
Année 2018

Université Lille

THÈSE
pour obtenir le grade de

Docteur,
spécialité Informatique et Applications

présentée et soutenue publiquement par

Anis Kacem
le 12 Décembre 2018

Novel Geometric Tools for Human Behavior Understanding

préparée au sein du laboratoire CRIStAL UMR CNRS 9189 et l’IMT Lille-Douai
sous la direction de

Mr. Mohamed Daoudi

COMPOSITION DU JURY

Mr. Nicu Sebe Rapporteur Professor, University of Trento, Italy

Mr. Frederic Jurie Rapporteur Professor, Université de Caen, France

Mr. Mohamed Daoudi Directeur de la thèse Professor, IMT Lille Douai, France

Mr. Boulbaba Ben Amor Encadrant de la thèse Professor, IMT Lille Douai, France

Mr. Juan Carlos Alvarez-Paiva Président Professor, Université de Lille, France

Mme. Tinne Tuytelaars Examinatrice Professor, KU Leuven, Belgium

Mme. Catherine Achard Examinatrice Professor, Sorbonne Université, France





Abstract

Developing intelligent systems dedicated to human behavior understanding has been

a very hot research topic in the few recent decades. Indeed, it is crucial to understand

the human behavior in order to make machines able to interact with, assist, and help

humans in their daily life.. Recent breakthroughs in computer vision and machine learning

have made this possible. For instance, human-related computer vision problems can be

approached by first detecting and tracking 2D or 3D landmark points from visual data. Two

relevant examples of this are given by the facial landmarks detected on the human face and

the skeletons tracked along videos of human bodies. These techniques generate temporal

sequences of landmark configurations, which exhibit several distortions in their analysis,

especially in uncontrolled environments, due to view variations, inaccurate detection and

tracking, missing data, etc. In this thesis, we propose two novel space-time representations

of human landmark sequences along with suitable computational tools for human behavior

understanding. Firstly, we propose a representation based on trajectories of Gram matrices

of human landmarks. Gram matrices are positive semi-definite matrices of fixed rank and

lie on a nonlinear manifold where standard computational and machine learning techniques

could not be applied in a straightforward way. To overcome this issue, we make use of some

notions of the Riemannian geometry and derive suitable computational tools for analyzing

Gram trajectories. We evaluate the proposed approach in several human related applications

involving 2D and 3D landmarks of human faces and bodies such us emotion recognition

from facial expression and body movements and also action recognition from skeletons.

Secondly, we propose another representation based on the barycentric coordinates of 2D

facial landmarks. While being related to the Gram trajectory representation and robust

to view variations, the barycentric representation allows to directly work with standard

computational tools. The evaluation of this second approach is conducted on two face

analysis tasks namely, facial expression recognition and depression severity level assessment.
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The obtained results with the two proposed approaches on real benchmarks are competitive

with respect to recent state-of-the-art methods.
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Résumé : Nouvelles approches géomètriques pour

l’analyse du comportement humain

Récemment, le développement de systèmes intelligents dédiés pour la compréhension du

comportement humain est devenu un axe de recherche très important. En effet, il est très

important de comprendre le comportement humain pour rendre les machines capables d’aider

et interagir avec les humains. Pour cela, plusieurs approches de l’état de l’art commencent par

détecter automatiquement un ensemble de points 2D ou 3D, appelés marqueurs, sur le corps

et/ou le visage humain à partir de données visuelles. L’analyse des séquences temporelles de

ces marqueurs pose plusieurs défis dus aux erreurs de suivi et aux variabilités temporelles et

de pose. Dans cette thèse, nous proposons deux nouvelles représentations spatio-temporelles

avec des outils de calcul appropriés pour la compréhension du comportement humain. La

première consiste à représenter une séquence temporelle de marqueurs par une trajectoire de

matrices de Gram. Les matrices de Gram sont des matrices semi-définies positives de rang

fixe et vivent dans un espace non-linéaire dans lequel les outils d’apprentissage automatique

conventionnels ne peuvent pas être appliqués directement. Nous évaluons l’efficacité de notre

approche dans plusieurs applications, impliquant des marqueurs 2D et 3D de visages et de

corps humain, tels que la reconnaissance des émotions à partir des expressions faciales la

reconnaissance d’actions et des émotions à partir des données de profondeur 3D. La deuxième

représentation proposée dans cette thèse est basée sur les coordonnées barycentriques

des marqueurs de visages 2D. Cette représentation permet d’utiliser les outils de calcul

et d’apprentissage automatique tels que les techniques d’apprentissage de métrique. Les

résultats obtenus en reconnaissance des expressions faciales et en mesure automatique de

la sévérité de la dépression à partir du visage montrent tout l’intérêt de la représentation

barycentrique combinée à des techniques d’apprentissage automatique. Les résultats obtenus

avec les deux méthodes proposées sur des bases de données réelles montrent la compétitivité
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de nos approches avec les méthodes récentes de l’état de l’art.
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Chapitre 1

Introduction

1.1 Motivation and challenges

Developing intelligent systems dedicated to human behavior understanding has been a

very hot research topic in the few recent decades. Indeed, it is crucial to understand the

human behavior in order to make machines able to interact with, assist, and help humans

in their daily life. The need for such tools is more acute for health care applications. Recent

breakthroughs in Computer Vision and Machine Learning have made this possible. For

instance, human-related Computer Vision problems can be approached by first detecting

and tracking landmark points from visual data. One relevant illustration is given by the

3D locations of the body joints, termed 3D skeletons, automatically detected in depth

streams of human bodies, and their use in action and daily activity recognition. As far

as the human face communicates important behavioral and feeling cues, several approaches

have addressed the problem of 2D/3D facial landmark points detection and tracking in

video flows of human faces. These techniques generate temporal sequences of landmark

configurations, which exhibit several distortions in their analysis, especially in uncontrolled

environments, due to view variations (e.g., affine or projective transformations), inaccurate

- 21 -



Chapitre 1. Introduction

detection and tracking, missing data, etc. This thesis is mainly focused on analyzing these

temporal sequences with the aim of proposing novel effective space-time representations

along with suitable computational tools for human behavior understanding.

1.2 Thesis contributions

In this thesis, we propose novel geometric tools for human behavior understanding.

Specifically, we consider the moving 2D/3D tracked landmark points on the human face

or body and propose effective representations along with suitable analyzing tools for human

behavior understanding. The main contributions of this thesis can be summarized to:

— A novel space-time representation of human landmark sequences (tracked from faces

and bodies) based on Gram matrix trajectories of landmark configurations [P1, P5,

P6]. Despite the large use of these matrices in several research fields, to our knowledge,

this is the first application in shape analysis. The space of Gram matrices of n landmark

points, termed the cone of Positive Semi-Definite n×n matrices of fixed-rank d (d = 2

or d = 3 for 2D or 3D landmark configurations, respectively) is a non-linear manifold

where standard computational and machine learning tools are not applicable. To

overcome this problem, a comprehensive study of the Riemannian geometry of the

Positive Semi-Definite cone is conducted to derive suitable analyzing and classification

tools for Gram matrix trajectories.

— Evaluation of the proposed framework on Gram matrix trajectories in different human

behavior understanding tasks involving 2D facial landmarks and 3D skeletons tracked

on the human body. Specifically, we evaluate the effectiveness of the proposed approach

in 2D facial expression recognition [P5, P6] and action and emotion recognition from

3D skeletons [P1] on several benchmarks and demonstrate its competitiveness with

respect to the state-of-the-art.

— Another affine-invariant representation for the specific case of 2D facial landmarks
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1.3. Organization of the manuscript

based on their barycentric coordinates [P4]. We show that such representation is closely

related to the conventional Grassmannian representation which is a part of the Gram

matrix representation. In contrast to the non-linear Grassmannian representation,

the barycentric representation lie in Euclidean space allowing the use of standard

computational and machine learning tools.

— Evaluation of the effectiveness of the barycentric representation in two different facial

analysis tasks, namely facial expression recognition [P4] and depression severity level

assessment [P3].

1.3 Organization of the manuscript

The manuscript is organized as follows: In chapter 2, we will introduce the task of

human behavior understanding and the use of tracked human landmark sequences to tackle

this problem, then review the related recent state-of-the-art approaches. In chapter 3, we

will present a novel geometric framework on Gram matrix trajectories and its evaluation in

facial expression recognition from 2D facial landmarks and action and emotion recognition

from 3D skeletons. Chapter 4 introduces another representation for the specific case of 2D

facial landmark sequences based on their barycentric coordinates with applications to facial

expression recognition and depression severity level assessment. Finally, in chapter 5 we will

conclude this thesis, expose its limitations, and present some ongoing and future work.
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Chapitre 2

State-of-the-art on Analyzing

Landmark Sequences for Human

Behavior Understanding

2.1 Introduction

Several human behavior understanding methods firstly detect and track a set of landmark

points and use them for the analysis of the video. Two relevant examples of these landmark

points are given by the tracked skeletons of the human body and the tracked fiducial points

on the human face. With this assumption, the problem of analyzing videos is turned to

analyzing the motion of the landmark points. In this chapter, we will introduce the task of

human behavior understanding and its applications in real world. Then, we will expose the

motivations and challenges of using only human landmark sequences for this task and focus

on the state-of-the-art on analyzing them.
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2.2 Human behavior understanding

2.2.1 Terminology

Human behavior is the responses of individuals or groups of humans to internal and

external stimuli. It refers to the array of every physical action and observable emotion

associated with individuals [134]. These responses, usually termed behavioral signals, consist

of a set of temporal changes in neuromuscular and physiological activity that can last from

a few milliseconds (a blink) to minutes (talking) or hours (sitting) [87]. As explained in [41],

other types of messages conveyed by behavioral signals include affective states (e.g., fear, joy,

stress), manipulators (actions used to act on objects in the environment or self-manipulative

actions like lip biting), emblems (culture-specific interactive signals like wink or thumbs up),

and so on.

In this thesis, we are interested in endowing machines with intelligent systems that are

able to understand some of these human behavioral signals from visual data. That is to say,

given a video of a person conveying a behavioral signal (e.g., joy, drinking water, fear, etc.)

we would like to make machines able to automatically recognize the nature of this signal.

2.2.2 Applications

Understating the human behavior has a broad range of applications in different fields.

— Human computer interaction: Human computer interaction designs were first domina-

ted by direct manipulation and then delegation. They involved conventional interface

devices such as keyboard, mouse and visual displays, and assumed that the human will

be explicit and fully attentive while controlling information and command flow [87].

Accurate human behavior understanding tools can highly improve the interfaces

between humans (users) and computers (cars, robots, etc.) by providing a more natural,

less-restrictive, and effective human-computer interfaces.
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— Health care: The need for developing intelligent systems dedicated to human behavior

understanding is more acute in health care. Indeed, these intelligent systems can

assist clinicians in their diagnosis and help them in effectively applying treatments.

Taking this direction, several works tried to automatically measure the intensity of

pain level [146] from human faces, other works tried to measure the level of depression

severity [35].

— Social psychology: In social psychology, researchers study the psychological processes

involved in persuasion, conformity, and other forms of social influence. Human behavior

understanding solutions are crucial in order to better understand these processes since

they are usually observable. For instance, based on the assumption of the universality

of basic facial expressions [40], several works tried to automatically recognize these

facial expressions.

— Surveillance and security: Violent extremism and evolving terrorist threat raise a

persistent risk of attacks which reinforce the critical requirement for anticipating and

responding to evolving threats. Understanding human behaviors can help with this

issue by anticipating dangerous human interactions (e.g., punching, kicking, etc.) [138]

or analyzing the affective state of suspected persons.

In literature, two basic human behavior understanding tasks were extensively studied.

The first task is facial expression recognition which consists of automatically recognizing

one of the basic facial expressions conveyed by a person during a time slot (e.g., anger,

disgust, fear, joy, neutral, sadness, surprise). The second task consists of recognizing actions

performed by humans based on their bodies. In this thesis, we will focus on these two

basic tasks and tackle two other emerging tasks, namely emotion recognition from body

movements and depression severity level assessment from human faces.
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2.3 Human landmarks

Several human-related Computer Vision problems can be approached by first detecting

and tracking landmarks from visual data.

Figure 2.1 – Examples of human skeletons detected from different modalities [55, 89, 18]

A relevant example of this is given by the estimated 3D location of the joints of the

skeleton in depth streams [106], and their use in action and daily activity recognition [123,

131, 59]. In this case, for each frame of the depth video a set of 3D joints are detected on some

articulations of the human body forming a 3D skeleton. In Fig. 2.1, we show an example

of a tracked skeleton in a depth video provided by a Kinect V2 sensor. Hence, the problem

of analyzing human body motion in a depth video could be efficiently turned to studying

the motion of the 3D skeleton along the video. More sophisticated solutions for automatic

tracking of the 3D skeleton do exist, as the IR body markers used in MoCap systems, but

they are expensive in cost and time. These systems provide a large number of joints with high

temporal resolution and accurate estimations (see Fig. 2.1). Recently, advances in human

pose estimation methods from RGB videos have also made the tracking of 2D/3D skeletons
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Figure 2.2 – Examples of 2D/3D facial landmark detection from RGB videos [21].

in RGB videos possible and have shown an impressive performance [113, 5, 18].

Another relevant example of human landmark tracking is represented by the face, for

which several approaches have been proposed for fiducial points detection and tracking in

video [8, 137, 23, 21]. These methods detect a set of 2D key points localized at relevant

positions of the human face. For instance, several methods opted for detecting landmark

points around the eyes, eyebrows, nose, and mouth. Other systems, considered additional

landmarks around the chin. In the left panel of Fig. 2.2, we show some examples of 2D facial

landmark estimations. One can note that such estimations could lead to distortions in the

analysis due to large pose variations. To overcome this problem, some works tried to estimate

the 3D locations of these landmark points from only RGB videos [21, 114]. Examples of these

3D estimations are illustrated in the right panel of Fig. 2.2.

It is important to note that, in addition to their impressive performance, most of these

methods are real-time solutions for tracking human landmarks.
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2.3.1 Why landmark sequences for human behavior understanding?

In this thesis, we will focus on designing effective landmark based solutions for some

human behavior understanding tasks. One of our motivations for this choice is driven by

the recent impressive advances in human landmark tracking. As mentioned above, recently

landmark detection and tracking methods from human faces and bodies became reliable and

accurate. They are robust to illumination changes that occur in RGB images, and in some

cases robust to occlusions (see the woman wearing sunglasses in the left panel of Fig. 2.2).

By considering the tracked landmarks instead of the original images, we take advantage

of the robustness of tracking methods to these classical problems in Computer Vision and

expect the same robustness for our landmark based solutions.

Furthermore, considering only tracked landmarks reduces the complexity of the visual

data. Instead of using a large number of pixels in each frame of the original video, which could

make the analysis computationally intense, landmark trackers bring a brief summary of the

frame by providing only a set of relevant 2D/3D points (the number of points typically varies

from 15 to 90 points). Hence, landmark based solutions are expected to be more efficient

and less computational expensive than other solutions, which makes them more suitable for

real-time applications.

2.3.2 Challenges

While powerful and robust to many Computer Vision problems, human landmark

tracking techniques generate temporal sequences of landmark configurations which exhibit

several challenges:

— View variations: The 2D or 3D locations provided by the coordinates of the tracked

landmarks are relative to the position of the camera. However, human behavioral

signals belonging to the same category (e.g., drinking water), can occur in different

positions w.r.t the camera. In Fig. 2.3 we show some examples of static landmark
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configurations (skeletal and facial landmarks) conveying similar behavioral signals but

in different positions w.r.t the camera. These variations prevent us from directly using

the original 2D or 3D locations of the landmark points. Accordingly, one should filter

out these view variations from the estimated landmarks in order to effectively analyze

the human behavioral signals. From the viewpoint of static landmark configurations,

these view variations can be seen as undesirable rigid transformations affecting the

landmarks which can be summarized to rotations, translations, and scaling in the 3D

case, and to more complex projective transformations in the 2D case of landmarks.

Figure 2.3 – Impact of the view variations on the human landmarks. Left: 2D facial
landmarks with different views. Right: 3D skeletons with different views.

— Rate variations: The human behavioral signals that we would like to analyze are

subject to high temporal variations. For instance, two persons do not perform the

same action (e.g., drinking water) at the same time and for the same duration.

Consequently, we cannot simply compare the static landmark configurations of the

two corresponding landmark sequences in order to know whether they are similar or

not. Effective landmark based solutions should take into account these temporal (rate)

variations in the analysis of human landmark sequences.

— Intra-class variations: Another challenge of human behavior understanding from

landmark sequences consists of the large variations that can be present within the

same category of human behavioral signals. Indeed, behavioral signals of the same

category could be different from one person to another or even for the same person.
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A relevant example of this is given by the facial expressions (e.g., sadness) which can

be expressed differently by different persons (see Fig. 2.4).

Figure 2.4 – Examples of intra-class variations. Left: facial expression (sadness) [93]. Right:
human action (punch) 2.

— Inaccurate tracking and missing data: Despite the advances in tracking human

landmarks as mentioned in the previous section, inaccurate tracking can occur

especially in unconstrained environments and challenging conditions. Fig. 2.5 shows

some failure cases of landmark detection from human faces (left) and bodies (right).

While there have been many efforts in the analysis of temporal sequences of landmarks,

the problem is far from being solved and the current solutions are facing many technical and

practical problems.

2.4 Temporal modeling and classification of landmark se-

quences

In this section, we review some recent state-of-the-art methods on analyzing human

landmark sequences for some human behavior understanding tasks. In particular, we present

2. Example taken from www.slideshare.net/NaverEngineering/human-action-recognition
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Figure 2.5 – Examples of inaccurate tracking of human landmarks. Left: Failure cases of
2D facial landmarks. Right: Failure cases of 3D skeletons.

some recent works that use 2D or 3D landmarks of human faces or bodies (i.e., skeletons)

with applications to human behavior understanding. These state-of-the-art approaches are

organized into four categories: Riemannian methods, deep learning methods, kernel methods,

and probabilistic methods with a focus on Riemannian approaches. An overview of the

considered works and their categorizations is sketched in Fig. 2.6.

2.4.1 Probabilistic methods

Several approaches included the use of probabilistic models for different applications of

human behavior understanding.

The authors in [83] explored the use of Hidden Markov Models (HMMs) in 3D action

recognition. They decomposed the human skeleton into different body parts (i.e., legs+torso,

arms, and head) and learned the dynamics of each body part with a single HMM forming

a weak classifier. A boosting algorithm is finally used on these weak classifiers to provide a

final prediction. HMMs were also adopted by several works after a feature extraction step.

For instance, in [136] histograms of 3D joints were computed and encoded into a sequence

of visual words which were modeled and classified using HMMs.

- 33 -



Chapitre 2. State-of-the-art on Analyzing Landmark Sequences for Human Behavior
Understanding

Figure 2.6 – Overview of state-of-the-art methods on analyzing landmark sequences for
human behavior understanding.

Other probabilistic models such us Conditional Random Fields (CRFs) were also

adopted. In the context of 2D facial expression recognition, the authors in [61] proposed

a method to capture the subtle motions within expressions using a variant of CRFs called

Latent-Dynamic Conditional Random Fields (LDCRFs) on both geometric and appearance

features. They illustrate experimentally that variations in shape are much more important

than appearance for facial expression recognition.

Time-slice based methods such us HMMs [83] or LDCRFs [61] represent an activity as a

sequence of instantaneously occurring events, and as a result they can only capture a small

portion of the temporal relations. Starting from this observation, Wang et al. [133] introduced

a unified probabilistic framework based on an Interval Temporal Bayesian Network (ITBN)

built from the movements of 2D facial landmarks. ITBN models a complex activity as

sequential or overlapping primitive events (i.e., temporal entity), and each event spans over

a time interval. The authors show that the proposed ITBN outperforms other time-slice
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based methods such us HMMs in recognizing facial expressions.

Most of the methods listed above focus on modeling the transitions between the frames

in order to capture the changes in human landmarks. However, important patterns could be

provided by discriminative static observations as well [127]. Aware of this issue, G. Hernando

et al. [48] proposed a forest-based classifier called transition forests to discriminate both

static pose information and temporal transitions between pairs of two independent frames.

Applications were shown in 3D action recognition and detection.

2.4.2 Kernel methods

Over the last years, kernel methods have established themselves as powerful tools for

many Computer Vision tasks. Based on the fundamental concept of defining similarities

between objects they allow, e.g., the prediction of properties of new objects based on the

properties of already known ones [74].

Taking this direction, the authors in [81] proposed two time-series kernels computed

from 3D facial landmarks for expression recognition. Specifically, they considered the

temporal evolution of normalized 3D facial landmarks as a time-series in R3×n, where n

denotes the number of landmark points. A pseudo kernel based on Dynamic Time Warping

(DTW) similarities was derived from all the time-series in the dataset. DTW is a dynamic

programming based algorithm that allows a temporal alignment of two time-series. Since

DTW was adopted, the computed kernel is not positive definite, thus does not satisfy

Mercer’s theorem. Consequently, an approximated version of this kernel was considered.

Another global alignment kernel, which is a smoother version of DTW but results in a

positive definite kernel, was also used in this work.

More recently, Bagheri et al., [9] tackled the problem of 3D action recognition by

computing time-series kernels. Here also, a DTW kernel was computed but was not

approximated with a positive definite kernel. The authors introduced another kernel based
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on Longest Common Subsequence (LCSS) similarity measure which consists of counting

the number of pairs of points from two sequences that match. In contrast to [81], where

approximated versions of the computed kernels were used for SVM classification, the authors

in this work opted for another variant of SVM called pairwise proximity function SVM

(ppfSVM) [50]. The latter learns a proximity model of the data and only requires the

definition of a proximity function which can be the DTW or LCSS similarity measures.

From the other perspective, the authors in [72] proposed two kernel-based tensor

representations named sequence compatibility kernel (SCK) and dynamics compatibility

kernel (DCK) based on a set of RBF kernels computed over 3D skeletal sequences. These

can capture the higher-order relationships between the joints. The first captures the spatio-

temporal compatibility of joints between two sequences, while the second kernel uses the

intra-sequence joint differences, thus capturing the dynamics as the spatio-temporal co-

occurrences of the joints. Tensors are then formed from these kernels to train SVM.

Finally, Multiple Kernel Learning (MKL) was also adopted on different extracted spatio-

temporal features from human landmark sequences [128, 4]. In these works, MKL have shown

an impressive performance in fusing different features at the kernel level of SVM classifiers.

2.4.3 Deep learning methods

Recently, Deep Learning (DL) became one of the most powerful tools in many Computer

Vision tasks. The idea behind DL is to learn the best features to the problem at hand, by

defining suitable objectives and network architectures. Many recent approaches for analyzing

human landmark sequences used DL in order to jointly model the dynamics (i.e., extract

features) and classify the landmark sequences for human behavior understanding. These

approaches can be categorized in two groups; the group of methods using feed-forward

neural networks (e.g., Convolution Neural Networks, Auto-encoders, etc.) and the group of

methods using Recurrent Neural Networks (RNNs). In RNNs, network units have recurrent
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connections such that information about previous activations can be propagated over time.

In contrast to RNNs, the information in feed-forward networks moves in only one direction,

forward, from the input nodes, through the hidden nodes, to the output nodes.

2.4.3.1 Feed-forward neural networks

In [65], the authors proposed a neural network architecture called Deep Temporal

Geometry Network (DTGN) for facial expression recognition from 2D facial landmark

sequences. The facial landmarks were firstly normalized then concatenated over time to

form a single vector representation which is fed to a neural network. The architecture of

DTGN consists of Fully Connected (FC) layers and softmax.

In the context of 3D action recognition, the authors in [38] proposed to use Convolutional

Neural Networks (CNNs). Specifically, the three coordinates of all skeleton joints in each

frame were separately concatenated by their physical connections. A matrix was then

generated by arranging the representations of all frames in chronological order, then

quantified and normalized into an image. The obtained image represented the skeletal

sequences and was finally fed into a hierarchical spatial-temporal adaptive filter banks

model for representation learning and recognition. CNNs were also investigated in 3D action

recognition in [69], but in a different way. The authors generated three clips corresponding

to the three channels of the cylindrical coordinates of a skeleton sequence. A deep CNN

model and a temporal mean pooling layer were used to extract a compact representation

from each frame of the clips. The output CNN representations of the three clips at the same

timestep were concatenated, resulting in different feature vectors. Another neural network

(FC layers and Softmax) was used on these feature vectors for action classification.

Dibeklioglu et al., [35] tackled the problem of measuring depression severity level from

2D facial landmark sequences. They used Stacked Denoising Auto-Encoders (SDAE) to

encode the static observations of 2D facial landmark sequences. By doing so, the authors
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obtained a more discriminative low-dimensional feature representation of the static facial

landmarks. They exploited this representation to derive motion features such us velocities

and accelerations. Deep auto-encoders were also explored for 3D action recognition. For

instance, they were used in [22] to encode the dynamics of the skeletal sequences. In this

work, three different temporal encoder structures were proposed (i.e., symmetric, time-scale,

and hierarchy encoding) which were designed to capture different spatial-temporal patterns.

2.4.3.2 Recurrent neural networks

Several solutions have experimented the application of Recurrent Neural Networks

(RNNs) and Long Short Term Memory (LSTM) networks to the case of 2D/3D human

landmarks for human behavior understanding.

This approach was followed by Veeriah et al. [122] who presented a family of differential

RNNs (dRNNs) that extend LSTM by a new gating mechanism to extract the derivatives

of the internal state (DoS). The DoS was fed to the LSTM gates to learn salient dynamic

patterns in 3D skeleton data.

Du et al. [39] proposed an end-to-end hierarchical RNN for skeleton based action

recognition. First, the human skeleton was divided into five parts, which are then feed

to five subnets. As the number of layers increases, the representations in the subnets are

hierarchically fused to be the inputs of higher layers. The final representations of the skeleton

sequences are fed into a single-layer perceptron, and the temporally accumulated output of

the perceptron is the final decision.

To ensure effective learning of the deep model, Zhu et al. [147] designed an in-depth

dropout algorithm for the LSTM neurons in the last layer, which helps the network to

learn complex motion dynamics. To further regularize the learning, a co-occurrence inducing

norm was added to the network’s cost function, which enforced the learning of groups of

co-occurring and discriminative joints.
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A part aware LSTM model was proposed by Shahroudy et al. [104] to utilize the physical

structure of the human body to improve the performance of the LSTM learning framework.

Instead of keeping a long-term memory of the entire body’s motion in the cell, this is

split to part-based cells. In this way, the context of each body part is kept independently,

and the output of the part based LSTM (P-LSTM) unit is represented as a combination

of independent body part context information. Each part cell has therefore its individual

input, forget, and modulation gates, but the output gate is shared among the body parts.

LSTMs were also used in combination with RNNs. For example, the authors in [139]

decomposed the 2D facial landmark configurations into different facial parts (e.g., eyes,

mouth, etc.), then used bi-directional RNNs and LSTMs to learn the dynamics of facial

expressions from these facial parts.

While being well-suited for periodic data, RNNs and LSTMs perform less well when

confronted with aperiodic time series [22].

2.4.4 Riemannian methods

Most of the approaches listed above, did not take into account the geometric nature

of the feature space. Indeed, the extracted features or representations of the landmark

sequences may lie on non-linear manifolds where standard computational and machine

learning techniques are not applicable in a straightforward manner. A well-know example

of this is given by the covariance matrices which are positive definite matrices and lie on

a non-linear manifold [117, 7, 24, 84]. To illustrate this issue, let us consider two points

that correspond to the feature representations of two landmark sequences. Assume that

these points lie on a non-linear space (e.g., a linear combination of them may lie out of

the original space). We show an example of this illustration in Fig. 2.7. If we would like to

compute the Euclidean distance between them, we would connect them with a straight line,

as show in red in Fig. 2.7, and measure its length. This measure would not inform on the
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real proximity of these two points on the underlying feature space. In contrast, one should

find a geodesic path connecting these two points which is the shortest path connecting them

on the non-linear space, as depicted in green in Fig. 2.7, and measure its length to obtain a

geodesic distance. By doing so, we are given a more meaningful measure about the proximity

of the feature points on the manifold.

Figure 2.7 – Illustration of the non-linearity problem. Best viewed in color.

This issue opened the way to the use of metric and differential-geometric techniques in

the study and classification of moving landmarks. Taking this direction, several works opted

for the use of Riemannian geometry in order to overcome this problem [123, 13, 30, 67, 6].

The idea here is to define a smoothly varying inner product on each tangent space of the

manifold to obtain a Riemannian metric. By defining a Riemannian metric on the manifold,

one can locally exploit the vector space structure of the tangent space to define various

geometric notions on the manifold including the geodesic distance mentioned above. Other

important notions are the logarithm and exponential maps. The former is an operation that

maps a point on a Riemannian manifold to a tangent space attached to another point on the

manifold. The exponential map is its inverse operation. Further explanations of the notion of
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Riemannian manifolds are provided in the next chapter. In what follows, we will present two

families of Riemannian methods for analyzing human landmark sequences. Given a sequence

of human landmarks, the first family embeds this sequence into one feature representation

lying on a Riemannian manifold while the second represents the moving landmarks as a

time-parametrized curve (i.e., trajectory) on a Riemannian manifold.

2.4.4.1 Landmark sequences as points on Riemannian manifolds

In the work of Slama et al. [107] for 3D action recognition, a temporal sequence was

represented as a Linear Dynamical System (LDS). The observability matrix of the LDS was

then approximated by a finite matrix [115]. The subspace spanned by the columns of this

finite observability matrix corresponds to a point on a Grassmann manifold. Thus, the LDS is

represented at each time-instant as a point on the Grassmann manifold. Each video sequence

is modeled as an element of the Grassmann manifold, and action learning and recognition

is cast to a classification problem on this manifold. Proximity between two spatio-temporal

sequences is measured by a distance between two subspaces on the Grassmann manifold.

Taking the same direction, Huang et al. [57] formulated the LDS as an infinite Grassmann

manifold, and proposed a formulation for sparse coding and dictionary learning on this

manifold. One drawback of these methods is that LDS can only capture linear relationship

between successive frames. Aware of this limitation, Venkataraman et al. [125] proposed a

shape-theoretic framework for analysis of non-linear dynamical systems. Applications were

shown to activity recognition using motion capture and RGB-D sensors, and to activity

quality assessment for stroke rehabilitation.

Taking another direction, Devanne et al. [30] proposed to formulate the action recognition

task as the problem of computing a distance between trajectories generated by the joints

moving during the action. An action is then interpreted as a parametrized curve and is

seen as a single point on the hyper-sphere by computing its Square Root Velocity Function

(SRVF) [109]. However, this approach does not take into account the relationship between
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the joints.

The authors of [24] and [129] proposed to map full skeletal sequences into the manifold

of Symmetric Positive Definite (SPD) matrices. That is, given an arbitrary sequence, it is

summarized by a covariance matrix, which is a SPD matrix, derived from the velocities

computed from neighboring frames or from the 3D landmarks themselves, respectively. In

both of these works kernelized versions of covariance matrices are considered.

Zhang et al. [141] represented temporal landmark sequences using regularized Gram

matrices derived from the Hankel matrices of landmark sequences. The authors show that

the Hankel matrix of a 3D landmark sequence is related to an Auto-Regressive (AR) model

[76], where only the linear relationships between landmark static observations are captured.

The Gram matrix of the Hankel matrix is computed to reduce the noise and is seen as a

point on the positive semi-definite manifold. To analyze/compare the Gram matrices, they

regularized their ranks resulting in positive definite matrices and considered metrics on the

positive definite manifold. This approach was evaluated in the 3D action recognition task.

2.4.4.2 Landmark sequences as trajectories on Riemannian manifolds

One promising idea is to formulate the motion features as trajectories on the underlying

manifolds. Indeed, features computed from static landmark configurations often lie on non-

linear manifolds [123, 124, 111, 13]. Hence, landmark sequences can be seen as trajectories on

this manifold. In contrast to the first family of Riemannian methods, the temporal structure

of landmark sequences is preserved allowing desirable operations in the manifold such us

interpolation.

Taking this direction, Taheri et al. [111] proposed to represent 2D facial landmarks

in the Grassmann manifold. This representation is invariant to affine transformations

allowing a robust analysis under view variations. In order to capture the facial expressions

from these landmark representations, the authors computed the velocity vectors between
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successive frames using the logarithm map. A parallel transport of these velocity vectors to

a fixed tangent space of the manifold was also used in this work in order to have all the

velocity vectors in the same tangent space. By mapping all the velocity vectors to a fixed

tangent space, this method depends on the chosen fixed tangent space and involves several

approximations which can introduce distortions in the analysis.

In [123], Vemulapalli et al. proposed a Lie group trajectory representation of the skeletal

data on the product space of Special Euclidean (SE) groups for 3D action recognition. For

each frame, the latter representation is obtained by computing the Euclidean transformation

matrices encoding rotations and translations between different joint pairs. The temporal

evolution of these matrices is seen as a trajectory on SE(3) × · · · × SE(3) and mapped

to the tangent space of a reference point. A one-versus-all SVM, combined with Dynamic

Time Warping (DTW) and Fourier Temporal Pyramid (FTP) is used for classification. One

limitation of this method is that mapping trajectories to a common tangent space using the

logarithm map could result in significant approximation errors. Aware of this limitation, the

same authors proposed in [124] a mapping combining the usual logarithm map with a rolling

map that guarantees a better flattening of trajectories on Lie groups. Based on the same

lie group representation of human skeletons, the authors in [59] proposed a deep network

architecture in lie groups. The proposed network transforms the lie group representations

(i.e., rotation matrices) into more desirable ones for action recognition. Several special layers

were introduced in this work (e.g., RotMap layer, RotPooling layer, etc.).

Anirudh et al. [6] started from the two Riemannian trajectory based representations

mentioned above, in Lie Groups [123] and in Grassmann manifold [111]. They proposed

a statistical framework for analyzing Riemannian trajectories called Transported Square-

Root Velocity Fields (TSRVF), which has desirable properties including a rate-invariant

metric and vector space representation. Based on this framework, they proposed to learn

an embedding such that each trajectory is mapped to a single point in a low-dimensional

Euclidean space, and the trajectories that differ only in temporal rates map to the same
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point. The TSRVF representation and accompanying statistical summaries of Riemannian

trajectories are used to extend existing coding methods such as PCA, KSVD, and Label

Consistent KSVD to Riemannian trajectories. In the experiments, it is shown such coding

efficiently captures trajectories in action recognition, stroke rehabilitation, visual speech

recognition, clustering, and diverse sequence sampling.

Ben Amor et al. [13] represented 3D skeletal shapes on the Kendall’s shape space by

removing translations, rotations, and scaling information for the purpose of 3D action

recognition. A landmark sequence is then seen as a trajectory on the Kendall’s shape space.

Following [110], they used an elastic metric that considers the time-warping on a Riemannian

manifold, thus allowing trajectories registration and the computation of statistics on the

trajectories (e.g., resampling, mean trajectory, etc.). To classify trajectories (3D landmark

sequences), the authors computed the mean trajectories of each class and extracted for

each trajectory a feature vector formed by distances to mean trajectories of each class.

However, the mean trajectory of a class is not a significant statistical summary of the

trajectories belonging to the same class, especially in cases of high intra-class variations.

Hence, the feature vector of distances to mean trajectories could not be robust to intra-class

variations. Based on the same Kendall trajectory representation, Ben Tanfous et al. [112]

used an intrinsic formulation for spare coding and dictionary learning to encode trajectories

on Kendall’s shape space. By doing so, a trajectory on Kendall’s shape space is parsed

to a sequence of sparse codes that can be fed to any standard machine learning pipeline.

Two classification pipelines were used for the task of 3D action recognition: a pipeline of

DTW-FTP-SVM, and a bidirectional LSTM.

2.4.4.3 Classification on Riemannian manifolds

As mentioned above, one problem that arises when considering a representation of

landmark sequences in a Riemannian manifold is how to adapt machine learning techniques

to effectively work on the manifold-valued data. In current literature, two families of

- 44 -



2.5. Conclusion

approaches have been used to handle the non-linearity of Riemannian manifolds:

— The first family maps the points on the manifold to a tangent space where traditional

learning techniques can be used for classification [111, 123, 6]. Mapping data to a

tangent space only yields a first-order approximation of the data that can be distorted,

especially in regions far from the origin of the tangent space. Moreover, iteratively

mapping back and forth, i.e., Riemannian Logarithmic and Exponential maps, to the

tangent spaces significantly increases the computational cost of the algorithm.

— The second family embeds a manifold in a high dimensional Reproducing Kernel

Hilbert Space (RKHS), where Euclidean geometry can be applied [62, 24, 129]. The

Riemannian kernels enable the classifiers to operate in an extrinsic feature space

without computing tangent space and log and exp maps. Many Euclidean machine

learning algorithms can be directly generalized to an RKHS, which is a vector space

that possesses an important structure: the inner product. Such an embedding, however,

requires a kernel function defined on the manifold which, according to Mercer’s

theorem, should be positive definite.

2.5 Conclusion

Motivated by the recent advances in human landmarks detection and tracking, we

focused on landmark based solutions for human behavior understanding. However, in

practice one should take into account several challenges exhibited by human landmark

sequences (e.g., view and rate variations, inaccurate tracking, etc.) in order to develop

reliable human behavior understanding solutions. In this chapter, we presented a multitude of

landmark based state-of-the-art solutions which were categorized into four main groups (i.e.,

probabilistic, kernel based, deep learning, and Riemannian methods). Most of probabilistic

methods focused more on modeling the transitions between static frames and neglected

modeling static landmark configurations which could provide important patterns. In kernel
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methods, one should define a positive definite kernel in order to satisfy Mercer’s theorem.

This puts additional constraints in defining suitable similarity measures between landmark

sequences. While powerful, Deep Learning methods require a large amount of data to achieve

the expected performance. However, collecting large visual datasets for human behavior

understanding tasks is not straightforward.

Most of the approaches categorized above, did not take into account the geometric nature

of the feature space. Indeed, the extracted features or representations of the landmark

sequences may lie on non-linear manifolds where standard computational and machine

learning techniques are not applicable in a straightforward manner. Riemannian methods use

some basics of the Riemannian geometry to define suitable computational tools on special

non-linear manifolds. These methods were categorized in two subgroups. The first group

models a landmark sequence as a single point in a Riemannian manifold, while the second

models it as a trajectory lying on the manifold. In contrast to the single point representation,

trajectory based representation preserves the original temporal structure of the landmark

sequences and provides desirable operations in the manifold such us interpolation. In this

thesis, we will focus on Riemannian trajectory based representations of the landmark

sequences for different human behavior understanding tasks such us action recognition and

facial expression recognition.
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Chapitre 3

Novel Geometric Framework on

Gram Matrix Trajectories for

Emotion and Activity Recognition

3.1 Introduction

In this chapter, we propose a novel space-time geometric representation of human

landmark configurations and derive tools for comparison and classification. We model the

temporal evolution of landmarks as parametrized trajectories of Gram matrices on the

Riemannian manifold of positive semidefinite matrices of fixed-rank. Our representation

has the benefit to bring naturally a second desirable quantity when comparing shapes –

the spatial covariance – in addition to the conventional affine-shape representation. We

derived then geometric and computational tools for rate-invariant analysis and adaptive

re-sampling of trajectories, grounding on the Riemannian geometry of the underlying

manifold. Specifically, our approach involves three steps: (1) landmarks are first mapped

into the Riemannian manifold of positive semidefinite matrices of fixed-rank to build
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Figure 3.1 – Overview of the proposed approach. Given a landmark sequence, the Gram
matrices are computed for each landmark configuration to build trajectories on S+(d, n). A
moving shape is hence assimilated to an ellipsoid traveling along d-dimensional subspaces
of Rn, with dS+ used to compare static ellipsoids. Dynamic Time Warping (DTW) is then
used to align and compare trajectories in a rate-invariant manner. Finally, the ppfSVM is
used on these trajectories for classification.

time-parameterized trajectories; (2) a temporal warping is performed on the trajectories,

providing a geometry-aware (dis-)similarity measure between them; (3) finally, a pairwise

proximity function SVM is used to classify them, incorporating the (dis-)similarity measure

into the kernel function. An overview of the proposed framework is shown in Fig. 3.1. We

show that such representation and metric achieve competitive results in applications as

action recognition and emotion recognition from 3D skeletal data, and facial expression

recognition from 2D facial landmarks. Experiments have been conducted on several publicly

available up-to-date benchmarks.
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3.2 Gram matrix for shape representation

Let us consider an arbitrary sequence of landmark configurations {Z0, . . . , Zτ}. Each

configuration Zi (0 ≤ i ≤ τ) is an n×d matrix of rank d encoding the positions of n distinct

landmark points in d dimensions. In our applications, we only consider the configurations of

landmark points in two- or three-dimensional space (i.e., d=2 or d=3) given by, respectively,

p1 = (x1, y1), . . . , pn = (xn, yn) or p1 = (x1, y1, z1), . . . , pn = (xn, yn, zn). We are interested

in studying such sequences or curves of landmark configurations up to Euclidean motions.

In the following, we will first propose a representation for static observations, then adopt a

time-parametrized representation for temporal analysis.

As a first step, we seek a shape representation that is invariant up to Euclidean

transformations (rotation and translation). Arguably, the most natural choice is the matrix

of pairwise distances between the landmarks of the same shape augmented by the distances

between all the landmarks and their center of mass p0. Since we are dealing with Euclidean

distances, it will turn out to be more convenient to consider the matrix of the squares of

these distances. Also note that by subtracting the center of mass from the coordinates of the

landmarks, these can be considered as centered : the center of mass is always at the origin.

From now on, we will assume p0 = (0, 0) for d = 2 (or p0 = (0, 0, 0) for d = 3). With this

provision, the augmented pairwise square-distance matrix D takes the form,

D :=



0 ‖p1‖2 · · · ‖pn‖2

‖p1‖2 0 · · · ‖p1 − pn‖2
...

...
...

...

‖pn‖2 ‖pn − p1‖2 · · · 0


,

where ‖ · ‖ denotes the norm associated to the l2-inner product 〈·, ·〉. A key observation is

that the matrix D can be easily obtained from the n× n Gram matrix G := ZZT . Indeed,
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the entries of G are the pairwise inner products of the points p1, . . . , pn,

G = ZZT = 〈pi, pj〉, 1 ≤ i, j ≤ n , (3.2.1)

and the equality

Dij = 〈pi, pi〉 − 2〈pi, pj〉+ 〈pj , pj〉, 0 ≤ i, j ≤ n , (3.2.2)

establishes a linear equivalence between the set of n× n Gram matrices and the augmented

square-distance (n+ 1)× (n+ 1) matrices of distinct landmark points. On the other hand,

Gram matrices of the form ZZT , where Z is an n × d matrix of rank d are characterized

as n × n positive semidefinite matrices of rank d. For a detailed discussion of the relation

between positive semidefinite matrices, Gram matrices, and square-distance matrices, we

refer the reader to Section 6.2.1 of [31]. The space of these matrices, called the positive

semidefinite cone S+(d, n), is a not a vector space and is mostly studied when endowed

with a Riemannian metric. In the next section, we will briefly review some basics of the

Riemannian geometry of the manifolds of interest, then express the Riemannian geometry

of the space of Gram matrices (i.e., positive semi-definite matrices of fixed rank).

3.3 Riemannian geometry of the space of Gram matrices

3.3.1 Mathematical preliminaries

A manifold is a topological space that is locally homeomorphic to the dim-dimensional

Euclidean space Rdim, where dim is the dimensionality of the manifold. A differentiable

manifold is a topological manifold equipped with a differential structure that allows

differential calculus on the manifold. The tangent space at a given point on a differentiable

manifold is a vector space that consists of the tangent vectors of all possible curves passing

through the point. A Riemannian manifold is a differentiable manifold equipped with a

smoothly varying inner product on each tangent space. The family of inner products on
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all tangent spaces is known as the Riemannian metric of the manifold [62]. By definng a

Riemannian metric on the manifold, one can exploit the vector space structure of the tangent

space to define various geometric notions on the manifold. As mentioned in Section 2.4.4

of the previous chapter, one can compute the geodesic distance between two points on

the manifold which is the length of the shortest curve (i.e., geodesic) connecting these two

points. Two other important operations in Riemannian manifolds are the logarithm (log) and

exponential (exp) maps. To illustrate these two operations, let us consider two points X and

Y lying on a Riemannian manifoldM. Let TXM be the tangent space attached to the point

X as depicted in Fig. 3.2. The logarithm map logX(Y ) of the point Y to the tangent space

TX(M) attached to X results in a vector V in TX(M). This vector summarizes the path

that should be taken inM to connect X and Y . In contrast, the exponential map expX(V )

maps back the vector V to the manifoldM resulting in a curve γ(t) inM connecting X and

Y . It is important to note that the computation of these operations depends on the nature

of the manifold and the defined Riemannian metric.

Figure 3.2 – Logarithm and exponential maps on Riemannian manifolds

Conveniently for us, the Riemannian geometry of the space of positive semidefinite

matrices of fixed rank (i.e., Gram matrices) was studied in [19, 43, 85, 120]. To have a

better understanding of the geometry of this space, we first define two manifolds that are
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extensively used in Computer Vision namely, the Grassmann manifold and the Riemannian

manifold of positive definite matrices.

3.3.1.1 Grassmann manifold

A Grassmann manifold G(d, n) is the set of the d-dimensional subspaces of Rn, where

n > d. A subspace U of G(d, n) is represented by an n×d matrix U , whose columns store an

orthonormal basis of this subspace. Thus, U is said to span U , and U is said to be the column

space (or span) of U , and we write U = span(U). Indeed, the set of n × d matrices with

orthonormal columns forms a manifold known as the Stiefel manifold Vd,n. Points on G(d, n)

are equivalence classes of n × d matrices with orthonormal columns (i.e., points on Vd,n),

where two matrices are equivalent if their columns span the same d-dimensional subspace.

The geometry of the Grassmannian G(d, n) is then easily described by the map

span : Vd,n → G(d, n) , (3.3.1)

that sends an n× d matrix with orthonormal columns U to their span span(U). Given two

subspaces U1 = span(U1) and U2 = span(U2) ∈ G(d, n), the geodesic curve connecting them

is

span(U(t)) = span(U1 cos(Θt) +M sin(Θt)) , (3.3.2)

where Θ is a d × d diagonal matrix formed by the d principal angles between U1 and U2,

while the matrix M is given by M = (In − U1U
T
1 )U2F , with F being the pseudo-inverse of

Θ. The Riemannian geodesic distance between U1 and U2 is given by

d2
G(U1,U2) = ‖Θ‖2F . (3.3.3)

3.3.1.2 Riemannian manifold of positive definite matrices

It is known to be the positive cone in Rd, and has been extensively used to study

covariance matrices [116, 97, 16]. A symmetric d× d matrix R is said to be positive definite
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if and only if vTRv > 0 for every non-zero vector v ∈ Rd. Pd is mostly studied when endowed

with a Riemannian metric, thus forming a Riemannian manifold. A number of metrics

have been proposed for Pd, the most popular ones being the Affine-Invariant Riemannian

Metric (AIRM) and the log-Euclidean Riemannian metric (LERM) [7]. In this study, we

only consider the AIRM for its robustness [117].

With this metric, the geodesic curve connecting two SPD matrices R1 and R2 in Pd is

R(t) = R
1/2
1 exp(t log(R

−1/2
1 R2R

−1/2
1 ))R

1/2
1 , (3.3.4)

where log(.) and exp(.) are the matrix logarithm and exponential, respectively. The

Riemannian distance between R1 and R2 is given by

d2
Pd

(R1, R2) = ‖ log (R
−1/2
1 R2R

−1/2
1 )‖2F , (3.3.5)

where ‖.‖F denotes the Frobenius matrix norm.

For more details about the geometry of the Grassmannian G(d, n) and the positive

definite cone Pd, readers are referred to [2, 12, 19, 91].

3.3.2 Riemannian manifold of positive semi-definite matrices of fixed

rank

Given an n×d matrix Z of rank d, its polar decomposition Z = UR with R = (ZTZ)1/2

allows us to write the Gram matrix ZZT as UR2UT . Since the columns of the matrix U are

orthonormal, this decomposition defines a map

Π :Vd,n × Pd → S+(d, n)

(U,R2) 7→ UR2UT ,

from the product of the Stiefel manifold Vd,n and the cone of d×d positive definite matrices

Pd to the manifold S+(d, n) of n × n positive semidefinite matrices of rank d. The map Π
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defines a principal fiber bundle over S+(d, n) with fibers

Π−1(UR2UT ) = {(UO,OTR2O) : O ∈ O(d)} ,

where O(d) is the group of d×d orthogonal matrices. Bonnabel and Sepulchre [19] used this

map and the geometry of the structure space Vd,n × Pd to introduce a Riemannian metric

on S+(d, n) and study its geometry.

3.3.2.1 Tangent space and Riemannian metric

The tangent space T(U,R2)(Vd,n×Pd) consists of pairs (M,N), whereM is a n×d matrix

satisfying MTU +UTM = 0 and N is any d×d symmetric matrix. Bonnabel and Sepulchre

defined a connection (see [71, p. 63]) on the principal bundle Π : Vd,n × Pd → S+(d, n)

by setting the horizontal subspace H(U,R2) at the point (U,R2) to be the space of tangent

vectors (M,N) such that MTU = 0 and N is an arbitrary d × d symmetric matrix. They

also defined an inner product on H(U,R2): given two tangent vectors A = (M1, N1) and

B = (M2, N2) on H(U,R2), set

〈(A,B)〉HU,R2 = tr(MT
1 M2) + k tr(N1R

−2N2R
−2) , (3.3.6)

where k > 0 is a real parameter.

It is easily checked that the action of the group of d × d orthogonal matrices on the

fiber Π−1(UR2UT ) sends horizontals to horizontals isometrically. It follows that the inner

product on TUR2UTS+(d, n) induced from that of H(U,R2) via the linear isomorphism DΠ is

independent of the choice of point (U,R2) projecting onto UR2UT . This procedure defines

a Riemannian metric on S+(d, n) for which the natural projection

ρ : S+(d, n)→ G(d, n)

G 7→ range(G) ,

is a Riemannian submersion. This allows us to relate the geometry of S+(d, n) with that of

the Grassmannian G(d, n).
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3.3.2.2 Pseudo-geodesics and closeness in S+(d, n)

Bonnabel and Sepulchre [19] defined the pseudo-geodesic connecting two matrices G1 =

U1R
2
1U

T
1 and G2 = U2R

2
2U

T
2 in S+(d, n) as the curve

CG1→G2(t) = U(t)R2(t)UT (t),∀t ∈ [0, 1] , (3.3.7)

where R2(t) = R1 exp(t logR−1
1 R2

2R
−1
1 )R1 is a geodesic in Pd connecting R2

1 and R2
2, and

U(t) is the geodesic in G(d, n) given by Eq. (3.3.2). They also defined the closeness between

G1 and G2, dS+(G1, G2), as the square of the length of this curve:

dS+(G1, G2) = d2
G(U1,U2) + kd2

Pd
(R2

1, R
2
2) = ‖Θ‖2F + k‖ logR−1

1 R2
2R
−1
1 ‖

2
F , (3.3.8)

where Ui (i = 1, 2) is the span of Ui and Θ is a d×d diagonal matrix formed by the principal

angles between U1 and U2.

The closeness dS+ consists of two independent contributions: the square of the distance

dG(span(U1), span(U2)) between the two associated subspaces, and the square of the distance

dPd
(R2

1, R
2
2) on the positive cone Pd (Fig. 3.3). Note that CG1→G2 is not necessarily a geodesic

and therefore, the closeness dS+ is not a true Riemannian distance.

3.3.3 Affine-invariant and spatial covariance information of Gram ma-

trices

An alternative affine shape representation, considered in [12] and [111], associates to

each configuration Z the d-dimensional subspace span(Z) spanned by its columns. This

representation, which exploits the geometry of the Grassmann manifold G(d, n) of d-

dimensional subspaces in Rn is invariant under all invertible linear transformations. By fully

encoding the set of all mutual distances between landmark points, the proposed Euclidean

shape representation supplements the affine shape representation with the knowledge of the

d× d positive definite matrix R2 that lie on Pd.
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Figure 3.3 – A pictorial representation of the positive semidefinite cone S+(d, n). Viewing
matrices G1 and G2 as ellipsoids in Rn; their closeness consists of two contributions: d2

G
(squared Grassmann distance) and d2

Pd
(squared Riemannian distance in Pd).

From the viewpoint of the landmark configurations Z1 and Z2, with G1 = Z1Z
T
1 and

G2 = Z2Z
T
2 , the closeness dS+ encodes the distances measured between the affine shapes

span(Z1) and span(Z2) in G(d, n) and between their spatial covariances in Pd. Indeed, the

spatial covariance of Zi (i = 1, 2) is the d× d symmetric positive definite matrix

C =
ZTi Zi
n− 1

=
(UiRi)

T (UiRi)

n− 1
=

R2
i

n− 1
. (3.3.9)

The weight parameter k controls the relative weight of these two contributions. Note

that for k = 0 the distance on S+(d, n) collapses to the distance on G(d, n). Nevertheless,

the authors in [19] recommended choosing small values for this parameter. The experiments

performed and reported in Section 3.6 are in general accordance with this recommendation.
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3.4 Gram matrix trajectories for temporal modeling of land-

mark sequences

We are able to compare static landmark configurations based on their Gramian

representation G, the induced space, and closeness introduced in the previous Section. We

need a natural and effective extension to study their temporal evolution. Following [13,

111, 123], we defined curves βG : I → S+(d, n) (I denotes the time domain, e.g.,

[0, 1]) to model the spatio-temporal evolution of elements on S+(d, n). Given a sequence

of landmark configurations {Z0, . . . , Zτ} represented by their corresponding Gram matrices

{G0, . . . , Gτ} in S+(d, n), the corresponding curve is the trajectory of the point βG(t) on

S+(d, n), when t ranges in [0, 1]. These curves are obtained by connecting all successive

Gramian representations of shapes Gi and Gi+1, 0 ≤ i ≤ τ − 1, by pseudo-geodesics in

S+(d, n). Algorithm 1 summarizes the steps to build trajectories in S+(d, n) for temporal

modeling of landmark sequences.

Algorithm 1: Computing trajectory βG(t) in S+(d, n) of a sequence of landmarks
input : A sequence of centered landmark configurations {Z0, · · · , Zτ}, where Z0≤i≤τ

is an (n× d) matrix (d = 2 or d = 3) formed by the coordinates
p1 = (x1, y1), · · · , pn = (xn, yn) or p1 = (x1, y1, z1), · · · , pn = (xn, yn, zn).

output: Trajectory βG(t)0≤t≤τ and pseudo-geodesics CβG(t)→βG(t+1) in S+(d, n)
/* Compute the Gram matrices of centered landmarks */
for i← 0 to τ do

Gi ←− ZiZTi = 〈pl, pk〉, 1 ≤ l, k ≤ n
/* Compute the Polar decomposition 1of Zi = UiRi */
Gi ←− UiR2

iU
T
i

/* Compute the pseudo-geodesic paths between successive Gram matrices */
βG(0)←− G0

for t← 0 to τ − 1 do
CβG(t)→βG(t+1) ←− CGt→Gt+1 given by Eq. (3.3.7) connecting Gt and Gt+1 in
S+(d, n)
βG(t+ 1)←− Gt+1

return trajectory βG(t)0≤t≤τ and pseudo-geodesics CβG(t)→βG(t+1) in S+(d, n)

1. To compute the polar decomposition, we used the SVD based implementation proposed in [54].
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3.4.1 Rate-invariant comparison of Gram matrix trajectories

A relevant issue to our classification problems is – how to compare trajectories while being

invariant to rates of execution? One can formulate the problem of temporal misalignment

as comparing trajectories when parameterized differently. The parameterization variability

makes the distance between trajectories distorted. This issue was first highlighted by

Veeraraghavan et al. [121] who showed that different rates of execution of the same activity

can greatly decrease recognition performance if ignored. Veeraraghan et al. [121] and

Abdelkader et al. [1] used the Dynamic Time Warping (DTW) for temporal alignment

before comparing trajectories of shapes of planar curves that represent silhouettes in videos.

Following the above-mentioned state-of-the-art solutions, we adopt here a DTW solution

to temporally align our trajectories. More formally, given m trajectories {β1
G, β

2
G, . . . , β

m
G }

on S+(d, n), we are interested in finding functions γi such that the βiG(γi(t)) are matched

optimally for all t ∈ [0, 1]. In other words, two curves β1
G(t) and β2

G(t) represent the same

trajectory if their images are the same. This happens if, and only if, β2
G = β1

G ◦ γ, where γ

is a re-parameterization of the interval [0, 1]. The problem of temporal alignment is turned

to find an optimal warping function γ? according to,

γ? = arg min
γ∈Γ

∫ 1

0
dS+(β1

G(t), β2
G(γ(t))) dt , (3.4.1)

where Γ denotes the set of all monotonically-increasing functions γ : [0, 1] → [0, 1]. The

most commonly used method to solve such optimization problem is DTW. Note that

accommodation of the DTW algorithm to the manifold-value sequences can be achieved

with respect to an appropriate metric defined on the underlying manifold S+(d, n). Having

the optimal re-parametrization function γ?, one can define a (dis-)similarity measure between

two trajectories allowing a rate-invariant comparison:

dDTW (β1
G, β

2
G) =

∫ 1

0
dS+(β1

G(t), β2
G(γ?(t))) dt . (3.4.2)
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From now, we shall use dDTW (., .) to compare trajectories in our manifold of interest

S+(d, n).

3.4.2 Adaptive re-sampling

One difficulty in video analysis is to capture the most relevant frames and focus on

them. In fact, it is relevant to reduce the number of frames when no motion happened,

and “introduce” new frames, otherwise. Our geometric framework provides tools to do so. In

fact, interpolation between successive frames could be achieved using the pseudo-geodesics

defined in Eq. (3.3.7), while their length (closeness defined in Eq. (3.3.8)) expresses the

magnitude of the motion. Accordingly, we have designed an adaptive re-sampling tool that

is able to increase/decrease the number of samples in a fixed time interval according to their

relevance with respect to the geometry of the underlying manifold S+(d, n). Relevant samples

are identified by a relatively low closeness dS+ to the previous frame, while irrelevant ones

correspond to a higher closeness level. Here, the down-sampling is performed by removing

irrelevant shapes. In turn, the up-sampling is possible by interpolating between successive

shape representations in S+(d, n), using pseudo-geodesics.

More formally, given a trajectory βG(t)t=0,1,...,τ on S+(d, n) for each sample βG(t), we

compute the closeness to the previous sample, i.e., dS+(βG(t), βG(t − 1)): if the value is

below a defined threshold ζ1, the current sample is simply removed from the trajectory. In

contrast, if the distance exceeds a second threshold ζ2, equally spaced shape representations

from the pseudo-geodesic curve connecting βG(t) to βG(t− 1) are inserted in the trajectory.

3.5 Classification of Gram matrix trajectories

Our trajectory representation reduces the problem of landmark sequence classification

to that of trajectory classification in S+(d, n). That is, let us consider T = {βG : [0, 1] →

S+(d, n)}, the set of time-parameterized trajectories of the underlying manifold. Let L =
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{(β1
G, y

1), . . . , (βmG , y
m)} be the training set with class labels, where βiG ∈ T and yi ∈ Y,

such that yi = f(βiG). The goal here is to find an approximation h to f such that h : T → L.

In Euclidean spaces, any standard classifier (e.g., standard SVM) may be a natural and

appropriate choice to classify the trajectories. Unfortunately, this is no more suitable in our

modeling, as the space T built from S+(d, n) is non-linear. As mentioned and discussed in

the previous chapter, a function that divides the manifold is rather a complicated notion

compared with the Euclidean space. To overcome this issue, we adopt two classification

schemes based on the (dis-)similarity measure dDTW that uses the geometry-aware closeness

dS+ namely, k-Nearest Neighbor and Pairwise proximity function SVM classifiers.

3.5.1 Pairwise proximity function SVM

Inspired by a recent work of [9] for action recognition, we adopted the pairwise proximity

function SVM (ppfSVM) [50, 51]. The ppfSVM requires the definition of a (dis-)similarity

measure to compare samples. In our case, it is natural to consider the dDTW defined in

Eq. (3.4.2) for such a comparison. This strategy involves the construction of inputs such

that each trajectory is represented by its (dis-)similarity to all the trajectories, with respect

to dDTW , in the dataset and then apply a conventional SVM to this transformed data [51].

The ppfSVM is related to the arbitrary kernel-SVM without restrictions on the kernel

function [50].

Given m trajectories {β1
G, β

2
G, . . . , β

m
G } in T , following [9], a proximity function PT :

T × T → R+ between two trajectories β1
G, β

2
G ∈ T is defined as,

PT (β1
G, β

2
G) = dDTW (β1

G, β
2
G) . (3.5.1)

According to [50], there are no restrictions on the function PT . For an input trajectory

βG ∈ T , the mapping φ(βG) is given by,

φ(βG) = [PT (βG, β
1
G), . . . ,PT (βG, β

m
G )]T . (3.5.2)
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The obtained vector φ(βG) ∈ Rm is used to represent a sample trajectory βG ∈ T . Hence,

the set of trajectories can be represented by a m×m matrix P , where P (i, j) = PT (βiG, β
j
G),

i, j ∈ {1, . . . ,m}. Finally, a linear SVM is applied to this data representation. Further details

on ppfSVM can be found in [9, 50, 51]. In Algorithm 2, we provide a pseudo-code for the

proposed trajectory classification in S+(d, n).

Algorithm 2: Classification of trajectories in S+(d, n)

input : m training trajectories in S+(d, n) with their corresponding labels
{(β1

G, y
1), . . . , (βmG , y

m)}
One testing trajectory βtestG in S+(d, n)

output: Predicted class ytest of βtestG

/* Model training */
for i← 1 to m do

for j ← 1 to m do
P (i, j) = PT (βiG, β

j
G) w.r.t Eq. (3.5.1)

Training a linear SVM on the data representation P
/* Testing phase */
φ(βtestG ) = [PT (βtestG , β1

G), . . . ,PT (βtestG , βmG )]T

ytest ←− Linear SVM using the feature vector φ(βtestG )
return Predicted class ytest

The proposed ppfSVM classification of trajectories on S+(d, n) aims to learn a proximity

model of the data, which makes the computation of a pairwise distance function using the

DTW (dis-)similarity measure on all the trajectories of the dataset quite necessary. For more

efficiency, one can consider faster algorithms for trajectories alignment such us [96, 28].

3.5.2 K-Nearest neighbor

As a baseline classifier, we use used k-nearest neighbor solution, where for each test

trajectory (sequence), we computed the k-nearest trajectories (sequences) from the training

set using the same (dis-)similarity measure dDTW defined in Eq. (3.4.2). The test sequence

is then classified according to a majority voting of its neighbors, (i.e., it is assigned to the

class that is most common among its k-nearest neighbors).
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3.6 Experimental evaluation

To validate the proposed framework, we conducted extensive experiments on three human

behavior understanding applications. These scenarios show the potential of the proposed

solution when landmarks capture different information on different data. First, we addressed

the problem of activity recognition from depth sensors such as the Microsoft Kinect. In this

case, 3D landmarks correspond to the joints of the body skeleton, as extracted from RGB-

Depth frames. The number of joints per skeleton varies between 15 and 20, and their position

is generally noisy. Next, we addressed the new emerging problem of finding relationships

between body movement and emotions using 3D skeletal data. Here, landmarks correspond

to physical markers placed on the body and tracked with high temporal rate and good

estimation of the 3D position by a Motion Capture (MoCap) system. Finally, we evaluated

our framework on the problem of facial expression recognition using landmarks of the face. In

this case, 49 face landmarks are extracted in 2D with high accuracy using a state-of-the-art

face landmark detector.

3.6.1 3D action recognition

Action recognition has been performed on 3D skeleton data as provided by a Kinect

camera in different datasets. In this case, landmarks correspond to the estimated position

of 3D joints of the skeleton (d=3). With this assumption, skeletons are represented by n×n

Gram matrices of rank 3 lying on S+(3, n), and skeletal sequences are seen as trajectories

on this manifold.

As discussed in Section 3.2, the information given by the Gram matrix of the skeleton

is linearly equivalent to that of the pairwise distances between different joints. Thus,

considering only some specific subparts of the skeletons can be more accurate for some

actions. For instance, it is more discriminative to consider only the pairwise distances

between the joints of left and right arms for actions that involve principally the motion
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of arms, (e.g., wave hands, throw). Accordingly, we divided the skeletons into three body

parts, i.e., left/right arms, left/right legs and torso, while keeping a coarse information given

by all the joints of the skeleton. In Fig. 3.4, we show an example of the proposed Kinect

skeleton decomposition into three body parts. For an efficient use of the information given

by the different body parts, we propose a late fusion of four ppf-SVM classifiers that consists

of: (1) training all the body part classifiers separately; (2) merging the contributions of the

four body part classifiers. This is done by multiplying the probabilities si,j , output of the

SVM for each class j, where i ∈ {1, 2, 3, 4} denotes the body part. The class C of each test

sample is determined by

C = arg max
j

4∏
i=1

si,j , j = 1, . . . , nC , (3.6.1)

where nC is the number of classes.

Torso

Left and right arms

Left and right legs

Skeleton of 20 joints 

Figure 3.4 – Decomposition of the Kinect skeleton into three body parts.

3.6.1.1 Datasets

We performed experiments on four publicly available datasets showing different chal-

lenges. All these datasets have been collected with a Microsoft Kinect sensor.
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UT-Kinect dataset [136] – It contains 10 actions performed by 10 different subjects.

Each subject performed each action twice resulting in 199 valid action sequences. The 3D

locations of 20 joints are provided with the dataset.

Florence3D dataset [103] – It contains 9 actions performed two or three times by

10 different subjects. Skeleton comprises 15 joints. This is a challenging dataset due to

variations in the view-point and large intra-class variations.

SYSU-3D dataset [55] – It contains 480 sequences. In this dataset, 12 different

activities focusing on interactions with objects were performed by 40 persons. The 3D

coordinates of 20 joints are provided in this dataset. The SYSU-3D dataset is very challenging

since the motion patterns are highly similar among different activities.

SBU Interaction dataset [138] – This dataset includes 282 skeleton sequences of eight

types of two-persons interacting with each other, including approaching, departing, pushing,

kicking, punching, exchanging objects, hugging, and shaking hands. In most interactions, one

subject is acting, while the other subject is reacting.

3.6.1.2 Experimental settings and parameters

For all the datasets, we used only the provided skeletons. The adaptive re-sampling of

trajectories discussed in Section 3.4.2 has been not applied on these data. The motivation

is that this operation tries to capture small shape deformations of the landmarks and this

can amplify the noise of skeleton joints. For the SBU dataset, where two skeletons of two

interacting persons are given in each frame, we considered all the joints of the two skeletons.

In this case, a unique Grammatrix is computed for the two skeletons modeling the interaction

between them. In this dataset, the decomposition into body parts is performed only for the

acting person since the other person is reacting in a coarse manner.

As discussed in Section 3.3.3, our body movement representation involves a parameter k

that controls the contribution of two information: the affine shape of the skeleton at time t,
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and its spatial covariance. The affine shape information is given by the Grassmann manifold

G(3, n), while the spatial covariance is given by the SPD manifold P3. We recall that for

k = 0, the skeletons are considered as trajectories on the Grassmann manifold G(3, n). For

each dataset, we performed a cross-validation grid search, k ∈ [0, 3] with a step of 0.1, to

find an optimal value k∗. In the case of skeleton decomposition into body parts, a different

parameter k is used for computing the distance of each body part, (i.e., one parameter each

for arms, legs, and torso, and one parameter for the whole skeleton). Each parameter k is

evaluated separately by a cross-validation grid search in the classifier of the relative body

part.

To allow a fair comparison, we adopted the most common experimental settings in

literature. For the UT-Kinect dataset, we used the leave-one-out cross-validation (LOOCV)

protocol [136], where one sequence is used for testing and the remaining sequences are used

for training. For the Florence3D dataset, a leave-one-subject-out (LOSO) schema is adopted

following [30, 127, 141]. For the SYSU3D dataset, we followed [55] and performed a Half-

Half cross-subject test setting, in which half of the subjects were used for training and the

remaining half were used for testing. Finally, a 5-fold cross-validation was used for the SBU

dataset. Note that the subjects considered in each split are those given by the datasets

(SYSU3D and SBU). All our programs were implemented in Matlab and run on a 2.8 GHZ

CPU. We used the multi-class SVM implementation of the LibSVM library [25].

3.6.1.3 Results and discussion

In Table 3.1- 3.2, we compare our approach with existing methods dealing with skeletons

and/or RGB-D data. Overall, our approach achieved competitive results compared to recent

state-of-the-art approaches.

On the UT-Kinect dataset, we obtained an average accuracy of 96.48%, when considering

the full skeletal shape. Using a late fusion of classifiers based on the body parts, as
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Table 3.1 – Overall accuracy (%) on the UT-Kinect and Florence3D datasets. Here, (D):
depth; (C): color (or RGB); (G): geometry (or skeleton); ∗: Deep Learning based approach;
last row: ours

UT-Kinect Florence3D
Method Prot. Acc (%) Prot. Acc (%)
(G+D) 3D2CNN [80]∗ LOSO 95.5 – –
(G) LARP [123] 5-fold 97.08 5-fold 90.88
(G) Gram Hankel [141] LOOCV 100 – –
(G) Motion trajectories [30] LOOCV 91.5 LOSO 87.04
(G) Elastic func. coding [6] 5-fold 94.87 5-fold 89.67
(G) Mining key poses [127] LOOCV 93.47 LOSO 92.25
(G) NBNN+parts+time [103] – – LOSO 82
(G) LSTM-trust gate [77]∗ LOOCV 97.0 – –
(G) JL-distance LSTM[140]∗ 5-fold 95.96 – –
Traj. on G(3, n) (full body) LOOCV 92.46 LOSO 75 ± 5.22
Traj. on G(3, n) - BP Fusion LOOCV 96.48 LOSO 76.4 ± 5.37
Traj. on S+(3, n) (full body) LOOCV 96.48 LOSO 88.07± 4.8
Traj. on S+(3, n) - BP Fusion LOOCV 98.49 LOSO 88.85 ± 4.6

described in Section 3.6.1, the performance increased to 98.49% outperforming [77, 30, 127].

The highest average accuracy for this dataset was reported in [141] (100%), where Gram

matrices were used for skeletal sequence representation, but in a completely different context.

Specifically, the authors of [141] built a Gram matrix from the Hankel matrix of an Auto-

Regressive (AR) model that represented the dynamics of the skeletal sequences. The used

metric for the comparison of Gram matrices is also different than ours as they used metrics

in the positive definite cone by regularizing their ranks, i.e., making them full-rank.

On the SBU dataset, the fusion of body parts achieved the highest accuracy reaching

93.7%. We observed that all the interactions present in this dataset are well recognized,

e.g., hugging (100%), approaching (97.5%), etc., except pushing (74.7%), which has been

mainly confused with a very similar interaction, i.e., punching. Here, our approach is ranked

second after [140], where an average accuracy of 99.02% is reported. In that work, the

authors compute a large number of joint-line distances per frame making their approach

time consuming.

On the SYSU3D dataset, our approach achieved the best result compared to skeleton

based approaches. We report an average accuracy of 80.22% with a standard deviation of
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Table 3.2 – Overall accuracy (%) on the SBU interaction, and SYSU-3D datasets. Here, (D):
depth; (C): color (or RGB); (G): geometry (or skeleton); ∗: Deep Learning based approach;
last row: ours

SBU Interaction SYSU-3D
Method Prot. Acc (%) Prot. Acc (%)
(G+D+C) Dynamic features [55] – – Half-Half 84.9 ± 2.29
(G+D+C) LAFF [56] – – Half-Half 80
(G) LAFF (SKL) [56] – – Half-Half 54.2
(G) Dynamic skeletons [55] – – Half-Half 75.5 ± 3.08
(G) LSTM-trust gate [77]∗ 5-fold 93.3 Half-Half 76.5
(G) JL-distance LSTM[140]∗ 5-fold 99.02 – –
(G) Co-occurence LSTM[147]∗ 5-fold 90.41 – –
(G) Hierarchical RNN[39]∗ 5-fold 80.35 – –
(G) SkeletonNet[68]∗ 5-fold 93.47 – –
(G) STA-LSTM[108]∗ 5-fold 91.51 – –
Traj. on G(3, n) (full body) 5-fold 76.3 ± 3.26 Half-Half 73.26 ± 2.27
Traj. on G(3, n) - BP Fusion 5-fold 83.56 ± 4.72 Half-Half 76.61 ± 2.86
Traj. on S+(3, n) (full body) 5-fold 88.45 ± 2.88 Half-Half 76.01 ± 2.09
Traj. on S+(3, n) - BP Fusion 5-fold 93.7 ± 1.59 Half-Half 80.22± 2.09

2.09%, when the late fusion of body parts is used. Our approach, applied to the full skeleton,

still achieved very competitive results and reached 76.01% with a standard deviation of

2.09%. Combining the skeletons with depth and color information, including the object,

Hu et al. [55] obtained the highest performance with an average accuracy of 84.9% and a

standard deviation of 2.29%.

On the Florence3D dataset, we obtained an average accuracy of 88.07%, improved by

around 0.8% when involving body parts fusion. While high accuracies are reported for coarse

actions, e.g., sitting down (95%), standing up (100%), and lacing (96.2%), finer actions, e.g.,

reading watch (73.9%) and answering phone (68.2%) are still challenging. Our results are

outperformed by [127, 123], where the average accuracies are greater than 90%.

From the reported results on the four different datasets, we can observe the large

superiority of the Gramian representation over the Grassmann representation. For the

Florence3D and SBU datasets, we report an improvement of about 12%. For UT-Kinect and

SYSU3D, the performance increased by about 3%. Note that these improvements over the

Grassmannian representation are due to the additional information of the spatial covariance
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given by the SPD manifold in the metric. The contribution of the spatial covariance is

weighted with a parameter k. As discussed in Section 3.6.1.2, we performed a grid search

cross-validation to find the optimal value k∗ of this parameter. In Fig. 3.5, we report the

accuracies obtained when considering the whole skeletons for different values of k. The

optimal values are k∗ = 0.05, k∗ = 0.81, k∗ = 0.25, and k∗ = 0.09 for the the UT-Kinect,

SBU, Florence3D, and SYSU3D datasets, respectively. These results are in concordance with

the recommendation of Bonnabel and Sepulchre [19] to use relative small values of k.
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Figure 3.5 – Accuracy of the proposed approach when varying the weight parameter k:
results for the UT-Kinect, Florence3D, SBU, and SYSU-3D datasets are reported from left
to right.

Confusion matrices. In order to evaluate the effectiveness of our approach on

recognizing the different actions, we report the obtained confusion matrices on the four

datasets used in the experiments.

In Fig. 3.6, we show the confusion matrix for the UT-Kinect dataset. We can observe

that all the actions were well recognized. The few confusions happened between “pick up”

with “walk”, “carry” with “walk”, and “clap hands” with “wave hands”.

On the human interaction SBU dataset, as shown in Fig. 3.7, the highest performance

was achieved for “departing” and “hugging” interactions (100%), while “pushing” interaction

was the least recognized (74.7%). The latter was mainly confused by our approach with a

similar interaction (i.e., “punching”).

Fig. 3.8 depicts the confusions of our approach on the human-object interaction dataset

SYSU3D. Unsurprisingly, “sit chair” and “move chair” were the most recognized interactions
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Figure 3.6 – Confusion matrix for the UT-Kinect dataset.

(> 95%). In accordance with [55], the lowest performance was achieved for “call phone”

interaction (65.8%), which was mutually confused with “drinking”. These two interactions

involve similar patterns (raising one arm to the head) that could be more similar with the

inaccurate tracking of the skeletons. Other examples of such mutual confusions include the

interactions “take from wallet” (70.5%) with “play phone” (72.8%) and “mopping” (74.5%)

with “sweeping” (73.2%).

Finally, we report in Fig. 3.9 the confusion matrix for the Florence 3D dataset. Similarly

to the reported results on the UT-Kinect dataset, the best performance was recorded for the

“stand up” (100%) and “sit down” (95%) actions. Correspondingly to the obtained results on

the SYSU3D dataset, the main confusions concerned “drink” (76.2%) with “answer phone”

(68.2%). Furthermore, it is worth noting that, in this dataset, several actions are performed

with the right arm by some participants, while others acted it with the left arm. This could

explain the low performance achieved by our approach on distinguishing “read watch”, where

only one arm (left or right) is raised to the chest, from “clap hands”, where the two arms
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Figure 3.7 – Confusion matrix for the SBU dataset.

are raised to merely the same position.

Baseline experiments. In this paragraph, we discuss the effect of using the different

steps in our framework and their computational complexity compared to baselines. Results

of this evaluation are reported in Table 3.3. Firstly, in the top part of Table 3.3, we

studied the computational cost of the proposed pipeline in the task of 3D action recognition

and report running time statistics for the different steps of our approach on UT-Kinect

dataset. Specifically, we provide the necessary execution time for: (1) an arbitrary trajectory

construction in S+(3, n) as described in Algorithm 1; (2) comparison of two arbitrary

trajectories with the proposed version of DTW; (3) testing phase of an arbitrary trajectory

classification with ppfSVM in S+(3, n) as described in Algorithm 2.

Then, we evaluated the proposed metric with respect to other metrics used in state

of the art solutions. Specifically, given two matrices G1 and G2 in S+(3, n), we compared

our results with two other possible metrics: (1) as proposed in [132, 141], we used dPn
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Figure 3.8 – Confusion matrix for the SYSU3D dataset.

that was defined in Eq. (3.3.8) to compare G1 and G2 by regularizing their ranks, i.e.,

making them n full-rank, and considering them in Pn (the space of n-by-n positive definite

matrices), dPn(G1, G2) = dPn(G1 + εIn, G2 + εIn); (2) we used the Euclidean flat distance

dF+(G1, G2) = ‖G1−G2‖F , where ‖.‖F denotes the Frobenius-norm. Note that the provided

execution times are relative to the comparison of two arbitrary sequences. We can observe

that in Table 3.3, the closeness dS+ between two elements of S+(3, n) defined in Eq. (3.3.8)

is more suitable compared to the distance dPn and the flat distance dF+ defined in literature.

This demonstrates the importance of considering the geometry of the manifold of interest.

Another advantage of using dS+ over dPn is the computational time as it involves n-by-3

and 3-by-3 matrices instead of n-by-n matrices.

To show the relevance of aligning the skeleton sequences in time before comparing them,

we conducted the same experiments without using Dynamic Time Warping (DTW). In this

case, the performance decreased by around 5% and 7% on UT-Kinect and SBU datasets,
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Figure 3.9 – Confusion matrix for the Florence dataset.

respectively. Here, the provided execution times are relative to the comparison of two

arbitrary sequences on UT-Kinect dataset. Furthermore, we also compared the proposed

ppfSVM classifier with a k-nearest neighbor classifier. The number of nearest neighbors k to

consider for each dataset is chosen by cross-validation. Using the k-NN classifier, we obtained

an average accuracy of 91.96% with k = 5 neighbors on UT-Kinect and 61.06% with k = 4

on the SBU dataset. These results are outperformed by the ppfSVM classifier.

Finally, in Table 3.3 we provide the obtained accuracies when considering the different

body parts separately on all the datasets. Unsurprisingly, the highest accuracy is achieved by

left and right arms in all the datasets compared to the torso and the legs, since the majority

of the actions are acted using arms. One can note the considerable improvements realized

by the late fusion compared to the whole skeleton in all the datasets, especially in the SBU

and SYSU3D datasets, where we report improvements of about 5% and 4%, respectively.
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Table 3.3 – Baseline experiments on the UT-Kinect, SBU, SYSU3D, and Florence3D
datasets

Pipeline component Time (s)
Trajectory construction in S+(3, n) 0.007
Comparison of trajectories in S+(3, n) 0.93
Classification of a trajectory in S+(3, n) 147.71

Distance UT-Kinect (%) Time (s)
Flat distance dF+ 92.96 0.06
Distance dPn in Pn 94.98 1.66
Closeness dS+ 96.48 0.93

Temp. alignment UT-Kinect (%) SBU (%) Time (s)
No DTW 91.46 81.36± 2.78 0.02
DTW 96.48 88.45± 2.88 0.93

Classifier UT-Kinect (%) SBU (%)
K-NN – G(3, n) 86.93 42.72 ± 5.68
Ppf-SVM – G(3, n) 92.46 76.3 ± 3.26
K-NN – S+(3, n) 91.96 61.06 ± 2.3
Ppf-SVM – S+(3, n) 96.48 88.45± 2.88

Body parts UT-Kinect (%) SBU (%)
Arms only 87.94 80.96 ± 5.53
Legs only 35.68 83.36 ± 2.41
Torso only 72.36 80.58 ± 2.16
Whole body 96.48 88.45 ± 2.88
Late BP Fusion 98.49 93.7 ± 1.59

Body parts Florence3D (%) SYSU3D (%)
Arms only 75.72 ± 8.45 73.88 ± 2.64
Legs only 42.44 ± 7.69 37.6 ± 2.10
Torso only 54.33 ± 10.62 49.36 ± 3.94
Whole body 88.07 ± 4.8 76.01± 2.09
Late BP Fusion 88.85 ± 4.6 80.22 ± 2.09

3.6.2 3D emotion recognition from body movements

Recently, the study of computational models for human emotion recognition has gained

increasing attention not only for commercial applications (to get feedback on the effectiveness

of advertising material), but also for gaming and monitoring of the emotional state of

operators that act in risky contexts such as aviation. Most of these studies have focused

on the analysis of facial expressions, but important clues can be derived by the analysis

of the dynamics of body parts as well [53]. Using the same geometric framework that was
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proposed for action recognition, we evaluated our approach in the task of emotion recognition

from human body movement. Here, the used landmarks are in 3D coordinate space, but

with better accuracy and higher temporal resolution, with respect to the case of action

recognition.

3.6.2.1 Dataset

Experiments have been performed on the Body Motion-Emotion dataset (P-BME),

acquired at the Cognitive Neuroscience Laboratory (INSERM U960 - Ecole Normale

Supérieure) in Paris [53]. It includes Motion Capture (MoCap) 3D data sequences recorded

at high frame rate (120 frames per second) by an Opto-electronic Vicon V8 MoCap system

wired to 24 cameras. The body movement is captured by using 43 landmarks that are

positioned at joints.

To create the dataset, 8 subjects (professional actors) were instructed to walk following

a predefined “U” shaped path that includes forward-walking, turn, and coming back. For

each acquisition, actors moved along the path performing one emotion out of five different

emotions, namely, anger, fear, joy, neutral, and sadness. So, each sequence is associated with

one emotion label. Each actor performed at maximum five repetitions of a same emotional

sequence for a total of 156 instances. Though there is some variation from subject to subject,

the number of examples is well distributed across the different emotions: 29 anger, 31 fear,

33 joy, 28 neutral, 35 sadness.

3.6.2.2 Experimental settings and parameters

Since MoCap skeletons are in 3D coordinate space, we followed the same steps that

have been proposed for action recognition, including the decomposition into body parts. An

example of this decomposition on MoCap skeletons is shown in Fig. 3.10. Note that the

same late fusion of body part classifiers, as mentioned in the previous Section, is adopted.
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A cross-validation grid search has been performed to find an optimal value for the weight

parameter k.

Torso

Left and right arms

Left and right legs

Mocap skeleton

Figure 3.10 – Decomposition of the MoCap skeleton into three body parts.

Experiments on the P-BME dataset were performed by using a leave-one-subject-out

cross validation protocol. With this solution, iteratively, all the emotion sequences of a

subject are used for test, while all the sequences of the remaining subjects are used for

training.

3.6.2.3 Results and discussion

In Table 3.4, we provide the obtained results as well as a comparative study with baseline

experiments on the P-BME dataset.

Similarly to the reported results for action recognition, the proposed fusion of body

part classifiers achieved the highest performance with an average accuracy of 81.99% and

standard deviation of 4.36%. Considering only the skeletons (without body parts) in the

classification, the performance decreased to an average accuracy of 78.15%.

In Fig. 3.11 (left), we report the confusion matrix of different emotions. The diagonal

dominance of the matrix can be observed with the best results scored by neutral and anger

(more than 80%), followed by fear (71%), joy (about 67%), with the lowest accuracy for
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Table 3.4 – Comparative study of the proposed approach with baseline experiments on the
P-BME dataset. First rows: state-of-the-art action and emotion recognition methods and
human evaluator; second rows: baseline experiments; last row: ours

Method Accuracy (%)
Human evaluator 74.20
COV3D [29] 71.14 ± 6.77
LARP [123] 74.8 ± 3.17
Traj. on S+(3, n) - Flat metric 57.41 ± 8.43
Traj. on S+(3, n) - No DTW 63.23 ± 8.62
Traj. on S+(3, n) - kNN 68.9 ± 7.63
Traj. on G(3, n) 66.35± 6.43
Traj. on G(3, n) - BP Fusion 67.09 ± 6.82
Traj. on S+(3, n) 78.15 ± 5.79
Traj. on S+(3, n) - BP Fusion 81.99 ± 4.36

Figure 3.11 – P-BME dataset: Confusion matrix (left). Impact of the parameter k on
emotion recognition accuracy (right).

sadness (about 65%). In Fig. 3.11 (right), we report the obtained results for k ∈ [0, 3] with

a step of 0.1.

As mentioned in Section 3.4.1, an important step in our approach is the temporal

alignment. Avoiding this step and following the same protocol, we found that the

performance decreased to 63.23%.

Recently, Daoudi et al. [29] proposed a method for emotion recognition from body

movement based on covariance matrices and SPD manifold. They used the 3D covariance

descriptor (COV3D) of skeleton joints across time to represent sequences without a

special handling of the dynamics. They reported and average accuracy of 71.4%. They
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also performed a user based test in order to evaluate the performance of the proposed

classification method in comparison with a human-based judgment. In this test, thirty-two

naive individuals were asked to perform a force-choice task in which they had to choose

between one of the five emotions. This resulted in an average value of about 74%. It is

relevant to note that the user based test being based on RGB videos provides to the users

much more information for evaluation, including the actor’s face. Notably, our method is

capable to score better results based on the skeleton joints only.

We also compared our results with the Lie algebra relative pairs (LARP) method

proposed by Vemulapalli et al. [123] for skeleton action recognition. In that work, each

skeleton is mapped to a point on the product space of SE(3) × SE(3) · · · × SE(3), where

it is modeled using transformations between joint pairs. The temporal evolution of these

features is seen as a trajectory on SE(3)×SE(3)× · · ·×SE(3) and mapped to the tangent

space of a reference point. A one-versus-all SVM combined with Dynamic Time Warping and

Fourier temporal pyramid (FTP) is used for classification. Using this method, an average

accuracy of 74.8% was obtained, which is about 8% lower than ours.

The highest accuracy (78.15%) is obtained for k∗ = 1.2. For k = 0, the skeletons are

considered as trajectories on the Grassmann manifold G(3, n), and the obtained accuracy is

around 66%, which is 12% lower than the retained result. In order to show the importance of

choosing a well defined Riemannian metric in the space of interest, we conducted the same

experiments by changing the metric dS+ defined in Eq. (3.3.8) with a flat metric, defined

as the Frobenius norm of the difference between two Gram matrices (skeletons). For this

experiment, we report an average accuracy of 57.41% being lower of about 21% than using

dS+ .

In Table 3.5, we report the obtained accuracies per emotion for each body part. With

this evaluation, we are able to identify body parts that are more informative to a specific

emotional state. We can observe that Anger, Fear, and Joy are better recognized with the

whole body, while Neutral and Sadness are better recognized with arms. One can note that
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the performance for these two emotions increases after body part fusion compared to the

whole body only, notably through the contribution of arms.

Table 3.5 – Comparative study of emotion recognition (%) on the P-BME dataset using
different parts of the body and our proposed method. Anger (An), Fear (Fe), Joy (Jo),
Neutral (Ne), Sadness (Sa), Accuracy (Acc)

Method An Fe Jo Ne Sa Acc
Legs only 55.1 64.3 35.5 57.6 60 59.17
Arms only 55.2 57.1 45.2 84.8 71.4 69.42
Torso only 82.76 50 48.4 75.7 54.3 67.23
Full body 89.6 78.5 58.0 72.7 65.7 78.15
Late BP Fusion 89.7 71.4 67.7 81.8 65.7 81.99

Finally, we evaluated our approach when considering subsequences of the original

sequence. In Table 3.6, we provide the obtained results and the execution time of the testing

phase, when considering only 25%, 50%, 75%, and 100% of the sequence. The execution

time is recorded for a test sequence of 1, 118 frames (about 8 seconds) when considering

separately the four temporal subsequences. The highest execution time is about 2 seconds,

which is satisfactory considering the high frame-rate of the data. Unsurprisingly, the best

accuracy is obtained when considering the whole sequence. The performance decreases when

shorter subsequences are used to perform emotion recognition.

Table 3.6 – Emotion recognition accuracy using different sequence lengths on the P-BME
dataset

Sequence length Accuracy (%) Exec. time (s)
25% of the sequence 61.20 ± 7.52 1.90
50% of the sequence 67.27 ± 6.36 1.93
75% of the sequence 70.88 ± 6.81 1.95
100% of the sequence 78.15 ± 5.79 1.99

3.6.3 2D facial expression recognition

We evaluated our approach also in the task of facial expression recognition from 2D

landmarks. In this case, the landmarks are in a 2D coordinate space, resulting in a Gram

matrix of size n × n of rank 2 for each configuration of n landmarks. The facial sequences

are then seen as time-parameterized trajectories on S+(2, n).
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3.6.3.1 Datasets

We conducted experiments on four publicly available datasets – CK+, MMI, Oulu-

CASIA, and AFEW datasets.

Cohn-Kanade Extended (CK+) dataset [82] – It contains 123 subjects and 593

frontal image sequences of posed expressions. Among them, 118 subjects are annotated with

the seven labels – anger (An), contempt (Co), disgust (Di), fear (Fe), happy (Ha), sad

(Sa) and surprise (Su). Note that only the two first temporal phases of the expression, i.e.,

neutral and onset (with apex frames), are present.

MMI dataset [118] – It consists of 205 image sequences with frontal faces of 30 subjects

labeled with the six basic emotion labels. In this dataset each sequence begins with a neutral

facial expression, and has a posed facial expression in the middle; the sequence ends up with

the neutral facial expression. The location of the peak frame is not provided as a prior

information.

Oulu-CASIA dataset [143] – It includes 480 image sequences of 80 subjects, taken

under normal illumination conditions. They are labeled with one of the six basic emotion

labels. Each sequence begins with a neutral facial expression and ends with the apex of the

expression.

AFEW dataset [33] – Collected from movies showing close-to-real-world conditions,

which depict or simulate the spontaneous expressions in uncontrolled environment. The

task is to classify each video clip into one of the seven expression categories (the six basic

emotions plus the neutral).

3.6.3.2 Experimental settings and parameters

All our experiments were performed once facial landmarks were extracted using the

method proposed in [8] on the CK+, MMI, and Oulu-CASIA datasets. On the challenging
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AFEW dataset, we have considered the corrections provided in 2 after applying the same

detector. The number of landmarks is n = 49 for each face. In this case, we applied the

adaptive re-sampling of trajectories proposed in Section 3.4.2 that enhances small facial

deformations and disregards redundant frames. This step involves two parameters ζ1 and

ζ2 for up-sampling and down-sampling, respectively. These two parameters are chosen so

that all the trajectories in the dataset have the same length, equal to the median length.

For the parameter k, the same procedure as for action and emotion recognition from body

movement is applied.

To evaluate our approach, we followed the experimental settings commonly used in

recent works. Following [42, 65, 79], we have performed 10-fold cross validation experiments

for the CK+, MMI, and Oulu-CASIA datasets. In contrast, the AFEW dataset was

divided into three sets: training, validation and test, according to the protocols defined

in EmotiW’2013 [32]. Here, we only report our results on the validation set for comparison

with [32, 42, 79].

3.6.3.3 Results and discussion

On CK+, the average accuracy is 96.87%. Note that the accuracy of the trajectory

representation on G(2, n), following the same pipeline is 2% lower, which confirms the

contribution of the covariance embedded in our representation.

An average classification accuracy of 79.19% is reported for the MMI dataset. Note

that based on geometric features only, our approach grounding on both representations

on S+(2, n) and G(2, n) achieved competitive results with respect to the literature (see

Table 3.7). On the Oulu-CASIA dataset, the average accuracy is 83.13%, hence 3% higher

than the Grassmann trajectory representation. This is the highest accuracy reported in

literature (refer to Table 3.8). Finally, we reported an average accuracy of 39.94% on the

AFEW dataset. Despite being competitive with respect to recent literature (see Table 3.8),

2. http://sites.google.com/site/chehrahome
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these results evidence that AFER "in-the-wild" is still challenging.

We highlight the superiority of the trajectory representation on S+(2, n) over the

Grassmannian (refer to Table 3.7 and Table 3.8). This is due to the contribution of the

covariance part further to the conventional affine-shape analysis over the Grassmannian.

Recall that k serves to balance the contribution of the distance between covariance matrices

living in P2 with respect to the Grassmann contribution G(2, n). The optimal performance

are achieved for the following values – k∗CK+ = 0.081, k∗MMI = 0.012, k∗Oulu−CASIA = 0.014

and k∗AFEW = 0.001. In Fig. 3.12, we study the method when varying the parameter k

(closeness). The graphs report the method accuracy on CK+, MMI, Oulu-CASIA, and

AFEW, respectively.
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Figure 3.12 – Accuracy of the proposed approach when varying the weight parameter k
on, from left to right, CK+, MMI, Oulu-CASIA and AFEW.

In the left panel of Fig. 3.13, we show the confusion matrix on the CK+ dataset. While

individual accuracies of “anger”, “disgust”, “happiness”, and “surprise” are high (more than

96%), recognizing “contempt” and “fear” is still challenging (less than 92%). In the right

panel of the same figure, we can observe that the best accuracy on the MMI dataset was

also achieved for “happiness” followed by “surprise”. Also in this case, the lowest performance

was recorded for “fear” expression.

As shown in Fig. 3.13, on the Oulu-CASIA dataset the highest performance was reached

for “happiness” (91.3%) and “surprise” (93.8%) expressions; “Disgust”, “fear”, and “sadness”

were the most challenging expressions in this dataset (< 79%). Unsurprisingly for the AFEW

dataset, the “neutral” (63.5%), “anger” (56.3%), and “happiness” (66.7%) expressions are
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Table 3.7 – Overall accuracy (%) on CK+ and MMI datasets. Here, (A): appearance (or
color); (G): geometry (or shape); ∗: Deep Learning based approach; last row: ours

Method CK+ MMI
(A) 3D HOG (from [65]) 91.44 60.89
(A) 3D SIFT (from [65]) - 64.39
(A) Cov3D (from [65]) 92.3 -
(A) STM-ExpLet [79] (10-fold) 94.19 75.12
(A) CSPL [145] (10-fold) 89.89 73.53
(A) F-Bases [99] (LOSO) 96.02 75.12
(A) ST-RBM [42] (10-fold) 95.66 81.63
(A) 3DCNN-DAP [78] ∗ (15-fold) 87.9 62.2
(A) DTAN [65] ∗ (10-fold) 91.44 62.45
(A+G) DTAGN [65] ∗ (10-fold) 97.25 70.24
(G) DTGN [65] ∗ (10-fold) 92.35 59.02
(G) TMS [61] (4-fold) 85.84 -
(G) HMM [133] (15-fold) 83.5 51.5
(G) ITBN [133] (15-fold) 86.3 59.7
(G) Velocity on G(n, 2)[111] 82.8 -
(G) traj. on G(2, n) (10-fold) 94.25 ± 3.71 78.18 ± 4.87
(G) traj. on S+(2, n) (10-fold) 96.87 ± 2.46 79.19 ± 4.62

better recognized over the rest (see the right confusion matrix in Fig. 3.14).

It is important to note that the “fear” expression was the most challenging expression

in all the datasets. In fact, this expression involves several action unit activations (i.e.,

AU1+AU2+AU4+AU5+AU7+AU20+AU26) [47] that are quite difficult to detect by using

only geometric features.

Comparative Study with the State-of-the-Art. In Table 3.7 and Table 3.8, we

Table 3.8 – Overall accuracy on Oulu-CASIA and AFEW dataset (following the EmotiW’13
protocol [32])

Method Oulu-CASIA AFEW
(A) HOG 3D [70] 70.63 26.90
(A) 3D SIFT [101] 55.83 24.87
(A) LBP-TOP [144] 68.13 25.13
(A) EmotiW [32] - 27.27
(A) STM [79] - 29.19
(A) STM-ExpLet [79] 74.59 31.73
(A+G) DTAGN [65] ∗ (10-fold) 81.46 -
(A) ST-RBM [42] - 46.36
(G) traj. on G(2, n) 80.0 ± 5.22 39.1
(G) traj. on S+(2, n) 83.13 ± 3.86 39.94
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Figure 3.13 – Confusion matrices on the CK+ (left) and MMI (right) datasets.

compare our approach over the recent literature. Overall, our approach achieved competitive

performance with respect to the most recent approaches. On CK+, we obtained the second

highest accuracy. The ranked-first approach is DTAGN [65], in which two deep networks are

trained on shape and appearance channels, then fused. Note that the geometry deep network

(DTGN) achieved 92.35%, which is much lower than ours. Furthermore, our approach

outperforms the ST-RBM [42] and the STM-ExpLet [79]. On the MMI dataset, our approach

outperforms the DTAGN [65] and the STM-ExpLet [79]. However, it is behind ST-RBM [42].

On the Oulu-CASIA dataset, our approach shows a clear superiority to existing methods,

in particular STM-ExpLet [79] and DTGN [65]. Elaiwat et al. [42] do not report any results

on this dataset, however, their approach achieved the highest accuracy on AFEW. Our

approach is ranked second showing a superiority to remaining approaches on AFEW.

Baseline experiments. Based on the results reported in Table 3.9, we discuss in

this paragraph algorithms and their computational complexity with respect to baselines.

Firstly, we studied the computational cost of the proposed framework in the task of 2D

facial expression recognition on the CK+ dataset. Correspondingly to 3D action recognition

settings, we report in the top of Table 3.9 the running time statistics for trajectory
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Figure 3.14 – Confusion matrices on the Oulu-CASIA (left) and AFEW (right) datasets.

construction, comparison of trajectories, and the testing phase of trajectory classification in

S+(2, n).

Then, we have used different distances defined on S+(2, n). Specifically, given two

matrices G1 and G2 in S+(2, n): (1) we used dPn to compare them by regularizing their

ranks, i.e., making them n full-rank, and considering them in Pn (the space of n-by-n positive

definite matrices), dPn(G1, G2) = dPn(G1 + εIn, G2 + εIn); (2) we used the Euclidean flat

distance dF+(G1, G2) = ‖G1−G2‖F , where ‖.‖F denotes the Frobenius-norm. The closeness

dS+ between two elements of S+(2, n) defined in Eq. (7) is more suitable, compared to

the distance dPn and the flat distance dF+ defined in literature. This demonstrates the

importance of being faithful to the geometry of the manifold of interest. Another advantage

of using dS+ over dPn is the computational time, as it involves n-by-2 and 2-by-2 matrices

instead of n-by-n matrices. Note that the provided execution times are relative to the

comparison of two arbitrary sequences.

Table 3.9 reports the average accuracy when DTW in used or not in our pipeline, on both

the CK+ and MMI datasets. It is clear from these experiments that a temporal alignment

of the trajectories is a crucial step, as an improvement of about 12% is obtained on MMI
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Table 3.9 – Baseline experiments and computational complexity on the CK+, MMI and
AFEW datasets

Pipeline component Time (s)
Trajectory construction in S+(2, n) 0.007
Comparison of trajectories in S+(2, n) 0.055
Classification of a trajectory in S+(2, n) 6.28

Distance CK+ (%) Time (s)
Flat distance dF+ 93.78 ± 2.92 0.020
Distance dPn in Pn 92.92 ± 2.45 0.816
Closeness dS+ 96.87± 2.46 0.055

Temporal alignment CK+ (%) MMI (%) Time (s)
without DTW 90.94 ± 4.23 66.93 ± 5.79 0.018
with DTW 96.87 ± 2.46 79.19 ± 4.62 0.055

Adaptive re-sampling MMI (%) AFEW (%)
without resampling 74.72 ± 5.34 36.81
with resampling 79.19 ± 4.62 39.94

Classifier CK+ (%) AFEW (%)
K-NN 88.97 ± 6.14 29.77

ppf-SVM 96.87 ± 2.46 39.94

and of approximately 6% on CK+.

The adaptive re-sampling tool is also analyzed. When it is included in the pipeline, an

improvement of about 5% is achieved on MMI and 3% on AFEW.

In the last Table, we compare the results of ppfSVM with a k-Nearest Neighbor classifier

for both the CK+ and AFEW datasets. The number of nearest neighbors k to consider for

each dataset is chosen by cross-validation. On CK+, we obtained an average accuracy of

88.97% for k = 11. On AFEW, we obtained an average accuracy of 29.77% for k = 7. These

results are outperformed by the ppfSVM classifier.

3.7 Conclusion

In this chapter, we have proposed a geometric approach for effectively modeling and

classifying dynamic 2D and 3D landmark sequences for human behavior understanding.

Based on Gramian matrices derived from the static landmarks, our representation consists
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of an affine-invariant shape representation and a spatial covariance of the landmarks.

We have exploited the Riemannian geometry of the space of Gram matrices to define

a closeness between static shape representations. Then, we have derived computational

tools to align, re-sample and compare these trajectories giving rise to a rate-invariant

analysis. Finally, landmark sequences are learned from these trajectories using a variant

of SVM, called ppfSVM, which allows us to deal with the nonlinearity of the space of

representation. We evaluated our approach in three different applications, namely, 3D human

action recognition, 3D emotion recognition from body movement, and 2D facial expression

recognition. Extensive experiments on nine publicly available datasets showed that the

proposed approach achieves competitive or better results than state-of-art solutions.
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Chapitre 4

Barycentric Representation of Facial

Landmarks for Expression

Recognition and Depression Severity

Level Assessment

4.1 Introduction

In the previous chapter, we have introduced a novel shape representation based on

the Gram matrix. After matrix decomposition, we have showed that this representation

brings two different information; the first one was the spatial covariance given by the

positive definite matrix; and the second and most important one was the affine-invariant

shape information given by the orthogonal matrix. The latter lies on the Grassmann

manifold which is a non-linear space where inference algorithms are not applicable in a

straightforward manner. In this chapter we propose an affine-invariant shape representation

using barycentric coordinates of 2D facial landmarks. While being closely related to the
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conventional Grassmann representation, the barycentric one has the advantage to lie on an

Euclidean space. Thanks to the Euclidean nature of the barycentric representation, one can

safely use standard computational and machine learning tools. We evaluate the proposed

representation in two different face analysis tasks namely, facial expression recognition in

unconstrained environments, and automatic assessment of depression severity level.

4.2 Affine-invariant shape representation using barycentric

coordinates

As stated in Section 2.3.2 of chapter 2, the analysis of moving landmarks may be

distorted by view variations. The problem is more acute when it comes to dealing with

2D landmarks. Indeed, in the 2D case these distortions are due to undesirable projective

transformations which should be filtered out to have a robust representation of 2D landmarks

to view variations. These projective transformations are difficult to be filtered out, but they

can be approximated by affine transformations, especially when the face is far from the

camera [111]. In this section we briefly review the main definitions of the affine-invariance

with barycentric coordinates and their use in 2D facial shape analysis [66].

In order to study the motion of an ordered list of n landmarks Z1(t), Z2(t), . . . , Zn(t),

where t represents the time parametrization and Zi(t) = (xi(t), yi(t)), 1 ≤ i ≤ n, in the plane

up to the action of an arbitrary affine transformation, a standard technique is to consider

the span of the columns of the n× 3 time-dependent matrix

M(t) :=


x1(t) y1(t) 1

...
...

...

xn(t) yn(t) 1

 .

If at any time t there exists a fixed triplet of landmarks forming a non-degenerate triangle,

the rank of the matrix M(t) is constantly equal to 3 and the span of its columns is a curve

of three-dimensional subspaces in Rn. In other words, a curve in the Grassmannian G(3, n),
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which is well known [12] to be an affine-invariant of the motion. This convenient way of

filtering out the affine transformations opens the way to the use of metric and differential-

geometric techniques in the study and classification of moving landmarks [123, 13, 30, 67, 6].

It is worth noting that this representation in G(3, n) is equivalent to the Grassmann

representation in G(2, n) which was studied and described in the previous chapter [111, 67].

The latter was obtained by centering the 2D landmarks and considering the span of the

columns of the n× 2 matrix as an affine-invariant representation in G(2, n) without adding

a column of ones to the matrix formed by the 2D coordinates.

Another convenient and more classic way to filter out affine transformations is through

the use of barycentric coordinates. This method can be applied given three of the landmarks

which form a non-degenerate triangle throughout all their motion. Indeed, assume, without

loss of generality, that Z1(t), Z2(t), and Z3(t) are the vertices of a non-degenerate triangle

for every value of t. In the case of facial shapes, the right and left corners of the eyes and the

tip of the nose are chosen to form a non-degenerate triangle (see the red triangle in Fig. 4.1).

For i = 4, .., n and at any time t, we can write

Zi(t) = λi1(t)Z1(t) + λi2(t)Z2(t) + λi3(t)Z3(t) ,

where the numbers λi1(t), λi2(t), and λi3(t) satisfy

λi1(t) + λi2(t) + λi3(t) = 1.

The last condition renders the triplet of barycentric coordinates (λi1(t), λi2(t), λi3(t)) unique.

In fact, it is equal to

(xi(t), yi(t), 1)


x1(t) y1(t) 1

x2(t) y2(t) 1

x3(t) y3(t) 1


−1

.

If T is an affine transformation of the plane, the barycentric representation of TZi(t) in

terms of the frame given by TZ1(t), TZ2(t), and TZ3(t) is still (λi1(t), λi2(t), λi3(t)). This
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Figure 4.1 – Example of the automatically tracked 49 facial landmarks. The three red
points denote the facial landmarks used to form the non-degenerate triangle required to
compute the barycentric coordinates.

allows us to derive the (n− 3)× 3 matrix

Λ(t) :=


λ41(t) λ42(t) λ43(t)

...
...

...

λn1(t) λn2(t) λn3(t)

 .

as the affine shape representation of the moving landmarks.

4.2.1 Relationship with the conventional Grassmannian representation

A topological space M is a topological manifold of dimension dim if it is locally

Euclidean. That means that every point X ∈M has a neighborhood that is homeomorphic

to an open subset of Rdim. A coordinate chart (or just a chart on M) is a pair (Σ,Φ),

where Σ is an open subset of M and Φ : Σ → Σ̃ is homeomorphism from Σ to the open

set Σ̃ ∈ Rdim. The definition of topological manifold implies that each point X ∈ M is

contained in the domain of some coordinate chart [10]. In the case of the affine-invariant

Grassmannian representation in G(3, n), the points on the Grassmannian corresponding to

the facial landmarks are naturally contained in one of the standard charts. It turns out that
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passing to this chart is nothing more than taking the barycentric coordinates with respect

to a specific triplet of landmark points.

In order to expose the basic relationship between the Grassmannian representation and

the barycentric one, let us recall, in a particular case, the usual way to construct charts

in the Grassmannian. If ζ ∈ G(3, n) is a subspace that intersects the (n − 3)-dimensional

subspace

W = {(0, 0, 0, x4, . . . , xn) : xi ∈ Rn for i between 4 and n}

only at the origin, and x = (x1, . . . , xn), y = (y1, . . . , yn), and z = (z1, . . . , zn) is a basis for

ζ, then the 3× 3 matrix 
x1 y1 z1

x2 y2 z2

x3 y3 z3


is invertible and the (n− 3)× 3 matrix

x4 y4 z4

...
...

...

xn yn zn




x1 y1 z1

x2 y2 z2

x3 y3 z3


−1

is independent of the chosen basis. In this way, the open and dense set of 3-dimensional

subspaces transverse to W are put in a bijective correspondence with R(n−3)×3.

If we consider the curve in G(3, n) given by the span of the columns of the matrix

M(t) :=


x1(t) y1(t) 1

...
...

...

xn(t) yn(t) 1


and if the landmarks Z1(t) = (x1(t), y1(t)), Z2(t) = (x2(t), y2(t)), and Z3(t) = (x3(t), y3(t))

form a non-degenerate triangle throughout all their motion, then composing this curve with
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a chart in the Grassmannian yields the curve of matrices
x4(t) y4(t) 1

...
...

...

xn(t) yn(t) 1




x1(t) y1(t) 1

x2(t) y2(t) 1

x3(t) y3(t) 1


−1

,

which is just the curve Λ(t) encoding the barycentric representation of the landmarks.

For more details about the affine-invariance with barycentric coordinates, please refer to the

page 81 of the book [14]. In what follows, we will consider the introduced affine-invariant

vector Λ, with dimension m = (n− 3)× 3, to represent a static facial shape and the curve

Λ(t) to denote a facial shape sequence.

4.3 Metric learning on barycentric representation for expres-

sion recognition in unconstrained environments

Given the facial shape represented by the affine-invariant vector Λ, with dimension m =

(n− 3)× 3, we seek a suitable metric that is discriminative enough in terms of expression to

compare them. The Euclidean distance, defined as the squared l2-norm of the difference of the

vectors, could be a reasonable choice since the defined shapes lie in Euclidean space. However,

such distance disregards the specific nature of the considered facial shapes. To overcome this

issue, we propose to learn a Mahalanobis distance instead of using the standard Euclidean

distance [73]. Given two facial shapes represented by the affine-invariant vectors Λi and Λj

in Rm, the Mahalanobis distance is defined by

d2
lij

(Λi,Λj) = (Λi − Λj)
TA(Λi − Λj) , (4.3.1)

where A is a positive semi-definite (p.s.d) matrix of size m × m. The problem of metric

learning is then to find the best p.s.d matrix A that best discriminates the facial expressions,

i.e., results in small distances when the facial shapes represent similar expressions and large

distances when they represent different expressions.
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Let D = {(Λ1, c1), . . . , (ΛN , cN )} represent a set of affine-invariant shapes in Rm annota-

ted with the corresponding expressions (e.g., c =’happy’, ’angry’, etc.). Let {Λi,Λj ,Λk} be

a triplet of affine-invariant shapes from D such that (Λi,Λj) have the same label (ci = cj),

and (Λi,Λk) with different labels (ci 6= ck). We aim to find an optimal p.s.d matrix A such

that d2
lij

(Λi,Λj) < d2
lik

(Λi,Λk). That is, we wish to find a p.s.d matrix A that minimizes

d2
lij
−d2

lik
= (Λi−Λj)

TA(Λi−Λj)−(Λi−Λk)
TA(Λi−Λk). In order to solve this optimization

problem, we follow the convenient method described by Shen et al. [105], where a boosting

is used. This method is based on the observation that any positive semidefinite matrix can

be decomposed into a linear combination of trace-one rank-one matrices. It uses rank-one

positive semidefinite matrices as weak learners within an efficient and scalable boosting-

based learning process.

4.3.1 Facial expression classification

The learned distance does, indeed, assign small distances to similar static facial shapes

and large distances to dissimilar shapes. However, as conveying an expression is a temporal

process, we are more interested in comparing facial shape sequences. Accordingly, we exploit

the learned distance to build a rate-invariant similarity measure between facial shape

sequences. Specifically, the Dynamic Time Warping (DTW) algorithm [15], employing the

learned distance instead of the standard Euclidean distance, is used to compare two facial

sequences.

Following [9, 67], we adopt the pairwise proximity function SVM (ppfSVM) [50, 51]

to classify the facial sequences. PpfSVM requires the definition of a similarity measure to

compare samples. In our case, it is natural to consider the similarity measure given by our

version of DTW for such a comparison. An overview of the proposed method is shown in

Fig. 4.2.
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Figure 4.2 – Overview of the proposed approach (arycentric representation and metric
learning) – After automatic landmark detection for each frame of the video, we represent
the resulting shapes through their barycentric coordinates. While being closely related to
the affine-invariant Grassmann representation, this representation allows us to work directly
on Euclidean space where a metric learning algorithm is applied. Dynamic Time Warping
(DTW) using the learned metric is then performed to align the facial sequences. Finally, the
ppfSVM exploiting the DTW similarity measure is used as expression classifier.
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4.3.2 Experimental results

In order to learn the metric, we use only peak frames from each facial sequence, where

the expression reaches its peak. Since peak frames are difficult to detect in uncontrolled

facial expressions, we performed the metric learning using extracted landmarks from CK+

dataset [82] which is captured in strict controlled conditions. In this dataset, 309 facial

sequences of 118 subjects are annotated with the six labels (the six basic emotions). In all

the sequences, the actors start by being neutral then perform the expression until reaching

a peak. In our experiments, we only used the five last frames and the first frame from all

the sequences. The labels of the five last frames are assigned according to the label of the

sequence, while the label of the first frame is always considered as ’neutral’. A total number

of 16686 facial shapes are used for the training phase to learn the Mahalanobis distance.

To evaluate the proposed approach, we conducted experiments on the well-known AFEW

dataset [33] which was described in the previous chapter. Note that our experiments are made

once the facial landmarks are extracted using the method proposed in [8]. The three points

used to form the non-degenerate triangle, essential to build the affine-invariant shapes from

the landmarks, are the points positioned at the left and right corners of the eye and the nose

tip.

All our programs were implemented in Matlab and run on a 2.8 GHZ CPU. We used the

multi-class SVM implementation of the LibSVM library [25], and the codes given by [105]

for the metric learning.

4.3.2.1 Results and discussions

Following the experimental settings mentioned in the previous Section, we report an

accuracy of 38.38%. From the corresponding confusion matrix shown in Fig. 4.3, we can

observe that the highest performances are obtained for ’Anger’ (51.6%), ’Happiness’ (58.7%),

and ’Neutral’ (55.6%). Since AFEW is a very challenging dataset, the obtained results
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are competitive with state-of-art approaches as shown in Table 4.1. We recorded better

performance than many appearance based approaches such as SPDNet [58] and STM-

ExpLet [79].

Our results are outperformed by the Gram trajectory representation proposed in the

previous chapter [67]. However, the execution time of comparing two arbitrary sequences on

AFEW dataset is 0.064 seconds with the barycentric approach against 0.84 seconds with

the Gram approach. In Table 4.1, we can observe that our results compared to the Gram

approach are outperformed by only 1% while being 10 times faster.
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Figure 4.3 – Confusion matrix on AFEW dataset

Table 4.1 – Overall accuracy AFEW dataset (FER with Barycentric representation)
Method Accuracy (%)
(A) HOG 3D [70] 26.90
(A) HOE [130] 19.54
(A) 3D SIFT [101] 24.87
(A) LBP-TOP [144] 25.13
(A) EmotiW [32] 27.27
(A) STM [79] 29.19
(A) STM-ExpLet [79] 31.73
(A) SPDNet [58] 34.23
(G) Gram Trajectories [67] 39.94
(G) Ours 38.38
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To evaluate the different steps of the proposed pipeline, we performed baseline experi-

ments. Firstly, we conducted the same experiments while using alternative representations

and metrics. We compared our results with a conventional Grassmann affine-invariant

representation coupled with a Riemannian metric given by the subspace angles [12, 111]. The

achieved accuracy is around 2.5% lower than ours. We also replaced the learned Mahalanobis

distance with a standard Euclidean distance. Here also, the performance decreases by

about 3%. In Table 4.2, we show the achieved accuracies by the described alternative

representations and metrics and the necessary execution time to compare two arbitrary facial

shapes. One can observe that the proposed representation achieves better performance than

the Grassmannian while being less time consuming. These results show the effectiveness of

the proposed representation and the importance of the metric learning step in our pipeline.

As mentioned in the previous Section, we used the five last (peak) frames from the sequences

of CK+ dataset to learn the Mahalanobis distance. In Table 4.2, we provide the obtained

accuracies when using one, two, five and seven last peak frames from each sequence. The

highest accuracy is obtained with the last five frames. Besides, we report in Table 4.2 the

average accuracy when DTW is used or not in our pipeline. It is clear from these experiments

that a temporal alignment is an important step as an improvement of around 7% is obtained.

In the last Table, we compare the results of ppfSVM to a K-NN classifier coupled with

the introduced DTW similarity measure. The number of nearest neighbors K is chosen by

cross-validation. We obtained an average accuracy of 31.33% for K = 5. These results are

outperformed by ppfSVM classifier.

4.4 Facial and head movements analysis for depression seve-

rity level assessment

Many of the symptoms of depression are observable. In depression facial expressiveness

[94, 100] and head movement [45, 64, 49] are reduced.
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Table 4.2 – Baseline experiments (FER with barycentric representation)
Distance Accuracy (%) Time (µs)
Subspace angles in G(3, n) 36.81 2967
Euclidean distance 36.55 530
Mahalanobis distance dl 38.38 568

Number of peak frames Accuracy (%)
1 peak frame 37.07
2 peak frames 37.59
5 peak frames 38.38
7 peak frames 36.29

Temporal alignment Accuracy (%) Time (s)
without DTW 30.8 0.008
with DTW 38.38 0.064

Classifier Accuracy (%)
K-NN 31.33

ppf-SVM 38.38

Yet, systematic means of using observable behavior to inform screening and diagnosis of

the occurrence and severity of depression are lacking. Recent advances in computer vision

and machine learning have explored the validity of automatic measurement of depression

severity from video sequences [3, 119, 135, 35].

Hdibeklioglu and colleagues [35] proposed a multimodal deep learning based approach to

detect depression severity in participants undergoing treatment for depression. Deep learning

based per-frame coding and per-video Fisher-vector based coding were used to characterize

the dynamics of facial and head movement. For each modality, selection among features was

performed using combined mutual information, which improved accuracy relative to blanket

selection of all features regardless of their merit. For individual modalities, facial and head

movement dynamics outperformed vocal prosody. For combinations, fusing the dynamics

of facial and head movement was more discriminative than head movement dynamics and

more discriminative than facial movement dynamics plus vocal prosody and head movement

dynamics plus vocal prosody. The proposed deep learning based method outperformed the

state of the art counterparts for each modality.

A limitation of the deep learning approach is its lack of interpretability. The dynamics of
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facial, head, and vocal prosody were important, but the nature of those changes during course

of depression were occult. From their findings, one could not say whether dynamics were

increasing, decreasing, or varying in some non-linear way. For clinical scientists and clinicians

interested in the mechanisms and course of depression, interpretable features matter. They

want to know not only presence or severity of depression but how dynamics vary with

occurrence and severity of depression.

Two previous shallow-learning approaches to depression detection were interpretable but

less sensitive to depression severity. In Alghowinem and colleagues [3], head movements were

tracked by AAMs [98] and modeled by Gaussian mixture models with seven components.

Mean, variance, and component weights of the learned GMMs were used as features. And

a set of interpretable head pose functionals was proposed. These included the statistics of

head movements and duration of looking in different directions.

Williamson and his colleagues [135] investigated the specific changes in coordination,

movement, and timing of facial and vocal signals as potential symptoms for self-reported BDI

(Beck Depression Inventory) scores [11]. They proposed a multi-scale correlation structure

and timing feature sets from video-based facial action units (AUs [40]) and audio-based

vocal features. The features were combined using a Gaussian mixture model and extreme

learning machine classifiers to predict BDI scores.

Reduced facial expression is commonly observed in depression and relates to deficits

in experiencing positive as well as negative emotion [95]. Less often, greatly increased

expression occurs. There are referred to as psychomotor retardation and psychomotor

agitation, respectively.

In our study, we propose to capture aspects of psychomotor retardation and agitation

using the dynamics of facial and head movement. Participants were from a clinical trial for

treatment of moderate to severe depression and had history of multiple depressive episodes.

Compared to state-of-the-art deep learning approch for depression severity assessment, we
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propose a reliable and clinically interpretable method of automatically measuring depression

severity from the dynamics of face and head motion.

After extraction of facial landmarks with a state-of-the-art solution [63], we encode them

using the barycentric representation introduced in Section 4.2. Because we are interested in

both facial movement dynamics and head movement dynamics, the later is encoded by

combining the 3 degrees of freedom of head movement (i.e., yaw, roll, and pitch angles) in

a single rotation matrix mapped to Lie algebra to overcome the non-linearity of the space

of rotation matrices [123, 124].

To capture changes in the dynamics of head and facial movement that would reflect the

psychomotor retardation of depressed participants, relevant kinematic features are extracted

(i.e., velocities and accelerations) from each proposed representation. Gaussian Mixture

Models (GMM) combined with an improved fisher vector encoding are then used to obtain

a single vector representation for each sequence (i.e., interview). Finally, a multi-class SVM

with a Gaussian kernel is used to classify the encoded facial and head movement dynamics

into three depression severity levels. The overview of the proposed approach is shown in

Fig. 4.4.

4.4.1 Facial movements analysis using barycentric coordinates

In order to analyze the facial movements separately from the head movements, we seek

for a representation of facial landmarks which is robust to head pose changes. Accordingly,

we use the barycentric representation proposed in Section 4.2 to filter out the head pose

changes.

Given an ordered list of moving landmarks, Z1(t) = (x1(t), y1(t)), . . . , Zn(t) =

(xn(t), yn(t)), we assume that Z1(t), Z2(t), and Z3(t) are the vertices of a non-degenerate

triangle for every value of t. Here, the right and left corners of the eyes and the tip of the nose

are chosen to form a non-degenerate triangle (see the red triangle in Fig. 4.1). As explained
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Figure 4.4 – Overview of the proposed approach (Depression severity level assessment).

in Section 4.2, the barycentric coordinates encoded in the (n− 3)× 3 matrix

Λ(t) =


x4(t) y4(t) 1

...
...

...

xn(t) yn(t) 1




x1(t) y1(t) 1

x2(t) y2(t) 1

x3(t) y3(t) 1


−1

form an affine invariant shape representation of the moving landmarks for all i = 4, .., n and

at any time t.

4.4.2 Head movements analysis in Lie algebra

Head movements correspond to head nods (i.e., pitch), head turns (i.e., yaw), and lateral

head inclinations (i.e., roll) (see Fig. 4.5). Given a time series of the 3 degrees of freedom

of out-of-plane rigid head movement, at any time t the yaw is defined as a counterclockwise

rotation of α(t) about the z-axis. The corresponding time-dependent rotation matrix is given
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by

Rα(t) :=


cos(α(t)) − sin(α(t)) 0

sin(α(t)) cos(α(t)) 0

0 0 1

 .

Pitch is a counterclockwise rotation of β(t) about the y-axis. The rotation matrix is given

by

Rβ(t) :=


cos(β(t)) 0 sin(β(t))

0 1 0

− sin(β(t)) 0 cos(β(t))

 .

Roll is a counterclockwise rotation of γ(t) about the x-axis. The rotation matrix is given by

Rγ(t) :=


1 0 0

0 cos(γ(t)) − sin(γ(t))

0 sin(γ(t)) cos(γ(t))

 .

A single rotation matrix can be formed by multiplying the yaw, pitch, and roll rotation

matrices to obtain

Rα,β,γ(t) = Rα(t)Rβ(t)Rγ(t) . (4.4.1)

The obtained time-parametrized curve Rα,β,γ(t) encodes head pose at each time t and lie

on a non-linear manifold called the special orthogonal group. The special orthogonal group

SO(3) is a matrix Lie group formed by all rotations about the origin of three-dimensional

Euclidean space R3 under the operation of composition [17]. The tangent space at the

identity I3 ∈ SO(3) is a three-dimensional vector space, called the Lie algebra of SO(3)

and is denoted by so(3). Following [124, 123], we overcome the non-linearity of the space of

our representation (i.e., SO(3)), and map the curve Rα,β,γ(t) from SO(3) to so(3) using the

logarithm map logSO(3) to obtain the three-dimensional curve

H(t) = logSO(3)(I3, Rα,β,γ(t)) = log(Rα,β,γ(t)) , (4.4.2)
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Figure 4.5 – Example of the automatically tracked 3 degrees of freedom of head pose

lying on so(3). Fore more details about the special orthogonal group, the logarithm map,

and the lie algebra, readers are refereed to [124, 123, 17]. In the following, the time series of

the 3 degrees of freedom of rigid head movement are represented using the three dimensional

curve H(t).

4.4.3 Kinematic features and Fisher vector encoding

To characterize facial and head movement dynamics, we derive appropriate kinematic

features based on their proposed representations Λ(t) and H(t), respectively.

4.4.3.1 Kinematic features

Because videos of clinical interviews vary in length, the extracted facial and head curves

(of different videos) varies in length. The variation in the obtained curves’ lengths may

introduce distortions in the feature extraction step. To overcome this limitation, we apply
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a cubic spline interpolation to the obtained Λ(t) and H(t) curves, resulting in smoother,

shorter, and fixed length curves. We set empirically the new length of the curve given by

spline interpolation to 5000 samples for both facial and head curves.

Usually, the number of landmark points given by recent landmark detectors vary from

40 to 70 points. By building the barycentric coordinates of the facial shape as explained in

Section 4.2, this results in high-dimensional facial curves Λ(t) with static observations of

dimension 120 at least (it can reach 200 if we have 70 landmark points per face). To reduce

the dimensionality of the facial curve Λ(t), we perform a Principal Component Analysis

(PCA) that accounts for 98% of the variance to obtain new facial curves with dimension

20. Then, we compute the velocity VΛ(t) = ∂Λ(t)
∂t and the acceleration AΛ(t) = ∂2Λ(t)

∂t2
from

the facial sequence Λ(t) after reducing its dimension. Finally, facial shapes, velocities, and

accelerations are concatenated to form the curve

KΛ(t) = [Λ(t);VΛ(t);AΛ(t)] , (4.4.3)

Because head curve H(t) is only three-dimensional no need for data reduction. Velocities

and accelerations are directly computed from the head sequence H(t) and concatenated with

head pose values to obtain the final nine-dimensional curve

KH(t) = [H(t);VH(t);AH(t)] . (4.4.4)

The curves KΛ(t) and KH(t) denote the kinematic features over time of the facial and

head movements, respectively.

4.4.3.2 Fisher vector encoding

Our goal is to obtain a single vector representation from the kinematic curves KΛ(t)

and KH(t) for depression severity assessment. Following [35], we used the Fisher Vector

representation using a Gaussian mixture model (GMM) distributions [148]. Assuming that

the observations of a single kinematic curve are statistically independent, a GMM with c
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components is computed for each kinematic curve by optimizing the maximum likelihood

(ML) criterion of the observations to the c Gaussian distributions. In order to encode the

estimated Gaussian distributions in a single vector representation, we use the convenient

improved fisher vector encoding which is suitable for large-scale classification problems [92].

This step is performed for kinematic curves KΛ(t) and KH(t), separately. The number of

Gaussian distributions c are chosen by a a leave-one-subject-out cross-validation and are

set to 14 for kinematic facial curves and to 31 for kinematic head curves resulting in fisher

vectors with dimension 14 × 20 × 3 × 2 = 1680 for facial movement dynamics and vectors

with dimension 31× 3× 3× 2 = 558 for head movement dynamics.

4.4.4 Assessment of depression severity level

After extracting the fisher vectors from the kinematic curves, the facial and head

movements are represented by compact vectors that describe the dynamics of facial and head

movements, respectively. To reduce redundancy and select the most discriminative feature

set, the Min-Redundancy Max-Relevance (mRMR) algorithm [90] was used for feature

selection. The set of selected features are then fed to a multi-class SVM with a Gaussian

kernel to classify the extracted facial and head movement dynamics into different depression

severity levels. Please note that a leave-one-subject-out cross-validation is performed to

choose the number of selected features by mRMR which is set to 726 for facial movement

dynamics and to 377 for head movement dynamics.

For an optimal use of the information given by the facial and head movements, depression

severity was assessed by late fusion of separate SVM classifiers. This is done by multiplying

the probabilities si,j , output of the SVM for each class j, where i ∈ {1, 2} denotes the

modality (i.e., facial and head movements). The class C of each test sample is determined

by

C = arg max
j

2∏
i=1

si,j , j = 1, . . . , nC , (4.4.5)
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where nC is the number of classes (i.e., depression severity levels).

4.4.5 Experimental evaluation

4.4.5.1 Dataset

In order to evaluate the proposed approach, we conducted our experiments on the dataset

used in [35, 3, 27]. In this dataset, Fifty-seven depressed participants (34 women, 23 men)

were recruited from a clinical trial for treatment of depression. At the time of the study, all

met DSM-4 criteria [44] for Major Depressive Disorder (MDD). Data from 49 participants

was available for analysis. Participant loss was due to change in original diagnosis, severe

suicidal ideation, and methodological reasons (e.g., missing audio or video). Symptom

severity was evaluated on up to four occasions at 1, 7, 13, and 21 weeks post diagnosis

and intake by four clinical interviewers (the number of interviews per interviewer varied).

Interviews were conducted using the Hamilton Rating Scale for Depression (HRSD) [52].

HRSD is a clinician-rated multiple item questionnaire to measure depression severity and

response to treatment. HRSD scores of 15 or higher are generally considered to indicate

moderate to severe depression; scores between 8 and 14 indicate mild depression; and scores

of 7 or lower indicate remission [46]. Using these cut-off scores, we defined three ordinal

depression severity classes: moderate to severe depression, mild depression, and remission

(i.e., recovery from depression). The final sample was 126 sessions from 49 participants: 56

moderate to severely depressed, 35 mildly depressed, and 35 remitted (for a more detailed

description of the data please see [35]).

4.4.5.2 Results

We seek to discriminate three levels of depression severity from facial and head movement

dynamics separately and in combination. To do so, we used leave-One-Subject-Out cross

validation scheme. Performance was evaluated using two criterion. One was the mean
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Table 4.3 – Classification Accuracy (%) - Comparison with State-of-the-art
Method Modality Acc (%) W. Kappa

J. Cohn et al. [27] Facial movements 59.5 0.43

S. Alghowinem et al. [3] Head movements 53.0 0.42

Dibeklioglu et al. [36] Facial movements 64.98 0.50
Dibeklioglu et al. [36] Head movements 56.06 0.40

Dibeklioglu et al. [35] Facial movements 72.59 0.62
Dibeklioglu et al. [35] Head movements 65.25 0.51
Dibeklioglu et al. [35] Facial/Head movements 77.77 0.71

Ours Facial movements 66.19 0.60
Ours Head movements 61.43 0.54
Ours Facial/Head movements 70.83 0.65

Table 4.4 – Confusion matrix of depression severity level assessment
Remission Mild Severe

Remission 60.0 31.42 8.57
Mild 20.0 68.57 11.42
Severe 1.78 14.28 83.92

accuracy over the three levels of severity. The other was weighted kappa [26]. Weighted

kappa is the proportion of ordinal agreement above what would be expected to occur by

chance [26].

Consistent with prior work [35], average accuracy was higher for facial movement than

for head movement. Facial movement was 66.19%, and head movement was 61.43% (see

Table 4.3). When the two modalities were combined, average accuracy increased to 70.83%.

Misclassification was more common between adjacent categories (e.g., Mild and Re-

mitted) than between distant categories (e.g., Remitted and Severe) (Table 4.4). Highest

accuracy was found for the difference between severe and mild depression (83.92%).

Evaluation of the system components. To evaluate our approach to encoding
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Table 4.5 – Evaluation of the Steps to the Proposed Approach - Depression severity level
assessment

Facial shapes representation Accuracy (%)
Pose normalization (Procrustes) 63.69
Barycentric coordinates 66.19
Head pose representation Accuracy (%)

Angles head pose representation 59.05
Lie algebra head pose representation 61.43

Impact of spline interpolation Accuracy (%)
Without spline interpolation 60.36
With spline interpolation 70.83

Impact of PCA on facial movements Accuracy (%)
Without PCA 56.19
With PCA 66.19

Impact of feature selection (mRMR) Accuracy (%)
Without feature selection 62.50
With feature selection 70.83

Classifiers Accuracy (%)
Logistic regression 62.02
Multi-class SVM 70.83
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movement dynamics of face and head movement with alternative representations. For

facial movement dynamics, we compared the barycentric representation with a Procrustes

representation. Average accuracy using Procrustes was 3% lower than that for barycentric

representation (Table 4.5). For head movements, we compared the Lie algebra representation

to a vector representation formed by the yaw, roll, and pitch angles. Accuracy decreased by

about 2% in comparison with the proposed approach.

To evaluate whether dimensionality reduction using PCA together with spline interpola-

tion improves accuracy, we compared results with and without PCA and spline interpolation.

Omitting PCA and spline interpolation decreased accuracy by about 10%.

To evaluate whether mRMR feature selection and choice of classifier contributed to

accuracy, we compared results with and without use of a feature selection step for both

Multi-SVM with logistic regression classifiers. When mRMR feature selection was omitted,

accuracy decreased by about 8%. Similarly, when logistic regression was used in place of

Multi-SVM, accuracy decreased by about 7%. This result was unaffected by choice of kernel.

Thus, use of the any of the proposed alternatives would have decreased accuracy relative

to the proposed method.

4.4.6 Interpretation and discussion

In this section, we evaluate the interpretability of the proposed kinematic features (that

is, KΛ(t) and KH(t) defined in Eq. 4.4.3 and Eq. 4.4.4) for depression severity detection.

We compute the l2-norm of velocity and acceleration intensities for the face (i.e., VΛ(t) and

AΛ(t)) and head (i.e., VH(t) and AH(t)) curves for each video. Since each video is analyzed

independently, we compute the histograms of the velocity and acceleration intensities over

10 samples (videos) from each level of depression severity. This results in histograms of 50000

velocity and acceleration intensities for each depression level.

Fig. 4.6 shows the histograms of facial and head velocity (top part) and acceleration
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(bottom part) intensities. Results for face are presented in the left panel and those for head

in the right panel. For face, the level of depression severity is inversely proportional to the

velocity and acceleration intensities. Velocity and acceleration both increased as participants

improved from severe to mild and then to remitted. This finding is consistent with data and

theory in depression.

Head motion, on the other hand, failed to vary systematically with change in depression

severity (Fig. 4.6). This finding was in contrast to previous work. Girard and colleagues

[49] found that head movement velocity increased when depression severity decreased. A

possible reason for this difference may lie in how head motion was quantified. Girard [49]

quantified head movement separately for pitch and yaw; whereas we combined pitch, yaw,

and also roll. By combining all three directions of head movement, we may have obscured

the relation between head movement and depression severity.

The proposed method detected depression severity with moderate to high accuracy

that approaches that of state of the art [35]. Beyond the state of the art, the proposed

method yields interpretable findings. The proposed dynamic features strongly mapped onto

depression severity. When participants were depressed, their overall facial dynamics were

dampened. When depression severity lessened, participants became more expressive. In

remission, expressiveness was even higher. These findings are consistent with the observation

that psychomotor retardation in depression lessens as severity decreases. Stated otherwise,

people more expressive with return to normal mood.

4.5 Conclusion

In this chapter, we proposed a novel affine-invariant representation of 2D facial

landmark sequences based on their barycentric coordinates. While being closely related

to the conventional Grassmann representation, the latter has the advantage of lying in

Euclidean space avoiding the non-linearity problem encountered in Grassmann manifold.

- 110 -



4.5. Conclusion

Figure 4.6 – Histograms of velocity and acceleration intensities for facial (left) and head
(right) movements. Psychomotor retardation symptom is well captured by the introduced
kinematic features, especially with those computed from the facial movements.

Applications of the proposed representation have been shown in facial expression recognition

in unconstrained environments and depression severity level assessment. In facial expression

recognition task, a metric learning was adopted on the barycentric representations to better

discriminate between static observations, then a pipeline of DTW and ppfSVM was used with

the learned metric for facial sequence classification. For the assessment of depression severity

level, kinematic features (i.e., velocities and accelerations) were derived from the barycentric

representation and encoded using GMM and Fisher vector encoding. As far as head poses are

concerned in depression, we proposed a head pose representation in Lie algebra and applied

the same pipeline as for barycentric representation (i.e., kinematic features extraction, GMM

and Fisher vector encoding). Finally, SVM is adopted to classify separately and combined

the fisher vectors from barycentric and lie algebra representations. The experimental results

showed that the proposed approaches achieved comparable performance with sate-of-the-art

methods in both facial expression recognition and depression severity level assessment.
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Chapitre 5

Conclusion and Future study

5.1 Conclusions and limitations

In this thesis, we proposed novel geometric tools for human behavior understanding

based on the analysis of human landmark sequences. Firstly, we proposed a novel geometric

framework on Gram matrix trajectories. To overcome the non-linear nature of the space

of Gram matrices, its Riemannian geometry was studied to derive suitable analyzing tools

for the Gram matrix trajectories. Applications were shown to facial expression recognition

from 2D landmarks tracked on the human face in RGB videos, 3D action recognition from

3D skeletons detected on the human body in depth streams, and 3D emotion recognition

from body movements captured by motion capture systems. Secondly, we proposed an affine-

invariant representation for the specific case of 2D facial landmarks based on their barycentric

coordinates. While being related to the Gram matrix representation, the barycentric

representation has the advantage of lying in Euclidean space where standard computational

and machine learning tools are applicable. The barycentric representation was evaluated

in facial expression recognition by applying a standard metric learning algorithm, and in

depression severity level assessment by deriving kinematic features along with standard
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features encoding techniques.

While powerful, landmark based methods rely on the performance of landmark detectors.

If the landmark detector provides inaccurate estimations, this will definitely harm the

performance of landmark based solutions for human behavior understanding. Another

limitation for using only landmark points is the possible loss of information. Indeed,

landmark detectors provide a set of key points on the human face or body which could

discard relevant information about the problem at hand. For instance, Fear expression was

the most challenging expression in all our experiments since it involves several action unit

activations (i.e., AU1+AU2+AU4+AU5+AU7+AU20+AU26) [47] that are quite difficult

to detect by using only landmark points.

Moreover, in this thesis we only studied classification tasks (e.g., action or expression

classification). That is to say, given a landmark sequence we only focused on classifying into

predefined categories (e.g., joy, fear, etc.). However, in some real human related application,

one needs to provide a quantity within a fixed interval. For example, for the specific task

of pain intensity estimation from faces [146], we should provide a value for each sequence

indicating the pain intensity.

5.2 Towards geometry guided deep covariance descriptors for

facial expression recognition

Correspondingly to the limitations mentioned in the previous Section, we investigated

the use of appearance based methods for static facial expression recognition in collaboration

with our colleague Naima Otberdout (PhD student in Mohammed V University of Rabat).

Recently, Deep Convolutional Neural Networks (DCNNs) achieved impressive perfor-

mance in such tasks. The idea here is to make the network learn the best features from large

collections of data during a training phase. However, one drawback of DCNNs is that they
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do not take into account the spatial relationships within the face. To overcome this issue,

we propose to exploit globally and locally the network features extracted in different regions

of the face. This yields a set of DCNN features per region. The question is how to encode

them in a compact and discriminative representation for a more efficient classification than

the one achieved globally by classical softmax. We propose to encode face DCNN features

in a covariance matrix. These matrices have shown to outperform first-order features in

many computer vision tasks [116, 117, 84]. In doing this, we exploit the space geometry

of the covariance matrices as points on the symmetric positive definite (SPD) manifold.

Furthermore, we use a valid positive definite Gaussian RBF kernel on this manifold to train

a SVM classifier for expression classification.

Specifically, we start by encoding the facial expression into Feature Maps (FMs) extracted

using DCNNs. Here, we use two DCNN models, namely, VGG-face [88] and ExpNet [37]. A

covariance descriptor is then computed over these FMs and is considered for global face

representation. We also extract four regions on the input face image around the eyes,

mouth, and cheeks (left and right) using a facial landmark detector. By mapping these

regions on the extracted deep FMs, we are able to extract local regions in these FMs that

bring more accurate information about the facial expression. A local covariance descriptor

is also computed for each local region. A RBF kernel endowed with the Log-Euclidean

Riemannian metric (LERM) [7] which has been proved to be positive definite [62] is employed

for SVM classification. Note that we consider a late fusion of the local and global covariance

descriptors by computing a weighted sum of the scores given by the classifier for each region.

Overall, the proposed solution permits us to combine the geometric and appearance

features enabling an effective description of facial expressions at different spatial levels, while

taking into account the spatial relationships within the face. An overview of the proposed

solution is illustrated in Fig. 5.1. The effectiveness of the proposed approach in recognizing

basic facial expressions has been evaluated in constrained and unconstrained (i.e., in-the-

wild) settings using two publicly available datasets with different challenges:
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Figure 5.1 – Overview of the proposed method.

Oulu-CASIA dataset [143]: Includes 480 image sequences of 80 subjects taken in a

constrained environment with normal illumination conditions. For both training and testing,

we use the last three peak frames to represent the video resulting in 1440 images. Following

the same setting of the state-of-the-art, we conducted a ten-fold cross validation experiment,

with subject independent splitting.

Static Facial Expression in the Wild (SFEW) dataset [34]: Consists of 1, 322

static images labeled with seven facial expressions (the six basic plus the neutral one). This

dataset has been collected from real movies and targets spontaneous expression recognition

in challenging, i.e., in-the-wild, environments. It is divided into training (891 samples),

validation (431 samples), and test sets. Since the test labels are not available, here we

report results on the validation data.

As initial step, we performed some preprocessing on the images of both datasets. For

Oulu-CASIA, we first detected the face using the method proposed in [126]. For SFEW, we

used the aligned faces provided by the dataset. Then, in order to detect the facial regions

we detected 49 facial landmarks on each face using the Chehra Face Tracker [8]. All frames
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were cropped and resized to 224× 224, which is the input size of the DCNN models.

In Table 5.1, we compare our proposed global (G-FMs) and local (R-FMs) solutions

with the baselines provided by the VGG-face and ExpNet models, without the use of

the covariance matrix (i.e., they used the fully connected and softmax layers). On Oulu-

CASIA, the G-FMs solution improves by 3.7% and 1.26%, respectively, the VGG-face and

ExpNet models. Though less marked, an increment of 0.69% for the VGG-face and of 0.92%

for ExpNet has been also obtained on the SFEW dataset. These results prove that the

covariance descriptors computed on the convolutional features provide more discriminative

representations. Furthermore, the classification of these representations using Gaussian

kernel on SPD manifold is more efficient than the standard classification with fully connected

layers and softmax, even if these layers were trained in an end-to-end manner. Table 5.1 also

shows that the fusion of the local (R-FMs) and global (G-FMs) approaches achieves a clear

superiority on the Oulu-CASIA dataset surpassing by 1.25% the global approach, while

no improvement is observed on the SFEW dataset. This is due to the failure of landmark

detection skewing the extraction of the local deep features.

Dataset Model FC-Softmax ours (G-FMs) ours (G-FMs and R-FMs)
Oulu-CASIA VGG Face 77.8 81.5 –

ExpNet 82.29 83.55 84.80
SFEW VGG Face 46.66 47.35 –

ExpNet 48.26 49.18 49.18

Table 5.1 – Comparison of the proposed classification scheme with respect to the VGG-Face
and ExpNet models with fully connected layer and Softmax.

For more details about the method and the conducted experiments, readers are referred

to [86].

5.3 Future works

As future works, we aim to investigate the following points:
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— In this thesis, we proposed two representations of 2D/3D human landmarks which

are robust to view variations. The Gram representation introduced in chapter 3 was

invariant to Euclidean transformations, while the barycentric representation presented

in chapter 4 was invariant to affine transformations. However, the view variations

for 2D landmarks result in projective transformations as stated in Section 4.2 of

chapter 4. Future works may include the study of filtering out these complex projective

transformations for a more robust representation of 2D landmarks to view variations

especially in unconstrained (in-the-wild) environments.

— Recently, Deep Learning (DL) became one of the most successful solutions in many

Computer Vision tasks. However, research on DL techniques has mainly focused so

far on data defined on Euclidean domains. In this thesis, we were confronted to the

problem of non-linearity of data representations (e.g., space-time shape representa-

tions on non-linear manifolds). Other examples of non-linear representations include

dynamical systems, covariance matrices, and subspace representations. The adoption

of conventional DL techniques on these data representations is not straightforward

and require adapting optimization techniques to effectively work on the underlying

manifold. For instance, in order to conduct an end-to-end classification of the deep

covariance descriptors introduced in Section 5.2 instead of using SVM classifier, one

should adapt the FC-Softmax to effectively work on the manifold of positive definite

matrices. Some recent findings in this direction have show that adapting DL techniques

to manifold valued data is possible [60, 59, 58, 20].

— For some human related real applications, we need to anticipate the human behavior

rather than understanding it. A relevant example of this is given by autonomous

driving systems which should anticipate the behavior of the pedestrians in order to

avoid accidents especially when the car is going fast. In this thesis, we only studied

classification problems of human behaviors but it would be interesting to investigate

the prediction of human behaviors in order to anticipate them [75].
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— In the context of facial expression recognition, this thesis mainly focused on recognizing

posed basic facial expressions which are not naturally linked to the emotional state

of the test subject [102]. Future works may include the study of spontaneous and

authentic facial expressions [102, 142].

- 119 -



Chapitre 5. Conclusion and Future study

- 120 -



Bibliographie

[1] Mohamed F. Abdelkader, Wael Abd-Almageed, Anuj Srivastava, and Rama Chellappa.

Silhouette-based gesture and action recognition via modeling trajectories on

riemannian shape manifolds. Computer Vision and Image Understanding, 115(3):439–

455, March 2011.

[2] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian geometry of

grassmann manifolds with a view on algorithmic computation. Acta Applicandae

Mathematica, 80(2):199–220, 2004.

[3] Sharifa Alghowinem, Roland Goecke, Michael Wagner, Gordon Parkerx, and Michael

Breakspear. Head pose and movement analysis as an indicator of depression. In

Affective Computing and Intelligent Interaction (ACII), 2013 Humaine Association

Conference on, pages 283–288, 2013.

[4] Salah Althloothi, Mohammad H Mahoor, Xiao Zhang, and Richard M Voyles.

Human activity recognition using multi-features and multiple kernel learning. Pattern

recognition, 47(5):1800–1812, 2014.

[5] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human

pose estimation: New benchmark and state of the art analysis. In Proceedings of

the IEEE Conference on computer Vision and Pattern Recognition, pages 3686–3693,

2014.

- 121 -



BIBLIOGRAPHIE

[6] R. Anirudh, P. Turaga, J. Su, and A. Srivastava. Elastic functional coding of

riemannian trajectories. IEEE Trans. on Pattern Analysis and Machine Intelligence,

39(5):922–936, May 2017.

[7] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Log-euclidean

metrics for fast and simple calculus on diffusion tensors. Magnetic resonance in

medicine, 56(2):411–421, 2006.

[8] Akshay Asthana, Stefanos Zafeiriou, Shiyang Cheng, and Maja Pantic. Incremental

face alignment in the wild. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 1859–1866, 2014.

[9] Mohammad Ali Bagheri, Qigang Gao, and Sergio Escalera. Support vector machines

with time series distance kernels for action classification. In IEEE Winter Conf. on

Applications of Computer Vision (WACV), pages 1–7, 2016.

[10] Djordje Baralić. How to understand grassmannians? The Teaching of Mathematics,

pages 147–157, 2011.

[11] AT Beck, CH Ward, M Mendelson, J Mock, and J Erbaugh. An inventory for

measuring. Archives of general psychiatry, 4:561–571, 1961.

[12] Evgeni Begelfor and Michael Werman. Affine invariance revisited. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages 2087–2094, 2006.

[13] Boulbaba Ben Amor, Jingyong Su, and Anuj Srivastava. Action recognition using

rate-invariant analysis of skeletal shape trajectories. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 38(1):1–13, 2016.

[14] Marcel Berger. Geometry, vol. i-ii, 1987.

[15] Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in

time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, 1994.

[16] S. Bhattacharya, N. Souly, and M. Shah. Covariance of Motion and Appearance

Features for Spatio Temporal Recognition Tasks. ArXiv e-prints, June 2016.

- 122 -



BIBLIOGRAPHIE

[17] Mary L Boas. Mathematical methods in the physical sciences. Wiley, 2006.

[18] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier Romero,

and Michael J Black. Keep it smpl: Automatic estimation of 3d human pose and

shape from a single image. In European Conference on Computer Vision, pages 561–

578. Springer, 2016.

[19] Silvere Bonnabel and Rodolphe Sepulchre. Riemannian metric and geometric mean

for positive semidefinite matrices of fixed rank. SIAM Journal on Matrix Analysis and

Applications, 31(3):1055–1070, 2009.

[20] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre

Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal

Processing Magazine, 34(4):18–42, 2017.

[21] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2d

& 3d face alignment problem?(and a dataset of 230,000 3d facial landmarks). In

International Conference on Computer Vision, volume 1, page 4, 2017.

[22] Judith Bütepage, Michael J Black, Danica Kragic, and Hedvig Kjellström. Deep

representation learning for human motion prediction and classification. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), page 2017. IEEE,

2017.

[23] Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. Face alignment by explicit shape

regression. International Journal of Computer Vision, 107:177–190, 2014.

[24] Jacopo Cavazza, Andrea Zunino, Marco San Biagio, and Vittorio Murino. Kernelized

covariance for action recognition. In Pattern Recognition (ICPR), 2016 23rd

International Conference on, pages 408–413. IEEE, 2016.

[25] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.

ACM Trans. on Intelligent Systems and Technology, 2(3):27, 2011.

- 123 -



BIBLIOGRAPHIE

[26] Jacob Cohen. Weighted kappa: Nominal scale agreement provision for scaled

disagreement or partial credit. Psychological bulletin, 70(4):213, 1968.

[27] Jeffrey F Cohn, Tomas Simon Kruez, Iain Matthews, Ying Yang, Minh Hoai Nguyen,

Margara Tejera Padilla, Feng Zhou, and Fernando De la Torre. Detecting depression

from facial actions and vocal prosody. In 3rd International Conference on Affective

Computing and Intelligent Interaction, pages 1–7, 2009.

[28] Marco Cuturi. Fast global alignment kernels. In Proceedings of the 28th international

conference on machine learning (ICML-11), pages 929–936, 2011.

[29] Mohamed Daoudi, Stefano Berretti, Pietro Pala, Yvonne Delevoye, and Alberto Bimbo.

Emotion recognition by body movement representation on the manifold of symmetric

positive definite matrices. In Int. Conf. on Image Analysis and Processing, to appear

2017.

[30] Maxime Devanne, Hazem Wannous, Stefano Berretti, Pietro Pala, Mohamed Daoudi,

and Alberto Del Bimbo. 3-D human action recognition by shape analysis of motion

trajectories on Riemannian manifold. IEEE Trans. on Cybernetics, 45(7):1340–1352,

2015.

[31] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, volume 15.

Springer, 2009.

[32] Abhinav Dhall, Roland Goecke, Jyoti Joshi, Michael Wagner, and Tom Gedeon.

Emotion recognition in the wild challenge (EmotiW) challenge and workshop summary.

In Int. Conf. on Multimodal Interaction, (ICMI), pages 371–372, 2013.

[33] Abhinav Dhall, Roland Goecke, Simon Lucey, and Tom Gedeon. Collecting large, richly

annotated facial-expression databases from movies. IEEE MultiMedia, 19(3):34–41,

2012.

[34] Abhinav Dhall, OV Ramana Murthy, Roland Goecke, Jyoti Joshi, and Tom Gedeon.

Video and image based emotion recognition challenges in the wild: Emotiw 2015. In

- 124 -



BIBLIOGRAPHIE

ACM Int. Conf. on Multimodal Interaction, pages 423–426. ACM, 2015.

[35] Hamdi Dibeklioglu, Zakia Hammal, and Jeffrey F Cohn. Dynamic multimodal

measurement of depression severity using deep autoencoding. IEEE journal of

biomedical and health informatics, 2017.

[36] Hamdi Dibeklioglu, Zakia Hammal, Ying Yang, and Jeffrey F. Cohn. Multimodal

detection of depression in clinical interviews. In Proceedings of the 2015 ACM on

International Conference on Multimodal Interaction, Seattle, WA, USA, November 09

- 13, 2015, pages 307–310, 2015.

[37] Hui Ding, Shaohua Kevin Zhou, and Rama Chellappa. FaceNet2ExpNet: Regularizing

a deep face recognition net for expression recognition. In IEEE Int. Conf. on Automatic

Face Gesture Recognition (FG), pages 118–126, 2017.

[38] Yong Du, Yun Fu, and Liang Wang. Skeleton based action recognition with

convolutional neural network. In Pattern Recognition (ACPR), 2015 3rd IAPR Asian

Conference on, pages 579–583. IEEE, 2015.

[39] Yong Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton

based action recognition. In IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 1110–1118, June 2015.

[40] Paul Ekman, Wallace V Freisen, and Sonia Ancoli. Facial signs of emotional experience.

Journal of personality and social psychology, 39(6):1125, 1980.

[41] Paul Ekman and Wallace V Friesen. The repertoire of nonverbal behavior: Categories,

origins, usage, and coding. semiotica, 1(1):49–98, 1969.

[42] S. Elaiwat, Mohammed Bennamoun, and Farid Boussaïd. A spatio-temporal rbm-

based model for facial expression recognition. Pattern Recognition, 49:152–161, 2016.

[43] Masoud Faraki, Mehrtash T Harandi, and Fatih Porikli. Image set classification by

symmetric positive semi-definite matrices. In IEEE Winter Conf. on Applications of

Computer Vision (WACV), pages 1–8, 2016.

- 125 -



BIBLIOGRAPHIE

[44] Michael B First, Robert L Spitzer, Miriam Gibbon, and Janet BW Williams.

Structured clinical interview for DSM-IV axis I disorders - Patient edition (SCID-I/P,

Version 2.0). Biometrics Research Department, New York State Psychiatric Institute,

New York, NY, 1995.

[45] Hans-Ulrich Fisch, Siegfried Frey, and Hans-Peter Hirsbrunner. Analyzing nonverbal

behavior in depression. Journal of abnormal psychology, 92(3):307, 1983.

[46] Jay C Fournier, Robert J DeRubeis, Steven D Hollon, Sona Dimidjian, Jay D

Amsterdam, Richard C Shelton, and Jan Fawcett. Antidepressant drug effects and

depression severity: A patient-level meta-analysis. Journal of the American Medial

Association, 303(1):47–53, 2010.

[47] Wallace V Friesen, Paul Ekman, et al. Emfacs-7: Emotional facial action coding

system. Unpublished manuscript, University of California at San Francisco, 2(36):1,

1983.

[48] Guillermo Garcia-Hernando and Tae-Kyun Kim. Transition forests: Learning

discriminative temporal transitions for action recognition and detection. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 432–440,

2017.

[49] Jeffrey M Girard, Jeffrey F Cohn, Mohammad H Mahoor, S Mohammad Mavadati,

Zakia Hammal, and Dean P Rosenwald. Nonverbal social withdrawal in depression:

Evidence from manual and automatic analyses. Image and vision computing,

32(10):641–647, 2014.

[50] Thore Graepel, Ralf Herbrich, Peter Bollmann-Sdorra, and Klaus Obermayer.

Classification on pairwise proximity data. Advances in Neural Information Processing

Systems, pages 438–444, 1999.

[51] Steinn Gudmundsson, Thomas Philip Runarsson, and Sven Sigurdsson. Support vector

machines and dynamic time warping for time series. In IEEE World Congress on

- 126 -



BIBLIOGRAPHIE

Computational Intelligence, pages 2772–2776, 2008.

[52] Max Hamilton. A rating scale for depression. Journal of neurology, neurosurgery, and

psychiatry, 23(1):56–61, 1960.

[53] Halim Hicheur, Hideki Kadone, Julie Grèzes, and Alain Berthoz. The combined role

of motion-related cues and upper body posture for the expression of emotions during

human walking. In Modeling, Simulation and Optimization of Bipedal Walking, pages

71–85. Springer Berlin Heidelberg, 2013.

[54] Nicholas J Higham. Computing the polar decomposition with applications. SIAM

Journal on Scientific and Statistical Computing, 7(4):1160–1174, 1986.

[55] Jian-Fang Hu, Wei-Shi Zheng, Jianhuang Lai, and Jianguo Zhang. Jointly learning

heterogeneous features for rgb-d activity recognition. In IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), pages 5344–5352, 2015.

[56] Jian-Fang Hu, Wei-Shi Zheng, Lianyang Ma, Gang Wang, and Jianhuang Lai. Real-

time RGB-D activity prediction by soft regression. In European Conf. on Computer

Vision (ECCV), pages 280–296, 2016.

[57] Wenbing Huang, Fuchun Sun, Lele Cao, Deli Zhao, Huaping Liu, and Mehrtash

Harandi. Sparse coding and dictionary learning with linear dynamical systems. In

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 3938–3947,

June 2016.

[58] Zhiwu Huang and Luc J Van Gool. A Riemannian network for spd matrix learning.

In AAAI, volume 2, page 6, 2017.

[59] Zhiwu Huang, Chengde Wan, Thomas Probst, and Luc Van Gool. Deep learning on

lie groups for skeleton-based action recognition. In Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1243–1252.

IEEE computer Society, 2017.

- 127 -



BIBLIOGRAPHIE

[60] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. Matrix backpropagation

for deep networks with structured layers. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2965–2973, 2015.

[61] Suyog Jain, Changbo Hu, and Jake K. Aggarwal. Facial expression recognition with

temporal modeling of shapes. In IEEE Int. Conf. on Computer Vision Workshops

(ICCV), pages 1642–1649, 2011.

[62] Sadeep Jayasumana, Richard I. Hartley, Mathieu Salzmann, Hongdong Li, and

Mehrtash Tafazzoli Harandi. Kernel methods on riemannian manifolds with gaussian

RBF kernels. IEEE Trans. on Pattern Analysis and Machine Intelligence, 37(12):2464–

2477, 2015.

[63] László A Jeni, Jeffrey F Cohn, and Takeo Kanade. Dense 3D face alignment from 2D

videos for real-time use. Image and Vision Computing, 58:13–24, 2017.

[64] Jyoti Joshi, Roland Goecke, Gordon Parker, and Michael Breakspear. Can body

expressions contribute to automatic depression analysis? In IEEE International

Conference on Automatic Face and Gesture Recognition, pages 1–7, 2013.

[65] Heechul Jung, Sihaeng Lee, Junho Yim, Sunjeong Park, and Junmo Kim. Joint fine-

tuning in deep neural networks for facial expression recognition. In IEEE International

Conference on Computer Vision, ICCV, pages 2983–2991, 2015.

[66] Anis Kacem, Mohamed Daoudi, and Juan-Carlos Alvarez-Paiva. Barycentric

Representation and Metric Learning for Facial Expression Recognition. In IEEE

International Conference on Automatic Face and Gesture Recognition , Xi’an, China,

May 2018.

[67] Anis Kacem, Mohamed Daoudi, Boulbaba Ben Amor, and Juan Carlos Alvarez-Paiva.

A novel space-time representation on the positive semidefinite cone for facial expression

recognition. In IEEE Int. Conf. on Computer Vision (ICCV), October 2017.

- 128 -



BIBLIOGRAPHIE

[68] Qiuhong Ke, Senjian An, Mohammed Bennamoun, Ferdous Sohel, and Farid Boussaid.

Skeletonnet: Mining deep part features for 3-d action recognition. IEEE Signal

Processing Letters, 24(6):731–735, 2017.

[69] Qiuhong Ke, Mohammed Bennamoun, Senjian An, Ferdous Sohel, and Farid Boussaid.

A new representation of skeleton sequences for 3d action recognition. In Computer

Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 4570–4579.

IEEE, 2017.

[70] Alexander Kläser, Marcin Marszalek, and Cordelia Schmid. A spatio-temporal

descriptor based on 3d-gradients. In British Machine Vision Conf. (BMVC), pages

1–10, 2008.

[71] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, volume 1.

Interscience Publishers, 1963.

[72] Piotr Koniusz, Anoop Cherian, and Fatih Porikli. Tensor representations via kernel

linearization for action recognition from 3d skeletons. In European Conference on

Computer Vision, pages 37–53. Springer, 2016.

[73] Brian Kulis. Metric learning: A survey. Foundations and Trends in Machine Learning,

5(4):287–364, 2013.

[74] Christoph H Lampert et al. Kernel methods in computer vision. Foundations and

Trends® in Computer Graphics and Vision, 4(3):193–285, 2009.

[75] Tian Lan, Tsung-Chuan Chen, and Silvio Savarese. A hierarchical representation for

future action prediction. In European Conference on Computer Vision, pages 689–704.

Springer, 2014.

[76] Binlong Li, Octavia I Camps, and Mario Sznaier. Cross-view activity recognition

using hankelets. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE

Conference on, pages 1362–1369. IEEE, 2012.

- 129 -



BIBLIOGRAPHIE

[77] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang. Spatio-Temporal LSTM

with Trust Gates for 3D Human Action Recognition, pages 816–833. Springer Int.

Publishing, Cham, 2016.

[78] Mengyi Liu, Shaoxin Li, Shiguang Shan, Ruiping Wang, and Xilin Chen. Deeply

learning deformable facial action parts model for dynamic expression analysis. In

Asian Conf. on Computer Vision, pages 143–157, 2014.

[79] Mengyi Liu, Shiguang Shan, Ruiping Wang, and Xilin Chen. Learning expressionlets

on spatio-temporal manifold for dynamic facial expression recognition. In IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages 1749–1756, 2014.

[80] Zhi Liu, Chenyang Zhang, and Yingli Tian. 3d-based deep convolutional neural

network for action recognition with depth sequences. Image and Vision Computing,

55:93–100, 2016.

[81] Andras Lorincz, Laszlo Jeni, Zoltan Szabo, Jeffrey Cohn, and Takeo Kanade.

Emotional expression classification using time-series kernels. In Proceedings of the

IEEE Conference on computer vision and pattern recognition workshops, pages 889–

895, 2013.

[82] Patrick Lucey, Jeffrey F. Cohn, Takeo Kanade, Jason M. Saragih, Zara Ambadar, and

Iain A. Matthews. The extended Cohn-Kanade dataset (CK+): A complete dataset

for action unit and emotion-specified expression. In IEEE Conf. on Computer Vision

and Pattern Recognition Workshop (CVPRW), pages 94–101, 2010.

[83] Fengjun Lv and Ramakant Nevatia. Recognition and segmentation of 3-d human

action using hmm and multi-class adaboost. In European conference on computer

vision, pages 359–372. Springer, 2006.

[84] Bingpeng Ma, Yu Su, and Frédéric Jurie. Bicov: a novel image representation for

person re-identification and face verification. In British Machive Vision Conference,

pages 11–pages, 2012.

- 130 -



BIBLIOGRAPHIE

[85] Gilles Meyer, Silvère Bonnabel, and Rodolphe Sepulchre. Regression on fixed-rank

positive semidefinite matrices: a riemannian approach. Journal of Machine Learning

Research, 12(Feb):593–625, 2011.

[86] Naima Otberdout, Anis Kacem, Mohamed Daoudi, Lahoucine Ballihi, and Stefano

Berretti. Deep covariance descriptors for facial expression recognition. arXiv preprint

arXiv:1805.03869, 2018.

[87] Maja Pantic, Alex Pentland, Anton Nijholt, and Thomas S Huang. Human computing

and machine understanding of human behavior: a survey. In Artifical Intelligence for

Human Computing, pages 47–71. Springer, 2007.

[88] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. In

British Machine Vision Conf. (BMVC), pages 41.1–41.12. BMVA Press, 2015.

[89] Magdalena Pawlyta and Przemysław Skurowski. A survey of selected machine learning

methods for the segmentation of raw motion capture data into functional body mesh.

In Information Technologies in Medicine, pages 321–336. Springer, 2016.

[90] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual

information criteria of max-dependency, max-relevance, and min-redundancy. IEEE

Transactions on pattern analysis and machine intelligence, 27(8):1226–1238, 2005.

[91] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A riemannian framework for

tensor computing. Int. Journal of Computer Vision, 66(1):41–66, 2006.

[92] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel

for large-scale image classification. In European Conference on Computer Vision, pages

143–156. Springer, 2010.

[93] Liliana Lo Presti and Marco La Cascia. A novel time series kernel for sequences

generated by lti systems. In Asian Conference on Computer Vision, pages 433–451.

Springer, 2016.

- 131 -



BIBLIOGRAPHIE

[94] Babette Renneberg, Katrin Heyn, Rita Gebhard, and Silke Bachmann. Facial

expression of emotions in borderline personality disorder and depression. Journal

of behavior therapy and experimental psychiatry, 36(3):183–196, 2005.

[95] Jonathan Rottenberg, James J Gross, and Ian H Gotlib. Emotion context insensitivity

in major depressive disorder. Journal of abnormal psychology, 114(4):627, 2005.

[96] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear time

and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[97] Andres Sanin, Conrad Sanderson, Mehrtash T. Harandi, and Brian C. Lovell. Spatio-

temporal covariance descriptors for action and gesture recognition. In IEEE Workshop

on Applications of Computer Vision (WACV), pages 103–110, 2013.

[98] Jason Saragih and Roland Goecke. Iterative error bound minimisation for aam

alignment. In Pattern Recognition, 2006. ICPR 2006. 18th International Conference

on, volume 2, pages 1196–1195. IEEE, 2006.

[99] E. Sariyanidi, H. Gunes, and A. Cavallaro. Learning bases of activity for facial

expression recognition. IEEE Trans. on Image Processing, PP(99):1–1, 2017.

[100] Gary E Schwartz, Paul L Fair, Patricia Salt, Michel R Mandel, and Gerald L

Klerman. Facial expression and imagery in depression: an electromyographic study.

Psychosomatic medicine, 1976.

[101] Paul Scovanner, Saad Ali, and Mubarak Shah. A 3-dimensional sift descriptor and its

application to action recognition. In Int. Conf. on Multimedia, pages 357–360, 2007.

[102] Nicu Sebe, Michael S Lew, Yafei Sun, Ira Cohen, Theo Gevers, and Thomas S Huang.

Authentic facial expression analysis. Image and Vision Computing, 25(12):1856–1863,

2007.

[103] Lorenzo Seidenari, Vincenzo Varano, Stefano Berretti, Alberto Bimbo, and Pietro Pala.

Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses.

- 132 -



BIBLIOGRAPHIE

In IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW),

pages 479–485, 2013.

[104] A. Shahroudy, J. Liu, T. T. Ng, and G. Wang. Ntu rgb+d: A large scale dataset for 3d

human activity analysis. In IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 1010–1019, June 2016.

[105] Chunhua Shen, Junae Kim, Lei Wang, and Anton Hengel. Positive semidefinite metric

learning with boosting. In Advances in neural information processing systems, pages

1651–1659, 2009.

[106] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio,

Andrew Blake, Mat Cook, and Richard Moore. Real-time human pose recognition

in parts from single depth images. Communications of the ACM, 56(1):116–124, 2013.

[107] Rim Slama, Hazem Wannous, Mohamed Daoudi, and Anuj Srivastava. Accurate 3D

action recognition using learning on the grassmann manifold. Pattern Recognition,

48(2):556–567, 2015.

[108] Sijie Song, Cuiling Lan, Junliang Xing, Wenjun Zeng, and Jiaying Liu. An end-to-end

spatio-temporal attention model for human action recognition from skeleton data. In

AAAI, pages 4263–4270, 2017.

[109] Anuj Srivastava, Eric Klassen, Shantanu H Joshi, and Ian H Jermyn. Shape analysis

of elastic curves in euclidean spaces. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 33(7):1415–1428, 2011.

[110] J. Su, S. Kurtek, E. Klassen, and A. Srivastava. Statistical analysis of trajectories

on riemannian manifolds: Bird migration, hurricane tracking and video surveillance.

Annals of Applied Statistics, 8(1), 2014.

[111] Sima Taheri, Pavan Turaga, and Rama Chellappa. Towards view-invariant expression

analysis using analytic shape manifolds. In IEEE Int. Conf. on Automatic Face &

Gesture Recognition and Workshops (FG), pages 306–313, 2011.

- 133 -



BIBLIOGRAPHIE

[112] Amor Ben Tanfous, Hassen Drira, and Boulbaba Ben Amor. Coding kendall’s

shape trajectories for 3d action recognition. In IEEE Computer Vision and Pattern

Recognition, 2018.

[113] Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via deep

neural networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1653–1660, 2014.

[114] Sergey Tulyakov, László A Jeni, Jeffrey F Cohn, and Nicu Sebe. Consistent 3d

face alignment. IEEE transactions on pattern analysis and machine intelligence,

40(9):2250–2264, 2018.

[115] Pavan K. Turaga, Ashok Veeraraghavan, Anuj Srivastava, and Rama Chellappa.

Statistical computations on grassmann and stiefel manifolds for image and video-based

recognition. IEEE Trans. Pattern Analysis Machine Intelligence, 33(11):2273–2286,

2011.

[116] Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor for

detection and classification. In European Conf. on Computer Vision (ECCV), pages

589–600, 2006.

[117] Oncel Tuzel, Fatih Porikli, and Peter Meer. Pedestrian detection via classification on

Riemannian manifolds. IEEE Trans. on Pattern Analysis and Machine Intelligence,

30(10):1713–1727, Oct. 2008.

[118] M. F. Valstar and M. Pantic. Induced disgust, happiness and surprise: an addition

to the mmi facial expression database. In Int. Conf. on Language Resources and

Evaluation, Workshop on EMOTION, pages 65–70, Malta, May 2010.

[119] Michel Valstar, Björn Schuller, Kirsty Smith, Timur Almaev, Florian Eyben, Jarek

Krajewski, Roddy Cowie, and Maja Pantic. Avec 2014: 3d dimensional affect and

depression recognition challenge. In Proceedings of the 4th International Workshop on

Audio/Visual Emotion Challenge, pages 3–10. ACM, 2014.

- 134 -



BIBLIOGRAPHIE

[120] Bart Vandereycken, P-A Absil, and Stefan Vandewalle. Embedded geometry of the

set of symmetric positive semidefinite matrices of fixed rank. In IEEE/SP Workshop

on Statistical Signal Processing (SSP), pages 389–392, 2009.

[121] A. Veeraraghavan, R. Chellappa, and A.K. Roy-Chowdhury. The function space of

an activity. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),

volume 1, pages 959–968, 2006.

[122] V. Veeriah, N. Zhuang, and G. J. Qi. Differential recurrent neural networks for action

recognition. In IEEE Int. Conf. on Computer Vision (ICCV), pages 4041–4049, Dec

2015.

[123] Raviteja Vemulapalli, Felipe Arrate, and Rama Chellappa. Human action recognition

by representing 3D skeletons as points in a Lie group. In IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), pages 588–595, 2014.

[124] Raviteja Vemulapalli and Rama Chellapa. Rolling rotations for recognizing human

actions from 3d skeletal data. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 4471–4479, 2016.

[125] Vinay Venkataraman and Pavan K. Turaga. Shape distributions of nonlinear

dynamical systems for video-based inference. CoRR, abs/1601.07471, 2016.

[126] Paul Viola and Michael J Jones. Robust real-time face detection. International Journal

on Computer Vision, 57(2):137–154, 2004.

[127] Chunyu Wang, Yizhou Wang, and Alan L Yuille. Mining 3d key-pose-motifs for action

recognition. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),

pages 2639–2647, 2016.

[128] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining actionlet ensemble for

action recognition with depth cameras. In Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pages 1290–1297. IEEE, 2012.

- 135 -



BIBLIOGRAPHIE

[129] Lei Wang, Jianjia Zhang, Luping Zhou, Chang Tang, and Wanqing Li. Beyond

covariance: Feature representation with nonlinear kernel matrices. In Proceedings of

the IEEE International Conference on Computer Vision, pages 4570–4578, 2015.

[130] Limin Wang, Yu Qiao, and Xiaoou Tang. Motionlets: Mid-level 3d parts for human

motion recognition. In 2013 IEEE Conf. on Computer Vision and Pattern Recognition,

Portland, OR, USA, June 23-28, 2013, pages 2674–2681, 2013.

[131] Pichao Wang, Wanqing Li, Philip Ogunbona, Jun Wan, and Sergio Escalera. Rgb-d-

based human motion recognition with deep learning: A survey. Computer Vision and

Image Understanding, 2018.

[132] Ruiping Wang, Huimin Guo, Larry S Davis, and Qionghai Dai. Covariance

discriminative learning: A natural and efficient approach to image set classification. In

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 2496–2503,

2012.

[133] Ziheng Wang, Shangfei Wang, and Qiang Ji. Capturing complex spatio-temporal

relations among facial muscles for facial expression recognition. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages 3422–3429, 2013.

[134] Wikipedia. Human behavior, 2011.

[135] James R Williamson, Thomas F Quatieri, Brian S Helfer, Gregory Ciccarelli, and

Daryush D Mehta. Vocal and facial biomarkers of depression based on motor

incoordination and timing. In Proceedings of the 4th International Workshop on

Audio/Visual Emotion Challenge, pages 65–72. ACM, 2014.

[136] Lu Xia, Chia-Chih Chen, and Jake K Aggarwal. View invariant human action

recognition using histograms of 3d joints. In Computer vision and pattern recognition

workshops (CVPRW), 2012 IEEE computer society conference on, pages 20–27. IEEE,

2012.

- 136 -



BIBLIOGRAPHIE

[137] Xuehan Xiong and Fernando De la Torre. Supervised descent method and its

applications to face alignment. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), pages 532–539, 2013.

[138] Kiwon Yun, Jean Honorio, Debaleena Chattopadhyay, Tamara L Berg, and Dimitris

Samaras. Two-person interaction detection using body-pose features and multiple

instance learning. In IEEE Conf. on Computer Vision and Pattern Recognition

Workshops (CVPRW), pages 28–35, 2012.

[139] Kaihao Zhang, Yongzhen Huang, Yong Du, and Liang Wang. Facial expression

recognition based on deep evolutional spatial-temporal networks. IEEE Transactions

on Image Processing, 26(9):4193–4203, 2017.

[140] Songyang Zhang, Xiaoming Liu, and Jun Xiao. On geometric features for skeleton-

based action recognition using multilayer lstm networks. In IEEE Winter Conf. on

Applications of Computer Vision (WACV), pages 148–157, 2017.

[141] Xikang Zhang, Yin Wang, Mengran Gou, Mario Sznaier, and Octavia Camps. Efficient

temporal sequence comparison and classification using Gram matrix embeddings on

a riemannian manifold. In IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), June 2016.

[142] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Canavan, Michael Reale, Andy

Horowitz, Peng Liu, and Jeffrey M Girard. Bp4d-spontaneous: a high-resolution

spontaneous 3d dynamic facial expression database. Image and Vision Computing,

32(10):692–706, 2014.

[143] Guoying Zhao, Xiaohua Huang, Matti Taini, Stan Z. Li, and Matti Pietikäinen. Facial

expression recognition from near-infrared videos. Image Vision Computing, 29(9):607–

619, 2011.

[144] Guoying Zhao and Matti Pietikäinen. Dynamic texture recognition using local binary

patterns with an application to facial expressions. IEEE Trans. Pattern Analysis and

- 137 -



BIBLIOGRAPHIE

Machine Intelligence, 29(6):915–928, 2007.

[145] Lin Zhong, Qingshan Liu, Peng Yang, Bo Liu, Junzhou Huang, and Dimitris N.

Metaxas. Learning active facial patches for expression analysis. In IEEE Conf. on

Computer Vision and Pattern Recognition, pages 2562–2569, 2012.

[146] Jing Zhou, Xiaopeng Hong, Fei Su, and Guoying Zhao. Recurrent convolutional neural

network regression for continuous pain intensity estimation in video. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages

84–92, 2016.

[147] Wentao Zhu, Cuiling Lan, Junliang Xing, Wenjun Zeng, Yanghao Li, Li Shen, and

Xiaohui Xie. Co-occurrence feature learning for skeleton based action recognition using

regularized deep lstm networks. In AAAI Conf. on Artificial Intelligence (AAAI),

pages 3697–3703, 2016.

[148] Zoran Zivkovic. Improved adaptive Gaussian mixture model for background

subtraction. In 17th International Conference on Pattern Recognition, ICPR 2004,

Cambridge, UK, August 23-26, 2004., pages 28–31, 2004.

- 138 -


	source: Thèse de Anis Kacem, Université de Lille, 2018
	d: © 2018 Tous droits réservés.
	lien: lilliad.univ-lille.fr


