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Abstract

This work lies at the intersection of two problems concerning turbulence (i) the de-
scription of coherent structures of turbulent boundary layer flow and (ii) the numerical
methods for high-performance computing of these flows. The main objectives are to
analyze coherent structures and to develop new numerical tools to be used in turbu-
lence research with a special focus on the turbulent boundary layers. A new direct
numerical simulation of a turbulent boundary layer flow over a flat plate is conducted
with the code Incompact3d. A relationship between attached flow structures and the
streamwise energy spectra in a turbulent boundary layer has been established similarly
to an earlier experimental study. A novel application of the skeletonization method is
proposed to obtain detailed statistics of coherent structures. Statistics of large-scale
motions (LSM) and Reynolds Shear Stress quadrant structures are compared. In the
second part, a new test-suite is implemented for the in-house incompressible Navier-
Stokes solver. Performance of the code is analyzed. The stability problems at high
Reynolds numbers are addressed and some solutions are proposed.

Keywords: turbulence, numerical method, direct numerical simulation, turbulent
boundary layers, coherent structure
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Résumé

Cette étude est à l’intersection de deux problématiques que sont (i) la description des
structures cohérentes d’une couche limite turbulente et (ii) les méthodes numériques
adaptées pour le calcul haute performance de ces écoulements. Les principaux objec-
tifs sont de caractériser les grandes structures de la turbulence et de développer de
nouveaux outils numériques pour la simulation de couches limites turbulentes. Une
nouvelle simulation numérique directe de couche limite turbulente de plaque plane est
réalisée avec le code Incompact3d. Une relation entre les structures cohérentes at-
tachées à la paroi et le spectre d’énergie dans une couche limite turbulente est établie
et comparée à une étude antérieure basée sur des résultats expérimentaux. Une ap-
plication particulière de la méthode de squelettisation est proposée pour établir des
statistiques plus précises des structures cohérentes de la turbulence. Les statistiques
des structures grandes échelles de vitesse longitudinale (LSM) et les différents com-
posantes des tensions de Reynolds turbulent instantanées (quadrants) sont comparées.
Dans un second temps, un nouveau module de tests est implémenté dans le solveur
Navier-Stokes incompressible développé en interne. La performance de ce nouveau
code est analysée. Les problèmes de stabilité à nombre de Reynolds élevé sont abordés
et certaines solutions sont proposées.

Mots clés : turbulence, méthode numérique, simulation numérique directe, couches
limites turbulente, structure cohérente
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1Introduction

1.1 Background

For more than a century, understanding turbulence is one of the primary research
interest in fluid mechanics. Laminar and turbulent states of the flow have been first
formally recognized by Hagen 12 . Turbulent flows can be observed in the different
scope of problems like the circulatory system of the living organism, atmospheric
wind or, at much larger scale, dynamics of stellar systems. Turbulence was first
characterized and parametrized in pipe flows by Reynolds 13 . Thus, comprehensive
understanding of fundamentals of turbulence is helpful for aerodynamic optimization,
noise reduction, and flow control methodologies of the industrial applications. For
example a very early example from Eiffel 14 shows that turbulence reduces drag on a
sphere. Following these works an enormous knowledge has been accumulated due to
the strong motivation for turbulence research supported by the everyday existence of
the turbulent flows in nature. A broad introduction on the theory of turbulence can
be found in the books of Batchelor 15 , Young 16 and Pope 17 among many others.

Different approaches to study turbulence problem from a wide research communi-
ties are available in the literature. Therefore, it is useful to classify the contribution
in turbulence research to indicate the place of current study. First of all, the sim-
plest classification is based on the methodology used in these studies. Chapman and
Tobak 18 divided the research efforts into the three primary approaches namely statis-
tical, structural and dynamical (deterministic). The present study builds up around
various statistics and definitions of the specific types of coherent structures. Another
classification which is particularly useful is given by Hinze 19 as free (absence of walls)
and wall (generated and affected by the presence of walls) turbulence the latter be-
ing the subject of the present work with a particular focus on the three-dimensional
large-scale coherent structures.

Turbulent boundary layer (TBL) is a specific region of a flow where mixing across
several layers takes places (at different distances from a wall) and which contains
multi-scale quasi-random fluid motion. There is a long history of research on TBL
starting with the legacy mixing length theory of Prandtl 20 ; 21 and the law of the wall
by Kármán et al. 22 . Turbulent boundary layer theory kept progressing following these
studies. Interested readers can refer to the book of Schlichting and Gersten 23 for a
complete review. For the sake of completeness of this document, a brief literature
review of wall-bounded flow, focusing on TBL, is also given in Chapter 2.
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The well known study of Hussain 24 is one of the earliest investigation of the variety of
coherent structures in turbulent flows, including structures in free shear flows along
with the wall-bounded flow results. Qualitative description of coherent structures is
often straightforward, however quantitative matters (e.g., origin, lifespan, and other
statistics) are subject to substantial discussions. Main reasons behind the long-lasting
discussions around the coherent structures are the definition and extraction of the
coherent motions which have always been the significant challenges in turbulence
research. Today, it is apparent that 3D and time-resolved turbulent flow databases,
especially for TBL flows, are essential to access and to study turbulent structures.

Fortunately, both experimental and numerical approaches are improving faster than
ever thanks to the technological innovations. Experimental methods usually comes
with a unavoidable trade-off between spatial or temporal resolution. Single point
measurement methods such hot-wire and LDA can reach up to the high acquisition
frequencies. On the other hand, PIV and Tomo-PIV provides multi-dimensional data
however at much lower sampling rates. Recent developments in particle tracking ve-
locimetry (PTV) methodology provides better accuracy than before (i.e., Shake The
Box25). In parallel to the experimental methods, numerical techniques are also evolv-
ing fast with the modern computer technologies like the Intel’s Xeon Phi gathering
up to 72 Cores. In addition to the advanced multi-processor platforms, software
technologies are developing as well such as CUDA, OpenCL to benefit from GPUs.
Consequently, new opportunities are available for the numerical solutions of Navier-
Stokes equations for both the commercial market and scientific research. Hybrid
MPI-OpenMP is now routinely used since it potentially provides better granularity,
load balancing, optimized communication and I/O. Thus, new parallelization strate-
gies are becoming usable for the well-known challenging problems requiring linear and
nonlinear solvers, while some of the distributed algorithms have better convergence
for certain sequential iterative algorithms. The revival of interest towards the study
of turbulent structures in recent years is strongly related to these new tools and more
powerful computational resources which offer easier access to the 3D spatially resolved
data with the desired time resolution.

Existence and smoothness of the Navier-Stokes in three-dimensions are still unan-
swered questions, but Leray 26 proved the existence of weak solutions of the equations
which satisfy the equations in a mean sense. Despite the controversial discussions
around the truthiness of the equations, numerical methods are implemented to solve
Navier-Stokes equations based on the fact that weak solutions exist. Numerical solu-
tions of Navier-Stokes often becomes a computationally exhaustive and costly task,
especially DNS. Approaches like RANS and LES aimed to be cheaper, but they are not
suitable for this study, as both of them are not able to provide fully resolved velocity
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fields in time and space which is counter-intuitive to the goal of this work. Although
solving Navier-Stokes equations numerically is not an easy task, DNS provides a nu-
merical solution of the Navier-Stokes equations without turbulence models to reach
results at a resolution down to the Kolmogorov scales with a proper adjustment of
flow/fluid parameters and simulation domain. Such features of DNS checks out the
essentials for a robust study of coherent structures.

DNS becomes more accessible for turbulence research with every new powerful high-
performance computational center which confirms the arguments about the effects of
the technological progress in turbulence research. On the other hand, only handful
flow cases like homogeneous isotropic turbulence27 or channel flow28 can be computed
at significant Reynolds number, because of possible simplifications in computational
approaches based on the physics of the flow. The two above references are examples
of very large DNS performed at the largest possible Reynolds number accessible at
that time among many other DNS of such flows. Summary of available ZPG and
APG TBL simulations are listed in tables 1.1 and 1.2 to provide overall idea about
the existing studies. However, it should not be considered as a complete list.

The first examples of wall bounded flow DNS were at relatively low Reynolds numbers
such as the channel flow simulation of Kim et al. 29 and TBL simulation of Spalart 30 .
Using the largest supercomputers a channel flow simulations up to Reτ = 5200 can be
performed28. Relatively large number of examples of channel flows29;31;32;33 are present
in literature. However, much fewer data are available for TBL over a flat plate. The
simulations of Sillero et al. 34 and Schlatter and Örlü 6 are recent well-known examples
of DNS of turbulent boundary layers.

Table 1.1 – Summary of some available TBL DNS with zero pressure gradient (ZPG).
Streamwise and spanwise grid resolutions in wall units are ∆x+, ∆z+. δ+ =
uτδ/ν is the Karman number at the highest Reynolds achieved within the
computational domain, where uτ is the friction velocity and δ is the boundary
layer thickness.

∆x+ ∆+
z Reθ δ+ Year Reference

20 6.7 1410 650 1988 Spalart 30

6.1 4.1 1968 740 2009 Simens et al. 31

17.9 9.6 2400 802 2009 Schlatter et al. 35

9 4 4060 1270 2010 Schlatter et al. 7

12.3 4.9 2500 735 2011 Lee and Sung 36

6.5 3.78 6650 2025 2013 Sillero et al. 37

8.2 3.9 2522 822 2018 Solak and Laval 38 (present case)

Available, TBL simulations with the presence of APG is even lesser than the ZPG
simulations. Although various examples of periodic bumps and channel flow simula-
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tions with APG exists39 in the literature, there is no example of a TBL DNS with
a geometrical curvature which generates the desired effect. In the available exam-
ples, pressure gradient effect is generated using power-law free-stream distribution40

or with a constant uniform suction at the top boundary of the simulation controlling
the constant streamwise gradient41.

Table 1.2 – Summary of some available TBL DNS with adverse pressure gradient (APG).
The range or the maximum Reynolds number based on momentum thickness
Reθ within the computational domain is given. The non-dimensional pressure
gradient parameter β, is defined as δ∗/τw (dP/dx) where δ∗ is the displacement
thickness, τw is the wall-shear stress and dP/dx is the mean pressure gradient
in the streamwise direction. Simulations with separated flows are not listed.

Reθ β Year Reference
1600 2 1993 Spalart and Watmuff 42

430− 690 0.65 1998 Skote et al. 43

1200− 1400 1.68 2008 Lee and Sung 40

3500− 4800 1 2016 Kitsios et al. 44

10000− 12300 39 2017 Kitsios et al. 45

2840 9 2017 Lee 46

Robinson 47 provides a broad review of the coherent structures in TBL and describes
the computer-simulation era (1980–present) in the research of the turbulent boundary
layer structures. As he expected, domination of the computer power continues to
provide unique details. Now, the puzzles are how these somehow persistent motions
can be used to represent turbulent boundary layer flow (i.e., how these structures can
be related to theory) and how such a theory can be useful48.

To conclude this section, it should be remarked that advanced tools have been devel-
oped to analyze the problem of turbulence, and many details were discovered the last
few decades, but the global solution of the turbulence problem is not solved yet. Un-
derstanding canonical TBL flows with ZPG and APG have great value for the study
of turbulence. Therefore, simple TBL flow cases with or without pressure gradient
need to be simulated. Today, simulations at much higher Reynolds number are being
conducted which provides unique databases while no experimental measurement can
matched-up with the advantages of those. In short, research on LSM and APG is ex-
tremely worthy subjects and might result in a reduction of the negative environmental
impact of industrial applications and transportation.
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1.2 Objectives

The present work is part of the research project of the Laboratoire de Mécanique des
Fluides de Lille - Kampé de Fériet. In our group, several researchers have completed
individual projects on physics of TBL@. Earlier experimental works in the group have
been focused on the organization of the LSM in TBL flow49, and the modeling of wall
attached structures10. Further investigations of the structures in ZPG TBL is one of
the objective of this study. Generating DNS of an APG TBL over a curved wall is
one of the long term objectives of the team. The in-house code MFLOPS3D-MD have
been developed to serve this purpose. The development of the code was carried on
and a test-suite was implemented within this study.

Following the ideas mentioned earlier, this research on TBL aims to answer the fol-
lowing questions:

1. Lozano-Durán and Jiménez 50 have investigated the vortex clusters and Reynolds
shear stress components in channel flows. They also provided aspect ratios of
these structures. Is it possible to get similar aspect ratios with a lower Reynolds
number? How can models based on the 3D decomposition of the coherent struc-
tures in wall-bounded flows be improved?

2. Srinath et al. 10 proposes a simple model based on the strong events in streamwise
fluctuations to show the connection with the footprint of the LSM in streamwise
energy spectra (k−1 region) with the structures detected in physical space. Is
it possible to get the similar results with DNS data? How the turbulent ki-
netic energy (TKE) decomposes in these streamwise fluctuation regions and the
quadrants?

3. Mathis et al. 51 demonstrated that LSM has some effects down to the wall. Are
these effects can be detected on a single structure? Is it possible to distinguish
different classes of the LSM (regarding their features in various wall distances)?

4. Ganapathisubramani et al. 52 splits the streamwise fluctuation for large and small
scales based on the energy spectra. What can be observed with such decom-
position of the turbulent kinetic energy, by detecting the structures in physical
space?

5. How much of the large-scale streamwise structures are also part of the strong
quadrant structures such as Q2 and Q4?

The main objectives of the second part of the present study is to continue to develop
the new code MFLOPS3D-MD which is a tool to simulate TBL flow with APG. Limits
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of the code will be tested and optimized parameters will be identified. Apart from the
development of the code when necessary, following questions will be addressed with
the extensive tests:

6. Hugues and Randriamampianina 53 propose a projection method with a pressure
prediction step. Can this method implemented in MFLOPS3D-MD? Are there
any potential improvements concerning projection method?

7. Is Helmholtz solver working properly? What are the sources of the stability
problem?

8. How efficient is the influence matrix solver? Are there any unfavorable sub-
domain configuration?

1.3 Research strategy

This study includes numerical analyses of the turbulent boundary layer flows. Fun-
damental physics of turbulent boundary layer flows will be investigated alongside the
development of the numerical tools.

Results related to the flat plate TBL obtained using the code Incompact3d54 which is a
high-order incompressible Navier-Stokes solver that scales with up to one million cores.
Compact finite difference sixth-order schemes are used to discretize incompressible
Navier-Stokes equations on a Cartesian mesh. Explicit and semi-implicit temporal
schemes are available for time advancement. It uses fractional step method55 in order
decouple pressure from momentum equation. Pressure is solved completely in spectral
space with the proper use of 3D Fast Fourier Transforms (FFTs), allowing all possible
boundary conditions in any spatial direction. The spectral method is combined with a
special stretching function which allows non-homogeneous grid spacing in one spatial
direction only. The pressure field is staggered from the velocity field by half a mesh
to avoid spurious oscillations. Tripping based on Schlatter and Örlü 6 is implemented
to force the transition to turbulent flow. In addition to the features above, the code
itself contains MPI I/O routines. However, in this study, parallel netCDF4 were
implemented as most of the post-processing tools developed in the laboratory already
written to use on this data format.

The code MFLOPSMD-3D, computes the solution of incompressible Navier-Stokes,
on a Cartesian mesh using a mapping of coordinates. Mapping provides the ability to
simulate geometries within the simulation domain without additional computational
cost. For example, the effect of the adverse pressure gradient (over a geometrical
bump) can be studied. In this solver, spatial discretization is achieved with compact
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finite difference schemes56 up to 8th order. It uses fractional step method as most of the
other incompressible flow solvers available for the simulation of TBL. Both pressure
and velocity components are solved in physical space using a collocated grid. 3D
domain decomposition grants the massively parallelized feature to the code. Therefore,
complete simulation domain consists of sub-domains each of them handled by a single
MPI process. Within each sub-domain, Helmholtz system is solved efficiently via
3D diagonalization to solve the momentum equations implicitly. Similarly, Poisson
equation are solved in a sub-domain for pressure equation. Influence matrix method57

is used to determine boundary conditions of each sub-domain. The linear system
generated due to this method is solved with iterative methods based on Portable,
Extensible Toolkit for Scientific Computation58;59 (PETSc). Boundary conditions at
the full-domain borders are also implemented inside Helmholtz solver when a sub-
domain is on the edge of the solution domain. 2D mapping functions are derived and
blended in the momentum equations as additional source terms, so curved walls can
be defined without wasting grid points. Only a few additional derivatives are required
for this purposes limiting the mapping in 2 dimensions. Therefore, it is cheaper
and straightforward than curvilinear coordinates. Additionally, sharper geometries
can be placed inside the simulation domain as well, by altering boundary conditions
of the interfaces of the sub-domains properly and without additional computational
cost. Details of the development being kept for the later part of this document,
features of the code MFLOPS3D-MD is potentially more flexible than the other high
performance, high order Navier-Stokes solvers.

The simulation of TBL over a flat plate will be considered as the baseline in the
present work. Additionally, it provides the turbulent inflow for the potential future
simulations. After, a detailed characterization of the large-scale structures in TBL
over a flat plate, similar studies can be done for the TBL subjected to APG.

All the post-processing and reporting is accomplished with open-source tools during
this projects. Most of them are developed in FORTRAN or Python.

This investigation is complemented by the experimental Ph.D. project of Sricharan Sri-
nath, also associated with the same research group in LML. Although the background
for the present project and experimental counterpart are similar, the main objectives
differ substantially. The two research activities share some common analysis of bound-
ary layer flows (e.g. wall attached LSM) and the continuous interaction between the
investigators have been highly beneficial for the completion of the projects.
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1.4 Organization of this document

The present document is organized into four parts, with a total of nine chapters. Four
appendices complete the results and methods presented in the main document. Each
chapter focuses on a single subject with its conclusions when necessary. While keeping
the background section of the present chapter general enough for every readers, specific
literature review with more technical details is written in the next chapter. The parts
of the document have been organized in a convenient order so the reader can follow
the motivations and findings of the study while reading along.

Part I is the introduction of this document. Chapter 1 reveals the motivation behind
this study, discusses the objectives of the research project and presents numerical
solvers shortly. Further details related to the numerical methods are given at the
beginning of each part of the document for the associated code. Chapter 2 presents
the related literature review of wall-bounded flows.

TBL simulation at moderate Reynolds number and study of LSM are reported in the
context of part II. Chapter 3 reveals the details of the numerical solver and parameters
of the simulation. Chapter 4 shows the statistical results and, the three-dimensional
structure of TBL as sweeps, ejections and large structures based on strong streamwise
fluctuations (negative and positive).

Part III consists of 2 chapters. Chapter 5 introduces the in-house code MFLOPSMD-
3D. The numerical methods used in the code are given in this chapter. A simulation
of the TBL as showcase along with comprehensive tests to identify the source of the
stability problems are described in chapter 6.

Finally, the main conclusion is given in part IV. Potential applications and future
work to continue this activity are also summarized. The list publications and com-
munications derived from the present study are given at the end of the document.
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2Wall Turbulence

In the present work, we assume the flow to be incompressible isothermal such that the
density and the dynamic viscosity are not affected by temperature. The Navier-Stokes
equations (2.1) and (2.2) govern incompressible fluid flows. Equation (2.1) represents
momentum conservation and eq. (2.2) is the continuity equation (incompressibility
constraint).

∂u
∂t

+ u · ∇u = −1
ρ
∇p+ ν∇2u + g (2.1)

∇ · u = 0 (2.2)

In these equations, t is the time, u is the velocity vector, p is the pressure, ρ is the
fluid density and ν is the kinematic viscosity of the fluid. Body forces (such as gravity,
magnetic forces) are given as g.

Expression of the instantaneous flow quantities by the sum of their mean and fluctu-
ating parts was introduced by Reynolds 60 as

ui = ūi + u′i and p = p̄+ p′ (2.3)

where the mean and fluctuations are denoted by a bar and a prime respectively.

The Reynolds Averaged Navier-Stokes equations (RANS) (the result of the implemen-
tation of Reynolds decomposition† (2.3) into (2.1) and (2.2)) is

∂ūi
∂xi

= 0

ρ

(
∂ūi
∂t

+ ūj
∂ūi
∂xj

)
= − ∂p̄

∂xi
+ µ

∂2ūi
∂x2

j

− ρ∂u
′
iu

′
j

∂xj

(2.4)

where u′
iu

′
j is the Reynolds stress tensor. Its trace is equal to twice the turbulent

kinetic energy

k = 1
2u

′
iu

′
i (2.5)

†Other decompositions are available in the literature61 depending on the specific focus the studies
(e.g., phase averaging). In this study only mean and fluctuating parts are considered, so definition
in (2.3) is sufficient.
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Reynolds shear stress transport (RSST) is obtained by subtracting (2.4) from (2.1)
and multiplying the results with u

′
j

ρ
∂u

′
iu

′
j

∂t︸ ︷︷ ︸
1

+ ρuk
∂u

′
iu

′
j

∂xk︸ ︷︷ ︸
2

= − ρu′
iu

′
k

∂ūj
∂xk
− ρu′

ju
′
k

∂ūi
∂xk︸ ︷︷ ︸

3

+
∂
(
u

′
iτjk + u

′
jτik

)

∂xk︸ ︷︷ ︸
4

−
∂
(
u

′
ip

′
djk + u

′
jp

′
dik

)

∂xk︸ ︷︷ ︸
5

− ρ∂u
′
iu

′
ju

′
k

∂xk︸ ︷︷ ︸
6

+ p′ ∂u
′
i

∂xj
+ p′ ∂u

′
j

∂xi︸ ︷︷ ︸
7

− τjk
∂u

′
i

∂xk
− τik

∂u
′
j

∂xk︸ ︷︷ ︸
8

(2.6)

where d is the Dirac function and τij = µ
(
∂u

′
i

∂xj
+ ∂u

′
j

∂xi

)
is the Reynolds stress tensor.

Equation (2.6) can be used to investigate the dynamics of turbulent motions. Each
term of the equation labeled from 1 to 8 has a distinct role in the overall Reynolds
stress balance as described in the textbook of George 62 . Term (1) is the rate of change
of kinetic energy per unit mass due to non-stationarity. Term (2) is the rate of change
of kinetic energy per unit mass due to convection by the mean flow. Term (3) is
the production term that takes kinetic energy from the mean flow to feed turbulence.
Terms (4), (5) and (6) correspond to the viscous diffusion, diffusion by pressure fluctu-
ations and diffusion by velocity fluctuations respectively. They transport the Reynolds
stress from one place to another. Term (7) in the Reynolds shear stress equation is the
pressure-strain rate term. It redistributes energy between normal stresses and makes
them more isotropic. Term (8) is the rate of dissipation of turbulence kinetic energy
due to viscous stresses.

2.1 Turbulent boundary layer flow

For simplicity Einstein notation will be left here and the equations will be written for
2D flow, so x1, x2, u1, u2 will be u, v, x, y.

In wall-bounded flows, a boundary layer forms in the vicinity of the limiting surface
where the effect of viscosity is significant. Kinematic and no-slip boundary conditions
on the wall drive this particular type of the flow. Kinematic boundary conditions are
imposed by the fact that the wall does not let fluid to penetrate. No-slip boundary
conditions mean that tangential components of the velocity have to match and it is
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Figure 2.1 – An example of the velocity profile of the zero pressure gradient turbulent
boundary layer at Reθ = 2000 showing the various regions. Note that ratio
between δ and y+ is Reynolds number dependent.

equal to zero when to wall is at rest. The theory of Prandtl 20 ; 21 puts the no-slip
conditions into the Navier-Stokes equation. More explicitly, his work shows that if
the Reynolds number increases the flow will not behave more and more like an inviscid
fluid which is the case for free shear flows. Consequently, inequalities listed in table 2.1
needs to be considered to resolve wall-bounded flows.

The use of a single turbulent length scale63 is a satisfying approach for the turbulence
closure problem but is not enough for wall-bounded flows (e.g., turbulent boundary
layer). A second length scale is needed for Prandtl’s boundary layer because boundary
layer requires at least one viscous stress term in the equations to be maintained. As
stated by George 62 , “the necessary gradient in velocity is known as the boundary
layer thickness”.

Different layers can be identified in a turbulent boundary layer and scaled with bound-
ary layer thickness or wall units. Typical limits for the regions are given in fig. 2.1 to
provide a general picture of the TBL organization.

A boundary layer developing on a surface encounters first a laminar region which starts
to destabilize in a transition zone before to become fully turbulent. The boundary
layer thickness (δ) is defined as the wall normal distance where the velocity of the flow
is equal to 99% of the free stream velocity. The displacement thickness δ∗ (2.7) and
the momentum thickness θ (2.8) are the vertical distances that the solid boundary
must be displaced upward so that inviscid fluid at the free stream velocity Ue has the
same mass flow rate and momentum as boundary layer with the original fluid.
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δ∗ =
δ∫

0

(
1− ū (y)

Ue

)
dy (2.7)

and

θ =
δ∫

0

ū (y)
Ue

(
1− ū (y)

Ue

)
dy (2.8)

are the integral forms of the displacement thickness δ∗ and the momentum thickness
θ with Ue being the free stream (external) velocity.

The shape factor H is defined as the ratio between these two scales

H = δ∗

θ
(2.9)

Theoretical values of H are 2.59 and 1.25 for laminar (Blasius boundary layer) and tur-
bulent (Prandtl approximation) flows. In canonical turbulent boundary layer flows23;64

it is about 1.4.

Wall-bounded flows are often described with proper normalizations based on wall
viscous length scale δν = ν/uτ and wall friction velocity uτ =

√
τw/ρ where τw is the

mean wall shear stress. The friction is better characterized by the friction coefficient

cf = τw
1
2ρU

2
e

(2.10)

The turbulent boundary layer flows are usually characterized by the Reynolds num-
ber based on the friction velocity Reτ = uτ δ

ν
or the Reynolds number based on the

momentum thickness Reθ = U∞θ
ν

.

2.1.1 Boundary layer assumptions

Equation (2.4) can be reduced further based on the dimensional analysis of the equa-
tion for TBL. The two primary length-scales of the turbulent boundary layer are
L (in streamwise direction), and δ (in wall-normal direction) considering a 2D flow
(w = 0) over a wall at high Reynolds number. The length δ is much smaller than the
longitudinal scale of the TBL (δ << L).

To start the dimensional analyses the following scales are needed: (i) L1, length scale
along x, (ii) L2 ≤ δ(x), length scale along y, (iii) V1 ≤ Ue, velocity scale along x,
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(iv) V2, velocity scale along y and (v) v′, velocity scale of turbulent fluctuations.

The scale V2 can be related to the other scales with the help of the continuity equation.

V1

L1
∼ V2

L2
⇒ V2 ∼

L2

L1
V1 � V1

The relationship above is a natural result of the kinematic boundary condition men-
tioned earlier, and it also explains why entrainment rate is low in wall-bounded flows.

Dimensional analysis of the RANS equation (2.4) gives,

∂ū

∂x
+ ∂v̄

∂y
= 0, (2.11)

ū
∂ū

∂x
+ v̄

∂ū

∂y
= −1

ρ

∂p̄

∂x
+ ν

∂2ū

∂y2 −
∂u′v′

∂y
(2.12)

and

0 = −∂p̄
∂y
− ρ∂v

′v′

∂y
. (2.13)

The scales involved in (2.12) and (2.13) differs along the boundary layer, and further
dimensional analyses can be done considering specific ranges of the boundary layer.

The region called “outer part” is the part of the TBL where wall-normal length scales
is of the order of the boundary layer thickness δ and streamwise velocity scale is of
the order of the external flow velocity.

As L2 ∼ δ and L1 ∼ x and V1 ∼ Ue, viscous term became negligible leading to

ū
∂ū

∂x
+ v̄

∂ū

∂y
= −1

ρ

∂p̄

∂x
− ∂u′v′

∂y
(2.14)

Close to the wall, streamwise velocity scale becomes smaller compared to the external
velocity Ue. Scales in this region are L2 ∼ δ, L1 ∼ x and V1 � Ue (V1 goes to 0 at the
wall), therefore convection terms become negligible.

0 = −1
ρ

∂p̄

∂x
+ ν

∂2ū

∂y2 −
∂u′v′

∂y
(2.15)

Boundary layer flows can be classified in two categories, without pressure gradient
( ∂p
∂x

= 0), and the with the pressure gradient. The pressure gradient can be “favorable”
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( ∂p
∂x

> 0) or “adverse” ( ∂p
∂x

< 0) corresponding to accelerating or decelerating flows
respectively.

2.1.2 Zero pressure gradient boundary layer

Equation (2.12) can be simplified further in the absence of the pressure gradient term.

Outer region: Above the inner region where y > 0.1δ, neglecting pressure gradient
term in (2.14), a velocity defect law can be defined:

Ue − ū
uτ

= f
(
y

δ

)
(2.16)

George 65,66 discussed defect law and proposed an alternative form based on a simi-
larity solution of the RANS equations where uτ is replaced by Ue in the scaling of the
velocity deficit.

Inner region: George 62 demonstrates that inner equations needed to be below 0.1δ
assuming convective terms are negligible (u << U∞). For ZPG TBL (2.15) simplifies
to:

µ
∂2ū

∂y2 − ρ
∂u′v′

∂y
= 0 (2.17)

Equation (2.17) can be integrated into wall normal direction and applying the bound-
ary condition at the wall (τ = τw), it can be re-written as:

τ = µ
∂ū

∂y
− ρu′v′ = τwall = ρu2

τ (2.18)

The inner part of TBL (eq. (2.18)) can be further divided into three parts called
viscous, buffer and overlap (logarithmic) regions. The viscous region is also known
as linear sub-layer. Effect of the viscosity gradually decreases, and the two terms of
(2.18) became comparable in the buffer region. Later, the turbulent shear stress term
dominates the flow and the overlap region emerges. Summary of these regions are
given in table 2.1.

16



Table 2.1 – Regions of the inner part of the TBL

Region Location Characteristic Equation
Viscous 0 ≤ y+ ≤ 5 µ∂ū

∂y
� ρu′v′ ū+ = f(y+)

Buffer 5 ≤ y+ ≤ 30 µ∂ū
∂y
∼ ρu′v′ Eq. (2.18)

Overlap y+ ≥ 30 and y ≤ 0.1δ µ∂ū
∂y
� ρu′v′ ū+ = ln(y+)/κ+ C

At sufficiently large Reynolds numbers for which the log region exist, the overlap
region can be defined between the inner and the outer regions. Note that logarith-
mic relation67 is obtained by matching the equations of the inner and outer regions
(eqs. (2.16) and (2.17)). George 65 also defines this region as a transition between the
laminar similarity solution and infinite Reynolds number solution.

2.1.3 Turbulent boundary layers with pressure gradient

A non-dimensional pressure gradient parameter is defined by Clauser 68 as

β = δ∗/τw
dP

dx
. (2.19)

β is a constant for boundary layers in equilibrium, and Clauser 68 expected these kind
of boundary layers to be dynamically similar at all streamwise stations. β = 0 in ZPG
case because dP

dx
= 0, while larger values of β stands for strong APG cases.

Pressure gradient has a strong effect on the shape of the boundary layer mean velocity
profiles and the characteristics of turbulence. The effect of a favorable pressure gra-
dient in TBL has a tendency to reduce turbulence which can lead to relaminarization
of the TBL at moderate Reynolds numbers affected by a strongly favorable pressure
gradient. At the opposite, adverse pressure gradient generates an increase of turbulent
kinetic energy which, in the case of strong adverse pressure gradient, is not enough
to prevent the flow to separate. Another effect of the adverse pressure gradient is to
increase the boundary layer thickness when decreasing the velocity derivative ∂ū

∂y
at

the wall. When the pressure gradient is strong enough, ∂ū
∂y

becomes negative and leads
to flow separation.

The inner part of the TBL with the pressure gradient can be described as:
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µ
∂2ū

∂y2 − ρ
∂u′v′

∂y
= ∂p

∂x
= ∂τ

∂y
(2.20)

Integrating in the wall-normal direction and applying the boundary condition (τ = τw)
at the wall, (2.20) become:

µ
∂ū

∂y
− ρu′v′ = ∂p

∂x
y + ρu2

τ = τ (2.21)

Shear stress near the wall can be neglected similarly to the assumption made for ZPG
case. Integrating one more time gives the equation for the viscous sub-layer with
pressure gradient:

ū+ = 1
2
∂p+

∂x
y+2 + y+ (2.22)

where

∂p+

∂x
= ν

ρu3
τ

∂p

∂x
(2.23)

RANS models usually fail to predict accurately such flows. It is mostly because the
near wall models rely on physics of the ZPG TBL as only little is known about APG
cases. As shown in (2.22) effect of the pressure gradient affects the mean velocity
profile very close to the wall. Equation u+ = y+ (ZPG case) only holds for mild
pressure gradients (∂p+

∂x
y+2 � 1). In case of strong pressure gradient this term cannot

be neglected and should be considered in the models.

2.2 Coherent structures

Initially, Theodorsen 69 and Townsend 70 pointed out the significance of coherent struc-
tures in turbulent flows. Early studies questioned the contribution of the wall-attached
structures to Reynolds stress71. Perry et al. 72 established a link between low wavenum-
bers spectra and streamwise motions. Hussain 73 defined a turbulent structure as
“connected turbulent fluid mass with instantaneously phase-correlated vorticity over
its spatial extent”. Today, the existence of the coherent structures within the wall-
bounded turbulent flows is widely accepted47. Nevertheless, it can also be evidenced
by two-point correlations of two velocity components74. Recently, Lozano-Durán and
Jiménez 75 followed the generation, lifespan, and disappearance of the structures re-
lated to the Reynolds shear stresses in detail via time-resolved DNS data which pro-
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vides a complete mechanism of the turbulent structures.

This review is not explicitly categorizing the coherent structures as near-wall and outer
structures because except the near-wall streaks there is not well distinguished wall-
normal distance for the existence of the structures. However, the viscous and buffer
regions have been subject to many studies and a recent review of the near-wall region
was proposed by Stanislas 76 . Statistical organizations of the coherent structures in
this region have been proposed in the literature77;78;79. Perry and Chong 80 proposed
that Λ-shaped vortices fulfill the boundary layer. Similarly, a conceptual model of
the organization of turbulence in the near-wall region based on the notion of “hairpin
packets” was proposed by Adrian et al. 77 . del Álamo et al. 81 observed counter-rotating
vortices around the wall-normal ejections in channel flow simulations. Dekou et al. 49

proposed another model based on counter-rotating vortices coupled with low and
high speed momentum regions from the WALLTURB experimental results at Reθ =
19660. Their model consists of the low or high momentum regions accompanied with
streamwise counter rotating vortices.

In the following, a brief literature review of coherent structures is presented in three
parts. First vortices and near-wall streaks are presented briefly in section 2.2.1. This
is followed by a review of the Reynolds shear stress structures (section 2.2.2) and
large-scale motions of streamwise velocity fluctuations (section 2.2.3).

2.2.1 Vortices and near-wall streaks

Theodorsen 69 ’s horseshoes vortex model for near-wall dynamics is one of the first
efforts that use coherent structures to characterize wall-bounded turbulence. A vortex
is a coherent structure that exhibits circular or spiral instantaneous streamlines in a
plane normal to its core when viewed in a reference frame moving with the center
of the vortex core. In addition to their theoretical value, vortices have been studied
extensively also because of the strong experimental and numerical evidence of the
important role of the vortices on streak instabilities82.

Hunt et al. 83 identified vortices based on velocity gradient tensor but pressure minima
can also be used to detect vortices as these structures correspond to low pressures
zones. A more detailed review of the vortex identification methods can be found in
Zhou et al. 84 .

Vortices are involved in the redistribution term (pressure-strain correlation, the term
(7) in eq. (2.6)). This is very important for RANS modeling as it is related to the
mass and momentum transfer across the boundary layer. Additionally, Schoppa and
Hussain 85 showed that reducing vortex generation can lead to drag reduction. Vortices
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have been investigated in details due to these interesting features. Consequently,
detection and characterization of the different types of vortical structures appeared
in literature such as horseshoes86, canes, hairpins77, streamwise vortices87, transverse
vortices, rings and others types of vortices represent a significant part of the literature
on wall turbulence.

Shape and size of the hairpins depend on the Reynolds number77;86, and they are
thought to be tilted at about 45◦ from the plane parallel to the wall in the outer
region69;88. Carlier and Stanislas 89 also emphasized that physical characteristics of
vortices (size, intensity, convection velocity) in the logarithmic region scale in wall
units. In a recent study from a DNS of channel flow at Reτ = 1900, del Álamo
et al. 81 have identified two classes of clusters in the logarithmic region: detached
small vortex packets and tall clusters which started from the near-wall region below
y+ ≈ 20. They have shown the self-similarity of these attached tall clusters with a
constant ratio λx ≈ 3λy and λz ≈ 1.5λy of their sizes in the three directions.

Streamwise fluctuations are the most accessible component experimentally. Histor-
ically, hot-wires are able to provide such data with high temporal resolution when
classical PIV can also focus on the same component in 2D. Near wall streaks were
first detected by Kline et al. 90 experimentally with a typical spanwise spacing around
100ν/uτ at y+ ≤ 10. High-speed streaks found to be shorter (in the streamwise direc-
tion) and wider (in the spanwise direction) than the low-speed streaks82. Carlier and
Stanislas 89 showed that spanwise spacing of streaks increases with both the distance
to the wall and the Reynold number. The shape of the streaks are quite well defined
in literature, they exhibit streamwise length of 500 < λ+

x < 2000, spanwise width of
20 < λ+

y < 60, and height of λ+
y < 50.

Lin et al. 79 showed that many of the streaks have a spanwise angle up to about 15◦ by
identifying individual streaks in stereo PIV measurements of the viscous sub-layer of
a turbulent boundary layer. Nolan and Zaki 91 investigated the role of the streaks in
by-pass transition, and they determined that the strong-less frequent streaks become
turbulent.

2.2.2 Quadrants

Corino and Brodkey 92 first observed experimentally the events of the flow directed
from the wall and towards the wall experimentally which play a significant role in
the turbulence production. Shortly later, Wallace et al. 93 introduced the quadrant
analysis which consists in a decomposition of the Reynolds shear stress in four regions
conditioned by the sign of u and v.
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The relationship between high-pressure fluctuations in ejection and sweep cycle was
found by Thomas and Bull 94 . The stronger contribution of the “ejection” (Q2) and
“sweep” (Q4) to the production of turbulent kinetic energy has been identified by
many authors29;93;95;96. Bernard and Handler 97 proposed that the existence of the
weaker quadrants (Q1 and Q3) be related to the redirection of the Q2 and Q4 because
of their relationship with the vortical structures in the near-wall region. Bernard
et al. 98 showed that sweeps are dominated by Reynolds stress production close to
the wall. Tilted vortex cores are thought to make regeneration system to advance
by accelerating flow toward the wall and decelerating flow leaving the wall region.
Lozano-Durán et al. 1 provide detailed analysis of Q2 and Q4 events from channel
flows simulations including their overlap with vortex clusters81 (see fig. 2.2). They
found an optimal threshold factor of Reynolds Shear Stress, H = 1.75, based on the
percolation analysis for detection of the quadrant structures. Using this threshold
factor, they determined that attached quadrants are the most energetic ones even if
they are smaller in volume. Additionally, they also grouped Q2 and Q4 as ”gradient”
events and Q1 and Q3 as ”counter-gradient” and demonstrated a spatial similarity for
the gradient events defined as λx ≈ 3λy and λz ≈ 1.0λy (del Álamo et al. 81 reported
similar laws for the attached clusters, λz ≈ 1.5λy although slightly wider). The time
evolution of quadrants has been investigated by Lozano-Durán and Jiménez 75 from
DNS of channel flows for a range of Reynolds number of Reτ = 930−4200. They argue
that if quadrant structures reach the large size, they are self-similar both geometrically
and temporally, but most of these structures stay smalls and do not last for long times.

Figure 2.2 – Flow fields conditioned to attached Q2–Q4 pairs in the logarithmic layer.
PDFs of the points belonging to the Q2 (green), Q4 (blue) and vortex clusters
(gray). The isosurfaces plotted are 0.75 times the maximum value of the PDFs
for the Qs and 0.85 for the vortex cluster. [Reproduced from Lozano-Durán
et al. 1 ]

In chapter 4 these structures are investigated for ZPG TBL and results are compared
with the one of Lozano-Durán and Jiménez 75 .
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2.2.3 Large-scale motions

These structures are usually categorized into large-scale motion (LSM) and very larger-
scale motion (VLSM) as the elongated regions of streamwise velocity fluctuations
having a streamwise extent up to 3 boundary layer thickness (δ) for the former and
longer for the latter99;100;101. They are located in the logarithmic and lower wake
regions of a turbulent boundary layer36;102;103. Special focus has been laid on LSMs
and VLSMs as they contribute to a significant amount of turbulent kinetic energy and
Reynolds shear stress104;105;106;107.

The literature on this subject is quite broad starting from the bulges of the turbulent
boundary layer108. Other results also draw a picture for LSM as a group of hair-
pin packets77. For example, Ganapathisubramani et al. 104 reported hairpin packets
extending up to 2δ. Srinath et al. 10 ; Kim and Adrian 99 ; Lee and Sung 109 ; Marusic
et al. 110 ; Yoon et al. 111 called energetic streamwise structures as LSM (or VLSM)
among many others.

Despite different definitions of LSM, their existence is supportable with simpler ob-
servations. It is clear that around y+ = 100 a change occurs in the urms profiles such
that a local minimum or flat region can be observed at sufficiently high Reynolds
number2;10;102. The second (outer) energy peak102 comes out as Reynolds number
increases and this second peak is related to large-scale structures. Hultmark et al. 2

showed that the intensity of large-scale structures increases as the Reynolds number
increases. However, the inner peak seems not affected similarly while the second peak
gets stronger (see fig. 2.3).

Another method to show the large-scale structures is, the backbone for the modern
statistical approach of turbulence, two-point velocity correlation112. In particular, it
can be used to obtain the average statistics of the large-scale motions. Grant 113 ob-
served the long streamwise extends of the streamwise velocity correlation. Christensen
and Adrian 114 showed a statistical evidence for the hairpin packets using similar corre-
lations. Tutkun et al. 115 demonstrated correlations for streamwise velocity using data
from hot-wire rakes at a much higher Reynolds number (Reθ = 19100). Large-scale
structures in channel flows have been investigated in detail by Sillero et al. 3 using
two-point correlations as well. Their 3D representation of the correlation functions
(fig. 2.4) illustrates the potential shape of the streamwise fluctuations structures.

Two-point correlation isocontours exhibit an ellipse shape with an average inclination
function of the altitude of the fixed points suggesting an angle of the structures.
Different results have been reported for an average angle of LSM ranging from 9◦

to 33◦ 92;113;114;116;117;118;119;120. The broad range of values provided in literature is the
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Figure 2.3 – Streamwise velocity fluctuation profiles from high Reynolds number experi-
ments of pipe flow. [Reproduced from Hultmark et al. 2 ]

result of the use of the simpler estimations such as pictures of the smoke visualizations
and correlations of different quantities. For example, Falco 117 proposed an angle of
18◦ based on smoke visualizations of the turbulent boundary layer at Reθ = 4000.
Christensen and Adrian 114 define the mean flow based series of swirling motion and
found these motions are along a line at 12◦ − 13◦ in the outer region of turbulent
channel flows. Christensen and Wu 120 models the average streamwise length based
on two-point correlation of the streamwise velocity fluctuations for y/h = 0.1 and
found an inclination of 11◦ using PIV data at Reτ = 2099. Kähler 119 summarized
all the possible angles in a streamwise wall-normal plane from stereo PIV data. He
reported the inclination of the two-point correlation of the streamwise velocity as 8.88◦

at Reθ ' 7800 in the buffer region. Additionally, the inclination of the elliptical shape
of isocontours varies with the wall distance. Results suggest that these structures
move away from the wall with an increasing angle proportional to their distance to
the wall.

In boundary layers, Hutchins and Marusic 102 used hot-wire rake measurements of an
atmospheric surface layer and found very long meandering structures up to 20δ popu-
lating the log layer. On the other hand, when viewed from single point statistics, the
meandering tendency masks the true length of these structures resulting in shorter
length scales. Several DNS of wall-bounded flows at significant Reynolds numbers
has already been performed to study LSM which provide a 3D view. Lee et al. 107
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Figure 2.4 – Three-dimensional representation of the correlation of the streamwise velocity
fluctuations for boundary layer at Reτ = 1530. [Reproduced from Sillero
et al. 3 ]

investigated the large-scale motions in channel flows with a detection method which
consists of several operations on the velocity fluctuation fields. From temporal analy-
ses, they related the merging of the LSM as a production mechanism for VLSM. These
studies and many others reported very large-scale structures up to 15δ. LSM up to
20h long (h being the channel half-width) have also been observed in channel flows
by del Álamo and Jiménez 121 ; Del ÁLamo et al. 122 . Hwang et al. 123 investigated the
inner-outer interactions of negative and positive large-scale structures in channel flow
at moderate Reynolds number (Reτ = 930) using conditional correlation. DNS of flat
channel flow are now available up to Reτ = 5200, but simulations of flat plate tur-
bulent boundary layer are more challenging and therefore restricted to slightly lower
Reynolds numbers. The behavior of very large scale structures is clearly dependent
on the Reynolds number, and they are likely to become significant at extremely high
Reynolds number. However, these Reynolds numbers are not accessible by DNS yet.
Additionally, statistics of very large scales can be affected by the size of the computa-
tional domain or the forcing mechanism of the turbulent boundary layer simulations.
Still, DNS is an essential tool to study space and time organization of these structures
at moderate Reynolds numbers when conducted carefully. Several DNS of TBL has
been performed at moderate Reynolds number with various boundary conditions and
domain sizes7;37;124. Higher Reynolds numbers have been reached using wall resolved
large eddy simulations (WRLES)125;126 but the spatial resolution was not enough to
investigate the coherent structures down to the buffer region.

The large-scale motions are also used for models of TBL like the vortices and streaks.
Falco 117 proposed one of the very first structural model based on observations of the
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large-scale motions in TBL. The model is based on Reynolds number dependent “typ-
ical eddies”, and Reynolds number independent large-scale motions both detectable
from pictures of smoke. Brown and Thomas 118 found organized structures in the TBL
flow at Reθ = 10000 with the length of 2δ based on wall shear velocity correlations.
From PIV measurements in the streamwise wall-normal plane of the TBL flow up
to Reθ = 6845, Adrian et al. 77 attributes the origin of LSM to the hairpin vortices
packets aligned in streamwise direction by including low-speed regions in between the
hairpin legs. Lin 78 built a model of the coherent structures organization in the inner
region from spatial correlations analyses.

As mentioned above, Mathis et al. 51 have shown that these large-scale structures have
an impact on the very near wall statistics starting from the streamwise Reynolds stress
associated with the near wall streaks. Thus, LSMs and VLSMs have been interpreted
to be responsible for the k−1

x of the streamwise velocity spectrum127 and thought to
be the attached eddies discussed by Townsend 70 . Earlier, Perry et al. 72 related the
forest of the hairpin vortices to this attached eddies. Baars et al. 128 identified universal
attached eddies for relatively high Reynolds numbers flows from careful interpretation
of coherence spectrogram while emphasizing the need for the unobstructed view of a
k−1
x range. Srinath et al. 10 proposed a new simple model of streamwise velocity large-

scale structures and related this model to the kqx (with q ' −1) streamwise energy
spectra in the low wavenumber range. This model relies on a length distribution of
the large-scale structures of the fluctuating streamwise velocity with a −2 slope.

Particularly, recent findings on the influence of LSM in near-wall turbulence129 and the
observations of the sinusoidal mode instabilities of the streaks as an initiating mecha-
nism of the LSM in a turbulent channel flow130 makes the structural definition of the
boundary layer more interesting than simple discussion around most energetic turbu-
lent structures. Marusic et al. 110 wrote that high energy intensity of LSM suggests
that comprehensive knowledge concerning the dynamics of these large energetic struc-
tures can help to model and control high Reynolds number wall-bounded flows. The
energy transfer within the full boundary layer thickness is affected by the increasing
intensity of these structures, Vassilicos et al. 131 proposed a modified Townsend-Perry
model to obtain prediction varying with distance to the wall accounting for the in-
teractions inside the boundary layer. Such connection between inner-layer turbulence
and LSM in outer layer can be easily observed. An example is given in fig. 2.5 for a
channel flow at Reτ = 3000 which shows how the low-speed regions of the flow are
connected at different wall distances.

High Reynolds number experimental results of Srinath et al. 10 have been related the
LSM with a statistical model. Chapter 4 includes the study of the same structures
from DNS data at moderate Reynolds number where the k−1

x region is shorter than
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Figure 2.5 – Instantaneous streamwise velocity fluctuation fields at different wall distance
from DNS of channel flow at Reτ = 3000 [data from L. Thais]

for the high Reynolds number experimental study. The effect of the lower Reynolds
number, as well as the differences between 2D and 3D structure detection procedure,
will be discussed. Relationship of these structures with quadrants in the same flow is
also going to be investigated to provide a detailed view of spatial self-similarities of
the structures in TBL.

2.2.4 Effect of pressure gradient

Studies of wall turbulence subjected to adverse pressure gradient are limited in lit-
erature as compared to the studies of wall-bounded flow over a flat plate. Recently,
Gungor et al. 132 studied quadrants in a DNS of strongly decelerated large-velocity-
defect TBL, and observed very large ejections, reaching the streamwise length of 5δ.
For example emerging vortices under the effects adverse pressure are also observed by
Laval et al. 4 in converging diverging channel flow (fig. 2.6). Their results show that
presence of APG alters the TBL and the associated structures similar to the other
examples in literature133;134. These results, like several others, show that the presence
of APG significantly modifies the structures and the overall statistical properties of
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wall turbulence.

Lee and Sung 40 reported that the outer layer structures in APG TBL are more acti-
vated than for the ZPG case. The parametric studies were done by Monty et al. 135

with increasing β also emphasize that more energetic outer variables are observed with
increasing pressure gradient. Laval et al. 4 performed a DNS of a turbulent channel
flow with lower curved wall at a Reynolds number Reτ ' 617. They also found strong
outer peaks in streamwise fluctuating velocity profiles at the adverse pressure gradient
regions.

Recently, Lee 46 observed that strength of adverse pressure gradients alters the large-
scale structures in log region. Larger structures are shown in mild adverse pressure
gradients, however, under stronger pressure gradients, he observed shorter structures
as the formation of hairpin packets is suppressed. Under strong adverse pressure
gradient, the role of the wall attached structures as main contributors to the turbulence
intensities diminishes progressively as well, and they become shorter in the streamwise
direction according to Maciel et al. 136 .

A turbulence regeneration process in the presence of adverse pressure gradient based
on instability of low-speed streaks is proposed by Marquillie et al. 137 from DNS of
converging-diverging turbulent channel flow at moderate Reynolds number. However,
Maciel et al. 136 reported that in the presence of strong adverse pressure gradient
this mechanism is infrequently observed in the TBL suggesting that there should be
another mechanism involved under a strong pressure gradient.

In conclusion, there is a tremendous amount of new information gathered in a short
period concerning APG TBL flow and it seems like different dynamics of turbulent
motions can be expected with the presence of pressure gradient. In chapter 5 new
numerical tools will be introduced with the objective to perform DNS of APG TBL
with curved walls in order to investigate different configurations of APG flows. Dif-
ferent pressure gradient histories are likely to be another important parameter for the

Figure 2.6 – Visualization of strong coherent vortices in the DNS of channel flow at Reτ =
617. [Reproduced from Laval et al. 4 ]
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3DNS of TBL

This chapter is devoted to the description of the DNS of TBL conducted during the
current research project. Details of the numerical aspects such as the numerical solver,
parameters of the simulation and the validation of the data are reported.

The DNS of TBL was performed with the code Incompact3d†. Only the numerical
methods which are important for the current study are described in this chapter, but
readers interested in the details of the code could refer to Laizet and Lamballais 54

and Laizet and Li 5 . Moreover, further extensions of the code with implicit LES138

and implementation of immerse boundary method139 are also available.

3.1 Numerical simulation procedure

Incompact3d is a massively parallelized code written in FORTRAN which solves the
incompressible Navier-Stokes equations. Sixth order compact finite difference schemes
are used for the spatial discretization and different time schemes are available for
temporal discretization (3rd order Adams-Bashforth or 4th order Runge-Kutta). In-
flow/outflow, periodic, free-slip or no-slip boundary conditions are implemented. Frac-
tional step method ensures incompressibility condition which requires the solution of
a Poisson equation for the pressure. The Poisson equation is solved in spectral space
using Fast Fourier Transform routines. Combined with the concept of the modified
wavenumbers, this direct technique allows the implementation of the divergence-free
condition up to machine accuracy while also supporting the use of a stretched mesh in
one direction. A partially staggered mesh is used where the pressure mesh is shifted
by a half grid distance from the velocity mesh in each direction. This type of mesh
organization leads to more physically realistic pressure fields with no spurious oscilla-
tions.

3.1.1 Performance and parallelization

The parallelization of the code is performed using the powerful 2DECOMP&FFT
library‡ based on a 2D domain decomposition strategy (see fig. 3.1) also known as
pencil decomposition. This strategy commonly used in spectral codes allows users
to efficiently run their simulations on massive supercomputers, despite the expensive

†https://www.incompact3d.com/
‡http://www.2decomp.org
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Figure 3.1 – 2D domain decomposition strategy used in Incompact3d. [Reproduced from
Laizet and Li 5 ]

cost of communications (as it requires many global transpose operations performed
with the MPI command ALLTOALL to swap from the state a, b and c) as shown in
fig. 3.1.

The performance of Incompact3D has been already evaluated on several super-computers
including SuperMUC (147 146 cores, 3.185 PFlops) of the Leibniz Supercomputing
Center. During previous projects (some of them from PRACE), extensive scalability
tests for an extended range of flow configurations have been undertaken by the team
developing the code at Imperial College London. The main performance results from
Laizet and Li 5 are reproduced in fig. 3.2. Some tests were also conducted in the scope
of this study on the French super-computer Occigen of CINES during the present
DNS with almost one billion grid points on 2048 cores. In the configuration used in
this study, the average performance of the code was estimated to approximately 8µs
per iteration and per grid point on Occigen during the production to runs (including
the saving of datasets on disk).

3.1.2 Parallel I/O via netCDF

Imperial College developed some tools that take advantage of the decomposition in-
formation available in the library kernel and uses MPI-IO to implement the most
frequently used I/O functions for applications based on 3D Cartesian data structures.
Despite, the existing parallel I/O routines, new I/O routines based on netCDF4 were
also implemented within this project and tested on Occigen with up to 8192 cores.

The use of netCDF format allows the users to connect more easily with post-processing
tools already available and developed within this project. Also, the new reading/writ-
ing based on netCDF4 uses the netcdf-open-par function which was found to be

32

http://www.2decomp.org/mpiio.html


Figure 3.2 – Scalability results of Incompact3d up to 1 Million cores. [Reproduced from
Laizet and Li 5 ]

faster and more stable on OCCIGEN. The netcdf-open-par function opens a netCDF-4
dataset for parallel access and collective operations are become the default.

Collective netCDF-4 variables for velocity and pressure fields (all processors must
participate) are set to be stored. These routines were used to save both complete 3D
fields every few turnover times and 2D planes every 5-time steps. The 3D velocity fields
are stored in a single netCDF file with an averaged data transfer of approximating
300Mb/s on Occigen for 3D variables (velocity component and pressure) of ∼ 21GB
each. The data on the 2D planes were cached in a temporary variable in memory
and recorded every 500 iterations only to optimize the performance as saving small
variables every 5 time steps can reduce the overall performance of the code.

3.1.3 Tripping mechanism

Different techniques like recirculation140;141 or volume forcing tripping mechanisms6

are available to minimize the simulation of the turbulent boundary layer. Wu 142

completed a recent review which includes a comprehensive list of available methods.
Additionally, he also investigated the effects of the different transition procedures, on
the flow statistics.

One of these methods is to start DNS of TBL with laminar Blasius profiles of stream-
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wise velocity. In this case, an additional mechanism is needed to force the transition
to the turbulent state. Aforementioned is often achieved with a local injection of
energy into the simulation to trigger the transition. Simulation domain includes the
laminar part as well as the transition which contribute significantly to the total cost
of the simulation. Transition must be achieved without sacrificing a long simulation
domain as opposed to a boundary layer transitioning naturally. Thus, it is worth to
focus on the forcing mechanism, not only because of its tied relation to the efficiency
of the simulation but also forcing strategy may alter the natural development of the
boundary layer undesirably.

In this study, a self-sustaining turbulent regime is initiated with a tripping mechanism
as proposed by Schlatter and Örlü 6 . The process consists of tripping the wall-normal
momentum equation with a random source term in a limited volume near the lower
wall. The effect of this tripping is similar to a sandpaper strip used in experimental
studies. The source term is a Gaussian attenuation centered at x = x0 and y = y0.
It is active in a region of size lx and ly in the streamwise and wall-normal directions
respectively while extending on the full span of the simulation domain. The tripping
function of the wall-normal component is defined as:

F2 = g(z, t)e−[(x−x0)/lx]2−[y−y0/ly]2 (3.1)
g(z, t) = Af

[
(1− b (t))hi (z) + b (t)hi+1 (z)

]
(3.2)

where g(z, t) introduces the temporal and spatial fluctuations b(t) = 3p2 − 2p3, p =
t/ts − i and i is the integer value of t/ts.

hi(z) is defined as Fourier series with random coefficients and phase:

hi (z) = 1√
Nf

Nf∑

j=1
αjcos

(2πjz
Lz

+ φj

)
(3.3)

where the Nf is the number of modes included in the signal, αj is the random ampli-
tude (Schlatter and Örlü 6 uses unit amplitude) and φj is a random phase shift.

Following the procedure above generates an example of tripping function given in
fig. 3.3. Due to the third-order polynomial form of g, the energy spectrum of the
tripping G(f) reaches the cutoff length ts followed by a sharp decrease of the energy.

Tripping is applied in a domain size lx = 1.4δo and ly = 0.35δo respectively. The
Reynolds number at the tripping position is Reθ ' 300 and the temporal and spanwise
cutoff scale of the tripping are set to ts = 1.4δo/U∞ and zs = 0.6δo respectively leading
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(a) (b)

Figure 3.3 – (a) Sample evolution of tripping function g(t) defined by 3.1.3. Symbols
indicate the change-over points at times t = its for Af = 1 (b) Normalized
temporal power spectrum of the tripping amplitude. The cutoff time scale is
denoted by ts = 1. [Reproduced from Schlatter and Örlü 6 ]
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Figure 3.4 – Comparison of the friction coefficient cf along the streamwise direction. The
results are from current DNS and the DNS data of Schlatter et al. 7 .

to Nf = Lz/zs = 33 exited modes. Amplitude of the forcing is tuned to minimize the
overshooting of the resulting friction coefficient cf (See fig. 3.4) and set to a quarter of
the temporal cutoff Af = 0.25/ts ≈ 0.178. If the magnitude of the tripping is adapted
to the Reynolds number of the simulation, the source term of the wall-normal velocity
equation induces random fluctuations of the flow which lead to an unsteady three-
dimensional turbulent regime downstream of the forced position.

3.2 Description of the simulation

The configuration file, controls the various options, used to run the simulation is given
in appendix B.

35



3.2.1 Boundary conditions

The laminar boundary layer profile is used for inlet boundary conditions in streamwise
and wall-normal directions. It is calculated by fitting a curve to the Blasius solution’s
profile at Rex = 2000 with 9th order polynomial function.

u|x=0 = fu(y), v|x=0 = fv(y), w|x=0 = 0 (3.4)

An advection condition

∂ui
∂t

+ uc
∂ui
∂x

= 0 (3.5)

is used at the outlet of the simulation domain for all velocity components using the
local streamwise velocity uc = u(Lx, y, z, t) while backflow is avoided by the use of an
additional condition to eliminate any possible negative convection velocity. It should
be noted that such advection condition can result in a weak acceleration of the flow in
the streamwise direction leading to a slightly modified boundary layer profile at the
end of the domain.

No-slip and homogeneous Neumann boundary conditions are used for the bottom
wall and the upper boundary respectively. However, Dirichlet wall-normal condition
V∞ (Rex) cannot be used for turbulent boundary layer as the value cannot be estimated
accurately. Neumann boundary conditions are at least for v and w more appropriate.
To summarize, the boundary conditions in the wall-normal direction are given by:

u|y=0 = 0, v|y=0 = 0, w|y=0 = 0
∂u

∂y

∣∣∣∣∣
y=ymax

= 0, ∂v

∂y

∣∣∣∣∣
y=ymax

= 0, ∂w

∂y

∣∣∣∣∣
y=ymax

= 0
(3.6)

where ymax has to be sufficiently far from the bottom wall for the boundary condition
on the top wall to become sufficiently accurate. The periodic boundary conditions used
in the spanwise direction are implemented into the solver by the use of appropriate
compact finite difference schemes.

3.2.2 Spatial and temporal discretizations

In the present study, the DNS of a turbulent boundary layer was performed with a
domain of size Lx = 600δo, Ly = 40δo, Lz = 20δo. For such large DNS of wall-bounded
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Figure 3.5 – Comparison of the Reτ as function of Reθ results from current DNS, the DNS
data of Schlatter et al. 7 and ZDES data of Deck et al. 8 .

flow, space and time discretization parameters must be estimated very accurately to
obtain correct results with the minimum simulation cost.

The spatial resolution of a DNS of wall-bounded flows is usually estimated in wall
units, but the friction velocity cannot be calculated a priory. However, existing exper-
imental data can provide empirical relationships for canonical TBL flows. Particularly,
the empirical relationship Reτ = 0.435Re0.954

θ given by Deck et al. 8 was found to be
useful in this study to relate the targeted momentum thickness (Reθ = 2500 at outlet)
to the necessary quantities in wall units. This relationship in comparison to the results
of the current simulation and the DNS from Schlatter et al. 7 is plotted in fig. 3.5.

The second concern related to the spatial discretization is linked to the stability of the
simulation. Implicit solvers and 6th order compact finite difference scheme are used in
Incompact3d. Both are accurate yet not strongly dissipative. However, a correct DNS
requires a very fine resolution at the level of Kolmogorov scale, so dissipative scales
will be expected to be well resolved. The recent versions of Incompact3d provide
semi-implicit solvers (explicit for streamwise and spanwise directions, implicit in wall-
normal direction) different from the early explicit version of the code54. Among several
available temporal discretization options, 3rd-order Adam-Bashforth is chosen for the
current simulation.

Spatial resolution commonly used for DNS of TBL are within the ranges ∆x+ ≈
10 − 20, ∆y+

min ≤ 1, ∆z+ ≈ 3 − 109;35;143. Further readings like Choi and Moin 144

or Lozano-Durán and Jiménez 75 can be found in the literature for further discussions
about the effects of the resolution and simulation size on the results. Laizet and
Lamballais 54 proposed a method to use non-homogeneous grid spacing in one direction
based on a single analytic stretching function to keep the benefit of the accurate
solution of the spectral pressure treatment. This feature will be used in the wall-
normal direction. Because of the growth of the boundary layer in the streamwise
direction, the grid spacing could be adapted. However, as Incompact3D does not

37



500 1000 1500 2000 2500

4

6

8

10

(a)

Reθ

4x+

4z+

500 1000 1500 2000 2500
Re

0

2

4

6

8

10

12

y

1

3

5

7

9

11

13

15

17

19

y
+

(b)

Figure 3.6 – Variation of spatial resolution in streamwise and spanwise directions (a).
Variation of the spatial resolution in the wall-normal direction (b). The
black line represents the boundary layer thickness δ.

allow such possibility, it is only possible to adapt the spatial resolution for a given
streamwise location and therefore a given Reynolds number.

The stretching parameters were adapted to keep the resolution in the wall-normal
direction below y+ = 15 over most of the turbulent region up to Reθ ' 2000 which
corresponds to the center of the investigated region in the following chapters (see
fig. 3.6). The grid spacings in the two other directions are in agreement with the
usual practices for the DNS of such flows (4x+ ' 10 and 4z+ ' 4.5) for the most
unfavorable position at Reθ ' 500 (at large Reynolds numbers4x+ ' 8 and4z ' 4).
The simulation parameters at Reθ = 2068 are summarized in table 3.1.

Table 3.1 – Parameters of the turbulent boundary layer at Reθ = 2068 for which the
boundary layer thickness δ is equal to 8.46δo. Lx, Ly and Lz are the sizes
of the simulation domain, Nx,Ny, andNz the corresponding resolution. The
reference momentum thickness θ and the friction velocity uτ are also taken at
the same streamwise position.

Reθ (Lx, Ly, Lz) /δ ∆x+, ∆y+
min, ∆z+ Nx × Ny × Nz

250− 2500 53.19, 4.72, 2.36 8.27, 1.0, 3.94 6401 × 321 × 448

A time step ∆t = 0.008 corresponding to a CFL number of the order of 0.1 is set
which preserves t+ ≤ 0.5 along the streamwise direction. As mentioned above, in
Incompact3d, the grid can be only stretched in wall normal direction (constant along
the streamwise direction), therefore this simulation has been designed to have a wall-
normal resolution such that the first grid point is at y+ = 1 at the streamwise position
for which Reθ = 2000.
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3.3 Databases

The simulation on slightly less than one billion grid points was performed on 2048 cores
of Intel Xeon E5-2690v3 with multiple executions of 20 hours. In total, 1.3 million
CPU hours were used from GENCI allocation on the OCCIGEN super-computer.

Two separate datasets were collected to compute converged statistics on large-scale
structures. The first dataset consists of 3D velocity and pressure fields, collected
every 500-time steps (0.0168 δ/uτ based on outlet quantities) for the full simulation
domain. For the second dataset, the same quantities were recorded at 4 spanwise-wall
normal planes (Reθ = 922, 1522, 2068 and 2365) every 5-time steps corresponding to
a streamwise displacement of half a grid spacing based on the free stream velocity.
Details of the time-resolved databases are summarized in section 3.3. The time-
resolved datasets will be used for the validation of the Taylor hypothesis and the
comparison of spatial-temporal features of the investigated turbulent structures. Also,
these last datasets can be used as turbulent inlet conditions for future simulations
of the turbulent boundary layers (e.g., TBL with adverse pressure gradient) as the
extent of the time-resolved data is enough to conduct new simulations over multiple
characteristic times. This is the subject of a new Ph.D. project which started in 2017.

The DNS of turbulent boundary layer was integrated for more than 15 eddy turnover
time, τ = Tuτ/δ, based on the boundary layer parameters at 75% of the domain
length. However, the results are collected for the last 15Tuτ/δ after convergence in
order to reach a sufficient number of samples for the analysis of large-scale structures.

In fig. 3.7 development of the turbulent boundary layer along the streamwise direction
is visualized by a snapshot of the fluctuating streamwise velocity in a streamwise-
normal plane. The analysis of large-scale structures of streamwise velocity fluctuations
will be conducted on a domain of 20 local boundary layer thickness centered at Reθ =
2068 (0.6Lx < x < 0.9Lx) extending up to Reθ = 2407 sufficiently remote from the

Table 3.2 – Parameters of the 2D (spanwise - wall-normal plane) time-resolved database.
The boundary layer thickness δ and the friction velocity uτ are evaluated at
the streamwise location x given in fractions of the full domain size Lx. T is
the total time over which datasets are collected.

x Reθ Reτ δ/δo Tuτ/δ

0.25Lx 924 374 3.98 33.9
0.50Lx 1527 552 6.26 20.9
0.75Lx 2068 722 8.46 15.0
0.90Lx 2371 813 9.58 13.1

39



−10 0 10

L/δ

0

10

y
Reθ = 2068

Figure 3.7 – A sample of instantaneous fluctuations of the streamwise velocity

outlet not to affect the statistics. The center of this region (0.75Lx) coincides with one
of spanwise wall normal plan used to store time-resolved data that will be analyzed
in the next chapter.

3.3.1 Validation of the simulation

Parameters concerning the resolution and forcing (see fig. 3.6 and fig. 3.4) of the
simulation are designed to satisfy the criteria for high-quality DNS. In order to validate
the results of the present simulation mean profiles of the streamwise velocity and the
turbulent intensities are compared at 4 Reynolds numbers with the DNS of Jiménez
et al. 9 and Schlatter et al. 7 (see fig. 3.8).

The comparisons are not always at the same Reynolds numbers as indicated in the
caption of the related figure. However, slight differences might not be only attributed
to the Reynolds number differences. Even for the profiles (green curves) at Reθ ∼ 2000
where the present comparison is the closest among the 3 simulations the matching is
not perfect. However, differences are of the same order overall. It suggests that
the different spatial resolutions (especially in the outer part of the TBL) as well as
different inlet conditions or forcing play a role in the deviation of these profiles.

3.3.2 Energy spectra

In the framework of the Townsend Eddy model, at sufficiently large Reynolds num-
bers the attached eddies are associated to a k−1

x streamwise energy spectra close to the
wall on a limited range of wall distances. Baars et al. 128 identified universal attached
eddies for relatively high Reynolds numbers from careful interpretation of coherence
spectrogram while emphasizing the need for the unobstructed view of a k−1

x . As men-
tioned earlier, Srinath et al. 10 have shown that, even at moderate Reynolds number, a
k−qx slope can be observed in the buffer and mesolayer with increasing value of q such
as q = 1 is valid only at a specific wall distance between 100 and 200 wall units at
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the investigated Reynolds numbers. The streamwise velocity fluctuations spectra of
the present DNS at Reθ = 2068 are shown in Figure 3.9 for time-resolved and spatial
databases. As the Reynolds number is not very high, the k−qx range is not clearly
visible. Nevertheless, the streamwise energy spectrum near y+ = 100 has the most
compatible results with a k−1

x scaling. The value of q increases when moving from the
wall. However, as the local Reynolds number is Reτ = 722, the logarithmic region of
the mean streamwise velocity profile is short, and y+ = 250 is already located in the
wake region.

As both time and space spectra are available at Reθ = 2068, the validity of the Taylor
hypothesis can be evaluated very close to the wall as the two types of spectra are
compared in fig. 3.9. They are almost identical above y+ = 30 but start to depart
from each other at y+ = 30 indicating the limit of the Taylor hypothesis. Results at
the other wall distances exhibit decent agreement for a wide range of wavenumbers (see
fig. 3.9). Consequently, the use of Taylor hypothesis is not suitable for the detection
of the structures down to the bottom of the buffer region.

It is well known that in the flow regions where shear is dominant (like the near wall
region of TBL) Taylor’s hypothesis does not hold anymore since local mean velocity
is not equal to the convection velocity. Monty and Chong 145 proposed wavelength-
dependent convection velocity as a correction to this problem. Extension of this
concept was provided by Del Álamo and Jiménez 146 based on the local derivatives of
the Fourier coefficients in time or space. They showed that error associated with the
use of Taylor’s hypothesis at the large scales serves to push energy to the larger scales,
leading to an erroneously large-energy amplitude at LSM. Del Álamo and Jiménez 146

believe that it is the reason why Del ÁLamo et al. 122 ; Morrison et al. 147 did not
observe a k−1

x region. On the other hand, a different approaches came from Srinath
et al. 10 who proposed a model with demonstrating a relationship between the kqx

region of streamwise energy spectra and average streamwise fluctuations of the LSM.
The validity of the Taylor hypothesis is important as in the present study a similar
analysis will be conducted by detecting LSM from spatial datasets.
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Figure 3.9 – Streamwise energy spectra using spatial (continuous) and temporal (dashed)
data at different wall distances. The time spectra are computed at the stream-
wise position such that Reθ = 2068 using the Taylor hypothesis and the
spatial one are computed in a domain corresponding to 1764 < Reθ < 2348
which corresponds to approximately 20 local boundary layer thickness at
Reθ = 2068.
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4Coherent structures of
turbulent boundary layers

The different coherent structures of turbulent boundary layer identified in the lit-
erature have been described in the chapter 2. The present analyses will focus on
two types of turbulent structures (i) LSM of low and high momentum regions based
on the streamwise velocity fluctuations u′, (ii) the fluctuating Reynolds shear stress
component u′v′, decomposed into 4 quadrants, based on the sign of u′ and v′. Their
large contribution to the streamwise fluctuations in log region makes these energetic
regions of the TBL interesting while quadrants are important for turbulent kinetic
energy production. It should be noted that these two types of structures might be
overlapping and their interaction can help to better understand underlying physics of
TBL. This chapter describe the method used to identify these large scale structures
and present the statistics of their size and shape.

The large-scale motions and quadrants will be characterized individually by taking the
benefit of the 3D database. For both type of the structure considered in the present
study, robust definitions are provided alongside their statistics. Different procedures
can be used to extract the coherent motions of streamwise velocity fluctuations. For
example, Zaki 148 proposed a detection method based on local maximum or minimum
of the streamwise velocity fluctuations. However, such method is more adapted to
regular streamwise structures. In the present study, we used another method based on
simple thresholding of the velocity fluctuations which can be used to extract both LSM
and quadrants. The same method was also used to study the time-resolved evolution
of quadrants from a DNS of channel flow50 or to characterize the near wall streaks
from PIV databases79. Extraction procedure consists of two steps: (i) generation and
(ii) labeling of the binary images or volumes. There is no other treatment on the data
such as additional filtering or morphological operations except for specific treatments
for which this will be indicated.

The analyses of the coherent structures is conducted on a domain of 20 local boundary
layer thickness centered at Reθ = 2068 (0.6Lx < x < 0.9Lx) with an extends up to
Reθ = 2407, a sufficiently far from the outlet not to affect the statistics (See fig. 3.7).
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4.1 Large-scale motions

The LSM have been described by several authors to originate from the hairpin packets
at the same convective velocity127. In this study, the name, LSM only stands for
relatively large coherent motions on streamwise fluctuations. It can be considered that
the earlier definition is somewhat extended. Part of the LSM detected in this study
can be included in hairpin packets, but such question will not be directly addressed.
Other research teams have investigated large-scale motions in channel flows107;149,
but not necessarily with the exact same definitions. Relevant details of similar studies
were given in section 2.2.3.

The average statistics of the large-scale motions can be evaluated from two-point
correlations. Figure 4.1 shows the two-point correlation of the streamwise velocity
fluctuations in the streamwise wall-normal plane at three wall distances. Correlation
isocontours from 0.1 to 1 with a 0.1 increment are plotted as functions of (x− xo)/δ
and y/δ where xo is the streamwise position for which Reθ = 2068. The spatial corre-
lation extends over a distance of 4δ for all wall distances based on the 0.1 correlation
isocontour. Tutkun et al. 115 demonstrated similar correlations using data obtained
by hot-wire rakes at a much higher Reynolds number (Reθ = 19100). The correlation
isocontours exhibit an ellipse shape with an average inclination function of the altitude
of the fixed points from 10◦ to 20◦ at y+ = 100 (see fig. 4.15). The overall streamwise
extent of the correlation grows with the distance from the wall in the logarithmic
region (and also broadens in the wall normal direction) but drops beyond that region
in agreement with Ganapathisubramani et al. 150 . As stated before, such correlations
reflect the averaged length, height and eventually width of streamwise structures if
performed in 3D, like in Sillero et al. 3 . The extend of the low but significant values
of the two-point correlations indicate the average size of the largest structures but
nothing about their size distributions.

4.1.1 Detection and definition

As mentioned above, the goal is to study these large-scale structures by detecting
them individually in space. In order to fulfill this objective, a methodology based
on simple thresholding of the streamwise velocity fluctuations is used. Binary images
B	 and B⊕ indicative of negative and positive streamwise fluctuations are obtained
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Figure 4.1 – Two-point spatial correlation functions of the streamwise velocity fluctuations
〈u(x−xo, y−yo)u(x, y)〉 at wall distances (a) yo = 50+, (b) yo = 100+ and (c)
yo = 150+ where xo is the streamwise position such that Reθ = 2068

respectively by,

B	 =




1 if u′<Cthr σ100+
u

0 otherwise
(4.1a)

B⊕ =




1 if u′>Cthr σ100+
u

0 otherwise
(4.1b)

where σ100+
u is the standard deviation of the streamwise velocity at y+ = 100, and Cthr

is the threshold parameter. The second peak (or plateau) of u′+ at very large Reynolds
numbers is the results of the strengthening large-scale streamwise structures151. Even
though there is no secondary peak at the moderate Reynolds number of the present
simulation, σ100+

u gives a good estimation of what would be the intensity of this plateau
(or second peak) at much larger Reynolds numbers. Therefore this value can be taken
as a reference intensity for the large-scale structures (See fig. 4.2).

An analysis is conducted with three different values of the threshold coefficient Cthr
(0.5, 1.0 and 1.5) to demonstrate its effect on statistics. Figure 4.3 shows that such
detection method retains a significant fraction of the streamwise turbulent kinetic
energy while keeping only a small fraction of the total volume. Percentages of the
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Figure 4.2 – Visualization of the thresholding value over streamwise turbulent fluctuations
in wall units as a function y+ for 4 different Reθ (1000, 1500, 2000 and 2500)

retained energy, momentum and volume fractions with different thresholds are given
in table 4.1.

Table 4.1 – Streamwise energy, momentum and volume fraction (in % of the total) after
thresholding for low momentum regions (	) and high momentum regions (⊕)
extracted using (4.1) and (4.2) as function of the threshold parameter Cthr.

Energy Momentum Volume
Cthr 	 ⊕ 	 ∪⊕ 	 ⊕ 	 ∪⊕ 	 ⊕ 	 ∪⊕
0.5 48% 49% 97% 43% 46% 89% 29% 34% 63%
1.0 39% 41% 80% 29% 32% 61% 15% 17% 32%
1.5 25% 25% 50% 15% 16% 31% 6% 7% 13%

In a second step, binary volumes (B	 or B⊕) are subjected to the labeling procedure
one by one which assigns an index for each structure. Search for simple geometric
connection in the orthogonal directions by one grid point is performed like Lozano-
Durán and Jiménez 75 . However, the detection procedure generates a large number of
small structures which are not the primary interest in this study. Therefore, struc-
tures with a total length (λx) of less than 0.2 local boundary layer thickness in the
streamwise direction are discarded. This procedure is not necessary but reduces the
total number of structures to be analyzed significantly without affecting the statistics
of the larger ones. This study focuses on the attached structures but the detection
procedure based on a threshold of the fluctuating streamwise velocity makes it impos-
sible for a detected structure to touch the wall as fluctuations go to zero at the wall.
Hence, all structures with a minimum wall distance larger than 50+ are also discarded
leading to the final definition
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Figure 4.3 – Energy (a), momentum (b) and volume (c) distribution of the streamwise
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L =




1, . . . , N if λx>0.2δlocal and ymin<50+

0 otherwise
(4.2)

where L is the labeled image which consist of N structures with a unique index i. λx
and ymin are the length and lower bound of the bounding box of the structure i.

Extracting a single scale for complex multi-branch structures is probably not mean-
ingful enough. Therefore, to better characterize their complexity, the skeletons of the
structures are also determined. This method simplifies the 3D binary volume of a sin-
gle structure (individual objects extracted from B	 and B⊕) to a set of curves using
a skeletonization algorithm. The advantage of this simplification is that quantitative
statistics of each branch of the skeletons can be extracted. The simplest method,
known as “thinning”, is able to provide skeletons but the results are very sensitive to
the surface smoothness of the volume analyzed. This method leads to very complex
skeleton topology which needs to be simplified in order to gather useful statistics.
The thinning has been applied successfully for instance by Marquillie et al. 137 for the
detection of the near wall streaks which are more regular and therefore easier to char-
acterize. The method which has been used in the present analyses is a more robust
algorithm for computing continuous, sub-voxel accurate curves from volumetric ob-
jects. The basis of the method was developed by Hassouna and Farag 152 and has been
adjusted for this work. It can represent a complex structure with a limited number of
curves. Unlike other proposed methods to extract turbulent structures, the curves of
the skeleton are not necessarily associated with the local maximum of the quantity to
analyze (e.g., streamwise fluctuations). The skeletonization only represents the global
shape and the geometric complexity of the volumetric structures. One parameter of
the method controls the degree of refinement of the skeletons independently from the
surface property of the associated volume. The method requires significant computa-
tional resources for the extraction of the well-resolved very large structures as several
Eikonal equations have to be solved for each of the detected structure.

The skeletonization procedure has been applied to the same 20 local boundary layer
thickness long 3D sub-domains centered at Reθ = 2068. Skeletons are extracted from
structures in the binary volume B	 or B⊕ after the interpolation of the velocity field on
a regular isotropic grid with a mesh size of 6.7+ as the skeletonization procedure used
in this study requires an isotropic discretization. Moreover, a weak cleaning procedure
composed of opening and closing operations is applied to the binary objects before
to apply the skeletonization. The cleaning steps are required to resolve better the
small connections between selected regions originally determined by one or two pixels
only. A minimum resolution of 3 to 5 pixels is needed to be able to extract a skeleton.
When the soft cleaning procedure is not enough, the binary volume is interpolated

50



-10 0 10-0.75
0

0.75

0.1
1

L/δ

Figure 4.4 – Isovolume of the low speed streamwise fluctuating structures extracted using
thresholding (eqs. (4.1) and (4.2)) with Cthr = 1.0 on a 20δ long sub-domain
centered at the Reynolds number Reθ = 2068. The skeleton of each separated
structure are represented with different colors.

on a finer grid to resolve the bottleneck regions adequately. The structures with a
streamwise length smaller than 600 wall units or with a volume less than 15000 cubic
wall units have been discarded as the aim is to concentrate on the largest structures.

The results of the skeletonization in a sub-domain is shown in Figure 4.4 with the
isovolumes of the detected structures. The procedure reflects the complex multi-
branch behavior of the detected binary volumes with 1D sub-pixel lines from which we
can extract a topology. The same analysis is possible with the classical skeletonization
algorithms as thinning which only provides pixelated information. The complex shape
of the skeleton is presented in a single structure in Figure 4.5. The curves of the
skeletons reveal the meandering nature of the structure in both the spanwise and the
normal wall directions. Side view of the single structure with its skeleton shows the
complexity of their shape and the difficulty of defining, for example, a single mean
angle of a structure.

4.1.2 Two-dimensional and three-dimensional labeling

Once the structures have been detected, various analyses have been used to character-
ize them. At first, the edges of the smallest cuboid in the three directions (respectively
λx, λy, λz) that contains a structure are measured. Additionally, the detection proce-
dure was also performed in 2D for each streamwise-normal (XY) plane of the 3D fields
to be able to compare the results with similar analysis conducted with PIV data10.
The very first part of the detection methodology, a simple thresholding, is indepen-
dent of the number of dimensions of the fields (4.1). On the other hand, the labeling
procedure is sensitive to the connections on spanwise direction when applied in 3D.
The labeling can be inquired ignoring the spanwise direction connections resulting to
the 2D labeling. This type of detection is identical from what can be done with the
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Isometric, (b) top and (c) side views of the geometry.
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Figure 4.6 – PDF of the streamwise lengths of the detected structures from positive veloc-
ity fluctuations (continuous lines) and negative velocity fluctuations (dashed
lines) for three different values of the detection threshold. Statistics are re-
sults of (a) 2D detection in XY planes and (b) 3D detection.

standard PIV data in the streamwise wall-normal plane. The 2D detection procedure
does not allow to capture the complexity of the structure in the spanwise direction
and the two methods could lead to some different statistics of the streamwise length
as demonstrated by Soria et al. 153 for the quadrant analyses.

The probability density functions (PDFs) of the streamwise length premultiplied by
the total number of detected structures Ns are shown in fig. 4.6 for the two different
detection procedures and the three values of the threshold coefficient Cthr given in
table 4.1. Multiplication of the PDF with the number of the detected structures is
unusual but this way of plotting enlightens the effect of the spanwise connections on
the total number of detected structures. The detection of the structures in XY-planes
leads to a length distribution λ−2

x for the three tested thresholds. This result is in
agreement with the results of Srinath et al. 10 extracted from PIV at higher Reynolds
numbers. Note that, for the 2D detection, the number of large structures decreases
when increasing Cthr. Intuitively, increasing threshold results to shorter structures
as observed for the structures detected in 2D. However, the results of 3D detection
show the opposite. The main reason is that the largest structures are likely to be
connected by the side (in the spanwise direction). As the connections in the spanwise
direction are taken into account in 3D detection procedure, when the threshold is
too low (Cthr = 0.5), the detection leads to one or few very large structures that
cover most of the investigated volume. These structures are larger than the domain
of investigation, so they are not taken into account in the statistics of length. This
effect explains the smaller number of large structures for Cthr = 0.5 as compared to
Cthr = 1.0 for which the largest structures start to be disconnected from each other.
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Figure 4.7 – Isovolume of the structures from B	 labeled with 2D (a) and 3D (b) connec-
tions. Extraction conducted using thresholding (eqs. (4.1) and (4.2)) with
Cthr = 1.0 on a 20δ long sub-domain centered at the Reynolds number
Reθ = 2068. Each structure (either in 2D or 3D) is plotted with a different
color.

The comparison of the 2D and 3D detections shows that considering the most intense
structures, the two methods lead to a similar length distribution even if their topology
is more complex than simple elongated structures. The detection in 3D fields can be
considered as more realistic to measure the real size of the structures as it acknowl-
edges spanwise motions of the structures. The −2 distribution of structure lengths
for 3D detected structures is maintained for the larger range of streamwise lengths,
even though the theory behind this slope154 does not consider spanwise connections
explicitly.

Spatial heterogeneity of the structures in spanwise direction is shown for a single field
in figs. 4.7 and 4.8. These plots address the issues mentioned above and show clearly
the effect of 2D observations. Like the results of the bounding boxes, 2D detection
results to shorter structures. At first glance, it can be said that 2D labeling procedure
leads to the detection of lesser large structures than the 3D one even though the total
number of detected structures are much higher. This is result of the combined effect of
the cleaning and labeling mechanism. 2D labeling leads to the detection of many small
structures which are actually pieces of larger structures but they will be cleaned as
they are too small, biasing the statistics for 2D detections. In other words 2D labeling
will miss the long structures which have more chances to be connected in the spanwise
direction. Therefore, distribution of the length of structures gets biased strongly for
the structures with the length λx larger than few δ when they are detected in 2D
because of the complexity of the structures. This effect is more obvious in fig. 4.8
which is the top-view of fig. 4.7 for a sub-domain. One can imagine the extensions of
these structures in the spanwise direction which get cut when 2D labeling procedure
is used.
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Figure 4.8 – Top-view of the structures from B	 labeled with 2D (a) and 3D (b) connec-
tions. Extraction conducted using thresholding (eqs. (4.1) and (4.2)) with
Cthr = 1.0 on a 20δ long sub-domain centered at the Reynolds number
Reθ = 2068. Colors represent label of structures.

The sensitivity analysis of the detected lengths to the threshold coefficient parameter
(Cthr) has been conducted only for the streamwise length statistics. Unless the results
obtained with Cthr which are biased by the fact that a single long structure usually
fills the domain, the probability of length for the different thresholds are qualitatively
similar. Therefore, for the remaining analysis, results are given only for Cthr = 1.

The present analysis reveals that LSM in streamwise velocity fluctuations are more
complex and have more branches than the near wall streaks. They are multi-branch
structures somehow connected both from the bottom (via near-wall streaks) and by
the sides. Their complex behavior make the 3D detection more suitable to extract
useful information and will be investigated further with the help of the skeletons (See
section 4.1.4).

The aspect ratios of the attached structures obtained by 3D detection are investigated
via joint PDFs of their length P (λx/δ, λy/δ) and P (λx/δ, λz/δ) (Figure 4.9). The re-
sults show a clear trend for the shape of the detected structures with an average
spanwise size around 20% of the streamwise length for both low and high momen-
tum ones and an average height of 10% and 15% of the streamwise length for the
low momentum and high momentum structures respectively. However, these trends
can only be estimated on one decade of length due to the limited number of very
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Figure 4.9 – Joint PDFs of streamwise wall-normal sizes P (λx/δ, λy/δ) and streamwise
spanwise size P (λx/δ, λz/δ) of the detected structures. Areas inside the con-
tour lines correspond to 99%, 90%, 75%, 50% and 25% of the detected struc-
tures. An indicative ratio between the two sizes of the joint PDFs are given
with dashed lines. Figures (a) and (b) are based on the binary volume B	
while (c) and (d) are based on B⊕

large structures. The results also indicate that a larger fraction of high momentum
structures reaches the top of the boundary layer (see fig. 4.9c).

The PDFs of the lower and upper bound of the LSM are given in fig. 4.10. A very
large fraction of the large-scale structures starts very close to the wall as indicated
with the strong peak around y+ = 50. The highest starting position for a high speed
structures is not more than 0.8δ while low speed structures can start up to y = δ.

4.1.3 Energy contribution of the LSM

Spectral analyses show the energy contribution of the different turbulent scales, but
the contribution of coherent structures to the terms of the (2.6) should be one of the
first inquiry to understand the real impact of these structures.

The mean profiles of streamwise fluctuations inside the structures are compared to the
same quantity for the whole domain to characterize the turbulence statistics of the
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Figure 4.10 – PDF of the lower (ymin) and upper (ymax) bounds of streamwise fluctuations
structures. In this figure statistics for the large-scale motion in streamwise
fluctuations includes structures starting above y+ = 50.

detected structures (fig. 4.11). A similar analysis of the content of detected stream-
wise velocity structures was proposed by Ganapathisubramani et al. 52 . However, in
their study, the structures were classified by the energy spectrum. The mean pro-
files for both positive and negative velocity structures exhibit a similar shape than for
the whole domain. The streamwise turbulent kinetic energy inside detected structures
after cleaning the smallest structures represents approximately 72% of the same quan-
tity for the whole domain suggesting that the contribution of the detached structures
is small. Due to our definition of attached structures (with a minimum distance from
the wall smaller than 50+), the profiles including and excluding the detached struc-
tures are identical up to 50+. However, it is shown that the detached structures do not
contribute significantly even in the outer region. This result shows that the excluded
part is essentially composed of weak fluctuations. It seems that low-speed structures
contain more energy than the high-speed ones. Besides, strong positive fluctuations
are not reaching the top of the boundary layer, unlike low-speed structures.

The Reynolds shear stress u′v′ component of the streamwise velocity fluctuation struc-
tures is also significant (∼ 72%) and dominated by the attached structures. A more
detailed analysis of u′v′ will be conducted in section 4.2.
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Figure 4.11 – Profiles of streamwise fluctuation (a) and Reynolds shear stress (b) com-
puted from the detected structures with Cthr = 1.0. Note that, in this
figure only, structures not completely included in the 20δ long investigated
domain are kept. Statistics are given for y+ > 20 which corresponds to the
lower bound of the domain used to detect structures.

4.1.4 Statistics on skeletons

Volumetric detection of the 3D structures, as conducted in the previous subsection, is
convenient for statistics based on bounding box and visualization. However, statistics
based on the bounding box around these 3D shapes have some limitations, e.g., there
is not an accurate way to access angle of these structures. A single line from start to
end of the bounding box does not determine a meaningful angle as can be seen from
the example in fig. 4.5.

Additional quantitative results of the structures can be extracted from their skeletons.
The total length of a structure is computed differently, by extracting the main (longest)
curve from its skeleton which is not necessarily aligned with the streamwise direction
(unlike the size of the bounding box, λx). The PDF of the main curve lengths, P (λ/δ)
computed from the skeletons is shown in fig. 4.12 (left). Structures up to O(10δ) are
detected in agreement with some previous results, and the distribution exhibits the
same λ−2 slope which is comparable to the statistics computed from the streamwise
size of the boxes circumscribing the 3D binary objects.

The complex shape of the long structures can be characterized by counting the num-
ber of branches having a significant length. This measure, only accessible from the
skeletons, expresses the intricate 3D shape of the structures. The histogram of the
number of branches with a length of at least 10% of their main curve for the longest
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Figure 4.12 – PDF of the structure lengths computed from the main curve of the skeleton,
P (λ/δ) (a) and the histogram of the number of branches having a length of
at least 10% of its main curve for the structures longer than 4δ (b). The
binary structures are extracted by (4.1) with Cthr = 1.0.

structures (longer than 4δ) is given fig. 4.12 (right). Most of the retained large-scale
structures have at least one significant branch and more than 40% of them have even
more than 3 significant branches. Such multi-branch structures are difficult to charac-
terize with a single streamwise length and a mean angle with respect to the horizontal
plane.

As discussed earlier, the mean angle of the large-scale structures can be estimated
from two-point correlations (fig. 4.1). However, two-point correlations are computed
with all possible fixed points meaning that they do not only represent the average of
the most intense streamwise large-scale structures. Therefore, conditional two-point
spatial correlations computed with the fix points inside the detected binary object
(B	 and B⊕) are also provided (fig. 4.13). Longer iso-contours are observed which
extend to 7δ using the same normalization 〈u′u′〉(xo, yo) than the standard two-point
correlations (fig. 4.1). These conditioned statistics are more representative of the
average shape and size of the most energetic large-scale streamwise structures than
the standard correlations.

Analyses based on the jPDFs can be taken one step further. Conditioned two-point
correlations of low and high streamwise velocity fluctuations (fig. 4.14) shows differ-
ences in height and angle of low and high speed structures. In near-wall region low
momentum LSM are shorter but their length become similar increasing the distance
to the wall. Additionally, jPDFs of the positive fluctuations display larger upward
angles than the structures of the low velocity fluctuations.

An advantage of the skeletons is that the angles along the curves can efficiently be
computed for each structure as the curves are defined with sub-pixel accuracy. The
skeleton angles are extracted only on the main curves (the black curve in fig. 4.5)
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Figure 4.13 – Two-point spatial correlation functions of the streamwise velocity fluctu-
ations 〈u(x−xo, y−yo)u(x, y)〉 conditioned by |u(xo, yo)| > Cthrσ

100+
u with

Cthr = 1 at wall distances (a) yo = 50+, (b) yo = 100+ and (c) yo = 150+

where xo is the streamwise position such that Reθ = 2068

to exclude the statistics of the branches which may have different statistics and a
different meaning. The angles of the large structures (with the main curve longer
than δ) are defined between the unit vector x̄ and the projections of the displacement
vector of two consecutive points of a curve on the XZ-plane (pitch angle, α) and the
XY-plane (yaw angle, β). The large tails of the PDF indicate that the main curves
move up and down with a large distribution of angles as observed in fig. 4.5 for a
single structure. The distribution of the pitch angle (α) is right-skewed, in agreement
with the positive average angle seen in two-point spatial correlations. Both angles
are widely distributed with no clear preferable values. The peak around very small
angles and the short plateau around the small positive value of the distributions are
the consequence of irregular oscillations of the skeletons.

The mean pitch angle (α) of the structures is evaluated from their main curves as
a function of the wall distance and presented in comparison to the angle extracted
from the isocontours of the standard (Figure 4.1) and conditioned (Figure 4.13) two-
point correlations. The statistics from skeletons show that the detected large-scale
structures of streamwise fluctuations move away from the wall with an average pitch
angle of 5◦, almost independently from the wall-normal distances (Figure 4.15). The
conditional two-point correlations using only extreme streamwise fluctuations offer
quite a reasonable estimation of the mean pitch angle (α) while standard two-point
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Figure 4.14 – Conditional two-point spatial correlation functions of the low streamwise
velocity fluctuations 〈u(x − xo, y − yo)u(x, y)〉 if u(xo, yo) < −Cthrσ100+

u

with Cthr = 1 at wall distances yo = 50+ (a), yo = 100+ (c) and yo = 150+

(e) where xo is fixed at Reθ = 2068. Same conditioned correlations for high
streamwise velocity fluctuations, 〈u(x − xo, y − yo)u(x, y)〉 if u(xo, yo) >
Cthrσ

100+
u with Cthr = 1 (b, d, f).
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fixed point and the isocontour at the 80% of the fixed point.

Figure 4.16 – Sketch for the simple on-off model in 1D, similar to the threshold mechanism
used in this study. [Reproduced from Srinath et al. 10 ]

spatial correlations lead to a higher average angle as it includes the information from
structures with weak and strong detached fluctuations as well.

4.1.5 Validation of a simplified model for energy spectra

As discussed in the introduction, the LSMs near the wall have been interpreted as
being responsible for the k−qx scaling range with q ' 1 of the turbulence spectrum.
Srinath et al. 10 have demonstrated the relationship between the distribution of the
structures detected in physical space and Townsend-Perry wavenumber range (also
known as k−1 range) based on simple on-off model (fig. 4.16). This theoretical model
is tested on the detected structures in this study.

Following the analysis of Srinath et al 10 on TBL experimental data, the turbulence
intensity of the detected streamwise large-scale structures at a certain wall distance
is evaluated. The length of the structure in the streamwise direction at a particular
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Figure 4.17 – PDF of the structure lengths at particular wall-distances using 3D detec-
tion from negative velocity fluctuations (dashed lines) and positive veloc-
ity fluctuations (continuous lines) at wall distances y+ = 50, 100 (a) and
y+ = 150, 300 (b).

wall distance ζx is not necessarily equal to λx because structures have irregular shapes
and may include holes due to a small region of streamwise fluctuating velocity lower
than the selected threshold. Similar to the distribution of λx (Figure 4.6), ζx also
demonstrates a fairly good −2 power law up to y+ = 150 (' 0.2δ) as shown in
Figure 4.17.

The fluctuating streamwise velocity averaged inside the detected structures is called
a2. It has been computed per line of the detected structures in 2D as in the Srinath et
al 10 while the results from 3D detected structures are also averaged in the spanwise
direction. Therefore, the distributions of a2(ζx) at a particular distance from the wall
(Figure 4.18) are not exactly the same for the 2D and 3D structures as the structures
are not identical.

A ζpx power law fit of a2 is evaluated on the same limited range of structure length
as in Srinath et al 10 (from 0.5δ to 2.5δ) where the energy spectra exhibits a decent
kqx region (with q ' 1) and where the distribution of structure lengths follows a −2
power law (Figure 4.17). Srinath et al 10 have shown that, for the experimental data
at higher Reynolds number, power law exponents p and q are such that p+ q is very
close to −1. They demonstrated such results for a range of distances from the wall
(y = 50+) up to 0.1δ with a special value of p = 0 near y+ = 150 leading to an
almost perfect k−1

x slope for the streamwise energy spectra at this particular wall
distance. In the present study, the q exponent of the streamwise energy spectra is
decreasing when moving from the wall but the slope of a2 stays fairly constant in the
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present results as compare to the results of Srinath et al. 10 . This can be related to
the moderate Reynolds number of the present study as y+ = 150 corresponds to 0.2δ
and the relationship p + q = 1 has been observed up to 0.1δ on the experimental
data. However, the power law fits of both distributions of a2 on 2D and 3D detected
structures have a small positive exponent p ' 0.1 at y+ = 50 such as p+ q is close to
−1. Despite the uncertainties of the fit due to the limited kqx range of E11 at lower
Reynolds number, the present results support the findings of Srinath et al. 10 .
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Figure 4.18 – Average mean squared streamwise velocity, a2 as function of structure
length in 3D structures (a, d, g) and in 2D structures (b, e, h). Streamwise
energy spectra (c, f, i) at three wall distances: y+ = 50, 100, 150 (from top
to bottom). All statistics are computed for Reθ = 2068.
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Figure 4.19 – Contribution of the quadrants to the Reynolds shear stress in a turbulent
boundary layer at Reθ = 2068

4.2 Quadrants

Quadrants are also investigated inside the same 3D domains as LSM in the previous
section. Quadrant structures have a special role in turbulence modeling because these
coherent motions are the components of the Reynolds shear stress. Their contribution
to the Reynolds shear stress in turbulent boundary layer are known to vary with the
distance to the wall as shown in fig. 4.19 for the current DNS data. Similar results are
shown in literature for wall-bounded flows (see i.e., Willmarth and Lu 95 ; Wallace 155).
The contribution of Q1 and Q3 are weak in canonical wall-bounded flows except very
close to the wall, while Q2 and Q4 dominates the RSS. The contribution of ejections
(Q2) to the Reynolds shear stress exceeds the one of sweeps (Q4) at the limit of the
viscous sublayer (y+ ∼ 15) and become maximum at the bottom of the logarithmic
region.

4.2.1 Detection and definitions

In order to complement the statistics of coherent motions in turbulent boundary layers,
the detection procedure used for streamwise LSM is applied to the quadrants using a
simple threshold procedure. However, binary images BQ2 and BQ4 indicative of sweeps
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and ejections are obtained with the slightly different criteria.

BQ2 =




1 if |uv| < H u′100+v′100+ and 0 < u′ and 0 > v′

0 otherwise
(4.3a)

BQ4 =




1 if |uv| < H u′100+v′100+ and 0 > u′ and 0 < v′

0 otherwise
(4.3b)

where H is the hyperbolic hole size as defined by Willmarth and Lu 95 . A value
of H = 1.75 is used in this study following the suggestion of Lozano-Durán et al. 1

based on a percolation analysis on a DNS of channel flows at Reτ = 934 and 2003
(Del ÁLamo et al. 122 ; Hoyas and Jiménez 156). Similarly to the detection of the LSM,
binary images (BQ2 and BQ4) are obtained either in 2D or in 3D using appropriate
labeling procedures.

The same criteria are used to select the quadrants to be retained base on their size
and their connection to the wall.

L =




1, . . . , N if λx>0.2δlocal
0 otherwise

(4.4)

where L and λx have the same definition than for the streamwise large scale structures
(see eq. (4.2)). There are no criteria for wall attachment in the quadrants’ detection
as shown in fig. 4.19. However, detailed statistics of the attached quadrant structures
can be found in Lozano-Durán et al. 1for turbulent channel flows.

4.2.2 Size and aspect ratio of quadrants

Following the detection procedure described in the previous section, the statistics
related to the shape and size of the sweeps and ejections are investigated.

PDFs of the structure lengths are weighted with the number of detected structures to
provide an analogy with the previous results of LSM. However, the quadrants statistics
are collected for both attached and detached structures without distinctions. Using
the definitions (4.3) and (4.4) a slightly larger number of ejections are detected than
the sweeps. Similar to the LSM, statistics from 2D detection are biased as the large
structures seem shorter. However, the present analysis shows that the structures
extracted in 2D are in fact much shorter unlike what has been observed for the LSM.
The reasons is that quadrants are not elongated in the streamwise direction, unlike

66



100 101

101

102

103

104

105

106

107

(a)

L−3

λx/δ

N
s

×
P

(λ
x
/δ

)

Q2
Q4

100 101

101

102

103

104

105

106

107

(b)L−3

λx/δ

N
s

×
P

(λ
x
/δ

)

Q2
Q4

Figure 4.20 – PDF of quadrants length for the detection threshold Cthr = 1.75 defined in
(4.3). Statistics from 2D detection in XY planes (a) and from 3D detection
(b).

LSM. Therefore, spanwise connections are probably more important for the quadrant
structures. Additionally, 3D detection reveals that there are longer Q4 events than
the Q2 events but this effect is not visible on the 2D analysis. The distribution of
the length of these structures is around −3 (fig. 4.20), but from the best author’s
knowledge there is no theory related to this slope.

In order to compare with LSM (fig. 4.17), quadrant lengths at different wall distance
are plotted in fig. 4.21. A significant range of length with −2 power law is observed,
especially for the short Q4 structures. Longer quadrants might be following a −4
slope, but the limited range of length as well as the level of convergence are too low
to be affirmative.

After the analysis of their length, the aspect ratio of the the ejections and sweeps
extracted in 3D are investigated. The structure sizes are defined as the one of the
cuboid including the structures like for the study of LSM. Figure 4.22 shows the
joint PDFs, P (λx/δ, λy/δ) and P (λx/δ, λz/δ) of the ejections and sweeps. The results
show that ejections are shorter and thinner than the sweeps. The spanwise length of
ejections is smaller per unit streamwise length than for sweeps, but sweeps do not get
longer than 2δ whereas ejections can become slightly longer. Additionally, ejections
can reach a wall-normal size up to δ while sweeps stop around 0.8δ. Similar results
were found by Lozano-Durán et al. 1 , in Figure 5 of their work, for attached quadrants
in channel flows. The authors suggest very similar constant length ratio as λx ≈ 3λy
and λz ≈ 1.5λy for unconditioned Q2 and Q4 events.

The PDF of the lower and upper bound of the quadrants is given in fig. 4.23 similarly
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to the fig. 4.10 for the LSM. Quadrants structures starts much closer to the wall, and
Q2 structures can start as high as δ. Even though the top of Q2 structures (ejection)
can reach over δ, most of them only reach 0.1δ. Overall, Q4 structures remain shorter
than the Q2 structures.

4.2.3 RSS contribution of the quadrants

As discussed in chapter 2, the quadrant statistics have been investigated by many
authors. The aim of the present study is not only to provide a detailed description of
these structures but also to quantify their contribution to the Reynolds shear stress
and to relate them to the detected LSM of streamwise fluctuating velocity.

Thus, similar to the decomposition of the LSM, the contribution of the quadrants to
the turbulence fluctuation profiles are given in fig. 4.24. This statistics can be related
to the one presented in fig. 4.11. The difference between the two analyses is that
the decomposition of the Reynolds shear stress as the results from LSM was signed
sum, but the quadrants are already decomposed according to the sign of u′. The
contribution from Q1 and Q3 are left out completely, and the sign of all 4 quadrants
can be considered explicitly. For example, the sum of the integrals of Q2 and Q4 (119%
of
∫ ymax
ymin

uv) is larger than Reynolds stress profile as the contribution of the Q1 and
Q3 will have opposite sign (see fig. 4.24 (a)). An example of isovolume of Q4 and Q2
structures detected in 3D is given in fig. 4.27. The very-large-scale structures seems
qualitatively similar but medium scale Q2 structures are more numerous and more
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Figure 4.24 – Reynolds shear stress (a) and streamwise fluctuation profiles (b) computed
from the detected quadrant structures with H = 1.75. Statistics are given
for y+ > 20 which corresponds to the lower bound of the detection domain.

elongated in streamwise direction than the Q4 ones confirming the findings shown in
fig. 4.24 (b).

The streamwise turbulent kinetic energy contribution of ejection (Q2) and quadrant
(Q4) structures exhibit couple of differences as function of wall distances (see fig. 4.24
(b)). Q4 structures contain an equally distributed amount of streamwise fluctua-
tions. However, the profile for the Q2 structures resembles u′+ profile with weakly
pronounced inner peak. This peak at a wall distance slightly higher than the first
peak of the streamwise velocity fluctuations meaning that the detected Q2 structures
have the strongest streamwise component located just above the near wall low speed
streaks.

The mean streamwise fluctuation inside the Q2 and Q4 quadrant structures are only
34% and 19% of the total u′+ respectively. Note, that the fraction of the uvq fluc-
tuations inside the detected structures of Q2 and Q4 are 45% and 23% respectively
(fig. 4.25). So, even though quadrants corresponds to the large part of the RSS, quad-
rant structures detected in represents only a part of it. Neither Q2 or Q4 structures
seems to dominate the Reynolds shear stress in the near-wall region, but, they still
have a significant correlation with the LSM (see fig. 4.24).

Conditional two-point correlations of LSM with an additional condition based on the
quadrants Q2 or Q4 is given in fig. 4.26 to visualize this correlation in more detail. In
other words, only the most energetic parts of the streamwise fluctuations which are
also detected as strong quadrant motions are kept. It can be quickly spotted that Q4
spread inside the high-velocity structures more widely. These correlations are not as
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Figure 4.25 – Contribution of the Q2 and Q4 quadrants and detected quadrant structures
(using (4.3) and (4.4)) to the Reynolds shear stress at Reθ = 2068.

large as the standard two-point correlations. However, they show that there are strong
wall-normal events inside the LSM which can reach up to 4δ in length. The inclination
of the standard two-point correlations is preserved, but Q4 structures in positive
streamwise velocity fluctuations certainly have higher angles than the Q2 structures
in negative streamwise velocity fluctuations. There is no significant difference (see
fig. 4.14) with the correlations on the streamwise fluctuations alone.
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Figure 4.26 – Conditional two-point spatial correlation functions of the low streamwise
velocity fluctuations 〈u(x−xo, y−yo)u(x, y)〉 if u(xo, yo) < −Cthrσ100+

u with
Cthr = 1 and |uv| > Hu100+v100+ with H = 1.75 at wall distances yo = 50+

(a), yo = 100+ (c) and yo = 150+ (e) where xo is fixed at Reθ = 2068
and Cthr = 1. Same conditioned correlations for high streamwise velocity
fluctuations, 〈u(x−xo, y−yo)u(x, y)〉 if u(xo, yo) > Cthrσ

100+
u with Cthr = 1

and |uv| > H(u100+v100+) with H = 1.75 (b, d, f). Note that for low
streamwise velocity fluctuations and high streamwise velocity fluctuations
Q2 and Q4 component of the quadrants are captured respectively.
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4.3 Conclusion

A large database of 3D fields and 2D time-resolved data were collected from a new
DNS for TBL flow at moderate Reynolds number. Spectral analysis shows that the
streamwise energy spectrum is compatible with a k−qx scaling at large scales with q ' 1
near y+ = 100 with increasing value of p when moving from the wall. Even though,
the second peak (or plateau) of u′+ is not clear at moderate Reynolds numbers, a
reference value σ100+

u at y+ = 100 of the streamwise velocity fluctuation is used in the
detection procedure of the large-scale structures.

LSM and quadrant structures are detected with a simple thresholding algorithms
which results to a comparative study. The energy content of the LSM structures
proves that they represent a substantial part of the streamwise velocity fluctuations
and the thresholding does not alter the profile of the fluctuations inside the structures.
As suggested by Marusic et al. 157 , the pursuit of a novel decomposition is perhaps
needed to enlighten the importance of the attached structures.

Aside from their energy level, the 3D shape of the structures has also been studied.
Two different extractions of the structures were compared. The analyses of the 2D
structures are comparable to the results given by Srinath et al. 10 on PIV data at
higher Reynolds numbers. Moreover, a second method which benefits from having 3D
numerical data is also applied, and the results are compared with the first method
to make the connection with previous findings from experimental data. It is shown
that 2D and 3D extractions may lead to different structure sizes due to the 3D nature
of the structures. Information in the spanwise direction is meaningful as the longest
structures also have a more complex topology. Representing the complex 3D shape
of this structures with each length scale in each direction is not obvious. A specific
skeletonization algorithm is used to simplify the 3D binary image of a single detected
structure. Skeletons consist of a set of well-resolved lines which can be used to better
characterize the whole structures regarding length, complexity, and angles. This sim-
plification algorithm does not rely on lines of extrema which may be not representative
of the full structure but rather defines curves based on its shape.

Distributions of the streamwise lengths of detected structures are investigated based
on the results of both bounding boxes and skeletons. The results show that the
distribution of streamwise lengths of the large-scale structures follows the same power
law with a slope close to the −2 in agreement with the findings of Srinath et al 10.
Joint PDFs of their sizes in the 3 directions (P (λx/δ, λy/δ) and P (λx/δ, λz/δ)) are
given to provide 3D statistical descriptions of the detected structures. The results
reveal some self-similarity between structures of different size but on a limited range
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due to the moderate Reynolds number of the DNS data.

The preferred angle of the detected structures is also investigated. Based on the main
(longest) curve of the skeletons, a constant mean value of the angle is observed for all
wall distances which is different from the results extracted from the standard two-point
spatial correlations. A model of an elongated structure with a single positive angle
with respect to the horizontal plane is not representative. However, measurements
on the main curve of the skeletons suggest that large-scale wall attached structures
follow an upward trend around 5◦ in average along the full boundary layer thickness.

Thresholding of the streamwise velocity fluctuations with a single parameter reveals
the complex shapes of these streamwise structures and the skeletonization procedure
is used to quantify their features. Their complexity was asserted by counting the
number of significant branches of a structure. It is shown that most of the large
structures (> 4δ) have one or more significant branches.

Quadrant structures are also investigated with the same hyperbolic-hole size H = 1.75
as used by Lozano-Durán et al. 1 . It is shown that 2D and 3D extractions of the
quadrants lead to larger differences in structure sizes than the LSM. This infers that
spanwise connections are more important for quadrants. The distribution of the length
of 3D quadrant structures follows a −3 slope. Spatial self-similarity of quadrant
structures are demonstrated in accordance with previous results of Lozano-Durán
et al. 1 on turbulent channel flow data.

Analysis of the fluctuating velocity inside quadrant structures exhibits the details of
their composition. It is known that Q2 and Q4 gather a large fraction of the Reynolds
shear stress uv, but current results show that, with a simple threshold, only ∼ 50% is
the Reynolds shear stress is retained in the detected structures. Additionally, profiles
of streamwise velocity fluctuations contained in quadrant structures have a similar
shape than the profile to the Reynolds shear stress profile inside streamwise velocity
LSM.

The analysis concerning the height of the structures are shown in figs. 4.10 and 4.23.
Results are complementary because similar behaviors are observed for Q2 and low-
speed structures (or Q4 and high-speed structures). These implies that valuable cou-
pling between the discussions of LSM and quadrant structures.

Results shown in this study suggests that more detailed relations can be described
between the large-scale motion and quadrants. In order to provide a preliminary result
in this matter, correlations of the streamwise fluctuations conditioned with LSM and
quadrants were computed (fig. 4.26). It is shown that Q4 structures exhibits longer
and larger correlations inside the energetic parts of the streamwise fluctuations. Even
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though their size is smaller than other joint PDFs shown in this study there are still
some significant quadrant events inside the LSM.
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Part III
Turbulent Boundary Layer with
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5Navier-stokes solver
MFLOPS3D-MD

This chapter introduces the incompressible Navier-Stokes solver MFLOPS3D-MD.
The code is written and developed at LMFL and contains original approaches as
compared to the existing Navier-Stokes solvers. A solver with geometrical flexibilities
without damaging the scalability features of massively parallel code is the objective.
The essential parts of the code which provides the central features and the numerical
methods used to achieve these objectives are explained below.

5.1 Motivation behind the new code

It is quite common to develop Navier-Stokes solvers for a specific type of flow. So, the
computationally expensive nature of the problem is dealt with applying a particular
hypothesis or simplification based on the physics of the problem. This approach is
beneficial and rapid in order to set up an effective solver but tuned for a specific
type of problem. This often means that these high fidelity solvers are strongly tied
to their original purposes which can be counterproductive due to their restricted
versatility. For example spectral solution of Poisson equation for pressure is quite
attractive due to convergence and performance properties. On the other hand, using
Fourier space comes with particular limitations on the grid spacing (uniform grid or a
special stretching function is needed). Moreover, any possible change requires tedious
work if not absolutely impossible.

The MFLOPS3D-MD is designed with the objective to allow flexible use. It can be
considered as a substantial upgrade to the earlier code MFLOPS3D (Marquillie 158

developed MFLOPS3D in the same research group). Even though naming suggests
that the only difference is the multi-domain (MD) between these two codes, only a
limited number of the features are common. A comparison between the features†

of the MFLOPS3D and MFLOPS3D-MD are given in table 5.1. The details of the
features are explained in section 5.2.

MFLOPS3D-MD uses non-homogeneous grids in the 3 directions to reach the resolu-
tion required by the physics of the problem. For homogeneous grids, both FFT and
Multigrid based linear solvers scales very well. However, it is difficult to find simple

†Not all the features should be attributed to the author’s work, it is a common effort of Dr. M.
Marquille, Prof. U. Ehrenstein, Dr. J-P Laval, Dr. A. Poux
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MFLOPS3D
(previous solver)

MFLOPS3D-MD
(new solver)

Spectral
(in 2 directions)

Compact finite difference
(up-to 8th order)

Implicit solver
(3d diagonalization)

MPI parallelization
(in 1 direction)

MPI parallelization
(in 3 directions)

Global mapping Localized mapping
(per domain)

Table 5.1 – Short list of the some features of MFLOPS3D and MFLOPS3D-MD

and scalable methods for non-homogeneous grids. The main feature of the new code is
the domain decomposition based on influence matrix method57 which provides a neat
solution to this issue. In this approach, scalability is independent of spatial discretiza-
tion, as sub-domains with any size can be solved and conceptually nothing changes
concerning the use of this method when used with homogeneous or non-homogeneous
grids.

Influence matrix method connects the sub-domains based on the continuity constraint.
The best matching values of the interface points are found imposing the continuity
constraint, simply by estimating a good value of an interface point from a linear
system constructed based on the first order derivatives. This method does not require
overlapping point between the sub-domains and interface points are solved only once
per time step. No iterations are required inside a single time step as a single solution of
the system is sufficient. Moreover, as each sub-domain is solved individually, they can
have their unique boundary conditions including wall attached boundary conditions.
This also means that the sub-domains can be efficiently solved with a direct solver
thanks to their smaller size as in MFLOPS3D.

Mapping functions in 2-dimensions are implemented similarly to the Marquillie and
Ehrenstein 159 but with mapping on the bottom and top walls. Aforementioned fea-
tures the user to define a mapping function for each sub-domain independently. Cou-
pling of these two features (influence matrix method and mapping) provides a solver
which is capable of dealing with both smooth geometries and sharp corners (see fig. 5.1
i.e., rectangular geometries can be implemented inside the simulation domain using
sub-domain with adapted BC while mapping delivers a method to define smooth
curves.
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Sub-domain

Sub-domain

Sub-domain

(a) (b)

Figure 5.1 – The grid from MFLOPS3D-MD on XY-plane without (a) and with (b) map-
ping. Mapping custom function y = f(x) is only applied on the lower wall in
this example. Note that local stretching only applied in y-direction for this
case, but it can be applied in 3 directions simultaneously.

Early examples using the code are available to demonstrate the flexibility of the code.
Ehrenstein et al. 160 set an example of how the domain decomposition and mapping
implemented in MFLOPS3D-MD can be used in DNS studies. Žnidarčič et al. 161 pro-
vided another extension algorithm for two-phase flows which works with the domain
decomposition method used in MFLOPS3D-MD.

As mentioned, the code has been designed to be modular, and several different devel-
opments are being conducted based on MFLOPS3D-MD. For example, only pressure
correction methods are available in the current version of the code, but A. Poux has
also implemented the velocity correction methods as well as the WALE sub-grid scale
models. The algorithm for cavitating flows has also been exercised in the Ph.D. of
Znidarcic 162 .

5.2 Numerical description of MFLOPS3D-MD

Different numerical methods are used to achieve a variety of tasks with a final goal
which is to have an efficient solver for the incompressible Navier-Stokes equation while
preserving the adaptability of the code. This section is listing the methods used while
explaining the connections between the different methods and giving the necessary
mathematical background. In other words, each subsection can be considered as
building blocks of the MFLOPS3D-MD.

Solving the Navier-stokes equations for incompressible flows ((2.1) and (2.2)) require
the definitions of boundary conditions of several types. The simplest BC for momen-
tum equation is either the prescription of the velocity components (Dirichlet Type) or
of the normal derivatives of velocity components (Neumann Type). Once the initial
and boundary conditions are defined, the incompressible Navier-Stokes equations can
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be solved even though solving the velocity-pressure coupling (2.1) and (2.2) is not a
simple task.

Technical procedures to solve of incompressible Navier-Stokes equations can be distin-
guished by the method used to deal with the pressure-velocity coupling. A powerful
simplification to obtain solutions of the incompressible flows is based on the idea of
decoupling pressure and velocity from each other what is known as operator splitting
methods. Another approach is based on the assumption of weak compressibility which
replaces the continuity constraint (∇ · u = 0) with an extra equation for pressure p.
Weak compressibility assumption provides a scheme with two separate equations for
u and p but it comes with a strict stability condition 4t ∼ 1/c. On the other hand,
applying forward Euler scheme to the system of governing equations results in a fully
implicit method. Most of the implicit methods eventually become a saddle-point prob-
lem where Newton method can be used to handle non-linearity in this case. Details
of the methods mentioned in this paragraph including derivation and comparison of
the schemes can be found in the review of Langtangen et al. 163 . In this study, fol-
lowing the idea of operator splitting, projection methods based on pressure correction
algorithms are used. Details of the methods available in the code with an application
perspective will be given in section 5.2.1 following the notation of Guermond et al. 164 .

The incompressible Navier-Stokes equations are

∂u
∂t

+ u · ∇u = −∇p+ 1
Re

∆u in Ω×]0, t] (5.1a)

∇ · u = 0 in Ω×]0, t] (5.1b)

where 3-dimensional flow field of an incompressible fluid flow is described by the veloc-
ity vector u = (u1(x, t), u2(x, t), u3(x, t))T εR3, the pressure p = (x, t) εR. Reynolds
number (Re = UL/ν) is the ratio of inertial forces to viscous forces. ∆ is the Laplace
operator and ∇ is the Divergence operator. These equations are the same as (2.1)
and (2.2) except they are written with ρ = 1 which is used to simplify the description
of the numerical schemes in this chapter.

5.2.1 Projection method

As emphasized above, the main difficulty for solving the incompressible Navier-Stokes
equation is the necessity to solve the velocity and pressure solution simultaneously.
Operator splitting is used to simplify PDEs into a set of equations. Projection meth-
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ods† rely on the observation that left-hand side of (2.1) is a Hodge decomposition167.
This method is thought to be inherently first-order. However, many contributions
in the literature are proposing second-order accurate projection methods. Kim and
Moin 55 have proposed a second order, time-discrete semi-implicit method for incom-
pressible Navier-Stokes equations (5.2). Second order projection methods are also
known as rotational forms (see Guermond et al. 164). Brown et al. 167 have shown
for a simulation of a periodic channel that rotational incremental pressure-correction
schemes are second-order accurate.

un+1 − un
4t + [u · ∇u]n+1/2 = −∇pn+1/2 + 1

2Re∆
(
un+1 + un

)
(5.2a)

∇ · un+1 = 0 (5.2b)

with boundary conditions

un+1|Γ = un+1
b (5.3)

Details of the explicit treatment of the [u · ∇u]n+1/2 second order approximation of
the convective term are given later. The discrete equation (5.2) can be reduced to a
set of ODEs using velocity168;169 or pressure55 correction schemes. These schemes will
be detailed later in this document.

Pressure corrections schemes are often preferred because pressure can be treated ex-
plicitly. In first sub-step, pressure is either ignored or treated explicitly. Then, a
correction step (also called as projection step) is needed to satisfy the incompressibil-
ity constraint. Lastly, pressure update can be performed. It is especially important
if the pressure is going to be used in the next time step for the estimation of the
∇pn+1/2.

In MFLOPS3D-MD, at each time step tn = n4t, an intermediate pressure and inter-
mediate velocity are solved. The pressure correction scheme ensuring incompressibility
followed with the pressure update in rotational form. A backward differentiation for-
mula (BDF) approximation of the unsteady term at the qth order is applied instead
of Crank-Nicolson time stepping used in the original scheme.

Unlike non-incremental pressure-correction scheme (simplest pressure correction scheme
†The term “projection method” often referred as “fractional step method” in literature while the

original non-incremental pressure correction schemes from Témam 165 ; 166 are called “méthode des
pas fractionnaires” in French

83



originally introduced by Témam 165 ; Chorin 170) all the schemes used in MFLOPS3D-
MD includes the pressure (or its effects) in the sub-step. Instead, strong setting
incorporates tangential components of the pressure gradient into the boundary con-
ditions of the intermediate velocity fields, and weak setting includes extrapolation of
the pressure in the sub-step.

Generalized incremental pressure correction scheme equations are

1
4t


βquk+1 −

q−1∑

j=0
βjuk−j


− ν∇2u∗ +

r−1∑

j=0
γjp

k−j = f
(
tk+1

)
, uk+1|Γ = 0 (5.4)





βq
4t

(
uk+1 − u∗

)
+∇φk+1 = 0

∇ · uk+1 = 0, uk+1|Γ = 0
(5.5)

φk+1 = pk+1 − p?,k+1 + χν∇ · u∗ (5.6)

where 1
4t

(
βquk+1 −∑q−1

j=0 βjuk−j
)

is the qth-order backward difference formula (BDFq),
u∗ and p?,k+1 = ∑r−1

j=0 γjp
k−j being an intermediate velocity (estimation of uk+1) and

an estimation of pressure while q, r, and χ are the parameters to set appropriate form
of the pressure correction scheme.

Equations (5.4) to (5.6) give a formal definition of the related schemes based on few
parameters. Details of the derivation of this form can be found in the review paper of
Guermond et al. 164 for projection methods. It includes discussions for both pressure
and velocity correction schemes with details as well as complete equations for the
different type of schemes.

BDFq for unsteady term will be given later (see eq. (5.22)) when discussing time
discretization. The rth order extrapolation for pressure p(x, tk+1) is

r−1∑

j=0
γjp

k−j = p?,k+1 =





0 if r = 0
pk if r = 1

2pk − pk−1 if r = 2

(5.7)

Finally, χ may be equal to 0 or 1. The choice χ = 0 yields to the standard forms of
the algorithm, whereas χ = 1 yields to the rotational forms. In MFLOPS3D-MD only
rotational versions of the projection algorithm is available. q is the order of the time
stencil, parametrized as to(1) . r corresponding to the parameter to(3) defines the
order of the extrapolation for the pressure estimation.
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Boundary conditions of u∗ has to be consistent with the projection step. Brown
et al. 167 analyzed the 3 parameters of a projection method namely, the pressure ap-
proximation (5.7), the boundary condition u∗|Γ , and pressure update (5.6). They
explain how second-order accurate projection method can be obtained from these
decisions.

The 3 variations of the pressure correction scheme shown in (5.8), (5.13) and (5.16)
are available in MFLOPS3D-MD. The motivation behind these methods as well as
advantages/disadvantages are discussed below while important discussion concerning
boundary conditions is given in section 5.2.3.1. The parameter PT (projection type)
allows the users to choose between these three schemes. The intermediate velocity
field u∗ will be ũk+1, ûk+1 and ǔk+1 for PT=1 , PT=2 and PT=3 respectively.

Strong settings ( PT=1 )

The scheme is proposed by Kim and Moin 55 originally with a Crank-Nicolson time
stepping but is given below using a BDFq approximation of the unsteady term.

1
4t


βqûk+1 −

q−1∑

j=0
βjuk−1


− ν∇2ûk+1

������+∇pF,k+1 = f
(
tk+1

)
(5.8a)

ûk+1|Γ = 4t
βq
∇ψF,k+1|Γ (5.8b)





βq
4t

(
uk+1 − ûk+1

)
+∇ψk+1 = 0

∇ · uk+1 = 0, uk+1|Γ = 0
(5.8c)

where ∇ψF,k+1 is some approximation of ∇ψ
(
tk+1

)
, while ψ(t) being a quantity

related to the pressure via p(t) = ψ(t)− ν4t
βq
∇2ψ(t).

Following choices can be used for the extrapolation;

ψF,k+1 =





0 if r = 0

ψk if r = 1

2ψk − ψk−1 if r = 2

(5.9)

where the r is chosen with the user parameter TO(3) .

This method has particular importance as it imposes a boundary condition on the
tangential components of velocity at the sub-step ûk+1 which satisfy the need of the
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consistent boundary condition emphasized above. Kim and Moin 55 demonstrated
that tangential boundary conditions of the solution ûk+1 based on the lagged value of
ψ or high order extrapolation is needed to ensure second-order accuracy. Notice that,
ûk+1 satisfies an elliptic equation with continuous forcing and 4t∇φ = (I − P )ûk+1

so ∇φ is continuous in time167. So more accurate estimations of ∇ψF,k+1|Γ can be
obtained by extrapolation in time.

Guermond et al. 164 reminded the difficulty to implement this method for finite element
discretization and this is why successful examples using this method are using spectral
or finite difference approximations. Moreover, we found that using this method for
pressure driven flows combined with the semi-implicit method is more difficult keep it
stable. Because, when strong pressure gradient needs to be captured with a solution
of φ obtained using fully homogeneous Neumann boundary condition a sudden change
around the boundaries needed to be captured in the direction of the pressure gradient
which is not natural. This is exactly the situation for example for a channel flow
simulation with an inlet and an outlet. For periodic channels this issue does not
appear as a constant pressure gradient is added to the source terms. An advantage
of this method is that ∆φk+1 = ∇ũk+1 is solved only once to get the ∇φk+1 for the
projection step, so it is computationally effective. Moreover, solution of φk+1 is carried
to the next time step only via the velocity, there is no direct link through pressure
term. Potential errors (spurious waves) will be affected by the diffusion before the
solution of φ reaches the next time step. This contributes indirectly to the stability
of the numerical methods.

Weak settings ( PT=2 )

This form is a different option for the pressure correction. It includes different treat-
ment of the boundary conditions. As shown by Guermond et al. 164 , weak and strong
setting are equivalent with appropriate change of variables.

Using change of variables

ũk+1 = ûk+1 − 4t
βq
∇ψF,k+1 (5.10)

pk+1 = ψk+1 − 4t
βq
∇ψk+1 (5.11)

pF,k+1 = ψF,k+1 − 4t
βq
∇ψF,k+1, (5.12)
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eq. (5.8) becomes

1
4t


βqũk+1 −

q−1∑

j=0
βjuk−1


− ν∇2ũk+1 +∇pF,k+1 = f

(
tk+1

)
(5.13a)

ũk+1|Γ =
��������4t
βq
∇ψF,k+1|Γ = 0 (5.13b)





βq
4t

(
uk+1 − ũk+1

)
+∇φk+1 = 0

∇ · uk+1 = 0, uk+1|Γ = 0.
(5.13c)

Subtracting (5.11) from (5.12),

pk+1 − pF,k+1 = ψk+1 − ψF,k+1 + ν
4t
βq
∇2

(
ψk+1 − ψF,k+1

)
(5.14)

Pressure can be estimated with (5.11) and (5.12) together with (5.9)

pF,k+1 =





0 if r = 0
pk if r = 1

2pk − pk−1 if r = 2

(5.15)

This form of the projection method includes the pressure gradient in the right-hand-
side of the momentum equation. Therefore φ is a correction rather than a physical
pressure gradient. Equations are similar to the ones given for weak setting, (5.13),
but the numerical implementation is different. Also, extrapolation of the pF,k+1,
can accumulate the errors of pressure from the Poisson solver as the gradient of the
potentially polluted pF,k+1 will be placed into the solution of the ũk+1 in the next time
step. This makes this method difficult to use in MFLOPS3D-MD as the solution of φ
with a compact finite difference solver is not as accurate as with spectral methods.

Weak settings with pressure prediction ( PT=3 )

A better approach than the standard extrapolation of φ was proposed by Hugues
and Randriamampianina 53 . In this method, the predictor step for pressure (5.16a)
is solved before each time iteration to obtain preliminary pressure which replaces
extrapolation of the pressure in (5.13). This method can be selected in MFLOPS3D-
MD with the option PT=3 .
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In other projection type ( PT=1 and PT=2 ) the pressure is solved with ∆φk+1 = ∇ũk+1

which is obtained by taking the divergence of the equations (5.8c) or (5.13c). The
pressure prediction step is established from the momentum equation which performs
better than a simple extrapolation. The full scheme in that case becomes

∆p�,k+1 = −∇ · [u · ∇u]k+1 +∇ · fk+1 (5.16a)

∂p�,k+1

∂n

∣∣∣∣∣
Γ

= n ·
[
−∂ut − u · ∇u + ν∇2u

]k+1
∣∣∣∣
Γ

(5.16b)

1
4t


βqǔk+1 −

q−1∑

j=0
βjuk−1


− ν∇2ǔk+1 +∇p�,k+1 = f

(
tk+1

)
(5.16c)

ǔk+1|Γ =
��������4t
βq
∇ψF,k+1|Γ = 0 (5.16d)





βq
4t

(
uk+1 − ǔk+1

)
+∇φk+1 = 0

∇ · uk+1 = 0, uk+1|Γ = 0
(5.16e)

Pressure update (relationship between pk+1, p�,k+1 and φk+1) is applied with the same
equation (5.14).

The predicted pressure p�,k+1 is quite accurate, if the accurate boundary condition
(5.16b) can be obtained from extrapolation in time. Similar extrapolations are sug-
gested by Karniadakis et al. 169 as well to approximate the pressure boundary condi-
tions. Brown et al. 167 have shown that such extrapolations is necessary to achieve
second-order accuracy. In the present implementation, this method was found to be
more robust than the others.

Projection step

In addition to the categorization given above, projection methods can be classified as
exact or approximated based on the way continuity condition is satisfied. Discrete
continuity is satisfied up to machine precision with an exact projection method. How-
ever, approximate projection methods satisfy the continuity up to the order of the
method167.
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Taking the divergence of (5.13c) or (5.16e) leads to

∇ · ∇φ = 1
ck4t

∇ · u∗ (5.17)

where the ck is coefficient depending on the temporal discretization (if (5.8c) is used
ψ replaces the φ).

As mentioned by Reis et al. 171 , the operator ∇·∇ is identical to the Laplacian ∆, but
it is not always true in the discrete case. In MFLOPS3D-MD a Laplacian operator ∆
is used, so the projection step is not exact.

Abide and Viazzo 172 give an example of an exact projection method with compact
finite differences, but resulting stencil is not compact. A simpler method was proposed
by Reis et al. 171 which does not require to build a stencil for the ∇·∇ but it requires
larger number equations to be solved.

5.2.2 Temporal and spatial discretizations

The equations described in the previous section need to be discretized both in space
and time. For direct numerical simulation high order schemes are more suited. The
choice was made to use compact finite differences56 in space and with BDFq schemes
in time.

Compact finite difference discretization is a good compromise between accuracy and
efficiency. The derivation of compact finite difference scheme with appropriate prop-
erties for non-homogeneous discretization is an extensive subject of research. A
non-uniform collocated grid is used, meaning that pressure and velocity components
are solved in the same grid points. The main properties of the scheme used in
MFLOPS3D-MD are described in more detail in appendix C.1.

Simens et al. 31 reported that the pressure correction schemes with compact finite
difference schemes could not be efficiently implemented. Accordingly, they chose to use
2nd order finite difference scheme for the pressure while keeping high-order compact
schemes for the velocities. In the current study, the compact schemes are adopted
for the Poisson solver. At first sight, it seems like there is no problem of efficiency
as the direct solver performs similarly with different boundary conditions. However,
other issues related to the stability of the simulation which is reported in the next
chapter might be related to this choice or at least it gets combined with other potential
problems and amplifies the problem. There might be more adapted compact schemes
for the Poisson solver. For example, Chen et al. 173 introduced combined compact
finite difference schemes to improve the issues related to the oscillations, but this idea
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was not tested in MFLOPS3D-MD.

In MFLOPS3D-MD, time integration relies on a semi-implicit second-order or third-
order backward-Euler scheme, while Adams-Bashforth schemes are used for the esti-
mation of the nonlinear terms. Additional time and space scheme are easy to imple-
ment due to the modularity of the code. Moreover, the modules such as the derivatives
are also used for post-processing codes.

Spatial discretization

Higher order spatial discretization is required for reliable DNS high order compact fi-
nite difference schemes56 provide spectral-like resolution without requiring large sten-
cils. The MFLOPS3D-MD is using this type of schemes both for the derivatives and
the linear solvers. For simplicity, derivatives and solvers are designed with the same
stencils for a chosen order. Therefore second order derivatives and solvers are an order
lower than the corresponding first derivatives, e.g., 8th order first derivatives are used
alongside 7th order solver scheme.

Backward and forward schemes are used for the first point of the computational do-
main as well as for the interface points because domain decomposition method used
in MFLOPS3D-MD does not require any ghost points. The 8th order scheme is the
highest order compact finite difference implemented in the code, thus only first, and
last 2 grid points in a given direction might need a special stencil depending on the
order of the scheme.

The points requiring a backward/forwards treatment can be written with a lower order
stencils than the order of the stencils for internal points to obtain similar level of errors.
However, each scheme will be identified with the order of the central scheme, i.e.,
derivatives with 8th order accurate scheme mean that central schemes are 8th order,
independently of the scheme order for the first and last two points. The stencils are
summarized in table 5.2. Further details related to the stencils for each scheme can
be found in appendix C.1.

A fully explicit scheme having the same order than the corresponding backward/for-
ward scheme of the neighboring points is used for the extrapolation of the value at
the first and last point when Neumann boundary conditions are used for the solver.

Implicit schemes require solving a discrete system to compute derivatives. For example
in 1D, derivative in the x-direction is defined as:

Ai (∂xu) = Biu (5.18)
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Table 5.2 – Summary of the stencil sizes for compact finite difference schemes (see details
of the schemes in appendix C.1)

8th order 6th order 4th order 2th order
Points Imp. Exp. Imp. Exp. Imp. Exp. Imp. Exp.
[1, n] 3 8 1 6 1 4 0 3

[2, n− 1] 1 5 1 5 1 5 0 3
[3 : n− 2] 4 5 2 5 2 3 0 3

For each line i (corresponding to a point on the grid), the coefficients are solutions of
the linear system (5.19):

CijDij


Ai
Bi


 = RHS (5.19)

where every column j of Ci and Di come from a truncated Taylor expansion

Dij =
(

0, 1, hi,,j,
h2
i,j

2 ,
h3
i,j

6 , . . .

)

Cij =
(

0, 1, hi,,j,
h2
i,j

2 , . . .

) (5.20)

hi,j is the distance between point i and j, and RHS is null except one value which is
equal to one (the first for an interpolation, the second for a derivative, the third for a
second derivative, ...). By changing the size of Ci and Di (size of the stencil) one can
change the spatial order of discretization. See (C.3) in appendix for an example of a
linear system like (5.19).

Grid

The grid must be chosen to ensure integrability constraints. Incompressible Navier-
Stokes solvers often use staggered grids, and they are required for a stable solver.
This is convenient for most of the derivatives involved in the Navier-Stokes equations
except an averagingAbdallah 174 ; 175 of nonlinear term becomes required. Otherwise,
stabilization techniques need to be used which consist of solving the perturbed con-
tinuity equation163. Luckily, certain splitting schemes provide stable solutions with
a collocated grid as well. In addition, special high order schemes can be designed as
proposed by Dormy 176 with proper damping effects. However, in the current study,
non-homogeneous grids are used that makes such solutions much harder to implement.
An other solution is to design compact scheme with additional dissipative properties
at large frequency as in the implicit LES implementation of Lamballais et al. 138 .
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Grid generation is quite flexible with MFLOPS3D-MD, but must fulfill some require-
ments. First of all, stretching is not trivial as it can result in the linear system for
the derivation of the compact scheme which is not invertible. Therefore it is not
possible to use any stretching. This property is verified in the code by assessing the
eigenvalues, which all need to be real positive. Second, there is an optimal ratio be-
tween the largest and smallest grid mesh which provides the same level of error for
the derivatives at the points using both centered and non-centered stencils.

The stretching proposed in MFLOPS3D-MD is

xi = x0 + (xN − x0)
sin−1

(
−α cos

(
π xi−x0
xN−x0

))

2 (sin−1(α) + 1) (5.21)

with hi,j = (xj − xi). The ratio max(hi,j)/min(hi,j) ' 4 was suggested by A. Poux
to have good results based on derivative tests using splines. These predetermined
max(hi,j)/min(hi,j) ratios are coded into the code so optimum grid stretching param-
eter α can be deduced when number of grid points is changed.

The value of α, obtained by the optimization based spline derivatives, is falls within
limits determined by Shukla and Zhong 177 as the same stretching function (5.21) have
been used. All the tests are given in the chapter 6 conducted within the stable limits
mentioned here.

In the current version of the code, grid points are stored/read in 1D vectors for each
direction. Consequently, storing grids is extremely cheap even for the very large size
of problems and 3D grids can be constructed easily if needed for post-processing
purposes.

Grid coordinates need to be generated respecting the domain decomposition con-
strains. A local stretching applied to each sub-domain is combined with a global
stretching which may be required to satisfy the physical constrains of the flow. Local
stretching inside individual sub-domains is required to compensate the Runge phe-
nomena of high order backward/forward schemes. The optimization of the stretching
parameter α for the local stretching was explained above, if (5.21) is changed opti-
mization parameter needs to be adjusted for the new stretching function.

Global stretching can be used to refine the mesh near walls in one or more directions.
For example, boundary layer simulations over flat plate can benefit from stretching in
wall normal direction, or the simulation over a physical bump can use the stretching
in streamwise direction to better resolve the strong adverse pressure gradient region.
However, the use of global stretching rises additional questions because the solver ends
up being not having any truly centered scheme. In some cases, it might be preferable

92



to scale the sub-domains individually instead of using a global stretching. Different
forms of the stretching can be expected depending on the problem. Therefore, the
proper place for such an enhancement is indicated in the source code. User can
define the start and end coordinates in any direction from parameter file by setting
desired values for domain_len . Stretching parameter α is also parametrized with
ratio_max .

Temporal discretization

Second and third order BDFq schemes are implemented for the discretization of the
unsteady term. Third order stencil ( TO(1)=3 )is found to be unstable as reported by
Poux et al. 178 which is also emphasized in the dissertation of Znidarcic 162 .

The qth-order backward difference (BDFq) that approximates ∂tu
(
tk+1

)
is

∂tuk+1 = βquk+1 −
q−1∑

j=0
βjuk−j (5.22)

In particular,

∂tuk+1 =





uk+1 − uk if q = 1
3
2uk+1 − 2uk + 1

2uk−1 if q = 2
11
6 uk+1 − 3uk + 3

2uk−1 − 1
3uk−2 if q = 3

(5.23)

where q become the equivalent of the user parameter TO(1) . Following equations
will be derived only for the second order BDF ( TO(1)=2 ) for the sake of simplicity.

Discretization of the nonlinear term

Special attention needs to be dedicated to the discretization of the nonlinear term
due to the importance of this term for the conservative properties of the discretized
equations. In MFLOPS3D-MD, both convective ( NLT(2) = 1 ) and skew-symmetric
( NLT(1) = 2 ) form of the nonlinear terms are implemented. Nonlinear terms are
estimated with one step extrapolation schemes while NLT(2) allows the user to choose
between first, second and third order approximations. For example, a second-order
approximation is:

(u∇u)n,n−1 = 2un∇un − un−1∇un−1 (5.24)
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Multi-step methods such as Runge-Kutta schemes were also tested. Runge-Kutta
provides better results but requires additional solutions of the influence matrix for
each intermediate step of the scheme.

The skew-symmetric form (eq. (5.25)) of the nonlinear term is preferable because of
its conservative property as shown by Morinishi et al. 179 .

u∇u =
(1

2∇uu + 1
2u∇u

)
(5.25)

The skew-symmetric form needs to be correctly discretized in space in order to pre-
serve conservation properties. According to Morinishi et al. 179 , the skew-symmetric
form of the nonlinear term on a collocated grid is conservative for kinetic energy
without additional treatment when discretized with standard second and fourth or-
der finite differences. For compressible flows, Morinishi 180 mentioned that compact
finite difference schemes discrete nonlinear term is not a fully conservative form of
the nonlinear term, but only a skew-symmetric form is stable. Use of non-uniform
grids raises additional questions as well. Simple trade-off needs to be made between
the accuracy of the discrete form and the modification of derivative coefficients for
better conservation properties. MFLOPS3D-MD does not include special treatment
for this problem, so the accuracy of the derivatives is preserved while kinetic energy
conservation is not certain.

Complete discretized system

Fully discretized momentum equation in streamwise direction for the projection types
PT=1 , PT=2 and PT=3 with the non-linear term in skew symmetric form writes

∇2ũn+1 − 3Re
24t ũ

n+1 = Re

[
− 4

24tu
n + 1

24tu
n−1 + [(u · ∇)u]n,n−1

]
(5.26)

∇2ũn+1− 3Re
24t ũ

n+1 = Re

[
− 4

24tu
n + 1

24tu
n−1 +∇pF,k+1 + [(u · ∇)u]n,n−1

]
(5.27)

∇2ũn+1 − 3Re
24t ũ

n+1 = Re

[
− 4

24tu
n + 1

24tu
n−1 +∇p�,k+1 + [(u · ∇)u]n,n−1

]
(5.28)

Therefore Navier-Stokes equations using any of the projection types become a set of
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Helmholtz problems which can be written as

∇2ũn+1 − σũn+1 = f (5.29)

with σ = 3Re/(24 t) and f being the right-hand-side of (5.26) to (5.28) depending
on the projection type.

5.2.3 Solver for the sub-domains

As mentioned above the choice of a semi-implicit second-order backward-Euler time
integration combined with projection methods imply to solve several Helmholtz prob-
lems at each time step. For the projection methods corresponding to PT=1 and PT=2
the two variables u∗ and φ need to be solved with appropriate boundary conditions.
In the case of PT=3 , a preliminary step is necessary to compute a prediction of pres-
sure p�. The Poisson equation for pressure is a particular case of (5.29) (with σ = 0
and f = ∇ · ũn+1). Therefore, the same class of solver is required to solve the three
unknown u∗, φk+1 and p�.

Helmholtz equation needs to be solved with a linear solver with its boundary condi-
tions, unlike explicit approach used in most of the original version of the projection
methods. Helmholtz equation is solved efficiently using 3D diagonalization method.
Discussions about the boundary conditions are given in the next subsection.

Solver coefficients are computed only once at the beginning of the simulation (see
appendix C.2). During the initialization, LAPACK functions are used to obtain the
eigenvalues of the system. After the diagonalization, the solution of the Helmholtz
problem is obtained with tensor-matrix multiplications at every time step. The prop-
erty of the system provides a sanity check about the quality of the compact finite
difference coefficients at the initialization, as distribution and signs of the eigenvalues
is easily assessed. A solution can be computed only for a system with negative and
real eigenvalues. Pressure Poisson equation with homogeneous Neumann boundary
conditions introduces zero eigenvalues (one for each direction with Neumann boundary
conditions indicating the singularity). This decomposition using eigenvectors provides
an effective way for the treatment of the singularity problem. Replacing the solution
at the point where all three eigenvalues are zero (like a one-point Dirichlet) is sufficient
to obtain the solution up-to a constant. There is no need for other treatments such
as null-space-removal in this case. However, singularity problem is transferred into
the influence matrix in the multi-domain cases requiring treatments which have to be
implemented differently (see section 5.2.4).
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3D diagonalization algorithm is efficient because it is based on matrix multiplications,
but algorithm complexity remainsO(n4). It is a very fast method for moderate domain
sizes like in the case of MFLOPS3D-MD which uses influence matrix method to scale-
up by multiplying the number of sub-domains. Another approach to increase the
performance of the solver for larger problems is to parallelized the diagonalization.
Abide et al. 181 proposed a possible parallelization relying on 2DECOMP&FFT182

used in Incompact3d.

Solution of the Helmholtz equations are difficult to obtain at high wavenumbers k =
w/c =

√
σ where w is the frequency of the wave propagation and c is the speed of

sound. This is directly related to the Reynolds number of the simulation in the way
Helmholtz is written. Different solutions are proposed to solve this problem such as
special 6th order compact finite difference scheme183 or the use of exact finite difference
schemes184. Unfortunately, none of these are currently implemented in MFLOPS3D-
MD, but issues thought to be related to this phenomenon are investigated further in
section 6.3.2.

5.2.3.1 Boundary conditions

The solution of the Helmholtz system requires proper treatment of the boundary
conditions. Up to 5 boundary conditions (3 for u, φ and p� in case pressure prediction)
should be identified on the 6 surfaces of every sub-domain. As it can be seen in
appendix C.1 only the stencils of the first and last two points uses the boundary
condition values which appear in right-hand-side of the solver and needs to be updated
every time step. If Neumann conditions are used, an extrapolation step is required
at the end of the solver, to obtain to the value of the boundary conditions from its
derivative. This extrapolation is performed using an explicit scheme with the same
order than the solver.

Some of the projection methods185 does not strictly follow compatible boundary con-
ditions for pressure. These methods remain first order accurate for pressure while
second-order accuracy is satisfied for the velocity. This problem is usually solved by
using the rotational form of the pressure update (see Eq. (13) in Brown et al. 167).
The methods without pressure updates55 does not suffer from this problem if the
tangential components of dynamic equation is handled correctly like in (5.8). Hugues
and Randriamampianina 53 tried to solve the problem of the inconsistent boundary
conditions caused by the pressure update solving a Poisson problem for the provi-
sional pressure gradient p� which appear in momentum equation like in the weak
settings (5.16). Brown et al. 167 mentioned that the method of Hugues and Randria-
mampianina 53 could be further improved by using similar pressure update with the

96



rotational term. This last options were tested but no difference was observed.

Different boundary conditions implemented in the solver are listed below for the sake
of completeness, even though some of the boundary conditions simply set as homoge-
neous Neumann boundary condition just because there is no better guess.

Boundary conditions for u are probably the simplest, as u is discrete in time any
Dirichlet or Neumann boundary condition can be easily implemented. Note
that this boundary condition needs to be satisfied by adapting the boundary
condition of the prediction step if boundary conditions of ψ are different from
homogeneous Neumann boundary conditions considering the projection step.

Boundary condition of u∗ † is more complicated, especially because this variable
is function of the type of the projection method and because it is not a physical
variable with well defined boundary conditions. However, the boundary condi-
tion of u can be considered as a sufficiently good guess for PT=2 and PT=3 but
not for PT=1 where the pressure gradient is set to zero in that case. This is
why a tangential boundary conditions appears in the equation of û.

Boundary condition of ψ is also difficult to determine because physical boundary
conditions for pressure are usually unknown. Homogeneous Neumann boundary
conditions are the primary choice in such cases, but it results in a singular
Poisson equation for incompressible flow solvers requiring special treatment.

Boundary condition of p� is defined as Hugues and Randriamampianina 53 when
it is used. An estimation of the pressure gradient at the boundaries is obtained
by an extrapolation in time of the remaining terms of the momentum equation
(see (5.16b))

Boundary condition of φ needs to be set in accordance with the boundary condi-
tions of u and u∗ as, at the projection step, u∗ will be added to ∇φ including
at the boundaries. It is a correction step for PT=2 and PT=3 so homogeneous
Neumann conditions are used in that cases. Using same boundary condition
with PT=1 is causing a strong change in ∇φ thus extrapolation of the bound-
ary condition in time is preferred especially in case of strong pressure gradient.

In MFLOPS3D-MD, Dirichlet, Neumann or periodic boundary condition types are
available for all of the different boundaries listed above. Specific Dirichlet boundary
conditions tailored for the wall bounded flow simulation such as an outlet boundary
condition with standard advection and inlet boundary based on the interpolation of
the Blasius profile are implemented. Periodic boundary conditions are only possible
if there are multiple sub-domains in the direction of the periodicity. Even though

†Here u∗ can be ũ, û or ǔ
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periodic boundary condition can be implemented into the Helmholtz solver in the
current version of the code this feature is build into the influence matrix but not in
the Helmholtz solver. Thus periodic simulations has to be conducted with at least
two sub-domains in the periodic direction.

5.2.4 Influence matrix method

In the current study, non-overlapping exact domain-decomposition (DD) method is
used to achieve massive parallelization. In particular, influence matrix method ap-
proach (also known as Schur complement matrix186 and continuity influence ma-
trix172) is implemented in order to connect solutions of each sub-domain to the neigh-
boring ones and obtain the boundary conditions of each sub-domain at once. As stated
by Daube 187 , “Influence matrix method makes use of the superposition principle for
linear problems”. This method provides a smaller linear system than the one which
would be required to solve the equations on the full domain.

Convergence rate of overlapping domain decomposition (DD) method is O(H/h)
where H is the width of the overlap, and h is the mesh size. Using really small overlap
results to cheaper computation by sub-domain and by iteration, but the method would
not converge fast. By contrast, having a large overlap leads to more computation per
sub-domain, but the whole method converges faster. Using influence matrix method
avoids this trade-off and influence matrix is better conditioned than the original sys-
tem itself. On the other hand, the influence matrix method requires to form, to store
and to solve a large system. The creation of the influence matrices is required only
once as all the time steps use the same influence matrices. Even though the matrix is
large, storing the matrix for the production runs is a better choice. Due to the large
size of the system to solve direct methods practically impossible, therefore, it is solved
iteratively using PETSc toolkit.

In practice, solving the multi-domain problem with influence matrix method lead to 3
main steps: (i) creating the influence matrix, (ii) obtaining the true interface values,
and (iii) solve each sub-domain using true interface values. An adapted copy of the
simple example given by Danabasoglu et al. 57 is reproduced in appendix C.3 to explain
these steps in detail.

The algorithm describing the generation of the influence matrix can be found in al-
gorithm 1 and the steps of the algorithm are detailed in appendix C.3.1. The step 2
requires solving the Helmholtz solver mentioned in the previous subsection. Influence
matrix method has to be used with the same solver and boundary conditions types
that he ones used to generate the matrix. It has to be used with the same solver

98



coefficients as it is generated, meaning that the matrix is dependent on time step and
Reynolds number as well as spatial discretization. In MFLOPS3D-MD, the matrix is
generated using the same solver subroutines than the ones used during the solution
of Helmholtz equations.

Algorithm 1 How to create an influence matrix
1: while Each point on the interfaces of each sub-domain do
2: Nullify both the right-hand-side and boundary conditions
3: Add a Dirac on the current interface point
4: Solve with the Helmholtz or Laplace solver (has to be the one going to be used

in time marching)
5: Determine the place of this solution in the influence matrix (part of a row)
6: Place the residual vectors, Ri , to their corresponding place
7: Repeat for all the other interface points
8: end while

The procedure explained in the appendix can be generalized for 3-dimensional prob-
lems with any number of sub-domains k. The computational domain Ω = ∪Ωk is
partitioned into sub-domains with interfaces Γij = Ωi

⋂Ωj therefore Helmholtz prob-
lems in each sub-domain become

∇2φk − σφk = fk in Ωk and φk = g on ∂Ωk ∩ ∂Ω (5.30)

where g is physical boundary condition on the exterior of the whole computational
domain (or inside for specific problems). The interface conditions are obtained from
the influence matrix solution by solving once the Helmholtz equation with zeros either
Dirichlet or Neumann boundary conditions at the interface of each sub-domain. These
interface conditions are used in the second solution of the Helmholtz problems. Steps
of solving a Helmholtz or Laplace equation for multi-domain problems are summarized
in fig. 5.2.

99



Helmholtz
or

Laplace
solver

Γij = 0

right-hand-side

g on ∂Ωk ∩ ∂Ω

Influence
matrix
solver

Helmholtz
or

Laplace
solver

Γij

Figure 5.2 – Graphical presentation of the work-flow of the MFLOPS3D-MD to solve
Helmholtz or Laplace equation for multi-domain problems with influence ma-
trix method

An influence matrix should be defined for each unknown in the problem. However,
this is not always necessary. If the unknowns have the same boundary condition types
(regardless having the same boundary conditions) a single influence matrix is enough.
For example, in the Navier-Stokes tests presented in the next chapter (section 6.4)
only two influence matrices are used to solve the 3D problem instead of 4 (3 for
velocities and 1 for pressure) which reduces the memory requirements and the time to
generate the matrices. The current version of the MFLOPS3D-MD provides a single
influence matrix for the all 3 velocity components and the second matrix for pressure.
This choice is consistent with the fact that only single boundary condition types are
accepted from the parameter file for velocity fields.

Size of the influence matrix

As mentioned by Abide and Viazzo 172 the cost of using an influence matrix can become
a real issue especially for 3D cases. The size of the matrix can be estimated easily, but
the important parameter is the memory usage as the number of non-zeros defines real
memory cost. The system gets sparser when increasing the number of sub-domains.
If N is the number of points on the one edge of a cubic full domain and M is the
number of points on one edge of each sub-domain, the domain is decomposed on C3

sub-domains of equal size. Size of the influence matrix is ∼ (6M2C3)2, but the sparsity
of the matrix goes like ∼ 1/C3. Measurements of the size of the influence matrix for
2× 2× 2 domain decomposition which leads to a full matrix as each sub-domain are
connected is given fig. 5.3.

The scalable linear equations solvers (KSP) library of PETSc toolkit is used to solve
the system associated with the influence matrix. It provides an easy-to-use interface
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Figure 5.3 – Size of the influence matrix as function of the number of grid points of the
full domain for 2× 2× 2 formation of the sub-domains.

to the combination of a Krylov subspace iterative method and a preconditioner or
a sequential direct solver. In standard executions block Jacobi preconditioner are
used with error limits for the iterative solvers ksp_rtol equal to 10−8 and 10−5 for
ũn+1 and φ (or p�) respectively. These choices of parameters are selected like in the
following commands prior to the execution.

1 export petscu=’- u_ksp_rtol 1.e-8 -u_ksp_type lgmres -
u_pc_type bjacobi -u_ksp_sub_pc_type ilu -u_sub_ksp_type

gmres -u_sub_ksp_max_it 6 -u_sub_pc_type bjacobi -
u_sub_sub_pc_type ilu -u_ksp_initial_guess_nonzero ’

2 export petscp=’- p_ksp_rtol 1.e-5 -p_ksp_type lgmres -
p_pc_type bjacobi -p_ksp_sub_pc_type ilu -p_sub_ksp_type

gmres -p_sub_ksp_max_it 6 -p_sub_pc_type bjacobi -
p_sub_sub_pc_type ilu -p_ksp_initial_guess_nonzero -
p_ksp_constant_null_space ’

3 mpirun -n 36 ./ testnav $petscu $petscp

The solutions of the interface points for the components of ũn+1 are typically obtained
in few iterations. However, a solution of the interface points for φ or p� takes 10− 30
iterations in average for 2 × 2 × 2 domain configuration. It can reach up-to the
maximum iteration limits (1000 in this case) suggesting that GMRES iterations are
not converging when the larger domain configuration is used.
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Treatment of the singular Poisson equation

The main difficulty with this solver is in the case of Poisson equations with homo-
geneous Neumann boundary conditions where the singular nature of the problem is
transferred to the influence matrix system as observed by Abide and Viazzo 172 . There-
fore, the solution of φ and p� requires special treatments of the singularity as singular
linear systems are only solvable if and only if its right-hand side is orthogonal to the
null space of the singular matrix.

The two well known methods are available in MFLOPS3D-MD namely removal of the
null space188 and one point Dirichlet. Implementation of these methods is slightly
different for influence matrix than it would be to solve the Poisson equation but the
same fundamentals are shared as discussed in the literature.

Generally, it is difficult to find efficient and accurate methods to solve a singular
problem with infinite condition number. Specialized fast solvers exist for singular
Poisson equations like cyclic reduction with a complexity of O(n2logn), but they work
on square grids with matrices n× n. The method proposed by Golub et al. 189 allows
to use non-uniform meshes, but the complexity of their algorithm is O(n3). These
methods cannot be utilized to solve our influence matrix which is quite large and can
only be solved with iterative solvers. This is the reason why for practical reasons,
GMRES methods provided by PETSc is kept.

Null singular vector removal

This method relies on the implementation of the PETSc toolkit to remove the null-
space, and the use of the command line option -ksp_constant_null_space takes
of the null space removal. There is no guaranteed treatment here. The method does
not necessarily convergence to the good solution because of the ill-posed problems like
our detection of the null space cannot be achieved in all the cases. The success of the
creation of the null-space can be assessed, but even for the small simulations, it is an
expensive operation.

Dirichlet boundary condition at a single point

Another widely used method consists of imposing a Dirichlet condition at one point
along the physical boundaries of the domain. This results in a matrix which is no
longer singular. Implementation of this treatment into the influence matrix is slightly
different than for Poisson equation. Changing a single point on the boundaries of the
physical domain means that a row of the influence matrix and a point on the vector at
right-hand-side of the equation must be replaced. Nevertheless, for the cases where a
Dirichlet pressure boundary condition along an entire boundary of the computational
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domain might be dictated by the physics of the flow, e.g., for an outflow boundary of
the cavitating flow, the use of a Dirichlet pressure boundary condition is very suitable.

The problem with this technique is that it may produces a spike in the solution around
the fixed Dirichlet point which eventually pollutes the entire domain.

5.2.5 Mapping

Dealing with complex geometries on structured meshes is a difficult task. Mapping
offers an interesting trade-off when curvilinear coordinates are not truly needed to
keep benefits from the simplicity of finite differences method instead of finite elements
or finite volumes methods more adaptable to unstructured meshes.

The principle of mapping is to change the geometry of interest into a rectangular
geometry in which standard Cartesian coordinate system can be used for discrete
derivatives and solvers. The method leads to additional terms into the Navier-Stokes
equations. It can be used only with smooth geometries but the benefit of a resolution
with multi-domains is that sharp corners of the geometries can be implemented with
sub-domain interfaces.

Two sets of coordinates can be defined: one to represent physical (mapped) coordinates
denoted with the barred variables (e.g., x̄) and another one for the Cartesian mesh
without bars (e.g., x). Using this notation, the mapping is defined by

t = t̄ (5.31a)

x = x̄ (5.31b)

y = ȳ (yb − ya) + η2(x̄, z̄, t̄)ya − η1(x̄, z̄, t̄)yb
η2(x̄, z̄, t̄)− η1(x̄, z̄, t̄) (5.31c)

z = z̄ (5.31d)

with ya ≤ y ≤ yb and ya + η1(x̄, t̄) ≤ ȳ ≤ yb + η2(x̄, t̄).

An example of a geometry created with the mapping functions (5.31) is given fig. 5.4
to illustrate the Cartesian and physical coordinates.

In the current version of the MFLOPS3D-MD, only the y coordinate system is trans-
formed to ȳ and mapping functions can be defined as in (5.31) with curvatures on
both the bottom and top walls. These mapping functions can be used to study flows
around smooth 2D geometries but for more complicated geometries additional terms
should be added. Similar mapping derivatives was introduced by Marquillie et al. 190
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Figure 5.4 – Cartesian (blue) and mapped (blue) coordinates. Mapping custom function
y = f(x) on 2D grid.

for the case with only one mapped wall. The mapping can be function of time like
for the problem of flapping plate studied by Ehrenstein et al. 160 or more general flows
around moving (oscillating) geometries.

It is relatively easy to implement new derivatives on explicit terms. Derivatives in
physical coordinates can be written in terms of derivatives in Cartesian coordinates as
shown in appendix C.4 Therefore, existing derivatives in Cartesian coordinates can be
used and complemented with additional one coming from the mapping. When these
derivatives are used the results are on the physical coordinates, so no transformation
is needed. Practically, the impact of the mapping on the derivative is seamless to the
users as the wrappers of the derivatives on Cartesian coordinates are replaced with
the new ones on the physical coordinates if the mapping is applied.

Transformed divergence and Laplacian operators can be separated in two contribu-
tions :

∇̄ = ∇+ Gη, ∆̄ = ∆ + Lη (5.32)

with
Gη =

(
∂

∂y

∂y

∂x̄
,
∂

∂y

(
∂y

∂ȳ
− 1

)
, 0
)
,

Lη = ∂2

∂y2

(
∂y

∂x̄

)2

+ 2∂x
∂x̄

∂y

∂x̄

∂2

∂x∂y
+ ∂2

∂y2



(
∂y

∂ȳ

)2

− 1



(5.33)

Consequently, the physical domain can be transformed into a Cartesian one which can
be computed on variables (x, y, z).

∂u
∂t

+ u · ∇u + u ·Gηu = −∇̄p−Gηp+ 1
Re

∆u + 1
Re

Lηu (5.34a)

∇ · u = −Gη · u (5.34b)

Equation (5.34) are the mapped version of the Equation (5.1). Projection methods
can be applied on (5.34) following the same methods then the ones discussed before
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for the standard Navier-Stokes equations without mapping. For instance, for the
projection method PT=3 given in section 5.2.1 ( TO(1)=2 ) the intermediate velocity
are calculated with:

(
∆− 3Re

24t

)
ǔ =

(
−4un + un−1

24t +∇p� + Gηp
� + [u · ∇u]n,n−1 + [u ·Gηu]n,n−1

)
Re

− [Lηu]n,n−1

(5.35)
where the terms with Gη and Lη are solved explicitly for velocity components so
existing linear solvers can be used without modification.

Following Marquillie et al. 190 , physical gradient operator ∇̄ is used for the sake of
stability when Poisson equation needs to be solved for the pressure related terms.
Therefore pressure correction φ = pn+1 − p∗ is obtained with an equation similar to
(5.16e) with the physical gradient operator ∇̄.

∇̄φk+1 = − 3
24t

(
un+1 − ǔ

)
, ∇̄un+1 = 0 (5.36)

The Poisson equation for the pressure is obtained by applying the divergence operator
to these equations combined with incompressibility condition, but the result is slightly
different. As used in Marquillie et al. 190 , iteration sequence is written in (5.37) with
homogeneous Neumann boundary conditions.

∆φk+1 = 3
24t (∇ · ǔ−Gη · ǔ)− Lηφk (5.37a)

∇φk+1 · n = −Gηφ
k · n−Gηφ

k · nη −∇φk · nη (5.37b)

where normal vector around the geometry is

n̄ = 1√
1 +

(
∂η
∂x

)2
(n + nη) with n = (0, 1, 0) and nη =

(
−∂η
∂x
, 0, 0

)
(5.38)

Finally, divergence-free velocity field and new pressure are obtained with:

uk+1 = u∗ − 24t
3 (∇φ+ Gηφ) and pk+1 = p� + φ (5.39)

where ǔ can be û or ũ and p� can be 0 or one of the extrapolation formula (5.15)
depending on the projection type being used.
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The use of a mapping and a strong stretching of the grid can lead to complex eigen-
values which is not suitable to obtain a clean solution for each sub-domain.

5.3 Other features of the code

Tripping function from Schlatter and Örlü 6 as explained in section 3.1.3 for Incom-
pact3d is also implemented for MFLOPS3D-MD. Also to simulate pressure driven
simulation another forcing to maintain required pressure gradient was implemented.

Parallel I/O relying on netCDF4 similar to the one explained in section 3.1.2 for
Incompact3d is also available in MFLOPS3D-MD. However, in the current version,
netcdf-open-par is based on a different library than the one used in Incompact3d which
is known to perform better with a large number of MPI processes (> 100).

In the early stage of development, MFLOPS3D-MD did not follow test-driven devel-
opment requirements, but included simple tests. During the current study, a built-in
test suite was developed, including earlier tests and many additional ones, as it was
found to be the reliable way to progress efficiently in the development of the code. At
this moment, built-in tests are probing more than 150 functionality of the code. The
details of these tests will be presented in chapter 6 when analyzing some properties
of the solver.

5.4 Performance Analysis

Performance analyses of the code are conducted on the CINES machine OCCIGEN.
The HPC monitoring tools Scalasca and TotalView are used along with direct measure-
ments. As expected, solving influence matrix takes more time than to solve Helmholtz
equation (2 order of magnitudes more in the worse cases). Another computationally
expensive part is the generation of the influence matrix, but this has to be done only
once at the beginning of the simulation. So the cost of matrix generation will be ne-
glected in the following discussions. There is no other particular bottleneck detected,
means that parallelization strategy works as planned.

The first configuration is designed to observe strong scaling characteristics by using a
periodic cube with the physical size [2π, 2π, 2π]. It is resolved with 1453 grid points.
The code was executed with different sub-domain sizes to solve the same domain. The
results of strong scaling are satisfactory as shown in fig. 5.5. The results suggest that
MFLOPS3D-MD scales better than the ideal case (100% efficiency). However, this
effect is due to the fact that the number of non-zeros of the influence matrix (which is
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Figure 5.5 – Strong scaling of the MFLOPS3D-MD with the global domain Ω discretized
with 145×145×145 points. The elapsed time per time per time step (blue) is
compared to the same quantity rescaled by the number of iterations to solve
the influence matrix for φ (Rφ) (orange).

decreasing per MPI process) is getting smaller, so the computationally most expensive
part becomes easier to handle.

The second group of tests was performed to analyze the weak scaling properties of the
code. In these tests, a sub-domain of fix size (253) is duplicated with the number of
MPI processes. The results in fig. 5.6 reveals the bad weak scaling performances. Such
results usually happen due to communication cost of MPI, but the similar problem
should be observed similarly on strong scaling as well. Also, it is confirmed that the
memory cost of an influence matrix is not increasing more than few megabits per MPI
process. On the other hand, the number of iterations required for the KSP solver
of the influence matrix for pressure is increasing dramatically to solve the influence
matrix and explains the poor week scaling. Once the computational time normalized
with the number of iteration, correct weak scaling properties are recovered.

These tests suggest that, an optimum configuration to run simulations with MFLOPS3D-
MD is with sub-domains containing ∼ 20− 30 grid points per direction. At this size,
the cost of solving influence matrix is 10 − 100 times more expensive than solving
the Helmholtz equation but this ratio increases rapidly with the size of sub-domains.
Sub-domain size smaller than ∼ 20−30 grid points might be faster to solve but lead to
a very large number of MPI process for large problems. Moreover, high order compact
finite differences require a sufficient number of grid points which can be treated with
central scheme.

Simulations with MFLOPS3D-MD are running at 100µs per grid point per iteration if
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Figure 5.6 – Weak scaling of the MFLOPS3D-MD with sub-domains Ωk of size 25×25×25
(same notations as in fig. 5.5.)

the number of iteration for the pressure solver stays constant. The problem mentioned
above does not exist for the solution of the influence matrices for velocity components
as they often get solved within 3 − 5 iterations independently from the number of
domains. The reason behind the increasing number of iterations for the pressure
solver which seems proportional to the number of sub-domains is not investigated
directly in the current study. However, discussions about the stability of the code in
the chapter 6 are related to this observation as the singularity of the system appears
to be one of the main reason.
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6Validation of
MFLOPS3D-MD

This chapter is dedicated to the validation and the investigation of the stability prob-
lems faced by MFLOPS3D-MD. A built-in test environment of MFLOPS3D-MD was
developed to accomplish this task. The objective is to identify the numerical prob-
lems that need to be solved in the future development of the code. Two different
ideas for the stabilization of the solver are proposed. In addition to these tests within
the code, a simpler Python script is written to solve Burgers equation with the same
compact finite discretization and direct solver used in the code in order to evaluate
the algorithms in a simpler 1D problem.

6.1 TBL simulation at Re = 200

Before a complete investigation of the code at high Reynolds number, a simulation of
a laminar boundary layer at Re = 200 was conducted on multi-domain. A total of 384
CPU are used in sub-domain configuration 32×4×3 with each domain containing 21×
21× 21 grid points. 8th order compact finite difference as given in appendix C.1 used
both for the derivatives and solvers. Results are obtained with the projection method
PT=3 (with the first step of pressure estimation) following the method introduced
by Hugues and Randriamampianina 53 . Skew-symmetric form of the nonlinear term
is used with forward difference scheme NLT = (2,1) . Implicit Euler time step for
the unsteady term and the nonlinear term estimation based on the previous time step
is used without any extrapolation for pressure ( TO=(1,0,1) ). Pressure prediction
p� and correction φ are both calculated with Neumann boundary conditions. All
of the boundary conditions for velocity components are Dirichlet, unlike the large
TBL simulations described in chapter 3. No-slip and moving wall with the uymax =
(u∞, 0, 0) boundary conditions are used for the bottom wall and the upper boundary
respectively. Inlet and outlet boundary conditions are the same as (3.4) and (3.5).

As an example of the effect of the influence matrix, streamwise intermediate velocity
fields are shown in fig. 6.1 for the two internals step of the momentum equation
solution. Results demonstrate that influence matrix is able to satisfy continuity.

The number of iterations for the influence matrix for momentum equations and pres-
sure solvers are very different similarly to the results of the performance tests given
in the previous chapter. Additionally, it is observed that iterative solver performs
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Figure 6.1 – Streamwise intermediate velocity with the zero and calculated interface values
over a line in the streamwise direction. The interface values are computed
with solving influence matrix R. The details of the work-flow are given in
fig. 5.2.

relatively better after few time steps. Once the solution starts to converge, influence
matrix for pressure requires around ∼ 200− 300 iterations while velocity components
it is usually less than 5 iterations for a maximum error of iterative linear solver of
10−8 for the velocity and 10−5 for the pressure. A large number of iteration for the
pressure is linked to the singularity of the problem Poisson problem due to Neumann
boundary conditions. Some other preconditioners for the linear system solvers than
the block Jacobi were also tested (e.g., Conjugate gradient) and better results are
obtained in terms of the number of iterations. However, these preconditioners used in
those tests are slower, so there is no satisfactory solution yet to this problem.

The advantages of the spatial discretization of MFLOPS3D-MD were mentioned in the
previous chapter. To generated a stretched grid suitable for boundary layer simulation,
the height of each domain is weighted with coefficients given by the following formula

Ny∑

i=1
(β + 2(i− 1)(1− β)/(Ny − 1)) (6.1)

where the coefficient β = 0.25 is the stretching strength, and Ny is the number of
domains in the y-direction.

In this way, a global stretching is applied by changing the size of each sub-domain
without stretching each sub-domain. Meanwhile, a local symmetrical stretching is
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Figure 6.2 – Variation of the spatial resolution in the wall-normal direction is in stream-
wise and wall-normal directions used in the TBL simulation with Re = 200.
The black line represents boundary layer thickness δ.

applied to refine the mesh at the edges of each sub-domain to avoid aliasing effect due
to high order finite difference schemes. An example of such stretched grid used in this
TBL simulation is given in fig. 6.2.

The above settings allowed to integrate the equations over an extended period (2 flow
through times based on U∞). One way to quantify the success of the projection step
is to compare divergence of the fields before and after the projection steps. In fig. 6.3
average (for internal nodes) and maximum values of the divergence are plotted as a
function of the number of iterations. Average value of the divergence inside the domain
systematically decreasing and converging to a constant because this is a laminar flow
case. It is striking that maximum divergence value is not decreasing but increasing
even though overall divergence is being corrected in average. However, these maximum
values are not necessary at the same points meaning that the projection may have
a negative effect somewhere in the flow. Additionally, after 2000 iterations, strange
oscillations of maximum divergence have occurred. The regularity of the velocity fields
(fig. 6.4) does not point out any anomaly before these oscillations are damped again.

This problem of projection is quite sensitive to the parameters of the simulations.
Slightly different stretching or the number of grid points lead to instability even after
few thousand time steps. The high Reynolds number simulations show a constant
slope systematically in the values presented in fig. 6.3 leading to a diverged simulation.
It usually takes few hundred iterations for this effects to surpasses the level of the
divergence due to the accuracy of the projection method. In that case, waves appear
close to the boundaries/interfaces (often at the corners of the sub-domains).
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during the simulation of TBL at Re = 200 to observe the effect of projection
method.
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Figure 6.4 – Streamwise (a) and wall normal (b) velocity components for the sample TBL
simulation. Small dots in the fields are the points of the edges in spanwise
direction colliding to the plane plotted in this figure which never get com-
puted.
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6.2 Tests with Burger equation solver

Investigation of the stability problems will be examined further in this section solving
a 1D problem. In order to demonstrate the problem on a simple problem, Burger equa-
tion is solved with the same spatial and temporal discretization used in MFLOPS3D-
MD. This part of the study was conducted with a separate code written in Python and
does not include all of the features of MFLOPS3D-MD, especially the multi-domain
solver.

Burger equation was chosen because it is a simple case to compute transport of the
initial waves. The effect of Reynolds number can be observed easily and the solution
can be compared with the exact one. Two different direct solvers were tested including
the eigenvalue decomposition as in MFLOPS3D-MD and the LU decomposition which
requires more computations in 3D but which is very fast in 1D.

The 1D Burger equation is

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 (6.2)

where u = u(x, t).

Solutions in this section will be obtained with an implicit solver,

D(2)
x un+1

i − σun+1
i =

(
uD(1)

x u
)n,n−1

Re (6.3)

where D(2)
x and D(1)

x are the discrete first and second order derivative operators in
matrix form generated with compact finite difference schemes (see appendix C.1).(
uD(1)

x u
)n,n−1

is a second-order approximation as defined in (5.24) with the terms
calculated in skew-symmetric form as in (5.25) where σ with approite coefficient of
the temporal discretization and Reynolds number Re are defined as before.

This discretization leads to a 1D Helmholtz problem to solve like the ones solved in
MFLOPS3D-MD. Linear system is solved with direct solvers similarly. Eigenvalue
decomposition method gives the same results than the LU decomposition.

Current results will be given only for 4th and 8th order schemes. They are exactly
like in the DNS code meaning that the stencil for central points is as given in Lele 56

but for the backward/forward stencils are different (see table C.1).

Instability problems can be related to the CFL and diffusion condition. Formally191

these conditions are,
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|Umax|4t
4xmin

≤ σi
k′max

(6.4)

and

ν4t
4x2

min

≤ σr
k′′max

(6.5)

where Umax is the maximum velocity magnitude, 4xmin is the minimum grid spacing,
σi and σr are the bounds of the stability region of the time discretization schemes.
Maximum modified wavenumbers for the second derivatives k′′ is defined in (C.5). A
similar equation can be derived for k′ as well following the given steps. Reference
values for standard stencils on homogeneous grids are available in Lele 56 .

The initial conditions for the Burger equation were chosen as†:

u(t = 0) = −2 ν
φo

∂φo
∂x

+ 4 (6.6)

with φo = e−(x)2/(4ν) + e−(x−2π)2/(4ν).

The analytic solution is
u(x, t) = −2ν

φ

∂φ

∂x
+ 4 (6.7)

with φ = e−(x−4t)2/(4ν(t+1)) + e−(x−4t−2π)2/(4ν(t+1)).

A periodic boundary conditions will be used (u(0) = u(2π)).

Results using 4th and 8th order compact finite difference schemes for two difference
CFL numbers are compared in fig. 6.5. An instability due to the CFL condition
appears in the solution when the 8th order compact scheme is used with CFL = 0.5.
As expected higher order compact finite difference discretization required lower CFL
as the maximum modified wavenumber k′max increases with the order of the scheme
(see Lele 56 fig. 1). One can notice that problem initiates for large values of u close
to Umax. These cases allow us to determine a safe CFL number and to show how the
stability problem due to such instability appears in the solutions.

The main problem encountered in MFLOPS3D-MD is not a CFL problem, and it
normally appears close to the boundaries with the high Reynolds numbers. It was
decided to start the simulation with a constant convection velocity and perturbing
the inlet velocity in time with sinus waves because of the strong gradient at the initial
condition of the exact solution of the Burger equation (6.7). So, the base flow with a
given magnitude should convect and dissipate the sinus wave. Initial field is a constant

†Same as given in CFD Python: 12 steps to Navier-Stokes :: Lorena A. Barba Group
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Figure 6.5 – Solution of the Burger equation after 100 time steps initialized using (6.7).
The results are obtained with 4th (a, c) and 8th (b, d) order compact finite
difference schemes for CFL = 0.5 (4t = 0.005) (a, b) and for CFL = 0.25
(4t = 0.0025) (c, d). σ is 400 (ν = 0.5) for all the results.

velocity, with the magnitude of 1. Inlet boundary condition is u0 = 1 + 0.1sin(iπ4t)
where i is the time step. Homogeneous Neumann boundary condition is used for outlet
condition. Low frequency forcing waves are used to identify better high-frequency
fluctuations like the ones observed in the MFLOPS3D-MD Navier-Stokes solver. As
previous results have shown that CFL = 0.25 satisfies the stability of the scheme,
CFL = 0.15 was chosen to stay on the safe side.

The expected solution for this test is given in fig. 6.6 (a) in which sinus waves dis-
sipate and convects without spurious oscillations due to instabilities. Figure 6.6 (b)
demonstrates the problem observed in Navier-Stokes solver. The solution destabi-
lized by changing viscosity from ν = 0.015 to ν = 0.014. This small increase of σ
demonstrates how the Helmholtz equation solver is sensitive to viscosity (wavenum-
ber). Velocity is increased artificially almost up to 50% of the convection velocity
even though the forcing is only 10% of it at maximum. Only the results for 4th order
solver are shown. However, results with the 8th order scheme behave similarly. The
results described above were obtained with a regular grid. In order to test the effect
of the grid, some tests were conducted with stretched grids.

The stretching used in these examples are such that the ratio between the minimum
and the maximum grid spacing is around 4 (which is the optimum for 8th order
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Figure 6.6 – Solution of the Burger equation after 6000 time steps using 4th order compact
finite difference schemes with CFL = 0.15 (∆t = 0.001). The results are for
ν = 0.015 (σ = 1300) (a, b), ν = 0.014 (σ = 1400) (c) and ν = 0.0076
(σ = 2600) (d) on a regular grid (a & b) and stretched grid (c, d)

scheme, based on the distribution of the accuracy of the derivatives). The equivalent
results of fig. 6.6 (b) are shown in fig. 6.6 (c) for the stretched grid. Note that high-
frequency oscillations have disappeared. However increasing σ (ν = 0.0076) leads to
the same instability again.

For the accurate solution of the Helmholtz problem,
√
σ4x has to be small. However,

even if
√
σ4x is constant, when k increased numerical accuracy is lost rapidly. Solving

Helmholtz equation with the high wavenumbers
√
σ can lead to such problems, known

as “pollution effect”192. This problem can be solved for 1D entirely193 but not for the
2D and 3D problems. Attempts to fix this problem in 3D is discussed in section 6.3.3.

6.3 Test suite

Before going deeper in the analyses of the stability problem of the Helmholtz solver,
a description of the testing methodology is first given. In order to ensure the benefit
of the following tests to provide effective guidance for the future development of the
code, an advanced test suite was built. The test suit uses a small FORTRAN test
framework known as “FORTRAN Unit Test Framework” (FRUIT). FRUIT is written
in FORTRAN 95 and has features such as assertion, fixture, setup, tear-down, report,
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Figure 6.7 – A screen-shot of the pipelines on Gitlab CI

spec, driver generation. Originally, “Rake” is used as build tool which requires using
language Ruby. The core of the testing part is in FORTRAN and can be used inde-
pendently of the Ruby codes. Using Ruby was found to be counter-productive and
against the strategy the research group. So instead of using Ruby, build is carried out
with cmake which is already used for MFLOPS3D-MD. Integration to Git-lab CI is
also maintained during this work (fig. 6.7).

Tests are in four main segments: build, unit, integration, and acceptance. Build only
includes the compilation of the code and test is done for a single system so far. This
particular build also provides the executables for the following tests. Unit tests are
the simplest possible tests for an individual unit of source code as used in software
development practices. Derivatives and solvers require integration of the important
parts of the code, so they are added to the pipeline as the third step. The last step
consists of functional tests which are full Navier-Stokes solutions based on the Ethier
and Steinman 194 . In conclusion, all these assertions included in the code at this
moment provides a great deal of help to developers and quick access to simple test
cases. All the tests shown below are part of this test suit.

Many parameters alter the tests made for the investigation of the stability problems
emphasized in section 6.1. Therefore, only 3 types of grids are allowed to be used with
tests, as it is thought to be helpful to define various spatial discretization. The tests
also ensure that acceptable grid is used as some stretchings are impossible195. Grid
stretching with α = 0.9 and α = 0.8 (5.21) are safe up to 8th order schemes which
are the highest order of accuracy used in this study (fig. 6.8).

6.3.1 Derivative tests

As shown in the appendix C.1, depending on the position inside the domain, dif-
ferent compact finite difference schemes are used. Therefore convergence tests are
represented for these 3 different types of grid points separately, (i) internal points
(ii) points on the edges and (iii) points next to the edges. The derivatives are com-
puted on a domain Ω using different grid spacing h and L2 error is shown for these
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Figure 6.8 – Grids used in the following tests for single domain cases, generated with
eq. (5.21)

different grid sizes (see fig. 6.9). The parameters SO(1) and SO(2) are used to
define the order of derivatives and solver respectively. A fixed stencil size is not used
for all points but the order based on the order of accuracy of the central points (see
appendix C.1). Schemes of the first order derivatives are always one order higher than
the second order derivatives as same stencils are used for both derivatives.

In addition to the convergence tests, the effect of the stretching needs to be assessed
on the actual error of the derivatives for a given function. The error of derivatives of
the simple trigonometric function

f(x, y, z) = sin(2πx) + sin(2πy) + sin(2πz)

is given in fig. 6.10 to demonstrate that stretching can be adjusted to diminish error
on the backward/forward points. For all cases, the error of the derivatives in the
middle of the domain is a few orders of magnitudes smaller than for the borders. As
stretching is getting stronger the errors of the derivatives are decreasing. In the last
row, α is 0.8, and the error is not decreasing any further.

The results show that stretching provides the desired effects, but extreme stretching
is not necessarily giving better results as for a fixed number of points this naturally
means coarser mesh for the middle points. Results are not given for multi-domain
cases as the derivatives are only calculated inside a sub-domain.

6.3.2 Solver tests

Before testing the solver on Navier-Stokes equations, it is first evaluated on pure
diffusion problems with the stretched grid (α = 0.9) which is also used to test the
derivatives (fig. 6.8).
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Figure 6.9 – L2 error of first order derivatives of the function f(x, y, z) = sin(2πx) +
sin(2πy)+sin(2πz) for different order of schemes for points on the edges (a),
points next to the edges (b) and internal points (c). Stencils are described
in table C.1. Each color is for a given stencil indicated in the legend of each
plot.
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(c) (d)

Figure 6.10 – Error on the first (a, b) and second (c, d) derivatives of the function
f(x, y, z) = sin(2πx) + sin(2πy) + sin(2πz) using 8th order compact fi-
nite difference schemes unstretched grid with α = 1 (a, c) and stretched
grid with alpha=0.9 (b, d)
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Figure 6.11 – Errors of the 8th order solver on a single domain with full Dirichlet (a) and
full Neumann (b) boundary conditions with the second grid described in
fig. 6.8 with α = 0.9. Exact solution of the system is f(x, y, z) = e

√
2xyz

Figure 6.11 (a) shows the expected behavior of the Laplace solver with Dirichlet
boundary conditions. The error is very low at the boundaries and grows slightly in
the center of the domain. Laplace solver with Neumann boundary conditions is also
working as expected where the Neumann condition seems to be satisfied (fig. 6.11
(b)).

The similar results on multi-domain (see fig. 6.12) field are given in fig. 6.12. These
results are obtained using influence matrix method. The interface points have a higher
error with a maximum close to the junctions of the interfaces as this area has the most
difficult conditions to satisfy. The overall error is at the level of the convergence limits
set for the iterative solver suggesting that solver converged as expected.

In conclusion, these tests show that the linear solver is working correctly with differ-
ent boundary conditions in both mono-domain or multi-domains. Influence matrix
method is able to provide interface values within the accuracy of the iterative solver.
Results above demonstrates that the spatial discretization works correctly. Deriva-
tives and solver (with second-order derivative coefficients) are reliable. Below, the
discussion is going to focus on the Helmholtz solver to improve the performance and
stability of the code for high Reynolds number simulations.
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(a) (b)

Figure 6.12 – Errors of the 8th order solver on a multi-domain (2,2,2) with full Dirichlet (a)
and full Neumann (b) boundary conditions with the second grid is described
in fig. 6.8 with α = 0.9. Exact solution of the system is f(x, y, z) = e

√
2xyz

6.3.3 Helmholtz solver tests

Figure 6.13 shows how the wave number
√
σ fundamentally influences the solution of

the Helmholtz equation. Homogeneous Dirichlet conditions were set on all boundaries,
except on the left, where the Robin condition ∂nu− σu = 0 was imposed and used as
a point source in the corner. In the case of Laplace’s equation (

√
σ = 0) the solution

is large only near the point source in the corner, whereas for
√
σ = 25, the solution is

large throughout the domain.

Solver of MFLOPS3D-MD probably suffers from the similar problem for high Re

(a) (b)

Figure 6.13 – Solution of Laplace’s equation (a), with a point source on the boundary,
and on the solution of the Helmholtz equation (b), with the same boundary
conditions. [Reproduced from Ernst and Gander 11 ]
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number cases (large σ). Careful tests are conducted using exact 3-dimensional Navier-
Stokes solutions proposed by Ethier and Steinman 194 . The exact solution provides
each component namely pressure term, non-linear term, and the time derivative at
any given points as following:

u1(x, y, z, t) = −a (eax sin (ay + dz) + eaz cos (ax+ dy)) e−νd2t (6.8a)

u2(x, y, z, t) = −a (eax cos (ay + dz) + eay sin (az + dx)) e−νd2t (6.8b)

u3(x, y, z, t) = −a (eay cos (az + dx) + eaz sin (ax+ dy)) e−νd2t (6.8c)

p(x, y, z, t) = −0.5a2
[
e2ax + e2ay + e2az

+ 2.0ea(x+y) sin (az + dx) cos (ay + dz)
+ 2.0ea(x+z) sin (ay + dz) cos (ax+ dy)
+ 2.0ea(y+z) sin (ax+ dy) cos (az + dx)

]
e−2νd2t

(6.8d)

where ν is the viscosity and the coefficients are set to a = 0.5 and d = 3 for the
following tests.

Using the velocity and pressure functions (6.8), it is possible to generate initial con-
ditions of these variables and all terms in the right-hand-side of the Helmholtz solver
individually. In the current study, 3 tests will be conducted in order to evaluate the
Laplace and Helmholtz solvers. The first two are to test the Laplace solver and the
third one is a Helmholtz problem. These problems will be solved with various estima-
tion of the right-hand-side. Summary of the tests designed to demonstrate the effects
of the different terms and source of errors is given in table 6.1.

Table 6.1 – Summary of the 3D solver tests for the development of the stabilization meth-
ods.

Solver Type ∇P u · ∇u ∂u/∂t

Case 1 Laplace Exact Exact Exact
Case 2 Laplace Exact Exact Discrete
Case 3a Helmholtz Exact Exact Discrete
Case 3b, 3c Helmholtz - Exact Discrete

Case 1: This test is repeating the previous test of Laplace solver in order to have a
reference with the new initial and boundary conditions. All the terms on the right-
hand-side are calculated from exact solution, and σ = 0 (as there is no implicit part
of the time derivative.
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ν∇2un+1 =
[
∂u
∂t

]n+1

+∇pn+1 + [u · ∇u]n,n−1 (6.9)

The result shown in fig. 6.14 (a) are satisfactory like the previous Laplace solver tests.
It can be noticed that the error goes smoothly to zero at the boundaries.

Case 2: In this case, only the non-linear term and the pressure gradient are calculated
from the exact solution (6.8), and the time derivative is obtained with second-order
BDF. However, all the terms of the unsteady terms are moved to the right-hand-side,
so that this is still a test of the Laplace solver. This case was designed to see the error
from the Backward-Finite-Difference which is a function of the time step 4t.

ν∇2un+1 = 1
24t

(
3un+1 − 4un + un−1

)
+∇pn+1 + [u · ∇u]n+1 (6.10)

Insignificant difference in the error is observed in comparison to the Case 1 (fig. 6.14
(b)). The discrete 4t with the BDF time scheme has only introduced errors due to
the extrapolation scheme.

Case 3a: For this last case, the Helmholtz problem will be tested for 3 different
configurations. First, only the non-linear term and the pressure gradient are calculated
from the exact solution and the time derivative obtained with the same scheme as in
(6.10). However, the implicit part of the time derivative is kept in the left-hand-side
which leads to a Helmholtz problem to solve (σ 6= 0).

∇2un+1 + σun+1 = Re

(
1

24t
(
−4un + un−1

)
+∇pn+1 + [u · ∇u]n+1

)
(6.11)

For the Helmholtz test, the shape of the error is changed noticeably as compared to
the error based on the Laplacian solutions. It can be seen in fig. 6.14 (b), that the
implicit solver provides a much accurate result than the previous tests with Laplace
equation. The smooth behavior of the error close to the border of the domain is
preserved as right-hand-side stays compatible to the left-hand-side of the equation.
Ideally, Helmholtz problems should be solved with such configuration, but it is not
possible in real situations of simulations. Unlike this synthetic case, exact values of
uk+1 are not accessible when the Navier-Stokes equations are being solved with the
estimation of the right-hand-side including other errors. However, in practice, right-
hand-side of the momentum equation and the implicit part of the unsteady term will
not be perfectly matching. The situation is even worse when projection method is
used, for example, if PT=1 , right-hand-side will be wrong as ∇p is set to zero.
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(a)

(b)

Figure 6.14 – Results of Cases 1 and 2. Case 1 (a), all the terms on the right-hand-side
are computed from the exact derivatives of (6.8). Case 2 (b), a discrete ∂u

∂t
with second order BDF is used instead of the exact time derivatives from
(6.8). Both results represent a Laplace solver as σ = 0.
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Case 3b: In this test, only the non-linear term is calculated from the exact solution,
and the time derivative is discretized with the same scheme (6.11) but the pressure
gradient is set to zero.

The corresponding equation is

∇2un+1 + σun+1 = Re

(
1

24t
(
−4un + un−1

)
+����∇pn+1 + [u · ∇u]n+1

)
(6.12)

This test is closer to the real situation during a simulation using MFLOPS3D-MD
because momentum equations are solved with σ 6= 0 and eliminating pressure is like
the projection method PT=1 .

Removing the pressure gradient introduces a relatively large error on the right-hand-
side. As a result, the error of the solution is much higher than the previous tests of
Laplace or Helmholtz solver. The error is exactly zero at the boundaries, meaning
that the Dirichlet conditions are implemented correctly. However, the error does not
grow smoothly from the borders as seen in the solution of the Laplace solution but is
discontinuous near the boundaries of the domain. This effect is related to the nature
of the implicit solver with large σ, as the crude approximation of the right-hand-side
without pressure gradient is not compatible with the boundary conditions imposed
by the solver. This effect will lead to high-frequency oscillations as such jumps will
introduce significant errors in the compact derivatives.

Case 3c: In order to enlighten the effect of σ, the last test is performed. The test
is the same as the Case 3b but with a time step 200 times bigger. This leads to a
smaller σ which can also be interpreted as a low Reynolds number case. The result
demonstrates that, as already explained, σ plays a significant role in this jump of the
solution at the boundaries. As shown in fig. 6.15 (c) errors gets smoother because the
dissipative term becomes dominant with respect to σ.

Discussions for better Helmholtz solver

The Case 1 was designed to evaluate the error due to the spatial discretization for a
pure Laplace equation. Then a time discretization scheme was introduced by keeping
the explicit property of the equation. This leads to a small increase in the error as
expected.

For the third case, the implicit time scheme is kept leading to a test of the Helmholtz
solver. However, at the first test (6.15 (a)) were performed with a right-hand-side
close to the exact solution. The right-hand-side was adapted to the exact boundary
conditions and it is shown that implicit solver is more accurate than the Laplace
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(a)

(b)

(c)

Figure 6.15 – Results of Cases 3a, 3b and 3c. Case 3a (a) ∂u
∂t is calculated using a

second-order BDF time scheme and the remaining terms on the right-hand-
side are computed from the exact derivatives of (6.8) and solved implicitly.
Case 3b (b) same as (a) except that the pressure gradient is dropped to
mimic the conditions of the intermediate step in the projection method.
Case 3c (c) same as (b) but with 4t which is 200 times higher than (b).
They are all results of Helmholtz problems (σ 6= 0) 127



solver cases. A more realistic situation is going to contain a more significant error on
the right-hand-side, due to errors introduced by the time scheme and the inaccurate
estimation of the pressure gradient. Therefore, an example without pressure gradient
is generated (Case 3b). It possibly demonstrates the source of the stability problem
of MFLOPS3D-MD. Even if the error is small, the main problem is that the present
solution has discontinuities near the boundary conditions. The derivation of this
solution with high order compact scheme will generate oscillations on the first points.
In order to show that this jumps come from the nature of the Helmholtz equation,
another test under the conditions of the previous one was conducted with a time step
(4t) which is 200 times higher. Bigger time step will introduce a higher error on
the BDF scheme used for ∂u/∂t. As demonstrated with the Case 3c, the solution is
smoother when a smaller σ is used similarly to the at low Reynolds number case. In
this case, the discontinuities still exist, but they are much smoother.

It has been shown that the problem appears because the right-hand-side is not adapted
to the boundary conditions which are connected to the solution by the Laplacian
operator. Two different approaches are proposed below to overcome this issue.

First approach: High Reynolds number assumption

The Helmholtz equation that needs to be solved for the first component of u is

(4− σI)u = f (6.13)

In high Reynolds number case, the second term σIu on the left-hand-side is much
greater than the Laplacian operator. In this case, one can estimate the value of the
expected jump with

(��4− σI)u = f (6.14)

The estimation of the jump can be subtracted from the right-hand-side of the equation.
This process can be used iteratively to minimize the jump.

It is found that this method does not work well because estimation of the jump is not
accurate enough as this method completely ignores the diffusion. Another method is
developed which does not suffer from this problem.

Second approach: Modified right-hand-side

This approach looks like the stabilization techniques used to obtain stable solutions
of the Navier-Stokes equations on the collocated grids. A regularization function ε is
added to the right-hand-side to adapt it to boundary conditions with the motivation
to obtain a right-hand-side compatible with boundary conditions.
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The different steps of the method are described below for the first component of u

1. Compute u∗ with the original Helmholtz without correction

(4− σI)u = f (6.15)

2. Extrapolate u∗ at the extreme points using an extrapolation scheme like for a
Dirichlet boundary condition;

u0 =
(
u

(6)
0 − bu1 − cu2 − · · ·

)
/a (6.16)

or for a Neumann boundary condition;

u
(1)
0 =

(
u

(6)
0 − bu1 − cu2 − · · ·

)
/a (6.17)

where a, b, c, . . . are coefficients for the high order finite difference (explicit)
scheme. This extrapolation forces 6th order derivative of the field uk+1 at the
boundary to be zero. A similar procedure is used close to each boundary.

3. Compute the difference, ε|Γ , between the extrapolated values of the boundary
and the exact boundary

ε|Γ = u0 − u0,BC (6.18)

This difference will be the boundary conditions of the next step.

4. Compute a smooth solution using the Poisson equation and the boundary con-
dition ε|Γ

4ε = 0 (6.19)

The solution ε of the equation above is then added to the right-hand-side of the
original Helmholtz system.

5. Compute the Helmholtz equation once again with an updated right-hand-side,

(4− σI)u = f − εσ (6.20)

New results for Case 3b using this correction are given in fig. 6.16. Global error
is always lower after this correction. The original jump of the solution is reduced.
However, the benefit of this correction is linked to the property of the solution without
correction. The extrapolation step is more effective when the original solution has a
very sharp jump meaning that the resolution is coarse with respect to the diffusion
term. However, the local stretching of the grid will help to resolve the original jump
of the solution better but will reduce the benefit of the correction due to the difficulty
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to extrapolate the solution to obtain an adapted correction ε.
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(a) (b) (c)

Figure 6.16 – New results of Case 3b (fig. 6.15 (b)) with correction steps (6.15) to (6.20). (a) with the same stretching (α = 0.8), (b) with
moderate stretching (α = 0.9) and (c) without stretching.
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6.4 Navier-Stokes solver tests

Some improvements are proposed in the previous section. However, no stable solutions
could be obtained at high Reynolds numbers. The following results demonstrate the
evolution of the error on the velocity component u1 when Navier-Stokes equations are
solved with the Re = 1000. Two different cases are compared to observe the effect of
the estimations of the terms on the right-hand-side. The same exact solution (6.8) is
used for initial and boundary conditions of these tests.

In the first case (fig. 6.17) all the terms on the right-hand-side of the momentum
equations are computed from the exact solution (6.8) except the discrete unsteady
term. The solution of the pressure correction φ and projection uk+1 steps are calculated
in usual ways. Therefore, the components of uk+1 exposed to the potential errors at
the end of each time step. Any pollution in the uk+1 appears in the next time step
when it became uk and used in the discretization of the unsteady term. At the very
first iteration (fig. 6.17 (a)) the jump observed in the some of the previous Helmholtz
solver tests is not present (situation here is similar to the results given in fig. 6.15 (a)).
However, after 200 time steps (fig. 6.17 (b)) jump in the error become noticeable. Even
if the error level is low, some instabilities start to grow. High-frequency waves can
be detected in both directions. Notice that the reason why the jump around edges
is more pronounced in the x-direction is that high-frequency waves in that directions
have smaller amplitudes.

The second case corresponds to the standard Navier-Stokes solver where all the terms
are calculated as they are supposed to be in a simulation. Projection method PT=3
is used meaning that pressure is estimated prior to the solution of the momentum
equation at every time step. Even if this preliminary step is expected to give a
good estimation of the right-hand-side, the solution is not fully compatible with the
boundary conditions at the initial time step and there is a sudden change in the error
around edge points. This was similar in the results given in fig. 6.15 (b). Some
oscillations start to appear after few iterations with an amplitude that seems higher
than the case with exact right-hand-side after the same number of iteration.

As can be seen in fig. 6.17 (a) the solution for the first iteration seems accurate, thanks
to the very accurate estimation of the right-hand-side. However, in few iterations
(fig. 6.17 (b)) the error in the estimation of right-hand-side is becoming large enough
and is leading to a wavy solution. When the right-hand-side includes errors due to
estimations of the various terms, the sudden jump on the solution appears even at the
first iteration as in previous results, but wavy behavior appears at the similar time like
when the perfect right-hand-side is imposed in the momentum equations. So, the first
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issue is related to the incompatible left and right-hand-side of the equation. Unlike
Laplace equation, the solution of the Helmholtz solver is not smooth and the jump
becomes significant in time. Such a problem combined with the weakly dissipative
compact finite difference schemes perhaps the reason of the high-frequency oscillations.

6.5 Conclusion

A laminar BL simulation on a flat plate is at Re = 200 is conducted with MFLOPS3D-
MD. Careful adjustment of the spatial resolution allowed to run the code for a long
simulation time. However, stability problems have been observed at high Reynolds
number simulations. Thus, a test suite integrated into MFLOPS3D-MD was developed
and used to test the different parts of the code. The test suite also helps to ensure
future development easier and safer.

The first tests were applied to derivatives which happened to behave as expected.
Error on the derivatives increases around boundary points due to smaller stencils
sizes used for backward/forward stencils. Tests showed that an optimum stretching
factor α is beneficial. This optimization based on the error of the derivatives at
different points in the discretization is made based on controlled trials. The ratio
between maximum and minimum grid distance equal to 4 was found to be satisfying
which is also compatible with the results given by Shukla et al. 195 .

Laplacian solver works properly as well. However, problems are noticed with Helmholtz
solver at high Reynolds numbers. Solver based on 3D diagonalization performs well
but leads to discontinuities at the second point from the edge. Error on those points
has a direct impact on the projection step because right-hand-side of Poisson equation
solver is set with the divergence of fields with such erroneous points. In addition to
that, the right-hand-side of influence matrix solver is set by the derivatives calcu-
lated using those points, so the solution of the interface points are also affected in
multi-domain cases.

It is known that Helmholtz solver is a difficult numerical problem to solve with the
high wavenumbers

√
σ. A large part of the current study is dedicated to understanding

the source of this problem.

A Burger equation solver was created for this purposes. This tool was able to test
the effect of different parameters on the stability of the solution. Different stencils for
the derivatives and the solver were tested on the Burger equation, but a more stable
combination of implicit and explicit points could not be found, so those tests are not
reported. However, the results helped to identify the problem. It is shown that with
a slight change of Reynolds number solver can become unstable.
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Based on the learnings from the Burger equations, tests were carried out in the
MFLOPS3D-MD. In this regard, two different stabilization techniques are proposed
without changing compact finite difference schemes. Both of them provides satisfy-
ing results for 1D problems but not for 3D problems. Additionally, in some settings,
promising corrections are observed in a single time step, they also do not provide a big
improvement after a few iterations. The oscillations in the solutions are stronger close
to the corners of each sub-domain where the corrections cannot be applied efficiently
as the extrapolation step of the correction method is in 1D. Therefore the corner
points cannot be fixed accurately with the proposed method. Besides, results show
that correction methods are sensitive to the grid stretching. The correction based on
the extrapolation performs better if the jump is restricted within a single grid point
thanks to the successful estimation of the jump.

The situation is more complicated than the solver tests when Navier-Stokes equations
are solved. It is difficult to decouple the problem between velocity fields and pressure
to find a solution. Various tests and calculations apart from the ones shown in this
chapter have been performed on 3D problems using MFLOPS3D-MD, but completely
satisfactory results are not obtained.

It is also noted that the solution of the Poisson equation with Neumann boundary
conditions can require large computational efforts. It is problematic for the very large
simulations as the number of iterations for the influence matrix solver increases rapidly
depending on the size of the problem in the current version of the code. No efficient
preconditioner could have been identified.
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(a)

(b)

Figure 6.17 – Error on the solution of the Navier-Stokes equation (with PT=3 ) using 8th
order compact finite difference schemes for derivatives and linear solver on
a single domain with exact values of terms on the right-hand-side computed
from the exact derivatives of (6.8) except for the time derivative at time
t = 0.0005 (a), 0.1 (b) where 4t = 0.0005.
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(a)

(b)

Figure 6.18 – Error on the solution of the Navier-Stokes equation (with PT=3 ) using 8th
order compact finite difference schemes for derivatives and linear solver on a
single domain with standard right-hand-side (exact solutions are only used
as the initial conditions) at time t = 0.0005 (a), 0.1 (b) where 4t = 0.0005.
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Conclusions and
Perspective

The main motivation of this work is to understand the physics of the LSM in TBL
on a flat plate and with the adverse pressure gradient. Such knowledge is important
for the theory of turbulent flows and turbulence modeling. The two main parts of
the manuscript are devoted to a DNS of TBL conducted using Incompact3D up to
Reθ = 2500 and the development of the existing laboratory code MFLOPS3D-MD.

In part II a DNS of ZPG TBL is presented. The aim of this study is to provide some
reference statistics of coherent structures with rigorous definitions. A new database of
3D fields and 2D time-resolved planes is generated, large-scale motions and quadrants
are investigated.

The interest of the having a TBL simulation over a curved wall is a strategy of the
LMFL team which will eventually allow us to study similar geometries than the ones
studied in LMFL wind-tunnel. Development of the in-house code MFLOPS3D-MD
(part III) was carried out to fulfill this needs. The MFLOPS3D-MD is one of the few
examples of the implementation of the influence matrix method in 3D. It is based on
an efficient direct solver for the Helmholtz equations and 2D mapping functions to
generate smooth geometries in the simulation domain. An alternative methodology
was considered, to perform a DNS on such smooth geometry using immersed boundary
methods implemented in Incompact3D. However, this would not be computationally
efficient as it requires a fine mesh over a large simulation domain. A low Reynolds
number TBL simulation is conducted with MFLOPS3D-MD to show the capabilities
of the code. However, the large part of the efforts on the development of the code is
focused on the stability problem at high Reynolds. Partial improvements are proposed,
but substantial changes are probably required for MFLOPS3D-MD to cope with high
Reynolds numbers.
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Summary of findings

The present work allows us to draw several conclusions on the physics of the turbulent
boundary layer flows on the one hand and on an original numerical tool to solve the
Navier-Stokes equations with multi-domain on the other hand. The main findings are
listed below.

A new database of ZPG TBL
The mean velocity and Reynolds stress profiles of the current study successfully com-
pare with the results from Jiménez et al. 9 and Schlatter et al. 7 . The benefit of this
database is that the 3D and 2D time-resolved data can be used to compare time and
space statistics. Even if the Reynolds number is moderate, these data provide useful
information about large-scale structures.

Townsend-Perry model for wall attached structures
Spectral analysis shows that the streamwise energy spectrum is compatible with a k−qx
scaling of the streamwise energy spectra at large scales with q ' 1 near y+ = 100 with
increasing value of q when moving from the wall. The relation p+q = −1 is satisfied in
agreement with the model proposed by Srinath et al. 10 over the range of scales where
the streamwise lengths of streamwise velocity structures follow a (λx/δ)−2 distribution.
Results are valid for a limited range of the wall-normal distances as compared to the
experimental study, but this result can be explained as the logarithmic region is much
shorter than the high Reynolds number case obtained with PIV. Nevertheless, the
model is confirmed with low Reynolds number DNS data.

Characterization of coherent structures using skeletonization
A novel application of the skeletonization technique is demonstrated in order to ob-
tained detailed statistics of coherent turbulent structures like LSM. Skeletons of these
structures are formed by tangled curves. The complexity of the structures is revealed
and even quantified. Consequently, accurate curve definition allowed to obtain an
average angle of the structures with respect to the horizontal plane which is around
5◦.

Quadrants statistics
It is showed that quadrants lengths are also distributed with a specific power law,
(λx/δ)−3. Average aspect ratio of the structures (λx ≈ 3λy and λz ≈ 1.5λy) were
identified based on joint PDF similarly to what was observed in channel flows1.

Multi-domain Navier-Stokes solver
Even though the potentially discouraging computational cost of using influence matrix
in 3D is emphasized by several authors57;172, the current study provides an example of
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working state-of-art example for such an algorithm. The technological improvements
towards larger multi-cores systems justify the choice of this algorithm. However,
this choice leads to several difficulties. Singularity problem of the Poisson equation
with homogeneous Neumann boundaries conditions is transferred to the influence
matrix even though none of the individual sub-domains suffers from this problem.
The traditional methods to correct this problem at the level of the influence matrix
are used. Both one point Dirichlet and null space removal found to be problematic
when implied to the influence matrix.

Perspectives

Organization of the structures
The model proposed by Srinath et al. 10 provides a new interpretation of the Townsend-
Perry attached eddy model by establishing a connection between streamwise structures
and the slope of energy spectra. The large-scale streamwise structures, as defined
in this work, contribute to a large part of the turbulent kinetic energy (∼ 70%).
Therefore the characterization of these structures provide useful information about the
scaling and can help to have an exhaustive knowledge of the turbulent boundary layers.
This detailed description even at moderate Reynolds is a necessary step to improve
turbulence models196 and to derive low order models of the near-wall turbulence.

Besides, it is shown that LSM and quadrants have common parts throughout the
boundary layer thickness. In the present study, the overlap of RSS and LSM is inves-
tigated. The fact that these structures co-exist inside the TBL makes the statistics
of common regions an interesting point to investigate (figs. 4.11 and 4.24). The RSS
contribution of the positive u′ fluctuations (fig. 4.11) remains quite constant over the
logarithmic region while the same can not be said for negative u′ fluctuations. These
study can be expanded to better understand the relationship between the turbulence
production and Reynolds shear stress.

Future of the MFLOPS3D-MD
It is realized that some parts of the code can be replaced with more conventional
methods without sacrificing extensible features of the code. For example, using ex-
act projection171;172 method instead of an approximation projection is one of them.
Another important aspect is to improve the performance of the Helmholtz solver.
Perhaps, exact compact finite difference schemes for solving Helmholtz equation (the
numerical scheme is exact) like the one designed by Wong and Li 184 can be tested
next which at least provides better control of the overall error as spatial discretization
can be considered error-free. Recently, Wang and Wong 197 provided accurate results
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with for 2D Helmholtz equations in Cartesian coordinates with
√
σh ∼ 0.7 which is

around the limit to make simulations with 1/ν = 2000 (
√
σh ∼ 0.64 is estimated for

such a simulation).

The fact that the singularity problem is transferred into the influence matrix is an
important issue for the performance. There is no dedicated method to treat this
problem, but the idea of solving the problem at the sub-domain level is appealing
because replacing the value of the point with the zero eigenvalues in all directions
works effectively.

Database and tools
Different post-processing tools and a database are the products of this study. They
are also valuable for further studies. For example,

• Skeletonization can also be used to study other coherent structures like quadrant
and vortices in 3D possibly on time-resolved data to follow the structures in time.
A general picture of coherent structures in turbulence can be drawn.

• Statistics of coherent structures should be compared with the same structures
in APG. Similar analyses could be done on experimental data at much higher
Reynolds number (for instance with large-scale tomo-PIV) using the post-processing
tools developed in this study.

• The database of time-resolved data in a plane of ZPG TBL can be used as
inlet condition for other DNS of the boundary layer with or without pressure
gradient at much higher Reynolds numbers. Incompact3D was designed to work
in massively parallel and can handle much more grid points than used in the
present DNS. The confirmation of the present results on ZPG TBL at a Reynolds
number comparable to the experimental study of Srinath would be a valuable
result.
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Teaching 2015/2016 I taught FORTRAN and was the assistant of
Prof. Jean-Marc Foucaut for the Fluid Mechanics practices in Mas-
ter Turbulence.

Other related activities

IMP-Turbulence Master Alumni Day I initiated the idea of an
alumni day for the graduates of the program to present their cur-
rent work to the M1 students in Lille. The event was held on the
17th of March 2017 with the participation of 5 graduates of the
master program from various years, including myself as speakers.

ASPID (Ph.D. Association) I worked in the administration of the
ASPID as treasurer from June 2016 for one year.

ADSL (Ph.D. Association) I am a member of the administrative of-
fice of the new association for graduate students of SPI and SMRE,
born from the fusion of the ASPID and TILDA.
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ASkeletonization

The curve extraction framework proposed by Hassouna Hassouna and
Farag 152 along with structure detection steps is abstracted in fig. A.1.

The main steps of the method can be summarized as follows:

1. Compute the first distance field D from boundaries solving an
Eikonal equation,

2. Compute the gradient vector flow (GVF) based medial function
λ(x) that points out toward the source point of the object,

3. Detect the source point Ps defined as Ps = argmax(λD)

4. Propagate a β-front from Ps and solve a new Eikonal equation to
get a new distance field D1;

5. Discretize D1 (clusterize) and construct level-set-graph, which rep-
resent the connection between adjacent clusters,

6. Detect extreme and merge points for appropriate clusters,

7. Propagate a α-front from Ps and solve a new Eikonal equation to
get a new distance field D2,

8. Extract curves by backtracking from extreme points following the
negative gradient of D2 (stops at Ps or on a previously extracted
part of the skeleton).

Two optional procedures (opening-closing and interpolation) can be ap-
plied after the extraction of the 3D structure if the structure exhibit
some regions which are not sufficiently resolved (a minimum resolution
of 5×5×5 is necessary for the healthy progress of Runge-Kutta stepping
to extract a curve).

For a simple domain with C shape, some of the steps above are visual-

149



Scalar field Binary field via eq. (4.1) Labeling

Structure detection

Extract structure #j

Opening-closing

Interpolation

Data preparation (optional)

Distance field D
(from the boundaries)

Gradient Vector Flow
(GVF)

Medial function λ(x)

Source point Ps

Distance field D1,
with speed of front F = exp(βD(x))

Clustering

Extreme points Ei

Distance field D2,
with speed of front F = exp(αλ(x))

T = ∇D2

Curve extraction
(Runge-Kutta stepping from each extreme point Ei to Ps)

next curve

Skeletonization

next structure

Figure A.1 – Graphical presentation of the work-flow to extract the skeleton’s curves for a
single 3D spatially resolved data. The red steps correspond to the structure
detection method used priorly to the bounding box statistics.
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(a) (b) (c) (d)

Figure A.2 – Visualization of some of the steps of the curve extraction procedure: (a) D,
(b) clusters, (c) medial function, (d) GVF.

ized in fig. A.2. The procedure aims to get sharper but homogeneous
distance fields so that extracted curves are more accurate and do not
get affected by corners of the shape.

The procedure includes several parameters. Even though extraction can
work with a range of values of these parameters, computational cost and
completeness of the skeletons can be largely affected. A careful para-
metric study was carried out to find the optimum set of parameter for
our purpose. Another difficulty is that the thin parts of the turbulent
structures make the extraction of the skeletons difficult. Distance fields
are able to create proper gradients if the section of the structures is
thicker enough as mentioned before. As the method works on homo-
geneous grids, interpolations have to be done in all 3 directions which
might generate a large volume of data to be analyzed. Moreover, the
computationally most expensive part of the overall process is the solu-
tion of the Eikonal equation as this part was not parallelized.

Extraction of curves is a computationally expensive process for this
specific application on turbulent coherent structures as additional local
interpolations are often required to increase the resolution of the binary
images. Several distance fields (D, D1, D2) are computed by solving the
Eikonal equation using multi-stencils fast marching method (MSFM).
The complexity of MSFM is O(nlogn) where n is the total number
of pixels. O(kn) is the cost of the computing gradient vector field
(GVF), where k is the number of iterations. So the total complexity is
O(nlogn+ kn).
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BParameters for
Incompact3d
#
# INCOMPACT 3D Flow parameters
#
600 . #xlx # Lx ( S i z e o f the box in x−d i r e c t i o n )
40 . #yly # Ly ( S i z e o f the box in y−d i r e c t i o n )
20 . #z l z # Lz ( S i z e o f the box in z−d i r e c t i o n )
2000 . #re # Reynolds number
1 . #sc # Schmidt number ( i f pa s s i v e s c a l a r )
1 . #u1 # u1 (max v e l o c i t y ) ( f o r i n f l ow cond i t i on )
1 . #u2 # u2 (min v e l o c i t y ) ( f o r i n f l ow cond i t i on )
0 .0 #no i s e# Turbulence i n t e n s i t y (1=100%) ! ! I n i t i a l cond i t i on
0 .0 #no i s e1# Turbulence i n t e n s i t y (1=100%) ! ! In f l ow cond i t i on
0 .008 #dt # Time step
#
# INCOMPACT3D Flow c o n f i g u r a t i o n
#
2 #nclx # nclx (BC)
2 #ncly # ncly (BC)
0 #nc l z # nc l z (BC)
8 #i type # Type o f f low
1 #i i n # In f low cond i t i on ( 1 : c l a s s i c , 2 : t u r b i n i t )
430001 #i f i r s t # F i r s t i t e r a t i o n , a t t e n t i o n add +1
450000 #i l a s t # Last i t e r a t i o n
4 #nscheme# Temporal scheme ( 1 :AB2, 2 : RK3, 3 :RK4, 4 :AB3)
3 #i s t r e t # y mesh re f inement ( 0 : no , 1 : center , 2 : both s ide s , 3 : bottom )
1 .3 #beta # Refinement parameter ( beta )
1 #iskew # ( 0 : urotu , 1 : skew , f o r the convec t ive terms )
0 #i s c a l a r# ( 0 : no s ca l a r , 1 : s c a l a r )
#
# INCOMPACT 3D F i l e parameters
#
1 #i l i t # Read i n i t i a l f low f i e l d ?
5000 #i s a v e # Frequency f o r wr i t i ng backup f i l e
500 #imodulo # Frequency f o r v i s u a l i z a t i o n f o r VISU INSTA
#
# INCOMPACT 2D F i l e parameters , a l l p e rpend i cu la r to the x−d i r
#
1 #i s a v e i n l e t # Save 2D planes ?
4 #inbp lanes # How many planes to save ?
5 #i i n l e t f r e q #Frequency f o r c o l l e c t i n g data through time
1600 3200 4800 5760 #i p o s p l a n e s # P o s i t i o n s o f the p lanes
#
# INCOMPACT 3D Body old schoo l
#
0 #i v i r t# IBM? ( 1 : o ld school , 2 : Lagrangian Poly )
5 . #cex # X−cent r e p o s i t i o n o f the s o l i d body
5 . #cey # Y−cent r e p o s i t i o n o f the s o l i d body
0 . #cez # Z−cent r e p o s i t i o n o f the s o l i d body
0 .5 #re # Radius o f the s o l i d body
#
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CDetails of
MFLOPS3D-MD

C.1 Compact finite difference schemes

Coefficients for Compact Finite Difference Scheme are obtained from a
solution of linear system that is built to force the desired order of the
error with columns consist of Taylor expansions at the points used in the
stencil. Notice that this linear system gives the coefficient for a given
point. Linear systems similar to the example (C.2) and (C.3) should
be solved for each grid point sequentially. Results of these systems
will be eventually used to construct a larger linear system to solve the
problems.

C.1.1 Example approximation for a first derivative

The compact finite difference scheme with a 5− 7 stencil (5 for implicit
and 7 for explicit) can be defined as in Lele 56

βf
(1)
i−2 + αf

(1)
i−1 + f

(1)
i + αf

(1)
i+1 + βf

(1)
i+2

= c
fi+3 − fi−3

6h + b
fi+2 − fi−2

4h + a
fi+1 − fi−1

2h (C.1)

where f (p)
i is the pth derivative at point i.

Columns of the following linear system (C.2) consist of corresponding
Taylor expansions (C.1). Linear systems are constructed by keeping the
derivative of the point alone on the one side of the equation.

Second derivative stencils can be used similarly to generate matrix sys-
tems. Linear solvers are written following the idea represented here
except that boundary conditions are introduced into the linear system
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appropriately.
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C.1.2 List of Schemes used in the code

Stencils discussed in Lele 56’s paper are the generic stencils for homo-
geneous grid. Stencils used in the code are given in table C.1. They
are the result of the optimization based on grid stretching as different
stencils are found to give better results. The most important difference
from the standard stencils is that lower order stencils for the second
point of the discretization matches with the high order stencils for the
central points.

Stencils are given in table C.1 for both the solver (second order deriva-
tives) and the first order derivatives as they are using the same points
in their stencils.
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Table C.1 – Details of the stencils used in the MFLOPS3D-MD. χ is equal to 1 or 2 depending on the order of derivative as the same stencils are
used for both the first and second derivatives. Only difference is in the construction of the matrix, boundary points are excluded for
the solver and the right-hand-side is modified accordingly. For the derivatives such treatment is not necessary. If Neumann boundary
conditions are used, one of ℵ1, ℵ2, ℵ3 or ℵ4 is equal to 1 (the point on the boundary) instead of 0 representing first derivative of the
term on explicit side, this is how the Neumann boundary conditions are implemented. Stencils for the point n − 1 and n are not
given as their stencil is the symmetry of ones for the point 2 and 1.

Implicit Points Explicit Points
Parameter Points f

(χ)
i+3 f

(χ)
i+2 f

(χ)
i+1 f

(χ)
i f

(χ)
i−1 f

(χ)
i−2 f

(χ)
i−3 fi+4 fi+3 f

(ℵ1)
i+2 f

(ℵ2)
i+1 fi f

(ℵ3)
i−1 f

(ℵ4)
i−2 fi−3 fi−4

so==4 [1] 1 α a b c d
so==4 [2] α 1 a b c d e
so==4 [3 : n− 2] α 1 β a b c
so==6 [1] 1 α a b c d e f
so==6 [2] α 1 a b c d e
so==6 [3 : n− 2] α 1 β a b c d e
so==8 [1] 1 α β γ a b c d e f
so==8 [2] α 1 a b c d e
so==8 [3 : n− 2] α β 1 γ δ a b c d e
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C.1.3 Discretization error

The spectral methods are very useful to analyze differently the trun-
cation error. A small example is given below for the completeness of
the study. Example in literature often plots the modified wavenumber
for homogeneous grids, therefore following derivation is essential for the
current study.

Let’s define the function, Φ(x) = eikx so ∂Φ/∂x = ikeikx, and ∂2Φ/∂x2 =
−k2eikx

The compact finite difference scheme for a second derivative is defined
as,

f
(2)
i + αf

(2)
i−1 + βf

(2)
i−2 + γf

(2)
i−3

= afi+1 + bfi + cfi−1 + dfi−2 + efi−3 + gfi−4 (C.4)

Replacing the function and its derivative at each points for the function
Φ the equation becomes

(
ik
′′)2 (eikx + αeik(x+4x−1) + βeik(x+4x−2) + γeik(x+4x−3))

= aeik(x+4x+1) + beikx + ceik(x+4x−1)

+ deik(x+4x−2) + eeik(x+4x−3) + geik(x+4x−4)

By extracting k′′ from this equation, modified wavenumbers for the
second derivative is

k
′′ (k) =

√√√√−aeik4x+1 + b+ ceik4x−1 + deik4x−2 + eeik4x−3 + geik4x−4

1 + αeik4x−1 + βeik4x−2 + γeik4x−3

(C.5)

The real part of (C.5) is associated with the dispersion error and the
imaginary is associated the dissipation error (for second order deriva-
tive).
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C.2 Diagonalization

Ehrenstein and Peyret 198 shows an implementation of the Helmholtz
solver for a 2D problem based on a diagonalization technique. A 3D
implication of similar diagonalization is straightforward but requires
meticulous matrix multiplications181.

The Helmholtz equation to be solved in MFLOPS3D-MD for each sub-
domain is:

∇2Φ− σΦ = f in Ω with Φ = g on Γ (C.6)

where σ = const ≥ 0, Γ is the boundaries of the domain Φ, and f, g

are given functions.

Let ΦN,M,P be the polynomial approximation of the solution of (C.6).
(xn, ym, zp) are the discretization points for 0 ≤ n ≤ N , 0 ≤ m ≤ M

and 0 ≤ p ≤ P .

The compact scheme discretization of the Helmholtz equation in general
form181;198 can be written

(
D(2)
x ⊗ Iy ⊗ Iz + Ix ⊗D(2)

y ⊗ U + Iz ⊗ Iy ⊗D(2)
z

)
Φ− σΦ = F (C.7)

where D(2)
x , D(2)

y are D(2)
z the square matrices with the size equal to the

number of inner nodes n, m and p in each direction.

D(2)
x =

[
f (2)
x (n, n)

]
, 1 ≤ n ≤ N − 1

D(2)
y =

[
f (2)
y (m,m)

]
, 1 ≤ m ≤M − 1

D(2)
z =

[
f (2)
z (p, p)

]
, 1 ≤ p ≤ P − 1

with f
(2)
N , f (2)

M and f
(2)
P are the coefficients computed from the com-
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pact finite scheme. They contain both an explicit and an implicit part,
f (2)
x = A−1Bf with A and B being the matrix of implicit and explicit

coefficients respectively. See appendix C.1 for their derivation.

Finally, F is the rank-3 tensor defined as,

F = [F (xn, ym, zp)]

with

F (xn, ym, zp) = f (xn, ym, zp)

− f (2)
N (n, 0)g1(xn)− f (2)

M (m, 0)g2(ym)− f (2)
P (p, 0)g1(zp)

− f (2)
N (n, n)g4(xn)− f (2)

M (m,m)g5(ym)− f (2)
P (p, p)g6(zp)

where gi are the boundary conditions on each face of the domain (gi =
g |Γi). The boundary conditions affect all the points due to implicit
schemes. Dirichlet boundary conditions are simply going to be placed
in the solution once the internal points are solved. In the case of the
Neumann boundary conditions, the value of the boundary nodes (or
interface in multi-domain case) will be calculated from the boundary
conditions once the solution is obtained, like it is done in Abide and
Viazzo172.

Assume the eigenvalues of each of the matrices D(2)
x , D(2)

y and D(2)
z are

real, distinct and negative†, these matrices are diagonalized as

D(2)
x Sx = SxΛx, D(2)

y Sy = SyΛy, D(2)
z Sz = SzΛz (C.8)

where Sx, Sy and Sz are matrices of the right eigenvectors of D(2)
x , D(2)

y

†It is suppose to be checked for each grid as it is not always true. It is very easy to validate this
property when diagonalization method is in use as most of the libraries used to obtain eigenvalues
provides both real and complex pairs. One must, verify that the complex part is zero and the real
part is negative. Additionally, performance of the method strongly depends on the distribution of
the eigenvalues which is not discussed in this study.
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and D(2)
z . The diagonal matrices Λx, Λy and Λz are formed with eigen-

values of the associated matrices.

Applying diagonalization on the linear system (C.7) leads to

ΛΦ̃− σΦ = F̃ (C.9)

where the diagonal matrix Λ is

Λ = Λx ⊗ Iy ⊗ Ix + Ix ⊗ Λy ⊗ Iz + Ix ⊗ Iy ⊗ Λz − σΦ (C.10)

and the modified fields are

Φ̃ =
(
S−1
x ⊗ S−1

y ⊗ S−1
z

)
Φ, F̃ =

(
S−1
x ⊗ S−1

y ⊗ S−1
z

)
F (C.11)

Finally point-wise relations to obtain the solution the modified linear
system are,

(λx, n + λy,m + λz, p − σ) φ̃n,m,p = f̃n,m,p (C.12)

In practice, the multiplication S−1
x UN,M,P

(
S−1
y

)T (S−1
z )T is used. Such

writing benefits from the continuous chunks of the rank-3 tensor in the
memory during the multiplication. For example, LAPACK’s DGEMM
routine can deal with this more efficiently.

C.3 Influence matrix method

This appendix is the reproduction of the example given by Danabasoglu
et al. 57 for two domains. The three main part creating an influence
matrix, obtaining true interface values and using these true interface
values are described below.
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Consider Laplace equation,

LP = r.h.s. (C.13)

where P is the matrix of unknowns. The Laplace operator L discretized
in a Cartesian domain is defined as

x ∈ [a, b] , b > a

y ∈ [d, e] , d < e
(C.14)

And the boundary conditions are

P (a, y) =fa(y), P (x, d) = fd(y),

P (b, y) =fb(y), P (x, e) = fe(y)
(C.15)

where fa(y), fb(y), fd(y), and fe(y) are arbitrary functions representing
boundary conditions.

The domain is split in two sub-domains on direction-y at y = c con-
structed as Domain I: [d, c] and Domain II: [c, e].

So sub-domains are discretized in Cartesian domains defined as

x ∈ [a, b] , y ∈ [d, c] , d < c

x ∈ [a, b] , y ∈ [c, e] , c > e

C.3.1 Creating an influence matrix

The influence of the unit interface disturbances needs to be computed
to form an influence matrix. First, the same equation needs to be solved
on each sub-domain:

LP I
m = 0 and LP II

m = 0 (C.16)
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with the following boundary conditions;

P I(a, y) = 0 P I(b, y) = 0

P I(x, d) = 0 P I(x, c) = δ(τm)

P II(a, y) = 0 P II(b, y) = 0

P II(x, c) = δ(τm) P II(x, e) = 0

where superscripts I and II are for the two sub-domains. Simply there
is only a single point on the interface with the unit disturbance δ(τm).

The equations (C.16) are solved for each interface point (subscript m)
for which the residual vectors are;

Rm =

∂P

I
m

∂y
− ∂P II

m

∂y




And finally residual vectors are arranged to compose the influence ma-
trix R.

R = [R1, R2, · · · , RNΓ ]

The steps above are required only once at the beginning of a simulation.
Once the influence matrix is generated, the same matrix is used for all
the time steps.

C.3.2 Obtaining true interface values

To obtain the true interface values, sub-domains are solved with their
correct right-hand-side and correct boundary conditions but with zeros
at the interface points;
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P I(a, y) = fa(y) P I(b, y) = fb(y)

P I(x, d) = fd(x) P I(x, c) = 0

P II(a, y) = fa(y) P II(b, y) = fb(y)

P II(x, c) = 0 P II(x, e) = fe(x)

It is known that the boundary conditions P I(x, c) = 0 and P II(x, c) = 0
are not correct. So,

Rr =

∂P

I

∂y
− ∂P II

∂y




is not zero.

True interface values are defined such that the interface residuals are
zero. They can be obtained by solving:

Rt = R−1Rr

In MFLOPS3D-MD this linear system is solved iteratively using linear
solvers provided by PETSc.

C.3.3 Using true interface values

Sub-domains needs to be solved a second time to obtain the final solu-
tions using correct boundary conditions at the interface points.

P I(a, y) = fa(y) P I(b, y) = fb(y)

P I(x, d) = fd(x) P I(x, c) = Rt

P II(a, y) = fa(y) P II(b, y) = fb(y)

P II(x, c) = Rt P II(x, e) = fe(x)

166



The steps mentioned in appendices C.3.2 and C.3.3 are repeated every
time step and for every unknown.

C.4 Mapping

Let’s redefine the physical and Cartesian coordinate system first. Using
the chain rule for composition of derivative, first derivatives can be
defined as

∂

∂x̄
= ∂x

∂x̄

∂

∂x
+ ∂y

∂x̄

∂

∂y
(C.17)

∂

∂ȳ
= ∂x

∂ȳ

∂

∂x
+ ∂y

∂ȳ

∂

∂y
(C.18)

Similarly second derivatives are

∂2

∂x̄2 =
(
∂x

∂x̄

)2 ∂2

∂x2 + ∂2x

∂x̄2
∂

∂x

+ 2∂y
∂x̄

∂x

∂x̄

∂

∂x∂y
+
(
∂y

∂x̄

)2 ∂2

∂y2 + ∂2y

∂x̄2
∂

∂y
(C.19)

∂2

∂ȳ2 =
(
∂x

∂ȳ

)2 ∂2

∂x2 + ∂2x

∂ȳ2
∂

∂x

+ 2∂y
∂ȳ

∂x

∂ȳ

∂

∂x∂y
+
(
∂y

∂ȳ

)2 ∂2

∂y2 + ∂2y

∂ȳ2
∂

∂y
(C.20)

Mapping functions are simplified as compared to the (5.31).

x = x̄ (C.21)

y = yaηb(x̄)− ybηa(x̄) + ȳ (−ya + yb)
−ηa(x̄) + ηb(x̄) (C.22)

with ya ≤ y ≤ yb and ya + ηa(x̄) ≤ ȳ ≤ yb + ηb(x̄)
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Derivatives in physical coordinates as function of the derivatives in
Cartesian coordinates are obtained by applying mapping functions to
the derivatives defined in (C.17) to (C.20).

∂x

∂x̄
= 1 (C.23)

∂y

∂x̄
= 1

(ηa(x̄)− ηb(x̄))2

[(
−ya

d

dx̄
ηb(x̄) + yb

d

dx̄
ηa(x̄)

)
(ηa(x̄)− ηb(x̄))

−
(
d

dx̄
ηa(x̄)− d

dx̄
ηb(x̄)

)
(−yaηb(x̄) + ybηa(x̄) + ȳ (ya − yb))

]
(C.24)

∂x

∂ȳ
= 0 (C.25)

∂y

∂ȳ
= ya − yb
ηa(x̄)− ηb(x̄) (C.26)

∂2x

∂x̄2 = 0 (C.27)

∂2y

∂x̄2 = 1
ηa(x̄)− ηb(x̄)


−ya

d2

dx̄2ηb(x̄) + yb
d2

dx̄2ηa(x̄)

+ 2
ηa(x̄)− ηb(x̄)

(
ya
d

dx̄
ηb(x̄)− yb

d

dx̄
ηa(x̄)

) (
d

dx̄
ηa(x̄)− d

dx̄
ηb(x̄)

)

− 1
ηa(x̄)− ηb(x̄)


 d2

dx̄2ηa(x̄)− d2

dx̄2ηb(x̄)

 (−yaηb(x̄) + ybηa(x̄) + ȳ (ya − yb))

+
2
(
d
dx̄ηa(x̄)− d

dx̄ηb(x̄)
)2

(ηa(x̄)− ηb(x̄))2 (−yaηb(x̄) + ybηa(x̄) + ȳ (ya − yb))



(C.28)

∂2x

∂ȳ2 = 0 (C.29)

∂2y

∂ȳ2 = 0 (C.30)
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The other terms involved in the Laplacian are defined as:

(
∂y

∂x̄

)2
= 1

(ηa(x̄)− ηb(x̄))4

[(
ya
d

dx̄
ηb(x̄)− yb

d

dx̄
ηa(x̄)

)
(ηa(x̄)− ηb(x̄))

−
(
d

dx̄
ηa(x̄)− d

dx̄
ηb(x̄)

)
(yaηb(x̄)− ybηa(x̄)− ȳ (ya − yb))

]2

(C.31)
(
∂y

∂ȳ

)2
= (ya − yb)2

(ηa(x̄)− ηb(x̄))2 (C.32)
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C.5 Parameters for MFLOPS3D-MD

The MFLOPS3D-MD parameter file to run the tests at Re = 100 with
6th order compact finite difference schemes is given below.
#####
# Flow Paramaters
#####
100.0 #reyno lds ( r eyno lds number )
0 .5 #i n l e t u ( Def ine i n l e t v e l o c i t y , only works i f i f i n l e t ==0)
0 .7 #outu ( Def ine advect ion v e l o c i t y f o r o u t l e t )
#####
# Simulat ion Conf igurat ion
#####
0 #simtype ( Simulat ion type >> 0 : t e s t , exact , 1 : channel , 2 :TBL, 4 : Decay )
21 21 21 #nx ny nz ( monodomain dimensions )
2 2 2 #ndx ndy ndz ( number o f domains in each d i r e c t i o n )
0 0 0 #i f p e r i o d (3 ) ( 0 : f o r wal l , d i r i c h l e t 1 : f o r p e r i o d i c )
0 .01 #t s (Time step )
100 #ntime ( number o f time i t e r a t i o n s )
3 #pt ( p r o j e c t i o n type >> 1 : s t rong s e t t i n g s , 2 : weak s e t t i n g s )
2 1 #nnl term (FORM 1 : convect ive , 2 : skew−symetr i c ) ( Scheme 1 :FFD 2 :AB 3 :RK)
2 2 1 #time order (du/dt [ 1 , 2 , 3 ] , vdu/dx [ 0 , 1 , 2 , 3 , 4 ] and p [ 0 , 1 , 2 , 3 ] )
3 #psm ( 0 : nothing , 1 : pe t s c nu l l space , 2 : d i r i c h l e t at one po int )
6 6 #so (2 ) ( scheme order f o r s o l v e r and d e r i v a t i v e s )
1 #i f I m p l i c i t 1 : Impl ict , 0 : E x p l i c i t
0 #i f F i l t e r ( 0 : none , 1 : u , v ,w, 2 : rhsPHI )
# Restart , i n l e t
0 #i f r e s t a r t (Read a r e s t a r t f i l e >> 0 : nothing 1 : yes )
0 #i f i n l e t ( Read/ Generate i n l e t p lanes >> 0 : nothing 1 : yes )
1 1 1 1 1 1 #bctuvw ( 1 : D i r i c h l e t 2 : Neumann)
2 2 2 2 2 2 #bctp ( 1 : D i r i c h l e t 2 : Neumann)
# Forcing Parameters
0 0 0 #i f f o r c e (3 ) ( f o r c i n g in each d i r e c t i o n s >> 0 : nothing 1 : Sch la t t e r2012 )
###
## Grid opt ions
####
0 0 0 #ifReadMesh X, Y, Z ( 0 : g ene ra t e s 1 : 1D Mesh 2 : 2D Mesh 3 : 3D Mesh)
0 .0 1 .0 0 . 9 # ( s t a r t and end , s t r e c h i n g f a c t o r in x−d i r )
0 . 0 1 .0 0 . 9 # ( s t a r t and end , s t r e c h i n g f a c t o r in y−d i r )
0 . 0 1 .0 0 . 9 # ( s t a r t and end , s t r e c h i n g f a c t o r in z−d i r )
0 #ifmap ( mapping >> 0 : nothing , 1 : s t a t i c , 2 : dynamic )
#####
# Data C o l l e c t i o n
#####
1 #i f s a v e f i e l d ( Save f i e l d s >> 0 : no , 1 : yes )
100 #i n c s a v e f i e l d ( Save every x i t e r a t i o n s )
0 #i f s a v e p l a n e ( Save plane >> 0 : no , 1 : yes )
500 #inc savep lane ( Save every x i t e r a t i o n s )
0 #i f s a v e r e s t a r t ( Save plane >> 0 : no , 1 : yes )
10 #i n c s a v e r e s t a r t ( Save every x i t e r a t i o n s )
#####
### Exact So lve r Options ( var i ous t e s t , works only i f s imtype i s 0)
######
0 #i fForceUStar ( Put exact va lue s >> 0 : no , 1 : yes )
0 #i fForc ePh i ( Put exact va lue s >> 0 : no , 1 : yes )
0 #ifForceRhsUStar ( Put exact va lue s >> 0 : no , 1 : yes )
0 #ifForceRhsPhi ( Put exact va lue s >> 0 : no , 1 : yes )

170



171



172



Bibliography

[1] A. Lozano-Durán, O. Flores, and J. Jiménez, “The three-
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