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comportement mécanique des gaz
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Abstract

The main objective of this thesis is to study the influence of microstructure on the

macroscopic mechanical behavior of heterogeneous rocks, particularly Vaca Muerta

shale rock. In this context, micromechanical models are developed by well-adapted

homogenization techniques. The microstructure of this rock has been extensively

studied in order to define the representative elementary volume indispensable for the

implementation of a micromechanical approach. The studied material is modeled as

a heterogeneous medium, made up, at mesoscale, of a composite matrix in which are

dipped different types of inclusions. On a smaller scale, fine grains of calcite and

kerogen are immersed in a porous clay matrix. The homogenization of non-linear

instantaneous behavior is established in the context of clay matrix elastoplasticity

and the progressive debonding of mineral inclusions: the nano-micro transition leads

to the strength domain of the porous clay phase where the solid phase is considered

to be a cohesive-frictional material that obeys to the classic Drucker-Prager crite-

rion. Hill’s incremental method is used as a homogenization means at micro-meso

and meso-macro transitions. Next, the long-term behavior of the studied material is

defined in terms of microstructure degradation. Finally, a simplified micromechanical

model is developed to study long-term behavior of clayey and shale rocks in the con-

text of clay matrix viscoplasticity. Based on this model, for the industrial application

of the thesis, we study the interaction between Vaca Muerta shale rock and spherical

grains of proppants.

Keywords: Micromechanics; Homogenization; Multiscale; Shale; Vaca Muerta; Dif-

fered behavior; Viscoplasticity; Damage; Degradation.

Résumé

L’objectif principal de cette thèse est d’étudier l’influence de la microstructure sur

le comportement mécanique macroscopique des roches hétérogènes, particulièrement,

la roche shale de Vaca Muerta. Dans ce contexte, des modèles micromécaniques

sont développés par des techniques d’homogénéisation bien adaptées. La microstruc-

ture de cette roche a été profondément étudiée afin de définir le volume élémentaire

représentatif indispensable pour la mise en œuvre d’une approche micromécanique.

Le matériau étudié est modélisé comme un milieu hétérogène, constitué à l’échelle

mésoscopique d’une matrice composite dans laquelle sont plongés différents types

d’inclusions. À une échelle plus petite, des fins grains de calcite et kérogène sont

immergés dans une matrice argileuse poreuse. L’homogénéisation du comportement

instantané non linéaire est établie dans le contexte de l’élastoplasticité de la matrice
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argileuse et de la décohésion progressive des inclusions: la transition d’échelle nano-

micro aboutit au domaine de résistance de la phase argileuse poreuse où la phase

solide est considérée comme un matériau cohésif-frottant obéissant au critère clas-

sique de Drucker-Prager. La méthode incrémentale de Hill est utilisée comme moyen

d’homogénéisation pour les transitions micro-méso et méso-macro. Ensuite, le com-

portement à long terme du matériau étudié est défini en terme de la dégradation de

la microstructure et en particulier, de la matice argileuse. Finalement, un modèle mi-

cromécanique simplifié est développé pour étudier le comportement à long terme, des

roches argileuses et shales, dans le contexte de la viscoplasticité de la matrice argileuse.

En se basant sur ce modèle, pour l’application industrielle de la thèse, nous étudions

l’interaction entre la roche shale de Vaca Muerta et les grains sphériques de proppants.

Mots clés: Micromécanique; Homogénéisation; Multi-échelle; Shale; Vaca Muerta;

Comportement différé; Viscoplasticité; Endommagement; Dégradation.
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Principal Notations

❼ Tensorial notations:

. Simple contraction

: Double contraction

⊗ Tensor product

< f > Average of field f

Σ Scalar

Σ Second-order tensor

C Fourth-order tensor

δij Kronecker’s symbol: δij=1 if i = j and δij=0 if i 6= j

1 Second-order unit tensor

I Fourth-order symmetric unit tensor Iijkl =
1
2
(δikδjl + δilδjk)

J Spherical projection tensor of isotropic fourth-order tensors J = 1
3
(1⊗ 1)

K Deviatoric projection tensor of isotropic fourth-order tensors K = I− J

trΣ Trace of tensor Σ

Σ
′

Deviatoric part of tensor Σ

sgn(Σ) Signum function: sgn(Σ)=1 if Σ > 0, 0 if Σ = 0 and -1 if Σ < 0

❼ Common notations:

σ Nanoscopic stress tensor

σ̃ Microscopic stress tensor

d̃ Microscopic strain rate

Σ̃ Mesoscopic stress tensor

Σ Macroscopic stress tensor

E Young’s modulus

ν Poisson’s ratio

κ Bulk modulus

µ Shear modulus

ρm Mineral density

Pc Confining pressure

Pa Axial stress
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General introduction

In recent years, the knowledge of shale rock thermo-hydro-mechanical behavior is

quickly becoming one of the most important issues in modern geomechanics due to its

importance in nuclear waste geological storage, extraction of shale hydrocarbon and

sequestration of carbon dioxide. For instance, the history of shale gas production pros-

pers with the success of Barnett shale in the United States in 1980. Shales constitute

about 75% of the clastic fill of sedimentary basins [Jones and Wang, 1981]. They are

one of the most heterogeneous rocks having a multiphase and multiscale composition

which evolves continually due to diagenesis over various scales of length and time. The

heterogeneities distinguish themselves from nanoscopic scale to macroscopic scale. In

this work, we are more interested to shale rock in the context of hydrocarbon ex-

traction. Shale hydrocarbon reservoirs, as geologically and petrophysically complex

source rocks of variable mineralogy with natural oil and gas production potential,

organic-rich and fine-grained mudrocks, evoke researchers to study their petrophysi-

cal, geological, geophysical, geomechanical and geochemical properties. Despite the

significance of shale hydrocarbon reservoirs, microstructural characterization and the-

oretical mechanical modeling are limited due to their heterogeneous microstructure

and multiscale properties.

A shale hydrocarbon formation can be subjected to various mechanical, hydraulic,

thermal and chemical solicitations; in this work, we are limited to mechanical so-

licitations. Mechanical modeling of shale hydrocarbon reservoirs can be envisaged

according to two main ways: phenomenological or micromechanical approaches. Clas-

sically, macroscopic triaxial testing methods and phenomenological models are used

to measure and predict macroscopic mechanical properties of materials. From an

experimental point of view, these macroscopic methods require expensive material

sampling from high depths. As well as, the high degree of heterogeneity makes dif-

ficult the extrapolation between samples. Otherwise, theoretical phenomenological

models are not able to take into account the influence of microstructure heterogene-

ity on macroscopic behavior. In this case, model’s parameters identified for a certain

depth, are not valid for other depths with different mineralogy, which requires its

identification for each geomechanical zone characterized by certain mechanical prop-

erties. On the other side, the purpose of micromechanical approaches is to derive,

through a suitable scale transition steps, the macroscopic behavior of the studied

material from the description of its microstructure and the knowledge of its local

constituent behavior. Micromechanical approaches take into consideration the influ-

ence of rock microstructural aspects on the macroscopic behavior and thus, avoid the

identification of parameters for each geomechanical zone.
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After having exposed the advantages and limits of phenomenological and microme-

chanical approaches, we propose, in this work, to build multiscale models based on

constituents behavior and microstructural data of clayey and shale rocks. Most mi-

cromechanical models, devoted to shale, study its elastic behavior ([Hornby et al.,

1994], [Jakobsen et al., 2003], [Delafargue, 2004], and [Abedi et al., 2016a,b]). We

can cite, as well, [Gathier, 2008] which proposes a two-scale non-linear procedure

for the homogenization of shale yield design strength properties based on the lin-

ear comparison composite theory ([Ponte-Castaneda, 1992] and [Ponte-Castaneda,

1996]). Concerning Vaca Muerta shale rock, [Vallade, 2016] supposed that the latter

has a brittle elastic behavior. Thus, [Vallade, 2016] had studied the material cracking

by means of a numerical approach, Enhanced Finite Element Method (EFEM). The

particularity of this method is that it takes into account the discontinuity of displace-

ment related to the crack in an element. Differently, in this thesis, apart from the

study of macroscopic elastic properties, the main objective is to establish theoretical

analytical and semi-analytical micromechanical approaches to treat plasticity (since

shales are rocks that exhibit plastic deformations due to the presence of clay) and

to take into account microstructure degradation at long term which generate differed

deformations. Another mechanism is envisaged to treat time-dependent behavior:

viscosity of clay matrix. Thus, we develop micromechanical models based on non-

linear homogenization techniques with microstructural hypotheses on the porosity

and concentration of mineral inclusions.

This thesis dissertation is divided into four chapters and organized as follows:

In the first chapter, a general overview of unconventional shale hydrocarbons is ex-

posed. We present the main characteristics of unconventional resources, the principle

of hydraulic fracturing technique as production means of shale hydrocarbons and the

different mechanisms that contribute to hydraulic fracture conductivity deterioration.

Afterward, a review of some shale rock microstructures is displayed. Shale rocks from

different formations are seen as heterogeneous material with multiphase and multi-

scale composition. In the second subsection, the industrial context and objective of

the thesis are exhibited. The general goal of TOTAL, in the ’Unconventional’ pro-

gram, is to create modeling and simulation tools that guide to formation areas with

best production potential. Our work is part of the problem of analyzing and pre-

dicting instantaneous and time-dependent mechanical behavior of shale hydrocarbon

reservoir by developing a micromechanical model that takes into account the hetero-

geneities of shale material such as clay porosity, organic matter and different types of

inclusions at separated scales. In the last subsection, we present the microstructure

and behavior of the material that interests us: Vaca Muerta shale rock. The knowl-
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edge of material microstructure is crucial in the perspective of multiscale modeling.

In the second chapter, we develop a micromechanical elastoplastic damage model for

Vaca Muerta shale rock. In the first part, the representative elementary volume of

the latter material is suggested based on the different observations of microstructure

given in the first chapter. In the second part, the homogenization of Vaca Muerta

shale behavior in elastic regime is studied. After having identified the elastic proper-

ties of different Vaca Muerta constituents, macroscopic elastic ones are predicted by

using an appropriate linear homogenization scheme. Then, a sensitivity study in elas-

tic regime is established to study the influence of kerogen elastic properties and fine

inclusions on effective elastic ones. In the third part, the homogenization of non linear

behavior is elaborated in the context of elastoplasticity and damage evolution. The

non-linear homogenization procedure is summarized as follows: a first step of homog-

enization yields the strength domain of the porous clay phase where its solid phase

is considered as a cohesive-frictional material obeying to the classical Drucker-Prager

criterion. In the second homogenization step, fine inclusions are taken into account

and the last step adds the different types of inclusions yielding to the macroscopic

strength response. Interfacial debonding between matrix and inclusions is envisaged

through a damage process. After having exposed the numerical implementation of the

proposed model, a sensitivity assessment is realized to show the influence of damage

evolution and microstructural aspects on macroscopic behavior. Then, the calibration

and experimental validation of the micromechanical model are performed. Finally, to

reduce the number of model’s parameters, we consider the case of associated perfectly

plastic clay solid phase.

In the third chapter, we study the time-dependent behavior of Vaca Muerta shale

rock. Particularly, for a successful stimulation of a shale hydrocarbon formation, it is

essential evenly to study the long term behavior of rock which controls the progressive

closure of fractures and then contributes to the loss of productivity. The formulation

of long term constitutive model is established in terms of material degradation. The

evolution of microstructure, leading to the degradation of material failure strength,

contributes to the development of a delayed plastic deformation. After having ex-

posed the formulation of the model in long term, we present the algorithm for local

integration of the clay phase. Then, a sensitivity evaluation of the proposed model is

exhibited. Finally, a phase of experimental validation is performed.

In the fourth chapter, a simplified micromechanics based viscoplastic model is pro-

posed to describe the time-dependent deformation for a class of clayey and shale

rocks. At first, we present the simplified microstructure representing these hetero-

geneous materials. The heterogeneous rock is represented as a composite material

15



containing a porous clay matrix and mineral inclusions at mesoscopic scale. After-

wards, the non linear homogenization procedure, established by [Shen et al., 2013] to

obtain the effective plastic yield criterion, is summarized. The viscoplastic model is

obtained by extending the latter criterion to obtain the viscoplastic loading function.

In this model, the origin of time-dependent deformation is supposed the viscosity

of clay matrix. Then, a series of numerical assessments are presented to investigate

the influence of porosity and mineral inclusions on the time-dependent deformation

of clayey rocks. Finally, comparisons between numerical simulations and experimen-

tal data for Callovo-Oxfordian argillites and Vaca Muerta shale are carried out and

presented for different loading paths. Finally, the industrial application of the thesis

is exhibited to study the interaction between Vaca Muerta shale rock and spherical

grains of proppants.
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1.1 General review of shale hydrocarbons

1.1.1 Shale hydrocarbons as unconventional resources

Historically, conventional natural hydrocarbon deposits have been the most practi-

cal and easiest layers to exploit. However, as technology and geological knowledge

advance, unconventional natural hydrocarbon deposits are beginning to make up an

increasingly large percent of exploitation demand. Unconventional hydrocarbons have

the potential to contribute significantly to the replacement of conventional resources.

The extremely high potential of unconventional hydrocarbons should extend for many

more years the petroleum industry's capacity to meet global energy needs. For in-

stance, over the last ten years, the economic success of shale hydrocarbon production

in the United States have made an impact on North American oil and gas markets. In

2011, the natural gas shale output represented 34% of the total production compared

to 1% in 2000 ([IHS, 2011] and [EIA, 2013]). Shale gas is expected to rise to 67%

of the overall production by 2035, generating lower natural gas and electricity prices

[Boyer et al., 2011].

Unconventional resources includes mainly three types: shale gas/oil, tight gas/oil

and coalbed methane. Particularly, we are interested to shale gas/oil in this work.

Shale resources have the same origin as all hydrocarbons; they are formed in the source

rock, from the transformation of sediments rich in organic matter accumulated on the

ocean. Over geological time, these sediments gradually sink into the underground;

progressively, they solidify, while the organic matter contained therein is transformed

into hydrocarbons under the combined effect of temperature and pressure. The major

part of formed hydrocarbons is gradually expelled from the source rock and migrate

to reach porous rock reservoirs. However, hydrocarbons, that remain confined in the

source rock, constitute shale hydrocarbons. Thus, compared to conventional hydro-

carbons, unconventional ones differ by the geological characteristics of its reservoir

rock (figures 1.1 and 1.2). Note that both conventional and unconventional hydro-

carbons are natural resources and have the same chemical compositions.

The low permeability of unconventional resource reservoirs prevents the extrac-

tion of hydrocarbons by conventional techniques such as simple digging. Therefore,

it requires stimulation (hydraulic, chemical, electric or pneumatic) for the ascent of

hydrocarbons from the bottom of wells to the surface. In recent years, the produc-

tion of shale hydrocarbons has been stimulated by the widespread use of hydraulic

fracturing technique (actually the most suitable method) to create the permeability

that does not offer the nature. The extraction of shale hydrocarbons, particularly

difficult, requires the use of the combined techniques of directional drilling and hy-

19



Figure 1.1: Geological section of conventional and unconventional hydrocarbons pro-

duction area [TOTAL].

Figure 1.2: Conventional and unconventional reservoir permeability scale [TOTAL].

draulic fracturing. More specifically, the latter consists in injecting water at a high

pressure which yields to the propagation of a large number of microfractures in the

rock containing hydrocarbons, making it porous and allows shale hydrocarbons to

move through the well and to be recovered at the surface. Due to the vertical vari-

ability in mineralogy of shale formation and the existence of natural cracks, hydraulic

fractures will propagate through several different planes. The water which is injected

contains various 'additives' (bactericides, gelling agents, and surfactants) to sterilize

and prevent bacterial contamination of the reservoir, and 'proppant' (sand, lubri-

cants, ceramics or cleanser) to improve the efficiency of fracturing and to keep the

microfractures opened. On the other hand, directional drilling consists in digging a

vertical well in the rock source at a depth of 5000-20000 ft below the surface [Hansen

et al., 2013] and next, laterals extending from 1000-10000 ft are drilled horizontally

([Lhomme et al., 2005] and [Lecampion et al., 2013]). Hydraulic fracturing with only

vertical wells will fracture the rock only in the closeness of drill, which will recover

a very small amount of hydrocarbons. But with horizontal drilling, we create max-
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evolution and kerogen maturity ([Zargari et al., 2013], [Allan et al., 2015] and [Abedi

et al., 2016a]). Thus, the heterogeneity of shale source rocks requires observations

at multiple scales in order to characterize their microstructures. Usually, shales are

made of submicron clay particles, nanoporosity and different inclusions.

Recently, [Curtis et al., 2010] have studied the microstructure of shale samples

from different formations (Barnett, Woodford, Eagle Ford, Haynesville, Marcellus,

Kimmeridge, Floyd, Fayetteville and Horn River) on the micro and nanoscales using

a combination of Focused Ion Beam and Scanning Electron Microscopy techniques.

They found a significant variations in the microstructure of the studied shale samples

such as: mineral content, microtexture and porosity, and some similarities among

different samples. ([Curtis et al., 2010] and [Akono and Kabir, 2016]) have predicated

that the studied organic shales are composed essentially of quartz, clays, kerogen, car-

bonate and pyrite minerals in varying amounts. Shale hydrocarbon reservoirs possess

extremely small-sized complex pore systems with organic and inorganic interparticle,

intercrystalline and intraparticle pores ([Curtis et al., 2010], [Loucks et al., 2012],

[King et al., 2015] and [Schieber et al., 2016]). The organic porosity changes from

shale rock to another even inside the same shale rock: while some regions of kerogen

can contain many pores, adjacent regions have no porosity. Besides, [Ahmadov, 2011]

have studied hydrocarbon source rock samples from Kimmeridge, Bakken, Bazhenov,

Monterey and Lockatong formations by using the combined Confocal Laser Scanning

Microscopy and Scanning Electron Microscopy techniques. Special observations are

made to notice spatial distribution of clay, pyrite and kerogen. Furthermore, [Ah-

madov, 2011] has established spatial and temporal link between organic matter and

corresponding maturity stages: in a mature stage, a strong anisotropy due to the

organic matter is observed while no anisotropy within postmature sample. Other

researches have been carried out to study heterogeneity of microstructural features

by using advanced imaging by Scanning Electron Microscopy and Transmission Elec-

tron Microscopy ([Bennett et al., 1991] and [Hornby et al., 1994]) or by Synchrotron

X-ray analysis [Lonardelli et al., 2007]. Recently, [Abedi et al., 2016a] has devel-

oped a method for the chemomechanical characterization of organic-rich shales at

microscale and nanoscale using coupled nanoindentation and energy-dispersive X-ray

spectroscopy. The method provides a means to identify pure material and mixture

phases and interfaces between them.

As already seen, the microstructure of shale rock is quite complicated. Conse-

quently, for micromechanical study, it is indispensable to make some hypothesis for its

representation. According to [Dormieux et al., 2006] hypothesis, ([Delafargue, 2004],

[Ulm and Abousleiman, 2006], [Bobko, 2008], [Akono and Kabir, 2016], [Abousleiman

et al., 2016] and [Abedi et al., 2016a,b]) suppose that shale is a multiscale material
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with scales ranging from the scale of individual .clay minerals to macroscopic scale

which is the one of millimetric rock sample. For instance, figure 1.4 shows the multi-

scale structure model of organic-rich shale supposed by [Abedi et al., 2016a]. Level 0

is the scale of elementary clay particles at nanoscale. Level I is a porous clay/kerogen

composite at microscale and level II is the scale of porous organic/inorganic hard

inclusion composite at mesoscale. Macroscale is level III which is the level of shale

specimens. According to [Abedi et al., 2016a], level I is of particular importance as

the macroscopic behavior of organic-rich shales depends essentially on the porous clay

and organic matter. Furthermore, [Abedi et al., 2016b] have studied the role of ther-

mal maturity and organic matter on texture: they assumed that immature systems

exhibit a matrix-inclusion morphology while mature ones display a polycrystalline

microstructure.

Figure 1.4: Multiscale structure model of organic-rich shale [Abedi et al., 2016a].

1.2 Industrial context and objective of the thesis

TOTAL’s work in the 'Unconventional' program will lead to new methods of study-

ing petroleum systems, but also to the creation of new simulation tools capable of

reproducing the whole range of phenomena involved since the generation of hydro-

carbons up to their production by specific processes. This complete simulation chain

contributes to an extreme difficulty due to the implication of a large number of phe-

nomena (mechanical, chemical, thermomechanical, kinetic, etc.) and their complex

interactions. These modeling and simulation tools will guide, with a minimum of

wells, to formation areas with the best production potential, 'sweet spots'. These

zones are the most economically attractive because they are the most favorable to

production due to their geological properties, their fluid content and their ability to

be stimulated by hydraulic fracturing. Our work is part of the problem of analyzing

and predicting instantaneous and time-dependent mechanical behavior of shale hy-

drocarbon reservoir. Different physical aspects and their coupled effects are required
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to be investigated for a comprehensive analysis of shale behavior; we are limited in

this thesis to mechanical behavior.

Geomechanical and petrophysical factors such as total organic carbon content,

thermal maturity and porosity are principal agents that influence the potential of

shale play hydrocarbon production. Besides, a sustained productivity of a shale hy-

drocarbon layer depends substantially on geomechanical factors such as the network

of natural fractures, the regime of in situ stresses, the elastic and rupture properties

of hosted rock that control the geometry of hydraulic fractures, the connectivity and

hydraulic conductivity of natural fractures networks [Su et al., 2014]. According to

[Abousleiman et al., 2009], because of extreme low permeability of shale matrix, sus-

tained productivity imposes that the main produced fractures and the natural ones

remain open during production to contribute to the desired stimulated reservoir vol-

ume. Particularly, for a successful stimulation of a shale gas formation, it is essential

evenly to study the time-dependent behavior of rock which controls the progressive

closure of fractures. For this reason, characterization of short and long term mechan-

ical properties of shale is a key issue.

Thus, the main objective of the thesis is to develop a micromechanical model,

able to predict the instantaneous and time-dependent mechanical behavior of Vaca

Muerta shale rock reservoir, which takes into account the heterogeneities of shale

materials such as clay porosity, organic matter and different inclusions at separated

scales. Figure 1.5 shows the basic concept to build a micromechanical model. At

first, a representative elementary volume (REV) is defined according to microscopic

observations, then an homogenization procedure is applied in order to predict the

macroscopic response of the material. The industrial application of the thesis is

to study the interaction between a fracture and a proppant grain in Vaca Muerta

formation. Nevertheless, if time-dependent deformation of the rock is significant, the

created fractures will be closed, contributing to the loss of hydrocarbon production.

1.3 Microstructure and behavior of Vaca Muerta

shale rock

The exploitation of unconventional resources, trapped in source rocks, calls for funda-

mental knowledge of hosted rock functioning. Therefore, an important experimental

program must be executed to characterize the shale rock and to understand how

they operate from pore to basin scale. The objective of this section, is to study

the microstructure and mechanical behavior of Vaca Muerta shale rock in order to

be able to perform a micromechanical model capable to predict mechanical behavior
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Figure 1.5: Application of homogenization concept in the context of a shale gas

formation.

and especially creep behavior.

1.3.1 Microstructure

There are considered to be four main prospective basins in Argentina: Neuquén,

Golfo San Jorge, Austral and Parana where the Neuquén basin is the most prolific

oil and gas region. It is located in the west-central Argentina, covers 137 000 km2

and contains both conventional and unconventional oil and gas plays. In recent years,

Neuquén basin is facing a rapid decline in extraction levels, mainly due to the deple-

tion of its mature deposits of conventional hydrocarbons. Thus, unconventional ones

are the solution and the government has strongly supported their exploitation. First

results of industrialists announce good indicators of depth, thickness (more than the

double of Barnett, the largest exploitable reserve of shale gas in the United States),

organic richness and thermal maturity [de la Terre, 2014]. The Lower and Upper

Vaca Muerta formation are very organic where the total organic matter (TOC) can

reach quite significant levels.

The Late Jurassic-Earliest Cretaceous Vaca Muerta formation, covering more than

30000 km2, is the most interesting play of Neuquén basin beside Los Molles one and

is the first unconventional development project in the country. It lies at a depth from

2000 to over 4000 m, with a thickness varying from 100 to over 500 m [Su et al., 2014].

As part of the study and evaluation of shale hydrocarbon potential of Vaca Muerta

formation, many wells were drilled between 2011-2015. A series of experimental stud-
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ies have been carried out in order to study mineralogical, petrographical and textural

characteristics of Vaca Muerta shale rock. Figure 1.6 shows two thin-section chemi-

cal/mineralogical maps of two depths from well S1, seen through Scanning Electron

Microscope. Different mineralogical phases can be identified such as: calcite, quartz,

pyrite, illite and others. Like most shale rocks and based on various microstructural

observations, the main mineralogical phases of Vaca Muerta shale rock are supposed:

clay, calcite and quartz. Many other minerals exist like: feldspar (albite), ankerite,

pyrite and a significant proportion of insoluble organic matter (IOM). A small pro-

portion of other minerals can be identified, like: barite, anastase and apatite. Five

types of clay mineral phases occur in the studied samples: a kaolinite, an illite, a

very poorly swelling interstratified illite-smectite type R1 or R3 (>80% illitic layers),

a poorly swelling interstratified illite-smectite type R1 (75-80% illitic layers), and a

corrensite [Fialips, 2014]. Calcite occurs as micritic mud (in black matrix associated

with clay minerals and organic matter), mm-size bioclastic materials and µm-size

calcified radiolarians (figure 1.7).

PyriteCalcite

Illite + I/S

Albite

(a) 2542.98 m

Pyrite

Albite Illite + I/S

MicaBarite

Anatase

QuartzCalcite

Microcline

(b) 2538.13 m

Figure 1.6: Thin-section chemical/mineralogical maps for two depths from well S1

seen through Scanning Electron Microscope [Fialips, 2014].

[Askenazi et al., 2013] have invoked the mineralogical composition of Vaca Muerta

shale. The proportion of carbonate and quartz varies extremely from 10 to 80% but

clay proportion varies moderately from 5 to 35%. Concerning organic matter, the

latter authors reported that insoluble organic matter reach up 12%, remaining typi-

cally within 3.5 and 7% in the basal section and normally between 2-4% uppermost

part of the formation. There are levels in Vaca Muerta formation where total organic

content (TOC) is less than 2% but it still contributes to shale hydrocarbon produc-

tion. Figure 1.8 shows the variation of Vaca Muerta shale mineralogical composition

in function of depth for three studied wells. Therefore, as we can see, the mineralogi-

cal composition changes substantially; observed variations in the bulk mineralogy do
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patches of recrystallized carbonates

Matrix: micrite+clay+organic matter

microfossils (calcified radiolarians)

Figure 1.7: Petrographical microphotograph of a thin section of Vaca Muerta shale

rock at a depth of 2646.32 m from well S1 [Fialips, 2014].

not show any particular systematic evolution with depth. Only quartz volumetric

fraction tends to increase in the base of wells.
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Figure 1.8: Mineralogical composition of Vaca Muerta shale formation in function of

depth for three studied wells [TOTAL].

Following various observations and studies, we found that Vaca Muerta shale for-

mation is primarily composed of silt-dominated mudstones, with variable content in
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calcareous (calcimicrite, bioclasts and micro-fossils) and illitic clay [Su et al., 2014].

Figure 1.9 is a ternary diagram of Vaca Muerta formation in two studied intervals

of well S1. It illustrates mineralogical variability in the studied samples within the

formation. A sub-linear compositional trend is clearly visible from a clayey-silty

mudstone/clayey-siltstone with a moderate carbonate content pointing towards the

nearly pure carbonate apex. Based on the previous observations, we can recognize

that Vaca Muerta formation exhibits a strong vertical heterogeneity; there is several

lithofacies with different texture and mineralogical composition.

Figure 1.9: Ternary compositional plot of Vaca Muerta formation in well S1 [Fialips,

2014].

The knowledge of shale’s porosity is very advantageous and enhances the capacity

to locate and yield shale hydrocarbons. In most organic shale samples, pores are on

the nanoscale, consequently, below the optical microscope resolution. Thus, alterna-

tive method must be used such as electronic microscopy. Recently, the introduction

of combined Focused Ion Beam and Scanning Electron Microscopy technologies to the

petroleum industry have allowed nanoscale pore structures imaging in 3D for the first

time [Curtis et al., 2010]. Based on Focused Electron Beam (FEB-2D) and Focused

Ion Beam (FIB-3D)-SEM images, two types of porosity are identified in Vaca Muerta

shale samples: organic and mineral porosity (figure 1.10).

Figure 1.11 shows different types of porosity within organic and mineral compos-

ites: inter/intraparticle pores, organic hosted pores and interparticle pores between

clay platelets. This identification is consistent with observation made by others works
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Figure 1.10: Distribution of two types of porosity inside Vaca Muerta shale rock:

organic and mineral porosity [ISS/RGM, 2016].

that showed both an organic and mineral porosity within shale rock ([Curtis et al.,

2010], [Loucks et al., 2012] and [King et al., 2015]). Figure 1.12 shows the distribution

of different types of porosity inside a Vaca Muerta shale sample. As we can see that

the size of different porosity varies from nano to microscale
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(nanopore

)
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Inter-grains pores
 (nanopore)
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Figure 1.11: Different types of porosity inside Vaca Muerta shale samples [ISS/RGM,

2016].

1.3.2 Mechanical behavior

To study the mechanical behavior in short and long term of Vaca Muerta shale rock, a

series of triaxial compression and multistage creep tests was realized on selective shale

samples. Other continuous laboratory measurements on the whole core are realized

such as microindentation and scratch tests. Besides laboratory tests, drilling logs and

in-situ experiments are carried out to study the mechanical behavior of the material.

In this paragraph, we present some representative tests [TOTAL, 2012] and focus on

the interactions between microstructure and mechanical behavior.
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Figure 1.12: Distribution of different types of nano and micro porosity inside a Vaca-

Muerta sample (FIB-SEM images) [ISS/RGM, 2016].

1.3.2.1 Instantaneous mechanical behavior

Several triaxial compression tests (simple, complex and multistage) are conducted

according to TOTAL protocol in order to determine mechanical elastic properties,

yield stress and the behavior after peak of samples taken from different depths of Vaca

Muerta formation. Tests have been carried out, by TOTAL, on 2.5x5 cm cylindrical

plugs with loading axis either perpendicular or parallel to bedding planes (figure

1.13). Tests are performed with an imposed strain rate in the range of 1 to 3x10−6/s

in order to attain quasi-static tests. During the tests, axial and radial deformations

are controlled as well as sonic compressive and shear wave velocities. Note that some

triaxial compression tests are performed at our laboratory.

3

22

3

1

1

33

1

2

(a) (b)

Figure 1.13: Orientation of loading axis which is (a) perpendicular (vertical sample)

or (b) parallel (horizontal sample) to bedding planes.

Figure 1.14 shows stress-strain curves of two vertical samples from well S1 with

a confining pressure of 10 MPa; one can notice that the macroscopic mechanical be-

havior depends on the mineralogical composition that varies with depth.
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Figure 1.14: Stress-strain curves of two Vaca Muerta vertical samples from well S1

with a confining pressure of 10 MPa.

Some multistage triaxial compression tests have been carried out on Vaca Muerta

shale plugs. The principle is as follow: the same sample is used to successively per-

form several compression tests with successive confining pressures (figure 1.15). The

axial loading is stopped just before failure, the confining pressure is increased and

then, the new axial loading starts up and so on. Because of shale brittle behavior,

the shale sample could be significantly damaged, at a confining pressure stage, with-

out noticeable change of stress-strain slope which will affect the strength measured

at the next stage. Thus, the control of multistage triaxial compression tests from one

stage to the next is very delicate [TOTAL, 2012]. For this reason, these tests are

limited.

Figure 1.15: Loading path of a multistage triaxial compression test.

Figure 1.16 displays depth profile of Unconfined Compressive Strength (UCS)

computed from sonic log [TOTAL, 2012] and mineralogical log of well S1. It is noted

that Vaca Muerta shale strength is relatively high compared to other shale rocks

due its mineralogical composition. As we can see, UCS varies greatly with depth.

31



When the volumetric fraction of quartz and/or calcite inclusions is high, namely rigid

inclusions, UCS is high as well; below 2730 m, quartz volumetric fraction increases

considerably, therefore, UCS reaches a value of 110 MPa. Thus, the macroscopic

mechanical behavior depends on the mineralogical composition that varies with depth.
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Figure 1.16: Depth profile of UCS computed from sonic log [TOTAL, 2012] and

mineralogical log of well S1.

1.3.2.2 Time-dependent mechanical behavior

Different phenomena observed on shale rock, are the consequence of time effect such

as: consolidation, aging, swelling, creep and relaxation. They are of mechanical,

hydraulic, chemical and/or thermal origin. In this thesis, we are interested in the

study of time-dependent behavior of mechanical origin (creep and relaxation). The

understanding of creep and relaxation behavior is one of the keys for a successful

stimulation of a shale hydrocarbon formation. Compared to instantaneous mechani-

cal tests, a reduced number of long-term tests are performed on Vaca Muerta shale

rock.

Two main loading types can be applied in the case of a creep test: monostage or

multistage. The purpose of a multistage creep test is to study the influence of devi-
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atoric stress on strain rate with the same sample and a constant confining pressure.

As if sample changes, then the mineralogical composition will change which can af-

fect the material behavior. To evaluate the long term behavior of Vaca Muerta shale

rock, several multistage triaxial compression creep tests are conducted by [Dusterloh,

2015]. Cylindrical samples (2.5x5 cm) are taken from different depths and orienta-

tions. Two test campaigns are realized with various conditions of temperature and

stresses; the duration of each load stage is 30 days. Some tests are realized at a tem-

perature of 100◦C and others at 85◦C. The confining pressure and the deviator are

applied, simultaneously, with a rate of 1 MPa/min. The characteristic curves of two

multistage creep tests are shown in figure 1.17; one can notice that only axial strain

is measured. With the considered conditions of stresses, temperature and time, only

transient and steady-state creep appear. The creep rate increases slightly with the

increase of deviatoric stress. As we can see (figure 1.17), in principle, the amplitude

of delayed deformation is small for all loading stages.

0 10 20 30 40 50 60 70 80 90

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Time (day)

Axial strain (%)

P
a
=16 MPa

P
c
=8 MPa

P
a
=19 MPa

P
c
=8 MPa

P
a
=22 MPa

P
c
=8 MPa

(a) 2537.14 m

0 10 20 30 40 50 60 70 80 90

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Time (day)

Axial strain (%)

P
a
=16 MPa

P
c
=8 MPa

P
a
=19 MPa

P
c
=8 MPa

P
a
=22 MPa

P
c
=8 MPa

(b) 2537.24 m

Figure 1.17: Multistage triaxial compression creep curves for two Vaca Muerta shale

samples [Dusterloh, 2015].

Some complementary multistage creep tests are realized in our laboratory in order

to measure lateral deformations. Before any manipulation of samples, macroscopic

cracks are visible. Tests are carried out at room temperature with different loading

conditions; load stage is maintained between 15 and 20 days. Figure 1.18 illustrates

the multistage triaxial creep curves for two Vaca Muerta shale samples. Apparently,

creep deformation is low for the first two levels and then, suddenly, rupture occurs.
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Figure 1.18: Multistage triaxial compression creep curves for two Vaca Muerta shale

samples performed in our laboratory.

1.4 Conclusion

In this chapter, firstly, we present a general bibliographic study of unconventional

shale resources, hydraulic fracturing technique, as well as the principal mechanisms

of hydraulic fracture conductivity deterioration. Then, we exhibit an overview of some

shale rock microstructures from the literature. Shale rock from different formations

is seen as a heterogeneous material with a multiscale and multiphase composition.

The principle components of organic shales are: quartz, carbonate, pyrite, clay and

kerogen minerals in varying amounts. In the second subsection, we discuss the in-

dustrial context and objective of the thesis. For a successful stimulation of a shale

hydrocarbon formation, it is indispensable to characterize the short and long term

mechanical properties of hosted rock. In this context, the main objective of the thesis

is to develop a micromechanical model able to predict the instantaneous and time-

dependent mechanical behavior of Vaca Muerta shale rock by taking into account the

heterogeneities at different scales, such as, clay porosity, organic matter and different

mineral inclusions. Finally, we study the microstructure and behavior of our inter-

esting material, Vaca Muerta shale rock. A series of experimental studies have been

carried out in order to study mineralogical, petrographical and textural character-

istics of the studied material. According to microstructural observations, the main

mineralogical phases are: calcite, quartz and clay; other minerals can exist: albite,

ankerite, pyrite and insoluble organic matter. Based on log data, the mineralogical

composition of Vaca Muerta shale varies, strongly, in function of depth with no par-

ticular systematic evolution. Following various observations, Vaca Muerta rock are

supposed primarily composed of silt-dominated mudstones, with variable content in

calcareous and illitic clay. Besides, two types of porosity are identified within Vaca

Muerta samples: organic and mineral porosity. In the last paragraph, we present

some short and long term representative tests and focus on the interactions between

microstructure and mechanical behavior
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In the first chapter, based on experimental data, the microstructure and mechani-

cal behavior of Vaca Muerta shale are studied, in particular, its highly heterogeneous

character and the dependency of macroscopic mechanical behavior on the geological

depth, i.e., mineralogical composition and porosity. In order to account for this de-

pendency, a homogenization-based approach will be developed in this chapter. The

macroscopic mechanical behavior of Vaca Muerta shale depends on the change of clay

matrix porosity and the different types of fine and big organic/inorganic inclusions:

the influence of porosity on clay matrix behavior will be obtained through a nano

to micro upscaling procedure while the influence of fine and big inclusions are taken

into account, respectively, through micro-meso and meso-macro upscaling steps. This

chapter is structured as follows: in the first section, we describe the representative

elementary volume of Vaca Muerta shale. In the second part, we study the linear

elastic behavior of the studied material. Then, in the third section, the non linear

instantaneous behavior of Vaca Muerta shale rock in the context of elastoplasticity

and damage evolution is discussed.

2.1 Representative elementary volume

The formulation of a micromechanical model requires a simplified description of ma-

terial microstructure. Thus, based on different observations of Vaca Muerta shale

microstructure seen in the previous chapter, we have proposed the representative ele-

mentary volume (REV) of the studied material, given in figure 2.1, which will be the

support for the construction of our micromechanical model.
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Quartz
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Figure 2.1: Representative elementary volume of Vaca Muerta shale rock.

As we can see, a scale separation is applied which is required for a homogenization

procedure. Four relevant scales are considered where the heterogeneities are located

on comparable scales:

❼ The nanoscale (∼nm): it is the scale of clay minerals fine matrix and its as-

sociated porosity. For simplicity, we assume that the pores are spherical and
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uniformly embedded in the clay matrix

❼ The microscale (∼ µm): where fine organic and inorganic inclusions are visible.

❼ The mesoscale (mm-µm) is the scale of big inclusions (quartz, albite, calcite,

pyrite and kerogen).

❼ The macroscale (mm-cm) where the material can be considered as a homoge-

neous continuum medium.

The scale separability conditions, for the application of a micromechanical model,

are satisfied in the different previous scales [Zaoui, 2000]:

1. the characteristic length of each scale is much smaller than that of the next

scale;

2. the size of heterogeneities at each scale is sufficiently small compared to the

characteristic length of the corresponding scale.

Thus, at the three homogenization scales, we suppose that the microstructure

can be seen as a matrix-inclusion system. At mesoscale, the continuous phase is a

composite matrix in which are embedded calcite (phase 1), quartz/albite (phase 2),

pyrite (phase 3) and kerogen (phase 4) grains. At microscale, the composite matrix is

a three-phase medium: fine kerogen (phase 5) and calcite (phase 6) are immersed in a

porous clay matrix (phase 0). The mineral grains are assumed spherical and randomly

distributed such that the macroscopic behavior of shale remains isotropic in nature.

Calcite, quartz, kerogen and pyrite inclusions are supposed to have linear isotropic

elastic behavior characterized by their elastic moduli. Whereas, the clay phase is

considered as an elastoplastic damaged porous medium. The relative interparticle

porosity (f ), the relative volume fraction of fine kerogen (f5) and calcite (f6) are

given, respectively, by the following:

f = Ωp

Ωp+Ωa
; f5 =

Ω5

Ω6+Ω5+Ωp+Ωa
; f6 =

Ω6

Ω6+Ω5+Ωp+Ωa
(2.1)

where Ωp, Ωa, Ω5 and Ω6 are the volume of interparticle pores, solid clay, fine kerogen

and calcite respectively.

2.2 Linear homogenization

Measurement of shale elastic properties seems significant for: optimizing hydraulic

fracture design, well stability study as well as to better predict seismic velocity.

Thus, currently, with advanced experimental techniques, such as nanoindentation and

Atomic Force Microscopy ([Zeszotarski et al., 2004], [Ahmadov, 2011], [Kumar et al.,
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2012] and [Bennett et al., 2015]), and theoretical micromechanical models ([Hornby

et al., 1994], [Jakobsen et al., 2003], [Delafargue, 2004], [Bobko, 2008], [Gathier, 2008]

and [Abedi et al., 2016a,b]), it becomes possible to determine intrinsic mechanical

properties of heterogeneities, and then, use upscaling methods from submicroscale

to macroscale to determine effective elastic properties. For instance, ([Delafargue,

2004] and [Abedi et al., 2016a,b]) used a combined experimental/nanoindentation

- theoretical multiscale microporomechanics approach to determine either elastic or

poroelastic properties of shale rocks. In this section, the effective elastic properties of

Vaca Muerta shale are determined using a linear homogenization procedure in order

to link the properties of constituents to shale elastic moduli at macroscopic scale. For

linear homogenization study, we suppose that all phases have a linear elastic behavior.

2.2.1 Elastic properties of Vaca Muerta shale constituents

In order to predict effective elastic properties of Vaca Muerta shale by means of

upscaling methods, it is essential to identify, at first, elastic properties of different

phases and then, apply the appropriate homogenization scheme. As we will see,

elastic properties of rigid inclusions (pyrite, quartz, albite and calcite) are explicitly

known, whereas, those of clay and organic matter are not well recognized.

2.2.1.1 Elastic properties of rigid inclusions

Elastic properties of quartz, albite, calcite and pyrite constituents are well known

and derived from the literature ([Lide, 2004] and [Brown et al., 2006]). In order to

reduce the number of mesoinclusions, the grains of quartz and albite are supposed

as a single equivalent inclusion phase. The effective elastic properties of the latter

are calculated as the average values of the ones of quartz (Eq=101 GPa; νq=0.06)

and albite (Eal=90 GPa; νal=0.25) inclusions [Jiang et al., 2009] and are given by:

E2=95.5 GPa and ν2=0.155. The Young’s modulus and Poisson’s ratio of calcite,

quartz+albite and pyrite are given respectively by: E1=95 GPa; ν1=0.27, E2=95.5

GPa; ν2=0.155 and E3=311 GPa; ν3=0.15 (table 2.1).

Table 2.1: Elastic properties of rigid inclusions.

Calcite Quartz+Albite Pyrite

E (GPa) 95 95.5 311

ν 0.27 0.155 0.15
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2.2.1.2 Kerogen elastic properties

Elastic properties of shale formation are essentially affected by total organic content

(TOC), porosity and total clay content [Kumar et al., 2012]. Well, the knowledge

of kerogen mechanical properties appears to be important in this case; nevertheless,

the elastic properties of kerogen as well as those of clay are not explicitly known . A

wide range of values are widespread in the literature. [Zeszotarski et al., 2004] have

estimated mechanical properties of kerogen in Woodford shale via modified Atomic

Force Microscopy images and nanoindentation. They found that for immature kero-

gen, indentation modulus is equal approximately to 11 GPa. On the other hand, [Ah-

madov, 2011] has estimated indentation modulus of organic matter through Atomic

Force Microscopy based nanoindentation coupled with Scanning Electron and Con-

focal Laser-Scanning Microscopy. He found an indentation modulus for Bazhenov

samples between 6-11 GPa and 12 GPa for Lockatong ones. For kerogen Poisson’s ra-

tio, [Ahmadov, 2011] inferred that if the latter varies in the range of 0.05 and 0.45, it

has a minor dependence on shale Young’s modulus. In the same framework, [Kumar

et al., 2012] have estimated the elastic properties of Woodford shale organic matter

through nanoindentation measurements. They estimated kerogen Young’s modulus

of samples with vitrinite reflectance between 0.5-6.36 % VRo (vitrinite reflectance)

and no porosity to be in the range of 6-15 GPa. But samples with significant or-

ganic porosity have a kerogen Young’s modulus estimated between 1.9 and 2.2 GPa.

Furthermore, [Yan and Han, 2013] have assessed bulk modulus of Green River ma-

ture kerogen from the measurements of ultrasonic velocities; from data measured on

both dry and saturated samples, they inverted the bulk modulus of kerogen using

[Gassmann, 1951] equation, Reuss and Voigt bounds. They found a bulk modulus of

kerogen around 3.5-5 GPa and estimated shear modulus to be the half of bulk one.

Besides, more recently, [Boulenouar et al., 2017] have performed nanoindentation ex-

periments on Vaca Muerta shale samples from within oil window. They localized a

population of softest nanoindentation measurement corresponding probably to the

organic matter and estimated its average Young’s modulus equal to 6 GPa. Further-

more, [Boulenouar et al., 2017] have noted that the nanoindentation measurements of

the softest phase are very low compared to ones of source rock from the United States.

Regarding Vaca Muerta elastic properties of organic matter used in this study,

we refer as well to literature since no direct experimental measurements are realized

within the framework of thesis. As elastic properties of kerogen are linked to localized

porosity and maturity which vary highly in shale formations, we distinguish, in our

study, between organic matter within oil and gas windows. For organic matter in oil

window where maturity varies between 0.8-1.1 % VRo, we assume a Young’s modulus

and Poisson’s ratio of solid organic matter equal respectively to: Eom=7 GPa and
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νom=0.3 ([Kumar et al., 2012] and [Boulenouar et al., 2017]). As we have seen in

the first chapter, the organic matter is a porous medium; thus, its morphology is

approximated as matrix-pore with spherical pores randomly distributed inside organic

solid phase. To calculate elastic properties of porous organic matter, [Hashin and

Shtrikman, 1963] upper bound is adopted as follows:

κ4 = κ5 =
4(1− fo)κomµom

4µom + 3foκom
; µ4 = µ5 =

(1− fo)µom

1 + 6fo
κom+2µom

9κom+8µom

(2.2)

where (κ4 or κ5;µ4 or µ5) and (κom;µom) are respectively elastic properties of porous

(phase 4 and 5) and solid organic matter in oil window. fo is the relative organic

porosity given by (with Ωop and Ωom, the volume of organic pores and solid kerogen

respectively):

fo =
Ωop

Ωop + Ωom

(2.3)

For organic matter within gas window, where maturity is higher than 1.1 % VRo,

we use values obtained by ([Lucier et al., 2011] and [Qin et al., 2014]): Egm=10.67

GPa and νgm=0.277 (κgm=7.98 GPa and µgm=4.18 GPa). Likewise, the same equa-

tions 2.2 are used to calculate elastic properties of porous organic matter, by knowing

organic porosity fo and those of solid phase (κgm and µgm).

Elastic properties and mineral density of organic matter within oil and gas windows

are summarized in table 2.2.

Table 2.2: Elastic properties and mineral porosity of organic matter.

Organic matter

(oil) (gas)

E (GPa) 7 10.67

ν 0.3 0.277

ρm (g.cm−3) 1.3 1.5

2.2.1.3 Clay elastic properties

As have already been said, unlike quartz, pyrite and calcite minerals, clay elastic

properties are not explicitly known in handbooks ([Mavko et al., 1998] and [Lide,

2004]). In [Mavko et al., 1998], the anisotropic elastic constants of large muscovite

crystals are only directly known. The main difficulty of evaluating clay elastic prop-

erties is the fact that its particles are too small to be tested in pure solid form.

Different experimental and theoretical studies have been devoted to investigate clay
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elastic properties, essential for interpreting and modeling the seismic response of clay-

bearing formations ([Hornby et al., 1994], [Wang et al., 2001], [Prasad et al., 2002],

[Vanorio et al., 2003], [Kopycinska-Müller et al., 2007] and [Wenk et al., 2007]). From

the latter references, we can notice the large variability of clay elastic properties which

highlights the difficulty to assess the intrinsic characteristics of single clay crystals.

In our study, to acquire clay matrix elastic properties, we do not refer to the

literature and no direct experimental measurements are realized; however, an inverse

approach [Guéry, 2007] is applied. For this reason, we have to choose an appropriate

linear homogenization scheme. As already seen in the previous section, a matrix-

inclusion/pore morphology is considered at the three homogenization levels. [Guéry,

2007] has compared the results of different homogenization schemes (dilute, Mori-

Tanaka and self-consistent) with experimental data and concluded that [Mori and

Tanaka, 1973] scheme appears to be the most suitable homogenization scheme in the

case of a matrix-inclusion morphology. In the case of spherical inclusions and isotropy

at both local and overall scales, [Mori and Tanaka, 1973] scheme yields the bulk κhom

and shear µhom moduli of the homogenized medium, respectively, as follows:

κhom =

(

∑

r

fr
κr

3κr + 4µ0

)(

∑

s

fs
3κs + 4µ0

)−1

(2.4)

µhom =

∑

r

fr
µr

µ0(9κ0+8µ0)+6µr(κ0+2µ0)

∑

s

fs
µ0(9κ0+8µ0)+6µs(κ0+2µ0)

(2.5)

where (κr;µr) denote, respectively, the bulk and shear moduli of phase r, (κ0;µ0) those

of the matrix phase and fr, the volume fraction of phase r.

As we have seen in the first chapter, Vaca Muerta shale rock is an anisotropic

material like most shale rocks. According to microstructural observations, no aligned

inclusions are detected. We suppose that the origin of inherent anisotropy is the pres-

ence of a set of bedding planes in clay matrix. For simplicity and as the expressions

of macroscopic elastic moduli (equations 2.4 and 2.5) in the case of local and global

isotropy are well known, we suppose that Vaca Muerta rocks, for the two principal

orientations (figure 1.13), are two different isotropic materials with two different clay

matrix; namely, clay matrix in the two cases has different elastic properties. We have

only envisaged the two principal orientations seeing that most of experimental tests

are carried out on samples with loading axis either parallel or perpendicular to bed-

ding planes.

First, we calculate Young’s modulus and Poisson’s ratio of clay matrix solid phase

for vertical samples (E⊥
s and ν⊥s ). Inverse procedure must be applied three times to
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obtain finally the elastic parameters of clay matrix solid phase (figure 2.1). But to

avoid complexity, we suppose for this application that no fine calcite and kerogen exist

at microscale. Thus, knowing elastic properties of constituents apart from clay matrix,

experimental values of elastic coefficients of Vaca Muerta samples for a specified

depth (Ehom⊥

=14130 MPa and νhom
⊥

=0.23, [TOTAL, 2012]) and the mineralogical

composition for the same depth (f1=0.41, f2=0.23, f3=0.017, f4=0.12), the inverse

use of non-linear equations 2.4 and 2.5 gives the elastic parameters of porous clay

matrix (κ⊥0 and µ⊥
0 ). Next, we compute elastic properties of solid phase in clay

matrix. Knowing the value of relative interparticle porosity (f=0.1) for the same

previous depth and elastic parameters of porous clay matrix (κ⊥0 and µ⊥
0 ), [Hashin

and Shtrikman, 1963] upper bound is applied to calculate those of clay matrix solid

phase for vertical samples (κ⊥s and µ⊥
s ) as follows:

κ⊥0 =
4(1− f)κ⊥s µ

⊥
s

4µ⊥
s + 3fκ⊥s

; µ⊥
0 =

(1− f)µ⊥
s

1 + 6f κ⊥
s +2µ⊥

s

9κ⊥
s +8µ⊥

s

(2.6)

Finally, our calculations lead to: κ⊥s =3565 MPa and µ⊥
s =1925 MPa (E⊥

s =4894

MPa and ν⊥s =0.27). The same steps are applied to obtain Young’s modulus and Pois-

son’s ratio of clay matrix solid phase for horizontal samples (Eq
s and ν

q
s). In this case,

we choose a horizontal sample to apply the latter inverse procedure. Given (f1=0.143,

f2=0.405, f3=0.0044, f4=0.12, f=0.1) and (Ehomq

=20000 MPa and νhom
q

=0.25, [TO-

TAL, 2012]), we obtain: κqs=10585 MPa and µq
s=3861 MPa (Eq

s=10328 MPa and

νqs=0.34).

To avoid confusion, the elastic properties of clay phase, for perpendicular and parallel

loadings, are summarized in table 2.3.

Table 2.3: Elastic properties of clay phase for perpendicular and parallel loadings.

Porous clay Solid clay

(f=0.1)

E⊥(GPa) 4 4.9

ν⊥ 0.26 0.27

Eq(GPa) 8.45 10.33

νq 0.32 0.34

2.2.2 Application and sensitivity study in elastic regime

2.2.2.1 Comparison with experimental elastic properties

Since the elastic properties of all constituents are now identified and the mineralogical

composition of three wells (S1, S2 and S3) is known from mineralogical logs, Mori-
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Tanaka scheme (equations 2.4 and 2.5) can be applied to predict the macroscopic

elastic properties as a function of depth for the three studied wells. The volumetric

fraction of fine kerogen and calcite (f5 and f6) are not known continuously (known just

at few depths), so we consider only the case without fine calcite and kerogen in this

study. A sensitivity assessment is presented later to study the influence of fine calcite

and kerogen on macroscopic effective elastic properties. Since the elastic properties

of kerogen are dependent on maturity, it is necessary to specify whether the wells are

located in gas or oil window. Wells S1 and S3 are within oil window while well S2 is in

gas one. Experimental elastic moduli, with which we will compare our simulations, are

measured from triaxial compression tests for different confining pressures. The latter

are carried out on samples whose loading axis is either perpendicular or parallel to

bedding planes (figure 1.13). The comparison between experimental data (points) and

simulations (continuous lines) for the three wells (S1, S2 and S3) are given respectively

in figures 2.2, 2.3 and 2.4. As we can see, macroscopic elastic properties relatively

vary as a function of depth with the variation of mineralogy and porosity. In general,

simulations of macroscopic Young’s modulus Emacro are consistent with experimental

data. It should be noted that experimental Poisson’s coefficients are not displayed

since its values vary widely (from 0.1 to 0.5). Thus, from these calculations, we can

predict Young’s modulus (Emacro⊥; Emacroq) and Poisson’s coefficient (νmacro⊥; νmacroq)

as function of depth for the two principal orientations.
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Figure 2.2: Comparison between experimental (points) and calculated (continuous

lines) elastic properties for well S1.
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lines) elastic properties for well S3.
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2.2.2.2 Influence of kerogen elastic properties on effective elastic ones

Despite several researches to determine kerogen properties, the main question is how

its intrinsic physical characteristics affect the macroscopic properties of the host rock

([Slim, 2008], [Zargari et al., 2013] and [Wilkinson et al., 2015]). [Sone, 2012], by

observing the ductile creep behavior and brittle strength, has noticed that the de-

formational properties are influenced by the amount of soft components in the rock.

Further, according to [Abousleiman et al., 2016], overall mechanical response of shale

samples with only trace levels of organic material is little affected by the latter. In

this paragraph, we study the influence of kerogen elastic properties on effective ones.

As already seen, kerogen elastic properties are linked to localized porosity and matu-

rity. Therefore, according to maturity level, three sets of kerogen elastic properties are

considered (table 2.4) and we study its influence on macroscopic elastic response. The

elastic properties of all other constituents are taken from the previous section (tables

2.1 and 2.3). The sensitivity study is realized in the case of vertical samples only.

The typical mineralogical composition, used in this study, is given by: f1=0.4, f2=0.2,

f3=0.02, f4=0.03/0.05/0.1/0.15 and f=0.1; as we can see, four different kerogen vol-

umetric fraction is envisaged. The volumetric fraction of fine kerogen and calcite

are supposed zero in this sensitivity study (we consider their effects on macroscopic

elastic response in the next paragraph).

Table 2.4: Elastic properties and mineral density of kerogen with different maturity

levels ([Vanorio et al., 2008], [Lucier et al., 2011], [Yan and Han, 2013] and [Qin et al.,

2014]).

Maturity Hydrocarbon κk µk ρm

level composition (GPa) (GPa) (g.cm−3)

Immature oil 3.5 1.75 1.1

Mature oil and gas 5 2.5 1.3

Overmature gas 7.98 4.18 1.5

Figure 2.5.a shows the macroscopic bulk modulus as a function of kerogen one for

the four volumetric fractions. One can notice that when κk becomes higher, κmacro

increases. The influence of κk on κmacro is more pronounced when kerogen volumetric

fraction is further significant. Figure 2.5.b exhibits the influence of kerogen shear

modulus on macroscopic elastic one. The same observations, as in figure 2.5.a, can

be noticed.
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Figure 2.5: Influence of kerogen (a) bulk and (b) shear moduli on macroscopic elastic

ones.

2.2.2.3 Influence of fine inclusions on effective elastic properties

According to the microstructure of Vaca Muerta shale, fine calcite and kerogen in-

clusions can be identified at microscale. In this paragraph, we study the influence

of these fine grains on effective elastic properties. The sensitivity study is limited

to the case of vertical samples and kerogen within oil window. The elastic proper-

ties of constituents are given in tables 2.1, 2.2 and 2.3. The typical mineralogical

composition, used in this sensitivity study, is as follows: f1=0.4; f2=0.2; f3=0.02;

f4=0.15; f=0.1; fo=0.6. Figure 2.6.a shows the variation of macroscopic bulk and

shear moduli as a function of macroscopic fine calcite volume Ω6. The idea is to leave

the total volume of calcite equal to 0.4 and to distribute the latter between the meso

and microscales. For example, if f1=0.4 then Ω6=0 or if f1=0.3 then Ω6=0.1 (the

same idea for fine kerogen). As we can notice, when Ω6 increases, κmacro and µmacro

increase. Through, when Ω6 >0.2 (half of calcite total volume), the slope of the two

curves becomes weak. Thus, with the same total volume of calcite, the distribution of

calcite inclusions between meso and microscales has an influence on the macroscopic

elastic properties. Regarding fine kerogen grains, as we can see in figure 2.6.b, κmacro

and µmacro decrease when Ω5 increases.
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Figure 2.6: Influence of (a) fine calcite and (b) fine kerogen volume fractions on

effective macroscopic elastic properties.
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2.3 Non-linear homogenization: Elastoplastic dam-

age model

The aim of this section is to build a micromechanical model able to predict instan-

taneous mechanical behavior of Vaca Muerta shale rock. Clay matrix is assumed to

have an elastoplastic behavior; all other phases have a linear elastic behavior. As

already seen (figure 2.7), three homogenization representative scales are envisaged to

account simultaneously for the interparticle porosity inside clay matrix, fine grains

and meso inclusions. In the first main part, we discuss the homogenization of non

linear behavior in the context of elastoplasticity: a first step of homogenization yields

the strength domain of the porous clay phase where the solid clay phase is considered

as a cohesive-frictional material obeying to the classical Drucker-Prager criterion. In

the second homogenization step, fine inclusions are taken into account and the last

homogenization step adds the different types of inclusions yielding to the macroscopic

strength response. Thus, three transition levels are applied, simultaneously, to obtain

the macroscopic mechanical behavior: at nano-micro transition, an analytical plastic

criterion for porous medium is used to account for pores inside the clay matrix, then

[Hill, 1965] incremental method is used at the micro-meso and meso-macro transitions

as homogenization method (figure 2.7). In consequence, the model takes into account

explicitly the influence of mineralogical composition as well as matrix porosity. At

the second main part, we take into account in the modeling the complete interfacial

debonding between the matrix and particles. It is assumed that the material dam-

age process is related to progressive debonding of mineral inclusions (in our case, we

suppose that mesocalcite inclusions are expected to interfacial debonding). Finally,

comparisons between experimental data and simulations show the capacity of the

micromechanical model to predict mechanical behavior of Vaca Muerta shale.
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Figure 2.7: Representative elementary volume of Vaca Muerta shale rock.
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2.3.1 Elastoplastic model

2.3.1.1 First homogenization for the porous clay matrix

In this paragraph, a first level of modeling is proposed for the non linear behavior of

the porous clay matrix. To this end, it is proposed to use an analytical plasticity cri-

terion for a porous medium. Several studies have been devoted to determine plasticity

criteria for a porous material with solid phase obeying to Von Mises ([Gurson, 1977],

[Cheng et al., 2014] and [Shen et al., 2015a]) or Drucker-Prager criterion ([Guo et al.,

2008], [Maghous et al., 2009] and [Shen et al., 2012]). Recently, [Shen et al., 2017]

have formulated a theoretical macroscopic yield criteria for ductile porous materials

consisting of a pressure sensitive matrix and spheroidal (prolate and oblate) voids.

The closed form expression of the plastic criteria is determined by implementing an

appropriate kinematical limit analysis with a relaxed plastic admissibility condition

in an average sense. The resulting criterion takes into account the void shape effects

and the plastic compressibility of the matrix. After a phase of improvement, the mod-

ified criterion is validated though comparison with numerical upper and lower bounds

obtained by [Pastor et al., 2010] for a spherical void and by [Pastor and Kondo, 2014]

for an oblate void. For a complete assessment of the approximate macroscopic yield

criteria, comparisons between the latter and new Finite Element Method computa-

tions are realized for the case of prolate and oblate voids.

After this short review of porous material criteria, we return to the study of the

clay matrix of our material. As already seen (figure 2.7), the latter is described by two

phases: solid phase and spherical pores. The plastic deformation of the solid phase

is assumed to be governed by an associated flow rule. As for most geomaterials, we

assume, in this study, that the plastic deformation of Vaca Muerta shale is strongly

pressure sensitive. Thus, the solid phase of the clay matrix is supposed obeying to

the classical [Drucker and Prager, 1952] criterion, given as follows:

φ(σ) = σeq + 3ασm − σ0 ≤ 0 (2.7)

where: σeq =
√

3
2
σ

′ : σ′ , σ
′

= σ − σm1 and σm = trσ
3

are, respectively, the local

equivalent, deviatoric and mean stresses inside the solid phase. σ0 denotes the initial

plastic threshold in pure shearing (σm=0) and α, the coefficient describing pressure

sensitivity. The latter is related to the internal friction angle ψ by:

tan ψ = 3α (2.8)

To describe the effective plastic behavior of the porous clay matrix, we use the ana-

lytical closed-form strength criterion, established by [Shen et al., 2017], for a porous
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medium with a Drucker-Prager type matrix and spherical pores, given as follows:

Φ =

σ̃2
eq

σ2
0

[

1− 3α
(1−f)

σ̃m
σ0

]2 + 2f cosh
[

2α+sgn(σ̃m)
2α

ln
(

1− 3α σ̃m

σ0

)]

− 1− f 2 = 0 (2.9)

where f is the interparticle porosity in the clay matrix given in equation 2.1. σ̃ de-

notes the stress in the porous clay matrix, σ̃m=trσ̃/3 the hydrostatic stress, σ̃eq =
√

3
2
σ̃

′ : σ̃′ the equivalent deviatoric stress in which σ̃
′

= σ̃ − σ̃m1 represents the

deviatoric stress tensor.

The effective plastic yield function, given in equation 2.9, is now applied to describe

the plastic behavior of the clay matrix by taking into account the effect of porosity.

According to experimental observations of Vaca Muerta shale, one can notice that the

material exhibits significant plastic hardening (figure 1.14). This process is treated

by assuming that the yield stress of clay matrix solid phase increases with plastic

deformation. Thus, the initial yield threshold stress σ0 in equation 2.7 is substituted

by σ̄, the current yield stress. Therefore, the plastic criterion, given in equation 2.9,

is rewritten as follows:

Φ(σ̃, σ̄, f) =
σ̃2
eq

σ̄2

[1− 3α
(1−f)

σ̃m
σ̄ ]

2 + 2f cosh
(

2α+sgn(σ̃m)
2α

ln
(

1− 3α σ̃m

σ̄

)

)

− 1− f 2 = 0 (2.10)

The continuous evolution of hardening is often described either by a hyperbolic or

exponential law verifying the initial and asymptotic conditions. As in [Guéry, 2007]

and [Shen et al., 2012], the following exponential form of the hardening law is adopted

in our study:

σ̄ = σ0m − (σ0m − σ00)e
−bεp (2.11)

where σ00 is the initial yield stress of clay and σ0m, the asymptotic value of the yield

stress. εp denotes the equivalent plastic strain of the solid clay phase.

As the plastic deformation of the solid phase is assumed to be governed by an asso-

ciated flow rule, the plastic flow of the clay matrix is given by the normality rule as

follows:

d̃
p
= λ̇

∂Φ

∂σ̃
(σ̃, σ̄, f) (2.12)

where d̃
p
is the plastic strain rate of the porous clay matrix. The plastic multiplier

λ̇ is determined through the consistency condition (equation 2.13) and checks the

loading-unloading conditions (equation 2.14):

Φ̇ =
∂Φ

∂σ̃
: ˙̃σ +

∂Φ

∂f
: ḟ +

∂Φ

∂σ̄
:
∂σ̄

∂εp
ε̇p = 0 (2.13)
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{

λ̇ = 0 if Φ < 0 or if Φ = 0 and Φ̇ < 0

λ̇ ≥ 0 if Φ = 0 and Φ̇ = 0
(2.14)

To obtain the explicit expression of the equivalent plastic strain rate of the solid clay

phase ε̇p, [Shen et al., 2012] have used an energy-based condition for the case of a

Drucker-Prager solid phase, which relates the plastic strain rate of the clay matrix to

that of the solid phase [Gurson, 1977]. One obtains:

(1− f)σ̄ε̇p = σ̃ : d̃
p

(2.15)

Thus, using the associated flow rule, one gets:

ε̇p =
σ̃ : ∂Φ

∂σ̃

(1− f)σ̄
λ̇ (2.16)

The evolution law of the porosity is determined by imposing a kinematical compati-

bility [Shen et al., 2012] and is given as follows:

ḟ = (1− f)(trd̃
p − 3αε̇p) (2.17)

The explicit form of the plastic multiplier can now be identified by replacing equations

2.16 and 2.17 in the consistency condition 2.13. One obtains:

λ̇ =
∂Φ
∂σ̃

: C0 : d̃

∂Φ
∂σ̃

: C0 :
∂Φ
∂σ̃

− ∂Φ
∂f
(1− f)

[

∂Φ
∂σ̃m

− 3α
σ̃: ∂Φ

∂σ̃

(1−f)σ̄

]

− ∂Φ
∂σ̄

∂σ̄
∂εp

σ̃: ∂Φ
∂σ̃

(1−f)σ̄

(2.18)

where d̃ = d̃
e
+d̃

p
is the total strain rate of the porous clay matrix. C0 = 3κ0J+2µ0K

is the effective elastic tensor of the porous clay matrix.

The effective tangent stiffness operator of the porous clay matrix L0 writes:

L0 =







C0 if Φ(σ̃, f, σ̄) ≤ 0, Φ̇(σ̃, f, σ̄) < 0

C0 − C0:
∂Φ
∂σ̃

⊗
∂Φ
∂σ̃

:C0

Hd if Φ(σ̃, f, σ̄) = 0, Φ̇(σ̃, f, σ̄) = 0
(2.19)

Hd is given by:

Hd = ∂Φ
∂σ̃

: C0 :
∂Φ
∂σ̃

− ∂Φ
∂f
(1− f)

[

∂Φ
∂σ̃m

− 3α
σ̃: ∂Φ

∂σ̃

(1−f)σ̄

]

− ∂Φ
∂σ̄

∂σ̄
∂εp

σ̃: ∂Φ
∂σ̃

(1−f)σ̄

By calculating the derivatives of the yield function 2.10, the tangent stiffness tensor

of the clay matrix can be rewritten as:

L0 = 3κ1J+ 2κ2K− κ31⊗ σ̃
′ − κ4σ̃

′ ⊗ 1− κ5σ̃
′ ⊗ σ̃

′

(2.20)

where κi, i=1-5, are equal to:
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κ1 = κ0 −
9κ20B

2

Hd
, κ2 = µ0, κ3 = κ4 =

6κ0µ0AB

Hd
κ5 =

4µ2
0A

2

Hd

and:

A =
3(1+ 3σ̃mα

(1−f)σ̄−3σ̃mα)
2

σ̄2 (2.21)

B =
−f [σ̄(f−1)+3σ̃mα]3[2α+sgn(σ̃m)] sinh

[

(2α+sgn(σ̃m) ln(1− 3ασ̃m
σ̄ )

2α

]

−2σ̃2
eqα(f−1)2(σ̄−3σ̃mα)

[σ̄(f−1)+3σ̃mα]3(σ̄−3σ̃mα)
(2.22)

This associated plastic model is then incorporated in the micro-meso and meso-macro

transitions.

Finally, we evaluate the influence of the two parameters (α and σ0) and the porosity

f on the microscopic mechanical response of the porous clay matrix. The reference

values of the late parameters used are: f=0.1, α=0.1 and σ0=10. Figures 2.8 and

2.9 show, respectively, the influence of pressure sensitivity coefficient α and strength

parameter σ0 of the solid phase on the microscopic response of the porous clay matrix.

With the change of parameters, the hydrostatic and shear compression strengths are

more influenced than the tensile ones.

 (MPa)

 (MPa)

M=0.2

M=0.15

M=0.1

~
σeq

~
σm

α=0.2

α=0.15

α=0.1

Figure 2.8: Effect of pressure sensitivity coefficient α on the microscopic failure cri-

terion 2.10.

Figure 2.10 exhibits the influence of interparticle porosity f on the microscopic failure

criterion 2.10. It is clearly shown that with the increase of porosity, the hydrostatic

compression strength is substantially reduced. The effect of increasing porosity is less
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σ0=20 MPa
σ0=15 MPa

σ0=10 MPa

 (MPa)

 (MPa)

~
σeq

~
σm

Figure 2.9: Effect of the matrix strength σ0 on the microscopic failure criterion 2.10.

important on the microscopic hydrostatic tensile strength.

f=0.1

f=0.2

f=0.3

 (MPa)

(MPa)

~σeq

~
σm

Figure 2.10: Effect of interparticle porosity f on the microscopic failure criterion 2.10.

It can be noted that the microscopic failure criterion 2.10, which is function of porosity

f , is locked at the compression part of stress space (<0). This means that impor-

tant plastic strain can be produced under hydrostatic compression loading. Thus,

compared to the classical Drucker-Prager linear surface (figure 2.11), the microscopic

plastic criterion 2.10 of the porous clay matrix is able to treat plasticity under hy-

drostatic loading that are experimentally observed in rocks with high porosity. Since

53



these parameters directly influence the microscopic response of the clay matrix, then

they will affect the macroscopic behavior of the studied material.

 Porous clay matrix

~
σeq  (MPa)

~
σm(MPa)

f=0.1

f=0.2

f=0.3

Solid phase (Drucker-Prager)

Figure 2.11: Comparison between Drucker-Prager solid phase and porous clay matrix

criteria.

2.3.1.2 Effect of fine and meso inclusions

After having exposed the analytical plastic criterion, which describes the elastoplas-

tic behavior of the porous clay matrix, the effects of fine and mesoinclusions on the

macroscopic behavior of the studied shale will be considered. For the description

of non-linear behavior of heterogeneous materials, various homogenization methods

have been proposed, among them, [Hill, 1965] incremental method. The latter, which

is based on the concept of ”linear comparison composite”, allows to incrementally

linearize the problem of non linear homogenization and is based on linear homoge-

nization scheme estimates. The method is able to figure different types of inclusions

at the same scale (micro and meso scales, figure 2.7) and to be applied to arbitrary

loading paths. According to Vaca Muerta microstructure, different types of inclu-

sions, with scattered elastic properties, can be found at the same scale. In this case,

it is difficult to establish an explicit criterion for this type of microstructure. Thus,

Hill’s incremental method is used twice in this model, to account firstly for fine grains

at microscale and then, to consider the effect of various mesoinclusions at mesoscale.

The principle of this method and the assumptions established for its application are

first discussed. Then, we talk about its use for the formulation of our micromechani-

cal model.
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[Hill, 1965] approach requires a rate formulation of constitutive relation for each

constituent phase, as follows:

σ̇(z) = L(z) : ε̇(z) (2.23)

Equation 2.23 links the strain rate ε̇ to the stress rate σ̇ by means of the tangent

stiffness operator L. As for the case of linear elasticity, a tangent localization tensor

A of the linear comparison composite can be introduced, at each iteration step, to

link the macroscopic strain rate Ė to the local one ε̇:

ε̇(z) = A(z) : Ė (2.24)

Consequently, the rate form of the macroscopic constitutive relations reads:

Σ̇ = L
hom : Ė (2.25)

where the effective tangent stiffness operator is given by:

L
hom =< L : A > (2.26)

The main steps of non linear homogenization for Hill’s incremental method can be

summarized in figure 2.12.

Σ̇ Σ̇ = Lhom : Ė Ė

σ̇(z) σ̇(z) = L(z) : ε̇(z) ε̇(z)

homogenization localization

Figure 2.12: Diagram of non linear homogenization with Hill’s incremental approach.

As we can see in equation 2.26, Lhom is obtained as the average over the representative

elementary volume of the product of the local tangent stiffness and tangent strain

localization tensor. As the local tangent stiffness is not uniform in each phase, [Hill,

1965] incremental method involves making some simplifications in order to fit out a

closed-form expression of Lhom. To this end, at any point z of a given phase (r), the

local constitutive relation is approximated by:

∀z ∈ (r), σ̇(z) = Lr : ε̇(z) (2.27)

where Lr is the local tangent stiffness of a given phase (r), evaluated for a suitable

chosen reference state of strain εr (mostly corresponding to the average local strain
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field of the phase (r)). This approximation leads to the assumption that each phase

has a uniform tangent stiffness. Following this approximation, the incremental strain

localization relation will be of the following form:

˙̄εr = Ar : Ė (2.28)

where Ar is the tangent localization operator corresponding to the average strain per

phase ˙̄εr.

Now, we determine the explicit form of the tangent localization operator Ar which

makes it possible to deduce the homogenized tangent operator Lhom, given by:

L
hom =

∑

r

frLr : Ar (2.29)

where fr is the volumetric fraction of phase r.

To determine the expression of Ar, a suitable linear homogenization method should

be used. By assuming that the morphology of the linear comparison composite is

similar to that of the studied Vaca Muerta shale, thus, [Mori and Tanaka, 1973]

scheme is involved for the evaluation of the tangent strain localization operator Ar.

One obtains:

Ar = [I+ P
0
Ir : (Lr − L0)]

−1 :

(

N
∑

s=0

fsA
0
s

)−1

(2.30)

P0
Ir

denotes the fourth order Hill tensor which depends on the inclusion form Ir, its

orientation as well as the tangent stiffness of the matrix phase of the linear comparison

composite L0. The general expression of P0
Ir

is written using the Green function G0
∞

in the form:

P 0
Irinjk

= −
(
∫

Ir

G0
∞ij(x− y)dy

)

kl(il)(jk)

∀x ∈ Ir (2.31)

Besides, P0
Ir
can be written in function of Eshelby’s tensor SE. As all inclusions for our

material are supposed having the same morphology, Hill’s tensor is given as follows:

P
0
I = S

E(L0) : L
−1
0 (2.32)

P0
I can be calculated either analytically or numerically. In the case of local and global

isotropy, the analytical expression of P0
I is explicitly known and given as follows:

P
0
I =

β0
2µ0

K+
α0

3κ0
J (2.33)
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with α0 = 3κ0

3κ0+4µ0
, β0 = 6(κ0+2µ0)

5(3κ0+4µ0)
; κ0 and µ0 are respectively the bulk and shear

moduli of the matrix phase. However, when the tangent stiffness of the matrix is

anisotropic, the analytical expression of Green’s function is not known. Thus P0
I is

evaluated numerically by using a Gauss type integration procedure (for more details,

see [Guéry, 2007]). Note that, in our case, [Hill, 1965] homogenization procedure is

applied twice: first, to homogenize the fine grains of calcite and kerogen, and then,

the mesoinclusions.

The application of Hill’s incremental method, in the framework of metals [Doghri and

Ouaar, 2003] and geomaterials ([Guéry, 2007] and [Shen et al., 2012]), yields a too stiff

macroscopic response compared to finite element simulations. As already seen, Hill’s

method is based on the hypothesis of uniform local tangent stiffness in each phase.

Thus, the main reason of the stiff response would be the accumulation of errors at

each increment caused by the failure to adequately take into account the strain het-

erogeneity within phases. ([Doghri and Ouaar, 2003] and [Guéry, 2007]) indicate that

it is possible to relax the predictions of the incremental method by considering an

Eshelby’s tensor estimated from an isotropic approximation of the tangent operator

of the matrix. The isotropization procedure has been confirmed by ([Guéry, 2007]

and [Shen et al., 2012]) to reproduce the macroscopic response of Callovo-Oxfordian

argillite. Therefore, the same isotropization procedure will be adopted in this model.

As already seen, the tangent stiffness tensor of the clay matrix is anisotropic (equa-

tion 2.20). To obtain its isotropic part, we use the general method of isotropization

proposed by [Bornert et al., 2001a]:

L
iso
0 = (J :: L0)J+

1

5
(K :: L0)K = 3κiJ+ 2µiK (2.34)

where:

κi = κ0(1−
9κ0B

2

Hd
), µi = µ0(1−

2µ0A
2

5Hd
σ̃2
eq) (2.35)

Since we know the isotropic expression of L0 and as the inclusions are supposed to

be spherical, the analytical expression of Eshelby’s tensor can be written as follows:

S
E(Liso

0 ) =
3κi

3κi + 4µi

J+
6

5

κi + 2µi

3κi + 4µi

K (2.36)

Figure 2.13 shows the comparison between the macroscopic response without and

with isotropization in the case of a uniaxial compression test. One can notice that

the isotropization procedure makes it possible to obtain a soft macroscopic response.

Given these recent results, it would seem that despite the above hypothesis, the in-

cremental approach, via the implementation of an isotropization procedure, opens
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possibilities for the study of non-linear behavior of heterogeneous materials on mul-

tiaxial loading paths. Note that Hill’s incremental method has the advantage to

take into consideration several inclusions at a homogenization scale in line with the

expectations related to our representative elementary volume.

-1.6-1.4-1.2-1-0.8-0.6-0.4-0.20

-250

-200

-150

-100

-50

0

Without isotropization

with isotropization

Axial strain (%)

Axial stress (MPa)

Figure 2.13: Macroscopic response in the case of a uniaxial compression test with and

without isotropization of matrix tangent stiffness tensor.

2.3.2 Interfacial debonding between matrix and inclusions

After having exposed the micromechanical model of the elastoplastic behavior of the

heterogeneous rock, we study in this paragraph the material damage at short term.

We assumed that the instantaneous damage evolution is related to complete interfa-

cial debonding between the matrix and inclusions. Initially, inclusions are supposed

embedded firmly in the matrix with perfect interfaces. Several works have been dedi-

cated to study the damage induced by the complete or partial progressive debonding

between particles and matrix ([Tohgo and Weng, 1994], [Zhao and Weng, 1995], [Ju

and Lee, 2000], [Dai and Huang, 2001] and [Shen and Shao, 2015]). Under the increase

of external mechanical loading and since the material is heterogeneous, local stress

concentrations may be developed at inclusion interfaces. In our study, we assume that

some inclusions could undergo complete interfacial debonding and are assumed to be-

come voids for the sake of simplicity. We consider that the spherical voids obtained

from the debonding process are isotropically dispersed in the matrix. Thus, the inter-

facial debonding of mineral inclusions will significantly affect the overall macroscopic

behavior of a heterogeneous material since completely debonded mineral inclusions

will be replaced by pores. Therefore, the total porosity of the material increases and

rigid inclusions volume decreases.

As we have evoked in figure 2.7, Vaca Muerta shale is seen as a heterogeneous ma-

terial: at mesoscale, several mineral inclusions (quartz, calcite, pyrite and kerogen)
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are immersed in a composite matrix. The latter is constituted of fine calcite and

kerogen which are embedded in a porous clay matrix. As we can see, several types

of inclusions are considered at two different homogenization scales. Thus, all rigid

inorganic inclusions can be subjected to interfacial debonding but probably the large

inclusions more. Interfaces between organic matter and matrix will not undergo dam-

age as organic matter is soft. For lack of microstructural observations of interfaces

between inclusions and matrix, it is difficult to indicate which particles will be sub-

jected to interfacial decohesion. In our model, by using Hill’s incremental scheme as

homogenization method, we are able to consider the interfacial debonding of several

types of inclusions at the same time (a sensitivity study is shown later). For the

sake of simplicity, since the calcite grains on the mesoscale are probably the most

voluminous, it is assumed that the interfaces between the latter and matrix are dam-

aged. Figure 2.14 shows the schematic representation of calcite debonding process

at mesoscale. The left scheme correspond to the initial undamaged state where all

calcite particles are perfectly bonded to the composite matrix. Under the increase

of external macroscopic loading, some calcite particles are completely debonded and

become voids (figure 2.14.b). The right scheme represents the state where all calcite

grains are completely debonded.

Quartz
+albite

Calcite

Pyrite

Kerogen 

Calcite

Pores Pores
a) Initial undamaged state b) Progressive debonding c) All calcite debonded  

Figure 2.14: Schematic representation of calcite debonding process at mesoscale.

To describe the varying probability of inclusion debonding, [Weibull, 1951] statistical

function is used. The equivalent plastic strain of the porous clay matrix εp0 will be

used as the controlling factor of the particle-matrix debonding process. For compres-

sive loading (civil engineering application), [Weibull, 1951] cumulative distribution

function of particle debonding is given as follow:

Pd[ε
p
0] = 1− exp

[

−
(

εp0
S

)M
]

(2.37)

where εp0 =
√

ε̃
p
0 : ε̃

p
0, ε̃

p
0 is the plastic strain inside the porous clay matrix ; S and M

are Weibull shape and scale parameters respectively. In this manner, this probability

will monitor the volume fraction of completely debonded calcite particles which will
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be written as:

fd
1 = f ini

1 Pd[ε
p
0] = f ini

1

{

1− exp

[

−
(

εp0
S

)M
]}

(2.38)

with f ini
1 the initial calcite volume fraction; fd

1 , the volume of completely debonded

calcite which is equivalent to the current volume of obtained mesoscopic pores. Thus,

the current volume of calcite particles is: f1 = f ini
1 − fd

1 .

2.3.3 Numerical implementation and assessment

2.3.3.1 Numerical implementation

In this paragraph, the numerical implementation of the proposed micromechanical

model is exposed. The model presented above is implemented in an integration code

’Valrock’ developed in our laboratory. The loading path is divided into a limit number

of steps. At the step n+1, the material point at the macroscopic scale is subjected

to a macroscopic strain En+1 = En + ∆E, while the strain at the step n is known

and the strain increment ∆E is given. The problem to be solved here is to find

the corresponding macroscopic stress state at the end of the loading step by using

Hill’s incremental homogenization method. Note that mesopores (phase m) represent

the pores created by the interfacial debonding of mesocalcite grains. The general

algorithm for integrating the (n+1) load increment is as follows:

1. Begin Hill 1

Input data: En, ∆E;

Calcite (phase 1): Ẽ1,n, Σ̃1,n;

Quartz (phase 2): Ẽ2,n, Σ̃2,n;

Pyrite (phase 3): Ẽ3,n, Σ̃3,n;

Kerogen (phase 4): Ẽ4,n, Σ̃4,n;

Mesopores (phase m): Ẽm,n.

Composite matrix (phase 0
′

): Ẽ0
′
,n;

2. Initially, the local strain increments in the phases (1), (2), (3), (4) and (m) are

set equal to the macroscopic strain increment:

∆Ẽ
0
1 = ∆E, ∆Ẽ

0
2 = ∆E, ∆Ẽ

0
3 = ∆E, ∆Ẽ

0
4 = ∆E, ∆Ẽ

0
m = ∆E

3. Then, we calculate the local strains at the loading step (n+1) for phases (1),

(2), (3), (4) and (m):

Ẽ1,n+1 = Ẽ1,n +∆Ẽ
i
1, Ẽ2,n+1 = Ẽ2,n +∆Ẽ

i
2,
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Ẽ3,n+1 = Ẽ3,n +∆Ẽ
i
3, Ẽ4,n+1 = Ẽ4,n +∆Ẽ

i
4 Ẽm,n+1 = Ẽm,n +∆Ẽ

i
m

As the mesoinclusions have elastic behavior, its local stiffness tensors: L1, L2,

L3 and L4 are known and equal to the elastic ones. Note that for mesopores:

κm=µm=0.

4. The average local strain in the composite matrix is given by:

∆Ẽ
i
0′
=

∆E − f1∆Ẽ
i
1 − f2∆Ẽ

i
2 − f3∆Ẽ

i
3 − f4∆Ẽ

i
4 − fd

1∆Ẽ
i
m

1− f1 − f2 − f3 − f4 − fd
1

where fr is the volumetric fraction of phase (r).

5. Let ∆ε̃=∆Ẽ
i
0
′ (mesoscopic strain increment=local strain in the composite ma-

trix).

6. Begin Hill 2

Input data: ∆ε̃;

Fine kerogen (phase 5): ε̃5,n, σ̃5,n;

Fine calcite (phase 6): ε̃6,n, σ̃6,n;

Clay matrix (phase 0): ε̃0,n, ε̃
p
0,n, ε

p
n, σ̃n;

6.1. Initially, the local strain increments in the phases (5) and (6) are set equal

to the mesoscopic strain increment:

∆ε̃
0
5 = ∆ε̃, ∆ε̃

0
6 = ∆ε̃

6.2. Then, we calculate the local strains at the loading step (n+1) for phases

(5) and (6):

ε̃5,n+1 = ε̃5,n +∆ε̃
j
5, ε̃6,n+1 = ε̃6,n +∆ε̃

j
6

6.3. Thus, the average local strain in the clay matrix is given by:

∆ε̃
j
0 =

∆ε̃− f5∆ε̃
j
5 −∆ε̃

j
6

1− f5 − f6

6.4. At the iteration j for the phase 0, the values of ∆ε̃
j
0, ε̃0,n, ε̃

p
0,n and εpn

are known, ε̃0,n+1, ε̃
p
0,n+1, ε

p
n+1, L

j
0 and L

iso,j
0 are calculated according to

analytical plastic model given in paragraph 2.3.1.1. The algorithm for local

integration of the elastoplastic clay phase is given in Appendix A.

6.5. Since the fine calcite and kerogen grains have the same morphology, thus

Hill’s tensor is given by:

P
0,j
I5

= P
0,j
I6

= P
0,j
I = S

E(Liso,j
0 ) : Lj

0

Note that we use the isotropic form of clay tangent stiffness tensor (Liso
0 ),

thus Eshelby’s tensor can be calculated as in equation 2.36.
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6.6. The tangent strain localization tensors Aj
r for phases (0), (5) and (6) are

given respectively as follows:

A
j
0 = [f0I+ f5A

0,j
5 + f6A

0,j
6 ]−1; A

j
5 = A

0,j
5 : Aj

0; A
j
6 = A

0,j
6 : Aj

0

where A0,j
r = [I+ P

0,j
I : (Lj

r − L
j
0)]

−1 for r=5, 6.

6.7. We check the compatibility of local strains between two iterations for

phases (5) and (6). If the compatibility is reached (‖Rj
5‖ < tol5 and

‖Rj
6‖ < tol6; tol5=tol6=10−10), we passed to step 6.8.; else, an additional

iteration is needed (back to step 6.2. with j=j+1) with:

∆ε̃
j+1
5 = ∆ε̃

j
5 +R

j
5; ∆ε̃

j+1
6 = ∆ε̃

j
6 +R

j
6

where the errors Rr are given by: R
j
5 = A

j
5 : ∆ε̃ − ∆ε̃

j
5 and R

j
6 = A

j
6 :

∆ε̃−∆ε̃
j
6

6.8. Determination of the tangent stiffness tensor of the composite matrix

(phase 0
′

) by using Mori-Tanaka homogenization scheme:

L0
′ = [f0L0 + f5L5 : A

0
5 + f6L6 : A

0
6] : A0

We calculate then the isotropic part of tensor L0
′ , which is denoted Liso

0′
.

End Hill 2

7. As all mesoinclusions have the same morphology, their Hill’s tensor is the same

and given by:

P
0
′

,i
I = S

E(Liso,i

0′
) : Li

0
′

8. Then, the tangent strain localization tensors Ai
r for phases (0

′

), (1), (2), (3),

(4) and (m) are given, respectively, as follows:

A
i
0′
= [f0′ I+ f1A

0
′

,i
1 + f2A

0
′

,i
2 + f3A

0
′

,i
3 + f4A

0
′

,i
4 + fd

1A
0
′

,i
m ]−1

A
i
1 = A

0
′

,i
1 : Ai

0
′ ; Ai

2 = A
0
′

,i
2 : Ai

0
′ ; Ai

3 = A
0
′

,i
3 : Ai

0
′ ; Ai

4 = A
0
′

,i
4 : Ai

0
′ ; Ai

m = A
0
′

,i
m : Ai

0
′

where: A0
′

,i
r = [I+ P

0
′

,i
I : (Li

r − Li
0
′ )]−1.

9. We check the compatibility of local strain between to iterations for phases (1),

(2), (3), (4) and (m) and evaluate the errors Ri
r:

R
i
1 = A

i
1 : ∆E −∆Ẽ

i
1

R
i
2 = A

i
2 : ∆E −∆Ẽ

i
2

R
i
3 = A

i
3 : ∆E −∆Ẽ

i
3
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R
i
4 = A

i
4 : ∆E −∆Ẽ

i
4

R
i
m = A

i
m : ∆E −∆Ẽ

i
m

If ‖Rj
1‖ < tol1 and ‖Rj

2‖ < tol2 and ‖Rj
3‖ < tol3 and ‖Rj

4‖ < tol4 and ‖Rj
m‖ <

tolm, then compatibility is reached and we pass to step 10; otherwise, an ad-

ditional iteration (back to step 3 with i=i+1) is needed until the convergence

conditions are verified:

∆Ẽ
i+1
1 = ∆Ẽ

i
1 +R

i
1; ∆Ẽ

i+1
2 = ∆Ẽ

i
2 +R

i
2

∆Ẽ
i+1
3 = ∆Ẽ

i
3 +R

i
3; ∆Ẽ

i+1
4 = ∆Ẽ

i
4 +R

i
4; ∆Ẽ

i+1
m = ∆Ẽ

i
m +R

i
m

End Hill 1

10. The macroscopic stress tensor at the increment (n+1) is given by:

Σn+1 = f1Σ̃1,n+1 + f2Σ̃2,n+1 + f3Σ̃3,n+1 + f4Σ̃4,n+1 + f0′ Σ̃0
′
,n+1

where:

Σ̃0′ ,n+1 = f0σ̃n+1 + f5σ̃5,n+1 + f6σ̃6,n+1;

σ̃n+1 = σ̃n +∆σ̃n+1 = σ̃n + L0 : (A0 : ∆ε̃);

σ̃r,n+1 = σ̃r,n +∆σ̃r,n+1 = σ̃r,n + Lr : (Ar : ∆ε̃) for i=5-6;

Σ̃r,n+1 = Σ̃r,n +∆Σ̃r,n+1 = Σ̃r,n + Lr : (Ar : ∆E) for i=1-4;

2.3.3.2 Numerical assessment of the proposed model

Sensitivity study of damage evolution

In this paragraph, some sensitivity studies are performed in order to show the in-

fluence of some parameters and conditions of interfacial damage on the macroscopic

mechanical behavior of the studied heterogeneous material. At first, we have con-

sidered a simple case of the representative elementary volume given in figure 2.15.

Two scale of study are assumed: calcite grains are seen immersed in a porous clay

matrix. Then, we envisage the debonding of calcite particles by using elastic and

plastic parameters given in table 2.5.

Figure 2.16 shows the elastoplastic damage response of a two-phase composite in uni-

axial compression tests and different values of Weibull parameter S. In figure 2.16.a,

the influence of strength parameter S is clearly displayed: a higher value of S leads

to a higher failure strength before all calcite particles are completely debonded. In

figure 2.16.b, the evolution of volume fraction of completely debonded calcite in func-

tion of axial strain is presented. Note that in all figures, the curves of the same color
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Figure 2.15: Simplified representative elementary volume.

Table 2.5: Typical values of parameters for the model with associated flow rule.

Phase (0) clay Phase (1) calcite

Elastic properties E0=5 GPa E1=95 GPa

ν0=0.27 ν1=0.27

Plastic properties σ0m=50

σ00=1

b=650

α=0.24

Porosity/volume fraction 0.1 0.3
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Figure 2.16: (a) The predicted elastoplastic responses of two-phase composite with

evolutionary debonding damage under uniaxial compression test with M=5 and var-

ious values of S ; (b) the predicted volume fraction of completely debonded calcite

particles.

correspond to the same value of S.

Figure 2.17 illustrates the influence of Weibull parameter M on the macroscopic re-

sponse (continuous lines for M=2 and dashed ones for M=5). As we can see, M

controls the debonding evolution rate.

Now, we return to our original complex case given in figure 2.7 and make some sen-
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Figure 2.17: (a) Influence of Weibull parameter M on the predicted elastoplastic

responses of two-phase composite with evolutionary debonding damage under uniax-

ial compression test with various values of S ; (b) the predicted volume fraction of

completely debonded calcite particles (continuous lines-M=2; dashed lines-M=5).

sitivity study. Elastic properties of all constituents are given in tables 2.1, 2.2 and

2.3 (case of perpendicular sample in oil window). The same plastic parameters, given

in table 2.5, are used. A typical mineralogical composition is considered: f ini
1 =0.3,

f2=0.2, f3=0.01, f4=0.05, f5=0.11, f6=0.23 and f=0.1. Figure 2.18 exhibits the

predicted elastoplastic responses of the studied complex material with evolutionary

damage of mesocalcite under uniaxial compression test with M=2 and various values

of S. Comparing figures 2.17 (simple case) and 2.18, it can be noted that the mi-

cromechanical model is able to take into consideration the mineralogical composition

on the macroscopic response.
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Figure 2.18: (a) The predicted elastoplastic responses of the studied heterogeneous

material with evolutionary debonding damage under uniaxial compression test with

M=2 and various values of S ; (b) the predicted volume fraction of completely

debonded calcite particles.

As already said, for simplicity and the lack of experimental data, we have supposed

that only interfaces between mesocalcite and matrix are subjected to debonding pro-
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cess. However, the model is able to treat interfacial debonding of many inclusions at

the same time. Wherefore, in figure 2.19, we have study two cases: 1- debonding of

only mesocalcite grains (continuous lines) and 2- debonding of mesocalcite and meso-

quartz grains at the same time (dashed lines). It is obvious that the micromechanical

model is able to accounts for debonding of several particles at the same time and

reproduce the material softening related to progressive interfacial debonding process.
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Figure 2.19: Comparison between the macroscopic elastoplastic response in the case

of interfacial damage of mesocalcite (continuous line) and mesocalcite+mesoquartz

(dashed lines) for different values of S and M=2.

Influence of fine inclusions on macroscopic behavior

In this section, we investigate the influence of fine kerogen and calcite volume frac-

tions (f5 and f6 respectively) on the macroscopic mechanical behavior. The used

plastic parameters of the solid clay phase are: α=0.1 and σ0=15. A considered typ-

ical mineralogical composition is used: f1=0.4, f2=0.25, f3=0.03 and f4=0.1. The

elastic properties of all phases are given in tables 2.1, 2.2 and 2.3 for the case of

perpendicular samples in oil window. In figure 2.20, we study the influence of fine

kerogen grains on the macroscopic behavior. As we can see, the volume fraction of fine

kerogen has an effect on the macroscopic behavior. When f5 increases (f4 decreases

and the total volume fraction of kerogen is kept constant=0.1), the failure strength

decreases as kerogen phase has elastic properties lower than that of the porous matrix

thus it decreases its rigidity. Note that the response in compression loading is more

affected than that in traction one.

Figure 2.21 shows the effect of fine calcite volume fraction f6 on the macroscopic

mechanical behavior. The total volume fraction of calcite is kept constant=0.4 (we

increase f6 and decrease f1). As we can spot, when f6 increases, the failure strength
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Figure 2.20: Influence of fine kerogen grains on the macroscopic mechanical behavior.

is enhanced. Therefore, fine calcite grains boost the material rigidity. As in the case

of fine kerogen, the response in compression loading is more affected than that in

traction one.

-70 -60 -50 -40 -30 -20 -10 0 10 20 30

0

5

10

15

20

25

30

35

40

45

0% fine calcite
5% fine calcite
20% fine calcite

Σm (MPa)

Σ
eq

 (MPa)

0% fine calcite (f
6
=0%)

5% fine calcite (f
6
=13.5%)

20% fine calcite (f
6
=38.5%)

Figure 2.21: Influence of fine calcite grains on the macroscopic mechanical behavior.

2.3.4 Calibration and experimental validation of the model

After having formulated the semi-analytical micromechanical model, the purpose of

this section is to evaluate its predictive capabilities and in particular, its ability to

reproduce the instantaneous mechanical behavior of Vaca Muerta shale rock. As seen

earlier, an associated flow rule is used to describe the plastic deformation of clay solid

phase. However, as we will see hereafter, the proposed associated model overestimates

the lateral and volumetric strains. Thus, in order to improve the accuracy of model

predictions to reproduce Vaca Muerta shale behavior, a non-associated plastic model
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will be considered for clay matrix solid phase. Note that in all graphs, continuous red

curves represent numerical simulations and symbolic blue ones feature experimental

data.

2.3.4.1 Identification of model’s parameters

The proposed model involves many elastic and plastic parameters, in addition to

Weibull’s constants. Elastic ones of various phases are already given in tables 2.1,

2.2 and 2.3 for vertical and horizontal samples in oil or gas window. As for the case

of elastic parameters, plastic and Weibull’s constants are first identified for a given

mineralogical composition and then, validated against other compositions with the

same set of values. The four plastic parameters of clay matrix and the two Weibull’s

constants are identified, step by step, from direct calibration of numerical results and

experimental data, similar to that proposed in [Guéry, 2007]. For our studied mate-

rial, plastic as well as debonding parameters are optimized from stress-strain curves of

a simple triaxial compression test (confining pressure=5 MPa) on a horizontal sample

(parallel loading) from well S2 at the depth of 2686.49 m. Identified plastic parame-

ters are as follows: α=0.245, σ00=1, σ0m=50, b=650. Besides, Weibull’s parameters of

particle debonding are given by: S=0.04 andM=1. Note that mineralogical composi-

tion is available from mineral logs (figure 1.8). Plastic and debonding parameters for

vertical and horizontal samples are the same since, according to experimental data,

there is no significant difference in terms of strength peak between the two principal

orientations. According to latter parameters and elastic ones given previously, figure

2.22 shows comparison between associated model simulations and experimental data

for the sample at the depth 2686.49 m. As we can notice, the axial strain is well

reproduced, however, the proposed associated model overestimates the lateral and

volumetric strains. Mainly, this is due to the fact that an associated flow rule is used

to describe the plasticity of clay matrix.

2.3.4.2 Formulation of the non-associated model

As we have seen in the previous section, the use of an associated flow rule for clay ma-

trix yields an overestimated lateral and volumetric strain responses. Thus, to improve

the accuracy of model’s predictions, a non-associated plastic model is considered for

clay matrix solid phase. Due to the difficult to formulate analytically a plastic po-

tential and for the sake of simplicity, the plastic potential of a porous medium G is

assumed having the same form as the plastic criterion (equation 2.10) and is given as
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Figure 2.22: Comparison between associated model simulations and experimental

data in a triaxial compression test on a Vaca Muerta shale sample (confining pres-

sure=5 MPa; depth=2686.49 m; well S2; horizontal; f1=0.2275, f2=0.431, f3=0.0164,

f4=0.1, f6=0.05, f=0.08).

follows:

G =

σ̃2
eq

σ̄2

[

1− 3α2

(1−f)
σ̃m

σ̄

]2 + 2f cosh

(

2α2 + sgn(σ̃m)

2α2

ln

(

1− 3α2
σ̃m
σ̄

))

− 1− f 2 (2.39)

Note that compared to the plastic criterion, the latter potential is function of a

dilatancy coefficient α2. Then, the plastic flow rule (equation 2.12) of the clay matrix

turns into:

d̃
p
= λ̇

∂G

∂σ̃
(σ̃, σ̄, f) (2.40)

The equivalent plastic strain of the clay matrix (equation 2.16) becomes:

ε̇p =
σ̃ : d̃

p

(1− f)
[

σ̄ + 3(α2 − α) σ̃m

1−f

] (2.41)

The evolution law of porosity (equation 2.17) will get the following form:

ḟ = (1− f)
[

trd̃
p − 3α2ε̇

p
]

(2.42)

Finally, the effective tangent stiffness operator of the porous clay matrix (equation

2.19) turns into:

L0 =







C0 if Φ(σ̃, σ̄, f) ≤ 0, Φ̇(σ̃, σ̄, f) < 0

C0 − C0:
∂G
∂σ̃

⊗
∂Φ
∂σ̃

:C0

HD if Φ(σ̃, σ̄, f) = 0, Φ̇(σ̃, σ̄, f) = 0
(2.43)
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with:

HD = ∂Φ
∂σ̃

: C0 :
∂G
∂σ̃

− ∂Φ
∂f

[

(1− f) ∂G
∂σ̃m

− 3α2
σ̃: ∂G

∂σ̃

σ̄+3(α2−α) σ̃m
1−f

]

− ∂Φ
∂σ̄

∂σ̄
∂εp

σ̃: ∂G
∂σ̃

(1−f)[σ̄+3(α2−α) σ̃m
1−f ]

To complete the formulation in the case of a non-associated model, the same isotropiza-

tion procedure as that used for the associated model is here used. The tangent moduli

κi and µi (equation 2.35) will get the following form respectively:

κi = κ0(1−
9κ0BB

′

HD
), µi = µ0(1−

2µ0AA
′

5HD
σ̃2
eq) (2.44)

where coefficients A and B are given in equations 2.21 and 2.22 respectively; A
′

and

B
′

take the later forms:

A
′

=
3
(

1+
3σ̃mα2

(1−f)σ̄−3σ̃mα2

)2

σ̄2

B
′

=
−f [σ̄(f−1)+3σ̃mα2]3[2α2+sgn(σ̃m)] sinh

[

(2α2+sgn(σ̃m) ln(1− 3α2σ̃m
σ̄ )

2α2

]

−2σ̃2
eqα2(f−1)2(σ̄−3σ̃mα2)

[σ̄(f−1)+3σ̃mα2]3(σ̄−3σ̃mα2)

Note that if α2=α, the associated flow rule is recovered.

2.3.4.3 Experimental validation

The purpose of this section is to evaluate the capacity of the non-associated model, de-

fined previously, by comparing numerical simulations with Vaca Muerta experimental

data. Considering the same parameter identification procedure that in section 2.3.4.1,

an additional parameter α2 is supplemented compared to the associated model. The

set of plastic and debonding parameters of the non-associated model for Vaca Muerta

shale is summarized in table 2.6.

Table 2.6: Set of parameters of the non-associated model for Vaca Muerta shale.

Plastic parameters Debonding parameters

α=0.245 S=0.04

α2=0.1 M=1

σ0m=50

σ00=1

b=650

Using the values given in tables 2.1, 2.2, 2.3 and 2.6 (elastic properties are chosen

according to whether the sample is horizontal or parallel and if taken from a gas or oil

well), a set of numerical simulations are carried out for triaxial compression tests at
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different confining pressures and on samples from various wells and at different depths.

Figures 2.23-2.28 show comparisons between non-associated model simulations and

Vaca Muerta experimental data. Several comments can be withdrawn:

❼ In general, there is a good agreement between numerical results and experimen-

tal data.

❼ The non-associated model describes suitably the transition from volumetric

compressibility to dilatancy with the increase of the deviatoric stress.

❼ The lateral and volumetric strains are less pronounced compared to the associ-

ated model.

❼ The proposed micromechanical model can consistently account for the effect

of mineralogical composition (fine grains, mesoinclusions and porosity) on the

macroscopic response of Vaca Muerta shale. This represents an advantage re-

garding phenomenological macroscopic models.

❼ The proposed model is able to account for the effect of confining pressure on

macroscopic behavior.

❼ The micro-macro model takes into account the material softening related to

progressive interfacial debonding process.

Some important differences can be observed between numerical results and experi-

mental data for some samples. One note that many factors can influence the results.

The most important one is that the mineralogical composition and microstructure

of Vaca Muerta shale are very complex. The interparticle porosity is approximated

to be the quarter of total one. Even, the volume fraction of fine inclusions are not

well known for all samples. For horizontal samples (parallel loading), it is obvious

to obtain a difference between numerical and experimental curves for lateral strain

(therefore, volumetric strain) given that experimental values do not represent the true

values since lateral deformation is not isotropic (there is two values in two directions).

Besides, according to our observations, most withdrawn samples are cracked before

any loading which can affect the macroscopic response. But in general, apart from

the comparison between experimental data and simulations, the proposed microme-

chanical model is able to capture the main features of heterogeneous rocks mechanical

behavior.

Some complex triaxial compression tests are realized: a number of hydrostatic loading-

unloading cycles is performed before applying the deviatoric stress. With the pro-

posed micromechanical model since the plasticity surface is no longer a straight line

(Drucker-Prager criterion) but rather it is a closed surface (figure 2.11), thus, during
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Figure 2.23: Comparison between associated/non-associated model simulations and

experimental data in a simple triaxial compression test on a Vaca Muerta shale sam-

ple (confining pressure=5 MPa; depth=2686.49 m; well S2; horizontal; f1=0.2275,

f2=0.431, f3=0.0164, f4=0.1, f6=0.05, f=0.08).
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Figure 2.24: Comparison between non-associated model simulations and experimental

data in a simple triaxial compression test on a Vaca Muerta shale sample (confining

pressure=5 MPa; depth=2668.71 m; well S2; vertical; f1=0.15, f2=0.412, f3=0.0033,

f5=0.23, f=0.09).
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Figure 2.25: Comparison between non-associated model simulations and experimen-

tal data in a simple triaxial compression test on a Vaca Muerta shale sample (con-

fining pressure=8 MPa; depth=2668.78 m; well S2; horizontal; f1=0.143, f2=0.35,

f3=0.0044, f4=0.12, f6=0.13, f=0.13).

-1-0.8-0.6-0.4-0.200.20.4

-160

-140

-120

-100

-80

-60

-40

-20

0
Axial strain (%)

Deviatoric stress (MPa)

Lateral strain (%)

E
l

E
v

E
a

Figure 2.26: Comparison between non-associated model simulations and experimen-

tal data in a simple triaxial compression test on a Vaca Muerta shale sample (confin-

ing pressure=25 MPa; depth=2686.55 m; well S2; horizontal; f1=0.2275, f2=0.431,

f3=0.0164, f4=0.1, f6=0.05, f=0.08).
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Figure 2.27: Comparison between non-associated model simulations and experimental

data in a simple triaxial compression test on a Vaca Muerta shale sample (confining

pressure=2 MPa; depth=2639.73 m; well S3; vertical; f1=0.4, f2=0.3, f4=0.257,

f6=0.05, f=0.05).
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Figure 2.28: Comparison between non-associated model simulations and experimen-

tal data in a simple triaxial compression test on a Vaca Muerta shale sample (con-

fining pressure=10 MPa; depth=2652.46 m; well S3; vertical; f1=0.2415, f2=0.173,

f4=0.264, f6=0.25, f=0.08).
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hydrostatic loading, if the applied stress exceeds the elasticity threshold, the material

enters into a state of plasticity. Therefore, interfacial debonding process and plastic

strain can occur even during hydrostatic loading. The loading path of complex tri-

axial tests, applied to the samples from two wells S1 and S3, is illustrated in figure

2.29. For samples from well S1, during hydrostatic loading, firstly, axial and lateral

stresses are increased to −80 MPa and then, a unloading phase is applied to reach

a stress state of −10 MPa. Finally, the deviatoric phase starts up where axial stress

increases and lateral one is kept constant. Figures 2.30-2.33 exhibit comparisons

between non-associated model simulations and experimental data in some complex

triaxial compression tests on Vaca Muerta shale samples (confining pressure=10 MPa;

vertical; different depths). One can see a very good accordance between numerical

results and experimental data.
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Figure 2.29: Illustration of the loading path for complex triaxial tests for wells S1

and S3.
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Figure 2.30: Comparison between non-associated model simulations and experimen-

tal data in a complex triaxial compression test on a Vaca Muerta shale sample (con-

fining pressure=10 MPa; depth=2530.23 m; well S1; vertical; f1=0.423, f2=0.215,

f3=0.0173, f5=0.23, f=0.094).
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Figure 2.31: Comparison between non-associated model simulations and experimental

data in a complex triaxial compression test on a Vaca Muerta shale sample (confining

pressure=10 MPa; depth=2649.23 m; well S1; vertical; f1=0.39, f2=0.3, f3=0.024,

f4=0.15, f=0.1).
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Figure 2.32: Comparison between non-associated model simulations and experimen-

tal data in a complex triaxial compression test on a Vaca Muerta shale sample (con-

fining pressure=10 MPa; depth=2536.23 m; well S3; vertical; f1=0.26, f2=0.3075,

f3=0.0068, f4=0.172, f=0.14).
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Figure 2.33: Comparison between non-associated model simulations and experimental

data in a complex triaxial compression test on a Vaca Muerta shale sample (confining

pressure=10 MPa; depth=2576.21 m; well S3; vertical; f1=0.53, f2=0.21, f4=0.153,

f5=0.05, f6=0.05, f=0.08).

Figures 2.34 and 2.35 exhibit the variation of perfectly bonded calcite volume fraction

f1 during hydrostatic loading phase of a complex triaxial test for two samples from

wells S1 and S3. One can observe that the variation is quite small; nevertheless, it can

be noticed that the debonding process starts as early as the hydrostatic loading phase.
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Figure 2.34: Evolution of perfectly bonded calcite volume fraction f1 with axial strain

during hydrostatic loading phase of a complex triaxial test on a Vaca Muerta shale

sample (depth=2530.23 m; well S1).

2.3.5 Case of associated perfectly plastic clay solid phase

For the industrial application of the thesis, it is more appropriate to use a model with

the least possible number of parameters. For this purpose, we consider a simplified
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Figure 2.35: Evolution of perfectly bonded calcite volume fraction f1 with axial strain

during hydrostatic loading phase of a complex triaxial test on a Vaca Muerta shale

sample (depth=2536.23 m; well S3).

modeling case where the solid clay phase is assumed to have a perfectly plastic behav-

ior and follows an associated flow law. In this case, the number of plastic parameters

is reduced to two only: σ̄ = σ0m=50, α=α2= 0.245. For these conditions, the com-

parison between simulations and experimental data will not be very satisfactory. But

if we are interested only to the value of peak stress, the simulations can be sufficient.

The goal was to use as few parameters as possible. Some examples of simulations are

presented below (figures 2.36 and 2.37) and others in appendix B.
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Figure 2.36: Comparison between associated perfectly plastic simulations and experi-

mental data in a simple triaxial compression test on a Vaca Muerta shale sample (con-

fining pressure=5 MPa; depth=2686.49 m; well S2; horizontal; f1=0.2275, f2=0.431,

f3=0.0164, f4=0.1, f6=0.05, f=0.08).
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Figure 2.37: Comparison between associated perfectly plastic simulations and exper-

imental data in a complex triaxial compression test on a Vaca Muerta shale sample

(confining pressure=10 MPa; depth=2530.23 m; well S1; vertical; f1=0.423, f2=0.215,

f3=0.0173, f5=0.23, f=0.094).

2.4 Conclusion

In this chapter, a micromechanical elastoplastic damage model is developed to study

the instantaneous mechanical behavior of Vaca Muerta shale. Firstly, based on mi-

crostructure observations, the representative elementary volume of this material is

illustrated. This illustration seems indispensable in a scale modeling approach. In

the second section, we have discussed the elastic behavior of the studied material. At

first, elastic properties of all Vaca Muerta constituents are identified and afterward,

Mori-Tanaka scheme has been used as the linear homogenization method to predict

macroscopic elastic properties, which are compared to experimental data. In general,

the comparison seems satisfactory. Then, a sensitivity study in elastic regime is es-

tablished to show the influence of kerogen elastic properties and fine inclusions on

effective elastic ones.

In the third section, the elastoplastic damage behavior of Vaca Muerta shale has been

formulated by using a non-linear homogenization procedure. The sliding between clay

sheets is supposed as the origin of plasticity. A first step of homogenization yields

the strength domain of the porous clay phase where its solid phase is considered as a

cohesive-frictional material obeying to Drucker-Prager criterion. At the second and

third homogenization steps, the effects of fine and meso inclusions are taken into ac-

count simultaneously by using Hill’s incremental method. In the second main part,

interfacial debonding between composite matrix and mesocalcite inclusions is con-

sidered as the damage process. Later, the algorithm of numerical implementation
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is exposed. Afterward, the influence of damage evolution and some microstructural

aspects on macroscopic mechanical behavior is investigated. Finally, the calibration

and experimental validation of the proposed model are performed. In general, com-

parisons between experimental data and numerical simulations seem favorable. For

industrial application of the model, a simplified case is studied where clay solid phase

is supposed to have an associated perfectly plastic behavior.

80





Chapter 3

Constitutive model for long term

behavior of Vaca Muerta shale

Contents

3.1 Formulation of time-dependent behavior . . . . . . . . . 83

3.2 Algorithm for local integration of the clay phase . . . . 86

3.3 Sensitivity assessment for long term behavior . . . . . . 87

3.4 Experimental validation of the proposed model . . . . . 91

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

82



The previous chapter was devoted to the formulation of instantaneous mechanical

behavior of Vaca Muerta shale rock in the context of elastoplasticity and damage

evolution. By applying three homogenization levels, the macroscopic constitutive law

was obtained by means of Hill’s incremental method. By using an isotropic version of

matrix tangent operator for Eshelby’s tensor calculation, the micromechanical model

is shown capable to reproduce the mechanical behavior of the studied material. As we

have demonstrated, the model has the advantage of taking into consideration the in-

fluence of mineralogical composition, porosity and plastic compressibility of the solid

phase on the macroscopic response.

Based on laboratory tests ([Cristescu, 1993], [Martin and Chandler, 1994], [Maranini

and Brignoli, 1999], [Hunsche and Hampel, 1999] and [Li and Xia, 2000]), it is obvious

to consider that most geomaterials, like rocks and concrete, exhibit both instanta-

neous and time-dependent irreversible deformations. Thus, after having formulated

the short term behavior, the aim of this chapter is to model the time dependent behav-

ior of Vaca Muerta shale rock by counting on the effect of porosity and mineralogical

composition. This study is indispensable in shale hydrocarbon stimulation to control

the progressive closure of fractures and the loss of well productivity. In most existing

time-dependent models ([Shao et al., 2003], [Shao et al., 2006], [Zhou et al., 2008] and

[Zhao et al., 2016]), the influence of microstructural constituents is not explicitly taken

into account or envisaged through empirical relations. Although, others consider the

material heterogeneity ([Bikong et al., 2015] and [Xu et al., 2017]). In our study,

the creep behavior is modeled in terms of material degradation: we consider that the

time-dependent deformation is a macroscopic consequence of microstructure evolu-

tion ([Pietruszczak et al., 2002], [Shao et al., 2003] and [Pietruszczak et al., 2004]).

Particularly, in our model, we assume that the origin of macroscopic time-dependent

deformation is the damage of clay solid phase. Thus, the evolution of microstructure

is considered as the time dependent progressive damage process.

3.1 Formulation of time-dependent behavior

Classically, the time-dependent inelastic deformation of materials is described by the

phenomenological viscoplastic theory ([Perzyna, 1966], [Cristescu, 1989], [Simo and

Hughes, 1998] and [Lemaitre and Chaboche, 1998]) where the time dependent defor-

mation is attributed to the inherent viscous effect of material. This approach provides

a mathematical description of the time dependent behavior: a loading function is de-

fined using the over-stress concept and the viscoplastic strain rate is determined by a

corresponding flow rule ([Fodil et al., 1997], [Jin and Cristescu, 1998], [Maranini and

Yamaguchi, 2001], [Voyiadjis et al., 2012] and [Zhu and Sun, 2013]). In other studies,

the time-dependent deformation is attributed to the progressive degradation of mi-
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crostructure, such as the dissolution of grain interfaces due to chemical-mechanical

coupling ([Gerard et al., 1998] and [Lydzba et al., 2007]), the subcritical propaga-

tion of microcracks in hard rocks ([Huang and Shao, 2012] and [Bikong et al., 2015])

and pore collapse in highly porous rocks ([Dahou et al., 1995] and [Xie, 2005]). In

this model, we consider that the time-dependent deformation is a macroscopic con-

sequence of microstructure evolution. We suppose that the microcraking inside clay

matrix is the time-dependent progressive damage process, leading to the degradation

of failure strength of clay matrix solid phase. Thus, the material is now considered

constituted of an elastoplastic damage clay matrix and elastic inclusions. Therefore,

our goal is to develop a unified approach for the description of both, short and long

term elastoplastic damage behavior of material. Thereby, the long term behavior will

be an extension of the instantaneous one presented in chapter 2.

As in ([Pietruszczak et al., 2002] and [Shao et al., 2003]), an internal variable ζ is

introduced to quantify the microstructural evolution inside the clay matrix. ζ will

be function of clay plastic deformation which, in turn, evolves in time t. Thus, the

idea is to assume that when t → ∞, ζ → ζ̄, where ζ̄ represents a stationary state

corresponding to microstructure equilibrium (ζ = ζ̄). Therefore, the microstructure

evolves in time until ζ = ζ̄ when a equilibrium state is reached. The kinetics of

microstructure evolution can be described in terms of the deviation from the equilib-

rium state given by (ζ̄ − ζ). A simple linear form of the evolution law is considered

as follows:

ζ̇ = γ(ζ̄ − ζ) (3.1)

where γ is a material constant that controls the rate of primary creep, ζ̄ ∈ [0, 1] and

ζ ∈ [0, ζ̄]. As we know, a general creep response is decomposed into three stages: pri-

mary, secondary and tertiary creep where the latter corresponds to material failure.

Thus, according to our formulation, material failure will occur, when ζ̄ increases very

fast compared to ζ so that the latter cannot reach an equilibrium state.

By using Laplace transform, convolution theorem and integration by parts with

ζ(0)=0 [Pietruszczak et al., 2004], the definition of ζ becomes:

ζ(t) =

∫ t

0

γζ̄(τ) e−γ(t−γ)dτ = ζ̄(t)−
∫ t

0

∂ζ̄

∂τ
e−γ(t−τ)dτ (3.2)

For computational efficiency, a fast explicit integral algorithm established by [Zhao

et al., 2016] is used here to solve numerically the integral (3.2) for the calculation of

an explicit form of time dependent variable ζ. For a time increment dtn+1 at a step
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(n+1), ζn+1 is given as follows:

ζn+1 = ζne
−γdtn+1 + γ

(

ζ̄n+1 + ζ̄n
2

)

e−
1
2
γdtn+1dtn+1 (3.3)

where ζ̄n+1 and ζ̄n are respectively the stationary state variables at actual (n+1) and

previous (n) steps.

In the present formulation, the parameter for stationary state of microstructure evo-

lution ζ̄ is identified as:

ζ̄ =
σ̄

σ0m
(3.4)

where σ̄ is the plastic hardening function (equation 2.11) and σ0m, the asymptotic

value of clay solid phase yield stress.

Physically, when coherent materials (cement paste and clay rocks) are leached or

completely destroyed under the effect of external factors, they become a granular

material; thereby, its cohesion decreases. Thus, based on the concept of damage

mechanics, we assume that the time-dependent damage of the clay matrix affects the

failure surface (equation 2.7) through the plastic hardening function σ̄. The latter

turns into:

σ̄d = σ̄(1− βζ) (3.5)

where β is a model parameter.

A unified model is considered, in this chapter, to study the instantaneous and time-

dependent behavior of Vaca Muerta shale rock. The same set of plastic and degra-

dation parameters is used to simulate both, short and long term tests. As we have

already presented, the irreversible plastic deformation can take place in an instanta-

neous manner due to loading variations, or, in a delayed way due to microstructural

evolution inside clay matrix. Note that the plastic deformation (either instantaneous

or time-dependent) occurs only in the clay phase so the macroscopic plastic strain

is equivalent to clay phase microscopic one. The total macroscopic strain rate Ėij is

decomposed into elastic Ėe
ij and plastic Ėp

ij parts:

Ėij = Ėe
ij + Ėp

ij (3.6)

The elastic strain rate can be calculated by using Hooke’s law and macroscopic elastic

properties (section 2.2). In the case of an instantaneous loading, the plastic strain

rate is determined according to the definition of the microscopic yield function and

plastic flow rule of the clay matrix, given in paragraph 2.3.4.2. Besides, in the case of
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long term loading, the plastic strain is calculated according to the latter formulation

of long term behavior, the definition of the microscopic yield function and plastic

flow rule of the clay matrix. The idea is as follows: at the end of instantaneous

plastic computation, the clay plastic criterion checks the plastic equilibrium condition

(Φ < 0). Then, once the plastic hardening law is degraded (equation 3.5), the plastic

criterion may be degraded and the plastic equilibrium condition will no longer be

verified (Φ > 0). Thus, a plastic deformation will take place. To understand the

formulation of the constitutive model for long term behavior, let’s take the example of

a creep path. As we know, a creep test consists into two stages: a loading application

phase (confining and deviatoric stress) and then a load maintenance one. During the

stage of loading application, since its duration is very short, elastic Ėe
ij or plastic Ė

p
ij

strain takes place depending on stress variations. The effect of time is insignificant

in this stage. However, during the load maintenance phase, since the holding time is

quite important compared to the duration of application, plastic strain occurs due to

the degradation inside clay matrix.

3.2 Algorithm for local integration of the clay phase

The numerical implementation of micromechanical model for short term behavior,

given in section 2.3.3.1, remains the same for long term behavior. Only the algorithm

for local integration of the elastoplastic damage clay phase will change (step 6.4.) and

is presented in this paragraph for a step (n+1) or at time tn+1 = tn+dtn+1 as follows:

1. Input data : ε̃0,n, ε̃
p
0,n, ε

p
n, ∆ε̃0, ζ̄n, ζn and dtn+1;

2. Calculating the deformation at step n+ 1 : ε̃0,n+1 = ε̃0,n +∆ε̃0;

3. Initialize (elastic prediction): For i = 0























































ε̃
p,0
0,n+1 = ε̃

p
0,n

σ̃
0
n+1 = C0 : (ε̃0,n+1 − ε̃

p,0
0,n+1)

ζ̄0n+1 = ζ̄n = σ̄n

σ0m

ζ0n+1 = ζne
−γdtn+1 + γ

(

ζ̄0n+1+ζ̄n

2

)

e−
1
2
γdtn+1dtn+1

σ̄d,0
n+1 = σ̄n(1− βζ0n+1)

Φ(σ̃i
n+1, ε

p,i
n+1, f) = Φi

n+1

4. If Φi
n+1 ≤ 0 then: go to step 7; else go to step 5 for plastic correction:

5. δ(∆λ) =
Φi

n+1

∂Φ
∂σ̃

:C0:
∂G
∂σ̃

−
∂Φ
∂f

[

∂G
∂σ̃m

(1−f)−3α2
σ̃: ∂G

∂σ̃

σ̄+3(α2−α) σ̃m
1−f

]

−
∂Φ
∂σ̄

∂σ̄
∂εp

σ̃: ∂G
∂σ̃

(1−f)[σ̄+3(α2−α) σ̃m
1−f ]
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6. Calculate new values for each iteration:







































































σ̃
i+1
n+1 = σ̃

i
n+1 − δ(∆λ)C0 :

∂Gi
n+1

∂σ̃
(σ̃i

n+1, ε
p,i
n+1, f)

εp,i+1
n+1 = εp,in+1 + δ(∆λ)

σ̃: ∂G
∂σ̃

(1−f)[σ̄+3(α2−α) σ̃m
1−f ]

∆λi+1 = λi + δ(∆λ)

ε̃
p,i+1
n+1 = ε̃

p,i
n+1 + δ(∆λ)∂G

∂σ̃

ζ̄ i+1
n+1 =

σ̄i+1
n+1

σ0m
= σ0m−(σ0m−σ00)e

−bε
p,i+1
n+1

σ0m

ζ i+1
n+1 = ζne

−γdtn+1 + γ
(

ζ̄i+1
n+1+ζ̄n

2

)

e−
1
2
γdtn+1dtn+1

σ̄d,i+1
n+1 = σ̄i+1

n+1(1− βζ i+1
n+1)

Set i = i+ 1 and return to step 4

7. End of Algorithm

3.3 Sensitivity assessment for long term behavior

In this paragraph, a qualitative study is carried out to show different characteristics

of the proposed model for long term behavior. For this sensitivity study, we use a typ-

ical mineralogical composition of Vaca Muerta shale rock: f1 = 0.2; f2 = 0.3; f3 =

0.01; f4 = 0.1; f5 = 0.05; f6 = 0.05; f = 0.1 and the same set of plastic and

debonding parameters identified in section 2.3.4.1 in the case of an associated flow

rule (table 3.1). In figure 3.1.a, one illustrates the influence of degradation parameter

β on creep response: when β increases, the creep deformation is more considerable.

In figure 3.1.b, we show the influence of model’s parameter γ on creep response. As

we can see, γ influences the transition rate from primary to secondary creep: when γ

increases, the transition will take place more quickly.

Table 3.1: Set of parameters used in model’s qualitative study for time dependent

behavior.

Plastic parameters Debonding parameters

α=0.245 S=0.04

σ0m=50 M=1

σ00=1

b=650
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Figure 3.1: a. Influence of creep parameters β (γ = 5.10−5/s) and b. γ (β=0.6) on

creep response (Pa=50 MPa; Pc=0 MPa).

Figure 3.2.a shows the influence of applied axial stress on uniaxial creep response:

when the applied axial stress is 60 MPa, only primary and secondary creep are ob-

served. However, when the axial stress reaches 65 or 70 MPa, tertiary creep (failure)

occurs. Figure 3.2.b exhibits the variation of microstructural parameter ζ (contin-

uous lines) and stationary state parameter ζ̄ (dashed lines) as function of time for

the latter stress conditions. As we can see, for axial stress=60 MPa, after a while,

ζ → ζ̄, i.e. the microstructure is in an equilibrium state and the failure does not

occur. Whereas, for the case of axial stress=65 or 70 MPa, ζ̄ varies too fast compared

to ζ and reaches the limit value (ζ̄=1), implying a spontaneous failure.
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Figure 3.2: a. Influence of applied axial stress on uniaxial creep response; b. Variation

of ζ (continuous lines) and ζ̄ (dashed lines) as function of time for the different stress

intensities (β=0.7 and γ=5.10−6/s).
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In figure 3.3, one illustrates the simulations of a uniaxial and triaxial multistage creep

tests. One can notice that the creep deformation becomes more significant when the

axial stress increases. Particularly, in the right simulation, its clear that failure occurs

at the second stage.
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Figure 3.3: a. A multistage uniaxial and b. triaxial creep simulations (β=0.7 and

γ=5.10−6/s).

In figure 3.4, we show the influence of degradation parameters β and γ on relaxation

response. As we can see, the higher the value β, more relaxation is pronounced. As

well, when the value of γ increases, the relaxation rate is faster. Notably, the model

is able to reproduce relaxation tests.
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Figure 3.4: a. Influence of degradation parameters β (γ = 5.10−6/s) and b. γ

(β = 0.6) on relaxation response (axial strain=0.7 % and Pc=0 MPa).

Figure 3.5 exhibits the simulations of a multistage uniaxial and triaxial relaxation

tests. One can notice the influence of confining pressure on macroscopic response and

the capacity of the model to reproduce multistage relaxation tests.
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Figure 3.5: a. A multistage uniaxial and b. triaxial relaxation simulations (β=0.7

and γ = 10−5/s).

Figure 3.6 illustrates stress-strain curves in uniaxial compression tests with different

axial strain rates. Apparently, when the axial strain rate is very slow (< 10−6/s),

a time-dependent deformation takes place which leads to the decrease of the peak

strength. As we have already seen in this paragraph, the proposed model is able

to reproduce different time dependent loading paths (creep, relaxation and triaxial

compression tests with different axial loading rates). Therefore, on a qualitative level,

the model is quite rich.
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Figure 3.6: Stress-strain curves in a uniaxial compression test with various axial strain

rates (β=0.5 and γ=5.10−6/s).
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3.4 Experimental validation of the proposed model

The aim of this paragraph is to simulate creep tests performed on Vaca Muerta shale

rock by applying the proposed model. Note that the comparison is done only be-

tween creep data and numerical simulations. Relaxation tests on Vaca Muerta shale

are in progress and could not be completed before the completion of the thesis. With

the same elastic (tables 2.1, 2.2 and 2.3) and plastic parameters (table 2.6) used

for the validation of short-term triaxial compression tests, the proposed microme-

chanical model is applied to simulate creep tests by using the following degradation

parameters: β = 0.6 and γ = 5.10−5. Figures 3.7 and 3.8 show the comparison

between non-associated model simulations and experimental data in two multistage

triaxial (Pc=8 MPa and Pc=15 MPa, respectively) compression creep tests on two

Vaca Muerta shale samples with different loading conditions. Note that these creep

tests are carried out in our laboratory. The results of numerical simulations are quite

consistent with the experimental data in quantitative sense. Both axial and lateral

deformations are predicted quite accurately. In the two figures, spontaneous failure

occurs at the third stage of loading due to unstable degradation process, leading to

an accelerated creep deformation. According to experimental curves, for this studied

material, the level of creep deformation is weak for the considered stress conditions

and then, failure will take place spontaneously when axial stress exceeds a certain

limit. Besides, as for the case of instantaneous mechanical behavior, the model is

able to take into account the influence of mineralogical composition on the macro-

scopic behavior.
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Figure 3.7: Comparison between non-associated model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sample

(confining pressure=8 MPa; depth=2668.84 m; well S2; horizontal; f1=0.143, f2=0.3,

f3=0.0044, f4=0.12, f6=0.13, f=0.1).
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Figure 3.8: Comparison between non-associated model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sam-

ple (confining pressure=15 MPa; depth=2768.44 m; well S2; horizontal; f1=0.249,

f2=0.294, f3=0.0133, f4=0.12, f6=0.12, f=0.15).

According to [Li and Xia, 2000], in a multistage triaxial compression creep test, the

effect of strain history, on further evolution of rock deformation by means of irre-

versible plastic strains cumulated during all previous load levels, has to be taken into

account properly. To show the influence of loading path history, we simulate a triaxial

compression creep test with a confining pressure of 15 MPa and an axial stress of 115

MPa (figure 3.9). We can clearly distinguish in this figure the three phase of a creep

response: transient, stationary and tertiary creep. Failure takes place approximately

after few hours of loading retention where ζ̄ → 1 and ζ is smaller (figure 3.10). The

purpose is to compare the duration before failure in figure 3.9 with that of the last

loading stage of figure 3.8. As we can see, in the latter figure, failure occurs directly

during the application of last load. Thereby, the notice of [Li and Xia, 2000] is well

verified: a material subjected to multistage loading will suffer a cumulation of creep

damage between all stress levels.
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Figure 3.9: Simulation of a triaxial compression creep test with a confining pressure

of 15 MPa and a deviatoric stress of 100 MPa.
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Figure 3.10: Variation of microstructure evolution parameters ζ and ζ̄ as function of

time for test given in figure 3.9.

Other multistage creep tests are realized by [Dusterloh, 2015]. Some comparisons

between these experimental data and numerical simulations are given in figures 3.11-

3.14. It may well be remarked that the comparison seems satisfactory for most cases.

Even if the comparison is not perfect, the most importantly is that the model takes

into account the effect of mineralogical composition on the macroscopic response.
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Figure 3.11: Comparison between non-associated model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sample

(confining pressure=8 MPa; depth=2537.14 m; well S1; vertical; f1=0.19, f2=0.237,

f3=0.016, f4=0.13, f6=0.194, f=0.1).
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Figure 3.12: Comparison between non-associated model simulations and experimen-

tal data in a multistage triaxial compression creep test on a Vaca Muerta shale sam-

ple (confining pressure=8 MPa; depth=2537.24 m; well S1; horizontal; f1=0.2374,

f2=0.236, f3=0.019, f4=0.13, f6=0.337, f=0.087).
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Figure 3.13: Comparison between non-associated model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sample

(confining pressure=8 MPa; depth=2546 m; well S1; horizontal; f1=0.099, f2=0.55,

f3=0.014, f4=0.108, f6=0.05, f=0.095).
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Figure 3.14: Comparison between non-associated model simulations and experimen-

tal data in a multistage triaxial compression creep test on a Vaca Muerta shale sam-

ple (confining pressure=25 MPa; depth=2568.11 m; well S3; horizontal; f1=0.208,

f2=0.35, f3=0.007, f4=0.191, f=0.15).

3.5 Conclusion

In this chapter, we have studied the time-dependent behavior of Vaca Muerta shale.

The differed deformation is described in terms of microstructure evolution, inducing

the progressive degradation of material failure strength. The formulation, established

by ([Pietruszczak et al., 2002] and [Shao et al., 2003]), is applied to submit a unified

model for both instantaneous and long term elastoplastic damage behavior of Vaca

Muerta shale. Firstly, the formulation of the constitutive model is presented. Af-

terward, the algorithm for local integration of the elastoplastic damage clay phase is

exposed. Then, a sensitivity study is realized to show the ability of the model to re-

produce the different loading paths such as: creep, relaxation and triaxial compression

tests with different axial strain rates. Finally, an experimental validation is carried

out: a number of comparison between creep experimental data and simulations is

performed. Numerical simulations are quite consistent with experimental data in a

quantitative sense. Note that the main advantage of this micromechanical model is

that it takes into account the effect of mineralogical composition and porosity on the

macroscopic response.
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In this chapter, a simplified micromechanics based formulation is proposed for clayey

and shale rocks. Clayey and shale rocks are considered as a composite material with

two scales. At microscale, the clay matrix is a porous medium composed of a solid

phase and pores. At mesoscale, the homogenized porous clay matrix is reinforced

by different types of inclusions. For simplicity and in order to build an analytical

micromechanical model, these inclusions will be replaced by an effective one. The an-

alytical macroscopic plastic criterion of this composite material has been determined

using a non linear homogenization method as in [Shen et al., 2013]. This macroscopic

criterion is here extended to define the viscoplastic loading function. A unified for-

mulation is proposed to describe both plastic and viscoplastic strains through two

distinct yield surfaces. A non-associated potential is introduced to respectively de-

termine the plastic and viscoplastic flow rules. A series of numerical assessment is

performed in order to investigate the influence of porosity and mineral composition on

both plastic and viscoplastic deformations. Comparisons between numerical results

and experimental data on Callovo-Oxfordian argillites and Vaca Muerta shale are

also presented to show the capability of the proposed model in reproducing the main

features of clayey and shale rocks deformational behavior. Finally, for the industrial

application of the thesis, the proposed model is used to study the interaction between

Vaca Muerta shale rock and the grains of proppants in order to see if the deferred

deformation of the rock will induce a decrease in cracks conductivity.

4.1 Simplified microstructure

In order to obtain an analytical form of macroscopic plastic criterion, the microstruc-

ture of clayey and shale rocks is simplified; only two scales are considered. At meso-

scopic scale (hundreds of µm to mm), the rock is seen as a composite material with a

continuous clay matrix which is reinforced by a random distribution of spherical in-

clusions. For clayey rock, quartz and carbonates are the mesoinclusions but for shale

rock, we consider quartz, carbonates, pyrite and kerogen. The mechanical behavior of

all these mesoinclusions can be described by a linear isotropic elastic model. At mi-

croscopic scale (∼ µm), the clay matrix is considered as an assembly of clay particles

and interparticle pores. The latter are supposed spherical and having a size smaller

than that of mineral inclusions. Therefore, the clay matrix is approximated by a

porous medium with a continuous solid phase and spherical pores. As a first approx-

imation, for clayey and shale rocks, we suppose that all mesoinclusions are merged

into one family of inclusions at mesoscale. According to [Shen et al., 2013], the rep-

resentative volume element (RVE) of the simplified material is illustrated in figure 4.1.

One denotes, Ωp, Ωi and Ωm, the volume of pores, mineral inclusions and solid clay

matrix respectively. Then, the relative porosity of the clay matrix f and the volume
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inclusion 
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Figure 4.1: A simplified representation of typical clayey and shale rocks [Shen et al.,

2013].

fraction of inclusions ρ are given by the following relations:

f =
Ωp

Ωp + Ωm

; ρ =
Ωi

Ωi + Ωm + Ωp

(4.1)

4.2 A unified plastic and viscoplastic model

The plastic deformation in clayey and shale rocks is mainly related to the irreversible

evolution of clay matrix such as sliding along clay sheets and to the growth of mi-

crocracks at grain-matrix interfaces and eventually inside the matrix. The plastic

deformation can take place in an instantaneous way due to stress variations and other

external loads, and also in a delayed manner due to viscous sliding and subcritical

propagation of microcracks. At the macroscopic scale, this leads to both instanta-

neous and time-dependent plastic deformations. Differently than classical approaches

where separate models are used to describe plastic and viscoplastic deformations, a

unified formulation will be developed here. The same physical processes are consid-

ered and the viscoplastic deformation is seen as a delayed plastic deformation. The

plastic and viscoplastic deformations are described by the same form of yield function

and flow potential. The loading surface of viscoplastic deformation is inside the yield

surface of plastic deformation, as shown in figure 4.2. The stress state, verifying the

plastic equilibrium condition but being outside the viscoplastic loading surface, may

produce time-dependent creep deformation. Therefore, the total macroscopic strain

rate is decomposed into an elastic part Ėe
ij, an instantaneous plastic part Ėp

ij and a

time-dependent viscoplastic part Ėvp
ij :

Ėij = Ėe
ij + Ėp

ij + Ėvp
ij (4.2)

The elastic strain can be calculated by using the macroscopic elastic properties. The

plastic strain rate should be determined by the definition of a macroscopic yield
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function and a plastic flow rule while the viscoplastic strain rate by a viscoplastic

loading function and a flow rule.

Φvp
=0

Φp
=0

Φvp>0

Σ
m

Σ
d

Figure 4.2: Illustration of instantaneous macroscopic plastic yield surface φp and

viscoplastic loading surface φvp.

4.2.1 Macroscopic plastic yield criterion

Following the definition of two material scales shown in figure 4.1, the macroscopic

plastic yield criterion can be obtained from a two-step non linear homogenization pro-

cedure. As the macroscopic plastic deformation in clayey and shale rocks is generated

by the solid clay grains, the starting point is to define its local behavior. As for most

cohesive-frictional materials, it is assumed that local plastic behavior is described by

the classical Drucker-Prager criterion (we used the same notations as in [Shen et al.,

2013]):

φm(σ̃) = σ̃d + T (σ̃m − h) ≤ 0 (4.3)

where σ̃ is the local stress tensor in the solid clay phase, σ̃m the corresponding mean

stress and σ̃d =
√
σ̃′ : σ̃′ the equivalent shear stress, related to the deviatoric stress

tensor σ̃′. The parameter h defines the hydrostatic tensile strength and T the fric-

tional coefficient. It is useful to point out that Drucker-Prager criterion contains two

stress invariants only and does not consider the effect of third invariant or Lode angle.

By using the modified secant method proposed by [Maghous et al., 2009] or equiv-

alently the variational approach by [Suquet, 1995], an analytical form of the macro-

scopic plastic yield function for a porous medium reinforced by rigid inclusions has

been obtained by [Shen et al., 2013] and expressed in the following form:

Φp(Σ, f, T̄ ) = ΘΣ2
d +

(

3f
2T̄ 2 − 1

)

Σ2
m + 2(1− f)hΣm − 3+2f+3fρ

3+2f
(1− f)2h2 = 0 (4.4)
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with:

Θ =
1+2f/3

T̄ 2 + 2
3
ρ
(

3f
2T̄ 2 − 1

)

4T̄ 2−12f−9
6T̄ 2−13f−6

ρ+ 1

Σ is the macroscopic stress tensor, Σm the corresponding mean stress and Σd =√
Σ′ : Σ′, the equivalent shear stress related to the macroscopic deviatoric stress Σ′.

Experimental data of geomaterials show that the solid clay phase could exhibit sig-

nificant plastic hardening. In order to account for this process, it is assumed that the

frictional coefficient T varies with the equivalent plastic strain of the solid clay phase

ǫp to be identified later. The following exponential hardening law is here proposed:

T̄ = Tm − (Tm − T0)e
−b1ǫp (4.5)

where T0 is the initial threshold of the frictional coefficient, Tm its asymptotic value

and b1 the parameter which controls the kinetics of hardening.

4.2.2 Macroscopic viscoplastic loading function

Following the unified concept proposed here and as shown in figure 4.2, the viscoplastic

loading surface is delayed with respect to the instantaneous plastic yield surface. The

plastic yield surface evolution is controlled by both the porosity change and the

variation of frictional coefficient T̄ defined in equation 4.5. As the porosity has a

common effect on both plastic yield and viscoplastic loading surfaces, it is assumed

that the delay of the viscoplastic loading function is controlled by a viscoplastic

hardening function T̄vp(ǫ
p) with the following condition: T̄vp(ǫ

p) ≤ T̄p(ǫ
p). Note that

when T̄vp = T̄p, the two surfaces coincide and the viscoplastic flow vanishes. The

viscoplastic hardening function is expressed in the following form:

T̄vp = Tm − (Tm − T0)e
−bvpǫp (4.6)

The parameter bvp controls the kinetics of viscoplastic loading surface evolution. By

comparing the two hardening functions 4.5 and 4.6, one gets the following condition

bvp < b1. Replacing T̄p by T̄vp in equation 4.4, the viscoplastic loading function Φvp

is expressed as follows:

Φvp(Σ, f, T̄vp) = ΘΣ2
d+
(

3f
2T̄ 2

vp
− 1
)

Σ2
m+2(1−f)hΣm− 3+2f+3fρ

3+2f
(1−f)2h2 ≥ 0 (4.7)

with:

Θ =

1+2f/3

T̄ 2
vp

+ 2
3
ρ
(

3f
2T̄ 2

vp
− 1
)

4T̄ 2
vp−12f−9

6T̄ 2
vp−13f−6

ρ+ 1
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4.2.3 Plastic and viscoplastic flow rules

In most geomaterials, a transition from volumetric compressibility to dilatancy is

generally observed under high deviatoric loading. In order to take into account this

transition, a non-associated flow rule is needed. Inspired by the previous studies

([Maghous et al., 2009] and [Shen et al., 2013]), a heuristic method is here adopted.

The plastic potential is defined by modifying the plastic yield criterion and by intro-

ducing a dilatancy coefficient t̄ as follows:

Gp(Σ, f, T̄ , t̄) = ΘΣ2
d +

(

3f
2T̄ t̄

− 1
)

Σ2
m + 2(1− f)hΣm − 3+2f+3fρ

3+2f
(1− f)2h2 (4.8)

with:

Θ =
1+2f/3

T̄ t̄
+ 2

3
ρ
(

3f
2T̄ t̄

− 1
)

4T̄ t̄−12f−9
6T̄ t̄−13f−6

ρ+ 1

Further, it is assumed that the dilatancy coefficient t̄ evolves with plastic deformation

and it is also a function of the equivalent plastic strain ǫp:

t̄ = tm − (tm − t0)e
−b2ǫp (4.9)

tm, t0 and b2 are three parameters used for the evolution of the dilatancy coefficient.

If t̄ = T̄ , the associated flow rule is recovered. Accordingly, the plastic flow rule is

given by:

Ėp = λ̇p
∂Gp

∂Σ
(Σ, f, T̄ , t̄) (4.10)

λ̇p is the positive plastic multiplier verifying the following loading-unloading condi-

tions:

{

λ̇p = 0 if Φp < 0 or if Φp = 0 and Φ̇p < 0

λ̇p ≥ 0 if Φp = 0 and Φ̇p = 0
(4.11)

The equivalent plastic strain rate in the solid clay phase ǫ̇p is defined according to

the energy condition during the upscaling procedure ([Gurson, 1977], [Maghous et al.,

2009] and [Shen et al., 2013]). In the absence of viscoplastic flow, one gets:

ǫ̇p =
Σ : Ėp

(1− f)(1− ρ)
[

T̄ h+ (t̄− T̄ ) Σm

1−f

] (4.12)

Then, the variation of porosity is determined from the kinematical compatibility and

is given by:

ḟ =
1− f

1− ρ
trĖp − (1− f)t̄ǫ̇p (4.13)
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In a similar way that for the plastic potential, the non-associated viscoplastic potential

is defined in the following form:

Gvp(Σ, f, T̄vp, t̄) = ΘΣ2
d+
(

3f
2T̄vp t̄

− 1
)

Σ2
m+2(1− f)hΣm− 3+2f+3fρ

3+2f
(1− f)2h2 (4.14)

with:

Θ =

1+2f/3

T̄vp t̄
+ 2

3
ρ
(

3f
2T̄vp t̄

− 1
)

4T̄vp t̄−12f−9

6T̄vp t̄−13f−6
ρ+ 1

The viscoplastic flow rule is determined by the over-stress concept [Perzyna, 1966]

and expressed by the following power law:

Ėvp = λ̇vp
∂Gvp

∂Σ
(Σ, f, T̄vp, t̄) (4.15)

The viscoplastic multiplier λ̇vp is calculated by:

{

λ̇vp = 0 if Φvp ≤ 0

λ̇vp = h
η

(

Φvp

h

)m
if Φvp > 0

(4.16)

Two parameters are introduced to calculate the viscoplastic strain rate. η corresponds

to the viscosity of materials and determines the initial viscoplastic strain rate while

the power m controls the evolution of viscoplastic strain rate.

In the absence of instantaneous plastic deformation, the variations of equivalent plas-

tic strain ǫ̇p and of porosity ḟ are given by:

ǫ̇p =
Σ : Ėvp

(1− f)(1− ρ)
[

T̄vph+ (t̄− T̄vp)
Σm

1−f

] (4.17)

ḟ =
1− f

1− ρ
trĖvp − (1− f)t̄ǫ̇p (4.18)

When both instantaneous plastic and viscoplastic deformations occur, the variations

of equivalent plastic strain ǫ̇p and of porosity ḟ are given by:

ǫ̇p = Σ:Ėp

(1−f)(1−ρ)[T̄ h+(t̄−T̄ ) Σm
1−f ]

+ Σ:Ėvp

(1−f)(1−ρ)[T̄vph+(t̄−T̄vp)
Σm
1−f ]

(4.19)

ḟ =
1− f

1− ρ
(trĖp + trĖvp)− (1− f)t̄ǫ̇p (4.20)

4.3 Numerical assessment

4.3.1 Influence of microstructure on macroscopic criterion

In this section, a series of numerical simulations are presented in order to show the

influence of microstructure on macroscopic plastic criterion. In figure 4.3, one il-
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lustrates the macroscopic plastic yield surface for different values of porosity f and

volumetric fraction of mineral inclusions ρ, using the representative parameters given

in table 4.1. One can clearly see that the macroscopic yield surface is strongly in-

fluenced by the porosity of material. Both hydrostatic compression and shear yield

stresses significantly increase with the decrease of porosity. The hydrostatic tensile

yield stress also increases with the decrease of porosity but with a more moderated

manner than the previous ones. However, it seems that the influence of inclusion

volumetric fraction on the macroscopic yield surface is less significant than that of

the porosity, in particular for the yield stresses under hydrostatic compression and

tension. Only the shear yield stress is significantly influenced by the inclusion volume

fraction.

Σd [MPa]

Σm [MPa]

(a)

Σm [MPa]

Σd [MPa]

(b)

Figure 4.3: Influence of (a) porosity f and (b) volumetric fraction of inclusions ρ on

macroscopic instantaneous yield surface Φp.

Table 4.1: Reference parameters for the sensitivity analysis.

T f ρ h

0.3 0.3 0.4 16 MPa

4.3.2 Influence of microstructure on typical loading paths

In the following, the response of the proposed micromechanics based model is eval-

uated for some typical loading paths, namely, instantaneous triaxial compression,

creep, relaxation and lateral extension tests with constant mean stress. Elastic, plas-

tic and viscoplastic parameters, given in table 4.2, are used for this sensitivity study.

An associated flow rule is supposed.
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Table 4.2: Typical values of parameters used in sensitivity analysis.

Phase (0) clay Phase (1) inclusion

Elastic parameters Es=5.5 GPa Ei=98 GPa

νs=0.34 νi=0.15

Plastic parameters T0=0

Tm=0.78

b1=150

h=16 MPa

Viscoplastic parameters η = 1013

bvp=90

m=2

In figure 4.4, the mechanical response in a uniaxial compression test with an axial

strain rate of 10−6/s is presented, respectively for three values of porosity and inclu-

sion volume fraction. One can logically see that both the macroscopic elastic modulus

and failure strength increase with the increase of mineral inclusion fraction and with

the decrease of porosity. Compared with classical phenomenological models, by using

the proposed micromechanics based model, the macroscopic elastic properties and

the macroscopic yield stresses are explicitly dependent on porosity and inclusion vol-

ume fraction. Furthermore, it is also possible to directly calculate the evolutions of

porosity and inclusion volume fraction together with those of plastic strains from the

relation 4.20.
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Figure 4.4: Stress-strain curves in an uniaxial compression test with (a) different

values of porosity f and (b) inclusion volume fraction ρ .

In figure 4.5, the evolution of axial strain, during a uniaxial creep test with an ax-

ial stress of 5 MPa, is illustrated in function of time. The axial strain contains two

stages: the instantaneous strain due to the application of axial stress and the creep
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strain. As in a uniaxial compression test, the instantaneous strain is significantly

affected by the porosity and inclusion fraction. The creep strain rate increases with

the increase of porosity and the decrease of inclusion fraction. In figure 4.6, one also

shows the axial stress evolution during a uniaxial relaxation test (axial strain=0.3 %)

for different values of porosity and inclusion volume fraction; we can well notice the

influence of microstructure on the macroscopic relaxation response.
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Figure 4.5: Evolution of axial strain with time in an uniaxial creep test (axial stress=

5 MPa) for (a) different values of porosity f and (b) inclusion’s volumetric fraction

ρ.
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Figure 4.6: Evolution of axial stress in an uniaxial relaxation test (axial strain=0.3%)

for (a) different values of porosity f and (b) inclusion’s volumetric fraction ρ.

To complete this sensitivity study, the response in a lateral extension test with con-

stant mean stress is here studied. In this loading path, starting from a hydrostatic

stress state, the lateral stress (confining pressure) is decreased while the axial stress

is increased to keep the mean stress constant. This loading path is seen as represen-

tative of stress evolution in surrounding rock around an underground cavity during

excavation. In figure 4.7, one shows the stress-strain curves during a lateral extension

test with an initial confining pressure of 12 MPa. From this sensitivity study, it can be

concluded that the mechanical strength is reduced by the increase of porosity; how-

ever, the material is reinforced by the increase of inclusion volume fraction. Further,
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it is interesting to note that even if the inclusion volume fraction has a relatively less

important effect on the macroscopic yield surface than the porosity, as shown in figure

4.3, it still has a significant effect on the macroscopic deformation of the material.

This is due to the fact that the evolutions of porosity and inclusion volume fraction

are inherently coupled according to relations 4.19 and 4.20.
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Figure 4.7: Stress-strain curves in a lateral extension test with constant mean stress:

(a) influence of porosity f and (b) inclusion’s volumetric fraction ρ.

4.4 Experimental validation of the non-associated

model

To check the performance of the proposed micromechanical model, a series of exper-

imental validation is realized on Callovo-Oxfordian argillite and Vaca Muerta shale

rock. The model seems able to predict the main instantaneous and time-dependent

mechanical behaviors of clayey and shale rocks.

4.4.1 Callovo-Oxfordian argillites

In this section, numerical results are compared with experimental data obtained on

a typical Callovo-Oxfordian claystone, studied in the framework of radioactive waste

in France [Conil and Armand, 2015]. The mineralogical composition and porosity of

this clayey rock vary with geological depth. Only a representative layer is considered

here. The layer is in an average way composed of 54% of clay matrix and 46 % of elas-

tic mineral grains (carbonate and quartz). The overall porosity varies from 14.72%

to 17.08%. For this material, the porosity is assumed totally embedded in the clay

matrix. Thus, with the given mineralogical composition, the average relative porosity

of the clay matrix is about f = 30%. In the first part of this paragraph, four elastic,

seven plastic and three viscoplastic parameters for Callovo-Oxfordian argillites are

identified. Then, a series of comparisons between experimental data and numerical
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simulations is carried out to check the performance of the proposed model.

4.4.1.1 Identification of model parameters for clayey rocks

The effective elastic properties are determined by performing two steps of linear ho-

mogenization. At the first step, the effective elastic properties of the porous clay

matrix are determined. One assumes that the isotropic elastic behavior of the solid

clay phase is characterized by its bulk and shear moduli noted as κs and µs. Con-

sidering that pores are embedded into the solid clay matrix, it is convenient to apply

the classical Mori-Tanaka scheme [Mori and Tanaka, 1973], which is equivalent to the

Hashin’s upper bound [Hashin and Shtrikman, 1963]. The effective bulk and shear

moduli of the porous clay matrix, noted as κ0 and µ0, are given by:

κ0 =
4(1− f)κsµs

4µs + 3fκs
; µ0 =

(1− f)µs

1 + 6f κs+2µs

9κs+8µs

(4.21)

At the second step, the effective macroscopic elastic properties of Callovo Oxfordian

claystone are determined. At mesoscopic scale, mineral grains are embedded into

the porous clay matrix which is homogenized at the first step. Again, one applies

Mori-Tanaka homogenization scheme due to matrix-inclusion morphology. The ho-

mogenized bulk and shear moduli, noted as κhom and µhom, are given by the following

relations:

κhom =

∑

r=0

fr
κr

3κr+4µ0

∑

s=0

fs
3κs+4µ0

(4.22a)

µhom =

∑

r=0

fr
µr

µ0(9κ0+8µ0)+6µr(κ0+2µ0)

∑

s=0

fs
µ0(9κ0+8µ0)+6µs(κ0+2µ0)

(4.22b)

with: fr is the volumetric fraction of phase (r); (κr, µr) are respectively bulk and

shear moduli of phase (r).

In practice, in order to apply the relations 4.22, it is necessary to know the elas-

tic properties of solid clay matrix and mineral grains, as well as, the mineralogical

composition. The elastic properties of carbonate and quartz can be found in many

published literatures, for instance, the handbook of Chemistry and Physics [Lide,

2004]. As an example, Young’s modulus and Poisson coefficient of carbonate grains

and those of quartz grains are respectively about: Ec = 95 GPa and νc = 0.27,

Eq = 101 GPa and νq = 0.06. In the present work, as we have already said, for the

sake of simplicity and in order to find an analytical expression of macroscopic plastic
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yield criterion of clayey and shale rocks, the two families of mineral grains are mixed

into an equivalent inclusion phase. As in [Jiang et al., 2009], the elastic properties

of the equivalent inclusion phase are given by the average of those of quartz and

carbonates: Ei = 98 GPa and νi = 0.165. However, it is a hard task to determine

the elastic properties of clay matrix. Some attempts have been made to directly

measure the local elastic properties of clay particles using different techniques such

as nanoindentation. But large scatters have been found and it is not easy to obtain

representative values. An alternative way is used here, based on an inverse approach.

Given the values of porosity and volume fraction of inclusions, as well as, the experi-

mental macroscopic Young’s modulus Ehom and Poisson’s ratio νhom (obtained from

a uniaxial compression test on a representative sample), then, by the inversion of

the homogenized relations 4.22, it will be possible to get the elastic properties of the

porous clay matrix E0 and ν0 (or equivalently κ0 and µ0). As an example, according

to some studies on Callovo-Oxfordian claystone ([Abou-Chakra Guéry et al., 2008]

and [Shen et al., 2012]) with a porosity f=0.3, one has obtained the elastic properties

of the porous clay matrix: E0 = 3 GPa and ν0 = 0.3, and then, those of the solid clay

grains: Es = 5.57 GPa and ν2 = 0.34.

As for elastic parameters, the direct identification of plastic and viscoplastic ones

from local measurements is so far an open issue; an alternative indirect method is

used. For a selected mineralogical composition and stress conditions, the plastic and

viscoplastic parameters are identified, respectively, by numerical fitting on a triax-

ial compression and creep tests. The obtained values are then validated for other

mineralogical compositions and stress states. To identify plastic and viscoplastic pa-

rameters, we used, respectively, a triaxial compression test with a confining pressure

of 6 MPa (figure 4.9) and a triaxial creep test with a confining pressure of 6 MPa

and a deviatoric stress of 7 MPa (figure 4.11-50 % of peak differential stress). The

identified parameters for Callovo-Oxfordian argillites are summarized in table 4.3 and

used in all numerical simulations presented below. In all following figures, continuous

curve represent numerical simulations and symbolic ones correspond to experimental

data.

4.4.1.2 Triaxial compression tests

In figures 4.8, 4.9 and 4.10, one shows the comparisons between simulations and ex-

perimental data on Callovo-Oxfordian argillites for three triaxial compression tests

with three confining pressures (2, 6 and 12 MPa). These tests were performed with a

constant axial strain rate of 10−6/s. In a general way, there is a good agreement for

both axial and lateral strains and for all values of confining pressure. However, some

109



Table 4.3: Typical values of parameters for Callovo-Oxfordian argillites.

Phase (0) clay Phase (i) inclusion

Elastic parameters Es=5.5 GPa Ei=98 GPa

νs=0.34 νi=0.165

Plastic parameters T0=0

Tm=0.78

b1=150

t0=0

tm=0.45

b2=150

h=16 MPa

Viscoplastic parameters η = 1015

bvp=60

m=2

differences are obtained, especially for the volumetric strain. Several explanations

can be given. The studied claystone is a strongly heterogeneous rock; the mineralog-

ical composition may be quite different between samples, while averaged values are

used in all simulations. Besides, the mechanical behavior of claystone is further very

sensitive to water content, which can be significantly modified during core drilling,

core transportation and sample preparation. Finally, microcracks can be induced in

samples during preparation and due to drying-saturation process. However, the main

features of the instantaneous mechanical behavior of the studied claystone is well

reproduced by the proposed model.
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Figure 4.8: Comparison between numerical results and experimental data in a triaxial

compression test with a confining pressure of 2 MPa.
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Figure 4.9: Comparison between numerical results and experimental data in a triaxial

compression test with a confining pressure of 6 MPa.
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Figure 4.10: Comparison between numerical results and experimental data in a tri-

axial compression test with a confining pressure of 12 MPa.

4.4.1.3 Triaxial creep tests

In figure 4.11, one can see the comparison between numerical and experimental re-

sults for three creep tests performed on Callovo-Oxfordian argillites, with a confining

pressure of 6 MPa and different levels of stress (50, 75 and 90% of peak differen-

tial stress). An overall good agreement is obtained. For the considered stress and

duration conditions, only primary creep is obtained. Creep tests with longer time

duration are still necessary to evaluate the long term behavior of rock. With the

same confining pressure, the creep strain rate increases with the applied differential

stress level. There is a large difference of lateral strain between the experimental data

and calculated values for the test with 90% of peak differential stress. The numerical

result provides a much larger lateral strain than the experimental data. Due to ex-

perimental uncertainties in creep tests, further tests are required to define the degree

of uncertainty and to identify the shortcoming of the proposed model. Based on this,

a modification of the plastic potential can be envisaged to improve the prediction of
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lateral strain under high differential stress.
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Figure 4.11: Comparison between simulation and experimental data of axial and lat-

eral strains in triaxial creep tests with a confining pressure of 6 MPa and respectively

at 50, 75, 90% of peak differential stress.

In the context of geological disposal of radioactive waste, it is necessary to consider

time-dependent deformation for a very long duration. However, laboratory and in

situ tests are generally limited in time duration; for instance, creep tests used above

were performed for 20 days only. For a further experimental validation, some triaxial

compression creep tests reported in previous studied have also been considered here

([Chanchole, 2004] and [Abou-Chakra Guéry et al., 2009]). Those tests have also been

performed on Callovo-Oxfordian claystone under uniaxial and triaxial compression

conditions on samples with different mineralogical composition. The duration of

some creep tests was up to 600 days. Unfortunately, only axial strains were measured

in those tests. Using the same parameters as those given in table 4.2, but with

different mineralogical composition, the evolution of viscoplastic axial strain with time

is calculated by using the proposed micromechanics based model for some selected

tests. Comparisons between numerical results and experimental data are shown in

figures 4.12 to 4.17. Despite some scatters, one can see that the proposed model is

able to reproduce the time-dependent strains obtained in experimental tests.

4.4.1.4 Triaxial relaxation tests

Parameters of viscoplastic model are generally identified from creep tests. Relaxation

tests provide an interesting way to verify the model performance. In figures 4.18, 4.19

and 4.20, the evolutions of axial stress (or differential stress q as confining pressure

being kept constant) are simulated and compared with experimental results for three

relaxation tests, with different confining pressures (2, 6 and 12 MPa) and different

values of initial differential stress (q0=20.8, 25 and 32.8 MPa). In a quantitative

manner, the proposed model is able to well reproduce the progressive decrease of the

axial stress due to relaxation process.
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Figure 4.12: Comparison between simulation and experimental data of viscoplastic

axial strain in a uniaxial creep test (axial stress=9.9 MPa; f0=30.4% f1=69.6%).
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Figure 4.13: Comparison between simulation and experimental data of viscoplastic

axial strain in a uniaxial creep test (axial stress=8 MPa; f0=56.2% f1=43.8%).

0 50 100 150 200 250 300 350 400 450 500

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Time (day)

Visco axial strain (%)

Figure 4.14: Comparison between simulation and experimental data of viscoplastic

axial strain in a triaxial creep test (axial stress=22 MPa; confining pressure=12 MPa;

f0=57% f1=43%).
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Figure 4.15: Comparison between simulation and experimental data of viscoplastic

axial strain in a triaxial creep test (axial stress=24 MPa; confining pressure=12 MPa;

f0=57% f1=43%).
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Figure 4.16: Comparison between simulation and experimental data of viscoplastic

axial strain in a triaxial creep test (axial stress=22 MPa; confining pressure=12 MPa;

f0=56.9% f1=43.1%).
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Figure 4.17: Comparison between simulation and experimental data of viscoplastic

axial strain in a triaxial creep test (axial stress=22 MPa; confining pressure=12 MPa;

f0=61% f1=39%).

114



0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1

1.2

Time (day)

q/q

Figure 4.18: Comparison between simulation and experimental data for a relaxation

test (confining pressure=2 MPa; q0=20.81 MPa).
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Figure 4.19: Comparison between simulation and experimental data for a relaxation

test (confining pressure=6 MPa; q0=25 MPa).
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Figure 4.20: Comparison between simulation and experimental data for a relaxation

test (confining pressure=12 MPa; q0=32.8 MPa).
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Three kinds of tests are considered here, triaxial compression, creep and relaxation

tests. The claystone is a rock with very low permeability (between 10−19 and 10−21

m2). The variation of interstitial pressure is an important factor for both short and

long term deformational processes. As the period to obtain a fully saturation state of

samples is very long and it is difficult to make continuous measurement of interstitial

pressure evolution, the samples, used in the tests considered here, were not fully

saturated, but they were stabilized under a relative humidity of 90 %; the initial

saturation state of samples was estimated between 80 and 95 %. Further, all tests

were realized under pseudo-drained conditions without measurement of interstitial

pressure. A small strain rate (10−6/s) was used in triaxial compression tests and

stress loading phases in creep and relaxation tests; small size samples (20x40mm)

were used. With all these precautions, it is thought that the effect of interstitial

pressure was significantly reduced. Therefore, in all numerical calculations presented

here, total stresses are considered and interstitial pressure is neglected. However,

for future applications of the proposed model to saturated situations, effects of pore

pressure on plastic and viscoplastic deformation can be taken into account without

theoretical difficulties, as discussed in previous studies ([Lydzba and Shao, 2002], [Xie

and Shao, 2012] and [Xie and Shao, 2015]).

4.4.2 Vaca Muerta shale rock

For further validation of the proposed elastoviscoplastic micromechanics-based model,

other numerical simulations are carried out to predict instantaneous and time-dependent

mechanical behaviors of Vaca Muerta shale. Note that experimental data of Vaca

Muerta shale, used below, are the same as those in chapters 2 and 3.

4.4.2.1 Identification of model parameters for shale rocks

In this section, as for the case of Callovo-Oxfordian argillites, we determine elastic,

plastic and viscoplastic parameters of the proposed model for Vaca Muerta shale.

To determine the elastic properties, in the case of Callovo-Oxfordian argillite, two

linear homogenization steps are applied where the inclusions of calcite and quartz

are considered as an equivalent inclusion with average elastic properties. In the case

of Vaca Muerta shale, for elastic calculations, to avoid the calculation of equivalent

inclusion elastic properties, we consider the microstructure given in chapter 2 (figure

2.1) and not the simplified one (figure 4.1). Namely, several types of inclusions are

represented at micro and meso scales. In this case, for the calculation of macroscopic

elastic properties (κhom and µhom), three homogenization steps are yet considered

(section 2.2). Then, for the non linear computation, where one needs to know the

volume fraction of equivalent inclusion (ρ), which is considered as the sum of all
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volume fractions of all inclusions at micro and mesoscales:

ρ = f1 + f2 + f3 + f4 + (f5 + f6).(1− f1 − f2 − f3 − f4) (4.23)

Thus, elastic properties of all Vaca Muerta constituents, used in this model are given

in tables 2.1, 2.2 and 2.3.

The procedure for identifying plastic and viscoplastic parameters is the same as for

the case of Callovo-Oxfordian argillite presented above. A triaxial compression test

with a confining pressure of 5 MPa (figure 4.21) and a triaxial compression creep test

(figure 4.31) are used, respectively, to identify plastic and viscoplastic parameters of

viscoplastic model for the case of Vaca Muerta shale (table 4.4).

Table 4.4: Typical values of parameters for Vaca Muerta shale.

Plastic parameters Viscoplastic parameters

T0=t0=0 η = 1016

Tm=0.74 bvp=150

tm=0.3 m=1.5

b1=b2=600

h=30 MPa

4.4.2.2 Triaxial compression tests

We present in this paragraph the comparisons between numerical simulations (contin-

uous red curves) and experimental data (symbolic blue curves) of triaxial compression

tests with different confining pressure (2, 5, 10 and 25 MPa). According to figures

4.21-4.30, in general, numerical simulations seem satisfactory compared to experi-

mental data. The model is able to reproduce the main features of instantaneous

behavior of Vaca Muerta shale, comprising non-linear deformation, volumetric dila-

tancy and pressure sensitivity. The main advantage of the proposed model, compared

to a phenomenological model, is that it takes into account the effect of mineralogical

composition on the macroscopic response; thus, the same set of parameters is used

for all depths.
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Figure 4.21: Comparison between viscoplastic model simulations and experimental

data in a simple triaxial compression test on a Vaca Muerta shale sample (confin-

ing pressure=5 MPa; depth=2686.49 m; well S2; horizontal; f1=0.2275, f2=0.431,

f3=0.0164, f4=0.1, f6=0.05, f=0.08).
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Figure 4.22: Comparison between viscoplastic model simulations and experimental

data in a simple triaxial compression test on a Vaca Muerta shale sample (confining

pressure=5 MPa; depth=2668.71 m; well S2; vertical; f1=0.15, f2=0.412, f3=0.0033,

f5=0.23, f=0.09).
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Figure 4.23: Comparison between viscoplastic model simulations and experimental

data in a simple triaxial compression test on a Vaca Muerta shale sample (con-

fining pressure=8 MPa; depth=2668.78 m; well S2; horizontal; f1=0.143, f2=0.35,

f3=0.0044, f4=0.12, f6=0.13, f=0.13).
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Figure 4.24: Comparison between viscoplastic model simulations and experimental

data in a simple triaxial compression test on a Vaca Muerta shale sample (confin-

ing pressure=25 MPa; depth=2686.55 m; well S2; horizontal; f1=0.2275, f2=0.431,

f3=0.0164, f4=0.1, f6=0.05, f=0.08).
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Figure 4.25: Comparison between viscoplastic model simulations and experimental

data in a simple triaxial compression test on a Vaca Muerta shale sample (confining

pressure=2 MPa; depth=2639.73 m; well S3; vertical; f1=0.4, f2=0.3, f4=0.257,

f6=0.05, f=0.05).
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Figure 4.26: Comparison between viscoplastic model simulations and experimental

data in a simple triaxial compression test on a Vaca Muerta shale sample (confin-

ing pressure=10 MPa; depth=2652.46 m; well S3; vertical; f1=0.2415, f2=0.173,

f4=0.264, f6=0.25, f=0.08).
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Figure 4.27: Comparison between viscoplastic model simulations and experimental

data in a complex triaxial compression test on a Vaca Muerta shale sample (con-

fining pressure=10 MPa; depth=2530.23 m; well S1; vertical; f1=0.423, f2=0.215,

f3=0.0173, f5=0.23, f=0.094).
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Figure 4.28: Comparison between viscoplastic model simulations and experimental

data in a complex triaxial compression test on a Vaca Muerta shale sample (confining

pressure=10 MPa; depth=2649.23 m; well S1; vertical; f1=0.39, f2=0.3, f3=0.024,

f4=0.15, f=0.1).
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Figure 4.29: Comparison between viscoplastic model simulations and experimental

data in a complex triaxial compression test on a Vaca Muerta shale sample (con-

fining pressure=10 MPa; depth=2536.23 m; well S3; vertical; f1=0.26, f2=0.3075,

f3=0.0068, f4=0.172, f=0.14).
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Figure 4.30: Comparison between viscoplastic model simulations and experimental

data in a complex triaxial compression test on a Vaca Muerta shale sample (confining

pressure=10 MPa; depth=2576.21 m; well S3; vertical; f1=0.53, f2=0.21, f4=0.153,

f5=0.05, f6=0.05, f=0.08).

4.4.2.3 Triaxial creep tests

In this paragraph, the proposed model is used to simulate triaxial compression creep

tests performed on Vaca Muerta shale, by using the same set of parameters given

in tables 2.1, 2.3, 2.2 and 4.4. Figures 4.31-4.36 exhibit comparison between experi-

mental data and numerical simulations for different depths and stress conditions. It

is obvious that numerical results are in accordance with experimental data and the

viscoplastic model is able to describe the multistage creep behavior of Vaca Muerta

shale.
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Figure 4.31: Comparison between viscoplastic model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sample

(confining pressure=8 MPa; depth=2668.84 m; well S2; horizontal; f1=0.143, f2=0.3,

f3=0.0044, f4=0.12, f6=0.13, f=0.1).
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Figure 4.32: Comparison between viscoplastic model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sam-

ple (confining pressure=15 MPa; depth=2768.44 m; well S2; horizontal; f1=0.249,

f2=0.294, f3=0.0133, f4=0.12, f6=0.12, f=0.15).
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Figure 4.33: Comparison between viscoplastic model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sample

(confining pressure=8 MPa; depth=2537.14 m; well S1; vertical; f1=0.19, f2=0.237,

f3=0.016, f4=0.13, f6=0.194, f=0.1).

0 10 20 30 40 50 60 70 80 90

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Time (day)

Axial strain (%)

P
a
=11 MPa

P
c
=8 MPa

P
a
=14 MPa

P
c
=8 MPa

P
a
=17 MPa

P
c
=8 MPa

Figure 4.34: Comparison between viscoplastic model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sam-

ple (confining pressure=8 MPa; depth=2537.24 m; well S1; horizontal; f1=0.2374,

f2=0.236, f3=0.019, f4=0.13, f6=0.337, f=0.087).
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Figure 4.35: Comparison between viscoplastic model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sample

(confining pressure=8 MPa; depth=2546 m; well S1; horizontal; f1=0.099, f2=0.55,

f3=0.014, f4=0.108, f6=0.05, f=0.095).
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Figure 4.36: Comparison between viscoplastic model simulations and experimental

data in a multistage triaxial compression creep test on a Vaca Muerta shale sam-

ple (confining pressure=25 MPa; depth=2568.11 m; well S3; horizontal; f1=0.208,

f2=0.35, f3=0.007, f4=0.191, f=0.15).

4.5 Industrial application

The productivity of a shale hydrocarbon layer depends substantially on geomechanical

factors such as the natural fracture network, the in situ stress regime, the elastic and

rupture properties and time-dependent behavior of the hosted rock. The operational

objective of the thesis is to examine whether the deferred or time-dependent behavior
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of Vaca Muerta shale rock influences the reclosing of fractures created by hydraulic

fracturing. For the industrial application of the thesis, we study the interaction

between a fracture surface (rock) and a spherical grain of proppant in Vaca Muerta

shale formation. Thus, the goal is to show if the time-dependent mechanical behavior

of Vaca Muerta shale can influence the mechanism of cracks propagation. If the hosted

shale rock exhibits a significant creep deformation, this leads to the embedment of

proppant grains into the rock. Therefore, the conductivity of fractures will be reduced

over time which can cause a steeper decline of hydrocarbon production rate.

4.5.1 The state of problem

Figure 4.37 shows proppant grains with diameters between 300-600 ➭m in a natural

or hydraulic fracture. To study the proppant-fracture contact, a fracture is modeled

by two smooth and parallel surfaces containing a layer of medium sized proppants

(450 ➭m in diameter) distributed in a uniform manner within a fracture. We study

the interaction between one grain of proppant and the fracture. In this case, the

proppant grain is considered as a spherical indenter. The illustration of a proppant

spherical grain, in contact with a smooth surface of a fracture, is shown in figure 4.38.

(a) (b)

Figure 4.37: Proppant grains with diameters between 300-600 ➭m in a natural or

hydraulic fracture [TOTAL].

F

d
p

d

Proppant 
grain

Fracture 

surface

Shale 

rock

h

Figure 4.38: Illustration of a proppant spherical grain in contact with a fracture.
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Where: F=
σ
′

h
.π.d2

4
; σ

′

h=minor horizontal effective in-situ stress=10 MPa (in our case);

dp=diameter of a proppant grain; d is function of proppant concentration (defined

later) and h is the thickness of rock chosen according to the zone of influence (defined

later).

Three cases of proppants layer are studied where the concentration of proppants

varies: perfect, half and quarter layers. In the case of a perfect layer, the spherical

grains of proppants are attached to each other. For a half-layer, the number of grains

becomes half compared to a perfect layer. Thus, the voids between proppant grains

will increase. For a quarter-layer, the number of proppants is now a quarter compared

to a perfect layer. In this case, the voids between the grains increase further. For

instance, assuming that for a perfect layer, we have 100000 grains of proppants, thus,

for half and quarter layers, we have 50000 and 25000 proppant grains respectively.

When the quantity of grains decreases, the void between two grains increases. The

voids are distributed between grains in a uniform way. Thus, for our calculations,

the value of d, which depends on proppants concentration, is: dp, 2dp and 4dp for the

cases of perfect, half and quarter layers respectively. Therefore, F , the concentrated

force, will increase with the decrease of proppant number. The illustrations of the

three cases: perfect, half and quarter layers are given, respectively, in figures 4.39,

4.40 and 4.41. White circles indicate the absence of proppant grains (voids).

2
p

2

Figure 4.39: Illustration of perfect proppant layer.

2
p

2

Figure 4.40: Illustration of half proppant layer.

127



2
p

2

Figure 4.41: Illustration of quart proppant layer.

4.5.2 Geometry and mesh

To study the interaction between a proppant grain and Vaca Muerta rock, the mi-

cromechanical viscoplastic model described in section 4.2 has been integrated in the

standard finite element code Abaqus in the form of a subroutine UMAT for a non

linear finite element analysis. For the three cases of layer, the geometrical studied

domain includes a 2D axisymmetric structure with boundary conditions, as shown in

figure 4.42. For the sake of simplicity, the inclusion is considered as an axisymmetric

discrete rigid part using the element type RAX2 divided with 24 elements and 25

nodes. A surface to surface interface was established between the inclusion and rock

layer in order to simulate the contact effect during the deformation process. A con-

centrated force (F ) is applied at the top of the inclusion. For the three rock layers,

the detailed mesh informations of structure, used in this model, are presented in table

4.5. Figure 4.43 exhibits the mesh outline of the structure in 3D for the three layer

cases.

Table 4.5: Mesh information of structure for the three cases of layer.

Layer Height Width Element Element Node Concentrated

(h; ➭m) (d/2; ➭m) type number number force (N)

Perfect 450 225 CAX4 800 861 -1.58

Half 450 450 CAX4 2025 2116 -6.36

Quarter 450 900 CAX4 1800 1891 -25.45

4.5.3 Numerical results

In this paragraph, some numerical results from the non linear finite element analysis

are presented. The used model parameters for Vaca Muerta shale rock are those given

in tables 2.1, 2.2, 2.3 and 4.4 (vertical samples in oil window). It is recalled that the
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(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure 4.42: 2D axisymmetric structure with boundary conditions for the three layers.
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(a) Perfect layer (b) Half layer (c) Quarter layer

Figure 4.43: Mesh outline of the structure in 3D for the three layer cases.

main advantage of a micromechanical model, compared to a phenomenological model,

is that it can take into consideration the variation of the mineralogical composition

on the macroscopic response. Thus, for each layer case, calculations are performed

for three mineralogical zones whose volume fraction of each phase and porosity are

presented in table 4.6. From zone Z1 to Z3, the volume fractions of big/fine calcite

and kerogen increase, as well as, the interparticle porosity. Contrariwise, the volume

fraction of quartz/albite and pyrite decrease. Note that the notations for volume

fractions and porosity are the same as those used in chapter 2.

Table 4.6: Approximate mineralogical composition for the three studied mineralogical

zones.

Mineralogical zone f1 f2 f3 f4 f5 f6 f

Z1 0.15 0.4 0.05 0.0825 0.063 0.1575 0.07

Z2 0.22 0.37 0.03 0.09 0.069 0.17 0.09

Z3 0.35 0.28 0.02 0.105 0.081 0.2 0.14

Figure 4.44 presents the variation of the equivalent stress of Von Mises for the three

layers with mineralogical composition of zone Z1. Figures 4.45 and 4.46 show the

variation of the deformation along X and Y axis, respectively, for the three layers

with mineralogical composition of zone Z1. The calculations for zone Z2 and Z3 are

given in Appendix C. In figure 4.47, we exhibits the variation of viscoplastic strain

along Y axis at the contact point between the proppant grain and rock for the three

layers and the three mineralogical compositions. As we have already said, with a

micromechanical approach, we are able to take into consideration the mineralogical

composition in calculations which makes it possible to avoid calibrating the model

for each mineralogical zone. For perfect and half layers, the influence of mineralogical

composition on macroscopic response is minimal compared with that of quarter layer.

In figure 4.48, we show the influence of proppant distribution on the variation of
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viscoplastic strain along Y axis for the three mineralogical zones. As we can see,

for the three mineralogical zones, the viscoplastic deformation along Y axis for the

case of quarter layer is the most significant. Thus, as a first conclusion, according

to the results, the higher the concentration of proppants, the less time-dependent

deformation, then, the embedment of proppant grains is less significant.

(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure 4.44: Variation of the equivalent stress of Von Mises for the three layers with

mineralogical composition of zone Z1.
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(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure 4.45: Variation of the deformation along X axis for the three layers with

mineralogical composition of zone Z1.
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(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure 4.46: Variation of the deformation along Y axis for the three layers with

mineralogical composition of zone Z1.
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(c) Quarter layer

Figure 4.47: Variation of viscoplastic strain along Y axis at the contact point be-

tween the proppant grain and rock for the three layers and the three mineralogical

compositions.
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Figure 4.48: Influence of proppant distribution on the variation of viscoplastic strain

along Y axis for the three mineralogical zones.

4.6 Conclusion

In this chapter, a micromechanics based model has been proposed to describe the

elastic, plastic and viscoplastic strains in clayey and shale rocks. A unified approach
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has been developed for the instantaneous plastic and time-dependent delayed strains.

The plastic yield and viscoplastic loading functions are derived from a non linear

homogenization method and are able to explicitly account for the influences of poros-

ity and mineral inclusions on macroscopic mechanical behavior. It has been clearly

found that the increase of porosity significantly enhanced both instantaneous and

time-dependent strains while the elastic mineral grains (carbonate and quartz) lead

to a reduction of those strains. The failure strength of clayey and shale rocks is re-

duced with the increase of porosity and reinforced by the presence of mineral grains.

The numerical predictions provided by the proposed model have been compared with

experimental data for Callovo-Oxfordian argillites and Vaca Muerta shale. In a quan-

titative manner, the proposed model is able to describe the main features of mechani-

cal behavior of clayey and shale rocks. Further laboratory tests will be welcome for a

deep characterization of the complex behavior of clayey and shale rocks and in order

to identify the improvement needed for the proposed model. In the last section, we

have presented an example of application of the micromechanical model to study the

interaction of a proppant grain in contact with Vaca Muerta shale rock. The goal

is to estimate if the long-term deformation of the rock will lead to the embedment

of proppant grain in the rock inducing the decrease of cracks conductivity. We have

studied three cases of layer (perfect, quarter and half) in order to estimate if the

concentration of proppant has an influence on the embedment process. As a first

conclusion, according to numerical results, the higher the concentration of proppants,

the less time-dependent deformation, then, the embedment of proppant grains is less

significant.
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General conclusion and

perspectives

The main objective of the thesis is to build a micromechanical theoretical model to

predict the instantaneous and time-dependent mechanical behavior of Vaca Muerta

shale rock. Constructing this model, the operational application will be to study the

interaction between a proppant grain and Vaca Muerta shale rock to estimate the

embedment of a grain into the rock due to the effect of time-dependent deformations.

Compared with macroscopic phenomenological models, a micromechanical modeling

approach allows the microstructural aspects to be taken into account on the macro-

scopic response.

As a first step, a general review of shale hydrocarbons is presented. Shale hydrocar-

bons are seen as unconventional resources where its low permeability requires the use

of hydraulic fracturing technique. Afterward, a short overview of many shale rock mi-

crostructure has been presented. In general, shale rock is seen as a complex material

having a multiscale and multiphase microstructure. Usually, shales are constituted of

submicron clay particles, nanoporosity and different types of inclusions. Before start-

ing the mechanical behavior modeling of Vaca Muerta shale, it is essential to study

its microstructure based on a series of experimental observations. The main min-

eralogical phases, identified within the studied material, are: quartz, calcite, pyrite,

clay and organic matter. The proportion of different phases varies considerably with

depth. Two types of porosity are distinguished within Vaca Muerta shale samples:

organic and mineral porosity. Hereafter, we expose some representative triaxial and

multistage creep tests that are realized on Vaca Muerta shale samples, by focusing

on the interaction between microstructure and mechanical behavior.

In the second chapter, we have elaborated a micromechanical semi-analytical elasto-

plastic damage model for Vaca Muerta shale rock. Initially, with a simplified de-

scription of material microstructure, the representative elementary volume is pro-

posed. Four homogenization scales are considered with a matrix-inclusion system. At

macroscale, the material is seen as a homogeneous continuum medium. At mesoscale,

many types of inclusions are seen immersed in a composite matrix. At a smaller scale,

the latter is composed of fine calcite and kerogen inclusions embedded in a porous

clay matrix. Then, in the second part, by assuming that all material phases have a

linear elastic behavior, we have studied the behavior of Vaca Muerta shale in elastic

regime. After having differentiated the elastic properties of all Vaca Muerta shale con-

stituents, we have predicted effective elastic properties of the studied material by an
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appropriate linear homogenization method. Note that to account for the anisotropy

of clay matrix, for simplicity, we have supposed that Vaca Muerta rocks, for the two

principal orientations, are two different isotropic materials with two different clay

matrix (various elastic properties). In the second main part, we have leaded off the

non-linear homogenization in the context of elastoplasticity and interfacial debonding

damage process. We have supposed that the clay matrix has an elastoplastic behav-

ior while all other phases are elastic. In this homogenization-based approach, the

macroscopic mechanical behavior will depend on the change of clay matrix porosity

and the different types of fine and big organic/inorganic inclusions. The influence of

porosity on clay matrix behavior will be reached through a nano to micro upscaling

procedure where an analytical plastic criterion for porous medium is used. Then, the

influence of fine and big inclusions are taken into account through micro-meso and

meso-macro upscaling steps simultaneously. For the later transitions, Hill’s incremen-

tal method has been involved. An associated flow rule of the clay matrix is assumed at

first time. Afterward, we have considered a damage process: the complete interfacial

debonding between the composite matrix and mesocalcite. After having formulated

the semi-analytical micromechanical elastoplastic damage model, it has been vali-

dated by comparing Vaca Muerta experimental data and numerical simulations. A

non-associated plastic flow rule seems indispensable to well reproduce both axial and

lateral strains. By applying a parameter identification procedure, plastic and debond-

ing parameters are acquired. In general, there is a good agreement between numerical

results and experimental data. At the end of this comparison, several remarks can

be withdrawn. The non-associated model describes, suitably, the transition from vol-

umetric compressibility to dilatancy with the increase of the deviatoric stress. Both

lateral and axial strains are well reproduced. The proposed micromechanical model

is able to account for the mineralogical aspects (porosity, fine and mesoinclusions)

on the macroscopic response of Vaca Muerta shale. Furthermore, the model is able

to account for the effect of confining pressure on macroscopic behavior. Addition-

ally, it takes into account the material softening related to progressive interfacial

debonding process. Finally, in order to reduce the number of material parameters,

we have studied the case of an associated perfectly plastic clay solid phase. For these

conditions, the comparison between simulations and experimental data are not very

satisfactory but if we are interested to the value of peak stress only, it can be sufficient.

The third chapter has been devoted to study the time dependent behavior of Vaca

Muerta shale rock in terms of progressive material degradation. The origin of macro-

scopic time-dependent deformation is assumed to be the microscopic damage of clay

solid phase. By introducing an internal variable to quantify the microstructural evo-

lution, an appropriate formulation is considered. A unified model is developed to

study the instantaneous and time-dependent behavior of Vaca Muerta shale rock.

139



Note that the long term constitutive formulation is an extension of the instantaneous

one presented in the second chapter. The same set of elastic, plastic and degradation

parameters is used to simulate both, short and long term tests. An experimental

validation is carried out by comparing creep data and simulations. In a quantitative

sense, numerical simulations are quite consistent with experimental data. Compar-

ison with further experimental data, like relaxation and triaxial compression tests

with different loading conditions, seems indispensable.

Eventually, in the last chapter, a simplified viscoplastic model for clayey and shale

rocks has been developed. For practical applications, the aim of this chapter is to

build an analytical micromechanics based model, easy to be implemented in a stan-

dard calculation code. For this reason, a simplified microstructure is considered where

clayey and shale rocks are assumed to be a composite material with two scales. At mi-

croscale, the clay matrix is a porous medium composed of a solid phase and spherical

pores. At mesoscale, the homogenized porous clay matrix is reinforced by an equiva-

lent inclusion. As an approximation, the latter corresponds to the assembly of many

types of inclusions. Note that if for industrial requirement, we demand to consider

all types of inclusions, the semi-analytical model, presented in the second chapter,

is used. In this model, we suppose that the origin of time-dependent deformation is

the viscosity of clay matrix. For elastoviscoplastic formulation, an analytical macro-

scopic plastic criterion has been extended to define the viscoplastic loading function.

A unified formulation is proposed to describe both, plastic and viscoplastic strains

through two distinct hardening laws. To prove the capability of the proposed model

in reproducing the main features of clayey and shale rocks mechanical behavior, the

model is validated via comparisons between experimental data and numerical results

on two types of rock: Callovo-Oxfordian argillites and Vaca Muerta shale. Finally,

for the operational application of the thesis, we have study the interaction between a

proppant grain and Vaca Muerta shale rock in order to examine if the time-dependent

deformation of the later material is significant. If the hosted shale rock exhibits a

considerable creep deformation, this leads to the embedment of proppant grain into

the rock and then, the conductivity of the fracture will be reduced.

Finally, as perspectives for this work, we can mention: the inherent anisotropy of the

rock, the viscoelastic behavior of the organic matter and the effects of cracks. We

can cite many other perspectives like:

❼ Experimental study of delayed behavior involving a series of creep and relaxation

tests under in situ conditions, and possibly the presence of a fracture and/or

proppant grains. Our laboratory has an original experimental device to create

a fracture in a cylindrical sample and to perform creep tests under normal and
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shear stresses.

❼ Triaxial compression and creep tests under microtomography are needed in

ordered to identify the micromechanisms of deformation at each constituents

of the material. The knowledge of grains geometric shape seems interesting as

well.

❼ Extension of the mechanical model to hydromechanical and chemomechanical

coupling. From the basic model, hydromechanical coupling will be considered

by taking into account the effects of saturation and pore pressures. Therefore,

a poromechanical version of the micro-macro model will be established. In

particular, we will check the validity of effective stresses at different scales.

Therefore, it is also important to perform creep tests at different degrees of

saturation, interstitial pressures and under different stress levels.

❼ Simulate the embedment of a proppant grain in Vaca Muerta shale rock as a

function of depth for several layer cases. This proppant embedment log indicates

in which areas the drains will be placed.
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Appendix A

Algorithm for local integration of

the elastoplastic clay phase

The scheme of local integration of clay matrix elastoplastic constitutive law, described

in paragraph 2.3.1.1, is presented in this appendix. This algorithm constitutes a

subroutine (step 6.4.) of the numerical scheme given in paragraph 2.3.3.1. The

problem can be summarized as following:











































σ̃n+1 = C0 : (ε̃0,n+1 − ε̃
p
0,n+1);

ε̃0,n+1 = ε̃0,n +∆ε̃0 known;

ε̃
p
0,n+1 = ε̃

p
0,n +∆ε̃

p
0 = ε̃

p
0,n +∆λ∂Φ

∂σ̃
;

εpn+1 = εpn +∆εp;

Φ(σ̃, σ̄, f) = 0;

(A.1)

Knowing ε̃0,n+1, the plastic deformation ε̃
p
0,n and the equivalent plastic strain εpn, the

problem is to determine ε̃p0,n+1, ε
p
n+1 and σ̃n+1 where ∆λ is the unknown. This scheme

is explicit and follows an algorithm type ”cutting point algorithm” [Simo and Hughes,

1998].

A.1 Elastic prediction

It is primarily supposed that the increment is elastic, namely, ∆λ=0; thus, ε̃p0,n+1 =

ε̃
p
0,n and σ̃n+1 = C0 : (ε̃0,n+1 − ε̃

p
0,n). If the trial stress verifies Φ(σ̃, σ̄, f) = 0, then

the hypothesis is valid and the procedure for current step is completed; otherwise, a

phase of plastic correction is needed.
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A.2 Plastic correction

The plastic correction is carried out through an iterative procedure. For an iteration

i, ∆λi is known, we have to determine ∆λi+1. It is defined that:

σ̃
i+1
n+1 = C0 : (ε̃0,n+1 − ε̃

p,i
0,n+1)−∆λi+1 : C0 :

∂Φ

∂σ̃
(A.2)

εp,i+1
n+1 = εp,in +∆λi+1γ, γ =

σ̃ : ∂Φ
∂σ̃

(1− f)σ̄
(A.3)

Φ(σ̃i+1
n+1, ε

p,i+1
n+1 , f) = Φi+1

n+1 (A.4)

It is possible to solve this problem by using Taylor’s series; we linearize equation A.4:

Φi+1
n+1 =

∂Φi
n+1

∂σ̃
δσ̃ +

∂Φi
n+1

∂f
δf +

∂Φi
n+1

∂σ̄
δσ̄ + Φi

n+1 = 0 (A.5)

δ(∆λ)

[

−∂Φ
∂σ̃

: C0 :
∂Φ

∂σ̃
+
∂Φ

∂f
(1− f)

(

∂Φ

∂σ̃m
− 3αγ

)

+
∂Φ

∂σ̄

∂σ̄

∂εp
γ

]

+ Φi
n+1 = 0 (A.6)

Thus:

δ(∆λ) =
Φi

n+1

∂Φ
∂σ̃

: C0 :
∂Φ
∂σ̃

− ∂Φ
∂f
(1− f)

(

∂Φ
∂σ̃m

− 3αγ
)

− ∂Φ
∂σ̄

∂σ̄
∂εp
γ

(A.7)

One obtains:

∆λi+1 = ∆λi + δ(∆λ) (A.8)

The corresponding algorithm is summarized as follows:
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1. Input data : ε̃0,n, ε̃
p
0,n, ε

p
n and ∆ε̃0

2. Calculating the deformation at step n+ 1 : ε̃0,n+1 = ε̃0,n +∆ε̃0

3. Initialize : i = 0, ε̃p,00,n+1 = ε̃
p
0,n, ∆λ

0=0

σ̃
0
n+1 = C0 : (ε̃0,n+1 − ε̃

p,0
0,n+1)

Φ(σ̃i
n+1, ε

p,i
n+1, f) = Φi

n+1

4. IF Φi
n+1 ≤ Tolerance THEN: EXIT (end of algorithm)

ELSE (plastic correction):

5. δ(∆λ) =
Φi

n+1
∂Φ
∂σ̃

:C0:
∂Φ
∂σ̃

−
∂Φ
∂f

(1−f)( ∂Φ
∂σ̃m

−3αγ)− ∂Φ
∂σ̄

∂σ̄
∂εp

γ

6. Calculate new values for each iteration:

σ̃
i+1
n+1 = σ̃

i
n+1 − δ(∆λ)C0 :

∂Φi
n+1

∂σ̃
(σ̃i

n+1, ε
p,i
n+1, f)

εp,i+1
n+1 = εp,in+1 + δ(∆λ)γ

∆λi+1 = λi + δ(∆λ)

ε̃
p,i+1
n+1 = ε̃

p,i
n+1 + δ(∆λ)∂Φ

∂σ̃

Set i = i+ 1 and return to step 4

ENDIF

7. EXIT

End of Algorithm
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Appendix B

Comparison between experimental

data and simulations in the case of

associated perfectly plastic clay

solid phase
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Figure B.1: Comparison between associated perfectly plastic simulations and

experimental data in a simple triaxial compression test on a Vaca Muerta

shale sample (confining pressure=5 MPa; depth=2668.71 m; well S2; vertical;

f1=0.15/f2=0.412/f3=0.0033/f5=0.23/f=0.09).
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Figure B.2: Comparison between associated perfectly plastic simulations and

experimental data in a simple triaxial compression test on a Vaca Muerta

shale sample (confining pressure=8 MPa; depth=2668.78 m; well S2; horizontal;

f1=0.143/f2=0.35/f3=0.0044/f4=0.12/f6=0.13/f=0.13).
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Figure B.3: Comparison between associated perfectly plastic simulations and ex-

perimental data in a simple triaxial compression test on a Vaca Muerta shale

sample (confining pressure=25 MPa; depth=2686.55 m; well S2; horizontal;

f1=0.2275/f2=0.431/f3=0.0164/f4=0.1/f6=0.05/f=0.08).
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Figure B.4: Comparison between associated perfectly plastic simulations and

experimental data in a simple triaxial compression test on a Vaca Muerta

shale sample (confining pressure=2 MPa; depth=2639.73 m; well S3; vertical;

f1=0.4/f2=0.3/f4=0.257/f6=0.05/f=0.05).
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Figure B.5: Comparison between associated perfectly plastic simulations and

experimental data in a simple triaxial compression test on a Vaca Muerta

shale sample (confining pressure=10 MPa; depth=2652.46 m; well S3; vertical;

f1=0.2415/f2=0.173/f4=0.264/f6=0.25/f=0.08).
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Figure B.6: Comparison between associated perfectly plastic simulations and

experimental data in a complex triaxial compression test on a Vaca Muerta

shale sample (confining pressure=10 MPa; depth=2649.23 m; well S1; vertical;

f1=0.39/f2=0.3/f3=0.024/f4=0.15/f=0.1).
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Figure B.7: Comparison between associated perfectly plastic simulations and

experimental data in a complex triaxial compression test on a Vaca Muerta

shale sample (confining pressure=10 MPa; depth=2536.23 m; well S3; vertical;

f1=0.26/f2=0.3075/f3=0.0068/f4=0.172/f=0.14).
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Figure B.8: Comparison between associated perfectly plastic simulations and

experimental data in a complex triaxial compression test on a Vaca Muerta

shale sample (confining pressure=10 MPa; depth=2576.21 m; well S3; vertical;

f1=0.53/f2=0.21/f4=0.153/f5=0.05/f6=0.05/f=0.08).
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Appendix C

Abaqus finite element results

(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure C.1: Variation of the equivalent stress of Von Mises for the three layers with

mineralogical composition of zone Z2.
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(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure C.2: Variation of the equivalent stress of Von Mises for the three layers with

mineralogical composition of zone Z3.
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(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure C.3: Variation of the deformation along X axis for the three layers with min-

eralogical composition of zone Z2.
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(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure C.4: Variation of the deformation along X axis for the three layers with min-

eralogical composition of zone Z3.
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(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure C.5: Variation of the deformation along Y axis for the three layers with min-

eralogical composition of zone Z2.
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(a) Perfect layer (b) Half layer

(c) Quarter layer

Figure C.6: Variation of the deformation along Y axis for the three layers with min-

eralogical composition of zone Z3.
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