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thèse Bernhard Beckermann pour m’avoir encadré durant mon stage de master 2
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RESUME

Les méthodes de projection sur des espaces de Krylov ont été employées avec
grand succès pour diverses tâches en calcul scientifique, par exemple la résolution
de grands systèmes d’équations linéaires, le calcul approché de valeurs propres,
ou encore le calcul approché des fonctions de matrices fois un vecteur. L’objectif
majeur de cette thèse est d’étudier et d’expliquer la convergence superlinéaire
des méthodes de Krylov. La plupart des résultats existants sont asymptotiques
avec passage à la racine n-ième et considèrent des suites de matrices. Dans
un premier temps, nous généralisons une formule de Ipsen et al. concernant la
convergence superlinéaire des méthodes MR valable pour des disques, à l’aide
des opérateurs de Hankel et de la théorie AAK. Notre analyse permet aussi
d’obtenir des bornes supérieures pour des ensembles convexes en utilisant la
transformée de Faber. Ensuite nous énonçons notre principal résultat qui est un
théorème d’optimalité en théorie du potentiel logarithmique. Nous montrons, à
l’aide d’une nouvelle technique de discrétisation d’un potentiel, que l’inégalité
de Bernstein-Walsh à poids sur un intervalle réel est optimale, à un facteur
universel près, dans le cas où le champs extérieur est un potentiel d’une mesure
à support réel à gauche de l’intervalle, ce qui inclut le cas des poids polynômiaux.
Via un lien avec un problème sous contrainte, l’inégalité précédente s’applique
à l’analyse de la convergence des méthodes de Krylov, et permet de prédire
analytiquement un taux de convergence superlinéaire de la méthode du gradient
conjugué et des approximations de Rayleigh-Ritz pour des fonctions de Markov,
à chaque étape et pour une seule matrice.
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ABSTRACT

Projection methods on Krylov spaces were used with great success for var-
ious tasks in scientific computing, for example the resolution of large systems
of linear equations, the approximate computation of eigenvalues, or the approx-
imate computation of matrix functions times a vector. The main goal in this
thesis is to study and explain superlinear convergence of Krylov methods. Most
of the existing formulas provide asymptotic results for the n-th root considering
an increasing sequence of matrices. Firstly, we generalize a formula of Ipsen et al.
concerning superlinear convergence of MR methods valid for disks using Hankel
operators and AAK theory, our analysis also allows to obtain upper bounds for
convex sets using the Faber transform. Then we state our main theorem which
is a sharpness result in logarithmic potential theory using a new technique of
discretization of a logarithmic potential. We prove that the weighted Bernstein-
Walsh inequality on a real interval is sharp up to some universal constant, when
the external field is given by a potential of a real measure supported at the left
of the interval. As a special case this result includes the case of weights given
by polynomials. Via a link with a constrained extremal problem our inequal-
ity applies to the analysis of the convergence of Krylov methods, and allows
us to predict analytically the superlinear convergence of the conjugate gradient
method and of the error for Rayleigh-Ritz approximations for Markov functions.
Our results apply to a simple matrix, without taking the limit and without n-th
root.
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Introduction

Un problème important en mathématiques appliquées est le calcul de

f(A)b,

où A est une matrice carrée, b un vecteur, et f une fonction telle que f(A) est
bien définie. En effet, il est courant de modéliser un phénomène physique par
une équation aux dérivées partielles, dont la solution fait souvent apparâıtre des
fonctions d’opérateurs. La discrétisation de ces opérateurs donne des matrices
AN de grande taille N qui ne permettent pas le calcul de f(AN ). Une idée cou-
rante en mathématiques est de projeter le problème sur un espace de dimension
n beaucoup plus petit dans lequel on pourra évaluer de manière efficace les fonc-
tions de matrices fois un vecteur. Les méthodes de projection qui sont étudiées
dans cette thèse sont des méthodes dites de Krylov. Le point commun de ces
méthodes est d’utiliser les sous-espaces de dimension (au plus) n engendrés par
l’ensemble des r(A)b où r est une fonction rationnelle dont le numérateur p et
le dénominateur q sont des polynômes de degré au plus n− 1. Les sous-espaces
de Krylov polynômiaux (q = 1) ont été introduits en 1931 par le mathématicien
russe A.N. Krylov [73] dans un papier concernant le calcul approché de valeurs
propres et portent aujourd’hui son nom.

Les méthodes de Krylov ont été utilisées par une multitude d’auteurs dans
des domaines très variés des mathématiques aussi bien théoriques qu’appliquées.
Par exemple, pour la fonction inverse, le problème revient à résoudre un système
linéaire, et les méthodes de Krylov englobent des algorithmes comme le gradient
conjugué [66] ou GMRES [102] . La convergence de ces méthodes n’est pas encore
pleinement comprise de nos jours. L’étude de la convergence des méthodes de
Krylov (polynomiales) pour les systèmes linéaires est reliée à la quantité [59, 13]

En(S) = min

{
||p||S
|p(0)|

, p ∈ Πn, ∀λ ∈ Λ(A) \ S : p(λ) = 0

}
, (1)

où Πn désigne l’ensemble des polynômes de degré au plus n et S est un sous-
ensemble de C ne contenant pas 0. Dans le cas particuler où S contient le spectre
de la matrice en question, on obtient

En(S) = min
p∈Πn

max
z∈S

|p(z)|
|p(0)|

.
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Dans ce cas, il est connu que l’on a [35]

En(S) ≥ ρnS , lim
n→∞

En(S)1/n = ρS ≤ 1. (2)

où le nombre ρS est appelé le facteur d’estimation de convergence asymptotique
associé à S. Il est le point de départ de la plupart des études qui essayent de
comprendre le comportement de la suite des En(S). Ce nombre ρS peut être
obtenu à l’aide de la théorie du potentiel et notamment avec les fonctions de
Green

ρS = exp(−gS(0,∞)).

Si l’ensemble S est connexe, on peut alors calculer ρS à l’aide de l’application
conforme de Riemann φs : C \ S → C \ D qui vérifie φs(∞) =∞ et φ′s(∞) > 0

ρs =
1

|φs(0)|
.

Les bornes supérieures que l’on trouve dans la littérature sont des bornes dites
linéaires, c’est-à-dire de la forme une constante fois un terme an avec a un
réel positif plus petit que 1. Ces bornes sont en général satisfaisantes pour les
premières itérations, mais en général, lorsque n grandit, ces bornes fournissent
des surestimations trop importantes car la convergence s’accélère, ce que l’on
appelle convergence superlinéaire [88], et ce phénomène n’est pas encore bien
compris. Une formule expliquant ce phénomène manque toujours. A. Kuijlaars
est le premier auteur à avoir quantifié [75] la fameuse � rule of thumb � énoncée
par D. Bau et L.N. Trefethen dans [9] qui décrit la répartition d’équilibre des
valeurs propres. Inspirés par ces travaux B. Beckermann et A. Kuijlaars ont pu-
blié en 2000 [12] un article expliquant la convergence superlinéaire du gradient
conjugué. Le cas des fonctions de matrices a été traité par B. Beckermann et S.
Güttel [17] dans un article publié en 2012. Tous ces travaux sont des résultats
asymptotiques après passage à la racine n-ième. De plus, dans ces travaux, les
auteurs considèrent une suite de matrices et donc ne donnent pas d’information
sur le taux de convergence d’une seule matrice. L’objectif est d’étudier et d’ex-
pliquer la convergence superlinéaire des méthodes de Krylov et de fournir une
formule sans racine n-ième et sans passage à la limite pour une matrice fixée.
Ce qui précède est détaillé dans les deux premiers chapitres où on présente les
outils mathématiques de base. Nous présentons aussi un état de l’art sur l’étude
de la convergence des méthodes de résolution de systèmes linéaires MR et OR,
définies dans le chapitre 2, avec les principales bornes supérieures que l’on peut
trouver dans la littérature. Ces deux premiers chapitres ne contiennent pas de
résultats originaux. Précisons que dans cette thèse nous travaillerons toujours
en précision infinie et nous ne discuterons pas des phénomènes liés à la précision
finie de l’ordinateur.

Dans le chapitre 3, nous présentons un travail qui généralise un article de
S.L. Campbell, I.C.F. Ipsen, C.T. Kelley et C.D. Meyer [24] en utilisant l’analyse
complexe et les polynômes de Faber, dans lequel les auteurs ont donné des bornes
d’erreur pour GMRES. L’idée est de séparer le spectre en regroupant les valeurs

10



propres proches les unes des autres. Si on a une accumulation de valeurs propres
dans une région du plan complexe, on considère un ensemble S qui les contient,
et dans l’analyse de la convergence, on ne distingue plus ces valeurs propres. Les
valeurs propres isolées, appelées outliers, sont traitées à part dans l’étude. Les

auteurs utilisent l’inégalité ‖rn‖‖r0‖ ≤ CEn(S) pour une certaine constante C, où

rn désigne le résidu à l’étape n et En(S) est définit en (1) pour un ensemble S ne
contenant pas forcément le spectre. Le travail consiste à borner cette quantité
En(S). La première étape est de ramener le problème sur le disque unité du
plan à l’aide de l’application conforme φ. Nous fournissons une borne inférieure
dans le théorème 3.1.3 notée

En(S) ≥ 1

|fn,α1,...,αd(α0)|
=

1

|α0|n
d∏
j=1

∣∣∣∣1− ᾱjα0

α0 − αj

∣∣∣∣ ,
avec α0 l’image par φ de zéro et les αj , j ≥ 1, les images des outliers par φ.
Noter que l’on retrouve le facteur d’estimation de convergence asymptotique
ρS = 1

|α0| . L’intérêt de considérer plus d’outliers réside dans le fait que l’on peut

choisir des ensembles S emboités qui décroient, ainsi ρS est aussi décroissant, et
donc on obtient un meilleur taux de convergence. Le prix à payer pour obtenir ce

taux est la multiplication par le produit de Blaschke
∏d
j=1

∣∣∣ 1−ᾱjα0

α0−αj

∣∣∣ dont chaque

terme est supérieur à 1. Le nombre optimal d’outliers à choisir dépend donc de
l’indice d’itération n. Dans cette partie nous n’expliquons pas comment choisir
les outliers. Dans [24] les ensembles S considérés sont des disques et les auteurs
obtiennent

En(S) ≤ CIpsen
|fn,α1,...,αd(α0)|

,

avec CIpsen une constante strictement supérieure à 1 qui dépend de S et d. Nous
proposons dans le théorème 3.1.4 une borne d’erreur où l’on remplace CIpsen par
une quantité plus générale qui a l’avantage de tendre vers 1 lorsque n grandit et d
et S sont fixés. Pour obtenir cette borne supérieure, nous faisons un lien entre les
opérateurs de Hankel et un problème de minimisation. Nous généralisons aussi
ce travail pour des ensembles S convexes à l’aide de la transformée de Faber avec
le défaut d’apporter un facteur 3 dans la borne supérieure par outlier considérée.
Et donc cette borne explose avec un nombre important d’outliers.

Le principal résultat de cette thèse, énoncé dans le chapitre 4, concerne un
théorème d’optimalité de l’inégalité de Bernstein-Walsh à poids sur un intervalle
réel, pour un champs extérieur donné par le potentiel d’une mesure à support
réel à gauche de l’intervalle. L’outil mathématique principal est la théorie du
potentiel logarithmique avec champs extérieurs Q. En se fixant une union finie
d’intervalles compacts Σ ⊂ R, un poids w = exp(−Q) continu, et en notant le
potentiel logarithmique Uµ et son énergie I(µ), on sait [103, Theorem I.1.3 and
Theorem I.4.8] qu’il existe une unique mesure µw de support supp(µw) parmi
toutes les mesures de probabilité µ à support dans Σ qui minimise

inf{I(µ) + 2

∫
Qdµ : ‖µ‖Σ = 1}.
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Cette mesure extrémale est caractrisée par l’existence d’une constante F ∈ R
telle que

Θ(x) := F − Uµw(x)−Q(x)

{
= 0 pour x ∈ supp(µw),
≤ 0 pour x ∈ Σ.

L’inégalité de Bernstein-Walsh à poids [103, Theorem III.2.1] dit que pour tout
poids w continu, pour tout z complexe et pour tout polynôme P de degré au
plus k ∈ N on a

|w(z)kP (z)|
‖wkP‖supp(µw)

≤ ekΘ(z). (3)

Cette inégalité implique des bornes inférieures pour les méthodes de Krylov.
On souhaite donc obtenir une inégalité dans l’autre sens. Il existe un résultat
d’optimalité après passage à la racine k-ième et passage à la limite [103, Corol-
lary III.1.10] qui donne l’existence d’un polynôme Pk de degré au plus k tel que
pour tout z complexe en dehors de supp(µw) on a

lim
k→∞

(
|w(z)kPk(z)|
‖wkPk‖supp(µw)

)1/k

= eΘ(z), (4)

avec ‖f‖Σ = maxx∈Σ |f(x)|. Le théorème 4.1.3 améliore (4) pour Σ = [α, β] et
pour une classe particulière de champs extérieurs issus d’un potentiel positif Q =
Uρ/k sur [α, β], avec ρ une mesure de Borel à support compact dans (−∞, α].
En effet, nous démontrons que la mesure extrémale µw vérifie les conditions

supp(µw) = [a, β] ⊂ [α, β],

pour un a explicitement calculable, et

kΘ(x) = (k + ‖ρ‖)g[a,β](x,∞)−
∫
g[a,β](x, y)dρ(y),

où gS(., y) désigne la fonction de Green de l’ensemble S avec pôle y. Nous
montrons aussi que l’inégalité (3) est optimale à une constante universelle CBW
près : pour tout k ≥ 2, il existe un polynôme Pk de degré au plus k tel que pour
tout x0 ∈ R \ supp(µw), on a

|w(x0)kPk(x0)|
‖wkPk‖supp(µw)

≥ e−CBW ekΘ(x0).

La constante donnée ici n’est pas optimale, mais elle a comme principal intérêt
d’être universelle.

Notre preuve du théorème 4.1.3 est basée sur un nouveau résultat concer-
nant la discrétisation d’un potentiel logarithmique pour une classe de mesures
particulière. Nous montrons dans le théorème 4.2.1 que pour une mesure µ qui
vérifie

k
dµ

dx
(t) = g(t)

k

π
√

(t− a)(β − t)

12



avec g une fonction vérifiant certaines propriétés (ce qui est le cas pour la mesure
extrémale de notre théorème d’optimalité), il existe une constante universelle
CBW telle que pour tout k ≥ 2 on peut construire un polynôme unitaire Pk de
degré k qui vérifie les deux propriétés suivantes

1. ∀z ∈ C : log |Pk(z)|+ kUµ(z) ≤ CBW ,

2. ∀x ∈ R \ (a, β) : log |Pk(x)|+ kUµ(x) ≥ 0.

On suppose dans la suite sans perte de généralité que [a, β] = [−1, 1] (le cas
général s’en déduit par changement de variable affine). Les résultats dans [114,
Lemme 9.1] ou [78] et [79], donnent des constantes non explicites qui dépendent
des données de départ. Les travaux présentés ici sont reliés à ceux de V. Totik et
D. Lubinsky à propos de liens avec des formules de quadrature à poids [80]. En
effet, le début de l’étude est similaire, on approche le potentiel logarithmique
Uµ à l’aide de la formule de quadrature

k−1∑
j=0

log
1

|x− ξj |
= − log |Pk(x)|, Pk(x) =

k−1∏
j=0

(x− ξj),

en découpant [−1, 1] en k sous-intervalles [tj , tj+1], −1 = t0 < t1 < ... < tk = 1,
de masse µ([tj , tj+1]) = 1/k, et en prenant ξj ∈ [tj , tj+1] pour j = 0, ..., k − 1.
On obtient alors

log |Pk(x)|+ kUµ(x) =

k−1∑
j=0

∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣ k dµ(t).

Il y a deux problèmes majeurs, le premier est que la fonction de densité de µ
peut avoir des singularités aux points ±1, le deuxième est que si x ∈ [−1, 1] on a
une singularité dans l’intégrande. L’idée est de couper cette somme en trois et de
traiter chaque terme séparément. Nous proposons une nouvelle approche pour
majorer ces trois termes basée sur une propriété de la fonction de repartition
Wg de notre mesure kµ : en utilisant les hypothèses sur la fonction de densité
g, nous montrons dans notre théoréme 4.2.6 la formule de la moyenne

c1W
′
g(
t+ x

2
) ≤ Wg(t)−Wg(x)

t− x
≤ c2W ′g(

t+ x

2
),

avec W ′g(t) = kg(t)

π
√

1−t2 et c1, c2 ∈ R∗+ deux constantes universelles.

Dans le chapitre 5, nous appliquons le théorème d’optimalité de l’inégalité
de Bernstein-Walsh à CG et aux fonctions de matrices fois un vecteur pour des
fonctions de Markov et des matrices hermitiennes. Ces résultats améliorent ceux
obtenus dans [12] pour CG, et dans [17] pour les fonctions de matrices et les
espaces de Krylov polynomiaux. Dans ces articles les résultats sont asympto-
tiques, avec une racine n-ième et considérent une suite de matrices d’ordre N ,
Sous certaines conditions techniques (section 2.3.3), les auteurs ont obtenu dans
[12]

lim sup
n,N→∞
n/N→t

En(Λ(AN ))1/N ≤ exp

(
−
∫ t

0

gS(τ)(0,∞) dτ

)
, (5)
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avec t ∈ (0, 1) et S(t) une famille décroissante d’ensembles dépendant de la
distribution des valeurs propres. La fonction de droite est donc concave, ce
qui explique la convergence superlinéaire. Les expériences numériques laissaient
penser que l’on pouvait obtenir une inégalité pour une seule matrice, sans ra-
cine n-ième et sans passer à la limite. Dans cette thèse, on fournit une formule
théorique qui le démontre. En particulier, pour CG, nous prouvons la conjec-
ture 2.3.1 dans le théorème 5.1.4 pour une sous-classe de distribution de valeurs
propres. En effet, pour un certain d = dn, nous obtenons (à comparer avec (5))

En(Λ(A)) ≤ En([λd+1, β]) ≤ eCBW exp
(
−N

∫ n/N

0

gS(τ)(0,∞) dτ
)
, (6)

avec S(t) = [a(t), β] une famille d’intervalles décroissante. Remarquons que pour
un ensemble S contenant S(0) (et le spectre de A), on a

exp
(
−N

∫ n/N

0

gS(τ)(0,∞) dτ
)
≤ exp

(
−ngS(0,∞)

)
= ρnS .

Par rapport à (2), nous avons remplacé gS(0,∞) par une moyenne des fonctions
gS(t)(0,∞) sur [0, n/N ]. On peut dans le même esprit appliquer l’optimalité
de Bernstein-Walsh à poids aux fonctions de matrices fois un vecteur pour des
matrices hermitiennes et pour des fonctions de Markov de la forme

f(z) =

∫
Γ

dγ(x)

x− z
,

où γ est une mesure supportée sur un fermé inclu dans [−∞, x0] situé à gauche
du spectre réel. Le corollaire 5.2.9 donne pour les approximations de Rayleigh-
Ritz fn

‖f(A)b− fn‖ ≤ K exp

(
−N

∫ n/N

0

gS(τ)(x0,∞) dτ

)
, (7)

avec K une constante dépendant de f et de CBW . La fonction

exp

(
−N

∫ n/N

0

gS(τ)(x0,∞) dτ

)

est concave en n, ce qui explique la convergence superlinéaire. On a ainsi rem-
placé dans (6) et (7) des résultats asymptotiques avec une n-ième racine pour
une suite de matrices par des inégalités pour une seule matrice.
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PLAN

chapitre 1

Nous commençons par introduire les outils de base de cette thèse. Nous définissons
d’abord les fonctions de matrices et d’opérateurs, ensuite nous présentons les
sous-espaces de Krylov, puis nous discutons des méthodes de Krylov pour un
produit fonction de matrice-vecteur.

chapitre 2

Nous nous intéressons aux systèmes linéaires, c’est-à-dire à la fonctions f(z) =
z−1. Nous présentons différentes méthodes de Krylov pour résoudre ces systèmes,
nous regardons en particulier deux méthodes de projection qui sont les méthodes
OR et les méthodes MR. Nous présentons ensuite un état de l’art sur les bornes
linéaires les plus connues et introduisons la notion de convergence superlinéaire.

chapitre 3

Nous améliorons une formule de [24] concernant la convergence superlinéaire
des méthodes MR valable pour des disques S en utilisant l’analyse complexe,
les polynômes de Faber et un lien avec les opérateurs de Hankel et un problème
de minimisation. Nous présentons aussi une borne inférieure et nous généralisons
la borne supérieure pour des ensembles S convexes à l’aide de la transformée de
Faber.

chapitre 4

Nous démontrons un théorème d’optimalité en théorie du potentiel logarith-
mique. À l’aide d’une nouvelle technique de discrétisation d’un potentiel, nous
prouvons que l’inégalité de Bernstein-Walsh à poids sur un intervalle réel est
optimale, à un facteur universel près, dans le cas où le champs extérieur est le
potentiel d’une mesure à support réel à gauche de l’intervalle.

chapitre 5

En utilisant un lien entre un problème extrémal avec champs extérieur et un
problème extrémal sous contrainte, nous appliquons notre résultat d’optimalité
à la méthode du gradient conjugué (CG) et aux fonctions de matrices pour des
matrices hermitiennes et des fonctions de Markov.
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OUTLINE

chapter 1

We begin by introducing the basic tools used in this thesis. We first define
functions of matrices and operators, then we present Krylov subspaces, and
finally we discuss Krylov methods for matrix functions times a vector.

chapter 2

We study linear systems, that is, the function f(z) = z−1. We present different
Krylov methods to solve these systems and look in particular at two projection
methods which are the OR methods and the MR methods. Next, we give a
state of the art with some well-known linear bounds and introduce the notion
of superlinear convergence.

chapter 3

We improve a formula in [24] concerning the superlinear convergence of MR
methods valid for disks S by using complex analysis, Faber polynomials and
a link with Hankel operators and a minimization problem. We also present a
lower bound and an upper bound for convex sets S using the Faber transform..

chapter 4

We prove an optimality theorem in logarithmic potential theory. Using a new
technique of discretization of a potential, we show that the weighted Bernstein-
Walsh inequality on a real interval is sharp up to some universal constant, in the
case when the external field is given by a potential of a real measure supported
at the left of the interval

chapter 5

Exploiting a link between an extremal problem with an external field and an
extremal problem under constraint, we apply our sharpness result to the conver-
gence of conjugate gradient (CG) and to the functions of matrices for Hermitian
matrices and Markov functions.
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Chapter 1

Functions of matrices and
Krylov spaces

The aim of this chapter is to give the main basic tools used in this thesis.
We start by talking about functions of matrices in Section 1.1: we give three
equivalent definitions, present some examples where we can find them, and make
some remarks on computational aspects. The difficulty to compute functions of
matrices and the examples presented motivate the will to work with functions
of matrices times a vector instead of just functions of matrices. Section 1.2 is
devoted to the presentation of Krylov spaces. We show some basic properties
of rational Krylov spaces, introduced by Ruhe in [98], by using a definition
based on polynomial Krylov spaces. This approach reveals the relationships
between polynomial and rational Krylov spaces. Then we present the Rayleigh
Ritz approximations in Section 1.3 and give a characterization property and an
exactness property.

1.1 Functions of matrices

1.1.1 Definitions

Matrix functions are useful tools in applied mathematics and scientific com-
puting. Over the last thirty years, one can observe a very important research
activity in the field of matrix functions using tools from numerical linear alge-
bra and approximation theory. Whereas it is easy to define the polynomial (of
degree k) of a matrix

pk(A) =

k∑
j=0

ajA
j ,
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or an entire function as the exponential

exp(A) =

∞∑
j=0

Aj/j!,

things become more tricky for functions defined only on subsets of the complex
plane. Those expressions can be defined in terms of the Jordan canonical form
of A, the minimal polynomial of A, or by a Cauchy-type integral. The latter
definition requires f to be analytic in an open set containing the spectrum of A,
with the path of integration in this set. Detailed discussions on these definitions,
their requirements on f , and their implementation are provided by Golub and
Van Loan [55], Higham [68], or Horn and Johnson [70]. One can find a good
introduction in the paper [49]. Let us recall in this section the definitions, the
main properties and give a brief overview on computational aspects.

Jordan canonical form

A matrix A ∈ Cn×n can be expressed in the Jordan canonical form A = ZJZ−1

where Z is nonsingular and J = diag(J1, . . . , Jp) with each Jl of the form

Jl =


λl 1

λl
. . .

. . . 1
λl

 ∈ Cml×ml .
The Jordan matrix J is unique up to the ordering of the blocks, but the trans-
forming matrix Z is not. Denote by {λk}sk=1 the distinct eigenvalues of A and by
nk the index of λk (the order of the largest Jordan block in which λk appears).
A function is said to be defined on the spectrum of A, denoted by Λ(A), if the
values f (j)(λk) exist for k = 1 : s and j = 0 : nk − 1. Those values are called
the values of the function f on the spectrum of A.

Definition 1.1.1 (Jordan canonical form) Let f be defined on Λ(A) and let
A have the Jordan canonical form A = ZJZ−1. Then

f(A) = Zf(J)Z−1 = Zdiag(f(J1), . . . , f(Jp))Z
−1

where for l = 1 : p

f(Jl) =


f(λl) f ′(λl) . . . f(ml−1)(λl)

(ml−1)!

f(λl)
. . .

...
. . . f ′(λl)

f(λl)

 .

It is important to note that it yields an f(A) that can be shown to be in-
dependent of the particular Jordan canonical form we used. It is also inter-
esting to note that it requires only the values of f on the spectrum of A. If
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A is diagonalizable, the index of all eigenvalues is equal to one and f(A) =
Zdiag(f(λ1), . . . , f(λs))Z

−1 (where each eigenvalue is repeated according to its
multiplicity). If A is normal (in particular Hermitian), then it is diagonalizable
and one can choose a unitary Z.

Polynomial interpolation

A further representation of the matrix function f(A) is based on polynomial
interpolation. It is well-known that there exists a unique monic polynomial ψA
of minimal degree such that ψA(A) = 0, called the minimal polynomial, which
satisfies the formula

ψA(z) =

s∏
j=1

(z − λj)nj .

Definition 1.1.2 (Polynomial interpolation) Let f be defined on the spec-
trum of A. Then

f(A) = pf,A(A)

where pf,A is the unique polynomial of degree less than deg(ψA) that interpolates
f on the spectrum of A in the Hermite sense

p
(j)
f,A(λk) = f (j)(λk), for j = 0 : nk − 1 and k = 1 : s.

This definition tells us that for computing matrix functions, at least in theory,
it is sufficient to know how to evaluate a polynomial of a matrix. It is important
to note that the polynomial pf,A given in the definition depends on A, so it is
not the case that f(A) = q(A) for some fixed polynomial q independant of A.
Sometimes, it is convenient to impose more interpolation conditions than nec-
essary, but it does not affect the ability of the polynomial to produce f(A).
Indeed, if q is a polynomial that interpolates f at the spectrum of A in the
sense of Hermite and has some additional interpolation conditions, then q(A) =
pf,A(A) = f(A).

Cauchy integral

Another way of representing the matrix function f(A) is based on the Cauchy
integral formula which is particularly useful for error estimates.

Definition 1.1.3 (Cauchy integral) Let f be analytic on and inside Γ, a sys-
tem of Jordan curves encircling each λj ∈ Λ(A) exactly once (with mathemati-
cally positive orientation). Then

f(A) =
1

2iπ

∫
Γ

f(ξ)(ξ −A)−1dξ.

This definition is independent of the particular choice of Γ and has the advantage
that it can be generalized to operators in Banach spaces thanks to the Riesz-
Dunford functional calculus [40].
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Remarks

The preceding definitions are equivalent modulo the requirement in the Cauchy
integral definition that f is analytic in a region containing the spectrum [68,
Theorem 1.12]. No given definition should be used like a black box procedure
for computing matrix functions for the following reasons.

• The size of a Jordan block is not (in general) stable under perturbations.

• The interpolation polynomial suffers from the same drawback, and in ad-
dition one should know how to efficiently evaluate p(A).

• With the Cauchy integral definition, if one wants to define multi-valued
functions like log(A) or

√
A, one has to choose correctly the set Ω and

should know how to select the contour Γ. In general one has to exclude
some matrices. We also note that errors are introduced by applying quadra-
ture formulae.

For algebraic operators [88, section 2.8] we can generalize the interpolating
polynomial definition. An operator A is said to be algebraic of degree n if there
exists a monic minimal polynomial ψA of degree n such that ψA(A) = 0. For
such operators we can use the polynomial definition 1.1.2, and every function of
an algebraic operator is representable as a polynomial depending on f and ψA.
With this definition, f need not be analytic in a neighborhood of Λ(A), instead
it is only required that f possesses derivatives up to a finite order.

1.1.2 Motivation and examples

A nice exposition about various applications of matrix functions for different
tasks of scientific computing can be found in Higham’s book [68, chapter 2].

Linear systems

The most famous function of matrices is the inverse function f(z) = z−1 which
appears for example in linear systems. For large matrices, it is in general a very
difficult task to compute an inverse. If we want to solve the linear system Ax = b
(f(A) = A−1), it is well-known that we should not compute A−1 (in general).

Differential equation

Many problems in science and engineering are modeled by partial differential
equations (using unbounded operators). After a discretization in space, for ex-
ample, by finite differences, finite elements or pseudospectral methods, such
problems can be written as a semilinear system of ordinary differential equa-
tions

dy

dt
= Ay + f(t, y), y(0) = y0, y ∈ Cn×n, A ∈ Cn×n.

The idea for this problem is to solve the linear part exactly by the matrix
exponential and to integrate the remaining nonlinear part by an explicit scheme.
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Here, the so-called ϕ-functions come into play, which are closely related to the
exponential function.

Definition 1.1.4 For k ≥ 0, we defined the ϕ-functions

ϕk(z) =

∞∑
j=0

zj

(j + k)!
.

We note that ϕ0 = exp. Simple examples of this type of problems are

dy

dt
= Ay, y(0) = y0 ⇒ y(t) = exp(tA)y0,

dy

dt
= Ay + b, y(0) = 0⇒ y(t) = tϕ1(tA)b,

dy

dt
= Ay + ct, y(0) = 0⇒ y(t) = t2ϕ2(tA)c.

Other examples

We have seen the two most popular functions of matrices, but a lot of functions
play a central role in different problems. Among them we can cite the logarithm,
the cosine and the sine (second order differential equation), the sign function,
the square root and Markov functions.

1.1.3 Computational aspects

It is not necessarily a good idea to stick to one of the definitions of matrix func-
tion given previously when it comes to numerically compute a matrix function
f(A). We will briefly describe several numerical approaches having their advan-
tages in different situations, basically depending on spectral properties of A, on
the dimension and sparsity of A and on the function f . A good reference for the
computation of f(A) is [68].

Decomposition of the matrix

A wide class of methods is based on exploiting the fact that if A = ZBZ−1 then
we have the relation f(A) = Zf(B)Z−1. The idea is to factor A with B of a
form that allows easy computation of f(B). For example, if A ∈ Cn×n is diag-
onalizable and Λ(A) = {λ1, . . . , λn}, we have the representation A = ZDZ−1

where D = diag(λ1, . . . , λn) is diagonal. If A is not diagonalizable, we can in
theory evaluate f(A) with the Jordan canonical form. However, the Jordan form
cannot be reliably computed. This approach is recommended only if the matrix
Z is well conditioned. An important class of matrices for which this happens is
the class of normal matrices which are unitary diagonalizable: A = UDU∗ where
U is unitary and D is diagonal. In this case the preceding method is feasible if
the diagonalization can be computed efficiently. If we want to restrict to unitary
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transformation, we recall that for every matrix there is the Schur decomposi-
tion A = QSQ∗ where Q is unitary and S is upper triangular. Computation
of a Schur decomposition is achieved with perfect backward stability by the
QR algorithm. In [30], we can find the Schur-Parlett algorithm which computes
f(S). Once the Schur decomposition is done, the idea is to reorder S to S̃ in a
block form, then to compute the diagonal blocks and use a Parlett recurrence
to compute the rest of f(S̃), and finally the unitary similarity transformations
from the Schur decomposition and the reordering are applied.

Rational approximation

An other possibility is to obtain a good approximation r of f (in a sense to de-
fine) and then to compute r(A). Polynomial approximations for a function often
require a quite high degree of the approximating polynomial in order to achieve
a reasonable quality of approximation. Rational approximations typically obtain
the same quality with substantially fewer degrees of freedom. Moreover we can
use the important property that rational functions can be expressed as partial
fraction expansions. We can cite two main classes of rational approximations.
The first is the best L∞ (or minimax, or Chebyshev) approximation of f on a
compact. If the compact is an interval of R, the best L∞ rational approximation
can be constructed using the Remez algorithm [93]. In the complex case it is
far more complicated. The second class is the Padé approximation [7]. In this
case we can work with complex functions. Padé approximants of some impor-
tant functions are known explicitly, sometimes in several representations. The
theory of Padé approximation is very well developed and is very attractive in
certain cases.

Quadrature rules

Using the Cauchy integral definition

f(A) =
1

2iπ

∫
Γ

f(ξ)(ξ −A)−1dξ,

we can apply a quadrature rule:

f(A) '
p∑
j=1

wjf(tj)(tj −A)−1

to get an approximation [31]. For specific functions, other integral representation
may be used. In the quadrature framework, the major computational cost is
usually due to the inversion of several matrices.

Specific functions

In the case of the exponential we can refer to the famous papers [84] and [85]
(cited more than a thousand times). They propose nineteen ways to compute
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the exponential in [84] and added a twentieth approach in [85] which use Krylov
spaces. We also rmention the reference [68] where we can find specific techniques
for the logarithm, the exponential, the sign function, the square root and cosine
and sine.

1.1.4 Functions of matrices times a vector

While the appearance of f(A) in a formula may be natural and useful from a
theoretical point of view, in practice, it does not always mean that it is necessary
or desirable to compute f(A). In general (as seen for the linear system or for
differential equations), it is not f(A) that is required, but rather its action on a
vector b: f(A)b. Moreover, if A is sparse, then f(A) may be dense and for large
dimensions, it may be too expensive to compute or store f(A), while comput-
ing and storing f(A)b may be feasible. So we are interested in computing the
vector f(A)b without explicitly computing f(A). We have seen in the definition
using interpolation polynomials, that f(A) = pf,A(A) where pf,A is a Hermite
interpolating polynomial determined by the values of f on the spectrum of A.
The degree of pf,A is at most equal to the degree of the minimal polynomial
ψA of A minus one, and it may be greater than necessary in order to produce
f(A)b. Indeed the good notion here is the minimal polynomial with respect to
b, denoted by ψA,b, which is the unique monic polynomial of lowest degree such
that ψA,b(A)b = 0. Denoting by {λ1, . . . , λs} the distinct eigenvalues of A and
nj their corresponding index, we set

ψA,b(z) =

s∏
j=1

(z − λj)lj

with 0 ≤ lj ≤ nj . The degree of the minimal polynomial of b with respect to
A is often called the grade of b. We say that f is defined on the spectrum of A
with respect to b if the values f (j)(λk) exist for k = 1 : s and j = 0 : lk − 1.
Now we can define f(A)b [68, chap 13].

Definition 1.1.5 (Polynomial interpolation) Let f be defined on the spec-
trum of A with respect to b. Then

f(A)b = pf,A,b(A)b

where pf,A,b is the unique polynomial of degree less than deg(ψA,b) that satisfies
the interpolation conditions

p
(j)
f,A,b(λk) = f (j)(λk), for j = 0 : lk − 1 and k = 1 : s.

We will see that Krylov subspace methods are suitable to approximate f(A)b
efficiently and have been extensively used to this purpose, due to their favourable
computational and approximation properties. The idea is to project the problem
onto some Krylov subspace of smaller dimension where we can use standard
algorithms for dense matrices of moderate size. We will see this in the following
chapters.
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1.2 Krylov spaces

This section is devoted to the presentation of Krylov spaces. Krylov spaces have
significant advantages like low memory requirements and good approximation
properties, which make them very popular. They are widely used in applications
throughout science and engineering. In 1931 Krylov published the paper [73] in
which he considered the problem of computing eigenvalues of a square matrix,
and introduced those subspaces which now bear his name.

1.2.1 Definitions

Definition 1.2.1 Given a Hilbert space H, a bounded operator A ∈ B(H) and
a vector b ∈ H, we define the Krylov subspaces by

Km(A, b) = span{b, Ab, . . . , Am−1b}.

A first property is that Km(A, b) is the subspace of all vectors that can be
written as x = p(A)b, where p is a polynomial of degree not exceeding m − 1.
With increasing order m, polynomial Krylov spaces are nested subspaces of H.
If there is no room for ambiguity, we will often write Km instead of Km(A, b).
In this thesis we use the following notations for sets of polynomials.

1. Πm denotes the set of polynomials of degree at most m,

2. Πα
m denotes the set of all polynomials p of degree at most m such that

p(α) = 1,

3. Π∞m denotes the set of monic polynomials of degree at most m.

The key role for the numerical behaviour of a Krylov method is played by the
choice of the bases. The Krylov basis {b, Ab, . . . , Am−1b} is not very attractive
from a numerical point of view, since the vector Ajb points more and more
in the direction of the dominant eigenvector for increasing j (power method),
and hence the basis vectors become dependant in finite precision arithmetic.
We then need to construct a better basis. Arnoldi’s algorithm [3] builds an
orthonormal basis which, in exact arithmetic, spans the Krylov subspace. It
consists of a modified version of the Gram-Schmidt method to compute an
increasing orthonormal system spanning the Krylov spaces. Arnoldi’s algorithm
gives the following polynomial Krylov decomposition

AVm = VmHm + hm+1,mvm+1e
∗
m = Vm+1Hm, (1.1)

where Vm = [v1 . . . vm] has orthonormal columns, em denotes the m-th column
of the identity matrix, Hm is a Hessenberg matrix, and Hm = Am = V ∗mAVm
is obtained from Hm by deleting its last row. When A is a Hermitian matrix
(or a self-adjoint operator), the Arnoldi process reduces to the more economical
Lanczos process [77]. In this case, Hm reduces to a tridiagonal matrix.
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Definition 1.2.2 Given a Hilbert space H, a bounded operator A ∈ B(H), a
vector b ∈ H, and a polynomial qm−1 ∈ Πm−1 which has no zeros in the spectrum
Λ(A), we define the Krylov subspace of order m associated with (A, b, qm−1)by

Qm = Qm(A, b) = qm−1(A)−1Km(A, b)

When qm−1 = 1, we obtain the standard polynomial Krylov subspaces. It ob-
viously suffices to consider monic polynomials qm−1 only. For computations it
is convenient to have nested spaces Q1 ⊂ Q2 ⊂ . . . Such nested spaces are
obtained if the polynomials qm−1 divides qm for each m. For a given sequence
of poles {ξ1, ξ2, . . .} ⊂ C \ Λ(A), we define

qm−1(z) =

m−1∏
j=1
ξj 6=∞

(z − ξj) (1.2)

once and for all. If all ξj =∞, then Qm = Km is a polynomial Krylov subspace
(qm−1 = 1). The spaceQm is (theorically) independent of the particular ordering
of the poles, although in finite precision it can play a crucial role.

Definition 1.2.3 By M we denote the smallest integer such that QM−1 (
QM = QM+1. M is called the invariance index. If there exists no such inte-
ger we set M =∞.

In the polynomial case, this means thatKM is A-invariant. We have the following
basic properties of rational Krylov spaces [64, Lemma 4.2].

Lemma 1.2.4 There holds

1. Qm(A, b) = Km(A, qm−1(A)−1b).

2. b ∈ Qm(A, b).

3. dim(Qm(A, b)) = dim(Km(A, b)) = min(m,M).

If qm−1 is defined as in (1.2) and if M <∞, then

span(b) = Q1 ⊂ Q2 ⊂ · · · ⊂ QM = KM ,

otherwise
span(b) = Q1 ⊂ Q2 ⊂ . . .

Depending on the sequence {ξj}, various special cases of rational Krylov
spaces exist. The two most famous methods are the Shift and Invert method
where ξj = ξ is fixed [45] and the so-called extended Krylov subspace method
[37], which is equivalent to the rational Arnoldi method with cyclic pole sequence
ξ2j =∞ and ξ2j+1 = 0. There also exists block versions of rational Krylov spaces
which will not be treated here, further details can be found in the references
[43, 51, 67, 97, 107] The choice of optimal poles is a difficult problem which has
not been solved yet, but a lot of works have been done to find them [38, 39, 53,
65].
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1.2.2 Rayleigh-Ritz quotient

Let H denote a Hilbert space and suppose that the vectors v1, . . . , vm form a
basis of an m-dimensional subspace Vm ⊂ H. We define the bounded linear
operator Vm

Vm : Cm → H
x 7→ Vmx = x1v1 + · · ·+ xmvm

.

We define by the same letter Vm the corresponding quasi-matrix [111, lecture 5]
Vm = [v1, . . . , vm] with columns vj . We will consider arbitrary bases (not only
orthonormal), and to work with such bases, we need the notion of Moore-Penrose
inverse [21, chap 9].

Definition 1.2.5 Let T be an operator on H. The Moore-Penrose inverse T †

of T is defined by four criteria

1. TT †T = T

2. T †TT † = T †

3. (TT †)∗ = TT †

4. (T †T )∗ = T †T.

Since Vm is finite dimensional (and therefore closed), there exists a unique
Moore-Penrose inverse V †m : H → Cm and VmV

†
m is the orthogonal projection

operator onto Vm. Moreover, since Vm has full rank, we have two more useful
properties of the Moore-Penrose inverse:

(VmS)† = S−1V †m for every invertible S ∈ Cm×m,

V †mVm = Im where Im denotes the m×m identity matrix.

Definition 1.2.6 For a given quasi-matrix Vm = [v1, . . . , vm] of full column
rank, the Rayleigh quotient for (A, Vm) is defined as

Am = V †mAVm ∈ Cm×m.

The eigenvalues of the Rayleigh quotient Am = V †mAVm are called the Ritz
values.

The properties of the Rayleigh quotient and the Ritz values do not depend on
the basis since if Vm and Um are bases of Vm, then the Rayleigh quotients for
(A, Vm) and (A,Um) are similar matrices [64, Lemma 3.3].

For any quasi-matrix Vm = [v1, . . . , vm] whose columns vj form a basis ofQm,
we can consider the Rayleigh quotients associated with Qm. Arnoldi’s algorithm
gives a special case where Vm is an orthonormal basis of Vm = Km, and in
this particular case we have V †m = V ∗m and Am = Hm. We have the following
interesting lemma [64, Lemma 4.5].
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Lemma 1.2.7 Let Vm be a basis of Qm(A, b), Am = V †mAVm, and let χm denote
the characteristic polynomial of Am. Then the following statements hold.

1. Am is nonderogatory.

2. χm(A)q−1
m−1(A)b ⊥ Qm(A, b).

3. χm minimizes ||sm(A)q−1
m−1(A)b|| among all sm ∈ Π∞m .

1.2.3 Rational Krylov decomposition

We can generalize the relation (1.1) to the rational case in different (equivalent)
ways. Let us propose the following which was used for example in [65].

Definition 1.2.8 A relation

AVm+1Km = Vm+1Hm (1.3)

where Vm+1 = [Vm, vm+1] has m + 1 linearly independent columns such that
range(Vm+1) = Qm+1, range(Vm) = Qm, Km ∈ C(m+1)×m, Hm ∈ C(m+1)×m,
and Hm is of rank m, is called a rational Krylov decomposition.

If the last row of Km contains only zeros we have

AVmKm = Vm+1Hm (1.4)

and we say that this decomposition is reduced.

Let us collect some useful facts about rational Krylov decompositions which can
be found in [64, Lemma 5.6].

Lemma 1.2.9 With the preceding notations, we have the following properties.

1. The matrix Km of (1.3) is of rank m. In particular, the matrix Km of the
reduced rational Krylov decomposition (1.4) is invertible.

2. The validity of (1.4) implies vm+1 ∈ AQm \ Qm .

3. If (1.4) is an orthonormal decomposition, i.e., V ∗m+1Vm+1 = Im+1, then
the Rayleigh quotient Am can be computed as Am = HmK

−1
m .

The rational Krylov decomposition and their properties are usefull to compute
the examples presented in this thesis.

1.2.4 Complements on Ritz values

Approximations of eigenvalues are often computed with variants of the Arnoldi
process, for instance, the Matlab function eigs uses the Sorensen’s implicitely
restarted Arnoldi method [110]. So it is of basic importance to understand which
eigenvalues of A are well approximated by the Ritz values (see Definition 1.2.6).

In the Hermitian case, there are many results on the behavior of Ritz values.
We assume that the eigenvalues of an Hermitian matrix A are λ1 < · · · < λN
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and denote by θ
(i)
1 < · · · < θ

(i)
i the Ritz values at step i. As is well known in

the polynomial case, θ
(i)
k decreases to λk as i increases, with equality for i = N

[116]. There is an interlacing property which states that between two Ritz values,
there is at least one eigenvalue of A ([90, Theorem 10.1.2] for the polynomial
case and [18, Theorem 3.1] for the rational case). Early a priori upper bounds
for the distance of a polynomial Ritz value to an eigenvalue have been given,
most notably, by Kaniel [72], Paige [89], and Saad [99]. Those bounds lead to
the well-known Kaniel-Page-Saad estimate for extremal eigenvalues [55], which
was generalized in [18, Lemma 2.3]. In [116] the authors studied the behavior
of polynomial Ritz values when two eigenvalues are very close and gave a lot of
examples.

More involved results using potential theory are given in [75] and [10] for the
Lanczos method, which explains the rule of thumb stated in [9]: ”the Lanczos
iteration tends to converge to eigenvalues in regions of too little charge for
an equilibrium distribution”. Those results are theoretical and asymptotic. For
rational Ritz values, in [18], the authors characterize (again in an asymptotic
sense) which eigenvalues are approximated and studied the rate of convergence
of Ritz values to eigenvalues.

In contrast, few results about the Ritz values of non Hermitian matrices
are known beyond their containment within the numerical range. Using the
cartesian decomposition of the matrix (A = H + iS, with H hermitian and S
skew-hermitian) the authors in [25] gave lower and upper bounds for the real
part of the polynomial Ritz values. We can also find some results in [22], [26] or
[83], but the general case remains a challenging problem.

1.3 Rayleigh-Ritz methods

Many applications in science and engineering require the evaluation of expres-
sions of the form f(A)b where A is a large (sparse) matrix and f is a nonlinear
function. Let A be a bounded linear operator on a complex Hilbert space H
and let f be a complex valued function such that f(A) is defined. Let a vector
b ∈ H be given. Our aim is to obtain an approximation for f(A)b from a Krylov
subspace Qm ⊂ H of small dimension m, while avoiding the explicit evaluation
of f(A), which is usually unfeasible or even impossible.

Definition 1.3.1 Let Vm be a basis of Qm and denote by Am the Rayleigh-Ritz
quotient for (A, Vm). Provided that f(Am) exists, the Rayleigh-Ritz approxima-
tion for f(A)b from Qm is defined as

fm = Vmf(Am)V †mb.

If we use the (rational) Arnoldi algorithm [64, Section 5.1] to obtain an
orthogonal basis of Qm(A, b), then we call fm the Arnoldi Rayleigh-Ritz approx-
imation.
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To justify this definition note that fm is independent of the choice of the basis
Vm [64, Lemma 3.3]. For a given space Qm a method for obtaining a Rayleigh-
Ritz approximation is referred to as a Rayleigh-Ritz method. Note that for
the Arnoldi Rayleigh-Ritz approximation, V †m = V ∗m since Vm has orthonormal
columns (V ∗mVm = I).

Now let us prove that the Rayleigh-Ritz approximation is exact for rational
functions [64, Lemma 4.6]. This exactness property is well known for polynomial
approximations [100].

Proposition 1.3.2 (Exactness) Let Vm be a basis of Qm and Am = V †mAVm
the Rayleigh quotient for (A, Vm). Then for every rational function r̃m = pm/qm−1 ∈
Πm/qm−1 there holds

VmV
†
mr̃m(A)b = Vmr̃m(Am)V †mb.

In particular, for every rational function rm = pm−1/qm−1 ∈ Πm−1/qm−1 there
holds

rm(A)b = Vmrm(Am)V †mb,

i.e., the Rayleigh-Ritz approximation for rm(A)b is exact (provided that rm(Am)
is defined).

Proof : Recall that VmV
†
m is the orthogonal projection onto Qm. We start

by proving the theorem in the polynomial case. It suffices to show that for all
j ≤ m

VmV
†
mA

jb = VmA
j
mV
†
mb.

The proof is by induction on the monomials Aj . This property is clear for j = 0.
Assume that it is true for some j ≤ m− 1, then

VmV
†
mA

j+1b = VmV
†
mAA

jb = VmV
†
mAVmV

†
mA

jb (since Ajb ∈ Km)

= VmV
†
mAVmA

j
mV
†
mb (by induction hypothesis)

= VmA
j+1
m V †mb.

The rational case is a direct consequence of the polynomial case. Setting
c = qm−1(A)−1b we know that Qm(A, b) = Km(A, c), and we obtain

VmV
†
mr̃m(A)b = VmV

†
mpm(A)qm−1(A)−1b = VmV

†
mpm(A)c

= Vmpm(Am)V †mc.

Or b = qm−1(A)c = Vmqm−1(Am)V †mc, which implies

V †mc = qm−1(Am)−1V †mb, (1.5)

and thus

VmV
†
mr̃m(A)b = Vmpm(Am)qm−1(Am)−1V †mb = Vmr̃m(Am)V †mb.

�
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Remark 1.3.3 It is possible that rm(A) is defined but rm(Am) is not.

The next property states an interpolation characterization of the Rayleigh
approximation: it is mathematically equivalent to interpolating f over the Ritz
values [64, Theorem 4.8].

Proposition 1.3.4 (Characterization) Let Vm be a basis of Qm and Am =
V †mAVm the Rayleigh quotient for (A, Vm). Let f be a function such that f(Am)
is defined. Then

fm = Vmf(Am)V †mb = rm(A)b,

where rm = pm−1/qm−1 ∈ Pm−1/qm−1 interpolates f at the Ritz values Λ(Am).

Proof : The polynomial case is easy to prove. Indeed, by definition of a function
of a matrix, we have f(Am) = pm−1(Am), with pm−1 interpolating f at the Ritz
values (in the Hermite sense). Hence

fm = Vmf(Am)V †mb = Vmpm−1(Am)V †mb = pm−1(A)b,

where in the last equality we have used the exactness property (Proposition 1.3.2).
In the rational case, setting c = qm−1(A)−1b and f̃ = fqm−1, we have

f(A)b = f̃(A)c. Using the fact that V †mc = qm−1(Am)−1V †mb (see (1.5)), we
obtain

fm = Vmf(Am)V †mb = Vmf̃(Am)q−1
m−1(Am)V †mb

= Vmf̃(Am)V †mc

= pm−1(A)c = pm−1(A)qm−1(A)−1b,

where pm−1 interpolates f̃ at the Ritz values. This implies that fm = rm(A)b
where rm = pm−1/qm−1 interpolates f at the Ritz values.

�
Now an interesting question is to determine when the approximation be-

comes exact. Recall that we denote by M the invariance index (Definition 1.2.3).
M < ∞ if and only if there exists a unique polynomial ψA,b ∈ Π∞m such that
ψA,b(A)b = 0. In this case the Rayleigh-Ritz approximation fM = f(A)b is exact
[64, Lemma 3.11]. In practice one expects usually to terminate much before the
exact termination property takes over.

Example 1.3.5 In general, the Rayleigh-Ritz approximation differs from f(A)b
until the invariance index M is reached, even if f(A)b ∈ Km for m < M . For
example we take A = diag(1, 2, 3, 4, 5), b = (1, 1, 1, 1, 1) and f(x) = xcos(2πx).
It is clear that f(A) = A, and then f(A)b = Ab ∈ K2. We collect the approxi-
mations fm in the following array

m = 1 m = 2 m = 3 m = 4 m = 5
3 −0.8582 0.3216 1.0211 1.0000
3 −1.7164 2.0522 0.0201 2.0000
3 −2.5746 3 −0.9809 3.0000
3 −3.4329 3.1650 0.0402 4.0000
3 −4.2911 2.5472 5.1056 5.0000
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which shows that that we do not have the exact approximation before f5.

Example 1.3.6 We can obtain fm = f(A)b before the invariance index. Indeed,
taking the same A and b with f(x) = x2, we obtain f(A)b = f3 ∈ K3 before the
invariance index. We give the approximations fm in the following array

m = 1 m = 2 m = 3
9 −1 1
9 5 4
9 11 9
9 17 16
9 23 25

If M =∞, we set K∞ = span{b, Ab, . . .}. There are two possibilities:

1. K∞ = H, i.e. A is cyclic for b.

2. K∞ 6= H.

Using the holomorphic functional calculus or the continuous functional calculus
for normal operators we can obtain that f(A)b = lim

k→∞
pk(A)b for pk ∈ Πk and

thus f(A)b ∈ K∞.
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Chapter 2

Krylov methods for linear
systems

One of the most powerful tool for solving large and sparse systems of linear
algebraic equations is a class of iterative methods called Krylov subspace meth-
ods. The use of the Krylov subspaces in iterative methods for linear systems
is even counted among the top 10 algorithmic ideas of the 20th century [27].
Convergence analysis of these methods is not only of a great theoretical im-
portance but it can also help to answer practically relevant questions about
improving the performance of these methods. As we will see, the question about
the convergence behavior leads to complicated nonlinear problems. Despite in-
tense research efforts, these problems are not well understood in the general
case. Linear systems are useful for computation of functions of matrices and
appear in the algorithms to compute bases of rational Krylov spaces.

After a review on projection methods, we present an application of the
Krylov spaces to the resolution of linear systems. In particular, we present and
characterize two methods and give some known linear convergence bounds us-
ing different kinds of techniques. In the last section, we discuss the notion of
superlinear convergence and state a conjecture which will be proved later.

2.1 Krylov methods

2.1.1 General projection methods

Consider the linear system Ax = b where A is a bounded invertible linear op-
erator on a complex Hilbert space H, or simply a n× n complex matrix. There
are several reasons why to choose an abstract, possibly infinite dimensional set-
ting. Indeed, for the algorithms to be considered, it makes no essential difference
whether or not the underlying spaces have finite dimension. Moreover the dimen-
sion of the search space (where the approximation lies) to be used in practical
applications is always much smaller than that of the space H, so, in comparison,
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dim(H) may be considered infinite. Furthermore, a large class of linear systems
arises from discretization of operators between infinite dimensional spaces, in
which case, a sequence of problems corresponding to a sequence of discretiza-
tion parameters is the natural object of study, and the later elements of such a
sequence inherit many important properties of the infinite-dimensional problem
under approximation.

The idea of projection techniques is to extract an approximate solution x̃ to
the above problem from a subspace ofH. If S is the finite dimensional search sub-
space and m is its dimension, then, in general, m constraints must be imposed to
be able to extract such an approximation. A typical way is to impose m orthog-
onality conditions. Specifically, the residual vector r = b−Ax̃ is constrained to
be orthogonal to m linearly independant vectors. This defines another subspace
C of dimension m. The problem can be written as follows:

find x̃ ∈ S such that r = b−Ax̃ ⊥ C.

There are two broad classes of projection methods : orthogonal (S = C) and
oblique (S 6= C). If we wish to exploit the knowledge of an initial guess x0 to
the solution, then the problem should be redefined as follows:

find x̃ ∈ x0 + S such that r = b−Ax̃ ⊥ C

Set x̃ = x0 + ũ, with ũ ∈ S and r0 = b − Ax0 (initial residual). Existence and
uniqueness of x̃ are summarized in the following lemma [42, Proposition 2.2].

Lemma 2.1.1 Let A, x̃, ũ, x0, S, C and r0 defined as above. Then

1. ∃ũ ∈ S such that r0 −Aũ ⊥ C ⇐⇒ r0 ∈ AS + C⊥.

2. Such an ũ is unique if and only if AS ∩ C⊥ = {0}.

We always suppose implicitely that we are in those conditions when we speak
about an approximation. If C = AS it is clear that there is always a unique
approximation. We have the following two well-known optimality results which
can be found in [101, Propositions 5.3 and 5.2].

Proposition 2.1.2 Assume that A is a bounded linear operator and C = AS.
Then x̃ is the result of an oblique projection method onto S orthogonally to AS
with the starting vector x0 if and only if

‖b−Ax̃‖ = min
x∈x0+S

‖b−Ax‖.

A need not be invertible in the above proposition, but when A is singular,
there may be infinitely many vectors x̃ satisfying the optimality condition.
The name MR (Minimum Residual) method comes from this property. For a
Hermitian positive definite operator A, we define the A-norm of a vector by
‖x‖A =

√
xTAx.
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Proposition 2.1.3 Assume that A is a self-adjoint positive definite operator
and C = S. Then x̃ is the result of an orthogonal method onto S with the
starting vector x0 if and only if

‖x∗ − x̃‖A = min
x∈x0+S

‖x∗ − x‖A,

where x∗ denotes the exact solution.

Typically, a new projection step uses a new pair of subspaces and an inital
guess equal to the most recent approximation obtained. If no vector of the
subspace S comes close to the exact solution x∗, then it is impossible to find
a good approximation. So a question that arises immediately is how good the
approximate solution can be? In the particular case when S is invariant under
A, we have the following result [101, Proposition 5.6].

Lemma 2.1.4 Assume that S is invariant under A and r0 belongs to S. Then
the approximate solution obtained from any projection method (oblique or or-
thogonal) onto S is exact.

This is a rare occurrence in practice, but the result helps in understanding the
breakdown behavior of Krylov methods.

2.1.2 Krylov methods

The Krylov methods are examples of projection methods for solving linear sys-
tems Ax = b. Krylov spaces are certainly the most widely used spaces in pro-
jection methods. A generic Krylov method consist in taking an approximation

xm = x0 + vm ∈ x0 + Sm

in an affine space of dimension m related to a Krylov subspace. As we have m
degree of liberty, we impose m constraints on the residual

rm = r0 −Avm ⊥ Cm

with Cm a subspace of dimension m also related to a Krylov subspace.
The Krylov subspace methods can be distinguished in four main different

classes:

1. The Ritz-Galerkin approach or orthogonal methods (OR methods): con-
struct the xm ∈ x0 +Km for which the residual is orthogonal to Km.

2. The minimum norm residual approach (MR methods): construct the xm ∈
x0 +Km for which the residual is minimal.

3. The Petrov-Galerkin approach: construct the xm ∈ x0 +Km for which the
residual is orthogonal to some other suitable subspace.

4. The minimum norm error approach: determine xm in ATKm(AT , b) for
which the error norm is minimal.

35



We are interested in the two first methods. The Ritz-Galerkin approach leads to
well-known algorithms such as Conjugate Gradients (CG) or FOM. The mini-
mum norm residual approach leads to methods such as GMRES, MINRES, and
ORTHODIR. The choice of a method is a delicate problem. If the matrix A is
symmetric positive definite, then the choice is easy: Conjugate Gradients [66].
For other types of matrices the situation is very diffuse. GMRES, proposed in
1986 by Saad and Schultz in [102], is the most robust method, but in terms of
work per iteration step it is also relatively expensive. For nice reviews on the
different possibilities we refer to [117] and [59].

Using the Drazin inverse, we can also use Krylov spaces to solve linear sys-
tems with singular operators [71, 87].

2.1.3 OR and MR methods

We denote by xORm and rORm the approximation and the residual of the orthogonal
method at step m. Respectively we denote by xMR

m and rMR
m the approximation

and the residual of the minimum residual method at step m. Let us set some
notations to be clear:{

xORm = x0 + vORm ∈ x0 +Km(A, r0)

rORm = r0 −AvORm = r0 − hORm ⊥ Km(A, r0)

and {
xMR
m = x0 + vMR

m ∈ x0 +Km(A, r0)

rMR
m = r0 −AvMR

m = r0 − hMR
m ⊥ AKm(A, r0).

Remark 2.1.5 Assume that A is invertible. The polynomial Rayleigh-Ritz ap-
proximation (Definition 1.3.1) for f(z) = z−1 coincides with the approximation
obtained by the OR method applied to the operator equation Ax = b for an ini-
tial guess x0 = 0. Indeed, xORm = Vmy

OR
m ∈ Km and rORm = b− AVmyORm ⊥ Km

implies that yORm = A−1
m V ∗mb, and thus we obtain xORm = VmA

−1
m V ∗mb.

We have seen in Propositons 2.1.2 and 2.1.3 that

hMR
m = PAKmr0

is the orthogonal projection of r0 onto AKm, and

hORm = PKmAKmr0

is the oblique projection of r0 onto AKm orthogonal to Km.
It is clear that rORm = ϕORm (A)r0 and rMR

m = ϕMR
m (A)r0 for some polynomials

in Π0
m. Those two polynomials solve minimization problems. For the MR method

we have [101, Lemma 6.31]

‖ϕMR
m (A)r0‖ = min

p∈Π0
m

‖p(A)r0‖.
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For the OR method we have a link with an other normalization problem [101,
Lemma 6.28]

‖ϕORm (A)e0‖A = min
p∈Π0

m

‖p(A)e0‖A.

Those two polynomials can be characterized by their zeros which are explicitely
known. If the m-th OR approximation is defined, we have [57, Theorem 3.1]

ϕORm (z) =

m∏
j=1

(1− z

θj
),

where the θj designate the Ritz values (Definition 1.2.6). For the MR polynomial,
let us define the harmonic Ritz values.

Definition 2.1.6 Let Wm designate a quasi-matrix whose columns form a basis
of AKm. We define the harmonic Ritz values θ̂j as the inverses of the eigenvalues
of the matrix W †mA

−1Wm.

In other words, harmonic Ritz values are the inverses of the eigenvalues of the
Rayleigh quotient of (A−1,Wm). If an eigenvalue of W †mA

−1Wm is zero, we set
the corresponding harmonic Ritz-value equal to infinity. In this case the MR
method stagnates and the residual polynomial is not changed: rMR

m = rMR
m−1.

Denoting by {θ̂j}mj=1 the harmonic Ritz values, we have [57, Theorem 7.1]

ϕMR
m (z) =

m∏
j=1

(1− z

θ̂j
).

The OR and MR methods can be viewed in a more abstract way, without
reference to the operator, and we cite the paper [42] which analyses the ge-
ometry of Krylov spaces to obtain well-known formulae on those two methods.
Their approach has the advantage of simplicity and generality: they express the
methods by an approximation scheme in a Hilbert space H based on orthogonal
and oblique projection onto a finite dimensional subspace.

We can connect OR residual and MR residual by a projector. Setting hORm =
AVmy

OR
m and using the fact that rORm is orthogonal to Km, i.e. VmV

†
mr

OR
m = 0

where Vm is a quasi-matrix whose columns form a basis of Km, we obtain

VmV
†
mr0 = VmV

†
mh

OR
m = VmAmy

OR
m ,

which implies (V †mVm = I as Vm has linearly independent columns)

V †mr0 = Amy
OR
m .

If Am is invertible, then yORm = A−1
m V †mr0 and we can write

rORm = (I −AVmA−1
m V †m)r0 = Pmr0,

where P 2
m = Pm and PmAVmx = 0, for every x ∈ Cm. Now using that rMR

m =
r0 −AVmyMR

m , it is clear that

Pmr
MR
m = Pmr0 = rORm .

We refer to [42, Theorem 3.4] for others well-known relations between the
two methods.
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2.2 Linear convergence bounds

In this section we give a brief overview of the most well-known linear convergence
bounds for the error of the OR methods and for the residuals of the MR methods.
In the analysis of the convergence of Krylov methods we usually encounter the
value (defined for example in [13])

En(S) = min

{
‖p‖S
|p(0)|

, p ∈ Πn, ∀λ ∈ Λ(A) \ S : p(λ) = 0

}
. (2.1)

The eigenvalues outside S, denoted by Λ0, will be called outliers and will play
a particular role in our analysis. Obviously we have the inequalities

En(Λ(A)) ≤ En(S ∪ Λ0) ≤ En(S), (2.2)

which have been used for example in [24] or [115] in order to derive a CG
convergence bound taking into account few outliers, where typically S is the
convex hull of the remaining eigenvalues.

If S contains the spectrum (no outliers), we find the classical quantity

En(S) = min
p∈Π0

n

max
λ∈S
|p(λ)|.

If S ⊃ Λ(A) is a compact set in the complex plane with 0 /∈ S, it is known that
[35, Theorem 1]

En(S) ≥ ρnS , (2.3)

where ρS = exp(−gS(0,∞)) is usually called the estimated asymptotic conver-
gence factor, and where gS(.,∞) is the Green function for the complement of S
with pole at∞ (Definition A.1.4). If S is connected we have a link with the con-
formal map φS from the exterior of S to the exterior of the closed unit disk that
satisfies φS(∞) = ∞ and φ′S(∞) > 0, via the formula gS(0,∞) = log |φS(0)|
(Eqn. (A.4)). The sharpness of this minimization problem is not easy to handle,
except for certain special sets such as when S is an interval or a disk in the com-
plex plane. Using tools from potential theory it is known that [35, Equation 4]

lim
n→∞

En(S)
1
n = ρS ≤ 1,

which means that asymptotically the bound is sharp in the sense of the n-th
root. For special sets, we can find

En(S) ≤ CρnS .

For example, C is 1 in the case of a disk by Zarantonello’s lemma [101, Proposi-
tion 6.26], in the case of a segment C ≤ 2 [101] and when S is convex, Eiermann
[41] obtained that C ≤ 2

1−ρnS
, by using an approximation theorem on Faber

polynomials obtained by Kovari and Pommerenke [74, Theorem 2]. In the case
of polygons, the rate can be computed using Driscoll’s Schwarz-Christoffel Mat-
lab toolbox for numerical conformal mapping (for more details see [33]). We can
note that ρS < 1 except in the case when S completely surrounds the origin in
the sense of separating it from the point at infinity.
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The concept of K-spectral sets

Let us introduce the concept of K-spectral sets (see for instance [91]).

Definition 2.2.1 We say that a set X in the complex plane is K-spectral for
an operator A between Hilbert spaces, if it is closed, it contains the spectrum
of A, and for every complex-valued bounded rational function f on X we have
‖f(A)‖ ≤ K‖f‖X . In the case we can take K = 1, we say that X is a spectral
set for A.

In our case, if S ∪ Λ0 is CS∪Λ0
-spectral, then the inequalities

min
p∈Π0

n

‖p(A)‖ ≤ CS∪Λ0
En(S ∪ Λ0) ≤ CS∪Λ0

En(S)

are satisfied. A lot of work has been done on the theory of K-spectral sets, let
us give some examples which can all be found in [6].

It is a very well-known fact that if A is a normal operator, then the spectrum
of A is a spectral set. This implies in our context that for normal operators we
have

min
p∈Π0

n

‖p(A)‖ ≤ En(Λ(A)) ≤ En(S),

and thus in terms of residuals of MR methods, this gives

‖rMR
n ‖
‖r0‖

≤ En(Λ(A)) ≤ En(S).

The spectrum of a matrix A is K-spectral if and only if A is diagonalizable,
and in this case, we can take K equal to the condition number of the matrix of
eigenvectors.

The closed disk {z ∈ C/|z−a| ≤ r} is spectral for A if and only if ‖A−a‖ ≤ r.
We will see that the numerical range (see (2.5)) is (1+

√
2)-spectral (Crouzeix’s

theorem), and that the ε-pseudospectrum (see (2.6)) is K-spectral for a constant
K that depends on ε.

2.2.1 OR methods

Let us suppose that A is a Hermitian positive definite matrix so that we can use
Proposition 2.1.3. Denoting by en the error after n steps, a standard convergence
analysis leads to

‖en‖A
‖e0‖A

≤ min
p∈Π0

n

‖p(A)e0‖A
‖e0‖A

≤ En(Λ(A)) ≤ En(S)

for each set S that contains the spectrum. Recall that ‖x‖A =
√
xTAx is the A-

norm. It is interesting to remark that the inequality ‖en‖A‖e0‖A ≤ En(Λ(A)) is sharp

in the sense that for given A and n, there exists a starting vector such that
equality holds [58]. By setting S = [λmin, λmax] and using scaled and shifted
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Chebyshev polynomials we can obtain the most famous result about convergence
of OR methods [101, Equation (6.128)]

‖en‖A
‖e0‖A

≤ 2

(√
κ− 1√
κ+ 1

)n
(2.4)

with κ the condition number of A. We note that for S = [λmin, λmax] we have
[35, Equation (14)]

gS(0,∞) = log

(√
λmax +

√
λmin√

λmax −
√
λmin

)
= log

(√
κ+ 1√
κ− 1

)
,

and thus ρS =
√
κ−1√
κ+1

, which means that the lower bound (2.3) is sharp up to a

factor 2.
When A is not Hermitian positive definite, we can use the algorithm FOM

[96, 101], which is mathematically equivalent to the CG method when A is
Hermitian positive definite.

2.2.2 MR methods

Despite their popularity, the convergence of MR methods are not completely
understood. While the spectrum can in some cases be a good indicator of con-
vergence, it has been shown that in general, it does not provide sufficient in-
formation to fully explain the behavior. Understanding the convergence of MR
methods which is facilitated by its optimality property is an important step
towards convergence analysis for general methods. It can also inform the con-
struction and evaluation of preconditioners for non symmetric problems. We
have

‖rn‖ = min
p∈Π0

n

‖p(A)r0‖ ≤ ‖r0‖ min
p∈Π0

n

‖p(A)‖

All the analysis described here will be done on the value

min
pn∈Π0

n

‖pn(A)‖

which is frequently the basis for discussions of the convergence of MR methods.
The problem of approximating the polynomial that minimizes this value is ref-
ered in the litterature as the ideal MR approximation problem [61]. When A is
normal, the convergence is governed by the eigenvalues, and we have

‖rn‖
‖r0‖

≤ En(Λ(A)).

If the spectrum is known, then En(Λ(A)) can be computed (at least numeri-
cally). However, usually, we do not know exactly the spectrum, we only know
that the spectrum is contained in a certain set S. Depending on the informa-
tions we have on the spectrum, we obtain more or less accurate information
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on the convergence. When A is not normal, the convergence behavior may not
be related to the eigenvalues in any simple way, and understanding the con-
vergence in the general nonnormal case still remains a largely open problem.
As an example, in [60], the authors showed that for any prescribed sequence
of non-increasing residual norms, there exists a class of right hand sides and
matrices whose (non zero) eigenvalues can be chosen arbitrarily, giving residual
norms that coincide with the given non-increasing sequence.

Linear bounds in the general case

Let us present three familiar convergence bounds for MR methods based on the
eigenvalues, the field of values and the pseudospectra.

In the case A is diagonalizable (A = ZDZ−1), we can obtain

‖rn‖
‖r0‖

≤ κ(Z)En(Λ(A)),

where κ(Z) = ‖Z‖‖Z−1‖ denotes the condition number of Z. This can be gener-
alized for any matrix in terms of the Jordan form, but the Jordan decomposition
is numerically unstable.

In [41], Eiermann developed a bound based on the field of values of A (also
called numerical range)

W(A) = {(Ax, x), ‖x‖ = 1}. (2.5)

This bound was improved in [11] and can be formulated as

‖rn‖
‖r0‖

≤ 2

1− ρn+1
S

ρnS ,

with W(A) ⊂ S, 0 /∈ S and ρS = 1
|φS(0)| . Another bound which can be obtained

easily in terms of the numerical range with the help of Crouzeix’s theorem
[28, 29] is

‖rn‖
‖r0‖

≤ CCrouzeixEn(W(A)),

where CCrouzeix ∈ [2, 1+
√

2] is the constant of Crouzeix which is conjectured to
be 2. It is interesting to note that the residual norms decrease strictly monoton-
ically whenever zero is outside the field of values of A [62]. However, in general,
no strict monotonicity is guaranteed.

A third type of bounds can be obtained using the notion of ε-pseudospectra
[44] defined by

Λε(A) = {z ∈ C/||(zI −A)−1|| ≥ 1

ε
}, (2.6)

where I designates the identity and can be omited. Indeed, using the Dunford-
Taylor integral, we have for any union of Jordan curves Γ containing the spec-
trum of A and any polynomial p

p(A) =
1

2iπ

∫
Γ

p(z)(z −A)−1dz,
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which implies that
‖rn‖
‖r0‖

≤ L(Γ)

2πε
En(Λε(A)),

where L(Γ) is the length of Γ.
We can find many linear bounds for those methods in the literature, including

some with angles between Krylov spaces in [42].

Linear bounds for MINRES

In the particular case when A is symmetric and indefinite, MINRES has become
the leading algorithm among MR methods. If Λ(A) ⊂ [a, b] ∪ [c, d] where a <
b < 0 < c < d, under the constraint b− a = d− c, we have the upper bound

‖rn‖
‖r0‖

≤ 2

(√
|ad| −

√
|bc|√

|ad|+
√
|bc|

)[n/2]

,

where [n/2] denotes the integer part of n/2. This can be proved using an ap-
propriate transformation of the intervals and Tchebyshev polynomials [59, Sec-
tion 3.1]. See also the paper [108] which goes a little further or the recent paper
[104].

2.3 Superlinear convergence

All the bounds we proposed before show a linear convergence. But we can expect
to see three phases for the actual convergence [88], the sublinear phase (in the
early steps the convergence is very rapid), the linear phase (the convergence
settles down to a roughly linear rate), and then the superlinear phase (the
convergence of the process accelerates again). In practice all phases need not be
identifiable, nor need they appear only once and in this order. In the following
we are interested by the superlinear convergence.

2.3.1 Notion of superlinear convergence

In practice, the linear bounds given in the preceding section are too pessimistic,
and one observes that the speed of convergence of the process improves as the
process proceeds, see for instance Figure 2.3. This phenomenon is known as
superlinear convergence of the Krylov methods. Superlinear upper bounds for
operators of the form αI + K, with K a compact operator, can be found in
[120] for OR methods and in [86] for MR methods. If the compact operator K
is a p-th Schatten class operator [54], which means that its singular values are
p-summable, then the bounds are explicit. In the case of Hermitian matrices for
OR methods, an explanation for this behavior, in an asymptotic sense, can be
found in [12]. In the general case the phenomenon is not well understood yet.

A remark we can do here is that to obtain linear bounds, we always included
the spectrum in a larger fixed set S. The approximation is based on the as-
sumption that S is a good approximation of the spectrum, which in this case
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means that the optimal polynomial, which is small on Λ(A), is also small on S.
This assumption may actually be valid for small n. However for larger values
of n it may be more efficient for the optimal polynomial to have some of its
zeros very close to some of the eigenvalues, without being small in the full set S.
Among other things, this can be viewed as responsible for the phenomenon of
superlinear convergence often observed in the later stages of a matrix iteration.

Another reason which is responsible for the superlinear convergence is that
some eigenvalues are well approximated during the iterations. Indeed, Ritz val-
ues turn out to be accurate approximations of some eigenvalues of A [9], [10],
[18], [109]. And once the method has found an eigenvalue, the procedure con-
verges as a process in which this eigenvalue is absent [115], [118].

The observations made above are well known in the numerical linear algebra
community, see for instance the monographs [46], [88], [101], [108] or the first
articles on this phenomenon [4], [5], [109], [115], [118].

2.3.2 Notion of outliers

As already said, at the beginning of the process, the linear bounds are typically
accurate, but as the iterations go on, they can become a great overestimation
of the error. An idea to study the superlinear convergence is to choose a set
S which will depend on the number of eigenvalues which have been found by
considering them as outliers. This set will be smaller as the process goes on, it
will exclude the outliers (which are known) and contain the rest of the spectrum
(not found precisely yet). To do this, we have to understand which eigenvalues
are found by Krylov methods (i.e. Arnoldi or Lanczos algorithms). Trefethen
and Bau observed [9, lecture 36] the following rule of thumb for Hermitian
matrices: Ritz values tend to converge to eigenvalues in regions of ”too little
charge” for an equilibrium distribution. This means that we need to compare
the distribution of the eigenvalues with the equilibrium distribution, and if the
eigenvalues are distributed like the equilibrium distribution, then the Lanczos
iteration does not find any eigenvalue until the number of iterations is near
the size of the matrix. On the other hand, the Lanczos iteration will find very
quickly eigenvalues in the region where their distribution is less dense than the
equilibirum distribution. It was Kuijlaars [75] who first quantified this heuristic
rule of thumb in the case of Hermitian matrices, by considering a sequence of
matrices and working in an asymptotic sense, and refined later in [18].

As an example, assume that the eigenvalues of A are located in [−1, 1]. The
equilibrium measure has density 1/(π

√
1− t2) which is infinite at the endpoints.

Thus if the eigenvalues are equidistant, the Lanczos method tends to find the
eigenvalues near the endpoints [75, Section 4.2], and we observe the superlinear
convergence. And if the eigenvalues are the zeros of the Chebyshev polynomials
of the first kind, there is no superlinear convergence for En(S).
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Let us consider the matrix

AN =


2 −1

−1 2
. . .

. . .
. . . −1
−1 2

 .

The eigenvalues of AN are given by λj,N = 2− 2 cos(πj/(N + 1)) leading to the
asymptotic eigenvalue distribution given by the equilibrium measure of the in-
terval [0, 4]. In this case we do not have superlinear convergence for the quantity
En(S). For example, in Figure 2.1 on the left there is no superlinear convergence
and one has to reach approximately the dimension of the matrix to achieve full
precision. On the other hand, for a specific right-hand side b, we may still ob-
serve superlinear convergence [14] as confirmed by the plot in Figure 2.1 on the
right.

Figure 2.1: CG relative error curve for the one dimensional Poisson problem dis-

cretized on a uniform grid of size N = 1000 with initial vector x0 = 0. On the left

b = (1, . . . , 1)T and on the right bk = (N+1)2
∑N

j=1 2−j sin(jπk/(N+1)) for k = 1 : N .

An isolated outlier has no effect on the asymptotic convergence factor. The
reason is that any isolated eigenvalue can be annihilated by a single zero of a
polynomial; the rest of the zeros can be devoted to achieving minimal norm on
the rest of S. The price to pay to annihilate an outlier grows as it approaches the
origin, indeed, we can observe a delay of a number of steps of the convergence
on Figure 2.2 on the left. When the outlier is far from the origin it delays the
convergence by only few steps. If we consider several outliers the effects are the
same, see Figure 2.2 on the right.
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Figure 2.2: CG relative error curve for diagonal matrices with spectrum related to

the equilibrium distribution in [2, 4], with x0 = 0 and b = (1, . . . , 1)T . On the left we

plot the relative error curve without outlier (black dotted line) and compare with the

addition of one outlier with different values. On the right we compare the relative error

(black dotted line) with the cases of several outliers, λ1 = 10−3, λ2 = 1/50, λ3 = 10−1.

2.3.3 Superlinear convergence for CG (conjugate gradi-
ents)

People have been aware of superlinear convergence for CG for more than forty
years. A first attempt to quantify such a convergence behavior was suggested
by Kuijlaars and Beckermann [12], see also the review [76] for a more compre-
hensive summary, or the review [15] from the perspective of discrete orthogonal
polynomials.

The key ingredient of this theory is to dispose of a measure σ with contin-
uous potential Uσ (see Definition A.1.3) and compact support describing the
eigenvalue distribution. In [12], this is quantified by the following condition.

Condition 1 There is a sequence of systems ANxN = cN , where N denotes
the size of the matrix, such that the eigenvalues of the matrices AN are uniformly
bounded (i.e. they are all in a fixed interval [0, R]), and they have asymptotic
distribution σ, which means that σ is the weak-star limit of normalized counting
measures of the spectra of the AN

lim
N→∞

1

N

∑
λ∈Λ(AN )

δλ = σ. (2.7)

It follows that σ must have a compact support in [0, R] and has total mass at
most one.

Let us consider two more technical conditions.
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Condition 2 The logarithmic potential Uσ is continuous and real-valued.
It is a regularity condition on σ, it prevents σ to have point masses. This con-
dition is satisfied for example if the density is continuous.

Condition 3 The condition 1 is satisfied also for the function log, i.e.

lim
N→∞

1

N

∑
λ∈Λ(AN )

log(λ) =

∫
log(λ)dσ(λ).

This condition follows from the condition 1 if we know that the eigenvalues are
in [a,R] for all N with a > 0. In fact this condition prevents eigenvalues from
approaching 0 too fast as N →∞.

In many applications, the matrices appear as discretizations of a continuous
operator, and these three conditions are natural. Under those weak assumptions
for small eigenvalues, the authors establish in [12, Theorem 2.1] for the nth
iterate xCGn,N of conjugate gradients applied to the system ANxN = cN the
asymptotic upper bound

lim sup
n,N→∞
n/N→t

(
‖xCGn,N −A

−1
N cN‖AN

‖xCG0,N −A
−1
N cN‖AN

)1/n

≤ lim sup
n,N→∞
n/N→t

(En(Λ(AN )))
1/n

≤ exp

(
−1

t

∫ t

0

gS(τ)(0,∞)dτ

)
,(2.8)

where (S(t))0<t<‖σ‖ is a decreasing family of compact subsets of the convex hull
of the spectra, obtained from some constrained extremal problem in logarithmic
potential theory, which we explain below (see also Appendix A.3).

For measures σ with compact support and continuous potential, and 0 <
t < ‖σ‖, according to [32, 94] there exists a unique minimizer νt,σ of I(ν) under
all candidates ν ∈ M1(supp(σ)) with ν ≤ σ/t. This minimizer is uniquely
characterized by the existence of a constant Ct,σ ∈ R such that

Uνt,σ (x) = Ct,σ for x ∈ supp(σ/t− νt,σ), Uνt,σ (x) ≤ Ct,σ for x ∈ supp(σ).

Many Buyarov-Rakhmanov [23] type properties are known about the measures
νt,σ for fixed σ and varying t, we just recall here from [12, Proof of Theorem 2.1]
the fact that the measures tνt,σ are increasing in t, and hence

S(t) := supp(σ/t− νt,σ) decreases in t. (2.9)

As a consequence, the map n 7→ −N
∫ n/N

0
gS(τ)(0,∞)dτ is concave and de-

scribes superlinear convergence behavior. The compact sets S(t) may have a
quite complicated shape, and the main finding of [75] roughly says that the nth
Ritz values of AN approach well all eigenvalues in Λ(AN ) \ S(n/N). There is a
similar (rough) interpretation of (2.8): so-called ”converged” eigenvalues which
are already well approached by nth Ritz values should no longer contribute (in
exact arithmetic) to the convergence of CG at later stages.

46



Figure 2.3: Lower and upper bounds for n 7→ En(Λ(A)). Here λj = (j/N) (2−
j/N) for j = 1, ..., N = 1000. As lower bound we draw the relative CG error
in energy norm, with A = diag(λ1, ..., λN ), c = (1, ..., 1)T , and starting vector
xCG0 = 0 (black dotted line). The upper bounds come from (2.4) with b/a =
λN/λ1 for the condition number bound (green solid line)

Let us consider a fourth condition.
Condition 4

lim
N→∞

1

(#Λ(AN ))2

∑
λ∈Λ(AN )

∑
λ′∈Λ(AN )

λ′ 6=λ

log
1

|λ− λ′|
=

1

‖σ‖2
I(σ).

Under this additional condition, the inequality (2.8) can be improved to give
equality [12, Theorem 2.2].

The drawback of this theory is that all results in [12] study only the so-called
asymptotic convergence factor. In addition, this theory requires to consider se-
quences of systems of equations with a joint eigenvalue distribution, and thus
gives not so much information about the actual rate of convergence for a sin-
gle matrix. Numerical evidence in [12, 13, 14] did let to conjecture that the
above upper bound (2.8) even holds (up to some modest constant) for a sin-
gle matrix A, without limits and without taking the n-th root, see for instance
[12, Eqn.(1.9) and Figures 1 and 4], [14, Eqn. (1.3)], or Figure 2.3. Of course,
for a single matrix we cannot define σ through (2.7). This gives the following
conjecture.

Conjecture 2.3.1 There is a (modest) constant C ∈ R and a technique of
associating a measure σ with compact support and continuous potential to the
spectrum of a positive definite matrix A such that, for all n sufficiently small,

En(Λ(A)) ≤ exp

(
C −N

∫ n/N

0

gS(t)(0,∞)dt

)
.
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It may be that this conjecture is wrong for measures where S(t) has a com-
plicated shape. In our proof of the conjecture (chapter 5), following [12, Lemma
3.1(a)], we will impose sufficient conditions on σ such that S(t) = [a(t), b] for
all t.
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Chapter 3

Convergence of Minimal
Residual methods in the
presence of few outliers

In this chapter we present a study of the convergence behavior of Minimal
Residual (MR) methods, like GMRES, for solving nonsingular systems of linear
equations, which is an improvement and a generalization of the work of Ipsen et
al. in [24]. In fact we will study the quantity En(S) introduced in Equation (2.1).
In [24], the authors obtained upper bounds of this quantity for disks S. Using
tools from complex analysis, Faber polynomials and AAK theory, we construct
polynomials leading to better upper bounds, and generalize the work to con-
vex sets. Our upper bound provides a better understanding of the superlinear
convergence of MR methods in presence of few outliers. We also give a lower
bound in Theorem 3.1.3 which can be seen as a generalization of the classical
asymptotic convergence factor.

3.1 Introduction

In this chapter we concentrate our study on the value En(S) introduced in
equation (2.1)

En(S) = min

{
‖p‖S
|p(0)|

, p ∈ Πn, ∀λ ∈ Λ(A) \ S : p(λ) = 0

}
.

Let {λj}Jj=1 denote the distinct eigenvalues of a matrix A, and define Λ0 =

{λj}dj=1, a subset of the spectrum which will play a particular role in our anal-

ysis. The set S will enclose the set {λj}Jj=d+1.

Definition 3.1.1 The eigenvalues in Λ0 will be called outliers. We say that S =
Sd is an inclusion set if it is a closed neighborhood of the remaining spectrum
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{λj}Jj=d+1, non-empty and different of C, such that C \ S is simply connected
and 0, λ1, . . . , λd /∈ S.

In [24] S is called a cluster. The main idea is to treat separately outliers and
eigenvalues in the inclusion set. In this chapter we will not discuss how to choose
outliers, but once fixed, an outlier should not control the rate of convergence.
In the chapter 5 we will come back to this problem for a particular distribution
of the spectrum in Theorem 5.1.4. So their choice will depend on which step of
the process we are. There is a strong link between the choice and the number
of the outliers and the inclusion set S. The more informations we have on the
spectrum of A, the more we will be able to choose a good set S.

For connected inclusion sets S that contain the spectrum, it is known [35,
Theorem 1 and 2] that

En(S) ≥ 1

|α0|n
,

where the inverse of |α0| (see Definition 3.1.2) is the asymptotic convergence
factor ρS given in Equation (2.3). We give a lower bound in Theorem 3.1.3
which allows some eigenvalues to be outside S, and so generalize this lower
bound. So we can choose smaller sets included in the preceding one which will
give larger |α0| (see Remark 3.2.1). The price to pay is a factor of Blaschke
products (independent of n) of modulus greater than one.

Recall that we have the inequalities (2.2)

En(Λ(A)) ≤ En(S ∪ Λ0) ≤ En(S).

Our goal is to find a polynomial pn (d ≤ n) in

Π0
n(Λ0) = {p ∈ Π0

n/p(λ) = 0 for λ ∈ Λ0}, (3.1)

and to give an overestimation of En(S) with the inequality

En(S) ≤ ‖pn‖S
|pn(0)|

,

where ‖pn‖S = supz∈S |pn(z)| is the∞-norm. Our overestimation will be related
to the asymptotic convergence factor and will lead to sharp upper bounds (in
the sense that the ratio of the upper and the lower bounds tends to one).

3.1.1 Results in the paper of Ipsen et al.

The first step in our analysis is to bring the problem onto the open unit disk
in the complex plane, denoted by D, by a change of variable. Consider the
conformal map φS (see Equation (A.2)) its inverse ψS : C \ D → C \ S. With
this change of variable and the maximum principle, we can consider the problem
on the unit disk

En(S) = min
p∈Π0

n(Λ0)
max
z∈S
|p(z)| = min

p∈Π0
n(Λ0)

max
w∈∂D

|p(ψS(w))|,

which will allow us to use results from complex analysis and approximation
theory in the complex plane.
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Definition 3.1.2 Let us set the notations α0 = φS(0) (0 /∈ S) and αj = φS(λj)
(j = 1 : d), for the images of zero and of the eigenvalues outside S under φS.
We define the following function on C \ D

fn,α1,...,αd(w) = wn
d∏
j=1

(
w − αj
1− ᾱjw

)
(3.2)

It is important to note that φS depends strongly on the choice of S, and thus if
we change S, all the αj change. The function fn,α1,...,αd will play a central role
in the sequel.

In [24] the authors considered the case when the inclusion set S is a disk
centered at γ of radius r = |γ|ρ (ρ < 1)

{λj , d+ 1 ≤ j ≤ J} ⊂ S = D(γ, r), r = |γ|ρ.

Considering the product pn = qdsn−d where

qd(z) =

d∏
j=1

(
1− z

λj

)
=

d∏
j=1

αj − φS(z)

αj − α0
∈ Π0

d,

and sn−d ∈ Π0
n−d, they overestimated the maximum of the product by the

product of the maxima. Then they choose the best sn−d on a disk which is
explicitly known by Zarantonello’s lemma [101, Proposition 6.26]:

sn−d(z) =

(
1− z

γ

)n−d
=

(
φS(z)

φS(0)

)n−d
.

As a consequence they obtained in [24, Proposition 4.1] the upper bound for
disks (reformulated in our terms)

En(S) ≤ CIpsen
|fn,α1,...,αd(α0)|

, (3.3)

where 1/|fn,α1,...,αd(α0)| is the lower bound given in Theorem 3.1.3, and

CIpsen =

d∏
j=1

1 + 1
|αj |

|1− 1
αjα0
|
.

CIpsen, which depends on S and d (not on n), represents the ratio between the
upper bound and the lower bound, and is strictly greater than one as

1 +
1

|αj |
≥ 1 +

1

|αjα0|
≥ |1− 1

αjα0
|.

In fact in [24], they gave the bound

En(S) ≤ 1

|fn,α1,...,αd(α0)|

(
max
j=1:d

1 + 1
|αj |

|1− 1
(α0αj)

|

)d
,

but there is no reason to take the maximum instead of the product.
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3.1.2 Improvements

The aim of this chapter is to improve the results in [24]. We remark that Zaran-
tonello’s lemma does not apply if we take into account qd. So we need another
technique to find a better approximation which takes into consideration the out-
liers. We prove in Section 3.2 that we have the following lower bound which can
be seen as a generalization of the classical asymptotic convergence factor.

Theorem 3.1.3 (Lower bound) For d ≤ n and for every inclusion set S
(Definition 3.1.1), we have an explicit lower bound for our min-max problem

En(S) ≥ 1

|fn,α1,...,αd(α0)|
=

1

|α0|n
d∏
j=1

∣∣∣∣1− ᾱjα0

α0 − αj

∣∣∣∣ ,
where fn,α1,...,αd is defined in (3.2).

Then we suggest a choice of polynomial in w taking into account that we
impose certain zeros (sk will depend on S and qd). In the case of a disk, the
maps φ and ψ are linear, and thus our choice leads to a polynomial in z. This
allows us to obtain in Section 3.3 an upper bound in the case of a disk stated
in the following theorem.

Theorem 3.1.4 (Upper bound for a disk and d outliers) Let the inclusion
set S be a closed disk and consider d outliers (d ≤ n). For each αj we associate

an integer nj ≥ 1 such that
∑d
j=1 nj ≤ n. Then we can obtain the upper bound

En(S) ≤ Υn(n1, . . . , nd) :=
Cn1,...,nd

|fn,α1,...,αd(α0)|
, (3.4)

where Cn1,...,nd =
∏d
j=1

1+ 1

|αj |
nj

|1− 1

(α0αj)
nj
| .

The ratio of our upper and lower bound Cn1,...,nd depends on S, d and the
choice of the nj . Provided that all nj → ∞, Cn1,...,nd tends to 1, showing that
our upper bound is asymptotically sharp. If all the nj are equal to one we find
the upper bound given in Equation (3.3), and thus this theorem contains the
Proposition 4.1 in [24] as a special case. With a good choice of nj , our theorem
may allow us to obtain better upper bounds.

For more general inclusion sets S, a polynomial in w do not give a polynomial
in z, so in this case we use the Faber transform which transforms polynomials in
w into polynomials in z. In Section 3.4 we consider convex sets with one outlier
which can be extended for several outliers, but the constant will explode as the
number of outliers grows, this is why this bound can only be satisfactory for
few outliers.

Theorem 3.1.5 (Upper bound for a convex set and one outlier) If the

inclusion set S is convex, then for n such that
1+ 1
|α1|n

|1− 1
(α0α1)n

| <
|α0|n

2 , we have the
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upper bound

En(S) ≤ 3Cconv
|fn,α1(α0)|

,

where Cconv =
1+ 1
|α1|n

|1− 1
(α1α0)n

|

[(
1− 2

|α0|n
1+ 1
|α1|n

|1− 1
(α0α1)n

|

)]−1

.

Cconv tends to 1 as n → ∞, showing that the preceding upper bound is asym-
totically sharp up to a factor 3.

In the last section we present some openings and some generalizations which
can be done.

3.2 Lower bound

In this section we consider d (simple) outliers {λj , 1 ≤ j ≤ d}, an inclusion set
S (see Definition 3.1.1), and we prove the lower bound given in Theorem 3.1.3.
The main idea of the proof is to solve another problem of minimization on the
unit disk by using the maximum principle.

Proof of Theorem 3.1.3 : Consider a function f which is analytic and
bounded in C \ D such that f(αj) = 0, for j = 1 : d. Then the function

g(w) = f(w)
∏d
j=1

(
1−ᾱjw
w−αj

)
is also analytic and bounded in C \ D. Using that

the Blaschke factors are of modulus one on ∂D and the maximum principle for
analytic functions, we have supC\D |g(w)| = ‖f‖∂D, which implies

∀w ∈ C \ D, |f(w)| ≤ ‖f‖∂D
d∏
j=1

∣∣∣∣ w − αj1− ᾱjw

∣∣∣∣ .
Moreover, if we ask that f(α0) = 1, the preceding formula permits to obtain

‖f‖∂D ≥
d∏
j=1

∣∣∣∣1− ᾱjα0

α0 − αj

∣∣∣∣ .
Now we observe that for every p ∈ Π0

n(Λ0) (defined in (3.1)), the function

f(w) =
p(ψ(w))αn0

wn is analytic and bounded outside the unit disk, and satisfies
the conditions f(αj) = 0 and f(α0) = 1. This allows to deduce that

min
p∈Π0

n(Λ0)
max
w∈∂D

∣∣∣∣p(ψ(w))αn0
wn

∣∣∣∣ ≥ d∏
j=1

∣∣∣∣1− ᾱjα0

α0 − αj

∣∣∣∣
which leads to the lower bound given in Theorem 3.1.3.

�

Remark 3.2.1 If S2 ⊂ S1, then |φS1
(0)| ≤ |φS2

(0)|. Indeed, since by defini-
tion (see Definition A.1.4) the function gS2

(.,∞) − gS1
(.,∞) has nonnegative
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boundary values on the boundary of S1, it is nonnegative everywhere on C \ S1

(minimum principle). This property leads us to consider a sequence of decreas-
ing inclusion sets Sj, i.e. Sj+1 ⊂ Sj for all j, to obtain a decreasing sequence

1
|φSj (0)| .

We see from the lower bound that the choice of S and the number d of
outliers will be very important to obtain satisfying bounds for MR methods.

Remark 3.2.2 We note that the function w 7→
d∏
j=1

w−αj
1−ᾱjw

1−ᾱjα0

α0−αj attains the

lower bound given in the proof of the theorem. Unfortunately this is not a poly-
nomial. So an idea to find an upper bound is to choose a polynomial pn ∈ Π0

n(Λ0)

such that pn ◦ ψ(w) ' wn

αn0

d∏
j=1

w−αj
1−ᾱjw

1−ᾱjα0

α0−αj . We can do it by searching a poly-

nomial pn such that pn ◦ ψ approximates the function fn,d and then normalize
at α0.

Interest of considering more outliers.

Figure 3.1: Lower Bounds with different d. On the left we consider a matrix of order

100 with equidistant eigenvalues λ1 = 1, λ2 = 2, . . . , λ100 = 100. For each d, we take

Sd = D((λd+1 + λ100)/2, (λ100 − λd+1 + 1)/2). On the right we consider a matrix of

order 100 with five eigenvalues λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4, λ5 = 5, and all the

others contained in a closed disk D(9, 3) centered at 9 and of radius 3 with no more

information. We take as inclusion sets for d = 0 : 4, Sd = D((λd+1 + 9)/2, (9−λd+1 +

1)/2), and S5 = D(9, 3).

Let us illustrate some properties of the lower bound, depending on the num-
ber of outliers and the choice of S, with two academic examples in Figure 3.1.
The product of the inverses of Blaschke factors is constant for S and d fixed, and
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it can grow fastly with d as we can see from the first example in Figure 3.1 on
the left. But this product can be compensated for large n by the fact that if we
have more outliers, the inclusion set S can be chosen smaller, which can lead to
a smaller 1

|α0| (Remark 3.2.1). For example, if we have a decreasing sequence of

inclusion sets Sj (which is the case in all our examples), then 1
|φSj(0)|

≥ 1
|φSj+1(0)|

.

We see on the first example on the left that it can take a lot of iterations
before it becomes interesting to consider more outliers. In the second example
(Figure 3.1 on the right), five eigenvalues are well separated from the others,
and we see that it is attractive to consider them as outliers. Indeed, the case
d = 5 is rapidly better than the others.

In both examples, for small n, it is not interesting to consider a lot of outliers,
but as n increases, we can obtain a better rate of convergence if we take into
account more and more outliers. So this notion of outliers will allow us to capture
the superlinear convergence explained in the preceding chapter.

As for a fixed n the lower bound is true for every d ≤ n (and is sharp up to
some constant as will be seen later), it is interesting to search the best d which
gives the best lower bound at step n, but it seems to be a difficult task. On the
graph this means to take the lower envelope of all the lines.

An idea to make the lower bound smaller could be to choose φ and the

αj such that the Blaschke product
∏d
j=1

∣∣∣ 1−ᾱjα0

α0−αj

∣∣∣ is as small as possible. This

kind of minimization problem has received considerable attention in complex
approximation theory, as for example in [8, 47] or [103, Theorem VIII.3.1].

3.3 Upper bound for a disk

In this section we talk about the particular case when the inclusion sets are
disks S = D(γ, r). The conformal maps

φ(z) =
z − γ
r

and ψ(w) = wr + γ

are linear, and then a polynomial in w will lead to a polynomial in z. We begin in
§3.3.1 with an introduction to AAK theory and Nehari’s theorem, and propose
a candidate for the approximation of fn,α1

. This polynomial leads to an upper
bound for one outlier given in §3.3.2. Inspired by this case d = 1, we prove
and discuss Theorem 3.1.4 concerning the case of a disk with several outliers in
§3.3.3.

3.3.1 AAK theory

In the case d = 1, AAK theory allows us to prove that the best approxima-
tion of fn,α1 by an H∞ function is achieved by a polynomial, which will be
explicitely given. Let us recall briefly some basic properties of Hankel opera-
tors and state Nehari’s theorem [92, chap 1]. We denote by H2(D) the classical
Hardy space which consists of the holomorphic functions in D whose power se-
ries coefficients at the origin are square summable. A function f ∈ H2(D) has
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an associated boundary function on the unit circle T, also denoted by f , defined
almost everywhere by means of nontangential limits. By Fatou’s theorem we
have ‖f‖H2(D) = ‖f‖L2(T), where L2(T) is the classical Hilbert space endowed
with the normalized Lebesgue measure. The boundary functions contain the
subspace of L2(T), also called H2, of functions whose Fourier coefficients with
negative indices vanish. The orthogonal complement of H2 in L2, denoted by
(H2)⊥ = H2

−, consists of the functions whose Fourier coefficients with nonneg-
ative indices vanish.

Definition 3.3.1 For ϕ ∈ L∞(T), the Hankel operator Hϕ is defined to be the
operator from H2 to H2

− given by

Hϕf = P−(ϕf),

where P− is the orthogonal projection onto H2
−.

The function ϕ is called a symbol of the Hankel operator Hϕ. There are infinitely
many different symbols that produce the same Hankel operator, indeed it is
known that Hϕ = 0 is tantamount to ϕ ∈ H∞. We have the following important
theorem [92, Theorem 1.3].

Theorem 3.3.2 (Nehari) Let ϕ ∈ L∞(T). Then

‖Hϕ‖ = inf{‖ϕ− h‖∞, h ∈ H∞} = dist(ϕ,H∞).

In the following we need the norm of an Hankel operator with a symbol equal
to a Blaschke factor.

Lemma 3.3.3 For |α| > 1, we have

‖H w−α
1−αw

‖ = 1

Proof of the lemma : Using the equality w−α
1−αw = −1

α + |α|
2−1
α2

1
w− 1

α

, we obtain

‖H w−α
1−αw

‖ =
|α|2 − 1

|α|2
‖H 1

w− 1
α

‖,

and it is known that ‖H 1

w− 1
α

‖ = |α|2
|α|2−1 [121, Example 15.17]. Let us give an-

other proof of this equality here. The Hankel operator H 1

w− 1
α

can be computed

explicitely, indeed for every f ∈ H2 we can write

H 1

w− 1
α

f(w) = P−
(
f(w)− f( 1

α )

w − 1
α

+
f( 1

α )

w − 1
α

)
= f(

1

α
)

1

w − 1
α

.

We can see this rank one operator as the tensor product ϕ1⊗ϕ2 defined by (see
[1, Section 0.6])

(ϕ1 ⊗ ϕ2)f = 〈ϕ2, f〉ϕ1,
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with ϕ1(w) = 1
w− 1

α

=
∞∑
p=0

1
αp

1
wp+1 ∈ H2

− and ϕ2 the linear functional defined by

ϕ2(f) = f( 1
α ). We can compute easily the norms of ϕ1 and ϕ2. For ϕ1, we have

‖ϕ1‖2 =

∞∑
p=0

(
1

|α|p

)2

=

∞∑
p=0

(
1

|α|2

)p
=

|α|2

|α|2 − 1
.

For ϕ2, it is clear by Cauchy-Schwarz that

‖ϕ2‖ ≤
|α|√
|α|2 − 1

,

and this norm is reached for the function which has the Fourier coefficents ( 1
αj ).

Now using the equality ‖ϕ1 ⊗ ϕ2‖ = ‖ϕ1‖ ‖ϕ2‖ [1, Section 0.6], we obtain

‖H 1

w− 1
α

‖ = ‖ϕ1‖ ‖ϕ2‖ =
|α|2

|α|2 − 1

which ends the proof.
�

Remark 3.3.4 If we set β = 1/α, we have w−α
1−αw = β

β

1−βw
w−β and thus

‖H w−α
1−αw

‖ = ‖H 1−βw
w−β
‖.

As |β| < 1, w−β
1−βw is a classical Blaschke factor. It is known in the theory of SISO

systems (of finite rank), that for lossless transfer functions of type C/B, where
C is a product of at most m − 1 (classical) Blaschke factors and B a product
of m (classical) Blaschke factors, that ‖HC/B‖ = 1. This implies the preceding
lemma for m = 0. This result was proved in personal notes1 with Martine Olivi2.

This short introduction to Hankel operators, will help us to propose a good
polynomial to approximate the function

fn,α1
(w) = wn

w − α1

1− α1w
= −w − α1

αn1

n−1∑
j=0

(α1w)j +
1

αn1

w − α1

1− α1w
. (3.5)

Considering the polynomial

pn,α1
(w) = −w − α1

αn1

n−1∑
j=0

(α1w)j = fn,α1
(w)

(
1− 1

(α1w)n

)
, (3.6)

we obtain

‖fn,α1
− pn,α1

‖∂D =
1

|α1|n
.

1 The inequality ‖HC/B‖ ≤ 1 is clear, and by Nehari’s theorem, we know that ‖HC/B‖ =
inf{‖C − hB‖, h ∈ H∞}. Then the idea is to make a link with a Nevanlinna-Pick problem:
for f ∈ H∞ find min{‖f − hB‖, h ∈ H∞}. This minimum is attained for h = 0 if and only if
f is a Blaschke product of degree < m [52, Corollary I.2.3].

2 EPI-APICS, Inria, BP 93, Sophia-Antipolis cedex (Martine.Olivi@inria.fr, https://www-
sop.inria.fr/members/Martine.Olivi/).
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Proposition 3.3.5 With the preceding notations,

inf{‖fn,α1 − h‖∞, h ∈ H∞} =
1

|α1|n
,

and the infimum is achieved by the polynomial pn,α1
.

Proof of Proposition 3.3.5 : This is a direct consequence of (3.5) and of
Lemma 3.3.3

Hfn,α1
= Hfn,α1

−pn,α1
=

1

αn1
H w−α1

1−α1w
.

�
So we found that the polynomial pn,α1 solves a problem of minimization over

a class of analytic functions. After normalization at α0, we obtain

pn,α1
(w)

pn,α1
(α0)

=
w − α1

α0 − α1

1 + α1w + · · ·+ (α1w)n−1

1 + α1α0 + · · ·+ (α1α0)n−1
,

and thus in term of z

pn,α1(φ(z))

pn,α1
(φ(0))

=
φ(z)− φ(λ1)

φ(0)− φ(λ1)

1 + φ(λ1)φ(z) + · · ·+ (φ(λ1)φ(z))n−1

1 + φ(λ1)φ(0) + · · ·+ (φ(λ1)φ(0))n−1
,

which is a polynomial in z since φ is linear.

3.3.2 Upper bound for one outlier

In this subsection we use the polynomial pn,α1 given by AAK theory to prove
Theorem 3.1.4 for one outlier stated in Proposition 3.3.6. We also discuss and
compare our result with the bound which comes from [24] and defined in Equa-
tion (3.3).

Proposition 3.3.6 (Upper bound for a disk and one outlier) In the case
of one (simple) outlier α1 and 1 ≤ n1 ≤ n, if the inclusion set S is a disk, we
can obtain the upper bound

En(S) ≤ Υn(n1) :=
1

|fn,α1
(α0)|

1 + 1
|α1|n1

|1− 1
(α0α1)n1

|
.

This upper bound is asymptotically sharp since the ratio between the upper and

the lower bounds
1+ 1
|α1|

n1

|1− 1
(α0α1)n1 |

tends to 1 as n1 →∞.

Proof of Proposition 3.3.6 : Inspired by the polynomial given in (3.6), we
set for 1 ≤ n1 ≤ n the polynomial

pn1,α1(w) = −w − α1

αn1
1

n1−1∑
j=0

(α1w)j = fn1,α1(w)

(
1− 1

(α1w)n1

)
.
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Multiplying this polynomial with wn−n1 gives a polynomial of degree n which
allows to conclude. Indeed, for

pn(w) = wn−n1pn1,α1
(w) = fn,α1

(w)

(
1− 1

(α1w)n1

)
,

we have the inequalities

‖pn‖∂D ≤ 1 +
1

|α1|n1
and |pn(α0)| = |fn,α1

(α0)|
∣∣∣∣1− 1

(α0α1)n1

∣∣∣∣ , (3.7)

and using the fact that pn ◦ φS ∈ Π0
n(Λ0) we conclude

En(S) ≤ ‖pn‖∂D
|pn(α0)|

≤ 1

|fn,α1(α0)|
1 + 1

|α1|n1

|1− 1
(α0α1)n1

|
.

�

Remark 3.3.7 It is clear that we have the following overestimation

Υn(n1) ≤ 1

|fn,α1
(α0)|

1 + 1
|α1|n1

1− 1
|α0α1|n1

.

This overestimation is the worst case possible, which is attained when α0α1 ∈
R+, a case we will study in the sequel. This upper bound is decreasing with n1,
and thus to minimize it, we have to take the n1 = n. This implies that this upper
bound is easier to handle, specially when we will work with several outliers.

Now let us compare the upper bounds (3.3) (n1 = 1) and (3.4) with n1 =
n. Although for large n we should choose n1 = n since our upper bound is
asymptotically sharp, for small n the choice of n1 is more tricky. We illustrate
this in Figure 3.2. On the left we are in a case where n1 = n is always better. On
the right, the case n1 = n is worse than the case n1 = 1 up to n = 3894, which
makes the new bound for n1 = n less attractive for small n. Such a phenomenon
is due to the facts that α0 and α1 are of opposite signs, and α1 is very near one
(which means that λ1 should perhaps not have been considered as an outlier).

Case α1α0 ∈ R

Now let us look at a special case when α1α0 ∈ R, which is a case we can
encounter in a lot of situations like for example for Hermitian matrices. Setting
α0 = r0e

iθ0 and α1 = r1e
iθ1 , we easily obtain

ᾱ1α0 ∈ R⇐⇒ θ1 ≡ θ0 (mod π)

⇐⇒ α1, α0 and 0 are aligned on the same straight line

⇐⇒ λ1, 0 and γ are aligned on the same straight line.
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Figure 3.2: Comparison between the case n1 = 1 and n1 = n, in the case of a disk

with one outlier.

If θ1 ≡ θ0 (mod 2π), i.e. α1 and α0 are on the same straight line passing
through zero and on the same side with respect to zero, then ei(θ1−θ0) = 1 and
we have

Υn(n1) =
1

|fn,α1
(α0)|

1 + 1
r
n1
1

1− 1
(r0r1)n1

.

So in this case, it is clear that Υn(n) ≥ Υn(1) for every n. In Figure 3.3 we
consider two academic examples to illustrate this situation. The size of |α0| gives
the slope of the lower bound. The upper bound Υn(n) depends on the size of
|α1|, larger it is, faster Υn(n) tends to the lower bound.

If θ1 ≡ θ0 + π (mod 2π), i.e. α1 and α0 are on the same straight line con-
taining zero but on different side with repsect to zero, then ei(θ1−θ0) = −1, and
we have

Υn(n1) =
1

|fn,α1
(α0)|

1 + 1
r
n1
1

1 + (−1)n1+1

(r0r1)n1

.

We clearly see the influence of the parity of n1 in this case in Figure 3.4.
The choice n1 = 1 is better than the choice n1 = n at the beginning and the
convergence of Υn(n1) depends on the size of |α1|.

Those two cases are extreme cases. If α0 and α1 are not aligned, the bounds
have the same behaviors, more or less pronounced.

3.3.3 Upper bound for a disk and several outliers

When d ≥ 2, AAK theory does not give a polynomial as we can see in the
following example. We consider the function h(w) = wn+σ 1−cw

w−c with c > 1 and
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Figure 3.3: Comparison between the cases n1 = 1 and n1 = n, in the case of a disk

with one outlier, and with θ1 ≡ θ0 (mod 2π).

σ ∈ (0, 1). By verifying that for n even we have h(−1) = 1−σ, h(0) = −σ/c and
h(1) = 1 + σ, we see that h has two zeros in (−1, 1). We call 1

α1
and 1

α2
those

(real) zeros. This implies that fn,α1,α2
(w)

(
1 + σ

wn
1−cw
w−c

)
is an H∞ function,

but this is not a polynomial. As seen in Remark 3.3.4, the Hankel operator with
symbol 1−cw

w−c
w−α1

1−α1w
w−α2

1−α2w
has norm one, and thus we conclude that for even n,

the norm in Nehari’s theorem is not reached by a polynomial. So we cannot use
this theory for d ≥ 2.

Inspired by our analysis for one outlier, we give a proof of Theorem 3.1.4
which is similar to the proof of Proposition 3.3.6.
Proof of Theorem 3.1.4 : Let us consider the polynomials

pnj ,αj (w) = −w − αj
α
nj
j

nj−1∑
p=0

(α1w)p = fnj ,αj (w)

(
1− 1

(αjw)nj

)
, j = 1 : d,

defined in (3.6), and

pn(w) = wn−n1−···−nd
d∏
j=1

pnj ,αj (w) = fn,α1,...,αd(w)

d∏
j=1

(
1− 1

(αjw)nj

)
,

which is a polynomial of degree n. The preceding relations permit to deduce
that

‖pn‖∂D ≤
d∏
j=1

(
1 +

1

|αj |nj

)
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Figure 3.4: Comparison between the cases n1 = 1 and n1 = n, in the case of a disk

with one outlier, and with θ1 ≡ θ0 + Π (mod 2π).

and

|pn(α0)| = |fn,α1,...,αd(α0)|
d∏
j=1

∣∣∣∣1− 1

(αjα0)nj

∣∣∣∣ ,
and the upper bound follows.

�
The choice of the nj clearly plays a role in the convergence of our upper

bound. We will present two choices. The first one consists in taking nj = n/d
when d divides n, and in adding one to the nj in a certain order when d does not
divide n. For example we can add one to the nj that correspond to the larger
|αj |. This choice will be referred to as the distributed choice because we give
the same importance to each outlier when d divides n.
For the second choice, using the overestimation discussed in Remark 3.3.7, we
can also obtain

Υn(n1, . . . , nd) ≤
1

|fn,α1,...,αd(α0)|

d∏
j=1

1 + 1
|αj |nj

1− 1
|αj |nj

.

The lower bound does not depend on the choice of the nj , and thus we would
like to compute the nj that minimize the product, but it seems hard to obtain a
formula for those nj . Instead, motivated by the fact that (1+ε)/(1−ε) ∼ 1+2ε for

ε near zero, we will choose the nj that nearly minimize the quantity
∑d
j=1

1
|αj |nj .

Lemma 3.3.8 For fixed αj and under the constraint
∑d
j=1 xj = n, the quantity

62



∑d
j=1

1
|αj |xj is minimized by the following xj’s:

xj =
1

log |αj |
∑d
p=1

1
log |αp|

(
n+

d∑
p=1

log log |αj | − log log |αp|
log |αp|

)
. (3.8)

Proof of Lemma 3.3.8 : For xj ∈ R+, consider the function g(x) = g(x1, . . . , xd) =∑d
j=1

1
|αj |xj , and the constraint h(x) = h(x1, . . . , xd) = n −

∑d
j=1 xj , we can

find a local minimum of g subject to the constraint h = 0 by choosing the xj ’s
defined in (3.8). Indeed, if x is a local extremum of g subject to the constraint
h = 0, there exists c ∈ R such that ∇g(x) = c∇h(x). By computing, we obtain

c =
log |αj |
|αj |xj and thus xj =

log log |αj |−log c
log |αj | . The condition

∑d
j=1 xj = n implies

log(c) =

∑d
p=1

log log |αp|
log |αp| − n∑d

p=1 1/ log |αp|
.

This allows to conclude.
�

As nj must be an integer, we can take the nearest integer of this quantity.
If needed we have to adjust the nj such that their sum is equal to n. This case
is refered to as the Lagrange case. If |α0| ' 1, this choice of nj will lead to a
better choice than the distributed choice.

Figure 3.5: Comparison between different choices of nj.

In Figure 3.5 we compare the two choices presented with the upper bound
given in [24, Proposition 4.1] by (3.3) and the lower bound. If the absolute values
of the αj differs a lot, the Lagrange choice is better at the beginning, but up to
a certain step, it seems that the two choices proposed are very near.
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As in the case of one outlier, when the αj (j = 0 : d) are on the same straight
line passing through zero and on the same side with respect to zero, we have

Υn(n1, . . . , nd) =
1

|fn,α1,...,αd(α0)|

d∏
j=1

1 + 1
|αj |nj

1− 1
|α0αj |nj

.

In general, we can obtain similar behaviors as in the case with one outlier. Note

that each term in the product
∏d
j=1

1+ 1

|αj |
nj

1− 1

|α0αj |
nj

tends to one, but more we have

outliers, more the ratio between the upper and lower bounds will take time to
tend to one.

An interesting question is to ask if it is advantageous to take more outliers.

The product
∏d
j=1

1+ 1

|αj |
nj

|1− 1

(αjα0)
nj
| tends to one and thus will not interfere with

the rate of convergence. On the other side, the term 1
|fn,α1,...,αd

(α0)| depends

strongly on the choice of S as we have already seen in Section 3.2 concerning
the lower bound, in particular in Figure 3.1. Thus we have the same behavior as
for the lower bound. For a fixed d, we have obtained an upper bound in terms
of a straight line which clearly decreases with d. By taking the minimum over
all d, we hope to capture surperlinear convergence through the (concave) lower
envelope of these straight lines. The problem is that we do not know how to
choose the best d. This question of choosing an optimal d for given n is closely
related to how many eigenvalues could be considered as outliers since they are
well approached by Ritz values.

We can see the improvement taking more outliers in Figure 3.6 on the left.
We do not need any information on the localization of the eigenvalues in the
disk to plot this graph. To obtain better rates of convergence, we need to know
more outliers, and thus we need more information on the spectrum.

An important fact in all the bounds presented is that they all have a linear
convergence (asymptotically they have the behavior of a straight line). But it is
well-known that Krylov methods often has a so-called superlinear convergence
behaviour (see Section 2.3). This is illustrated in Figure 3.6 on the right, where
the graph is the same as on the left, but we add the plot of GMRES ‖rn‖/‖r0‖,
with starting vector zero. We do not consider the constant CS in our graphs.
The gap between the plots of GMRES and the upper bounds in Figure 3.6 on
the right is due to the fact that considering a disk is not a great idea to enclose
95 points. This is why it can be interesting to consider more general inclusion
sets S. As an example, we have plotted the upper bound given in Theorem 3.1.5
by considering an ellipse and one outlier.

So an idea to obtain better error bounds is to choose sets that better follow
the shape of the spectrum. We can also be in the case where a disk prevent to
consider eigenvalues as outliers but other shapes of sets could.
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Influence of the number of outliers

Figure 3.6: Here we present the interest of considering several outliers for a matrix

of size 100, b = (1, . . . , 1)T and x0 = 0. In the top row on the left, we consider that

the matrix has eigenvalues λ1 = 1, λ2 = 3, λ3 = 5, λ4 = 7, λ5 = 9, and all the others

in the disk D(26, 15). Below on the left, we consider that the matrix has eigenvalues

λ1 = 1, λ2 = 1.3, λ3 = 3.8, λ4 = 4.1, λ5 = 5.6, and all the others in the disk D(23, 17).

On the right we suppose that we know all the eigenvalues such that we can plot GMRES

and compare with an ellipse and one outlier. In those examples all the eigenvalues are

on the real axis.
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3.4 Convex inclusion set and one outlier

The choice of S is a delicate problem which depends on our knowledge of the
spectrum. For example, in [11, Theorem 2], the author supposed that S contains
the field of values and 0 /∈ S, and obtained the bound

‖rMR
n ‖
‖r0‖

≤ 1

|φS(0)|n
2

1− 1
|φS(0)|n+1

.

In the case we consider zero outlier and S is a disk, we have the similar upper
bound

‖rMR
n ‖
‖r0‖

≤ CS
1

|φS(0)|n
.

To generalize our idea to convex sets, we make use of Faber polynomials, which
give a polynomial in w = φS(z). Unfortunately, when S is not a disk, after the
change of variable, we do not find a polynomial in z (φS is not linear). To work
around this difficulty, we use the Faber transform.

3.4.1 Faber polynomials

In this section we suppose that S is convex, and we write φS = φ and ψS = ψ (we
forget the dependence on S) for the functions given by the Riemann mapping
theorem. The p-th Faber polynomial of S denoted by Fp (or FSp if S is not
explicit) is defined as the polynomial part of the Laurent expansion at infinity
of φp

Fp(z) =
1

cp
zp + a

(p)
p−1z

p−1 + · · ·+ a
(p)
1 z + a

(p)
0 .

Good surveys of their properties are provided by [50] or [112]. Let us give three
fondamental examples of Faber polynomials.

If S is a disk D(γ, r) we are in the case discussed before and we have φ(z) =
z−γ
r which is a polynomial, and then

Fp(z) = φ(z)p =

(
z − γ
r

)p
.

If S = [−1, 1], it is known that ψ is the Joukowski function

ψ(w) =
1

2

(
w +

1

w

)
and

φ(z) = z +
√
z2 − 1

where the branch of the root is taken so that the condition lim
z→∞

1
z

√
z2 − 1 = 1

holds. We can prove that

F0(z) = T0(z) and Fp(z) = 2Tp(z), p ≥ 1,
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where Tp denotes the p-th Chebyshev polynomial of the first kind, i.e. Tp(x) =
cos(p arccosx).

If S is an ellipse with foci at the points ±1 and with semi-axes a = 1
2 (R+ 1

R )
and b = 1

2 (R− 1
R ) where R > 1, then

ψ(w) =
1

2

(
Rw +

1

Rw

)
and

Fp(z) =
2

R2p
Tp(z) for p ≥ 1.

If we know that
ψ(z) = cz + c0 +

c1
z

+ . . . ,

we can compute the Faber polynomials consecutively by the following recursion
relation [112, Eqn (II.2.6)]

cFp+1 = zFp(z)− pcp −
p∑
s=0

csFp−s(z), for p ≥ 2.

We define the level curve

ΓR = {z : |φ(z)| = R} = {ψ(ω) : |ω| = R}

and the inclusion set

SR = C \ {z ∈ C \ S : |φ(z)| > R}.

The conformal map φR associated to SR is easy to obtain, indeed we have the
relation φR(z) = φ(z)/R. For ψR we have the relation ψR(w) = ψ(Rw).

Now let us define the Faber transform [50, I.6.C] which is a linear bijection
from Πk(D) to Πk(S):

F : Πk(D) → Πk(S)∑k
j=0 ajw

j 7→
∑k
j=0 ajFj(z).

This map transforms polynomials in w into polynomials in z. If F is continuous,
then F admits a unique extension that is continuous from A(D) to A(S), where
A(S) denotes the Banach algebra of functions analytic in the interior of S and
continuous on S, equipped with the uniform norm. This is for example the case
for convex sets [50, Theorem 2 page 48-49].

3.4.2 Upper bound for a convex inclusion set and one out-
lier

Our polynomial in the case S is convex is inspired by the polynomial pn,α1

given in (3.6) which solves the minimization problem related to AAK theory.
We obtain Theorem 3.1.5 using the modified Faber transform

F+ : A(D) → A(S)
f 7→ F(f) + f(0).
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To prove this theorem we need the following lemma which can be found in [74].

Lemma 3.4.1 For convex sets S, we have

Re

(
uψ′(u)

ψ(u)− ψ(w)
− 1

2

u+ w

u− w

)
≥ 0

for |u| > 1 and |w| = 1.

Proof : As the level sets SR are convex, by a geometric argument, we can
prove that for |u| = R ≥ 1 and all z ∈ SR, z 6= ψ(u)

Re

(
uψ′(u)

ψ(u)− z

)
≥ 0.

In particular, for |u| ≥ |w| = 1, u 6= w we have

Re

(
uψ′(u)

ψ(u)− ψ(w)

)
≥ 0.

It is not hard to see that u+w
u−w ∈ iR for |u| = |w| = 1, u 6= w. Setting h(u,w) =

uψ′(u)
ψ(u)−ψ(w) −

1
2
u+w
u−w , we have that h is analytic in u for |u| > |w| = 1. Thus by

the minimum principle

min
|u|>|w|=1

Re (h(u,w)) = min
|u|=|w|=1

Re (h(u,w)) ≥ 0.

�
Now we are able to give a proof for Theorem 3.1.5.

Proof of Theorem 3.1.5 : The first step is to prove that for every polynomial
p(w) =

∑l
j=0 ajw

j we have

‖F+(p) ◦ ψ − p‖∂D ≤ ‖p‖∂D, (3.9)

which was already proved in [16, Theorem 3.4]. Let us give another proof here
by working on the level sets SR. As the Faber polynomials Fn,R associated
to SR are related to the Faber polynomials associated to S via the formula
Fn,R(z) = Fn(z)/Rn, we obtain for the Faber transfrorm FR associated to SR
for z ∈ int(SR)

FR(p)(z) =

l∑
j=0

ajFj,R(z) =

l∑
j=0

ajFj(z)/R
j =

1

2π

∫
|u|=1

p(u)
uψ′R(u)

ψR(u)− z
du

iu

=
1

2π

∫
|y|=R

p(y/R)
yψ′(y)

ψ(y)− z
dy

iy
, (3.10)

where in the third inequality we have used [50, Eqn (I.6.16)]. The function

g(u) = p(1/u)
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is analytic in C \ D and continuous on |u| ≥ 1, with g(u) = p(u) for u ∈ ∂D.
Noting that

1

2iπ

∫
|u|=1

p(u)
ψ′R(u)

ψR(u)− z
du =

1

2iπ

∫
|u|=1

g(u)
ψ′R(u)

ψR(u)− z
du = g(∞) = p(0),

where the second inequality follows from the residue theorem, we obtain

p(0) =
1

2π

∫
|u|=1

p(u)

(
uψ′R(u)

ψR(u)− z

)
du

iu
=

1

2π

∫
|y|=R

p(y/R)

(
yψ′(y)

ψ(y)− z

)
dy

iy

(3.11)
Adding (3.10) and (3.11) yields for z ∈ int(SR)

FR,+(p)(z) = FR(p)(z) + p(0) =
1

2π

∫
|y|=R

p(y/R) 2Re

(
yψ′(y)

ψ(y)− z

)
dy

iy
.

(3.12)

For |w| = 1, we have the Poisson integral formula [103, Section 0.4]

p(w/R) =
1

2π

∫
|u|=1

p(u) Re

(
u+ w/R

u− w/R

)
du

iu

=
1

2π

∫
|y|=R

p(y/R) Re

(
y + w

y − w

)
dy

iy
. (3.13)

Combining the two integrals (3.12) and (3.13), we conclude that for |w| = 1

FR,+(p)(ψ(w))− p(w/R) =
1

2π

∫
|y|=R

p(y/R) Re

(
2

yψ′(y)

ψ(y)− ψ(w)
− y + w

y − w

)
dy

iy
.

(3.14)
This implies that

max
|w|=1

|FR,+(p)(ψ(w))− p(w/R)| ≤ ‖p‖∂D

1

2π

∫
|y|=R

Re

(
2

yψ′(y)

ψ(y)− ψ(w)
− y + w

y − w

)
dy

iy
,

where we have dropped the modulus inside the integral thanks to Lemma 3.4.1.
The relation (3.14) with p = 1 gives

1

2π

∫
|y|=R

Re

(
yψ′(y)

ψ(y)− ψ(w)
− 1

2

y + w

y − w

)
dy

iy
= 1.

Now by taking the limit as R→ 1, we obtain (3.9).
Let us consider the polynomial

tn(z) = F+(pn,α1
)(z)−F+(pn,α1

)(λ1),
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with pn,α1 defined in (3.6). The second step is to prove the inequality

‖tn‖S ≤ 3‖pn,α1
‖D = 3(1 +

1

|α1|n
). (3.15)

The function F+(pn,α1
)◦ψ−pn,α1

is analytic in C\D. The fact that pn,α1
(α1) = 0

and the maximum principle give

|F+(pn,α1
)(λ1)| = |F+(pn,α1

)(ψ(α1))− pn,α1
(α1)| ≤ ‖pn,α1

‖D. (3.16)

Equations (3.9) and (3.16) permits to conclude that

‖tn‖S = max
|w|=1

|F+(pn,α1)(ψ(w))−F+(pn,α1)(λ1)|

= max
|w|=1

|F+(pn,α1)(ψ(w))− pn,α1(w) + pn,α1(w)−F+(pn,α1)(λ1)|

≤ 3‖pn,α1‖D ≤ 3(1 +
1

|α1|n
)

as claimed in (3.15). The last inequality being a consequence of (3.7).
The third step is to prove

|tn(0)| ≥ |pn,α1(α0)|

(
1− 2

|α0|n
1 + 1

|α1|n

|1− 1
(α0α1)n |

)
. (3.17)

Noticing that
wn(tn(ψ(w))− pn,α1

(w))

fn,α1
(w)

is analytic for |w| > 1 including w =∞ and w = α1, it follows by the maximum
principle that∣∣∣∣αn0 (tn(ψ(α0))− pn,α1(α0))

fn,α1
(α0)

∣∣∣∣ ≤ max
w∈∂D

∣∣∣∣wn(tn(ψ(w))− pn,α1(w))

fn,α1
(w)

∣∣∣∣
= ‖tn ◦ ψ − pn,α1

‖∂D ≤ 2‖pn,α1
‖∂D,

where for the last inequality we used (3.9) and (3.16). By rearranging the terms
and using (3.7) we have

|tn(0)− pn,α1(α0)| ≤ |pn,α1(α0)|
|α0|n|1− 1

(α0α1)n |
2(1 +

1

|α1|n
),

which by the triangle inequality leads to (3.17).
In conclusion, if the right hand side of (3.17) is positive (for n sufficiently
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large) we obtain the upper bound

En(S) ≤ ‖tn‖S
|tn(0)|

≤
3(1 + 1

|α1|n )

|pn,α1
(α0)|

[
1− 2

|α0|n
1 + 1

|α1|n

|1− 1
(α0α1)n |

]−1

≤ 3

|fn,α1(α0)|
1 + 1

|α1|n

|1− 1
(α0α1)n |

[
1− 2

|α0|n
1 + 1

|α1|n

|1− 1
(α0α1)n |

]−1

which behaves when n tends to infinity asymptotically like 3
|fn,α1

(α0)| .

�
Let us illustrate Theorem 3.1.5 in Figure 3.7. We consider the block tridiago-

nal matrix of order n = p2 resulting from discretizing the 2D Poisson’s equation
on a square with the 5-point operator on an p-by-p mesh (given in Matlab by
gallery(’poisson’,p)). This matrix has a spectrum on the real axis, thus a circle

Figure 3.7: We compare the bounds found for disks and for ellipses. The disks con-

sidered have center (λ2 + λn)/2 and radius (λn − λ2)/2 + 10−5. The ellipses have the

same center as the disks, their semi major axis is equal to the radius of the disk, and

their minor semi axis is set to 10−5.

is clearly a bad approximation of the spectrum. On the left we present for p = 3
the lower bounds for a disk and an ellipse and the upper bounds in [24] and in
Theorems 3.4 and 3.1.5. On the right we compare for p = 30 the upper bounds
for a disk and of an ellipse with the lower bound for an ellipse. We clearly have
an improvement if we choose a good ellipse (an interval in limit case) instead of
a circle.

Remark 3.4.2 In Corollary 5.1.1 and Remark 5.1.2, we will see that in the
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case of an interval we can obtain an explicit universal constant independent of
d.

3.5 Open problems

3.5.1 Convex inclusion set and several outliers

Applying the proof of Theorem 3.1.5 to the polynomial

tn(z) =

d∏
j=1

(F+(pnj ,αj )(z)−F+(pnj ,αj )(λj)),

we obtain a similar conclusion as in Theorem 3.1.5 but with a constant 3d, this
is why this bound cannot be interesting for a lot of outliers. The factor 3 found
in (3.15) is clearly not optimal, and we believe that we can obtain a factor near
one (at least 2). If we forget this factor, we obtain the same behavior as in the
case of a disk if we consider several outliers.

If S = [α, β] is an interval, and the outliers are in (0, α), we will find later
(see Corollary 5.1.1 and Remark 5.1.2) a better result with a universal constant
that does not depend on d.

3.5.2 More general inclusion sets

The convexity of S and the condition 0 /∈ S are difficult to reconcile. We could
consider polygons which can better fit the shape of the eigenvalues without the
preceding conditions. Indeed, we can compute Faber polynomials for polygons
by using the Schwarz-Christoffel toolbox developped by Driscoll in [33, 34].

3.5.3 Inclusion set with several connected components

For some problems, it can be interesting to consider the inclusion set S as a
disjoint union of N connected subsets Sj of C. In [24, Proposition 5.1], the
authors generalized their result to several inclusion sets (called clusters) but the
bounds given seriously deteriorates for multiple clusters.

It is an open problem to solve a minimization problem on a union of dis-
connected sets. An idea could be to divide the polynomial qd into a product
qd,1 . . . qd,N with the qd,j having their zeros (outliers) ”near” the set Sj . And
then to choose a polynomial pk = pk,1 . . . pk,N in such a way that we try to
minimize ‖qd,jpk,j‖Sj with the preceding method. We make an error for each j
and the error at the end can be very large. Moreover we have to clearly define
what is ”close” to the set Sj .

If we have a good polynomial for disks, an idea to generalize to more general
sets could be to use the Faber-Walsh polynomials [112, chap 13]. Indeed, they
allow to consider sets S consisting of N disjoint compact sets S1, . . . , SN , with
the complement of S a N -connected open set containing the point ∞. Those
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polynomials are a generalization of the Faber polynomials but it is difficult to
work with them. We cite the papers [105] and [106] where we can find explicit
examples of such polynomials and optimality properties.

3.5.4 Infinite dimensional analysis

We can extend the analysis of the previous section to infinite dimensional case
for certain operators. Suppose H is a Hilbert space and A a bounded operator
on H. If A = I+K is a sum of the identity and of a compact operator K, it has
a countable sequence of eigenvalues with one as the only accumulation point.
So we can consider the inclusion set as a disk centered at one, outliers outside
this disk, and all our theory holds in this case. A major reference for the infinite
dimensional analysis of Krylov methods is [88].
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Chapter 4

On the sharpness of the
weighted Bernstein-Walsh
inequality

In this chapter we show that the weighted Bernstein-Walsh inequality in loga-
rithmic potential theory is sharp up to some new universal constant, provided
that the external field is given by a logarithmic potential. Our main tool for such
results is a new technique of discretization of logarithmic potentials, where we
take the same starting point as in earlier work of Totik and of Levin & Lubinsky,
but add an important new ingredient, namely some new mean value property
for the cumulative distribution function of the underlying measure. This work
is a conjoint work done with Beckermann [19].

4.1 Introduction

We discuss in §4.1.1 the sharpness of the so-called weighted Bernstein-Walsh
inequality for the particular case where the external field is the logarithmic
potential of some measure. Here our main result in Theorem 4.1.3 indicates
the existence of some new universal constant. Our main technical result stated
and proved in §4.2 is Theorem 4.2.1 on a new fine discretization of logarithmic
potentials for a suitable class of measures, where in contrast to preceding work
of Totik, Lubinsky and others we get (large but) explicit constants. Here an
essential tool is a new mean value property stated in Theorem 4.2.6.

4.1.1 The weighted Bernstein-Walsh inequality

Given a finite union of compact intervals Σ ⊂ R, we denote byM1(Σ) the set of
Borel measures µ with support supp(µ) in Σ and of total mass 1, and consider
the logarithmic potential Uµ and energy I(µ) (see Definition A.1.3).
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Given a weight w defined on R and continuous on Σ (and thus admissible,
see Definition A.2.1) together with an external field Q(x) = − log(w(x)), it is
known [103, Theorem I.1.3 and Theorem I.4.8] that there is a unique minimizer
µw ∈M1(Σ) of the extremal problem

inf{I(µ) + 2

∫
Qdµ : µ ∈M1(Σ)} (4.1)

which is uniquely characterized by the existence of a constant F ∈ R such that

Θ(x) := F − Uµw(x)−Q(x)

{
= 0 for x ∈ supp(µw),
≤ 0 for x ∈ Σ.

(4.2)

Logarithmic potential theory with external fields has been applied with suc-
cess for getting asymptotics for various polynomial extremal problems [103],
maybe one of the most prominent results being the weighted Bernstein-Walsh
inequality [103, Theorem III.2.1]

∀x0 ∈ R ∀P ∈ Πk :
|w(x0)kP (x0)|
‖wkP‖supp(µw)

≤ ekΘ(x0), (4.3)

and its sharpness, see, e.g., [103, Corollary III.1.10],

∃Pk ∈ Πk ∀x0 ∈ R \ supp(µ) : lim
k→∞

(
|w(x0)kPk(x0)|
‖wkPk‖supp(µw)

)1/k

= eΘ(x0), (4.4)

where Πk denotes the set of polynomials of degree at most k, and ‖f‖Σ =
maxx∈Σ |f(x)|. One aim of this chapter is to improve (4.4) for a particular class
of external fields, see Theorem 4.1.3 below, namely to show that (4.3) is sharp
up to some constant. Before giving some more details, let us first have a look
at other classes of external fields where such constants are explicitly known.
In what follows we will write gS(·, ζ) to denote the Green function in C \ S
for a compact set S ⊂ R with pole at ζ ∈ C \ S (see Definition A.1.4 and
Equation (A.1)). We will be mainly interested in the special case of an interval
S where the Green function vanishes on S and is strictly positive outside S, and
where explicit formulas are available.

Example 4.1.1 Consider Σ = [α, β] and Q = 0, then an explicit formula is
known for the minimizer in (4.1) denoted by ω[α,β] and called Robin equilibrium
measure of the interval [α, β] (see Eqn. (A.5))

supp(ω[α,β]) = Σ = [α, β],
dω[α,β]

dx
(x) =

1

π
√

(x− α)(β − x)
.

It is also known from, e.g., [103, Eqn. (I.4.8)] that Θ(z) = g[α,β](z,∞), and
thus (4.3) becomes the classical Bernstein-Walsh inequality. Taking Pk(x) =
Tk( 2x−α−β

β−α ) with Tk the Chebyshev polynomial of the first kind, one may also

show that (4.3) is sharp up to a factor 1/2.
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Example 4.1.2 Consider Σ = [α, β], and w(x)k = 1/
√
q(x) with q being a

polynomial of degree ` ≤ 2k, strictly positive on [α, β], compare with [82, chap
4.4]. Thus Q = −Uρ with ρ an atomic measure of mass `/(2k) ≤ 1. Here the
extremal measure µw in (4.1), (4.2) is given in [103, Example II.4.8] in terms
of balayage (Section A.4) onto supp(µw) = Σ, and it follows from [103, Eqn.
(II.4.32)] that

Θ(x) = (1− `

2k
)g[α,β](x,∞) +

∫
g[α,β](x, y)dρ(y).

Moreover, with help of the factorization

q̃(y)q̃(
1

y
) = q(x),

2x− α− β
β − α

=
1

2
(y +

1

y
) ∈ R,

|y| ≥ 1, the polynomial q̃ of degree ` having all its roots outside the unit circle,
it is known that Pk defined by

w(x)kPk(x) =
1

2
(ekΘ(x) + e−kΘ(x)), e2kΘ(x) =

y2kq̃( 1
y )

q̃(y)
,

is a polynomial of degree k, showing that again (4.3) is sharp up to a factor 1/2.

We are interested in the case where the external field is a positive potential
Uρ/k (not necessarily of an atomic measure), for instance if wk is a (power of a)
polynomial. This includes the particular case w(x) = |x|θ on Σ = [0, 1] for θ > 0,
starting point of an important research area about incomplete polynomials [103,
§VI.1.1]. For external fields being a positive potential, we recall below how to
solve the extremal problem, including the well-known pushing effect that the
support of the equilibrium measure may be a proper subset of Σ. We then state
our main result on the sharpness of the weighted Bernstein-Walsh inequality.

Theorem 4.1.3 Let k ≥ 1 be some integer, and Q = Uρ/k on Σ = [α, β], with
the Borel measure ρ being compactly supported on (−∞, α]. Consider on Σ the
strictly decreasing function

η(z) :=

∫ √
β − y
z − y

dρ(y), (4.5)

and set a = α if k + ||ρ|| ≥ η(α), and else denote by a the unique solution of
k + ||ρ|| = η(a) in Σ. Then the extremal measure in (4.1), (4.2) is given by

supp(µw) = [a, β], kΘ(x) = (k+ ‖ρ‖)g[a,β](x,∞)−
∫
g[a,β](x, y)dρ(y). (4.6)

Moreover, the weighted Bernstein-Walsh inequality (4.3) is sharp up to some
constant, that is, there exists a universal real constant CBW > 0 such that,
for all k ≥ 2, we may construct a polynomial Pk of degree k such that, for all
x0 ∈ R \ [a, β],

|w(x0)kPk(x0)|
‖wkPk‖supp(µw)

≥ e−CBW ekΘ(x0). (4.7)
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Our proof of Theorem 4.1.3 presented in §4.3 is based on a fine discretization
of the logarithmic potential Ukµw . We will show in this chapter that CBW ≤
15383, but this is by no means optimal. The most remarkable fact for us seems
to be that such a constant does not depend on the data ρ, a, β nor on k. In
particular, we do not need any further assumptions on smoothness of ρ, which is
probably required by other techniques like a Riemann-Hilbert approach (which
in any case would only allow to discuss asymptotics).

4.1.2 Structure of this chapter

The reminding of this chapter is organized as follows. Section 2 contains our
results on discretizing the logarithmic potential of a class of measures including
the extremal measure of Theorem 4.1.3. We first state our main Theorem 4.2.1,
and then report in §4.2.1 about related results of Totik and of Lubinsky, and
about the link with weighted quadrature formulas. Subsequently, we give in
§4.2.2 the structure of the proof of Theorem 4.2.1, where following Totik we
write the discretization error as a sum of three sums. We then state our original
approach for dealing with these three sums, namely the mean value property
of Theorem 4.2.6, and describe in §4.2.3 how to bound each of the three sums,
with explicit constants.

In Section 4.3 we explain how to deduce Theorem 4.1.3 from Theorem 4.2.1.
Our (quite technical) proof of Theorem 4.2.6 is postphoned to Section 4.4, and
in Section 4.5 we gather some further technical results for dealing with our three
sums. We end this chapter by giving some concluding remarks.

4.2 Discretization of a potential

Our proof of Theorem 4.1.3 is based on the approximation of kUµw with µw
the equilibrium measure as in Theorem 4.1.3 by − log |Pk(z)| with Pk a suitable
monic polynomial of degree k. We will show the following.

Theorem 4.2.1 Consider a measure µ ∈M1([a, β]) which has the density

k
dµ

dx
(t) = g(t)

k

π
√

(t− a)(β − t)

for a function g which is non negative, concave and increasing1 on (a, β), such

that t 7→ g(t)
t−a is convex on (a, β). Then there exists a universal explicit constant

CBW such that for each k ≥ 2 we may construct a monic polynomial Pk of
degree k such that

(a) ∀z ∈ C: log |Pk(z)|+ kUµ(z) ≤ CBW ,

(b) ∀x ∈ R \ (a, β) : log |Pk(x)|+ kUµ(x) ≥ 0.

1 In particular, g is continuous and bounded on (a, β), thus we may extend g to become a
continuous, non-negative, concave and increasing function in [a, β].
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We will show in the proof of Theorem 4.1.3 that the extremal measure µw
of Theorem 4.1.3 satisfies the assumptions of Theorem 4.2.1.

Example 4.2.2 Another class of functions g satisfying the assumptions of The-
orem 4.2.1 for [a, β] = [−1, 1] is given by

g(x) = (x+ 1)θπ/

∫ 1

−1

(t+ 1)θ−1/2(1− t)−1/2dt

=
π

2θ
Γ(θ + 1)

Γ(1/2)Γ(θ + 1/2)
(x+ 1)θ

for θ ∈ [0, 1].

We will describe in §2.1 related work for discretizing potentials under various
assumptions, but here the constants in general depend on µ, see for instance [103,
§VI.4] for a summary. In §2.2 we give a proof of Theorem 4.2.1, where we initially
follow the approach of Totik in [114, §2 and §9], see also the very accessible
reference [80, Method 1] for the particular case g(t) = 2t on [a, β] = [0, 1] (up
to a quadratic change of variables). Subsequently, we give in §2.3 a proof of
three upper bounds we used in §2.2. Since the general case follows from a linear
change of variables, we will suppose in what follows that [a, β] = [−1, 1] in
Theorem 4.2.1.

4.2.1 How to discretize a potential?

It is natural to approach the logarithmic potential Uµ(x) =
∫

log(1/|x−t|)dµ(t)
by a quadrature rule of the form

k−1∑
j=0

log
1

|x− ξj |
= − log |Pk(x)|, Pk(x) =

k−1∏
j=0

(x− ξj), (4.8)

for instance a weighted rectangular or midpoint rule, where we first cut [−1, 1]
into k subintervals [tj , tj+1], −1 = t0 < t1 < ... < tk = 1, of equal mass
µ([tj , tj+1]) = 1/k, and chose ξj ∈ [tj , tj+1] for j = 0, ..., k − 1. As long as
x 6∈ [−1, 1] and the density of µ does not vary too much, we may bound the
error kUµ(x) + log |Pk(x)| above and below, and may even show convergence
to 0 for k → ∞ for suitable choices of ξj . In our case we have the additional
difficulties that the density of µ may have singularities at ±1, showing that the
interval lengths tj+1 − tj may strongly vary in size for j = 0, 1, ..., k − 1, and
in addition in case x ∈ [−1, 1] we have to deal with a logarithmic singularity of
the integrand.

Totik in [80, Method 1] used the weighted midpoint rule

ξj =

∫ tj+1

tj

tdµ(t)/

∫ tj+1

tj

dµ(t) = k

∫ tj+1

tj

tdµ(t) (4.9)

for j = 0, 1, ..., k − 1. In the particular case [a, b] = [0, 1] and g(t) = 2t, a proof
of Theorem 4.2.1 can be found in [80, §2], which strongly relies on the explicit
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knowledge of asymptotics for the points ξj and tj as a function of j and k for
k →∞, and thus on the explicit knowledge of µ. In [103, Theorem VI.4.2] (see
also the related result [114, Lemma 9.1] where the roots of Pk are slightly shifted
into the complex plane), Totik considered probability measures µ with densities
which are continuous up to a finite number of singularities of the form |t−aj |δj
for δj > −1. These assumptions are true in the setting of Theorem 4.2.1. He
then shows the existence of (non explicit) constants CT,1, CT,2 depending on µ
but not on k such that, for all x ∈ R,

log |Pk(x)|+ kUµ(x) ≤ CT,1,

log |Pk(x)|+ kUµ(x) ≥ CT,2 + max
{

0, log(dist(x, {ξ0, ..., ξk−1}))
}
.

We see that the first inequality is as in Theorem 4.2.1(a), whereas the second
one is clearly weaker than Theorem 4.2.1(b) for x ∈ R \ (−1, 1) close to [−1, 1],
since we get an additional term log(1/kβ) for some β > 0. Again, a proof of
these statements uses heavily asymptotics for the points ξj and tj as a function
of j and k for k →∞, and thus quite a bit of information on µ.

Another technique of discretization has been considered by Lubinsky & Levin
in [78] and [79], see also the very accessible reference [80, Method 2] for the
particular case g(t) = 2t on [a, b] = [0, 1] (up to a quadratic change of variables).
With t0, ..., tk as before, consider intermediate abscissa tj+1/2 ∈ (tj , tj+1) such
that all intervals [tj/2, t(j+1)/2] have the same mass 1/(2k). Given x0 ∈ R, the
authors then apply trapezian rule on most of the subintervals [tj−1/2, tj+1/2]
corrected with suitable rectangle rules on the remaining 2 or 3 subintervals such
that {ξ0, ..., ξk−1} ⊂ {±1, t1/2, t3/2, ..., tk−1/2}. Up to a (quadratic) change of
variables, the authors of [78, Theorem 9.1] suppose that

dµ

dx
(t) =

(t+ 1)h(t)

π
√

1− t2

with h continuous and > 0 on [−1, 1], and the modulus of continuity satisfies
that log(1/δ)ω(h, δ) is bounded above by some Γ > 0 for δ ∈ (0, 1). In this case,
for all x ∈ R,

log |Pk(x)|+ kUµ(x) ≤ CLL,1,
log |Pk(x0)|+ kUµ(x0) ≥ CLL,2,

where CLL,1, CLL,2 are (non explicit) constants depending only on Γ and the
minimum and maximum of h on [−1, 1]. Note that the assumptions of [78,
Theorem 9.1] and those of Theorem 4.2.1 are different and do not imply each
other, see for instance Example 4.2.2 for θ < 1. However, the above inequalities
are quite close to those of Theorem 4.2.1, though our constants do not depend
on µ, and our Pk does not depend on x0, and we only allow x0 ∈ R \ (a, b).

Example 4.2.3 In the particular case [α, β] = [−1, 1] and g = 1 in Theo-
rem 4.2.1, we have explicit formulas

tj = − cos(π
j

k
), ξj = −ck cos(π

2j + 1

2k
), ck =

2k

π
sin(

π

2k
).
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Here the midpoint approach of Totik gives the monic polynomial

Pk(x) = 2(
ck
2

)kTk(x/ck)

which is not optimal for the one-sided approximation of kUω[−1,1](x) in Theo-
rem 4.2.1 or the sharpness of the classical Bernstein-Walsh inequality as dis-
cussed in Example 4.1.1, but good enough for concluding in Theorem 4.2.1.

The previous example is misleading in the sense that in general there is no
such sufficiently explicit formula for the tj nor the ξj which will allow us to
conclude in Theorem 4.2.1.

4.2.2 Structure of the proof of Theorem 4.2.1

We start by observing that, with the choices (4.8), (4.9),

log |Pk(x)|+ kUµ(x) = k

k−1∑
j=0

∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣ dµ(t).

The following classical lemma shows Theorem 4.2.1(b).

Lemma 4.2.4

k

∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣ dµ(t)


≥ 0 for x ∈ R \ (tj , tj+1),

≤ 1

4

(tj+1 − tj)2

(x− tj)(x− tj+1)
for x ∈ R \ [tj , tj+1].

Proof : Using the fact that m(t) = log |x−ξjx−t | is convex on [tj , tj+1] by assump-
tion on x, we know that m(t) ≥ m(ξj) + m′(ξj)(t − ξj) = m′(ξj)(t − ξj), and
thus

k

∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣ dµ(t) ≥ m′(ξj)
∫ tj+1

tj

(t− ξj) dµ(t) = 0,

where in the last equality we have used (4.9). Also, using the convexity of m
and the inequality log(x) ≤ x− 1 we obtain

m(t) ≤ m(tj)
tj+1 − t
tj+1 − tj

+m(tj+1)
t− tj

tj+1 − tj

≤ tj − ξj
x− tj

tj+1 − t
tj+1 − tj

+
tj+1 − ξj
x− tj+1

t− tj
tj+1 − tj

.

Integrating and using again (4.9) we conclude that

k

∫ tj+1

tj

log |x− ξj
x− t

|dµ(t) ≤ tj − ξj
x− tj

tj+1 − ξj
tj+1 − tj

+
tj+1 − ξj
x− tj+1

ξj − tj
tj+1 − tj

=
(tj+1 − ξj)(ξj − tj)
(x− tj)(x− tj+1)

≤ 1

4

(tj+1 − tj)2

(x− tj)(x− tj+1)
.

�
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Remark 4.2.5 (a) By the same argument, the inequality of Theorem 4.2.1(b),
namely log |Pk(x)|+ kUµ(x) ≥ 0, also holds for x ∈ {t0, t1, ..., tk}.
(b) For x > 1 (and similarly for x < −1), the right-hand side of Theorem 4.2.1(b)
cannot be improved since, by Lemma 4.2.4 and Lemma 4.5.8(c),

log |Pk(x)|+ kUµ(x) ≤ max
`=0,...,k−1

t`+1 − t`
4

k−1∑
j=0

tj+1 − tj
(x− tj)(x− tj+1)

= max
`=0,...,k−1

t`+1 − t`
2(x2 − 1)

≤ 1

(x2 − 1)

(
3π

2k

)1/3

.

(c) For x ∈ C \ R, it is not too difficult to show that m(t) = log |x−ξjx−t | satisfies

|m(t)−m(ξj)− (t− ξj)m′(ξj)| ≤
(tj+1 − tj)2

2 dist(x, [−1, 1])2
,

and hence by Lemma 4.5.8(c)

| log |Pk(x)|+ kUµ(x)| ≤
k−1∑
j=0

(tj+1 − tj)2

2 dist(x, [−1, 1])2
≤ 1

dist(x, [−1, 1])2

(
12π

k

)1/3

.

Thus, for sufficiently large k, the inequality of Theorem 4.2.1(b) also holds for
non-real x up to some arbitrarily small constant.

Let us now turn to a proof of Theorem 4.2.1(a). We claim that it is sufficient
to show Theorem 4.2.1(a) for x ∈ [−1, 1] = supp(µ), since then for µ-almost all
x

kUµ(x) ≤ CBW − log |Pk(z)| = CBW +

k−1∑
j=0

Uδξj (x),

and thus this inequality holds for all x ∈ C by the principle of domination [103,
Theorem II.3.2] and the finiteness of I(µ). Therefore, let x ∈ [−1, 1] and, more
precisely,

j0 ∈ {0, 1, ..., k − 1} with x ∈ [tj0 , tj0+1]. (4.10)

According to Lemma 4.2.4, we get the following upper bound

log |Pk(x)|+ kUµ(x) ≤ Σ1 + Σ2 + Σ3 (4.11)

with ∑
1

=

j0−2∑
j=0

∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣ k dµ(t) ≤ 1

4

j0−2∑
j=0

(tj+1 − tj)2

(tj0 − tj+1)2
,

∑
2

=

min{j0+1,k−1}∑
j=max{0,j0−1}

∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣ k dµ(t),

∑
3

=

k−1∑
j=j0+2

∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣ k dµ(t) ≤ 1

4

k−1∑
j=j0+2

(tj+1 − tj)2

(tj − tj0+1)2
.
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Already in the particular Chebyshev case of Example 4.2.3 one may check
that such a simple telescop sum trick as in Remark 4.2.5 does not allow to
conclude, since in general |tj−t`| does not behave uniformly for j, ` ∈ {0, 1, ..., k−
1} like |j − `|/k, as it would be the case for equidistant points. We will discuss
our upper bounds for the above three sums in the Propositions 4.2.7–4.2.9 of
§4.2.3, which allows us to conclude the proof of Theorem 4.2.1, with the explicit
constant

CBW = 872 + 32 + 14479 = 15383.

So far we followed quite closely the reasoning in the literature, with more explicit
constants. In all considerations to follow we will require precise lower and upper
bounds for the ratio

j − `
tj − t`

which will follow from a new mean value property for the cumulative distribution
function

Wg(x) = k

∫ x

−1

dµ(t), W ′g(t) = g(t)W ′1(t) =
kg(t)

π
√

1− t2
, (4.12)

since Wg(tj) = j for j = 0, 1, ..., k.

Theorem 4.2.6 Under the assumptions of Theorem 4.2.1 with [a, b] = [−1, 1],
we have for all distinct x, t ∈ [−1, 1]

c1W
′
g(
t+ x

2
) ≤ Wg(t)−Wg(x)

t− x
≤ c2W ′g(

t+ x

2
).

where c1 = 1
4 and c2 = π

√
2.

Notice that, even for the particular case g = 1 and W1(− cos(α)) = kα/π,
this statement is not totally obvious, but can be verified by means of elementary
computations with improved constants c1 and c2, see Lemma 4.4.1 below. The
proof for general g is strongly based on Jensen’s inequality, we refer the reader
to Subsection 4.4 for details.

4.2.3 Bounding three sums

For concluding our proof of Theorem 4.2.1, it remains to obtain upper bounds
for the three terms on the right-hand side of (4.11), where we will proceed in
order of difficulty, and apply beside Theorem 4.2.6 a certain number of technical
results established in Appendix 4.5, and recalled below. In the reminder of this
section we will always suppose that the assumptions of Theorem 4.2.1 hold with
[a, b] = [−1, 1] and j0 is chosen as in (4.10).

We start with the sum

∑
3
≤ 1

4

k−1∑
j=j0+2

(tj+1 − tj)2

(tj − tj0+1)2
,
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where beside Theorem 4.2.6 we rely on an upper bound for the quantity

(1 +
tj + tj+1

2
)
/

(1 + tj),

see Lemma 4.5.4.

Proposition 4.2.7 There holds∑
3
≤ c22c5π

2

12c21
≤ 872.

Proof : By Theorem 4.2.6

∑
3
≤ c22

4c21

k−1∑
j=j0+2

1

(j − j0 − 1)2

W ′g(
tj+tj0+1

2 )2

W ′g(
tj+tj+1

2 )2
.

As g is increasing and j > j0 + 1, we have that g(
tj+tj0+1

2 ) ≤ g(
tj+tj+1

2 ), and
thus

W ′g(
tj+tj0+1

2 )2

W ′g(
tj+tj+1

2 )2
=
g(
tj+tj0+1

2 )2

g(
tj+tj+1

2 )2

W ′1(
tj+tj0+1

2 )2

W ′1(
tj+tj+1

2 )2

≤
W ′1(

tj+tj0+1

2 )2

W ′1(
tj+tj+1

2 )2
≤

1 +
tj+tj+1

2

1 +
tj+tj0+1

2

≤ 2
1 +

tj+tj+1

2

1 + tj
≤ 2c5,

where in the last inequality we have applied Lemma 4.5.4. Combining these two
results yields the claimed upper bound.

�
Let us now turn to the sum

∑
1
≤ 1

4

j0−2∑
j=0

(tj+1 − tj)2

(tj0 − tj+1)2
.

Here we require beside Theorem 4.2.6 also upper bounds for the two ratios

1 +
tj+tj+1

2

1 + tj+1
, and

(j + 1)2

j2
0

1 +
tj+1+tj0

2

1 + tj+1

for j ≤ j0 − 1 ≤ k − 2, see Lemma 4.5.5 and Lemma 4.5.6.

Proposition 4.2.8 There holds∑
1
≤ c22π

2

6c21
(18 + π2) ≤ 14479.
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Proof : Using the fact that j < j0 − 1, and that g(t) = (1 + t)h(t) with a
decreasing function h, we find that

g(
tj+1+tj0

2 )

g(
tj+tj+1

2 )
=

1 +
tj+1+tj0

2

1 +
tj+tj+1

2

h(
tj+1+tj0

2 )

h(
tj+tj+1

2 )

≤
1 +

tj+1+tj0
2

1 +
tj+tj+1

2

.

This allows us to write

W ′g(
tj+1+tj0

2 )2

W ′g(
tj+tj+1

2 )2
≤

(1 +
tj+1+tj0

2 )2

(1 +
tj+tj+1

2 )2

W ′1(
tj+1+tj0

2 )2

W ′1(
tj+tj+1

2 )2

≤
1 +

tj+1+tj0
2

1 +
tj+tj+1

2

1− tj+tj+1

2

1− tj+1+tj0
2

≤ 2
1 +

tj+1+tj0
2

1 + tj+1

1− tj+tj+1

2

1− tj+1+tj0
2

,

and thus, again by Theorem 4.2.6,

∑
1
≤ c22

2c21

j0−2∑
j=0

1

(j0 − j − 1)2

1 +
tj+1+tj0

2

1 + tj+1

1− tj+tj+1

2

1− tj+1+tj0
2

.

The following arguments depend on the sign of tj+1. We therefore set j1 = j0−1
if tj0−1 < 0, and else chose j1 ∈ {0, 1, ..., j0−2} with tj1 < 0 ≤ tj1+1, and cut our
sum into two parts Σ1 = Σ1,1 + Σ1,2, where in the first sum j ∈ {j1, ..., j0 − 2},
and in the second one j ∈ {0, ..., j1 − 1}.

If j ≥ j1 and thus tj+1 ≥ 0,

1 +
tj+1+tj0

2

1 + tj+1

1− tj+tj+1

2

1− tj+1+tj0
2

≤ 2
1− tj+tj+1

2

1− tj+1+tj0
2

≤ 4
1− tj+tj+1

2

1− tj+1
≤ 36,

where in the last inequality we have applied Lemma 4.5.5. Hence,

∑
1,1
≤ 18c22

c21

j0−2∑
j=j1

1

(j0 − j − 1)2
. (4.13)

If j < j1 and thus tj+1 < 0,

1 +
tj+1+tj0

2

1 + tj+1

1− tj+tj+1

2

1− tj+1+tj0
2

≤ 4
1 +

tj+1+tj0
2

1 + tj+1
≤ π2

2

j2
0

(j + 1)2
,
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where the last inequality follows from Lemma 4.5.6. Thus,

∑
1,2
≤ c22π

2

4c21

j1−1∑
j=0

j2
0

(j0 − j − 1)2(j + 1)2

≤ c22π
2

4c21

 j1−1∑
j=0,j+1<j0/2

4

(j + 1)2
+

j1−1∑
j=0,j+1≥j0/2

4

(j0 − j − 1)2

 .

Since π2 ≤ 18, a combination with (4.13) gives the upper bound for Σ1 as
claimed in Proposition 4.2.8.

�
We finally discuss in our third proposition the expression

∑
2

=

min{j0+1,k−1}∑
j=max{0,j0−1}

∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣W ′g(t) dt,

where we integrate in a neighborhood of x and thus have to deal with the loga-
rithmic singularity of the integrand. Here again Theorem 4.2.6 will be essential.
As maybe expected from [114], our proof for j0 ∈ {1, 2, ..., k − 2} is quite dif-
ferent from that for x close to the endpoints and thus j0 ∈ {0, k − 1}: in the
first case, we require lower and upper bounds for the ratio of the lengths of
two consecutive intervals [tj , tj+1] established in Lemma 4.5.9, whereas in the
second case we require upper bounds for

k
√
t1 − t0, and k

√
tk − tk−1,

see Lemma 4.5.8.

Proposition 4.2.9 There holds∑
2
≤ 6c2 + log

(
6c2
√
c5

c1

)
≤ 32.

Proof : By integration by part,∫ tj+1

tj

log

∣∣∣∣x− ξjx− t

∣∣∣∣W ′g(t)dt =

[
log

∣∣∣∣x− ξjx− t

∣∣∣∣ (Wg(t)−Wg(x))

]tj+1

tj

+

∫ tj+1

tj

Wg(t)−Wg(x)

t− x
dt.

In order to make our formulas a bit easier to read, we write j1 = max{0, j0−1},
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j2 = min{k − 1, j0 + 1}, and get Σ2 = Σ2,1 + Σ2,2, with∑
2,1

=

∫ tj2+1

tj1

Wg(t)−Wg(x)

t− x
dt,

∑
2,2

=

j2∑
j=j1

(
log

∣∣∣∣ x− ξjx− tj+1

∣∣∣∣ (Wg(tj+1)−Wg(x))

+ log

∣∣∣∣x− ξjx− tj

∣∣∣∣ (Wg(x)−Wg(tj))

)
.

The first term is easily bounded. Indeed, using Theorem 4.2.6, we get∑
2,1
≤ c2

∫ ttj2+1

tj1

W ′g(
t+ x

2
)dt

≤ 2c2

(
Wg(

x+ tj2+1

2
)−Wg(

x+ tj1
2

)

)
≤ 2c2 (Wg(tj2+1)−Wg(tj1)) = 2c2(j2 + 1− j1),

and thus Σ2,1 ≤ 6c2 for j0 ∈ {1, ..., k − 2}, and Σ2,1 ≤ 4c2 for j0 ∈ {0, k − 1}.
It remains to give an upper bound for Σ2,2. We first study the case j0 ∈

{1, ..., k − 2} and thus j1 = j0 − 1, j2 = j0 + 1. As Wg(tj+1) −Wg(tj) = 1 for
every j, we notice that

Wg(tj0+2)−Wg(x) = 2(Wg(tj0+1)−Wg(x)) + (Wg(x)−Wg(tj0)) (4.14)

and

Wg(x)−Wg(tj0−1) = (Wg(tj0+1)−Wg(x)) + 2(Wg(x)−Wg(tj0)).

Inserting this information into Σ2,2, we obtain, after some elementary compu-
tations,∑

2,2
= [Wg(tj0+1)−Wg(x)]︸ ︷︷ ︸

≥0

log
|x− ξj0 |
|x− tj0+2|

|x− ξj0−1|
|x− tj0−1|︸ ︷︷ ︸

≤1

|x− ξj0+1|
|x− tj0+2|︸ ︷︷ ︸

≤1

+ [Wg(x)−Wg(tj0)]︸ ︷︷ ︸
≥0

log
|x− ξj0 |
|x− tj0−1|

|x− ξj0−1|
|x− tj0−1|︸ ︷︷ ︸

≤1

|x− ξj0+1|
|x− tj0+2|︸ ︷︷ ︸

≤1

≤ [Wg(tj0+1)−Wg(x)] log

∣∣∣∣ x− ξj0x− tj0+2

∣∣∣∣+ [Wg(x)−Wg(tj0)] log

∣∣∣∣ x− ξj0x− tj0−1

∣∣∣∣
≤ log

(
6c2
√
c5

c1

)
.

In order to justify the last inequality, we have to distinguish two cases. In case

x ∈ [tj0 , ξj0 ], we find that log | x−ξj0x−tj0+2
| ≤ 0, implying that∑

2,2
≤ [Wg(x)−Wg(tj0)] log

∣∣∣∣ x− ξj0x− tj0−1

∣∣∣∣ ≤ log
tj0+1 − tj0
tj0 − tj0−1

,
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and we conclude with help of Lemma 4.5.9. The case x ∈ [ξj0 , tj0+1] is similar,

here
∑

2,2 ≤ log
tj0+1−tj0
tj0+2−tj0+1

, and we conclude again using Lemma 4.5.9.

Let us now consider the sum Σ2,2 for the particular case j0 = 0 and thus
j1 = 0, j2 = 1. Using (4.14), this sum can be bounded above as before by∑

2,2
= [Wg(t1)−Wg(x)]︸ ︷︷ ︸

≥0

log
|x− ξ0|
|x− t2|

|x− ξ1|
|x− t2|︸ ︷︷ ︸
≤1

+ [Wg(x)−Wg(t0)]︸ ︷︷ ︸
≥0

log
|x− ξ0|
|x− t0|

|x− ξ1|
|x− t2|︸ ︷︷ ︸
≤1

≤ [Wg(t1)−Wg(x)] log

∣∣∣∣x− ξ0x− t2

∣∣∣∣+ [Wg(x)−Wg(t0)] log

∣∣∣∣x− ξ0x− t0

∣∣∣∣ .
We have to consider three different cases: if x ∈ [ t0+ξ0

2 , ξ0+t1
2 ] then Σ2,2 ≤ 0. If

x ∈ [ ξ0+t1
2 , t1], then∑

2,2
≤ [Wg(t1)−Wg(x)] log

∣∣∣∣x− ξ0x− t2

∣∣∣∣ ≤ log
t1 − t0
t2 − t1

≤ log

(
6c2
√
c5

c1

)
as before. Finally, in the case x ∈ [t0,

t0+ξ0
2 ], we use the fact that |x−ξ0| ≤ t1−t0,

and apply Theorem 4.2.6 in order to get∑
2,2
≤ [Wg(x)−Wg(t0)] log

∣∣∣∣ t1 − t0x− t0

∣∣∣∣
≤ c2(x− t0)g(

t0 + x

2
)W ′1(

t0 + x

2
) log

∣∣∣∣ t1 − t0x− t0

∣∣∣∣ .
Since t0+x

2 ≤ 0 and t0+x
2 ≤ t1, we have that

(x− t0)g(
t0 + x

2
)W ′1(

t0 + x

2
) ≤ k

π
g(t1)

x− t0√
1 + t0+x

2

=
k
√

2

π
g(t1)

√
x− t0.

Using the fact that max
y≥0

√
y log 1

y = 2/e, we conclude with help of Lemma 4.5.8(a)

that ∑
2,2
≤ 2c2

√
2

πe
kg(t1)

√
t1 − t0 ≤

6

e
c2.

The reasoning for j0 = k − 1 is similar and allows for the same conclusion,
we just have to replace Lemma 4.5.8(a) by Lemma 4.5.8(b) providing an upper
bound for k

√
tk − tk−1. Thus∑

2
=
∑

2,1
+
∑

2,2
≤ max

{
6c2 + log

(
6c2
√
c5

c1

)
, 4c2 +

6

e
c2

}
,

and the statement follows.
�
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4.3 Proof of the main theorem

Let us first show our claim (4.6) for the support of the equilibrium measure µw.
We observe that the external field Q = Uρ/k is convex on Σ = [α, β] and hence
supp(µw) = [a, b′] for some α ≤ a < b′ ≤ β by [103, Theorem IV.1.10(b)]. Since
Uµw + Q is strictly decreasing on (b′,∞), the equilibrium condition (4.2) tells
us that necessarily β = b′. We show below the two implications

for some a > α : supp(µw) = [a, β] implies that η(a) = k + ‖ρ‖, (4.15)

supp(µw) = [α, β] implies that η(α) ≤ k + ‖ρ‖,(4.16)

with the strictly decreasing η as in (4.5). Since there is exactly one solution > α
of the equation η(a) = k + ‖ρ‖ iff η(α) > k + ‖ρ‖, our statement on supp(µw)
follows.

For a proof of (4.15), suppose that supp(µw) = [a, β] for some a > α. Then,
by [103, Theorem IV.1.11(ii)], the derivative of the F -functional of Mhaskar and
Saff

y 7→ log
β − y

4
−
∫
Qdω[y,β] = (1 +

‖ρ‖
k

) log
β − y

4
+

1

k

∫
g[y,β](x,∞)dρ(x)

must vanish at y = a, and a small calculation gives the necessary condition

0 =
1

k(β − a)

(
k + ‖ρ‖ − η(a)

)
and thus η(a) = k + ‖ρ‖, implying (4.15).

In order to show (4.16) together with the representation (4.6) of Θ, let
supp(µw) = [a, β] for some a ∈ [α, β). We denote by Bal(ρ, [a, β]) the mea-
sure obtained by balayage onto the interval [a, β], see [103, §II.4] or Section A.4.
Then, by construction,

kµw +Bal(ρ, [a, β])

is a positive measure of mass k + ‖ρ‖ having a constant potential on [a, β],
and thus kµw + Bal(ρ, [a, β]) = (k + ‖ρ‖)ω[a,β]. We apply the explicit formula
for balayage onto an interval given in [103, Eqn. (II.4.47)] or (A.7), and get for
t ∈ [a, β]

g(t) :=
dµw
dω[a,β]

(t) =
k + ‖ρ‖

k
− 1

k

∫ a

−∞

√
(β − y)(a− y)

t− y
dρ(y).

As a consequence

0 ≤ lim
t→a+0

g(t) =
k + ‖ρ‖ − η(a)

k
,

showing that η(a) ≤ k+ ‖ρ‖ is finite. In particular, in case a = α we get (4.16).
Moreover, by [103, Eqn. (II.5.4)], with a suitable F ∈ R,

k(F − Uµw(x)−Q(x)) = kF − U (k+‖ρ‖)ω[a,β]+ρ−Bal(ρ,[a,β])(x)

= (k + ‖ρ‖)g(x,∞)−
∫
g(x, y) dρ(y),

89



the right-hand side vanishing on [a, β], and thus the constant F coincides with
the one in (4.2). Hence, the above expression equals kΘ(x), showing (4.6).

It remains to show that Theorem 4.2.1 implies (4.7), where we start to verify
the hypotheses on

g(t) =
dµw
dω[a,β]

(t) =
k + ‖ρ‖ − η(a)

k
+
t− a
k

∫ a

−∞

√
β − y
a− y

dρ(y)

t− y
.

We first observe that g is differentiable on (a, β], with derivative

g′(t) =
1

k

∫ a

−∞

√
β − y
a− y

a− y
(t− y)2

dρ(y),

which is both ≥ 0 and decreasing in t ∈ (a, β]. Hence g is increasing and concave
in (a, β), and, by a similar argument, h(t) := g(t)/(t − a) is convex on (a, β).
Thus the assumptions of Theorem 4.2.1 hold. With Pk ∈ Πk as in Theorem 4.2.1
we have that

log ‖wkPk‖[a,β] = max
x∈[a,β]

−kQ(x) + log |Pk(x)|

≤ max
x∈[a,β]

−kQ(x)− kUµw(x) + CBW = −kF + CBW ,

where for obtaining the inequality we have applied Theorem 4.2.1(a), and in the
last equality we have used (4.2) and in particular the fact that Θ vanishes on
[a, β]. Also, for x ∈ R \ (a, β), we deduce from Theorem 4.2.1(b) and (4.2) that

logw(x)k|Pk(x)| ≥ −kQ(x)− kUµw(x) = kΘ(x)− kF.

Combining these two inequalities gives (4.7).

4.4 Proof of the mean value property of Theo-
rem 4.2.6

As said before, a central role in our analysis is played by the mean value property
of the cumulative distribution function Wg stated in Theorem 4.2.6: there exist
constants c1 = 1

4 and c2 = π
√

2 such that, for all x, t ∈ [−1, 1],

c1W
′
g(
t+ x

2
) ≤ Wg(t)−Wg(x)

t− x
≤ c2W ′g(

t+ x

2
).

The aim of this section is to provide a proof of this mean value property. We will
first consider the two particular cases g = 1 in Lemma 4.4.1 and g(t) = 1 + t
in Lemma 4.4.2. The general case then will follow by concavity of g and by
convexity of h(t) = g(t)/(t+1). In what follows it will be convenient to consider
the substitution t = − cos(θt) and x = − cos(θx), θt, θx ∈ [0, π], where we can
suppose without loss of generality that t > x, and thus 0 ≤ θx < θt ≤ π.
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Lemma 4.4.1 For every x, t ∈ [−1, 1], we have for c3 = π/
√

2

W ′1(
t+ x

2
) ≤ W1(t)−W1(x)

t− x
≤ c3W ′1(

t+ x

2
). (4.17)

Proof : Elementary trigonometric formulas give

W1(t)−W1(x)

t− x
=
k

π

θt − θx
cos(θx)− cos(θt)

=
k

π

θt−θx
2

sin( θt−θx2 )

1

sin( θt+θx2 )
.

Observing that θt−θx
2 ∈ [0, π2 ] and thus

sin(
θt − θx

2
) ≤ θt − θx

2
≤ π

2
sin(

θt − θx
2

),

we deduce that

k

π

1

sin( θt+θx2 )
≤ W1(t)−W1(x)

t− x
≤ k

2

1

sin( θt+θx2 )
.

Since

W ′1(
t+ x

2
) =

k

π

1√
1− cos2( θt+θx2 ) cos2( θt−θx2 )

,

the left-hand inequality in (4.17) immediately follows.
If θt+θx

2 ≤ π
2 , then 0 ≤ θt−θx

2 ≤ θt+θx
2 ≤ π

2 . If θt+θx
2 ≥ π

2 , then 0 ≤ θt−θx
2 ≤

π − θt+θx
2 ≤ π

2 . In both cases we find that

1− cos2(
θt + θx

2
) cos2(

θt − θx
2

) ≤ 1− cos4(
θt + θx

2
) ≤ 2

(
1− cos2(

θt + θx
2

)

)
,

which implies the right-hand side of (4.17).
�

We now turn to the special case g(y) = 1 + y where we only require one
inequality for Wg = W1+y.

Lemma 4.4.2 For every x, t ∈ [−1, 1], we have for c4 = 1/2

c4W
′
1+y(

x+ t

2
) ≤ W1+y(t)−W1+y(x)

t− x
.

Proof : By Lemma 4.4.1,

W1+y(t)−W1+y(x)

t− x
≥ W1+y(t)−W1+y(x)

W1(t)−W1(x)
W ′1(

x+ t

2
).

Thus it is sufficient to show that

W1+y(t)−W1+y(x)

W1(t)−W1(x)
≥ 1

2
(1 +

x+ t

2
).

91



By definition of W1+y,

W1+y(t)−W1+y(x)

W1(t)−W1(x)
=

1

W1(t)−W1(x)

∫ t

x

W ′1+y(s)ds

=
θt − θx + sin(θx)− sin(θt)

θt − θx

= 1− 2

θt − θx
sin(

θt − θx
2

) cos(
θt + θx

2
).

Hence it remains to show that

cos(
θt + θx

2
)

(
2

sin( θt−θx2 )
θt−θx

2

− cos(
θt − θx

2
)

)
≤ 1.

Since γ 7→ 2 sin(γ)−γ cos(γ) is increasing in [0, π/2], the factor in large brackets
is ≥ 0, and cos((θt + θx)/2) ≤ cos((θt − θx)/2. Thus we only have to consider
the worst case γ = (θt + θx)/2 = (θt − θx)/2 ∈ [0, π/2], with

cos(γ)

(
2

sin(γ)

γ
− cos(γ)

)
≤ 2 cos(γ)− cos2(γ) ≤ 1.

�
We are now prepared to give a proof of Theorem 4.2.6. For the upper bound,

we use Lemma 4.4.1 in order to conclude that

Wg(t)−Wg(x)

t− x
=
Wg(t)−Wg(x)

W1(t)−W1(x)

W1(t)−W1(x)

t− x

≤ Wg(t)−Wg(x)

W1(t)−W1(x)
c3W

′
1(
t+ x

2
).

Recalling that g is concave, we get from the Jensen inequality

Wg(t)−Wg(x)

W1(t)−W1(x)
=

∫ t

x

W ′g(s)

W1(t)−W1(x)
ds

=

∫ t

x

g(s)
W ′1(s)

W1(t)−W1(x)
ds

≤ g
(∫ t

x

s
W ′1(s)

W1(t)−W1(x)
ds

)
≤ 2g(

t+ x

2
),

the last inequality being established in Lemma 4.4.3 below. Thus we obtain
the upper bound with c2 = 2c3 = π

√
2. For the lower bound, our argument is

similar, but now we use Lemma 4.4.2 in order to get

Wg(t)−Wg(x)

t− x
=

Wg(t)−Wg(x)

W1+y(t)−W1+y(x)

W1+y(t)−W1+y(x)

t− x

≥ Wg(t)−Wg(x)

W1+y(t)−W1+y(x)
c4W

′
1+y(

x+ t

2
).
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Recalling that h(y) = g(y)/(1 + y) is convex, we get from the Jensen inequality

Wg(t)−Wg(x)

W1+y(t)−W1+y(x)
=

∫ t

x

h(s)
W ′1+y(s)

W1+y(t)−W1+y(x)
ds

≥ h
(∫ t

x

s
W ′1+y(s)

W1+y(t)−W1+y(x)
ds

)
≥ 1

2

g( t+x2 )

1 + t+x
2

,

where for the last inequality we apply Lemma 4.4.4 below. This gives us the
lower bound with c1 = c4/2 = 1/4.

For concluding, it remains to establish two technical results.

Lemma 4.4.3 For −1 ≤ x < t ≤ 1 we have

g

(∫ t

x

sW ′1(s)

W1(t)−W1(x)
ds

)
≤ 2g(

x+ t

2
).

Proof : Elementary trigonometric computations give

x :=

∫ t

x

sW ′1(s)

W1(t)−W1(x)
ds = − cos

(
θt + θx

2

)
sin
(
θt−θx

2

)
θt−θx

2

∈ [−1, 1],

and
x+ t

2
= − cos

(
θt + θx

2

)
cos

(
θt − θx

2

)
.

We now have to distinguish two cases. If x+t
2 ≤ 0 or, equivalently, cos( θt+θx2 ) ≥ 0

then, using the fact that sin (y) ≥ y cos (y) ≥ 0 for y ∈ [0, π2 ], we get x ≤ x+t
2 ,

and the statement g(x) ≤ g(x+t
2 ) follows (without a factor 2) by monotonicity

of g. If however x+t
2 ≥ 0, then 1 ≥ x ≥ x+t

2 ≥ 0 by the same argument as in the
first case. By concavity of g and (4.20) we get

g(x) ≤ g(
x+ t

2
) + g′(

x+ t

2
− 0)

(
x− x+ t

2

)
≤ g(

x+ t

2
) + g′(

x+ t

2
− 0) ≤ 2g(

x+ t

2
),

the last inequality being shown in Lemma 4.5.1(b) below. Thus Lemma 4.4.3
holds.

�

Lemma 4.4.4 For −1 ≤ x < t ≤ 1 we have

h

(∫ t

x

s
W ′1+y(s)

W1+y(t)−W1+y(x)
ds

)
≥ 1

2
h(
x+ t

2
).

93



Proof : Let us first show that

x :=

∫ t

x

s
W ′1+y(s)

W1+y(t)−W1+y(x)
ds ≥ x+ t

2
. (4.18)

We write shorter w(s) =
W ′1+y(s)

W1+y(t)−W1+y(x) being increasing in s. Hence

x− x+ t

2
=

∫ t

x

(s− x+ t

2
)w(s)ds

=

∫ t

x

(s− x+ t

2
)(w(s)− w(

x+ t

2
))ds ≥ 0,

as claimed in (4.18). Also, by definition, x ≤ t, and thus

h(x) =
g(x)

x+ 1
≥
g(x+t

2 )

x+ 1
≥
g(x+t

2 )

t+ 1
≥ 1

2

g(x+t
2 )

1 + x+t
2

=
h(x+t

2 )

2
.

�

4.5 Some further technical lemmata

After having established the mean value property of Wg in §4.4, we gather in this
section all the other technical properties of the abscissa tj = − cos(θj) needed
in §3.

In the sequel of this section we always suppose the conditions on k, g, h of
Theorem 4.2.1 to be true, that is, k is some integer ≥ 2, g is non-negative,
increasing and concave, and h(t) = g(t)/(t+ 1) is convex.

The first result summarizes some properties of the function g.

Lemma 4.5.1 The following properties hold:

(a) h(t) = g(t)
1+t is decreasing on (−1, 1];

(b) g′(t− 0)(1 + t) ≤ g(t) for t ∈ (−1, 1), and g′(t− 0) ≤ g(t) for t ∈ [0, 1);

(c) g(1) ≤ 2;

(d) g(1) ≥ g(0) = h(0) ≥ 1.

Proof : We first recall that, by concavity of g on [−1, 1], we have for all
−1 ≤ x1 < x2 < x3 ≤ 1 that

g(x3)− g(x2)

x3 − x2
≤ g(x3)− g(x1)

x3 − x1
≤ g(x2)− g(x1)

x2 − x1
. (4.19)

Since g(−1) ≥ 0, we may therefore write

h(t) =
g(t)− g(−1)

t− (−1)
+
g(−1)

t+ 1
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as a sum of two decreasing functions, implying (a). Passing to the limit in (4.19),
we also have that the directional derivatives g′(x2 − 0) and g′(x2 + 0) exist for
all x2 ∈ (−1, 1), with

g(x3)− g(x2)

x3 − x2
≤ g′(x2 + 0) ≤ g′(x2 − 0) ≤ g(x2)− g(x1)

x2 − x1
,

and in particular

g(x) ≤ g(x2) + g′(x2 − 0)(x− x2) for all x ∈ [−1, 1]. (4.20)

Setting x = −1, x2 = t in (4.20) leads to (b) since g(−1) ≥ 0. Furthermore,
using the concavity of g and setting x2 = 0 in (4.20), we get for all t ∈ [−1, 1]
that

g(−1)
1− t

2
+ g(1)

1 + t

2
≤ g(t) ≤ g(0) + tg′(0−).

Taking into account (4.12), multiplying by W ′1(t) and integrating from −1 to 1
gives

k
g(1)

2
≤ k g(1) + g(−1)

2
≤ k ≤ kg(0),

implying parts (c) and (d).
�

The following elementary lemma will be helpful in what follows.

Lemma 4.5.2 For γ ≥ 0 and 0 ≤ δ ≤ θ ≤ π/2 there holds

sin(γ)

sin(δ)
≤ θ

sin(θ)

γ

δ
≤ π

2

γ

δ
.

Proof : Since x 7→ x/ sin(x) is increasing in [0, π/2], we have that

sin(γ)

sin(δ)
≤ γ

sin(δ)
=

δ

sin(δ)

γ

δ
≤ θ

sin(θ)

γ

δ
≤ π

2

γ

δ
.

�
The following result tells us that the angles θj defined by tj = − cos(θj) for

j = 0, 1, ..., k have a quite regular behavior.

Lemma 4.5.3 (a) The sequence (θj+1 − θj)0≤j<k−1 is decreasing.
(b) For j ∈ {1, ..., k − 1} there holds

θj+1 − θj
θj

≤ 1

j
,

(c) For j ∈ {0, ..., k − 1} we have

θj+1 − θj
θj+1

≤ 1

j + 1
.

(d) For j ∈ {0, 1, ..., k − 2}
θk − θj
θk − θj+1

≤ 4.
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Proof : Using that g is increasing, we get for j ∈ {0, ..., k − 1}

1 =

∫ tj+1

tj

W ′g(t)dt =
k

π

∫ tj+1

tj

g(t)√
1− t2

dt
≥ k

π
g(tj)

∫ tj+1

tj

dt√
1− t2

=
k

π
g(tj)(θj+1 − θj),

≤ k

π
g(tj+1)

∫ tj+1

tj

dt√
1− t2

=
k

π
g(tj+1)(θj+1 − θj),

implying that
π

kg(tj+1)
≤ θj+1 − θj ≤

π

kg(tj)
. (4.21)

Thus (a) holds. For a proof of (b), we apply (a) to conclude that, for j ∈
{1, 2, ..., k − 1},

θj+1 − θj
θj

=
θj+1 − θj
θj − θ0

=
θj+1 − θj∑j−1
p=0 θp+1 − θp

≤ θj+1 − θj
j(θj − θj−1)

≤ 1

j
.

A proof of part (c) follows the same lines, we omit details. Let us finally show
(d). In case k = 2, we know from (4.21) and Lemma 4.5.1(c) that θ2 − θ1 ≥
π

2g(1) ≥ π/4, implying (d). In case k ≥ 3 we can write

θk − θj
θk − θj+1

= 1 +
θj+1 − θj
θk − θj+1

= 1 +
θj+1 − θj∑k−1

`=j+1(θ`+1 − θ`)

≤ 1 +
1

k − 1− j
θj+1 − θj
θk − θk−1

,

where in the last inequality we have applied (a). By part (c), θj+1 − θj ≤
θj+1/(j + 1) ≤ π/(j + 1), and θk − θk−1 ≥ π/(kg(tk)) ≥ π/(2k) by (4.21) and
Lemma 4.5.1(c). Hence using that k ≥ 3, we obtain

θk − θj
θk − θj+1

≤ 1 + 2
k

(j + 1)(k − 1− j)
≤ 1 + 2

k

k − 1
≤ 4.

�
The following result is used in our proof of Proposition 4.2.7.

Lemma 4.5.4 For j ∈ {1, 2, ..., k − 1} there holds

1 +
tj + tj+1

2
≤ c5(1 + tj)

where c5 = 3π
4 + 1.
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Proof : By Lemma 4.5.3(b), θj+1 − θj ≤ θj/j ≤ π, implying that

sin(
θj+1 − θj

2
) ≤ sin(

θj
2j

) ≤ sin(
θj
2

).

Moreover, since θj+1 + θj ≤ (2 + 1/j)θj , we get by Lemma 4.5.2

tj+1 − tj
tj − t0

=
sin(

θj+1−θj
2 )

sin(
θj
2 )

sin(
θj+1+θj

2 )

sin(
θj
2 )

≤ π

2
(2 +

1

j
) ≤ 3π

2
,

and Lemma 4.5.4 follows.
�

Let us now show the two main properties required for our proof of Proposi-
tion 4.2.8.

Lemma 4.5.5 For j ∈ {0, 1, ..., k − 2} we have

1− tj + tj+1

2
≤ 9(1− tj+1).

Proof : We will show the equivalent statement

tj+1 − tj ≤ 16(tk − tj+1).

If tj+1 ≤ 1/
√

2, we obtain

tj+1 − tj
1− tj+1

≤ tj+1 + 1

1− tj+1
≤ (1 +

√
2)2 ≤ 6 ≤ 16.

It remains to consider the case tj+1 ≥ 1/
√

2, and thus θj+1 ≥ 3π/4, or (π −
θj+1)/2 ≤ π/8. Using first Lemma 4.5.2 and then Lemma 4.5.3(d), we obtain

tj+1 − tj
1− tj+1

= −1 +
1− tj

1− tj+1
= −1 +

1 + cos(θj)

1 + cos(θj+1)

= −1 +
cos2(

θj
2 )

cos2(
θj+1

2 )
= −1 +

sin2(π2 −
θj
2 )

sin2(π2 −
θj+1

2 )

≤ −1 +

(
π/8

sin(π/8)

π − θj
π − θj+1

)2

≤ −1 + 16

(
π/8

sin(π/8)

)2

≤ 16.

�

Lemma 4.5.6 For j ≤ j0 − 1 ≤ k − 2 we have

1 +
tj+1+tj0

2

1 + tj+1
≤ π2

8

j2
0

(j + 1)2
.
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Proof : Notice that, by Lemma 4.5.2,

1 +
tj+1+tj0

2

1 + tj+1
= 1 +

tj0 − tj+1

2(1 + tj+1)
= 1 +

sin(
θj+1+θj0

2 ) sin(
θj0−θj+1

2 )

2 sin2(
θj+1

2 )

≤ 1 +
π2

8

(θj+1 + θj0)(θj0 − θj+1)

θ2
j+1

.

Applying Lemma 4.5.3(a), and recalling that j0 ≥ j + 1, we obtain

θj0 − θj+1

θj+1
=

∑j0−1
`=j+1(θ`+1 − θ`)∑j
`=0(θ`+1 − θ`)

≤ (j0 − j − 1)(θj+2 − θj+1)

(j + 1)(θj+1 − θj)
≤ j0 − j − 1

j + 1
,

and

θj0 + θj+1

θj+1
=
θj0 − θj+1

θj+1
+ 2 ≤ j0 + j + 1

j + 1
.

Combining the three inequalities, we deduce that

1 +
tj+1+tj0

2

1 + tj+1
≤ 1 +

π2

8

j2
0 − (j + 1)2

(j + 1)2
≤ π2

8

j2
0

(j + 1)2
.

�
The three following results are required in our proof of Proposition 4.2.9.

Lemma 4.5.7 For k ≥ 2, we have

tk−1 ≥ 0.

Proof : Suppose that tk−1 < 0. Then using Lemma 4.5.1(d), and the fact that
g is increasing allows us to find a contradiction

1 =

∫ 1

tk−1

W ′g(t)dt >

∫ 1

0

W ′g(t)dt =

∫ 1

0

g(t)k

π

1√
1− t2

dt

≥ g(0)k

π

∫ 1

0

1√
1− t2

dt ≥ k

2
.

�

Lemma 4.5.8 There holds

(a)
√
t1 − t0 ≤ 3π√

2g(t1)k
;

(b)
√
tk − tk−1 ≤ π

kg(1) ;

(c) For all j ∈ {0, 1, ..., k − 1} we have tj+1 − tj ≤ ( 12π
k )1/3.
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Proof : By Lemma 4.5.1(a), we find for t ∈ (t0, t1] that

W ′g(t) = h(t)
k

π

√
1 + t√
1− t

≥ h(t1)k

π
√

2

√
1 + t.

Integrating over the interval [t0, t1] = [−1, t1] gives

1 ≥ h(t1)k
√

2

3π
(1 + t1)3/2 =

g(t1)k
√

2

3π
(1 + t1)1/2,

which implies part (a). By Lemma 4.5.1(a) and Lemma 4.5.7, there holds for
t ∈ [tk−1, tk] ⊂ [0, 1],

W ′g(t) ≥
k

π

h(1)√
1− t

,

and by integrating over the interval [tk−1, tk] = [tk−1, 1] we get

1 ≥ 2kh(1)

π
(1− tk−1)1/2 =

kg(1)

π
(1− tk−1)1/2,

as required for part (b). For a proof of (c), we observe that, by Lemma 4.5.3(a),

tj+1 − tj = 2 sin(
θj+1 − θj

2
) sin(

θj+1 + θj
2

)

≤ 2 sin(
θ1 − θ0

2
) =

√
2(t1 − t0).

By concavity and positivity of g and Lemma 4.5.1(d),

g(t1) ≥ g(t0)
1− t1

2
+ g(1)

t1 − t0
2

≥ t1 − t0
2

.

Multiplying with
√
t1 − t0 and applying part (a) we arrive at

(t1 − t0)3/2 ≤ 2g(t1)
√
t1 − t0 ≤

3π
√

2

k
,

which yields part (c).
�

Lemma 4.5.9 For every j ∈ {0, . . . , k − 2}

2

3π
≤ tj+1 − tj
tj+2 − tj+1

≤
6c2
√
c5

c1
.

Proof : In order to show the left-hand inequality, we write

tj+2 − tj+1

tj+1 − tj
=

sin(
θj+1+θj+2

2 )

sin(
θj+θj+1

2 )

sin(
θj+2−θj+1

2 )

sin(
θj+1−θj

2 )
≤

sin(
θj+1+θj+2

2 )

sin(
θj+θj+1

2 )
,
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where we have applied Lemma 4.5.3(a). We claim that the right-hand term is
≤ 3π/2. Indeed, if (θj + θj+1)/2 ≥ π/2, then this quotient is less than one. Else,
by using Lemma 4.5.2, we obtain

sin(
θj+1+θj+2

2 )

sin(
θj+θj+1

2 )
≤ π

2

θj+1 + θj+2

θj + θj+1
,

and from Lemma 4.5.3(b) we get that θj+1 + θj+2 = θj+2 − θj+1 + 2θj+1 ≤
3θj+1 ≤ 3(θj + θj+1).

To prove the right-hand inequality in Lemma 4.5.9 we use Theorem 4.2.6
and Lemma 4.5.1(a) in order to obtain

tj+1 − tj
tj+2 − tj+1

≤ c2
c1

W ′g(
tj+1+tj+2

2 )

W ′g(
tj+tj+1

2 )

≤ c2
c1

h(
tj+1+tj+2

2 )(1 +
tj+1+tj+2

2 )

h(
tj+tj+1

2 )(1 +
tj+tj+1

2 )

W ′(
tj+1+tj+2

2 )

W ′(
tj+tj+1

2 )

≤ c2
c1

√√√√1 +
tj+1+tj+2

2

1 +
tj+tj+1

2

1− tj+tj+1

2

1− tj+1+tj+2

2

.

With help of Lemma 4.5.4 and Lemma 4.5.5 we obtain

tj+1 − tj
tj+2 − tj+1

≤ c2
c1

3
√
c5

√√√√√√
1 + tj+1

1 +
tj+tj+1

2︸ ︷︷ ︸
≤2

1− tj+1

1− tj+1+tj+2

2︸ ︷︷ ︸
≤2

≤
6c2
√
c5

c1

�

4.6 Open problems

We believe that, with an optimal choice of CBW , the quantity eCBW is of modest
size. This is clearly not true for our present explicit upper bound of CBW ,
and remains a direction of future research, maybe asymptotic analysis could be
helpful.

We also believe that our result on the discretization of a potential can be
generalized to more general measures, for example without the assumption that

t 7→ g(t)
t−a is convex on (a, b), which is used only once. This possibly would allow

us to consider both small and large eigenvalues as outliers.
Finally, the above-mentioned conjecture on the CG convergence remains

open for general sets S(t).
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Chapter 5

Applications of the
sharpness of the
Bernstein-Walsh inequality

In this chapter we apply Theorem 4.1.3 to find superlinear convergence bounds
for Krylov methods. In the first section, we prove Conjecture 2.3.1 stated before,
at least for a class of measures which is of particular interest for applications.
In the second section we derive a superlinear convergence bound for polynomial
approximations of Markov functions of Hermitian matrices.

5.1 Superlinear convergence for conjugate gra-
dients

Our aim in this section is to explain superlinear convergence of Conjugate Gra-
dients (CG). In terms of the chapter 3, we consider as inclusion set an interval.
Up to now, our work is valid only for few outliers. As we want to explain this
phenomenon for a lot of outliers, we need to consider other techniques. One
of the appealing aspects of CG convergence is that there is a close link with
polynomial extremal problems and extremal problems in logarithmic potential
theory. We give and discuss in Section 5.1 some new upper bound for the rate of
convergence of conjugate gradients, and show in our Theorem 5.1.4 the Conjec-
ture 2.3.1 for a particular class of eigenvalue distributions, which is illustrated
by some (academic) numerical examples. To our knowledge, the present work
is the first which deals with Conjecture 2.3.1, at least for a suitable subclass
of eigenvalue distributions. In the first subsection we explain and state our re-
sults, and give some examples. In Subsection 5.1.2 we explain how to deduce
Theorem 5.1.4 from Theorem 4.1.3.
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5.1.1 Superlinear convergence for conjugate gradients

Conjugate gradients is a popular method for solving large sparse linear systems
Ax = b with symmetric positive definite A, with spectrum Λ(A) = {λj}, 0 <
λ1 < λ2 < ... ≤ β. It is known for a long time that there are eigenvalue
distributions which lead to convergence which is faster than the one described
in (2.4), namely so-called superlinear convergence, see for instance Figure 2.3.

In what follows we consider S = [λd+1, β], and thus we prescribe as roots
of the polynomial (of degree n ≥ d) the smallest d eigenvalues λ1, ..., λd. Un-
derstanding the modulus of the product of the corresponding linear factors as a
weight, and setting ρ = δλ1

+ ...+ δλd , α = λd+1 and n = k+ d = k+ ‖ρ‖, The-
orem 4.1.3 and the equality ‖wkp‖Σ = ‖wkp‖[a,β] (consequence of the weighted
Bernstein-Walsh inequality) give the following upper bounds in terms of Green
functions. The sharpness follows from the weighted Bernstein-Walsh inequality
(4.3).

Corollary 5.1.1 For any integer n > d + 1 ≥ 1, let a = ad,n be equal to λd+1

if n ≥
∑d
j=1

√
b−λj

λd+1−λj = η(λd+1), and else let a be the unique solution > λd+1

of the equation n =
∑d
j=1

√
β−λj
a−λj . Then

En([λd+1, β]) ≤ eCBW exp
(
−ng[a,β](0,∞) +

d∑
j=1

g[a,β](0, λj)
)
,

being sharp up to the factor eCBW .

Remark 5.1.2 Using the formulas (A.3) and (A.4) for the Green function of
a closed interval S = [a, β] (with complement being open and simply connected),
we note that

exp
(
−ng[a,β](0,∞) +

d∑
j=1

g[a,β](0, λj)
)

=
1

|fn,α1,...,αd(α0)|
,

where fn,α1,...,αd is defined in Definition 3.1.2. So we have obtained the inequal-
ities

1

|fn,α1,...,αd(α0)|
≤ En([λd+1, β]) ≤ eCBW

|fn,α1,...,αd(α0)|
,

with eCBW a universal constant. Let us emphasize the fact that for small n, a
can be larger than λd+1, and the function fn,α1,...,αd is related to S = [a, β].
This was not the case in the chapter 3 where our set S included the rest of the
spectrum.

Corollary 5.1.1 gives us for each d < n− 1 an upper bound for the function
n 7→ logEn(Λ(A)), each of them having the shape of a straight line for suffi-
ciently large n, with the slope −g[λd+1,β](0,∞) of these straight lines decreasing
with d, but the abscissa in general increases. We thus hope that logEn(Λ(A))
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Figure 5.1: Illustration of Corollary 5.1.1. As lower bound we draw on both plots the

relative CG error in energy norm, with λj , N,A, b, x
CG
0 as in Figure 2.3 (black dotted

line). The straight lines on the left correspond to the bounds for d ∈ {0, 1, 2, 5, 10, 15}
given in Corollary 5.1.1, each time for n sufficiently large such that an,d = λd+1

and thus S = S(t) = [λd+1, β]. Since it is difficult to see details, we have drawn on

the right only the CG error and the concave lower envelope of all straight lines in

Corollary 5.1.1, where we indicate in the plot the correspondence between a segment

and the choice of d. To compare, we also have reproduced on the right from Figure 2.3

the integral bound from Conjecture 2.3.1 with C = 0 (blue dash-dotted line), verifying

numerically that Corollary 5.1.1 is the right tool to prove the conjecture.

is close to the value of the concave lower envelope of these straight lines, which
is true for the particular example of Figure 5.1. In fact, finding an optimal
d = dn < n with minimal En([λd+1, β]) for given n seems to be a difficult task,
we will suggest an approximate solution in order to solve the above conjecture.

To prove Conjecture 2.3.1, following [12, Lemma 3.1(a)], we will impose
sufficient conditions on σ such that S(t) = [a(t), β] (defined in Eqn. (2.9)) for
all t.

Lemma 5.1.3 Suppose that σ is supported on the interval [a(0), β] with den-
sity with respect to Lebesgue measure denoted by σ′, and suppose1 that x 7→√

(x− a(0))(β − x)σ′(x) vanishes at x = a, and is strictly increasing in [a(0), β].
Then for all t ∈ (0, ‖σ‖) we have S(t) = [a(t), β], with a(t) being the unique so-
lution of the equation

t =

∫ a(t)

a(0)

√
β − x
a(t)− x

dσ(x),

in particular t 7→ a(t) is strictly increasing.

Roughly speaking, having S(t) = [a(t), β] for sufficiently small t means that
there are so few eigenvalues around 0 that they are the first eigenvalues which are
well approached by Ritz values of low order. One of the reasons to consider such
sets S(t) is that, in any case, the superlinear convergence rate is only pronounced

1It follows that σ has compact support and continuous potential.
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if small eigenvalues are well approached by Ritz values, and the rate depends
not as much on other ”converging” eigenvalues, which in first order could be
neglected. Another reason is that, if the system Ax = b comes from discretizing
an elliptic PDE, we might have only asymptotic knowledge on small eigenvalues
of A through a so-called Weyl formula. The final reason is that in the particular
case S(t) = [a(t), β] the analysis becomes simpler, and also the upper bound is
more explicit, since, by (2.4),

exp
(
−N

∫ n/N

0

gS(τ)(0,∞) dτ
)

= exp

(
N

∫ n/N

0

log
(√β/a(τ)− 1√

β/a(τ) + 1

)
dτ

)

≤
n−1∏
j=0

√
β/a(j/N)− 1√
β/a(j/N) + 1

in terms of some ”effective condition number” β/a(j/N), compare with [14,
Eqn. (2.27)].

Theorem 5.1.4 Let σ and S(t) = [a(t), β] for 0 < t < ‖σ‖ be as in Lemma 5.1.3,
and A be a symmetric positive definite matrix of size N with spectrum λ1 < λ2 <
.... ≤ β. If the integers n ≥ 2 and d = dn ∈ {0, 1, ..., n− 2} are such that

for j = 1, 2, ..., d: σ((−∞, λj ]) ≥ j/N, (5.1)

λd < a(n/N) ≤ λd+1 (or a(n/N) ≤ λ1 in case d = 0), (5.2)

then

En(Λ(A)) ≤ En([λd+1, β]) ≤ exp
(
CBW −N

∫ n/N

0

gS(τ)(0,∞) dτ
)
,

and thus Conjecture 2.3.1 holds.

Note that the above choice (5.2) of d is nearly optimal in the following
sense: consider diagonal AN with eigenvalues satisfying σ((−∞, λj,N ]) = j/N
for j = 1, ..., N . Furthermore, let d = dn,N with λd,N < a(n/N) ≤ λd+1,N , then2

lim
n,N→∞
n/N→t

En,N ([λdn,N+1,N , β])1/n = lim inf
n,N→∞
n/N→t

0≤d<n−1

En,N ([λd+1,N , β])1/n.

We first observe that our assumptions of Lemma 5.1.3 on σ and the choice of the
eigenvalues λ1,N < λ2,N < ... of AN , allows to show that not only (2.7) but also
the quite technical four conditions given in Subsection 2.3.3 or in [12, Conditions
(i)–(iv)] hold [19, Theorem 1.7(b)]. As a consequence of [12, Theorem 2.2],

lim
n,N→∞
n/N→t

En(Λ(AN ))1/n = exp
(
−1

t

∫ t

0

gS(τ)(0,∞) dτ
)
,

2We write En,N instead of En in order to indicate that here we consider the spectrum of
AN depending on N .
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that is, we have equality in (2.8). Then, using Theorem 5.1.4 and the simple
inequality En(Λ(AN )) ≤ En([λd+1, β]),

lim inf
n,N→∞
n/N→t

En,N ([λdn,N+1,N , β])1/n ≤ lim sup
n,N→∞
n/N→t

En,N ([λdn,N+1,N , β])1/n

≤ exp
(
−1

t

∫ t

0

gS(τ)(0,∞) dτ
)

= lim
n,N→∞
n/N→t

En(Λ(AN ))1/n

≤ lim inf
n,N→∞
n/N→t

0≤d<n−1

En,N ([λd+1,N , β])1/n. ≤ lim inf
n,N→∞
n/N→t

En,N ([λdn,N+1,N , β])1/n,

and the statement follows.
It is also interesting to compare Theorem 5.1.4 with [13, Theorem 3.1] which

showed under the sole assumption (2.7) (and for quite general measures σ)
that, for any fixed compact set S, the quantity En,N (S)1/n is asymptotically
greater than or equal to the right-hand side of (2.8). One of the consequences
of our Theorem 5.1.4 is that, roughly, we can achieve equality for the interval
S = S(n/N).

Our proof of Theorem 5.1.4 will be presented in §5.1.2, let study here some
examples.

Example 5.1.5 Consider the probability density

dσ

dx
(x) =

1

2
√

1− x
on [a(0), β] = [0, 1].

For this measure we may apply Lemma 5.1.3, and a simple computation shows
for 0 < t < ‖σ‖ = 1 that a(t) = t2. We may also compute eigenvalues λj
satisfying equality in (5.1):

σ([0, λj ]) =
j

N
iff λj =

j

N

(
2− j

N

)
,

which behave like equidistant points for j � N . These are the eigenvalues used
in Figure 2.3 and Figure 5.1. In this special example we even have an explicit
formula for the quantity d = dn of Theorem 5.1.4, namely

dn + 1 = dN(1−
√

1− (n/N)2)e,

in particular dn = 0 for n ≤ 45, dn = 1 for 46 ≤ n ≤ 64, and dn = 2 for
65 ≤ n ≤ 78, in accordance with the right-hand plot of Figure 5.1. Note that for

small n we have dn + 1 ≈ d n
2

2N e.

In the previous example the small eigenvalues were approximately equidis-
tant, with stepsize 2/N , and the convex hull of the spectrum given approx-
imately by [2/N, 1]. Up to correct scaling, a similar behavior is true for the
eigenvalues of the finite difference discretization of the 2D Laplacian on the unit
square with Dirichlet boundary conditions, and thus the convergence curves
should be similar. However, this is no longer true for higher dimensions D ≥ 3,
where we expect that σ′(x) grows like a constant times x(D−2)/2 for small x,
which motivates the following example.
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Figure 5.2: Illustration of Theorem 5.1.4, with λj for j = 1, ..., N = 1000 as in

Example 5.1.6, where on the left s = 0.5 and on the right s = 1. As lower bound we

draw on both plots the relative CG error in energy norm, with A, b, xCG
0 as in Figure 2.3

(blue dotted line). The concave lower envelope is obtained from Theorem 5.1.4 (red

solid line), where we indicate in the plot the correspondence between a segment and

the choice of d. We also draw the integral bound (blue dash-dotted line), showing that

Conjecture 2.3.1 holds with C = 0.

Example 5.1.6 For a parameter γ > 0, consider the density

dσ

dx
(x) =

γxs√
β − x

on [0, β].

In this example we only consider probability measures σ and thus γβs+1/2B(s+
1, 1/2) = 1, with B(·, ·) the beta function. Notice that, for s = 0, we recover
Example 5.1.5. A small computation using Lemma 5.1.3 gives

a(t)/β = t
1

s+1/2 .

We again choose λj for j = 1, 2, ..., N = 1000 attaining equality in (5.1), how-
ever, there are no longer explicit formulas, and thus the λj have to be computed
numerically. In Figure 5.2 we have plotted two examples for β = 1, on the left
for s = 0.5 and on the right for s = 1, where in both cases we have chosen
the approximately optimal d = dn of Theorem 5.1.4. Notice also the well-known
phenomena that the convergence of CG improves with s getting larger.

5.1.2 Proof of Theorem 5.1.4

For our proof of Theorem 5.1.4, we choose n > d + 1 as in the statement such
that (5.1) and (5.2) hold. By our assumption (5.1) on λj , we may choose λ̃j ≤ λj
such that

σ((−∞, λ̃j ]) =
j

N
for j = 1, 2, ..., d+ 1.

Consider k = n− d ≥ 2, and the two measures of mass d

ρ = δλ1 + ...+ δλd , ρ̃ = Nσ|(−∞,λ̃d].
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We also consider an artificial point λ0 = λ̃0 such that λ0 < λ̃1 and σ((−∞, λ0]) =
0. Before proving Theorem 5.1.4, let us begin by giving two lemmas.

Lemma 5.1.7 Under the preceding notations we have for x ∈ C

U ρ̃(x)− Uρ(x) ≤ 0, if Re(x) ≥ λd+1,

and
U ρ̃(x)− Uρ(x) ≥ 0, if Re(x) ≤ λ0.

Proof : Let Re(x) ≥ λd+1. For t ∈ [λ̃j , λ̃j+1], j = 0 : d− 1, we have |x− t| ≥
|x− λj+1|, and thus

N

∫ λ̃j+1

λ̃j

log
1

|x− t|
dσ(t) ≤ log

1

|x− λj+1|
.

Taking the sum for j = 0 : d− 1, we obtain U ρ̃(x) ≤ Uρ(x).

Let Re(x) ≤ λ0. For t ∈ [λ̃j , λ̃j+1], j = 0 : d−1, we have |x− t| ≤ |x−λj+1|,
and thus with the same reasoning as before, we obtain U ρ̃(x) ≥ Uρ(x).

�

Lemma 5.1.8 Consider the external field Q(x) = U ρ̃/k(x), the extremal mea-
sure µ and the constant F are as in (4.1), (4.2). Let t = n/N , νt,σ be the solution
of the constrained equilibrium problem mentioned in the paragraph after (2.8),
and Ct,σ the corresponding constant. Then for all x ∈ C we have

kUµ(x) + U ρ̃(x)− kF ≤ n(Uνt,σ (x)− Ct,σ). (5.3)

Proof : Let us first show that (5.3) holds for x ∈ supp(µ). Indeed, since
supp(µ) ⊂ [λd+1,b] ⊂ [a(t), β] = supp(σ/t− νt,σ) by assumption (5.2), we find
from the respective equilibrium conditions for both extremal problems that both
expressions on the left-hand side and on the right-hand side of (5.3) vanish for
x ∈ supp(µ). We also know that all measures involved in (5.3) have finite energy,
with masses ‖kµ + ρ̃‖ = k + d = n = n ‖νt,σ‖. Let us show that ρ̃ ≤ nνt,σ.

Indeed, λ̃d ≤ λd < a(t) by construction and (5.2), and thus, by definition of
S(t) = [a(t), β] = supp(σ/t− νt,σ),

nνt,σ|(−∞,λ̃d] =
n

t
σ|(−∞,λ̃d] = Nσ|(−∞,λ̃d] = ρ̃.

Hence, by subtracting U ρ̃(x) from both sides of (5.3), we get from the principle
of domination for logarithmic potentials [103, Theorem II.3.2] that (5.3) holds
for all x ∈ C.

�
Now we are able to prove Theorem 5.1.4.
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Proof of Theorem 5.1.4: Using the definition of En([λd+1, β]) and Lemma 5.1.7
(with λ0 = 0), we get the chain of inequalities

En([λd+1, β]) = min
p∈Πk

‖e−Uρp‖[λd+1,b]

e−Uρ(0)|p(0)|
≤ min
p∈Πk

‖e−U ρ̃p‖[λd+1,b]

e−U ρ̃(0)|p(0)|

≤ exp
(
CBW + kUµ(0) + U ρ̃(0)− kF

)
,

where in the last inequality we have applied Theorem 4.1.3 with α = λd+1,
the external field Q(x) = U ρ̃/k(x), and where the extremal measure µ and the
constant F are as in (4.1), (4.2). On the other hand, with t = n/N , we know
from [12, Theorem 2.1] (see (A.6)) that

exp
(
CBW −N

∫ n/N

0

gS(τ)(0,∞) dτ
)

= exp
(
CBW +n(Uνt,σ (0)−Ct,σ)

)
, (5.4)

with νt,σ the solution of the constrained equilibrium problem, and Ct,σ the
corresponding constant. For establishing Theorem 5.1.4, it only remains to use
the inequality given in Lemma 5.1.8 for x = 0.

�

5.2 Superlinear convergence for the approxima-
tion of matrix functions

In this section a superlinear convergence bound for polynomial Arnoldi ap-
proximations to functions of matrices is derived. This bound generalizes the
preceding superlinear convergence bound for the CG method to more general
functions with finite singularities. We consider the quantity

‖f(A)b− fm‖,

where fm is a Rayleigh approximation for f(A)b given in Definition 1.3.1. This
quantity was analyzed by several authors [20], [36], [63], [69], [100]. In the first
part we recall some upper bounds which can be found in the literature. In Sub-
section 5.2.2 we explain and state our Theorem 5.2.8, and give some numerical
examples. In Subsection 5.2.3 we show how to deduce Theorem 5.2.8 from The-
orem 4.1.3.

5.2.1 Approximation of matrix functions

The accuracy of an approximation obtained by some rational Krylov method is
determined by the ”quality” of the rational Krylov space Qm and the extraction.
Of course, an approximation fm can only be as good as the search space it is
extracted from, i.e.,

‖f(A)b− fm‖ ≥ min
u∈Qm

‖f(A)b− u‖ = min
r∈Πm−1/qm−1

‖f(A)b− r(A)b‖.
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The minimum is achieved by the orthogonal projection of f(A)b which is given
by a rational function evaluated at a matrix. In a rational Krylov method it is
therefore necessary to make the right-hand side of this inequality as small as
possible by choosing the poles of qm−1 suitably. If the extraction is the Rayleigh-
Ritz approximation, with some conditions on f , we can obtain a near-best ap-
proximation fm ∈ Qm [20, Proposition 3.1].

Proposition 5.2.1 Let Vm be a basis of Qm and Am = V †mAVm. Let f be
analytic in a neighborhood of convex compact set Σ ⊇W(A) and consider fm =
Vmf(Am)V †mb. There holds

‖f(A)b− fm‖ ≤ 2‖b‖(1 +
√

2) min
r∈Πm−1/qm−1

‖f − r‖Σ.

If A is Hermitian, the result holds with 1 instead of 1 +
√

2.

Proof : Using the exactness property and the fact that W(Am) ⊆W(A) ⊆ Σ,
we obtain for every r ∈ Πm−1/qm−1

‖f(A)b− fm‖ = ‖(f − r)(A)b− Vm(f − r)(Am)V †mb‖
≤ (‖(f − r)(A)‖+ ‖(f − r)(Am)‖) ‖b‖

≤ 2‖b‖(1 +
√

2)‖f − r‖Σ.

The last inequality is a consequence of Crouzeix’s theorem.
�

This proposition suggests that we choose the poles qm−1 such that

min
r∈Πm−1/qm−1

‖f − r‖Σ

becomes as small as possible, which is a rational best uniform approximation
problem.

Remark 5.2.2 We cannot expect the bound in the preceding proposition to be
sharp if A is highly nonnormal since it is based on the numerical range. Unfor-
tunately, this bound can be crude even for a self-adjoint operator. Indeed, for
Hermitian operators the inequality in the proof can be improved to

‖f(A)b− fm‖ ≤ 2 min
r∈Πm−1/qm−1

‖f − r‖Λ(A)∪Λ(Am)‖b‖

which is a min-max problem on a discrete set. So if the spectrum of A does not
”fill” the numerical range sufficiently well, we cannot expect the bound to be
sharp.

Now let χm denote the characteristic polynomial of Am and Γ be an integra-
tion contour (finite union of nonintersecting regular Jordan curves) such that
Λ(Am) ⊂ int(Γ). If f is analytic in int(Γ) and extends continuously to Γ, then
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so does f̃ = fqm−1. Owing to Hermite’s formula [119, page 50], the polynomial
pm−1 ∈ Πm−1 interpolating f̃ at Λ(Am) can be expressed as

pm−1(z) =
1

2iπ

∫
Γ

χm(ξ)− χm(z)

ξ − z
f̃(ξ)

χm(ξ)
dξ,

where χm is the characteristic polynomial of Am. For the interpolation error we
have by Cauchy’s formula

f̃(z)− pm−1(z) =
1

2iπ

∫
Γ

χm(z)

ξ − z
f̃(ξ)

χm(ξ)
dξ.

Dividing this equation by qm−1 and setting sm = χm/qm−1 we obtain

f(z)− rm(z) =
1

2iπ

∫
Γ

sm(z)

sm(ξ)

f(ξ)

ξ − z
dξ, (5.5)

where rm = pm−1/qm−1. Thus, by choosing rm such that it interpolates f at
Λ(Am), the error of the Rayleigh-Ritz approximation can be expressed by (recall
that fm = rm(A)b)

f(A)b− fm =
1

2iπ

∫
Γ

sm(A)

sm(ξ)
f(ξ)(ξ −A)−1bdξ.

This way of writing the error can be very useful to obtain upper error bounds.
For instance, we can obtain

‖f(A)b− fm‖ ≤ C
‖sm(A)b‖

minξ∈Γ |sm(ξ)|
,

where C = L(Γ)
2π maxξ∈Γ

∥∥f(ξ)(ξ −A)−1
∥∥ is a constant, with L(Γ) the length of

Γ. It is remarkable that sm is the minimizer of the factor ‖sm(A)b‖ among all
sm ∈ Π∞m/qm−1.

If f is analytic in a neighborhood of W(A) containing an integration contour
Γ such that W(A) ⊆ Σ ⊂ int(Γ), then we can write (Crouzeix’s theorem)

‖f(A)b− fm‖ ≤ C(1 +
√

2)‖b‖ × ‖sm‖Σ × ‖s−1
m ‖Γ,

noting that the zeros of sm are rational Ritz values, hence contained in W(A),
and therefore ‖s−1

m ‖Σ <∞. This bound suggests to consider rational functions
sm that are ”smallest possible” on the set Σ and ”largest possible” on the
integration contour Γ winding around Σ. The zeros of the denominator qm−1

of such an optimal rational function should constitute ”good” poles for the
rational Krylov space Qm. This problem is known as a Zolotarev problem [56],
[113], [122].
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5.2.2 Superlinear convergence for the approximation of
matrix functions

In [17] the authors derived a superlinear convergence bound for rational Arnoldi
approximations to Markov functions of Hermitian matrices. This bound general-
izes the superlinear convergence bound for the CG method [12] to more general
functions and to rational Krylov spaces.

Consider a Hermitian matrix A with spectrum Λ(A) = {λj}, λ1 < λ2 <
... < λN ≤ b, and a Markov function

f(z) =

∫
Γ

dγ(x)

x− z
, (5.6)

where γ is a complex measure supported on a closed set Γ ⊂ C \ [λ1, λN ]. The
associated Newton potential given by

f̂(z) =

∫
Γ

d|γ|(x)

|x− z|
, (5.7)

is finite on [λ1, λN ]. To see the result given in this section as a generalization
of the result concerning CG, we can consider z−1 as a Markov function with
γ = δ0 the Dirac measure supported at 0 and thus Γ = {0}. Other examples of
Markov functions [37, Example 1 and 2] are

log(1 + z)

z
=

∫ −1

−∞

1/x

x− z
dx,

exp(θ
√
z)− 1

z
=

∫ 0

−∞

sin(θ
√
−x

πx

dx

x− z
,

or [48]

z−α =
sin(απ)

π

∫ 0

−∞

x−α

z − x
dx , α ∈ (0, 1).

In [17] the authors considered a sequence of matrices AN , where N indicates
the size of the matrix, whose eigenvalues {λj,N} have an asymptotic distribution
given by a probability measure σ having compact support. They associated to
those matrices a sequence of vectors bN of unit length. Accordingly, they con-
sidered the sequence of rational Krylov spaces Qn,N (AN , bN ) of order n = n(N)
such that n/N → t ∈ (0, 1) as N → ∞, and such that the poles are asymp-
totically distributed according to a measure νt. The family of measures t 7→ νt
is supposed increasing and differentiable with derivative ν̃t. They denoted by
fn,N the n-th rational Arnoldi approximation. Under some technical assump-
tions on the eigenvalues, the poles, and the vectors bN , and provided that the
intersection of Γ with all the eigenvalues is empty, the authors established in
[17, Theorem 3.1] the asymptotic upper bound

lim sup
n,N→∞
n/N→t

(‖f(AN )bN − fn,N‖)1/N ≤ max
x∈Γ

exp

(
−
∫ t

0

∫
gS(τ)(x, y)dν̃τ (y)dτ

)
.
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In terms of polynomial approximations, as the poles are∞, the preceding bound
can be written

lim sup
n,N→∞
n/N→t

(‖f(AN )bN − fn,N‖)1/N ≤ max
x∈Γ

exp

(
−
∫ t

0

gS(τ)(x,∞)dτ

)
.

This formula is a generalization of the formula 2.8 for CG (f(z) = z−1 and
Γ = {0}) to Markov functions. As in the case of CG, although those results
are of an asymptotic nature, there is numerical evidence that the superlinear
convergence phenomenon also occur for finite N , without limits and without
taking the n-th root, see for instance [17, Figure 1.1]. In the case of a single
matrix, we have the same problem as before since we cannot define σ as an
asymptotic distribution of the eigenvalues.

In order to prove a similar result as Theorem 5.1.4 for Markov functions,
we first extend our definition of En(S). For a fixed matrix A, a compact set S,
sufficiently large n, Γ ⊂ C \ [λ1, . . . , λN ] and Γ ∩ S = ∅, let

En(S,Γ) = min
p∈Πn(Λ0)

{
‖p‖S

minx∈Γ |p(x)|

}
,

where Πn(Λ0) is defined in (3.1). Clearly we have En(S, {0}) = En(S).
The first step is to make a link between the quantities ‖f(A)b − fn‖ and

En(Λ(A),Γ) which can be done by using Hermite’s formula given in (5.5), and
we obtain the following theorem [17, Theorem 2.2].

Theorem 5.2.3 Consider a Markov function f given by (5.6) analytic in C\Γ

containing the interval [λ1, λN ], and let f̂ be its associated Newton potential
(5.7). For any s̃n ∈ Πn/qn−1 we have

‖f(A)b− fn‖ ≤ 2 max
z∈[λ1,λN ]

f̂(z)
‖s̃n(A)b‖

minx∈Γ |s̃n(x)|
. (5.8)

Proof : Let {θ̃j} be the zeros of s̃n. If for some j, θ̃j ∈ Γ, then the theorem
is clear because the right-hand side equals +∞. So it is sufficient to consider
θ̃j /∈ Γ.

The Rayleigh-Ritz approximation is independent of the particular basis,
hence let V n be orthonormal.

Denote by r̃n the rational interpolant of f with (fixed) denominator qn−1

and numerator in Πn−1 interpolating f at each θ̃j . Then the exactness property
(Proposition 1.3.2) gives r̃n(A)b = Vnr̃n(An)V ∗n b. As the interpolation error can
be represented as (see (5.5))

f(z)− r̃n(z) = s̃n(z)

∫
Γ

dγ(x)

s̃n(x)(x− z)
,
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we obtain

‖f(A)b− fn‖ ≤ ‖f(A)b− r̃n(A)b‖+ ‖r̃n(A)b− rn(A)b‖
= ‖(f − r̃n)(A)b‖+ ‖Vn(r̃n − f)(An)V ∗n b‖

≤ ‖f̂(A)‖ ‖s̃n(A)b‖
minx∈Γ |s̃n(x)|

+ ‖f̂(An)‖‖Vns̃n(An)V ∗n b‖
minx∈Γ |s̃n(x)|

.

By exactness property (Proposition 1.3.2) we have the equality Vns̃n(An)V ∗n b =
VnV

∗
n s̃n(A)b, and as A is supposed Hermitian, it follows that

‖f(A)b− fn‖ ≤ max
z∈Λ(A)

|f̂(z)| ‖s̃n(A)b‖
minx∈Γ |s̃n(x)|

+ max
z∈Λ(An)

|f̂(z)| ‖s̃n(A)b‖
minx∈Γ |s̃n(x)|

.

The observation Λ(A) ∪ Λ(An) ⊂ [λ1, λN ] allows to conclude.
�

Remark 5.2.4 For the special case Γ ⊂ [−∞, λ1) (or Γ ⊂ (λN ,+∞]) and γ

positive (or negative), we have f̂(z) = |f(z)| for z ∈ [λ1, λN ]. Hence we can

replace f̂ by f in the upper bound of the theorem.

In the following of this section, we restrict our study to polynomial approx-
imations (no poles) and to Γ ⊂ [−∞, λ1). We can reformulate (5.8) (qn−1 = 1)

‖f(A)b− fn‖ ≤ 2‖b‖ max
z∈[λ1,λN ]

f̂(z)
‖χ̃n(A)‖

minx∈Γ |χ̃n(x)|
,

for every χ̃n ∈ Πn. As A is supposed Hermitian, using Definition 5.2.2 we obtain

‖f(A)b− fn‖ ≤ 2‖b‖ max
z∈[λ1,λN ]

f̂(z)En(Λ(A),Γ).

Now, like in Corollary 5.1.1, we consider S = [λd+1, λN ], ρ = δλ1 + ...+ δλd ,
α = λd+1 and n = k + d = k + ‖ρ‖.

Lemma 5.2.5 Suppose we are under the assumptions of Theorem 4.1.3. If Γ ⊂
[−∞, λ1) and x0 designates the right extremity of Γ, then

max
x∈Γ

exp
(
−kΘ(x)

)
= max

x∈Γ
exp
(
−ng[a,β](x,∞) +

d∑
j=1

g[a,β](x, λj)
)

= exp
(
−ng[a,β](x0,∞) +

d∑
j=1

g[a,β](x0, λj)
)

Proof : Under our hypotheses, we have Θ(x) = F − Uµ+ρ/k(x). For x ≤ λ1

it is not hard to see that Uµ+ρ/k is increasing, and thus Θ is decreasing. This
implies that

max
x∈Γ
−kΘ(x) = −kΘ(x0),

and we conclude with the relation (4.6).
�
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Remark 5.2.6 If Γ ⊂ (λN ,+∞], we have the same result with x0 the left
extremity of Γ. In the case Γ ⊂ R \ [λ1, λN ] being at both sides of the spectral
interval, the maximum is attained at one of the two nearest point of [λ1, λN ].

Theorem 4.1.3 and Lemma 5.2.5 give the following upper bounds in terms
of Green functions. The sharpness follows from the weighted Bernstein-Walsh
inequality (4.3).

Corollary 5.2.7 For any integer n > d+1 ≥ 1, let a = ad,n be equal to λd+1 if

n ≥
∑d
j=1

√
β−λj

λd+1−λj = η(λd+1), otherwise let a be the unique solution > λd+1

of the equation n =
∑d
j=1

√
β−λj
a−λj . If Γ ⊂ [−∞, λ1) and x0 designates the right

extremity of Γ, then

En([λd+1, λN ],Γ) ≤ eCBW exp
(
−ng[a,β](x0,∞) +

d∑
j=1

g[a,β](x0, λj)
)
,

being sharp up to the factor eCBW . Thus

‖f(A)b− fn‖ ≤ K exp
(
−ng[a,β](x0,∞) +

d∑
j=1

g[a,β](x0, λj)
)
,

with K = eCBW 2‖b‖maxz∈[λ1,λN ] |f̂(z)|.

Similarly to Corollary 5.1.1, Corollary 5.2.7 gives us for each d < n − 1 an
upper bound for the function n 7→ logEn(Λ(A),Γ), each of them having the
shape of a straight line for sufficiently large n, with the slope −g[λd+1,β](x0,∞)
of these straight lines decreasing with d, but the abscissa in general increases.
We thus hope that logEn(Λ(A),Γ) is close to the value of the concave lower
envelope of these straight lines (see the particular example of Figure 5.3). Let
us suggest an approximate solution for a near optimal d.

Theorem 5.2.8 Let σ and S(t) = [a(t), β] for 0 < t < ‖σ‖ be as in Lemma 5.1.3,
A be a Hermitian matrix with spectrum λ1 < λ2 < ... < λN ≤ β, Γ ⊂ [−∞, λ1)
and x0 designates the right extremity of Γ. If the integers n ≥ 2 and d = dn ∈
{0, 1, ..., n− 2} are such that

for j = 1, 2, ..., d: σ((−∞, λj ]) ≥ j/N, (5.9)

λd < a(n/N) ≤ λd+1 (or a(n/N) ≤ λ1 in case d = 0), (5.10)

then

En(Λ(A),Γ) ≤ eCBW exp

(
−N

∫ n/N

0

gS(τ)(x0,∞)dτ

)
.
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Figure 5.3: Illustration of Corollary 5.2.7. As lower bound we draw on both plots the

error ‖f(A)b−fn‖/‖f1‖, with A the diagonal matrix with eigenvalues λj = j
N

(
2− j

N

)
given by Example 5.1.5, b = (1, . . . , 1)T and f(x) = 1/

√
x (black dotted line). We also

have reproduced on both plots the integral bound from Theorem 5.2.8(a) with CBW =

1 (blue dash-dotted line). On the left we compare the two preceding plots with the

upper bound given in Proposition 5.2.1 divided by ‖f1‖ (green solid line). On the right

we have drawn the polygon obtained from the lower envelope of all straight lines in

Corollary 5.2.7, where we indicate in the plot the correspondence between a segment

and the choice of d (red solid line).

Let us note that the above choice (5.10) of d is nearly optimal in the sense
of the N -th root with a proof similar to the one given in the case of CG after
Theorem 5.1.4

lim
n,N→∞
n/N→t

En,N ([λdn,N+1,N , β],Γ)1/N = lim inf
n,N→∞
n/N→t

0≤d<n−1

En,N ([λd+1,N , β],Γ)1/N .

In our Figures 5.3 and 5.4, for the function z−1/2, the maximum is attained
at x0 = 0. This explains that we find the same behaviors as for CG. A direct
consequence of Theorem 5.2.8 and Theorem 5.2.3 is the following result.

Corollary 5.2.9 Under the assumptions of Theorems 5.2.3 and 5.2.8, we have

‖f(A)b− fn‖ ≤ K exp

(
−N

∫ n/N

0

gS(τ)(x0,∞)dτ

)

where K = 2‖b‖maxz∈[λ1,λN ] |f̂(z)|eCBW .

5.2.3 Proof of Theorem 5.2.8

By definition, it is clear that En(Λ(A),Γ) ≤ En([λd+1, β],Γ). Using the same
notations as in Subsection 5.1.2 and similar arguments as in the proof of The-
orem 5.1.4, we prove Theorem 5.2.8. Indeed, let us apply Theorem 4.1.3 with
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Figure 5.4: Illustration of Theorem 5.2.8(a) and Corollary 5.2.9. We consider λj for

j = 1, ..., N = 1000 as in Example 5.1.6, where on the left s = 0.5 and on the right

s = 1 (s is based on the density). As lower bound we draw on both plots the actual error

‖f(A)b− fn‖, with A the diagonal matrix with eigenvalues the λj (black dotted line).

The polygons are obtained from Theorem 5.2.8(a) (red solid line), where we indicate

in the plot the correspondence between a segment and the choice of d. We also draw

the integral bound (blue dash-dotted line) with CBW = 0.

α = λd+1, the external field Q(x) = U ρ̃/k(x), and where the extremal measure
µ and the constant F are as in (4.1), (4.2), to get the chain of inequalities

En([λd+1, β],Γ) = min
p∈Πk

‖e−Uρp‖[λd+1,β]

minx∈Γ e−U
ρ(x)|p(x)|

≤ min
p∈Πk

‖e−U ρ̃p‖[λd+1,β]

minx∈Γ e−U
ρ̃(x)|p(x)|

(Lemma 5.1.7)

≤
‖e−U ρ̃Pk‖[λd+1,β]

minx∈Γ e−U
ρ̃(x)|Pk(x)|

≤ eCBW max
x∈Γ

exp
(
kUµ(x) + U ρ̃(x)− kF

)
,

where in the last inequality we used that

‖e−U
ρ̃

Pk‖[λd+1,β] ≤ eCBW min
x∈Γ

{
e−U

ρ̃(x)|Pk(x)|e−kΘ(x)
}

≤ eCBW min
x∈Γ

{
e−U

ρ̃(x)|Pk(x)|
}

max
x∈Γ

e−kΘ(x).

Now Lemma 5.1.8 implies

En([λd+1, β],Γ) ≤ eCBW max
x∈Γ

exp
(
n(Uνt,σ (x)− Ct,σ)

)
On the other hand, with t = n/N , we deduce as in (5.4) that

exp
(
−N

∫ n/N

0

gS(τ)(x,∞)dτ
)

= exp
(
n(Uνt,σ (x)− Ct,σ)

)
,
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with νt,σ the solution of the constrained equilibrium problem, and Ct,σ the
corresponding constant. The fact that the maximum is attained at x0 is a con-
sequence of the monotony of the Green functions. So Theorem 5.2.8 is proved.

5.3 Single repeated pole

In the particular case of one repeated pole ξ ∈ C \ Λ(A), Theorem 5.2.3 says
that for any s̃n ∈ Πn/qn−1, with qn−1(z) = (z − ξ)n−1, we have

‖f(A)b− fn‖ ≤ 2 max
z∈[λ1,λN ]

|f̂(z)| ‖s̃n(A)b‖
minx∈Γ |s̃n(x)|

.

In particular, if the numerator of s̃n has degree n−1, we have s̃n(z) = pn−1( 1
z−ξ )

for a certain pn−1 ∈ Πn−1. In the following we consider the pole ξ ∈ R\Λ(A) and
we introduce the transformation T (z) = (ξ− z)−1, which implies the inequality

‖f(A)b− fn‖ ≤ 2‖b‖ max
z∈[λ1,λN ]

|f̂(z)|En−1(Λ(T (A)), T (Γ)), (5.11)

where T (A) = (ξ −A)−1 is Hermitian.
The preceding equation and the sharpness of the Bernstein-Walsh inequality

(Theorem 4.1.3) give the following result.

Proposition 5.3.1 For any integer n > d+1 ≥ 1, let a = ad,n be equal to λd+1

if n ≥
∑d
j=1

√
(β−λj)(ξ−λd+1)
(λd+1−λj)(ξ−β) , and else let a be the unique solution > λd+1 of

the equation n =
∑d
j=1

√
(β−λj)(ξ−a)
(a−λj)(ξ−β) . Moreover, if Γ ⊂ [−∞, λ1), we obtain

En(Λ(T (A), T (Γ)) ≤ eCBW max
x∈Γ

exp
(
−ng[a,β](x, ξ) +

d∑
j=1

g[a,β](x, λj)
)
,

being sharp up to the factor eCBW . And thus

‖f(A)b− fn‖ ≤ K max
x∈Γ

exp
(
−(n− 1)g[a,β](x, ξ) +

d∑
j=1

g[a,β](x, λj)
)
, (5.12)

with K = eCBW 2‖b‖maxz∈[λ1,λN ] f̂(z).

Proof : We easily obtain η(T (z)) =
∑d
j=1

√
T (β)−T (λj)
T (z)−T (λj)

=
∑d
j=1

√
(β−λj)(ξ−z)
(z−λj)(ξ−β) .

Noting that T (ξ) =∞, Theorem 4.1.3 implies

En(Λ(T (A), T (Γ)) ≤ eCBW max
y∈T (Γ)

exp
(
−ngT ([a,β])(y,∞)

+

d∑
j=1

gT ([a,β])(y, T (λj))
)

≤ eCBW max
x∈Γ

exp
(
−ng[a,β](x, ξ) +

d∑
j=1

g[a,β](x, λj)
)
,
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Figure 5.5: Illustration of Proposition 5.3.1. We draw on both plots the error

‖f(A)b − fn‖, with A the diagonal matrix with eigenvalues λj = j
N

(
2 − j

N

)
given

by Example 5.1.5 for different values of ξ, and for f(z) = z−1/2. On the left we con-

sider ξ ≥ λN and on the right ξ ≤ λ1.

where the last inequality is a consequence of [103, Eqn. (II.4.4)]. Now Equa-
tion (5.12) is a consequence of (5.11). �

If ξ is on the right of the spectral interval, the function T is positive and
increasing on (−∞, ξ], thus the maximum is attained at the right extremity of Γ
by the same arguments as before. By derivating the Green function g[a,β](x, ξ)
with respect to ξ we can prove that the best choice is ξ = ∞, which means
that we do not improve the convergence compared to the polynomial case (see
Figure 5.5 on the left). On the other hand, if we choose ξ on the left of the
spectral interval, we see on Figure 5.5 on the right that we can obtain better
rates of convergence. It seems to be a difficult problem to find the best ξ as a,
β and d depend on ξ. On the example proposed the best ξ lies in Γ.

Let us make an heuristic remark. We have

d∑
j=1

√
(β − λj)(ξ − a)

(a− λj)(ξ − β)
=
ξ − a
ξ − β

d∑
j=1

√
(β − λj)
(a− λj)

,

so up to the factor ξ−a
ξ−β we find the same quantity as in Corollary 5.2.7. We

observe that if ξ is on the right of the spectral interval, the quotient ξ−a
ξ−β is

greater than one, and thus we consider less outliers. This explains why we should
take ξ = ∞ in this case. On the other hand, if ξ is on the left of the spectral
interval, the quotient ξ−a

ξ−β is less than one, and we can consider more outliers.
This explains why we should consider ξ ≤ λ1 to improve the bound given by
the polynomial case.

5.4 Extension to complex contour

For general functions f being analytic in some neighborhood of [λ1, λN ], by
choosing a suitable contour Γ encircling [λ1, λN ], we still obtain from the Cauchy
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Figure 5.6: Illustration of Lemma 5.4.1. We draw on both plots the value of k = n−d
for each n, with d = dn given in Theorem 5.1.4. On the left we consider Example 5.1.5

and on the right Example 5.1.6 with s = 1.

integral formula a representation as in (5.6), for z in the interior of Γ.
Recall that from Remark 4.2.5(c), in the case of an interval [a, β], we have

for x ∈ C \ R,

| log |Pk(x)|+ kUµ(x)| ≤ ((β − a)/2)2

dist(x, [a, β])2

(
12π

k

)1/3

.

Thus the inequality of Theorem 4.2.1(b) also holds for non-real x up to some
constant C which depends on the distance between x and [a, β]. This implies
that in Theorem 4.1.3, equation (4.7), for x ∈ C \ R and for a certain constant
C, we have

‖wkPk‖supp(µ)

|w(x)kPk(x)|
≤ eCBW+C e−kΘ(x). (5.13)

Hence, up to eC , inequalities in Corollary 5.2.7 hold. If Γ encircles [λ1, λN ]
Lemma 5.1.7 is false and our proof of Theorem 5.2.8 does not hold.

Note that for sufficiently large k the quantity ((β−a)/2)2

dist(Γ,[a,β])2

(
12π
k

)1/3
becomes

small. Sufficiently large k makes sense. Indeed, in all our examples k = n − dn
is increasing with n for a ratio n/N not too large, say n ≤ N/2, and we have
the following result.

Lemma 5.4.1 If we suppose λdn+1 ≤ (λ1 + β)/2, then the number k = n− dn
associated to our choice of near optimal dn in Theorem 5.2.8 becomes large with
n.

Proof : We have by Lemma 5.1.3

n =

∫ a(n/N)

a(0)

√
β − y

a(n/N)− y
Ndσ(y),
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which implies

n ≥
∫ λd

a(0)

√
β − y

a(n/N)− y
dρ(y).

And thus using the decay of the function η (defined in Equation 4.5), we obtain

n ≥
d∑
j=1

√
β − λj

λd+1 − λj
≥ d

√
β − λ1

λd+1 − λ1
.

So λd+1 ≤ (λ1 + β)/2 implies

n ≥ d
√

2,

and thus k ≥ (
√

2− 1)dn becomes large with n as dn is increasing with n.
�

For general analytic functions f such as the exponential function, the equal-
ity |f(z)| = |f̂(z)| for z ∈ Λ(A) is no longer true (compare to Remark 5.2.4).

Although the integral does not depend on the choice of Γ, the functions f̂ of
(5.7) might be of much larger modulus than f , depending on the choice of Γ.
For example, for large spectral intervals, the function f may highly vary and
our overestimation becomes crude. It can be useful to choose the integration
contour dependent on n.
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Conclusion

In this dissertation, we have presented new formulas to explain the superlinear
convergence of Krylov methods.

In Chapters 1 and 2 we have introduced the basic tools used in this thesis,
we have given a state of the art of linear bounds for MR and OR methods, and
we have introduced the notions of outliers and of superlinear convergence.

In Chapter 3 we have improved and generalized a paper of Ipsen et al.
concerning the convergence of MR methods. In particular, when the inclusion
set is a disk, we have given a more general upper bound such that the ratio
with the lower bound tends to one. We also gave an upper bound in the case of
convex sets. We believe that the factor 3d obtained in the convex case can be
reduced to apply our analysis to several outliers with a more modest constant
still depending on d. Another perspective of research could be to generalize our
work to more general sets, like non-convex sets, or sets having several connected
components by using Faber-Walsh polynomials.

In Chapter 4 we have shown that the weighted Bernstein-Walsh inequal-
ity is sharp up to some new universal constant CBW , in the particular case
of an external field being given by the logarithmic potential of some positive
measure supported on the left of Σ. We believe that, with an optimal choice
of CBW , the quantity eCBW is of modest size. This is clearly not true for our
present explicit upper bound of CBW , and remains a direction of future research,
maybe asymptotic analysis could be helpful. Our main tool is a variation of the
technique of Totik of discretizing a logarithmic potential, provided that the un-
derlying measure has a weight satisfying some monotonicity and/or convexity
assumptions. We also believe that our result on the discretization of a potential
can be generalized to more general measures, for example without the assump-

tion that t 7→ g(t)
t−a is convex on (a, b), which is used only once in the proof of

Lemma 4.4.2. This possibly would allow us to consider both small and large
eigenvalues as outliers.

Finally, in chapter 5, we have seen that our new sharpness result for the
weighted Bernstein-Walsh inequality leads to a variety of new explicit bounds for
the convergence of Krylov methods. By approximately optimizing the number of
outliers, we are able to partly show Conjecture 2.3.1 formulated by Beckermann
and Kuijlaars in terms of means of Green functions. We establish a new upper
bound for CG and for the approximation of matrix functions in form of an
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inequality for every iteration index n. In addition, our bounds are valid for
a single matrix and do no longer require to consider sequences of systems of
equations with a joint eigenvalue distribution. Note that the above-mentioned
conjecture on the CG convergence remains open for general sets S(t).
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Appendix A

Potential theory in the
complex plane

In this appendix, we recall definitions and basic facts about logarithmic potential
theory. Our review on potential theory is based on the three references [81], [95],
and [103]. In [95] you can find a very good introduction to classical potential
theory, [81] is a course given during a summer school which summarize the
most relevant properties of potentials, and the book [103] is a full account of
the potential theory with an external field.

A.1 Logarithmic potentials

Let D be a domain of C and E a compact of C.

Definition A.1.1 A function u : D → R ∪ {+∞} is lower semi continuous
(l.s.c.) at z ∈ C if

lim inf
t→z,t∈D

u(t) ≥ u(z).

u is l.s.c. in D if it is l.s.c. at every z ∈ D.

Equivalently, u is l.s.c. on D if {z ∈ D/u(z) > α} is open for every α ∈ R.

Definition A.1.2 A function u : D → R ∪ {+∞} is superharmonic on D if

1. u 6≡ +∞,

2. u is l.s.c. on D,

3. for every open disk D(a, r) contained in D,

u(a) ≥ 1

2π

∫ 2π

0

u(a+ reiθ)dθ.
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It is important to note that if f is holomorphic in a domain D, then log( 1
|f | )

is superharmonic on D and harmonic where f 6= 0. We can also remark that if
u ∈ C2(D), then u is superharmonic if and only if ∆u(z) ≤ 0 for z ∈ D.

Let M(E) denote the collection of all positive measures supported on E,
and M1(E) the collection of all positive unit measures supported on E.

Definition A.1.3 The logarithmic potential associated with a positive measure
µ ∈M(E) is defined by

Uµ(z) =

∫
log

1

|z − t|
dµ(t),

and its energy is defined by

I(µ) =

∫
Uµdµ.

The logarithmic potential is harmonic outside the support supp(µ) of µ and su-
perharmonic in C [81, Theorem 2.2]. The minimization energy problem consists
in the determination of

VE = inf{I(µ), µ ∈M1(E)}.

The constant VE ∈ (−∞,+∞] is called the Robin constant of E, and the loga-
rithmic capacity of E is defined by

cap(E) = e−VE .

If cap(E) > 0 (E is non-polar), then there exists a unique measure ωE ∈M1(E)
such that I(ωE) = VE , which is called the equilibrium measure [103, Theo-
rem I.1.3(b)]. The potential UωE associated with ωE is called the equilibrium
potential for E. A fundamental theorem of Frostman [81, Eqn. (3.11)-(3.13)]
asserts that if cap(E) > 0 (E is non-polar), then

1. UωE (z) ≤ VE everywhere in C,

2. UωE (z) = VE quasi-everywhere in E,

where quasi-everywhere means everywhere except on a subset of capacity zero.
Those properties characterized the equilibrium measure UωE [81, Proposition 3.7].
We define the outer domain Ω∞ of E as the unbounded component of C \ E.
It is known that supp(ωE) ⊆ ∂Ω∞ and if we have a strict inequality, the set
∂Ω∞ \ supp(ωE) has capacity zero, and thus cap(E) = cap(∂Ω∞) [103, Corol-
lary I.4.5].

We have an important link between the equilibrium potential and the Green
function with pole at infinity gE(z,∞) [81, Section 3.3].

Definition A.1.4 The Green function with pole at infinity gE(z,∞) is defined
in the outer domain Ω∞ of E with the following properties
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1. gE(.,∞) is nonnegative and harmonic in Ω∞,

2. gE(z,∞)− log |z| is harmonic in a neighborhood of ∞,

3. limz→z0,z∈Ω∞ gE(z,∞) = 0 for quasi-every z0 ∈ ∂Ω∞.

One can extend gE to the whole C by

gE(z,∞) =

{
lim supz→z0,z∈Ω∞ gE(z,∞), if z0 ∈ ∂Ω∞

0, if z ∈ interior of Pc(E)
,

where Pc(E) = C \ Ω∞ is called the polynomial convex hull of E. We can also
define the Green function with pole at a 6= ∞. If cap(∂E) > 0 and a ∈ Ω∞,
then we have [103, Eqn. (4.4)].

gE(z, a) = gE′(
1

z − a
,∞), (A.1)

where E′ is the domain obtained from E under the mapping 1
z−a . So questions

concerning gE(z, a) can be transformed into related ones concerning gE′(z,∞).
We have the following important relation [81, Eqn. (3.15)]

UωE (z) + gE(z,∞) = log
1

cap(E)
= VE .

If we suppose that the outer domain is simply connected in C̄, then we have the
existence and unicity of a conformal map φ : Ω∞ → C \D such that φ(∞) =∞
and φ′(∞) > 0 (by the Riemann mapping theorem). In the neighborhood of
infinity we have

φ(z) =
1

cap(E)
z + d0 +

d−1

z
+ . . . (A.2)

and we have an important relation between conformal mappings and Green
functions given by [103, Section II.4]

gE(z, a) = log

∣∣∣∣∣1− φ(a)φ(z)

φ(a)− φ(z)

∣∣∣∣∣ , (A.3)

if a 6=∞, and
gE(z,∞) = log |φ(z)|, (A.4)

if a =∞. In the particular case of an interval [a, b], we have [103, Example I.3.5]

g[a,b](z,∞) = log

∣∣∣∣∣∣2z − a− bb− a
+

√(
2z − a− b
b− a

)2

− 1

∣∣∣∣∣∣ ,
and

supp(ω[a,b]) = [a,b],
dω[a,b]

dt
(t) =

1

π
√

(t− a)(b− t)
. (A.5)
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A.2 Logarithmic potentials with external field

We will briefly describe the mathematical model corresponding to the existence
of an external field for a closed set Σ.

Definition A.2.1 A weight function w : Σ→ [0,+∞) is admissible if

1. w is upper semi-continuous on Σ,

2. E0 = {z ∈ Σ/w(z) > 0} has positive capacity,

3. if Σ is unbounded, then |z|w(z)→ 0 as |z| → ∞, z ∈ Σ .

The weights considered in this dissertation are continuous, and the two first
conditions are given.

Definition A.2.2 We define the external field by

Q(z) = log
1

w(z)
.

For admissible weights we have the following definition.

Definition A.2.3 For a Borel measure µ ∈ M(Σ) we define the weighted en-
ergy by

Iw(µ) =

∫ ∫
log

1

|z − t|w(z)w(t)
dµ(t)dµ(z)

=

∫
Uµ(z)dµ(z) + 2

∫
Qdµ.

Note that the last inequality holds when both integrals are finite. The classical
case corresponds to choose Σ = E compact and w = 1 on E. The minimization
weighted energy problem is the determination of

Vw = inf{Iw(µ), µ ∈M1(Σ)}.

The constant Vw ∈ (−∞,+∞) is called the weighted Robin constant of Σ.
There exists a unique measure µw ∈ M1(Σ) such that I(µw) = Vw [103,

Theorem I.1.3(b)], which is called the weighted equilibrium measure (associated
with w). The support Sw = supp(µw) is compact, contained in Σ0 and has
positive capacity [103, Theorem I.1.3(c)]. The potential Uµw associated with µw
is called the weighted equilibrium potential for Σ. Setting Fw = Vw −

∫
Qdµw,

we have the following most important properties [103, Theorem I.1.3(d)-(f)],

1. Uµw(z) +Q(z) ≥ Fw quasi-everywhere in Σ.

2. Uµw(z) +Q(z) ≤ Fw on Sw.

Hence we have equality quasi-everywhere on Sw. We remark that for a contin-
uous weight w, the first inequality holds in Σ, and thus we have equality on
Sw.
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A.3 Logarithmic potentials with constraint

Let Q be a continuous external field on a compact set E and σ a finite measure
such that supp(σ) = E, σ(E0) > 1 and Uσ is continuous. We define

Mσ
1 (E) = {µ ∈M1(E) | 0 ≤ µ ≤ σ}.

We have the constraint Robin’s constant

V σw = inf
µ∈Mσ

1 (E)
Iw(µ).

As before, it can be proved [32, Theorem 2.1] that there exists a unique measure
µσw such that V σw = I(µσw).

Let us look at a constrained energy problem without external field, which
is the case in paragraph 2.3.3. We consider σ a positive Borel measure with
compact support E on R which has total mass at most one. We will introduce
a parameter t ∈ (0, ||σ||) and define the class

Mσ
1,t(E) = {µ ∈M1(E)/0 ≤ tµ ≤ σ}.

We have a unique measure νt,σ [32, 94] minimizing the logarithmic energy in
Mσ

1,t(E)
I(νt,σ) = inf{I(µ), µ ∈Mσ

1,t(E)}.

It is characterized by the fact that there exists a constant Ct,σ such that

Uνt,σ (z) = Ct,σ for z ∈ supp(σ/t− νt,σ) = S(t)

Uνt,σ (z) ≤ Ct,σ for z ∈ supp(σ).

It was observed and proved in [12, Proof of Theorem 2.1]. that if 0 < t1 < t2 <
‖σ‖, then S(t2) ⊂ S(t1).

There is a connection between the constrained minimization problem and the
energy problem in the presence of an external field [12, Proof of Theorem 2.1]

−1

t

∫ t

0

gS(τ)(0,∞)dτ = −Ct,σ + Uνt,σ (0). (A.6)

This link is essential in our proof of Theorem 5.1.4.

A.4 Notion of balayage

Given a domain G ⊂ C̄ such that its boundary is a compact of C of positive
capacity, and given µ a Borel measure on G, the balayage problem consists of
finding another measure, denoted by Bal(µ, ∂G), supported on ∂G which has the
same mass and such that the potentials conincide on ∂G quasi everywhere (up
to some constant). Bal(µ, ∂G) is called the balayage measure. Such a measure
always exists [103, Theorem 4.1 an 4.4].
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The notion of balayage can be usefull in the important case of an external
field given by a potential of some measure ν with compact support outside of
Σ [103, Example II.4.8]. Consider an external field of the form Q = −cUν , with
ν a probability measure with compact support disjoint form Σ and c ∈ [0, 1].
Then we have

µw = cBal(ν,E) + (1− c)ωE .

This relation is used in Example 4.1.2 for E = [a, b], c = l/2k, and cν = ρ,

where ρ = (1/2k)
∑l
j=1 δqj with the qj designating the zeros of the polynomial

q.
We have a strong link between the balayage of a Dirac measure δa with

a ∈ Ω∞ and Green functions via the formula [103, Eqn. (II.4.32)]

gE(z, a) = log
1

|z − a|
−
∫
∂Ω∞

log
1

|z − t|
dBal(δa, ∂Ω∞)(t) + gE(a,∞).

We also use this equality in Example 4.1.2.
For a measure ρ supported in R and having no mass on the interval [a, b],

we know that the balayage of ρ on [a, b] is given for t ∈ [a, b] by [103, Eqn.
(IV.4.47)]

dBal(ρ, [a, b])

dt
(t) =

1

π

∫ |
√

(y − a)(y − b)|
|t− y|

√
(t− a)(b− t)

dρ(y). (A.7)

This equality is used in the proof of Theorem 4.2.1 to explicitely compute the
solution of an extremal problem with a continuous external field.

136


	Title
	Résumé
	Abstract
	Contents
	Introduction
	Chapter 1 : Functions of matrices and Krylov spaces
	Functions of matrices
	Definitions
	Motivation and examples
	Computational aspects
	Functions of matrices times a vector

	Krylov spaces
	Definitions
	Rayleigh-Ritz quotient
	Rational Krylov decomposition
	Complements on Ritz values

	Rayleigh-Ritz methods

	Chapter 2 : Krylov methods for linear systems
	Krylov methods
	General projection methods
	Krylov methods
	OR and MR methods

	Linear convergence bounds
	OR methods
	MR methods

	Superlinear convergence
	Notion of superlinear convergence
	Notion of outliers
	Superlinear convergence for CG (conjugate gradients)


	Chapter 3 : Convergence of Minimal Residual methods in the presence of few outliers
	Introduction
	Results in the paper of Ipsen et al.
	Improvements

	Lower bound
	Upper bound for a disk
	AAK theory
	Upper bound for one outlier
	Upper bound for a disk and several outliers

	Convex inclusion set and one outlier
	Faber polynomials
	Upper bound for a convex inclusion set and one outlier

	Open problems
	Convex inclusion set and several outliers
	More general inclusion sets
	Inclusion set with several connected components
	Infinite dimensional analysis


	Chapter 4 : On the sharpness of the weighted Bernstein-Walsh inequality
	Introduction
	The weighted Bernstein-Walsh inequality
	Structure of this chapter

	Discretization of a potential
	How to discretize a potential?
	Structure of the proof of Theorem 4.2.1
	Bounding three sums

	Proof of the main theorem
	Proof of the mean value property of Theorem 4.2.6
	Some further technical lemmata
	Open problems

	Chapter 5 : Applications of the sharpness of the Bernstein-Walsh inequality
	Superlinear convergence for conjugate gradients
	Superlinear convergence for conjugate gradients
	Proof of Theorem 5.1.4

	Superlinear convergence for the approximation of matrix functions
	Approximation of matrix functions
	Superlinear convergence for the approximation of matrix functions
	Proof of Theorem 5.2.8

	Single repeated pole
	Extension to complex contour

	Conclusion
	Bibliography
	Appendix A : Potential theory in the complex plane
	Logarithmic potentials
	Logarithmic potentials with external field
	Logarithmic potentials with constraint
	Notion of balayage


	source: Thèse de Thomas Hélart, Université de Lille, 2018
	d: © 2018 Tous droits réservés.
	lien: lilliad.univ-lille.fr


