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Abstract

Key words: Porous material, Shakedown analysis , Homogenization

This thesis is devoted to the determination of shakedown limit states of porous ductile materials

based on Melan’s static theorem by considering the hollow sphere model, analytically and numerically.

First of all, we determine the analytical macroscopic shakedown criterion of the considered unit cell with

von Mises matrix under alternating and pulsating special loading cases. The proposed macroscopic an-

alytical criterion depends on the first and second macroscopic stresses invariants, the sign of the third

one and Poisson’s ratio. Then, the procedure is extended to the general cyclically repeated loads by the

construction of a more appropriate trial residual stress field allowing analytical computations and the im-

provement of the previous model simultaneously. Moreover, this approach is applied to porous materials

with Drucker-Prager matrix.

The idea relies firstly on the exact solution for the pure hydrostatic loading condition. It turns out that

the collapse occurs by fatigue. Next, suitable trial stress fields are built with additional terms to capture

the shear effects. The safety domain, defined by the intersection of the shakedown limit domain and

the limit analysis domain (Shen et al., 2015; Guo et al., 2008) corresponding to the sudden collapse by

development of a mechanism at the first cycle, is fully compared with step-by-step incremental elastic-

plastic simulations and simplified direct computations.

At last, we provide a direct numerical method to predict the shakedown safety domain of porous

materials subjected to multi-varying independent loadings by considering the critical loading path of

the load domain instead of the whole history. The shakedown problem is transformed into a large-size

optimization problem, which can be solved efficiently by the non-linear optimizer IPOPT to give out not

only the limit load factor, but also the corresponding residual stress field for the shakedown state.
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Résumé

Key words: Matériaux poreux, Analyse d’adaptation, Homogénéisation

Cette thèse est consacrée à la détermination des états limites de l’adaptation des matériaux ductiles

poreux sur la base du théorème de Melan et en considérant le modèle de la sphère creuse. Dans un

premier temps, nous proposons le critère analytique macroscopique d’adaptation avec la matrice de

von Mises sous deux charges particuliers, alterné et pulsé. Le critère analytique dépend des première et

seconde invariants des contraintes macroscopiques, du signe du troisième et du coefficient de Poisson.

Ensuite, ce critère est étendu aux charges cycliques répétées générales par la construction d’un champ

de contraintes résiduelles d’essai plus approprié permettant simultanément des calculs analytiques et

l’amélioration du modèle précédent. De plus, il est également utilisé pour les matériaux ductiles poreux

avec une matrice de Drucker-Prager.

L’idée repose d’abord sur la solution exacte pour le charge purement hydrostatique. Il s’avère que la

ruine se produit par fatigue. Ensuite, des champs de contrainte d’essai appropriés sont construits avec

des termes supplémentaires pour capter les effets de cisaillement. Le domaine de sécurité, défini par

l’intersection du domaine d’adaptationet celui d’analyse limite (Shen et al., 2015; Guo et al., 2008) (la ru-

ine survenant brusquement par formation d’un mécanisme au premier cycle), est entièrement comparé

avec des simulations élasto-plastique incrémentales et des calculs directs simplifiés.

Enfin, nous fournissons une méthode numérique directe pour prédire le domaine de sécurité de

l’adaptation des matériaux poreux soumis à des charges variant de manière indépendente en considérant

le chemin critique du domaine de chargement au lieu de l’histoire entière. Le problème de l’adaptation

est transformé en un problème d’optimisation de grande taille, qui peut être résolu efficacement par

l’optimiseur non-linéaire IPOPT pour donner non seulement le facteur de charge limite, mais aussi le

champ de contrainte résiduelle correspondant à l’état d’adaptation.
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Main notations

E Young’s modulus
ν Poisson’s coefficient
F yield function
f porosity
f body force vector
u displacement vector
v velocity field
W external work of applied force
α load factor
αSD shakedown limit load factor
σ0 yield stress in tension or compression
σm microscopic hydrostatic stress
σe microscopic equivalent stress
σ microscopic stress field
σE elastic stress field in the fictitious elastic body
σE

0 elastic stress field corresponding to reference load
Σm macroscopic hydrostatic stress
Σe macroscopic equivalent stress
Σ macroscopic stress field
ε microscopic strain field
ε̇e elastic strain rate field
ε̇p plastic strain rate field
E macroscopic strain field
ρ residual stress field
ρ̄ time-independent residual stress field
P load domain
P0 reference load domain
λ plastic multiplier
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General introduction

In ductile fracture, the strength and plastic deformations of materials are strongly affected by the pres-

ence of heterogeneities (micro-cracks, voids, inclusions, etc.) and depend also on the external applied

loads. Indeed, for structures made up with ductile materials, experiments (Kobayashi et al., 1991; Schmidt

et al., 1991) have clearly shown that, the limit load at collapse under cyclic mechanical load or temper-

ature fields, is always lower than that the one under monotonic load. Even below the ultimate load, the

structure’s safety can not be guaranteed if subjected to cyclic repeated loads as shown in Figure 1.

Figure 1: Incremental collapse, alternating plasticity and shakedown.

Let us note a positive real number α as the load factor to govern the size of the load domain. The

experimental tests show that continued application of the variable loads in time on a structure made of

an elastic perfectly plastic material may result in the following possible situations:

• Above a particular value αSD of the load factor, we can observe that the accumulation of plastic

strains gives birth to an incremental collapse mechanism, with monotonically increasing excessive

deflections. This kind of structural failure is called incremental collapse or ratcheting.
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• Another possibility above the load αSD is that, although the reversal plastic strains remain small

and the incremental collapse is prevented, the alternating plastic strain increments occurs, which

is likely to lead to fracture by exhaustion of ductility after certain number of cycles(Manson, 1954;

Coffin Jr, 1954). This behavior is called alternating plasticity or accommodation.

• On the other hand, belowαSD , after possibly some elastic-plastic strains, the structure shakes down

to purely elastic behavior: after the transient phase a stabilization of the plastic deformations, the

plastic flow ceases completely. Hence, the total work dissipated is bounded in time. We say that the

structure shakes down.

Collapse by development of a mechanism, as in limit analysis, can be considered as the particular case

of ratcheting where the collapse occurs during the first cycle. The first two failures can be both pointed

out by the fact that the total plastic work dissipated is unbounded. As a result, the safety of the struc-

ture requires that the power dissipated by the plastic deformation due to variable thermo-mechanical

loads should eventually cease. The corresponding load factor αSD is called shakedown load factor. The

experimental observations show that αSD is always situated below the limit load αL , sometimes with a

significant difference. Above this value, the structure fails by ratcheting or alternating plasticity.

It is worth to remark that a complete step-by-step computation of the overall history up to the limit

state (see for instance (Taleb and Hauet, 2009)) can be very time-consuming or even exceed the capacity

of the computer. For this reason, the so-called Direct Methods based on shakedown theorems, extended

from the classical limit analysis to determine the ultimate load αL , are playing a more and more im-

portant role for the prediction of structural failures beyond the elastic range. The shakedown analysis

allows a direct access (see (Chinh, 2007; Polizzotto, 2010; Simon, 2013)) to the essential information for

engineers, the value of the shakedown factor below which the structural safety is guaranteed in mathe-

matically constructive manners (Save et al., 1997; Maier et al., 2000; Weichert and Maier, 2014), which is

potentially more economical than step-by-step inelastic analysis. Besides, sometimes we do not have the

full information on the evolution of loads as a time function, for example, the loading path is unknown,

then shakedown analysis must be used.

There are two dual theoretical theorems as in shakedown analysis. The statical one, with the key-

concept of time-independent residual stress field, was introduced historically the first. Papers by Bleich

(Bleich, 1932), Melan (Melan, 1936) and Symonds (Symonds, 1951) are considered as the starting point

of the method. The kinematical approach and the basic concepts of admissible plastic strain increment

were introduced by Koiter (Koiter, 1960) and developed by Neal (Neal, 1956), Gokhfeld (Gokhfeld, 1966)
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and Sawczuk (Sawczuk, 1969). An improved formulation including the concept of loading factor was

proposed by Martin (Martin, 1975).

The idea to apply shakedown concepts to the fatigue of materials is due to Dang Van (Dang-Van,

1973). Starting with the pioneering Orowan’s paper (Orowan, 1939) on grain plasticity, he states that fa-

tigue does not occur if all grains reach an elastic shakedown state. In order to estimate the stress-strain

state at the meso scale, a simple homogenization scheme of a plastic inclusion in an elastic matrix is con-

sidered by Dang Van (Dang-Van, 1993), Papadopoulos (Papadopoulos, 1994), Charkaluk et al. (Charkaluk

et al., 2009).

In the framework of the micromechanics of ductile porous media, Gurson proposed in a famous pa-

per (Gurson et al., 1977) a closed analytical formula for the upper bound limit analysis approach of a

hollow sphere having a von Mises solid matrix, with several extensions accounting for void shape ef-

fects (Gologanu et al., 1997; Gărăjeu and Suquet, 1997; Monchiet et al., 2007). Based on a relaxed yield

criterion,an alternative stress variational approach which provides a quasi-lower bound —slightly more

accurate as Gurson model— leading to a macroscopic criterion depending not only on the first and sec-

ond invariant of the macro-stress but also on the third one, was recently proposed(Cheng et al., 2014;

Shen et al., 2015). Combining the limit analysis and conic programming, accurate numerical approxima-

tions can be obtained by considering the hollow sphere (Thoré et al. (Thoré et al., 2009)) or the hollow

spheroid (Pastor et al. (Pastor et al., 2013)).

On the ground of micromechanical simulation, the problem of porous unit cell subjected to cyclic

loading was investigated from a more theoretical point of view by Gilles et al. (Gilles et al., 1992). They

concluded that the reduction of ductility under cyclic loadings probably arises from an effect of gradual

increase of the mean porosity during one cycle with the number of cycles, effect called ratcheting of the

porosity by Lacroix et al. in (Lacroix et al., 2016). These latter authors proposed an improved version

of Leblond-Perrin-Devaux model (Leblond et al., 1995) which allows a satisfactory reproduction of the

results of the micromechanical simulations.

Unlike these works which are concerned only by the former cycles during the transient phase, our aim

in the present work is to determine the limit state of porous ductile materials under cyclically variable re-

peated loads by considering the hollow sphere model in Gurson’s spirit. Unlike the kinematical approach,

the statical one, based on Melan’s theorem, does not require burdensome calculations of integrals that

may lead to heavy expressions. If there exists a time-independent residual stress field such that, added

to the elastic stress response in a corresponding fictitious perfectly elastic body, the resulting stress is

plastically admissible everywhere at any time, the hollow sphere shakes down and, following Dang Van,
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we state the fatigue does not occur. In order to determine the safety domain under cyclic loading, we

maximize the size of the load domain, that provides a fatigue criterion for porous ductile materials.

The theorems of limit analysis and shakedown analysis provide a powerful method for determina-

tion of the limit loads under which the structure remains stable. However, although exact collapse loads

can be determined analytically for various problems, complete solution rarely was obtained for indi-

vidual problems with complex geometric forms and boundary conditions. For shakedown analysis, the

analytical evaluation of αSD is much more difficult because of numerous possible combinations of the

loads. Concerning the limit analysis, one can quote the computation of the overall yield stress for soils

reinforced by periodic linear inclusions (de Buhan et al. (de Buhan and Hassen, 2013)) and periodically

heterogeneous plates (Bleyer et al. (Bleyer et al., 2015)). Concerning the shakedown analysis, Hachemi et

al. (Hachemi et al., 2000, 2014) proposed a numerical methodology to investigate the failure of periodic

composite materials under thermo-mechanical variable loads in presence of plasticity and damage. In

Chen et al. (Chen et al., 2013), it is combined with interior point method for efficient computation. In

our research, we aim at also providing a numerical method to determine the shakedown limit of ductile

porous materials by transforming the statical theorem to a large-size optimization problem.

This thesis is composed of 4 chapters as follows:

Chapter 1 In the first chapter, the basic concepts of the theory of plasticity are firstly recalled. Secondly, we

introduce briefly the classical limit analysis approach (statical and kinematical ones) and then the

application to porous materials with Gurson’s hollow sphere model. In the third part, the main

purpose, the extensions to repeated cyclic loadings, is precisely introduced. Then, the basic shake-

down theorems, the statical approach (Melan’s theorem), which is the base of this thesis, and the

dual kinematical one (Koiter’s theorem) are recalled.

Chapter 2 In this chapter, we derive analytically a macroscopic criterion to determine the shakedown domain

for ductile porous media with von Mises under cyclic loads by the use of Melan’s theorem. The

exact solution for the pure hydrostatic loading condition is firstly derived, and then combined with

an additional trial terms to capture the shear effects. This new macroscopic shakedown criterion

depends on the macroscopic mean stress, equivalent stress, the sign of the third invariant of stress

deviator, the porosity and the Poisson’s coefficient. The key point relies on the choice of a more

appropriate trial residual stress field allowing analytical computations.

Chapter 3 This chapter aims at calculating the shakedown limit of hollow sphere model with Drucker-Prager

matrix. Likewise, the key idea is in two steps: (i) the choice of appropriate trial stress and trial resid-
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ual stress fields and (ii) then maximizing the size of the load domain in the spirit of the standard

lower shakedown theorem. Together with the limit analysis-based yield criterion corresponding

to the sudden collapse by development of a mechanism at the first cycle, it defines the safety do-

main of porous materials subjected to cyclic load processes. The safe domain is little sensitive to

variations of the friction angle, however, it is considerably reduced compared to the one under

monotonic loads obtained by limit analysis.

Chapter 4 The last chapter is devoted to provide a direct numerical method to predict the shakedown safety

domain of porous materials subjected to multi-varying independently loadings. Considering the

critical loading path of the load domain instead of the whole history, the statical shakedown condi-

tion leads to a large-size optimization problem, of which the objective function is the shakedown

limit factor, with the discretization of a three dimensional model with von Mises matrix. By the ap-

plication of a non-linear optimizer IPOPT using the interior-point method, the proposed optimiza-

tion is solved efficiently to give not only the limit load factor, but also the corresponding residual

stress tensor for the shakedown state. In order to access the reliability of the present method, the

obtained results are illustrated and compared to the incremental step-by-step FEM computations

with the same load program.
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Chapter 1

Limit analysis and shakedown theory : basic

concepts and application to porous

materials

In this introductory chapter, the fundamental concepts of plasticity theory in small deformations are re-

called. First, we present the basic definitions and some classical hypothesis concerning the elastic plastic

constitutive laws formulations. Perfect plasticity, hardening and non associated plasticity are briefly out-

lined. Then, we introduce the statical and kinematical limit analysis approaches to model collapse of

rigid plastic solids under monotonic loads. Without being exhaustive, the application of the upper and

lower bounds theorems of limit analysis for the ductile rupture of porous materials are presented. The

shakedown theorems, the statical approach (Melan’s theorem), and the dual kinematical one (Koiter’s

theorem) are then provided. A particular attention is focused on Melan’s theorem since it is the base of

this thesis. Finally, although few papers are dealing with the analysis of ductility under cyclic loadings,

the bibliography on the shakedown of ductile porous materials is listed.

1.1 An overview of fundamentals of elastoplastic theory in small deforma-

tions

1.1.1 Elastic perfectly plastic materials

We consider a deformable body Ω surrounded by the surface ∂Ω, and made of an elastic perfectly plastic

material, which behaves elastically below the yield stress σ0 and begins to yield if it reaches the yield
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stress. The surface ∂Ω is composed of two parts: ∂Ωu on which is imposed the displacement ū and ∂Ωs

on which is imposed the surface load p̄ .

The plastic deformation is assumed to occur under a constant flow stress and it can undergo unlim-

ited plastic deformations when it is subjected to a state of stress with F (σ) = 0, where F represents the

yield function of Cauchy’s stress tensor σ. Elasticity and plasticity are combined by the additive decom-

position of the strain into its elastic part and its plastic one:

ε= εe +εp (1.1)

The elastic strains are related to the stresses through Hookes law:

εe = S σ (1.2)

where S is the compliance tensor for an isotropic homogeneous body given by:

Si j kl =
1

E

[

(1+ν)δi jδkl −νδi jδkl

]

(1.3)

in which E , ν donate the Young modulus and Poisson’s ratio respectively, and δi j is Kronecker’s symbol.

Besides, under the assumption of small deformations, we adopt the internal compatibility equations

to relate the strain field ε and the displacement field u:

ε(u) = g r ads u i n Ω (1.4)

where the displacements u are subjected to the boundary kinematical condition:

u = ū on ∂Ωu (1.5)

Likewise, the stress fields σ also need to fulfill internal the equilibrium equations:

di vσ+ f = 0 i n Ω (1.6)

where f donates the body forces vector, and the stress field is also subjected the boundary condition:

σn = p̄ on ∂Ωs (1.7)
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in which n is the unit vector towards out of the boundary.

The surface with the equation

F (σ) = 0 (1.8)

is called the yield surface, which depends only on the state of stress for elastic perfectly plastic materials.

As a result, the stress space is divided by the yield surface into three parts: F (σ) < 0 corresponds to the

elastic behaviors; F (σ) = 0 means that plastic flow occurs when the stress state is on the yield surface;

F (σ) > 0 corresponds to states of stress that cannot be attained for the perfectly plastic material.

In Drucker’s sense, an inelastic material is considered stable at a stress point if deformed by any stress

increment ∆σ, it absorbs a positive work ∆σ : ∆ε> 0 (Drucker, 1963).

We may deduce Hill’s principle of maximum power principle (Hill, 1948) from Drucker’s postulate:

(σ−σ∗) ε̇p ≥ 0 (1.9)

σ∗ is any attainable stress state inside the yield surface.

Drucker’s stability postulate (Drucker, 1956, 1963) has the following important consequences:

• Convexity. Materials that obey the Drucker’s stability postulate always have a convex yield function

F in the stress space. The plastic strain rate ε̇p associated to σ by the plastic yielding rule satisfies

Hill’s maximum power principle (1.9) (Hill, 1948):

• Normality. The plastic strain rate ε̇p must be normal to the yield surface and directed toward the

exterior of this surface (Mises, 1928; Drucker, 1951; Koiter, 1953):

ε̇p =λ
∂F

∂σ
(1.10)

where λ ≥ 0 is the plastic multiplier. The normality law (1.10) is also called the associated plastic

flow law.

The quantity D(ε̇p ) = σ : ε̇p is called the plastic dissipation, and from (1.9) we can deduce the prin-

ciple of maximum plastic dissipation: of all possible stress states σ∗ (within or on the yield surface), the

one which arises is that which requires the maximum plastic work

D(ε̇p ) ≥σ∗ : ε̇p (1.11)
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1.1.2 Hardening plasticity

The model of perfect plasticity can not be always applied since for most common materials, in the hard-

ening case, the yield limit can be modified with the deformation history (Nguyen, 2000).

The initial yield surface is expressed by (1.8). For the elastic perfectly plastic model, the yield surface

remains unchanged, but in the hardening case, the yield surface may change size, shape and position:

F (σ,Ki ) = 0 (1.12)

where Ki represents the hardening parameters, which change during plastic deformation and determine

the evolution of the yield surface. At first yield, the hardening parameters are zero, and F (σ,0) = F0(σ).

In the following part, we introduce some classical hardening models.

• Isotropic hardening. The yield surface is homothetic in the stress space and expands with increas-

ing stress (Eterovic and Bathe, 1990; Atluri, 1984). The yield function takes the expression:

F (σ,Ki ) = F0(σ)−K = 0 (1.13)

The shape of the yield function is specified by the initial yield function and its size is determined

by the hardening parameter K .

• Kinematic Hardening. In this case, the yield surface remains the same shape and size but merely

translates in stress space (Chaboche, 1991; Dafalias, 1983; Abdel-Karim and Ohno, 2000). Then the

yield function takes the following form:

F (σ,Ki ) = F0(σ,α) = 0 (1.14)

Here the hardening parameter α is called the back-stress, and the yield surface is shifted relative in

the stress space by α.

• Mixed hardening. In this more complex hardening case, the position, shape and size of the yield

surface are changed (Schwer and Murray, 1994; Axelsson and Samuelsson, 1979). The hardening

parameters are now the scalar K and the tensor α, then the yield function is given:

F (σ,Ki ) = F0(σ,α)−K = 0 (1.15)
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However, the effects of hardening is not considered in this research.

1.1.3 Non-associated plasticity

Materials like soil and rocks have often non-associated plastic behaviors, where the the plastic strain rate

is not normal to yield surface (Stoughton, 2002; Stoughton and Yoon, 2004). We introduce the plastic

potential G to describe the plastic flow rule (Vermeer and De Borst, 1984):

dεp = dλ
∂G

∂σ
(1.16)

Here let us take Drucker-Prager’s model for example (Cheng et al., 2015a), the plastic strain rate ε̇p is

given:

ε̇p = deq
∂G

∂σ
(1.17)

where deq =
p

2/3d ′ : d ′ with d ′ being the deviatoric part of the plastic strain rate ε̇p .

The yield function F and the plastic potential G are in the form:

F (σ) =σe −3ασm −σ0 ≤ 0

G(σ) =σe −3βσm −σ0

(1.18)

in which σm and σe represent the mean stress and effective stress, respectively; α is the pressure sensi-

tivity factor related to the friction angle φ, and β related to the dilatancy angle Ψ:

t anφ= 3α t anΨ= 3β (1.19)

If the friction angle is equal to the dilatancy angle φ =Ψ, the plastic potential G is the yield function F ,

and we recover the associated flow rule.

For the study of the limit load of non-associated material, the bipotential approach has been devel-

oped since last decades (De Saxcé, 1995; De Saxcé and Feng, 1998; Hjiaj et al., 2003; Magnier et al., 2014;

Cheng et al., 2015a). Noticing that, in the shakedown problem of pressure sensitive material in Chapter 3,

we focus our attention only on the associated material.
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1.2 Plastic Limit analysis

Limit analysis is the oldest and most developed approach which allows rapid access to the requested

information to determine the limit loads for materials and structures (Gvozdev, 1960; Hill, 1951; Prager

et al., 1958; Drucker et al., 1952). Before talking about the theorems of limit analysis, we shall introduce

firstly the principle of virtual work (Cook et al., 1974).

Principle of virtual work: For a considered body in equilibrium under a virtual displacement δu, the

virtual work of external forces on this virtual displacement field δu satisfying the kinematical boundary

condition (1.5) is equal to the virtual work of the internal forces on the virtual strains δε corresponding to

the considered virtual displacements.

∫

Ω

σ : δεdV =
∫

Ω

f̄ ·δεdV +
∫

∂Ωs

p̄ ·δεdS (1.20)

Note that the Principle of virtual work can represent the compatibility equations (1.4) and internal equi-

librium conditions (1.6) in the form of energy.

1.2.1 Basic concepts

We define the set of kinematical admissible displacement fields:

Ka = {u s.t . u(x) = ud on ∂Ωu} . (1.21)

and the strain field, symmetric part of the displacement gradient, is ε(u) = g r ads u .

The set of statically admissible stress fields is such as:

Sa = {σ s.t . di v σ= 0 i nΩ, σ ·n = p̄ on ∂ωs} (1.22)

where n is the unit outward normal vector of the matrix and the body force is not considered.

A stress field σ, belong to the set of set of statically admissible stress fields Sa , is called licit if it is

plastically admissible:

F (σ) ≤ 0 (1.23)

where F is the convex yield function of the stress tensor.

Likewise, a kinematically admissible strain field ε ∈∈∈K a is called licit if the external power of the load

is positive Pext (u) > 0.
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Besides, if the stress tensor σ and the plastic strain rate tensor ε̇p can be associated by the normality

law (1.10), the total power P (σ) of the applied loads is equal to the total dissipation D(ε̇p ).

From Hill’s maximum power principle (1.9), for a plastic strain rate field ε̇p and the corresponding

stress field σ associated by the normality law, the power of σ on ε̇ noted P (σ, ε̇) is larger or equal to the

one of any attainable stress field σ∗:

P (σ, ε̇) ≥ P (σ∗, ε̇) (1.24)

Due to the Maximum dissipation principle (1.11), the left side of the previous inequality is the power of

dissipation
∫

Ω
D(ε̇)dV of the plastic strain rate, so:

∫

Ω

D(ε̇)dV ≥ P (σ∗, ε̇) (1.25)

We note the limit load of the structure under monotone load as αl . For a given licit stress field, there

is a corresponding limit load which can be denoted by α−. Similarly, for a given licit plastic strain rate ε̇,

an intensity of loading α+ is defined as the power of the given load α+ equals the power of dissipation of

ε̇. As a result, the dual theorems of limit analysis can then be expressed in the following way:

• Statical theorem: Any load α− corresponding to a licit stress field is smaller than or equal to the limit

load: α− ≤αl .

• Kinematical theorem: Any load α+ corresponding to a licit plastic strain rate field is larger than or

equal to the limit load: α+ ≥αl .

The method of limit analysis started and has been developed in several researches (Hodge, 1959;

Onat, 1960; Lance and Onat, 1963; Hill, 1950). The descriptions of these two fundamental theorem of limit

analysis are inspired from (Save et al., 1997; Hodge, 1959)

1.2.2 Ductile rupture of porous media

To apply the limit analysis methods to ductile porous media, Gurson (Gurson et al., 1977) has proposed

a kinematical limit analysis approach of a hollow sphere having a von Mises solid matrix which delivered

an upper bound of the searched macroscopic criterion. Based on this pioneering work, a number of

micromechanical-based extensions have been further proposed in the literature by using kinematical

approach which requires the choice of a suitable trial velocity field (Garajeu, 1995; Gărăjeu and Suquet,

1997; Monchiet et al., 2007). Tvergaard at al. (Tvergaard, 1981; Tvergaard and Needleman, 1984) have

extended it to the GTN (Gurson-Tvergaard-Needelman) model which has been widely used by many
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researchers for various structural applications. Over the applications of ductile materials, one the most

important development is to take into consideration of void shape effects allowing the computational

investigation of the effects of penny shaped cracks on ductile behavior (Gologanu et al., 1997; Madou

and Leblond, 2012a,b). Besides, a more complex case for anisotropic plastic matrix with spherical voids

was studied in (Benzerga and Besson, 2001) and extended to spheroidal cavities latterly in (Monchiet

et al., 2006, 2008; Keralavarma and Benzerga, 2010). The influences of void size and void distribution are

considered by (Fritzen et al., 2012; Shen et al., 2017)

On the other hand, few applications of the statical theorem have been devoted to porous media. A

semi-analytical approach to deliver a lower bound criterion for ductile porous media by some fitting pro-

cedure based on numerical computations is firstly provided by (Yi and Duo, 1989; Sun and Wang, 1995).

In a recent work, Cheng et al. (Cheng et al., 2014) proposed a new Stress Variational Homogenization

(SVM) of ductile porous materials having a von Mises matrix providing a quasi-lower bound depending

on the first, second and third invariants of the macro-stress, and extend to arbitrary 3D stress loadings

case accounting for Lode angle effect (Cheng et al., 2015b). Shen et al. has improved this model by the

construction of a strictly statically admissible stress field under pure deviatoric loads (Shen et al., 2015).

For Gurson’s model, we consider a reference unit cell or macro-element Ω composed of a void ω and

matrix ΩM =Ω−ω. The macro-element Ω is bounded by surface ∂Ω and the void ω by ∂ω. The porosity

is denoted f = ω
Ω
= (a/b)3 with a and b the inner and outer rayons of the sphere, respectively.

The homogenization problem consists in determining the macroscopic stress for which there exist

at least an admissible couple (v ,σ) ∈ Ka ×Sa satisfying anywhere in the matrix the yield criterion and

the normality rule. 1 From Hill’s classical principle (Hill, 1950), we adopt the homogeneous deformation

boundary condition v (x) = D ·x . The overall stress Σ and strain rate D are defined as volume averages of

their microscopic counterparts σ and d :

Σ=
1

|Ω |

∫

ΩM

σ dV , D =
1

|Ω |

∫

Ω

d dV . (1.26)

and Hill-Mandel’s lemma (Hill, 1967):

Σ : D =
1

|Ω |

∫

ΩM

(σ : d )dV (1.27)

1For more details about the homogenization and application of kinematical limit analysis method to hollow sphere, the reader

can refer to (Leblond and Germain, 2003).
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The function of maximum local plastic dissipation π(d ) of a admissible stress field σ∗ is defined by:

π(d ) = max
σ∗∈Sa

(σ∗ : d ) (1.28)

and the macroscopic plastic dissipation Π(D):

Π(D) = min
v∈Ka

1

|Ω |

∫

ΩM

(σ : d )dV (1.29)

Thus, for any Σ and D such that there exist a stress field σ ∈Sa with F (Σ) ≤ 0, it is seen:

Σ : D ≤Π(D) (1.30)

For the macroscopic stress tensor Σ associated with D at limit states, we have Σ : D =Π(D), the yield

surface at macroscopic scale can be defined by the equation F (Σ,D) =Σ : D −Π(D):











F (Σ,D) =Σ : D −Π(D) = 0

∂F

∂D
(Σ,D) =Σ−

∂Π

∂D
(D) = 0

(1.31)

So the macroscopic limit stress of the hollow sphere can be obtained by:

Σ=
∂Π

∂D
(D) (1.32)

In order to apply the kinematical limit analysis methods to ductile porous materials with von Mises

matrix, Gurson (Gurson et al., 1977) has proposed a particular microscopic velocity field in the spherical

coordinates which is totally determined by the macroscopic strain rate D :

v (x) =
Dm

f

a3

r 2
er +D ′x (1.33)

where D ′ is the deviatoric part of D . By adopting an inequality:

Π(D) ≤Π
+(D) =

1

|Ω |

∫b

a
dr

(∫

S(r )
(π(d ))2 dS

)1/2

(1.34)

with

π(d ) =σ0deq =σ0 (d : d )1/2 (1.35)
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The upper bound of the macroscopic dissipation Πhom can be expressed only by D , and the limit

stress at the macroscopic scale takes the form Σ = ∂Π+/∂D . More precisely, if we consider the spheric

and deviatoric part, then the admissible states can be expressed by:

Σ=
∂Π+

∂Dm

∂Dm

∂D
+
∂Π+

∂De

∂De

∂D
(1.36)

with the macroscopic mean stress Σm = ∂Πhom/∂Dm and equivalent stress Σe = ∂Πhom/∂De , which leads

finally to the famous Gurson’s criterion:

(

Σe

σ0

)2

+2 f cosh

(

3Σm

2σ0

)

−1− f 2 = 0 (1.37)

Noticing that Gurson’s criterion depends only on the first and second invariant of the macroscopic

stress tensor, but not on the third one. Recently, based on a relaxed yield criterion with the same hollow

sphere model, Cheng et al. (Cheng et al., 2014) proposed an alternative stress variational approach which

provides a quasi-lower bound more accurate depending also on the sign of the third stress invariant.

It has been shown in (Cheng et al., 2014) that the statical variational principal (Hill, 1948) for the RVE

is equivalent to the following minimization problem:

min
σ∈Sa

(−D :Σ) (1.38)

under the yield condition F (σ) = 0, and if σ is statically admissible, Σ depends on it through:

Σ=
1

|Ω |

∫

∂Ω
(σ ·n)⊗x dS (1.39)

An approximation is then proposed to satisfy the condition F (σ) = 0 in an average sense:

F (σ) =
1

|Ω |

∫

ΩM

F (σ) dV = 0 (1.40)

Inspired from (Guo et al., 2008), the minimization problem (1.38) is transformed into an equivalent

saddle-point problem:

max
Λ̇≥0

min
σ∈Sa

(

L (σ,Λ̇) = Λ̇
1

|Ω |

∫

ΩM

F (σ) dV −D :Σ

)

(1.41)

by imposing Lagrange’s multiplier field Λ̇ to be uniform in ΩM .

Finally, by the choice of a trial stress field σ and expressing it with respect to the invariants of the
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macroscopic one, the macroscopic yield condition takes the following form by performing the variation

with respect to Λ̇:

F (Σ) =
1

|Ω |

∫

ΩM

F (σ(Σ)) dV ≤ 0 (1.42)

Similar to the normality law (1.10), with respect to Σ the macroscopic plastic flow rule reads:

D = Λ̇
∂F (Σ)

∂Σ
(1.43)

It is interestingly seen that, in the spirit of Gurson’s paper, almost all the the kinematical and statical

limit analysis of porous materials with an associated matrix requires the choice of a trial velocity field or

stress field which is generally built by adding deviatoric terms to the exact one for hydrostatic loading.

1.3 Extension to repeated cyclic loadings

1.3.1 Asymptotic responses and shakedown theorems

In the case of variable repeated loads, the magnitude of the ultimate load αl is not the only factor charac-

terizing the structural safety. Experiments have shown that although below αl , the asymptotic behaviors

(when time tends to infinity) for the limit state, characterized by evolution inelastic deformation and

hardening, can be ratcheting, accommodation or adaptation (shakedown) 2.

• Ratcheting: In this case, we can observe the accumulation of plastic strains gives birth to an incre-

mental collapse mechanism, with monotonically increasing excessive deflections (see Figure 1.1)

(Hassan and Kyriakides, 1992). The ruin of the structure then occurs very quickly either by exces-

sive deformation, either by cracking. This kind of failure is called ratcheting due to progressive

accumulation of plastic deformation.

• Accommodation: The behavior observed on Figure 1.2 is called alternating plasticity or accom-

modation. although the reversal plastic strains remain small and the incremental collapse is pre-

vented, the alternating plastic strain increments also leads to fracture by exhaustion of ductility

after after the transient phase (Laitusis et al., 2007). At each point, the plastic deformation changes

during the cycle, but recovers its initial values at the end of the cycle:

lim
τ→+∞

∫τ+Te

τ
ε̇p (x , t )d t = 0 (1.44)

2The Asymptotic responses are inspired from (Maitournam, 2013)
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Figure 1.1: Ratcheting

Figure 1.2: Accommodation

• Shakedown: As shown on Figure 1.3, the structure endures a finite number of cycles with a stabi-

lization of the plastic strains, and the structure shakes down to purely elastic behavior (Druyanov

and Roman, 1998). In this case, at any point of the structure, when the time variable t becomes

sufficiently large, the plastic strain εp (x , t ) tends towards a fixed value ε
p
∞(x):

lim
t→+∞

εp (x , t ) = ε
p
∞(x) (1.45)

At the point of view of energy, the shakedown occurs if the total dissipated energy remains bounded

when t goes to infinity, permanent plastic deformation tending then to a fixed value at every point:

lim
τ→+∞

∫τ

0

∫

Ω

D(εp )dV d t <+∞ or lim
τ→+∞

∫τ+Te

τ
D(εp )d t = 0 (1.46)
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Figure 1.3: Shakedown

The first two failures (accommodation and ratcheting) can be both pointed out by the fact that the

total dissipation is unbounded (Maitournam, 2013; Weichert and Maier, 2014). The corresponding safety

load factor is noted as αSD , below which the shakedown occurs.

On the other hand, the study of Wöhler’s curves (Fritzen et al., 2012) defines two different types of

fatigue of the structure under cyclic loadings: high-cycle fatigue and low-cycle fatigue. The low-cycle

fatigue appears in the case of accommodation. The law of low-cycle fatigue (or plastic fatigue) (Manson,

1954; Coffin Jr, 1954) gives the number of cycles NF leading to the fracture which depends on the local

plastic strain amplitude ∆εp according to laws of which the most simple has the following form :

∆εp = εF (NF )−γ , (1.47)

where the exponent γ and the fatigue-ductility coefficient εF are material dependent positive constants.

In the case of high-cycle fatigue, the structure subjected to cyclic loadings is in an elastic or shakedown

state. In reality, the macroscopic stress of mechanics continuous media are an average of mesoscopic

stress in the different constituents of the REV. Macroscopic adaptation is therefore an adaptation based

on on average values, witch does not guarantee the shakedown state at the constituent level. On the

ground of the pioneering Orowan’s work (Orowan, 1939) on grain plasticity, Dang Van (Dang-Van, 1973)

developed his shakedown-based approach for the high-cycle fatigue, assuming that the damage occurs

at the mesoscopic scale and stating that fatigue does not occur if all grains reach a shakedown state.

Now to analyse directly the shakedown states, we denote σE and εE the instantaneous values of the

stresses and strains in the corresponding fictitious elastic body. The residual stresses ρ and strains η are
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defined by

ρ =σ−σE , η= ε−εE (1.48)

In general, the residual stress field ρ can be taken as any solution of the homogeneous equilibrium

equations and in equilibrium with vanishing loads and belongs to the set of residual stress fields:

N =
{

ρ | di v ρ = 0 i nΩ, ρ ·n = 0 on∂Ωs

}

(1.49)

Likewise, the residual strain field η belongs to the set N
∗:

N
∗ =

{

η | η= g r ads u i nΩ, u = 0 on∂Ωu

}

(1.50)

The key idea of the statical approach is to define the admissible residual stress fields (in Melan’s sense)

ρ̄(x) , corresponding to the load domain S , such that (Melan, 1936):

• ρ̄ is time-independent,

• ρ̄ is a residual stress field : ρ̄ ∈N ,

• ρ̄ is plastically admissible in the sense that:

∀σE ∈S , F (σE + ρ̄) ≤ 0 i n Ω at any ti me (1.51)

Moreover, if F (σE + ρ̄) < 0 in Ω at any time, ρ̄(x) is said to be a strictly admissible residual stress field.

Hence, the following theorem was proved by Melan (Melan, 1936):

Melan’s theorem (Statical theorem): If a strictly admissible residual stress field ρ̄ can be found, the

body shakes down regardless of its initial state.

3 To prove Melan’s theorem, we suppose that an admissible residual stress field ρ̄ exists. The fictitious

residual elastic energy of the stress difference (ρ− ρ̄) notes:

R =
∫

Ω

(ρ− ρ̄) : S(ρ− ρ̄)dV ≥ 0 (1.52)

By Hooke’s law (1.2)

η= (SσE +εp )−Sσ= S(σ−σE )+εp (1.53)

3The proof of this statical theorem is inspired from (Weichert and Maier, 2014).
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It can be remarked that:

ηE = Sρ, ηp = εp (1.54)

And because of the time-independent strain field η̄E , the time derivative of (1.52) is reduced to:

Ṙ =
∫

Ω

(ρ− ρ̄) : η̇E dV (1.55)

Owing to (1.54), (1.55) can be rewritten as:

Ṙ =
∫

Ω

(ρ− ρ̄) : η̇dV −
∫

Ω

(ρ− ρ̄) : ε̇p dV (1.56)

As ρ̄ ∈ N and η̇ ∈ N
∗, because of virtual power principle (1.20), the first term of the right hand side

vanishes. According to the definition of the residual stress fields:

ρ− ρ̄ = (σ−σE )− (σ̄−σE ) =σ− σ̄ (1.57)

one has:

Ṙ =−
∫

Ω

(σ− σ̄) : ε̇p dV (1.58)

And from the definition of the dissipation,

Ṙ =−
∫

Ω

D(ε̇p )− σ̄ : ε̇p dV (1.59)

Because of the maximum dissipation principle (1.11), then Ṙ ≤ 0.

Now from the shakedown behavior, we need to prove that the total dissipation is bounded . As σ

and σ̄ belong to the interior of the elastic domain, there exists a scalar m > 1 such that mσ̄ is plastically

admissible. Because of Hill’s maximum power principle (1.11), one has:

m(σ̄−σ) : ε̇p + (m −1)σ : ε̇p = (mσ̄−σ) : ε̇p ≤ 0 (1.60)

Consequently, we can deduce from the previous equation:

∫t

0

∫

Ω

σ : ε̇p dV d t ≤
m

m −1

∫t

0

∫

Ω

(σ− σ̄) : ε̇p dV d t =−
m

m −1

∫t

0
Ṙ d t =

m

m −1
(R(0)−R(t )) (1.61)
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Because R(t ) is non negative and one has :

R(0)−R(t ) ≤R(0) (1.62)

that leads to the expression of total dissipation:

∀t ≥ 0,

∫t

0

∫

Ω

σ : ε̇p dV d t ≤
m

m −1
R(0) (1.63)

m
m−1R(0) is time independent and has finite value, so Melan’s theorem has been proved.

For the practical use of Melan’s theorem, let us introduce the notion of the loading domain. The load

Σ is supposed to belong to a convex load domain P which, for instance, can be described by convex

combination of elementary loads Σ1, · · · ,Σn :

Σ(t ) =
n
∑

k=1

µk (t )Σk ,
n
∑

k=1

µk (t ) = 1, µ1(t ) ≥ 0, · · · ,µn(t ) ≥ 0 (1.64)

Figure 1.4: Load domain

For the previous actions, the elastic responses in displacement uE , in strain εE and in stress σE , in a

corresponding fictitious perfectly elastic body, satisfy Hooke’s law. Because of the linearity of the elastic

response, the stress field σE belongs to a convex polyhedral load domain S = αS
0 , homothetic to the

reference load domain S
0 corresponding to the load domain P

0 (Figure 1.4). We note the stress field σE

by:

σE =ασE
0 (1.65)
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where α is the load factor and the reference elastic stress field σE
0 corresponding to the reference load.

Thus, the problem of the shakedown consists in searching the maximum value of the coefficient α

which is noted αSD such that the Melan’s condition remains fulfilled. The occurrence of shakedown is

guaranteed due to König’s statement(König and Siemaszko, 1988): If a given structure shakes down over

a cyclic load path containing all the vertices of the hyper-polyhedral load domain P then it shakes down

over any load path contained within the P .

Similar to the analysis limit in the previous subsection, we can prove that: any load factor α− corre-

sponding to admissible residual stress fields (1.51) is smaller than or equal to the limit load α− ≤αSD .

In a similar manner to what has been established in limit analysis, there exist a dual shakedown ap-

proach to the statical one. Likewise, for the kinematical approach, we consider the plastic strain rate

field ε̇p „ for which the increment plastic strain field over a loading cycle is ∆εp =
∮

ε̇p d t ∈ N
∗. Koiter’s

theorem can be stated as follows (Koiter, 1960):

Koiter’s theorem (Kinematical theorem): If there exists a plastic deformation rate ε̇p over the whole

history on the interval [0,+∞], we have:

∫+∞

0

∫

Ω

σE : ε̇p dV d t ≤
∫+∞

0

∫

Ω

D(ε̇p )dV d t (1.66)

then the shakedown will occur.

Or if we define the admissible plastic strain rates over a loading cycle in Koiter’s sense:

• ∆εp =
∮

ε̇p d t ∈N
∗

• ε̇p is plastically admissible:
∮∫

Ω
σE

0 : ε̇p dV d t > 0

Hence, the Kinematical theorem (Halphen, 1980) can be stated by Halphen in the following way: if the

body does not shake down, the admissible plastic strain rate can be found.

For more detailed proofs of these theorems, please refer to (Save et al., 1997; Weichert and Maier,

2014; Leblond and Germain, 2003)

1.3.2 Shakedown analysis of porous composites.

Although the bibliography on the ductile failure of porous materials under monotonic loads is abundant

and renewed, there are few papers dealing with the modeling of ductility under cyclic loadings and most

of them concern micromechanics-based numerical approaches.
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Available experiments regarding structures made up with ductile metals (Kobayashi et al., 1991; Schmidt

et al., 1991) have revealed that fracture strains under cyclic loads are significantly lower than the ones

reached under monotonic load conditions. Basing upon incremental finite element simulations of the

elastic plastic response of a hollow cylinder subjected to repeated loads, Gilles al Gilles et al. (1992) have

suggested that this strength reduction under cyclic conditions is due to a gradual increase void growth

during each cycle, an occurrence called ’ratcheting of porosity’. Later, this ratcheting of porosity has been

confirmed by Devaux et al Devaux et al. (1997) through numerical computations similar to those of Gilles

et al, but with a better control of the triaxiality. Also, the authors have demonstrated that classical Gur-

son’s model is unable to predict this phenomenon. Besson et al Besson and Guillemer-Neel (2003) have

included isotropic and linear kinematic hardening in a Gurson-like model. A more satisfactory reproduc-

tion of numerical results, particularly the void ratcheting, has been derived by Lacroix et al Lacroix et al.

(2016) by the use of an improved variant of the so-called LPD model due to Leblond et al Leblond et al.

(1995) with a more refined description of strain hardening. In the same context, numerical investigation

of the response of cubic elementary cell containing a single spherical or ellipsoidal pore have been car-

ried out by Mbiakop et al. Mbiakop et al. (2015) and have shown that he microstructure evolves toward a

void shape ratcheting. Recently, Cheng et al Cheng et al. (2017) adopted a semi-analytical method for the

elastic plastic response of porous solids comprising ellipsoidal voids with isotropic and linear kinematic

hardening under cyclic loads within the framework of nonlinear homogenization. Based on a mixed vari-

ational principle, an other shakedown analysis is developed to obtain the yield function from the specific

strain energy by (Ruiz and Silveira, 2018).

In the following chapters, we apply Melan’s theorem to porous materials by adopting the hollow

sphere model with von Mises (Chapter 2) and associated Drucker-Prager’s matrix (Chapter 3) analytically

and numerically.
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Chapter 2

A macroscopic criterion of shakedown limit

for von Mises ductile porous materials

subjected to general cyclic loadings

This chapter is devoted to the determination of shakedown limit states of porous ductile materials un-

der cyclically repeated loads by considering the hollow sphere model with von Mises matrix. We adopt

Melan’s statical approach based on time-independent residual stress fields. First, we determine the exact

solution for the pure hydrostatic loading for two limit cyclic loading cases: (i) the alternating and (ii) the

pulsating loads. It turns out that the collapse occurs by fatigue. Next, all possible intermediate cyclic

loading cases ranging between the two limit cyclic loading cases and involving shear effect are treated.

The key idea relies on the choice of an appropriate and rich trial residual stress field allowing analytical

computations. The new analytical safe criterion depends on the first and second macroscopic stresses

invariants and the sign of the third one. Finally, the obtained results are fully discussed and compared to

numerical results derived by both shakedown direct method and incremental elastic plastic simulations.

2.1 Introduction

To determine limit loads for materials and structures operating beyond the elastic limit is since ever one

of the most important tasks of engineers. For this purpose, the so-called Direct Methods play an in-

creasing role due to the fact that they allow rapid access to the requested information in mathematically

constructive manners. They embrace limit analysis, the oldest and most developed approach, and shake-
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down analysis, a powerful extension to the variable repeated loads potentially more economical than

step-by-step inelastic analysis (Maier et al., 2000; Save et al., 1997).

The limit analysis allows to predict the ultimate load αL , called the limit load. This theory, developed

intuitively in the 1930’s, theoretically and experimentally based in the 1950’s, is now widely used and has

become recommended by design Codes on pressure vessels (ASME) and on reinforced concrete slabs

(European Committee for Concrete).

However, in the case of variable repeated loads, the magnitude of the ultimate load is not the only

factor characterizing the structural safety. Even below αL , three limit states (ratcheting, accommodation

and shakedown) may take place, of which the first two are unstable as described in the previous chapter.

The corresponding limit, under which the structure shakes down, is noted as αSD .

Concerning shakedown analysis of ductile porous medias, few works have been devoted to the sub-

ject and most of them concern numerical micromechanical approaches (Gilles et al., 1992; Devaux et al.,

1997; Mbiakop et al., 2015; Lacroix et al., 2016; Leblond et al., 1995).

Intriguingly, all the studies cited above utilize Gurson-like approach within the framework of limit

analysis for the study of voided ductile media subjected to cyclic loads. It is our belief that the natu-

ral context for such studies should be the static or kinematic shakedown framework. Accordingly, in

this chapter, on shakedown analysis of ductile porous materials with a von Mises matrix under cyclically

repeated load, we propose a homogenized analytical macroscopic shakedown criterion by considering

Gurson’s hollow sphere model. Based on a microscopic trial stress field, we adopt Melan’s statical ap-

proach to determine the safe limit domain by maximizing the size of the load domain for general repeated

loadings with the definition of the macroscopic stress ratio:

−1 ≤ R =Σ−/Σ+ < 1 (2.1)

Σ− and Σ+ being the minimum and maximum load amplitude during the cyclic loading process, respec-

tively. Thus, alternating load and pulsating one can be considered as two particular loading cases de-

scribed by R = −1 and R = 0, respectively. Besides, the load case corresponding to R = 1 represents the

monotonic load process for which the collapse occurs by development of a mechanism which agreed

with numerical simulations.

This chapter is organized as follows: In Section 2.2, a brief review of the classical Hill-Mandel lemma

for the average-field theory and Melan’s shakedown theorem are presented as the starting point for the

following derivation. In section 2.3, we study the steady-state behavior of the hollow sphere under re-
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Figure 2.1: Hollow sphere model

peated pure hydrostatic loading. Owing to the spherical symmetry of this problem, analytical computa-

tions giving the collapse by fatigue or by development of mechanism are exact. Section 2.4 is devoted to

the derivation of a macroscopic shakedown of the unit cell under general repeated loads involving shear.

To this end, suitable admissible stress fields are built by adding an additional deviatoric trial field to ex-

act stress field under pure hydrostatic loading in order to capture the shear effects. Once the trial stress

fields are built, we maximize the size of the load domain, in the spirit of Melan’s theorem, that provides

the macroscopic shakedown safety domain. Moreover, Subsection 2.4.3 is concerned with the deriva-

tion of the relationship between the elastic limit and the amplitude of cyclic shakedown limit load. In

Section 2.5, direct and step-by-step numerical simulations are both performed to access the established

criterion. Finally, concluding remarks and perspectives are finally summarized in the last section.

2.2 Basic relations

Let us consider a reference unit cell or macro-element Ω composed of a void ω and matrix ΩM =Ω−ω

(Figure 2.1). The macro-element Ω is bounded by surface ∂Ω and the void ω by ∂ω. The matrix is made

of an elasto-plastic material (hardening is not considered) with a yield criterion:

F (σ) ≤ 0 , (2.2)

where F is a convex function of Cauchy’s stress tensor σ.
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From the classical Hill’s lemma (Hill, 1950), the macroscopic stress Σ and macroscopic strain E are

obtained as volume averages of their microscopic counterparts σ and ε:

Σ=
1

|Ω |

∫

Ω

σ dV , E =
1

|Ω |

∫

Ω

ε dV . (2.3)

The set of statically admissible stress fields is such as:

Sa = {σ s.t . di v σ= 0 i nΩ, σ ·n = 0 on∂ω, σ= 0 i nω} (2.4)

where n is the unit outward normal vector of the matrix. If σ is statically admissible, it is worth to remark

that Σ depends on it through:

Σ=
1

|Ω |

∫

∂Ω
(σ ·n)⊗x dS (2.5)

where x is the position vector in the cartesian coordinate system, and dS is an infinitesimal element of

the surface area at the external boundary ∂Ω .

Then, the field defined by :

ρ =σ−σE (2.6)

belongs to the set of residual stress fields:

N =
{

ρ | di v ρ = 0 i nΩ, ρ ·n = 0 on∂ω, ρ = 0 i nω
}

(2.7)

We describe a varying load as

Σ(t ) =
n
∑

k=1

µk (t )Σk ,
n
∑

k=1

µk (t ) = 1, µ−
k ≤µk (t ) ≤µ+

k (2.8)

where Σ(t ) stands for a total instantaneous load and the reference load Σ can be described by convex

combination of elementary loads Σn . Let us denote p0 and q0 as two reference loads, for instance, the

two independent variable loads can be described by p(t ) = µ1(t )p0 and q(t ) = µ2(t )q0. The rectangular

reference load domain P0 is indicated in Figure 2.2(a), where µ̄−
n and µ̄+

n are constant lower and upper

bounds.

Then, because of the linearity of the elastic response in the fictitious body when shakedown occurs,

the total stress field can be assumed as:

σ=ασE +ρ (2.9)
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(a) Load domain for shakedown analysis

(b) Critical cycles of load

Figure 2.2: Determination of shakedown domain

where α> 1 is the load factor. Hence, Melan’s lower bound theorem of shakedown (Melan, 1936) can be

expressed as follows:

If a time-independent residual stress field ρ̄ ∈ N , and a load factor α can be found, such that for all

loads in the domain P , the yield criterion holds everywhere in Ω at anytime:

F (ασE + ρ̄) < 0 (2.10)

then the body shakes down within the given domain P . The greatest value of admissible α is called shake-

down factor, noted αSD .

2.3 Pure hydrostatic loading

2.3.1 Problem formulation

We consider a hollow sphere, of which the macro-element V is enclosed by surface S, made up of a

spherical cavity embedded in a homothetic cell of a rigid-plastic isotropic and homogeneous material

with von Mises model. The inner and outer radii are respectively denoted a and b, giving the void volume

fraction f = (a/b)3 < 1. The matrix material obeys the associated von Mises criterion represented by the

yield function:

F (σ) =σe (σ)−σ0 ≤ 0 (2.11)

where σe =
√

3
2 s : s is the von Mises equivalent stress and σ0 > 0 represents the yield stress in tension.

The hollow sphere is subjected to a uniform hydrostatic stress q upon its external boundary. Owing
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to (2.5), the average mean stress is:

Σm =
1

3
Tr (Σ) = q (2.12)

Taking into account the central symmetry of the problem, the spherical coordinate (r,θ,ϕ) are used, r

being the radius, θ the inclination angle, ϕ the azimuth one, with orthonormal frame {er ,eθ,eφ}, and all

the fields are depending only on r . Owing to (2.12), the stress field in the fictitious elastic body is:

σE =
Σm

1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

)

(2.13)

where 1 is the second order unit tensor. For von Mises model, the yield function is:

max
a≤r≤b

σe = max
a≤r≤b

3

2

Σm

1− f

( a

r

)3
≤σ0 (2.14)

Hence, the first yielding occurs on the void boundary and the elastic limit average mean stress is:

Σ
e
m =

2

3
(1− f )σ0 (2.15)

2.3.2 Collapse by fatigue

Beyond this limit, plastic strains appear and our aim is to determine when the macro-element shakes

down using Melan’s theorem if the load Σm belongs to the domain:

Σm− ≤Σm ≤Σm+ =Σm−+∆Σm (2.16)

where Σm− and Σm+ are the minimum and maximum macroscopic hydrostatic loads during the cyclic

loading precess, respectively.

Because of the central symmetry, the residual stress field is:

ρ̄ = ρ̄r r er ⊗er + ρ̄θθ(eθ⊗eθ+eφ⊗eφ) (2.17)

and must satisfy the only internal equilibrium equation:

r

2

d ρ̄r r

dr
= ρ̄θθ− ρ̄r r (2.18)

Although it is not strictly imposed by the equilibrium conditions stated in (2.4), it is shrewd to build an
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admissible residual stress field such that:

ρ̄r r (b) = 0 (2.19)

Indeed, according to (2.5), the average mean residual stress:

Σr =
1

|Ω |

∫

∂Ω
(ρ̄ ·n)⊗x dS (2.20)

vanishes and the average mean stress is equal to the corresponding value in the fictitious elastic body:

Σ=Σr +ΣE =ΣE (2.21)

To build the residual stress field, we are inspired by Hodge’s solution for the shakedown of thick tube

(Hodge Jr, 1954). Combining with the latter equation, the condition enforces (1.51) that for a ≤ r ≤ b and

for Σm such that (2.16), one has:

|
r

2

d ρ̄r r

dr
+

3

2

Σm

1− f

( a

r

)3
|≤σ0 (2.22)

For the given load domain, the previous inequality is fulfilled, provided that:

−σ0 ≤
r

2

d ρ̄r r

dr
+

3

2

Σm−
1− f

( a

r

)3
≤σ0, −σ0 ≤

r

2

d ρ̄r r

dr
+

3

2

Σm+
1− f

( a

r

)3
≤σ0 (2.23)

Considering the superior and inferior envelopes, we retain only the strongest inequalities :

−σ0 −
3

2

Σm−
1− f

( a

r

)3
≤

r

2

d ρ̄r r

dr
≤σ0 −

3

2

Σm+
1− f

( a

r

)3
(2.24)

Hence, there exists a time-independent residual stress field only if for a ≤ r ≤ b:

−σ0 −
3

2

Σm−
1− f

( a

r

)3
≤σ0 −

3

2

Σm+
1− f

( a

r

)3
(2.25)

or, owing to 1− f > 0 and (2.16):

∆Σm

( a

r

)3
≤

4

3
(1− f )σ0 (2.26)

Because ∆Σm is positive, the previous condition is satisfied anywhere in the body if it is fulfilled at r = a,

hence the shakedown condition:

∆Σm ≤
4

3
(1− f )σ0 (2.27)

It is worth to observe that the shakedown limit on the cycle amplitude is the double of the elastic limit
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(2.15):

∆Σm ≤∆Σ
SD
m = 2Σe

m =
4

3
(1− f )σ0 (2.28)

Now, we have to prove the existence of an admissible residual stress field under this condition. Con-

sidering the equality is satisfied in the right hand part of condition (2.16) and (2.24) in the inner part

a ≤ r ≤ c of the body:
r

2

d ρ̄r r

dr
=σ0 −

3

2

Σm+
1− f

( a

r

)3
(2.29)

integrating and taking into account ρ̄r r (a) = 0 and (2.19), one has :

ρ̄ =−2σ0

(

ln
( a

r

)

1−
1

2
(eθ⊗eθ+eφ⊗eφ)

)

−
Σm+
1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

)

(2.30)

which is an admissible residual stress field for a ≤ r ≤ c as shown on Figure 2.3. We prolongate it in the

outer region c ≤ r ≤ b by the elastic solution of the problem of a hollow sphere of inner radius c and outer

one b with hydrostatic loading ρ̄r r (c) = ρ0 and (2.19):

ρ̄ =−
ρ0

1− fe

(

fe 1+
1

2

( c

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

)

(2.31)

where fe = (c/b)3 < 1. Let fp = (a/c)3 < 1 such that f = fp fe . Then the stress continuity entails:

ρ0 =−
2

3
σ0 ln fp −

1− fp

1− f
Σm+ (2.32)

2.3.3 Collapse by development of a mechanism

Moreover, because the equality has been chosen in (2.24), it is worth to remark that all the macro-element

is plastified when Σm = Σm+ if c = b hence the limit load Σ
L
m is reached. As ρ0 = 0 and fp = f , the limit

load is:

Σ
L
m =−

2

3
σ0 ln f (2.33)

which is a particular case of Gurson model (Gurson et al., 1977). It is clear that the collapse by fatigue

occurs only if:

Σm+ =Σm−+∆Σ
SD
m ≤Σ

L
m (2.34)
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Figure 2.3: The hollow sphere under pure hydrostatic load.

If Σm− = 0, owing to (2.28) and (2.33), the fatigue collapse occurs under the condition:

2(1− f )+ ln f ≤ 0 (2.35)

which is satisfied if:

f ≤ 0.203 (2.36)

if Σm− =−Σm+, the fatigue collapse occurs provided:

1− f + ln f ≤ 0 (2.37)

which is satisfied anyway.

It is worth noting, that the analysis of the effective asymptotic response of the hollow sphere under-

going combined and cyclic hydrostatic and shear loads has been worked out and are provided in (Zhang

et al., 2017b). To shorten this chapter this study is not reported here.
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2.4 Shakedown under general loadings

2.4.1 Constructing of a new trial stress field

In this section, we consider the hollow sphere under general cyclic loads involving shear effects. The trial

stress field is considered as the sum of the two following fields:

1. A heterogeneous stress tensor inspired from the exact solution under pure hydrostatic loadings

which is expressed as follows in the spherical coordinates {er ,eθ,eφ}:

σ(1) =σE(1) + ρ̄(1) (2.38)

where σE(1) is the stress field in the fictitious elastic body:

σE(1) =
Σm

1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

)

(2.39)

where Σm = 1
3 tr (Σ) is the macroscopic hydrostatic stress, and ρ̄(1), the corresponding residual

stress field in the inner region a ≤ r ≤ c, is inspired from the exact solution:

ρ̄(1) =−A0

(

ln
( a

r

)

1−
1

2
(eθ⊗eθ+eφ⊗eφ)

)

−
Σm+
1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

)

(2.40)

A0 being a constant to be determined.

2. A deviatoric part to capture the shear effects, is taking in the following form, in spherical coordi-

nates {er ,eθ,eφ}:

σ(2) =σE(2) + ρ̄(2) (2.41)

where a statically admissible stress field in the fictitious unit cell, inspired from the exact elastic

solution of an elastic hollow sphere subjected to axisymmetric and deviatoric loads (Zhang et al.,
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2018), is taken in the following form in the spherical frame:

σE(2) =
[

a3
(

18a2 +5r 2 (−5+ν)
)

(1+3cos(2θ))

2r 5 (−7+5ν)
−

1+3cos(2θ)

2

]

A1 (er ⊗er )

+
[

a3
(

27a2 +5r 2 (1−2ν)−3
(

21a2 +5r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+
−1+3cos(2θ)

2

]

A1 (eθ⊗eθ)

+
[

a3
(

9a2 +25r 2 (−1+2ν)−45
(

a2 + r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+1

]

A1
(

eφ⊗eφ
)

+
[

3a3
(

12a2 −5r 2 (1+ν)
)

sin(2θ)

2r 5 (−7+5ν)
+

3sin(2θ)

2

]

A1 (er ⊗eθ+eθ⊗er )

(2.42)

where A1 is a constant parameter.

Certainly, the expression of the trial residual stress field σE(2) given by (2.42) is rather lengthy

but was chosen after unsatisfactory trial with shortest expressions. Of course, adding extra terms

should improve the accuracy.

Now, attention is focused on the derivation of a new admissible deviatoric residual stress tensor ρ̄(2)

alloying the analytical derivation of a macroscopic shakedown criterion for intermediate loads (−1 ≤ R <

1). To this end, the key point is inspired from the method of solution for the pure hydrostatic loading

carried out in (Zhang et al., 2017b). More precisely, the key idea consists in assuming that the average

residual stress Σr vanishes so that the average mean stress is equal to the corresponding value in the

fictitious elastic body:

Σ=Σr +ΣE =ΣE (2.43)

Then the axisymmetric macroscopic stress tensor, resulting from (2.39) and (2.42), takes the form:

Σ=Σm1+ (1− f ) A1(er ⊗er +eθ⊗eθ−2eφ⊗eφ) , (2.44)

The macroscopic equivalent stress Σe and the third invariant of the macroscopic stress deviator J3

can be obtain easily from (2.44):

Σe = 3(1− f ) | A1 |, J3 =−2(1− f )3 A3
1 . (2.45)

in which J3 is the determinant of the deviatoric part of Σ. Due to the relation of sign between parameter

A1 and J3:

si g n(A1) =−si g n(J3) (2.46)
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we deduce:

A1 =−si g n(J3)
Σe

3(1− f )
(2.47)

For a variable hydrostatic loading combined with a constant shear loading, we consider the load domain

defined by two elementary loads Σ+ and Σ−:

Σ± =Σm±1− si g n(J3±)
Σe±

3
(er ⊗er +eθ⊗eθ−2eφ⊗eφ) (2.48)

Consequently, σE(2) (2.42) can be rewritten in the following form by replacing A1:

σE(2) =−
si g n(J3)Σe

3(1− f )

{[

a3
(

18a2 +5r 2 (−5+ν)
)

(1+3cos(2θ))

2r 5 (−7+5ν)
−

1+3cos(2θ)

2

]

(er ⊗er )

+
[

a3
(

27a2 +5r 2 (1−2ν)−3
(

21a2 +5r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+
−1+3cos(2θ)

2

]

(eθ⊗eθ)

+
[

a3
(

9a2 +25r 2 (−1+2ν)−45
(

a2 + r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+1

]

(

eφ⊗eφ
)

+
[

3a3
(

12a2 −5r 2 (1+ν)
)

sin(2θ)

2r 5 (−7+5ν)
+

3sin(2θ)

2

]

(er ⊗eθ+eθ⊗er )

}

(2.49)

Referring to the derivation of the shakedown limit for the hydrostatic load in (Zhang et al., 2017b), it is

shrewd to build a deviatoric residual stress field so that its equivalent stress has the same form as the

hydrostatic residual field ρ̄(1), in order to avoid the approximation during the shakedown analysis. To

this end, the new deviatoric residual stress field is split in two parts as follows:

ρ̄(2) = ρ̄(2a) + ρ̄(2b) , (2.50)

where ρ̄(2a) is taking the following form in spherical coordinates:

ρ̄(2a) =
si g n(J3+)Σe+

3(1− f )

{[

a3
(

18a2 +5r 2 (−5+ν)
)

(1+3cos(2θ))

2r 5 (−7+5ν)
−

1+3cos(2θ)

2

]

(er ⊗er )

+
[

a3
(

27a2 +5r 2 (1−2ν)−3
(

21a2 +5r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+
−1+3cos(2θ)

2

]

(eθ⊗eθ)

+
[

a3
(

9a2 +25r 2 (−1+2ν)−45
(

a2 + r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+1

]

(

eφ⊗eφ
)

+
[

3a3
(

12a2 −5r 2 (1+ν)
)

sin(2θ)

2r 5 (−7+5ν)
+

3sin(2θ)

2

]

(er ⊗eθ+eθ⊗er )

}

(2.51)
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and the second part ρ̄(2b) writes as follows in spherical coordinates:

ρ̄(2b) = ρ(2b)
r r er ⊗er +ρ(2b)

θθ
eθ⊗eθ+ρ(2b)

φφ
eφ⊗eφ+ρ(2b)

rθ
(er ⊗eθ+eθ⊗er ) (2.52)

ρ(2b)
r r , ρ(2b)

θθ
, ρ(2b)

φφ
and ρ(2b)

rθ
being the functions of r and θ.

We suppose the deviatoric parts sE(2), s(2b) of σE(2), ρ̄(2b) have the following relation:

s(2b) = A3 K (r ) sE(2) (2.53)

where K (r ) is a function of r and A3 the constant to be determined. In practice, the expressions of ρ̄(2b)

and K (r ) are given in Appendix 2.6.

Consequently, the new trial stress field in the matrix:

σ=σ(1) +σ(2) , (2.54)

and a vanishing stress field is considered in the void ω.

Finally, in the spherical frame, together with (2.39), (2.40), (2.49), (2.51) and (2.52), the complete stress

field (2.54) reads for a ≤ r ≤ c:

σ=
[(

a3
(

18a2 +5r 2 (−5+ν)
)

(1+3cos(2θ))

2r 5 (−7+5ν)
−

1+3cos(2θ)

2

)

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )

+ρ(2b)
r r − ln

( a

r

)

A0 −
Σm+−Σm

1− f

(

1−
( a

r

)3
)]

(er ⊗er )

+
[

ρ(2b)
θθ

+
a3

(

27a2 +5r 2 (1−2ν)−3
(

21a2 +5r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )

(3cos(2θ)−1)

2

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )
− ln

( a

r

)

A0 +
A0

2
−
Σm+−Σm

1− f

(

1+
1

2

( a

r

)3
)]

(eθ⊗eθ)

+
[(

a3
(

9a2 +25r 2 (−1+2ν)−45
(

a2 + r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+1

)

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )

+ρ(2b)
φφ

− ln
( a

r

)

A0 +
A0

2
−
Σm+−Σm

1− f

(

1+
1

2

( a

r

)3
)]

(

eφ⊗eφ
)

+
[(

3sin(2θ)

2
+

3a3
(

12a2 −5r 2 (1+ν)
)

sin(2θ)

2r 5 (−7+5ν)

)

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )

+ρ(2b)
rθ

]

(er ⊗eθ+eθ⊗er )

(2.55)

in which ρ(2b)
r r , ρ(2b)

θθ
, ρ(2b)

φφ
and ρ(2b)

rθ
are given in Appendix 1.
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2.4.2 Macroscopic shakedown criterion under general loading condition

From the new stress field (2.55) and the imposed condition (2.53), the equivalent stress σe for a ≤ r ≤ c

reads:

σ2
e =

(

A0

2
−

3

2

Σm+−Σm

1− f

( a

r

)3
)2

+
(

si g n(J3+)Σe+− si g n(J3)Σe

(1− f )
+3K (r ) A3

)2

P2(r,θ)

+
(

A0 −3
Σm+−Σm

1− f

( a

r

)3
)

P1(r,θ)

(

si g n(J3+)Σe+− si g n(J3)Σe

(1− f )
+3K (r ) A3

) (2.56)

where

P1(r,θ) =
(−5ν+10ν( a

r
)3 +18( a

r
)5 −20( a

r
)3 +7)

7−5ν

(3cos2(θ)−1)

2
(2.57)

P2(r,θ) =
{[

(
1125

2
ν−

1175

2
)(

a

r
)3 + (−

1175

2
ν−

2205

2
)(

a

r
)5 + (225ν2 −1125ν+

3375

4
)(

a

r
)6

+(1125ν−
2475

2
)(

a

r
)8 +

1215

4
(

a

r
)10

]

cos4(θ)+
[

(−150ν2 −165ν+525)(
a

r
)3

+(675ν−945)(
a

r
)5 + (−225ν2 +900ν−

1125

2
)(

a

r
)6 + (−810ν+675)(

a

r
)8

−
135

2
(

a

r
)10

]

cos2(θ)+
[

(25ν2 −70ν+49)+ (50ν2 −
115

2
ν−

35

2
)(

a

r
)3 + (−

135

2
ν+

189

2
)(

a

r
)5

+(100ν2 −175ν−
475

4
)(

a

r
)6 + (45ν−

615

2
)(

a

r
)8 +

351

4
(

a

r
)10

]}

1

(5ν−7)2

(2.58)

Considering the yield condition of von Mises model (2.11), one has:

σ2
e ≤σ2

0 (2.59)

We suppose that the collapse occurs by fatigue similar to the pure hydrostatic loading case (see

(Zhang et al., 2017b)). Resulting from (2.56) and (2.59), the shakedown limit is reached at the point of

coordinates (r,θ,φ) when the yield function is satisfied simultaneously for the extreme values of the load-

ing:

(

A0

2

)2

+ A0 3K (r )A3 P1(r,θ)+P2(r,θ) (3K (r )A3)2 =σ2
0 (2.60)
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(

A0

2
−

3

2

∆Σm

1− f

( a

r

)3
)2

+
(

A0 −3
∆Σm

1− f

) (

∆
(

si g n(J3)Σe

)

(1− f )
+3K (r ) A3

)

P1(r,θ)

+P2(r,θ)

(

∆
(

si g n(J3)Σe

)

(1− f )
+3K (r ) A3

)2

=σ2
0

(2.61)

where ∆Σm =Σm+−Σm−. Σm+ and Σm− are the maximum and minimum average mean stress during the

cyclic loading precess.

Because of the central symmetry of the von Mises yield surface, (2.60) and (2.61) must define the same

shakedown domain and A0, A3 depend only on ∆Σm , ∆(si g n(J3)Σe ), respectively.

It is readily seen that when

A0 =
3

2

∆Σm

1− f

( a

r

)3
and 3K (r )A3 = −

1

2

∆
(

si g n(J3)Σe

)

(1− f )
(2.62)

the previous condition is fulfilled.

By replacing A0 and A2, the shakedown condition (2.60) and (2.61) are reduced to:

(

3

4

∆Σm

1− f

)2 ( a

r

)6
−

3

2

∆Σm

1− f

( a

r

)3 ∆(si g n(J3)Σe )

2
(

1− f
) P1(r,θ) +P2(r,θ)

(

∆(si g n(J3)Σe )

2
(

1− f
)

)2

≤σ2
0 (2.63)

Since (a/r )n decreases quickly when r increases, it is reasonable to assume that the previous condi-

tion is satisfied anywhere in the body if it is fulfilled at r = a:

(

3

4

∆Σm

1− f

)2

−
3

2

∆Σm

1− f

∆(si g n(J3)Σe )

2
(

1− f
) P1(a,θ) +P2(a,θ)

(

∆(si g n(J3)Σe )

2
(

1− f
)

)2

≤σ2
0 (2.64)

The macroscopic shakedown criterion takes the final form by respecting the sign of J3+:

• When J3+ > 0, the condition is satisfied anywhere if it is fulfilled at the equator θ = π/2 where the

left part of the previous condition takes its maximum value, hence the shakedown condition reads:

(

3

4

∆Σm

1− f

)2

−
3

2

∆Σm

1− f

∆(si g n(J3)Σe )

2
(

1− f
) P1(a,

π

2
) +P2(a,

π

2
)

(

∆(si g n(J3)Σe )

2
(

1− f
)

)2

≤σ2
0 (2.65)

where

P1(a,
π

2
) =

5ν+5

2(5ν−7)
P2(a,

π

2
) =

25(7ν2 −13ν+7)

(5ν−7)2

• When J3+ < 0, the condition is satisfied anywhere if it is fulfilled at the poles θ = 0 or θ = π where

the left part of the previous condition takes its maximum value, hence the shakedown condition
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reads:

(

3

4

∆Σm

1− f

)2

−
3

2

∆Σm

1− f

∆(si g n(J3)Σe )

2
(

1− f
) P1(a,0) +P2(a,0)

(

∆(si g n(J3)Σe )

2
(

1− f
)

)2

≤σ2
0 (2.66)

where

P1(a,0) =
5ν+5

−5ν+7
P2(a,0) =

25(ν2 +2ν+1)

(5ν−7)2

Equation (2.65) and (2.66) constitute the main result of the present paper which generalize the one,

proposed by Zhang et al. (Zhang et al., 2017b), to all the intermediate loading cases for the macroscopic

stress ratios −1 ≤ R < 1, by constructing a more suitable residual stress field ρ̄(2) (2.50) under pure devi-

atoric load. Moreover, it is worth to notice that, unlike the previous one, the new shakedown criterion

does not depends on the residual stress field, and has a consistent expression for different stress ratios

R =Σ−/Σ+, expressed by the amplitude of the cyclic load ∆Σm and ∆Σe .

2.4.3 Nature of the collapse mechanism

In Zhang et al. (2017b), we have interestingly remarked that the shakedown limit on the cycle amplitude

under pure hydrostatic load is the double of the elastic limit:

∆Σ
SD
m = 2ΣE

m =
4

3
(1− f )σ0 (2.67)

This relationship characterizes the collapse by alternating plasticity responsible of the low-cycle fatigue.

Firstly, we determine the macroscopic elastic limit under general loading. Resulting from the von

Mises yield function (2.11) and the elastic stress field (2.39) and (2.49), one has:

(

3

2

Σ
E
m

1− f

( a

r

)3
)2

−3
Σ

E
m

1− f

( a

r

)3 si g n(J3)ΣE
e

1− f
P1(r,θ) +P2(r,θ)

(

si g n(J3)ΣE
e

1− f

)2

≤σ2
0 (2.68)

where P1(r,θ) and P2(r,θ) have same expressions of (2.57) and (2.58).

Simular to the derivation in Section 2.4.2, the body plasticizes firstly at inner boundary r = a, and the

macroscopic the elastic criterion reads:

• When J3 > 0, the body stays elastic if it is fulfilled at the equator θ = π/2 and the elastic condition

reads:
(

3

2

Σ
E
m

1− f

)2

−3
Σ

E
m

1− f

si g n(J3)ΣE
e

1− f
P1(a,

π

2
) +P2(a,

π

2
)

(

si g n(J3)ΣE
e

1− f

)2

≤σ2
0 (2.69)
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where

P1(a,
π

2
) =

5ν+5

2(5ν−7)
P2(a,

π

2
) =

25(7ν2 −13ν+7)

(5ν−7)2

• When J3 < 0, the body stays elastic if it is fulfilled at the poles θ = 0 or θ =π and the elastic condition

reads:
(

3

2

Σ
E
m

1− f

)2

−3
Σ

E
m

1− f

si g n(J3)ΣE
e

1− f
P1(a,0) +P2(a,0)

(

si g n(J3)ΣE
e

1− f

)2

≤σ2
0 (2.70)

where

P1(a,0) =
5ν+5

−5ν+7
P2(a,0) =

25(ν2 +2ν+1)

(5ν−7)2

It is readily seen that the macroscopic elastic limit for the von Mises matrix is central symmetric, and

for a given macroscopic triaxiality T , one has:

Σ
E
m+ =−ΣE

m−, si g n(J3+)ΣE
e+ =−si g n(J3−)ΣE

e− (2.71)

where Σ
E
m+ and Σ

E
m− (resp. ΣE

e+ and Σ
E
e−) are the macroscopic mean stress (resp. equivalent stress) of the

macroscopic elastic limit under compressive and tensile load, respectively.

Comparing (2.69) (2.70) with the shakedown condition (2.65) and (2.66), it is easy to obtain:

∆Σ
SD
m = 2ΣE

m+ =−2ΣE
m−

∆(si g n(J3)ΣSD
e ) = 2si g n(J3+)ΣE

e+ =−2si g n(J3−)ΣE
e−

(2.72)

Consequently, we deduce the relationship between the shakedown limit on the cycle amplitude and

the elastic limit under general loading:

∆Σ
SD =Σ

E
+−Σ

E
− = 2ΣE

+ (2.73)

The relationship (2.67) is therefore always fulfilled for general loading cases. Then the macroscopic

shakedown limit depends only on the elastic stress field and, since the hydrostatic elastic field σE(1) is

the exact solution, a more suitable deviatoric stress field will surely improve the accuracy of the shake-

down criterion.

Therefore, the accuracy of the prediction is not significantly affected by the trial residual field but

strongly depends on the choice of elastic stress field approximation.
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Figure 2.4: Hollow sphere model and initial mesh

2.5 Assessment of the new macroscopic shakedown criterion

In this section, we aim at assessing the predictive capability of the new shakedown criterion. Both shake-

down direct method and step-by-step elastic plastic numerical computations are performed to validate

the obtained theoretical solution for the intermediate loading cases (the macroscopic stress ratio R =

−1,−1/5,0 and 1/5). Also the new criterion is compared to the one obtained in the previous work Zhang

et al. (2017b) for the limit loading cases, namely the alternating and pulsating loads. Finally, the elastic

limit and shakedown limit on cyclic amplitude are also illustrated and compared in Subsection 2.5.3.

2.5.1 Comparison with numerical results for intermediate loading cases

In this subsection, the new criterion (2.65) and (2.66) will be compared with numerical results carried out

by direct and step-by-step methods for different stress ratio R =−1,−1/5,0 and 1/5.

Owing to the symmetry of the problem under consideration, we consider only a quarter of the axisym-

metric model, containing a spherical void, by adopting 20000 quadratic axisymmetric elements (Figure

2.4). The homogenous velocity field v = D · x is imposed on the external boundary of the model to fulfill

the constraint of constant macroscopic stress triaxiality T = Σm/Σe , which is carried out by a user sub-

routine MPC (Multi-Points Constraints) implemented in Abaqus/Standard software (Hibbett et al., 1998).

This numerical procedure is already described in (Chen et al., 2013; Cheng and Guo, 2007).

Direct numerical computations to determine the fatigue limit and step-by-step simulations to ana-

lyze the transient phase before shakedown or collapse are both performed to validate the new analytical

criterion for stress ratio R =−1,−1/5,0 and 1/5 with respecting the different porosities f = 0.001, f = 0.01
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T Σm+/σ0 Σe+/σ0 ρ11 ρ22 ρ33 ρ12
Position
r θ

+∞ 0.9998 0.0000 89.25 19.44 -105.65 156.15 a [0,π]
4.3333 0.8999 0.2077 208.57 -143.10 -65.48 -0.0005 a π/2

1.0 0.5859 0.5859 171.81 -195.42 23.60 0.0005 a π/2
0.0 0.0 0.9269 74.12 -210.30 136.18 -0.0056 a π/2
-1.0 0.5717 0.5717 -106.66 213.34 -106.67 0.0004 a 0

-0.3333 0.3079 0.9236 106.66 -213.34 106.67 0.005 a 0
-0.1026 0.0979 0.9547 55.40 -206.15 150.67 -0.0001 a π/2

Table 2.1: Some numerical values of fatigue limit, the corresponding residual stress and the first point
where the fatigue occurs under cyclic loading R =−1/5 for porosity f = 0.1

and f = 0.1 respectively (Figures 2.8, 2.9, 2.10). Poison’s coefficient is equal to ν = 0.3. In practice, ∆Σm

and ∆Σe are expressed by Σm+ and Σe+.

In direct method, for each Gauss point xg , let σE0
± (xg ) be the corresponding elastic stress response

and αg the solution of the local problem:

max
ρ̄,α

,
{

α | F (ασE0
± (xg )+ ρ̄) ≤ 0

}

(2.74)

For the alternating loading case, σE0
+ (xg ) =−σE0

− (xg ), and σE0
− (xg ) = 0 for the pulsating one. So the simu-

lation has been reduced to the solution of a big number of problems of optimizations of small dimension.

The fatigue limit α is obtained as the minimum value of αg for all Gauss points xg . Noticing that this is

only a simplified method, because we do not consider the equilibrium condition of the produced resid-

ual stress tensor at each Gauss point. For the complete numerical shakedown analysis, reads can refer to

Chapter 4

From the direct shakedown method, we obtain not only the fatigue limit but also the corresponding

residual stress and the location of the first point of the model where the fatigue first occurs as shown on

Table 2.1. However, this direct shakedown computation can not distinguish the collapse by fatigue or by

development of a mechanism, as in limit analysis. Taking T = 0 in Table 2.1 for example, the collapse

occurs by mechanism at the first cycle (see Figure 2.10) instead of by fatigue.

For the step-by-step incremental method, if the maximum load ∆Σm+ is less than the shakedown

limit, the strain-stress curve tends to a linear response and the value of PEEQ (Accumulated Equivalent

Plastic Strain) does not increase any more (Figure 2.6) after a certain number of cycles, hence the body

shakes down. In practice, the computation is stopped when the variation of PEEQ reaches a given toler-

ance and, as expected, the width of the cycle for strain tends to zero after certain cycles on the internal
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Figure 2.5: ε11 under pulsating load (R = 0) on the internal boundary at θ =π/2 when shakedown occurs
for T = 1.8333

Figure 2.6: Accumulated Equivalent Plastic Strain (PEEQ) under pulsating load (R = 0) when shakedown
occurs for T = 1.8333

boundary as shown on Figure 2.5. On the contrary, when the maximum load Σm+ exceeds the fatigue

limit (alternating loading case, for example), plastic shakedown (accommodation) occurs immediately

at the first cycle. The equivalent plastic strain continues to accumulate as shown on Figure 2.7 and the

dissipation remains increasing in each cycle.

The safety domain is defined by the new shakedown criterion and the yield surface proposed by Shen

et al.Shen et al. (2015), corresponding to the collapse by development of a mechanism at the first cycle.

With the increase of the stress ration R, the surface of collapse by mechanism becomes larger and, until

the extreme case R = 1, in which the cyclic load turns into monotonic one, the shakedown criterion is

identical to the plastic limit derived from the limit analysis.

It is readily seen that the new criterion is strictly inside the numerical results, which delivers a quasi-

lower bound, because of the statical approach based on Melan’s theorem. The first point where the fatigue

occurs is located on the internal boundary r = a at the equator θ = π/2 for J3+ > 0 and at the poles θ = 0

or π for J3+ < 0, in accord with the analytical solution.
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Figure 2.7: Accumulated Equivalent Plastic Strain (PEEQ) when shakedown does not occur for T = 1.8333

Figure 2.8: Interaction curve for porosity f = 0.001

For small porosities f = 0.001 (Figure 2.8) and f = 0.01 (Figure 2.9), a very good agreement between

the analytical and numerical results is observed. But for a larger porosity f = 0.1 (Figure 2.10), the dif-

ferences become noticeable around the deviatoric part is observed. Considering the exclusion of the

influence of the residual stress field in the new shakedown criterion, this is due to the chosen elastic

stress field under deviatoric load (2.49). Obviously, a suitable elastic stress field in the fictive elastic body

is essential to analyze the shakedown limit, and the chosen elastic field (2.49) is appropriate to predict

the shakedown domain for small porosities.

For completeness, the numerical results for R = −1,−1/5,0 and 1/5 with a porosity f = 0.01 are re-

ported in Appendix 2.
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Figure 2.9: Interaction curve for porosity f = 0.01

Figure 2.10: Interaction curve for porosity f = 0.1
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2.5.2 Comparison with the previous criterion in (Zhang et al., 2017b) for alternating and

pulsating loading cases

In this subsection, the new shakedown criteria (2.65) and (2.66) are compared with the one proposed in

(Zhang et al., 2017b) for alternating and pulsating cyclic loads.

Figure 2.12 illustrate the comparison of the new shakedown criterion, the previous one and the nu-

merical results for the alternating (R =−1) and pulsating (R = 0) loading cases with the porosities f = 0.01

and f = 0.1, respectively.

In the particular case of pulsating loading (R = 0), the curves of the new criterion is always between

the old ones and the numerical results. For the pure hydrostatic loading case, the two criteria both fit the

exact value ∆Σ
SD
m = 4

3 (1− f )σ0. However, the difference between them increases with the decrease of the

stress triaxialities T = Σm/Σe . Obviously, the new one is more accurate. The errors, originating from the

trial residual field in the previous research, has been avoided because the new residual field ρ̄(2) (2.50)

has no influence in the improved analytical solution (2.65) and (2.66).

In the other particular case of alternating loading (R = −1), the curves of the two criteria coincide

totally with each other. This is because, for the hollow sphere of von Mises matrix under alternating load,

the corresponding microscopic residual stress is vanishing when shakedown occurs. Consequently, the

choice of the residual stress field does not affect the shakedown criterion.

It is worth noting that the decreasing of the the macroscopic stress ratio R =Σ−/Σ+ causes a reduction

of the shakedown domain of the voided cell.

2.5.3 Comparison between the cyclic amplitude of the shakedown limit and the elastic limit

In section 2.4.3, we obtain a special relationship (2.73) under general loading condition. Figure 2.13 il-

lustrates the amplitude of the shakedown limit cyclic load and the elastic limit for porosity f = 0.01. The

same axisymmetric model applied in subsection 2.5.1 is adopted for the determination of the elastic limit

by the finite element method. We increase the monotonic load until the plastic strain firstly appears to

obtain the macroscopic elastic limit.

As shown on Figure 2.13, the analytical elastic limit is validated by the numerical results for porosity

f = 0.01. Moreover, if we magnify the elastic limit two times, it coincides totally with the shakedown

limit on cyclic amplitude. This can also explain why the elastic limit is in accord with the shakedown

limit under alternating load (R = −1), observed in (Zhang et al., 2017b). Note that the labels of the axis

on this figure are Σ
E
m+/σ0, ΣE

e+/σ0 for elastic limit (green), and ∆Σ
SD
m+/σ0, ∆ΣSD

e+ /σ0 for the amplitude for
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Figure 2.11: Comparison between the new criterion and the previous one in in (Zhang et al., 2017b) for
f = 0.01

Figure 2.12: Comparison between the new criterion and the old one for f = 0.1
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Figure 2.13: Comparison between the amplitude of the shakedown limit cyclic load and the elastic limit
for f = 0.1

shakedown limit (blue).

2.6 Conclusion

In this chapter, a new macroscopic fatigue criterion of ductile porous materials bas been established

based on Melan’s static theorem. It allows to determine the shakedown safety domain and the maximum

amplitude of cyclic load considering the hollow sphere unit cell with von Mises type matrix. The estab-

lished results clearly provide a closed form criterion depending the two stress invariant Σm and Σe , the

sign of the third invariant of the stress deviator J3 and Poisson’s coefficient ν. By considering a new resid-

ual stress field for the pure deviatoric load, the new criterion improves the one proposed by (Zhang et al.,

2017b) in the deviatoric part for stress ratio −1 ≤ R < 1, while the old one only discussed the alternating

(R =−1) and the pulsating (R = 0) loading cases.

The proposed model has been assessed by comparing to the numerical simulations derived by both

shakedown direct method and step-by-step incremental method for R =−1,−1/5,0 and 1/5, respectively.

The new criterion is strictly conservative to predict the shakedown safety domain combining with the

one proposed by (Shen et al., 2015), which corresponds to the collapse by development of a mechanism

at the first cycle. Moreover, the double relation, between the amplitude of the cyclic shakedown limit load

its elastic limit under monotonic load, is proved.
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In the perspective, the interest of the present study lies in finding a more appropriate deviatoric stress

field in the fictive elastic body and the extension of the proposed model to porous materials with pres-

sure sensitive matrix such as the Drucker-Prager model. Another interesting extension will concern the

shakedown of ductile porous materials involving the kinematical hardening. This issue is in progress.

Appendix 1: Determination of ρ̄(2b) and K (r )

In section 2.4.1, we hope to construct a residual stress field ρ̄(2b) (2.50) satisfying the imposed condition

(2.53), which provides:

ρ2b
r r −

1

3

(

ρ2b
r r +ρ2b

θθ+ρ2b
φφ

)

=

A3K (r )

(

−
cos(2θ)+1

2

2a3
((

15νr 2 +27a2 −30r 2
)

cos2(θ)−5νr 2 −9a2 +10r 2
)

r 5 (−7+5ν)

) (75)

ρ2b
θθ−

1

3

(

ρ2b
r r +ρ2b

θθ+ρ2b
φφ

)

=

A3K (r )

(

cos(2θ)−1

2
−

a3
((

63a2 −45r 2
)

cos2(θ)+20νr 2 −27a2 +5r 2
)

2r 5 (−7+5ν)

) (76)

ρ2b
φφ−

1

3

(

ρ2b
r r +ρ2b

θθ+ρ2b
φφ

)

=

A3K (r )

(

1−
a3

((

60νr 2 +45a2 −75r 2
)

cos2(θ)−40νr 2 −9a2 +35r 2
)

2r 5 (−7+5ν)

) (77)

ρ2b
rθ = A3K (r )

(

3a3
(

12a2 −5r 2 (1+ν)
)

sin(2θ)

2r 5 (−7+5ν)
+

3sin(2θ)

2

)

(78)

where K (r ) is a function of r and A3 is the constant to be determined.

Due to (2.7), we need to prove the existence of ρ̄(2b) satisfying two following conditions:

• di v ρ̄(2b) = 0 i nΩ

• ρ̄(2b) ·n = 0 on∂ω

Let us start from the internal equilibrium equation in spherical coordinates:

∂σr r

∂r
+

1

r

∂σrθ

∂θ
+

1

r sinθ

∂σrφ

∂φ
+

1

r

(

2σr r −σθθ−σφφ+σrθ cotθ
)

= 0 (79)

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

1

r sinθ

∂σθφ

∂φ
+

1

r

((

σθθ−σφφ

)

cotθ+3σrθ

)

= 0 (80)
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∂σφr

∂r
+

1

r

∂σφθ

∂θ
+

1

r sinθ

∂σφφ

∂φ
+

1

r

(

3σrθ+2σθφ

)

= 0 (81)

Due to the axisymmetric loading on the hollow sphere model, the stress components do not depend

on φ and one has:

σφr =σφθ = 0 (82)

Then (81) is automatically satisfied, and (79), (80) are reduced to:

∂σr r

∂r
+

1

r

∂σrθ

∂θ
+

1

r

(

2σr r −σθθ−σφφ+σrθ cotθ
)

= 0 (83)

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+

1

r

((

σθθ−σφφ

)

cotθ+3σrθ

)

= 0 (84)

Therefore, from (75), (76) and (77), we obtain:

ρ2b
θθ−ρ2b

φφ = A3K (r )

(

3(cos(2θ)−1)

2
−

3a3
((

−20νr 2 +6a2 +10r 2
)

cos2(θ)+20νr 2 −6a2 −10r 2
)

2r 5 (−7+5ν)

)

(85)

Taking (78) (85) into (84), the general solution of ρθθ is:

ρ2b
θθ =−

3A3 cos2(θ)

2r 5 (−7+5ν)

[

(

5a3νr 3 −5νr 6 −12a5r +5a3r 3 +7r 6) dK (r )

dr

K (r )
(

10a3νr 2 −10νr 5 +21a5 −5a3r 2 +14r 5)]+C1(r )

(86)

where C1(r ) is a function of r .

Then the expression of ρr r and ρφφ are given by:

ρ2b
φφ = ρ2b

θθ+
3A3K (r )

2

(

a3
((

−20νr 2 +6a2 +10r 2
)

cos2(θ)+20νr 2 −6a2 −10r 2
)

r 5 (−7+5ν)
+1−cos(2θ)

)

(87)

ρ2b
r r = ρ2b

φφ+
3A3K (r )

2

(

a3
((

40νr 2 +51a2 −65r 2
)

cos2(θ)−20νr 2 −15a2 +25r 2
)

2r 5 (−7+5ν)
−1−cos(2θ)

)

(88)

substitution in (83) yields:

53



dC1(r )

dr
=

A3

2r 6 (7−5ν)

[

cos2(θ)
(

−60a3νr 3 +15r 6ν+36a5r +120a3r 3 −21r 6) dK (r )

dr

+cos2(θ)
(

15a3νr 4 −15r 7ν−36a5r 2 +15a3r 4 +21r 7) d 2K (r )

dr 2

(

−30r 6ν+63a5r −45a3r 3 +43r 6) dK (r )

dr
+

(

30a3νr 2 −135a5 −15a3r 2)K (r )

]

(89)

Elimination of terms involving cos(θ) leads to:

(

−60a3νr 3 +15r 6ν+36a5r +120a3r 3 −21r 6) dK (r )

dr

+
(

15a3νr 4 −15r 7ν−36a5r 2 +15a3r 4 +21r 7) d 2K (r )

dr 2
= 0

(90)

Therefore, the general solutions of K (r ) and C1(r ) are:

K (r ) =C2

∫

e
∫ −a3νr 2+15νr 5+36a5+120a3r 2−21r 5

3r (−5a3νr 2+5νr 5+12a5−5a3r 2−7r 5)
dr

dr +C3 (91)

C1(r ) =
∫

[A3C2
(

30a3νr 2 −135a5 −15a3r 2)
∫

e
∫ −a3νr 2+15νr 5+36a5+120a3r 2−21r 5

3r (−5a3νr 2+5νr 5+12a5−5a3r 2−7r 5)
dr

dr

+A3C2
(

−30νr 6 +63a5r −45a3r 3 +42r 6)e
∫ −a3νr 2+15νr 5+36a5+120a3r 2−21r 5

3r (−5a3νr 2+5νr 5+12a5−5a3r 2−7r 5)
dr

+A3C3
(

30a3νr 2 −135a5 −15a3r 2)]dr +C4

(92)

where C2 C3 and C4 are constants.

By now, all the expressions of ρ̄(2b) are already obtained. It is very important to underline that, we

do not need to determine C2, C3 and C4, because these parameters of the residual stress field have no

influence in the derivation of the shakedown criterion (2.63). That is to say, C2, C3 and C4 can take any

real values except for C2 = 0 (if C2 = 0, ρ̄(2) is same to the corresponding elastic stress field σE(2)).

Two remarks can be made for the boundary condition:

1. The choice of the above residual stress field, defined by (2.52), together with (86), (87), (88) and (78),

implies that:

Σ
voi d
m =

1

|Ω |

∫

ω
σm dV =

1

3 |Ω |

∫

∂ω
x · (σn) dS = 0 . (93)

which then appears as a relaxed form of the void boundary condition for ρ̄(2b), similar to the case

of studied in (Zhang et al., 2017b).
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2. Due to the corresponding residual mean macroscopic stress tensor in the matrix:

Tr (Σr (ρ̄(2))) = 0 (94)

and applying the relaxed inner boundary condition (93) to the outer boundary, the average mean

residual stress:

Σr (ρ̄(2)) =
1

|Ω |

∫

∂Ω
(ρ̄(2) ·n)⊗x dS = 0 (95)

vanishes and the average mean stress is equal to the corresponding value in the fictitious elastic

body, which validate the imposed condition (2.21).

Appendix 2: Numerical values of shakedown limit with respect to different

values of T for porosity f = 0.1

The values of numerical shakedown limit, related to the asterisk points on Figure 2.10 are reported in

Table 2. Note that − means the collapse occurs by development of a mechanism instead of fatigue.

55



R -1 (alternating) -1/5 0 (pulsating) 1/5

T Σm+/σ0 Σe+/σ0 Σm+/σ0 Σe+/σ0 Σm+/σ0 Σe+/σ0 Σm+/σ0 Σe+/σ0

+∞ 0.6610 0.0000 1.1017 0.0000 1.3220 0.0000 1.6526 0.0000
9.3333 0.6307 0.0676 1.0511 0.1126 1.2655 0.1356 1.5766 0.0000
4.3333 0.5913 0.1365 0.9855 0.2274 1.1827 0.2729 1.4783 0.3411
2.6667 0.5436 0.2039 0.9061 0.3398 1.0870 0.4076 1.3591 0.5097
1.8333 0.4897 0.2671 0.8162 0.4452 0.9800 0.5345 1.2244 0.6678
1.3333 0.4327 0.3245 0.7211 0.5409 0.8654 0.6490 1.0817 0.8113

1.0 0.3746 0.3746 0.6244 0.6244 0.7492 0.7492 0.9366 0.9366
0.7619 0.3179 0.4172 0.5298 0.6954 0.6358 0.8345 − −
0.5833 0.2642 0.4529 0.4403 0.7548 0.5283 0.9057 − −
0.4444 0.2142 0.4820 0.3570 0.8033 0.4284 0.9640 − −
0.2424 0.1273 0.5250 0.2121 0.8750 − − − −
0.1026 0.0567 0.5531 0.0945 0.9218 − − − −

0.0 0.0000 0.5715 0.0000 0.9524 − − − −
-∞ 0.6611 0.0000 1.1017 0.0000 1.3220 0.0000 1.6526 0.0000

-9.3333 0.6106 0.0654 1.0177 0.1090 1.2213 0.1309 1.5266 0.1636
-4.3333 0.5606 0.1294 0.9344 0.2156 1.1213 0.2588 1.4016 0.3234
-2.6667 0.5125 0.1922 0.8541 0.3203 1.0249 0.3843 1.2812 0.4804
-1.8333 0.4648 0.2535 0.7747 0.4226 0.9297 0.5071 1.1621 0.6339
-1.3333 0.4180 0.3135 0.6967 0.5226 0.8361 0.6271 1.0451 0.7838

-1.0 0.3724 0.3724 0.6206 0.6206 0.7447 0.7447 0.9309 0.9309
-0.7619 0.3277 0.4301 0.5461 0.7168 0.6553 0.8601 − −
-0.5833 0.2838 0.4865 0.4730 0.8109 − − − −
-0.4444 0.2408 0.5419 0.4014 0.9032 − − − −
-0.3333 0.1987 0.5962 − − − − − −
-0.2424 0.1458 0.6012 − − − − − −
-0.1667 0.0991 0.5945 − − − − − −
-0.1026 0.0602 0.5868 0.1003 0.9779 − − − −
-0.0476 0.0286 0.5790 0.0459 0.9650 − − − −

Table 2: Numerical values of shakedown limit with respect to different values and the first point where
fatigue occurs of T for porosity f = 0.01
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Chapter 3

Shakedown of porous material with

Drucker-Prager dilatant matrix under

general cyclic loadings

This chapter is concerned with the shakedown limit states of porous ductile materials with Drucker-

Prager matrix under cyclically repeated loads. Following the previous chapter and using the hollow

sphere model, a macroscopic fatigue criterion is derived for the general conditions of cyclic loads. The

obtained criterion depends on the three invariants of the macroscopic stress tensor, the porosity, the

friction angle and Poisson’s ratio. Together with the limit analysis-based yield criterion corresponding

to the sudden collapse by development of a mechanism at the first cycle, it defines the safety domain

of porous materials subjected to cyclic load processes. Interestingly, it is found that the safe domain is

little sensitive to variations of the friction angle, however, it is considerably reduced compared to the one

under monotonic loads obtained by limit analysis. Further, some particular cases are recovered by the es-

tablished criterion. Finally, a comparative study between the analytical results and numerical predictions

performed by micromechanics-based finite element simulations is conducted for different porosities and

friction angles.

3.1 Effective behavior under cyclic pure hydrostatic loading

As in Chapter 2, the representative volume element (RVE) is a thick hollow sphere comprising a concen-

tric and free-traction boundary spherical cavity. The inner and the outer radii are respectively denoted
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by a and b that is the porosity is defined by f = (a/b)3 < 1. The matrix material obeys to the associated

elastic-perfectly plastic Drucker-Prager model for which the yield function writes:

F (σ) =σe (σ)+3ασm −σ0 ≤ 0 (3.1)

where σe =
√

3
2 s : s is the equivalent stress defined from the deviatoric part s of the stress tensor σ, σm

is the mean stress, σ0 represents the yield stress, and α is the pressure sensitivity factor related to the

friction angle φ by:

t anφ= 3α

.

It is worth noting that the Drucker-Prager criterion reduces to the incompressible von Mises model

for a vanishing friction angle (α = 0). The pressure-dependent Drucker-Prager constitutive law is often

used for modeling of rock and soils, concrete and polymeric and some metallic materials.

The hollow sphere undergoes a uniform hydrostatic stress q exerted upon its external boundary ∂Ω.

Owing to (1.39), the average mean stress is:

Σm =
1

3
Tr (Σ) = q (3.2)

Taking into account the central symmetry of the problem, the spherical coordinate (r,θ,ϕ) are used, r

being the radius, θ the inclination angle, ϕ the azimuth one, with orthonormal frame {er ,eθ,eφ}, and all

the fields are depending only on r . Simple computations allow the derivation of the stress field in the

fictitious elastic body is:

σE =
Σm

1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

)

(3.3)

where 1 is the second order unit tensor.

The behaviour of the body remains elastic provided:

max
a≤r≤b

σe = max
a≤r≤b

(

|
3

2

Σm

1− f

( a

r

)3
| +3α

Σm

1− f

)

≤σ0 (3.4)

Hence, the first yielding occurs on the void boundary and the elastic limit average mean stress is:

Σ
E
m± =

(1− f )

±3/2+3α
σ0 (3.5)
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for Σm ≷ 0.

3.1.1 Collapse by fatigue

Beyond this limit, plastic strains appear and our aim is to determine when the macro-element shakes

down using Melan’s theorem if the load Σm belongs to the domain:

Σm− ≤Σm ≤Σm+ =Σm−+∆Σm (3.6)

where Σm− and Σm+ are the minimum and maximum macroscopic hydrostatic loads during the cyclic

loading precess, respectively.

Inspired from the previous work of limit analysis of porous materials with Druker-Prager matrix (Cheng

et al., 2012), the exact stress field of hollow sphere under pure hydrostatic load beyond the elastic limit is

taking the following form:

σ∗ =
A0

3α

((

1−
( a

r

)3γ
)

1+
3

2
γ

( a

r

)3γ
(eθ⊗eθ+eφ⊗eφ)

)

(3.7)

where γ= 2α/(2α+ǫ) and ǫ=±1 for A0 ≷ 0.

We denote σE the stress field in the corresponding fictitious elastic body, and the residual stress field

is defined by:

ρ̄ =σ∗−σE (3.8)

where Σ
E
m takes its extreme values in the inner part a ≤ c ≤ b of the body when shakedown occurs:

ρ̄ = A0

((

1−
( a

r

)3γ
)

1+
3

2
γ

( a

r

)3γ
(eθ⊗eθ+eφ⊗eφ)

)

−
Σm±
1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

) (3.9)

where A0 is a constant parameter. It can be verified that γ, A0 and Σm have the same sign ǫ.

Taking the positive sign ǫ = 1 for example, the total stress field under the pure hydrostatic load for

a ≤ c ≤ b is taking the following form:

σ= A0

((

1−
( a

r

)3γ
)

1+
3

2
γ

( a

r

)3γ
(eθ⊗eθ+eφ⊗eφ)

)

−
Σm+−Σm

1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

) (3.10)
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Combining with the yield function (3.1), one has:

|
3γA0

2

( a

r

)3γ
−

3

2

Σm+−Σm

1− f

( a

r

)3
| +3α

(

γA0

( a

r

)3γ
+ A0

(

1−
( a

r

)3γ
)

−
Σm+−Σm

1− f

)

≤σ0 (3.11)

The shakedown limit is reached in when the yield function vanishes simultaneously for the extreme val-

ues of loading:

|
3γA0

2

( a

r

)3γ
| +3α

(

γA0

( a

r

)3γ
+ A0

(

1−
( a

r

)3γ
))

≤σ0 (3.12)

|
3γA0

2

( a

r

)3γ
−

3

2

∆Σm

1− f

( a

r

)3
| +3α

(

γA0

( a

r

)3γ
+ A0

(

1−
( a

r

)3γ
)

−
∆Σm

1− f

)

≤σ0 (3.13)

Because (a/r )n decreases quickly when r increases, the previous condition is satisfied anywhere in

the body if it is fulfilled at r = a:

|
(

3γA0

2

)2

| +3α
(

γA0
)

≤σ0

|
(

3γA0

2
−

3

2

∆Σm

1− f

)2

| +3α

(

γA0 −
∆Σm

1− f

)

≤σ0

Combining the two previous equations, the shakedown limit for pure hydrostatic loading reads:

∆Σm

σ0
≤

3
(

1− f
)

(3/2 +3α) (3/2 −3α)
(3.14)

It is worth to observe the relationship between the shakedown limit on the cycle amplitude and the

elastic limit (3.5):

∆Σm ≤∆Σ
SD
m =Σ

E
m+−Σ

E
m− =

3
(

1− f
)

σ0

(3/2 +3α) (3/2 −3α)
(3.15)

3.1.2 Collapse by development of a mechanism

Moreover, because the stress field chosen in (3.7), all the macro-element is plastified when the limit load

Σ
L
m is reached:

Σ
L
m± =

σ0

3α

(

1− f γ
)

=
σ0

3α

(

1− f 2α/(2α±1)) (3.16)

It is clear that the collapse by fatigue occurs only if:

Σm− ≥Σ
L
m− and Σm+ =Σm−+∆Σ

SD
m ≤Σ

L
m+ (3.17)
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If Σm− = 0, owing to (3.14) and (3.16), the fatigue collapse occurs under the condition:

3
(

1− f
)

(3/2 +3α) (3/2 −3α)
≤

1

3α

(

1− f 2α/(2α+1)) (3.18)

And if Σm− =−Σm+, the fatigue collapse occurs provided:

−
3

(

1− f
)

2(3/2 +3α) (3/2 −3α)
≥

1

3α

(

1− f 2α/(2α−1))

and
3

(

1− f
)

2(3/2 +3α) (3/2 −3α)
≤

1

3α

(

1− f 2α/(2α+1))
(3.19)

3.2 Macroscopic shakedown criterion under general cyclic loadings

3.2.1 The trial stress and residual stress fields

For the general case, it is not possible to obtain the exact solution because of the non linearity of Drucker-

Prager yield function. The choice of a trial stress field is crucial. It must be rather rich to capture the main

physical effect but depends on a few number of parameters in order to obtain a closed-form formula for

the macroscopic criterion.

Taking into account the symmetry of the hollow sphere model, the trial stress field is considered as

the sum of the two following fields:

• A heterogeneous part inspired from the exact field under pure hydrostatic loadings which is ex-

pressed in spherical coordinates:

σ(1) = ρ̄(1) +σE(1) (3.20)

where the residual stress field in the inner region a ≤ r ≤ c is inspired from the exact solution Cheng

et al. (2012) in the pure hydrostatic loading:

ρ̄(1) = A0

((

1−
( a

r

)3γ
)

1+
3

2
γ

( a

r

)3γ
(eθ⊗eθ+eφ⊗eφ)

)

−
Σm+
1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

)

(3.21)

A0 being a constant to be determined.

The stress field in the fictitious elastic body is given

σE(1) =
Σm

1− f

(

1+
1

2

( a

r

)3
(eθ⊗eθ+eφ⊗eφ−2er ⊗er )

)

(3.22)
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• The other part under the pure deviatoric loadings is expressed in spherical coordinates:

σ(2) = ρ̄(2) +σE(2) (3.23)

where a statically admissible stress field in the fictitious body, deduced from the Papkovich-Neuber

solution (Soutas-Little, 1999) for the hollow sphere under the pure deviatoric load, was proposed

in the previous work (Zhang et al., 2018) in the following form, in the spherical coordinates (r,θ,φ)

with orthonormal frame {er ,eθ,eφ}:

σE(2) =−
si g n(J3)Σe

3(1− f )

{[

a3
(

18a2 +5r 2 (−5+ν)
)

(1+3cos(2θ))

2r 5 (−7+5ν)
−

1+3cos(2θ)

2

]

(er ⊗er )

+
[

a3
(

27a2 +5r 2 (1−2ν)−3
(

21a2 +5r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+
−1+3cos(2θ)

2

]

(eθ⊗eθ)

+
[

a3
(

9a2 +25r 2 (−1+2ν)−45
(

a2 + r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+1

]

(

eφ⊗eφ
)

+
[

3a3
(

12a2 −5r 2 (1+ν)
)

sin(2θ)

2r 5 (−7+5ν)
+

3sin(2θ)

2

]

(er ⊗eθ+eθ⊗er )

}

(3.24)

where ν is Poisson’s coefficient, Σe the macroscopic equivalent stress and J3 the third invariant of

the macroscopic stress deviator.

Similar to the residual stress field for the pure hydrostatic loading (3.21), the new deviatoric residual

stress field consists of two parts:

ρ̄(2) = ρ̄(2a) + ρ̄(2b) , (3.25)

where ρ̄(2a) is the extreme value of the elastic stress field in the fictitious elastic body, taking the

following form in spherical coordinates:

ρ̄(2a) =
si g n(J3+)Σe+

3(1− f )

{[

a3
(

18a2 +5r 2 (−5+ν)
)

(1+3cos(2θ))

2r 5 (−7+5ν)
−

1+3cos(2θ)

2

]

(er ⊗er )

+
[

a3
(

27a2 +5r 2 (1−2ν)−3
(

21a2 +5r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+
−1+3cos(2θ)

2

]

(eθ⊗eθ)

+
[

a3
(

9a2 +25r 2 (−1+2ν)−45
(

a2 + r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+1

]

(

eφ⊗eφ
)

+
[

3a3
(

12a2 −5r 2 (1+ν)
)

sin(2θ)

2r 5 (−7+5ν)
+

3sin(2θ)

2

]

(er ⊗eθ+eθ⊗er )

}

(3.26)
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and the second part ρ̄(2b) is in spherical coordinates:

ρ̄(2b) = ρ2b
r r er ⊗er +ρ2b

θθeθ⊗eθ+ρ2b
φφeφ⊗eφ+ρ2b

rθ (er ⊗eθ+eθ⊗er ) (3.27)

ρ2b
r r , ρ2b

θθ
, ρ2b

φφ and ρ2b
rθ

being the functions of r and θ. We suppose the deviatoric parts sE(2), s(2b) of

σE(2), ρ̄(2b) have the following relation:

s(2b) = A1 K (r ) sE(2) and σm(ρ̄(2b)) = A1 K (r )σm(σE(2)) (3.28)

where K (r ) is a function of r and A1 the constant to be determined, noticing that the existence of

ρ̄(2b) and K (r ) was provided in (Zhang et al., 2017a).

Consequently, in the matrix ΩM , the resultant two parameters-based trial stress field in the matrix

can be written as:

σ=σ(1) +σ(2) , (3.29)

Note that a vanishing stress field is considered in the void ω.

In spherical coordinates, the complete stress field (3.29) reads for a ≤ r ≤ c:

σ=
[(

a3
(

18a2 +5r 2 (−5+ν)
)

(1+3cos(2θ))

2r 5 (−7+5ν)
−

1+3cos(2θ)

2

)

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )

+ρ2b
r r +

(

1−
( a

r

)3γ
)

A0 −
Σm+−Σm

1− f

(

1−
( a

r

)3
)]

(er ⊗er )

+
[

a3
(

27a2 +5r 2 (1−2ν)−3
(

21a2 +5r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )

(3cos(2θ)−1)

2

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )
+ρ2b

θθ+
(

1−
( a

r

)3γ
+

3

2
γ

( a

r

)3γ
)

A0

−
Σm+−Σm

1− f

(

1+
1

2

( a

r

)3
)]

(eθ⊗eθ)

+
[(

a3
(

9a2 +25r 2 (−1+2ν)−45
(

a2 + r 2 (−1+2ν)
)

cos2 (θ)
)

2r 5 (−7+5ν)
+1

)

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )

+ρ2b
φφ+

(

1−
( a

r

)3γ
+

3

2
γ

( a

r

)3γ
)

A0 −
Σm+−Σm

1− f

(

1+
1

2

( a

r

)3
)]

(

eφ⊗eφ
)

+
[(

3sin(2θ)

2
+

3a3
(

12a2 −5r 2 (1+ν)
)

sin(2θ)

2r 5 (−7+5ν)

)

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )
+ρ2b

rθ

]

(er ⊗eθ+eθ⊗er )

(3.30)

For a variable hydrostatic loading combined with a constant shear loading, we consider the load do-
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main defined by two elementary loads Σ+ and Σ−, and the axisymmetric macroscopic stress tensor, re-

sulting from (3.30), takes the form:

Σ± =Σm±1− si g n(J3±)
Σe±

3
(er ⊗er +eθ⊗eθ−2eφ⊗eφ) (3.31)

From (3.28) and (3.30), it is readily seen that the mean stress and the equivalent stress read for a ≤ r ≤

c:

σm = γA0

( a

r

)3γ
+ A0

(

1−
( a

r

)3γ
)

−
Σm+−Σm

1− f

−
5a3 (ν+1)

(

3cos2θ−1
)

r 3 (−7+5ν)

(

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )
+K (r ) A1

)
(3.32)

σ2
e =

(

3γA0

2

( a

r

)3γ
−

3

2

Σm+−Σm

1− f

( a

r

)3
)2

+
(

si g n(J3+)Σe+− si g n(J3)Σe

(1− f )
+3K (r ) A1

)2

P2(r,θ)

+
(

3γA0

( a

r

)3γ
−3

Σm+−Σm

1− f

( a

r

)3
)

P1(r,θ)

(

si g n(J3+)Σe+− si g n(J3)Σe

(1− f )
+3K (r ) A1

) (3.33)

where

P1(r,θ) =
3(−5ν+10ν( a

r
)3 +18( a

r
)5 −20( a

r
)3 +7)

7−5ν

(3cos2(θ)−1)

2
(3.34)

P2(r,θ) =
{[

(
1125

2
ν−

1175

2
)(

a

r
)3 + (−

1175

2
ν−

2205

2
)(

a

r
)5 + (225ν2 −1125ν+

3375

4
)(

a

r
)6

+(1125ν−
2475

2
)(

a

r
)8 +

1215

4
(

a

r
)10

]

cos4(θ)+
[

(−150ν2 −165ν+525)(
a

r
)3

+(675ν−945)(
a

r
)5 + (−225ν2 +900ν−

1125

2
)(

a

r
)6 + (−810ν+675)(

a

r
)8

−
135

2
(

a

r
)10

]

cos2(θ)+
[

(25ν2 −70ν+49)+ (50ν2 −
115

2
ν−

35

2
)(

a

r
)3 + (−

135

2
ν+

189

2
)(

a

r
)5

+(100ν2 −175ν−
475

4
)(

a

r
)6 + (45ν−

615

2
)(

a

r
)8 +

351

4
(

a

r
)10

]}

9

(5ν−7)2

(3.35)

64



3.2.2 Closed-form expression of the homogenized shakedown criterion

Considering the yield function (3.1), the shakedown condition reads:

[(

3γA0

2

( a

r

)3γ
−

3

2

Σm+−Σm

1− f

( a

r

)3
)2

+
(

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )
+K (r ) A2

)2

P2(r,θ)

+
(

3γA0

( a

r

)3γ
−3

Σm+−Σm

1− f

( a

r

)3
)

P1(r,θ)

(

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )
+K (r ) A2

)]1/2

+3α

[

γA0

( a

r

)3γ
+ A0

(

1−
( a

r

)3γ
)

−
Σm+−Σm

1− f

−
5a3 (ν+1)

(

3cos2θ−1
)

r 3 (−7+5ν)

(

si g n(J3+)Σe+− si g n(J3)Σe

3(1− f )
+K (r ) A1

)

]

≤σ0

(3.36)

The collapse occurs by fatigue when the yield function vanishes simultaneously for the extreme values of

loading:

[(

3γA0

2

( a

r

)3γ
)2

+ (K (r ) A1)2 P2(r,θ)+3γA0

( a

r

)3γ
P1(r,θ) (K (r ) A1)

]1/2

+3α

[

γA0

( a

r

)3γ
+ A0

(

1−
( a

r

)3γ
)

−
5a3 (ν+1)

(

3cos2θ−1
)

r 3 (−7+5ν)
K (r ) A1

]

=σ0

(3.37)

[(

3γA0

2

( a

r

)3γ
−

3

2

∆Σm

1− f

( a

r

)3
)2

+
(

∆(si g n(J3)Σe )

3(1− f )
+K (r ) A2

)2

P2(r,θ)

+
(

3γA0

( a

r

)3γ
−3

∆Σm

1− f

( a

r

)3
)

P1(r,θ)

(

∆(si g n(J3)Σe )

3(1− f )
+K (r ) A2

)]1/2

+3α

[

γA0

( a

r

)3γ
+ A0

(

1−
( a

r

)3γ
)

−
∆Σm

1− f

( a

r

)3

−
5a3 (ν+1)

(

3cos2θ−1
)

r 3 (−7+5ν)

(

∆si g n(J3)Σe

3(1− f )
+K (r ) A1

)

]

=σ0

(3.38)

Because (a/r )n decreases quickly when r increases, the previous condition is satisfied anywhere in

the body if it is fulfilled at r = a, we obtain:

[

9

4

(

γA0
)2 + (K (a) A1)2 P2(a,θ)+3γA0 P1(a,θ) (K (a) A1)

]1/2

+3α

[

γA0 −
5(ν+1)

(

3cos2θ−1
)

(−7+5ν)
K (a) A1

]

=σ0

(3.39)
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[

9

4

(

γA0 −
∆Σm

1− f

)2

+
(

∆(si g n(J3)Σe )

3(1− f )
+K (a) A1

)2

P2(a,θ)

+3

(

γA0 −
∆Σm

1− f

)

P1(a,θ)

(

∆(si g n(J3)Σe )

3(1− f )
+K (a) A1

)]1/2

+3α

[

γA0 −
∆Σm

1− f
−

5(ν+1)
(

3cos2θ−1
)

(−7+5ν)

(

∆(si g n(J3)Σe )

3(1− f )
+K (a) A1

)

]

=σ0

(3.40)

Due to the linear elastic response when shakedown occurs, one has:

τ=
γA0

K (a) A1
=

γA0 − ∆Σm

1− f

∆(si g n(J3)Σe )
3(1− f ) +K (a) A1

=
−∆Σm

1− f

∆(si g n(J3)Σe )
3(1− f )

(3.41)

Replacing γA0 and γA0 − ∆Σm

1− f
, (3.39) and (3.40) can be written as:

[

9

4
τ2 +3τP1(a,θ)+P2(a,θ)−9α2

(

τ−
5(ν+1)

(

3cos2θ−1
)

(−7+5ν)

)2]

(K (a)A1)2

+6ασ0

[

τ−
5(ν+1)

(

3cos2θ−1
)

(−7+5ν)

]

K (a)A1 −σ2
0 = 0

(3.42)

[

9

4
τ2 +3τP1(a,θ)+P2(a,θ)−9α2

(

τ−
5(ν+1)

(

3cos2θ−1
)

(−7+5ν)

)2](

∆(si g n(J3)Σe )

3(1− f )
+K (a) A1

)2

+6ασ0

[

τ−
5(ν+1)

(

3cos2θ−1
)

(−7+5ν)

]

(

∆(si g n(J3)Σe )

3(1− f )
+K (a) A1

)

−σ2
0 = 0

(3.43)

Solving (3.42) with respect to K (a)A1, we obtain:

K (a) A1

σ0
=

−6ασ0

(

τ− 5(ν+1)(3cos2θ−1)
(−7+5ν)

)

−2
√

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

2

(

9
4τ

2 +3τP1(a,θ)+P2(a,θ)−9α2
(

τ− 5(ν+1)(3cos2θ−1)
(−7+5ν)

)2
) (3.44)

where the negative sign is chosen.

Likewise, solving (3.43) with respect to K (a)A1, we obtain:

∆(si g n(J3)Σe )

3(1− f )σ0
+

K (a) A1

σ0
=

−6ασ0

(

τ− 5(ν+1)(3cos2θ−1)
(−7+5ν)

)

+2
√

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

2

(

9
4τ

2 +3τP1(a,θ)+P2(a,θ)−9α2
(

τ− 5(ν+1)(3cos2θ−1)
(−7+5ν)

)2
) (3.45)

where the positive sign is chosen.

Eliminating K (a)A1 between the two latter equations (3.44) and (3.45), we obtain:
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∆(si g n(J3)Σe )

3(1− f )σ0
=

2
√

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

9
4τ

2 +3τP1(a,θ)+P2(a,θ)−9α2
(

τ− 5(ν+1)(3cos2θ−1)
(−7+5ν)

)2
(3.46)

Combining (3.41), leads to the closed-form macroscopic fatigue criterion:











































∆Σm

σ0
=−τ(1− f )

2
√

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

9
4τ

2 +3τP1(a,θ)+P2(a,θ)−9α2
(

τ− 5(ν+1)(3cos2θ−1)
(−7+5ν)

)2

∆(si g n(J3)Σe )

σ0
= 3(1− f )

2
√

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

9
4τ

2 +3τP1(a,θ)+P2(a,θ)−9α2
(

τ− 5(ν+1)(3cos2θ−1)
(−7+5ν)

)2

(3.47)

In which two events may occur:

• When J3+ > 0, the condition is satisfied if it is fulfilled at the equator θ = π/2 where the left part of

the previous shakedown condition (3.39) and (3.40) takes its maximum value, where

P1(a,
π

2
) =

3(5ν+5)

2(5ν−7)
P2(a,

π

2
) =

225(7ν2 −13ν+7)

(5ν−7)2

• When J3+ < 0, the condition is satisfied if it is fulfilled at the poles θ = 0 and θ = π where the left

part of the previous shakedown condition (3.39) and (3.40) takes its maximum value, where

P1(a,0) =
3(5ν+5)

−5ν+7
P2(a,0) =

225(ν2 +2ν+1)

(5ν−7)2

The above macroscopic criterion (3.47) is established to predict the fatigue limit for hollow sphere

with Drucker-Prager matrix in a parametric form which depends on the generalized macroscopic stress

triaxiality τ=− 3∆Σm

∆si g n(J3)Σe
. More precisely, the fatigue limit stress curve can be obtained from this macro-

scopic criterion for different fixed values of τ.

The set of equations (3.47) constitutes the main finding in this study.

3.2.3 Some particular cases

In (3.47), ∆Σm

σ0
and

∆si g n(J3)Σe

σ0
appear as a pair of generalized macro-stress which are conjugate to general-

ized macroscopic stress triaxiality τ. Considering the special values | τ |=∞, τ= 0 and α= 0, the obtained

criterion can be examined with explicit, simple results:
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• | τ |=∞: The macroscopic criterion (3.47) is reduced to:



















∆Σm

σ0
=

3
(

1− f
)

(3/2 +3α) (3/2 −3α)
∆(si g n(J3)Σe )

σ0
= 0

(3.48)

which gives the yield points corresponding to the macroscopic fatigue limit under pure hydrostatic

cyclic loadings and is as same as the one given in Section 3.1.

• τ= 0: The macroscopic criterion (3.47) is reduced to:























∆Σm

σ0
= 0

∆(si g n(J3)Σe )

σ0
= 3(1− f )

2
√

P2(a,θ)

P2(a,θ)−9α2
(

5(ν+1)(3cos2θ−1)
(−7+5ν)

)2

(3.49)

which gives the yield points:∆Σm

σ0
= 0,

∆(si g n(J3)Σe )
σ0

= 6(1− f )
p

P2(a,π/2)

P2(a,π/2)−9α2
(

10(ν+1)
(−7+5ν)

)2 corresponding to the macro-

scopic fatigue limit under pure shear cyclic loadings.

• α= 0: In this case, we consider the porous material with an incompressible matrix, and the pressure-

sensitive parameter friction angle φ vanishes. The macroscopic criterion (3.47) is reduced to:































∆Σm

σ0
=−τ(1− f )

2
√

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

∆si g n(J3)Σe

σ0
= 3(1− f )

2
√

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

9
4τ

2 +3τP1(a,θ)+P2(a,θ)

(3.50)

which can be written in the following form:

(

3

4

∆Σm

1− f

)2

−
3

2

∆Σm

1− f

∆(si g n(J3)Σe )

2
(

1− f
) P1(a,

π

2
) +P2(a,

π

2
)

(

∆(si g n(J3)Σe )

2
(

1− f
)

)2

=σ2
0 (3.51)

where

– When J3+ > 0, the condition is satisfied if it is fulfilled at the equator θ = π/2 where the left

part of the previous condition (3.51) takes its maximum value, where

P1(a,
π

2
) =

5ν+5

2(5ν−7)
P2(a,

π

2
) =

25(7ν2 −13ν+7)

(5ν−7)2
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– When J3+ < 0, the condition is satisfied if it is fulfilled at the poles θ = 0 and θ = π where the

left part of the previous condition (3.51) takes its maximum value, where

P1(a,0) =
5ν+5

−5ν+7
P2(a,0) =

25(ν2 +2ν+1)

(5ν−7)2

which is the same result obtained in the recent research (Zhang et al., 2017a) of the fatigue limit of

porous materials with von Mises matrix.

3.3 Illustration and assessment of the effective shakedown criterion

The goal of this section is to illustrate the shakedown yield and to validate the accuracy of the analyt-

ical results by comparison with numerical ones. To this end, incremental elastic-plastic finite element

simulations are carried out by the use of the software Abaqus Standard (Hibbett et al., 1998).

3.3.1 Numerical model

The common solution strategy used to numerical study of nonlinear structures under variable thermo-

mechanical loads is the path-following incremental analysis, which reconstructs in a step-by-step man-

ner the structural response to the applied path loading. This numerical procedure is employed out in this

work.

Thanks to the geometrical symmetry of the hollow sphere, numerical computations are conducted

by considering a quarter of an axisymmetric model with a spherical void as shown on Fig.2.4. The ge-

ometry is discretized by 20000 for-nodes axisymmetric elements. This mesh grid is found to be suffi-

cient accurate to obtain reliable numerical results. Moreover, the desired macroscopic stress triaxiality

T = Σm/Σe is kept constant during simulations through the application of the homogenous boundary

strain rate v = D · x on the outer boundary ∂Ω and by the use of the subroutine MPC (Multi-Points Con-

straints) implemented in Abaqus software. This numerical procedure is already described in (Guo et al.,

2008) and successfully used in many works Guo et al. (2008); Cheng et al. (2015a); Zhang et al. (2017b,a).

The computations are performed for different porosities f ∈ {0.001,0.01,0.1}, different friction angles

φ ∈
{

10◦,20◦,30◦} and with σ0 = 20 MPa, E = 14 GPa and ν = 0.2. Moreover, the following loading cases

are considered for instance: alternating load R = −1, pulsating one R = 0 and intermediate cyclic loads

with R = 1/5 and R =−1/5.

Unlike, previous works in the literature which are concerned only by the former cycles during the

transient phase, here 100 cycles of cyclic loadings are performed for each chosen stress triaxiality T . The
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Figure 3.1: Accumulated Equivalent Plastic Strain (PEEQ) under pulsating load when shakedown occurs
for f = 0.01, φ= 20◦ and T = 1.3333

state of the long-term behavior is checked by increasing of the amplitude of the imposed deformation on

the external boundary until the collapse by fatigue or a mechanism is observed. In practice, the evolution

of the equivalent plastic deformation, and the evolution of the components of the plastic strain tensor in

the whole structure provide information on the status of the structure as shown in Fig.3.1 and Fig.3.2.

3.3.2 Results and discussion

Figures 3.3 to Figure 3.5 plotted the macroscopic shakedown domain computed from the established

macroscopic fatigue criterion (3.47) under alternating loading (R =−1) for several void volume fractions

( f ∈ {0.001,0.01,0.1}) and friction angles (φ ∈
{

10◦,20◦,30◦}). It is worth noting that the collapse by de-

velopment of a mechanism do not occur in this situation, so the safety domain is only defined by the

fatigue criterion. The effective shakedown criterion is found much smaller and completely inside the

yield loci obtained under monotonic loads. Many interesting conclusions can be drawn. Firstly, an ex-

cellent agreement between the analytic solutions and numerical results is observed. Small differences

are observed for larger porosity f = 0.1 (Figure 3.5) around the pure deviatoric limit state. This can be

explained by the applied pure deviatoric elastic stress field σE(2) (3.24). Obviously, it can be improved by

considering an exact elastic solution for pure deviatoric load. Besides, the numerical points are strictly

inside the analytical ones, and the built criterion can be considered as a quasi-lower bound for the fatigue

limit due to the choice of the statical approach based on Melan’s theorem. Interestingly, in the particular

case of pure hydrostatic loading, the numerical results fit the exact value ∆Σ
SD
m = 3(1− f )

(3/2+3α)(3/2−3α) . This
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Figure 3.2: ε11 under pulsating load on the internal boundary at θ = π/2 when shakedown occurs for
f = 0.01, φ= 20◦ and T = 1.3333

Figure 3.3: Comparison between the yield surfaces obtained by the analytic criterion (3.47) and by step-
by-step finite element simulations under alternating loadings (R = −1) for porosity f = 0.001 and φ ∈
{

10◦,20◦,30◦}.
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Figure 3.4: Comparison between the yield surfaces obtained by the analytic criterion (3.47) and by step-
by-step finite element simulations under alternating loadings (R = −1) for porosity f = 0.01 and φ ∈
{

10◦,20◦,30◦}.

Figure 3.5: Comparison between the yield surfaces obtained by the analytic criterion (3.47) and by
step-by-step finite element simulations under alternating loadings (R = −1) for porosity f = 0.1 and
φ ∈

{

10◦,20◦,30◦}.
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Figure 3.6: Interaction curve for the intermediate loads with R = 1/5 for porosity f = 0.001. The analytic
safe domain is bounded by solid lines.

fact is foreseeable since the trial stress field and the residual stress tensor contain the exact solution for

the hollow sphere under hydrostatic load.

As shown on these figures, the strength under cyclic loadings shrinks with decreasing φ. On the con-

trary, the friction angle does not have strong influence of the analytical fatigue limit around the value of

T = 0 (pure shear).

Figures 3.6 to 3.8 display the comparison between analytical results and numerical ones of the shake-

down limit for the intermediate load corresponding to R = 1/5. Also, the results corresponding to R =

−1/5 are plotted in Figs.3.9 to 3.11.

Two major features must be underlined here. Unlike the alternating load (for which R =−1), the safety

domain is obtained at the intersection of the domain defined by the new fatigue criterion and the one

proposed in Guo et al. (Guo et al., 2008), corresponding to the collapse by development of a mechanism

at the first cycle. In all figures shown hereafter, the analytic safe domain is bounded by solid lines. The

second important remark is that the shakedown safe domain is considerably reduced compared to the

gauge surface corresponding to the failure under monotonic loading. This ductility reduction is more

pronounced in the dominant compression zone (Σm < 0). In addition, these curves confirm that the

effect of the friction angle on the safe domain is negligible. The same conclusion can be deduced for the

pulsating loading case (see Appendix 1).

73



Figure 3.7: Interaction curve for the intermediate loads with R = 1/5 for porosity f = 0.01. The analytic
safe domain is bounded by solid lines.

Figure 3.8: Interaction curve for the intermediate loads with R = 1/5 for porosity f = 0.1. The analytic
safe domain is bounded by solid lines.
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Figure 3.9: Interaction curve for the intermediate loads with R =−1/5 for porosity f = 0.001. The analytic
safe domain is bounded by solid lines.

Figure 3.10: Interaction curve for the intermediate loads with R =−1/5 for porosity f = 0.01. The analytic
safe domain is bounded by solid lines.
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Figure 3.11: Interaction curve for the intermediate loads with R = 1/5 for porosity f = 0.1. The analytic
safe domain is bounded by solid lines.

It is worthy noting, that for all loading cases with various material data, the macroscopic safe do-

main is convex. Further, it is legitimate to wonder whether there is a noticeable difference between the

macroscopic shakedown domains for porous materials with Drucker-Prager model or von Mises crite-

rion. To answer this question, Figs.3.12 depicts the analytic safe domains obtained under cyclic loads

with Drucker-Prager and von Mises constitutive laws. The difference between the models is noticeable

but not considerable as it could be expected because off the presence of the first invariant of the stress

in the Drucker-Prager yield function. This remark should be taken with precaution because, as we have

seen above, the real safe domain is a result of interaction between the homogenized shakedown domain

and the limit analysis effective yield.

For completeness, the influence of Poisson’s ratio on the macroscopic shakedown criterion is studied.

Figure 3.13 depicted the analytical and numerical safe domain boundary for different values of Poisson’s

coefficient ν ∈ {0.15,0.25,0.35,0.4} for the intermediate loading case R = −1/5 with f = 0.01 and friction

angle φ ∈
{

10◦,20◦}. It can be seen that the strength domain shrinks slightly with the increase of ν within

the dominant compression zone (Σm < 0) while the homogenized criterion is insensitive to Poisson’s ratio

variations in the traction region (Σm > 0). These observations has been confirmed by considering other

loading cases and different angle friction, but not reported in the present paper for seek of shortness.
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Figure 3.12: Comparison of the effective shakedown criterion with Drucker-Prager dilatant matrix with
the one with von Mises model.

Figure 3.13: Effect of Poisson’s coefficient on the macroscopic shakedown domain for the intermediate
loading case R =−1/5.

3.4 Conclusion

In this chapter we derived a homogenized shakedown criterion for ductile porous material with pressure-

sensitive dilatant matrix under cyclic repeated loadings, considering the hollow sphere unit cell. The

closed-form fatigue criterion in parametric form, depending on the porosity, friction angle, Poisson’s

ratio and the sign of the third invariant of the macroscopic stress tensor, is able to predict the shakedown

limit for all intermediate repetitive fluctuation of loads lying between the alternating and the pulsating

loads (−1 ≤ R < 1). The safety domain is bounded by this fatigue criterion and by the macroscopic yield

strength proposed by Guo et al (Guo et al., 2008) corresponding to the collapse by development of a

mechanism at the first cycle, inside of which the material is always stable. It is worthy to note that the

obtained results allow us to retrieve, as a particular case, the fatigue criterion of porous material with

a von Mises matrix (Zhang et al., 2017b). Further, the macroscopic shakedown loci predicted by our
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Figure 14: Interaction curve under pulsating loadings (R = 0) for porosity f = 0.001. The analytic safe
domain by solid lines.

analysis is slightly effected by friction angle variations, however, the safe domain is considerably reduced

compared to the one obtained by limit analysis for monotonic load conditions (Guo et al., 2008). This

strength reduction is more pronounced in the dominant compression zone (Σm < 0). The established

model have been assessed and validated against numerical solutions derived by micomrchanics-based

finite element computations by considering a quarter of the hollow sphere subjected to homogeneous

strain rate boundary conditions for various configurations of porosity and frictions angles.

It should be also remarked that small but noticeable differences for high porosity around the pure

deviatoric limit are observed. Subsequently, in the outlook, attention will be focused on the refinement

of the trial stress fields for pure deviatoric load in order to improve the model. The consideration of the

kinematical hardening including the backstresses constitutes also a challenging subject for future devel-

opments. Finally, the use of the so-called Direct Methods for the computational of numerical shakedown

rigorous bounds is in preparation for future papers.

Appendix 1: Comparison of the shakedown criterion (3.47) with numerical

results for the pulsating loading case (R = 0)

Figures 14 to Figure 16 display the comparison between analytical results and numerical ones of the

shakedown limit for porosities f = 0.001, f = 0.01 and f = 0.1 for pulsating loading case (R = 0).
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Figure 15: Interaction curve under pulsating loadings (R = 0) for porosity f = 0.01. The analytic safe
domain is bounded by solid lines.

Figure 16: Interaction curve under pulsating loadings (R = 0) for porosity f = 0.1. The analytic safe do-
main is bounded by solid lines.
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Figure 17: Interaction curve under the intermediate loadings with R = −1.5 for porosity f = 0.25. The
analytic safe domain by solid lines.

Appendix 2: The macroscopic safe domain for the porosity f = 0.25

For completeness, in this appendix, we plot the safe domain of the porous material with high porosity

f = 0.25 and for loads parameters R = 0,1.5,−1.5. The safe domain is obtained by the interaction between

the macroscopic shakedown criterion (3.47) and the surface obtained under monotonic loads (Guo et al.,

2008).
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Figure 18: Interaction curve under pulsating loadings (R = −1.5) for porosity f = 0.25. The analytic safe
domain by solid lines.

Figure 19: Interaction curve under pulsating loadings (R = 0) for porosity f = 0.25. The analytic safe
domain by solid lines.
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Chapter 4

Numerical shakedown analysis of porous

materials under two macroscopic varying

loadings by non-linear optimizaion

This chapter aims at providing a direct numerical method to predict the shakedown safety domain of

porous materials under under two macroscopic independently varying loadings based on Melan’s theo-

rem. Considering the critical loading path of the load domain instead of the whole history, the statical

shakedown condition yields an optimization problem, of which the objective function is the shakedown

limit factor, with the discretization of a three dimensional model of von Mises matrix. We adopt the

macroscopic hydrostatic and deviatoric loads to capture the effects of compressive/tensive and shear ef-

fects. By the application of a non-linear optimizer IPOPT using the interior-point method, the proposed

optimization is solved efficiently to give not only the limit load factor, but also the corresponding residual

stress tensor for the shakedown state. In order to access the reliability of the present method, two special

loading cases (alternating-alternating and pulsating-pulsating) are especially and fully discussed. The

obtained results are illustrated and compared to the incremental step-by-step FEM computations within

the same load program.

4.1 Introduction

In this chapter, our attention is focus on establishing a direct numerical method to estimate the shake-

down load by reforming the statical theorem as mathematical programming problem to find the mini-
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mum value of an objective function. As in the research of shakedown behavior of pavements under two

independently varying loads, Nguyen et al. (Nguyen et al., 2008) have proposed a numerical procedure

to determine the limit factor by discretizing the a three dimensional model and solving an large size op-

timization problem, which is achieved by the interior-point method (Wächter and Biegler, 2006). In the

same sprit, we adopt König’s statement that shakedown occurs for a given load domain if and only if it oc-

curs for its convex envelope (Konig and Kleiber, 1978), which allows us to consider only the vertices of the

load domain in order to eliminate the time dependence of loadings. For the purpose of the general use

in the future, we consider a three dimensional hollow sphere model as a reference volume of the porous

material, so that the procedure can be implemented for other irregular models. Similar to the previous

study of the shakedown behavior under one cyclic load, we apply a referential macroscopic hydrostatic

and deviatoric stress to produce the elastic stress tensors realized by a 3D Abaqus MPC (multi-points con-

straints) user subroutine (Liu et al., 2016), which can simulate the general compressive/tensive and shear

effects, respectively. Then the discretization of the the structure by a large number of finite elements and

constraints leads the shakedown analysis to a large size optimization problem, which can be solved by

the non-linear optimizer IPOPT (Schenk and Gärtner, 2004), based on the interior point algorithm.

The chapter is presented in the following way. In Section 4.2, we recall again Melan’s statical the-

orem and the transformed expression, which is the starting point of the direct shakedown analysis. In

Section 4.3, the shakedown problem is discretized on mathematical optimization programming and the

non-linear algorithm is introduced. Section 4.4 is concerned with the application of the present numer-

ical program to two special loading cases (alternating-alternating and pulsating-pulsating). Results are

illustrated and compared with the existing solution and the step-by-step incremental FEM computations

in order to access its reliability, despite it is a bit time consuming. Finally, concluding remarks and per-

spectives are finally summarized in the last section.

4.2 Basic definitions and formulations

As indicated in Figure 2.1, we consider an elastic perfectly plastic material occupying a hollow sphere

model of inner radius r = a and outer radius r = b with the porosity f = (a/b)3 for porous materials. This

reference unit volume Ω is enclosed by the surface ∂Ω and composed of a void ω embedded in a matrix

ΩM =Ω−ω. The boundary ∂ω of the void ω is assumed to be a free traction boundary.

For the elementary cell Ω having experienced elasto-plastic deformation, the stress field σ can be

consider as the sum of two parts: an elastic part σE , in a corresponding fictitious elastic body, which
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satisfies Hooke’s law, and a complementary part ρ called residual stress field:

σ=σE +ρ (4.1)

In the absence of the volume force f , considering the equilibrium equations and boundary condi-

tions, the residual stress tensor must satisfy the following conditions at any time:











di v ρ = 0 i nΩ

ρ ·n = 0 on∂ω

(4.2)

where n is the unit outward normal vector of the matrix.

4.2.1 Load domain for shakedown analysis and Melan’s theorem

We describe a varying load as in Subsection 2.2. Let us denote p0 and q0 as two reference loads, for

instance, then the two independent variable loads can be described by p(t ) =µ1(t )p0 and q(t ) =µ2(t )q0.

The rectangular reference load domain P0 is indicated in Figure 2.2(a), where µ̄−
n and µ̄+

n are constant

lower and upper bounds. Then, because of the linearity of the elastic response in the fictitious body

when shakedown occurs, the total stress field can be assumed as:

σ=ασE +ρ (4.3)

where α> 1 is the load factor. Hence, Melan’s lower bound theorem of shakedown (Melan, 1936) can be

expressed as follows:

If a time-independent residual stress field ρ̄, which satisfies the conditions (4.2), and a load factor α

can be found, such that for all loads in the domain P , the yield criterion holds everywhere in Ω at anytime:

F (ασE + ρ̄) < 0 (4.4)

then the body shakes down within the given domain P . The greatest value of admissible α is called shake-

down factor, noted αSD .

4.2.2 Mathematical transformed optimization

To eliminate the explicit time dependence of the loadings, König et al. (Konig and Kleiber, 1978) proposed

a transformed theorem:

84



Shakedown occurs for any load path in a given convex load domain P if it occurs for a cyclic load path

containing all vertices of P ,

which allows us to verify only all the load vertices to predict the save domain for shakedown instead

of the entire loading history. As shown in Figure 2.2(b), for two independently varying loads (p and q),

we consider a special loading cycle passing through all vertices (P̂1 to P̂4) of P :

P (x , t ) =
m
∑

k=1

δ(tk )P̂k (x) (4.5)

in which m = 2n is the totals vertices of P , n is the total number of independent varying loads and δ(tk )

is the Dirac function:

δ(tk ) =











1, i f t = tk

0, i f t 6= tk

(4.6)

where tk indicates the time instant when the load cycle pass through the vertex P̂k .

To determine the shakedown factor αSD , combining (4.4) and (4.5), the problem can be transformed

to an mathematical optimization problem:

max
ρ̄,α

α

s.t . di v ρ̄ = 0 i nΩ

ρ̄ ·n = 0 on∂ω

F (ασE (x , P̂k )+ ρ̄) ≤ 0 i nΩ, ∀k = 1,2, ...m

(4.7)

Once the shakedown factor αSD is obtained, the shakedown save domain is the largest admissible rect-

angle as shown in Figure 2.2(b):

P
SD =αSD

P0 (4.8)

4.3 Shakedown analysis by mathematical programming

In this chapter, we study the shakedown behavior of the hollow sphere submitted to varying macroscopic

hydrostatic and deviatoric loads (Σm and Σe ). The previous optimization method (4.7) has provided a

direct procedure to analysis the shakedown load factor without following a step-by-step calculations.

Before using the chosen non-linear optimizer IPOPT, a few preparations are still necessary:

1. The calculations of pure elastic response σ1E
0 and σ2E

0 subjected to unit macroscopic hydrostatic
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load Σ
0
m and deviatoric load Σ

0
e are carried out by Abaqus standard (Hibbett et al., 1998). All the

possible loading conditions can be simulated by an appropriate selected combination of lower and

upper bounds µ±
1 and µ±

2 .

2. In Melan’s sense, the key point of the statical shakedown approach is to find the admissible time-

independent stress field ρ̄. The equilibrium and boundary condition (4.2) need to be discretized

for the use of Finite Element Method.

3. At last, in order to apply the Interior point method, the FEM formulations in Step 2 and the yield

condition should be reformulated to fulfill the require of this chosen optimizer.

4.3.1 Elastic responses subjected to macroscopic referential loads and the selection of ver-

tices in load domain

In our study, we chose the pure macroscopic hydrostatic load Σm and deviatoric load Σe to simulate the

compressive/tensive and shear effects. Due to the geometrical symmetric hollow sphere model, only

one-eighths of the cell is considered to produce the elastic response with Abaqus standard.

To fulfill the pure hydrostatic and deviatoric loading condition on the model, a 3D MPC (Multi-Points

Constraints) user subroutine is applied on the external boundary, such that we can maintain the macro-

scopic stress triaxiality T = Σm/Σe during the monotonic loading procedure. Note that the implementa-

tion of this 3D MPC procedure has already been described by Liu et al (Liu et al., 2016) in the study of

void behaviors of ductile porous materials from low to high triaxialities.

We apply reference pure hydrostatic and axisymmetric deviatoric loads (Σ0
m and Σ

0
e ) on the model

(Figure4.1) to produce the corresponding elastic response σE
m0 and σE

e0, respectively. In practice, we

impose Σ
0
m =Σ

0
e .

As it is defined in (Liu et al., 2016), we also donate the stress ratios by the the macroscopic principal

stresses:

ϕ1 =
Σ1

Σ3
, ϕ2 =

Σ2

Σ3
(4.9)

Then, the macroscopic mean stress Σm and equivalent stress Σe are expressed:

Σm = 1/3(Σ1 +Σ2 +Σ3)

Σe =
p

2/2
√

(Σ1 −Σ2)2 + (Σ2 −Σ3)2 + (Σ1 −Σ3)2
(4.10)
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So the macroscopic stress triaxiality T can be defined as following:

T =
Σm

Σe
=

p
2

3

(

ϕ1 +ϕ2 +1
)

Si g n (Σ3)
√

(

ϕ1 −ϕ2
)2 +

(

ϕ1 −1
)2 +

(

ϕ2 −1
)2

(4.11)

where Si g n (Σ3) =Σ3/ |Σ3 |.

(a) Subjected to hydrostatic load for T =+∞
(b) Subjected to deviatoric load for T = 0

Figure 4.1: Elastic solution of one-eighth hollow sphere model due to reference loads

The detailed implementations of macroscopic stress triaxiality to perform the reference load are pro-

vided in Appendix 1.

Once the lower and upper bounds µ±
1 , µ±

2 are chosen, the vertices of the reference load domain P0 on

the Σm-Σe plan can be expressed by:

P̂k = (µ±
1 Σ

0
m ,µ±

2 Σ
0
e ), k = 1,2,3,4 (4.12)

Due to proportionality between elastic loads and stresses, the corresponding elastic stresses at each cor-

ner of the rectangle are obtained by:

σE
k =µ±

1 σE
m0 +µ±

2 σE
e0, k = 1,2,3,4 (4.13)

To relate two independent varying loads for different load rectangle, we impose:

µ+
1 = cosϑ, µ+

2 = si nϑ (4.14)
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So the macroscopic stress triaxiality T on the vertex can be expressed by:

T =Σ
+
e /Σ+

m =µ+
1 /µ+

2 = t anϑ (4.15)

where Σ
+
m and Σ

+
e are maximum hydrostatic and deviatoric stress of the load domain. In practice, we

repeat the procedure to get several shakedown limit loads by modifying the values of parameters µ−
1 /µ+

1

and µ−
2 /µ+

2 , which change the position of the load domain on the Σm-Σe plan, as well as different T .

4.3.2 Discretization of the shakedown formulations

In this subsection, we discretize and reform (4.7) to build the finite element formulations of the shake-

down problem. Because of the auto equilibrium of elastic solution produced by Abaqus, let us start from

the conditions of the residual stress field ρ̄, and then the yield condition.

For 3D brick element with 8 nodes, we transform the residual stress and strain tensor in vector form:

ρ̄i j =











ρ̄i , i f i = j

ρ̄i+ j , i f i 6= j

, εi j =











εi , i f i = j

εi+ j , i f i 6= j

i , j = 1,2,3 (4.16)

Due to the purely elastic behavior when shakedown occurs, the time independent residual stress does

not contribute to the virtual work, the principle of virtual work reads:

∫

Ω

δεT ρ̄ dV =
∫

Ω

δuT B T ρ̄ dV = 0 (4.17)

where δε is the variation of virtual strain, δu is the variation of virtual displacement, and B is the strain-

displacement linear differential operator:

ε= Bu (4.18)

For a 3D brick element, B is given by:

B =

































∂N1

∂x1
0 0 ∂N2

∂x1
0 0 ... ∂N8

∂x1
0 0

0 ∂N1

∂x2
0 0 ∂N2

∂x2
0 ... 0 ∂N8

∂x2
0

0 0 ∂N1

∂x3
0 0 ∂N2

∂x3
... 0 0 ∂N8

∂x3

∂N1

∂x2

∂N1

∂x1
0 ∂N2

∂x2

∂N2

∂x1
0 ... ∂N8

∂x2

∂N8

∂x1
0

0 ∂N1

∂x3

∂N1

∂x2
0 ∂N2

∂x3

∂N2

∂x2
... 0 ∂N8

∂x3

∂N8

∂x2

∂N1

∂x3
0 ∂N1

∂x1

∂N2

∂x3
0 ∂N2

∂x2
... ∂N8

∂x3
0 ∂N8

∂x1

































(4.19)
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in which Ni (i = 1,2..8) is the standard shape function of 3 dimensional element.

We note NK, NE, NGE, NG the total number of nodes, elements, number of Gauss points per element

and total number of Gauss points. (4.17) can be discretized and expressed a sum of integrals over all

elements in Ω:

∫

Ω

δεT ρ̄ dV ≈
N E
∑

n=1

[

δun
]T

∫

Ωn

B T ρ̄n dV = 0

⇒
N E
∑

n=1

∫

Ωn

B T ρ̄n dV =
N E
∑

i=1

NGE
∑

j=1

B T
i j ρ̄i jωi j det Ji j =

N E
∑

i=1

NGE
∑

j=1

Ci jρi j = 0

(4.20)

Ci j = B T
i j
ωi j det Ji j is defined as the equilibrium matrix for the j th gauss point of the i th element which

depends only on the geometry of the body and the applied element type, where ωi j being the weight

factor of the corresponding Gauss point and det Ji j the determinant of the Jacobian matrix.

According to Nguyen et al. (Nguyen et al., 2008), by assembling the all the elementary equilibrium

matrix and the residual stress tensor in (4.20), this equation can be transformed in a global form:

[

C
g

i j

]

ρ̄ j = 0, ∀i ∈ [1,3N K ],∀ j ∈ [1,6NG] (4.21)

The superposition of the elastic stresses at i th Gauss point σE
i

with the corresponding residual stress

ρ̄i constitute a safe state of stresses for each vertex P̂k :

F (ασE
i (P̂k )+ ρ̄i ) ≤ 0, ∀i ∈ [1, NG], ∀k ∈ [1,4] (4.22)

With the consideration of the boundary condition, the 6NG ×3N K dimension global equilibrium matrix
[

C
g

i j

]

can be reduced to 6NG×(3N K −N RES), where N RES donates the number of restrained degrees of

freedom. As a result, combining (4.21) with (4.22), we rewrite the shakedown optimization problem (4.7):

max
ρ̄ j ,α

α

s.t .

[

C
g

i j

]

ρ̄ j = 0

Fr (ασE
j (P̂k )+ ρ̄ j ) ≤ 0

∀ j ∈ [1,6NG], ∀k ∈ [1,4], ∀i ∈ [1, NC ]

(4.23)

where NC = 3K S − N RES. Noticing that there are 6NG + 1 unknowns corresponding to ρ̄ j and α, re-

spectively. Additionally, r = 1,2, ...,4NG donates the total number of yield constraints of the considered
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body.

4.3.3 Solution of the shakedown problem by Interior-point method

Referring to (Nguyen et al., 2008; Wächter and Biegler, 2006), the non-linear optimizer IPOPT based on

a primal-dual interior-point method provides a efficient solution for solving large-scale non-linear opti-

mization problems in the following form:

min
x̄

f (x̄)

s.t c(x̄) = 0

(4.24)

Therefore, in order to fit the shakedown problem to this optimizer, we add the slack variables s to the

yield inequality constraints, and the shakedown optimization problem takes the final expression:

min
x̄

f (x̄) =−α

s.t . ci (x̄) =











[

C
g

i j

]

ρ̄ j = 0, f or i = 1, NC

Fr (ασE
j (P̂k )+ ρ̄ j )− sr = 0, f or i = NC +1, NC +4NG

(4.25)

where x̄ = (ρ̄,α, s) is called vector of primal variables. Before calling the IPOPT optimizer, the last step is

to calculate the gradient of objective ∇ f (x̄), the gradient of constraints Ak , Hessian Wk , and to initialize

x̄ . For more details, see Appendix 2.

Consequently, the solution of the shakedown optimization can be described by the following flowchart

(Figure 4.2).

4.4 Special loading examples and discussions

In this section, some numerical examples under different loads by applying the present shakedown anal-

ysis method are provided. We consider 2 special loading situations:

• Alternating-alternating load, where µ−
1 /µ+

1 = µ−
2 /µ+

2 = −1. the rectangular reference load domain

P0 is symmetric about the axis-Σm and axis-Σe on the Σm-Σe plan (Figure 4.3(a));

• Pulsating-pulsating load, where µ−
1 /µ+

1 = µ−
2 /µ+

2 = 0, P0 is situated in only one quadrant of the

Σm-Σe plan (Figure 4.3(b));

For each loading case, we repeat the program with different triaxialites T = Σm/Σe = µ+
2 /µ+

1 to get
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Read data

Material: E ,ν,σ0

Geometry: N K , N E , NG , NGE , N RES

Elastic response: σE
m0 under Σ

0
m , σE

e0 under Σ
0
e

Input load parameters: µ−1 , µ+1 , µ−2 , µ+2

Construct reference load domain P0

Vertices of P0: P̂k = (µ±1 Σ
0
m ,µ±2 Σ

0
e )

Elastic stresses σE
k
=µ±1 σE

m0 +µ±2 σE
e0

Construct equilibrium matrix
[

C g
]

Discretized shakedown optimization

maxρ̄ j ,α α

s.t.
[

C
g

i j

]

ρ̄ j = 0

Fr (ασE
j

(P̂k )+ ρ̄ j ) ≤ 0

Transformed expression

Min f (x̄) = 0
s.t. c(x̄) = 0

Preparation: ∇ f (x̄), Ak ,Wk , x̄0

Call IPOPT process

Output: αSD , ρ̄

End
Repeat for different loading cases

Figure 4.2: Flowchart of the shakedown analysis by interior-point method

several shakedown limit load to illustrate the safety domain on the Σm-Σe plan for porosity f = 0.01 and

f = 0.1, respectively.

Moreover, in order to verify the reliability of this numerical method, we also perform the incremental

step-by-step computations to analyze the transient phase before shakedown. As shown on Figure ??, a

critical loading path 1 → 2 → 3 → 4 → 1, passing by all the vertices of load domain P , is considered.

We repeat this critical cyclic loading, and if the body shakes down, the current load is within the safety

shakedown domain. By increasing the loading factor until the shakedown phenomenon does not occur,

the shakedown limit load is obtained. Thus, we may compare the shakedown limit by the two means.

The key parameter of the step-by-step computation is the evolution of accumulated equivalent plastic

strain(PEEQ). If the the accumulated plastic strain does not vary any more after certain cycles of critical

loadings, we consider the body shakes down.
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(a) Alternating-alternating loading case
(b) Pulsating-pulsating loading case

Figure 4.3: Reference load under special loading condition

In the following simulations, the material parameters are the Young’s modulus: E = 210GPa, Poisson’s

ratio: ν= 0.3 and the yield stress σ0 = 480MPa. An initially one-eighth hollow sphere model is discretized

by 2981 nodes and 2430 elements.

4.4.1 Alternating hydrostatic load coupled with alternating deviatoric load (µ−
1 /µ+

1 =µ−
2 /µ+

2 =

−1)

In the research of the macroscopic analytical criterion for the determination of shakedown limit of porous

materials subjected to one cyclic loading (Zhang et al., 2017b,a), it is noticed that the shakedown criterion

is quite sensitive to the choice elastic stress field, and for alternating loading case (µ−
1 /µ+

1 = −1), the

shakedown safety domain even coincides with the elastic one. As a result, for two independently varying

loading case, it is reasonable to start from the coupled alternating hydrostatic and deviatoric loadings,

and compare with the elastic domain. The same model applied for elastic solution is adopted for the

determination of the elastic limit by the finite element method. We increase the monotonic load until the

plastic strain firstly appears to obtain the macroscopic elastic limit.

Figure 4.4 and 4.5 display the results of the present shakedown analysis computation and step-by-

step incremental FEM method, as well as the elastic limit under monotone load for f = 0.01 and 0.1,

respectively.

Firstly, we observe a quite good agreement between the shakedown limit obtained by the two meth-

ods. That is to say, the present shakedown optimization program is reliable to predict the shakedown

safety domain for this alternating-alternating loading case.

Moreover, if presented in the same figure 4.6, it is clearly seen that, unlike Zhang’s one-varying-load

shakedown analytical limit (Zhang et al., 2017b), which is separated on two parts depending on the sign
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Figure 4.4: Interaction curve for porosity f = 0.01. Blue diamond: present direct analysis results; Green
line: numerical elastic limit; Red box: shakedown limit by step-by-step computation.

Figure 4.5: Interaction curve for porosity f = 0.1. Blue diamond: present direct analysis results; Green
line: numerical elastic limit; Red box: shakedown limit by step-by-step computation.
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of the third invariant of the macroscopic stress deviator J3, we notice that the numerical shakedown limit

under two independently varying loads is totally symmetric about the axe-Σe . However, the correspond-

ing rectangular shakedown load domain for each loading case is still strictly inside the elastic domain.

Thus, for alternating-alternating loading case, the applied load can not exceed the elastic limit, or the

shakedown will not occur. And the corresponding stresses for all the Gauss points calculated by the pro-

gram are of cause nearly zero. This is also proved by the step-by-step procedure: once the cyclic load

exceed the monotone elastic limit, the plastic strain remains changing during each cycle, and the dissi-

pation cumulates at the same time. So the accommodation arrives immediately, which will also lead to

the structure’s collapse. In other word, we can not observe the shakedown phenomenon in this loading

case.

Figure 4.6: Comparison between the present results and one-varying-load shakedown limit in (Zhang
et al., 2017b) for alternating loading case. Blue diamond: present direct analysis results; Green line: nu-
merical elastic limit; Gray line and black box: Zhang’s analytical criterion and corresponding numerical
shakedown limit under one cyclic load.

In the analytical solution of the shakedown problem, we know the accuracy of the prediction is not

significantly affected by the trial residual field but strongly depends on the choice of elastic stress field

approximation, which is determined by the refinement of the mesh in the present numerical simulations.

Although it is difficult to obtain the exact analytical solution of the shakedown limit, we can still compare

the numerical results with the analytical one for pure hydrostatic loading case (µ2 = 0). In (Zhang et al.,

2017b), the authors prove that shakedown limit ΣSD under cyclic hydrostatic load and the elastic limit ΣE

have the following relation:

Σ
SD
m =Σ

E
m =

2

3
(1− f )σ0 (4.26)

Table 4.1 presents the variation of shakedown limit load with respect to the number of elements for pure
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Porosity Σ
SD
m /σ0 for 0.01 Σ

SD
m /σ0 for 0.1

Elements Nodes 2
3 (1− f ) Optimization Step-by-step 2

3 (1− f ) Optimization Step-by-step

750 1001 0.6600 0.7011 0.7035 0.6000 0.6385 0.6298
1408 1800 0.6600 0.6854 0.6861 0.6000 0.6210 0.6200
2430 2981 0.6600 0.6737 0.6739 0.6000 0.6168 0.6169
4356 5161 0.6600 0.6739 0.6721 0.6000 0.6158 0.6151

Table 4.1: Shakedown limit Σ
SD
m /σ0 under pure hydrostatic loads with respect to different number of

elements for porosities f = 0.01 and 0.1

Figure 4.7: Interaction curve for porosity f = 0.01. Blue diamond: present direct analysis results; Red box:
shakedown limit by step-by-step computation; Purple line: Shen’s criterion of limit analysis.

hydrostatic loading case (µ2 = 0)

4.4.2 Pulsating hydrostatic load coupled with pulsating deviatoric load (µ−
1 /µ+

1 =µ−
2 /µ+

2 = 0)

In this subsection, we consider the pulsating-pulsating loading case (µ−
1 /µ+

1 =µ−
2 /µ+

2 = 0), where the load

domain is in a single quadrant.

Figure 4.7 and 4.8 show the main result of the proposed analysis computation and step-by-step elastic-

plastic FEM method, as well as Shen’s limit analysis corresponding to the collapse under monotone load

(Shen et al., 2015). Noticing that, the shakedown optimization program is overall validated by the step-

by-step computation, except for several loading cases, where small differences can be observed. And

for high triaxialities, the safety domain is defined by the limit analysis instead of the one of shakedown.

Similar to the previous subsection, the shakedown limit load is also symmetric about the axe-Σe .

In the one-varying load situation, the amplitude of shakedown cyclic load for pulsating case doubles
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Figure 4.8: Interaction curve for porosity f = 0.1. Blue diamond: present direct analysis results; Red box:
shakedown limit by step-by-step computation; Purple line: Shen’s criterion of limit analysis.

the alternating one. We wonder if this relation remains valid for two independently varying loading case.

From Figure 4.9, it is readily seen that the pulsating-pulsating shakedown limit load still holds the double

relation of the alternating-alternating one, except for some high triaxialities cases due to the collapse by

development of a mechanism, as in limit analysis.

Figure 4.9: Comparison between the present results for pulsating-pulsating loading and double of the
one for alternating-alternating loading case. Blue diamond: present direct analysis results for pulsating-
pulsating loading; Green line: double of the numerical shakedown limit in the previous subsection; Gray
line: Zhang’s analytical criterion under one cyclic load; Purple line: Shen’s criterion of limit analysis.

4.4.3 Discussions and remarks

In the previous two subsections, we have assessed the predictive capability of the new shakedown op-

timization program by comparing with the step-by-step computation results for alternating-alternating
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Loading case Alternating-alternating Pulsating-pulsating

Triaxiality Iterations Time(s) Iterations Time(s)

4.3333 5391 13614 7763 19262
1.3333 5069 8464 6079 11720
0.5833 2937 6063 9116 17415

Table 4.2: Comparison of computation time and number of iterations between alternating-alternating
and pulsating-pulsating loading case for porosity f = 0.1

and pulsating-pulsating loading cases, respectively. Apart from the good agreement between them, some

remarks are also made about the results:

1. The present program aiming at finding the shakedown load factor αSD for alternating-alternating

loading case is much more efficient than for pulsating-pulsating case. As shown on Table 4.2, the com-

putation time and the corresponding number of iterations for the same macroscopic triaxiality is much

less for alternating-alternating case.

This can be explained by the initial value of the shakedown load factor α0 of the program (see Ap-

pendix 4.5). For alternating-alternating loading case, the shakedown limit load is just the elastic limit

load. And the initial value α0 is set to be the elastic factor, which is very close to the objective solution. As

a result, it does not take too many iterations compared with other loading cases.

2. For pulsating-pulsating loading case, the optimization results are not as accurate as in the other

case. And sometimes, the program even ends with divergence. According to Nguyen (Nguyen et al., 2008),

all the six components of the corresponding residual stress tensor are nonzero for this loading condition,

which may lead the shakedown problem to be badly scaled and even degenerate, because of the initiation

of the residual stress variables. Besides, the starting point of shakedown factor can be especially too small

for the vertex P̂3 = (0,0) of the load domain. And the linear solver of the program will create too many

fill-in, which can also be a consequence of a degenerate problem.

To author’s knowledge, the solution to the problem is an appropriate choice of the reference load P0

so that the shakedown load factor αSD is not too large or too small. In practice, once the program ends

with bad result, we may restart the program by adjusting the reference load. Besides, to increase the

accuracy of the error tolerance of the optimizer can provide a more precise result, which will also lead to

a longer computation time.

3. Although it is a little burdensome to solve a axisymmetric problem with a three dimensional model,

the proposed program can be implemented easily to all the models of porous material with general load-

ing condition, for which it is difficult to derive the analytical solution (sphere model with irregular void,

for example). In addition, the number of independently varying load is not limited to 2, and of cause,

97



more unknowns and constraints are created, which has a higher requirement of the capacity of compu-

tations.

4.5 Conclusion and perspective

In this study, we present an novel numerical procedure for shakedown analysis of porous material under

two independently varying loads by using a non-linear optimizer IPOPT, which provides efficiently not

only the shakedown load factor but also the corresponding residual stress. A one-eighth 3D hollow sphere

model with von Mises matrix is considered by combining referential macroscopic hydrostatic load and

deviatoric load to simulate all the loading conditions.

By adopting the transformed Melan’s static theorem based on the time-independent residual stress,

the shakedown problem has been rewritten to a large-scale optimization problem by verification of the

vertices of load domain instead of the whole loading history. The proposed method has been well tested

by the step-by-step incremental computations especially for alternating-alternating and pulsating-pulsating

loading cases. From the obtained results, some special relation under one cyclic loading condition still

holds for the present study. Despite of some divergence problems, the choice of IPOPT optimizer can

solve the the optimization problem of a large number of unknowns and constraints practically and effi-

ciently.

In the perspective, the attention is focus on shakedown of ductile porous materials considering a

irregular model involving the kinematical hardening as to the numerical procedure. Moreover, another

interesting extension will concern the analytical solution of the shakedown limit under multi-varying

independent loads.

Appendix 1: Numerical implementation of macroscopic stress triaxiality for

3D models in (Liu et al., 2016)

To maintain the macroscopic stress triaxiality in constant during the proportional loading for the 3 di-

mensional Finite element program by Abaqus, a procedure of 3D multi-point constraint of the displace-

ment on the external boundary is required.

The total work rate Ẇ of a 3 dimensional model can be expressed by the doc product of a pair of 3
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dimensional generalized force P =V (Σ1, Σ2,Σ3) and displacement rate vectors Q̇ =
(

Ė1, Ė2, Ė3
)

:

Ẇ = P T Q̇ =VΣ : Ė (27)

where V is the volume of the chosen model.

In order to put into practice of the multi-point constraint condition, as proposed in the research of

the MPC procedure of axisymmetric cell (Cheng and Guo, 2007), it is necessary to introduce an extra

"ghost" node into the finite element model with the degrees of freedom (q1, q2, q3) and corresponding

forces (p1, p2, p3). For further use, we impose the equality of total work rate between this "ghost" node

and the entire considered model:

pT q̇ = P T Q̇ (28)

For large deformation, one has the following relation in rate forms:

u̇i = Ėi (ui +Xi ) (29)

And for small deformation:

u̇i = Ėi ui (30)

where Ėi (i = 1,2,3) is the macroscopic principal strain rate. It is shrewed to impose the reactions of the

first two DOFs at the "ghost" node are null:

p1 = p2 = 0 (31)

Under this condition, according to (Liu et al., 2016), the unimodular transformation matrix R is:

R =













si n2φ+ cos2φcosθ cosφ si nφ (cosθ−1) cosφ si nθ

cosφ si nφ (cosθ−1) cos2φ+ si n2φcosθ si nφ si nθ

−cosφ si nθ −si nφ si nθ cosθ













(32)

where

φ= at an (Σ2 /Σ1) = at an
(

ϕ2 /ϕ1
)

θ = at an

(

√

Σ
2
1 +Σ

2
2 /Σ3

)

= at an

(

si g n (Σ3)
√

ϕ2
1 +ϕ2

2

) (33)
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The fixed stress ratio ϕ1 and ϕ2 are given in (4.9). Then, the generalized force P and displacement rate Q̇

can be expressed by the ones of the "ghost" point and the transformation matrix:

P =Rp , Q̇ =Rq̇ (34)

Considering the third nonzero component of the total work rate Ẇ , the third principal stress of the

model can be computed directly by:

V Σ3 =
p3 si g n (Σ3)
√

ϕ2
1 +ϕ2

2 +1
(35)

As a result, to fulfill the fixed macroscopic stress triaxiality proportional loading requirement, we take

q3 at the "ghost" point as the loading parameter, and ϕ1, ϕ2, si g n(Σ3) to control the triaxiality.

In practice, to produce the elastic response σE
m0 under the pure hydrostatic load as shown in Figure

4.1(a), where Σe = 0, we impose ϕ1 = 1, ϕ2 = 1 and Si g n (Σ3) = 1; Likewise, for obtain σE
e0 under axisym-

metric deviatoric load in Figure 4.1(a), where Σm = 0, taking ϕ1 =−0.5, ϕ2 =−0.5 and Si g n (Σ3) =−1.

Appendix 2: Application of Interior-point method to shakedown optimization

For an optimization problem:

min
x̄∈Rn

f (x̄)

s.t . ci (x̄) = 0, i = 1,m : λ

x̄L
j ≤ x̄ j ≤ x̄U

j , j = 1,n : z

(36)

According to (Nguyen et al., 2008),the interior-point method, carried out by IPOPT with the help of direct

linear solver PARDISO (Schenk and Gärtner, 2004), provides an efficient possibility to solve this problem

with a large number of unknowns and constraints. Before calling the optimizer, as well as the transfor-

mation of the inequalities (4.25), the gradient of constraints Ak =∇c(x̄), Hessian Wk , initialization of x̄ .

• Gradient of constraints Ak .
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The expression of the gradient of constraints Ak =∇c(x̄) is given by

Ak =















































C T
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(37)

in which C and F are the global self-equilibrium matrix and yield constraints defined in (4.25).

• Hessian Wk of Lagrangian function.

We donate Lagrangian function L(x̄ ,λ, z) for the original optimization problem (36):

L(x̄ ,λ, z) = f (x̄)+c(x̄)T − z (38)

Then Hessian Wk ∈R
n×n of the Lagrangian function L is given by

Wk =∇2
x̄ x̄ L =∇2

x̄ x̄ f (x̄k )+
NC+4NG

∑

i=1

λi∇2
x̄ x̄ ci (x̄k )Fi (x̄k )

=
NC
∑

i=1

λi∇2
x̄ x̄Ckl +

NC+4NG
∑

i=NC+1

λi∇2
x̄ x̄ Fi (x̄k )

NC+4NG
∑

i=NC+1

λi∇2
x̄ x̄ Fi (x̄k )

(39)

• Initialization of x̄ .

The initial point of all the unknowns x̄0 = (ρ̄0,α0, s0) should be chosen far away from the boundary

due to the requirement to strictly satisfy the bound constraints of the interior-point method.

For the shakedown load factor α0, it starts from the elastic factor at the first vertex P̂1 of the load

domain, and the initial residual stress is set to be the corresponding elastic response:

α0 =αE

P̂1

ρ̄0 =σE

P̂1

(40)
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Then, the initial values for the slack variables s0 are chosen by the yield criterion:

s0r = Fr (α0σ
E
j (x̄ , P̂1)+ ρ̄0 j ) (41)
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General conclusion

The main objective of this thesis is to provide a micro-macro shakedown approach for ductile porous

materials with von Mises and Drucker-Prager matrix based on Melan’s statical theorem, analytically and

numerically. Following Dang Van (Dang-Van, 1973), we try to maximize the admissible load domain,

which turns out to be a fatigue criterion of the considered hollow sphere model in Gurson’s spirit (Gurson

et al., 1977).

We start from the simplest case: the hollow sphere model with von Mises matrix concerning alternat-

ing (R =−1) and pulsating loads (R = 0). The exact solution for the pure hydrostatic loading condition is

firstly derived, then combined with the additional trial terms to capture the shear effects. From Melan’s

theorem, the key point is to construct a time-independent admissible residual stress field. Besides, the

macroscopic shakedown criterion depends strongly on the microscopic elastic solution, of which the de-

viatoric part is inspired from Papkovich-Neuber solution (Soutas-Little, 1999) (This solution has been

applied to provide the elastic stress field under pure deviatoric load. See Appendix A). Then, to extend

the proposed model to general cyclically repeated loads (−1 ≤ R < 1), we constructed a more appropriate

trial residual stress field by relaxing the boundary condition. It can be seen from the improved model

that the shakedown limit is the inferior one of the double elastic limit and ultimate limit under mono-

tonic load: αSD = i n f (2αE ,αl ). Interestingly, we find that for alternating loading case, the shakedown

safety domain coincides with the elastic domain, which confirms that the shakedown phenomenon will

not occur under this loading case, but the plastic fatigue, instead. To avoid the repetition, this part is

combined and provided in Chapter 2.

Furthermore, we have derived a macroscopic model for the associated Drucker-Prager material (Chap-

ter 3). Thanks to the previous study about the elastic solution with the same hollow sphere model, we

achieve our goal by including the influence of the friction angle in the derived approach. The final closed

form expression of the macroscopic shakedown criteria, together with the one of limit analysis under

monotonic proportional load (Shen et al., 2015), defines the safety domain for the considered model
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under general cyclic loads. The new closed-form macroscopic criteria derived in Chapter 2 and 3 both

depend on the two stress invariants Σm and Σe , the sign of the third invariant of the stress deviator J3,

the porosity f and Poisson’s ratio ν. All the established model have been assessed and validated against

numerical solutions derived from micromechanics-based finite element computations by considering a

quarter of the hollow sphere subjected to homogeneous strain rate boundary conditions for various con-

figurations of porosity and friction angles by the means of Abaqus with a user-defined-subroutine MPC

(Cheng and Guo, 2007).

In the last chapter, for a more complex combination of independent loads, where the statically admis-

sible stress fields are difficult to be constructed, we provide a numerical shakedown analysis by consid-

ering König’s extension (Konig and Kleiber, 1978) of Melan’s theorem. The statical shakedown condition

is transformed as a large-size non-linear optimization problem, which is solved efficiently by the opti-

mizer IPOPT using the interior-point method. The obtained results are compared to the step-by-step

incremental computations especially for alternating-alternating and pulsating-pulsating loading cases.

In the future, several tracks of research can be considered to improve the study of shakedown of

porous materials:

• Although experiments (Kobayashi et al., 1991; Schmidt et al., 1991) have shown that in ductile met-

als, the strain to fracture is considerably lower, for a given load level, if this load is reached under

cyclic conditions than if it is reached monotonically, the experimental data of porous materials are

still in a lack. As a result, on the ground of shakedown of ductile porous materials, we can only

compare today the analytical results with the numerical ones. However, our theoretical predictions

could suggest new experimental testing in order to assess the fatigue strength of porous materials.

• In Chapter 2 and 3, small but noticeable differences between the criteria and numerical results are

remarked ( f = 0.1). We can improve the accuracy of the present criterion with a larger porosity by

constructing a better trial stress field for the deviatoric part. On the other hand, another interesting

extension is applying this established method to non-associated Drucker-Prager matrix with the

consideration of the bipotential-based limit analysis method (Cheng et al., 2015a) and non-linear

homogenization techniques. By adopting a trial velocity field and the use of Koiter’s kinematic

approach, the influence of the dilatancy angle could be taken into consideration.

• In Chapter 4, we focus our attention only on von Mises matrix. Then the next step may be applying

this optimization program to Drucker-Prager material, for which an additional bound on hydro-

static stress σm is needed (Nguyen and Ponter, 2007). Besides, it can be used for non-axisymmetric
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loads to show the influence of the Lode angle (Cheng et al., 2015b) (the third invariant of the stress

deviator instead of the sign) in three dimensional context.

• Lastly, another interesting extension is to consider voided single crystals (Paux et al., 2015) as in

Dang Van’s criterion. The idea relies on applying shakedown theory to fatigue analysis of the struc-

tures (Dang-Van, 2002). For example, applications to high cycle fatigue: some multiaxial fatigue

criteria (Papadopoulos, 1994) are essentially based on the hypothesis of elastic shakedown at the

mesoscopic scale and therefore a bounded cumulated dissipation; as for the low cycle fatigue, we

can speak of a plastic shakedown at both mesoscopic and macroscopic scale and a cumulated en-

ergy bounded by the failure energy permitting a direct determination of the fatigue limit.
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A B S T R A C T

This paper provides the analytical solution of the elastic hollow sphere subjected to axisymmetric and pure

deviatoric surface tractions within the framework of the infinitesimal strains. The expressions of the stress and

displacement fields are derived in closed-form in terms of spherical harmonics by using Boussinesq-Neuber-

Papkovitch potentials. The obtained solution is valid for thin and thick hollow sphere. It is shown that, for the

J2-plasticity, the hollow spherical shell undergoes incipient first plastic strains at the pole =θ π/2 located on the

internal surface boundary. In the perspective of shakedown analysis of ductile porous materials, the macroscopic

stress and strain fields of the hollow sphere model are obtained from their local counterparts by the volume

average operator.

1. Introduction

Over the past few years, there has been a growing interest in

Metallic Hollow Sphere Structures (MHSS) due to their light weight and

their capacity for energy absorption and heat insulation. These novel

foams, composed of an assemblage of hollow spheres, are used in

transport engines, aerospace and chemistry [1–3]. For instance, the

hollow silicalite spheres are used for ethanol/water separation by per-

vaporation [4], the hollow spheres ceramics are employed for heat

insulation [5], the synthetic magnetic polymeric microsphere can be

used for selective enrichment and rapid separation of phosphopeptides

[6], etc. New technologies for manufacturing hollow spherical-cell

foams with high precision for wide ranges of thickness and diameter

have been developed recently [7,8]. In parallel, great efforts have been

focused over characterization of different failure modes of these cellular

materials which requires a better understanding of deformations of a

single hollow sphere.

On the other hand, the hollow sphere shell plays a key role in

ductile damage of porous materials. In fact, since the Gurson's pio-

neering work [9] on ductile damage of voided solids, the unit cell

modeling the representative elementary volume (REV) in micro-

poromechanics is almost the hollow sphere [10–15] because it is the

simplest geometrical model. Further, it allows the derivation of closed-

form expressions of the effective yield criteria according to the local

strength yield of the solid matrix. In our recent works [16,17], we have

adopted the hollow sphere unit cell for the shakedown study of porous

materials under cyclic loads. The present work stems from these studies.

Although numerous experimental investigations and numerical

studies based on the finite element method have been devoted to the

hollow sphere under different loads [18–27], few analytic solutions

dealing with the mechanical response to complex and general loads are

provided in literature. The analytical elastic plastic solution of hollow

sphere under internal and external pressure is classical and can be

found in any textbook of mechanics of deformable solids. Wei et al. [28]

provided the closed form expressions of the stress and strain distribu-

tions within an elastic thin or thick hollow sphere subjected to dia-

metrical point loads. The method of solution is based on Fourier-Le-

gendre expansion for the boundary applied loads. Motivated by Wei

et al. solution, Chen et al. [29] have solved the problem of an elastic

hollow sphere compressed between two flat platens under the Hertzian

contact assumption. Gregory et al. [30] have developed approximate

solution for a thin or a moderately thick spherical cap in axisymmetric

deformations. An asymptotic expansion in the framework of the thin

shell theory with refined boundary conditions has been employed. Later

on, in Ref. [31], a similar procedure has been provided for the deri-

vation of an asymptotic solution of a thick hollow sphere compressed by

equal and opposite concentrated axial loads. The dynamic response of a

thick-walled elastic spherical shell subject to radially symmetric load-

ings have been studied in Pao et al. [32] by applying the theory of rays.

The purpose of the present work is to derive the analytical solution

of a hollow sphere made up of a homogeneous and isotropic material in

infinitesimal elasticity under axisymmetric and deviatoric surface

tractions. The plan of the paper is as follows. In the next section, a brief

review of the internal solution of a solid sphere and the external

https://doi.org/10.1016/j.ijpvp.2018.02.007
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solution of the spherical cavity embedded in infinite matrix under ax-

isymmetric loads is presented. The presentation follows the one in Refs.

[33] and [34]. In section 3, we firstly setup the problem of a hollow

sphere subjected to an axisymmetic and pure deviatoric surface stress

distribution on the outer boundary. Then, the closed-form expressions

of the displacement and stress field are derived by the combination of

the internal and external solutions. The macroscopic stress and strain

fields obtained from their local counterparts by the volume average

operator are also delivered. Section 4 focuses on von Mises yield con-

dition of the hollow sphere. It is worthy to note that some computations

have been checked or performed by making use of the Mathematica

software [35,36]. Finally, some concluding remarks are drawn in the

last section.

2. The external and internal problems

Boussinesq-Neuber-Papkovitch potentials provide a powerful tool

for solving three-dimensional elastic problems. The displacement and

stress fields are expressed in terms of harmonic potentials, given by the

vector Ψ and the scalar function Φ.

In the absence of volume forces, the displacement field u reads:

= − − + ∇ ⋅ +u xµ ν Ψ Ψ2 (4 ) ( Φ) (1)

where x is the position vector, μ is the shear modulus and ν is Poisson

ratio.

The harmonicity of the potentials ∇ = ∇ =Ψ( 0; Φ 0)2 2 insures that

Lamé-Navier equations of the linear elasticity are satisfied.

2.1. Spherical harmonics

Consider the spherical coordinates r θ ϕ( , , ) where r is the radius, θ

the inclination angle, φ the azimuth one, with orthonormal frame

e e e{ , , }r θ ϕ as shown in Fig. 1.

For an axisymmetric potential F (independent of ϕ), the Laplace

equation writes:

∇ = ∂
∂ + ∂

∂ + ∂
∂ =F r θ

F

r
r θ

r

F

r
r θ

cotθ

r

F

θ
r θ( , ) ( , )

2
( , ) ( , ) 02

2

2 2 (2)

Employing the method of separation of variables, the solution of (2)

is decomposed in terms of Fourier series with respect of the variable θ

as follows:

∑=
=

∞
F r θ r f θ( , ) ( )

n

n
n

0 (3)

Substitution of (3) in (2) yields the following differential equation

⎜ ⎟⎛
⎝

⎞
⎠ + + =

sinθ

d

dθ
sinθ

df

dθ
n n f

1
( 1) 0n

n
(4)

By introducing the new variable =ζ cosθ, equation (4) recasts into:

− − + + =ζ
d f

dζ

df

dζ
n n f(1 ) 2 ( 1) 0n n

n
2

2

2 (5)

This is the standard Legendre equation for which the continuous

fundamental solutions for ≤ζ 1 (or ≤ ≤θ π0 ) are the Legendre

polynomials of the first kind P ζ( )n :

= −
P ζ

n

d ζ

dζ
( )

1

2 !

( 1)
n n

n

n

2

(6)

The solutions r P cosθ( )n
n ( ≥n 0) of the Laplace equation are called

the spherical harmonics.

It is worth noting that the harmonics defined by the Legendre

Polynomials given by (6) are bounded at the origin =r 0. However, if

we set = − −n p 1 for ≥p 0 then + = +n n p p( 1) ( 1), and thus the

Legendre equation (4) remains unchanged but with p replacing n. This

means that the potentials − −r P cosθ( )n
n

1 are harmonics and also singular

at the origin =r 0 for ≥n 0.

2.2. Internal solution

The internal problem is concerned with a solid sphere subjected to

an axisymmetric traction exerted onto its boundary Se defined by =r b.

Let =u u u( , , 0)r θ be the displacement vector explained in the spherical

frame. It is shown in Refs. [33,34], that by using Boussinesq-Neuber-

Papkovich solution (1), the displacement components are given in

terms of Legendre's polynomial series as follows:

∑= + − + ++ −u A n n ν r B n r P ζ[ ( 1)( 2 4 ) ] ( )r

n

n
n

n
n

n
1 1

(7)

∑= + + − ++ −u A n n ν r B r
d

dθ
P ζ[ ( 1)( 5 4 ) ] ( )θ

n

n
n

n
n

n
1 1

(8)

The stresses are given by:

∑= + − − − + − −
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Let = = =T σ r b σ r b( ( ), ( ), 0)rr rθ be the stress vector applied onto

the boundary Se: =r b. For convenience, let us denote

= =f θ σ r b θ( ) ( , )rr and = =g θ σ r b θ( ) ( , )rθ .

It follows from equations (9) and (10) that:

= ∑ + − − − + −
= ∑
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(14)Fig. 1. The spherical coordinates.

J. Zhang et al.

117



It should be emphasized that equations (13) and (14) represent the

expansions of the boundary traction functions f and g in spherical

harmonics. The evaluation of the series expansions Fn and Gn can be

obtained by Ref. [33]:

∫= +
F

n
f θ P cosθ sinθ dθ

2 1

2
( ) ( )n

π

n
0 (15)

and

∫= +
G

n
g θ

dP

dθ
sinθ dθ

2 1

2
( )n

π n

0 (16)

Once the coefficients Fn and Gn are obtained, the evaluation of the

coefficients An and Bn is straightforward from equations (13) and (14)

for each integer n.

2.3. External solution

The exterior problem represents the axisymmetric loaded spherical

hole embedded in an infinite solid with vanishing loading at infinity.

The radius of the cavity is denoted by =r a.

Its corresponding external solution can be obtained directly from

the internal solution (7–12) by replacing n by +n( 1) [33,34]. Besides,

by virtue of the relation =− +P Pn n( 1) , the internal solution gives the

closed-form solution of the displacement and the stress fields as follows:

∑= ⎡⎣ + − − + ⎤⎦+u
C

r
n n ν

D

r
n P ζ( 3 4 ) ( 1) ( )r

n

n

n

n

n n2
(17)

∑= ⎡⎣ − + − + ⎤⎦+u
C

r
n ν

D

r

d

dθ
P ζ( 4 4 ) ( )θ

n

n

n

n

n n2
(18)

and

∑= ⎡⎣− + − + + + ⎤⎦+ +µ
σ

C

r
n n n ν

D

r
n n P ζ

1

2
( 3 2 ) ( 1)( 2) ( )rr

n

n

n

n

n n1
2

3

(19)

∑= ⎡⎣ − + − + ⎤⎦+ +µ
σ

C

r
n ν

D

r
n

d

dθ
P ζ

1

2
( 2 2 ) ( 2) ( )rθ

n

n

n

n

n n1
2

3
(20)

= ∑ ⎡⎣ − − + − + ⎤⎦
− ∑ ⎡⎣ − + − + ⎤⎦

+ +

+ +

σ n n n ν n P ζ

n ν cot θ P ζ

( 2 1 2 ) ( 1) ( )

( 4 4 ) ( ) ( )

µ θθ n

C

r

D

r n

n

C

r

D

r

d

dθ n

1

2
2 2n

n
n

n

n
n

n
n

1 3

1 3 (21)

= ∑ ⎡⎣ + − − − + ⎤⎦
+ ∑ ⎡⎣ − + − + ⎤⎦

+ +

+ +

σ n n nν ν n P ζ

n ν cot θ P ζ

( 3 4 2 ) ( 1) ( )

( 4 4 ) ( ) ( )

µ φφ n

C

r

D

r n

n

C

r

D

r

d

dθ n

1

2

n
n

n
n

n
n

n
n

1 3

1 3 (22)

The boundary stresses exerted onto the spherical cavity surface

=S r a: ( )i are given by:

= = = =α θ σ r a θ β θ σ r a θ( ) ( , ), ( ) ( , )rr rθ (23)

The spherical expansions of the function α θ( ) and β θ( ) are given by:

= ∑ ⎡⎣− + − + + + ⎤⎦
= ∑

+ +α θ µ n n n ν n n P ζ

M P ζ

( ) 2 ( 3 2 ) ( 1)( 2) ( )

( )

n

C

a

D

a n

n n n

2n
n

n
n1 3

(24)

= ∑ ⎡⎣ − + − + ⎤⎦
= ∑ = −∑

+ +β θ n ν n P ζ

N P ζ N sinθ

( ) ( 2 2 ) ( 2) ( )

( )

n

C

a

D

a

d

dθ n

n n
d

dθ n n n
dP ζ

dζ

2

( )

n
n

n
n

n

1 3

(25)

Similar to the internal solution, the coefficients Mn and Nn are ob-

tained by use of equations (15) and (16) and thenCn and Dn are derived

from (24) and (25).

3. Closed-form solution of the hollow sphere subjected to an

axisymmetric loads

Let a thick hollow sphere of inner radius =r a and outer radius

=r b (cf. Fig. 2) be subjected to axisymmetric traction loads. It is

convenient to introduce the porosity =f a

b

3

3 which is the damage

parameter in ductile fracture of voided materials.

The solution of the problem under consideration is achieved by the

combination of the internal and external solutions explained in the

previous section [33]. Indeed, the stresses applied on the boundaries

=S r a( )i and =S r b( )e yield four algebraic equations giving the coef-

ficients An, Bn, Mn and Nn for each n. The closed form solution involves

the spherical expansions of the displacement and stress fields.

In this work, we consider a free traction boundary at Si, (i.e.

= =α θ β θ( ) 0, ( ) 0) and an axisymmetric and pure deviatoric surface

traction exerted on the external boundary Se. This stress boundary

condition complies with the stress vector = ⋅σT ndd where n is the

outward unit normal vector to the external boundary Se and the

homogeneous deviatoric tensor σd is taken in the following form, in the

cylindrical coordinates ρ ϕ z( , , ) with orthonormal frame e e e{ , , }ρ ϕ z :

= ⊗ + ⊗ − ⊗σ P e e e e e e( 2 ),d
ρ ρ ϕ ϕ z z (26)

where P is a constant load.

It is easy to establish that, in the spherical frame, the stress vector

= ⋅σT ndd writes:

= − + +P cos θ Psin θ cos θT e e
1

2
(3 (2 ) 1) 3 ( ) ( )r θ

d

(27)

Thus, we get

⎧
⎨
⎪

⎩
⎪

= − +
= −
=
=

f θ P cos θ

g θ P sin θ cos θ

m θ

n θ

( ) (3 (2 ) 1)

( ) 3 ( ) ( )

( ) 0

( ) 0

1

2

(28)

The evaluation of F G M, ,n n n and Nn is achieved by the use of

equations (15) and (16) or by a simple identification. It turns out that

only term for =n 2 is not vanishing, and Legendre's polynomial series

involves only polynomial of degree 2.

We find:

⎧
⎨⎩

= − = −
= =

F P G P

M N

2 ,

0, 0
2 2

2 2 (29)

By using equations (13), (14), (24) and (25), we obtain

=A P
∆

Λ

A

A2 (30)

Fig. 2. The hollow sphere unit cell.
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where

⎧

⎨
⎪⎪

⎩
⎪⎪

= +
= − + + + − −

− − + − + + + − −
+ −

f f

b µν f f f f f

b µ f f f f f f f f

f

∆ 15 ( 1)

Λ 25( 1)

7 ( 7 18 18 7 7 7 18 7

18 7)

A

A

1/3

2 2 2/3 7/3 8/3 3 1/3

2 2/3 4/3 5/3 7/3 8/3 3 2 1/3

=
+ −+ − −

+ + + − + + + −( )

B

P
µ f

1

2 1
f f f f

f f f f ν f f ν

2

126 ( 1)

( 1) (25( 1) 7(7 25 7)) 25 49

5/3 2 1/3

1/3 1/3 2/3 4/3 2 2/3 4/3 2

(31)

=
− ⎛

⎝− +

− ⎞
⎠

+ + + +

+
+ + + + + + +

C P
b

f µ

5

4( 1)
f f ν

f

f f

f

f

f f f f f f ν

2

3

1/3 5( 1) 7( 1)

126( 1)

( 1)(5 7)

2/3 1/3 2/3 1/3

1/3 2

2/3 4/3 5/3 2 1/3
(32)

and

=D P
∆

Λ

D

D2 (33)

where

⎧

⎨
⎪⎪

⎩
⎪⎪

= − + + + + +
= − + + + − −

− − + − + + + − −
+ −

b f ν f f f f

f f f f f µν

µ f f f f f f f f

f

∆ 3 (5 7)( 1)

Λ 50( 1)

14 ( 7 18 18 7 7 7 18 7

18 7)

D

D

5 5/3 2/3 4/3 1/3

2/3 7/3 8/3 3 1/3 2

2/3 4/3 5/3 7/3 8/3 3 2 1/3

In conclusion, the stress field writes

= ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟σ

σ σ

σ σ

σ

0

0

0 0

rr rθ

rθ θθ

ϕϕ (34)

where

= ⎛⎝− + + + − ⎞
⎠ − +

µ
σ νA r B

D

r

ν C

r
cos θ

1

2
3

6 2( 5)
( 1 3 ( ))rr 2

2
2

2

5

2

3
2

(35)

= ⎛⎝− + − − + + ⎞
⎠µ

σ ν A r B
ν C

r

D

r
sin θ

1

2

3

2
(2 7)

3

2

3( 1) 6
(2 )rθ 2

2
2

2

3

2

5 (36)

= − + − − − − +
+ − + + +

−

−
( )
( )

σ ν r A B cos θ

ν A r B cos θ

3( 7) 2 ( 1 3 ( ))

3(7 4 ) 3 ( )

µ θθ
ν C

r

D

r

ν C

r

D

r

1

2
2

2 2
(2 4 )

2

9

2
2

2
2

2
3(2 4 ) 3 2

2
3

2
5

2
3

2
5

(37)

= − + − − − +
+ − − + −

−

−
( )
( )

σ νA r B cos θ

ν A r B cos θ

15 ( 1 3 ( ))

3(4 7) 3 ( )

µ φφ
ν C

r

D

r

ν C

r

D

r

1

2 2
2

2
5(2 1) 3

2
2

2
2

2
6(2 1) 3 2

2
3

2
5

2
3

2
5 (38)

where A2, B2, C2 and D2 are given by the relations (30,31,32,33).

The stresses distributions are depicted in Figs. 3–6 for =b m1 ,

=f 0.1, =P MPa1 , =E MPa2.1 105 and =ν 0.3.

It can be observed that σrr , σθθ and σϕϕ are symmetric about the axis

=θ π/2 while σrθ is anti-symmetric with respect to the same axis.

In the perspective of limit analysis or shakedown investigations of

ductile porous materials, the effective or macroscopic properties of the

hollow sphere are obtained as volume averages of their microscopic

counterparts.

The overall stress Σ writes and strain Ξ are given by:

∫ ∫= =σ dV dVΣ Ξ
1

Ω
,

1

Ω
ε .

Ω Ω (39)

It then follows:

= ⎛
⎝⎜ −

⎞
⎠⎟

PΣ
1 0 0
0 1 0
0 0 2 (40)

The macroscopic strain tensor writes

Fig. 3. Distribution of the stress σrr .

Fig. 4. Distribution of the stress σrθ.

Fig. 5. Distribution of the stress σθθ .
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=
⎛

⎝

⎜
⎜
⎜ −

⎞

⎠

⎟
⎟
⎟

PΞ

0 0

0 0

0 0

µ

µ

µ

1

2

1

2

1

(41)

Notice that the effective stress and strain are deviatoric

( = =tr trΣ Ξ( ) ( ) 0).

4. Yield point of the hollow sphere

The experimental tests show that deformable solids and structures

subjected to external loads exhibit an elastic behavior when the stress

states remain within an elastic domain ϒ, which is defined by a dif-

ferentiable and convex yield function  of the stress tensor σ :

 = ≤σ σϒ { ; ( ) 0} (42)

In the case where the stress state lies on the threshold curve

 =σ( ) 0, the material yields and develops irreversible plastic de-

formation. The stress states for which  >σ( ) 0 are not supported by

the structure.

For isotropic materials, the most commonly used criterion is the one

of von Mises model [37]. The later is expressed in the following form:

 = − ≤σ σ σ( ) 0eq 0 (43)

where = = ( )sσ s seq ij ij
3

2

3

2

1/2
is von Mises equivalent stress,

=s σdev ( ) and σ0 is the yield limit of the material under uniaxial ten-

sion test.

For the hollow sphere under consideration, the closed form ex-

pression of von Mises equivalent stress reads:

⎛
⎝⎜

⎞
⎠⎟

= ⎡
⎣⎢

+ + + + −
+ + + + + − +

+ − − + −
+ + − + +

+ − + − +
+ + − + +

σ r θ

P θ ν r A r B ν r C D

θ ν r A r B ν r C D

ν r A r B ν r C

θ r A r B r C D D

ν r A r B r νC C

θ νr A ν r C D D

,

(72sin (2 )((7 2 ) 2(1 ) 4 )

4(3cos(2 ) 1) ((4 7) 4( 2) 6 )

(2(8 7) 2 2(8 7)

3cos(2 )(14 2 6 7 ) 3 )

(4(7 2 ) 4 2 (4 )

3cos(2 )(8 2(4 5) 5 ) 9 ) )]

eq

µ

r

1

2

3

2
2 7

2
5

2
2

2 2
2

2 7
2

5
2

2
2 2

2

7
2

5
2

2
2

7
2

5
2

2
2 2 2

2

7
2

5
2

2
2 2

7
2

2
2 2 2

2 1/2

2

10

(44)

where A2, B2, C2 and D2 are given by the relations (30,31,32,33).

Figs. 7–9 depict von Mises equivalent stress distribution σe, the

contour plot and the variation of σeq on the outer and inner boundaries

respectively for =b m1 , =f 0.1, =P MPa1 , =E MPa2.1 105 and

=ν 0.3. They show that von Mises stress σe is symmetric with respect to

the plane =θ π/2.

Moreover, it can be proved that the most heavily loaded point,

Fig. 6. Distribution of the stress σϕϕ. Fig. 7. The von Mises stress distribution σeq.

Fig. 8. Contour plot of σeq.

Fig. 9. Variation of σ µ/eq with respect to θ on the boundaries =r a and = =r b m1 .
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where σe reaches its maximum value, is located on the inner surface

=r a at the pole =θ π/2. Therefore, if the load parameter P increases

gradually, the yield condition − =σ σ 0eq 0 is firstly reached at yield

point with coordinates ( = =r a θ π, /2), unlike the hollow sphere under

hydrostatic pressure for which incipient irreversible plastic strains ap-

pear along the total inner surface of the spherical shell.

5. Conclusion

In this paper, the analytical solution of the axisymmetric loaded

hollow sphere within the framework of the small strain elasticity has

been derived. The load is defined by a free traction boundary on the

inner radius and an axisymmetric and pure deviatoric surface forces

exerted onto the exterior surface. The method of solution is based on

Boussinesq-Neuber-Papkovitch potentials and the stress and displace-

ment fields are given in terms of the spherical harmonics. For the

practical use in limit analysis and shakedown analysis of ductile voided

media, the effective properties of the stresses and strains have been

provided. Also, for a matrix obeying to von Mises criterion, it has been

found that incipient plastic deformations develop on the internal radius

=r a and at the pole =θ π/2.
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