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Contributions to Risk Modeling and Analysis at Railway Level

Crossings

Abstract:
Accidents at railway level crossings (LXs) often give rise to serious material and human damage

and highly impact the reputation of railway safety. Although research on LX safety has been an

area of great interest over the past decades, the causes of collisions that occur at LXs remain

insu�ciently understood. This PhD thesis deals with advanced quantitative risk analysis and

modeling techniques with the aim to improve safety at LXs. The contributions of the work

reported in this thesis are four-fold:

Firstly, a preliminary statistical analysis is performed. Namely, we analyze the impact of various

factors (transport mode, geographical region and tra�c moment) on the risk level at LXs quan-

titatively. Based on the obtained results, the main transport mode (motorized vehicle) causing

LX accidents and the most risky regions are identi�ed. Then, based on �eld experiments carried

out at 12 LXs throughout France, thorough quantitative analysis of motorist behavior is per-

formed to acquire the knowledge of motorist violation mechanisms causing train-car collisions.

In this stage, the Phase Classi�cation Analysis (PCA) concept is adopted to analyze motorist

behavior with regard to three functional phases of the LX closure cycle, i.e., Ph2 �Red Flash

and Sire�, Ph3 �Barriers Coming Down� and Ph4 �Barriers Down�. The motorist violation dur-

ing the closure cycle is analyzed in terms of schedule factors, vehicle speed, Ph4 duration, LX

location (namely railway station nearby or not) and road tra�c density, respectively. Moreover,

an advanced statistical accident prediction model was further developed. Such a model takes a

variety of impacting factors into account, i.e., the average daily road tra�c, the average daily

railway tra�c, the annual road accidents, the vertical road pro�le, the horizontal road alignment,

the road width, the crossing length, the railway speed limit and the geographic region. The

model validation phase we carried out has shown that the model allows for estimating accident

frequency with a considerably high accuracy and has a more appropriate form compared with

the existing models pertaining to LX accident prediction. Subsequently, an e�ective and compre-

hensive modeling framework based on Bayesian networks (BNs) for risk reasoning is proposed.

It consists of a set of integral processes, namely risk scenario de�nition, real �eld data collection

and processing, BN model establishment and model performance validation. The performance

validation results indicate that our BN risk model has sound estimation performance and allows

us to consider the outcomes of the model to be trustworthy. Based on the causal BN model,

forward inference and reverse inference are achieved to make consequence prediction and cause

diagnosis. Besides, in�uence strength analysis and sensitivity analysis were performed to deter-

mine the in�uence strength of causal factors on consequence factors and which causal factors the

consequence factors are mostly sensitive to.

In summary, the aforementioned contributions are a direct response to the key knowledge gap

regarding the mechanisms underlying LX accidents. The obtained results pave the way for

e�ectively identifying the riskiest LXs, and determining appropriate practical design measures

and targeted technical solutions, so as to improve LX safety.

Keywords : Level crossing safety, Railway safety, Train-car collisions, Risk analysis, Accident

prediction, Statistical modeling, Bayesian network modeling.



Contributions à la modélisation et l'analyse de risque aux

passages à niveau

Résumé :
Du point de vue de la sécurité, les passages à niveau (PN) sont considérés comme des points

critiques pour le transport ferroviaire. Les accidents aux PN constituent une part majeure des

accidents ferroviaires et impactent considérablement la réputation de la sécurité ferroviaire en

général. Bien que la sécurité des PN ait été une thématique de recherche largement investie au

cours des dernières décennies, les mécanismes relatifs aux collisions qui surviennent au niveau

des PN demeurent insu�samment maîtrisés. Ce travail de thèse porte sur la modélisation et

l'analyse quantitative des risques dans le but d'améliorer la sécurité aux PN. Les contributions

de ce travail peuvent être présentées selon quatre volets :

Sur le premier volet, une analyse statistique préliminaire est e�ectuée. En particulier, une analyse

quantitative de l'impact de divers facteurs (mode de transport, région géographique et moment

de tra�c) sur le niveau de risque aux PN a été e�ectuée. Sur le deuxième volet et en se basant

sur des données expérimentales �nes obtenues à partir de l'instrumentation de 12 PN à di�érents

endroits en France, une analyse quantitative du comportement des automobilistes est réalisée pour

explorer les mécanismes de violation lors de la traversée d'un PN. Pour ce fait, nous avons adopté

le concept d'analyse à base de phases (ACP) a�n d'étudier le comportement des automobilistes

en fonction des trois phases fonctionnelles du cycle de fermeture d'un PN. La violation des

automobilistes pendant le cycle de fermeture est ainsi analysée en tenant compte de di�érents

facteurs, dont : la vitesse d'approche du véhicule, la durée de fermeture du PN, de localisation

de PN (à proximité ou non d'une gare) et la densité du tra�c routier. Sur le troisième volet,

nous proposons un modèle statistique multi-paramètres de prévision des accidents. Le modèle

établi prend en compte le tra�c ferroviaire quotidien moyen, l'accidentologie routière, le pro�l et

l'alignement horizontal de la route, la largeur de la route, la longueur du passage à niveau, la

vitesse ferroviaire limite et la région géographique. À travers la phase de validation, nous avons

montré que le modèle développé est très �able et o�re une précision bien plus élevée par rapport

aux modèles de référence de la littérature. Sur le dernier volet, nous proposons un cadre de

modélisation global basé sur des réseaux Bayésiens (RB) pour le raisonnement causal. Ce cadre

comporte un ensemble de processus intégrés permettant de dé�nir les scénarios de risque tout

en intégrant les données réelles. Les résultats de la phase de validation indiquent que ce modèle

de risque présente de bonnes performances en termes d'estimation. Par ailleurs, sur la base du

RB développé, des analyses causales directe et inverse sont ensuite e�ectuées pour quanti�er les

conséquences de di�érents facteurs de risque et, inversement, réaliser le diagnostic relatif à des

scénarios à risque donnés. En outre, des analyses d'in�uence et de sensibilité ont été adoptées

pour déterminer le niveau d'in�uence associé à des facteurs de risque relativement à des scénarios

critiques donnés, et identi�er les facteurs les plus impactants.

En résumé, les contributions de ce travail de thèse o�rent une réponse directe à l'insu�sante

maîtrise des divers mécanismes qui sous-tendent les accidents aux PN. En outre, les résultats

obtenus ouvrent la voie vers l'identi�cation des solutions techniques et en termes de conception

en vue d'améliorer la sécurité des PN.

Mots clés : Sécurité aux passages à niveau, Sécurité ferroviaire, Collisions train-voiture, Analyse

de risque, Prédiction d'accident, Modèles statistiques, Réseaux Bayésiens.
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Glossary of Acronyms and Terms

ADRT Average Daily Railway Tra�c

ADRV Average Daily Road Vehicle

AADT Annual Average Daily Tra�c

AIC Akaike's Information Criterion

AIS Adaptive Importance Sampling

ALCAM Australian Level Crossing Assessment Model

ANB Augmented Naïve Bayes

ATP Automatic Train Protection

AUC Area Under the ROC Curve

BIC Bayesian Information Criterion

BN Bayesian Network

BNI-RR Bayesian Network based Inference for Risk Reasoning

BS Bayesian Search

CAK CAusal Knowledge

CDF Cumulative Distribution Function

CM Corrected Moment

CPT Conditional Probability Table

CSC Causal Structural Constraints

DAG Directed Acyclic Graph

DF Degree of Freedom

DSS Decision Support System

EC Existence Constraint

EGS Essential Graph Search

EM Expectation Maximization

EPIS Evidence Pre-propagation Importance Sampling

ETA Event Tree Analysis

ETS Event Trees

FC Forbidden Constraint

FL Fuzzy Logic

FPR False Positive Rate

FTA Fault Tree Analysis

FTS Fault Trees
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GOF Goodness of Fit

GSPNs Generalized Stochastic Petri Nets

GTT Greedy Thick Thinning

IDs In�uence Diagrams

LL Log-likelihood statistic

LX Level Crossing

MCs Markov Chains

MLE Maximum Likelihood Estimation

MV Motorized Vehicle

NB Negative Binomial

NLS Nonlinear Least-Square

NNs Neural Networks

NP-hard Non-deterministic Polynomial-hard problem

PB Pedestrian or Bicycle

PCS Pearson Chi-square Statistic

PDC Potential Directed Constraint

PNs Petri Nets

ROC Receiver Operating Characteristic Curve

SAL0
Passages à Niveau à Signalisation Automatique Lumineuse à feux seuls

(automated LXs with �ashing lights but without barriers)

SAL2
Passages à Niveau à Signalisation Automatique Lumineuse à 2 Demi-Barrières

(automated LXs with two half barriers and �ashing lights)

SAL4
Passages à Niveau à Signalisation Automatique Lumineuse à 4 Demi-Barrières

(automated LXs with four half barriers and �ashing lights)

SPAD Signal Passed at Danger

STD Sensitivity Tornado Diagram

TAN Tree Augmented Naïve Bayes

TPR True Positive Rate

ZINB Zero-in�ated Negative Binomial

ZIP Zero-in�ated Poisson

ZIP U.S. Department of Transportation



.

Acknowledgments

The work reported in this thesis was achieved in the framework of �MORIPAN project:

MOdèle de RIsque pour les PAssages à Niveau� within the Railenium Test and Research

center, in cooperation with the National Society of French Railway Networks (SNCF

Réseau) and the French Institute of Science and Technology for Transport, Development

and Networks (IFSTTAR). This PhD was prepared with COSYS/ESTAS team of IFST-

TAR (Villeneuve-d'Ascq).

To be honest, this work could not been achieved without several persons' assistance,

support and encouragement!

First and foremost, my special appreciation and thanks are undoubtedly delivered to

my supervisor Dr. Mohamed Ghazel for his day-to-day constant support and guidance

during the past three years. Without his help, this work would not be accomplished.

Likewise, I am deeply indebted and thoroughly grateful to my co-supervisor Mr. Olivier

Cazier for his valuable suggestions and support about data and materials, and his active

involvement in all technical phases of this work. Without his support, we could not obtain

the �rst-hand �eld materials and the project could not be launched.

Moreover, I would like to de�nitely express my kind thanks to my co-supervisor Dr.

El-Miloudi El-Koursi. He gave me valuable suggestions and support on my work, made

careful review on the present dissertation and provided helpful comments.

Besides, I would like to thank my project manager Dr. Sébastien Lefebvre. He gave

me a lot of support and help of my project and other aspects. With his help, my work

could go smoothly.

Furthermore, I express my sincere appreciation to Pr. Adnane Boukamel for agreeing

to be the chair of my thesis committee. I would like to thank all of you who agreed to be

the referees of this thesis and allocated your valuable time in order to evaluate the quality

of this work: Pr. Walter Schön and Dr-HDR. Louahdi Khoudour, for your examination

of the thesis and their very helpful comments and suggestions. I would like to thank Pr.

Wei zheng and Dr. Anne Silla for agreeing to be member of the jury and examining

my work.

I would also like to express my thanks to Benoit GUYOT who is with SNCF Réseau

and provided us a lot of support related to �eld data, and various members of IFSTTAR

- ESTAS and LEOST Laboratories, particularly Joaquin (introducing this project to me).

I have learned so much from all of you! I will fail in my duty if I do not acknowledge some



ii

of my friends who helped me a lot during the past three years. I mention Rui, Sana, Baisi,

Abderraouf, Ni, Liu, Zeting, Yuchen, Ji and many others.

Finally, I would like to thank all the people that supported me in many aspects during

these three years, making this work possible!

Ci LIANG

Lille - January 8th 2018.



I cannot �nd words to express my gratitude

to my mother, my father & my lover

to all my family

You raise me up to more than I can be!



The search for something permanent is one of the deepest of the instincts leading men to

philosophy.

- -Bertrand Russell- -

Man cannot discover new oceans unless he has courage to lose sight of the shore.

- -André Gide- -

Courage is the ladder on which all the other virtues mount.

- -Clare Boothe Luce- -

Only those who are never look up at the starry sky, don't fall into a pit.

- -Georg Wilhelm Friedrich Hegel- -

In fate had, the most can see people of integrity.

- -William Shakespeare- -



Contents

I PRELIMINARY INTRODUCTION 1

1 Introduction 3

1.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Motivation and Objective . . . . . . . . . . . . . . . . . . . . . 5

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Organization and Structure of the Dissertation . . . . . . . . . . . . . . . 11

2 Literature Review 13

2.1 Related Works on Railway Level Crossing Safety . . . . . . . . . . . . . . 14

2.2 Related Works on Accident Prediction Statistical Model . . . . . . . . . . 17

2.2.1 Peabody-Dimmick Formula . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 New Hampshire Index . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 USDOT Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 ALCAM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.5 Poisson regression Model and its variants . . . . . . . . . . . . . . 20

2.3 Related Works on causal Modeling . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Fault Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Event Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Petri nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.5 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.6 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II PRESENT WORKS AND CONTRIBUTIONS 37

3 Preliminary Statistical Analysis on LXs 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 General risk analysis in terms of transport mode and geographical region . 41

3.3 Risk analysis on frequency coe�cient in terms of tra�c moment . . . . . . 46

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



vi Contents

4 Motorist Behavior Quantitative Analysis: Experiments at 12 selected

automated LXs 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Motorist behavior analysis during Ph2 and Ph3 . . . . . . . . . . . . . . . 56

4.2.1 Road tra�c measurement . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Behavioral analysis during Ph2 and Ph3 . . . . . . . . . . . . . . . 60

4.3 Motorist behavior analysis during Ph4 . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Behavioral analysis during Ph4 . . . . . . . . . . . . . . . . . . . . 67

4.3.2 The impact of prolonged Ph4 duration . . . . . . . . . . . . . . . . 67

4.3.3 The impact of LX location (near to railway station or not) . . . . . 70

4.3.4 The impact of road tra�c density . . . . . . . . . . . . . . . . . . . 73

4.4 Comparison of motorist responses to SAL2 and SAL4 LXs . . . . . . . . . 77

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Advanced Statistical Accident Prediction Modeling 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Data sources and coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Accident prediction modeling . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Preliminary accident prediction model . . . . . . . . . . . . . . . . 93

5.3.2 Advanced accident prediction model . . . . . . . . . . . . . . . . . 96

5.4 Model quality validation and predictive accuracy assessment . . . . . . . . 105

5.4.1 Model quality comparison between λ10P and λ10Y . . . . . . . . . 105

5.4.2 Model quality comparison among variants of λ10Y . . . . . . . . . . 107

5.4.3 Predictive accuracy assessment . . . . . . . . . . . . . . . . . . . . 110

5.5 A comparison between λ10Y and two existing reference models . . . . . . . 119

5.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Bayesian network based framework for LX risk reasoning 127

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.1 Modeling Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.3 Decision support systems . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.4 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.5 Discrete and continuous variables . . . . . . . . . . . . . . . . . . . 136



Contents vii

6.2.6 BN learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.7 Strength of in�uence . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.8 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 BNI-RR framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3.1 BN model structure constructing . . . . . . . . . . . . . . . . . . . 141

6.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4.1 Risk scenario de�nition . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4.2 Data collection and processing . . . . . . . . . . . . . . . . . . . . 143

6.4.3 BN modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4.4 Model performance validation . . . . . . . . . . . . . . . . . . . . . 150

6.5 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5.1 Forward and reverse inferences . . . . . . . . . . . . . . . . . . . . 156

6.5.2 In�uence and sensitivity analysis . . . . . . . . . . . . . . . . . . . 159

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

III OVERALL CONCLUSIONS AND PERSPECTIVES 163

7 Overall Conclusions and Perspectives 165

7.1 Overall Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Bibliography 171

A Reference Materials 189

A.1 Predictive accuracy comparison between λ10Y and λ10P . . . . . . . . . . 190

A.2 Values of Parameters in Statistical Accident Prediction Model . . . . . . . 195





List of Figures

1.1 Four types of LXs in France . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Comprehensive accident frequency in di�erent regions . . . . . . . . . . . 7

1.3 The number of collisions (train-MV) at di�erent types of LX in France from

1978 to 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Symbols in FTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 An example of FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 An example of ET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 An example of MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 An example of PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 An example of BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Accidents caused by di�erent transport modes at SAL2 in 21 French regions

from 1974 to 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 General average frequency of total accidents distributing in di�erent regions 43

3.3 General average frequency of MV accidents distributing in di�erent regions 44

3.4 General average frequency of PB accidents distributing in di�erent regions 45

3.5 Comprehensive general average frequency of accidents in di�erent regions 45

3.6 Frequency coe�cient of MV accidents distributing in di�erent regions . . . 50

4.1 Geographic information about LX 51, LX 55, LX 58 and LX 69 . . . . . . 57

4.2 Labeled photographs of environment and devices at the four LXs . . . . . 59

4.3 The tool �MTExec� and an example of road tra�c data recorded in the

MTExec tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 An example of detailed railway tra�c data o�ered by SNCF . . . . . . . . 60

4.5 Violation trend at the four LXs as time increases in the daytime and at

night during Ph2 and Ph3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Violation rate during Ph2 and Ph3 with regard to the weekday and the hour 63

4.7 Speed of violating vehicles and relative violation rate of vehicles with speed

over 40 km/h in the daytime during Ph2 and Ph3 . . . . . . . . . . . . . . 64

4.8 Geographic information about 11 LXs . . . . . . . . . . . . . . . . . . . . 66

4.9 The average violation rate of zigzags during Ph4 as Ph4 duration prolonged 68

4.10 The average violation rate of zigzags during Ph4 as Ph4 duration prolonged 70

4.11 Ph4 duration distribution with regard to classi�ed slots . . . . . . . . . . 71



x List of Figures

4.12 The cumulative distribution of Ph4 duration . . . . . . . . . . . . . . . . . 73

4.13 The cumulative distribution of Ph4 duration at those LXs close to railway

stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.14 The length of waiting queues at the 5 LXs . . . . . . . . . . . . . . . . . . 76

4.15 Troop crossing phenomenon at LX 55 and LX 69 . . . . . . . . . . . . . . 77

4.16 Comparison of the number and normalized crossing ratio of vehicles at SAL2

and SAL4 LXs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 The preliminary accident frequency prediction model λ10P vs. (FRAcc ×
V 0.354 × T 0.646) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Statistical evaluation of the model quality: (a) Residuals vs. Fitted, (b)

Normal Q-Q, (c) Scale-Location, (d) Residual vs. Leverage . . . . . . . . . 95

5.3 Constraint between the group variance and the group mean value of annual

accidents at SAL2 LXs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 CDF of the Poisson, NB, ZIP and ZINB distributions combined with the

λ10Y , λ10Poi, λ10NB, λ10ZIP and λ10ZINB models according to the estimated

probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 An instance of a three-variable BN . . . . . . . . . . . . . . . . . . . . . . 130

6.2 The BNI-RR framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Reasoning between causes and consequences . . . . . . . . . . . . . . . . . 141

6.4 CSCs identi�ed for the BN risk model . . . . . . . . . . . . . . . . . . . . 147

6.5 The ROC curves for the 4 targeted nodes . . . . . . . . . . . . . . . . . . 152

6.6 General prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7 Prediction related to the occurrence of severest states of secondary causes 157

6.8 Cause diagnosis when a train-MV accident occurs . . . . . . . . . . . . . . 158

6.9 Normalized in�uence strength analysis . . . . . . . . . . . . . . . . . . . . 159

6.10 Sensitivity tornado diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1 An example of IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.1 CDF of the Poisson and the NB distributions combined with the λ10P and

λ10Y models according to the estimated probability . . . . . . . . . . . . . 191



List of Tables

1.1 Accidents at di�erent types of LXs in France from 1974 to 2014 . . . . . . 6

2.1 Indexes for USDOT Accident Prediction Formula . . . . . . . . . . . . . . 19

2.2 Zadeh operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Number of SAL2 in each region according to the category of �moment� . . 47

3.2 Frequency coe�cient of MV accidents at SAL2 in each region according to

the category of �moment� . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Collisions/near misses and road/rail tra�c volumes at the four LXs from

1974 to 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Collisions/near misses and road/rail tra�c volumes at the LXs from 1974

to 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Duration of Ph2 and Ph3 at each LX . . . . . . . . . . . . . . . . . . . . . 68

4.4 Information about average road tra�c density and violation rate during the

observation period at each LX . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 The slope rates of CD between 0 s and 200 s of Ph4 at those LXs close to

railway stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 The length of waiting queue (the number of waiting vehicles) at the 4th s

of Ph4 at each SAL2 LX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Statistical characterization of parameters considered . . . . . . . . . . . . 91

5.2 Parameters considered and data coding . . . . . . . . . . . . . . . . . . . . 92

5.3 Results of the λ10Y NLS regression model . . . . . . . . . . . . . . . . . . 101

5.4 Regression results of λ10Poi . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Regression results of λ10NB . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Count model regression results of λ10ZIP . . . . . . . . . . . . . . . . . . . 103

5.7 Zero-in�ation model regression results of λ10ZIP . . . . . . . . . . . . . . . 103

5.8 Count model regression results of λ10ZINB . . . . . . . . . . . . . . . . . . 104

5.9 Zero-in�ation model regression results of λ10ZINB . . . . . . . . . . . . . . 105

5.10 Monte-Carlo test results for λ10Y and λ10P . . . . . . . . . . . . . . . . . . 106

5.11 Model GOF comparison between λ10P and λ10Y . . . . . . . . . . . . . . . 108

5.12 Monte-Carlo test results for variants of λ10Y . . . . . . . . . . . . . . . . . 109

5.13 Model GOF comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.14 The extracted results of CDF analysis . . . . . . . . . . . . . . . . . . . . 113



xii List of Tables

5.15 The predictive accuracy comparison between the Poisson, NB, ZIP and

ZINB distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.16 The predictive accuracy comparison between the Poisson, NB, ZIP and

ZINB distributions based on the data from 2008 to 2017 . . . . . . . . . . 118

5.17 Poisson Regression results of λTV . . . . . . . . . . . . . . . . . . . . . . . 120

5.18 NB Regression results of λTV . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.19 Poisson Regression results of λMon . . . . . . . . . . . . . . . . . . . . . . 120

5.20 NB Regression results of λMon . . . . . . . . . . . . . . . . . . . . . . . . 121

5.21 Monte-Carlo test results of λ10Y , λTV and λMon . . . . . . . . . . . . . . . 122

5.22 Model GOF comparison among λ10Y , λTV and λMon . . . . . . . . . . . . 123

5.23 The predictive accuracy comparison between the λ10Y and the λTV and λMon124

6.1 Accident causal factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Statistical characterization of numerical variables . . . . . . . . . . . . . . 146

6.3 De�nition of consequence severity classi�cation . . . . . . . . . . . . . . . 146

6.4 States of nodes in the BN risk model . . . . . . . . . . . . . . . . . . . . . 148

6.5 CSCs for the BN risk model . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6 Comparison of entire prediction performance . . . . . . . . . . . . . . . . . 153

6.7 Comparison of prediction performance for accident/consequence occurrence 155

A.1 Model quality comparison between λ10Y and λ10P . . . . . . . . . . . . . . 190

A.2 The extracted results of CDF analysis . . . . . . . . . . . . . . . . . . . . 191

A.3 The predictive accuracy comparison between the Poisson distribution and

the NB distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.4 Detailed values of �Region risk factor� . . . . . . . . . . . . . . . . . . . . 195



Part I

PRELIMINARY INTRODUCTION





Chapter 1

Introduction

Sommaire

1.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Motivation and Objective . . . . . . . . . . . . . . . . . 5

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Organization and Structure of the Dissertation . . . . . . . . . . 11

Overview

This dissertation presents a synthesis of research works, which were carried out as a

fruit of my Ph.D. (2015-2018) accomplished with the RAILENIUM Test & Research Cen-

ter and hosted by the COSYS/ESTAS team (Evaluation of Automated Transport Systems

and their Safety) within IFSTTAR, the French Institute of Science and Technology for

Transport, Development and Networks (Institut Français des Sciences et Technologies des

Transports, de l'Aménagement et des Réseaux). This Ph.D. thesis has been prepared within

the doctoral school SPI (Engineering Sciences) at Lille 1 university/Université Lille Nord

de France. This thesis was supervised by Dr. Mohamed Ghazel, senior researcher with

IFSTTAR-COSYS/ESTAS. The works presented in this dissertation devote to advanced

modeling techniques and thorough risk analysis at railway level crossings. The intention of

this research is two-fold: (1) responding to the key knowledge gap regarding hazard anal-

ysis at LXs, while identifying the potential risky factors causing LX accidents and their

corresponding contribution degree. (2) paving the way for identifying practical measures

and improvement recommendations to improving LX safety.
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This chapter is structured as follows: Section 1.1 exposes general introduction of the

research context. Then, the research motivation and objective is stated in section 1.2. Sec-

tion 1.3 o�ers the main contributions of our research reported in the present dissertation.

Finally, section 1.4 shows the organization and structure of the dissertation.

1.1 General Introduction

A level crossing (LX) is an intersection where a railway line intersects with a road or a

path at the same level. In the literature, various terms to designate such intersection can

be met: �level crossing�, �grade crossing�, �railway-highway crossing� or simple �crossing�.

In France, the fact that the LX is railway property upon which road users are given

permission to cross, is the reason for legislation and rules giving right of way (priority) to

trains [Read 2016]. Accidents at LXs often give rise to serious material and human damage

and seriously hamper railway safety reputation, although the majority of accidents are

caused by road user violations. As demonstrated by accident and incident statistics, level

crossing (LX) safety is one of the most critical issues that railway stakeholders need to

deal with [Ghazel 2009, Liu 2016, Mekki 2012]. In 2012, there were more than 118,000

LXs in the 28 countries of the European Union (E.U.), and 5 LXs per 10 line-km on

average in the E.U. [ERA 2014]. Accidents at European LXs account for about one-third

of the entire European railway accidents and result in more than 300 deaths every year

[Liu 2016]. In some European countries, LX accidents account for up to 50% of railway

accidents [Ghazel 2014]. As an example, in the UK, LXs account for 11.8 �fatalities

and weighted injuries� per year, comprising 8.4% of the total system risk for the railway

network [Silmon 2010]. In the U.S., highway grade crossing users represent about 30% of

all rail-related fatalities. Although grade crossing collision rates have declined 80% in the

past 20 years, over 15,000 highway users have been killed over that time period at grade

crossings [Administration 2012]. In Australia, there were 49 collisions between trains and

road vehicles at LXs in 2011, leading to 33 fatalities. It could be noted that, in this

country, the problem is not limited to collisions between trains and vehicles, since from

2002 to 2012 there were 92 collisions between trains and pedestrians at LXs [Bureau 2012].

In Finland, there are about 4000 LXs along around 6000 km of track [Kallberg 2017]. In

this country, unauthorized access of road users to railways is fairly easy, because only a

small fraction of LXs are fenced [Silla 2012]. Moreover, most of LXs are not equipped

with active warning devices and located on minor gravel roads [Seise 2010].

In France, the railway network shows more than 18,000 LXs for 30,000 km of railway

lines, which are crossed daily by 16 million vehicles on average, and around 13,000 LXs

show heavy road and railway tra�c [SNCF Réseau 2011]. In 2013, 148 train/vehicle
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collisions occurred at French LXs, giving rise to 29 deaths. In 2016, 111 train/vehicle

collisions at French LXs led to 31 deaths [Plesse 2017]. This number was half the total

number of collisions per year at LXs a decade ago, but still too large.

LX safety involves various aspects: technical elements, operational procedures, hu-

man factors and environmental considerations. Due to non-deterministic causes, complex

operation background and the lack of thorough statistical analysis based on detailed ac-

cident/incident data, risk assessment of LXs remains a challenging task. In order to

signi�cantly reduce the number of accidents and their related consequences at LXs, it is

crucial to carry out a series of thorough analyses and modeling to understand the poten-

tial reasons for these accidents and thus, enable the identi�cation of practical design and

improvement recommendations to prevent accidents at LXs.

1.2 Research Motivation and Objective

There are four main LX types in France [SNCF 2015], as shown in Fig. 1.1:

a) SAL4: Automated LX systems with four half barriers and �ashing lights;

b) SAL2: Automated LX systems with two half barriers and �ashing lights;

c) SAL0: Automated LX systems with �ashing lights but without barriers;

d) Crossbuck LXs, without automatic signaling.

(a) SAL4 (b) SAL2
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(c) SAL0 (d) Crossbuck LX

Fig. 1.1. Four types of LXs in France

As shown in Table 1.1, SAL2 (more than 10,000) is the most widely used type of LX

in France. Moreover, more than 4,000 accidents at SAL2 LXs contributed most to the

total number of accidents at LXs from 1974 to 2014.

Table 1.1. Accidents at di�erent types of LXs in France from 1974 to 2014

Type of LX Number # Accident

SAL4 > 600 > 600

SAL2 > 10,000 > 4,000

SAL0 > 60 > 50

Crossbuck LX > 3,000 > 700

LX accidents involve the following transport modes: 1) motorized vehicle (MV), 2)

pedestrian and bicycle (PB). As illustrated in Fig. 1.2, motorized vehicle is the main

transport mode causing LX accidents in France. Moreover, as the LX accident frequency

caused by motorized vehicles increases, the entire LX accident frequency increases accord-

ingly. On the contrary, pedestrians and cyclists contribute very little to the overall risk of

LX accidents [Liang 2017c].
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Fig. 1.2. Comprehensive accident frequency in di�erent regions
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Fig. 1.3. The number of collisions (train-MV) at di�erent types of LX in France from 1978

to 2013

Considering the train/motorized vehicle (train-MV) collisions, SAL2 LXs also have

the major part of LX accidents according to the statistics shown in Fig. 1.3. In fact, the

goal of SNCF is to perform analysis that paves the way toward improving signi�cantly

LX safety as a whole. Hence, being given the number of SAL2 LXs, dealing with this LX

category consists a priority issue for SNCF. In addition, according to the SNCF statistics,

the accidents at SAL2 LXs can be considered as the most representative for LX accidents
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in general. For all these reasons, in agreement with SNCF, in the scope of this work, we

focus on the analysis of train-MV collisions occurring at SAL2 LXs while exploiting the

results, as much as possible, to desire general conclusions.

It should be noted that suicide scenarios are not in the scope of our global study.

In addition, in this study, the LX control system failure is not considered, since this is

a purely technological problem that can be addressed in a di�erent way using classical

techniques. Besides, it is worth recalling that less than 1% of accidents are linked to a

dysfunction of LX control system.

1.3 Main Contributions

This dissertation focuses on advanced risk analysis on LXs from the four aspects of pre-

liminary analysis on potential in�uential factors, accident frequency prediction modeling,

motorist behavior quantitative analysis and Bayesian Network (BN) risk model. The

main contributions are all discussed in the second part (Part II) of the thesis and can be

presented as follows:

Preliminary statistical analysis on LXs

In this stage, various kinds of impacting factors, namely transport mode, geographical

region and tra�c moment, are analyzed by means of statistical techniques to dig out their

statistical characteristics based on the accident data from SNCF, the French national rail-

way operator. Then, we assess the e�ect of various factors on the risk level quantitatively,

in such a way as to open the way for setting e�cient solutions and consequently, reaching

the point of improving LX safety. In details:

1. A general risk analysis of average accident frequency in terms of transport mode and

geographical region is performed.

2. Then, the risk analysis in terms of frequency coe�cient, namely the average accident

frequency acted by the tra�c moment, is performed with regard to various tra�c

moment groups.

3. The frequency coe�cient distributed in di�erent French regions is generated.

Quantitative analysis of motorist behavior

Collisions between trains and motorized vehicles contribute most to LX accidents,

while the risky behavior of motorists is the primary cause of such accidents. Therefore, in

order to acquire a better understanding of risky motorist behavior at LXs, a risk analysis

of motorist behavior is performed based on �eld measurement conducted at 12 automatic

LXs (11 equipped with two half barriers (SAL2) and 1 equipped with four half barriers
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(SAL4)). We focus on motorist behavior during the LX closure cycle while distinguishing

between di�erent phases. Namely, the closure cycle is divided into three phases which

are �Ph2 Red Flash and Siren�, �Ph3 Barriers Coming Down� and �Ph4 Barriers Down�.

This gives a novel insight compared with existing studies which analyze motorist behavior

during a whole mixed LX control cycle. A thorough statistical analysis is subsequently

performed according to the phase periods. In what follows, we give the detailed description

of the related contributions.

1. Global violation trend of motorist behavior during Ph2 and Ph3 is investigated

�rstly.

2. An analysis on the violation rate during Ph2 and Ph3 according to the week and

the hour is performed.

3. An analysis on the speed of violating vehicles during Ph2 and Ph3 is performed.

4. We analyze the impact of prolonged Ph4 duration on the zigzag violation rate of

motorists.

5. The impact of LX location (near to railway station or not) on the zigzag violation

rate of motorists during Ph4 is analyzed.

6. The impact of road tra�c density on the waiting queue in front of LXs and troop

crossing phenomenon is investigated.

7. The comparison of motorist responses to SAL2 and SAL4 LXs is performed.

Advanced statistical accident prediction modeling

In this stage, we develop a new statistical model to predict accident frequency at LXs.

The detailed contributions are shown as follows:

1. An advanced accident frequency prediction model, which enables to rank LXs ac-

curately based on the impacting parameters and identify the signi�cant impacting

parameters e�ciently, is developed.

2. In this model, we take the in�uential parameters into account, namely, the average

daily road tra�c, the average daily railway tra�c, the annual road accidents, the

vertical road pro�le, the horizontal road alignment, the road width, the crossing

length, the railway speed limit and the geographic region. We will better explain

these factors in the sequel.
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3. The Nonlinear Least-Squares (NLS) method, Poisson regression method, negative

binomial (NB) regression method, zero-in�ated Poisson (ZIP) regression method and

zero-in�ated negative binomial (ZINB) regression method are employed to estimate

the respective coe�cients of parameters in the prediction model.

4. Then, a validation process is performed based on various statistical and probabilistic

means to examine how well the estimation of the model �ts the reality.

5. Finally, a comparison between the present model and two existing reference models

is carried out to assess the e�ciency of our model.

Bayesian network based framework for LX risk reasoning

In this stage, we adopt the Bayesian network (BN) to develop a risk model for LX

accident/consequence estimation and causality diagnosis. Based on the investigation of

some existing modeling techniques (refer to chapter 2), BN technique is considered as

the appropriate notation due to its high computational e�ciency, outstanding advantages

involving the conjunction of domain expertise and automatic structure/parameters learn-

ing and, most importantly, causality analysis based on both forward inference (deductive

reasoning) and reverse inference (abductive reasoning) [Weber 2012]. In what follows, we

give the detailed contributions.

1. A BN based framework for causal reasoning related to risk analysis is proposed.

It consists of a set of integrated stages, namely, risk scenario de�nition, real �eld

data collection and processing, BN model establishment and model performance

validation.

2. Causal structural constraints are introduced to the framework for the purpose of

combining empirical knowledge with automatic learning approaches, thus to identify

e�ective causalities and avoid inappropriate structural connections.

3. The proposed framework is applied to risk analysis of LX accidents in France.

Namely, the BN risk model is established based on the real �eld data of LX ac-

cidents/incidents and the model performance is evaluated.

4. Forward inference and reverse inference based on the BN risk model are performed

to predict LX accident occurrence and quantify the contribution degree of various

impacting factors respectively, so as to identify the riskiest factors.

5. In�uence strength and sensitivity analyses are further carried out to scrutinize the

in�uence strength of various causal factors on the LX accident occurrence and de-

termine which factors the LX accident occurrence is most sensitive to.
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1.4 Organization and Structure of the Dissertation

This dissertation is organized in three parts and the chapters in each part are structured

as follows:

PART I: This part is the precursor of the present dissertation, which is composed of

two chapters:

Chapter 1 - Introduction: we give the introduction of the research context and

present the motivations and the main contributions of our work.

Chapter 2 - Literature Review: a literature review regarding LX safety analysis,

statistical accident prediction and risk analysis modeling is performed.

PART II: This part is dedicated to the main contributions of our research, and is

composed of four chapters:

Chapter 3 - Preliminary statistical analysis on LXs

Chapter 4 - Motorist Behavior Quantitative Analysis: Experiments at 12 selected

automated LXs

Chapter 5 - Advanced statistical accident prediction modeling

Chapter 6 - Bayesian network based framework for LX risk reasoning

Please refer to section 1.3 for the detailed works in each chapter of this part.

PART III: This part discusses conclusion remarks regarding the dissertation and the

future research directions, and is composed of one chapter:

Chapter 7 - Overall Conclusions And Perspectives
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Rail transportation is one of most important modes of transport throughout the world.

Hundreds of millions of persons use this transportation mode every day, and an important

share of goods is carried by train.

Railways involve a complex operation background, safety�critical control systems and

various stakeholders. Moreover, due to the increasingly strong needs of high speed and

high carrying capacity, railway safety continues to be one of the most critical issues that

railway stakeholders need to deal with.

Railway accidents refer to accidents that a�ect normal railway operation safety, such as

train-train collisions, derailments, �res, explosions and power failures during the operation

of trains as well as collisions with pedestrians, motorized vehicles, non-motorized vehicles,

livestock and other obstructions during the operation of the train, and even serious late

delays caused by improper management and operation. In the E.U., railway passengers

have lower traveling risks (0.156 fatalities per billion passenger-kilometers) in comparison

to other means of land transportation mode such as buses (0.433 fatalities per billion

passenger-kilometers), cars (4.450 fatalities per billion passenger-kilometers) and motor-

cycles (52.593 fatalities per billion passenger-kilometers) [E.U. 2012]. In 2014, the E.U.

member states reported 2,076 signi�cant railway accidents resulting in 1,054 fatalities

and 819 serious injuries. This represents a 5 % increase in the number of signi�cant

accidents and a 7 % drop in casualties compared to 2013 [ERA 2016]. The level of railway

safety is traditionally expressed as the accident and casualty risk being a rate of the

number of outcomes per exposure. Considering all railway fatalities (excluding suicides),

the fatality risk per million train-km in the period 2010-2014 was 0.28 killed per million

train-kilometers at the E.U. level. The fatality risk of railway passengers was 0.14 killed
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passengers per billion train-kilometers in the period 2006-2014. Although the global safety

performance of railways in E.U. member states is high, it appears that the safety levels

vary greatly among member states and serious accidents continue to occur.

In the past, train-train collisions (internal accidents) due to signal passed at danger

(SPAD) were the main accident scenario in railways, but since automatic train protec-

tion (ATP) systems were installed, the number of such accidents has been dramatically

decreased. Nowadays, accidents at LXs (external accidents) represent one of the ma-

jor concerns for railways and draw much attention of stakeholders and researchers. For

instance, very recently on December 14, 2017, a train and a school bus collided at an auto-

matic SAL2 LX near Perpignan in southern France, killing six children between eight and

14 years old and injuring more than 20 others [Willsher 2017]. This accident happened at

a SAL2 LX on a two-lane road as the bus crossed a single-track railway line secured by a

barrier and warning lights in each direction. In the following content, we will focus on the

review of related works on LX safety and approaches pertaining to improving LX safety.

2.1 Related Works on Railway Level Crossing Safety

In the literature, a number of works have dealt with LX safety. In early studies, ve-

hicle driver behavior with respect to the warning time of LX control was studied by

[Richards 1990]. This study indicated that an increase in warning time was directly linked

with an increase in risky behavior. [Ward 1995] reported a �eld study regarding a signage

warning system for passive LXs with restricted lateral visibility. The proposed signage

incorporates a stop sign and an advance warning to announce the restricted visibility. In

this study, the vehicles were tracked through a series of seven sonar units placed along

the roadside at incremental distances from the LX. It was reported that the approach

speed of the vehicles approaching the LX did decrease after the installation of the signs.

[Abraham 1998] have studied driver behavior at 37 LXs in Michigan and reported vari-

ous driver characteristics and vehicle characteristics to be important safety factors. This

study showed that the motorists approaching a multi-track LX from a multi-lane approach

commit more violations. [Carlson 1999] developed two logistic regression models to pre-

dict whether drivers will commit violations at gated LXs. Such models can be used to

identify gated LXs that are expected to have high violation rates compared with other

gated LXs. [Cooper 2007] presented a research on selecting countermeasure improvements

for LXs in California and suggested the use of two-long-arm gates or standard two-half

gates with an additional median separator for LX safety improvement according to the

calculated cost/bene�t ratio. [Jia 2007] analyzed the impacts of di�erent daily periods,

seasons and railway lines on the probability of accidents occurring at LXs; but some kinds
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of important factors, such as tra�c moment, transport mode and geographical region were

not taken into account. [McCollister 2007] investigated daily periods, train speeds and

environmental factors at American LXs and proposed a statistical model to predict the

probability of accidents. However, the predicted results have certain deviation with the

actual situation due to the lack of thorough statistical analysis of the potential relationship

between important impacting factors and accidents. [Hao 2013] identi�ed the contributing

factors that in�uence the severity of injuries in accidents at U.S. LXs. This study showed

that the peak hour, vehicle speed, annual average daily tra�c, train speed, area type were

signi�cant. [Khattak 2009] has made a comparison of vehicle driver behavior at LXs in

two cities of Nebraska. This research has showed that drivers' unsafe behavior at LXs is

location-dependent, but the magnitude of reduction in unsafe driver actions as a result

of the installation of a separator along the road center at di�erent LXs is more or less

similar.

Although research on human factors related to LX safety has been an area of great in-

terest over the past decades [Wilson 2005, Wilson 2014], the causes of collisions that occur

at LXs remain insu�ciently understood. In general, the causes of such collisions fall into

two broad classes, which are unintentional error and intentional violation. For instance, a

study presented by [Salmon 2013] describes a collision between a loaded semi-trailer truck

and a train, which occurred in North Victoria, Australia. In this study, according to the

investigation of the O�ce of the Chief Investigator (OCI) and court, the �ashing lights and

warning bells failed to alert the truck driver about the presence of the train early enough

to initiate a braking action. As a consequence, the truck driver was not aware of the train

approaching until it was too late to stop (unintentional error). The study conducted by

[Davey 2008] analyzes the intentional violation of heavy vehicle drivers when they cross

LXs. This study particularly discusses vehicle driver complacency due to the high level

of familiarity. As for the unintentional errors, vehicle drivers may, for instance, fail to ob-

serve the warnings or fail to determine the braking distance appropriately. However, as for

the intentional violations, vehicle drivers observe the warnings and fully understand their

meaning, but intentionally commit transgressions on their own judgment [Lenné 2011].

In recent years, some available studies adopted qualitative approaches for under-

standing vehicle driver behavior during the entire cycle of LX control [Shappel 2000,

San Kim 2013]. For example, a systems analysis framework [Leveson 2011, Read 2016, Wil-

son 2014] and a psychological schema theory [Stanton 2011, Salmon 2013] have been used

to analyze the contributory factors behind LX accidents. [Salmon 2016] adopted the Cog-

nitive Work Analysis (CWA), which is a systems approach with theoretical underpinnings

in system theory, to achieve comprehensive understanding of di�erent functions, decisions,

strategies and tasks relevant to various LX stakeholders (road user, rail user and author-
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ities). This study suggested further mechanisms for collecting and analyzing actual �eld

data, which are crucial for allowing stakeholders to identify the key design requirements

for improving safety at LXs. Obviously, these qualitative analyses are limited to quantify

the frequency of accident occurrence and the contribution degree of impacting factors to

accident occurrence.

On the other hand, some recent works (involving qualitative and quantitative means)

employ surveys [Wigglesworth 2001], interviews [Read 2016], focus group methods [Ste-

fanova 2015] or driving simulators [Larue 2015], rather than collecting real �eld data.

For example, [Davey 2008] performed a study that aims to explore the contributing fac-

tors toward collisions at LXs from the perception of both heavy vehicle drivers and train

drivers. In particular, a survey was conducted and samples of train drivers and heavy

vehicle drivers were recruited as a series of focus groups. In this study, the contributing

factors to heavy vehicle accidents at LXs such as the size of heavy vehicles, the carriage

length, the line of sight and the impeded acceleration were assessed. [Lenné 2011] exam-

ined the e�ect of installing active controls, �ashing lights and tra�c signals on vehicle

driver behavior. This quantitative study was achieved through the driving simulation.

[Rudin-Brown 2012] also carried out a driving simulator based study that compares the

e�cacy and drivers' subjective perception of two active LX tra�c control devices: �ashing

lights with boom barriers and standard tra�c lights. A study launched by [Young 2015]

examined where drivers direct their attention on approach to urban LXs located in busy

shopping strip areas in Melbourne, and whether this di�ers between novice and expe-

rienced drivers. Instrumented vehicles, driver Verbal Protocols and post-drive Critical

Decision interviews were utilized in this study. [Tey 2011] conducted an experiment to

measure vehicle driver response to LXs equipped with stop signs (passive), �ashing lights

and half barriers with �ashing lights (active), respectively. In this study, both a �eld

survey and a driving simulator have been utilized. However, we believe that the reaction

of vehicle drivers in simulation context potentially di�ers from that in reality, due to the

di�erent levels of feeling of danger. Although among these recent works, there were some

quantitative analyses of vehicle driver behavior at LXs, few of them were carried out with

regard to the separate phases of the automated LX closure cycle. Namely, these studies

investigated vehicle driver behavior during the whole control cycle of LX, including when

the LX is open to road tra�c (theoretically, there is no risk for crossing LXs during the

opening cycle).
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2.2 Related Works on Accident Prediction Statistical Model

A number of existing works dealing with LX safety are devoted to developing qualita-

tive approaches, in order to understand the potential reasons causing accidents at LXs

[Davey 2008, Larue 2015, Read 2016, Stanton 2011, Stefanova 2015, Tey 2011, Wig-

glesworth 2001]. Although these available qualitative approaches are bene�cial to un-

derstand the factors causing LX accidents, they do not allow for quantitatively predicting

the likelihood of accident occurrence, or quantifying the contribution degree of the various

impacting factors. Thereby, quantitative analysis approaches are crucial to thoroughly

investigate the impacting factors and enable the identi�cation of practical design and

improvement recommendations to prevent accidents at LXs.

2.2.1 Peabody-Dimmick Formula

Some previous quantitative studies on prediction models to estimate the frequency of acci-

dents or violations at LXs open a signi�cant view on understanding the LX risk mechanism.

In 1941, L. E. Peabody and T. B. Dimmick developed Peabody-Dimmick Formula [Og-

den 2007] which is one of the earliest railway-highway crossing accident prediction models

to estimate the number of accidents at railway-highway crossings in 5 years. As shown

in Eq. (2.1), the parameters considered in this formula are the average daily road tra�c

V , the average daily railway tra�c T and the protection coe�cient indicative of warning

devices adopted P , while K is an additional parameter. This formula was developed based

on the accident data of rural railway-highway crossings in 29 states in the U.S. and was

utilized through the 1950s. However, advances in both warning device technologies and

LX design features quickly led to a no longer applicability of the prede�ned formula form

and coe�cients that re�ect the conditions pertaining to LX accidents in 1941.

A5 =
1.28× (V 0.170 × T 0.151)

P 0.171
+K (2.1)

2.2.2 New Hampshire Index

Subsequently, an evolutionary model of LX accident prediction called the New Hampshire

Index [Oh 2006] was developed, which is given as follows:

HI = V × T × Pf (2.2)

where HI represents the hazard index; V is the average daily road tra�c; T is the average

daily railway tra�c and Pf is the protection factor indicative of the warning devices
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adopted (Pf = 0.1 for automatic gates, Pf = 0.6 for �ashing lights, Pf = 1.0 for signs

only).

The New Hampshire model is a relative formula which can be used to rank the impor-

tance of crossing upgrades.

Several modi�cations of the New Hampshire Index are in use. In particular, some

states in the U.S. use various other values for Pf as follows:

• Pf = 0.13 or 0.10 for automatic gates.

• Pf = 0.33 , 0.20 or 0.60 for �ashing lights.

• Pf = 0.67 for wigwags .

• Pf = 0.50 for tra�c signal preemption.

• Pf = 1.00 for crossbucks.

Due to the simplicity of the New Hampshire Index, it has been widely used across the

U.S. However, it is limited in that it does not predict the expected number of collisions,

but only gives some indications about the priorities in terms of LX safety.

2.2.3 USDOT Formula

An accident prediction formula developed by the U.S. Department of Transportation (US-

DOT) in the early 1980s sought to overcome the limitations of earlier models [Chad-

wick 2014]. This comprehensive formula comprises three primary equations:

a = K × EI ×MT ×DT ×HP ×MS ×HT ×HL (2.3)

B =
T0

T0 + T
× a+

T

T0 + T
× (

N

T
), T0 =

1

0.05 + a
(2.4)

A =


0.7159×B, for passive devices;
0.5292×B, for �ashing lights;

0.4921×B, for gates;
(2.5)

where a is the initial collision prediction (prediction of collisions per year at a given LX);

K is the formula constant; EI is the exposure index (a variant of tra�c moment) based

on the product of highway and railway tra�c; MT is the index for the number of main

tracks; DT is the index for daily through trains during daylight; HP is the index for

highway paved; MS is the index for maximum train speed; HT is the index for highway

type and HL is the index for highway lanes. B is the adjusted accident frequency; T0 is
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the weighting factor and N is the number of accidents observed in T years at a given LX.

Finally, A is the normalized accident frequency.

The USDOT formula is the most commonly used model in the U.S. today. As shown

in Table 2.1, a speci�ed table of USDOT provides each of the indexes for LXs equipped

with passive controls, �ashing lights and gates [Austin 2002]. Although the formula is

comprehensive, its current de�nition makes it di�cult to identify or prioritize the design

or improvement activities that would most e�ectively address LX safety-related issues,

since it does not provide the magnitude of characteristics' contribution to the LX safety.

Table 2.1. Indexes for USDOT Accident Prediction Formula

Index Coe�cient/relationship for

passive control

Coe�cient/relationship for

�ashing lights

Coe�cient/relationship for

automatic gates

K 0.002268 0.003646 0.001088

EI ((ct+ 0.2)/0.2)0.3334 ((ct+ 0.2)/0.2)0.2953 ((ct+ 0.2)/0.2)0.3116

DT ((d+ 0.2)/0.2)0.1336 ((d+ 0.2)/0.2)0.0470 1.0

MS e0.0077ms 1.0 1.0

MT e0.2094mt e0.1088mt e0.2912mt

HP e−0.6160(hp−1) 1.0 1.0

HL 1.0 e0.1380(hl−1) e0.1036(hl−1)

HT e−0.1000(ht−1) 1.0 1.0

c=number of highway vehicles per day, t=number of trains per day, mt=number of main tracks,

d=number of through trains per day during daylight, hp=highway paved (yes=1.0 and no=2.0),

ms=maximum timetable speed in mph,hl=number of highway lanes, ht=highway type factor

(de�ned as urban and rural, 1=interstate,. . ., 6=local) [Schoppert 1968].

2.2.4 ALCAM Model

In Australia, a model called Australian Level Crossing Assessment Model (ALCAM) was

developed. It is a location speci�c and parameterized risk model which provides a method

for assessing the risk level to LX users, train passengers and train sta� [Woods 2008]. The

ALCAM model is given as follows:

ALCAM Risk Score = Infrastructure Factor× Exposure Factor× Consequence Factor

(2.6)

where the Infrastructure Factor is the output of a complex scoring algorithm that assesses

how the physical properties at each LX site would a�ect human behavior; the Exposure

Factor is a function of the LX control type, vehicle (or pedestrian) volumes and train
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volumes (i.e., the Peabody-Dimmick Formula is used as the Exposure Factor function)

to address the combined exposure of trains and road vehicles (or pedestrians) pertaining

to various LX control types; the Consequence Factor is the expected consequence of a

collision which includes deaths and injuries involving both railway and roadway. The

Infrastructure Factor adjusts the accident probability per year to re�ect the actual LX

site conditions. Multiplying the Infrastructure Factor by the Exposure Factor gives the

actual annual likelihood of an accident occurring at a given LX [Committee 2012]. The

Consequence Factor is expressed in terms of an expected number of equivalent fatalities

per year. An equivalent fatality is a combination of all types of harm using the ratio: 1

fatality = 10 serious injuries = 200 minor injuries.

The output of ALCAM model enables to allocate weights to characteristics and con-

trols at a level crossing to calculate a Likelihood Factor. The weightings applied have

been determined through a series of workshops with contribution from experts including

representatives from each mainland state of Australia and New Zealand covering expertise

in road and rail engineering.

The ALCAM has been applied across all Australian states and in New Zealand since

2003, and overseen by a committee of representatives from the various jurisdictions of these

countries to ensure its consistency in terms of development and application. However, the

ALCAM does not cover all kinds of LX accidents, since its main focus is deliberate and

accidental collisions involving user errors but excluding vandalism and suicide. It should

be noticed that some LX physical properties considered in ALCAM show a high correlation

between each other, which implies the existence of a kind of redundancy between the model

inputs, and consequently a bias in terms of the outputs.

2.2.5 Poisson regression Model and its variants

In recent years, Poisson regression model and its variants, for instance, negative binomial

(NB) regression model, zero-in�ated Poisson (ZIP) regression model and zero-in�ated

negative binomial (ZINB) regression model [Lord 2010, Guikema 2012] have been mostly

preferred to deal with risk/accident statistical analysis.

The Poisson regression model shown as Eq. (2.7) is the natural choice for modeling

accident occurrence.

Poi(X = k) =
λke−λ

k!
, k = 0, 1, 2, . . . (2.7)

where Poi(X = k) is the probability of k accidents occurring, k ∈ N and λ is the expec-

tation value of the number of accidents.

The relationship between the mean value and the variance in the Poisson model is
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given as follows:

V AR(X) = E(X) (2.8)

However, [Chang 2005] indicates that accident frequency is likely to be over-dispersed

(cf. Eq. (2.9)) and suggests using the negative binomial (NB) regression model as an

alternative to the Poisson model.

V AR(X)


= E(X)

> E(X), over-dispersed

< E(X), under-dispersed

(2.9)

The NB model as a special case of Poisson-Gamma mixture model is a variant of the

Poisson model designed to deal with over-dispersed data [Buddhavarapu 2016, Lord 2010,

Utkin 2015]. The over-dispersion could come from several possible sources, e.g., omitted

variables, uncertainty in exposure data, covariates or non-homogeneous LX environment

[Miaou 1994]. The NB model considered in this study has the following expression:

PNB(X = k) =

Γ

(
k +

1

α

)
Γ (k + 1) Γ

(
1

α

) ( 1

1 + αλ

)1/α( αλ

1 + αλ

)k
, k = 0, 1, 2, . . . (2.10)

where PNB(X = k) is the probability of k accidents occurring, k ∈ N; λ is the expectation

value of the number of accidents and α is the dispersion parameter.

The relationship between the mean value and the variance in the NB model is given as

follows:

V AR(X) = E(X) + αE(X)2 (2.11)

If α > 0, there is an over-dispersion; if α < 0, there is an under-dispersion and in the case

where α = 0, the NB model reduces to the Poisson model.

In practice, the count data may contain extra zeros relative to the Poisson or NB

distribution. In this case, the ZIP or ZINB regression model is useful for analyzing such

data [Ridout 2001]. The ZIP model is expressed as follows:

PZIP (X = k) =

{
ω + (1− ω)exp(−λ), k = 0;

(1− ω)exp(−λ)λk/k!, k > 0
(2.12)

where PZIP (X = k) is the probability of k accidents occurring, k ∈ N; λ is the expectation

value of the number of accidents and log
(

ω
1−ω

)
= z′γ is the ZI link function that z′ is the

ZI covariate and γ is the corresponding ZI coe�cient.
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The mean value and variance of ZIP model are expressed as follows:

E(X) = (1− ω)λ

V AR(X) = (1− ω)λ(1 + ωλ)
(2.13)

The ZINB model is expressed as follows:

PZINB(X = k) =


ω + (1− ω)(1 + αλ)−1/α, k = 0;

(1− ω)
Γ

(
k+

1

α

)

Γ(k+1)Γ

(
1

α

) ( 1
1+αλ

)1/α (
αλ

1+αλ

)k
, k > 0

(2.14)

where PZINB(X = k) is the probability of k accidents occurring, k ∈ N; λ is the expecta-

tion value of the number of accidents.

The mean value and variance of ZINB model are expressed as follows:

E(X) = (1− ω)λ

V AR(X) = (1− ω)λ(1 + ωλ+ αλ)
(2.15)

The ZINB reduces to the ZIP in the limit α→ 0.

[Oh 2006] adopted the expressions of the estimated expectation value λ̂ as shown in

Eq. (2.16) corresponding to the Poisson regression and NB regression models respectively

when developing the U.S. LX accident prediction model. [Medina 2015] compared the

USDOT model with the ZINB model, in terms of accident prediction accuracy, using the

LX accident data from Illinois. The results of this study shows that the ZINB model has

higher accuracy of prediction. [Lu 2016] employed the ZIP model to deal with LX accident

prediction involving the data in North Dakota. It should be noted that the expressions of

estimated λ̂ as shown in Eq. (2.16) are not appropriate in our current study, since they

are limited to handling zero observations and some impacting variables should not be in

the exponential form (e.g., there is a logical assumption that the predicted LX accident

frequency should be 0 if the average daily railway tra�c is 0).

λ̂Poi = exp
(∑m

j=1 β0 + βjxj

)
λ̂NB = exp

(∑m
j=1 β0 + βjxj + ε

) (2.16)

where β is the estimated regression coe�cient; x is the impacting variable and ε is the

gamma-distributed error in the NB regression model.

[Miranda-Moreno 2005] developed another model of λ̂ as shown in Eq. (2.17). In this

model, the product of the average daily road tra�c V and the average daily railway tra�c

T (known as the conventional tra�c moment [Liang 2017c]) is adopted. As reported

in [Khattak 2012], the combined exposure of V and T is more suitable than single V



Chapter 2. Literature Review 23

for LX collision prediction, because the probability of train-involved LX collisions in the

absence of trains is zero. However, since the road tra�c density and railway tra�c density

have di�erent levels of impact on accident occurrence in practice, the same power of V

and T in Eq. (2.17) may cause relatively high deviation from reality.

λ̂ = (V × T )β1exp
(∑m

j=1 βjxj + σ
)

(2.17)

where σ = β0 in Poisson regression model or σ = β0 + ε in NB regression model.

Based on these aforementioned investigations, it is clear that there is a strong need

for an appropriate accident prediction model that should be comprehensive in terms of

contributing factors to LX safety. Moreover, such a model should have high predictive

accuracy.

2.3 Related Works on causal Modeling

Nowadays, risk analysis approaches are required to deal with increasingly complex systems

with a large number of involved parameters. Moreover, an intelligent decision support

system for risk analysis shall have the ability of making inference based on the risk causal

knowledge. Therefore, such approaches should ful�ll the following characteristics:

• Having strong modeling ability,

• Having high computational e�ciency,

• Providing simple means to specify risk scenarios,

• O�ering e�ective reasoning between risky factors and scenarios,

• E�ectively identifying the most important risky factors.

In the domain of risk analysis, various approaches are adopted for the modeling and anal-

ysis process. In this section, we introduce some main relevant formalisms and approaches,

namely the Fault Tree Analysis (FTA), Event Tree Analysis (ETA), Markov Chains (MCs),

Petri Nets (PNs), Fuzzy Logic (FL), and Bayesian Networks (BNs).

2.3.1 Fault Tree Analysis

Due to the combination of qualitative and quantitative analysis, the Fault Tree Analysis

(FTA) developed by H.A. Watson at Bell Laboratories [Ericson 1999] has been widely

used for risk analysis in various contexts. FTA is a deductive and top-down method which

aims at analyzing the e�ects of initiating faults and events on a complex system and o�ers
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Fig. 2.1. Symbols in FTs

the designer an intuitive high-level abstraction of the system. Compared with the Failure

Mode and E�ects Analysis (FMEA), which is an inductive and bottom-up analysis method

aimed at analyzing the e�ects of single component or function failures on equipment or

subsystems, FTA is more useful in showing how resistant a system is to single or multiple

initiating faults.

Fault Tree (FT) includes symbols (refer to Fig. 2.1) that show the basic events of the

system, and the relation between these events and the state of the system [Ericson 1999].

The graphical symbols that show the relations are called logical gates. The output from

a logical gate is determined by the input states. The system is analyzed in the context of

its functional and safety requirements and environmental conditions. In FTs, the primary

event symbols are given as follows:

• Basic event - failure or error in a system component or element (example: switch

stuck in open position).

• Conditioning event - conditions that restrict or a�ect logical gates (example: mode

of operation in e�ect).

• Undeveloped event - an event about which insu�cient information is available, or

which is of no consequence.

• External event - normally expected to occur (not of itself a fault).
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An intermediate event gate can be used immediately above a primary event to provide

more room to type the event description.

The gates work as follows:

• OR gate - the output occurs if any input occurs.

• AND gate - the output occurs only if all inputs occur (inputs are independent).

• Exclusive OR gate - the output occurs if exactly one input occurs.

• Priority AND gate - the output occurs if the inputs occur in a speci�c sequence

speci�ed by a conditioning event.

• Inhibit gate - the output occurs if the input occurs under an enabling condition

speci�ed by a conditioning event.

Transfer symbols are used to connect the inputs and outputs of related fault trees,

such as the fault tree of a subsystem to its system.

In FTs, all combinations of basic events leading to the top event (TE) are identi�ed. For

example, as shown in Fig. 2.2, the TE is �D Fails�. The basic events are linked to the TE,

through intermediate events, by logical gates. A basic event does not necessarily represent

a pure component failure. The basic events may include items such as hardware, various

sub-systems, environmental factors, human error or some social matters. A standard FTA

involves the following steps [Mahboob 2013]:

(1) Understand the system design and operation through data, drawings, procedures,

diagrams, and so on.

(2) De�ne the problem and establish the correct TE (undesired events) for the analysis.

(3) De�ne the system rules and boundaries. What is included and what cannot be

included?

(4) Follow the rules, boundaries, and logic (OR, AND,...) to build the FT model.

(5) Generate cut sets and compute probability values for the cut sets.

(6) Identify weak links and safety problems in the design and operation.

(7) Validate the FT model: check if the FT model is correct, complete, and accurately

re�ects system design and operation. Modify the FT if necessary during validation.

(8) Document the entire analysis with supporting data.
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Fig. 2.2. An example of FT

In FTA, the concept of cut set is a group of basic events whose combined occurrence

can cause the occurrence of the TE. A cut set will be minimal if it cannot be reduced

further and still promises the occurrence of the TE. Each minimal cut set is considered as

a parallel system of its components and the overall system state is considered as a series

system of the minimal cut sets. The basic assumptions of the standard FTA include (1)

the events in FTA represent random variables with binary states (occurring/not occurring)

and (2) basic events are statistically independent. In general, the probability of TE in the

FT is computed as a function of the minimal cut sets by using the inclusion and exclusion

principle in Eq. (2.18) [Mahboob 2013].

P (TE) =

n∑
i=1

P (Ci)−
n∑
i=2

i−1∑
j

P (Ci ∩ Cj) + · · ·+ (−1)n−1P (C1 ∩ C2 · · · ∩ Cn) (2.18)

where P (Ci) denotes the probability of the occurrence of minimal cut sets i in an FT and

n is the number of minimal cut sets. The total number of events in a cut set is called the

order of the cut set.

However, one obvious disadvantage of FTA is that it is not clear on failure mechanism,
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since the causal relationship between events is not a simple YES or NO (1 or 0). Therefore,

FTA is prone to missing the possible initiating faults. In addition, traditional static

fault trees cannot handle the sequential interaction and functional dependencies between

components. Consequently, it is necessary to employ dynamic methodologies to overcome

these weaknesses.

2.3.2 Event Tree Analysis

Event Tree Analysis (ETA) is a forward and bottom-up logical modeling technique for both

success and failure that explores responses through a single initiating event and lays a path

for assessing probabilities of the outcomes and overall system analysis [Ericson 2015]. This

analysis technique is �rst introduced during the WASH-1400 nuclear power plant safety

study and widely used to analyze the e�ects of functioning or failed systems given that

an event has occurred. ETA is a tool that will identify all consequences of a system that

have a probability of occurring after an initiating event that can be applied to a wide

range of systems including: nuclear power plants, spacecrafts, and chemical plants. This

Technique may be applied to a system early in the design process to identify potential

issues that may arise rather than correcting the issues after they have occurred. With this

forward logic process, use of ETA as a tool in risk assessment can help to prevent negative

outcomes from occurring by providing a risk assessor with the probability of occurrence.

ETA uses a type of modeling technique called event tree (ET), which branches events

from one single event using Boolean logic. As shown in Fig. 2.3, the ET begins with the

initiating event where the consequences of this event follow in a binary (success/failure)

manner. Each event creates a path in which a series of successes or failures will occur

where the overall probability of occurrence for that path can be calculated. This process

continues until the end state is reached. When the ET has reached the end state for all

pathways, the outcome probability of the end state can be obtained.

Steps to perform an event tree analysis are shown as follows [Ericson 2015]:

(1) De�ne the system: De�ne what needs to be involved or where to draw the boundaries.

(2) Identify the accident scenarios: Perform a system assessment to �nd hazards or

accident scenarios within the system design.

(3) Identify the initiating events: Use a hazard analysis to de�ne initiating events.

(4) Identify intermediate events: Identify countermeasures associated with the speci�c

scenario.

(5) Build the event tree diagram
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Fig. 2.3. An example of ET

(6) Obtain event failure probabilities: If the failure probability can not be obtained, use

fault tree analysis to calculate it.

(7) Identify the outcome risk: Calculate the overall probability of the event paths and

determine the risk.

(8) Evaluate the outcome risk: Evaluate the risk of each path and determine its accept-

ability.

(9) Recommend corrective action: If the outcome risk of a path is not acceptable develop

design changes that change the risk.

(10) Document the ETA: Document the entire process on the event tree diagrams and

update for new information as needed.

Obviously, ETA shows the following limitations: (1) it can address only one initiating

event at a time. (2) Pathways must be identi�ed in advance by the analyst. (3) Partial

successes/failures are not distinguishable. Moreover, since the causal relationship between
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Fig. 2.4. An example of MC

events is not a simple �success� or �failure� in reality, it cannot preform thorough risk

reasoning when it comes to deal with a complex system or scenario.

2.3.3 Markov Chains

Markov Chains (MCs) are stochastic models describing a sequence of possible events in

which the probability of each event depends only on the state attained in the previous

event and computing the probability that the system is in a speci�c state at a given

time [Gagniuc 2017].

A MC is a type of Markov process that has either discrete state space or discrete index

set (often representing time), but the precise de�nition of a MC varies. For example, it is

common to de�ne a MC as a Markov process in either discrete or continuous time with

a countable state space (thus regardless of the nature of time), but it is also common to

de�ne a MC as having discrete time in either countable or continuous state space (thus

regardless of the state space).

Fig. 2.4 shows an example of MC, which uses a directed graph to describe the state

transitions.

The transition matrix for this example is expressed as follows:

A B C

P =


0.9 0.075 0.025

0.15 0.8 0.05

0.25 0.25 0.5

 (2.19)

The distribution over states can be written as a stochastic row vector x with the relation
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x(n+1) = x(n)P . So if at time n the system is in state x(n), then k time periods later, at

time n+ k the distribution is calculated as follows:

x(n+k) = x(n+k−1)P = (x(n+k−2)P )P = · · · = x(n)P k (2.20)

MCs and their extensions have been mainly used for modeling complex dynamic sys-

tem behavior and dependability analysis of dynamic systems. As an example, two-state

Markov switching multinomial logit models are introduced by [Malyshkina 2009] to explain

unpredictable, unidenti�ed or unobservable risk factors in road safety analysis. Although

MCs can elaborate the statistical state transition of di�erent variables, they cannot for-

malize causal relationships between various events.

2.3.4 Petri nets

A Petri net (PN), also known as a place/transition (PT) net, is a graphical tool for

the description and analysis of concurrent processes which arise in systems with several

components (distributed systems). As shown in Fig. 2.5, a PN is a directed bipartite

graph, which consists of places (i.e., conditions, represented by circles), transitions (i.e.,

events that may occur, represented by bars), and directed arcs. Arcs run from a place

to a transition or vice versa, never between places nor between transitions. The places

from which an arc runs to a given transition are called the input places of the transition;

the places to which arcs run from a given transition are called the output places of the

transition [Peterson 1981]. Places in a PN may contain a discrete number of marks called

tokens. Any distribution of tokens over the places will represent a con�guration of the

net called a marking. In an abstract sense relating to a PN diagram, a transition of a PN

may �re if it is enabled, i.e., there are su�cient tokens in all of its input places; when the

transition �res, it consumes the required input tokens, and creates tokens in its output

places. A �ring is atomic, namely, a single non-interruptible step. Fig. 2.5 shows an

example of PN.

As shown in Fig. 2.5a, the place p1 is an input place of transition t; whereas, the place

p2 is an output place to the same transition. The con�guration of PN0 enables transition

t through the property that all its input places have su�cient number of tokens (shown in

the �gures as dots) �equal to or greater than� the weights on their respective arcs to t. A

transition can �re only if it is enabled. In this example, the �ring of transition t results in

con�guration PN1 as shown in Fig. 2.5b. In the diagram, the �ring rule for a transition

can be characterized by subtracting a number of tokens from its input places equal to

the weight of their respective input arcs and accumulating a new number of tokens at the

output places equal to the weight of the respective output arcs.
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(a)

(b)

Fig. 2.5. An example of PN

A PN can also be de�ned as a net of the form PN = (N,M,W ), which extends the

elementary net so that:

(1) N = (P, T, F ) is a net.

(2) M : P → Z is a place multiset, where Z is a countable set. M extends the concept

of con�guration and is commonly described with reference to PN diagrams as a

marking.

(3) W : F → Z is an arc multiset, so that the count (or weight) for each arc is a measure

of the arc weight.

Basic PNs have various extensions to integrate further features (time, probabilities,

labeling, etc.), for instance, Colored Petri Nets (CPN) and Generalized Stochastic Petri

Nets (GSPNs), etc. The selection of the PN variant depends on the features one wished

to decide and the type of analysis to be carried out. For instance, in order to compare
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the e�ectiveness of two main Automatic Protection Systems (APSs) at LXs, namely two-

half-barrier APS and four-half-barrier APS, GSPNs were used in [Ghazel 2014] to analyze

the aleatory �uctuations of various parameters involved in the dynamics within the LX

area. However, the PN formalism does not enable, in a direct way, are unable to identify

causality e�ectively when performing risk reasoning.

2.3.5 Fuzzy Logic

Fuzzy logic (FL) was introduced with the fuzzy set theory by Lot� Zadeh [Cox 1994]. FL is

a form of many-valued logic in which the truth values of variables may be any real number

between 0 and 1. It is employed to handle the concept of partial truth, where the truth

value may range between completely true and completely false. By contrast, in Boolean

logic, the truth values of variables may only be the integer values 0 or 1. Fuzzi�cation

operations can map mathematical input values into fuzzy membership functions. And the

opposite de-fuzzifying operations can be used to map a fuzzy output membership functions

into a �crisp� output value that can be then used for decision or control purposes. The

process of Fuzzi�cation is shown as follows:

(1) Fuzzify all input values into fuzzy membership functions.

(2) Execute all applicable rules (e.g., IF-THEN rules) in the rulebase to compute the

fuzzy output functions.

(3) De-fuzzify the fuzzy output functions to get continuous output values.

FL works with membership values in a way that mimics Boolean logic. Namely, replace-

ments for basic operators AND, OR, NOT must be available. There are several ways

to reach this point. A common replacement is called the Zadeh operators as shown in

Table 2.2:

Table 2.2. Zadeh operators

Boolean Fuzzy

AND(x,y) MIN(x,y)

OR(x,y) MAX(x,y)

NOT(x) 1 � x

FL has been applied to many �elds, from control theory to arti�cial intelligence. [Niit-

tymaki 1998] discussed a FL controller for controlling the timing of a pedestrian crossing

signal. The controller was designed to emulate the decision process of an experienced
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crossing guard. However, the FL techniques are still unable to identify causality e�ec-

tively when performing risk reasoning.

2.3.6 Bayesian Networks

Bayesian Networks (BNs) are probabilistic graphical models that represent a set of vari-

ables and their conditional dependencies via a directed acyclic graph (DAG). They consist

of a set of nodes which correspond to discrete or continuous random variables in Bayesian

Networks and a set of directed links (arrows) which represent probabilistic dependence

structure among nodes in Bayesian Networks. If the BNs consist of discrete random vari-

ables then each node will have a set of mutually exclusive and collective exhaustive states.

A conditional probability table (CPT) is utilized to describe the conditional probability

mass function of a discrete random variable. For example, in the BN shown in Fig. 2.6,

�Driver error� (D) and �Equipment failure� (E) are parent nodes of �Accident� (A) and

their CPTs are given.

Equipment
failure

Accident

Driver
error

D 0 1
0.5 0.5

E 0 1
0.8 0.2

D, E Pr(A=0) Pr(A=1)
0, 0 0.9 0.1
0, 1 0.1 0.9
1, 0 0.1 0.9
1, 1 0.05 0.95

Fig. 2.6. An example of BN

The joint probability function can be expressed as follows:

P (D,E,A) = P (D)P (E|D)P (A|D,E) (2.21)
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One can calculate P (A = 1) through forward inference:

P (A = 1) = P (A = 1|D = 0, E = 0)P (D = 0, E = 0)+

P (A = 1|D = 1, E = 0)P (D = 1, E = 0)+

P (A = 1|D = 0, E = 1)P (D = 0, E = 1)+

P (A = 1|D = 1, E = 1)P (D = 1, E = 1)

= 0.585

(2.22)

On the other hand, one can calculate P (D = 1|A = 1) through reverse inference:

P (D = 1|A = 1) = P (D=1,A=1)
P (A=1)

= P (D=1,A=1|E=0)P (E=0)+P (D=1,A=1|E=1)P (E=1)
P (A=1)

= P (D=1,A=1,E=0)+P (D=1,A=1,E=1)
P (A=1)

= 0.778

(2.23)

Over the last decade, BNs have been an increasingly popular notation used for risk

analysis of safety-critical systems or large and complex dynamic systems [Chemweno 2015].

In order to obtain proper and e�ective risk control, risk planning should be performed

based on risk causality, which can provide detailed information for decision making. In

this context, a method for software risk analysis based on BNs combined with expert

knowledge and V-structure discovery algorithm was proposed in [Hu 2010]. In [Lau-

ria 2006], authors discussed how to build BNs from real-world data and incorporated BNs

into decision support systems to support �what-if� analysis about Information Technology

implementations. Heuristic model searching techniques and Maximum a Posteriori (MAP)

estimation are used in this study to estimate the structure and the parameters of the BN.

A semi-formal method for constructing the graphical structure of BNs based on domain

knowledge using the causal mapping approach is discussed in [Nadkarni 2004]. The causal

knowledge of experts is formally represented by causal maps, so as to consider the rea-

soning underlying the cause-e�ect relations perceived by individuals. In [Bouillaut 2013],

Bouillaut et al. discussed the development of a decision tool realized by hierarchical Dy-

namic BNs (DBNs), which is dedicated to the maintenance of metro lines in Paris. This

modeling work has comprehensively described the rail degradation process, the di�erent

diagnosis actors (devices and sta�) and the decisions pertaining to maintenance actions.

In [Langseth 2007], Langseth and Portinal discussed the applicability of BNs for relia-

bility analysis and o�ered an instance of BNs' application for preventive maintenance.

Moreover, the authors of this paper discussed the advantages behind BNs as follows: a)

BNs constitute a modeling framework, which is particularly easy to use for interaction

with domain experts; b) the sound mathematical formulation has been utilized in BNs to

generate e�cient learning methods; and c) BNs are equipped with an e�cient calculation
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scheme which often makes BNs preferable to traditional tools like Fault Trees (FTs). For

more detailed knowledge about the application of BNs to risk assessment and decision

support please refer to [Bensi 2010, Heredia-Zavoni 2012, �pa£ková 2013].

To sum up, the BN technique o�ers interesting features: �exibility of modeling,

strong modeling power, high computational e�ciency and, most importantly, the out-

standing advantages involving the conjunction of domain expertise and automatic struc-

ture/parameters learning, causality analysis based on both forward inference (deductive

reasoning) and reverse inference (abductive reasoning) [Weber 2012], as well as further

in�uence and sensitivity analysis. For our study, given all the interesting features charac-

terizing BNs, we adopt this notation for risk modeling, as discussed in chapter 6.

2.4 Summary

This chapter o�ers an overview on the LX safety analysis, statistical accident frequency

prediction models and risk modeling techniques. Based on the investigation, we have

identi�ed a strong need for: (1) thorough quantitative analysis on motorist behavior with

regard to various phases of the LX closure cycle, (2) an appropriate accident prediction

model that should be comprehensive in terms of contributing factors to LX safety and

(3) using BN technique to perform e�ective risk reasoning, so as to predict the accident

occurrence and corresponding consequences and make cause diagnosis.
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Overview

In this chapter, we focus on statistical risk analysis at SAL2 LXs. Various kinds

of impacting factors, namely, transport mode, geographical region and tra�c moment,

are analyzed by means of statistical techniques to dig out their statistic and distribution

characteristics based on the accident data from SNCF, the French railway operator. Then,

we assess the e�ect of various factors on the risk level quantitatively, in such a way as

to open the way for setting e�cient solutions and consequently, reaching the point of

improving LX safety.

The work reported in this chapter corresponds to the publication on the international

conference �RAILWAYS 2016� [Liang 2016].
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This chapter is structured as follows: Section 3.1 exposes a general introduction to

LX safety statistics and potential impacting factors. Then, the general risk analysis of

average accident frequency in terms of transport mode and geographical region is discussed

in section 3.2. In section 3.3, the risk analysis related to frequency coe�cient, is performed

with regard to various tra�c moment groups. Besides, the frequency coe�cient distributed

in di�erent regions is further generated. Finally, section 3.4 concludes the main results

and contributions of the present study.

3.1 Introduction

LX safety involves various aspects: technical elements, operational procedures, human fac-

tors and environmental considerations. On the other hand, the e�ciency of several exper-

iments adopted in the past years to improve LX safety (such as using obstacle detection at

LXs, setting islets in front of LXs, etc.) is disputable due to the lack of thorough risk anal-

ysis establishing the potential relationship between impacting factors and the safety level.

In [Jia 2007], impacts of di�erent daily periods, seasons and railway lines on the probabil-

ity of accidents occurring at LXs were analyzed, but some kinds of important factors, such

as tra�c moment, transport mode and geographical region are not taken into account.

In [McCollister 2007], daily periods, train speeds and environmental factors at American

LXs were analyzed and a statistical model was proposed to predict the probability of acci-

dents. However, the predicted results have certain deviation with the actual situation due

to the lack of thorough statistical analysis of the potential relationship between important

impacting factors and accidents. In 2012, there were more than 118000 LXs in the 28

European countries, and 5 LXs per 10 line-km on average in Europe [ERA 2014]. In 2016,

111 train/vehicle collisions at French LXs led to 31 deaths [Plesse 2017]. Moreover, ac-

cording to the statistics of SNCF, tra�c moment, transport mode and geographical region

are essential factors which shall be considered when improving the LX safety, nevertheless,

these factors were not analyzed by the previous works, thoroughly.

Therefore, the objective of our study in this chapter is to make thorough analysis

on various kinds of transport mode, di�erent geographical regions and tra�c moment to

explore their in�uences on LX accidents. It should be noticed that the database from

SNCF used in the analysis reported in this chapter contains detailed information about

LX accidents/incidents from 1974 to 2014. Thereby, our analysis will consider the accident

data during this period.
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3.2 General risk analysis in terms of transport mode and

geographical region

In this study, we considered the 21 geographical administrative regions in the mainland

France divided in 2014. Accidents which are caused by the following main types of trans-

port mode: 1) motorized vehicle (MV), 2) pedestrian or bicycle (PB), are considered

respectively to allow for making statistical analysis in 21 di�erent regions. The motorized

vehicle contains the following sub-types:

- Car

- Bus

- Motorcycles with engine

- Truck

- Agricultural vehicle

- Exceptional convoy

The number of train-MV collisions and train-PB collisions, and the number of SAL2

in 21 regions are presented respectively in Fig. 3.1.

The general average frequency of accident occurrence per SAL2 per year are used to

represent the general risk level involving total accidents, MV accidents, and PB accidents

in di�erent regions during the period considered. We can calculate the general average

frequency through the Eq. (3.1), (3.2) and (3.3):

FG_totali =
Nb_acc_toti

Nb_SAL2i ×Nb_year
, i = 1, 2, . . . , 21; (3.1)

FG_MVi =
Nb_acc_MVi

Nb_SAL2i ×Nb_year
, i = 1, 2, . . . , 21; (3.2)

FG_PBi =
Nb_acc_PBi

Nb_SAL2i ×Nb_year
, i = 1, 2, . . . , 21; (3.3)

In Eq. (3.1), FG_totali represents the general average frequency of total accidents occurring

in ith region, Nb_acc_toti represents the number of total accidents during a period of

given years in ith region, Nb_SAL2i represents the number of SAL2 LXs in ith region,

and Nb_year represents the number of years of the period considered. In Eq. (3.2) and

(3.3), FG_MVi represents the general average frequency of accidents caused by motorized

vehicles occurring in ith region, Nb_acc_MVi represents the number of accidents caused
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Fig. 3.1. Accidents caused by di�erent transport modes at SAL2 in 21 French regions from

1974 to 2014

by motorized vehicles in ith region, FG_PBi represents the general average frequency of

accidents caused by pedestrians or bicycles occurring in ith region, and Nb_acc_PBi
represents the number of accidents caused by pedestrians or bicycles in ith region.

Now that these three kinds of general average frequency in each region are determined,

maps of French regions with the average accident frequency labeled are generated to

show the risk distribution in di�erent regions. As shown in Fig. 3.2, the general average

frequency value of total accidents in the red region (greater than 0.02) is the highest. The

general average frequency value of total accidents in the orange region (between 0.02 and

0.01) is at the medium level, and the general average frequency values of total accidents

in the green region (less than 0.01) is the lowest. When we analyze the frequency �gures

in detail, we �nd that the risk is most serious in Île-de-France with a frequency of more

than 0.02; Languedoc-Roussillon takes the second place with the frequency of about 0.017

followed by Provence-Alpes-Côte-d'Azur with the frequency of about 0.016. On the other

hand, Limousin has the lowest risk with the frequency of about 0.005. Haute-Normandie

and Basse-Normandie occupy the second and the third places of lowest risk successively.

Turning to Fig. 3.1, the number of accidents occurring in Île-de-France is not the highest,

but, when considering the corresponding number of LXs, this leads to the most serious

risk. Conversely, although accidents in Rhône-Alpes are the most with the number of
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521, the risk is not the highest due to a large number of LXs in this region. Limousin,

Haute-Normandie and Basse-Normandie have signi�cantly fewer accidents than any other

region, less than 100 in the 40 years. That is why they have the lowest risk.

0.02 ≤ FG_total 
0.01 ≤ FG_total < 0.02
FG_total < 0.01

Pays de la Loire 
  0.009042

Bretagne 
0.010311

Basse- 
Normandie 
0.006250

Haute- 
Normandie 
0.005735

Picardie 
0.010714

Nord-Pas-de-Calais 
0.011882

Île-de-France 
  0.024504

Champagne 
-Ardenne 
  0.009263

Lorraine 
0.011619

Alsace 
0.014469

Centre- 
Val de Loire 
0.007830

Bourgogne 
0.007838 Franche-Comté 

0.010178

Poitou- 
Charentes 
0.006320

Limousin 
0.004638

Auvergne 
0.006624

Rhône-Alpes 
0.014329

Aquitaine 
0.010352

Midi-Pyrénées 
0.009334

Languedoc 
-Roussillon 
0.017255

Provence-Alpes 
-Côte-d'Azur 
0.016341

Fig. 3.2. General average frequency of total accidents distributing in di�erent regions
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Fig. 3.3. General average frequency of MV accidents distributing in di�erent regions

In Fig. 3.3 and Fig. 3.4, the general average frequency of accidents caused by motorized

vehicles, pedestrians and bicycles in di�erent regions is shown respectively. Considering the

accidents caused by motorized vehicles, the distribution of frequency in di�erent regions in

Fig. 3.3 is relatively consistent with the distribution shown in Fig. 3.2. The only exception

is Champagne-Ardenne. However, in Fig. 3.4, as for the accidents caused by pedestrians

and bicycles, the distributions of frequency in di�erent regions are relatively di�erent from

the distribution shown in Fig. 3.2.
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Fig. 3.4. General average frequency of PB accidents distributing in di�erent regions

Fig. 3.5. Comprehensive general average frequency of accidents in di�erent regions
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According to the results shown in Fig. 3.2, 3.3, 3.4 and 3.5, we draw a conclusion

that the main mode causing accidents at SAL2 is the motorized vehicle. Moreover, as the

frequency of accidents involving motorized vehicle collisions increases, the total accident

frequency in the overwhelming majority of regions increases accordingly, as illustrated in

Fig. 3.5. On the contrary, pedestrians and bicycles contribute very little to the whole risk

level and to the risk trend. Therefore, we can mainly focus on the solutions for reducing

accidents caused by motorized vehicles to improve LX safety.

3.3 Risk analysis on frequency coe�cient in terms of tra�c

moment

As mentioned in Section 3.2, the motorized vehicle is the main transport mode causing

accidents at SAL2 LXs. Therefore, in this section we will focus on the impact of tra�c

moment on the whole risk level. We suspect that this parameter is one of the main

parameters impacting LX risk level. Indeed, tra�c moment gives the combined tra�c

(train/MV) at the LX and is de�ned as follows:

De�nition

Moment = Road traffic frequency ×Railway traffic frequency (3.4)

where Road traffic frequency represents the average number of motorized vehicles per

day at the LX, and Railway traffic frequency represents the average number of trains

per day crossing the LX. Here, we use �M � for short to denote the moment.

In this section, SAL2 LXs are classi�ed by the category of M . In order to make the

number of SAL2 in eachM group to be as far as possible similar to any other group in each

region, the moment groups have been de�ned in such a way that the number of SAL2 LXs

in every group belongs to the interval [102, 155]. For example, in Table 3.1, there are three

M categories in Auvergne, which are �0 ≤ M < 750�, �750 ≤ M < 5000�, �5000 ≤ M ≤
401850�, with the corresponding numbers of SAL2: 143, 144, 147, respectively. Besides,

401850 is the maximum M in this region. In this way, we can make risk analysis with

regard to these SAL2 groups, thus making it possible to highlight the risk level related to

di�erent categories of M .
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Table 3.1. Number of SAL2 in each region according to the category of �moment�

Number of SAL2 in each region according to the category of “moment”          

Auvergne M [0, 750) 
143 

M [750, 5000) 
144 

M [5000, 401850] 
147 

    

Haute-
Normandie 

M [0, 500) 
133 

M [500, 4500) 
127 

M [4500, 3082788] 
128 

    

Midi-
Pyrénées 

M [0, 460) 
142 

M [460, 1150) 
135 

M [1150, 3000) 
133 

M [3000, 9000) 
143 

M [9000, 35000) 
138 

M [35000, 1169782] 
141 

 

Basse-
Normandie 

M [0, 2100) 
140 

M [2100, 555600] 
140 

     

Poitou-
Charentes 

M [0, 500) 
133 

M [500, 2200) 
134 

M [2200, 10500) 
134 

M [10500, 116978] 
138 

   

Bourgogne M [0, 1000) 
142 

M [1000, 8000) 
141 

M [8000, 720000] 
138 

    

Limousin M [0, 700) 
115 

M [700, 5000) 
112 

M [5000, 337524] 
118 

    

Pays de la 
Loire 

M [0, 500) 
140 

M [500, 1400) 
137 

M [1400, 3900) 
143 

M [3900, 15000) 
138 

M [15000, 815400] 
136 

  

Champagne
-Ardenne 

M [0, 420) 
122 

M [420, 1800) 
125 

M [1800, 8000) 
126 

M [8000, 256410] 
129 

   

Centre-Val 
de Loire 

M [0, 350) 
140 

M [350, 1400) 
143 

M [1400, 4300) 
144 

M [4300, 18000) 
141 

M [18000, 688320] 
144 

  

Aquitaine M [0, 600) 
135 

M [600, 1600) 
135 

M [1600, 3800) 
133 

M [3800, 11000) 
135 

M [11000, 40000) 
133 

M [40000, 585644] 
138 

 

Bretagne M [0, 800) 
131 

M [800, 4200) 
134 

M [4200, 18000) 
132 

M [18000, 2244000] 
134 

   

Rhône-
Alpes 

M [0, 320) 
132 

M [320, 1400) 
128 

M [1400, 3600) 
131 

M [3600, 11000) 
131 

M [11000, 35000) 
132 

M [35000, 100000) 
133 

M [100000, 1121088] 
129 

Franche-
Comté 

M [0, 2500) 
125 

M [2500, 271936] 
128 

     

Picardie M [0, 600) 
121 

M [600, 2550) 
125 

M [2550, 14000) 
123 

M [14000, 817000] 
121 

   

Nord-Pas-
de-Calais 

M [0, 450) 
124 

M [450, 3000) 
126 

M [3000, 10000) 
128 

M [10000, 45000) 
127 

M [45000, 1477229] 
124 

  

Lorraine M [0, 1350) 
155 

M [1350, 8000) 
152 

M [8000, 402500] 
150 

    

Provence-
Alpes-Côte-
d'Azur 

M [0, 5700) 
102 

M [5700, 921250] 
103 

     

Île-de-
France 

M [0, 11500) 
127 

M [11500, 752854] 
126 

     

Alsace M [0, 12000) 
127 

M [12000, 767088] 
127 

     

Languedoc-
Roussillon 

M [0, 1250) 
121 

M [1250, 7200) 
122 

M [7200, 1428000] 
125 

    

M [a, b) : a ≤ moment < b; M [c, d] : c ≤ moment ≤ d. 

In order to analyze the impact ofM , we �rstly adopt the square root ofM at SAL2 LXs

to calculate a speci�c coe�cient related to the average frequency of train-MV collisions (as

a preliminarly involvement of the tra�c moment factor), called frequency coe�cient (FC),

as shown in Eq. (3.5) (di�erent from the general frequency statistics shown in Section 3.2).

Logically, if the same number of accidents or more accidents occur during a given period

at a SAL2 with smallM than at another SAL2 with largeM , this indicates that the SAL2

with small M has higher risk level than the SAL2 with large M . Furthermore, it is worth

noticing that the SAL2 with small M accounts for a large proportion of the total SAL2
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LXs in France. The formula adopted to establish the FC of collisions is the following:

FCi =

∑Nb_SAL2_regi
j=1

Nb_acc_MVj√
Mj

Nb_SAL2_regi ×Nb_year
, i = 1, 2, . . . , 21; (3.5)

where FCi represents the frequency coe�cient of accidents caused by train-MV colli-

sions in ith region; Nb_acc_MVj represents the number of accidents caused by train-MV

collisions at jth SAL2 LX during a period of given years in ith region; Mj represents the

moment at the jth SAL2 LX in ith region; Nb_SAL2_regi represents the number of SAL2

in ith region, and Nb_year represents the number of years of the considered period.

The FC of collisions regarding the di�erent M categories in each region are shown

in Table 3.2. The M categories marked with orange color have the most serious risk in

various regions. We �nd that SAL2 LXs in the category of smallest M have the highest

risk level in 86% of the regions, except in Auvergne, Champagne-Ardenne and Nord-Pas-

de-Calais where the second smallest M have the highest risk level. On the other hand,

SAL2 LXs in the category of largest M have the lowest risk level in 81% of the regions.

These statistical results powerfully prove the logic inference mentioned above that the

SAL2 with small M has higher risk level than the SAL2 with large M when considering

the ratio of the number of accidents occurring per year at the SAL2 to the moment value

of the SAL2.

In order to further analyze the impact of M on the risk level in each region, the FC of

train-MV collisions occurring at all the SAL2 LXs in each region is determined.
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Table 3.2. Frequency coe�cient of MV accidents at SAL2 in each region according to the

category of �moment�

Frequency coefficient of MV accidents at SAL2 in each region according to the category of “moment”          
Auvergne M [0, 750) 

0.000049 
M [750, 5,000) 
0.000100 

M [5,000, 401,850] 
0.000078 

        

Haute-
Normandie 

M [0, 500) 
0.000190 

M [500, 4,500) 
0.000089 

M [4,500, 3,082,788] 
0.000072 

        

Midi-
Pyrénées 

M [0, 460) 
0.000202 

M [460, 1,150) 
0.000068 

M [1,150, 3,000) 
0.000072 

M [3,000, 9,000) 
0.000066 

M [9,000, 35,000) 
0.000095 

M [35,000, 1169,782] 
0.000065 

  

Basse-
Normandie 

M [0, 2,100) 
0.000147 

M [2,100, 555,600] 
0.000067 

          

Poitou-
Charentes 

M [0, 500) 
0.000302 

M [500, 2,200) 
0.000064 

M [2,200, 10,500) 
0.000098 

M [10,500, 1169,782] 
0.000078 

      

Bourgogne M [0, 1,000) 
0.000224 

M [1,000, 8,000) 
0.000130 

M [8,000, 720,000] 
0.000061 

        

Limousin M [0, 700) 
0.000269 

M [700, 5,000) 
0.000058 

M [5,000, 337,524] 
0.000055 

        

Pays de la 
Loire 

M [0, 500) 
0.000175 

M [500, 1,400) 
0.000121 

M [1,400, 3,900) 
0.000111 

M [3,900, 15,000) 
0.000122 

M [15,000, 815,400] 
0.000062 

    

Champagne-
Ardenne 

M [0, 420) 
0.000129 

M [420, 1,800) 
0.000285 

M [1,800, 8,000) 
0.000099 

M [8,000, 256,410] 
0.000185 

      

Centre-Val 
de Loire 

M [0, 350) 
0.000201 

M [350, 1,400) 
0.000121 

M [1,400, 4,300) 
0.000092 

M [4,300, 18,000) 
0.000087 

M [18,000, 688,320] 
0.000059 

    

Aquitaine M [0, 600) 
0.000162 

M [600, 1,600) 
0.000135 

M [1,600, 3,800) 
0.000095 

M [3,800, 11,000) 
0.000093 

M [11,000, 40,000) 
0.000091 

M [40,000, 585,644] 
0.000055 

  

Bretagne M [0, 800) 
0.000324 

M [800, 4,200) 
0.000117 

M [4,200, 18,000) 
0.000068 

M [18,000, 2244,000] 
0.000044 

      

Rhône-Alpes M [0, 320) 
0.000297 

M [320, 1,400) 
0.000122 

M [1,400, 3,600) 
0.000106 

M [3,600, 11,000) 
0.000101 

M [11,000, 35,000) 
0.000080 

M [35,000, 100,000) 
0.000054 

M [100,000, 1121,088] 
0.000047 

Franche-
Comté 

M [0, 2,500) 
0.000143 

M [2,500, 271,936] 
0.000101 

          

Picardie M [0, 600) 
0.000314 

M [600, 2,550) 
0.000135 

M [2,550, 14,000) 
0.000127 

M [14,000, 817,000] 
0.000101 

      

Nord-Pas-
de-Calais 

M [0, 450) 
0.000079 

M [450, 3,000) 
0.000203 

M [3,000, 10,000) 
0.000082 

M [10,000, 45,000) 
0.000063 

M [45,000, 1477,229] 
0.000059 

    

Lorraine M [0, 1,350) 
0.000250 

M [1,350, 8,000) 
0.000122 

M [8,000, 402,500] 
0.000099 

        

Provence-
Alpes-Côte-
d'Azur 

M [0, 5,700) 
0.000212 

M [5,700, 921,250] 
0.000094 

          

Île-de-
France 

M [0, 11,500) 
0.000285 

M [11,500, 752,854] 
0.000099 

          

Alsace M [0, 12,000) 
0.000513 

M [12,000, 767,088] 
0.000113 

          

Languedoc-
Roussillon 

M [0, 1,250) 
0.000442 

M [1,250, 7,200) 
0.000134 

M [7,200, 1428,000] 
0.000152 

        

M [a, b): a ≤  moment < b; M [c, d]: c ≤  moment ≤  d. 

Fig. 3.6 shows the FC acted by the square root of M distributed over the di�erent

regions. It shows that the risk level is the highest in Île-de-France region with the FC of

7.31 × 10−4; Alsace region takes the second place followed by Languedoc-Roussillon and

Provence-Alpes-Côte-d'Azur. Through detailed analysis, we �nd that the general average

frequencies of MV accidents in these 4 regions (see Section 3.2) are also the highest.

Moreover, according to the recorded statistics, more train-MV collisions happened at SAL2

with small M in Île-de-France than in the other 3 regions during the period considered.
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FN < 0.00028
0.00028 ≤ FN < 0.00040
0.00040 ≤ FN 

Nord-Pas-de-Calais 
0.000327

Haute- 
Normandie 
 0.000176

Picardie 
0.000311

Champagne 
-Ardenne 
 0.000262

Lorraine 
0.000381

Bretagne 
0.000260

Basse- 
Normandie 
 0.000225 Alsace 

0.000714

Île-de-France 
  0.000731

Pays de la Loire 
 0.000235

Centre- 
Val de Loire 
0.000272

Bourgogne 
0.000225 Franche-Comté 

0.000310

Poitou- 
Charentes 
0.000220

Limousin 
0.000228

Auvergne 
0.000162

Rhône-Alpes 
0.000295

Aquitaine 
0.000258

Midi-Pyrénées 
0.000185

Languedoc 
-Roussillon 
0.000583

Provence-Alpes 
-Côte-d'Azur 
  0.000486

Fig. 3.6. Frequency coe�cient of MV accidents distributing in di�erent regions

3.4 Summary

This chapter presents risk analysis relative to LXs based on recorded accident statistics.

Various parameters have been taken into account in our study: the involved road transport

mode, geographical regions and the tra�c moment. First, general risk analysis of the

entire accidents, train-MV accidents and train-PB accidents in di�erent French regions

is performed. Then further investigation is carried out to analyze the risk of train-MV

accidents in terms of frequency coe�cient acted by the square root of �moment� according

to various �moment� classi�cation in the di�erent regions. Based on the obtained results,

we draw a conclusion that more attention shall be paid on the SAL2 LXs in 4 speci�c

regions (Île-de-France, Languedoc-Roussillon, Alsace, and Provence-Alpes-Côte-d'Azur).

In particular, at a micro level, for an individual SAL2 LX, the smaller the �moment� it

has, the higher the risk it may show.
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The thorough statistical analysis presented in this chapter allows us to identify the

main risk factors and quantify their impacts on the overall LX risk. Although the analyses

reported in this chapter are based on the accident data of France and focus on the SAL2

LXs, they have an important reference value when carrying out risk analysis at LXs in

other countries. Moreover, the methodology can be easily adopted in other countries.

As reported in this chapter that motorized vehicle is main transport mode causing

accidents at SAL2 LXs, we will focus on the studies related to train-MV accidents at

SAL2 LXs in following chapters.





Chapter 4

Motorist Behavior Quantitative

Analysis: Experiments at 12 selected

automated LXs

Sommaire

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Motorist behavior analysis during Ph2 and Ph3 . . . . . . . . . . 56

4.3 Motorist behavior analysis during Ph4 . . . . . . . . . . . . . . . 65

4.4 Comparison of motorist responses to SAL2 and SAL4 LXs . . . 77

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Overview

In chapter 3, we noticed that violations committed by motorists are the primary cause

of LX accidents. Therefore, vehicle driver behavior at LXs is a safety concern that requires

a particular care, in order to set an appropriate diagnosis. The study in this chapter is

a tentative to acquire a better understanding of risky vehicle driver behavior while cross-

ing LXs during the closure cycle. A risk analysis of motorist behavior is performed based

on �eld measurement conducted at 12 automatic LXs (11 equipped with two half barriers

(SAL2) and 1 equipped with four half barriers (SAL4)). Thanks to suitable instruments

set at the LX entrance from either side, various factors have been analyzed. Hence, we

focus on motorist behavior during the LX closure cycle while distinguishing between dif-

ferent phases. Namely, the closure cycle is divided into three phases which are �Ph2 Red

Flash and Siren�, �Ph3 Barriers Coming Down� and �Ph4 Barriers Down�. A statistical

analysis is subsequently performed according to the phase periods. Furthermore, vehicle
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driver behavior in each phase as time increases is scrutinized respectively. The relation-

ship between vehicle driver behavior and speci�c ranges of vehicle speed is examined. In

particular, motorist behavior during Ph4 is detected and analyzed in detail.

The work reported in this chapter corresponds to the publications on the journals �Ac-

cident Analysis & Prevention� [Liang 2017b] and �Safety Science� [Liang 2018c].
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This chapter is structured as follows: section 4.1 exposes a general introduction to

motorist behavior analysis for LX safety and the de�nition of LX closure cycle. Then,

the motorist behavior analysis related to Ph2 and Ph3 is discussed in section 4.2. In

section 4.3, the motorist behavior analysis related to Ph4 is performed to investigate the

zigzag scenarios. Section 4.4 examines the distinction of motorist responses to SAL2 and

SAL4 protection systems, so as to compare the e�ciency of SAL2 and SAL4 LXs in terms

of LX safety. A detailed discussion about the obtained results is given in section 4.5.

Finally, section 4.6 o�ers a general summary of this chapter.

4.1 Introduction

As mentioned in chapter 2, although research on human factors related to LX safety has

been an area of great concern over the past decades [Wilson 2005, Wilson 2014], the causes

of collisions that occur at LXs remain insu�ciently understood. It worth noticing that

few existing works focus on the analysis of motorist behavior with regard to the separate

phases of the automated LX closure cycle. Some available studies adopted qualitative

approaches for understanding motorist behavior during the entire cycle of LX control,

including when the LX is open to road tra�c [Shappel 2000, San Kim 2013].

In general, the causes of such collisions fall into two broad classes, which are unin-

tentional error and intentional violation. As for the unintentional errors, vehicle drivers

may, for instance, fail to observe the warnings or fail to determine the braking distance

appropriately. However, as for the intentional violations, vehicle drivers observe the warn-

ings and fully understand their meaning, but intentionally commit transgressions on their

own judgment [Lenné 2011]. In the present study, we carry out experiments that aim to

quantitatively and �nely analyze intentional violations of motorists during the LX closure

cycle. These experiments have been conducted at 12 automated LXs in France, among

which there are 11 LXs equipped with two half barriers (SAL2) (four SAL2 LXs are �rstly

selected for the analysis during Ph2 and Ph3; seven more SAL2 LXs are selected later for

the analysis during Ph4) and 1 equipped with four half barriers (SAL4).

Here, we need to introduce that the control cycle of SAL2 LXs consists of �ve phases:

• Ph0 �Un�ash and Barriers Coming Up�: corresponds to the phase launched right

after the crossing train leaves the intersection zone. In this phase, the warning lights

stop �ashing, the sirens stop blaring and the barriers are rising.

• Ph1 �Barriers Up�: corresponds to the phase when the LX is open for road tra�c as

no train is approaching. In this phase, the barriers are fully opened.
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• Ph2 �Red Flash and Siren�: in this phase, the warning lights �ash and sirens whistle,

whereas the barriers are kept raised.

• Ph3 �Barriers Coming Down�: in this phase, the barriers are falling.

• Ph4 �Barriers Down�: in this phase, the barriers are fully lowered and the lights keep

�ashing.

Ph2, Ph3 and Ph4 are the three phases of the closure cycle of LX control.

In the sequel, based on recorded measurements, the zigzag violation rate is analyzed

with regard to the hour, the weekday and the vehicle speed during Ph2 and Ph3. Moreover,

the zigzag violation rate in Ph4 is further investigated with regard to the prolonged LX

closure duration and LX location (railway station nearby or not), respectively. Then, some

other features characterizing risky behavior are determined, such as troop phenomenon,

etc. Besides, since our aim is to analyze motorist behavior at SAL2 LXs, one SAL4 LX

was considered in our experiments to examine the distinction of motorist responses to

SAL2 and SAL4 protection systems, so as to compare the e�ciency of SAL2 and SAL4

LXs in terms of safety.

4.2 Motorist behavior analysis during Ph2 and Ph3

In this stage, four LXs, named Motteville (LX 51), Ectot lès Baons (LX 55), Yvetot (LX

58) and Gonfreville (LX 69), were selected �rstly for our �eld measurement campaign

related to Ph2 and Ph3. As shown in Fig. 4.1, the four red circular marks represent the

accurate locations of the selected LXs and the corresponding kilometer points (KP) are

indicated. The railway line traversing these four LXs is a bidirectional double-track line.

In addition, the railway speed limit at these four LXs is 160 km/h. The railway stations

in the vicinity of these four LXs are also indicated (see triangle marks in Fig. 4.1). LX 51

and LX 55 are on the right side and left side of Motteville railway station, respectively.

It can also be seen that LX 51, LX 55 and LX 58 are close to each other, whereas LX 69

is about 40 kilometers from LX 58. The four LXs were selected based on various features

(e.g., environment, infrastructure, equipment, railway and road tra�c, etc.) as well as

the accident/incident statistics (see Table 4.1). The LX selection process ensures that a

range of LX features is represented including a variety of road tra�c density (enabling

analysis of the impact of road tra�c volume) and a variety of LX closure durations. In

particular, the choice of some LXs close to railway stations ensures long closure cycles in

some cases. Moreover, we assume that such long closure cycles would potentially foster

�zigzag� vehicle driver behavior. Statistics in terms of LX accidents/incidents have also
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Yvetot railway 
station  

Motteville 
railway station  

 LX 
    
 Railway Station 

LX 69  
 

LX 51 
 LX 55 

LX 58  
 

Fig. 4.1. Geographic information about LX 51, LX 55, LX 58 and LX 69

been considered to select the LXs for our measurement. For this aim, we have analyzed

the LX accident/incident data from 1974 to 2014, which were collected by SNCF and

recorded in a dedicated database. It is shown in Table 4.1 that 3 collisions and 114 near

misses occurred at LX 55 during the period concerned, which take the �rst place among

the four LXs considered. LX 51 with 3 collisions and 17 near misses occupies the second

place. LX 58 and LX 69 had no collision during the last 40 years and only 5 near misses

and 1 near misses, respectively.

Table 4.1. Collisions/near misses and road/rail tra�c volumes at the four LXs from 1974

to 2014

LX # Collisions # Near misses # Average daily

road tra�c

# Average daily

train tra�c

51 Motteville 3 17 9455 89

55 Ectot lès Baons 3 114 21491 70

58 Yvetot 0 5 13938 89

69 Gonfreville 0 1 10946 91

4.2.1 Road tra�c measurement

This �eld observation campaign conducted by SNCF Réseau in cooperation with Metro-

Count, an engineering o�ce specializing in road tra�c measurement. The sensing equip-

ment installed at each LX consists of two separate tubes one meter apart. These two
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tubes are placed perpendicularly to road tra�c direction on the ground in front of the

stop line, just before the level crossing barriers. They are connected to a counter that is

a digital recording module, which, in turn, is linked to the light �ashing signal to ensure

synchronization with the signal cycle. The synchronization between the installed counting

module and the LX control module is achieved by means of an optical sensing device in-

stalled in front of the LX �ashing lights in both directions. Thanks to the installation set,

the timestamp, vehicle direction, vehicle speed and phase, are recorded for each crossing

vehicle individually.

The measurement was performed over a period of 9 weeks. There were 86928, 192123,

129661 and 98122 vehicles in total crossing LX 51, 55, 58 and 69 during 5249, 5058, 2668

and 4255 LX control cycles respectively, in the measurement period of 9 weeks. Fig. 4.2

shows labeled images taken from the four LXs considered, as well as some related infor-

mation. For instance, Fig. 4.2a shows the warning devices and measurement instruments

installed at LX 51. One can notice two sensing tubes which are installed on the ground

surface in front of the LX. The duration of Ph2 and Ph3 at LX 51 is 5s and 7.5s, respec-

tively.

The �eld tra�c data collected through our installation are recorded in a speci�c

database. As shown in Fig. 4.3a, a tool, called �MTExec�, is used to visualize and handle

the recorded data. With the help of this tool, one can select di�erent phases, as well as

the speci�c beginning time and ending time of each phase, etc. This allows for di�erent

kinds of statistical analysis on various impacting factors. Fig. 4.3b shows an example of

road tra�c data that are recorded in the MTExec tool. As can be noted, the timestamp,

vehicle direction, vehicle speed, vehicle type and phase information are recorded distinctly.

Based on these records, the vehicle dynamics can be fully characterized.

 

B 
A 

(a) LX 51 Motteville

B 
A 

(b) LX 55 Ectot lès Baons
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B 
A 

(c) LX 58 Yvetot

B 
A 

(d) LX 69 Gronfreyville

Fig. 4.2. Labeled photographs of environment and devices at the four LXs

(a) The tool �MTExec�

 

 
ED   Ess Nb        AAAA-MM-JJ  hh:mm: ss.000   Dr    Speed       Vehicle 

07   00000000   2015-02-19    18:30:23.825      BT    ------      Ph2 Red Flash and Siren 
02   00000457   2015-02-19    18:30:26.018     N0    46,66   EU13-1 o o 
02   0000045b   2015-02-19    18:30:26.970     S1    54,00    EU13-2 o  o 
02   00000460   2015-02-19    18:30:28.484     S1    57,05    EU13-1 o o 
…… 

Reference ID Year-
Month-Day 

Hour: Minute: 
second. 
Millisecond 

Vehicle 
direction 

Vehicle 
speed 

Vehicle 
type 

Phase 

Type of vehicles 
during the phase 
considered 

(b) Example of road tra�c data recorded

Fig. 4.3. The tool �MTExec� and an example of road tra�c data recorded in the MTExec

tool
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It should be noted that, in terms of ethics approval, the data collected during the

measurement do not hold any personal or private aspects.

4.2.2 Behavioral analysis during Ph2 and Ph3

Motorist behavior during Ph2 and Ph3 is discussed in this section. We �rstly investigate

how the number of crossing vehicles evolves as time advances during Ph2 and Ph3 (sec-

tion 4.2.2.1). Then, various parameters are taken into account for the analysis of the viola-

tion rate during Ph2 and Ph3, namely, time-slots of the day and weekday (section 4.2.2.2).

The speed of violating vehicles is investigated as well later on in section 4.2.2.3.

4.2.2.1 Global violation trend during Ph2 and Ph3

In this section, we analyze how the number of violating vehicles evolves as time increases

along Ph2 and Ph3. Thus, the observation time slot considered lasts from the beginning

of Ph2 until the end of Ph3. Moreover, a distinction will be made between daytime and

night. The daytime is from 6:00 h to 21:00 h and the night-time ranges from 21:00 h to

6:00 h.

When vehicle drivers observe the �ashing lights and hear sirens, then, if it is possible

to stop before the LX, they should brake. The whole process takes a period of reaction

time. According to ergonomics studies, human visual reaction time is about 0.2 ∼ 0.25

seconds [Green 1967] and auditory reaction time is 0.12 ∼ 0.18 seconds [Taylor 1967].

Moreover, the human nerve transfer takes around 0.5 seconds of the refractory period in

general [Welford 1952]. Thus, the whole operating delay of the action guided by sense

organs should be less than 1 second. In addition, the longest braking coordination time

of motorized vehicles does not exceed 0.8 seconds. Then, the braking delay itself should

be considered. Therefore, a vehicle crossing during the �rst 4 seconds of Ph2 will not

be regarded as a violation in our study, only a vehicle crossing subsequently to the �rst

4 seconds should be considered as a violation, which may correspond to either an inten-

tional violation or the inability of the motorist to stop his vehicle safely due to a high

speed. As mentioned above, the speed of violating vehicles will be investigated later on in

section 4.2.2.3.

Turning to data as shown in the table of Fig. 4.2, 1, 2, 4 and 3 seconds are left after

Fig. 4.4. An example of detailed railway tra�c data o�ered by SNCF
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excluding the �rst 4 seconds of Ph2 at LX 51, LX 55, LX 58 and LX 69, respectively.

Indeed, the duration of Ph3 corresponding to these four LXs is 7.5, 9, 7 and 9 seconds,

respectively. Due to the discrepancy in terms of duration considered, instead of considering

the successive seconds in each phase (Ph2 and Ph3), we divide Ph2 (resp. Ph3) into 2

(resp. 5) equal time intervals at each LX and then, we can make the analysis in terms

of phase halves: 1st and 2nd (resp. phase quintiles: 1st, 2nd, 3rd, 4th and 5th) in such a

way as to be able to merge the road tra�c data recorded at the four LXs. As we seek to

investigate the general trend of violation volume as time increases along Ph2 and Ph3, we

will consider the number of violating vehicles rather than the corresponding rate.

As shown in Fig. 4.5a, �Nb of vehicles _ D� represents the number of vehicles crossing

LX during Ph2 and Ph3 in the daytime. The pro�le declines dramatically as time advances

during Ph2 and the violating vehicles during Ph3 are much fewer. This can be explained

by the fact that vehicle drivers are aware of the increasing risk as time passes during the

closure cycle. In Fig. 4.5b, �Nb of vehicles _ N� represents the number of violating vehicles

during Ph2 and Ph3 at night. In fact, the vehicles crossing LXs at night are signi�cantly

fewer than those in the daytime. More importantly, the pro�le declines more slowly at

night than during the daytime at the beginning of Ph2. A potential reason is that the

visibility is worse at night; consequently, drivers need to take a longer time to watch the

lights and the surroundings.
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Fig. 4.5. Violation trend at the four LXs as time increases in the daytime and at night

during Ph2 and Ph3

4.2.2.2 Analysis of the violation rate according to the week and the hour

If we only consider the number of vehicle violations during Ph2 and Ph3, there is a

possibility that, although the violation volume is high, the entire tra�c volume is relatively

high as well during the same period. Therefore, it is more appropriate to analyze the

further violation rate as shown in Eq. (4.1). The analysis in this section also excludes the

vehicles crossing the four LXs during the �rst 4 seconds.

V iolation rateH = V VH/V TH

V iolation rateD = V VD/V TD
(4.1)

where V iolation rateH represents the rate of violations during Ph2 and Ph3 in a given

period of one hour; V VH is the number of violating vehicles during one hour; V TH is the

total number of vehicles crossing the LX during the hour considered; V iolation rateD

represents the rate of violations during Ph2 and Ph3 in a given weekday; V VD is the

number of violating vehicles during a weekday; V TD is the total number of vehicles crossing

the LX during the day considered.

Fig. 4.6a illustrates the violation rate at the four LXs during Ph2 and Ph3 with re-

gard to the hour in weekdays (V iolation rateH). Obviously, the violation rate in Ph2 is

considerably higher than the violation rate in Ph3. Indeed, MV drivers know fairly well

that the collision risk is higher as time advances during the LX closure cycle. One can

also notice two peaks of the violation rate in weekdays, which fall into the period from

9:00 h to 10:00 h (0.015) in the morning and the period from 17:00 h to 18:00 h (0.011)

in the afternoon, respectively. However, according to the statistics of the total number of

crossing vehicles, the actual morning rush hour is from 8:00 h to 9:00 h, and the afternoon
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rush hour is from 17:00 h to 18:00 h. It can also be noticed that the peak of the violation

rate in the morning is higher than that in the afternoon. On the contrary, the actual tra�c

volume in the morning violation peak hour is lower than that in the afternoon violation

peak hour.
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Fig. 4.6. Violation rate during Ph2 and Ph3 with regard to the weekday and the hour

Fig. 4.6b plots the violation rate during Ph2 and Ph3 according to the days of a week

(V iolation rateD). The violation rate in Ph2 is still considerably higher than the violation

rate in Ph3 during weekdays. A fact is found that there is one distinct peak of violation

rate that appears on Friday (0.00162). After people get o� work on Friday, they are likely

to go out for their private activities because of the coming weekend. On the other hand,

the violation rate on weekends declines dramatically. Particularly, a signi�cant decrease

in the violation rate shows on Sunday. Indeed, in general, people are less hurried during
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the weekends than during workdays, but also because road tra�c is more �uid during

weekends at these LXs.

4.2.2.3 Analysis of the speed of violating vehicles

In this section, the speed of violating vehicles in Ph2 (excluding vehicle crossing during

the �rst 4 seconds of Ph2) and Ph3 is examined. The speed of vehicles violating during

Ph4 is quite low and dispersive, since vehicles would skirt the half barriers slowly to cross

during this phase. Therefore, we do not analyze the speed of violating vehicles during

Ph4.

We should recall that the road speed limit at these four LXs is 60 km/h, according to

the �eld data from SNCF Réseau. Here, we analyze the violating vehicles after the �rst 4

seconds of Ph2 in the daytime (the number of violating vehicles recorded at night is very

limited).

As shown in Fig. 4.7, the scatter plot shows the number of violating vehicles falling

into the speed classi�cations concerned in terms of 2 and 5 time intervals in Ph2 and Ph3,

respectively, (refer to section 4.2.2.1) during the daytime. The vehicle speed corresponds

to the left vertical axis. Clearly, the number of violating vehicles with speed over 40 km/h

decreases continuously to 0 in the last time slot of Ph3, as time advances. Moreover,

the number of violating vehicles with speed between 10 km/h and 40 km/h decreases as

time advances as well, but still keeps 10 validations in the last time slot of Ph3. Besides,

violating vehicles with speed lower than 10 km/h is quite rare.
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4.3 Motorist behavior analysis during Ph4

When analyzing LX accident scenarios, the scenario consisting in road vehicles bypassing

the half barriers to cross the SAL2 LX when it is closed for the road tra�c (zigzag) has

been identi�ed as a major scenario causing train-MV collisions [Ghazel 2017]. Therefore,

the analysis of motorist behavior at SAL2 LXs during Ph4 of the LX closure cycle is

important to scrutinize the major risky scenario causing LX train-MV accidents and allows

for a detailed assessment of various aspects related to zigzag violations of motorists. This

is our consideration that the study presented in this section is dedicated to discussing

motorist behavior at SAL2 LXs during Ph4.

Due to the small sample size of zigzags in Ph4 observed at LX 55, 58 and 691, another

seven SAL2 LXs, named according to their respective locations, i.e., LX 2 Toulouse,

LX 4 Marnes-la-Coquette, LX 21 Pont-Sainte-Maxence, LX 71 Remaucourt, LX 82

Neufchâteau, LX 136 Choloy, LX 356 Caussade and one SAL4 LX (LX 425 Chaniers),

were selected for our further �eld measurement campaign. Since our aim is to analyze

motorist behavior at SAL2 LXs, the SAL4 LX is considered in our experiments for the

purpose of comparing motorist responses to SAL2 and SAL4 LXs.

As shown in Fig. 4.8, 11 LXs are indicated on the French map. The red circular marks

represent the accurate locations of the selected LXs and the railway stations in the vicinity

of these LXs are also indicated by black triangle marks.

1Note that, the measurement data of LX 51 related to Ph4 are removed from our study due to the

synchronization failure of Ph4 at LX 51.
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Fig. 4.8. Geographic information about 11 LXs

Table 4.2 shows various features (e.g., environment, infrastructure, equipment, railway

line and road tra�c involved, etc.) as well as their accident/incident statistics of the 11

LXs. It is worth noticing that when considering the number of accidents, LX 2 and LX 4

take the �rst place among the 11 LXs considered. While considering the sum of accidents

and near misses, LX 55 takes the �rst place. In this stage of motorist behavior analysis

related to Ph4, as for road tra�c measurement, one can refer to section 4.2.1. In fact,

during the period of observation, the total crossings recorded at the 10 SAL2 LXs were

461596, where there were 5678 crossings happened during the whole closure cycle and 116

zigzags happened during Ph4. Namely, the general average violation rate is 1.230% and

the general average zigzag rate is 0.025%.
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Table 4.2. Collisions/near misses and road/rail tra�c volumes at the LXs from 1974 to

2014

LX Type # Accidents # Near misses # Average daily

road tra�c

# Average daily

train tra�c

LX 2 SAL2 5 7 4250 43

LX 4 SAL2 5 6 1184 124

LX 21 SAL2 0 8 570 77

LX 55 SAL2 3 114 21491 70

LX 58 SAL2 0 5 13938 89

LX 69 SAL2 0 1 10946 91

LX 71 SAL2 0 5 985 93

LX 82 SAL2 4 40 2500 94

LX 136 SAL2 3 8 3525 94

LX 356 SAL2 2 8 2892 59

LX 425 SAL4 1 4 5425 37

4.3.1 Behavioral analysis during Ph4

In this section, the violation rate related to prolonged Ph4 duration, zigzag occurrence

related to LX location and dispersive Ph4 duration and �nally, waiting queue and troop

crossing phenomenon related to road tra�c density and zigzag moment are discussed

thoroughly.

4.3.2 The impact of prolonged Ph4 duration

The duration of Ph4 shows an important discrepancy from one closure cycle to another

according to the actual speed of the train involved. In fact, the sensors responsible for

announcing the train's approach to the local LX control system are implemented in such

a way as to ensure that the LX closure is triggered to ensure a minimum given delay prior

to the train arrival at the intersection zone. Therefore, the location of the announcement

sensors which detect the train arrival is set according to the speed limit of the track

section. Thus, according to the SNCF operation standard, the shortest time for train

arriving at SAL2 intersection zone is 25 s. Nevertheless, since di�erent train categories,

such as freight and passenger trains (with di�erent speeds) may pass on the section where

the LX is located, such a control scheme leads to inevitable long closure durations in the

case of slow trains. Train-MV collisions are most likely to occur when vehicles start to

cross the LX �ve seconds before trains arriving since they would not have enough time to

leave the intersection zone before the train arrives. The durations of Ph2 �Red Flash and
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Siren� and Ph3 �Barriers Coming Down� at each LX are constant. Table 4.3 shows the

duration of Ph2 and Ph3 at each LX. One can notice that the average duration of Ph2

and Ph3 altogether at these LXs is about 16 s. Namely, as shown in Fig. 4.9, collisions are

most likely to occur after the �rst 4 s (16 s + 4 s = 20 s) of Ph4 (t > 4 s). Therefore, we

focus more particularly on the motorist violations after the �rst 4 s of Ph4 in the following

analysis.

Table 4.3. Duration of Ph2 and Ph3 at each LX

LX Ph2 duration Ph3 duration

LX 2 8 12

LX 4 7 8

LX 21 7 8

LX 55 6 9

LX 58 8 7

LX 69 7 9

LX 71 8 9

LX 82 7 8

LX 136 9 8

LX 356 8 8

LX 425 7 9

 Ph2 Ph3 Ph4 

16 s 4 s 

Fig. 4.9. The average violation rate of zigzags during Ph4 as Ph4 duration prolonged

In Ph4, violating vehicles skirt the half barriers to cross the LX, which represents a

highly risky scenario. If one only considers the number of vehicle violations during Ph4,

there is a possibility that, although the violation volume is high, the entire tra�c volume

is relatively high as well during the same period. Therefore, it is more appropriate to

analyze the violation rate as expressed by Eq. (4.2).

V iolation ratePh4 = V VM/(V D ×DM ) (4.2)

where V iolation ratePh4 represents the violation rate during Ph4, V VM is the number

of violating vehicles during a period DM extending from the �rst 4 s of Ph4 up to the

violation moment, V D is the road tra�c density during Ph4. It should be noted that we
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consider the value of the vehicle density during the one-hour time slot including the Ph4

considered to estimate the total number of vehicles waiting in front of the LX during DM ,

since this number cannot be determined directly.

Table 4.4 shows the average road tra�c density and the violation rate during the

observation period at each LX, ranked according to the average road tra�c density in

descending order. Besides, the 11 LXs can be divided into 3 groups, i.e., G1, G2 and G3,

according to the average road tra�c density. The average road tra�c density of the LXs

in G1, G2 and G3 is more than 0.1, from 0.01 to 0.1 and less than 0.01, respectively. We

aim to determine the impact of Ph4 duration on �zigzag� motorist behavior. Generally,

one would conjecture that a higher rate of �zigzag� violations would appear as the duration

of Ph4 is extended. A thorough analysis is carried out to validate whether this general

speculation, commonly assumed, is correct.

Therefore, we adopt the average violation rate at those LXs having zigzags (cf. Ta-

ble 4.4) to determine the overall trend of violation rate as time advances. The average

violation rate is the average value of the samples of exact violation rate during each time

interval involved, which can lessen the dispersion of exact violation rate values and make

the trend clearer. In addition, as the number of zigzags recorded at night is very limited,

we only consider those committed in the daytime (from 6:00 h to 21:00 h) exclusively.

Hence, by reporting the average ratio of the number of recorded zigzags during DM , to

Table 4.4. Information about average road tra�c density and violation rate during the

observation period at each LX

Group LX Average road tra�c

density (/s)

Violation rate (t > 4 s) Near to railway station

G1 LX 55 0.247 0.134 No

G1 LX 58 0.167 1.957 Yes

G1 LX 69 0.126 1.060 No

G2 LX 356 0.062 0.414 Yes

G2 LX 2 0.054 0.995 No

G2 LX 425 0.053 � No

G2 LX 82 0.037 � Yes

G2 LX 136 0.018 � No

G2 LX 71 0.017 � No

G3 LX 4 0.009 0.259 Yes

G3 LX 21 0.005 0.715 Yes

��� means that no zigzags are observed at these LXs during the experiment period.
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the estimated number of vehicles during this period, and the duration of DM , we deter-

mine the average violation rate distributed according to the time interval starting after the

�rst 4 s of Ph4 up to the violation moment. As shown in Fig. 4.10, the global trend of the

average violation rate is drawn as the duration of the waiting time interval extends. This

curve attests that the violation rate during Ph4 decreases as Ph4 duration is prolonged

(the longer the waiting time interval starting after the �rst 4 s of Ph4 up to the violation

moment, the longer the Ph4 duration). This outcome demonstrates that the general intu-

itive speculation mentioned above that a higher rate of �zigzag� violations would appear

as the duration of Ph4 is extended is not valid.
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Fig. 4.10. The average violation rate of zigzags during Ph4 as Ph4 duration prolonged

4.3.3 The impact of LX location (near to railway station or not)

In order to further analyze the factors in�uencing zigzag occurrence, we scrutinize the Ph4

duration at each LX during the observation period. As shown in Fig. 4.11, Ph4 duration

distribution during the observation period is drawn with regard to 20 equal classi�ed slots.

As for the LXs in G1 (cf. Fig. 4.11a), the Ph4 duration distribution at LX 58 is quite

dispersive. On the contrary, the Ph4 duration distributions at LX 55 and LX 69 are more

centralized. As for the LXs in G2 and G3 (cf. Fig. 4.11b and Fig. 4.11c), the Ph4 duration

distributions at LX 356 and LX 21 are relatively dispersive, compared with other LXs in

these two groups, respectively. Referring to Table 4.4, these LXs with dispersive Ph4

durations are quite close to railway stations. Thus, some trains go through slowly or just

stop above the LX announcement sensors for shortly stopping in railway stations nearby.

Indeed, in some cases, the sensors are installed around or in the railway stations. This
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fact explains the dispersive Ph4 duration distribution.
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Fig. 4.11. Ph4 duration distribution with regard to classi�ed slots

These dispersion characteristics can be indicated more clearly through Fig. 4.12 which

shows the cumulative distribution of Ph4 duration at the considered LXs. As shown in

Fig. 4.12a, it is worth noticing that, for the LXs in G1, the cumulative distribution curves

of Ph4 duration at LX 55 and LX 69 climb dramatically during the �rst 100 s of Ph4, then

reach 1 after 200 s. That means Ph4 durations at LX 55 and LX 69 are quite centralized

within the �rst 100 s of Ph4. It is because, to a large extent, no railway stations are

near to these LXs. However, the cumulative distribution curve of Ph4 duration at LX 58
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shows in�ection points at 100 s and 280 s, which indicates that Ph4 durations at LX 58

are relatively dispersive (from 100 s to 280 s). This is due to the fact that LX 58 is close

to a railway station. More importantly, the violation rate at LX 58 is also the highest

compared with that at LX 55 and LX 69.

As for the LXs in G2 and G3 (cf. Fig. 4.12b), LX 21 has the most dispersive Ph4

duration followed by LX 356 and LX 4 in sequence, according to their cumulative distri-

bution curves of Ph4 duration. One can still note that these 3 LXs are all close to railway

stations. Moreover, LX 21 has the highest violation rate among these 3 LXs followed by

LX 356 and LX 4 in sequence, accordingly. There is only one exception that LX 2 has a

high violation rate but does not have dispersive Ph4 durations (while no railway station

nearby). The surrounding of LX 2 will be further investigated in future works to explore

other potential reasons for the high violation rate at this LX.

In order to thoroughly analyze the violation rate at each LX close to railway station, we

extract the cumulative distribution (CD) curves of Ph4 duration at those LXs in Fig. 4.13.

Moreover, the corresponding slope rates of CD between 0 s and 200 s of Ph4 are shown

in table 4.5, which can re�ect the dispersion of Ph4 duration at the �ve LXs. It is worth

noticing that LX 58 has the most dispersive Ph4 duration (Slope rate = 0.0037) among

these 5 LXs and LX 21 (Slope rate = 0.0044) takes the second place followed by LX 356

(Slope rate = 0.0046), LX 4 (Slope rate = 0.0050) and LX 82 (Slope rate = 0.0050) in

sequence. It is worth noticing that LX 58 has the most dispersive Ph4 duration among

these 5 LXs and LX 21 takes the second place followed by LX 356, LX 4 and LX 82 in

sequence. On the other hand, as shown in table 4.4, the violation rates of the 4 LXs

(except LX 82) follow the same order, that is LX 58 has the highest violation rate and

then LX 21 takes the second place followed by LX 356 and LX 4 in sequence. There

are no zigzags or dispersive Ph4 duration found at LX 82. After checking the railway

infrastructure characteristics of LX 82, we have noted that the distance between LX 82 and

the railway station is about 1.3 km, however, the distance between the LX announcement

sensor and the LX is only around 700 m. Therefore, as for the LX announcement sensor

on the odd track, it has a distance of about 2 km from the railway station; as for the

LX announcement sensor on the even track, it still has a distance of about 600 m from

the railway station. The railway speed limit of the track section including LX 82 is 150

km/h and the railway station also has a certain length (250 � 500 m). Namely, trains

would not stop above the LX announcement sensors or slow down when they pass the LX

announcement sensors on both opposite directions. That is why the railway station nearby

does not cause dispersive Ph4 durations at LX 82. In summary, we can infer that motorists

are more likely to commit zigzag violations at the LXs located close to railway stations,

i.e., with dispersive Ph4 durations. Besides, the more dispersive the Ph4 durations, the
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higher the violation rate of zigzags.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600
Ph4 duration (seconds)

LX 55

LX 69

LX 58

(a) The cumulative distribution of Ph4 duration at LXs in G1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Ph4 duration (seconds)

LX 71

LX 82

LX 136

LX 2

LX 356

LX 21

LX 4

(b) The cumulative distribution of Ph4 duration at LXs in G2 and G3

Fig. 4.12. The cumulative distribution of Ph4 duration

4.3.4 The impact of road tra�c density

Waiting queues of vehicles in front of LXs can foster troop crossing phenomenon that

represents a high-risk scenario. Logically, a waiting queue would be most likely to form
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Fig. 4.13. The cumulative distribution of Ph4 duration at those LXs close to railway

stations

Table 4.5. The slope rates of CD between 0 s and 200 s of Ph4 at those LXs close to

railway stations

Group LX CD_200 s Slope rate Violation rate (t > 4 s) Near to railway station

G1 LX 58 0.736 0.0037 1.957 Yes

G3 LX 21 0.870 0.0044 0.715 Yes

G2 LX 356 0.918 0.0046 0.414 Yes

G3 LX 4 0.990 0.0050 0.259 Yes

G2 LX 82 0.991 0.0050 � Yes

��� means that no zigzags are observed at the LX during the experiment period.

since the beginning of Ph3 �Barriers Coming Down�2. When vehicles arrive at an LX

after a certain time since the beginning of Ph4, there are potentially some vehicles that

have arrived earlier at the LX, which are waiting in front of the barriers. After a long

time of waiting for the LX open cycle, some motorists may potentially lose their patience.

Once the �rst vehicle in front of the LX commits zigzag crossing, the subsequent vehicles

attempt to follow it closely. This scenario is called �troop crossing phenomenon�.

We suppose that road tra�c density has an impact on the occurrence of waiting queue

and troop crossing. Therefore, we chose LX 55, LX 69, LX 2, LX 4 and LX 21 which

showed relatively more zigzag occurrences compared with the other LXs.

The length of a waiting queue is re�ected by the number of waiting vehicles accumu-

2according to statistics from SNCF Réseau
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lated from the beginning of Ph3 up to the time moment of the zigzag occurring, which is

expressed by Eq. (4.3).

WQ = V D ×M (4.3)

where WQ represents the length of waiting queue when the zigzag occurred; V D is the

road tra�c density during the closure cycle involved and M is the duration from the

beginning of Ph3 up to the zigzag moment.

As shown in Fig. 4.14, waiting queues at these 5 LXs are drawn with regard to the

time moment of zigzag occurring. The red dash line indicates the 4th second of Ph4. The

blue dotted line is an auxiliary indicator to show the dispersion of the scatter points in the

chart. It is worth noticing that for LX 55 (cf. Fig. 4.14a) and LX 69 (cf. Fig. 4.14b) which

show quite high road tra�c density, their waiting queue length is almost concentrated on

the blue line and then the cluster of waiting queue length points of LX 2 (cf. Fig. 4.14c)

is next, which shows a little bit of dispersion around the blue line. However, for LX 4 (cf.

Fig. 4.14d) and LX 21 (cf. Fig. 4.14e) which show signi�cantly low road tra�c density,

their waiting queue length points are extremely dispersive.
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(a) The length of waiting queue at LX 55 in G1
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(b) The length of waiting queue at LX 69 in G1
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(c) The length of waiting queue at LX 2 in G2
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(d) The length of waiting queue at LX 4 in G3
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(e) The length of waiting queue at LX 21 in G3

Fig. 4.14. The length of waiting queues at the 5 LXs

One can point out that the troop crossing phenomenon is more noticeable at LX 55

and LX 69 than at the other LXs, due to the highest road tra�c density at LX 55 and

LX 69 among these LXs. Fig. 4.15 shows the time gap between two successive zigzagging

vehicles during a same Ph4, respectively at LX 55 and LX 69. This observation is clearer

in Fig. 4.15a, indeed, the �rst vehicle commits zigzag crossing after a long waiting time

of 240 s, and then the successive vehicles closely follow it to cross LX 55 as well. The

average time gap between these following vehicles are 14 s and the shortest time gap is

only about 4 s. A similar phenomenon emerges at LX 69. There are 3 times of troop

crossing just after the 1st, 6th and 10th vehicles commit zigzag crossing (cf. Fig. 4.15b).

Moreover, the troop crossing phenomenon at LX 55 is more remarkable than that at LX 69

mainly because the road tra�c density at LX 55 is higher than that at LX 69. Therefore,

the aforementioned facts indicate that the higher the road tra�c density at an LX, the

more likely the waiting queues occur and the distribution of waiting queue length is more

inclined to a linear distribution with regard to the duration from the beginning of Ph3 up

to the zigzag moment. Furthermore, the troop crossing phenomenon is inclined to occur

at LXs with signi�cantly high road tra�c density and the higher the road tra�c density,

the more distinct the troop crossing phenomenon.
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(a) Troop crossing phenomenon at LX 55
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(b) Troop crossing phenomenon at LX 69

Fig. 4.15. Troop crossing phenomenon at LX 55 and LX 69

4.4 Comparison of motorist responses to SAL2 and SAL4

LXs

LX 425, an SAL4 LX, is taken into account in our �eld observation in order to compare

motorist responses to SAL2 and SAL4 LXs. For the purpose of making the results more
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trustworthy, LX 356 and LX 2, which have the approximate road tra�c density to that

of LX 425 (di�erences less than 0.01), are selected for the comparison analysis in this

section. The number of crossing vehicles during the closure cycle is analyzed to explore

the trend of vehicle volume during various phases of the closure cycle. Since no zigzags are

observed during Ph4 at LX 425 and due to the signi�cant discrepancy of Ph4 durations

from one closure cycle to another at each LX, only crossing vehicles during Ph2 and Ph3

are considered.

Turning to the data as shown in Table 4.3, the duration of Ph2 and Ph3 varies among

the di�erent LXs. The �rst 4 s of Ph2 is a special stage. The reason is explained as

follows: when motorists observe the �ashing lights and hear sirens, then, if it is possible

to stop before the LX, they should brake. The reaction time, namely, the operating delay

of the action guided by sense organs will take almost 1 s, according to ergonomics stud-

ies [Green 1967, Taylor 1967, Welford 1952]. In addition, the longest braking coordination

time of motorized vehicles does not exceed 0.8 s. Then, the braking delay itself would

be 2 s on average. Therefore, a vehicle crossing during the �rst 4 s of Ph2 will not be

regarded as a violation in our study, only a vehicle crossing subsequently to the �rst 4 s

of Ph2 should be considered as a violation, which may correspond to either an intentional

violation or the inability of the motorist to stop his vehicle safely due to a high speed.

Therefore, as for the subsequent closure period after the �rst 4 s of Ph2, instead of

considering the successive seconds in each phase (Ph2 and Ph3), we divide Ph2 (resp.

Ph3) into 2 (resp. 5) equal time intervals at each LX and then, we can make the analysis

in terms of phase halves: 2nd and 3rd (resp. phase quintiles: 1st, 2nd, 3rd, 4th and 5th) in

such a way as to be able to compare the road tra�c volume in each time interval recorded

at these LXs.

As shown in Fig. 4.16a, the number of vehicles crossing at the beginning of Ph2 at LX

425 is much bigger than that at LX 2 and LX 356. However, it decreases dramatically

during the 2nd stage of Ph2. The number of vehicles crossing in the 3rd phase at LX 425

drops to the lowest among the 3 LXs. Moreover, one can notice that the scale of decrease

at LX 425 is the biggest compared with the other SAL2 LXs.

Fig. 4.16b shows the normalized crossing ratio of vehicles during each phase of closure

cycle at these 3 LXs. The normalized crossing ratio can eliminate the disparity of various

road tra�c densities at di�erent LXs, which is expressed by Eq. (4.4).

NC = NbV /NbV T (4.4)

where NC represents the normalized crossing ratio during a time interval of the closure

cycle at an LX; NbV is the number of crossing vehicles during the time interval considered,

and NbV T is the total number of vehicles during the whole observation period at the LX
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Fig. 4.16. Comparison of the number and normalized crossing ratio of vehicles at SAL2

and SAL4 LXs

According to Fig. 4.16b, obviously, the normalized crossing ratio during the closure

cycle at LX 425 is the lowest among the 3 LXs. This indicates that motorists are more

cautious when encountering closure cycles at an SAL4 LX and they scarcely cross an

SAL4 LX during closure cycles. In fact, four half barriers of an SAL4 LX act as physical

separators in four quadrants to e�ectively prevent zigzag crossing from both opposite

directions. Another reason for motorists scarcely crossing an SAL4 LX is that, motorists

know clearly that if they are blocked in the intersection zone, they will not be able to
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escape from the closed SAL4 LX (unless they force the barriers at the exit site of the LX).

Despite the new hazard of being blocked in the intersection zone (in the case of SAL4),

the accident rate of SAL4 is 50% lower than SAL2 [SNCF 2017]. Further before/after

measurements are needed to assess the e�ciency of SAL4 LXs.

4.5 Discussion

According to the analysis in section 4.2.2, we can notice that, as time advances from

Ph2 to Ph3, the global violation volume and violation rate of road vehicles both decrease

dramatically. As for the impact of the schedule factor during Ph2 and Ph3, the peak of

violation rate in the morning falls into the time slot between 9:00 h and 10:00 h. This is

one hour later than the actual tra�c rush hour in the morning. The peak of violation

rate in the afternoon falls into the period from 17:00 h to 18:00 h. In addition, the peak

of violation rate in the morning is higher than that in the afternoon. It is worth noticing

that although the violation volume decreases as time advances along Ph2 then Ph3, it still

shows a big number of violations at the beginning of Ph2. In order to reduce the violation

volume from the beginning of Ph2, train-activated advance warning signs with �ashers

can be used for drawing motorists' attention in advance (a distance to the LX from which

a safe stop can be achieved).

Based on the analysis of zigzag violations during Ph4 in section 4.3, we can summarize

that the duration of Ph4, the existence of a nearby railway station and the road tra�c

density have signi�cant impact on zigzag violations. It is recalled that during a prolonged

Ph4, the longer the waiting time for vehicles, the lower the violation rate. This conclusion

contradicts the general conjecture commonly assumed. Moreover, in terms of the global

risk at a given LX, motorists are more likely to commit zigzag violations at the LX located

close to a railway station. Indeed, the existence of a nearby railway station can foster the

dispersion of Ph4 durations and, as illustrated earlier in the paper, the more dispersive

the Ph4 durations at an LX, the higher the risk of zigzag violations at this LX.

Although the violation rate decreases as the time interval starting after the �rst 4

of Ph4 up to the violation moment prolongs, one cannot ignore the fact that the train-

activated LX control system is susceptible to losing motorists' trust primarily due to

variations in terms of Ph4 duration. Namely, it is possible for motorists to misunderstand

the LX control system and commit zigzags when they have to wait for a long time without

observing any train approaching, due to very slow train speed (e.g., they would think there

is a failure in the LX control system, but it works well in fact). Reasonable and consistent

warning time design is crucial to avoid zigzag violations during a long Ph4 [Ghazel 2017].

According to a report of [FHWA 1991], motorists would accept a shorter clearance time
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at �ashing lights and attempt to skirt barriers when the warning time exceeds 40-50 s.

More importantly, second train coming active warning signs could help mitigate zigzag

violations when Ph4 is prolonged by successive trains approaching. A short time gap

between two successive approaching trains would cause a persistent closure of the LX

after the �rst train has passed, since there is not enough time for LX control system to

�nish the activity of barriers uplifting before the second train arriving. Correspondingly,

the Ph4 duration is prolonged by LX keeping closed. Such a kind of warning signs can

avoid motorists losing patience when confronted with long LX closure cycles caused by

successive approaching trains.

As for the impact of road tra�c density, the higher the road tra�c density at an LX,

the more likely the waiting queue formation, hence, the troop crossing phenomenon is most

likely to be boosted at LXs with signi�cantly high road tra�c density. In order to reduce

the collision risk fostered by long waiting queues and troop crossing phenomenon, the

installation of median separators and transforming SAL2 LXs into SAL4 LXs (Four-half

barrier systems) [Ghazel 2014] is a further solution.

In fact, a median separator (used with an additional �U-Turn� or �Z-Turn� prohibition

sign) in front of an SAL2 LX acts as a physical separator between opposing lanes of road

tra�c. Such a device e�ectively prevents zigzag violations with a visual cue intended to

impede crossing to the opposing tra�c lane. As shown in Table 4.6, the average length

of waiting queue at the 4th s of Ph4 at an SAL2 LX can be a preliminary guidance

for designing the minimum length of a median separator at di�erent LXs (the length of

normal-size vehicle is considered: 3.8 � 4.3 m). However, before/after measurements are

still needed to assess the e�ciency of such solutions.

Table 4.6. The length of waiting queue (the number of waiting vehicles) at the 4th s of

Ph4 at each SAL2 LX

LX Waiting queue length at the 4th s of Ph4

LX 55 4.942

LX 58 3.334

LX 69 2.524

LX 356 1.242

LX 2 1.080

LX 82 0.732

LX 136 0.353

LX 71 0.347

LX 4 0.188

LX 21 0.105
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According to the analysis in section 4.4, the SAL4 system is a signi�cantly e�ective

means to avoid zigzag violations of motorists. However, it is more costly than the other

aforementioned technical solutions. Moreover, as mentioned in section 4.4, a new hazard

will be introduced while using this device, that is vehicles could be trapped on the LX

intersection zone in case of tra�c jam when the four half (or two full) barriers come down.

One solution would be to install additional obstacle detectors in order to reopen the exit

barriers and order the train to brake. Such a protection system has been tested in the

U.S. [Chadwick 2014]. Obstacle detectors should be intelligent enough to identify the

di�erence between a car moving slowly and one that is stationary [Silmon 2010]. Any

stationary vehicle staying for a long enough time on the LX intersection track can be

assumed to be in trouble. In addition, according to the return on experience related to

various LX safety strategies implemented in some countries [Anandarao 1998, ATC 2010,

Davey 2005, Taylor 2008, Wullems 2011], a combination of education (aimed at changing

road user behavior), enforcement and engineering measures is believed to lead to high

safety level at LXs.

4.6 Summary

The study presented in this chapter o�ers a new perspective on motorist behavior during

the closure cycles of LXs. The results obtained enable us to draw general conclusions

and make recommendations for improving the whole LX safety. The analysis is carried

out based on �eld measurement. Eleven SAL2 LXs and one SAL4 LX were selected for

our �eld measurement. The data regarding road/railway tra�c at these 12 LXs were

collected, and then analyzed to derive the main features to characterize the behavior of

motorists during LX closure cycles. The experimental equipment used in this study is at

the same time reliable, practical, easy to install and economical. In summary, our ad-hoc

installation is more convenient for our experiment, compared with cameras, automatic

video surveillance or sophisticated video recording.

The main contributions of our study are that: the characteristics of motorist behav-

ior are quantitatively and �nely analyzed in various situations with regard to the various

phases of closure cycle and some trends are established. Thus, corresponding targeted

technical suggestions could be recommended accordingly, so as to improve LX safety. In

detail, a comprehensive view is �rstly shown through the analysis of the global trend of

violating vehicle volume during Ph2 and Ph3 as time advances. Then the violation rate

during Ph2 and Ph3 is analyzed in terms of hours and weekdays, respectively. Further-

more, a characterization of the violations according to vehicle speed has been carried out

to analyze the decision-making process of vehicle drivers, as time passes in Ph2 and Ph3.
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These thorough analyses could give us a deep understanding of vehicle drivers' behavior

in di�erent situations.

Finally, in order to explore the underlying reasons causing �zigzag� scenarios during

Ph4, an in-depth study on the impact of in�uential factors, i.e., the duration of Ph4,

the LX location (railway station nearby or not) and the road tra�c density, on zigzag

violations during Ph4 is carried out. Namely, the violation rate, the waiting queue and

the troop crossing phenomenon during Ph4 are quantitatively and �nely analyzed with

regard to the above in�uential factors. Moreover, the distinction of motorist responses to

SAL2 and SAL4 LXs is scrutinized to determine the e�ciency of SAL4 LXs in terms of

preventing zigzag violations. Thus, corresponding targeted technical suggestions can be

recommended according to the speci�c analysis results pertaining to Ph4, so as to improve

LX safety. Such thorough and novel analyses are rarely presented in existing works.

In summary, the aforementioned contributions of the study in this chapter are a direct

response to the issues of understanding vehicle driver behavior with regard to di�erent

phases during the closure cycle of SAL2 LXs. The results obtained enable us to draw

general conclusions and make recommendations for improving the whole LX safety.
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Overview

In this chapter, an advanced accident frequency prediction model, which enable to rank

risky LXs accurately and identify the signi�cant impacting parameters e�ciently, is devel-

oped. Such a model takes into account the main parameters, namely, the average daily road

tra�c, the average daily railway tra�c, the annual road accidents, the vertical road pro�le,

the horizontal road alignment, the road width, the crossing length, the railway speed limit

and the geographic region. The Nonlinear Least-Squares (NLS) method, Poisson regression

method, negative binomial (NB) regression method, zero-in�ated Poisson (ZIP) regression

method and zero-in�ated negative binomial (ZINB) regression method are employed to

estimate the respective coe�cients of parameters in the prediction model. Moreover, a

validation process is performed based on various statistical and probabilistic means to ex-

amine how well the estimation of the model �ts the reality. Besides, a comparison between

the present model and two existing reference models is carried out to assess the e�ciency

of our model. The validation and comparison processes attest that the developed accident
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prediction model with speci�ed coe�cients computed through the NLS method combined

with NB distribution has statistic-based approbatory quality and relatively high predictive

accuracy.

The work reported in this chapter has been published in �Safety Science� jour-

nal [Liang 2018d].
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This chapter is structured as follows: section 5.1 exposes a general introduction to

risk/accident prediction modeling techniques. The process of data collection and coding

is given in section 5.2. In section 5.3, the general forms of the preliminary model and the

advanced model developed are �rstly presented; then, the coe�cients associated with the

parameters in the models are estimated using various regression approaches. In section 5.4,

a thorough statistical analysis for examining the model quality and a comparison between

the predictive accuracy of the speci�ed regression models combined with the Poisson and

NB distributions are then performed. In section 5.5, a comparison between our advanced

model and some existing reference models is carried out to re�ect the contribution of the

current study. Subsequently, the impacts of various parameters on LX accident occurrence

are discussed thoroughly in section 5.6. Finally, the main results and contributions of the

present study are summarized in section 5.7.

5.1 Introduction

As investigated early in chapter 2, we recall here that L. E. Peabody and T. B. Dimmick

developed Peabody-Dimmick Formula [Administration 2012] in 1941, which was used to

estimate the number of accidents at railway-highway crossings within 5 years in 29 states

in the U.S. and utilized through the 1950s. The average daily railway tra�c T and

the protection coe�cient indicative of warning devices adopted P are considered in this

formula. However, advances in both warning device technologies and LX design features

quickly led to a no longer applicability of the prede�ned formula form and coe�cients that

re�ected the conditions pertaining to LX accidents in 1941.

Subsequently, an evolutionary model of LX accident prediction called the New Hamp-

shire Index [Oh 2006] was developed. The average daily road tra�c, the average daily

railway tra�c and the protection factor indicative of the warning devices are taken into

account.

The New Hampshire model is a relative formula which can be used to rank the impor-

tance of crossing upgrades. However, it is limited in that it does not predict the expected

number of collisions, but only gives some indications about the priorities in terms of LX

safety.

An accident prediction formula developed by the U.S. Department of Transportation

(USDOT) in the early 1980s sought to overcome the limitations of earlier models [Chad-

wick 2014]. The initial collision prediction (prediction of collisions per year at a given

LX), the exposure index (a variant of tra�c moment) based on the product of highway

and railway tra�c, the index for the number of main tracks, the index for daily through

trains during daylight, the index for highway paved, the index for maximum train speed,
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the index for highway type and the index for highway lanes are considered in this model.

The USDOT formula is the most commonly used model in the U.S. today. Although the

formula is comprehensive, its current de�nition makes it di�cult to identify or prioritize

the design or improvement activities that will most e�ectively address LX safety-related

issues, since it does not provide the magnitude of characteristics' contribution to the LX

safety.

In Australia, a model called Australian Level Crossing Assessment Model (ALCAM)

was developed [Committee 2012]. The ALCAM model takes into account how the physical

properties at each LX site would a�ect human behavior, the LX control type, vehicle (or

pedestrian) volumes, train volumes and the expected consequence of a collision which

includes deaths and injuries involving both railway and roadway. The ALCAM has been

applied across all Australian states and in New Zealand since 2003. However, it should be

noticed that some LX physical properties considered in ALCAM show a high correlation

between each other, which implies the existence of a kind of redundancy between the

model inputs, and consequently a bias in terms of the outputs.

[Saccomanno 2003] validated several existing LX collision prediction models using the

LX accident data of Canada. Various parameters, such as warning device, annual average

daily tra�c (AADT), surface width, train speed, number of tracks and daily number of

trains, were considered in this study. The authors found that the expected collisions at LXs

increased with tra�c volume and that higher train speeds had a signi�cant adverse impact

on collisions at LXs with signs only, but not those with gates. [Hu 2010] used a generalized

logit model to predict the level of accident severity at LXs in Taiwan and identify several

signi�cant impacting parameters. They reported that increasing number of daily trucks

and number of daily trains were associated with a higher injury severity. [Khattak 2012]

reported that the combined exposure of AADT and daily train tra�c is more suitable

than single AADT for LX collision prediction, because the probability of train-involved

LX collisions in the absence of trains is zero. [Hao 2013] adopted Probit models to identify

the contributing factors that in�uence the severity of injuries in accidents at U.S. LXs.

This study showed that the peak hour, visibility, vehicle speed, annual average daily tra�c,

train speed, area type were signi�cant.

In recent years, Poisson regression model, negative binomial (NB) regression model

and other variants of the Poisson regression model [Lord 2010, Guikema 2012] have been

preferred to deal with risk/accident statistics. [Oh 2006] adopted the expressions of the es-

timated expectation value λ̂ as shown in Eq. (5.1) corresponding to the Poisson regression

and NB regression models respectively when developing the U.S. LX accident prediction

model. [Medina 2015] compared the USDOT model with the zero-in�ated negative bino-

mial (ZINB) model, in terms of accident prediction accuracy, using the LX accident data
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from Illinois. The results of this study shows that the ZINB model has higher accuracy of

prediction. [Lu 2016] employed the variants of Poisson regression model, for example, the

zero-in�ated Poisson (ZIP) model and the hurdle Poisson model, to deal with LX accident

prediction involving the data in North Dakota. It should be noted that the expressions

of estimated λ̂ as shown in Eq. (5.1) are not appropriate in our current study, since they

are limited to handling zero observations and some impacting variables should not be in

the exponential form (e.g., there is a logical assumption that the predicted LX accident

frequency should be 0 if the average daily railway tra�c is 0). [Miranda-Moreno 2005]

developed another model of λ̂ as shown in Eq. (5.2). In this model, the product of the aver-

age daily road tra�c V and the average daily railway tra�c T (known as the conventional

tra�c moment, cf. section 5.3.1) is adopted.

λ̂Poi = exp
(∑m

j=1 β0 + βjxj

)
λ̂NB = exp

(∑m
j=1 β0 + βjxj + ε

) (5.1)

where β is the estimated regression coe�cient; x is the impacting variable and ε is the

gamma-distributed error in NB regression model.

λ̂ = (V × T )β1exp
(∑m

j=1 βjxj + σ
)

(5.2)

where σ = β0 in Poisson regression model or σ = β0 + ε in NB regression model.

Based on these aforementioned investigations, it is clear that there is a strong need

for an appropriate accident prediction model that should be comprehensive in terms of

contributing factors to LX safety. Moreover, such a model should have high predictive

accuracy. Therefore, in the present study, a new general accident prediction model is

developed to predict the accident frequency at LXs.

5.2 Data sources and coding

The data to support our investigation come from a dedicated accident/incident database

provided by SNCF Réseau (the French national railway infrastructure manager). SNCF

Réseau has already investigated and recorded various attributes of LX accidents/incidents,

railway and roadway tra�c characteristics, surrounding characteristics of LXs. Therefore,

the accident/incident data that cover SAL2 LXs in 21 geographical administrative regions

in mainland France from 1990 to 2013 are obtained.

In the present study, an adequate sample is selected to include the data in the decade

from 2004 to 2013, which provides reliable and su�cient information about both LX ac-

cidents and railway, roadway and LX characteristics. Namely, the selected LX inventory
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presents the LX identi�cation number, the LX location, the LX accident timestamp, the

railway tra�c volume, the road tra�c volume, the LX dimension, the pro�le and align-

ment of the crossing road, etc. In total, there are 8332 public SAL2 LXs involved in our

investigation. Using the LX identi�cation number and the LX accident timestamp in the

accident/incident database, the annual accident frequency at a given SAL2 is obtained.

Then, a new database containing 10 years of data, which includes annual LX accident fre-

quency, annual roadway accident statistics and railway, roadway and LX characteristics

at a given SAL2, is created (again using the LX identi�cation number as a common data

index). The impacting parameters pertaining to LX accidents considered in our investi-

gation should ful�ll the following characteristics: (1) important in determining accident

frequency, (2) more permanent in nature (e.g., sight obstruction noted as a problematic

factor due to involved alterable construction topography, vegetation and other environ-

mental elements) and (3) not accident-dependent [Austin 2002]. In fact, the combined

database formed the basis of our investigation, and the statistical characterization of pa-

rameters considered in this investigation are shown in Table 5.1.

It should be noted that some minor data transformations in the combined database

were necessary. Namely, the variables that have multiple non-numeric choices (e.g., pro�le,

alignment) are transformed into singular indicator variables. On the other hand, numerical

variables, such as the average daily road tra�c, the average daily railway tra�c, the

railway speed limit, the LX width and the crossing length are used as they are without

transformation. The region risk factor is determined by the general accident frequency per

SAL2 in the region, while the road accident factor is determined by the ratio of the annual

number of road accidents in a given year to the average number of road accidents per year

over the period of 10 years considered. It is worth noticing that, by using the Spearman

correlation checking [Borkowf 2002], we found that some other tested parameters were not

signi�cant (e.g., the road-rail track angle at a given LX) or highly correlated with some

parameters considered in our analysis (e.g., the number of lanes at a given LX is highly

correlated with the LX width). Overall, the data coding is shown in Table 5.2.
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For the detailed values of �Region risk factor� de�ned in Table 5.2, please refer to

appendix A.2.

5.3 Accident prediction modeling

Based on some preliminary analyses, it is important to notice that �ve constraints need

to be considered so as to develop the model for predicting annual accident frequency at a

given SAL2:

- The predicted accident frequency should always be non-negative.

- It should be 0 if the average daily railway tra�c is 0.

- It should be 0 if the average daily road tra�c is 0.

- It should be 0 if the annual road tra�c accidents are 0.

- The model should be time-dependent, i.e., it should re�ect the variation of accident

frequency as time advances.

Therefore, some di�erences can be noticed in our accident prediction model compared

with the models shown in Eq. (5.1).

5.3.1 Preliminary accident prediction model

For the preliminary accident prediction model, we considered only three parameters in

Table 5.2, which are the average daily railway tra�c, the average daily road tra�c and

the annual road accidents. The preliminary model is developed as follows:

λ10P = K × FRAcc × V a × T b (5.3)

where λ10P represents the annual accident frequency at a given SAL2 during the period

of 10 years considered; K is the constant coe�cient; FRAcc is the road accident factor at

national level; V is the average daily road tra�c and T is the average daily railway tra�c.

Here, FRAcc is a time-dependent variable which can re�ect the variation of annual road

accidents as time advances.

We should recall here that the conventional formula of the tra�c moment is given as:

Tra�c moment = Road tra�c frequency × Railway tra�c frequency [Liang 2017c]. How-

ever, based on some previous analyses [Liang 2018d], we adopt a variant called �corrected

moment�, or CM for short. CM = V a × T b, where a + b = 1 and the best value of a in

terms of �tting is computed to be a = 0.354 according to the previous statistical analysis
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performed by SNCF Réseau [SNCF Réseau 2010], since railway tra�c has a more marked

impact on LX accidents than road tra�c. Therefore, we consider (V 0.354 × T 0.646) as an

integrated parameter that re�ects the combined exposure frequency of both railway and

road tra�c. One can notice that Eq. (5.3) can be rewritten as λ10P = K × RM , where

RM = FRAcc × V 0.354 × T 0.646. Thus, this model can be regarded as a linear model with

respect to the composite parameter RM . The Ordinary Least-Squares (OLS) method is

employed to estimate coe�cient K. As shown in Fig. 5.1, K is estimated as 1.319e-04

(t− statistic = 33.72 > 1.96 corresponding to a 95% con�dence level).

Fig. 5.1 indicates that this preliminary model shows that, for high values of corrected

moment, there is a signi�cant deviation between observed accident frequencies and pre-

dicted accident frequencies at SAL2 LXs. Therefore, further statistical analysis is carried

out to evaluate the quality of the transformed linear model. In this case, we make group

classi�cation, which means that the data set is divided into 100 groups with the same num-

ber of samples in each group. Then, the mean value of λ10P and RM of each group are

computed respectively to generate a linear relationship between the group-mean λ10P and

the group-mean RM . Hence, we can adopt �Residuals vs. Fitted� graph, �Normal Q-Q�

graph, �Scale-Location� graph and �Residual vs. Leverage� graph [Anscombe 1973, Chat-

terjee 2015] to check the linearity, the normal distribution of residuals, the homoscedastic-

ity [Jarque 1980] and the abnormal values of the model, respectively. These four graphs

pertaining to our group classi�cation analysis are shown in Fig. 5.2. For an idealized linear

model: 1) the red line in Fig. 5.2a should be a horizontal line at 0 and residuals should

randomly distribute around this line; 2) the standardized residuals shown in Fig. 5.2b

should fall in the 45◦ direct line, which can attest the normal distribution of residuals; 3)

the red line shown in Fig. 5.2c should be a horizontal line at a certain value and square

roots of standardized residuals should randomly distribute around this line; 4) Fig. 5.2d

can identify abnormal values and signi�cant values which have an important impact on

the model �tting, through Cook's distance. One can notice that residuals in the groups

with big ID (i.e., 95, 99 and 100) are signi�cant. These residuals correspond to SAL2 LXs

with high corrected moment in our data set. Therefore, the statistical test results attest

the signi�cant deviation between the observed accident frequencies and the predicted ac-

cident frequencies at SAL2 LXs having high corrected moment. Through checking the

accident/incident data, these SAL2 LXs with high corrected moment are correspondingly

accident-prone LXs in general. We conjecture that this preliminary accident prediction

model is not appropriate to predict the annual accident frequency at SAL2 LXs with high

corrected moment. A thorough analysis needs to be performed to develop an advanced

model which can predict the annual accident frequency at a given SAL2 more accurately.

Meanwhile, the model should consider more impacting variables.
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5.3.2 Advanced accident prediction model

The developed advanced model takes into account various variables as interpreted in Ta-

ble 5.2. The general form of the model is shown as follows:

λ10Y =K × FRAcc × (V a × T b)× exp(CProfile × IProfile + CAlign × IAlign + CWid ×Wid

+ CLeng × Leng + CRSL ×RSL+ CReg × FReg)
(5.4)

where λ10Y represents the annual accident frequency at a given SAL2 for a period of 10

years; K is the constant coe�cient; FRAcc is the road accident factor which re�ects the

variation of annual road accidents as time advances (a time-dependent variable); V is the

average daily road tra�c; T is the average daily railway tra�c; IProfile and CProfile are

respectively the pro�le indicator and its corresponding coe�cient; IAlign and CAlign are

respectively the alignment indicator and its corresponding coe�cient; Wid and CWid are

respectively the LX width and its corresponding coe�cient; Leng and CLeng are respec-

tively the crossing length and its corresponding coe�cient; RSL and CRSL are respectively

the railway speed limit and its corresponding coe�cient; FReg and CReg are respectively

the region factor and its corresponding coe�cient (cf. Table 5.2).

Note that appropriate higher orders and interaction terms of covariates can be included

in the model expressed by Eq. (5.4) without di�culty, due to the use of an exponential

form [Miaou 1994]. Moreover, this model does not only rank risky LXs accurately, but

also allow for identifying signi�cant parameters e�ciently.

5.3.2.1 Regression approaches

In this section, several regression approaches are adopted to estimate the coe�cients asso-

ciated with the parameters of our model. The Nonlinear Least-Squares (NLS) technique

and Gauss-Newton algorithm [Madsen 2004] are �rstly considered to estimate the variable

coe�cients in our model. Considering a �tting model function y = f(x,β), where variable

x depends on a vector of l parameters: β = (β1, β2, . . . , βl). The goal is to �nd the vector

β which can let the model function �t best the actual observed data in the least-squares

sense. In other words, minimize the sum of residual squares S expressed as follows:

S =
m∑
i=1

r2
i , m ≥ l (5.5)

where ri is the residual between the �tting model estimation and the actual observation,

ri = yi − f(xi,β).
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The minimum value of S is obtained by solving the gradient function ∂S/∂βj = 0, i.e.:

∂S/∂βj = 2
∑

i ri∂ri/∂βj = 0

βj ≈ βk+1
j = βkj + ∆βj

(5.6)

where k is the iteration number and ∆βj is the shift parameter.

At each iteration step, the model is linearized by approximation to a �rst-order Taylor

series expansion about βk:

f(xi,β) ≈ f(xi,β
k) +

l∑
j=1

(βj − βkj )∂f(xi,β
k)/∂βj ≈ f(xi,β

k) +

l∑
j=1

Jij∆βj (5.7)

where Jij is the element of Jacobian matrix J and ∂ri/∂βj = −Jij .
Therefore, ri can be rewritten as:

ri = ∆yi −
∑l

s=1 Jis∆βs

∆yi = yi − f(xi,β
k)

(5.8)

By substituting the above expressions into the gradient equation in Eq. (5.6), we obtain

the normal equation and its matrix notation:

∑m
i=1

∑l
s=1 JijJis∆βs =

∑m
i=1 Jij∆yi

(JTJ)∆β = JT∆y
(5.9)

For an NLS model, S should be modi�ed as follows:

S =
m∑
i=1

Wiir
2
i , m ≥ l (5.10)

Therefore, the matrix notation of normal equation for an NLS model is expressed as

follows:

(JTWJ)∆β = JTW∆y (5.11)

These aforementioned equations form the basis of the Gauss-Newton algorithm for solving

an NLS problem.

In fact, the Poisson regression model shown as Eq. (5.12) is a natural choice for mod-

eling accident occurrence.

Poi(X = k) =
λke−λ

k!
, k = 0, 1, 2, . . . (5.12)

where Poi(X = k) is the probability of k accidents occurring, k ∈ N and λ is the expec-

tation value of the number of accidents.
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However, [Chang 2005] indicates that accident frequency is likely to be over-dispersed

(cf. Eq. (5.13)) and suggests using the negative binomial (NB) regression model as an

alternative to the Poisson model.

V AR(X)


= E(X)

> E(X), over-dispersed

< E(X), under-dispersed

(5.13)

The NB model as a special case of Poisson-Gamma mixture model is a variant of the

Poisson model designed to deal with over-dispersed data [Buddhavarapu 2016, Lord 2010,

Utkin 2015]. The over-dispersion could come from several possible sources, e.g., omitted

variables, uncertainty in exposure data, covariates or non-homogeneous LX environment

[Miaou 1994]. The NB model considered in this study has the following expression:

PNB(X = k) =

Γ

(
k +

1

α

)
Γ (k + 1) Γ

(
1

α

) ( 1

1 + αλ

)1/α( αλ

1 + αλ

)k
, k = 0, 1, 2, . . . (5.14)

where PNB(X = k) is the probability of k accidents occurring, k ∈ N; λ is the expectation

value of the number of accidents and α is the dispersion parameter.

The relationship between the mean value and the variance in the NB model is given as

follows:

V AR(X) = E(X) + αE(X)2 (5.15)

If α > 0, there is an over-dispersion; if α < 0, there is an under-dispersion and in the case

where α = 0, the NB model reduces to the Poisson model.

In practice, the count data may contain extra zeros relative to the Poisson or NB

distribution. In this case, the ZIP or ZINB regression model is useful for analyzing such

data [Ridout 2001]. The ZIP model is expressed as follows:

PZIP (X = k) =

{
ω + (1− ω)exp(−λ), k = 0;

(1− ω)exp(−λ)λk/k!, k > 0
(5.16)

where PZIP (X = k) is the probability of k accidents occurring, k ∈ N; λ is the expectation

value of the number of accidents and log
(

ω
1−ω

)
= z′γ is the ZI link function that z′ is

the ZI covariate and γ is the corresponding ZI coe�cient. The mean value and variance

of ZIP model are E(X) = (1− ω)λ and V AR(X) = (1− ω)λ(1 + ωλ).
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The ZINB model is expressed as follows:

PZINB(X = k) =


ω + (1− ω)(1 + αλ)−1/α, k = 0;

(1− ω)
Γ

(
k+

1

α

)

Γ(k+1)Γ

(
1

α

) ( 1
1+αλ

)1/α (
αλ

1+αλ

)k
, k > 0

(5.17)

where PZINB(X = k) is the probability of k accidents occurring, k ∈ N; λ is the expecta-

tion value of the number of accidents. The mean value and variance of ZINB model are

E(X) = (1− ω)λ and V AR(X) = (1− ω)λ(1 + ωλ+ αλ). The ZINB reduces to the ZIP

in the limit α→ 0.

However, the NB and ZINB models are limited to handling under-dispersed data

(α < 0) [Lord 2010]. If the dispersion parameter α is set as a negative value to try

to handle under-dispersion issue, they would no longer be an NB or ZINB model and

lead to unreliable estimation, especially when the sample mean is low and the sample

size is small [Lu 2016]. That is why [Oh 2006] proposed the Gamma model to handle

under-dispersed samples. The Gamma model is given as follows:

PG(X = k) = Gamma(βk, λ)−Gamma(β(k + 1), λ) (5.18)

where PG(X = k) is the probability of k accidents occurring, k ∈ N; λ is the expectation

value of the number of accidents and β is the dispersion parameter. If β < 1, there is

an over-dispersion; while if β > 1, there is an under-dispersion and if β = 1, the Gamma

model reduces to the Poisson model. However, the Gamma model shown in Eq. (5.19) is

limited to the time-dependent observation assumption and zero observations, since general

Γ(x) restricts discrete responses to positive values.

Gamma(βk, λ) =


1, if k = 0

1

Γ(βk)
∫ λ

0 u
βk−1e−udu

, if k > 0
(5.19)

According to the above discussion, the restriction between variance and mean value is

signi�cant to identify an appropriate regression model. Therefore, we �rstly adopted group

classi�cation to make preliminary variance analysis, which is that the annual accidents at

a given SAL2 during the 10 years were divided into 100 groups with the same number

of samples in each group. Then, the mean value and variance of accidents in each group

were computed respectively to analyze the relationship between the group variance and

the group mean value. The variance analysis is shown in Fig. 5.3. It seems that there is

a slight over-dispersion of the data set since the variance V AR(n) is a bit bigger than the

mean E(n) (V AR(n) ≈ 1.0171E(n)). Hence, since the mean value and the variance are
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VAR (n) = 1.0171E(n),
R^2 = 0.9916, t-statistic = 128.50
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Fig. 5.3. Constraint between the group variance and the group mean value of annual

accidents at SAL2 LXs

very close to each other, we performed meticulous analyses to assess the NLS regression,

the Poisson regression, the ZIP regression, the NB regression and the ZINB regression

methods with regard to SAL2 LXs in our accident database so as to identify which model

is more e�ective.

5.3.2.2 Regression modeling results

NLS regression

When applying the NLS regression, the form of λ10Y is given by Eq. (5.4). The

estimated coe�cients computed by NLS regression are provided in Table 5.3. A |t −
statistic| > 1.96 is introduced to identify the signi�cant parameters corresponding to a

95% con�dence level. As a result, the average daily railway tra�c, the railway speed limit,

the average daily road tra�c, the annual road accidents, the road alignment, the LX width,

the crossing length and the LX-accident-prone region have been shown to have signi�cant

and positive in�uence on SAL2 accident frequency. However, the test shows that the

road pro�le is not a signi�cant factor (|t − statistic| = 0.635 << 1.96), thus the impact

of road pro�le could be neglected. Moreover, the coe�cients of the considered variables

with the exponential form can re�ect the sensitive degrees of the SAL2 accident frequency

to these variables respectively. According to these sensitive degrees (rank indicated in

brackets), the LX-accident-prone region factor is the most sensitive contributor among

these variables.
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Table 5.3. Results of the λ10Y NLS regression model

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K 2.703e-05 5.078e-06 5.322 ×
IProfile CProfile 3.626e-02 5.706e-02 0.635

IAlign CAlign 3.427e-01 (2) 2.942e-02 11.648 ×
Wid CWid 9.847e-02 (3) 1.494e-02 6.589 ×
Leng CLeng 2.084e-02 (4) 4.284e-03 4.865 ×
RSL CRSL 3.089e-03 (5) 7.586e-04 4.072 ×
FReg CReg 4.962e-01 (1) 1.722e-01 2.882 ×

In order to assess the predictive accuracy of accident occurrence estimated by the NLS

regression model λ10Y combined with the NB and ZINB distributions (cf. section 5.4.3),

we adopt the Maximum Likelihood Estimation (MLE) method to estimate the dispersion

parameter α of the data set [Dai 2013]. As expressed by Eq. (5.20) and Eq. (5.21), the

values of α in NB and ZINB distributions are estimated respectively, using R language to

solve ∂l/∂α = 0.

l(α)NB = ln(
∏n
i PNB(Xi = yi)) =

∑
(yiln(λi)− (yi + α−1)ln(1 + αλi)+∑yi−1

v=0 ln(1 + αv))
(5.20)

l(α)ZINB = ln(
n∏
i

PZINB(Xi = yi)) =


∑
ln(ωi) + (1− ωi)( 1

1+αλi
)1/α, if yi = 0;∑

ln(ωi) + lnΓ( 1
α + yi)− lnΓ(1 + yi)− lnΓ( 1

α)

+ 1
α ln( 1

1+αλi
) + yiln(1− 1

1+αλi
), if yi > 0;

(5.21)

Poisson regression

When applying the Poisson regression, the general form of λ10Poi is given by

e
∑m

j=1 β0+βjxj . Therefore, we need to transform Eq. (5.4) into the following expression:

λ10Poi =


0, if FRAcc = 0, V = 0 or T = 0;

exp(K1 + CF × FRAcc + CCM × CM + CProfile × IProfile + CAlign × IAlign+

CWid ×Wid+ CLeng × Leng + CRSL ×RSL+ CReg × FReg), if FRAcc 6= 0,

V 6= 0, and T 6= 0;

(5.22)
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Table 5.4. Regression results of λ10Poi

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K1 -9.562 0.440 -21.714 ×
FRAcc CF 0.636 0.332 1.913

CM CCM 0.005 (6) 2.949e-04 17.144 ×
IProfile CProfile -0.076 0.122 -0.621

IAlign CAlign 0.326 (2) 0.069 4.756 ×
Wid CWid 0.206 (3) 0.026 8.051 ×
Leng CLeng 0.030 (4) 0.009 3.232 ×
RSL CRSL 0.011 (5) 0.001 7.895 ×
FReg CReg 1.725 (1) 0.334 5.165 ×

The results estimated through the Poisson regression approach are shown in Table 5.4.

According to these results, being similar to the NLS case, one can notice that the road

pro�le is not signi�cant (|t − statistic| = 0.621 << 1.96). On the other hand, with

an exponential form, the impact of road accident factor FRAcc is weakened, namely the

impact of FRAcc with an exponential form is not signi�cant when using Poisson regression

approach (|t− statistic| = 1.913 < 1.96). Furthermore, according to the sensitive degrees

of these parameters with the exponential form (rank indicated in brackets), once again the

LX-accident-prone region factor is the most sensitive contributor among these parameters.

NB regression

When applying the NB regression, the general form of λ10NB is given by

e
∑m

j=1 β0+βjxj+ε, and it still requires to be expressed by Eq. (5.22). The dispersion pa-

rameter α is estimated at 3.2394 in our study through the iterative estimation algorithm

automatically. The estimated results of the NB regression are shown in Table 5.5.

Table 5.5. Regression results of λ10NB

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K1 -9.424 0.457 -20.615 ×
FRAcc CF 0.616 0.343 1.793

CM CCM 0.006 (6) 3.762e-04 16.493 ×
IProfile CProfile -0.107 0.126 -0.850

IAlign CAlign 0.298 (2) 0.072 4.159 ×
Wid CWid 0.199 (3) 0.028 7.173 ×
Leng CLeng 0.031 (4) 0.010 3.201 ×
RSL CRSL 0.010 (5) 0.001 7.034 ×
FReg CReg 1.508 (1) 0.351 4.294 ×
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According to the results associated with the NB regression approach, it is worth notic-

ing that the road pro�le is still not signi�cant (|t− statistic| = 0.850 << 1.96). One can

also notice that the impact of FRAcc with an exponential form is not signi�cant as well,

when using the NB regression approach (|t−statistic| = 1.793 < 1.96). Moreover, accord-

ing to the sensitive degrees of these parameters with the exponential form (rank indicated

in brackets), the LX-accident-prone region factor is still the most sensitive contributor

among these parameters.

ZIP regression

When applying the ZIP regression, the general form of λ10ZIP is given by e
∑m

j=1 β0+βjxj ,

and it still requires to be expressed by Eq. (5.22). The estimated results of the ZIP

regression are shown in Tables 5.6 (for nonzero observations) and 5.7 (for zero-in�ation

observations).

Table 5.6. Count model regression results of λ10ZIP

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K1 -1.128e+01 7.586e-01 -14.867 ×
FRAcc CF 3.717e-01 4.202e-01 0.885

CM CCM 6.221e-03 (4) 4.336e-04 14.347 ×
IProfile CProfile -1.855e-01 1.513e-01 -1.226

IAlign CAlign 1.483e-01 8.786e-02 1.688

Wid CWid 4.397e-01 (2) 6.625e-02 6.636 ×
Leng CLeng 3.971e-02 1.725e-02 1.904

RSL CRSL 1.432e-02 (3) 2.069e-03 6.921 ×
FReg CReg 2.319 (1) 6.655e-01 3.484 ×

Table 5.7. Zero-in�ation model regression results of λ10ZIP

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K1 -1.574e+01 4.276 -3.680 ×
FRAcc CF -1.104 1.646 -0.671

CM CCM 1.584e-03 1.450e-03 1.093

IProfile CProfile -4.355e-01 6.531e-01 0.505

IAlign CAlign -1.185 6.141e-01 -1.931

Wid CWid 1.024 (2) 2.241e-01 4.571 ×
Leng CLeng 8.231e-02 4.190e-02 1.964

RSL CRSL 4.117e-02 (3) 1.449e-02 2.840 ×
FReg CReg 5.861 (1) 1.748 3.353 ×
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According to the results associated with the ZIP regression approach, it is worth notic-

ing that, as for the nonzero related model, FRAcc, IProfile, IAlign and Leng are not signif-

icant (< 1.96). Moreover, according to the sensitive degrees of other signi�cant parame-

ters with the exponential form (rank indicated in brackets), the LX-accident-prone region

factor is still the most sensitive contributor among these parameters. While as for the

zero-in�ation model, only the Wid, RSL and FReg are signi�cant (> 1.96).

ZINB regression

When applying the ZINB regression, the general form of λ10ZINB is given by

e
∑m

j=1 β0+βjxj+ε, and it still requires to be expressed by Eq. (5.22). The values of disper-

sion parameter α for nonzero observations and zero-in�ation observations are estimated

at 3.8102 and 1.4069 respectively in our study through the iterative estimation algorithm

automatically. The estimated results of the ZINB regression are shown in Tables 5.8 (for

nonzero observations) and 5.9 (for zero-in�ation observations).

Table 5.8. Count model regression results of λ10ZINB

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K1 -7.128 0.734 -9.709 ×
FRAcc CF 0.671 0.413 1.624

CM CCM 4.486e-03 (3) 4.991e-04 8.990 ×
IProfile CProfile -5.886e-02 0.144 -0.406

IAlign CAlign 0.371 (1) 8.274e-02 4.495 ×
Wid CWid 0.145 (2) 4.558e-02 3.175 ×
Leng CLeng 3.219e-03 1.203e-02 0.268

RSL CRSL 2.558e-03 1.954e-03 1.309

FReg CReg 0.795 0.446 1.783
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Table 5.9. Zero-in�ation model regression results of λ10ZINB

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K1 -4.036 2.190 -6.709 ×
FRAcc CF 0.260 (1) 1.456 2.179 ×
CM CCM 6.685e-02 (2) 1.838e-02 3.636 ×
IProfile CProfile 0.705 0.544 1.296

IAlign CAlign 0.535 0.328 1.632

Wid CWid 8.873e-02 0.180 0.491

Leng CLeng 0.114 6.639e-02 1.725

RSL CRSL 5456e-03 6.629e-03 0.823

FReg CReg 1.632 1.679 0.972

According to the results associated with the ZINB regression approach, it is worth

noticing that, as for the nonzero related model, CM , IAlign and Wid are signi�cant (>

1.96). One can also notice that according to the sensitive degrees of the three parameters

(rank indicated in brackets), the LX width is the most sensitive contributor among them.

While as for the zero-in�ation model, only the FRAcc and CM are signi�cant (> 1.96).

5.4 Model quality validation and predictive accuracy assess-

ment

In this section, we will assess the quality of our prediction models while determining an

appropriate statistical distribution to be combined with the models, in such a way as to

ensure the most accurate estimation of the probability of accidents occurring at a given

SAL2 in a given year.

5.4.1 Model quality comparison between λ10P and λ10Y

In order to validate the quality of the di�erent prediction model variants, the Monte-Carlo

test for randomly sampling annual accident frequencies which meet the condition that the

predicted annual accident frequency at a given SAL2 is equal to or more than the observed

annual accident frequency at the SAL2, is �rstly performed (considering a safety strict

principle, the predicted annual accident frequency should not be lower than the observed

annual accident frequency). Then, the percentages of randomly sampled annual accident

frequencies that meet this condition are computed to compare with the actual percentages

of speci�ed entire sampled annual accident frequencies (e.g., as for the entire 80,000 annual

accident frequencies sampled out of 83,320, the actual entire percentage is computed as
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80,000/83,320; while k annual accident frequencies within the 80,000 frequencies meet the

above condition. Thus, the percentage of randomly sampled annual accident frequencies

meeting this condition is computed as k/83,320).

Table 5.10 shows the Monte-Carlo test results. One can notice that, for the speci-

�ed entire random sampling size 80,000, 40,000, 10,000, 5,000 and 500, the percentages

of randomly sampled annual accident frequencies meeting the aforementioned condition

computed using λ10Y are all closer to the actual percentages of speci�ed entire sampled

annual accident frequencies, compared with the percentages of randomly sampled annual

accident frequencies computed using λ10P . Moreover, the similarity between the per-

centages of randomly sampled annual accident frequencies meeting the aforementioned

condition, which are computed using λ10Y , and the actual speci�ed entire percentages is

relatively high.

Although the Monte-Carlo test results indicate that the λ10Y model seems more ap-

propriate, the tested percentages of annual accident frequencies sampled according to the

aforementioned condition closer to the actual percentages are not able to thoroughly attest

to the fact that the quality of λ10Y model is de�nitely better, since the predicted accident

frequency may be much higher than the accident frequency observed. Therefore, further

statistical tests are required to comprehensively evaluate the model quality.

Table 5.10. Monte-Carlo test results for λ10Y and λ10P

# Samples Actual percentage of

annual accident fre-

quencies sampled

λ10Y -model estimated

percentage of annual

accident frequencies

sampled

λ10P -model estimated

percentage of annual

accident frequencies

sampled

80,000 0.96015 0.95482 0.94191

40,000 0.48008 0.47747 0.45463

10,000 0.12002 0.11946 0.11416

5,000 0.06001 0.05959 0.05665

500 0.00600 0.00598 0.00576

Akaike's information criterion (AIC) [Bozdogan 1987], the Bayesian information cri-

terion (BIC) [Weakliem 1999], the Pearson chi-square statistic (PCS) test [Pearson 1900]

and the degree of freedom (DF) are used to evaluate the goodness of �t (GOF) of the

model. They can be respectively expressed as follows:

AIC = n+ n× ln(2π) + n× ln(RSS/n) + 2(l + 1) (5.23)
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BIC = n+ n× ln(2π) + n× ln(RSS/n) + (l + 1)ln(n) (5.24)

PCS =
n∑
i=1

(Oi − λi)2

λi
(5.25)

DF = n− (l + 1) (5.26)

where n is the sample size; RSS is the sum of the squares of residuals between the annual

accident frequencies observed and the annual accident frequencies estimated; l is the num-

ber of independent exponential parameters; Oi is the annual accident frequency observed

and λi is the annual accident frequency expected.

The AIC and BIC are two statistical measures to test the relative quality of models for

a given set of data. Smaller AIC and BIC values indicate a better model �tting. The PCS

test is used to determine if there is a signi�cant di�erence between the values expected and

the values observed. The PCS is roughly equal to DF if the model �ts the data perfectly

without any dispersion. In other words, the closer the PCS is to the DF, the better the

model �ts the data [Lu 2016]. These statistical test results are shown in Table 5.11 with

the goodness ranked in brackets. Some �ndings can be noticed: 1) considering AIC and

BIC, the λ10Y model gives better results, since the AIC and BIC values corresponding to

the λ10Y model are much smaller than those for the λ10P model; 2) as for PCS, the λ10Y

model is also the preferred one, since the PCS of the λ10Y model is closer to DF (DFs of

the λ10Y and the λ10P are considerably approximative).

5.4.2 Model quality comparison among variants of λ10Y

Table 5.12 shows the Monte-Carlo test results. One can notice that, for the speci�ed entire

random sampling size 80,000, 40,000, 10,000, 5000 and 500, the percentages of randomly

sampled annual accident frequencies meeting the aforementioned condition computed us-

ing λ10Y are all closer to the actual percentages of speci�ed entire sampled annual accident

frequencies, compared with these computed using λ10Poi, λ10NB, λ10ZIP and λ10ZINB, re-

spectively. Moreover, the similarity between the percentages of randomly sampled annual

accident frequencies meeting the aforementioned condition, which are computed using

λ10Y , and the actual speci�ed entire percentages is relatively high.

Although the Monte-Carlo test results indicate that the λ10Y model is more appro-

priate, the tested percentages of annual accident frequencies sampled according to the

aforementioned condition do not allow for thoroughly attesting that the quality of λ10Y

model is de�nitely better, since the predicted accident frequency may be much higher
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Table 5.11. Model GOF comparison between λ10P and λ10Y

Parameter λ10Y λ10P

Railway tra�c characteristics

Average daily railway tra�c × ×
Railway speed limit ×
Roadway tra�c characteristics

Average daily road tra�c × ×
Annual road accidents × ×
LX characteristics

Alignment ×
Pro�le ×
LX width ×
Crossing length ×
Region ×
AIC -190,744 (1) -190,591 (2)

BIC -190,670 (1) -190,573 (2)

PCS 65,796 (1) 53,108 (2)

DF 83,313 83,319

Goodness score

(the lower, the better)
3 6

than the accident frequency observed. Therefore, the Monte-Carlo test should be seen as

a preliminary check and further statistical tests are required to comprehensively evaluate

the model quality.



Chapter 5. Advanced Statistical Accident Prediction Modeling 109

T
ab
le
5.
12
.
M
on
te
-C
ar
lo

te
st

re
su
lt
s
fo
r
va
ri
an
ts

of
λ

1
0
Y

#
Sa
m
-

pl
es

A
ct
ua
l

p
er
-

ce
nt
ag
e

of

an
nu
al

ac
ci
de
nt

fr
eq
ue
nc
ie
s

sa
m
pl
ed

λ
1
0
Y
-e
st
im

at
ed

p
er
ce
nt
ag
e

of

an
nu
al

ac
ci
de
nt

fr
eq
ue
nc
ie
s

sa
m
-

pl
ed

λ
1
0
P
o
i-
es
ti
m
at
ed

p
er
ce
nt
ag
e

of

an
nu
al

ac
ci
de
nt

fr
eq
ue
nc
ie
s

sa
m
-

pl
ed

λ
1
0
N

B
-e
st
im

at
ed

p
er
ce
nt
ag
e
of

an
nu
al

ac
ci
de
nt

fr
eq
ue
nc
ie
s

sa
m
pl
ed

λ
1
0
Z
I
P
-e
st
im

at
ed

p
er
ce
nt
ag
e
of

an
nu
al

ac
ci
de
nt

fr
eq
ue
nc
ie
s

sa
m
pl
ed

λ
1
0
Z
I
N

B
-e
st
im

at
ed

p
er
ce
nt
ag
e
of

an
nu
al

ac
ci
de
nt

fr
eq
ue
nc
ie
s

sa
m
pl
ed

80
,0
00

0.
96
01
5

0.
95
48
2

0.
94
16
7

0.
94
30
7

0.
94
51
1

0.
94
52
7

40
,0
00

0.
48
00
8

0.
47
74
7

0.
45
66
7

0.
46
66
9

0.
45
70
1

0.
47
00
9

10
,0
00

0.
12
00
2

0.
11
94
6

0.
11
41
4

0.
11
54
4

0.
11
51
4

0.
11
55
7

50
00

0.
06
00
1

0.
05
95
9

0.
05
82
1

0.
05
88
1

0.
05
83
1

0.
05
87
6

50
0

0.
00
60
0

0.
00
59
8

0.
00
58
8

0.
00
58
8

0.
00
58
9

0.
00
59
0



110 Chapter 5. Advanced Statistical Accident Prediction Modeling

The results of AIC, BIC and PCS statistical tests are shown in Table 5.13 with the

goodness ranked in brackets. The following �ndings are obtained: 1) considering AIC and

BIC, the λ10Y model gives better results, since the AIC and BIC values corresponding to

the λ10Y model are much smaller than those for the λ10Poi, λ10NB, λ10ZIP and λ10ZINB

models; 2) in terms of PCS test, the λ10Y model is also the most e�ective one, since the

PCS of λ10Y model is closer to DF (DFs of λ10Y , λ10Poi, λ10NB, λ10ZIP and λ10ZINB are

considerably approximative).

5.4.3 Predictive accuracy assessment

As mentioned in section 5.4.1, the model quality of λ10Y form is much better than that

of λ10P form. Therefore, in this section, we only assess the predictive accuracy in terms

of accident occurrence according to the NLS regression model λ10Y combined with the

Poisson and NB distributions respectively, the Poisson regression model λ10Poi naturally

combined with the Poisson distribution, the NB regression model λ10NB naturally com-

bined with the NB distribution, the ZIP regression model λ10ZIP naturally combined with

the ZIP distribution and the ZINB regression model λ10ZINB naturally combined with

the ZINB distribution, so as to identify the combination that ensures the most e�ective

prediction. One can refer to Appendix A [Liang 2018d] for the detailed predictive accuracy

comparison between λ10Y and λ10P .

Here, the log-likelihood statistic test (LL) is adopted to assess the GOF of the accident

frequency prediction model combined with a statistical distribution. The larger the LL,

the more preferred the model [Lu 2016]. The mathematical expression of the LL is given

as follows:

LL =

n∑
i=1

ln(P̂i) (5.27)

where n is the sample size and P̂i is the estimated probability of accident frequency

observed. P̂i is computed respectively according to the accident frequency prediction

model combined with the Poisson or the NB distribution.
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LL test results are shown in Table 5.13. One can notice that, for the λ10Y model

combined with either the Poisson or NB distribution, its GOFs are signi�cantly better than

λ10Poi, λ10NB, λ10ZIP and λ10ZINB models' GOFs according to the LL test. Furthermore,

the GOF of λ10Y combined with the NB distribution (NB-λ10Y ) is better than when

combined with the Poisson distribution (POI-λ10Y ).

Based on the predicted probability of the accident frequency observed, further Cu-

mulative Distribution Function (CDF) analysis with regard to the Poisson and the NB

distribution is performed to evaluate the quality of the accident frequency prediction

model combined with the two statistical distributions. As shown in Fig. 5.4, the relation-

ship between the CDF and the corresponding probability of a given event is obtained.

P̂ (•) denotes the predicted probability of a given event obtained through the Poisson or

NB distribution; Oi is the observed accident frequency and λi is the estimated accident

frequency. The blue curve �CDF λ10NB, Oi > λi� represents the CDF of the event �

Oi > λi� obtained through the NB distribution combined with the λ10NB; the red curve

�CDF λ10NB, Oi <= λi� represents the CDF of the event � Oi <= λi� obtained through

the NB distribution combined with the λ10NB; the green curve �CDF λ10Poi, Oi > λi�

represents the CDF of the event � Oi > λi� obtained through the Poisson distribution

combined with the λ10Poi; the violet curve �CDF λ10Poi, Oi <= λi� represents the CDF

of the event � Oi <= λi� obtained through the Poisson distribution combined with the

λ10Poi. The interpretation of the remaining curves involving the λ10Y can be similarly

obtained. Since some curves are almost covered by some others in Fig. 5.4, the main

results of CDF analysis are extracted and shown in Table 5.14 for the sake of clarity.
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Fig. 5.4. CDF of the Poisson, NB, ZIP and ZINB distributions combined with the λ10Y ,

λ10Poi, λ10NB, λ10ZIP and λ10ZINB models according to the estimated probability
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Table 5.14 indicates that:

1) CDF POI λ10Y , Oi > λi:

In 78.89% of cases, P̂ (Oi > λi) is more than 0.005; in 9.17% of cases, P̂ (Oi > λi) is

more than 0.05;

2) CDF NB λ10Y , Oi > λi:

In 79.10% of cases, P̂ (Oi > λi) is more than 0.005; in 7.68% of cases, P̂ (Oi > λi) is

more than 0.05;

3) CDF λ10Poi, Oi > λi:

In 79.10% of cases, P̂ (Oi > λi) is more than 0.005; in 7.68% of cases, P̂ (Oi > λi) is

more than 0.05;

4) CDF λ10NB, Oi > λi:

In 79.10% of cases, P̂ (Oi > λi) is more than 0.005; in 7.68% of cases, P̂ (Oi > λi) is

more than 0.05;

5) CDF λ10ZIP , Oi > λi:

In 79.12% of cases, P̂ (Oi > λi) is more than 0.005; in 7.72% of cases, P̂ (Oi > λi) is

more than 0.05;

6) CDF λ10ZINB, Oi > λi:

In 79.12% of cases, P̂ (Oi > λi) is more than 0.005; in 7.72% of cases, P̂ (Oi > λi) is

more than 0.05;

7) CDF POI λ10Y , Oi <= λi:

In 99.27% of cases, P̂ (Oi <= λi) is more than 0.95; in 65.94% of cases, P̂ (Oi <= λi)

is more than 0.995;

8) CDF NB λ10Y , Oi <= λi:

In 99.36% of cases, P̂ (Oi <= λi) is more than 0.95; in 66.07% of cases, P̂ (Oi <= λi)

is more than 0.995;

9) CDF λ10Poi, Oi <= λi:

In 99.36% of cases, P̂ (Oi <= λi) is more than 0.95; in 66.07% of cases, P̂ (Oi <= λi)

is more than 0.995;

10) CDF λ10NB, Oi <= λi:

In 99.36% of cases, P̂ (Oi <= λi) is more than 0.95; in 66.07% of cases, P̂ (Oi <= λi)

is more than 0.995;
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11) CDF λ10ZIP , Oi <= λi:

In 99.21% of cases, P̂ (Oi <= λi) is more than 0.95; in 66.07% of cases, P̂ (Oi <= λi)

is more than 0.995;

12) CDF λ10ZINB, Oi <= λi:

In 99.27% of cases, P̂ (Oi <= λi) is more than 0.95; in 66.07% of cases, P̂ (Oi <= λi)

is more than 0.995;

Hence, according to the CDF analysis results shown in Table 5.14, in the cases of �P̂ (Oi >

λi) > 0.05�, �P̂ (Oi <= λi) > 0.95� and �P̂ (Oi <= λi) > 0.995�, the λ10Y combined

with the NB distribution, the λ10Poi combined with the Poisson distribution and the

λ10NB combined with the NB distribution show a better GOF value than that of the λ10Y

combined with the Poisson distribution. However, it is worth noticing that the distinction

among the GOF values of these four types of model conjugations with regard to each case

is not signi�cant. Therefore, further analysis to assess the predictive accuracy of the three

prediction models combined with the Poisson or NB distribution is carried out. As shown

in Table 5.15, fk denotes the percentage of samples of observed annual accident frequency

with k accidents involved in a given year (fk = the number of samples of observed annual

accident frequency involving k accidents occurring in a given year / the total number

of samples n). The estimated relative annual accident frequency re�ected by estimated

probabilities on average is computed as: f̂k =
∑n

i=1 P̂ (Xi = k)/n, where P̂ (Xi = k) is the

estimated probability of k accidents occurring at a given SAL2 in a given year. According

to the goodness of predictive accuracy ranked in brackets, the λ10Y model combined with

the NB distribution shows an overall higher predictive accuracy with regard to various

annual numbers of accidents occurring at a given SAL2 during the 10-year period, which

means the probabilities of accident occurrence predicted by the λ10Y model combined with

the NB distribution are the closest to the actual probabilities of accident occurrence. In

the case of 0 accident occurring at a given SAL2 in a given year, the predictive accuracy of

the λ10Y model combined with the NB distribution takes the �rst place (f̂k = 99.3915%).

In the cases of 1, 2 and more than 2 accidents occurring at a given SAL2 in a given year,

the predictive accuracy of the λ10Y model combined with the NB distribution takes the

second place. Moreover, in the case of more than 2 accidents occurring at a given SAL2 in

a given year, the predictive accuracy of the λ10Y model combined with the NB distribution

shows a deviation of only 0.0002% compared with the actual fk. In fact, there are no SAL2

LXs showing more than 2 accidents in the same year during the 10-year period considered.
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Most recently, we obtained the updated incident/accident data up to 2017 from SNCF.

Therefore, in order to validate the prediction performance of various variants of λ, a further

analysis is carried out based on the data during the 10 years from 2008 to 2017, using

the same method shown in Table 5.15. The updated results are shown in Table 5.16.

According to the goodness of predictive accuracy ranked in brackets, the λ10Y model

combined with the NB distribution still shows the highest predictive accuracy with regard

to various annual numbers of accidents occurring at a given SAL2 during this 10-year

period. In the cases of 0, 1, 2 and more than 2 accidents occurring at a given SAL2 in a

given year, the predictive accuracy of the λ10Y model combined with the NB distribution

takes the �rst place in all cases. Moreover, in the case of more than 2 accidents occurring

at a given SAL2 in a given year, the predictive accuracy of the λ10Y model combined with

the NB distribution shows a deviation of only 0.0001% compared with the actual fk = 0.

In fact, there are no SAL2 LXs showing more than 2 accidents in the same year during

this 10-year period considered either.

Based on the results of the various performed tests, there is no doubt that the λ10Y

model combined with the NB distribution is the most e�ective in terms of accident oc-

currence prediction among the four combinations considered. One can also notice that,

although the NB distribution is more e�ective than the Poisson distribution when deal-

ing with over-dispersed accident count, more extensive computations are required by NB

model to estimate the model parameters as well as the dispersion parameter, so as to

generate inferential statistics, compared with the Poisson model.



118 Chapter 5. Advanced Statistical Accident Prediction Modeling

T
ab
le
5.
16
.
T
he

pr
ed
ic
ti
ve

ac
cu
ra
cy

co
m
pa
ri
so
n
be
tw
ee
n
th
e
P
oi
ss
on
,N

B
,Z

IP
an
d
Z
IN

B
di
st
ri
bu

ti
on
s
ba
se
d
on

th
e
da
ta

fr
om

20
08

to
20
17

#
A
nn
ua
l

ac
ci
de
nt
s

co
ns
id
er
ed

(k
)

O
bs
er
ve
d

an
-

nu
al

ac
ci
de
nt

fr
eq
ue
nc
y

(f
k

in
p
er
ce
nt
)

P
O
I-
λ
1
0
Y

es
ti
-

m
at
ed

re
la
ti
ve

an
nu
al

ac
ci
de
nt

fr
eq
ue
nc
y
(f̂

k
in

p
er
ce
nt
)

N
B
-λ

1
0
Y

es
ti
-

m
at
ed

re
la
ti
ve

an
nu
al
ac
ci
de
nt

fr
eq
ue
nc
y

(f̂
k

in
p
er
ce
nt
)

λ
1
0
P
o
i

es
ti
-

m
at
ed

re
la
ti
ve

an
nu
al

ac
ci
-

de
nt

fr
eq
ue
nc
y

(f̂
k
in

p
er
ce
nt
)

λ
1
0
N

B
es
ti
-

m
at
ed

re
la
ti
ve

an
nu
al

ac
ci
-

de
nt

fr
eq
ue
nc
y

(f̂
k
in

p
er
ce
nt
)

λ
1
0
Z
I
P

es
ti
-

m
at
ed

re
la
ti
ve

an
nu
al
ac
ci
de
nt

fr
eq
ue
nc
y

(f̂
k

in
p
er
ce
nt
)

λ
1
0
Z
I
N

B
es
ti
-

m
at
ed

re
la
ti
ve

an
nu
al
ac
ci
de
nt

fr
eq
ue
nc
y

(f̂
k

in
p
er
ce
nt
)

0
99
.6
31
3

99
.4
60
3
(3
)

99
.5
81
7
(1
)

99
.4
80
1
(2
)

99
.2
80
1
(6
)

99
.4
34
8
(4
)

99
.3
80
2
(5
)

1
0.
36
16

0.
40
31

(3
)

0.
38
13

(1
)

0.
39
05

(2
)

0.
51
29

(6
)

0.
48
57

(4
)

0.
50
71

(5
)

2
0.
00
71

0.
00
32

(6
)

0.
00
87

(1
)

0.
00
37

(5
)

0.
00
88

(2
)

0.
00
39

(4
)

0.
00
94

(3
)

>
2

0
0.
00
01

(1
)

0.
00
01

(1
)

0.
00
02

(2
)

0.
00
08

(3
)

0.
00
02

(2
)

0.
00
10

(4
)

G
oo
dn

es
s
sc
or
e

(t
he

lo
w
er
,
th
e
b
et
te
r)

13
4

11
17

14
17



Chapter 5. Advanced Statistical Accident Prediction Modeling 119

5.5 A comparison between λ10Y and two existing reference

models

In this section, we compare the present model λ10Y with other two models which are

widely used in existing related works. As mentioned in section 5.1, the �rst widely used

model is given in Eq. (5.1) [Austin 2002, Oh 2006, Lu 2016]. In our study, this model can

be speci�ed as follows:

λTV = exp(K2 + CV × V + CT × T + CF × FRAcc + CProfile × IProfile + CAlign × IAlign
+CWid ×Wid+ CLeng × Leng + CRSL ×RSL+ CReg × FReg)

(5.28)

where the average daily road tra�c V and the average daily railway tra�c T are applied

separately in exponential form.

The second model as shown in Eq. (5.2) [Miranda-Moreno 2005, Saccomanno 2004], is

speci�ed as Eq. (5.29) in our study.

λMon = exp(K3 + CM × ln(V × T ) + CF × FRAcc + CProfile × IProfile + CAlign × IAlign
+CWid ×Wid+ CLeng × Leng + CRSL ×RSL+ CReg × FReg)

(5.29)

where the conventional tra�c moment V × T are applied.

It should be noted that the ZIP and ZINB models were also investigated for λTV
and λMon but resulted in no higher goodness-of-�t values and a quite small number of

signi�cant parameters compared with the Poisson and NB models and hence, were not

reported in this section. The Poisson and NB regression results of the λTV and λMon are

shown in Tables 5.17, 5.18, 5.19 and 5.20, respectively. One can notice that the impacts

of road pro�le and road accident are still not signi�cant in the λTV and λMon.

The Monte-Carlo test is applied on the λTV and λMon. The test results are shown in

Table 5.21. It is worth noticing that the results computed using the λ10Y are all closer

to the actual percentages of speci�ed entire sampled accident frequencies, compared with

the results computed by the λTV and λMon, respectively.

On the other hand, the AIC, BIC, PCS and LL tests and observed/estimated acci-

dent frequency comparison are given in Tables 5.22 and 5.23. According to the quality

test results discussed in section 5.4.3, the λ10Y combined with the NB distribution (NB-

λ10Y ) shows the best prediction performance among the four investigated combinations.

Therefore, we will only compare the NB-λ10Y with the λTV and λMon combined with the

Poisson and NB distributions respectively in the following content.
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Table 5.17. Poisson Regression results of λTV

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K2 -9.807 0.413 -22.223 ×
V CV 1.098e-04 (7) 1.613e-05 6.811 ×
T CT 8.777e-03 (6) 1.115e-03 7.869 ×
FRAcc CF 0.636 0.333 1.913

IProfile CProfile -1.445e-01 1.209e-01 -1.195

IAlign CAlign 3.319e-01 (2) 6.747e-02 4.919 ×
Wid CWid 2.059e-01 (3) 2.483e-02 8.292 ×
Leng CLeng 3.952e-02 (4) 7.868e-03 5.024 ×
RSL CRSL 1.154e-02 (5) 1.487e-03 7.759 ×
FReg CReg 1.750 (1) 3.463e-01 5.053 ×

Table 5.18. NB Regression results of λTV

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K2 -9.882 4.531e-01 -21.810 ×
V CV 1.155e-04 (7) 1.683e-05 6.861 ×
T CT 9.152e-03 (6) 1.234e-03 7.416 ×
FRAcc CF 0.607 3.402e-01 1.784

IProfile CProfile -1.532e-01 1.243e-01 -1.232

IAlign CAlign 3.240e-01 (2) 6.988e-02 4.636 ×
Wid CWid 2.212e-01 (3) 2.579e-02 8.575 ×
Leng CLeng 3.895e-02 (4) 8.415e-03 4.629 ×
RSL CRSL 1.160e-02 (5) 1.529e-03 7.589 ×
FReg CReg 1.739 (1) 3.575e-01 4.864 ×

Table 5.19. Poisson Regression results of λMon

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K2 -11.816 4.540e-01 -26.023 ×
ln(V × T ) CM 4.036e-01 (2) 2.776e-02 14.538 ×
FRAcc CF 6.359e-01 3.325e-01 1.913

IProfile CProfile -6.279e-02 1.205e-01 -0.521

IAlign CAlign 2.875e-01 (3) 6.799e-02 4.228 ×
Wid CWid 1.185e-01 (4) 3.296e-02 3.596 ×
Leng CLeng 2.213e-02 (5) 9.530e-03 2.322 ×
RSL CRSL 8.811e-03 (6) 1.350e-03 6.527 ×
FReg CReg 1.446 (1) 3.358e-01 4.307 ×
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Table 5.20. NB Regression results of λMon

Parameter Coe�cient Estimated value Standard error t− statistic Signi�cant

K2 -11.850 4.628e-01 -26.603 ×
ln(V × T ) CM 4.034e-01 (2) 2.822e-02 14.297 ×
FRAcc CF 6.368e-01 3.382e-01 1.883

IProfile CProfile -7.103e-02 1.230e-01 -0.578

IAlign CAlign 2.848e-01 (3) 6.960e-02 4.092 ×
Wid CWid 1.214e-01 (4) 3.361e-02 3.612 ×
Leng CLeng 2.204e-02 (5) 9.752e-03 2.260 ×
RSL CRSL 8.892e-03 (6) 1.368e-03 6.500 ×
FReg CReg 1.480 (1) 3.428e-01 4.316 ×
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As shown in Table 5.22, the AIC, BIC and PCS results related to the λ10Y model are

better than those for the λTV and λMon models. Moreover, as for the LL test, the NB-λ10Y

is still the most preferred one. Besides, as for the observed/estimated accident frequency

comparison as shown in Table 5.23, the NB-λ10Y takes the �rst place according to the

total goodness score. That means the NB-λ10Y has higher predictive accuracy in terms of

LX accident frequency than that of the POI-λTV , NB-λTV , POI-λMon and NB-λMon.

Table 5.22. Model GOF comparison among λ10Y , λTV and λMon

Test NB-λ10Y POI-λTV NB-λTV POI-λMon NB-λMon

AIC -190,744 (1) -177,914 (5) -179,842 (4) -183,714 (3) -186,532 (2)

BIC -190,670 (1) -177,610 (5) -179,738 (4) -183,587 (3) -186,191 (2)

PCS 65,796 (1) 121,715 (5) 119,133 (4) 118,511 (3) 115,634 (2)

DF 83,313 83,310 83,310 83,311 83,311

LL -2,596 (1) -2,722 (5) -2,703 (3) -2,705 (4) -2,683 (2)

Goodness score

(the lower, the better)
4 20 15 13 8
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5.6 Discussions

In this section, we will discuss the impact of variables considered in the λ10Y model on

SAL2 accident frequency in the following content.

It should be recalled that the corrected tra�c moment is more e�ective in estimating

automobile-involved LX accidents frequency compared with the conventional tra�c mo-

ment, single average daily railway tra�c or single average daily road tra�c. Moreover,

the higher the combined exposure of railway and roadway tra�c, the higher the likelihood

of an accident occurring. It should also be noted that the average daily railway tra�c

with a power of 0.646 has a more decisive impact on the LX accident frequency than

the average daily road tra�c with a power of 0.354, since the higher the railway tra�c

frequency appearing at SAL2 LXs, the much higher the SAL2 accident risk.

According to the aforementioned analyses, the form of λ10Y highlights the impact of

road accident factor FRAcc (cf. Tables 5.4, 5.5, 5.17, 5.18, 5.19 and 5.20, the impact

of FRAcc is neglected in λ10Poi, λ10NB, λTV and λMon models). The impact of road

accidents on the risk level was likely to be ignored in the previous studies related to LX

safety analysis. The present study has clearly shown that the accidents at LXs are above

all road accidents and they highly depend on the road safety level. Moreover, the road

accident factor in λ10Y model re�ects the time-dependent feature, since road accidents

have an annual variation (vary every year). Accordingly, the risk related to LX accidents

has an annual variation as well.

Among the LX characteristics, according to the sensitive degrees of variables ranked

in Table 5.3, the risk of LX accidents is most sensitive to the region LX-accident-prone

factor, followed by the road alignment, the LX width and the crossing length, successively.

We originally introduce the region LX-accident-prone factor (cf. Table 5.2) in this study

to interpret the variation of LX accident statistics with regard to various regions. In

many past studies, the impact of LX local region is neglected. In fact, the regional

accident history varies from one region to another, which correspondingly has varying

degrees of impact on the LX accident frequency in di�erent regions. Therefore, the region

LX-accident-prone factor should be considered as a main parameter when estimating LX

accident frequency in a wide area.

5.7 Summary

In this chapter, we set up an advanced accident frequency prediction model which takes

into account a variety of impacting factors. This model allows for predicting accident

occurrence with a considerably high accuracy and has a more appropriate form compared
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with the existing models pertaining to LX accident prediction (cf. Eq. (5.1) and (5.2)).

Moreover, such a model can be used to rank risky LXs, thus to identify LXs that are

expected to have high possibility of accident occurrence compared with other LXs. It

should also be noted that although the developed prediction model is tailored to SAL2

LX accidents in France, the general formula form of the model, the parameters considered

and the methodologies for setting up such a model and validating the model quality can

be advantageously applied to di�erent countries.

The main contributions of the study reported in this chapter can be exposed as follows:

1) The selection of the impacting factors is backed by a scienti�c process that allows for

identifying the important parameters to be considered and excluding the redundant

ones.

2) The region LX-accident-prone factor which can interpret the impact of regional

accident history on LX accident frequency is originally introduced in this study.

Moreover, the signi�cant impact of road accidents, generally ignored in the past

studies, is well considered in our study.

3) The corrected tra�c moment, a more e�ective factor, is proposed in the current

study to replace the conventional tra�c moment, single average daily railway tra�c

or single average daily road tra�c when interpreting the likelihood of automobile-

involved LX collisions.

4) A thorough and comprehensive validation process has been implemented. Namely,

various statistical approaches, i.e., the Monte-Carlo, AIC, BIC and PCS tests, are

adopted to ensure that the quality of λ10Y prediction model is statistically appro-

batory. On the other hand, the LL test, CDF analysis and predictive accuracy

analysis are conjunctively employed to determine the most appropriate statistical

distribution for predicting the probability of LX accident occurrence. In our study,

we �nd out that the NB distribution combined with λ10Y prediction model shows

high prediction performance. The results obtained by the aforementioned means

have allowed us to consider the developed model to be trustworthy and sound. Such

a thorough validation process is rarely achieved in existing related works.

5) A comparison between the present λ10Y model and other two existing reference mod-

els is performed, which o�ers a clear viewpoint that the λ10Y model is more e�ective

than the other two models when predicting LX accident frequency and ranking risky

LXs. Namely, the model set up the present study shows better prediction perfor-

mance than the two reference models considered.
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Overview

Now that we analyzed the motorist behavior factors (refer to chapter 4) and the static

factors (as explained in section 1.2, the dysfunction of the LX control system is not consid-

ered in the present study) considered in statistical accident prediction model (refer to Chap-

ter 5), we seek for a comprehensive approach to predict accident occurrence/consequences

and make cause diagnosis while considering the both kinds of in�uential factors altogether.

Therefore, in this chapter, a Bayesian network (BN) based framework for causal reasoning

related to risk analysis is proposed. It consists of a set of integrated stages, namely, risk

scenario de�nition, real �eld data collection and processing, BN model establishment and

model performance validation. In particular, causal structural constraints are introduced

to the framework for the purpose of combining empirical knowledge with data-driven, thus

to identify e�ective causalities and avoid inappropriate structural connections. Then, the

proposed framework is applied to risk analysis of LX accidents in France. In detail, the

BN risk model is established based on the real �eld data of LX accidents/incidents and the

model performance is validated. Moreover, forward inference and reverse inference based
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on the BN risk model are performed to predict LX accident occurrence and quantify the

contribution degree of various impacting factors respectively, so as to identify the most

in�uencing factors. Besides, in�uence strength and sensitivity analyses are further car-

ried out to scrutinize the in�uence strength of various causal factors on the LX accident

occurrence and determine which factors the LX accident occurrence is most sensitive to.

The work reported in this chapter corresponds to the publications on the journals

�Transportation Research Procedia� [Liang 2017c], �International Journal of Injury Con-

trol and Safety Promotion� [Liang 2018e], the conferences �RSSRail 2017� [Liang 2017a],

�CTS 2018� [Liang 2018a] and submitted journal paper on �IEEE Trans. on Intelligent

Transportation Systems� [Liang 2018b].
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This chapter is structured as follows: section 6.1 exposes a general introduction to

causal modeling techniques. Section 6.2 recalls the theory of probability which underlies

BNs. Section 6.3 elaborates each stage of the BNI-RR framework. Section 6.4 is dedicated

to the application of the BNI-RR framework to French LX risk analysis, particularly

establishing and validating the BN risk model. Section 6.5 analyzes and discusses the

outcomes of the BN risk model. Finally, section 6.6 o�ers the summary of this chapter.

6.1 Introduction

As investigated in chapter 2, there are a number of modeling techniques for risk analysis.

FTs [Ericson 1999] and ETs [Bear�eld 2005] are common techniques used for logical repre-

sentation of a system for the purpose of risk reasoning analysis. MCs [Malyshkina 2009],

PNs [Ghazel 2014] and FL [Niittymaki 1998] are also popular techniques for performing

risk analysis in recent years. However, these approaches are unable to identify causality

e�ectively.

Compared with the aforementioned modeling techniques, here we recall that BNs o�er

following interesting characteristics: �exibility of modeling, strong modeling power, high

computational e�ciency and, most importantly, the outstanding advantages involving the

conjunction of domain expertise and automatic structure/parameters learning, causal-

ity analysis based on both forward inference (deductive reasoning) and reverse inference

(abductive reasoning) [Weber 2012], as well as further in�uence and sensitivity analysis.

Therefore, in this chapter, a novel framework of Bayesian Network (BN) based Inference

for Risk Reasoning (BNI-RR) is proposed to deal with the analysis of accident causes and

consequences at LXs. Besides, this framework describes a general risk analysis process

that is not limited to the LX context and can be applied to other domains. Speci�cally,

the present study involves: 1) developing an e�ective modeling framework, BNI-RR, for

risk reasoning, which includes a set of comprehensive stages, i.e., risk scenario de�nition,

real �eld data collection and processing, BN model establishment and model performance

validation; 2) introducing causal structural constraints to the BNI-RR framework for the

purpose of combining empirical knowledge with automatic learning approaches, so as to

avoid inappropriate structural connections and highlight main causes; 3) developing BN

models and performing corresponding analysis for French LX risk scenario using the BNI-

RR framework, thus to identify potential impacting factors that contribute most to LX

accident occurrence. The underlying aim is to pave the way toward discovering practical

design measures and improvement recommendations to prevent accidents at LXs.
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6.2 Bayesian Network

A BN is a graphical model that can be characterized by its structure and a set of pa-

rameters known as conditional probability tables (CPTs) [Jensen 1996]. BN = (P,G),

where P represents the parameters of conditional probabilities assigned to the arcs, while

G de�nes the model structure. In fact, G = (N,L) is a Directed Acyclic Graph (DAG) that

comprised of a �nite set of nodes (N) linked by directed arcs (L). The nodes represent

random variables and directed arcs between pairs of nodes represent dependencies between

the variables. For instance, a three-variable BN is shown in Fig. 6.1. This net shows a

�V� structure while the conditional probabilities of states are de�ned in each node.

Node B1 Node B2

Node A

DAG

CPT in Node B1 CPT in Node B2

CPT in Node A

States of B1 and B2

States of A

P(A=1| B1=0, B2=1)

Fig. 6.1. An instance of a three-variable BN

The semantics of BN is based on the theory of probability. Assume that there is a set

of mutually exclusive events: B1, B2, . . . , Bn and a given event A such that P (A) can be

expressed as follows:

P (A) =

n∑
i=1

P (Bi)P (A|Bi) (6.1)

According to Bayes' formula:

P (Bi|A) =
P (Bi)P (A|Bi)∑n
j=1 P (Bj)P (A|Bj)

(6.2)
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Hence, Eq. (6.2) can be converted into:

P (Bi|A) =
P (Bi)P (A|Bi)

P (A)
(6.3)

Here, P (Bi) is called the prior probability, while P (Bi|A) is the posterior probability.

Therefore, when the CPTs of variables are given in a BN, the posterior probability can be

computed.

For any set of random variables in a BN, the joint distribution can be computed

through conditional probabilities using the chain rule as shown in Eq. (6.4):

P (X1 = x1, . . . , Xn = xn) =
n∏
v=1

P (Xv = xv|Xv+1 = xv+1, . . . , Xn = xn) (6.4)

Due to the conditional independence, Xv only relates to its parent node Pa(Xv) and

is independent of the other nodes. Hence, Eq. (6.4) can be rewritten as follows:

P (X1 = x1, . . . , Xn = xn) =
n∏
v=1

P (Xv = xv|Pa(Xv)) (6.5)

6.2.1 Modeling Tool

It is worthwhile to mention here that GeNIe [GeNIe 1999] is used as the BN modeling tool

to build our BN risk model and perform analyses related the BN risk model. This tool

o�ers interesting features in terms of graphical user interface and facility to operate and

modify BN models. Moreover, it integrates extended functions for further analysis based

on BN models.

Probability theory and decision theory supply tools for combining observations and

optimizing decisions. The users of GeNIe will notice that this important premise is re-

�ected in its functionality and, most importantly, its user interface. The principles of

decision-analytic decision support, implemented in GeNIe can be applied in practical de-

cision support systems (DSSs). In fact, quite a number of probabilistic decision support

systems have been developed, in which GeNIe plays the role of a developer's environment

and SMILE plays the role of the reasoning engine. A decision support system based on

SMILE can be equipped with a dedicated user interface.

GeNIe supports the following node types: Chance nodes, drawn as ovals, denote un-

certain variables.

Deterministic nodes, usually drawn as double-circles or double-ovals, represent either

constant values or values that are algebraically determined from the states of their parents.

In other words, if the values of their parents are known, then the value of a deterministic

node is also known with certainty. Deterministic nodes are quanti�ed similarly to Chance
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nodes. The only di�erence is that their probability tables contain all zeros and ones (note

that there is no uncertainty about the outcome of a deterministic node once all its parents

are known).

Decision nodes, drawn as rectangles, denote variables that are under decision maker's

control and are used to model decision maker's options. Decision nodes in GeNIe are

always discrete and speci�ed by a list of possible states/actions.

Value nodes (also called Utility nodes), drawn as hexagons, denote variables that

contain information about the decision maker's goals and objectives. They express the

decision maker's preferences over the outcomes over their direct predecessors.

Equation nodes, which are relatives of chance nodes, drawn as ovals with a wave

symbol, denoting that they can take continuous values. Instead of a conditional probability

distribution table, which describes the interaction of a discrete node with its parents, an

equation node contains an equation that describes the interaction of the equation node

with its parents. The equation can contain noise, which typically enters the equation in

form of a probability distribution.

Deterministic equation nodes, drawn as double ovals with a wave symbol, denote equa-

tion nodes without noise, i.e., they are either constants or equations that do not contain

a noise element. Once we know the states of their parents, the state of the child is, thus,

determined.

Submodel nodes, drawn as rounded rectangles, denote submodels, i.e., conceptually

related groups of variables. Submodel nodes are essentially holders for groups of nodes,

existing only for the purpose of the user interface, and helping with making models man-

ageable.

Arcs between nodes denote direct in�uences between them. One remark about editing

diagrams is that GeNIe does not allow moving arcs between nodes, i.e., it is not possible

to select and drag the head or the tail of an arc from one node to another. If this is

what you want, the way to accomplish this task is to �rst delete the original arc and

then create a new arc. These operations have serious consequences on the de�nitions of

the nodes pointed by the heads of the arcs, namely deleting an arc deletes a portion of

the de�nition of the node, adding an arc leads to a default extension of that de�nition.

GeNIe tries to minimize the impact of adding and deleting arcs in terms of changing the

conditional probability distributions. Whenever you add an arc, which amounts to adding

a dimension to the child variable's conditional probability table, GeNIe will duplicate the

current table, preserving the numbers from the original table. Whenever you delete an

arc, which amounts to reducing a dimension of the child variable's conditional probability

table, GeNIe will remove only a part of the table, preserving the rest.
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6.2.2 Bayesian inference

BNs allow for performing Bayesian inference, i.e., computing the impact of observing

values of a subset of the model variables on the probability distribution over the remaining

variables. For example, observing a set of symptoms, captured as variables in a medical

diagnostic model, allows for computing the probabilities of diseases captured by this model.

Bayesian inference, also referred to as Bayesian updating or belief updating, is based

on the numerical parameters captured in the model. The structure of the model, i.e., an

explicit statement of independences in the domain, helps in making the algorithms for

Bayesian updating more e�cient. All algorithms for Bayesian updating are based on a

theorem proposed by Rev. Thomas Bayes (1702-1761) and known as Bayes theorem.

Belief inference in Bayesian networks is computationally complex. In the worst case,

belief updating algorithms are NP-hard [Cooper 1990]. There exist several e�cient algo-

rithms, however, that make belief updating in graphs consisting of tens or hundreds of

variables tractable. [Pearl 1986] developed a message-passing scheme that updates the

probability distributions for each node in a Bayesian networks in response to observations

of one or more variables. [Lauritzen 1988] and [Dawid 1992] proposed an e�cient algo-

rithm that �rst transforms a Bayesian network into a tree where each node in the tree

corresponds to a subset of variables in the original graph. The algorithm then exploits

several mathematical properties of this tree to perform probabilistic inference. Several ap-

proximate algorithms based on stochastic sampling have been developed. Of these, best

known are probabilistic logic sampling [Lemmer 2014], likelihood sampling [Shachter 2013],

backward sampling [Fung 1994], Adaptive Importance Sampling (AIS) [Cheng 1997], and

quite likely the best stochastic sampling algorithm available at the moment, Evidence

Pre-propagation Importance Sampling (EPIS) [Yuan 2002]. Approximate belief updating

in Bayesian networks has been also shown to be worst-case NP-hard [Dagum 1993]. In

most practical networks of the size of tens or hundreds of nodes, Bayesian updating is

rapid and takes between a fraction of a second and a few seconds.

6.2.3 Decision support systems

Decision analysis is the art and practice of decision theory, an axiomatic theory prescribing

how decisions should be made. Decision analysis is based on the premise that humans

are reasonably capable of framing a decision problem, listing possible decision options,

determining relevant factors, and quantifying uncertainty and preferences, but are rather

weak in combining this information into a rational decision. Decision analysis comes with

a set of empirically tested tools for framing decisions, structuring decision problems, quan-

tifying uncertainty and preferences, discovering those factors in a decision model that are
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critical for the decision, and computing the value of information that reduces uncertainty.

While decision analysis is based on two quantitative theories, namely probability theory

and decision theory, whose foundations are qualitative and based on axioms of rational

choice. The purpose of decision analysis is to gain insight into a decision and not to obtain

a recommendation.

Probabilistic decision support systems (DSSs), applicable to problems involving clas-

si�cation, prediction, and diagnosis, are a new generation of systems that are capable

of modeling any real-world decision problem using theoretically sound and practically

invaluable methods of probability theory and decision theory. Based on graphical repre-

sentation of the problem structure, these systems allow for combining expert opinions with

frequency data, gather, manage, and process information to arrive at intelligent solutions.

Probabilistic DSSs are based on a philosophically di�erent principle than rule-based expert

systems. While the latter attempt to model the reasoning of a human expert, the former

use an axiomatic theory to perform computation. The soundness of probability theory

provides a clear advantage over rule-based systems that usually represent uncertainty in

an ad-hoc manner, such as using certainty factors, leading to under-responsiveness or

over-responsiveness to evidence and possibly incorrect conclusions. Probabilistic DSSs are

applicable in many domains, among others in medicine (e.g., diagnosis, therapy planning),

banking (e.g., credit authorization, fraud detection), insurance (e.g., risk analysis, fraud

detection), military (e.g., target detection and prioritization, battle damage assessment,

campaign planning), engineering (e.g., process control, machine and process diagnosis),

and business (e.g., strategic planning, risk analysis, market analysis).

6.2.4 Probability

Decision theoretic and decision analytic methods quantify uncertainty by probability. It

is quite important for a decision modeler to understand the meaning of probability. There

are three fundamental interpretations of probability:

- Frequentist interpretation Probability of an event in this view is de�ned as the

limiting frequency of occurrence of this event in an in�nite number of trials. For

example, the probability of heads in a single coin toss is the proportion of heads in

an in�nite number of coin tosses.

- Propensity interpretation Probability of an event in this view is determined by phys-

ical, objective properties of the object or the process generating the event. For ex-

ample, the probability of heads in a single coin toss is determined by the physical

properties of the coin, such as its �at symmetric shape and its two sides.
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- Subjectivist interpretation The frequentist and the propensity views of probability

are known as objectivist as they assume that the probability is an objective property

of the physical world. In the subjectivist, also known as Bayesian interpretation,

probability of an event is subjective to personal measure of the belief in that event

occurring.

While the above three interpretations of probability are theoretical and subject to

discussions and controversies in the domain of philosophy, they have serious implications

on the practice of decision analysis. The �rst two views, known collectively as objectivist,

are impractical for most real world decision problems. In the frequentist view, in order

for a probability to be a meaningful measure of uncertainty, it is necessary that we deal

with a process that is or at least can be imagined as repetitive in nature. While coin

tosses provide such a process, uncertainty related to nuclear war is a rather hard case -

there have been no nuclear wars in the past and even their repetition is rather hard to

imagine. Obviously, for a su�ciently complex process, such as circumstances leading to

a nuclear war, it is not easy to make an argument based on physical considerations. The

subjectivist view gives us a tool for dealing with such problems and is the view embraced

by decision analysis.

The subjectivist view interprets probability as a measure of personal belief. It is

legitimate in this view to believe that the probability of heads in a single coin toss is

0.3, just as it is legitimate to believe that it is 0.5 as long as one does not violate the

axioms of probability, such as one stating that the sum of probabilities of an event and its

complement is equal to 1.0. It is also legitimate to put a measure of uncertainty on the

event of nuclear war. Furthermore, this measure, a personal belief in the event, can vary

among various individuals. While this sounds perhaps like a little too much freedom, this

view comes with a rule for updating probability in light of new observations, known as

Bayes theorem. There exist limits theorems that prove that if Bayes theorem is used for

updating the degree of belief, this degree of belief will converge to the limiting frequency

regardless of the actual value of the initial degree of belief (as long as it is not extreme in

the sense of being exactly zero or exactly one). While these theorems give guarantees in

the in�nity, a reasonable prior belief will lead to a much faster convergence.

The subjectivist view makes it natural to combine frequency data with expert judg-

ment. Numerical probabilities can be extracted from databases, can be based on expert

judgment, or a combination of both. Obtaining numbers for probabilistic and decision-

theoretic models is not really di�cult. The process of measuring the degree of belief is

referred to as a probability assessment. Various decision-analytic methods are available

for probability assessment.
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6.2.5 Discrete and continuous variables

One of the most fundamental properties of variables is their domain, i.e., the set of values

that they can assume. While there is an in�nite number of possible domains, they can be

divided into two basic classes: discrete and continuous.

Discrete variables describe a �nite set of conditions and take values from a �nite,

usually small, set of states. An example of a discrete variable is Success of the venture,

de�ned in the tutorial on Bayesian networks. This variable can take two values: Success

and Failure. Another example might be a variable Hepatitis-B, assuming values True and

False. Yet another is Financial gain assuming three values: $10K, $20K, and $50K.

Continuous variables can assume an in�nite number of values. An example of a contin-

uous variable is Body temperature, assuming any value between 30 and 45 degrees Celsius.

Another might be Financial gain, assuming any monetary value between zero and $50K.

Most algorithms for Bayesian networks are designed for discrete variables. To take

advantage of these algorithms, most Bayesian network and in�uence diagram models in-

clude discrete variables or conceptually continuous variables that have been discretized

for the purpose of reasoning. While the distinction between discrete and continuous vari-

ables is clear, the distinction between discrete and continuous quantities is rather vague.

Many quantities can be represented as both discrete and continuous. Discrete variables

are usually convenient approximations of real world quantities, su�cient for the purpose

of reasoning. And so, success of a venture might be represented by a continuous variable

expressing the �nancial gain or stock price, but it can also be discretized to [Good, Mod-

erate, Bad] or to [$5, $20, $50] price per share. Body temperature might be continuous

but can be also discretized as Low, Normal, Fever, High fever. Experience in decision

analytic modeling has taught that representing continuous variables by their three to �ve

point discrete approximations perform very well in most cases.

6.2.6 BN learning

Parameter learning

Parameter learning is the process of using data to learn the distributions of a BN.

GeNIe can estimate parameters of BNs using Expectation Maximization (EM) algorithm

perform Maximum Likelihood (ML) [Dempster 1977] for a given structure. In the most

general parameterization, when the data are fully observed, the ML estimation problem

decomposes into independent sub-problems associated with each CPT.

Structural learning

Structural learning is the process of using data to learn the links of a BN. There are

six classical structure learning approaches that are widely used to build BN structures:
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1) The Bayesian Search (BS) algorithm is one of the earliest and the most popular

algorithms used. It was introduced in [Cooper 2007] and later was re�ned in [Heck-

erman 1995]. It follows essentially a hill climbing procedure, generally guided by a

scoring heuristic, with random restarts.

2) The Essential Graph Search (EGS) algorithm, proposed in [Dash 1999], performs a

search for essential graphs based on a combination of the constraint-based search

and BS approach.

3) The Greedy Thick Thinning (GTT) algorithm performs based on the BS approach

and has been described in [Cheng 1997]. GTT starts with an empty graph and

repeatedly adds the arc (without creating a cycle) that maximally increases the

marginal likelihood until no arc addition results in a positive increase (thickening

phase). Then, it repeatedly removes arcs until no arc deletion results in a positive

increase in the marginal likelihood (thinning phase).

4) The Naïve Bayes approach [Good 1966] creates a Bayesian network including its

structure and parameters, directly from data. In fact, the structure of a Naïve

Bayes network is not learned but rather �xed by an assumption: the class variable is

the only parent of all remaining feature variables and there are no other connections

between the nodes of the network. Note that the Naïve Bayes structure assumes

that the feature variables are independent conditional on the class parent variable,

which leads to inaccuracies when they are not independent in reality.

5) The Augmented Naïve Bayes (ANB) algorithm is a semi-naive structure learning

method based on the BS approach [Friedman 1997]. The ANB algorithm starts with

a Naïve Bayes structure (i.e., the class variable is the only parent of all remaining

feature variables) and adds connections between the feature variables to account for

possible dependence between them and conditional on the class variable. There is

no limit on the number of additional connections between the feature variables. The

ANB algorithm is simple and has been found to perform reliably better than Naïve

Bayes.

6) The Tree Augmented Naïve Bayes (TAN) algorithm is also a semi-naive structure

learning method based on the BS approach [Friedman 1997]. Compared with The

ANB algorithm, The TAN algorithm imposes the limit of only one additional parent

of each feature variable (additional to the initial class variable that is the parent

of every feature variable). The TAN algorithm is simple and performs better than

Naïve Bayes as well.
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6.2.7 Strength of in�uence

In fact, interactions between pairs of variables, denoted by directed arcs, may have di�erent

strength. It is often of interest to the modeler to visualize the strength of these interactions.

GeNIe o�ers a functionality that pictures the strength of interactions by means of arc

thickness. This is especially useful in the model building and testing phase. Model builders

or experts can verify whether the thickness of arrows corresponds to their intuition. If

not, this o�ers an opportunity to modify the parameters accordingly.

The strength of in�uence can be visualized by automatically varying the thickness

of the arc connecting the nodes through GeNIe. It is quite intuitive to draw a thicker

arc when the in�uence is strong. Thickness of arcs can be based on one of the three:

Average (default), Maximum, and Weighted. Maximum uses the largest distance between

distributions, Average takes the plain average over distances, and Weighted weighs the

distances by the marginal probability of the parent node. There are two modes of strength

of in�uences, namely the normalized and non-normalized mode. In normalized mode, the

thickest possible arc is given to that arc that has the highest strength of in�uence. The

thicknesses of all other arcs are calculated proportionally to the thickest arc. In the non-

normalized mode (default), thickness is based on the absolute value of the distance.

6.2.8 Sensitivity analysis

Sensitivity analysis [Castillo 1997] is technique that can help validate the probability

parameters of a Bayesian network. This is done by investigating the e�ect of small changes

in numerical parameters (i.e., probabilities) on the output parameters (e.g., posterior

probabilities). Highly sensitive parameters a�ect the reasoning results more signi�cantly.

Identifying them allows for a directed allocation of e�ort in order to obtain accurate results

of a Bayesian network model.

GeNIe implements an algorithm proposed by [Kjærul� 2000] that performs simple sen-

sitivity analysis in Bayesian networks. Roughly speaking, given a set of target nodes, the

algorithm calculates e�ciently a complete set of derivatives of the posterior probability

distributions over the target nodes over each of the numerical parameters of the Bayesian

network. These derivatives give an indication of importance of precision of network numer-

ical parameters for calculating the posterior probabilities of the targets. If the derivative

is large for a parameter P , then a small deviation in P may lead to a large di�erence in

the posteriors of the targets. If the derivative is small, then even large deviations in the

parameter make little di�erence in the posteriors.
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6.3 BNI-RR framework

A modeling paradigm should view an in�uential network not merely as passive parsimo-

nious codes for storing factual knowledge, but also as a computational architecture for

reasoning about the knowledge. It means that the links in the network should be treated

as the only pathways and activation units that direct and propel the �ow of data in the

process of querying and updating causal knowledge. In this section, while having in mind

this principle, the BNI-RR framework is proposed. The BNI-RR framework can be il-

lustrated as shown in Fig. 6.2. Namely, the process of BNI-RR approach consists of the

following stages:

Risk scenario

Accident/incident
database

Model parameters:
CPTs

Model
structure

Risk scenario
definition

Real field data
collection and
processing

BN model
Establishment

Causality discovery:
preliminary structure

learning

Causality optimizing:
causality constraints/

expert knowledge

Parameters
definition

Model
performance
validation

ROC/AUC

V 0 1
? ?

Fig. 6.2. The BNI-RR framework

1) Risk scenario de�nition: before performing risk analysis and in order to set the

research target, a clear de�nition of the risk scenario boundary must be achieved.

One should focus on this de�ned risk scenario to ensure that the follow-up study

does not deviate from the original intention.

2) Real �eld data collection and processing: for risk analysis and cause diagnosis, real
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�eld data related to the de�ned risk scenario need to be collected. These data should

be recorded in a workable database and used as the basis of data processing. Data

processing includes data merging/cleansing and data discretization, which is the

basis of parameters learning and CPT de�nition.

3) BN model establishment: on the one hand, the model structure is constructed with

regard to the combination of automatic structure learning and causality constraints

derived from expert knowledge (cf. 6.3.1). On the other hand, the model CPTs are

generated based on the post-processing �eld data. Model structure constructing in

this stage will be elaborated in section 6.3.1.

4) Model validation: the Receiver Operating Characteristic (ROC) curve and the Area

Under the ROC Curve (AUC) [Hanley 1982] are adopted to validate the model

performance of prediction. The ROC curve is a two-dimensional graph that can

be obtained by plotting the true positive rate (TPR) (Y-axis) against the false

positive rate (FPR) (X-axis) at various threshold settings [Powers 2011]. The TPR

is known as the sensitivity, the recall or the probability of detection in machine

learning. The FPR is known as the fall-out or the probability of false alarm. The

ROC curve thus depicts relative trade-o�s between bene�ts (true positives) and costs

(false positives). In order to facilitate the evaluation of classi�er performance, one

may want to reduce ROC performance to a single scalar value that can represent the

expected performance. A common method is to calculate the AUC which is a portion

of the area of a unit square, and the value of which falls into the interval between

0 and 1. When using normalized units, the AUC is equal to the probability that

a classi�er will rank a randomly chosen positive instance higher than a randomly

chosen negative one. The ROC curve of a �nite set of samples is based on a step

function, and its AUC can be computed by the normalized Wilcoxon-Mann-Whitney

(WMW) statistic [Yan 2003]:

AUC =

∑m
i=1

∑n
j=1 I(xi, yj)

m× n
(6.6)

where xi, i = 1, . . . ,m, is the sample of positive classi�er outputs; yj , j = 1, . . . , n,

is the sample of negative classi�er outputs and

I(xi, yj) =

{
1, xi > yj

0, otherwise
(6.7)

is based on pairwise comparisons between xi and yj .



Chapter 6. Bayesian network based framework for LX risk reasoning 141

6.3.1 BN model structure constructing

6.3.1.1 Causality discovery

As shown in Fig. 6.3, causality is the relationship between a cause and a consequence.

Identifying such causal relationships is a crucial issue in the process of risk reasoning. In

particular, a functional intelligent decision/prediction model should have the ability of

making reasoning based on causal knowledge.

Causes
Hazards

Consequences
Accidents

Causality

Forward inference

Reverse inference

Fig. 6.3. Reasoning between causes and consequences

For instance, in railways, potential hazards such as human errors and environment

aspects, may lead to incidents/accidents. Taking human errors for example, this can be

expressed as a rule IF human errors occur, THEN accidents may occur. Therefore, the

DAG GC of a causal network can be interpreted by a causal semantics as follows:

GC = {IF, THEN,CAK} (6.8)

where:

GC is a 3-tuple causal DAG;

IF is a set of causes, IF = {x1, x2, . . . , xn};

THEN is a set of consequences caused by the causes in IF , THEN =

{y1, y2, . . . , ym};

CAK represents the CAusal Knowledge, which is a set of directed pairs of the cause

xi ∈ IF and the corresponding consequence yj ∈ THEN : CAK = {(xi, yj)|xi ∈
IF, i = 1, 2, . . . , n; yj ∈ THEN, j = 1, 2, . . . ,m} while note that (xi, yj) is a directed

variable pair that de�nes the structure of GC : xi → yj and cannot be reversed, which

re�ects the causal relationship between xi and yj at the same time. For example, in

Fig. 6.1, GC = {IF = {B1, B2}, THEN = {A}, CAK = {(B1, A), (B2, A)}}.
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Hence, by considering the causality in the BN, the states of the target variable can

be predicted even when the states of the other factors are changed. More importantly,

once a given state of the target variable is observed, the contribution of the impacting

factors can be assessed. In practice, preliminary causality can be discovered through the

six automatic structure learning mentioned in 6.2.6.

6.3.1.2 Causality optimizing

In terms of causal reasoning, one can notice that model structures learned based on the

aforementioned approaches are often preliminary, even make no sense of reasonability.

These preliminary structures are inconsistent with the causal relationships in reality, and

in some cases, some connections are more likely correlations rather than causalities in

reality and impede identi�cation of important causes. Causalities can be identi�ed from

correlations, however, causalities are not equal to correlations. Many previous methods

cannot achieve this important issue; therefore, causality optimizing is indispensable to be

performed based on causal constraints, for the purpose of �nely distinguishing causalities

from correlations.

Pearl and Verma have stated that an intelligent modeling system should have the com-

petence of translating direct observations to cause-e�ect relationships. Moreover, expert

knowledge is signi�cant to distinguish causalities from correlations in terms of causa-

tion [Pearl 1995]. Therefore, causal structural constraints [De Campos 2007] (CSCs) gen-

erated from expert knowledge are adopted to achieve causality optimizing in the present

study.

In general, there are 3 types of directed CSCs of BNs: Existence Constraint (EC),

Forbidden Constraint (FC), and Potential Directed Constraint (PDC). For instance, given

a BN N and two variables x and y of N , based on the de�nition of CAK, an EC (x, y)e

means that there must be a direct connection from x to y; an FC (x, y)f means that there

must not be a direct connection from x to y; a PDC (x, y)p means that if there exists

a direct connection between x and y, it should be from x to y, while from y to x is not

allowed. Utilizing PDCs can control constraint granularity and be perspicuous to describe

a contrary edge orientation to inappropriate automatic learning structure.

To sum up, adopting jointly the above directed CSCs can e�ectively perform com-

bination of automatic structure learning from observational data and expert knowledge.

The detailed advantages are three-fold: 1) identifying unknown but potentially valuable

causalities, especially when samples are limited, 2) verifying the already known causalities,

and 3) avoiding inappropriate connections to facilitate highlighting main causes.
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6.4 Application

In this section, the BNI-RR framework is applied to the risk analysis of French LXs.

The risk analysis is carried out based on the real �eld accident/incident data collected by

SNCF. In the sequel, we will discuss the various steps of the framework.

6.4.1 Risk scenario de�nition

As stated in chapter 1, we need to recall that �as shown in Table 1.1, SAL2 (more than

10,000) is the most widely used type of LX in France according to the LX data recorded

by SNCF. Moreover, the accident/incident records show that more than 4,000 accidents

at SAL2 contributed most to the total number of accidents at LXs from 1974 to 2014. In

addition, according to SNCF statistics, the accidents at SAL2 LXs can be considered as the

most representative for LX accidents in general. Besides, being given the number of SAL2

LXs, dealing with this LX category constitutes a priority issue for SNCF. On the other

hand, according to the previous statistical analysis, one can notice that the motorized

vehicle is the main transport mode causing accidents at LXs [Liang 2017c, Liang 2018d].

Considering the train/motorized vehicle (train-MV) collisions, SAL2 LXs also have the

most accidents from 1978 to 2013 [Liang 2017c].� Therefore, in what follows, we consider

the risk scenario corresponding to the situation where the �motorized vehicles cross SAL2

LXs when trains are approaching�.

6.4.2 Data collection and processing

The approach for causal inference in the present study is based on �eld-observational-

data. For the main purpose of assessing risk level and diagnosing causes, real �eld acci-

dent/incident data related to the de�ned risk scenario need to be collected. This is an

important preparatory stage that is required prior to the establishment of the BN model.

It should be noted that, in terms of ethics approval, the data collected in the present study

do not hold any personal or private aspects.

SNCF Réseau investigated and recorded various attributes of LX accidents/incidents,

such as railway and roadway tra�c characteristics, surrounding characteristics of LXs and

then, provided two accident/incident databases to support our study. The �rst database

(D1) records the accident/incident data that cover SAL2 LXs in mainland France from

1990 to 2013. From D1, the sub-dataset (SD1) including the data ranging in the decade

from 2004 to 2013 is selected, which provides reliable and su�cient information about

both LX accidents and static railway, roadway and LX characteristics (considered as per-

manent characteristics related to LXs). Namely, the selected LX inventory presents the
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LX identi�cation number, the LX accident timestamp, the railway line involved, the LX

kilometer point, the average daily railway tra�c, the average daily road tra�c, the rail

speed limit, the LX length and width, the pro�le and alignment of the entered road and

geographic region involved. There are 8,332 public SAL2 LXs included in SD1.

According to the statistics, the majority of train-MV accidents at LXs are caused by

motorist violations. Due to the lack of accident causes in SD1, causal reasoning analysis

cannot be performed with regard to the static factors and motorist behavior. Therefore,

we need to utilize another database which records detailed accident causes. Fortunately,

the second database (D2) contains the information about SAL2 LX accidents during the

period from 2010 to 2013, namely, the LX identi�cation number, the railway line involved,

fatalities, injuries, and accident causes (including static factors and inappropriate mo-

torist behavior). Thus, using the LX ID and the railway line ID, data merging of these

two databases is carried out to create a new database (ND) containing the LX accident

information, static railway, roadway and LX characteristics, the number of fatalities and

injuries, and accident causes related to static factors and motorist behavior. This com-

bined database ND covers LX accidents during a period of 4 years from 2010 to 2013,

which forms the basis of our present study.

The accident causes were classi�ed into three levels: primary, secondary and third-

level causes. The various causes considered in this study are shown in Table 6.1. It

should be noted that corrected moment (CM) which is a secondary cause, is a variant of

the conventional tra�c moment (refer to 5.3.1). Moreover, data discretization is applied

on continuous causal variables. Namely, the continuous causal variables, i.e., �Average

Daily Road Tra�c�, �Average Daily Railway Tra�c�, �Railway Speed Limit�, �LX Width�,

�Crossing Length� and �Corrected Moment�, are divided into 3 groups such that each group

has the same number of samples, based on the expert judgment and for the purpose of

avoiding over-size model. As for the �Region Risk� factors corresponding to 21 regions in

mainland France, they are divided into 3 groups as well, ranked according to the risk level

in descending order, and each group contains 7 region risk factors, based on the expert

judgment. As for the �nite discrete causal variables, i.e., �Alignment�, �Pro�le�, �Stall on

LX�, �Zigzag Violation�, �Blocked on LX� and �Stop on LX�, we allocate an individual

state to each value of the variable.

6.4.3 BN modeling

In the subsequent sections, we will go through the various steps of the BN model devel-

opment.
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Table 6.1. Accident causal factors

Primary

causes (PriC)

Secondary

causes (SC)

Third-level causes

(TC)

Explanation

Static Factors

Corrected

Moment (CM)

Average Daily Rail-

way Tra�c (T)

CM = V 0.354 × T 0.646;

Average Daily Road

Tra�c (V)

Railway Speed

Limit

The maximum permission speed of

train within the LX section;

Alignment Horizontal road alignment shape:

�straight�, �curve� or �S�;

Pro�le Vertical road pro�le shape: �nor-

mal� or �hump or cavity�;

LX width The entered road width;

Crossing Length The length of LX that road vehi-

cles need to cross;

Region Risk Highlighting the general LX-

accident-prone region:

The number of SAL2 accidents

over the observation period in

the region considered/The

number of SAL2 LXs in the

region considered;

Inappropriate

Motorist Behavior

Stall on LX Blocked on LX A vehicle is blocked on the SAL2

LX by the external environment;

Stop on LX A motorist intentionally stops the

vehicle on the SAL2 LX;

Zigzag Violation A vehicle skirts the half barriers to

cross the SAL2 LX;

6.4.3.1 Variable de�nition

Based on the combined database ND, the pre-processed data of causal variables aforemen-

tioned in section 6.4.2 are organized as input sources which will be used to generate the

CPTs of our BN risk model. On the other hand, consequence variables, i.e., �Fatalities�,

�Severe Injuries� and �Minor Injuries�, are de�ned respectively with two states according

to the domain expertise and the coe�cient of variation (StdDev/Mean) [Reed 2002] of the

three variables. Table 6.2 shows the statistical characterization of the numerical variables

considered.
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Table 6.2. Statistical characterization of numerical variables

Variable Mean Min Max StdDev

Annual Accident 0.0057 0 2 0.0776

Corrected Moment 51.4744 1.2781 938.5449 61.1367

Average Daily Railway Tra�c 26.0636 0.5000 330 30.2413

Average Daily Road Tra�c 826.8022 0.5700 2.5570e+04 1.7810e+03

Railway Speed Limit 92.4599 5 160 42.3829

Length 9.6766 3 59 3.8671

Width 5.4504 2 24 1.3569

Region Risk 0.3487 0.1739 0.7747 0.1194

Fatalities 0.2511 0 4 0.3543

Severe Injuries 0.2134 0 5 0.4867

Minor Injuries 0.5546 0 39 1.6162

Besides, in our BN risk model, an additional variable corresponding to the consequence

severity [50126 1999] is de�ned according to the number of fatalities and injuries in a

given SAL2 accident, based on the accident/incident statistics and expert judgment. The

de�nition of consequence severity pertaining to an SAL2 accident is illustrated in Table 6.3.

Five levels of consequence severity are set according to the number of fatalities, severe

injuries and minor injuries caused by the accident, respectively. The consequence severity

increases progressively from level 1 to 5. Thus, a summary of the states corresponding to

Table 6.3. De�nition of consequence severity classi�cation

Consequence severity Level 1 Level 2 Level 3 Level 4 Level 5

0 = fatalities, 0 ≤ severe injuries

< 2, 0 ≤ minor injuries < 3;

× � � � �

0 = fatalities, 0 ≤ severe injuries

< 2, 3 ≤ minor injuries;

� × � � �

0 = fatalities, 2 ≤ severe in-

juries, 0 ≤ minor injuries < 3;

� � × � �

0 = fatalities, 2 ≤ severe in-

juries, 3 ≤ minor injuries;

� � � × �

0 < fatalities; � � � � ×

each node in the BN risk model is given in Table 6.4.
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Fig. 6.4. CSCs identi�ed for the BN risk model

6.4.3.2 Model structure establishment

In this stage, CSCs are adopted to set up our BN risk model. As shown in Table 6.1,

the causal variables considered fall into two types: static factors (representing contextual

information regarding LX characteristics, railway tra�c characteristics, road tra�c char-

acteristics, cf. Table 5.2) and motorist behavior related factors. We �rstly identify the

internal CSCs within static factors and motorist behavior factors, respectively. Further-

more, it is worth noticing that there are some potential connections between static factors

and motorist behavior. SNCF experts provide their knowledge about CSCs between these

two types of factors, while checking the potential causal relationships. Therefore, the

whole CSCs are identi�ed as shown in Fig. 6.4. In this �gure, blue, red and green arcs

represent ECs, FCs and PDCs, respectively. Note that the �Consequence Severity� shown

in Table 6.4 is a Deterministic node that is not considered in the process of CSC identi�ca-

tion. In order to show these CSCs more clearly, we list them in Table 6.5. PDCs and some

FCs are suggested by SNCF experts. With these CSCs, the �nal BN risk model is gener-

ated as shown in Fig. 6.8. In addition, CPTs are generated based on the post-processing

real �eld accident/incident data.
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Table 6.4. States of nodes in the BN risk model

Node name Node property Node state

TC nodes

Average Daily Railway

Tra�c (ADRT)

Chance node

ADRT_below_9 (0 ≤ ADRT < 9),

ADRT_9_25 (9 ≤ ADRT < 25),

ADRT_25_up (25 ≤ ADRT);

Average Daily Road

Vehicle (ADRV)

Chance node

ADRV_below_72 (0 ≤ ADRV < 72),

ADRV_72_403 (72 ≤ ADRV < 403),

ADRV_403_up (403 ≤ ADRV);

Blocked on LX (B) Chance node True, False;

Stop on LX (Stop) Chance node True, False;

SC nodes

Corrected Moment

(CM)

Chance node

CM_below_19 (0 ≤ CM < 19),

CM_19_49 (19 ≤ CM < 49),

CM_49_up (49 ≤ CM);

Railway Speed Limit

(RLS)

Chance node

RLS_below_70 (0 km/h ≤ RLS < 70 km/h),

RLS_70_110 (70 km/h ≤ RLS < 110 km/h),

RLS_110_up (110 km/h ≤ RLS);

Alignment (A) Chance node Straight, C_shape, S_shape;

Pro�le (P) Chance node Normal, Hump_cavity;

Width (W) Chance node

W_below_5 (0 m ≤ W < 5 m),

W_5_6 (5 m ≤ W < 6 m),

W_6_up (6 m ≤ W);

Length (L) Chance node

L_below_7 (0 m ≤ L < 7 m),

L_7_11 (7 m ≤ L < 11 m),

L_11_up (11 m ≤ L);

Region Risk (R) Chance node

R_low (region with low risk level),

R_medial (region with medial risk level),

R_high (region with high risk level);

Stall on LX (Stall) Chance node True, False;

Zigzag Violation (ZV) Chance node True, False;

PriC nodes

Motorist Behavior Ac-

cident (MB)

Chance node True, False;

Static Factor Accident

(SF)

Chance node True, False;

Consequence nodes

SAL2 MV Accident

(SA)

Chance node True, False;

Fatalities (F) Chance node F_0 (F = 0), F_0_up (0 < F);

Severe Injuries (S) Chance node S_0_2 (0 ≤ S < 2), S_2_up (2 ≤ S);

Minor Injuries (M) Chance node M_0_3 (0 ≤ M < 3), M_3_up (3 ≤ M);

Consequence Severity

(CS)

Deterministic

node

Level_1, Level_2, Level_3, Level_4,

Level_5;
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One can notice that, as shown in Fig. 6.8, the BN risk model contains two layers:

1) Layer 1 is used for diagnosing in�uential factors; 2) Layer 2 is used for evaluating

consequences related to LX accidents. The �SAL2 MV Accident� node colored in yellow is

the key node connecting the two layers, as well as the target node of accident prediction.

In Layer 1, we split the network into 2 sub-networks: the static factor related network

(SFN) and the motorist behavior factor related network (MBFN).

6.4.4 Model performance validation

Now that the BN structure is set up, we need to deal with model validation. In this

section, ROC and AUC are adopted to evaluate the prediction performance of the present

BN risk model. Regarding the AUC test, we should recall the following:

1) If AUC = 1, it is a perfect prediction model. When using it, a perfect prediction

can be obtained with at least one threshold value.

2) If 0.5 < AUC < 1, it is better than random guessing and has relatively sound

predictive value.

3) If AUC = 0.5, it is the same as random guessing, for example, throwing coin, thus,

this model has no predictive value.

4) Otherwise, AUC< 0.5, it is worse than random guessing and valueless; but obviously,

for the reverse-prediction, it is better than random guessing.

Therefore, one can notice that the ideal perfect ROC curve (cf. section 6.3) is the point

(0, 1). Moreover, the closer the AUC to 1, the better the performance of a prediction

model.

Besides, the K-fold cross-validation method is used to perform validation [GeNIe 1999]

(the Deterministic node should be excluded when performing validation). Here, we set

K=2, namely, the data set is divided into two parts of equal size (16664 samples) and

the �rst part is used for parameters training, while the second part is used for validation.

In our BN risk model, �SAL2 MV Accident�, �Fatalities�, �Severe Injuries� and �Minor

Injuries� are the targeted prediction nodes which we care about. Therefore, we o�er the

ROC analysis of these 4 nodes in Fig. 6.5. The dash diagonal line indicates a baseline

ROC curve for a predictor that is valuable when its real ROC curve is above this line.

One can notice that the ROC curves respectively for �SAL2 MV Accident = True�, �SAL2

MV Accident = False�, �Minor Injuries = M_0_3�, �Minor Injuries = M_3_up�, �Severe

Injuries = S_0_2�, �Severe Injuries = S_2_up�, �Fatalities = F_0� and �Fatalities =

F_0_up� are all above the baseline. Moreover, the AUC values for the 8 states of the 4
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nodes are all between 0.9 and 1 (>> 0.5). Although the above results show signi�cantly

good performance for prediction of the BN model, we have been wondering whether this

is not due to the fact that there are many �zero� accidents in reality. Therefore, a further

analysis aimed to validate the model performance for prediction of �non-zero� accidents

and their related consequence needs to be performed (refer to Table 6.7).

(a) The ROC for �SAL2 MV Accident =

True�

(b) The ROC for �SAL2 MV Accident =

False�

(c) The ROC for �Minor Injuries = M_0_3�(d) The ROC for �Minor Injuries = M_3_up�
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(e) The ROC for �Severe Injuries = S_0_2� (f) The ROC for �Severe Injuries = S_2_up�

(g) The ROC for �Fatalities = F_0� (h) The ROC for �Fatalities = F_0_up�

Fig. 6.5. The ROC curves for the 4 targeted nodes

Further comparison related to the prediction performance of the 4 nodes is performed

between our BN model and the BN models automatically generated by BS, EGS, GTT,

Naïve Bayes, ANB and TAN. As shown in Table 6.6, through investigating the results

of the other 6 learning approaches, the entire accuracy and AUC values of our proposed

model are clearly better than those of the other 6 learning approaches.
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Moreover, the prediction accuracy for accident/consequence occurrence is investigated

to further compare the prediction performance between our model and the 6 traditional

learning approaches. As shown in Table 6.7, the accuracy values for �SA = False�/�SA =

True� (1/0.9622), �F = 0�/�F = 0_up� (1/0.9020), �S = 0_2�/�S = 2_up� (1/0.6) and �M

= 0_3�/�M = 3_up� (1/0.75) of our model are relatively higher than those of the other 6

learning approaches. Note that the sample size of single accident related to �severe injuries

more than 2� and �minor injuries more than 3� is small in reality, which lead to the lower

accuracy compared with the accuracy of �SA = True� and �F = 0_up�.
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The better performance of our proposed model is mainly attributed to the incorpora-

tion of expert knowledge and preliminary causality identi�cation. Indeed, this signi�cantly

reduces the negative e�ect of trivial correlations and improves the reliability of the iden-

ti�ed causal relationships among the variables considered. Therefore, these validation

results indicate that our BN risk model has relatively sound prediction performance and

allow us to consider the outcomes of the model to be trustworthy. Besides, this attests

that the proposed BNI-RR framework promotes the e�ciency of risk analysis.

6.5 Analysis and discussion

In this section, we will illustrate how the BNI-RR framework can be advantageously worked

out to perform risk analysis on LXs. We should mention that the aspects discussed in the

sequel do not represent the exhaustive capabilities through our framework, and should be

regarded as illustrations.

6.5.1 Forward and reverse inferences

Based on the BN risk model, one can estimate the probability of a train-MV accident

occurring at an SAL2 LX through forward inference. As shown in Fig. 6.6, the general

probability of a train-MV accident occurring at an SAL2 over the four years in�uenced

by the interaction of all the factors considered, is estimated as almost 0.0061. As an

illustration, the probability of a train-MV accident caused by static factors is about 0.0011

and the probability of a train-MV accident caused by inappropriate motorist behavior is

about 0.0049. Moreover, fatalities and severe injuries caused by the accident are, to a

large extent, fewer than 1 and 2, respectively (P (F = F_0) = 0.9993, P (S = S_0_2) =

0.9999). Minor injuries caused by an SAL2 accident are most likely to be fewer than 3

(P (M = M_0_3) = 0.9998). Thus, the consequence severity level are most likely to be

level 1 (P (CS = Level_1) = 0.9990).

Fig. 6.7 shows that the probability of a train-MV accident occurring at an SAL2 would

increase to 0.0384 if all the risky states of secondary causes occur, namely �Corrected Mo-

ment� in the �CM_49_up� group, �Railway Speed Limit� in the �RSL_110_up� group,

�Alignment� in the �S_shape� group, �Pro�le� in the �Hump_cavity� group, �Width� in

the �W_6_up� group, �Length� in the �L_11_up� group, �Region Risk� in the �R_high�

group, �Stall on LX� being true and �Zigzag Violation� being true. The related conse-

quences are likely to be severer as well. In this way, various prediction results for the

targeted nodes in terms of various combinations of the di�erent states of the other im-

pacting factors can be obtained through forward inference. Here, we do not exhaust all
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SAL2_MV_Accident             Static_Factor_Accident      Motorist_Behavior_Accident 

                  

Fatalities                               Severe_Injuries                     Minor_Injuries 

           

Consequence_Severity 

                                                                                                     

Fig. 6.6. General prediction

prediction results due to limited space.

SAL2_MV_Accident             Static_Factor_Accident       Motorist_Behavior_Accident 

                        

Fatalities                                Severe_Injuries                    Minor_Injuries 

                

Consequence_Severity 

                                                                                                    

Fig. 6.7. Prediction related to the occurrence of severest states of secondary causes

Subsequently, the �SAL2 MV Accident = True� state is con�gured as the targeted

state. In this way, one can assess the contribution degree of each in�uential factor to

train-MV accident occurrence through reverse inference. Detailed results are given in

Fig. 6.8. It is worth noticing that accidents caused by inappropriate motorist behavior

contribute 80% to the entire train-MV accidents at SAL2 LXs, while accidents caused

by static factors contribute only 17%. As for inappropriate motorist behavior, �Zigzag

Violation� is more signi�cant than �Stall on LX� in terms of causing train-MV accidents,

because of the contribution of 58% (compared with 42% contribution of �Stall on LX�).

On the other hand, in terms of static factors, when a train-MV accident occurs at an

SAL2 LX, this LX has the probabilities of 74%, 38%, 44%, 37% and 46% respectively

involved in the most risky situations that �Corrected Moment� in the �CM_49_up� group,

�Railway Speed Limit� in the �RSL_110_up� group, �Width� in the �W_6_up� group,

�Length� in the �L_11_up� group and �Region Risk� in the �R_high� group. These results

indicate that more attention needs to be paid to LXs having the above risky characteristics.
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Moreover, special accommodation and/or technical solutions need to be implemented to

prevent motorist zigzag violations, for instance, transforming SAL2 LXs into SAL4 LXs

(Four-half barrier systems), or installing median separators between opposing lanes of

road tra�c in front of SAL2 LXs. As for the consequences caused by accident, it is

most likely to be 0 fatality (P (F = F_0) = 0.8875), less than 2 severe injuries (P (S =

S_0_2) = 0.9789) and less than 3 minor injuries(P (M = M_0_3) = 0.9664). Thus, to

a large extent, the consequence severity would be Level 1 (P (CS = Level_1) = 0.8396,

P (CS = Level_2) = 0.0292, P (CS = Level_3) = 0.0181, P (CS = Level_4) = 0.0006

and P (CS = Level_5) < 0.1125). Hence, one can set various states of the consequence

nodes as the targeted states to make thorough corresponding diagnosis of causal factors

through reverse inference.

ADRV_below_72 30%
ADRV_72_403 32%
ADRV_403_up 39%

Average_Daily_Road_Vehicle
ADRT_below_929%
ADRT_9_25 34%
ADRT_25_up 37%

Average_Daily_Railway_Traffic

CM_below _19 11%
CM_19_49 15%
CM_49_up 74%

Corrected_Moment

RSL_below_7029%
RSL_70_110 33%
RSL_110_up 38%

Railway_Speed_Limit

W_below_5 27%
W_5_6 30%
W_6_up 44%
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C_shape 21%
S_shape18%
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Fig. 6.8. Cause diagnosis when a train-MV accident occurs
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6.5.2 In�uence and sensitivity analysis

Based on the BN risk model, the in�uence strength (IS), which represents the impact

level of parent nodes on their respective child nodes, can be computed through GeNIe

tool using the Euclidean distance [Koiter 2006] which is commonly used to measure the

in�uence strength between parent and child nodes. Fig. 6.9 shows the normalized in�u-

ence strength (labeled on the arcs) between each pair of parent and child nodes. Fatalities

(1) has stronger in�uence on consequence severity than severe injuries (0.5000) and mi-

nor injuries (0.4800). Moreover, inappropriate motorist behavior (0.7099) impacts more

on LX accident occurrence than static factors (0.2899). Among the static factors, the

region risk factor (0.0010) has the greatest impact on LX accident occurrence, while the

pro�le (0.0002) has the slightest impact on LX accident occurrence. On the other hand,

zigzag violation (0.1143) impacts more on LX accident occurrence caused by inappropriate

motorist behavior, compared with the impact of �stall on LX� (0.0137).
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0.1125 0.0211 0.0336 

0.2899 
0.7099 
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00
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0.0004 
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0.0903 0.0653 

0.1133 

0.
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31
 

0.2445 

0.1111 
0.0045 

0.0046 

0.1117 

0.1143 0.0137 

0.1000 0.8999 

Fig. 6.9. Normalized in�uence strength analysis
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Furthermore, the sensitivity analysis is performed to interpret the sensitivity of

P (SA = True) to various conditional probabilities of di�erent variable combinations.

The Sensitivity Tornado Diagram (STD) is shown in Fig. 6.10. The top horizontal axis

represents the values of P (SA = True). The vertical axis represents the general prediction

value of P (SA = True) ≈ 0.0061, which is set as the vertical datum axis. The horizontal

bars are viewed as two parts divided by the vertical datum axis. Green bars represent

the values of P (SA = True) decreasing from the datum value while red bars represent

the values of P (SA = True) increasing from the datum value, according to the changes

of impacting conditional probabilities Pc. As the values of Pc change within the interval

[Pc − 0.1Pc, Pc + 0.1Pc] (setting the spread degree as 0.1), the values of P (SA = True)

change within an interval [P (SA = True)min, P (SA = True)max] and distribute with re-

spect to the changing values of Pc in the whole range [Pc− 0.1Pc, Pc + 0.1Pc] accordingly.

Here, the values of P (SA = True) change within the interval [0.0045, 0.1055].

0.00609183 

Fig. 6.10. Sensitivity tornado diagram

Fig. 6.10 shows the top 10 impacting Pcs which P (SA = True) is most sensi-

tive to. One can notice that P (SA = False|SF = False,MB = False) impacts

P (SA = True) most. Namely, P (SA = True) decreases from 0.1055 to 0.0059 as

P (SA = False|SF = False,MB = False) increases from 0.8999 to 1. As for the

Pcs related to motorist behavior, P (MB = False|Stall = False, ZV = False) (taking

the second place) impacts P (SA = True) most, compared with the other Pcs related to

motorist behavior. As for the Pcs related to static factors, P (SA = True) is most sensi-

tive to P (SF = False|R = R_high,A = Straight,W = W_6_up, P = Normal, CM =

CM_49_up, L = L_11_up,RSL = RSL_110_up) (taking the sixth place), compared

with the other Pcs related to static factors. These results further attest that the LX acci-



Chapter 6. Bayesian network based framework for LX risk reasoning 161

dent occurrence is more sensitive to inappropriate motorist behavior than static factors.

Moreover, as for motorist behavior factors, the LX accident occurrence is most sensitive to

zigzag violation occurrence, compared with other motorist behavior factors. On the other

hand, as for static factors, the LX accident occurrence is most sensitive to the riskiest

states of various static factors. Therefore, the improvement measures need to be targeted

on mitigating the above high-sensitivity factors, since a small scale of improvement in such

factors can potentially reduce the LX risk as a whole on a large scale.

6.6 Summary

In this chapter, an e�ective and comprehensive modeling framework for risk reasoning,

called BNI-RR, is proposed, which consists of a set of integrated processes, namely, risk

scenario de�nition, real �eld data collection and processing, BN model establishment and

model performance validation.

Then, the BNI-RR framework is applied to LX risk analysis. The output of our study

o�ers a valuable support for decision making regarding LX safety. Although the BNI-RR

framework is applied to the risk analysis of French LXs in our study, this framework is a

general approach that can be applied to di�erent contexts related to risk analysis.

According to the aforementioned analyses, the main contributions of the present study

are as follows:

1) A causal semantics de�nition is proposed to describe the DAG of BN, which consists

of three elements, namely, IF, THEN and CAK. Thus, causal structural constraints

are introduced based on the concept of CAK for the purpose of causality optimizing.

With the help of causal structural constraints, expert knowledge can be integrated

to distinguish causalities from correlations. Therefore, inappropriate connections are

neglected so as to facilitate highlighting the main causes leading to LX accidents.

2) Based on the causal BN model, we were able to make forward inference and reverse

inference, which are two valuable complementary means for performing inductive and

deductive diagnosis. For instance, our BN risk model allows us not only to predict

the probability of accident occurrence, but also evaluate the related consequence

severity level, quantify the respective contribution degrees of various factors to the

overall risk and identify the riskiest factors. These aspects are rarely achieved in

existing related works and demonstrate the e�ectiveness of utilizing our BNI-RR

framework.

3) In�uence strength analysis and sensitivity analysis are two further approaches that

were adopted to �nely investigate the in�uence strength of causal factors on conse-
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quence factors and determine which causal factors the consequence factors are most

sensitive to. Based on the obtained results, adequate targeted technical/societal

solutions/decisions and improvement recommendations can be identi�ed to act on

speci�c causal factors.

To sum up, the aforementioned contributions show that the BNI-RR approach o�ers an

integrated modeling and analysis framework that allows for performing thorough risk

analyses on a given LX or a set of LXs at a global level. The �ndings obtained through

applying the BNI-RR framework on LX risk analysis o�er a signi�cant perspective on

the major factors causing LX accidents and pave the way for identifying practical design

measures and improvement recommendations to prevent accidents at LXs.
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7.1 Overall Conclusions

This dissertation focuses on the analysis of LX risk through various advanced techniques.

Our contributions are discussed in Part II which consists of chapter 3 dedicated to prelim-

inary statistical analysis on LXs, chapter 4 that focuses on motorist behavior quantitative

analysis, chapter 5 that investigates advanced statistical accident prediction modeling,

chapter 6 dedicated to Bayesian network based framework for LX risk reasoning.

In chapter 3, a general risk analysis of average accident frequency in terms of transport

mode and geographical region is performed. Then, the risk analysis in terms of frequency

coe�cient, namely the average accident frequency acted by the tra�c moment, is per-

formed with regard to various tra�c moment groups. Finally, the frequency coe�cient

distributed in di�erent French regions is investigated. To sum up, we have assessed the

e�ect of the above factors on the risk level quantitatively, in such a way as to open the

way for setting e�cient solutions to improve LX safety.

In chapter 4, a risk analysis of motorist behavior is performed based on �eld measure-

ment conducted at 12 automatic LXs (11 equipped with two half barriers (SAL2) and 1

equipped with four half barriers (SAL4)) while distinguishing between di�erent phases of

LX closure cycle. The global violation trend of motorist behavior during Ph2 and Ph3

of LX closure cycle is investigated �rstly. Then, an analysis on the violation rate during

Ph2 and Ph3 according to the week and the hour is performed. Furthermore, an analysis

on the speed of violating vehicles during Ph2 and Ph3 is performed. As for the motorist

behavior during Ph4, we analyze the impact of prolonged Ph4 duration on the zigzag

violation rate of motorists. Moreover, the impact of LX location (in terms of proximity

to a railway station) on the zigzag violation rate of motorists during Ph4 is analyzed.
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Subsequently, the impact of road tra�c density on the waiting queue in front of LXs and

troop phenomenon is investigated. Finally, the comparison of motorist responses to SAL2

and SAL4 LXs is performed.

In chapter 5, an advanced accident frequency prediction model, which enables to rank

risky LXs accurately and identify the signi�cant impacting parameters e�ciently, is de-

veloped. In this model, we take into account the corrected tra�c moment which is more

e�ective in estimating automobile-involved LX accidents frequency compared with the

conventional tra�c moment, single average daily railway tra�c or single average daily

road tra�c. The impact of road accident factor is highlighted in this model, which was

likely to be ignored in previous studies related to LX safety analysis. Moreover, we origi-

nally introduce the region LX-accident-prone factor in our study to interpret the variation

of LX accident statistics with regard to various regions. One can notice that the risk of LX

accidents is most sensitive to the region LX-accident-prone factor, compared with other

LX characteristics. In fact, the Nonlinear Least-Squares (NLS) method, Poisson regression

method, negative binomial (NB) regression method, zero-in�ated Poisson (ZIP) regression

method and zero-in�ated negative binomial (ZINB) regression method have been employed

to estimate the respective coe�cients of parameters in the prediction model. Then, a vali-

dation process is performed based on various statistical and probabilistic means to examine

how well the estimation of the model �ts the reality. The validation results attest that

the NB distribution combined with λ10Y shows relatively higher prediction performance

than other combinations. Finally, a comparison between our present model and two ex-

isting reference models is carried out and allows showing the good e�ciency of our model.

Since this prediction model can estimate the LX accident frequency which re�ects the LX

risk level, it is possible to rank LXs according to their risk level and, thereby, pay more

attention on the riskiest LXs. Moreover, with this model, we can predict the probability

of the exact number of accidents occurring at a given LX during a long time period, thus

to estimate the corresponding losses and investment in countermeasures. We believe that

this represents a valuable decision-making support to road and railway stakeholders.

In chapter 6, a BN based framework for causal reasoning related to risk analysis is

proposed. It consists of a set of integrated stages, namely risk scenario de�nition, real

�eld data collection and processing, BN model establishment and model performance

validation. Causal structural constraints are introduced to the framework for the purpose

of combining expert knowledge with data-driven, thus to identify e�ective causalities and

avoid inappropriate structural connections. The BN risk model is established based on

the real �eld data of LX accidents/incidents and the model performance is validated. The

validation results indicate that our model has high accuracy in terms of LX risk prediction.

Then, forward inference and reverse inference based on the BN risk model are performed to
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predict LX accident occurrence and quantify the contribution degree of various impacting

factors respectively, so as to identify the riskiest factors. Finally, in�uence strength and

sensitivity analyses are further carried out to scrutinize the in�uence strength of various

causal factors on the LX accident occurrence and determine which factors the LX accident

occurrence likelihood is most sensitive to. With this BN model, one can assess the gain

brought by the improvement of one or more factors considered at a given LX in terms of

accident occurrence and corresponding consequences, as well as the further investment.

In this respect, this model can be regarded as a support for decision-making.

In summary, the study reported in this dissertation o�ers an in-depth perspective on

LX risk analysis, as explained through the above contributions. Especially for practicing

risk managers and decision makers, our study provides a thorough quantitative analyses

pertaining to LX risk and paves the way for identifying practical design measures and

technical recommendations to improve LX safety.

7.2 Perspectives

One should notice that the work presented in this dissertation still shows some limita-

tions. For example, due to the lack of available detailed data, the present study does not

consider all the potential impacting factors pertaining to LX safety, for example, visibility,

weather, etc. An additional limitation of the current study is the intrinsic unpredictability

of motorist behavior. Even though certain outcomes are correlated with certain human

characteristics, motorist behavior is a moving target and it may change over time accom-

panying the changes in terms of social lifestyle, regulation or policies. For example, the

operation of vehicles �tted with new facilities, such as autonomous cars, would also have

a strong impact on risk assessment in the future. Hence, some updates are continuously

needed to take into account such potential variations. By the way, this limitation is a quite

general one rather than a speci�c feature of our experiments, since it basically applies to

any experimental study related to human behavior as well.

The work discussed in this dissertation raises several research directions as discussed

below:

1. Regarding further impacting parameters

In future works, we will investigate further impacting factors (e.g., region road ac-

cident factor) to better understand the aspects which stimulate motorist violations

at LXs and bring into play Bayesian risk models to quantify the causal relationships

between the factors and accident occurrence, so as to assess their impacts on the

whole risk level. Our risk model will be enriched while integrating further factors
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according to real data and causality analysis that we will perform on the basis of

fault events. In addition, the analysis made on the basis of Bayesian network can be

extended by means of Valuation-Based Systems to deal with uncertain parameters

and/or imprecise probabilities.

2. Regarding dynamic BN models

Dynamic BNs [Murphy 2002] will be considered for further modeling the dy-

namic/temporal aspects of some of the considered constraints nodes (railway tra�c,

road tra�c, etc.) to improve the risk analysis prediction, while the time-dependent

conditional probabilities can be obtained. However, this technique shall be per-

formed carefully, as the changes introduced by its application could increase expo-

nentially the complexity of the model and the necessary calculation time. In addi-

tion, since inappropriate motorist behavior has been identi�ed as the main cause of

LX accidents according to our BN model, a thorough analysis of this issue combining

both qualitative and quantitative techniques should be carried out to determine the

adequate countermeasures.

3. Regarding further investigation on the reasons for inappropriate motorist behavior

As mentioned in 2), inappropriate motorist behavior is the main factor for LX acci-

dents. In fact, the causes of LX accidents related to motorist behavior are complex

and we could divide them into three main mechanisms:

(1) The motorist driving error: the motorist fails to analyze the road situation

correctly, in the hierarchy of dangers. For instance, he/she is afraid that his/her

vehicle will rub on the decking or touch the overhead grid and he/she will stop in the

danger LX intersection zone or he/she judges inappropriately the length or speed of a

waiting queue in front of LX. This mechanism seems to cause about 30% [SNCF 2017]

of LX accidents. It results in few road deaths, because the immobilization of the

vehicle can take place before the arrival of the train, often even before closing the

barriers, and the driver may have left the vehicle before the collision occurs. However,

these accidents can be very serious in terms of railway consequences, especially, if in

case of heavy vehicle (trucks, trailers, etc.).

(2) The �looked but not see�, in other words: the motorist does not see or notice the

LX until it is too late. He can brake suddenly, then stall on the LX or slip and end

up with a wheel of his vehicle in the ballast, or even hitting the barriers and the

train.

This mechanism is also responsible for about 30% [SNCF 2017] of LX accidents.

Moreover, collisions occurring during the closure cycle of the LX are often deadly,
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since the motorists and passengers are not able to escape from the vehicle. Therefore,

it is important to make LXs more conspicuous, thus to avoid �looked but not see�

accidents.

In addition, making LX environment simpler and avoiding left turns to prevent

non-deliberate violations is still signi�cant.

(3) The intentional zigzag: zigzag crossings often involve light vehicles, two-wheel

vehicles or pedestrians. These zigzags are the main reason for a number of road

deaths as we analyzed in chapter 4.

We wish to investigate the detailed reasons behind motorist behavior using an inte-

grated methodology in the future. Namely, we believe that utilizing jointly vehicle

dynamics recording, a systems approach and a psychological schema theory can pro-

vide a more thorough understanding of the reasons underlying motorist violations.

4. Regarding justi�cation of investment in improving LX safety

Based on our analyses, design measures and technical recommendations to improve

LX safety can be identi�ed. Further experiments need to be carried out to investigate

the e�ciency of some technical solutions (e.g., installing LED strobe or rumble strip,

adding median separator, transforming SAL2 LX into SAL4 LX, adding obstacle

detector, etc.).

Moreover, from this point of view, the investment in these solutions needs to be as-

sessed in terms of cost e�ciency. In the future, In�uence Diagrams (IDs) [Vatn 2002],

which are extensions of BNs, can be used to assess such investment. An example

of IDs is shown in Fig. 7.1. In this ID, additional nodes for decisions (rectangles)

and utilities (diamond shape) are attached to the BNs. The directed links (arrows)

represent probabilistic dependencies among the system variables (represented by X),

decision variables (represented by a) and utility variables (represented by U) in the

network. The decision nodes are introduced as parents to the chance nodes and the

utility nodes. With given data, the investment can thus be evaluated through utility

nodes correspondingly according to the change of con�guration in decision nodes.
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Fig. 7.1. An example of IDs
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A.1 Predictive accuracy comparison between λ10Y and λ10P

LL test results are shown in Table A.1. One can notice that for λ10Y model combined

with either the Poisson or NB distribution, its GOFs are signi�cantly better than λ10P

model's GOFs according to LL results. Furthermore, the GOF of λ10Y combined with the

NB distribution is better than when combined with the Poisson distribution.

Table A.1. Model quality comparison between λ10Y and λ10P

Parameter λ10Y Poisson λ10Y NB λ10P Poisson λ10P NB

Railway tra�c charac-

teristics

Average daily railway traf-

�c

× × × ×

Railway speed limit × ×
Roadway tra�c char-

acteristics

Average daily road tra�c × × × ×
Annual road accidents × × × ×
LX characteristics

Alignment × ×
Pro�le × ×
LX width × ×
Crossing length × ×
Region × ×
AIC -190,744 (1) -190,744 (1) -190,591 (2) -190,591 (2)

BIC -190,670 (1) -190,670 (1) -190,573 (2) -190,573 (2)

PCS 65,796 (1) 65,796 (1) 53,108 (2) 53,108 (2)

DF 83,313 83,313 83,319 83,319

LL -2,599 (2) -2,596 (1) -2,631 (4) -2,629 (3)

Goodness score (the lower,

the better)

5 4 10 9

Based on the predicted probability of the accident frequency observed, further Cu-

mulative Distribution Function (CDF) analysis with regard to the Poisson and the NB

distributions is performed to evaluate the quality of the accident frequency prediction

model combined with these two statistical distributions. As shown in Fig. A.1, the rela-

tionship between the CDF and the corresponding probability of a given event is depicted.

P̂ (•) denotes the predicted probability of a given event obtained through the Poisson or

NB distribution; Oi is the observed accident frequency and λi is the estimated accident
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frequency. The blue curve �CDF NB λ10P , Oi > λi� represents the CDF of event � Oi > λi�

obtained through the NB distribution combined with the λ10P ; the red curve �CDF NB

λ10P , Oi <= λi� represents the CDF of event � Oi <= λi� obtained through the NB dis-

tribution combined with the λ10P ; the green curve �CDF POI λ10P , Oi > λi� represents

the CDF of event � Oi > λi� obtained through the Poisson distribution combined with

the λ10P ; the violet curve �CDF POI λ10P , Oi <= λi� represents the CDF of event �

Oi <= λi� obtained through the Poisson distribution combined with the λ10P . The in-

terpretation of the remaining curves involving the λ10Y can be similarly obtained. Given

that some curves are almost covered by some others in Fig. A.1, the extracted results of

CDF analysis shown in Table A.2 become clearer for discussion.
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Fig. A.1. CDF of the Poisson and the NB distributions combined with the λ10P and λ10Y

models according to the estimated probability

Table A.2. The extracted results of CDF analysis

Model CDF P̂ (Oi > λi) >

0.005 (CDF in

percent)

P̂ (Oi > λi) >

0.05 (CDF in

percent)

P̂ (Oi <= λi) >

0.95 (CDF in

percent)

P̂ (Oi <= λi) >

0.995 (CDF in

percent)

CDF NB λ10P 85.29 (3) 6.61 (1) 99.62 (1) 57.19 (3)

CDF NB λ10Y 79.10 (2) 7.68 (3) 99.36 (3) 66.07 (1)

CDF POI λ10P 85.29 (3) 6.82 (2) 99.61 (2) 57.15 (4)

CDF POI λ10Y 78.89 (1) 9.17 (4) 99.27 (4) 65.94 (2)

Table A.2 indicates that:
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1) CDF NB λ10P , Oi > λi:

In 85.29% of cases, P̂ (Oi > λi) is more than 0.005; in 6.61% of cases, P̂ (Oi > λi) is

more than 0.05;

2) CDF POI λ10P , Oi > λi:

In 85.29% of cases, P̂ (Oi > λi) is more than 0.005; in 6.82% of cases, P̂ (Oi > λi) is

more than 0.05;

3) CDF NB λ10Y , Oi > λi:

In 79.10% of cases, P̂ (Oi > λi) is more than 0.005; in 7.68% of cases, P̂ (Oi > λi) is

more than 0.05;

4) CDF POI λ10Y , Oi > λi:

In 78.89% of cases, P̂ (Oi > λi) is more than 0.005; in 9.17% of cases, P̂ (Oi > λi) is

more than 0.05;

5) CDF NB λ10P , Oi <= λi:

In 99.62% of cases, P̂ (Oi <= λi) is more than 0.95; in 57.19% of cases, P̂ (Oi <= λi)

is more than 0.995;

6) CDF POI λ10P , Oi <= λi:

In 99.61% of cases, P̂ (Oi <= λi) is more than 0.95; in 57.15% of cases, P̂ (Oi <= λi)

is more than 0.995;

7) CDF NB λ10Y , Oi <= λi:

In 99.36% of cases, P̂ (Oi <= λi) is more than 0.95; in 66.07% of cases, P̂ (Oi <= λi)

is more than 0.995;

8) CDF POI λ10Y , Oi <= λi:

In 99.27% of cases, P̂ (Oi <= λi) is more than 0.95; in 65.94% of cases, P̂ (Oi <= λi)

is more than 0.995;

According to the CDF analysis results shown in Table A.2, in the cases of �P̂ (Oi >

λi) > 0.005� and �P̂ (Oi <= λi) > 0.995�, for the λ10Y model combined with either the

Poisson or the NB distribution, its GOFs are signi�cantly better than λ10P model's GOFs.

In the cases of �P̂ (Oi > λi) > 0.05� and �P̂ (Oi <= λi) > 0.95�, the criteria of the two

models combined with the Poisson and the NB distributions have no obvious distinction,

in particular, for the criterion �P̂ (Oi <= λi) > 0.95�. Furthermore, λ10Y combined with

the NB distribution shows a slightly better quality than when combined with the Poisson

distribution.
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As shown in Table A.4, fk denotes the percentage of samples of observed annual

accident frequency with k accidents involved in a given year (fk = the number of samples

of observed annual accident frequency involving k accidents occurring in a given year

/ the total number of samples n). The estimated relative annual accident frequency

re�ected by estimated probabilities on average is computed as: f̂k =
∑n

i=1 P̂ (Xi = k)/n,

where P̂ (Xi = k) is the estimated probability of k accidents occurring at a given SAL2

in a given year. According to the goodness of predictive accuracy ranked in brackets,

the NB distribution shows a higher predictive accuracy with regard to various annual

numbers of accidents occurring at a given SAL2 during the 10-year period, particularly,

when combining with the λ10Y . In the cases of 0, 1 and 2 accidents occurring at a given

SAL2 in a given year, the predictive accuracy of the NB distribution combined with the

λ10Y takes the �rst place in all the cases, which means that the probabilities of accident

occurrence predicted by the NB distribution combined with the λ10Y are closest to the

actual frequencies of accident occurrence. In the case of more than 2 accidents occurring

at a given SAL2 in a given year, the predictive accuracy of the NB distribution combined

with the λ10Y takes the second place, with the deviation of only 0.0002% compared with

fk, the actual percentage of observed annual accident frequency samples. In fact, there are

no SAL2 LXs showing more than 2 accidents in the same year during the 10-year period

considered.
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A.2 Values of Parameters in Statistical Accident Prediction

Model

In this chapter, we give the detailed values of �Region risk factor� de�ned in 5.2.

Table A.4. Detailed values of �Region risk factor�

Region Region risk factor

Alsace 0.5118

Aquitaine 0.3523

Auvergne 0.2442

Basse-Normandie 0.2143

Bourgogne 0.2755

Bretagne 0.3239

Centre-Val de Loire 0.2669

Champagne-Ardenne 0.3426

Franche-Comté 0.3676

Haute-Normandie 0.2036

Îl-de-France 0.7747

Languedoc-Roussillon 0.5951

Limousin 0.1739

Lorraine 0.4317

Midi-Pyrénées 0.3187

Nord-Pas-de-Calais 0.4165

Pays de la Loire 0.3156

Picardie 0.3755

Poitou-Charentes 0.2171

Provence-Alpes-Cóte-d'Azur 0.5902

Rhône-Alpes 0.4694
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