerical

homogenization model is first presented in Section 2. An analytical plastic model is used

for the description of plastic criterion of porous matrix with micro-porosity and the FFT

based numerical method is established for the estimation of macroscopic behavior of porous

materials with meso-porosity. In section 3, a series of numerical assessments are performed

and discussed to investigate effects of two proportions of pores on the effective elastic and

plastic properties of double porous materials. In section 4, we extend this proposed method

to the material with compressible porous matrix.

2 Homogenization model of double porous medium based

on FFT method

In Fig.II .1, the selected representative element volume (REV) with two populations

of pores at two separate scales is presented. For the sake of simplicity, it is assumed that

both two families of pores are of spherical form. Let us denote Ω the total volume of the

unit cell; ωm the domain occupied by the solid phase at the microscopic scale; ω defines

the volume of porous matrix at the mesoscopic scale. Then ω1 and ω2 are the volumes of

small and large pores located at the microscopic and mesoscopic scales, respectively. With

these notations, the porosity at the microscale f and that at the mesoscale φ as well as

the total porosity Γ at the macroscopic scale can be given as:

f =
ω1

ωm + ω1
=
ω1

ω
, φ =

ω2

Ω
, Γ =

ω1 + ω2

Ω
= f(1− φ) + φ (II .1)

A two-step homogenization procedure is here adopted for the upscaling from microscale

to mesoscale and from mesoscale to macroscale. In the first homogenization step, the

microscopic pores and the properties of the solid phase are taken into account. The effect

of mesoscopic pore on the overall behavior is considered in the second homogenization

step.
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.

c)  Micro-scaleb)  Meso-scalea) Macro-scale

Solid phase Micro-poreMeso-poreEquivalent homogeneous material

Figure II .1: The selected REV of double porous medium with three scales.

2.1 Effective behavior of porous matrix

The porous matrix is composed of a solid phase and spherical pores at the microscopic

scale. Compared with metal materials, the pressure sensitivity and volumetric deformation

are two crucial characteristics of rock-like materials. In order to consider these aspects,

the solid phase is assumed to obey to a Drucker-Prager type plastic criterion:

Φ(σ) = σd + α(σm − h) ≤ 0 (II .2)

in which σ denotes the microscopic stress tensor. σm = trσ/3 is the mean stress. σd is

defined as σd =
√
σ′ : σ′, with σ′ being the deviatoric stress tensor. The parameter α is

the frictional coefficient and h the yield stress under hydrostatic tension of the solid phase.

For a porous material as illustrated in Figure II .1-c with a Drucker-Prager type solid

matrix containing a spherical void, an analytical yield criterion has been derived using a

modified secant method in [Maghous et al., 2009] :

F =
1 + 2f/3

α2
Σ̃2
d + (

3f

2α2
− 1)Σ̃2

m + 2(1− f)hΣ̃m − (1− f)2h2 ≤ 0 (II .3)

This criterion (II .3) explicitly depends on the porosity f at the microscopic scale and

the pressure sensitivity parameter α of the solid phase. This criterion is selected here as

the first homogenization step from micoscale to mesoscale to describe the effective plastic

yield criterion of the porous matrix.

It is reminded that σ is the local stress in the solid phase (Figure II .1-c) at the

microscopic scale. For the sake of clarity, Σ̃ is introduced to denote the local stress in the

porous matrix at the mesoscopic scale (Figure II .1-b). The macroscopic stress is denoted

as Σ (Figure II .1-a). The total strain rate D of the porous matrix is further divided

into an elastic part De and a plastic part Dp. The effective stress-strain relations of the

porous matrix can be expressed in the following incremental form:

D = De +Dp, ˙̃Σ = Cm : (D −Dp) (II .4)
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where Cm is the effective elastic stiffness tensor of porous matrix. By assuming an

isotropic material, Cm can be written as Cm =3khom0 J+2µhom0 K, where Jijkl = (δijδkl)/3,

Kijkl = Iijkl − Jijkl and Iijkl = (δikδjl + δilδjk)/2 with δij being the Kronecker’s symbol.

khom0 and µhom0 are respectively the effective bulk modulus and shear modulus of the

porous matrix which are dependent on porosity and can be determined by using Mori-

Tanaka scheme ([Mori and Tanaka, 1973]), corresponding to a Hashin-Shtrikman upper

bound ([Hashin and Shtrikman, 1963,Weng, 1984]) :

khom0 =
4(1− f)ksµs
4µs + 3fks

, µhom0 =
(1− f)µs

1 + 6f ks+2µs
9ks+8µs

(II .5)

in which ks and µs are the bulk and shear modulus of the solid phase.

It is assumed that the porous matrix exhibits an elastic perfect-plastic behavior without

plastic hardening. The plastic deformation of the porous matrix is further described by

an associated plastic flow rule using the analytical yield function given in (II .3). As a

consequence, the plastic strain rate of the porous matrix is given by:

Dp = λ̇
∂F

∂Σ̃
(Σ̃) (II .6)

where λ̇ is the plastic multiplier and it verifies the following loading-unloading condition:λ̇ = 0 if F < 0 or if F = 0 and Ḟ < 0

λ̇ ≥ 0 if F = 0 and Ḟ = 0
(II .7)

The plastic multiplier is determined from the consistency condition:

Ḟ (Σ̃) =
∂F (Σ̃)

∂Σ̃
:

˙̃
Σ = 0 (II .8)

Substituting (II .4) and (II .6) for (II .8), the plastic multiplier for the porous matrix

is determined as follows:

λ̇ =

∂F
∂Σ̃

: Cm : D

∂F
∂Σ̃

: Cm : ∂F
∂Σ̃

(II .9)

The rate form of the effective constitutive relations of the porous matrix can also be

written as follows:
˙̃
Σ = Ctanmeso : D (II .10)

Combining Equations (II .4), (II .6), (II .9) and (II .10), the effective tangent elastic-

plastic stiffness operator Ctanmeso of the porous matrix at the mesoscopic scale is given by:

Ctanmeso =


Cm (F ≤ 0, Ḟ < 0)

Cm −
Cm : ∂F

∂Σ̃
⊗ ∂F

∂Σ̃
: Cm

HG
(F = 0, Ḟ = 0)

(II .11)
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with:

HG =
∂F

∂Σ̃
: Cm :

∂F

∂Σ̃
(II .12)

2.2 Macroscopic mechanical behavior of double porous material

In the first homogenization step from microscale to mesoscale, the micro porosity f in

the porous matrix has been considered in the analytical yield criterion (II .3). However,

other microstructure information (pore shape, spatial distribution, etc.) have been ignored

due to the small size of microscopic pores. In the second homogenization step, in order

to well explicitly consider the interaction of microstructure between the matrix and meso-

pore, we shall develop a numerical two-step homogenization method based on the discrete

Fast Fourier Transform technique proposed by [Moulinec and Suquet, 1998,Moulinec and

Suquet, 1994]. This method can avoid the difficulty of meshing for complex microstructure

and of assembling the global stiffness matrix like in finite element method. The outline of

the discrete FFT based numerical method have been summarized in Chapter I .

For the porous material containing a plastic porous matrix, the problem to be solved

here is to determine the macroscopic stress corresponding to the prescribed macroscopic

strain. This is done by making the volumetric average of the local stress field over the

unit cell. Due to the plastic behavior of the porous material, a nonlinear homogenization

problem should be solved. For this purpose, the total loading path is divided into a

limit number of steps N . Considering now the loading step n + 1, an incremental of

macroscopic strain ∆En+1 is applied to the unit cell. We shall find the corresponding

macroscopic stress increment ∆Σn+1. The local constitutive relations are then expressed

in the following incremental form:

∆σ(x) = Ctanmeso(x) : ∆ε(x) (II .13)

The fourth order tensor Ctanmeso(x) denotes the tangent operator filed at the mesoscopic

scale. Therefore, the local problem to be solved is formulated as follows:
∆σ(x) = Ctanmeso(x) : ∆ε(x) ∀x ∈ Ω

divσ(x) = 0 ∀x ∈ Ω, u∗#, σ · n−#

ε(x) = 1
2(∇u∗(x) +∇Tu∗(x)) +E ∀x ∈ Ω

(II .14)

In this relations, the symbol # denotes the periodic condition while −# the anti-periodic

one. To solve this nonlinear problem, the local stress field can be rewritten as:

σ(x) = C0 : ε∗(x) + σ(x)− C0 : (ε(x)−E)

= C0 : ε∗(x) + τ (x)
(II .15)
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where τ (x) = σ(x)− C0 : ε(x) + C0 : E

By using the solution of auxiliary problem mentioned in Chapter I , the solution of

local strain field can be reduced to an iterative form in the Fourier space with:

ε̂i+1(ξ) = ε̂i(ξ)− Γ̂ 0(ξ) : σ̂(ξ) ∀ξ 6= 0, ε̂(0) = E. (II .16)

The numerical algorithm is outlined as shown in Algorithm 1:

Algorithm 1: Two-step homogenization procedure

Input: ε(tn,xp),∆E(tn+1),∆tn+1

Output: E(tn+1),Σ(tn+1)
Initialization:tn+1 = tn + ∆tn+1;
E(tn+1) = E(tn) + ∆E(tn+1);
ε0(tn+1,xp) = ε(tn,xp) + ∆E(tn+1) ∀xp ∈ Ω;
if xp ∈ ω then

The first step homogenization: according to expression (II .3), (II .13) and

using radial return algorithm to compute Σ̃0(tn+1,xp);
else

Σ̃0(tn+1,xp) = 0;
end
for i = 0 : Niter do

The previous Σ̃(tn) and ε(tn) at each point xp are known ;

Σ̂i(tn+1, ξp) = FFT (Σ̃i(tn+1,xp));

Convergence test Eerror = (〈‖ξ·σ̂i(ξ)‖2〉)1/2

‖σ̂i(0)‖ ;

if εerror < 10−4 then
Return;

else
ε̂i+1(tn+1, ξp) = ε̂i(tn+1, ξp)− Γ̂ 0(ξp) : Σ̂i(tn+1, ξp) ∀ξp 6= 0, ε̂i+1(0) =
E(tn+1);

εi+1(tn+1,xp) = FFT −1(ε̂i+1(tn+1, ξp));
if xp ∈ ω then

The first step homogenization: according to expression (II .3), (II .13)

and using radial return algorithm to compute Σ̃i+1(tn+1,xp);
else

Σ̃i+1(tn+1,xp) = 0;
end
i = i+ 1;

end
end

Calculate the macroscopic stress Σ(tn+1) = 1
|Ω|

∫
Ω Σ̃(tn+1,xp)dV

In this context, the elastic-plastic constitutive relations at each point xp of the porous

matrix should be solved for a given loading history. In the present study, only the time-

independent behavior is considered. Due to the nonlinear behavior of the porous matrix,

the whole loading history is discretized into a finite number of increments. The current

loading increment is represented by the time increment ∆t during the interval [tn, tn+1].

Starting from the initial conditions, the field variables (εn, εpn, ∆ε) at each point xp are
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known at the loading step tn. The unknown plastic strain and stress fields εpn+1 and σn+1

at the loading step tn+1 should be determined with the help of an implicit standard return

mapping iterate procedure. The symbol FFT and FFT −1 represent correspondingly the

FFT and inverse FFT operators. It can be seen that an iterative algorithm is needed to

find an appropriate non-uniform strain field and the corresponding stress field, verifying

the local constitutive relations, equilibrium equations and boundary conditions on the

unit cell. The choice of the reference stiffness tensor C0 can significantly affect the rate of

convergence. In practice, according to [Moulinec and Suquet, 1998,Moulinec and Suquet,

1994], the best rate of convergence is provided with the following values of Lamé coefficients

(λ0 and µ0) for the reference material:

λ0 =
1

2
( inf
x∈V

λ(x) + sup
x∈V

λ(x))

µ0 =
1

2
( inf
x∈V

µ(x) + sup
x∈V

µ(x))

(II .17)

2.3 Validation of the model by Finite element method

In order to verify the accuracy of FFT-based models in estimating effective behaviors

of composite materials, the numerical results provided by finite element method (FEM)

for some simple configurations of the unit cell are generally used as the reference solutions

to compare with those given by the FFT-based models [Michel et al., 1999]. With this

methodology, the accuracy of the FFT-based homogenization method has been verified

and demonstrated in [Michel et al., 1999] for porous materials with one population of pores

and in [Li et al., 2018] for composites with one family of inclusions. Following the same

methodology, we shall here verify the accuracy of the FFT-based numerical model for

porous materials with two populations of pores. For this propose, a series of simulations

are performed by using both the FFT-based model and finite element method on the same

unit cell and with the same periodic boundary conditions as indicated in (II .14).

For the sake of simplicity, both mesoscopic and microscopic pores are assumed spher-

ical. The unit cell contains one centered pore at the mesoscopic scale. As shown in

Fig.II .2, the unit cell is divided into 150 × 150 × 150 voxels of identical size for the

FFT-based calculations. For the FEM calculations, the mesh contains 11999 nodes and

7878 elements. The elastic and plastic parameters of the porous matrix are selected as

Es = 5GPa, vs = 0.15, α = 0.2 ∼ 0.3, h = 10MPa.
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(a) FEM (b) FFT

Figure II .2: The representative unit cells with one centered meso-pore used by FEM

and FFT method: f/φ = 0,Γ = 0.1 ( For FEM mesh: 11999 nodes and 7878 elements,

and for FFT unit cell: 150× 150× 150 voxels)
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Figure II .3: Comparison of overall stress-strain relations between FEM and FFT-based

numerical method for unit cell under uniaxial compression test : (a) f/φ = 0, α = 0.3.

(b) f/φ = 1, α = 0.3

The overall stress-strain responses of the unit cell with single porosity and double

porosity under the uniaxial compression are compared between the two numerical methods

and presented in Fig.II .3. There is a very good concordance of overall stress-strain curves

at both the elastic and plastic stages. The macroscopic plastic yield stresses of the unit cell

are also presented in Fig.II .4 and Fig.II .5 for different values of porosity ratio f/φ. It is

found that the results given by the two methods are very close each to other. These results

seem to confirm that the FFT-based numerical homogenization method is able to provide

accurate estimations of macroscopic behaviors of porous materials with two populations

of pores. For materials with complex distributions of pores, it is generally difficult to find

suitable reference solutions so that the validation of FFT-based models is a delicate task.
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Experimental validations should be also considered in future studies.
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Figure II .4: Comparison of yield surfaces between FEM and FFT-based numerical

method for unit cell with single porosity (f/φ = 0, α = 0.3): (a) Γ = 0.2. (b) Γ = 0.3
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Figure II .5: Comparison of yield surfaces between FEM and FFT-based numerical

method for unit cell with double porosities (α = 0.3, Γ = 0.2): (a) f/φ = 0.5. (b) f/φ = 1

3 Comparisons between FFT-based method and analytical

models

In order to further assess the effective properties of double porous materials provided

by FFT-based model, comparisons with results issued from existing analytical models are
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here presented for some selected micro-structures. The elastic and plastic parameters

used are the same as those used in Section 2.3. We shall especially investigate effects

of the porosity ratio f/φ on effective elastic stiffness and plastic yield stress of a double

porous material for a given total porosity Γ. Further, as the analytical models have been

formulated for a constant value of porosity, in order to make meaningful comparisons

between FFT-based results and analytical models, both the micro-porosity and meso-

porosity are taken constant in all numerical calculations. More precisely, the evolution of

the micro-porosity is neglected during plastic deformation of the porous matrix, namely

ḟ = 0.

3.1 Case of elastic behavior

The effective elastic bulk modulus khom and shear modulus µhom are determined by a

two-step homogenization procedure. The elastic properties of the porous matrix containing

the microscopic pores are determined by using the Hashin-Shtrikman upper bound at the

first step of homogenization. For the estimation of elastic properties of the porous material

at the second step of homogenization with the mesoscopic pores, three different methods

are used and compared, namely the Hashin-Shtrikman upper bound, the dilute scheme and

the FFT-based numerical model. The solutions of two analytical homogenization methods

are given in Appendix A. Further, as the analytical predictions of effective properties

are based on the assumption of an isotropic distribution of pores, FFT-based numerical

calculations are performed unit cells with randomly distributed spherical pores at the

mesoscopic scale.

In Fig.II .6 to II .9, one can see the evolutions of the normalized modulus khom/ks

and µhom/µs with f/φ for four different values of total porosity. As a first remark, it is

found that the results of three methods are significantly different for small values of f/φ,

especially for the HS+dilute scheme. This is mainly due to the fact that in the dilute

scheme, the effect of interaction between pores is neglected.

For the HS+HS upper bound method, the relative bulk modulus khom/ks firstly de-

creases with the increase of f/φ and reaches a minimum value when f/φ is close to 1,

and then it slowly increases. The predictions by the FFT-based model are well lower than

the upper bounds.Starting a very low value, the HS+dilute scheme shows a continuous

increase of khom/ks and then approaches the two other methods when f/φ = 5. The three

different methods provide all an asymptotic value of khom/ks when f/φ becomes higher

enough, depending on the value of total porosity. The evolution of the effective shear

modulus µhom/µs is qualitatively similar to that of the bulk modulus.
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Figure II .6: Evolutions of effective elastic moduli with f/φ for a total porosity Γ = 0.1

with three different two-step homogenization methods
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(b)

Figure II .7: Evolutions of effective elastic moduli with f/φ for a total porosity Γ = 0.2

with three different two-step homogenization methods
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(b)

Figure II .8: Evolutions of effective elastic moduli with f/φ for a total porosity Γ = 0.3

with three different two-step homogenization methods
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Figure II .9: Evolutions of effective elastic moduli with f/φ for a total porosity Γ = 0.4

with three different two-step homogenization methods

From these results, it is concluded that for the values of total porosity considered in our

study, the results predicted by the three methods are nearly identical when the porosity

ratio f/φ is greater than 5. In other cases, the results provided by the analytical models

can be significantly different with those given by the FFT-based numerical model.

3.2 Case of plastic behavior

The macroscopic yield stress of porous materials with a Drucker-Prager solid matrix

containing spherical pores has been previously investigated by different methods ([Guo

et al., 2008]; [Maghous et al., 2009]; [Shen et al., 2017b]). Based on the study of [Maghous

et al., 2009], [Shen et al., 2014] and [Shen and Shao, 2016a] have derived two different

analytical macroscopic yield criteria respectively using a modified secant method and a

kinematical limit analysis approach. The detailed formulations of two criteria are present-

ed in Appendix B. The validity of these criteria has not so far been assessed with any

numerical results issued from full-field simulations. This issue is discussed in the present

paper.

3.2.1 Effects of distribution of meso-pores

As an advantage of the FFT-based numerical model in studying effects of spatial

distribution of pore, the influence of pore distribution at the mesoscopic scale on the

macroscopic plastic yield stress is first investigated. To this end, a series of calculations

are performed respectively on the unit cell with randomly distributed pores (pore number
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N=200) and the unit cell with one centered pore, for different values of porosity ratio but

for the same given total porosity.
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(b) f/φ = 0.5
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(c) f/φ = 1
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(d) f/φ = 5

Figure II .10: Evolution of macroscopic yield surfaces with different f/φ predicted by

unit cells with random distributed pores and one centered pore for α = 0.3, Γ = 0.2

The obtained values of macroscopic yield stress of the unit cell are illustrated in Fig.II

.10 for four values of f/φ. One can see some important differences between pore distri-

butions in the unit cell, especially in the compression region. It is found that the yield

stresses of the unit cell with a random distribution of pores are systematically lower than

those of the unit cell with one single pore. However, the difference between two distri-

butions becomes smaller when the porosity ratio f/φ is higher due to the fact that the

meso-porosity becomes smaller. These results clearly show the effect of distribution of

meso-pores on the macroscopic yield stress. However, the calculation time is much longer
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for the random distribution than for the single pore. Further, the analytical criterion given

in [Shen et al., 2014] has been formulated on the unit cell with one meso-pore. There-

fore, in the subsequent sub-sections, we shall use the unit cell with a centered spherical

meso-pore to perform sensitivity studies and comparisons with the analytical criteria.

3.2.2 Influences of the porosity ratio f/φ

The influences of the porosity ratio f/φ on the evolution of macroscopic yield stress

are evaluated. According to plastic criterion given in [Shen and Shao, 2016a], for a given

total porosity, the macroscopic yield surfaces are very close each to other for two reciprocal

values of porosity ratio f/φ. For instance and as shown in Fig.II .11 (additional results

can be found in II .27), the plastic yield surface for f/φ = 0.1 almost coincides with that

corresponding to f/φ = 10.
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Figure II .11: Evolution of macroscopic yield surface with f/φ predicted by the criterion

given in [Shen and Shao, 2016a] for α = 0.3 and Γ = 0.2

This is due to the fact that the values of the term Θ appeared in Equation (II .33) are

very close each to other but not strictly identical for two reciprocal values of porosity ratio

f/φ. Some additional discussions on the evolution of Θ in (II .33) respectively as a function

of f and φ are presented in Appendix B and shown in Fig.II .26. However, according the

analytical criterion, the yield stresses under hydrostatic loading are rigorously identical

each to other for two reciprocal values of porosity ratio f/φ. Moreover, the smallest yield

surface is obtained for f/φ = 1.
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Figure II .12: Evolution of macroscopic yield surface with f/φ predicted by the criterion

given in [Shen et al., 2014] for α = 0.3 and Γ = 0.2
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Figure II .13: Evolution of macroscopic yield surface with f/φ predicted by the FFT-

based model for α = 0.3 and Γ = 0.2

For the other analytical criterion given in [Shen et al., 2014] and for the FFT-based

numerical model, the different roles of two populations of pores are taken into account, as

shown in Fig.II .12 and Fig.II .13. For the FFT-based model, the yield surface monoton-

ically increases with the increase of porosity ratio f/φ. The smallest surface is obtained

for f/φ = 0. This means that the macroscopic yield stress is more sensitive to the meso-

scopic porosity than the microscopic one. The analytical criterion given in [Shen et al.,

2014] provides a similar trend as and is less sensitive to the porosity ratio f/φ than the

FFT-based model.

- Special case of macroscopic hydrostatic strength
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The macroscopic yield stress under hydrostatic compression and tension is now inves-

tigated for the three homogenization methods. Different values of total porosity Γ and

frictional coefficient α are considered.
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Figure II .14: Evolution of yield stress in hydrostatic compression (a) and tension (b)

for α = 0.2 and Γ = 0.1
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Figure II .15: Evolution of yield stress in hydrostatic compression (a) and tension (b)

for α = 0.3 and Γ = 0.1



Comparisons between FFT-based method and analytical models 39

0 2 0 4 0 6 0 8 0 1 0 0- 6

- 8

- 1 0

- 1 2

 F F T
 S h e n  a n d  S h a o  ( 2 0 1 6 a )
 S h e n  e t  a l . ( 2 0 1 4 )

Σ m ( M P a )

f  / φ

(a)

0 2 0 4 0 6 0 8 0 1 0 02 . 5

2 . 6

2 . 7

2 . 8

2 . 9

3 . 0

 F F T
 S h e n  a n d  S h a o  ( 2 0 1 6 a )
 S h e n  e t  a l . ( 2 0 1 4 )

 

 

Σ m ( M P a )

f  / φ

(b)

Figure II .16: Evolution of yield stress in hydrostatic compression (a) and tension (b)

for α = 0.3 and Γ = 0.2
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Figure II .17: Evolution of yield stress in hydrostatic compression (a) and tension (b)

for α = 0.3 and Γ = 0.3

In Fig.II .14 to Fig.II .17, we present the variation of yield stress in hydrostatic com-

pression and tension with the porosity ratio f/φ. It is found that the values predicted

the two analytical criteria do not always coincide with the numerical results given by the

FFT-based model method, especially in hydrostatic compression and for low values of f/φ.

The differences between the analytical criteria and the FFT-based model are amplified by

the increase of frictional coefficient α for a given total porosity Γ, but little sensitive to

the total porosity increase when the frictional coefficient is constant.

In a general way, the criterion [Shen and Shao, 2016a] overestimates the yield stresses
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when the porosity ration f/φ ≤ 40. After that, a good agreement is found between the

analytical criterion and the FFT-based model. For the analytical criterion given in [Shen

et al., 2014], the hydrostatic compression yield stress is overestimated for low values of

f/φ but underestimated for high values of f/φ. A good agreement with the FFT-based

model is observed only for the hydrostatic tension yield stress when the porosity ratio is

higher than 40.

As shown in the previous section, it exists the critical porosity ratio corresponding

to the smallest yield stress. The value of f/φ related to the smallest yield stress under

hydrostatic compression is here discussed. According to the criterion [Shen and Shao,

2016a], the smallest yield stress is obtained for f/φ = 1 whatever the stress path. However,

for the criterion [Shen et al., 2014], the critical value of f/φ depends on the frictional

coefficient α and total porosity Γ, as shown in Fig.II .18. For a given α, the value of

f/φ to get the smallest yield stress decreases with the increasing total porosity. With

a given value of total porosity, the critical value of f/φ increases with the increasing α.

For the FFT-based numerical model, the smallest yield stress is obtained for f/φ = 0,

corresponding to vanishing of microscopic pores because interactions between pores are

intensified at the mesoscopic scale.
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Figure II .18: Evolution of critical value of f/φ corresponding to the smallest hydrostatic

compression yield stress according to the criterion [Shen et al., 2014] as a function of total

porosity Γ (a) and frictional coefficient α (b)

3.2.3 Comparisons with analytical macroscopic yield surfaces

The macroscopic yield stresses predicted respectively by the two analytical criteria and

the FFT-based numerical model are presented in Fig.II .19 to II .22, for different values
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of total porosity Γ = 0.1, the porosity ratio f/φ and the local friction coefficient α of the

solid matrix.
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Figure II .19: Comparisons of macroscopic yield stresses between FFT-based numerical

model and two analytical criteria for α = 0.2, Γ = 0.1
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Figure II .20: Comparisons of macroscopic yield stresses between FFT-based numerical

model and two analytical criteria for α = 0.3, Γ = 0.1 .

As a starting point, when the mesoscopic porosity vanished, φ = 0 and f/φ = ∞,

the results provided by the three homogenization methods are identical because they are

using the same yield criterion proposed by [Maghous et al., 2009] for the porous matrix

at the microscopic scale. This also shows the accuracy of the numerical solutions given

by the FFT-based model. In all other cases, significant differences of macroscopic yield

stress are observed for the compressive mean stress region. The yield stresses in the tensile
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mean stress regime are however very similar between three methods. This is due to the

fact that the internal friction in the Drucker-Prager solid matrix plays a more important

role on the yield stress under a compressive mean stress than a tensile one. Furthermore,

it is interesting to see that the results provided by the two analytical criteria are also

significantly different each to other. The macroscopic yield stress is therefore sensitive to

the assumptions used on the analytical homogenization schemes.
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Figure II .21: Comparisons of macroscopic yield stresses between FFT-based numerical

model and two analytical criteria for α = 0.3, Γ = 0.2 .
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Figure II .22: Comparisons of macroscopic yield stresses between FFT-based numerical

model and two analytical criteria for α = 0.3, Γ = 0.3 .

Let consider the particular case where the microscopic porosity vanishes, say f = 0

and f/φ = 0, the results from the FFT-based method provide the smallest values of
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macroscopic yield stress. It is useful to note that in this case the results from the criterion

[Shen and Shao, 2016a] are equivalent with those given by the FFT-based model for

f/φ = ∞. However, it is not possible to get the solution from the criterion [Shen et al.,

2014] when f = 0 due to the mathematical singularity in the denominator of the criterion

as shown in (II .32).

4 Local and overall responses with the evolution of micro-

porosity

In the previous sections, in view of comparisons between analytical models and FFT-

based numerical results, the micro-porosity of porous matrix is kept constant. In actual

situations, due to plastic deformation, the micro-porosity evolves and its variation induces

a plastic hardening or softening of the porous matrix.

In this section, we shall investigate local and overall responses of porous materials by

considering the variation of micro-porosity. To this end, it is assumed that the pore volume

change at the microscopic scale only depends on plastic pore compaction or dilation. The

nucleation of new pores is not considered here. According to the first term of (II .1), one

has:

ḟ = d(
ω1

ω
) =

dω1

ω
− ω1

ω

dω

ω
= (1− f)(

dω

ω
− dωm

ωm
) (II .18)

in which dω
ω is the average mesoscopic volumetric strain rate (trDp), and dωm

ωm
denotes

the volumetric strain rate (trd) of the solid phase. It is assumed that the solid phase is

described by a Drucker-Prager type criterion and an associate plastic flow rule. Thus, the

microscopic strain rate d can be calculated by:

d = Λ̇
∂Φ

∂σ
; d′ = Λ̇

σ′

σd
; dm =

1

3
Λ̇α (II .19)

where d′ is the deviatoric strain rate tensor with d = d′+ dmδ. Λ̇ is the plastic multiplier

of the solid phase. The equivalent plastic strain rate ε̇p takes the following form:

ε̇p =
√
d′ : d′ = Λ̇ (II .20)

Owing to the energy-based equivalence condition introduced by [Gurson, 1977], it is

possible to associate the average plastic strain rate of porous matrix with that of the solid

phase ([Shen et al., 2012a]), that is:

Σ̃ : Dp =
1

ω

∫
ωm

σ : ddV =
1

ω

∫
ωm

ε̇p(σd + ασm)dV = (1− f)αhε̇p (II .21)
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Therefore ε̇p is obtained by:

ε̇p =
Σ̃ : Dp

(1− f)αh
(II .22)

With the relations (II .19) and (II .20) in hand, the plastic dilation rate is related to

the equivalent plastic strain rate by trdp = αε̇p. The variation of porosity in (II .18) can

be determined from the following kinematical compatibility condition:

ḟ = (1− f)(trDp − αε̇p) (II .23)

Thus the plastic multiplier is given by:

λ̇ =

∂F
∂Σ̃

: Cm : D

∂F
∂Σ̃

: Cm : ∂F
∂Σ̃
− ∂F

∂f (1− f)[ ∂F
∂Σ̃m
−

Σ̃: ∂F
∂Σ̃

(1−f)h ]

(II .24)

Finally, the effective tangent elastic-plastic stiffness operator Ctanmeso of the porous ma-

trix at the mesoscopic scale takes the following form:

Ctanmeso =


Cm (F ≤ 0, Ḟ < 0)

Cm −
Cm : ∂F

∂Σ̃
⊗ ∂F

∂Σ̃
: Cm

HG
(F = 0, Ḟ = 0)

(II .25)

with:

HG =
∂F

∂Σ̃
: Cm :

∂F

∂Σ̃
− ∂F

∂f
[
∂F

∂Σ̃m

(1− f)−
Σ̃ : ∂F

∂Σ̃

h
] (II .26)

With the previous relations in hand, it is possible to investigate macroscopic mechanical

behaviors of porous materials with a compressible porous matrix, with the help of the

FFT-based numerical homogenization model. As an advantage of this model, one can

capture not only macroscopic mechanical responses but also local strain and stress fields.

In order to illustrate this, the unit cell with one meso-pore is again considered here and it

is subjected to the following two loading paths:

(1) E = 2× 10−2(e1 ⊗ e1 − e3 ⊗ e3)

(2) E = 2× 10−2(e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3)

In Fig.II .23, one shows the local strain field in the middle section of the unit-cell with

four different values of f/φ under the loading path E = 2× 10−2(e1⊗ e1− e3⊗ e3). Shear

strain bands are observed at ±45◦ with respect to e1 or e3 axis. With the decrease of f/φ or

the increase of mesoporosity, the shear bands exhibit high strain gradients at the corners of

the unit cell. The width of shear band increases with the decrease of mesoporosity. Some

local strain concentration zones are found around the mesoscopic pore. In the second

loading path with E = 2 × 10−2(e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3), an additional compressive
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strain is applied along e2 direction. The obtained local strain fields are shown in Fig.II

.24. Again, strain concentration zones are found around the mesoscopic pore and amplified

when the mesoporosity increases or when the ratio f/φ is smaller.

In Fig.II .25, one presents the macroscopic stress-strain curves for the two different

loading paths. For the first loading path, the macroscopic response is not very sensitive to

the porosity ratio f/φ. The peak stress Σ33 exhibits a small decrease when the increase of

f/φ. However, in the second loading path, the macroscopic response is strongly influenced

by the porosity ratio. The macroscopic stress Σ33 is significantly amplified by the increase

of f/φ. This is the consequent of an important plastic hardening in the porous matrix

due to the diminution of microscopic porosity.

(a) f/φ = 0.5 (b) f/φ = 1

(c) f/φ = 5 (d) f/φ = 10

Figure II .23: Local strain distribution for different values of f/φ and with α = 0.3,

Γ = 0.2 in E = 2× 10−2(e1 ⊗ e1 − e3 ⊗ e3),
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(a) f/φ = 0.5 (b) f/φ = 1

(c) f/φ = 5 (d) f/φ = 10

Figure II .24: Local strain distribution for different values of f/φ and with α = 0.3,

Γ = 0.2 in E = 2× 10−2(e1 ⊗ e1 − e2 ⊗ e2 − e3 ⊗ e3)
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Figure II .25: Macroscopic stress-strain curves in two different loading paths with α = 0.3

and Γ = 0.2
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5 Concluding remarks

In this paper, we have developed a FFT-based numerical model for the estimation of

both elastic and plastic behaviours of a class of materials with two populations of pores at

two different scales, and especially studied the effects of the ratio between two populations

of pores f/φ on the macroscopic responses.

It is found that the effective elastic properties of double porous materials are signifi-

cantly influenced by the porosity ratio and they are more sensitive to the meso-porosity

than to the micro-porosity. The classical dilute homogenization scheme is not able to cap-

ture these effects. The double Hashin-Shtrikman upper bound model significantly differs

from the FFT-based model for low values of porosity ratio f/φ (high values of meso-

porosity) but the two models agree well for high values of porosity ratio f/φ (low values

of meso-porosity).

The macroscopic yield stresses have also been studied for different values of the porosity

ratio f/φ. Comparisons with two analytical criteria issued from two different homogeniza-

tion techniques have been performed. Significant differences have been found between the

two analytical criteria and the FFT-based numerical model. According to the numerical

results obtained with the FFT-based full-field simulations, the macroscopic yield stresses

are strongly influenced by the porosity ratio. For a given value of total porosity, the small-

est yield stresses are obtained when the microscopic porosity vanishes. The mesoscopic

porosity plays a more important role than the micro-porosity on the macroscopic yield

stress. These effects of microstructure in terms of porosity ratio have not been correctly

taken into account in the two analytical criteria.

Finally, for brittle rock-like materials, damage due to growth of micro-cracks is an

essential inelastic process. In future studies, it will be interesting to consider the micro-

cracking process of solid matrix by using a suitable damage model.
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6 Appendix A: Analytical estimation of elastic properties

One considers an isotropic porous matrix with spherical pores at the microscopic scale.

The bulk and shear moduli of the solid phase are denoted as ks and µs and the microp-

orosity as f . The effective bulk and shear moduli khom0 and µhom0 of the porous matrix at

the mesoscopic scale are here calculated using the Hashin-Shtrikman upper bounds and

one gets:

khom0 =
4(1− f)ksµs
4µs + 3fks

, µhom0 =
(1− f)µs

1 + 6f ks+2µs
9ks+8µs

(II .27)

In the second step of homogenization, the mesoscopic pores are taken into account and the

mesoporosity is denoted as φ. The effective elastic properties of the double porous material

are determined by using two different homogenization methods: the dilute scheme and the

Hashin-Shtrikman upper bounds method. The macroscopic bulk and shear moduli khom

and µhom of the double porous material are respectively given by the following relations:

khomDI = khom0 (1− φ3khom0 + 4µhom0

4µhom0

), µhomDI = µhom0 (1− φ5(3khom0 + 4µhom0 )

9khom0 + 8µhom0

) (II .28)

khomHS =
4(1− φ)khom0 µhom0

4µhom0 + 3φkhom0

, µhomHS =
(1− φ)µhom0

1 + 6φ
khom0 +2µhom0

9khom0 +8µhom0

(II .29)

7 Appendix B: Analytical yield criteria

The two analytical criteria have also been obtained from two-step homogenization

methods. For the first step, the effective plastic criterion of the porous matrix is deter-

mined. In both analytical criteria, the criterion obtained by [Maghous et al., 2009] using

a modified secant method has been adopted.

For the second step, two different techniques have been used for the determination

of macroscopic yield criterion of the double porous material. For the criterion given in

[Shen et al., 2014], the authors have used a kinematic limit analysis approach with an

Eshelby-like trial velocity field. The obtained criterion is given by:

F = β
Σ2
eq

Σ2
0

+
9α

2
(
Σm − L

9α(1− φ)

Σ0
)2 +2φ cosh(

√
9

4
β

Σ2
m

Σ2
0

+
2β

3Γ̄(φ)

Σ2
eq

Σ2
0

)−1−φ2 = 0 (II .30)

where Σ2
eq = 3

2Σ′ : Σ′ with Σ′ representing the deviatoric part of the macroscopic stress

tensor Σ. The coefficients β, α, L, Σ0,σ0 and Γ̄(φ) are given by:

β =
2

3

1 + 2f/3

α2
,
9α

2
=

3f

2α2
− 1, L = −2(1− f)h (II .31)
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Σ0 =

√
σ2

0 +
L2

18α
, σ0 = (1− f) ∗ h, Γ̄(φ) = 1− 4φ

(1− φ(2/3))2

1− φ
(II .32)

On the other hand, a modified secant method has been used to determine the macro-

scopic yield criterion given in [Shen and Shao, 2016a], which is expressed in the following

form:

F = ΘΣ2
d + ΥΣ2

m + 2(1− f)h(1− φ)Σm − (1− f)2(1− φ)2h2 = 0 (II .33)

The coefficients Θ and Υ are calculated by:

Θ =
1 + 2f/3

α2
(
6α2 − 13f − 6

4α2 − 12f − 9
φ+ 1),Υ =

3/2 + f

α2
φ+

3f

2α2
− 1 (II .34)

For a given couple of porosity Γ and f or Γ and φ, the corresponding meso-porosity

φ or micro-porosity f can be obtained through relation (II .1). If the values of f/φ of

two unit cells are reciprocal, it implies the values of micro-porosity and meso-porosity are

inverse each to other. Thus we have:

Θ1 =
1 + 2f/3

α2
(
6α2 − 13f − 6

4α2 − 12f − 9
φ+ 1), Θ2 =

1 + 2φ/3

α2
(
6α2 − 13φ− 6

4α2 − 12φ− 9
f + 1) (II .35)

The evolutions of Θ1 and Θ2 related to micro-porosity and meso-porosity of these

two unit cells are presented in Fig.II .26. The corresponding macroscopic yield surfaces

with several values of f/φ predicted by the criterion given in [Shen and Shao, 2016a] are

shown in Fig.II .27. One can see that the difference of the value of Θ between the two

configurations is very small so that the corresponding macroscopic yield surfaces are very

close each to other. As an example, the macroscopic yield surfaces for f/φ = 0.5 and

f/φ = 2 are shown in Fig.II .27.

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 02 6 . 6 0

2 6 . 6 4

2 6 . 6 8

2 6 . 7 2

2 6 . 7 6

2 6 . 8 0
 Θ1  
 Θ2  

f  o r  φ

Θ

 

(a) α = 0.2
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(b) α = 0.3

Figure II .26: Evolution of Θ with micro-porosity(f1) and meso-porosity(φ2) for a given

total porosity: (a) α = 0.2 and Γ = 0.1. (b) α = 0.3 and Γ = 0.1
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Figure II .27: Evolution of macroscopic yield surfaces with different f/φ predicted by

the criterion given in [Shen and Shao, 2016a] for Γ = 0.1
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Summary

For most engineering materials, pores and mineral inclusions can be observed at same

scale, for example, the rock, concrete and so on. Based on non-linear homogenization

method, lots of macroscopic plastic yield criteria have been derived for porous materials

taking into account the influences of porosity. Some works have been done for geoma-

terials, which consider simultaneously the effects of porosity and the volume fraction of

inclusion with the assumption that the pores are embedded in the matrix and much small-

er than inclusion. It still has difficulties to obtain a closed-form criterion to consider such

kinds of composite as accuracy as possible. For this reason, the Fast Fourier Transform

(FFT) based homogenization method has been employed to get a reference solution for

this problem. In this case, a Drucker-Prager type matrix configured with both pore and

inclusion at same scale is considered in this work. Due to the heterogeneity and anisotropy

induced by the geometry of pore and inclusion, the macroscopic elastic and plastic behav-

iors with respect to inclusion and pore morphology characters are studied and compared

in detail. The numerical results show that the evolution of macroscopic elastic behavior

is sensitive to pore and inclusion geometry. However, the evolution of macroscopic yield

stresses are mainly determined by the pore shape, distribution, aspect ratio, orientation

as well as porosity, inclusion fraction. The inclusion shape and its orientation have no

great effect on plastic yield stresses.

1 Introduction

Most composites such as rock, concrete and metal are well-known having a highly het-

erogeneous microstructure with a structure-sensitive characteristic, due to the presences

of pores and various mineral inclusions. In the context of experimental mechanics, despite

the macroscopic mechanical properties of this class materials can be measured, it still pose

another challenge to derive its effective properties as accuracy as possible associated with

well known physical microstructure though analytical expressions or numerical method. S-

tarting with the Eshelby’s inclusion problem, classical homogenization models are available

for the elastic properties ([Mori and Tanaka, 1973,Hill, 1965b,Ponte Castañeda and Willis,

1995]). Based on these classical theories, the effective elastic properties of porous com-

posite like geomaterial involved with multi-scale features have been investigated ([Miled

et al., 2011,Giraud et al., 2012,Liang et al., 2017]) and enjoyed the significant success.

On the other hand, for plastic case, individual inhomogeneities like pores or inclu-

sions in a given scale have attracted considerable attention in homogenization problem.
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In the framework of limit-analysis approach, the determination of strength properties of

porous materials are proposed by Gurson(1977) for porous materials with a von-Mises

type solid matrix. Since then, various extensions have been made accounting for the

void shape effects ([Gologanu et al., 1993, Gologanu et al., 1994, Monchiet et al., 2014])

and plastic anisotropy ([Benzerga and Besson, 2001, Monchiet et al., 2008, Keralavarma

and Benzerga, 2010]). Pressure sensitive behavior was also taken into account by various

nonlinear homogenization methods for one population of pores or inclusions ([Barthélémy

and Dormieux, 2004,Guo et al., 2008,Maghous et al., 2009,Shen et al., 2017b]). Based on

these existed models, approximate criteria involved in microstructural features like pores

and inclusions arranged individually at two separated scales have also been developed by

using a two-step homogenization producers ([Garajeu and Suquet, 1997, Vincent et al.,

2009a,Vincent et al., 2014b,Shen et al., 2013,Shen et al., 2014]). Apart from the develop-

ment of analytical solutions, considerable efforts have been made towards the assessment of

previous criteria by using computational simulations like Finite Element Method ([Khdir

et al., 2014,Julien et al., 2011,Vincent et al., 2009b]) and Fast Fourier Transform method

([Vincent et al., 2014a, Cao et al., 2018a, Cao et al., 2018b]). By means of these meth-

ods, numerical contributions for individual inhomogeneity considering pore or inclusion

geometry such as distribution and shape have provided good basis for modeling their ef-

fective properties ([Bilger et al., 2005,Ghossein and Lévesque, 2012,Madou and Leblond,

2013,Drach et al., 2016,Bourih et al., 2018]). These simulations are try to estimate a link

between the strength properties and microstructure.

Regarding the differences of macroscopic responses by comparisons between the com-

putational results and closed-form solution, a brief descriptions of some known statistical

microstructure features like porosity, inclusion fraction and shape are not enough to de-

termine the effective properties as accuracy as possible. Although series of experimental

results on porous material have provided a strong link between porosity and strength

([Al-Harthi et al., 1999, Chang et al., 2006, Lian et al., 2011, Heidari et al., 2014, Baud

et al., 2014]), it is important to taken into account microscopic features for their roles

on macroscopic behaviors. In addition, other concerns are mainly accounting for pore

or inclusion at separated scale assuming one of their feature size is much smaller than

another one ([Bernard et al., 2003, Shen et al., 2012a, Shen et al., 2013]). However, the

interactions between pores and inclusions are neglected. To the author’s knowledge, there

is no available accurate model to capture the effective behavior for materials with both

pores and inclusions arranged at same scale. Motivated by this, it is more appropriate to

perform numerical simulations on microstructure for such materials, providing a reference
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solution for future studies on its plastic criterion with suitable mathematical morpholo-

gy formulation when specialize the details of a given microstructure. For this purpose,

the FFT-based homogenization method is adopted here for all the simulations presented

in this section. The goal of this study is to explore the macroscopic elastic and plastic

properties for a periodic microstructure with both pore and inclusion at same scale.

The chapter is organized as follow: section 2 presents the studied materials and selected

representative volume element. In section 3, a series of simulations are conducted by

using the FFT-based homogenization method with different microstructures. The effect

of inclusion and pore shape, distribution, aspect ratio and orientation on effective elastic

and plastic yield stress are detailed investigated . In section 4, with the framework of

this study, we shall estimate the macroscopic yield surface of porous Berea sandstone and

compare with the experimental data.

2 Microstructure and mechanical behavior of studied ma-

terial

Owing to a wide range of complementary imaging technique like scanning electron

microscopy (SEM) in 2D or X-ray computed tomography (XCT) in 3D case for visualizing

and quantifying the microstructure of rock-like materials, the distinctive mineral compo-

sitions and textural characteristics can be directly observed with both heterogeneity and

anisotropy properties at a small scale ([Louis et al., 2007, Kelly et al., 2016, Ma et al.,

2017,Saif et al., 2017b]), for instance, the shale rock ([Ougier-Simonin et al., 2016]), clay-

stone ([Robinet, 2008]) and Berea sandstone ([Wong et al., 1997,Wong et al., 2001,Saxena

and Mavko, 2016]) are composed of solid matrix and various mineral inclusions as well as

pores, which are characterised as a multi-phase composite. There is an increasing aware-

ness that the preferred microscopic geometries of mineral inclusions, pores (such as shape,

orientation, size, distribution, etc.) and porosity are important contributors to elastic and

plastic anisotropy for macroscopic mechanical responses.

In our study, in order to consider these factors, it is assumed that the pores and

inclusions are approximately of spherical or spheroidal shape for the purpose of analytical

studies, and both of them are periodic distributed at the same scale as presented in Fig.III

.1-a. Based on these assumptions, a simplified representative volume element(RVE) with

one centered pore and 1/8 inclusion in each corner is selected here as presented in Fig.III .1-

b for the following simulations. Corresponding porosity and inclusion fraction respectively

denote f and ρ in the whole study.
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Inclusion

Pore

(a) 2D structure of studied materials (b) Selected 3D representative volume element

Matrix

Figure III .1: The representative microstructure of unit cell with pores and inclusions

embedded.

For pressure sensitive materials, the solid matrix of the material is assumed to obey a

Drucker-Prager type criterion taken the following form:

Φ(σ) = σd + α(σm − h) ≤ 0 (III .1)

in which σ denotes the microscopic stress tensor. σm = trσ/3 is the mean stress. σd is

defined as σd =
√
σ′ : σ′, with σ′ being the deviatoric stress tensor. The parameter α is

the frictional coefficient and h the yield stress under hydrostatic tension of the solid phase.

The inclusion studied here is assumed to be elastic.

Due to the presences of inclusion and pore, the local stress and strain fields are not

uniform. To minimize the size-effects of the unit cell for the determination of macroscopic

properties, the periodic boundary condition is considered here. Therefore, the non-uniform

strain field can be defined by a periodic fluctuation displacement field u∗(x) spliting into an

average E and a fluctuation term ε(u∗(x)). Thus the effective behaviors of the composite

materials can be determined by solving the following local problem.

∆σ(x) = Ctan(x) : ∆ε(x) ∀x ∈ Ωs

∆σ(x) = C(x) : ∆ε(x) ∀x ∈ Ωi

divσ(x) = 0 ∀x ∈ Ω, u∗#,σ · n−#

ε(x) = 1
2(∇u∗(x) +∇Tu∗(x)) +E ∀x ∈ Ω

(III .2)

In this relations, the symbol # denotes the periodic condition while −# the anti-

periodic one. Ω denotes the whole volume of the unit cell. Then Ωs and Ωi are the volumes

of the solid matrix and inclusion, respectively. σ, ε, C, denote the local stress, strain and

stiffness tensor in Ω. Ctan is the effective tangent elastic-plastic stiffness operator which

can be obtained by the incremental constitutive relation.

In the context of highly heterogeneous materials studied in this work, the following

section will focus on both the effects and interactions of meso pore and inclusion on the

effective behaviors which can be well considered by using FFT based method.
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3 Overall elastic and plastic properties of the studied ma-

terial

In order to present the heterogeneous and anisotropic properties induced by the mi-

crostructure, the morphology effects of the inclusion and pore are considered here based

on the FFT homogenization method. The inclusion and pore shape, aspect ratio and

orientation will be taken into account. For a better comparisons, two classes of unit cells

with different arrangements are adopted here. The first class is the unit cell embedded

with a centered spheroidal pore (oblate and prolate) and 1/8 spherical inclusion in each

corner as shown in Fig.III .2(a) and Fig.III .2(b). Herein we define θ as the orientation

angle between the major axis of the inclusion or pore and the loading direction. Then the

second is the one configured with a centered spheroidal inclusion and 1/8 spherical pore

in the corner as presented in Fig.III .2(c) and Fig.III .2(d). With a periodic boundary

condition, its macroscopic properties is equivalent to the one which the pore and inclusion

interchange their locations.

The studied unit cell is divided into 150 × 150 × 150 voxels of identical size for the

FFT-based calculations. The elastic and plastic parameters of the solid matrix are selected

as Es = 5GPa, vs = 0.15, α = 0.1 ∼ 0.3, h = 10MPa, and the elastic parameters of the

inclusion are Ei = 200GPa, vi = 0.15.
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Figure III .2: Studied unit cells with different pore and inclusion geometry

3.1 Estimation of macroscopic elastic modulus

To highlight the influences of pore shape and orientation on the macroscopic elastic

modulus, we consider now the first class of unit cell with different pore orientations and

aspect ratios as shown in Fig. III .2(a) and Fig. III .2(b). In this work, aspect ratio

a/c = 1.0 ∼ 5.0 for the oblate pore and c/a = 1.0 ∼ 2.25 for the prolate one are selected

with f = 0.1, ρ = 0.1(a and c respectively being the semi-major axis and semi-minor axis
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of the spheroid).
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Figure III .3: Evolution of effective normalized elastic modulus related to pore orienta-

tion: f = 0.1, ρ = 0.1

Unlike spherical pore (corresponding to a/c = 1) leading to an isotropic case, for

spheroidal pore, Fig.III .3(a) and Fig.III .3(b) address that the pore shape provides signif-

icant differences of normalized elastic modulus (Ehom/Es) for different pore orientations.

The results indicate that the minimum elastic modulus always corresponds to the case of

orientation angle θ = 0◦ for oblate pore, then gradually increased with the orientation from

θ = 0◦ to θ = 90◦. While for prolate one, it exhibits an opposite trend. This confirms the

anisotropy induced by the pore morphology. It should be noted that the value of Ehom/Es

reaches maximum when the orientation is parallel to the compression direction for both

oblate and prolate pore. However, by comparing Fig.III .3(a) with Fig.III .3(b), it is clear
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that the normalized elastic modulus of oblate pore is more sensitive to the orientations

than the prolate one.

In addition, with these comparisons, the anisotropy is also more significant for both

oblate and prolate pore with a large aspect ratio than the small one. However, the aspect

ratio presents different influences on normalized effective modulus for different orientations.

For example, when θ = 0◦, the value of Ehom/Es becomes smaller with the increasing

aspect ratio of oblate pore. But when θ = 90◦, Ehom/Es is increased with the increasing

aspect ratio. Therefore, it exists an orientation domain which the higher aspect ratio can

decrease the effective elastic modulus. As an example, at the orientation domain 0◦ ∼ 70◦

for oblate pore and 45◦ ∼ 90◦ for prolate one, the normalized modulus becomes to be

softer when having a higher aspect ratio.
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Figure III .4: Evolution of effective normalized elastic modulus related to inclusion

orientation: f = 0.1, ρ = 0.1
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Fig.III .4 illustrates the effects of inclusion geometry with respect to inclusion orienta-

tions and aspect ratios. It is important to note that both the oblate and prolate inclusion

orientation and aspect ratio are more sensitive to the variation of macroscopic elastic mod-

ulus than the pore. For instance, in the case of a/c = 5, the normalized elastic modulus

is varied from 0.62 to 1.11 for oblate pore, while exhibits variations from 0.95 to 1.62 for

oblate inclusion. At the orientation domain 45◦ ∼ 90◦ for oblate pore and 0◦ ∼ 45◦ for

prolate one, the normalized modulus becomes to be softer when having a higher aspect

ratio.

3.2 Determination of macroscopic plastic yield stress

Due to the fact that the absence of the macroscopic analytical criterion of the studies

materials, we will focus on numerical simulations to derive a reference solution of the

macroscopic plastic yield stress. To this end, the obtained yield stress is corresponding

to a perfectly elastic-plastic case. For a better understanding of the studied material,

the effect of inclusion and pore geometrical characters such as their shape, aspect ratio,

orientations will be considered in detail. For the effect of random distributions, we will

explain in Appendix A.

3.2.1 Effects of inclusion geometries

Influences of inclusion geometry on macroscopic plastic mechanical properties are now

evaluated. To start, we will firstly explore the effect of inclusion volume fraction on the

macroscopic yield stress for isotropic case. Here the microstructure presented in Fig.III

.1 is considered. By using the FFT-based homogenization method, the computed macro-

scopic yield stresses are presented in Fig.III .5. With no doubt, it is significantly that the

macroscopic yield stress can be enhanced at compressible stress state with a high inclu-

sion fraction. However, the hydrostatic stress is not sensitive to the inclusion fraction as

illustrated in the results when inclusion volume fraction varies from ρ = 0 to ρ = 0.2.

The hydrostatic strengthes are almost the same with each other. This implies that the

hydrostatic strengthes of the studied material can be approximated by the ones without

spherical inclusion.
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Figure III .5: Macroscopic yield stresses predicted by unit cells with one centered spher-

ical inclusion for different inclusion fraction.

Then we are proceeding to focus on the case of spheroidal inclusion. For this purpose,

the unit cells are selected corresponding to Fig.III .2(c) and Fig.III .2(d). Then a series of

calculations were performed and compared. Fig.III .6 shows the macroscopic yield stress

for different inclusion shape and aspect ratios . It is obviously that the evolutions of yield

stresses are very closed between the unit cells with spherical and spheroidal inclusions.
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Figure III .6: Macroscopic yield stresses predicted by unit cells with one centered

spheroidal inclusion for different aspect ratios with α = 0.3, f = 0.1, ρ = 0.1.
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Figure III .7: Macroscopic yield stresses predicted by unit cells with one centered

spheroidal inclusion for different orientation angles with α = 0.3, f = 0.1, ρ = 0.1:

a/c = 2.0 for oblate and c/a = 2.0 for prolate.

Then Fig.III .7 exhibits the effect of inclusion orientation, it is found that the discrepan-

cies between them is not obvious. Despite the fact that the presences of this inhomogeneity

associated with inclusion shapes and orientations can disturb an uniform strain field, the

effect of stress fluctuation in the matrix caused by inclusion geometry are very small. This

maybe due to the fact that the inclusion geometry has little influences on stress transfer-

ring to the matrix. Therefore, it no longer has significant influence on the macroscopic

yield stress. As a consequence, the volume fraction is the main factor for inclusion which

is sensitive to the macroscopic yield stresses except the case of hydrostatic stress state.

3.2.2 Influences of pore geometries

In this subsection, we are proceeding to consider the effect of pore shape, aspect ratio,

orientation on the evolution of macroscopic yield stress. In contrast of inclusion that

doesn’t undergo stress-free, stress and strain in the pore are then zero leading to distinctly

local stress concentration around the pore. Therefore, the effective mechanical properties

induced by pore geometry should be different from the case of inclusion.

- unit cell with spherical pore

We first investigate the case of both spherical pore and inclusion embedded in the

unit cell as show in Fig.III .1. Fig.III .8 gives a comparison of macroscopic yield stresses

with different porosities. As well known, the porosity has a significant weaken effect on

macroscopic yield stress. From the results, it is no surprised that the effective strength is

decreased with an increasing porosity. We present it here for comparison of the anisotropic
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case in the following analysis.
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Figure III .8: Macroscopic yield stresses predicted with α = 0.3, f = 0.1, ρ = 0.1.

- unit cell with spheroidal pore

To evaluate numerically the effect of spheroidal pore, the shape of pore is regarded as

classical oblate or prolate, and the inclusion is assumed to be spherical. Corresponding

studied unit cells are shown in Fig.III .2(a) and Fig.III .2(b). The pore morphology is

mainly described by three factors: porosity, aspect ratio and orientation. These factors as

well as inclusion fraction shall be considered for the determination of macroscopic yield

stresses in this section.

In this context, a numbers of simulations are computed. Fig.III .9 displays the macro-

scopic yield stresses for oblate pore covering the effect of pore geometry. Fig.III .9(a)

presents the evolution of yield stress with oblate aspect ratio a/c = 2 and orientation

θ = 0◦ for different porosities. As expected, the evolution of the yield stresses are largely

effected by the porosities like the case of spherical pore. In addition, the pore morphology

with respect to aspect ratio is also an important factor. Motivated by this reason, the

effective yield stresses of the unit cell with different pore aspect ratios are compared in

Fig.III .9(b). According to this plot, the evolution of yield stresses is quite different with

the increasing aspect ratio. The results well illustrate the anisotropic influence incorpo-

rating void shape effect comparing with the case of spherical pore(a/c = 1). Particularly,

significant reductions in hydrostatic strength coupled with an increase of pore aspect ratio.

This significant shape effect is in contrast with the case of inclusion as previous presented.

However, it is important to note that the higher aspect ratio does not always decrease the

yield stress. For instance, as indicted in Fig.III .9(b), there exists a strength domain which

is not sensitive to the pore aspect ratio. For the condition of high stress triaxialities, the
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yield strength is decreased by the pore with a high aspect ratio.
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(b) Effect of aspect ratio with f = 0.1, θ = 0◦
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(c) Effect of pore orientation with f = 0.1, a/c = 2

Figure III .9: Evolution of macroscopic yield stresses predicted by unit cells with oblate

pore for different porosities, aspect ratios and orientations with α = 0.3, ρ = 0.1
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(b) Effect of aspect ratio with f = 0.1, θ = 0◦
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(c) Effect of pore orientation with f = 0.1,c/a = 2

Figure III .10: Evolution of macroscopic yield stresses predicted by unit cells with

prolate pore for different porosities, aspect ratios and orientations with α = 0.3, ρ = 0.1
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As mentioned in previous studies, the pore orientations have significant influence on

the elastic behavior, now we will address its further effect on plastic behavior. For this

aim, three different orientations θ = 0◦, 45◦ and 90◦ are selected here to make comparisons.

The evolutions of yield stress with respect to these orientations are presented in Fig.III

.9(c), with porosity f = 0.1. As seen from the results, we notice that the evolution of

plastic flow is strongly concerned with the pore orientations. It is observed that the shape

orientation of the pore can result in changes in the size and shape of the yield surface.

However, it should be remarked that the yield stress under hydrostatic loading case seems

to be independent of the orientations for oblate pore.

Fig.III .10 illustrates the evolution of macroscopic yield stress induced by the prolate

pore geometry. Similar to the oblate one, the determination of macroscopic yield stress

also depends on the porosity, aspect ratio and orientation. But the shape and size of

macroscopic surfaces are quite different compared with oblate one as displayed in Fig.III

.10(a) and Fig.III .10(b). Moreover, the prolate orientations plays different roles on com-

pression and tensile region, which implies the orientations have anisotropic hardening or

softening effects at different stress state. However, this effect on the evolution of yield

stresses for oblate and prolate pore is inverse. As mentioned previously, the yield stress is

not sensitive to the the orientations of the oblate pore under the purely hydrostatic loading

condition, while for prolate one, there is a significant hardening effect on the hydrostatic

compressible loading when θ = 45◦ as shown in Fig.III .10(c). Specifically, it seems that

there is a closed symmetry of the yield surfaces for θ = 0◦ and θ = 90◦ about the axes Σm

from these plots. By comparison Fig.III .10(c) with Fig.III .9(c), the orientation effect is

more sensitive to prolate pore than the oblate one. This trend also holds for the case of

porosity f = 0.05 as presented in Appendix B. Therefore, it is important to note that the

pore orientations also make a contribution to the anisotropic influence. This effect has

never been reported and considered in an analytical solution.

Next we will examine the effect of inclusion fraction on the macroscopic yield stress.

Fig.III .11 reflects the evolution of plastic surfaces predicted by unit cells with oblate and

prolate pore. ρ = 0 is corresponding to the unit cell without inclusion. By comparison

with the case of inclusion embedded, it is no doubt that the presence of inclusion can

enhance the yield stress except the hydrostatic loading case. Combining the results from

Fig.III .5, this suggests that the presence of inclusion does not influence the hydrostatic

strength of the studied material with spherical or spheroidal pore. It is mainly dominated

by the properties of matrix and pore geometries.
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(b) prolate c/a = 2

Figure III .11: Evolution of macroscopic yield stresses predicted by unit cells with oblate

and prolate pore for different ρ with α = 0.3, f = 0.1

4 Estimations of yield stresses for porous Berea sandstone

In the previous section, we have estimated the yield stress for the macroscopic be-

haviour induced by the meso pore and inclusion geometry, it is confirmed that the exists

of meso pores and inclusions have significant influences on the evolution of yield stress.

In this section, this numerical model is also used to predict the macroscopic yield stress
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of porous Berea sandstone. According to the SEM image analysis, the Berea sandstone

is dominated by detrital grains such as quartz and feldspar ([Kareem et al., 2017], cov-

ering an average volume fraction of 0.64 which can be regarded as the matrix of Berea

sandstone in our study, and with an average porosity of 0.21 as reported by [Wong et al.,

1997,Wong et al., 2001]. Additional grains like carbonat are considered as hard inclusions.

For simplicity, it is assumed that all the inclusions and pores are spherical and randomly

distributed. With this information, a representative volume element is reconstructed as

shown in Fig.III .12 for our study.

Figure III .12: The representative microstructure of Berea sandstone with porosity

f = 0.21 and inclusion fraction ρ = 0.15.
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Figure III .13: Prediction of macroscopic yield stress by FFT-based method with α = 0.6

and H = 175MPa and compared with experimental data from [Baud et al., 2004].

For the aim of simulating the evolution macroscopic yield stress, the elastic param-

eters are adopted as same as previous studies, and plastic parameters are α = 0.6 and
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h = 175MPa. Fig.III .13 displays the prediction of marcroscopic yield stresses of Berea

sandstone by means of FFT-based homogenization method. The shape of yield surface

is of ellipse, this mainly due to the presence of pores. Moreover, it is also enhanced by

reinforced inclusions. Experimental data documented from [Baud et al., 2004] is compared

with the modeling results. From the comparison, one can see that the two results are in

good agreement.

5 Concluding remarks

In this paper, the main objective of this study is to carry out a reference solutions

for such a composite with both meso-pore and meso-inclusion configured at same scale.

To perform its evolutions of macroscopic mechanical behavior, a series of simulations are

computed by employing the FFT based homogenization method to consider the effect of

inclusion and pore geometrical characters.

With a series of comparisons, both the pore and inclusion geometry is sensitive to the

determination of macroscopic elastic behavior. Simulation results show that the anisotropy

effect induced by pore and inclusion is obtained with respect to its aspect ratio and

orientation, providing an increase or decrease effect on the effective elastic modulus. For

plastic behaviors, the inclusion geometry does not have significant effect on macroscopic

plastic yield stress except the inclusion fraction. However, this does not work for the case

of pore. The corresponding results reveal that the pore shape, distribution, aspect ratios,

orientations indeed have important effects and play different roles on plastic yield stress.

In addition, we also use this framework to predict the macroscopic behavior of Berea

sandstone, the modeling results are well closed with the experimental data. For future

works, to characterize the effective behaviors of such kinds of composite as accuracy as

possible by an analytical criterion, these factors should be taken into considerations.
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6 Appendix A: Effect of randomly distributed pores and

inclusions on the macroscopic yield stresses

- unit cell with spherical pores and inclusions

In order to consider the effect of randomly distributed pores and inclusions on macro-

scopic yield stress, we also carried out some comparisons on the unit cell configured with

both randomly distributed pores and inclusions (pore number N1 = 50, inclusion number

N2 = 50) and the one contained single pore and inclusion with previous mentioned ar-

rangement. The sensitivities on macroscopic yield stress for different porosity f , inclusion

fraction ρ, and frictional coefficient T are also taken into account as shown in Fig.III .14

to Fig.III .16. Several important differences for effective plastic behavior between these

two distributions in the unit cell can be observed, especially in the compression region. As

highlight from the plot, it is found that the yield stresses of the unit cell with a random

distribution of pores and inclusions are systematically lower than those of the unit cell with

one single pore and inclusion, leading to a weakening effect on the overall compressible

plastic yield strength. However, the difference between two distributions becomes smaller

with a higher porosity and lower frictional coefficient α according to the results presented

in Fig.III .14 and Fig.III .15.
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Figure III .14: Evolution of macroscopic yield stresses predicted by unit cells with two

different distributions of pores and inclusions for different porosities.
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Figure III .15: Evolution of macroscopic yield stresses predicted by unit cells with two

different distributions of pores and inclusions for different α.
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Figure III .16: Evolution of macroscopic yield stresses predicted by unit cells with two

different distributions of pores and inclusions for different ρ.

Moreover, the random distribution plays more important role on macroscopic plastic

yield stress, also resulting in apparent discrepancies at compression region. The hydro-

static compression strength is quite influenced by the inclusion fraction compared with

the dilute distribution. This distinctly shows the effect of interactions between randomly

distributed inclusions and pores.

- unit cell with spheroidal pores and spherical inclusions
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For anisotropic case, we specially investigate the unit cells with both randomly dis-

tributed oblate or prolate pores, in which all the orientations of pores are chosen as 0◦.

To ignore the shape effect of inclusions, for simplicity, randomly distributed spherical

inclusions are also embedded at the same scale.

Fig.III .17 and Fig.III .18 respectively display the comparisons of plastic yield stresses

for unit cells contained spheroidal pores and spherical inclusions with different distribu-

tions. And the effect of aspect ratio is also considered. According to these results, it is

clear that the shape dependence is also preserved for randomly distributions on plastic

yield surface. Similar to the case of spherical pores, randomly distributions of spheroidal

pores also have important influences on the plastic compressible region, providing a weak-

en effect on plastic yield than the unit cell with one single pore and inclusion configured.

However, for tensile region, it exhibits no significant differences for these two distributions.

Moreover, the influence of aspect ratio is more sensitive to oblate pore than prolate one

at tension region.
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Figure III .17: Comparisons of macroscopic yield stresses predicted by unit cells with

randomly distributed and regular arrangements for different aspect ratios of oblate pores

with α = 0.3, f = 0.05 and ρ = 0.1
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Figure III .18: Comparisons of macroscopic yield stresses predicted by unit cells with

randomly distributed and regular arrangements for different aspect ratios of prolate pores

with α = 0.3, f = 0.05 and ρ = 0.1
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7 Appendix B: Evolution of the macroscopic yield stresses

for f = 0.05
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Figure III .19: Effect of aspect ratios and orientations of oblate pore on macroscopic

yield stresses for α = 0.3 and ρ = 0.1 with f = 0.05
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Figure III .20: Effect of aspect ratios and orientations of prolate pore on macroscopic

yield stresses for α = 0.3 and ρ = 0.1 with f = 0.05



Chapter IV

Effects of meso-inclusions and

micro-pores on plastic and

viscoplastic deformation of

rock-like materials

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2 Basic description of microstructure for rock-like materials . . . . 78

3 Effective mechanical behavior of the porous matrix . . . . . . . . . 79

3.1 Instantaneous plastic behavior . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Time dependent behavior . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Macroscopic mechanical properties of material . . . . . . . . . . . . 84

5 Full-field modeling and comparisons . . . . . . . . . . . . . . . . . . 86

5.1 Evaluation of macroscopic yield surface . . . . . . . . . . . . . . . . . 86

5.2 Assessment of time-dependent deformation . . . . . . . . . . . . . . . 91

6 Application to claystone . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Appendix A: Effect of microstructure with different inclusion dis-

tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Appendix B: Local stress distribution under uniaxial compressive

loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



76

Effects of meso-inclusions and micro-pores on plastic and viscoplastic deformation of

rock-like materials

Summary

The aim of this chapter is to study effects of inclusion and pores on plastic and vis-

coplastic deformation of rock-like materials. We shall consider a class of clayey rocks

with two separate scales of microstructure. At the mesoscopic scale, the material is con-

stituted by a continuous matrix and embedded mineral inclusion. At the microscopic

scale, the continuous matrix is a porous medium composed of a solid phase and spherical

pores. Macroscopic deformation behavior of the material is determined by using a two-

step homogenization procedure. At the mesoscopic scale, we shall investigate influences

of inclusion stiffness, shape, orientation and volume fraction on plastic and viscoplastic

deformation. A series of numerical simulations are performed and the obtained results

show that the proposed numerical model is able to bring a finer description of complex

microstructure effect than most analytical models. Finally, the efficacy of this numerical

model is checked through comparisons between numerical results and experimental data

in triaxial compression creep and relaxation tests on claystone.

1 Introduction

Pores and mineral inclusions are two main families of heterogeneities in rock-like mate-

rials. Macroscopic responses of those materials are generally affected not only by volume

fractions but also shapes and spatial distributions of pores and inclusions induced un in-

homogeneous deformation pattern. Classical phenomenological plastic and viscoplastic

models are not able to explicitly take into account effects of such micro-structures accu-

rately. Micro-mechanical models based on homogenization methods have been developed

and significant progresses have been obtained during the last decades. Effective elastic

properties have first been investigated and several homogenization schemes are now avail-

able and widely used in various materials, for instance the Dilute scheme, Mori Tanaka

scheme ([Mori and Tanaka, 1973]), the self-consistent scheme ([Hill, 1965b]) and Ponte

Castaneda and Willis scheme ([Ponte Castañeda and Willis, 1995]).

Nonlinear behaviors, for instance plastic deformation, have been investigated more

recently. A series of homogenization techniques such as the incremental method ([Hill,

1965a]), the secant method ([Tandon and Weng, 1988]), the affine formulation ([Mas-

son et al., 2000]) and the second-order estimates method([Ponte Castañeda, 2002]) have

been proposed by one-step homogenization to estimate nonlinear behavior of a two-scale

composite.

Based on these non-linear homogenization methods, some analytical or semi-analytical
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macroscopic yield criteria have been proposed for porous materials containing rigid inclu-

sions. For example, an effective criterion with inclusion effect has been established in

[Garajeu and Suquet, 1997] with a Gurson-type porous matrix using a variational ap-

proach. An explicit expression of the macroscopic yield criterion has been formulated in

[Shen et al., 2013] considering a porous matrix with a Drucker-Prager type solid phase.

Considering perfect or imperfect interfaces between matrix and inclusions, an macroscop-

ic strength criterion has been derived in [Bignonnet et al., 2015] with the help of the

modified secant modulus method. Recently, a micro-mechanical model has been proposed

[Bignonnet et al., 2016a] for cohesive granular materials with the evolution of porosity.

The plastic compressibility of the matrix and pore shape effects have been studied in [Shen

et al., 2017b]. Although the porosity and inclusion volume fraction can be taken into ac-

count, it is very difficult to evaluate the influences of inclusion or pore geometry on the

macroscopic mechanical behaviors by those analytical models.

Modeling of time-dependent behaviors of heterogeneous materials is another challenge.

Different approaches have also been proposed to determine effective behaviors of viscoplas-

tic materials. For instance, an alternative method within the framework of Nonuniform

Transformation Field Analysis was developed by the decomposition of local viscoplastic

strain field within each phase into a set of plastic deformation modes ([Michel and Suquet,

2004, Roussette et al., 2009]). Other authors have presented a variational formulation

for the homogenization of composites having viscoplastic constituents by considering the

past history of deformation through internal variables ([Brassart et al., 2012]). In [Doghri

et al., 2010], a general incrementally affine method for the mean-field homogenization of

inclusion-reinforced elasto-viscoplastic composites has been developed. In all these meth-

ods, the presences of inclusions or pores are independently taken into account. Interactions

between them in heterogenous materials still need further investigations.

In order to investigate effective behaviors of materials with complex micro-structures

or high contrasts between constituent phases, full field numerical simulations provide an

efficient way to have a deep understanding of micro-structure effects on macroscopic be-

haviors. Among various methods, Fast Fourier Transform (FFT ) is one of the widely

used techniques ([Moulinec and Suquet, 1994,Moulinec and Suquet, 1998]). Recently, the

FFT based numerical method has been applied to describe the elasto-plastic behaviors

of porous materials ([Vincent et al., 2014b, Bignonnet et al., 2016b, Li et al., 2018]) and

inclusion-reinforced composites ([Idiart et al., 2006,Li et al., 2016]).

Rock-like materials are characterized by complex and multi-scale micro-structures.

Pores and mineral inclusions are two main families of heterogeneities. Few studies are so



78

Effects of meso-inclusions and micro-pores on plastic and viscoplastic deformation of

rock-like materials

far available on studying visco-plastic deformation of rock-like materials by properly taking

into account effects of micro-structure such as spatial distribution and geometrical shape

of inclusion and pore. In the present paper, we shall propose a two-step homogenization

method for modeling both plastic and viscoplastic strains of a class of rock-like materials

containing pores and mineral inclusion at two different scales. The effect of pores is taken

into account with an analytical homogenization method at the microscopic scale and the

influence of inclusion by a FFT based numerical homogenization method. The results

obtained from the proposed numerical model will be compared with those given by some

analytical homogenized models with simple micro-structures. A sensitivity study will also

be performed in terms of inclusion fraction, stiffness, shape and orientation . Finally, the

proposed model will be verified by experimental data obtained from a typical claystone.

2 Basic description of microstructure for rock-like materials

We shall consider a class of rock-like materials with three separate scales. The macro-

scopic scale corresponds to the homogenized material whose mechanical properties should

be determined. At the mesoscopic scale, the heterogeneous material is composed of peri-

odically distributed representative unit cell. Each unit cell is composed by a homogenized

matrix and embedded mineral inclusions of different volume fractions, stiffness, shapes

and orientations. At the microscopic scale, the unit cell is a porous medium constituted

by a continuous solid phase in which pores are embedded. The average pore size is much

smaller than that of inclusion. In this study, the emphasis is put on the study of effects

of inclusion and for the sake of simplicity, it is assumed that pores in the microscopic unit

cell are spherical and randomly distributed. The selected three scales and unit cells are

illustrated in Fig.IV .1.

.

c)  Micro-scaleb)  Meso-scalea) Macro-scale

Solid phase Micro-poreMineral inclusionEquivalent homogeneous material

.

c)  Micro-scaleb)  Meso-scalea) Macro-scale

Solid phase Micro-poreMineral inclusionEquivalent homogeneous material

Figure IV .1: Illustration of selected scales and unit cells

Let us denote Ω the total volume of the unit cell at the macrocopic scale; ωm the

volume occupied by the solid phase at the microscopic scale; ω1 and ω2 the volumes of

pores located at the microscopic scale and of inclusion embedded at the mesoscopic scale.
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The local porosity f of the porous matrix, the volume fraction of inclusion ρ and the

overall porosity Γ of the material can be given as:

f =
ω1

ωm + ω1
, ρ =

ω2

Ω
=

ω2

ωm + ω1 + ω2
, Γ =

ω1

Ω
=

ω1

ωm + ω1 + ω2
(IV .1)

It is assumed that the mineral inclusion at the mesoscopic scale are characterized by an

isotropic linear elastic behavior. However, the porous medium at the microscopic scale

exhibits elastic, instantaneous plastic and time-dependent delayed plastic deformations.

The solid phase is a pressure sensitive material verifying a Drucker-Prager type plastic

criterion. While only spherical pores are considered at the microscopic scale, mineral

inclusion at the mesoscopic scale can be of different volume fraction, stiffness, shape and

orientation. We shall study effects of such geometrical factors on macroscopic properties of

material. To solve this strongly non-linear multi-scale problem, a two-step homogenization

procedure is here adopted. The effective properties of the porous matrix is first determined

using an analytical method while those of heterogeneous rock by a FFT -based numerical

method.

3 Effective mechanical behavior of the porous matrix

As mentioned above, the porous matrix is composed of a solid phase and spherical

pores. The solid phase, for instance clay sheets, can exhibit both instantaneous and time-

dependent plastic deformation. As a consequence, when subjected to prescribed stresses,

the total strain rate (increment) of the porous matrix Dij can be decomposed into an

elastic part De
ij and a plastic part Dp

ij . The plastic strain is further decomposed in into

an instantaneous plastic part Dip
ij and a time-dependent visco-plastic part Dvp

ij :

Dij = De
ij +Dip

ij +Dvp
ij (IV .2)

The effective stress-strain relations of the porous matrix can be expressed as:

Σ̃ = C̃hom : (D −Dip −Dvp) (IV .3)

Σ̃ stands for the average stress tensor in the porous matrix. C̃hom is the effective elastic

stiffness tensor of porous matrix. By assuming an isotropic material, C̃hom can be written

as C̃hom =3k̃hom0 J+2µ̃hom0 K, where Jijkl = (δijδkl)/3, Kijkl = Iijkl − Jijkl and Iijkl =

(δikδjl + δilδjk)/2 with δij being the Kronecker’s symbol. k̃hom0 and µ̃hom0 are respectively

the effective bulk modulus and shear modulus of the porous matrix which are dependent on

porosity and can be determined by using Mori-Tanaka scheme([Mori and Tanaka, 1973]):

k̃hom0 =
4(1− f)ksµs
4µs + 3fks

, µ̃hom0 =
(1− f)µs

1 + 6f ks+2µs
9ks+8µs

(IV .4)
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f denotes the porosity of the porous matrix, ks and µs are the elastic moduli of the solid

phase.

3.1 Instantaneous plastic behavior

The instantaneous plastic strain Dip
ij of the porous matrix is determined form an an-

alytical nonlinear homogenization method. For this purpose, the effective plastic yield

function is first determined. It is known that the plastic behavior of most rock-like ma-

terials is sensitive to mean stress. Therefore, it is assumed that solid phase of porous

material verifies a Drucker-Prager yield criterion which is written as follows:

Φm(σ) = σd + α(σm − h) ≤ 0 (IV .5)

σ denotes the local stress tensor. h and α respectively corresponds to the hydrostatic

tensile strength and frictional coefficient of the solid phase. σm and σd are the local mean

stress and generalized shear stress, respectively defined by σm = trσ/3 and σd =
√
σ′ : σ′,

with σ′ being the local deviatoric stress tensor. According to the previous study by

[Maghous et al., 2009], the effective plastic yield function of the porous matrix can be

expressed in the following analytical form which is obtained by using a modified secant

method:

F =
1 + 2f/3

α2
Σ̃2
d + (

3f

2α2
− 1)Σ̃2

m + 2(1− f)hΣ̃m − (1− f)2h2 ≤ 0 (IV .6)

Σ̃m and Σ̃d are respectively the average mean stress and generalized shear stress in the

homogenized porous matrix, defined by Σ̃m = trΣ̃ and Σ̃d =
√

Σ̃′ : Σ̃′, Σ̃′ being the

average deviatoric stress tensor of porous matrix. Unlike classical phenomenological plastic

models, the plastic criterion issued from the nonlinear procedure (IV .6) explicitly takes

into account the effect of porosity f at the microscopic scale.

According to [Barthélémy and Dormieux, 2003,Barthélémy and Dormieux, 2004] and

[Maghous et al., 2009], for a porous medium with a Drucker-Prager type solid matrix,

the same expression of macroscopic yield function (IV .6) can be obtained with either

an associated or a non-associated plastic flow rule of the solid phase at the microscopic

scale. A macroscopic plastic potential was also derived in [Maghous et al., 2009], which

depends on the friction and dilatancy coefficients of the solid matrix. When these two

local parameters at the microscopic scale are equal for the case of an associated flow rule,

the macroscopic plastic flow rule of the porous medium is also associated in nature. In

order to get a rigorous expression of the equivalent plastic deformation in the solid phase

(IV .10) which will be used to calculate the evolution of porosity, the associated plastic
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flow rule is here adopted for the solid phase. With this assumption, the normality rule

can also be applied at the mesoscopic scale for the porous clay matrix. The corresponding

plastic strain rate is given by:

Ḋip = ˙λip
∂F

∂Σ̃
(Σ̃, f, α) (IV .7)

The plastic multiplier ˙λip verifies the following loading-unloading condition: ˙λip = 0 if F < 0 or if F = 0 and Ḟ < 0

˙λip ≥ 0 if F = 0 and Ḟ = 0
(IV .8)

Following the energy-based argument introduced in [Gurson, 1977] and using the

normality rule, the equivalent instantaneous plastic strain in the solid phase obeying a

Drucker-Prager type criterion can be related to the average plastic strain tensor of the

porous matrix ([Shen et al., 2012b,Shen et al., 2013]):

˙εip =
Σ̃ : Ḋip

α(1− f)h
(IV .9)

Further, it is assumed that the frictional coefficient α of the solid phase evolves during

the plastic deformation process. This evolution is described the following function of an

equivalent total plastic strain εp in the solid phase:

α = αm − (αm − α0)eb1ε
p
, εp = εip + εvp (IV .10)

The variation of porosity is related to both the macroscopic volumetric plastic strain

and the plastic compressibility or dilation of the solid phase. According to previous studies

([Shen et al., 2012b, Shen and Shao, 2016a]), the porosity variation due to the instanta-

neous plastic deformation can be determined from the following kinematical compatibility

condition:

ḟip = (1− f)(trḊip − αε̇ip) (IV .11)

According to (IV .7), (IV .9), (IV .11) and the consistency condition, one gets:

Ḟ (Σ̃, f, α) =
∂F (Σ̃, f, α)

∂Σ̃
:

˙̃
Σ +

∂F (Σ̃, f, α)

∂f
ḟ +

∂F (Σ̃, f, α)

∂α
α̇ = 0 (IV .12)

And one can obtain the explicit expression of the plastic multiplier ˙λip:

˙λip =

∂F
∂Σ̃

: C : (Ḋ− Ḋvp)

∂F
∂Σ̃

: C : ∂F
∂Σ̃
− ∂F

∂f (1− f)[ ∂F
∂Σ̃m
− α

Σ̃: ∂F
∂Σ̃

(1−f)h ]− ∂F
∂α

∂α
∂εp

Σ̃: ∂F
∂Σ̃

(1−f)h

(IV .13)
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3.2 Time dependent behavior

In the present study, the viscoplastic deformation is seen as a time-dependent delayed

plastic deformation. Therefore, a unified approach is proposed by [Zhou et al., 2008a] and

[Farhat et al., 2017]. Two yield surfaces will be established to describe the instantaneous

plastic deformation and the viscoplastic one, respectively. The evolution of viscoplastic

deformation is delayed with respect to the instantaneous plastic one. Under a prescribed

stress state, for instance in a creep test, the plastic yield surface is instantaneously reached

while the viscoplastic loading surface evolves with time under constant stresses. With this

idea in head, it is assumed that the effective yield function of the viscoplastic deformation

can be obtained as a heuristic extension of the instantaneous plastic yield function with

a delayed plastic hardening law. Therefore, the viscoplastic yield function is taken as the

same form of the that given in (IV .6) but with a different plastic hardening law αvp:

Fvp =
1 + 2f/3

α2
vp

Σ̃2
d + (

3f

2α2
vp

− 1)Σ̃2
m + 2(1− f)hΣ̃m − (1− f)2h2 ≥ 0 (IV .14)

The delayed plastic hardening law αvp ≤ α is introduced to control the evolution of

viscoplastic loading surface and it is also a function of an equivalent viscoplastic strain in

the solid phase:

αvp = αm − (αm − α0)ebvpε
p
, εp = εip + εvp (IV .15)

When the viscoplastic loading surface reaches the instantaneous plastic yield surface,

the viscoplastic strain rate vanishes.

Inspired by the work of [Huang et al., 2014], the equivalent viscoplastic strain εvp of

the solid phase can be obtained in a similar way to the evolution of εip:

ε̇vp =
Σ̃ : Ḋvp

αvp(1− f)h
(IV .16)

Similar to the case of instantaneous plastic deformation, the porosity evolution due to

viscoplastic deformation is calculated by:

ḟvp = (1− f)(trḊvp − αvpε̇vp) (IV .17)

The average viscoplastic strain rate of porous matrix is given by:

Ḋvp = λ̇vp
∂Fvp

∂Σ̃
(Σ̃, f, αvp) (IV .18)

The magnitude of viscoplastic strain is defined by the positive-valued multiplier λ̇vp. It

depends on the distance between the current stress state and the viscoplastic loading

surface. This distance is here interpreted by the positive value of loading function Fvp.
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Depending on the evolution of this function (decreasing, constant or decreasing), it is

possible to produce three different viscoplastic flow regimes: primary creep, stationary

creep and accelerated creep. In the present study, based on the overstress viscoplastic

theory proposed by [Perzyna, 1963], the following power law is adopted to calculate the

viscoplastic multiplier λ̇vp :

λ̇vp =

0 if Fvp ≤ 0

1
η (

Fvp

h2 )m if Fvp > 0
(IV .19)

Algorithm 2: Compute the average stress of porous matrix Σ̃n+1

Input: Dn,∆Dn+1,Dvp
n ,Dip

n ,Vn,tn,∆tn+1

Output: Σ̃n+1,Dn+1,Dip
n+1,Dvp

n+1,Vn+1

Initialization:Dn+1 = Dn + ∆Dn+1,tn+1 = tn + ∆tn+1;

Σ̃trial
n+1 = C̃hom : (Dn+1 −Dip

n −Dvp
n );

if Fvp(Σ̃
trial
n+1 , Vn) ≤ 0 then

Σ̃n+1 = Σ̃trial
n+1 ;

∆λipn+1 = 0,∆λvpn+1 = 0;
else

Calculate the viscoplastic multiplier ∆λvpn+1;

Dvp
n+1 = Dvp

n + ∆Dvp
n+1;

Σ̃trial
n+1 = C̃hom : (Dn+1 −∆Dvp

n+1);

if F (Σ̃trial
n+1 , V

i
n) ≤ 0 then

Σ̃n+1 = Σ̃trial
n+1 ;

∆λipn+1 = 0,Dip
n+1 = 0;

else
for i = 1...miter do

Calculate the plastic multiplier ∆λip,in+1;

Dip,i+1
n+1 = Dip,i

n+1 + ∆λip,in+1
∂Φ
∂Σ̃

(Σ̃, V i
n);

V i
n+1 = Vn + ∆V i

n+1;

Σ̃i+1
n+1 = C : (Dn+1 −Dvp

n+1 −D
ip,i+1
n+1 );

if F i+1(Σ̃i+1
n+1, V

i
n+1) ≤ 0 then

Return;
else

i = i+ 1;
end

end
end

end

The parameters η and the power m are introduced to control the evolution rate of

viscoplastic strain of the porous matrix. Let consider now a consider a time interval

[tn, tn+1] during the loading history. At the beginning of the interval tn, the values of

average strain Dn, average stress Σ̃n as well as all interval variables are known. For a
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prescribed average strain increment ∆Dn, the average stress at the end of interval Σ̃n+1

is given by the following stress-strain relations:

Σ̃n+1 = Σ̃n + C̃hom : (Dn+1 −Dn −∆Dip
n+1 −∆Dvp

n+1) (IV .20)

The flowchart of the calculation algorithm is given as presented in Algorithm 2.

4 Macroscopic mechanical properties of material

After the determination of effective mechanical properties of the porous matrix, it is

now possible to investigate the macroscopic mechanical properties of material by consid-

ering effects of mineral inclusion. In the present study, we shall evaluate influences of

inclusion shape, size and orientation. The task here is to solve a strong nonlinear homog-

enization problem. Unlike the first step of homogenization for the porous matrix, no ana-

lytical solution can be obtained in the present case. A suitable numerical homogenization

method should be used. Based on previous studies [Moulinec and Suquet, 1994,Moulinec

and Suquet, 1998], a FFT based method is here chosen. This method has been applied

to rock-like materials in elastic and plastic cases ([Jiang et al., 2015,Li et al., 2018]). It is

now extended to materials exhibiting both plastic and viscoplastic deformation.

By taking into account the time-dependent plastic deformation in the porous matrix,

the nonlinear homogenization problem on the unit cell at the mesoscopic scale can be

reformulated as follows. The local strain field inside the unit cell is defined by the periodic

Lippmann-Schiwnger equations:

ε(x, t) = E(t)− Γ0 ∗ τ (x, t) (IV .21)

The convolution product is defined by:

Γ0 ∗ τ (x, t) =

∫
Ω

Γ0(x− y) : τ (y, t)dy (IV .22)

And the polarization stress τ is expressed as: τ = Σ̃(ε(x, t))−C0 : ε(x, t), with C0 being

the reference stiffness tensor. The Green operator Γ0 in the Fourier space can be written

as:

Γ̂ijkl(ξ) =
1

4µ0|ξ|2
(δikξjξl + δjkξiξl + δilξjξk + δjlξiξk)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξl
|ξ|4

. (IV .23)

ξ denotes discrete frequencies in the Fourier space.λ0 and µ0 are the Lame coefficients

related to the reference stiffness tensor.
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Due to the nonlinear mechanical properties of the porous matrix, the homogenization

problem on the unit cell is solved in an incremental way. Let consider a time interval and

a constant rate of prescribed macroscopic strain, the macroscopic strain at the end of the

interval is given by:

E(tn+1) = E(tn) + Ė(tn+1)∆t (IV .24)

The solution to be found here is to calculate the average macroscopic stress tensor Σi+1

by considering the following elastic-plastic and viscoplastic stress-strain relations:

Σ̃(tn+1,x) = C(x) : (ε(tn+1,x)− εip(tn+1,x)− εvp(tn+1,x)) (IV .25)

In present study, the mineral inclusion is assumed as a linear elastic material. Only the

porous matrix exhibits the plastic and viscoplastic deformation. The flowchart of the FFT

based numerical homogenization procedure is summarized in Algorithm 2.

Algorithm 3: Discretized solution of the LS equations

Input: ε(tn,xp),∆E(tn+1),∆tn+1

Output: E(tn+1),Σ(tn+1)
Initialization:tn+1 = tn + ∆tn+1;
E(tn+1) = E(tn) + ∆E(tn+1);
ε0(tn+1,xp) = ε(tn,xp) + ∆E(tn+1) ∀xp ∈ Ω;
if xp ∈ (ωm + ω1) then

Call Algorithm 2 to compute Σ̃0(tn+1,xp);
else

Σ̃0(tn+1,xp) = C(tn+1,xp) : ε0(tn+1,xp);
end
for i = 0 : Niter do

The previous Σ̃(tn) and ε(tn) at each point xp are known ;

Σ̂i(tn+1, ξp) = FFT (Σ̃i(tn+1,xp));
Convergence test;

Eerror = (〈‖ξ·σ̂i(ξ)‖2〉)1/2

‖σ̂i(0)‖ ;

if Eerror < 10−4 then
Return;

else
ε̂i+1(tn+1, ξp) = ε̂i(tn+1, ξp)− Γ̂ 0(ξp) : Σ̂i(tn+1, ξp) ∀ξp 6= 0, ε̂i+1(0) =
E(tn+1);

εi+1(tn+1,xp) = FFT −1(ε̂i+1(tn+1, ξp));
if xp ∈ (ωm + ω1) then

Call Algorithm 2 to compute Σ̃i+1(tn+1,xp);
else

Σ̃i+1(tn+1,xp) = C(tn+1,xp) : εi+1(tn+1,xp);
end
i = i+ 1;

end
end

Calculate the macroscopic stress Σi+1 = 1
|Ω|

∫
Ω Σ̃(tn+1,xp)dΩ
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5 Full-field modeling and comparisons

A series of numerical simulations are presented in this section by considering different

cases about inclusion stiffness,shape,orientation and volume fraction. For this purpose, the

elastic properties of the solid phase of porous matrix are chosen as Es = 5.027GPa, νs =

0.33 and the reference values for the inclusion as Ei = 20Es, νi = 0.33. Also the reference

values of inclusion volume fraction and of porosity in the porous matrix are respectively

ρ = 0.1 and f = 0.1. The spatial resolution for all calculations is fixed to 128×128×128. In

order to reduce the influence of the spatial discretization, and to better illustrate the effects

of inclusion volume fraction, stiffness, shape and orientation on macroscopic responses, the

REV with one single inclusion centered in the periodic unit cell is adopted here for the

simulations of sensitive studies. The study of microstructure effects on the effective plastic

yield stress is presented in appendix A, with different spatial distributions of inclusions

(cubic array of inclusions and random distributed inclusions).

5.1 Evaluation of macroscopic yield surface

The macroscopic plastic yield surface of homogenized material is first evaluated. To

this end, a perfectly plastic behavior of assumed for the solid phase of porous matrix

with the following friction coefficient αm = α0 = 0.3 and hydrostatic tensile strength

h = 10MPa.

5.1.1 Effect of porosity and inclusion fraction

In Fig.IV .2, we show computed macroscopic yield stresses in the meridian stress

plane for different values of porosity and inclusion fraction. It is clearly seen that the

macroscopic yield stress is more sensitive to porosity than to inclusion fraction. For

instance, the hydrostatic tensile and compression strengths are insensitive to the inclusion

volume fraction (see Fig.IV .2(a)) while they are strongly dependent on the porosity (see

Fig.IV .2(b)). Moreover, the hydrostatic compression strength is more sensitive to porosity

than the tensile one. On the other hand, we have compared the FFT computed yield stress

with the analytical solution obtained from a two-step homogenization method by [Shen

et al., 2013] for heterogeneous rocks with the same porous matrix as that considered here

and spherical inclusions. In such an analytical criterion, only the inclusion volumetric

fraction can be taken into account. It is seen that for a low volume fraction of inclusion,

for instance ρ = 0.1 and as shown in Fig.IV .2(b), the analytical yield surfaces are very

close to the numerically computed yield stresses for different values of porosity. However,
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when the volume fraction of inclusion is higher than 0.1, large differences are obtained, in

particular for the shear stress under a high mean stress, as shown in Fig.IV .2(a). The

numerically computed shear stress is higher than that predicted by the analytical criterion.

This difference is mainly due to the interaction between the porous matrix and inclusion,

which becomes important when the inclusion fraction is high. This interaction induces

a macroscopic hardening effect which is correctly taken into account in the FFT -based

numerical model but not by the analytical criterion.
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Figure IV .2: Numerically computed yield stresses and analytical yield surfaces:(a) for

different values of inclusion volume fraction from 0.1 to 0.3 with f = 0.1;(b) for different

values of porosity from 0.1 to 0.2 with ρ = 0.1

5.1.2 Effect of inclusion stiffness

The influence of inclusion elastic modulus on the macroscopic yield stress is here stud-

ied. For this purpose, an elastic soft inclusion with Ei = 0.01Es, vi = vs and the special

case with Ei = 0, vi = 0 corresponding to a void have been considered. In Fig.IV .3, the

obtained macroscopic yield stresses are compared with those of the porous matrix alone

(without inclusion) and of the reference case with hard inclusion. One can see that the

yield stress of the material with two populations of pores, respectively at the microscopic

scale (porous matrix) and the mesoscopic scale (inclusion with Ei = 0, vi = 0) is much

smaller that that of the porous matrix alone. This means that the mesoscopic porosity

significantly affects the macroscopic yield stress. However, the difference of yield stress

between the soft inclusion Ei = 0.01Es, vi = vs and the hard one Ei = 20Es, vi = vs is

relatively small. As the plastic yielding occurs only in the porous matrix, the macroscopic

yield stress is mainly related to the evolution of local stress field in the porous matrix.
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Figure IV .3: Computed yield stresses for different values of elastic modulus of inclusion

with f = 0.1, ρ = 0.1
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Figure IV .4: Computed macroscopic stress-strain responses for different values of in-

clusion stiffness with f = 0.1 and ρ = 0.1, and for the porous matrix alone

In Fig.IV .4, we show the macroscopic stress-strain curves in the uniaxial compres-

sion for the different cases studies. It is seen that the material with the soft inclusion

Ei = 0.01Es exhibits a plastic hardening behavior due to the inclusion-matrix interaction.

But when the macroscopic plastic yielding is reached at the asymptotic state, the macro-

scopic yield stress is very close to that obtained for the material with the hard inclusion

Ei = 20Es, exhibiting a nearly perfect plastic behavior. Therefore, the decrease of inclu-

sion stiffness enhances the macroscopic plastic ductility of material but not significantly

affects the macroscopic yield stress. However, when the inclusion are replaced by void, the

macroscopic yield stress is largely reduced because the stress field in the porous matrix is
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strongly modified.

5.1.3 Effect of inclusion shape and orientation

To highlight the influence of inclusion shape and orientation, we consider now the unit

cells containing a centered inclusion with the volume fraction of ρ = 0.1 and the porosity of

f = 0.1. Both oblate and prolate inclusion with different aspect ratios, a/c = 2.0 ∼ 5.0 for

the oblate and c/a = 1.25 ∼ 2.0 for the prolate (a and c respectively being the semi-major

axis and semi-minor axis of the spheroid) are selected.
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Figure IV .5: Computed macroscopic yield stress for spheroidal inclusions:(a) Effect of

aspect ratio for oblate inclusion;(b) Effect of aspect ratio for prolate inclusion

The computed macroscopic yield stresses are compared with that for the spherical
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inclusion a/c = 1.0 in Fig.IV .5. There is no significant difference between two kinds of

inclusions on the macroscopic plastic surface. The local stress distributions under uniaxial

compression loading are illustrated in Fig.IV .21. Even if the inclusion exhibits an elastic

behavior and its elastic stiffness is much higher than that of the matrix which is described

by an elastoplastic behavior, it is interesting to see that the stress concentration around

the inclusion boundary is not very different between the different inclusion shapes. This

result is different with that observed in the pore centered unit cell.
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Figure IV .6: Effect of inclusion orientation on macroscopic yield stress

For both cases, the shear strength under compressive mean stress is slightly increased

with the increasing aspect ratio, especially when the aspect ratio for the oblate inclusion is

up to 5.0 or for the prolate reaches 2.0. The hydrostatic compression and tensile strengths

are not influenced by the aspect ratio for both kinds of inclusions. These results confirm
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that the macroscopic yield stress is essentially controlled by the yield strength of the

porous matrix.

On the other hand, unlike spherical inclusion, for spheroidal inclusion, the macroscopic

yield stress should also depend on the orientation of inclusion. For the simplicity, we con-

sider here the unit cell with one centered oblate or prolate inclusion with different orienta-

tions. The inclusion orientation is defined by the angle between the major axis of the inclu-

sion and the loading direction and seven different values θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦

are selected. The aspect ratio for is a/c = 2.0 for the oblate and c/a = 2.0 for the prolate.

The computed macroscopic yield stresses are shown in Fig.IV .6(a) and Fig.IV .6(b). It

can be seen that the inclusion orientation angle has a small effect on the macroscopic yield

stress for both oblate and prolate inclusion. In Fig.IV .7, the evolutions of yield stress

under uniaxial compression are presented for the oblate or prolate inclusion. The results

confirm that the influence of inclusion orientation is not significant. Nevertheless, there is

a small anisotropy of yield strength with the loading orientation. The maximum strength

is obtained at θ = 0◦ for the prolate inclusion and at θ = 90◦ for the oblate one while the

minimum strength is obtained for an orientation angle around θ = 45◦ for both inclusions.
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Figure IV .7: Evolution of macroscopic yield stress in uniaxial compression with inclusion

orientation

5.2 Assessment of time-dependent deformation

Influences of microstructure on time-dependent deformation at the macroscopic scale

are now evaluated. For this purpose, a series of calculations were performed to predict

the evolution of axial strain during a uniaxial compression creep test under a constant

axial stress of Σ33 = −2MPa. The following model’s parameters were used in numerical
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calculations: α0 = 0.1, αm = 0.3, b1 = 200, h = 10MPa, η = 2e10,m = 3, bvp = 60.

5.2.1 Effects of porosity and inclusion volume fraction

We shall here investigate effects of porosity and inclusion on both instantaneous plastic

strains and creep strains using the proposed two-step homogenization method. For this

purpose, we will compare numerical results obtained from the present FFT based numer-

ical model and those given by an analytical micro-mechanical model presented in ([Shen

et al., 2013,Farhat et al., 2017]). Using a modified secant method, [Shen et al., 2013] have

determined a closed form of plastic criterion for rock-like materials composed of a porous

matrix and mineral inclusions. As an analytical homogenization solution, spherical pores

and inclusions were considered and randomly distributed in a matrix system. As a con-

sequence, only the porosity and inclusion volume fraction are taken into account. Their

shape and spatial distribution cannot be taken into account. Further, [Farhat et al., 2017]

have studied time-dependent strains by using the homogenized plastic criterion as a vis-

coplastic loading function. In their study, the viscoplastic flow occurs in the homogenized

composite at the macroscopic scale. In the present numerical model, the viscoplastic de-

formation is attributed to the porous clay matrix and provides a physical interpretation of

macroscopic time dependent deformation because the mineral inclusion exhibits an linear

elastic behavior.

In Fig.IV .8, we compare the axial strain versus axial stress in the uniaxial compression

test between the FFT based numerical model and analytical model. In both models, the

plastic criterion for the porous matrix is identical. Therefore, the results coincide for the

two models for the case without inclusions ρ = 0, as shown in Fig. IV .8(a). With the

increase of inclusion fraction, the differences between the two models become more and

more large. It seems that the FFT based numerical model predicts a stronger sensitivity

to inclusion volume fraction than the analytical one. In Fig. IV .8(b), the comparisons are

presented for a given value of inclusion fraction ρ = 0.1 but for different values of porosity

in the matrix. One can see that due to the different effects of inclusion predicted the two

models, the results are different for the case without porosity f = 0. However, let look at

the relative differences between the different values of porosity for each model. It seems

that the relative differences are almost similar for the two models since both of the two

models using the same matrix behavior.
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Figure IV .8: Axial strain versus axial stress in uniaxial compression test:(a) influence

of volume fraction of inclusion from 0.0 to 0.3 with f = 0.1;(b) influence of porosity from

0.0 to 0.15 with ρ = 0.1

Therefore, the discrepancies between these two models result from the strong interac-

tions between the inclusion and matrix. The FFT-based method well captures the local

non-uniform stress distributions in the matrix. This is the main advantage of the ful-

l field numerical method compared with the analytical homogenization approach based

on a mean stress field. So the analytical solution is inconsistent with the FFT-based

homogenization method for predicting the plastic hardening behavior.
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Figure IV .9: Evolutions with time of axial strain in a uniaxial compression creep test:

(a) influence of volume fraction of inclusion from 0.0 to 0.3 with f = 0.1; (b) influence of

porosity from 0.0 to 0.15 with ρ = 0.1
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In Fig.IV .9, we show the evolutions of axial strain with time for different values of

porosity and inclusion volume fraction given by the two methods. One finds logically the

same results for the specific case with ρ = 0, as shown in Fig.IV .9(a). However, similarly to

the instantaneous plastic deformation, the FFT based numerical model depicts a stronger

sensitivity of creep strain to the hard inclusion volume fraction. On the other hand, as

illustrated in Fig.IV .9(b), the effect of porosity on the creep strain is not very different

between the two models.

5.2.2 Effect of inclusion stiffness

In Fig.IV .10, the variations of axial strain with time are presented respectively for the

porous matrix alone (ρ = 0), the materials with soft or hard inclusion and the material

with voids at the mesoscopic scale. Compared with the porous matrix alone, the presence

of hard inclusion reduces the evolution of creep deformation while the presence of soft

inclusion may slightly enhance the creep deformation. The highest creep deformation is

obtained for the material with mesoscopic void. It seems that the presence of even very

soft inclusion can prevent the growth of creep deformation in the material.
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Figure IV .10: Influences of inclusion elastic modulus on macroscopic creep deformation

( f = 0.1, ρ = 0.1)

5.2.3 Effect of inclusion shape

Computed creep strains for different values of aspect ratio for both oblate and prolate

inclusions are presented in Fig.IV .11. Compared with the macroscopic yield stresses given

in Fig.IV .5, the influence of inclusion shape on the creep deformation seems to be more

important than the macroscopic yield stress. For both types of inclusion, the creep strain
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is smaller when the aspect ratio is higher. Further, the creep strain is more sensitive to

aspect ratio for the prolate inclusion than for the oblate one.
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Figure IV .11: Creep strains with time for different aspect ratios:(a) oblate inclusion;

(b) prolate inclusion
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Figure IV .12: Creep strains with time for different inclusion orientations

5.2.4 Effect of inclusion orientation

The influence of inclusion orientation on creep deformation is finally assessed. The

computed creep strains are presented in Fig.IV .12. One can see that the creep strain is

dependent on the inclusion orientation. For instance, for the oblate inclusion as shown in

Fig.IV .12(a), the maximum creep strain is obtained when the orientation angle is between

30◦ and 45◦. For the prolate inclusion shown in Fig.IV .12(b), the maximum creep strain
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is obtained when the orientation angle is between 45◦ and 60◦. This result is in agreement

with the variation of macroscopic yield stress with inclusion orientation shown in Fig.IV

.6. In order to have a deep insight, in Fig.IV .13 and Fig.IV .14, we show the local creep

strain field Evp33 in the porous matrix for three different orientation angles, respectively for

the oblate and prolate inclusions. It is found that the local creep strain field is largely

influenced by the inclusion orientation.

(a) θ = 0◦ (b) θ = 45◦ (c) θ = 90◦

Figure IV .13: Local creep strain field Evp33 for the unit cell with oblate inclusion in three

different orientations (aspect ratio: a/c = 2)

(a) θ = 0◦ (b) θ = 45◦ (c) θ = 90◦

Figure IV .14: Local creep strain field Evp33 for the unit cell with prolate inclusion at

three different orientations (aspect ratio: c/a = 2)

6 Application to claystone

The Callovo-Oxfordian claystone (COx) is investigated in France as a potential geolog-

ical barrier for the underground disposal of nuclear waste. According to previous studies

([Robinet, 2008,Bornert et al., 2010]), the micro-structure of this material is complex and

characterized by several scales. However, as a first approximation, it is reasonable to select

two representative scales. At the mesoscopic scale (hundreds of micrometer), the claystone

can be seen as a composite material containing a clay matrix in which quartz and calcite

grains are embedded. The average mineralogical composition is 40% to 50% for the clay
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minerals, 20 to 27% for the quartz and 23 to 25% for the calcite. Some minor minerals

are also found. For the studied claystone, at the microscopic scale (below micrometer),

the clay matrix is an assemblage of clay particles with intra-particle voids. The majority

of pores with an average size of 20nm is inside the clay matrix and the average porosity

at the mesoscale is then typically f = 30%. Therefore, with this two scales selected, the

micro-structure of COx claystone can be reasonably represented by the unit cell with a

total average volume fraction of mineral inclusions ρ = 0.46.

Some previous studies have been devoted to micro-mechanical modeling of the COx

claystone. In [Guéry et al., 2008] and [Huang et al., 2014], micro-mechanical models have

been proposed respectively using Hill’s incremental method and incremental variational

approach by neglecting porosity inside the clay matrix. In [Shen et al., 2013] and [Shen

and Shao, 2016a], improved micro-mechanical models have been developed by taking into

account one or two populations of pores. However, in all those analytical or semi-analytical

models, it is not possible to evaluate influences of geometrical parameters and spatial

distribution of inclusions. In the present study, the FFT based numerical homogenization

method is applied to modeling mechanical response of the COx claystone. For this purpose,

a random spatial distribution of mineral inclusions in the porous clay matrix is considered

and shown in Fig.IV .15. The size of inclusions is also randomly generated in order to

approximate the real distribution of quartz and calcite.

(a) (b)

Figure IV .15: Approximate microstructure of studied claystone:(a)Studied unit-cell

with randomly distributed inclusions;(b)Half cross section view of the studied cell.

According to the studies reported in [Jiang and Shao, 2009] and [Shen et al., 2013] on



98

Effects of meso-inclusions and micro-pores on plastic and viscoplastic deformation of

rock-like materials

the same claystone, the grains of quartz and calcite have very similar elastic properties

and can be treated as one equivalent family of inclusions. For instance,the corresponding

elastic parameters of the equivalent inclusions are: Ei = 98GPa and vi = 0.15. The typical

elastic values of the porous clay matrix have been investigated in [Guéry et al., 2008] and

are typically: E0 = 3GPa and v0 = 0.3. By using an iterative inverse procedure of the

Mori-Tanaka homogenization scheme ([Mori and Tanaka, 1973]) and knowing the porosity

f of the porous clay matrix, the elastic properties of the solid phase at the microscale

are calculated: Es = 5.5GPa and vs = 0.34. The plastic and viscoplastic parameters are

identified by using a numerical optimal fitting method of the experimental data obtained

from a triaxial creep test with a confining pressure of 2MPa and a differential stress of

17.45 MPa. However, once the parameters are identified from this particular test, they will

be used in the simulations of all other tests with different loading paths and mineralogical

compositions. The typical values of parameters obtained are given in Table IV .1.

Table IV .1: Typical values of parameters for COx claystone

Parameter Clay matrix Inclusion

Elastic parameters Es = 5.5GPa, vs = 0.34 Ei = 98GPa, vi = 0.15

Plastic parameters α0 = 0.05, αm = 0.38, b1 = 100

h = 38MPa

Viscoplastic parameters η = 4.65e10, m = 1.3, bvp = 22

Volume fraction f = 0.30 ρ = 0.46

For instance, triaxial compression creep tests with a confining pressure of 2MPa and

two different levels of differential stress are first studied. Comparisons between numerical

results and experimental data are shown in Fig.IV .16 and Fig.IV .17. One can observe

a good agreement. On the other hand, two relaxation tests are also investigated. In

these tests, the samples are first subjected to a conventional triaxial compression loading

until a selected value of differential stress. Then the axial strain is kept constant and

the evolution of axial stress is measured. In Fig.IV .18 and Fig.IV .19, one can see that

the numerical results well reproduce the experimental data for both tests under different

loading conditions.
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Figure IV .16: Evolution of axial strain with time in a triaxial creep test with a confining

pressure of 2MPa and a differential stress of 11.5MPa on COx claystone (data from [Conil

and Armand, 2015])
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Figure IV .17: Evolution of axial strain with time in a triaxial creep test with a confining

pressure of 2MPa and a differential stress of 17.45MPa on COx claystone (data from

[Conil and Armand, 2015])
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Figure IV .18: Evolution of axial stress with time in a triaxial relaxation test with a

confining pressure of 2MPa and a differential stress of 21MPa on COx claystone (data

from [Conil and Armand, 2015])
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Figure IV .19: Evolution of axial stress with time in a triaxial relaxation test with a

confining pressure of 6MPa and a differential stress of 25MPa on COx claystone (data

from [Conil and Armand, 2015])
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7 Concluding remarks

In this paper, we have investigated the influences of inclusion and pores on plastic and

viscoplastic behaviors of rock-like materials using a two-scale homogenization method.

The effective properties of the porous matrix at the microscopic scale is determined by an

analytical homogenized solution, while the effects of inclusion at the mesoscopic scale are

investigated with the help of a FFT based numerical homogenization method.

For the purpose of comparison, the macroscopic plastic yield condition has first been

studied. The numerical yield stresses are compared with the yield surfaces predicted

by an analytical homogenized criterion considering a single spherical inclusion embedded

in the porous matrix. It is found that in general the macroscopic yield stress is more

sensitive to porosity than inclusion content. The influences of inclusion shape, orientation

and stiffness are relatively small on the macroscopic yield stress. However, they can have

significant influences on the macroscopic plastic and viscoplastic strains. In particular, the

numerical results obtained from the FFT based numerical model considering the plastic

and viscoplastic flows in the porous matrix depict a stronger effect of hard inclusion than

the analytical homogenized model considering the plastic and viscoplastic flows at the

macroscopic scale and neglecting the shape and spatial distribution of inclusions.

The proposed model has also been applied to modeling the time-dependent behavior

of COx claystone and was able to correctly reproduce time-dependent strains and stresses

respectively in creep and relaxation tests.
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8 Appendix A: Effect of microstructure with different in-

clusion distributions

In this section, the effects of microstructure with different inclusion distributions are

studied, especially with a cubic array of inclusions and a random distribution of inclusions.

In order to reduce the influence of the spatial discretization, the same inclusion number

N and size are considered in two micro-structures (N = 27, N = 125, respectively). As

illustrated in Fig.IV .20, one can find that no significant effects caused by the cubic array

or random distribution of inclusions are observed from the results. In order to better

illustrate the effects of inclusion volume fraction, stiffness, shape and orientation, the

periodic unit cell with one centered single inclusion has been used for the simulations of

sensitive studies.
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Figure IV .20: Comparisons of effective plastic surfaces between microstructure with

random distributed and cubic array distributed inclusions vs one centered inclusion (f =

0.1, ρ = 0.1).

9 Appendix B: Local stress distribution under uniaxial com-

pressive loading

With the help of the developed numerical method, the local stress distributions at 33-

direction in the uniaxial compression test subjected a macroscopic strain E33 = −0.01 for

micro-structures with different inclusion shapes are shown in Fig.IV .21. It is found that

there is not a significant difference of stress concentration around the interfaces between

the inclusion and matrix.
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(a) Sphere a/c = 1

(b) Oblate a/c = 2

(c) Prolate a/c = 1/2

Figure IV .21: Comparisons of stress distribution for microstructure with different shape

of inclusion under uniaxial compression test (f = 0.1, ρ = 0.1): oblate a/c = 2; prolate

c/a = 2
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Summary

This chapter aiming at establishing an elastoplastic damage model to determine the

macroscopic mechanical behavior for the geomaterials containing complex multi-scale fea-

tures. To this end, inspired by the work of [Maghous et al., 2009] and [Shen and Shao,

2016a], a general strength criterion considering the elliptic form porous matrix and ran-

domly distributed rigid inclusions is obtained by using a three step homogenization proce-

dure. Typically, macroscopic mechanical behaviors observed in geomaterial always include

strain softening. For this reason, it is assumed that the rock failure is a time-dependent

progressive damage process, we introduce a rate-dependent damage model to describe the

degradation effect on the elastic and plastic behavior. Then, by means of a new explicit

integration algorithm for the damage solver, we successfully apply this damage constitu-

tive relation on the claystone with two population of pores and rigid inclusions embedded

at separated scales. Meanwhile, the developed model also provides a well extension on

Vaca Muerta shale rock to account for the effect of two population of inclusions configured

in a porous matrix. The comparisons between the simulation modeling and experimental

data for these two applications are in good agreement. The results show that the validity

of the proposed model which can take the effect of both the mineralogical compositions

and porosity as well as the damage properties into account on the macroscopic behavior

for porous geomaterials with multi-scale characters.

1 Introduction

Geomaterials have significant multi-scale characters. By using X-ray micro-tomography

technique, the microstructural heterogeneity can be quantified at different length scales

though characterizing its mineral compositions, pore structure characters, geometry and

connectivity. For example, the Callovo-Oxfordian argillite is selected as the host formation

for installation of a underground radioactive waste disposal facility in France, its mineral-

ogy is mainly composed of clay minerals (mainly illite and interstratified illite/smectite),

carbonates, and tectosilicates ([Robinet et al., 2012]). The pore structure is mainly ob-

served in clay matrix having heterogeneous and complex pore spaces with sizes ranging

1nm to 100µm over multi-scales ([Robinet, 2008, Cariou et al., 2013]). Even though the

detailed characters can be captured by combined X-ray technique and bulk chemical anal-

ysis procedure on COx samples, it still exists challenges to understand the roles of these

heterogeneities across several length scales playing on macroscopic behavior.

It has long been recognized that the macroscopic mechanical behaviors of geomate-
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rials is closely interlinked with its mineralogical compositions as well as pore characters

beacause they might undergo different deformation processes. Experimental studies have

revealed a correlation of several mineralogical and textural characteristics such as quartz

content and porosity with the physical and mechanical properties of rocks ([Tu u grul and

Zarif, 1999,Tandon and Gupta, 2013,Baud et al., 2014,Heidari et al., 2014,Ündül, 2016]).

The inter relationships among mineral constituents, various textural parameters and un-

confined compressive strength are preliminary established by simple regression analyses.

On the other hand, in the framework of micromechanics, a plenty of research works have

been focused on analytical strength homogenization theories of materials involving three-

scale microstructure for double porous materials and porous materials contained rigid

inclusions using a two-step homogenization procedure ([Garajeu and Suquet, 1997, Vin-

cent et al., 2009a, Vincent et al., 2014b, Shen et al., 2013, Shen et al., 2014]). Thus, the

effective plastic flow is mainly determined by the porosity and inclusion volume fraction.

As an alternative way to consider the down-scale geometrical characters of inclusions and

pores, combining closed-form solutions at the microscopic scale (eg. [Gurson, 1977, Mag-

hous et al., 2009]) and computational homogenization methods at the mesoscopic scale

such as the Finite Element Method ([Khdir et al., 2014,Julien et al., 2011,Vincent et al.,

2009b]) and Fast Fourier Transform homogenization ([Moulinec and Suquet, 1994, Vin-

cent et al., 2014a, Cao et al., 2018a, Cao et al., 2018b]), also provides well estimations

for macroscopic mechanical properties to account for the interactions between different

compositional configurations and geometrical features. Further, [Shen and Shao, 2016a]

developed an incremental micro-macro model for porous geomaterials with double poros-

ity and inclusion. This semi-analytical method still requires to adopt an isotropization

technique for tangent operator of the matrix.

At the current state-of-the-art, multi-scale homogenization models on strength theories

and computational techniques have been successfully applied to predict the macroscopic

yield stress of materials having complex microstructure. However, it still needs to deal

with the behaviors exhibiting the degradation of materials and its damage failure. Gen-

erally, the damage always incorporate with macroscopic phenomenological plastic model

([Shao et al., 2003, Shao et al., 2006, Salari et al., 2004, Zhou et al., 2008b, Parisio and

Laloui, 2017,Huang et al., 2018]), in which the whole mechanical behavior is derived from

thermodynamic potentials. The damage evolution is generally associated with the accu-

mulation of irreversible plastic strains. In recent years, micromechanical approaches have

attracted strong attentions on relating the macroscopic behaviors of the material to its

microstructure characteristics like unilateral effects due to cracks’ closure, damage-friction
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coupling, induced anisotropy of microcracks and fluid filled crack ([Zhu et al., 2009, Xie

et al., 2012,Qi et al., 2016,Zhu et al., 2016,Zhu and Shao, 2017]). In this framework, the

failure of geomaterials is driven by the cracks-related dissipation mechanisms, owing to

two dissipative processes: damage by cracking and inelastic deformation due to frictional

sliding.

In the present study, we are aiming to develop a general criterion to account for

the geomaterials contained pores and rigid inclusions across four length scales. More

specially, the solid matrix is considered as cohesive-frictional material represented by a

Drucker-Prager type strength criterion. Inspired by the work of [Maghous et al., 2009]

and [Shen and Shao, 2016a], a three-step homogenization procedure is employed by using

the modified secant method to homogenize the highly heterogenous materials. Due to the

fact that the macroscopic inelastic deformation is mainly induced by the solid matrix, and

the inclusions just behavior elastic. Therefore, in order to capture the failure behavior

of geomaterials, a time-dependent damage behavior is introduced here to associate with

the elastic and plastic properties of solid matrix. Finally, a multi-scale damage model is

developed here and applied to simulate the macroscopic mechanical behaviors of typical

claystone and shales with different microstructure.

2 Microstructure with multiscale characters

For the highly heterogenous geomaterials, pores and mineral inclusions might be re-

spectively distributed at multi-scales with different length scales. In this study, the mate-

rial contained four-scale characters is considered here. As a typical multiscale material like

claystone, it is characterized as a porous matrix-inclusion system. Within the clay matrix,

the pore network is composed of inter-particle and intra-particle pores with diameters

ranging between 1 nm and a few hundreds of nanometers ([Robinet et al., 2012,Shen and

Shao, 2016a]). Following a multi-scale thought, a representative volume element(RVE)

is chosen here as illustrated in Fig.V .1 to be statistically representative of this class of

medium. For the sake of simplicity, it is assumed that all the families of inclusions and

pores at different scales are of spherical form. Let us denote ω the total volume of the

studied unit cell composed of porous matrix and inclusions with the volume of ωm and ωi;

ωs denotes the domain occupied by the solid phase in porous matrix; ω1 and ω2 are the

volumes of small and large pores located at the particles and porous matrix, respectively.

With these notations, the volume fraction of inclusions ρ, the porosity f at the particle,

the one φ at the porous matrix and the total porosity Γ at the macroscopic scale can be
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given as:

ρ =
ωi
ω
, f =

ω1

ωs + ω1
, φ =

ω2

ωm
=

ω2

ωs + ω1 + ω2

Γ =
ω1 + ω2

ω
= [f(1− φ) + φ](1− ρ)

(V .1)

Inclusions Inter-particle pores Intra-particle pores

Porous matrix Particle

(a) (b) (c)

Figure V .1: Representative volume element of studied rock-like materials

3 Micro-macro constitutive formulation

3.1 Macroscopic criterion

As mentioned above, the porous matrix is composed of a solid phase and spherical

pores at two different scales. Compared with metal materials, the pressure sensitivity and

volumetric deformation are two crucial characteristics of rock-like materials. In order to

consider these aspects, the solid phase is assumed to obey to a Drucker-Prager type plastic

criterion:

F s = σ̃d + α(σ̃m − h) ≤ 0 (V .2)

in which σ̃ denotes the stress tensor of the solid phase. σ̃m = trσ̃/3 is the mean stress.

σ̃d is the equivalent stress defined as σ̃d =
√
σ̃′ : σ̃′, with σ̃′ being the deviatoric stress

tensor. The parameter α is the frictional coefficient and h the yield stress under hydrostatic

tension of the solid phase.

As illustrated in Figure V .1, the porous matrix is divided into two scales with different

sizes of pores. With a Drucker-Prager type solid matrix containing spherical voids, an

analytical yield criterion has been derived by using a modified secant method in [Maghous

et al., 2009] :

F p =
1 + 2f/3

α2
˜̃σ2
d + (

3f

2α2
− 1)˜̃σ2

m + 2(1− f)h˜̃σm − (1− f)2h2 ≤ 0 (V .3)

Where ˜̃σd and ˜̃σm correspond to the equivalent stress and mean stress of particles. This

criterion (V .3) explicitly depends on the porosity f and the pressure sensitivity parameter

α of the solid phase. Moreover, inspired by the work of [Maghous et al., 2009], [Shen and
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Shao, 2016a] proposed a close-form plastic yield criterion for the porous matrix with

double porosities by using a two-step nonlinear homogenization procedure. The obtained

criterion is described in an elliptic form which will be useful here to formulate by a general

expression reading:

Fmp = Aσ2
d +Bσ2

m + Cσm −D ≤ 0 (V .4)

with following parameters:

A =
1 + 2f/3

α2
(
6α2 − 13f − 6

4α2 − 12f − 9
φ+ 1), B =

3/2 + f

α2
φ+

3f

2α2
− 1

C = 2(1− f)(1− φ)h, D = (1− φ)2(1− f)2h2

(V .5)

As done in the study of [Shen and Shao, 2016a], the criterion (V .4) will be directly used

here to take in account the plastic behavior of porous matrix with double porosities for the

first two homogenization procedures. We now then aim at deriving a close-form criterion

to consider the effects of inclusions for the third step homogenization. It is convenient to

recall the modified secant method following an associated flow rule to determine the local

plastic strain rate of porous matrix by the relation d = λ̇∂F
mp

∂σ . So the strain rate of the

porous matrix is governed by:

d =
1

A

dd
2σd

(2Aσ′ +
2Bσm

3
1 +

C

3
1) (V .6)

dm =
1

A

dd
2σd

[
2σm

3
B +

C

3
] (V .7)

According to (V .4),(V .6) and (V .7), one has:

dd
σd

=

√
A2d2

v +ABd2
d

BD + C2

4

(V .8)

in which dd =
√
d′ : d′ and d′ = d − dm1. Hence the support function defined as πmp =

σ : d can be written in the following form:

πmp = − C

2B
dv +

√
4BD + C2

4AB

√
A

B
d2
v + d2

d (V .9)

where dv = trd is the volumetric deformation in the porous matrix.

The determination of the local stress-strain relationship of porous matrix achieved by

the support function πmp can be put in following form with:

σ =
∂πmp
∂d

= 2µmpd′ + kmpdv1 + σp1 (V .10)
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with following secant bulk and shear moduli and isotropic pretress:

kmp =
A

B

N

M
, 2µmp =

N

M
, σp = − C

2B

M =

√
A

B
d2
v + d2

d, N =

√
4BD + C2

4AB

(V .11)

The secant moduli in (V .11) are non-uniform which is related to the non-uniform local

strain rate d of the porous matrix. As done in [Maghous et al., 2009], the average of d

over the porous matrix is appropriate as the effective stain rate deff to consider the effect

of loading history on the nonlinear plastic properties which can be taken in the following

form:

deffv =
√
〈d2
v〉ωm , deffd =

√
〈d2
d〉ωm (V .12)

Therefore, the approximated stress-stain relation can be expressed as:

σ = Cmp(deffv , deffd ) : d+ σpeq1; Cmp(deffv , deffd ) = 3kmpeq J + 2µmpeq K; σpeq = σp (V .13)

Owing to the assumption of rigid inclusions, the macroscopic prestress simply reads

Σp = σpeq, considering the effective thermodynamic potential of the composite with the

form of:

W =
1

2
D : Chom : D + ΣptrD (V .14)

the corresponding state equations can be deduced as:

Σm = khom(Dv + Σp); Σd = 2µhomDd (V .15)

Following the study of [Barthélémy and Dormieux, 2004], the macroscopic free energy

in the r.v.e. is associated with the effective strain rate of porous matrix, which is given

by:

1

2
(1− ρ)deffv

2
=

1

2

∂khom

∂kmpeq
D2
v +

∂µhom

∂kmpeq
D2
d

1

2
(1− ρ)deffd

2
=

1

2

∂khom

∂µmpeq
D2
v +

∂khom

∂µmpeq
D2
d

(V .16)

To consider the interaction of randomly rigid inclusions, the Mori-Tanaka method is

adopted here to describe the effective elastic moduli which reads:

khom =
3kmpeq + 4ρµmpeq

3(1− ρ)

µhom = µmpeq
kmpeq (6 + 9ρ) + µmpeq (12 + 8ρ)

6(1− ρ)(kmpeq + 2µmpeq )

(V .17)
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Combing (V .11),(V .15),(V .16) and (V .17), the generalise approximate macroscopic

criterion of the composite constituted of porous matrix and rigid matrix can take the

following form:

A+ 2Bρ
3

1 + 3ρ
2 −

5ρ

6( A
B

+1)

Σ2
d +BΣ2

m + CΣm − (D +
4BD + C2

6A
ρ) = 0 (V .18)

3.2 Evolution of double porosities

In experimental rock deformation, the pore space undergoes significant inelastic com-

paction or dilatant while the rock strain hardens or softens. For instance, porosity reduc-

tion has been observed on porous rock for hydrostatic experiments ([Baud et al., 2006,Baud

et al., 2009]). This phenomenon is often arised from the interplay of a diversity of microme-

chanical processes related to the evolution of microstructure. Actually it is responsible for

the macroscopic mechanical responses. In this section, we shall consider the variation of

inter-porosity and intra-porosity. To this end, it is assumed that the pore volume change

only depends on plastic pore compaction or dilation. The nucleation of new pores is not

considered here. According to the first term of (V .1), one has:

ḟ = d(
ω1

ωs + ω1
) = (1− f)(

dωs + dω1

ωs + ω1
− dωs

ωs
) (V .19)

φ̇ = d(
ω2

ωs + ω1 + ω2
) = (1− φ)(

dωm
ωm
− dωs + dω1

ωs + ω1
) (V .20)

in which dωs
ωs

and dωs+dω1
ωs+ω1

correspond to the average volumetric strain rate of solid phase

(d̃v) and porous particle (
˜̃
dv), respectively. Then dωm

ωm
denotes the volumetric strain rate

of the double porous matrix (dv). It is assumed that the solid phase is described by a

Drucker-Prager type criterion and an associate plastic flow rule. Thus, the microscopic

strain rate d can be calculated by:

d = Λ̇
∂Φ

∂σ
; d′ = Λ̇

σ′

σd
; dm =

1

3
Λ̇T (V .21)

where d′ is the deviatoric strain rate tensor with d = d′+ dmδ. Λ̇ is the plastic multiplier

of the solid phase. The equivalent plastic strain rate ε̇p takes the following form:

ε̇p =
√
d′ : d′ = Λ̇ (V .22)

Owing to the energy-based equivalence condition introduced by [Gurson, 1977], it is

possible to associate the macroscopic plastic strain rate with that of the solid phase ([Shen

et al., 2012a]), that is:

Σ : Dp =
1

ω

∫
ωs

σ̃ : d̃dV =
1

ω

∫
ωs

ε̇p(σ̃d + ασ̃m)dV = (1− ρ)(1− φ)(1− f)αhε̇p (V .23)
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Therefore ε̇p is obtained by:

ε̇p =
Σ : Dp

(1− ρ)(1− φ)(1− f)αh
(V .24)

On the other hand, for the porous matrix, similarly has:

Σ : Dp =
1

ω

∫
ωs+ω1

˜̃σ :
˜̃
ddV =

1

ω

∫
ωs+ω1

α2

1 + 2
3f

˜̃
dd

2˜̃σd
[(1−f)2h2−2(1−f)h˜̃σm]dV (V .25)

One can obtain:

˜̃
dd
˜̃σd

=
(1 + 2f

3 )

α2

2Σ : Dp

(1− ρ)(1− φ)[(1− f)2h2 − 2(1− f)h˜̃σm]
(V .26)

˜̃
dv =

( 3f
2α2 − 1) 2Σm

(1−ρ)(1−φ) + 2(1− f)h

(1− f)2h2 − 2(1− f)h Σm
(1−ρ)(1−φ)

Σ : Dp

(1− ρ)(1− φ)
(V .27)

With the relations (V .21) and (V .22) in hand, the plastic dilation rate is related to

the equivalent plastic strain rate by d̃v = αε̇p. The variation of porosity in (V .19) can be

determined from the following kinematical compatibility condition:

ḟ = (1− f)(
˜̃
dv − αε̇p) (V .28)

φ̇ = (1− φ)(
trDp

1− ρ
− ˜̃
dv) (V .29)

3.3 Evolution of damage

Inspired by the work of [Shao et al., 2003] and [Pietruszczak et al., 2004], the evolution

of microstructure is also a time dependent progressive damage process, which can be

quantified by a damage variable ζ associated with microstructure equilibrium state for

a prescribed loading history. As a consequence of microcracking, dislocation and so on

during the whole deformation process, it requires that when the t→∞, the microstructure

evolution reaches to a self-equilibrated state with ζ = ζ̄, which ζ̄ devotes to a stationary

state corresponding to the microstructure equilibrium. Thus the description of damage

evolution can be expressed in a rate-dependent form with:

ζ̇ = γ(ζ̄ − ζ) (V .30)

where γ is a material constant that control the rate of damage evolution. Then ζ̄ ∈ [0, 1],

ζ ∈ [0, ζ̄]. Combining the Laplace transforms and convolution theorem, then taking ζ(0) =

0, thus the function ζ can be formulated as:
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ζ(t) =

∫ t

0
γζ̄(τ)e−γ(t−τ)dτ (V .31)

To solve the time-dependent variable ζ, [Zhao et al., 2016] has obtained a fast explicit

integral algorithm by using the rectangular integration rule. In this study, we will use

a trapezoid rule to get a new accurate estimate. The detailed derivation of integration

solver is presented in Appendix A. For a time increment ∆tn+1, the variable ζ at tn+1 step

is taken in the following form:

ζn+1 =
γ

2
ζ̄n+1∆tn+1 + (ζn +

γ

2
ζ̄n∆tn+1)e−γ∆tn+1 (V .32)

In the present study, the parameter ζ̄ for stationary state of microstructure evolution

is given as:

ζ̄ =
ᾱ

αm
(V .33)

in which the frictional coefficient T̄ is defined as a plastic hardening function related to

the equivalent plastic strain with the following form:

ᾱ = αm − (αm − α0)e−bε
p

(V .34)

In this relation, the parameters α0 and αm respectively represent the initial threshold

and asymptotic value of the frictional coefficients. Then the parameter b controls the

evolution rate of plastic harden.

In this study, the rigid inclusions behaves elastic deformation. Therefore, it is assumed

that the damage behavior is mainly characterized on solid matrix by two main components,

namely the degradations on elastic stiffness and plastic yield. For this reason, the damage

bulk and shear moduli of solid phase are given by:

kd = (1− βζ)ks, µd = (1− βζ)µs (V .35)

where β is a model parameter. On the other hand, the effect of damage on the plastic

yield is assumed mainly though the degradation of frictional coefficient, with the following

form:

α = (1− βζ)ᾱ (V .36)

3.4 Plastic damage constitutive relation

With above relations in hand, the incremental constitutive equation can be expressed

as:

Σ̇ = Chomd : (D −Dp)− Ċhomd : (D̃ − D̃p) (V .37)
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where the tensor D̃ is total strain tensor, then it is decomposed into an elasic part D̃e and

plastic part D̃p. Chomd and Ċhomd respectively define as the damage homogenized elastic

stiffness and its derivative with respect to ζ. For an associated flow, the plastic strain rate

is given by:

Dp = λ̇
∂F

∂Σ
(V .38)

The plastic multiplier λ̇ is determined by the consistency condition:

F =
∂F

∂Σ
: Σ̇ +

∂F

∂f
ḟ +

∂F

∂φ
φ̇+

∂F

∂α
(
∂α

∂ε̇p
: ε̇p +

∂α

∂ζ
ζ̇) (V .39)

Substituting Eq.(V .24), (V .27), (V .28), (V .29), (V .37) and (V .38) into Eq.(V .40),

one obtains:

λ̇ =

∂F
∂Σ : Chomd : D − ∂F

∂Σ : Ċhomd : D̃e + ∂F
∂α

∂α
∂ζ ζ̇

∂F
∂Σ : Chom : ∂F∂Σ −

∂F
∂f (1− f)[

˜̃
df − α ˜̃

dp]− ∂F
∂φ (1− φ)(

∂F
∂Σm
1−ρ −

˜̃
df )− ∂F

∂α
∂α
∂εp

˜̃
dp

(V .40)

with

˜̃
df =

( 3f
2α2 − 1) 2Σm

(1−ρ)(1−φ) + 2(1− f)h

(1− f)2h2 − 2(1− f)h Σm
(1−ρ)(1−φ)

Σ : ∂F∂Σ

(1− ρ)(1− φ)
(V .41)

˜̃
dp =

Σ : ∂F∂Σ

(1− ρ)(1− φ)(1− f)αh
(V .42)

With this relations, then the proposed micro-macro damage constitutive model can be

implemented in a standard finite element code.

4 Experimental verification: application to COx argillite

In order to verify the proposed damage model for describing the macroscopic behavior

of geomaterials affected by the pores and inclusions. The typical porous Callovo-Oxfordian

claystone (COx) is considered here, which has been investigated as a potential host rock

for a radioactive waste repository on both experimental investigations and constitutive

modeling ([Guéry et al., 2008,Bornert et al., 2010,Huang et al., 2014,Zhang et al., 2014,Liu

et al., 2015,Shen and Shao, 2016a,Armand et al., 2017,Cao et al., 2018a]). By using the

synchrotron X-ray microtomography, Callovo-Oxfordian sediments comprise a dominant

clay fraction of 40 to 50%, 20 to 27% of quartz and 23 to 25% of calcite grains([Robinet,

2008]), with a total average porosity of 11.04-13.84%. Recent advancements in microscopy

and sample preparation have enabled observations and accurate quantification of pores

down to the nanometer size range, the spatial distribution of porosity in claystone are

mainly observed within their clay matrix with characteristic sizes ranging between 1nm to
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100µm across different scales. However, the mineralogical compositions can significantly

vary with the depth. The influence of mineralogical variations and porosity on mechanical

behaviour is clearly observed in the results of laboratory tests performed on samples ([Hu

et al., 2014, Armand et al., 2017, Liu et al., 2018]). In the present study, the studied

claystones have an average total porosity of 25% with two population of pores, having a

proportion of 95% inter-particle pores and 5% intra-particle pores configured in porous

clay matrix ([Shen and Shao, 2016a]).

For the sake of simplicity, the grains of quartz and calcite are replaced by a single

equivalent inclusion phase by using the linear homogenization scheme ([Mori and Tanaka,

1973]). The effective elastic properties of the equivalent inclusion phase are taken as the

average values of the ones of quartz and calcite grains according to the study of [Shen

et al., 2013]. This leads to Eei = 98GPa and Eei = 0.15. In this section, we will use

the previous proposed damage model to consider the influences of double porosities and

inclusions on macroscopic behavior of claystone. The predictions will be compared with

the experimental data from [Shen and Shao, 2016a]. Typical elastic and platic values of

the parameters adopted in this study are presented in Table V .1 for the studied claystone.

Table V .1: Typical values of parameters for the model

Parameter Clay matrix Inclusion

Elastic parameters Es = 5.027GPa, vs = 0.33 Ei = 98GPa, vi = 0.15

Plastic parameters α0 = 0.0001, αm = 0.9, b1 = 140,

h = 20MPa

Damage parameters β = 0.34, γ = 1× 10−4

Porosity f1 = 1.6%, φ = 23.75%

Previous study performed by [Shen and Shao, 2016a] has been proposed a micro-

macro model combining Hill’s incremental method and analytical model to estimate the

macroscopic behavior of claystone. By means of this method, the harden behavior of

porous material can be well predicted. However, for most rock-like materials, significant

soften behaviors induced by damage are often observed. Fig.V .2-Fig.V .7 present the

comparisons between modeling results predicted by the proposed model and experimental

data for compression test with different inclusion fractions. Different confining pressure

are also considered here (σ33 = 0, 5, 10MPa). For the instantaneous compression test,

here the simulated loading strain rate is set as 2 × 10−6s−1. It is obviously that there is

a good agreement for both axial and lateral strain. Moreover, the proposed behavior can
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predict the soften behavior of claystone.
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Figure V .2: Comparison between the experimental data and modeling results: f = 1.6%,

φ = 23.75%, ρ = 49%, uniaxial compression test
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Figure V .3: Comparison between the experimental data and modeling results: f = 1.6%,

φ = 23.75%, ρ = 51%, triaxial compression test with σ33 = 5MPa
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Figure V .4: Comparison between the experimental data and modeling results: f = 1.6%,

φ = 23.75%, ρ = 56%, triaxial compression test with σ33 = 5MPa
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Figure V .5: Comparison between the experimental data and modeling results: f = 1.6%,

φ = 23.75%, ρ = 45%, triaxial compression test with σ33 = 10MPa
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Figure V .6: Comparison between the experimental data and modeling results: f = 1.6%,

φ = 23.75%, ρ = 53%, triaxial compression test with σ33 = 10MPa
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Figure V .7: Comparison between the experimental data and modeling results: f = 1.6%,

φ = 23.75%, ρ = 60%, triaxial compression test with σ33 = 10MPa
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5 Extension to apply on Vaca Muerta shale rock

The shale rock is well known as an organic rich fine-grained sedimentary rock. It has

been demonstrated both the compositional heterogeneity of the minerals and complex pore

microstructure are characterized over many length scales ([Saif et al., 2017b]). Observa-

tions in 2-D and 3-D and across nm-µm-mm length scale reveals that its matrix consists

of various minerals, including clays, carbonates, feldspars, quartz, and pyrite, exhibiting

diameters from a few hundred micrometers to one or two millimeters ([Monfared and Ulm,

2016]) and dominated by the nanopores ([Ma et al., 2017,Saif et al., 2017b]). The investi-

gated shale samples from Vaca Muerta Formation also show a general heterogeneous rock

structure like previous mentioned microstructure features. To investigate its macroscop-

ic mechanical behavior, a typical representative elementary volume (REV) is selected as

shown in Fig.V .8.

Quartz+albite Fine kerogen Intra-particle pores

Porous matrix Particle

(b) Level 1 (c) Level 0

Fine calcite

Kerogen

Calcite Pyrite

(a) Level 2

Figure V .8: Representative volume element of studied shale

In this context, level 0 is considered to be a nanoporous clay matrix. Level 1 is char-

acterized as a inclusion-matrix system with fine mineral grains like fine kerogen (f5) and

calcite (f6) . Level 2 is occupied by complex mineral inclusion assemblages contained

calcite (f1) , quartz/albite (f2) , pyrite (f3) and kerogen grains (f4). The symbols pre-

viously presented in the brackets are corresponding to its volume fraction at the given

scale. The main elastic properties of these mineral inclusions have been listed in Table V

.2. Assuming that the mineral inclusions are all of spherical and to be self-consistently

distributed. This implies that these inclusion assemblages at each scale can be considered

as a class of equivalent inclusions. As a consequence of the self-consistent homogenization

method ([Hill, 1965b]), the elastic properties of equivalent inclusion can be obtained. And

the volume fractions of equivalent inclusions (φ and ρ) are respectively corresponding to

the sum of the contained inclusions fractions at level 1 and level 2.
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Table V .2: Typical values of parameters for the model

Mineral Elastic modulus(GPa) Poisson

Quartz/albite 95.5 0.155

Pyrite 311 0.15

Kerogen 2 0.25

Calcite 95 0.27

Clay 5 0.27

To investigate its macroscopic plastic behavior, we will make full use of the study

of [Shen et al., 2013]. An approximate closed-form criterion considering the Magu-

hous([Maghous et al., 2009]) type porous matrix reinforced by rigid inclusions is introduced

here, which also takes the general elliptic form of Eq.(V .4) with the following parameters:

A =

1+2f/3
α2 + 2

3φ( 3f
2α2 − 1)

6α2−13f−6
4α2−12f−9

φ+ 1
, B =

3f

2α2
− 1

C = 2(1− f)h, D =
3 + 2f + 3fφ

3 + 2f
(1− f)2h2

(V .43)

where φ denotes the volume fraction of inclusions at the second scale. With these param-

eters, substitute Eq.(V .43) into Eq.(V .18), one can get a new criterion to consider the

effect rigid inclusions arranged at two separated scales with porous matrix. Similarly to

the previous study, the evolution of inclusion fraction is also neglected. Then evolution of

porosity is given by:

ḟ = (1− f)(
trDp

(1− ρ)(1− φ)
− αε̇p) (V .44)

Incorporating the damage model mentioned in Section 3.3, we can extend the proposed

model to account for the macroscopic behavior of geomaterials with two populations of

inclusions embedded in porous matrix. To valide its application on Vaca Muerta shale

rock, we also conducted a series of numerical modeling for triaxial compression test with

different compositions and compared with the experimental data. The simulated loading

strain rate is selected as 10−6s−1. The following parameters of clay matrix are adopted in

this study :
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Table V .3: Typical values of parameters for the model

Parameter Clay matrix

Elastic parameters Es = 5.0GPa, vs = 0.27

Plastic parameters α0 = 0.0001, αm = 0.75, b1 = 600,

h = 68MPa

Damage parameters β = 0.4, γ = 6× 10−4

Fig.V .9 ∼ V .11 present the comparison results between simulated modeling and

experimental data for different mineral compositions. One can see that a good agreement

is found between them. The proposed damage model can well consider the main effect of

two populations of inclusions with porous matrix on the macroscopic mechanical behaviors,

as well as the failure of the rock induced by the damage behavior.
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Figure V .9: Comparison between the experimental data and modeling result: f1 = 40%,

f2 = 30%, f4 = 25.7%, f6 = 5%, f = 5%, triaxial compression test with σ33 = 2MPa
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Figure V .10: Comparison between the experimental data and modeling result: f1 =

42.3%, f2 = 21.5%, f3 = 1.73%, f5 = 23%, f = 9.4%, triaxial compression test with

σ33 = 10MPa
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Figure V .11: Comparison between the experimental data and modeling result: f1 =

24.15%, f2 = 17.3%, f4 = 26.4%, f6 = 25%, f = 8%, triaxial compression test with

σ33 = 10MPa

6 Concluding remarks

In this work, a general strength criterion accounting for the elliptic form porous ma-

trix and randomly distributed rigid inclusions is established by using the modified scant

method inspired by the work of [Maghous et al., 2009] and [Shen and Shao, 2016a]. Based

on this criterion, we incorporate a time-dependent damage model to account for the soften

behavior induced by the degradation of elastic and plastic properties. Meanwhile, we em-

ployed a new explicit integration algorithm for the damage solver based on the trapezoid

rule approximation, a good consistence is obtained by compared with existed algorithm.

Finally, the developed plastic damage model are successfully applied and extended on

modeling the COx argillite claystone and Vaca Muerta shale rock. The comparison re-

sults between the modeling and experimental data have validated the effectiveness of the

proposed model which can well predict the macroscopic deformation and failure induced

by the damage for porous geomaterials with complex mineral compositions embedded at

multi-scales.
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7 Appendix A: Integration algorithm of equation (V .31)

For the integration in time domain [0, t] of Eq. (V .31), the total time t can be

discretized into several subintervals [tn, tn+1]. Here the time increment is defined as

∆tn+1 = tn+1 − tn. Thus for the interval [0, tn], we can reformulate it with:

ζ(tn)eγtn =

∫ tn

0
γζ̄(τ)eγτdτ (V .45)

Following Eq.(V .45), the integration for subintervals [tn, tn+1] can read:∫ tn+1

tn

γζ̄(τ)eγτdτ =

∫ tn+1

0
γζ̄(τ)eγτdτ −

∫ tn

0
γζ̄(τ)eγτdτ = ζn+1e

γtn+1 − ζneγtn (V .46)

where the subscript n denotes the corresponding value at time tn. To determine the

integration of the left hand-side of Eq.(V .46), several approximate methods can be used

here. Based on the trapezoid rule, one has∫ tn+1

tn

γζ̄(τ)eγτdτ ≈ γ ζ̄ne
γtn + ζ̄n+1e

γtn+1

2
∆tn+1 (V .47)

Hence, according to Eq.(V .46) and (V .47), it follows that:

ζn+1 =
γ

2
ζ̄n+1∆tn+1 + (ζn +

γ

2
ζ̄n∆tn+1)e−γ∆tn+1 (V .48)

Again, for rectangular integration rule, the integration of the left hand-side of E-

q.(V .46) also approximately reads,∫ tn+1

tn

γζ̄(τ)eγτdτ ≈ γζ̄neγtn∆tn+1 ≈ γζ̄n+1e
γ(tn+∆tn+1)∆tn+1 (V .49)

Above, the last two approximations in Eq.(V .49) are corresponding to the well-known

left Riemann rule and right Riemann rule. Therefore, another explicit algorithm solver is

alternately taken the form of:

ζn+1 ≈ ζne−γ∆tn+1 + γζ̄ne
−γ∆tn∆tn+1 ≈ ζne−γ∆tn+1 + γζ̄n+1∆tn+1 (V .50)

By comparison with these three explicit integration forms, the trapezoidal rule is

viewed as the result obtained by averaging the left Riemann and right Riemann sums,

which is different from the explicit formulation obtained by [Zhao et al., 2016]. But it is

important to note that the error for rectangular integration rule is higher than the trape-

zoid rule ([Anderson, 2004]). For all the methods, the approximation is more accurate

as the time increment ∆tn+1 becomes smaller. As a example, we conducted a series of

simulations by using different algorithms mentioned above for four different loading strain
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rates. The results are presented in Fig.V .12 ∼ V .15. From the stress-strain relations,

one can see that the stress-strain curves for all the methods are consistent with each other

when the loading strain rate is higher than 2×10−7s−1. For a lower loading strain rate, the

left Riemann rule and right Riemann rule have a bad estimate. In this study, Eq.(V .48)

will be adopted here for the simulations.
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Figure V .12: Simulated results of stress-strain relation for different damage solver with:

f = 1.6%, φ = 23.75%, ρ = 49%, uniaxial compression test with loading strain rate of

2× 10−6s−1.
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Figure V .13: Simulated results of stress-strain relation for different damage solver with:

f = 1.6%, φ = 23.75%, ρ = 49%, uniaxial compression test with loading strain rate of

2× 10−7s−1.
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Figure V .14: Simulated results of stress-strain relation for different damage solver with:

f = 1.6%, φ = 23.75%, ρ = 49%, uniaxial compression test with loading strain rate of

2× 10−8s−1.
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Figure V .15: Simulated results of stress-strain relation for different damage solver with:

f = 1.6%, φ = 23.75%, ρ = 49%, uniaxial compression test with loading strain rate of

2× 10−9s−1
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Chapter VI

Conclusions and perspectives

This thesis aims to explore the effective properties of porous materials involved with

pores and inclusions problem with physical geometrical features across multiple scales. To

this end, a multi-step homogenization numerical model has been developed for rock-like

porous materials combining with the FFT-based method and analytical theories. The

proposed homogenization model is able to account for the effect of geometrical features

of pores and inclusions to estimate the main mechanical behaviours such as interaction

between pores and inclusions, induced anisotropy, elastoplastic, damage, time-dependent

effects. By means of the proposed method, the effective mechanical behaviors of four REV

with different microstructure features have been specially studied in this work. The main

results can be concluded as following:

For the class of porous materials with two populations of pores under consideration, it

is found that both the effective elastic and plastic properties of double porous materials

are significantly influenced by the porosity ratio and they are more sensitive to the meso-

porosity than to the micro-porosity. The classical dilute homogenization scheme for the

prediction of elastic modulus is not able to capture these effects. The double Hashin-

Shtrikman upper bound model significantly differs from the FFT-based model for low

values of porosity ratio f/φ (high values of meso-porosity) but the two models agree

well for high values of porosity ratio f/φ (low values of meso-porosity). For the plastic

case, by comparisons with two closed-form criteria, significant differences have been found

between the two criteria and the FFT-based numerical model. According to the numerical

results obtained with the FFT-based full-field simulations, the macroscopic yield stresses

are strongly influenced by the porosity ratio especially at compression region. For a given

value of total porosity, similar to the elastic case, the mesoscopic porosity plays a more



128 Conclusions and perspectives

important role than the micro-porosity on the macroscopic yield stress. However, these

effects of microstructure in terms of porosity ratio have not been correctly taken into

account in the two analytical criteria.

For the reason of lacking closed form criterion for the microstructure with both meso

inclusions and pores embedded at same scale. The effective elastic properties of such

kinds of materials are estimated using FFT-based method. With a series of simulations

and comparisons, it is found that both the pore and inclusion geometry are sensitive

to the determination of macroscopic elastic behavior. Simulation results show that the

anisotropy effect induced by pore and inclusion is obtained with respect to its aspect ratio

and orientation, providing an increase or decrease effect on the effective elastic modulus.

For plastic behaviors, the inclusion geometry does not have significant effect on computing

plastic yield stress except its volume fraction. However, this does not work for the case

of pore. The corresponding results reveal that the pore shape, distribution, aspect ratios,

orientations indeed have important effect and play different roles on plastic yield stress. For

future works, to characterize the effective behaviors of such kinds of composite as accuracy

as possible by an analytical criterion, these factors should be taken into considerations.

In order to consider a class of rock-like materials containing pores and mineral inclu-

sion at two different scales, we established an unified model to account for the effect of

pores and inclusions on the plastic and viscoplastic behavior. The numerical yield stresses

are compared with the ones predicted by an analytical homogenized criterion considering

a single spherical inclusion embedded in the porous matrix. It is found that in general the

macroscopic yield stress is more sensitive to porosity than inclusion content. The influ-

ences of inclusion shape, orientation and stiffness are relatively small on the macroscopic

yield stress. However, they can have significant influences on the macroscopic plastic and

viscoplastic strains. In particular, the numerical results obtained from the FFT based

numerical model considering the plastic and viscoplastic flows in the porous matrix depict

a stronger effect of hard inclusion than the analytical homogenized model considering the

plastic and viscoplastic flows at the macroscopic scale and neglecting the shape and spatial

distribution of inclusions.

Finally, for the purpose of obtaining a closed-form of analytical criterion considering

the pores and inclusions configured at multiscales, a general strength criterion is estab-

lished though three-step homogenization procdure by using the modified scant method

inspired by the work of [Maghous et al., 2009] and [Shen and Shao, 2016a]. Based on

this criterion, we incorporate a time-dependent damage model to account for the soft-

en behavior induced by the degradation of elastic and plastic properties of solid matrix.
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Meanwhile, we employed a new explicit integration algorithm for the damage solver based

on the trapezoid rule approximation, a good consistence is obtained by compared with

existed algorithm. Finally, the developed plastic damage model are successfully applied

and extended on modeling the COx argillite claystone and Vaca Muerta shale rock. The

comparison results between the modeling and experimental data have validated the effec-

tiveness of the proposed model which can well predict the macroscopic deformation and

failure induced by the damage for porous geomaterials with complex mineral compositions

embedded at multi-scales.

Many extensions can be considered in future works, we would like to extend the FFT-

based method to consider the crack propagation and coalescence, hydromechanical cou-

pling effect of porous materials combining a phase-field method. Then an closed-form

strength criterion is still needed to account for the effects of meso pores and inclusions,

especially to incorporate the induced anisotropy by the pore geometrical information.
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