
École Doctorale Sciences Pour l’Ingénieur

THÈSE DE DOCTORAT

préparée au sein de

et du centre de recherche Lille - Nord Europe

financée par

Spécialité : Informatique

présentée par

Géraud LE FALHER

CHARACTERIZING EDGES IN SIGNED
AND VECTOR-VALUED GRAPHS

sous la direction de Dr. Marc TOMMASI
et l’encadrement de Fabio VITALE

Soutenue publiquement à Villeneuve d’Ascq, le 16 avril 2018 devant le jury composé de :

M. Liva RALAIVOLA Univ. Marseille Rapporteur
M. Alessandro PROVETTI Birbeck College in London Rapporteur
Mme Elisa FROMONT Univ. Rennes Examinateur
Mme Sophie TISON Univ. Lille Examinateur
M. Claudio GENTILE Inria Invité
M. Fabio VITALE Univ. Lille Encadrant
M. Marc TOMMASI Univ. Lille Directeur

i

Abstract

In this thesis, we develop methods to efficiently and accurately characterize edges
in complex networks. In simple graphs, nodes are connected by a single semantic.
For instance, two users are friends in a social networks, or there is a hypertext link
from one webpage to another. Furthermore, those connections are typically driven
by node similarity, in what is known as the homophily mechanism. In the previous
examples, users become friends because of common features, and webpages link
to each other based on common topics. By contrast, complex networks are graphs
where every connection has one semantic among k possible ones. Those connections
are moreover based on both partial homophily and heterophily of their endpoints.
This additional information enable finer analysis of real world graphs. However, it
can be expensive to acquire, or is sometimes not known beforehand. We address the
problems of inferring edge semantics in various settings. First, we consider graphs
where edges have two opposite semantics, and where we observe the label of some
edges. These so-called signed graphs are a convenient way to represent polarized
interactions. We propose two learning biases suited for directed and undirected
signed graphs respectively. This leads us to design several algorithms leveraging
the graph topology to solve a binary classification problem that we call EDGE SIGN

PREDICTION. Second, we consider graphs with k ≥ 2 available semantics for edge.
In that case of multilayer graphs, we are not provided with any edge label, but instead
are given one feature vector for each node. Faced with such an unsupervised EDGE

ATTRIBUTED CLUSTERING problem, we devise a quality criterion expressing how
well an edge k-partition and k semantical vectors explains the observed connections.
We optimize this goodness of explanation criterion in vectorial and matricial forms,
and show how those two methods perform on synthetic data.

Résumé

Dans cette thèse, nous proposons des méthodes pour caractériser efficacement et
précisément les arêtes au sein de réseaux complexes. Dans les graphes simples, les
nœuds sont liés au travers d’une sémantique unique. Par exemple, deux utilisateurs
sont amis dans un réseau social, ou une page web contient un lien hypertexte
pointant vers un autre page. De plus, ces connexions sont généralement guidées
par la similarité entre les nœuds, au travers d’un mécanisme appelé homophilie.
Dans les exemples précédents, les utilisateurs deviennent amis à cause de caracté-
ristiques communes, et les pages web sont reliées les unes aux autres sur la base de
sujets communs. En revanche, les réseaux complexes sont des graphes où chaque
connexion possède une sémantique parmi k possibles. Ces connexions sont en
outre basées à la fois sur une homophilie et une hétérophilie partielle des nœuds à
leurs extrémité. Cette information supplémentaire permet une analyse plus fine des
graphes issus d’applications réelles. Cependant, elle peut être coûteuse à acquérir,
ou n’est pas toujours disponible a priori. Nous abordons donc le problème d’inférer
la sémantique des arêtes dans plusieurs contextes. Tout d’abord, nous considérons
les graphes où les arêtes ont deux sémantiques opposées, et où nous observons
l’étiquette de certaines arêtes. Ces « graphes signés » sont une façon élégante de
représenter des interactions polarisées. Nous proposons deux biais d’apprentissage,
adaptés respectivement aux graphes signés dirigés et non dirigés. Ceci nous amène
à concevoir plusieurs algorithmes utilisant la topologie du graphe pour résoudre
un problème de classification binaire que nous appelons EDGE SIGN PREDICTION.
Deuxièmement, nous considérons les graphes avec k ≥ 2 sémantiques possibles
pour les arêtes. Dans ce cas, nous ne recevons pas d’étiquette d’arêtes, mais plutôt
un vecteur de caractéristiques pour chaque nœud. Face à ce problème non supervisé
d’EDGE ATTRIBUTED CLUSTERING, nous concevons un critère de qualité exprimant
dans quelle mesure une k-partition des arêtes et k vecteurs sémantiques expliquent

ii

les connexions observées. Nous optimisons ce critère « qualité explicative » sous une
forme vectorielle et matricielle et illustrons le comportement de ces deux méthodes
sur des données synthétiques.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor,
Pr. Marc Tommasi. From the day we first got in touch in that spring four years ago,
and all the way towards my defense, he has provided me with thorough guidance.
In terms of research of course, but on many other topics as well, from professional
development to folkloric music. Moreover, this has always been done in the kindest
way possible. Therefore, I’m doubly indebted to him, for not only I wouldn’t have
complete my PhD without him, but he made it a very pleasant experience. Second,
such feelings carries over to include my advisor, Dr. Fabio Vitale. There has been
time when his sense of rigor has challenged me. But at the end, it was an important
learning experience, and his ability to crack a joke at the least expected moment of
a long research meeting has proved very useful: the fact we went to bars in at least
three different countries speaks for it. I would also like to thank Pr. Claudio Gentile
for hosting me in Varese, and giving me sharp advice along those three years.

Then I want to thank Alessandro Provetti and Liva Ralaivola who kindly agreed
to review my manuscript, as well as Elisa Fromont and Sophie Tison for having
accepted to be part of my committee. To conclude this academic paragraph, I’d
like to sincerely acknowledge how lucky I was to collaborate with all my talented
co-authors: Nicolò Cesa-Bianchi, Emre Çelikten, Claudio Gentile, Aristides Gionis,
Michael Mathioudakis and Fabio Vitale.

Although doing a PhD is a rather personal enterprise, I was fortunate to be part
of the awesome Magnet team1, whose past and current members I met include,
in seating order: Thomas, Pauline, David, Mathieu (Thursday French Fries for-
ever), Thanh, Carlos, Pierre, Paul, Juhi, Quentin, William, Mikaela, Pascal (special
thanks for great accommodation and sportive spirit), Rémi, Aurélien and Hippolyte.
Thanks for stimulating discussions on many topics, constant readiness to help and
answer my questions, life long lessons of table football, and quite importantly,
thanks for patiently bearing with me while I was finishing lunches (and/or fiddling
with my phone)! Of course, this wouldn’t be proper acknowledgment without men-
tioning the best office in the world, namely B224, and the best possible office mates:
Nathalie (for all the cookies) and Thibault (because there were some genuinely
good jokes among all of them). Whereas I’ve always been slightly worried about
logistics, I never had to think about it thanks to the fantastic work of Julie. Finally,
one last Magnet member, Antonino, left before I joined but nonetheless deserve my
gratitude for he helped me find my next job. Same credit goes to Michal, in addition
to being a great company in all occasions. At this stage, I might as well thanks the
rest of the Sequel team, and especially Julien, Alexandre, Émilie, Frédéric, Romaric,
Matteo, Daniele, Julien, Bilal, Marta, Tomáš, Daniele, Florian, Jean-Bastien, Olivier
and Ronan (too bad my defense is not on Friday, for I know you wouldn’t be long
to hit the dance floor). Finally I want to thank all the support crews from Inria, as
they made it a great place for doing research, as well as the University Lille 3 for
making my short teaching experience so pleasant.

Doing a PhD is also supposed to be a rather labor intensive enterprise, but again,
I was fortunate to live in the student city of Lille. There I met many wonderful
people, each of them who contributed in a way to this manuscript. It all started when
a young version of myself attended a student event organized by Tilda and later
had to pleasure to collaborate with Guillaume, Antoine, Fabien, Alexandre, and by
extension with Carmelo, Jason, Cindy, Antoine (Dujardin), Clément, Ilkay, Benjamin

1https://www.inria.fr/en/teams/magnet

https://www.inria.fr/en/teams/magnet

iii

and Émilie. On my way to organize an elusive café lingua, I also enjoyed the
company of many members of a meetup group, including Samir, Nathalie, Marie-
Pierre, Anne Charlotte, Léa, Géraldine, Fabienne, George, Norida and Thomas, as
well as Rashida, Mairead and Yash, who bore with me during circumstances better
not written here. Another great event in Lille is undeniably the “apéro culture”,
where I was privileged to meet Cyrille, Élise, Audrey, Wasilla and Olmo. This
picture wouldn’t be complete without Stéfana, Arthur, Esmeralda, Daniel, and my
flatmate Édouard for some nice video games nights.

I also received support from outside Lille, thanks to Tristan, Olivier (may the
force be with you guys), Aloïs, Juliette, Florent, Isabelle, Camille and Claire. In
these cold days of February, I also have a warm thought for people I met during my
visits in Aalto: Luiza, Annika, Eric, Polina and Klaudia as well as Kiran, Vera and
Sanja for their long-standing support and comments on some part of this thesis.

You astute reader may at this point grow suspicious of whether a single man
can really be so lucky. Yet this is not over and I was again fortunate to met just
before starting my PhD a wonderful friend. Over those years, Nataša has given me
support that words probably can’t describe. But it’s safe to say that without her,
this thesis and even myself would both be lacking something essential.

Enfin, j’aimerais remercier ma mère et mon frère, pour leur soutien inconditionel
sans lequel toute cette aventure n’aurais pas été possible.

Berlin, Germany, February 27, 2018
Géraud Le Falher

Contents

1 Introduction 1
1.1 Learning in graphs . 2
1.2 Graph with several edge semantics . 3

1.2.1 Signed graphs . 4
1.2.2 Multilayer graphs . 7

1.3 Predicting edge type . 8
1.4 Outline . 10

2 On the Troll-Trust Model for edge sign prediction in Social Networks 11
2.1 Notation and Preliminaries . 13
2.2 Generative Model for Edge Labels . 16
2.3 Algorithms in the Batch Setting . 17

2.3.1 Approximation to Bayes via dense sampling 17
2.3.2 Approximation to Maximum Likelihood via Label Propagation 19

2.4 Related work . 21
2.5 Experimental Analysis . 25

2.5.1 Datasets . 25
2.5.2 Synthetic signs . 27
2.5.3 Real signs . 29
2.5.4 Additional experiments . 32

2.6 Algorithms in the Online Setting . 33
2.7 Open questions . 35
2.8 Summary . 36
2.9 Additional material . 37

2.9.1 Proofs from Section 2.3 . 37
2.9.1.1 Proof of Theorem 1 37
2.9.1.2 Derivation of the maximum likelihood equations . . 40
2.9.1.3 Label propagation on G′′ 40

2.9.2 Proof from Section 2.6 . 41
2.9.3 Further Experimental Results 43

3 Edge sign prediction in general graphs and Correlation Clustering 45
3.1 A bias for general graphs . 45

3.1.1 Sign generative model and behavior 45
3.1.2 Directed edges requirement . 47
3.1.3 Social balance as a learning bias 48

3.2 CORRELATION CLUSTERING . 51
3.2.1 Problem setting and connection to EDGE SIGN PREDICTION . 52
3.2.2 State of the art . 54

3.2.2.1 Exact methods . 54
3.2.2.2 Hardness and approximations 56
3.2.2.3 Heuristics . 61
3.2.2.4 Active and online settings 63

3.2.3 Beyond worst case instances 64
3.2.4 Variants and extensions . 65

v

vi CONTENTS

3.3 Low stretch trees and spanners . 70
3.3.1 GALAXY TREE: a spanning tree designed for sign prediction . 70
3.3.2 Related work . 79
3.3.3 Empirical evaluation . 82

3.3.3.1 Graph topology . 83
3.3.3.2 Stretch . 84
3.3.3.3 Sign prediction . 84

3.4 Conclusions . 85
3.4.1 Summary . 85
3.4.2 Future work . 85

4 Edge clustering in node attributed graphs 91
4.1 Attributed graphs and problem definition 93

4.1.1 Setting and modelling . 93
4.1.2 Learning problem and additional constraints 95

4.2 Proposed approaches . 99
4.2.1 k-MEANS baseline and improvement 99
4.2.2 Convex relaxation . 100
4.2.3 Matrix optimization . 101

4.2.3.1 FRANK–WOLFE method 101
4.2.3.2 EXPLICIT low rank factorization 103

4.3 Synthetic experiments . 104
4.3.1 Data generation . 104
4.3.2 Results . 107

4.4 Related work . 109
4.5 Open directions . 113

5 Conclusion 117
5.1 Contributions . 117
5.2 Future work . 118

5.2.1 Reciprocal recommendation . 118
5.2.2 Representation learning . 119

List of Figures

2.1 Part of a DSSN centered on node u. 14
2.2 Illustration of the graph transformations turning EDGE SIGN PRE-

DICTION into node classification . 14
2.3 The node-labeling of G′ illustrating the relation between the edge label

complexity and the cutsize. Here the four edges part of the cut are in heavy
black. 16

2.4 The sign yu,v of the edge u→ v is positive with probability 1
2 (pu + qv). . . 16

2.5 Synthetic distributions on WIKIPEDIA. 27
2.6 Results on WIKIPEDIA with BLC(tr, un) on a training set of size 40% . 29

3.1 A two-clustering of a complete strongly balanced graph 49
3.2 The four possible undirected triads, as classified by the two structural

balance theories introduced in the main text 50
3.3 Small example of CORRELATION CLUSTERING 53
3.4 The transformation from CORRELATION CLUSTERING on G to k-

MINIMUM MULTICUT on H (reproduced from [Dem+06]) 57
3.5 A positive star with few negative edges 64
3.6 A sample star . 71
3.7 Cross edges between two stars . 73
3.8 Unfolding stars to recover spanning trees 76
3.9 The hierarchical structure of stars created by GALAXY TREE 77
3.10 The other iterations of GALAXY TREE 77
3.11 A line graph with stars in blue. 78
3.12 Real world pictures and their binarized version 87
3.13 Stretch over graphs of increasing size 88
3.14 MCC over various graphs . 89
3.15 A sym exp over various graphs . 89

4.1 A small instance of EDGE ATTRIBUTED CLUSTERING and an hand-
crafted solution, albeit non-optimal. 96

4.2 Finding the klocal directions of node when generating synthetic graph 106

vii

List of Tables

1 List of notations used in this thesis . x

2.1 The label regularity values for the nodes of the example G graph of
Figure 2.2a. 16

2.2 Directed Signed Social Networks dataset properties 26
2.3 Comparison of BLC(tr, un) with the Bayes optimal predictor 28
2.4 MCC with increasing training set size 31
2.5 Training time on a 15% training set . 32
2.6 MCC difference when using reciprocal edges 32
2.7 Same as Table 2.4, but when selecting the training set by the times-

tamp of the edges. 33
2.8 The effect of not sampling edges at random 34
2.9 Values of sj(i) for i ≤ 7 and j ≤ 3. 42
2.10 Values of mr,c for r ≤ 7, c ≤ 4 and |E| → ∞. 42
2.11 Normalized logistic regression coefficients averaged over 12 runs

(with one standard deviation) . 43

3.1 Biological dataset properties. The columns have the same meaning
as in Table 2.2 on page 26 . 46

3.2 This table is the same as in Table 2.4 on page 31, but this time on
three smaller, directed biological networks. 47

3.3 MCC on the six previous datasets with direction removed 48
3.4 Hardness results of CORRELATION CLUSTERING 57
3.5 Best current results on CORRELATION CLUSTERING problems 59
3.6 Approximation results for CORRELATION CLUSTERING on general

graphs with K clusters . 60
3.7 Length of the paths not in the resulting spanning tree. 78
3.8 Reproduction of Table 1 from [AN12], showing the evolution of the

best asymptotic average stretch over time. 81
3.9 A summary of the lowest stretches achievable for various problems. 83
3.10 Dataset description . 83

4.1 Real world attributed graphs . 92
4.2 Combining node profiles through the Hadamard product 94
4.3 Qualite of our synthetic instances according to generation parameters108
4.4 Performance of our proposed methods on synthetic instances 109
4.5 Same as Table 4.4, but reporting d(Dk, D̂k), which should be as close

as possible to 0. 109
4.6 Generative model of node attributed graphs with community structure114

ix

x LIST OF TABLES

In this thesis we will sometimes write remarks in a smaller font and with a light
blue edging.

Such remarks provide additional information to the topic discussed above, but can be
skipped without harming the comprehension of the main material.

Table 1 – List of notations used in this thesis

Symbol Meaning

JKK The natural integers from 1 to K, i.e. {1, 2, . . . ,K}
I {p} An indicator function evaluating to 1 if the predicate p is true and 0 otherwise
x;i For a vector x ∈ Rd, x;i denotes the value of its ith component.
Sd The sphere of `2 unit vectors in dimension d, i.e.

{
x ∈ Rd : ‖x‖2 = 1

}
G An unweighted graph. It should be clear from the context whether it is directed or not
V The set of all the nodes of a graph, with |V | = n. Unless noted otherwise, nodes are

indexed from 1 to n
u A generic node of G. When referring to several nodes, we naturally use u, v, w and so on.
E The set of all the edges of a graph, with |E| = m
(u, v) An undirected edge between nodes u and v
u→ v A directed edge from node u to node v
yu,v The sign of the edge (u, v), which can be either +1 or −1
Y (E) The labeling of E, that is the set of all signs of E: Y (E) = {yu,v : (u, v) ∈ E}
Etrain A subset of E, given or chosen, of which we observe the signs
deg(u) The total degree of node u (that is, the number of edges incident to u, regardless of their

direction)
N (u) The set of all neighbors of u, regardless of edge direction. It thus holds that

|N (u)| = deg(u)
N+(u) The set of all positive neighbors of u, regardless of edge direction. That is,

∀v ∈ N+(u), yu,v = +1.
N−(u) The set of all negative neighbors of u, regardless of edge direction. That is,

∀v ∈ N+(u), yu,v = −1.
T An unweighted and undirected tree
pathT (u, v) The unique path between u and v in the tree T , represented by an ordered list of edges
|pathT (u, v)| The length of the path between u and v in the tree T , that is its number of edges
diam(G) The diameter of G, that is the longest shortest path between any two nodes.

Chapter 1

Introduction

Graphs are a natural way to represent the relationships over a set of entities. Because
of the simplicity and flexibility of this formalism, graphs are ubiquitous and have
been used in countless fields. To make the rest of our explanations more concrete,
we now give three examples of graphs that we consider later on.

1. In a social network1, the nodes of the graph are human users, and relationships
between nodes denote interactions between the corresponding users. One
social network we study in Chapter 2 summarizes the connections between
the editors of WIKIPEDIA. These editors can be promoted to administrators
after a vote from their peers. An edge u→ v in this network means that user
u has voted on the possible promotion of v.

2. In computer vision, we can represent an image as a graph. Each pixel is a
node, and those nodes are connected to four neighbors, namely the adjacent
pixels from the top, bottom, left and right sides. The relationship in this graph
is therefore adjacency in an image.

3. In e-commerce, we can consider a co-purchase network. Nodes are products
being sold on a website, and two nodes are connected if the corresponding
products are frequently bought together by customers, for instance a phone
and a memory card.

Not only are there graphs in many domains, but the progress of technology in the
last few decades has made it easier to collect many graphs in every single domain,
sometimes with up to billions of nodes and hundreds of billions of edges. The
availability of such large amounts of structured data has prompted the development
of automated methods to extract insights from them. For instance, it is possible to
cluster nodes into coherent groups, predict the category of the nodes or study how
to best propagate information within a graph. We describe in more details these
possibilities and others in Section 1.1. By doing so, our goal is to illustrate the wide
potential of learning in graphs.

At this point of the discussion though, we have only considered the most
common and simple kind of graph, one representing a single type of relation
between nodes.2 However, in many situations, there are two dimensions along
which graphs exhibit more complexity. First, nodes have more than one type of
relation among each other. Second, two nodes are not only connected because of
their global similarity but also for more nuanced reasons. As a case in point, let us
look again at our three examples. In the WIKIPEDIA network, a vote can support the
promotion or oppose it. This additional information enrich our understanding of
the relationships among the nodes in the graph. It also points out that two editors
can be connected because they share a common topic of interest, but come from
different socio-economic backgrounds and therefore cannot agree on this topic.

1In the rest of this thesis, we use the terms graph and network interchangeably.
2Note that by “type of relation”, we do not refer to some graph-theoretical characteristic of an

edge, such as being directed or weighted. Indeed, all the graphs we consider have homogeneous
edges with that respect. Instead, we mean domain specific semantic, as we will make clear in examples.

1

Chapter 1. Introduction

Likewise in an image, an edge between two pixels is positive if the two pixels
belong to the same object (say a car or a building) and negative otherwise. This
information could be used to segment the image. In the co-purchase network, there
are even more than two types of relation. Assuming the products are movies, two
movies can be frequently bought together because they are part of a series (like
Star Wars), because they have the same director but different genre, because they
receive the same prestigious award in different years, and so on. The second type of
relation (“same director” and “different genre”) is actually an example of a mixed
relation, for it combines similarity and dissimilarity over several features of the
nodes.

We call complex networks graphs where edges have different semantics, or types,
and where connections are explained by more than simple global similarity. In
Section 1.2, we give additional examples of such complex networks. As showed
in our three previous examples, we distinguish between two cases. The first is
when there are two types of edge having opposite semantics. Such graphs are
called signed graphs and have been extensively studied since the fifties, for we shall
see they have many applications. Their name comes from the fact that edges are
typically labeled +1 and −1. The second case is when there are more than two
types of edge. Such graphs have also been studied for a long time under different
names and we refer to them as multilayer graphs.

It is natural to expect that we can extract finer insights from graphs with edge
semantics. However, in many cases, the information about edge types is not
available, at least not in a convenient form. We therefore present in Section 1.3
the problem of characterizing edges in complex networks. Informally, given an
input graph and possibly some extra information, we want to predict the type of
every edge. This problem can take several forms depending on what information
is available as input. First, the graph may be directed or undirected. Second,
there might be two edge types (in the case of signed graphs) or more (for general
multilayer graphs). Third, the problem can be supervised or not. In the supervised
setting, we are provided with labels for some of the edges. In the unsupervised
setting, there is no label at all. We thus make the additional assumption that we
observe some attributes of the nodes. Once again, we return to our three examples
to illustrate what those attributes can be. In the WIKIPEDIA graph, we could have
for each user data about her age, experience and area of expertise. In an image,
each pixel is associated with a color, along with higher order visual features. Each
product of a co-purchase network comes with information about, e.g., its price,
popularity, category and availability. In the absence of label, our intuition is that
these attributes can inform us about the types of edge among nodes.

We list in Section 1.4 three concrete instantiations of this general problem that
we consider in this thesis. Our solutions to these three problems offer evidence in
the defense of our thesis statement:

There exist efficient and accurate methods to predict edge type in
complex networks, relying only on the graph topology or also on
node attributes.

1.1 Learning in graphs

The birth of graph theory is credited to Euler [Eul41] in 1736 for his elegant solution
of the Seven Bridges of Königsberg problem3. Since then, it has been a very active
branch of mathematics [BLW86]. Indeed, it provides a conceptually simple yet
immensely rich framework to model phenomena where entities are connected with
each other [dFon+11]. Coupled with the increasing availability of large amount

3https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

2

https://en.wikipedia.org/wiki/Seven_Bridges_of_K�nigsberg

1.2. Graph with several edge semantics

of relational data, learning on graphs has recently spurred a lot of interest across
various lines of research, with tangible benefits.

community detection [For10] The goal is to cluster nodes in tightly connected
groups that are loosely connected with the rest of the graph. This allows for a
better understanding of the graph organization, and present a higher level view
than looking at the individual node relationships. For instance, it has been used to
identify proteins functional groups [SM03], or to see how different scientific fields
relate based on publication data [RB08].

semi-supervised learning [CSZ06; ST14] In addition to labeled data, the learner is
also provided with unlabeled data at training time, and its goal is to classify nodes.
Connecting similar instances allow propagating information along the graph. This
has found applications in classifying text documents [TC09] or aligning categories
and relations across multiple knowledge bases [WTM13].

node embedding [Wil17] The goal is to find a low dimensional representation
of the nodes, based on their structural patterns. This usually performed in an
unsupervised way, although it is also possible to include problem supervision
when available. Such representation can then be used in downstream tasks, for
instance visualization [Tan+15] or the aforementioned node classification, even in
the inductive setting where new nodes can join the graph after training [HYL17].

link prediction [MBC16] Given a snapshot of the graph at time t, the goal of
link prediction is to return a set of links that do not exist at time t but will be
created by time t + ∆t. Most methods are based on the assumption that link
creation is driven by node similarity. It has been successfully applied to inferring
potential interactions between proteins without expensive experiments [QBK06]
and uncovering hidden associations in criminal networks [CMN08].

information and influence propagation [CLC13] The study of processes by which
content is spread across networks, and how such processes can be influenced to
speed them up or slow them down. Two representative applications are selecting
the best seeds in a social network to promote a viral marketing campaign [KKT15]
and containing more effectively the diffusion of actual biological viruses [Pra+13].

network evolution [AS14] These methods focus on the mechanisms and conse-
quences of the growth of networks. They also seek ways to keep the results of
some data mining algorithms up to date and relevant. Monitoring the changes in
the interactions of proteins can indeed be used as an early indicator for some kind
of diabetes [Bey+10]. Furthermore, sudden changes in a network of computers are
usually worth investigating, for they might signal external attacks [IK04].

This list of graph learning problems and their applications to real world scenario
is incomplete. Yet it already demonstrates the impact of inferring patterns in
relational data over many aspects of our lives. However, we argue that more can be
done. Indeed, all the methods presented above only consider graphs with a single
type of edge and where nodes are connected based on some domain-dependant
notion of similarity.

1.2 Graph with several edge semantics

The three graphs we described in the introduction are examples of what we call
complex networks. Such graphs have more than one type of edge, and edges are
not explained by mere global node similarity. The point of this section is to illustrate
that this notion is not simply a mathematical variation of a “simple” graph, where
the adjacency matrix would take values in {−1, 0, 1} or {0, 1, . . . , k} instead of {0, 1}.

3

Chapter 1. Introduction

Rather, we review many applications in various domains where complex networks
are the right model to represent rich networked data. First, we showcase many uses
of signed networks. In that case, we do not insist on the fact that similarity is not
the only driver of node connections, for it is implicit that negative edges actually
denote dissimilarity. Second, we present multilayer graphs, that is graphs with
more than two types of edges. When applicable, we highlight how the connections
in such graphs indeed rely on a nuanced similarity or dissimilarity across some of
the nodes attributes.

To elaborate on this last point, our hypothesis is that connections in complex
networks are the results of both partial homophily (that is, nodes are connected
when they are similar on a subset of the attributes) and partial heterophily (that
is, nodes are connected when they are dissimilar on a subset of the attributes).
As examples of the latter, think of dating websites —where most users are linked
with users of the opposite gender [The09a; Tys+16]; diffusing innovations —where
meeting people with different backgrounds and point of views is crucial to favor
diversity and creativity [Rog03]; and online news consumption —where connecting
people from different sides of the political spectrum helps to avoid echo chambers
and instead fuel a democratic debate [Gar+17].

1.2.1 Signed graphs

In this section, we present a list of signed graph usages, sorted by domains [Tan+16b].
Many of those signed graphs are the input of some clustering algorithms. In the
context of signed graph, the clustering task can be captured by the CORRELA-
TION CLUSTERING problem. We provide a thorough overview of this problem
in Chapter 3. Here we simply give a broad, informal definition. The objective in
CORRELATION CLUSTERING is to cluster the nodes of a signed graph in a way that
minimizes the number of positive edges across clusters and the number of negative
edges within clusters. Such edges are called disagreements.

Computer Vision The ubiquitous task of segmenting an image into homogeneous
regions is a prerequisite for many further processing. As we mentioned earlier in
one example, building a signed graph can help, although it might be costly to do it
at the pixel level. For instance, to segment cells in microscopy imagery, Zhang et
al. [ZYH14] first use generic image features to classify pixel in belonging to region
boundaries or not. Then, they extract small scale regions called superpixels. After
building the adjacency graph of these superpixels, they assign edge weights by
averaging the boundary probabilities of the pixels separating adjacent superpixels.
They also add strong negative constraints between distant superpixels, and lastly
cluster these superpixels according to the CORRELATION CLUSTERING objective
to obtain the final segmentation. A similar approach was used earlier in Kim et al.
[Kim+11], who stress the importance of considering such higher order constraints
between distant superpixels in order to achieve good performance. This was also
extended to 3D segmentation [And+12], where additional tuning allows to segment
a volume image of a mouse cortex with up to billions voxels. Beier et al. [BHK15]
segment 2D and 3D images with an energy based formulation of CORRELATION

CLUSTERING and iteratively improve their solution by merging it with another
clustering given by a proposal generator. By developing another scalable energy
based optimization procedure, and with the help of few user-provided cues, Bagon
et al. [BG11] are able to apply CORRELATION CLUSTERING directly at the pixel level.

Beyond image segmentation, Gori et al. [Gor+17] develop a method to extract a
network of descriptive curves from 3D shapes. After an initial stage of generating
many such flowlines, they describe in Section 6 a CORRELATION CLUSTERING

formulation to extract reliable representative flowlines, using geometric constraints
to obtain positive or negative cues that two flowlines are from the same reliable
representative.

4

1.2. Graph with several edge semantics

Finally, in order to track several targets across sequential video frames, Solera et
al. [SCC15] propose a multistage framework. One step revolves around a matrix
A that defines the cost of assigning an object tracked in previous frames to an
object detected in the current frame. This matrix is turned into a symmetric affinity
matrix Āsym that can be seen as a signed graph adjacency matrix. CORRELATION

CLUSTERING is then used to extract clusters (called zones), in which local processing
is performed. This is beneficial since the complexity of these local methods can be
adapted to the difficulty of each zone.

Natural Language Processing Coreference resolution is the task of finding all
expressions that refer to the same entity in a text. Like image segmentation, it is
a preprocessing step that can later be used in document summarization, question
answering, and information extraction. Furthermore, in that case, it is also natural
to build a graph of words. One then add negative edges between words that cannot
refer to the same entity (for instance because they are of different gender) and
positive edges between words with linguistic cues indicating they might refer to
the same entity. McCallum et al. [MW05, Section 2.3] instead tackle coreference
resolution by using an undirected graphical model on which performing inference
is equivalent to CORRELATION CLUSTERING. On small scale instances, Elsner et
al. [ES09] use the signed graph procedure outlined above. They first obtain an
upper bound of the optimal solution by solving a SDP relaxation of the problem.
They then compare various heuristics and show that the best performing ones are
within few percents of the optimum, provided they are followed by a local search
step, such as the Best One Element Move [GMT07]. Further NLP tasks amenable
to a signed graph representation are referenced in their paper. Another task is to
cluster words based on distributional embedding vectors while adding antonym
constraints [SPU17].

Biology Signed graphs are also abundant in biology. A typical input is a simi-
larity matrix between genes expression level in various experimental conditions,
and the goal is to cluster those genes into groups that react similarly. Ben-Dor et
al. [BSY99, Section 4] gives three examples: 112 genes involved in the rat central
nervous system, 1246 genes of the roundworm C. elegans and 2000 human genes
obtained from 40 tumorous and 22 normal colon samples. Mason et al. [Mas+09]
analyze a signed co-expression network of genes involved in embryonic stem cells
to find which genes are related to pluripotency (the ability to differentiate into
any type of cell in the body) or self-renewal (the ability to replicate indefinitely).
Another application is to study the variation of one individual DNA [DV15]. In
the human organism, chromosomes are organized in pair, and both chromosomes
of a pair have similar but not identical DNA sequences. This is mostly because
of single nucleotide polymorphisms (SNPs), where a single base differs between
the two DNA sequences, leading to different alleles of the corresponding gene. A
haplotype is the list of all alleles at a contiguous region of a single chromosome,
and this information is used in several medical applications. The high-throughput
sequencing of one individual genome yields many short reads that provides in-
formation about the order of nucleotides in a fragment of one chromosome and
that can be used to assemble haplotypes. To do so, the authors build a graph of
reads and define a similarity function between reads to assign weights on the edges.
The clusters of that graph correspond to haplotypes, and are obtained by a SDP
relaxation of the CORRELATION CLUSTERING objective. DasGupta et al. [Das+07]
also consider graphs whose nodes are genes, but in a different context. In this case,
positive edges represent an activating connection, while negative edges represent
inhibiting connection. They also define a monotone system as a balanced subgraph,
that is a subgraph which does not contain a cycle with an odd number of edges.
Such monotone system are stable, in the sense that modifying the concentration of

5

Chapter 1. Introduction

one gene will have a predictable effect, even ignoring the precise kinematics of the
chemical reactions involved. Their goal is to find the minimum number of edges to
remove in order to decompose a dynamics system into a collection of monotone
system. This allows to study the complete system more easily. More applications of
weighted complete signed graphs in biology are presented in [BB13, Section 6].

Network science One early use of signed graphs was to model social interac-
tions [Har53; Hei58]. Here we present some recent references within this line of
research. For instance, one can extract all the votes of the members of a political
parliament and form a graph whose nodes are politicians and edge weights quantify
how much they agree or disagree on various issues they have been voting on. This
can be used to study various social science questions such as loyalty, leadership,
coalitions, political crisis and polarization. It has been applied to the European par-
liament [Men+15], Slovenian parliament [Jia15] and the Brazilian parliament [LF17].
This can also be used at international level. For instance, by considering a dataset of
military alliances and disputes, Traag et al. [TB09] cluster countries into blocks that
resemble those identified by Huntington in his Clash of Civilizations book. Another
source of data is the vote on resolutions during the United Nations General Assem-
bly [MMP12]. Finally, one can also study how to exploit the information contained
within the negative links to enhance the visualization of social networks [Kun+10;
KT11].

Others

• Deduplication, also called duplicate detection or entity resolution, is the process
of identifying objects from a real-world, noisy database that refer to the same
entity. On a high level, a solution to this problem is to build a graph of all the
available objects, define a similarity between them and run a CORRELATION

CLUSTERING algorithm. The main challenge thus lies in devising an appropriate
similarity measure, given that objects can have very different features from one
database to another. Arasu et al. [ARS09] propose a declarative language, ex-
pressing both hard constraints (that have to be satisfied) and soft constraints (that
can be seen as cues guiding the process). Because of these hard constraints that
admissible clusterings have to respect, the authors have to modify in nontrivial
ways an existing CORRELATION CLUSTERING algorithm. This was extended to
weighted and partial constraints by Shen et al. [SW14]. Another example is given
by Gael et al. [GZ07], who cluster together news articles in different languages
covering the same event. CORRELATION CLUSTERING was also evaluated among
other solutions to that problem by Hassanzadeh et al. [Has+09], who note that
their non optimized implementation does not perform best.

• Given an electrical circuit layout, Chiang et al. [Chi+07] extract a graph of its
components (called shifter) that must be assigned one of two possible phases.
Because two shifters next to some specific shape must be in opposite phase and
two shifters separated by less than a specified distance must be of the same phase,
the authors look for a two-clustering of the nodes that will minimize the number
of disagreements.

• In finance, one can represent an investment portfolio as a signed graph [HLW02].
Each node is a security, and the edge between two securities is weighted by their
correlation, which can be negative. For instance, a graph with only positive
edges is speculative, as all the securities move in the same direction, either up or
down. On the other hand, if the securities can be partitioned in groups without
disagreement, the risk is limited, for two clusters will move in opposite directions,
providing the investors with a hedging guarantee.

6

1.2. Graph with several edge semantics

• In wireless networks, signed graphs can be used to solve optimization problems
involved in determining energy-saving routes [Rat+12] or to exchange crypto-
graphic keys in a secure and efficient manner [SC17].

1.2.2 Multilayer graphs

Besides signed graphs, in this thesis we also consider multilayer graphs [Kiv+14;
Boc+14]. Those are graphs with k edge types, and the name refer to the fact we can
see them as the superposition of the k subgraphs induced by each edge type. Even
when k = 2, we make a distinction between signed graphs and multilayer graphs.
In signed graphs, the two types of edge have reverse semantic, whereas in a 2-layers
graph, they simply denote two possible interactions, for instance advisor-advisee
or regular coauthors relation in a citation network [Wan+10]. In general though, we
focus on cases where k is larger than 2, and not larger than a few dozen in order to
preserve interpretability. Like signed graphs, these multilayer graphs are versatile
enough to be used in many fields.

Social networks Szell et al. [ST10] model the interactions of the players of Pardus,
a massively multilayer online game. These players can be friend or enemy, send
private messages, trade resources, attack each other and set a bounty on the head
of another player. These six types of interactions are either positive or negative,
but their nuances cannot simply by explained by global similarity and dissimilarity.
Another example is photo sharing website Flickr and its users. They can interact in
eleven ways, either directly or through comments, shared tags, groups membership
and so on [KMK11]. Again, while being part of a common group denotes shared
interests between two users, overall they must also differ in some other attributes
(for instance location) in order to bring diversity to this group.

Citation networks In these networks, nodes are research papers or authors, and
edges typically connect two nodes whenever one cites the other. For instance, using
the DBLP dataset, Cai et al. [Cai+05] connect two authors if they have co-authored a
paper in one the 1 000 conferences appearing in the data. One can then consider
that the resulting graph was obtained as the superposition of these 1 000 subgraphs.
Besides direct citations, Dunlavy et al. [DKK11] consider four others reasons to
connect 5 000 SIAM papers, based on their similarity in terms of abstract words,
title words, keywords and authors.

Economic networks In our ever increasingly globalized economy, entities around
the world are getting more and more tightly connected. However, those connections
take on many different forms simultaneously. For something seemingly as simple
as the connections between the largest 951 ports in the world, one must already
notice that these connections can be implemented by any combinations of three
kinds of ships: bulk dry carriers, container ships and oil tankers [Kal+10]. Likewise,
the 162 countries of the International Trade Network are connected by 96 kinds of
commodities they can exchange [BFG10]. Finally, Cranmer et al. [CMM15] studies
international relations through the lens of Kant’s three folded program for peace,
based on democracy, economic dependence and supra national governance. They
build the graph of all countries and connect them in three layers. All democracies
form a clique in the first layer, countries are connected with weight proportional
to the amount of yearly trade in the second layer and with weight proportional
to the number of international organizations they belong to together in the third
layer. While the essence of commerce is to exploit differential between the partners
involved (i.e. heterophily), trade intensity and participating in common institutions
also involve geographical, historical and cultural ties (i.e. homophily).

7

Chapter 1. Introduction

Biological networks The interactions in biology also take several forms and study-
ing them as a whole has proved fruitful. One example is a genes co-expression
network, where each connection was tested under 130 different experimental con-
ditions, providing as many layers [Li+11]. Multilayer graphs are also a relevant
way to represent ecological networks [Pil+17]. For instance, Kéfi et al. [Kéf+15]
build the graph of more than 100 species living on the Chilean coast4 and divide
their interactions in three categories: trophic (i.e. one specie eating another one),
positive non-trophic (e.g. refuge providing) and negative non-trophic (e.g. competi-
tion for shared resources). Finally, in neuroscience, multilayer graphs have recently
emerged as a useful tool to better understand the human brain [MB16]. The nodes
of such graphs are neurons, and the edges can be labeled in various ways: some cor-
respond to actual physical links while others are functional (i.e. neurons responding
in the same way to external stimuli), some are present in healthy subjects and others
in treated patients, some are acquired through MRI and others by EEG.

1.3 Predicting edge type

Let us summarize in one sentence the two previous sections. Learning in graphs
provides many insights, and many graphs are complex, in the sense of having edges
expressing different semantics and created for mixed reasons. The logical conclusion
is that we want to learn in complex graphs. However, this requires the edges of such
graphs to be labeled with one of k types of relationship. In the examples presented
above, this was already done. Yet we argue that efficiently labeling the edges is an
interesting problem, especially in the following three situations:

1. There exists a function that can perfectly label any edge because it is tailored
to this specific graph, but calling it is expensive. For instance, say we want
to know whether two connected users of a social network are tied to each
other through family, work, school or hobby. The labeling function in this
case simply asks users to label their relationships, assuming the answers do
not contain any noise. At the scale of Facebook, this would require asking
hundred of questions to each user on average, which is quite time-consuming.
Furthermore, it would also cost marketing resource to convince users this is
beneficial for them, and engineering time to ensure this information remain
confidential. Likewise, in a biological network, determining whether two
proteins interact positively or negatively with each other is achieved by a lab
experiment, which requires time and material.

2. All edges are already labeled, perfectly and without any cost, but the number
k of edge types is very large. Indeed, we have seen examples where they
are hundreds or even thousands of edge types. Similarly to what happen in
dimensionality reduction [Bur10], to make intuitive sense of such data, we
want to reduce the number of edge types to less than ten. A natural way is
to ask a domain expert to cluster edge types together. However, this is again
time consuming, and does not necessarily make use of the topology of the
graph.

3. The input graph is actually unlabeled. That is, we observe interactions be-
tween the nodes, and we assume from domain knowledge that these inter-
actions fall into k categories. However, there is no reasonable way to come
up with a specific labeling function. In Table 4.1 on page 92, we present
several such examples, but for now we simply recall our earlier co-purchase
network. As we mentioned, there are several reasons why two products could
be bought together. Yet it is unlikely that customers will provide this type of
feedback, for it does not bring them immediate advantage.

4http://app.mappr.io/play/chile-marine-intertidal-network

8

http://app.mappr.io/play/chile-marine-intertidal-network

1.3. Predicting edge type

In this thesis, we consider three versions of the problem of predicting edge
types.

1. The EDGE SIGN PREDICTION problem, which takes as input the topology of a
directed signed graph, and the label of some of the edges. The output is the
label of the remaining edges. Therefore, it can be seen as a supervised binary
classification problem.

2. The same EDGE SIGN PREDICTION problem, where the input graph is undi-
rected. In this case, we consider an active variant where, instead of being
given a random training set of labels, we have a budget of queries we can use
to request arbitrary labels.

3. The EDGE ATTRIBUTED CLUSTERING problem, which takes as input an un-
labeled, undirected multilayer graph, the attributes of all its nodes, and a
number of edge types k. The output is a k clustering of the edges, and a set of
k vectors describing the clusters in terms of node attributes. Therefore, it can
be seen as an unsupervised clustering problem with side information.

We now briefly review existing approaches addressing these problems, in order
to highlight our contribution in the next section.

The modern formulation of the EDGE SIGN PREDICTION on directed graphs can
be attributed to Leskovec et al. [LHK10]. Their idea is to compute local features
of the nodes based on the training labels. Such features include variations on the
node degree, such as the number of positive outgoing edges or the number of
negative incoming edges. These node features are combined into edge features,
and a supervised classification algorithm is trained. Several works have devised
additional features [SM15; Yua+17], most notably based on scoring the nodes in a
Page Rank fashion [TNV10; SJ14; WAS16]. These methods are accurate, fast —for
they are local, and interpretable —for the features are hand crafted. The drawback is
that this feature engineering is done mostly in an ad hoc way. On the other hand, it
is also possible to look at the problem from a global point of view, by completing the
signed adjacency matrix through low rank factorization [Chi+14; Wan+17a]. These
methods are also accurate, and bypass feature engineering, but by nature, they
require careful algorithms to scale with larger networks. Finally, during the writing
of this manuscript, several papers have been published, which use embedding of
the nodes in a low dimensional space, based on the training labels [IPR17; YWX17].
This also avoids feature engineering but is global in nature and not so interpretable.

One way to solve the problem on undirected graphs would be to apply the
previous methods, having first replaced every edge (u, v) by two directed edges
u → v and v → u. This is not quite satisfactory, both from a theoretical but also
practical point of view (see Section 3.1.2). Instead, Cesa-Bianchi et al. [Ces+12b] draw
a connection between the EDGE SIGN PREDICTION problem and the CORRELATION

CLUSTERING problem. Recall that given a fully labeled signed graph, the solution
to CORRELATION CLUSTERING is a partition of the nodes that minimize the number
of disagreement edges [BBC02]. Cesa-Bianchi et al. [Ces+12b] assume that the signs
are originally consistent with an underlying, hidden 2-clustering, but that we only
observe the signs after they have been flipped uniformly at random. In this case,
they show that the optimal number of disagreements is a lower bound of the number
of mistakes made by any active EDGE SIGN PREDICTION algorithm. One natural
approach would then be to solve CORRELATION CLUSTERING based on the observed
signs, and predict the remaining signs consistently with the inferred clusters. At
first, it seems hopeless, as CORRELATION CLUSTERING is difficult to approximate on
general graphs [CGW03], even when there are only two clusters [GG06]. However,
this worst case analysis does not forbid more positive results on signed graphs that
exhibit stability under perturbation [Ben15; BB09; NJ09] or are obtained through
perturbations from an ideal case [AL09; MMV15]. Furthermore, in the active setting,

9

Chapter 1. Introduction

the learner gets to choose which signs are observed. The general idea of Cesa-
Bianchi et al. [Ces+12b] is thus to use the query budget to build fully labeled paths
between each connected nodes. Those paths must be as short as possible, since
the predicted sign of (u, v) is the product of the signs along the path from u to v.
Therefore, the shorter the path and the less influence of the random perturbations.
At the same time, those paths must span the whole graph. This is the topic of an
active research area [AN12; EN17].

As for the EDGE ATTRIBUTED CLUSTERING problem, to the best of our knowl-
edge, it has not been studied under our assumptions. A more common problem
in attributed graphs is to cluster nodes into communities [LM12; YML13; Xu+14a;
ZLZ16]. However, it is not immediate how such methods, generally based on gener-
ative models, could be adapted to our problem. Direct approaches to classify edges
have been proposed, based on graphical models [TZT11], nearest neighbors with a
customized distance [AHZ16] and edge embedding in knowledge graphs [Bor+13].
Yet they all rely on having training labels as supervision. A simple unsupervised
method is to cluster the line graph of the input graph [EL09], but this does not take
advantage of attributes. Another method uses topological features [Ahm+17] but
is rather complex and thus not very interpretable. If we further assume that each
edge type is associated with a Euclidean space, and that the position of nodes in
one space are not correlated with their position in another space, then it is possible
to recover an approximation of these Euclidean metrics in polynomial time without
any supervision [Abr+15].

1.4 Outline

The contributions of this thesis are organized as follow:

• We start in Chapter 2 by addressing the EDGE SIGN PREDICTION problem
in Directed Signed Social Networks. Our goal is to design a method that
is scalable, principled and accurate. For that, we start by introducing a
generative model for signs, and derive approximations of the optimal Bayes
predictor and of the maximum likelihood predictor. We confirm the theoretical
soundness of these approaches by performing extensive synthetic and real
world experiments. Finally, to the best of our knowledge, we are the first to
give an online algorithm for the EDGE SIGN PREDICTION problem on directed
graphs. This chapter is based on an existing publication [Le +17].

• We then move from directed to undirected signed graphs, and explain in
Chapter 3 why this requires another learning bias. Namely, we assume that
the nodes belong to k groups, and that the sign between two nodes is positive
when both nodes belong to the same group, negative otherwise. We describe
how this new bias is related to the CORRELATION CLUSTERING problem, and
present a thorough overview of existing approaches. Finally, we provide the
first implementation of an existing spanner construction [Vit14], and give a
preview of its performance on synthetic and real signed graphs.

• In Chapter 4, we consider the EDGE ATTRIBUTED CLUSTERING problem on
multilayer graphs with node attributes. Our approach is to seek a small
number of vectors that, once assigned to every edge, best explain the graph
(i.e. maximize a score function between the vector assigned to an edge and
the profiles of this edge’s endpoints). From this initial formulation, we derive
two optimization problems, and show how to solve them on synthetic data.

• Finally, reflecting on our treatment of the three previous problems, we discuss
in Chapter 5 other settings and methods that might extend the problem of
characterizing edges in complex networks beyond the frame of this thesis.

10

Chapter 2

On the Troll-Trust Model for edge
sign prediction in Social Networks

As we saw in the introduction, many situations in various fields can be modeled by
signed graphs. Nonetheless, one of the most natural usage of signed graphs is the
study of social networks. It is indeed what first motivated their inception. Quite
naturally, we thus begin our exploration of the role of edges in complex networks
by a binary classification problem in signed graphs. Namely, we want to predict
whether an observed interaction between two nodes is positive or negative, and
we call this problem EDGE SIGN PREDICTION.1 To motivate this problem from a
practical point of view, let us first define precisely the type of social networks we
consider. We call Directed Signed Social Network (DSSN) a directed graph whose
nodes are either human beings (often called users if they are the members of an
online community) or artifacts directly created by individuals2. Furthermore, a
directed edge from node u to node v denote an interaction initiated by the user u
and whose object is user v. Such an interaction can be positive (to praise, to support,
to trust, to befriend) or negative (to criticize, to oppose, to distrust, to make enemy
with).

Known examples are EBAY, where users trust or distrust agents in the network
based on their personal interactions, SLASHDOT, where each user can tag another
user as friend or foe, BLABLACAR, a carpooling website where users can evaluate
drivers and passengers as pleasant travelers or not, and EPINION, where users
can rate positively or negatively not only products, but also other users. In such
examples, the sign of the interaction is explicit. However, there are other cases
where such interactions are only displayed in their raw form and need further
processing to be given a sign. The typical situation where this happens is when
interactions are mediated through text, for instance in Twitter or in the comment
section of some online content. It is then possible to extract signs using sentiment
analysis methods [HAR12].

Another distinction is that in most cases, only the owner of the network can
observe the detail of all those interactions. Think for instance of YOUTUBE, where
users can like or dislike the video of another user but where only aggregate anony-
mous statistics are available publicly. The situation is similar on the STACK OVER-
FLOW community, where users can upvote or downvote answers according to their
perceived quality, but where only the total score are available.

With this definition of social networks at hand, we now look at how the learn-
ing problem of EDGE SIGN PREDICTION can be used in real world applications.
More precisely, we present four possible applications, and order them by how
severely negative interactions impact the well-being of users of the network. First, it
could help improve the quality of link recommendation in solely positive networks.

1This chapter is closely based on a paper written with several co-authors [Le +17].
2This semantic detail allows us to treat citation networks as social networks.

11

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

Such networks indeed contain implicit negative links [Yan+12]. By asking users
to label a small proportion of existing links as truly positive or actually negative,
recommended links could later be discarded if they are predicted to be negative.
Second, this could be used to monitor news textual comments in a scalable fash-
ion and thus ensure that online debates remain courteous and constructive. For
instance, Manosevitch et al. [MSL14] show that by visually reminding comment
authors of the importance of respecting the plurality of opinions, the quality of
debates is improved (other references can be found in [Dia15]). In a more extreme
case, banning users with aggressive and hateful behavior has proved effective in
the case of Reddit [Cha+17]. Third, like many other fields, human resource man-
agement is undergoing a transformation through the increasing use of Machine
Learning [Tom16]. Among other tools, assessing personal relationships between em-
ployees is crucial to maintain a productive work environment [MMB02]. Whereas
this can be done by invasive wearable sensors [OGP09], our methods could predict
which employees would form the tighter teams from a small amount of labeled
data. Fourth, and most critical, predicting the sign of interactions could be a tool to
detect users with a high proportion of negative interactions. Indeed, because people
tend to be less inhibited in their online interactions [Sul04], some users may join
an online community with the main goal to disrupt it, by engaging into anti-social
behavior and creating conflictual relationships with other members. This kind of
attitude expressed publicly on social media leads to the following definition of trolls:
“users whose real intentions are to cause disruption and/or to trigger or exacerbate
conflict for the purposes of their own amusement” [Har10]. Shachaf et al. [SH10]
elaborate on their motives, adding that boredom, attention seeking, and revenge
motivate trolls; they find pleasure from causing damage to other people or to the
community as a whole. An extreme form of trolling is bullying (i.e. the behavior of
someone intentionally and repeatedly harming a victim that is unable to defend
himself or herself) and just like anything else, it has an online version called cyber
bullying [SSF13]. Such behavior is rather widespread, one study revealing that
72% of 1 454 surveyed teenagers reported at least one occurrence of cyberbullying,
most of them through instant messaging [JG08]. While we have not conducted
experimental study on this topic, we believe that being able to predict such harmful
interactions would be beneficial for the majority of users.

Such applications motivate studying EDGE SIGN PREDICTION, which is the
problem of classifying the positive or negative nature of the links based on the
network topology. Prior knowledge of the network topology is often a realistic
assumption, for in several situations the discovery of the link sign can be more
costly than acquiring the topological information of the network. For instance,
when two users of an online social network communicate on a public web page,
we immediately detect a link. Yet, the classification of the link sign as positive or
negative may require more involved techniques.

From the modeling and algorithmic viewpoints, because of the huge amount
of available networked data, a major concern in developing learning methods for
EDGE SIGN PREDICTION is algorithmic scalability. Many successful, yet simple
heuristics for EDGE SIGN PREDICTION are based on the troll-trust features, i.e.
on the fraction of outgoing negative links (trollness) and incoming positive links
(trustworthiness) at each node. We first define these notions and more notations
in Section 2.1, along with others tools and precise problem statements. We also
introduce suitable graph transformations defining reductions from EDGE SIGN

PREDICTION to node sign prediction problems. Then we study such troll-trust
heuristics by defining in Section 2.2 a probabilistic generative model for the signs
on the directed links of a given network. We also show that these heuristics can be
understood and analyzed as approximators to the Bayes optimal classifier for our
generative model. In this context, we design our first batch algorithm and show
in Section 2.3.1 that it provably approximates the Bayes classifier on dense graphs.

12

2.1. Notation and Preliminaries

We furthermore gather empirical evidence supporting our probabilistic model by
observing that a logistic model trained on trollness and trustworthiness features
alone is able to learn weights that, on all datasets considered in our experiments,
consistently satisfy the properties predicted by our model.

Our graph transformations opens up the possibility of using the arsenal of
known algorithmic techniques developed for node classification. In particular, we
introduce in Section 2.3.2 our second batch algorithm. It takes the form of a Label
Propagation algorithm that, combined with our problem reduction, approximates
the maximum likelihood estimator of our probabilistic generative model. In order to
compare our two algorithms with existing work, we then describe with more details
previous heuristics and related methods in Section 2.4. We then experimentally
evaluate our proposed approach in Section 2.5. On synthetic data, we confirm
the quality of our approximation of the Bayes predictor. More importantly, on
real-world data, we show the competitiveness of our approach in terms of both
prediction performance (especially in the regime where training data are scarce)
and scalability.

Finally, in Section 2.6, we point out that the notions of trollness and trustworthi-
ness naturally define a measure of complexity, or learning bias, for the signed net-
work that can also be used to design online (i.e. sequential) learning algorithms for
the EDGE SIGN PREDICTION problem. The learning bias encourages settings where
the nodes in the network have polarized features (e.g., trollness/trustworthiness
are either very high or very low). Our online analysis holds under adversarial
conditions, namely, without any stochastic assumption on the assignment of signs
to the network links.

2.1 Notation and Preliminaries

In this chapter3, we let G = (V,E) be a directed graph, whose edges (u, v) ∈ E carry
a binary label yu,v ∈ {−1,+1}. The edge labeling will sometimes be collectively
denoted by the |V | × |V | matrix Y = [yu,v], where Yu,v = yu,v if (u, v) ∈ E, and
yu,v = 0 otherwise. The corresponding edge-labeled graph will be denoted by
G(Y) = (V,E(Y)). We use Ein(u) and Eout(u) to denote, respectively, the set of
edges incoming to and outgoing from node u ∈ V , with din(u) =

∣∣Ein(u)
∣∣ and

dout(u) =
∣∣Eout(u)

∣∣ being the in-degree and the out-degree of u. Moreover, d+
in(u) is

the number of edges (w, u) ∈ Ein(u) such that yw,u = +1. We define d−in(u), d+
out(u),

and d−out(u) similarly, so that, for instance, d−out(u)/dout(u) is the fraction of outgoing
edges from node u whose label in G(Y) is −1. We call tr(u) = d−out(u)/dout(u)
the trollness of node u, and un(u) = d−in(u)/din(u) the untrustworthiness of node u.
Finally, we also use the notation Nin(u) and Nout(u) to represent, respectively, the
in-neighborhood and the out-neighborhood of node u ∈ V . Most of these notations
are illustrated on Figure 2.1.

Given the directed graph G = (V,E), we define two edge-to-node reductions trans-
forming the original graphG into other graphs. As we see later, these reductions are
useful in turning the EDGE SIGN PREDICTION problem into a node sign prediction
problem (often called node classification problem), for which many algorithms are
indeed available [BC01; ZGL03; BDL06; HP07; HLP09; Vit+11; HPV12; Ces+13;
HPG15]. Although any node classification method could in principle be used,
the reductions we describe next are essentially aimed at preparing the ground for
quadratic energy-minimization approaches computed through a Label Propagation
algorithm [ZGL03; BDL06].

The first reduction builds an undirected graph G′ = (V ′, E′) as follows. Each
node u ∈ V has two copies in V ′, call them uin and uout. Each directed edge (u, v) in
E is associated with one node, call it eu,v, in V ′, along with the two undirected edges
(uout, eu,v) and (eu,v, vin). Hence |V ′| = 2|V |+ |E| and |E′| = 2|E|. Moreover, if G =

3And in the next chapter when applicable.

13

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

−

+

Nout(u)

Eout(u)
Nin(u) Ein(u)

u

v+

yu,v =+

+

−

−
−
+

tr(u) = 1
4

un(u) = 3
5

Figure 2.1 – Part of a DSSN centered on node u.

1 2

3 4

+

+

− −

+

−

(a)

1out

2out

3out

4out

1in

2in

3in

4in

1

−1

−11 −1

1

(b)

1out

2out

3out

4out

1in

2in

3in

4in

1

−1

−11 −1

1

2 2

22

2

22

2

2

2

2 2

−1

−1

−1−1
−1

−1

(c)

Figure 2.2 – (a) A directed edge-labeled graph G. (b) Its corresponding graph G′

resulting from the first reduction we describe. The square nodes in G′ correspond to
the edges inG, and carry the same labels as their corresponding edges. On the other
hand, the 2|V | circle nodes in G′ are unlabeled. Observe that some nodes in G′ are
isolated and thus unimportant. These are exactly the nodes in G′ corresponding to
the nodes having in G no outgoing or no incoming edges: for instance nodes 3 and
4 in G. (c) The weighted graph resulting from the second reduction we describe.

G(Y) is edge labeled, then this labeling transfers to the subset of nodes eu,v ∈ V ′,
so that G′ is a graph G′(Y) = (V ′(Y), E′) with partially-labeled nodes. The second
reduction builds an undirected and weighted graph G′′ = (V ′′, E′′). Specifically, we
have V ′′ ≡ V ′ and E′′ ⊃ E′, where the set E′′ also includes edges (uout, vin) for all
u and v such that (u, v) ∈ E. The edges in E′ have weight 2, whereas the edges in
E′′\E′ have weight−1. We provide in Section 2.9.1.3 an analytic justification for this
weights choice in the context of Label Propagation. Finally, as in the first reduction,
if G = G(Y) is edge labeled, then this labeling transfers to the subset of nodes
eu,v ∈ V ′′. Graph G′, which will not be used in the following, is an intermediate
structure between G and G′′ and provides a conceptual link to the standard cutsize
measure in node sign classification, as we will describe shortly. Figure 2.2 illustrates
these two reductions. Note that because |V ′′| = 2|V | and |E′′| = 3|E|, the reduction
yielding G′′ can be computed in linear time, and does not require the knowledge
of the edge label, meaning it can be done in parallel with potential label querying.
Furthermore, it can be updated incrementally if new nodes or edges are added to
the original graph G.

These reductions serve two purposes: First, they allow us to use the many
algorithms designed for the better studied problem of node sign prediction. Second,
the reduction yielding G′′, along its specific choice of edge weights, is designed
to make the Label Propagation solution approximate the maximum likelihood
estimator associated with our generative model (see Section 2.3.2). Note also that
efficient Label Propagation implementations exist that can leverage the sparsity of

14

2.1. Notation and Preliminaries

G′′.

We consider two learning settings associated with the problem of EDGE SIGN

PREDICTION: a batch setting and an online setting. In the batch setting, we assume
that a training set of edges E0 has been drawn uniformly at random without replace-
ment from E, we observe the labels in E0, and we are interested in predicting the
sign of the remaining edgesE \E0 by making as few prediction mistakes as possible.
The specific batch setting we study here assumes that labels are produced by a
generative model which we describe in the next section, and our label regularity
measure is a quadratic function (denoted by Ψ2

G′′(Y) and defined in Section 2.5 as
a regularized energy function of G′′4) related to this model. Ψ2

G′′(Y) is small just
when all nodes in G tend to be either troll or trustworthy.

On the other hand, the online setting we consider is the standard mistake bound
model of online learning [Lit88] where all edge labels are assumed to be generated
by an adversary and sequentially presented to the learner according to an arbitrary
permutation. More precisely, in this setting, learning is split into a sequence of
rounds: At each round t = 1, 2, . . . a learning algorithm A outputs a prediction
ŷt ∈ {−1,+1} for the label yt ∈ {−1,+1} of an edge arbitrarily selected by the
adversary. After the prediction is made, label yt is revealed to the algorithm, hence
allowing it to change its internal state. In the next round, a new edge is selected
by the adversary, and so on. Notice that since the underlying labeling over the
edges is decided by the adversary once and for all,5 all edges occur exactly once
within the sequence to be predicted (so that this game lasts exactly |E| rounds).
The adversary decides both the underlying labeling Y over the edges of G and the
order of their presentation to the learning algorithm. We say that A has made a
mistake at time t if ŷt 6= yt, and we measure A’s prediction performance simply
through the total number of mistakes MA(Y) it makes over G(Y) when the worst
possible presentation order of the edge labels in Y is selected by the adversary. As it
is standard practice, we contrast MA(Y) to some kind of regularity measure ΨG(Y)
of the labeling Y over G, so that we are in fact aimed at bounding the (cumulative)
regret MA(Y)−ΨG(Y) .

We want to design our label regularity measure such that it is small when nodes
in G tend to be either troll or trustworthy. Indeed, when this happens, few labels
from the incoming and outgoing edges of each node are sufficient to predict the
labels on the remaining edges and the EDGE SIGN PREDICTION problem is to some
extent “easy”. Formally, for fixed G and Y , let

Ψin(v, Y) = min
{
d−in(v), d+

in(v)
}

and Ψout(u, Y) = min
{
d−out(u), d+

out(u)
}

be respectively the number of the least used label in the incoming edges to v and
the outgoing edges from u. Let also

Ψin(Y) =
∑
v∈V

Ψin(v, Y) and Ψout(Y) =
∑
u∈V

Ψout(u, Y)

be the sum of irregularity over all the nodes of the graph. Then we define ΨG(Y) =
min

{
Ψin(Y),Ψout(Y)

}
. The two measures ΨG(Y) and Ψ2

G′′(Y) are conceptually
related and their value on real data is quite similar (see Table 2.4 on page 25).

The reductions presented above are meaningful only if they are able to ap-
proximately preserve the two label regularity measures ΨG(Y) and Ψ2

G′′(Y) when
moving from edges to nodes. That is, if the EDGE SIGN PREDICTION problem is
easy for a given G(Y) = (V,E(Y)), then the corresponding node sign prediction
problems on G′(Y) = (V ′(Y), E′) and G′′(Y) = (V ′′(Y), E) are also easy, and vice
versa.

4If we denote the value of the square node eu,v of G′′ as 1+yu,v
2

, the value of the cir-
cle node uout as pu and the value of the circle node vin as qv , we have that Ψ2

G′′(Y) =

min(p,q)

∑
(u,v)∈E

(
1+yu,v

2
− pu+qv

2

)2

, where (p, q) = {pu, qu}|V |u=1.
5For simplicity, we assume the adversary is deterministic.

15

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

1out

+1

2out

−1

3out
+1

4out

+1

1in

+1 2in

+1

3in

+1

4in

+1

1

−1

−11 −1

1

Figure 2.3 – The node-
labeling of G′ illustrating the
relation between the edge la-
bel complexity and the cut-
size. Here the four edges part
of the cut are in heavy black.

Let us first introduce the notion of cutsize of an undi-
rected node-labeled graph G′(Y), which is the number of
edges in G′ connecting nodes that have mismatching labels.
Now, because the only nodes in G′ we are interested in
predicting are those corresponding to the edges in G (the
colored squares in Figure 2.2b), the online prediction prob-
lem on the edges of G translates to a node sign prediction
problem on a subset of V ′. As for the remaining nodes in
V ′ (the circles in Figure 2.2b), we are free to assign arbitrary
labels so as to minimize the corresponding mistake bound
over G′. Such an assignment is constructed as follow: we
set the labeling Y on V ′ in such a way that yuout = +1 if
tr(u) ≤ 1/2 and −1 otherwise. Similarly, we have yuin = +1
if un(u) ≤ 1/2, and −1 otherwise. For instance, given the
trollness and untrustworthiness values for the graph G of

Figure 2.2a reported in Table 2.1, following this construction would result in a
labeled version of G′ shown in Figure 2.3. We see that by labeling circle nodes
by the majority label of the square nodes there are connected to, we have that the
cutsize of G′(Y) equals Ψin(Y) + Ψout(Y).6 A similar reasoning apply in the batch
case with the Ψ2

G′′(Y) measure, which can be seen as a soft quadratic version of the
cutsize.

Table 2.1 – The label regularity values for the nodes of the example G graph of
Figure 2.2a.

node u 1 2 3 4 total

Ψout(u, Y) 0 0 1 0 1
Ψin(u, Y) 1 1 0 1 3
tr(u) 0 1 1/3 1 —
un(u) 1/2 1/2 1/2 1/2 —

2.2 Generative Model for Edge Labels

u

(pu, qu) ∼ µ(p, q)

v

(pv, qv) ∼ µ(p, q)

Pr(yu,v = +1) = 1
2 (pu + qv)

Figure 2.4 – The sign yu,v of the
edge u→ v is positive with prob-
ability 1

2 (pu + qv).

We now define the stochastic generative model for edge
labels we use in the batch learning setting. Given the
graphG = (V,E), let the label yu,v ∈ {−1,+1} of directed
edge (u, v) ∈ E be generated as follows. Each node u ∈ V
is endowed with two latent parameters pu, qu ∈ [0, 1],
which we assume to be generated, for each node u, by an
independent draw from a fixed but unknown joint prior
distribution µ(p, q) over [0, 1]2. Each label yu,v ∈ {−1,+1}

is then generated by an independent draw from the mixture of pu and qv

Pr
(
yu,v = 1

)
= pu+qv

2

This process is illustrated in Figure 2.4.
The basic intuition is that the nature yu,v of a relationship u→ v is stochastically

determined by a mixture between how much node u tends to like other people
(pu) and how much node v tends to be liked by other people (qv). In a certain
sense, 1 − tr(u) is the empirical counterpart to pu, and 1 − un(v) is the empirical
counterpart to qv. One might view our model as reminiscent of standard models for

6In fact, for the sake of this specific argument, nothing prevents from retaining of G′ either only
the edges (uout, eu,v) or only the edges (eu,v, vin), resulting in a cutsize of Ψout(Y) and Ψin(Y),
respectively.

16

2.3. Algorithms in the Batch Setting

link generation in social network analysis, like the classical p1 model from [HL81].
However, note that the similarity falls short, for all these models aim at representing
the likelihood of the network topology, rather than the probability of edge signs,
once the topology is given.

Notice that the Bayes optimal prediction for yu,v is y∗(u, v) = sign
(
η(u, v)− 1

2

)
,

where η(u, v) = Pr
(
yu,v = 1

)
. Moreover, once all the signs have been generated,

we can compute the expected number of positive edges outgoing from u as the
expected value of the random variable Pu =

∑
v∈Nout(u) I {yu,v = +1}. Using this,

we have that the probability of drawing at random a +1-labeled edge from Eout(u)
equals

E (Pu)

dout(u)
=

1

dout(u)

∑
v∈Nout(u)

pu + qv
2

=
1

2

(
pu +

1

dout(u)

∑
v∈Nout(u)

qv

)
=

1

2
(pu + qu) ,

(2.1)
where qu = 1

dout(u)

(∑
v∈Nout(u) qv

)
is the average q value of u out neighbors. Simi-

larly, the probability of drawing at random a +1-labeled edge from Ein(v) equals

1

2

(
qv +

1

din(v)

∑
u∈Nin(v)

pu

)
=

1

2
(qv + pv) (2.2)

2.3 Algorithms in the Batch Setting

Given G(Y) = (V,E(Y)), in the batch setting we have at our disposal a train-
ing set E0 of labeled edges from E(Y). Formally, we have a training set E0 =(
(u1, v1), yu1,v1), ((u2, v2), yu2,v2), . . . , ((um, vm), yum,vm

)
, that has been drawn from

E × Y uniformly at random without replacement, with m = |E0|. We want to
build a predictive model for the labels of the remaining edges. We present two
algorithms to do so, which both compute estimates of the all parameters p and q of
our generative model. They differ in the approximation guarantees they provide,
and in the class of graphs to which they apply. The first algorithm runs on the graph
G and estimates locally the parameters by their empirical means in the training set,
which under some density assumptions are showed to concentrate around their
true values. The second algorithm, on the other hand, exploits the reduced graph
G′′ and computes a maximum likelihood estimation of the parameters through a
global label propagation approach, without making any density assumption.

2.3.1 Approximation to Bayes via dense sampling

Our first algorithm is an approximation to the Bayes optimal predictor y∗(u, v). Let
us denote by t̂r(u) and ûn(u) the trollness and the untrustworthiness of node u
when both are computed on the subgraph induced by the training edges. Recall
that the Bayes optimal predictor classifies an edge u→ v using the following rule:
y∗(u, v) = sign

(pu+qv
2 − 1

2

)
. Our approximation thus consists in using the quantities

t̂r(u) and ûn(u) to estimate pu+qv
2 . This results in the following rule:

sign
((

1− t̂r(u)
)

+
(
1− ûn(v)

)
− τ − 1

2

)
, (2.3)

where τ ≥ 0 is the only parameter to be trained. We now give an intuition to justify
this equation, and defer the technical arguments to end of the chapter, on page 37,
where we will formalize what it means for a quantity to be “close” to another.

Note first that 1 − t̂r(u) =
d̂+

out(u)

d̂out(u)
is the empirical mean7 of the probability of a

random edge outgoing from u to be positive, and is therefore “close” to 1
2 (pu + qu)

7The hat symbol denote quantities computed solely on the training set.

17

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

according to (2.1). By the same reasoning, 1 − ûn(v) ≈ 1
2 (qv + pv) in accordance

with (2.2). At this stage,
(
1− t̂r(u)

)
+ (1− ûn(v)) − pu+qv

2 ≈ 1
2 (pv + qu). Since

pv is a sample mean of i.i.d. [0, 1]-valued random variables independently drawn
from the prior marginal

∫ 1
0 µ
(
·, q
)
dq, it concentrates around its expectation µp.

Likewise, qu ≈ µq. Now we seek an estimation of 1
2 (pv + qu) ≈ 1

2 (µp + µq). For
that, we compute the expected number of positive edges in the graph, which,
as in the previous section, is the expected value of the random variable Z =∑

u→v∈E I {yu,v = +1}. Let Vout be the subset of node of V with at least one outgoing
edge, and define similarly Vin as {v ∈ V : din(v) > 0}. According to our generative
model, E (Z) =

∑
u→v∈E

pu+qv
2 =

∑
u∈Vout

(∑
v∈Nout(u)

pu+qv
2

)
. Observe that

∑
u∈Vout

 ∑
v∈Nout(u)

pu

 =
∑
v∈Vin

 ∑
u∈Nin(v)

pu

 =
∑
v∈Vin

din(v)pv ≈
∑
v∈Vin

din(v)µp = |E|µp

and∑
u∈Vout

 ∑
v∈Nout(u)

qv

 =
∑
u∈Vout

dout(u)qu ≈
∑
u∈Vout

dout(u)µq = |E|µq .

Therefore, letting τ be the fraction of positive edge in the graph, we have that
τ = E(Z)

|E| ≈ 1
2 (µp + µq). This means that if τ̂ is the quantity τ computed on the

training, then τ̂ is close to (pv + qu). Putting together all this approximations thus
provide an informal justification of the rule (2.3).

We are now ready to describe our algorithm, which follows naturally from the
formula derived above. It takes as input a training set E0 drawn at random without
replacement and outputs a sign prediction for all the edges in E \ E0. We call
it BLC(tr, un), which stands for Bayes Learning Classifier based on trollness and
untrustworthiness.

1. For each u ∈ V , let t̂r(u) = d̂−out(u)/d̂out(u), i.e. the fraction of negative edges
found in Eout(u) ∩ E0.

2. For each v ∈ V , let ûn(v) = d̂−in(v)/d̂in(v), i.e. the fraction of negative edges
found in Ein(v) ∩ E0.

3. Let τ̂ be the fraction of positive edges in EL ∩ E0 (this set EL is a technical
requirement that we shall define shortly).

4. Any edge (u, v) ∈ E \ E0 is predicted as

ŷ(u, v) = sign
((

1− t̂r(u)
)

+
(
1− ûn(v)

)
− τ̂ − 1

2

)
Despite its apparent simplicity, BLC(tr, un) works reasonably well in practice, as

demonstrated by our experiments (see Section 2.5). Moreover, unlike previous edge
sign prediction methods for directed graphs, our classifier comes with a rigorous
theoretical motivation, since it approximates the Bayes optimal classifier y∗(u, v)
with respect to the generative model defined in Section 2.2. Indeed, we quantify
this approximation on nodes whose in-degree and out-degree are not too small in
the next result. However, this first requires a few extra assumption on the training
set. Namely, given parameters Q (a positive integer) and α = |E0|/|E| ∈ (0, 1), we
assume there exists a set EL ⊆ E of size 2Q

α where each vertex u ∈ V appearing
as an endpoint of some edge in EL occurs at most once as origin —i.e. u → v—
and at most once as destination —i.e. v → u. While the definition of EL is not
immediately intuitive, this set is needed to find an estimate τ̂ of τ in (2.3) during
Step 3 of BLC(tr, un), and its definition allows us to applying an Hoeffding bound
on independent variables. Any undirected matching of G of size O(log |V |) can be

18

2.3. Algorithms in the Batch Setting

used, obtained for instance by the blossom algorithm [Edm65]. In practice, however,
we never computed EL, and estimated τ on the entire training set E0 (instead of
EL ∩ E0).

Theorem 1. Let G(Y) = (V,E(Y)) be a directed graph with labels on the edges gen-
erated according to the model in Section 2.2. If the algorithm is run with parameter
Q = Ω(log |V |), and α ∈ (0, 1) such that the above assumption about EL is satisfied, then
ŷ(u, v) = y∗(u, v) holds with high probability simultaneously for all test edges (u, v) ∈ E
such that dout(u), din(v) = Ω(log |V |), and η(u, v) = Pr(yu,v = 1) is bounded away from
1
2 .

While we defer the full proof of Theorem 1 to the additional material at the end
of this chapter (Section 2.9.1.1), here we give a sketch of the method used. First, by
Lemma 2 on negatively associated random variables (stated on page 37), we show
that with our choice ofQ, for θ = 2Q

α and for any u having enough out neighbors (i.e.
dout(u) ≥ θ), at least Q edges of Eout(u) are in the training set with high probability.
Likewise, for any v with enough in neighbors (i.e. din(v) ≥ θ), at least Q edges of
Ein(v) are in E0with high probability. With this number of samples, we then show a
chain of concentration results roughly following the outline given earlier to justify
the equation (2.3), culminating in proving that for any 0 < ε < 1

16 ,∣∣∣∣(1− t̂r(u)
)

+ (1− ûn(v))− τ̂ − pu + qv
2

∣∣∣∣ ≤ 8ε

simultaneously holds with high probability for each

(u, v) ∈ {(u, v) ∈ E : din(v) ≥ θ, dout(u) ≥ θ} \ E0.

The approach leading to Theorem 1 requires the graph to be sufficiently dense.
At first sight, having Q = Ω(log |V |) training edges per nodes appears to be a
reasonable assumption. Consider for instance Facebook —which is neither signed
nor directed though. It has two billion users as of 2017 8, each of them having
155 ≈ 7.2 log |V | friends on average [Dun16]. However, the constant in the Ω
notation is a trade off between the number of edges to sample per node, and the
quality guarantee of the pu+qv

2 estimation. In the Facebook example, having a good
guarantee that holds simultaneously for all the test edges might require more than
7.2 log |V | samples per node. We will nonetheless see in the experiments that we can
still apply BLC(tr, un) with satisfying results, especially since its simplicity makes it
very scalable. Additionally, and in order to sidestep this density limitation, we now
introduce a second method based on label propagation.

2.3.2 Approximation to Maximum Likelihood via Label Propagation

Remember we suppose that the training setE0 has been drawn uniformly at random
without replacement, with m = |E0|. Then a reasonable approach to approximate
y∗(u, v) would be to resort to a maximum likelihood estimator of the parameters
{pu, qu}|V |u=1 based on E0. If we further assume, in order to make the computation
more tractable, that the joint prior distribution µ(p, q) is uniform over [0, 1]2 with
independent marginals,9 we show in the supplementary material on page 40 that
for ` ∈ {1, . . . , |V |} the gradient of the log-likelihood function with respect to a
given p` and q` satisfies

∂ log Pr
(
E0

∣∣∣ {pu, qu}|V |u=1

)
∂p`

=

m∑
k=1

I {uk = `, y`,vk = +1}
p` + qvk

−
m∑
k=1

I {uk = `, y`,vk = −1}
2− p` − qvk

(2.4)
8https://investor.fb.com/investor-news/press-release-details/2017/

Facebook-Reports-Second-Quarter-2017-Results/
9As we will see, in real data, around 80% if the edges are positive, meaning this assumption of

uniformity over [0, 1]2 is unlikely to fully holds, for otherwise the signs would more balanced.

19

https://investor.fb.com/investor-news/press-release-details/2017/Facebook-Reports-Second-Quarter-2017-Results/
https://investor.fb.com/investor-news/press-release-details/2017/Facebook-Reports-Second-Quarter-2017-Results/

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

∂ log Pr
(
E0

∣∣∣ {pu, qu}|V |u=1

)
∂q`

=
m∑
k=1

I {vk = `, yuk,` = +1}
puk + q`

−
m∑
k=1

I {vk = `, yuk,` = −1}
2− puk − q`

,

(2.5)
where I {·} is the indicator function of the event at argument. Unfortunately,

equating (2.4) and (2.5) to zero, and solving for parameters {pu, qu}|V |u=1 gives rise
to a hard set of nonlinear equations. Moreover, some such parameters may never
occur in these equations, namely whenever Eout(u) or Ein(v) are not represented in
E0 for some u, v ∈ V .

Our first approximation is therefore to replace the nonlinear equations resulting
from (2.4) and (2.5) by a set of linear equations. In the case of (2.4), for a given
` ∈ V , we make the assumption that (p` + qvk)(2 − p` − qvk) is constant for every
k ∈ [1, . . . ,m]. Multiplying (2.4) by this constant quantity and setting the resulting
equation to zero, we obtain for each ` ∈ V :

m∑
k=1

I {uk = `, y`,vk = +1} (2− p` − qvk) =

m∑
k=1

I {uk = `, y`,vk = −1} (p`+qvk) (2.6)

We apply a similar transformation to (2.5) in order to obtain, for each ` ∈ V :

m∑
k=1

I {vk = `, yuk,` = +1} (2− puk − q`) =

m∑
k=1

I {vk = `, yuk,` = −1} (puk + q`)

(2.7)
At this point, we find convenient to take a step back and define one of the label

regularity measure we introduced in Section 2.1. Namely, recall we said Ψ2
G′′(Y)

could be seen as a soft quadratic version of the cutsize. With the notation of our
generative model, we can write it as

Ψ2
G′′(Y) = min

(p,q)

∑
(u,v)∈E

(
1 + yu,v

2
− pu + qv

2

)2

= min
(p,q)

fE(p, q) ,

where (p, q) = {pu, qu}|V |u=1 is the set of the model parameters. Intuitively, mini-
mizing fE with respect to (p, q) is similar to the maximum likelihood approach,
as we seek the parameters (p, q) that “best agree” with the observed signs. It also
turns out that if we restrict the minimization problem to the observed edges (i.e.
min(p,q) fE0(p, q)) and set the derivative of fE0 with respect to p` and q` to zero, we
recover the equations (2.6) and (2.7) respectively.

To include the full topology of the graph and not restrain ourselves to the
observed edges, we follow a label propagation approach by adding to fE0 the
corresponding test set function fE\E0

, and treat the sum of the two as the function
to be minimized during training w.r.t. both (p, q) and all yu,v ∈ [−1,+1] for (u, v) ∈
E \ E0:

min
(p,q),yu,v∈[−1,+1], (u,v)∈E\E0

(
fE0(p, q) + fE\E0

(p, q)
)

(2.8)

Binary ±1 predictions on the test set E \ E0 are then obtained by thresholding
the computed values yu,v.

We now proceed to solve (2.8) via label propagation [ZGL03] on the graph G′′

obtained through the second reduction of Section 2.1. Indeed, one can show10

that this objective is equal —up to a regularization term— to the quadratic energy
objective minimized by label propagation methods. However, because of the
presence of negative edge weights in G′′, we first have to symmetrize11 variables

10as we do in Section 2.9.1.3.
11While we note here that such linear transformation of the variables does not change the problem,

we provide more details in Section 2.9.1.3 of the supplementary material.

20

2.4. Related work

pi, qi and yu,v so as they all lie in the interval [−1,+1]. After this step, one can see
that, once we get back to the original variables, label propagation computes the
harmonic solution minimizing the function

f̂
(
p, q, yu,v(u,v)∈E\E0

)
=fE0(p, q) + fE\E0

(p, q)+

1

2

∑
u∈V

(
dout(u)

(
pu −

1

2

)2
+din(u)

(
qi −

1

2

)2
)

The function f̂ is thus a regularized version of the target function fE0 + fE\E0

in (2.8), where the regularization term tries to enforce the extra constraint that
whenever a node u has a high out-degree then the corresponding pu should be
close to 1/2. Thus, on any edge (u, v) departing from u, the Bayes optimal predictor
y∗(u, v) = sign(pu + qv − 1) will mainly depend on qv being larger or smaller than
1/2 (assuming v has small in-degree). Similarly, if u has a high in-degree, then the
corresponding qu should be close to 1/2, implying that on any edge (v, u) arriving
at u, the Bayes optimal predictor y∗(v, u) will mainly depend on pv (assuming v
has small out-degree). Put differently, a node having a huge out-neighborhood
makes each outgoing edge “count less” than a node having only a small number of
outgoing edges, and similarly for in-neighborhoods.

The label propagation algorithm operating on G′′ does so (see again Figure 2.2c)
by iteratively updating as follows:

pu ←
−∑v∈Nout(u) qv +

∑
v∈Nout(u)(1 + yu,v)

3 dout(u)
∀u ∈ V

qv ←
−∑u∈Nin(v) pu +

∑
u∈Nin(v)(1 + yu,v)

3 din(v)
∀v ∈ V

yu,v ←
pu + qv

2
∀(u, v) ∈ E \ E0 .

The algorithm is guaranteed to converge [ZGL03] to the minimizer of f̂ . Notice
that the presence of negative weights on the edges of G′′ does not prevent label
propagation from converging. In fact, any node classification algorithm handling
both positive and negative weights on the edges of G′′ could be used instead of
label propagation. One alternative would thus be the WTA algorithm from [Ces+13].
However, our label propagation algorithm is the one we will be championing in
our experiments of Section 2.5.

2.4 Related work

Interest in signed networks can be traced back to the psychological theory of
structural balance [CH56; Hei58] and its weak version [Dav67], that we will describe
with more details in Section 3.1.3 on page 48. The advent of online signed social
networks has enabled a more thorough and quantitative understanding of that
phenomenon. In this section, we provide an overview of methods tackling the same
EDGE SIGN PREDICTION problem as us. Along the way, we give five of them a name
in small capitals, for they are recent and effective. Therefore, we will compare our
approaches with those methods in the experiments of the next section. At the end,
we mention some closely related variants of the original EDGE SIGN PREDICTION

problem.

Existing methods can be broadly divided into three strategies, which share some
similarities:

1) embedding the nodes of the graph in a low dimensional space using spectral
or neural techniques, before using node positions as features for a classifier;

21

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

2) completing the adjacency matrix through a global optimization algorithm;
and

3) computing local features of the edges with several heuristics and train a
classifier such as logistic regression or SVM.

In the first direction, the spectral embedding is illustrated by works from
Kunegis et al. [KLB09] and Zheng et al. [ZS15]. We shall describe them more
thoroughly in Section 3.2.4, but here we note that, following the natural orientation
of the study of graph spectrum, they focus more on clustering than EDGE SIGN PRE-
DICTION. Furthermore, the use of the adjacency matrix usually requires a quadratic
running time in the number of nodes, which makes those methods hardly scalable
to large graphs. More recently, there has been great interest in adapting word em-
bedding techniques such as word2vec [Mik+13] to a “corpus” of random walks that
are considered as documents, while nodes play the role of word. This allows the
unsupervised extraction of node features that can then used to train downstream
classifier, see [CO16; Wil17; CZC17] for three recent surveys. It can also be tailored
to exploit the specificity of signed graphs. The goal is to find for every node u a
vector xu ∈ Rd in such a way that in this new space, nodes are close to their positive
neighbors and far from their negative neighbors. For instance in SiNE [Wan+17d],
for a node triplet u, v, w such that the edge (u, v) is positive and the edge (u,w)
is negative, the objective is to find vectors maximizing f(xu, xw) + δ − f(xu, xv).
The similarity function f is chosen to be a Siamese multilayers neural network,
whose parameters are learned by back propagation. In SIGNet [IPR17], the simi-
larity function is a sigmoid whose argument xTuxv is weighted by the sign of the
corresponding edge, with an optimization technique closer to word2vec. Finally,
SNE [YWX17] uses a log-bilinear model, and the training objective is to predict,
given a path P , which node should follow P , weighting differently the vector nodes
in P depending of whether they are the source of a positive or negative edge in P .

Next we look at matrix completion approaches, which are global by nature.
For instance, Chiang et al. [Chi+14] tackle the EDGE SIGN PREDICTION problem
through this lens, restricting themselves to undirected graphs. They consider the
observed adjacency matrix A, made of the edges in the training set E0, as a noisy
sampling of the adjacency matrix A? of an underlying complete graph satisfying
the weakly balance condition (that is with no cycle containing only one negative
edge, see Definition 3.1.4 on page 49). This condition implies the existence of a
small number k of node clusters with positive links within clusters and negative
links across clusters, which in turn implies rankA? = k. By recovering a complete
matrix Ã that matches the non-zeros entries of A, it is possible to predict the sign
of (u, v) /∈ E0 as ŷu,v = sign(Ãu,v). Although the exact version of this problem is
NP-HARD, the authors assume that k is an hyperparameter known beforehand and
look for two matrices W,H ∈ Rk×|V | that minimise a sigmoidal reconstruction loss
of A, subject to a nuclear norm regularization term. The minimization is carried
out by Stochastic Gradient Descent and we refer to this method as LOWRANK. The
approach of Wang et al. [Wan+17a] is similar, but they consider directed graphs,
use the logistic loss and compute at each iteration a threshold optimizing the F1-
score on the observed signs. Furthermore, they argue that to better handles class
imbalance, it is preferable to minimize the maxnorm of the recovered matrix, which
is a tighter approximation to the rank function than the nuclear norm. We thus refer
to this method as MAXNORM.

Finally, the last set of methods are based on the computation of local features of
the graph. These features are evaluated on the subgraph induced by the training
edges, and the resulting values are used to train a supervised classification algo-
rithm. The most basic set of local features used to classify a given edge u→ v are
defined by d+

in(v), d−in(v), d+
out(u), d−out(u) computed over the training set E0, and by

the embeddedness coefficient
∣∣Eout(u) ∩ Ein(v)

∣∣, which is the number of common
neighbors of u and v. In turn, these degree features can be used to define more

22

2.4. Related work

complicated features, such as a notion of similarity between two nodes based on
how they rate and are rated by their neighbors [Yua+17]. Another way of looking
at neighborhoods and degrees is to mine ego networks12 with a SVM [Pap+14].
Bachi et al. [Bac+12b] also use an approach based on ego networks, in a data mining
fashion. Namely, they extract frequent small subgraphs from the collection of all
ego networks of G. Then, they construct rules, which are made of two frequent
subgraphs differing by a single edge.

A sophisticated take on degree features is presented by Song et al. [SM15], who
note that a node can belong to one of the 16 node-types based of whether the
number of its positive (respectively negative) outgoing (respectively incoming)
edges is zero or not. The number of unobserved incoming and outgoing edges of
each node u let us define a 16-dimensional vector Vu containing the probability of
transitioning to any other type once the unobserved signs are revealed. Then each
edge u → v is associated with a feature vector consisting of the outer product of
Vu with Vv and also including additional features such as triads count and degree
information before training a Logistic Regression model. We refer to this method as
BAYESIAN.

Other types of features are derived from social status theory, which posits that
a positive link from u to v denotes that user u considers user v as having a higher
status or skill than herself [LHK10]. This has implications on the distribution of
the so called triads in the network. A triad is a triangle formed by u→ v together
with u → w (or w → u) and v → w (or w → v) for any w ∈ Nout(u) ∩ Nin(v).
Taking signs and directions into account, there are 16 possible triads but according
to the status theory some must be more represented than others. The 16 TRIADS

method [LHK10] exploits this fact by counting for each edge in the training set how
frequently it is involved in each of the 16 triad types. It also adds 7 degree features
before training a Logistic Regression model.

A third group of features is based on node ranking scores. These scores (usually
one or two per node) are computed using a variety of methods, including

• PageTrust [dKD08], which adapts the random walk of PageRank [Pag+99],
by making walkers keep in memory a list of nodes they do not like. If they
ever reach such a node, their walk stop. The final PageTrust is computed
iteratively until convergence.

• Prestige [ZA10], which can be seen as a compounded degree feature, as it is

defined by P (u) =
d+

in(u)−d−in(u)

din(u) .

• exponential ranking [TNV10], which is the fixed point of the equation π =

AT
exp 1

µ
π

|| exp 1
µ
π||1

. This follows from the discrete choice theory and by assuming

that we observe the reputation with some noise that is double exponentially
distributed with parameter µ.

• Bias and Deserve [MB11], which are defined in terms of each other in weighted
graphs. The bias is the tendency of a node u to trust/mistrust others, that is
the difference between its opinion of a neighbor v and what v truly deserves
according to the network:

bias(u) =
1

dout(u)

∑
v∈Nout(u)

(wu,v − deserve(v)).

The deserve of a node v is the aggregated opinion of its in-neighbors, dis-
counted by their bias:

deserve(v) =
1

din(v)

∑
u∈Nin(v)

(wu,v(1−max{0, sign(wu,v)× bias(u)})) .

12Recall that the ego network of a node u is the subgraph induced by the neighborsN (u) of u.

23

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

• Reputation and Optimism [SJ14], defined for a node u by
∑
v∈Nin(u) yv,uσ(v)∑
v∈Nin(u) σ(v) and∑

v∈Nout(u) yu,vσ(v)∑
v∈Nout(u) σ(v) , where σ(v) is the ranking score assigned to node v. The

former can be seen as a weighted version of Prestige, while the latter is its
outgoing counterpart.

• TrollTrust [WAS16], which builds upon [SJ14] but defines the ranking σ(u)
as the trustworthiness of u. It follows from a recursive definition of troll-
ness based on the opinion of one node’s neighbors weighted by their own
trollness, which allow to assign a σ(u) to each node u through a set of non
linear equations solved by an iterative method. These σ values are used to
compute Reputation and Optimism scores, thus providing four features for
each edge, which are in turn used to train a Logistic Regression model for the
classification task. We refer to this method as RANKNODES.

Other works have also considered versions of the problem where side informa-
tion related to the network is available to the learning system. For instance, [PKV15]
uses the product purchased on EPINION in conjunction with a neural network,
[CDL15] identifies trolls by analysing the textual content of their post, [Wan+17c]
improves the embedding approach of Wang et al. [Wan+17d] by considering the
words written in reviews as attributes of the users, and [Ye+13] uses SVM to perform
transfer learning from one network to another. [Tan+13] uses a matrix completion
approach, approximating A by PCP T , where the row Pu of the matrix P ∈ Rn×d is
the low rank representation of the node u and C ∈ Rd×d is the correlation matrix
between these representations. They also assume they are given a symmetric matrix
Z of the homophily coefficients ζu,v between u and v and add the following regu-
larization term to be minimized:

∑
u<v ζu,v||Pu − Pv||22 = Tr(UTLZU), where LZ is

the Laplacian of Z. While many of these approaches have interesting performances,
they often require extra information which is not always available (or reliable) and,
in addition, may face severe scaling issues.

Whereas our focus is on binary prediction, researchers have also considered
a weighted version of the problem, where edges measure the amount of trust or
distrust between two users. Note that typically, the embedding methods we dis-
cussed at the beginning of this section are able to handle weighted networks. One
of the early and influential work on modeling how distrust propagate among users
is [Guh+04]. They propose to represent atomic conclusions (such as if u trusts
v and v trusts w then u is likely to trusts w) as matrix operators and define four
of them that are assembled by a weighted linear combination. Starting from the
observed adjacency matrix A, they repeatedly apply this operator (with potentially
a discount factor) to obtain a final weigh matrix F (that can also be rounded to
provide sign prediction). Qian et al. [QA14] extend the binary case with categorical
relationships (such as strongly positive or weakly negative) and describe how every
unbalanced triads experience some stress depending on the strength of its contra-
dictory relationships. Arguing that the network should converge to a balanced state
with as little change as possible, they express finding this minimal transformation
as a Multidimensional Scaling problem, and the resulting graph to characterize
unlabeled edges. Finally, Kumar et al. [Kum+16] explicitly consider the weight
prediction problem in signed graphs. They use a procedure similar to the ranking
methods discussed above. Namely, they defined two scores for each node that are
computed iteratively from a uniform initialization. Assuming that weights lie in
[−1, 1], the fairness f(u) of u is a measure of how fair or reliable u is when rating
others nodes, while the goodness g(v) of v measure how trustworthy is v when eval-
uated with complete fairness. Formally, f(u) = 1 − 1

2Nout(u)

∑
v∈Nout(u)

|wu,v−g(v)|
2

and g(v) = 1
Nin(v)

∑
u∈Nin(v) f(u)wu,v. Note that these definitions are very close to

bias and deserve from Mishra et al. [MB11], but the absolute value in the factor 2

24

2.5. Experimental Analysis

in the expression of fairness allows for better convergence property. Finally, the
weight of a test edge u→ v is predicted as f(u)× g(v).

While we presented methods that operate in the batch setting, and will present
an online algorithm as well in Section 2.6, other works have addressed the EDGE

SIGN PREDICTION problem from an active learning point of view [Ces+12a; Ces+12b].
Recall that in the active setting, we are given a budget of edge labels to observe,
and are free to select them the way we want within E(Y). Again, the goal is to
make as few mistakes as possible when predicting the sign of the remaining edges.
These two methods build a spanning subgraph of G and query all its edge, but
they differ in its the construction. Cesa-Bianchi et al. [Ces+12a] partition G into
stars and connect them in a tree, whereas Cesa-Bianchi et al. [Ces+12b] cover the
graph with cycles, each containing one test edge and being queried for the other,
while respecting the user specified query budget. This relies on a different bias
than our generative model, and this will be the subject of our next chapter. One
might also consider an online version of the problem where the topology is not
known in advance but discovered as prediction are made [GHP13]. This naturally
increases and the difficulty of the problem, as reflected by the computational cost of
the solution proposed, which is quadratic in |V | at each prediction.

The survey [Tan+16b] contains pointers to many papers on signed networks, in
particular for the EDGE SIGN PREDICTION problem.

2.5 Experimental Analysis

We now evaluate our EDGE SIGN PREDICTION methods on representative real-
world datasets of varying density and label regularity. After presenting the data and
our evaluation criterion, we proceed in two steps. First, we simulate our generative
model on real networks to give them signs, then we study to which extent we can
recover the parameters p and q of each node, and how predictions based on these
estimation compare with the Bayes optimal. Second, we select random training
sets from the actual signs. This shows that our methods compete well against
existing approaches in terms of both predictive and computational performance.
We are especially interested in small training set regimes, and have restricted our
comparison to the batch learning scenario since all competing methods we are
aware of have been developed in that setting only.

2.5.1 Datasets

We consider six real-world classification datasets. The first four are Directed Signed
Social Networks widely used as benchmarks for this task [LHK10; SJ14; WAS16;
Wan+17a]. In ADVOGATO, a trust-based social network for open source developers,
a user u can certify another user v with different degrees of trust: “Observer”,
“Apprentice” (both of which we consider negative), “Journeyer” and “Master”
(both of which we consider positive).13 A full description of this trust metric, and
its resistance to attacks, is available in the PhD thesis of the website’s creator [Lev02,
Section 4]). In WIKIPEDIA, there is an edge from user u to user v if v applies for an
admin position and u votes for or against that promotion. In SLASHDOT, a news
sharing and commenting website, member u can tag other members v as friends
or foes. Finally, in EPINION, an online shopping website, user v reviews products
and, based on these reviews, another user u can display whether he considers v
to be reliable or not. In addition to these four datasets, we considered two other
signed social networks where the signs are inferred automatically, rather than given
explicitly by the users. In WIK. EDITS [MAC11], an edge from Wikipedia user u to
user v indicates whether they edited the same article in a constructive manner or

13We download the 7th of July, 2014 version from http://www.trustlet.org/datasets/
advogato/.

25

http://www.trustlet.org/datasets/advogato/
http://www.trustlet.org/datasets/advogato/

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

Table 2.2 – Dataset properties. The 5th column gives the fraction of positive labels.
The next two columns provide two different measures of label regularity, while
the last two columns give the proportion of reciprocal edges, and among them the
fraction with different signs.

Dataset |V | |E| |E|
|V |

|E+|
|E|

Ψ2
G′′ (Y)

|E|
ΨG(Y)
|E|

reciprocal
edges

reciprocal
disagreement

CITATIONS 4 831 39 452 8.2 72.3% .076 .191 5.1% 27.1%
ADVOGATO 5 417 51 312 9.5 75.1% .061 .132 33.6% 28.6%
WIKIPEDIA 7 114 103 108 14.5 78.8% .063 .142 5.6% 10.0%
SLASHDOT 82 140 549 202 6.7 77.4% .059 .143 17.7% 4.0%
EPINION 131 580 840 799 6.4 85.3% .031 .074 30.8% 2.1%
WIK. EDITS 138 587 740 106 5.3 87.9% .034 .086 6.5% 14.6%

not.14 Finally, in the CITATIONS [Kum16] network, an author u cites another author
v by either endorsing or criticizing v’s work. The edge sign is derived by classifying
the citation sentiment with a technique using a list of positive and negative words;
see [Kum16] for more details.15

Table 2.2 summarizes statistics for these datasets. We note that most edge labels
are positive. Hence, test set accuracy is not an appropriate measure of prediction
performance. We instead evaluated our performance using the so-called Matthews
Correlation Coefficient (MCC) [Bal+00], defined as

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(2.9)

MCC combines all the four quantities found in a binary confusion matrix (true
positive, true negative, false positive and false negative) into a single metric which
ranges from −1 (when all predictions are incorrect) to +1 (when all predictions are
correct) through 0 (when predictions are made uniformly at random).

Although the semantics of the edge signs is not the same across these networks,
we can see from Table 2.2 that our generative model essentially fits all of them.
Specifically, two columns of the table report the rate of label (ir)regularity, as
measured by Ψ2

G′′(Y)/|E| (6th column) and ΨG(Y)/|E| (7th column), where

Ψ2
G′′(Y) = min

(p,q)

∑
(u,v)∈E

(
1 + yu,v

2
− pu + qv

2

)2

as first described in Section 2.3.2 and ΨG(Y) is the label regularity measure adopted
in the online setting, as defined in Section 2.1. It is reasonable to expect that higher
label irregularity corresponds to lower prediction performance. This trend is in
fact confirmed by our experimental findings: whereas EPINION tends to be easy,
CITATIONS tends to be hard, and this holds for all algorithms we tested, even if they
do not explicitly comply with our inductive bias principles. Moreover, Ψ2

G′′(Y)/|E|
tends to be proportional to ΨG(Y)/|E| across datasets, hence confirming the antici-
pated connection between the two regularity measures.

Finally, there is a low fraction of reciprocal edges (i.e. both u → v ∈ E and
v → u ∈ E), which is a common mechanism of link formation in directed net-
works [GL04; Squ+13]). Moreover, in most cases, such reciprocal edges do not
disagree, i.e. they have the same sign. In practice, we can use this fact to improve
our prediction at no additional computational cost: when predicting u→ v ∈ Etest,
if the reciprocal edge v → u is part of the training set, we set ŷu,v = yv,u. For
clarity, when comparing our methods with existing approaches, we dot not use that
heuristic. But afterwards, we show in Table 2.6 when it can be beneficial.

14This is the KONECT version of the “Wikisigned” dataset, from which we removed self-loops.
15We again removed self-loops and merged multi-edges which are all of the same sign.

26

http://konect.uni-koblenz.de/networks/wikisigned-k2

2.5. Experimental Analysis

2.5.2 Synthetic signs

Recall that according to our generative model of Section 2.2, each node u has a
parameter pu governing its sending behavior and each node v has a parameter qv
governing its receiving behavior, such that the sign of the edge u → v is positive
with probability pu+qv

2 = η(u, v). Given a topologyG = (V,E), we start by assigning
a p and q values to each node. If we want η(u, v) to be uniform over E, we have
to take into account the out-degree of nodes with at least one outgoing edge, and
likewise the in-degree of nodes with at least one incoming edge. For that, in the
case of p, we partition the interval [0, 1] into |V | segments of size proportional to
dout(u1), dout(u2), . . . , dout(u|V |). We shuffle these segments and draw a number
uniformly at random from each of them, which we set as the initial p′ value of the
corresponding node. Then, because we want to model real sign distribution and
have more positive than negative edges, we apply an exponential transformation

p =
1

1− e−λ
(

1− e−λp′
)
,

where we choose λ = 3. We do the same for q, then for every edge u→ v, we set it
positive with probability η(u, v). An example of the distributions we obtain for the
WIKIPEDIA graph is showed on Figure 2.516, giving 71.9% of positive edges.

0.0 0.2 0.4 0.6 0.8 1.0
p

0

1

2

3

4

de
ns

it
y

density of p

(a) Density of p.

0.0 0.2 0.4 0.6 0.8 1.0
q

0

1

2

3

4

de
ns

it
y

density of q

(b) Density of q.

0.0 0.2 0.4 0.6 0.8 1.0
η

0.0

0.5

1.0

1.5

2.0

2.5

de
ns

it
y

density of η

(c) Density of η.

0.0 0.2 0.4 0.6 0.8 1.0
η

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
ns

it
y

density of η for − edges
density of η for + edges

(d) Density of η for both signs.

Figure 2.5 – Synthetic distributions on WIKIPEDIA.

Once the signs are generated, we select a training set E0 uniformly at random,
and predict the signs of the remaining edges in the testing set E \ E0. The Bayes
optimal predictor classifies an edge u→ v as positive if η(u, v) ≥ 1/2 and negative
otherwise. We compare it with the BLC(tr, un) algorithm analyzed in Section 2.3.1.
Recall that BLC(tr, un) proceeds as follow: after computing t̂r(u) and ûn(u) on
training set E0 for all u ∈ V (or setting those values to 1/2 in case there is no
outgoing or incoming edges for some node), we use the equation (2.3)17, having
estimated τ on E0.

16More precisely, these figures are normalized histograms, meaning the counts are scaled down so
that the bars total area sums up to one.

17We reproduce this equation here for convenience: sign
((

1− t̂r(u)
)

+
(
1− ûn(v)

)
− τ − 1

2

)
.

27

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

Table 2.3 – Comparing BLC(tr, un) with the Bayes optimal on three metrics: Accuracy, MCC and
ability to estimate η. The results are averaged over 25 random sampling of E0 for each dataset
and each training size, and we report one standard deviation after every number.

Dataset |E0|
|E|

BLC(tr, un)
Accuracy

Bayes
Accuracy

BLC(tr, un)
MCC

Bayes
MCC

MAE(η, η̂) for the
whole testing set

MAE(η, η̂) for highly
sampled edges

CITATIONS
20% 66.1± 0.6 75.1± 0.1 16.2± 0.5 29.7± 0.2 .256± .00 .119± .01
40% 68.2± 0.4 74.7± 0.2 19.1± 0.6 29.6± 0.4 .205± .00 .085± .00
80% 71.4± 0.4 75.1± 0.5 23.4± 0.9 29.7± 1.1 .152± .00 .059± .00

ADVOGATO
20% 66.5± 0.6 75.1± 0.1 17.1± 0.6 30.3± 0.2 .242± .00 .116± .00
40% 69.6± 0.4 75.4± 0.1 21.0± 0.5 30.8± 0.3 .192± .00 .083± .00
80% 71.6± 0.5 75.4± 0.4 23.5± 0.9 30.5± 1.0 .142± .00 .060± .00

WIKIPEDIA
20% 70.5± 0.4 75.3± 0.1 21.8± 0.4 30.4± 0.2 .169± .00 .108± .00
40% 72.3± 0.2 75.3± 0.1 25.3± 0.5 30.7± 0.3 .122± .00 .075± .00
80% 73.3± 0.3 75.3± 0.3 28.0± 0.6 30.9± 0.6 .090± .00 .054± .00

SLASHDOT
20% 66.9± 0.3 75.2± 0.0 18.3± 0.3 30.2± 0.1 .224± .00 .098± .00
40% 69.2± 0.2 75.2± 0.0 20.6± 0.2 30.1± 0.1 .182± .00 .068± .00
80% 70.9± 0.2 75.1± 0.1 22.8± 0.3 30.1± 0.2 .144± .00 .048± .00

EPINION
20% 67.9± 0.3 75.2± 0.0 19.5± 0.2 30.4± 0.1 .194± .00 .089± .00
40% 69.7± 0.2 75.1± 0.0 21.2± 0.3 30.0± 0.1 .159± .00 .063± .00
80% 71.2± 0.1 75.2± 0.1 23.5± 0.2 30.3± 0.2 .128± .00 .044± .00

WIK. EDITS
20% 67.8± 0.3 75.3± 0.0 19.2± 0.2 30.5± 0.1 .221± .00 .097± .00
40% 69.6± 0.2 75.2± 0.0 21.4± 0.2 30.3± 0.1 .180± .00 .067± .00
80% 71.1± 0.2 75.3± 0.1 23.7± 0.2 30.4± 0.2 .144± .00 .047± .00

The result of this comparison on the six datasets is showed in Table 2.3. For
each network, we generated the signs once. Then, for different training size (20%,
40% or 80% of E), we sampled a training set and predict using the knowledge of
the true η (Bayes predictor) or its estimated value (BLC(tr, un)). The MCC of the
Bayes predictor is the same on all datasets (around 3018), and so is its accuracy
(around 75%). The corresponding values for BLC(tr, un) are close on all datasets
(although some are easier) and the gap naturally decreases as the training size
increases. Another interesting quantity is how close can BLC(tr, un) estimates η
using η̂ =

(
1− t̂r(u)

)
+ (1− ûn(v)) − τ̂ as defined in Section 2.3.1. We compute

the mean absolute error (MAE) between η and η̂ for all testing edges, and then
specifically for the testing edges whose both endpoints have been sampled above a
certain threshold in the training set. As expected, the estimation is more accurate
with increasing training set size, and with increasing number of samples for a given
edge.

Finally, we can also look in more details at the role of p and q by building a
2D histogram of the testing edges u → v based on their coordinate (pu, qv). For
instance on Figure 2.6a, we see that the MAE between η and η̂ is not uniform over
the p, q-space. It seems to decrease along the diagonal from (0, 0) to (1, 1). Note
though that Figure 2.6b suggests this is likely due to the higher number of edges in
the top right corner (reflecting the imbalance toward positive edges), which allows
better estimation. In this case, we cannot use the MCC because outside the diagonal,
the Bayes predictor classifies edges either all positive or all negative, resulting in a
division by zero in the definition of MCC. We thus fall back on accuracy and display
in Figure 2.6c the difference between the accuracy of of BLC(tr, un) and the accuracy
of the Bayes predictor. This time, the anti diagonal where p+q

2 = 1
2 seems to play

a special role. Indeed, as showed more clearly in Figure 2.6d, the gap in accuracy
between BLC(tr, un) and the Bayes predictor increases symmetrically as p+q

2 moves
away from 1/2. The gap also tends to disappear when p+q

2 = 1
2 , for in that region,

18Here and in the following, we multiply all MCC value by 100 to improve readability.

28

2.5. Experimental Analysis

both predictors can only rely on random predictions.
While we show those patterns on WIKIPEDIA with a 40% training size, they are

consistent across datasets and training size.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
p

0.
95

0.
85

0.
75

0.
65

0.
55

0.
45

0.
35

0.
25

0.
15

0.
05

q
.127 .126 .131 .126 .133 .125 .127 .120 .118 .111

.124 .123 .133 .126 .132 .127 .126 .122 .119 .112

.128 .143 .136 .133 .143 .133 .133 .129 .126 .115

.130 .127 .135 .130 .126 .132 .123 .118 .116 .109

.130 .136 .143 .141 .146 .133 .130 .129 .127 .118

.132 .133 .134 .130 .131 .136 .131 .117 .123 .114

.133 .133 .134 .122 .128 .131 .124 .119 .113 .106

.131 .147 .135 .138 .137 .138 .133 .136 .123 .122

.133 .139 .157 .138 .153 .144 .139 .138 .130 .134

.145 .145 .154 .144 .157 .146 .142 .141 .143 .128

(a) Mean absolute error (MAE) of the η(u, v)
estimation.

8 9 10 11 12
log number of edges

0.10

0.11

0.12

0.13

0.14

0.15

0.16

M
A

E

Mean Absolute Error

(b) MAE in each cell as a function of the num-
ber of sampled edges.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
p

0.
95

0.
85

0.
75

0.
65

0.
55

0.
45

0.
35

0.
25

0.
15

0.
05

q

-.297 -3.79 -5.53 -5.60 -4.77 -4.72 -4.33 -3.07 -1.96 -1.21

-4.00 4.36 -1.91 -4.81 -5.58 -5.09 -3.53 -2.71 -2.09 -1.33

-4.02 -6.82 -2.08 -2.82 -7.22 -5.83 -4.65 -3.77 -3.08 -1.65

-2.45 -6.74 -6.98 -6.34 -4.45 -5.53 -3.69 -3.23 -3.32 -1.69

-3.66 -.617 -3.24 -1.47 -5.94 -.915 -2.05 -4.51 -3.68 -3.22

-4.02 -4.15 -3.13 -4.94 -4.13 -1.18 -2.60 -5.72 -5.16 -3.63

-2.25 -3.10 -5.14 -5.03 -3.79 -4.36 -1.57 -2.65 -2.29 -3.77

-2.00 -4.65 -4.35 -2.68 -5.85 -4.63 .982 -6.10 -1.66 -4.21

-.965 -3.38 -4.89 -3.25 -4.19 -7.61 -5.50 -5.88 -.955 -2.66

-3.10 -3.58 -1.89 -3.67 -8.35 -4.05 -7.37 -3.86 -8.00 -2.99

(c) 100 time the difference of accuracy between
BLC(tr, un) and Bayes.

−0.4 −0.2 0.0 0.2 0.4
1
2 −

p+q
2

−8

−6

−4

−2

0

2

4

10
0

ti
m

es
th

e
ac

cu
ra

cy

(d) Difference of accuracy between BLC(tr, un)
and Bayes as p+q

2 moves away from 1
2 .

Figure 2.6 – Results on WIKIPEDIA with BLC(tr, un) on a training set of size 40%

2.5.3 Real signs

We compared the following algorithms:

1. The label propagation algorithm of Section 2.3.2 (referred to as L. PROP.). The
actual binarizing threshold was set by cross-validation on the training set.

2. The BLC(tr, un) algorithm described in Section 2.3.1.

3. A logistic regression model where each edge (u, v) is associated with the
features [1 − t̂r(u), 1 − ûn(v)] computed again on E0 (we call this method
LOGREG). The best binary thresholding is again computed on E0. Experi-
menting with this logistic model serves to support the claim we made in the
introduction that our generative model in Section 2.2 is a good fit for the data.

29

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

4. The solution obtained by directly solving the unregularized problem (2.8)
through a constrained minimization algorithm (referred to as UNREG.). Again,
the actual binarizing threshold was set by cross-validation on the training
set.19

5. The matrix completion method from [Chi+14] based on LOWRANK matrix
factorization. Since the authors showed their method to be robust to the
choice of the rank parameter k, we picked k = 7 in our experiments.

6. The other MAXNORM matrix completion method from [Wan+17a], setting the
parameter λ to 1.2 as advised in their paper.

7. A logistic regression model built on 16 TRIADS features derived from status
theory [LHK10].

8. The TrollTrust algorithm from [WAS16], naming it RANKNODES. As for hy-
perparameter tuning (β and λ1 in [WAS16]), we closely followed the authors’
suggestion of doing cross validation.

9. The last competitor is the logistic regression model whose features have been
build according to [SM15]. We call this method BAYESIAN.

The above methods can be roughly divided into local and global methods. A
local method hinges on building local predictive features, based on neighborhoods:
BLC(tr, un), LOGREG, 16 TRIADS, and BAYESIAN essentially fall into this category.
The remaining methods (L. PROP., LOWRANK, MAXNORM and RANKNODES) are
global in that their features are designed to depend on global properties of the
graph topology.

Our main results are summarized in Table 2.4, reporting MCC test set perfor-
mance after training on sets of varying size (from 5% to 25%, plus 50% and 90%).
Results have been averaged over 12 repetitions. Because scalability is a major con-
cern when training on sizeable datasets, we also give an idea of relative training
times by reporting separately in Table 2.5 the time (in milliseconds) it took to train a
single run of each algorithm on a training set of size20 15% of |E|, and then predict
on the test set. Some conclusions emerge from those experiments:

1. Global methods tend to outperform local methods in terms of prediction per-
formance, but are also significantly (or even much) slower (running times can
differ by as much as three orders of magnitude). This is not surprising, and is
in line with previous experimental findings (e.g., [SJ14; WAS16]). BAYESIAN

looks like an exception to this rule, but its running time is indeed in the same
ballpark as global methods.

2. L. PROP. almost always ranks first or at least second in this comparison when
MCC is considered, at least in the small training set regime (that is when having
access to at most 25% of the labels, which might be more realistic in many real
world situations). On top of it, L. PROP. is fastest among the global methods
(one or even two orders of magnitude faster), thereby showing the benefit of
our approach to EDGE SIGN PREDICTION.

3. Two methods are competitive with us, BAYESIAN and RANKNODES. BAYESIAN

achieves its best results on the larger dataset (SLASHDOT, EPINION and WIK.
EDITS) when the training set size is large. Indeed, it learns a much more

19We have also tried to minimize (2.8) by removing the [−1,+1] constraints, but got similar MCC
results as the ones we report for UNREG.

20Comparison of training time performances is fair since all algorithms have been carefully imple-
mented using the same stack of Python libraries, and run on the same machine (16 Xeon cores and
192GB Ram).

30

2.5. Experimental Analysis

complex model than our methods, with 256 parameters21, which also requires
a lot of time to be trained. RANKNODES also shines in those large datasets,
even at small training size. Note however that the difference with L. PROP. is
usually less than one point, at the expense of a five times longer learning time.

4. The regularized solution computed by L. PROP. is always better than the
unregularized one computed by UNREG. in terms of both MCC and running
time.

5. As claimed in the introduction, our Bayes approximator BLC(tr, un) closely
mirrors in performance the more involved LOGREG model. In fact, supporting
our generative model of Section 2.2, the logistic regression weights for features
1− t̂r(i) and 1− ûn(j) are almost equal (see Table 2.11 in the supplementary
material), thereby suggesting that predictor (2.3), derived from the theoretical
results in Section 2.3.1, is also the best logistic model based on trollness and
untrustworthiness.

Table 2.4 – MCC with increasing training set size, with one standard deviation over
12 random sampling of E0. The last five columns refer to the methods we took from
the literature. For the sake of readability, we multiplied all MCC values by 100. The
best number in each row is highlighted in bold brown and the second one in italic
red. If the difference is statistically significant (p-value of a paired Student’s t-test
less than 0.005), the best score is underlined.

|E0|
|E| L. PROP. BLC(tr, un) LOGREG UNREG. LOWRANK MAXNORM 16 TRIADS RANKNODES BAYESIAN

C
IT

A
T

IO
N

S

5% 24.2± 0.9 19 .8 ± 0.5 19.8± 0.5 15.9± 0.5 12.4± 0.7 1.2± 1.4 11.4± 1.1 17.5± 1.0 15.2± 1.4
10% 31.7± 0.8 28 .0 ± 0.6 27.9± 0.7 26.0± 0.7 17.9± 0.7 12.6± 0.8 17.2± 1.0 25.1± 0.9 25.5± 0.9
15% 36.1± 0.7 33.1± 0.8 33 .2 ± 0.7 31.6± 0.7 22.0± 0.6 22.2± 0.9 21.0± 1.0 31.2± 1.0 32.0± 0.8
20% 38.9± 0.8 37 .1 ± 0.6 36.9± 0.6 35.6± 0.5 25.7± 0.9 30.3± 0.8 24.3± 0.7 35.2± 0.7 36.7± 0.5
25% 41.1± 0.7 39.7± 0.8 39.7± 0.7 38.4± 0.9 29.0± 0.6 36.5± 0.9 27.0± 0.6 37.8± 0.9 39 .8 ± 1.0
50% 47.2± 0.6 48.1± 0.6 47.7± 0.5 46.7± 0.7 44.9± 1.4 55.9± 0.9 35.4± 1.0 46.0± 0.6 50 .9 ± 0.8
90% 51.6± 2.1 52.6± 2.2 52.5± 1.7 52.3± 1.9 60.4± 1.6 66.7± 1.0 47.2± 1.9 51.5± 2.1 61 .7 ± 1.3

A
D

V
O

G
A

T
O

5% 40.9± 0.7 36.5± 0.7 36 .8 ± 0.8 30.2± 0.8 25.1± 1.0 4.7± 3.3 29.5± 3.7 32.2± 1.0 19.8± 0.8
10% 46.8± 0.6 44.7± 0.6 45 .3 ± 0.7 42.8± 0.9 28.3± 0.7 24.2± 1.6 37.6± 1.4 38.8± 1.0 30.7± 0.9
15% 50 .4 ± 0.5 49.5± 0.6 50.4± 0.6 47.9± 0.6 30.3± 0.8 30.1± 1.1 42.0± 0.8 45.1± 1.6 38.5± 0.8
20% 52 .2 ± 0.6 51.9± 0.5 53.0± 0.5 51.1± 0.7 31.5± 0.7 33.5± 1.3 44.4± 0.6 48.9± 0.9 43.4± 0.6
25% 54 .2 ± 0.7 54.1± 0.5 55.3± 0.5 53.7± 0.6 32.7± 0.7 35.6± 1.1 46.7± 0.9 51.7± 1.1 47.6± 0.7
50% 59.0± 0.5 59.8± 0.5 60.7± 0.4 60 .3 ± 0.4 37.1± 0.8 42.8± 1.2 52.2± 0.9 58.2± 0.6 56.5± 0.5
90% 63.3± 1.3 64.0± 1.2 64 .5 ± 1.2 65.0± 1.1 44.0± 2.0 49.5± 1.9 57.9± 1.3 63.3± 1.1 63.0± 1.2

W
IK

IP
E

D
IA

5% 39.8± 0.7 38.2± 1.0 39 .0 ± 0.7 36.0± 0.7 24.7± 0.8 24.6± 0.9 9.7± 1.0 33.4± 0.6 26.2± 1.4
10% 46 .7 ± 0.6 45.9± 0.5 46.8± 0.5 44.4± 0.6 31.5± 0.7 34.9± 0.4 26.8± 1.5 43.2± 0.6 40.3± 0.6
15% 50 .3 ± 0.5 49.6± 0.4 50.5± 0.4 48.8± 0.4 35.4± 0.7 39.4± 0.6 34.2± 0.6 48.4± 0.5 46.7± 0.4
20% 52 .5 ± 0.4 51.9± 0.5 52.8± 0.5 51.7± 0.5 38.0± 0.6 42.2± 0.5 38.2± 0.7 51.2± 0.5 50.2± 0.4
25% 54 .2 ± 0.6 53.6± 0.6 54.6± 0.5 53.6± 0.4 40.2± 0.6 44.2± 0.6 41.2± 0.6 53.5± 0.5 53.0± 0.6
50% 57 .8 ± 0.3 56.9± 0.5 57.9± 0.4 57.6± 0.4 47.3± 0.7 48.8± 0.7 48.9± 0.5 57.8± 0.4 57.4± 0.5
90% 60.5± 0.8 59.5± 0.9 60.4± 0.9 59.9± 1.1 53.5± 0.9 51.3± 0.8 55.6± 0.8 60 .4 ± 1.0 59.6± 1.2

SL
A

SH
D

O
T

5% 41 .0 ± 0.2 36.3± 0.5 37.1± 0.3 33.6± 0.2 36.9± 0.4 14.9± 0.8 27.8± 1.0 45.3± 0.4 29.4± 0.3
10% 46 .6 ± 0.2 42.2± 0.2 43.1± 0.2 40.9± 0.3 39.7± 0.3 25.7± 0.7 40.3± 1.1 47.8± 0.5 38.2± 0.2
15% 49.7± 0.2 45.4± 0.3 46.5± 0.2 45.4± 0.2 41.3± 0.3 32.5± 0.3 45.5± 1.3 48 .7 ± 0.7 43.4± 0.2
20% 51 .8 ± 0.2 47.6± 0.3 48.7± 0.1 48.3± 0.2 42.9± 0.2 36.6± 0.3 49.0± 0.7 52.0± 0.3 47.0± 0.3
25% 53 .3 ± 0.2 49.4± 0.2 50.2± 0.1 50.0± 0.1 44.3± 0.6 39.7± 0.3 50.6± 0.4 53.3± 0.3 49.4± 0.2
50% 57.2± 0.1 54.2± 0.2 55.0± 0.1 54.6± 0.1 52.9± 0.5 48.2± 0.1 55.2± 0.4 56 .8 ± 0.2 56.3± 0.1
90% 59 .6 ± 0.5 57.4± 0.5 58.0± 0.5 57.7± 0.4 59.0± 0.4 53.5± 0.4 58.0± 0.4 59.2± 0.6 61.1± 0.5

E
P

IN
IO

N

5% 54 .6 ± 0.3 46.9± 0.6 48.9± 0.3 42.8± 0.4 39.9± 0.3 28.9± 0.3 41.4± 2.0 56.0± 0.6 37.9± 0.4
10% 59 .0 ± 0.4 54.1± 0.4 55.9± 0.2 53.3± 0.4 44.4± 0.3 36.7± 0.4 50.8± 1.5 60.5± 0.3 49.9± 0.4
15% 61 .5 ± 0.3 57.9± 0.3 59.3± 0.1 58.7± 0.5 48.6± 0.7 41.0± 0.5 54.5± 1.8 62.7± 0.2 56.5± 0.7
20% 63 .0 ± 0.3 60.3± 0.3 61.4± 0.1 61.8± 0.2 52.0± 0.9 43.9± 0.4 56.3± 1.2 64.1± 0.3 61.4± 0.4
25% 64.2± 0.2 61.8± 0.3 62.9± 0.1 63.5± 0.1 55.0± 0.7 46.3± 0.4 58.6± 1.4 65.2± 0.6 64 .7 ± 0.3
50% 67.3± 0.2 66.3± 0.2 66.7± 0.1 67.2± 0.2 63.4± 0.3 52.8± 0.2 64.2± 1.4 69 .9 ± 0.2 72.5± 0.1
90% 69.7± 0.3 69.2± 0.3 69.1± 0.3 69.7± 0.3 68.0± 0.7 57.6± 0.6 67.6± 0.7 71 .6 ± 0.3 77.4± 0.4

W
IK

.E
D

IT
S

5% 36.5± 0.4 31 .0 ± 0.2 30.8± 0.2 21.9± 0.3 23.2± 0.5 15.8± 0.5 3.2± 0.7 26.8± 0.4 26.8± 0.7
10% 38.9± 0.5 35.6± 0.2 35 .8 ± 0.1 29.7± 0.3 27.3± 0.3 23.9± 0.5 11.7± 0.9 33.8± 0.5 35.1± 0.3
15% 38 .8 ± 0.8 37.6± 0.2 38.1± 0.2 33.5± 0.2 30.0± 0.4 28.5± 0.2 18.2± 0.6 36.7± 0.4 40.0± 0.2
20% 39.0± 0.7 38.8± 0.1 39 .6 ± 0.2 35.0± 0.2 32.3± 0.7 31.5± 0.4 21.5± 0.4 38.5± 0.3 43.3± 0.2

21corresponding to 16× 16 feature per edge

31

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

|E0|
|E| L. PROP. BLC(tr, un) LOGREG UNREG. LOWRANK MAXNORM 16 TRIADS RANKNODES BAYESIAN

25% 38.8± 0.6 39.6± 0.4 40 .5 ± 0.1 36.2± 0.1 34.3± 0.8 34.2± 0.4 23.2± 0.7 39.8± 0.3 45.8± 0.3
50% 39.5± 0.5 42.8± 0.2 42.6± 0.2 38.9± 0.2 41.0± 0.7 41.0± 0.3 27.4± 0.5 42 .9 ± 0.3 53.2± 0.2
90% 41.7± 0.5 44.5± 0.6 43.9± 0.4 41.0± 0.5 45.3± 0.4 45.8± 0.3 31.6± 0.5 46 .0 ± 0.5 58.5± 0.4

Table 2.5 – The time taken (in milliseconds) to train, for each dataset, on a 15% training set and
predict the remaining 85%. The experimental setting is the same as in Table 2.4.

Dataset L. PROP. BLC(tr, un) LOGREG UNREG. LOWRANK MAXNORM 16 TRIADS RANKNODES BAYESIAN

CITATIONS 19,2 0,6 3,6 2 827 3 222 23 229 7,5 157 4 787
ADVOGATO 21,4 0,8 5,7 5 538 4 094 37 440 10,9 224 6 597
WIKIPEDIA 42,2 1,7 8,0 10 613 8 277 59 992 17,7 255 12 583
SLASHDOT 645 8,2 42,9 78 658 67 454 350 742 139 2 446 68 008
EPINION 1 447 10,6 72,5 142 507 127 641 692 560 234 3 381 111 435
WIK. EDITS 897 9,6 60,2 208 676 125 884 632 663 188 4 233 95 374

2.5.4 Additional experiments

We perform two other sets of experiments. The first one evaluates the effect of
predicting reciprocal edges by their value if available. As expected, the results
in Table 2.6 demonstrate that it improves MCC when the network has enough
reciprocal edges with low disagreements, like in SLASHDOT and EPINION. It has
no effect when there are few reciprocal edges, like in CITATIONS, WIKIPEDIA and
WIK. EDITS. And it is detrimental when there are many reciprocal edges that do
not agree enough, like in ADVOGATO, in which case it is better to rely solely on the
learned model.

Table 2.6 – 100 time the difference of MCC between using the twin heuristic and
not using it for our two main methods. Those values are computed on the same
training/testing split as of Table 2.4.

5% 10% 15% 20% 25% 50% 90%

CITATIONS

L. PROP.? 0.0 0.0 0.0 0.0 0.0 −0.1 −0.7
BLC?(tr, un) 0.0 0.0 0.0 0.0 0.1 −0.2 −0.7

ADVOGATO

L. PROP.? −0.2 −0.6 −1.0 −1.6 −2.2 −5.4 −10.8
BLC?(tr, un) −0.1 −0.5 −1.0 −1.6 −2.2 −5.7 −11.1

WIKIPEDIA

L. PROP.? 0.0 0.0 0.0 0.0 0.0 −0.1 −0.2
BLC?(tr, un) 0.0 0.0 0.0 −0.1 −0.1 −0.2 −0.2

SLASHDOT

L. PROP.? 0.3 0.5 0.8 0.9 1.1 2.0 3.3
BLC?(tr, un) 0.3 0.6 0.9 1.1 1.3 2.2 3.5

EPINION

L. PROP.? 0.3 0.5 0.7 0.8 1.0 1.9 3.0
BLC?(tr, un) 0.4 0.6 0.8 1.0 1.2 1.8 2.8

WIK. EDITS

L. PROP.? 0.0 0.0 0.0 0.0 −0.1 −0.1 −0.3
BLC?(tr, un) 0.0 0.0 0.0 0.0 0.0 −0.2 −0.5

In the second set of experiments, we study the effect of our hypothesis that
the labeled edges of the training set are chosen uniformly at random. In two
of our datasets (WIKIPEDIA and EPINION), edges come with the timestamp at
which they were created. A more realistic way of choosing the training set is

32

2.6. Algorithms in the Online Setting

therefore, for a given training size m, to let E0 be the m oldest edges, and try to
predict the remaining, newest ones. This is a common experimental setting in link
prediction, where the goal is to infer which pair of nodes will be connected in the
future [MBC16]. However, as showed in Table 2.7, this makes the problem much
more challenging, both for our methods and our competitors. It is quite surprising
that even when the training set is as large as 90% of all edges, the MCC are so low
compared with those reported in Table 2.4.

Table 2.7 – Same as Table 2.4, but when selecting the training set by the timestamp of the
edges.

|E0|
|E| L. PROP. BLC(tr, un) LOGREG UNREG. LOWRANK MAXNORM 16 TRIADS RANKNODES BAYESIAN

W
IK

IP
E

D
IA

5% 2.2± 0.0 4 .0 ± 0.0 4.0± 0.0 −1.0± 1.0 3.0± 0.4 0.5± 0.4 1.5± 0.1 2.8± 0.2 2.0± 0.2
10% 3.1± 0.0 5.6± 0.0 5 .9 ± 0.0 0.4± 0.9 5.8± 0.5 0.8± 0.3 2.2± 0.3 6.3± 0.5 4.2± 0.2
15% 5.2± 0.0 5.7± 0.0 6 .5 ± 0.1 0.7± 0.7 6.2± 0.5 1.4± 0.4 3.4± 0.2 7.4± 0.5 3.4± 0.1
20% 5.5± 0.0 6.9± 0.0 7 .4 ± 0.1 0.7± 0.7 5.3± 0.6 1.6± 0.2 3.9± 0.2 10.1± 0.2 2.7± 0.1
25% 5.8± 0.0 6.5± 0.0 7.2± 0.0 2.6± 0.9 7 .2 ± 0.7 1.9± 0.3 6.6± 0.3 9.4± 0.1 3.9± 0.3
50% 7.0± 0.0 7.3± 0.0 8.0± 0.0 4.7± 0.6 8.1± 1.1 3.3± 0.5 17.1± 1.7 12 .4 ± 0.0 5.2± 0.4
90% 20.9± 0.0 14.7± 0.0 13.3± 0.0 13.5± 0.9 10.5± 0.7 7.4± 1.7 20 .2 ± 0.5 18.7± 0.1 13.2± 0.3

E
P

IN
IO

N

5% 26.8± 0.0 23.2± 0.0 23.9± 0.0 20.9± 0.5 23.0± 0.3 13.9± 0.2 28.9± 0.2 31.9± 0.2 29 .8 ± 0.8
10% 26.3± 0.0 25.0± 0.0 26.0± 0.1 22.4± 0.5 28.4± 0.4 16.7± 0.3 29.3± 0.3 34.3± 0.0 33 .7 ± 0.5
15% 23.2± 0.0 23.0± 0.0 25.2± 0.0 21.0± 0.4 28.7± 0.4 17.1± 0.5 28.1± 0.3 32 .6 ± 0.2 33.1± 0.3
20% 18.4± 0.0 21.3± 0.0 24.2± 0.0 19.5± 0.3 26.2± 0.4 16.6± 0.3 26.8± 0.3 29 .3 ± 0.0 32.7± 0.3
25% 30.4± 0.0 25.1± 0.0 27.9± 0.0 20.5± 0.4 25.7± 0.3 17.0± 0.4 26.4± 0.3 35.6± 0.1 30 .4 ± 0.3
50% 21.2± 0.0 25.5± 0.0 29.1± 0.0 19.2± 0.5 19.9± 1.0 12.2± 0.8 31 .3 ± 0.4 34.7± 0.0 22.3± 0.1
90% 38.6± 0.0 32.1± 0.0 33.9± 0.0 25.2± 0.8 24.9± 0.8 8.2± 1.2 40 .8 ± 0.5 42.5± 0.0 36.8± 0.3

The explanation of why these two sampling strategies produce so different
results can be inferred from Table 2.8. Letting Vout be the subset of node of V with at
least one outgoing edge, and defining similarly Vin, we see that the node coverage
is naturally larger when sampling at random. Yet, when the training set reaches
90% size, both sampling strategies cover roughly 90% of the nodes in Vout and in
Vin. The difference in MCC is thus explained by the last three columns. It shows,
for testing edges u→ v, the breakdown between three situations, from the least to
the most informative:

(i) no sampled edge outgoing from u nor incoming to v;
(ii) some sampled edges, but only either outgoing from u or incoming to v; and

(iii) some sampled edges, both outgoing from u and incoming to v;
When the training set is build uniformly at random, the vast majority of testing
edges falls into the case (iii). This is no longer true with temporal training set, where
situations (ii) and even (i) are more common, making prediction more difficult. The
difference of repartition is particularly strong in WIKIPEDIA, justifying the better
performance in EPINION.

This conclusion is not in contradiction with our previous experiments, since
our algorithms were developed under the assumption that both the revealed labels
and the ones to predict were distributed uniformly within the graph. Recall for
instance that Theorem 1 requires to have Ω(log |V |) labels outgoing from u and
incoming to v to guarantee an accurate prediction of the sign of u→ v. Therefore in
the next section, we present an online algorithm, whose goal is to guarantee good
performance when the labeling is regular enough, despite the adversarial order in
which the predictions are asked.

2.6 Algorithms in the Online Setting

In the online scenario, recall we do not assume anymore that the signs are generated
by the model of Section 2.2. Instead, they are chosen adversarially, and presented
sequentially in order to force as many mistakes as possible. This is achieved by
deviating from the regular labeling where every user is either perfectly troll or

33

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

Table 2.8 – The effect of not sampling edges at random on WIKIPEDIA and EPINION. In case
of random sampling, all values are averaged over 20 trials. Refer to the main text for an
interpretation of how this affects the predictive performance.

Sampling Fraction of
Vout sampled

Fraction of
Vin sampled

Testing edges with
no endpoint sampled

Testing edges with
one endpoint sampled

Testing edges with
both endpoints sampled

WIKIPEDIA

20% oldest 28.84% 27.76% 70.06% 27.18% 2.76%
20% random 53.23% 91.45% 0.10% 7.17% 92.73%

50% oldest 57.51% 52.46% 48.71% 45.22% 6.07%
50% random 76.48% 97.46% 0.04% 3.62% 96.34%

90% oldest 92.44% 90.09% 14.82% 68.37% 16.81%
90% random 95.98% 99.65% 0.03% 2.47% 97.50%

EPINION

20% oldest 7.81% 36.39% 20.94% 70.84% 8.22%
20% random 40.00% 43.87% 3.24% 19.00% 77.75%

50% oldest 33.71% 61.48% 15.95% 65.55% 18.50%
50% random 67.81% 71.40% 1.57% 12.82% 85.62%

90% oldest 90.09% 91.13% 13.34% 45.92% 40.75%
90% random 94.34% 95.16% 0.94% 9.72% 89.35%

trustworthy, as measured by the regularity measure ΨG(Y) described at the end
of Section 2.1. We start by presenting an algorithm that combines randomized
Weighted Majority instances and makes little more than ΨG(Y) mistakes on any
edge-labeled graph G(Y) = (V,E(Y)). We then show there is not much room
for improvement, for as long as ΨG(Y) is within a budget of K irregularities, any
online algorithm is condemned to err at least K/2 times.

Theorem 2. There exists a randomized online prediction algorithm A whose expected
number of mistakes satisfies EMA(Y) = ΨG(Y) +O

(√
|V |ΨG(Y) + |V |

)
on any edge-

labeled graph G(Y) = (V,E(Y)).

Proof. Let each node u ∈ V host two instances of the randomized Weighted Majority
(RWM) algorithm [LW94] with an online tuning of their learning rate [Ces+97;
ACG02]: one instance for predicting the sign of outgoing edges (u, v), and one
instance for predicting the sign of incoming edges (v, u). Both instances simply
compete against the two constant experts, predicting always +1 or always −1.
Denote by M(u, v) the indicator function (zero-one loss) of a mistake on edge (u, v).
Then the expected number of mistakes of each RWM instance satisfy [Ces+97;
ACG02]:

∑
v∈Nout(u)

EM(u, v) = Ψout(u, Y) +O
(√

Ψout(u, Y) + 1
)

and ∑
u∈Nin(v)

EM(u, v) = Ψin(v, Y) +O
(√

Ψin(v, Y) + 1
)
.

We then define two meta-experts: an ingoing expert, which predicts yu,v using the
prediction of the ingoing RWM instance for node v, and the outgoing expert, which
predicts yu,v using the prediction of the outgoing RWM instance for node u. The

34

2.7. Open questions

number of mistakes of these two experts satisfy∑
u∈V

∑
v∈Nout(u)

EM(u, v) = Ψout(Y) +O
(√
|V |Ψout(Y) + |V |

)
∑
v∈V

∑
u∈Nin(v)

EM(u, v) = Ψin(Y) +O
(√
|V |Ψin(Y) + |V |

)
,

where we used
∑

v∈V
√

Ψin(v, Y) ≤
√
|V |Ψin(Y), and similarly for Ψout(Y). Finally,

let the overall prediction of our algorithm be a RWM instance run on top of the
ingoing and the outgoing experts. Then the expected number of mistakes of this
predictor satisfies

∑
(u,v)∈E

EM(u, v) = ΨG(Y) +O

(√
|V |ΨG(Y) + |V |+

√(
ΨG(Y) + |V |+

√
|V |ΨG(Y)

))

= ΨG(Y) +O
(√
|V |ΨG(Y) + |V |

)
as claimed.

We complement the above result by providing a mistake lower bound. Like
Theorem 2, the following result holds for all graphs, and for all label irregularity
levels ΨG(Y).

Theorem 3. Given any edge-labeled graph G(Y) = (V,E(Y)) and any integer K ≤⌊ |E|
2

⌋
, a randomized labeling Y ∈ {−1,+1}|E| exists such that ΨG(Y) ≤ K, and the

expected number of mistakes that any online algorithm A make can be forced to satisfies
EMA(Y) ≥ K

2 .

Proof. Let YK be the set of all labelings Y such that the total number of negative and
positive edges are K and |E| −K, respectively (without loss of generality we will
focus on negative edges). Consider the randomized strategy that draws a labeling
Y ∈ {−1,+1}|E| of the edges of the input graph uniformly at random from YK .
For each node u ∈ V , we have Ψin(u, Y) ≤ d−in(u), which implies Ψin(Y) ≤ K. A
very similar argument applies to the outgoing edges, leading to Ψout(Y) ≤ K. The
constraint ΨG(Y) ≤ K is therefore always satisfied.

The adversary will force on average 1/2 mistakes in each one of the first K
rounds of the online protocol by repeating K times the following: (i) A label value
` ∈ {−1,+1} is selected uniformly at random. (ii) An edge (u, v) is sampled
uniformly at random from the set of all edges that were not previously revealed
and whose labels are equal to `.

The learner is required to predict yu,v and, in doing so, 1/2 mistakes will be made
on average because of the randomized labeling procedure. Observe that this holds
even when A knows the value of K and ΨG(Y). Hence, we can conclude that the
expected number of mistakes that A can be forced to make is always at least K/2,
as claimed.

In fact, we can refine the above statement by proving that, as K
|E| → 0, the lower

bound gets arbitrarily close to K for any G(Y), hence asymptotically matching the
upper bound of Theorem 2. A sketch of the proof can be found on page 41.

2.7 Open questions

Given the fundamental role of our generative model, we would like to adapt it
in order to handle the three problem extensions presented in the related works of
Section 2.4.

35

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

1. When available, using side information about users is an alluring option
to alleviate the cold start problem. Recall that in our experiments, we saw
that if we learn our model on historical data, we cannot successfully predict
the interactions involving new users, for their trollness and trustworthiness
are not yet known to us. However, we expect that for existing users, side
information is correlated with their value of p and q. This knowledge thus
provides a parameterised prior for the p and q values of news users. As we
observe their behavior in the network, our estimation of p and q would rely
less and less on prior information and more and more on observed data, as it
is common in a Bayesian approach. Note that this introduces an additional
learning stage.

2. Our generative model, and in particular the prior distribution µ(p, q), could
be exploited to guide label queries in an adaptive active learning setting.
Given a budget of queries B, and after an initial phase of querying edge labels
uniformly at random, one might use concentration results on µ22 to devise an
informativeness criterion, indicating for which node the value of p and q are
the most uncertain. Combined with the graph topology, this would suggest
which edge is the most important to query next, until the budget is exhausted.

3. So far we discussed binary classification of edges. In weighted graphs though,
a refined problem would be to predict the weight of unlabeled edges. Let us
assume for simplicity that the weights are bounded and within [−1, 1]. The
most immediate solution would be, for an edge u → v, to linearly shift our
estimation of pu+qv

2 = η(u, v) from [0, 1] to [−1, 1] and use this quantity as
our prediction. We could also change the semantic of η(u, v) from being the
probability of u → v to be positive to the mean of a narrow Gaussian from
which the weight of u→ v is drawn. Finally, by letting pu range from −1 to
+1, we note a similarity with fairness and goodness, suggesting pu × qv could
approximate the weights.

2.8 Summary

In this chapter, we started our characterization of edges in complex networks by
studying the EDGE SIGN PREDICTION problem in Directed Signed Social Networks.
As mentioned in the introduction, given a network topology and a few labeled
interactions, being able to infer the polarity of the remaining interactions is valuable
to improve user experience. Our main insight is that two features of users behavior,
trollness and (un)trustworthiness, are key to understand their interactions. This
leads us to design a simple sign generative model. Such a model serves both as a
theoretical justification for many successful heuristics and as the underpinning of
our BLC(tr, un) algorithm. This algorithm is fast, trivially parallelizable, provably
close to the Bayes optimal predictor on dense graphs and experimentally accurate
even on sparse graphs. We further exploit this model in the batch setting through
an approximation of the maximum likelihood estimation procedure. While making
this approximation, we moreover cast the problem as a node prediction problem.
This can be efficiently tackled by standard Label Propagation algorithms.

We validate our theoretical results by experimentally assessing these two meth-
ods in the small training set regime, on synthetic and real-world datasets. We draw
two main conclusions from our experiments. First, our generative model is robust
across domains. Indeed, it produces predictors that are empirically both close to the
Bayes optimal and to general linear models trained on trollness and trustworthiness
features. This is notable as this result is achieved by simply counting negative
edges, without resorting to Stochastic Gradient Descent methods typically involved

22As done in the proof of Theorem 1, on the facing page.

36

2.9. Additional material

in training large scale linear models. Second, our methods are in practice either
strictly better than their competitors in terms of prediction quality or, when they
are not, they are faster.

Finally, we study the online adversarial setting, where trollness and (un)trustworthiness
naturally lend themselves to define a notion of edge sign regularity. Based on this
regularity, we provide an upper and an (almost matching) lower bounds on the ex-
pected number of prediction mistakes. We conclude by presenting three directions
in which our generative model could be extended: namely use side information as
priors, guide budgeted queries in active learning and generate weights in addition
to signs.

In the next chapter, we will go even further than this generative model and
explore another learning bias for EDGE SIGN PREDICTION, which is not based on
trollness and (un)trustworthiness, but rather on the social balance theory.

2.9 Additional material

2.9.1 Proofs from Section 2.3

2.9.1.1 Proof of Theorem 1

The following ancillary results will be useful.

Lemma 1 (Hoeffding’s inequality for sampling without replacement). Let X =
{x1, . . . , xN} be a finite subset of [0, 1] and let

µ =
1

N

N∑
i=1

xi .

If X1, . . . , Xn is a random sample drawn at random from X without replacement, then, for
every ε > 0,

Pr

(∣∣∣∣∣ 1n
n∑
t=1

Xt − µ
∣∣∣∣∣ ≥ ε

)
≤ 2e−2nε2 .

Lemma 2. LetN1, . . . ,Nn be n subsets of a finite setE. LetE0 ⊆ E be sampled uniformly
at random without replacement from E, with |E0| = m. Then, for δ ∈ (0, 1), Q > 0, and
θ ≥ 2×max

{
Q, 4 log n

δ

}
, we have

Pr
(
∃i : |Ni| ≥ θ, |Ni ∩ E0| < Q

)
≤ δ

provided |E| ≥ m ≥ 2|E|
θ ×max

{
Q, 4 log n

δ

}
.

Proof of Lemma 2. Set for brevity pi = |Ni|/|E|. Then, due to the sampling without
replacement, each random variable |Ni ∩ E0| is the sum of m dependent Bernoulli
random variables Xi,1, . . . , Xi,m such that Pr(Xi,t = 1) = pi, for t = 1, . . . ,m. Let i
be such that |Ni| ≥ θ. Then, since θ ≥ 2Q, we may assume that m2Q

θ ≤ |E|, which
implies

Q ≤ mθ

2|E| ≤
mpi

2
=

E
[
|Ni ∩ E0|

]
2

.

Since the variables Xi,j are negatively associated, we may apply a (multiplicative)
Chernoff bound [DP09, Section 3.1]. This gives

Pr
(
|Ni ∩ E0| < Q

)
≤ e−

mpi
8 ≤ e−

mθ
8|E|

so that Pr
(
∃i : |Ni| ≥ θ, |Ni ∩E0| < Q

)
≤ n e−

mθ
8|E| , which is in turn upper bounded

by δ whenever m ≥ 8|E|
θ log n

δ (again a natural assumption since θ ≥ 8 log n
δ).

37

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

Let now Eθ = {(u, v) ∈ E : din(v) ≥ θ, dout(u) ≥ θ} \ E0, where E0 ⊆ E is the
set of sampled edges provided to the learning algorithm of Section 2.3.1. Then
Theorem 1 in the main paper is an immediate consequence of the following lemma.

Lemma 3. Let G(Y) = (V,E(Y)) be a directed graph with labels on the edges generated
according to the model in Section 2.2. For all 0 < α, δ < 1 and 0 < ε < 1

16 , if the
learning algorithm of Section 2.3.1 is run with parameters Q = 1

2ε2
log 4|V |

δ and α, then
with probability at least 1 − 9δ the predictions ŷ(u, v) satisfy ŷ(u, v) = y∗(u, v) for all
(u, v) ∈ Eθ such that

∣∣η(u, v)− 1
2

∣∣ > 8ε.

Proof of Lemma 3. We apply Lemma 2 with θ = 2Q
α ≥ 2 × max

{
Q, 4 log 2|V |+1

δ

}
to

the 2|V |+ 1 subsets of E consisting of EL and, for all u ∈ V , of Ein(u) and Eout(u).
We have that, with probability at least 1− δ, at least Q edges of EL are sampled, at
least Q edges of Ein(v) are sampled for each v such that Nin(v) ≥ θ, and at least Q
edges of Eout(u) are sampled for each u such thatNout(u) ≥ θ. For all (u, v) ∈ Eθ let

pv =
1

din(v)

∑
u∈Nin(v)

pu and qu =
1

dout(u)

∑
v∈Nout(u)

qv

and set for brevity δ̂in(v) = 1− ûn(v) and δ̂out(u) = 1− t̂r(u). We now prove that
δ̂in(v) and δ̂out(u) are concentrated around their expectations for all (u, v) ∈ Eθ.
Consider δ̂out(u) (the same argument works for δ̂in(v)). Let V1, . . . , VQ be the first Q
draws in E0 ∩Nout(u) and define

µ̂p(u) =
1

Q

Q∑
t=1

pu + qVt
2

.

Applying Lemma 1 to the set
{pu+qv

2 : v ∈ Nout(u)
}

, and using our choice of Q, we
get that

∣∣µ̂p(u)− µp(u)
∣∣ ≤ ε holds with probability at least 1− δ/(2|V |), where

µp(u) =
1

dout(u)

∑
v∈Nout(u)

pu + qv
2

=
pu + qu

2
.

Now consider the random variables Zt = I {yu,vt = 1}, for t = 1, . . . , Q. Con-
ditioned on V1, . . . , VQ, these are independent Bernoulli random variables with
E[Zt | Vt] =

pu+qVt
2 . Hence, applying a standard Hoeffding bound for independent

variables and using our choice of Q, we get that∣∣∣∣∣ 1

Q

Q∑
t=1

Zt − µ̂p(u)

∣∣∣∣∣ ≤ ε
with probability at least 1− δ/(2|V |) for every realization of V1, . . . , VQ.

Since δ̂out(u) = (Z1 + · · · + ZQ)/Q, we get that
∣∣δ̂out(u) − µp(u)

∣∣ ≤ 2ε with
probability at least 1− 2δ/(2|V |). Applying the same argument to δ̂in(v), and the
union bound23 on the set

{
δ̂in(v), δ̂out(u) : (u, v) ∈ Eθ

}
, we get that∣∣∣∣δ̂out(u) + δ̂in(v)− pv + qu

2
− pu + qv

2

∣∣∣∣ ≤ 4ε (2.10)

simultaneously holds for all (u, v) ∈ Eθ with probability at least 1− 4δ. Now notice
that pv is a sample mean of Q i.i.d. [0, 1]-valued random variables drawn from the
prior marginal

∫ 1
0 µ
(
·, q
)
dq with expectation µp. Similarly, qu is a sample mean of Q

23The sample spaces for the ingoing and outgoing edges of the vertices occurring as endpoints in
Eθ overlap. Hence, in order to prove a uniform concentration result, we need to apply the union
bound over the random variables defined over these sample spaces.

38

2.9. Additional material

i.i.d. [0, 1]-valued random variables independently drawn from the prior marginal∫ 1
0 µ
(
p, ·
)
dp with expectation µq. By applying Hoeffding bound for independent

variables, together with the union bound to the set of pairs of random variables
whose sample means are pv and qu for each (u, v) ∈ Eθ (there are at most 2|V | of
them) we obtain that ∣∣pv − µp∣∣ ≤ ε and

∣∣qu − µq∣∣ ≤ ε
hold simultaneously for all (u, v) ∈ Eθ with probability at least 1− 2δ. Combining
with (2.10) we obtain that∣∣∣∣δ̂out(u) + δ̂in(v)− µp + µq

2
− pu + qv

2

∣∣∣∣ ≤ 5ε (2.11)

simultaneously holds for each (u, v) ∈ Eθ with probability at least 1− 6δ. Next, let
E′L be the set of the first Q edges drawn in EL ∩ E0. Then

E
[
τ̂
]

=
1

Q

∑
(u,v)∈E′L

Pr
(
yu,v = 1

)
=

1

Q

∑
(u,v)∈E′L

pu + qv
2

,

where the expectation is w.r.t. the independent draws of the labels yu,v for (u, v) ∈
E′L. Hence, by applying again Hoeffding bound (this time without the union
bound) to the Q = 1

2ε2
log 4|V |

δ independent Bernoulli random variables I {yu,v = 1},
(u, v) ∈ E′L, the event

∣∣τ̂ − E
[
τ̂
]∣∣ ≤ ε holds with probability at least 1 − δ. Now,

introduce the function

F (p, q) = E
[
τ̂
]

=
1

Q

∑
(u,v)∈E′L

pu + qv
2

.

For any realization q0 of q, the function F1(p) = F (p, q0) is a sample mean of
Q = 1

2ε2
log 4|V |

δ i.i.d. [0, 1]-valued random variables {pu : (u, v) ∈ E′L} (recall that
if u ∈ V is the origin of an edge (u, v) ∈ E′L, then it is not the origin of any other
edge (u, v′) ∈ E′L). Using again the standard Hoeffding bound, we obtain that∣∣F (p, q)− Ep

[
F (p, q)

]∣∣ ≤ ε
holds with probability at least 1− δ for each q ∈ [0, 1]|V |. With a similar argument,
we obtain that ∣∣Ep

[
F (p, q)

]
− Ep,q

[
F (p, q)

]∣∣ ≤ ε
also holds with probability at least 1− δ. Since

Ep,q

[
F (p, q)

]
=
µp + µq

2

we obtain that ∣∣∣τ̂ − µp + µq
2

∣∣∣ ≤ 3ε (2.12)

with probability at least 1− 3δ. Combining (2.11) with (2.12) we obtain∣∣∣∣δ̂out(u) + δ̂in(v)− τ̂ − pu + qv
2

∣∣∣∣ ≤ 8ε

simultaneously holds for each (u, v) ∈ Eθ with probability at least 1− 9δ. Putting
together concludes the proof.

39

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

2.9.1.2 Derivation of the maximum likelihood equations

Recall that the training set E0 =
{(
uk, vk), yuk,vk

)
: k = 1, . . . ,m

}
is drawn uni-

formly at random from E without replacement. We can write

Pr
(
E0

∣∣∣ {pu, qu}|V |u=1

)
=

1(|E|
m

)
m!

m∏
k=1

(
puk + qvk

2

)I{yuk,vk=+1}

×
m∏
k=1

(
1− puk + qvk

2

)I{yuk,vk=−1}

=
1(|E|

m

)
m!

|V |∏
`=1

(
m∏
k=1

(
p` + qvk

2

)I{uk=`, y`,vk=+1}
×

m∏
k=1

(
1− p` + qvk

2

)I{uk=`, y`,vk=−1})

so that log Pr
(
E0

∣∣∣ {pu, qu}|V |u=1

)
is proportional to

|V |∑
`=1

(m∑
k=1

I {uk = `, y`,vk = +1} log

(
p` + qvk

2

)
+

m∑
k=1

I {uk = `, y`,vk = +1} log

(
1− p` + qvk

2

))
and

∂ log Pr
(
E0

∣∣∣ {pu, qu}|V |u=1

)
∂p`

=
m∑
k=1

I {uk = `, y`,vk = +1}
p` + qvk

−
m∑
k=1

I {uk = `, y`,vk = −1}
2− p` − qvk

.

By a similar argument,

Pr
(
E0

∣∣∣ {pu, qu}|V |u=1

)
=

1(|E|
m

)
m!

|V |∏
`=1

(
m∏
k=1

(
puk + q`

2

)I{vk=`, yuk,`=+1}
×

m∏
k=1

(
1− puk + q`

2

)I{vk=`, yuk,`=−1})

so that

∂ log Pr
(
E0

∣∣∣ {pu, qu}|V |u=1

)
∂q`

=

m∑
k=1

I {vk = `, yuk,` = +1}
puk + q`

−
m∑
k=1

I {vk = `, yuk,` = −1}
2− puk − q`

.

2.9.1.3 Label propagation on G′′

Here we provide more details on the choice of weight for the edges of G′′, as well as
an explanation on why we temporarily use symmetrized variables lying in [−1, 1]
(which we will denote with primes, so that for instance p′u = 2pu − 1). Since only
the ratio between the negative and positive weights matters, we fix the negative
weight of the edges in E′′ \ E′ to be −1 and we denote by ε the weight of edges in
E′. With these notations, Label Propagation on G′′ seeks the harmonic minimizer of
the following expression

40

2.9. Additional material

1

16

∑
u,v∈E

[
ε
(
yu,v − p′u

)2
+ ε
(
yu,v − q′v

)2
+ (p′u + q′v)

2
]

which can be successively rewritten as

1

16

∑
u,v∈E

[
ε (yu,v + 1− 2pu)2 + ε (yu,v + 1− 2qv)

2 + (2pu + 2qv − 2)2
]

=
1

8

∑
u,v∈E

[
2ε

(
yu,v + 1

2
− pu

)2

+ 2ε

(
yu,v + 1

2
− qv

)2

+ 8

(
pu + qv − 1

2

)2
]

=
1

8

∑
u,v∈E

[
2ε

((
yu,v + 1

2

)2

− pu(1 + yu,v) + p2
u

)
+ 2ε

((
yu,v + 1

2

)2

− qv(1 + yu,v) + q2
v

)
+

8

((
pu + qv

2

)2

− pu + qv
2

+
1

4

)]

=
1

8

∑
u,v∈E

4

(
ε

(
yu,v + 1

2

)2

− 2ε

(
yu,v + 1

2

)(
pu + qv

2

)
+ 2

(
pu + qv

2

)2
)

+
∑
u,v∈E

[(
2εp2

u − 4pu + 1
)

+
(
2εq2

v − 4qv + 1
)]

By setting ε = 2, we can factor this expression into

∑
u,v∈E

(
yu,v + 1

2
− pu + qv

2

)2

+
1

2

∑
u,v∈E

((
pu −

1

2

)2

+

(
qv −

1

2

)2
)
.

2.9.2 Proof from Section 2.6

Proof sketch that, in the context of Theorem 3, as K
|E| → 0 then EMA(Y) = K . Let E be

the following event: There is at least one unrevealed negative label. The random-
ized iterative strategy used to force a number of mistakes arbitrarily close to K
is identical to the one described in the proof of Theorem 3 on page 35, except for
the stopping criterion. Namely, the adversary draws a labeling Y uniformly at
random from YK , the set of all labelings Y such that the total number of negative
and positive edges are K and |E| −K. Then the adversary repeats the following
two steps: (i) A label value ` ∈ {−1,+1} is selected uniformly at random. (ii) An
edge (u, v) is sampled uniformly at random from the set of all edges that were not
previously revealed and whose labels are equal to `. This is done until E is true.

Let mr,c be defined as follows: For c = 1 it is equal to the expected number
of mistakes forced in round r when K = 1. For c > 1 it is equal to the difference
between the expected number of mistakes forced in round r when K = c and
K = c− 1. One can see that mr,c is null when r < c. When K = 1, the probability
that E is true in round r is clearly equal to 1

2r−1 . Hence, the expected number of
mistakes made by A when K = 1 in any round r is equal to 1

2
1

2r−1 = 1
2r . We can

therefore conclude that mr,1 = 1
2r for all r.

A simple calculation shows that if r = c then mr,c = 1
2r . Furthermore, when

r > 1 and c > 1, we have the following recurrence:

mr,c =
mr−1,c +mr−1,c−1

2
.

In order to calculate mr,c for all r and c, we will rest on the ancillary quantity sj(i),
defined recursively for any positive integer variables i and j by s0(i) = 1 and

sj(i) =

i∑
k=1

sj−1(k) .

41

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

(see Table 2.9) for examples)

aaa
j

i
0 1 2 3

1 1 1 1 1

2 1 2 3 4

3 1 3 6 10

4 1 4 10 20

5 1 5 15 35

6 1 6 21 56

7 1 7 28 84

Table 2.9 – Values of sj(i) for i ≤ 7 and j ≤ 3.

It is not difficult to verify that

mr,c =
sc−1(r − c+ 1)

2r
.

Since sj(i) =
〈i〉j
j! , where 〈i〉j is the rising factorial i(i+ 1)(i+ 2) . . . (i+ j − 1), we

have

mr,c =
〈r − c+ 1〉c−1

(c− 1)!2r
.

(see Table 2.10) for examples)

aa
c
r

1 2 3 4

1 1/21 0 0 0

2 1/22 1/22 0 0

3 1/23 2/23 1/23 0

4 1/24 3/24 3/24 1/24

5 1/25 4/25 6/25 4/25

6 1/26 5/26 10/26 10/26

7 1/27 6/27 15/27 20/27

Table 2.10 – Values of mr,c for r ≤ 7, c ≤ 4 and |E| → ∞.

When K
|E| → 0, given any integer K ′ > 1, the difference between the expected

number of mistakes forced when K = K ′ and K = K ′ − 1 is equal to
∞∑

r=K′

mr,K′ =
1

(K ′ − 1)!

∞∑
r=K′

〈r −K ′ + 1〉K′−1

2r

=
1

(K ′ − 1)!2K′−1

∞∑
r′=1

〈r′〉K′−1

2r′
,

42

2.9. Additional material

where we set r′ = r −K ′ + 1. Setting i′ = i− 1 and recalling that

〈i〉j = j!

(
i+ j − 1

i− 1

)
,

we have
1

j!

∞∑
i=1

〈i〉j
2i

=
∞∑
i=1

(
i+j−1
i−1

)
2i

=
∞∑
i′=0

(
i′+j
i′

)
2i′+1

.

Now, using the identity(
i′ + j + 1

i′

)
=

(
i′ + j

i′

)
+

(
i′ + j

i′ − 1

)
,

we can easily prove by induction on j that

∞∑
i′=0

(
i′+j
i′

)
2i′+1

= 2j .

Hence, we have
∞∑

r=K′

mr,K′ = 1.

Moreover, as shown earlier, mr,1 = 1
2r for all r. Hence we can conclude that when

K
|E| → 0

EMA(Y) ≥
∞∑
r=1

1

2r
+

K∑
K′=2

∞∑
r=K′

mr,K′ = K

for any edge-labeled graph G(Y) and any constant K, as claimed.

2.9.3 Further Experimental Results

This section contains more evidence related to the experiments in Section 2.5. In
particular, we experimentally demonstrate the alignment between BLC(tr, un) and
LOGREG.

After training on the two features 1− t̂r(u) and 1− ûn(v), LOGREG has learned
three weights w0, w1 and w2, which allow to predict yu,v according to

sign
((
w1(1− t̂r(u)

)
+ w2

(
1− ûn(v)

)
+ w0

)
.

This can be rewritten as

sign
((

1− t̂r(u)
)

+ w′2
(
1− ûn(v)

)
− 1

2 − τ ′
)
,

with w′2 = w2
w1

and τ ′ = −
(

1
2 + w0

w1

)
.

As shown in Table 2.11, and in accordance with the predictor built out of
Equation (2.3), w′2 is almost 1 on all datasets, while τ ′ tends to be always close the
fraction of positive edges in the dataset.

Table 2.11 – Normalized logistic regression coefficients averaged over 12 runs (with
one standard deviation)

|E0|
|E| w2 τ

CITATIONS

5% 0.929± 0.05 0.637± 0.04
10% 0.980± 0.02 0.700± 0.02
15% 0.993± 0.04 0.728± 0.03
20% 1.016± 0.02 0.747± 0.02

43

Chapter 2. On the Troll-Trust Model for edge sign prediction in Social Networks

25% 1.013± 0.03 0.750± 0.02
50% 1.037± 0.01 0.776± 0.01
90% 1.044± 0.01 0.788± 0.01

ADVOGATO

5% 1.109± 0.06 0.724± 0.04
10% 1.059± 0.04 0.718± 0.02
15% 1.067± 0.02 0.740± 0.01
20% 1.043± 0.01 0.735± 0.01
25% 1.047± 0.02 0.745± 0.02
50% 1.020± 0.01 0.736± 0.01
90% 1.006± 0.01 0.735± 0.01

WIKIPEDIA

5% 0.914± 0.03 0.693± 0.02
10% 0.942± 0.03 0.730± 0.02
15% 0.951± 0.02 0.748± 0.01
20% 0.956± 0.01 0.755± 0.01
25% 0.971± 0.01 0.771± 0.01
50% 0.976± 0.01 0.779± 0.01
90% 0.984± 0.01 0.787± 0.00

SLASHDOT

5% 1.019± 0.02 0.686± 0.01
10% 1.019± 0.01 0.707± 0.01
15% 1.005± 0.01 0.706± 0.01
20% 1.000± 0.01 0.710± 0.00
25% 0.998± 0.01 0.713± 0.00
50% 0.984± 0.00 0.716± 0.00
90% 0.975± 0.00 0.717± 0.00

EPINION

5% 1.099± 0.02 0.790± 0.02
10% 1.058± 0.01 0.779± 0.00
15% 1.030± 0.01 0.769± 0.01
20% 1.016± 0.01 0.765± 0.01
25% 1.007± 0.01 0.762± 0.00
50% 0.981± 0.00 0.752± 0.00
90% 0.963± 0.00 0.745± 0.00

WIK. EDITS

5% 1.047± 0.02 0.852± 0.01
10% 1.038± 0.01 0.872± 0.01
15% 1.030± 0.01 0.879± 0.01
20% 1.012± 0.01 0.873± 0.01
25% 1.009± 0.01 0.877± 0.01
50% 0.980± 0.00 0.868± 0.00
90% 0.947± 0.00 0.851± 0.00

44

Chapter 3

Edge sign prediction in general
graphs and Correlation Clustering

In the previous chapter, we presented a learning bias for the EDGE SIGN PRE-
DICTION problem, namely our sign generative model. By leveraging its rigorous
theoretical guarantees, we have demonstrated empirically its good performance
on real Directed Signed Social Networks. However, in this chapter, we consider
other kinds of signed networks and show they require another bias and different,
more combinatorial algorithms. More precisely, we start by pointing in Section 3.1
that our previous bias may not apply to directed graphs from domains other than
social science, or to undirected graphs. Motivated by balance theories, we then
introduce a new bias, assuming that ideally, nodes are grouped in K clusters such
that all edges within clusters are positive and all edges between cluster are negative.
Recovering such clusters from a given signed graph has been studied extensively
in the last decades under the CORRELATION CLUSTERING name. In Section 3.2,
we show how this difficult combinatorial clustering problem is connected to our
learning bias. We survey a wide range of methods to solve it exactly, approximately
or heuristically, paying special attention to settings where such recovery is easier,
such as noisy or stable instances. Finally, focusing on the important and convenient
special caseK = 2, we develop in Section 3.3 an algorithm that, given an undirected
general graph, produce a spanning tree designed to support fast and accurate edge
sign prediction.

3.1 A bias for general graphs

Let us recall first the sign model we used for Directed Signed Social Networks.
Each node u is endowed with two parameters pu and qu drawn from an arbitrary
joint distribution µ over [0, 1] × [0, 1]. pu can be interpreted as the tendency of u
to send positive edges to other nodes (i.e. the “niceness” of u), while qu can be
interpreted as the tendency of u to receive positive edges from other nodes (i.e. the
“popularity” of u). The sign of an edge u → v is then chosen to be positive with
probability pu+qv

2 . This suggests that nodes in the graph have a form of agency, and
further imposes that edges are directed. We show experimentally that failing to
meet these two assumptions harms the performance of our previous methods. This
is not surprising, for our bias is no more justified in that case. Therefore, we suggest
a different bias, drawing heavily on social balance theories, although we shall see
later this holds for many nonsocial graphs as well.

3.1.1 Sign generative model and behavior

We can interpret the description of our sign model as if, when establishing a new
link, nodes were deciding the sign of this link based on their individual preferences.
While this makes sense in social networks where nodes represent human beings,

45

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

Table 3.1 – Biological dataset properties. The columns have the same meaning as in
Table 2.2 on page 26

Dataset |V | |E| |E|
|V |

|E+|
|E|

Ψ2
G′′ (Y)

|E|
ΨG(Y)
|E|

reciprocal
edges

reciprocal
disagreement

HIPPOCAMPAL 501 1 046 2.1 69.5% .056 .124 0.2% 0.0%
CANCER 1 240 3 065 2.5 78.4% .047 .108 5.5% 27.1%
REGULONDB 1 700 2 570 1.5 50.3% .060 .148 0.0% 0.0%

one can imagine contexts where this model is not applicable. Another model, e.g.
for proteins, could be that proteins belongs to functional groups and that two
proteins interact positively if they belong to the same group, negatively otherwise.
We presented a way to circumvent this notion of node behavior with our online
algorithm, where this time, signs are generated by an arbitrary adversary. However,
even in that case, our bias remains that the labeling is regular. Recall this means
informally that all the outgoing signs from a given node tend to be the same, and
likewise for the incoming signs. Indeed, irregularities are the cost payed by the
adversary to make our algorithm mispredict. In other words, regularity hints at
a consistent sign behavior from nodes, that we cannot assume carry out outside
of social networks. Pursuing the proteins example, we can imagine that proteins
interact half of the time with proteins of their own group, and half of time with
proteins from other groups. This would correspond to maximum irregularity, yet
it is a plausible situation. We now show experimentally, that in fact, biological
networks do not lend themselves to our sign model bias.

Namely, we consider gene regulatory networks. The nodes of such directed graphs
are various chemicals (such as genes, proteins or messenger RNAs) and a directed
edge u → v indicates that one node u influences the concentration of another
node v through a chemical reaction. This influence can be positive (that is, an
increase of u concentration results in an increase of v concentration) or negative
(that is, an increase of u concentration results in a decrease of v concentration). In
this context, we could now interpret the “niceness” of u as it ability to accelerate
chemical reactions, and its “popularity” as its propensity to take part in reactions
accelerated by other nodes. Intuitively, this is quite far-fetched. To demonstrate
this, we borrow the following three gene regulatory networks from [KvK09, Table
1], and display their statistics in Table 3.1:

1. The signaling pathways of the HIPPOCAMPAL CA1 neuron [Maa+05].

2. The interactions between genes and their products that are involved in CAN-
CER development in humans and mouses [Cui+07].

3. The REGULONDB database [Gam+16], summarizing the connection between
transcription factors and their targets in the Escherichia coli K-12 bacteria. We
download four files1 containing experimental evidence and keep only the
positive and negative edges with Strong support.

Compared with the Directed Signed Social Networks of the previous chapter,
those biological networks are smaller, have lower average degree and little to no
reciprocal edges. Trying to solve the EDGE SIGN PREDICTION problem using the
same procedure as in Section 2.5, we read in Table 3.2 that our methods have lower
absolute MCC performance (for instance, L. PROP. with a 15% training size achieves
20, 24 and 45 compared with values between 36 and 61 on Directed Signed Social
Networks). To further illustrate the mismatch between the troll bias and biological
networks, notice that the standard deviation figures are several times larger than
those reported in Table 2.4.

1http://regulondb.ccg.unam.mx/menu/download/datasets/index.jsp

46

http://regulondb.ccg.unam.mx/menu/download/datasets/index.jsp

3.1. A bias for general graphs

Table 3.2 – This table is the same as in Table 2.4 on page 31, but this time on three smaller,
directed biological networks.

|E0|
|E| L. PROP. BLC(tr, un) LOGREG UNREG. LOWRANK MAXNORM 16 TRIADS RANKNODES BAYESIAN

H
IP

P
O

C
A

M
PA

L

5% 14.1± 5.7 11 .5 ± 6.3 9.6± 6.7 8.5± 4.7 10.9± 6.3 2.3± 3.4 3.7± 4.0 11.4± 7.4 5.4± 5.2
9% 18 .1 ± 6.1 16.9± 6.0 15.4± 4.2 12.2± 4.2 15.3± 4.9 1.8± 4.6 7.0± 3.3 21.2± 4.8 15.0± 5.7

15% 20 .3 ± 5.5 18.6± 4.9 17.6± 4.4 14.3± 4.2 18.0± 4.5 2.7± 2.6 12.1± 4.9 24.4± 3.7 19.5± 4.5
20% 22.0± 4.3 21.1± 4.0 19.0± 3.1 17.7± 4.0 17.2± 2.4 3.0± 3.4 15.9± 3.6 26.7± 3.5 23 .2 ± 3.5
25% 24.4± 3.8 23.2± 3.2 21.5± 3.6 19.2± 2.6 21.5± 3.5 3.2± 3.4 18.5± 3.6 28.6± 4.7 24 .7 ± 3.7
50% 30.5± 4.5 32 .1 ± 4.4 32.0± 4.8 28.1± 4.2 31.9± 4.0 16.0± 3.9 31.5± 4.1 36.4± 3.9 31.2± 4.1
90% 34.4± 5.8 35.7± 7.1 35.5± 7.4 31.3± 7.8 40.8± 12.7 39 .9 ± 11.4 36.3± 9.0 35.9± 6.6 37.2± 9.3

C
A

N
C

E
R

5% 15.6± 4.0 12.9± 4.1 10.6± 3.9 9.1± 2.9 13.0± 2.4 0.7± 1.9 5.7± 4.6 14.2± 5.1 14 .7 ± 3.3
10% 21 .7 ± 2.6 18.0± 3.2 15.9± 3.1 12.1± 2.6 16.9± 2.7 1.0± 2.2 10.3± 4.3 21.7± 2.9 15.6± 3.4
15% 24 .6 ± 2.3 21.3± 3.5 20.1± 2.2 15.5± 2.0 19.6± 2.7 0.5± 2.0 14.8± 2.6 24.8± 3.2 20.3± 3.0
20% 26 .5 ± 2.0 24.0± 2.3 24.2± 2.2 19.7± 2.4 22.7± 3.4 3.5± 2.5 18.8± 3.2 27.4± 2.7 22.4± 2.5
25% 29 .3 ± 2.1 25.9± 1.6 26.3± 2.1 21.4± 1.2 24.8± 2.9 7.2± 2.6 21.2± 3.0 29.6± 2.0 24.8± 3.0
50% 34.6± 1.7 34.7± 1.9 34 .8 ± 1.7 32.0± 2.9 31.3± 3.2 22.4± 2.6 31.7± 1.8 35.3± 3.3 33.7± 2.0
90% 39.8± 4.4 42.4± 4.5 42.8± 4.7 39.3± 5.3 34.4± 5.3 34.3± 4.3 40.6± 6.5 43.9± 3.9 42 .8 ± 4.9

R
E

G
U

L
O

N
D

B

5% 26.5± 8.9 31.5± 4.7 20.4± 13.6 29.0± 2.9 32.6± 4.1 −0.5± 2.2 7.7± 7.6 31 .7 ± 7.3 5.0± 7.7
10% 39.3± 4.9 43.6± 2.9 38.5± 5.2 37.2± 2.3 40.1± 2.3 −2.3± 2.2 19.6± 7.2 43 .3 ± 3.7 8.2± 5.6
15% 44.9± 2.1 45 .6 ± 2.4 40.9± 6.0 40.2± 2.1 44.9± 2.9 0.5± 2.3 29.9± 4.9 49.2± 3.0 17.4± 9.6
20% 46 .8 ± 2.5 46.1± 2.3 42.0± 3.3 42.0± 2.2 46.1± 2.9 3.0± 2.7 35.3± 5.1 51.4± 3.5 20.3± 11.5
25% 49 .1 ± 2.4 48.4± 3.1 44.4± 2.6 43.8± 2.7 48.2± 2.0 5.6± 2.1 38.6± 5.6 54.5± 2.1 32.7± 8.5
50% 52.4± 2.8 48.7± 2.3 44.6± 3.2 47.4± 2.8 55 .8 ± 1.8 26.0± 2.6 50.3± 4.6 59.7± 1.7 40.0± 6.7
90% 56.4± 6.2 50.4± 5.6 47.9± 6.1 47.2± 5.6 65.8± 5.5 47.2± 6.4 59.7± 6.1 64 .0 ± 4.7 49.5± 6.5

3.1.2 Directed edges requirement

Having two parameters per node, one for outgoing edges and another one for
incoming edges, clearly targets directed graphs. Many online interactions are
inherently directed, for instance friendship, trust or communication. On the other
hand, predicting edge signs in undirected graphs is an equally relevant objective. A
prime example of such a situation is when we are given n objects, some pairwise
similarities them, and the similarity function itself, which unfortunately takes an
exorbitant time to be evaluated. There is an underlying graph and being able to
predict the sign of its undirected edges would save us expensive evaluations of the
symmetric similarity function.

A trivial way to turn an undirected graph G into a directed graph G′ is to let
V ′ = V and, for every edge (u, v) in E, to add both u→ v and v → u to E′ with the
same sign as (u, v). In terms of our generative model, this corresponds to putting all
the probability mass of µ on the p = q diagonal. This is clearly not a very satisfactory
solution, for it removes one degree of freedom from the model. To illustrate this
point, we conduct the following experiment. We use our previous Directed Signed
Social Networks datasets and remove the edge direction. As mentioned earlier, for
a few pair of nodes, there are reciprocal edges of different signs, in which case we
pick a sign arbitrarily. Given those undirected graphs, we orient them using the
approach described above and compare our method with the LOWRANK approach
ran directly on the undirected graphs. This is a fair comparison, for LOWRANK is
designed to works solely on undirected graphs.

As we can see in Table 3.3, our methods perform worse than when running
on the original directed graphs. Looking at L. PROP. on a 15% training set as an
example, we observe that the MCC decreases by one (WIK. EDITS) to almost ten
(EPINION) points. On the other hand, the LOWRANK seems to perform better. Recall
however that because it is an undirected method in the first place and because we
roughly double the number of signed edges, a 15% training size means the algorithm
gets to observe more signs and therefore perform better. This small experiment
thereby shows that although the performance remains decent, not having direction
information hurts our bias.

47

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

Table 3.3 – MCC results on the six datasets from Chapter 2, after removing the directions
as described in the main text. These results are presented like in Table 2.4, except we have
transposes the rows and the columns, and we show only three relevant methods.

|E0|
|E| 5% 10% 15% 20% 25% 50% 90%

CITATIONS

L. PROP. 22.2± 0.7 28.6± 0.5 32.0± 0.5 34 .4 ± 0.3 36 .9 ± 0.5 41.7± 0.4 44.9± 0.9
BLC(tr, un) 18 .1 ± 0.7 25.3± 0.8 29.7± 0.4 32.6± 0.4 35.8± 0.4 42 .2 ± 0.4 45 .0 ± 1.0
LOWRANK 17.3± 0.5 25 .3 ± 0.3 31 .4 ± 0.5 36.3± 0.8 41.2± 1.2 55.4± 0.8 60.6± 3.9

ADVOGATO

L. PROP. 36.5± 0.4 41.4± 0.5 43.9± 0.4 45.7± 0.5 47.0± 0.5 50.4± 0.4 52.7± 0.7
BLC(tr, un) 32 .8 ± 0.5 38 .9 ± 0.7 41 .8 ± 0.8 44 .3 ± 0.8 46 .3 ± 0.7 49 .8 ± 0.5 52 .6 ± 0.8
LOWRANK 28.8± 0.6 32.2± 0.4 33.9± 0.6 35.0± 0.5 36.3± 0.7 41.1± 1.0 46.2± 3.4

WIKIPEDIA

L. PROP. 36.3± 0.3 42.6± 0.4 45.8± 0.2 47.8± 0.4 49.2± 0.2 52.5± 0.3 54 .1 ± 0.5
BLC(tr, un) 35 .0 ± 0.6 41 .4 ± 0.4 44 .9 ± 0.3 46 .9 ± 0.5 48 .2 ± 0.4 51.3± 0.4 52.7± 0.6
LOWRANK 30.6± 0.7 37.2± 0.4 40.7± 0.5 43.4± 0.6 45.8± 0.6 51 .8 ± 0.7 54.6± 4.0

SLASHDOT

L. PROP. 39.4± 0.1 44.9± 0.2 47.8± 0.1 49.7± 0.1 51.0± 0.1 54 .4 ± 0.1 56 .4 ± 0.2
BLC(tr, un) 35.5± 0.3 40.7± 0.1 43.8± 0.2 46.0± 0.2 47.3± 0.2 51.5± 0.1 54.0± 0.4
LOWRANK 39 .0 ± 0.3 41 .8 ± 0.3 44 .8 ± 0.5 48 .0 ± 0.6 50 .5 ± 0.4 57.2± 0.3 59.1± 0.6

EPINION

L. PROP. 45.1± 0.4 50 .0 ± 0.4 52 .6 ± 0.3 54 .4 ± 0.2 55 .8 ± 0.3 59 .3 ± 0.1 62 .0 ± 0.2
BLC(tr, un) 40.7± 0.6 47.2± 0.5 50.2± 0.6 53.1± 0.2 54.6± 0.2 58.6± 0.1 60.9± 0.2
LOWRANK 44 .1 ± 0.1 50.8± 0.7 55.9± 0.5 59.3± 0.4 61.7± 0.2 66.8± 0.2 68.4± 0.8

WIK. EDITS

L. PROP. 34.4± 0.3 37.1± 0.4 37.9± 0.3 38.4± 0.6 38 .5 ± 0.4 38 .9 ± 0.3 39 .4 ± 0.3
BLC(tr, un) 28 .5 ± 0.3 32 .9 ± 0.2 34 .8 ± 0.1 35.5± 0.2 36.1± 0.1 37.2± 0.1 37.6± 0.3
LOWRANK 26.7± 0.4 30.9± 0.4 34.2± 0.6 36 .6 ± 0.8 38.7± 0.7 44.0± 0.4 46.3± 1.8

3.1.3 Social balance as a learning bias

From a narrow practical point of view, balance theories specify which sign assign-
ments of a triangle are possible. By forbidding triangles with a single negative edge,
weak balance gives rise to a K-consistent clusters structure on complete graphs.
After making these notions more detailed in the rest of this section, we conclude by
precisely exposing our learning bias.

We focus here on balance theory, for it is both compelling and well-established. Indeed,
as illustrated by the account of Zheng et al. [ZZW15], it has been used extensively in the
last half century to study signed networks and their dynamics (an example of this far
reaching influence is the analysis of the relation between characters in fairy tales [Aus80]).
However, it has shortcomings, the main one being its inability to deal with directed
graphs. Therefore, alternative theories governing signs formation have been proposed,
as surveyed in [YH15].

In his seminal work on interpersonal relations, Heider [Hei46] posits through
psychological and sociological arguments that in order to reduce their cognitive
dissonance, three people always interact in a way that preserve social balance.
These social balance requirements can be succinctly summarized by four state-
ments [Hei58]:

1. my friend’s friend is my friend + +
+

2. my friend’s enemy is my enemy + −
−

48

3.1. A bias for general graphs

3. my enemy’s friend is my enemy − +
−

4. my enemy’s enemy is my friend − −
+

This can be readily translated into graph properties. Given a path of length
two over three nodes, note that the first part of each statement (in blue and orange)
defines the four possible sign assignments of such a path. The last part of the
statement (in green) then prescribes which sign should close the triangle to respect
the social balance. Such triangles are called strongly balanced.

Definition 3.1.1 (strongly balanced triangle). A triangle is strongly balanced if it has
zero or two negative signs. Otherwise it is unbalanced.

We use triangles as the building block of our definition of strongly balanced
graphs.

Definition 3.1.2 (strongly balanced complete graphs). A complete signed graph is
strongly balanced if all its triangles are strongly balanced.

w

v
u

+

+

? L

y
x?

? −
−

R

Figure 3.1 – A two-
clustering of a complete
strongly balanced graph

It is interesting to note that this local property of triangles
gives raise to a global structure. Namely, a strongly balanced
complete graph can be split in two (possibly empty) clusters L
and R such that all edges within L and R are positive, while
all edges between L and R are negative. Indeed, let us pick an
arbitrary node u and let L = N+(u)\{u} andR = V \L (where
N+(u) denotes the set of all positive neighbors of u). Now let
v, w ∈ L \ {u} and x, y ∈ R. From Figure 3.1 and the fact that
every triangle is balanced, we can see that (v, w) and (x, y) are
positive edges, while (w, y) is a negative edge. We say that L
and R are 2-consistent clusters and more generally, we define

Definition 3.1.3 (K-consistent clustering). Given a graph G =
(V,E), a clustering C = {C1, . . . , CK} of V is consistent with the
signs of E if for every edge (u, v) in E:

(i) (u, v) is positive if C(u) = C(v), and
(ii) (u, v) is negative if C(u) 6= C(v).

We just saw that if a complete graph is strongly balanced,
then it admits a 2-consistent clustering (Theorem 4 proves that the converse is true).
It is natural to ask under which conditions a complete signed graph admits a K > 2
consistent clustering. This is where the notion of weak balance comes handy. It was
noted by sociologists that among triangles with odd number of negative edges, one
is more stable and common than that the other. Therefore, Davis [Dav67] relax the
strong balance into the weak balance by considering triangles with three negative
edges to be balanced, as illustrated on Figure 3.2. Formally, we can modify our two
previous definitions of balance to arrive at weak balance:

Definition 3.1.4 (Weak balance). A triangle is weakly balanced if it has zero, two or three
negative signs. Otherwise it is unbalanced.
A complete signed graph is weakly balanced if all its triangles are weakly balanced.

In that case as well, the local property of triangles has structural implication
for the whole graph. Namely, we can partition a complete weakly balanced graph
into K consistent clusters. Consider the same construction as in Figure 3.1, putting
a node u and its positive neighborhood in one cluster L and the rest of the nodes
in R. For v, w ∈ L \ {u} and x, y ∈ R, we can still conclude that (v, w) is positive
and (v, y) is negative. On the other hand, this time weak balance allows (x, y) to be
either positive or negative. We can split R further into the positive neighborhood of

49

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

+

+ +

T3 Mutual friends

+

− −

T1 Common enemy

Balanced

−

− −

T0 Mutual enemies

−

+ +

T2 Antagonist friends

Weakly Balanced

Figure 3.2 – The four possible undirected triads, as classified by the two structural
balance theories introduced in the main text

x and the rest, and keep doing so until we form the k clusters. In the following we
will make this argument more formal.

We gave the definitions of balance in the context of complete graphs in order
to build intuition about the partition consequences and because it easier to reason
on triangles. Furthermore, if we are given a set of objects and a similarity function,
we can indeed build a complete graph. However, they are situations were it is not
realistic to make the completeness assumption, especially for social networks that
are typically very sparse. We therefore extend the concept of balance to general
graphs in the following way:

Definition 3.1.5 (balanced general graphs). A general graph is strongly (respectively
weakly) balanced if there is a sign assignment of all its missing edges such that the resulting
complete signed graph is strongly (respectively weakly) balanced.

To recover the characterization of signed graphs by consistent clustering, we
need to consider longer cycles than triangles.

Definition 3.1.6 (balanced cycles). A cycle is strongly (respectively weakly) unbalanced
if it has an odd number of negative edges (respectively exactly one negative edge). Otherwise
it is strongly (respectively weakly) balanced.

Being strongly balanced is equivalent to having a 2-consistent clustering, as
proved in the landmark theorem of Harary [Har53, Theorem 3]:

Theorem 4 (Structural Theorem). A graph G = (V,E) is strongly balanced if and only
if V admits a 2-consistent clustering.

According to Hüffner et al. [HBN10], a similar theorem was proved earlier by König
[Kön36, Theorem X.11], although Zaslavsky [Zas12] notes that it was stated “without
the terminology of signs, while [Har53] has the first recognition of the crucial fact that
labelling edges by elements of a group—specifically, the sign group—can lead to a
general theory.”

A useful characterization, whose proof can be found in [EK10, page 122], is the
following:

Theorem 5. A graph G = (V,E) is strongly balanced if and only if all its cycles are
strongly balanced.

Similar results also hold for weak balance.

Theorem 6. A graphG = (V,E) is weakly balanced if and only if V admits aK-consistent
clustering.

Proof. Let first assume that G is weakly balanced. According to the definition, we
can choose sign for the missing edges such that it becomes a complete graph with
all its triangles weakly balanced. As mentioned earlier, we can then pick a node u1

50

3.2. CORRELATION CLUSTERING

and let C1 = N+(u)∪ {u}. All nodes in C1 are connected positively with each other
and negatively with nodes in V \ C1. Note also that |V \ C1| < |V | and therefore
we can repeat this procedure until V is exhausted, at which point we have obtained
our K consistent clusters.

Conversely, assume we have K consistent clusters. We can complete the graph
G by letting the edge (u, v) be positive if u and v are in the same cluster and negative
otherwise. Let us the pick three arbitrary nodes u, v, w ∈ V . There are three cases:
they are either all in the same cluster, all in different clusters or two of them are in a
first cluster and the third node is in a second cluster. In every case, one can check
they form a weakly balanced triangle and therefore G is weakly balanced.

Theorem 7 (Theorem 1 of [Dav67]). A graph G = (V,E) is weakly balanced if and only
if all its cycles are weakly balanced.

In real data though, we do not expect either strong or weak balance to hold, for
they are fairly demanding model. Indeed, three of the real networks considered in
Chapter 2 have been repeatedly shown to be unbalanced, although the extent of
this unbalance depends on the importance given to longer cycles compared with
triads [FIA11; EB14; SA17]. Easley et al. [EK10, Section 5.5] nonetheless prove that
even when only a fraction of the triangle are strongly balanced in a complete graph,
the two clusters structure is still present, although it does not cover the whole graph
any more.

Theorem 8. Let ε < 1/8 and δ = 3
√
ε. If at least 1− ε of all triangles in a signed complete

graph are strongly balanced, then either
(a) there is a set consisting of at least 1 − δ of the nodes in which at least 1 − δ of all

edges are positive, or else
(b) the nodes can be divided into two groups L and R such that

(i) at least 1− δ of the edges in L are positive,
(ii) at least 1− δ of the edges in R are positive, and

(iii) at least 1− δ of the edges between L and R are negative.

Using these results on weak balance, we can now make our new bias explicit.
Drawing parallel with the previous generative model, we assume that each node
u is endowed with an integer C(u) ∈ {1, . . . ,K} that specifies its cluster and we
let the undirected edge u, v be positive if C(u) = C(v) and negative otherwise. In
other words, this corresponds to picking an arbitrary partition of V and setting
the signs of E in such a way that the partition becomes a consistent clustering.
This can still be seen as a generative process because of the initial integer drawn
uniformly at random, but one that avoids the two pitfalls discussed before. Indeed,
there is no decision to be made by nodes, since the previous probability has been
replaced by a binary function (either both nodes are in the same cluster or not).
Furthermore, since the clustering function is symmetric, the model is inherently
suited to undirected graphs.

3.2 CORRELATION CLUSTERING

As mentioned earlier, most real signed graphs are not fully balanced and thus do
not have a perfectly consistent clustering. The problem of quantifying how much a
given graph departs from this ideal situation is called CORRELATION CLUSTERING.
After defining it formally in Section 3.2.1, we show that CORRELATION CLUSTERING

is a learning problem on its own, and discuss how it relates to the binary classifica-
tion problem of predicting edge signs, among many others applications. We then
present numerous methods to solve CORRELATION CLUSTERING in Section 3.2.2,
ranging from exact methods (that implicitly leverage our bias) to heuristics (whose
greedy and energy minimization frameworks are classic in unsupervised graph cut
problems). We also devote a large section to approximation methods, in order to get

51

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

a sense of why the problem is NP-COMPLETE and even hard to approximate. This
allows us to finish in Section 3.2.3 by describing situations related to our bias where
is possible to solve the problem efficiently and optimally. In this section, we thus
update existing surveys on the same topic [BGL14; IIK16; Wir17] and highlight the
importance of CORRELATION CLUSTERING to solve our binary learning problem.

3.2.1 Problem setting and connection to EDGE SIGN PREDICTION

Like other clustering frameworks, in CORRELATION CLUSTERING, we are given
a set of objects and we want to gather them into groups (called clusters) so that
objects belonging to one cluster are similar to each other while being dissimilar to
objects from all the other clusters.

In CORRELATION CLUSTERING, we formalize this problem by considering ob-
jects as the nodes of a graph G, whose edge weights encode similarity. Namely, in
the most general case, for nodes u and v, the edge between u and v is associated
with two positive numbers: w+

u,v denotes the strength of the similarity between u
and v, while w−u,v denotes the strength of the dissimilarity between u and v. Note,
however, that in many applications, only one of these two numbers is nonzero, in

which case we more conveniently set wu,v =

{
w+
u,v if w+

u,v > 0 and w−u,v = 0

−w−u,v if w+
u,v = 0 and w−u,v > 0

Now consider a clustering C of V , that is a function from V to N|V |>0 that assigns to
each node a cluster index. For instance, C(u) = 3 means that u belongs to the third
cluster. We will also abuse the notation and let C be a set of clusters {C1, C2, . . . , CK}
that form a partition of V .2 We can evaluate how C fits our clustering paradigm
in two ways, either by the number of agreements, that is the weighted number of
positive edges inside clusters plus the weighted number of negative edges across
clusters; or by the number of disagreements, that is the weighted number of negative
edges inside clusters plus the weighted number of positive edges across clusters.
Given a cost function c, which is usually the identity, CORRELATION CLUSTERING

can then be seen as a graph optimization problem, either of maximizing agreements
(MAXAGREE):

max
C

∑
C(u)=C(v)

c(w+
uv) +

∑
C(u)6=C(v)

c(w−uv) (3.1)

or minimizing disagreements (MINDISAGREE)3:

min
C

∑
C(u)=C(v)

c(w−uv) +
∑

C(u) 6=C(v)

c(w+
uv) (3.2)

Although an optimal clustering C? achieves the same value on both (3.1) and
(3.2), we will see in Section 3.2.2 that the latter objective is in some sense “easier”.
Another interesting feature of the CORRELATION CLUSTERING problem is that
contrary to other clustering formulations, it does not require us to set the number
of clusters K beforehand. Instead, K emerges as a natural property of the solution.
Since clustering is an unsupervised problem, this is generally handy. However,
in some situations, we may have prior knowledge on how many clusters are the
data, or external constraints. This can be handled with parametrized version of
CORRELATION CLUSTERING, namely MAXAGREE[K] and MINDISAGREE[K] where
the optimization is over clustering with exactly K clusters.

In Figure 3.3, we show a simple instance of CORRELATION CLUSTERING and
one of its optimal solution.

2That is, ∀i Ci ⊂ V ,
⋃K
i=1 Ci = V and ∀i 6= j, Ci ∩ Cj = ∅.

3Note that in the data mining literature, CORRELATION CLUSTERING may refer to another problem.
Namely, it is a special case of high-dimensional data clustering, where features are locally correlated
in various ways across different clusters that reside in arbitrarily oriented subspaces [KKZ09].

52

3.2. CORRELATION CLUSTERING

1

2

4

3

5

6

7

8

Figure 3.3 – A small graph with eight nodes and ten edges. Solid edges represent
positive edges and dashed edges represent negative edges. A clustering C is showed
with 3 clusters: {1, 2, 4}, {3, 5, 6} and {7, 8}. C incurs two disagreements: the
negative edge between nodes 1 and 2 within the blue cluster, and the positive edge
(6, 7) between the orange and green clusters. Those disagreements are created by
two cycles with one negative edge and thus cannot be avoided, meaning that C is
optimal. However, it is not the unique solution: for instance, merging the orange
and green clusters would also yield two disagreements.

Connection with EDGE SIGN PREDICTION and other applications EDGE SIGN

PREDICTION can clearly be casted as a supervised classification problem where,
given a labelled training set of m0 edges X = {(e1, y1), . . . , (em0 , ym0)}, we can
extract for every edge a feature vector in Rd, pick an hypothesis class like linear
models, find among this class the hypothesis minimizing the empirical risk, and
use it to predict the sign of edges in the testing set. In contrast, CORRELATION

CLUSTERING in an agnostic problem. More precisely, the hypothesis class is fixed,
as it consists of all possible partitions of the nodeset. We are trying to find the
partition that best approximates the observed signs, but each weakly unbalanced
cycle will cost us at least one unavoidable mistake. Despite this fundamental
difference in their nature, CORRELATION CLUSTERING is connected with EDGE

SIGN PREDICTION at two levels, theoretical and practical. On the theoretical side,
computing the minimum number of disagreements gives a measure of the EDGE

SIGN PREDICTION problem complexity. Intuitively, given a labelled subgraph H of
G (that is the training set), if there are few disagreements, the “quasi” connected
components ofH+ should give a reasonable estimation of the underlying consistent
clustering. Predicting the signs based on this clustering should results in few errors.
More formally, one can show that by finding a clustering C? of H that has less
disagreements than κ times the smallest number of disagreements ∆, the number
of errors on the testing set will be at most of order κ∆ +

√
mn log n [Ces+12b,

Theorem 6]. These theoretical considerations naturally lead to a practical batch
algorithm, which first finds a clustering minimizing as much as possible the number
of disagreements on the training set and then predicts signs according to this
clustering. Our assumption in doing so is that, according to our bias, our graph
has few disagreements. Therefore, provided we can find a clustering close to the
optimal, we will not make too many prediction mistakes.

Besides the special case of predicting edge sign, Demaine et al. [Dem+06, Section
5] point out that CORRELATION CLUSTERING is well suited to several more general
situations:

• when the items to be clustered do not belong to a natural metric space (pre-
venting approaches such as k-means) but we still know for some pairs whether
they are similar or not.

• when we do not know the number of clusters beforehand but we have a
similarity measure. In that case, we can select a problem-specific similarity

53

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

threshold and set all edges with a similarity larger than the threshold to be
positive while the others are set to negative.

• when we have a classic clustering problem (that is a set of objects, a distance
between them and an objective function to minimize) with additional pair-
wise constraints of the form must-link/cannot-link. Instead of restraining a
clustering algorithm to the space of feasible solution, we convert the distances
between objects and the constraints into signed edges and solve the resulting
CORRELATION CLUSTERING problem.

Furthermore, as mentioned in the introduction of this thesis on page 4, CORRE-
LATION CLUSTERING have been used in many domains. For instance in computer
vision, it is used to segment images in 2D [Kim+11; BG11; ZYH14] or 3D [And+12;
BHK15], to simplify 3D shapes [Gor+17] and to track targets across sequential
video frames [SCC15]. When the nodes are words, CORRELATION CLUSTERING is
employed to identify coreference [MW05; ES09] or cluster synonym words [SPU17].
It plays a large role in biology, to clusters genes [BSY99], identify mutation regions
in chromosomes [DV15] or finding stable subsystems [Das+07]. Applied to social
networks, it helps analyze political assemblies [Men+15; Jia15; LF17] and inter-
national relations [TB09; MMP12]. Finally, given large databases with duplicated
records, it naturally models entity resolution [GZ07; Has+09; ARS09; SW14].

3.2.2 State of the art

As we saw, solving CORRELATION CLUSTERING on a training set would give
us a principled way of predicting edge signs. In this section, we thus look at
existing methods for CORRELATION CLUSTERING. We start with exact methods
and fixed parameter algorithms on complete graphs, noting they implicitly assume
our learning bias. However, in practice, these methods do not scale well, especially
if their assumptions are not met. Indeed, we next present hardness results about
CORRELATION CLUSTERING, namely that it is NP-HARD to approximate with some
constant factor greater than one, and then describe some proposed approximations.
Although this appears rather negative at first, we show that heuristics can solve
large instances with satisfactory results. We conclude by further highlighting the
learning aspect of CORRELATION CLUSTERING through approaches in the active
and online settings.

3.2.2.1 Exact methods

Because of the complexity of the CORRELATION CLUSTERING, one has to rely on
approximations to solve large instances of the problem. However, we can imagine
offline signed social networks with only few nodes, in which case it is reasonable
to expect to find the optimal clustering. Furthermore, this can also be useful to
evaluate in practice the quality of heuristic methods, albeit in non asymptotic
settings. The methods used to solve CORRELATION CLUSTERING exactly depend
on the type of graph considered. More precisely, the fixed parameter algorithms
we describe now only handle complete graphs, while the next set of methods also
work on general graphs.

Complete graphs Let us first describe the cluster editing problem, where one is
given a general unsigned input graph H = (V,E) and wants to find the smallest
number of edges that have to be added or deleted to turnH into node-disjoint union
of cliques. It is possible to alternate between an instance H of cluster editing and
an instance G of CORRELATION CLUSTERING on complete graphs in polynomial
time. To see why, let G = (V, (E+, E−)) be a complete signed graph where V is the
nodeset of h, E+ is the set E of edges of H and E− is the set of all edges that are not
in H . The optimal clusters of G are the cliques of H , the negative disagreements

54

3.2. CORRELATION CLUSTERING

within clusters are edges added to H and the positive disagreements between
clusters are deleted from H . To the best of our knowledge, the problem was first
introduced under this name by Shamir et al. [SST02].4 They show the problem
is NP-COMPLETE, even if the number of clusters K ≥ 2 is set beforehand5 and
provide a 0.878-approximation in the weighted K = 2 case using the celebrated
Goemans-Williamson SDP relaxation [GW95].

If we parameterize the problem by the number d of edges that need to be added
or deleted (that is, the number of disagreements), then it can be solved in polynomial
time in the size of the input graph (but not in d). The best known approximation so
far is O(1.62d + m + n) [Böc12], which search for conflict triples (i.e. unbalanced
triangles in the sign language) and branch by either deleting or merging one positive
edge. If we additionally look for exactly K clusters (i.e. MINDISAGREE[K]), there is
a fixed parameters algorithm running in O(2O(

√
kd) + n+m) [Fom+14]. If at most

a edges can be added and at most b edges can be deleted at each node, and if the
minimum size of a cluster is at least 2(a + b), then the problem can be solved in
polynomial time [Abu17] by using various reduction rules. Finally, for planar graph,
there is a PTAS6 running in O(n2ε

−1 log(ε−1)) obtained by dividing the graph into
independent components of bounded treewidth [BGW17]. In other words, if we
are given a complete signed graph whose positive subgraph is planar, then we can
minimize the number of disagreements arbitrarily close to the optimal, provided
we have enough time to do so.

General graphs On general graphs, a natural idea is to formulate the clustering
problem as an integer problem and solve it optimally in polynomial time. Assign a
binary variable xuv to each pair of nodes (so that xuv = xvu). For a given clustering
C, let xuv = 0 if u and v are in the same cluster and xuv = 1 is u and v are in different
clusters. Noting that 1−xuv is 1 if the edge (u, v) is within a cluster and 0 otherwise,
the weighted number of disagreements is then w(C) =

∑
(u,v)∈E− wuv(1 − xuv) +∑

(u,v)∈E+ wuvxuv. By construction, if edges (u, v) and (v, w) are within the same
cluster, then (v, w) is also within that cluster. In terms of x variable, we have that
xuv = 0 ∧ xvw = 0 =⇒ xuw = 0. For x to be a valid cluster assignment, we thus
require that all variables are either 0 or 1 and respect the triangle inequality.

minimize
∑

(u,v)∈E−
wuv(1− xuv) +

∑
(u,v)∈E+

wuvxuv (3.3)

subject to xuw ≤ xuv + xvw

≤ xuv ∈ {0, 1} (3.4)
xuv = xvu

Figueiredo et al. [FM13] solve this binary integer program on random instances and
show that depending on the negative edge density, the FICO Xpress solver starts to
be unable to finish within a one-hour time limit when n ≥ 40. Aref et al. [AMW16]
describe four linear and quadratic binary integer problems to model CORRELATION

CLUSTERING with two clusters along with some preprocessing optimizations. With
the Gurobi software, they solve instances with up to 3200 edges in less than a
second. They also sketch extensions to weighted graphs and more than two clusters.
In a different direction, Berg et al. [BJ17], encode the linear and quadratic integer

4However, the same problem was studied before and we refer the reader to the comprehensive
survey of Böcker et al. [BB13] for additional details, whereas we shall only give important and more
recent pointers here.

5The reduction is from 3-exact 3 cover, see [SST02, Theorems 1, 2 and Corollary 1].
6An algorithm A is a polynomial-time approximation scheme (PTAS) for a minimization (respectively

maximization) problem P in NP if given any ε > 0 and any instance x of P of size n, A produces, in
time polynomial in n, a solution that is within a factor 1 + ε (respectively 1− ε) of being optimal with
respect to x. Note that the time is not necessarily polynomial in ε, so that a running time of O(n

1
ε)

would qualify [Aus+99, Definition 3.10].

55

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

formulations into weighted MaxSAT instances and use the state of the art solver
MaxHS7 [DB13] to get the exact solution on instances with at most 1000 nodes in
less than a few hours.

There is also a fixed parameter algorithm to solve MINDISAGREE for general
unweighted graphs. Indeed, we shall see later than the problem is equivalent to
k-MINIMUM MULTICUT, which in this case asks for the minimal number d of edges
to remove in order to separate every pair of nodes in S = {(si, ti)}ki=1 ∈ V 2. It turns
out that k-MINIMUM MULTICUT can be solved exactly in time 2O(d3) ·nO(1) [Dán14].

After defining the matrix A by Auv = w+
uv −w−uv, Veldt et al. [VWG17] show that

the MAXAGREE problem can be written up to constant factor by defining one vector
xu per node as:

maximize
∑
u<v

Auvx
T
uxv (3.5)

subject to xuw ∈ {e1, . . . , en}

where ei are the canonical vectors of Rn. They show that when the matrix A is
positive semidefinite of rank k, the CORRELATION CLUSTERING problem can be
solved exactly in O(nk

2
) time. More practically, they also give an algorithm that

closely approximate the objective of (3.5) in O(nk) time.

Reflecting on these methods, we can conclude that CORRELATION CLUSTER-
ING is solvable in (near) polynomial time when the problem instance follow our
learning bias. Indeed, fixed parameter algorithms are efficient when the number of
disagreements is low, which corresponds to a quasi consistent clustering. Likewise,
the small rank assumption of the adjacency matrix is equivalent to assuming a
consistent clustering [Chi+14, Theorem 13]. Even when solving integer programs,
one can use the bias to add inequalities and thus tighten the polytope of admissible
solutions. On the other hand, we will now see that in the worst case, for example
if an instance does not obey our bias, then there is little hope to obtain an optimal
solution.

3.2.2.2 Hardness and approximations

Although the same problem was considered earlier [DM96; BSY99], Bansal et al.
[BBC02] coin the term CORRELATION CLUSTERING and are the first to study this
problem complexity. Namely, for complete, unweighted signed graphs, they show
that both MINDISAGREE and MAXAGREE are NP-COMPLETE. Along the way, they
give a 17429-approximation of MINDISAGREE and a PTAS that, for any ε ∈ [0, 1],
runs in O(n2eO(ε−10 log ε−1)) and returns with probability 1− ε/3 a solution with at
most εn2 fewer agreements than the optimal solution of MAXAGREE.

The next year, several authors independently strengthened these results and
extended them to weighted and general graphs, as summarized in Table 3.4. In
the most complete paper, Charikar et al. [CGW03] show that on complete graphs,
in sharp contrast with MAXAGREE that admits a PTAS, MINDISAGREE is APX-
HARD, “that is, is NP-hard to approximate within some constant factor greater
than one”. Unfortunately, it is not easy to give intuition why, for this follows
from a “somewhat intricate reduction from max 2-colorable subgraph problem on
bounded degree 3-uniform hypergraphs”. On general graphs though, both versions
of the optimization problem are APX-HARD. It is showed for MAXAGREE by a
reduction from MAX 3SAT [CGW03, Theorem 9] and for MINDISAGREE by using
a reduction from the k-MINIMUM MULTICUT problem [CGW03, Theorem 8]. In
the case of MINDISAGREE, Emanuel et al. [EF03] show a reduction in the other
direction. Because k-MINIMUM MULTICUT is an interesting graph cut problem, and

7http://maxhs.org

56

http://www.maxhs.org/

3.2. CORRELATION CLUSTERING

Table 3.4 – Hardness results of CORRELATION CLUSTERING

MINDISAGREE MAXAGREE

graph weighted unweighted weighted unweighted

Complete APX-HARD [CGW03] NP-COMPLETE [BBC02], APX-
HARD [CGW03]

NP-
COMPLETE [BBC02]

General APX-HARD [CGW03;
DI03]

APX-HARD [CGW03; EF03] APX-HARD [CGW03, Thm. 9]

its complexity has been well studied, we here give more details on its equivalence
with CORRELATION CLUSTERING.

For that we follow [Dem+06] but omit the full proofs to avoid redundancy. In
k-MINIMUM MULTICUT, given a weighted graph H = (VH , EH , wH) and a collec-
tion of k sources and targets S = {(si, ti)}ki=1 ∈ V 2

H , we want to find the lightest set
of edges T ∈ EH whose removal disconnects every pair si from the corresponding
ti. Let us first describe a polynomial transformation from k-MINIMUM MULTICUT

to CORRELATION CLUSTERING. Namely, given an instance (H,S) of k-MINIMUM

MULTICUT, we let WH =
∑

e∈EH wH(e) be the total weight of H and GH be the
same graph as H with all its edges labeled positively. We then connect every pair
(si, ti) by a negative edge of weight WH + 1. One can check ([Dem+06, Theorem
4.7]) that a multicut T in H with weight W induces a clustering in GH of weighted
disagreement W by the connected components of G+ \ T . Likewise, a clustering
of GH with weight W induces a multicut on H with weight as most W . In the un-
weighted case, the reduction is similar but the heavy negative edges are simulated
in the following way: include every source and target in a clique of n nodes and
connect that clique to the corresponding source or target by n negative edges.

We next present the polynomial transformation from CORRELATION CLUSTER-
ING to k-MINIMUM MULTICUT. GivenG = (V, (E+, E−), w) we letHG be the graph
induced by E+ with the same weight. Then for every negative edge (u, v) ∈ E−
of weight w−uv, we create a new vertex vûv, connect u to vûv with weight w−uv and
let (vûv, v) be a source-target pair added to SG. This construction is depicted in
Figure 3.4 and one can show ([Dem+06, Theorem 4.4]) that it takes a linear time to
construct a multicut of weight W in HG from a clustering of weight W in G, and
vice versa.

Figure 3.4 – The transformation from CORRELATION CLUSTERING on G to k-
MINIMUM MULTICUT on H (reproduced from [Dem+06])

If a certain conjecture in computational complexity is true8, then for every
constant c > 0, it is NP-HARD to approximate k-MINIMUM MULTICUT within

8Namely, the Unique Game Conjecture of Khot [Kho02].

57

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

a factor c [Cha+06]. On general graphs, the best known approximation factor
in O(log k) [GVY93], which according to the presented reduction translates to
O(log |E−|) = O(log n2) = O(log n). This approximation ratio is achieved by first
solving the relaxation of the integer problem (3.3), where the constraint (3.4) is
replaced by xuv ∈ [0, 1]. From now on, we refer to that relaxation as the canonical
MINDISAGREE LP. Once this canonical MINDISAGREE LP is solved, we interpret
xuv as a distance: the larger it is and the more we want u and v to be in different
clusters. We can then use the REGIONGROWING method [GVY93]. The idea is to
pick a random center u and to add to u’s cluster all the nodes at distance less than
r from u before removing that cluster and repeating the process. r < 1/2 is chosen
adaptively such that the weight of positive edges leaving the cluster is less than
c log(n+ 1) times the fractional weights of the positive edges inside the cluster.

However, Charikar et al. [CGW03, Theorem 2] note that the LP formulation
has a poor integrality gap when it comes to MAXAGREE, thus they turn to a Semi
Definite Program. Say that each cluster is associated with a basis vector, then for
each node u in a cluster, we set au to be the corresponding basis vector. If u and v
are in the same cluster, we then have au · av = 1 while if they belong to different
clusters, au · av = 0. The weighted number of agreements can then be represented
by

maximize
∑

(u,v)∈E+

wuv(au · av) +
∑

(u,v)∈E−
wuv(1− au · av) (3.6)

subject to au · au = 1

au · av ≥ 0

After solving the SDP, a clustering can be obtained by a general rounding technique
Ht: pick t random hyperplanes and divide the nodes in 2t clusters. Charikar et
al. [CGW03, Theorem 3] prove that taking the best results of H2 and H3 gives in
a 0.7664 approximation on general graph. This was slightly improved to 0.7666
by Swamy [Swa04] with a different rounding: pick k random unit vectors (called
spokes) and assign each au to the closest spoke.

Combining MINDISAGREE and MAXAGREE, Charikar et al. [CW04, Section
4] give a Ω(1

logn) approximation of the MAXCORR problem, which is maximizing
(3.1) − (3.2) and can be formulated as a quadratic programming problem solved in
polynomial time.

In complete graphs, Charikar et al. [CGW03, Section 3] also give an improved
4-approximation to MINDISAGREE, by rounding the same LP and using a simpler
version of REGIONGROWING with fixed radius. Namely, we pick a ball center u
uniformly at random with radius 1/2: if the average distance of the nodes in the ball
to u is less than 1/4, the ball forms a cluster, otherwise {u} forms a singleton cluster.
We then remove the corresponding nodes from the graph and repeat until all nodes
are clustered.

Not long after, Ailon et al. [ACN05] came up with a better approximation. To
explain it, we first describe their randomized combinatorial algorithm KWIKCLUS-
TER, which gives a 3-approximation of MINDISAGREE on complete unweighted
graphs (and was later derandomized while preserving its approximation guaran-
tee [vZW08]). At each iteration, we pick a node u uniformly at random (called
the pivot) and we create a cluster containing u and all its neighbors linked by a
positive edges. On weighted complete graphs, they tweak this algorithm by using
the solution of the canonical LP to obtain different approximation factor depending
on the constraints imposed on the weight. Recall that in the general formulation of
the problem, each edge carries two positive numbers: w+

u,v and w−u,v. If the weights
respect the probability constraints stating that for all edge (u, v) inE,w+

u,v+w−u,v = 1,
this tweaking provide a 2.5-approximation. Note that unweighted graphs naturally
fit into that case, as each edge is either labeled + or −. If the weights additionally
respect the triangular inequality constraints stating that w−u,v ≤ w−u,w + w−w,v, this

58

3.2. CORRELATION CLUSTERING

Table 3.5 – Best current results on CORRELATION CLUSTERING problems. The “easi-
est” setting is MAXAGREE on complete graphs, for it admits PTASs. All others cases
are APX-HARD. However, we see that on the diagonal (that is MINDISAGREE on
complete graphs and MAXAGREE on general graphs), there exists constant factor ap-
proximations. This is not the case for the most “difficult” problem, MINDISAGREE

on general graphs.

G MINDISAGREE MAXAGREE

Complete 2.06 (and 1.5 if G is weighted and
weights obey the triangular
inequality) [Cha+15]

PTAS from Bansal et al.
[BBC02] and by setting
k = Ω(1/ε) in [GG06]

General O(log n) [CGW03] 0.7666 [Swa04]

become a 2-approximation. After solving the canonical LP with additional proba-
bility constraints, when picking a node u, each of its neighbors v is added to the
cluster of u with probability xuv. Chawla et al. [Cha+15] improve these two factors
to respectively 2.06 and 1.5 by exploiting the same idea but setting the probability
to include each neighbor v of u in the cluster of u to be 1 − f+(xuv) if (u, v) ∈ E+

and 1− f−(xuv) if (u, v) ∈ E−, with a careful choice of f+ and f−. They also give a
derandomized version of their algorithm in the full version of the paper [Cha+14,
Theorem 23].

This concludes the presentation of the known approximation results on COR-
RELATION CLUSTERING, that we gather in Table 3.5. To summarize, except for
maximizing the number of agreements on a complete graphs, we cannot hope for
exact solutions for the other problems in the worst case, since they are APX-HARD.
Moreover, even constant factor approximation are ruled out for MINDISAGREE

on general graphs, as showed by the equivalence with k-MINIMUM MULTICUT.
Currently there are three main approaches to approximate MINDISAGREE. First,
on a general graph, we can solve the canonical LP, and use the REGIONGROWING

method to round the fractional solution, resulting in an O(log n) approximation.
Second, on complete graphs, the simplest solution is the KWIKCLUSTER algorithm,
that grows clusters out of randomly selected pivots, in a way reminiscent of the
proof of Theorem 6. Third, the approximation factor of this general idea can be im-
proved by interpreting the fractional solution of the linear program as probability to
be included in the pivot’s cluster. The cost of solving linear programs with so many
variables and constraints being prohibitive, real world general graphs requires to
move from methods with guarantees to more heuristic approaches we describe next.
Before that, we make two remarks. The first one regards a line of work improving
scalability of these approximations by presenting distributed solutions. The second
one is concerned with the case where the number of clusters is set beforehand, and
proves that the problem becomes easier.

To handle the massive size of some large real world dataset, parallelizing existing al-
gorithms is a natural approach. Due to its simplicity and approximation guarantee,
KWIKCLUSTER has been adapted three times for that purpose. First, Chierichetti et al.
[CDK14] describe how to uniformly sample several pivots in the same round, remove
pivots that are adjacent through positive edges and then grow the corresponding clusters
with potential conflicts solved according to the node order in a global permutation drawn
at the beginning of the algorithm. On general graphs, this requires O(log n diam(G))
rounds, which on complete graphs reduces to O(log n). Furthermore, this almost pre-
serves the approximation factor, which is 3 + 14ε

1−7ε , where ε is a parameter smaller than 1.
Finally, this allows to experimentally cluster graphs with millions of nodes and billions
of edges. Second, Pan et al. [Pan+15] describe an equivalent version of KWIKCLUSTER
where a permutation π of the nodes is drawn at the start of the algorithm and the pivots
are chosen sequentially in the order of π. The exact same partition can be obtained when

59

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

several pivots are chosen at the same time by different threads as long as they respect
two concurrency rules: (i) two nodes u and v can become pivot at the same time if they
are not connected with a positive edge, otherwise only the one with the smallest index
in π becomes pivot; (ii) if w is a positive neighbor of two pivots u and v, it is affected to
the cluster of the pivot with the smallest index in π. Enforcing these rules preserves the
factor 3 approximation and the algorithms terminate after O(log ndiam(G)) rounds. The
authors also present a version where each round is faster as it does not enforce rule (i).
However, this weaken the approximation guarantee to (3 + ε)OPT + O(εn log2 n). In
practice, the solution is very close the one of KWIKCLUSTER, although it degrades as the
number of threads increases.

The number of rounds preserving the 3-approximation is lowered to O(log log n)
by Ahn et al. [Ahn+15]. They also present results obtained in a single pass, which
corresponds to the streaming model: the algorithm receives the edges of G one by
one and upon seeing the last one outputs its result. The additional constraint is that
this algorithm can only use O(npolylog n) space. In this setting, the authors show
a polynomial time (1 − ε)-approximation of MAXAGREE if the weights are bounded
(and 0.766(1 − ε) if the weights are arbitrary); and an O(log |E−|) approximation of
MINDISAGREE in polynomial time with arbitrary weights. This is done by combining
graph sketching and a method to solve convex programs in a space efficient manner.

Bonchi et al. [BGK13] suggest a different paradigm to solve CORRELATION CLUSTER-
ING, that can be applied in a distributed setting to obtain a scalable approach. Namely,
given a node u, they want to output a globally consistent cluster index C(u) while making
at most t queries to a sign oracle. Here t is a parameter that depends on the quality
of clustering produced but not on the size of the graph. And because this procedure
is local to each node, it can be run in parallel. Finally, one can get a full clustering by
computing C(u) for all the nodes in the graph. Despite the problem being apparently
more challenging, they obtain approximation factors that are close to the best known
(which in this model would make Ω(n2) total queries). More precisely, they use two
techniques. The first one is inspired by KWIKCLUSTER. It starts by finding a good
set of pivots, seeing the problem as finding a maximal independent set on a sampled
part of the positive graph. Then, for a given node, it finds the closest such pivot or
creates a singleton. Given a quality parameter ε ∈ (0, 1), it yields a 4 · OPT + εn2 ap-
proximation of MINDISAGREE requiring O(nε) time and queries [BGK13, Theorem 3.3].
Roughly stated, the second technique relies on an existing low-rank approximation of
the adjacency matrix, that partition the graph into similar sized classes such that edges
between those classes behave as in a random graph. This initial partition is “coarsened”
into a good clustering by considering all possible ways of assigning classes to clusters.
It gives an OPT + εn2 additive approximation for MINDISAGREE that runs in time
n · poly(1/ε) + 2poly(1/ε) [BGK13, Corollary 3.7].

As mentioned earlier, not having to set the number of clusters is an attractive feature
of the CORRELATION CLUSTERING problem, but in some cases we may want to use
prior knowledge. The problem was studied by Giotis et al. [GG06] on general graphs
and we compile their results in Table 3.6. On complete unweighted graphs and with
K being the number of clusters, they provide PTASs for MAXAGREE[K] running in
nkO(ε−3 log(Kε)) time and for MINDISAGREE[K] running in nO(ε−29K) log(n) time. The
latter was improved by Karpinski et al. [KS09], with a PTAS running in n22O(ε−3K6 log d)

and that can handle weighted graphs. For K = 2, MINDISAGREE[2] admits a faster local
search method with a factor 2 approximation [CSW08a]. For complete weighted graph,
Bonizzoni et al. [Bon+08a] provide a PTAS for MAXAGREE[K] under the condition that
the ratio between the largest and smallest weights is bounded by a constant.

Table 3.6 – Approximation results for CORRELATION CLUSTERING on general graphs
with K clusters

60

3.2. CORRELATION CLUSTERING

K 2 ≥ 3

MAXAGREE 0.878 (improved to 0.884 by [MS09]) 0.7666 [Swa04] (and it can be proved
that this creates at most 6 clusters)

MINDISAGREE O(
√

log n) as it reduces to Min 2CNF
Deletion for which Agarwal et al.
[Aga+05] give such an
approximation

this can be reduced from K-coloring,
which for any ε > 0 is NP-COMPLETE
to approximate within n1−ε [Zuc07]

3.2.2.3 Heuristics

While all the methods we discuss so far are either exact or come with some approxi-
mation guarantees, practitioners have also develop approaches that are designed to
efficiently reach a solution that is satisfactory enough for the application at hand.

Greedy methods Several of such methods fall into the greedy framework. For
instance, while studying small scale signed social networks, Doreian et al. [DM96]
describe the following procedure. Start with a random initial k clustering of the
graphs and for T steps, sample randomly P neighboring partitions, compute their
number of disagreements and move the one with the least disagreements. Neigh-
boring partitions are obtained either by moving one node from cluster to another
or by exchanging a pair of nodes between two clusters. The overall complexity is
O(nTP). This is quite similar to the Best One Element Move described in [GMT07],
except that there the exchange operation is replaced by moving one node to its own
singleton cluster. The Cluster Affinity Search Technique algorithm [BSY99] instead
grows clusters one by one by maintaining for the current cluster the affinity of all
nodes, which is the sum of the weights between that node and the nodes in the
cluster. Nodes above a certain threshold are added to the current cluster and nodes
below the threshold are removed, with the affinity to the current cluster being
recomputed after each addition or deletion.

After defining the net weight of an edge to be w±uv = w+
uv − w−uv, Elsner et al.

[ES09] describe three folklore heuristics that start with empty clusters and add node
one by one: “The BEST algorithm adds each node u to the cluster with the strongest
w± connecting to u, or to a new singleton if none of the w± are positive. The FIRST

algorithm adds each node u to the cluster containing the most recently considered
node v with w±uv > 0. The VOTE algorithm adds each node to the cluster that
minimizes the CORRELATION CLUSTERING objective, i.e. to the cluster maximizing
the total net weight or to a singleton if no total is positive.” Empirically, VOTE turns
out to be the best. Among other related heuristics, Lingas et al. [LPS14] describe the
random maximum merging algorithm, that starts with singleton clusters and keep
merging two clusters chosen at random among those whose merge would result
in the maximum improvement of the score function. This runs in O(n2 log n), and
empirically results in fewer disagreements than KWIKCLUSTER. Building upon their
previous GRASP work [Dru+13], an iterated local search (ILS) heuristic is presented
in [Lev+15; Lev+17]. Each iteration of this algorithm starts by greedily building a
clustering in a fashion similar to VOTE, albeit with more randomness in the node
ordering. This clustering is locally improved by moving blocks of r ∈ {1, 2} nodes
from one cluster to another as long as the number of disagreements decreases, a
phase called neighborhood descent. The algorithm then enters an inner loop where
the current clustering is perturbed by t random one-node-moves and updated
if a subsequent neighborhood descent can improve it compared with before the
perturbation. The authors note that both the outer loop and the neighborhood
descent can be run in parallel, which allow them to process a 10 000 nodes graph
on 10 cores in around 700 seconds. Bastos et al. [Bas+16] show how to use ILS to
generate initial solutions of the Cluster Editing problem that are then fed to an
integer program. Instead of moving nodes, Wang et al. [WL13] starts from the
observation that in a balanced graph, G+ is a disjoint union of cliques in which

61

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

all the nodes of a given cluster share the shame neighbors. Their algorithm is
initialized with the set E+

s of edges where w+
uv > w−uv, and repeatedly samples an

edge (u, v) from E+
s before trying to make the neighborhoods of u and v coincide

by adding or removing edges in E+
s . Yet another idea is to modify the canonical LP

to replace the binary variable xuv by a k clusters indicator matrix L ∈ Rk×n where
Liu is 1 is u ∈ Ci and −1 otherwise [Wan+13]. Indeed, xu· ≡ LC(u)·, where C is the
cluster assignment. By relaxing the integer constraints on L, it is possible to do
alternate optimization on L and C.

Physics inspired energy methods Here we describe a physics particle model
that can readily be adapted to model CORRELATION CLUSTERING and provide
additional heuristic methods. The Potts model [Wu82] describes a general model
of spins organized in a lattice and being in one of k possible states. A spin u
interacts with each of its neighbors v through a coupling Juv. The energy of this
system, called the Hamiltonian, is defined by H(σ) = −∑u,v Juvδ(σu, σv) where
σ is the spin configuration (that is, σu ∈ {1, . . . , k} ∀u) and δ(σu, σv) is equal to
one if u and v are in the same state and zero otherwise. It is a general principle
of physics that isolated systems tend to minimize their energy, which in this case
amounts to finding a spin configuration minimizing the Hamiltonian. Viewing the
spins as nodes of a graph, the couplings as the graph weighted edges and the k
possible states as clusters, it is quite natural to formulate the clustering problem as
a Hamiltonian minimization problem [RB06].

Letting A be the matrix such that Auv = w+
uv − w−uv on a general directed graph,

Traag et al. [TB09] reward positive and absent negative links within cluster and
penalize negative and absent positive links across clusters to come up with the
following Hamiltonian: H(σ) = −∑u,v (Auv − (γ+p+

uv − γ−p−uv)) δ(σu, σv) where
γ+ and γ− are user parameters and p±uv are null model probabilities, which are

equal to p±uv = |E±|
|V |(|V |−1) , or p±uv =

d±out(u)d±in(v)

|E±| in the degree corrected model. They
note that setting γ+ = 0 = γ− make minimizing the Hamiltonian equivalent to
the MINDISAGREE problem, which they do by simulated annealing [KGV83]. The
idea is to start from a random partition, and jump to another partition by moving a
single node from one cluster to another. Such moves are made with a probability
proportional to how each move reduces the Hamiltonian and as the procedure goes
on, large jumps are made less and less probable by reducing a parameter called
the temperature. One advantage of this energy formulation is that it requires only
one variable per node instead of one variable per edge as in the case of the linear
program.

In the case of 2-CORRELATION CLUSTERING, Facchetti et al. [FIA11] rewrite the
Hamiltonian as H(σ) = −1

2σ
TAσ = −1

21
TTσATσ1. There Tσ = diag(σ) (where

σ ∈ {0, 1}n) is the outcome of a local search algorithm such that Aσ = TσATσ has
the same number of disagreements as A but the smallest number of negative edges.
This is called a gauge transformation in the spin glass literature and the benefit of
that heuristic is that it scales gracefully to large graphs. Bagon et al. [BG11] also
write the MAXAGREE objective as a Potts model, and show that it can be interpreted
as the log posterior of a partition matrix under a simple generative model and as a
pair-wise conditional random field energy without unary terms. This allows them
to adapt existing discrete energy optimization algorithms in order to cope with
the following three challenges of the CORRELATION CLUSTERING energy: “(i) the
energy is non sub-modular, (ii) the number of clusters is not known in advance, and
(iii) there is no unary term”. Doing so, they are able to handle large problems with
more than 100K nodes. Also adopting an energy minimization approach, Kappes et
al. [Kap+16] assign a probability to each cut of a signed graph proportional to the
exponential of the number of disagreements of that cut. They also develop efficient
cut sampling methods. Several of these methods have recently been evaluated
empirically by Levinkov et al. [LKA17].

62

3.2. CORRELATION CLUSTERING

3.2.2.4 Active and online settings

Except for the local algorithms of Bonchi et al. [BGK13], all works presented so far
considered the batch case of CORRELATION CLUSTERING, where the whole graph
and all the signs are available at all time and with no cost. This might not always be
the case, for instance if the graph is too large to fit in memory or if the edge labels
are given by an expensive external procedure.

Case in point, in the context of entity resolution, Kanani et al. [KMP07] consider
the CORRELATION CLUSTERING problem where, by querying an oracle, one can
either reduce the uncertainty about one edge weight or add an extra node with
edges connecting it to existing nodes. However, this requires web queries that are
resource bounded and thus yields an active setting learning problem, where one
has to choose the most informative queries given a budget. A formal definition
is given in [KM07] and in practice, after finding an initially good partition, they
select in each cluster a node to be its centroid, and query the edges connecting the
centroid as ordered by an entropy-based criterion. In the case the oracle answering
the queries is consistent, there exists an information theoretic bound on the number
of queries needed to recover the clusters, and an algorithm matching that bound up
to a O(log n) factor [MS17]. Ailon et al. [ABE14, Section 5] present another active
algorithm that solves MINDISAGREE[k] with a linear number of queries but an
exponential running time in n. In a noisy setting, Mitzenmacher et al. [MT16] assume
there is a planted k-partition and that we have access to an oracle that for u, v ∈ V 2

returns C(u)−C(v) mod k with probability 1−p and a noisy C(u)−C(v)±1 mod k
otherwise. For k = 2, this is exactly 2-CORRELATION CLUSTERING, whereas for
k > 2, the oracle gives more information than simply the sign of the path from u to v.
Whenever p < 1/2, they show that O(n

1+ 1
log logn log n) queries are enough to recover

the planted partition in polynomial time and with high probability. Those queries
are actually random (i.e. non-adaptive), and the clusters are found by looking at
almost edge-disjoint path between all pairs of nodes.

In the online setting, Mathieu et al. [MSS10] give a greedy algorithm that upon
node arrival creates a singleton cluster and then merge all pairs of clusters for
which it increases the total number of agreements. For MINDISAGREE, this is
O(n)-competitive algorithm and they show such ratio is optimal by exhibiting an
instance9 on which any strategy ends up with n−k disagreements whereas optimal
cost is k. On the MAXAGREE side, this greedy strategy result in a 1/2-competitive
algorithm. If it is randomly mixed with a DENSE variation, it increases to 1/2 + η,
still far from the demonstrated 0.834 upper bound.

This state of the art depicts a nuanced landscape for the CORRELATION CLUS-
TERING problem. On one hand, minimizing the disagreements is difficult, although
it is the most natural way given our bias. On the other hand, it can be solved
with approximation guarantees, at least in theory. Indeed, the best methods require
solving linear programs withm variables and up toO(n3) constraints, which results
in a high complexity of O(m4.5) [MG07, Section 7.2]. Fortunately, we can obtain
reasonable solutions in practice, thanks to efficient heuristics (using the output
of KWIKCLUSTER as initialization for instance). Furthermore, instances obeying
our bias can be solved more easily and almost exactly. We next present settings
where instances are indeed close to our bias. Before that, we remark that while
KWIKCLUSTER is often used on general graphs in practice (by assuming the missing
edges are negative), doing so does not preserve its approximation guarantee.

9Namely, two positive cliques A and B joined by positive edges except between a ∈ A and
{b1, . . . , bk} ∈ B. Those nodes are given first and thus form a cluster, which yields at least one
disagreement every time one the n− (k + 1) remaining nodes is added.

63

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

Figure 3.5 – A positive star
with few negative edges

Consider the graph G showed in Figure 3.5. Assume there
are n nodes connected positively to the center of the star, and
k < n − 1 negative edges between the peripheral nodes. We
define G′ as the complete graph obtained from G by setting all
missing edges to be negative. On G′, the optimal solution is
to have a cluster with the center of the star and one peripheral
node, while others peripheral nodes are put in singleton clus-
ters. This creates n− 1 positive disagreements. When running
KWIKCLUSTER on G′, if the first pivot is a peripheral node,
this is the solution we obtain. Otherwise, with probability 1/n,
the center of the star is chosen as pivot, creating a single big
cluster that incurs (1/2)(n− 1)(n− 2) negative disagreements.
In expectation, KWIKCLUSTER thus achieves

1

n

(
(n− 1)(n− 2)

2
+ (n− 1)2

)
=

3n− 4

2n
(n− 1) ∼ 3

2
n

disagreements, which is roughly a 3/2-approximation as n grows larger.
Now let us get back to the original G. Here the optimal solution is to have a single

big cluster, which incurs k negative disagreements. With the same reasoning as before,
the expected number of disagreements of KWIKCLUSTER is now 1

n

(
k + (n− 1)2

)
. If for

instance k = b√nc (as in Figure 3.5), then the previous expression is equivalent to n as n
tends to infinity. KWIKCLUSTER is thus

√
n worst in expectation than the optimal when

run on this general graph.

3.2.3 Beyond worst case instances

We now look at two settings where our bias is likely to be present. In the first one,
we assume the input signs are randomly perturbed of an initial assignment derived
from a consistent clustering. In the second one, we do not assume anything about
such a consistent clustering but expect instead that the optimal solution is “clear”
enough that it does not change when weights are multiplicatively perturbed.

CORRELATION CLUSTERING under noise As we have seen, assuming the Unique
Games Conjecture, the k-MINIMUM MULTICUT problem, and therefore the COR-
RELATION CLUSTERING problem on a general graph, cannot be approximated to
within a constant factor in the worst case. But maybe we can do better in the aver-
age case, which motivates the study of semi-random model, where real graphs are
seen as being obtained from the controlled perturbation of a perfectly clusterable
graph. In the simplest case, each edge sign is independently flipped with probabil-
ity p ∈ [0, 1/2). This situation on complete graphs was considered in [BBC02, Section
6], showing a simple algorithm that with high probability makes Õ(n

3
2) mistakes,

and in [BSY99, Theorem 2.6], with an algorithm recovering with high probability
the planted partition of an unweighted graph in O(n2(log n)c), where c depends on
the size of the smallest cluster and on the noise probability.

Joachims et al. [JH05] analyze a more refined weighted model, where weights
are generated by a probability distribution whose mean on true positive edges is
larger than µ+ > 0 and whose mean on true negative edges is smaller than µ− < 0.
They give a finite-sample bound on the number of nodes misclustered w.r.t the
planted partition as a function on the probability distribution parameters. Indeed,
as pointed out by Ailon et al. [AL09], uniform and independent noise is not a good
model of real situations, where the input of CORRELATION CLUSTERING, i.e. the
similarity between nodes, is often the result of a preprocessing, which may present
strong correlations. Therefore, instead of measuring the quality of a solution against
the input (i.e. the similarity information), they argue it is more sensible to measure it
against the (unknown) true optimal clustering that gave rise to the input, and show
that KWIKCLUSTER allows this, thanks to a new analysis. Mathieu et al. [MS10]
also consider an adversarial model, where all edges are flipped with probability p

64

3.2. CORRELATION CLUSTERING

but the adversary then decides whether to reveal the true sign or the flipped sign.
On complete unweighted graphs, they find a solution of MINDISAGREE at most
1 +O(n−1/6) times the optimal whenever p ≤ 1/2−n−1/3 by rounding the usual SDP
solution. If, in addition, there is no adversary, p ≤ 1/3 and each planted cluster has at
least Θ(

√
n) nodes, then the planted partition can be recovered exactly. Makarychev

et al. [MMV15] study the same adversarial model but on general weighted graphs,
giving a PTAS for MINDISAGREE when p ≤ 1/4. Under additional assumptions on
the density of edges, they present another algorithm that finds the ground truth
clustering with an arbitrarily small classification error.

CORRELATION CLUSTERING under stability assumption Whereas clustering
objective functions are NP-HARD to optimize, we expect meaningful instances
in which we are interested to have additional structure which allows for guaranteed
polynomial time algorithms. We refer the reader to a critical overview [Ben15] of
some such notions of structure proposed recently. Informally, a general idea is
that the clustering should not change (or at least very little) if the data are slightly
perturbed. For instance, a weighted graph is α-stable (with α > 1) for some partition
objective if its optimal partition remains the same whenever every weight wi is mul-
tiplied by a factor ci between 1 and α. Another notion is the (c, ε)-approximation
stability. Formally, a dataset X is (c, ε)-stable if, for an objective function Φ, any
clustering whose cost is within a factor c of the optimal cost OPTΦ is ε-close to
the optimal clustering (as measured by the fraction of points on which the two
clusterings disagree). When the objective is MINDISAGREE on complete graphs,
Balcan et al. [BB09] show that for (1 + α, ε)-instances, the approximation algorithms
we describe in Section 3.2.2.2 find a solution that is (49/α + 1)ε close to the optimal
clustering.

It is also possible to study the stability of a CORRELATION CLUSTERING in-
stance over a general graph w.r.t edge weights via its canonical MINDISAGREE LP.
Nowozin et al. [NJ09] present a method to determine to which extent the weights of
a CORRELATION CLUSTERING instance can be perturbed before the optimal solution
changes.

3.2.4 Variants and extensions

So far we focused on CORRELATION CLUSTERING in its rawest form, that is solving
the MINDISAGREE and MAXAGREE objectives in the case where the general binary-
labeled graph is known in advance. We will now see first some special cases, namely
when the weights obey the triangle inequality (to solve CONSENSUS CLUSTERING) or
when the graph is bipartite and then move to variants. We will consider more general
objectives, when the edge labels are categorical instead of binary, when nodes can belong
simultaneously to several clusters or when we optimize local objectives per nodes instead
of global ones. Finally we will also look at clustering in signed graphs in general, using
spectral methods or heuristics from the community detection literature.

CONSENSUS CLUSTERING In CONSENSUS CLUSTERING, the goal is to output a
clustering which best summarizes (or agrees with) the several given input clusterings
of the same set of objects. Motivations include robustness —by using an ensemble of
clusterings from diverse methods— and privacy —if the clusterings were computed by
different parties each considering only a subset of the objects attributes. We can build
the complete graph of these objects, with weights set to the fraction of clusterings that
place two objects in different clusters, thus representing a kind of distance in the space of
clusterings. As first show by Filkov et al. [FS03] , finding the optimal clustering is there-
fore an instance of CORRELATION CLUSTERING where the weights obey the triangular
inequality. Gionis et al. [GMT07] give a deterministic 3-approximation using the REGION-
GROWING method. Later Bonizzoni et al. [Bon+08b] show that the minimization version
is APX-HARD, even when the input is made of only three clusterings and give a com-

65

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

binatorial 4/5-approximation for the maximization problem. Experimental evaluations
are conducted by Bertolacci et al. [BW07] and Filkov et al. [FG08]. The former describe
a scalable approach that first samples a small portion of the data, runs a (potentially
computationally expensive) approximation algorithm and finally augment the resulting
partition by adding to it the unsampled nodes one by one. Experiments confirm that
the running time is greatly improved compared with the linear program methods while
the resulting objective value is essentially the same. Note, however, that LP methods
can be applied in practice thanks to some tricks [DSW10]. If we have k input clusterings
C1, . . . , Ck and we parameterized the problem by t, which is the sum over the input
clusterings of the number of pairs of objects that are clustered differently by a solution C?
and Ci, then there is a polynomial algorithm running in O(4.24t/k · t/k3 + kn2) [Dör+14].

Bipartite CORRELATION CLUSTERING Bipartite graphs are an interesting special
case for CORRELATION CLUSTERING, as they often appear in the context of recommen-
dation systems, where users rate products positively or negatively, although in this
setting we cannot expect to have complete bipartite graphs in practice. The first results
was given by Amit [Ami04], who obtains an 11-approximation for MINDISAGREE by
adapting the REGIONGROWING method. The KWIKCLUSTER is adapted to the bipartite
case by Ailon et al. [Ail+12], who prove it results in a randomized 4-approximation
(and provide a matching deterministic approximation by rounding a LP). By using their
idea of rounding the results of the LP differently for positive, negative and in that case
same-side absent edges, Chawla et al. [Cha+15] bring down this approximation factor
to 3, even for K ≥ 2-partite graphs. Through formulating the MAXAGREE[k] problem
as a bilinear maximization problem and computing a low-rank approximation of the
graph biadjacency matrix, Asteris et al. [Ast+16] obtain a efficient PTAS, that is a (1− δ)
approximation running in time exponential in k and δ−1 but linear in n. By an appropri-
ate choice of k, it is possible to use this PTAS to solve the general MAXAGREE problem.
Beyond those results on CORRELATION CLUSTERING, we further discuss bipartite signed
graphs in Section 5.2.1.

Categorical edge labelling In the so called CHROMATIC-CORRELATION CLUSTER-
ING setting, “positive” edges are now associated with one of L possible colors and the
goal is to form clusters mostly made up of edges with the one same color. Namely, a
disagreement is now a negative edge between clusters or a within-cluster edge whose
color differs from the majority color of that cluster. This is motivated by edge-labeled
graphs in social networks, biology and citation networks and we will further discuss
such applications in Chapter 4. As a generalisation of CORRELATION CLUSTERING, it
is NP-COMPLETE but Bonchi et al. [Bon+12] present a modification of the KWIKCLUS-
TER algorithm that pick edges instead of nodes as pivots, and grow clusters by adding
monochromatic triangles. This gives an approximation factor of six times the maximum
degree of the graph. They also present a method when the number k of clusters is fixed
beforehand, starting with an initial partition and then alternating between finding the
majority color of clusters and finding better clusters. An improved heuristic algorithm
is given in [GB16]. Unfortunately, the maximum degree of a graph can be as large as n.
However, Anava et al. [AAG15] present constant factor approximations. Namely, they
show that the problem can be reduced to classical CORRELATION CLUSTERING by setting
all edges incident to a node u to negative if they are not of the majority color of u. They
then apply the regular KWIKCLUSTER and show this gives an 11-approximation to the
original problem. Furthermore, they also write a linear program and round it using the
REGIONGROWING method to obtain an approximation factor of 4. Bonchi et al. [Bon+15]
extend this line of work to the case were a single edge can carry a set of labels and adapt
their randomized algorithm so that the approximation factor is multiplied by the size of
the input label set.

Overlapping CORRELATION CLUSTERING While in CORRELATION CLUSTERING,
each node is assigned to a single cluster, in other settings we may want to relax this
constraint. Given a complete weighted graph, Bonchi et al. [BGU12] want to output a
clustering C that minimizes the following cost:∑

(u,v)∈E

|H(C(u), C(v))− wuv|

66

3.2. CORRELATION CLUSTERING

where H is a similarity function between two sets of labels, chosen in their paper to be
the Jaccard similarity or a 0/1 indicator of nonempty intersection. These problems are
showed to be NP-COMPLETE, and approximated by a local search algorithm, iteratively
optimizing the assignment of one node while all others are fixed. As one of the demon-
stration of their theoretical work, Johansson et al. [Joh+15] show a faster solution based
on a weighted extension of the Lovász’s theta function, the corresponding geometric
embedding of graphs and a solver derived from one-class SVM, while Andrade et al.
[And+14] propose a genetic algorithm to solve this problem. Finally, Rebagliati et al.
[RRP13] also deals with overlapping clustering by relaxing the problem to a stochastic
setting and using “the Baum-Eagon inequality, which provides an effective iterative
scheme for maximizing polynomial functions in probability domains”.

Local CORRELATION CLUSTERING In classical CORRELATION CLUSTERING, all
nodes have an identical role, in the sense that they contribute equally to the final objective
in terms of (dis)agreements. Here, we instead look at approaches where we either add
a local penalty to each in order to better control their behavior, or where we altogether
modify the objective to focus on (dis)agreements at specific nodes.

Puleo et al. [PM15] adapt the linear program of [CGW03] and its REGIONGROWING
method to the case where all clusters have to contain less than K nodes, by assigning
to each node u a penalty µu. If u is placed in a cluster Ci, the original MINDISAGREE
objective is penalized by an extra µu (|Ci| − (K + 1)). By varying µv between 0 and 1 and
because the positive weights are assumed to smaller than 1, this cluster size constraint
can be made hard or soft. They also handle more general weights, since they allow w−uv
to be as large as τ for τ ∈ [1,∞) while still guaranteeing a 5 − 1/τ-approximation on
complete graphs, and adapt KWIKCLUSTER to unweighted graphs with the hard cluster
size constraint, obtaining a randomized 7-approximation. These soft constraints are for
instance used in a biological application where nodes are genes and where singleton and
giant clusters are uninformative [Hou+16]

Puleo et al. [PM16] also modify the MINDISAGREE objective to make it more general.
Based on the classic CORRELATION CLUSTERING linear program, they define a “fractional
clustering of G as a vector x indexed by V such that xuv ∈ [0, 1] for all uv ∈

(
V
2

)
and such

that xvz ≤ xvw + xwz for all distinct v, w, z ∈ V ”. They also define “the error vector
err(x) of x, as a real vector indexed by V whose coordinates are”

err(x)u =
∑

v∈N+(u)

xuv +
∑

v∈N−(u)

(1− xuv)

Given a function f : Rn≥0 → R verifying two elementary conditions, the problem
is then to find a fractional clustering x minimizing f(err(x)). The classical CORRELA-
TION CLUSTERING corresponds to setting f(x) = 1

2`
1(x) whereas the authors here are

interested in Minimax CORRELATION CLUSTERING that arises by setting f(x) = `∞(x).
Minimizing the maximum number of disagreements incurred by a single node is moti-
vated by the example of recommendation systems: if errors correspond to unsatisfying
recommendations, we do not want a single user to suffer many of them. Minimax
CORRELATION CLUSTERING is NP-COMPLETE on both complete graphs and complete
bipartite graphs but by modifying the REGIONGROWING method, the authors respec-
tively a 48 and 10 approximation, the latter for the one-sided error (that only counts
disagreements for the nodes in one of the two clusters). The idea is to chose pivots not
randomly but by maximizing a given criteria and to grow balls with a radius α computed
numerically to optimize the approximation factor. Interestingly, and in contrast with the
classic CORRELATION CLUSTERING situation, minimax MAXAGREE is not easier than
minimax MINDISAGREE and seems not to have a constant factor approximation, even on
complete graphs. Furthermore, these algorithms are deterministic, as opposed to many
CORRELATION CLUSTERING approximations, since bounds on expected disagreements
of an edge does not translate easily on their maximum. Charikar et al. [CGS17] improve
these two factors to 7, using a simpler version of the algorithm of Puleo et al. [PM16].
Namely, find the ball of radius 1/7 with the largest number node and create a cluster
from its center with a radius of 3/7. They also show that on general weighted graphs, the
LP has a large integrality gap of n/2. Yet they combine it with a combinatorial approach
to reach a O(

√
n) approximation. Finally, they consider the complementary problem of

maximizing the minimum number of agreements at a single node, and provide a 1
2+ε

approximation.

67

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

Spectral Clustering A classic method for clustering graphs is to leverage their spec-
tral properties. Namely, if A is the adjacency matrix of G and D its degree diagonal
matrix (that is Du,u = deg(u)), the Laplacian of G, defined by LG = D−A, is a symmetric
positive semidefinite matrix. As such, it has n real non-negative eigenvalues, and its
spectrum provides additional information on the connectivity of G. For instance, 0 is
always the smallest eigenvalue and its multiplicity is equal to number of connected
components of G, while —if G is connected— the second eigenvalue is the algebraic
connectivity of G, whose magnitude is an indication of how well connected is the graph.
This matrix is typically used for clustering by computing its first k eigenvectors, which
embed the n nodes ofG in Rk, where there are then clustered with the k-means algorithm.
This can be seen as a relaxation of the discrete RATIOCUT objective, which asks for the
partition {C1, . . . , Ck}minimizing 1

2

∑k
i=1

cut(Ci,C̄i)
|Ci| , where C̄i is the complement of Ci

in V and cut(B,C) =
∑
u∈B,v∈C wuv is the total weight of the edges between B and

C [vLux07]. By considering the symmetric normalized Laplacian Lsym = D1/2LD1/2, it is
also possible to approximate the normalized cut objective (NCUT), where |Ci| is replaced
by vol(Ci) =

∑
u∈Ci deg(u). We will now see how these kinds of approaches can be

extended to signed graphs, noting first that they require to fix the number of clusters
beforehand and are looking for clusters balanced in size, which makes the problem
related but not equivalent to CORRELATION CLUSTERING.

The first line of research consider only MINDISAGREE[2]. For instance, Coleman
et al. [CSW08b] show that both normalized cut and MINDISAGREE[2] objectives can
be written as a SDP (or equivalently as eigenvalue problems) and thus combined, the
intuition being that we look for NCUT solutions whose number of disagreements is not
too much more than the approximate optimal.

Letting NCUT(C, C̄) = cut(C,C̄)
bal(C) with bal(C) = 2 vol(C)vol(C̄)

vol(V) , Rangapuram et al.
[RH12] define a new objective:

F̂γ(C) =
cut(C, C̄) + γ

(
M̂(C) + N̂(C)

)
bal(C)

where γ ∈ R+ is a parameter, while M̂(C) and N̂(C) are respectively the number of
positive and negative disagreements of the (C, C̄) clustering. They show how to optimize
a tight continuous relaxation of F̂γ as the non-negative ratio of a difference of convex
function and a convex function.

On the other hand, one can also adapt these two cut objectives to directly include
negative edges. Kunegis et al. [Kun+10] define the signed Laplacian as L̄ = D̄ −
A, where D̄ is the signed degree matrix such that D̄uu =

∑
v∈N (u) |Auv|, as well as

a signed variant of the symmetric normalized Laplacian L̄sym = D̄1/2L̄D̄1/2. They
show that the signed Laplacian is positive semidefinite, and even positive-definite
as soon as the graph is unbalanced (that is contains a cycle with an odd number of
negative edges). From positive and negative cuts defined as cut+(B,C) =

∑
u∈B,v∈C w

+
uv

and cut−(B,C) =
∑
u∈B,v∈C w

−
uv, a natural signed cut is scut(B,C) = 2cut+(B,C) +

cut−(B,B) + cut−(C,C) which can then be used to defined signed RATIOCUT and
NCUT. Arguing that those definitions force negatively linked nodes to be symmetric
around the origin, do not take into account the balance of negative edges in each cluster
and are difficult to extend to more than two clusters, Zheng et al. [ZS15] instead propose
two new normalized cuts:

SNScut(C1, . . . , Ck) =

k∑
i=1

cut+(Ci, C̄i)− cut−(Ci, C̄i)

vol(Ci)

BNScut(C1, . . . , Ck) =

k∑
i=1

cut+(Ci, C̄i)− cut−(Ci, C̄i) + vol−(Ci)

vol(Ci)

Noting that if xi ∈ Rn is the vector indicator of cluster Ci (that is the uth entry of xi is
1 is u belongs toCi and 0 otherwise), xTi L̄xi = 2cut−(Ci, Ci)+cut−(Ci, C̄i)+cut+(Ci, C̄i),

68

3.2. CORRELATION CLUSTERING

Sedoc et al. [Sed+17] introduce the following cut objective:

sNcut(C1, . . . , Ck) =

k∑
i=1

2cut−(Ci, Ci) + cut−(Ci, C̄i) + cut+(Ci, C̄i)

vol(Ci)

Additional cut formulations for k-clusters are also presented in [CWD12], although
Knyazev [Kny17] argue that using the non signed Laplacian and considering negative
eigenvalues might be just as effective, citing for instance numerical instability of signed
Laplacian.

Finally, Mercado et al. [MTH16] show that the Laplacians defined so far can be seen
as arithmetic means of the Laplacian L+ of the positive subgraph G+ = (V,E+) and the
signless Laplacian Q− of the negative subgraph G− = (V,E−), where Q− = D− +A−.
They suggest instead to use a geometric mean, defined for two positive matrices A and

B as A#B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2. This suggestion is based on the fact that if u is a

common eigenvector of both A and B with eigenvalue λ and µ respectively, then u is an
eigenvector of A+B with eigenvalue λ+ µ and an eigenvector of A#B with eigenvalue√
λµ. Therefore, the k smallest eigenvalues of the geometric mean Laplacian will be

influenced by both smallest eigenvalues of L+ (corresponding to assortative clusters in
G+) and of Q− (corresponding to disassortative clusters in G−), while this is not the case
for the arithmetic mean of Laplacians.

Community detection The clustering problem is often named community detection
in the context of social networks, and several methods developed by practitioners have
been extended to signed graphs. While they do not necessarily considered the COR-
RELATION CLUSTERING objective, and especially not its optimum, we still give a brief
overview of them, as they tend to have been more tested experimentally. For instance, to
find the cluster of node u, Yang et al. [YCL07] use a random walk approach on the posi-
tive subgraph G+ to compute the probability of each node to reach u in T steps, sort the
nodes accordingly and then find a threshold based on the number of disagreements. The
one node move local heuristic that we described in the Physics-inspired paragraph on
page 62 can also be formulated as genetic algorithms that simultaneously try to minimize
the number of disagreements and maximize a signed variant of the modularity [LLL13;
AP13]. Anchuri et al. [AM12] also consider these two objectives by seeing them as eigen-
value problems and devise an iterative splitting procedure. The overlapping community
detection variant is considered by Chen et al. [Che+14], who used a signed probabilistic
mixture model. Namely, an edge selects a pair of cluster r, s with probability ωrs (where
r = s if the edge is positive and r 6= s otherwise) and chooses its endpoints u and v
with probability θru and θsv. θru is therefore the soft membership of node u to cluster
r, and those parameters are estimated using the expectation-maximization algorithm.
The same model is extended to directed graphs by Jiang [Jia15], who strangely enough
names it stochastic blockmodel, although the focus is still on edge and not nodes. In a
similar spirit to MAXAGREE[k], Chu et al. [Chu+16] focus on finding k subgraphs dense
in positive edges and densely connected by negative edges to each other. They dub such
subgraph Oppositive Cohesive Groups, or more vividly Gangs in War, and after formulating
the problem as a constrained quadratic optimization, they propose a faster iterative local
search heuristic. When k = 2, these subgraphs are called antagonistic communities and
a specific data mining approach was proposed by Gao et al. [Gao+16].

Let us review this material about CORRELATION CLUSTERING in the light of our
thesis objective: efficiently and accurately characterize edges in complex networks,
or rather signed graphs in this chapter. The results on the hardness of CORRELATION

CLUSTERING, and the fact that the best approximations rely on a linear program
with a large number of constraints seems to run counter to such efficiency and
accuracy requirements. To avoid this pitfall, we presented many existing heuristics.
More importantly, recall that our learning bias is that nodes are assigned to K
groups, and that signs are consistent with those groups. Informally, the closer an
input signed graph is to this ideal situation, the more regular it is with respect to
this bias, and thus the easier the EDGE SIGN PREDICTION problem is. Accordingly,
the works described in Section 3.2.3 point out that such non worst case instances
are indeed where we expect clustering algorithms to be able to identify those K
groups with little to no error. In the next section, we present an algorithm relying

69

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

on a similar intuition, in an active setting and where K = 2.

3.3 Low stretch trees and spanners

We now show how to apply the learning bias of Section 3.1 on undirected graphs.
Furthermore, we assume that the strong balance holds, meaning that there are only
two groups according to Theorem 4. In other words, the labelling of E is consistent
with a two-clustering of V . Namely, V can be partitioned in two clusters such that
edges within each cluster are positive and edges across clusters are negative. In
that case, the following multiplicative rule holds: for any nodes u, v in V , and any
path p between u and v in G, the sign yu,v is equal to the product of the signs along
p. Hereafter, we call this product the parity of p, and denote it by π(p). While it is a
simple and convenient hypothesis, this is too strong of a requirement to be satisfied
in practice. Therefore, we relax it by assuming that, starting from a consistent
labeling Y , we can only observe a randomly perturbed version Y ′ of Y . Specifically,
given a constant q ∈ [0, 1/2), every sign of Y is flipped with a probability smaller
than q. We denote by Eflip ⊂ E the set of edges whose sign has been flipped.

In this section, we are interested in active learning algorithms that first query a
subset Etrain of the edges, observe the signs in Etrain and use them to predict the
remaining signs. More precisely, we focus on an algorithm that queries a spanning
tree T of G and predicts the sign of an edge (u, v) ∈ Etest = E \ ET as the parity
of pathT (u, v). Intuitively, since each sign has been potentially flipped, the longer
the path in T , the more likely its parity will be not be equal to the true sign yu,v.
Therefore we would like each such path to be as short as possible. Formally, the
number of mistakes of such an algorithm is upper bounded by [Ces+12b, Equation
(3)]

|Eflip|+
∑

(u,v)∈Etest

∑
e∈E

I
{
e ∈ pathT (u, v)

}
I {e ∈ Eflip}

which in expectation is equal to:

q

|E|+ ∑
(u,v)∈Etest

| pathT (u, v)|

 (3.7)

In the following, we describe a way to build spanning trees tailored for this situation.
More precisely, we implement and analyze a suggestion made to us by Vitale [Vit14].

3.3.1 GALAXY TREE: a spanning tree designed for sign prediction

To achieve our objective of building a spanning tree that minimizes the distances
between all connected pair of nodes in the original graph, we rely on a particular
subgraph structure, namely the star. We therefore introduce two algorithmic primi-
tives. EXTRACT-STARS, which partition a graph G into a set of disjoint stars. And
COLLAPSE-STARS, which selects edges from E to assemble these stars into a new,
smaller graph. Given a graph topology G0 = (V0, E0) and assuming for simplicity
that G0 consists of a single connected component,10 the GALAXY TREE algorithm
repeatedly applies these two primitives to produce a sequence of graphs {Gt}Kt=0

of decreasing size, until GK is made of a single node. All the edges selected while
reaching this stage then form the spanning tree we were looking for. This can be
seen as a simple instantiation of a general procedure described in [Alo+95, Section
5.2].

In the following, we provide a more precise description of our two primitives
and analyze their complexity. Then we state formally the complete GALAXY TREE

algorithm, prove its termination and correctness, and show a detailed example of

10For we can otherwise run our algorithm in parallel on each connected components of G0.

70

3.3. Low stretch trees and spanners

its execution. Finally, we provide a conjecture on the number of iterations needed
to finish.

ci

p1

p2

p3

p4

h1
h2

h3

St
i

Figure 3.6 – A sample star
created during the tth col-
lapse level. The black node
is the center ci of the star Sti ,
which is also made of the four
light gray peripheral nodes as
well as the solid edges. The
2-hops neighbors of ci are the
white nodes h1 to h3, whose
degree will decrease once Sti
is removed from Gt.

EXTRACT-STARS EXTRACT-STARS takes as input a graph
Gt = (Vt, Et). While the nodeset Vt is not exhausted, it re-
peatedly samples a node ci, creates a star Sti with ci at its
center and the neighbors of ci on the periphery, removes
all the nodes of Sti from Vt and all the edges incident to Sti
from Et, and finally decrements accordingly the degree of
the 2-hop neighbors of ci (see Figure 3.6 for a visual rep-
resentation of this notation). Upon completion, it returns
a list of stars, the set of all the edges within a star, and a
map (or associative array) that associates each node of Vt to
the index of the unique star it belongs to. According to the
definition of Mehlhorn et al. [MS08], an associative array is
an abstract data type composed of a collection of (key, value)
pairs, such that each possible key appears at most once in
the collection. It efficiently supports the addition, removal
and modification of a pair, as well as the lookup of a value
associated with a particular key.

As showed in the following pseudo code11, we sample
centers by choosing the node with the current highest degree,
with ties broken arbitrarily.12 This is achieved efficiently by
maintaining a max-priority queue Q, initially containing all
the nodes of Vt. The priority of a node is its current degree
and we equip Q with two standard operations described
by Cormen et al. [Cor+09, section 6.5]: EXTRACT-MAX(Q) removes and returns
the node of Q with the largest degree and DECREASE-KEY(Q, u, ∆) decrements
the degree of the node u by an amount ∆. We also assume that G is the adjacency
list of the graph, so that G[u] is the set of neighbors of u, i.e. G[u] ≡ N (u). Finally
membership is the map storing for each node the index of the star it belongs to.
This map is updated by the STAR function, which creates a star given a center c, a
list periphery of peripheral nodes, and a star index i. After creating the ith star, for
every node u belonging to that star, the STAR function sets membership[u] = i.

1: function EXTRACT-STARS(Gt = (Vt, Et))
2: Let Q be the max-priority queue described above
3: Let remaining be a set of nodes, initially containing all the nodes in Vt
4: Let membership be an empty map
5: stars← []
6: inner_edges← ∅
7: while Q is not empty do
8: c← EXTRACT-MAX(Q)
9: if c not in remaining then

10: continue . c is part of an existing star so there is nothing to do
11: periphery← Gt[c]

⋂
remaining

12: stars← stars
⋃{STAR(c, periphery, |stars|)}

13: inner_edges← inner_edges
⋃{(c, p) : p ∈ periphery}

14: remaining← remaining \ {{ci} ∪ periphery}
15: for p in periphery do

11Note that for clarity, we removed some bookkeeping code in all listings, mainly the part related to
maintaining mapping between nodes at different collapse level. However, the full python implemen-
tation is available at https://github.com/daureg/magnet/blob/master/veverica/new_
galaxy.py#L27.

12We also consider more involved heuristics but, in the interest of simplicity, they are presented
later on page 78.

71

https://github.com/daureg/magnet/blob/master/veverica/new_galaxy.py#L27
https://github.com/daureg/magnet/blob/master/veverica/new_galaxy.py#L27

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

16: for h in Gt[p]
⋂
remaining do

17: DECREASE-KEY(Q, h, 1)
18: return stars, inner_edges, membership

Proposition 1. For any connected graph G = (V,E), EXTRACT-STARS(G) terminates
in O(|E|) time.

Proof. EXTRACT-STARS terminates because at each iteration of the while loop line 7,
we remove one node from Q and never add any. Let us now analyze its complexity.
We first build a priority queue of all the nodes according to their degree (line 2),
which requires |V | insertions into Q. Then we execute |V | iterations of the while
loop. However, the main idea here is that we process each node and each edge
exactly once. We first find the center c of the next star by extracting the maximum
of the queue (line 8) and testing if c is still part of the graph, which happens |V |
times in total. Then we build the corresponding star (line 11–14). In total, we test
the membership of |V | nodes in line 11, STAR updates the membership map |V |
times in line 12, inner_edges consists of |E| edges at most in line 13 and remaining
is only updated |V | times in line 14. Finally, we decrease the priority (i.e. the degree)
of all nodes adjacent to the new star (line 15–17). Each decrement is supported by
a single edge, thus DECREASE-KEYS is called at most |E| times. Since all queue
operations require constant time when using a Strict Fibonacci Heap [BLT12], the
complexity is O(|E|+ |V |), which is also O(|E|).

COLLAPSE-STARS The second primitive, COLLAPSE-STARS takes as input the
edges Et of the current graph, along with the membership result of EXTRACT-
STARS and an eccentricity array. It builds a new graph Gt+1 where each star su
from EXTRACT-STARS becomes a node and where there is a link between two
nodes su and sv if the nodes in Vt making up su and sv are connected in Et. The
eccentricity array is needed because when connecting two stars, we would prefer to
join their center rather than two of their peripheral points. Therefore, we maintain
an eccentricity count for all of the nodes of the original G0, which is incremented by
1 each time a node is chosen to be on the periphery of a star. In other words, the
eccentricity of an original node quantifies to which extent it has been pushed to the
border of the galaxy.

COLLAPSE-STARS not only returns the new graphGt+1 but also a map cross_edges.
This map is used to keep track of which edge in Et connects any pair of node in Vt+1

(as illustrated in Figure 3.7). It associates to any edge in Et+1 a set of edges from Et.
This set can have an arbitrary size during the execution of COLLAPSE-STARS, yet it
is guaranteed to contain a single edge upon termination. Although this does not
appear in the following pseudo code, in practice we ensure that (su, sv) and (sv, su)
refer to the same edge in cross_edges.

1: function COLLAPSE-STARS(Et, membership, eccentricity)
2: Let Gt+1 be an empty graph
3: Let cross_edges be the map described above
4: for every edge (u, v) in Et do
5: su←membership[u]
6: sv ←membership[v]
7: if u and v are not in the same star (i.e. su 6= sv) then
8: cross_edges[(su, sv)]← cross_edges[(su, sv)]

⋃{(u, v)}
9: for every pair of will-be connected stars (su, sv) in cross_edges do

10: possible_underlying_edges← cross_edges[(su, sv)]
11:

(u0, v0)← arg min
(u,v)∈possible_underlying_edges

eccentricity[u] + eccentricity[v]

72

3.3. Low stretch trees and spanners

s1

s2

1

2

3

4

5

6

7
8

9
10

1
22

2

cross_edges[(s1, s2)]

Figure 3.7 – In this graph, there are four possible edges between the two stars s1

and s2, and all are part of cross_edges[(s1, s2)], here represented in light red. Those
edges are labeled with the sum of eccentricity of their underlying endpoints. White
node have an eccentricity of 0, and gray node an eccentricity of 1. The edge with the
minimal eccentricity is linking a peripheral node of s1 directly to the center of s2.

12: cross_edges[(su, sv)]← {(u0, v0)}
13: Et+1← Et+1

⋃{(su, sv)}
14: return Gt+1, cross_edges

Proposition 2. For any graphG = (V,E), COLLAPSE-STARS(E,membership, eccentricity)
terminates in O(|E|) time.

Proof. The analysis of COLLAPSE-STARS is rather straightforward because the func-
tion only executes two loops over E. During the for loop of line 4, it only performs
constant time operations on maps. Likewise, in the for loop of line 9, the most
expensive operation is finding the minimum in line 11. Computing the eccentric-
ity of an edge is done in constant time and only once for each edge of E. As a
consequence, the total time of COLLAPSE-STARS is indeed O(|E|).

Putting the pieces together EXTRACT-STARS and COLLAPSE-STARS are truly the
core the of GALAXY TREE algorithm but to obtain our final spanning tree, we need
additional work, namely updating the eccentricity of the nodes of V0 and keeping
track of each edge within and between stars along every collapse steps. Despite
our earlier promise, this entails showing some bookkeeping code, because it has an
influence on the runtime of GALAXY TREE. Namely in the listing of Algorithm 1 on
the next page, we use the three following maps:

name keys set at t values set at t comment

star_membership nodes in Vt nodes in Vt+1 this is the map returned by EXTRACT-STARS(Gt)
full_membership nodes in V0 nodes in Vt+1 at t = 0, this is equals to star_membership and

then it gets updated at every iteration to maintain
its original keys set.

original_node nodes in Vt sets of V0 nodes This can be seen as the reverse of
full_membership and it is the one needed to
update the eccentricity of the original nodes.

As described in Algorithm 1, at every collapse level, we first extract stars from
the current graph (line 5), then update the eccentricity and node mappings (lines
7–8) and finally collapse the graph (line 9). We perform these operations until there

73

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

Algorithm 1 GALAXY TREE(G0 = (V0, E0))

1: Let eccentricity be an array of size |V0| initially all set to 0
2: Gt← G0

3: inner_edges_seq, outer_edges_seq← [], []
4: repeat
5: stars, inner_edges, star_membership← EXTRACT-STARS(Gt)
6: Add inner_edges to the list inner_edges_seq
7: UPDATE-ECCENTRICITY(stars, eccentricity, original_node)
8: full_membership, original_node ← UPDATE-NODES-

MAPPING(full_membership, star_membership)
9: Gt+1,outer_edges← COLLAPSE-STARS(Et\inner_edges,star_membership,
eccentricity)

10: Add outer_edges to the list outer_edges_seq
11: Gt← Gt+1

12: until |outer_edges| > 0
13: return ASSEMBLE-SPANNING-TREE(inner_edges_seq, outer_edges_seq)

def update_eccentricity(stars, eccentricity, original_node):
for star in stars:

for top_p in star.points:
for real in original_node[top_p]:

eccentricity[real] += 1
def update_nodes_mapping(star_membership, new_sm, first_iter):

"""After a collapse step, update the mapping between node
indices in the new graph and original ones."""
if first_iter:

star_membership = new_sm
else:

new_mm = {}
for orig_nodes, previous_star in star_membership.items():

new_mm[orig_nodes] = new_sm[previous_star]
star_membership = new_mm

original_basis = defaultdict(set)
for orig_id, star_id in star_membership.items():

original_basis[star_id].add(orig_id)
return star_membership, original_basis

def assemble_spanning_tree(stars_edges, interstellar_edges):
final_edges = []
data = zip(reversed(stars_edges), reversed(interstellar_edges[:-1]))
for current_level_edges, translation_to_lower_level in data:

final_edges.extend((e for one_star_edges in current_level_edges
for e in one_star_edges))

for i, e in enumerate(final_edges):
final_edges[i] = translation_to_lower_level[e]

return final_edges+[e for star in stars_edges[0] for e in star]

are no edge connecting stars anymore. At this point, we revisit every outer edge to
build the spanning tree (line 13).

Proposition 3. For any connected graph G0, GALAXY TREE(G0) terminates after K ≤
|V0| iterations. Furthermore, it runs in O(K|E0|) time and returns a spanning tree of G0.

We will need the following lemma.

Lemma 4. If G0 is connected, then any subsequent graph Gt, t ≤ K is also connected.

Proof. Suppose not and assume, to the contrary, that there exists at least one (or
more) disconnected graph in {Gt}Kt=1 and let t0 be the smallest index such that Gt0
is disconnected. Then there exist two nodes su and sv in Vt0 with no path between
them in Et0 . Letting U ,V ⊂ Vt0−1 be respectively the nodes forming stars u and v,
this implies there is no path between nodes in U and nodes in V . However, Gt0−1 is
connected by hypothesis, which leads to a contradiction.

Proof of Proposition 3. Let us first show that GALAXY TREE terminates in less than
|V0| iterations. This follows from the fact that every time we collapse the graph

74

3.3. Low stretch trees and spanners

Gt, we strictly reduce the number of nodes. Indeed, according to Lemma 4, Gt is
connected so at least two nodes of Vt are joined by an edge and will form a star, i.e.
a single node. We can thus claim that |Vt+1| < |Vt|. Note also that for all t, |Vt| > 0
and that when |Vt| = 1, EXTRACT-STARS creates a singleton and COLLAPSE-STARS

does not return any outer edges. At this point, GALAXY TREE finishes, proving that
the number of iterations K satisfies K ≤ |V0|.

Then we analyze the time complexity. We already know that during the tth

iteration, EXTRACT-STARS and COLLAPSE-STARS take time O(|Et|). We only pro-
vide the actual python code instead of pseudo code for the remaining functions
since they do not present any relevant algorithmic aspect. However, we can say
that UPDATE-ECCENTRICITY and13 UPDATE-NODES-MAPPING take O(|V0|) time,
since they go through every node of the original graph. Because G0 is connected,
|V0| ≤ |E0|, and since for all t, |Et| ≤ |E0|, we have that the GALAXY TREE inner
loop takes O(K|E0|) time. Finally, since ASSEMBLE-SPANNING-TREE goes again
through every edge visited at every collapse step, it also takesO(K|E0|) time, which
is thus the overall complexity of the GALAXY TREE algorithm.

Finally, we prove that GALAXY TREE indeed returns a spanning tree of G0.
Specifically, we show that by starting from GK and going in reverse order, we build
a spanning tree Tt of every Gt, including eventually G0. This process is illustrated
in Figure 3.8 and works as follow: when moving from Gt+1 to Gt, we expand each
node of Gt+1 into a star of nodes of Vt, and update all the outer edges we met so far
to have their endpoints in Vt. These outer edges are exactly Tt+1 and by translating
them into Et and adding the inner star edges of Gt, we build Tt. GK consists of a
single node with no edges so we have trivially that TK = GK . Then, assume we
have a spanning tree Tt+1 of Gt+1, so that all nodes in Vt+1 are connected without
cycle. Expanding each node of Vt+1 into a star of Vt nodes ensures that the spanning
property is preserved since each node of Vt is covered by construction. Those stars
are also without cycle by construction. The second step, translating the existing
edges of Tt+1, only connects nodes belonging to different stars and because those
edges were cycle free in Gt+1, this remains the case in Gt. Therefore we have build
a spanning tree Tt of Gt. By repeating this procedure, the GALAXY TREE algorithm
eventually builds a spanning tree of G0.

The bound of Proposition 3 amounts to O(|V0||E0|), which we believe is overly
pessimistic. Indeed, we expect the number of nodes to decrease by more than one
at each step, potentially leading to only O(log |V0|) iterations.

Example of GALAXY TREE We illustrate the operation of the GALAXY TREE al-
gorithm on a small example. Let us start with the initial graph G0 depicted in
Figure 3.9 on page 77 and initialize the eccentricity of all nodes to 0. When run-
ning EXTRACT-STARS, we see that the maximum degree is 4, achieved at nodes
{1, 6, 11, 16, 21, 26, 31, 36, 41}. For the sake of simplicity, assume nodes are picked
according to their index. First, node 1 forms the star S1

1 with peripheral nodes 2,
3, 4 and 5. This increments the eccentricity of those peripheral nodes by 1. Then
node 6 forms its star S1

2 with 7, 8, 9 and 10. The process continues until node 41 is
chosen to be the center of star S1

9 , at which point the max-priority queue has been
exhausted and EXTRACT-STARS finishes.

We then call COLLAPSE-STARS. This will connect all possible pairs of stars.
For instance, the edge between nodes 19 and 29 leads to the edge between S1

4 and
S1

6 . This is actually the only possible edge between S1
4 and S1

6 . Consider on the
other hand the case of edges (2, 6) and (2, 9). They both connect S1

1 and S1
2 . Yet

at this point of the algorithm, the eccentricity of node 2 is 1, the eccentricity of
node 6 is 0 and the eccentricity of node 9 is 1. The edge (2, 6) has therefore the

13We can get rid of this O(|V0|) at each iteration by ignoring eccentricity and taking a random edge
between star, although it is not clear at the moment how it would affect the quality of the resulting
tree.

75

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

.

.

.

S3
1

(a) Spanning tree of G3

.

.

.

S2
1

S2
2

S2
3

(b) Spanning tree of G2

.

.

.

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

(c) Spanning tree of G1

.

.

.

1

2

3

4

5

6

78

9 10

11

12
13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

(d) Spanning tree of G0

Figure 3.8 – Unfolding stars to recover spanning trees

smallest total eccentricity and is chosen to connect S1
1 and S1

2 . The full result of the
COLLAPSE-STARS procedure is G1, which can be seen on Figure 3.10a.

We now run EXTRACT-STARS on G1. Because all nodes have degree 2, they
could all be chosen to be the center of a star. We again assume they are picked
according to their index and therefore we choose S1

1 to be the center of the star S2
1

with peripheral nodes S1
2 and S1

3 . The original nodes belonging to those peripheral
stars (nodes 4 to 15) have their eccentricity incremented by 1. The next node with
highest degree in G1 is now S1

4 , which forms a star with S1
5 and S1

6 . This choice
means that nodes 21 through 30 have their eccentricity incremented by 1. Finally,
S1

7 forms the last star with S1
8 and S1

9 . Then COLLAPSE-STARS connects the resulting
three stars, and this time there is only a single choice between each pair of stars,
leading to the graph G2 showed in Figure 3.10b

The action of EXTRACT-STARS on G2 is quite simple, because there is only one
star that can be created, so let say we choose S2

1 as its center, with S2
2 and S2

3 as
peripheral nodes. This increases the eccentricity of their underlying G0 nodes by 1
(namely nodes 16 to 45). Because there is only one star S3

1 left, COLLAPSE-STARS

returns G3 showed in Figure 3.10c and an empty list of outer edges, meaning that
the inner loop of GALAXY TREE is finished and we can go through every edges
we chose between stars at every level to recover the final spanning tree, a process
illustrated in Figure 3.8 on the current page. For completeness, we can also look
at the edges which are not part of the spanning tree, that is the test edges, and
compute how long are the paths joining their endpoints. Indeed, this is the second
quantity appearing in the mistakes bound of equation (3.7). As shown in Table 3.7,
this average length is 7.

76

3.3. Low stretch trees and spanners

S2
1

S2
2

S2
3

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

1

2

3

4

5

6

7
8

9
10

11

12
13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

S31

Figure 3.9 – The execution of the GALAXY TREE algorithm. The original graph is
made of the solid and dashed edges connecting the nodes labeled by their index.
Edges forming the final spanning tree are solid while the others are dashed. Their
colors indicate at which iteration they were chosen to be inside a star. The four
shades of gray, from white to dark gray denote increasing node eccentricity (as
computed at the end of the algorithm). The ith star created during the jth iteration
of the algorithm is denoted Sji . Refer to the main text for the complete description
of the execution.

S1
1

S1
2

S1
3

S1
4

S1
5

S1
6

S1
7

S1
8

S1
9

(a) Resulting graph after the first iteration

S2
1

S2
2

S2
3

(b) Resulting graph after the second itera-
tion

S3
1

(c) Resulting graph after the third iteration

Figure 3.10 – The other iterations of GALAXY TREE

77

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

Table 3.7 – Length of the paths not in the resulting spanning tree.

test edge path in the tree length

2, 9 2–6–9 2
3, 12 3–1–4–14–11–12 6
13, 29 13–11–15–26–29 4
20, 24 20–16–17–23–21–24 5
25, 42 25–21–23–17–16–19–29–26–15–11–14–4–1–2–6–8–37–36–39–

32–31–35–43–41–45
24

33, 38 33–31–32–39–36–38 5
34, 43 34–31–35–43 3

Discussion on the number of iterations needed A crucial quantity of the GALAXY

TREE algorithm, both in terms of complexity and resulting stretch, is the number
of collapses K needed before termination. While this is still elusive to express in
the general case, let us first look at some simple cases. For instance, a very sparse
example of graph is the line graph. While it is already a tree, let us look how the
GALAXY TREE algorithm operates on it. Say we have n nodes and m edges in that
line. Here, a star is made at most of three consecutive nodes. In the worst case,
centers will be chosen such that we have a succession of three and two nodes stars,
as in Figure 3.11. This will results in 2n/5 stars organized in a line, which is less
than half of n. Thus we can conclude that in this case, GALAXY TREE will finish
after O(log n) iterations. Note that a barbell graph (two cliques connected by a line)
would requires a number of iterations logarithmic in the length of that central line,
despite having many more nodes and edges.

Figure 3.11 – A line graph with stars in blue.

In fact, it is helpful to look at this question from the other direction. Namely, we
can wonder what is the minimum number n(K) of nodes necessary for a graph to
requires at least K collapses before being reduced to a single node. Checking by
hand, we have that n(1) = 2, n(2) = 4 and n(3) = 8. Furthermore, this number is
achieved by a line or circle consisting of exactly 2K nodes. By induction, we can even
show that on any line or circle graphs with 2n nodes, the GALAXY TREE algorithm
will terminate after n collapses. Assuming we could prove that n(K) = 2K , given a
graph G with n = 2log2 n nodes, by definition of n(K) = 2K , it would require less
than dlog2 ne = O(log n) collapses before being reduced to a single node. However,
we were not able to rule out the possibility that there is a graph more parsimonious
than a line still able to survive the same number of collapses. Therefore, we cannot
conclude that n(K) = 2K and we leave this statement as a conjecture.

Variants of EXTRACT-STARS The execution of EXTRACT-STARS is mainly deter-
ministic, except for the fact the ties between nodes with the same highest degree
are broken arbitrarily. This allows for an efficient implementation, and simplifies
the analysis of the resulting sequence of stars and therefore the induced spanning
tree. However, it can be detrimental in an adversarial context, where we could
end up with a tree forcing a lot of mistakes. We add an element of randomization
to EXTRACT-STARS by letting it use two optional arguments, a threshold function
τ or a degree function d̃. Such functions modify the center sampling process in the
following way:

78

3.3. Low stretch trees and spanners

• if nt,i is the number of node remaining in Vt before choosing the ith center,
choose a node uniformly at random among those with a degree larger than
τ(nt,i). The idea is to choose among a small set of high degree nodes, for
instance by letting τ(n) =

√
n. Note however we cannot guarantee there will

always be nodes with degree above the threshold, in which case we default
on the highest degree node

• if degi(u) is the degree of node u before choosing the ith center, choose node
proportionally to d̃(degi(u)). Again, the degree function is designed so that
it favors the selection of high degree nodes. For instance, one could use
d̃(degi(u)) = degi(u)2.

These two variants are more time consuming because they require additional
bookkeeping. Therefore, we don’t provide a full complexity analysis and only
briefly sketch their implementations here.14 For the threshold function, we maintain
two queues, high and low, containing nodes whose degree is respectively above and
below the current threshold. We select a node uniformly at random in high, remove
the corresponding star from Gt, recompute the new threshold and if necessary,
move nodes which fell under the threshold from high to low and those who climb
above the threshold from low to high. For the degree function, we can draw any
node as center proportionally to its weight (where the weight of node u is defined as
df (deg(u))). Yet we cannot use the standard method of computing the cumulative
sum of weights since some of them change at each iteration. Therefore, we construct
a binary tree whose leaves are the nodes of Vt and where each tree nodes maintain
the sum of weights in its left and right subtrees. To sample, we draw a random
number r between 0 and the total weight of the tree and go down from the root to
the leaf spanning the weight interval containing r. When degrees are updated (or
graph node removed), we update the weights along a path from the corresponding
leaves to the root of the tree.

A variant of the GALAXY TREE algorithm as a whole we did not explore so
much in practice is its ability to produce spanners by stopping early. Basically if we
stop at iteration t, we output the graph Gt (which in general is not a tree) with its
edges unfolded to lie in E0. This corresponds to a trade off between having more
edges than |V0| − 1 but potentially making shorter connection. This would also be
interesting for the EDGE SIGN PREDICTION problem. Assuming the treewidth of Gt
is decreasing with t, we could try to show there is “reasonable” number of paths
between u and v, compute their parity and take a majority vote on the results.

3.3.2 Related work

Looking for a subgraph H of G that best preserves the distance in G while being
sparse is an old problem, driven originally by network design in fields such as
transportation [Qua60] and electrical circuits [Kni60]. The way we define “preserv-
ing the distance”, and the exact form of H give rise to several problems, which we
summarize later in Table 3.9. We first give some definitions, then cover the most
relevant problems in details, and finally give some pointers for the others problems.

Let the distance between u and v in G be

dG(u, v) =
∑

e∈pathG(u,v)

`(e) ,

where `(e) is the length of the edge e and pathG(u, v) is the shortest path between u
and v in G. In the following, we consider only the uniform case, in which the length
of an edge is equal to its weight. The stretch of an edge (u, v) in H is defined as

stretch(u, v) =
dH(u, v)

dG(u, v)
.

14Although they are available online at https://github.com/daureg/magnet/blob/
master/veverica/{ThresholdSampler.py, NodeSampler.py}.

79

https://github.com/daureg/magnet/blob/master/veverica/ThresholdSampler.py
https://github.com/daureg/magnet/blob/master/veverica/NodeSampler.py

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

We may then want to minimize the stretch of:
1) some pairs of nodes. That is, givenL andR in V , minimize

∑
u∈L,v∈R stretch(u, v)

2) all pairs of nodes corresponding to edges ofG, i.e. minimize
∑

(u,v)∈E stretch(u, v)
3) all pairs of nodes, i.e. minimize

∑
(u,v)∈V 2 stretch(u, v)

Note that for unweighted graphs, the second problem reduces to minimizing

stretch(H) =
∑

(u,v)∈E

| pathH(u, v)|. (3.8)

If furthermore H is tree, this is equivalent to minimize the second term of equation
(3.7). Therefore we focus mainly of that definition of stretch, and consider the other
two only briefly.

The second point affecting the problem is the structure of H . The only require-
ments are that it must be spanning all the nodes involved in the computation of the
chosen stretch, and that ∀(u, v) ∈ E, dH(u, v) ≥ dG(u, v). Beside that, H can be a
tree of G, a general subgraph of G or even a subset of V 2 (i.e. containing edges not
in E). We focus mainly on the first two cases, since they are covered by the GALAXY

TREE algorithm.

Trees One early mention of seeking a low-stretch spanning tree is given by Hu
[Hu74], albeit in more general form:

Problem 1 (Optimal Communication Spanning Tree). Given a set of nodes V =
{v1, . . . , vn}, a set of distances dij and a set of requirements rij between vi and vj , find a
spanning tree connecting these n nodes such that the total cost of communication of the
spanning tree is a minimum among all spanning trees. The cost of communication for a
pair of nodes is ri,j multiplied by the sum of the distances of arcs which form the unique
path connecting vi and vj in the spanning tree. The cost of a spanning tree is the sum of
costs over all pairs of nodes.

For a weighted graphG = (V,E,w), by letting dij = wij and ri,j = I {(i, j) ∈ E},
finding an Optimal Communication Spanning Tree thus amounts to finding a low-
stretch spanning tree. Table 3.8 present a list of works where the stretch was
improved.

We start with the seminal paper of Alon et al. [Alo+95]. It touches on many
topics, and frame the problem in a game theoretic way but here we only focus
on two of their results: a lower bound of Ω(log n) for the average stretch of any
tree and their construction of a tree with expO(

√
log n log logn) average stretch in

time O(m2). The lower bound follows from an existing result in extremal graph
theory [Bol04, pages 107–109]: there is a positive constant a such that for all n ∈ N,
one can construct a graph G with n vertices and 2n edges such that every cycle G
has a length of at least a log n. Now consider any spanning tree T of G. While all
the n− 1 edges of T have a stretch of 1, the n+ 1 remaining ones form a cycle in T
hence in G as well and thus incur a stretch of at least a log n. This shows that the
average stretch is at least 1

2a log n.
They construct a low stretch spanning tree in a bottom up manner like the

GALAXY TREE algorithm. First, they extend the definition of stretch to multi-
graph [Alo+95, Section 4] and then describe a procedure to transform in linear time
any multigraph G with n nodes to a multigraph G′ on the same nodeset with at
most n(n+1) edges such the average stretch ofG′ is at most twice that ofG [Alo+95,
Lemma 5.2]. The next ingredient is an algorithm to build a low diameter decom-
position of a multigraph G, parametrized by a number x(n) depending of n. It
works by repeatedly selecting an arbitrary node and growing a ball around it until
the number of edges leaving the ball is at most a fraction 1/x(n) of the number of
edges with both endpoints in the ball. The key property of this decomposition is
that it yields a partition of G in clusters such that the radius of each cluster is small
(namely at most O(x(n) log n)) and there is most a fraction 1/x(n) of edges between

80

3.3. Low stretch trees and spanners

clusters. Finally, the iterative procedure is a follows: once a partition has been built,
we compute a shortest path spanning tree in each cluster that are then collapsed into
super nodes to form the next graph G′ and the process repeats. Another difference
from GALAXY TREE, besides the partition procedure, is that G′ is a multigraph,
taking into account the number of edges joining cluster, while COLLAPSE-STARS

picks only the most direct one.
Another interesting idea from this paper is to consider a distribution over trees

instead of a single instance, especially when one is concerned about the maximum
stretch instead of the average one. For instance, on a cycle with n nodes, a tree is
obtained by removing one edge, and that edge incurs a stretch of n−1. The uniform
distribution over such trees has a maximum stretch of 2

(
1− 1

n

)
[Kar89].

Table 3.8 – Reproduction of Table 1 from [AN12], showing the evolution of the best
asymptotic average stretch over time.

work average stretch time

[Alo+95] exp(O(
√

log n log logn)) O(m2)
[Elk+05] O((log n)2 log logn) O(m log2 n)
[ABN08] O(log n(log log n)3) O(m log2 n)
[KMP11] O(log n(log log n)3) O(m log n log log n)
[AN12] O(log n log log n) O(m log n log log n)

The idea of recursively partitioning the graph and construction a low-stretch
spanning tree in each part is common to all the papers of Table 3.8. Elkin et al.
[Elk+05] devise a (δ, ε)-star decomposition such that all the stars have comparably
low radius. It was modified in [ABN08] to improve the stretch. Then Koutis et al.
[KMP11] improve the runtime by rounding the edge weights to the closest power
of 2 and using a modified implementation of the Dijkstra’s algorithm in the case of
at most k distinct edge weights [Orl+10]. Finally, Abraham et al. [AN12] describe an
even more complex but tighter petal decomposition.

Spanners As we mentioned, by stopping the GALAXY TREE algorithm before
it finishes, we obtain a set of edges spanning the graphs that is not a tree. Such
structure are called spanner. More precisely, the subgraph H is said to be an t-
spanner of G if, for a parameter t ≥ 1, and for every pair u, v ∈ V of vertices,
it holds that dH(u, v) ≤ t · dG(u, v). The problem was introduced by Peleg et al.
[PS89] and Peleg et al. [PU89] and has been extensively studied since then, for it
has many applications in network design. It was also showed to be NP-HARD to
approximate [EP07]. The most simple construction is a greedy algorithm [Alt+93]
that works similarly to the minimum spanning tree construction. Starting from
an empty subgraph H , it goes through every edge (u, v) of G sorted by weight
and check if there is a path between u and v in H of length at most t. If this is
the case, the edge (u, v) is dropped, otherwise it is inserted in H . This results in a
(2t− 1)-spanner with O(n1+1/t) edges, which is an optimal trade-off between those
two quantifies. Furthermore on weighted graphs, the greedy spanner total weight is
essentially optimal [FS16]. However, the best implementation of it, using a dynamic
data structure [RZ04] is not scalable for it runs in O(tn2+1/t) and cannot easily be
parallelized. Parallelization therefore requires other kind of approaches [Pet08;
Mil+15]. Recently, Elkin et al. [EN17] showed how to obtain, for any ε > 0, a
(2t− 1)-spanner with O(n1+1/k/ε) edges in t rounds, with probability at least 1− ε.

Other problems Finding low stretch trees and spanners with respect to the exist-
ing edges is the most relevant problem when addressing the EDGE SIGN PREDIC-
TION problem. For the sake of completeness, we nonetheless give an overview of
some related problems.

81

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

For instance, Johnson et al. [JLK78] define the following problem, where the
stretch is defined over all possible pairs of nodes15:

Problem 2 (Network Design Problem). Given an undirected integer-weighted graph
G = (V,E,w), a budget B ∈ N and a criterion threshold C ∈ N, does there exist
a spanning subgraph G′ = (V,E′) of G with weight w(E′) ≤ B and criterion value
F (G′) ≤ C, where the criterion function F (G′) denotes the sum of the weights of the
shortest paths in G′ between all vertex pairs?

They prove that finding such a subgraph is NP-COMPLETE, by exhibiting a
reduction from the KNAPSACK problem. They also prove that the less general
problem of finding a spanning tree on an unweighted graph, that is

Problem 3 (Simple Network Design Problem). Problem 2 with w being the equal to 1
for all edges in E and B = |V | − 1.

is also NP-COMPLETE by reduction from EXACT 3-COVER. However, it has recently
been show that this Simple Network Design problem can be approximated to a
constant factor 6 [Che+10]. Moreover, even when the graph is weighted, Abraham
et al. [ABN07] achieve a universal constant bound for any weighted graph.

Another problem appear when the low-stretch structure H can include edges
not in G (as long as the distances in H remain larger than the distances in G). This
is captured by the following problem [Sco69]:

Problem 4 (Optimal Network Problem). Given a set V of n vertices, find a set of
spanning edges E ⊂ V 2 that minimizes the sum of the length of the shortest paths between
all vertex pairs while the total length of the resulting network does not exceed some upper
bound B ∈ N.

This can be seen as a special case of Problem 2 with G being the unweighted
n-complete graph. Scott [Sco69] proposes a backtracking solution and two local
search approximate algorithms. Some early branch and bound heuristic solutions
to Problem 4 are surveyed in [Min89, Section 2.3.2] although they do not come with
asymptotic guarantee on the stretch. Furthermore, Wong [Won80] proves that for
any ε ∈ (0, 1), finding a |V |1−ε approximation is NP-COMPLETE. However, if we
consider the average stretches over a distribution of trees, then this approximation
factor can be reduced to Θ(log n) [FRT03].

Finally, the stretch can also be computed for a subset of the edges. This is useful
in cases where we have prior information on the importance of individual nodes
or edges. For instance, Abraham et al. [Abr+17] show that for every t, any n-nodes
graph G = (V,E) has a subset S of size at least n1−1/k, and a spanning tree that has
stretch O(k log logn) between any node in S and any node in V . Likewise, Gupta
et al. [Gup+17] describe how to maintain a light subgraph H that minimizes the
distance between pairs of source and sink that are given in an online fashion.

As shown by Table 3.9, those problems defined in the seventies are still being
discussed nowadays in top tier conferences, proving their relevance and impact
beyond the EDGE SIGN PREDICTION problem.

3.3.3 Empirical evaluation

In this section, we provide empirical evidences of the properties of GALAXY TREE

over several classes of graph, and compare it with a BREADTH FIRST TREE baseline.
Namely, we consider three kinds of graph topology (with both synthetic and real
world instances that carry signs on their edges) and evaluate (i) what average
stretch is reached by various trees and (ii) how accurate is the sign prediction.

15We adapt their notations to match ours

82

3.3. Low stretch trees and spanners

Table 3.9 – A summary of the lowest stretches achievable for various problems.

kind of
stretch

only existing edges extra edges allowed

tree not tree

some
pairs

O(k log logn) [Abr+17] [Gup+17, Section 4] —

all
existing
pairs

O (log n(log log n)) [AN12] (2t− 1)-spanner,
O(n1+1/t) edges [Alt+93]

Θ(log n) in
expectation [FRT03]

all
possible
pairs

6 for unweighted graphs [Che+10] and
O(1) in general [ABN07]

— no need for extra
edges in that case

3.3.3.1 Graph topology

The three kinds of topology we consider are:

GRID which are 2D lattices, where each node has four neighbors except on the
boundary. The synthetic ones are square, while the “real world” ones represents
the four neighbors pixel connectivity of the pictures showed in Figure 3.12 on
page 87.

PREFERENTIAL ATTACHMENT which are built synthetically according to the model
of Barabási et al. [BA99]. While this does not follow the more rigorous specification
of Bollobás et al. [BR04], informally, we start with a line graph of m nodes and
add node one by one until the graph consists of n nodes. Each time a new node is
added, it is connected to m of the existing nodes with a probability proportional to
their degree. Here we choose m = 3.13, that is when adding a new node, we pick 3
or 4 existing neighbors such the initial expected number of neighbors for each new
nodes is 3.13. Such graphs are quite sparse and have short diameter, thus provid-
ing a crude but reasonable approximation of online social networks. Therefore, the
real world instances of the PREFERENTIAL ATTACHMENT model are WIKIPEDIA,
SLASHDOT and EPINION networks from Chapter 2 along with GOOGLE+. The
last one is constructed from ego networks of GOOGLE+16 by keeping the largest
connected component of users whose gender is known. Basic statistics of those
real PREFERENTIAL ATTACHMENT graphs are presented in (Table 3.10).

TRIANGLE which consists of a Delaunay triangulation of a set of points randomly
located in a 2D space.17

Table 3.10 – Dataset description

|V | |E| fraction of + edges 2|E|
|V |·(|V |−1)

WIKIPEDIA 7 065 99 936 78.5% 4.00 · 103

GOOGLE+ 74 917 10 130 461 67.6% 3.61 · 103

SLASHDOT 82 052 498 527 76.4% 1.48 · 104

EPINION 119 070 701 569 83.2% 9.90 · 105

16Available at http://snap.stanford.edu/data/egonets-Gplus.html
17As implemented by the graph-tool library (https://graph-tool.skewed.de)

83

http://snap.stanford.edu/data/egonets-Gplus.html
https://graph-tool.skewed.de

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

3.3.3.2 Stretch

The first property of Galaxy trees we wish to evaluate is their stretch, which depends
only of graph topology. Recall that following equation Equation 3.8, we define the
average test edge stretch as 1

|Etest|
∑

(u,v)∈Etest
|pathTu,v|, where |pathTu,v| is the unique

path between u and v in T .
As we consider unweighted graphs, we compare GALAXY TREE with a natural

baseline, namely a spanning tree rooted at the highest degree node and obtained
through a breadth first visit of the graph. This involves randomness in the order in
which nodes are visited. Likewise in GALAXY TREE, the choice of the edge linking
two stars is not always unique, meaning that we have to break ties at random.
Therefore, for each graph, we repeat the tree construction 12 times and present the
average result, noting that the variance (showed as error bar in Figure 3.13) is small.

On PREFERENTIAL ATTACHMENT and TRIANGLE, we see in Figure 3.13 on
page 88 that both trees exhibits logarithmic stretch, although with a larger constant
for GALAXY TREE. Note that this is also the case for others low stretch tree methods
[PKK14, Section 5.3.1]. On GRID however, GALAXY TREE preserves this logarithmic
stretch growth while this is visually no longer the case for BREADTH FIRST TREE. In
that case, we cannot expect a better stretch than logn

2048 according to [Alo+95, Theorem
6.6].

3.3.3.3 Sign prediction

The second design goal of Galaxy trees is to accurately predict the sign of edges in
Etest. Except for the three real datasets that already include signs18, all the other are
constructed, meaning we have to set sign on their edges in the first place. This is
done by partitioning the nodes into two clusters. For GOOGLE+ we use node gender,
for pictures we use node color (black or white), and for all others, we propagate
labels 0 and 1 from randomly selected high degree nodes. Once each node belongs
to one of the two clusters, we set the sign of an edge between two nodes to be + if
they are in the same cluster and − otherwise. Predicting using path parity will thus
gives perfect result. To test performance in real situations, we then add noise, that
is we select a fraction of edges uniformly at random and flip their sign.

Like in Section 2.5, we evaluate the performance of our prediction using the
Matthews Correlation Coefficient (MCC), defined in equation Equation 2.9 on
page 26. As showed in Figure 3.14 on page 89, when the noise level is low, GALAXY

TREE performs better than BREADTH FIRST TREE. As the noise level gets higher,
they have similar performance. Note also than in Figure 3.14c, GALAXY TREE is less
sensible to the size of the graph.

To further assess the quality of our trees, we plug them in them into an existing
heuristic method to predict edge sign: A sym exp [KLB09]. It computes the expo-
nential of the adjacency matrix after it has been reduce to z dimension. This allows
to count the sign of all paths between two pairs of nodes with decreasing weight
depending of their length. To simulate an active learning setting, we reveal only
a subset of edge in A. This subset can be: i) the edges forming a BREADTH FIRST

TREE, ii) the edges forming a GALAXY TREE iii) |V | − 1 edges chosen uniformly
at random. We set the parameter z equal to 15 because i) it is one of the best in
[KLB09, Fig. 11] and ii) it performs well on real datasets in [Ces+12a, Fig.3].

As the A sym exp has a O(n3) complexity and uses quite some memory at predic-
tion time, the larger graphs used previously are not all included. The conclusion of
Figure 3.15 on page 89 is that except on social networks, it is better to use spanning
trees than random edges. Specifically, GALAXY TREE on GRID and BREADTH FIRST

TREE elsewhere.

18We nonetheless perform some preprocessing in order to make them undirected and to remove
the small proportion of conflicting edges (e.g. positive from u to v but negative from v to u).

84

3.4. Conclusions

3.4 Conclusions

3.4.1 Summary

In this chapter, we expanded our efforts on characterizing edges in complex net-
works by addressing the EDGE SIGN PREDICTION problem in undirected signed
graphs. We first demonstrated, conceptually and practically, that the methods we
designed in Chapter 2 are not suitable to this new setting. Drawing on the well
established theory of social balance, we therefore came up with a different learning
bias. More precisely, we posit that nodes latently belong to K groups. Then that the
edge signs are initially set to be positive if both endpoints belong to the same group
and negative otherwise. And that finally we observe such assignment after it had
been perturbed uniformly at random.

We connected twice this bias for the EDGE SIGN PREDICTION problem with the
CORRELATION CLUSTERING problem. First, solving CORRELATION CLUSTERING

on a training set would provide us with the most reasonable partition of the nodes
into K groups, allowing us to predict the test signs accordingly. Second, the optimal
value of the CORRELATION CLUSTERING objective is a measure of the difficulty
of the EDGE SIGN PREDICTION problem [Ces+12b]. We thus presented a detailed
overview of the CORRELATION CLUSTERING problem and its proposed solution.
Our goal was to point out that despite its hardness in the worst case, there exist
efficient heuristics in practice, as well as methods with formal guarantees in more
favorable cases. We furthermore noted that such cases are those when the sign
assignment is close to follow our bias.

Such general CORRELATION CLUSTERING approaches would typically be used
in a batch setting. In the last part of this chapter, we instead shifted our attention
to the active setting, in the special case where K = 2. This allowed us to exploit
our bias in a more specific way. Namely, we described an implementation of the
GALAXY TREE spanning data structure [Vit14]. The idea is to query the sign of
edges that connect the endpoints of every other edge by the shortest possible path.
Our experiments showed that this GALAXY TREE construction used in active EDGE

SIGN PREDICTION is competitive for some classes of graphs.

3.4.2 Future work

Beyond those preliminary experiments, we could push further our methods along
several directions:

1) The basic analysis of Proposition 3 shows that on any graph with n nodes, the
GALAXY TREE will perform at most n collapses before terminating. However,
as we mentioned on page 76 at the end of Section 3.3.1, we believe that this
maximum number of collapses might be as low as O(log n). It turns out we
were not able to prove this statement. This is unfortunate, for besides giving
us guarantees on the algorithm runtime, this would also inform us about the
stretch of the resulting tree. Indeed, let us consider the reverse direction in
which the GALAXY TREE algorithm operates. That is, instead of a sequence
of collapses transforming the original graph into a single node, we look at
a sequence of expansions turning this single node into the original graph.
Informally, the length of the longest path can only increase by a factor of five as
each pair of nodes in Gt+1 expands into two connected stars in Gt.19 Whereas
the behavior of the average stretch is less straightforward, it is reasonable to
expect that the smaller the number of expansions, the lower the stretch.

19More precisely, consider the edge (u, v) in Gt+1. The two nodes are expanded into the two stars
su and sv in Gt, respectively with peripheral nodes {u1, . . . , uk} and {v1, . . . , v`} and center cu and
cv . In the worst case, there is now a path of length 5 in Gt, e.g. (u1, cu, uk, v`, cv, c1).

85

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

2) As mentioned in Section 2.4, EDGE SIGN PREDICTION could be extended to
weighted signed graphs. This is also relevant in undirected signed graphs. For
instance, the signs might have been generated by thresholding an expensive
symmetric similarity function. In that case, we might want to avoid extra
evaluation of that function by predicting the signed weight of some new edges.
A natural way to modify the GALAXY TREE algorithm is the following. When
choosing the center of stars, pick the node with the current highest weighted
degree. When choosing an edge to connect two centers, pick among the edges
with the lowest endpoints eccentricity the one with the lowest weight. What
is less clear is to which extent such changes would affect the analysis.

3) We wish we had more time to further explore CORRELATION CLUSTERING

under stability assumptions, especially as a way to handle the case where
K > 2. Recall that a clustering instance, made of a weighted graph and a
partition objective, is α-stable (with α > 1) if its optimal partition remains the
same whenever every weight wi is multiplied by a factor ci between 1 and α.
Furthermore, we say that an algorithm is robust if, given a clustering instance
I, it yields one of the two following outcomes in polynomial time:

(i) if I is α-stable, returns the optimal solution of I;
(ii) if I is not α-stable, either returns the optimal solution of I or reports that
I is not α-stable.

This is a handy property because, in general, we cannot practically check the
stability of an instance. Indeed, since we do not know the optimal solution,
we cannot tell whether it changes or not under perturbations.

As an example, let us consider the k-MINIMUM MULTIWAY CUT problem.
Given a weighted undirected graph G and a set of k terminal nodes, the goal
is to partitionG into k clusters, each containing exactly one terminal, such that
the total weight of edges across clusters is minimized. This bears some super-
ficial similarity with k-MINIMUM MULTICUT. Recall from Section 3.2.2.2 that
k-MINIMUM MULTICUT requires us to find the lightest set of edges to cut in
order to separate k pairs of nodes. Recall further that k-MINIMUM MULTICUT

is equivalent to CORRELATION CLUSTERING. As for k-MINIMUM MULTI-
WAY CUT, we can cast it as a CORRELATION CLUSTERING problem [BBC04,
Theorem 24]. Interestingly, there exists a robust algorithm for 2− 2/k-stable
instances of k-MINIMUM MULTIWAY CUT [AMM17]. Under the assumption
that graphs obeying our learning bias are α-stable, for some α depending
of the graph irregularity, having such a stable algorithm for k-MINIMUM

MULTICUT would be very valuable. However, this might prove challenging.
Indeed, k-MINIMUM MULTICUT is harder than k-MINIMUM MULTIWAY CUT,
as illustrated by their respective approximation factor, O(log n) and less than
1.3 [BSW17].

86

3.4. Conclusions

(a) monastery (b) world (c) poster

(d) logo (e) space (f) waterfall

Figure 3.12 – Real world pictures and their binarized version

87

Chapter 3. Edge sign prediction in general graphs and Correlation Clustering

10 11 12 13 14 15 16 17
log |V |

50

100

150

200

250

av
er

ag
e

te
st

ed
ge

s
st

re
tc

h Breadth first tree rooted at highest degree node
Short Galaxy Tree

(a) GRID

10 11 12 13 14 15 16
log |V |

5

6

7

8

9

10

11

12

av
er

ag
e

te
st

ed
ge

s
st

re
tc

h Breadth first tree rooted at highest degree node
Short Galaxy Tree

(b) PREFERENTIAL ATTACHMENT

10.0 10.5 11.0 11.5 12.0 12.5 13.0
log |V |

10

12

14

16

18

20

22

24

av
er

ag
e

te
st

ed
ge

s
st

re
tc

h Breadth first tree rooted at highest degree node
Short Galaxy Tree

(c) TRIANGLE

Figure 3.13 – Stretch over graphs of increasing size

88

3.4. Conclusions

10 11 12 13 14 15 16 17
log |V |

0.0

0.1

0.2

0.3

0.4

0.5

M
C

C

BFT 1%
SGT 1%

BFT 2%
SGT 2%

BFT 5%
SGT 5%

BFT 10%
SGT 10%

(a) Synthetic GRID

12 13 14 15 16
log |V |

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
C

C

BFT 1%
SGT 1%

BFT 2%
SGT 2%

BFT 5%
SGT 5%

BFT 10%
SGT 10%

(b) Pictures GRID

10 11 12 13 14 15 16
log |V |

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
C

C

BFT 1%
SGT 1%

BFT 2%
SGT 2%

BFT 5%
SGT 5%

BFT 10%
SGT 10%

(c) Synthetic PREFERENTIAL ATTACHMENT

10.0 10.5 11.0 11.5 12.0 12.5 13.0
log |V |

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
C

C

BFT 1%
SGT 1%

BFT 2%
SGT 2%

BFT 5%
SGT 5%

BFT 10%
SGT 10%

(d) TRIANGLE

9.0 9.5 10.0 10.5 11.0 11.5
log |V |

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
C

C

BFT
SGT

(e) Real world network

Figure 3.14 – MCC over various graphs

9.5 10.0 10.5 11.0 11.5 12.0
log |V |

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
C

C

BFT 1%
SGT 1%
RND 1%

BFT 2%
SGT 2%
RND 2%

BFT 5%
SGT 5%
RND 5%

BFT 10%
SGT 10%
RND 10%

(a) Synthetic GRID

11.5 12.0 12.5 13.0 13.5
log |V |

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
C

C

BFT 1%
SGT 1%
RND 1%

BFT 2%
SGT 2%
RND 2%

BFT 5%
SGT 5%
RND 5%

BFT 10%
SGT 10%
RND 10%

(b) “Real” GRID

10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5
log |V |

0.0

0.2

0.4

0.6

0.8

1.0

M
C

C

BFT 1%
SGT 1%
RND 1%

BFT 2%
SGT 2%
RND 2%

BFT 5%
SGT 5%
RND 5%

BFT 10%
SGT 10%
RND 10%

(c) Synthetic PREFERENTIAL ATTACHMENT

10.0 10.5 11.0 11.5 12.0 12.5 13.0
log |V |

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
C

C

BFT 1%
SGT 1%
RND 1%

BFT 2%
SGT 2%
RND 2%

BFT 5%
SGT 5%
RND 5%

BFT 10%
SGT 10%
RND 10%

(d) TRIANGLE

9.0 9.5 10.0 10.5 11.0 11.5
log |V |

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
C

C

BFT
SGT
RND

(e) Real world network

Figure 3.15 – A sym exp over various graphs

89

Chapter 4

Edge clustering in node attributed
graphs

In this chapter, we extend the problem of predicting edge types beyond the binary
case. Furthermore, we assume that we are provided with node attributes in addition
to the mere graph topology we used in the previous chapters. Our motivation is
twofold: intrinsic and extrinsic. First, we want an interpretable model that, given
two connected nodes, can explain why they are linked. This leads us to use a linear
model, for it is both easily amenable to interpretation and computationally efficient.
Second, edge-labeled graphs are susceptible to further studies by existing networks
analysis methods, as we will describe shortly. Thus, our method is a useful way of
enriching data to extract new insights from it.

As demonstrated by our prior extensive coverage, predicting edge sign is an
interesting and challenging problem in its own right. Yet it is natural to extend and
generalize it. First, there are other edge binary classification problems that arise
in graphs. For instance, predicting whether a link in a social network is strong or
weak [De +14; RTG17]; predicting whether two authors in a citation network are
advisor-advisee or regular coauthors [Wan+10]; predicting whether two persons in
a company network have a relationship of manager-subordinate or not [DNG07];
predicting whether two proteins interact physically or genetically; or whether two
neurons have a chemical or ionic link between them [NL15].

Second, and more generally, we are also interested in multiclass problems,
within the context of multilayer graphs [Kiv+14; Boc+14]. While Kivela et al.
[Kiv+14] define an elaborate and highly expressive notion of multilayer graph,
in this chapter we shall restrict ourselves to the following1:

Definition 4.0.1 (k-multilayer graph). A k-multilayer graphG is a pair (V, {E1, . . . , Ek}),
where V is a set of n nodes and each Ei ⊂ V × V is a set of edges, for i ∈ JkK. We call
the subgraph Gi = (V,Ei) the ith layer of G and it will be convenient to think of G as the
superposition of its k layers, so that by a slight abuse of notation we can writeG =

⋃k
i=1Gi.

We naturally identify each layer with a type of relation, so that our classification
problem is to decide to which layer a given edge belongs. Furthermore, we make the
simplifying assumption that two nodes can be connected in at most one layer (i.e.
∀u, v ∈ V, (u, v) ∈ Ei ⇒ ∀j 6= i, (u, v) /∈ Ej), meaning that the resulting superposi-
tion of all layers does not turn into a multigraph. As mentioned in the introduction,
such multigraphs can be used to model different relation types in networks related
to social interactions [ST10; KMK11], bibliographical citation [Cai+05; DKK11],
economic exchange [Kal+10; BFG10; CMM15] and biology [Li+11; Kéf+15; MB16].
This additional information on the nature of the relationships allow traditional
graph tasks to be performed more precisely and with higher granularity. Consider
for instance node ranking [Cos+13]; node clustering [Bot+15, Section 2; Kiv+14,
Section 4.5.1] and the study of information spreading [Sal+15]. However, to produce

1Which roughly corresponds to the single aspect, node-aligned multilayer graph of [Kiv+14].

91

Chapter 4. Edge clustering in node attributed graphs

such finer results, the methods we just referenced require labeled edges that in
many cases are not available, thus justifying the usefulness of our work. Indeed, in
Table 4.1, we give some examples of networks whose edges are currently unlabeled
and what type of relations they could possibly denotes. In other words, given a
small list of possible reasons in terms of attributes and two nodes, why are they
connected?

Table 4.1 – Real attributed graphs that we have collected or are easily accessible. Unfortunately,
none of them comes with known edge types, which implies the last column is merely speculation.

Source Node Edge Node profiles Possible edge meanings

DBLP author citation keyword count of their papers scientific topic
Github devel-

oper
following popularity, number of lines

written in various programming
languages

common hobby, involvement in the same
open source project, same workplace,
famous role model

Amazon video
game
products

“frequently
bought
together”

price, genre, time of release,
popularity and evaluation

part of a series, cheap bundle, same genre
and level of satisfaction

Wikipedia article internal link category, length, edit history,
bag of words

generalization, specialization,
organisation

Flickr user following activity statistics, groups
membership, count of photo
tags

geography, same tags distribution,
famous role model,

Foursquare venue “frequently
visited
together”

location, popularity, category,
the time distribution at which
they are visited

closeness, part of a “series” (e.g. movie
theater→ restaurant→ bar→ club)

IMDB movie sharing
actors

genre, release date and
popularity

part of a series, common theme, same
time period and genre

BlaBlaCar driver or
passen-
ger

shared ride experience, location,
preferences, rating

geography, professional, leisure

Besides predicting potentially more than two classes, the other difference with
the setting of the previous chapters is that we now assume that nodes are associated
with attributes, which we call profiles. One could argue this makes our framework
less general, for attributes are not always available, or may come with missing val-
ues. Another recent finding is that, despite a natural assumption, the nodes profiles
in attributed graphs are not necessarily correlated with known ground truth com-
munities [HDF14], casting further doubt on the usefulness of that extra information.
This raises the question of why we cannot simply extend the troll/trust method
of counting the type of edges incident to every node and learn a model from such
features. A similar tension between relying solely on always available albeit sparse
topological information or leveraging possibly richer attributes information also
exists in link prediction [MBC16]. However, the presence of profiles is motivated by
the last fundamental difference with the previous problems. In this chapter, we do
not have access to any direct supervision in the form of labels. Rather than a strict
classification problem, we are thus faced with unsupervised clustering, guided
by the information contained in node profiles. Note that contrary to the relation
between CORRELATION CLUSTERING and EDGE SIGN PREDICTION, this time the
objects we seek to cluster are edges and not nodes. Furthermore, we stress that the
profiles crucially increase the interpretability of our models.

It would be tempting to assume that nodes are connected because they share
the same attributes. Indeed, a common learning bias in graphs is that nodes are
connected together because they are similar, or as often said proverbially: “birds of
a feather flock together”. Formally this is called the homophily principle [MSC01]
and has been consistently verified, both in offline [HL78; Mar88] and online social
networks [The09b; BAX12]. While our every day life experience makes homophily

92

4.1. Attributed graphs and problem definition

not surprising in social networks, the same assortative patterns [New02] are present
in other kinds of networks [MF09]. Here though, we assume that links cannot
only be explained by a global homophily along all attributes but rather by partial
homophily, partial heterophily or even both. An example of this combination is
the balanced news diet problem [Gar+17], where we try to connect users of a social
network to prevent them from being locked into topical echo chambers. In that
situation, a user A might be more likely to listen to the opposite point of view of
user B about gun control if they both share common demographics and interests.
This suggests, as we make it formal in the next section, that node attributes can
include polarized opinions, i.e. both positive and negative numerical values.

After having motivated our problem of predicting multiple edge types in at-
tributed graphs, we carry on by stating more formally the EDGE ATTRIBUTED

CLUSTERING problem in Section 4.1. Namely, we define a similarity between nodes
profiles and seek a small number of explanations (corresponding to edge types)
achieving good scores as prescribed by a linear model. After explaining how this
problem relates to the EDGE SIGN PREDICTION problem on 2-clusters signed graphs
on page 97, we introduce in Section 4.2 several methods to solve it in practice.
This ranges from tailoring the k-MEANS algorithm to our goodness measure (Sec-
tion 4.2.1), to a convex relaxation of our objective function (Section 4.2.2) all the
way through a richer and higher capacity matrix formulation allowing overlapping
clustering of edges (Section 4.2.3). Because finding publicly available real data with
both node attributes and edge types proved difficult, we describe a synthetic model
in Section 4.3, on which we perform extensive experiments. We then survey in
Section 4.4 works that are related to the EDGE ATTRIBUTED CLUSTERING, while
noting that very few address it directly. Finally, we suggest in Section 4.5 several
directions in which our model could be extended to handle more general classes of
graphs.

4.1 Attributed graphs and problem definition

We start by introducing some notations and terminology about edge types in node-
attributed graphs. Then we present two options to model the interactions between
nodes and the role of attributes in “explaining” edges (Section 4.1.1). Choosing one
of these two options leads us to formulate the EDGE ATTRIBUTED CLUSTERING

problem in Section 4.1.2. We then describe additional constraints allowing us to
take into account the topology of the graph. Finally, we elaborate on the relation
between EDGE ATTRIBUTED CLUSTERING and EDGE SIGN PREDICTION in signed
graphs.

4.1.1 Setting and modelling

Like we wrote in the introduction, to classify edges, we make use of both the topol-
ogy of the graph and the attributes of its nodes. Namely, we are given an undirected,
unweighted graph G = (V,E). We also have side information in addition to the
graph topology. It takes the form, for every node u, of a d-dimensional feature
vector xu ∈ Rd that we call the profile of u. Because we want to model heterophily,
we more explicitly have that xu ∈ [−1, 1]d. To justify this statement, let us take the
example of encoding the gender of a user in a social network, assuming there is
only two values possible: male and female. Traditionally, this attribute would be
set to 1 if the user is female and 0 otherwise. Instead, we use +1 and −1, to clearly
emphasize the difference between the two values. The same is valid for continuous
variables. For instance, an attribute could range from −1 to +1 to represent the
ideological stance of a user on the conservative/liberal scale [BMA15].2 This applies

2Note of course that in both cases, negative values do not represent a judgement but are merely a
reversible mathematical convenience.

93

Chapter 4. Edge clustering in node attributed graphs

even to non diverging positive quantities such as age, which can be projected to
[−1, 1] using pre-processing like standardization or z-score.

Stacking all these node profiles in a |V | × d matrix X , our input so far is (G,X).
As it is standard in classification problem, we are also given the number of edge
types k.3 Moreover, recall that we do not merely want to classify edges into type,
but also provide an explanation of why two nodes are connected. This requires
the introduction of three further concepts: 1) how to represent a connection (i.e. an
edge), 2) how to represent an edge’s explanation, and 3) how to evaluate which
explanation is the best. We now present our modelling choice:
1) We naturally describe an edge (u, v) through the profiles of its endpoints. More

precisely, we combine xu and xv by an operator s defined as:

s(u, v) = xu ◦ xv = suv ∈ Rd ,

where ◦ stands for the Hadamard (or component wise) product. As showed in
Table 4.2, for each dimension i ∈ JdK, the vector suv holds a value indicating
whether the profiles of u and v agree, disagree or are indifferent along that
dimension.

Table 4.2 – We show the effect of the Hadamard product in combining information from
two users u and v. Instead of actual numbers, in this table we use + to denote a large
positive value, − to denote a large negative value, 0 to denote a small absolute value and ?
to denote an arbitrary value.

xu;i xv ;i suv ;i

+ + +
− − +
+ − −
0 ? 0

2) The k explanations take the form of bounded norm vectorsDk = {w1, w2, . . . , wk} ⊂
Bd, where Bd is the `2-unit ball of Rd. We call such a vector w`, for ` ∈ JkK, a
direction. As we shall explain more formally later on, those directions are exactly
the parameters learned while solving our problem.

3) Given an edge (u, v), all the k directions {w1, w2, . . . , wk} provide a possible
explanation of why u and v are connected. We score these explanations by
assigning them a goodness of explanation4 defined as:

g(suv, w`) = suv
Tw` .

As the w notation hints, a direction can be interpreted as a set of weights. These
weights indicates to which extent each attribute contributes to the connection,
according to that direction. For a given set of directions Dk, the classification of
edges is naturally performed by the following operator E , returning the index of
the direction with the maximal goodness:

E : E ×
(
Rd × . . .× Rd

)
−→ JkK

(u, v),Dk 7−→ arg max`∈JkK g(suv, w`)

Because it will be clear from context, we lighten the notation and simply write
E(u, v) instead of E ((u, v),Dk).
This choice of s and g enjoy two interesting properties. First, it encompasses

all cases of homophily, indifference and heterophily. For instance, given xu =(
1 0 −1

)T and xv =
(
−1 1 −1

)T , the direction w =
(
−1/
√

2 0 1/
√

2
)T ∈ Bd

3Because our problem is essentially unsupervised, assuming that we are given k is a simplification,
on which we elaborate on page 96.

4Whereas the name is inspired by the concept of goodness of fit, there is no formal relation.

94

4.1. Attributed graphs and problem definition

achieves the maximal goodness. In doing so, it highlights that u and v disagree on
the first component (i.e. heterophily), agree on the last component (i.e. homophily)
and that the middle component is irrelevant (i.e. indifference). This also shows that,
second, given the linear nature of the goodness g once suv has been computed, it
provides interpretable explanation of why two nodes are connected.

Those two properties of s and g should not be taken for granted. Indeed,
a natural choice for the operator s is the difference between the profiles, that is
suv = xu−xv. In that spirit, if u and v are close along a directionw`, we expect xuTw`
to be close to xvTw`, as measured by |xuTw` − xvTw`|. And because it is easier to
deal with smooth functions, we define the goodness to be g(suv, w`) = −

(
suv

Tw`
)2,

where the minus preserve the semantic than the “better” the direction w`, the larger
the goodness. However, with this formulation, there is no way to set w`;i in order to
“highlight” the fact that xu;i and xv ;i are widely different. Furthermore, the square
in the goodness expression loses the linearity.

We conclude with a last comment on the norm of the directions. While being
exactly of norm one is not primordial, the role of bounding the norm of the directions
(i.e. having

∑d
i=1w`

2
;i ≤ B2) is to tie the d dimensions together. Without such a

constraint, and with our choice of s and g, we could simply study each dimension
separately, whereas this bound adds a coupling across different attributes, since
increasing the weight of an attribute mechanically affects the weights of the other
attributes. For consistency, we also consider node profiles to be normalized and
having unit norm. A further practical justification is that if nodes are users of a
social network and the profiles measure their activity across several domains, this
allows to compare users with various level of total activity.

4.1.2 Learning problem and additional constraints

Problem definition With working definitions of s and g at hand, we now formally
write down the problem of finding the directions maximizing the goodness of the
graph.

Problem 5 (EDGE ATTRIBUTED CLUSTERING). Given a graph G = (V,E), node
profiles X ∈ [−1, 1]n×d and an integer k ∈ N, find a set of k norm-bounded directions
Dk = {w1, w2, . . . , wk} ∈ Bd and associate to every edge of E the direction with the
maximal goodness. Formally, solve

arg max
Dk={w1,...,wk}⊂Bd

∑
u,v∈E

g(suv, wE(u,v)) (4.1)

where suv = xu ◦ xv, g(suv, w`) = suv
Tw` and E(u, v) = arg max`∈JkK g(suv, w`).

Example In Figure 4.1, we present a small instance of the EDGE ATTRIBUTED

CLUSTERING problem, where we are given the graph shown in Figure 4.1a, whose
node attributes are listed in Table 4.1b. The first two attributes are categorical,
denoting the company employing each user, either G or F. Instead of a classic
binary one-hot encoding, we additionally use −1 to denote that a user had been
employed by a given company. Gender is encoded as presented earlier, and we
also apply a pre processing to transform age between −1 and 1. Finally, opinion
represents the view of former F employees about a societal issue, with 0 denoting a
neutral or unknown position. In Table 4.1b, we also show two directions that explain
the connections in the graph G. The first covers being of the same age and same
companies, especially at G, while the second directions covers former employees
of F having different age and opinion. Not only are the results interpretable as
claimed before, but we can also assess the strength of each explanation, using their
goodness. For instance, we see that the edge between x and y has a low score,
because although those two users have the same age and used to work at F, not
both of them works at G.

95

Chapter 4. Edge clustering in node attributed graphs

♂

u

♂

v

♀

w

♀

x

♂

y

♀
z

.083

.104 .077

.094

.061

.027

.092

.126

(a) The graph G. Larger nodes represent old users
while smaller ones are younger. Their gender is
inscribed in the node and their shape represent
their opinion: rectangle for −1, circle for 0 and
diamond for +1. Finally, orange stands for being
employed at company G and faded blue for hav-
ing been employed at company F. As for the edges,
the red ones are labeled by the first direction and
the green ones by the second direction, and we
label them with the associated (normalized) good-
ness.

G F gender age opinion

u +1 0 −1 −0.8 0
v +1 −1 −1 −0.7 +1
w +1 0 +1 0.6 +1
x +1 −1 +1 0.9 −1
y 0 −1 −1 0.7 −1
z 0 −1 +1 −0.6 +1

w1 +3 +1 0 +1 0
w2 0 +4 0 −2 −4

(b) The numerical attributes of the six
nodes. All are categorical encoded
with a ternary scheme, except for age,
which has been transformed to fit in
[−1, 1]. They are followed by the (non
normalized) two directions w1 and w2.

Figure 4.1 – A small instance of EDGE ATTRIBUTED CLUSTERING and an handcrafted
solution, albeit non-optimal.

Choice of k For clarity, the previous example of Figure 4.1 has only a handful of
nodes and dimensions, and can therefore reasonably be explained by two directions.
But in larger graphs, the choice of k is a legitimate question. At one extreme, picking
k = |E| renders the topology of the graph irrelevant, as we can simply exploit the
trivial solution of having a single direction wuv = suv

||suv || for every edge (u, v). More
generally, as k increases, we expect the value

max
Dk

∑
u,v∈E

max
`∈JkK

g(suv, w`)

to increase as well, at the cost of interpretability. There could be a principled
approach to finding the “best” k, based on a information theoretical measure of the
complexity of Dk and the minimum description length principle [Grü05]. However,
in the interest of simplicity, in the following we focus on the formulation stated in
Problem 5, where k is given. In practice, we further constrain k to be small (say less
than 10). Within the multilayer framework, k could also be seen as the number of
underlying layers. To retain a fair level of interpretability, we deem appropriate to
have k not too large.

Topological constraints In addition to assuming that the input graph is the super-
position of a small number of layers, another way to leverage the graph topology is
to define local constraints at the node level. Indeed, one of our motivation is that
it is not enough to look at edges in isolation, but rather we expect the connections
of one node to influence the connections of its neighbors. We now present two of
these local, node-level constraints.

First, if a graph was to perfectly follow our model, every edge (u, v) would be
maximally explained by one of the k directions. This would happen if the profiles
of u and v were collinear with this direction, up to sign reversal. When considering
several edges, we could imagine that the nodes profiles result from the following
process. Two nodes u and v establish a connection by first picking a direction
w` ∈ Dk and add to their base vector bu and bv ∈ Rd a fraction auv > 0 of w`. We

96

4.1. Attributed graphs and problem definition

therefore subtract the following term

Lnode =
∑
u∈V

∣∣∣∣∣∣
∣∣∣∣∣∣xu − bu −

∑
v∈N (u)

auvwE(u,v)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(4.2)

from (4.1). The cost we pay is introducing the extra parameters {auv}u,v∈E and
{bu}u∈V to be learned, but we will see in the next section how to handle that in
practice. On the other hand, it has two advantages. First, this is another way,
besides goodness, in which the (given) profiles provide prior information about
the (unknown) directions, and thus restrain the search space. Second, this makes
the directions dependent of the topology of the graph, by coupling them with the
neighborhood of each node.

Second, we also make the assumption that each node u is only involved in
klocal < k different directions. The intuition is that when d is large enough, users
have to focus their energy and can only express their interest in a few number of
dimensions. In other words, all the edges incident to u can only be associated with
one of klocal directions. For some values of klocal, this is a NP-COMPLETE graph
colouring problem and thus cannot necessarily be enforced exactly. Still, it can be
seen as a learning bias and will be used to generate synthetic data. Furthermore, we
can also express it as an optimization constraint. Specifically, suppose that for an
edge (u, v) associated with the direction wi ∈ Dk, we have a k-dimensional vector
yuv equal to ei (that is all zero except for the ith component set to one). Let us stack
all such vectors into a |E| × k matrix Y , and let C ∈ R|V |×|E| be the incidence matrix
of G5, with cu being its uth row. Then cTuY is a k-dimensional vector that counts
how many times each direction is incident to node u. We thus want the `0 norm of
cTuY (i.e. the number of its non-zero component) to be upper bounded by klocal. This
is not a convex constraint but we can relax it, for such sparsity inducing problems
have been well studied [Bac+12a]. Namely, we let yuv be a softmax membership
k-dimensional vector, that is we set, ∀i ∈ JkK,

yuv ;i =
exp(βg(suv, wi))∑k
j=1 exp(βg(suv, wj))

,

with β > 0 a large positive constant. And we replace the `0 norm by a `1 norm (or
even a k-support norm [AFS12]), yielding the following Llocal term to be minimized:

Llocal =
∑
u∈V

∥∥∥∥∥∥
∑

v∈N (u)

yuv

∥∥∥∥∥∥
1

=
∑
u∈V

 k∑
i=1

∑
v∈N (u)

exp(βg(suv, wi))∑k
j=1 exp(βg(suv, wj))

 (4.3)

It is reasonable to further expect that two neighboring nodes share one common
direction among their klocal ones. One way to ensure this condition is to imagine
that the set of allowed klocal directions changes smoothly over the graph. This
property depends of the topology, as we can see by considering two extreme cases:
a line and a complete graph. On the line, once a node has picked two allowed
directions from its two neighbors, the remaining ones can be chosen arbitrarily. On
the complete graph on the other hand, this choice is much more constrained.

Connection with signed graphs The learning bias of Section 3.1.3 implicitly de-
fined an idealized EDGE SIGN PREDICTION problem as:

Problem 6 (idealized EDGE SIGN PREDICTION). Given n nodes belonging latently to
K groups, predict whether two nodes u and v belong to the same group (that is (u, v) is
positive) or not (that is (u, v) is negative).

5The incidence matrix of a graphG, usually denoted byB, is the |V |×|E|matrix such thatBi,j = 1
if the node vi and edge ej are incident and 0 otherwise.

97

Chapter 4. Edge clustering in node attributed graphs

In Section 3.3 we studied in particular the important special case where K = 2.
Now consider an instance of Problem 5 where k = 2, and where the profiles and
edges are based on group membership. We now check that the optimal solution
of such an instance is consistent with the solution of this idealized EDGE SIGN

PREDICTION problem on the same graph.
Let us first define this instance formally. Given a graph G = (V,E), call the

K = 2 groups of Problem 6 L and R. We then define the nodes profiles X as follow.
We first draw uniformly at random a vector p from {−1, 1}d, then let the profiles in
L be p√

d
and the profiles in R be − p√

d
. We call this instance I = (G,X, k = 2). With

this choice, we have

suv =

{
1
d = sinner if u and v are in the same group,
−1
d = souter if u and v are in different groups.

Let us denote by mi the number of edges that are internal to L and R, and by
mo = |E| −mi the number of edges between L and R.

Proposition 4. Let D2 = {w?1, w?2} be an optimal solution of Problem 5 on the instance I .
Then D2 provides the following solution to Problem 6: each every edge explained by w?1 is
predicted positive, and every edge explained by w?2 is predicted negative.

Proof. Take any w1, w2 ∈ Sd × Sd such that w1 6= w2. Assume without loss of
generality that w1 = arg maxw∈{w1,w2} sinner

Tw. This implies that:

sinner
Tw1 =

1

d

d∑
i=1

w1;i >
1

d

d∑
i=1

w2;i = sinner
Tw2 .

In turn, we have that:

souter
Tw2 = −1

d

d∑
i=1

w2;i > −
1

d

d∑
i=1

w1;i = souter
Tw1 .

We can thus rewrite the maximization objective (4.1) of Problem 5 as:

arg max
w1,w2∈Sd

∑
u,v∈E

max
w∈{w1,w2}

suv
Tw = (4.4)

arg max
w1,w2∈Sd

∑
u,v∈E

suv=sinner

sinner
Tw1 +

∑
u,v∈E

suv=souter

souter
Tw2 =

arg max
w1,w2∈Sd

mi
1

d

T

w1 +mo
−1
d

T

w2

One can check using Lagrange multipliers that for any c ∈ Rn, maxw∈Sd c
Tw = c

‖c‖ .
The solution of (4.4) is therefore:

w?1 =
1√
d

and w?2 =
−1√
d

As claimed, the edges associated with w?1 (respectively w?2) are the edges that are to
be predicted positive (respectively negative) in Problem 6.

This is nothing more than a sanity check, as the profiles explicitly encode the
membership of each node to one of the two groups. Indeed, the proof makes no use
of the dimension d of the profiles, so that d = 1 would be enough. Slightly more
interesting is the case were those profiles are set up as before, but perturbed uni-
formly at random. Namely, the sign of each coordinate is changed with probability
p < 1/2. One can then check that

E [sinner] =
(1− 2p)2

d
1 = −E [sinner]

98

4.2. Proposed approaches

and that furthermore, the variance of each component is 8(p−p2)−16(p−p2)2

d2 . While
the previous {w?1, w?2} solution is now only optimal in expectation, we see that the
variance decrease quadratically with the dimension of the profiles. In practice we
thus expect this solution to be very close to the optimal. Intuitively this can be seen
as taking the majority of d votes on whether each node belongs to one group or the
other.

It is natural to ask how this result can be extended to more than K = 2 groups. The
most natural idea is to use one-hot encoding of the group membership as profiles, with
additional negative values as in the example of Figure 4.1. Namely, set the profiles of the
ith group as follow: all component are equal to −b except for the ith one, which is equal
to a, where a and b are real constants such that a2 + (K − 1)b2 = 1. However, in that
case, we check numerically that w+ = 1√

d
and w− = −1√

d
is the not the optimal solution,

and that a solution achieving a larger objective function value does not cluster the edges
between inner and outer groups.

4.2 Proposed approaches

We now introduce the five methods solving Problem 5 that we will experimentally
compare in the next section. Recall that given a graph topology (V,E) and node
profiles X , we first build the edges representation S = {suv}(u,v)∈E and then look
for k bounded directions that maximize the total goodness of the graph, possibly
under topological constraints. We start with a straightforward baseline, which
simply performs a

1) k-MEANS clustering of S,
and propose a post-processing to improve it, plugging our custom goodness metric
into the existing

2) LLOYD algorithm for clustering.
Because these two methods consider each edge in isolation with no regard for the
topology, we then describe a convex relaxation of the objective in equation (4.1),
which is further

3) COMBINED with the node constraint of equation (4.2).
Finally, we depart slightly from finding k directions by considering a low-rank
matrix formulation, where each edge is assigned a linear combination of a small
number of base directions, paving the way to overlapping edge clustering. More
precisely, we give a convex formulation of that objective that can be solved by a

4) FRANK–WOLFE algorithm,
as well as by an alternating optimization method, where we make the low-rank
factorization

5) EXPLICIT.

4.2.1 k-MEANS baseline and improvement

A simple and natural baseline is to cluster the set of all similarity edge vectors
{suv : (u, v) ∈ E} using the k-means algorithm, where k is the number of directions
set in Problem 5. Formally, given the graph G = (V,E) and the node profiles X
as input, we order the edges from e1 to em. Then we build the matrix S ∈ R|E|×d,
whose ith row is the similarity suv = xu ◦ xv between the profiles of the endpoints
of ei = (u, v). Running k-means on the rows of S will thus partition E into k sets of
edges, call them E1, . . . , Ek. A drawback of that simplicity is that it does not solve
Problem 5. Indeed, the partition of E does not provide the set of directions Dk =
{w1, w2, . . . , wk} ∈ Sd we are looking for. A natural way of obtaining directions
from that partition is to set w` to be the normalized cluster center of E`. We refer to
this method as k-MEANS, and assuming it requires T iterations to converge, it has a
linear complexity of O(Td|E|).

However, this does not guarantee that we have assigned the best direction to

99

Chapter 4. Edge clustering in node attributed graphs

every edge. We therefore propose the following heuristic, inspired by the Lloyd
algorithm for k-means, but where the directions in Dk play the role of centroids.
Namely, we alternate between two steps:

(i) create a new partition {E′1, . . . , E′k} by assigning every edge (u, v) to the
direction w maximizing its goodness suvTw, that is

E′` =

{
(u, v) ∈ E : w` = arg max

wi∈Dk
suv

Twi

}
(ii) update the directions to make them optimal with respect to the edges cur-

rently assigned to them. Specifically, set Dk =
{
w` = s`

‖s`‖

}k
`=1

, where s` =∑
u,v∈E′`

suv is the sum of all the similarity vectors of the edge in E′`,
until the edge assignment is stable or we reach a maximum number of iterations.
By analogy with the k-means algorithm, obtaining convergence guarantees in the
general case would be surprising, but in practice we expect that only a small number
T of iterations would be needed. We call this method LLOYD and note it also has a
linear complexity of O(Td|E|).

In both cases, those methods do not take the topology of the graph into account,
motivating the following approaches.

4.2.2 Convex relaxation

By unrolling the operator E in (4.1), we can rewrite our optimization objective as

arg max
Dk={w1,...,wk}⊂Bd

∑
u,v∈E

max
`∈JkK

g(suv, w`) (4.5)

The difficulty in optimizing directly (4.5) stems from the inner max operator, which
we replace here by a convex relaxation. Indeed, one can check that given a set of
numbers S = {a1, a2, . . . , a|S|} and a real number β > 0, we have

max
ai∈S

ai = lim
β→+∞

1

β
log

 |S|∑
i=1

exp (βai)


Using this fact, and dividing the goodness term and the Lnode term of (4.2) respec-
tively by the number of edges and nodes so that they have comparable magnitude,
we now have the following objective:

arg max
w1,...,wk∈Sd,
auv∈R, bu∈Rd

1

|E|β
∑
u,v∈E

log
(k∑
`=1

exp
(
βsuv

Tw`
))
− µ

|V |
∑
u∈V

∣∣∣∣∣∣
∣∣∣∣∣∣xu − bu −

∑
v∈N (u)

auvwE(u,v)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

(4.6)
where µ > 0 is a trade-off parameter.

Note that in the second term, wE(u,v) = arg maxw`∈Dk suv
Tw`. However, the

arg max function is again not convex and we thus use the same relaxation as before.
Namely, this relaxationA takes as input a k-tuple of directions and return their sum
weighted by the softmax function as follow:

A : Rd × . . .× Rd −→ Rd

(w1, . . . , wk) 7−→
∑k

i=1
exp(βsuvTwi)∑k
j=1 exp(βsuvTwj)

wi

This function has an explicit derivative with respect to any wi, but it is rather costly
to compute and in practice we found automatic differentiation [MDA15] to be more
efficient.

We make two further simplifications. First, notice that the set Sd × . . .× Sd is
not convex. To ease the optimization procedure, we thus only impose the directions

100

4.2. Proposed approaches

w` to lie within the unit ball and expect them to have norm close to one in order
to maximize the dot product in the suvTw` term6. Second, while (4.6) requires
to optimize kd + |E| + |V |d parameters, we fix auv = deg(u) and bu = 0 for all
edges and nodes in order to be independent of the size of the graph. The final
problem solved by our COMBINED method using (full) projected gradient descent
is therefore:

arg max
w1,...,wk∈Bd

1

|E|β
∑
u,v∈E

log
(k∑
`=1

exp
(
βsuv

Tw`
))
− µ

|V |
∑
u∈V

∣∣∣∣∣∣
∣∣∣∣∣∣xu − 1

deg(u)

∑
v∈N (u)

A(w1, . . . , wk)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(4.7)

4.2.3 Matrix optimization

Besides relaxing the max operator from (4.1), another solution to remove it would
be to increase k to be equal to |E|. As we already mentioned, this makes the problem
trivial. To avoid this, we add the constraint that all those |E| directions are linear
combinations of a small number k of basis directions. In order to formulate this
more clearly, we rewrite the previous objectives with matrices. We first show this
can be expressed in a form that is amenable to the Frank–Wolfe algorithm. Then we
take the alternative road of explicit low-rank matrix factorization, and we conclude
by commenting on the respective merits and disadvantage of all these approaches.

4.2.3.1 FRANK–WOLFE method

Seeking one direction for every edge, our goal is thus to maximize
∑

u,v∈E suv
Twuv.

This objective can be written in matricial form as tr(SW) = 〈ST ,W 〉F, where
S ∈ R|E|×d is the suv vectors for all edges stacked vertically and W ∈ Rd×|E| is
the matrix of all directions stacked horizontally and 〈A,B〉F = tr

(
ATB

)
is the

Frobenius inner product of two real matrices. More specifically, because of the unit
norm constraint on directions, we look for W in the set Md×|E| of d× |E|matrices
with unit `2 norm columns. To avoid the trivial solution of letting each direction
wuv merely be suv

‖suv‖ , we further constraint W to be of low rank. That is, what we
want to optimize is

min
W∈Md×|E|

−〈ST ,W 〉F + rank(W) .

However, while the Frobenius inner product is linear in W , the rank operator is
highly irregular and optimizing it directly is NP-COMPLETE. Therefore, we relax
the rank term by the nuclear norm of W , defined as ‖W‖∗ =

∑min(d,|E|)
i=1 σi(W),

where σi(W) is the ith largest singular value of W . The intuition is that the rank
of W is equal to the number of non-zero singular value, while the nuclear norm
is essentially an `1 norm on the spectrum of W . Therefore, as minimizing the `1
enforces sparsity, minimizing the nuclear norm tends to make the rank smaller by
ensuring the presence of zeros in the singular values of W . 7 This results in the
following optimization problem:

min
W∈Md×|E|

−〈ST ,W 〉F + λ‖W‖∗ ,

where λ is a regularization parameter. Since ‖ · ‖∗ is a norm, this objective function
is convex (although the domain over which we optimize is not), but it does not
have a gradient, forcing us to rely on potentially costly proximal gradient descent
methods [PB14]. Instead, we consider the equivalent problem obtained by replacing

6Indeed, since the first term is convex, its maximum can only be reach at the boundary of the
feasible domain [Roc70, Theorem 32.1]. However, we are also subtracting another convex term and
the resulting function is therefore more complicated.

7As mentioned in Section 2.4 about [Wan+17a], a tighter convex relaxation of the low-rank con-
straint is the max norm, but we do not pursue that venue further.

101

Chapter 4. Edge clustering in node attributed graphs

the regularization parameter with an upper bound δ on the nuclear norm of W ,
yielding:

min
W∈Md×|E|

‖W‖∗≤δ

−〈ST ,W 〉F .

The remaining issue is that W ∈ Md×|E| is not a convex constraint. As in the
previous formulation, we thus relax it by simply imposing that the `2 norm of the
columns of W are not too large. In fact, we already have a bound on these column
norms, because of the nuclear norm constraint.

Proposition 5. For any W ∈ Rd×|E| such that ‖W‖∗ ≤ δ, the ith column W:,i of W
satisfies ‖W:,i‖2 ≤ δ

√
d.

Proof. Let W be a matrix in Rd×m with d < m such that ‖W‖∗ ≤ δ. Furthermore,
let its singular value decomposition be such that we can write W =

∑d
l=1 σlulv

T
l ,

where ul and vl are d unit-norm vectors, of dimension d and m respectively. We
can thus express the general term Wk,i as

∑d
l=1 σlvl,iul,k. Because vl is unit norm,

vl,i ≤ 1 and

W 2
k,i ≤

(
d∑
l=1

σlul,k

)2

≤
d∑
l=1

σ2
l

d∑
l=1

u2
l,k

using the Cauchy–Schwartz inequality. The norm of the ith column of W then
satisfies:

‖W:,i‖2 =

(
m∑
k=1

W 2
k,i

) 1
2

≤
(

m∑
k=1

(
d∑
l=1

σ2
l

d∑
l=1

u2
l,k

)) 1
2

=

((
d∑
l=1

σ2
l

)(
d∑
l=1

m∑
k=1

u2
l,k

)) 1
2

From
∑d

l=1 |σl| ≤ δ, we have that
∑d

l=1 σ
2
l ≤ δ2. Combined with ul being unit norm,

we conclude that ‖W:,i‖2 ≤ δ
√
d.

However, setting δ = 1/
√
d is too stringent in high dimension, and because

this inequality is rather loose, it will likely results in very small column norms.
Instead of relying solely on the nuclear norm constraint, we therefore add an
additional regularization term equal to µ

∑|E|
i=1 ‖W:,i‖22 = µ〈W,W 〉F. Our final

convex formulation is then:

min
W∈Rd×|E|
‖W‖∗≤δ

〈µW − ST ,W 〉F . (4.8)

Because (4.8) is of the form minx∈X f(x) where f andX are convex, we can solve
it using the Frank–Wolfe algorithm [FW56; Jag13], which enjoys properties like a
O(1

t) convergence rate, a low computational cost by avoiding projection step and
the sparsity of its solution. It is an iterative procedure that maintains an estimate
x(t) of the solution and works succinctly as follow: it linearizes the objective f at
the current position x(t) by computing ∇f(x(t)), it finds a minimum s(t) of that
linearization within the domain X by solving arg mins∈X 〈s,∇f(x(t))〉 and it moves
toward that minimizer by a step γ, setting x(t+1) = (1 − γ)x(t) + γs(t).8 In the
case of (4.8), the linear minimization step amounts to arg min‖W‖∗≤δ 2µW − ST =

arg max‖W‖∗≤δ S
T − 2µW . Moreover, the δ-ball of the nuclear norm is the convex

hull of the matrix of the form δuvT with ‖u‖2 = 1 = ‖v‖2 [Jag13]. By letting u(t)
1 and

v
(t)
1 be respectively the left and right vectors associated with the largest singular

value of ST − 2µW (t), the minimizer s(t) we are looking for is therefore δu(t)
1 v

(t)
1

T
,

and we have W (t+1) = (1− γ)W (t) + t
2+tδu

(t)
1 v

(t)
1

T
. We perform a small number T

of such iterations, and these two eigenvectors are computed in a time linear in the

8γ is either found by a line search or, in our case, set to t/2+t.

102

4.2. Proposed approaches

number of non-zero entries of ST − 2µW (t) [KW92]. Thus the overall complexity of
this method, which we call FRANK–WOLFE, is O(Td|E|).

As said at the beginning of this section, the matrix formulation is not exactly
solving Problem 5. Therefore, for evaluation purposes, here we describe two ways
to extract k directions and an edge assignment from the matrix W obtained through
this FRANK–WOLFE method. The first is rather straightforward. It performs a k-
means clustering of the columns of W and use it as assignment, while the directions
are the normalized cluster centers. The second involves an extra optimization step.
Specifically, letting r be the rank of W , we first compute a reduced SVD such that
W = UΣV T , and then let P = U ∈ Md×r and QT = ΣV T ∈ Rr×|E|. We then
note that for any invertible matrix R ∈ Rr×r, we have W = PR−1RQT . Thus we
look for a matrix R that makes the columns of RQT as close as possible of having
unit `2-norm, that is R = minR∈Rr×r

∑E
i=1

∣∣∣∥∥RQT :,i

∥∥2

2
− 1
∣∣∣. Finally, as before, we

cluster the columns of RQT using k-means, and use the columns of PR−1 as basis
directions, noting they are not necessarily unit norm anymore.

4.2.3.2 EXPLICIT low rank factorization

We can avoid the rank regularization term altogether by making the low-rank
decomposition of W explicit, that by writing W = PQT and optimizing over both
P and Q. We thus call this method EXPLICIT. However, this comes at cost of
convexity. Indeed, given a rank k ≤ min(d, |E|), the problem becomes, assuming A
and B are fixed:

min
P∈Md×k,Q∈M|E|×k

h̃(P,Q) = −〈ST , PQT 〉F + µ‖X −B − C
(
A ◦QP T

)
‖2F (4.9)

The second term corresponds to the node loss term of equation (4.2), expressed
in matricial form as ‖X − B − C

(
A ◦W T

)
‖2F , where B ∈ R|V |×d is the node bias

vectors bu stacked vertically, C ∈ R|V |×|E| is the incidence matrix of G, A ∈ R|E|×d
is the matrix whose each row is the corresponding auv1 vector and ‖ · ‖F denotes
the Frobenius norm. As previously, we set B = 0 and the rows of A to be one over
the degree of the node at the origin of the corresponding edge.

While (4.9) is not jointly convex in both P and Q, it is convex in one of them
when the other is fixed. Therefore it can be solved via alternating optimization over
P and Q [BH02] using standard (projected) gradient descent algorithms, with the
following partial derivatives:

∂h̃

∂P
= STQ+ 2µAT ◦ (((X −B)T −AT ◦ (PQT)CT)C)Q

∂h̃

∂Q
= SP + 2µA ◦ (CT (X −B − C(A ◦ (QP T))))P.

Because the problem is not jointly convex, we are less concerned with the domains
of the variables not being convex, as we anyway have no guarantee to find a global
minimum. We also do not add a regularization term of the norm of the columns of
PQT . Indeed, since P ∈Md×k and Q ∈M|E|×k, each column of the resulting PQT

is a linear combination of k unit norm vectors of P with weights whose square sum
to 1 and thus their norm is bounded by

√
k. As opposed to all the previous methods,

computing the full gradient is not linear in the number of edges. Indeed, computing
the product STQ requiresO(|E|ω) arithmetic operations, where ω ≥ 2 is the optimal
exponent of matrix multiplication algorithm. This could be mitigated by using
stochastic gradient descent. Finally, to obtain a solution of the EDGE ATTRIBUTED

CLUSTERING Problem 5, we take the directions to be the columns of the resulting P ,
and the assignment to be a k-means clustering of the rows of Q.

103

Chapter 4. Edge clustering in node attributed graphs

Discussion While the EXPLICIT formulation is not convex, in practice we initialize
it with the solution from COMBINED and it thus converge after few iterations.
Namely, we set P0 ∈Md×k to be the final directions found by COMBINED and the
rows of Q0 ∈M|E|×k to be equal to the corresponding eE(u,v). Furthermore, in the
projection step of the Q variable, we actually ensure that all the entries of Q are
positive, which makes them easier to interpret as weights for the basis directions
of P . This is something that we cannot guarantee on the decomposition of the
matrix W obtained by the FRANK–WOLFE method. On the other hand, if we run
the FRANK–WOLFE algorithm for more than k iterations, the rank of W can be
higher than k, which might allow a finer clustering of the edges.

Compared with the COMBINED approach of Section 4.2.2, these two matrix
formulations require learning more parameters. Indeed, it increases from dk to
d|E|, as it each edge has a different direction, albeit made up of a small number of
basis directions. In the case of EXPLICIT, we could furthermore impose a sparsity
constraint on the columns of Q to reduces the number of coefficient to learn. Yet
this additional complexity has the advantage of allowing overlapping clustering
of the edges. This is useful in cases where two nodes have a relationship that is
best described by a combination of the k base directions. Moreover, in the case of
FRANK–WOLFE, this additional flexibility comes with no increase in computational
cost.

4.3 Synthetic experiments

In the previous section, we introduced five methods to address Problem 5, which
we now compare in our experiments. Specifically, this includes:

1. the k-MEANS baseline,
2. our LLOYD-like iterative refinement,
3. the COMBINED optimization of the two terms in (4.7),
4. the FRANK–WOLFE convex optimization of (4.8) and
5. the EXPLICIT explicit low-rank factorization, optimizing (4.9).

They all take as input a node-attributed graph, that is a pair G = (V,E) and X .
For evaluation purposes, we extract from their output a set of k directions and an
assignment of every edge to one of these directions. We try those five methods on
data generated synthetically to fit our model described previously in Section 4.1.1,
and study how they perform under various conditions.

4.3.1 Data generation

While there exists several methods to generate attributed graph with community
structure [YML13; Xu+14b; Kat+16], here we present the one we devised for our ini-
tial experiments, as it is specifically tailored to the model introduced in Section 4.1.1.
It takes the following parameters as input:

• the number of nodes n,
• the dimension of their profiles d,
• the total number of directions k,
• the maximum number klocal of directions incident to each node, and
• an integer no controlling to which extent two distinct directions explain com-

mon dimensions.
It then returns:

• a graph topology G = (V,E),
• a profile matrix X ∈ Rn×d,
• a set of k directions Dk ⊂ Bd, and
• an assignment from every edge (u, v) to a direction index yuv ∈ JkK such that

in most cases, E(u, v) = yuv. In other words, the direction assigned to (u, v) is

104

4.3. Synthetic experiments

indeed the one achieving maximum goodness. We will explain later why this
is not always the case.

Our methods essentially proceeds as follow:
1) We create an appropriate number of small Erdős-Rényi subgraphs and as-

sign to each node a set of klocal directions such that most pairs of adjacent
nodes have at least one directions in common (as we motivated after having
introduced equation (4.3) on page 97).

2) We connect the blocks by several pairs of nodes having one direction in
common, and pick for each edge (u, v) a direction index yuv ∈ JkK among the
ones shared by its endpoint.

3) We draw the k directions at random, ensuring they respect the parameter no.
4) Finally, we optimize the profiles so as to simultaneously maximize the edges

goodness, minimize the term Lnode of equation (4.2) and enforces as much as
possible that for every edge (u, v) ∈ E, E(u, v) = yuv.

Steps 1 and 2 generate a graph topology (V,E), while steps 3 and 4 generates
directions and profiles (D‖, X). Note however that step 3 is independent of the
steps 1 and 2, while step 4 is dependent on all the previous steps. We now describe
each of these steps in more details.

1) We first create small Erdős-Rényi subgraphs [ER59; Gil59] that we call blocks.
Then we assign to each node a klocal-tuple of directions such that two adjacent
nodes have at least one direction in common. For convenience, let us first identify
directions with colors and thus call such a klocal-tuple of directions a palette. For a
given palette p, we call adjacent palettes, denoted adj(p), all the palettes different
from p9 but sharing one color with p. Finally, we say that an edge u, v is colorless
if the palette of u and v have no color in common. Because in the general case,
it is not always possible to assign a palette to every node such that there is no
colorless edge,10 we now describe a simple heuristic. It performs a breath first
visit of a subgraph, starting from a random node. Upon visiting an uncolored
node u, it builds a set P of palette respecting the colouring constraint. Namely,
for every colored neighbor v of u, it retrieves the adjacen palettes of v’s palette
and builds their intersection:

P =
⋂

v∈N (u)

adj(pv) .

Then it selects uniformly at random a palette from P , or an arbitrary palette if P is
empty: see Figure 4.2 for a small illustration. Once all nodes have been colored,
we count the number of edges that are colorless. We repeat this procedure,
keeping track of the palettes assignment minimizing the number of colorless
edges.

2) Once we colored the nodes of every block, we look at pair of blocks, build a list
of all edges between blocks that are not colorless and sample from it to connect
blocks. The last step is to a assign a color yuv to each edge (u, v) from the shared
color of its endpoint (or an arbitrary color for colorless edges). We note that this
is reminiscent of the stochastic block model, although the probabilities of edges
between blocks are not uniform, for they depend of the palette assigned to every
node.

9We ruled out p being adjacent to itself to avoid the trivial solution of all nodes being assigned the
same palette.

10For instance, consider a 4-clique with k = 4 and klocal = 2. Without loss of generality, say we
assign the palette (1, 2) to node 1. The adjacent palettes are then (1, 3), (1, 4), (2, 3) and (2, 4). If we
assign those starting by 1 (respectively 2) to the second and third node, then the fourth palette has
to contain a 1 (respectively 2), which is not possible (because two connected nodes cannot have the
same palette). On the other hand, if we assign (1, 3) to the second, the third node can only have (2, 3),
meaning the fourth node has again no palette available. The same situation arises with (1, 4) and
(2, 4) respectively.

105

Chapter 4. Edge clustering in node attributed graphs

1

adj

2adj

3

4

P =
{

,
}

Figure 4.2 – A small example of the node palette assignment, with k = 4 colors
(blue, green, red and orange) and palettes of size klocal = 3. We assume nodes 1
and 2 have already been visited, and got assigned the palette (blue, green, red) and
(blue, green, orange) respectively. Moreover, we are currently visiting node 3 while
node 4 is yet uncolored. In that case, there are two possible palettes for node 3. If
we select (green, red, orange), a possible color assignment for the edges (1, 2), (1, 3)
and (2, 3) is respectively blue, red, and green.

3) We then generate k sparse, unit-norm directions Dk = {w1, . . . , wk}, indepen-
dently of the graph. An underlying assumption of our model is that each
direction should provide an explanation of why two nodes are connected that is
markedly different from the explanation of another direction. A way to achieve
that is to create directions with only a few non-zeros components, and ensure
that the non-zero components of one direction do not appear at the same position
as the non-zero components of another direction. Therefore, we control through
no the number of dimensions where more than one non-zero component exists
across the k directions. That is, when no = 0, each direction has exactly k/d non-
zero components that are disjoint.11 On the other hand, if for instance no = 5,
then 5 of the d dimensions will have two directions with non-zero components
on it. Those non-zero components are drawn uniformly at random from [−1, 1]
and each direction is then normalized. For instance, with d = 6, k = 3 and
no = 2, we could generate the following directions, where the blue non-zero
components are “overlapping” with the black ones:

w1 w2 w3

0.729
0
0
0

0.450
−0.516





0
0

−0.483
−0.533

0.694
0





0
−0.639
−0.769

0
0
0


4) Returning to directions instead of colors, we have a direction wyuv ∈ Dk assigned

to every edge (u, v). For easy of notation, in that paragraph, we will let wuv =
wyuv . The final step in generating our node-attributed graph is to find a set of
user profiles X = {xu}u∈V that maximizes the edge goodness and minimizes
the node loss term, defined respectively as:

Ledge =
∑
u,v∈E

suv
Twuv and

Lnode =
∑
u∈V

∣∣∣∣∣∣
∣∣∣∣∣∣xu − bu −

∑
v∈N (u)

auvwuv

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

11We choose d to be a multiple of k.

106

4.3. Synthetic experiments

where for simplicity, we fix as before bu = 0 and auv = 1
deg(u) . Furthermore, to

ensure that the direction assigned to any edge (u, v) achieves a higher goodness
than the other directions (that is ∀w` ∈ Dk \ {wuv} , g(suv, wuv) ≥ g(suv, w`)), we
also minimize a cross-entropy loss commonly used in non-binary classification
problem [Bis06, Section 4.3.4]. Specifically, denoting by puv,` = exp(g(suv ,wuv))∑k

`=1 exp(g(suv ,w`))

the softmax “probability” of suv being explained by direction `, the cross-entropy
loss is defined by:

Lcross−entropy = −
∑
u,v∈E

k∑
l=1

I {wuv = w`} puv,` . (4.10)

In practice, we first minimize

λLcross−entropy − Ledge (4.11)

with respect to X using the Adam algorithm [KB15] and automatic differentia-
tion [MDA15]12, projecting the current iterate back to the set of matrix with unit
L2 norm columns Mn×d at each step.

Finally, to minimize Lnode, we iterate over the nodes and take some gradient

steps to minimize
∣∣∣∣∣∣xu − 1

deg(u)

∑
v∈Nuwuv

∣∣∣∣∣∣2, but only to the extent that wuv
remains the direction with the highest goodness on the edge (u, v) ∈ E.

4.3.2 Results

In this section, we start by describing how we generate test instances of Problem 5
for the five methods we want to compare. Then we present two evaluation measures:
how well those methods classify edges, and how well they recover known directions.
We use the first measure to comment on the quality of the generated instances.
Finally we present the results of the five methods in Table 4.4 and Table 4.5.

Our test instances are generated as follow. We first choose n = 500, and generate
once a graph topology with directions assigned to all edges according to steps 1
and 2. This results in a graph G with roughly 1 350 edges. We then generate the
directions Dk according to step 3 and the following choice of parameters: d = 35,
k = 7, klocal = 3 and no = 0. Finally, we create the profiles X as described in
step 4. To account for the randomness of this generation process, we repeat our
measurement over 200 such generations of Dk and X . On the other hand, we verify
experimentally that generating various graphs while keeping Dk fixed gives the
same results, hence we will not report them in the main text.

In the rest of this section, we will refer to the set of parameters d = 35, k = 7,
klocal = 3 and no = 0 as the default configuration. We also try other configurations
to study the parameter sensibility of our methods. Specifically, we experiment with
less directions (k = 5) or more directions (k = 9, d = 36)13, with two higher levels
of overlap between the directions (no = 6 and no = 12), with more directions per
node (klocal = 4) and in larger dimension (d = 77).

Let us now describe how we evaluate the results of our methods on such
instances. As said at the beginning of this section, we extract from the output of each
method a set D̂k = {ŵ1, . . . , ŵk} of k directions, and assign a direction to an edge
(u, v) as E(u, v) = arg max`∈JkK g(suv, ŵ`). Recall that during the second of the step of
the instance generation, we assigned a direction index yuv to every edge. However,
we cannot simply evaluate our predictions by simply comparing E(u, v) and yuv.
Indeed, here is no guarantee that the D̂k directions are recovered in the same order
as they were generated. In case of strong disagreement between the predictions

12Both being implemented by the Pytorch package: http://pytorch.org/.
13We add one dimension to ensure that d remains a multiple of k.

107

http://pytorch.org/

Chapter 4. Edge clustering in node attributed graphs

and ground truth labels, it might additionally be difficult to find a permutation
to conciliate them. Therefore, we see the problem as a clustering one with known
ground truth, and turn to the Adjusted Mutual Information (AMI) [VEB09]. It is
an information theoretic measure that enjoys several properties: it is invariant to
permutations of the labels, invariant to the shape of clusters and it is bounded
between 0 and 1, where an AMI of 1 indicates perfect correlation with the ground
truth labels and 0 indicates perfect independence with the ground truth labels.

Besides the AMI score, we also measure how far the recovered directions D̂k are
from the actual ones, generated initially. More precisely, we associate each vector
w` ∈ Dk with the closest one in D̂k and report the average `2 distance between the
two elements of these k pairs, that is

d(Dk, D̂k) =
1

k

∑
`∈JkK

min
w′i∈D̂k

‖w` − w′i‖2

Before moving to the results, let us first note that, in the default configuration,
we do not always generate user profiles leading to a perfect assignment of edge
according to their goodness. This can be seen in Table 4.3. In general, this is not
always possible. Consider a k-regular subgraph, where the k edges incident to
every node are each assigned a different directions. By symmetry, it is impossible to
find node profiles that would achieve maximum goodness for all the edges. This is
partly what motivated the klocal local constraint. Even so, and more pragmatically,
whereas those AMI scores could be made higher by increasing the coefficient λ
in (4.11), this would imply a lower edge goodness. With our choice of λ, only a few
percent of the edges have a mismatch between the directions we assigned them and
the one with the largest goodness. Note also that depending of the parameters of
the generation, the AMI is not the same. Therefore, in the following, we divide all
the AMI scores by this natural score, in order to obtain a “standardized” measure.

Table 4.3 – The degree to which the edge assignment of step 2 agree with the directions and
profiles of steps 3 and 4. This is measured by the AMI between the assignment {yuv}uv∈E
and what maximal goodness would assign, i.e. {E(u, v)}uv∈E . We report the average AMI
and standard deviation over 200 generations of Dk, for different configurations.

Dk parameters default k = 5 k = 9, d = 36 no = 6 no = 12 klocal = 4 d = 77

AMI .922± .03 .925± .03 .905± .02 .880± .04 .874± .05 .893± .03 .973± .01

As showed in Table 4.4, COMBINED is always the best method and, excluding
EXPLICIT for now, the LLOYD heuristic is second except in one case, while k-MEANS

is third. Note that although the differences are not large in absolute value, they
are generally statistically significant. Coming back to EXPLICIT, not only does it
have the same performance as COMBINED, but we verified that it actually returns
the same predictions, up to a few edges that are classified differently. This can be
explained because they optimize the same objective and EXPLICIT is initialized
with the solution from COMBINED. However, we also verified that both edge score
and node loss are respectively higher and lower at the end of the optimization.
Finally, the results of FRANK–WOLFE are much worse than all the others, despite
the optimization leading to edge scores comparable to the other methods. This
suggests that the subsequent clustering is not adequate. Regarding the generative
parameters, and compared with the default configuration, the problem is easier
when the k directions are spread in a larger number of dimensions, and more
difficult when each nodes is involved in four directions instead of three. On the
other hand, whereas we expect the performance to decrease with increase in the
overall number of directions or their overlap, there is not consistent evidence of
that.

108

4.4. Related work

Table 4.4 – Standardized AMI of 5 methods, when generating directions with 7 configurations.
For each configuration, we generate directions 200 times, and report the mean standardized
AMI along with the standard deviation. Among the first three methods (that do not use matrix
formulation), we highlight the best one in bold brown and the second best one in italic red.
When the difference between a score and the next best one is statistically significant (i.e. when
we can confidently reject the hypothesis that the two distributions have the same mean), we
furthermore show in parenthesis the supporting p-value of a paired Student’s t-test.

Dk parameters k-MEANS LLOYD COMBINED FRANK–WOLFE EXPLICIT

default .818± .06 .873 ± .05 (1.25·10−63) .893± .04 (5.68·10−33) .381± .05 .893± .04
k = 5 .836± .08 .838 ± .07 .875± .06 (2.17·10−58) .213± .11 .875± .06
k = 9, d = 36 .803± .04 .881 ± .04 (2.66·10−94) .894± .04 (8.98·10−17) .421± .04 .894± .04
no = 6 .813± .07 .824 ± .06 (7.57·10−6) .856± .06 (2.99·10−57) .378± .05 .855± .06
no = 12 .827 ± .07 .823± .06 .852± .06 (1.90·10−25) .370± .06 .851± .06
klocal = 4 .772± .07 .814 ± .07 (6.02·10−42) .853± .06 (2.13·10−47) .320± .06 .853± .06
d = 77 .905± .05 .933 ± .04 (1.32·10−31) .941± .03 (1.77·10−22) .222± .10 .931± .04

Similar conclusions carry out when we evaluate methods according to their
ability of recovering the original directions. Keeping in mind that in the case of
perfect recovery, d(Dk, D̂k) would be equal to zero, while the distance between two
d-dimensional unit vectors is

√
2 in expectation14, we see in Table 4.5 that no method

gets very close to the original directions. COMBINED is again the closer overall,
but now k-MEANS and LLOYD are alternating at the second place. The fact Dk
cannot be completely recover is not surprising, for in absence of prior information
the problem is under-constrained. Indeed, while COMBINED and EXPLICIT deliver
almost the exact same prediction, their directions are clearly different.

Table 4.5 – Same as Table 4.4, but reporting d(Dk, D̂k), which should be as close as possible to 0.

Dk parameters k-MEANS LLOYD COMBINED FRANK–WOLFE EXPLICIT

default .533± .08 .528 ± .09 (9.61·10−4) .516± .06 (4.95·10−5) .877± .05 .564± .06
k = 5 .581 ± .08 (4.78·10−30) .606± .09 .560± .05 (8.07·10−24) 1.007± .05 .633± .06
k = 9, d = 36 .541± .07 .521 ± .07 (5.08·10−23) .520± .05 .811± .06 .551± .06
no = 6 .554 ± .08 (2.74·10−52) .589± .08 .538± .05 (2.38·10−12) .908± .05 .596± .07
no = 12 .554 ± .09 (1.50·10−58) .595± .08 .545± .06 (4.08·10−5) .935± .05 .604± .08
klocal = 4 .565± .08 .564 ± .09 .546± .05 (6.30·10−8) .928± .06 .588± .06
d = 77 .571 ± .07 (2.02·10−89) .602± .07 .567± .05 1.033± .06 .641± .05

4.4 Related work

Whereas we believe we are the first to study Problem 5, the prevalence of multilayer
graphs in real world applications, as well as the wealth of information provided
by nodes attributes has attracted a lot of attention. We start by presenting methods
to classify edges, noting they either require supervision or do not consider node
attributes. We then discuss works predicting relations in knowledge graphs, and
more generally embedding edges in low dimensional spaces. Another approach
we highlight includes combining topology and subspace clustering. We also note
how ideas such as heterophily, learning k ways to weight edge’s endpoint similarity
and distinguishing a superposition of layers have been used in different contexts.
Finally, we conclude by the more distant but very rich topic of generative model for
attributed graphs and how it enables overlapping node clustering.

14One can derive this from the fact after normalization, vectors whose coordinates are drawn from
a standard normal distribution are uniformly distributed on the unit sphere [Mul59].

109

Chapter 4. Edge clustering in node attributed graphs

Edge classification To the best of our knowledge, there are not many works that
directly attempt to classify edges in attributed networks. A first natural idea is
actually to rely on the numerous existing node clustering algorithms, by considering
the line graph L(G) of G. L(G) is a graph whose each of the |E| nodes corresponds
to an edge of G, and where two nodes of L(G) are connected whenever their
corresponding edges share a common node in G. Evans et al. [EL09] apply a
modularity algorithm to L(G) is order to partition the edges of G but, contrary to
us, their final goal is to discover an overlapping clustering of the nodes of G, and
they rely solely on the graph topology. In their review of mining social networks,
Tang et al. [TL15, Section 2.3] present several methods to solve what they call
inferring social ties. The first one is based on a graphical model where each node is
an edge. The label of an edge is influenced by the attributes of its endpoints, the
correlation between the type of neighboring edges and some global constraints.
These three influences are modeled by pairwise factors. The parameters of the
model are learned by maximizing the likelihood of the observed labels through
gradient descent. Those parameters are then use to predict the remaining labels that
further maximize the total likelihood [TZT11]. An extension of this graphical model
is to actively query the most informative edges, in the case where it is costly to ask
social network users to label their relationships [Zhu+12]. Another way to leverage
additional supervision is to use transfer learning [Tan+16a]. Namely, given two
distinct and partially labeled graphs, where the fraction of labelled edges is much
higher for the first graph than the second one, the goal is to fully label the edges
of the second graph, exploiting the rich information of the first one. This requires
the attributes to be comparable between the two graphs, and such attributes are
therefore computed based on topological features. Finally, a last direct approach
to labelling edges is presented by Aggarwal et al. [AHZ16]. They consider that the
input graph has three types of edges labeled by −1, labeled by +1 or unlabeled. In
each of the three induced subgraphs, they define a similarity between two nodes
u and v as the Jaccard coefficient of the two sets of edges incident to u and v. A
weighted combination of these three coefficients is the final similarity between u
and v. Then, Sk(u) are the top-k most similar nodes to u, and the label of the edge
(u, v) is chosen as the majority label in (Sk(u)× Sk(v))

⋂
E. All these works assign

a label to the edges of the input graph, but they either require supervision or they
do not use attributes, and in both cases they provide little interpretability over their
results.

Prediction in knowledge graphs Besides social networks, the task of predicting
the semantic of an edge has also been addressed in the context of knowledge
graphs. In such graphs, nodes are abstract concepts and concrete entities from
the real world, and edges are directed predicates representing facts connecting
two entities [Nic+16]. A typical example is an edge (h, `, t) = (Donald J. Trump,
President of, USA)15 where the (h, `, t) notation stands respectively for head, type of
relation and tail. This illustrates some differences with our setting. First, there might
be a very large number of types of edge in knowledge graphs, since they cover a
domain as large as possible. Second, this coverage makes it difficult to describe
directly entities by a consistent set of d attributes, and one usually has to rely on
low dimensional embeddings. [Bor+13] is primarily concerned with learning such
embeddings in Rk for both nodes and relations, that are denoted by the boldface
letters h, `, t. Similarly to word embedding, the intuition is that relations can be
modeled by translations. Thus, the existence of an (h, l, t) edge offers evidence that
h+ ` ≈ t. Given a training set of existing triplets S and a dissimilarity measure D,
the authors learn an embedding in a fashion reminiscent of metric learning [BHS15].
Namely, they create negative examples by corrupting at random training examples
and then minimize with a margin the positive part of the difference between

15At least at the time of writing

110

4.4. Related work

dissimilarity of positive and negative examples. More generally, we refer the
interested reader to a recent survey on embedding knowledge graphs [Wan+17b],
which among other ideas present the interesting notion of composing relations
along paths between two entities. We note that, in contrast with us, those methods
require some form of supervision when it comes to predict edge types. One way to
avoid supervision is to rely on a large amount of unstructured text, extract entities
from this corpus, map entities and possible relations to a knowledge base and
finally embed them in a low dimensional space using text features such as POS
tags [Ren+17].

Edge embedding A related idea is embedding edges in general graphs, not nec-
essarily in the context of knowledge graphs. This is the counterpart of node em-
bedding techniques we mentioned in Section 2.4. The most straightforward way is
to keep track of edges instead of nodes when performing random walks, learn an
embedding from this corpus using word2vec-like methods and then cluster these
representations using k-means [Li+17b]. We cannot directly compare this with our
work since there is no attribute and thus the clustering is not interpretable (indeed
the goal of [Li+17b] is eventually to find an overlapping clustering of the nodes,
not of the edges). More closely related to our work, Ahmed et al. [Ahm+17] seek
to assign a role to the edges of a graph. First they learn edge features as follow:
starting from topological features, they use combination operators (like max, min,
mean, sum, product and so on) to iteratively learn higher order features while
pruning those that are correlated in order to avoid a combinatorial explosion. Once
they obtain such a d-dimensional feature vector for each edge, they stack them in
a matrix S ∈ R|E|×d and look for U ∈ R|E|×r and V ∈ Rr×d such that the distance
between S and UV T is minimized. V is a description of r roles in terms of features
while U is the mixed membership of each edge. Finally the authors choose the
number of roles r using the Minimum Description Length principle. Their approach
bears some similarities with our EXPLICIT method, but have the additional proper-
ties of scaling linearly with the number of edges and being partially parallelizable.
However, the process in which edge feature are learned does not lend itself easily
to interpretation.

Subspace clustering Another direction is to see the problem as clustering the
similarity vectors suv, like our approaches in Section 4.2.1. Because of our bias that
nodes are connected through partial homophily and heterophily, this can more
precisely be casted as a subspace clustering problem [Vid11]. Namely, we are given
a set of m points in Rd, with the assumption they belong to the union of affine
subspaces of unknown dimension. The goal is to recover the number K of such
subspaces, their dimension, their parameters and the assignment of the m point
to those subspaces. If K is known, one can use iterative, k-mean like methods
(reminiscent of our LLOYD method). Otherwise, it also possible to factorize the
matrix of all the data points and interpret it as a similarity matrix, to use iterative
statistical approaches such as random sample consensus or to build a similarity
graph and apply spectral clustering algorithms to it. Finally, it is also possible to
leverage sparsity assumptions and express each point as a sparse linear combination
of other points, and use these coefficients as weights of a similarity graph, which
is then clustered into subspaces by a spectral method [EV13]. While subspace
clustering comes with information theoretic guarantees of its ability to retrieve
optimal subspaces, when formulated directly over the {suv}(u,v)∈E , it makes no
use of graph topology, as we consider each edge independently of all others. As
an example of applying related ideas to graph data, Huang et al. [HCY15] build a
d-dimensional grid of the attributes space and use subspace clustering to find cells
that have low entropy and high connectivity, before merging such cells into clusters
of nodes.

111

Chapter 4. Edge clustering in node attributed graphs

Further similar ideas Taskar et al. [Tas+04] represent a node-attributed graph with
partially labelled edges as a probabilistic graphical model (called Relational Markov
Model) and learns its parameters from the data using gradient descent. It is a flexible
modeling approach that let the designer express complex graph patterns. Using
a slightly less principled approach, Stattner et al. [SC12] first cluster nodes based
solely on their attributes and then count the links between such groups to keep only
the maximally frequent ones, arguing this reveals the sets of attributes that support
the connection between two nodes. In the same data mining vein, and related to our
departure from global homophily, Liang et al. [LWZ16] look for link patterns whose
support and confidence are not only above some given thresholds, but that also
diverge from homophily. Indeed, the authors explicitly exclude attributes taking
the same value within such link patterns. The objective of Zhang et al. [ZLZ16]
is eventually to hard cluster the nodes into communities but their work shares
similarities with ours. Namely, they tweak the traditional modularity objective
(maximizing the density of intra community edges) by weighting the edges with
the similarity of their endpoints, and simultaneously learn a weight vector w` for a
community C`. Formally they defined the R criterion as :

R(C, β;α, µ) =
k∑
`=1

1

|C`|α
∑
u,v∈C`

Auv

(
µ− e−g(s(u,v),w`)

)
where A is the adjacency matrix, α penalizes unbalanced communities, µ is a
trade off parameter between information from edges and node features, and g
corresponds to our goodness function while s is an arbitrary similarity function
between nodes. They optimize it by alternately optimizing over the labels with
fixed parameters and over the parameters with fixed labels, using block coordinate
descent. Finally, we mention a more quantitative work. Abraham et al. [Abr+15]
assume that there are K social categories modelled by K Euclidean spaces Di.
Nodes of the graph have an associated point in each of these spaces. The key
assumption is that space have small local correlation: informally, the intersection of
any two small balls from two distinct spaces is small. These K spaces give rise to
small world networks Gi, where the edge probability is proportional to Di(u, v)−d

and we observe the real network G =
⋃
i Gi. From G, the proposed algorithm

recovers in O(n polylog n) time a bounded approximation D′i of all Di, that is there
exists positive constants σ, δ and ∆ such that σDi(u, v) ≤ D′i(u, v) ≤ δDi(u, v) + ∆.

Generative models and node clustering Although there has not been so many
works on clustering edges in node attributed networks, there is a wealth of papers
on clustering nodes in such networks. Since this is not exactly our topic, we only
mention a selection of the most relevant to our objective (especially the overlapping
ones), and refer the interested reader to the survey of Bothorel et al. [Bot+15]16. We
also reiterate the warning given in the introduction of this chapter. Namely, in large
graphs, node attributes are not necessarily aligned with annotated communities.
Such attributes thus need to be used in addition to topological information. This is
further covered in [FH16, Section 3.4].

An early attempt is the SA-Cluster algorithm of Zhou et al. [ZCY09] that par-
titions the nodes of a graph based on a distance combining nodes structural and
attributes similarities, along with its faster incremental version [ZCY10]. Nodes
in the same cluster are well connected and have a set of similar attributes. The
balance between these two objectives was further studied in a setting where it is
tunable by the user of the algorithm [Bar+17]. In a more “data mining fashion”,
the same problem can also be worded as finding subgraphs induced by a set of
attributes that are more dense than what one would expect in a null model [SMZ12].

16Especially the section 2 dealing with edge labeled graphs.

112

4.5. Open directions

Instead of detecting all such subgraphs or communities, one can adopt a query-
based approach. Namely, given a query node u and a set S of attributes, find all
the subgraphs containing u that are both tightly connected and share enough com-
mon attributes [Fan+16]. In that spirit of focusing on a given node, Leskovec et al.
[LM12] introduce a generative model for ego networks in social networks where the
neighbors of a node u can belong to k categories (such as family, colleagues, school
friends). Using our notations, those k categories (or circle) {Ci}ki=1 of a node u are
defined by a vector wi and a weight αi. The probability p(e) of an edge e = (u, v)
favors the presence of edges with high goodness within circles, as expressed by

p((u, v) = e ∈ E) ∝ exp

 ∑
Ci⊇u,v

g(s(u, v), wi)−
∑

Ci+u,v

αig(s(u, v), wi)

 , (4.12)

where s is an arbitrary similarity function between two node profiles. The unsuper-
vised problem of maximizing the likelihood of observing the input graph according
to this probability distribution is solved by alternating two steps: assigning nodes to
circles and optimizing the parameters {wi, αi}ki=1 given a circle assignment. Similar
to us, the vector wi explain why some nodes belong to the ith circle. However, it is
not obvious how to transfer this knowledge to the edges themselves.

In fact, this generative model approach has proved very fruitful when it comes
to community detection in node attributed graphs [Xu+14a; ZDB17; YML13; Kat+16;
WF16; NC16]. The general idea is the following. First, design a model to generate
some of the following aspects: the nodes attributes, the topology of the graph and
the community membership of the nodes. Then, infer the parameters that maximize
the likelihood of observing the current graph. Finally, extract from these parameters
community membership for every nodes. We give a very succinct description of
the generative models of some representative recent works in Table 4.6. Seen at the
light of our Problem 5, given the overlapping membership obtained by inference
of a generative model, and an edge (u, v), one could look at the highest shared
community coefficient between u and v and use that to explain the edge (among
the K(K+1)

2 possible edge types induced by the K communities and their K(K−1)
2

pairs). However, this is clearly an ad-hod post processing, as indeed these works
are concerned with nodes and not edges clustering.

We also point to the work of De Bacco et al. [De +17], which despite not consid-
ering node attributes, present a model with interesting applications. Specifically,
the nodes have mixed membership to K overlapping groups and each of the L
layers is generated by a specific K ×K block matrix, taking into account the group
membership, like in a degree corrected SBM. Unlike us, this allows for multigraphs,
although the authors assume for simplicity that this does not happen. Once its
parameters are found, this model can then be used to predict the existence of extra
edges in each layer, which can be seen as edge type prediction. Furthermore, mea-
suring the extent to which one layer helps predict links in another layer provides a
way to measure the relationships between the layers, from redundancy to complete
independence, allowing information compression.

4.5 Open directions

We could extend our approach to more general types of graphs and tasks:

• First, as we mentioned earlier, networks are dynamic and evolve over time,
with nodes and edges constantly appearing and disappearing [AS14]. Slicing
time into successive periods is one way to create edge types, one per period.
For instance, Mucha et al. [Muc+10] study the 110 congresses of the US senate
between the years 1789 and 2008, where 1 884 individual Senators are linked
by their voting similarity. They show how it improves the detection of relevant

113

Chapter 4. Edge clustering in node attributed graphs

Table 4.6 – We summarize how each model generates: 1) the membership of a node u to a
community c ∈ JkK, 2) the attributes of u knowing its community membership and 3) the edges
between nodes.

ref community attributes links

[Xu+14a]single community drawn from a
multinomial

drawn from a distribution
parametrized by the node
community

drawn from a distribution
parametrized by the pair of
endpoints communities

[YML13] intensity of membership
Fuc ∈ [0,∞) are given

logistic function of
Fu1, . . . , FuC

sharing more communities makes
link more likely:
Puv = 1− exp(−∑c FucFvc)

[Kat+16] multinomial of dimension k drawn from one normal
distribution per community

Stochastic Block Model (SBM),
where blocks are identified with
communities

[ZDB17] gamma distribution, whose
parameters depends of the
nodes attribute

given binary attributes SBM, with the block matrix drawn
from a hierarchical relational gamma
process

[LM12;
ML14]

overlapping circle defined by θk,
but not generated

given higher probability of appearing
within common circle, as given in
(4.12)

[WF16] logistic function of the attributes given SBM

[NC16] one multinomial for each
discrete value of the single
attribute

given degree corrected SBM

communities. Beyond predicting the relative order of links, it would also be
interesting to include time into node similarity itself. For instance, while the
photo similarity between two Flickr users rises before they connect, it later
decreases if they have the same level of popularity, as both try to differentiate
themselves [ZW13]. More generally, by defining our problem on a static snapshot
of a graph, our model is agnostic to the question of whether edges were created
because of the similarity/dissimilarity of the linked nodes’ attributes or because
attributes started to change after the edge creation. This is traditionally framed as
dichotomy between homophily and contagion, and is an active topic of research
in social networks analysis [AKM08; ST11] as noted by Golder et al. [GM14]:
“Homophily refers to a variety of selection mechanisms by which a social tie
is more likely between individuals with similar attributes and environmental
exposures [MSC01]. Contagion refers to influence mechanisms (e.g. imitation
or peer pressure) by which traits diffuse along network edges. Homophily and
contagion offer competing explanations for network autocorrelation, which refers
to the greater similarity in the attributes of closely connected nodes.”

• Another rich class of graphs where predicting edge types would be a challeng-
ing and rewarding task is multigraph, which allow several edges between two
nodes [Ber+11]. It can also be seen as the flattening of several graphs sharing the
same nodeset, but where the provenance of each edge would have been lost and
need to be recovered. With our original formulation of goodness as suvTwuv, only
one direction can achieve the higher score (discarding the rare case of tie). One
alternative we proposed was to let each wuv be a linear combination of a small
number of base directions. Symmetrically, another idea could be to have more
than one way to compute the similarity suv between two nodes.

• Generalizing the balance theory from signed graphs, we could imagine that in
triangles or short cycles, only certain combinations of directions are valid (or at

114

4.5. Open directions

least desirable). Interestingly, this would likely require different optimization
algorithms, probably non convex. However, while this is a general concept,
its exact implementation might be application-dependant. Furthermore, in our
current setting, we do not know in advance the semantic of each direction, nor
do we have labeled edges. Therefore, it is not clear how those constraints would
be specified, or whether they can be learned, if applicable. A limited solution
exists in the context of heterogeneous information networks, where in addition to
having several types of edges, there are also several types of nodes. Since not all
types of node can be connected with any types of edge, the possible connections
are themselves represented as a meta graph called the network schema [Shi+17,
Definition 3]. This approach would need to be extended to deal with higher
order patterns, for instance in a manner reminiscent of composition of paths in
multilayer graphs [Sun+11; Wan+17b, Section 4.2].

• Among tasks that could benefit from labeling the edge of complex networks,
we mention two. The first is graph summarization where the idea is to trans-
mit a fraction of a large graph plus additional information that can be used
to reconstruct the original graph. Namely, our goal here is to send only a few
node profiles along with the edge directions, enabling the missing profiles to
be reconstructed from the known goodness values. Note that we spare infor-
mation regarding the profiles but still transmit the full topology. Therefore, this
differs from lossless schemes [Chi+09; Bol+11] that leverage typical edge local-
ity patterns to encode edges using as few bits as possible, or from lossy graph
sketching methods [AGM12] discussed in Section 3.3.2, which preserve spectral
and topological properties of the original graph. The second is node embedding,
where every node u is represented by a vector of size k containing the relative
proportion of each direction with the edges incident to u.

115

Chapter 5

Conclusion

5.1 Contributions

The objective of this thesis was to provide “efficient and accurate methods to predict
edge type in complex networks”. By complex networks, we mean graphs where
edges can have one among k semantics (or types) and where nodes are connected
by both partial homophily and heterophily.

• In Chapter 2 [Le +17], we first focused on directed signed graphs, as they
model social interactions in several domains, such as e-commerce and col-
laborations. In such graphs, edges have two possible semantics, positive or
negative. Our goal was to solve a supervised binary classification problem
by predicting the sign of test edges. For that, we first introduced a simple
sign generative model. It endows nodes with two parameters –trollness
and unpleasantness–, governing their incoming and outgoing behavior. This
might seem like a simplistic way of expressing the notion of partial homophily
and heterophily. However, we presented two methods to approximate this
Bayes predictor, suggesting a trade off between theoretical guarantees and
input requirement. We showed experimentally that those methods are com-
petitive with the state of the art, while being more scalable. Motivated by the
regularity measure offered by trollness and unpleasantness, and the inability
of existing methods to cope with new nodes joining the graph, we furthermore
developed the first online algorithm for the EDGE SIGN PREDICTION problem.

• We started Chapter 3 by showing that the methods of the previous chapter
are not straightforward to extend to undirected signed graphs. Therefore, we
changed our learning bias from a generative model to a clustering assump-
tion inspired by social balance theories. Namely, we posit that the nodes are
assigned to one of K groups, and that the sign of the edge (u, v) is positive if
the nodes u and v belong to the same group and negative otherwise. We then
presented two approaches to leverage this bias. First, we drew a connection
between the EDGE SIGN PREDICTION problem and the CORRELATION CLUS-
TERING problem. While CORRELATION CLUSTERING is hard to approximate
in general, we suggested, based on existing works, that the more an instance
complies with our bias, the better CORRELATION CLUSTERING methods could
recover the K underlying groups and thus provide accurate prediction. Sec-
ond, we addressed the problem in an active setting, where K = 2. For that,
we implemented a promising spanning tree algorithm [Vit14], that queries
some edges in order to connect the remaining edges by paths as short as
possible. Experimentally, we showed that on both synthetic and real graphs,
our method is competitive in terms of sign prediction with a strong natural
baseline.

• Finally, in Chapter 4, we considered the case where there are more than two
types of edge. This means that instead of signed graphs, our input shifted to

117

Chapter 5. Conclusion

multilayer graphs, which are also ubiquitous in describing real world phe-
nomena. Moreover, we modified the learning setting, so that no edge label
are available, but instead nodes carry a profile vector. However, our goal
remained to predict edge type, in what could then be described as a clustering
problem with side information and interpretability requirements. In order to
do so, we first defined a similarity between nodes, which accommodates both
heterophily and homophily. We then formulated the problem as simultane-
ously finding k special vectors called directions, and assigning one of them to
every edge in order to maximize a scalar goodness function. After introducing
baselines oblivious of the graph topology, we added constraints resulting in
one vectorial and one matricial optimization objectives. Finally, we showed
on synthetic data how those methods can recover the planted ground truth.

5.2 Future work

In this section, we revisit the problems summarized above by showing how they
could be applied in a new context or enriched by existing node embedding methods.

5.2.1 Reciprocal recommendation

We first present a task tightly related to our edge characterization problem, namely
the reciprocal recommendation problem [Piz+13]. As we shall see, it indeed incor-
porates aspects from all the problems we discussed previously, along with new
constraints. Broadly speaking, given two sets of users L and R, we want to recom-
mend users in R to users in L, and vice versa. These recommendations are based on
mutual interest, but in most cases there is an asymmetry between the two groups.
To better illustrate this general definition, we now give some concrete examples.

• One recent application that quickly rose to prominence is online dating [Krz+15;
Xia+16; AB16]. In the most common case, users are divided between men and
women, and we want to recommend users of the opposite gender in order to
create couples. A well known example of such a system is Tinder [Tys+16].

• In another domain, we can also match job seekers and employers [Sit+12; Hon+13;
KA15].

• As a specific case in point, Zhang et al. [Zha+16] propose a method to match
prospective PhD students and their future supervisors.

• In large organizations or associations, having a mentor is usually beneficial for
both employees and employers [All+04] and finding mentee/mentor pairs can
be cast as a reciprocal recommendation problem [SWG12].

• After moving to their new jobs, people also need a place to live. Again, we can
match tenants and landlords, or people to share a flat.

• Finally, in a more critical setting, finding relevant matches between patients and
organ donors can improve the success of transplants [Yoo+17].

Reciprocal recommendations present specific challenges [And15]. Among them
are asymmetry and volume. Asymmetry refers to the imbalance between the two
groups, in terms of size and bargaining power. For instance, depending of the
economic situation and the field, there might be a lot of job seekers for a few open
positions, in which case employers can be very selective. Likewise, it is generally
observed that dating websites have a higher proportion of men, meaning that
women can afford to choose among numerous suitors [Tys+16]. By volume, we
mean that users on both side can only handle a few recommendations at the same
time. This is sharp contrast with traditional user-item recommendation systems,

118

5.2. Future work

where recommending simultaneously the same item (say a movie) to thousands of
users is not an issue. On the other hand, we have to keep users engaged and prevent
them from being idle. This is done by ensuring they are regularly the subject or
object of some recommendations.

As the name implies, reciprocal recommendation has often be seen as a special
case of recommender system [And15]. Besides this paradigm, we could also cast it
as an adaptive, active, cost sensitive EDGE SIGN PREDICTION problem on bipartite
directed signed graphs with side information. Let us decompose this last sentence,
starting with the input graph. It is naturally bipartite, because of the presence of two
groups in which there is no internal recommendation. Furthermore, every time one
user expresses interest or disinterest in another user, this creates a directed signed
edge. Such a graph is thus a special case of the Directed Signed Social Networks
studied in Chapter 2. Each nodes carries two kind of (side) information. The first
is explicitly provided by the user, in order to arise interest in users from the other
group. The second is implicitly inferred from the user activity. In particular, the
interactions with other nodes allow us to build an implicit preference model for
every user. Combining these two sources of information yield a profile of each user,
like in Chapter 4. Making recommendations in such a graph therefore boils down
to finding non existing positive edges. However, to cope with the two challenges
presented in the previous paragraph, we follow the setting of Chapter 3 and use an
active approach. More precisely, respecting the volume constraints would require
an adaptive algorithm, which acquires the most useful information without over-
or under-loading any nodes. As for the group asymmetry, this could be addressed
by using a cost sensitive classification error, so that the error rate at a given node is
inversely proportional to its importance in the network.

As in any worthy machine learning endeavor, reliably evaluating and comparing
approaches require large amount of real data. This is particularly true in such an
applied setting, where the most realistic evaluation is to perform A/B testing on
a live system with enough traffic to deliver statistical significance. This explains
why most previous studies rely on the cooperation of industrial partners [And15;
KA15; Krz+15; Xia+15; AB16]. Thus, this is also something we would like to do in
the future.

5.2.2 Representation learning

A fundamental question underlying many machine learning approaches is the
representation of data. When extracting information from the real world, we are
usually given some freedom in how to present it to learning algorithms. Ideally, we
would like to use the representation providing the best performance in the learning
task. One solution is to ask expert domains to craft relevant features based on their
prior knowledge. While this has achieved successes, it is not scalable to the present
day situation, where the deluge of available data has prompted the use of machine
learning in every corner of the society. An alluring alternative to expert knowledge
is to learn the data representation itself, guided by the task.

As an illustration in the context of this thesis, we assumed that data was or-
ganized as a graph, where nodes were possibly associated with a feature vector.
However, there might an different representation of those nodes that would better
suit our needs. Indeed, we mentioned already in Section 2.4 and Section 4.4 that
a recent and promising trend regarding learning in graph is node embedding. In
addition to the references cited earlier, this also witnessed by recent works on
embedding attributed nodes, either in signed graphs [CLL17; Wan+17c; Wan+18] or
in general graphs [Lia+17; HLH17; Li+17a]. At first sight, those methods seem radi-
cally different from traditional graph methods. However, just like word embedding
methods have been linked to matrix factorization [LG14; LC14; Aro+16], so have
been popular and successful node embedding methods [Qiu+18]. These methods
are the simple ones that do not consider node attributes and multiple types of edges,

119

Chapter 5. Conclusion

such as DeepWalk [PAS14], LINE [Tan+15] and node2vec [GL16]. For instance, Qiu
et al. [Qiu+18] show that the node embedding of DeepWalk on the weighted graph
G are approximately the left singular vectors of the following matrix:

log

(
vol(G)

(
1

T

T∑
r=1

(D−1A)r

)
D−1

)
− log b (5.1)

where vol(G) is the sum of all weighted degrees, T is the context window size, D is
the diagonal matrix of degrees, A is the adjacency matrix of the graph and r is the
number of negative samples in skip-gram. There are several ways such findings
could be used in our context:

• If the edges of the input graph are fully labeled into k types, then we have k
matrices Dk and Ak, by considering the subgraphs induced by each edge type.
If we simply decompose the k matrices constructed according to equation
(5.1), we would have k embedding for each node. Instead, it seems natural to
stack those matrices together to form two third order tensors D ∈ Rn×n×k and
A ∈ Rn×n×k. One could then use one tensor decomposition methods [KB09;
Sid+17] to extract node embedding taking into account the multiplicity of
edge types.

• If the edges of the input graph are partially labeled, then predicting edge type
can be seen as a tensor completion problem. Like in the matrix case, we seek
a low rank tensor that coincides with the observed entries of the input data.
Furthermore, when we have access to node profiles, we can use methods
tailored to leverage such side information [Son+17, Section 4].

• If the input graph has no edge labels at all but we are given node profiles, we
can use existing attributed embedding approaches [Lia+17; HLH17; Li+17a]
to generate extra information about each node, before applying the methods
presented in Chapter 4 on these extended profiles. We note however that
doing so might reduce the interpretability of the final result.

120

Bibliography

[ABN08] I. Abraham, Y. Bartal, and O. Neiman, “Nearly tight low stretch spanning trees”, in 49th Annual IEEE Symposium on
Foundations of Computer Science, 2008, pp. 781–790. DOI: 10.1109/FOCS.2008.62 (cit. on p. 81).

[ABN07] I. Abraham, Y. Bartal, and O. Neiman, “Embedding metrics into ultrametrics and graphs into spanning trees with
constant average distortion”, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2007, pp. 502–511 (cit. on pp. 82, 83).

[Abr+17] I. Abraham, S. Chechik, M. Elkin, A. Filtser, and O. Neiman, Ramsey spanning trees and their applications, 2017. arXiv:
arXiv:1707.08769 (cit. on pp. 82, 83).

[Abr+15] I. Abraham, S. Chechik, D. Kempe, and A. Slivkins, “Low-distortion inference of latent similarities from a multiplex
social network”, SIAM Journal on Computing, vol. 44, no. 3, pp. 617–668, 2015. DOI: 10.1137/130949191. arXiv:
1202.0922 (cit. on pp. 10, 112).

[AN12] I. Abraham and O. Neiman, “Using petal-decompositions to build a low stretch spanning tree”, in Proceedings of the
44th symposium on Theory of Computing - STOC ’12, 2012, p. 395. DOI: 10.1145/2213977.2214015 (cit. on pp. 10,
81, 83).

[Abu17] F. N. Abu-Khzam, “On the complexity of multi-parameterized cluster editing”, Journal of Discrete Algorithms, 2017.
DOI: 10.1016/j.jda.2017.07.003. arXiv: 1511.09360 (cit. on p. 55).

[Aga+05] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev, “O(sqrt log n) approximation algorithms for min
uncut, min 2cnf deletion, and directed cut problems”, in Proceedings of the Thirty-seventh Annual ACM Symposium on
Theory of Computing, 2005, pp. 573–581. DOI: 10.1145/1060590.1060675 (cit. on p. 61).

[AHZ16] C. Aggarwal, G. He, and P. Zhao, “Edge classification in networks”, in 2016 IEEE 32nd International Conference on Data
Engineering (ICDE), 2016, pp. 1038–1049. DOI: 10.1109/ICDE.2016.7498311 (cit. on pp. 10, 110).

[AS14] C. Aggarwal and K. Subbian, “Evolutionary network analysis: a survey”, ACM Computer Survey, vol. 47, no. 1,
10:1–10:36, 2014. DOI: 10.1145/2601412 (cit. on pp. 3, 113).

[Ahm+17] N. K. Ahmed, R. A. Rossi, T. L. Willke, and R. Zhou, “Edge role discovery via higher-order structures”, in 21st
Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. 2017, pp. 291–303. DOI: 10.1007/978-3-
319-57454-7_23. eprint: http://ryanrossi.com/pubs/ahmed-et-al-pakdd17-preprint.pdf (cit. on
pp. 10, 111).

[AGM12] K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: sparsification, spanners, and subgraphs”, in Proceedings of
the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, 2012, pp. 5–14. DOI: 10.1145/
2213556.2213560 (cit. on p. 115).

[Ahn+15] K. Ahn, G. Cormode, S. Guha, A. McGregor, and A. Wirth, “Correlation clustering in data streams”, in Proceedings of
The 32nd International Conference on Machine Learning, 2015, pp. 2237–2246 (cit. on p. 60).

[Ail+12] N. Ailon, N. Avigdor-Elgrabli, E. Liberty, and A. van Zuylen, “Improved approximation algorithms for bipartite
correlation clustering”, SIAM Journal on Computing, vol. 41, no. 5, pp. 1110–1121, 2012. DOI: 10.1137/110848712
(cit. on p. 66).

[ABE14] N. Ailon, R. Begleiter, and E. Ezra, “Active learning using smooth relative regret approximations with applications”,
Journal of Machine Learning Research, vol. 15, pp. 885–920, 2014 (cit. on p. 63).

[ACN05] N. Ailon, M. Charikar, and A. Newman, “Aggregating inconsistent information: ranking and clustering”, in Proceed-
ings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, 2005, pp. 684–693. DOI: 10.1145/1060590.
1060692 (cit. on p. 58).

[AL09] N. Ailon and E. Liberty, “Correlation clustering revisited: the “true” cost of error minimization problems”, in Automata,
Languages and Programming: 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12. 2009, pp. 24–36. DOI:
10.1007/978-3-642-02927-1_4 (cit. on pp. 9, 64).

[AB16] A. Alanazi and M. Bain, “A scalable people-to-people hybrid reciprocal recommender using hidden markov models”,
in 2nd International Workshop on Machine Learning Methods for Recommender Systems, 2016 (cit. on pp. 118, 119).

[All+04] T. D. Allen, L. T. Eby, M. L. Poteet, E. Lentz, and L. Lima, “Career benefits associated with mentoring for proteges: a
meta-analysis”, Journal of Applied Psychology, vol. 89, no. 1, pp. 127–136, 2004. DOI: 10.1037/0021-9010.89.1.127
(cit. on p. 118).

[Alo+95] N. Alon, R. Karp, D. Peleg, and D. West, “A graph-theoretic game and its application to the k-server problem”, SIAM
Journal on Computing, vol. 24, no. 1, pp. 78–100, 1995. DOI: 10.1137/S0097539792224474 (cit. on pp. 70, 80, 81, 84).

[Alt+93] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, “On sparse spanners of weighted graphs”, Discrete &
Computational Geometry, vol. 9, no. 1, pp. 81–100, 1993. DOI: 10.1007/BF02189308 (cit. on pp. 81, 83).

[AP13] A. Amelio and C. Pizzuti, “Community mining in signed networks”, in Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining - ASONAM ’13, 2013, pp. 95–99. DOI: 10.1145/
2492517.2492641 (cit. on p. 69).

[Ami04] N. Amit, “The bicluster graph editing problem”, M.Sc. Thesis, Tel Aviv University, 2004 (cit. on p. 66).
[AKM08] A. Anagnostopoulos, R. Kumar, and M. Mahdian, “Influence and correlation in social networks”, in Proceedings

of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, pp. 7–15. DOI:
10.1145/1401890.1401897 (cit. on p. 114).

[AAG15] Y. Anava, N. Avigdor-Elgrabli, and I. Gamzu, “Improved theoretical and practical guarantees for chromatic correlation
clustering”, in Proceedings of the 24th International Conference on World Wide Web - WWW ’15, 2015, pp. 55–65. DOI:
10.1145/2736277.2741629 (cit. on p. 66).

[AM12] P. Anchuri and M. Magdon-Ismail, “Communities and balance in signed networks: a spectral approach”, in 2012
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2012, pp. 235–242. DOI: 10.
1109/ASONAM.2012.48 (cit. on p. 69).

121

http://dx.doi.org/10.1109/FOCS.2008.62
http://arxiv.org/abs/arXiv:1707.08769
http://dx.doi.org/10.1137/130949191
http://arxiv.org/abs/1202.0922
http://dx.doi.org/10.1145/2213977.2214015
http://dx.doi.org/10.1016/j.jda.2017.07.003
http://arxiv.org/abs/1511.09360
http://dx.doi.org/10.1145/1060590.1060675
http://dx.doi.org/10.1109/ICDE.2016.7498311
http://dx.doi.org/10.1145/2601412
http://dx.doi.org/10.1007/978-3-319-57454-7_23
http://dx.doi.org/10.1007/978-3-319-57454-7_23
http://ryanrossi.com/pubs/ahmed-et-al-pakdd17-preprint.pdf
http://dx.doi.org/10.1145/2213556.2213560
http://dx.doi.org/10.1145/2213556.2213560
http://dx.doi.org/10.1137/110848712
http://dx.doi.org/10.1145/1060590.1060692
http://dx.doi.org/10.1145/1060590.1060692
http://dx.doi.org/10.1007/978-3-642-02927-1_4
http://dx.doi.org/10.1037/0021-9010.89.1.127
http://dx.doi.org/10.1137/S0097539792224474
http://dx.doi.org/10.1007/BF02189308
http://dx.doi.org/10.1145/2492517.2492641
http://dx.doi.org/10.1145/2492517.2492641
http://dx.doi.org/10.1145/1401890.1401897
http://dx.doi.org/10.1145/2736277.2741629
http://dx.doi.org/10.1109/ASONAM.2012.48
http://dx.doi.org/10.1109/ASONAM.2012.48

Bibliography

[And+14] C. E. Andrade, M. G. Resende, H. J. Karloff, and F. K. Miyazawa, “Evolutionary algorithms for overlapping correlation
clustering”, in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, 2014, pp. 405–412.
DOI: 10.1145/2576768.2598284 (cit. on p. 67).

[And+12] B. Andres et al., “Globally optimal closed-surface segmentation for connectomics”, in Computer Vision – ECCV 2012:
12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part III. 2012, pp. 778–791.
DOI: 10.1007/978-3-642-33712-3_56 (cit. on pp. 4, 54).

[And15] E. Andrews, “Recommender systems for online dating”, Master Thesis, University of Helsinki, 2015 (cit. on pp. 118,
119).

[AMM17] H. Angelidakis, K. Makarychev, and Y. Makarychev, “Algorithms for stable and perturbation-resilient problems”, in
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017, pp. 438–451. DOI: 10.1145/
3055399.3055487 (cit. on p. 86).

[ARS09] A. Arasu, C. Ré, and D. Suciu, “Large-scale deduplication with constraints using dedupalog”, in 2009 IEEE 25th
International Conference on Data Engineering, 2009, pp. 952–963. DOI: 10.1109/ICDE.2009.43 (cit. on pp. 6, 54).

[AMW16] S. Aref, A. J. Mason, and M. C. Wilson, “An exact method for computing the frustration index in signed networks
using binary programming”, 2016. arXiv: 1611.09030 (cit. on p. 55).

[AFS12] A. Argyriou, R. Foygel, and N. Srebro, “Sparse prediction with the k-support norm”, in Advances in Neural Information
Processing Systems 25, 2012, pp. 1457–1465 (cit. on p. 97).

[Aro+16] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski, “A latent variable model approach to pmi-based word embeddings”,
Transactions of the Association for Computational Linguistics, vol. 4, pp. 385–399, 2016. arXiv: https://www.transacl.
org/ojs/index.php/tacl/article/view/742 (cit. on p. 119).

[Ast+16] M. Asteris, A. Kyrillidis, D. Papailiopoulos, and A. G. Dimakis, “Bipartite correlation clustering – maximizing
agreements”, in AISTATS, 2016. arXiv: 1603.02782 (cit. on p. 66).

[ACG02] P. Auer, N. Cesa-Bianchi, and C. Gentile, “Adaptive and self-confident on-line learning algorithms”, Journal of
Computer and System Sciences, vol. 64, no. 1, pp. 48–75, 2002. DOI: 10.1006/jcss.2001.1795 (cit. on p. 34).

[Aus+99] G. Ausiello et al., Complexity and Approximation. 1999. DOI: 10.1007/978-3-642-58412-1 (cit. on p. 55).
[Aus80] C. J. Auster, “Balance theory and other extra-balance properties: an application to fairy tales”, Psychological Reports,

vol. 47, no. 1, pp. 183–188, 1980. DOI: 10.2466/pr0.1980.47.1.183 (cit. on p. 48).
[Bac+12a] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization with sparsity-inducing penalties”, Foundations and

Trends® in Machine Learning, vol. 4, no. 1, pp. 1–106, 2012. DOI: 10.1561/2200000015 (cit. on p. 97).
[Bac+12b] G. Bachi, M. Coscia, A. Monreale, and F. Giannotti, “Classifying trust/distrust relationships in online social networks”,

2012 International Conference on Privacy, Security, Risk and Trust, pp. 552–557, 2012. DOI: 10.1109/SocialCom-
PASSAT.2012.115 (cit. on p. 23).

[BG11] S. Bagon and M. Galun, “Large scale correlation clustering optimization”, 2011 (cit. on pp. 4, 54, 62).
[BMA15] E. Bakshy, S. Messing, and L. Adamic, “Exposure to ideologically diverse news and opinion on facebook”, Science,

2015. DOI: 10.1126/science.aaa1160. eprint: http://science.sciencemag.org/content/early/
2015/05/06/science.aaa1160.full.pdf (cit. on p. 93).

[BB09] M. Balcan and M. Braverman, “Finding low error clusterings”, in Proceedings of the 22nd Conference on Learning Theory,
(Jun. 18–21, 2009), 2009 (cit. on pp. 9, 65).

[Bal+00] P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen, and H. Nielsen, “Assessing the accuracy of prediction algorithms
for classification: an overview.”, Bioinformatics (Oxford, England), vol. 16, no. 5, pp. 412–424, 2000. DOI: 10.1093/
bioinformatics/16.5.412 (cit. on p. 26).

[BBC02] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering”, The 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002. Proceedings., pp. 238–247, 2002. DOI: 10.1109/SFCS.2002.1181947 (cit. on pp. 9, 56, 57, 59,
64).

[BBC04] ——, “Correlation clustering”, Machine Learning, vol. 56, no. 1-3, pp. 89–113, 2004. DOI: 10.1023/B:MACH.
0000033116.57574.95 (cit. on p. 86).

[BA99] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks”, Science, vol. 286, no. 5439, pp. 509–512,
1999. DOI: 10.1126/science.286.5439.509 (cit. on p. 83).

[BFG10] M. Barigozzi, G. Fagiolo, and D. Garlaschelli, “Multinetwork of international trade: a commodity-specific analysis”,
Physical Review E, vol. 81, p. 046 104, 4 2010. DOI: 10.1103/PhysRevE.81.046104 (cit. on pp. 7, 91).

[Bar+17] A. Baroni, A. Conte, M. Patrignani, and S. Ruggieri, “Efficiently clustering very large attributed graphs”, in ASONAM
2017, 2017. DOI: 10.1145/3110025.3110030. arXiv: 1703.08590 (cit. on p. 112).

[Bas+16] L. Bastos et al., “Efficient algorithms for cluster editing”, Journal of Combinatorial Optimization, vol. 31, no. 1, pp. 347–371,
2016. DOI: 10.1007/s10878-014-9756-7 (cit. on p. 61).

[BHK15] T. Beier, F. A. Hamprecht, and J. H. Kappes, “Fusion moves for correlation clustering”, in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3507–3516. DOI: 10.1109/CVPR.2015.7298973 (cit. on
pp. 4, 54).

[BHS15] A. Bellet, A. Habrard, and M. Sebban, “Metric learning”, Synthesis Lectures on Artificial Intelligence and Machine Learning,
vol. 9, no. 1, pp. 1–151, 2015. DOI: 10.2200/S00626ED1V01Y201501AIM030 (cit. on p. 110).

[Ben15] S. Ben-David, Computational feasibility of clustering under clusterability assumptions, 2015. arXiv: arXiv:1501.00437
(cit. on pp. 9, 65).

[BSY99] A. Ben-Dor, R. Shamir, and Z. Yakhini, “Clustering gene expression patterns.”, en, Journal of computational biology, vol.
6, no. 3-4, pp. 281–97, 1999. DOI: 10.1089/106652799318274 (cit. on pp. 5, 54, 56, 61, 64).

[BDL06] Y. Bengio, O. Delalleau, and N. Le Roux, “Label propagation and quadratic criterion”, in Semi-Supervised Learning.
2006, pp. 193–216 (cit. on p. 13).

[BJ17] J. Berg and M. Järvisalo, “Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability”,
Artificial Intelligence, vol. 244, pp. 110–142, 2017. DOI: 10.1016/j.artint.2015.07.001 (cit. on p. 55).

[BGW17] A. Berger, A. Grigoriev, and A. Winokurow, “A ptas for the cluster editing problem on planar graphs”, in Approxi-
mation and Online Algorithms: 14th International Workshop, WAOA 2016, Aarhus, Denmark, August 25–26, 2016, Revised
Selected Papers. 2017, pp. 27–39. DOI: 10.1007/978-3-319-51741-4_3 (cit. on p. 55).

[Ber+11] M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and D. Pedreschi, “Foundations of multidimensional network
analysis”, in 2011 International Conference on Advances in Social Networks Analysis and Mining, 2011, pp. 485–489. DOI:
10.1109/ASONAM.2011.103 (cit. on p. 114).

[BW07] M. Bertolacci and A. Wirth, “Are approximation algorithms for consensus clustering worthwhile?”, in Proceedings of the
2007 SIAM International Conference on Data Mining. 2007, ch. 41, pp. 437–442. DOI: 10.1137/1.9781611972771.41
(cit. on p. 66).

122

http://dx.doi.org/10.1145/2576768.2598284
http://dx.doi.org/10.1007/978-3-642-33712-3_56
http://dx.doi.org/10.1145/3055399.3055487
http://dx.doi.org/10.1145/3055399.3055487
http://dx.doi.org/10.1109/ICDE.2009.43
http://arxiv.org/abs/1611.09030
http://arxiv.org/abs/https://www.transacl.org/ojs/index.php/tacl/article/view/742
http://arxiv.org/abs/https://www.transacl.org/ojs/index.php/tacl/article/view/742
http://arxiv.org/abs/1603.02782
http://dx.doi.org/10.1006/jcss.2001.1795
http://dx.doi.org/10.1007/978-3-642-58412-1
http://dx.doi.org/10.2466/pr0.1980.47.1.183
http://dx.doi.org/10.1561/2200000015
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.115
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.115
http://dx.doi.org/10.1126/science.aaa1160
http://science.sciencemag.org/content/early/2015/05/06/science.aaa1160.full.pdf
http://science.sciencemag.org/content/early/2015/05/06/science.aaa1160.full.pdf
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://dx.doi.org/10.1109/SFCS.2002.1181947
http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95
http://dx.doi.org/10.1023/B:MACH.0000033116.57574.95
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevE.81.046104
http://dx.doi.org/10.1145/3110025.3110030
http://arxiv.org/abs/1703.08590
http://dx.doi.org/10.1007/s10878-014-9756-7
http://dx.doi.org/10.1109/CVPR.2015.7298973
http://dx.doi.org/10.2200/S00626ED1V01Y201501AIM030
http://arxiv.org/abs/arXiv:1501.00437
http://dx.doi.org/10.1089/106652799318274
http://dx.doi.org/10.1016/j.artint.2015.07.001
http://dx.doi.org/10.1007/978-3-319-51741-4_3
http://dx.doi.org/10.1109/ASONAM.2011.103
http://dx.doi.org/10.1137/1.9781611972771.41

Bibliography

[Bey+10] A. Beyer, P. Thomason, X. Li, J. Scott, and J. Fisher, “Mechanistic insights into metabolic disturbance during type-2
diabetes and obesity using qualitative networks”, in Transactions on Computational Systems Biology XII: Special Issue on
Modeling Methodologies. 2010, pp. 146–162. DOI: 10.1007/978-3-642-11712-1_4 (cit. on p. 3).

[BH02] J. C. Bezdek and R. J. Hathaway, “Some notes on alternating optimization”, in Advances in Soft Computing — AFSS
2002. 2002, pp. 288–300. DOI: 10.1007/3-540-45631-7_39 (cit. on p. 103).

[BLW86] N. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936. 1986, 252 pp. (cit. on p. 2).
[BAX12] H. Bisgin, N. Agarwal, and X. Xu, “A study of homophily on social media”, World Wide Web, vol. 15, no. 2, pp. 213–232,

2012. DOI: 10.1007/s11280-011-0143-3 (cit. on p. 92).
[Bis06] C. Bishop, Pattern Recognition and Machine Learning. 2006 (cit. on p. 107).
[BC01] A. Blum and S. Chawla, “Learning from labeled and unlabeled data using graph mincuts”, in Proceedings of the

Eighteenth International Conference on Machine Learning, 2001, pp. 19–26 (cit. on p. 13).
[Boc+14] S. Boccaletti et al., “The structure and dynamics of multilayer networks”, Physics Reports, vol. 544, no. 1, pp. 1–122,

2014. DOI: 10.1016/j.physrep.2014.07.001 (cit. on pp. 7, 91).
[Böc12] S. Böcker, “A golden ratio parameterized algorithm for cluster editing”, Journal of Discrete Algorithms, vol. 16, pp. 79–

89, 2012, Selected papers from the 22nd International Workshop on Combinatorial Algorithms (IWOCA 2011). DOI:
10.1016/j.jda.2012.04.005 (cit. on p. 55).

[BB13] S. Böcker and J. Baumbach, “Cluster editing”, in The Nature of Computation. Logic, Algorithms, Applications: 9th Conference
on Computability in Europe, CiE 2013, Milan, Italy, July 1-5. 2013, pp. 33–44. DOI: 10.1007/978-3-642-39053-1_5
(cit. on pp. 6, 55).

[Bol+11] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: a multiresolution coordinate-free ordering for
compressing social networks”, in Proceedings of the 20th International Conference on World Wide Web, 2011, pp. 587–596.
DOI: 10.1145/1963405.1963488 (cit. on p. 115).

[Bol04] B. Bollobas, Extremal Graph Theory. 2004 (cit. on p. 80).
[BR04] B. Bollobás and O. Riordan, “The diameter of a scale-free random graph”, Combinatorica, vol. 24, no. 1, pp. 5–34, 2004.

DOI: 10.1007/s00493-004-0002-2 (cit. on p. 83).
[BGK13] F. Bonchi, D. García-Soriano, and K. Kutzkov, “Local correlation clustering”, 2013. arXiv: 1312.5105 (cit. on pp. 60,

63).
[BGL14] F. Bonchi, D. García-Soriano, and E. Liberty, “Correlation clustering: from theory to practice”, in Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining, 2014 (cit. on p. 52).
[Bon+15] F. Bonchi, A. Gionis, F. Gullo, C. E. Tsourakakis, and A. Ukkonen, “Chromatic correlation clustering”, ACM Trans.

Knowl. Discov. Data, vol. 9, no. 4, 34:1–34:24, 2015. DOI: 10.1145/2728170 (cit. on p. 66).
[Bon+12] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen, “Chromatic correlation clustering”, in Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, pp. 1321–1329. DOI: 10.1145/
2339530.2339735 (cit. on p. 66).

[BGU12] F. Bonchi, A. Gionis, and A. Ukkonen, “Overlapping correlation clustering”, Knowledge and Information Systems, vol.
35, no. 1, pp. 1–32, 2012. DOI: 10.1007/s10115-012-0522-9 (cit. on p. 66).

[Bon+08a] P. Bonizzoni, G. D. Vedova, R. Dondi, and T. Jiang, “On the approximation of correlation clustering and consensus
clustering”, Journal of Computer and System Sciences, vol. 74, no. 5, pp. 671–696, 2008. DOI: 10.1016/j.jcss.2007.
06.024 (cit. on p. 60).

[Bon+08b] ——, “On the approximation of correlation clustering and consensus clustering”, Journal of Computer and System
Sciences, vol. 74, no. 5, pp. 671–696, 2008. DOI: 10.1016/j.jcss.2007.06.024 (cit. on p. 65).

[Bor+13] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating embeddings for modeling
multi-relational data”, in Advances in Neural Information Processing Systems 26, 2013, pp. 2787–2795 (cit. on pp. 10, 110).

[Bot+15] C. Bothorel, J. D. Cruz, M. Magnani, and B. Micenková, “Clustering attributed graphs: models, measures and
methods”, Network Science, vol. 3, no. 3, pp. 408–444, 2015. DOI: 10.1017/nws.2015.9. arXiv: arXiv:1501.01676
(cit. on pp. 91, 112).

[BLT12] G. S. Brodal, G. Lagogiannis, and R. E. Tarjan, “Strict fibonacci heaps”, in Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing, 2012, pp. 1177–1184. DOI: 10.1145/2213977.2214082 (cit. on p. 72).

[BSW17] N. Buchbinder, R. Schwartz, and B. Weizman, “Simplex transformations and the multiway cut problem”, in Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. 2017, pp. 2400–2410. DOI: 10.1137/1.
9781611974782.158 (cit. on p. 86).

[Bur10] C. J. C. Burges, “Dimension reduction: a guided tour”, Foundations and Trends in Machine Learning, vol. 2, no. 4,
pp. 275–365, 2010. DOI: 10.1561/2200000002 (cit. on p. 8).

[Cai+05] D. Cai, Z. Shao, X. He, X. Yan, and J. Han, “Community mining from multi-relational networks”, in Proceedings
of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases. 2005, pp. 445–452. DOI:
10.1007/11564126_44 (cit. on pp. 7, 91).

[CZC17] H. Cai, V. W. Zheng, and K. C.-C. Chang. (2017). A comprehensive survey of graph embedding: problems, techniques
and applications. under review of IEEE TKDE. arXiv: 1709.07604 (cit. on p. 22).

[CH56] D. Cartwright and F. Harary, “Structural balance: a generalization of heider’s theory.”, Psychological Review, vol. 63,
no. 5, pp. 277–293, 1956. DOI: 10.1037/h0046049 (cit. on p. 21).

[Ces+12a] N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella, “A linear time active learning algorithm for link classification”,
in Advances in Neural Information Processing Systems 25 (NIPS 2012), 2012, pp. 1–12 (cit. on pp. 25, 84).

[Ces+12b] ——, “A correlation clustering approach to link classification in signed networks”, in Proceedings of the 25th Annual
Conference on Learning Theory, vol. 23, 2012, pp. 1–20 (cit. on pp. 9, 10, 25, 53, 70, 85).

[Ces+13] ——, “Random spanning trees and the prediction of weighted graphs”, Journal of Machine Learning Research, vol. 14,
pp. 1251–1284, 2013 (cit. on pp. 13, 21).

[Ces+97] N. Cesa-Bianchi et al., “How to use expert advice”, J. ACM, vol. 44, no. 3, pp. 427–485, 1997. DOI: 10.1145/258128.
258179 (cit. on p. 34).

[Cha+17] E. Chandrasekharan et al., “You can’t stay here: the efficacy of reddit’s 2015 ban examined through hate speech”, Proc.
ACM Hum.-Comput. Interact., vol. 1, no. 2, 31:22–31:22, 2017. DOI: 10.1145/3134666 (cit. on p. 12).

[CSZ06] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning. 2006, 528 pp. DOI: 10 . 7551 / mitpress /
9780262033589.001.0001 (cit. on p. 3).

[CGS17] M. Charikar, N. Gupta, and R. Schwartz, “Local guarantees in graph cuts and clustering”, in 19th Conference on Integer
Programming and Combinatorial Optimization, 2017. arXiv: 1704.00355 (cit. on p. 67).

[CGW03] M. Charikar, V. Guruswami, and A. Wirth, “Clustering with qualitative information”, in 44th Annual IEEE Symposium
on Foundations of Computer Science, 2003, pp. 524–533. DOI: 10.1109/SFCS.2003.1238225 (cit. on pp. 9, 56–59, 67).

123

http://dx.doi.org/10.1007/978-3-642-11712-1_4
http://dx.doi.org/10.1007/3-540-45631-7_39
http://dx.doi.org/10.1007/s11280-011-0143-3
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1016/j.jda.2012.04.005
http://dx.doi.org/10.1007/978-3-642-39053-1_5
http://dx.doi.org/10.1145/1963405.1963488
http://dx.doi.org/10.1007/s00493-004-0002-2
http://arxiv.org/abs/1312.5105
http://dx.doi.org/10.1145/2728170
http://dx.doi.org/10.1145/2339530.2339735
http://dx.doi.org/10.1145/2339530.2339735
http://dx.doi.org/10.1007/s10115-012-0522-9
http://dx.doi.org/10.1016/j.jcss.2007.06.024
http://dx.doi.org/10.1016/j.jcss.2007.06.024
http://dx.doi.org/10.1016/j.jcss.2007.06.024
http://dx.doi.org/10.1017/nws.2015.9
http://arxiv.org/abs/arXiv:1501.01676
http://dx.doi.org/10.1145/2213977.2214082
http://dx.doi.org/10.1137/1.9781611974782.158
http://dx.doi.org/10.1137/1.9781611974782.158
http://dx.doi.org/10.1561/2200000002
http://dx.doi.org/10.1007/11564126_44
http://arxiv.org/abs/1709.07604
http://dx.doi.org/10.1037/h0046049
http://dx.doi.org/10.1145/258128.258179
http://dx.doi.org/10.1145/258128.258179
http://dx.doi.org/10.1145/3134666
http://dx.doi.org/10.7551/mitpress/9780262033589.001.0001
http://dx.doi.org/10.7551/mitpress/9780262033589.001.0001
http://arxiv.org/abs/1704.00355
http://dx.doi.org/10.1109/SFCS.2003.1238225

Bibliography

[CW04] M. Charikar and A. Wirth, “Maximizing quadratic programs: extending grothendieck’s inequality”, in 45th Annual
IEEE Symposium on Foundations of Computer Science, 2004, pp. 54–60. DOI: 10.1109/FOCS.2004.39 (cit. on p. 58).

[Cha+06] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar, “On the hardness of approximating multicut
and sparsest-cut”, Computational complexity, vol. 15, no. 2, pp. 94–114, 2006. DOI: 10.1007/s00037-006-0210-9
(cit. on p. 58).

[Cha+14] S. Chawla, K. Makarychev, T. Schramm, and G. Yaroslavtsev, Near optimal lp rounding algorithm for correlation clustering
on complete and complete k-partite graphs, 2014. eprint: arXiv:1412.0681 (cit. on p. 59).

[Cha+15] ——, “Near optimal lp rounding algorithm for correlationclustering on complete and complete k-partite graphs”, in
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing - STOC ’15, 2015, pp. 219–228. DOI:
10.1145/2746539.2746604. arXiv: 1412.0681 (cit. on pp. 59, 66).

[CLC13] W. Chen, L. V. Lakshmanan, and C. Castillo, “Information and influence propagation in social networks”, Synthesis
Lectures on Data Management, vol. 5, no. 4, 2013. DOI: 10.2200/S00527ED1V01Y201308DTM037 (cit. on p. 3).

[Che+14] Y. Chen, X. L. Wang, B. Yuan, and B. Z. Tang, “Overlapping community detection in networks with positive and
negative links”, Journal of Statistical Mechanics: Theory and Experiment, vol. 2014, no. 3, 2014. DOI: 10.1088/1742-
5468/2014/03/P03021. arXiv: 1310.4023 (cit. on p. 69).

[CDL15] J. Cheng, C. Danescu-Niculescu-Mizil, and J. Leskovec, “Antisocial behavior in online discussion communities”, in
International AAAI Conference on Web and Social Media, 2015 (cit. on p. 24).

[CLL17] K. Cheng, J. Li, and H. Liu, “Unsupervised feature selection in signed social networks”, in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’17, 2017, pp. 777–786. DOI:
10.1145/3097983.3098106 (cit. on p. 119).

[Che+10] V. Chepoi, F. F. Dragan, I. Newman, Y. Rabinovich, and Y. Vaxès, “Constant approximation algorithms for embedding
graph metrics into trees and outerplanar graphs”, in Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX-RANDOM. 2010, pp. 95–109. DOI: 10.1007/978-3-642-15369-3_8 (cit. on
pp. 82, 83).

[Chi+07] C. Chiang, A. B. Kahng, S. Sinha, X. Xu, and A. Z. Zelikovsky, “Fast and efficient bright-field aapsm conflict detection
and correction”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 1, pp. 115–126,
2007. DOI: 10.1109/TCAD.2006.882642 (cit. on p. 6).

[Chi+14] K.-y. Chiang, C.-j. Hsieh, N. Natarajan, I. S. Dhillon, and A. Tewari, “Prediction and clustering in signed networks: a
local to global perspective”, Journal of Machine Learning Research, vol. 15, pp. 1177–1213, 2014 (cit. on pp. 9, 22, 30, 56).

[CWD12] K.-Y. Chiang, J. J. Whang, and I. S. Dhillon, “Scalable clustering of signed networks using balance normalized cut”, in
Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, pp. 615–624. DOI:
10.1145/2396761.2396841 (cit. on p. 69).

[CDK14] F. Chierichetti, N. Dalvi, and R. Kumar, “Correlation clustering in mapreduce”, in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD ’14, 2014, pp. 641–650. DOI: 10.1145/2623330.
2623743 (cit. on p. 59).

[Chi+09] F. Chierichetti et al., “On compressing social networks”, in Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2009, pp. 219–228. DOI: 10.1145/1557019.1557049 (cit. on p. 115).

[Chu+16] L. Chu et al., “Finding gangs in war from signed networks”, in KDD’16, 2016, pp. 799–809. DOI: 10.1145/2939672.
2939855 (cit. on p. 69).

[CMN08] A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical structure and the prediction of missing links in networks”,
Nature, vol. 453, no. 7191, pp. 98–101, 2008. DOI: 10.1038/nature06830 (cit. on p. 3).

[CSW08a] T. Coleman, J. Saunderson, and A. Wirth, “A local-search 2-approximation for 2-correlation-clustering”, in Algorithms
- ESA 2008: 16th Annual European Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings. 2008, pp. 308–319.
DOI: 10.1007/978-3-540-87744-8_26 (cit. on p. 60).

[CSW08b] ——, “Spectral clustering with inconsistent advice”, in Proceedings of the 25th International Conference on Machine
Learning, 2008, pp. 152–159. DOI: 10.1145/1390156.1390176 (cit. on p. 68).

[CO16] P. Compagnon and K. Olliver, “Graph embeddings for social network analysis, State of the art”, Master’s thesis, INSA
Lyon, 2016 (cit. on p. 22).

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd. 2009 (cit. on p. 71).
[Cos+13] M. Coscia, G. Rossetti, D. Pennacchioli, D. Ceccarelli, and F. Giannotti, ““you know because i know”: a multidimen-

sional network approach to human resources problem”, in 2013 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM 2013), 2013, pp. 434–441. DOI: 10.1145/2492517.2492537 (cit. on
p. 91).

[CMM15] S. J. Cranmer, E. J. Menninga, and P. J. Mucha, “Kantian fractionalization predicts the conflict propensity of the
international system”, Proceedings of the National Academy of Sciences, vol. 112, no. 38, pp. 11 812–11 816, 2015. DOI:
10.1073/pnas.1509423112. eprint: http://www.pnas.org/content/112/38/11812.full.pdf (cit. on
pp. 7, 91).

[Cui+07] Q. Cui et al., “A map of human cancer signaling”, Molecular Systems Biology, vol. 3, no. 1, 2007. DOI: 10.1038/
msb4100200. eprint: http://msb.embopress.org/content/3/1/152.full.pdf (cit. on p. 46).

[dFon+11] L. da Fontoura Costa et al., “Analyzing and modeling real-world phenomena with complex networks: a survey of
applications”, Advances in Physics, vol. 60, no. 3, pp. 329–412, 2011. DOI: 10.1080/00018732.2011.572452 (cit. on
p. 2).

[Dán14] Dániel Marx and Igor Razgon, “Fixed-parameter tractability of multicut parameterized by the size of the cutset”,
SIAM Journal on Computing, vol. 43, no. 2, pp. 355–388, 2014. DOI: 10.1137/110855247 (cit. on p. 56).

[DV15] S. Das and H. Vikalo, “Sdhap: haplotype assembly for diploids and polyploids via semi-definite programming.”,
BMC genomics, vol. 16, no. 1, p. 260, 2015. DOI: 10.1186/s12864-015-1408-5 (cit. on pp. 5, 54).

[Das+07] B. DasGupta, G. A. Enciso, E. Sontag, and Y. Zhang, “Algorithmic and complexity results for decompositions of
biological networks into monotone subsystems”, Biosystems, vol. 90, no. 1, pp. 161–178, 2007. DOI: 10.1016/j.
biosystems.2006.08.001 (cit. on pp. 5, 54).

[DB13] J. Davies and F. Bacchus, “Exploiting the power of mip solvers in maxsat”, in 16th International Conference on
Theory and Applications of Satisfiability Testing, SAT 2013, Helsinki, Finland, July 8-12, 2013. 2013, pp. 166–181. DOI:
10.1007/978-3-642-39071-5_13 (cit. on p. 56).

[Dav67] J. A. Davis, “Clustering and structural balance in graphs”, Human Relations, vol. 20, no. 2, pp. 181–187, 1967. DOI:
10.1177/001872676702000206 (cit. on pp. 21, 49, 51).

[De +17] C. De Bacco, E. A. Power, D. B. Larremore, and C. Moore, “Community detection, link prediction, and layer
interdependence in multilayer networks”, Physical Review E, vol. 95, no. 4, p. 042 317, 2017. DOI: 10.1103/PhysRevE.
95.042317. arXiv: 1701.01369 (cit. on p. 113).

124

http://dx.doi.org/10.1109/FOCS.2004.39
http://dx.doi.org/10.1007/s00037-006-0210-9
arXiv:1412.0681
http://dx.doi.org/10.1145/2746539.2746604
http://arxiv.org/abs/1412.0681
http://dx.doi.org/10.2200/S00527ED1V01Y201308DTM037
http://dx.doi.org/10.1088/1742-5468/2014/03/P03021
http://dx.doi.org/10.1088/1742-5468/2014/03/P03021
http://arxiv.org/abs/1310.4023
http://dx.doi.org/10.1145/3097983.3098106
http://dx.doi.org/10.1007/978-3-642-15369-3_8
http://dx.doi.org/10.1109/TCAD.2006.882642
http://dx.doi.org/10.1145/2396761.2396841
http://dx.doi.org/10.1145/2623330.2623743
http://dx.doi.org/10.1145/2623330.2623743
http://dx.doi.org/10.1145/1557019.1557049
http://dx.doi.org/10.1145/2939672.2939855
http://dx.doi.org/10.1145/2939672.2939855
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1007/978-3-540-87744-8_26
http://dx.doi.org/10.1145/1390156.1390176
http://dx.doi.org/10.1145/2492517.2492537
http://dx.doi.org/10.1073/pnas.1509423112
http://www.pnas.org/content/112/38/11812.full.pdf
http://dx.doi.org/10.1038/msb4100200
http://dx.doi.org/10.1038/msb4100200
http://msb.embopress.org/content/3/1/152.full.pdf
http://dx.doi.org/10.1080/00018732.2011.572452
http://dx.doi.org/10.1137/110855247
http://dx.doi.org/10.1186/s12864-015-1408-5
http://dx.doi.org/10.1016/j.biosystems.2006.08.001
http://dx.doi.org/10.1016/j.biosystems.2006.08.001
http://dx.doi.org/10.1007/978-3-642-39071-5_13
http://dx.doi.org/10.1177/001872676702000206
http://dx.doi.org/10.1103/PhysRevE.95.042317
http://dx.doi.org/10.1103/PhysRevE.95.042317
http://arxiv.org/abs/1701.01369

Bibliography

[De +14] P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti, “On facebook, most ties are weak”, Commun. ACM, vol. 57, no. 11,
pp. 78–84, 2014. DOI: 10.1145/2629438 (cit. on p. 91).

[dKD08] C. de Kerchove and P. V. Dooren, “The pagetrust algorithm: how to rank web pages when negative links are
allowed?”, in Proceedings of the 2008 SIAM International Conference on Data Mining. 2008, pp. 346–352. DOI: 10.1137/
1.9781611972788.31 (cit. on p. 23).

[Dem+06] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica, “Correlation clustering in general weighted graphs”, Theoretical
Computer Science, vol. 361, no. 2-3, pp. 172–187, 2006. DOI: 10.1016/j.tcs.2006.05.008 (cit. on pp. 53, 57).

[DI03] E. D. Demaine and N. Immorlica, “Correlation clustering with partial information”, in 6th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2003, Princeton, USA. 2003, pp. 1–13. DOI:
10.1007/978-3-540-45198-3_1 (cit. on p. 57).

[Dia15] N. Diakopoulos, “Picking the nyt picks: editorial criteria and automation in the curation of online news comments”,
International Symposium on Online Journalism Journal, vol. 5, no. 1, pp. 147–166, 2015 (cit. on p. 12).

[DNG07] C. P. Diehl, G. Namata, and L. Getoor, “Relationship identification for social network discovery”, in Proceedings of the
22nd National Conference on Artificial Intelligence, 2007, pp. 546–552 (cit. on p. 91).

[DM96] P. Doreian and A. Mrvar, “A partitioning approach to structural balance”, Social Networks, vol. 18, no. 2, pp. 149–168,
1996. DOI: 10.1016/0378-8733(95)00259-6 (cit. on pp. 56, 61).

[Dör+14] M. Dörnfelder, J. Guo, C. Komusiewicz, and M. Weller, “On the parameterized complexity of consensus clustering”,
Theoretical Computer Science, vol. 542, pp. 71–82, 2014. DOI: 10.1016/j.tcs.2014.05.002 (cit. on p. 66).

[DSW10] N. Downing, P. J. Stuckey, and A. Wirth, “Improved consensus clustering via linear programming”, in Proceedings of
the Thirty-Third Australasian Conference on Computer Science - Volume 102, 2010, pp. 61–70 (cit. on p. 66).

[Dru+13] L. Drummond, R. Figueiredo, Y. Frota, and M. Levorato, “Efficient solution of the correlation clustering problem: an
application to structural balance”, in On the Move to Meaningful Internet Systems: OTM 2013, Graz, Austria, September 9 -
13. 2013, pp. 674–683. DOI: 10.1007/978-3-642-41033-8_85 (cit. on p. 61).

[DP09] D. P. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms. 2009. DOI:
10.1017/CBO9780511581274 (cit. on p. 37).

[Dun16] R. I. M. Dunbar, “Do online social media cut through the constraints that limit the size of offline social networks?”, Open
Science, vol. 3, no. 1, 2016. DOI: 10.1098/rsos.150292. eprint: http://rsos.royalsocietypublishing.
org/content/3/1/150292.full.pdf (cit. on p. 19).

[DKK11] D. M. Dunlavy, T. G. Kolda, and W. P. Kegelmeyer, “Multilinear algebra for analyzing data with multiple linkages”,
in Graph Algorithms in the Language of Linear Algebra. 2011, ch. 7, pp. 85–114. DOI: 10.1137/1.9780898719918.ch7.
eprint: http://www.cs.sandia.gov/~dmdunla/publications/DuKoKe10.pdf (cit. on pp. 7, 91).

[EK10] D. Easley and J. Kleinberg, “Chapter 5 positive and negative relationships”, in Networks, Crowds, and Markets: Reasoning
about a Highly Connected World, 2010, ch. 5, pp. 119–152 (cit. on pp. 50, 51).

[Edm65] J. Edmonds, “Paths, trees, and flowers”, Canadian Journal of Mathematics, vol. 17, pp. 449–467, 1965. DOI: 10.4153/
cjm-1965-045-4 (cit. on p. 19).

[EV13] E. Elhamifar and R. Vidal, “Sparse subspace clustering: algorithm, theory, and applications”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013. DOI: 10.1109/TPAMI.2013.57 (cit. on
p. 111).

[Elk+05] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng, “Lower-stretch spanning trees”, in Proceedings of the Thirty-seventh
Annual ACM Symposium on Theory of Computing, 2005, pp. 494–503. DOI: 10.1145/1060590.1060665 (cit. on p. 81).

[EN17] M. Elkin and O. Neiman, “Efficient algorithms for constructing very sparse spanners and emulators”, in Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 2017, pp. 652–669 (cit. on pp. 10, 81).

[EP07] M. Elkin and D. Peleg, “The hardness of approximating spanner problems”, Theory of Computing Systems, vol. 41, no.
4, pp. 691–729, 2007. DOI: 10.1007/s00224-006-1266-2 (cit. on p. 81).

[ES09] M. Elsner and W. Schudy, “Bounding and comparing methods for correlation clustering beyond ilp”, in Proceedings of
the Workshop on Integer Linear Programming for Natural Langauge Processing, 2009, pp. 19–27 (cit. on pp. 5, 54, 61).

[EF03] D. Emanuel and A. Fiat, “Correlation clustering: minimizing disagreements on arbitrary weighted graphs”, in 11th
Annual European Symposium on Algorithms, ESA 2003, Budapest, Hungary. 2003, pp. 208–220. DOI: 10.1007/978-3-
540-39658-1_21 (cit. on pp. 56, 57).

[ER59] P. Erdős and A. Rényi, “On random graphs i”, Publicationes Mathematicae, vol. 6, pp. 290–297, 1959 (cit. on p. 105).
[EB14] E. Estrada and M. Benzi, “Walk-based measure of balance in signed networks: detecting lack of balance in social

networks”, Phys. Rev. E, vol. 90, no. 4, p. 42 802, 2014. DOI: 10.1103/PhysRevE.90.042802 (cit. on p. 51).
[Eul41] L. Euler, “Solutio problematis ad geometriam situs pertinentis”, Commentarii academiae scientiarum Petropolitanae, vol.

8, pp. 128–140, 1741 (cit. on p. 2).
[EL09] T. S. Evans and R. Lambiotte, “Line graphs, link partitions, and overlapping communities”, Phys. Rev. E, vol. 80,

p. 016 105, 1 2009. DOI: 10.1103/PhysRevE.80.016105. eprint: arXiv:0903.2181 (cit. on pp. 10, 110).
[FIA11] G. Facchetti, G. Iacono, and C. Altafini, “Computing global structural balance in large-scale signed social networks.”,

Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 52, pp. 20 953–8, 2011. DOI:
10.1073/pnas.1109521108 (cit. on pp. 51, 62).

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approximating arbitrary metrics by tree metrics”, in
Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, 2003, pp. 448–455. DOI: 10.1145/
780542.780608 (cit. on pp. 82, 83).

[Fan+16] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for large attributed graphs”, Proc. VLDB Endow.,
vol. 9, no. 12, pp. 1233–1244, 2016. DOI: 10.14778/2994509.2994538 (cit. on p. 113).

[FM13] R. Figueiredo and G. Moura, “Mixed integer programming formulations for clustering problems related to structural
balance”, Social Networks, vol. 35, no. 4, pp. 639–651, 2013. DOI: 10.1016/j.socnet.2013.09.002 (cit. on p. 55).

[FS03] V. Filkov and S. Skiena, “Integrating microarray data by consensus clustering”, in 15th IEEE International Conference
on Tools with Artificial Intelligence, 2003, pp. 418–426. DOI: 10.1109/TAI.2003.1250220 (cit. on p. 65).

[FG08] V. Filkov and A. Goder, “Consensus clustering algorithms: comparison and refinement”, in Proceedings of the
Tenth Workshop on Algorithm Engineering and Experiments (ALENEX). 2008, ch. 10, pp. 109–117. DOI: 10.1137/
1.9781611972887.11 (cit. on p. 66).

[FS16] A. Filtser and S. Solomon, “The greedy spanner is existentially optimal”, in Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, 2016, pp. 9–17. DOI: 10.1145/2933057.2933114 (cit. on p. 81).

[Fom+14] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger, “Tight bounds for parameterized complexity of
cluster editing with a small number of clusters”, Journal of Computer and System Sciences, vol. 80, no. 7, pp. 1430–1447,
2014. DOI: 10.1016/j.jcss.2014.04.015. arXiv: 1112.4419 (cit. on p. 55).

125

http://dx.doi.org/10.1145/2629438
http://dx.doi.org/10.1137/1.9781611972788.31
http://dx.doi.org/10.1137/1.9781611972788.31
http://dx.doi.org/10.1016/j.tcs.2006.05.008
http://dx.doi.org/10.1007/978-3-540-45198-3_1
http://dx.doi.org/10.1016/0378-8733(95)00259-6
http://dx.doi.org/10.1016/j.tcs.2014.05.002
http://dx.doi.org/10.1007/978-3-642-41033-8_85
http://dx.doi.org/10.1017/CBO9780511581274
http://dx.doi.org/10.1098/rsos.150292
http://rsos.royalsocietypublishing.org/content/3/1/150292.full.pdf
http://rsos.royalsocietypublishing.org/content/3/1/150292.full.pdf
http://dx.doi.org/10.1137/1.9780898719918.ch7
http://www.cs.sandia.gov/~dmdunla/publications/DuKoKe10.pdf
http://dx.doi.org/10.4153/cjm-1965-045-4
http://dx.doi.org/10.4153/cjm-1965-045-4
http://dx.doi.org/10.1109/TPAMI.2013.57
http://dx.doi.org/10.1145/1060590.1060665
http://dx.doi.org/10.1007/s00224-006-1266-2
http://dx.doi.org/10.1007/978-3-540-39658-1_21
http://dx.doi.org/10.1007/978-3-540-39658-1_21
http://dx.doi.org/10.1103/PhysRevE.90.042802
http://dx.doi.org/10.1103/PhysRevE.80.016105
arXiv:0903.2181
http://dx.doi.org/10.1073/pnas.1109521108
http://dx.doi.org/10.1145/780542.780608
http://dx.doi.org/10.1145/780542.780608
http://dx.doi.org/10.14778/2994509.2994538
http://dx.doi.org/10.1016/j.socnet.2013.09.002
http://dx.doi.org/10.1109/TAI.2003.1250220
http://dx.doi.org/10.1137/1.9781611972887.11
http://dx.doi.org/10.1137/1.9781611972887.11
http://dx.doi.org/10.1145/2933057.2933114
http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://arxiv.org/abs/1112.4419

Bibliography

[For10] S. Fortunato, “Community detection in graphs”, Physics Reports, vol. 486, no. 3, pp. 75–174, 2010. DOI: 10.1016/j.
physrep.2009.11.002 (cit. on p. 3).

[FH16] S. Fortunato and D. Hric, “Community detection in networks: a user guide”, Physics Reports, vol. 659, pp. 1–44, 2016.
DOI: 10.1016/j.physrep.2016.09.002. arXiv: 1608.00163 (cit. on p. 112).

[FW56] M. Frank and P. Wolfe, “An algorithm for quadratic programming”, Naval Research Logistics Quarterly, vol. 3, no. 1-2,
pp. 95–110, 1956. DOI: 10.1002/nav.3800030109 (cit. on p. 102).

[GZ07] J. V. Gael and X. Zhu, “Correlation clustering for crosslingual link detection”, in IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, 2007, pp. 1744–1749 (cit. on
pp. 6, 54).

[Gam+16] S. Gama-Castro et al., “Regulondb version 9.0: high-level integration of gene regulation, coexpression, motif clustering
and beyond”, Nucleic Acids Research, vol. 44, no. D1, pp. D133–D143, 2016. DOI: 10.1093/nar/gkv1156 (cit. on
p. 46).

[Gao+16] M. Gao, E.-P. Lim, D. Lo, and P. K. Prasetyo, “On detecting maximal quasi antagonistic communities in signed
graphs”, Data Mining and Knowledge Discovery, vol. 30, no. 1, pp. 99–146, 2016. DOI: 10.1007/s10618-015-0405-2
(cit. on p. 69).

[GVY93] N. Garg, V. V. Vazirani, and M. Yannakakis, “Approximate max-flow min-(multi)cut theorems and their applications”,
in Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, 1993, pp. 698–707. DOI: 10.1145/
167088.167266 (cit. on p. 58).

[Gar+17] K. Garimella, A. Gionis, N. Parotsidis, and N. Tatti, “Balancing information exposure in social networks”, in Advances
in Neural Information Processing Systems 30, 2017. arXiv: arXiv:1709.01491 (cit. on pp. 4, 93).

[GL04] D. Garlaschelli and M. I. Loffredo, “Patterns of link reciprocity in directed networks”, Physical Review Letters, vol. 93,
p. 268 701, 26 2004. DOI: 10.1103/PhysRevLett.93.268701 (cit. on p. 26).

[GHP13] C. Gentile, M. Herbster, and S. Pasteris, “Online similarity prediction of networked data from known and unknown
graphs”, JMLR Workshop and Conference Proceedings, vol. 30, pp. 1–34, 2013. arXiv: 1302.7263 (cit. on p. 25).

[Gil59] E. Gilbert, “Random graphs”, English, Ann. Math. Stat., vol. 30, pp. 1141–1144, 1959. DOI: 10.1214/aoms/
1177706098 (cit. on p. 105).

[GMT07] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation”, ACM Transactions on Knowledge Discovery from Data,
vol. 1, no. 1, 4–es, 2007. DOI: 10.1145/1217299.1217303 (cit. on pp. 5, 61, 65).

[GG06] I. Giotis and V. Guruswami, “Correlation clustering with a fixed number of clusters”, Theory of Computing, vol. 2, no.
1, pp. 249–266, 2006. DOI: 10.4086/toc.2006.v002a013 (cit. on pp. 9, 59, 60).

[GW95] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming”, Journal of the ACM, vol. 42, no. 6, pp. 1115–1145, 1995. DOI: 10.1145/
227683.227684 (cit. on p. 55).

[GM14] S. A. Golder and M. W. Macy, “Digital footprints: opportunities and challenges for online social research”, Annual
Review of Sociology, vol. 40, no. 1, pp. 129–152, 2014. DOI: 10.1146/annurev-soc-071913-043145 (cit. on p. 114).

[Gor+17] G. Gori et al., “Flowrep: descriptive curve networks for free-form design shapes”, ACM Transactions on Graphics, vol.
36, no. 4, 59:1–59:14, 2017. DOI: 10.1145/3072959.3073639 (cit. on pp. 4, 54).

[GB16] J. Gothania and B. Buksh, “A fast chromatic correlation clustering algorithm”, in International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2016, pp. 1870–1874. DOI: 10.1109/ICACCI.2016.7732322
(cit. on p. 66).

[GL16] A. Grover and J. Leskovec, “Node2vec: scalable feature learning for networks”, in KDD’16, 2016 (cit. on p. 120).
[Grü05] P. Grünwald, “A tutorial introduction to the minimum description length principle”, Advances in minimum description

length: Theory and applications, pp. 23–81, 2005. eprint: arXiv:math/0406077 (cit. on p. 96).
[Guh+04] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of trust and distrust”, in Proceedings of the 13th

conference on World Wide Web - WWW ’04, ACM, 2004, p. 403. DOI: 10.1145/988672.988727 (cit. on p. 24).
[Gup+17] A. Gupta, R. Ravi, K. Talwar, and S. W. Umboh, “Last but not least: online spanners for buy-at-bulk”, in Proceedings

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. 2017, pp. 589–599. DOI: 10.1137/1.
9781611974782.38. arXiv: arXiv:1611.00052 (cit. on pp. 82, 83).

[HYL17] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs”, in Advances in Neural
Information Processing Systems 30, 2017. arXiv: arXiv:1706.02216 (cit. on p. 3).

[Har53] F. Harary, “On the notion of balance of a signed graph”, Michigan Math. J., vol. 2, no. 2, pp. 143–146, 1953. DOI:
10.1307/mmj/1028989917 (cit. on pp. 6, 50).

[HLW02] F. Harary, M. Lim, and D. C. Wunsch, “Signed graphs for portfolio analysis in risk management”, IMA Journal of
Management Mathematics, vol. 13, no. 3, pp. 201–210, 2002. DOI: 10.1093/imaman/13.3.201 (cit. on p. 6).

[Har10] C. Hardaker, “Trolling in asynchronous computer-mediated communication: from user discussions to academic
definitions”, Journal of Politeness Research. Language, Behaviour, Culture, vol. 6, no. 2, pp. 215–242, 2010. DOI: 10.1515/
jplr.2010.011 (cit. on p. 12).

[HAR12] A. Hassan, A. Abu-Jbara, and D. Radev, “Extracting signed social networks from text”, in Workshop on Graph-based
Methods for Natural Language Processing, 2012, pp. 6–14 (cit. on p. 11).

[Has+09] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller, “Framework for evaluating clustering algorithms in duplicate
detection”, Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 1282–1293, 2009. DOI: 10.14778/1687627.1687771
(cit. on pp. 6, 54).

[Hei46] F. Heider, “Attitudes and cognitive organization”, The Journal of Psychology, vol. 21, no. 1, pp. 107–112, 1946. DOI:
10.1080/00223980.1946.9917275 (cit. on p. 48).

[Hei58] ——, The psychology of interpersonal relations. 1958, p. 326. DOI: 10.1037/10628-000 (cit. on pp. 6, 21, 48).
[HLP09] M. Herbster, G. Lever, and M. Pontil, “Online prediction on large diameter graphs”, in Advances in Neural Information

Processing Systems 21, 2009, pp. 649–656 (cit. on p. 13).
[HPG15] M. Herbster, S. Pasteris, and S. Ghosh, “Online prediction at the limit of zero temperature”, in Advances in Neural

Information Processing Systems 28, 2015, pp. 2935–2943 (cit. on p. 13).
[HPV12] M. Herbster, S. Pasteris, and F. Vitale, “Online sum-product computation over trees”, in Advances in Neural Information

Processing Systems 25, 2012, pp. 2870–2878 (cit. on p. 13).
[HP07] M. Herbster and M. Pontil, “Prediction on a graph with a perceptron”, in Advances in Neural Information Processing

Systems 19, 2007, pp. 577–584 (cit. on p. 13).
[HL81] P. W. Holland and S. Leinhardt, “An exponential family of probability distributions for directed graphs”, Journal of the

American Statistical Association, vol. 76, no. 373, pp. 33–50, 1981. DOI: 10.1080/01621459.1981.10477598. eprint:
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1981.10477598 (cit. on p. 17).

126

http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2016.09.002
http://arxiv.org/abs/1608.00163
http://dx.doi.org/10.1002/nav.3800030109
http://dx.doi.org/10.1093/nar/gkv1156
http://dx.doi.org/10.1007/s10618-015-0405-2
http://dx.doi.org/10.1145/167088.167266
http://dx.doi.org/10.1145/167088.167266
http://arxiv.org/abs/arXiv:1709.01491
http://dx.doi.org/10.1103/PhysRevLett.93.268701
http://arxiv.org/abs/1302.7263
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1145/1217299.1217303
http://dx.doi.org/10.4086/toc.2006.v002a013
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1146/annurev-soc-071913-043145
http://dx.doi.org/10.1145/3072959.3073639
http://dx.doi.org/10.1109/ICACCI.2016.7732322
arXiv:math/0406077
http://dx.doi.org/10.1145/988672.988727
http://dx.doi.org/10.1137/1.9781611974782.38
http://dx.doi.org/10.1137/1.9781611974782.38
http://arxiv.org/abs/arXiv:1611.00052
http://arxiv.org/abs/arXiv:1706.02216
http://dx.doi.org/10.1307/mmj/1028989917
http://dx.doi.org/10.1093/imaman/13.3.201
http://dx.doi.org/10.1515/jplr.2010.011
http://dx.doi.org/10.1515/jplr.2010.011
http://dx.doi.org/10.14778/1687627.1687771
http://dx.doi.org/10.1080/00223980.1946.9917275
http://dx.doi.org/10.1037/10628-000
http://dx.doi.org/10.1080/01621459.1981.10477598
http://www.tandfonline.com/doi/pdf/10.1080/01621459.1981.10477598

Bibliography

[Hon+13] W. Hong, L. Li, T. Li, and W. Pan, “Ihr: an online recruiting system for xiamen talent service center”, Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 1177–1185, 2013. DOI:
10.1145/2487575.2488199 (cit. on p. 118).

[Hou+16] J. P. Hou, A. Emad, G. J. Puleo, J. Ma, and O. Milenkovic, “A new correlation clustering method for cancer mutation
analysis”, Bioinformatics, vol. 32, no. 24, pp. 3717–3728, 2016. DOI: 10.1093/bioinformatics/btw546. arXiv:
1601.06476 (cit. on p. 67).

[HDF14] D. Hric, R. K. Darst, and S. Fortunato, “Community detection in networks: structural communities versus ground
truth”, Phys. Rev. E, vol. 90, p. 062 805, 6 2014. DOI: 10.1103/PhysRevE.90.062805 (cit. on p. 92).

[Hu74] T. C. Hu, “Optimum communication spanning trees”, SIAM Journal on Computing, vol. 3, no. 3, pp. 188–195, 1974. DOI:
10.1137/0203015 (cit. on p. 80).

[HLH17] X. Huang, J. Li, and X. Hu, “Accelerated attributed network embedding”, in Proceedings of the 2017 SIAM International
Conference on Data Mining. 2017, pp. 633–641. DOI: 10.1137/1.9781611974973.71 (cit. on pp. 119, 120).

[HCY15] X. Huang, H. Cheng, and J. X. Yu, “Dense community detection in multi-valued attributed networks”, Information
Sciences, vol. 314, pp. 77–99, 2015. DOI: 10.1016/j.ins.2015.03.075 (cit. on p. 111).

[HBN10] F. Hüffner, N. Betzler, and R. Niedermeier, “Separator-based data reduction for signed graph balancing”, Journal of
Combinatorial Optimization, vol. 20, no. 4, pp. 335–360, 2010. DOI: 10.1007/s10878-009-9212-2 (cit. on p. 50).

[HL78] T. L. Huston and G. Levinger, “Interpersonal attraction and relationships”, Annual Review of Psychology, vol. 29, no. 1,
pp. 115–156, 1978. DOI: 10.1146/annurev.ps.29.020178.000555 (cit. on p. 92).

[IK04] T. Idé and H. Kashima, “Eigenspace-based anomaly detection in computer systems”, in Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 440–449. DOI: 10.1145/1014052.
1014102 (cit. on p. 3).

[IIK16] V. Il’ev, S. Il’eva, and A. Kononov, “Short survey on graph correlation clustering with minimization criteria”, in
Discrete Optimization and Operations Research: 9th International Conference, DOOR 2016, Vladivostok, Russia, September
19-23, 2016, Proceedings. 2016, pp. 25–36. DOI: 10.1007/978-3-319-44914-2_3 (cit. on p. 52).

[IPR17] M. R. Islam, B. A. Prakash, and N. Ramakrishnan, “Signet: scalable embeddings for signed networks”, 2017. arXiv:
1702.06819 (cit. on pp. 9, 22).

[Jag13] M. Jaggi, “Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization”, in Proceedings of the 30th International
Conference on Machine Learning, 2013 (cit. on p. 102).

[Jia15] J. Q. Jiang, “Stochastic block model and exploratory analysis in signed networks”, Physical Review E, vol. 91, no. 6,
2015. DOI: 10.1103/PhysRevE.91.062805. arXiv: 1501.00594 (cit. on pp. 6, 54, 69).

[JH05] T. Joachims and J. Hopcroft, “Error bounds for correlation clustering”, in Proceedings of the 22nd international conference
on Machine learning - ICML ’05, 2005, pp. 385–392. DOI: 10.1145/1102351.1102400 (cit. on p. 64).

[Joh+15] F. D. Johansson, A. Chattoraj, C. Bhattacharyya, and D. Dubhashi, “Weighted theta functions and embeddings with
applications to max-cut, clustering and summarization”, in Advances in Neural Information Processing Systems 28, 2015,
pp. 1018–1026 (cit. on p. 67).

[JLK78] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan, “The complexity of the network design problem”, Networks, vol. 8,
no. 4, pp. 279–285, 1978. DOI: 10.1002/net.3230080402 (cit. on p. 82).

[JG08] J. Juvonen and E. F. Gross, “Extending the school grounds?—bullying experiences in cyberspace”, Journal of School
Health, vol. 78, no. 9, pp. 496–505, 2008. DOI: 10.1111/j.1746-1561.2008.00335.x (cit. on p. 12).

[Kal+10] P. Kaluza, A. Kölzsch, M. T. Gastner, and B. Blasius, “The complex network of global cargo ship movements”,
Journal of The Royal Society Interface, vol. 7, no. 48, pp. 1093–1103, 2010. DOI: 10.1098/rsif.2009.0495. eprint:
http://rsif.royalsocietypublishing.org/content/7/48/1093.full.pdf (cit. on pp. 7, 91).

[KM07] P. Kanani and A. McCallum, “Resource-bounded information gathering for correlation clustering”, in Learning
Theory: 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15. 2007, pp. 625–627. DOI:
10.1007/978-3-540-72927-3_46 (cit. on p. 63).

[KMP07] P. Kanani, A. McCallum, and C. Pal, “Improving author coreference by resource-bounded information gathering from
the web”, in Proceedings of the 20th International Joint Conference on Artifical Intelligence, 2007, pp. 429–434 (cit. on p. 63).

[Kap+16] J. H. Kappes, P. Swoboda, B. Savchynskyy, T. Hazan, and C. Schnörr, “Multicuts and perturb & map for probabilistic
graph clustering”, Journal of Mathematical Imaging and Vision, vol. 56, no. 2, pp. 221–237, 2016. DOI: 10.1007/s10851-
016-0659-3. arXiv: 1601.02088 (cit. on p. 62).

[Kar89] R. M. Karp, “A 2k-competitive algorithm for the circle”, Manuscript, 1989 (cit. on p. 81).
[KS09] M. Karpinski and W. Schudy, “Linear time approximation schemes for the gale-berlekamp game and related

minimization problems”, in Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, 2009,
pp. 313–322. DOI: 10.1145/1536414.1536458 (cit. on p. 60).

[Kat+16] S. Kataoka, T. Kobayashi, M. Yasuda, and K. Tanaka, “Community detection algorithm combining stochastic block
model and attribute data clustering”, Journal of the Physical Society of Japan, vol. 85, no. 11, p. 114 802, 2016. DOI:
10.7566/JPSJ.85.114802. arXiv: 1608.00920 (cit. on pp. 104, 113, 114).

[KMK11] P. Kazienko, K. Musial, and T. Kajdanowicz, “Multidimensional social network in the social recommender system”,
IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 41, no. 4, pp. 746–759, 2011. DOI:
10.1109/TSMCA.2011.2132707 (cit. on pp. 7, 91).

[Kéf+15] S. Kéfi et al., “Network structure beyond food webs: mapping non-trophic and trophic interactions on chilean rocky
shores”, Ecology, vol. 96, no. 1, pp. 291–303, 2015. DOI: 10.1890/13-1424.1 (cit. on pp. 8, 91).

[KKT15] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a social network”, Theory of
Computing, vol. 11, no. 4, pp. 105–147, 2015. DOI: 10.4086/toc.2015.v011a004 (cit. on p. 3).

[KT11] A.-M. Kermarrec and C. Thraves, “Can everybody sit closer to their friends than their enemies?”, in Proceedings of the
36th International Symposium on Mathematical Foundations of Computer Science. 2011, pp. 388–399. DOI: 10.1007/978-
3-642-22993-0_36. arXiv: arXiv:1405.5023 (cit. on p. 6).

[Kho02] S. Khot, “On the power of unique 2-prover 1-round games”, in Proceedings of the Thiry-fourth Annual ACM Symposium
on Theory of Computing, 2002, pp. 767–775. DOI: 10.1145/509907.510017 (cit. on p. 57).

[KA15] B. Kille and F. Abel, “We know where you should work next summer: job recommendations”, in Proceedings of the 9th
ACM Conference on Recommender Systems - RecSys ’15, 2015, pp. 230–235. DOI: 10.1145/2792838.2799496 (cit. on
pp. 118, 119).

[Kim+11] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo, “Higher-order correlation clustering for image segmentation”, in Advances
in Neural Information Processing Systems, 2011, pp. 1530–1538 (cit. on pp. 4, 54).

[KB15] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization”, in 3rd International Conference for Learning
Representations, 2015. arXiv: arXiv:1412.6980 (cit. on p. 107).

127

http://dx.doi.org/10.1145/2487575.2488199
http://dx.doi.org/10.1093/bioinformatics/btw546
http://arxiv.org/abs/1601.06476
http://dx.doi.org/10.1103/PhysRevE.90.062805
http://dx.doi.org/10.1137/0203015
http://dx.doi.org/10.1137/1.9781611974973.71
http://dx.doi.org/10.1016/j.ins.2015.03.075
http://dx.doi.org/10.1007/s10878-009-9212-2
http://dx.doi.org/10.1146/annurev.ps.29.020178.000555
http://dx.doi.org/10.1145/1014052.1014102
http://dx.doi.org/10.1145/1014052.1014102
http://dx.doi.org/10.1007/978-3-319-44914-2_3
http://arxiv.org/abs/1702.06819
http://dx.doi.org/10.1103/PhysRevE.91.062805
http://arxiv.org/abs/1501.00594
http://dx.doi.org/10.1145/1102351.1102400
http://dx.doi.org/10.1002/net.3230080402
http://dx.doi.org/10.1111/j.1746-1561.2008.00335.x
http://dx.doi.org/10.1098/rsif.2009.0495
http://rsif.royalsocietypublishing.org/content/7/48/1093.full.pdf
http://dx.doi.org/10.1007/978-3-540-72927-3_46
http://dx.doi.org/10.1007/s10851-016-0659-3
http://dx.doi.org/10.1007/s10851-016-0659-3
http://arxiv.org/abs/1601.02088
http://dx.doi.org/10.1145/1536414.1536458
http://dx.doi.org/10.7566/JPSJ.85.114802
http://arxiv.org/abs/1608.00920
http://dx.doi.org/10.1109/TSMCA.2011.2132707
http://dx.doi.org/10.1890/13-1424.1
http://dx.doi.org/10.4086/toc.2015.v011a004
http://dx.doi.org/10.1007/978-3-642-22993-0_36
http://dx.doi.org/10.1007/978-3-642-22993-0_36
http://arxiv.org/abs/arXiv:1405.5023
http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.1145/2792838.2799496
http://arxiv.org/abs/arXiv:1412.6980

Bibliography

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing”, Science, vol. 220, no. 4598,
pp. 671–680, 1983. DOI: 10.1126/science.220.4598.671 (cit. on p. 62).

[Kiv+14] M. Kivela et al., “Multilayer networks”, en, Journal of Complex Networks, vol. 2, no. 3, pp. 203–271, 2014. DOI: 10.
1093/comnet/cnu016 (cit. on pp. 7, 91).

[KvK09] S. Klamt and A. von Kamp, “Computing paths and cycles in biological interaction graphs”, BMC Bioinformatics, vol.
10, no. 1, p. 181, 2009. DOI: 10.1186/1471-2105-10-181 (cit. on p. 46).

[Kni60] U. G. W. Knight, “Logical design of electrical networks”, Electrical Engineers, Journal of the Institution of, vol. 6, no. 64,
pp. 228–230, 1960. DOI: 10.1049/jiee-3.1960.0122 (cit. on p. 79).

[Kny17] A. V. Knyazev, “Signed laplacian for spectral clustering revisited”, MERL - Mitsubishi Electric Research Laboratories,
Tech. Rep. TR2017-001, 2017. arXiv: arXiv:1701.01394 (cit. on p. 69).

[KB09] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications”, SIAM Review, vol. 51, no. 3, pp. 455–500,
2009. DOI: 10.1137/07070111X (cit. on p. 120).

[Kön36] D. König, Theorie der endlichen und unendlichen Graphen. 1936. DOI: 10.1007/978-1-4684-8971-2_2 (cit. on p. 50),
trans. by R. McCoart as Theory of finite and infinite graphs (Birkhäuser Boston Inc., 1990).

[KMP11] I. Koutis, G. L. Miller, and R. Peng, “A nearly-m o limits@logn time solver for sdd linear systems”, in 52nd Annual
IEEE Symposium on Foundations of Computer Science, 2011, pp. 590–598. DOI: 10.1109/FOCS.2011.85 (cit. on p. 81).

[KKZ09] H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data: a survey on subspace clustering, pattern-
based clustering, and correlation clustering”, ACM Trans. Knowl. Discov. Data, vol. 3, no. 1, 1:1–1:58, 2009. DOI:
10.1145/1497577.1497578 (cit. on p. 52).

[Krz+15] A. Krzywicki et al., “Collaborative filtering for people-to-people recommendation in online dating: data analysis and
user trial”, International Journal of Human-Computer Studies, vol. 76, pp. 50–66, 2015. DOI: 10.1016/j.ijhcs.2014.
12.003 (cit. on pp. 118, 119).

[KW92] J. Kuczyński and H. Woźniakowski, “Estimating the largest eigenvalue by the power and lanczos algorithms
with a random start”, SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 4, pp. 1094–1122, 1992. DOI:
10.1137/0613066 (cit. on p. 103).

[Kum16] S. Kumar, “Structure and dynamics of signed citation networks”, in Proceedings of the 25th World Wide Web conference,
2016, pp. 63–64. DOI: 10.1145/2872518.2889391 (cit. on p. 26).

[Kum+16] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge weight prediction in weighted signed networks”, in
2016 IEEE 16th International Conference on Data Mining (ICDM), 2016, pp. 221–230. DOI: 10.1109/ICDM.2016.0033
(cit. on p. 24).

[KLB09] J. Kunegis, A. Lommatzsch, and C. Bauckhage, “The slashdot zoo: mining a social network with negative edges”, in
Proceedings of the 18th international conference on World wide web - WWW ’09, 2009, p. 741. DOI: 10.1145/1526709.
1526809 (cit. on pp. 22, 84).

[Kun+10] J. Kunegis et al., “Spectral analysis of signed graphs for clustering, prediction and visualization”, in Proceedings of the
2010 SIAM International Conference on Data Mining. 2010, ch. 48, pp. 559–570. DOI: 10.1137/1.9781611972801.49
(cit. on pp. 6, 68).

[Le +17] G. Le Falher, N. Cesa-Bianchi, C. Gentile, and F. Vitale, “On the troll-trust model for edge sign prediction in social
networks”, in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, vol. 54, 2017, pp. 402–
411 (cit. on pp. 10, 11, 117).

[LC14] R. Lebret and R. Collobert, “Word embeddings through hellinger pca”, in Proceedings of the 14th Conference of the
European Chapter of the Association for Computational Linguistics, 2014, pp. 482–490 (cit. on p. 119).

[LHK10] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and negative links in online social networks”, in
Proceedings of the 19th international conference on World wide web - WWW ’10, 2010, p. 641. DOI: 10.1145/1772690.
1772756 (cit. on pp. 9, 23, 25, 30).

[LM12] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in ego networks”, in Advances in Neural Information
Processing Systems 25, 2012, pp. 539–547. arXiv: arXiv:1210.8182 (cit. on pp. 10, 113, 114).

[Lev02] R. L. Levien, “Attack resistant trust metrics”, PhD thesis, University of California at Berkeley, 2002 (cit. on p. 25).
[LKA17] E. Levinkov, A. Kirillov, and B. Andres, “A comparative study of local search algorithms for correlation clustering”,

in Proceedings of the 39th German Conference on Pattern Recognition. 2017, pp. 103–114. DOI: 10.1007/978-3-319-
66709-6_9 (cit. on p. 62).

[Lev+15] M. Levorato, L. Drummond, Y. Frota, and R. Figueiredo, “An ils algorithm to evaluate structural balance in signed
social networks”, in Proceedings of the 30th Annual ACM Symposium on Applied Computing - SAC ’15, 2015, pp. 1117–1122.
DOI: 10.1145/2695664.2695689 (cit. on p. 61).

[Lev+17] M. Levorato, R. Figueiredo, Y. Frota, and L. Drummond, “Evaluating balancing on social networks through the
efficient solution of correlation clustering problems”, EURO Journal on Computational Optimization, 2017. DOI: 10.
1007/s13675-017-0082-6 (cit. on p. 61).

[LF17] M. Levorato and Y. Frota, “Brazilian congress structural balance analysis”, Journal of Interdisciplinary Methodologies and
Issues in Sciences, vol. 2, no. Graphs and social systems, 2017. DOI: 10.18713/JIMIS-280217-2-3 (cit. on pp. 6,
54).

[LG14] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix factorization”, in Advances in Neural Information
Processing Systems 27, 2014, pp. 2177–2185 (cit. on p. 119).

[Li+17a] J. Li et al., “Attributed network embedding for learning in a dynamic environment”, in Proceedings of the 26th ACM
International on Conference on Information and Knowledge Management, 2017, pp. 387–396. DOI: 10.1145/3132847.
3132919. arXiv: arXiv:1706.01860 (cit. on pp. 119, 120).

[Li+17b] S. Li, H. Zhang, D. Wu, C. Zhang, and D. Yuan, “Edge representation learning for community detection in large scale
information networks”, in MATES workshop at VLDB 2017, 2017 (cit. on p. 111).

[Li+11] W. Li et al., “Integrative analysis of many weighted co-expression networks using tensor computation”, PLOS
Computational Biology, vol. 7, no. 6, pp. 1–13, 2011. DOI: 10.1371/journal.pcbi.1001106 (cit. on pp. 8, 91).

[LLL13] Y. Li, J. Liu, and C. Liu, “A comparative analysis of evolutionary and memetic algorithms for community detection
from signed social networks”, Soft Computing, vol. 18, no. 2, pp. 329–348, 2013. DOI: 10.1007/s00500-013-1060-4
(cit. on p. 69).

[LWZ16] H. Liang, K. Wang, and F. Zhu, “Mining social ties beyond homophily”, in IEEE 32nd International Conference on Data
Engineering (ICDE), 2016, pp. 421–432. DOI: 10.1109/ICDE.2016.7498259 (cit. on p. 112).

[Lia+17] L. Liao, X. He, H. Zhang, and T.-S. Chua, “Attributed social network embedding”, 2017. arXiv: 1705.04969 (cit. on
pp. 119, 120).

[LPS14] A. Lingas, M. Persson, and D. Sledneu, “Iterative merging heuristics for correlation clustering”, International Journal of
Metaheuristics, vol. 3, no. 2, pp. 105–117, 2014. DOI: 10.1504/IJMHEUR.2014.063141 (cit. on p. 61).

128

http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1186/1471-2105-10-181
http://dx.doi.org/10.1049/jiee-3.1960.0122
http://arxiv.org/abs/arXiv:1701.01394
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1007/978-1-4684-8971-2_2
http://dx.doi.org/10.1109/FOCS.2011.85
http://dx.doi.org/10.1145/1497577.1497578
http://dx.doi.org/10.1016/j.ijhcs.2014.12.003
http://dx.doi.org/10.1016/j.ijhcs.2014.12.003
http://dx.doi.org/10.1137/0613066
http://dx.doi.org/10.1145/2872518.2889391
http://dx.doi.org/10.1109/ICDM.2016.0033
http://dx.doi.org/10.1145/1526709.1526809
http://dx.doi.org/10.1145/1526709.1526809
http://dx.doi.org/10.1137/1.9781611972801.49
http://dx.doi.org/10.1145/1772690.1772756
http://dx.doi.org/10.1145/1772690.1772756
http://arxiv.org/abs/arXiv:1210.8182
http://dx.doi.org/10.1007/978-3-319-66709-6_9
http://dx.doi.org/10.1007/978-3-319-66709-6_9
http://dx.doi.org/10.1145/2695664.2695689
http://dx.doi.org/10.1007/s13675-017-0082-6
http://dx.doi.org/10.1007/s13675-017-0082-6
http://dx.doi.org/10.18713/JIMIS-280217-2-3
http://dx.doi.org/10.1145/3132847.3132919
http://dx.doi.org/10.1145/3132847.3132919
http://arxiv.org/abs/arXiv:1706.01860
http://dx.doi.org/10.1371/journal.pcbi.1001106
http://dx.doi.org/10.1007/s00500-013-1060-4
http://dx.doi.org/10.1109/ICDE.2016.7498259
http://arxiv.org/abs/1705.04969
http://dx.doi.org/10.1504/IJMHEUR.2014.063141

Bibliography

[LW94] N. Littlestone and M. Warmuth, “The weighted majority algorithm”, Information and Computation, vol. 108, no. 2,
pp. 212–261, 1994. DOI: 10.1006/inco.1994.1009 (cit. on p. 34).

[Lit88] N. Littlestone, “Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm”, Machine
Learning, vol. 2, no. 4, pp. 285–318, 1988. DOI: 10.1007/BF00116827 (cit. on p. 15).

[Maa+05] A. Ma’ayan et al., “Formation of regulatory patterns during signal propagation in a mammalian cellular network”,
Science, vol. 309, no. 5737, pp. 1078–1083, 2005. DOI: 10.1126/science.1108876. eprint: http://science.
sciencemag.org/content/309/5737/1078.full.pdf (cit. on p. 46).

[MDA15] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Autograd: effortless gradients in numpy”, in ICML 2015 AutoML
Workshop, 2015 (cit. on pp. 100, 107).

[MMP12] K. T. Macon, P. J. Mucha, and M. A. Porter, “Community structure in the united nations general assembly”, Physica A:
Statistical Mechanics and its Applications, vol. 391, no. 1, pp. 343–361, 2012. DOI: 10.1016/j.physa.2011.06.030
(cit. on pp. 6, 54).

[MMV15] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan, “Correlation clustering with noisy partial information”, in
Proceedings of The 28th Conference on Learning Theory, 2015, pp. 1321–1342. arXiv: 1406.5667 (cit. on pp. 9, 65).

[MAC11] S. Maniu, T. Abdessalem, and B. Cautis, “Casting a web of trust over wikipedia: an interaction-based approach”, in
Proceedings of the 20th International Conference Companion on World Wide Web, 2011, pp. 87–88. DOI: 10.1145/1963192.
1963237 (cit. on p. 25).

[MSL14] E. Manosevitch, N. Steinfeld, and A. Lev-On, “Promoting online deliberation quality: cognitive cues matter”, Informa-
tion, Communication & Society, vol. 17, no. 10, pp. 1177–1195, 2014. DOI: 10.1080/1369118X.2014.899610 (cit. on
p. 12).

[Mar88] P. V. Marsden, “Homogeneity in confiding relations”, Social Networks, vol. 10, no. 1, pp. 57–76, 1988. DOI: 10.1016/
0378-8733(88)90010-X (cit. on p. 92).

[MBC16] V. Martínez, F. Berzal, and J.-C. Cubero, “A survey of link prediction in complex networks”, ACM Computer Survey,
vol. 49, no. 4, 69:1–69:33, 2016. DOI: 10.1145/3012704 (cit. on pp. 3, 33, 92).

[Mas+09] M. J. Mason, G. Fan, K. Plath, Q. Zhou, and S. Horvath, “Signed weighted gene co-expression network analysis
of transcriptional regulation in murine embryonic stem cells.”, BMC genomics, vol. 10, no. 1, p. 327, 2009. DOI:
10.1186/1471-2164-10-327 (cit. on p. 5).

[MSS10] C. Mathieu, O. Sankur, and W. Schudy, “Online correlation clustering”, in 27th International Symposium on Theoretical
Aspects of Computer Science - STACS 2010, 2010, pp. 573–584 (cit. on p. 63).

[MS10] C. Mathieu and W. Schudy, “Correlation clustering with noisy input”, 21st annual ACM-SIAM symposium on Discrete
Algorithms, pp. 712–728, 2010 (cit. on p. 64).

[MG07] J. Matoušek and B. Gärtner, Understanding and Using Linear Programming, 1st. 2007. DOI: 10.1007/978-3-540-
30717-4 (cit. on p. 63).

[MS17] A. Mazumdar and B. Saha, Query complexity of clustering with side information, 2017. arXiv: arXiv:1706.07719
(cit. on p. 63), Short abstract: “Clustering with an oracle”, in 54th Annual Allerton Conference on Communication, Control,
and Computing, Sep. 2016, pp. 738–739. DOI: 10.1109/ALLERTON.2016.7852305.

[ML14] J. Mcauley and J. Leskovec, “Discovering social circles in ego networks”, ACM Trans. Knowl. Discov. Data, vol. 8, no. 1,
4:1–4:28, 2014. DOI: 10.1145/2556612 (cit. on p. 114).

[MW05] A. McCallum and B. Wellner, “Conditional models of identity uncertainty with application to noun coreference”, in
Advances in Neural Information Processing Systems 17, 2005, pp. 905–912 (cit. on pp. 5, 54).

[MSC01] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather: homophily in social networks”, Annual Review of
Sociology, vol. 27, no. 1, pp. 415–444, 2001. DOI: 10.1146/annurev.soc.27.1.415 (cit. on pp. 92, 114).

[MS08] K. Mehlhorn and P. Sanders, “Hash tables and associative arrays”, in Algorithms and Data Structures: The Basic Toolbox,
2008, ch. 4, pp. 81–98. DOI: 10.1007/978-3-540-77978-0 (cit. on p. 71).

[Men+15] I. Mendonca, R. Figueiredo, V. Labatut, and P. Michelon, “Relevance of negative links in graph partitioning: a case
study using votes from the european parliament”, in 2015 Second European Network Intelligence Conference, 2015,
pp. 122–129. DOI: 10.1109/ENIC.2015.25 (cit. on pp. 6, 54).

[MTH16] P. Mercado, F. Tudisco, and M. Hein, “Clustering signed networks with the geometric mean of laplacians”, in Advances
in Neural Information Processing Systems 29, 2016, pp. 4421–4429 (cit. on p. 69).

[Mik+13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and
their compositionality”, in Advances in Neural Information Processing Systems 26, 2013, pp. 3111–3119 (cit. on p. 22).

[Mil+15] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu, “Improved parallel algorithms for spanners and hopsets”, in 27th
ACM Symposium on Parallelism in Algorithms and Architectures, 2015, pp. 192–201. DOI: 10.1145/2755573.2755574
(cit. on p. 81).

[Min89] M. Minoux, “Networks synthesis and optimum network design problems: models, solution methods and applica-
tions”, Networks, vol. 19, no. 3, pp. 313–360, 1989. DOI: 10.1002/net.3230190305 (cit. on p. 82).

[MB11] A. Mishra and A. Bhattacharya, “Finding the bias and prestige of nodes in networks based on trust scores”, in
Proceedings of the 20th International Conference on World Wide Web, 2011, pp. 567–576. DOI: 10.1145/1963405.
1963485 (cit. on pp. 23, 24).

[MS09] P. Mitra and M. Samal, “Approximation algorithm for correlation clustering”, in 2009 1st International Conference on
Networked Digital Technologies, NDT 2009, 2009, pp. 140–145. DOI: 10.1109/NDT.2009.5272169 (cit. on p. 61).

[MT16] M. Mitzenmacher and C. E. Tsourakakis, “Predicting signed edges with o(nlog n) queries”, 2016. arXiv: 1609.00750
(cit. on p. 63).

[MMB02] S. Mohammed, J. E. Mathieu, and A. L. ‘Bart’ Bartlett, “Technical-administrative task performance, leadership task
performance, and contextual performance: considering the influence of team- and task-related composition variables”,
Journal of Organizational Behavior, vol. 23, no. 7, pp. 795–814, 2002. DOI: 10.1002/job.169 (cit. on p. 12).

[Muc+10] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, “Community structure in time-dependent,
multiscale, and multiplex networks”, Science, vol. 328, no. 5980, pp. 876–878, 2010. DOI: 10.1126/science.
1184819. eprint: http://science.sciencemag.org/content/328/5980/876.full.pdf (cit. on p. 113).

[MB16] S. F. Muldoon and D. S. Bassett, “Network and multilayer network approaches to understanding human brain
dynamics”, Philosophy of Science, vol. 83, no. 5, pp. 710–720, 2016. DOI: 10.1086/687857 (cit. on pp. 8, 91).

[Mul59] M. E. Muller, “A note on a method for generating points uniformly on n-dimensional spheres”, Commun. ACM, vol. 2,
no. 4, pp. 19–20, 1959. DOI: 10.1145/377939.377946 (cit. on p. 109).

[MF09] F. Murai and D. R. Figueiredo, “Assortative mixing in bittorrent-like networks”, in IEEE INFOCOM Workshops 2009,
2009, pp. 1–2. DOI: 10.1109/INFCOMW.2009.5072115 (cit. on p. 93).

[New02] M. E. J. Newman, “Assortative mixing in networks”, Phys. Rev. Lett., vol. 89, p. 208 701, 20 2002. DOI: 10.1103/
PhysRevLett.89.208701 (cit. on p. 93).

129

http://dx.doi.org/10.1006/inco.1994.1009
http://dx.doi.org/10.1007/BF00116827
http://dx.doi.org/10.1126/science.1108876
http://science.sciencemag.org/content/309/5737/1078.full.pdf
http://science.sciencemag.org/content/309/5737/1078.full.pdf
http://dx.doi.org/10.1016/j.physa.2011.06.030
http://arxiv.org/abs/1406.5667
http://dx.doi.org/10.1145/1963192.1963237
http://dx.doi.org/10.1145/1963192.1963237
http://dx.doi.org/10.1080/1369118X.2014.899610
http://dx.doi.org/10.1016/0378-8733(88)90010-X
http://dx.doi.org/10.1016/0378-8733(88)90010-X
http://dx.doi.org/10.1145/3012704
http://dx.doi.org/10.1186/1471-2164-10-327
http://dx.doi.org/10.1007/978-3-540-30717-4
http://dx.doi.org/10.1007/978-3-540-30717-4
http://arxiv.org/abs/arXiv:1706.07719
http://dx.doi.org/10.1109/ALLERTON.2016.7852305
http://dx.doi.org/10.1145/2556612
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1007/978-3-540-77978-0
http://dx.doi.org/10.1109/ENIC.2015.25
http://dx.doi.org/10.1145/2755573.2755574
http://dx.doi.org/10.1002/net.3230190305
http://dx.doi.org/10.1145/1963405.1963485
http://dx.doi.org/10.1145/1963405.1963485
http://dx.doi.org/10.1109/NDT.2009.5272169
http://arxiv.org/abs/1609.00750
http://dx.doi.org/10.1002/job.169
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1126/science.1184819
http://science.sciencemag.org/content/328/5980/876.full.pdf
http://dx.doi.org/10.1086/687857
http://dx.doi.org/10.1145/377939.377946
http://dx.doi.org/10.1109/INFCOMW.2009.5072115
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevLett.89.208701

Bibliography

[NC16] M. E. J. Newman and A. Clauset, “Structure and inference in annotated networks”, Nature Communications, vol. 7,
p. 11 863, 2016. DOI: 10.1038/ncomms11863 (cit. on pp. 113, 114).

[Nic+16] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of relational machine learning for knowledge graphs”,
Proceedings of the IEEE, vol. 104, no. 1, pp. 11–33, 2016. DOI: 10.1109/JPROC.2015.2483592 (cit. on p. 110).

[NL15] V. Nicosia and V. Latora, “Measuring and modeling correlations in multiplex networks”, Phys. Rev. E, vol. 92,
p. 032 805, 3 2015. DOI: 10.1103/PhysRevE.92.032805 (cit. on p. 91).

[NJ09] S. Nowozin and S. Jegelka, “Solution stability in linear programming relaxations: graph partitioning and unsupervised
learning”, in Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 769–776. DOI:
10.1145/1553374.1553473 (cit. on pp. 9, 65).

[OGP09] D. O. Olguín, P. A. Gloor, and A. S. Pentland, “Capturing individual and group behavior with wearable sensors”, in
Proceedings of the AAAI Spring Symposium on Human Behavior Modeling, 2009, pp. 68–74 (cit. on p. 12).

[Orl+10] J. B. Orlin, K. Madduri, K. Subramani, and M. Williamson, “A faster algorithm for the single source shortest path
problem with few distinct positive lengths”, Journal of Discrete Algorithms, vol. 8, no. 2, pp. 189–198, 2010, Selected
papers from the 3rd Algorithms and Complexity in Durham Workshop ACiD 2007. DOI: http://dx.doi.org/10.
1016/j.jda.2009.03.001 (cit. on p. 81).

[Pag+99] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: bringing order to the web”, Stanford
InfoLab, Technical Report 1999-66, 1999 (cit. on p. 23).

[Pan+15] X. Pan et al., “Parallel correlation clustering on big graphs”, in Advances in Neural Information Processing Systems 28,
2015, pp. 82–90 (cit. on p. 59).

[Pap+14] A. Papaoikonomou, M. Kardara, K. Tserpes, and T. A. Varvarigou, “Predicting edge signs in social networks using
frequent subgraph discovery”, IEEE Internet Computing, vol. 18, no. 5, pp. 36–43, 2014. DOI: 10.1109/MIC.2014.82
(cit. on p. 23).

[PKV15] A. Papaoikonomou, M. Kardara, and T. Varvarigou, “Trust inference in online social networks”, in Proceedings of the
2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, 2015, pp. 600–604.
DOI: 10.1145/2808797.2809418 (cit. on p. 24).

[PKK14] P. A. Papp, S. Kisfaludi-Bak, and Z. Király, “Low-stretch spanning trees”, Bachelor thesis, Eötvös Loránd University,
2014 (cit. on p. 84).

[PB14] N. Parikh and S. Boyd, “Proximal algorithms”, Foundations and Trends® in Optimization, vol. 1, no. 3, pp. 127–239,
2014. DOI: 10.1561/2400000003 (cit. on p. 101).

[PS89] D. Peleg and A. A. Schäffer, “Graph spanners”, Journal of Graph Theory, vol. 13, no. 1, pp. 99–116, 1989. DOI: 10.1002/
jgt.3190130114 (cit. on p. 81).

[PU89] D. Peleg and J. D. Ullman, “An optimal synchronizer for the hypercube”, SIAM Journal on Computing, vol. 18, no. 4,
pp. 740–747, 1989. DOI: 10.1137/0218050 (cit. on p. 81).

[PAS14] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning of social representations”, in Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710. DOI: 10.1145/
2623330.2623732 (cit. on p. 120).

[Pet08] S. Pettie, “Distributed algorithms for ultrasparse spanners and linear size skeletons”, in 27th ACM Symposium on
Principles of Distributed Computing, 2008, pp. 253–262. DOI: 10.1145/1400751.1400786 (cit. on p. 81).

[Pil+17] S. Pilosof, M. A. Porter, M. Pascual, and S. Kéfi, “The multilayer nature of ecological networks”, Nature Ecology &
Evolution, vol. 1, no. 4, p. 0101, 2017. DOI: 10.1038/s41559-017-0101 (cit. on p. 8).

[Piz+13] L. A. Pizzato et al., “Recommending people to people: the nature of reciprocal recommenders with a case study in
online dating”, User Modeling and User-Adapted Interaction, vol. 23, no. 5, pp. 447–488, 2013. DOI: 10.1007/s11257-
012-9125-0 (cit. on p. 118).

[Pra+13] B. A. Prakash, L. Adamic, T. Iwashyna, H. Tong, and C. Faloutsos, “Fractional immunization in networks”, in Proceed-
ings of the 2013 SIAM International Conference on Data Mining. 2013, pp. 659–667. DOI: 10.1137/1.9781611972832.
73 (cit. on p. 3).

[PM15] G. J. Puleo and O. Milenkovic, “Correlation clustering with constrained cluster sizes and extended weights bounds”,
SIAM Journal on Optimization, vol. 25, no. 3, pp. 1857–1872, 2015. DOI: 10.1137/140994198. arXiv: 1411.0547
(cit. on p. 67).

[PM16] ——, “Correlation clustering and biclustering with locally bounded errors”, in Proceedings of The 33rd International
Conference on Machine Learning, vol. 48, 2016, pp. 869–877 (cit. on p. 67).

[QBK06] Y. Qi, Z. Bar-Joseph, and J. Klein-Seetharaman, “Evaluation of different biological data and computational classification
methods for use in protein interaction prediction”, Proteins: Structure, Function, and Bioinformatics, vol. 63, no. 3, pp. 490–
500, 2006. DOI: 10.1002/prot.20865 (cit. on p. 3).

[QA14] Y. Qian and S. Adali, “Foundations of trust and distrust in networks: extended structural balance theory”, ACM Trans.
Web, vol. 8, no. 3, 13:1–13:33, 2014. DOI: 10.1145/2628438 (cit. on p. 24).

[Qiu+18] J. Qiu et al., “GNetwork Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec”, in
Proceedings of the 11th ACM International Conference on Web Search and Data Mining, 2018. arXiv: arXiv:1710.02971
(cit. on pp. 119, 120).

[Qua60] R. E. Quandt, “Models of transportation and optimal network construction”, Journal of Regional Science, vol. 2, no. 1,
pp. 27–45, 1960. DOI: 10.1111/j.1467-9787.1960.tb00833.x (cit. on p. 79).

[RH12] S. S. Rangapuram and M. Hein, “Constrained 1-spectral clustering”, in Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics, vol. 22, 2012, pp. 1143–1151 (cit. on p. 68).

[Rat+12] H. K. Rath, A. Chaturvedi, M. A. Rajan, and A. Simha, “Weighted signed graph (wsg) power-aware routing in
distributed wireless networks”, in 2012 IEEE Globecom Workshops, 2012, pp. 475–480. DOI: 10.1109/GLOCOMW.2012.
6477619 (cit. on p. 7).

[RRP13] N. Rebagliati, S. Rota Bulò, and M. Pelillo, “Correlation clustering with stochastic labellings”, in Similarity-Based
Pattern Recognition: Second International Workshop, SIMBAD 2013, York, UK, July 3-5, 2013. Proceedings. 2013, pp. 120–133.
DOI: 10.1007/978-3-642-39140-8_8 (cit. on p. 67).

[RB06] J. Reichardt and S. Bornholdt, “Statistical mechanics of community detection”, Phys. Rev. E, vol. 74, no. 1, p. 16 110,
2006. DOI: 10.1103/PhysRevE.74.016110 (cit. on p. 62).

[Ren+17] X. Ren et al., “Cotype: joint extraction of typed entities and relations with knowledge bases”, in Proceedings of the
26th International Conference on World Wide Web - WWW ’17, 2017, pp. 1015–1024. DOI: 10.1145/3038912.3052708.
arXiv: 1610.08763 (cit. on p. 111).

[Roc70] R. T. Rockafellar, Convex Analysis. 1970 (cit. on p. 101).
[RZ04] L. Roditty and U. Zwick, “On dynamic shortest paths problems”, in 12th Annual European Symposium on Algorithms

(ESA’04). 2004, pp. 580–591. DOI: 10.1007/978-3-540-30140-0_52 (cit. on p. 81).

130

http://dx.doi.org/10.1038/ncomms11863
http://dx.doi.org/10.1109/JPROC.2015.2483592
http://dx.doi.org/10.1103/PhysRevE.92.032805
http://dx.doi.org/10.1145/1553374.1553473
http://dx.doi.org/http://dx.doi.org/10.1016/j.jda.2009.03.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.jda.2009.03.001
http://dx.doi.org/10.1109/MIC.2014.82
http://dx.doi.org/10.1145/2808797.2809418
http://dx.doi.org/10.1561/2400000003
http://dx.doi.org/10.1002/jgt.3190130114
http://dx.doi.org/10.1002/jgt.3190130114
http://dx.doi.org/10.1137/0218050
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/1400751.1400786
http://dx.doi.org/10.1038/s41559-017-0101
http://dx.doi.org/10.1007/s11257-012-9125-0
http://dx.doi.org/10.1007/s11257-012-9125-0
http://dx.doi.org/10.1137/1.9781611972832.73
http://dx.doi.org/10.1137/1.9781611972832.73
http://dx.doi.org/10.1137/140994198
http://arxiv.org/abs/1411.0547
http://dx.doi.org/10.1002/prot.20865
http://dx.doi.org/10.1145/2628438
http://arxiv.org/abs/arXiv:1710.02971
http://dx.doi.org/10.1111/j.1467-9787.1960.tb00833.x
http://dx.doi.org/10.1109/GLOCOMW.2012.6477619
http://dx.doi.org/10.1109/GLOCOMW.2012.6477619
http://dx.doi.org/10.1007/978-3-642-39140-8_8
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1145/3038912.3052708
http://arxiv.org/abs/1610.08763
http://dx.doi.org/10.1007/978-3-540-30140-0_52

Bibliography

[Rog03] E. . Rogers, Diffusion of Innovations, 5th edition. 2003, 576 pp. (cit. on p. 4).
[RB08] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal community structure”,

Proceedings of the National Academy of Sciences, vol. 105, no. 4, pp. 1118–1123, 2008. DOI: 10.1073/pnas.0706851105.
eprint: http://www.pnas.org/content/105/4/1118.full.pdf (cit. on p. 3).

[RTG17] P. Rozenshtein, N. Tatti, and A. Gionis, “Inferring the strength of social ties: a community-driven approach”, in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1017–
1025. DOI: 10.1145/3097983.3098199 (cit. on p. 91).

[Sal+15] M. Salehi et al., “Spreading processes in multilayer networks”, IEEE Transactions on Network Science and Engineering,
vol. 2, no. 2, pp. 65–83, 2015. DOI: 10.1109/TNSE.2015.2425961 (cit. on p. 91).

[SC17] P. Sarkar and M. U. Chowdhury, “Secure iot using weighted signed graphs”, in Security and Privacy in Communication
Networks: 12th International Conference, SecureComm 2016. 2017, pp. 241–256. DOI: 10.1007/978-3-319-59608-
2_13 (cit. on p. 7).

[Sco69] A. J. Scott, “The optimal network problem: some computational procedures”, Transportation Research, vol. 3, no. 2,
pp. 201–210, 1969. DOI: http://dx.doi.org/10.1016/0041-1647(69)90152-X (cit. on p. 82).

[Sed+17] J. Sedoc, J. Gallier, D. P. Foster, and L. H. Ungar, “Semantic word clusters using signed spectral clustering”, in
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July
30 - August 4, Volume 1: Long Papers, 2017, pp. 939–949. DOI: 10.18653/v1/P17-1087 (cit. on p. 69).

[SPU17] Predicting Emotional Word Ratings using Distributional Representations and Signed Clustering, 2017, pp. 564–571 (cit. on
pp. 5, 54).

[SH10] P. Shachaf and N. Hara, “Beyond vandalism: wikipedia trolls”, Journal of Information Science, vol. 36, no. 3, pp. 357–370,
2010. DOI: 10.1177/0165551510365390 (cit. on p. 12).

[SJ14] M. Shahriari and M. Jalili, “Ranking nodes in signed social networks”, Social Network Analysis and Mining, vol. 4, no. 1,
p. 172, 2014. DOI: 10.1007/s13278-014-0172-x (cit. on pp. 9, 24, 25, 30).

[ST11] C. R. Shalizi and A. C. Thomas, “Homophily and contagion are generically confounded in observational social network
studies”, Sociological Methods & Research, vol. 40, no. 2, pp. 211–239, 2011. DOI: 10.1177/0049124111404820.
eprint: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328971/ (cit. on p. 114).

[SST02] R. Shamir, R. Sharan, and D. Tsur, “Cluster graph modification problems”, in Graph-Theoretic Concepts in Computer
Science, vol. 2573, 2002, pp. 379–390. DOI: 10.1007/3-540-36379-3_33 (cit. on p. 55).

[SW14] Z. Shen and Q. Wang, “Entity resolution with weighted constraints”, in Advances in Databases and Information Systems:
18th East European Conference, ADBIS 2014, Ohrid, Macedonia, September 7-10. 2014, pp. 308–322. DOI: 10.1007/978-
3-319-10933-6_23 (cit. on pp. 6, 54).

[Shi+17] C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu, “A survey of heterogeneous information network analysis”, IEEE
Transactions on Knowledge and Data Engineering, vol. 29, no. 1, pp. 17–37, 2017. DOI: 10.1109/TKDE.2016.2598561
(cit. on p. 115).

[Sid+17] N. D. Sidiropoulos et al., “Tensor decomposition for signal processing and machine learning”, IEEE Transactions on
Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017. DOI: 10.1109/TSP.2017.2690524 (cit. on p. 120).

[SMZ12] A. Silva, W. Meira, and M. J. Zaki, “Mining attribute-structure correlated patterns in large attributed graphs”,
Proceedings of the VLDB Endowment, vol. 5, no. 5, pp. 466–477, 2012. DOI: 10.14778/2140436.2140443 (cit. on
p. 112).

[SA17] R. Singh and B. Adhikari, “Measuring the balance of signed networks and its application to sign prediction”, Journal
of Statistical Mechanics: Theory and Experiment, vol. 2017, no. 6, 2017. DOI: 10.1088/1742-5468/aa73ef (cit. on
p. 51).

[Sit+12] Z. Siting, H. Wenxing, Z. Ning, and Y. Fan, “Job recommender systems: a survey”, 2012 7th International Conference on
Computer Science & Education (ICCSE), no. Iccse, pp. 920–924, 2012. DOI: 10.1109/ICCSE.2012.6295216 (cit. on
p. 118).

[SSF13] R. Slonje, P. K. Smith, and A. Frisén, “The nature of cyberbullying, and strategies for prevention”, Computers in Human
Behavior, vol. 29, no. 1, pp. 26–32, 2013. DOI: 10.1016/j.chb.2012.05.024 (cit. on p. 12).

[SCC15] F. Solera, S. Calderara, and R. Cucchiara, “Learning to divide and conquer for online multi-target tracking”, in 2015
IEEE International Conference on Computer Vision (ICCV), 2015, pp. 4373–4381. DOI: 10.1109/ICCV.2015.497 (cit. on
pp. 5, 54).

[SM15] D. Song and D. A. Meyer, “Link sign prediction and ranking in signed directed social networks”, Social Network
Analysis and Mining, vol. 5, no. 1, p. 52, 2015. DOI: 10.1007/s13278-015-0288-7 (cit. on pp. 9, 23, 30).

[Son+17] Q. Song, H. Ge, J. Caverlee, and X. Hu, Tensor completion algorithms in big data analytics, 2017. arXiv: arXiv:1711.
10105 (cit. on p. 120).

[SM03] V. Spirin and L. A. Mirny, “Protein complexes and functional modules in molecular networks”, Proceedings of the
National Academy of Sciences, vol. 100, no. 21, pp. 12 123–12 128, 2003. DOI: 10.1073/pnas.2032324100. eprint:
http://www.pnas.org/content/100/21/12123.full.pdf (cit. on p. 3).

[Squ+13] T. Squartini, F. Picciolo, F. Ruzzenenti, and D. Garlaschelli, “Reciprocity of weighted networks”, Scientific Reports, vol.
3, no. 2729, 2013. DOI: 10.1038/srep02729 (cit. on p. 26).

[SC12] E. Stattner and M. Collard, “Social-based conceptual links: conceptual analysis applied to social networks”, in
2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2012, pp. 25–29. DOI:
10.1109/ASONAM.2012.15 (cit. on p. 112).

[SWG12] I. Steinmacher, I. S. Wiese, and M. A. Gerosa, “Recommending mentors to software project newcomers”, in Proceedings
of the Third International Workshop on Recommendation Systems for Software Engineering, 2012, pp. 63–67 (cit. on p. 118).

[ST14] A. Subramanya and P. P. Talukdar, “Graph-based semi-supervised learning”, Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 8, no. 4, pp. 1–125, 2014. DOI: 10.2200/S00590ED1V01Y201408AIM029 (cit. on p. 3).

[Sul04] J. Suler, “The online disinhibition effect”, Cyberpsychology & Behavior, vol. 7, no. 3, pp. 321–326, 2004. DOI: 10.1089/
1094931041291295. eprint: https://www.ncbi.nlm.nih.gov/pubmed/15257832 (cit. on p. 12).

[Sun+11] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: meta path-based top-k similarity search in heterogeneous
information networks”, PVLDB, vol. 4, no. 11, pp. 992–1003, 2011 (cit. on p. 115).

[Swa04] C. Swamy, “Correlation clustering: maximizing agreements via semidefinite programming”, in Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 526–527 (cit. on pp. 58, 59, 61).

[ST10] M. Szell and S. Thurner, “Measuring social dynamics in a massive multiplayer online game”, Social Networks, vol. 32,
no. 4, pp. 313–329, 2010. DOI: 10.1016/j.socnet.2010.06.001. arXiv: arXiv:0911.1084v1 (cit. on pp. 7, 91).

[TC09] P. P. Talukdar and K. Crammer, “New regularized algorithms for transductive learning”, in Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in Databases. 2009, pp. 442–457. DOI: 10.1007/978-3-642-
04174-7_29 (cit. on p. 3).

131

http://dx.doi.org/10.1073/pnas.0706851105
http://www.pnas.org/content/105/4/1118.full.pdf
http://dx.doi.org/10.1145/3097983.3098199
http://dx.doi.org/10.1109/TNSE.2015.2425961
http://dx.doi.org/10.1007/978-3-319-59608-2_13
http://dx.doi.org/10.1007/978-3-319-59608-2_13
http://dx.doi.org/http://dx.doi.org/10.1016/0041-1647(69)90152-X
http://dx.doi.org/10.18653/v1/P17-1087
http://dx.doi.org/10.1177/0165551510365390
http://dx.doi.org/10.1007/s13278-014-0172-x
http://dx.doi.org/10.1177/0049124111404820
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328971/
http://dx.doi.org/10.1007/3-540-36379-3_33
http://dx.doi.org/10.1007/978-3-319-10933-6_23
http://dx.doi.org/10.1007/978-3-319-10933-6_23
http://dx.doi.org/10.1109/TKDE.2016.2598561
http://dx.doi.org/10.1109/TSP.2017.2690524
http://dx.doi.org/10.14778/2140436.2140443
http://dx.doi.org/10.1088/1742-5468/aa73ef
http://dx.doi.org/10.1109/ICCSE.2012.6295216
http://dx.doi.org/10.1016/j.chb.2012.05.024
http://dx.doi.org/10.1109/ICCV.2015.497
http://dx.doi.org/10.1007/s13278-015-0288-7
http://arxiv.org/abs/arXiv:1711.10105
http://arxiv.org/abs/arXiv:1711.10105
http://dx.doi.org/10.1073/pnas.2032324100
http://www.pnas.org/content/100/21/12123.full.pdf
http://dx.doi.org/10.1038/srep02729
http://dx.doi.org/10.1109/ASONAM.2012.15
http://dx.doi.org/10.2200/S00590ED1V01Y201408AIM029
http://dx.doi.org/10.1089/1094931041291295
http://dx.doi.org/10.1089/1094931041291295
https://www.ncbi.nlm.nih.gov/pubmed/15257832
http://dx.doi.org/10.1016/j.socnet.2010.06.001
http://arxiv.org/abs/arXiv:0911.1084v1
http://dx.doi.org/10.1007/978-3-642-04174-7_29
http://dx.doi.org/10.1007/978-3-642-04174-7_29

Bibliography

[Tan+15] J. Tang et al., “Line: large-scale information network embedding”, in Proceedings of the 24th International Conference on
World Wide Web, 2015, pp. 1067–1077. DOI: 10.1145/2736277.2741093 (cit. on pp. 3, 120).

[TL15] J. Tang and J. Li, “Semantic mining of social networks”, Synthesis Lectures on the Semantic Web: Theory and Technology,
vol. 5, no. 2, pp. 1–205, 2015. DOI: 10.2200/S00629ED1V01Y201502WBE011 (cit. on p. 110).

[Tan+16a] J. Tang, T. Lou, J. Kleinberg, and S. Wu, “Transfer learning to infer social ties across heterogeneous networks”, ACM
Trans. Inf. Syst., vol. 34, no. 2, 7:1–7:43, 2016, conference version in WSDM’12. DOI: 10.1145/2746230 (cit. on p. 110).

[Tan+16b] J. Tang, Y. Chang, C. Aggarwal, and H. Liu, “A survey of signed network mining in social media”, ACM Computing
Surveys (CSUR), vol. 49, no. 3, p. 36, 2016. DOI: 10.1145/2956185. arXiv: 1511.07569 (cit. on pp. 4, 25).

[Tan+13] J. Tang, H. Gao, X. Hu, and H. Liu, “Exploiting homophily effect for trust prediction”, in Proceedings of the sixth ACM
international conference on Web search and data mining - WSDM ’13, 2013, p. 53. DOI: 10.1145/2433396.2433405
(cit. on p. 24).

[TZT11] W. Tang, H. Zhuang, and J. Tang, “Learning to infer social ties in large networks”, in Machine Learning and Knowledge
Discovery in Databases: European Conference, (ECML PKDD). 2011, pp. 381–397. DOI: 10.1007/978-3-642-23808-
6_25 (cit. on pp. 10, 110).

[Tas+04] B. Taskar, M.-f. Wong, P. Abbeel, and D. Koller, “Link prediction in relational data”, in Advances in Neural Information
Processing Systems 16, 2004, pp. 659–666 (cit. on p. 112).

[The09a] M. Thelwall, “Homophily in myspace”, Journal of the American Society for Information Science and Technology, vol. 60, no.
2, pp. 219–231, 2009. DOI: 10.1002/asi.20978 (cit. on p. 4).

[The09b] ——, “Homophily in myspace”, Journal of the American Society for Information Science and Technology, vol. 60, no. 2,
pp. 219–231, 2009. DOI: 10.1002/asi.20978 (cit. on p. 92).

[Tom16] M. Tomassen, Exploring the black box of machine learning in human resource management: an hr perspective on the consequences
for hr professionals, Master Thesis, 2016 (cit. on p. 12).

[TB09] V. A. Traag and J. Bruggeman, “Community detection in networks with positive and negative links”, Physical Review
E - Statistical, Nonlinear, and Soft Matter Physics, vol. 80, 2009. DOI: 10.1103/PhysRevE.80.036115 (cit. on pp. 6,
54, 62).

[TNV10] V. A. Traag, Y. E. Nesterov, and P. Van Dooren, “Exponential ranking: taking into account negative links”, in Social
Informatics: Second International Conference. 2010, pp. 192–202. DOI: 10.1007/978-3-642-16567-2_14 (cit. on
pp. 9, 23).

[Tys+16] G. Tyson, V. C. Perta, H. Haddadi, and M. C. Seto, “A first look at user activity on tinder”, in International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), 2016, pp. 461–466. DOI: 10.1109/ASONAM.2016.
7752275 (cit. on pp. 4, 118).

[vZW08] A. van Zuylen and D. P. Williamson, “Deterministic algorithms for rank aggregation and other ranking and clustering
problems”, in Approximation and Online Algorithms: 5th International Workshop, WAOA 2007, Eilat, Israel. 2008, pp. 260–
273. DOI: 10.1007/978-3-540-77918-6_21 (cit. on p. 58).

[VWG17] N. Veldt, A. Wirth, and D. F. Gleich, “Correlation clustering with low-rank matrices”, in Proceedings of the 26th
International Conference on World Wide Web - WWW ’17, 2017, pp. 1025–1034. DOI: 10.1145/3038912.3052586.
arXiv: 1611.07305 (cit. on p. 56).

[Vid11] R. Vidal, “Subspace clustering”, IEEE Signal Processing Magazine, vol. 28, no. 2, pp. 52–68, 2011. DOI: 10.1109/MSP.
2010.939739 (cit. on p. 111).

[VEB09] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clusterings comparison: is a correction for
chance necessary?”, in Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 1073–1080.
DOI: 10.1145/1553374.1553511 (cit. on p. 108).

[Vit14] F. Vitale, private communication, 2014 (cit. on pp. 10, 70, 85, 117).
[Vit+11] F. Vitale, N. Cesa-Bianchi, C. Gentile, and G. Zappella, “See the tree through the lines: the shazoo algorithm”, in

Advances in Neural Information Processing Systems 24, 2011, pp. 1584–1592. arXiv: 1301.5160 (cit. on p. 13).
[vLux07] U. von Luxburg, “A tutorial on spectral clustering”, Statistics and Computing, vol. 17, no. 4, pp. 395–416, 2007. DOI:

10.1007/s11222-007-9033-z (cit. on p. 68).
[Wan+10] C. Wang et al., “Mining advisor-advisee relationships from research publication networks”, in Proceedings of the 16th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 203–212. DOI: 10.1145/
1835804.1835833 (cit. on pp. 7, 91).

[Wan+18] H. Wang et al., “Shine: signed heterogeneous information network embedding for sentiment link prediction”, in
Proceedings of the 11th ACM International Conference on Web Search and Data Mining, 2018. DOI: 10.1145/3159652.
3159666. arXiv: arXiv:1712.00732 (cit. on p. 119).

[Wan+17a] J. Wang, J. Shen, P. Li, and H. Xu, “Online matrix completion for signed link prediction”, in Proceedings of the Tenth
ACM International Conference on Web Search and Data Mining - WSDM ’17, 2017, pp. 475–484. DOI: 10.1145/3018661.
3018681 (cit. on pp. 9, 22, 25, 30, 101).

[WL13] N. Wang and J. Li, “Restoring: a greedy heuristic approach based on neighborhood for correlation clustering”, in
Advanced Data Mining and Applications: 9th International Conference, ADMA 2013, Hangzhou, China, December 14-16.
2013, pp. 348–359. DOI: 10.1007/978-3-642-53914-5_30 (cit. on p. 61).

[Wan+17b] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: a survey of approaches and applications”, IEEE
Transactions on Knowledge and Data Engineering, vol. PP, no. 99, pp. 1–1, 2017. DOI: 10.1109/TKDE.2017.2754499
(cit. on pp. 111, 115).

[Wan+17c] S. Wang, C. Aggarwal, J. Tang, and H. Liu, “Attributed signed network embedding”, in Proceedings of the 26th ACM
International on Conference on Information and Knowledge Management, 2017. DOI: 10.1145/3132847.3132905 (cit. on
pp. 24, 119).

[Wan+17d] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu, “Signed network embedding in social media”, in Proceedings of
the 2017 SIAM International Conference on Data Mining. 2017, pp. 327–335. DOI: 10.1137/1.9781611974973.37
(cit. on pp. 22, 24).

[Wan+13] Y. Wang, L. Xu, Y. Chen, and H. Wang, “A scalable approach for general correlation clustering”, in Advanced Data
Mining and Applications: 9th International Conference, ADMA 2013, Hangzhou, China, December 14-16. 2013, pp. 13–24.
DOI: 10.1007/978-3-642-53917-6_2 (cit. on p. 62).

[WF16] H. Weng and Y. Feng, “Community detection with nodal information”, 2016. arXiv: 1610.09735 (cit. on pp. 113,
114).

[WTM13] D. Wijaya, P. P. Talukdar, and T. Mitchell, “Pidgin: ontology alignment using web text as interlingua”, in Proceedings
of the 22nd ACM International Conference on Information & Knowledge Management, 2013, pp. 589–598. DOI: 10.1145/
2505515.2505559 (cit. on p. 3).

132

http://dx.doi.org/10.1145/2736277.2741093
http://dx.doi.org/10.2200/S00629ED1V01Y201502WBE011
http://dx.doi.org/10.1145/2746230
http://dx.doi.org/10.1145/2956185
http://arxiv.org/abs/1511.07569
http://dx.doi.org/10.1145/2433396.2433405
http://dx.doi.org/10.1007/978-3-642-23808-6_25
http://dx.doi.org/10.1007/978-3-642-23808-6_25
http://dx.doi.org/10.1002/asi.20978
http://dx.doi.org/10.1002/asi.20978
http://dx.doi.org/10.1103/PhysRevE.80.036115
http://dx.doi.org/10.1007/978-3-642-16567-2_14
http://dx.doi.org/10.1109/ASONAM.2016.7752275
http://dx.doi.org/10.1109/ASONAM.2016.7752275
http://dx.doi.org/10.1007/978-3-540-77918-6_21
http://dx.doi.org/10.1145/3038912.3052586
http://arxiv.org/abs/1611.07305
http://dx.doi.org/10.1109/MSP.2010.939739
http://dx.doi.org/10.1109/MSP.2010.939739
http://dx.doi.org/10.1145/1553374.1553511
http://arxiv.org/abs/1301.5160
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1145/1835804.1835833
http://dx.doi.org/10.1145/1835804.1835833
http://dx.doi.org/10.1145/3159652.3159666
http://dx.doi.org/10.1145/3159652.3159666
http://arxiv.org/abs/arXiv:1712.00732
http://dx.doi.org/10.1145/3018661.3018681
http://dx.doi.org/10.1145/3018661.3018681
http://dx.doi.org/10.1007/978-3-642-53914-5_30
http://dx.doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1145/3132847.3132905
http://dx.doi.org/10.1137/1.9781611974973.37
http://dx.doi.org/10.1007/978-3-642-53917-6_2
http://arxiv.org/abs/1610.09735
http://dx.doi.org/10.1145/2505515.2505559
http://dx.doi.org/10.1145/2505515.2505559

Bibliography

[Wil17] William L. Hamilton and Rex Ying and Jure Leskovec, “Representation learning on graphs: methods and applications”,
Bulletin of the Technical Committee on Data Engineering, vol. 40, no. 4, pp. 52–74, 2017. arXiv: arXiv:1709.05584
(cit. on pp. 3, 22).

[Wir17] A. Wirth, “Correlation clustering”, in Encyclopedia of Machine Learning and Data Mining. 2017, pp. 280–284. DOI:
10.1007/978-1-4899-7687-1_176 (cit. on p. 52).

[Won80] R. T. Wong, “Worst-case analysis of network design problem heuristics”, SIAM Journal on Algebraic Discrete Methods,
vol. 1, no. 1, pp. 51–63, 1980. DOI: 10.1137/0601008 (cit. on p. 82).

[Wu82] F. Y. Wu, “The potts model”, Rev. Mod. Phys., vol. 54, no. 1, pp. 235–268, 1982. DOI: 10.1103/RevModPhys.54.235
(cit. on p. 62).

[WAS16] Z. Wu, C. C. Aggarwal, and J. Sun, “The troll-trust model for ranking in signed networks”, in Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining, 2016, pp. 447–456. DOI: 10.1145/2835776.2835816
(cit. on pp. 9, 24, 25, 30).

[Xia+15] P. Xia, B. Liu, Y. Sun, and C. Chen, “Reciprocal recommendation system for online dating”, in Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 - ASONAM ’15, 2015,
pp. 234–241. DOI: 10.1145/2808797.2809282. arXiv: 1501.06247 (cit. on p. 119).

[Xia+16] P. Xia, S. Zhai, B. Liu, Y. Sun, and C. Chen, “Design of reciprocal recommendation systems for online dating”, Social
Network Analysis and Mining, vol. 6, no. 1, p. 32, 2016. DOI: 10.1007/s13278-016-0340-2 (cit. on p. 118).

[Xu+14a] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, “Gbagc”, ACM Transactions on Knowledge Discovery from Data, vol. 9,
no. 1, pp. 1–43, 2014. DOI: 10.1145/2629616 (cit. on pp. 10, 113, 114).

[Xu+14b] ——, “Gbagc: a general bayesian framework for attributed graph clustering”, ACM Trans. Knowl. Discov. Data, vol. 9,
no. 1, 5:1–5:43, 2014. DOI: 10.1145/2629616 (cit. on p. 104).

[YCL07] B. Yang, W. Cheung, and J. Liu, “Community mining from signed social networks”, IEEE Transactions on Knowledge
and Data Engineering, vol. 19, no. 10, pp. 1333–1348, 2007. DOI: 10.1109/TKDE.2007.1061 (cit. on p. 69).

[YML13] J. Yang, J. McAuley, and J. Leskovec, “Community detection in networks with node attributes”, in 2013 IEEE 13th
International Conference on Data Mining, 2013, pp. 1151–1156. DOI: 10.1109/ICDM.2013.167 (cit. on pp. 10, 104,
113, 114).

[Yan+12] S.-H. Yang, A. J. Smola, B. Long, H. Zha, and Y. Chang, “Friend or frenemy?”, in Proceedings of the 35th international
ACM SIGIR conference on Research and development in information retrieval - SIGIR ’12, 2012, p. 555. DOI: 10.1145/
2348283.2348359 (cit. on p. 12).

[YH15] J. Yap and N. Harrigan, “Why does everybody hate me? balance, status, and homophily: the triumvirate of signed tie
formation”, Social Networks, vol. 40, pp. 103–122, 2015. DOI: 10.1016/j.socnet.2014.08.002 (cit. on p. 48).

[Ye+13] J. Ye, H. Cheng, Z. Zhu, and M. Chen, “Predicting positive and negative links in signed social networks by transfer
learning”, in Proceedings of the 22Nd International Conference on World Wide Web, 2013, pp. 1477–1488 (cit. on p. 24).

[Yoo+17] J. Yoon, A. M. Alaa, M. Cadeiras, and M. van der Schaar, “Personalized donor-recipient matching for organ trans-
plantation”, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., 2017, pp. 1647–1654 (cit. on p. 118).

[YWX17] S. Yuan, X. Wu, and Y. Xiang, “Sne: signed network embedding”, in Proceedings of Advances in Knowledge Discovery
and Data Mining: 21st Pacific-Asia Conference. 2017, pp. 183–195. DOI: 10.1007/978-3-319-57529-2_15. arXiv:
arXiv:1703.04837 (cit. on pp. 9, 22).

[Yua+17] W. Yuan et al., “Negative sign prediction for signed social networks”, Future Generation Computer Systems, 2017. DOI:
10.1016/j.future.2017.08.037 (cit. on pp. 9, 23).

[Zas12] T. Zaslavsky, “A mathematical bibliography of signed and gain graphs and allied areas”, en, The Electronic Journal of
Combinatorics, vol. 1000, 2012 (cit. on p. 50).

[ZW13] X. Zeng and L. Wei, “Social ties and user content generation: evidence from flickr”, Information Systems Research, vol.
24, no. 1, pp. 71–87, 2013. DOI: 10.1287/isre.1120.0464 (cit. on p. 114).

[ZYH14] C. Zhang, J. Yarkony, and F. A. Hamprecht, “Cell detection and segmentation using correlation clustering”, in
Proceedings of the 17th International Conference on Medical Image Computing and Computer-Assisted Intervention. 2014,
pp. 9–16. DOI: 10.1007/978-3-319-10404-1_2 (cit. on pp. 4, 54).

[Zha+16] M. Zhang, J. Ma, Z. Liu, J. Sun, and T. Silva, “A research analytics framework-supported recommendation approach
for supervisor selection”, British Journal of Educational Technology, vol. 47, no. 2, pp. 403–420, 2016. DOI: 10.1111/
bjet.12244 (cit. on p. 118).

[ZLZ16] Y. Zhang, E. Levina, and J. Zhu, “Community detection in networks with node features”, Electron. J. Statist., vol. 10,
no. 2, pp. 3153–3178, 2016. DOI: 10.1214/16-EJS1206 (cit. on pp. 10, 112).

[ZDB17] H. Zhao, L. Du, and W. Buntine, “Leveraging node attributes for incomplete relational data”, in ICML 2017, 2017.
arXiv: 1706.04289 (cit. on pp. 113, 114).

[ZS15] Q. Zheng and D. Skillicorn, “Spectral embedding of signed networks”, in Proceedings of the 2015 SIAM International
Conference on Data Mining. 2015, ch. 7, pp. 55–63. DOI: 10.1137/1.9781611974010.7 (cit. on pp. 22, 68).

[ZZW15] X. Zheng, D. Zeng, and F.-Y. Wang, “Social balance in signed networks”, Information Systems Frontiers, vol. 17, no. 5,
pp. 1077–1095, 2015. DOI: 10.1007/s10796-014-9483-8 (cit. on p. 48).

[ZCY09] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on structural/attribute similarities”, Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 718–729, 2009. DOI: 10.14778/1687627.1687709 (cit. on p. 112).

[ZCY10] ——, “Clustering large attributed graphs: an efficient incremental approach”, in Proceedings - IEEE International
Conference on Data Mining, ICDM, 2010, pp. 689–698. DOI: 10.1109/ICDM.2010.41 (cit. on p. 112).

[ZGL03] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian fields and harmonic functions”,
International Conference on Machine Learning - ICML 2003, vol. 20, no. 2, p. 912, 2003 (cit. on pp. 13, 20, 21).

[Zhu+12] H. Zhuang et al., “Actively learning to infer social ties”, Data Mining and Knowledge Discovery, vol. 25, no. 2, pp. 270–297,
2012. DOI: 10.1007/s10618-012-0274-x (cit. on p. 110).

[ZA10] K. Zolfaghar and A. Aghaie, “Mining trust and distrust relationships in social web applications”, in Proceedings of
the 2010 IEEE 6th International Conference on Intelligent Computer Communication and Processing, 2010, pp. 73–80. DOI:
10.1109/ICCP.2010.5606460 (cit. on p. 23).

[Zuc07] D. Zuckerman, “Linear degree extractors and the inapproximability of max clique and chromatic number”, Theory of
Computing, vol. 3, no. 6, pp. 103–128, 2007. DOI: 10.4086/toc.2007.v003a006 (cit. on p. 61).

133

http://arxiv.org/abs/arXiv:1709.05584
http://dx.doi.org/10.1007/978-1-4899-7687-1_176
http://dx.doi.org/10.1137/0601008
http://dx.doi.org/10.1103/RevModPhys.54.235
http://dx.doi.org/10.1145/2835776.2835816
http://dx.doi.org/10.1145/2808797.2809282
http://arxiv.org/abs/1501.06247
http://dx.doi.org/10.1007/s13278-016-0340-2
http://dx.doi.org/10.1145/2629616
http://dx.doi.org/10.1145/2629616
http://dx.doi.org/10.1109/TKDE.2007.1061
http://dx.doi.org/10.1109/ICDM.2013.167
http://dx.doi.org/10.1145/2348283.2348359
http://dx.doi.org/10.1145/2348283.2348359
http://dx.doi.org/10.1016/j.socnet.2014.08.002
http://dx.doi.org/10.1007/978-3-319-57529-2_15
http://arxiv.org/abs/arXiv:1703.04837
http://dx.doi.org/10.1016/j.future.2017.08.037
http://dx.doi.org/10.1287/isre.1120.0464
http://dx.doi.org/10.1007/978-3-319-10404-1_2
http://dx.doi.org/10.1111/bjet.12244
http://dx.doi.org/10.1111/bjet.12244
http://dx.doi.org/10.1214/16-EJS1206
http://arxiv.org/abs/1706.04289
http://dx.doi.org/10.1137/1.9781611974010.7
http://dx.doi.org/10.1007/s10796-014-9483-8
http://dx.doi.org/10.14778/1687627.1687709
http://dx.doi.org/10.1109/ICDM.2010.41
http://dx.doi.org/10.1007/s10618-012-0274-x
http://dx.doi.org/10.1109/ICCP.2010.5606460
http://dx.doi.org/10.4086/toc.2007.v003a006

	Title
	Résumé - Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	1.1 Learning in graphs
	1.2 Graph with several edge semantics
	1.2.1 Signed graphs
	1.2.2 Multilayer graphs

	1.3 Predicting edge type
	1.4 Outline

	Chapter 2 : On the Troll-Trust Model for edge sign prediction in Social Networks
	2.1 Notation and Preliminaries
	2.2 Generative Model for Edge Labels
	2.3 Algorithms in the Batch Setting
	2.3.1 Approximation to Bayes via dense sampling
	2.3.2 Approximation to Maximum Likelihood via Label Propagation

	2.4 Related work
	2.5 Experimental Analysis
	2.5.1 Datasets
	2.5.2 Synthetic signs
	2.5.3 Real signs
	2.5.4 Additional experiments

	2.6 Algorithms in the Online Setting
	2.7 Open questions
	2.8 Summary
	2.9 Additional material
	2.9.1 Proofs from Section 2.3
	2.9.1.1 Proof of Theorem 1
	2.9.1.2 Derivation of the maximum likelihood equations
	2.9.1.3 Label propagation on G''

	2.9.2 Proof from Section 2.6
	2.9.3 Further Experimental Results

	Chapter 3 : Edge sign prediction in general graphs and Correlation Clustering
	3.1 A bias for general graphs
	3.1.1 Sign generative model and behavior
	3.1.2 Directed edges requirement
	3.1.3 Social balance as a learning bias

	3.2 Correlation Clustering
	3.2.1 Problem setting and connection to Edge Sign Prediction
	3.2.2 State of the art
	3.2.2.1 Exact methods
	3.2.2.2 Hardness and approximations
	3.2.2.3 Heuristics
	3.2.2.4 Active and online settings

	3.2.3 Beyond worst case instances
	3.2.4 Variants and extensions

	3.3 Low stretch trees and spanners
	3.3.1 Galaxy Tree: a spanning tree designed for sign prediction
	3.3.2 Related work
	3.3.3 Empirical evaluation
	3.3.3.1 Graph topology
	3.3.3.2 Stretch
	3.3.3.3 Sign prediction

	3.4 Conclusions
	3.4.1 Summary
	3.4.2 Future work

	Chapter 4 : Edge clustering in node attributed graphs
	4.1 Attributed graphs and problem definition
	4.1.1 Setting and modelling
	4.1.2 Learning problem and additional constraints

	4.2 Proposed approaches
	4.2.1 k-means baseline and improvement
	4.2.2 Convex relaxation
	4.2.3 Matrix optimization
	4.2.3.1 Frank–Wolfe method
	4.2.3.2 Explicit low rank factorization

	4.3 Synthetic experiments
	4.3.1 Data generation
	4.3.2 Results

	4.4 Related work
	4.5 Open directions

	Chapter 5 : Conclusion
	5.1 Contributions
	5.2 Future work
	5.2.1 Reciprocal recommendation
	5.2.2 Representation learning

	Bibliography

	source: Thèse de Géraud Le Falher, Université de Lille, 2018
	d: © 2018 Tous droits réservés.
	lien: lilliad.univ-lille.fr

