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Invité	 Martin	VANCOPPENOLLE	 Chercheur	CNRS,	LOCEAN-IPSL	
Directeur	de	thèse	 Mohamed-Najib	OUARZAZI		 PR,	UML,	Université	de	Lille	
Co-encadrant	 Enrico	CALZAVARINI	 MdC,	UML,		Université	de	Lille	
	 Silvia	HIRATA	 MdC	,	UML,	Université	de	Lille	

	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	



	

	
	

	
	
	

Doctoral	School	SPI	–	Sciences	for	Engineer	
Mechanics,	Civil	Engineering,	Energy,	Materials	

	
	

Lille	University	of	Science	and	Technology		
	
	
	

Lille	Mechanics	Unit,	EA	7512	
	
	
	

Turbulent	convection	and	melting	process	
with	applications	to	sea	ice	melt	ponds	

	
	

PhD	dissertation	presented	by	Babak	RABBANIPOUR	ESFAHANI	
	

	
Publicly	defended	in	March	23rd,	2018	in	the	presence	of	the	thesis	jury	members:	

	
	

Reviewers	 Dominique	GOBIN		 CNRS	Research	Director,	EM2C,	Paris	
	 Daniel	HENRY	 CNRS	Research	Director,	LMFA,	

University	of	Lyon	
Examiners	 Anne	SERGENT	 Assoc.	Prof,	LIMSI,	Sorbonne	

University	of	Paris	
Invited	 Martin	VANCOPPENOLLE	 CNRS	Researcher,	LOCEAN-IPSL	
Director	 Mohamed-Najib	OUARZAZI		 Prof,	ULM,	University	of	Lille	
Co-directors	 Enrico	CALZAVARINI	 Asst.	Prof,	ULM,	University	of	Lille	
	 Silvia	HIRATA	 Asst.	Prof,	ULM,	University	of	Lille	

	





Abstract

Melting and solidification coupled with convective flows are fundamental processes in
the geophysical context. Convective melting is thought to have played a major role in
Earth’s mantle formation and is commonly observed in magma chambers, lava lakes,
and particularly the interest of this thesis, Arctic melt-ponds. All these systems are char-
acterized by the presence of unsteady, chaotic and often turbulent flows. A key ques-
tion related to these phenomena is the prediction of the evolution of the melting-rate, a
quantity that is tightly connected to the heat-flux dynamics at the liquid-solid interface.
This is, however, a complex problem because it couples the highly non-linear motion of
fluid flow with a time evolving interface. Therefore in this regime, it is difficult to predict
the exact dynamics, but what can be predicted is its average dynamics through scaling
laws. In order to shed light on this process and in particular on its scaling laws, we study
here the stages of the dynamics of a simplified model system.

This thesis begins with an overview of melt pond phenomenology and modeling
from large to small scale. The idealized setup we consider, named convective melting
system (CM), consists of a fluid layer heated from below and in contact with a solid-to-
liquid melting interface on the top-side. Similar to the Rayleigh-Bénard (RB) system,
for sufficiently large vertical temperature gaps a convective instability develops and the
resulting flow exhibits a rich dynamics as the Rayleigh (Ra) number is increased, ulti-
mately reaching a turbulent state. In the present case however, the interface melts at the
pace of the local heat flux across the fluid layer, the resulting shape of the lead in turn
modifies the organization of flow structures with a feedback on the heat transport.

We investigate such a model system by means of numerical tools. We perform Di-
rect Numerical Simulations via a enthalpy based Lattice Boltzmann algorithm to address
the long time dynamics, or equivalently the high Rayleigh number regime, both in two-
and three-dimensional setups. We focus on the scaling of global quantities, Nusselt and
Reynolds numbers, and on the characterization of geometrical properties of the melting
interface.

We observe that the system self-organizes in convective cells that tend to have unit
aspect-ratio and a vanishing corrugation as the convection intensity is increased. Fur-
thermore, we show that the coupled convection and melting process only weakly en-
hances heat flux and the mixing in the system as compared to the RB setting. The ob-
served differences in the 2D- and 3D-simulations follow similar trends as the ones al-
ready observed in the RB system and tend to vanish in the highly Rayleigh regime, be-
yond Ra ∼ 107. Moreover, we show that the variation of the Stefan (St ) number, which
accounts for the material properties, has only a mild effect on the intensity and scaling
of global quantities and on the geometrical features of the fluid-solid interface in the
high-Ra regime.

As an extension to the CM system, two different setups are considered in this work.
In the first configuration, we consider the effect of introducing a moving boundary, in or-
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der to mimic wind effects on melt-ponds. We observe the onset of convection is delayed
as the wall velocity increases. This observation is consistent with similar systems without
melting condition, as the thermal Couette flow. Moreover, depending on the intensity
of the wall velocity, the formation of convective rolls and consequently morphology of
the solid-liquid interface undertakes significant changes. For the second configuration,
we consider the effect of internally heating the CM system, representing bulk heating
through solar radiation. Similar to the analysis of pure melting system, we consider heat
budget and morphology of the solid-liquid interface.

Finally, we discuss possible implications of our study for more refined parametriza-
tion of melt-ponds in large-scale models and possible extensions of the current work.
Keywords: Turbulent convection, Phase-change, Stefan problem, Melt ponds, Lattice
Boltzmann method



Résumé

La fusion et la solidification, couplées à des écoulements convectifs sont des proces-
sus fondamentaux dans le contexte géophysique, par exemple dans la formation des
marées arctiques. Ce système se caractérise par la présence d’écoulements instation-
naires, chaotiques et souvent turbulents. Ce travail est motivé par des observations in-
diquant une réduction de la glace de mer Arctique que le modèle global actuel n’était
pas en mesure de prédire. Le but de ce travail est de fournir des informations sur les
paramètres pertinents affectant la fusion/solidification dans les étangs de fonte des glaces
de mer. La configuration idéalisée que nous considérerons consiste en une couche de
fluide chauffée par le bas et en contact avec une interface de fusion solide-liquide du
côté supérieur. Nous étudierons un tel système modèle grâce à des outils numériques.
Nous effectuerons des simulations numériques directes par un algorithme Lattice Boltz-
mann basé sur l’enthalpie pour traiter la dynamique à long terme, ou de manière équiv-
alente le régime à nombre élevé de Rayleigh, à la fois dans des configurations en deux
et en trois dimensions. Nous montrerons que le processus de convection et de fusion
couplé n’améliore que faiblement le flux de chaleur et le mélange dans le système par
rapport au réglage de Rayleigh-Bénard. Nous considérerons l’effet de l’application de
la vitesse sur la section liquide du système de fusion et l’effet de chauffage interne du
système de fusion comme deux extensions au système de fusion.
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Introduction

Since satellite observations started in 1979, the summer Arctic sea ice extent has de-
clined by 12% per decade. As announced by the US National Snow and Ice Data Center
(NSIDC), 2012 has marked the lowest on record. Arctic sea ice extent for December 2017
averaged 11.75 million square kilometers, the second lowest in the 1979 to 2017 satel-
lite record. This was 1.09 million square kilometers below the 1981 to 2010 average and
280,000 square kilometers above the low-December-extent recorded in 2016 (Fig. 1.1).
Moreover, the ice cover is also thinning, making it more vulnerable to warmer tempera-
tures. Finally, the long-lived multi-year ice is progressively replaced by first-year ice due
to the intensified summer melt. Most of the projections performed with Global Climate
Models (GCMs) in the framework of the Intergovernmental Panel on Climate Change
(IPCC), do not reliably predict the observed rapid sea ice retreat [1]. This shortcoming
suggests a need for model improvements.

Global warming is intensified in polar regions mostly due to the albedo feedback
mechanism [2]. Albedo is the measure of diffusive reflection of solar radiation out of the
total solar radiation received by a body, for example a planetary body such as Earth. It is
dimensionless and measured on a scale from zero (corresponding to a black body that
absorbs all incident radiation) to one (corresponding to a body that reflects all incident
radiation). When spring comes to the Arctic, the breakup of the cold winter ice sheets
starts at the surface with the formation of melt ponds. These pools of melted snow and
ice darken the surface of the ice, increasing the amount of solar energy the ice sheet
absorbs and accelerating melt, a mechanism known as positive feedback of albedo.

The presently more prevalent first-year ice transmits more light to the upper ocean
than multi-year ice due a larger pond coverage. Therefore, the melt rate beneath pond-
covered ice can be 2 to 3 times greater than that of bare ice [3] and should be more in-
tense today than in the past, due to the greater present pond coverage. The albedo of
pond-covered ice (measured in the field) ranges from 0.1 to 0.5 (e.g. [4]), and is princi-
pally determined by the optical properties and electromagnetic properties of water (that
absorbs much more than ice) and by the pond geometry (depth of water layer and its
surface extension). These albedo values are much lower than bare ice and snow covered
ice, which range from 0.52 to 0.87.

1
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Figure 1.1 – The graph above shows Arctic sea ice extent as of January 2, 2018, along with daily ice
extent data for five previous years. 2017 to 2018 is shown in blue, 2016 to 2017 in green, 2015 to

2016 in orange, 2014 to 2015 in brown, 2013 to 2014 in purple, and 2013 to 2012 in dotted brown.
The 1981 to 2010 median is in dark gray. The gray areas around the median line show the

interquartile and interdecile ranges of the data. Credit: National Snow and Ice Data Center,
University of Colorado Boulder

A good estimation of the area of the sea ice surface covered with melt ponds is needed
to determine the large-scale albedo of the ice cover. However, the fractional pond cov-
erage is a highly variable quantity, with values ranging from 5 to 80% depending upon
various factors: time elapsed since the beginning of the melt season, surface roughness,
snow cover, floe size, among others. In the melt season, melt ponds on average cover up
to 60% of the sea ice surface [3].

Several field experiments and ship observations have been conducted on different
locations in the Arctic Ocean to study albedo and spectral behaviour of melt ponds, as
well as distribution and size of the ponds. Field observations, such as the Surface Heat
Budget of the Arctic (SHEBA), provided informations on how ponds form and evolve
throughout the melt season, until they freeze over in autumn. Melt ponds are typically
5 to 10m wide and 15 to 50cm deep. The evolution of the melt pond cover, even on a
particular floe, is highly variable since it is controlled by a number of competing factors.
Based upon observations, Eicken et al. [5] divided the evolution of the melt pond cover
into four main stages, revised by Polashenski et al. [6]:

• Ponds initially quickly expand following melt onset due to the rapid accumulation
of snow meltwater in existing depressions and cracks. Meltwater accumulation is
promoted by the generally low sea ice floe-scale permeability.

• Pond coverage then decreases due to drainage. This occurs for two reasons: an
increase in floe-scale ice permeability due to the formation of meltwater chan-
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nels; and an increasing static pressure head due to the rising ponds, promoted
by continued meltwater production. The pond areal decrease slows down as the
meltwater approaches sea level and reduces the pressure head.

• A second, slower increase in pond fraction occurs due to water supply from below.
This occurs when the decrease in ice freeboard due to sea ice melt exposes new
topographic local minima to water from below.

• Finally, melt ponds quickly disappear due to freezing at their top in early fall.

Observations indicate that accurate representation of the ice-albedo feedback is highly
dependent on predicting the melt pond coverage and applying the correct pond albedo
for each phase of the pond evolution. GCM simulations are still not able to properly rep-
resent melt ponds on the surface of sea ice. A comparison of observed pond coverage
and GCM pond parametrizations is shown in Figure 1.2.

Figure 1.2 – Comparison of observed pond coverage and GCM pond parameterizations, taken
from [7].

One example of a large-scale sea ice model is the Louvain-la-Neuve sea ice model
(LIM)1, designed for climate studies and operational oceanography. It is coupled to the
ocean general circulation model OPA (Ocean Parallélisé) and is part of NEMO2. LIM is
used in several GCMs contributing to the assessment reports of the IPCC3 (Intergovern-
mental Panel on Climate Change) and in the operational oceanography system MERCA-

1http://www.climate.be/lim/
2http://www.nemo-ocean.eu/
3http://www.ipcc.ch/
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TOR4. A one-dimensional version (LIM1D5) has also been developed for process stud-
ies. LIM3 [8] is the most recent version of LIM. LIM model is able to reproduce the
large-scale evolution of sea ice characteristics in reasonable agreement with field ob-
servations. However, presently the effect of melt ponds is not accounted for in LIM, and
there are ongoing attempts to include such a parametrization.

Ensuring realistic prediction of albedo requires the incorporation of the mechanisms
that drive pond coverage into models. A substantial effort is already being undertaken to
do this by improving both small and medium scale models of melt pond coverage6 and
incorporating explicit melt pond parameterizations into albedo calculations of GCMs
[9]. In the absence of basin wide pond observations and long-term data sets, supporting
these efforts to create computationally efficient, yet physically representative models,
requires further advances in our understanding of the small-scale mechanisms driving
the seasonal evolution of melt ponds.

1.1. Objectives of the present work
Features related to water ponds forming over melted ice are too small to be directly ac-
counted for in large-scale sea ice and global climate models. How does the heat transfer
occur in the ponds and to what an extent is fluid-dynamics involved into the process?
How does the melt progresses on the bottom and on the lateral walls of the ponds? How
does the topography of the ponds, their surface and depth, evolve in the course of the
summer season? All the above questions have been overlooked in the present models.
Presently, the main challenge in sea ice climate science is to physically improve the mod-
els in order to refine their predictive power.

This thesis, based on a funding from Agence Nationale de la Recherche (ANR), ad-
dresses the problem of the growth process of ice melt ponds in the Arctic during the
summer season by focusing on the small-scale (∼ few meters) mechanisms controlling
the evolution of the basin topography of a single melt pond. In particular we study the
phenomenology of the thermal convective flow in the pond, which is known unsteady or
even turbulent [10], and its interaction with the phase-change mechanisms at the pond
boundaries. The goal of the funded project is to reach a sound understanding on how
fluid dynamics and phase-change processes contribute in determining the pond growth
in order to provide useful guidelines for parametrizations in large-scale ice models.

The overall aim of the present thesis work is to propose a more realistic, physically-
based model for the evolution of a melt pond. Such small-scale model, based on the
conservation laws of fluid mechanics, will allow us to investigate the evolution of pond
shape and size.

Previous studies considering melt ponds either neglect the turbulent convection of
water in the pond, or make simplifying approximations in order to calculate average
fluxes and/or melt rates. To the author’s knowledge, this is the first study which adopts
direct numerical simulation of a melt pond representing convection and phase-change
within the ponds. Furthermore, in contrast with the large majority of the available stud-

4http://www.mercator-ocean.fr/
5http://www.elic.ucl.ac.be/lim/index.php?id=50/
6Reader is advised to refer to chapter 2 for the information about the existing models.
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ies, a three-dimensional melt pond is considered.
Some intermediate goals are described below. We aim at providing information on

the relevant parameters affecting the melting/solidification in sea ice melt ponds.

• Investigation of internal dynamics of melt-pond and the ice topography by con-
sidering two- and three-dimensional direct numerical simulation of melting sys-
tem.

• Investigation of the influence of wind stress on the dynamics of melt-pond and
the morphology of solid-liquid interface.

• Investigation of the influence of solar heat fluxes and better understanding of the
transport of solar heat within melt ponds.

1.2. Structure of the present work
In Chapter 2, the phenomenology of melt pond will be described, together with the most
used models for these phenomena, which we denote as state-of-the-art on melt pond
modeling. Most of the models, presented in this chapter, address the distribution of
melt-pond and its effect on total albedo in large scale. However, particular interests of
this thesis are the aspect related to the internal dynamics of melt-ponds, in other words
the processes connected to heat transfer through a fluid layer and the phase change pro-
cess of the bottom of ponds.

The process of melting, from internal dynamics point of view, undertakes two stages
of conduction and convection.In Chapter 3 we address the mathematical aspects of melt-
ing system with different configurations. This chapter starts with describing the mathe-
matical equation of melting under the effect of thermal conduction, which is known as
the Stefan problem[11]. The analytical solution for the Stefan problem is known and is
described in detail in first part of the Chapter 3. The mathematical solution of the Stefan
problem is a good starting point for validation of numerical computation, which is why
we start our discussion with relatively simple case of conductive melting.

We continue the discussion of conductive melting by applying one more constraint
on the flow: a moving boundary. A moving boundary in the configuration of melt pond
can be seen as having wind draft on the water-air boundary (top of melt pond). Similar
to merely conductive melting, solutions of melting system couple with moving boundary
in conductive regime is also analytically computable, and can be used to validate more
complicated numerical solutions.

When the depth of liquid layer is large enough, the buoyancy force plays distinct role
in the internal dynamics of melting system. Due to density differences, that stems from
temperature differences of near top warm water and cold water near the ice, the liquid
part of the melting system shows convection. Through this convective behaviour, the
heat-budget exchange in the liquid part will increase and more heat will reach the icy
bottom of the melt pond. Consequently, one can expect difference in the rate of melting
in convective regime.

Due to the nature of equations describing the system of melting, analytical solution
for the convective melting system does not exist. However, one can estimate the solution
trough numerical simulations. Consequently, in order to step in the direct numerical
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simulation, we continue the discussion of the chapter 3 by introducing the governing
equations of system of melting.

In order to investigate the dynamics of convective melting system, numerical tool is
needed. Thus, in Chapter 4, we describe the Lattice Boltzmann method, which is used
in the direct numerical simulations performed in the present work. We chose the Lat-
tice Boltzmann method for several reasons. First of all it is relatively easier to imple-
ment in parallel environment, which makes it much time-efficient for our large com-
putation. Secondly, there are well-known methods to implement simulation of phase-
change (solid-liquid interface) which are suitable with the Lattice Boltzmann method.

The results of simulations in two- and three-dimensional systems are presented and
discussed in Chapter 5. Initially, we qualitatively describe the dynamics of system, and
interpret and rationalize the observed trends in the scaling of the global quantities, such
as Nusselt and Reynolds number. We specialize the discussion on the dimensional effect
by analyzing the morphology of the melting front. Moreover, the effect of the Stefan
control parameter on the rate of melting is studied. Finally, we study the effect of aspect
ratio on the dynamical behaviour of system of melting.

In order to complete the discussion about melting system, we process in 6 and 7
with two different setups that are common in the process of melting in the Arctic; effect
of moving boundary (shear velocity) and volumetric bulk heating.

In Chapter 6, we address the behaviour of two-dimensional system of melting with
existence of moving boundary, which represents the effect of wind draft on Arctic melt-
pond. Similar to Chapter 5, we try to rationalize the behaviour of scaling of global pa-
rameters for different intensity of wall velocities, which we address by properly specified
dimensionless parameter. Moreover, we discuss the morphology of solid-liquid inter-
face and its dimensional effect on the dynamics of melting-system coupled with moving
boundary.

In Chapter 7, we investigate the two-dimensional system of melting heated inter-
nally through volumetric bulk heating, which can be seen as a simple modeling of warm-
ing the system by radiation. As the solar radiation hits the melted pond, it penetrates the
surface of the pond. Therefore, through gradual absorption of radiation the liquid layer
warms up internally. Similar to the trend of previous chapters, we interpret the dynamics
of the system by considering scaling of global parameters for different intensity of vol-
umetric heating. Finally, we address the morphology of the interface and its behaviour
with existence of bulk-heating in the system of melting.

Finally, in Chapter 8, we conclude the present work by critically reviewing the results
of the Chapters 5, 6 and 7 thoroughly, and state future prospective.
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2
Overview on sea ice melt ponds in the Arctic

Due to the dynamic nature of the ocean, sea ice does not simply grow and melt in a
single place. Instead, sea ice is constantly moving and changing location. One way of
investigating the behaviour of sea ice and the process of melting is through modeling.

In the simplest sense, when the temperature of the ocean reaches the freezing point,
ice begins to grow [1]. When the temperature rises above the freezing point, ice begins
to melt. In reality, however, the amount and rates of growth and melt depend on the way
heat is exchanged within the sea ice, as well as between the top (ice-atmosphere) and
bottom (ice-ocean) of the ice. In the present chapter, we look into phenomenology of
melt-ponds, and the efforts that have been made to scientifically model the process of
melting in melt-pond, and quantify distribution of melt-ponds on the Arctic sea-ice.

2.1. Albedo and melt-pond evolution
Sea ice is a composite of small fractionated areas of melt ponds, leads, snow fields, and
ridges on a scale of meters over tens of meters to hundreds of meters. This results in a
very inhomogeneous surface (see Fig. 2.1). Additionally, sea ice is composed of first-year
and multi-year ice. Multi-year ice has survived at least one melt season.

The optical properties of ice and snow are a strong function of the wavelength of the
incident solar radiation as shown in Fig.2.2. Highest spectral albedo values (> 0.9) ap-
pear in short wavelength ranges from 400 to 600nm for dry snow. The spectral albedo de-
creases toward longer wavelengths at a rate which seems to be related to the liquid–water
content of the surface layer [2]. At 500nm melt ponds have albedo values that can range
between 0.6 for young and shallow ponds and 0.25 for matured ponds on multi-year ice.
The variety of albedo values for ponds is caused by differences in depths and underlying
surfaces (see Figs. 2.3).

The albedo is correlated to the amount of air bubbles and brine1 inclusions in the

1When frazil ice crystals form, salt accumulates into droplets called brine, which are typically ex-
pelled back into the ocean. This raises the salinity of the near-surface water. Some brine droplets
become trapped in pockets between the ice crystals.

9
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Figure 2.1 – Arctic sea ice surface covered with melt ponds displaying various characteristics. The
photo was taken from a helicopter during the Polarstern cruise ARK-XXII/2 in 2007. Photo: Stefan

Kern

Figure 2.2 – Spectral albedo values for different surface types on Arctic sea ice: (a) snow-covered
ice (dry snow), (b) cold bare ice, (c) wet snow, (d) melting first year ice, (e) young melt pond, (f )

and (g) two types of mature melt ponds, and (h) open water. The figure is taken from T.Grenfell et
al. [2] with some modifications.

sea ice. Hence, we can distinguish between albedo values of first-year ice and multi-year
ice [3] the albedo of first-year ice is generally higher than the albedo of multi-year ice.

In literature many spectral and total albedo values for different surface types are
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Figure 2.3 – Arctic sea ice surface covered with light blue shallow melt ponds (black star) and dark
color deep melt ponds (white star). This photo shows a temporal ice station on a floe for

measuring ice thickness. The photo is melt ponds on Arctic sea ice, copyright NASA Goddard
Space Flight Center
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Figure 2.4 – Wavelength-integrated albedos for different surface types on Arctic sea ice.[3]

given [2–7]. Figure 2.4 shows some total albedo values published by Perovich [3]. The
values are ranging from 0.06 for open water over 0.29 for mature melt ponds to 0.87 for
new snow.

2.1.1. Melting processes on sea ice
To understand the evolution of sea ice throughout the melting season, it is necessary
to distinguish between five distinct phases in the albedo evolution: dry snow, melting
snow, pond formation, pond evolution, and refreezing [8].

In winter, most of the ice surface is covered with a dry snow layer of variable depth,
building a more or less homogeneous surface with a high total albedo between 0.8 and
0.9 [8]. With onset of the summer melt season, the sea ice cover is subject to profound
changes in its physical state and optical properties. The point in time when the melting
process begins, strongly depends on the amount of solar energy absorbed before and
during the melt season. It should be noted that early melt onset allows an earlier devel-
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opment of open water areas, which then again enhance the ice-albedo feedback [9]. A
trend to an earlier melt onset and a later freeze-up date in the entire Arctic region for the
last three decades is described in literature [10]. The resulting longer melting periods are
again a positive factor to the ice-albedo feedback mechanism.

Starting in April in sub-Arctic regions, dry snow wettens and begins to melt. Snow
grains2 transform and grain size generally increases [11]. Even these first melting pro-
cesses can reduce the albedo of snowy surfaces by about 10 ∼ 20%.

Snow melting processes depend on the properties of the snow cover, mainly on the
snow depth. The variability of Arctic snow cover depth ranges from none to several me-
ters in leeward sides of ridges or other obstacles. In the Central Arctic, snow cover usually
disappears by the end of June [12]. Melt water of snow and ice accumulates in surface
depressions and other surface deformation features. Compared to the much more irreg-
ular surface topography of multi-year ice; plane and flat surfaces of first-year ice have the
potential to host large and extended melt pond areas [12, 13]. They can reach a coverage
of over 50% of the total sea ice area [11]. On a flat topography of first-year level ice and
in an early melt stage; the melt pond fraction can even rise up to 90% [14]. As melting
develops, pond water drains through porous ice and cracks [15]. The pond properties
and distribution on multi-year ice are described as smaller, deeper, and more numerous
than on first-year ice [16].

The heat transfer due to convection in water exceeds the one of ice. Additionally,
the lower albedo of ponded ice allows a higher penetration of heat into the ice. Both
factors yield to a two to three times higher melt rate beneath ponds compared to the
melt rate of bare ice [12]. Hence, the ponds deepen and can even melt through the ice
layer. With the increasing depth of the ponds, also the diameter decreases [12]. On the
one hand, spectral as well as total albedo of bare ice are fairly constant during the melting
period. On the other hand, albedo of ponded ice depends on the pond depth and varies
throughout the melting period [4].

Melt ponds are nearly salt free and the density maximum of the ponded water lies
well above the freezing point [12]. Consequently, radiative heating favors convection
within the pond: due to the density anomalies of water, the warmer water will sink down
and thus causes further melting. Convection and mixing of the water is additionally
enhanced by wind [15]. In late summer, melt ponds tend to melt down to sea level and
drain towards the ocean.

Mature ponds are effective traps for the first drifting snow. Through the capillar ef-
fect, the water level of the pond rises. Therefore, it is less likely that this particular area
will be pond covered in the next melting season [12]. Freeze-up starts in late August or
early September, caused by low air temperatures. This results in a decreasing melt pond
fraction. A snowfall event after freeze-up will cover the melt ponds, resulting in a higher
surface albedo. The process of formation of melt-ponds is summarized in Fig (2.5).

The large inter-annual variability of the melt pond coverage can be caused by sev-
eral factors: year-to-year variations of weather (mainly clouds and radiation), amount
of melt water availability from snow, variable surface topography, floe size distribution,

2Snow grains are a form of precipitation. Snow grains are characterized as very small (< 1mm),
white, opaque grains of ice that are fairly flat or elongated. Unlike snow pellets, snow grains do
not bounce or break up on impact.
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and their effect on runoff-pattern [12, 17].

Figure 2.5 – Summary of melting and refreezing cycle of melt ponds in Arctic in one snapshot.

2.2. Representing ponds in climate models
In this section, we review most used models introduced over the last two decades. There
was no pond parameterization in the early sea-ice thermodynamic models [18, 19]. How-
ever, observation of rapid reduction of summer Arctic sea ice suggested dynamic effects
of melt ponds in the rate of melting of sea-ice.

The models, presented here, are described briefly together with the methods used
to model melt ponds. In order to complete the discussion, we conclude by describing
strengths and weaknesses of each model. These models are mainly about distribution
of melt ponds, and internal dynamics of melt pond has been rarely taken into account.
The order of introduction of models is from large-scale models to small-scale ones, and
finally the models describing dynamics of single melt pond.

2.2.1. Large-scale models
Taylor and Feltham: Melt pond model
Taylor and Feltham [20] introduced a one-dimensional, thermodynamic melt-pond model
that is based on two-stream radiation model3 instead of commonly used Beer-Lambert
law4 representation of radiative transmission in sea ice. This model is advantageous in
that the albedo can be calculated from the optical properties and ice thickness, whereas
for Beer’s law formulations, albedo is specified as an external parameter.

In the presence of melt ponds, a parameterization is used to simulate the variation of
optical properties caused by morphological changes to the sea ice during summer. The
governing equation for temperature is based upon the equation describing conservation
of heat in a mushy layer. Mushy layers describe binary alloys, and consist of a solid ma-
trix surrounded by its melt. For sea ice the solid matrix is composed of effectively pure
ice, and the melt is brine.

The melt-pond model is primarily focused on Arctic sea ice, because the forcing data
describe Arctic conditions; however, it is also applicable to melt ponds in the Antarctic.

3Two-stream radiation model allows albedo to be determined from bulk optical properties, and a
parameterization of the summertime evolution of optical properties.

4The Beer-Lambert law is the linear relationship between absorbance and concentration of an
absorbing species. The general Beer-Lambert law is usually written as A = a(λ)bc, where A is
the measured absorbance, a(λ) is a wavelength-dependent absorptivity coefficient, b is the path
length, and c is the analyte concentration.
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Figure 2.6 – One-dimensional melt pond-sea ice model of Taylor and Feltham [20]

With some straightforward modifications, the model could also be applied to other geo-
physical surface melt processes such as surface melting of glaciers.

As shown in Fig. 2.6, the model uses a three-layer, two-stream radiation model fol-
lowing Perovich [21], where the layers correspond to the melt pond, underlying sea ice
and (where it exists) a layer of refrozen sea ice on top of the melt pond. The two-stream
radiation model describes the radiation field in terms of an upwelling and downwelling
stream.

The advantage of this model is that albedo can be explicitly determined, although
it suffers from the assumption that the instantaneous radiation is uniform and scatter-
ing is isotropic. However Taylor and Feltham argue that as during summer, there is a
high percentage of cloud cover [22], thus the assumption of diffuse incident radiation is
approximately valid [21].

For computational convenience this model does not use spectral variation of the so-
lar radiation or vertical variation of the optical properties in each layer, and it parameter-
izes the optical properties in the presence of melt ponds to obtain more accurate sum-
mertime temporal variation of albedo. Using wavelength integrated properties should
not significantly affect the qualitative results, since most of the radiative energy in the
sea ice is absorbed near the surface and this can be well represented using a single-band
model [23].

This model consists of many features; for instance, heat transport within sea ice,
melt pond and internal region, and snow layer, and finally drainage of ponds. However,
the problem with this model is considering constant rate of melting for ice (in which the
solid-liquid interface grows with a constant velocity), and independence of liquid layer
height.
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Melt ponds evolution coupled with CICE model
The Los Alamos CICE5 model is based on sea ice conditions and topology of the surface
sea ice and was introduced by Flocco et al [24]. When meltwater forms due to snow and
surface ice melt, it runs downhill under the influence of gravity. Thus, the topography of
the ice cover plays a crucial role in determining the melt pond cover (e.g., [13, 25, 26]).
CICE uses a discretized ice thickness distribution function [27] with five ice categories
in the reference configuration. In this model it is assumed that each sea ice thickness
category is in hydrostatic equilibrium at the beginning of the melt season, so that the
sea ice thickness distribution function can be split into a surface height and basal depth
distribution. For melt pond parameterization, the model calculates the position of sea
level assuming that the ice in the whole grid cell is rigid and in hydrostatic equilibrium.
The principle for meltwater distribution within a given grid cell and time step is, then, to
take the volume of meltwater and cover the ice thickness categories in order of increasing
surface height [28].

In general, the climatology of the reference CICE simulation with this melt pond
scheme is in good agreement with observed ice extent and concentration and in rea-
sonable agreement with observed ice thickness. The largest discrepancies occur in the
Fram Strait, where the ice is too thin and drifts too fast, and in the Barents Sea. But these
regions are of minor importance for studying the impact of melt ponds.

The impact of this melt pond scheme can be understood through comparison with
three different melt pond approaches. First, artificially pond area and volume is set to
zero. Second, this model applies the CCSM3 (Community Climate System Model [29])
radiation scheme instead of the Delta-Eddington radiation scheme [30]. Melt ponds are
not explicitly accounted for, but the albedo is adjusted to observations (e.g., SHEBA ex-
periment [31]) that include ponds. Third, this model applies the semi-empirical Bailey
scheme [32] in which pond area and depth are parameterized as a function of the volume
of meltwater and the change of meltwater volume as a function of surface temperature
[28].

Apart from effectiveness of this model on well predicting the behaviour of Arctic sea-
ice, this model does not deal with physical behaviour of ponds, and therefore, further
investigation for understanding the dynamics of ponds is needed.

Lüthje: Modeling sea ice ponds
Lüthje et al. [25] developed a mathematical model to help understand the relative impor-
tance of melting and drainage processes to the summer evolution of the sea-ice cover.
Different topographies, unponded ice melt rates, melt rates beneath melt ponds, ver-
tical drainage rates, and horizontal permeabilities were tested. Despite the simplicity
of the model physics, the model is able to quantitatively capture the main features of
melt-pond formation, spreading and drainage.

5The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally ef-
ficient sea ice component for use in fully coupled, atmosphere-ice-ocean-land global circula-
tion models, and it was originally developed to be compatible with the Parallel Ocean Program
(POP). The name CICE is derived from "sea ice" and further information about it can be found at
http://oceans11.lanl.gov/trac/CICE

 http://oceans11.lanl.gov/trac/CICE
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The model consists of a volume element containing part of the surface of the sea-
ice cover. The volume element is in the shape of a square prism with horizontal edges
parallel to the axes of a Cartesian coordinate system fixed in space. The upper surface of
the sea ice is given with respect to a fixed plane (for instance z = 0) and the depth of the
layer of meltwater on top of the sea ice is denoted initially.

Initially, the surface topography is given together with the depth of the sea ice. The
surface of the melt pond will lower after a time interval owing to vertical seepage, and
the upper surface of the sea ice will lower owing to melting. The horizontal fluxes of
meltwater into or out of the volume element per unit cross-sectional area are measured
and used to compute volumetric changes of simulated melt ponds. As vertical seepage
occurs more rapidly than horizontal redistribution through the surface layer, in each
time step of the numerical calculations, the model apply the horizontal flux of meltwater
into, or out of, a grid cell only if there is meltwater left after vertical seepage has taken
place.

Calculations using their model give new insight into processes important for melt
pond development. In particular, topography, vertical seepage rate, and unponded ice
melt rate turned out to be the most important unknowns in determining the total summer-
time surface ablation of sea ice. However, the treatment of meltwater flow was relatively
crude and the model does not explicitly treat a snow cover. The role of snow and the im-
portance of hydrodynamic processes to determining melt pond evolution is described
by Eicken et al. [13, 15]. On this basis, one can speculate about the typical role of snow
in a model of melt pond evolution. In particular, as the snow cover melts before the
ice beneath it, the distribution of snow will largely determine the initial source of melt-
water at the beginning of the melt season. Since, at this time, the sea ice is relatively
cold and therefore relatively impermeable, one would expect lateral spreading of melt
ponds to dominate vertical drainage into the underlying ocean. This is especially true
of flatter, first-year sea ice as the meltwater is not trapped in depressions. The lateral
spread of melt ponds might be expected to lead to enhanced melt at the peak in solar
radiation, leading to entire melt through of sea ice in places, draining meltwater from a
surrounding catchment area. The net effect of this may well be to reduce total ablation
as predicted by this model.

Although, this model considers the drainage of melt pond in the process of forma-
tion, however, the dynamics of melt pond is not taken into account. Moreover, the model
can simulate physical area of order 100 meters which compared to the area of Arctic sea
ice is quite small.

Continuum model of melt pond evolution
This model is chosen to determine a model of the melt pond cover through a consid-
eration of the physical processes that have been observed to determine pond evolution
[33]. It make use of the sea ice thickness distribution function of Thorndike et al. [27],
which was in use until recently in the latest generation of climate models, for example,
HadGEM (the UK climate model), the Community Climate System Model (CCSM) at the
US National Center for Atmospheric Research, and the Los Alamos CICE sea ice model
component.

In the sea ice component of climate models, the thickness distribution function is
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discretized, so that the area fractions of a small number of thickness classes are calcu-
lated and the evolution equation is solved in stages, using operator decomposition [34].
When solving the thermodynamic part of the evolution equation, the presence of melt
ponds on the ice should be taken into account because the melt ponds significantly in-
crease the melting rate of the ice they cover during the melt season and provide a store
of latent heat that retards freezing during fall and winter.

The basic continuum hypothesis, in this model, is that within the horizontal grid cell
of a sea ice model, ice of varying thickness is distributed uniformly, with relative abun-
dance determined by the thickness distribution function. In particular, ice with different
surface heights are distributed uniformly with relative abundance. This model uses the
surface height distribution function to determine the redistribution of meltwater: at the
beginning of a time step in numerical model, meltwater is generated and, at the end of
the same time step, this meltwater is distributed so that it first covers ice of lowest sur-
face height, and subsequently covers ice of increasing surface height. The meltwater is
distributed such that the pond surface height is the same on all pond-covered surface
ice height classes. Since the hypothesis is that sea ice of different surface heights are
distributed uniformly over the grid cell, the meltwater does not need to travel far hori-
zontally in order to accumulate on the lower ice surface.

One of the drawbacks of this model is the inability to explicitly model horizontal
transport of meltwater upon or within sea ice in the model because generally the to-
pography of the ice surface is unknown. For the same reason, this model is unable to
distinguish between one large pond or a collection of ponds with the same total area
and volume.

Another disadvantage of this model is that it does not explicitly treat the heat balance
in the model. However, it uses a simple parameterization for the melting rate of ponded
ice, with constant surface melting rate for bare ice and constant basal melting rate. These
assumptions were made to simplify the calculations and isolate the physics of the pond
formation and evolution.

Using this model, calculations have revealed that during the early part of the melt
season, the pond coverage is dominated by snowmelt and accumulation of water with
a positive hydraulic head. However, by about day 10 into the simulation, the ice cover
becomes sufficiently porous that the pond surface drains to sea level within a few hours.

The model is based on many necessary assumptions. However, the model provides a
realistic simulation of the fraction of the ice surface covered melt-ponds and maximum
pond depth.

Ising model for melt
To address the fundamental problem of the evolution of the melt ponds in polar climate
science, this model introduces a two dimensional random field Ising model 6 for melt

6The Ising model, named after the physicist Ernst Ising, is a mathematical model of ferromag-
netism in statistical mechanics. The model consists of discrete variables that represent mag-
netic dipole moments of atomic spins that can be in one of two states (+1 or −1). The spins
are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. The
model allows the identification of phase transitions, as a simplified model of reality. The two-
dimensional square-lattice Ising model is one of the simplest statistical models to show a phase
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Figure 2.7 – Melt ponds as metastable islands of like spins in a random field Ising model.[35]

ponds [35]. The ponds are identified as metastable states [36–38] of the system, where
the binary spin variable corresponds to the presence of melt water or ice on the sea ice
surface. With only a minimal set of physical parameters, the model predictions agree
very closely with observed power law scaling of the pond size distribution [8] and critical
length scale where melt ponds undergo a transition in fractal geometry [39].

To describe nontrivial spin clustering at zero temperature, the Hi and/or Ji j are cho-
sen as random variables; the resulting models are collectively known as disordered Ising
models [40]. In particular, one recovers the classical random field Ising model (RFIM) if
the Hi are independent random variables and the Ji j = J are constant. At zero temper-
ature, the system is usually assumed to follow Glauber single spin-flip dynamics [41] at
each update step, the flip is accepted if H decreases and rejected if H increases. The
system eventually converges to a local minimum of H , known as a metastable state.

Metastable states are especially relevant to physical systems near phase transitions,
including supercooled liquids [42] and atmospheric aerosol particles [43]. For disor-
dered Ising models they have been realized experimentally in, for example, doped man-
ganites [44] and colossal magnetoresistive manganites [45]. Despite their importance,
metastable states are not completely understood theoretically [41], with analytical re-
sults largely restricted to 1D [46] and many intricate issues remaining in 2D [47].

The key factor controlling melt pond configurations is the pre-melt ice topography,
represented by random variables hi . In the spirit of creating order from disorder, these
variables are assumed to be independent Gaussian with zero mean and unit variance.
The lattice constant a = 0.85m is specified as the length scale above which important
spatially correlated fluctuations occur in the power spectrum of sea ice topography. The
model uses the following update rule for Glauber dynamics, depending on whether there
is a majority among the four neighbors of a chosen site. If a majority exists, the site is
updated to align with the majority because of heat diffusion between neighboring sites.
Otherwise, a tiebreaker rule is introduced that describes the tendency for water to fill
troughs: the chosen site is updated to ice if its pre-melt ice height is positive, and water
otherwise; see Fig. 2.7. Note that this update rule does not depend on any parameters
other than hi .

Minimal models such as the RFIM necessarily have limitations. In particular, the
RFIM has a percolation threshold very close to 0.5 at H = 0. This threshold decreases

transition.
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as H decreases, but likely always exceeds the value for real melt ponds. This discrep-
ancy may be attributed to unresolved processes at smaller scales, and/or the observed
pre-melt ice topography being spatially correlated rather than completely random. This
can be anticipated that, based on a significant amount of observational data, a detailed
scheme for choosing the initial spin configuration and update sequence may be formu-
lated.

The interpretation of complex Arctic melt ponds in terms of a simple disordered sys-
tem may well advance the ability to model the future trajectory of the Arctic sea ice pack,
e.g., through parameterizations in global climate models [28].

2.2.2. Small scale models
Single melt pond model
Skyllingstad et al. [48] investigate the thermodynamic behaviour of melt ponds using
two modeling approaches. First approach addresses the heat budget of a melt pond us-
ing a large-eddy simulation (LES) model that can directly simulate the motion of water
within a melt pond. Use of the LES model allows to estimate the importance of wind-
forcing and heat transport within the pond. However, because of the high computa-
tional cost of LES, they could only examine the heat transport processes over periods of
a few hours. In addition, three basic pond configurations were considered in the LES
experiments, each designed to test the importance of the pond horizontal area versus
perimeter. (Fig. 2.8)

Figure 2.8 – Horizontal velocity for 4−m pond with different configurations. Courtesy of
Skyllingstad et al. [48]

To examine longer-term pond behaviour, a less complicated bulk model is devel-
oped, which concentrates on the radiative heating within the pond. The bulk model
simulates pond growth by treating the pond as well mixed and tracks the width, length,
and depth of the pond as a function of time. This method differs from previous bulk
models by considering the pond size and applying the pond budget equation with a
depth-dependent solar flux. The model provides a useful tool that can bridge the gap
between expensive, high-resolution LES and single layer ice models as described by Tay-
lor and Feltham [20]. In both the LES and bulk models, they do not account for fluxes of
heat and water from lateral transport through porous ice. These factors require a more
complete ice model and surface process model.

In their model, they address the uncertainties in modeling melt ponds in quantify-
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ing how solar heat is transferred. To estimate the relative importance of side versus edge
melting, they apply an LES model that directly simulates the motion of water through-
out the pond and the transport of heat from the pond interior to the bottom and sides.
The LES model is based on the filtered nonhydrostatic, Navier-Stokes equations with a
subgrid-scale closure provided by Ducros et al. [49]. Pond boundaries are simulated us-
ing a volume of fluid approach following Steppler et al. [50] and Adcroft et al. [51]. The
equations of motion are defined using an enstrophy conserving scheme following Tripoli
[52].

Results from the LES pond model indicate that ponds are very likely to develop well-
mixed conditions even when ponds begin with significant stratification. Simulations
show that very light winds (2 ∼ 3m/s) are able to move pond water vertically, causing
transport of heat throughout the pond system. When stratified with a 4 psu salinity gra-
dient, the model predicts a delay in pond mixing of several hours, but still develops a
well-mixed equilibrium state.

Well-mixed conditions in ponds suggest that heat will transfer equally to the side and
bottom of the pond. For the most part, their experiments support this hypothesis; how-
ever, pond shape does limit the movement of water even when well mixed. Simulations
with a variety of pond shapes and sizes show that the basic ratio of sidewall area to bot-
tom area, can be used to characterize most ponds. For example, as pond size increases,
the bottom area increases in relation to the side area. Consequently, relatively small
ponds have a larger lateral growth rate from melting in comparison with large ponds.

The drawback of this model is that the experiments performed by the model are
only able to give estimates of the pond melting rates and do not address pond evolution
forced by water inflow and outflow from the surrounding ice. Clearly, these aspects of
pond behaviour are also a key element in controlling the ice-albedo feedback. Moreover,
the sizes of experiments are independent of internal dynamics of the simulation, i.e.
time independent. In addition, the rate of melting is considered constant and set to that
suggested by McPhee et al. [53].

Considering the present model, the necessity of investigating the internal dynamics
of melt-pond is undeniable. Therefore, in our model we consider the problem of melt-
ing through simulation of complete melting process. Similarly, we consider different
aspects, e.g. moving boundary and volumetric bulk heating.

2.3. Summary and open issues
Melt ponds are pools of open water that form on sea ice in the warmer months of spring
and summer. The ponds are also found on glacial ice and ice shelves. Ponds of melted
water can also develop under the ice.

Melt ponds are usually darker than the surrounding ice, and their distribution and
size is highly variable. They absorb solar radiation rather than reflecting it as ice does
and, thereby, have a significant influence on Earth’s radiation balance. This differential,
which had not been scientifically investigated until recently, has a large effect on the rate
of ice melting and the extent of ice cover.

Through this chapter, we described the mechanism that involves formation of melt
ponds. Furthermore, we talked about albedo (a measure for reflectance or optical bright-
ness), and effect of melt ponds in reduction of surface albedo of sea ice, which in advance
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results in absorption of more solar radiation and consequently warmer environment.
Several models have been developed over last two decades to simulate the distribu-

tion of melt ponds in sea ice, and investigate the mechanism of growth of melt pond at
large scale, that we briefly mentioned in this chapter. However, there are several ques-
tions that still needed to be answered:

i) What are the processes involved in the dynamics of a melt pond, and how do melt
ponds evolve?

ii) What is heat flux intensity behaviour with respect to the geometry of melt pond,
and how it is linked with the melt rate?

iii) How can one characterize the corrugation and morphology of bottom melt pond
(ice-water) interface ?

iv) How solid liquid interface does interact with internal dynamics of melt pond?

v) What effects do other constrains, such as internal heating and moving boundary,
have on the rate of melting and total heat budget?

In the next part, we try to answer these questions and understand the internal dy-
namics of melt ponds through the numerical simulation of the melting system. Further-
more, the micro-scale study performed here can be used to parametrize the influence of
melt pond in large scale.
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3
Evolution equations for conduction, convection

and phase-change

This chapter is dedicated to the mathematical modeling of conductive and convective
melting. The problem of conductive melting of a pure substance, known as Stefan Prob-
lem, is introduced first. Then, the same problem coupled with moving boundary is con-
sidered, which will account for wind effects in the melt-pond. The numerical results of
melting system coupled with moving boundary is presented in chapter 6.

Following the solution of the Stefan problem, we continue with describing system
of natural thermal convection between two horizontal plates with temperature gradient,
which is known as Rayleigh-Bénard system. Finally, bulk-heating is considered in order
to account for solar radiation effects in melt pond simulation presented in chapter 7.

3.1. The mathematical model system
The model system considered in this study consists of a solid layer of a pure substance
of thickness Hmax initially at a constant uniform temperature, Tm , equal to the phase-
change (melting) temperature. At time t ≥ 0 the bottom boundary of the solid is heated
at a constant temperature T0 > Tm and a melted fluid layer begins to grow from below.
The solid starts to melt and during the process of melting the system goes through stages
of conductive and convective melting, based on the height of liquid fraction.

We shall note that our model system is dynamically equivalent to the setting men-
tioned earlier of an Arctic melt pond, although it is an upside-down representation. In
order to better explain this equivalency one has to consider the special behaviour of the
density profile of water and its anomaly at 4◦C as shown in Fig.3.1a. Such an anomaly
is absent in most of materials (such as wax, glycerol, etc. used in solidification exper-
iments), where increasing the temperature of a substance decreases its density by in-
creasing its volume. This tendency of matter to change in shape, area, and volume in
response to a change in temperature is known as thermal expansion.

A number of materials contract on heating within certain temperature ranges; this
is usually called negative thermal expansion, rather than "thermal contraction" (β< 0).
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For example, the coefficient of thermal expansion of water drops to zero as it is cooled to
3.983◦C and then becomes negative below this temperature; this means that water has a
maximum density at this temperature (see Fig. 3.1a and 3.1b).

In most materials, heating the bottom of a fluid results in convection of the heat from
the bottom to the top, due to the decrease in the density of the heated fluid. This causes
it to rise relative to more dense unheated material. However, due to the thermal con-
traction property (negative thermal expansion) of water below 4 degrees, lighter water
at the bottom of melt pond and at the temperature of melting (0◦C ), rises to the warmer
surface of melt-pond.
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Figure 3.1 – Plots of density profile and thermal expansion coefficient of pure water from
0 ∼ 10◦C .

The temperature difference that we are interested in and has been addressed in this
work is also ∆T = 1◦C . Therefore, as we can see in Fig. 3.1a, in the range between 0◦C
and 1◦C , density-temperature relation of water is reversal to most material where the
density decreases with the increase of the temperature. Moreover, as one can see in Fig.
3.1a, in the range 0◦C to 1◦C , the density profile of water can be considered linear.

The reason for choosing such a configuration for our model is its universality, and
the fact that the comparison between this model and its corresponding Rayleigh-Bénard
is easier.

To summarize, in ice-ponds, as we already mentioned, the heating occurs at the top
rather than the bottom but buoyancy force is pointing downward for warmer parcels of
water, the two effects compensate leading to the same driving convective forcing of the
above described model system. The visualization of equivalency of dynamics of melt-
pond heated from above and simulations heated from bottom is shown in Fig. 3.2. Panel
3.2a shows thermal contraction of water below 4 degrees, whereas panel 3.2b shows ther-
mal expanding material (water above 4, and majority of other materials).

In the following sections, we introduce governing equations for system of conduc-
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(a) Melt-pond with thermal contraction.
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Figure 3.2 – Visualization of equivalency of dynamics of melt-pond heated from above and
simulations heated from bottom.

tive melting and convective one. Moreover, two constraints of moving boundary and
bulk heating will be introduced. In each case, if the analytical solution exists, we will
introduce it completely. The analytical solutions will be used later to validate the nu-
merical code we developed to investigate system of melting.

3.2. Conductive melting
The melting of ice and solidification of water are two examples of a phenomenon called
a phase transformation, which is a discontinuous change of the properties in the sub-
stance. The different states of aggregation are called phases and they share the same
physical properties (for instance density and chemical composition), therefore a phase
is more specific than a state of matter. As a phase transition occurs, there will appear
a latent heat which either is absorbed or released by the body/thermodynamic system
without changing the temperature.

The model system is a solid layer at the temperature of melting Tm heated from the
bottom with temperature T0. The heat starts to melt the solid layer and form a liquid
layer. The heat continues to transfer through the liquid layer by the mean of conduction
and melts the solid layer. A schematic of the model system is shown in Fig. 3.3, the
coordinate frame is fixed at the bottom boundary, and the position of the solid/liquid
interface is moving in the z-direction.

The first known paper about diffusion of heat in a medium with a change of phase
state was published by the French mathematicians Gabriel Lamé and Benoît Paul Émile
Clapeyron in 1831 [1]. The stated problem was to cool a liquid filling the half-space x > 0
and determine the thickness of the generated solid crust, with an imposed temperature
at x = 0. They discovered that the thickness of the crust is proportional to the square root
of time, but no determination of the coefficient of proportionally was attached.

Almost 60 years later in 1889 was this question picked up and stated in a more gen-
eral form by the physicist and mathematician Joseph Stefan [2]. Joseph Stefan described
a mathematical model for real physical problems with a phase-change [3]. This was the
first general study of this type of problem, and since then free boundary problems are
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solid

liquid
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Figure 3.3 – Schematic diagram of the melting system. The system is filled with a pure solid at the
temperature of melting (Tm ). The temperature at the bottom (T0) is higher than the melting

temperature, consequently the solid turns into liquid for t > 0. Due to the thermal conduction
through the liquid layer, the solid continues to melt over time. The local height of interface is

denoted with zm , in general it is a function of spatial coordinates x, y and of time t .

called Stefan problems. The given mathematical solution was actually found earlier by
the German physicist and mathematician Franz Ernst Neumann in 1860. It is called the
Neumann solution [4].

3.2.1. One dimensional Stefan problem
The Stefan problem is a specific type of boundary value problem for a partial differential
equation concerning heat distribution in a phase changing medium. Since the evolu-
tion of the interface is a priori unknown, a part of the solution will be to determine the
boundary. An example is the diffusion of heat in the melting of ice, and as the melting
occurs the boundary of the ice will be changing position. The problem is by some au-
thors denoted as a "free boundary value problem" due to the fact that the boundary of
the domain is a priori unknown [5–7]. To distinguish the case of a moving boundary (as-
sociated with a time-dependent problem) from the problem with fixed boundaries, a few
authors denote the former as a "moving boundary problem" [8]. To stick with the com-
mon notation, the term "free boundary problem" will be used in this thesis and denote
both the time-dependent and the stationary boundary.

To achieve a unique solution for the Stefan problem, two boundary conditions are
needed; one to determine the moving boundary itself and one is as usual a suitable con-
dition on the fixed boundary. The natural occurrence of the Stefan problem is mostly
associated with the melting and solidification problems, however there also exist some
Stefan-like problems, for instance the fluid flow in porous media or even shock waves in
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gas dynamics [2].
In this section, we formulate the most simple form of a mathematical model de-

scribing phase transitions. The classical Stefan problem is a solidification and a melting
problem, for example the transition between ice and water. To acquire a solution for the
classical Stefan problem, the heat equation needs to be solved. As mentioned before, a
boundary condition on the evolving boundary is needed to get a unique solution. It is
called "the Stefan condition" and will be derived below. The result of analytical solutions
of this section will later be used in order to validate our DNS results.

3.2.2. The Stefan condition
The evolving unknown interface is denoted as H(t ), where z is the position in space and
t is the time. To derive the Stefan condition we need to make some assumptions. As the
transitions occur there will be a small volume change due to different density of solid
and liquid; although here, we will ignore this property for simplicity. By physical reason
the temperature should be continuous at the interface H(t ) between the phases:

lim
z→H(t )+

Ts (z, t ) = lim
z→H(t )−

Tl (z, t ) = Tm for all t . (3.1)

The phase-change temperature between the two phases is assumed to be of constant
value, Tm . At a fixed time t = t0 consider a domainΩwith two different phases separated
at z = H(t0) (Fig. 3.4). We assume plane symmetry (in other direction except z) to have
the temperature T depending only on t and z.

H(t)

z

Ω1

Liquid phase

Ω2

Solid phase

0

Hmax

Tm

Figure 3.4 – DomainΩ separated into two phases at H(t ) which areΩ1 =Ω∩ {z < H(t )} and
Ω2 =Ω∩ {z > H(t )}.

Assume the case of the interface evolving to the top, i.e, when the solid is melting.
Thus we should expect that T ≥ Tm in the liquid phase and T ≤ Tm in the solid phase. At
time t = t0 consider a portion of the interface, for simplicity in the shape of a disk with
area A. Later at time t1 > t0 the position of the interface has changed to H(t1) > H(t0).
Meanwhile a cylinder of volume A × (H(t1)−H(t0)) has melted and therefore released a
quantity of heat Q:

Q = A× (H(t1)−H(t0))×ρL , (3.2)
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where L and ρ are the specific latent heat and the density, respectively. We can define
the heat flux in liquid and solid as

Φl =−Λl∇Tl , (3.3)

Φs =−Λs∇Ts , (3.4)

where Ki is the material’s conductivity. By the mean conservation of energy, equation
(3.2) reads:

Q =
∫ t1

t0

∫
A

[Φl · ẑ−Φs · ẑ]d Adτ

=
∫ t1

t0

∫
A

[−Λl∇Tl · ẑ+Λs∇Ts · ẑ]d Adτ,

= A
∫ t1

t0

[−Λl
∂Tl

∂z
(H(τ),τ)+Λs

∂Ts

∂z
(H(τ),τ)]dτ, (3.5)

where ẑ is unit vector in z-direction. By using equation (3.2) we have

ρL (H(t1)−H(t0)) =
∫ t1

t0

[−Λl
∂Tl

∂z
(H(τ),τ)+Λs

dTs

d z
(H(τ),τ)]dτ, (3.6)

which by dividing by (t1 − t0) and take the limit as t1 → t0 we get

ρL lim
t1→t0

H(t1)−H(t0)

t1 − t0
= lim

t1→t0

1

t1 − t0

∫ t1

t0

[−Λl
dTl

d z
(H(τ),τ)+Λs

dTs

d z
(H(τ),τ)]dτ. (3.7)

The Mean-Value theory for integral states that there exists a value c ∈ [t0, t1] where

ρL
d H(t0)

d t
= lim

t1→t0

1

t1 − t0
× (t1 − t0) f (c), (3.8)

where for simplicity we introduced a new function

f (c) ≡−Λl
dT

d z
(H(c),c)+Λs

dT

d z
(H(c),c). (3.9)

However, as t1 → t0 and f (c) is continuous, we can conclude that

ρL
d H(t0)

d t
= f (t0), (3.10)

which is valid for any arbitrary time t0 and consequently for any t . Expanding the equa-
tion and substituting f (t ) we have

ρL
d H(t )

d t
=−Λl T (H(t ); t )+Λs T (H(t ); t ), (3.11)

which is known as the Stefan condition and is a boundary condition for liquid-solid in-
terface [7].
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3.2.3. One dimensional melting problem

The one-dimensional phase problem could be represented as a semi-infinite solid, for
instance a thick block of ice occupying 0 ≤ z <∞ at the solidification temperature T =
Tm . One assumption is needed which states that we ignore any volume change in the so-
lidification. At the fixed boundary of the thick block of ice z = 0 there could be many dif-
ferent type of boundary conditions. For instance, we could have a constant temperature
which is above the solidification temperature i.e. T0 > Tm , or a function depending on
time (f(t)). We assume that the temperature in the solid phase is constant. Thus the prob-
lem is to find the temperature distribution in the liquid phase and the location of the free
boundary H(t ) (which here is the melting front position and later in convective regime
is the average of the interface). Even if there will be two phases present, the problem
is called a one-phase problem since it is only the liquid phase which is unknown. The
governing equations and boundary condition for the one dimensional melting problem
can be summarized as following:

Liquid region, 0 ≤ z < H(t ),
∂T
∂t = Λl

cpρ
∂2T
∂z2 = κ ∂2T

∂z2 , The heat equation 0 < z < H(t ), t > 0,

T (0, t ) = f (t ), Bottom boundary condition t > 0,
T (z,0) = Tm , Initial condition,
Free boundary condition, z = H(t ),
d H(t )

d t =−κ cp

L
dT
d z

∣∣∣
z=H(t )

, Stefan condition,

H(0) = 0, Initial position of melting interface,
T (H(t ), t ) = Tm , Dirichlet condition at the interface,
Solid region, H(t ) < z <∞,
T (z, t ) = Tm , Solid at the uniform temperature of melting, z ≥ H(t ).

The boundary condition for temperature at z = 0 is considered here as a constant
temperature ( f (t ) = T0). Furthermore, without loosing the generality one can subtract
Tm from the whole system and have T0 =∆T and Tm = 0.

3.2.4. Similarity Solution

In this part, we consider the Stefan problem with initial and boundary conditions we
stated before and try to derive an explicit expression for the solution. By considering
the ordinary rescaled heat equation Tt −Tzz = 0, one can find the solution by change of
variable and introducing the similarity variable

ζ= zp
t

, (3.12)

and thus seeks a solution of the form

T (z, t ) = F (ζ(z, t )) , (3.13)
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where F (ζ) is an unknown function yet to be found. Substituting (3.13) into the heat
equation gives

∂T

∂t
(z, t ) = dF

dζ

∂ζ

∂t
= −z

2t
p

t

dF

dζ
, (3.14)

∂T

∂z
(z, t ) = dF

dζ

∂ζ

∂z
= 1p

t

dF

dζ
, (3.15)

∂2T

∂z2 (z, t ) = 1

t

d 2F

dζ2 , (3.16)

which consequently gives:
d 2F

dζ2 + ζ

2κ

dF

dζ
= 0. (3.17)

The equation (3.17) is a second order differential equation with solution of the form

F (ζ) = A1 erf

(
ζ

2
p
κ

)
+ A2, (3.18)

where A1 and A2 are constant and are determined by boundary conditions. Using the
definition of similarity variable ζ, we have

T (z, t ) = A1 erf

(
z

2
p
κt

)
+ A2. (3.19)

By using the boundary conditions at z = 0 and z = H(t ) we have

A1 = −∆T

erf(λ)
, (3.20)

A2 =∆T, (3.21)

where

λ≡ H(t )

2
p
κt

. (3.22)

Since A1 is a constant, it follows that λ must also be constant, thus

H(t ) = 2λ
p
κt . (3.23)

Having the position of solid-liquid interface and temperature profile, one can com-
pute

d H(t )

d t
=λ

p
κp
t

(3.24)

dT

d z
(H(t ), t ) =− ∆T

erf(λ)

exp(−λ2)p
π
p
κt

, (3.25)

which by substituting in the Stefan condition gives

λexp(λ2) erf(λ) = cp∆Tp
πL

≡ Stp
π

, (3.26)
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where St is the Stefan number [5]. By adding back Tm to the solution of the system and
considering H(t ) and λ, the solution for Stefan problem can be summarized as

T (z, t ) = T0 −∆T
erf

(
zλ

H(t )

)
erf(λ)

, (3.27)

H(t ) = 2λ
p
κt , (3.28)

λexp(λ2) erf(λ) = Stp
π

. (3.29)

It should be noted that this is a solution of a one-dimensional problem. In a multidi-
mensional, 2D or 3D systems, the phase-change boundary will stay flat (and horizontal
in our setting) at every instant of time along respectively a line or a plane.

Stefan number (St ) Latent Heat (L ) Specific Heat (cp ) λ

0.01 100.0 1.0 0.070593
0.1 10.0 1.0 0.220016
1.0 1.0 1.0 0.620063

10.0 1.0 10.0 1.256972

Table 3.1 – Table of melting rates (St) used in this research, and corresponding λ for each Stefan
number.

The Stefan number (St) is a positive number that requires special attention. It is
one of the control parameters of the melting system, and is ratio of the sensible heat to
the latent heat. For small St the advancement of solid-liquid is slow, while the rate of
melting increases with St . The Stefan number with temperature difference ∆T = 1◦C of
some materials is listed in table 3.2.

3.3. Melting with an external moving boundary
The model system is similar to the Stefan problem, a solid layer at the temperature of
melting Tm heated from bottom with temperature T0, and with a constant velocity Vx on
the warm boundary. Similar to the Stefan problem, heat starts to melt the solid layer and
forms a liquid layer. Later, heat continues to transfer though the liquid layer and melt the
solid layer. A schematic of the model system is shown in Fig. 3.5, the coordinate frame is
fixed at the bottom boundary, and the position of the solid/liquid interface is moving in
the vertical direction.

3.3.1. Analytical solution for the velocity field
In this section we derive an analytical solution for the velocity profile for the system of
parallel melting coupled with an external moving boundary. As the height of the melting
system advances with time, it is logical to consider the effect of viscous dissipation when
the height of the liquid layer is very small. However, the effect of viscous dissipation fades
away as the height of the melting-front increases. Moreover, at the onset of melting, even
the solution of the Stefan problem shows singularity (infinite velocity of the interface).
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Substance Melting (◦C ) L (k J/kg ) cp (J/kg ·K ) St (∆T = 1)
copper 1083 207 387 0.001869565
silver 962 111 235 0.002117117
aluminum 659 399 900 0.002255639
lead 328 23 128 0.005565217
water 0 335 2060 0.006149254
mercury -39 11 138 0.012545455
ethyl alcohol -114 108 2450 0.022685185
oxygen -219 14 912 0.065142857

Table 3.2 – List of Stefan number for temperature difference ∆T = 1◦C of some materials in the
nature. For instance, heating water (ice) at the temperature of melting (0◦C ) with 1◦C results in

St ≈ 0.012.

Tm

solid

T0Vx

liquid

x

z
y

Figure 3.5 – Schematic diagram of the melting system with a moving boundary. The system is
filled with a pure solid at the temperature of melting (Tm ), heated from the bottom with

temperature T0 higher than the melting temperature. Furthermore, the bottom boundary moves
with a constant velocity Vx in the x direction.

Therefore, we neglect the effect of viscous dissipation in our computations. Therefore,
the equations describing the system of melting with an external moving boundary are
similar to the Stefan problem (temperature field and the height of liquid layer), however
with a non-zero velocity field in the liquid layer, which is originated from the applied
velocity at the bottom boundary. Therefore, for velocity field we have

∂u

∂t
= ν∂

2u

∂z2 , (3.30)
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with boundary conditions

u(z = 0, t ) =Vx , (3.31)

u(z = H(t ), t ) = 0. (3.32)

The equations governing the system of the conductive melting with a moving bound-
ary can be summarized as

Liquid region, 0 ≤ z < H(t ),
∂T
∂t = κ ∂2T

∂z2 , The heat equation 0 < z < H(t ), t > 0,
∂u
∂t = ν ∂2u

∂z2 , The equation velocity 0 < z < H(t ), t > 0,
T (0, t ) = f (t ), Bottom boundary condition for temperature t > 0,
u(0, t ) =Vx , Bottom boundary condition for velocity t > 0,
T (z,0) = Tm , Initial condition,
Free boundary condition, z = H(t ),
d H(t )

d t =−κ cp

L
dT
d z

∣∣∣
z=H(t )

, Stefan condition,

H(0) = 0, Initial position of melting interface,
T (H(t ), t ) = Tm , Dirichlet condition at the interface,
u(H(t ), t ) = 0, No-slip boundary condition at the interface,
Solid region, H(t ) < z <∞,
T (z, t ) = Tm , Solid at the temperature of melting, z ≥ H(t ),
u(z, t ) = 0, No displacement in the solid, z ≥ H(t ).

The solution for the temperature field is exactly the same as Stefan Problem (Eqs.
3.27 & 3.28), with the same definition for λ.

However, for velocity field we use similar idea of using similarity variable η= z/H(t ).
Therefore, we have

∂η

∂t
=− z

H 2(t )

d H(t )

d t
=− 2λ2κ

H 2(t )
η, 0 ≤ η≤ 1. (3.33)

Substituting η in Eq. 3.30 results in the ordinary differential equation

d 2u

dη2 + 2λ2κ

ν
η

du

dη
= 0. (3.34)

together with boundary conditions

u(η)|η=0 =Vx , u(η)|η=1 = 0, (3.35)

which can be solved analytically, and the solution is

u(z; t ) =Vx

1−
erf

(
λp
Pr

z
H(t )

)
erf

(
λp
Pr

)
 , (3.36)

with Pr the Prandtl number.
The profile of velocity is not linear contrary to the case of fully developed Couette

flow1. Instead, velocity profile is in form of error function.

1In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces,
one of which is moving tangentially relative to the other.
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3.4. Rayleigh-Bénard convection
The problem of convection is quite old (Hadley, Lomonossov, Rumford,... ). However,
around 1900, Henri Bénard [9] was the first to perform systematic controlled experi-
ments on the convection. He found that the convective motions organized themselves
in regular stable cellular patterns, which is now known as Bénard cells, with polygonal
shapes, predominantly hexagonal (Fig. 3.6). In his experiment, he used a thin liquid
layer with a thickness of the order of a millimeter and with a free upper surface. Ob-
servation of depression of the upper free surface of the fluid at each cell center, leads
Bénard to speculate about the role of surface tension. Initially it was thought that these
instabilities were buoyancy driven.

Rayleigh [10], who was intrigued by the Bénard regular hexagonal cells, studied purely
thermally driven flow theoretically to explain Bénard’s results. Rayleigh investigated a
fluid layer subjected to an unstable vertical temperature gradient, i.e. imposing a bot-
tom temperature superior to the top temperature. He determined a critical temperature
difference across the liquid necessary for the convective motion to start, and postulated
a dimensionless number associated with buoyancy-driven flow. Using a stability analy-
sis, Rayleigh also obtained a critical wavelength of convective cells. He, however, noticed
that his theory did not match quantitatively the results of Bénard.

Figure 3.6 – Stabilized regular polygonal convective patterns observed by Bénard [9]. Thin liquid
layer (thickness of the order of millimeter) is heated from below with free upper surface. A

network of squares with surface 1cm2 is plotted in the image.

It was not until the second half of the 20th century that Bénard’s observations have
been explained in the works of Block [11], Pearson [12] and Nield [13]. The convective
motion in a layer with free surface was caused by the thermally induced surface tension
gradients (the Marangoni effect).

Convection occurring in a horizontal layer heated from below is now called Rayleigh-
Bénard convection. In this section, we present its governing equations.



3.4. Rayleigh-Bénard convection

3

37

3.4.1. Governing equations
The dynamics of the fluid is described by the basic set of conservation equations (e.g.
Landau and Lifshitz [14]); conservation of mass, momentum and energy, which we recall
briefly here.

Conservation of mass
The differential form of the continuity equation for mass is

∂ρ

∂t
+∇· (ρu) = 0, (3.37)

where ρ is density and u is velocity. In case of an incompressible fluid, ρ is constant and
mass conservation simplifies to

∇·u = 0, (3.38)

which is also known as continuity condition.

Conservation of momentum
Momentum conservation equation is given by

ρ0

(
∂u

∂t
+ (u ·∇)u

)
=−∇P +µ∇2u+ρg, (3.39)

where g and P are the gravitational acceleration and the pressure, respectively.
According to the Boussinesq approximation[15], variations in density have no effect

on the flow field, except that they give rise to buoyancy forces; and it states that

ρ = ρ0
(
1−β(T −T0)

)
, (3.40)

where β is the thermal coefficient of expansion. Therefore, substituting Eq. 3.40 in Eq.
3.39 leads to:

ρ0

(
∂u

∂t
+ (u ·∇)u

)
=−∇p +µ∇2u+ρ0β(T −T0)g ez , (3.41)

where ez is unit vector in vertical direction, and p is the sum of the dynamic and the
hyrdostatic pressures p = P +ρ0g z.

Conservation of energy
By neglecting the viscosity dissipation, conservation of energy equation is given by

ρ0cp

(
∂T

∂t
+ (u ·∇)T

)
=∇· (Λ∇T ), (3.42)

where T is the temperature, cp is the heat capacity at constant pressure, and k is the ther-
mal conductivity. By considering constant thermal conductivity, the equation of energy
conservation can be simplified to

∂T

∂t
+ (u ·∇)T = κ∇2T, (3.43)

where κ= Λ
ρ0cp

is the thermal diffusivity.
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The boundary conditions for the RB system are no-slip velocities and constant tem-
perature at the top and bottom boundaries, and periodic lateral boundary conditions,
i.e.

u(z = 0; t ) = u(z = H ; t ) = 0, T (z = 0; t ) = T0, T (z = H ; t ) = T1. (3.44)

3.4.2. Non-dimensionalization
Several choices of scaling parameters can be found in the literature and we use the fol-
lowing transformations; for the length ∇= ∇̃/H and ∇2 = ∇̃2/H 2, the time t = H 2/κt̃ , the
temperature T =∆T T̃ +T0 where ∆T = T1 −T0, the velocity v = κ/H ṽ , and the pressure
p = P0p̃ = κ2ρ/H 2p̃ with P0 the reference pressure. Dimensionless temperature and
length are thus bounded between 0 and 1 in the computational domain. Tilded (∼) vari-
able without physical dimension and we drop it immediately for the sake of simplicity.
All scaling parameters are given in Tab. 3.3

Variable Scaling
Length H Thickness of the system under study (time independent unlike melting system)

Time H 2

κ Conduction time over the thickness H
Velocity κ

H Diffusion velocity

Pressure P0 = κ2ρ0

H 2 Reference pressure
Temperature ∆T Temperature difference (∆T = T1 −T0) across H

Table 3.3 – Scaling parameters of different variables.

Substituting dimensionless parameters in Eqs. 3.38, 3.41 and 3.43 gives
∇·u = 0,(
∂u
∂t + (u ·∇)u

)
=−∇p +Pr ∇2u+Pr Ra T ez ,(

∂T
∂t + (u ·∇)T

)
=∇2T.

(3.45)

Two dimensionless numbers appear in Eq. 3.45 which are,

1) The Prandtl number Pr which relates the kinematic fluid viscosity (ν = µ/ρ0) to
the thermal diffusivity (κ):

Pr = ν

κ
. (3.46)

2) The Rayleigh number Ra that compares the driving mechanisms (buoyancy) to
dissipative processes (dissipation of heat and momentum):

Ra = ρ0βg∆T H 3

κµ
. (3.47)

As it is visible from the definition of the control parameters, the value of the Prandtl
number (for a given fluid) is based only on its physical properties, whereas Rayleigh
number depends on the parameters of the system as its thickness and ∆T .
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Typical values of Rayleigh and Prandtl numbers for water in melt ponds and melted
rocks, e.g. lava and magma, are given in Table 3.4. Furthermore, Table 3.5 gives proper-
ties of pure water.

Material Prandtl number Rayleigh number
For water in melt ponds 7 O(103∼9)
For melted rocks (lava, magma) O(104∼8) O(109∼17)

Table 3.4 – Non-dimensional numbers for water in melt ponds and melted rocks, e.g. lava and
magma.

Finally, the boundary conditions in non-dimensional form are given by

T (z̃ = 0, t ) = 1, T (z̃ = 1, t ) = 0, (3.48)

u(z̃ = 0, t ) = u(z̃ = 1, t ) = 0. (3.49)

Parameter Notation Value Unit
Boiling temperature (at 101.325 kPa) 99.974 ◦C
Dynamic viscosity µ 1.787×10−3 kgs−1 m−1

Gravitational acceleration g 9.8 ms−2

Kinematic viscosity ν 1.787×10−6 m2 s−1

Latent heat of melting L 334 k J/kg
Maximum density (at 4◦C ) ρ 999.975 kgm−3

Melting temperature (at 101.325kPa) 0 ◦C
Specific heat of water (at 0.01◦C ) cp 4.217 k J/kg K
Specific heat of water (at 5◦C ) cp 4.205 k J/kg K
Specific heat of water (at 10◦C ) cp 4.194 k J/kg K
Specific heat of ice 2.108 k J/kg K
Specific heat of water vapor 1.996 k J/kg K
Thermal coefficient of expansion β 2.14×10−4 k−1

Thermal diffusivity κ 0.143×10−6 m2/s

Table 3.5 – Parameters and properties of pure water taken from ’www.engineeringtoolbox.com’.

3.4.3. Nusselt number
In the applications, it is of interest to measure the effectiveness of the motion. The most
natural and accepted measure that quantifies the enhancement of vertical heat flux due
to convection is the Nusselt number, which is the ratio of total heat transfer by conduc-
tion and convection (QT ) over heat transfer by conduction (QC ). The definition of the
Nusselt number is given by

Nu = QT

QC
= QT

−Λ〈 ∂T
∂z

∣∣∣
z=0

〉A

, (3.50)
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where 〈·〉A denotes the average over horizontal plane and time.
In a convective system bounded by horizontal parallel plates with different temper-

atures, the Eq. 3.50 takes the following form

Nu = 〈uz T 〉A −κ〈 ∂T
∂z 〉A

κ∆T
H

, (3.51)

where the volumetric heat capacity (ρcp ) has been factorized. Note that, as a conse-
quence of energy conservation, the average (〈· · ·〉) can be taken over any horizontal plane
of the system.

3.4.4. Reynolds number
The Reynolds number (Re) is an important dimensionless quantity in fluid mechanics
used to predict flow patterns in different fluid flow situations. At low Reynolds numbers
flow tends to be dominated by laminar (sheet-like) flow, but at high Reynolds numbers
turbulence results from differences in the fluid’s speed and direction, which may some-
times intersect or even move counter to the overall direction of the flow (eddy currents).

The Reynolds number is the ratio of inertial forces to viscous forces within a fluid
which is subjected to relative internal movement due to different fluid velocities. This
relative movement generates fluid friction, which is a factor in developing turbulent flow.
Counteracting this effect is the viscosity of the fluid, which as it increases, progressively
inhibits turbulence, as more kinetic energy is absorbed by a more viscous fluid. The
Reynolds number quantifies the relative importance of these two types of forces for given
flow conditions, and is a guide to when turbulent flow will occur in a particular situation.

The Reynolds number is defined as

Re = ρuH

µ
= uH

ν
(3.52)

where ρ is the density, u is the velocity of the fluid, H is a characteristic length, µ is the
dynamic viscosity, and ν is the kinematic viscosity of the fluid.

In the RB system, as the velocity is not constant, one can use the root mean square
of velocity field, which is defined as

ur ms =
√
〈u2〉. (3.53)

In this case, Re is defined as

Re = ur ms H

ν
(3.54)

3.4.5. Scaling theories for global heat flux
For very many years, scientists have studied the motion of enclosed fluids heated from
below and cooled from above. At the lowest heating rates, there is no motion. Then, as
the heating rate is increased, one sees successively a steady motion, a periodic oscilla-
tion, and a chaotic domain. At yet higher heating rates, one finds turbulent motion in
which the fluid swirls in highly structured but never-repeating patterns (see figure 3.7).
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Figure 3.7 – The Rayleigh-Bénard as a machine, schematically drawn. The red-shaded areas of the
cell show regions with hot fluid, while the blue areas indicate cold fluid. The arrows give the
direction of fluid flow. A major point of this illustration is to list and show the many different

structures that work together to make the intricate motion of the convective system. The
illustration is from a schematic in [16]

Since the convective fluid flow increases the vertical heat transport beyond the purely
conductive flux, our challenge is to determine the relationship

Nu = Nu(Ra,Pr ), (3.55)

from the equations of motion.

In 1954 W.V.R Malkus [17] predicted the scaling law

Nu ∼ Ra
1
3 , (3.56)

by a marginally stable boundary layer argument, based on the concept that the boundary
layer thickness δ adjust itself so as to be, as a convection layer, marginally stable.

The scaling

Nu ∼ Pr
1
2 Ra

1
2 , (3.57)

has been postulated (Kraichnan (1962) [18] and Spiegel (1971) [19]) as an asymptotic
regime.

Given the increasing richness and precision of experimental and numerical data for
Nu(Ra,Pr ) and Re = (Ra,Pr ), it became clear near the end of the last decade that none
of the theories developed up to then could offer a unifying view, accounting for all data.
In particular, the predicted Prandtl-number dependencies of Nu [20, 21] are in disagree-
ment with measured and calculated data. Therefore in a series of papers, Grossmann
and Lohse [22–26] tried to develop a unifying theory to account for Nu = (Ra,Pr ) and
Re = (Ra,Pr ) over wide parameter ranges.

They postulated that when putting the splitting and modeling assumptions together,
one can finally obtain two implicit equations for Nu = (Ra,Pr ) and Re = (Ra,Pr ) with
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six free parameters a, Rec , and ci , i = 1,2,3,4:

(Nu −1)RaPr−2 = c1
Re2

g (
p

Rec /Re)
+ c2Re3,

(Nu −1) = c3Re1/2Pr 1/2

{
f

[
2aNup

Rec
g

(√
Rec

Re

)]}1/2

+c4Pr Re f

[
2aNup

Rec
g

(√
Rec

Re

)]
, (3.58)

with

f (x) = (
1+x4)−1/4

, (3.59)

g (x) = x
(
1+x4)−1/4

. (3.60)

The six parameters in Eq. 3.58 were adjusted so as to provide a fit to 155 data points
for Nu = (Ra,Pr ) from Ahlers and Xu [27], which results in a = 0.482, c1 = 8.7, c2 = 1.45,
c3 = 0.46, c4 = 0.013, and Rec = 1.0.

3.4.6. Convection with a uniform volumetric heating
In the process of heating the system in the presence of a uniform volumetric heating,
the momentum equation of velocity field is the same as in the RB system. However, the
equation of temperature receives an additional term, and is in the form of

∂t T + (u ·∇)T = κ∇2T + q

ρ0cp
, (3.61)

where q is the power per unit volume.
By non-dimensionalizing the equation (3.61) by using references defined in Table.3.3,

we have:
∂t̃ T̃ + (ũ · ∇̃)T̃ = ∇̃2T̃ +Q, (3.62)

where Q = q H 2
max /ρ0cpκ∆T is radiative over conductive flux ratio.

In order to validate our numerical system, we focus on a simpler system in conduc-
tive regime, where velocity field is zero, and the temperature depends only on the vertical
coordinate. Eq. 3.62 can be simplified to

κ
d 2T

d z2 + q

ρ0cp
= 0. (3.63)

By using boundary conditions at the bottom (T = T0) and the top (T = T1), the analytical
solution for Eq. 3.63 is

T (z) = T0 −∆T
z

H
− q H 2

2ρ0cpκ

(( z

H

)2
− z

H

)
, (3.64)

As we can see, the above solution is a sum of two terms. The first one is a result of the
external imposed temperature gradient, while the second stems from the contribution
of the uniform volumetric heating source.
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3.5. Natural convection coupled with phase-change
In this section, we introduce the system of melting coupled with natural convection, due
to temperature differences between bottom boundary and the temperature of solid. The
model system here is a solid layer at the temperature of melting Tm heated from bottom
with temperature T0 and a melted fluid layer begins to grow from below. The density of
the fluid is assumed to be a decreasing function of temperature, therefore the bottom
heating produces an unstable stratification of the fluid layer. A schematic of the model
system is shown in Fig. 3.8, the coordinate frame is fixed at the bottom boundary, and
the position of the solid/liquid interface is moving in the positive vertical z-direction.

Tm

solid

T0

zm x,y;t

liquid

x

z
y

Figure 3.8 – Schematic diagram of the melting system. The system is filled with a pure solid at the
temperature of melting (Tm ). The temperature at the bottom (T0) is higher than the melting
temperature, consequently the solid turns into liquid for t > 0. Due to the thermal expansion
coefficient of the liquid, a convection flow may develop in the fluid layer. The local height of

interface is denoted with zm ; in general it is a function of spatial coordinates x, y and of time t .

Due to the strong nonlinearity of solid-liquid phase-change phenomena and the
moving boundary, the problems that can be solved via the analytical method are very
limited. The limitation of these methods is that they apply to conduction-controlled
one-dimensional problems. Although some investigators have attempted to solve two-
dimensional phase-change problems by using analytical methods [28–30], the cases in-
vestigated represented very simple and special geometries, such as a semi-infinite cor-
ner or a semi-infinite wedge.

3.5.1. Enthalpy formulation for phase-change
In this methodology, the governing energy equation is written for the entire region of
the phase-change material, including solid and liquid phases and the interface. The en-
thalpy method is introduced by analyzing a conduction-controlled, two-region melting
problem in a finite slab. It is assumed that the densities of the liquid and solid phase are
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identical (ρs = ρl ). In the enthalpy formulation approach, the energy equation is initially
expressed in terms of the total enthalpy. The governing equation for a heat conduction
problem can thus be cast in the form

ρ
∂h

∂t
= ∂

∂z

(
k
∂T

∂z

)
. (3.65)

The total enthalpy, h, is further split into the sensible enthalpy and the latent heat
for the phase-change problem [31]. In this manner, the phase boundary can be solved
naturally and determined as part of the solution [32]. h can be written as

h = cp T +φl L , (3.66)

where cP and L represent the constant-pressure specific heat and the latent heat of
phase-change; φl is the volume-phase fraction of the liquid phase and is zero for the
solid region and unity for the liquid region. The phase fraction lies between zero and
unity when the region being considered is undergoing phase-change. Substituting Eq.
(3.66) into Eq. (3.65) yields

ρ
∂cp T

∂t
= ∂

∂z

(
Λ
∂T

∂z

)
−Lρ

∂φl

∂t
. (3.67)

where the latent heat appears as a heat source term in the governing equation. If the
specific heat cP are explicitly independent of time, and the thermal conductivity k is
independent of position, Eq. (3.67) can be written as

∂T

∂t
= κ∂

2T

∂z2 − L

cP

∂φl

∂t
. (3.68)

Equation (3.68) in dimensionless form reads

∂T

∂t
= ∂2T

∂z2 − 1

St

∂φl

∂t
, (3.69)

where St is the Stefan number.
Finally, to complete the physical model described by Eqs. (3.68) and (3.66), liquid

fraction should be computed. One common way is by estimating liquid fraction through
linear interpolation of enthalpy difference of solid (hs = cp T ) and liquid (hl = hs +L) by

φl =


0 h < hs ,
h−hs
hl−hs

hs ≤ h ≤ hl ,

1 hl < h.

(3.70)

In order to increase the accuracy of estimation, one can repeat Eqs. (3.66), (3.68)
and (3.70) until the melt fraction field converge to within a set tolerance. However, it has
been observed that using one iteration has negligible effects, but becomes valuable for
the computationally intensive convection melting problems. [33]
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3.5.2. Nusselt number in system melting
For the system of melting, computation of Nusselt from equations (3.51) and (??) is dif-
ficult, because the average should be taken over liquid fraction, and the solid-liquid in-
terface is versatile and time dependent. One approach can be measuring heat flux at the
bottom warm boundary. Nevertheless, Nusselt number can be defined as dimensionless
heat flux entering the system from bottom.

While the velocity at the bottom layer is zero (due to no-slip boundary condition for
velocity), the heat flux from equation (??) gives

Q =−κ 〈∂T

∂z
〉A

∣∣∣∣
z=0

. (3.71)

Non-dimentionalizing heat flux (Q) by κ∆T /H(t ), temperature by ∆T , and space by
Hmax (total height of the system), dimensionless Nusselt number is defined as

Nu =− 〈∂T̃

∂z̃
〉A

∣∣∣∣
z̃=0

, (3.72)

where tilded (∼) quantities are dimensionless and 〈·〉A denotes the average over horizon-
tal plane and time.

3.6. Summary
In this chapter, we presented a model system, which is dynamically equivalent to the one
of the Arctic melt pond. The proposed equivalent model in this study consists of a solid
layer of a pure substance, initially at a constant temperature, Tm , equal to the phase-
change (melting) temperature. The solid is heated at a constant temperature T0 > Tm

from the bottom. Therefore, the solid starts to melt and during the process of melting
it goes through stages of conductive and convective melting. In the conduction regime
with and without a bottom moving boundary, we recalled the solution of Stefan problem
which depends on the similarity variable ζ= z/

p
t .

In the convective regime, the mathematical formulation of phase-change problem is
considered by using enthalpy formulation. In particular, the enthalpy formulation takes
into account the volume-phase fraction of the liquid phase.

For reference purpose, we gave a review on the most important features of the Rayleigh-
Bénard system without a phase-change. In particular, we presented an overview of some
scaling laws proposed in the literature concerning the dependency of the Nusselt num-
ber on Rayleigh and Prandtl numbers.

Finally, we introduced the governing equations of the Rayleigh-Bénard system in the
presence of a uniform volumetric heat source. The conductive solution is derived and
will be used to validate the numerical simulations of the same problem.
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4
Numerical simulation of convection coupled to

melting process

In this chapter, we briefly describe the Lattice Boltzmann (LB) method which we use to
develop a numerical toolkit for simulating the melting problem. However, no solver can
be trusted without proper validation. Therefore, in second part of this chapter, we vali-
date our code with analytical solution presented in the previous chapter and simulations
done by other researchers.

Everyone agrees that lattice Boltzmann is different from classical CFD, at the level of
theory, code implementation, and the look and feel of applications. But why would we
actually choose lattice Boltzmann over another approach? Opinions are a bit more diver-
gent about this point. From our experience, we believe that the fundamental advantage
of lattice Boltzmann is efficiency. The method was designed since the beginning to run
on high performance hardware, and it accommodates for complex physics or sophisti-
cated algorithms. Efficiency leads to a qualitatively new user experience when it allows
to solve problems that could not be approached before, or only with insufficient accu-
racy. Typical achievements of a lattice Boltzmann code are

• Data pre-processing and mesh generation in a time that accounts for a small frac-
tion of the total simulation only.

• Parallel data analysis, post-processing and evaluation, which is not something
specific of the LB method.

• Fully resolved flow through complex geometries and porous media.

• Complex, coupled flow with heat transfer and chemical reactions.

Lattice Boltzmann also offers advantages at the level of the modeling approach. The
method is in some sense hybrid, because the solver is mesh based (as usual in CFD), but
also inherits some aspects of a particle based method, due to its origins from Cellular
Automata. It is therefore easy to couple it with embedded particle methods, for sediment
transport or other phenomena.
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Despite the increasing popularity of LBM in simulating complex fluid systems, this
novel approach has some limitations. For instance, presently high-Mach number flows
in aerodynamics are still difficult for LBM. However, as with Navier–Stokes based CFD,
LBM has been successfully coupled to thermal-specific solutions to enable heat transfer
(solids-based conduction, convection and radiation) simulation capability.

4.1. The Lattice Boltzmann method
During the last two decades, the Lattice Boltzmann method (LB) has developed as a
promising tool for modelling the Navier-Stokes equations and simulating complex fluid
flows. Primarily, the LB method developed from lattice gas automata [1], however later,
it estabilished as an independent numerical method driven from direct discretization of
Boltzmann - BGK1 equation [2]. LB is based on microscopic models and mesoscopic ki-
netic equations. However, the central topic of the theoretical background for the lattice
Boltzmann method is how to derive from the kinetic Boltzmann - BGK equation for-
mulated for particle distribution function to macroscopic conservation equations with
thermodynamic variables such as density, momentum and energy [3].

In some perspective, the LB method can be viewed as a finite difference method for
solving the Boltzmann transport equation. The Navier-Stokes equations can be recov-
ered by the LB method with a proper choice of the collision operator [4].

The materials described in this section are fundamentals of the LB method and used
in order to develop a code simulating melting process and fluids flow. Reader is advised
to refer to more complete sources, e.g. "The Lattice Boltzmann Equation for Fluid Dy-
namics and Beyond" by S. Succi [4].

4.1.1. Lattice Boltzmann model
The Lattice Boltzmann method [5–7] was originated from Ludwig Boltzmann’s kinetic
theory of gases. The fundamental idea is that gases/fluids can be imagined as consisting
of a large number of small particles moving with random motions. The exchange of
momentum and energy is achieved through streaming and collision of particles. This
process can be modeled by the Boltzmann transport equation, which is

∂ f

∂t
+c ·∇ f =Ω, (4.1)

where f (x, t ), c andΩ are the particle distribution function, the particle velocity, and the
collision operator respectively. For the simulations in the present study we consider for
simplicity the collision operator proposed by BGK, which is is given by

Ωi ( f ) =−δt

τ

(
fi − f eq

i

)
, (4.2)

where f eq
i is a local equilibrium value for the population of particles in the direction of

link ci . The term τ is a relaxation time, and related to the viscosity.
The LBM simplifies Boltzmann’s original idea of gas dynamics by reducing the num-

ber of particles and confining them to the nodes of a lattice. Particles are restricted to

1Bhatnagar–Gross–Krook
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Figure 4.1 – Lattice in two-dimension (a) and three-dimension (b) used in our numerical method.
The 2D has nine velocities, whereas 3D has nineteen. Colors indicates different velocities which

are explained in the text.

stream in a possible of nine directions in the 2D configuration (D2Q9), and nineteen di-
rections in 3D (D3Q19), including the one staying at rest. These velocities are referred
to as the microscopic velocities and denoted by ~ci . Figure 4.1 shows two typical lattice
node of D2Q9 and D3Q19 models, which we use in our simulation and they guaranty
recovery of Navier-Stokes equation in the microscopic limit.

For each microscopic velocity vector on the lattice, we associate a discrete probabil-
ity distribution function f (~x,~ci , t ) or simply fi (~x, t ), which describes the probability of
streaming in one particular direction. With respect to fi (~x, t ), the macroscopic quanti-
ties are given by moments of the distribution function. The macroscopic fluid density
is defined as the first order moment, which is a summation of microscopic distribution
function (population),

ρ(~x, t ) =∑
i

fi (~x, t ). (4.3)

Accordingly, the macroscopic momentum ρ~u(~x, t ) is an average of discrete velocities~ci

weighted by the distribution functions fi ,

ρ~u(~x, t ) =∑
i

fi (~x, t )~ci . (4.4)

Lattice-Boltzmann algorithm is defined through two steps, collision and streaming.
Theoretically, the collision step is when particles collide over a discrete lattice mesh, and
is defined as

f ∗
i (~x, t ) = fi (~x, t )+ δt

τu
( f eq

i (~x, t )− fi (~x, t )), (4.5)

where the ∗ denotes the post collision discrete distribution function. After collision of
fictive particles, they propagate over lattice mesh, which is known as streaming

fi (~x +~ciδt , t +δt ) = f ∗
i (~x, t ). (4.6)

In the collision term step, f eq
i (~x, t ) is the equilibrium distribution, and τu is consid-

ered as the relaxation time towards local equilibrium. Equilibrium distribution is given
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by:

f eq
i = ρwi

[
1+ ~u ·~ci

c2
s

+ (~u ·~ci )2

2c4
s

− ~u ·~u
2c2

s

]
, (4.7)

where~ci and ~ui are the discrete and the microscopic fluid flow velocities, respectively.
The weights wi depend on the set of velocities. The values of weights are tuned to

recover the isotropy of the continuous Boltzmann equation, and are given by:

D2Q9 wi =


4/9 i = 0
1/9 i = 1, · · · ,4
1/36 i = 5, · · · ,8

D3Q19 wi =


1/3 i = 0
1/18 i = 1, · · · ,6
1/36 i = 7, · · · ,18

With an appropriate equilibrium distribution function and defining c2
s = (1/3)δx2/δt 2,

in which cs represents the isothermal model’s speed of sound, one can recover the con-
tinuity and Navier-Stokes equation through a Chapman-Enskog expansion [8–10]. Ac-
cordingly, the pressure is defined as p = ρc2

s and the kinematic viscosity is defined by

ν= c2
s

(
τu − δt

2

)
, (4.8)

where δt is the time step. Positive kinematic viscosity requires that τu > 0.5. For further
information, the reader is advised to refer to Lattice Boltzmann textbooks [4, 11, 12].

4.1.2. Advection-diffusion equation for the temperature field with the LB
method

The third order moment of distribution function, which is the energy, can be used to de-
scribe the temperature. This method is called thermal Lattice Boltzmann and has been
used relatively less than other methods. In the present work, however, we use multi-
distribution function (MDF) approach [13, 14] to model natural convection. In MDF
method, the thermal advection-diffusion is solved by introducing a second distribution
function (gi ) whose evolution is also described by a LBGK dynamic.

gi (~x +~ci , t +1) = gi (~x, t )− δt

τt

(
gi (~x, t )− g eq

i (~x, t )
)

. (4.9)

The LBGK model for g eq
i is similar to f eq

i and the equilibrium distribution function
is

g eq
i = T wi

[
1+ ~u ·~ci

c2
s

+ (~u ·~ci )2

2c4
s

− ~u ·~u
2c2

s

]
, (4.10)

where ~u is the macroscopic fluid flow velocity. For simplicity, in our model we use the
same LBGK model for fluid and thermal distributions, and thus, we have same weights
wi in both equilibrium equations.
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At each lattice node, the macroscopic temperature is defined as

T =∑
i

gi (~x, t ), (4.11)

and the thermal diffusivity (in lattice units) is related to the relaxation time

κ= c2
s

(
τt − δt

2

)
. (4.12)

The MDF approach offers the possibility to vary the Prandtl number by adjusting the two
relaxation times τu and τt ,

Pr = 2τu −δt

2τt −δt
. (4.13)

Ideally, the incompressibility can be achieved only when the mass density becomes
a constant. However, it is practically impossible to maintain a constant density in the LB
models. Theoretically the LB equation always simulates the compressible Navier-Stokes
equation instead of the incompressible one, because the spatial density variation is not
zero in LBE simulations. In order to correctly simulate the incompressible Navier-Stokes
equation in practice, one must ensure that the Mach number, and the density variation,
δρ, are of the order O(ε) and O(ε2), respectively, where ε is the Knudsen number2.[15]

4.1.3. Boussinesq equation system with the LB method
One of the most important applications of the advection-diffusion model is the ther-
mal flows where the advection and diffusion of heat is coupled to the dynamics of the
ambient fluid. In this case, the velocity u is provided by a Navier-Stokes solver, e.g. the
LBM, whereas temperature acts back on the fluid. This feedback is often modeled as, but
not always limited to, a temperature-density coupling. For example, the Boussinesq ap-
proximation assumes a temperature-dependent fluid density that can be modeled as a
buoyancy force instead of changing the simulation density. Therefore, in the Boussinesq
system the temperature is not a passive scalar and it reacts to the fluid. Furthermore, the
temperature may have source terms. Therefore, in order to treat this problems we use

fi (~x +~ci , t +δt ) = fi (~x, t )− 1

τu

(
fi (~x, t )− f eq

i (~x, t )
)+~Fi , (4.14)

with the forcing term Fi added to the equation for fi in order to model the buoyancy
force as represented in the Boussinesq approximation and is defined as

~Fi =
(
1− 1

2τu

)
ρwi

(
ci −~u

3
+ (ci ·~u)ci

9

)
β(T −T0)~g , (4.15)

where T0 is the reference temperature. Similarly, for temperature population we use

gi (~x +~ci , t +δt ) = gi (~x, t )− δt

τt

(
gi (~x, t )− g eq

i (~x, t )
)+ ~Qi , (4.16)

2The Knudsen number is a dimensionless number defined as the ratio of the molecular mean free
path length to a representative physical length scale. This length scale could be, for example, the
radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871-
1949).



4

54
4. Numerical simulation of convection coupled to melting process

with Qi , the temperature source term, can be internal heating or melting process, and
corresponds to the source term q in

∂T

∂t
+ (∇·~u)T = κ∇2T +q, (4.17)

and is defined [12] by
Qi = wi q. (4.18)

4.1.4. Boundary conditions
Boundary conditions have to be treated carefully for conventional numerical methods,
such as finite element method, to solve any differential system. In a similar way, impos-
ing boundary conditions accurately is crucial for lattice Boltzmann method. There are
two distinct kinds of boundary conditions for macroscopic system in our model. Dirich-
let boundary conditions which specify the value of the field on the boundary and we use
to specify no-slip boundary condition for velocity or constant temperatures at the bot-
tom and top boundary, and the liquid-solid interface. For the latter, we use a numerical
technique known as enthalpy method and we will describe it thoroughly later. Here, we
describe briefly the implementation of Dirichlet and periodic boundary conditions.

No-slip boundary condition for velocity
Bounce-back BCs are typically used to implement no-slip conditions on the boundary.
By the so-called bounce-back we mean that when a fluid particle (discrete distribution
function) reaches a boundary node, the particle will scatter back to the fluid along with
its incoming direction. Bounce-back BCs come in a few variants and we focus on two
types of implementations: the on-grid and the mid-grid bounce-back [4].

The idea of the on-grid bounce-back is particularly simple and preserves a first or-
der space numerical accuracy. In this configuration, the boundary of the fluid domain
is aligned with the lattice points. One can use a boolean mask for the boundary and the
interior nodes. The incoming directions of the distribution functions are reversed when
encountering a boundary node. This implementation does not distinguish the orienta-
tion of the boundaries and is ideal for simulating fluid flows in complex geometries, such
as the porous media flow.

The configuration of the mid-grid bounce-back introduces fictitious nodes and places
the boundary wall centered between fictitious nodes and boundary nodes of the fluid
(see Figure 4.2). At a given time step t , the distribution functions with directions towards
the boundary wall would leave the domain. Collision process is then applied and direc-
tions of these distribution functions are reversed and they bounce back to the boundary
nodes. We point out that the distribution functions at the end of bounce-back in this
configuration is the post-collision distribution functions.

Although the on-grid bounce-back is easy to implement, it has been verified that it
is only first-order accurate in space due to its one-sided treatment on streaming at the
boundary. However the centered nature of the mid-grid bounce-back leads to a second
order of accuracy at the price of a modest complication.

The simplest way of implementing mid-grid bounce-back is to draw the boundary
and then mark all links that are cut by this boundary. Such an implementation can be
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Figure 4.2 – Illustration of mid-grid bounce-back.

analytically summarized as

fi (~x, t +δt ) = f−i (~x, t +δt ), (4.19)

where the velocity index −i is defined through c−i = −ci . The effective boundary then
lies halfway between the links.

Constant boundary conditions for velocity and temperature
In this section the boundary condition is described based on the idea of bounce-back
of the non-equilibrium part. As an example, take the case of a bottom node in Fig. 4.1.
The boundary is aligned with the x-direction with f4, f7, f8 pointing into the wall. After
streaming, f0, f1, f3, f4, f7, f8 are known. Suppose that ux , uy are specified on the wall
and we want to use equations 4.3 and 4.4 to determine f2, f5, f6 and ρ, which can be put
into the form

f2 + f5 + f6 = ρ− ( f0 + f1 + f3 + f4 + f7 + f8), (4.20)

f5 − f6 = ρux − ( f1 − f3 − f7 + f8), (4.21)

f2 + f5 + f6 = ρuy + ( f4 + f7 + f8). (4.22)

Consistency of Eqs. 4.20 and 4.22 gives

ρ = 1

1−uy

(
f0 + f1 + f3 +2( f4 + f7 + f8)

)
. (4.23)

However, f2, f5 and f6 remain undetermined. To close the system, we assume the bounce-
back rule is still correct for the non-equilibrium part of the particle distribution normal
to the boundary (in this case, f2 − f eq

2 = f4 − f eq
4 ). With f2 known, f5, f6 can be found,

thus

f2 = f4 + 2

3
ρuy , (4.24)

f5 = f7 − 1

2
( f1 − f3)+ 1

2
ρux + 1

6
ρuy , (4.25)

f6 = f8 + 1

2
( f1 − f3)− 1

2
ρux + 1

6
ρuy . (4.26)

Finally, the collision step is applied to the boundary nodes also.



4

56
4. Numerical simulation of convection coupled to melting process

For imposed temperature boundary condition for the population gi , we compute
similarly

g3 = T0(w5 +w3)− g5, (4.27)

g8 = T0(w6 +w8)− g6, (4.28)

g9 = T0(w7 +w9)− g7. (4.29)

Simulation of phase-change process
There are many physical problems that involve multiphase systems, in which the inter-
face between phases is clearly defined but not at a fixed location. The interface can be
assumed to be a planar surface in these situations, and therefore a continuum approach
is valid. In these problems, it is necessary to solve for both the phases as well as the
interfacial location. These problems can be solved numerically on an Eulerian (front
capturing fixed grid methods such as for instance the enthalpy method) or Lagrangian
mesh (front tracking moving boundary methods).

An Eulerian mesh is stationary and defined prior to the start of a solution. When
using an Eulerian mesh, the interface is tracked by solving an additional scalar equation.
In the Lagrangian approach, a boundary of the mesh is aligned with the interface, and
this boundary moves with the interface.

When thinking of a multiphase system from a continuum approach, in the bulk
region a phase is continuous and is discontinuous at an interface between different
phases. In general, the interface is free to deform based on the nature of the flow; there-
fore, it is difficult to efficiently capture an interface between phases with just one model.
Consequently, there have been strong efforts to track an interface based on several dif-
ferent techniques. Each of these approaches has its own advantages, if front tracking
allows in general for a smoother resolution of the interface, the enthalpy method has
revealed to be simple in its implementations, particularly in three-dimensional setups.

For a benchmark review on the accuracy of the different methods one can see [16].
More recently Ulvrova et al.[17] have addressed the problem of basal melting in a geo-
physical context and have compared the performances of the two mentioned approaches.
The studies mentioned so far were based on classical computational fluid dynamics ap-
proaches, based either on finite volumes or finite differences discretizations of the fluid-
dynamics conservation equations.

In Lattice-boltzman method, many mesoscopic approaches have been proposed for
the treatment of solid-liquid phase transition in the LB context. However, the method
that we adopted in our work, is based on enthalpy method which is a microscopic method.

In this DNS model, we use a sightly modified version of the Jiaung et al. [18] melting
scheme for the conduction case, using a D2Q9 and D3Q19 topology for respectively 2D
and 3D system, which was first used by Huber et al. [19]. Jiaung et al. use an iterative
enthalpy-based method to solve for both the temperature and melt fraction fields at each
time step. The melting term is introduced as a source (crystallization) or sink (melting)
term in the collision step. In summary, at the time-step n, the macroscopic temperature
is calculated

T (tn) =∑
i

gi (tn). (4.30)
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We proceed to the evaluation of the total local enthalpy:

H (tn) = cp T (tn)+L φl (tn−1). (4.31)

Such a quantity is used to estimate the melt fraction at time tn through a linear interpo-
lation:

φl (tn) =


0 H (tn) <H s ,
H (tn )−H s

L H s ≤H (tn) ≤H l ,
1 H (tn) >H l ,

(4.32)

and finally the liquid fraction increment is estimated by a first-order finite difference

∂φl

∂t
(tn) ' φl (tn)−φl (tn−1)

tn − tn−1
. (4.33)

Such a term is used to define a source term in the temperature equation. Finally,
in order to correct the temperature field, we use the LB algorithm for the temperature
population. In order to increase the precision of such an algorithm, one could repeat the
above procedure iteratively at time step tn ; however, it has been shown in [19] that one
iteration is sufficient to reach a good agreement with the known analytical conductive
result.

In order to avoid the possibility to have deformation of the solid, due to the artificial
creation of velocity in this part of the domain, we apply the following two corrections.
First, all external fluid forces are weighted proportionally to the local liquid fraction φl .
This means in the specific case that the buoyancy force does not act on the solid phase.
Second, we apply a penalization force in the solid part, which acts as high viscosity, and
is defined as

fp =−χ(φl )u. (4.34)

We have checked that the specific form of the penalisation maskχ(φl ) does not affect
the results (we employed here χ(φl ) = 1−φ2

l . The penalisation method in the context of
LB algorithm for phase-change has been proposed in [20]. Other authors, e.g. [17], have
imposed viscosity strongly (i.e. exponentially) dependent on the liquid fraction.

In the following parts, we will validate our algorithm by thorough checks against
known solutions for the Stefan problem, as well as comparison with other numerical
results in configurations fo convective melting with lateral heat source [21].

4.2. Validation
In this section we present the results of both conduction and convection melting with
our lattice Boltzmann model and compare them with analytical solutions (for the con-
duction case) and with the scaling obtained by Gobin, et al. (2000) [22]. For all the test
in this section, we use the thermal diffusivity set to value κ = 0.02 and the kinematic
viscosity of ν= 0.2, which corresponds to Pr = 10.

The simulations presented in this work have been computed by the mean of a code
developed at the laboratory of mechanics and publicly accessible on github.

http://github.com/ecalzavarini
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4.2.1. Melting in conductive condition
A first test is the calculation of the Stefan conductive melting problem. Several simula-
tions have been performed on a 2D domain of grid size Lx ×Ly = 50×50. Specific heat
cp = 1 , while the latent heat is set to three different values L = 100,10,1, which lead
to Stefan number values of St = 0.01,0.1,1. The temperature differences between cold
plate and the temperature of solid is the same in all the cases and equal to ∆T = 1.
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Figure 4.3 – Comparison of numerical and analytical results for the melting system in conductive
conditions (Stefan problem)

In Fig. 4.3a we compare the position of the melting front H(t ) as a function of time
with the analytical solution Eq. (3.28). The agreement with the analytical solution is
overall good for all the St numbers. The relative error decreases with time, Fig 4.3b, how-
ever we observe a relatively large error in the initial stages of the simulation, particularly
for the largest St number. This is expected because, according to the Stefan solution,
the velocity of the front increases with St and, more importantly, it is singular (infinite)
at the origin. Therefore, independently of the numerical method adopted, it is expected
that in the initial stages of the simulations the error will be large.
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Moreover, in Fig. 4.3c we compare the temperature profile normalized by the tem-
perature difference as a function of time with the analytical solution Eq. (3.27). Similarly,
the analytical solution is in good agreement for all the St numbers. Likewise, the relative
error decreases with time, Fig 4.3d.

Similarly, we validate the DNS results of conduction melting with presence of slip
velocity at the bottom boundary. The validation is for two Prandtl numbers (Pr = 1 and
Pr = 10), for a 2D system of size 200×200. In both cases, the specific and latent heat are
cp = 1 and L = 1 which corresponds to the Stefan number St = 1, and the temperature
difference is ∆T = 1.

The analytical solutions for temperature and velocity field are Eqs. (3.27) and (3.36),
respectively. As the solution of temperature field is the same as pure conductive melting
and the validation of temperature field performed in previous part, there is no further
need for comparison between analytical solution and numerical one. However, for the
velocity field of numerical simulation, we take average over horizontal axes. The result
of numerical simulations and analytical solutions is shown in Fig. 4.4a. As it can be
observed, the numerical results and the analytical solutions are in good agreement.
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Figure 4.4 – Comparison of numerical and analytical results for the melting system coupled with
moving boundary in conductive conditions.

Similarly to pure conductive case, one can look the relative errors of the two an-
alytical solutions and numerical results, which are shown in Fig. 4.4b. The error in-
creases near the melting front, however, one should notice that the analytical solution
approaches zero near solid-liquid interface. Consequently, division by small number re-
sults in great error. In the solid part, the magnitude of velocity field is zero, and therefore
theoretically the relative error is undefined.

4.2.2. Rayleigh-Bénard convection
The two-dimensional convection pattern characterized by the rolls is unstable at higher
Rayleigh numbers (Fig. 4.5). As the Rayleigh number is increased, a series of transitions
to more complicated states occur, and the form of the convection becomes time depen-
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dent, and eventually turbulent at very high Rayleigh number. Detailed numerical sim-
ulation of all the complicated transitions and the different forms of convection requires
a large amount of computation. This is because the form of the convection depends on
both the initial condition (e.g. the initial perturbation) and the boundary conditions. A
large number of runs have to be performed to cover the parameter space. In addition,
the computation has to be carried out for a long time (turnover time) due to the large
differences among the time scales in the problem. Here we only present the simulation
results for a few typical situations at moderate Rayleigh numbers in order to validate the
performance of our DNS code.

Figure 4.5 – Visualization of Rayleigh-Bénard system with periodic lateral boundary and Rayleigh
number Ra = 4552.7

Several two-dimensional simulations with different Rayleigh numbers are performed
on a 202×100 lattice with a Prandtl number Pr = 1. The lateral boundary conditions are
periodic and the system is heated from below and cooled from top with temperature
difference of ∆T = 1.

A simulation was started from the static conductive state, beginning with Ra = 2000.
After the steady state was reached, the Rayleigh number was raised step by step to higher
values by increasing thermal coefficient of expansion (β). The Nusselt numbers mea-
sured at the steady states are plotted in Fig. 4.6 against the Rayleigh number. The simu-
lation results of Clever and Busse [23], and LBE of Shan [13] are also plotted for compar-
ison. The present results are in good agreement with the references.

4.2.3. Conductive Rayleigh-Bénard system with internal heating
In order to validate the numerical code for the case of volumetric bulk heating, we use
the system of liquid heated from the bottom and cooled from the top with constant tem-
peratures, and internally heated. The equation describing the temperature profile of
such a system is Eq. (3.64).

For the numerical simulations, we use a system of 200×200 grid size in liquid state
confined between two parallel plates, heated with constant temperature T0 = 1 from the
bottom, and cooled from the top with constant temperature T1 = 0. We also use three
different bulk-heating coefficients (Q = 2, 10 and 20). The plot of the average of the tem-
perature field along the vertical direction is shown in Fig. 4.7. The magnitudes of internal
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heating, which are presented here for the system with height H = 200, correspond to the
same dimensional bulk-heating coefficients ( q

ρ0cp
) we later present in chapter 7.

It is important to notice that Eq. (3.64) is the solution of the temperature profile
of the mentioned numerical system. Therefore, the accuracy of results would increase
with respect to the number of iterations in the numerical simulation. However, for the
purpose of comparison, we choose one hundred thousand iterations in our simulations
and the result is shown in Fig. 4.7a.

In order to quantitatively observe the accuracy of the numerical simulations, we
consider the relative error of the numerical results to the analytical solution of the tem-
perature profile, which is shown in Fig. 4.7b. As one can notice, the relative error in-
creases with respect to magnitude of bulk-heating for the same number of iterations.
However, for the largest internal heating, the relative error is always less than 0.7%.

4.2.4. Melting due to thermal convection
In this part, we compare the result of our DNS code in convective regime with results
of Gobin et al. (2000) [22], which is a collection of results of thirteen contributors to
an exercise covering a great variety of mathematical models and numerical procedures
most commonly used in the field of fluid dynamics.

Convection simulation was performed for a square geometry, with the number of
lattice points fixed by the value of the desired Rayleigh number. The grid size is Lx ×Ly =
500×500 for the Rayleigh number Ra = 107, the Stefan number St = 0.1, and the Prandtl
number Pr = 50. The visualization of the result is shown in Fig. 4.8.

The evolution of the average melting front position (Fig 4.9b) and the Nusselt num-
ber3 (Fig. 4.9a) are in good agreement with the main trend of results showed in Gobin et

3Nusselt number is computed using equation (3.72)
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simulations. The results of the present study are in good agreement with those of Clever and

Busse [23], and LBE of Shan [13].



4

62
4. Numerical simulation of convection coupled to melting process

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  20  40  60  80  100  120  140  160  180  200

T
em
p
er
at
u
re

 A
v
er
ag
e

Height

Numerical Q=2 
Analytical Q=2 
Numerical Q=10
Analytical Q=10
Numerical Q=20
Analytical Q=20

(a) Plot of numerical temperature profile and
corresponding analytical solution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  20  40  60  80  100  120  140  160  180  200

R
el
at
iv
e 
er
ro
r 
[%
]

Height

Q=2 
Q=10

Q=20

(b) Plot of relative error of numerical
temperature profile and corresponding

analytical solution.

Figure 4.7 – Plots of temperature profile of numerical simulations of RB system with internal
heating in conductive regime with three different bulk heating coefficients of Q = 2, 10 and 20.

Figure 4.8 – Visualization of lateral melting for the square system of size 200 with Ra = 107,
Pr = 50 and St = 0.1 at t̃ = 1 and t̃ = 5, where t̃ = κt/H2. Red color (T = 0.5) is warm and blue

(T =−0.5) represents cold temperature. The arrows are the velocity field.

al. The relatively high Nusselt number and oscillatory nature of the results are similar to
the results of Gobin-Vieira and Couturier-Sadat listed in Gobin et al. (2000), where they
attribute this behaviour to the full transient procedure and the evolution of the circula-
tion cells as melting proceeds.

4.3. Summary
Through this chapter, we described the Lattice Boltzmann method, which is one of the
well-known numerical method that has developed during the last two decades. Unlike
the traditional CFD methods, which solve the conservation equations of macroscopic
properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid con-
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Figure 4.9 – Comparison of numerical results for the melting system in convective conditions
with Gobin et al. [22] and Bertrand et al. [21]. In the panel (a), Fo is the Fourier Number, and in
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sisting of fictive particles, and such particles perform consecutive propagation and col-
lision processes over a discrete lattice mesh. Due to its mesoscopic nature and local dy-
namics, LBM has several advantages over other conventional CFD methods, especially
in dealing with complex boundaries, incorporating microscopic interactions, and paral-
lelization of the algorithm. A different interpretation of the Lattice Boltzmann equation
is that of a discrete-velocity Boltzmann equation. The numerical methods of solution of
the system of partial differential equations then give rise to a discrete map, which can be
interpreted as the propagation and collision of fictitious particles.

In the second part of this chapter, the DNS code, that is developed for simulation of
melting system, is validated. The validation is for conductive melting, with and without
moving boundary, by using comparison with the mathematical solution of the Stefan
problem. For the case of natural convection (Rayleigh-Bénard system) and convective
melting, the results of our simulations are validated through works of other researchers.

Having a direct numerical solver in hand, next step will be to analyze convective
melting using our simulator. In the next chapter, we show the behaviour of melting sys-
tem due to natural thermal convection.

References
[1] F. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulations, EPL (Eu-

rophysics Letters) 9, 663 (1989).

[2] X. He and L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann
equation to the lattice Boltzmann equation, Physical Review E 56, 6811 (1997).

[3] X. Shan, X.-F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a
way beyond the Navier-Stokes equation, Journal of Fluid Mechanics 550, 413 (2006).



4

64
References

[4] S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond (Oxford
university press, 2001).

[5] Z. Guo, B. Shi, and N. Wang, Lattice bgk model for incompressible Navier-Stokes
equation, Journal of Computational Physics 165, 288 (2000).

[6] D. T. Thorne and C. Michael, Lattice Boltzmann modeling: an introduction for geo-
scientists and engineers, 2nd. ed. (2006).

[7] R. Begum and M. A. Basit, Lattice Boltzmann method and its applications to fluid
flow problems, European Journal of Scientific Research 22, 216 (2008).

[8] U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the Navier-Stokes
equation, Physical review letters 56, 1505 (1986).

[9] Y. Qian, D. d’Humières, and P. Lallemand, Lattice BGK models for Navier-Stokes
equation, EPL (Europhysics Letters) 17, 479 (1992).

[10] B. Chopard and M. Droz, Cellular automata modeling of physical systems. collection
aléa-saclay: Monographs and texts in statistical physics, (1998).

[11] D. A. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann models: an
introduction (Springer, 2004).

[12] T. Kr uger, The lattice Boltzmann method : principles and practice (Springer,
Switzerland, 2016).

[13] X. Shan, Simulation of Rayleigh-Bénard convection using a lattice Boltzmann
method, Physical Review E 55, 2780 (1997).

[14] Z. Guo, B. Shi, and C. Zheng, A coupled lattice bgk model for the boussinesq equa-
tions, International Journal for Numerical Methods in Fluids 39, 325 (2002).

[15] X. He and L.-S. Luo, Lattice Boltzmann model for the incompressible Navier-Stokes
equation, Journal of statistical Physics 88, 927 (1997).

[16] O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix,
P. L. Quéré, M. Médale, J. Mencinger, H. Sadat, and G. Vieira, Melting driven by nat-
ural convection a comparison exercise: first results, International Journal of Thermal
Sciences 38, 5 (1999).

[17] M. Ulvrová, S. Labrosse, N. Coltice, P. Råback, and P. Tackley, Numerical modelling
of convection interacting with a melting and solidification front: Application to the
thermal evolution of the basal magma ocean, Physics of the Earth and Planetary
Interiors 206, 51 (2012).

[18] C.-P. K. Wen-Shu Jiaung, Jeng-Rong Ho, Lattice Boltzmann method for the heat con-
duction problem with phase change, Numerical Heat Transfer, Part B: Fundamen-
tals 39, 167 (2001).

[19] C. Huber, A. Parmigiani, B. Chopard, M. Manga, and O. Bachmann, Lattice Boltz-
mann model for melting with natural convection, International Journal of Heat and
Fluid Flow 29, 1469 (2008).

[20] D. Chatterjee and S. Chakraborty, An enthalpy-based lattice Boltzmann model for
diffusion dominated solid-liquid phase transformation, Physics Letters A 341, 320
(2005).

[21] O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix,
P. Le Quéré, M. Médale, J. Mencinger, et al., Melting driven by natural convection
a comparison exercise: first results, International Journal of Thermal Sciences 38, 5
(1999).

http://dx.doi.org/ https://doi.org/10.1016/S0035-3159(99)80013-0
http://dx.doi.org/ https://doi.org/10.1016/S0035-3159(99)80013-0
http://dx.doi.org/ https://doi.org/10.1016/j.pepi.2012.06.008
http://dx.doi.org/ https://doi.org/10.1016/j.pepi.2012.06.008
http://dx.doi.org/ 10.1080/10407790150503495
http://dx.doi.org/ 10.1080/10407790150503495
http://dx.doi.org/ https://doi.org/10.1016/j.physleta.2005.04.080
http://dx.doi.org/ https://doi.org/10.1016/j.physleta.2005.04.080


References

4

65

[22] D. Gobin and P. Le Quéré, Melting from an isothermal vertical wall. synthesis of
a numerical comparison exercise, Computer Assisted Mechanics and Engineering
Sciences 7, 289 (2000).

[23] R. Clever and F. Busse, Transition to time-dependent convection, Journal of Fluid
Mechanics 65, 625 (1974).





5
Convective melting system

5.1. Introduction
In the present chapter, we investigate the behaviour of a model system in which a pure
substance initially in the solid state is progressively melted by a horizontal heat wall. The
melt fluid layer is thermally unstable and quickly turns into a convective motion of pro-
gressively higher intensity as the depth of the melt layer increases. This simple realiza-
tion of convective melting originated by a basal heating allows to analyse in a clear way
the dependence between the properties of the global flow observables, such as the total
heat-flux and the total kinetic energy, as a function of the depth of the melted fluid layer.
It also reveals the possible links between the flow and phase-change interface which are
shaped by it.

The structure of this chapter is as follows. In section 5.2, we present a model system
together with its evolution equations. A discussion about the global heat-flux budget in
the system with additional dimensional arguments for the heat-flux scaling behaviour
in different flow regimes, is presented in section 5.3. The discussion section, Sect. 5.4,
concisely presents the numerical simulation, which are implemented via the LB method
presented in chapter 4.

The results of simulations in two- and three-dimensional systems are presented and
discussed according to the following plan. Initially, we qualitatively describe the dynam-
ics of system in section 5.5. To interpret and rationalize the observed trends in the scaling
of global quantities, such as Nusselt and Reynolds number, we specialize the discussion
on the dimensional effect 5.6 and 5.7 and by analyzing the morphology of melting front,
in section 5.8. Moreover, in section 5.9, the effect of the Stefan control parameter on the
rate of melting is studied, and observations on the effect of the aspect-ratio on the sys-
tem dynamics are added in section 5.10. Finally, we conclude our analysis underlining
possible implications and developments of the present study in section 5.11.
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5.2. The horizontal convective melting system
The model system considered in this study consists of a solid layer of a pure substance
of thickness Hmax initially at a constant temperature, Tm , equal to the phase-change
(melting) temperature. At time t ≥ 0 the bottom boundary of the solid is heated at a
constant temperature T0 > Tm and a melted fluid layer begins to grow from below.

The density of the fluid is assumed to be a decreasing function of temperature, there-
fore the bottom heating produces an unstable stratification of the fluid layer.

A cartoon of the model system is shown in Fig. 5.1, the coordinate frame is fixed
at the bottom boundary, and the position of the solid/liquid interface is moving in the
positive vertical z-direction.

Tm
Hmax

T0

solid g

time

Tm

solid

liquid

T0

Tm

solid

H(t)

T0

L

liquid

zm(x,y;t)

Figure 5.1 – Schematic diagram of the melting system. The system is filled with a pure solid at the
temperature of melting (Tm ). The temperature at the bottom (T0) is higher than the melting
temperature, consequently the solid turns into liquid for t > 0. Due to the thermal expansion
coefficient of the liquid, a convection flow may develop in the fluid layer. The local height of

interface is denoted with zm , in general it is a function of spatial coordinates x, y and of time t .
The spatially averaged height is denoted by H(t ).

We recall that our model system is dynamically equivalent to the setting mentioned
earlier of an Arctic melt pond, although it is an upside-down representation of it. In-
deed, in melt ponds, heating occurs at the top rather than at the bottom but warmer
water parcels are negatively (instead of positively) buoyant. For thorough information
the reader is advised to refer to Chapter 3.

5.2.1. Equations of motion for the convective melting system
We recall the equations for the system of melting that we have derived in chapter 3. Un-
der the assumption that the temperature differences occurring in the system are small
such as the Boussinesq approximation holds, the governing equations in the melt layer,
are then given by:
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ρ0 ( ∂t u+ (u ·∇)u ) = −∇p +µ∇2u+ρLg, (5.1)

∇·u = 0, (5.2)

ρL = ρ0
(
1−β(T −T0)

)
, (5.3)

∂t T + (u ·∇)T = κ∇2T, (5.4)

where u(x , t ), p(x , t ) and T (x , t ) denote respectively the fluid velocity, pressure and tem-
perature fields. µ is the dynamic viscosity, ρ0 the reference density at the temperature
T0, g the gravitational acceleration vector, and κ the thermal diffusivity. Note that the
density is assumed to depend linearly on the temperature, the volumetric thermal ex-
pansion coefficient is β> 0. Furthermore, the incompressibility of the flow is specified,
as a consequence of the Boussinesq approximation.

The boundary conditions associated to the above set of equations are: (i) fixed tem-
perature at the bottom wall together with no-slip condition for velocity, (ii) periodic
boundary condition at lateral boundaries, and finally (iii) no slip and melting conditions
at the phase-change interface [1]. All together this reads:

T |x=(x,y,0) = T0 ∀x, y ∈ [0,L][0,L] (5.5)

u|x=(x,y,0) = 0 ∀x, y ∈ [0,L][0,L] (5.6)

−κ ∇∇∇T |x=xm (t ) = L

cp
ẋm(t ) ∀xm(t ) ∈I (t ) (5.7)

u|x=xm (t ) = 0 ∀xm(t ) ∈I (t ) (5.8)

where L , cp are latent heat and specific heat respectively. xm(t ) are Lagrangian coordi-
nates of points on the fluid-solid interface, denoted I (t ), at time t , and ẋm(t ) is therefore
the velocity of the interface.

The energy conservation equation (5.4) together with the associated phase-change
boundary conditions (5.5),(5.7) presented in the previous section, can be reformulated
in terms of a single equation for the temperature and a phase field variable, φl [2]. This
reads:

∂t T + (u ·∇)T = κ∇2T − L

cp
∂tφl . (5.9)

Here φl (x, t ) represents the volume fraction of the liquid phase, a quantity whose value
is null in the solid and one in the fluid. Such a formulation can be derived from the
transport equation for the enthalpy field H (x(t ); t ) = cp T +φl L , which is the sum of
the sensible heat and the latent heat associated to the phase-change process [3].

Finally, we note that the local height of liquid melt layer in a specific x, y position
can be obtained from the liquid-fraction field as:

zm(x, y, t ) =
∫ Hmax

0
φl (x, t ) d z. (5.10)

Similar to the procedure in chapter (3), it is convenient to express the equation of
motion of the system in dimensionless form.
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By adimensionalizing temperature by the temperature gap ∆T = T0 −Tm > 0, the
density by ρ0, the length by Hmax and finally the time by the diffusive time H 2

max /κ, the
system of equations becomes:

∂ũ

∂t̃
+ (ũ ·∇)ũ = −∇p̃ +Pr ∇2ũ+Ramax Pr T̃ ˆ̃z , (5.11)

∇· ũ = 0, (5.12)

∂T̃

∂t̃
+ (ũ ·∇)T̃ = ∇2T̃ − 1

St

∂φl

∂t̃
, (5.13)

with the tilded (∼) quantities denoting here the dimensionless variables.
The obtained set of equations contains three dimensionless groups that can be iden-

tified as the three global control parameters:

i) First, the Prandtl number, defined as the ratio of momentum diffusion (kinematic
viscosity ν=µ/ρ0) to thermal diffusion:

Pr = ν

κ
. (5.14)

ii) Second, the Rayleigh number, which is associated with the strength of natural
convection in buoyancy-driven flow, and is defined as,

Ramax = βρ0g∆T H 3
max

µκ
, (5.15)

iii) and finally the Stefan number, which is the ratio of sensible heat to latent heat,

St = cp∆T

L
. (5.16)

In the present study we are interested to investigate the dynamics of the system be-
fore the melting interface reaches the top boundary of the solid. This, combined to the
fact that the initial solid temperature is the melting temperature, tells that the scale Hmax

is not a characteristic scale of the problem. In fact Hmax plays no role in the dynamics,
given the fact that there is no thermal diffusion in the solid phase. For this reason it is
more convenient to adopt as a reference scale the instantaneous average height of the
melting layer, H(t ), which is defined as

H(t ) = 1

L2

∫ L

0

∫ L

0
zm(x, y, t )d x d y, (5.17)

and it can also be expressed as

H(t ) = 1

L2

∫
V
φl d 3x = Hmax〈φl 〉, (5.18)

where the notation 〈. . .〉 = V −1
∫

V . . .d 3x indicates a spatial volume average over the en-
tire domain (i.e. fluid and solid). The term 〈φl 〉 denotes the global liquid fraction in the
system. This allows to introduce the effective Rayleigh number:

Rae f f =
βρ0g∆T H(t )3

µκ
= Ramax 〈φl 〉3. (5.19)
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A further control parameter characterizing the system is the geometrical aspect ra-
tio. Also in this case it makes sense to define an effective aspect ratio,

Γe f f =
L

H(t )
= L

Hmax 〈φl 〉
= Γmi n

〈φl 〉
(5.20)

Note that the convective melting system during its dynamics always explore a range of
effective aspect ratios, beginning at Γe f f = +∞ and reaching at most Γe f f = Γmi n =
L/Hmax .

5.3. Heat-flux
In this section we derive the global relations expressing the vertical heat-flux across the
fluid layer. We shall distinguish between the heat-flux across the system from below, we
will call it incoming flux, since the heating is from the bottom, and the heat-flux at the
fluid-solid interface, that we will call outgoing flux.

5.3.1. Global heat-flux balance
We begin by considering the equation for the temperature in the fluid domain with the
moving interface formulation of eqs. (5.4). In conservative form (5.4) reads:

∂t T +∇· (uT −κ∇T ) = 0. (5.21)

We take the volume integral over the fluid domain and apply the divergence theorem∫
Vl

∂t T d x3 +
∫
∂Vl

n · (uT −κ∇T )dS = 0. (5.22)

By taking into account the velocity and temperature (5.7) boundary conditions:∫
Vl

∂t T d x3 +
∫ L

0

∫ L

0
κ∂z T |z=0d x d y +

∫
I
−κn ·∇T |x=xm (t )dS = 0. (5.23)

By normalizing by the horizontal bottom surface (L2) and rearranging the terms we
get:

L−2
∫ L

0

∫ L

0
−κ∂z T |z=0 d x d y = L−2

∫
I
−κn ·∇T |x=xm (t )dS +L−2

∫
Vl

∂t T d x3. (5.24)

The left-hand-side term in this equation can be identified with the bottom (incom-
ing) heat flux in the fluid domain normalized by ρcp , denoted by Q i n = −κ〈∂z T |z=0〉A ,
where 〈. . .〉A stands for an average over a horizontal plane. The second term is the heat-
flux normalized by ρcp at the upper side of the fluid domain (outgoing), denoted by
Qout .

The last term is the total time variation of the temperature in the melt, it represents
the global heating of the system, it is the term that results from the non-stationarity of
the system dynamics. In the RB system this term can be neglected when a time average
is also performed. In short:

Q i n =Qout +L−2
∫

Vl

∂t T d x3. (5.25)
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The equation of heat flux (5.25) can be recast in terms of the dimensionless Nusselt
number, through normalizing by κ∆T /Hmax . This gives

Nui n = Nuout + Hmax

κ∆T

1

L2

∫
Vl

∂t T d x3. (5.26)

Similarly to before it seems convenient to introduce here an effective Nusselt num-
ber:

Nue f f = Nu
H(t )

Hmax
= Nu 〈φl 〉. (5.27)

The meaning of Nusselt effective Nui n
e f f is the usual one: the ratio between the total

heat flux and the flux that would be transferred across the scale H(t ) with a temperature
gap ∆T in a stationary process controlled only by the diffusivity κ. We note that this way
of normalising the heat-flux has been first introduced in [4].

In dimensionless units (5.26) leads to:

Nui n
e f f = Nuout

e f f +〈φl 〉2 〈∂t̃ T̃ 〉Vl , (5.28)

where the average over liquid volume has also been introduced

〈. . .〉Vl =
1

Vl

∫
Vl

. . .d x3.

In order to better appreciate the meaning of the term Nuout
e f f in our system, we con-

sider the conservation equation for the temperature in the full liquid-solid domain:

∂t T +∇· (uT −κ ∇T ) =−L

cp
∂tφl . (5.29)

We perform a volume integral over the whole domain and proceed through the same
steps as before. This leads to

Nui n
e f f =

1

St

H 2
max

κ
〈φl 〉

d 〈φl 〉
d t

+ H(t )

κ∆T

1

L2

∫
V
∂t T d x3, (5.30)

and in dimensionless units:

Nui n
e f f =

1

St
〈φl 〉

d 〈φl 〉
d t̃

+ 〈φl 〉
V

∫
V
∂t̃ T̃ d x3. (5.31)

We now observe that

〈. . .〉 = 1

V

∫
V

. . .d x3 = 〈φl 〉〈. . .〉Vl + (1−〈φl 〉)〈. . .〉Vs ,

and applying this to ∂t̃ T̃ one obtains

Nui n
e f f =

1

2St

d〈φl 〉2

d t̃
+〈φl 〉2〈∂t̃ T̃ 〉Vl + (〈φl 〉−〈φl 〉2)〈∂t̃ T̃ 〉Vs . (5.32)
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In the special case in which the solid is initially uniformly at the melting temperature
Tm , no conduction occurs in the solid phase and hence 〈∂t̃ T̃ 〉Vs = 0, one is allowed to
directly link the outgoing heat flux with the melting fraction variation over time.

In summary, in the system when the solid is initially at melting temperature we have:

Nui n
e f f = −〈∂z̃ T̃ |z=0〉A 〈φl 〉 (5.33)

Nuout
e f f = 1

2St

d 〈φl 〉2

d t̃
(5.34)

Nui n
e f f − Nuout

e f f = 〈φl 〉2 〈∂t̃ T̃ 〉Vl > 0 (5.35)

The last inequality follows from the fact that one expects that not all the heat-flux
will flow through the cell, but that a part of it will be used to warm up the liquid to a
temperature in between the minimum value Tm and the maximum T0.

5.3.2. Scaling relations for the heat flux and melting rate
Before the onset of convection, i.e. for time small enough, the system evolution is gov-
erned by heat conduction in the fluid layer and melting at its boundary with the solid. In
such conditions, the liquid-solid interface is flat; the incoming and outgoing heat fluxes
are respectively given by

Nui n
e f f =

2λ2

St
eλ

2
and Nuout

e f f =
2λ2

St
. (5.36)

We observe that both in and out Nusselt numbers are time independent and they
differ by a constant factor that is also St number dependent. In the limit of small St , by
Taylor expanding (3.29) one can show that λ ' p

St/2, therefore simply Nuout
e f f ' 1 and

Nui n
e f f ' 1+St/2.

In the convective regime, due to the important non-linearities characterizing the
system dynamics, the exact expression for the dependence of the global liquid fraction
as a function of time, 〈φl (t )〉, is not available. However, the relations between the Nusselt
number and the global fluid fraction, that we have derived in the previous sections, can
be used to extract at least some dimensional scaling relations.

Similarly to what is done for turbulent convection in the RB system, one can assume
that the effective Nusselt number is a power-law function of the system control parame-
ters. We will consider here the outgoing effective Nusselt number:

Nuout
e f f ∼ Raαe f f Pr δ Stγ. (5.37)

By using (5.34) and (5.19) and assuming that a scaling relation of the form 〈φl 〉 ∼
t̃α

′
Pr δ

′
Stγ

′
also holds, one gets the corresponding scaling for the global melt fration:

〈φl 〉 ∼ t̃
1

2−3α Pr
δ

2−3α St
γ+1

2−3α . (5.38)

Few observations are in order:

• In the conductive case, because Nuout
e f f is constant one hasα= δ= γ= 0, Eq. (5.38)

gives the already known behaviour 〈φl 〉 ∼ t̃ 1/2 St 1/2 (where the limit of small St
has been taken too).
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• In the convective situation, by analogy with the RB system the value α= 1/3 may
be considered. We remind that in the RB context the 1/3 Rayleigh exponent corre-
sponds to the so called Malkus scaling [5], a regime where the horizontal thermal
boundary-layers are marginally stable or in other words the dimensional vertical
heat-flux does not depend on the height of the system [6]. In the CM context the
same effective Rayleigh scaling exponent corresponds to a constant average melt-
ing front speed vm = d

d t 〈φl 〉 = const .

• The so called ultimate regime of thermal convection, which is dominated by the
flow dynamics in the bulk of the system, and is characterised by α = 1/2 and δ =
1/2 would give for the front speed: vm ∼ Pr t̃ , that is to say a constant acceleration.

Finally we shall note that, we are not aware of systematic studies about the effect of
the Stefan number on the global heat-flux in the convective regime. However, we can
observe that an independence of Nuout

e f f from St (γ = 0) and at the same time α = 1/3

would imply a linear dependence of the melting front speed with it, vm ∼ St .

5.4. Discussion
Because the focus is on water-ice dynamics (melt ponds in the Arctic), we always con-
sider in this study Pr = 10, which is close to the one of fresh water just above the freezing
point (for water at temperature 0.01◦C < T < 10◦C , Prandtl is at 9.47 < Pr < 13.67) [7].
Ulvrova and colleagues [4] addressed the same problem, however for Pr = 7, St = 0.9
and at Pr =∞, St = 10, the former value is suitable for water at 20◦C while the latter is a
useful approximation for convection in rocks and in the solidified Earth mantle.

The value of Stefan number used in the mentioned study is St = O(1), a value that
is advantageous for numerical computations but that is not always realistic for geophys-
ical applications. For exemple the estimated St number appropriate for ice-melt pond
is O(10−2), for Basal Earth Magma ocean an upper estimate based on temperature dif-
ferences of 103K gives St = O(1− 10) [4], magmatic chambers and lava lakes are close
or less with respect to the latter value. In the present work, for the computational rea-
sons, we perform the majority of simulations at St = 1, but we will also present results of
computationally more expensive simulations at St = 10−1 or faster ones at St = 10,100.

The simulations are initialized by setting the fluid-fraction φl = 0 in the whole do-
main and at the same time the temperature at the melting value T = Tm . A small random
perturbation (Tε = 10−6) is superimposed to trigger the destabilization of the system.
The hydrodynamical instability exhibited by the system is of linear type [8] similar to the
one in the RB system.

Ensemble average is performed over several simulations to cancel the effect of ran-
dom noise. In table 5.1 we summarize the most relevant information on all the convec-
tive melting simulations performed. We list both the numerical parameters adopted in
the LB simulations and the resulting dimensionless control parameters. To guide the
reader we also provide an indication on where the obtained data are employed in the
figures of the paper.

As far as RB simulations are concerned, the simulations are performed with same
or very similar numerical parameters as the melting ones. The Rayleigh number is set
by controlling the height of the system (Lz ) and we make sure to have always at least 8
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grid points in the thermal boundary layer. Simulations ran over tenth or hundreds of
large-eddy turnover times.

In this context, the turnover time is defined as Te = Lx /ur ms with Lx the width of

the system and ur ms =
√

〈∑i u2
i 〉V where the average is taken not only over the volume,

〈. . .〉V , but also over time, . . ..
Note that in the system with melting the appropriate definition of ur ms is different

from the RB system: First it is inherently time-dependent and hence it should be based
only on a spatial average. Second, because the undeformable solid has by definition null
velocity it makes more sense to compute such an average on the fluid domain only. This
means that:

ur ms,Vl =
√

〈∑
i

u2
i 〉Vl =

√
〈∑

i
u2

i 〉V 〈φl 〉−1/2 = ur ms 〈φl 〉−1/2. (5.39)

Such an amplitude will be used for the construction of the global Reynolds number,
which will be discussed later on.

N. Lx Lz Ly ν κ β ∆T g L cp Pr St Ramax Γmi n Fig. n.

2D

8 2000 1000 1 0.2 0.02 0.0005 1 1 1 100 10 100 1.25 ·108 2 5.14

8 2000 1000 1 0.2 0.02 0.0005 1 1 1 10 10 10 1.25 ·108 2
5.11, 5.13,

5.14

8 2000 1000 1 0.2 0.02 0.0005 1 1 1 1 10 1 1.25 ·108 2

5.2, 5.3,
5.4, 5.5,
5.7, 5.9,

5.11, 5.13,
5.14

8 2000 1000 1 0.2 0.02 0.0005 1 1 10 1 10 0.1 1.25 ·108 2
5.11, 5.13,

5.14

6 256 1000 1 0.2 0.02 0.0005 1 1 1 1 10 1 1.25 ·108 0.256
5.15, 5.16a,

5.16b

3D 6 512 512 512 0.2 0.02 0.003 1 1 1 1 10 1 1.00 ·108 1
5.5, 5.7,
5.8, 5.9,

5.11, 5.14

Table 5.1 – Summary of the parameters values for all convective melting simulations. We provide
dimensional and dimensionless control parameters. The dimensional parameters are in
numerical units. The second column from left (N.) specifies the number of simulations

performed, which are employed to estimate the ensemble averages. The last column (Fig. n.)
specifies in which figure of the paper the results of the simulations are displayed.

5.5. Qualitative description of system dynamics
We begin by describing the typical evolution of the convective melting model system.
Such an evolution passes through different stages.

In the very early stages the melt is produced solely by conduction through an in-
creasing fluid layer and the system closely follow the Stefan solution. There is no notice-
able fluid flow in the system and the phase-change interface remains flat all the time.
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Due to an initial small numerical perturbation seeded in the temperature field of the
full domain, an hydrodynamic instability develops into a convective flow pattern. The
nature of such an instability is linear and has been analytically studied in [8], where it was
shown that the onset of convection is delayed for increasing values of St number, and the
effective critical Rayleigh number of the RB system is recovered only in the vanishing St
limit. The convective onset in the system occurs at around Rae f f ' 5 · 103 in our 2D
simulations.

The flow visualization shown in Fig. 5.2 helps in elucidating the main features of
the convective melting dynamics, from the early onset stage on, in a two-dimensional
setting.

The onset of convection is marked by a change in the shape of the phase-change
interface from flat to a nearly periodic array of semicircular convex arcs, see Fig. 5.2 (a) at
Rae f f = 5 ·104. In this phase the convective rolls grow vertically as if they were stretched
along this direction. This stage resembles the steady convection observed immediately
after the convection onset in the RB system, in the present case however steadiness of
the flow is intrinsically not possible due to the increase over time of the system height.

At Rae f f = 2.5 ·105, Fig. 5.2 (b), the rolls begin to display lateral oscillations. When
oscillations are strong enough convective rolls can merge in pairs. This has a repercus-
sion on the interface shape, which is subsequently shaped by the new flow patterns. This
happens however with some time delay.

Indeed at Rae f f = 2.9 · 105 , Fig. 5.2 (c), we see that all the rolls have merged, cre-
ating convection cells of doubled or tripled width, while the interface shape is not yet
strongly affected. At Rae f f = 5 · 105, Fig. 5.2(d), the interface has finally lost its previ-
ous periodicity and has become smoother, without cusps (i.e. discontinuities in the first
derivative).

At Rae f f = 5 ·106, Fig. 5.2 (e), larger convective flow patterns have been established,
they have a lateral size approximately doubled with respect to the ones at the lower Ra
decade. The interface has now again cusps and it is evident that such special points pin
the detachment of cold plumes.

One decade after, at Rae f f = 5 · 107, the cells are bigger and the flow is manifestly
organised in large rolls which strongly fluctuate in time and space, Fig. 5.2 (f).

5.6. Scaling in the 2D system
In order to address quantitatively the system dynamics; we study the intensity of global
heat flux Nui n

e f f as a function of the forcing imposed to the system, which is here parametrised

by Rae f f .
The rationale for the choice of the incoming heat-flux instead of the outgoing, is that

it makes easier the comparison with the RB system, where the heat flux can be computed
exactly in the same way, eq. (5.33). Furthermore, for numerical reasons, the computa-
tions of Nui n

e f f in the convective melting simulations is less affected by spurious numer-

ical noise. We will come back on the discussion of the differences between Nui n
e f f and

Nuout
e f f at the end of this chapter (section 5.9).

Figure 5.3 shows Nui n
e f f both for two-dimensional convective melting (CM) and for

2D RB system. We can observe that, apart from the convective onset, that arises at much
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(a) Rae f f = 5 ·104

(b) Rae f f = 2.5 ·105

(c) Rae f f = 2.9 ·105

(d) Rae f f = 5 ·105

(e) Rae f f = 5 ·106

(f) Rae f f = 5 ·107

Figure 5.2 – Visualization of the 2D CM system in different stages at increasing effective Rayleigh
numbers. The colors represents the temperature field (red Tbot =−0.5, blue Ttop = Tm = 0.5 and

white zero degree), and arrows are the velocity field normalized by the magnitude of the
maximum velocity in each field separately. The white line on the top of each visualization is the
solid-liquid interface. The global parameters of the system are St = 1 and Pr = 10. [movie of this

simulation is available on request]

lower number in the RB system (Ra ' 1708 as compared to Rae f f ' 5×103), the global
incoming heat flux trend is very similar for the two systems and the actual value of Nu
tends to be indistinguishable as Rae f f is increased.
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The same figure reports the numerical results by Ulvrova et al. [4], which despite the
different conditions (different Pr = 7, non-periodic lateral boundary conditions, initial
temperature of the solid lower than the melting temperate Tm) they also fall close to our
results. Likewise to the RB system, this similarity of results in different conditions attests
for the robustness of the Nu-Ra relation also in the CM system.

Figure 5.3 – Plot of the incoming dimensionless heat-flux Nui n
e f f with respect to the Rayleigh

number computed using the average height of interface, Rae f f . Results are shown both for the
convective melting setup and for the Rayleigh-Bénard system. The minimum aspect ratio for the

simulations is Γmi n = 2, i.e., the system is always much larger than deeper. The other control
parameters of the melting systems are St = 1 and Pr = 10. The RB system has also Pr = 10 and
always the same Γe f f of the corresponding melting system. In addition, we show the result of
numerical computation of Ulvrova et al. [4] in a laterally bounded box, for Pr = 7 and St = 1

(circles).

To complement this picture we also look at the scaling of the global kinetic energy of
the system. In dimensionless form, this is cast in terms of an effective Reynolds number:

Ree f f =
ur ms,Vl H(t )

ν
= ur ms〈φ〉1/2Hmax

ν
, (5.40)

where ur ms,Vl is the root-mean-square velocity in the fluid part of the system (5.39) and
ur ms denotes instead the one over the total solid-and-liquid system volume.

We observe here (Fig. 5.4) that the agreement of the CM behaviour with the RB one
is remarkable, particularly in the range Rae f f ≥ 4 ·105. At lower Rae f f the appearing dif-
ferences in Ree f f are due to the delayed transitions occurring in the CM with respect to
the RB system. For instance the transition from horizontally steady to lateral oscillating
patterns occurs at around Ra ' 6·104 in the RB system and it is observed at Rae f f ' 3·105

in the CM system.
A possible explanation for the fact that the magnitude and scaling of global quan-

tities in the RB and CM systems are so close, can be provided on the basis of a com-
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Figure 5.4 – Plot of the effective Reynolds as defined in Eq. (5.40) with respect to the effective
Rayleigh number, and comparison with the Rayleigh-Bénard system with the same control

parameters St = 1 and Pr = 10.

parison among two characteristic velocity scales in the system. The first scale is the
typical flow intensity ur ms,Vl , while the second is the mean vertical melt front velocity,
vm = d H(t )/d t . It makes sense to conjecture that the CM system will behave as the RB if
the melt front moves slowly with respect to the flow intensity, vm ¿ ur ms,Vl . This relation
can be recast in dimensionless form, via (5.34) and (5.40):

Nuout
e f f ¿

Pr Ree f f

St
. (5.41)

We know from (5.35) that Nui n
e f f is always larger than Nuout

e f f . Therefore if the above

condition is satisfied for the in Nusselt number it will be satisfied also for the out one.
Because here Pr /St = 10, it is easily checked that the criterion is fulfilled at all stages,i.e.
all Rae f f values, of the CM evolution.

5.7. Scaling in the 3D system
The differences in the functional behaviour of global observables, such as heat-flux or
kinetic energy, between the 2D and 3D flows have been investigated at depth for the RB
system.

Recently, van der Poel, et al.[9] have numerically compared the dynamics of lateral
bounded 2D and 3D RB systems. In this study, which reached up to Ra = 108 with 0.045 ≤
Pr ≤ 55 and Γ= 1, these authors have numerically demonstrated that the dimensionless
global heat-flux of the 2D system follows the same scaling laws with respect to Ra as the
3D system, however they differ by an approximately constant multiplicative factor, i.e.,
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Nu2D ' K · Nu3D with K < 1). The aim of this section is to assess to what extent this
observation also holds for the CM system.

(a)

(b)

Figure 5.5 – (a) Inlet effective Nusselt number with respect to the effective Rayleigh number
computed according to average height of interface for 2D and 3D systems with the same

configuration for the melting system. The Nu(Ra) data for the Rayleigh-Bénard system are also
shown. The global parameters of the melting systems are St = 1 and Pr = 10. The solid black line
is the Grossmann-Lohse (GL) theory prediction, calculated as from [10, 11]. (b) same as above but

in a compensated plot with respect to Ra1/3
e f f .
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As a preliminary numerical test, we perform 2D and 3D RB simulations and check
the Nu − Ra dependence for laterally periodic system. We also check the agreement
with the Grossmann-Lohse (GL) theory [10–12], which is known to capture the Ra and
Pr dependence of Nu and Re over a wide parameter range. Although GL theory is based
on the assumption that the system is three-dimensional, laterally bounded by no-slip
and adiabatic walls, the agreement with our laterally periodic 3D simulations appears
satisfactory and within the statistical accuracy of the numerics (see Fig. 5.5a). Note that
in all cases the Nusselt scaling exponent with Ra is always below the 1/3 value: This is
better appreciated in the compensated graph Fig. 5.5b.

Similarly to the previously mentioned 2D-3D comparative study [9] we observe that
the two-dimensional RB system is less efficient in transporting heat than the 3D. The
highest relative difference among the 3D and 2D Nusselt numbers is of the order of 30%
and it occurs at around Rae f f ∼ 3 · 105 (see Fig. 5.6). However, given the limited Ra-
range covered, it is presently not possible to make statements on the variation of the
scaling exponents with the Rayleigh number (see Fig. 5.5b).

Figure 5.6 – Relative difference in % between the effective Nusselt numbers measured in 3D and
2D simulations at St = 1 and Pr = 10 and as a function of the effective Rayleigh number.

We now look at the CM system. A equivalent 2D-3D hierarchy is also displayed in this
case. The 3D effective Nusselt number is always above the 2D at corresponding Rae f f

values. In amplitude the difference appears to be higher than in the corresponding RB
situation. Secondly, what seems to be the most remarkable feature is that in the limit
of large Rayleigh numbers, the CM systems (either in 2D or 3D) tend to have the same
global heat-flux amplitude as the RB system. However, such a feature can be soundly
confirmed only by performing simulations at higher Rayleigh numbers (Rae f f and Ra >
108) than the ones described in the presented study.

We conclude by noting that the Reynolds number, Fig. 5.7, of 3D CM simulations
are in nearly perfect agreement both with the 3D RB simulations and with the GL theory.
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Figure 5.7 – Reynolds number (kinetic energy of the system based on equation 5.40) versus
Rayleigh, computed according to average height of interface for 2D and 3D systems with the

same configuration, both for melting system and Rayleigh-Bénard. The global parameters of the
melting systems are St = 1 and Pr = 10. The solid black line is the GL prediction [11].

We observe that Ree f f in 3D system does not show abrupt amplitude changes, associ-
ated to pattern transitions, as noticed in the 2D case. Differently from the Nu number
amplitude we observed here that at high-Rae f f the Reynolds number Re2D > Re3D . Also
this feature, qualitatively agrees with the previous observation in the 2D-3D bounded RB
system [9].

In summary, we have shown that the 3D CM system in the range of parameters stud-
ied here (Pr = 10,St = 1) behaves very similarly to a RB system The trend when increas-
ing its dimensionality from 2D to 3D also closely follows the one of the RB. While the
Reynolds number among the two system is nearly identical, the Nusselt number dis-
plays a distinctive behaviour, characterized by NuC M > NuRB for Rae f f ∈ [∼ 104,∼ 107].
However, at higher-Ra such a difference seems to reduce and eventually vanish.

5.8. Morphology of the phase-change interface
In this section we aim at a quantitative characterization of the shape of the phase-change
interface. The focus is on the trends as a function of the Rayleigh number at fixed Stefan
number and at the possible differences connected to the system dimensionality. With
this in mind, we deliberately consider simple quantifiers of the boundary roughness that
can be applied to both the 2D and 3D systems.

We begin by describing a visualization through contour lines of the phase-change
surface in a 3D setup, Fig. 5.8, and contrasting it from a qualitative view point with the
2D case. Even though the convection onset in 2D and 3D systems occurs at the same
Rae f f value (see again Fig. 5.5 or Fig. 5.7) we can see from Fig. 5.8a that already at
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(a) Rae f f = 1.76 ·104 (b) Rae f f = 1.41 ·105 (c) Rae f f = 4.57 ·105

(d) Rae f f = 1.04 ·106 (e) Rae f f = 1.15 ·107 (f) Rae f f = 5.54 ·107

Figure 5.8 – Visualization with isolines contours of the phase-change interface from 3D
simulations at different Rayleigh number. Panel (a) corresponds to the stage close to the

convective onset where horizontally steady convection patterns are observed. The shape of these
convective cells appears to be approximately hexagonal, one can note that few cells have already

merged creating elongated patterns. The merging process develops further at higher Rayleigh
numbers (panels b-e). Finally, panel (f) is at aspect ratio Γe f f = 1, where one specific pattern has

become dominant. [movie of this simulation is available on request]

Rae f f = 1.76 ·104 the 3D system displays cellular like (rather than roll like) convection
patterns.

This highlights the effect of dimensionality on the dynamics of the system. Indeed
the convective melting 3D system displays transiently polygonal patterns that are brought
to merge into larger convective cells of similar polygonal shape 5.8c. This merging pro-
cess continues till the formation of a big cell, limited only by the lateral system size.

Polygonal patterns of the phase-change interface have been already observed in
convective melting experiments. Davis et al. [13] performed experiments on a hori-
zontal layer of cyclohexane heated from below and cooled from top. These authors ob-
served three different corrugation patterns of the interface, denoted as roll-like, mixed
polygonal-roll and hexagonal patterns, (see Fig. 3 of [13]). The criteria for the emer-
gence of different patterns in Davis work was associated to the ratio of the solid to liquid
depth layer; a criteria that can not be used in the present model. Sugawara, et al. [14]
performed similar experiments on a layer of ice melted from below. In this case, cellular
polygonal patterns, called shark-skin, were observed at the solid-liquid interface, (see
Fig. 9 of their work). Irregular hexagonal patterns were also reported in the experiments
with melting wax by Hill [15] (these results are also described in [16]).
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Despite the different conditions (among others different values for Pr and St , and
initial solid temperature different from the melting temperature) our numerical results
appear to be in qualitative agreement with the above mentioned experimental results.

We have observed that, both in 2D and in 3D, the shape of the phase-change inter-
face at a given time seems to be characterised by well defined length-scales: a horizontal
wavelength corresponding to the later size of convective patterns and a typical rough-
ness due to the vertical modulation of the interface.

To quantify the first of these scales, that we call Lc , we make use of the one dimen-
sional auto-correlation function of the local interface height zm(x, t ) in 2D or zm(x, y, t )
in 3D. It reads:

C (r, t ) = 〈 zm(x + r, t ) zm(x, t ) 〉A (2D) (5.42)

Cx (r, t ) = 〈 zm(x + r, y, t ) zm(x, y, t ) 〉A (3D) (5.43)

Cy (r, t ) = 〈 zm(x, y + r, t ) zm(x, y, t ) 〉A (3D) (5.44)

Note that the area mean, 〈. . .〉A , denotes an average over x-direction in 2D and over
x y-plane in the 3D system along respectively x and y horizontal directions, and since
the model system is not confined laterally (periodic boundaries) these functions can be
conveniently computed through the Fourier transform.

Let’s first observe that, in the hypothetical case of a sinusoidally modulated interface
shape, the position of the first minimum of the correlation function identifies the half
wavelength of the interface modulation. By analogy we define here such a position as
Lc /2 and we identify such a longitudinal correlation length, Lc , as the average width of
the convective cells in the CM system.

The computed Lc , normalized by H(t ), as a function of the Rae f f number is shown
in figure 5.9a. As we already know, at small Rae f f , the system dynamics is purely con-
ductive and as a result the interface is flat; and in such a case Lc is not defined. Later
on, the onset of convection produce a finite Lc as it drives the formation of recirculating
patterns (cells) with an aspect ratio ∼ 1.5. The ratio Lc /H(t ) then decreases because the
number of convective rolls remain constant while the height of the melt increases. Such
a reversed saw-tooth behaviour is more evident for the, more constrained, 2D system
than for the 3D cases.

Asymptotically there is a tendency towards the formation of rolls of typical aspect
ratio 1 and this appears to be independent of the dimensionality of the system. The
latter one is a feature also present in (flat-wall) RB systems [9].

The average roughness of the liquid-solid interface can be quantified by means of
the standard deviation of the fluid-solid boundary height, zm , which reads:

σzm (t ) =
√
〈 (zm(t )−H(t ))2 〉A (5.45)

where the average, 〈. . .〉A , is the same as before.
The evolution of the normalized fluctuation σzm (t )/H(t ) with respect to Rae f f is

shown in Fig. 5.9c. First we measure an average roughness amplitude of about 5 to 15
percent of the melt height. We can remark that the 3D system is characterised by larger
roughness, up to three times, as compared to the 2D. The saw tooth profile is clearly
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liquid H(t)

σm

Lc

(a) (b)

(c) (d)

Figure 5.9 – (a) Schematic view of the melt layer with relevant interface length scales: horizontal
correlation length Lc (t ), roughness σm (t ), mean height H(t ). (b) Correlation length versus

Rae f f . In all different cases Lc (t ) is at most slightly larger than one half of the domain width L (at
the end of the simulations). (c) Roughness versus Rae f f . (d) Ratio of the roughness to the

correlation length, σm /Lc . In panels (b-d), the curves are obtained from ensemble averages; the
shaded areas in (b) and (c) account for the spreading of the measured values over different

realizations, computed as the difference between the maximum and minimum values. The large
spreading at large Rae f f in panel (b) is due to limited statistics.

noticeable in the 2D system. However the 3D system behaviour get closer to the 2D at
the highest Rayleigh numbers explored.

The roughness of the interface has been studied by Davies [13] and more recently
by Hill [15] and by Ulvrova [16]. In the latter work roughness has been defined as the
difference between the maximum and the minimum value of the interface.

In Fig. 5.9d we also show the evolution of the ratio of the roughness over horizontal
correlation length of the interface, σzm /Lc (t ). We observe that such a ratio is relatively
stable over the last three Rae f f decades of the simulation, and in 3D is approximately
double as compared to the 2D system.

It has been long known that tiny variation in the bounding geometry of a convec-
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tive cell can affect the thermal and kinetic boundary layers and as consequence produce
variations on the intensity of the mean heat-flux [17, 18]. The matter has been addressed
first experimentally, by introducing in the RB system controlled walls roughness either
on one or both horizontal plates. Different types of corrugated walls have been employed
and in the majority of the cases this has lead to an increase of the Nusselt number, con-
firmed also by numerics [19] (see [6] for a recent review covering the role of roughness).

More recently, [20] and [21] have systematically investigated the effect of a top-wall
sinusoidal bounding geometry (of given depth but variable wave-length). An optimal
wavelength, which was about 1/7 of the cell height, was found to maximally enhance
the intensity and the Ra-scaling of the total heat flux. In this study the amplitude of the
sinusoidal roughness was kept fixed to 1/10 of the maximum cell height. Given these
finding, it is plausible to guess that the shape of the upper bounding geometry in the
convective system have a role in the perceived difference on the heat-flux among the 2D
and 3D system.

5.9. Effect of Stefan number
This section focuses on the effect of the Stefan number both on global and morphologi-
cal quantities. We remind that the Stefan number parametrizes the ratio of the substance
heat capacity over the latent heat. A high value of Stefan corresponds to a material for
which melting is energetically inexpensive while the opposite is true for St smaller than
a unit value. Rather counterintuitively the stability analysis [8] as well as our simulations
shows that the convective instability arises later for higher St numbers. However the
larger is St , the higher is the average speed of the melting front vm .

Before analyzing the dependency of heat flux on the Stefan number, we qualitatively
observe St dependency of the melting system. Figure (5.10) shows the advancement of
solid-liquid interface for four Stefan numbers of St = 0.01, 0.1, 1 and 10. Independent of
magnitude of the Stefan number, all the systems go through three stages of conduction,
transition and convection. The transition (onset of convection) is highly dependent to
St in a way that for smaller Stefan number the onset of convection delays in time.

In the convection regime, however, two stages can be distinguished. The first stage is
where the convection plays regular behaviour, and number of rolls appears in the liquid
layer. However, this regularity fades away as the interface progress in time (which we
addressed previously by Ra number). In the second stage of convection, the behaviour
of flow is rather irregular, which means rolls start to merge and create bigger rolls.

The convective dynamics can again be conveniently examined in term of the func-
tion Nui n

e f f (Rae f f ,St ). In figure 5.11 (a) we show that at increasing St there is a small but

detectable increase of the inlet effective heat flux for equal values of the Rayleigh num-
ber. Such a difference is better quantified by inspecting the ratio between Nui n

e f f (Rae f f ,St )

and Nui n
e f f (Rae f f ,St = 1) which we take here as a reference. We see in Fig. 5.11 (b) that

the convective regime shows always a reduced excursion as compared to the conduc-
tive one, although they are of the same order of magnitude. We have also attempted
to perform a power-law fit of the form Nui n

e f f (Rae f f ,St ) = Nui n
e f f (Rae f f ,St = 1) · A St B

with A,B fitting parameters. This leads to A close to 1 within percent and to a scaling
exponents of roughly 0.05.
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Figure 5.10 – The average height of melting front for St = 0.01, 0.1, 1 and 10 together with
visualization velocity and temperature field at different stage in time. The interface is normalized

by total height of the system (Hmax ) and the time with convective time scale (H2
max /κ)

Figure 5.11 – (a)Inlet Nusselt number as a function of the effective Rayleigh at St = 0.1, 1 , 10 and
100 for 2D CM systems. The horizontal dotted lines give the corresponding conductive value

(5.36). (b)Ratio of Nui n for St = 0.1, 1, 10 and 100 over Nui n at St = 1. Comparison of the
conductive trend with the trend detected in the convective regime in the intervals

Rae f f ∈ [
106,107]

and Rae f f ∈ [
107,108]

and estimate of their power-law dependencies.
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Figure 5.12 – Reynolds number (kinetic energy of the system) as a function of the effective
Rayleigh at St = 0.1, 1 , 10 and 100 for 2D CM systems.

We note that the observations provided so far are derived by 2D simulations but
we can confirm that the same picture holds in 3D settings, where we have performed a
comparison at St = 0.1,1,10 (not shown here).

In term of the kinetic energy of the system, we observe that apart from the onset of
convection, the behaviour of the melting systems for different St is almost identical (see
Fig. 5.12)

We now inspect the global features of melting interfaces. The averaged longitudinal
correlation length as well as the fluctuation σ(zm) confirm that the St effect is weak. In
figure 5.13, while differences in the low-Ra regime are present, all becomes within the
estimated uncertainty range for high-Ra. Asymptotically with Ra, in 2D simulations, the
cell patterns seem to approach from above a unit aspect ratio with a roughness that is
as low as 4% of the height of the melt. It is of interest to look also at the behaviour of
σ(zm)/Lc , because this quantity share some similarity with the ratio of roughness am-
plitude over roughness-wavelength (h/λ) which has been used to investigate the effect
of non-flat boundaries on the RB convection [20].

In a recent numerical study it has been observed that the heat-flux enhancement in-
duced by wall-roughness reaches a maximum when h/λ' 1, while such an effect mono-
tonically decreases for larger or smaller values of the same ratio [20, 21]. Such an obser-
vation seems to apply also to the present case, see figure 5.14a, where the ratio σ(zm)/Lc

which is always small, decreases further at increasing Rae f f . We shall therefore expect
that any heat-enhancement effect with respect to the RB system will decrease as the
Rayleigh number is increased (or in other words as time progresses).

Finally we address the question of the inequality between the heat-fluxes Nui n
e f f and

Nuout
e f f , that we mentioned earlier in this chapter. Such a mismatch is connected to the

time instationarity of the CM system and it is therefore present even when the average of
Nu over different system realisations (ensemble average) is performed. On the contrary
the RB system is statistically stationary in time and such a difference, although instan-
taneously present, is zero on average (in time or in ensemble sense). In the CM system
a fraction of the incoming heat flow is used to raise the global temperature of the cold
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(a) (b)

Figure 5.13 – (a)Horizontal correlation length of fluid-solid interface Lc normalized by the average
height of melt layer H(t ) versus the effective Rayleigh number for simulations at different Stefan

numbers and minimal aspect ratios. (b) Same as before but for the standard deviation of zm .

(a) (b)

Figure 5.14 – (a) Ratio of the standard deviation of melting interface over the horizontal
correlation length at increasing Rae f f for the same St number values. (b) Ratio between

outgoing and incoming heat flux in the system with respect to Rayleigh for 2D systems for St = 1,
0.1 and 0.01. The dashed lines give the corresponding value in conductive (no flow) conditions

e−λ2
.

fluid released from the melting process.

Intuitively one can expect that the Nusselt fraction Nuout
e f f /Nui n

e f f will be small in

systems where the melt process is rapid, because most of the heat will be needed to
warm up the fluid. Note that such a mismatch already exists in the conductive regime of

melting, where it can be computed analytically and has the valueNuout
e f f /Nui n

e f f = e−λ
2
.

The fraction of transmitted heat Nuout
e f f /Nui n

e f f as a function of Rae f f range is shown

in Fig. 5.14b, where we traced both results from 2D and 3D simulations at different Stefan



5

90
5. Convective melting system

numbers. First, we notice that as expected such a ratio is decreasing at increasing St .
Furthermore, the values result to be always close to the corresponding conductive ones.
This implies that the warm up of the liquid is here driven by a diffusional process, rather
than by a convective one, even in the high-Ra regime. A feature that we presume to
be connected to the value of the Prandtl number, Pr À 1 and hence to the fact that
the thermal boundary layer is thinner than the kinetic one. The possibility of linking
the behaviour of Nui n

e f f and Nuout
e f f has implications for the extrapolation of our results;

even on St regimes which we did not explore numerically. For instance the St number
of interest for water-ice phase-change in arctic ponds are ∼ 10−2, a condition where the
incoming and outgoing heat flux can be considered as essentially equal in magnitude.

5.10. Effect of aspect ratio
Apart from Stefan, Rayleigh and Prandtl numbers that control the dynamic of melting
system directly through influence in governing equations, there is one more control pa-
rameter that does not affect the equations, however, it is defined by the size of the do-
main of simulation. The ratio of the height of the system to its width is known as aspect
ratio, which is defined by Eq. (5.20).

In this section we consider two identical systems except with different widths. The
summary of parameters used for comparing two systems with different aspect ratio is in
table (5.1).

Figure 5.15 – Plot of inlet heat flux versus Rayleigh number for two identical melting systems with
different widths. Relative to each melting system, corresponding RB is also computed and

included in this figure. The dotted line corresponds to the point in time where aspect ratio of the
system is unity.

Similar to previous sections, the first comparison would be the incoming heat flux
and the effect of aspect ratio on the heat budget. Fig. 5.15 shows the inlet heat flux as a
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form of the Nusselt number, for two melting systems with different widths. In addition,
for comparing reason, Fig. 5.15 contains relative RB system to each melting system. For
both CM systems, the initial aspect ratio is very large (the height of the liquid layer is zero
initially), however for the system with smaller width, it reaches one at some point, which
is indicated by vertical dotted line.

The comparison does not show significant changes in heat coming into the system
with respect to aspect ratio. However, as the melting system approaches aspect ratio of
unity, the velocity fields will be constrained laterally. In order to see the effect of aspect
ratio on velocity field, we can look in the total kinetic energy of the two systems (Fig.
5.16a). As it can be seen the two systems behave similarly, except where the aspect ratio
of the system with smaller width becomes smaller than one (dotted line).

In order to see the effect of aspect ratio on the components of velocity, one can con-
sider the ratio of average vertical velocity to horizontal one, which is shown in Fig. 5.16b.
Clearly, the two systems behave differently for aspect ratio smaller than one. As one can
see, the magnitudes of horizontal and vertical velocities have same order as long as the
aspect ratio is larger than one. However, when the aspect ratio is less than unity, the hor-
izontal velocity becomes more dominant. Therefore, more heat is transferred laterally,
due to greater horizontal velocity.

(a) (b)

Figure 5.16 – (a) Plot of Reynolds number versus changes in Rayleigh effective for two identical
2D melting system with different widths. (b) Plot of relative vertical velocity to horizontal one for

melting systems with different aspect ratio.

5.11. Conclusion
In this chapter the dynamics of the melting process of a horizontally heated pure sub-
stance under the effect of conduction and natural convection has been numerically stud-
ied. The analysis has focused on the scaling of extensive quantities, global heat flux and
global kinetic energy, at varying the control parameters in the system and on the ef-
fects linked to its dimensionality. We have exploited the knowledge of the paradigmatic
Rayleigh-Bénard system in order to have a better insight on the observed model system
and to draw possible similarities.
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It has been shown that CM and RB have close behaviour in terms of the Nu(Ra) and
the Re(Ra) functional dependencies. While both systems show almost identical trends
for the Reynolds number, it was observed that NuC M is slightly higher than NuRB . How-
ever, such differences seem to vanish as convection intensity is increased, i.e., for high
values of the effective Rayleigh number (or equivalently asymptotically in time), indicat-
ing that in turbulent conditions the phenomenology of the RB system can give quantita-
tively good predictions for the CM system dynamics. Similarly to RB convection, the 2D
CM system has a weaker global heat flux as compared to the 3D CM setting.

Visualizations of the melting front in 3D revealed the appearance of convective pat-
terns with approximately hexagonal, and more often irregular polygonal, cross section.
As Rayleigh increases, i.e. as the fluid layer grows, such cells undergo a coarsening pro-
cess. Investigating the morphological properties of the liquid-solid interface with statis-
tical indicators, we found that this is characterized by larger roughness in 3D than in 2D,
which can account for the differences detected in the 3D and 2D heat flux behaviours.
However, the roughness reaches at most 15% in 3D (respectively 5% in 2D) of the melt
height and, independent of the space dimensionality, it further decreases at sufficiently
high Rayleigh numbers. Such low values of the melting front roughness again point to
strong similarities between the CM and the flat-wall RB systems.

The Stefan number dependency has been investigated in 2D for the range of val-
ues 0.1 ≤ St ≤ 100. Although increasing St significantly delays the onset of convection,
very small differences were observed in the dimensionless global heat flux in the high
Rayleigh number regime. This finding is of potential interest for numerical studies, be-
cause it allows to extrapolate results of fast simulations at high-St values to conditions
of small St values that would be otherwise unattainable in direct numerical simulations
simulations. Small values of the Stefan number correspond to slowly advancing melting
fronts or quasi-adiabatic cases, which are closer to the RB configuration. We remark that
the typical condition of ice melt ponds corresponds to a Stefan number (St ∼O(10−2)).

Finally, we addressed the question of the difference between the instantaneous global
inflow and outflow in the system, which is connected to the mean temporal variation of
the temperature of the fluid. We have shown that such a gap is essentially controlled by
a diffusive process and that is more pronounced in systems where the melt process is
faster, hence for larger values of the Stefan number.

The model system studied in this work represents a rudimentary approximation of
a real melt pond. Among others, one major approximation is the fact to neglect the ther-
mal forcing due to radiation heating, which correspond to a bulk temperature source
term in the fluid. A second approximation concerns the presence of a wind drafts at the
air-water interface that can greatly perturb and affect the instability and the evolution of
convective patterns in the ponds. Such effects will be addressed in the next chapters.
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6
Convective melting system with a moving

boundary

In addition to having natural convection, the CM system can be subject to further con-
straints, e.g. having an external moving boundary, which can represent the existence of
wind or stream in the pond. Regarding any CM problem, the first question one can ask
is the predictability of the evolution of the melting-rate which is connected to the heat-
flux dynamics determined by the flow in the system. The problem of CM due to natural
convection has been addressed thoroughly in the previous chapter. In this chapter, we
present the behaviour of CM system at turbulent, i.e. high Rayleigh number, natural
convection coupled with an external moving boundary.

6.1. Convective melting system with a moving boundary
In order to study the effect of a moving boundary on the dynamics of the CM system,
similar to our model in the Chapter 5, we consider a solid layer initially at a constant
temperature Tm . We start to heat the system with a constant temperature T0 > Tm from
the bottom and simultaneously a horizontal velocity Vx is applied on the bottom bound-
ary. Consequently, while the solid starts to melt, the velocity field in the liquid layer take
effects from the velocity on the bottom boundary. A schematic of the model system is
shown in Fig. 6.1.

6.1.1. Equation of motion for the phase-change problem: moving bound-
ary formulation

The governing equations for the system of melting coupled with a moving boundary are
the same as pure CM system (Eq. (5.1-5.4)), except for the bottom boundary. For this
model, the boundary conditions for the bottom wall are: (i) fixed temperature and (ii)
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Figure 6.1 – Schematic diagram of the melting system. The system is the same as Fig.5.1, however
in addition to the bottom (T0), velocity Vx is applied on the bottom boundary.

imposed constant horizontal velocity Vx ,

T |x=(x,y,0) = T0 ∀x, y ∈ [0,L][0,L] (6.1)

u|x=(x,y,0) = (Vx ,0,0) ∀x, y ∈ [0,L][0,L] (6.2)

(6.3)

The remaining boundary conditions are (i) periodic boundary condition at lateral bound-
aries, and (ii) no slip and melting conditions at the phase-change interface (Eq.(5.7) and
(5.8)).

6.2. Discussion
In this section, we look at the result of numerical simulations computed by DNS code de-
veloped based on Lattice-Boltzmann method. For each simulation, all the parameters,
except the shear velocity at the bottom boundary, are kept fixed. The values of param-
eters are summarized in Table (6.1). In order to reduce the effect of initial perturbation
applied on each simulation, for each shear velocity, ensemble average over 6 simulations
are employed.

In order to investigate the effect of the wall velocity, we perform several simulations
with different velocities (Vx ), which we present in dimensionless form

Ṽ =
p

F r , (6.4)

where F r is Froude number, which is a ratio of inertial and gravitational forces, and is
defined as

F r = ρV 2
x

∆ρg Hmax
= V 2

x

β∆T g Hmax
. (6.5)
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number
of runs

Lx Ly ν κ β ∆T g L cp Pr St Ramax

6 2000 1000 0.2 0.02 5 ·10−4 1 1 1 1 10 1 1.25 ·108

6 2000 1000 0.2 0.02 5 ·10−4 1 1 10 1 10 0.1 1.25 ·108

Table 6.1 – Summary of the parameters values for all convective melting simulations. We provide
dimensional and dimensionless control parameters. The dimensional parameters are in

numerical units.

The last equality is due to substituting density variation from ρ = ρ0(1−β∆T ).
Similar to pure melting system, apart from the wall velocity, we have three other

dimensionless parameters that can be identified as the global control parameters; the
Rayleigh number (Ra) (Eq.5.15), the Prandtl number (Pr ) (Eq.5.14) and the Stefan num-
ber (St ) (Eq.5.16).

By considering the global liquid fraction, similar to the case of melting, we can in-
troduce the effective Rayleigh number (Eq. 5.19). As in chapter 5, in order to quantify
the results, we look to heat budget in form of the dimensionless Nusselt number, which
we measure at the bottom boundary (Eq. 5.33).

Before presenting the results in a quantitative fashion, the behaviour of the CM sys-
tem with and without existence of shear velocity is addressed qualitatively. Comparing
Fig. 6.2 (pure CM system) and Fig. 6.3 (CM system with a moving boundary), one can
observe the decrease in the number of rolls in Fig. 6.3. Moreover, the shape of the rolls
are more distorted in the direction of shear velocity. The second observation is the shape
of the solid-liquid interface, which is much flatter in Fig. 6.3. We will address these ob-
servations quantitatively in the following sections.

The results presented in this section are categorized into two different analyses.
Firstly, the effect of the global control parameters on the dynamics of the system. And
secondly, the characterization of interface roughness and morphology, and its coupling
effects on flow in the liquid layer.

6.2.1. Results on global quantities
Before quantitatively address the dynamics of the CM system with a moving boundary,
it is important to have a better perspective of the magnitude of wall velocity. The maxi-
mum wall velocity in our simulations is Ṽ =p

2×10−1, which corresponds to a very small
wind velocity 3×10−4ms−1 on the surface of a melt-pond with depth 20cm. Such a small
velocity was adopted in order to avoid numerical issues in the simulations. It is known
that when the wind velocity is high enough, the buoyancy plays a marginal role and the
system is dominated by wind effects.

Skyllingstad et al. [1] addressed the problem of melting coupled with moving bound-
ary through applying constant wind stress of 0.01Nm−2 which corresponds to wall ve-
locity of 0.1ms−1. However, they considered constant rate of melting in their model, in-
stead of estimating rate of melting through the internal dynamics of the system. Reader
is advised to refer to chapter 2 for further information.

In order to address quantitatively the system dynamics, we study the intensity of the
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(a) Ra = 13441

(b) Ra = 1.112 ·105

(c) Ra = 1.004 ·106

(d) Ra = 1.021 ·107

(e) Ra = 8.021 ·107

Figure 6.2 – Visualization of the 2D CM system in different stages at increasing effective Rayleigh
numbers for the CM system without an external moving boundary (Ṽ = 0). The colors represent
the temperature field (red Tbot =−0.5, blue Ttop = Tm = 0.5 and white zero), and the arrows are
the velocity field normalized by the magnitude of the maximum velocity in each field separately.

The white line on the top of each visualization is the solid-liquid interface. The global parameters
of the system are St = 1 and Pr = 10.

global heat flux Nui n
e f f (Eq. (5.27)) as a function of the forcing imposed to the system,

which is here parameterized by Rae f f (Eq. (5.19)). Similarly to the discussion in chapter
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(a) Ra = 8632

(b) Ra = 1.052 ·105

(c) Ra = 1.061 ·106

(d) Ra = 9.892 ·106

(e) Ra = 7.95 ·107

Figure 6.3 – The description of the figures is the same as Fig. 6.2, however, with an external
moving boundary with fixed velocity Ṽ =p

2×10−1.

5, the choice of the incoming heat-flux instead of the outgoing, is for numerical reasons.

Figure 6.4 shows Nui n
e f f for two-dimensional convective melting (CM) with different

shear velocities and for two Stefan numbers of St = 0.1 and St = 1. We can see that the
onset of convection is dependent to the magnitude of shear velocity, and for higher Ṽ
the convective onset is delayed. This fact indicates that, higher shear velocity stabilizes
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(a) St = 0.1 (b) St = 1

Figure 6.4 – Plot of inlet Nusselt number as a function of the effective Rayleigh for shear velocity
Ṽ = 0 for reference and various shear velocities for two Stefan numbers of St = 0.1 and St = 1 for

2D CM systems.

the system, or in other words, higher buoyancy force is needed to destabilize the system
into the convective regime. Similar behaviour has been observed in the stability analysis
of the thermal Couette system1 and reported by Joseph et al. [2]. Moreover, higher Stefan
number also delays the onset of convection, as it can be observed in Fig.6.4.

The influence of the magnitude of Ṽ is very much reduced as Rae f f increases, i.e. in
the regime where buoyancy prevails. This indicates that, the behaviour of system tends
to stay identical when the height of liquid fraction is advanced enough.

(a) St = 0.1 (b) St = 1

Figure 6.5 – Plot of the effective Reynolds with respect to the effective Rayleigh number, for shear
velocity Vx = 0 as reference and various velocities of moving boundary for two Stefan numbers of

St = 0.1 and St = 1 for 2D CM systems.

1In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces,
one of which is moving tangentially relative to the other.
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In order to complete this discussion, similar to what we did in chapter 5, we also look
at the scaling of the global kinetic energy of the system, which in dimensionless form is
defined as Reynolds number (Eq. (5.40)).

We observe from Fig. 6.5, that the agreement of the CM behaviour with different
shear velocities is remarkable, particularly in the range Rae f f ≥ 106. At lower Rae f f

(particularly conductive regime) the appearing differences in Ree f f are due to the initial
shear velocity; which can be computed analytically from Eq. (3.36) and using Eq. (5.39).
We denote the analytic solution in Fig. 6.5 by dotted lines.

The total kinetic energy of the system of melting without moving boundary starts
with relatively low value, and it follows with a jump at the onset of convection. The jump
in the kinetic energy is induced from buoyancy force that triggers convection in the melt-
ing system. However, having velocity Ṽ at the moving boundary introduces additional
velocities in the liquid layer. When the shear velocity exceeds certain value, it dominates
buoyancy force, and the jump in the profile of kinetic energy disappears. The latter case
can be seen for Ṽ = 5

p
2×10−2 and Ṽ =p

2×10−1 in Fig. 6.5. To appreciate this effect,
we can look in the relative changes of vertical kinetic energy (ur ms,z H(t )/ν) to horizon-
tal one (ur ms,x H(t )/ν), which is shown in Fig. 6.6 for two values of Stefan number of
St = 0.1 and St = 1.

(a) St = 0.1 (b) St = 1

Figure 6.6 – Plot of relative vertical to horizontal effective Reynolds with respect to the effective
Rayleigh number, for different shear velocity Ṽ = 0 as reference and Ṽ =p

2×10−1, 5
p

2×10−2,p
2×10−2,

p
2×10−3, and

p
2×10−4 for 2D CM systems.

In the case of an intensive wall velocity, although initially horizontal velocity is dom-
inant, the advancement of the height of the liquid layer (i.e. increasing Rae f f through
the process of melting) promotes the buoyancy force, and consequently, the profile of
kinetic energy marginally approaches to the one of melting system without shear ve-
locity (Fig. 6.5). In other words, by advancing the melting front, the ratio of vertical to
horizontal velocities approaches one (Fig. 6.6).

In summary, we have shown that different shear velocities affect the behaviour of
the 2D CM system (in the range of parameters studied here Pr = 10, St = 0.1 and St = 1)
for small values of Rae f f , however, at higher Rae f f such a difference seems to reduce
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and eventually vanish.

6.2.2. Morphology of the interface
Apart from the dependency of the dynamics of the system to global control quantities,
the shape of the solid-liquid interface can also be characterized quantitatively. Similarly,
the focus is on the trends as a function of the Rayleigh number at fixed Stefan number
and various velocities of the moving boundary.

Before analyzing the interface quantitatively, the advancement and behaviour of the
interface can be observed qualitatively. Figure 6.7 shows the growth of interface stro-
boscopically. Two regimes of conduction and convection are separated by color code
(red and blue) and each line represent different time steps. It can be observed that the
convective roll patterns disappear with the increase of Ṽ .

As in chapter 5, for different velocities of the moving boundary, we characterize the
shape of the solid-liquid interface at a given time by one dimensional auto-correlation
function of local interface height (Eq. (5.42)), and the roughness of the interface (Eq.
(5.45)).

The computed Lc , normalized by the average height of the liquid fraction (H(t )), as a
function of the Rae f f is shown in figures 6.8a and 6.8b for two Stefan numbers, St = 0.1
and St = 1 respectively. As we already know, at small Rae f f , the system dynamics is
purely conductive and as a result the interface is flat, in such a case Lc is not defined.
Later on, the onset of convection produce a finite Lc as it drives the formation of recir-
culating patterns (cells) with an aspect ratio ∼ 1.5. The ratio Lc /H(t ) decreases because
the number of convective rolls remain constant while the average height of the melted
layer increases.

The behaviour of solid-liquid interface, however, depends highly on the magnitude
of moving boundary. As we observed in the previous section, there is a transition in the
behaviour of system for great shear velocity (Fig. 6.6). In case of intensive velocity of the
moving boundary, the horizontal force is more dominant. Therefore, the melting in the
interface takes place more horizontally at the onset of convection, and consequently the
correlation length (Lc ) increases significantly.

Asymptotically, by increase of height of interface, the vertical force (buoyancy) in-
creases. Therefore, the elongation of rolls gradually diminishes, and eventually correla-
tion approaches commonly seen state, which is typical aspect ratio 1 and this appears
to be independent of the dimensionality of the system. The latter one is a feature also
present in (flat-wall) RB systems [3].

Similarly, the average roughness of the liquid-solid interface can be quantified by
means of the standard deviation of the fluid-solid boundary height, zm , and is defined
by Eq. (5.45). The evolution of the normalized fluctuation σzm (t )/H(t ) with respect to
Rae f f is shown in figures 6.8c and 6.8d.

Similar to correlation function, the roughness of solid-liquid interface behaves dif-
ferently with respect to strong shear velocity. However, in this case, the roughness of
interface reduces for stronger velocity on the moving boundary. As we discussed previ-
ously, the incoming heat flux into the system varies little for different shear velocities.
Consequently, rate of overall melting stays constant. Therefore, elongation in one direc-
tion (here horizontally) will be followed by shortening in another direction (vertically).
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(a) St = 0.1 and Ṽ = 0 (b) St = 1 and Ṽ = 0

(c) St = 0.1 and Ṽ =p
2×10−2 (d) St = 1 and Ṽ =p

2×10−2

(e) St = 0.1 and Ṽ = 5
p

2×10−2 (f) St = 1 and Ṽ = 5
p

2×10−2

Figure 6.7 – Stroboscopic visualization of advancement of solid-liquid interface for Stefan
number St = 0.1 and 1, and shear velocities Ṽ = 0, Ṽ =p

2×10−2 and 5
p

2×10−2. The red lines
indicate conductive and blue one the convective regimes

In summary, we saw that the morphology of the interface depends on the magni-
tude of velocity of the moving boundary. When the shear velocity is high enough, the
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(a) St = 0.1 (b) St = 1

(c) St = 0.1 (d) St = 1

(e) St = 0.1 (f) St = 1

Figure 6.8 – Ensemble averaged auto-correlation length and deviation of melting interface for 2D
simulation versus Rae f f for different shear velocities and Stefan number St = 0.1 and St = 1. For
simulations, the domes do not reach the width of the system, i.e., Lc /W < 1. The shaded area is
the range between minimum and maximum of the all instances of simulations. The axis are the

width and height of the simulations, which for simplicity are shown in grid size.
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horizontal kinetic energy surpasses the buoyancy force, and the roll formation would be
elongated horizontally. Consequently, the number of rolls appearing in the liquid layer
reduces relatively. This can be identified by having larger correlation of interface. On
the other hand, the horizontal velocity field induced by velocity of moving boundary,
flattens the interface and make the deviation smaller.

6.3. Conclusion
In this work, we addressed the problem of Convective Melting (CM) coupled with a mov-
ing boundary condition with different intensities. We observed that when the velocity of
the moving boundary is high enough so that horizontal kinetic energy is dominant, the
CM system shows different behaviour in terms of the Reynolds and the Nusselt num-
bers at low Rayleigh. However, at ultimate high Ra such a difference seems to reduce
and eventually vanish. Moreover, we presented direct dependency between intensity of
shear velocity with delay in onset of convection.

In addition we studied the morphology of the interface for different velocities of
moving boundary, and we again observed direct dependency between intensity of shear
velocity and elongation of rolls. Moreover, elongated rolls carve less vertically in the
solid-liquid interface. Consequently the thickness of melting front reduces by increase
in the intensity of velocity of moving boundary.

Wind may play an important role when considering laterally bounded ponds, as it
introduces an asymmetry on the melting rate of the side walls. The effects of introducing
a moving boundary on the laterally confined CM system is a natural extension of the
work presented in this chapter, and may shed light on the influence of wind shear on the
evolution of melt ponds.
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7
Convective melting with volumetric heat source

The heat exchange between earth and space is maintained by two great fluxes of ra-
diative energy, incident solar radiation and leaving longwave radiation from the earth’s
surface and atmosphere. These fluxes are usually much larger than other terms in the
energy budget, such as evaporation, sensible heat exchange, and advection [1]. The in-
cident fluxes can be classified into shortwaves and longwaves, and among the two the
shortwave flux is the most relevant one. [2]

The shortwave solar radiation is absorbed in the liquid layer of melt-ponds inhomo-
geneously, in particular it decreases with the depth. The macroscopic absorption law
that is most commonly used is the Beer-Lambert law [3]. Skyllingstad et al. [4]) adopted
this law in their work in form of

Fr (z) ↓= PmFr n
(
1−e−Km z)

, (7.1)

where Fr is solar flux parametrization using a radiative transfer equation developed by
observation during SHEBA experiment (Pegau [5]), and Fr n represents the solar flux as
the net shortwave radiation at the sea surface. Moreover, Pm is the proportion of short-
wave energy in the band m, K m is the diffuse extinction coefficient, and z is the depth
below the surface. Information on the band characteristics is provided in Table 7.1.

Shortwave radiation reaching the pond bottom is either reflected upward by the ice
under the pond or transmitted below the pond. Similarly, Skyllingstad et al. [4]) pro-
posed

Fr (z) ↑= Pm abFr (zb)
(
1−e−Km [(zb−z)]) , (7.2)

as absorption of radiation reflected off the bottom, with Fr (zb) the radiation intensity at
the bottom of the pond, zb depth, and ab the pond bottom albedo. Using Fr (z) ↓ and
Fr (z) ↑, the total amount of the heat absorbed in the melt-pond can be calculated as a
function of depth by integrating the downwelling and upwelling radiation

Qr =
∫

h
Fr (z) ↓ +

∫
h

Fr (z) ↑ . (7.3)
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Therefore, in this method, the conservation of energy reads

ρcp∂t T +u ·∇T =Λ∇2T +∂z Fr (z) ↓ +∂z Fr (z) ↑, (7.4)

whereΛ is thermal conductivity.
In the present work we consider a simplifying assumption of a constant radiative

heat source on the pond, and homogeneous solar flux parametrization (q̄), which repre-
sents mean solar flux of non-homogeneous model. Therefore, we have

q̄ = 1

zb

∫ zb

0
∂z Fr (z) ↓ +∂z Fr (z) ↑ d z (7.5)

= 1

zb
(Fr (zb) ↓ −Fr (0) ↓)+ 1

zb
(Fr (zb) ↑ −Fr (0) ↑) (7.6)

= 1

zb

(
Fr n

∑
m

Pm
(
1−e−Km zb

))− 1

zb

(
abFr (zb)

∑
m

Pm
(
1−e−Km zb

))
(7.7)

= Fr n

zb

(
1−ab

∑
m

Pm
(
1−e−Km zb

))(∑
m

Pm
(
1−e−Km zb

))
, (7.8)

which in non-dimensional form reads

Q̄ = q̄z2
b

Λ∆T
. (7.9)

In order to have better understanding of different bulk-heating intensity, one can
estimate the corresponding depth of melt-pond by using Eq. (7.9) and table 3.5. In our
computation, we use representative value of 160W /m2 for the solar flux (Fr n), which is
taken from measurements done by Pegau and Paulson [5]. The plot of Eq. (7.9) with
respect to melt-pond depth with bottom pond albedo ab = 0.6 is shown in Fig. 7.1. It can
be seen that homogeneous and constant bulk-heating coefficients Q = 50 and Q = 250,
which we use in our simulations, correspond to melt-pond of depths 40cm and 1.57m
with non-homogeneous radiative heat source in the pond, respectively.

Wavelength 350−700 nm, 700−900 nm, 900−1100 nm, > 1100 nm,
Range m = 1 m = 2 m = 3 m = 4

Pm 0.481 0.194 0.123 0.202
Km 0.18 3.25 27.5 300

Table 7.1 – Band characteristics used to determine the shortwave radiation absorbed in a
freshwater layer. P is a function of cloud conditions, and K is a function of material in the water.

The table is courtesy E.Skyllingstad et al. [4]

In this chapter, we analyze the behaviour of the CM system heated through both
thermal boundary condition and constant volumetric heat source. Similar to previous
chapters, we present the behaviour of CM system at turbulent state, i.e. high Rayleigh
number, and address the characterization of the shape of the solid-liquid phase-change
interface.
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Figure 7.1 – Plot of corresponding solar flux for different melt-pond depths.

7.1. Convective melting system with volumetric heat source
For the study of effect of volumetric heat source (also called bulk heating) on dynamics
of melting system, we consider a model system which consists of a solid layer of a pure
substance of thickness Hmax initially at a constant temperature Tm . We start to heat
the system with a constant temperature T0,and simultaneously when the liquid layer
appears in the system, the constant volumetric heat q is added to the liquid part. Here q
is considered as the radiative power flux of solar radiation.

7.1.1. Equations of motion
The equations describing the dynamics of the system are Navier-Stokes (Eq. (5.1), (5.2)
and (5.3)), together with temperature equations with constant bulk heating coefficient,
which is Eq. (3.61). For the boundary condition associated to CM system with bulk heat-
ing are: (i) fixed temperature at the bottom wall together with no-slip condition for ve-
locity, (ii) periodic boundary condition at lateral boundaries, and finally (iii) no slip and
melting conditions at the phase-change interface. Equations describing the boundary
conditions are (5.5)-(5.8).

Similar to what we did in chapter 5, the temperature equation (3.61) together with
the associated phase-change boundary conditions (5.7) can be reformulated in form of
a single equation. This results in

∂T

∂t
+ (u ·∇)T = κ∇2T − L

cp

∂φl

∂t
+ q

ρ0cp
φl , (7.10)

which by non-dimensionalizing temperature by the temperature difference ∆T = T0 −
Tm > 0, the density by ρ0, the length by Hmax and finally the time by the diffusive time
H 2

max /κ, results in

∂T̃

∂t̃
+ (ũ ·∇)T̃ =∇2T̃ − 1

St

∂φl

∂t̃
+Qφl , (7.11)
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Figure 7.2 – Schematic diagram of the melting system. The system is filled with a pure solid at the
temperature of melting (Tm ) and the bottom at temperature T0 which is higher than the melting

temperature. When the liquid layer starts to grow in the system, constant volumetric heat q is
added homogeneously to the liquid part.

where Q is radiative over conductive flux ratio, and can be identified as the global control
parameter for the system melting coupled with volumetric heating, and is defined as

Q = H 2
max

κ∆T

q

ρ0cp
. (7.12)

Other global parameters are as we saw in previous chapters: the Prandtl number (Pr )
(Eq. (5.14)), the Rayleigh number (Ra) (Eq. (5.15)), and the Stefan number (St ) (Eq.
(5.16)).

7.1.2. Global heat-flux balance
We begin by considering the equation for the temperature in the fluid domain with the
moving interface formulation of Eq. (7.10). In conservative form (7.10) reads:

∂t T +∇· (uT −κ∇T )+ L

cp

∂φl

∂t
− q

ρ0cp
φl = 0. (7.13)

We take the volume integral over the whole domain and apply the divergence theo-
rem ∫

V
∂t T d x3 +

∫
∂V

n · (uT −κ∇T )dS + L

cp

∫
V

∂φl

∂t
d x3 −

∫
V

q

ρ0cp
φl d x3 = 0. (7.14)

In Eq. (7.14), due to having lateral periodic boundary condition, no-slip boundary
condition at the bottom, and constant temperature in the solid part (∇T = 0 in solid),
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the second term will vanish. Moreover, as the volumetric heating is only introduced in
the liquid layer, the last integral reduces to liquid domain. By having also constant bulk-
heating coefficient, Eq. (7.14) simplifies to∫

V
∂t T d x3 −L2〈−κ ∂T

∂z

∣∣∣∣
z=0

〉+L2Hmax
L

cp
〈φl 〉

∂〈φl 〉
∂t

−L2H(t )
q

ρ0cp
〈φl 〉 = 0. (7.15)

By normalizing by the horizontal bottom surface (L2), temperature by the tempera-
ture gap ∆T = T0 −Tm > 0, the density by ρ0, the length by Hmax and finally the time by
the diffusive time H 2

max /κ, and rearranging the terms and using the definition of Stefan
number and H(t ) we get:

−〈 ∂T̃

∂z̃

∣∣∣∣
z̃=0

〉A = 〈∂t̃ T̃ 〉+ 1

St
〈φl 〉

∂〈φl 〉
∂t̃

−Q〈φl 〉2. (7.16)

Similar to the discussion in chapter 5, we define

Nubot
e f f = −〈 ∂T

∂z

∣∣∣∣
z=0

〉A〈φl 〉, (7.17)

Nutop
e f f = 1

St
〈φl 〉

∂〈φl 〉
∂t̃

= 1

2St

∂〈φl 〉2

∂t̃
, (7.18)

which are the dimensionless average heatflux at the bottom boundary and solid-liquid
interface. Moreover, in the present study, we address the rate of incoming heat into the
system through volumetric heating, and we are interested in effective quantities. There-
fore, with respect to equation (7.16), we define

Qe f f = 〈φl 〉2Q, (7.19)

which is total incoming bulk heating in the liquid part, and consequently, the system.

7.2. Discussion
In this section, we look at the result of numerical simulations computed by our DNS.
For each simulation, all the parameters, except the constant volumetric heat ( q

ρ0cp
), are

kept fixed. The values of parameters are summarized in table 7.2. In order to reduce
the effect of initial perturbation applied on each simulation, for each volumetric heating
parameter, ensemble average over several simulations are employed.

By considering the global liquid fraction, similar to the case of melting, we can intro-
duce the effective Rayleigh number (Eq. (5.19)). Likewise, in order to quantify the results,
similar to Rayleigh-Benard system, we look to heat budget in form of the dimensionless
Nusselt number, which we measure at the bottom and the solid-liquid interface through
equations (7.17) and (7.18) respectively.

Before presenting the results in quantitative scheme, similar to previous fashion, we
look in the behaviour of CM system with volumetric heating (Fig. 7.3) with the system of
CM (Fig. 6.2) qualitatively. First observation is the shape of solid-liquid interface, which
is more distorted vertically in the CM system coupled with bulk heating. The depth of
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(a) Ra = 10345

(b) Ra = 1.0884 ·105

(c) Ra = 9.6916 ·105

(d) Ra = 9.9707 ·106

(e) Ra = 7.9794 ·107

Figure 7.3 – Visualization of the 2D CM system in different stages at increasing effective Rayleigh
numbers. The global parameters of the system are St = 1, Pr = 10, and Q = 250. The colors

represent the temperature field, and the arrows are the velocity field normalized by the
magnitude of the maximum velocity in each field separately. The white line in each visualization
is the solid-liquid interface. The temperature field for figure (a-d) is in range −0.5 to 0.5, whereas

for the figure (e), the color code for the temperature is from −0.5 to 1.5.

the domes in the solid-liquid interface is relatively higher for the system of melting with
volumetric heating. We will address these observations more quantitatively later, in form
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number
of runs

Lx Ly ν κ β ∆T g L cp Pr St Ramax Q

6 2000 1000 0.2 0.02 5 ·10−4 1 1 1 1 10 1 1.25 ·108 0
6 2000 1000 0.2 0.02 5 ·10−4 1 1 1 1 10 1 1.25 ·108 50
6 2000 1000 0.2 0.02 5 ·10−4 1 1 1 1 10 1 1.25 ·108 250
6 2000 1000 0.2 0.02 5 ·10−4 1 1 1 1 10 1 1.25 ·108 500

Table 7.2 – Summary of the parameters values for all convective melting simulations. We provide
dimensional and dimensionless control parameters. The dimensional parameters are in

numerical units. The time-step is fixed δt = 1 for all simulations. The second column from left
(number) specifies the number of simulations performed, which are employed to estimate the

ensemble averages.

of analyzing the solid-liquid interface. Second observation is the location of center of
largest vortices in the liquid layer, which has shifted higher and closer to the melting
front. This observation is more evident especially in fully developed system, e.g. Fig.7.3e
compared to Fig. 6.2e.

In order to analyze the system of melting coupled with bulk heating, the results pre-
sented in this section are categorized into two different analysis. The first one is the effect
of global quantities on the dynamics of the system. And secondly, the characterization of
interface roughness and morphology, and its coupling effects on flow in the liquid layer.

7.2.1. Results on global quantities
In order to address quantitatively the dynamics of the bulk heated CM system we study
the intensity of global heat flux Nutop

e f f as a function of the forcing imposed to the system,

which in this case is parameterized not only by Ree f f but also by Qe f f . The rationale
for the choice of the heat-flux at the solid-liquid interface is the presence of volumetric
heating, which may affect in a relevant way the melt-rate. Conversely an investigation
on Nubot

e f f , as done in the previous chapters, would not provide here a direct information

of the advancement of the phase-change process. A minor drawback of this approach
is that we have to cope with more noisy signal, due to numerical discretization effects
which are unavoidably present at the phase-change interface

Figure 7.4 shows Nutop
e f f for two-dimensional CM with different bulk-heating inten-

sities for Stefan number St = 1. Few observations are in order:

First of all, the behaviour of Nutop
e f f can be roughly categorized into two regimes. The

first regime is where internal heating is weak with respect to heating coming to the sys-
tem through bottom boundary (the air-water interface in the pond system). Therefore,
we have scaling of Nu ∼ Ra1/3, which we already know from the analysis of CM system
without bulk heating (Chapter 5), and a dynamics that is very close to the one of the
RB system. The second regime is when the homogeneous internal heating dominates
over the inlet heat from the bottom surface. In this regime, we see the emerging of the
behaviour of Nu ∼ Ra2/3.

In order to explain this novel regime, we observe (again from figure 7.4) that the
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Figure 7.4 – Plots of heat flux measured as Nusselt number at the solid-liquid interface as a
function of the effective Rayleigh number for different volumetric bulk-heating intensities for 2D
CM systems, together with the plot of half volumetric bulk-heating. The two black lines indicate

two scaling of 1/3 and 2/3 which are described in the text.

in the asymptotic Rae f f limit the Nutop
e f f seems to approach the value of Qe f f /2. This

observation indicates that the heat going out through the solid-liquid interface is, in fact,
approximately half of the internal heating in the system. Therefore, for large Ra, the
following relation holds:

1

St
〈φl 〉

∂〈φl 〉
∂t̃

' 1

2
〈φl 〉2Q, (7.20)

which by simplifying and considering the solution of the ordinary differential equations
of the form ∂t u = u one obtains:

〈φl 〉 ∼ eSt Qt̃/2. (7.21)

Equation (7.21) shows that, in the presence of internal heating, the melt process can
advance much faster than in the RB-like convective regime. The change is from a con-
stant melt front velocity (vm) in the contact heating dominated regime to an exponential
velocity. This behaviour is shown in Fig. 7.5 with exponential fitting to the plots, showing
that the velocity of the interface increases exponentially by the intensity of the volumet-
ric heating. The fitting is of the form A eB St Qt̃/2, where in Fig. 7.5 the coefficient A is not
shown. Our computation shows that B is of order one, and decreases for larger internal
heating coefficient.

It can be seen in Fig. 7.5 that, the exponent for Q = 500 is clearly twice the case for
Q = 250. This behaviour is consistent with the theory, in which we have the dependency
of the heat-flux to the half internal heating. We shall note that, such a melting regime to
our knowledge has never been reported before.

Finally we can put forward an explanation for the Nu ∼ Ra2/3 scaling relation by
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Figure 7.5 – Plot of the velocity of the interface for different volumetric bulk-heating intensities
for 2D CM systems. In the case Q = 0 we have no special reason to fit with an exponential

using the fact that Nutop
e f f approaches to Qe f f /2 at high Rae f f . We have

Nuout
e f f ∼ 〈φl 〉2Q. (7.22)

Similar to what we did in Chapter 5, one can substitute 〈φl 〉 with the one from the
definition of Rayleigh number (i.e. Rae f f = 〈φl 〉3Ramax , Eq. (5.19)). This results in

Nuout
e f f ∼ Ra2/3

e f f Q. (7.23)

The fact that the heat going out through the solid-liquid interface is half the internal
heating in the system is probably just a rough approximation. Goluskin et al. [6, 7], who
carefully investigated the case of thermal convection due to the sole internal heating in
the system of Rayleigh-Bénard concluded that an asymmetry is indeed present, and that
the heat-flux at top is slightly larger than the one going through the bottom.

We now look at the behaviour of the global kinetic energy of the system, which in
dimensionless form takes the form of the Reynolds number (Eq. (5.40)).

The Reynolds number as a function of the effective Rayleigh number for different Q
values is reported in Fig. 7.6. As for the Nusselt number one can distinguish two regimes.
A first one where the effect of internal heating is negligible and the system shows the
Ree f f ∼ Ra1/2

e f f scaling, already known from the RB system, and a second one where the

scaling increases to Ree f f ∼ Ra5/6
e f f . The latter effect can be attributed to a high buoyancy

force which stems from greater temperature differences, provoked by internal heating in
the liquid.

The two scalings originate from different relevant velocity scales. While in the RB
case one can hypothesize that the magnitude of the velocity is given by the so called
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Figure 7.6 – Plot of the effective Reynolds as defined in eq.(5.40) with respect to the effective
Rayleigh number for different volumetric bulk-heating intensities for 2D CM systems.

free fall velocity, which originates from temperature differences imposed by the system
boundaries and reads:

vtemp =
√
βg∆T H(t ), (7.24)

in the second regime the temperature differences are originated by the volumetric heat
rate, as follows:

vbulk =
√
βg

q

cpρ0κ
[H(t )]3. (7.25)

Substituting the two above definitions in Eq. (5.40), and using the definition of Rae f f

(Eq. (5.19)), result in two scalings of

Retemp ∼ [H(t )]3/2 ∼ Ra1/2
e f f , (7.26)

for when temperature difference is dominant, and

Rebulk ∼ [H(t )]5/2 ∼ Ra5/6
e f f , (7.27)

in case where bulk heating is dominant. The second regime corresponds to a state of
high-mixing in the liquid layer, and so of high homogenization of temperature in a hy-
pothetical pond. These two extremes are illustrated in figure 7.6.

7.2.2. Morphology of the interface
Apart from the dependency of the dynamics of the system to global control quantities,
the shape of the solid-liquid interface also can be characterized quantitatively. Similarly,
the focus is on the trends as a function of the Rayleigh number at fixed Stefan number
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and various volumetric bulk-heatings. With this in mind, we deliberately consider sim-
ple quantifiers of the boundary roughness that can be applied to systems with different
Q intensity.

(a) (b)

(c)

Figure 7.7 – Ensemble averaged auto-correlation length and deviation of melting interface for 2D
simulation versus Rae f f for different volumetric bulk heating intensities. For simulations, the

domes do not reach the width of the system, i.e., Lc /W < 1. The shaded area represents the range
between minimum and maximum of the all instances of simulations.

In a similar fashion to previous chapters, we quantify the behaviour of the interface
by looking at the correlation length and the deviation of the interface.

The computed Lc , normalized by average height of the liquid fraction (H(t )), as a
function of the Rae f f number is shown in figure 7.7a. As we already know, at small
Rae f f , the system dynamics is purely convective and as a result the interface is flat, in
such a case Lc is not defined. Later on, the onset of convection produce a finite Lc as
it drives the formation of recirculating patterns (cells) with an aspect ratio ∼ 1. The ra-
tio Lc /H(t ) decreases because the number of convective rolls remain constant while the
average height of the melted layer increases.

Although the overall behaviour of correlation function of melting system with vol-
umetric bulk heating is similar to pure melting system, however for ultimate large Ra
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regime, the aspect ratio of the cells has tendency to stay below unity (< 1). This tendency
is coming from the fact that bulk-heating introduces stronger vertical forces, which is
due to existence of higher temperature differences, which in return follows with higher
buoyancy force.

Similarly, the average roughness of the liquid-solid interface can be quantified by
means of the standard deviation of the fluid-solid boundary height, zm , which is defined
by Eq. (5.45).

The roughness of solid-liquid interface depends highly to the magnitude of bulk-
heating. Unlike slip velocity, which produces stronger horizontal force, bulk-heating in-
troduces stronger vertical force. Therefore, the solid-liquid interface in the system of
melting with bulk-heating shows higher roughness, especially at high Ra. This rough-
ness at ultimate high Ra is due to having large liquid fraction, which in return causes
more intensive absorption and accumulation of heat from internal heating.

In summary, we saw that the morphology of the interface depends on the magni-
tude of volumetric bulk-heating. When the bulk-heating coefficient is present, it induces
higher vertical forces due to the existence of larger temperature differences, which in re-
turn produce larger buoyancy force. This vertical force elongates rolls vertically, espe-
cially for ultimate high Ra, where liquid fraction is large enough to absorb larger bulk-
heating.

7.3. Conclusion
In this chapter, we addressed the problem of Convective Melting (CM) coupled with in-
ternal heating through volumetric heating with different intensities. The analysis pre-
sented in this work, categorized into two sections; effect of global control parameters
and morphology of the interface.

We observed that when bulk heating coefficient is high enough so that vertical ki-
netic energy due to buoyancy force is dominant, the CM system shows different be-
haviour. However, while the Reynolds and the Nusselt numbers at low Rayleigh are simi-
lar to pure convective melting, at ultimate higher Ra the system of melting coupled with
bulk heating shows a higher rate of melting.

Also, we observed that by the advancement of the solid-liquid interface, the internal
heating dominates the heating through bottom interface. Consequently, the implication
of this result is the two-third scaling relation of the outgoing heat to Ra. In addition,
kinetic energy of the system shows scaling of five-sixth at ultimate high Rayleigh.

Moreover, we presented that in the system of melting heated internally, the velocity
of the solid-liquid interface behaves exponentially with respect to magnitude of volu-
metric bulk heating and Stefan number. This result indicates a new regime, which has
not been considered in any large-scale model.

Apart from the internal dynamics of the system, we studied the morphology of the
interface for different bulk heating intensity, and we again observed direct dependency
between intensity of bulk heating coefficient and vertical elongation of roll.
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8
Conclusion and perspectives

One of the main challenges of climate science today is the prediction of rate of ice melt
in the Arctic. The dynamics of melting in the sea ice is linked to the amount of reflection
of solar radiation, which is known as albedo. Lighter areas, for instance snow covered
surface of ice, reflect more radiation than darker areas. One of the most important dark
surfaces in the Arctic are melt-ponds; that covers large portions of sea ice during summer
time.

Several models have been proposed to quantify the influence of melt-ponds on albedo
feedback as well as their distributions on sea ice. However, in most of the models, the
internal dynamics of melt-ponds (fluid dynamics and turbulence) has been neglected.
The aim of this thesis was to investigate in great details the aspects related to convec-
tion coupled to phase-change of a single melt pond, and we were interested in obtaining
more quantitative predictions for the melt-rate (evolution of depth of pond) and for the
shape of the pond (one has to recall that depth of melt-pond is the most important pa-
rameter in determining the albedo). Therefore, in the present work, we investigated the
behaviour of a model system in which a pure substance initially in the solid state is pro-
gressively melted by a horizontal heat source. The melt fluid layer is thermally unstable
and quickly develops convective motion of progressively higher intensity as the depth of
the melt layer increases. This simple realization of basal-heating driven convective melt-
ing allowed thorough analyses of the dependencies of global flow observations, such as
the total heat flux and the total kinetic energy, on the varying melt fluid layer depth. It
also allowed to reveal the possible links between the flow and the phase-change interface
shaped by it.

To start our analysis, we introduced and described the mathematical equation of
melting under conduction, which is known as Stefan problem in chapter 3. The ana-
lytical solution for the Stefan problem is known and is well described in the first part of
chapter 3. The solution of the Stefan problem is later used for validation of numerical
computation, and that is the reason we start our discussion with a relatively simple case
of conductive melting.

We continued the discussion of conductive melting by applying one more constraint
on the flow, moving boundary. Moving boundary in the configuration of melt pond can

121
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be seen as having wind draft on the water-air boundary (top of melt pond). Similar to
merely conductive melting, solutions of melting system coupled with moving bound-
ary in conductive regime is also analytically computable, and was used to validate more
complicated numerical solutions.

In order to investigate the behaviour of melting system more realistically, as second
configuration, we introduced equations describing volumetric heating, which can be in-
terpreted as internal bulk heating of liquid layer through solar radiation.

In the system of melting, when the depth of the liquid layer is large enough, the
buoyancy force plays distinct role in the internal dynamics of the melting system. Due
to density differences, that stems from temperature differences of near top warm water
and cold water in contact with bottom ice, the liquid part of the melting system shows
convection. Through this convective behaviour, the heat-budget exchange in the liquid
part will increase and more heat will reach the icy bottom of the melt pond. Conse-
quently, one can expect difference in the rate of melting in convective regime.

Due to the nature of equations describing the system of melting, analytical solution
for the convective melting system does not exist. However, one can estimate the solution
through numerical simulations. Consequently, to continue analysis of the melting sys-
tem by the mean of direct numerical simulation, we continued the discussion of chapter
3 by introducing the governing equations of system of melting.

In order to extend our primary analysis in conductive configuration, a code has been
developed based on the Lattice-Boltzmann method to further investigate the behaviour
of melting system in convective regime. However, for the reason of validating the numer-
ical code, we used the existing analytical solutions of conductive mode together with or
without moving boundary; and compared our convective setup with previously com-
puted results of other researchers.

In chapter 5, we examined the dynamics of the melting process of a pure solid sub-
stance horizontally heated from below under the effect of conduction and natural con-
vection by means of numerical simulations. The analysis has focused on the scaling of
global quantities like the heat flux and the kinetic energy at varying control parameters
(the effective Rayleigh number Rae f f and the Stefan number St ), as well as on the ef-
fects linked to space dimensionality. We have conducted an extensive comparison with
the paradigmatic Rayleigh-Bénard system in order to gain insight on the possible simi-
larities and differences with its dynamics.

We have shown that CM and RB systems have similar behaviours in terms of the
functional dependencies of the (effective) Nusselt and Reynolds numbers on the effec-
tive Rayleigh number. The Ree f f trends have been found to be almost identical in the
CM and RB setups. Concerning the heat flux, Nue f f resulted to be slightly larger in the
CM case, but the differences tend to vanish as convection intensity increases (or, equiv-
alently, asymptotically in time); a possible reason for this was identified in the low values
of the melting interface speed with respect to the typical fluid velocity fluctuations. Fur-
thermore, similarly to what happens in RB convection, the global heat flux is weaker in
2D than in 3D in the CM setting. Altogether, these findings suggest that, in turbulent
conditions, RB phenomenology can provide useful information to give quantitative pre-
dictions for CM dynamics and that this is more true for more intense turbulence. These
hypotheses, in fact, are already made in geophysical communities, however, the exact re-
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lation is not taken into account, and our model shows that we cannot simplify the scaling
relation to 1/3.

Visualizations of the melting front in 3D revealed the appearance of convective pat-
terns with approximately hexagonal, and more often irregular polygonal, cross section.
As the Rayleigh number increases, i.e. as the fluid layer grows, such cells undergo a
coarsening process. Investigating the morphological properties of the liquid-solid inter-
face with statistical indicators, we found that this is characterized by larger roughness in
3D than in 2D, which can account for the differences detected in the 3D and 2D heat flux
behaviours. However, the roughness reaches at most 15% in 3D (respectively 5% in 2D)
of the melt height and, independent of the space dimensionality, it further decreases at
sufficiently high Rayleigh numbers. Such low values of the melting front roughness again
point to strong similarities between the CM and the flat-wall RB systems.

The Stefan number dependency has been mainly investigated in 2D in the range
0.1 ≤ St ≤ 100. Although increasing St significantly delays the onset of convection, only
quite small differences were observed in the dimensionless global heat flux, notably for
high Rayleigh numbers. With rather good accuracy, the heat flux scaling with St was
found to be given by a power law of small exponent (0.05) over a broad range of Rae f f

values. This result has potentially important consequences for numerical approaches,
because it means that it is possible to extrapolate results of high-St fast simulations to
small-St conditions that would be otherwise unattainable in direct numerical simula-
tions.

In addition, we addressed the question of the difference between the instantaneous
global inflow and outflow in the system, which is connected to the mean temporal vari-
ation of the temperature of the fluid. We have shown that such a gap is essentially con-
trolled by a diffusive process and that is more pronounced in systems where the melt
process is faster, hence for larger values of the Stefan number.

Finally, we addressed the effect of aspect ratio of the system to the internal dynamics
of the flow. We observe that as long as the aspect ratio of the liquid layer is below one,
the behaviour of the system is identical. However, for larger aspect ratio the horizontal
velocity tends to become more dominant. This effect is mainly due to having periodic
lateral boundary in our configuration.

The model analyzed in chapter 5 can be seen as a simple description of ice melt
ponds dynamics. In our opinion the present results indicate that the heat flux measured
in a corresponding RB system would give a reasonable approximation of the one occur-
ring in a melt pond. Indeed, after the initial phase of the melting process, controlled by
conduction, the non-stationary character of the CM system appears to play a minor role,
due to the slow motion of the liquid-solid interface. Moreover, for a pond, based on the
estimate St = O(10−2), the corrugation of its bottom icy wall (the roughness of the top
boundary in our model) can be expected to be small. In parallel to the previous obser-
vations, this should tend to have a virtually negligible impact after the initial conductive
regime.

In chapter 6, we addressed the problem of Convective Melting (CM) coupled with
moving boundary condition with different intensities, and for two Stefan numbers. We
characterized the wall velocity in dimensionless form by Froude number, which deals
with the relationship between gravity and inertial forces. The effect of moving boundary
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was well-presented in our simulations; although the intensity of velocities under inves-
tigation were relatively small (maximum 3×10−4) with respect to regular speed of winds
happening in the Arctic.

We investigated the effect of presence of shear velocity qualitatively as well as quan-
titatively, and observed that when wall velocity is high enough, which in return causes
dominant horizontal kinetic energy. The CM system shows different behaviour in several
ways.

First, intensive shear velocity delays the onset of convection and this observation is
in qualitative agreement with the behaviour of other similar systems, e.g. Couette sys-
tem. It has been well-known that dominant horizontal velocity field tends to stabilize
the system, and prevent transition to convection.

Furthermore, we observed that, velocity of moving wall introduces initial kinetic en-
ergy in the system, which can be computed analytically. In addition we observed that
there is a direct relation between delay in onset of convection and the magnitude of wall
velocity. If the intensity of shear velocity is high enough that initial kinetic energy of the
system surpasses what we expect from CM system, the system shows delay in the onset
of convection.

Moreover, we observed that, while the Reynolds and the Nusselt numbers at low
Rayleigh are different, at ultimate higher Ra such a difference seems to reduce and even-
tually vanish. This is especially observable in the relative ratio of componentwise aver-
age of velocity field (relative ratio of vertical velocity to horizontal one).

In addition, we studied the morphology of the interface for different slip velocities,
and we similarly observed direct dependency between intensity of slip velocity and elon-
gation of rolls formation. Moreover, elongated rolls carve less vertically in the solid-
liquid interface. Consequently the thickness of melting front reduces by increase in the
intensity of slip velocity.

In chapter 7, we addressed the problem of Convective Melting (CM) coupled with in-
ternal heating through volumetric bulk heating with different intensities. In our compu-
tation, we used constant bulk-heating coefficient instead of considering Beer-Lambert
law, which states that the attenuation of light relates to the properties of the material
through which the light is traveling. The model presented in this work can be related to
the one using Beer-Lambert law by computing depth of the representing melt-pond.

In theoretical section, we presented that Nusselt measured at the solid-liquid inter-
face with respect to Rayleigh has the scaling relation of order 2/3, where for system of
melting without internal heating the scaling reads 1/3. In fact, the change in scaling re-
lation is a relevant feature and deserves further studies by taking Beer-Lambert law into
account.

Moreover, we presented that in the system of melting heated internally at ultimate
high Ra heat flux at the melting front approaches marginally to half of the heat flux due
to bulk heating. The implication of such dependency is exponential relation of melting-
front to the intensity of internal heating. In addition, kinetic energy of the system shows
scaling of five-sixth at ultimate high Rayleigh and bulk-heating.

We observed that when bulk heating coefficient is high enough so that vertical ki-
netic energy due to buoyancy force is dominant, the CM system shows different be-
haviour. However, while the Reynolds and the Nusselt numbers at low Rayleigh are sim-
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ilar to pure convective meting, at ultimate higher Ra the system of melting coupled with
bulk heating shows a higher rate of melting.

Furthermore, we presented that in the system of melting heated internally, the ve-
locity of the solid-liquid interface behaves exponentially with respect to magnitude of
volumetric bulk heating and Stefan number. This result indicates a new regime, which
has not been considered in any large-scale model.

Apart from the internal dynamics of the system, we studied the morphology of the
interface for different bulk heating intensity, and we again observed direct dependency
between intensity of bulk heating coefficient and vertical elongation of rolls formation.

8.1. Future perspectives
The model of pond that we have considered in this work is highly idealized. However,
there are several elements that can increase level of realism. Some of them are easy to
be implemented in our framework, whereas others may be more complex. Elements
which can be straight-forward to implement are, study of the lateral boundaries and
initial pond geometries (for instance cavity).

In the present work, all numerical simulations have been performed with periodic
lateral boundary conditions. In order to address the problem of melting more realisti-
cally, further analysis of existence of lateral boundary is needed. Additionally in reality,
cavities can have complex geometries. However, our preliminary analysis on rectangular
and hemispherical shapes shows significant effect on the internal structure of flow in liq-
uid layer and the shape of solid liquid interface (see figure 8.1). In this setup, what is also
the important aspect is the distribution of fluxes in horizontal and vertical directions,
which has not been addressed in this work.

Another element, which is easy to consider in our model is the temperature of solid.
In the present work, temperature of solid has been set to the temperature of melting.
In this fashion, the out-going heat is the amount of heat used to transform matter from
solid to liquid. However, when the temperature of solid is below melting point, the solid
needs to be warmed up to the point of melting, and then the transformation of solid to
liquid will take place. It has been observed that temperature of solid has effect on onset
of convection [1], however, more analysis is needed to unravel its effects on the internal
structure of liquid and solid-liquid interface.

In reality, melt-ponds consist of both fresh and salty water. Salinity level has effect
on the density of liquid, and therefore density will be function of both temperature and
salinity. Moreover, existence of salt results in formation of brines in solid region, which in
advance makes the solid layer porous. Effect of porosity is more observable in first year
ice in the Arctic. The process of melting of porous ice results in formation of mushy layer
at the melting interface, and may accelerate or decelerate the rate of melting. Further
investigation is needed to understand the behaviour of existence of porosity and salinity.
(see figure 8.2)

In order to construct large scale models of the type, for instance, Lüthje et al.[2], the
knowledge about the relation of Nusselt versus Rayleigh, that we have acquired, can be
used. In the model of Lüthje et al., there is a term which describes the melt-rate and is
considered constant (1cm per day). However, Nusselt-Rayleigh relation allows to have
better parametrization of the melt rate. Therefore, results presented in this work can be
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Figure 8.1 – Plot of simulation of melting system with pre-existent cavity. [movie available on
demand]

used to provide information on models which are at large scale.
The analysis performed for the system of melting with existence of wind draft and

internal heating is in two-dimensional configuration. For the future work, more analysis

Figure 8.2 – A photograph in natural light showing elongated tubes that form as brine pockets
trapped between the ice crystals. The image is 5 millimeters in width. Photo courtesy of Ted

Maksym, United States Naval Academy.
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is needed for the 3D system of melting coupled with an external moving boundary and
bulk heating. Also, we considered constant volumetric heating in our model. However,
considering radiation as a function of depth of melt-pond (Beer-Lambert Law) is needed
to better understand the behaviour of the system.

Finally, the realistic boundary condition that geophysicists commonly consider for
melt-pond system is radiative boundary condition, in which temperature is not imposed,
and is dynamically dependent to the height of the melting system. This kind of bound-
ary condition is used in Skyllingstad model [3], and implementation of such boundary
condition in our model is needed.
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