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Abstract 

This works presents the real-time control of drinking water quality using the smart technology. 

The deployment of water quality sensors in the distribution networks provides indication of 

contamination risks. However, the use of these innovative devices is recent and yet requires 

field experimentations. This thesis concerns this issue and enhances the feedback in this 

domain. It presents a field study of online supervision of water quality, which was conducted 

at the Scientific Campus of Lille University, within SunRise project. This work is also a part 

of the European project “SmartWater4Europe” which consists in developing 4 demonstrator 

sites for the smart water management. 

This thesis includes five chapters. The literature review highlights the impact of water 

contamination on human health as well as the drawbacks of conventional water supervision 

methods. A large-scale experimentation is conducted at Lille University, where two types of 

sensors (S::CAN and EventLab) are implemented at two different locations. The detailed 

analysis of recorded water quality signals showed the occurrence of some events, generally 

correlated with the variation of hydraulic parameters or the network interventions. 

Different methodologies for the detection of water anomaly are presented and applied to 

S::CAN data. Statistical and Artificial Intelligence (Support Vector Machine) methods 

discriminate between normal and unexpected measurements. An Event Detection System 

(EDS) has been developed within Canary software. It showed a good performance in the 

identification of water abnormalities recorded by S::CAN. The last part proposes a combination 

between the risk assessment approach and the smart monitoring. The improved risk assessment 

methodology allows a real-time detection and classification of water anomaly risk as well as 

an identification of the priority attention required. 

Keywords: drinking water, distribution network, quality, smart technology, sensors, online-

monitoring, contamination, field study. 
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Résumé 

Ce travail présente le contrôle en temps réel de la qualité de l’eau potable par la technologie 

intelligente. Le déploiement des capteurs de qualité de l’eau dans les réseaux de distribution 

fournit une indication des risques de contamination. Cependant, l’utilisation de ces dispositifs 

innovants est récente et nécessite encore des expérimentations. Cette thèse concerne cette 

problématique; elle vise à améliorer le retour d’expérience dans ce domaine. Elle présente la 

supervision en ligne de la qualité de l’eau sur le Campus « Cité Scientifique » de l’Université 

de Lille, qui est réalisée dans le cadre du projet SunRise. Ce travail fait également partie du 

projet Européen “SmartWater4Europe” qui vise à développer 4 sites démonstrateurs pour la 

gestion intelligente de l’eau. 

Cette thèse comporte cinq chapitres. L’étude bibliographique met en évidence l’impact de la 

contamination de l’eau sur la santé humaine ainsi que les inconvénients des méthodes 

conventionnelles de la surveillance de la qualité de l’eau. Une expérimentation à grande échelle 

est menée à l’Université de Lille, où deux types de capteurs (S::CAN and EventLab) sont 

implémentés dans deux endroits différents. L’analyse des signaux enregistrés a montré 

l’occurrence de certains évènements, généralement corrélés avec la variation des paramètres 

hydrauliques ou des interventions sur le réseau. 

Différentes méthodologies pour la détection d’anomalie de l’eau sont présentées et appliquées 

aux données S::CAN. Les méthodes Statistiques et de l’Intelligence Artificielle (Machine à 

Vecteurs de Support) distinguent entre les mesures normales et celles inattendues. Un Système 

de Détection des Evènements (SDE) a été développé en utilisant le logiciel Canary. Il a montré 

une bonne performance dans l’identification des anomalies de l’eau enregistrées par S::CAN. 

La dernière partie propose une combinaison entre l’approche « Évaluation de risques » et 

« surveillance intelligente ». La méthode d’évaluation des risques développée permet une 

détection et une classification, en temps réel, du risque d’anomalie de l’eau, ainsi qu’une 

identification de la priorité d’attention requise. 

Mots-clés: eau potable, réseau de distribution, qualité, technologie intelligente, capteurs, 

surveillance, contamination, in situ. 
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Introduction 

Drinking water is a crucial resource for health and well-being of human. According to the 

World Health Organization (WHO)1, approximately 844 million people lack access to safe 

water. Due to the pressure of increasing population, aging infrastructure and limited resources, 

the challenge of sustainable water-quality management constitutes a great concern for water 

utilities.  

Although water quality is well controlled in treatment plant, this is not the case in water 

distribution networks (WDNs). WDNs are not inert transport systems since various physico-

chemical and biological interactions could occur. In addition to malicious attacks, accidental 

contamination from incidents (backflow, network interventions, contaminant penetration, etc.) 

could degrade the water quality in the distribution networks. The consumption of contaminated 

drinking water can transmit dangerous agents and can threat the human health. Based on the 

WHO2 guidelines, the most predominant waterborne disease, diarrhea, has an estimated annual 

incidence of 4.6 billion episodes and causes 2.2 million deaths every year. Thus, providing safe 

drinking water to consumers constitutes the main purpose of water supply. 

The water quality supervision is generally done using conventional methods, such as 

Membrane Filtration, Immunological detection, chemical and aesthetic analyses, etc. These 

methods are based on taking manual samples in a periodic basis from different locations in the 

water system, followed by laboratory analyses. Results from laboratory are compared with 

Standards to determine the organoleptic characteristics of the water as well as the presence of 

microorganisms. Although laboratory-based methods allow a detailed analysis of water 

characteristics, they present some limitations such as: i) long time to obtain results and thus 

long delay to take corrective measures and ii) economic issues (equipment, intensive labor, 

operations, etc.). Therefore, there is an urgent need for a real-time supervision of the water 

quality in distribution system to protect early the public health from harmful impacts of 

contamination. On the other hand, a global annual reduction of more than $120 million can be 

ensured by moving from manual sampling to online monitoring according to Sensus, Water 

20/203.  

Nowadays, the Information and Communication Technology (ICT) is used in several urban 

systems within the concept of sustainable and smart city. The integration of ICT in water 

distribution system enhances the security of water network. Therefore, WDN should be turned 

into smart water system through the use of smart technology, in order to ensure the online 

control of the water quality. 

The deployment of water quality sensors is an essential requisite in smart water networks. 

However, compound sensors measuring specific agent are not efficient in real water networks 

                                                           
1 WHO/UNICEF, Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines, World Health Organization, Geneva, 

2017. 
2 WHO, author. Water for health, WHO Guidelines for Drinking-water Quality. Geneva, Switzerland: WHO, 2010. 

3 Sensus, Water 20/20: Bringing Smart Water Networks into Focus, Report by Sensus, 2012. 
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since the contaminant type is not known in advance. The use of conventional sensors that 

measure continuously surrogate parameters (such as pH, Turbidity, Temperature, etc.) is more 

reliable. Studies have demonstrated the effect of the presence of contaminant in water on the 

change in the water quality parameters.  

The real-time access to sensors’ data allows a continuous analysis of the drinking water quality. 

The variation of the water quality signals provides indication of possible abnormalities in the 

water system. It will help in the decision-making of water utilities to reduce the contamination 

risk. However, it is still challenged to differ between normal variations and those due to water 

contamination. 

The use of the smart technology in the online monitoring of water quality is recent; the feedback 

is very restricted in this domain. In general, the reliability of sensors is tested in pilot-scale 

systems where contaminant injection can be controlled. In laboratory station, reference lines 

can be established for normal drinking water. The deviation of signals can be then analyzed 

after contaminant injection. However, real water networks are considered as extensive and 

complex systems usually affected by several factors (hydraulic conditions, corrosion, 

stagnation, etc.). The performance of sensors should be evaluated in real condition to test their 

efficiency in water anomaly detection. Various reasons (contamination, connection issues, 

sensors faults, etc.) can induce a variation in the water quality signals in real site. There is a 

clear need for a field study for sensors implementation at large-scale.    

The aim of this work is to analyze the online water quality control using the smart technology. 

This study is based on a large scale experimentation for the real-time monitoring of water 

quality. Within SunRise project, the water network of the Scientific Campus of Lille University 

is used as a field study for sensors instrumentation. The campus stands for a small town hosting 

around 25000 users in 150 buildings. Two types of water quality sensors: S::CAN and 

EventLab are installed at two locations in the campus. 

This work is also a part of the European project SmartWater4Europe “SW4EU” which consists 

in developing and demonstrating 12 innovative solutions in smart water management (water 

quality management, leak management, energy optimization and customer interaction) at 4 

demonstration sites in Europe (France, Netherlands, Spain, United-Kingdom). 

This thesis includes five chapters and it is divided in two main sections. In the first part, the 

identification of abnormalities is based on the analysis of deviations observed in the water 

quality signals, while the second part (fourth and fifth chapters) proposes different 

methodologies for the early detection of water anomaly.  

The first chapter presents a literature review. It describes a list of possible contaminants in the 

water system, their guidelines, and their health impacts as well as conventional techniques 

(laboratory-based methods) used for water quality control. This bibliography also details the 

use of indicators for contamination detection. It introduces the concept of the smart water 

network for the early identification of water abnormalities. 

The second chapter presents the demonstration site as well as the water distribution network of 

the University of Lille. It describes two types of water quality sensors (S::CAN and EventLab) 

used in this work with their installation in the campus. S::CAN measures several water quality 

parameters (Turbidity, Conductivity, Chlorine, etc.) each minute, while EventLab controls 

continuously the variation of refractive index in water.
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The third chapter presents a detailed analysis of the water quality at Lille demo site. It presents 

the continuous monitoring of the water quality signals. Different abnormalities occurring at 

critical periods, are also detailed with the possible reason of each event. A comparison between 

sensor’s responses is also presented in this chapter. 

The fourth chapter details the use of Statistical (linear predictive coding) and Artificial 

Intelligence (Support Vector Machine) methods for the identification of unexpected sensor 

data. This chapter also presents the use of Event Detection System (EDS) approach for the 

early detection of water quality anomaly. The efficiency of these methods is evaluated through 

their application to S::CAN measurements. 

The fifth chapter describes the water quality control using the qualitative risk assessment 

method. Based on a combination between the online monitoring and the risk assessment 

concept, two main approaches are developed to detect in near real-time abnormal events in 

water and to rank their risk level. A detailed description of each approach is presented. This 

chapter includes also a comparison between the proposed methodologies for the water anomaly 

detection.
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 State of the Art – Control of Drinking Water Quality 

1.1 Introduction 

This chapter presents a state of the art of the water quality control in distribution networks. 

Standards for water quality parameters will be described. Different cases of water 

contamination with their health impacts will be exposed. A literature review shows the 

conventional techniques (laboratory-based methods) used in the water quality control. The 

problem of the long delay of these methods demonstrates the need for innovation in this 

domain. To meet this objective, the role of the Smart Technology in real demonstration site 

will be detailed. 

1.2 Water Distribution Network 

Water Distribution Networks (WDNs) are designed to ensure water demands such as domestic, 

industrial, fire-fighting, etc. The main objective of Water Distribution System (WDS) is to 

provide safe water in terms of quality and quantity. Different hydraulic elements constitute the 

distribution system, such as pipes, hydrants, pumping stations, meters, etc. The system can be 

divided in three main classes: i) branching with dead ends, ii) grid where any point can be 

supplied from at least two directions and iii) combination of the two preceding systems 

(branching & grid) in case of sharp variation in topography. 

Distribution systems should provide adequate and reliable water to the customer; adequate 

means providing all the water the customer needs for quality, at a pressure no less than 20 psi 

(1.4 bars); reliable means that customers can expect to obtain all the water they need, anytime 

they need it [1]. 

1.3 Drinking water quality 

The main purpose of WDS is to deliver a safe drinking water to users. However, WDS can be 

subjected to accidental or malicious attacks which can degrade the quality of water. High 

quality water leaving treatment facilities could deteriorate as it travels through extensive, often 

convoluted, distribution networks, via a number of mechanisms associated with distribution 

network materials, hydraulic conditions, chemical and biological reactions, or ingress of 

polluting materials [2]. The impact of drinking water contamination on human health can be 

very dangerous. Anomalous in water quality can lead to serious diseases, or to death in very 

critical cases. The water quality supervision is of high importance for water utilities to protect 

the human health. Figure 1.1 shows the WDS as a complex reactor where physico-chemical 

and biological interactions occur. 
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Figure 1.1. Schema of reactor water network [3]. 

To prevent any anomaly in the distribution network, many parameters have to be monitored. 

They should be compared with Standard thresholds. These parameters should constitute a good 

indicator of possible intrusion in the water system. The ideal indicator should be [4]: 

 Non-pathogenic. 

 Always present when pathogenic viruses are present. 

 More abundant than pathogenic viruses. 

 More resistant to disinfection treatments and environmental conditions than pathogenic 

viruses. 

 Easily and quickly quantifiable at low cost. 

 Identifiable, without ambiguity, in all sample types. 

 Distributed randomly in the analyzed sample. 

 Do not multiply in the environment. 

 

1.3.1 Contaminants 

According to the Environmental Protection Agency (EPA), a contaminant can be defined as a 

physical, chemical, biological or radiological substance that exists in water. The impact of 

contaminant in drinking water depends on many factors: the type, the concentration and the 

health effects. Contaminant leading to a big damage for the population could have some 

specific characteristics [5]: 

 Infectious at low dosage. 

 Resistant to Chlorine. 

 Stable in water. 

 Difficult to detect by consumers by the appearance, smell or taste of water. 

 Causing serious illness or death. 
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The analysis of different type of contaminants, their risks and their Standards is essential. 

Firstly, it is necessary to differ between limits and references of water quality. Limits are 

threshold values for hazardous and harmful substances and therefore their application is 

imperative. For quality limits, the health risk is assessed by “Directions Départementales des 

Affaires Sanitaires et Sociales “(DDASS) based on quality requirements of the Public Health 

Code. Results are then controlled by two types of parameters: i) microbiological parameters 

(e.g. Escherichia Coli, Enterococci) with a direct and short-term risk and ii) physico-chemical 

parameters (e.g. nitrates, pesticides) with medium- and long-term effects. 

For quality references, the main objective is to show the operation and the efficiency of 

facilities. Some parameters such as Turbidity, Chlorite, etc. evaluate the operation of treatment 

stations, others such as Temperature, Sulfates, pH, Sodium, etc. give information on the natural 

structure of the water and certain parameters define the organoleptic characteristics of water 

(color, smell, and flavor).  

1.3.1.1 Quality limits  

Water potability is defined by two types of indicators:  

 Bacteriological: microbiological analyses are based on the research of the indicator of 

bacteria of fecal contamination. These bacteria have been chosen based on different 

factors: i) their presence in large numbers in the stools of warm-blooded animals which 

are frequent sources of serious contamination, ii) easily detectable and iii) they do not 

develop in pure water [6]. 

 Physical and chemical: these substances can be divided in two parts: i) undesirable whose 

quantity is allowed up to a certain limit such as Fluorine and ii) those with toxic effects 

which have very low thresholds such as Lead, Arsenic and Cadmium. 

1.3.1.1.1  Standards 

At the beginning of the 20th century, the number of water quality parameters was limited to 

the number of 5. In the 1950s, this number increased to about 20 parameters describing the 

water quality. In the 1980s, the various factors of progression contributed to increase this 

number. Today, 54 parameters control the quality of water. 

In France, requirements of water quality are determined in the Public Health Code, which 

is based on the European Directive 98/93/EC and is completed by the request of the “Agence 

Francaise de Sécurité Sanitaire des Aliments” (AFSSA) and “Conseil Supérieur d'Hygiène 

Publique de France” (CSHPF). The European Directive threshold values are based on WHO 

guidelines values except those for pesticides, whose values are almost inferior to those 

proposed by WHO, for more safety. 

A Standard value will be represented by a lower limit to be respected or a maximum value 

not to be exceeded. We define Maximum Allowable Dose “Dose Maximale Admissible” 

(DMA) as a maximum amount of a substance that can be consumed daily without being 

harmful to human health. The threshold values for some parameters are shown in Table 1.1. 
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Table 1.1. Standards for parameters indicators of contamination. 

Indicative Parameters European Union (EU)  French Standards  WHO  

Copper 2 (mg/l) 2 (mg/l) 2 (mg/l) 

Chloride 250 (mg/l) 200 (mg/l) 250 (mg/l) 

clostridium perfringens 

 (including spores) 0/100ml spores 0/100ml   

Iron 0,2 (mg/l) 0,2 (mg/l) <0,3 (mg/l) 

Manganese 0,05 (mg/l) 0,05 (mg/l) 0,1 (mg/l) 

Odor 

acceptable for  

acceptable 

  

consumers without 

abnormal 
  

odor   

Oxidant power  5mg/l O2 5mg/l O2 ≥5 (mg/l) 

Sulfate 250 (mg/l) 250 (mg/l) 500 (mg/l) 

Sodium 200 (mg/l) 200 (mg/l) 200 (mg/l) 

Taste 

acceptable for  

acceptable 

  

consumers without 

particular   

taste   

Number of colonies at 22 °C 
No abnormal concentration 

(100/ml) 

below 100/ml 

  

Coliform bacteria 0/100ml 0/100ml   

Total Aluminum 0,2 (mg/l) 0,2 (mg/l) 0,2 (mg/l) 

Ammonium 0,5 (mg/l) 0,1 (mg/l) 0,5 (mg/l) 

Tritium   100Bq/l 10000Bq/l 

 

1.3.1.1.2  Microbiological parameters 

A contaminant of microbial origin constitutes a serious threat to public health. The research of 

microorganisms, potentially dangerous, is unrealistic for technical and economic reasons. The 

strategy of control is currently based on the search of bacteria known as "germes témoins de 

contamination fécale ", easy to detect, not directly pathogenic, and whose presence suggests 

the existence of pathogenic germs for humans. Limits of quality are then fixed for indicator 

microbiological parameters such as Escherichia Coli (E.Coli) and Enterococci [7]. 

 Coliforms 

According to the French Association of Standardization [8], coliforms are bacillus not 

sporulated, grams-negative, oxidase-negative, aerobic or anaerobic. They are able to grow in 

the presence of bile salts or any other surface agent having equivalent properties and capable 

of fermenting lactose, with production of gas and acid in 48 hours at 37 ± 1 ℃. They are rod-

shaped bacteria. 

Although total coliforms are not harmful to health, their presence indicates the possibility 

of dangerous contamination in a source of water supply. Their detection is based on laboratory 

tests since these bacteria have no color, odor or taste. Measurement of total coliforms can also 

verify the effectiveness of treatment phase. Their presence may explain the bacteria growth 

due to a low concentration of Free Chlorine or an intrusion in the water quality. It is important 
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to mention that the presence of total coliforms in water doesn’t necessarily mean a serious risk 

to human health. The use of total coliforms may reflect the reliability of the treatment phase in 

water systems.  

In addition of total coliforms, fecal or thermo tolerant coliforms may be used as indicators 

of human or animal fecal contamination. E.Coli is the most commonly used coliform for water 

quality assessment. It is a bacteria in the digestive tract of warm-blooded animals and humans 

or in the intestines of mammals, in particular humans. The detection of this type of coliforms 

in water can involve the existence of virus or dangerous bacteria. The presence of E.Coli, of 

fecal origin, in water requires corrective measures to prevent health risks. This type belongs to 

Enterobacteriaceae family and can be found in naturel water or soils subjected to fecal 

contamination. The majority of E.Coli is not pathogenic except certain types such as E. Coli: 

H7 which may be harmful. 

These coliforms are generally used in contamination detection because they have an ability 

to survive equivalent to that of dangerous bacteria. They constitute a reliable indicator of the 

intensity of fecal contamination. 

According to World Health Organization (WHO), guideline values are defined as 0/100 ml 

for thermo tolerant coliforms and 0/100 in 95 % of treated water samples. The same thresholds 

are set by French Standards and the European Union (EU) except that for E.Coli. According 

to Council Directive 98/93/EC adopted on 3 November 1998 by the EU, the value is set at 

0/250 ml. 

The absence of E.Coli in water with the existence of total coliforms can be analyzed 

according to three possibilities: 

 Presence of bacteria (organic films) in the pipes. 

 Penetration of surface water. 

 Water comes from aquifers that contain bacteria. 

 Enterococci 

These are Gram-positive lactobacilli found in the environment, in the digestive system of 

humans and animals and in certain foods. They belong to the type Enterococcus of fecal 

streptococci family. Enterococci are characterized by their growth in unfavorable conditions, 

especially species of E. avium, E. casseliflavus, E. cecorum, E. aurons, E. faecalis, etc. Most 

of these species are of fecal origin (human or animal). They are generally considered specific 

indicators of fecal pollution.  

The Enterobacteriaceae are of high importance since many of these bacteria are pathogenic 

(Salmonella, E.coli, Yersinia pestis, etc.). Some of them are used as indicators of fecal 

contamination of drinking water [9].   

 Aerobic and Anaerobic Heterotrophic Bacteria (BHAA) 

According to drinking water and public health summaries, the presence of BHAA gives an idea 

of the quality of water. It can indicate a problem in the treatment. Most types of BHAA do not 

constitute a hazard to human health. However, some types can cause diseases especially for 

people with low immunity, or those aged or for very young children. 

 Coliphages 

Bacteriophages or coliphages can be considered as indicators of the treatment of drinking 

water. They are viruses that infect bacteria, such as coliform bacteria. They are divided in two 

types: somatic coliphages and male specific coliphages. In order to have efficient disinfection, 
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water must not contain any somatic or male specific coliphage. If the water is not disinfected 

and there are no other water quality indicators (such as E.Coli), coliphages may indicate the 

presence of human enteric viruses. If water is disinfected and there are no other quality 

indicators (such as E.Coli), coliphages indicate deficiency in treatment. For distributed water 

samples, the presence of coliphages does not provide more information than that given by 

BHAA. 

1.3.1.1.3 Chemical parameters 

Several chemical parameters can be used as indicators of water quality anomaly, especially 

Arsenic, Cadmium, Cyanide, Mercury, Lead, Chromium, Nickel, Antimony and Selenium, 

some hydrocarbons, and also pesticides and Nitrates. 

  Nitrates 

For a high precaution, the Standard for Nitrates is set at 50mg/l according to the European 

Directive and the French Standards. This threshold is based on the risks that can affect 

pregnant women and infants which are most sensitive. Nitrates can come from human activities 

(agricultural for example), or from natural origin (Nitrates resulting from the transformation of 

Nitrogen in the water and soils: cycle of the Nitrogen). 

The WHO set also the limit for Nitrate as 50 mg/l. An exceeding of this limit is noticed in 

small drinking water production facilities. According to “Conseil Supérieur d'Hygiène 

Publique de France” (CSHPF): if the concentration is between 50 & 100 mg/l: cessation of 

consumption for pregnant and newborn; if the concentration exceeds 100 mg/l: cessation of 

consumption for the whole population. 

 Sulfates 

Water containing a significant amount of Sulfate can induce problems of dehydration and 

diarrhea. These problems affect especially children unaccustomed to high concentrations. A 

concentration, that exceeds the limit, induces unpleasant taste of water. A very high 

concentration can produce corrosion of pipes.   

 Pesticides 

This category contains several hundred substances, including: herbicides, insecticides, 

acaricides, nematicides (against worms), fungicides, rodenticides, etc. The French Standard 

for pesticides complies with the European directive and defines the limit as [10]: 

 0.1 μg/l maximum concentration for each substance; Except for Aldrin, Dieldrin, 

Heptachlor and Heptachlorepoxide whose maximum acceptable dose is 0.03 μg / l. 

 0.5 μg/l total concentration of pesticides.  

For certain pesticides, WHO defines a specific guideline value, for example Atrazine: 2μg / 

L, Terbuthylazine: 7μg / L and Isoproturon: 9μg / L. In 2003, Atrazine and Atrazine-Desethyl 

were the most detected pesticides. Based on health risk control, the bacteria are divided into 

three main groups: Triazines, substituted ureas and organochlorines.  

The CSHPF classifies distribution units and populations into three categories: A (permanent 

Conformity), B1 (presence of pesticides without restriction of water use), B2 (frequent or 

important presence of pesticides with restriction of water use). In 2003, 91% are in situation A, 

9% are in situation B1 and B2. 
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 Arsenic 

It is a very toxic substance, very dangerous to human health and can lead to death. Based on 

its harmful effects, the WHO acceptable value was reduced from 50 to 10 μg/l. This guideline 

value of WHO has been incorporated into European law (Council Directive 98/83/EC of 

November 3, 1998) and French law (Decree 2001-1220 of December 20, 2001) in the form of 

a "maximum acceptable concentration” and a “quality limit'”, set to 10 μg/l instead of the 50 

ug/l fixed in 1989 [11]. 

 Iron 

Iron in water may be derived from: i) iron salts which are used in some cases instead of 

Aluminum salts in water flocculation, ii) industrial waste and iii) corrosion of metal pipes. An 

exceeding of Iron Standards increases the risk of cardiovascular disease and cancer. Very high 

amounts can contribute to several neurodegenerative diseases such as Alzheimer and 

Huntington's chorea. 

 Manganese 

According to the Health Agency and socials services of “chaudière-Appalaches” Québec, a 

high concentration of Manganese gives a bad taste. Its presence in drinking water could have 

an impact on the neurological development of the child, such as a decrease in the intellectual 

quotient.  

 Ammonium 

It results from a reaction between the minerals comprising Iron and Nitrates. Its presence in 

water indicates incomplete degradation of organic matter. It is a good indicator of the pollution 

of water by organic discharges of agricultural, domestic or industrial origin. It is not very 

harmful but can have some health effects. According to LENNTECH [12], Ammonium is not 

very toxic, but it can cause several problems such as: corrosion of the pipes, bacterial 

revivification within them, decreased effectiveness of Chlorine treatment and development of 

microorganisms responsible of unpleasant flavors and odors. 

 Aluminum 

According to the Water Information Center [13], some studies have shown the possibility of 

increasing the risk of Alzheimer's when drinking water is too rich in Aluminum. Aluminum is 

toxic to nerve cells and researchers are trying to find out if it can promote the development of 

several pathologies, such as multiple sclerosis and especially Alzheimer's disease. This disease 

affects in France more than 400 000 people, with about 100,000 new cases each year. Several 

studies conclude that the risk of developing the disease increases when the concentration 

exceeds 0.1 mg/l of water [14]. 

 Sodium 

Saline intrusion, mineral deposits, seawater spray, sewage effluents, and salt used in road de-

icing can all contribute significant quantities of Sodium to water [15]. Sodium is not acutely 

toxic, but it can have some human effects. This effect differs between infants and adults. Taste 

of water could be affected by an amount of Sodium that exceeds the limit of 200 mg/l. 

 Copper 

Copper concentration in drinking-water varies widely as a result of variations in water 

characteristics, such as pH, hardness and Copper availability in the distribution system [16]. 
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The gastrointestinal effects of Copper depend on the temporal aspects of exposure (Acute or 

longer-term) and on the consumed concentration.  

 Tritium 

According to “Institut National de santé publique de Québec” (INSPQ), Tritium, as well as all 

radioactive elements, is considered by International health organizations as a carcinogenic 

agent.  

1.3.1.2 Quality References 

In addition to the quality limits, several parameters, defined as quality references, are used to 

detect a disturbance in water. The principal indicators of water quality are: Turbidity, Total 

Organic Carbon (TOC), Chlorine, Conductivity, pH and Temperature. Table 1.2 illustrates 

different threshold Standards for quality references. 

1.3.1.2.1 Turbidity 

This parameter indicates the existence of perturbation in the system. It can be a result of pipes 

break or a problem in the amount of residual Chlorine. A removal of deposits from wall surface 

of the pipe, corrosion, or abnormalities in the treatment, are all considered as source of troubled 

water. The Turbidity is an indicator of the presence of suspended matters, which could be due 

to microorganisms (virus, bacteria, and protozoa) in drinking water. The most widely used 

technique for measuring Turbidity is the Nephelometry. It is based on the measurement of 

scattered light at an angle of 90° relative to the incident. This factor is correlated with the 

amount of suspended matters that disturb the water. 

1.3.1.2.2 Organic materials 

The measurement of organic matter indicates the presence of heterotrophic bacteria in the 

reservoirs and in the distribution system. A high level of TOC can be explained by the release 

of biofilms in the distribution system or by a "breakthrough” in the treatment station. On the 

other hand, Dissolved Organic Carbon (DOC) describes the remaining Organic Carbon in a 

sample after filtering, generally using 0.45 μm filter. High DOC in chlorinated water produces 

the Trihalomethane (THM) which is harmful for human health. Many organics materials absorb 

in the ultraviolet. The measurement of the absorbance UV is an efficient indicator of water 

quality. It is correlated with TOC, color, THM and its measurement is more simple and 

economical than TOC [17]. 

1.3.1.2.3 Residual Chlorine 

Chlorine is a principal disinfectant agent, used to minimize bacterial growth in the distribution 

networks. A main benefit of Chlorine over other disinfectants, is that it leaves a residual 

disinfectant. This residual assists in preventing recontamination during distribution. Its absence 

may indicate the possibility of post-treatment contamination. There are three types of residual 

Chlorine [18]: 

 Free Chlorine: most reactive species, such as hypochlorite ion. 

 Combined Chlorine: less reactive but more persistent species, resultant from the reaction 

of Free Chlorine species with organic materials and Ammonia. 

 Total Chlorine: sum of Free Chlorine with Combined Chlorine. 
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According to the WHO, a concentration of Free Chlorine in treated water between 0.2 and 

0.5 mg/l must be maintained. A rapid decrease in Chlorine levels indicates a water quality 

variation induced generally by biofilm growth. The amount of residual Chlorine in distribution 

network in France is between 0.05-0.1 mg/l, it can be increased to 0.2-0.3 mg/l during a period 

of risk [5]. 

1.3.1.2.4 Conductivity 

The measurement of the Conductivity is defined as the capacity of the water to conduct the 

“current” between two electrodes. It indicates the quantity of dissolved salts in the water. 

Conductivity values can indicate pollution or infiltration and can identify a mixture of different 

water sources. 

1.3.1.2.5 pH (Hydrogen potential) 

It is important to measure pH at the same time as residual Chlorine since the efficiency of 

disinfection with Chlorine is highly pH-dependent: where the pH exceeds 8.0, disinfection is 

less effective [18]. pH value (concentration in Hydrogen ion) must be measured in the field 

using either comparators or a pH meter or by colorimetric technique [5]. The pH measurement 

is important for two main reasons: i) some disinfection products depend on the pH value, ii) 

for corrosion control. 

 

1.3.1.2.6 Temperature 

The measurement of temperature is of high importance in water quality monitoring. A 

temperature contrasts indicates the presence of bacteria which can cause a bad flavor or odor 

and even corrosion problems. 

Table 1.2. Quality references according to different Standards. 

Parameter  EU French Standards WHO 

Turbidity 

acceptable for 

consumers without 

abnormal variation 

0,5 NFU, 2NFU (2003) at 

tap,1NFU (2008) 
< 5NTU 

TOC No abnormal variation 2 (mg/l)   

Residual Chlorine   0.2 (mg/l)   

Conductivity 2500 µS/cm at 20°C 
180, 1000 µS/cm at 20°C  & 

200, 1100 µS/cm at 25 °C 
250 µS/cm 

pH ≥6,5 and ≤9,5 ≥6,5 and ≤9 6,5-8,5 

Temperature   25 ° C   

 

1.3.2 Factors leading to water quality degradation 

The quality of tap water can differ from that produced by treatment plants. To monitor the 

quality of drinking water, it is important to identify the factors responsible of water quality 

degradation. These factors constitute the origin of drinking water contamination.  

First of all, the “hydraulic residence time” of the water in the pipe can directly affect the 

quality of water and cause its degradation. This is derived from water stagnation characterized 

by bacterial growth, and some corrosion forms. A low flow velocity can induce such 

phenomenon of stagnation. A renewal of water in the distribution networks is required. The 

maximum “hydraulic residence time”, before the need of pipe’s purge, is one month according 
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to the Standard EN 1717. Although the increase in pipe diameters will be effective for fire 

protection reasons, it may be a source of stagnation, and therefore a pollution source in case of 

low consumption. A long “hydraulic residence time” of the water in the distribution networks 

leads to a high microbial density. It induces a high risk of bacterial contamination. The 

influence of the “hydraulic residence time” on the microbiological quality of water is illustrated 

in Figure 1.2. Other factors such as temperature may be at the origin of the re-growth of certain 

bacteria. 

 

Figure 1.2. Example of the alteration of microbiological quality along a drinking WDS [19]. 

On the other hand, some points, in a water network, provide pathways to a contamination 

by microorganisms. This is the case of tanks where water is in contact with air, and where the 

unprotected orifices can allow the passage of dust or insects [20]. 

Microorganisms, in distribution networks, can be protected from disinfectants by the 

formation of biofilms on the pipes walls. Biofilms are defined by a set of micro colonies joining 

together several species such as bacteria and protozoa. The presence of these microorganisms 

with some amount of biodegradable organic materials leads to microbial contamination. These 

microorganisms can multiply within the network, despite the low concentration of nutrients 

and the presence of disinfectants. The presence of microorganisms, particularly bacteria, in 

drinking WDSs comes from several sources: repair actions, connections, network 

interventions, leakage or breakage problems, poorly protected areas, water backflow, in 

addition of all the bacteria that resist to treatment steps in the stations. The growth and 

multiplication of these bacteria, developed in the presence of biodegradable organic carbon, 

lead to the formation of biofilms in the pipes. 

The presence of microorganisms in water networks induces several problems. The results 

of bacterial growth do not concern only the distribution systems but the consequences can reach 

the consumers. For example, the risk of gastroenteritis can be a direct consequence of 

biological instabilities in distribution networks. This proves the importance of limiting bacterial 

reviviscence within drinking water pipelines. 

In addition, one of the main problems of drinking water systems is the phenomenon of 

corrosion. The corrosion involves the presence of several materials such as Iron, Zinc, etc. It 

induces a decrease in the amount of residual Chlorine. However, the quantity of residual 

Chlorine should be maintained to limit the presence of pathogenic microorganisms. Some 

bacteria can accelerate also the corrosion phenomenon. The distribution capacities of a network 
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can be then decreased by the increase in resistance forces, induced by the biofilms [21]. An 

efficient maintenance of the networks is required to avoid corrosion phenomena. Corrosion is 

divided in two main types: i) external corrosion, often galvanic, produced in the presence of 

dissimilar or electrolytic metals and ii) internal corrosion responsible of water quality 

degradation in the distribution pipes. Internal corrosion occurs in the case of uncoated metallic 

pipes. The negative effect of this type of corrosion on water quality can be manifested in 

different forms: i) corrosion derivatives such as rusty or red water and ii) tubers arising from 

the metal oxides produced from corrosion. 

The constituent elements of the pipes can affect also the quality of water in distribution 

networks. They can be of two types: i) materials of organic types such as Polyvinyl Chloride 

(PVC) and ii) metallic materials such as Cast Iron and Steel. Among these materials, those 

which lead to the presence of microorganisms depending on their roughness, or induced the 

formation of biofilms. Others involve corrosion tubers. 

Materials used in production or distribution systems and in contact with water, intended for 

human consumption, shall not be capable of altering the quality of water. They must respond 

to the conditions laid down in a decree, on the advice of “Agence française de sécurité sanitaire 

des aliments”, by the ministers responsible for Health, Industry, Consumer Affairs and 

Construction according to Article 7 of the Decree of January 3, 1989. 

Article 3 of the departmental-sanitary health regulation, diffused by the circular of August 

9, 1978 of the Minister for Health, recalls that: 

 “Bituminous coatings, Oil-based coatings and all similar products as well as plastic 

coatings, may be used in the only conditions that, where they are in contact with water, 

they are in danger of disintegrating or communicating to the latter unpleasant favors or 

odors”.  

 “The substances used in the composition of piping materials, devices and part of them, 

and accessories made of plastic materials must comply with the rules, concerning 

materials and articles placed in contact with foodstuffs”. 

Although water produced by treatment plants is not sterile water, the main objective is to 

deliver water tap without health risk. It is essential to avoid bacterial reviviscence within the 

distribution networks. Distribution networks are affected by biological and physicochemical 

interactions. Water utilities should ensure that tap water is suitable for human consumption. 

Table 1.3 summarizes the main origin of water quality degradation in distribution network, 

with their consequences. 
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Table 1.3. Main origin of water quality degradation [20]. 

Origin Reason Consequences Hazards 

Tanks 

ventilation holes or 

poorly protected access 

routes 

Penetration of insects or 

other animalcules 

Alteration of water 

organoleptically or 

microbiologically 

oversizing water stagnation 
Alteration of initial qualities for 

various parameters 

water backflow 

Depression (intensive 

pumping on the network, 

pipes break …) or 

backpressure 

(pressurizing in private 

installation) 

siphoning or suppression of 

undesirables or polluting 

substances 

toxic, microbiological or 

organoleptic pollution 

Exterior 

environment of 

the pipe 

leaks, permeation Introduction of pollutants 

Microbiological pollution, 

especially organoleptic or toxic 

pollution 

Network faults 
Inadequate material for 

drinking water supply 

Excessive adhesion of 

germs, corrosion 

Microbiological contamination, 

Alteration of metal parameters 

(Fe, Zn, Pb, Cu, Cd, ...) 

Interventions on 

the network 

Inadequate disinfection 

following a repair or 

renewal, 

Germs development Microbiological contamination 

Intrusion of 

pollutants at the 

level of suction 

cup (rare) 

problem in suction cup 

location 

contaminated drinking 

water 
Microbiological contamination 

Interior 

installation 

Inadequate material, 

over-dimensioning (low 

consumption…) 

corrosion, water stagnation 

Organoleptic, chemical (NH3),  

microbiological contamination 

(Legionella) 

 

1.3.3 Waterborne diseases (Health risks) 

The consumption of contaminated water threats the human health. It may induce many risks, 

which can be very dangerous in some cases. Their harmful effects on health should be 

evaluated. 

As already mentioned, the presence of E.Coli in drinking water indicates a contamination 

that may contain bacteria, viruses or parasites. All of them can induce severe illness. The health 

risk varies according to the age and to the body immunity of the person. The most common 

symptoms are: nausea, diarrhea, vomiting and in the most intense cases, infections of the eyes, 

lungs, skin, nervous system, kidneys, liver and in very serious chronic or even fatal cases. 

Similarly, Enterococci can have dangerous impacts. They can induce intra-abdominal 

infections, blood infections (septicemia) of the cardiac wall (endocarditis), or urinary tract. 

Enterobacteriaceae have been found for about 20 years in half of nosocomial infections. 

Responsible species are mainly E.Coli but also Klebsiella, Enterobacter, Serratia, Proteus, 

Providencia [9]. According to bacteria’s type, pathogenic effect of Enterobacteriaceae is 
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summarized in Table 1.4. Heterotrophic bacteria also have a detrimental consequence on 

human health, which is indicated in Table 1.5. 

Table 1.4. Pathogenicity of several types of bacteria. 

 Type of bacteria Health risk 

Enterobacteriaceae 

Yersinia pestis plague 

Salmonella serovarTyphi typhoid fever 

E.coli Salmonella enterica Diarrheal syndromes and other intestinal infections 

Shigellasp Diarrheal syndromes and other intestinal infections 

Yersinia enterolitica Diarrheal syndromes and other intestinal infections 

Enterococci 
Intra-abdominal infections, blood infections 

(septicemia), cardiac wall (endocarditis) or urinary tract. 

 

Table 1.5. Diseases induced by heterotrophic bacteria. 

BHHA (Aerobic and 

Anaerobic 

Heterotrophic 

Bacteria) 

Pseudomonas aeruginosa Nosocomial infections 

Legionellapneumophila legionellosis, Pontiac fever 

Aeromonassp diarrhea 

 

Chemical material can also induce several health risk, if consumed at high quantity. A high 

amount of Nitrates cause risks of methemoglobinemia for the infants: Nitrates transformed into 

Nitrites cause variations in the properties of hemoglobin in the blood; they hinders the correct 

oxygen transportation by red blood cells. Also, Nitrite that results from Nitrate transformation 

can induce some types of cancer for adults. 

For pesticides, the consumption of very low but repetitive doses can lead to cancer diseases 

(especially leukemia), disorders of nervous system and reproductive disorders due to chronic 

exposure. Arsenic may also have harmful effects such as severe digestive disorders and 

vascular risks. 

Other substances may have hazardous health effects and therefore their thresholds are set 

according to the Standards. The health risks of these parameters are summarized in Table 1.6. 
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Table 1.6. Health risks induced by substances that may exist in water. 

Parameter Health risk 

Arsenic Skin and internal cancers, severe digestive disorders, vascular risk and risk on carotid 

atherosclerosis 

Fluorides Dental or bone fluorosis 

Lead saturnism 

Copper 
Fever, irritation of nose, mouth and eye, headache and stomach pain, dizziness, 

vomiting, diarrhea. In case of high dose, kidney and liver damage and even death 

Chloride A relationship is demonstrated between the high concentrations of chlorine by-

products and the increased incidence of humans cancer  

Manganese 

Neurotoxic, disorders suggestive of Parkinson's disease: memory deficit, signs of 

depression, hallucinations, lack of memory, and problems with nerves, pulmonary 

embolism and bronchitis, schizophrenia, boredom, muscle weakness, Headaches and 

insomnia. 

Sulfate Dehydration and diarrhea (especially in children), unpleasant taste 

Sodium 
Damage the kidneys and increase the risk of high blood pressure. Contact with 

sodium, including sweat, causes the formation of sodium hydroxide vapors, which are 

highly irritating to the skin, eyes, nose and throat. This can cause sneezing and 

coughing. Very severe exposures can cause difficult breathing, coughing or bronchitis 

Total Aluminum  Increased risk of Alzheimer's 

Ammonium Redness, sore throat, vomiting, nausea, inhalation, cough 

Tritium Carcinogen, nausea, hair loss 

 

1.4 Water quality monitoring using conventional methods 

In general, water quality monitoring is done using traditional methods. These methods are 

generally based on taking manual samples from different locations in the distribution network. 

Laboratory analyses are done to evaluate the quality of water. Laboratory analyses can be 

divided in two main categories: i) physico-chemical, which take more than two hours, to 

determine organoleptic characteristics of tested water and ii) microbiological to identify the 

presence of pathogenic microorganisms and this type requires more than one day to obtain the 

result. In addition of the problem of high time consuming, these conventional methods have to 

be applied with specified conditions. They have to be repeated continuously (7 days between 

samples) to verify the accuracy of results. Some parameters are directly analyzed on site with 

certain instruments. The work of labors, that take samples, should be very precise and accurate.  

Several conventional methods are already used for water quality control. Among these 

methods those based on culture, DNA and immunology. Although these techniques require a 

long time to identify the presence of pathogens, they are not very expensive in general. 

1.4.1 Traditional techniques (culture method) 

Conventional methods, used for the detection and identification of pathogens, are based mainly 

on microbiological and biochemical identification. These methods require pre-enrichment of 
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the samples before proceeding to the analysis stage [22]. One of these conventional methods is 

that based on the cultivation and counting of colonies. 

The two traditional methods often used are Most Probable Number (MPN) and Membrane 

Filtration (MF): 

 MPN: a method of replicating the growth of the liquid, that allows the enumeration of 

bacteria present in a given sample. The most probable number is calculated by a statistical 

table giving the number of positive tubes (producing a gas that indicates the possible 

presence of coliforms) among the inoculated tubes. 

 MF: this method is based on the enumeration of bacteria in colony units in 100 ml after 

filtration of water samples on membranes with small pore size. Different media and 

incubation conditions (time and temperature) may be used depending on the type of fecal 

bacteria researched [23]. 

Several studies have also highlighted the importance of bio indicators such as fecal 

coliforms in the detection of water quality anomalies. Several criteria define a good indicator 

[24]:  

 Present in fecal samples at high concentrations. 

 Absent in uncontaminated water samples. 

 Measurable. 

 Having the same resistance to environmental conditions and to disinfectants as the 

pathogens they represent. 

According to WHO, indicators are divided in three groups:  

 General Microbial Indicators (Heterotopic bacteria or total coliforms remaining after 

disinfection). 

 Fecal specific indicators representing a group of organisms directly indicating fecal 

contamination (Thermo tolerant coliforms such as E.Coli). 

 Index or organism’s model of pathogen (E.Coli index of Salmonella & F-RNA 

coliphages as model of human enteric viruses) [25], [26]. 

The accuracy of these methods, based on enumeration and laboratory culture, can be 

improved by combining the use of viral indicators with bacterial indicators [27]. 

These conventional methods have many limitations, where the major one is time-

consuming. Also, several infectious and dangerous agents cannot be cultivated, in addition to 

the absence of specific indicators for viruses.  

1.4.2 Molecular detection method (Nucleic acid method) 

To improve the accuracy of detection, methods based on the use of nucleic acid will be more 

efficient and rapid. Among these methods: PCR (polymerasechainreaction), quantitative PCR 

(qPCR), quantitative reverse-transcriptase PCR (qRT-PCR), sequencing of PCR amplicons, & 

next-generationsequencing. Molecular biology analyses are based on the recognition of 

specific DNA sequences of microorganisms [27], [5]. These methods can detect waterborne 

pathogens such as Camylobacter, E.Coli, and Salmonella. For example, the PCR method allows 

bacterium identification by the demonstration of one or more fragments of its genome. In the 

case of pathogenic bacteria for which the conventional detection techniques, where they exist, 

are complex, long and unreliable, PCR constitutes a very good alternative [22]. Although the 
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PCR technique has the advantage over traditional techniques of being able to detect viable as 

well as dead bacteria, the problem remains in the discrimination between these bacteria. 

Another limitation of PCR is the high detection threshold in some cases. To reduce this 

problem, immunomagnetic separation based on DNA concentration of specific sequences may 

be an effective solution. Other technique called Multiplex PCR allows detection of several 

organisms by a single reaction and then a reduction of the time detection. Real time PCR and 

Real time qPCR quantify, detect and differ between different contaminants (such as E.Coli 

O157: H7) in real time. A technique called 16 SrDNA allows the identification of microbes 

present in the sample. But, it cannot be used for virus detection. FISH method (Fluorescent In 

Situ Hybridization) and confocalmicroscopy are methods used mainly for the detection of 

microbial pathogens in sewage treatment plants. Microarray method based on the hybridization 

of a sequence of target nucleic acid (DNA or RNA) to a complementary sequence is intended 

to identify microbes in the water samples. The Next-Generation Sequencing (NGS) technique 

is a method for the direct detection of a microbial sequence without prior knowledge of the 

type of contaminant [27]. 

Although the latter techniques are rapid, effective and accurate, they do not reflect the real 

health risk. Other limitations are the presence of inhibitory substances which may influence on 

the specificity of these methods. 

 

1.4.3 Immunological detection 

One of the conventional methods is the technique of immunological detection. The principle 

of detection is the interaction antigen-antibody. It is based on the ability of antibodies to 

recognize specific three-dimensional structures (e.g. parts of proteins or polysaccharides) of 

biological macromolecules [28]. Immunological detection includes, for example, Serum 

Neutralization Test (SNT), immunofluorescence, and Enzyme-Linked Immunosorbent Assays 

(ELISA) [29]. Although they are faster than methods based on nucleic acid, they are less 

specific and cannot provide real-time detection.  

These immunological methods are now coupled with other methods for more efficient 

detection of pathogens. For example, the combination of immunomagnetic separation with 

flow cytometry for the detection of L. monocytogenes [30]. Also, an estimation of E.Coli O157 

was done, using a Minimal Lactose Enrichment Broth (MLB) with Immunomagnetic 

Electrochemiluminiscence detection (IM-ECL) [31]. 

1.4.4 Immunomagnetic Separation with flow cytometry 

Immunomagnetic Separation (IMS) was used to detect enteric viruses. Flow cytometry method 

is rapid and quantitative method [5]. Although this method is fast, it does not differ between 

viable and non-viable cells. IMS and flow cytometry can be combined to improve the detection 

techniques. For example, a waterborne pathogen, such as Legionella pneumophila (Lp), is 

detected by filtration, Immunomagnetic Separation, double fluorescent staining, and Flow 

Cytometry Method (IMS-FCM) [32]. 

1.4.5 Biosensor 

The biosensor is formed from two main parts: i) the molecular recognition element and ii) the 

transducer which detects physical changes and converts them into a signal. The biosensor is 

not effective for the detection of human pathogens. These pathogens often correspond to 
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species or specific tissue requiring incubation time (a few days to weeks) before the symptoms 

of the disease are perceptible [33]. Figure 1.3 illustrates the configuration of a biosensor. 

 

Figure 1.3. Configuration of a biosensor showing bio recognition, interface, and transduction elements [34]. 

1.4.6  Adenosine Triphosphate (ATP) Test 

Adenosine Triphosphate (ATP) is a molecule present in all bacteria. There is a good correlation 

between cellular ATP measurement and the number of viable bacteria present [35]. The 

identification of ATP, based on bioluminescence, requires the presence of Luciferase, 

Luciferin, Magnesium and Oxygen [36]. A main problem that reduces the use of ATP 

technique is the high cost. 

1.4.7 Vibrational spectroscopy 

The spectroscopy is based on the interaction between radiation and substance. It is used for the 

identification of substances through the spectrum emitted from or absorbed by them [37]. The 

vibrational spectroscopy is noninvasive method, used in the detection of bacterial cells. It can 

be divided in two main techniques: 

 Fourier Transform Infrared Spectroscopy (FT-IR): based on interferometer principle. It 

is used for bacterial pathogen identification and differentiation [38]. (FT-IR) combined 

with multivariate analysis allows the identification of the bacterial contaminants 

Pseudomonas aeruginossa and E.Coli in drinking water [39].  

 Raman spectroscopy: used for a rapid identification of molecules. The Raman effect can 

be defined as inelastic scatter of light. A micro-Raman-spectroscopy with excitation in 

the near infrared or visible range has the potential for the analysis of single bacterial and 

yeast cells [40]. 

1.4.8 Turbidimetry 

Turbidity indicates the relative clarity of water. The analysis of Turbidity is based on the optical 

properties that cause the scattering of light through water [41]. In general, Turbidity is 

measured in Nephelometric Turbidity Units (NTU). The measured value illustrates the 

presence of suspended materials in water. It indicates the loss in the intensity of transmitted 

light.   

When disinfection is applied, value should be ideally less than 1 NTU. To prevent Turbidity 

variation during sample transportation, it is measured usually on site using electronic meter 
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(Turbidimeter). Although electronic meter is very useful for low Turbidity (less than 5 NTU), 

it can be easily damaged and requires a power supply (mains or battery). When sensitivity is 

not essential in small community, extinction methods (using turbidity tube) can be efficient for 

value higher than 5 NTU. Although turbidity tube is cheaper than electronic meter, the latter is 

more precise. 

1.4.9 Chemical analyses 

Although the majority of water quality problems are related to fecal contamination, a 

significant number of serious problems may occur due to chemical contamination [18]. It 

would be costly to measure a wide range of chemical parameters on a periodic basis. It is 

essential to determine the most health-related parameters (Fluoride, Pesticides, Arsenic, 

Nitrate, etc.). The determination of chemical contaminant can be done on two ways: i) field 

test methods and ii) laboratory test methods. 

1.4.9.1 Field test methods 

These methods could be conducted using a portable test kit, which provides rapid results on 

site. The portable test kit includes comparators, photometers, etc.[42]:   

 Test (Reagent) Strip: Test strips typically have a plastic handle with a reagent area at one 

end. The reagent area is immersed in the water sample. The color of the reagent is then 

compared with color chart. The main limitation of this method is the low accuracy since 

it requires a visual interpretation. 

 Color Disc Comparator: based on the comparison between the standard test colors 

provided on the disc and the color produced by each chemical test. Color comparators 

can be more accurate than test strips, but they are more expensive. 

 Colorimeter and Photometer: Colorimeters and photometers use a light source to measure 

the chemical concentration in a water sample. Although they are more accurate than test 

strips, they require training to ensure they are used properly.  

 Digital meters: Some portable field kids include various digital meters to measure 

parameters like pH. Their use is simple, but they require calibration.  

 Arsenic test kits: New kits have been developed making field testing easier and more 

accurate. The Arsenic concentration is determined by comparing the intensity of the stain 

with a color chart. 

1.4.9.2 Laboratory test methods 

Some chemical parameters require laboratory analyses such as Atomic Absorption 

Spectroscopy (AAS), Chromatography, Colorimetric method, etc.: 

  AAS: analyzes the presence of metals. It is based on the principle that free atoms (gas) 

can absorb radiation at specific frequency. The analyte concentration is quantified from 

the amount of absorption. 

 Chromatography: used to determine metallic, organic or inorganic substance. There are 

many type of chromatography: liquid chromatography, gas chromatography, ion-

exchange chromatography. All of them have the same principle of the mixture separation. 

It is based on the affinity difference between two phases: stationary and mobile. 
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 Colorimetric method: measures the color intensity of a reaction product or a colored 

target chemical. The concentration is determined by means of a calibration curve 

obtained using known concentrations of the determinant [42]. 

1.4.10 Aesthetic analyses 

Aesthetic parameters, such as color, odor and taste, indicate qualitatively the status of water. 

They are simple to detect by sensation and inexpensive to be controlled on site: 

 Taste and odor: many factors could induce odors in water: organics substances, industrial 

contamination, biological activities, etc. The problems of taste are identified by 

consumer’s complaints. It can detect the presence of inorganic compounds of metals 

(Calcium, Sodium, etc.). In case of taste and odor problems in water, sampling analyses 

are required. 

 Color: it is a useful indicator of the need of laboratory analyses. The variation of water 

color could indicate the presence of metals (Iron, Manganese), or organic substance. 

1.5 Cases of water contamination  

1.5.1 Global contamination frequency  

Several studies have highlighted many cases of water contamination, inducing disease 

situations as well as a number of deaths. The following is a summary of the various percentages 

of contamination affecting public health worldwide. 

In 2008, about 884 million people lacked access to an improved drinking water source [43].  

In 2015, 2.1 billion people (or some 3 in 10 people worldwide) lacked safely managed drinking 

water services; among them 844 million do not have even a basic drinking water service [44]. 

In particular, about 25% of the global population (1.8 billion people in 2012) consumes water 

contaminated with fecal materials [45]. More than 50 countries continue to report active cholera 

cases to WHO; millions of people are exposed to hazardous levels of Arsenic and Fluoride and 

about 260 million suffer from waterborne diseases [46]. 

Many water-borne viruses can produce health problems, including: Norovirus, Adenovirus, 

Hepatitis A, Hepatitis E, Bacteriophages, etc. Children under the age of 5 are the most sensitive; 

about a hundred thousand deaths a year are induced by viral diseases. 

 Hepatitis A: The virus can reach the liver where it can cause severe damage. The fatal 

situation is less than 1% and is greater for those over the age of 50 [47]. 

 Hepatitis E: The virus causes inflammation of the liver which is not fatal but induces 

pain, vomiting and fever [48]. Hepatitis E can lead to a mortality rate that could reach 

25% among pregnant women [49]. 

 Rotavirus: Human Rotaviruses (HRVs) are the most important cause of children 

mortality worldwide. Typically, 50-60% of cases of acute gastroenteritis for hospitalized 

children around the world are caused by HRVs. 

 Norovirus: Symptoms, starting after one to two days, can vary between nausea, vomiting, 

diarrhea, etc. In the United Kingdom, each year, Norovirus affects between 600,000 and 

1,000,000 people [50]. 

According to United Nations International Children’s Emergency Fund (UNICEF), 

contaminated water, inadequate sanitation, and poor hygiene are responsible for about 90% of 
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deaths. Diarrhea is the second leading cause of death among children under five worldwide 

(1.2 million deaths in 2012) [51]. 

1.5.2 Water contamination in France  

In France, water quality monitoring includes two principal phases: 

 Sanitary control of water supply. This type of regulatory control is executed by the 

DDASS, which ensures, under the authority of the prefects, the implementation of health 

policies, the protection against epidemics and the control of hygiene rules. 

 Quality monitoring by either on-site & laboratory analyzes on a regular basis or by the 

use of sensors allowing continuous monitoring. This is done by the responsible of water 

supply. 

The water control is of two types: i) routine control which evaluates the reliability of 

treatment and gives information on organoleptic and microbiological quality and ii) complete 

control which assesses the compliance with other quality requirements according to the Public 

Health Code.  

Microorganisms existing in water can cause gastroenteritis and can lead to an epidemic 

situation. The epidemic cases recorded in France are of one annual situation, among them 800 

cases of gastroenteritis in Ain in 2003 and 400 cases of gastroenteritis in Saone-et-Loire in 

2001.  

A study shows that during 10 years (between 1998 and 2008), ten epidemics due to drinking 

water networks are recorded in France. A large population have been exposed (estimated 

number between 1000 and 60 000). On average, more than 1 000 people infected in each 

epidemic situation. In total, the number is 9000 affected, of whom 1000 are hospitalized. The 

most implicated contaminants: Norovirus, Cryptosporidium, Campylobacter and Rotavirus 

indicating fecal contamination. It should be noted that 3 to 5 contamination resources are due 

to a dysfunction of the chlorination phase [52]. 

In 2002, the percentage of people receiving permanently water that doesn’t comply with 

microbiological quality limits is estimated at 5.8%. This is often the case of small distribution 

units in rural areas. A total of 380,000 people, living in 2,087 communes, are potentially 

exposed to an exceeding of bacterial standards [53]. 

Many cases of water contamination are presented to evaluate the frequency of pollution in 

WDN in France. Critical situations were occurred in different regions. 

1.5.2.1 Strasbourg, May 2000. 

A bacteriological contamination was taking place on May 26, 2000 in a part of a drinking water 

system in Strasbourg. Nearly 60 000 inhabitants are deprived of drinking water for about 15 

days. The consequences of this pollution were manifested by cases of gastroenteritis (vomiting 

and/or diarrhea).  

To find a relationship between reported cases of gastroenteritis and pollution of the water 

network, an epidemiological investigation was carried out. It showed a dependence between 

the possibility of exposure to gastroenteritis and the age of the consumer. Three age intervals 

have been studied: 1-14 years, 15-60 years, over 60 years. This research estimated that there 

were almost 53 cases of vomiting, fever and diarrhea in the contaminated network area. 

To analyze also the water quality, samples are taken daily from the polluted part in the first 

stage and then on a wider region of the network. The type of analysis carried out are 

bacteriological, making it possible the identification of coliforms, fecal streptococci, etc. These 
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analyses give the following results: maximum levels of microbiological contamination were 

found on May 26th (16 to 36 Units Forming Colony (UFC)/20 ml sulfito-reducing spores, 4 to 

22 UFC /100 ml fecal coliforms, 2 to 25 UFC/100 ml total coliforms). Then, positive results 

were found until June 5th at different points (1 to 4 UFC /20 ml sulfur-reducing spores) [54]. 

This contamination situation in Strasbourg highlights the high probability of pollution that 

could affect drinking water systems. The contamination has led to several risks (cases of 

gastroenteritis) on public health. The verification of this disruption required several surveys. 

Either the surveys that were executed to correlate situations of gastroenteritis with water 

pollution, or the bacteriological analysis. The latter requires daily sampling, especially at the 

contaminated network. It determines the presence of the microorganisms that have caused the 

pollution. 

1.5.2.2 Rennes, January 2011. 

A situation of accidental contamination, in drinking water network, was reported on January 

11, 2011, in Rennes. The contaminant was Ethylene Glycol, generally used as an antifreeze. 

Intoxication caused by this contamination results in several symptoms, such as digestive 

disorders. 

Several recommendations were taken into account on January 13, 2011, concerning people 

who could use this contaminated water. The number is estimated to be about 400 people. 

Among these recommendations, the instructions of non-consumption of water in the affected 

network in addition to the execution of purges. 

The results of the contamination recognition were: 96.7% aware of the contamination: 

10.8% prevented on Wednesday and 86.4% on Thursday, of which 25.8% before 10:30. While 

for clinical signs: 27.9% reported having at least one symptom, 14.2% at least water between 

headaches, abdominal pain, nausea/vomiting and drinking [55]. 

These various symptoms of poisoning justify the importance of real-time monitoring, since 

traditional techniques may take a long time to justify water pollution. 

1.5.2.3 Drôme Department 

The water backflow could be an essential factor of accidental contamination in drinking water 

systems. It is the result of water pressure variation, either an overpressure in case of private 

connection (with an irrigation network as an example), or a depression, for example due to 

pipes break, and which can be avoided by a non-return systems.  

A recent epidemic of gastroenteritis has been highlighted in a district of a commune in the 

department of Drôme [56]. The source of the pollution was the backflow from an irrigation 

network to the drinking water network. This contamination in Drôme illustrates another source 

of accidental contamination. Irrigation systems or private wells should not be connected to 

drinking water systems.  

1.5.2.4 Divonne-les-Bains (Ain), August-September, 2003 

Between the end of August and the beginning of September 2003, a situation of accidental 

contamination was reported in the commune of Divonne-les-Bains. Several cases of 

gastroenteritis were reported among the affected population. 

A survey was conducted in order to: i) confirm water pollution in the affected distribution 

network, ii) determine the source of contamination and iii) assess the health risk associated to 

this quality degradation. Several health authorities have been involved in this survey, such as 

the DDASS and “Centre Interrégional d’Epidémiologie ” (CIRE). 
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A water backflow from the purification plant was the origin of the microbiological 

contamination. For a population of about 10,000 people, the estimated impact of the epidemic 

episode was close to 800 excess cases of Acute Gastroenteritis (GEA); the analysis executed 

for the distributed water and the resource showed frequent contamination with 

Cryptosporidium and Giardia [57]. 

The executed investigation was carried out at several levels: 

 A survey of doctors to evaluate the rate of consultation for gastroenteritis cases during 

the period of contamination (between the end of August and the beginning of September 

2003). 

 A research in pharmacies to determine the sale of medicament used for treatment of 

gastroenteritis diseases. 

 Microbiological analyzes of the stools of patients residing at Divonne-les-Bains for the 

research of gastroenteritis agents: bacteria, protozoa (Cryptosporidium and Giardia), and 

viruses (Rotavirus, Enterovirus, Adenovirus, Calicivirus, Astrovirus) and Hepatitis A 

virus [57]. 

 Environmental analysis, specifically water analysis to identify the cause of accidental 

pollution and the pathogens responsible for contamination. 

These various surveys face several difficulties, such as: i) data transmission between the 

responsible authorities, ii) lack of complete information needed to assess the percentage of the 

affected population and iii) financial problems for executing certain analysis for parasites 

identification, for example, etc. 

This example of accidental contamination highlights several problems in case of drinking 

water pollution. Among these problems, the difficulties of investigations, the assessment of 

health risks, the determination of the origin of pollution and responsible pathogens, etc. 

1.6  Smart Network 

A smart water network is an integrated set of products, solutions and systems that enables 

utilities to remotely and continuously monitor and diagnose problems, prioritize and manage 

maintenance issues, and use data to optimize all aspects of WDN performance [58]. Smart 

water grid will also be able to isolate contaminated section. For example, valves can be shut 

off remotely to avoid further displacement of contaminated water within WDN [59]. 

The transformation from a passive distribution network to a smart grid has many benefits: 

water loss reduction, energy savings, detection efficiency, water quality monitoring, etc.  

Figure 1.4 shows different advantages of using Information Technology (IT) in the WDN. 

Three principal elements constitute the smart water network [60]: 

 Information: making full use of all data generated by water utility. 

 Integration: utilizing current IT systems to maximize previous investments. 

 Innovation: designing a system flexible enough to meet future challenges. 
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Figure 1.4. Summary of global savings by smart water solution [58] . 

1.6.1 Role of Smart Technology 

Nowadays, the smart technology is used in different urban networks (drinking water, electrical, 

heating and sewage). In WDN, the implementation of smart technology becomes an essential 

requisite to maintain a safe quality of water. Although water coming from treatment plan is 

well controlled, its quality can degrade through WDS. In this regard, there is a need for better 

on-line water monitoring systems given that existing laboratory-based methods are too slow to 

develop operational response and do not provide a level of public health protection in real time 

[61]. Water quality sensors can be used to ensure a real-time control. The main objective of 

sensors is to monitor continuously water quality parameters (pH, Conductivity, Turbidity, etc.) 

significantly affected by the presence of contaminants.  Generally, there are two types of water 

quality sensors [62]: 

 Non-compound specific or conventional sensors used normally for routine water quality 

parameters (Chlorine, Temperature, etc.). 

 Compound specific water quality sensors or advanced sensors, which are capable of 

confirmative detection at low concentration for a specific component. 

Due to their high cost, the use of specialized sensors is not very effective, especially that 

the potential contaminant is unknown in real network. 

Water utilities are also interested by remote sensing for economic reason. Twenty percent 

of average water quality monitoring cost is attributed to sample collection. Those cost could be 

reduced from 30 to 70 percent by moving from manual sampling to online monitoring, which 

lead to a global annual reduction of $120 to $270 million [58]. 
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1.6.1.1 Need of field study 

Although the use of smart technology in the field of water resources is desirable, its application 

faces many challenges. The use of sensors in the domain of water quality control is recent. 

Their efficiency is tested firstly in laboratory station. Different pilot-scale systems were studied 

in previous works [62], [63] where contaminant injection can be controlled. A case study is the 

station installed at the Laboratory of Civil Engineering and geo Environmental (LGCgE) [5]. 

The system tests the performance of two types of sensors for chemical and microbiological 

contaminants. It verifies their capacity in the contaminant detection. The feedback of the real-

time monitoring of water quality remains very limited. Most of research consists of pilot station 

and few works are conducted in real-site. A field study is required to validate their reliability 

in online monitoring. The yields of smart water technologies are not well understood. Their 

instrumentation in real-network is needed to prove their benefits. 

1.6.2 Early Warning System (EWS) 

An Early Warning System (EWS) is an integrated system for monitoring, analyzing, 

interpreting, and communicating monitoring data, which can then be used to make decisions 

that are protective of public health and minimize unnecessary concern and inconvenience to 

the public [64]. To enhance the public health protection from water contamination events, a 

combination between online monitoring with a EWS is required. The EWS have many 

objectives to accomplish [65]: 

 Identify low-probability/high-impact contamination events in sufficient time. 

 Provide a fast and accurate means to distinguish between normal variations, 

contamination events and differences in quality due to biochemical and physical 

interactions. 

 Detect both accidental and intentional contamination events with minimum of false 

positives and negatives. 

An ideal EWS should be able to detect a wide range of contaminants, allows source 

identification and localization of the contaminant, and ensures alert management, remote 

operation and decision response. Four main elements, of same importance, constitute the base 

of the EWS [66]: 

 Risk assessment: provides essential information for identifying strategy priorities for 

reducing and preventing disasters. 

 Monitoring and forecast: need of devices of monitoring and forecast that can provide 

prediction about the potential risks affecting the community, economy and the 

environment. 

 Forwarding information: need of communication systems that are capable of forwarding 

warning messages to potentially affected places and alarming the local and regional 

government organizations. 

 Response: Key points of effective forecast: coordination, responsible governance, 

appropriate action plans. 

1.6.3 Contamination Warning System (CWS) 

In the context of drinking water control, Contamination Warning System (CWS) constitutes an 

essential component of the EWS. The main purpose of CWS is to protect earlier public health 



Chapter 1.  State of the Art – Control of Drinking Water Quality 

 

43 
 

from the impacts of drinking water pollution. A CWS is a combination of monitors, 

institutional arrangements, analysis tools, emergency protocols, and response mechanisms 

designed to provide early warning of contaminants to minimize customer exposure [67]. It 

includes various approaches such as: water quality sensors deployment in the water grid, spot 

sampling and laboratory analysis, public health surveillance systems and customers complaint. 

It should have the capacity to quickly detect any deviation of water quality from accepted 

Standards.  

The basic process for CWS operation (Figure 1.5) is described as follows, according to [68]: 

 Monitoring and Surveillance: five basic components are required at this stage: online 

water quality monitoring, sampling and analysis, enhanced security, consumer complaint 

and public health surveillance. Monitoring and surveillance of these components and 

information streams occurs on a routine basis, until an anomaly from the baseline is 

detected. 

 Event Detection and Possible Determination: Event detection is the process by which a 

deviation from the baseline is detected. If possible contamination is validated, credibility 

determination step is initiated, otherwise the CWS components return to routine 

monitoring and surveillance.  

 Credibility determination: these procedures are performed using information from all 

CWS components as well as external resources when available and relevant. If 

contamination is determined to be credible, additional confirmatory and response actions 

are initiated. 

 Confirmed determination: In this stage of consequence management, additional 

information is gathered and assessed to confirm drinking water contamination. Response 

actions initiated during credible determination are expanded and additional response 

activities may be implemented. 

 Remediation and Recovery: Once contamination has been confirmed, and the immediate 

crisis has been addressed through response remediation and recovery actions defined in 

the consequence management plan are performed to restore the system to normal 

operations. 
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Figure 1.5. Architecture of the water security CWS [68]. 

The effectiveness of a CWS is based on the protection of public health, by reducing the 

contamination impacts. This objective highly depends on two factors: i) the time delay between 

the contamination event and the response actions, ii) the optimal placement of minimum 

number of sensors. 

In a study in Ann Arbor, Michigan [69], it was demonstrated that the effectiveness of the 

CWS is reduced significantly for a total delay of time greater than 8 hours between the entry 

of contaminant in the distribution system and the cessation of water use by customers.  

As mentioned above, data collected from online sensors should be analyzed to determine 

the probability of event. In order to detect a contamination, event detection method should be 

used. The existing methods for anomaly detection of water-contamination events based on 

online measurements of water-quality parameters are mainly divided into three categories, 

namely, statistical, artificial intelligence and data mining methods [70]. 

1.6.3.1 Statistical methods 

These methods are based on time-series prediction. Based on historical measured data, the 

analysis of time-series allows the estimation of the future value. Statistical methods analyze 

one single parameter. This algorithm operates generally on normalized data with zero as mean 

and one as standard deviation. This normalization is done over the data contained within a 

moving window of previously measured value [71]. Different statistical models applied to the 

previously observed data can provide predictions of future water quality values [72]. Two 

principal time-series methods are generally used:  

 Time Series Increments: It represents an implicit prediction model where the prediction 

of the water quality parameter value at the current time step, 𝑥 ̂(n), is simply the value 

measured at the previous time step [71]: 

                                                           𝑥 ̂(t)= x (t-1)                                                          (1.1) 

 

     And the time series increments, δ (t) are calculated as follows: 
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                                                   δ (t)= 𝑥 ̂(t)-x (t)=x (t-1)-x (t)                                               (1.2) 

 

This dependence on only the single previous measurement is the definition of a Markov 

model [73]. δ, expressed in units of standard deviation, is compared with a threshold δc 

to identify events. The length of moving window is p equal to the number of previous 

data. 

 Linear filter: the Linear Prediction Correction Filter (LPCF) estimates the future value as 

a linear function of previous samples. It is based on a weighted sum of historical values. 

The most known criterion used in this method is the Autocorrelation (AR). The main 

objective is to minimize the squared prediction error. The prediction model is represented 

by the following equation: 

                                                         𝑥 ̂(t) = − ∑ 𝑎𝑝
𝑖=1 i x (p-i)                                               (1.3) 

    Where 𝑥 ̂(t): predicted signal value,  

              x (p-i): previous observed value, 

             ai: predictor coefficients. 

             p: order of the prediction filter polynomial and the size of the standardization  

           window.                      

    The error is then calculated by the following equation: 

                                                                  e (t)= 𝑥 ̂(t)-x (t)                                                          (1.4) 

These two types of statistical methods have been tested in [71] to predict the variation in 

background water quality and to detect events of anomalous water quality superimposed upon 

the background models. Results shows that more developed algorithm, such as Multivariate 

Nearest-Neighbor (MVNN) (detailed latter), has a better performance than the traditional 

statistical methods. 

1.6.3.2 Artificial Intelligence  

These methods consist on the classification based techniques to extract models of normal and 

contaminated data samples automatically [74]. The Artificial Intelligence (AI) has many 

applications, in Finance, Medicine, Industries, Robotics, etc. There are two main types of AI:  

 Artificial Neural Network (ANN): it is a form of computing inspired by the functioning 

of the brain and nervous system [75]. As well as the statistical method, ANN can be used 

as forecasting tool to predict future values based on historical set of data. However, with 

ANN methods, the statistical distribution of data does not have to be known [76]. Also, 

nonstationarities in data, such as seasonal variations, are accounted for by the hidden 

layer nodes [77]. One of the most used neural networks is the Perceptron. The linear 

Perceptron with threshold takes n values x1, x2, …xn as input and calculates the output o 

as illustrated in Figure 1.6 [78], where wi: Synaptic coefficients and 𝜃: threshold. wi are 

updated until the convergence, when the calculated output reaches the desired output. 
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Figure 1.6. Perceptron with threshold [78]. 

     The ANN method applied in [79] for water quality supervision shows a recognition rate 

up to 90 % with high capacity and rapidity in training phase. The main disadvantage 

remains in the choice of neurons numbers and hidden layers.       

 Support Vector Machine (SVM): The main objective is to divide data according to two 

classes: normal and anomalous. This pattern recognizers is developed from the statistical 

learning theory. It is one of the Key area in machine learning [80]. It is based on the 

decision boundary that should be maximized for both classes. Among different types of 

SVM (monoclass, multiclass, etc.), the binary SVM is the simplest one. The base idea is 

to classify data in two main groups (+1 or -1), by separating them in a hyper plane. The 

optimal separator hyper plane, which maximizes the margin between the two classes, is 

obtained by solving the following problem [81]: 

     Minimizing 
1

2
‖𝑤‖2 such as: 𝑦i (𝑤𝑇𝑥i+b) ≥ 1∀ 𝑖 = 1, … 𝑛. Support vectors are those 

verifying the equality.                                    

     Where w: weight vector of dimension m. 

              b: term. 

              x: example to be classified (input). 

              y: output ∈  {+1; −1} 

As an application of SVM method, [82] use this technique to monitor the potability of a 

water tank. This method has shown a good performance in water quality classification 

with a low rate of false alarms. The time of training phase is of high importance in SVM 

technique. 

1.6.3.3 Data-mining  

In comparison with statistics methods, data mining techniques tend to be more robust to both 

messier real world data and also more robust to being used by less expert users [83]. The main 

purpose of data mining is to transform the huge amounts of data in useful information. The two 

essential type of these methods:  

 Multivariate Nearest-Neighbor (MVNN): The MVNN approach compares the Euclidean 

distance between the current measured water quality and any water quality measurement 

within the recent past in the multivariate space [70]. All water quality signals provided 

from all available sensors are used simultaneously at each time step. The MVNN method 
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indicates the similarity between the quality of tested water and a p previous historical 

samples. The minimum distance between the points, in J-dimensional space, is retained 

as the distance, Δ, which is compared to the threshold [72]:   

                                         ∆=Min i=1…p |√∑ 𝑧𝑗(𝑡 + 1) − 𝑍𝑗(𝑝 − 𝑖 + 1)𝐽
𝑗=1

𝐽

|                                     (1.5) 

    Where J: number of water quality signals 

             p: number of water quality samples in the history window 

            𝑧𝑗(𝑡 + 1): new water quality signal   

 K-means: The main objective of k-means algorithm is to divide M points in N dimensions 

into K clusters so that the within-cluster sum of squares is minimized [84]. The 

importance challenge in this method is that the number of cluster has to be specified first 

[85]. This is an iterative algorithm. It is a point-based clustering method that starts with 

the cluster centers initially placed at arbitrary positions and proceeds by moving at each 

step the cluster centers in order to minimize the clustering error [86]. 

A case study of data mining technique, especially the MVNN algorithm within Canary 

software, is applied to historical data from a UK drinking WDS. The performance evaluated 

with artificial events gives approximately 25 % of false negatives [2]. 

1.7 Smart Water Projects 

 Vigires’ eau  

This is a system for drinking water network operation which proposes an original solution 

based on a network of sensors, existing tools and statistical detection algorithms [87]. It is a 

technical monitoring platform whose primary objective is the detection of any anomaly 

situation linked to the abnormal drop in the level of residual Chlorine. The Chlorine monitoring 

is based on its two main advantages: i) it constitutes a powerful oxidant, which have the 

capacity to destroy viral or bacterial agents, even at low doses and ii) it is a good tracer of water 

quality and network integrity since any contaminant in the network immediately gives 

abnormal Chlorine levels [88]. The aims of this prototype is to determine the optimal location 

of sensors. Figure 1.7 illustrates the principal components of Vigires’eau project. [87].  
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Figure 1.7. Main components of Vigires'eau Platform [87]. 

The detection is executed in the basis of two approaches (parametric and nonparametric). In 

the parametric approach, two models of Free Chlorine variation are established: i) the first 

expresses the normal reduction in the amount of Chlorine due to its reaction with 

microorganisms present in the water or with the walls of the pipes, and ii) the second studies 

the case of a rapid abnormal decrease resulting from a contamination phenomenon. An 

algorithm allows the detection of any anomaly affecting a given node of the network. It is based 

on the reduction of the probability of non-detection while avoiding as much as possible 

situations of false alarms. Due to uncertainties of drinking water systems, a parametric 

approach, based on an analytical model, is not sufficient for effective anomaly detection. A 

non-parametric approach based on statistical learning theory is needed. These methods of 

recognition consist in determining the distribution of a set of measurements. However, a 

nonparametric approach alone is not enough to understand the physical mechanism of 

contamination. So, Vigires’eau suggests a semi-parametric approach to combine the flexibility 

of nonparametric model with the precision of parametric one [89]. In the semi-parametric 

approach, the main purpose is to consider any observation as a sum of parametric and non-

parametric model to prove any real anomaly with reducing the generation of false alarms. 

 SMaRT-OnlineWDN  

(Online Security Management and Reliability Toolkit for Water distribution Networks) 

This is a French-German cooperative project research whose main purpose is the development 

of an online security management toolkit for WDN that is based on sensor measurements of 

water quality as well as water quantity [90]. Concept and architecture of the project is illustrated 

in the Figure 1.8.  
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Figure 1.8. System architecture of SMaRT-OnlineWDN [90]. 

The principal objectives of this project are divided into five main stages [91]: 

 Smart quality sensors and alarm generation: Monitoring of water quality by an analytical 

model remains complicated due to the large number of parameters and then a high time 

consuming. One solution to this problem is the modeling technique based on the data 

learning method. A model based on the data history of the sensors can lead to the 

implementation of an effective monitoring system. 

 Online simulation model for reliable predictions of water quantity and quality: To show 

efficiently the hydraulic state of the system, the use of intelligent sensors must be 

combined with a simulation model.  

 Optimal sensor placement: Several research was conducted to evaluate the optimal 

location of the sensors in a distribution network. However, most of these studies, based 

on offline outputs, do not reflect the actual case of contaminant propagation. To solve 

this problem, an optimal location based on online measurements will be more 

appropriate. This requires a regular updating of the data. 

 Online contaminant source identification: Deterministic and probabilistic methods for 

identifying the source of contamination are integrated into the simulation model to 

determine online the responsible sources.  

 Risk analysis and impact assessment: Risk assessment focuses on three main areas: 

environmental, social and economic. Consumer perceptions can define and modify the 

management of water distribution.  

 AquaSense 

Before detailing the objective of this project, it is important to define the following terms: 

 Aquaphotomics: a new technique for rapid water analysis based on the interaction 

between water and light. 
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 Near-Infrared Spectroscopy (NIRS): an imaging technique characterized by its non-

invasive and portable approach, which allows activity evaluation where under some 

conditions the standard methods would not be applicable [92]. 

AquaSense project, funded by the European Union, aims to combine Aquaphotomics with 

NIRS and Chemical Imaging (NIR-CI) to ensure real-time water analysis. This technique can 

detect and identify contaminations affecting the water quality. However, the problem lies in 

the low concentrations of contaminants where detection will be more complex. 

1.8 Conclusion 

Ensuring safe and potable drinking water is the great challenge for water utilities. Accidental 

or intentional contamination can deteriorate the quality of water and threat the public health. 

This chapter presents a state of the art of the water quality control in WDS. Contaminants that 

could present in the WDS have been detailed: i) microbiological parameters (E.Coli, 

Enterococci, etc.) and ii) chemical parameters (Sulfates, Pesticides, etc.). To control the amount 

of these substance, Standards set threshold limits. In France, Standards, indicated in the Public 

Health Code, are fixed by the European Directive, based on the WHO guidelines. Over years, 

the water quality supervision is developed to monitor indicators parameters such as Turbidity, 

TOC, Conductivity, etc. Many factors can be the source of contamination, among them the 

corrosion, water backflow, network interventions and pipes break. These factors induce the 

introduction of pollutant and/or the bacteria growth through the WDS. This can lead to serious 

risks on human health. The impacts depend on many criteria: the nature of contaminant, its 

amount, the age of consumer and his immunity system. 

In general, the water quality supervision consists of taking manually samples from different 

points of the network. Laboratory analyses are then executed. Different conventional methods 

have been used in the literature to analyze the water quality. Among them, the culture method, 

the chemical and the aesthetics analyses. The advantage and the limitation of each method have 

been presented. The major inconvenience of all these conventional methods is the long 

delay (from several hours to many days) to obtain results. Much research has demonstrated 

the importance of the WDS security since the global frequency of contamination is significant. 

The percentage of waterborne disease is critically high. Especially in France, many cases of 

contamination have been occurred in different regions, leading to multiple diseases.  

This literature review shows both the complexity of the early detection of water 

contamination and the great potential of the Smart Technology to meet this challenge. 

However, this technology is recent, consequently we need more research in this area with 

mainly demonstration projects in real field condition. This research work constitutes a 

contribution to this objective. It concerns the implementation and use of the Smart Technology 

for water quality control at the Scientific Campus of Lille University. It is conducted within 

the European Project “SmartWater4Europe”. In the following chapters, we present the 

demonstration site, the smart monitoring, data analysis and try to propose some 

recommendations for the use of this technology.
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 Presentation of the Demonstration site – Water 

Quality Devices Installation 

2.1 Introduction 

This chapter presents the demonstration site, which is used in this research. It is a part of 

SunRise project, which concerns the construction of a large-scale demonstrator of the Smart 

City. The Scientific Campus of the University of Lille is used for this large-scale demonstrator. 

This chapter presents successively the Scientific Campus, the water distribution network, the 

water quality sensors used in this work, results obtained in a Lab pilot and finally the 

implementation of the water quality sensors in the demonstration site. 

2.2 Demonstration Site Description 

The demonstrator site used in this research is the Scientific Campus of the University of Lille. 

The campus, inaugurated in 1967, is located in Villeneuve d’Ascq, Lille in the north of France. 

It stands for a small town, covering an area of around 110 hectares. It includes 150 buildings 

for different uses:  

 The University of Lille, Sciences and Technology: with 2 Engineering school 

(Polytech’Lille and Telecom Lille1) and 2 Institutes (IUT A and CUEEP). 

 “Ecole Centrale de Lille” (ECL). 

 “Ecole Nationale Supérieure de Chimie de Lille” (ENSCL). 

 “Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des 

Réseaux ” (IFSTAR). 

 Residences, Restaurants, and sport equipment. 

It hosts around 25000 users, among them about 4000 students live in the campus. The 

campus includes about 100 km of urban networks: drinking water, electrical network, heating 

and sewage. Figure 2.1 illustrates the plan of the Scientific Campus. 
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Figure 2.1. Scientific Campus of the University of Lille. 
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2.3 Water Distribution Network 

The water distribution network length is about 15 km: 13.5 km for private sector (Campus) and 

1.5 km for public sector (Eaux du Nord). The pipes are made, in majority, of grey cast iron. 

The diameter of pipes varies between 20 and 300 mm, as indicated in Figure 2.2. It includes 

49 hydrants, 250 isolations valves, purges and stabilizers. The water is supplied to the campus 

at five sections located in the North, West and South of the campus: 

 Cité Scientifique. 

 4 Cantons. 

 ECL  

 Bachelard. 

 Building M5. 

 

 

Figure 2.2. Pipes distribution according to the diameter [93]. 
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2.3.1 Water network instrumentation (Farah thesis, 2016, [93])  

The water network is equipped with 93 Automatic Meters Readers (AMR). AMR readings are 

recorded every one hour and transmitted every 24 hours, to a central server via a radio 

frequency of 169 MHz. The water supply in the campus is calculated according to 13 general 

meters regrouped as follows (Figure 2.3) [93]: 

 4 AMRs entitled: 4CANTONS, ECL, BACHELARD, M5 and 5 AMRs CITE 

SCIENTIFIQUE: looped network.  

 4 AMRs entitled: CUEEP, DELTEC_ICARE, HALLE-VALIN and LML: branched 

network. 

The consumption of the main buildings is measured by 80 AMRs distributed as follows [93]: 

 University of Lille (55). 

 Reeflex (2). 

 CROUS (Centre Régional des Œuvres Universitaires et Scolaires) (14). 

 ENSCL (1). 

 ECL (6). 

 The company Bonduelle and the Clinic 4Cantons (2). 

The pressure is also monitored by a set of 5 piezoresistive pressure sensors. Data loggers, 

attached to the sensors, send pressure values measured each 15 minute via SMS [93]. The 

pressure sensors are installed in different locations in the campus, covering the majority of 

zones (Figure 2.3): 

 Barroi Restaurant. 

 Building C1 for chemical research. 

 SN5 for biology research. 

 Polytech’Lille University. 

 Bachelard university residence. 
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Figure 2.3. Distribution of the smart sensors in the water network [93]. 

2.4 Water quality sensors 

2.4.1 S::CAN 

S::CAN micro::station allows online monitoring of various water quality parameters. It is used 

for real time control of drinking water quality. Figure 2.4 illustrates the S::CAN sensor. The 

main components-spectro::lyser, sensors and controller- are assembled with required flow 

cells, mounting fittings and pipework on a compact panel [94]. A con::cube terminal with 

moni::tool software ensures data acquisition, data display and station control [95].  

Different elements constitutes the micro::station S::CAN [95]: 

 Con::cube controller with moni::tool software. 

 Flow cell with auto brush cleaning device to provide cleaning of the optical measuring 

windows. 

 System tubing included in the panel assembly. 

 Flow detector that gives alarm if the flow decreases below 0.25 L/min. The recommended 

flow is about 0.5 L/min. 

 Inlet strainer that avoids the entrance of coarse material in the station. 

 Pressure transmitter that supplies the pressure signal to the con::cube. 



Chapter 2.  Presentation of the Demonstration site – Water Quality Devices Installation 

 

56 
 

 Main panel that assembles all components. 

 Flow restrictor for automatic flow restriction and backflow prevention in by-pass. 

 Probes (i::scan, pH::lyser, Chlori::lyser and Condu::lyser) ensuring the continuous 

measurements of water quality parameters. 

Each parameter, measured every one minute by S::CAN, is represented by a signal. For a 

normal drinking water, a reference line is established for every parameter. The main purpose 

of S::CAN probes is to detect significant deviation from the stable line. An exceeding of the 

reference will be analyzed to identify the origin of the abnormality. Many reasons can explain 

the perturbation in the signals, such as normal variations, instrument faults, contaminations, 

connections errors, etc. A change in water quality signal can be divided in three main groups: 

 Outlier: a significant deviation, generally due to noise in Supervisory Control and Data 

Acquisition (SCADA) system, at a single time step. A sudden increase or decrease in 

single time steps do not generate an alarm. The unexpected values return to the reference 

line at the next time step.  

 Event: deviation from expected signal in a specified period of time steps. It can be defined 

as a group of outliers which values are unacceptable for a period of time. This event will 

generate an alarm to analyze the source of the abnormalities. The number of time steps 

and the amplitude of deviation determines the importance of the event. 

 Baseline change: This change happens suddenly but induces a persistent variation in the 

mean value of the water quality signals. Generally, it results from operational variations, 

such as turning on or off a pump delivering water with different quality characteristics. 

 

Figure 2.4. S::CAN sensor [96]. 
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2.4.1.1 i::scan 

i::scan probes are multiwavelength photometer probes, capable of online measurements of 

absorption spectra (UV, UV-Vis, UV-Vis-Nir, or derived parameters) [97]. Figure 2.5 

illustrates the i::scan probe. It allows the monitoring of various reliable indicator of water 

quality parameters:  

 Absorbance UV, for a wavelength of 254 nm, in Abs/m. 

 Turbidity according to International Standards Organization ISO 7021 in FNU 

(Formazin Nephelometric Units) or FTU (Formazin Turbidity Units) and also to EPA 

180.1 in NTU. 

 Organic substances: TOC and DOC in mg/l. 

 Temperature in °C. 

 Color in Hazen. 

The probe can be used immediately after delivery. Global calibration is available for typical 

applications, such as drinking water. However, a local calibration can be performed on site, 

without demounting the probe, to get more adjusted parameters [97]. 

 

Figure 2.5. i::scan probe [97]. 

2.4.1.2 pH::lyser 

pH::lyser is an ion-selective device designed for continuous monitoring of the logarithmic 

concentration of dissolved hydrogen ions (H+) [98]. It measures also the temperature and then 

corrects the measured concentration. Figure 2.6 illustrates a pH::lyser. As for i::scan, the probe 

is precalibrated in the factory. However, adjustments (offset or linear calibration) for 

measurements can be performed for more accurate data. 

 

Figure 2.6. pH::lyser probe [98]. 

2.4.1.3 Condu::lyser 

Condu::lyser is a probe designed for continuous monitoring of the Conductivity in water, 

expressed in μS/cm [99]. The temperature is also measured and used to correct the 

corresponding measured Conductivity. Figure 2.7 shows the Condu::lyser probe. Such others 

probes, local calibration, especially slope calibration (SPAN), can adapt the global calibration 

to the actual monitored parameters. 

 

Figure 2.7. Condu::lyser probe [99]. 
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2.4.1.4 Chlori::lyser 

Chlori::lyser is an electrochemical based sensor designed for the continuous monitoring of Free 

Chlorine (concentration of residual Chlorine) in water, expressed in mg/l [100]. A slope 

calibration (SPAN) adjusts the monitored values. Two main elements are essential in this 

probe: i) electrolyte, ii) membrane cap. The electrolyte needs to be replaced every 3-6 months, 

while the membrane cap needs to be replaced once per year or if the local calibration failed 

[100]. Figure 2.8 illustrates a Chlori::lyser probe. 

 

Figure 2.8. Chlori::lyser probe [100]. 

The specifications for each parameter, including the measuring principle, units, measuring 

range, resolution and accuracy are presented in Table 2.1. 

Table 2.1. Specifications for each parameter of S::CAN sensor ([97]-[100]). 

Parameter 
Measuring 

principle 
Units 

Measuring 

Range 
Resolution Accuracy 

UV Absorption Abs/m [0-60] 0,015 ±10 % 

TurbidityEPA 
90 degree 

scattered light 
NTU [0-800] 0,001 ±7 % 

TurbidityISO 
90 degree 

scattered light 

FNU 

 
[0-800] 0,001 ±2,5 % 

TOC Absorption mg/l [0,1-25] 0,01 ±3 % 

DOC Absorption mg/l [0-450] 0,035 ±2,5 % 

Temperature Semiconductor °C [-20°C-70°C] 0,0625 
0,5 (0°C-65°C) 

1 (-20°C-70°C) 

Color Absorption Hazen [1-70] mg/l 0,01 mg/l ±2,5 % 

pH Potentiometric   [2-12] 0,01 ±0,01 

Conductivity 
4 electrode 

contacting 
µS/cm [0-500,000] 1 

±0,1% of 

current reading 

Free Chlorine 
Amperometric 3 

electrode sensor 
mg/l [0-2] 0,001 0,23 

 

2.4.1.5 Data Transmission 

Using a 3G SIM card, the transmission of data is ensured via a web server that can be connected 

to a Supervisory Control and Data Acquisition (SCADA) system. 

In order to access to the nano::station, a Virtual Private Network (VPN) server with specific 

username and password is used. Once the OpenVPN is connected, the con::cube access is 

provided via a web browser (Chrome, Mozilla, etc.) by using a specific Internet Protocol (IP) 

address. The same VPN server is used for both locations, however, the IP address differs 

between the two stations. When the IP address is reached, measurements can be monitored in 

real-time. Historical data are also displayed in time series form. By login to the service mode 

(with username and password), outputs can be downloaded in Comma-Separated Value (CSV) 
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files. All others options of the con::cube can be controlled remotely through the VPN 

connection. An example of data display is illustrated in Figure 2.9. 

 

Figure 2.9. Example of data display from S::CAN sensor. 

2.4.1.6 Data archiving 

Data transmitted from sensors are stored and analyzed using PI system, which collects, stores 

and manages data. Figure 2.10 illustrates a typical diagram for PI system components. Through 

PI interface nodes, information collected from data source, are stored in PI tags on data archive. 

The access to data is done either directly from data archive or from Asset Framework (AF) 

server [101]. 

 

Figure 2.10. Diagram of the components of a typical PI system [101]. 

According to the measured parameters, 13 tags have been created, for S::CAN installed at 

Polytech’Lille: UV254, Turbidity ISO, Turbidity EPA, TOC (Total Organic Carbon), 

Temperature1 (probe i::scan), Temperature2 (probe Condu::lyser), T10, R alarm, pH, Free 

Chlorine, Flow, Conductivity and Color.  For S::CAN installed at Barroi, 9 tags are stored in 
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PI system: UV254, Turbidity ISO, Turbidity EPA, TOC, Temperature, pH, Free Chlorine, 

DOC (Dissolved Organic Carbon) and Conductivity. 

Data collected continuously from S::CAN are installed in the PI system. A PI Datalink, is 

used, as Microsoft Excel add-in, to import data of historical period in a spreadsheet. Archive, 

Compressed, Sampled data and other tools are used for data gathering and monitoring. 

 

2.4.2 Optiqua EventLab 

EventLab sensor uses an optical probe that ensures an Early Warning System (EWS) for water 

distribution grid, without the need of reagents or any consumables (Figure 2.11). It can be 

installed and accessed for servicing without interrupting the main flow [102]. This sensor is 

controlled remotely via a web server. EventLab meets four key requirements of an EWS [103]: 

 Continuous real-time detection. 

 Generic, one sensor covering full spectrum of possible chemical contaminants. 

 High sensitivity. 

 Low cost and low maintenance (no consumables). 

 

Figure 2.11. Optiqua EventLab sensor. 

EventLab measures each minute the change in Refractive Index (RI). The RI is an effective 

indicator of water quality. Any substance dissolved in water affects the RI of the water matrix 

[103]. RI has many benefits that ensure an early alert of water contamination. The use of RI 

has a number of advantages for water quality monitoring and the detection of water quality 

incidents [104]: 

 The only generic parameter available: detect all chemical changes, irrespective of their 

nature, while others sensors are sensitive only to a part of the spectrum of contaminants. 

 Consistency in response: the consistence sensitivity of EventLab allows an estimation of 

the order of magnitude of a contamination event. The sensor operates at a sensitivity level 

equivalent to parts per million (ppm) levels for any chemical contaminant [105]. 
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 Response linear with concentration: a linear relationship is maintained between RI and 

the concentration of contaminant [106]. 

 High resistance to matrix interference: with RI, there is no dependence on matrix effects. 

The only factor that can affect the RI is the temperature. Its effect is fully accounted for 

in the compensation mechanism of EventLab system. 

The variation of RI is illustrated by the measurement of variation of phase to which it is 

directly proportional. In a normal drinking water, the RI is quasi-stable as well as the variation 

of phase. A perturbation in the baseline will be analyzed to identify the possible existence of 

contaminant. 

The system is based on the Mach-Zehnder Interferometer (MZI) principle as illustrated in 

Figure 2.12. The basic layout of the MZI consists of an input channel wave-guide that splits 

into two identical branches, which are then combined again to form the output wave-guide 

[107]. 

 

Figure 2.12. Basic Layout of the Optiqua MZI sensor [103]. 

The main output signal of EventLab is the variation of phase ∆Фm (measured) of light 

propagating over the interaction window, given by the following equation [106]: 

                                     ∆Фm= (2π / λ) Lint (əneff/ənwater) ∆nwater   [radians]                   (2.1) 

where λ is the wavelength of the light in vacuum, Lint is the interaction light of the sensing 

window, əneff/ənwater=0.21 and ∆nwater is the refractive index change in the water. With λ=850 

nm and Lint=10 mm and using (eqn 2.1), the refractive index change ∆nwater is given by: 

                                                          ∆nwater=4x10-4 (∆Фm/2π)                                                 (2.2) 

At each time step i, the system measures the phase Ф (i), then its variation is calculated as 

follows: 

                                                     ∆Ф (i) = Ф (i+1)-Ф (i)                                                (2.3) 

In addition to the phase, EventLab measures other parameters that should be monitored 

continuously:  

 Temperature based on Resistance Temperature Detector (RTD). 

 Signal health and signal level as indicators of probe status and the need of maintenance. 

 Response which is the phase corrected after taken into consideration the effect of 

temperature.  

 F24 Response which indicates how much a response value is above or below the average 

of the preceding 24 hours.  
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To ensure correct monitoring, some operating conditions should be verified; a water flow 

of 0.1-0.5 L/min is controlled by flow regulator and generally a pressure of 2 bar adjusted by 

the pressure reduction valve [108]. 

2.4.2.1 Data transmission 

Using a 3G SIM card, a Wireless communication allows a continuous data transmission. A 

GPRS (General Packet Radio Service) modem allows data integration into existing data 

infrastructures [102]. Using a web browser, the system can be controlled remotely through the 

website of Optiqua (https://optiqua.eventlabonline.com). A username and password are 

required to reach the website. Data are displayed in real-time and can be collected in csv file. 

An example of data transmission is illustrated in Figure 2.13. 

 

Figure 2.13. Example of data transmission from EventLab sensor. 

2.4.2.2 Data archiving 

For EventLab sensor, data collecting and archiving were done in the same way as S::CAN, 

using PI system. The tags created are equal to the number of parameters measured. We archive 

12 parameters: the algorithms A1Res, A2Res, A3Res, DetectorA1, DetectorA2 and 

DetectorA3, then F24 Response, phase, Response, signal health, signal level and temperature. 

PI Datalink is used to report data in excel and then analyze the results.  

 

2.4.3 Data Management  

Data can be visualized using PI System Explorer, as a configuration and management tool for 

AF. In PI System Explorer, elements represent either physical or logical entities which can be 

organized in several hierarchies [101]. In Lille demo site, smart water network comprising 

pressure sensors, water meters [93] and water quality sensors are assembled in the group of 

SUNRISE Smart Water. Water quality sensors are divided into two main groups: i) EventLab 

sensor and ii) SCAN sensor, and then each one contains a sub-group referring to the installation 

location. Data are assembled according to their category (real time data or static data) and the 

last added values are displayed (Figure 2.14). 

https://optiqua.eventlabonline.com/
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Figure 2.14. Data in PI System Explorer. 

2.5 Lab pilot (Abdallah thesis, 2015, [5]) 

The feedback of water quality sensors in the online supervision is limited. Since the WDN is 

complex, the performance of sensors should be tested before the installation in real site. For 

this objective, a Lab pilot has been installed previously in the Laboratory of Civil Engineering 

and geo-Environmental (LGCgE). The pilot station reproduces the same conditions of WDN 

in terms of pressure, velocity, materials, etc. [5]. Figure 2.15 illustrates the Lab pilot with the 

different hydraulic components: pipes, tanks, discharge system, injection system of 

contaminants, pumps and other hydraulic equipment. 

The performance of S::CAN and EventLab, installed at 41 m from the injection system, has 

been tested. Two types of contaminants have been injected at different concentrations: i) 

biological (E.Coli and Enterococcus faecalis), ii) chemical (Sodium Hypochlorite NaClO, 

Glyphosate (N-phosphométhyl) glycine C3H8NO5P, Cadmium Chloride CdCl2 and Chloride of 

Mercury HgCl2) [5]. 
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Figure 2.15. Lab pilot for water quality control [5]. 

2.5.1 EventLab response 

The response of EventLab is illustrated by the variation of phase, after taken into consideration 

the effect of temperature. EventLab proves a high efficiency in the detection of chemical 

contaminants, even at low concentrations [5]. Figure 2.16 (a) shows an example of EventLab 

response after the injection of Chloride of Mercury (HgCl2). Peak values have been observed 

when the contaminant reaches the sensor. However, EventLab did not detect microbiological 

contaminants. 

2.5.2 S::CAN response 

For chemical contaminants, S::CAN has proved a good capacity of detection. This is illustrated 

by the augmentation of signals after the injection of contaminations. For microbiological 

contaminants, S::CAN could detect this type from a bacterial concentration of 106 UFC/ml [5]. 

The amplitude of the peak is proportional to the injected concentration, as showed in Figure 

2.16 (b) for E.Coli example.  

  
  (a)                                                                                   (b)                 

Figure 2.16. Sensors response. (a) Variation of phase after the injection of Glyphosate; (b) Variation of 

Turbidity after the injection of E.Coli [5]. 
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2.6 Installation of water quality devices at the demonstration site 

(Scientific Campus) 

To control the water quality in the Scientific Campus, S::CAN and EventLab have been 

installed in the water network. The optimal placement of sensors depends on many factors: 

 Cover the majority of the campus. 

 Compare the water quality in different types of building’s usage. 

 Ease of installation.  

According to these factors, five locations have been prepared for sensors installation (Figure 

2.17):  

 The University residence Bachelard, which is the larger residence in the campus. 

 The engineering school Polytech’Lille. 

 The building SN5, research and teaching building in the biology sector. 

 The building C1, teaching building in the chemical sector. 

 The University Restaurant Barroi. 

 

Because of budget restrictions, devices were only installed in two locations: 

 The engineering school Polytech’Lille. 

 The University Restaurant Barroi. 
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Figure 2.17. Locations of water quality sensors. 

2.6.1 Installation at Polytech’Lille 

Both devices (S::CAN and EventLab) were fixed on one panel and installed in the technical 

room of Polytech’Lille in April 2016. A derivation from the water pipe was used for sensors 

water supply. A check valve is used to prevent a backflow in the main system. Water samples 

used by the devices passes through an evacuation system. The technical room electricity was 

used for the powers supply. Figure 2.18 and Figure 2.19 display some details of the 

installations. 
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(a) 

 

(b) 

Figure 2.18. Sensors at Polytech'Lille. (a) S::CAN; (b) EventLab. 

 

 

(a) 

 

 

 

 

(b) 

Figure 2.19. Installations details at Polytech'Lille. (a) Water supply; (b) Discharge systems. 

2.6.2 Installation at Barroi restaurant 

EventLab was installed in October 2016, while S::CAN was installed in November 2016. The 

installation was conducted following the method used in Polytech’Lille. A main pipeline passes 

near the target location. A connection is taken from this pipe and sensors are placed on it. 

Valves system, ensuring water samples to the sensors, are also fixed on a panel system. Water 

is then evacuated in a discharge. The installation details are showed in Figure 2.20. 
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Figure 2.20. Installations details at Barroi. 

2.6.3 Maintenance and cleaning 

During the exploitation of sensors, it is important to make sure that they are clean. The 

maintenance and cleaning tasks depend on the type of sensors. 

For S::CAN, each probe has a specific procedure to be cleaned according to the 

manufacturer. Cleaning can be done in a periodic basis or in case of error indicated by the 

function check. This procedure requires the use of distilled water and sometimes other liquids 

such as Ethanol or Isopropanol. In particular, the maintenance of Chlori::lyser should be done 

very carefully. It can be divided into two steps [100]: 

 Replacement of Electrolyte every 3-6 months or if the local calibration failed. 

 Replacement of the membrane cap once a year or if the local calibration failed although 

the electrolyte has been replaced.  

The cleaning of Chlori::lyser requires the use of specific materials (Gel-Electrolyte E-507) 

and plastic sheet. Moreover, once it is installed, Chlori::lyser requires a continuous flow 

without any interruption. Figure 2.21 illustrates a part of the cleaning procedure of 

Chlori::lyser. 
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Figure 2.21. Cleaning of Chlori::lyser probe. 

The EventLab probe requires regular maintenance. The water quality condition and the 

nature of installation determine the frequency of maintenance. Its maintenance can be divided 

in two parts: 

 Cleaning of sensors.  

 Need for filter. 

The value of signal strength, monitored continuously, indicates the need of maintenance. If 

the signal health parameter drops below 0.15, the probe needs to be cleaned. If, after many 

cleaning, the signal level parameter remains below 0.15, the probe needs to be replaced.  

The cleaning of EventLab sensor (sensing window) requires the use of many materials: 

cleaning agent, Polyurethane swab and drinking water. Firstly, we open the top cap of the flow 

cell to remove the EventLab sensor. Then, cleaning agent is used to wet the measurement 

surface. The next step consists of rubbing the surface using Polyurethane swab. Finally, it 

should be rinsed using drinking water. After cleaning, we verify that the signal health is 0.5 or 

higher. Figure 2.22 illustrates these different steps of cleaning [108]. 
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Figure 2.22. Cleaning of EventLab sensor [108]. 

Depending on the local water quality, the signal strength can be deteriorate quickly within 

few days. In such case, the use of filter is required [109]. To prevent the accumulation and the 

clopping up of the fluidic system, a filter unit can be used to capture large particles. The pore 

size of the default installed filter cartridge is 1μm, ensuring dissolved components are not 

removed from the sample stream [108]. 

2.6.4 Example of S::CAN measurement 

An example of S::CAN measurement is displayed in Figure 2.23. It illustrates the variation of 

parameters: UV, Turbidity EPA, Turbidity ISO, and TOC in function of time, at Barroi during 

April 2017. The signals are quasi-stable and below the Standards limits.  

 

Figure 2.23. Example of S::CAN measurement at Barroi. 
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2.6.5 Example of EventLab measurement 

Figure 2.24 illustrates an example of EventLab measurement on May 15, 2017 at 

Polytech’Lille. It indicates the variation of two parameters: F24 Response and the signal level 

in function of time. During this period, F24 Response is quasi-constant which indicates normal 

quality of water. Also, the signal level is above the limit value of 0.15. Others parameters can 

be monitored and visualized each minute. 

 

Figure 2.24. Example of EventLab measurement at Polytech. 

2.7 Conclusion 

This chapter presented the demonstration site used in this research for the real-time control of 

the water quality. The drinking water network of the Scientific Campus of the University of 

Lille is used as a support for the demonstration activity. This network was already monitored 

by sensors for water leakage (AMR, pressure sensors). 

For the water quality control, S::CAN and EventLab were installed at two locations in the 

campus. We provided a detailed description of these devices: components, measured 

parameters, principle of measurements, calibration procedure, installations, etc.   

The chapter presented the integrated solution used for the water quality control: data 

acquisition, data transmission, data storage, processing and visualization. The chapter 

presented also the maintenance of the installed devices. Examples of recorded results with 

S::CAN and EventLab were presented. They show that the monitoring system operates well. 

The analysis of sensor’s data for early detection of abnormalities is presented in the 

following chapters. Different event detection methods will be applied to these data to prevent 

rapidly any contamination.
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 Analysis of Water Quality Signals in Lille Demo Site   

3.1 Introduction 

This chapter presents a detailed analysis of water quality signals at the Scientific Campus of 

the University of Lille. It is divided in two main parts: i) S::CAN signals and ii) EventLab data. 

In the first part, the methodology used for signals analysis will be described. S::CAN data 

will be firstly compared with laboratory analyses results to validate the measurements. The 

relationship between the different S::CAN parameters will be evaluated using the correlation 

matrix. Different critical periods are chosen to describe the variation of S::CAN data at both 

locations (Polytech’Lille and Barroi). The continuous analysis allows the identification of some 

abnormalities that affect the water quality signals. The detected deviations should be 

interpreted to define the reason of abnormality and the potential occurrence of event in water. 

Data measured are compared between the two installation sites to verify the importance of 

sensor placement. 

The second part will describe data monitored by EventLab sensor. The variation of phase as 

well as F24 Response will be analyzed during different periods. Signal health and signal level 

are controlled to test the probe performance. An example of an event recorded by EventLab 

will be presented. 

A comparison between the measurements of S::CAN and EventLab will allow to explore 

their reliability as well as their limitation. 

3.2 Analysis of S::CAN records  

3.2.1 Methodology of analysis  

Several research have proved the feasibility of using sensor data for the early detection of water 

contamination. A correlative response between the change in water quality parameters and the 

presence of contaminant in water has been verified in various studies [110]. 

S::CAN sensor measures, each minute, multiple water quality parameters. Each parameter is 

represented by a signal. For a safe drinking water, signals should be below the Standards 

thresholds.  

Figure 3.1 illustrates an example of S::CAN measurements at Barroi. It indicates different 

water signals below the acceptable limits; each stable line refers to an indicator parameter. 

Therefore, any intrusion in the water system could induce deviation from the baseline. An 

abnormality in water quality is generally illustrated by an increase in S::CAN parameters (UV, 

Turbidity, etc.) and a decrease in Chlorine concentration. Figure 3.2 shows an example of data 

collected at Polytech, where peaks in UV, Turbidity and TOC are coupled with a decrease in 

the Chlorine level.  

However, it is important to distinguish normal variation from that due to water quality 

degradation. Many factors could cause perturbations in water signals: contaminations, 

connections issues, etc. The analysis of deviation should identify the type of unexpected values 

according to three classes: outlier, event, baseline change (detailed in Chapter 2).  
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Figure 3.1. Example of stable S::CAN signals. 

 

Figure 3.2. Example of deviations of S::CAN signals. 

The water quality system could suffer from faults due to the sensor or to data transmission 

problems. When data is missed from a time step, an “Error” status is indicated by S::CAN. The 

absence of measurement will generate an alarm to solve the problem of data loss. A case of 

data missing is illustrated in Figure 3.3. It indicates a measurement interruption on May 29, 

2017 between 4:17 and 4:59 pm. 
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Figure 3.3. Loss of S::CAN data at Polytech'Lille on May 29, 2017. 

3.2.2 Data Validation: Laboratory Analyses and Calibration 

In order to validate the measurements of S::CAN sensor, laboratory analyses were conducted 

on water samples collected from the two locations: Polytech’Lille and Barroi. Samples are 

taken on February 7, 2017 and on February 27, 2017. Laboratory tests included: 

 Microbiological analysis concerning microorganisms such as Escherichia Coli and 

Intestinal Enterococci. The presence of microorganisms is directly correlated with a low 

amount of Free Chlorine induced generally by biofilm growth.   

 Physico-chemical analyses concerning TOC, DOC, pH, Turbidity, absorbance UV 254, 

and Conductivity. 

 Total and Free Chlorine 

 Anions tests concerning Nitrates and Sulfates. 

 Cations tests concerning Sodium and Ammonium. 

 Metals tests concerning Aluminum, Iron, Arsenic, Copper and Manganese. 

Table 3.1 gives the results of laboratory tests at both locations. The comparison with 

Standards values indicates satisfactory microbiological and physico-chemical results [111]. 

Results obtained from laboratory analyses were compared to S::CAN data. 

Table 3.1. Laboratory analyses results at Polytech'Lille and Barroi [111]. 

TYPE OF TEST 
Laboratory Results 

Standards 
07/02/2017 27/02/2017 

OBSERVATION-IN-SITU Polytech Barroi Polytech Barroi   

Water temperature (°C) 11,9 11,2 13,1 11,4 29 

MICROBIOLOGICAL           

Intestinal enterococci (UFC/100ml) <1 <1 <1 <1 0 

Coliform bacteria (UFC/100ml) <1 <1 <1 <1 0 

Escherichia Coli (UFC/100ml) <1 <1 <1 <1 0 

Germs revivable at 36 ° C, 44h 

 (without dilution) (UFC/ml) <1 <1 <1 2   

Germs revivable at 22 °C, 68h <1 <1 <1 <1   
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 (without dilution) (UFC/ml) 

Spores of anaerobic bacteria sulfite-reducing 

(UFC/ ml) <1 <1 <1 <1 0 

RESIDUAL DISINFECTANTS           

Total Chlorine (in situ) (mg/l) 0,26 0,21 0,27 0,28   

Free Chlorine (in situ) (mg/l) 0,22 0,13 0,16 0,117   

ORGANOLEPTIC TESTS           

Appearance / Color limpid limpid limpid limpid   

Color (visual examination) absence absence absence absence   

Odor / flavor at 25 ° C 1 1 1 1 3 

PHYSICO-CHEMICAL           

 Total Organic Carbon (TOC) (mg/l) 1,5 1,5 1,3 1,4 2 

Dissolved Organic Carbon (DOC) (mg/l) 1,5 1,5 1,3 1,3   

pH 7,5 7,5 7,4 7,5 6.5-9 

Temperature of pH measurement (° C) 17,3 17 16,7 16,4   

Turbidity (NFU) 0,9 0,61 0,33 0,45 2 

UV (at 254 mm) (u.abs) <0.001 <0.001 <0.001 <0.001   

Conductivity (at 25 ° C) (µS/cm) 857 852 883 885 200-1100 

Anion           

Nitrates (mg/l) 15,8 15,9 11,8 12,2 50 

Sulfates (mg/l) 150 144 130 132 250 

Cation           

Sodium (mg/l) 44,04 43,91 42,47 42,81 200 

Ammonium (mg/l) <0.05 <0.05 0,08 0,06 0,1 

METALS           

Aluminum (μg/l) <5 8 10 10 200 

Iron (μg/l) 57 79 98 166 1mg/l 

Arsenic (μg/l) <1 <1 <1 <1 10 

Copper (μg/l) 1,9 1,7 2,5 2,4 1mg/l 

Manganese (μg/l) 1,64 2,87 2,67 3,1 50 

 

Figure 3.4 shows results of comparison between S::CAN records and laboratory analyses. 

Since S::CAN is controlled to give data each minute, an average value (during one hour) is used 

to make the comparison with laboratory data. The relative error is calculated as follows: 

                           𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑆𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎−𝐿𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑦 𝑑𝑎𝑡𝑎|

𝐿𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑦 𝑑𝑎𝑡𝑎
 𝑥 100                                 (3.1) 

Figure 3.4 indicates: 

 A good agreement between S::CAN data and laboratory results for some parameters such 

as pH (error less than 3 %). 

 A small error (less than 10 %) for Conductivity and Temperature 

 Significant error for parameters such as Chlorine and TOC (error between 20 and 40%). 
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(a)                                                                                      (b) 

Figure 3.4. Laboratory comparison. (a) Polytech'Lille; (b) Barroi. 

For Turbidity, the difference between laboratory results and S::CAN measurement is major. 
Table 3.2 gives the Turbidity recorded by S::CAN in different units (ISO and EPA) as well as 

the laboratory value. Since laboratory results are significantly lower than those measured by 

S::CAN, calibration for Turbidity parameter is needed. 
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Table 3.2. Comparison of Turbidity values between S::CAN and Laboratory analyses. 

 TurbidityISO_S::CAN (FTU) TurbidityEPA_S::CAN (NTU) TurbidityISO_Lab (NFU) 

Polytech_Jan 7 2,10 1,10 0,90 

Polytech_Jan 27 2,40 1,95 0,33 

Barroi_Jan 7 0,15 0,15 0,61 

Barroi_Jan 27 0,23 0,24 0,45 

 

Calibration of S::CAN was conducted as follows: 

 For Conductivity and Free Chlorine, we calculate the correction factor: quotient between 

laboratory and S::CAN data. Table 3.3 (a) indicates an average factor of 1.2 for Chlorine 

at Polytech’Lille. 

 For i::scan parameters (Turbidity, TOC, and DOC), we calculate the corresponding offset: 

difference between laboratory and S::CAN data. Table 3.3 (b) shows an average offset of 

0.5 for TOC at Barroi. 

Table 3.3. Adjustments calculation. (a) Chlorine at Polytech'Lille; (b) TOC at Barroi. 

                         (a)                                                                                (b) 

 

Chlorine_Polytech (mg/l) 

Date S::CAN Laboratory factor  

07/02/2017  0,16 0,22 1,4 

27/02/2017  0,15 0,16 1,1 

Average 1,2 

                           

TOC_Barroi  (mg/l) 

Date S::CAN Laboratory offset 

07/02/2017  0,9 1,5 0,6 

27/02/2017  1 1,4 0,4 

Average  0,5 

Based on the calculated offset and correction factor for each parameter, the calibration was 

conducted at both locations on April 10, 2017. After calibration, S::CAN data became closer 

to laboratory results. An example is illustrated in Figure 3.5. The Turbidity EPA, at 

Polytech’Lille (Figure 3.5 (a)), is reduced from an average about 1.4 NTU to 0.6 NTU to fit 

with laboratory tests. However, TOC value increased from an average of 0.9 mg/l to 1.5 mg/l, 

at Barroi (Figure 3.5 (b)). 

  
          (a)                                                                                        (b) 

Figure 3.5. Comparison of signals before and after calibration. (a) Polytech’Lille; (b) Barroi. 
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3.2.3 Correlation between measured parameters 

In order to find the relationship between measured parameters of S::CAN, the Pearson 

coefficient 𝜌 is calculated. It measures the strength of linear relationship between paired values 

and can vary between -1 and 1. Positive coefficient indicates that if one variable increases the 

other has a tendency to increase and inversely. Negative correlation denotes that the two data 

vary in opposite direction. A coefficient 𝜌 close to 0 indicates that there is no linear correlation. 

The closer the value 𝜌 is to 1 or -1, the stronger the linear correlation [112]. Table 3.4 gives 

the correlation coefficients for S::CAN data at Polytech’Lille during January 2017 (data 

variation given in Figure 3.9). It indicates a Pearson coefficient higher than 0.8 between UV, 

Turbidity (ISO and EPA), TOC and Color. For these parameters, 𝜌 is close to 0 with 

Temperature, Conductivity, pH and Chlorine. Negative coefficient is observed between 

Temperature and Conductivity (-0.15).  

Table 3.4. Correlation coefficients for S::CAN parameters at Polytech'Lille. 

Polytech 

Parameters 

UV 

(Abs/m) 

Turbidity 

ISO 

(FTU) 

Turbidity 

EPA 

(NTU) 

TOC 

(mg/l) 

Color 

(Hazen) 

Tempe-

rature 1  

(° C) 

Conductivity 

(µS/cm) 

Tempe-

rature 2  

(° C) 

pH 

Free 

Chlorine 

(mg/l) 

UV (Abs/m) 1 0,87 0,88 0,95 0,81 -0,01 0,06 0,00 0,03 0,06 

Turbidity ISO 

(FTU) 0,87 1,00 0,99 0,86 0,93 -0,07 0,04 -0,07 0,06 0,08 

Turbidity EPA 

(NTU) 0,88 0,99 1,00 0,87 0,93 -0,06 0,04 -0,06 0,09 0,09 

TOC (mg/l) 0,95 0,86 0,87 1,00 0,80 -0,05 0,07 -0,03 0,03 0,05 

Color (Hazen) 0,81 0,93 0,93 0,80 1,00 -0,06 -0,02 -0,08 0,06 0,05 

Temperature 1 

 (° C) -0,01 -0,07 -0,06 -0,05 -0,06 1,00 -0,15 0,99 0,08 0,24 

Conductivity 

(µS/cm) 0,06 0,04 0,04 0,07 -0,02 -0,15 1,00 -0,14 

-

0,29 0,20 

Temperature 2  

(° C) 0,00 -0,07 -0,06 -0,03 -0,08 0,99 -0,14 1,00 0,05 0,21 

pH 0,03 0,06 0,09 0,03 0,06 0,08 -0,29 0,05 1,00 0,00 

Free Chlorine 

(mg/l) 0,06 0,08 0,09 0,05 0,05 0,24 0,20 0,21 0,00 1,00 

 

To analyze these results, the correlation matrix is given in function of regression coefficient 

𝑅2 (or coefficient of Determination). 𝑅2 values are between 0 and 1. It indicates how close the 

data are to a fitted regression line. Figure 3.6 illustrates the correlation matrix of S::CAN 

parameters. It gives the correlation equation and coefficient for paired data. It shows that: 

 For UV, 𝑅2 ≥ 0.66 with Turbidity (ISO and EPA), TOC and Color while 𝑅2 tends to 0 

with Temperature, Conductivity, pH and Chlorine. 

 For Turbidity (ISO and EPA), 𝑅2 ≥ 0.74 with UV, TOC and Color. As for UV, 𝑅2 is 

close to 0 with the remaining parameters. 

 For TOC and Color, 𝑅2 ≥ 0.63 with UV, Turbidity (ISO and EPA) and Color. 

 For Temperature 1 and 2, 𝑅2 is close to 1, while 𝑅2 between Temperature and all other 

parameters is approximately null. 

 For Conductivity, pH and Free Chlorine, 𝑅2 is very close to 0 with all parameters. 

Analysis of the correlation matrix allows to divide S::CAN parameters into three main 

categories: 

 Category 1: including UV, Turbidity (ISO and EPA), TOC and Color parameters. The 

regression factor between these parameters is higher than 0.66. In this category, a strong 
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correlation is observed between UV and TOC (𝑅2 = 0.9) and between Turbidity ISO 

and Turbidity EPA (𝑅2 ≈ 1). 

 Category 2: for Temperature 1 and Temperature 2 (𝑅2 ≈ 1). The only linear relation for 

this category is between the two measurements of Temperature (by i::scan and 

Condu::lyser). 

 Category 3: including Conductivity, pH and Free Chlorine parameters. There is no linear 

relationship between each of this parameter and others S::CAN data. 

 

Figure 3.6. Correlation matrix for S::CAN parameters at Polytech'Lille. 
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3.2.4 Data Analysis 

3.2.4.1 Polytech and Barroi- December 2016 till October 2017 

Figure 3.7 shows the variation of different S ::CAN data at Polytech’Lille, for the period 

between December 2016 and October 2017. During this period, the majority of signals did not 

exceed the threshold limits. However, different deviations from the stable lines are observed. 

For i::scan parameters (UV, Turbidity and TOC), all instantaneous exceeding of 5 units is 

considered as outlier, due to measurement errors. It should be mentioned that the term “units” 

is related to the corresponding unit of measurement for each parameter (Abs/m, NTU, mg/l, 

etc.). More significant events, that last for several hours, have been detected during this period 

(for example in September 2017). Parameters, such as pH, Temperature and Conductivity, 

show less deviations than UV, Turbidity and TOC. For Chlorine, different problems in 

measurement have occured during the monitoring period.  

Figure 3.7 indicates also a change of the baseline for many parameters due to calibration 

adjustments on April, 10. Signals become more stable between April and October, 2017. A loss 

of data is observed between March and April, 2017.  

The variation of S::CAN parameters, between December 2016 and October 2017, at Barroi, 

is given in Figure 3.8. Although some deviations were recorded, signals are more stable than 

those measured at Polytech.  

An adjustment of measured values is observed after the calibration done on April, 10, 

especially in Turbidity, TOC and Conductivity signals. An augmentation in Temperature is 

noticed after May 2017 but it remains always less than 20 ° C. As for Polytech, pH is constant 

during the monitoring period. The variation of Chlorine is quasi-stable (between 0 and 0.1 

mg/l). 

The list of events, their date of occurrence, their characteristics as well as the analysis of the 

reason of abnormalities detected, during this period, will be detailed below. 

 

Figure 3.7. S::CAN data at Polytech'Lille. 
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Figure 3.8. S::CAN data at Barroi restaurant. 

3.2.4.2 Polytech-January 2017 

An example of data collected by S::CAN at Polytech during January 2017 is given in Figure 

3.9. Data missing is observed on January, 22. Connection problems induce this loss of data. 

The figure shows that: 

 The TOC profile remains below the maximum limit of 2 mg/l, with an average of 0.7 

mg/l. During the nights and weekends, the signal can be considered as totally stable. 

However, some perturbations have been observed at the morning when the water flow 

increases. The TOC profile is strongly correlated with UV variation (1.6 Abs/m as 

average value of UV) with 0.95 as correlation coefficient. 

 The Turbidity profile is less constant in comparison with other signals. Different 

deviations (outliers/events) were detected, especially before January, 22. However, the 

average Turbidity remains acceptable, around 1 NTU. 

 The average Temperature is 12.2 °C, with a standard deviation of about 0.5 °C. All values 

of temperature are below the limit of 15 ° C. 

 The pH signal is quasi-constant (7.3) between (6.5) and (8.5). 

 The Chlorine signal is very close to the limit of 0.2 mg/l. The variation of Chlorine 

concentration depends on the consumption value but it can be considered as acceptable. 

 The Conductivity signal is around 800 µS/cm with a standard deviation of 10 µS/cm. It 

remains between the accepted limits of 200 and 1100 µS/cm. 
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Figure 3.9. S::CAN data during January 2017 at Polytech’Lille. 

3.2.4.3 Barroi-December 2016. 

Figure 3.10 illustrates the variation of S::CAN parameters during December 2016 at Barroi 

restaurant. The figure also reports the threshold recommended by the WHO. It indicates that: 

 The UV profile is constant with an average of 1.8 Abs/m. 

 The Turbidity signals are relatively stable and below the threshold of 1 NFU. The 

measurements in two units ISO and EPA are similar with an average of 0.1 NFU.  

 The amount of organic substances is illustrated by the measurements of TOC and DOC 

(average 0.8 mg/l). The two corresponding signals are similar and approximately equal. 

The variation of both TOC and DOC are quasi-stable, with a standard deviation around 

0.070 mg/l. Although the signals of UV, TOC, DOC and Turbidity are quasi-stable, a 

significant deviation is observed on December, 12. This event is illustrated by a peak of 

parameters from the stable lines. 

 The temperature is around 12 ° C. It has few regular variation till December, 17, and 

becomes more stable between December 17, 2016 and December 31, 2016 (during 

Christmas holidays). 

 The pH signal is considered stable without any deviation. The average value is 7.3 

between the Standards of 6.5 and 8.5. 

 The amount of Chlorine is smaller than the limit of 0.2 mg/l. The average value is 0.1 

mg/l. 

 The reference line of Conductivity is relatively constant (average value 810 µS/cm). The 

measurement does not exceed the upper limit of 1100 µS/cm. 
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Figure 3.10. S::CAN data during December 2016 at Barroi. 

3.2.4.4 Polytech and Barroi-June 2017. 

The variation of multiple i::scan data during June 2017 at Polytech’Lille is given in Figure 

3.11. During this period, an outlier is observed on June, 11. A very high deviation of signals is 

detected. However, this large variation is instantaneous; it can be due to some faults in data 

measurement or transmission. Since signals returned rapidly to quasi-stable values, this outlier 

should not generate an urgent alarm. A check up for the functionality of the sensor is required 

in this case. 

In addition to the outlier, an event is detected between June 6 and June, 8. It is characterized 

by a significant increase in i::scan parameters. The amplitude of augmentation is around 1 unit 

and it lasts many hours. This event could indicate a potential variation in the water quality. 

Figure 3.11 shows also a clear difference in signals in the Week of June 12, 2017 (as indicated 

in the curly brackets). The variation of S::CAN data (UV, Turbidity and TOC), during this 

week, is illustrated in Figure 3.12. The shape of graphs differs between workdays and weekend. 

Signals are more stable during weekend and more disturbed in workdays (especially at 8 am). 

This difference could be attributed to the low consumption during the weekend. From Monday 

till Friday, the water is more consumed by students and employees, which implies more 

disturbance in water quality; when the flow increases, suspended matters can be released from 

aging water pipes. This intrusion appears in the increase of indicator parameters (UV, Turbidity 

and TOC). This phenomenon is not observed during weekend because the University is 

generally closed, and the consumption is reduced.  

 

 

01/12/16 07/12/16 15/12/16 22/12/16 31/12/16

4

6

8

10

12

14

Date

S
::

C
A

N
 p

a
ra

m
e
te

rs
 

 

 

600

650

700

750

800

850

900

950

C
o
n
d
u
c
ti
v
it
y
 (

u
S

/c
m

)

UV(Abs/m) TurbidityISO(FTU) TurbidityEPA(NTU) TOC(mg/l) DOC(mg/l) Temperature(°C) pH Chlorine(mg/l) Conductivity(uS/cm)

15 °C

8.5

2mg/l

1NTU

0.2mg/l



Chapter 3.  Analysis of Water Quality Signals in Lille Demo Site 

 

84 
 

 

Figure 3.11. S::CAN data during June 2017 at Polytech’Lille. 

 

Figure 3.12. S::CAN data on the week of June 12, 2017 at Polytech’Lille.  

The signals of i::scan at Barroi are given in Figure 3.13. Some events have been detected, 

such as the abnormality observed on June, 7. However, the duration and the amplitude of this 

event are more important at Polytech than at Barroi.  

The variation of signals, between June, 12 and June, 19, is illustrated in Figure 3.14. 

Although the difference is not obviously clear as for Polytech, signals at Barroi remain more 

stable during the weekend in comparison with workdays. From Monday till Friday, parameters 

01/06/17 07/06/17 15/06/17 23/06/17 30/06/17
0

2

4

6

8

Date

S
::
C

A
N

 p
a
ra

m
e
te

rs
 

 

 

UV (Abs/m) Turbidity (NTU) TOC (mg/l)

Outlier

Event

12-June 13(08:00) 14(08:00) 15(08:00) 16(08:00) 17(08:00) 18(08:00) 19-June
0

1

2

3

4

Date 

S
::
C

A
N

 p
a
ra

m
e
te

rs

 

 

UV (Abs/m) Turbidity (NTU) TOC (mg/l)

Mon Tue Thu Fri Sat Sun Mon

WeekendWorkdays

Wed



Chapter 3.  Analysis of Water Quality Signals in Lille Demo Site 

 

85 
 

profile show low perturbations. These profiles become generally constant during weekend 

when the restaurant is closed. 

The comparison of the two locations indicates that signals at Barroi are more stable than 

those at Polytech, even during workdays. This can be explained by the fact that the 

consumption of water in the University is usually greater than that at the restaurant. This is 

illustrated in water quality signals of S::CAN sensor. 

 

Figure 3.13. S::CAN data during June 2017 at Barroi. 

 

Figure 3.14. S::CAN data on the week of June 12, 2017 at Barroi. 
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3.2.4.5 Polytech and Barroi-May 3, 2017 

An example of the daily variation of S::CAN parameters is given on May 3, 2017. Figure 3.15 

(a) shows the variation of S::CAN parameters on the third of May at Polytech’Lille. During 

this day, no major event has been detected. Most of signals are quasi-constant with slight 

deviation from the baseline. Among the measured parameters: UV, Turbidity, TOC and Color 

remain lower than 5 units. pH and Temperature can be considered stable with value around 7.2 

and 14 ° C, respectively. For Conductivity, values vary in the interval [850-900] µS/cm.  

To take into account the magnitude of each parameter, analysis can be done for each group 

separately. Figure 3.15 (b) indicates the variation of several parameters. It shows that: 

 At 8:00 am, an increase is observed in all signals during 1 hour. For UV, Turbidity and 

TOC, the average deviation is 0.2 units, while for Color, the variation is about 1 Hazen.  

 At 2:00 pm, UV, Turbidity, TOC and Color deviate of 0.5 units from the stable lines for 

about 1 hour. 

 At 9:30 pm, a very small increase (around 0.1 units) in UV and TOC signals is coupled 

with a decrease in Turbidity data. The augmentation in Color signal is more important 

(about 0.5 Hazen). 

Figure 3.15 (c) illustrates the variation of Conductivity on May 3, 2017. A decrease is 

observed at 4:00 am with an amplitude of 20 µS/cm. This deviation takes about 4 hours. 

Another variation occurred at 9:30 pm for about 1hour 30 minutes, with a deviation of 5 µS/cm. 
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(b)  

 

(c) 

Figure 3.15. S::CAN data on May 3, 2017 at Polytech'Lille. (a) All measured parameters; (b) i::scan parameters; 

(c) Variation of Conductivity.  

Figure 3.16 gives the signals of multiple water quality parameters on May 3, 2017 at Barroi. 

A very small deviation from the baseline is observed around 8:30 am. This increase is observed 

in UV, Turbidity and TOC signals. A decrease in Conductivity signals precedes this 

augmentation of i::scan parameters. The deviation in the morning, is much more important at 
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Polytech than at Barroi. Other signals, such as pH, Temperature and Chlorine are generally 

more stable. 

 

Figure 3.16. S::CAN data on May 3, 2017 at Barroi. 

3.2.4.6 Statistical Analysis 

A statistical analysis is conducted for different S::CAN parameters during three days in 2017: 

May, 3, April, 22 and June, 5 at Polytech’Lille. At each day, the average, standard deviation as 

well as the maximum and minimum and the normal variation (�̅� ± 3𝜎) are calculated. The 

results are shown in Table 3.5. It indicates similar results during these three days. The average 

of most parameters is below the thresholds (detailed in Chapter 1). The Standard deviation is 

relatively small for most of parameters except for Conductivity which could have significant 

standard deviation (reaches 13 µS/cm on June, 5). The maximum and minimum values 

determine the upper and lower bounds for each parameter and remain generally between the 

limit of normal variation (�̅� ± 3𝜎). 

Table 3.5. Statistical Analysis for S::CAN data at Polytech'Lille. 

 UV (Abs/m) Turbidity ISO (FTU) Turbidity EPA (NTU) 

  
April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

Average 1,8 1,7 1,7 2,4 2,4 2,4 0,6 0,6 0,7 

Standard 

deviation 
0,094 0,08 0,100 0,072 0,042 0,026 0,071 0,044 0,031 

Max 2,1 2,3 1.9 2,7 2,8 2,6 0,9 1 0,8 

Min 1,6 1,5 1,5 2,3 2,3 2,4 0,5 0,6 0,6 

�̅� +3𝝈 2,1 1,9 2,0 2,6 2,5 2,5 0,8 0,7 0,8 

�̅� -3𝝈 1,5 1,5 1,4 2,2 2,3 2,4 0,4 0,5 0,6 
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 TOC (mg/l) Temperature 1 (° C) Temperature 2 (° C) 

  

April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

Average 1,3 1,3 1,3 14,2  14,4 17,2 14,1 17,3 1,0 

Standard 

deviation 
0,048 0,039 

0,046 
0,095 0,048 

0,166 
0,065 0,064 0,186 

Max 1,5 1,5 1,4 14,4 14,6 17,4 14,3 14,3 17,6 

Min 1,2 1,2 1,2 14,1 14,2 16,4 13,9 14 16,5 

𝑿 ̅ +3𝝈 1,4 1,4 1,4 14,5 14,5 17,7 14,3 14,4 17,9 

�̅� -3𝝈 1,2 1,2 1,1 13,9 14,3 16,7 13,9 14 16,8 

 

 Color (Hazen) pH Conductivity (µS/cm) 

  

April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

April 22, 

2017 

May 3, 

2017 

June 5, 

2017 

Average 4,2 5 6,4 7,3 7,2 7,1 882,9 882,7 885,6 

Standard 

deviation 
0,375 0,264 

0,169 
0,013 0,013 

0,012 
5,308 4,84 

13,021 

Max 5,6 7,3 7,1 7,3 7,3 7,2 892 890 912 

Min 3,7 4,7 6,0 7,3 7,2 7,1 874 864 848 

 5,3 5,8 6,9 7,3 7,2 7,1 898,8 897,2 924,7 

 3,1 4,2 5,9 7,3 7,2 7,1 867,0 868,2 846,5 

 

3.2.5 Analysis of detected events 

3.2.5.1 Effect of hydraulic parameters 

 Consumption 

Figure 3.17 shows data collected by S::CAN at Polytech during February 2017. Although the 

signals are quasi-constant, some events have been detected during this period. To identify the 

source of these deviations, the consumption profile was plotted for the same period. A strong 

correlation is observed between the peaks of water quality parameters and the increase in the 

consumption profile. During night, the consumption is very low and signals are considered as 

relatively stable. In the morning, the flow increases due to the consumption (at around 8:00 

am). The sudden augmentation in the flow induces the extraction of particles from the aging 

water pipes. The release of deposits is followed by an increase in the water quality parameters 

(such as UV, Turbidity, etc.). The deviation of these parameters from the stable line indicates 

the presence of suspended matters.  

 

�̅� +3𝝈 

�̅� -3𝝈 
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Figure 3.17. Data recorded at Polytech’Lille during February 2017. 

 Pressure 

Figure 3.18 illustrates the variation of S::CAN data, with hydraulics parameters (pressure and 

consumption), from May 21, 2017 till June 1, 2017 at Polytech’Lille. A significant event has 

been detected between May, 28 and May, 29. It is characterized by a large deviation of water 

quality parameters (UV, Turbidity, TOC, etc.) with an amplitude of 2 units. To analyze the 

origin of this event, the consumption and the pressure profiles are plotted during this period. 

As indicated in the black rectangle of Figure 3.18, the augmentation of water quality parameters 

is preceded by a sudden variation of the pressure. On May, 28 around 4:00 pm, a large deviation 

is observed in the pressure profile. The pressure drop could result from network interventions. 

 The important diminution of pressure is followed by a sudden extraction of suspended 

matters from water pipes. The peaks of water quality parameters illustrate the deposits release 

resulting from this pressure variation. These peaks coincided also with a flow increase. This 

event remains till May, 29 around 2:00 pm. After this period, the water quality parameters 

returned to standard variations.  

Figure 3.19 gives the data recorded at Barroi for the same period (Week of May, 21). The 

same phenomenon is observed on May, 28. The sudden variation in pressure profile is followed 

by an increase in water quality parameters of around 1.2 units. This event appears clearly at 

Barroi from 4 am, while it was observed from 12 am at Polytech. 

A good correlation is observed between hydraulic parameters (consumption and pressure) 

and water quality parameters. A variation in consumption or pressure profile can induce an 

increase in the values of indicators parameters. The extraction of suspended materials from 

water pipes explains this relation between consumption and/or pressure and water quality 

signals. 

01/02/17 07/02/17 14/02/17 21/02/17 01/03/17
0

1

2

3

4

5

6

7

Date

S
::

C
A

N
 p

a
ra

m
e

te
rs

 

 

UV (Abs/m) Turbidity (NTU) TOC (mg/l) Consumption (m
3
/h)



Chapter 3.  Analysis of Water Quality Signals in Lille Demo Site 

 

91 
 

 

Figure 3.18. S::CAN data with hydraulic parameters on the week of May 21, 2017 at Polytech’Lille. 

 

Figure 3.19. S::CAN data with hydraulic parameters on the week of May 21, 2017 at Barroi restaurant. 

3.2.5.2 Network interventions  

In addition to events correlated with hydraulic parameters, other factors can induce 

perturbations in the water quality signals. Figure 3.20 illustrates the variation of the water 

quality parameters on October 20, 2017 at Polytech. An event occurred observed at 1:00 pm. 
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It is characterized by significant deviation of UV, Turbidity and TOC. The event remains for 

approximately 2 hours with a mean amplitude of 3 units.  

During renovation works at block D in Polytech’Lille, “a pipe pulling on the primary 

network of drinking water passing through the construction site” required the intervention on 

the network for repair actions on October, 20 around 1 pm. 

This intervention is correlated with meaningful peaks of water quality parameters. Repair 

actions can be the source of anomaly in water, especially the presence of microorganisms or 

the germs development. UV, Turbidity and TOC are affected by such intrusion in water. The 

augmentation of their values can be explained by the network intervention.   

 

Figure 3.20. S::CAN data on October 20, 2017 at Polytech'Lille. 

Figure 3.21 shows another example of the effect of network intervention on the water quality 

variation. It indicates three events, which occurred during the last week of September 2017. 

During this week, multiple “water interruption” occurred at Polytech’Lille during the 

construction works of block D. “Water interruption” has been illustrated by the deviation of 

water quality parameters. The event on September, 25 has a low amplitude and ends after few 

hours. The event on September, 28 can be interpreted as outlier, since the amplitude is very 

high, but the deviation is instantaneous. The major event occurred on September, 30. This 

event, of amplitude 1 unit, began on September, 29 at 10:00 pm and remained till September, 

30 at 1:00 pm.  
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Figure 3.21. S::CAN data on the Week of September 24, 2017 at Polytech'Lille. 

3.2.5.3 Effect of Temperature 

Figure 3.22 gives the variation of UV, Turbidity and TOC between June 15, 2017 and June 25, 

2017 at Polytech’Lille. An event occurred on June 20, 2017. A significant increase is observed 

in the profiles of S::CAN data. This variation in the water quality is also detected at Barroi 

(Figure 3.23). At Polytech’Lille, the deviation began around 3:00 am with an average 

amplitude of 1.5 units, while at Barroi, the event is observed from 7:00 am with an average of 

0.7 units. On June 21, 2017, signals returned to their normal variations. 

During this period, a “heat wave” has taken place in Villeneuve d’Ascq. An augmentation 

of the ambient temperature is noticed. This change in temperature could have an impact on the 

functionality of sensors. This event highlights the importance of the operating conditions of the 

sensor. The room temperature should not be very high nor too low, in order to ensure correct 

control of the water quality parameters. 
 

 

24/09/17 25/09 26/09 27/09 28/09 29/09 30/09 01/10/17
0

5

10

15

20

Date

S
::
C

A
N

 p
a
ra

m
e
te

rs
 

 

 

UV (Abs/m) Turbidity (NTU) TOC (mg/l)

29/09 22:00 30/09 13:00
0

5

28/09 12:00 29/09 20:00
0

5

10

25/09 06:00 25/09 14:00
0

7



Chapter 3.  Analysis of Water Quality Signals in Lille Demo Site 

 

94 
 

 

Figure 3.22. S::CAN data between June 15, 2017 and June 25, 2017 at Polytech'Lille. 

 

Figure 3.23. S::CAN data between June 15, 2017 and June 25, 2017 at Barroi. 

3.2.5.4 Unknown anomaly 

The variation of multiple S::CAN parameters between October 10, 2016 and October 30, 2016 

at Polytech is given in Figure 3.24. A large deviation has been observed in October 2016. This 

event began on October, 14 at around 12:00 pm and remained till October, 30. During this 

period, the reference lines for all signals deviated significantly. For UV, the maximum 
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deviation is about 12 Abs/m while for Turbidity and TOC, the variation is around 6 units. This 

anomaly indicates a major intrusion in water. The c ause of this abnormality is unknown. After 

October, 30, data recovered normal values. 

 

Figure 3.24. Event detected on October 14, 2016 at Polytech'Lille. 

3.2.5.5 List of events 

Table 3.6 reports significant events recorded during the monitoring period in 2016 and 2017. 

It indicates that the increase in consumption, each day at 8:00 am, is followed by an increase 

in the water quality parameters, especially at the University.  

In addition to the variation correlated with the flow increase, deviations from the stable lines 

are observed. The reason of each event is indicated in Table 3.6. These variations are illustrated 

clearly in the deviation of some specific parameters: UV, Turbidity, TOC and Color. 

However, these interpretations cannot certify that a real contamination, due to the presence 

of pollutant, has occurred. The perturbations in signals indicate only that an anomaly occurred 

in water. The online analysis contributes to understand the cause of these deviations.  

Table 3.6. List of events detected during the monitoring period. 

Date of event Reason Locations 

Every day at 8 am Consumption increase Polytech  

October 14, 2016 Unknown Polytech 

May 28 and May 29, 

2017 

Sudden and large deviation 

of pressure  

Polytech and 

Barroi 

June 20, 2017 "Heat wave" 
Polytech and 

Barroi 

Week of September 

24, 2017 
"Water interruption" Polytech 

October 20, 2017 Repair actions  Polytech 
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3.2.6 Comparison of data recorded at Polytech’Lille and Barroi 

Figure 3.25 illustrates S::CAN data for the period between July 23, 2017 and July 30, 2017 at 

Polytech’Lille and Barroi. It indicates that: 

 Figure 3.25 (a): Turbidity profiles are very similar at both locations, except some peaks 

detected at Polytech’Lille. 

 Figure 3.25 (b): TOC data have the same order of magnitude (between 1.5 and 2 mg/l).  

 Figure 3.25 (c): the shape of Conductivity variation is the same at both locations. 

However, a difference in the measured value is observed. Conductivity, recorded at 

Polytech, is higher by 50 µS/cm from that at Barroi. 

 Figure 3.25 (d): Temperature is more stable at Polytech with an average value of 17 °C. 

At Barroi, Temperature has regular variation between 17 and 20 °C. 

 Figure 3.25 (e): pH data are quasi-constant with same values at both locations. 

 Figure 3.25 (f): Chlorine at Barroi is very low in comparison with that at Polytech. At 

Barroi, Chlorine remained under 0.1 mg/l, while it varied between 0.1 and 0.4 mg/l at 

Polytech. 

Analysis conducted in this chapter proves that signals measured at Barroi are generally more 

stable, since the use of water is lower at the Restaurant. The comparison shows that certain 

water quality parameters could differ between two locations at the campus, due to the 

difference in pipes ages and quality in the campus.  

 

Figure 3.25. Comparison of S::CAN data between Polytech'Lille and Barroi. (a) Turbidity (NTU); (b) TOC 

(mg/l); (c) Conductivity (µS/cm); (d) Temperature (°C); (e) pH; (f) Chlorine (mg/l). 
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3.3 Analysis of EventLab data 

3.3.1 Variation of phase and F24 Response 

Any change in the composition of the water matrix will induce a change in the combined 

Refractive Index (RI). Figure 3.26 shows an example of the variation of the RI in function of 

the presence of solute in water. It gives the concentration of Sodium Sulfate in pure water and 

the resulting change in RI [113]. It shows a linear relationship between the concentration of 

solute in water and the corresponding variation in RI.  

 

Figure 3.26. Variation of Refractive Index (RI) as function of the concentration of Sodium Sulfate [113]. 

The main purpose of EventLab sensor is to measure the variation of phase, which is 

proportional to the change in RI. These changes are controlled continuously by EventLab 

through the measurement of phase. At each minute i, the variation of phase is calculated (eqn 

2.3 in Chapter 2) as follows:  

                                                  ∆𝛷 =  𝛷(𝑖 + 1) − 𝛷 (i)                                                        (3.2)                       

In a safe drinking water, the change in RI as well as the variation of phase is quasi-constant. 

Exceeding the normal variations (±3𝜎) [114] is considered as abnormality, which could 

indicate a potential contamination of water. Data recorded outside these limits should be 

analyzed to identify the type of deviation (event, outlier, etc.) and its origin.  

An example of the variation of phase measured by EventLab is illustrated in Figure 3.27. It 

shows the change in phase monitored between October 3, 2016 and October 4, 2016 at 

Polytech’Lille. The variation lies between the upper and lower accepted bounds, which 

indicates a normal drinking water. However, two abnormalities were observed (red circles) 

during this period (on October, 4 around 5 am and 7 am). In order to analyze the source of these 

deviations, the consumption profile is plotted in Figure 3.27 for the same period. It indicates 

that a sudden increase in the consumption is followed by a peak in EventLab signals. This 

correlation can be explained by the extraction of suspended matters when the flow increases 
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suddenly. The drawn of such substances from aging pipes affects the water quality composition 

and therefore its RI. This impact is illustrated in the deviation of ∆𝛷 from the normal variations.  

Figure 3.28 shows an example of the variation of phase measured on January 10, 2017 at 

Barroi restaurant. The majority of events remained between the two limits (�̅� ±3𝜎). However, 

some events exceeded the lower limit (-0.02 radians). These measurements are observed in a 

periodic way (each hour). Since abnormality occurred for one single time step, these values 

can be considered as outliers and should not generate alert. 

In addition to the phase, EventLab measures F24 Response which is a moving average of 

response, providing information on slow changes in water composition. It indicates how much 

a response data is above or below the average of the preceding 24 hours. Figure 3.29 provides 

the variation of F24 Response between May 19, 2017 and May 27, 2017 at both locations 

(Polytech and Barroi). It indicates small values in both sites. However, the variation is more 

important at Polytech. At Barroi, F24 response remains between ±0.3 while it ranges between 

±0.7 at Polytech. This indicates that signals are less stable in Polytech.  

 

Figure 3.27. Variation of phase with consumption profile for October 3, 2016 and October 4, 2016 at 

Polytech’Lille. 
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Figure 3.28. Variation of phase on January 10, 2017 at Barroi. 

 

Figure 3.29. F24 Response between May 19, 2017 and May 27, 2017. 
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some critical cases, very low values could imply the need of probe replacement, if the cleaning 

is not sufficient.  

Figure 3.30 shows the signal health and the signal level between January 13, 2017 and 

January 16, 2017 at both locations (Polytech and Barroi). Their variations are relatively stable 

and above the accepted limit of 0.15. However, values recorded at Polytech are significantly 

smaller than those measured at Barroi. This result indicates that the probe is cleaner at Barroi. 

The EventLab probe installed at Polytech requires more maintenance and cleaning. 

 

Figure 3.30. Example of signal health and signal level at Polytech'Lille and Barroi. 

3.3.3 Event detected 

The online analysis of EventLab data allows the detection of some abnormalities in water. An 

example of event visible in EventLab data is given in Figure 3.31. A significant event was 

detected on May 29, 2017. Figure 3.31 (a) gives the variation of F24 Response between May 

21, 2017 and May 31, 2017 at both locations. Before May, 29, F24 Response tends to be 

constant (about 0). However, an important deviation (higher than 1) is observed on May, 29 in 

F24 Response signals (as indicated in the black circle). At Polytech, the deviation appeared 

from 12:00 am while it was visible from 4:00 am at Barroi.  

Figure 3.31 (b) shows the signals of phase on May 28, 2017 and May 29, 2017. A variation 

of phase, about 5 radians, is observed on May, 29 at both locations. Since the sensor worked 

well during this period, it means that a real anomaly has occurred, which could involve a change 

in the water composition. This event has been also detected by S::CAN sensor and related to a 

sudden variation in pressure profile (section 3.2.5.1: Pressure).  
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(a)                                                                                          (b) 

Figure 3.31. Event detected on May 29, 2017. (a) F24 response; (b) Phase (radians). 

3.4 Comparison between S::CAN and EventLab 

In order to compare the performance of S::CAN and EventLab, the variation of some S::CAN 

parameters, the phase as well as the consumption profile are plotted for the same period. Figure 

3.32 illustrates the variation of TOC, Turbidity, phase and consumption on October 4, 2016 at 

Polytech’Lille. A deviation from the stable lines is observed in TOC and Turbidity signals 

around 7:00 am (black arrows). It is followed by a significant variation of phase, detected in 

EventLab signal. This deviation is correlated with an increase in consumption profile between 

7:00 am and 8:00 am. 

However, another deviation is detected around 10:00 am by S::CAN (clearly in Turbidity 

signal) which is correlated by a significant increase in flow. However, this anomaly is not 

observed in the phase signal of EventLab sensor.  

The comparison proves that both sensors have a good performance in the detection of 

abnormalities in water. However, the reliability of S::CAN sensor is better in the identification 

of event, since certain deviations are not recorded in the phase variation of EventLab sensor. 
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Figure 3.32. Comparison between S::CAN and EventLab response on October 4, 2016 at Polytech’Lille. 

3.5 Conclusion 

This chapter presented analysis of data recorded by S::CAN and EventLab for the water quality 

control at the Scientific Campus. Analysis focused on the deviation of recorded values from 

the baseline. This deviation is expected to result from a variation in the water quality.  

The comparison of data recorded by S::CAN with laboratory analyses allowed the validation 

of the good functioning of S::CAN for some water quality parameters (pH, Temperature and 

Conductivity) and the necessity to calibrate regularly other parameters such as Turbidity, TOC 

and Chlorine. This result shows the necessity to conduct regularly a control of the on-line water 

quality devices. 

Data recorded by S::CAN showed good correlations between UV, Turbidity, TOC and 

Color, which indicates a good functioning of S::CAN. They also showed the occurrence of 

some events (deviation from baseline values), which generally were correlated with a change 

in the hydraulic parameters (water flow or water pressure). We expect that this change in the 

water quality is due to aging pipes. An increase in the water flow or pressure could lead the 

liberation of particles from the pipes and then to a perturbation in the water quality.  

The comparison of S::CAN and EventLab records showed good general agreement; however 

S::CAN detected more events than EventLab. 

These results show that the on-line monitoring allows to detect anomalies in the water 

quality (deviation from the baseline). However, it is still difficult to understand the real cause 

and nature of these events, because of the complexity of the water quality control. In the 

following chapter, three methodologies of water anomaly detection are presented and applied 

to S::CAN data.
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 Water Anomaly Detection Using Statistical, Artificial 

Intelligence and Event Detection System (EDS) 

Methods 

4.1 Introduction 

This chapter presents different methods for anomaly detection of water contamination. It 

describes three methodologies to detect abnormalities observed in sensor’s responses. The first 

part describes the use of the linear prediction model as statistical method for data forecasting. 

At each time step, observed value of each signal will be compared with expected data to 

identify unacceptable measures. The second part concerns the Support Vector Machine (SVM) 

as Artificial Intelligence method. It will be applied as binary classifier to differ between normal 

and anomalous classes of water quality. The advantage as well as the limitation of these two 

methods will be presented.  

Results show the need of an Event Detection System (EDS) for an early identification of 

water event. Therefore, an event detection model will be developed using Canary software. It 

will analyze data in real-time to determine the probability of events. A sensitivity analysis is 

conducted to determine appropriate parameters that reduce the generation of false alarms and 

increase the rate of detection of real events. 

4.2 Sensitivity Analysis 

This section presents the methodology for the sensitivity analysis used for parameters selection. 

A confusion matrix is used to evaluate the performance of detection methods. Figure 4.1 gives 

the corresponding confusion matrix for event classification in comparison with the real 

condition. It defines four main categories: 

 True Positive (TP): An actual event is detected. The method indicates an event which is 

well detected by the sensor. 

 False Negative (FN): A real event is not detected. An actual event, identified by the 

sensor, is not reported by the method. 

 False Positive (FP): The method reports an event while no true event occurred; generation 

of false alarm. 

 True Negative (TN): Both the sensor and the method do not record an event. There is no 

real event and the method do not identify an event. 
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Figure 4.1. Confusion matrix for event classification. 

A decision is considered correct if the real and the predicted condition are similar (green 

box), i.e. if an event occurs, the method reports it, while if the true condition indicates there is 

no event then the method also do not record any event. However, if the estimated condition 

differs from the true condition, we have incorrect decision. Two cases can lead to this situation. 

If the real condition indicates there is no true event, while the method generates a false alarm 

of event (yellow box), utility should verify the existence or not of a real event. However, the 

most dangerous case occurs if a true event is missed by the method (red box). This last situation 

is the most critical for water utility and should be avoided.  

The following performance parameters will be used for parameters selection and are 

calculated as follows: 

                                𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
= 𝑇𝑃𝑅 (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)                                  (4.1) 

                                   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
= 𝑇𝑁𝑅 (𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)                            (4.2) 

                            1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
= 𝐹𝑃𝑅 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)                        (4.3) 

                           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
= 𝑃𝑃𝑉 (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒)                        (4.4) 

                                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
= 𝐴𝐶𝐶                                                   (4.5) 

4.3 Linear Prediction 

4.3.1 Principle 

Linear prediction modelling is used for different applications such as data forecasting, speech 

coding, etc. Based on historical data, the method will predict future values. At time step t, the 

predictor model forecasts a value �̂� (t) using a linearly weighted combination of n past samples 

[115]: 

                                          �̂�(t)=∑ 𝑎𝑛
𝑘=1 k 𝑥 (𝑡 − 𝑘) with ak: the predictor coefficients.           (4.6) 

The prediction error is then calculated as the difference between the actual value 𝑥 (𝑡) and the 

predicted one �̂� (t): 

                                                  𝑒 (𝑡) = 𝑥(𝑡) - ∑ 𝑎𝑛
𝑘=1 k 𝑥 (𝑡 − 𝑘)                                        (4.7) 
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The main purpose is to find the coefficients that minimize the least mean square error defined 

as follows [115]: 

                                             𝐸(𝑒2(𝑡)) = 𝐸 [(𝑥(𝑡) - ∑ 𝑎𝑛
𝑘=1 k 𝑥 (𝑡 − 𝑘))2]                           (4.8) 

4.3.2 Use of Linear Prediction for the detection of water anomaly 

The Linear Predictive Coding (lpc) method can be applied in water quality monitoring for 

anomaly detection. The statistical method will be able to estimate future data of water quality 

parameters, based on the analysis of historical data. In this study, S::CAN signals, recorded at 

Barroi, are used to test the efficiency of lpc method in identifying anomaly. The methodology 

used can be summarized in the three following steps: 

 Training phase: Calculation of coefficients a and error e, based on a set of historical data. 

 Test phase: Prediction of future values using the calculated coefficients a. 

 Residual and Class group: Calculation of residual as the absolute difference between 

measured and predicted data. Result is compared to a user predefined threshold, then 

classified in two main categories: i) Class= 1 if |𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙| > Threshold (which indicates 

unacceptable value) and ii) Class = 0 otherwise (which indicates normal value). 

This method is developed in a Matlab code and it will be applied consecutively to two different 

periods: 

 Period 1: From April 11, 2017 till April 30, 2017. This period will be used to determine 

the appropriate polynomial degree n and the adequate predefined threshold. 

 Period 2: From April 11, 2017 till May 11, 2017. During this period, a sensitivity analysis 

is conducted to select the size of history window required for training phase. 

For each period, two applications will be evaluated: i) analysis of one single parameter 

(Turbidity) (Figure 4.2) and ii) Analysis of several S::CAN parameters (Figure 4.3). 
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Figure 4.2. Variation of Turbidity between April 11, 2017 and May 11, 2017 at Barroi. 

 

Figure 4.3. Variation of S::CAN data between April 11, 2017 and May 11, 2017 at Barroi. 

4.3.2.1 Analysis of period 1 

The variation of Turbidity EPA (Figure 4.2) during period 1 indicates 6 days in which 

significant deviations were observed: 15/04/2017; 22/04/2017; 23/04/2017; 24/04/2017; 
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25/04/2017 and 27/04/2017. During this period, data are divided as follows: i) 15000 time steps 

(about 10 days) for training phase, and ii) 12352 time steps (about 9 days) for test phase. 

Different degree n of the polynomial equation used in the training phase are studied. In each 

case, the corresponding error is calculated. The results of the variation of the error in function 

of the degree n are illustrated in Figure 4.4. It indicates that the error decreases with the 

augmentation of the degree n. However, the error converges and reaches a minimum value of 

around 5.35E-05 from a degree n=3. A larger value n will increase the computational time 

without decreasing significantly the error. Therefore, a degree n=3 will be chosen in the 

following study. 

 

Figure 4.4. Error in function of degree n. 

A sensitivity analysis is done to select the most appropriate predefined threshold. For each 

time step where the identified class group of the method is equal 1, an anomaly is assigned to 

the corresponding day. The comparison between the 6 real deviations observed and the date of 

anomaly detected by the method allows the calculation of the performance measures. Results 

of the calculation are given in Table 4.1. It should be mentioned that the threshold is expressed 

in function of standard deviation. From Table 4.1, a threshold = 𝜎 will be selected since it 

makes a tradeoff between increasing the true positive rate and reducing the generation of false 

alarms (FPR). 

Table 4.1. Sensitivity analysis for different thresholds. 

n=3, training=15000 time steps 

Predefined Threshold TPR (%) TNR (%) FPR (%) 

3б 50.00 92.31 7.69 

2б 50.00 92.31 7.69 

б 66.67 61.54 38.46 

0.85б 66.67 53.85 46.15 

0.75б 66.67 46.15 53.85 

0.5б 100.00 15.38 84.62 
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Figure 4.5 (a) illustrates the results of the application of lpc method using n=3 and 

threshold= 𝜎 during period 1. It indicates relatively small difference between the measured 

signal and the estimated one. The calculated residual varies between 0 and 0.05 NTU, and 

reaches a maximum of 0.45 NTU.  Figure 4.5 (b) shows the classes of each value of Turbidity. 

The majority of data belongs to the class 0 indicating normal values. Values of class 1 indicate 

deviation in the signal or a false alarm generated by the method. 

 
(a) 

 

(b) 

Figure 4.5. Results of statistical method applied to Turbidity. (a) Comparison between measured and estimated 

Turbidity; (b) Classification of data. 
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During period 1, the statistical method lpc is also tested for several S::CAN parameters 

simultaneously: UV, Turbidity EPA, Turbidity ISO, TOC, DOC, pH, Temperature and 

Conductivity. Some deviations occurred in the different monitored signals (Figure 4.3). The 

same methodology described previously is used. However, to determine the final class group, 

at each time step, a new index s is defined as follows:  

If Class (parameter i) =1 then s (i) =1, otherwise s (i) =0. The summation of s is calculated 

∑ 𝑠 (𝑖) and two hypotheses are then tested: 

 Hypothesis 1:  ∑ 𝑠 (𝑖) > 1 (which means at least two parameters belong to the class 1) 

implies that the final group class= 1, otherwise final class=0. 

 Hypothesis 2:  ∑ 𝑠 (i) > 2 (which indicates that at least three parameters are of class 1) 

gives a final class=1, otherwise final class=0. 

The sensitivity analysis applied, using hypothesis 1, shows an increase of the FPR as the 

TPR increases (Table 4.2) with low percentage of accuracy and precision. Each identification 

of real deviation is followed by the generation of false alarm. Using hypothesis 1, it is 

impossible to get simultaneously acceptable levels of sensitivity and specificity. This 

hypothesis will be excluded from the study, since it gives high rate of false positive alarm. 

The results of sensitivity analysis obtained using hypothesis 2, are given in Table 4.3. It 

indicates very similar FPR for the different thresholds. In order to get the highest rate of true 

positive (100 %) with high accuracy (84.21 %), a threshold= 𝜎 (as the case for Turbidity) 

should be selected. However, it should be mentioned that the precision of this method is low. 

Even for the selected threshold, a maximum precision of 50 % can be obtained. This can be 

explained by a large number of negative examples (positive class is the minority). The FP will 

overwhelm the TP even at low FPR. This method is not very precise even it can detect true 

unexpected values. 

Table 4.2. Sensitivity analysis for different S::CAN signals during period 1 according to hypothesis 1. 

                                         n=3, ∑ 𝑠 (𝑖) > 1   

Threshold TPR (%) TNR (%) FPR (%) PPV (%) ACC (%) 

3б 33.3 76.92 23.08 40 63.16 

2б 33.3 76.92 23.08 40 63.16 

б 100 30.77 69.23 40 52.63 

0.5б 100 30.77 69.23 40 52.63 

Table 4.3. Sensitivity analysis for different S::CAN signals during period 1 according to hypothesis 2. 

                                         n=3, ∑ 𝑠 (𝑖) > 2   

Threshold TPR (%) TNR (%) FPR (%) PPV (%) ACC (%) 

3б 66.67 81.25 18.75 40 78.95 

2б 66.67 81.25 18.75 40 78.95 

б 100 81.25 18.75 50 84.21 

0.5б 100 62.5 37.5 33.33 68.42 
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4.3.2.2 Analysis of period 2 

After April 30, 2017, several deviations have occurred in Turbidity signal (Figure 4.2): 

02/05/2017; 03/05/2017; 05/05/2017; 09/05/2017. To select the adequate size of history 

window, four different cases have been evaluated: 5, 10, 15 and 20 days. For each value, the 

performance measures are calculated as well as the error and the correlation between the 

measured and the estimated parameter. Results, given in Table 4.4, indicate an improvement 

in the performance measures with the increasing of the training time. From a history window 

of 15 days, the rate of true positive reaches its maximum (85.71 %). However, the augmentation 

of the value till 20 days decreases the generation of false alarm, as well as the error with high 

correlation factor (0.9898). It should be noticed that data are firstly normalized. Normalization 

is done according to the maximum and minimum of each parameter, as shown in the following 

equation: 

                                               𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                    (4.9) 

Xnorm: normalized value. 

X: input parameter. 

Xmax, Xmin: maximum and minimum of each parameter. 

The effect of normalization is showed in the last row of Table 4.4. It indicates lower value 

of TPR with higher value of FPR. This certifies the importance of normalization of data to get 

more accurate results. 

Table 4.4. Sensitivity analysis for different history windows. 

n=3, threshold=б 

Training time (days) TPR (%) TNR (%) FPR (%) Error  Correlation 

5 71.43 52.17 47.83 4.9947E-04 0.9863 

10 57.14 47.83 52.17 3.9261E-04 0.9912 

15 85.71 60.87 39.13 1.0334E-04 0.9893 

20 85.71 65.22 34.78 9.3864E-05 0.9898 

20 

 (without normalization) 71.43 52.17 47.83 6.828E-05 0.9881 

 

The linear predictor model is tested for other S::CAN parameters separately such as UV, 

TOC, etc. Table 4.5 shows the performance measures calculated for each parameter. Results 

depend strongly on the nature of monitored parameter. For UV and Turbidity, TPR and FPR 

values are acceptable (respectively higher than 75 %, and lower than 45 %), while for TOC a 

high rate of true positive is combined with high generation of false alarm (85 %). The low 

precision obtained is explained by the large number of negative classes in comparison with the 

positive examples.  

On the other hand, using hypothesis 2 (detailed previously), the application of the linear 

predictor model (with 20 days as training phase and б as threshold) to S::CAN matrix (UV 

Turbidity EPA, Turbidity ISO, TOC, DOC, etc.) gives 83.33 % as TPR with the generation of 

25 % as false alarm (FPR). However, the precision obtained is low (41.67 %). 
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Table 4.5. Sensitivity analysis for each of S::CAN parameters during period 2. 

                                   n=3 , threshold=б, Training time=20 days   

Parameter  TPR (%) TNR (%) FPR (%) Error Correlation PPV (%) ACC (%) 

Turbidity EPA (NTU) 85.71 65.22 34.78 9.3864E-05 0.990 42.86 70 

UV (Abs/m) 83.33 54.17 45.83 2.4373E-04 0.977 31.25 60 

Turbidity ISO (FTU) 75.00 86.36 13.64 6.2840E-05 0.992 66.67 83.33 

TOC (mg/l) 100 14.81 85.19 4.7701E-04 0.979 11.54 23.33 

 

4.3.3 Discussion 

At each time step, the linear predictor model compares water quality measurement of S::CAN 

to predicted value. If the difference is large, the corresponding data is identified as 

unacceptable. However, this method will allow to determine outlier but not real anomaly that 

lasts several minutes or hours. Also, the large number of negative examples leads to low 

precision, even at low FPR (and high TPR). 

Another challenge in linear prediction is the determination of the predefined threshold. In 

addition, the identification of the final class group at a given time step is complicated. The 

determination of the number of signals that must exceed the threshold to identify a positive 

class (unexpected data) will be based on the user judgment. This can lead to the generation of 

high rate of false alarm. 

4.4 Support Vector Machine (SVM) method  

4.4.1 Classification Principle 

The learning method Support Vector Machine (SVM) is generally used for data classification. 

It has several applications in different research and engineering domains such as medical 

diagnosis, marketing, biology, recognition of handwritten characters and human faces [81]. 

SVM method can be applied through different types: binary, multiclass, monoclass and 

regression. However, the simplest method is the binary classification usually applied to 

distinguish between positive and negative examples. 

The main purpose of binary SVM is to divide data in two main classes: {+1; -1}. The 

objective is to define a hyper plan that separates the two classes. Although there is a multitude 

of valid hyper plan, the aim is to find the one that passes in the “middle” of the points of the 

two classes [116]. Therefore, the distance (namely “margin”) between the hyper plan and the 

example should be maximized for better classification. Figure 4.6 illustrates a schematic 

representation of binary SVM. It shows the optimal hyper plan as well as the support vectors 

defined by the nearest points used for determining this hyper plan. 
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Figure 4.6. Binary SVM [116]. 

The hyper plan is described by the following equation [81]: 

                                                                 𝐻(𝑥) = 𝑤𝑇𝑥 + 𝑏                                               (4.10) 

With:   w: weight vector of dimension m. 

            b: term. 

            x: example to be classified (input).           

Since the two classes are linearly separable, the decision function to be used for classification: 

                                             {
𝐶𝑙𝑎𝑠𝑠 = 1 𝑖𝑓 𝐻(𝑥) >  +1

 𝐶𝑙𝑎𝑠𝑠 = −1 𝑖𝑓 𝐻(𝑥) < −1
                                    (4.11) 

To find the hyper plan that maximizes the margin, the quadratic optimization problem can be 

transformed to a dual problem using Lagrange multipliers αi [117], [118]: 

                                        𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿 (𝛼) = ∑ 𝛼𝑛
𝑖=1 i -

1

2
∑ 𝛼𝑛

𝑖,𝑗=1 i αj yi yj (xi, xj)            (4.12) 

 

𝑤𝑖𝑡ℎ ∑ 𝛼𝑛
𝑖=1 i yi = 0 , 0≤ 𝛼i ≤ 𝐶, n: number of observations, y 𝜖 {+1; -1} 

C indicates the error of the classification. The Support Vectors are defined as [82]:  

                                                  SV = {xi such as αi > 0}                                              (4.13) 

The decision function is then calculated as follows [117], [119]: 

                                      f (x)=∑ 𝛼i yi K(xi, x)+b with K: Kernel function                        (4.14) 
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Figure 4.7 illustrates an example of the process used in SVM method. X is the input vector 

to be classified. According to the sign of the decision function f, the output of the method will 

be either the class 1 or -1. 

 

Figure 4.7. Architecture of Support Vector Machine (according to [81]). 

SVM method requires a training phase to find the appropriate properties of the optimal 

separator. During this phase, a set of predictor data (numeric matrix where rows are the 

observations and columns are the features) with their known classes labels (columns vectors) 

should be used. The analysis of this data will define the hyper plan that will be used later to 

classify each new example. After training phase, a corresponding class is assigned to each new 

data using information from the trained classifier. 

4.4.2 Use of SVM method for the detection of water anomaly 

Since binary SVM classifies data into main classes, the method can be applied for the detection 

of water anomaly. The main objective is to analyze water quality parameters in order to test 

the potability of water. In this chapter, the two main classes of SVM method are defined as 

follows: i) Class +1 which indicates unsafe drinking water due to anomaly in quality and ii) 

Class -1 which indicates normal drinking water. 

The methodology applied can be summarized in five main steps: 

 Definition of the input data: i) matrix of S::CAN data (columns contain water quality 

parameters and rows include measured values at each time step), and ii) Y: class label.  

    The identification of Y is divided to two parts. Firstly, we compare each observation with 

a predefined threshold. If the value is bigger than the threshold so its corresponding class 

is identified as 1, otherwise the class is -1. After this classification, we obtain a matrix of 

classes {+1; -1}. Then, for each row of the matrix, if one parameter belongs to the class 

1 so Y is equal to 1, otherwise Y is -1.  
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 Normalization of data: all input parameters should be normalized before classification, 

according to their maximum and minimum. 

 Training phase: a set of historical data with known class label are used (in svmtrain 

function of Matlab software) to determine different properties of an appropriate classifier. 

 Test phase: new input should be tested (with svmclassify function of Matlab software) 

using the classifier obtained from training phase. 

 Calculation of the method accuracy: comparison between the predefined class labels (for 

test data) and the SVM output. 

4.4.3 Threshold definition 

As detailed previously, the identification of the class label Y depends on a predefined threshold. 

In order to test different applications of the method, four thresholds have been evaluated: 

 Case 1: threshold for each parameter is fixed as the corresponding Standard limit 

(described in Table 4.6). 

Table 4.6. Standard limits for S::CAN parameters. 

Turbidity EPA 

(NTU) 

Turbidity ISO 

(FTU) 

TOC 

(mg/l) 

Conductivity 

(µS/cm) 

Temperature 

(°C) 

pH 

1 1 2 1000 15 8.5 

 

 Case 2: Each measurement is considered out of limit when it exceeds the normal variation 

defined by �̅�  ± 3𝜎 [114], with �̅� the average and 𝜎 the standard deviation for each 

parameter. 

 Case 3: In order to reduce the acceptable limits, each parameter is compared with �̅� ±

2𝜎. 

 Case 4: the lowest predefined threshold in this study is taken �̅� ± 𝜎. 

4.4.4 Application 

SVM method has been tested to analyze and classify S::CAN data (Turbidity EPA, Turbidity 

ISO, TOC, Conductivity, Temperature and pH) at Barroi for the period between April 11, 2017 

and June 11, 2017. The corresponding variation of water quality parameters is illustrated in 

Figure 4.8. Some deviations of signals were observed during this period. 
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Figure 4.8. Variation of S::CAN data between April 11, 2017 and June 11, 2017 at Barroi. 

4.4.4.1 Selection of predefined threshold 

To choose the adequate threshold, the accuracy should be compared for the different cases 

(detailed in section 4.4.3). To make the comparison, the history window used in training phase 

should be fixed. The set of data trained should contain the two classes {+1; -1} in order to 

define classifier’s properties. To achieve this objective, different trials were tested in each case 

and the results of the minimum window size needed is given in Table 4.7. The number of 

iterations used to solve the quadratic optimization problem is taken 15000 by default. Results 

show that a history window of 14 days is required to make the comparison between the 

thresholds. 

Table 4.7. History window for the different cases. 

Case History window for training (days) 

1 14 

2 10  

3 6 

4 2 

 

For a training phase of 14 days, a test is conducted for the rest of data till June 11, 2017. In 

each case, the comparison between the predefined classes and the SVM classification allows 

to calculate the corresponding accuracy. The histogram of Figure 4.9 illustrates the results of 

accuracy. It should be noticed that, for Case 3 and 4, the number of iterations should be 

increased to 60000 to ensure the convergence. The accuracy obtained from Case 3 is very low 

(14.29%) while it is acceptable for Case 4 (50.75 %) and Case 1 (60.25 %). The best accuracy 

is obtained for Case 2 (96.39%). This comparison proves that a predefined threshold of (�̅�  ±

3𝜎) should be selected to ensure the best performance of the SVM classifier. 
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Figure 4.9. Accuracy for different cases of predefined thresholds. 

4.4.4.2 Selection of history window 

As the threshold is selected to be �̅�  ± 3𝜎, the history window can take a minimum value of 10 

days (Table 4.7). To test the impact of the history window size used for training, different cases 

are studied: 10, 15 and 20 days. For each case, two sizes of data are used for the test phase: 5 

and 15 days. The results of the accuracy is illustrated in Table 4.8. It indicates an improvement 

of the SVM performance with the increase of the history size. However, to reduce the 

computational time, a training phase of 15 days will be selected.  

Figure 4.10 gives an example of the SVM classification tested between May 26, 2017 and 

June 11, 2017, using a training phase of 15 days. It indicates close results between the 

predefined classes and SVM results for the majority of time steps. However, some unexpected 

data (for example on June, 4 and June, 5) are not reported by SVM classifier.  

Table 4.8. Accuracy for different training and test phases. 

Test (days) Training (days) Accuracy of Test (%) 

5 

10 86,41 

15 86,9 

20 87 

15 

10 91,64 

15 92,03 

20 92,23 
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Figure 4.10. SVM classification for a training phase of 15 days. 

4.4.5 Discussion 

The use of SVM method within the online monitoring of water quality allowed a discrimination 

of S::CAN data in two classes at each time step: i) accepted values indicating normal drinking 

water and ii) unexpected data implying unacceptable water quality.  

As for linear prediction, SVM requires the identification of predefined threshold to classify 

data. In addition, the method faces limitations concerning problems in the convergence 

(number of iterations) and training phase which should contain examples from the two classes.  

On the other hand, the methodology used within SVM is based on the hypothesis that a 

deviation in one parameter induces the identification of “anomaly” class for all the input 

parameters. 

Therefore, the application of SVM method can be efficient as learning method to distinguish 

between normal and unexpected values at each time step. However, the detection of real 

abnormality through SVM remains difficult. An early detection system is required to identify 

the occurrence of true anomaly in water. 

4.5 Event Detection System (EDS) - Canary 

4.5.1 Role of Event Detection System (EDS) 

The two previous methods (lpc and SVM) have been used to distinguish between normal and 

unacceptable data at each time step. Results identify unexpected values without distinction 

between outliers and true anomaly. This indicates the need of an Event Detection System (EDS) 

that reports significant abnormalities that could involve change in water composition. 

Contamination Warning Systems (CWSs) have been proposed as a promising approach for 

the early detection and management of contamination incidents in drinking water distribution 

systems [120]. The main purpose of CWS is to protect the public health by reducing the time 

between contamination detection and an effective decision-making. A robust CWS includes 
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different components: Online monitoring, customer complaint monitoring programs, routine 

sampling and laboratory analysis. The main part on a CWS is the online monitoring of water 

quality based on the deployment of sensors through the distribution networks. Recently, 

surrogates sensors are more used than direct sensors that detect specific contaminants. 

Surrogates sensors measures continuously indicators water quality parameters (Turbidity, pH, 

Conductivity, etc.). The deviation of such parameters from the stable lines could indicate the 

potential presence of contaminants. Therefore, EDS is needed to differ between periods of 

normal and anomalous water quality variability from measures made with surrogate sensors 

[121]. An EDS is an automated system that ensures an interface for analyzing real-time data 

and detecting unexpected variations. 

In general, water utilities detect the change in water quality parameters by comparing them 

with thresholds. This method will trigger an alarm for each event exceeding of the set point 

value. However, some contamination incidents might not cause water quality parameters to 

move outside of set points boundaries [121]. In such cases, an EDS is relevant. It will detect 

all variation in water quality data that differ significantly from the background values whether 

or not they exceed the set point limits. Another advantage of the EDS is the complexity to 

detect variation in water quality signals for different parameters monitored simultaneously by 

using only the set point approach. This is demonstrated in Figure 4.11. Only Signal 1 indicates 

an exceeding of the upper threshold limit. However, the relative deviation is Signal 2 and Signal 

3 is only identified if an EDS is used. 

 

Figure 4.11. Schematic diagram of changes in three different water quality signals over time (The dashed lines 

represent the set points of signals) [121]. 

4.5.2 Detection methodology 

The open source CANARY EDS software has been developed by Sandia National Laboratories 

in collaboration with EPA’s National Homeland Security Research Center (NHSRC). The EDS 

developed within Canary increases the likelihood and speed of anomaly detection [122]. The 

main goal of Canary is to analyze data from a Supervisory Control and Data Acquisition 

(SCADA) system in near real-time. Therefore, it will evaluate the probability of a water quality 

event. It uses statistical and mathematical algorithms to identify the onset of periods of 

anomalous water quality data, while at the same time limiting the generation of false alarms 

[123]. It should be noted that Canary works in both offline (historical data but simulated online 

by processing in time series order one step at a time) and online (via SCADA connection) 

modes.  

The main purpose of Canary is to detect automatically significant deviations from expected 

water quality data collected from sensors at each time step. In the basic mode of operation, the 

event detection algorithms deployed in Canary software involve four consecutive steps [124]: 

i) Estimation of the future water quality, ii) Comparison and Residual calculation, iii) Residual 
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classification and vi) Probability calculation. Figure 4.12 illustrates the process used for event 

detection. 

 

Figure 4.12. Steps in the Canary event detection process: 1) Estimation, 2) Comparison, 3) residual 

classification, 4) probability calculation [121]. 

4.5.2.1 Estimation 

For each time series of data for every single parameter, Canary predicts the expected data in 

the next time step. It looks backward in a user predefined moving window of previous time 

steps and uses data in this window to make the estimation. Data are firstly normalized with 

zero as mean and one as standard deviation. The normalization removes the units of 

measurements so signals can be easily combined later. For the estimation, two approaches can 

be used within Canary [124]: 

 Linear filtering (LPCF): An auto-covariance function, computed independently for every 

signal, is used to calculate a set of weights. At each time step, an optimal set of weights 

is applied to each of the previously measured standardized observations. The calculated 

weights indicate the importance of previous data in the prediction of the next value no 

matter how far in the past that value has occurred. Weights, calculated automatically 

within Canary, are updated at each time step. The weighted average of the predefined set 

of previous values serves as the estimation of the water quality value at the next time 

step. 

 Multivariate Nearest Neighbor (MVNN): At each time step, the set of values provided 

from n different water quality signals can be considered as a point in n-dimensional 

space. All data in previous time steps can be grouped as points and distance between 

them can be calculated. At each new time step, a new point in n-dimensional space is 

created and its ‘nearest neighbor’ or the closet point in the set of previous values serves 

as the estimated value for this time step. 
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4.5.2.2 Comparison and residual calculation 

At the current time step, when the observation is available in the SCADA system, it is 

normalized and compared with the predicted value. A residual value is then calculated as the 

difference between the measured and the estimated value. For each water quality signal, a 

residual value is expressed in unit of standard deviations.  

4.5.2.3 Residual Classification 

Across all water quality signals, the maximum residual is determined. It is compared with a 

user-defined threshold, given in unit of standard deviations. If the maximum exceeds the 

threshold, the water quality at this time step is classified as ‘outliers’ and is not be used for the 

estimation of the future value.   

4.5.2.4 Probability calculation 

At the current time step, the probability of a water quality event should be analyzed in function 

of the number of outliers. A Binomial Event Discriminator (BED) was developed for 

CANARY to create a time-integrated probability of an event P (event) [124]. The BED 

employs the properties of the binomial distribution to define P(event) as a function of the 

number of outliers within the BED integration window, the length of the BED integration 

window, and the probability of an outlier occurring at any given time step [121].  

 

4.5.3 Configuration file 

Canary operates using a configuration file written in YML markup language. The configuration 

file describes all details concerning data source (Comma-Separated Value (CSV) file or link to 

SCADA system), time period and interval, water quality signals, and algorithms to be used in 

the EDS.   

The main purpose is to configure the EDS in a way to decrease the number of missed 

detection, with the minimum number of false alarms [125]. In addition to the type of the Event 

detection algorithm used in the estimation of the future values, four associated parameters 

define the performance of the EDS: i) History window, ii) Outlier threshold, iii) Event 

threshold and iv) BED window. 

4.5.3.1 History window 

The history window is the number of previous data (in units of time steps) used to predict the 

value of the water quality signal at the next time step. It is a fixed length applied equally to all 

signal but it moves forward in time. The selection of the history window size will influence the 

accuracy of the EDS. A window size of 1.5 to 2.0 days has proven to be the most accurate; 

smaller or larger values result in decreased accuracy [126]. 

 

4.5.3.2 Outlier threshold 

The outlier threshold defines the limit, expressed in unit of standard deviations that should be 

met or exceeded to identify an outlier. In general, outlier threshold will be near 1. Increasing 

its value will reduce the number of time steps classified as outliers and, thus, the number of 

events, which makes the event detection algorithm less sensitive in terms of detecting 

significant changes in the water quality signal [126]. 
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4.5.3.3 Event threshold 

The event threshold determines the maximum probability of an event that should be exceeded 

before a group of outliers generates an alarm. As the threshold is increased, Canary is less 

sensitive, detecting fewer events [126]. The event threshold should be selected in a way to 

increase the sensitivity of the EDS. 

4.5.3.4 BED window 

In general, water quality data has significant, short-lived spikes in the values that last for a few 

time steps and could be due to SCADA communication failures or sensor malfunction [121]. 

To ignore these spikes, the BED function within Canary aggregates evidence of an event (i.e., 

outliers) over multiple consecutive time steps before identifying an event [126]. In the binomial 

model, the number of outliers represents NFAILURES within a number of time steps indicating 

NTRIALS-window (BED window). The BED window specifies the size of the window, in unit 

of time steps, for the binomial distribution. A short BED window allows to determine an event 

faster because fewer outliers are sufficient to define an event. However, false positives alarms 

(induced by noisy or bad data) can be generated in this case. 

The aim is to make a tradeoff between the faster determination of event and the generation 

of false alarm. To provide the high detection of events, all these parameters should be adjusted 

in a training phase done for historical data.  

4.5.4 Sensitivity Analysis at Polytech’Lille 

4.5.4.1 Case study 

S::CAN sensor, installed at Polytech’Lille, is selected to determine the appropriate parameters 

that adjust the configuration file. Data, used for this training phase, are collected between 

August 1, 2016 and October 10, 2016. Ten parameters, measured by S::CAN, are evaluated 

within Canary: UV, Turbidity ISO, Turbidity EPA, TOC, Color, Temperature1 (from i::scan), 

Conductivity, Temperature2 (from Condu::lyser), pH and Free Chlorine. The variation of some 

of these parameters is given in Figure 4.13. It indicates different deviations, especially in 

Turbidity signal. During this period, 29 anomalies have been detected. The date of each 

abnormality is listed in Table 4.9. Since S::CAN measures water quality parameters each one 

minute, the time step for running Canary is taken the same (1 minute) as the sensor. 
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Figure 4.13. Variation of S::CAN data between August 1, 2016 and October 10, 2016 at Polytech’Lille. 

Table 4.9. List of abnormalities. (a) August, 2016; (b) September, 2016; (c) October, 2016. 

Anomaly on August, 

2016 

02/08/2016 

04/08/2016 

06/08/2016 

09/08/2016 

11/08/2016 

13/08/2016 

16/08/2016 

17/08/2016 

18/08/2016 

20/08/2016 

22/08/2016 

23/08/2016 

25/08/2016 

29/08/2016 
 

Anomaly on September, 

2016 

02/09/2016 

05/09/2016 

08/09/2016 

12/09/2016 

16/09/2016 

19/09/2016 

20/09/2016 

22/09/2016 

26/09/2016 

29/09/2016 
 

Anomaly on October, 

2016 

03/10/2016 

04/10/2016 

05/10/2016 

06/10/2016 

07/10/2016 

 

 

4.5.4.2 Parametric study  

A parametric study is conducted to select adequate values for the five parameters cited above 

(Event detection algorithm, History window, Outlier threshold, Event threshold and BED 

window). The confusion matrix and the performance measures (described in section 4.2) will 

be used for this analysis. 
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 Selection of the event detection algorithm 

In order to select the appropriate algorithm type (LPCF or MVNN) for S::CAN signals, we 

compare the precision as well as the accuracy for each type using different history window 

values (cited in Table 4.10), while other parameters are fixed as follows: i) Outlier threshold: 

0.85, ii) Event threshold: 0.99 and iii) BED window: 200 time steps. 

Table 4.10. List of history windows. 

History window 

(time steps) 

720 1440 2160 2880 4320 

Duration (days) 0.5 1 1.5 2 3 

 

Figure 4.14 gives the results of the calculation of both the precision and the accuracy. Figure 

4.14 (a) indicates a large difference in the precision of LPCF and MVNN algorithms. The 

precision obtained with LPCF varies between 62% and 85 %, while for MVNN, the precision 

is lower (do not exceed 49 %). This shows that LPCF is more precise. In the same way, Figure 

4.14 (b) gives the accuracy comparison between the two algorithms. The accuracy obtained 

from MVNN type is low (maximum value 57 %). However, LPCF accuracy is significantly 

better (can reach 75 %).  

This comparison proves that a highest precision and accuracy are obtained with LPCF. From 

this result, we select “LPCF” as an appropriate type of algorithm to be used in the configuration 

file of S::CAN signal analysis.  

  

                                               (a)                                                                                     (b) 

Figure 4.14. Comparison of detection algorithm. (a) Precision; (b) Accuracy. 

 Determination of history window 

The selection of the appropriate window size (history window) is the basic step required for 

configuration. Using a training data set, performance measures should determine the accuracy 

of water quality prediction made by Canary. The quality of the estimation is evaluated in 
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function of the average absolute value of the residuals (difference between measured and 

predicted value) and the corresponding standard deviations of residuals.  

For the selected LPCF algorithm, these two performance measures (average deviation and 

standard deviation) are calculated for the list of history window of Table 4.10. However, outlier 

threshold, event threshold and BED window are fixed as indicated in the previous section. The 

results of calculation are given in Figure 4.15. The main objective is to find the history window 

that increases the precision of the estimation i.e. that induces the lowest average residual and 

standard deviation. Figure 4.15 shows that both the absolute residual (Figure 4.15 (a)) and the 

standard deviation (Figure 4.15 (b)) decrease as the window size increases. However, it is 

important to find a tradeoff between reducing the average deviation and standard deviation and 

the long computational time induced by large window size. Figure 4.15 indicates that the 

average residual and standard deviation reach approximately a minimum and start to deviate 

from a window size of 2160 time steps (1.5 days). From this value of history window, the 

average deviation ranges between 0.05 and 0.17, while the standard deviation remains between 

0.1 and 1.37 for all monitored parameters (except Turbidity data that have few larger values). 

The exception observed in Turbidity, after 1.5 days, can be induced by some fluctuations in the 

signal during the training phase. Despite this exception, the choice of 1.5 days as history 

window provides useful and precise estimations of the future water quality parameters. 
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  (b) 

  

Figure 4.15. Comparison of history window for LPCF algorithm. (a) Average deviation; (b) Standard 

deviation. 

 Selection of event threshold 

It is obvious that a significant deviation from the expected value at a single time step should 

not trigger an alert. The generation of alarm depends on both the BED window and the event 

threshold values. These two parameters represent: i) the time period in which to look for the 

onset of an event and ii) the number of outliers that need to occur within that time period to 

indicate an event [122]. 

The selection of the appropriate event threshold determines the probability that should be 

exceeded to consider a group of outliers as an event and to trigger an alarm. A parametric study 

is conducted using four values of event threshold: 0.75; 0.85; 0.9 and 0.99. An outlier threshold 

of 0.85 and a BED window of 200 time steps are fixed in this section, while the use of LPCF 

algorithm and a history window of 1.5 days is verified previously. For each case, performance 

measures are calculated and illustrated in Table 4.11. It indicates very close sensitivity results 

for the different event thresholds. A value of 0.99 as event threshold will be selected. It gives 

high precision and accuracy with small FPR.  

Table 4.11. Sensitivity analysis for different event thresholds. 

Event threshold TPR (%) TNR (%) FPR (%) PPV (%) ACC (%) 

0.99 51.72 92.68 7.32 83.33 75.71 

0.90 48.28 92.68 7.32 82.35 74.29 

0.85 48.28 92.68 7.32 82.35 74.29 

0.75 51.72 92.68 7.32 83.33 75.71 
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 Parametric study for outlier threshold and BED window  

At each time step, a signal point is labelled as outlier if the difference between the measured 

value and the estimated value (i.e. the residual) exceeds the outlier threshold times the standard 

deviation. Very low values of the outlier threshold result in more outliers, because less of the 

data is treated as good relative to the predicted behavior while very high values are less 

sensitive since almost all data might be considered good and real events might not be detected 

[122]. 

Once the outlier threshold is determined, an adequate BED window should be selected to 

define the size of historical data window used for testing the presence of an event. The BED 

window should be greater than one to avoid that a single outlier generates an alarm.  

The selection of these two parameters should be done in a way to ensure the rapid detection 

of event while reducing false positive alarms. Firstly, the average prediction residual is 

calculated using 25 different combinations between the outlier threshold (0.6; 0.65; 0.75; 0.85; 

1.1) and the BED window (50; 100; 200; 250; 300) time steps. Other parameters are selected 

previously as follows: i) Event detection algorithm: LPCF, ii) History window: 1.5 days and 

iii) Event threshold: 0.99. Figure 4.16 illustrates the results of calculation. It indicates that a 

minimum value of the average prediction residual (0.108) is obtained from the combination of 

50 time steps as BED window and 0.75 as outlier threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To validate the choice of these two parameters, a sensitivity analysis is conducted using 

Receiver Operating Characteristics (ROC) curve analysis. A ROC curve is a good way of 

visualizing a classifier’s performance to select a suitable operating point, or decision threshold 

[127]. ROC curve graph is a two-dimensional graph in which TPR (Sensitivity) is plotted in 

function of FPR (1-Specificity). The main purpose of this graph is to make a tradeoff between 

high sensitivity and low specificity. The aim is to make a correct decision with the minimum 

generation of false alarms. This can be illustrated in the point (0, 1) in the graph where the 

Figure 4.16. Average prediction residual in function of outlier threshold and BED window. 
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sensitivity and the specificity reach 100 % (no false negatives nor false positives). More the 

result is close to this point (0, 1), the detection algorithm has a better performance.  

Firstly, a ROC curve analysis is done using an outlier threshold of 0.75 and different value 

of BED window. Results are illustrated in Figure 4.17. A BED window of 100 time steps is the 

most appropriate to increase the probability of detection (TPR) with low value of false alarm 

(FPR). 

In order to select adequately the outlier threshold value, a ROC analysis is also conducted 

for both critical cases of BED window (50 and 100 time steps) and for different outlier 

thresholds. Figure 4.18 gives the results of this analysis (values on the graph indicates the 

corresponding outlier threshold for each point). It indicates that a high sensitivity (with 

acceptable rate of false alarm) is obtained for 0.75 as outlier threshold with 100 time steps as 

BED window. 

 

Figure 4.17. ROC curve for different BED window. 
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Figure 4.18. ROC curve for multiple outlier thresholds for a BED window of 50 and 100 time steps. 

4.5.4.3 Application of selected parameters 

The parametric study allows to determine the best appropriate parameters (as indicated in Table 

4.12) for the EDS at Polytech’Lille. To test the ability of Canary to detect earlier water quality 

anomaly, the adjusted configuration file is applied to S::CAN data from October 10, 2016 till 

November 1, 2016.  

Figure 4.19 illustrates the variation of several S::CAN parameters during this period. Ten 

significant deviations are observed: 10/10/2016; 11/10/2016; 12/10/2016; 14/10/2016; 

17/10/2016; 18/10/2016; 19/10/2016; 20/10/2016; 24/10/2016 and 31/10/2016. The 

application of the event detection algorithm within Canary, using the adequate parameters 

(Table 4.12), allows the detection of 7 anomalies with 30 % as false alarm rate. Figure 4.20 

illustrates an example of results. It shows the probability of event calculated between October 

17, 2016 and October 24, 2016.  

On the other hand, a strong deviation is observed on October 14, 2016 (Figure 4.19). Figure 

4.21 illustrates the results given within Canary for the week of October 10, 2016 (blue points 

indicate deviation from expected values). The large variation of signals on October 14, 2016 is 

well detected with a probability of event equal to 1.  

Table 4.12. Parameters selected to the EDS at Polytech. 

Type of detection algorithm LPCF 

History window 1.5 days (2160 time steps) 

Event threshold 0.99 

Outlier threshold 0.75 

BED window 100 time steps 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

TP
R

 (
%

)

FPR (%)

LPCF_BED 50

LPCF_BED100

0.65

0.75

0.85

1.1

1.5

0.65

0.75
0.85

1.1

1.5



Chapter 4.  Water Anomaly Detection Using Statistical, Artificial Intelligence and Event Detection 

System (EDS) Methods 

 

129 
 

 

 

Figure 4.19. S::CAN data between October 10, 2016 and November 1, 2016 at Polytech'Lille. 

 

Figure 4.20. Probability of event for the week of October 17, 2016 at Polytech’Lille. 
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Figure 4.21. Results of the event detection algorithm for the week of October 10, 2016. 

A second application of the configured model is done between May 21, 2017 and June 1, 

2017. As mentioned previously (Chapter 3), a significant event has occurred between May, 28 

and May, 29. Figure 4.22 gives the probability of event during this period. The event on May 

28, 2017 has been successfully detected. During this period, no false alarm has been generated. 

It should be mentioned also that only one alarm (with probability equal to 1) has trigger on 

May 28, 2017. For detection, Canary is concerned with the significance of the change, not the 

total length of time that a signal remains abnormal [122]. During this period, the EDS can be 

represented by the perfect point (0, 1) of the ROC curve, where both sensitivity and specificity 

reach 100 %. 
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Figure 4.22. Probability of event from May 21, 2017 till June 1, 2017 at Polytech’Lille. 

The different applications conducted at Polytech’Lille, proves that the EDS developed 

within Canary has a good sensibility in identifying significant abnormalities. False alarm 

(especially false positive) can be generated in some situations. However, their rate is 

acceptable, while the rate of detection of real event is generally high.  

4.5.5 Sensitivity Analysis at Barroi 

4.5.5.1 Case study 

Using the selected parameters at Polytech (Table 4.12), the application of the adjusted model 

to S::CAN data measured at Barroi between December 1, 2016 and January 15, 2017 has led 

to high rate of false alarms. Since the water quality signals can differ between the two locations, 

a sensitivity analysis is done to S::CAN measurements at Barroi to find the adequate model. 

A training phase is considered between December 1, 2016 and January 15, 2017. Nine 

measured parameters are analyzed within Canary: UV, Turbidity ISO, Turbidity EPA, TOC, 

DOC, Temperature, Conductivity, pH and Chlorine. The variation of different S::CAN data is 

illustrated in Figure 4.23. During this period, six events have been occurred: 11/12/2016; 

12/12/2016; 13/12/2016; 03/01/2017; 05/01/2017 and 11/11/2017. These anomalies are 

characterized by a significant deviation of signals, especially UV, Turbidity and TOC. As for 

Polytech, the time step for Canary running is one minute.   
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Figure 4.23. Variation of S::CAN data from December 12, 2016 till January 15, 2017 at Barroi. 

4.5.5.2 Selection of parameters 

During the training phase at Barroi, the use of MVNN algorithm has led to very high FPR 

(around 92 %) which indicates that the choice of MVNN is not appropriate for S::CAN signals 

measured at Barroi. As for Polytech, LPCF detection algorithm is more accurate. 

As a general rule, the value of history window should be long enough to include 1.5 to 2 

days of previous data [128]. Therefore, the following parametric study will take into 

consideration this two cases of window size: 2160 time steps (1.5 days) and 2880 time steps (2 

days). 

As demonstrated previously, the different values tested for the event threshold give similar 

sensitivity results. A value of 0.99 can be considered as acceptable in terms of precision and 

accuracy. 

The two remaining parameters that affect the sensitivity performance of the EDS are: the 

outlier threshold and the BED window. Multiple combinations of these two parameters are 

evaluated. For each case, performance measures (TPR, TNR and FPR) are calculated and 

results are given in Table 4.13.   

For a history window of 1.5 days, the analysis of results shows high FPR (> 50%) for an 

outlier 0.75 and 0.9. These two values of outliers should be excluded from the study. For an 

outlier of 0.99, a BED window of 100 time steps gives also a relatively high rate of false alarm 

(around 44%) with an acceptable TPR (66.67%). For an outlier of 1.5, the value of the BED 

window do not affect the results. However, the value of the TPR is very low (< 50%). This 

outlier should be also excluded from the selection. For an outlier of 1.1, we obtain the lowest 

generation of false alarm. However, a BED window of 50 time steps is better than 100 time 

steps, in terms of the TPR. For 1.5 days as history window, an outlier of 1.1 gives the better 

sensitivity results. 
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If the history window is increased to 2 days, the values of TPR remain the same while the 

FPR is well reduced. A history window of 2 days is then selected to reduce the generation of 

false alarm. A BED window of 50 time steps is also selected, since it increases the sensitivity 

(TPR). 

Table 4.13. Sensitivity analysis at Barroi restaurant. 

History window 

(time steps) 

Outlier  BED window 

(time steps) 

TPR (%) TNR (%) FPR (%) 

2160 0,75 100 83,33 20,51 79,49 

2160 0,9 100 66,67 41,03 58,97 

2160 0,99 100 66,67 56,41 43,59 

2160 1,1 100 50,00 66,67 33,33 

2160 1,1 50 66,67 64,10 35,90 

2160 1,5 100 33,33 89,74 10,26 

2160 1,5 50 33,33 89,74 10,26 

2880 1,1 100 50,00 76,92 23,08 

2880 1,1 50 66,67 74,36 25,64 

 

4.5.5.3 Application of selected parameters 

Table 4.14 illustrates the list of selected parameters, obtained during the training phase at 

Barroi. The configured detection system has been applied in two different periods, to test its 

ability in identifying abnormalities.  

The first application is applied from January 15, 2017 till January 31, 2017. The variation 

of S::CAN data during this period is illustrated in Figure 4.24. It indicates a significant 

deviation on January 19, 2017. This single anomaly is well detected with the event detection 

model, which gives a TPR of 100 %. However, Canary reports five other events (on 

16/01/2017; 22/01/2017; 23/01/2017; 27/01/2017 and 31/01/2017) which are not true. This 

induces a false alarm rate about 33 %. 

The adjusted model is also applied to the period between May 21, 2017 and June 1, 2017. 

During this period, the event between May, 28 and May, 29 is successfully detected within 

Canary (which gives a TPR of 100 %). Figure 4.25 illustrated the probability of event 

calculated with a history window of 2 days and an outlier of 1.1. It indicates that a false alarm 

is also generated on May, 26 which induces 11, 11 % as FPR and 66, 67 % as precision. 

Table 4.14. Parameters selected to the EDS at Barroi. 

Type of detection algorithm LPCF 

History window 2 days (2880 time steps) 

Event threshold 0.99 

Outlier threshold 1.1 

BED window 50 time steps 
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Figure 4.24. Variation of S::CAN data from January 15, 2017 till January 31, 2017 at Barroi. 

 

Figure 4.25. Probability of event from May 21, 2017 till June 1, 2017 at Barroi. 

The EDS developed within Canary to analyze S::CAN signals at Barroi shows a high 

performance. The results indicates high sensitivity where real events are well detected with low 

rate of false alarm. 

4.5.6 Discussion 
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probability of possible events. The event detection algorithm generates an alarm when a group 

of measurement exceeds a threshold probability during a certain period. Therefore, it differs 

between outliers occurring at a single time step and event that remains for a significant duration. 

The application of the adjusted configuration file to S::CAN signals allows the detection of 

several abnormalities, at both locations, with acceptable levels of false alarms. 

4.6 Conclusion 

This chapter presented the early detection of water quality anomaly using three methods: 

Statistical method (LPC), Artificial Intelligence (SVM) and Event Detection System (EDS). 
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The LPC and SVM methods have identified some ‘anomalies’ in recorded data by S::CAN 

sensor. These anomalous data usually refer to outlier at a single time step. 

In order to avoid that a single outlier generates an alert, EDS approach has been developed 

within Canary to detect water quality abnormalities. Using a Binomial Discriminator, the 

probability of event is calculated in function of the number of outliers occurring in a specific 

duration. The application of this method to S::CAN data shows the ability of the system to 

detect true events with minimum false alarms. However, a sensitivity study is required for 

parameters selection (at each site location of S::CAN) in order to obtain the best performance 

of detection. 

The following chapter will describe the use of risk assessment approach in combination with 

the online monitoring to help in the decision-making of water utilities in the case of occurrence 

of abnormal events in the water system.
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 Risk Assessment of Drinking Water Contamination 

Using Smart Sensors 

5.1 Introduction 

This chapter presents the use of the qualitative risk assessment for the control of the drinking 

water quality. This use is illustrated through its application to the drinking water system of the 

Scientific Campus of the University of Lille. Based on sensor data, the qualitative assessment 

is conducted using two approaches based on the smart water system. These approaches analyze, 

in real-time, the variation of the water quality parameters (Turbidity and Chlorine), detect 

abnormal events and rank their risk level in function of their severity.  

The first method analyses the combination Turbidity and Chlorine simultaneously. 

Turbidity classes are ranked in function of their probability. Chlorine concentration indicates 

the severity of the event. This approach is applied at two levels: i) risk assessment at each time 

step and ii) priority attention based on the duration of each risk category. 

In the second method, the assessment is based on two criteria: i) the magnitude of measured 

Turbidity as indication of the event’s impact, and ii) the duration of the risk. This approach is 

then developed. It takes into account the effect of Chlorine concentration on the severity of the 

event. 

The detailed methodology of each approach will be described. Applications are conducted 

with S::CAN data. These approaches show that the real-time analysis of Turbidity and Chlorine 

provides an early detection and classification of risks. A comparison of results will allow to 

choose the appropriate method for the estimation of risk level.  

A third method is developed by analyzing the variation of Turbidity and TOC 

simultaneously. The benefit as well as the limitation of this approach will be discussed. 

5.2 Risk Assessment in drinking water quality  

Risk assessment is the process of analysis and evaluation of risk. It provides information for 

identifying strategy for reducing and preventing disasters and designing the early warning 

system [66]. Analysis of sensors data can indicate different perturbations in the water quality. 

The associated level for potential risk should be identified. Although there are numerous 

contaminants that can compromise drinking water quality, not every potential hazard requires 

the same degree of attention [129]. The main objective is to detect possible events and classify 

their risk. A high risk event requires an emergency response, while a low risk needs a lower 

priority of attention. 

The identification of risk consists of determining what, why, and how a risk can occur [130]. 

The following terms, defined by the Australian Drinking Water Guidelines (ADWG) [131], are 

used in risk assessment approach:  

 Hazard: a biological, chemical, physical or radiological agent that has the potential to 

cause harm. 

 Hazardous event: an incident that can lead to the presence of a hazard. 

 Risk: likelihood of identified hazards causing harm in exposed populations. 
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The definition of risk is based on two main concepts: i) the probability that an adverse event 

could occur and ii) the severity of this event. Risk assessment is of high importance in the water 

industry for the following reasons [132]: 

 To predict the burden of waterborne disease in the community, under outbreak and non-

outbreak conditions. 

 To help set microbial standards for drinking water supplies that will give tolerable levels 

of illness within the populations drinking that water. 

 To determine the most cost-effective option to reduce microbiological health risks to 

drinking water consumers. 

 To help identify the optimum treatment of water to balance microbial risks against 

chemical risks from disinfection by-products. 

 To provide a conceptual framework to help individuals and organizations understand the 

nature and risk to, and from, their water and how those risks can be minimized.  

Three types of risk assessment are generally used, namely: i) Epidemiological methods, ii) 

Quantitative Risk Assessment, and iii) Qualitative Risk Assessment. 

5.2.1 Epidemiological methods 

Epidemiology is the study of the distribution and determinants of health-related states or events 

in specified populations, and the application of this study to the control of health issues [133]. 

The use of the epidemiological approach in risk assessment is based on outbreaks 

investigations. This method consists of determining the relation between specific water quality 

parameters (such as Faecal Streptococci) and the level of disease in the population.  

It is unlikely that epidemiological study relies on passive health surveillance, as the 

complexity of interpreting the results would be difficult, particularly if assessing the risks 

related to diarrhoeal disease [134]. Different types of epidemiological studies can be used in 

risk assessment of waterborne disease, especially: i) Descriptive (Ecological and Time series 

study), ii) Analytical (Case-control and cohort study) and iii) Intervention (Experimental 

study). According to the epidemiological approach, risk can be divided into four main types 

[135]:  

 Absolute risk: generally named as incidence, it indicates the number of new cases 

occurring within a certain sized population during a specified time period. 

 Attributable risk: the proportion of cases of a disease due to a particular risk factor. 

 Relative risk: the ratio between the incidence of disease in those members of the 

population exposed to a possible risk factor and those not exposed. 

 Odds ratio: the ratio between the probability that someone with a disease has experience 

of the potential environmental factor and the probability that a control has experience of 

the same factor.  

5.2.2 Quantitative Risk Assessment 

The Quantitative Risk Assessment allows the calculation of health risk and its comparison with 

another one agreed to be acceptable. A Quantitative Risk Assessment, that studies each 

component in water separately, is based on [136]: 

 The presence of harmful substances and microorganisms in the water. 

 Acceptable and infective doses. 
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 Estimations of the exposure of the water users. 

Approaches based on Quantitative Risk Assessment quantify the potential risks arising 

from: i) hazards in source waters, ii) impact of the system in reducing the threat posed by source 

water through source protection and treatment, iii) residual risk from the production phase and 

iv) risks from recontamination during distribution [134]. 

To take into consideration the difference between microbial and chemical contaminants, the 

Quantitative Risk Assessment can be divided in two main categories: i) Quantitative Microbial 

Risk Assessment (QMRA) and ii) Quantitative Chemical Risk Assessment (QCRA). 

5.2.2.1 Quantitative Microbial Risk Assessment (QMRA)  

It can be defined as a scientific tool to evaluate the microbial safety of drinking water supplies. 

QMRA is used to estimate the risk of infection of a consumer, by combining the probability of 

occurrence of a pathogen at the tap with the consumption pattern and dose-response 

relationships [137]. To determine the public health risk, the main purpose of QMRA is to 

analyze the presence of pathogens with information about the consumed concentration and 

their infectivity.  

As adapted by the National Research Council [138] , the QMRA approach involves four 

main steps [135]:  

 Hazard identification: consists of determining pathogenic microorganisms that may 

induce acute or chronic effects to human health. The pathogen responsible for outbreaks 

must be identified with the severity of the infection, the patterns of transmission in the 

population and the control measures. The potential presence of “Emerging” pathogens, 

newly discovered and contributing to waterborne disease, should also be evaluated.  

 Dose-response analysis: during an outbreak, individuals are exposed to different levels 

of the pathogens. To determine the relationship between pathogen exposure and 

infection, the volume of water ingested may be combined with the level of contamination 

of water. Two models of the infection process have been proposed: i) the exponential 

model: 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) = 1 − 𝑒𝑥𝑝(−𝑟𝐷) where D: pathogen dose, r: fraction 

of pathogens that survive to produce an infection and ii) the Beta-Poisson model: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) = 1 − (1 + (
𝐷

𝐼𝐷50
))

−𝛼

 where D: pathogen dose, α and ID50 

are parameters of the beta-distribution used to describe variability in survival.  

Based on the study conducted in [139], an example of Dose-response analysis is done for 

E.Coli O157:H7. The probability of infection is calculated using 𝛽-Poisson model, with 

𝛼=0.2099, N50=1120 (parameters used in the literature [140]) and ID50=N50(2
1

𝛼 − 1). 

Figure 5.1 illustrates the dose-response relationship: probability of infection function of 

the different pathogen dose. It is evident that the probability of infection increases with 

E.Coli concentration. 
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Figure 5.1. Example of Dose-response relationship for E.Coli (according to [139] and [140]). 

 Exposure assessment: based on determining the size and nature of population exposed to 

pathogens with the duration of exposure. The level of pathogens for untreated water, 

combined with the proportion of surrogate removed by treatment, provides an estimation 

of the dose level of pathogens in water after treatment. 

 Risk Characterization: studies the complete transmission system of pathogens to estimate 

the risk on public health. Variability and uncertainty of the estimation are taken into 

consideration.  

5.2.2.2 Quantitative Chemical Risk Assessment (QCRA)   

QCRA is developed to assess health risks posed to humans from exposure to chemicals in 

water. As for QMRA, it is based on four main steps [142]:  

 Hazard identification: consists of determining the identity of the chemical of concern and 

if it is potentially hazardous to humans. For example, Cadmium can be identified as a 

hazardous chemical. It is classified as very toxic and carcinogenic to humans. 

 Hazard characterization: based on defining the chemical’s properties that induce the 

adverse health effects. The guideline values, with assumptions about exposure and dose, 

from international organizations should be determined (determination of guideline 

value). For Cadmium, the drinking water guideline value is 0.003 mg/l according to the 

World Health Organization (WHO). 

 Exposure assessment: the main purpose is to obtain an exposure rate that can be 

compared with the guideline value. The exposure route, the frequency and the duration 

of exposure (short, medium or long term) should be evaluated. The exposure rate is given 

by the following equation [143]: 

                                                            Intake (mg/kg-day) = 
𝐶𝑊 𝑥 𝐼𝑅 𝑥 𝐸𝐹 𝑥 𝐸𝐷

𝐵𝑊 𝑥 𝐴𝑇
                              (5.1) 

Where: CW: Concentration in water of chemical of concern (mg/l). 

 IR:  Ingestion Rate (l/day). 

       EF: Exposure Frequency (days/yr). 

        ED: Exposure Duration (yr). 

        BW: Body Weight (kg). 
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        AT: Averaging Time (period over which exposure is averaged) (days) 

                   For noncarcinogens: AT= ED*365 days per year. 

                   For carcinogens: AT=Lifetime (70 years) *365 days per year. 

For drinking water, WHO guidelines assume a water consumption rate of 2 liters per day 

and a body weight of 60 kg. 

 Risk characterization: the hazard quotient is calculated as result of comparison between 

chemical exposure estimation and guideline value. This determines the priority level to 

take actions and corrective measures. 

5.2.3 Qualitative Risk Assessment  

Qualitative (or semi-quantitative) risk assessment approach is based on the classification of 

risks. It has the advantage of being relatively simple and the results are easy to present [144]. 

The Qualitative approach focuses on five steps [135]:  

 Hazard scenario: identification of hazardous scenarios such as filter breakthrough or 

loss/breakdown of chemical disinfection system. 

 Likelihood: ranking of how likely the event is. 

 Consequence: ranking of the consequence (e.g. short-term injury). 

 Risk score (Frequency x Effect): Weight attributed to likelihood and Severity of 

Consequences and multiplied to give value for hazardous event. 

 Rank (level of risk): ranking of hazard scenario in order to provide the priority level for 

risk management. 

Epidemiological and Quantitative approaches face some limitations and uncertainties in 

predicting relationship between the indicators parameters and the health risk. Epidemiological 

studies need a large sample sizes to uncover very small increases in risk, in addition of the costs 

incurred and expertise needed to mount a good study [26]. Risk quantification requires vast 

amount of data, could be time consuming and can give a false sense of precision. Qualitative 

method remains more accurate for a rapid detection of accidental contamination. It ranks the 

level of risk using classes, without resorting laboratory analyses. It does not seek to identify 

the actual levels of disease but to give a qualitative indication of the abnormalities in water. 

Risk ranking is the preferred qualitative method used by WHO in the execution of Water Safety 

Plan. 

5.2.3.1 Methodology of Qualitative risk assessment  

To identify the risk level, two main scales should be defined: i) the likelihood of event and ii) 

the severity of its consequences. The likelihood can be classified into four main categories: 

Likely, Moderate, Unlikely and Rare. A weight is assigned to each category, according to its 

probability of occurrence (Once per week, month, year, etc. [145]). In the same way, four 

classes define the severity of consequences: Major, Moderate, Minor and Insignificant. Based 

on the impact of the consequence (harmful or lethal to small or large population [145]), a 

corresponding weight is attributed. Table 5.1 provides the two scales (likelihood and 

consequences) used in the Qualitative Risk Assessment.                                               

A Risk Score R is defined as follows:  

              𝑅 = 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) 𝑥 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠)                (5.2) 
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As indicated in Table 5.2, a Risk Level category is identified (Low, Moderate, High or Very 

High), according to the risk score class. To determine the magnitude of the risks and to 

prioritize the risks, a risk matrix is recommended [146]. A risk matrix combines the likelihood 

and the severity of consequences of an event in a risk level category (Table 5.3). 

Table 5.1. Qualitative Risk Assessment Scale. (a) Likelihood Scale; (b) Severity of Consequences Scale. 

(a) 

Category Likely         Moderate Unlikely Rare 

Weight  4               3      2   1 

(b) 

Category Major Moderate            Minor       Insignificant 

Weight  4 3            2      1 

 

Table 5.2. Risk Score and Risk Level classification. 

Risk Score <4 4≤R≤7 7≤R≤13 >13 

Risk Level Low Moderate High Very High 

 

Table 5.3. Risk Matrix. 

  Severity of Consequences 

Likelihood Insignificant Minor Moderate Major 

Likely Moderate High High Very High 

Moderate Low Moderate High High 

Unlikely Low Moderate Moderate High 

Rare  Low Low Low Moderate 

 

The major issue in Qualitative assessment concerns the descriptive definition of both scales 

(Likelihood and Severity of Consequence). Using the smart technology, the likelihood and the 

severity of consequences can be defined in function of monitored parameters (Turbidity and 

Chlorine). Then, the qualitative assessment will provide in real-time the risk of any event. 

5.3 Application to the water system of the Scientific Campus 

The risk assessment approach is applied to the drinking water quality at the Scientific Campus 

of the University of Lille. S::CAN data, especially the Turbidity and Free Chlorine measured 

at Polytech’Lille, for the period between July 1 and 15, 2017, are used. Turbidity and Free 

Chlorine are two main indicators of the water quality. The Turbidity is an indicator of the 

presence of suspended matters that disturb the water. Standards defines 1 NTU as a threshold 

limit for Turbidity. For Chlorine level, a rapid decrease indicates a water quality variation 

induced generally by biofilm growth. According to the WHO, the concentration of Free 

Chlorine in treated water must be maintained between 0.2 and 0.5 mg/l. 

The variation of Turbidity and Chlorine at the water supply of Polytech’Lille is illustrated 

in Figure 5.2. Some events have been detected for Turbidity, especially on July 6 and 7. The 

concentration of Chlorine varies between 0 and 0.3 mg/l.  

In Approach 1 and 2, an event is defined as exceeding of the threshold of Turbidity 

(Turbidity > 1 NTU). 
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Figure 5.2. Variation of Turbidity and Chlorine between July 1 and 15, 2017. 

5.4 Risk Assessment analysis 

5.4.1 Approach 1-Level 1 

The analysis of real-time data allows to define two major classes: i) Turbidity < 1 NTU which 

indicates a safe water quality, and ii) Turbidity >1 NTU which indicates a possible event. Data 

are firstly filtered (Event or not). The list of potential events are analyzed to estimate the level 

of risk induced. 

In case of event, Turbidity can be divided into four main classes: [1-1.5], [1.5-3], [3-10] and 

> 10 NTU. The analysis of historical data shows that Turbidity values and their corresponding 

probability are inversely proportional. The likelihood is defined as the probability of each class 

of Turbidity. As indicated in Table 5.4 (a), an event with Turbidity value between 1 and 1.5 

NTU occurs likely with a probability higher than 80 %. However, the probability that Turbidity 

reaches very high amplitudes (more than 10 NTU) is very low; it can be due to some faults in 

the instrument. Based on the likelihood scale of Table 5.1 (a), a weight is attributed for each 

category of Turbidity (Table 5.4 (a)). 

The severity of consequences is defined according to Chlorine ranking in four intervals: [0-

0.005] or >0.5, [0.005-0.05], [0.05-0.2] and [0.2-0.5] mg/l (Table 5.4 (b)). Since the amount of 

Chlorine should be maintained between 0.2 and 0.5 mg/l, the major consequence occurs when 

Chlorine concentration is lower than 0.005 mg/l or higher than 0.5 mg/l. The corresponding 

weight is assigned in function of the Severity Scale of Table 5.1 (b). 

The risk level is defined as the combination of: i) the probability of Turbidity and ii) the 

severity of consequences based on Chlorine interval. The risk matrix, defined in Table 5.3, is 

used in this approach. It indicates that the risk level is highest for low Chlorine value combined 

with high probability of event (Turbidity between 1 and 1.5 NTU).  

Analysis of the risk assessment’s results will determine the priority score for risk 

management. The objective of prioritization is to rank hazardous events to provide a focus on 

the most significant hazards [134]. Risk-reduction actions will be based on the level of priority 

attention. High risk level identifies the need of high priority attention with emergent corrective 

actions. While, low risk level can be ignored or given a low priority attention. Table 5.5 gives 

the priority level in accordance with the risk level ranking. 
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Table 5.4. Description of Approach 1. (a) Likelihood (for Turbidity>1 NTU); (b) Severity of Consequences. 

                                                        (a)                                                                                 (b) 

Descriptor 
Description: 

Turbidity (NTU) 
Weight 

Likely (>80%) [1-1,5] 4 

Moderate (10-80%) [1,5-3] 3 

Unlikely (4-10%) [3-10] 2 

Rare (<4%) >10 1 
 

Descriptor 
Description: 

Chlorine (mg/l) 
Weight 

Major [0-0.005] or > 0.5 4 

Moderate [0.005-0.05] 3 

Minor [0.05-0.2] 2 

Insignificant [0.2-0.5] 1 
 

 

Table 5.5. Priority level classification. 

Risk Level Prioritization of Risk 

No Risk No attention needed 

Low Low priority attention 

Moderate Intermediate priority attention 

High High priority attention 

Very High Urgent priority attention  

 

The application of this approach on historical data (defined in Section 5.3) is illustrated in 

Figure 5.3 (a). At each time step, Turbidity and Chlorine are ranked with the specified weight. 

The risk score is then calculated (eqn. 5.2). The corresponding risk category is identified. 

Figure 5.3 (a) shows the risk score, as well as the variation of Turbidity and Chlorine between 

July 1 and 15, 2017. It indicates situations of very high risk, especially on July 7, 2017. This 

risk level is verified in Figure 5.3 (b). It shows an increase in the Turbidity for many hours 

coupled with sudden decrease in Chlorine concentration. This combination provides an 

indication of a potential event. 

On the other hand, other cases of high risk are observed on July 8 and 9, 2017. They are 

induced by very low concentrations of Chlorine (near zero) with Turbidity values close to the 

threshold (1 NTU). Moderate levels are observed, in particular, on July 11 and 12, 2017. Such 

levels are obtained from insignificant severity of consequence (Chlorine about 0.2 mg/l) 

combined with a likely event of Turbidity (between 1 and 1.5 NTU).  
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                                                                                     (a) 

 

(b) 

Figure 5.3. Application of Approach 1-Level 1. (a) Risk level for S::CAN data; (b) Event detected on July 7, 

2017. 

The risk level could be also evaluated for real time data, with the corresponding priority 

attention. An example of real time assessment of risk is given in Figure 5.4 for a Turbidity of 

1.6 NTU and Chlorine value of 0.02 mg/l. A weight of 3 will be given to both Turbidity and 

Chlorine (Table 5.4). The calculated risk score is 9 (eqn 5.2). Using Table 5.2 and Table 5.3, a 

High risk level is identified for this data. A High priority attention should be assigned (Table 

5.5). 
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Turbidity (NTU): 1,6     

Chlorine (mg/l): 0,02    

      

Risk Level: High    

Prioritization of Risk: High priority attention 
 

Figure 5.4. Example of real time risk assessment according to Approach 1-Level 1. 

In this approach, the risk level is assigned by evaluating Turbidity and Chlorine values at 

each single time step. The outcome of the risk assessment will determine the priority attention 

required. However, many factors can lead to unaccepted values of Turbidity and/or Chlorine 

(contamination, faults in instrument, data transmission problems, etc.). It is obvious that not all 

exceeding of the tolerable limit should generate an alarm. The determination of priority level, 

based on data analysis each minute, will not be very precise. False identification could occur 

in some cases.  

5.4.2 Approach 1-Level 2 

To determine accurately the priority attention level, the duration factor could be taken into 

consideration. Level 1 of Approach 1 could be developed by applying the three following steps:  

 Determination of risk level at each time step (according to Approach 1-Level 1). 

 Classification of risk level, function of their category (Very High, High, Moderate, and 

Low). 

 Duration of each category of risk level during an event. 

An application is done for S::CAN data at Polytech. For each event, risk levels are classified 

according to their category. The start and the end of each risk category are determined. The 

duration of each level, during an event, is calculated as follows: 

         𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑖𝑛) = 𝐷𝑎𝑡𝑒 (𝐸𝑛𝑑 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑙𝑒𝑣𝑒𝑙) − 𝐷𝑎𝑡𝑒 (𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑙𝑒𝑣𝑒𝑙)          (5.3) 

The histogram in Figure 5.5 (and Appendix A: Figure A.1) shows an example for the 

classification of risk level with the corresponding duration. It shows the importance of the 

duration factor. For example, an event of “High” risk level of 135 minutes (on 07/07/2017 

09:25) is more dangerous than an event of “Very High” risk that occurs during 1 minute (on 

06/07/2017 21:24). Such event (7/7/2017 09:25) requires more attention.  
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Figure 5.5. Risk level classes with the corresponding duration. 

To take into account the duration of each category of risk, a new scale for priority level is 

given in Table 5.6. It is defined as the combination of the risk level and the duration. A 

corresponding weight is attributed for each category of risk level. The largest weight is assigned 

for “Very High” risk.  In the same way, the duration is divided in four main classes (Long, 

Medium, Short, and Instantaneous). Weights are given in the increasing order of duration: a 

long duration will be the most critical. The priority attention level is defined as follows: 

       𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 𝑃 = 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑅𝑖𝑠𝑘 𝐿𝑒𝑣𝑒𝑙) 𝑥 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)          (5.4) 

The priority score is classified in four intervals. The priority level is then identified 

according to the class of priority score (Table 5.7). Table 5.8 illustrates an example of results 

(for the period of Section 5.3) (Appendix A: Table A.1). For each new event, the risk level is 

classified and the corresponding duration is calculated. The priority attention for each category 

of risk level is then identified.  

The analysis of this table illustrates the influence of the duration factor on the priority level. 

For example, an event of "High” risk (occurred on 06/07/2017 22:41) requires more attention 

higher than an event of “Very High” risk (occurred on 06/07/2017 22:39). Although the risk 

level is more important on 06/07/2017 22:39, the event on 06/07/2017 22:41 requires higher 

corrective actions, since the latter remains for more than 2 hours.  

Table 5.6. Priority level scale. (a) Risk Level Scale; (b) Duration Scale. 

                                                                                         (a) 

Category Very High High Moderate         Low 

Weight           4    3      2             1 

 

                                                                                        (b) 

Category Long (>120min) Medium(60-120min) Short(30-60 min) Instantaneous(0-30min) 

Weight 4 3 2 1 
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Table 5.7. Prioritization of risk. 

Priority Score <4 4≤P≤7 7≤P≤13 >13 

Priority Level L.P I.P H.P U.P 

 

  Duration 

Risk level Instantaneous  Short  Medium  Long  

Very High  I.P H.P H.P U.P 

High  L.P I.P H.P H.P 

Moderate L.P I.P I.P H.P 

Low   L.P L.P L.P I.P 
 

 

L.P Low Priority Attention 

I.P 

Intermediate Priority 

Attention 

H.P High Priority Attention 

U.P Urgent Priority Attention 

 

Table 5.8. Risk and Priority level for S::CAN data according to Approach 1-Level 2. 

Start of new 

level of an 

event 

End of level Risk Level 
Weight of 

level 

Duration 

(min) 

Weight of 

duration 

Priority 

Score 
Priority level 

6/7/2017 21:22 6/7/2017 21:23 High 3 1 1 3 L.P 

6/7/2017 21:24 6/7/2017 21:24 Very High 4 0 1 4 I.P 

6/7/2017 21:25 6/7/2017 22:38 High 3 73 3 9 H.P 

6/7/2017 22:39 6/7/2017 22:40 Very High 4 1 1 4 I.P 

6/7/2017 22:41 7/7/2017 1:41 High 3 180 4 12 H.P 

7/7/2017 1:42 7/7/2017 1:45 Very High 4 3 1 4 I.P 

7/7/2017 1:46 7/7/2017 1:46 High 3 0 1 3 L.P 

7/7/2017 1:47 7/7/2017 1:47 Very High 4 0 1 4 I.P 

7/7/2017 1:48 7/7/2017 1:52 High 3 4 1 3 L.P 

7/7/2017 1:53 7/7/2017 6:40 Very High 4 287 4 16 U.P 

7/7/2017 6:41 7/7/2017 7:10 High 3 29 1 3 L.P 

 

All the steps of Approach 1 have been automated in a VBA script and are summarized in 

the flow chart of Figure 5.6. For Approach 1, Level 2 seems to be more realistic than Level 1, 

in terms of priority attention. For “Very high” risk (as on 06/07/2017 22:39 in Table 5.8), Level 

1 will indicate the need of more attention (Table 5.5). However, Level 2 evaluates the duration 

of this risk category before defining the priority level as Intermediate. After detecting the risk 

of abnormalities, it is important to take into account the duration of the event. A short-time 

event should not have the same decision response as an event that remains for several minutes 

or even hours. The duration will help in determining the nature of the occurred event: i) 

instantaneous risk level could be related to sensor data (connection issues, etc.) and then 

ignored, ii) significant duration should be analyzed to verify the potential existence of a 

contamination, iii) long duration indicates the presence of anomaly in water quality and 

requires urgent actions. 
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Figure 5.6. Flow chart of Approach 1. 

5.4.3 Approach 2-Level 1 

In Approach 1, since the likelihood scale is described as the probability of Turbidity values, 

highest weight is given to the lowest Turbidity that occurs frequently. However, it is obvious 

that the impact of an event depends on the magnitude of deviation from the Standard limit (1 

NTU). The event becomes more severe when the deviation from the limit is bigger. Turbidity 

close to 1 NTU will not be dangerous like high values. Approach 2 will take into account the 

effect of parameter value (Turbidity) on the severity of consequences and will evaluate the 

frequency of an event in terms of the duration. 

The main purpose of Approach 2 is to assess the variation of one single parameter measured 

by S::CAN. Approach 2 is firstly applied to Turbidity data. The main output is the list of events 

that occurred during a period with the corresponding risk level. Firstly, data are filtered (Event 

or not) by analyzing Turbidity value each minute. The start and end time of each event is 

identified. The corresponding duration is calculated (difference between end and start time of 

an event). 

The severity of consequences is defined according to the average Turbidity during each 

event (Table 5.9 (a)). Turbidity data are classified in four main intervals. Weights are assigned 

in ascending order of Turbidity. An average Turbidity lower than 1.2 NTU has insignificant 

impact. However, a value greater than 3 NTU can induce a major impact.  

The duration of event is classified in four main categories (from Instantaneous to Long) with 

the corresponding weight (Table 5.9 (b)).  

 



Chapter 5.  Risk Assessment of Drinking Water Contamination Using Smart Sensors 

 

149 
 

 The risk score (Table 5.10) is calculated as follows: 

                   𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 𝑅 = 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 𝑥 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)                        (5.5) 

The ranking of the risk score identifies the category of risk level (Low, Moderate, High, and 

Very High) (Table 5.11). The application of this approach, to S::CAN data, is illustrated in 

Table 5.12 (Appendix A: Table A.2). It shows some events occurring during this period. The 

identification of the Start and End time of each event allows to calculate the corresponding 

duration. The average Turbidity is also calculated. The combination of their weight determines 

the risk level of each event.  

A “High” risk is identified for the first event (on July 6, 2017). This event lasts for around 

one day with an average Turbidity about 1.5 NTU. Figure 5.7 verifies the high risk during this 

period. Important perturbations are observed in Turbidity signal. Turbidity data exceed 

significantly the limit of 1 NTU. High priority attention should be assigned in two steps: i) 

analysis of the water quality to identify the origin of anomaly, and ii) corrective actions if 

required. 

Most of other events have “Low” risk level. The excess of the threshold is limited to few 

minutes, with values close to 1 NTU. This indicates a relatively safe drinking water with very 

low risk of anomaly. There is no need for urgent intervention in most cases. 

Table 5.9. Description of Approach 2. (a) Severity of Consequences; (b) Duration of event. 

(a)                                                                                     (b) 

Descriptor 
Description: 

𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(NTU) 
Weight 

Major >3 4 

Moderate [1,5-3] 3 

Minor [1,2-1,5] 2 

Insignificant [1-1,2] 1 
 

Descriptor 
Description: 

Duration (min) 
Weight 

Long >120 4 

Medium 60-120 3 

Short 30-60 2 

Instantaneous 0-30 1 
 

 

Table 5.10. Calculation of risk score. 

  Severity of Consequences 

Event Duration Insignificant Minor Moderate Major 

Long 4 8 12 16 

Medium 3 6 9 12 

Short 2 4 6 8 

Instantaneous 1 2 3 4 

     

Risk Score <4 4≤R≤7 7≤R≤13 >13 

Risk Rank Low Moderate High Very High 

 

Table 5.11. Description of risk matrix. 

  Severity of Consequences 

Event Duration Insignificant Minor Moderate Major 

Long Moderate High High Very High 

Medium Low Moderate High High 

Short Low Low Moderate High 

Instantaneous Low Low Low Moderate 
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Table 5.12. Risk level for S::CAN data according to Approach 2-Level 1. 

Start of Event End of Event 
Duration 

(min) 

Weight 

 of 

Duration 

Average 

Turbidity 

(NTU) 

Weight 

of 

Turbidity 

Risk 

Score 

Risk 

Level 

06/07/2017 21:22 07/07/2017 20:46 1404 4 1,499 2 8 High 

07/07/2017 22:48 07/07/2017 23:49 61 3 1,011 1 3 Low 

07/07/2017 23:59 07/07/2017 23:59 0 1 1,001 1 1 Low 

08/07/2017 13:15 08/07/2017 13:15 0 1 1,005 1 1 Low 

08/07/2017 13:53 08/07/2017 18:53 300 4 1,017 1 4 Moderate 

08/07/2017 18:59 08/07/2017 19:02 3 1 1,002 1 1 Low 

08/07/2017 19:10 08/07/2017 19:10 0 1 1,004 1 1 Low 

08/07/2017 19:16 08/07/2017 19:16 0 1 1,002 1 1 Low 

08/07/2017 19:23 08/07/2017 19:23 0 1 1,002 1 1 Low 

08/07/2017 19:30 08/07/2017 19:35 5 1 1,004 1 1 Low 

08/07/2017 19:40 08/07/2017 19:51 11 1 1,003 1 1 Low 

 

 

Figure 5.7. First event detected by Approach 2-Level 1 between July, 6 and 7, 2017. 

5.4.4 Approach 2-Level 2 

Approach 2 can be extended by analyzing the variation of two parameters: Turbidity and 

Chlorine simultaneously. The risk score is calculated as for Approach 2-Level 1: 

         𝑅𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 = 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠) 𝑥 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)        (5.6) 

The definition of severity of consequences depends, in this case, on the classification of both 

Turbidity and Chlorine (Table 5.13). For each event, the average Turbidity and the average 

Chlorine are calculated. Highest weight is assigned to the biggest value of Turbidity. However, 

for Chlorine, weights are inversely proportional to the concentration. The consequence of event 

is major for high Turbidity combined with small amount of Chlorine. A severity scale with 

assigned weight (Table 5.14) is defined as follows: 

                    𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑆 = 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 𝑥 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )                   (5.7) 
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Table 5.13. Description of the Severity of Consequences. (a) Turbidity classification; (b) Chlorine classification. 

(a)                                                                                        (b) 

Descriptor 
Description: 

𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(NTU) 
Weight 

Major >3 4 

Moderate [1,5-3] 3 

Minor [1,2-1,5] 2 

Insignificant [1-1,2] 1 
 

Descriptor 
Description: 

𝑪𝒉𝒍𝒐𝒓𝒊𝒏𝒆 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (mg/l) 
Weight 

Major [0-0,005] or >0,5 4 

Moderate [0,005-0,05] 3 

Minor [0,05-0,2] 2 

Insignificant [0,2-0,5] 1 
 

 

Table 5.14. Description of Severity Scale. 

Severity Score <4 4≤S≤7 7≤S≤13 >13 

Severity Scale Insignificant Minor Moderate  Major 

Weight  1 2 3 4 

 

An example of the calculation of the severity scale is illustrated in Table 5.15 (Appendix A: 

Table A.3). It indicates some events that occurred (between July 1 and 15, 2017) with their 

corresponding severity level. During this period, no Major or Moderate Consequences are 

observed. The level of severity for the majority of events is Insignificant or Minor. This can be 

verified by the small deviation of Turbidity from the limit, even when Chlorine is close to 0 

mg/l.  

The duration of each event is then calculated and given a corresponding weight (Table 5.9 

(b)). The risk level for each event is identified (Table 5.11). A part of the results are shown in 

Table 5.16 (Appendix A: Table A.4). It indicates “Low” risk levels for most events. There is 

no major anomaly detected. 

Table 5.15. Severity level for S::CAN data according to Approach 2-Level 2. 

Start of Event End of Event 

Average 

Turbidity 

(NTU) 

Weight of 

Turbidity 

Average  

Chlorine 

(mg/l) 

Weight of 

Chlorine 

Severity 

Score 

Severity 

Level 

6/7/2017 21:22 7/7/2017 20:46 1.499 2 0.008 3 6 Minor 

7/7/2017 22:48 7/7/2017 23:49 1.011 1 0.001 4 4 Minor 

7/7/2017 23:59 7/7/2017 23:59 1.001 1 0 4 4 Minor 

8/7/2017 13:15 8/7/2017 13:15 1.005 1 0.004 4 4 Minor 

8/7/2017 13:53 8/7/2017 18:53 1.017 1 0.008 3 3 Insignificant 

8/7/2017 18:59 8/7/2017 19:02 1.002 1 0.009 3 3 Insignificant 

8/7/2017 19:10 8/7/2017 19:10 1.004 1 0.009 3 3 Insignificant 

8/7/2017 19:16 8/7/2017 19:16 1.002 1 0.009 3 3 Insignificant 

8/7/2017 19:23 8/7/2017 19:23 1.002 1 0.009 3 3 Insignificant 

8/7/2017 19:30 8/7/2017 19:35 1.004 1 0.007 3 3 Insignificant 

8/7/2017 19:40 8/7/2017 19:51 1.003 1 0.01 3 3 Insignificant 

 

 

 

 

 



Chapter 5.  Risk Assessment of Drinking Water Contamination Using Smart Sensors 

 

152 
 

Table 5.16. Risk level for S::CAN data according to Approach 2-Level 2. 

Start of Event End of Event 
Duration 

(min) 

Weight of 

Duration 

Severity 

Level 

Weight 

of 

Severity 

Level 

Risk 

Score 

Risk  

Level 

6/7/2017 21:22 7/7/2017 20:46 1404 4 Minor 2 8 High 

7/7/2017 22:48 7/7/2017 23:49 61 3 Minor 2 6 Moderate 

7/7/2017 23:59 7/7/2017 23:59 0 1 Minor 2 2 Low 

8/7/2017 13:15 8/7/2017 13:15 0 1 Minor 2 2 Low 

8/7/2017 13:53 8/7/2017 18:53 300 4 Insignificant 1 4 Moderate 

8/7/2017 18:59 8/7/2017 19:02 3 1 Insignificant 1 1 Low 

8/7/2017 19:10 8/7/2017 19:10 0 1 Insignificant 1 1 Low 

8/7/2017 19:16 8/7/2017 19:16 0 1 Insignificant 1 1 Low 

8/7/2017 19:23 8/7/2017 19:23 0 1 Insignificant 1 1 Low 

8/7/2017 19:30 8/7/2017 19:35 5 1 Insignificant 1 1 Low 

8/7/2017 19:40 8/7/2017 19:51 11 1 Insignificant 1 1 Low 

 

A VBA code has been developed for all the steps of Approach 2 as indicated in Figure 5.8. 

Some differences in risk assessment results are observed between Level 1 and 2 of Approach 

2. For example, the event of 07/07/2017 22:48: Level 1 identifies a “Low” risk while Level 2 

indicates “Moderate” risk (Table 5.12 and Table 5.16). During this event, Chlorine 

concentration (0.001 mg/l in Table 5.15) is very low which could imply major impact. The fact 

of ignoring this concentration of Chlorine can lead to underestimation of the risk level. The 

assessment’s results remains more accurate by combining the variation of different parameters 

(Turbidity and Chlorine) simultaneously. 

 

Figure 5.8. Flow chart of Approach 2. 

5.4.5 Comparison between Approach 1 and Approach 2 

By comparing the methodology of Approach 1 to Approach 2 (Levels 2), the main difference 

is the analysis of Turbidity parameter. In Approach 1, Turbidity data define the likelihood 

scale; Turbidity values and assigned weights are inversely proportional. However, in Approach 

2, Turbidity values affect the severity of consequence; weights are attributed in the increasing 

order of Turbidity. 
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Table 5.17 illustrates an example of the classification of three events using the two 

approaches. Approach 1 indicates “Very High” risk for the three events. However, these events 

are classified, by Approach 2, as Moderate and Low risks. Figure 5.9 shows the variation of 

Turbidity and Chlorine during the first event. Turbidity remains around 1.01 NTU and Chlorine 

level around 0.001 mg/l. Although Chlorine concentration is very low, Turbidity value is very 

close to the limit (1 NTU). The identification of risk as “Moderate” is more precise.  

For Event N° 2 and 3, a “Low” risk level seems to be more correct than a “Very High” risk. 

Despite the low concentration of Chlorine, Turbidity value is acceptable (near the limit). Such 

combinations should not generate an urgent attention, especially for an instantaneous event. 

This comparison proves that Approach 1 over estimates the risk level. Approach 2 is more 

accurate in risk identification. The magnitude of deviation from the limit and the duration of 

event are the basic steps in risk assessment methods.  

Table 5.17. Risk level comparison between Approach 1 and Approach 2. 

Event N° Start of Event  End of Event  
𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(NTU) 

𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(mg/l) 

Risk Level  

Approach 1 Approach 2 

1 07/07/2017 22:48 07/07/2017 23:49 1,011 0,001 Very High Moderate 

2 07/07/2017 23:59 07/07/2017 23:59 1,001 0 Very High Low 

3 08/07/2017 13:15 08/07/2017 13:15 1,005 0,004 Very High Low 

 

 

Figure 5.9. Variation of Turbidity and Chlorine on 07/07/2017 between 22:48 and 23:49. 

5.4.6 Application of Approach 2 to Barroi Data 

To verify the efficiency of Approach 2 over Approach 1 in risk identification, an application is 

done to S::CAN sensor installed at Barroi. Figure 5.10 illustrates the variation of Turbidity and 

Chlorine in Barroi restaurant during July, 2017. Two major events were observed during this 

period (On July, 7 and 31). These events are characterized by significant augmentation of 

Turbidity signals coupled with low amount of Chlorine. 

The application of Approach 2 to these data is illustrated in Table 5.18. It shows the list of 

11 events detected during this period, with the corresponding severity and risk levels. Table 

5.18 indicates “High” risk on July, 7 and 31, 2017 which is verified in Figure 5.10. The 

detection of these two events and their classification as high risk prove the reliability of 

Approach 2 in the assessment of risk. Other events detected as “Low” risk should not generate 
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an urgent alarm. Many reasons could be the source of such level of risks: connections issues, 

increase in the consumption, etc.  

 

Figure 5.10. Variation of Turbidity and Chlorine during July, 2017 at Barroi restaurant. 

Table 5.18. Risk level for S::CAN data at Barroi restaurant according to Approach 2. 

Start of Event End of Event 
Duration 

(min) 

Average 

Turbidity 

(NTU) 

Average 

Chlorine 

(mg/l) 

Severity Level Risk Level 

04/07/2017 11:21 04/07/2017 11:21 0 1,084 0,051 Insignificant Low 

07/07/2017 00:51 07/07/2017 07:32 401 1,413 0,039 Minor High 

07/07/2017 09:20 07/07/2017 09:55 35 1,185 0,039 Insignificant Low 

07/07/2017 12:23 07/07/2017 12:37 14 1,733 0,073 Minor Low 

19/07/2017 09:26 19/07/2017 09:31 5 1,022 0,029 Insignificant Low 

21/07/2017 14:22 21/07/2017 14:39 17 1,065 0 Minor Low 

24/07/2017 07:06 24/07/2017 07:15 9 1,439 0,032 Minor Low 

31/07/2017 10:08 31/07/2017 10:09 1 1,012 0,051 Insignificant Low 

31/07/2017 10:32 31/07/2017 10:47 15 1,032 0,043 Insignificant Low 

31/07/2017 11:39 31/07/2017 11:41 2 1,394 0,048 Minor Low 

31/07/2017 11:53 31/07/2017 13:57 124 2,423 0,033 Moderate High 

 

5.4.7 Approach 3 - Analysis of Turbidity and TOC 

TOC gives an indication of the amount of organic matters in water. Also, the level of THM 

(Trihalomethanes), which is very harmful to human health, can be determined by the analysis 

of TOC. Standards define 2 mg/l as threshold limit for TOC. 

In this section, the analysis of TOC and Turbidity is used in risk assessment approach. The 

severity of consequences is defined in function of Turbidity and TOC classification (Table 

5.19). The first class, with weight 1, indicates safe drinking water. An event is detected if 

Turbidity exceeds 1 NTU or TOC exceeds 2 mg/l. As Turbidity and/or TOC increase, the event 

is more severe. Weights are assigned in the ascending order of Turbidity and TOC values. 
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Table 5.19. Description of the Severity of Consequences for Approach 3. (a) Turbidity classification; (b) TOC 

classification. 

                     (a)                                                              (b) 
 

Description: 

Turbidity(NTU) 
Weight 

[0-1] 1 

[1-1.2] 2 

[1,2-3] 3 

>3 4 

 

Description:  

TOC (mg/l) 
Weight 

[0-2] 1 

[2-2.5] 2 

[2.5-4] 3 

>4 4 

 

At each time step, a severity score is calculated as follows: 

                       𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑆 = 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦) 𝑥 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑇𝑂𝐶)                          (5.8) 

The severity score is then classified as indicated in Table 5.20, and given a corresponding 

weight. Firstly, data are filtered: Risk or not. During each identified risk, severity levels are 

classified according to their category (Insignificant, Minor, Moderate, and Major).  

Table 5.20. Description of severity scale for Approach 3. 

Severity Score 1 1<S<4 4≤S≤7 7≤S≤13 >13 

Severity Scale No risk Insignificant Minor Moderate  Major 

Weight  - 1 2 3 4 

 

The duration for each category is calculated as follows: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (min) = 𝐷𝑎𝑡𝑒(𝐸𝑛𝑑 𝑜𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙) − 𝐷𝑎𝑡𝑒 (𝑆𝑡𝑎𝑟𝑡 𝑜𝑓 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙) (5.9) 

The duration is classified as described in Table 5.9 (b). The risk score is calculated (as 

indicated in eqn. 5.6) and classified according to Table 5.10. Figure 5.11 illustrates the 

methodology of Approach 3 developed within VBA excel. An application is done for S::CAN 

data, at Polytech’Lille, for the period between July, 1 and 15, 2017. The variation of Turbidity 

and TOC is illustrated in Figure 5.12. Some events were detected during this period, especially 

on July, 6, 7, 8 and 10, 2017. In those days, a meaningful deviation of Turbidity and TOC from 

the reference line is observed. 



Chapter 5.  Risk Assessment of Drinking Water Contamination Using Smart Sensors 

 

156 
 

 

Figure 5.11. Flow chart of Approach 3. 

An example of results, obtained by applying this approach, is given in Table 5.21 (Appendix 

A: Table A.5). The majority of events are classified as “Low” risk levels. Some “Moderate” 

risks are identified for example on July, 6 and 7, 2017, due to a significant increase of both 

signals (Turbidity and TOC).     

In this approach, a weight of 2 is attributed for the second Class of Turbidity and/or TOC. 

Then, a small deviation from the threshold limits can induce “Minor” severity risk (S=4). 

However, value close to the limits can be ignored in the most cases, since it will not be very 

dangerous. This limitation proves that the analysis of the combination (Turbidity and Chlorine) 

is more accurate to estimate the magnitude of the risk and its severity. The analysis of TOC in 

risk assessment will be used as indication of the potential presence of organic contaminants in 

water. 
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Figure 5.12. Variation of Turbidity and TOC, at Polytech’Lille, between July,1 and 15, 2017. 

Table 5.21. Risk level for S::CAN data, at Polytech’Lille, according to Approach 3. 

Start of new 

severity level 

End of severity 

level 

Severity 

level 

Weight 

of 

severity 

Duration 

(min) 

Weight 

of 

Duration 

Risk 

score 
Risk level 

06/07/2017 21:22 06/07/2017 21:25 Insignificant 1 3 1 1 Low 

06/07/2017 21:26 06/07/2017 21:31 Minor 2 5 1 2 Low 

06/07/2017 21:32 06/07/2017 21:47 Moderate 3 15 1 3 Low 

06/07/2017 21:48 06/07/2017 21:54 Minor 2 6 1 2 Low 

06/07/2017 21:55 06/07/2017 21:58 Moderate 3 3 1 3 Low 

06/07/2017 21:59 06/07/2017 22:29 Minor 2 30 2 4 Moderate 

06/07/2017 22:30 06/07/2017 22:46 Insignificant 1 16 1 1 Low 

06/07/2017 22:47 06/07/2017 23:36 Minor 2 49 2 4 Moderate 

06/07/2017 23:37 06/07/2017 23:42 Moderate 3 5 1 3 Low 

06/07/2017 23:43 07/07/2017 00:08 Minor 2 25 1 2 Low 

07/07/2017 00:09 07/07/2017 07:42 Insignificant 1 453 4 4 Moderate 

 

5.5 Conclusion  

The use of the smart technology for real-time control of water quality is recent. The limited 

feedback, in this domain, makes the decision-making difficult. Risk assessment and 

management constitutes a powerful tool for the analysis of water contamination risk. It allows 

to focus on significant risks. The combination between the smart monitoring and risk 

assessment approach provides an early identification of anomaly risk in real-time. 

Qualitative assessment is appropriate for risk assessment of drinking water quality. It ranks 

potential risks into categories. This method was used for the risk assessment of the drinking 

water quality of the Scientific Campus of the University of Lille. Data are obtained from 

S::CAN sensor, which provides several water quality parameters (Turbidity, TOC, 

Conductivity, etc.).  
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Different strategies are proposed to describe the risk assessment parameters: Likelihood and 

Severity of Consequences in function of sensor data (Turbidity and Chlorine). Two main 

approaches are developed: 

 Approach 1: describes the likelihood in function of Turbidity classes, while the severity 

of consequences is defined according to Chlorine levels. 

 Approach 2: defines the likelihood in function of the duration of risk while Turbidity and 

Chlorine describe the severity of consequences of the risk. 

Results show that the use of risk assessment approach with S::CAN data ensures the 

detection and classification of risks as well as the determination of priority levels required. 

Analyses show that Approach 2 has a better performance in risk level estimation. It indicates 

that an accurate risk assessment should be based on: the magnitude of the measured parameter 

and the duration of the event. 

A third approach is developed by analyzing the Turbidity and TOC signals. This approach 

estimates the possible existence of organic agents in water. However, Approach 2 remains more 

advantageous in risk identification.  

The study conducted in this chapter shows encouraging results in the rapid detection of 

anomaly in water. However, research is still needed to collect more data concerning the 

abnormal events on water quality and their consequences on user’s health.
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Conclusion 

Research conducted in this thesis concern the real-time control of the water quality in the Water 

Distribution Network (WDN) using the smart technology. The traditional laboratory-based 

methods taking generally long time, do not ensure the required protection of human health 

against accidental or malicious contamination. There is a clear need to turn this water system 

into a smart system that can detect rapidly any intrusion in water. The complexity and the extent 

dimension of the WDN makes the early detection of water contamination difficult. To meet 

this challenge, the deployment of the smart technology is relevant. However, the feedback is 

limited in this domain, because the implementation of this technology in the WDN is recent. 

Consequently, the water industry is interested by research works based on large-scale 

experimentation in this area. This works constitutes a contribution to this industrial need. It 

presents feedback from a large-scale experimentation of online water quality supervision.   

The Scientific Campus of the University of Lille is used to investigate the real-time monitoring 

of the water quality within SunRise Large-Scale Demonstrator of the Smart City. This work is 

also a part of the European project SmartWater4Europe “SW4EU” which aims at establishing 

4 demonstrator sites of the smart water networks in Europe. 

The online control of the water quality implies the use of innovative systems, especially water 

quality sensors. They record continuously parameters generally affected by water 

contamination. In this work, two types of water quality devices (S::CAN and EventLab) are 

implemented at two locations in the campus (Polytech’Lille University and Barroi restaurant). 

S::CAN sensor measures continuously several water quality parameters (Turbidity, 

Conductivity, pH, etc.) while EventLab controls, each minute, the change in phase, which is 

proportional to the variation of the refractive index. 

A detailed analysis of sensors’ data is presented in this work. The correlation matrix of S::CAN 

parameters showed the good operation of this device. Collected data are validated through the 

comparison with laboratory results, however some adjustments showed a need for regular 

control of this device. Although the majority of signals are quasi-stable, some events have been 

detected and characterized by deviation from baseline values. A good correlation is observed 

between the peaks in the water quality parameters and the variation in hydraulic parameters 

(pressure and/or consumption). Some abnormalities have been attributed to the intervention on 

the network (such as repair actions). In some cases, suspended materials are extracted from the 

aging water pipes, which induces a change in water quality. For EventLab sensor, the 

experimentation showed the need of regular maintenance. Analysis of the phase variation 

allowed to detect some abnormalities in the water quality. However, S::CAN showed higher 

performances in the identification of water anomaly. 

Different detection methodologies have been adapted to the smart water system and tested on 

S::CAN data. The use of the Statistical and Artificial Intelligence (Support Vector Machine) 

methods resulted in the classification of S::CAN measurements between normal values and 

unexpected data. However, a single outlier (due generally to sensor mal function, connection 

issues, etc.) should not generate an alarm. Therefore, an Event Detection System (EDS) has 

been developed within Canary software to identify anomaly induced potentially by change in 

the water quality. The system triggers an alert if a number of outliers in a precise duration 
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exceeds a predefined threshold. A sensitivity analysis allowed to get the highest sensibility of 

detection with low rate of false alarms.  

To focus on significant risks and thus take effective corrective measures, a combination 

between the risk assessment methodology and the online monitoring has been proposed. Two 

main approaches have been developed where water quality parameters describe the likelihood 

and the severity of consequences of risk. The application of these approaches to S::CAN data 

showed that the magnitude of the measured parameter as well as the duration of the 

corresponding event should be taken into consideration for accurate risk identification. The 

improved method of risk assessment allows an early detection of the water anomaly risk in near 

real-time. It indicates also the level of risk as well as the priority attention required. 

The experimentation conducted in this thesis provides a thorough feedback about the use of the 

smart technology (smart sensors and data analysis) for the real-time control of the drinking 

water quality in the distribution networks. It indicates a good reliability of these devices to 

detect abnormal events in the water system. Detection methods used and developed in this 

research, showed good performances of these methods for the early identification of water 

anomaly. However, this promising result requires additional effort to improve our knowledge 

about these innovative devices. It will be interesting to enable an automated sampling in case 

of abnormal events detected by sensors. Advanced methods should also be developed to 

enhance the response strategy of water utilities to significant change in the water quality.  
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Figure A.1. Risk level classes with the corresponding duration after 10/07/17 07:13. 

Table A.1. Risk and Priority level for S::CAN data according to Approach 1-Level 2. 

Start of new 

level of an 

event 

End of level Risk Level 

Weight  

of  

level 

Duration 

(min) 

Weight 

of 

duration 

Priority 

Score 
Priority level 

6/7/2017 21:22 6/7/2017 21:23 High 3 1 1 3 L.P 

6/7/2017 21:24 6/7/2017 21:24 Very High 4 0 1 4 I.P 

6/7/2017 21:25 6/7/2017 22:38 High 3 73 3 9 H.P 

6/7/2017 22:39 6/7/2017 22:40 Very High 4 1 1 4 I.P 

6/7/2017 22:41 7/7/2017 1:41 High 3 180 4 12 H.P 

7/7/2017 1:42 7/7/2017 1:45 Very High 4 3 1 4 I.P 

7/7/2017 1:46 7/7/2017 1:46 High 3 0 1 3 L.P 

7/7/2017 1:47 7/7/2017 1:47 Very High 4 0 1 4 I.P 

7/7/2017 1:48 7/7/2017 1:52 High 3 4 1 3 L.P 

7/7/2017 1:53 7/7/2017 6:40 Very High 4 287 4 16 U.P 

7/7/2017 6:41 7/7/2017 7:10 High 3 29 1 3 L.P 

7/7/2017 7:11 7/7/2017 7:18 Very High 4 7 1 4 I.P 

7/7/2017 7:19 7/7/2017 8:07 High 3 48 2 6 I.P 

7/7/2017 8:08 7/7/2017 8:09 Very High 4 1 1 4 I.P 

7/7/2017 8:10 7/7/2017 8:42 High 3 32 2 6 I.P 

7/7/2017 8:43 7/7/2017 8:44 Very High 4 1 1 4 I.P 

7/7/2017 8:45 7/7/2017 8:50 High 3 5 1 3 L.P 

7/7/2017 8:51 7/7/2017 8:51 Very High 4 0 1 4 I.P 

7/7/2017 8:52 7/7/2017 9:23 High 3 31 2 6 I.P 

7/7/2017 9:24 7/7/2017 9:24 Very High 4 0 1 4 I.P 

7/7/2017 9:25 7/7/2017 11:40 High 3 135 4 12 H.P 
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7/7/2017 11:41 7/7/2017 11:44 Moderate 2 3 1 2 L.P 

7/7/2017 11:45 7/7/2017 11:50 High 3 5 1 3 L.P 

7/7/2017 11:51 7/7/2017 12:51 Moderate 2 60 3 6 I.P 

7/7/2017 12:52 7/7/2017 12:57 High 3 5 1 3 L.P 

7/7/2017 12:58 7/7/2017 13:02 Moderate 2 4 1 2 L.P 

7/7/2017 13:03 7/7/2017 19:19 High 3 376 4 12 H.P 

7/7/2017 19:20 7/7/2017 19:20 Very High 4 0 1 4 I.P 

7/7/2017 19:21 7/7/2017 20:38 High 3 77 3 9 H.P 

7/7/2017 20:39 7/7/2017 20:39 Very High 4 0 1 4 I.P 

7/7/2017 20:41 7/7/2017 20:46 High 3 5 1 3 L.P 

7/7/2017 22:48 7/7/2017 23:49 Very High 4 61 3 12 H.P 

7/7/2017 23:59 7/7/2017 23:59 Very High 4 0 1 4 I.P 

8/7/2017 13:15 8/7/2017 13:15 Very High 4 0 1 4 I.P 

8/7/2017 13:53 8/7/2017 13:53 High 3 0 1 3 L.P 

8/7/2017 13:54 8/7/2017 14:01 Very High 4 7 1 4 I.P 

8/7/2017 14:02 8/7/2017 14:41 High 3 39 2 6 I.P 

8/7/2017 14:42 8/7/2017 14:43 Very High 4 1 1 4 I.P 

8/7/2017 14:44 8/7/2017 18:53 High 3 249 4 12 H.P 

8/7/2017 18:59 8/7/2017 19:02 High 3 3 1 3 L.P 

8/7/2017 19:10 8/7/2017 19:10 High 3 0 1 3 L.P 

8/7/2017 19:16 8/7/2017 19:16 High 3 0 1 3 L.P 

8/7/2017 19:23 8/7/2017 19:23 High 3 0 1 3 L.P 

8/7/2017 19:30 8/7/2017 19:35 High 3 5 1 3 L.P 

8/7/2017 19:40 8/7/2017 19:51 High 3 11 1 3 L.P 

8/7/2017 21:26 8/7/2017 21:26 High 3 0 1 3 L.P 

9/7/2017 1:08 9/7/2017 3:20 Very High 4 132 4 16 U.P 

10/7/2017 1:04 10/7/2017 2:55 Very High 4 111 3 12 H.P 

10/7/2017 7:13 10/7/2017 7:16 Very High 4 3 1 4 I.P 

10/7/2017 7:26 10/7/2017 7:47 Very High 4 21 1 4 I.P 

10/7/2017 7:58 10/7/2017 7:59 Very High 4 1 1 4 I.P 

10/7/2017 8:04 10/7/2017 8:22 Very High 4 18 1 4 I.P 

10/7/2017 9:18 10/7/2017 9:22 High 3 4 1 3 L.P 

10/7/2017 9:24 10/7/2017 9:46 Very High 4 22 1 4 I.P 

10/7/2017 9:47 10/7/2017 9:57 High 3 10 1 3 L.P 

10/7/2017 9:58 10/7/2017 10:01 Very High 4 3 1 4 I.P 

10/7/2017 10:02 10/7/2017 10:02 High 3 0 1 3 L.P 

10/7/2017 10:03 10/7/2017 10:06 Very High 4 3 1 4 I.P 

10/7/2017 10:14 10/7/2017 10:17 Very High 4 3 1 4 I.P 

10/7/2017 10:37 10/7/2017 10:48 Very High 4 11 1 4 I.P 

10/7/2017 10:53 10/7/2017 10:59 Very High 4 6 1 4 I.P 

10/7/2017 11:01 10/7/2017 11:17 High 3 16 1 3 L.P 

10/7/2017 11:18 10/7/2017 11:20 Moderate 2 2 1 2 L.P 

10/7/2017 11:22 10/7/2017 11:51 High 3 29 1 3 L.P 

10/7/2017 11:56 10/7/2017 11:59 High 3 3 1 3 L.P 

10/7/2017 13:36 10/7/2017 13:36 High 3 0 1 3 L.P 

10/7/2017 13:45 10/7/2017 14:07 High 3 22 1 3 L.P 
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10/7/2017 14:39 10/7/2017 14:39 High 3 0 1 3 L.P 

10/7/2017 14:46 10/7/2017 14:46 Very High 4 0 1 4 I.P 

10/7/2017 16:19 10/7/2017 16:24 Very High 4 5 1 4 I.P 

10/7/2017 17:52 10/7/2017 17:53 High 3 1 1 3 L.P 

11/7/2017 9:19 11/7/2017 9:38 High 3 19 1 3 L.P 

11/7/2017 9:44 11/7/2017 9:54 High 3 10 1 3 L.P 

11/7/2017 9:55 11/7/2017 9:56 Moderate 2 1 1 2 L.P 

11/7/2017 9:57 11/7/2017 10:25 High 3 28 1 3 L.P 

11/7/2017 10:41 11/7/2017 10:42 High 3 1 1 3 L.P 

11/7/2017 10:59 11/7/2017 11:09 High 3 10 1 3 L.P 

11/7/2017 11:43 11/7/2017 11:49 High 3 6 1 3 L.P 

11/7/2017 15:00 11/7/2017 15:04 Moderate 2 4 1 2 L.P 

11/7/2017 15:12 11/7/2017 15:12 Moderate 2 0 1 2 L.P 

11/7/2017 15:20 11/7/2017 15:20 Moderate 2 0 1 2 L.P 

11/7/2017 15:21 11/7/2017 15:39 High 3 18 1 3 L.P 

11/7/2017 15:55 11/7/2017 16:00 High 3 5 1 3 L.P 

11/7/2017 16:28 11/7/2017 16:55 High 3 27 1 3 L.P 

11/7/2017 17:07 11/7/2017 17:16 High 3 9 1 3 L.P 

11/7/2017 17:17 11/7/2017 17:32 Moderate 2 15 1 2 L.P 

11/7/2017 17:33 11/7/2017 17:36 High 3 3 1 3 L.P 

11/7/2017 17:37 11/7/2017 17:41 Moderate 2 4 1 2 L.P 

11/7/2017 17:42 11/7/2017 17:50 High 3 8 1 3 L.P 

11/7/2017 17:51 11/7/2017 17:54 Moderate 2 3 1 2 L.P 

11/7/2017 17:55 11/7/2017 18:00 High 3 5 1 3 L.P 

11/7/2017 18:02 11/7/2017 18:51 Moderate 2 49 2 4 I.P 

11/7/2017 18:52 11/7/2017 18:53 High 3 1 1 3 L.P 

11/7/2017 18:55 11/7/2017 18:57 Moderate 2 2 1 2 L.P 

11/7/2017 18:58 11/7/2017 19:03 High 3 5 1 3 L.P 

11/7/2017 19:04 11/7/2017 19:28 Moderate 2 24 1 2 L.P 

11/7/2017 19:29 11/7/2017 19:30 High 3 1 1 3 L.P 

11/7/2017 19:31 11/7/2017 19:32 Moderate 2 1 1 2 L.P 

12/7/2017 1:56 12/7/2017 2:43 High 3 47 2 6 I.P 

12/7/2017 2:49 12/7/2017 3:01 High 3 12 1 3 L.P 

12/7/2017 3:06 12/7/2017 3:06 High 3 0 1 3 L.P 

12/7/2017 3:11 12/7/2017 3:14 High 3 3 1 3 L.P 

12/7/2017 7:24 12/7/2017 7:24 Very High 4 0 1 4 I.P 

12/7/2017 7:34 12/7/2017 7:41 High 3 7 1 3 L.P 

12/7/2017 8:09 12/7/2017 8:09 Very High 4 0 1 4 I.P 

12/7/2017 9:26 12/7/2017 9:34 High 3 8 1 3 L.P 

12/7/2017 10:11 12/7/2017 10:18 High 3 7 1 3 L.P 

12/7/2017 11:14 12/7/2017 11:20 Moderate 2 6 1 2 L.P 

12/7/2017 11:27 12/7/2017 11:33 Moderate 2 6 1 2 L.P 

12/7/2017 16:21 12/7/2017 16:22 Moderate 2 1 1 2 L.P 
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Table A.2. Risk level for S::CAN data according to Approach 2-Level 1. 

Start of Event End of Event 
Duration 

(min) 

Weight 

of 

Duration 

Average 

Turbidity 

(NTU) 

Weight of 

Turbidity 

Risk 

Score 

Risk 

Level 

06/07/2017 21:22 07/07/2017 20:46 1404 4 1,499 2 8 High 

07/07/2017 22:48 07/07/2017 23:49 61 3 1,011 1 3 Low 

07/07/2017 23:59 07/07/2017 23:59 0 1 1,001 1 1 Low 

08/07/2017 13:15 08/07/2017 13:15 0 1 1,005 1 1 Low 

08/07/2017 13:53 08/07/2017 18:53 300 4 1,017 1 4 Moderate 

08/07/2017 18:59 08/07/2017 19:02 3 1 1,002 1 1 Low 

08/07/2017 19:10 08/07/2017 19:10 0 1 1,004 1 1 Low 

08/07/2017 19:16 08/07/2017 19:16 0 1 1,002 1 1 Low 

08/07/2017 19:23 08/07/2017 19:23 0 1 1,002 1 1 Low 

08/07/2017 19:30 08/07/2017 19:35 5 1 1,004 1 1 Low 

08/07/2017 19:40 08/07/2017 19:51 11 1 1,003 1 1 Low 

08/07/2017 21:26 08/07/2017 21:26 0 1 1,002 1 1 Low 

09/07/2017 01:08 09/07/2017 03:20 132 4 1,014 1 4 Moderate 

10/07/2017 01:04 10/07/2017 02:55 111 3 1,025 1 3 Low 

10/07/2017 07:13 10/07/2017 07:16 3 1 1,056 1 1 Low 

10/07/2017 07:26 10/07/2017 07:47 21 1 1,102 1 1 Low 

10/07/2017 07:58 10/07/2017 07:59 1 1 1,008 1 1 Low 

10/07/2017 08:04 10/07/2017 08:22 18 1 1,09 1 1 Low 

10/07/2017 09:18 10/07/2017 10:06 48 2 1,07 1 2 Low 

10/07/2017 10:14 10/07/2017 10:17 3 1 1,005 1 1 Low 

10/07/2017 10:37 10/07/2017 10:48 11 1 1,045 1 1 Low 

10/07/2017 10:53 10/07/2017 11:51 58 2 1,3 2 4 Moderate 

10/07/2017 11:56 10/07/2017 11:59 3 1 1,004 1 1 Low 

10/07/2017 13:36 10/07/2017 13:36 0 1 1,018 1 1 Low 

10/07/2017 13:45 10/07/2017 14:07 22 1 1,021 1 1 Low 

10/07/2017 14:39 10/07/2017 14:39 0 1 1,01 1 1 Low 

10/07/2017 14:46 10/07/2017 14:46 0 1 1,012 1 1 Low 

10/07/2017 16:19 10/07/2017 16:24 5 1 1,018 1 1 Low 

10/07/2017 17:52 10/07/2017 17:53 1 1 1,041 1 1 Low 

11/07/2017 09:19 11/07/2017 09:38 19 1 1,056 1 1 Low 

11/07/2017 09:44 11/07/2017 10:25 41 2 1,052 1 2 Low 

11/07/2017 10:41 11/07/2017 10:42 1 1 1,003 1 1 Low 

11/07/2017 10:59 11/07/2017 11:09 10 1 1,013 1 1 Low 

11/07/2017 11:43 11/07/2017 11:49 6 1 1,005 1 1 Low 

11/07/2017 15:00 11/07/2017 15:04 4 1 1,004 1 1 Low 

11/07/2017 15:12 11/07/2017 15:12 0 1 1,007 1 1 Low 

11/07/2017 15:20 11/07/2017 15:39 19 1 1,008 1 1 Low 

11/07/2017 15:55 11/07/2017 16:00 5 1 1,001 1 1 Low 

11/07/2017 16:28 11/07/2017 16:55 27 1 1,082 1 1 Low 

11/07/2017 17:07 11/07/2017 19:32 145 4 1,043 1 4 Moderate 

12/07/2017 01:56 12/07/2017 02:43 47 2 1,03 1 2 Low 

12/07/2017 02:49 12/07/2017 03:01 12 1 1,003 1 1 Low 

12/07/2017 03:06 12/07/2017 03:06 0 1 1,004 1 1 Low 
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12/07/2017 03:11 12/07/2017 03:14 3 1 1,001 1 1 Low 

12/07/2017 07:24 12/07/2017 07:24 0 1 1,007 1 1 Low 

12/07/2017 07:34 12/07/2017 07:41 7 1 1,027 1 1 Low 

12/07/2017 08:09 12/07/2017 08:09 0 1 1,008 1 1 Low 

12/07/2017 09:26 12/07/2017 09:34 8 1 1,017 1 1 Low 

12/07/2017 10:11 12/07/2017 10:18 7 1 1,145 1 1 Low 

12/07/2017 11:14 12/07/2017 11:20 6 1 1,006 1 1 Low 

12/07/2017 11:27 12/07/2017 11:33 6 1 1,017 1 1 Low 

12/07/2017 16:21 12/07/2017 16:22 1 1 1,002 1 1 Low 

 

Table A.3. Severity level for S::CAN data according to Approach 2-Level 2. 

Start of Event End of Event 
Average 

Turbidity 

(NTU) 

Weight of 

Turbidity 

Average 

Chlorine 

(mg/l) 

Weight of 

Chlorine 

Severity 

Score 

Severity 

Level 

6/7/2017 21:22 7/7/2017 20:46 1.499 2 0.008 3 6 Minor 

7/7/2017 22:48 7/7/2017 23:49 1.011 1 0.001 4 4 Minor 

7/7/2017 23:59 7/7/2017 23:59 1.001 1 0 4 4 Minor 

8/7/2017 13:15 8/7/2017 13:15 1.005 1 0.004 4 4 Minor 

8/7/2017 13:53 8/7/2017 18:53 1.017 1 0.008 3 3 Insignificant 

8/7/2017 18:59 8/7/2017 19:02 1.002 1 0.009 3 3 Insignificant 

8/7/2017 19:10 8/7/2017 19:10 1.004 1 0.009 3 3 Insignificant 

8/7/2017 19:16 8/7/2017 19:16 1.002 1 0.009 3 3 Insignificant 

8/7/2017 19:23 8/7/2017 19:23 1.002 1 0.009 3 3 Insignificant 

8/7/2017 19:30 8/7/2017 19:35 1.004 1 0.007 3 3 Insignificant 

8/7/2017 19:40 8/7/2017 19:51 1.003 1 0.01 3 3 Insignificant 

8/7/2017 21:26 8/7/2017 21:26 1.002 1 0.009 3 3 Insignificant 

9/7/2017 1:08 9/7/2017 3:20 1.014 1 0.001 4 4 Minor 

10/7/2017 1:04 10/7/2017 2:55 1.025 1 0 4 4 Minor 

10/7/2017 7:13 10/7/2017 7:16 1.056 1 0 4 4 Minor 

10/7/2017 7:26 10/7/2017 7:47 1.102 1 0 4 4 Minor 

10/7/2017 7:58 10/7/2017 7:59 1.008 1 0 4 4 Minor 

10/7/2017 8:04 10/7/2017 8:22 1.09 1 0.001 4 4 Minor 

10/7/2017 9:18 10/7/2017 10:06 1.07 1 0.004 4 4 Minor 

10/7/2017 10:14 10/7/2017 10:17 1.005 1 0.004 4 4 Minor 

10/7/2017 10:37 10/7/2017 10:48 1.045 1 0.004 4 4 Minor 

10/7/2017 10:53 10/7/2017 11:51 1.3 2 0.006 3 6 Minor 

10/7/2017 11:56 10/7/2017 11:59 1.004 1 0.007 3 3 Insignificant 

10/7/2017 13:36 10/7/2017 13:36 1.018 1 0.008 3 3 Insignificant 

10/7/2017 13:45 10/7/2017 14:07 1.021 1 0.009 3 3 Insignificant 

10/7/2017 14:39 10/7/2017 14:39 1.01 1 0.009 3 3 Insignificant 

10/7/2017 14:46 10/7/2017 14:46 1.012 1 0.004 4 4 Minor 

10/7/2017 16:19 10/7/2017 16:24 1.018 1 0.004 4 4 Minor 

10/7/2017 17:52 10/7/2017 17:53 1.041 1 0.177 2 2 Insignificant 

11/7/2017 9:19 11/7/2017 9:38 1.056 1 0.113 2 2 Insignificant 

11/7/2017 9:44 11/7/2017 10:25 1.052 1 0.174 2 2 Insignificant 

11/7/2017 10:41 11/7/2017 10:42 1.003 1 0.176 2 2 Insignificant 

11/7/2017 10:59 11/7/2017 11:09 1.013 1 0.169 2 2 Insignificant 
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11/7/2017 11:43 11/7/2017 11:49 1.005 1 0.178 2 2 Insignificant 

11/7/2017 15:00 11/7/2017 15:04 1.004 1 0.236 1 1 Insignificant 

11/7/2017 15:12 11/7/2017 15:12 1.007 1 0.244 1 1 Insignificant 

11/7/2017 15:20 11/7/2017 15:39 1.008 1 0.178 2 2 Insignificant 

11/7/2017 15:55 11/7/2017 16:00 1.001 1 0.188 2 2 Insignificant 

11/7/2017 16:28 11/7/2017 16:55 1.082 1 0.151 2 2 Insignificant 

11/7/2017 17:07 11/7/2017 19:32 1.043 1 0.207 1 1 Insignificant 

12/7/2017 1:56 12/7/2017 2:43 1.03 1 0.033 3 3 Insignificant 

12/7/2017 2:49 12/7/2017 3:01 1.003 1 0.018 3 3 Insignificant 

12/7/2017 3:06 12/7/2017 3:06 1.004 1 0.02 3 3 Insignificant 

12/7/2017 3:11 12/7/2017 3:14 1.001 1 0.019 3 3 Insignificant 

12/7/2017 7:24 12/7/2017 7:24 1.007 1 0 4 4 Minor 

12/7/2017 7:34 12/7/2017 7:41 1.027 1 0.057 2 2 Insignificant 

12/7/2017 8:09 12/7/2017 8:09 1.008 1 0 4 4 Minor 

12/7/2017 9:26 12/7/2017 9:34 1.017 1 0.098 2 2 Insignificant 

12/7/2017 10:11 12/7/2017 10:18 1.145 1 0.144 2 2 Insignificant 

12/7/2017 11:14 12/7/2017 11:20 1.006 1 0.208 1 1 Insignificant 

12/7/2017 11:27 12/7/2017 11:33 1.017 1 0.213 1 1 Insignificant 

12/7/2017 16:21 12/7/2017 16:22 1.002 1 0.227 1 1 Insignificant 

 

Table A.4. Risk level for S::CAN data according to Approach 2-Level 2. 

Start of Event End of Event 
Duration 

(min) 

Weight 

of 

Duration 

Severity 

Level 

Weight of 

Severity 

Level 

Risk Score Risk Level 

6/7/2017 21:22 7/7/2017 20:46 1404 4 Minor 2 8 High 

7/7/2017 22:48 7/7/2017 23:49 61 3 Minor 2 6 Moderate 

7/7/2017 23:59 7/7/2017 23:59 0 1 Minor 2 2 Low 

8/7/2017 13:15 8/7/2017 13:15 0 1 Minor 2 2 Low 

8/7/2017 13:53 8/7/2017 18:53 300 4 Insignificant 1 4 Moderate 

8/7/2017 18:59 8/7/2017 19:02 3 1 Insignificant 1 1 Low 

8/7/2017 19:10 8/7/2017 19:10 0 1 Insignificant 1 1 Low 

8/7/2017 19:16 8/7/2017 19:16 0 1 Insignificant 1 1 Low 

8/7/2017 19:23 8/7/2017 19:23 0 1 Insignificant 1 1 Low 

8/7/2017 19:30 8/7/2017 19:35 5 1 Insignificant 1 1 Low 

8/7/2017 19:40 8/7/2017 19:51 11 1 Insignificant 1 1 Low 

8/7/2017 21:26 8/7/2017 21:26 0 1 Insignificant 1 1 Low 

9/7/2017 1:08 9/7/2017 3:20 132 4 Minor 2 8 High 

10/7/2017 1:04 10/7/2017 2:55 111 3 Minor 2 6 Moderate 

10/7/2017 7:13 10/7/2017 7:16 3 1 Minor 2 2 Low 

10/7/2017 7:26 10/7/2017 7:47 21 1 Minor 2 2 Low 

10/7/2017 7:58 10/7/2017 7:59 1 1 Minor 2 2 Low 

10/7/2017 8:04 10/7/2017 8:22 18 1 Minor 2 2 Low 

10/7/2017 9:18 10/7/2017 10:06 48 2 Minor 2 4 Moderate 

10/7/2017 10:14 10/7/2017 10:17 3 1 Minor 2 2 Low 

10/7/2017 10:37 10/7/2017 10:48 11 1 Minor 2 2 Low 

10/7/2017 10:53 10/7/2017 11:51 58 2 Minor 2 4 Moderate 
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10/7/2017 11:56 10/7/2017 11:59 3 1 Insignificant 1 1 Low 

10/7/2017 13:36 10/7/2017 13:36 0 1 Insignificant 1 1 Low 

10/7/2017 13:45 10/7/2017 14:07 22 1 Insignificant 1 1 Low 

10/7/2017 14:39 10/7/2017 14:39 0 1 Insignificant 1 1 Low 

10/7/2017 14:46 10/7/2017 14:46 0 1 Minor 2 2 Low 

10/7/2017 16:19 10/7/2017 16:24 5 1 Minor 2 2 Low 

10/7/2017 17:52 10/7/2017 17:53 1 1 Insignificant 1 1 Low 

11/7/2017 9:19 11/7/2017 9:38 19 1 Insignificant 1 1 Low 

11/7/2017 9:44 11/7/2017 10:25 41 2 Insignificant 1 2 Low 

11/7/2017 10:41 11/7/2017 10:42 1 1 Insignificant 1 1 Low 

11/7/2017 10:59 11/7/2017 11:09 10 1 Insignificant 1 1 Low 

11/7/2017 11:43 11/7/2017 11:49 6 1 Insignificant 1 1 Low 

11/7/2017 15:00 11/7/2017 15:04 4 1 Insignificant 1 1 Low 

11/7/2017 15:12 11/7/2017 15:12 0 1 Insignificant 1 1 Low 

11/7/2017 15:20 11/7/2017 15:39 19 1 Insignificant 1 1 Low 

11/7/2017 15:55 11/7/2017 16:00 5 1 Insignificant 1 1 Low 

11/7/2017 16:28 11/7/2017 16:55 27 1 Insignificant 1 1 Low 

11/7/2017 17:07 11/7/2017 19:32 145 4 Insignificant 1 4 Moderate 

12/7/2017 1:56 12/7/2017 2:43 47 2 Insignificant 1 2 Low 

12/7/2017 2:49 12/7/2017 3:01 12 1 Insignificant 1 1 Low 

12/7/2017 3:06 12/7/2017 3:06 0 1 Insignificant 1 1 Low 

12/7/2017 3:11 12/7/2017 3:14 3 1 Insignificant 1 1 Low 

12/7/2017 7:24 12/7/2017 7:24 0 1 Minor 2 2 Low 

12/7/2017 7:34 12/7/2017 7:41 7 1 Insignificant 1 1 Low 

12/7/2017 8:09 12/7/2017 8:09 0 1 Minor 2 2 Low 

12/7/2017 9:26 12/7/2017 9:34 8 1 Insignificant 1 1 Low 

12/7/2017 10:11 12/7/2017 10:18 7 1 Insignificant 1 1 Low 

12/7/2017 11:14 12/7/2017 11:20 6 1 Insignificant 1 1 Low 

12/7/2017 11:27 12/7/2017 11:33 6 1 Insignificant 1 1 Low 

12/7/2017 16:21 12/7/2017 16:22 1 1 Insignificant 1 1 Low 

  

Table A.5. Risk level for S::CAN data, at Polytech’Lille, according to Approach 3. 

Start of new 

severity level 

End of severity 

level 
Severity level 

Weight 

of 

severity 

Duration 

(min) 

Weight  

of 

Duration 

Risk 

score 

Risk 

level 

06/07/2017 21:22 06/07/2017 21:25 Insignificant 1 3 1 1 Low 

06/07/2017 21:26 06/07/2017 21:31 Minor 2 5 1 2 Low 

06/07/2017 21:32 06/07/2017 21:47 Moderate 3 15 1 3 Low 

06/07/2017 21:48 06/07/2017 21:54 Minor 2 6 1 2 Low 

06/07/2017 21:55 06/07/2017 21:58 Moderate 3 3 1 3 Low 

06/07/2017 21:59 06/07/2017 22:29 Minor 2 30 2 4 Moderate 

06/07/2017 22:30 06/07/2017 22:46 Insignificant 1 16 1 1 Low 

06/07/2017 22:47 06/07/2017 23:36 Minor 2 49 2 4 Moderate 

06/07/2017 23:37 06/07/2017 23:42 Moderate 3 5 1 3 Low 
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06/07/2017 23:43 07/07/2017 00:08 Minor 2 25 1 2 Low 

07/07/2017 00:09 07/07/2017 07:42 Insignificant 1 453 4 4 Moderate 

07/07/2017 07:43 07/07/2017 07:43 Minor 2 0 1 2 Low 

07/07/2017 07:44 07/07/2017 11:40 Insignificant 1 236 4 4 Moderate 

07/07/2017 11:41 07/07/2017 11:44 Moderate 3 3 1 3 Low 

07/07/2017 11:45 07/07/2017 11:46 Minor 2 1 1 2 Low 

07/07/2017 11:47 07/07/2017 11:48 Insignificant 1 1 1 1 Low 

07/07/2017 11:49 07/07/2017 11:50 Minor 2 1 1 2 Low 

07/07/2017 11:51 07/07/2017 12:52 Moderate 3 61 3 9 High 

07/07/2017 12:53 07/07/2017 12:57 Minor 2 4 1 2 Low 

07/07/2017 12:58 07/07/2017 13:02 Moderate 3 4 1 3 Low 

07/07/2017 13:03 07/07/2017 13:10 Minor 2 7 1 2 Low 

07/07/2017 13:11 07/07/2017 20:46 Insignificant 1 455 4 4 Moderate 

07/07/2017 22:47 07/07/2017 23:49 Insignificant 1 62 3 3 Low 

07/07/2017 23:54 07/07/2017 23:59 Insignificant 1 5 1 1 Low 

08/07/2017 07:01 08/07/2017 07:01 Insignificant 1 0 1 1 Low 

08/07/2017 13:15 08/07/2017 13:15 Insignificant 1 0 1 1 Low 

08/07/2017 13:53 08/07/2017 19:16 Insignificant 1 323 4 4 Moderate 

08/07/2017 19:21 08/07/2017 19:23 Insignificant 1 2 1 1 Low 

08/07/2017 19:30 08/07/2017 19:35 Insignificant 1 5 1 1 Low 

08/07/2017 19:40 08/07/2017 19:51 Insignificant 1 11 1 1 Low 

08/07/2017 20:21 08/07/2017 20:21 Insignificant 1 0 1 1 Low 

08/07/2017 21:18 08/07/2017 21:18 Insignificant 1 0 1 1 Low 

08/07/2017 21:26 08/07/2017 21:26 Insignificant 1 0 1 1 Low 

09/07/2017 01:08 09/07/2017 03:20 Insignificant 1 132 4 4 Moderate 

10/07/2017 01:04 10/07/2017 02:55 Insignificant 1 111 3 3 Low 

10/07/2017 07:13 10/07/2017 07:16 Insignificant 1 3 1 1 Low 

10/07/2017 07:26 10/07/2017 07:47 Insignificant 1 21 1 1 Low 

10/07/2017 07:58 10/07/2017 07:59 Insignificant 1 1 1 1 Low 

10/07/2017 08:04 10/07/2017 08:22 Insignificant 1 18 1 1 Low 

10/07/2017 09:18 10/07/2017 10:17 Insignificant 1 59 2 2 Low 

10/07/2017 10:37 10/07/2017 10:48 Insignificant 1 11 1 1 Low 

10/07/2017 10:53 10/07/2017 11:16 Insignificant 1 23 1 1 Low 

10/07/2017 11:17 10/07/2017 11:17 Minor 2 0 1 2 Low 

10/07/2017 11:18 10/07/2017 11:20 Moderate 3 2 1 3 Low 

10/07/2017 11:22 10/07/2017 11:23 Minor 2 1 1 2 Low 

10/07/2017 11:24 10/07/2017 11:59 Insignificant 1 35 2 2 Low 

10/07/2017 13:36 10/07/2017 13:36 Insignificant 1 0 1 1 Low 

10/07/2017 13:45 10/07/2017 14:07 Insignificant 1 22 1 1 Low 

10/07/2017 14:39 10/07/2017 14:39 Insignificant 1 0 1 1 Low 

10/07/2017 14:46 10/07/2017 14:46 Insignificant 1 0 1 1 Low 

10/07/2017 16:19 10/07/2017 16:24 Insignificant 1 5 1 1 Low 

10/07/2017 17:52 10/07/2017 17:53 Insignificant 1 1 1 1 Low 

11/07/2017 09:19 11/07/2017 09:38 Insignificant 1 19 1 1 Low 

11/07/2017 09:44 11/07/2017 10:25 Insignificant 1 41 2 2 Low 

11/07/2017 10:41 11/07/2017 10:42 Insignificant 1 1 1 1 Low 
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11/07/2017 10:59 11/07/2017 11:09 Insignificant 1 10 1 1 Low 

11/07/2017 11:43 11/07/2017 11:49 Insignificant 1 6 1 1 Low 

11/07/2017 14:57 11/07/2017 15:07 Insignificant 1 10 1 1 Low 

11/07/2017 15:12 11/07/2017 15:12 Insignificant 1 0 1 1 Low 

11/07/2017 15:20 11/07/2017 15:39 Insignificant 1 19 1 1 Low 

11/07/2017 15:55 11/07/2017 16:00 Insignificant 1 5 1 1 Low 

11/07/2017 16:28 11/07/2017 16:57 Insignificant 1 29 1 1 Low 

11/07/2017 17:07 11/07/2017 19:32 Insignificant 1 145 4 4 Moderate 

12/07/2017 01:56 12/07/2017 03:01 Insignificant 1 65 3 3 Low 

12/07/2017 03:06 12/07/2017 03:06 Insignificant 1 0 1 1 Low 

12/07/2017 03:11 12/07/2017 03:14 Insignificant 1 3 1 1 Low 

12/07/2017 07:24 12/07/2017 07:24 Insignificant 1 0 1 1 Low 

12/07/2017 07:34 12/07/2017 07:41 Insignificant 1 7 1 1 Low 

12/07/2017 08:09 12/07/2017 08:09 Insignificant 1 0 1 1 Low 

12/07/2017 09:26 12/07/2017 09:34 Insignificant 1 8 1 1 Low 

12/07/2017 10:11 12/07/2017 10:18 Insignificant 1 7 1 1 Low 

12/07/2017 11:14 12/07/2017 11:20 Insignificant 1 6 1 1 Low 

12/07/2017 11:26 12/07/2017 11:33 Insignificant 1 7 1 1 Low 

12/07/2017 16:21 12/07/2017 16:22 Insignificant 1 1 1 1 Low 
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