
Inferring Models from Cloud APIs
and Reasoning over Them:

A Tooled and Formal Approach

P H D T H E S I S
to obtain the title of

PhD of Science

Specialty : Computer Science

Defended on Friday, December 21, 2018 by

Stéphanie Challita

prepared at Inria Lille-Nord Europe, Spirals Team

Thesis committee:

Supervisor: Philippe Merle - Inria (Lille)
Reviewers: Benoit Combemale - University of Toulouse & Inria (Rennes)

Christian Perez - Inria (Lyon)
Examiner: Hélène Coullon - IMT Atlantique (Nantes)
Chair: Laetitia Jourdan - University of Lille
Invited: Faiez Zalila - Inria (Lille)

“Everything you can imagine is real.”
–Pablo Picasso

To my parents for their constant support and endless sacrifices.
To Benjamin for his unlimited patience and love.

v

Acknowledgments

PhD is the biggest achievement but also the most challenging experience in my life,
so far. Therefore, I would like to express my utmost gratitude to the people who
helped me during this journey.

Foremost, I am truly grateful to my supervisor, Philippe Merle for many
reasons. Thank you for taking my application for this thesis into consideration
three years ago and for believing that I am a perfect fit for the job since our very
first interview. Thank you for your guidance, which taught me the ropes of research,
and for plenty of brilliant ideas, which were an inspiration for me. Thank you for
helping me hone my skills and pushing me forward to be the best version of myself.
I was determined to succeed to be worthy of the trust you placed in me. Our
relationship made of taste for research, professionalism and kindness meant a lot to
me. I highly admire your passion for your work, and I sincerely believe that you
are an excellent researcher and a genuine person. And as I told you once before, I
could not have imagined having a better mentor during my PhD. Thank you from
the depths of my heart!

Next, I would like to thank the members of my thesis committee for de-
voting their time to read the manuscript and for their constructive feedback.
Benoit Combemale and Christian Perez, thank you for accepting to review
my manuscript. I would also like to thank Hélène Coullon for accepting to be
part of my committee and Laetitia Jourdan for accepting to chair it.

Further gratitude is due to the members of the Spirals team at Inria research
center, who I met since October 2015. Actually, during the last three years, I had
the chance to be part of Spirals and it was a pleasure meeting many wonderful
people there. Everyone was friendly and open for discussions, which made my stay
extremely pleasant. I sincerely thank the team leader, Lionel Seinturier, for his
effective direction, for providing a very motivating environment for preparing PhDs
and for empowering my ambitions and helping me achieving them. I acknowledge
your support and the support of Laurence Duchien when I came to you with my
proposition to apply for the L’Oréal-UNESCO For Women In Science award. Also,
thanks to Laurence for being a role model for many young female researchers like me
and for your sincere advises for my career. I will always remember them. I would
like to thank Walter Rudametkin, not only for your insightful comments, but
also for your everyday friendship, for giving me access to your precious media server
and for going out and drinking beers together. Besides, thank you and Marcia for
receiving me in “Chez Rudametkin” and for those unforgettable tacos. I confirm that
the 5 star on Google is well-deserved! ;) I salute Clément Quinton for his ambition
and love of life. I enjoyed swimming with you on Fridays. Thank you as well for
sharing with me your experience of becoming an associate professor. My warm
wishes to you and your beautiful family. Thanks to Simon Bliudze with whom I
shared the office for the last year. Thanks for working late so often, it helped me
keeping focused and feeling well-surrounded. :) Also, thanks for giving me valuable
feedback and propositions regarding my work, at each time I asked you. I hope we
will work together sometime soon since many ideas emerged from these inspiring
discussions. I would also like to thank my two former office mates, Christophe
Gourdin and Gustavo Sousa. Thanks to Christophe for teaching me some “Chti”

vi

language and for technical support when I started the implementation work in the
OCCIware project. Here’s to the prosperity of your startup! Thanks to Gustavo
for the tips and recommendations when I first arrived to Lille and for the enriching
conversations in the initial stage of my PhD. You were the first friend I made in
the team and in Lille in general. Big thanks to Faiez Zalila for attending and
efficiently participating to the weekly meeting with Philippe and me and for being
the technical leader in the OCCIware project. I acknowledge your assistance with
the modeling techniques, which allowed me to go further with my contributions. I
would like to mention Yahya Al-Dhuraibi who started his PhD at the same time
as me and under the supervision of Philippe too. I shared good moments with you
when we attended the conference in Madeira and I admire your kindness, modesty
and generosity. I wish you all the best for your future, you deserve it! Thanks to
Maxime Colmant for helping me preparing my courses when I started teaching
at the University of Lille.

I thank the OCCIware French project and the “Hauts-de-France” regional council
for providing scholarships and appropriate facilities to pursue my doctoral studies.
I also thank L’Oréal foundation for awarding me and providing research grants.

Thanks to my friends in Lille, Tonie and Jad. Tonie, I am so happy that I
met you. I’ve always had fun with you and I really enjoyed our little tradition of
Saturday lunch, although I missed some Saturdays because I needed to work. Jad,
it was great news for me when I knew that you will be preparing a PhD also at
the University of Lille, after we graduated together from the Antonine University.
Thanks for the “Reeflex” evenings, for bringing me souvenirs when you visited a new
city and for the catch up over coffee when you were at Inria. Who knows, maybe
we will be colleagues again one more time!

Thanks to my cousinYara and to my friends in Lebanon,Alain,Alfred, Chan-
tal and Rami for always being there through WhatsApp, for your sense of humor
and for the amazing outings at each time I visited Lebanon. You boosted my energy
to reach this end.

I spare a moved thought for my guardian angel, my grandmother Farida who
raised me during my early childhood and who left years ago. I wish that you were
here with me and I hope that you are proud of me.

Big thanks to my dear parents, Joseph and Rita, who gave me the best of
education and trusted my plan when I decided to move to France. Even from far
away, I always felt your support. Dad, you taught me to aim high and I would not
be who I am today without you. Mum, you are a perfect example of devotion and
strength, I learn from you a lot and on daily basis.

Last but not least, I want to thank with great affection, my handsome fiancé,
Benjamin Danglot, for being my backbone and my everyday bundle of happiness
for the last two years. You suffered with me the side effects of preparing a thesis.
Thank you for everything you do to help my dreams come true and for loving me
unconditionally. I feel so lucky to have you by my side “habibi”.

Stéphanie Challita
Villeneuve d’Ascq, France

October 12, 2018

vii

Abstract

In recent years, multi-cloud computing which aims to combine different offerings or
migrate applications between different cloud providers, has become a major trend.
Multi-clouds improve the performance and costs of cloud applications, and ensure
their resiliency in case of outages. But with the advent of cloud computing, differ-
ent cloud providers with heterogeneous cloud services (compute, storage, network,
applications, etc.) and Application Programming Interfaces (APIs) have emerged.
This heterogeneity complicates the implementation of an interoperable multi-cloud
system. Several multi-cloud interoperability solutions have been developed to ad-
dress this challenge. Among these solutions, Model-Driven Engineering (MDE) has
proven to be quite advantageous and is the mostly adopted methodology to rise in
abstraction and mask the heterogeneity of the cloud. However, most of the existing
MDE solutions for the cloud remain focused on only designing the cloud without
automating the deployment and management aspects, and do not cover all cloud
services. Moreover, MDE solutions are not always representative of the cloud APIs
and lack of formalization.

To address these shortcomings, I present in this thesis an approach based on
Open Cloud Computing Interface (OCCI) standard, MDE and formal methods.
OCCI is the only community-based and open recommendation standard that de-
scribes every kind of cloud resources. MDE is used to design, validate, generate
and supervise cloud resources. Formal methods are used to effectively reason on the
structure and behaviour of the encoded cloud resources, by using a model checker
verifying their properties. This research takes place in the context of the OCCIware
project, which provides OCCIware Studio, the first model-driven tool chain for
OCCI. It is coupled with OCCIware Runtime, the first generic runtime for OCCI
artifacts targeting all the cloud service models (IaaS, PaaS, and SaaS).

In this dissertation, I provide two major contributions implemented on top of the
OCCIware approach. First, I propose an approach based on reverse-engineering
to extract knowledge from the ambiguous textual documentation of cloud APIs
and to enhance its representation using MDE techniques. This approach is applied
to Google Cloud Platform (GCP), where I provide GCP Model, a precise model-
driven specification for GCP. GCP Model is automatically inferred from GCP tex-
tual documentation, conforms to the OCCIware Metamodel and is implemented
within OCCIware Studio. It allows one to perform qualitative and quantitative
analysis of the GCP documentation. Second, I propose in particular the fclouds
framework to achieve semantic interoperability in multi-clouds, i.e., to identify the
common concepts between cloud APIs and to reason over them. The fclouds lan-
guage is a formalization of OCCI concepts and operational semantics in Alloy formal
specification language. To demonstrate the effectiveness of the fclouds language,
I formally specify thirteen case studies and verify their properties. Then, thanks to
formal transformation rules and equivalence properties, I draw a precise alignment
between my case studies, which promotes semantic interoperability in multi-clouds.

Keywords: Cloud Computing, Multi-Clouds, Open Cloud Computing Inter-
face (OCCI), Model-Driven Engineering (MDE), Reverse-Engineering, Google
Cloud Platform (GCP), Formal Methods, Formal Verification, Alloy, Interop-
erability

viii

Résumé

Ces dernières années, l’informatique multi-nuages, qui vise à combiner différentes
offres ou à migrer des applications entre différents fournisseurs de services en nuage,
est devenue une tendance majeure. Les multi-nuages améliorent les performances
et les coûts des applications hébergées dans les nuages et garantissent leur résilience
en cas de panne. Mais avec l’avènement de l’informatique en nuage, différents four-
nisseurs offrant des services en nuage (calcul, stockage, réseau, applications, etc.) et
des interfaces de programmation d’applications (APIs) hétérogènes sont apparus.
Cette hétérogénéité complique la mise en oeuvre d’un système de multi-nuages
interopérable. Plusieurs solutions pour l’interopérabilité de multi-nuages ont été
développées pour relever ce défi. Parmi ces solutions, l’Ingénierie Dirigée par les
Modèles (IDM) s’est révélée très avantageuse et constitue la méthodologie la plus
largement adoptée pour monter en abstraction et masquer l’hétérogénéité du nuage.
Cependant, la plupart des solutions IDM existantes pour le l’informatique en nuage
restent concentrées sur la conception des nuages sans automatiser les aspects de
déploiement et de gestion, et ne couvrent pas tous les services en nuage. De plus, les
solutions IDM ne sont pas toujours représentatives des APIs de nuages et manquent
de formalisation.

Pour remédier à ces limitations, je présente dans cette thèse une approche basée
sur le standard Open Cloud Computing Interface (OCCI), les approches IDM et
les méthodes formelles. OCCI est le seul standard ouvert qui décrit tout type de
ressources de nuages. L’IDM est utilisée pour concevoir, valider, générer et super-
viser des ressources de nuage. Les méthodes formelles sont utilisées pour raisonner
efficacement sur la structure et le comportement des ressources de nuage encodées, à
l’aide d’un vérificateur de modèle analysant leurs propriétés. Cette recherche a lieu
dans le contexte du projet OCCIware, qui fournit OCCIware Studio, la pre-
mière chaîne d’outils pilotée par les modèles pour OCCI. OCCIware Studio est
associé à OCCIware Runtime, le premier environnement d’exécution générique
pour les artefacts OCCI ciblant tous les modèles de service de nuages (IaaS, PaaS
et SaaS).

Dans cette thèse, je fournis en particulier deux contributions majeures qui sont
mises en oeuvre en se basant sur l’approche OCCIware. Premièrement, je propose
une approche basée sur la rétro-ingénierie pour extraire des connaissances des docu-
mentations textuelles ambiguës des APIs de nuages et améliorer leur représentation
à l’aide des techniques IDM. Cette approche est appliquée à Google Cloud Plat-
form (GCP), où je propose GCP Model, une spécification précise et basée sur les
modèles pour GCP. GCP Model est automatiquement déduit de la documentation
textuelle de GCP, est conforme à OCCIware Metamodel et est implémenté dans
OCCIware Studio. Il permet d’effectuer des analyses qualitatives et quantita-
tives de la documentation de GCP. Deuxièmement, je propose le cadre fclouds
pour assurer une interopérabilité sémantique entre plusieurs nuages, i.e., pour iden-
tifier les concepts communs entre les APIs de nuages et raisonner dessus. Le lan-
gage fclouds est une formalisation des concepts et de la sémantique opérationnelle
d’OCCI en employant le langage de spécification formel Alloy. Pour démontrer
l’efficacité du langage fclouds, je spécifie formellement treize APIs et en vérifie les
propriétés. Ensuite, grâce aux règles de transformation formelles et aux propriétés

ix

d’équivalence, je peux tracer un alignement précis entre mes études de cas, ce qui
favorise l’interopérabilité sémantique dans un système de multi-nuages.

Mots-clés: Nuage informatique, Multi-nuages, Open Cloud Computing In-
terface (OCCI), Ingénierie dirigée par les modèles (IDM), Rétro-ingénierie,
Google Cloud Platform (GCP), Méthodes formelles, Vérification formelle, Al-
loy, Interopérabilité

Contents

List of Figures xiii

List of Tables xvi

I Preface 1

1 Introduction 3
1.1 Thesis Context . 6
1.2 Problem Statement . 6
1.3 Research Questions . 9
1.4 Thesis Goals . 10
1.5 Thesis Vision . 11
1.6 Proposed Solution . 12
1.7 Dissertation Roadmap . 14
1.8 Publications . 16

1.8.1 International Conferences . 16
1.8.2 International Journal . 17

1.9 Awards . 17

II State of the Art 19

2 Model-Driven Approaches for the Cloud 21
2.1 Multi-Cloud Ecosystem . 22

2.1.1 Provider Space . 24
2.1.2 Programming Space . 26
2.1.3 Modeling Space . 26

2.2 Taxonomy of Model-Driven Approaches for the Cloud 27
2.2.1 Usages . 28
2.2.2 Concepts . 29
2.2.3 Characteristics . 29

2.3 Model-Driven Approaches for the Cloud 31
2.4 Discussion . 40
2.5 Summary . 43

xii Contents

III Background 47

3 Modeling, Verifying, Generating and Managing Cloud Resources
with OCCIware 49
3.1 Motivations . 51
3.2 Background on OCCI . 53
3.3 OCCIware Approach . 55

3.3.1 Managing Everything as a Service with OCCIware 55
3.3.2 Generating Cloud Domain-Specific Modeling Studios with

OCCIware . 59
3.4 OCCIware Metamodel . 61
3.5 OCCIware Studio . 71
3.6 OCCIware Runtime . 75
3.7 Evaluation of OCCIware Studio . 77

3.7.1 Implementation of a Catalog of Standard OGF's OCCI Ex-
tensions . 77

3.7.2 Five OCCIware Use Cases . 85
3.7.3 Synthesis on the OCCIware Approach 89

3.8 Summary . 92

IV Contributions 93

4 Inferring Precise Models from Cloud APIs Textual Documenta-
tions 95
4.1 Inferring Precise Cloud Models . 97

4.1.1 Approach Overview . 98
4.1.2 Related Work . 100

4.2 GCP Use Case: Motivation & Drawbacks 101
4.3 GCP Model Extraction Approach 107

4.3.1 GCP Snapshot . 108
4.3.2 GCP Crawler . 108
4.3.3 GCP Model . 108
4.3.4 GCP Refinement . 112
4.3.5 Challenges . 115

4.4 Evaluation of GCP Model . 116
4.4.1 Qualitative Evaluation . 116
4.4.2 Quantitative Evaluation . 119

4.5 Summary . 120

Contents xiii

5 Specifying Heterogeneous Cloud Resources and Reasoning over
them with fclouds 121
5.1 Exploring the Semantic Space . 123

5.1.1 Formal methods and their benefits 123
5.1.2 Related Work . 124

5.2 The fclouds Framework . 125
5.2.1 Usage Scenario . 125
5.2.2 Overall Architecture . 126

5.3 The fclouds Language . 128
5.3.1 Notations . 128
5.3.2 Specifying fclouds Static Semantics 129
5.3.3 Specifying fclouds Operational Semantics 135
5.3.4 Identifying & Validating fclouds Properties 139

5.4 Evaluation of fclouds . 143
5.4.1 Catalog of Cloud Formal Specifications 144
5.4.2 Implementation of fclouds Formal Specifications 147
5.4.3 Verification of fclouds Properties 148
5.4.4 Definition & Validation of Domain-Specific Properties 148
5.4.5 Transformation Rules for Semantic Interoperability in Multi-

clouds . 149
5.5 Summary . 149

V Conclusion 151

6 Conclusions and Perspectives 153
6.1 Background Summary . 153
6.2 Contributions Summary . 154
6.3 Perspectives . 156

6.3.1 Short-term Perspectives . 156
6.3.2 Long-term Perspectives . 157

6.4 Final Conclusion . 159

Bibliography 161

List of Figures

1.1 My Thesis in Comics - Part 1. 7
1.2 Thesis Vision. 11
1.3 My Thesis in Comics - Part 2. 13
1.4 Thesis Outline. 14

2.1 Multi-Cloud Ecosystem. 23
2.2 Taxonomy Criteria. 27

3.1 OCCI Specifications. 54
3.2 UML Class Diagram of the OCCI Core Model (from [Nyrén 2016b]). 54
3.3 OCCIware Studio and OCCIware Runtime. 56
3.4 Model-Driven Managing Everything as a Service with OCCIware. . 58
3.5 Generating Cloud Domain-Specific Modeling Studios with OCCIware. 61
3.6 Ecore diagram of OCCIware Metamodel. 62
3.7 OCCIware Studio Features. 71
3.8 Projection of OCCI to EMF. 72
3.9 OCCIware Runtime Architecture. 76
3.10 OCCI Infrastructure Extension Model. 78
3.11 An Infrastructure Configuration Model. 80
3.12 An OCCI Configuration Model. 81
3.13 OCCI CRTP Extension Model. 83
3.14 OCCI Platform Extension Model. 83
3.15 OCCI SLA Extension Model. 84
3.16 OCCI Monitoring Extension Model. 85
3.17 OMCRI Designer. 86
3.18 Docker Designer. 88
3.19 LAMP Designer. 89
3.20 OCCIware Studio Product Line. 92

4.1 My Model Extraction Approach Overview. 99
4.2 Different Documentation Formats. 102
4.3 Imprecise String Types. 103
4.4 Informal Enumeration Types. 104
4.5 Error in Describing the “Kind” Attribute. 104
4.6 “Optional/Required” Attribute Constraint. 105

xvi List of Figures

4.7 “Immutable Attribute” Constraint. 105
4.8 “Default Value” Constraint. 105
4.9 Hidden Link between Instance and Network. 106
4.10 GCP Model Extraction Approach Overview. 107
4.11 Metamodeling Stack for GCP Model. 109
4.12 The Algorithm of the Model Extraction Approach. 110
4.13 A Subset of OCCIware Metamodel. 110
4.14 Syntactic Parse Tree for Identifying a Hidden Link in a Sentence. . . 113
4.15 A Subset of GCP Extension Diagram. 114
4.16 Recursive Parsing Example. 116
4.17 Two Clusters of Development Teams. 117

5.1 Semantic Space. 123
5.2 fclouds Usage Scenario. 125
5.3 fclouds Framework Overview. 126
5.4 Formalization Process. 127
5.5 Alloy Generator. 147
5.6 Acceleo Template. 147

6.1 Formal Real-World Bridge. 159

List of Tables

2.1 Heterogeneity of Cloud Providers. 24
2.2 MDAC Usages. 41
2.3 MDAC Concepts. 42
2.4 CML Characteristics. 44

3.1 The Mapping Process of OCCI Concepts into EMF Concepts. . . . 74
3.2 OCCIware Use Cases . 90

4.1 Redundant Attributes and Actions among Kinds. 117
4.2 GCP Products. 119
4.3 Summary of the GCP Model Dataset. 120

5.1 fclouds Static Semantics. 135
5.2 Properties of the fclouds Language. 140
5.3 Summary of the fclouds Framework Dataset. 145

Part I

Preface

The first part of this manuscript introduces the scope, motivation and goals of this thesis.

Chapter 1

Introduction

Contents
1.1 Thesis Context . 6

1.2 Problem Statement . 6

1.3 Research Questions . 9

1.4 Thesis Goals . 10

1.5 Thesis Vision . 11

1.6 Proposed Solution . 12

1.7 Dissertation Roadmap . 14

1.8 Publications . 16

1.8.1 International Conferences . 16

1.8.2 International Journal . 17

1.9 Awards . 17

Cloud computing, which is gaining the attention of both academia and industry
for the last decade, was not born from scratch but is a normal evolution of

many domains such as distributed computing, grid computing and service-oriented
computing. Many computing researchers and practitioners have attempted to define
cloud computing in various ways. I give below the most commonly used definitions:

• “A Cloud is a type of parallel and distributed system consisting of a collection
of inter-connected and virtualized computers that are dynamically provisioned
and presented as one or more unified computing resource(s) based on service-
level agreements established through negotiation between the service provider
and consumers.” [Buyya 2009].

• “Cloud computing refers to both the applications delivered as services over the
Internet and the hardware and systems software in the data centers that provide
those services.” [Armbrust 2010].

4 Chapter 1. Introduction

• “Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action.” [Mell 2011].

To summarize, cloud computing enables computing resources, software, or data
to be delivered as a service and on-demand through the Internet, so these resources
have become cheaper, more powerful and more available than ever before.

More precisely, cloud computing is a model composed of three deployment mod-
els, three service models and three delivery models.

Deployment models. Cloud environments can have different access types,
that are called deployment models. The latter can be private, public or hybrid.
Private cloud environments are owned by a single organization and they can be
built by relying on technologies like OpenStack [opea], whereas public cloud envi-
ronments are owned by a third-party cloud provider such as Amazon Web Services
(AWS) and Google Cloud Platform (GCP). Usually, a cloud developer requires using
private clouds for testing a cloud application, then migrating to public clouds so the
application can be publicly accessed by cloud users. And sometimes, the cloud de-
veloper requires using a hybrid cloud, i.e., that comprises public and private cloud
environments. It allows the cloud developer to make his/her application publicly
accessed by hosting its Web server on a public cloud, and to privately store sensitive
data by keeping his/her application database in a private cloud.

Service models. Cloud providers offer functionalities as services at different
layers of the cloud stack, i.e., service models: Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).

• IaaS : where the capability provided to the IaaS user is to provision virtual
machines and to configure the infrastructure concerns: processing, storage,
networking, and other computing resources.

• PaaS : where the capability provided to the PaaS user is to deploy an appli-
cation and it is limited to the database(s), application server(s), compilation
tools, libraries, etc.

• SaaS : where the capability provided to the SaaS user is to manage applications
running on a cloud Infrastructure and/or Platform, and accessible through a
web browser. A SaaS should rely on the principle of multi-tenancy, where

5

multiple independent instances of one or multiple applications operate in a
shared environment.

Delivery models. Cloud resources can be provisioned from either a single
cloud or multiple clouds. This is known as the delivery model. In this section,
I describe each of the existing delivery models and I highlight the advantages of a
multi-cloud delivery model, which interests us in this dissertation.

• Single cloud : where cloud applications are limited to be deployed on a single
cloud among others, i.e., to benefit from services of only one cloud provider
at a time.

However, several cloud outages have taken place in the past [Ko 2013], which
prove that the sentence “do not place all your eggs in one basket” is equally ap-
plicable to the cloud ecosystem. Therefore, some cloud application may require to
exploit services from multiple cloud environments, at the infrastructure, platform,
and software layers. In this case, the cloud developer should perfectly manage to
deal with dependencies and to ensure separation of concerns. As Petcu explained
in [Petcu 2013], there are two basic delivery models in multiple cloud systems: Fed-
erated Clouds and Multi-Clouds. Petcu has drawn a clear positioning of multi-clouds
versus other cloud models. I summarize it as follows:

• Federated clouds: where the cloud providers are in agreement with each others
to enhance the service offered to their consumers, e.g., European Grid Infras-
tructure Federated Clouds (EGI FC) which is a federation of private clouds.

• Multi-clouds: where the application provisions multiple cloud varying services,
without a prior agreement with and between the cloud providers, but with a
third party building a unique entry point for multiple clouds. This strategy
has been adopted in the cloud computing industry since a while in order to
improve disaster recovery and geo-presence, to use unique cloud services from
different providers as they are needed, and to ensure unlimited scalability of
cloud applications, as explained in [Petcu 2013].

The remainder of this introductory chapter is organized as follows. Section 1.1
presents the context of this thesis. In Section 1.2, I identify the problems that
motivate this research. Section 1.3 introduces the research questions that this dis-
sertation aims to answer. Next, in Section 1.4, I present the main goals of this thesis.
Section 1.5 presents the vision of my research. Section 1.6 introduces my proposed
solution. In Section 1.7, I summarize the structure of this dissertation. Finally, in
Section 1.8, I detail the publications derived from my research.

6 Chapter 1. Introduction

1.1 Thesis Context

This thesis is supported by both the OCCIware [occc] research and development
project funded by the French Programme d’Investissements d’Avenir (PIA), and
the Hauts-de-France Regional Council. The OCCIware project promotes the OCCI
standard to address the lack of unified cloud computing standard and facilitate the
development of services. Therefore, the works carried on in this thesis are built on
the OCCI standard by using the OCCIware approach.

This thesis is produced in the Spirals team. Spirals is a joint project-team
between Inria Lille-Nord Europe research center and the University of Lille. Spi-
rals currently consists of eight permanent members and about twenty-five non-
permanent members. The research areas of Spirals are distributed systems and
software engineering. The research areas of this thesis are particularly multi-cloud
computing, Model Driven Engineering (MDE) and formal methods.

1.2 Problem Statement

Due to the emergence of numerous cloud providers and their heterogeneity, pro-
visioning cloud services is not a straightforward task. I state the main problem
addressed by this dissertation as follows:

The cloud shows several favorable features like elasticity and pay-as-you-go. In
order to take advantage of these features, the cloud computing market counts
today variety of cloud providers like Amazon, Google, Microsoft, etc. Cloud
providers offer varying infrastructure, platform or software services. Even at
the same service layer, cloud providers use heterogeneous terms, concepts, and
features, which usually are not aligned with those of competing providers. These
semantic differences are critical in cloud computing as they make migrating an
application across providers a very complicated and costly task. In addition,
cloud providers give access to their resources through heterogeneous Cloud Re-
source Management (CRM)-Application Programming Interface (API)s. The
management of a potentially large number of cloud services with heterogeneous
CRM-APIs is a challenge, because of incompatibility between the different APIs.
Worse still, the semantics of these CRM-APIs is informally described in English
prose in their documentation available at the provider's website. Therefore, it is
usually impossible to understand the behaviour of a cloud when the developer
requests a virtual machine for example. For the above concerns, the dependency

1.2. Problem Statement 7

to a single cloud provider is promoted, the multi-cloud environment is prevented
and the migration from one cloud to another becomes a very complicated task.

Figure 1.1: My Thesis in Comics - Part 1.

8 Chapter 1. Introduction

The comic strip in Figure 1.1 illustrates the problem above, i.e., the heterogene-
ity in a multi-cloud context that leads to a lack of interoperability across providers.
I credit the work for designing the amazing comics of my thesis to Olivier Audy.

More specifically, cloud stakeholders face the following challenges.

Heterogeneous service models. Cloud providers offer different services that
belong to the Infrastructure (IaaS), Platform (PaaS) or Software (SaaS) layers. We
use the abbreviation Everything as a Service (XaaS) to refer to all categories. These
categories consist in the “Service Model”. Service models contain highly heteroge-
neous cloud resources, which make difficult the overall management of a computer
system from infrastructure to application resources.

Heterogeneous CRM-APIs. Cloud services are often exposed as Web ser-
vices, which follow the industry standards such as Web Services Description Lan-
guage (WSDL)1, Simple Object Access Protocol (SOAP)2 and Universal Description,
Discovery and Integration (UDDI)3 [Paraiso 2012]. They frequently rely on REp-
resentational State Transfer (REST)ful [Fielding 2000] APIs that provide program-
matic access to the resources offered by a cloud provider through Create, Retrieve,
Update and Delete (CRUD) operations. For example, the Amazon cloud services
are accessible via a SOAP API, whereas other clouds are based on a REST API,
which leads to an incompatibility between these two different APIs.

Semantic differences. The semantics refers to the description of a cloud ser-
vice by its provider. These descriptions are heterogeneous because a cloud provider
employs concepts, which usually do not directly map to those of a competing
provider. In fact, even if cloud providers offer the same service, the latter may
have different names, characteristics and functionalities. For instance, GCP refers
to its compute service as “instance”, whereas DigitalOcean calls it “droplet”. These
semantic differences are critical in cloud computing as they make migrating an ap-
plication across providers a very complicated and costly task.

Lack of verification. Cloud solutions provide services, libraries or model-
driven tools to provision cloud resources. However, once provisioned, the deploy-

1WSDL is an Extensible Markup Language (XML)-based language that is used for describing
the functionality offered by a Web service.

2SOAP is a protocol specification for exchanging structured information in the implementation
of Web Services in computer networks.

3UDDI is a platform-independent, XML-based registry by which businesses worldwide can list
themselves on the Internet, and a mechanism to register and locate Web service applications.

1.3. Research Questions 9

ment of the applications can face several problems such as misconfiguration of links
between resources, lack of resources on the hosts in which the applications are de-
ployed, human errors, etc. The only way to be sure that the cloud configurations
will run or fail is to deploy them on the target executing environment. Moreover,
there is no way to verify that deployed configurations are conform with those de-
sired. The lack of verification tool becomes quickly painful and expensive when the
deployment task is repeated several times.

Lack of formalization. The semantics of cloud APIs is informally described
in their documentation available at provider websites within English prose. It is
then difficult to understand the behaviour of a cloud when the developer requests a
virtual machine for example. Moreover, the cloud solutions are numerous and also
lack of precise documentation, which complicate their understanding and compar-
ison. This lack of formalization hinders the understanding of the cloud APIs and
solutions, thus complicates the provisioning process and also misleads the alignment
and comparison between cloud offerings.

Vendor lock-in. It is recognized as one of the greatest challenges to cloud
adoption where cloud clients are locked-in to a specific cloud provider due to the
heterogeneity. Therefore, vendor lock-in is a serious result of all the problems
that I discussed above. This problem hinders the complete exploitation of the
full capabilities of cloud computing since it prevents two main intended aspects:
portability and interoperability, which are closely related terms and may often be
confused. Cloud interoperability is the integration between several cloud offerings,
whereas portability is the ability to move applications between different cloud
providers. Cohen clarifies in [Cohen 2009] the similarities and the differences among
these terms in an attempt to exemplify and differentiate them.

The work presented in this thesis aims to alleviate the challenges presented
above.

1.3 Research Questions

More specifically, this thesis aims to answer the following three research questions
(RQs):

• RQ#1: Is it possible to have a solution that allows to represent all kinds
of cloud resources despite their heterogeneity, and a complete framework for
managing them?

10 Chapter 1. Introduction

– How to design the cloud developer needs at a high-level of abstraction?

– How to verify the cloud structural and behavioral properties before any
concrete deployments?

– How to deploy and manage cloud configurations?

• RQ#2: Is it possible to automatically extract precise models from cloud APIs
and to synchronize them with the cloud evolution?

– How to provide an accurate description for a cloud API?

– How to correct the existing drawbacks in a cloud API documentation?

– How to analyze a cloud API documentation?

• RQ#3: Is it possible to reason on cloud APIs and identify their similarities
and differences?

– How to better understand cloud solutions?

– How to make sure that a cloud solution reflects the desired behaviour?

– How to ensure an accurate migration from a cloud solution to an-
other?

These research questions are explored in next sections.

1.4 Thesis Goals

The objective of this thesis topic was to propose the first formal framework to rig-
orously handle cloud resources. This framework allows to model, analyze, design,
deploy, manage every kind of cloud resources, and to reason over them. This frame-
work is based on the Open Cloud Computing Interface (OCCI) [Edmonds 2012, occa]
of the Open Grid Forum (OGF) recommendation. The tooling of this framework
relies on MDE techniques, particularly the Eclipse Modeling Framework (EMF) and
the Models@run.time approach. The formalization of this framework relies on for-
mal specification languages such as the Alloy [Jackson 2012] language developed by
Professor Daniel Jackson from the Massachusetts Institute of Technology (MIT). To
achieve this objective, I decompose it into the following goals.

Regarding RQ#1, this thesis aims to provide mechanisms to interact with het-
erogeneous cloud environments. These mechanisms allow one to model, analyze,
design, deploy and manage every kind of cloud resources.

Regarding RQ#2, this thesis aims to propose mechanisms to automatically build
a cloud model from the corresponding cloud API. These mechanisms rely on reverse-
engineering techniques. They consist in extracting knowledge from a cloud API

1.5. Thesis Vision 11

documentation in order to infer the concepts to be defined in the cloud model so it
correctly reflects the real cloud API. Also, these mechanisms allow to automatically
update the cloud model in case changes occurred to the cloud API.

Regarding RQ#3, this thesis intends to provide mechanisms to draw a precise
alignment between cloud APIs. For such purpose, I exploit formal languages to
rigorously and precisely encode cloud concepts and operations and to reason over
them.

1.5 Thesis Vision

We discussed earlier in this chapter that cloud computing encompasses heteroge-
neous cloud providers. As illustrated in Figure 1.2, this thesis takes advantage of
model-based and formal approaches in order to rise in abstraction from the hetero-
geneous real-world and promote multi-cloud computing. The approaches presented
in this thesis are represented in blue. The OCCIware model-driven approach is
discussed in the background part of this thesis, and the fclouds formal approach
is discussed in the contributions part of this thesis. More precisely, this thesis aims
at inferring models from multi-clouds using the OCCIware platform, and then
formally reasoning on these models using the fclouds framework.

Model-Driven Approach
for the Cloud

Formal Approach
for the Cloud

OCCIware

Fclouds

Infer

Reason

OCCI GCP AWS

Figure 1.2: Thesis Vision.

12 Chapter 1. Introduction

1.6 Proposed Solution

In this section, I provide an overview of the contributions described in this disser-
tation. As stated before, the goal of my thesis is to provide approaches, languages,
tools for inferring and enhancing the knowledge of cloud APIs, precisely represent-
ing this knowledge and efficiently reasoning over it. The main contributions of our
work are summarized as follows:

Precise models for cloud APIs. My first contribution is to enhance the
knowledge representation in cloud APIs by automatically inferring a precise model
from the cloud textual documentation. My approach is applied on a major cloud
provider, GCP. To address the drawbacks of GCP textual documentation, I propose
a precise model that describes GCP API. It consists in a precise specification that
describes without ambiguity the knowledge and activities in GCP to avoid confu-
sion and misunderstandings. This model-driven specification, called GCP Model,
is automatically inferred from the textual documentation of GCP. GCP Model

conforms to the OCCIware Metamodel and is implemented within the open
source model-driven Eclipse-based OCCIware tool chain. Thanks to our GCP

Model, I offer corrections to the drawbacks I identified in GCP textual documen-
tation. Also, I analyze GCP by drawing conclusions regarding their documentation
and quantifying their services.

The fclouds framework. I provide as second contribution fclouds, the
first formal framework for semantic interoperability between cloud APIs. By se-
mantic interoperability I mean to identify the similarities and differences between
cloud APIs concepts and to mathematically reason over them. fclouds contains
a catalog of cloud APIs that are precisely described. It will help the cloud cus-
tomer to understand the behaviour of the cloud API but also how to migrate from
one API to another, thus to promote semantic interoperability. To implement the
formal language that will encode all the APIs of our fclouds framework, I advo-
cate the use of formal methods, i.e., techniques based on mathematical notations.
They will allow us to rigorously encode cloud concepts and behaviour, validate cloud
properties and finally define formal transformation rules between cloud concepts. I
adopt the concepts of the OCCI common standard to define the formal language
of the fclouds framework. I choose to formalize OCCI with Alloy [Jackson 2012],
a lightweight promising formal specification language designed by Daniel Jackson
from the MIT.

1.6. Proposed Solution 13

Figure 1.3: My Thesis in Comics - Part 2.

The comic strip in Figure 1.3 vulgarizes this contribution based on OCCI and
Alloy formal language and its analyzer for precisely describing cloud APIs. It mainly

14 Chapter 1. Introduction

highlights how the formalization of OCCI in Alloy allows a standardization of the
the various cloud services. Consequently, this formalization helps the developer to
avoid the misunderstandings that result from the English documentations.

1.7 Dissertation Roadmap

Preface

State of the Art

1. Introduction

2. Model-Driven
Approaches for the Cloud

3. OCCIware

6. Conclusions and
Perspectives

4. Inferring Models
from Cloud APIs

5. Reasoning on
Cloud APIs

Background

Contributions

Conclusion

Figure 1.4: Thesis Outline.

This dissertation is divided in five parts and six chapters, as shown in Figure 1.4.
While this introductory chapter is part of the first part, the second one encloses the
State of the Art. In the third part, I present OCCIware, which is the model-driven
environment on which I rely to implement my works. The fourth part presents the
two contributions of this dissertation. Finally, the last part includes the conclusions
and perspectives of this dissertation. Below, I present an overview of the chapters
that compose the different parts.

1.7. Dissertation Roadmap 15

Part II: State of the Art

Chapter 2: Model-Driven Approaches for the Cloud In this chapter,
I present the approaches that are used in order to ensure multi-clouds, namely
standards, services, libraries and models. I focus on model-based cloud solutions
and I propose a taxonomy to provide a better understanding of the concerns in
which our work takes place. I list and describe the most relevant related works in
terms of our taxonomy criteria. Since our work presents a solution for multi-clouds,
the idea of this chapter is to explore the existing solutions and their limitations.

Part III: Background

Chapter 3: Modeling, Verifying, Generating and Managing Cloud
Resources with OCCIware. In this chapter, I present OCCIware, the project
that supports this thesis and the paltform that I used to implement my contributions.
OCCIware proposes to textually and graphically encode cloud APIs and cloud
configurations via OCCIware Studio. The latter is a model-driven environment
for OCCI standard, based on an Ecore metamodel. Then, OCCIware Studio is
linked with OCCIware Runtime, an execution environment for OCCI artifacts.
Therefore, from a designed and verified OCCI configuration, we can generate a
deployment script via the CURL Generator tool. Later, these configurations can be
managed at runtime via generated connectors deployed on OCCIware Runtime.

Part IV: Contributions

Chapter 4: Inferring Precise Models from Cloud APIs Textual Doc-
umentations. In this chapter, I present my approach for retrieving information
from cloud APIs, improving their representation and discovering new knowledge
from them. This approach is experimented by studying the textual documentation
of GCP, one of the leaders in the cloud market. Then, I build a precise model for
GCP, called the GCP Model. Thanks to this model, I study GCP API and provide
corrections to the six drawbacks of its current informal documentation.

Chapter 5: Specifying Heterogeneous Cloud Resources and Reasoning
over them with fclouds. In this chapter, I present my approach for formally
specifying cloud APIs, called the fclouds framework. Based on Alloy formal lan-
guage and the OCCI standard, I define a formal language for cloud computing that
relies on first-order logic paradigm combined with relational algebra. Then, I show
how having formal specifications of cloud solutions allow to check their behaviour,

16 Chapter 1. Introduction

detect their inconsistencies, and remove their ambiguity to understand their simi-
larities and promote their interoperability.

Part V: Conclusion

Chapter 6: Conclusions and Perspectives. In this chapter, I conclude the
work presented in this dissertation. I discuss some limitations that motivate new
ideas and future directions as short-term and long-term perspectives.

1.8 Publications

The contributions derived from this thesis have been published in international
peer-review conferences. In this section, I detail all the publications resulted from
my research for the last three years. These publications are ordered by year of
publication.

1.8.1 International Conferences

• Stéphanie Challita, Faiez Zalila, and Philippe Merle. “Specifying Semantic
Interoperability between Heterogeneous Cloud Resources with the FCLOUDS
Formal Language.” 11th IEEE International Conference on Cloud Computing
(CLOUD), San Francisco, California, USA, 2018, p. 367-374 [Challita 2018b]
(CORE rank B, acceptance rate: 20%).

• Stéphanie Challita, Faiez Zalila, Christophe Gourdin, and Philippe Merle.
“A Precise Model for Google Cloud Platform.” 6th IEEE International Con-
ference on Cloud Engineering (IC2E), Orlando, Florida, USA, 2018, p. 177-
183 [Challita 2018a] (acceptance rate: 19%).

• Fabian Korte, Stéphanie Challita, Faiez Zalila, Philippe Merle, and Jens
Grabowski. “Model-Driven Configuration Management of Cloud Applica-
tions with OCCI.” 8th International Conference on Cloud Computing and
Services Science (CLOSER), Funchal, Madeira, Portugal, 2018, p. 100-
111 [Korte 2018] (acceptance rate: 22%).

• Faiez Zalila, Stéphanie Challita, and Philippe Merle. “A Model-Driven Tool
Chain for OCCI.” 25th International Conference on Cooperative Information
Systems (CoopIS), Rhodes, Greece, 2017, p. 389-409 [Zalila 2017a] (CORE
rank A, acceptance rate: 20%).

1.9. Awards 17

• Stéphanie Challita, Fawaz Paraiso, and Philippe Merle. “Towards Formal-
based Semantic Interoperability in Multi-Clouds: The FCLOUDS Framework.”
10th IEEE International Conference on Cloud Computing (CLOUD), Hon-
olulu, Hawaii, USA, 2017, p. 710-713 [Challita 2017b] (CORE rang B, accep-
tance rate: 18%).

• Stéphanie Challita, Fawaz Paraiso, and Philippe Merle. “A Study of Virtual
Machine Placement Optimization in Data Centers.” 7th International Confer-
ence on Cloud Computing and Services Science (CLOSER), Porto, Portugal,
2017, p. 343-350 [Challita 2017a] (acceptance rate: 22.5%).

• Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, and Philippe Merle.
“Model-driven Management of Docker Containers.” 9th IEEE International
Conference on Cloud Computing (CLOUD), San Francisco, California, USA,
2016, p. 718-725 [Paraiso 2016] (CORE rank B, acceptance rate: 15%).

1.8.2 International Journal

In addition, one journal article is under submission:

• Faiez Zalila, Stéphanie Challita, and Philippe Merle. “Model-Driven Cloud
Resource Management with OCCIware.” Future Generation Computer Sys-
tems (FGCS), 2018 [Zalila 2018] (Impact factor 4.639).

1.9 Awards

During this thesis, I was selected as an ambassador of the French fellowship
L’ORÉAL-UNESCO FOR WOMEN IN SCIENCE 2018. Among 900 ap-
plications, 20 female PhD candidates and 10 female postdocs were granted this
award.

Also, I received two student travel grants from:

• IEEE CLOUD 2017 conference that took place in Honolulu, Hawaii, USA,
and,

• FormaliSE 2018 conference (co-located with International Conferences on
Software Engineering (ICSE)) that took place in Gothenburg, Sweden.

Part II

State of the Art

In this part, I review approaches related to cloud computing and I classify the existing
models for the cloud.

Chapter 2

Model-Driven Approaches for the
Cloud

Contents
2.1 Multi-Cloud Ecosystem . 22

2.1.1 Provider Space . 24

2.1.2 Programming Space . 26

2.1.3 Modeling Space . 26

2.2 Taxonomy of Model-Driven Approaches for the Cloud . . . 27

2.2.1 Usages . 28

2.2.2 Concepts . 29

2.2.3 Characteristics . 29

2.3 Model-Driven Approaches for the Cloud 31

2.4 Discussion . 40

2.5 Summary . 43

Today, the plethora of cloud providers and their heterogeneity hinder their in-
teroperability. Therefore, many solutions have emerged to add abstraction be-

tween the cloud providers and provide mechanisms to automate the provisioning of
services from multi-clouds. Among these solutions, MDE has received a significant
attention in the development of software for cloud computing. MDE is a software
development methodology that allows software developers to design the software
concerns at a high level of abstraction, hide different implementation details, reduce
complexity, ease reuse, and thus improve software quality. Since 2010, several MDE
approaches for the cloud have emerged. However, each one targeted a particular
problem and resolved it within an ad-hoc manner. In fact, some years after the
emergence of the cloud computing, several works [Bruneliere 2010, Baryannis 2013]
were interested to the synergy between the cloud and MDE. However, no work gave a
consensus on the set of models, languages, model transformations and software pro-
cesses for the model-driven development of the cloud applications. In this chapter,
I present the first detailed study about the use of MDE for the cloud.

22 Chapter 2. Model-Driven Approaches for the Cloud

This chapter is structured as follows. Section 2.1 recalls the concept of “Cloud-
ware engineering” and classifies the existing Cloudware engineering solutions into
three categories that I call spaces. Section 2.2 describes a taxonomy for explain-
ing Model-Driven Approaches for the Cloud (MDAC). Therefore, I list the different
identified usages for MDAC, during the different phases of building an application
for/in the cloud. Afterwards, I discuss what an eventual MDAC can contain as con-
cepts to reply to the different usages needs. Then, I discuss how these concepts can
be encoded and what are the different possible approaches to do that. Section 2.3
details twenty-two existing MDAC. Then, I discuss these solutions according to my
taxonomy criteria. Section 2.4 identifies some limitations in the existing approaches.
Finally, Section 2.5 concludes the chapter.

2.1 Multi-Cloud Ecosystem

The emergence of the virtualization and the cloud computing has fostered the de-
ployment of the software on the cloud. This specific kind of software is called
Cloudware. The Cloudware engineering requires us to update the classical software
engineering approaches to be adapted to the cloud computing specificities such as
elasticity and portability. To promote interoperability between clouds, i.e., to en-
able multi-clouds, the Cloudware engineering market counts numerous solutions at
different levels of abstraction, traditionally called service layers. From my point of
view, these solutions can be classified into three spaces, as shown in Figure 2.1. I
identify the Provider Space that offers solutions for the cloud provider, the Program-
ming Space that offers solutions for the cloud developer and the Modeling Space for
the cloud architect. Multi-cloud solutions, whether they belong the Provider Space,
Programming Space or Modeling Space, follow sometimes the current emerging cloud
standards.

Standards. Cloud standards result from collective agreements and aim at pro-
viding some concepts, characteristics and implementations to be commonly used by
cloud providers. Among cloud standards, I identify:

• Cloud Application Management for Platforms (CAMP) [Carlson 2012, cam]:
the Organization for the Advancement of Structured Information Standards
(OASIS)'s CAMP standard targets the deployment of cloud applications on
top of PaaS resources.

• Cloud Data Management Interface (CDMI) [cdm]: defines a RESTful inter-
face that allows cloud applications and users to retrieve and perform opera-
tions on the data from the cloud.

2.1. Multi-Cloud Ecosystem 23

Multi-cloud
Services

AWS
API

OCCI
API

DigitalOcean
API

DigitalOcean
SDK

Multi-cloud
Libraries

Modeling
Space

Programming
 Space

GCP
SDK

AWS
SDK

Provider
 Space

Public Private

Cloud
provider

Public

GCP
API

Cloud
architect

Cloud
developer

Model-Driven Approaches
for the Cloud

OCCI
SDK

…

…

Public

Standards

Figure 2.1: Multi-Cloud Ecosystem.

• Cloud Infrastructure Management Interface (CIMI) [Davis 2012]: the Dis-
tributed Management Task Force (DMTF)'s CIMI standard defines a RESTful
API for managing IaaS resources only.

• OCCI [Edmonds 2012, occa]: the OGF's OCCI proposes a generic resource-
oriented model for describing and managing any kind of cloud resources, in-
cluding IaaS, PaaS, and SaaS.

• Open Virtualization Format (OVF) [ovf]: the DMTF's OVF standard defines
a packaging format for portable virtual machine images.

• Topology and Orchestration Specification for Cloud Applications
(TOSCA) [Binz 2012]: the OASIS's TOSCA defines a model to de-
scribe and package cloud application artifacts and to deploy them on IaaS
and PaaS resources.

24 Chapter 2. Model-Driven Approaches for the Cloud

Discussion

Using standards for cloud computing is quite advantageous because they result
of a collective agreement and they extract the key actions and characteristics
of cloud providers. Also, being a standard means that several implementations
have been successfully built using this standard. However, standards are usually
specific for a particular cloud service model. Moreover, leading cloud providers
have unfortunately no interest in adopting a standard API like the one offered
by OCCI to ease interoperability with other clouds. Each of the cloud providers
would rather have proprietary, closed source implementations with custom
APIs. However, OCCI has proven its utility in several contexts. For example,
the EGI FC [egi] is based on OCCI to ensure interoperability among twenty
cloud providers and over three hundred data centers. Furthermore, OCCI at-
tracts several cloud brokers such as CompatibleOne [Yangui 2014] that aims at
ensuring seamless access to the heterogeneous resources of cloud providers. For
these reasons among others, I propose in this thesis an OCCI-based approach
for interoperability in a multi-cloud context.

In the following, I present the Cloudware spaces and highlight the problem at
each space of the cloud ecosystem.

2.1.1 Provider Space

The cloud market counts today a plethora of cloud providers that, as shown in
Table 2.1, are heterogeneous in terms of their deployment model, service model and
management interface. This heterogeneity leads to vendor lock-in.

Table 2.1: Heterogeneity of Cloud Providers.
Cloud Provider Deployment Model Service Model CRM-API

AWS [aws] Public IaaS & PaaS REST & SOAP
DigitalOcean [dig] Public IaaS REST

EGI FC [egi] Private IaaS REST
FlexiScale [fle] Public IaaS SOAP
GCP [gcp] Public IaaS & PaaS REST

Microsoft Azure [azu] Hybrid IaaS REST
Heroku [her] Public PaaS REST

SalesForce [sal] Public SaaS REST & SOAP
VMware [vmw] Hybrid IaaS REST

Services. To address the providers' heterogeneity problem, the solution in this
space would be a service that offers a unique interface to handle the heterogeneity
of different APIs. A service is expected to intermediate the relationship between

2.1. Multi-Cloud Ecosystem 25

the cloud providers and users to simplify the process of combining multiple cloud
services. In this subsection, I survey different cloud services, whether they are
commercial or open source.

• Aeolus [aeo]: is an open source European research project aiming at automat-
ing the deployment and reconfiguration of machine pools in the clouds.

• Aneka [Vecchiola 2009]: is a PaaS, that is commercialized by Manjra-
soft [man], for building .NET applications and deploying them on either public
or private clouds.

• CompatibleOne [Yangui 2014]: is an open source PaaS to automate appli-
cation deployment on multiple providers. It is based on CDMI and OCCI
standards.

• Kaavo [kaa]: is a commercial management interface for configuring and man-
aging applications on the supported cloud providers and platforms.

• mOSAIC [mos, Sandru 2012]: is a European project that offers an open source
API for the development and deployment of applications that use multiple
clouds.

• Optimis [Ferrer 2012]: is also a European project that offers an open source
PaaS that allows cloud service provisioning and the management of the life-
cycle of the services.

• RightScale [rig]: is a commercial service for deploying and managing applica-
tions across clouds.

• Scalr [scab]: similar to RightScale, Scalr provides deployment of virtual ma-
chines in various clouds and includes automated triggers to scale up and down.

• STRATOS [Pawluk 2012]: offers single sign-on and monitors resource con-
sumption and the fulfillment of service level agreements and offers autoscaling
mechanisms.

Discussion

A cloud service only masks the heterogeneity problem and does not semanti-
cally resolve it. Cloud users would not have a way to understand how their
applications and sensitive data are dealt with inside a cloud, thus hampering
trust to cloud services. Also, an important limitation in using cloud brokering

26 Chapter 2. Model-Driven Approaches for the Cloud

services is the user reliance on the broker to be continuously up to date with
new cloud technologies, options and offerings.

2.1.2 Programming Space

In order to allow developers to provision cloud services, each cloud offers one or
several language-specific Software Development Kit (SDK)s to hide technical details
of APIs. However, these SDKs are heterogeneous. Therefore, many multi-cloud
libraries have emerged to allow developers to add abstraction between the cloud
SDKs and enable multi-clouds. In this subsection, I survey different multi-cloud
libraries providing a uniform way to access multiple services and resources, as well
as facilitating the provisioning of services and resources from multiple clouds.

• Fog [fog]: is a Ruby library that provides an interface, making clouds easier
to work with and to switch between providers.

• Gophercloud [gop]: is a Go library that allows cloud developers to connect to
their applications on OpenStack clouds.

• jclouds [jcl]: is a Java library that introduces abstractions aiming the porta-
bility of applications and supports more than thirty cloud providers.

• libcloud [lib]: is a Python library that controls Virtual Machine (VM)s from
different cloud providers.

• SimpleCloud [sim]: is a PHP library for accessing storage, queue and database
services in the cloud.

Discussion

The multi-cloud libraries are tightly coupled to their programming languages
like Ruby, Go, Java, Python and PHP, so the language compiler is able to
check the correctness of the developer code but does not know how to perform
a verification related to the cloud computing field. The developer needs to ignore
implementation details and focus on general properties and characteristics. This
will help him/her to avoid premature commitment to implementation choices.

2.1.3 Modeling Space

Meanwhile, there is a need for cloud architects to design their applications for multi-
clouds regardless of the implementation details. For this, model-based solutions are
becoming increasingly popular in cloud computing as they provide domain-specific
modeling languages and frameworks that enable architects to describe/select/adapt

2.2. Taxonomy of Model-Driven Approaches for the Cloud 27

multi-cloud environments. This strategy is summarized as “Model once, generate
anywhere”. I identify some of the notable model-based solutions for multi-clouds.
Unlike programming libraries, they work at a high level of abstraction by focusing
on cloud concerns rather than implementation details. I believe that model-driven
engineering brings many benefits for multi-clouds [Bruneliere 2010]. Therefore, I
focus in the rest of this chapter on detailing the model-driven Cloudware stack and
discussing model-based approaches.

2.2 Taxonomy of Model-Driven Approaches for the
Cloud

In order to understand MDAC and as shown in Figure 2.2, I propose a taxonomy
that presents the classification of MDAC literature in terms of three main aspects I
identified:

• MDAC usages categorized by the phase of using the approach: design time,
deployment time, and production time (Subsection 2.2.1),

• MDAC concepts used to satisfy the corresponding MDAC usages. These con-
cepts may belong to IaaS or PaaS domains, or they reflect transverse cloud
concerns like SLA, elasticity, etc. (Subsection 2.2.2), and,

• MDAC characteristics that represent the characteristics of the language used
to implement the MDAC, i.e., the paradigm, the syntax and the semantics
(Subsection 2.2.3).

Model-Driven
Approaches for

the Cloud

Usages Concepts Characteristics

D
e

si
gn

 T
im

e

D
e

p
lo

ym
e

n
t

Ti
m

e

P
ro

d
u

ct
io

n
 T

im
e

A
b

st
ra

ct
 S

yn
ta

x

C
o

n
cr

et
e

 S
yn

ta
x

P
ar

ad
ig

m

Se
m

an
ti

cs

In
fr

as
tr

u
ct

u
re

P
la

tf
o

rm

Tr
an

sv
e

rs
e

 c
lo

u
d

co

n
ce

rn
s

Figure 2.2: Taxonomy Criteria.

28 Chapter 2. Model-Driven Approaches for the Cloud

2.2.1 Usages

Usually, the process of developing an application for/in the cloud is characterized by
three main phases: design, deployment and production (i.e., the runtime). For each
one, I have identified a set of recurrent usages that can occur during the lifecycle
of a cloud application. They are the models which represent, at a high level of
abstraction, concrete concerns of cloud management interfaces.

2.2.1.1 Design Time

This stage regroups the fundamental activities that enact MDAC. It consists for
example in migrating a legacy system to the cloud, expressing the client needs by
designing and verifying the cloud application requirements, designing the expected
cloud environment to focus on cloud concerns rather than the implementation de-
tails, selecting the optimum cloud provider that suits the application requirements,
refining generic models so they become adapted to represent concrete cloud offer-
ings, exporting cloud models as specifications, documentations, and design artifacts
to ease the usage of the cloud systems, etc.

2.2.1.2 Deployment Time

Once the cloud architecture model is designed, MDAC should be capable to generate
the code artifacts in any form for the deployment stage. For example, if the model
defined is related to Docker technology [Merkel 2014], MDAC should generate the
artifacts corresponding to the model in a form of docker-compose file that can be
managed by Docker swarm, or YAML configuration files that can be managed by Ku-
bernetes or OpenShift. In addition, MDAC should be able to generate deployment
scripts that can be used by a third-part deployment tools. For example MDAC will
be able to generate Ansible playbooks (roles, tasks, host_vars, etc.) [ans], Puppet
manifests (resources, classes, modules) [pup], and Chef cookbooks (recipes, tem-
plates, etc.) [che].

2.2.1.3 Production Time

During this phase, MDAC allow the user to have a model representation, i.e., an
abstraction of its cloud running system. Then, MDAC will provide a link between
the designed architecture and the deployed cloud artifacts on the executing environ-
ment. When modifications occur in an existing architecture, MDAC should update
the executing environment. Conversely, when changes occur in the executing envi-
ronment, they should be reflected in the existing architecture. Finally, MDAC will
monitor in a real time all the resources deployed in the executing environments and

2.2. Taxonomy of Model-Driven Approaches for the Cloud 29

will report the status in many forms including updating widgets in the designed
architecture, or visualizing the monitored facts in a specialized graphs or exporting
them as CSV, excel, etc.

2.2.2 Concepts

To implement an MDAC, the designers need to define a set of concepts that represent
a specific cloud domain such as infrastructure or platform or related to transverse
cloud concerns such as elasticity, Service Level Agreement (SLA) and simulation.
Each domain or concern includes a set of specific concepts. For example, VM,
container and network integrate the infrastructure domain, whereas server, appli-
cation and database integrate the platform domain. Each domain-specific concept
defines a set of attributes, actions, and constraints. An attribute represents a spe-
cific property of this type. An action defines a business specific behavior that can
be triggered by a type instance (named also resource). A constraint associated to
a type represents a business condition that must be respected by each conforming
resource.

2.2.3 Characteristics

MDAC are defined through the use of a metamodel that formalizes the different
concepts of the cloud domain. This metamodel defines the modeling language, i.e.,
the Cloud Modeling Language (CML), which is the bridge between cloud developers
and the cloud artifacts. Similar to other languages, a CML is defined in terms of
its paradigm, syntax and semantics, which are the three pillars of CML character-
istics [Kleppe 2008]. The syntax of a CML may be further divided into an abstract
syntax and a concrete syntax.

2.2.3.1 Paradigm

The paradigm is the manner of thinking when using a language. For example, object-
oriented languages involve objects as a paradigm. As for a cloud Domain-Specific
Modeling Language (DSML), its paradigm may rely on the application components,
cloud services, cloud resources, or Feature Model (FM)s. On one hand, the paradigm
of components is application-oriented since it is used to describe the architecture
of the application. The components are thus the entities of an application that the
developer needs to deploy on the cloud. On the other hand, services, resources and
FMs are cloud-oriented paradigms, i.e., used to describe the cloud offerings. By
services, I discuss slightly coupled, shared entities, already deployed in the cloud.
A cloud platform provides services, such as computing and storage, and provides

30 Chapter 2. Model-Driven Approaches for the Cloud

management interfaces for these services. Since they are shared by several users
simultaneously, services do not keep any state, i.e., stateless. Beside services, re-
sources, such as VMs and containers, are accessible via Uniform Resource Identifier
(URI)s through REST or SOAP APIs. Basically, resources are not shared but, they
are available on demand by each user. Being able to describe everything you want
in data centers, i.e., compute, storage, network, applications, but even lights for ex-
ample, one can say that the use of resources is generic and not specific to the field of
cloud computing. This makes the tour de force of this paradigm. As for FMs, they
were introduced in 1990 by Kang et al. [Kang 1990], as part of the Feature Oriented
Domain Analysis (FODA). They are used to denote Software Product Line (SPL)s.
In cloud computing, FMs are used to represent variability of cloud providers.

2.2.3.2 Abstract syntax

The abstract syntax represents the concepts available in a language and how they
are related. For CMLs, the abstract syntax is described by defining a metamodel,
which is itself a model that defines the concepts of the domain and how they in-
terrelate. Metamodeling techniques have been standardized by the Object Manage-
ment Group (OMG) Meta-Object Facility (MOF) [MOF 2006] and there are sev-
eral tools, like the EMF [EMFa], Enterprise Architect [EA], Rational Rose [Rat],
ATOM3 [Hußmann 2001] etc. that provide metamodeling capabilities. Regarding
the abstract syntax, I identify Unified Modeling Language (UML) profiles, Ecore
and XML schema.

With UML profiles, we talk about Internal Domain specific language (DSL)s
which are limited to the basic language. Although they may draw the libraries and
other facilities, they suffer from the lack of abstraction and the paucity of available
operations. As for Ecore and XML schema, they are external DSLs, which weakness
is the need to create their own tools.

2.2.3.3 Concrete syntax

The concrete syntax describes a specific representation of the language used to
display models to end users. It can be either a textual syntax or a graphical rep-
resentation, i.e., displayed with a tree-like or a diagram notation. On one hand,
the textual syntax is usually defined using a combination of regular expressions
and Backus-Naur Form (BNF). On the other hand, the graphical syntax uses a
diagram technique with named symbols that represent concepts and lines that con-
nect the symbols and represent relationships. Several tools have been proposed to
implement (i) textual concrete syntaxes for DSLs like Xtext [xte 2016] and EMF-

2.3. Model-Driven Approaches for the Cloud 31

Text [emfb], and (ii) graphical concrete syntaxes like Graphical Modeling Framework
(GMF) [gmf], Sirius [sir] and Graphiti [gra].

2.2.3.4 Semantics

The semantics defines well-formedness criteria and gives the meaning of abstract
syntax and, indirectly, of concrete syntax. It can be classified into two main cate-
gories: static (or structural) semantics and behavioral (or dynamic) semantics. The
former defines restrictions on the structure of the designed model, while the latter
defines the behavior of the model elements in terms of states, events and interac-
tions. The semantics of CMLs can be explicitly specified using natural language,
Object Constraint Language (OCL) constraints and ontologies. However, sometimes
the semantic content is not explicitly specified. In this case, domain-specific models
are only transformed into artifacts of the implementation or directly executed by a
model interpreter that has the potential of facilitating the processing of models at
runtime in order to adapt a running application [Sousa 2012], [Fowler 2010]. In this
case, the semantics is nothing but the abstraction of the model interpreter.

2.3 Model-Driven Approaches for the Cloud

Many MDAC were recently proposed in order to enable abstraction from different
implementation languages and platforms. This way, the focus is shifted from the
solution space towards the problem space, and from the low-level implementation
details towards the higher-level domain specific concepts. The numerous existing
MDAC might be overlapping in some aspects and very different in others. Devel-
opers require to have means to compare the existing approaches and to select the
most appropriate one that fits their needs. Additionally, the lacks of the existing
approaches need to be highlighted in order to carry on future work in this field.
Consequently, the need for investigating MDAC becomes quite urgent. Across the
literature on MDAC surveys, the authors in [Bergmayr 2018] recently presented the
most complete state-of-the-art of cloud modeling languages, so far. They surveyed
nineteen approaches, that appeared before 2015, in terms of their purposes, charac-
teristics, capabilities and tooling. In my survey, I study twenty-two existing MDAC
in terms of the three criteria elaborated in Section 2.2, i.e., usages, concepts and
characteristics.

Blueprinting [Nguyen 2012] provides a language that describes cloud services
that are combined from a variety of cloud providers, in order to select the best
configuration and easily deploy application components in cloud federations while

32 Chapter 2. Model-Driven Approaches for the Cloud

crossing SaaS, PaaS and IaaS layers. The current version of Blueprinting is focused
on designing blueprints, which are the abstract description of applications assembled
in terms of components. As for cloud offerings, they are represented and consid-
ered as services, and templates are used to specify the service features. Blueprints
are encoded in XML and represented graphically in terms of a Virtual Architec-
ture Topology (VAT). The Blueprinting approach aims to include a detailed and
automatized deployment plan that abstracts the technical details of the interaction
with a cloud, and reconfiguration actions defined in terms of policies within the
WS-Policy or the SLAng languages. To my knowledge, these functionalities are not
implemented so far.

Brooklyn [bro] is a framework developed by the Apache consortium for model-
ing and managing applications through autonomic deployment blueprints textually
expressed in YAML in terms of components, and which semantics complies with the
CAMP standard. Brooklyn also exposes many of the CAMP REST API endpoints
and uses sensors and actuators to provide support for runtime management allowing
for dynamically monitoring the application when needed. It introduces vocabulary
to describe PaaS capacities and requirements of the application (e.g., databases,
containers), and allows the user to define and enforce his/her own reconfiguration
policies.

Cloud Application Modeling and Execution Language
(CAMEL) [Kirkham 2014] enables developers to provision IaaS and PaaS,
and to deploy application components in multi-clouds. It takes into account
several aspects of the application, namely provisioning and deployment topology,
provisioning and deployment requirements, service-level objectives, metrics, scal-
ability rules, providers, execution contexts, etc. Therefore, CAMEL considers
three types of models: (i) a Configuration Model for selecting the suitable cloud
services, (ii) a Deployment Model for hosting the application and (iii) an Execution
Model for managing the deployed application. CAMEL exists as an Eclipse
plugin, and does not include a graphical interface, but only a textual editor
for designing models. CAMEL integrates and extends existing DSLs, such as
CloudML [Brandtzæg 2012, Ferry 2013], SALOON [Quinton 2013], the Scalability
Rules Languages (SRL), and the organization part of CERIF [Asserson 2002]. I
believe that CAMEL could be a source of inspiration for the future efforts in
modeling the cloud.

2.3. Model-Driven Approaches for the Cloud 33

Cloud Application Modeling Language (CAML) [Bergmayr 2014] allows
cloud architects to represent multi-cloud applications in UML and to select concrete
cloud offerings captured by dedicated UML profiles in order to deploy the application
components. As an example, Google App Engine (GAE) profile was applied to refine
the deployment model of their Petstore reference application, towards concrete cloud
offerings provided by the GAE. In this approach, cloud providers that operate at
both infrastructure level and platform level are designed. CAML is a UML internal
language, presented as a graphical notation, and based on a library, profiles and
templates. However, the CAML approach does not include a model interpreter to
enact the deployment of multi-cloud applications.

Cloud Adoption Toolkit [Khajeh-Hosseini 2012] is a collection of five tools
that provide decision support for the migration of computing services to a cloud
environment. It considers a number of factors that may contribute to the impact
caused by the migration of an application to the cloud, i.e., cost, energy consump-
tion, stakeholder impact, social and political factors among others. However, their
proposal is focused only on the cost model, which includes a number of infrastruc-
ture configuration elements, i.e., operating system, server specifications (e.g., CPU
clock rate, RAM), storage size, applications, and data already deployed on the VM,
among others. The Cost Modeling tool utilizes UML deployment diagrams (i.e.,
graphical notation), to model an intended architecture for running legacy software
in a cloud environment. Later on, price information that enables automated cost es-
timation for a specific cloud environment is added to the deployment model. These
authors work under the assumption that, in most cases, the application deployment
is performed on virtual machines. The Cost Modeling tool can model the pricing
schemes of multiple cloud providers such as AWS, Microsoft Azure, FlexiScale, etc.
However, once the users have created the model, they can select a single cloud
provider they wish to use for each of their virtual machines.

Cloud DSL [Silva 2014] is a language that describes infrastructure services from
different types of clouds. Then, Cloud DSL maps and adapts entities of the cloud
models they propose to platform-specific cloud APIs. Cloud DSL is based on an
Ecore metamodel and provides a graphical editor and a textual notation. Cloud
DSL has been integrated with TOSCA [Binz 2012]. Using Cloud DSL with TOSCA
reduces the workload of creating cloud descriptions in a TOSCA specification.

CloudGenius [Menzel 2012] is a framework mainly used for the selection of
appropriate cloud infrastructure services among several ones stored manually and

34 Chapter 2. Model-Driven Approaches for the Cloud

described textually. The Ecore metamodel, on which CloudGenius relies, allows a
multi-criteria decision approach from a set of requirements. The latter are based
on numerical functional requirements (network latency, technical parameters such
as CPU, RAM and storage size, popularity, etc.) and non-numerical functional
requirements (operating system, virtual machine format, licence, etc.). Yet, this
approach neglects to consider non-functional concerns like the cost, the availability,
the response time, etc. A tool prototype named CumulusGenius, used as a Java
library, allows the user to programmatically define the requirements that are given
as input to CloudGenius selection framework. Then, whenever a solution is found,
virtual machines can be executed on top of Amazon EC2 only.

CloudMIG [Frey 2011] is a framework that facilitates the migration of existing
software systems to IaaS and PaaS-based cloud environments, which are Amazon
EC2 and Google App Engine, respectively. In this approach, cloud environments
are modeled as instances of a Cloud Environment Model (CEM) which is an Ecore-
based metamodel and for each cloud environment, all possible configurations are
modeled. A configuration contains in particular a set of elements and constraints
on them. CloudMIG takes as input the legacy software system, and extracts the
architectural and utilization models based on the Architecture-Driven Moderniza-
tion (ADM) principles. From this model, a single compatible cloud environment
model candidate is selected. Then, CloudMIG relies on its own constraint valida-
tors CloudMIG Xpress [Clo] to check the conformance of the legacy software (the
extracted models) with the candidate CEM in terms of constraint violations. The
CloudMIG framework is then extended to improve the search of well-suited IaaS
environments using search-based genetic optimization.

CloudML [Brandtzæg 2012, Ferry 2013, Ferry 2018] is a cloud modeling
language that allows both cloud providers and developers to describe cloud ser-
vices and application components, respectively. Then, it helps to provision cloud
resources by a semi-automatic matching between the defined application require-
ments and the cloud offerings. CloudML is exploited both at design time to de-
scribe the application provisioning of cloud resources after performing the nec-
essary orchestration, and at runtime to manage the deployed applications. In
fact, the model at design time is automatically handled by the Cloud Modeling
Framework (CloudMF), which returns a runtime model of the provisioning re-
sources, according to the Models@run.time approach [Blair 2009]. CloudML only
provides a JSON and an XML textual syntax to specify deployment and man-
agement concerns in IaaS and/or PaaS clouds. CloudML is first introduced in

2.3. Model-Driven Approaches for the Cloud 35

the REMICS project [Sadovykh 2011] as a UML model and developed later by
three projects that differ in their objective, i.e., ARTIST [Bergmayr 2013], MODA-
Clouds [Ardagna 2012], and PaaSage [paa, Jeffery 2017]. On one hand, REMICS
and ARTIST mainly support the migration of legacy software towards a cloud-
based environment. In this sense, they adopt UML models since they are reverse-
engineered and tailored to target cloud systems. In order to extract some semantics,
they map the UML models to OpenTOSCA [Binz 2013]. The Cloud target Selec-
tion (CTS) [Kopaneli 2015] provides a multi-criteria decision making process for the
selection of the cloud target. It combines different types of criteria by using the con-
cepts of CloudML@ARTIST. On the other hand, MODAClouds and PaaSage aim
at supporting engineers in building and deploying multi-cloud applications. There-
fore, they propose Ecore-based models that include dynamic variability to deal with
multiple cloud environments and especially runtime changes. Note that CloudML
in PaaSage is the first member of the family of DSLs that form CAMEL.

Farokhi [Farokhi 2014] proposes a framework that assists SaaS providers to
select suitable IaaS, which best satisfy their requirements while handling SLA issues.
The framework includes three main phases: (1) SLA Construction, (2) Service
Selection, and (3) SLA Monitoring and Violation Detection. The Service Selection
Engine takes a textual input, an XML file precisely, that describes the SaaS provider
requirements. Then, it finds the adequate IaaS providers' services. A breached SLA
on runtime will question the selection of the cloud provider and will probably lead
to some reconfiguration.

Frey et al. [Frey 2013] focus on selecting near-optimal cloud deployment ar-
chitectures and defining runtime reconfiguration rules. The main purpose of this
approach is to support the migration of software components and their deploy-
ment on IaaS environments. To do so, the authors define Cloud Deployment Option
(CDO)s which are UML profiles with graphical syntax and constraints written in
English prose. Then, they propose CDOXplorer, a genetic algorithm that takes
the CDOs as input and analyzes the configuration space of a given cloud provider.
Later on, CDOXplorer finds the best configuration based on the average response
times and SLA violations. CDOXplorer is implemented in the scope of an open
source tool CloudMIG Xpress, that utilizes models which can almost be automati-
cally extracted. The authors in [Frey 2013] assume that the application deployment
is always performed on virtual machines. They don’t take the principle of containers
into account.

36 Chapter 2. Model-Driven Approaches for the Cloud

Garcia-Galán et al. [García-Galán 2016] aim to solve the problem of selecting
the most suitable configuration among the configuration space offered by a given
provider. Their focus is on IaaS. They propose a model that is based on FMs, and
apply the automated analysis of FMs as a reasoning technique over the model. Their
model can be graphically represented using a tree-like notation, in which features
are organized hierarchically. However, their approach did not consider defining a
metamodel based on FMs, for the configuration of cloud services. The information to
create the FM is automatically extracted from the provider website using an ad-hoc
web crawler. This proposal is only applicable to one cloud provider, which is Amazon
EC2. However, these authors plan to include different providers in the future. Their
model includes cloud configuration elements such as instance type, which determines
the configuration of a machine, operating system, storage capability, geographic
location, billing information, and customer usage data. Finally, their proposal allows
defining constraints on the features and attributes of the model. These constraints
are written in English prose. They implemented their proposal and compared their
implementation against two commercial tools, Amazon TCO and CloudScreener,
and they concluded that their proposal is more expressive and accurate in terms
of providing a wider range of configuration options and choosing the most suitable
configuration.

Gherardi et al. [Gherardi 2014] claim to present the first paper that combines
robotics, cloud computing, and SPLs. It is interested in configuring and deploying
complex Robot as a Service (RaaS) only on top of Rapyuta [Mohanarajah 2015],
an open source robotic PaaS. Decisions regarding what components of Rapyuta to
employ and how to compose them (the connections) are taken by exploiting three
models via a Resolution Engine. The first two models are a reference architecture
which is an Ecore metamodel reflecting the requirements of the application, and
an extended FM, i.e., a FM that enriches the features in a model with attributes
in order to improve the semantics. The third model is the glue between the first
two models and specifies how the variability can be resolved. Feature Selector tool
for creating a selection of features reflecting the requirements of their application.
Graphical editors are used to design the models, that are described within a textual
syntax too.

Holmes [Holmes 2014] proposes three textual languages based on an Ecore
metamodel for expressing and capturing IaaS concepts, then provisioning a cus-
tomized stack of cloud services, via model transformations. From the DSL programs
and the supplied Puppet [pup] modules, the entire cloud service stack is automat-

2.3. Model-Driven Approaches for the Cloud 37

ically built, without further user interaction. Later on, in order to reconfigure the
deployment and achieve the new requirements of the system, reverse-engineering is
used to capture the differences between models. Therefore, for dealing with differen-
tial changes of IaaS models, Holmes [Holmes 2015] proposes a model-based round-
trip engineering approach that combines the power of model-driven generation with
runtime reflection, i.e., this approach does not only incorporate models from de-
sign time but also Models@run.time. This approach allows to compare and migrate
infrastructure services between two clouds. They consider a migration from Open-
Stack 2012.1 to OpenStack 2013.2. For orchestration, they employ Nova API [nov],
which is OpenStack native.

MOve to Clouds for Composite Applications (MOCCA) [Leymann 2011]
is a method for moving legacy applications to the cloud. It introduces an Ecore
metamodel for specifying the applications that are modeled in terms of compo-
nents. The model semantics is described with natural language and can also be
deduced by the behavior of the deployment optimizer in use. The authors also pro-
pose Cafe [Mietzner 2009], a prototypical tool supporting the MOCCA method and
offering graphical and textual modeling of the application architecture and topol-
ogy. The MOCCA method allows for provisioning infrastructure resources that are
described in OVF files which perform the required adaptation for the components
deployment. Cafe assumes that an OVF file represents only one component. In case
an OVF file contains the virtual image of more than one component (i.e., more than
one virtual system), this file must be split into separate OVF files manually. Thus,
Cafe does not support the notion of multiple clouds. However, the authors of this
method state that a future extension of Cafe will support OVF files with virtual
images of multiple components.

MULTICLAPP [Guillén 2013] is a framework for modeling components of
multi-cloud applications which are not dependent of any specific cloud provider.
This framework is based on a UML profile, with a graphical editor to model com-
ponents that are expected to be deployed on PaaS cloud environments by applying
cloud provider independent stereotypes to them. These stereotypes enable the ap-
plication developers to select the cloud provider offerings that are best for deploying
the application components. Applications that are fully modeled are processed by
a deployment engine, which generates each of the cloud artifacts identified in the
deployment plan. Each artifact is adapted in order to comply with the specifications
of its assigned platform. Once they are generated, the artifacts can be deployed in
their cloud platforms.

38 Chapter 2. Model-Driven Approaches for the Cloud

OpenTOSCA [opeb] is an ecosystem developed by the University of Stuttgart
that aims to provide modeling tool support and runtime support for the TOSCA
standard [Binz 2012]. Several implementations of OpenTOSCA were developed.
For example, (i) Winery [Kopp 2013] provides an open source Eclipse-based graphi-
cal modeling tool for TOSCA topologies/structures/architectures, i.e., the software
components that constitute the application, the physical or virtual nodes on which
the components will be deployed, and the relationships between components and
nodes, and (ii) OpenTOSCA runtime [Binz 2013] provides an open source con-
tainer for deploying TOSCA-based applications defined in a Cloud Service ARchive
(CSAR) packaging format. The OpenTOSCA runtime is hence responsible for trans-
lating a TOSCA topology into actions to be performed in clouds. These actions are
sent to the clouds through their respective APIs. Despite TOSCA language man-
ages to cover the infrastructure and platform service stack, it is only defined as a
textual XML document or YAML document so it is complicated to have an overview
of the supported cloud entities. Furthermore, TOSCA does not employ the typical
cloud vocabulary, such as services and resources. Instead, it defines a set of abstract
elements, such as nodes and relationships to respectively designate cloud services
and how they interact. Therefore, designing a TOSCA topology requires the effort
of a human developer, which is a time consuming and an error-prone activity. The
application deployment to the target cloud and its management are provided by or-
chestration plans written within different workflow languages,e.g., BPMN or BPEL.
However, in case some module of the application is migrated to a different target
provider, the topology and the orchestration plan should be modified which makes
the management of a TOSCA-compliant deployment a complex task.

RESERVOIR-ML [Chapman 2012] offers a language for the description of re-
quirements that providers must fulfill when the developers deploy a multi-component
application on federated IaaS clouds. Among these requirements, it takes into ac-
count non-functional requirements such as quality of service. The RESERVOIR-ML
language encodes the OVF standard within XML and its semantics is described
within OCL constraints. Beside describing the requirements, the main focus of this
approach is also to perform reconfiguration tasks and address the scaling require-
ments of the application components, i.e., to ensure elasticity and provision IaaS
resources on demand. To do so, the RESERVOIR-ML project has also developed
UCL-MDA tools, a graphical framework implemented as a plugin for the Eclipse In-
tegrated Development Environment (IDE) for the manipulation of the XML models
and the OCL constraints.

2.3. Model-Driven Approaches for the Cloud 39

SALOON [Quinton 2013] is a graphical framework for cloud environments se-
lection and configuration purpose. SALOON is an EMF-based framework that relies
on extended FMs to represent clouds variability, as well as on ontology concepts to
model the various semantics of cloud systems. It mainly comprises functional ele-
ments such as the language used to develop the cloud-based application, the number
of application servers, the RAM, the CPU, etc. This proposal also allows to trans-
late the ontology concepts into a Constraint Satisfaction Problem (CSP) in order
to select the adequate cloud environment. In order to extract the information to
create the models for each cloud provider, the authors suggest the use of reverse
engineering on the web configurator of each cloud provider as a solution. They
implemented their proposal and tested the performance of their implementation.
They concluded that their proposal was well suited to handle large configuration
spaces, with a number of features and constraints that would make it overwhelming
for a human user to perform the selection by hand. Despite that the authors state
that SALOON supports the discovery and selection multiple providers, in practice
it does not. In the contrary, it deals with one provider at a time. SALOON targets
ten cloud environments (IaaS and PaaS).

soCloud [Paraiso 2014] is an approach that aims at developing multi-cloud ap-
plications by defining a PaaS platform based on FraSCAti, a Service Component
Architecture platform. soCloud defines its concepts within an XML schema. It pro-
vides a textual syntax and its semantics is written in English Prose in the context
of the SCA specification that is implemented in FraSCAti. soCloud targets fifteen
cloud environments (IaaS and PaaS), where it allows deploying and reconfiguring
application components after achieving the necessary orchestration.

Sousa et al. [Sousa 2017] aim to generate reconfiguration plans that satisfy the
requirements of a multi-cloud computing system. To do so, the authors propose an
Ecore metamodel to model FMs and capture the variability of cloud configurations.
The multi-cloud constraints that arise during the cloud reconfiguration are defined
by Linear Temporal Logic (LTL) formulas to express temporal properties. The
authors applied their approach only to Heroku cloud PaaS and they manually built
their FM by going through the Heroku documentation.

StratusML [Hamdaqa 2015] is a layered modeling language and a modeling
framework for cloud applications. StratusML provides a user-friendly interface that
allows the cloud developers to specify their application components, configure them,
estimate cost under diverse cloud services, select a cloud provider, use templates to

40 Chapter 2. Model-Driven Approaches for the Cloud

transform and adapt the model into platform specific artifacts, and manage the ap-
plication behaviour at runtime through a set of rules. It is built as an extension of
Microsoft Visual Studio 2012, i.e., the Microsoft DSL toolkit is used to design the
StratusML graphical editor and to define the validation constraints. The latter are
required to ensure that the specified model satisfies the application requirements and
provides the information required to generate the target platform specific artifacts.
The validation constraints can be classified into hard constraints, i.e., that the user
can never violate, and soft constraints, i.e., that are allowed to be violated, but still
create warnings and errors to guide the user to the correct decisions. In order to
capture the application deployment configuration, the StratusML metamodel inte-
grates five different models to address five different, but interleaved functional and
non-functional cloud concerns. It includes the service model, performance model,
adaptation model, availability model, and provider model. StratusML uses lay-
ers to view the different cloud application concerns, facilitating visual modeling of
adaptation rules, and using template-based transformation to deal with platforms
heterogeneity. StratusML has established a connector only with the Windows Azure
IaaS.

2.4 Discussion

Conclusion 1. Primary focus on design time aspects

As depicted in Table 2.2, most of the MDAC only provide the possibility to set the
resources (CPU, memory, disk, network, etc.) limits at design time. However, they
lack of resources management at runtime. The management is necessary because
in the cloud environment, the resources consumption fluctuates according to the
workload. In order to provision the appropriate resources, if the workload grows
or shrinks, the resources should be reconfigured, i.e., increased or decreased as re-
quired at runtime. Thus, a major challenge is how to synchronize the predefined
architecture of resources with the resources provisioned in the execution environ-
ment. When modifications occur in an existing architecture, the update should be
done in the executing environment. Conversely, when changes like the increase of
the disk storage or the addition of a virtual machine occur in the executing environ-
ment, they should affect the existing architecture. It is thus required that an MDAC
reduces the gap between design and runtime activities and provides the same model
for both of them.

We tackle this problem in Chapter 3 by providing a complete tool chain to han-
dle cloud resources during their whole lifecycle, from the design till the management.

2.4. Discussion 41

Table 2.2: MDAC Usages.
MDAC Design Time Deployment Time Production Time

Blueprinting X
Brooklyn X X X
CAMEL X X X
CAML X

Cloud Adoption Toolkit X
Cloud DSL X
CloudGenius X
CloudMIG X X
CloudML X X X
Farokhi X X X

Frey et al. X X X
Garcia-Galán et al. X
Gherardi et al. X

Holmes X X X
MOCCA X X

MULTICLAPP X
OpenTOSCA X X

RESERVOIR-ML X X X
SALOON X
soCloud X X X

Sousa et al. X X X
StratusML X X

Conclusion 2. Primary focus on IaaS

As depicted in Table 2.3, the largest amount of researchers attention has been
focused on IaaS clouds. An efficient MDAC should allow to handle infrastructure,
platform and software resources. There is a strong separation between these three
types of resources since each of them is managed by a particular resource manager.
These managers do not know how to cooperate. Thus it is extremely difficult to
implement policies for the management of multi-level resources. However, in order to
manage the elasticity of a system for example, the cloud developer needs to manage
simultaneously resources at IaaS, PaaS and SaaS levels. Therefore, there is a need
for a single MDAC that includes concepts and mechanisms that support both IaaS
and PaaS clouds, enabling their management.

We also tackle this problem in Chapter 3. In fact, our proposed tool chain for
the cloud computing complies to OCCI, the only generic and extensible standard
that handles every kind of cloud resources, i.e., IaaS, PaaS, SaaS and even RaaS
and Container as a Service (CaaS).

42 Chapter 2. Model-Driven Approaches for the Cloud

Table 2.3: MDAC Concepts.
MDAC Service Model

Blueprinting XaaS
Brooklyn PaaS
CAMEL XaaS
CAML IaaS & PaaS

Cloud Adoption Toolkit IaaS
Cloud DSL IaaS
CloudGenius IaaS
CloudMIG IaaS & PaaS
CloudML IaaS & PaaS
Farokhi IaaS & SaaS

Frey et al. IaaS
Garcia-Galán et al. IaaS
Gherardi et al. RaaS

Holmes IaaS
MOCCA IaaS

MULTICLAPP PaaS
OpenTOSCA IaaS & PaaS

RESERVOIR-ML IaaS
SALOON IaaS & PaaS
soCloud IaaS & PaaS

Sousa et al. PaaS
StratusML IaaS

Conclusion 3. Fuzziness of the CML concepts

Most of the MDAC are built from scratch; the designer of the CML goes through the
provider or the application documentation, and then manually defines the concepts
that he/she considers important to be included to the provider or the application
metamodel. This methodology results in the fuzziness of the CML which might be
unrepresentative of the concrete cloud environment. Also, the MDAC I reviewed
in this chapter describe a part of the cloud domain that was relevant only at the
moment of the definition of the modeling language. However, the designers of each
MDAC require changing their modeling language, i.e., the CML, at each time they
want to support more cloud concepts. As for the user, he/she is unable to add the
missing concepts that he/she needs.

I tackle this problem in Chapter 4 where I propose the first advanced approach
for automatically inferring a cloud model that properly represents the cloud
concepts and operations. This model can be updated to follow up with the cloud
API and since it conforms to the generic OCCIware Metamodel, this model can
be extended to support new concepts. It also helps analyzing the cloud API and
enhances its specification so the developer can correctly use its services.

2.5. Summary 43

Conclusion 4. Little attention paid to the semantics

We observe in Table 2.4 that the semantics of the CMLs is, in most cases, either
informal, namely written in English prose or within OCL constraints, or implicit
in the model interpreter behaviour. None of these ways of defining the semantics
is sufficiently precise. Natural language might be confusing due to its built-in am-
biguity; although words with multiple meanings give English a linguistic richness,
they also create ambiguity. OCL is semi-formal, i.e., its syntax is well-defined but
its semantics is only partially formalized, with many aspects being just described
in natural language in the standard document specifications. Also, OCL is efficient
for only specifying the static semantics of the CMLs. Dynamic semantics remains
defined within natural language. Finally, the model interpreter is the engine that
is fed the deployment, configuration, adaptation models in order to execute them.
Deriving the semantics of these models from the behaviour of the model interpreter
might be erroneous. It is crucial then to propose CMLs with well-formed seman-
tics, i.e., defined within formal methods which are mathematical techniques that
allow the cloud stakeholders to reason and describe without ambiguity the structure
metamodel and the behavior of its concepts.

I tackle this problem in Chapter 5 where I propose the first formal framework
for precisely specifying cloud APIs and reasoning over them. Consequently, the
developer can verify the correctness of his/her cloud models and their required
behaviour.

2.5 Summary

The wide number of available cloud providers, their high heterogeneity and seman-
tic differences make it complicated to exploit multi-cloud assets. In this chapter,
I provided a classification of Cloudware engineering solutions. I showed that the
solutions at the provider and the programming spaces are also heterogeneous and
their provided features are often incompatible. This diversity hinders the proper ex-
ploitation of the full potential of cloud computing, since it prevents interoperability
and promotes vendor lock-in, as well as it increases the complexity of development
and administration of multi-cloud systems.

To deal with this heterogeneity, I introduced the solutions at the modeling space
and explained the major role that models play in the software development for the
cloud computing. I discussed the idea of “Modeling the cloud computing” by leverag-
ing MDE to easily build cloud-native applications. I discussed the usages, concepts
and characteristics of MDAC. Finally, I reviewed the most relevant approaches in
the research area that is closely related to this thesis, i.e., model-driven engineering

44 Chapter 2. Model-Driven Approaches for the Cloud

Table 2.4: CML Characteristics.
MDAC Paradigm Abstract

Syntax
Concrete
Syntax Semantics

Blueprinting Services &
Components

XML
schema Graphical Natural

language

Brooklyn Components YAML
document Textual

Natural
language

& CAMP specification

CAMEL Services &
Components Ecore Textual

Natural
language

& ExecutionWare
CAML Services &

Components
UML
profile Graphical Natural

language
Cloud Adoption

Toolkit Services UML
profile Graphical Natural

language
Cloud DSL Services &

Components Ecore Graphical Mapping to
TOSCA

CloudGenius Services Ecore Textual
Natural

language &
Selection
Framework

CloudMIG Components Ecore Textual

Natural
language &

CloudMIG Xpress
(Deployment
Optimizer)

CloudML Services &
Components Ecore Textual

Natural
language &
CloudMF

Farokhi Services &
Components

XML
schema Textual Service Selection

Engine

Frey et al. Services &
Components

UML
profile Graphical

Natural language &
CDO Xpress
(Deployment
Optimizer)

Garcia-Galán
et al. Feature Models - Graphical

Natural
language &

Automated Analysis
of Feature

Models (AAFM)
Gherardi et al. Feature Model Ecore Graphical

& Textual
Resolution
Engine

Holmes Services &
Components Ecore Textual Natural

language

MOCCA Components Ecore Graphical
& Textual

Natural
language &
Deployment
Optimizer

MULTICLAPP Services &
Components

UML
profile Graphical

Natural
language &
Deployment

Engine

OpenTOSCA Services &
Components

XML
schema or
YAML

document
Graphical
& Textual

Natural
language &

TOSCA specification

RESERVOIR-ML Components
& Resources

XML
schema Graphical

Natural
language &
OpenNebula

SALOON Feature
Models Ecore Graphical

An Ontology
& Translation

into a
constraint solver

soCloud Services &
Components

XML
schema Textual

Natural
language &
FraSCAti

Sousa et al. Feature
Models Ecore Textual Temporal

constraints
StratusML Services &

Components
Microsoft

DSL Graphical Natural
language

for cloud computing. Among the prolific research in this area, there is a lack of
solutions which:

2.5. Summary 45

• support design, deployment and management usages,

• allow handling XaaS systems,

• define the appropriate cloud concepts with possibility of extension if needed,
and,

• define a precise semantics of these concepts.

Based on this study, I describe in the next parts of this dissertation the OC-

CIware background and the two contributions of this thesis respectively. I mainly
propose to leverage MDE and formal methods to help cloud stakeholders taking
better advantage of cloud services.

Part III

Background

In the end of Part II, I discussed the need of precisely describing but also efficiently
managing every kind of cloud resources. To accomplish this purpose, I detail in this part

our OCCIware approach.

Chapter 3

Modeling, Verifying, Generating
and Managing Cloud Resources

with OCCIware

This chapter corresponds to our article “Model-Driven Cloud Resource
Management with OCCIware” [Zalila 2018] submitted to the Future

Generation Computer Systems (FGCS) journal, which extends our paper “A
Model-Driven Tool Chain for OCCI” [Zalila 2017a] published in the 25th
International Conference on Cooperative Information Systems (CoopIS).

Contents
3.1 Motivations . 51

3.2 Background on OCCI . 53

3.3 OCCIware Approach . 55

3.3.1 Managing Everything as a Service with OCCIware 55

3.3.2 Generating Cloud Domain-Specific Modeling Studios with
OCCIware . 59

3.4 OCCIware Metamodel . 61

3.5 OCCIware Studio . 71

3.6 OCCIware Runtime . 75

3.7 Evaluation of OCCIware Studio 77

3.7.1 Implementation of a Catalog of Standard OGF's OCCI Exten-
sions . 77

3.7.2 Five OCCIware Use Cases . 85

3.7.3 Synthesis on the OCCIware Approach 89

3.8 Summary . 92

Several cloud computing standards have been proposed to resolve the hetero-
geneity of cloud providers and promote multi-clouds, as discussed in Chapter 2.

50
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

However, the main drawback of these standards is their specificity for a particular
cloud service model, i.e., IaaS or PaaS.

OCCI has been proposed as the first and only open standard for managing any
cloud resources [Edmonds 2012]. OCCI provides a general purpose model for cloud
computing resources and a RESTful API for efficiently accessing and managing any
kind of these cloud resources. This will ease interoperability between clouds, as
providers will be specified by the same resource-oriented model called the OCCI
Core Model [Nyrén 2016b], that can be expanded through extensions and accessed
by a common REST [Fielding 2000] API.

Currently, only runtime frameworks such as rOCCI [roc], erocci [ero],
pySSF [pys], pyOCNI [pyo], and OCCI4Java [occb] are available, while OCCI de-
signers/developers/users need software engineering tools to design, edit, validate,
generate, implement, deploy, execute, manage, and supervise new kinds of OCCI
resources, and the configurations of these resources. In addition, the existing run-
time implementations are targeting a specific cloud service model (mainly IaaS).
Thus, OCCI lacks a unified modeling framework to design its different artifacts,
and verify them during the initial steps of the design process before their effective
deployment. Added to that, OCCI stakeholders need a generic runtime implementa-
tion coupled with the expected modeling framework in order to seamlessly execute
the different developed and/or generated artifacts. Finally, as OCCI is proposed as
an open generic standard to manage XaaS, OCCI stakeholders need to obtain, for
each domain, a specific modeling framework.

To overcome the issues presented above, I present in this chapter our OCCIware

approach, which can be summarized as:

• Model-Driven Managing Everything as a Service with OCCIware.
OCCIware is a model-driven vision to manage XaaS. It allows one to model
any type of resources. It provides OCCI users with facilities for designing,
editing, validating, generating, implementing, deploying, executing, managing,
and supervising XaaS with OCCI.

• Generating Cloud Domain-Specific Modeling Frameworks with OC-
CIware. OCCIware is a factory of cloud domain-specific modeling frame-
works. Each generated Cloud Domain-Specific Modeling Studio (CDSMS) is
dedicated for a particular cloud domain. Each CDSMS can be used to design
configurations conforms to its related domain and hides the generic concepts
of OCCI.

This work has been done in the context of the OCCIware research and devel-

3.1. Motivations 51

opment project1 funded by the French PIA. The contribution of the academic and
industrial partners has certainly promoted the progress of this project. A special
gratitude is due to Faiez Zalila and Christophe Gourdin who implemented the
OCCIware approach.

This chapter is structured as follows. Section 3.1 explains the motivations behind
OCCIware. Section 3.2 gives a background on the OCCI standard. Section 3.3
presents an overview of the OCCIware approach. It details the different processes
to use the OCCIware approach. Section 3.4 presents the OCCIware Metamodel

by detailing its static semantics defined in Ecore and OCL. Section 3.5 provides an
overview of OCCIware Studio and its different implemented features. Section 3.6
presents OCCIware Runtime and details its architecture. Section 3.7 validates
OCCIware by presenting the different OCCI extensions defined by the standard
and implemented using OCCIware. We follow up with the evaluation of OC-

CIware by discussing different five use cases implemented with the OCCIware

approach. Finally, Section 3.8 concludes with future work and perspectives.

3.1 Motivations

Currently, cloud architects and developers have a lot of hope for the multi-cloud
computing paradigm as an alternative to avoid the vendor lock-in syndrome, to
improve resiliency during outages, to provide geo-presence, to boost performance
and to lower costs. However, semantic differences between cloud provider offerings,
as well as their heterogeneous CRM-APIs make migrating from a particular provider
to another a very complex and costly process. We assume for example that a cloud
developer would like to build a multi-cloud system spread over two clouds, AWS
and GCP. AWS are accessible via a SOAP-based API, whereas GCP is based on
a REST API, which leads to an incompatibility between these two different APIs.
To use them, cloud consumers should be inline with the concepts and operations of
each API, which is quite frustrating. The cloud developer would like a single API
for both clouds to seamlessly access their resources.

For this, OCCI is an open standard that defines a generic extensible model for
any cloud resources and a RESTful API for efficiently accessing and managing cloud
resources. This will facilitate interoperability between clouds, as cloud provider's
offerings will be specified by the same resource model, and accessed by a common
REST API. However, cloud developers cannot currently take advantage of this stan-
dard. Although there are several implementations of OCCI, there is no tool that
allows them to design and verify their configurations, neither to generate and deploy

1www.occiware.org

www.occiware.org

52
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

corresponding artifacts. This leads to several challenges:

1. Cloud architects, who are supposed to design the expected multi-cloud plat-
form, are facing on one side to heterogeneity at different levels such as CRM-
APIs heterogeneity (REST APIs vs SOAP APIs), service models heterogeneity
(IaaS, PaaS, SaaS, etc.), deployment model heterogeneity (public, private and
hybrid), and service providers heterogeneity. On the other side, cloud develop-
ers, who create and deploy running cloud systems, are focused on implemen-
tation details rather than cloud concerns, with the risk of misunderstandings
for the concepts and the behavior that rely under cloud APIs. They need a
customized cloud framework dedicated to each cloud domain.

2. The only way to be sure that the designed configurations will run correctly is
to deploy them in the clouds. In this context, when errors occur, a correction is
made and the deployment task can be repeated several times before it becomes
operational. This is quite painful and expensive.

3. Cloud developers need to provide various forms of documentation of their
cloud configurations, as well as deployment artifacts. However, these tasks are
complex and usually made in an ad-hoc manner with the effort of a human
developer, which is error-prone and amplifies both development and time costs.

4. The CRM-APIs heterogeneity represents a banner to seamlessly execute the
deployment artifacts.

5. At the design level, the configuration represents a predefined architecture.
However, the execution environment hosts a deployed system. A main chal-
lenge to the cloud developers is to provide a synchronization between the
design level and the execution environment. When modifications occur in the
predefined architecture, the update should be done in the executing environ-
ment. Conversely, when the deployed system changes, it should affect the
predefined architecture.

Recently, we are witnessing several works that take advantage of MDE for the
cloud [Bruneliere 2010, Bergmayr 2018]. Therefore, to address the identified chal-
lenges, we believe that there is a need for a tooled model-driven approach
for OCCI in order to:

1. Enable both cloud architects and developers to efficiently design their needs
at a high-level of abstraction. This will be done by defining a metamodel,
as a DSML, accompanied with graphical and textual concrete syntaxes. The
expected DSML should be extensible in order to target different cloud domains.

3.2. Background on OCCI 53

2. Allow cloud architects to define structural and behavioral properties and ver-
ify them before any concrete deployments so they can a priori check the cor-
rectness of their cloud systems.

3. Automatically generate and export (i) textual documentations to assist
cloud architects and developers to understand the concepts and the behavior
of cloud-oriented APIs, (ii) specific designers dedicated to each cloud domain
to assist cloud developers in the design of their configurations, (iii) formal
specifications in order to formally analyze the different artifacts, and (iv)
HTTP scripts that deploy, provision, modify or de-provision cloud re-
sources.

4. Execute the generated scripts into a generic OCCI runtime implementation
that must be able to host the developed connectors to concrete cloud resources.

5. Discover a configuration model by mapping a running cloud system into
the expected modeling framework, manage this running cloud system via
the configuration model (for example, execute an action on the configuration
model implies its execution on the running cloud system), and bring back
the updates of the running system into the corresponding configuration model.
These processes can be ensured via a connector between the cloud system and
the modeling framework.

3.2 Background on OCCI

OCCI is an open cloud standard [Edmonds 2012] specified by the OGF. OCCI de-
fines a RESTful Protocol and API for all kinds of management tasks on any kind
of cloud resources, including IaaS, PaaS and SaaS. In order to be modular and ex-
tensible, OCCI is delivered as a set of specification documents divided into the four
following categories as illustrated in Figure 3.1:

54
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.1: OCCI Specifications.

Category
scheme: URI
term: String
title: String [0..1]

Kind

Mixin

Action

Entity
 id: URI

Resource

Link

Attr ibute
name: String
type: String [0..1]
mutable: Boolean [0..1]
required: Boolean [0..1]
default: String [0..1]
description: String [0..1]

0..1 *actions 1* actions

 *
 mixins

* entit ies

1
 kind

*entit ies

1 target

1 source *links

 0..1
 parent

*

 *
 depends

*

1 *attr ibutes

* applies

Figure 3.2: UML Class Diagram of the OCCI Core Model (from [Nyrén 2016b]).

OCCI Core Model. It defines the OCCI Core specification [Nyrén 2016b]
proposed as a general purpose RESTful-oriented model. It is shown in Figure 3.2
and represented as a simple resource-oriented model composed of eight concepts:
Resource represents any cloud computing resource, e.g., a virtual machine, a net-
work, an application container, an application. Link is a relation between two

3.3. OCCIware Approach 55

Resource instances, e.g., a computer connected to a network, an application hosted
by a container. Entity is the abstract base class of all resources and links.
Kind is the notion of class/type within OCCI, e.g., Compute, Network, Container,
Application. Mixin is used to associate additional cross-cutting features, e.g., lo-
cation, price, user preference, ranking, to resource/link instances. Action represents
an action that can be executed on entities, e.g., start a virtual machine, stop an
application container, restart an application, resize a storage. Category is the ab-
stract base class inherited by Kind, Mixin, and Action. Attribute represents the
definition of a customer visible property, e.g., the hostname of a machine, the IP
address of a network, or a parameter of an action.

OCCI Protocols. Each OCCI Protocol specification describes how a partic-
ular network protocol can be used to interact with the OCCI Core Model. Multiple
protocols can interact with the same instance of the OCCI Core Model. Currently,
only the OCCI HTTP Protocol [Nyrén 2016a] has been defined. But other OCCI
protocols would be proposed in the future such as Advanced Message Queuing Pro-
tocol (AMQP).

OCCI Renderings. Each OCCI Rendering specification describes a particu-
lar rendering of the OCCI Core Model. Multiple renderings can interact with the
same instance of the OCCI Core Model and will automatically support any OCCI
extension. Currently, both OCCI Text [Edmonds 2016] and JSON2 [Nyrén 2016d]
renderings have been defined. Other OCCI renderings would be specified in the
future, such as an XML rendering for instance.

OCCI Extensions. Each OCCI Extension specification describes a particular
extension of the OCCI Core Model for a specific application domain, and thus defines
a set of domain-specific kinds and mixins. OCCI Infrastructure [Nyrén 2016c] is
dedicated to IaaS. Additional OCCI extensions are defined such as OCCI Compute
Resource Templates Profile (CRTP) [Drescher 2016], OCCI Platform [Metsch 2016]
and OCCI SLA [Katsaros 2016].

3.3 OCCIware Approach

3.3.1 Managing Everything as a Service with OCCIware

The OCCIware funded project [occc, Parpaillon 2015] aims to provide a formal
comprehensive, coherent, modular, model-driven tool chain for managing any kind

2JavaScript Object Notation

56
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

of cloud computing resources. The OCCIware approach relies on MDE, a soft-
ware engineering paradigm that proposes to reason on high-level artifacts, called
models, rather than the code implementation. As MDE allows us to raise the level
of abstraction, a model is an abstract representation of a system. It allows us to
understand the designed system and answer the related queries. A model conforms
to a metamodel, which defines the modeling language.

The OCCIware approach is composed of two main components as depicted in
Figure 3.3: (i) OCCIware Studio implemented by Faiez Zalila, and (ii) OCCI-

ware Runtime implemented by Christophe Gourdin.

Figure 3.3: OCCIware Studio and OCCIware Runtime.

OCCIware Studio, detailed in Section 3.5 is an OCCI model-driven tool chain
that enables to design, verify, simulate, and develop every kind of resources as
a service. Usually, a model-driven approach is based on, at least, a metamodel.
The OCCIware approach is designed and developed based on a metamodel, called
OCCIware Metamodel and detailed in Section 3.4. This metamodel implements
and extends the OCCI Core Model.

OCCIware Runtime detailed in Section 3.6 is a generic OCCI-compliant Mod-
els@run.time support and includes a resources container, and tools for deployment,
execution, and supervision of XaaS.

To benefit from the OCCIware approach, a proposed process must be followed
(cf. Figure 3.4). This process has three steps: the design step, the engineering step,
and the use step.

3.3. OCCIware Approach 57

3.3.1.1 Design step

The design step (the top of Figure 3.4) consists in defining a new OCCI exten-
sion that extends the OCCI Core extension (an extension-like representation of the
OCCI Core Model), and/or other OCCI extensions already defined. This step is en-
sured by the Cloud Architect who aims to have a tooled model-driven framework
for his/her cloud domain such as infrastructure, platform, etc. An OCCI extension
model conforms to OCCIware Metamodel. It can be designed textually and/or
graphically. Once the extension is designed and validated, a generation process of
the Extension Tooling may be triggered. It consists to generate, from an OCCI
extension model, a set of artifacts that meet the needs of the cloud developers.

The set of artifacts generated from an OCCI extension model can be summarized
as:

1. Extension Documentation represents a comprehensive documentation of
the designed extension. It serves as the reference document to describe for the
cloud developer the different notions designed in the extension.

2. Extension Formal Specification defines formally the specification of the
designed extension. This artifact can be later analyzed using a dedicated tool
to check rigorously its correctness and its conformance to the OCCI specifica-
tions. This extension is detailed in Chapter 5.

3. Extension Metamodel is a modeling language dedicated to the domain of
the designed extension. It allows us to design conforming models representing
running systems of this domain. This metamodel extends the OCCIware

Metamodel.

4. Extension Implementation represents a concrete implementation of the
generated Extension Metamodel. It should provide an implementation for
each concept of the designed extension.

5. Extension Connector extends the Extension Implementation and repre-
sents a skeleton of the causal link between designed models and running cloud
resources. For a designed extension, this module represents the bridge between
both OCCIware Studio/Runtime and the running cloud systems.

6. Extension Designer is a dedicated model-driven graphical designer to the
domain of the extension. It gives a suitable framework for the cloud devel-
oper to graphically design the different resources of a running system, which
instantiate the extension concepts.

58
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.4: Model-Driven Managing Everything as a Service with OCCIware.

3.3. OCCIware Approach 59

3.3.1.2 Engineering step

Once the previous step is achieved, the Software Developer can complete the
generated Extension Connector. It consists of implementing the business code re-
quired to handle each concept of the extension. Later, the completed connector
must be deployed on OCCIware Runtime. Finally, he/she customizes the gen-
erated Extension Designer to adapt it to the dedicated domain and to abstract
the different concepts of the extension. From now on, we can consider that the
Extension Tooling is able to be used to manage conforming configurations.

3.3.1.3 Use step

Thanks to OCCIware Studio enriched with the Extension Tooling provided
during the previous steps, the cloud developer, who is the System Engineer (end
user from our perspective), can design using the dedicated Extension Designer,
an Extension configuration model conforms to the Extension Metamodel. For the
system engineer, the different OCCIware tooling is entirely hidden because he/she
only deals with domain concepts such as VMs, containers, networks, etc.

To benefit from the OCCI-compliant tools of OCCIware (i.e., OCCIware

Runtime), the Extension configuration model must be translated into an OCCI

configuration model that conforms to the OCCIware Metamodel. Both models
are semantically identical, but the first one instantiates the concepts of the generated
Extension Metamodel, and the second instantiates the concepts of OCCIware

Metamodel.
In order to deploy and manage this generated configuration, the cloud devel-

oper can interact with the cloud by sending OCCI HTTP requests to OCCIware

Runtime extended with the deployed Extension Connector. These scripts can
be generated from the OCCI configuration model. To execute them, OCCIware

Runtime invokes the appropriate Extension Connector to create the instance in
the cloud. Finally, the created resource is deployed in the cloud.

3.3.2 Generating Cloud Domain-Specific Modeling Studios with
OCCIware

As previously explained in Subsection 3.3.1, the OCCIware approach provides a set
of tools to design, edit, validate, generate, and manage OCCI artifacts. Concretely,
the main goal of OCCIware Studio consists in designing, at the end, a correct
OCCI configuration model that conforms to the OCCIware Metamodel. More-
over, the ultimate goal for the cloud developer, the end user of the OCCIware ap-
proach, consists in executing this model that represents an eventual running system

60
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

in the cloud. In the OCCIware approach, executing a configuration model invokes
the OCCIware Runtime to create the different designed entities. During model-
driven development, two strategies to execute models are possible [Brambilla 2012]:
Code Generation and Model Interpretation.

Code Generation targets to produce running artifacts (script, code, etc.) from a
higher level model. It is similar to the compilation that produces executable binary
files from source code. Usually, the generated artifact is produced in a standard lan-
guage that any developer can understand. In addition, the code generation strategy
allows us to link a model-driven framework to existing tools and methods such as
model-checkers, simulators and runtime environments.

Model Interpretation approach consists of parsing and executing the model on the
fly, with an interpretation approach and using a generic engine. A major advantage
of this approach is the capability to change the model at runtime without stopping
the running application because the interpreter would continue the execution by
parsing the new version of the model.

In the OCCIware approach, as shown on the left part of Figure 3.5, both
strategies have been implemented. Code generation process allows us to integrate a
generator of HTTP requests from OCCI configuration models. These requests can
be later sent to OCCIware Runtime to create and deploy OCCI entities. The
extensibility of OCCIware Studio lets software engineers implement additional
generators to target other existing tools for other purposes such as the generation
of deployment plans. Model interpretation is implemented by defining a Runtime

Connector. Using this connector, we can (i) discover a configuration model by
mapping a running system from OCCIware Runtime to OCCIware Studio,
(ii) edit the obtained configuration model, (iii) send these modifications to the
running system, and finally (iv) bring back the changes triggered by the runtime to
the model.

OCCIware Studio represents the first model-driven framework to design
OCCI artifacts. In addition, thanks to the different proposed generators, OCCI-

ware Studio can be considered as a factory to build cloud domain-specific model-
ing studios, each one is specific to a particular cloud domain. As shown on the right
part of Figure 3.5, once an OCCI extension model is defined, we can proceed to the
generation of a Cloud Domain-Specific Modeling Studio (CDSMS) dedicated to a
particular cloud domain. This specific studio provides (i) an Extension Metamodel,
(ii) an Extension Validator, (iii) an Extension Implementation, and (iv) an
Extension Designer. These generated tools allow the cloud developer to design
configurations conform to a specific cloud domain. As OCCIware Studio, a spe-
cific studio can support both strategies to execute the designed Extension config-

3.4. OCCIware Metamodel 61

Figure 3.5: Generating Cloud Domain-Specific Modeling Studios with OCCIware.

uration model. The software developer completes the Extension Connector with
the implementation related to a particular cloud API. In addition, he/she can im-
plement several generators to generate specific artifacts for his/her cloud domain.
If the cloud developer needs to come back and benefit from both OCCIware Stu-

dio tooling and OCCIware Runtime, it is always possible. A bridge from the
Extension configuration models to OCCI configuration models has been provided.

Next sections provide more details on OCCIware Metamodel, OCCIware

Studio, and OCCIware Runtime before discussing several use cases validating
the OCCIware approach.

3.4 OCCIware Metamodel

Designing is the key activity that must, at first, be addressed to later resolve other
encountered challenges such as verifying, generating, and deploying. Therefore, in
order to assist OCCI users in modeling different OCCI artifacts, a metamodel for
OCCI named OCCIware Metamodel3 is proposed, as shown in Figure 3.6.

3Available here https://github.com/occiware/OCCI-Studio/blob/master/plugins/org.
eclipse.cmf.occi.core/model/OCCI.ecore

https://github.com/occiware/OCCI-Studio/blob/master/plugins/org.eclipse.cmf.occi.core/model/OCCI.ecore
https://github.com/occiware/OCCI-Studio/blob/master/plugins/org.eclipse.cmf.occi.core/model/OCCI.ecore

62
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.6: Ecore diagram of OCCIware Metamodel.

3.4. OCCIware Metamodel 63

The entry point to define OCCIware Metamodel was the OCCI Core
Model [Nyrén 2016b]. The gray-colored classes in Figure 3.6 show the eight con-
cepts of OCCI Core Model. The blue-colored classes show the added concepts during
our previous work [Merle 2015a]. Since then, we continued to extend OCCIware

Metamodel in order to meet different needs appeared during its use. The brown-
colored classes introduce the added concepts needed to express business constraints
related to a particular domain. The orange-colored class represents the required
concept to instantiate the mixins in a configuration model. The yellow-colored
classes define the concepts used to express the behavior of an OCCI kind/mixin.
The cyan-colored classes provide the required concepts to express non-OCCI core
information needed to perform several activities such as code generation and model
visualization. The green-colored classes define the OCCIware data type system.
Finally, the red-colored classes provides a set of Ecore data types required to create
correct OCCI artifacts.

In the following, the different concepts of the OCCIware Metamodel with a
subset of their associated OCL invariants defining the static semantics are detailed:

• Extension represents an OCCI extension, e.g., inter-cloud networking
extension [Medhioub 2013], infrastructure extension [Nyrén 2016c], plat-
form extension [Yangui 2013, Yangui 2016, Metsch 2016], application ex-
tension [Yangui 2016], SLA negotiation and enforcement [Katsaros 2016],
cloud monitoring extension [Ciuffoletti 2016], and autonomic computing ex-
tension [Mohamed 2013, Mohamed 2014b, Mohamed 2014a, Mohamed 2015].
Extension has a name, has a scheme, has a description, has a
specification, owns zero or more kinds, owns zero or more mixins, owns
zero or more data types, and can import zero or more extensions. Each
designed extension must, at least, extend the OCCI Core extension, the
extension-like representation of the OCCI Core Model. The OCCI Core ex-
tension is composed of three kinds: a root Entity kind, and two children
kinds, Resource and Link.

Definition 1 Each Extension instance must have a unique scheme among
all Extension instances.

context Extension
i nva r i an t UniqueScheme :

Extension . a l l I n s t a n c e s ()−>isUnique (scheme) ;

Definition 2 The scheme of all kinds must be equal to the scheme of the
owning Extension instance.

64
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

context Extension
i nva r i an t KindsSchemeValid :

kinds−>f o rA l l (k | k . scheme = s e l f . scheme) ;

• Kind is an OCCI Core Model concept representing the immutable type of
OCCI entities and defines allowed attributes and actions. Single inheritance,
using the parent relation between Kinds, allows us to factorize attributes and
actions common to several kinds. The source and target references specify
the sense of relations between link-oriented kinds.

Definition 3 Each Kind instance must inherit from the entity kind instance
directly or transitively. The entity kind instance is the root of the hierarchy
of Kind instances.

context Kind
inva r i an t EntityKindIsRootParent :

s e l f −>c l o s u r e (parent)−>ex i s t s (k | k . term = ’ e n t i t y ’ and k .
scheme = ’ http : // schemas . og f . org / o c c i / core#’ and k . parent =

nu l l) ;

Definition 4 A Kind instance must not overload an inherited attribute.

context Kind
inva r i an t AttributesNameNotAlreadyDefinedInParent :

a t t r i b u t e s . name−>exc lude sA l l (parent−>c l o s u r e (parent) .
a t t r i b u t e s . name) ;

• Mixin is an OCCI Core Model concept representing cross-cutting attributes
and actions that can be dynamically added to an OCCI entity. Mixin can be
applied to zero or more kinds and can depend on zero or more other Mixin

instances.

Definition 5 The inheritance relation depends between Mixin instances must
form a direct acyclic graph. A mixin instance must not inherit from itself
directly or transitively.

context Mixin
i nva r i an t NoCyc l i c Inher i tance :

depends−>c l o s u r e (depends)−>exc ludes (s e l f) ;

3.4. OCCIware Metamodel 65

• Type is an added concept to represent an abstract type inherited by Kind

and Mixin classes. Each type can own zero or more actions, zero or more
constraints and a Finite State Machine (FSM) describing its behavior.

Definition 6 Each action instance must have a unique scheme among all
action instances in a Type instance.

context Type
i nva r i an t ActionTermUnicity : act ions−>isUnique (term) ;

Definition 7 Each constraint instance must have a unique name among all
constraints instances in a Type instance.

context Type
i nva r i an t ConstraintNameUnique : con s t r a i n t s−>isUnique (name) ;

• Action is an OCCI Core Model concept representing business specific behav-
iors, such as start/stop a virtual machine, and up/down a network, etc.

• Constraint is an added concept to represent a detailed aspect related to a
particular cloud computing domain. In fact, each extension targets a con-
crete cloud computing domain, e.g., IaaS, PaaS, SaaS, pricing, etc. Therefore,
there are certainly business constraints related to each domain, which must
be respected by configurations that use the extension. For example, all IP ad-
dresses of all network resources must be distinct. A Constraint has a name, a
description and a body that can be defined with Object Constraint Language
(OCL) [OMG 2014].

• Category is an OCCI Core Model concept and the abstract base class inher-
ited by Type and Action. Each instance of kind, mixin or action is uniquely
identified by both a scheme and a term, has a human-readable title, a
description, and owns a set of attributes.

Definition 8 The scheme of each Category instance must end with a sharp.

context Category
i nva r i an t SchemeEndsWithSharp :

scheme . sub s t r i ng (scheme . s i z e () , scheme . s i z e ()) = ’#’ ;

66
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

• Attribute is an OCCI Core Model concept and represents the definition of a
customer-visible property, e.g., the hostname of a machine, the IP address of
a network, or a parameter of an action. An attribute has one name, can have a
data type, can be (or not) mutable (i.e., modifiable by customers), can be (or
not) required (i.e., value is provided at creation time), can have a default

value and a human-readable description.

• AnnotatedElement is an added concept to represent the abstract base class
inherited by Attribute and Category. Each attribute/kind/mixin/action can
own zero or more annotations.

• Annotation is an added concept and represents an additional information that
can be attached to an AnnotatedElement instance. This mechanism is usually
used to limit changing the metamodel. It allows us adding an information that
may not be related to the core of the OCCI specifications, but important to
some related processes like code generation, model visualization, etc.

• FSM is an added concept to model the behavior of OCCI concepts such
as state diagrams of OCCI Kind instances used in both the Infrastruc-
ture [Nyrén 2016c] and Platform [Metsch 2016] extensions. FSM describes the
behavior of a kind/mixin instance, the current state is stored in a specific
attribute and can own a set of states (State).

Definition 9 The type of a FSM attribute must be EnumerationType.

context FSM
inva r i an t AttributeType :

a t t r i b u t e . type . oc lIsTypeOf (EnumerationType) ;

Definition 10 The attribute of a FSM instance must belong to the
attributes of the owner Type instance.

context FSM
inva r i an t AttributeMustBeDefined :

s e l f . oc lConta iner () . oclAsType (Type) . a t t r i bu t e s−>inc l ud e s (s e l f .
a t t r i b u t e)

• State is an added concept to model a FSM state of a kind/mixin instance. It
can be an initial and/or a final one. It refers to a literal and can own a
set of transitions (outgoingTransitions).

3.4. OCCIware Metamodel 67

Definition 11 The enumerationType of a State literal is equals to the
type of the attribute of the owner FSM instance.

context State
i nva r i an t Li tera lType :

owningFSM . a t t r i b u t e . type=s e l f . l i t e r a l . enumerationType ;

• Transition is an added concept to represent a FSM transition from a source

to a target FSM state. When a transition is triggered, an associated action

is executed.

Definition 12 The action of a Transition instance must belong to the
actions of the owner Type instance.

context Trans i t i on
i nva r i an t ActionMustBeDefined :

s e l f . oc lConta iner () . oclAsType (State) . oc lConta iner () . oclAsType (
FSM) . oc lConta iner () . oclAsType (Type) . ac t ions−>inc l ud e s (s e l f .
a c t i on)

• DataType is an added concept to represent an abstract type defining OCCI
data types. A DataType instance has a name and a documentation.

• BasicType is an added concept to represent an abstract type extending
DataType meta-class and defining OCCI primitive data types.

• BooleanType is an added concept to represent a type extending BasicType

meta-class and defining OCCI boolean data types.

• NumericType is an added concept to represent a type extending BasicType

meta-class and defining OCCI numeric data types. A numeric type has a
concrete type, a totalDigits value defining the maximal number of digits
of a number, a minimal exclusive minExclusive value, a maximal exclusive
maxExclusive value, a minimal inclusive minInclusive value, and a maximal
inclusive maxInclusive value.

• NumericTypeEnum is an added concept to represent an enumeration type defin-
ing the different OCCIware concrete numeric types. A NumericType can be
Byte, Double, Float, Integer, Long, Short, or BigDecimal.

68
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

• StringType is an added concept to represent a type extending BasicType

meta-class and defining OCCIware string data types. A StringType in-
stance can have a pattern value defining a pattern constraint expressed as a
regular expression, a length value defining a length constraint, a minLength

value defining the minimum length constraint, and a maxLength defining the
maximum length constraint.

• EObjectType is an added concept to represent a type extending BasicType

meta-class and defining OCCIware Java data types such as URI, Date, etc.

• ArrayType is an added concept to represent array data types. An ArrayType

instance has a type defining its type.

• EnumerationType is an added concept to represent enumeration data types.
An EnumerationType instance owns a set of literals.

• EnumerationLiteral is an added concept to represent an enumeration literal.
An EnumerationLiteral instance has a name and a documentation.

• RecordType is an added concept to represent record data types. A RecordType

instance owns a set of record fields (recordFields).

• RecordField is an added concept to represent a record field. It extends the
Attribute meta-class.

• Integer is an Ecore data type defining the primitive Integer type.

• Boolean is an added concept to represent an Ecore data type defining the
primitive Boolean type.

• String is an added concept to represent an Ecore data type defining the
primitive String type.

• URI is an added concept to represent an Ecore string-based data type extended
with a pattern constraint that conforms to the Uniform Resource Name (URN)
syntax [Moats 1998].

• Name is an added concept to represent an Ecore string-based data type ex-
tended with the following pattern
“[a-zA-Z][a-zA-Z0-9_-]*”. This data type allows us to initialize a valid
name attribute to the OCCI constructs and, thus, deduce a term conforms to
the OCCI RESTful HTTP Rendering specification [Nyrén 2016a].

3.4. OCCIware Metamodel 69

• AttributeName is an added concept to represent an Ecore
string-based data type extended with the following pattern
“[a-zA-Z0-9]+(\.[a-zA-Z0-9]+)+”. It allows us to create AttributeName

instances conform to the OCCI Text Rendering specification [Edmonds 2016].

• Scheme is an added concept to represent an Ecore string-based data type ex-
tended with a pattern constraint conforms to the Uniform Resource Identifier
(URI) syntax [Berners-Lee 1998].

• OCL is an added concept to represent an Ecore string-based data type allowing
us to create correct OCL expressions.

• Configuration is an added concept to represent a running OCCI system.
Configuration owns zero or more resources (and transitively links), and
use zero or more extensions. For a given configuration, the kind and mixins of
all its entities (resources and links) must be defined by used extensions only.
This avoids a configuration to transitively reference a type defined we do not
know where.

Definition 13 The kind of all resources of a configuration must be defined
by an extension that is explicitly used by this configuration.

context Conf igurat ion
i nva r i an t Al lResourcesKindsInUse :

use−>in c l ud e sA l l (r e s ou r c e s . kind . oc lConta iner ()) ;

Definition 14 The target resource of all links of all resources of a con-
figuration must be a resource of this configuration.

context Conf igurat ion
i nva r i an t Al lResource sL inksTarget s InConf igurat ion :

r e s ou r c e s . l i n k s . target−>f o rA l l (r | r . oc lConta iner () = s e l f) ;

• Resource is an OCCI Core Model concept and represents any cloud comput-
ing resource, such as a virtual machine, a network, and an application. A
Resource owns a set of links.

Definition 15 The kind of a Resource instance must inherit from the
resource kind instance directly or transitively.

70
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

context Resource
i nva r i an t ResourceKindIsInParent :

kind−>c l o s u r e (parent)−>ex i s t s (k | k . term = ’ r e s ou r c e ’ and k .
scheme = ’ http : // schemas . og f . org / o c c i / core#’) ;

• Link is an OCCI Core Model concept and represents a relation between two
resources, such as a virtual machine connected to a network and an application
hosted by a virtual machine. A Link instance refers to both a source and
target resource.

Definition 16 The kind of a Link instance must inherit from the link kind

instance directly or transitively.

context Resource
i nva r i an t ResourceKindIsInParent :

kind−>c l o s u r e (parent)−>ex i s t s (k | k . term = ’ l i n k ’ and k . scheme
= ’ http : // schemas . og f . org / o c c i / core#’) ;

• Entity is an OCCI Core Model abstract concept. Each OCCI entity (resource
or link) owns zero or more attributes, such as its unique identifier, the host
name of a virtual machine, the Internet Protocol address of a network. In
addition, each OCCI entity is strongly typed by a Kind and a set of Mixin

instances. As OCCI is a REST API, it gives access to cloud resources via
classical CRUD operations (i.e., Create, Retrieve, Update, and Delete).

Definition 17 The kind of an Entity instance must be compatible with one
applies kind instance of each mixin parts of this entity.

context Resource
i nva r i an t KindCompatibleWithOneAppliesOfEachMixin :

par t s . mixin−>f o rA l l (m | m. app l i e s−>notEmpty () implies m.
app l i e s−>ex i s t s (k | kind−>c l o s u r e (parent)−>inc l ude s (k))) ;

• AttributeState is an added concept to represent an instantiated OCCI at-
tribute. An AttributeState instance has a name and a value.

• MixinBase is an added concept strongly typed by a mixin. It represents an
instantiated mixin and allows us to instantiate the attributes of the referenced
mixin outside the owner entity in order to separate the entity attributes
from the mixin ones. A MixinBase can own zero or more attributes.

3.5. OCCIware Studio 71

3.5 OCCIware Studio

Once the OCCIware Metamodel was defined, it has been tooled with OCCI-

ware Studio, which is a set of plugins for the Eclipse [ecl] IDE. Figure 3.7 shows
all the main features of OCCIware Studio:

Figure 3.7: OCCIware Studio Features.

• OCCIware Designer is a graphical modeler to create, modify, and visualize
both OCCI extensions and configurations. The OCCI standard does not define
any standard notation for the graphical or textual concrete syntax. This tool
is implemented on top of the Eclipse Sirius framework [sir].

• OCCIware Editor is a textual editor for both OCCI extensions and con-
figurations. Our OCCI textual syntax is described in [Merle 2015b]. This tool
is implemented on top of the Eclipse Xtext framework [xte 2016].

• OCCIware Validator is a tool to validate both OCCI extensions and con-
figurations. This tool checks all the constraints defined in the OCCIware

Metamodel, i.e., both Ecore and OCL ones.

• Textile Documentation Generator is a tool to generate a Textile doc-
umentation from an OCCI extension model. Textile is a Wiki-like format
used for instance by GitHub projects. This tool is implemented on top of the
Eclipse Acceleo framework [acc].

72
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

• Latex Documentation Generator is a tool to generate a Latex documen-
tation from an OCCI extension model. It allows us to later generate a portable
document describing the OCCI extension. This tool is implemented on top
of the Eclipse Acceleo framework.

• Ecore Generator is a tool to generate the Ecore metamodel and its associ-
ated Java-based implementation code from an OCCI extension. As shown in
the left part of Figure 3.8, designing a new OCCI extension consists in extend-
ing the OCCI Core extension. Designing an OCCI configuration consists in
defining an instance of an OCCI extension and represents a cloud architecture
already deployed or to deploy.

Figure 3.8: Projection of OCCI to EMF.

The main goal of our work consists in introducing a tooled framework, based
on OCCI, that manages any kind of resources as a service.

To do that, it was necessary to map different OCCI concepts into a modeling
framework to benefit from the available facilities for building tools based on a
metamodel (the right part of Figure 3.8). EMF was chosen to embed OCCI

and, thus, the OCCIware Metamodel was proposed as a precise meta-

3.5. OCCIware Studio 73

model for OCCI [Merle 2015a]. Therefore, we can define either an OCCI

extension model or an OCCI configuration model that conform to the OCCI-

ware Metamodel. However, the current tooling in EMF does not allow us
to encode that: an OCCI configuration is an “instantiation” of an OCCI ex-
tension. For that, OCCIware proposes, using the Ecore Generator tool, to
promote the OCCI extension model by translating it into an Ecore metamodel,
extending the OCCIware Metamodel. Consequently, we can design an Ex-
tension configuration model, instance of this generated metamodel. Later, we
can deduce a semantically equivalent OCCI configuration model, instance of
the OCCIware Metamodel.

This tool is directly implemented in Java. In the following, the generation
process of OCCIware Metamodel concepts into the EMF concepts is de-
tailed:

– Each OCCI kind instance is translated into an Ecore class. If its parent
is the Resource kind, the generated class extends the Resource Ecore
class of the OCCIware Metamodel. Otherwise, if its parent is the
Link kind, the generated class extends the Link Ecore class of the OC-

CIware Metamodel.

– Each OCCI mixin instance is translated into an Ecore class extending
the MixinBase class of the OCCIware Metamodel.

– Each OCCI attribute instance, owned by an OCCI kind/mixin, is trans-
lated into an Ecore attribute owned by the corresponding generated Ecore
class.

– Each OCCI action instance, owned by an OCCI kind/ mixin, is trans-
lated into an Ecore operation owned by the corresponding generated
Ecore class.

– Each OCCI constraint instance is translated into an OCL invariant.

– All Ecore data types defined in the OCCI extension are translated into
the corresponding EMF concepts and/or types in the generated OCCI

extension metamodel.

Table 3.1 outlines the mapping process of OCCIware Metamodel concepts
into EMF concepts.

• Alloy Generator is a tool to generate an Alloy specification from an OCCI
extension model. Alloy is a lightweight formal specification language based
on the first-order relational logic [Jackson 2012]. We are able to analyze OCCI

74
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Table 3.1: The Mapping Process of OCCI Concepts into EMF Concepts.
OCCI concept EMF concept

Kind EClass
Kind's source OCL invariant
Kind's target OCL invariant

Attribute EAttribute
Action EOperation
Mixin EClass

Constraint OCL invariant
BasicType EDataType

EnumerationType EEnum
RecordType EClass
ArrayType EClass

extensions formally with the Alloy analyzer. The Alloy analyzer is a solver that
takes the constraints of a model and finds structures that satisfy them. We
used it to explore the model by generating sample OCCI configurations, and
also to check properties of the OCCI extension by generating counterexamples.
The generated OCCI configurations can be displayed graphically with the
OCCIware Designer. Alloy Generator is the core of the fclouds approach,
my contribution that I detail in Chapter 5. This tool is implemented on top
of the Eclipse Acceleo framework.

• Connector Generator is a tool to generate the OCCI connector implemen-
tation associated to an OCCI extension. This generated connector code ex-
tends the generated Ecore implementation code. This connector code must be
completed by software developers to implement concretely how OCCI CRUD
operations and the specific actions must be executed on a real cloud infras-
tructure. Later, this generated connector will be deployed on OCCIware

Runtime. This tool is implemented on top of the Eclipse Acceleo framework.

• Designer Generator is a tool to generate a graphical extension-specific de-
signer from an OCCI extension. This designer can be later customized to be
able to represent the concepts related to the extension domain. This tool is
implemented on top of the Eclipse Acceleo framework and generate Eclipse
Sirius models.

• CURL Generator is a tool to generate a CURL-based script from an OCCI
configuration model. These generated scripts contain HTTP requests to in-
stantiate OCCI entities into any OCCI-compliant runtime. These scripts are
used for offline deployment. This tool is implemented on top of the Eclipse

3.6. OCCIware Runtime 75

Acceleo framework.

• Runtime Connector is a tool to synchronize OCCI configuration models
with running OCCI configurations hosted by any OCCI-compliant runtime.
This connector allows cloud developers to introspect an OCCI runtime in
order to build the corresponding OCCI configuration model, then update this
model and send changes back to the OCCI runtime. This tool integrates the
jOCCI API4, a Java library implementing transport functions for rendered
OCCI queries.

• Configuration Converter is a tool to translate an Extension configuration
model into an OCCI configuration model (the equivalent relation in Fig-
ure 3.8). This tool allows us to reuse the tools specific to OCCI artifacts
such as the CURL Generator to deploy later the configuration into an OCCI-
compliant runtime. This tool is directly implemented in Java.

3.6 OCCIware Runtime

To enact OCCI configuration models, we adopt the Models@run.time ap-
proach [Blair 2009] that extends the use of modeling techniques beyond the de-
sign and implementation phases. It seeks to extend the applicability of models and
abstractions to capture the behavior of the executing environment. End users of
OCCIware Studio require interaction with cloud APIs to create, retrieve, update
and delete cloud resources. Therefore, OCCIware Runtime is implemented as a
generic Java implementation of OCCI, available as an open-source project5. The
OCCIware Runtime can be deployed as a standalone server including an embed-
ded Jetty server or as a Java library that is based on Java Servlet API specification.

The OCCIware Runtime is composed of four main parts, as illustrated in
Figure 3.9.

• OCCI Server that implements the following OCCI specifications: (i) OCCI
HTTP Protocol [Nyrén 2016a], (ii) OCCI Text Rendering [Edmonds 2016],
OCCI JSON Rendering [Nyrén 2016d] based on the Jackson6 library, and (iii)
OCCI Core Model [Nyrén 2016b] based on the OCCIware Metamodel.

• OCCI Extensions that represent the OCCIware-based modeling of con-
crete cloud domains such as OCCI Infrastructure [Nyrén 2016c], OCCI

4https://github.com/EGI-FCTF/jOCCI-api
5https://github.com/occiware/MartServer
6https://github.com/FasterXML/jackson

https://github.com/EGI-FCTF/jOCCI-api
https://github.com/occiware/MartServer
https://github.com/FasterXML/jackson

76
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Platform [Metsch 2016], OCCI SLA [Katsaros 2016], Docker [Paraiso 2016],
cloud mobile robotics [Merle 2017], etc.

Figure 3.9: OCCIware Runtime Architecture.

• OCCI Configurations that are instances of OCCIware configuration, such
as a configuration using OCCI Infrastructure and containing a running
virtual machine with 4 cores, 3.2 GHz and 16 GiB.

• OCCI Connectors that consist in the pivot between OCCIware extension-
s/configurations and CRM-APIs. Each connector is dedicated to a specific
cloud domain, e.g., AWS, GCP, Docker, or mobile robotics. It implements the

3.7. Evaluation of OCCIware Studio 77

corresponding OCCI extension. It executes CRUD (Create, Retrieve, Update
and Delete) operations and extension-specific actions, such as start compute
for the OCCI Infrastructure extension. The OCCIware Runtime is ex-
tensible by design: supporting a new kind of cloud resources consists of adding
a new connector.

Users send their HTTP requests to the OCCIware Runtime to manage an
OCCI configuration and wait for a reply. In the OCCIware Runtime, the process-
ing of a user's request consists of managing the OCCI HTTP protocol, decoding the
HTTP request body according to its text or JSON format, forwarding the request
to the OCCI Core Model, controlling if the request is allowed by the OCCIware

extension, calling the connector related to the targeted cloud API, preparing the
request to send to the cloud provider, communicating with the cloud API via its
associated network protocol, processing the request by the cloud provider, encoding
the HTTP reply body, and return the reply to the user. Then the user processes
the reply.

3.7 Evaluation of OCCIware Studio

This section validates the OCCIware approach. We discuss how OCCIware ad-
dresses the different requirements listed in Section 3.1. At first, we show the different
OCCI extensions defined by the OGF's OCCI working group and implemented with
OCCIware. We particularly focus on the Infrastructure extension by showing
how the cloud developer leverages the generated tooling around this extension to
create/manage his/her configuration models with OCCIware Studio and deploy
them in the cloud. Then, we illustrate the different OCCIware approach usages
presented in Section 3.3 by presenting five major use cases that apply OCCIware.

3.7.1 Implementation of a Catalog of Standard OGF's OCCI Ex-
tensions

Each OCCI extension is implemented as an Eclipse modeling project containing
one extension model, which is an instance of OCCIware Metamodel. Currently,
OCCIware Studio supports the five OCCI extensions defined by the OGF's OCCI
working group.

3.7.1.1 The OCCI Infrastructure Extension

OCCI Infrastructure [Nyrén 2016c] defines compute, storage and network resource
types and associated links. To design the Infrastructure extension, the OCCI-

78
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

ware architect can use OCCIware Designer and/or OCCIware Editor.
This extension defines five kinds (Network, Compute, Storage, StorageLink

and NetworkInterface), six mixins (Resource_Tpl, IpNetwork, Os_Tpl, SSH_key,
User_Data, and IpNetworkInterface), and around twenty data types (Vlan range,
Architecture enumeration, various status enumerations, etc.). Figure 3.10 shows
a subset of this extension. The complete one is available here7.

Figure 3.10: OCCI Infrastructure Extension Model.

The Compute kind represents a generic information processing resource, e.g., a
virtual machine or container. It inherits the Resource defined in the OCCI Core

extension. It has a set of OCCI attributes such as occi.compute.architecture

to specify the CPU architecture of the instance, occi.compute.core to define the
number of virtual CPU cores assigned to the instance, occi.compute.memory to
define the maximum RAM in gigabytes allocated to the instance, etc. The Compute
kind exposes five actions: start, stop, restart, save and suspend.

The Network kind is an interconnection resource and represents a Layer 2 (L2)
networking resource. This is complemented by the IpNetwork mixin. It exposes two
actions: up and down.

The orange-colored box in Figure 3.10 illustrates the state diagram of a Network

instance and describes its behavior. As shown previously in Section 3.4, the OCCI-

ware Metamodel provides the required concepts to describe the behavior of each
kind/mixin. In addition, it allows us defining extension-specific constraints. For

7https://github.com/occiware/OCCI-Studio/blob/master/plugins/org.eclipse.cmf.
occi.infrastructure/model/Infrastructure.occie

https://github.com/occiware/OCCI-Studio/blob/master/plugins/org.eclipse.cmf.occi.infrastructure/model/Infrastructure.occie
https://github.com/occiware/OCCI-Studio/blob/master/plugins/org.eclipse.cmf.occi.infrastructure/model/Infrastructure.occie

3.7. Evaluation of OCCIware Studio 79

example, the following OCL constraint specifies that each Network instance must
have a unique VLAN.

inv UniqueVlan : Network . a l l I n s t a n c e s ()−>isUnique (o c c i . network .
vlan)

In addition, we define, in the following, an additional OCL constraint in the
IpNetworkInterface mixin, which checks that all IP addresses must be different.

inv IPAddressesMustBeUnique : IpNetworkInter face . a l l I n s t a n c e s ()−>
isUnique (o c c i . n e twork in t e r f a c e . address)

The NetworkInterface kind inherits the Link kind. It connects a Compute

instance to a Network instance. The Storage kind represents data storage devices.
The StorageLink kind inherits the Link kind. It connects a Compute instance to a
Storage instance.

Once the extension is defined, the generation process of Infrastructure Tool-
ing may be triggered. It generates four main elements: (i) the Infrastructure

Metamodel, (ii) the Java-based Infrastlandscructure Implementation, (iii)
Infrastructure Connector, and (iv) Infrastructure Designer.

Listing 3.1 shows a subset of the generated Network connector class. It extends
the NetworkImpl class generated by the EMF tooling and contains the OCCI specific
callback methods for the CRUD operations and all Network kind-specific actions
(i.e., up and down). The generated code of specific actions is deducted from the
defined FSM on the Network kind.
pub l i c c l a s s NetworkConnector extends NetworkImpl {

NetworkConnector () {}
// OCCI CRUD ca l l ba ck ope ra t i on s .
pub l i c void occ iCrea te () { /∗ TODO ∗/ }
pub l i c void o c c iRe t r i e v e () { /∗ TODO ∗/ }
pub l i c void occiUpdate () { /∗ TODO ∗/ }
pub l i c void o c c iDe l e t e () { /∗ TODO ∗/ }

// Network a c t i on s .
pub l i c void up () {

i f (g e tS ta t e () . equa l s (NetworkStatus . INACTIVE)) {
i f (t rue) {

// TODO: Trans i t i on i n a c t i v e −up−> ac t i v e
s e tS t a t e (NetworkStatus .ACTIVE) ;

} e l s e {
// TODO: Trans i t i on i n a c t i v e −up−> er r o r
s e tS t a t e (NetworkStatus .ERROR) ;

}
}

}
pub l i c void down () {

i f (g e tS ta t e () . equa l s (NetworkStatus .ACTIVE)) {

80
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

i f (t rue) {
// TODO: Trans i t i on a c t i v e −down−> ina c t i v e
s e tS t a t e (NetworkStatus . INACTIVE) ;

} e l s e {
// TODO: Trans i t i on a c t i v e −down−> er r o r
s e tS t a t e (NetworkStatus .ERROR) ;

}
}

}
}

Listing 3.1: The Generated Network Connector Class.

Once the generation step is achieved, the software developer can complete
the generated connector classes by updating their methods implementations (TODO
sections in Listing 3.1) with business code related to targeted API. For the
NetworkConnector class, the software developer completes the code to trigger
that the OCCI Network resource was created (occiCreate), will be retrieved
(occiRetrieve), was updated (occiUpdate) and will be deleted (occiDelete). In
addition, he/she completes the generated methods (up and down) related to specific
actions defined in the Network kind. The completed connector code must be later
deployed on the OCCIware Runtime. Then, the software developer can proceed
to the customization of the generated Infrastructure Designer which will be used
to create Infrastructure configuration models as shown in Figure 3.11.

Figure 3.11: An Infrastructure Configuration Model.

From now on, we can consider that the OCCI Infrastructure extension is
completely tooled and able to be used to manage conforming configurations.

Using OCCIware Studio enriched with the Infrastructure Tooling, cloud

3.7. Evaluation of OCCIware Studio 81

developers can design an OCCI Infrastructure configuration model conforms to
the Infrastructure Metamodel. Figure 3.11 illustrates a small infrastructure con-
figuration composed of a compute (vm1) connected to a network (network1), via an
OCCI link (green-colored box), the network interface (ni1). As this configuration
uses an IP-based network, the Network resource and the NetworkInterface link
have an IpNetwork and IpNetworkInterface mixin, respectively. Each OCCI en-
tity is configured by its attributes, e.g., vm1 has the vm1 hostname, an x64-based
architecture, 4 cores, and 4 GiB of memory.

To benefit from the OCCI-compliant tools defined in the OCCIware Studio,
an Infrastructure configuration model must be translated into an OCCI configu-
ration model that conforms to the OCCIware Metamodel. Figure 3.12 shows a
generated OCCI configuration model from the Infrastructure configuration model.
As shown in the palette of the Infrastructure Designer (right part of Figure 3.11), the
Infrastructure Designer allows cloud developers to create an instance of Infrastruc-
ture Metamodel such as Compute, Network, and Storage. However, in the palette of
the OCCIware Designer (right part of Figure 3.12), the cloud developer can only
create instances of OCCIware Metamodel Resource and Link classes.

Figure 3.12: An OCCI Configuration Model.

In order to deploy and manage the generated OCCI configuration models, cloud
developers interact with the cloud by sending OCCI HTTP requests to OCCIware

Runtime. These requests can be automatically generated as CURL scripts using
the CURL Generator tool. Listing 3.2 shows the CURL script that requests OC-

CIware Runtime via both OCCI HTTP Protocol [Nyrén 2016a] and OCCI Text
Rendering [Edmonds 2016] to create the network1 instance. Then, OCCIware

Runtime invokes the occiCreate() method of the NetworkConnector class, which
implements how to create the considered network instance in the cloud. Finally, the

82
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

created Network resource is deployed in the cloud.

OCCI_SERVER_URL=$1

curl $CURL_OPTS −X PUT $OCCI_SERVER_URL/network/39155c91−cf53−42c8−923f−6d51b f f f f f f 9
−H ’Content−Type: text/occi ’
−H ’Category: network ; scheme="http : //schemas . ogf . org/occi / in frastructure#";

c las s="kind "; ’
−H ’Category: ipnetwork ; scheme="http : //schemas . ogf . org/occi / in frastructure#";

c las s="mixin "; ’
−H ’X−OCCI−Attribute : occi . core . id="39155c91−cf53−42c8−923f−6d51b f f f f f f 9 " ’
−H ’X−OCCI−Attribute : occi . core . t i t l e="network1" ’
−H ’X−OCCI−Attribute : occi . network . vlan=12 ’
−H ’X−OCCI−Attribute : occi . network . labe l="private" ’
−H ’X−OCCI−Attribute : occi . network . address="10.1.0.0/16" ’
−H ’X−OCCI−Attribute : occi . network . gateway="10.1.255.254" ’

Listing 3.2: The generated CURL script to create a Network instance

The proposed tooling around the OCCI Infrastructure extension allows us,
with our industrial partner Scalair [scaa], to implement a Java connector for VMware
API. The whole tooling around Infrastructure extension is available here8. In the
future, we will target additional CRM-APIs such as AWS, OpenStack, GCP, etc.

3.7.1.2 The OCCI CRTP Extension

OCCI CRTP [Drescher 2016] defines a set of preconfigured instances of the OCCI
compute resource type. It extends the Infrastructure extension. Figure 3.13 shows
the OCCI CRTP extension designed with OCCIware Studio. Its tooling is avail-
able here9.

3.7.1.3 The OCCI Platform Extension

OCCI Platform [Metsch 2016] defines application and component resource types
and associated links. Figure 3.14 shows the OCCI Platform extension designed
with OCCIware Studio. Its tooling is available here10.

8https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.infrastructure

9https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.CRTP

10https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.platform

https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.infrastructure
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.infrastructure
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.CRTP
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.CRTP
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.platform
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.platform

3.7. Evaluation of OCCIware Studio 83

Figure 3.13: OCCI CRTP Extension Model.

Figure 3.14: OCCI Platform Extension Model.

84
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

3.7.1.4 The OCCI SLA Extension

OCCI SLA [Katsaros 2016] defines OCCI types for modeling service level agree-
ments. Figure 3.15 shows the OCCI SLA extension designed with OCCIware

Studio. Its tooling is available here11.

Figure 3.15: OCCI SLA Extension Model.

3.7.1.5 The OCCI Monitoring Extension

OCCI Monitoring [Ciuffoletti 2016] is a draft specification and defines sensor and
collector types for monitoring cloud systems. Figure 3.16 shows the OCCI Monitor-
ing extension designed with OCCIware Studio. Its tooling is available here12.

11https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.sla

12https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.
occi.monitoring

https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.sla
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.sla
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.monitoring
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.monitoring

3.7. Evaluation of OCCIware Studio 85

Figure 3.16: OCCI Monitoring Extension Model.

3.7.2 Five OCCIware Use Cases

In this subsection, five major use cases of the OCCIware approach are illustrated.

3.7.2.1 Cloud Simulation with OCCIware

This work [Ahmed-Nacer 2016a, Ahmed-Nacer 2017] provides a methodology for
the simulation of OCCI configurations. The simulation technology has increas-
ingly become popular as it allows users to evaluate their algorithms and appli-
cations before deploying them on a real cloud environment. This work reuses
CloudSim [Calheiros 2011], a generalized and extensible simulation framework that
allows seamless modeling, simulation, and experimentation of emerging cloud com-
puting infrastructures and application services. CloudSim allows users to test the
performance of a newly developed application service in a controlled environment.
Moreover, CloudSim allows a user to model and simulate all the cloud infrastructure
resources. The main idea of this use case consists in defining an OCCI extension
named Simulation which extends the Infrastructure extension. The extension
defines two notions: a resource to simulate represents the resource to be simulated,
and a simulation resource represents the resource which performs the simulation ac-
tivity. Two main artifacts are generated for this use case: Simulation Metamodel

and Simulation Designer. Once a Simulation configuration model is defined, it
can be later verified, and analyzed by the CloudSim tool. The simulation activ-
ity evaluates the configuration using some metrics such as the percentage of used

86
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

memory, the percentage of used disk, and the average of the CPU utilization.

3.7.2.2 Cloud Mobile Robotics with OCCIware

This use case [Merle 2017] illustrates the convergence of cloud computing
and robotics platforms. It introduces Open Mobile Cloud Robotics Interface

(OMCRI), a Robot-as-a-Service vision based platform, which offers a unified easy
access to remote heterogeneous mobile robots. OMCRI is a new OCCI extension for
mobile cloud robotics. This extension defines three kinds of heterogeneous robots:
Lego Mindstorm NXT 2, Turtlebot, and Parrot AR.Drone. It introduces a set of
mixins that customize the sensors and the actuators of each robot. An OMCRI con-
nector has been developed and deployed on the OCCIware Runtime. End users
can create OMCRI configuration models to manage the mobile robots. They interact
with mobile robots by sending OCCI HTTP requests to the OCCIware Runtime.
These requests may be: creating a mobile robot resource, updating its attributes,
and executing an action of a mobile robot. In this work, an evaluation to measure
the performance, stability, and scalability of the OMCRI has been performed. Eval-
uation tests have shown that OMCRI overhead remains low and that OMCRI does
not add any latency. Figure 3.17 shows an OMCRI configuration modeled using the
customized OMCRI Designer.

Figure 3.17: OMCRI Designer.

3.7.2.3 Docker Management with OCCIware

In this work [Paraiso 2016], authors present a model-driven management of
Docker [doc] containers based on OCCIware Studio. Docker is a technology

3.7. Evaluation of OCCIware Studio 87

used for developing, deploying and executing applications packaged into containers.
Docker lacks of deployability verification tool for containers at design time. In addi-
tion, the synchronization between the designed containers and those deployed was
still a major challenge for the Docker technology. Finally, Docker did not provide
a mechanism to reconfigure the container resources at runtime. To resolve these
issues, authors refer to the OCCIware approach by proposing Docker Studio13, an
OCCI-based studio for the Docker technology. This work defines a Docker extension
using OCCIware Studio. To resolve the lack of verification challenge in Docker,
this work reuses the Constraint concept added in the OCCIware Metamodel

to define constraints specific to the Docker domain such as the not permitted bidi-
rectional or closed loop link between Docker Containers. By defining this kind of
information and validating it using the OCCIware Validator, the end user is now
sure that his/her designed configuration is correct and it is ready to be deployed.
Then, a Docker Designer is generated and customized to provide a high-level abstrac-
tion for Docker containers that is used for reasoning and managing large container
deployments in the cloud. As shown in Figure 3.18, Docker Designer allows repre-
senting a human understandable description of some aspects of a running Docker
system. In addition, to resolve the synchronization issue, a specific generator for the
Docker technology has been provided in order to generate Docker artifacts (Docker
Command-Line Interface (CLI) commands, Docker Compose file, Docker Swarm
configurations). These generated artifacts are used for online deployment. More-
over, to ensure the synchronization from the running system to the Docker model, a
Docker Connector has been developed. This connector updates the model elements
according to the running system changes. Finally, to ensure the resource manage-
ment at runtime, the developed connector implements the observer/listener design
pattern. Therefore, the connector relies on a notification mechanism that reports
events when a model element has been changed.

3.7.2.4 Managing Cloud Applications with OCCIware

In this work [Korte 2018], authors focus on modeling cloud applications with OCCI.
OGF defines extensions that target the requirements of different cloud service levels,
such as IaaS and PaaS. However, no concrete use cases and implementations have
been provided around the OCCI Platform extension. This behavior is due to sev-
eral issues. At first, the lifecycle for the Component and Application resources as
defined in the OCCI Platform specification is incomplete (P1 issue). Moreover, the
OGF provides two separate OCCI extensions for the Infrastructure and Platform do-
mains, but it misses to define the connection between them (P2 issue). In addition,

13Available here https://github.com/occiware/Docker-Studio

https://github.com/occiware/Docker-Studio

88
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.18: Docker Designer.

the current version of the OCCI specification does not define how Components and
Applications can be managed throughout their lifecycle and if and how additional
tooling, e.g., configuration management tools, can be integrated (P3 issue). Finally,
the current version of the OCCI specification lacks of any real-world use case for the
application of the Platform extension (P4 issue). To tackle these issues, authors de-
fine the Model-Driven Configuration Management of Cloud Applications with OCCI
(MoDMaCAO) framework. It addresses the first issue P1 by enhancing the OCCI
Platform extension via additional lifecycle States and Actions. Furthermore, they
resolve the P2 issue by introducing a new Link kind to be able to connect Components
of the OCCI Platform extension to Compute resources of the OCCI Infrastructure
extension. In addition, they define a new OCCI extension to be able to model appli-
cation components that are managed with help of a configuration management tool
(addressing the P3 issue). They demonstrate the feasibility of the defined extension
by modeling five different distributed cloud applications (a Client/Server applica-
tion, a distributed MongoDB database, the popular LAMP web-application stack, a
distributed Cassandra database, and an Apache Spark cluster) and finally provide a
framework for implementing model-driven configuration management with different
configuration management tools such as Ansible and Roboconf, thereby addressing
P4. Figure 3.19 shows a LAMP configuration modeled using the LAMP designer.

3.7. Evaluation of OCCIware Studio 89

Figure 3.19: LAMP Designer.

3.7.2.5 Modeling Google Cloud Platform with OCCIware

In this work [Challita 2018a], I define a precise model, a.k.a an OCCI extension,
that describes GCP API. For the previous use cases, the entry point of each one is
designing an OCCI extension that describes a specific cloud domain. The particu-
larity of this work consists in analyzing of the textual documentation of the GCP
API in order to infer an OCCI extension for GCP. This extension represents a pre-
cise model for the GCP API. It will allow end users to graphically design their GCP
configurations and deploy them later. This use case is detailed next in Chapter 4.

3.7.3 Synthesis on the OCCIware Approach

The OCCIware approach has been successfully applied in different use cases and
domains. Each one implements some required features in a cloud modeling frame-
work. Table 3.2 states an overview on the implementation of these usages in different
use cases.

For the Infrastructure use case (Subsection 3.7.1.1), cloud architects have
taken advantage of the OCCIware Studio tools to design the structural and be-
havioral aspects of the extension, verify it according to the requirements specific
to the domain, and generate its documentation14. To deploy designed configura-
tions, Infrastructure use case implements the code generation strategy to pro-

14Available here https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.
eclipse.cmf.occi.infrastructure/documentation

https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.infrastructure/documentation
https://github.com/occiware/OCCI-Studio/tree/master/plugins/org.eclipse.cmf.occi.infrastructure/documentation

90
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Table 3.2: OCCIware Use Cases

In
fr

as
tr

u
ct

u
re

S
im

u
la

ti
on

O
M

C
R

I

D
oc

ke
r

M
oD

M
aC

A
O

G
C

P

C
ov

er
ag

e

Cloud Domain IaaS IaaS RaaS CaaS PaaS [I‖P‖S]aaS XaaS
Design X X X X X X X

Verification X X X X X X X
Documentation X X X X X X X
Code generation X X X X

Model interpretation VMware
API

CloudSim
API

Robots
API

Docker
API

Ansible
API

GCP
API X

Deployment X X X X
Discovery X X

Management X X X X X
Monitoring X X X

duce CURL scripts from an OCCI configuration. In addition, model interpretation
strategy is also implemented. Indeed, an OCCI extension for the VMware technology
has been defined15. VMware extension extends the Infrastructure extension. A
VMware connector has been developed. It supports the deployment of a designed
VMware configuration in the cloud environment. In addition, it ensures the recon-
figuration of a running system at runtime (management) and the synchronization
between the design and the execution environment by affecting changes occurred in
the executing environment to the existing architecture (monitoring).

For the Cloud Simulation use case (Subsection 3.7.2.1), it illustrates several
usages of the OCCIware approach. At first, it represents the capability to create
a specific designer for the Simulation domain. In addition, it shows how we can
come back from the Simulation Studio to the OCCIware Studio by generating
an OCCI configuration model from a Simulation configuration model. Finally,
this work implements the model interpretation strategy by simulating an OCCI
configuration model using the CloudSim API. This use case illustrates how we can
plug an external API, here CloudSim, into the OCCIware framework. In fact,
once a configuration has been designed, it can be reused for several activities such
as simulation, deployment, and cost analysis.

OMCRI use case (Subsection 3.7.2.2) endorses the fact that we can manage XaaS
with the OCCIware approach, even mobile robots. OMCRI use case validates
the genericity of the OCCIware Runtime. In addition, the evaluation shows
that adopting the OCCIware approach into another domain, other than cloud
computing, does not cause a latency that damages the responsiveness of the system.

Docker use case (Subsection 3.7.2.3) is considered as the first OCCI-based studio
implemented with OCCIware technology. It illustrates our approach to consider

15Available here https://github.com/occiware/Multi-Cloud-Studio/tree/master/plugins/
org.eclipse.cmf.occi.multicloud.vmware

https://github.com/occiware/Multi-Cloud-Studio/tree/master/plugins/org.eclipse.cmf.occi.multicloud.vmware
https://github.com/occiware/Multi-Cloud-Studio/tree/master/plugins/org.eclipse.cmf.occi.multicloud.vmware

3.7. Evaluation of OCCIware Studio 91

OCCIware as a factory to build cloud modeling frameworks (right part of Fig-
ure 3.5). Docker Studio represents a concrete use case which implements both
strategies, code generation, and model interpretation, to execute designed models
specific to a particular domain. The most important feature developed in the Docker
use case is the mapping of a running architecture from the execution environment to
the modeling framework. It allows end users to benefit from the Docker Studio

while the configuration was not initially designed using it.

MoDMaCAO use case (Subsection 3.7.2.4) validates the applicability of the OC-

CIware approach on different cloud layers. This work is the result of a fruitful col-
laboration between the OCCIware team in Inria, Spirals, Fabian Korte and Jens
Grabowski from the University of Goettingen. MoDMaCAO can even be applied to
connect two layers in the cloud such as IaaS and PaaS. Model interpretation strat-
egy has been experimented by developing a connector which allows us to deploy and
manage different designed cloud applications using Ansible [ans], a flexible config-
uration management system. Code generation strategy may also be experimented
by generating Ansible playbook artifacts from MoDMaCAO configurations.

GCP use case (Subsection 3.7.2.5) represents the first use case that applies the
OCCIware approach on a big cloud provider, a.k.a GCP. I present the GCP use
case in the next chapter. GCP use case is a major part of my first contribution
in this thesis. In this work I target to integrate both code generation and model
interpretation strategies. With the code generation approach, they aim to use GCP
configurations to generate GCP artifacts, such as JSON files that contain the needed
structured information for creating a VM for example. In addition, this use case
aims to experiment the model interpretation approach, by defining the business logic
of GCP connector which defines the relationship between GCP configurations and
their executing environment.

To summarize, the OCCIware approach provides a software product line,
named OCCIware Studio Product Line as shown in Figure 3.20. OCCI-

ware Studio is considered as a factory to create other studios. Each one targets
a particular cloud domain. The different generated studios share a common base,
which is OCCIware Metamodel. Therefore, composing the different generated
studios can be an interesting perspective to create an Internet of Everything (IoE)
Studio that allows us to compose heterogeneous concepts and domains in the same
modeling framework.

92
Chapter 3. Modeling, Verifying, Generating and Managing Cloud

Resources with OCCIware

Figure 3.20: OCCIware Studio Product Line.

3.8 Summary

This chapter presented OCCIware, the first model-driven approach for OCCI.
The OCCIware approach provides two main components: OCCIware Studio

and OCCIware Runtime. OCCIware Studio is a model-driven tool chain to
design OCCI artifacts. It is built on the top of a metamodel, named OCCIware

Metamodel, which defines the precise semantics of OCCI in Ecore and OCL. Our
metamodel can be seen as a DSML to define and exchange OCCI extensions and
configurations between end users and resource providers. OCCIware Runtime is
a generic OCCI-compliant runtime environment.

The OCCIware approach is proposed as a framework to manage XaaS with
OCCI. Moreover, the OCCIware approach is considered as a factory of cloud
domain-specific modeling languages and studios due to its capability to generate
a complete framework to manage resources specific to a particular cloud domain.
The OCCIware approach has been validated via several use cases, which target
different domains (IaaS, PaaS, RaaS and CaaS). Each use case illustrates a specific
usage of the OCCIware approach and demonstrates its genericity and extensibility.

In the next part of this dissertation, I present my contributions that are based
on the OCCIware approach. In the next chapter, I present my approach for repre-
senting in an enhanced and automated way the concrete set of cloud concepts and
the behaviour of cloud operations.

Part IV

Contributions

In the end of Part II, I discussed the need of automatically building cloud models and
formally reasoning over them. In this part, I detail my solution to make it reality.

Chapter 4

Inferring Precise Models from
Cloud APIs Textual

Documentations

This chapter is an extended version of our paper “A Precise Model for
Google Cloud Platfom” [Challita 2018a] published in the 6th IEEE

International Conference on Cloud Engineering (IC2E).

Contents
4.1 Inferring Precise Cloud Models 97

4.1.1 Approach Overview . 98

4.1.2 Related Work . 100

4.2 GCP Use Case: Motivation & Drawbacks 101

4.3 GCP Model Extraction Approach 107

4.3.1 GCP Snapshot . 108

4.3.2 GCP Crawler . 108

4.3.3 GCP Model . 108

4.3.4 GCP Refinement . 112

4.3.5 Challenges . 115

4.4 Evaluation of GCP Model 116

4.4.1 Qualitative Evaluation . 116

4.4.2 Quantitative Evaluation . 119

4.5 Summary . 120

Cloud documentations are the first agreement between cloud developers and
cloud providers on how exactly cloud APIs should operate. Even with doc-

umentations, cloud developers tend to build cloud configurations or send HTTP
requests that are inconsistent with the legal use of the cloud API. This upsetting
situation is due to the impreciseness of the cloud textual documentations and to the

96
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

lack of verification process that ensures the correctness of cloud configurations before
their deployment. Cloud models play an important role to capture the expectations
of a cloud API and to a priori validate the correctness of its cloud configurations.
These models are manually designed so far, which is prohibitively labor intensive,
time consuming and error-prone. To address this issue, I propose a novel approach
to infer model-driven specifications from natural language text of cloud API docu-
mentations. My approach is applied on a concrete cloud provider, GCP, which is
today one of the most important and growing provider in the cloud market. GCP
provides developers several products to build a range of programs from simple web-
sites to complex applications. Although it was established only five years ago, GCP
has gained notable expansion due its suite of public cloud services that it based on
a huge, solid infrastructure. Actually, GCP offers hosting services on the same sup-
porting infrastructure that Google uses internally for end-user products like Google
Search and YouTube. This outstanding reliability results in GCP being adopted by
eminent organizations such as Airbus, Coca-Cola, HTC, Spotify, etc. In addition,
the number of GCP partners has also increased substantially, most notably Equinix,
Intel and Red Hat.

To use GCP services, expert developers refer at first to the GCP API docu-
mentation provided at GCP website. By going through the GCP documentation,
I realize that it contains wealthy information about GCP services and operations,
such as the semantics of each attribute and the behaviour of each operation. How-
ever, GCP documentation is described through HTML pages at its website1 and
is written in natural language, a.k.a. English prose, which results in human errors
and/or semantic confusions. Also, the current GCP documentation lacks of visual
support, hence the developer will spend considerable time before figuring out the
links between GCP resources. To avoid confusion and misunderstandings, the cloud
developers obviously need a precise specification of the knowledge and activities in
GCP.

After presenting the general approach we promote to obtain formal cloud mod-
els, this chapter presents a precise model for GCP. It describes GCP resources and
operations, reasons about this API and provides corrections to its current draw-
backs, such as Informal Heterogeneous Documentation, Imprecise Types, Implicit
Attribute Metadata, Hidden Links, Redundancy and Lack of Visual Support that I
detail in Section 4.2. This is a work of reverse engineering [Rugaber 2004], which
is the process of extracting knowledge from a man-made documentation and re-
producing it based on the extracted information. In order to formally encode the
GCP API without ambiguity, I choose to automatically infer a GCP Model as the

1https://cloud.google.com

https://cloud.google.com

4.1. Inferring Precise Cloud Models 97

target documentation format. In fact, my approach leverages the use of MDE to
provide a precise and homogeneous specification, and reduce the cost of develop-
ing complex systems. MDE allows to rise in abstraction from the implementation
level to the model level, and to provide a graphical output and a formal verification
of GCP structure and operations. My GCP Model conforms to the OCCIware

Metamodel presented in Chapter 3.
The contributions of this chapter can be summarized in three categories:

1. an automated approach to infer models from textual documentations,

2. a concrete use case of our approach: a precise GCP Model that consists in
a formal specification of GCP. This model, automatically built, also provides
corrections for the drawbacks that I identified in GCP documentation,

3. an analysis of GCP documentation because it is as important as analyzing the
API itself. This is done thanks to my model which is a clearer representation
of GCP compared to the original one and hence easier to reason over it, and,

4. a validation of the preciseness of my GCP model.

This chapter is structured as follows. Section 4.1 argues for the need to analyze
cloud textual documentations and proposes a protocol to automatically infer models
from them. Section 4.2 identifies six general drawbacks of GCP documentation that
motivate this work. Next, Section 4.3 describes my model-driven approach for a
better description of GCP API and gives an overview of some background concepts
I use in my GCP Model. Section 4.4 presents and discusses my results, which
validate my approach. Finally, Section 4.5 concludes the chapter with future work.

4.1 Inferring Precise Cloud Models

Modeling cloud APIs is an important way for capturing their requirements and
succeeding a thorough understanding of their behavior. Modeling allows the cloud
developer to keep the cloud concepts clean from the details of implementation classes
and the HTTP requests. Moreover, modeling by using MDE principles allows the
developer to generate from the cloud model the corresponding Java implementation
classes. The model can also be used to generate different outputs, e.g., HTML
pages, or it can be interpreted at runtime by software. However, modeling the cloud
requires knowledge in modeling techniques which is not necessarily available among
cloud experts. For this reason, modeling experts are employed to formalize models
within an iterative way in collaboration with cloud experts. This procedure involves
long meetings due to ambiguities or misunderstandings among the involved actors,

98
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

so the acquisition of cloud models consumes a lot of time and cannot follow-up with
the extensive documentations provided by the cloud providers. These documen-
tations are the most relevant source of information for the construction of cloud
models. Such textual documents can be stored in a structured way like HTML
pages, JSON, YAML or XML files or in an unstructured way like reports or man-
uals. However, the textual documentations may contain syntactical or semantic
errors that distort the real semantics of cloud APIs and that require analysis and
rectifications before gathering the information. Therefore, the acquisition process
of cloud models remains relatively error-prone and costly.

To address this challenge, I propose to automatically provide a precise model of
the cloud API from the documentation supplied by the cloud provider. This way,
the cloud developer can easily access the model-based documentation of the cloud
that he/she uses. Model-based documentations allow the developer to thoroughly
understand the insights of the cloud API. I combined both web crawling and Natural
Language Processing (NLP) in order to correctly infer models from the cloud docu-
mentations. The global approach is summarized as follows. First, using a dedicated
web crawler, I extract information that allows me to build a model. Web crawlers are
bots that visit the internet to extract information from web pages. Second, I apply
NLP [Chowdhury 2003] with rules to extract properties, semantics and constraints
on the API. NLP is a branch of the artificial intelligence field that automates the
study and extraction of useful knowledge from texts written by humans, in order
to better interface with computers. In this context, programs implementing NLP
take as input a text flow and exploit information to achieve several tasks such as re-
lationship extraction, automatic summarization, terminology extraction, etc. NLP
has two main approaches: rule-based and statistical. The former refers to the idea of
using hand-coded set of rules to exploit information. For instance, to recognize email
addresses, IP addresses, I use specific regular expressions. This approach is easy to
implement and suitable for specific cases. The latter relies on machine learning to
achieve more complex tasks. My approach exploited the rule-based NLP which suc-
cessfully achieved knowledge extraction. My web crawler takes into assumption the
structure of the provided documentation, whether it takes the form of HTML pages,
JSON files or others. Since most of cloud documentations are provided as HTML
pages at the provider's website, I specifically propose in this chapter to automate
the extraction of precise models from HTML cloud documentations.

4.1.1 Approach Overview

This section discusses the design of our approach, which is represented in Figure 4.1,
and also outlines the foundations behind it, namely web crawling, cloud modeling

4.1. Inferring Precise Cloud Models 99

and NLP. First, my proposed system takes a documentation as input, and then
uses the documentation Specific Parser, Model Generator, Text Analysis Engine
and Model Validator to correctly generate the model of the cloud API.

Text
Analysis
Engine

Specific
parser

Model
Generator

Model
Validator

Cloud
documentation

Figure 4.1: My Model Extraction Approach Overview.

• Specific Parser: First, I connect to the main page of the cloud documentation
and the specific parser takes the documentation in a structured HTML format
as input and extracts resources from the HTML tags. More specifically, using
an HTML parser, I retrieve the table or the list containing the cloud resources.
In fact, the retrieval of information from HTML pages requires recognition
rules that are specific to the documentation format. Sometimes, the informa-
tion is structured in tables with specific IDs. Other documentations could be
organized within lists and therefore crawling must be adapted. Afterwards,
for each resource, the parser retrieves the resource elements such as its name,
description, list of actions and list of attributes. For each attribute, I retrieve
its properties like its name, description and type.

• Model Generator: I define exhaustive and systematic mapping between the
parsed cloud API concepts and the used cloud metamodel. For example,
for each row of the documentation HTML table (<tr> </tr>), I add a new
resource instance to the target cloud model. This resource instantiates the
corresponding concept of the cloud metamodel, in terms of the mapping rules I
defined. For each cell (<td> </td>) that contains the definition of an element
of this resource, I add a new attribute instance to the target cloud model.

• Text Analysis Engine: Later on, the text analysis engine performs some nat-
ural language post-processing actions. I mainly define a set of rules on the
description of the attributes to detect implicit properties that are not clearly
stated in specific cells and to elucidate domain-specific metadata. I also apply
on the description a set of rules based on keywords of each attribute to refine
its type if necessary. Sometimes, the type and the description of an attribute
do not match, and thus the cloud developer may define incorrect types in

100
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

their HTTP requests. I also use NLP to generate a tree structure to identify
relations between concepts.

• Model Validator: Finally, the cloud model I generated is passed to the model
validator to ensure that it is consistent, conforms to the metamodel and be-
haves as expected. At each time an error is detected, I iterate on the model to
fix it by defining additional rules or correcting the existing ones. Our approach
does not provide automated correction mechanisms for the errors raised at the
validation, the developer has to correct errors by himself/herself.

This contribution is original and striking, and I estimate that it will leave an
impact in the cloud domain. It might seem simple but it involves many complicated
details. In the remaining of this chapter, I apply my model inferring approach to a
real and significant cloud provider and I cover the whole modeling of his documen-
tation. I concretely exploit this idea by automatically inferring from GCP textual
documentation, a precise model that conforms to the OCCIware Metamodel.
This use case might be applied to other source platforms, like Amazon, towards
other target platforms, like CloudML. I chose GCP because it is one of the major
cloud providers with an informal documentation and OCCIware because it consists
in the context of this thesis and the OCCIware Metamodel is extensible in a
way to support all kinds of cloud resources.

4.1.2 Related Work

The literature of model-driven approaches for the cloud shows that researchers do
not discuss the details of how they obtain their models for the cloud. This is due
to cloud models being manually constructed. Even though researchers might have
already thought about automating the process of designing cloud models, this idea
has not been put into practice. To the best of our knowledge, we provide the first
work that investigates and formalizes a cloud API documentation. In [Petrillo 2016],
Petrillo et al. have focused on studying three different cloud APIs and proposed a
catalog of seventy-three best practices for designing REST APIs. In contrast to
our work, this work is limited to analyzing the documentations of these APIs and
does not propose any corrections. Two recent works were interested in studying
REST APIs in general. [Haupt 2017] provides a framework to analyze the struc-
ture of REST APIs to study their structural characteristics, based on their Swag-
ger documentations. [Cao 2017] presents AutoREST, an approach and a proto-
type to automatically infer an OpenAPI specification from a REST API HTML
documentation. Our work can be seen as a combination of these two previous
works [Haupt 2017, Cao 2017], since we infer a rigorous model-driven specification

4.2. GCP Use Case: Motivation & Drawbacks 101

from GCP HTML documentation and we provide some analysis of its corresponding
API. However, in contrast to these two works, our work is specifically applied on
a cloud REST API and proposes corrections to the detected deficits of its docu-
mentation. Moreover, given that it is an important but very challenging problem,
analyzing natural language documents from different fields has been studied by
many previous works. In [Zhai 2016], Zhai et al. apply NLP techniques to con-
struct models from Javadocs in natural language. These models allow one to reason
about library behaviour and were implemented to effectively model 326 Java API
functions. [Pandita 2012] presents an approach for inferring formal specifications
from API documents targeted towards code contract generation. [Zhong 2009] de-
velops an API usage mining framework and its supporting tool called Mining API
usage Pattern from Open source repositories (MAPO) for mining API usage pat-
terns automatically. [Sinha 2010] proposes abstract models of quality use cases by
inspecting information in use case text.

4.2 GCP Use Case: Motivation & Drawbacks

The object of my study is the GCP documentation. GCP is a proprietary cloud
platform that consists of a set of physical assets (e.g., computers and hard disk
drives) and virtual resources (e.g., virtual machines, a.k.a. VMs) hosted in Google's
data centers around the globe. I especially target this API because it belongs to
a well-known cloud provider and because I believe it can be represented within a
better formal specification.

GCP documentation is available in the form of HTML pages online. The URL2

is the starting point of my study and the base for building my GCP Model. This
page exhaustively lists the resources supported by the deployment manager, and
provides a hyperlink to each of these resources. Normally, the developer will use
the deployment manager to deploy his/her applications. The deployment manager
will then provision the required resources. Therefore, I adopt this page to study the
documentation of each GCP resource that could be provisioned by the developer.

Through my study of GCP, I have identified six main conceptual drawbacks/lim-
itations on GCP documentation, which are detailed below.

Informal heterogeneous documentation. Enforcing compliance to docu-
mentation guidelines requires specialized training and a strongly managed documen-
tation process. However, often due to aggressive development schedules, developers

2https://cloud.google.com/deployment-manager/docs/configuration/
supported-resource-types

https://cloud.google.com/deployment-manager/docs/configuration/supported-resource-types
https://cloud.google.com/deployment-manager/docs/configuration/supported-resource-types

102
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

neglect these extensive processes and end up writing documentations in an ad-hoc
manner with some little guidance. This results in poor quality documentations that
are rarely fit for any downstream software activities.

By going through the HTML pages of GCP documentation, it was not long
before I realized that it has two different formats to describe the attributes of each
resource (cf. Figure 4.2). This is an issue because it may disturb and upset the
reader, i.e., the cloud developer.

Figure 4.2: Different Documentation Formats.

Imprecise types. GCP documentation is represented by a huge number of
descriptive tables written in natural language. Thus it is a syntactically and seman-
tically error-prone documentation; it may contain human-errors and its static and
dynamic semantics are not well-formed, i.e., does not describe without ambiguity
the API and its behavior. In fact, some of the written sentences are imprecise and
can be interpreted in various different ways, which can lead to confusions and mis-
understandings when the user wants to provision cloud resources from GCP API.
For each resource attribute, I checked the corresponding type and description to
assess whether the information is accurate. Figure 4.3 shows that the current GCP
documentation states explicitly that string types are supported. But later on, fur-
ther details in the description explain how to set such strings. For example, the
effective type of the attribute is a URL in (1), an email address in (2), an enumer-

4.2. GCP Use Case: Motivation & Drawbacks 103

ation in (3), and an array in (4). The cloud developer may define non-valid string
formats for his/her application. The bugs will be detected during the last steps of
the provisioning process and fixing them becomes a tricky and time consuming task.

Figure 4.3: Imprecise String Types.

In addition, Figure 4.4 shows that GCP documentation employs several ways
to denote an enumeration type. Sometimes, the enumeration literals are listed in
the description of the attribute, and sometimes they are retrievable from another
HTML page.

104
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

Figure 4.4: Informal Enumeration Types.

As for Figure 4.5, it represents the documentation of the kind attribute in four
different resources. I notice that (4) shows a formatting error, which induces to the
fact that GCP documentation is written by hand.

Figure 4.5: Error in Describing the “Kind” Attribute.

Therefore, GCP documentation lacks of a precise and rigorous definition of its

4.2. GCP Use Case: Motivation & Drawbacks 105

data types.

Implicit attribute metadata. I notice that GCP documentation con-
tains implicit information in the attribute description. For example, it
contains some information that specifies if an attribute:

• is optional or required (cf. Figure 4.6),

Figure 4.6: “Optional/Required” Attribute Constraint.

• is mutable or immutable (cf. Figure 4.7),

Figure 4.7: “Immutable Attribute” Constraint.

• has a default value (cf. Figure 4.8).

Figure 4.8: “Default Value” Constraint.

106
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

These constraints are only explained in the description of each attribute, but
lacks of any verification process. The developer will not be able to ensure, before
the deployment phase, that his/her code meets these constraints.

Hidden links. A link is the relationship between two resource instances: a
source and a target. These links are implicit in GCP documentation but they are
important for proper organization of GCP resources. They are represented by a
nested hierarchy, where a resource is encompassed by another resource and where
an attribute defines the link between these resources, either directly or indirectly.
Figure 4.9 shows an example of a deducible link, a.k.a. networkInterface because
the description of this attribute is a URL pointing to the target resource, a.k.a.
network. Therefore, I can say that networkInterface is a link that connects an
instance to a network. If graphical support exists, this link would definitely be
more explicit.

Figure 4.9: Hidden Link between Instance and Network.

Redundancy. In addition to this, I observe from my study that GCP doc-
umentation is redundant. According to my observation, it contains a set of
attributes and actions in common, i.e., with the same attribute name and type, and
the same action name and type respectively. Among this set, I especially notice a
redundancy of the attributes name, id, kind, selfLink, description, etc., as well
as of the actions get, list, delete, insert, etc.

Lack of visual support. Finally, the information in GCP documentation
is only descriptive, which involves a huge time to be properly understood and

4.3. GCP Model Extraction Approach 107

analyzed. In contrast to textual descriptions, visual diagrams help to avoid wastage
of time because it easily highlights in short but catchy view the concepts of the
API. Consequently, logical sequence and comparative analysis can be undertaken to
enable quick understanding and attention. Cloud developers can view the graphs at
a glance to understand the documentation very quickly, which is more complicated
through descriptive format.

Overall, these six drawbacks above are calling for more analysis of GCP docu-
mentation and for corrections. Once the development has begun, corrections can be
exponentially time consuming and expensive to amend. Therefore, the cloud devel-
oper firstly needs a clear detailed specification, with no ambiguous information, in
order to:

1. make the development faster and meet expectations of the cloud API,

2. avoid the different interpretations of a functionality and minimize assumptions,
and,

3. help the developer to move along more smoothly with the API updates for
maintainability purpose.

4.3 GCP Model Extraction Approach

GCP
Crawler

Implicit Attribute
Metadata Detection

Link Identification

Redundancy Removal

GCP
Model

A B

Snapshot

GCP
HTML pages

GCP
documentation

C

Model
Transformations

Type Refinement

Model Visualization

Figure 4.10: GCP Model Extraction Approach Overview.

This section presents my approach that takes advantage of MDE techniques to
precisely, textually and graphically, describe GCP API. In fact, MDE is emerging

108
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

and emphasizing on the use of models and model transformations to raise the level
of abstraction and automation in the software development.

To understand the concepts that rely under the architecture of my approach, I
begin by giving an illustration of it in Figure 4.10. This architecture is composed
of three main parts: a Snapshot of GCP HTML pages, a GCP Crawler and a
GCP Model increased by Model Transformations for GCP Refinement. Each
of these four parts is detailed in the following.

4.3.1 GCP Snapshot

Google is the master of its cloud API and its documentation, which means that
GCP engineers could update/correct GCP documentation, whenever they are re-
quested to or they feel the urge to. But since continuously following up with GCP
documentation is crippling and costly, I locally save the HTML pages of GCP doc-
umentation in order to have a snapshot of GCP API at the moment of crawling its
documentation. This snapshot is built on July 27, 2017.

4.3.2 GCP Crawler

In order to study and understand GCP documentation, the main step of my ap-
proach is to extract all GCP resources, their attributes and actions and to save
them in a format that is very simple and easily readable by a human. In this sense,
extracting knowledge by hand from this documentation is not reliable nor repre-
sentative of reality; if the documentation changes, extracted knowledge should also
evolve through an automated process. Therefore, I have set up an automatic crawler
to infer my GCP specification from the natural language documentation.

4.3.3 GCP Model

For a better description of the GCP resources and for reasoning over them, I pro-
pose to represent the knowledge I extracted into a model that formally specifies
these resources, while providing a graphical concrete syntax and processing with
transformations. This addresses the drawbacks of GCP documentation identified in
Section 4.2. Choosing the adequate metamodel when developing a model is crucial
for its expressiveness [Fowler 2010]. In this context, a language tailored for cloud
computing domain will bring us the power to easily and finely specify and validate
GCP API. Therefore, I choose to adopt the OCCIware Metamodel because it is a
precise metamodel dedicated to describe any kind of cloud resources. As I detailed
in Chapter 3, the OCCIware Metamodel is encoded in EMF [Steinberg 2008]
and it defines its own data type classification system. Therefore, it easily allows

4.3. GCP Model Extraction Approach 109

GCP
Model

OCCIware
Metamodel

conforms to

represented by

Ecore
Metamodel

conforms to

M0:
Real-world

M1:
Model

M2:
Metamodel

M3:
Meta-metamodel

GCP

Figure 4.11: Metamodeling Stack for GCP Model.

to define primitive types such as booleans, numerics and strings, and complex types
such as arrays, enumerations and records. In addition, thanks to its Extension

concept, OCCIware Metamodel allows us to define a set of resource instances
targeting a concrete cloud computing domain such as GCP.

In my approach, I exploit these two advantages and I build a GCP Model,
which is an expressive model and an appropriate abstraction of the GCP API.
GCP Model conforms to OCCIware Metamodel, which conforms to Ecore

Metamodel, as illustrated in Figure 4.11.

To go further, I present my approach with an algorithm, as illustrated in Fig-
ure 4.12. First, using the OCCI API, I create a model, i.e., an OCCI extension (cf.
line 1). Then, I connect to the GCP documentation using the jsoup library that
provides an API to parse HTML pages from a URL (cf. line 2). Second, for each
resource in the HTML page, I apply the following procedure (cf. line 3): I connect
to the dedicated documentation page of the resource (cf. line 4). I create an OCCI
resource (cf. line 5) and I use the information inside the HTML page to set the
correct values (cf. line 6). Third, for each attribute of the resource detailed in the
HTML page (cf. line 7), I extract information from the documentation and add
them to the OCCI attribute (cf. line 9). The newly created attribute is added to
the set of attributes of the OCCI resource (cf. line 10). Eventually, I add the new
OCCI resource to the model under construction and so on (cf. line 11).

110
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

Figure 4.12: The Algorithm of the Model Extraction Approach.

Figure 4.13: A Subset of OCCIware Metamodel.

In order to ease the understanding of this work, I briefly present in the following
the main concepts of OCCIware Metamodel used to design my GCP Model

(cf. Figure 4.13). For more details on the OCCIware Metamodel, readers can
refer to Chapter 3.

• Extension represents concrete cloud computing domains, e.g., IaaS, PaaS,
SaaS. In my work, Extension represents the GCP Model. It contains several
kinds and data types.

• Kind represents a GCP entity type, such as version, firewall, image,
instance, network, cluster, database, etc. Each Kind has a set of attributes
and actions. A Kind can have as parent another Resource or Link. A Link is

4.3. GCP Model Extraction Approach 111

a relation between two Resource instances. For example, networkInterface
connects a virtual machine instance to a network instance.

• Attribute represents a property of a GCP resource or a link, such as its id,
name, description, selfLink, timestamp, etc. An Attribute instance has a
name, a description, may have a default value and may be mutable or required.

• Action represents an operation that can be executed on GCP API, i.e., on its
Kind instances, such as create an instance, get a database, delete a cluster,
etc.

• BooleanType represents the Boolean type. For example, the vm attribute
expects a boolean value to indicate whether to deploy a version on a virtual
machine or in a container and the autoDelete attribute to denote whether
the disk will be auto-deleted when the instance is deleted.

• NumericType represents numeric types such as Byte, Double, Float, Integer,
Long, Short, etc., as well as their minimal and maximal values. For example,
the currentDiskSize attribute, which is the current disk usage of a Cloud
SQL resource, expects a long type value and the targetUtilization attribute,
which is the target CPU utilization to maintain when scaling, expects a float
type value between 0 and 1.

• StringType represents string types, as well as their regular expressions if they
exist. A regular expression is used to define the specific textual syntax for
representing patterns that matching text needs to be conform to. For example,
the networkIP attribute, which is an IPv4 internal network address to assign
to a network interface of an instance resource, expects a string type value
with an appropriate regular expression to check for an IP address.

• ArrayType represents a complex DataType to define lists and their types. For
example, the serverNames attribute, which is list of server names that are
delegated to a managed zone, is an array of strings.

• EnumerationType represents a complex DataType to define enumerations.
Each EnumerationType has at least one literal (EnumerationLiteral). For
example, the status attribute of an image resource is an enumeration, i.e., it
can take a value among its enumeration literals only.

• EnumerationLiteral represents a value that an attribute can have. For ex-
ample, the status of an image instance can be Failed, Pending or Ready.

112
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

• RecordType represents a complex DataType to define structures. A
RecordType instance appears as a row in the database table. It contains some
data about one particular attribute. For example, in GCP, the settings at-
tribute which defines the user settings of a Cloud SQL resource is a record.
Each RecordType has at least one RecordField.

• RecordField represents a field of a record. For example, pricingPlan, which
is the pricing plan of a resource, and replicationType, which is the replication
type of a resource, are record fields of the settings attribute and expect an
enumeration type value.

4.3.4 GCP Refinement

Thanks to OCCIware Metamodel, my GCP Model provides a homogeneous
specification language for GCP, which tackles the Informal Heterogeneous Doc-
umentation drawback, identified in Section 4.2. It also carries out five in-place
Model Transformations that propose corrections to face and address the other draw-
backs discussed in Section 4.2. They aim for several objectives, especially Type
Refinement, Implicit Attribute Metadata Detection, Link Identification, Redundancy
Removal and Model Visualization. I highlight in the following these correcting
and/or enhancing transformations.

• Type Refinement is done by adopting the data type system proposed by OC-

CIware Metamodel, defining regular expressions, and using the EMF val-
idator to check the type constraints that are attached to the attributes. For
instance, among the constraints defined for the GCP Model, one constraint
states that if the type of an attribute in the documentation is string and
the description explains that this is an email address, my GCP Model will
apply the email validation constraint for refinement purpose. This kind of
information is translated into a StringType containing the following regular
expression:

^[A−Z0−9._%+−]+@[A−Z0−9.−]+\\.[A−Z]{2 ,6} $

• Implicit Attribute Metadata Detection to explicitly store information into ad-
ditional attributes defined in the Attribute concept of my GCP Model. To
do so, I apply NLP which has made great progress and has proven to be effi-
cient in acquiring the semantics of sentences in API documentation. Among
NLP techniques, I use the Word Tagging/Part-of-Speech (PoS) [Klein 2003]
one. It consists in marking up a word in a text as corresponding to a partic-
ular part of speech, based on both its definition and its context. For this, I

4.3. GCP Model Extraction Approach 113

declare my pre-defined tags for some GCP specific attribute properties. Some
pre-defined tags are as follows:

– mutable = true if [Input-Only].

– mutable = false if [Output-only]/read only.

– required = true if [Required].

– required = false if [Optional].

• Link Identification to deduce logical connections between resources. There-
fore, I also refer to the idea of applying NLP techniques. This time, I use
Syntactic Parsing [Jurafsky 2000] to acquire the semantics of sentences in
GCP documentation. The parse tree in Figure 4.14 describes the sequential
patterns that allow us to identify the semantics of a link between two
resources, namely between an instance and a network in this example. The
syntactic parsing is achieved by using Stanford parser [sta], which is a library
based on neural network.

S

 NP

 N PP

 Prep NP

 Det N N PP

 Prep NP

 Det N

URL of the network resource for this instance

• S: Sentence
• NP: Noun Phrase
• N: Noun
• PP: Prepositional Phrase
• Prep: Preposition
• Det: Determiner

Figure 4.14: Syntactic Parse Tree for Identifying a Hidden Link in a Sentence.

• Redundancy Removal in order to offer the cloud developers more compact,
intuitive and explicit representation of GCP resources and links. To do so,
I propose to have some abstractKind instances. An abstractKind is an
abstract class from which inherit a group of Kind instances. It allows to
factorize their common attributes and actions and to reuse them. This is
known as Formal Concept Analysis (FCA) technique [Priss 2006], which is a
conceptual clustering technique mainly used for producing abstract concepts
and deriving implicit relationships between objects described through a set of
attributes.

114
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

• Model Visualization for an easier analysis of the API, even if the model is
not as sophisticated as the original documentation. In fact, when we visualize
information, we understand, retain and interpret them better and quicker be-
cause the insights become obvious [Moody 2009]. Unfortunately, as discussed
in Section 4.2 (lack of visual support), GCP does not currently provide such
a visual model. I provide hence, using OCCIware tooling, a model visual-
ization of GCP documentation. Figure 4.15 shows the graphical output of a
subset of GCP Model. This diagram also shows an example of Redundancy
Removal, where I introduce an abstractKind instance and I factorize the at-
tributes and actions of two versions of the same kind. Further information
regarding the abstractKind instance is given in Section 4.4.1.2.

Figure 4.15: A Subset of GCP Extension Diagram.

I have implemented a prototype of my approach in Java. I used jsoup library3

for building the Snapshot of GCP HTML pages and GCP Crawler, and the
Eclipse-based OCCIware Studio for building GCP Model. Readers can find
the snapshot of GCP documentation built on July 27, 2017, as well as my precise
GCP Model and its code here4.

Once my model is built, GCP configurations, which represent GCP Instances

that conform to GCP Model, can be designed. Then, I aim to elaborate use cases
3https://jsoup.org
4https://github.com/occiware/GCP-Model

https://jsoup.org
https://github.com/occiware/GCP-Model

4.3. GCP Model Extraction Approach 115

for my model-based GCP configurations as a way of checking them. To do so, I
identify the code generation and model interpretation techniques which are two of
the advantages of model-driven engineering [Schmidt 2006]. First, with the code
generation approach, I aim to use GCP Instances to generate artifacts, such as:

• JSON files that contain the needed structured information for creating a VM
for example, through GCP deployment manager,

• CURL scripts that allow us to create a VM for example via the POST action,

• Shell scripts for GCP CLI, and,

• Java or Python code for GCP SDKs to aid in identifying bugs prior to runtime.

Second, I aim to experiment the model interpretation approach, by defining
the business logic of GCP Connector. The latter defines the relationship be-
tween GCP Instances and their executing environment. For this, the connector
provides tools that are not only used to generate the necessary artifacts correspond-
ing to the behavior of GCP actions (create, get, insert, list, patch, update, etc.),
but also to efficiently make online updates for the GCP Instances elements ac-
cording to the changes in the executing environment and to the models@run.time
approach [Bencomo 2014]. The generated artifacts will be seamlessly executed in
the executing environment thanks to MDE principles [Paraiso 2016].

This validation process is entitled “validation by test”, because it aims at verifying
whether GCP Instances can be executed and updated in the real world. By
validating a broad spectrum of GCP Instances, I validate the efficiency of my
GCP Model.

4.3.5 Challenges

This contribution of inferring models from APIs might seem simple but it encom-
passes many challenges like the fact of the documentation is spread over pages.
Therefore, one must deeply explore the documentation to completely define all the
required elements. For example, when an attribute is an enumeration, we must de-
fine the corresponding OCCIware EnumerationType before adding the attribute
to the correspondent OCCIware kind. However, as we can see in Figure 4.16, the
definition of this enumeration is in another HTML page, and thus the mining of this
page is mandatory and preliminary to designing the model.

Another challenge of this contribution is the effort and time to toughly analyze
the structure of the documentation, which of course contains format inconsistencies
making the mining very complicated. This task is necessary in order to design a

116
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

Figure 4.16: Recursive Parsing Example.

correct and resilient crawler. Also, the metadatas are described in natural language
in the description, and do not have specific placeholder. So the extraction of this
knowledge requires to carefully design the rules that will detect these metadata and
put them forward.

Finally, the need to manually check the validity of the extracted model is also a
challenge. So far, it is complicated to set up an automatic verification support, and
I manually verify the automatically extracted values. For example, if blank spaces
were found, I iterate and refine the rules of knowledge extraction.

4.4 Evaluation of GCP Model

Thanks to my approach, I perform a qualitative analysis of the GCP documentation
and I check if it satisfies three properties: the uniformity, the conciseness and the
consistency & comprehensiveness. Then, to evaluate the effectiveness of my model,
I report quantitative results that validate the preciseness of my GCP Model.

4.4.1 Qualitative Evaluation

4.4.1.1 Uniformity

GCP documentation is not uniform, i.e., it is not written by following the
same documentation guideline. In fact, the crawling process has been sophisticated
and I ended up implementing two parsing filters to capture the two different formats
of the HTML pages (cf. Section 4.2 (heterogeneous documentation format)). For
each Kind instance, I noted the filter I used to parse the attributes and the one I
used for the actions. This information allows us to reconstruct and understand the
map of the GCP development teams. I arrive at the following hypothesis: GCP
documentation is developed by two clusters of development teams, as
shown in Figure 4.17.

In addition, this classification helps us to predict/learn what teams collaborate
together, and to identify the tight links between the GCP development teams and
the GCP products. Since the clusters of Kind instances are completely disjoint, I
conclude that the two GCP development teams are completely separated.

4.4. Evaluation of GCP Model 117

&
Cloud User

 Account

Runtime Config

GCP
Model

Figure 4.17: Two Clusters of Development Teams.

Table 4.1: Redundant Attributes and Actions among Kinds.
Before Abstraction After Abstraction

Redundant
Attributes

#
of occurrences

%
of redundancy

#
of occurrences

%
of redundancy

name 92 64,79% 26 18,31%
id 80 56,34% 14 9,86%
selfLink 79 55,63% 13 9,15%
kind 79 55,63% 13 9,15%
description 75 52,82% 9 6,34%
Average 57,04% 10,56%
Redundant
Actions

#
of occurrences

%
of redundancy

#
of occurrences

%
of redundancy

get 142 100,00% 76 53,52%
list 142 100,00% 76 53,52%
delete 140 98,59% 74 52,11%
insert 76 53,52% 10 7,04%
Average 88,02% 41,54%

4.4.1.2 Conciseness

A cloud API documentation should be concise, i.e., describing all the concepts
clearly but briefly and without redundancy. However, this is not the case for GCP
documentation. As depicted in Table 4.1, I prove that GCP documentation contains
several redundant attributes and actions. Then I show how my approach minimizes
the redundancy by introducing the abstractKind concept. Column “Before Ab-
straction” encompasses the # of occurrences and the % of redundancy for each
redundant attribute and action in the official GCP documentation. As for column
“After Abstraction” , it studies the same aspects but after introducing simply
one abstractKind instance in my GCP Model. This instance contains all the
attributes and actions of Table 4.1. Columns “Redundant Attributes” and “Re-

118
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

dundant Actions” list respectively the names of the attributes and actions that I
observed in more than 50% of the resources offered by GCP. For each attribute/ac-
tion, I show the number of occurrences in columns “# of occurrences” , as well as
the percentage of redundancy in columns “% of redundancy” . Rows “Average”
give the average of columns “% of redundancy” .

From the results in Table 4.1, I have the following observations. First, I calculate
the % of redundancy for all attributes and actions of GCP documentation, which
indicates the effectiveness of my approach. Second, these percentages are relatively
high, which prove that GCP documentation is redundant. Third, after fac-
torizing the attributes and actions, I succeed to have 66 less occurrences
and 46,48% decrease of the redundancy. These results are noticeable and
satisfying even with my simple example that consists in only one abstractKind

instance included to GCP Model.

4.4.1.3 Consistency & Comprehensiveness

I have just discussed that some attributes and actions of the GCP resources are
redundant. It is not strange to have all these attributes and actions in common.
In fact, it makes quite sense that almost each of the Kind instances has an id as
an identifier to guarantee that a resource is unique, a kind as this is the type of
the resource, a selfLink as a URL that can be used to access the resource again,
a description to report and explain the use of this resource, etc. In addition, it
is normal that every Kind instance has a list of operations so it can be created,
updated, retrieved, deleted, etc.

However, the main problem and what is strange here is why among the 142
resources, the GCP documentation has left 50 without a name or 62 without an
id or 63 without a kind or a description, or 2 without delete or 66 with-
out insert, etc. I went further in this research and I checked for each redun-
dant attribute/action the set of Kind instances that are missing it. For example,
{compute.beta.regionInstanceGroup, compute.v1.regionInstanceGroup} is the
set of Kind instances that does not contain the delete action. In this case, it is
comprehensible that the developer has no right to delete, for both compute ver-
sions, the regionInstanceGroup concept, which refers to the virtual machines in a
particular region.

Another example is regarding dataproc.v1.cluster Kind instance, which
describes the identifying information, configuration, and status of a cluster of
Google Compute Engine instances. dataproc.v1.cluster belongs to the set of
kinds that miss the name attribute and also to the set of kinds that miss the
description attribute. In the first set, i.e., the one that misses the name attribute,

4.4. Evaluation of GCP Model 119

dataproc.v1.cluster substitutes the name attribute by the clusterName attribute.
Although these two have the same semantics, using different vocabulary to express
it will lead to nothing but a confusion for the developer. Therefore, I deduce from
this example that GCP documentation is inconsistent, i.e., does not employ
the same words to define the same characteristics of its services. In the second set,
the description attribute is effectively missing and this is not justifiable. I can
then state that GCP documentation is not comprehensive, i.e., it contains
some oversights or incompleteness.

4.4.2 Quantitative Evaluation

To evaluate the preciseness of my model, I conduct using my GCP Crawler an
automated and recursive analysis of the GCP official documentation. First, I per-
form a global investigation to identify, quantify and sort the provided services. This
analysis allows us to declare that GCP API contains 142 resources packaged
into 14 products as listed in Table 4.2. Each product offers a service like Big
Data, Compute, Network, Management, Storage & Databases, etc.

Table 4.2: GCP Products.
Product
Name

Number
of Resources

Offered
Service

App Engine 48 Compute
BigQuery 2 Big Data

Cloud Functions 1 Compute
Cloud User Account 2 Management
Compute Engine 67 Compute
Container Engine 1 Compute
Cloud Dataproc 4 Big Data

Cloud DNS 1 Network
Cloud IAM 2 Identity &

Security
Logging 2 Management

Cloud Pub/Sub 2 Big Data
Runtime Config 3 Management

Cloud SQL 2 Storage &
Databases

Cloud Storage 5 Storage &
Databases

Total 142 6

Besides the 142 types of resources, GCP documentation contains 2124 at-
tributes that describe the static aspect of the API, and 985 actions that
describe its dynamic aspect. Table 4.3 presents a summary of my GCP Model.
This dataset covers all the information presented in GCP official documentation and
formalized by GCP Model. For each class of my model, Table 4.3 provides the
number of instances present in my dataset. The last line provides the total of GCP

objects present in the dataset.

120
Chapter 4. Inferring Precise Models from Cloud APIs Textual

Documentations

Table 4.3: Summary of the GCP Model Dataset.
GCP

Metaclass Name
GCP

Model Instances
Kind 142

Attribute 2124
Action 985

BooleanType 90
NumericType 375
StringType 1402
ArrayType 218

EnumerationType 21
EnumerationLiteral 80

RecordType 143
RecordField 613

Total 5437

In addition to these precise statistics that I provide, my approach allows to
clearly specify GCP attributes thanks to the Type Refinement and the Implicit
Attribute Metadata Detection. Also, unlike GCP official documentation, my model
uses a DataType validator at design time to validate the types defined before
the provisioning. This validation guarantees the coherence and preciseness of the
GCP configurations that must be conform to GCP Model, which is an efficient
abstraction of the GCP API.

4.5 Summary

In this chapter, I proposed the first approach that analyses cloud API documenta-
tions and applies NLP techniques to extract model-driven specifications. A major
use case was carried out on GCP. I highlighted six main drawbacks of GCP doc-
umentation and I argued for the need of inferring a formal specification from the
current natural language documentation. To address the problem of informal het-
erogeneous documentation, I present my model-driven approach which consists in a
GCP Model that conforms to the OCCIware Metamodel presented in Chap-
ter 3. Using my GCP Crawler, my model is automatically populated by the GCP
resources that are documented in plain HTML pages. I also proposed five Model
Transformations to correct the remaining five drawbacks. Finally, my approach
allowed us to deduce some facts regarding the uniformity, conciseness, consistency
and comprehensiveness of GCP API. To conclude, I validated the preciseness of my
model by providing quantitative results on GCP API.

In the next chapter of this dissertation, I present my approach for reasoning on
cloud APIs in order to verify their behaviour and understand their similarities.

Chapter 5

Specifying Heterogeneous Cloud
Resources and Reasoning over

them with fclouds

This chapter is a combined and extended version of our papers “Specifying
Semantic Interoperability between Heterogeneous Cloud Resources with the
FCLOUDS Formal Language” [Challita 2018b] published in the 11th IEEE
International Conference on Cloud Computing (CLOUD) and “Towards
Formal-Based Semantic Interoperability in Multi-Clouds: The FCLOUDS
Framework” [Challita 2017b] published in the 10th IEEE International

Conference on Cloud Computing (CLOUD).

Contents
5.1 Exploring the Semantic Space 123

5.1.1 Formal methods and their benefits 123

5.1.2 Related Work . 124

5.2 The fclouds Framework . 125

5.2.1 Usage Scenario . 125

5.2.2 Overall Architecture . 126

5.3 The fclouds Language . 128

5.3.1 Notations . 128

5.3.2 Specifying fclouds Static Semantics 129

5.3.3 Specifying fclouds Operational Semantics 135

5.3.4 Identifying & Validating fclouds Properties 139

5.4 Evaluation of fclouds . 143

5.4.1 Catalog of Cloud Formal Specifications 144

5.4.2 Implementation of fclouds Formal Specifications 147

5.4.3 Verification of fclouds Properties 148

5.4.4 Definition & Validation of Domain-Specific Properties 148

122
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

5.4.5 Transformation Rules for Semantic Interoperability in Multi-
clouds . 149

5.5 Summary . 149

Chapter 2 reviewed the solutions for multi-cloud interoperability. To be effec-
tive, these solutions must achieve a compromise between defining the common

cloud principles and supporting any kind of cloud resources, regardless of their
abstraction level. This frustrating situation calls for more depth about the cloud
providers' semantics to reason about the common principles that interoperability
solutions must adhere to.

In this chapter, I present my vision for reasoning on cloud solutions via fclouds,
my framework for semantic interoperability in a multi-cloud context. By semantic
interoperability I mean to identify the similarities and differences between cloud
APIs concepts and to reason over them. My framework contains a catalog of cloud
APIs that are precisely described. It will help the cloud customer to understand how
to migrate from one API to another, thus to promote semantic interoperability. To
implement the formal language that will encode all the APIs of my fclouds frame-
work, I advocate the use of formal methods, i.e., techniques based on mathematical
notations. They will allow me to rigorously encode cloud concepts and behaviour,
validate desired and/or imposed cloud properties and finally define formal transfor-
mation rules between cloud concepts. For more reliability, I adopt the concepts of the
OCCI common standard to define the formal language of the fclouds framework.
I choose to formalize OCCI with Alloy, a lightweight promising formal specification
language designed by Daniel Jackson from the MIT [Jackson 2012].

The key contributions of this chapter are:

1. the fclouds framework, my formal approach for semantic interoperability in
multi-clouds,

2. the fclouds language, the formal language of the fclouds framework, which
consists in a formalization of OCCI concepts and operational semantics in
Alloy,

3. the identification of five properties (consistency, sequentiality, reversibility,
idempotence and safety) that reflect OCCI RESTful operational semantics,
and their validation in fclouds, which ensures the language correctness,

4. a catalog of thirteen formal specifications of cloud APIs from different appli-
cation domains, encoded with fclouds language, which prove the language
expressiveness, and,

5.1. Exploring the Semantic Space 123

5. formal transformation rules between heterogeneous concepts with similar se-
mantics.

This chapter is structured as follows. Section 5.1 outlines the need to reason
on the “Cloudware engineering” solutions, explains the motivations behind explor-
ing their semantics and positions my contribution in relation to the related works.
Section 5.2 presents my framework fclouds, its components and a usage scenario.
Section 5.3 presents the fclouds language that specifies OCCI core concepts and
operational semantics, and verifies properties on how OCCI should work. Section 5.4
illustrates the use of my formal language with a series of thirteen examples. Finally,
I conclude in Section 5.5.

5.1 Exploring the Semantic Space

A set of common principles that all interoperability solutions adhere to must be
agreed on. Accordingly, I argue in the following for the need to explore the Semantic
space. The latter will allow the cloud architect to rise in abstraction and reason
about cloud APIs through the use of formal methods, as shown in Figure 5.1.

Multi-cloud
Libraries

Modeling
Space

Programming
 Space

Provider
 Space

Multi-cloud
Services

Semantic
Space

Formal Approaches
for the Cloud

Standards

Model-Driven Approaches
for the Cloud

Cloud
provider

Cloud
architect

Cloud
developer

Cloud
architect

Figure 5.1: Semantic Space.

5.1.1 Formal methods and their benefits

Formal methods are techniques that are based on mathematical notations and they
will allow me to rigorously encode the underlying semantics of cloud APIs concepts
through formal specifications. Formal specifications remove ambiguities, since unlike
natural language statements, mathematical specifications are only interpreted in one
way, the correct one. This focuses on what a system should do rather than how to
accomplish it. Formal methods also allow me to effectively reason on the structure
and behaviour of the encoded concepts, by using a model checker verifying cloud

124
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

properties, i.e., constraints denoting characteristics of cloud configurations and/or
operations. This is quite advantageous to guarantee the accuracy and correctness of
the multi-cloud solutions, and because the earlier a defect is removed the cheaper it
will be to correct it. Being precisely specified, verified and correctly understood, the
cloud APIs can be correctly compared. For this, I will define formal transformation
rules between their concepts, and verify equivalence properties. The developers will
hence be able to achieve semantic interoperability in a multi-cloud system.

For the above reasons, I propose in the current work to rise in abstraction by
heading towards using formal models and verification for cloud computing.

5.1.2 Related Work

Only few works from the literature applied formal methods for the cloud, which
proves the novelty of this domain. Benzadri et al. [Benzadri 2013] proposed a
formal model for cloud computing using Bigraphical Reactive Systems (BRS).
AWS [Newcombe 2015] used TLA+ specification language in their complex sys-
tems such as S3 and DynamoDB. Bobba et al. [Bobba 2017] specified and vali-
dated Google's Megastore, Apache Cassandra, Apache ZooKeeper, and RAMP us-
ing Maude language and model checker. Besides using different techniques to reason
over the cloud, these three works differ in their objectives too. [Benzadri 2013] rea-
sons over cloud concepts for deployment and adaptation purpose. [Newcombe 2015]
aims at finding subtle bugs in their internal distributed algorithms, which helps
correcting and optimizing their systems. [Bobba 2017] verifies the performance and
correctness of cloud storage systems. My work focuses on the interoperability con-
cern by formalizing the static and operational semantics of the cloud domain.

From the literature, I found out that semantic interoperability between cloud
domains has been also achieved with techniques different from formal methods.
For example, the authors in [Yongsiriwit 2016] proposed an ontology-based frame-
work for semantic interoperability in multi-clouds. They define translations be-
tween IaaS concepts of three standards. However, they do not consider any map-
ping between API operations. Also, PaaS Semantic Interoperability Framework
(PSIF) [Loutas 2011], which was implemented in the context of Cloud4SOA project,
proposes common PaaS models that describe structural, functional and behavioural
semantics. fclouds goes beyond PSIF and aims to verify properties of the models
thanks to the usage of formal methods.

5.2. The fclouds Framework 125

5.2 The fclouds Framework

This section presents the fclouds formal-based framework, which is our vision for
semantic interoperability in multi-clouds. I begin by giving a scenario that motivates
my approach, then I describe how I model fclouds structure and behaviour, and
how I reason over them.

5.2.1 Usage Scenario

EGI FC

OCCI API Textual
documentation

of OCCI from
website

fOCCI:
OCCI Formal Model

Modeling

fGCP:
GCP Formal Model

 GCP API Textual
documentation

of GCP from
website

Semantic
Interoperability

Implements Implements

GCP

1

2

1’
Transformation

Rules

Modeling

fclouds

Figure 5.2: fclouds Usage Scenario.

I assume that a developer would like to build a multi-cloud system spread over
two clouds, the private EGI FC and the public GCP. EGI is based on OCCI REST
API and GCP on its own REST API, so the developer is faced to two heteroge-
neous APIs implementing different concepts and paradigms. To provision a virtual
machine, the HTTP request has a different format for each API, which is quite
frustrating. The developer would like a single API for both clouds to seamlessly
access their resources. However, the GCP API will not work on OCCI and if OCCI
wanted to provide equivalent services to GCP, it should not only adopt the same
type of API but also the same concepts with the risk of misunderstandings, inconsis-
tencies and incompleteness. Conflicts and misunderstandings about the semantics

126
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

of cloud providers can be solved, or at least identified at an earlier stage, if aspects
of structure and operations are conveyed through the use of formal models.

As depicted in Figure 5.2, the first stage of fclouds requires extracting from
websites, in a manual or automated way, knowledge regarding the services offered by
cloud providers. Then, I proceed by a precise modeling to understand and validate
the behaviour of cloud APIs, in order to overcome their semantic heterogeneity. In
the second stage of fclouds, I proceed with transformation models, which explain
how knowledge collected against one cloud provider can be transformed to fit an-
other. This stage allows a rigorous comparison and semantic connections between
cloud providers.

5.2.2 Overall Architecture

fclouds framework is based on several cloud formal models that can be composable.
It consists of a formal model for OCCI (fOCCI), a formal model for GCP (fGCP),
a formal model for Docker (fDocker), etc. (see the rectangles in Figure 5.3).
Later on, I will define transformation rules that find equivalence and specialization
relationships between them, thus I can seamlessly achieve semantic interoperability
(see the ovals in Figure 5.3). The green shapes represent some of the APIs and the
transformation rules that are specified in my fclouds framework (see Section 5.4
for the entirety of fclouds APIs) and the orange shapes represent an API and
transformation rules that are considered for future work.

fOCCI fTOSCA

fGCP fDocker

T(OCCI, TOSCA)

fVMware

T(OCCI, GCP)

T(GCP,

VMware)

T(Docker,

TOSCA)

T(VMware,

Docker)

T(OCCI, Docker)

T(TOSCA, GCP)

T(TOSCA,

VMware)

T(GCP, Docker)

T(OCCI,

VMware)

fclouds

Figure 5.3: fclouds Framework Overview.

In the following, I detail the process of formalizing cloud APIs, which is at the

5.2. The fclouds Framework 127

basis of fclouds framework. As shown in Figure 5.4, it is developed in two main
steps: Modeling and Reasoning.

5.2.2.1 Modeling

Modeling using formal methods is the process of providing a precise specification of
a cloud model, i.e., defining and validating:

• Cloud structure and constraints, as represented in Frame (1) in Fig-
ure 5.4, to denote the types of cloud concepts such as virtual machines, con-
tainers, storage, operating systems, servers, applications, etc. and describe
configurations of these types. fclouds models support cloud computing con-
cepts specification while simplifying irrelevant details to focus on the most
important characteristics.

• Cloud API operations, as represented in Frame (2) in Figure 5.4, to denote
the operations that the developer uses to provision, manage or release cloud
services through the cloud API.

Definition and Validation of
cloud structure and constraints

Definition and Validation of
cloud API operations

Textual
description

of cloud
operations

Textual
description

of cloud
concepts

Appropriate
compiler

Constraint
solver

1

2

Definition and Verification of
cloud properties 3

Modeling

Reasoning

Figure 5.4: Formalization Process.

In my work, I choose the Alloy formal language to provide a concise specification
of fclouds models, with both a graphical output and a textual output, so it can
be easy to analyze and reason over them. More details about this language, called
the fclouds language are given in Subsections 5.3.2 and 5.3.3.

128
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

5.2.2.2 Reasoning

Using formal models has the advantage of allowing reasoning over concepts and op-
erations for a better understanding of their semantics and how they work. Therefore,
once fclouds models have been specified, I proceed by the definition and veri-
fication of cloud structural and behavioural properties as shown in Frame
(3) in Figure 5.4. This step allows to ensure the correctness of all cloud formal
models in the fclouds framework, so I can draw later inferences between them.
More details about cloud properties are given in Subsection 5.3.4.

5.3 The fclouds Language

The formal language on which is based the fclouds framework and that I pro-
pose, is called the fclouds language. It is an Alloy-based formal language
which makes explicit OCCI core concepts [Nyrén 2016b] and OCCI REST opera-
tions [Nyrén 2016a], as well as the underlying properties.

5.3.1 Notations

I argue it is more advantageous and reliable to adopt an open standard to define the
formal specification language of all fclouds APIs, instead of writing a language
from scratch. The most popular standard is OCCI since it is used by the private EGI
FC and it was successfully extended to support heterogeneous aspects of the cloud
domain, through OCCI Infrastructure [Nyrén 2016c], OCCI Platform [Metsch 2016],
etc. In fact, OCCI defines a generic and extensible model for cloud resources
and a RESTful API for efficiently accessing and managing resources. This facil-
itates interoperability between clouds that are implemented as OCCI extensions,
i.e., specified by the same OCCI resource model, and accessed by the same REST
API. Today, there are several trends for formal methods like Petri nets, languages
based on logic, semantics programs, automata theory, etc. Choosing the appropri-
ate notation is critical in order to find the right compromise between formalization
and complexity. Meanwhile, Alloy is becoming increasingly popular among formal
methods, as it is a relational, first-order logic language, with well-thought out syntax
and model visualization features. Alloy is a lightweight promising formal specifica-
tion language designed by Daniel Jackson from the MIT [Jackson 2012]. It allows
to specify complex systems in a streamlined way, by describing concepts and con-
straints. The specifications are translated into first-order logic expressions that can
be automatically solved by the Alloy analyzer, a model checker using SATisfiabil-
ity (SAT) solvers. The latter allows automatic verification of a system model, to

5.3. The fclouds Language 129

ensure its consistency and other desired properties, thus to guarantee its correct-
ness. Therefore, I choose to formalize OCCI using a lightweight promising formal
language, the Alloy specification language [Jackson 2012]. I refer to this formal
specification as the fclouds language.

In the following, I present a subset of the fclouds static and operational seman-
tics. For more details, the entirety of this language is available in the OCCIware

official website [Ahmed-Nacer 2016b] and in this GitHub repository1.

5.3.2 Specifying fclouds Static Semantics

The static semantics of fclouds corresponds to the formalization of the OCCI
core concepts [Nyrén 2016b] in Alloy. I use a strategy based on Time dimen-
sion [Jackson 2012]. It allows to distinguish between mutable fields, i.e., those
that are related to Time, and immutable ones, i.e., those that are not related to
Time. I detail in the following the twelve concepts of fclouds in Alloy:

• Entity represents an abstract type defining the set of all resources and links.

abs t r a c t s i g Entity {
id : one Str ing ,
kind : one Kind ,
mixins : s e t Mixin −> Time ,
a t t r i b u t e s : s e t At t r ibuteSta t e −> Time

}

A signature (sig) in Alloy defines a set of atoms. An atom is an indivisi-
ble, immutable and uninterpreted unity. Signature declarations can introduce
fields. A field represents a relation among signatures. For example, Entity
declares four fields: id, kind, mixins and attributes. Each entity instance
has a unique identifier (id). A declaration of the form id : one String can
be read as declaring a feature of the set Entity; formally, it declares a binary
relation between the set of entities, Entity, and the set of Strings, String.
The one multiplicity keyword signifies that the relation between a tuple from
id and a tuple from String has a 1..1 cardinality. The kind field is the Entity
type, for example the kind of a resource can be Compute, Application, etc.
The mixins field is used to add additional features such as location and price.
The set multiplicity keyword signifies that mixins can contain any number of
elements. The id and kind are immutable. As for the mixins and attributes

1https://github.com/occiware/fclouds-Framework

https://github.com/occiware/fclouds-Framework

130
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

fields, they are mutable and they identify the association between Mixin atoms
and their Time, and the association between AttributeState atoms and their
Time . mixins and attributes are ternary relations. mixins relation as-
sociates entities, mixins and times, whereas attributes relation associates
entities, attributes and times.

• Kind is the Entity type. For example, the kind of a resource can be Compute,
Network, Application, etc.

s i g Kind extends Category {
parent : l one Kind ,
a c t i on s : s e t Action ,
e n t i t i e s : s e t Ent ity −> Time

}

The extends keyword in Alloy indicates that a set is declared as a subset
of another one and that it will form, with other subsets similarly declared, a
partition of the set it extends. A Kind instance can have zero or one parent

kind. The lone keyword is an example of a relation multiplicity. In our case,
it signifies that a given Kind is to be associated to at most one parent. A Kind

instance can also have zero or many actions and zero or many entities. The
parent and actions fields are immutable. Only the entities field is mutable
because entities (resources or links) can be created/added or deleted/removed
at runtime. The entities associated to a certain kind cannot have the same id.
This is defined through the following constraint, which must always hold, i.e.,
an invariant.

a l l t : Time | no d i s j e1 , e2 : e n t i t i e s . t | e1 . id = e2 . id

This invariant takes the form of a basic first-order logical formula, and it says
that for every time, there is no pair of distinct entities that have the same
id. The all keyword denotes the universal quantifier, where a declaration such
as t : Time denotes an arbitrary element t of the set Time. The no disj
keyword means that kinds do not have overlapping entities. Likewise, the dot
notation e1.id or e2.id is the standard notation for accessing a feature, or
attribute, of an instance of a signature. In this case, the dot serves to access
the id feature of an entity instance.

• AttributeState represents an instantiated OCCI Attribute.

5.3. The fclouds Language 131

s i g At t r ibuteSta t e {
name : one Str ing ,
va lue : one St r ing

}

An AttributeState instance has exactly one name and one value.

• Attribute is the property of an entity like machine hostname, IP address of
a network, parameter of an action, etc.

s i g Att r ibute {
name : one Str ing ,
mutable : l one Boolean ,
r equ i r ed : l one Boolean ,
d e f au l t : l one Str ing ,
d e s c r i p t i o n : l one Str ing ,
type : l one DataType ,
mult ip le_values : l one Boolean

}

An Attribute instance has exactly one name and can have zero or one informa-
tion whether it is mutable or not, required or not and has multiple values

or not. However, Boolean type is not supported by Alloy for declarations.
Therefore, in order to express these fields, I use util/boolean library that de-
fines a boolean type sig Boolean { } with one sig True, False extends

Boolean { }. An Attribute instance can also have zero or one default value
and zero or one description. All the attributes fields are immutable.

• DataType is the abstract class used to extend the non-extensible data type
system of the OCCI specification. Since attributes can have scalar data types
(IP address, float, etc.) and enumeration, the classical data types defined as
strings, booleans and integers are insufficient and require to be extended.

abs t r a c t s i g DataType {
name: one St r ing

}

A Datatype instance has exactly one immutable name such as array,
enumeration, record, etc.

• Mixin is a concept that adds additional features to OCCI entities.

132
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

s i g Mixin extends Category {
a c t i on s : s e t Action ,
depends : s e t Mixin ,
a pp l i e s : s e t Kind ,
e n t i t i e s : s e t Ent ity −> Time

}

A Mixin instance can contain zero or many actions, it can depend from zero or
many of mixins, i.e., if Mixin A depends from Mixin B, any entity associated
to Mixin B will inherit the capabilities (attributes and actions) of both Mixin
B and Mixin A. Mixin can be also applied to zero or many kinds, i.e., add
new capabilities to the kind instances. A Mixin instance has zero or many
entities that are associated to it. Only the entities field is mutable. A
Mixin instance must not inherit/depend from itself directly or transitively.
This constraint is ensured as follows:

no d : t h i s .^@depends | d = t h i s

This constraint specifies that the relation between mixins is acyclic, i.e., the
relation between mixins do not form a ring. It denotes that there is no mixin
that belongs to the set of targets reachable from the same mixin itself. The no
quantifier means that this constraint is true when for d = this is true, there
is no bindings of the d variable. In other words, d does not have a value if it
belongs to the this.ˆ@depends relation and is equal to the mixin instance
itself. The “ˆ” operator denotes the transitive closure of the depends relation,
i.e., the smallest enclosing relation that is transitive. The “@” symbol is used
to prevent the depends field from being expanded. Without the @ symbol,
the constraint would instead be short for:

no d : t h i s .^ (t h i s . depends) | d = t h i s

which does not even type-check.

• Action represents an operation that can be executed on an entity instance
such as start virtual machine, stop virtual machine, restart an application,
resize a storage, etc.

s i g Action extends Category {
}

5.3. The fclouds Language 133

• Category is the abstract class of all the Action, Kind and Mixin instances.

abs t r a c t s i g Category {
term : one Str ing ,
scheme : one Str ing ,
t i t l e : l one Str ing ,
a t t r i b u t e s : s e t Att r ibute

}

A Category instance has exactly one term, one scheme and may have or not
one title. A Category instance also contains a set of attributes. The
attribute name must be unique, as defined by the following constraint:

no d i s j a1 , a2 : a t t r i b u t e s | a1 . name = a2 . name

This constraint means that there is no pair of distinct attributes that have the
same name. All the Category fields are immutable.

• Resource represents a concrete cloud computing resource, which refers to any
entity hosted in a cloud, e.g., compute1 is a resource that belongs to Compute

kind, network3 is a resource that belongs to Network kind, storage2 is a
resource that belongs to Storage kind, etc.

s i g Resource extends Entity {
l i n k s : s e t Link −> Time

}

A Resource instance owns a set of mutable links.

• Link is the relationship between two Resource instances. For example,
NetworkInterface connects a Compute instance to a Network instance, and
StorageLink connects a Compute instance to a Storage instance.

s i g Link extends Entity {
source : Resource one −> Time ,
t a r g e t : Resource one −> Time

}

Link contains two mutable fields: source and target. Each sourced link must
have a target, as defined by the following constraint:

134
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

one source imp l i e s one t a r g e t

The one quantifier applied before the “source” expression means that the set
of sources has exactly one tuple, i.e., for a Link l, l.source is the resource
that l is currently sourced to. Similarly, the one quantifier applied before the
“target” expression means that the set of targets has exactly one tuple, i.e.,
for a Link l, l.target is the resource that l currently targets. This constraint
means that the one source constraint implies the one target constraint.

• Extension is a set of kind and mixin instances targeting a concrete cloud
domain (IaaS, PaaS, SaaS, pricing, SLA, cloud monitoring, etc.).

s i g Extension {
name : one Str ing ,
scheme : one Str ing ,
import : s e t Extension ,
k inds : s e t Kind ,
mixins : s e t Mixin ,
types : s e t DataType

}

An Extension instance has one name and one scheme. It can use or extend
zero or many extensions. It owns zero or many kinds, mixins and datatypes.
All the Extension fields are immutable. The scheme of all kinds must be equal
to the scheme of the owning Extension instance, as defined by the following
constraint:

a l l k : kinds | k . @scheme = scheme

This constraint means that for every kind of an extension, the scheme of this
kind is equal to the scheme of the extension.

• Configuration is the abstraction of an OCCI-based running system. Mod-
eling a configuration offline allows designers to think and analyze their cloud
systems without having to deploy them concretely in the clouds [Merle 2015a].

s i g Conf igurat ion {
use : s e t Extension ,
r e s ou r c e s : s e t Resource −> Time ,
mixins : s e t Mixin −> Time

}

5.3. The fclouds Language 135

The use field, which is the set of extensions used in a configuration, is im-
mutable because the extensions cannot be added or removed at runtime. The
resources and mixins fields are mutable. The kind of all resources of a con-
figuration instance must be defined by an extension that is explicitly used by
this configuration. This constraint can be expressed as follows:

a l l t : Time | r e s ou r c e s . t . kind . ex tens i on in use

This constraint means that for every time, the extensions containing the kinds
of the configuration resources are contained in the extensions of this configuration.
In Alloy, the in keyword denotes the subset relation.

Table 5.1: fclouds Static Semantics.
fclouds
Concepts Description
Entity an abstract type defining the set of all resources and links
Kind an immutable type of OCCI entities

AttributeState an instantiated OCCI attribute

Attribute an entity property,
such as the hostname of a virtual machine

DataType an abstract type defining enumerations, lists, records, etc.

Mixin represents crosscutting attributes and actions that can be
dynamically added to an OCCI entity

Action domain specific behavior,
such as start/stop a virtual machine

Category the abstract base class inherited by Kind, Mixin and Action

Resource represents any cloud computing resource,
such as a virtual machine

Link a relation between two resources
Extension a concrete cloud computing domain,

such as IaaS, PaaS, SaaS, cloud robotics, etc.
Configuration a running OCCI system

Table 5.1 presents a summary of the fclouds language concepts.

5.3.3 Specifying fclouds Operational Semantics

The operational semantics of fclouds corresponds to the formalization of the infor-
mal OCCI behavioural specification detailed in [Nyrén 2016a]. It mainly includes
different REST operations, i.e., CREATE, RETRIEVE, UPDATE, DELETE. In
this idiom, these operations are modeled as predicates that specify the relation-
ship between pre-state, i.e., the state before the operation is called and post-state,
i.e., the state after the operation is completed. To do so, Time is added at the
end of each mutable field to represent the state concept. To be more specific, an
operation op will be specified using a predicate: pred op[...,t,t’:Time] ...,

136
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

with two special parameters t and t’ denoting, respectively, the pre- and post-
states [Garis 2012]. The core of each predicate is carried out by defining explicitly
pre- and post-conditions, which are constraints that must be satisfied before execut-
ing the operation and after the operation is finished respectively. Eight operations
were defined to the Configuration concept of fclouds, as depicted in Table 5.2.
I present in the following the four REST operations applied to resources.

5.3.3.1 Create semantics

The following predicate shows how I formally specify the creation of a resource.

1pred CreateResource [c on f i g : Conf igurat ion , r e s ou r c e Id : Str ing ,
kind : Kind , mixins : s e t Mixin , a t t r i b u t e s : s e t
Attr ibuteState , t , t ’ : Time] {

2// p r e cond i t i on s at i n s t an t t
3no r e sou r c e : c on f i g . r e s ou r c e s . t | r e s ou r c e . id = r e s ou r c e Id
4kind in c on f i g . use . k inds
5mixins in c on f i g . use . mixins
6// po s t c ond i t i on s at i n s t an t t ’
7one r e sou r c e : Resource {
8r e s ou r c e . id = r e s ou r c e Id
9r e s ou r c e . kind = kind
10r e s ou r c e . mixins . t ’ = mixins
11r e s ou r c e . a t t r i b u t e s . t ’ = a t t r i b u t e s
12c on f i g . r e s ou r c e s . t ’ = c on f i g . r e s ou r c e s . t + re sou r c e
13}
14c on f i g . mixins . t ’ = c on f i g . mixins . t ’
15}

At time t, I specify that a configuration, passed as argument to the predicate,
does not have a resource with the id passed as a predicate argument (cf. line 3).
The no quantification keyword expresses the null cardinality of the empty resource
set that satisfies the constraint resource.id = resourceId. As well, I specify
that the kind and the mixins of the resource I want to create, are contained in the
configuration extensions (cf. lines 4 and 5). At time t’, I add to the configuration
resources, one resource with the id, kind, mixins and attributes, passed as argument
to the predicate (cf. lines 7 to 12). The “+” operator denotes set union. I also
explicitly specify that the mixins of the configuration remain unchanged (cf. line 14).

5.3. The fclouds Language 137

5.3.3.2 Retrieve semantics

The following predicate shows how I formally specify the retrieval of a resource.

1pred Retr i eveResource [c on f i g : Conf igurat ion , r e s ou r c e Id :

2Str ing , t , t ’ : Time] {
3// p r e cond i t i on s at i n s t an t t
4one r e sou r c e : c on f i g . r e s ou r c e s . t {
5r e s ou r c e . id = r e s ou r c e Id
6}
7// po s t c ond i t i on s at i n s t an t t ’
8one r e sou r c e : c on f i g . r e s ou r c e s . t ’ {
9r e s ou r c e . id = r e s ou r c e Id
10r e s ou r c e . mixins . t ’ = r e s ou r c e . mixins . t
11r e s ou r c e . a t t r i b u t e s . t ’ = r e s ou r c e . a t t r i b u t e s . t
12r e s ou r c e . l i n k s . t ’ = r e s ou r c e . l i n k s . t
13}
14c on f i g . r e s ou r c e s . t ’ = c on f i g . r e s ou r c e s . t
15c on f i g . mixins . t ’ = c on f i g . mixins . t
16}

At time t, I verify that a configuration has one resource with the id passed as
a predicate argument (cf. lines 4 and 5). At time t’, I specify that the id, mixins,
attributes and links of the retrieved resource remain unchanged (cf. lines 8 to
12). I also specify that the resources and the mixins of the configuration remain
unchanged (cf. lines 14 and 15).

5.3.3.3 Update semantics

The following predicate shows how I formally specify the update of a resource.

1pred UpdateResource [c on f i g : Conf igurat ion , r e s ou r c e Id : Str ing ,
a t t r i bu t e 1 : Attr ibuteState , a t t r i bu t e 2 : Attr ibuteState , t ,

2t ’ : Time] {
3// p r e cond i t i on s at i n s t an t t
4one r e sou r c e : c on f i g . r e s ou r c e s . t | r e s ou r c e . id = r e s ou r c e Id

& & re sou r c e . a t t r i b u t e s . t = a t t r i bu t e 1
5a t t r i bu t e 1 ! = a t t r i bu t e 2
6// po s t c ond i t i on s at i n s t an t t ’
7one r e sou r c e : c on f i g . r e s ou r c e s . t {
8r e s ou r c e . a t t r i b u t e s . t ’ = r e s ou r c e . a t t r i b u t e s . t ++

at t r i bu t e 2

138
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

9}
10c on f i g . r e s ou r c e s . t ’ = c on f i g . r e s ou r c e s . t
11c on f i g . mixins . t ’ = c on f i g . mixins . t
12}

At time t, I specify that a configuration, passed as argument to the predicate,
has a resource with the id passed as a predicate argument and with the attribute,
attribute1 which is also passed as a predicate argument (cf. line 4). The “&&”
operator denotes conjunction of constraints. I also specify that the attribute1,
passed as argument to the predicate, is different from attribute2, also passed as
argument to the predicate (cf. line 5). The “!=” operator is the negation operator
“!” associated to the comparison operator “=” and is equivalent to not attribute1

= attribute2. At time t’, I update the existing attribute state of my resource,
i.e., attribute1, with the value of the new attribute state, i.e., attribute2 (cf. lines 7
and 8). The “++” operator is used for the override, which means that the tuples of
attribute2 replace the tuples of attribute1. I also explicitly specify that the resources
and the mixins of the configuration remain unchanged. Only the attributes of one
resource change (cf. lines 10 and 11).

5.3.3.4 Delete semantics

The following predicate shows how I formally specify the deletion of a resource.

1pred DeleteResource [c on f i g : Conf igurat ion , r e s ou r c e Id : Str ing ,
t , t ’ : Time] {

2// p r e cond i t i on s at i n s t an t t
3one r e sou r c e : c on f i g . r e s ou r c e s . t | r e s ou r c e . id = r e s ou r c e Id
4// po s t c ond i t i on s at i n s t an t t ’
5one r e sou r c e : c on f i g . r e s ou r c e s . t {
6r e s ou r c e . id = r e s ou r c e Id
7c on f i g . r e s ou r c e s . t ’ = c on f i g . r e s ou r c e s . t − r e s ou r c e
8}
9c on f i g . mixins . t ’ = c on f i g . mixins . t
10}

At time t, I specify that a configuration, passed as argument to the predicate,
has a resource with the id passed as an argument (cf. line 3). At time t’, I remove
from the configuration resources, one resource with the id passed as argument to
the predicate (cf. lines 5 to 7). The “-” operator denotes set difference. I explicitly
specify that the mixins of the configuration remain unchanged (cf. line 9).

5.3. The fclouds Language 139

5.3.4 Identifying & Validating fclouds Properties

Using formal languages has the advantage of allowing reasoning over concepts and
operational semantics for a better understanding of their semantics and how they
work. Therefore, once the fclouds formal language has been specified, I proceed by
the definition of some structural and behavioural properties to ensure its correctness
and to express its desired/required behaviour. I formally encode the consistency,
sequentiality, reversibility, idempotence and safety behavioural properties. The last
two properties are classified into a broader property which is the conformance to
HTTP 2 protocol [Belshe 2015]. Then, using the Alloy analyzer, I validate that
these properties adequately hold in my fclouds static and operational semantics.
To express these properties, assertions are written and are expected to hold as
consequence of the specified constraints. In order to be confident that an assertion
holds, I check it within a reasonable scope, i.e., I bound the number of atoms allowed
for each signature to 10. If no counterexamples are returned by the Alloy analyzer
with such a scope, I can be confident that my language reflects the desired semantics.

5.3.4.1 Consistency

fclouds language is consistent if it does not contain any contradictory constraints,
so its concepts can be instantiated and each cloud API operation can be executable.
I can also analyze what could not be instantiated, thus can’t be deployed in real-
world. In these cases, my formal language might be over-constraining so I deem
necessary to relax some constraints. The CreateResourceIsConsistent assertion
below can’t be shown to have a counterexample. Hence, it asserts the existence of
a valid configuration that meets the pre- and post-conditions of Create Resource,
i.e., it is consistent and expresses the desired behaviour.

a s s e r t CreateResource I sCons i s t ent {
a l l c on f i g : Conf igurat ion , r e s ou r c e Id : Str ing , resourceKind :

Kind , mixins : Mixin , a t t r i b u t e s : Attr ibuteState , t : Time |
CreateResource [con f i g , r e source Id , resourceKind , mixins ,

a t t r i bu t e s , t , t . next]
imp l i e s {
no r e sou r c e : c on f i g . r e s ou r c e s . t | r e s ou r c e . id = r e s ou r c e Id
resourceKind in c on f i g . use . k inds
and one r e sou r c e : c on f i g . r e s ou r c e s . (t . next) |

r e s ou r c e . id = r e s ou r c e Id
and r e sou r c e . kind = resourceKind

}
}

140
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

Table 5.2: Properties of the fclouds Language.
Properties Consistency Idempotence Safety

Static Semantics + N/A N/A
Operational Semantics

(OCCI REST Operations)
Create Resource + + -

Retrieve Resource + + +
Update Resource + - -
Delete Resource + + -

Create Link + + -
Retrieve Link + + +
Update Link + - -
Delete Link + + -

Properties Sequentiality Reversibility
Pairs of OCCI REST Operations

Create Resource & Retrieve Resource + -
Retrieve Resource & Create Resource - -
Retrieve Resource & Update Resource + -
Update Resource & Retrieve Resource - -
Update Resource & Delete Resource - -
Delete Resource & Update Resource - -
Delete Resource & Create Resource - +
Create Resource & Delete Resource + +

Create Link & Retrieve Link + -
Retrieve Link & Create Link - -
Retrieve Link & Update Link + -
Update Link & Retrieve Link - -
Update Link & Delete Link - -
Delete Link & Update Link - -
Delete Link & Create Link - +
Create Link & Delete Link + +

Note that to model finite execution traces, Alloy defines a library util/ordering
that provides useful relations to manipulate the total order of Time concept, namely
first to denote the first time, and next, a binary relation that, given a time returns
the following time in the order.

The fclouds static semantics and all OCCI REST operations were proven to
be consistent, as shown in Table 5.2. However, the notion of consistency is basic
and does not suffice in order to validate my fclouds language. There are other
examples of reliable verification and validation tasks that can be performed on pairs
of operations such as sequentiality and/or reversibility of operations.

5.3.4.2 Reversibility

Two cloud API operations are reversible when they contain inverse mathematical
logic. For example, de-provisioning a virtual machine reverses the operation of
provisioning it. In OCCI, Create Resource and Delete Resource, Create Link

and Delete Link are reversible. The following assertion, which is checking that
Create Resource is reversed by Delete Resource, was proven to be valid.

5.3. The fclouds Language 141

a s s e r t DeleteResourceReverseCreateResource {
a l l c on f i g : Conf igurat ion , r e s ou r c e Id : Str ing , kind : Kind ,

mixins : Mixin , a t t r i b u t e s : Attr ibuteState , t : Time {
CreateResource [con f i g , r e source Id , kind , mixins , a t t r i bu t e s ,

t , t . next]
imp l i e s DeleteResource [con f i g , r e source Id , t . next , t]

}
}

5.3.4.3 Sequentiality

Two cloud API operations are sequential when one cannot happen if the other one
did not happen at the time before. For example, the developer can adapt the
performance of a virtual machine only if it was created before.

It is explicitly stated in the informal specification of OCCI that Update

Resource operation should be preceded by Retrieve Resource operation: “Before
updating a resource instance it is RECOMMENDED that the client first retrieves the
resource instance” [Nyrén 2016a]. I also explicitly specify in fclouds that Retrieve
Resource operation must be preceded by Create Resource operation (as shown in
the following assertion), Update Link by Retrieve Link and Retrieve Link by
Create Link.

a s s e r t CreateResourceThenRetr ieveResource {
a l l c on f i g : Conf igurat ion , r e s ou r c e Id : Str ing , kind : Kind ,

mixins : s e t Mixin , a t t r i b u t e s : s e t Attr ibuteState , t :

Time |
CreateResource [con f i g , r e source Id , kind , mixins , a t t r i bu t e s ,

t , t . next]
and Retr i eveResource [con f i g , r e source Id , t . next , t . next . next]
imp l i e s one r e sou r c e : c on f i g . r e s ou r c e s . (t . next . next) {

r e sou r c e . id = r e s ou r c e Id
and r e sou r c e . kind = kind
and r e sou r c e . mixins . (t . next . next) = mixins

}
}

5.3.4.4 Conformance to HTTP 2 Protocol

As OCCI is a REST architecture that conforms to the HTTP protocol, it must
conform to its specification too. Therefore, there are some imposed properties I
must have in any REST-based systems so they must be checked in the fclouds

142
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

language. According to the Request For Comments (RFC) HTTP 2 [Belshe 2015], I
identified two properties of the HTTP methods and I verified in my formal language
that the appropriate pairs of operations respect these properties.

1. Idempotence: a method is idempotent when it always produces the same
server external state even if applied several times [Belshe 2015]. In HTTP,
GET, PUT and DELETE methods are idempotent. In OCCI, Retrieve op-
eration is associated with a GET HTTP method, Create operation is a PUT
HTTP method and Delete operation is a DELETE HTTP method. So I ver-
ify in my formal language that Retrieve Resource, Retrieve Link, Create
Resource, Create Link, Delete Resource and Delete Link are idempotent.
For example, as a result, the following assertion is valid:

a s s e r t CreateResourceIsIdempotent {
a l l c on f i g : Conf igurat ion , r e s ou r c e Id : Str ing , kind :

Kind , mixins : Mixin , a t t r i b u t e s : Attr ibuteState , t :

Time |
CreateResource [con f i g , r e source Id , kind , mixins ,

a t t r i bu t e s , t , t . next]
and CreateResource [con f i g , r e source Id , kind , mixins ,

a t t r i bu t e s , t . next , t . next . next]
imp l i e s c on f i g . r e s ou r c e s . (t . next) =

c on f i g . r e s ou r c e s . (t . next . next)
}

This assertion checks if creating a resource induces the same configuration at
times t.next and t.next.next. In contrast, an Update operation, referred to as
a POST in HTTP, is not idempotent. Therefore, the accuracy of my fclouds

language is maintained if the following assertion is not valid:

a s s e r t UpdateResourceIsIdempotent

2. Safety: a method is safe when it does not change the external server
state [Belshe 2015]. It mainly concerns the retrieval of information. A safe
method is necessarily an idempotent method, but not the reverse way. In
HTTP, a GET method is safe. Therefore, in fclouds, I check that Retrieve
Resource and Retrieve Link respect this property, so they do not change
the cloud configuration. An example of a safe operation is detailed below:

5.4. Evaluation of fclouds 143

a s s e r t Ret r i eveResource I sSa f e {
a l l c on f i g : Conf igurat ion , r e s ou r c e Id : Str ing , t : Time |

Retr ieveResource [con f i g , r e source Id , t , t . next]
imp l i e s c on f i g . r e s ou r c e s . t = c on f i g . r e s ou r c e s . (t . next)
and con f i g . mixins . t = c on f i g . mixins . (t . next)
and one r e sou r c e : c on f i g . r e s ou r c e s . (t . next) {

r e sou r c e . id = r e s ou r c e Id
r e sou r c e . a t t r i b u t e s . t = r e s ou r c e . a t t r i b u t e s . (t . next)

r e s ou r c e . l i n k s . t = r e s ou r c e . l i n k s . (t . next)
}

}

This assertion checks if a configuration remains the same at time t, i.e., before
retrieving the resource, and at time t.next, i.e., after retrieving the resource.

Table 5.2 lists all the operations that I have modeled, as well as all the proper-
ties that have been checked. The “+” symbol represents the operations or the
pairs of operations that should fulfill a property, while the “-” represents the
operations or the pairs of operations that they should not fulfill this property.
By using the Alloy analyzer, I check that the fclouds language, the core
language of my fclouds framework, correctly reflects these properties, so I
guarantee that it is valid and that I implemented the desired behaviour.

5.4 Evaluation of fclouds

To validate the effectiveness of my formal language, I demonstrate how it can be
easily adapted to different concerns by providing formal specifications in Alloy for
OCCI extensions from different cloud application domains. Therefore, I have sur-
veyed the literature to find all the already published OCCI extensions. I have
identified thirteen works that belong to IaaS, PaaS and Internet of Things (IoT)
domains, as well as to transverse cloud concerns. As a working hypothesis, I have
assumed that all these extensions are correct as they were already accepted through
a peer review process. My validation allows me to confirm:

1. the power of expression of my fclouds language (Subsection 5.4.1),

2. the validity of the fclouds behaviour I defined, on all of the OCCI extensions
(Subsection 5.4.3),

3. the ability of my language to define domain-specific properties (Subsec-
tion 5.4.4), and,

144
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

4. its ability to encode equivalence predicates, i.e., transformation rules between
heterogeneous concepts, and to define properties of the equivalence (Subsec-
tion 5.4.5).

5.4.1 Catalog of Cloud Formal Specifications

Thanks to my proposed formal language, I succeeded to precisely encode thirteen
heterogeneous APIs, as shown in Table 5.3 that gives a summary of my fclouds

framework dataset. For each concept of my language, Table 5.3 provides the number
(#) of instances of this concept present in the dataset. The last line provides
the total of fclouds concepts present in the dataset. For brevity, I give in the
following excerpts of the formal APIs' specifications, implemented beforehand as
OCCI extensions. Full specifications for each of these thirteen extensions can be
found in the supplemental material here2.

1. OCCI Infrastructure [Nyrén 2016c] is an OCCI-based extension for IaaS
application domain. It defines compute, storage and network resource types
and associated links. It defines five kinds such as Compute, six mixins such
as IpNetworkInterface, and around twenty data types such as Vlan range.
The Compute kind represents a generic information processing resource, e.g.,
a virtual machine or container. It inherits the Resource kind defined in the
OCCI Core Model. Compute has a set of OCCI attributes that I declare
as fields to my Compute signature, such as occi.compute.architecture to
specify the CPU architecture of the instance, occi.compute.core to define the
number of virtual CPU cores assigned to the instance, occi.compute.memory
to define the maximum RAM in gigabytes allocated to the instance, etc. The
lone keyword signifies that the relation between two tuples from two sets, such
as occi.compute.architecture and Architecture, has a 0..1 cardinality.

s i g Compute extends f c l oud s /Resource {
occi_compute_architecture : l one Arch i tecture ,
occi_compute_cores : l one Core ,
occi_compute_hostname : l one Str ing ,
occi_compute_share : l one Share ,
occi_compute_speed : l one GHz,
occi_compute_memory : l one GiB ,
occi_compute_state : one ComputeStatus ,
occi_compute_state_message : l one St r ing

}

2https://github.com/occiware/fclouds-Framework

https://github.com/occiware/fclouds-Framework

5.4. Evaluation of fclouds 145

Table 5.3: Summary of the fclouds Framework Dataset.
Extension #Kind #Mixin #Attribute #Action #DataType

IaaS
OCCI

Infrastructure 5 6 31 9 20
OCCI CRTP 0 6 18 0 0

Docker 24 0 251 7 2
GCP 150 0 2348 985 398

VMware 6 7 19 0 1
PaaS

OCCI Platform 3 4 11 4 3
MoDMaCAO 1 31 9 0 2

IoT
OMCRI 5 9 20 15 2

CoT 6 4 21 0 3
Transverse

cloud concerns
OCCI SLA 2 2 8 5 4

OCCI
Monitoring 2 3 9 0 2

Cloud
Simulation 8 14 53 0 0

Cloud
Elasticity 2 4 23 4 5

Total 214 90 2821 1029 442

2. OCCI CRTP [Drescher 2016] is an OCCI-based extension that defines a
set of preconfigured instances of the OCCI Compute resource type.

3. Docker is a lightweight container for deploying and managing applications.
Docker is implemented as an extension of OCCI in [Paraiso 2016]. It defines
generic and specific container and machine resource types and associated links.

4. GCP is one of the leaders among cloud providers. It offers several service such
as Compute, Storage, Network, Management, Big Data and Security. GCP
was implemented as OCCI extension in [Challita 2018a] and as I presented in
Chapter 4. I present in the following the formal specification of the Instance
resource type, which represents a virtual machine in GCP.

s i g Ins tance extends f c l oud s /Resource {
creationTimestamp : one Str ing ,
name : one Str ing ,
d e s c r i p t i o n : one Str ing ,
machineType : one Str ing ,
s t a tu s : one StatusEnum ,
statusMessage : one Str ing ,
zone : one St r ing
d i s k s : one DiskRecord ,

146
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

cpuPlatform : one Str ing ,
l a b e l s : one Map,
minCpuPlatform : one Str ing ,
gu e s tAcc e l e r a t o r s : one GuestAcceleratorRecord ,
s t a r tR e s t r i c t e d : one Boolean ,
d e l e t i onPro t e c t i o n : one Boolean ,
kind : one St r ing

}

5. VMware is a virtualization and cloud computing software provider and it is
implemented as an extension of OCCI in [Zalila 2017b]. It defines VMware
instance, storage and network resource types and associated links.

6. OCCI Platform [Metsch 2016] is an OCCI-based extension for PaaS ap-
plication domain. It defines application and component resource types and
associated links.

7. MoDMaCAO [Korte 2018] is an application of OCCI for managing cloud ap-
plications. It defines generic and specific application, component, installation
dependency and execution dependency resource types.

8. OMCRI [Merle 2017] is an application of OCCI for Robot-as-a-Service domain.
The OMCRI extension defines generic and specific robot resource types.

9. CoT is an application of OCCI for seamlessly provisioning cloud and IoT
resources [Rachkidi 2017].

10. OCCI SLA [Katsaros 2016] defines OCCI types for modeling service level
agreements.

11. OCCI Monitoring [Ciuffoletti 2016] is a draft specification of OCCI
that defines sensor and collector types for monitoring cloud systems.

12. Cloud Simulation [Ahmed-Nacer 2016a, Ahmed-Nacer 2017] is an
application of OCCI to simulate cloud systems. The Cloud Simulation

extension defines two notions: (i) a resource to simulate that represents the
resource to be simulated, and (ii) a simulation resource that represents the
resource which performs the simulation activity.

13. Cloud Elasticity [Zalila 2017b] is an application of OCCI that defines
a controller resource type to provide strategies for automatically provisioning
and de-provisioning compute resources such as memory and cores.

5.4. Evaluation of fclouds 147

5.4.2 Implementation of fclouds Formal Specifications

To provide the formal specifications of OCCI extensions, I implemented Alloy Gen-
erator, which is an Acceleo [acc] generation module added to the OCCIware tool
chain. Acceleo is a model-to-text generator, i.e., as illustrated in Figure 5.5, it takes
an OCCI extension and generates a text file, which an Alloy specification in our
case. This specification conforms to the fclouds specification.

Figure 5.5: Alloy Generator.

Acceleo uses a template-based approach. This approach mixes static parts, which
are raw text that will be outputted as it is, and templates, which are text that
contains special part which will be filled with information from the model. Let's
consider the example in Figure 5.6, which represents the template that is responsible
of generating an Alloy signature for each kind of an OCCI extension. “one sig” and
“extends Kind” are static parts, whereas the values between brackets will be replaced
by values of the extension kinds (cf. line 1). In this template, we can see that there
are conditionals on concepts (cf. lines 3, 5 and 7). For instance, if there is no
actions, then we print “no actions”. Otherwise, for each action, we use a dedicated
template (cf. line 7). In fact, in our Alloy Generator, I created templates for each
OCCI concept to create the corresponding Alloy concept.

Figure 5.6: Acceleo Template.

148
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

5.4.3 Verification of fclouds Properties

Being rigorously encoded using the same formal language, i.e., fclouds, my thir-
teen case studies can be now accessed by the same OCCI RESTful interface. There-
fore, it is important to make sure that they correctly reflect the behaviour of
fclouds. Using the Alloy analyzer, I verify that my thirteen formal specifica-
tions satisfy all the assertions, i.e., properties, that I formulated in my fclouds

language (cf. Table 5.2). For instance, I verify that Create Compute operation of
OCCI Infrastructure is idempotent and that Update Instance operation of
GCP is not safe.

5.4.4 Definition & Validation of Domain-Specific Properties

My framework allows me to verify some domain-specific properties. For instance,
in the following listing, I check whether creating a NetworkInterface between two
OCCI resources only occurs between one Compute resource type and one Network

resource type. This assertion is validated so my formal specification respects and im-
plements the following requirement of OCCI Infrastructure specification: “Net-
workInterface connects a Compute instance to a Network instance” [Nyrén 2016c].

a s s e r t NetworkInterfaceBetweenComputeAndNetwork {
a l l c on f i g : Conf igurat ion , l i n k I d : Str ing , l inkKind :

network inte r f ace , l i nkSource : f c l o ud s /Resource , l inkTarge t :

f c l o ud s /Resource , t : Time |
CreateLink [con f i g , l i nk Id , l inkKind , l inkSource , l inkTarget , t ,

t . next]
imp l i e s one c on f i g : Conf igurat ion {
one resourceCompute : c on f i g . r e s ou r c e s . t {
resourceCompute . hasKind [compute]
one l i n k : f c l o ud s /Link {
l i n k . id = l i n k I d
l i n k in resourceCompute . l i n k s . (t . next)

}
}
one resourceNetwork : c on f i g . r e s ou r c e s . t {
resourceNetwork . hasKind [network]
one l i n k : f c l o ud s /Link {
l i n k . id = l i n k I d
l i n k in resourceNetwork . l i n k s . (t . next)

}
}

}
}

5.5. Summary 149

5.4.5 Transformation Rules for Semantic Interoperability in Multi-
clouds

The last step for achieving semantic interoperability between heterogeneous domains
is to define predicates that implement bidirectional formal transformation rules to
map between resources with similar semantics. In the following example, I show
how I can migrate from an OCCI Infrastructure virtual machine at to a GCP

virtual machine. I map the attributes of a given Compute resource to those of an
Instance resource. Also, since I learned from the OCCI Infrastructure and
GCP documentations that the memory in OCCI is expressed in gigabytes, whereas
it is in megabytes in GCP, I applied the multiplication operator for the conversion.

pred ComputeMapInstance [c : one Compute , i : one Ins tance] {
i . machinetype . guestCpus = c . occi_compute_cores
i . name = c . occi_compute_hostname
i . machinetype . isSharedCpu = c . occi_compute_share
i . machinetype .memoryMb = mul [1024 , c . occi_compute_memory]
i . s t a tu s = c . occi_compute_state
i . s tatusMessage = c . occi_compute_state_message

}

Such formal equivalence rules and properties are capable of gaining huge time
and development costs. The cloud developer can now verify a priori the feasibility
of his/her multi-cloud system, before embarking on error-prone implementations.
Thanks to my transformation rules and to MDE principles, I can later imagine a
model that factorizes common attributes for re-usability between OCCI Infras-

tructure and GCP.

5.5 Summary

This chapter presented the fclouds framework, my approach that relies on formal
specification techniques, specifically on the Alloy language, to rigorously and clearly
describe the requirements of cloud APIs. I formalize the OCCI standard in order
to implement my formal language for the clouds. My formal specification of OCCI
was checked for validity thanks to the Alloy analyzer that provides a verification
backbone for OCCI properties. To demonstrate the usefulness of my approach,
I conducted thirteen case studies to show how my approach is applied on OCCI
extensions and that these thirteen APIs with different functionality verify the OCCI
properties so they correctly comply to the OCCI standard. Also, applying Alloy to
these APIs allowed me to reflect the proper behavior of each API by identifying

150
Chapter 5. Specifying Heterogeneous Cloud Resources and Reasoning

over them with fclouds

and validating its specific properties. Finally, having rigorously specified the static
and operational semantics of each cloud API, I defined formal transformation rules
between their formal specifications, thus ensure semantic interoperability between
them.

This chapter concludes the fourth part of this dissertation, i.e., the contribu-
tions. In Chapter 4 I described how I automatically extracted a precise model from
GCP documentation to provide an accurate description of GCP API. Afterwards,
Chapter 5 described how I formally verified that cloud APIs reflect the desired be-
haviour and how I achieved semantic interoperability between their concepts with
the fclouds framework.

In the following part, I summarize the main contributions of this thesis, present
the conclusions of the research work, and define a set of perspectives for future work.

Part V

Conclusion

The last part of the manuscript presents a summary, future perspectives and final remarks
of this thesis.

Chapter 6

Conclusions and Perspectives

Contents
6.1 Background Summary . 153

6.2 Contributions Summary . 154

6.3 Perspectives . 156

6.3.1 Short-term Perspectives . 156

6.3.2 Long-term Perspectives . 157

6.4 Final Conclusion . 159

This last chapter summarizes the contributions of this thesis and discusses future
research lines of the work presented in this dissertation. It is structured as follows.
Section 6.1 recapitulates the OCCIware research project that supports this thesis.
In Section 6.2, I summarize the contributions of this thesis. Section 6.3 states short-
term and long-term perspectives to extend this research. Section 6.4 concludes this
manuscript.

6.1 Background Summary

This thesis is supported by the French OCCIware project and promotes its advance-
ment. OCCIware addresses:

• RQ#1: Is it possible to have a solution that allows to represent all kinds
of cloud resources despite their heterogeneity, and a complete framework for
managing them?

OCCIware platform is summarized as follows:

A complete modeling, verification, generation and management sup-
port. MDE approaches have proven to be advantageous to address the heterogene-
ity across cloud providers. However, the existing MDE approaches for the cloud,
are limited to designing cloud infrastructures. Cloud developers need support to
deploy and manage, not only design all the kinds of cloud resources. Automating

154 Chapter 6. Conclusions and Perspectives

the deployment of cloud artifacts and managing different types of cloud resources
at runtime are not straightforward. To tackle these issues, I introduced the OCCI-

ware approach in Chapter 3. This solution is based on well accepted and defined
standards and technologies. In particular, OCCIware relies on the OCCI standard
that proposes a generic model and API for managing any kind of cloud comput-
ing resources. Also, OCCIware exploits the principles of MDE and leverage them
to provide modeling, verification, generation and management support for cloud
extensions and configurations. The OCCIware approach especially provides the
OCCIware Metamodel, which is based on an Ecore syntax and allows to define
cloud concepts with OCL constraints over them. The OCCIware Metamodel

can be seen as a domain-specific modeling language to define and exchange OCCI
extensions and configurations between end-users and resource providers. For tooling
purpose, the OCCIware Studio is a tool chain built on top of the OCCIware

Metamodel. The OCCIware Studio allows both cloud architects and users can
encode OCCI extensions and configurations, respectively, graphically via the OC-
CIware Designer tool, and textually via the OCCIware Editor tool. They can
also automatically verify the consistency of these extensions and configurations via
the OCCIware Validator tool, generate dedicated model-driven tooling via both
Ecore Generator and Connector Generator tools, generate a deployment script
via the CURL Generator tool, and manage their configurations at runtime via
the generated connectors deployed in OCCIware Runtime.

6.2 Contributions Summary

The two contributions of this thesis are made as part of my work around the OC-
CIware platform. The first contribution addresses:

• RQ#2: Is it possible to automatically extract precise models from cloud APIs
and to synchronize them with the cloud evolution?

The second contribution addresses:

• RQ#3: Is it possible to reason on cloud APIs and identify their similarities
and differences?

The two contributions are respectively summarized as follows:

An automated knowledge extraction support. As cloud environments
evolve over time, their models have to evolve as well to be kept up-to-date. However,
nearly all the existing models that represent the cloud environment are manually

6.2. Contributions Summary 155

built, which is tedious and error-prone. In addition, the defined vocabulary of the
existing cloud models is not rich enough to cover the heterogeneity of all existing
resources. It only considers the lowest common denominator of the cloud providers.
It should also be noted that the defined vocabulary is not flexible enough and there
is no information provided on how the developer can extend this vocabulary. In
Chapter 4, I thus introduce my approach of inferring precise models from cloud
textual documentations. To experiment this approach, I studied the documentation
of GCP that presents various drawbacks. Later on, I implemented a crawler that
automatically extracts GCP resource types, their attributes and operations. These
resources are stored in GCP Model that conforms to the OCCIware Metamodel

and is built as an OCCI extension using the OCCIware Studio. I showed that
using MDE to specify GCP API improve the specification of GCP, especially via
the model transformations like refining the types of the attributes and detecting
implicit metadata. A precise specification, accompanied by a validator at design
time, helps the developer to ensure correctness of his/her GCP configurations before
their deployment. I also showed that using such a model-driven specification leads
to a redundancy reduction, even with a simple transformation, i.e., by introducing
a single abstract kind to the specification. My approach also allowed me to deduce
some facts regarding the uniformity, conciseness, consistency and comprehensiveness
of GCP API.

A formal specification support. Cloud solutions (APIs, services, standards
and model-driven approaches) are numerous and heterogeneous. Moreover, there is
no clear consensus on how these solutions work. And although MDE approaches
allow the developer to validate cloud configurations before their deployment
through OCL constraints, the developer needs to logically think and understand the
cloud solutions. Developers need a formal specification of cloud solutions, fclouds

is the first approach ensuring this support. As explained in Chapter 5, fclouds

encapsulates the OCCIware Metamodel and helps developers understand
without ambiguity the static semantics of cloud environments and the behavioural
semantics of their operations. From the developer’s perspective, fclouds acts a
black box: the developer defines OCCI extensions using OCCIware Studio as
entry point of fclouds, and retrieves a formal specification of each extension. This
specification is written in Alloy which is a lightweight relational formal language
based on the first-order logic. The Alloy syntax is simple and easy to use, and
through my experimentation I demonstrated that it is expressive enough to specify
different cloud concerns. In addition, by using the Alloy analyzer, developers can
check the consistency of their extensions, the sequentiality of certain couples of

156 Chapter 6. Conclusions and Perspectives

cloud operations, the reversibility of others, as well as the idempotence and safety
of certain operations. If counterexamples are found, the developers can detect
inconsistencies in their extensions. Finally, I describe transformation rules for
mapping concepts from a cloud solution to another and thus, I make cloud solutions
more semantically interoperable.

Together, these two contributions support the automated construction of formal
cloud specifications by handling the complexities linked to the natural language
documentations of cloud providers. They provide means to specify cloud concepts
and operations and a way for verifying their consistency and various other properties.
In addition, they provide means for defining transformation rules, thus ensuring
semantic interoperability among cloud providers.

6.3 Perspectives

In this dissertation, I presented my work that successfully covers the needs of pre-
cisely modeling and verifying cloud resources and reasoning over them. However,
there is still a lot of work that can be done to improve my research. In this section I
thus discuss some short-term and long-term perspectives that should be considered
in the continuation of this work.

6.3.1 Short-term Perspectives

Broadening the validation scope of OCCIware. The OCCIware ap-
proach was successfully validated by designing and managing, using the OCCIware

Studio and the OCCIware Runtime respectively, five OCCI extensions and three
academic uses cases. Hereafter, we target industrial validation for the OCCIware

approach. Therefore, an ongoing work aims to get this approach tested and adopted
within Scalair [scaa], a hybrid cloud provider. Also, in order to cover the whole cloud
market, the Xscalibur [xsc] start-up is currently developing the Multi-Cloud Stu-

dio1 that supports two other cloud providers: AWS and OpenStack. Both OCCI
extensions for AWS and OpenStack are under development2 in order to provide a
modeling studio to design both AWS and OpenStack configurations.

Generating a new textual documentation from GCP Model and eval-
uating it. I aim to generate from GCP Model, thanks to the OCCIware Stu-

1https://github.com/occiware/Multi-Cloud-Studio
2Available here https://github.com/occiware/Multi-Cloud-Studio/tree/master/plugins/

org.eclipse.cmf.occi.multicloud.aws.ec2

https://github.com/occiware/Multi-Cloud-Studio
https://github.com/occiware/Multi-Cloud-Studio/tree/master/plugins/org.eclipse.cmf.occi.multicloud.aws.ec2
https://github.com/occiware/Multi-Cloud-Studio/tree/master/plugins/org.eclipse.cmf.occi.multicloud.aws.ec2

6.3. Perspectives 157

dio facilities, a new textual documentation of GCP API. Then, I aim to strengthen
the validation of this documentation by conducting a survey to be taken by devel-
opers that are using GCP API. This survey will help us to verify how accurate the
processed documentation is and if it actually saves their development time. Also, for
ultimate measurement of our approach, we will contact Google employees who are
in charge of GCP API, because we believe that their expertise is the most efficient
for reviewing this work.

Providing a complete tool chain for GCP. For the moment, GCP Model

is an enhanced and accurate specification of the GCP API that allows the developer
to analyze and correctly understand its services. The developer would therefore
make more effective use of GCP API and tend to write more efficient code or REST
requests. GCP Studio, which is a dedicated model-driven environment for graph-
ically and textually designing configurations that conform to GCP Model, is a
work in progress. I aim to associate GCP Studio to a GCP connector in order to
allow an effective provisioning of GCP resources and their management at runtime.

Extending the catalog of formal cloud APIs. As described in Chapter 5, I
successfully specified thirteen cloud APIs by using my proposed fclouds language.
I aim to extend my catalog of formal cloud APIs in order to achieve my vision of
building the first comprehensive framework for semantic interoperability in multi-
clouds. Therefore, using the fclouds language, I aim to formally specify AWS,
OpenStack, TOSCA, etc.

6.3.2 Long-term Perspectives

Automatically generating OCCIware deployment plans. We target
to extend OCCIware Studio in order to support the automatic generation of
deployment plans from OCCI configurations. Currently, the cloud developer does
this task manually. This feature allows us to analyze the different resources and
links between them available in an OCCI configuration and deduce a deployment
plan, which will be automatically executed on OCCIware Runtime.

Following the evolution of GCP API. I plan to update my approach so
it would automatically handle the evolution of GCP API. At the moment, this evo-
lution is manually ensured. For automating the process, it is more practical if my
crawler is less related to the structure of GCP HTML pages, because in reality the
latter are constantly updated. This can be done by experimenting artificial intel-
ligence algorithms to extract knowledge from GCP documentation, then studying

158 Chapter 6. Conclusions and Perspectives

whether the inferred GCP Model in this case will not be missing some information.
Also, my model needs to incrementally detect streaming modifications, by calculat-
ing and modifying only the differences between the initially processed version and
the newly modified one.

Dealing with additional types of properties. fclouds allows to verify
that the appropriate cloud operations satisfy these five properties: consistency, se-
quentiality, reversibility, idempotence and safety. For verifying different aspects of
the cloud APIs, I aim to enrich fclouds with additional properties such as Reach-
ability, i.e., when executing operations on cloud resources through APIs, there is
always a transition from a resource state to another.

Considering further formal techniques. I proposed in this dissertation to
use the Alloy formal language and its analyzer to formally specify cloud APIs and
reason about them. However, being a SAT solver, Alloy is not effective for resolving
numerical constraints which aim for example to minimize the cloud application
cost. Therefore, I intend to use adequate heuristics like SMT solvers, which are
obviously better than SAT solvers for such scenarios. For example, the TLA+
specification language and TLC, its model checker [Lamport 2002] are recognized
and used to verify the reachability problem. Furthermore, although model checkers
verify that the properties are valid within a big scope of research, I need to prove it
in the absolute through a convincing argument. Hence, I will use automated proof
assistants [Loveland 2016], namely Coq [Barras 1997], which implements algorithms
and heuristics to build a proof describing the sequence of needed moves in order to
solve a property.

Working on real-world interoperability. I presented in Chapter 5, a sce-
nario that showed the usage of fclouds for ensuring semantic interoperability. It
mainly consisted in two stages: modeling and reasoning. For the future, I aim
to introduce a third stage, where my formal framework is incorporated in the de-
velopment and maintenance of a bridge with a unified API, to promote real-world
interoperability, while formal semantics is properly reflected in its behaviour. This
third stage is depicted in (3) of Figure 6.1.

Improving the management of cloud applications. In this thesis, I fo-
cused on OCCI standard, which is developed by the OGF and aims to standardize
an API for the management of any kind of cloud resources. Besides OCCI, TOSCA
currently receives more attention by both the industry and research community,
but their focus is different and they can be used complementarily. For managing

6.4. Final Conclusion 159

EGI FC

OCCI API Textual
documentation

of OCCI from
website

fOCCI:
OCCI Formal Model

Modeling

fGCP:
GCP Formal Model

 GCP API Textual
documentation

of GCP from
website

Semantic
Interoperability

Implements Implements

GCP

1

2

3

1’
Transformation

Rules

Bridge

Modeling

fclouds

Figure 6.1: Formal Real-World Bridge.

cloud applications, I aim to implement a model-driven cloud orchestrator based on
two complementary standards, TOSCA and OCCI. Therefore, I am refining the
mapping between the concepts of these two standards [Glaser 2017], and building
TOSCA Studio, a dedicated model-driven environment for designing applications
with TOSCA. This approach will allow TOSCA to have a complementary tool to
take better advantage of deployed applications in production environments. At
runtime, TOSCA Studio will be able to: (i) communicate with an OCCI Infras-
tructure such as the EGI FC to provision virtual machines for example, or (ii) be
exposed via the OCCI Plaform API in order to create, retrieve, update and delete
any kind of cloud application resources.

6.4 Final Conclusion

To close this manuscript, two quotes synthesize the main idea of this thesis:

“No problem can be solved from the same consciousness that created it.”

—Albert Einstein

This first quote remarks the value of changing the consciousness to resolve a chal-
lenge in life. In other terms, what got you to a problem is not going to get you out of

160 Chapter 6. Conclusions and Perspectives

it. Therefore, proposing new cloud APIs to resolve the heterogeneity of the existing
ones, will only worsen the problem. However, MDE brings new opportunities to
improve the cloud solutions. This thesis evidences the value of rising in abstraction
to face the heterogeneity in the cloud domain.

“Concision in style, precision in thought, decision in life.”

—Victor Hugo

This second quote remarks the value of concision and precision to successfully make
a decision. Eliminating redundancy while conveying the ideas without ambiguity,
will lead to a better conclusion. By using formal methods to provide a concise
and precise specification mechanism, this thesis evidences a better understanding of
cloud APIs. This is crucial for taking efficient use of the cloud ecosystem and for
making better decisions regarding the offers selection.

Bibliography

[acc] Acceleo Website. http://www.eclipse.org/acceleo/ (accessed on July 25,
2018). (Cited on pages 71 and 147.)

[aeo] Aeolus ANR Project Website. http://aeolus-project.org/ (accessed on
May 27, 2018). (Cited on page 25.)

[Ahmed-Nacer 2016a] Mehdi Ahmed-Nacer and Samir Tata. Simulation Extension
for Cloud standard OCCIware. In 25th IEEE International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE), pages 263–264. IEEE, 2016. (Cited on pages 85 and 146.)

[Ahmed-Nacer 2016b] Mehdi Ahmed-Nacer, Samir Tata, Walid Gaaloul, Philippe
Merle, Jean Parpaillon, Noël Plouzeau and Stéphanie Challita. OCCI Be-
havioural Model. OCCIware Deliverable 2.2.2, December 2016. (Cited on
page 129.)

[Ahmed-Nacer 2017] Mehdi Ahmed-Nacer, Walid Gaaloul and Samir Tata. OCCI-
Compliant Cloud Configuration Simulation. In IEEE International Confer-
ence on Edge Computing (EDGE), pages 73–81. IEEE, 2017. (Cited on
pages 85 and 146.)

[ans] Ansible Website. https://www.ansible.com/ (accessed on June 17, 2018).
(Cited on pages 28 and 91.)

[Ardagna 2012] Danilo Ardagna, Elisabetta Di Nitto, Giuliano Casale, Dana Petcu,
Parastoo Mohagheghi, Sébastien Mosser, Peter Matthews, Anke Gericke,
Cyril Ballagny, Francesco D’Andriaet al. MODAClouds: A Model-Driven
Approach for the Design and Execution of Applications on Multiple Clouds.
In 4th International Workshop on Modeling in Software Engineering, pages
50–56. IEEE Press, 2012. (Cited on page 35.)

[Armbrust 2010] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoicaet al. A View of Cloud Computing. Communications of
the ACM, vol. 53, no. 4, pages 50–58, 2010. (Cited on page 3.)

[Asserson 2002] Anne Asserson, Keith G Jeffery and Andrei Lopatenko. CERIF:
past, present and future: an overview. 2002. (Cited on page 32.)

http://www.eclipse.org/acceleo/
http://aeolus-project.org/
https://www.ansible.com/

162 Bibliography

[aws] Amazon Web Services Website. https://aws.amazon.com/ (accessed on
June 3, 2018). (Cited on page 24.)

[azu] Microsoft Azure Website. https://azure.microsoft.com/en-us/ (accessed
on June 3, 2018). (Cited on page 24.)

[Barras 1997] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant,
Jean-Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet,
Cesar Munoz, Chetan Murthyet al. The Coq Proof Assistant Reference
Manual: Version 6.1. 1997. (Cited on page 158.)

[Baryannis 2013] George Baryannis, Panagiotis Garefalakis, Kyriakos Kritikos,
Kostas Magoutis, Antonis Papaioannou, Dimitris Plexousakis and Chrysos-
tomos Zeginis. Lifecycle Management of Service-based Applications on Multi-
Clouds: A Research Roadmap. In International workshop on Multi-cloud ap-
plications and federated clouds, pages 13–20. ACM, 2013. (Cited on page 21.)

[Belshe 2015] Mike Belshe, Martin Thomson and Roberto Peon. Hypertext Transfer
Protocol Version 2 (HTTP/2). 2015. (Cited on pages 139 and 142.)

[Bencomo 2014] Nelly Bencomo, Robert B France, Betty HC Cheng and Uwe Aß-
mann. Models@run.time: Foundations, Applications, and Roadmaps, vol-
ume 8378. Springer, 2014. (Cited on page 115.)

[Benzadri 2013] Zakaria Benzadri, Faiza Belala and Chafia Bouanaka. Towards a
Formal Model for Cloud Computing. In International Conference on Service-
Oriented Computing, pages 381–393. Springer, 2013. (Cited on page 124.)

[Bergmayr 2013] Alexander Bergmayr, Hugo Bruneliere, Javier Luis Canovas
Izquierdo, Jesus Gorronogoitia, George Kousiouris, Dimosthenis Kyri-
azis, Philip Langer, Andreas Menychtas, Leire Orue-Echevarria, Clara
Pezuelaet al. Migrating legacy software to the cloud with ARTIST. In Soft-
ware Maintenance and Reengineering (CSMR), 2013 17th European Confer-
ence on, pages 465–468. IEEE, 2013. (Cited on page 35.)

[Bergmayr 2014] Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel
Wimmer and Gerti Kappel. UML-based Cloud Application Modeling with Li-
braries, Profiles, and Templates*. In Proc. Workshop on CloudMDE, pages
56–65, 2014. (Cited on page 33.)

[Bergmayr 2018] Alexander Bergmayr, Uwe Breitenbücher, Nicolas Ferry, Alessan-
dro Rossini, Arnor Solberg, Manuel Wimmer, Gerti Kappel and Frank Ley-

https://aws.amazon.com/
https://azure.microsoft.com/en-us/

Bibliography 163

mann. A Systematic Review of Cloud Modeling Languages. ACM Computing
Surveys (CSUR), vol. 51, no. 1, page 22, 2018. (Cited on pages 31 and 52.)

[Berners-Lee 1998] Tim Berners-Lee, Roy Fielding and Larry Masinter. Uniform
Resource Identifiers (URI): Generic Syntax. Technical report, 1998. (Cited
on page 69.)

[Binz 2012] Tobias Binz, Gerd Breiter, Frank Leymann and Thomas Spatzier.
Portable Cloud Services Using TOSCA. IEEE Internet Computing, no. 3,
pages 80–85, 2012. (Cited on pages 23, 33 and 38.)

[Binz 2013] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank
Leymann, Alexander Nowak and Sebastian Wagner. OpenTOSCA-A Run-
time for TOSCA-based Cloud Applications. In Service-Oriented Computing,
pages 692–695. Springer, 2013. (Cited on pages 35 and 38.)

[Blair 2009] Gordon Blair, Nelly Bencomo and Robert B France. Models@run.time.
Computer, vol. 42, no. 10, pages 22–27, 2009. (Cited on pages 34 and 75.)

[Bobba 2017] Rakesh Bobba, Jon Grov, Indranil Gupta, Si Liu, José Meseguer, Pe-
ter C Olveczky and Stephen Skeirik. Design, Formal Modeling, and Valida-
tion of Cloud Storage Systems Using Maude. Technical report, 2017. (Cited
on page 124.)

[Brambilla 2012] Marco Brambilla, Jordi Cabot and Manuel Wimmer. Model-
Driven Software Engineering in Practice. Synthesis Lectures on Software
Engineering, vol. 1, no. 1, pages 1–182, 2012. (Cited on page 60.)

[Brandtzæg 2012] Eirik Brandtzæg, Sébastien Mosser and Parastoo Mohagheghi.
Towards CloudML, a Model-Based Approach to Provision Resources in the
Clouds. In 8th European Conference on Modelling Foundations and Appli-
cations (ECMFA), pages 18–27, 2012. (Cited on pages 32 and 34.)

[bro] Brooklyn Website. https://brooklyn.apache.org/ (accessed on September
14, 2018). (Cited on page 32.)

[Bruneliere 2010] Hugo Bruneliere, Jordi Cabot and Frédéric Jouault. Combining
Model-Driven Engineering and Cloud Computing. In Modeling, Design, and
Analysis for the Service Cloud-MDA4ServiceCloud’10: Workshop’s 4th edi-
tion (co-located with the 6th European Conference on Modelling Foundations
and Applications-ECMFA 2010), 2010. (Cited on pages 21, 27 and 52.)

https://brooklyn.apache.org/

164 Bibliography

[Buyya 2009] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James
Broberg and Ivona Brandic. Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as the 5th Utility. Future
Generation Computer Systems, vol. 25, no. 6, pages 599–616, 2009. (Cited
on page 3.)

[Calheiros 2011] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF
De Rose and Rajkumar Buyya. CloudSim: A Toolkit for Modeling and Simu-
lation of Cloud Computing Environments and Evaluation of Resource Provi-
sioning Algorithms. Software: Practice and Experience, vol. 41, no. 1, pages
23–50, 2011. (Cited on page 85.)

[cam] OASIS CAMP specification. http://docs.oasis-open.org/camp/

camp-spec/v1.2/camp-spec-v1.2.pdf (accessed on June 6, 2018). (Cited
on page 22.)

[Cao 2017] Hanyang Cao, Jean-Rémy Falleri and Xavier Blanc. Automated Gen-
eration of REST API Specification from Plain HTML Documentation. In
the 15th International Conference on Service-Oriented Computing (ICSOC),
pages 453–461. Springer, 2017. (Cited on page 100.)

[Carlson 2012] Mark Carlson, Martin Chapman, Alex Heneveld, Scott Hinkelman,
Duncan Johnston-Watt, Anish Karmarkar, Tobias Kunze, Ashok Malhotra,
Jeff Mischkinsky, Adrian Ottoet al. Cloud Application Management for Plat-
forms. Specification document, OASIS, 2012. (Cited on page 22.)

[cdm] Storage Networking Industry Association (SNIA) Website. https://www.

snia.org/cdmi (accessed on June 3, 2018). (Cited on page 22.)

[Challita 2017a] Stéphanie Challita, Fawaz Paraiso and Philippe Merle. A Study
of Virtual Machine Placement Optimization in Data Centers. In 7th Inter-
national Conference on Cloud Computing and Services Science (CLOSER),
2017. (Cited on page 17.)

[Challita 2017b] Stéphanie Challita, Fawaz Paraiso and Philippe Merle. To-
wards Formal-based Semantic Interoperability in Multi-Clouds: the fclouds
Framework. In 10th IEEE International Conference on Cloud Computing
(CLOUD), pages 710–713. IEEE, 2017. (Cited on pages 17 and 121.)

[Challita 2018a] Stéphanie Challita, Faiez Zalila, Christophe Gourdin and Philippe
Merle. A Precise Model for Google Cloud Platform. In 6th IEEE International
Conference on Cloud Engineering (IC2E), pages 177–183. IEEE, 2018. (Cited
on pages 16, 89, 95 and 145.)

http://docs.oasis-open.org/camp/camp-spec/v1.2/camp-spec-v1.2.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.2/camp-spec-v1.2.pdf
https://www.snia.org/cdmi
https://www.snia.org/cdmi

Bibliography 165

[Challita 2018b] Stéphanie Challita, Faiez Zalila and Philippe Merle. Specifying
Semantic Interoperability between Heterogeneous Cloud Resources with the
fclouds Formal Language. In 11th International Conference on Cloud Com-
puting (CLOUD), pages 367–374. IEEE, 2018. (Cited on pages 16 and 121.)

[Chapman 2012] Clovis Chapman, Wolfgang Emmerich, Fermín Galán Márquez,
Stuart Clayman and Alex Galis. Software Architecture Definition for On-
Demand Cloud Provisioning. Cluster Computing, vol. 15, no. 2, pages 79–
100, 2012. (Cited on page 38.)

[che] Chef Website. https://www.chef.io/chef/ (accessed on June 17, 2018).
(Cited on page 28.)

[Chowdhury 2003] Gobinda G Chowdhury. Natural Language Processing. Annual
review of information science and technology, vol. 37, no. 1, pages 51–89,
2003. (Cited on page 98.)

[Ciuffoletti 2016] Augusto Ciuffoletti. Open Cloud Computing Interface - Monitor-
ing Extension. Specification Document 1.2, Open Grid Forum, January 2016.
(Cited on pages 63, 84 and 146.)

[Clo] CloudMIG Xpress Website. http://www.cloudmig.org/ (accessed on June
11, 2018). (Cited on page 34.)

[Cohen 2009] Reuven Cohen. Examining Cloud Compatibility, Portability and In-
teroperability. ElasticVapor: Life in the Cloud, 2009. (Cited on page 9.)

[Davis 2012] Doug Davis and Gilbert Pilz. Cloud Infrastructure Management In-
terface (CIMI) Model and REST Interface over HTTP. vol. DSP-0263, May
2012. (Cited on page 23.)

[dig] DigitalOcean Website. https://www.digitalocean.com/ (accessed on June
3, 2018). (Cited on page 24.)

[doc] Docker Website. https://www.docker.com/ (accessed on July 22, 2018).
(Cited on page 86.)

[Drescher 2016] Michel Drescher, Boris Parák and David Wallom. Open Cloud Com-
puting Interface - Compute Resource Template Profile. Specification Docu-
ment GFD.222, Open Grid Forum, February 2016. (Cited on pages 55, 82
and 145.)

[EA] Enterprise Architect Website. http://www.sparxsystems.com/products/

ea/ (accessed on May 27, 2018). (Cited on page 30.)

https://www.chef.io/chef/
http://www.cloudmig.org/
https://www.digitalocean.com/
https://www.docker.com/
http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/

166 Bibliography

[ecl] Eclipse Website. http://www.eclipse.org/ (accessed on July 25, 2018).
(Cited on page 71.)

[Edmonds 2012] Andy Edmonds, Thijs Metsch, Alexander Papaspyrou and Alexis
Richardson. Toward an Open Cloud Standard. IEEE Internet Computing,
vol. 16, no. 4, pages 15–25, 2012. (Cited on pages 10, 23, 50 and 53.)

[Edmonds 2016] Andy Edmonds and Thijs Metsch. Open Cloud Computing Inter-
face - Text Rendering. Specification Document GFD-R-P.229, Open Grid
Forum, 2016. (Cited on pages 55, 69, 75 and 81.)

[egi] EGI FC Website. https://www.egi.eu/ (accessed on June 13, 2018). (Cited
on page 24.)

[EMFa] Eclipse Modeling Framework (EMF) Website. http://www.eclipse.org/

modeling/emf/ (accessed on May 27, 2018). (Cited on page 30.)

[emfb] EMFText Website. http://www.emftext.org/ (accessed on May 27, 2018).
(Cited on page 31.)

[ero] erocci Website. http://erocci.ow2.org (accessed on August 13, 2018).
(Cited on page 50.)

[Farokhi 2014] Soodeh Farokhi. Towards an SLA-Based Service Allocation in Multi-
Cloud Environments. In 14th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), pages 591–594. IEEE, 2014.
(Cited on page 35.)

[Ferrer 2012] Ana Juan Ferrer, Francisco HernáNdez, Johan Tordsson, Erik Elm-
roth, Ahmed Ali-Eldin, Csilla Zsigri, RaüL Sirvent, Jordi Guitart, Rosa M
Badia, Karim Djemameet al. OPTIMIS: A Holistic Approach to Cloud Ser-
vice Provisioning. Future Generation Computer Systems, vol. 28, no. 1, pages
66–77, 2012. (Cited on page 25.)

[Ferry 2013] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin and
Arnor Solberg. Towards Model-Driven Provisioning, Deployment, Monitor-
ing, and Adaptation of Multi-Cloud Systems. In IEEE 6th International Con-
ference on Cloud Computing (CLOUD), pages 887–894. IEEE, 2013. (Cited
on pages 32 and 34.)

[Ferry 2018] Nicolas Ferry, Franck Chauvel, Hui Song, Alessandro Rossini, Maksym
Lushpenko and Arnor Solberg. CloudMF: Model-Driven Management
of Multi-Cloud Applications. ACM Transactions on Internet Technology
(TOIT), vol. 18, no. 2, pages 16:1–16:24, 2018. (Cited on page 34.)

http://www.eclipse.org/
https://www.egi.eu/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.emftext.org/
http://erocci.ow2.org

Bibliography 167

[Fielding 2000] Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, University of California,
Irvine, 2000. (Cited on pages 8 and 50.)

[fle] FlexiScale Website. http://www.flexiscale.com/ (accessed on June 6,
2018). (Cited on page 24.)

[fog] Fog Website. https://fog.io/ (accessed on June 3, 2018). (Cited on
page 26.)

[Fowler 2010] Martin Fowler. Domain-Specific Languages. Pearson Education, 2010.
(Cited on pages 31 and 108.)

[Frey 2011] Sören Frey and Wilhelm Hasselbring. The CloudMIG Approach: Model-
Based Migration of Software Systems to Cloud-Optimized Applications. Inter-
national Journal on Advances in Software, vol. 4, no. 3 and 4, pages 342–353,
2011. (Cited on page 34.)

[Frey 2013] Sören Frey, Florian Fittkau and Wilhelm Hasselbring. Search-Based
Genetic Optimization for Deployment and Reconfiguration of Software in the
Cloud. In International Conference on Software Engineering, pages 512–521.
IEEE Press, 2013. (Cited on page 35.)

[García-Galán 2016] Jesús García-Galán, Pablo Trinidad, Omer F Rana and An-
tonio Ruiz-Cortés. Automated Configuration Support for Infrastructure Mi-
gration to the Cloud. Future Generation Computer Systems, vol. 55, pages
200–212, 2016. (Cited on page 36.)

[Garis 2012] Ana Garis, Ana CR Paiva, Alcino Cunha and Daniel Riesco. Speci-
fying UML Protocol State Machines in Alloy. In International Conference
on Integrated Formal Methods, pages 312–326. Springer, 2012. (Cited on
page 136.)

[gcp] Google Cloud Platform Website. https://cloud.google.com/ (accessed on
June 3, 2018). (Cited on page 24.)

[Gherardi 2014] Luca Gherardi, Dominique Hunziker and Gajamohan Mohanara-
jah. A Software Product Line Approach for Configuring Cloud Robotics
Applications. In 7th IEEE International Conference on Cloud Computing
(CLOUD), pages 745–752. IEEE, 2014. (Cited on page 36.)

[Glaser 2017] Fabian Glaser, Johnannes Erbel and Jens Grabowski. Model Driven
Cloud Orchestration by Combining TOSCA and OCCI. In 7th International

http://www.flexiscale.com/
https://fog.io/
https://cloud.google.com/

168 Bibliography

Conference on Cloud Computing and Services Science (CLOSER), pages
644–650, 2017. (Cited on page 159.)

[gmf] Graphical Modeling Framework (GMF) Website. https://www.eclipse.

org/gmf-tooling/ (accessed on May 27, 2018). (Cited on page 31.)

[gop] Gophercloud Website. http://gophercloud.io/ (accessed on June 3, 2018).
(Cited on page 26.)

[gra] Graphiti Website. https://www.eclipse.org/graphiti/ (accessed on May
27, 2018). (Cited on page 31.)

[Guillén 2013] Joaquín Guillén, Javier Miranda, Juan Manuel Murillo and Carlos
Canal. A UML Profile for Modeling Multicloud Applications. In Service-
Oriented and Cloud Computing, pages 180–187. Springer, 2013. (Cited on
page 37.)

[Hamdaqa 2015] Mohammad Hamdaqa and Ladan Tahvildari. StratusML: A Lay-
ered Cloud Modeling Framework. In IEEE International Conference on Cloud
Engineering (IC2E), pages 96–105, 2015. (Cited on page 39.)

[Haupt 2017] Florian Haupt, Frank Leymann, Anton Scherer and Karolina
Vukojevic-Haupt. A Framework for the Structural Analysis of REST APIs.
In the International Conference on Software Architecture (ICSA), pages 55–
58. IEEE, 2017. (Cited on page 100.)

[her] Heroku Website. https://www.heroku.com/ (accessed on June 3, 2018).
(Cited on page 24.)

[Holmes 2014] Taíd Holmes. Automated Provisioning of Customized Cloud Service
Stacks using Domain-Specific Languages. CloudMDE 2014, pages 46–55,
2014. (Cited on page 36.)

[Holmes 2015] Taíd Holmes. Facilitating Migration of Cloud Infrastructure Services-
A Model-Based Approach. 3rd International Workshop on Model-Driven En-
gineering on and for the Cloud in conjunction with ACM/IEEE 18th Inter-
national Conference on Model Driven Engineering Languages and Systems,
pages 7–12, 2015. (Cited on page 37.)

[Hußmann 2001] H Hußmann. Fundamental Approaches to Software Engineering
(FASE). In 5th International Conference held as Part of the Joint European
Conferences on Theory and Practice of Software (ETAPS). Springer, 2001.
(Cited on page 30.)

https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/gmf-tooling/
http://gophercloud.io/
https://www.eclipse.org/graphiti/
https://www.heroku.com/

Bibliography 169

[Jackson 2012] Daniel Jackson. Software Abstractions: logic, language, and analy-
sis. MIT press, 2012. (Cited on pages 10, 12, 73, 122, 128 and 129.)

[jcl] Apache jclouds Website. http://www.jclouds.org/ (accessed on May 27,
2018). (Cited on page 26.)

[Jeffery 2017] Keith Jeffery and Lutz Schubert. PaaSage. IEEE Cloud Computing,
vol. 4, no. 3, pages 60–60, 2017. (Cited on page 35.)

[Jurafsky 2000] Daniel Jurafsky. Speech and Language Processing: An Introduc-
tion to Natural Language Processing. Computational linguistics, and speech
recognition, 2000. (Cited on page 113.)

[kaa] Kaavo Website. http://www.kaavo.com/ (accessed on May 27, 2018). (Cited
on page 25.)

[Kang 1990] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak and
A Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibil-
ity Study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, 1990. (Cited on page 30.)

[Katsaros 2016] Gregory Katsaros. Open Cloud Computing Interface - Service Level
Agreements. Specification Document GFD.228, Open Grid Forum, October
2016. (Cited on pages 55, 63, 76, 84 and 146.)

[Khajeh-Hosseini 2012] Ali Khajeh-Hosseini, David Greenwood, James W Smith
and Ian Sommerville. The Cloud Adoption Toolkit: Supporting Cloud Adop-
tion Decisions in the Enterprise. Software: Practice and Experience, vol. 42,
no. 4, pages 447–465, 2012. (Cited on page 33.)

[Kirkham 2014] Tom Kirkham, Brian Matthews, Vasily Bunakov and Keith Jef-
fery. CAMEL and the Modelling of Cloud Lifecycles. In 2014 Conference,
eChallenges e-2014, pages 1–6. IEEE, 2014. (Cited on page 32.)

[Klein 2003] Dan Klein and Christopher D Manning. Accurate Unlexicalized Pars-
ing. In Proceedings of the 41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430. Association for Computational
Linguistics, 2003. (Cited on page 112.)

[Kleppe 2008] Anneke Kleppe. Software Language Engineering: Creating Domain-
Specific Languages using Metamodels. Pearson Education, 2008. (Cited on
page 29.)

http://www.jclouds.org/
http://www.kaavo.com/

170 Bibliography

[Ko 2013] SSGL Ryan Ko, Stephen Lee and Veerappa Rajan. Cloud Computing
Vulnerability Incidents: A Statistical Overview. Cloud Security Alliance,
2013. (Cited on page 5.)

[Kopaneli 2015] Aliki Kopaneli, George Kousiouris, Gorka Echevarria Velez,
Athanasia Evangelinou and Theodora Varvarigou. A Model Driven Approach
for Supporting the Cloud Target Selection Process. Procedia Computer Sci-
ence, vol. 68, pages 89–102, 2015. (Cited on page 35.)

[Kopp 2013] Oliver Kopp, Tobias Binz, Uwe Breitenbücher and Frank Leymann.
Winery-A Modeling Tool for TOSCA-based Cloud Applications. In Interna-
tional Conference on Service-Oriented Computing, pages 700–704. Springer,
2013. (Cited on page 38.)

[Korte 2018] Fabian Korte, Stéphanie Challita, Faiez Zalila, Philippe Merle and
Jens Grabowski. Model-Driven Configuration Management of Cloud Appli-
cations with OCCI. In 8th International Conference on Cloud Computing
and Services Science (CLOSER), pages 100–111, 2018. (Cited on pages 16,
87 and 146.)

[Lamport 2002] Leslie Lamport. Specifying Systems: the TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley Longman Pub-
lishing Co., Inc., 2002. (Cited on page 158.)

[Leymann 2011] Frank Leymann, Christoph Fehling, Ralph Mietzner, Alexander
Nowak and Schahram Dustdar. Moving Applications to the Cloud: an Ap-
proach Based on Application Model Enrichment. International Journal of Co-
operative Information Systems, vol. 20, no. 03, pages 307–356, 2011. (Cited
on page 37.)

[lib] Apache Libcloud Website. http://libcloud.apache.org/ (accessed on May
27, 2018). (Cited on page 26.)

[Loutas 2011] Nikolaos Loutas, Eleni Kamateri and Konstantinos Tarabanis. A
Semantic Interoperability Framework for Cloud Platform as a Service. In
3rd International Conference on Cloud Computing Technology and Science
(CloudCom), pages 280–287. IEEE, 2011. (Cited on page 124.)

[Loveland 2016] Donald W Loveland. Automated Theorem Proving: a logical basis.
Elsevier, 2016. (Cited on page 158.)

[man] Manjrasoft Website. http://www.manjrasoft.com/ (accessed on May 27,
2018). (Cited on page 25.)

http://libcloud.apache.org/
http://www.manjrasoft.com/

Bibliography 171

[Medhioub 2013] Houssem Medhioub, Bilel Msekni and Djamal Zeghlache. OCNI
– Open Cloud Networking Interface. In 22nd International Conference on
Computer Communications and Networks (ICCCN), pages 1–8. IEEE, 2013.
(Cited on page 63.)

[Mell 2011] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing.
2011. (Cited on page 4.)

[Menzel 2012] Michael Menzel and Rajiv Ranjan. CloudGenius: Decision Support
for Web Server Cloud Migration. In 21st International Conference on World
Wide Web, pages 979–988. ACM, 2012. (Cited on page 33.)

[Merkel 2014] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux Journal, vol. 2014, no. 239, page 2,
2014. (Cited on page 28.)

[Merle 2015a] Philippe Merle, Olivier Barais, Jean Parpaillon, Noël Plouzeau and
Samir Tata. A Precise Metamodel for Open Cloud Computing Interface. In
8th International Conference on Cloud Computing (CLOUD), pages 852–
859. IEEE, 2015. (Cited on pages 63, 73 and 134.)

[Merle 2015b] Philippe Merle, Jean Parpaillon and Olivier Barais. OCCI Specific
Language - Structural Part. OCCIware Deliverable 2.3.1, May 2015. (Cited
on page 71.)

[Merle 2017] Philippe Merle, Christophe Gourdin and Nathalie Mitton. Mobile
Cloud Robotics as a Service with OCCIware. In 2nd IEEE International
Congress on Internet of Things (ICIOT), pages 710–713. IEEE, 2017. (Cited
on pages 76, 86 and 146.)

[Metsch 2016] Thijs Metsch and Mohamed Mohamed. Open Cloud Computing In-
terface - Platform. Specification Document GFD.227, Open Grid Forum,
February 2016. (Cited on pages 55, 63, 66, 76, 82, 128 and 146.)

[Mietzner 2009] Ralph Mietzner, Tobias Unger and Frank Leymann. Cafe: A
Generic Configurable Customizable Composite Cloud Application Framework.
On the Move to Meaningful Internet Systems: OTM 2009, pages 357–364,
2009. (Cited on page 37.)

[Moats 1998] R. Moats. URN Syntax. Technical report, 1998. (Cited on page 68.)

[MOF 2006] OMG MOF. 2.0 Core Specification. OMG Document, January, 2006.
(Cited on page 30.)

172 Bibliography

[Mohamed 2013] Mohamed Mohamed, Djamel Belaïd and Samir Tata. Monitoring
and Reconfiguration for OCCI Resources. In 5th IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom), volume 1,
pages 539–546. IEEE, 2013. (Cited on page 63.)

[Mohamed 2014a] Mohamed Mohamed. Generic Monitoring and Reconfiguration
for Service-based Applications in the Cloud. PhD thesis, INT, Evry, France,
2014. (Cited on page 63.)

[Mohamed 2014b] Mohamed Mohamed, Djamel Belaïd and Samir Tata. Autonomic
Computing for OCCI Resources. Technical report, Telecom Sud Paris, Jan-
uary 2014. (Cited on page 63.)

[Mohamed 2015] Mohamed Mohamed, Mourad Amziani, Djamel Belaid, Samir Tata
and Tarek Melliti. An Autonomic Approach to Manage Elasticity of Business
Processes in the Cloud. Future Generation Computer Systems, vol. 50, pages
49–61, 2015. (Cited on page 63.)

[Mohanarajah 2015] Gajamohan Mohanarajah, Dominique Hunziker, Raffaello
D’Andrea and Markus Waibel. Rapyuta: A Cloud Robotics Platform. IEEE
Transactions on Automation Science and Engineering, vol. 12, no. 2, pages
481–493, 2015. (Cited on page 36.)

[Moody 2009] Daniel Moody. The “Physics" of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering. IEEE Transac-
tions on Software Engineering, vol. 35, no. 6, pages 756–779, 2009. (Cited
on page 114.)

[mos] mOSAIC Project Website. http://www.mosaic-project.eu/ (accessed on
June 14, 2018). (Cited on page 25.)

[Newcombe 2015] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu,
Marc Brooker and Michael Deardeuff. How Amazon Web Services Uses For-
mal Methods. Communications of the ACM, vol. 58, no. 4, pages 66–73,
2015. (Cited on page 124.)

[Nguyen 2012] Dinh Khoa Nguyen, Francesco Lelli, Mike P Papazoglou and Willem-
Jan Van Den Heuvel. Blueprinting Approach in Support of Cloud Computing.
Future Internet, vol. 4, no. 1, pages 322–346, 2012. (Cited on page 31.)

[nov] Nova Documentation. https://docs.openstack.org/nova/latest/ (ac-
cessed on June 14, 2018). (Cited on page 37.)

http://www.mosaic-project.eu/
https://docs.openstack.org/nova/latest/

Bibliography 173

[Nyrén 2016a] Ralf Nyrén, Andy Edmonds, Thijs Metsch and Boris Parák. Open
Cloud Computing Interface - HTTP Protocol. Specification Document
GFD.223, Open Grid Forum, February 2016. (Cited on pages 55, 68, 75,
81, 128, 135 and 141.)

[Nyrén 2016b] Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, Thijs Metsch
and Boris Parák. Open Cloud Computing Interface - Core. Specification
Document GFD.221, Open Grid Forum, February 2016. (Cited on pages xv,
50, 54, 63, 75, 128 and 129.)

[Nyrén 2016c] Ralf Nyrén, Andy Edmonds, Alexander Papaspyrou, Thijs Metsch
and Boris Parák. Open Cloud Computing Interface - Infrastructure. Speci-
fication Document GFD.224, Open Grid Forum, February 2016. (Cited on
pages 55, 63, 66, 75, 77, 128, 144 and 148.)

[Nyrén 2016d] Ralf Nyrén, Florian Feldhaus, Boris Parák and Zdenek Sustr. Open
Cloud Computing Interface - JSON Rendering. Specification Document
GFD-R-P.226, Open Grid Forum, 2016. (Cited on pages 55 and 75.)

[occa] OCCI-WG: OCCI Working Group Website. http://occi-wg.org/ (accessed
on May 27, 2018). (Cited on pages 10 and 23.)

[occb] OCCI4Java GitHub Repository. https://github.com/occi4java/

occi4java (accessed on August 13, 2018). (Cited on page 50.)

[occc] OCCIware Project Website. http://www.occiware.org/ (accessed on June
13, 2018). (Cited on pages 6 and 55.)

[OMG 2014] OMG. Object Constraint Language, Version 2.4. OMG Specification
OMG Document Number: formal/2014-02-03, Object Management Group,
February 2014. (Cited on page 65.)

[opea] OpenStack Website. https://www.openstack.org/ (accessed on June 6,
2018). (Cited on page 4.)

[opeb] OpenTOSCA Ecosystem Website. http://www.iaas.uni-stuttgart.de/

OpenTOSCA/ (accessed on June 11, 2018). (Cited on page 38.)

[ovf] DMTF Website. https://www.dmtf.org/standards/ovf (accessed on June
6, 2018). (Cited on page 23.)

[paa] PaaSage Project Website. https://paasage.ercim.eu/ (accessed on June
13, 2018). (Cited on page 35.)

http://occi-wg.org/
https://github.com/occi4java/occi4java
https://github.com/occi4java/occi4java
http://www.occiware.org/
https://www.openstack.org/
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
http://www.iaas.uni-stuttgart.de/OpenTOSCA/
https://www.dmtf.org/standards/ovf
https://paasage.ercim.eu/

174 Bibliography

[Pandita 2012] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney
and Amit Paradkar. Inferring Method Specifications from Natural Language
API Descriptions. In the 34th International Conference on Software Engi-
neering (ICSE), pages 815–825. IEEE, 2012. (Cited on page 101.)

[Paraiso 2012] Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy
and Lionel Seinturier. A Federated Multi-Cloud PaaS Infrastructure. In 5th
IEEE International Conference on Cloud Computing (CLOUD), pages 392–
399. IEEE, 2012. (Cited on page 8.)

[Paraiso 2014] Fawaz Paraiso, Philippe Merle and Lionel Seinturier. soCloud: A
Service-Oriented Component-based PaaS for Managing Portability, Provi-
sioning, Elasticity, and High Availability across Multiple Clouds. Computing,
pages 1–27, 2014. (Cited on page 39.)

[Paraiso 2016] Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi and Philippe
Merle. Model-driven Management of Docker Containers. In 9th IEEE Inter-
national Conference on Cloud Computing (CLOUD), pages 718–725. IEEE,
2016. (Cited on pages 17, 76, 86, 115 and 145.)

[Parpaillon 2015] Jean Parpaillon, Philippe Merle, Olivier Barais, Marc Dutoo and
Fawaz Paraiso. OCCIware-A Formal and Tooled Framework for Managing
Everything as a Service. In Projects Showcase@ STAF’15, volume 1400,
pages 18–25, 2015. (Cited on page 55.)

[Pawluk 2012] Przemyslaw Pawluk, Bradley Simmons, Michael Smit, Marin Litoiu
and Serge Mankovski. Introducing STRATOS: A Cloud Broker Service. In
5th IEEE International Conference on Cloud Computing (CLOUD), pages
891–898. IEEE, 2012. (Cited on page 25.)

[Petcu 2013] Dana Petcu. Multi-Cloud: Expectations and Current Approaches. In
International Workshop on Multi-cloud Applications and Federated Clouds,
pages 1–6. ACM, 2013. (Cited on page 5.)

[Petrillo 2016] Fabio Petrillo, Philippe Merle, Naouel Moha and Yann-Gaël
Guéhéneuc. Are REST APIs for Cloud Computing Well-Designed? An Ex-
ploratory Study. In the International Conference on Service-Oriented Com-
puting (ICSOC), pages 157–170. Springer, 2016. (Cited on page 100.)

[Priss 2006] Uta Priss. Formal Concept Analysis in Information Science. Arist,
vol. 40, no. 1, pages 521–543, 2006. (Cited on page 113.)

Bibliography 175

[pup] Puppet Website. https://puppet.com/ (accessed on June 17, 2018). (Cited
on pages 28 and 36.)

[pyo] pyOCNI GitHub Repository. https://github.com/tmetsch/pyssf (ac-
cessed on August 13, 2018). (Cited on page 50.)

[pys] pySSF GitHub Repository. https://github.com/tmetsch/pyssf (accessed
on August 13, 2018). (Cited on page 50.)

[Quinton 2013] Clément Quinton, Nicolas Haderer, Romain Rouvoy and Laurence
Duchien. Towards Multi-Cloud Configurations Using Feature Models and On-
tologies. In International Workshop on Multi-cloud Applications and Feder-
ated Clouds, pages 21–26. ACM, 2013. (Cited on pages 32 and 39.)

[Rachkidi 2017] Elie Rachkidi, Djamel Belaïd, Nazim Agoulmine and Nada Chen-
deb. Cloud of Things Modeling for Efficient and Coordinated Resources Pro-
visioning. In OTM Confederated International Conferences" On the Move
to Meaningful Internet Systems", pages 175–193. Springer, 2017. (Cited on
page 146.)

[Rat] Rational Rose Modeler Website. https://www-01.ibm.com/software/

rational/uml/products/ (accessed on May 27, 2018). (Cited on page 30.)

[rig] RightScale Website. https://www.rightscale.com/ (accessed on May 27,
2018). (Cited on page 25.)

[roc] rOCCI Website. http://gwdg.github.io/rOCCI (accessed on August 13,
2018). (Cited on page 50.)

[Rugaber 2004] Spencer Rugaber and Kurt Stirewalt. Model-Driven Reverse Engi-
neering. IEEE software, vol. 21, no. 4, pages 45–53, 2004. (Cited on page 96.)

[Sadovykh 2011] Andrey Sadovykh, Christian Hein, Brice Morin, Parastoo Mo-
hagheghi and Arne J Berre. REMICS: REuse and Migration of legacy appli-
cations to Interoperable Cloud Services. In 4th European conference on To-
wards a service-based internet, pages 315–316. Springer-Verlag, 2011. (Cited
on page 35.)

[sal] Salesforce Website. http://www.salesforce.com/eu/ (accessed on May 27,
2018). (Cited on page 24.)

[Sandru 2012] Calin Sandru, Dana Petcu and Victor Ion Munteanu. Building an
Open-Source Platform-as-a-Service with Intelligent Management of Multiple

https://puppet.com/
https://github.com/tmetsch/pyssf
https://github.com/tmetsch/pyssf
https://www-01.ibm.com/software/rational/uml/products/
https://www-01.ibm.com/software/rational/uml/products/
https://www.rightscale.com/
http://gwdg.github.io/rOCCI
http://www.salesforce.com/eu/

176 Bibliography

Cloud Resources. In IEEE/ACM 5th International Conference on Utility and
Cloud Computing, pages 333–338. IEEE Computer Society, 2012. (Cited on
page 25.)

[scaa] Scalair Website. https://www.scalair.fr/ (accessed on July 22, 2018).
(Cited on pages 82 and 156.)

[scab] Scalr Website. https://www.scalr.com/ (accessed on June 3, 2018). (Cited
on page 25.)

[Schmidt 2006] Douglas C Schmidt. Model-Driven Engineering. COMPUTER-
IEEE COMPUTER SOCIETY, vol. 39, no. 2, page 25, 2006. (Cited on
page 115.)

[Silva 2014] Gabriel Costa Silva, Louis M Rose and Radu Calinescu. Cloud DSL:
A Language for Supporting Cloud Portability by Describing Cloud Entities.
CloudMDE 2014, pages 36–45, 2014. (Cited on page 33.)

[sim] SimpleCloud Website. https://www.ibm.com/developerworks/

opensource/library/os-simplecloud/os-simplecloud-pdf.pdf (ac-
cessed on June 3, 2018). (Cited on page 26.)

[Sinha 2010] Avik Sinha, Stanley M Sutton Jr and Amit Paradkar. Text2Test: Au-
tomated Inspection of Natural Language Use Cases. In the 3rd International
Conference on Software Testing, Verification and Validation (ICST), pages
155–164. IEEE, 2010. (Cited on page 101.)

[sir] Sirius Website. http://www.eclipse.org/sirius/ (accessed on May 27,
2018). (Cited on pages 31 and 71.)

[Sousa 2012] Gustavo Sousa, Fábio M Costa, Peter J Clarke and Andrew A Allen.
Model-Driven Development of DSML Execution Engines. In 7th Workshop
on Models@ run. time, pages 10–15. ACM, 2012. (Cited on page 31.)

[Sousa 2017] Gustavo Sousa, Walter Rudametkin and Laurence Duchien. Extending
Dynamic Software Product Lines with Temporal Constraints. In Proceedings
of the 12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 129–139. IEEE Press, 2017. (Cited on
page 39.)

[sta] Stanford Parser Website. https://nlp.stanford.edu/software/

lex-parser.shtml (accessed on July 24, 2018). (Cited on page 113.)

https://www.scalair.fr/
https://www.scalr.com/
https://www.ibm.com/developerworks/opensource/library/os-simplecloud/os-simplecloud-pdf.pdf
https://www.ibm.com/developerworks/opensource/library/os-simplecloud/os-simplecloud-pdf.pdf
http://www.eclipse.org/sirius/
https://nlp.stanford.edu/software/lex-parser.shtml
https://nlp.stanford.edu/software/lex-parser.shtml

Bibliography 177

[Steinberg 2008] Dave Steinberg, Frank Budinsky, Ed Merks and Marcelo Paternos-
tro. EMF: Eclipse Modeling Framework. Pearson Education, 2008. (Cited
on page 108.)

[Vecchiola 2009] Christian Vecchiola, Xingchen Chu and Rajkumar Buyya. Aneka:
A Software Platform for .NET-based Cloud Computing. High Speed and
Large Scale Scientific Computing, vol. 18, pages 267–295, 2009. (Cited on
page 25.)

[vmw] VMware Website. https://www.vmware.com/ (accessed on June 6, 2018).
(Cited on page 24.)

[xsc] XScalibur Website. http://www.xscalibur.com/ (accessed on October 15,
2018). (Cited on page 156.)

[xte 2016] Xtext Website, 2016. http://www.eclipse.org/Xtext/ (accessed on
May 27, 2018). (Cited on pages 30 and 71.)

[Yangui 2013] Sami Yangui and Samir Tata. CloudServ: PaaS resources provision-
ing for service-based applications. In 27th IEEE International Conference
on Advanced Information Networking and Applications (AINA 2013), pages
522–529. IEEE, 2013. (Cited on page 63.)

[Yangui 2014] Sami Yangui, Iain-James Marshall, Jean-Pierre Laisne and Samir
Tata. CompatibleOne: The Open Source Cloud broker. Journal of Grid
Computing, vol. 12, no. 1, pages 93–109, 2014. (Cited on pages 24 and 25.)

[Yangui 2016] Sami Yangui and Samir Tata. An OCCI Compliant Model for PaaS
Resources Description and Provisioning. The Computer Journal, vol. 59,
no. 3, pages 308–324, 2016. (Cited on page 63.)

[Yongsiriwit 2016] Karn Yongsiriwit, Mohamed Sellami and Walid Gaaloul. A Se-
mantic Framework Supporting Cloud Resource Descriptions Interoperability.
In 9th International Conference on Cloud Computing (CLOUD), pages 585–
592. IEEE, 2016. (Cited on page 124.)

[Zalila 2017a] Faiez Zalila, Stéphanie Challita and Philippe Merle. A Model-Driven
Tool Chain for OCCI. In OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems", pages 389–409. Springer, 2017.
(Cited on pages 16 and 49.)

[Zalila 2017b] Faiez Zalila, Philippe Merle, Jean Parpaillon, Slim Kallel, Mehdi
Ahmed-Nacer, Walid Gaaloul and Christophe Gourdin. OCCI Extension
Models. OCCIware Deliverable 2.4.1, September 2017. (Cited on page 146.)

https://www.vmware.com/
http://www.xscalibur.com/
http://www.eclipse.org/Xtext/

178 Bibliography

[Zalila 2018] Faiez Zalila, Stéphanie Challita and Philippe Merle. Model-Driven
Cloud Resource Management with OCCIware. Future Generation Computer
Systems (FGCS), 2018. under review. (Cited on pages 17 and 49.)

[Zhai 2016] Juan Zhai, Jianjun Huang, Shiqing Ma, Xiangyu Zhang, Lin Tan, Jian-
hua Zhao and Feng Qin. Automatic Model generation from Documentation
for Java API Functions. In the 38th International Conference on Software
Engineering, pages 380–391. ACM, 2016. (Cited on page 101.)

[Zhong 2009] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei and Hong Mei. MAPO:
Mining and Recommending API Usage Patterns. ECOOP–Object-Oriented
Programming, pages 318–343, 2009. (Cited on page 101.)

	Title
	Acknowledgments
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Part I : Preface
	Chapter 1 : Introduction
	Thesis Context
	Problem Statement
	Research Questions
	Thesis Goals
	Thesis Vision
	Proposed Solution
	Dissertation Roadmap
	Publications
	International Conferences
	International Journal

	Awards

	Part II : State of the Art
	Chapter 2 : Model-Driven Approaches for the Cloud
	Multi-Cloud Ecosystem
	Provider Space
	Programming Space
	Modeling Space

	Taxonomy of Model-Driven Approaches for the Cloud
	Usages
	Concepts
	Characteristics

	Model-Driven Approaches for the Cloud
	Discussion
	Summary

	Part III : Background
	Chapter 3 : Modeling, Verifying, Generating and Managing Cloud Resources with OCCIware
	Motivations
	Background on OCCI
	OCCIware Approach
	Managing Everything as a Service with OCCIware
	Generating Cloud Domain-Specific Modeling Studios with OCCIware

	OCCIware Metamodel
	OCCIware Studio
	OCCIware Runtime
	Evaluation of OCCIware Studio
	Implementation of a Catalog of Standard OGFs OCCI Extensions
	Five OCCIware Use Cases
	Synthesis on the OCCIware Approach

	Summary

	Part IV : Contributions
	Chapter 4 : Inferring Precise Models from Cloud APIs Textual Documentations
	Inferring Precise Cloud Models
	Approach Overview
	Related Work

	GCP Use Case: Motivation & Drawbacks
	GCP Model Extraction Approach
	GCP Snapshot
	GCP Crawler
	GCP Model
	GCP Refinement
	Challenges

	Evaluation of GCP Model
	Qualitative Evaluation
	Quantitative Evaluation

	Summary

	Chapter 5 : Specifying Heterogeneous Cloud Resources and Reasoning over them with fclouds
	Exploring the Semantic Space
	Formal methods and their benefits
	Related Work

	The fclouds Framework
	Usage Scenario
	Overall Architecture

	The fclouds Language
	Notations
	Specifying fclouds Static Semantics
	Specifying fclouds Operational Semantics
	Identifying & Validating fclouds Properties

	Evaluation of fclouds
	Catalog of Cloud Formal Specifications
	Implementation of fclouds Formal Specifications
	Verification of fclouds Properties
	Definition & Validation of Domain-Specific Properties
	Transformation Rules for Semantic Interoperability in Multi-clouds

	Summary

	Part V : Conclusion
	Chapter 6 : Conclusions and Perspectives
	Background Summary
	Contributions Summary
	Perspectives
	Short-term Perspectives
	Long-term Perspectives

	Final Conclusion

	Bibliography

	source: Thèse de Stéphanie Challita, Université de Lille, 2018
	d: © 2018 Tous droits réservés.
	lien: lilliad.univ-lille.fr

