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Abstract 
 

With the highly developing concerns about the future of energy resources, the optimization of 

energy consumption becomes a must in all sectors. A lot of research was dedicated to buildings 

regarding that they constitute the highest energy consuming sector mainly because of their heating 

needs. Technologies have been improved and several methods are proposed for energy 

consumption optimization. Energy saving procedures can be applied through innovative control 

and management strategies. 

 

The objective of this thesis is to introduce the smart concept in the building system to reduce the 

energy consumption, as well as to improve comfort conditions and users’ satisfaction. The study 

aims to develop a model that makes it possible to predict thermal behavior of buildings.  

The thesis proposes a methodology based on the selection of pertinent input parameters, after a 

relevance analysis of a large set of input parameters, for the development of a simplified artificial 

neural network (ANN) model, used for indoor temperature forecasting. This model can be easily 

used in the optimal regulation of buildings’ energy devices. Results shows that indoor temperature 

can be well predicted considering only the indoor façade temperature. 

 

The smart domain needs an automated process to understand the buildings’ dynamics and to 

describe its characteristics. Such strategies are well described using reduced thermal models. Thus, 

the thesis presents a preliminary study for the generation of an automated process to determine 

short term indoor temperature prediction, heating control and buildings characteristics based on 

grey-box modeling. This study is based on a methodology capable of finding the most reliable set 

of data that describes the best the building’s dynamics. The study shows that the most performant 

order for reduced models is governed by the dynamics of the collected data used.  

By applying a control approach based on grey box modeling important energy savings were 

performed. 

 

Keywords: Smart technology; artificial neural network (ANN); indoor temperature; façade 

temperature; forecasting; sensors; grey-box models; performance; input parameters; control. 
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Résumé 
 

L’inquiétude croissante concernant le futur des ressources énergétiques a fait de l’optimisation 

énergétique une priorité dans tous les secteurs. De nombreux sujets de recherche se sont focalisés 

sur celui du bâtiment étant le principal consommateur d’énergie, en particulier à cause de ses 

besoins en chauffage. Les technologies se sont évoluées et plusieurs méthodes sont proposées pour 

l'optimisation de la consommation d'énergie. L’application des stratégies de contrôle et de gestion 

innovantes peuvent contribuer à des économies d'énergie. 

 

L'objectif de cette thèse est d'introduire le concept intelligent dans les bâtiments pour réduire la 

consommation d'énergie, ainsi que pour améliorer les conditions de confort et assurer la 

satisfaction des utilisateurs. L'étude vise à développer un modèle permettant de prédire le 

comportement thermique des bâtiments. 

La thèse propose une méthodologie basée sur la sélection des paramètres d'entrée pertinents, après 

une analyse de pertinence d'un grand nombre de paramètres d'entrée, pour développer un modèle 

simplifié de réseau de neurones artificiel (ANN), utilisé pour la prévision de température 

intérieure. Ce modèle peut être facilement utilisé dans la régulation optimale des dispositifs 

énergétiques des bâtiments. Les résultats indiquent que la température interne peut être prédite en 

considérant seulement la température interne de la façade. 

 

Le domaine intelligent nécessite un processus automatisé pour comprendre la dynamique des 

bâtiments et décrire ses caractéristiques. L’utilisation des modèles thermiques réduits convient 

pour de telles stratégies. Ainsi, la thèse présente une étude préliminaire pour la génération d'un 

processus automatisé pour déterminer la prévision de température intérieure à court terme, le 

contrôle du chauffage et les caractéristiques des bâtiments basées sur la modélisation en boîte grise. 

Cette étude est basée sur une méthodologie capable de trouver l'ensemble de données le plus fiable 

qui décrit le mieux la dynamique du bâtiment. L'étude montre que l'ordre le plus performant pour 

les modèles réduits est régi par la dynamique des données collectées utilisées. 

En appliquant une méthode de contrôle basée sur la modélisation en boîte grise, une amélioration 

de la consommation énergétique a été déduite. 

 

Mots-clés : technologie intelligente ; réseau de neurones artificiels (ANN); température 

intérieure température de façade; prévision; capteurs; modèles en boîte grise; performance; 

paramètres d'entrée ; contrôle. 
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Chapter 0: General introduction 
 

In recent years, energy consumption has been receiving huge public and political attention due to 

a mix of increasing energy prices, the wish of independence from some energy supplying 

countries, and last but not least alarming reports about the impacts of CO2 emissions on the global 

climate. This is while the global energy demand is still increasing - a development expected to 

continue for years to come due to rapidly growing economies. 

 

In industrialized countries, the building sector is one of the biggest consumers of energy whose 

needs are constantly increasing due to demographic change and the improvement of living’s 

standards. At present, since the Rio Summit (1992) and the Kyoto Protocol (2005) more attention 

is being paid to reduce and control energy consumption, which is an economic and environmental 

necessity. European and particularly French efforts are reflected in the application of various 

thermal regulations and quality labels. The objective being to play on the building's construction 

features to reduce energy requirements.  

 

The consumed energy in buildings is affected by several factors such as the insulation, the 

environment and the heating regulation etc.… In order to reduce this consumption, a better 

understanding of the building performance as well as regulation methods is needed. Static and 

dynamical relationships are needed for many important purposes such as control of heating and 

ventilation with respect to indoor comfort. If reliable models of the heat dynamics of buildings can 

be obtained, the thermal mass in buildings provides an energy storage that may be used to shift 

some of the energy demand away from demand at peak hours.  

 

The design of an environmentally friendly building requires mastery and knowledge of energy and 

bioclimatic aspects. This implies taking into consideration of all the elements that make up the 

building and the way in which the energy exchange occurs between these elements. These 

couplings involve a fundamental reflection to allow an optimal functioning of the building, both 

in winter and in summer. The study of these energy interactions requires the most often well-

adapted models.  

 

Hence, the Laboratory of Civil Engineering and Geo-Environment (LGCgE) at Lille 1 University 

and his partners have undertaken a project of great magnitude, that of to build on the campus of 

Lille 1 university a demonstrator of the smart and durable city (project SunRise). The work of this 

thesis constitutes a part of this project.  

The aim of this study is to introduce the smart concept in the building system in order to reduce 

the energy consumption, as well as to improve comfort conditions and users’ satisfaction. Using 

smart technologies (sensors) allows following the indoor and outdoor conditions of the building to 

understand its thermal behavior. The study is applied on tertiary buildings at the school of 



2 
 

engineering ‘Polytech’Lille’ and at the research building “A4” in France. An advanced monitoring 

system was installed in many buildings for modeling purpose in order to study buildings’ thermal 

behavior. The objective of the thesis is therefore to develop a model that makes it possible to 

predict thermal behavior of buildings. The model must be generalizable, and a minimum 

information should be necessary for its implementation. In addition, it must allow the 

establishment of energy optimization strategies. 

 

In chapter one, we will present increasing energy consumption of buildings and their 

environmental impact. We focused on the solutions to achieve low energy buildings concerning 

building regulations and codes. However, this is not enough to achieve the expected goal in 2020. 

We noted that, improving building performance required a total understanding of their thermal 

behavior and thus modeling the thermal dynamic system is needed. Different prevision models are 

identified within a bibliographic analysis.  

 

Chapter two presents a detailed description of the monitoring system installed in Lille 1 university 

with a deep analysis of the distribution of the measured indoor and outdoor parameters and general 

conclusions. A set of experimentation with its analysis is described too. This investigation allows 

the determination of the major factors influencing the indoor temperature for better forecasting 

and optimization of the heating energy. 

 

The next chapter introduces a black box methodology ‘Artificial Neural Network’ and presents a 

data-based model for indoor and façade temperature forecasting, which could be used for the 

optimization of energy device use. This study proposed a methodology for the development of a 

simplified ANN-based model for forecasting indoor temperature. 

 

Chapter four describes another grey box methodology to predict the indoor temperature and 

building characteristics. It presents a study of the influence of the data’s dynamics on the prediction 

of the indoor temperature. The impact of building’s parameters is determined through a sensitivity 

analysis. 

 

The last chapter presents an empirical on/off control method to minimize the energy consumption. 

It completes the work of the previous chapter. This study describes the proposed control 

methodology and analyzes several applications to confirm the effectivity of the control method. 
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Chapter 1: State of the Art 

 

1.1 Introduction 

Energy is the most precious resource among all resources and its demand is rapidly growing. There 

could be two possible ways to tackle this problem: (1) production of additional energy and 

exploration of alternate resources and (2) more efficient utilization of existing resources. The first 

approach is highly expensive, time consuming, and costly, and the second one is inexpensive, more 

proficient and highly recommended as the efficient utilization of energy avoids the need to produce 

new energy. Technologies have been improved and several methods are proposed for energy 

consumption optimization. Energy saving procedures can be applied through innovative control 

and management strategies. The research issue around the necessity to integrate supply and 

demand sides has produced important developments, leading to new research purposes based on 

the system thinking in design and management of buildings. Hence, this thesis concerns the use of 

the Smart Technology for the optimization of the heating/cooling consumption in buildings.   

The use of this technology requires forecasting of the indoor temperature for the regulation of 

energy devices to ensure occupant comfort, as well as for energy optimization. Thus, the use of 

models for sustainability assessment of intelligent buildings was a key strategy to quantify the 

improvement of energy efficiency and occupants’ satisfaction. Several models were proposed in 

this work. 

In this chapter we will present the challenges of buildings heating/cooling with some data, 

proposed models for the optimization of the heating consumption, and smart technology for 

heating optimization. 

 

1.2 Challenges and motivation 

In Europe, the energy consumption increases on average by 1.5% per year, due to the economic 

development, the expansion of the construction sector and energy services used. With a 

consumption greater than 40% and more than 20% of CO2 emissions (figure 1.1), the building 

sector is in first position before those of industry and transport [1]. Because of this observation and 

pushed by its membership, the Kyoto Protocol and by the public will, Europe is now moving 

towards buildings with very low energy consumption. In France, the French Environment and 

Energy Management Agency (ADEME) estimated that the building was also the largest consumer 

of energy in 2015 with 45% of total energy consumed and 25% of Greenhouse Gas emissions 

(GHG) [2]. In 2015, the Observation and Statistics Service (SOeS), which is part of the General 

Commission for Sustainable Development always attributed more than 45% energy consumption 

in the building sector (Figure 1.2) and in contrast to other industrial sectors, emissions from the 

residential /tertiary sectors and transport continues to grow. 
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During the last thirty years, despite the drop of more than a third of the consumption per square 

meter, consumption increased by almost a quarter [3]. This consumption is based essentially on 

fossil fuels. Existing buildings account for half of the energy consumption of this sector. 

Following the Rio Earth Summit in 1992 and the Kyoto Protocol in 1997, France became 

committed in 2002 to respect the directives of the European Union "Energy Efficiency" with the 

goal of reducing greenhouse gas emissions. The Climate Plan was launched in 2004, which 

consists of setting short- and medium-term goals: 

 Divide by four greenhouse gas emissions by 2050; 

 Increase the production of thermal renewable energy by 50% by 2015; 

 Increase the production of renewable electricity by 25% by 2015. 

 

 

 

Figure 1.1: CO2 emission in France per sector. [2] 

 

Figure 1.2: Final energy consumption per sector. [2] 
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Faced with this challenge, the Grenelle Environment Forum set objectives to create favorable 

conditions to the emergence of a new French deal in favor of the ecology and sustainable 

development [4]. The High Environmental Quality (HQE) approach was created to meet these 

objectives and to respect the regulations in the building sector. 

Following the perspective of 2004 Climate Plan, a passage from the regulation thermal 2000 to 

2005 was carried out. RT2005 is applied to all building permits since September 1, 2006 in the 

residential and tertiary sectors. It strengthens 15% the energy performance requirements of new 

buildings compared to the RT2000 [4]. To ensure this continuity in improving energy performance, 

RT2012 has seen then the day. This regulation must be applied to the new residential buildings 

from the end of 2012 and tertiary buildings from the end of 2010. It increases the level of regulatory 

requirements to consume less than 50 kWh / m² / year in primary energy (figure 3). 

 

Figure 1.3: Evolution of energy consumption according to several French regulations. [http://www.cfbp.fr/gpl-maitrise-de-l-

energie/reglementation-thermique-n261] 

 

Building conception is a principal factor that affects the energy consumption and the comfort in 

the building. In the European context, this is one of the most important challenges to be worked 

out. Many facilities were put in action with tools to ameliorate the building energy behavior from 

the conception phase as mentioned before. However, this is not enough since the rehabilitation of 

the existing mass of buildings can be very expensive with a very long investment cycle. Moreover, 

there are other factors that can affect this behavior such as the technical as well as economical and 

regulatory issues to be integrated. 
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Heating and cooling loads represent the largest consumption (more than 60% of total consumption) 

(figure 1.4) [5] for the building sector. Better management of climatization (heating and cooling) 

consumption becomes an emergency, especially in a rapidly evolving economy and increased 

awareness of environmental constraints. Understanding the building heating/ cooling system is 

challenging as well. The type of the heating/cooling system and its design affects enormously the 

energy consumption. Buildings with central systems consume totally differently from those with 

individual systems. The same thing applies for the nature of the heating/cooling system (gas, 

electricity....). Furthermore, the regulation and planning of the climatization system is highly 

important and can affect the energy consumption (use of building inertia, occupation planning, 

sun, energy pricing…). 

 

 

Figure 1.4: Distribution of building energy consumption in France. 

Concretely, it would be a question of choosing a facility well adapted to the needs (management 

demand for energy) and to ensure that the building is properly insulated, whether existing or under 

construction. A good knowledge of the thermal behavior of the building (residential, tertiary, 

industrial) helps to improve the management of the energy demand of heating/cooling system. The 

marketer uses this information to propose energy service offers such as building diagnosis and 

recommendations for improving the structure of the building, or replacement of the electric heating 

system. For the customer, a better knowledge of the behavior of his building is necessary to modify 

his energetic behavior, to reduce its bill or to improve its comfort. 

Achieving the energy performance levels already mentioned requires a special attention to the 

"elements" constituting the building: reducing thermal losses through the envelope, minimizing 

thermal bridges, choosing a system of ventilation that limits heat loss through air exchange, using 

phase change, etc. Achieving energy savings is also substituting conventional energy equipment 

system and strategies with smart ones. Therefore, promoting low-energy buildings requires 

integration of smart technologies to improve their performance. 
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1.3 Buildings’ models 

As one of the ways to enhance building energy performance, thermal analyses of building systems 

should be carried out. The building system includes envelopes of a building and its inner sub-

systems, such as HVAC and electrical equipment. 

For obtaining a complete understanding of thermal behavior of a building system, the 

characteristics of the following components must be known:  

 Outdoor conditions : orientation, location, climate, etc.  

 Physical properties: structure, materials, thermal capacitance, thermal resistance, etc.  

 Energy efficiency of inner sub-systems: HVAC, lighting, electrical appliances, renewable 

energy source installation, etc.  

 Occupancy  

 Geometry of building 

 Window to wall ratio 

 

Figure 1.5: Dynamic interaction of building's components. 

 

These characteristics are dynamically interacting with each other (Figure 1.5). It requires a more 

detailed study of the above characteristics of the building system to assess its energy performance 

[6]. In order to obtain a more accurate data, each component of the building system has to be 

rigorously studied. Furthermore, since the thermal characteristics of the building system are 

closely related to the energy consumption, thermal modeling of each component of the building 

system is the most important task to do for analyzing the building energy performance. 
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Interest in the building as a system that interacts dynamically with a set of climatic data and 

conditioned by the behavior of the occupant (heat input due to the presence of people, domestic 

appliances, heating management, etc.) is relatively new. Indeed, the first studies go back to the end 

of the years 70 and faced three major difficulties: 

 Lack of detailed information on the constitution of the building. 

 Uncertainty about occupant use and behavior. 

 Limited capacities of the means of calculation and experimentation of the building. 

Two approaches were adopted to model the building. The first was about a simplified modeling to 

overcome the limitations of the calculation. The proposed models are of a reduced order and the 

parameters are derived from on-site surveys (electrical power, indoor temperature, etc.). The 

second was interested in understanding the heat exchange phenomena in the building for 

simulation purposes. Existing models can be classified into two families according to the adopted 

approach, a static approach and a dynamic approach. The choice of the method is essentially 

related to the simplicity of the adopted model and the time interval chosen. 

 

 1.3.1 Static models 

Static models are dedicated to the modeling of the steady state of the building (the interior 

temperature is equal to the set point at every moment and the demands are constant in time). This 

regime results in a thermal balance, ensured at every moment, between foreign exchange (mainly 

weather) and domestic (heating input parameters) of the envelope of the building. As a result, the 

static models are designed to express the heating load as a function of the external stresses (for 

example outside temperature, sunshine, etc.) according to the heat balance equation [7]: 

 

𝑄 = 𝑈 (𝑇𝑖𝑛𝑑 − 𝑇𝑜𝑢𝑡) − 𝑆𝐼 +  𝜀                                (1.1) 

where: 

 Q is the energy needed to maintain the set temperature; 

 Tind is the average indoor temperature in the building (◦C); 

 Tout is the average outdoor temperature (◦C); 

 U is the coefficient of the global static losses (W/◦C); 

 S is the equivalent south surface (m2); 

 I is the global south vertical radiation (W/m2); 

 ε is a factor that depending on the start and end time of the observation period and it is 

weighted by the inverse of the measurement time step (W). 
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The difference between the proposed models is related to the choice of the number and the 

assumptions made on the excitations of the studied system.  Equation 1.1 can be adapted according 

to the precision needed and the data available. The term ε can be further developed by taking into 

consideration more gains to have better precision of calculations. It can be as well further 

simplified by ignoring ε and even the sun radiation and calculating the heat load as a function of 

the temperature difference between indoor and outdoor. 

The most famous application of this concept is the energetic signature (figure 1.6). This method 

has been designed to analyze heating consumption in the absence of detailed measurements of 

thermal magnitudes of the building. Here, the goal is to express the heating/cooling load according 

to the outside temperature. Equation 1.1 can then be simplified in equation 1.2 called building 

signature. 

            𝑄 = 𝛼 + 𝛽𝑇𝑜𝑢𝑡                                              (1.2) 
                                               

The coefficients α and β can be calculated by linear regression using some registered measures of 

the studied building.   

 

Figure 1.6: Example of building energy signature. 

It can also be interesting to compare buildings in different climatic zones or to evaluate their 

heating/cooling needs not for a given outside temperature but according to the severity of the 

climate using the Degree Day concept (DJ). For a given location, the Degree Day is a value 

representative of the gap between the temperature of a given day and a pre-established temperature 

threshold (18 or 19°C per example). It is typically used to estimate energy consumption for heating 

or cooling [9]. 
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These static models are simple. They offer the possibility of having a first characterization of the 

building (for the diagnosis for example) through the estimation of its static gain. But they present 

the three following limitations: 

 they require a relatively long observation period 

 they do not consider the transient behavior of the building 

 These models do not make it possible to account for the regulation of heating/cooling. 

From where appeared the necessity of dynamic thermal models. 

 

1.3.2 Dynamic models 

The transient-state method, called “dynamic” analysis, requires various information and 

computational calculations in order to provide more detailed and accurate results. This method 

treats dynamic thermal behavior of building systems, including steady and transient-states. It 

allows the analysis of temporal and spatial performances within building systems. For example, 

the gradient of temperature and the diffusion of heat flux inside the building can be described by 

this method. Furthermore, it is possible to analyze the whole building system that contains the 

building envelopes and its sub-systems. 

Given the multitude of methodologies, it is interesting to perform a classification to determine the 

degree of precision and adaptation of each method. This classification will not be perfect, as the 

boundary between two levels of modeling is usually not well marked. We will group them into 

three approaches white box, black box and grey box (figure 1.7). 

 

Figure 2.7: Different methodologies for dynamic modeling. 
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1.3.2.1 White box approach 

The complete modeling of a building ("white box") allows to predict its thermal needs. This 

requires a precise knowledge of the composition of walls and measurements [10], which is not 

always easily accessible. In addition, it is often necessary to group the parts in homogeneous 

thermal zones, which makes it necessary to take strong assumptions and to have good knowledge 

of the thermal behavior of the building. Even with such a precise model of the building, the 

simulated thermal requirements are distance from reality, which makes it necessary to calibrate 

certain buildings’ parameters to better represent the reality [11]. Once the "white box" model of 

the building is completed, it is possible to predict the thermal needs of the building by simulation. 

Moreover, the model will have the possibility to predict the input parameters such as climate data 

(temperature, sunshine) and occupation profiles. Three main thermal building models are currently 

used [12]: 

 CFD ‘Computational fluid dynamics’: Microscopic approach of the thermal transfer model 

detailing the flow field. It is based on the decomposition of buildings’ zone in many control 

volumes with global mesh.  

 

 Zonal approach: First degree of simplification of the CFD technique. It consists in dividing 

each building zone into several cells. One cell corresponds to a small part of a room. 

 

 Multizone or nodal approach: Considers each building zone as a homogeneous volume 

characterized by uniform state variables approximated to a node that is described by a 

unique temperature, pressure, concentration, etc. 

Even in the most complete models, some phenomena are neglected (for example, the variation in 

air infiltration rate as a function of external and internal pressures) which can create a bias in load 

forecasts. Another negative point of the "white box" models is the calculation time. We know that 

it will be necessary to execute several hundred simulations for the implementation of optimization 

strategies and this represents an important calculation cost. 

Physical modeling of the "white box" type is not retained as a solution adapted to the issue of load 

forecasting and optimization of air conditioning, because it is not generalizable (deployment to 

many buildings in a short time) and has too important cost of calculation [13, 14]. This method 

has been applied to several building energy simulation tools, such as DOE-2 [15], HVACSIM+ 

[16], TRNSYS [17], BLAST [18], and EnergyPlus [19]. 

 

1.3.2.2 Black Box approach   

Internal operation of the building is not described. This type of model simply allows a numerical 

resolution of the problem without providing a physical interpretation. The method of resolution is 
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based on empirical relationships that link the input and output parameters (figure 1.8). These 

relationships are the result of a regression analysis that requires experimental measurements. In 

addition, this approach procures a very simple model and accurate results in a reduced calculation 

time.  

From existing literature on prediction model where data-driven modelling techniques have been 

used, it is evident that nonlinear models are more effective than linear models for prediction [20-

22].  

 

Figure 3.8: Representation of the black-Box modeling. 

The simplest building model is linear regression as a function of the outdoor temperature. This 

static modeling works mainly in heating and on old buildings (few windows, poorly insulated and 

without temperature reduction). Since the first thermal regulation (RT 88 for non-residential) and 

following numerous energy savings (Grenelle I & II, Law n ° 2010-788), this case tends to 

disappear. Rabl [23] shows, on a case study (air-conditioned shopping center), that adding a 

variable occupancy (in addition to the outside temperature) significantly increases the accuracy of 

the model. He is one of the first authors to use multiple linear regression to predict the consumption 

of a building. MISO linear regression models (Multi Input Single Output) are available in several 

formulations [24]:  

 ARX model ‘Autoregressive with exogenous input’ where noise is directly coupled to the 

dynamics of the model. It is efficient if the noise ratio on signal is weak.  

 

𝐴𝑦 = 𝐵𝑢 + 𝑒                        (1.3) 

 

 OE ‘Output error’ allows an independent modeling of the dynamic and noise.  

𝐴𝑦 =
𝐵

𝐹
𝑢 + 𝑒                        (1.4) 

 ARMAX ‘Autoregressive moving average with exogenous input’, where the dynamics of 

the model and the noise are coupled, but they may be different for each entry. 

 𝐴𝑦 = 𝐵𝑢 + 𝐶𝑒                     (1.5) 
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 BJ or ARIMA ‘Box-Jenkins’ or ‘Autoregressive integrated moving average’. Very flexible 

model, it allows to set independently the dynamics and the noise, whether at input or output. 

𝐴𝑦 =
𝐵

𝐹
𝑢 +

𝐶

𝐷
𝑒                      (1.6) 

Where y and u are respectively the model output and input, e represents the white noise 

that consider the unmeasured disturbances in the studied system and A, B, C, D and F are 

matrices to identify in the learning phase. 

 

Different data-driven non-linear modelling techniques were used by many authors [25-28]. We 

can mention: 

 ANN ‘Artificial Neural Network’: Learning technique inspired by the biological neurons 

used as an approximation tool of the complex relationships between models’ input and 

output. 

 

 SVM ‘Support Vector Machines’ techniques developed on the concept of decision 

hyperplanes (nonlinear function). The derived concept is based on finding the largest 

deviation from the obtained target.  

 

 RF ‘Random Forest’: An ensemble learning methodology where the performance of 

several weak learners is boosted via a voting scheme. 

 

 GA ‘Genetic algorithm’: Optimization technique deduced from an analogy with the 

evolution theory of Darwin. It is based on the faculty of a given species to adapt itself to a 

natural environment and to survive extreme conditions. 

 

Each of these statistical techniques has his own advantages and drawbacks and the choice 

of the method depends mainly on the user and on what he expects at the end of the study. 

Black box models ‘data-driven approach’ have shown their limitations as to the need for 

measurements which require significant resources. Moreover, the optimization study is not based 

on a physical understanding of the phenomena.  
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1.3.2.3 Grey Box approach  

Located midway between the black box models and the white box models, the grey box models 

combine the physical sense and the spirit of simple patterns. The principle of "grey box" modeling 

is to use a simplified physical representation of the studied system and identify models’ parameters 

to minimize errors of forecast. Buildings can be modeled by simple dynamic differential equations 

representing the phenomena of conduction, convection and capacitive phenomena. These 

equations have been widely studied in the literature, notably by Laret and Roux [29-30]. 

Indeed, this approach requires computing resources less heavy than those required by white box 

models and have better flexibility. Its main advantages revolve around the following points: 

 Compactness and simplicity of construction of the model given the reduced number of 

settings; 

 More practical sensitivity analysis; 

 Better flexibility that makes it easy to manipulate the model; 

 Minimization of parameters’ number while keeping an important level of precision. 

Several applications are available for this hybrid approach. A first strategy consists in using 

machine learning techniques (black box) as physical parameters estimator. A second application 

is to implement a learning model using statistics to describe the building behavior. This learning 

model is built from a physical approach. A third strategy consists in using statistical method in 

fields where physical models are not effective and accurate enough. (end uses consideration, heat 

behavior in multiple zones...) 

From the mid-1980s, the thermal network method, based on the grey box approach, using the 

thermal-electrical analogy has been used in order to simplify the building modeling. The thermal 

network method is based on the energy balance equation. The heat transfer phenomena of building 

systems are described by their corresponding electrical components. The supplementary heat 

gain/loss due to solar radiation, metabolic heat of occupants, infiltration/ventilation, and electrical 

equipment and appliances can be expressed by current sources. It permits the analysis of thermal 

behavior of building systems during steady and transient-states.  Briefly, the thermal models of 

building systems are represented by electrical circuits, including electrical components and 

electrical sources. The thermal dynamics of the building systems are analyzed in accordance with 

the electrical dynamics of the corresponding electric circuits (table 1.1). The choice of the number 

of resistances and capacities depends on the available data and priorities of modeling process. 

There are several possible choices according to the use. In the bibliography, models with the forms 

(RC, R2C2, R3C2, R4C2, ...etc.) were found [31-32].  

Some drawbacks own to each technique (white and black box) remain in the hybrid method as the 

free parameters for statistical tool or the computation time needing for both physical or statistical 

codes. 
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Table 1.1: Representation of building thermal factors in an electrical circuit. 

In the building  In the circuit 

Heat flow  Electric current 

Supplied heat flow  Current Generator 

Thermal conductance  Electrical conductance 

Set temperature  Tension generator 

Thermal capacity  Electrical Condenser 

 

1.4 Smart technologies 

Buildings can save energy by using advanced sensors and automated controls in HVAC, plug 

loads, lighting, and window shading technologies, as well as advanced building automation and 

data analytics. Buildings that have advanced controls and sensors along with automation, 

communication, and analytic capabilities are known as smart buildings. In a fully-fledged smart 

building, the building systems are interconnected using information communications technologies 

(ICT) to communicate and share information about their operations. Smart building technologies 

can provide facilities operators with the tools to anticipate and proactively respond to maintenance, 

comfort, and energy performance issues, resulting in better equipment maintenance, higher 

occupant satisfaction, and reduced energy consumption and costs. 

Smart buildings include efficient technologies with automated controls, networked sensors and 

meters, advanced building automation, data analytics software, energy management and 

information systems. In the following, we will mention these key building systems and 

technologies and we will discuss the smart technologies of HVAC systems. 

Systems that can use smart technologies in buildings are: HVAC systems, plug loads, Lighting, 

Window shading, Automated system optimization, Human operation and Connected distributed 

generation and power.  Figure 1.9 gives an overview of these interconnected systems. 

 

1.4.1 HVAC systems 

It takes an enormous amount of energy to condition air and then distribute it throughout a building. 

Using controls to properly manage HVAC operation is an essential part of saving energy in a 

building. However, building operators frequently manage HVAC operations through trial-and-

error adjustments in reaction to occupant comfort feedback—sometimes relegating energy savings 

to a much lower priority.  

Smart HVAC systems have the potential to greatly reduce energy consumption while maintaining 

or even improving occupant comfort. Smart building software interprets information from a variety 

of HVAC sensor points and maintains that information in real time, in a cloud-based system that 
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is remotely accessible. Engineers develop algorithms within the smart building software that use 

the database information to optimize the monitoring and control of HVAC systems. These 

advanced controls can limit HVAC consumption in unoccupied building zones, detect and 

diagnose faults, and reduce HVAC usage during times of peak energy demand. 

One of the largest energy efficiency benefits of smart building HVAC controls is found through 

optimizing the amount of conditioned (i.e., heated or cooled) air supplied throughout a building. 

Although it may seem like a simple concept, this goal can be achieved in several ways. Smart 

controls can optimize airflow using data provided by occupancy, temperature, humidity, duct static 

pressure, and air quality sensors.  

 

Smart HVAC systems can also support sophisticated data analysis. Armed with smart building 

data analytics, building operators can review historical building occupancy and usage on a granular 

level, receive performance data in real time and fine-tune the HVAC controls, accordingly, thereby 

avoiding wasted HVAC usage. 

 

 

Figure 4.9: Overview of smart building technologies. 
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1.5 Conclusion 

This chapter included a state-of-the-art synthesis on the problematic related to buildings energy 

consumption reduction with a particular focus on models used for the building thermal modelling. 

Analysis showed that this issue is very complex and still requires effort to build models which 

could be easily used by professional. 

The recent development in smart technology offers new opportunity to collect comprehensive data 

about the building environment and use. These data could be used to build data-based models, 

which could be easily calibrated and used in indoor temperature forecasting, which constitutes a 

major step in the optimal thermal management of buildings. 

In the following chapters we will present the use of this method for the development of two classes 

of models: Artificial Neural Network model and Grey models. 
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Chapter 2: Experimental developments 
 

Introduction 

In this chapter, an intensive and advanced monitoring system will be presented. It was designed to 

follow the indoor and outdoor conditions of a building. Experimentation were executed at Lille 1 

university in the North of France. Monitoring system was installed in three locations at the 

university campus: an occupied office at the first floor of the school of engineering 

‘Polytech’Lille’, four unoccupied classrooms at the fourth floor of the same building and a research 

building ‘A4’.  

Furthermore, the chapter presents a preliminary study for each experimentation. It includes a 

homogeneity investigation of the indoor parameters in order to understand their distribution. 

Several experimental scenarios were performed to explore the importance of some parameters on 

the energy consumption. This preliminary analysis is indispensable for the numerical modeling 

presented in the next chapters. It indicates major parameters that should be considered for heating 

energy optimization. 

Flow chart 2.1 presents the planned monitoring of different spaces and its objective. 

2.1 Instrumentation system 

2.1.1 Design  

 

A new monitoring system was designed to study the temperature and relative humidity 

distributions. Before the design and construction of the system, the determination of its 

specification was established. This study is a part of the ‘sunrise project’ whose goal was to 

transform Lille1 university campus into a demonstrator of a smart and durable city. The building 

monitoring required the design of an innovative monitoring system to follow fluids consumption 

(water and energy), comfort conditions (temperature, humidity, air quality, lightening, noise) and 

state of windows and doors (open/closed). The system stores data and allow analysis of historical 

data. It includes a friendly graphic interface and guarantee tenants’ or researchers’ privacy. The 

system should also be robust, based on wireless low energy consumption technology and low-cost.  

 

The new system is composed of a central unit, wireless sensors and friendly users’ interface (figure 

2.1).  

 

The central unit with a free and open software communicates with sensors using radio frequency 

(RF) protocol ensuring the management of the monitoring system. It is formed of a small computer 

without screen or keyboard, a ‘Raspberry Pi’, which hosts the free and open source Linux operating 

system for data storage, analysis and display (figure 2.2). A local Wi-Fi network is created by this 

unit enabling access to stored data and information. 
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Flow chart 2.1: Different monitored spaces and its objectives. 
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Figure 2.1: Architecture of the monitoring system. 

 

Figure 2.2: Central unit. 

Several parameters were tracked at a chosen time interval using the wireless sensors that are 

connected to the central unit. The main function of these sensors is the pursuit of indoor comfort 

parameters (temperature, relative humidity and lighting) and the control of doors/windows (open 

or closed). These parameters are monitored in a multi-parameters smart card and sent using a 

communication system. Sensors used in our experimentation are associated with PanStamp and 

Inodesign programmable modules. 

A web friendly interface was designed to enable users to access easily to all the information 

concerning the indoor environment [33]. 

 

2.1.2 Sensors 

 

All the sensors, associated with a PanStamp, are programmable low-power wireless board 

(module), especially conceived for Internet of Things applications, with an Atmega328p micro-

controller and a CC1100 RF transceiver. It consumes only 1 µA in sleep mode and 2.5 mA in 

transmitting mode. It could be programmed with the Arduino Environment. Izar Pulse I, magnetic 

contact and current transformer sensors are associated with a PanStamp Battery-Board, which 

includes a card with the Panstamp wireless module, powered by an AA battery. It provides analog 

and numeric input to get sensors signal and to transmit it with RF to the central unit. Temperature 

and relative humidity are measured using SI7021 sensors. The temperature is measured in the 
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temperature interval -10 to 85°C with max 0.4°C precision, while the relative humidity is measured 

in the interval 0 to 80% with max 3% precision. 

Other sensors, associated with Inodesign programs, are formed of SX1211 single-chip transceiver 

operating in the frequency ranges from 863-870, 902-928 MHz and 950-960 MHz (figure 2.3). 

The SX1211 is optimized for very low power consumption (3mA in receiver mode). Its highly 

integrated architecture allows for minimum external component count while maintaining design 

flexibility. All major RF communication parameters are programmable and most of them may be 

dynamically set [34]. Temperature and relative humidity are measured using SI7020 sensors. The 

temperature is measured in the temperature interval -10 to 85°C with max 0.4°C precision, while 

the relative humidity is measured in the interval 0 to 80% with max 4% precision. 

 
Figure 2.3: Inodesign sensor. 

 

2.1.3 Communication protocol 

The PanStamp Wireless module uses the open-source Simple Wireless Abstract Protocol (SWAP). 

It can use the 868MHz free Industrial, Scientific and Medical (ISM) frequency bands. It works 

within an open area of around 200 meters distance.  

Incoming SWAP packets are listened and parsed by the SWAP software stack. It ensures their 

transmitting or responding to their queries or command, management of registers, sending updated 

data and managing power. 

For each sensor, the SWAP unit with a unique identifier stores the configuration parameters and 

data as a register. The frequency at which each register is updated and sent with RF can be chosen 

or the update is triggered by event. Different sensors data can be included in one register as its size 

can reach 55 bytes.  

The addresses of the destination and source devices hop counter, security options, security nonce, 

function of the packet, address and identifier of the register and finally the register value which is 

the payload are included in the SWAP frame. The Raspberry Pi is equipped with a PanStamp 

wireless board to follow the incoming SWAP packets. 

 

2.1.4 Visualization 

The central unit contains an Apache web server, which permits users to access via a friendly web 

interface to real-time and historical data using graphic interface (Figure 2.4). 
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The web interface is implemented in HTML, CSS and JavaScript with Bootstrap and High charts 

libraries to allow the design of interactive charts. PHP is used to communicate with the database 

to get the sensors’ values.  

The web server is accessible via a local Wi-Fi network using smartphones, tablets and Smart TV. 

 

              
Figure 2.4: Example of user’s interface. 

 

2.2 Study of the occupied office 

2.2.1 Experimental Setup 

The study is conducted on an occupied office room in building D at the first floor of the school of 

engineering Polytech’Lille in the North of France (figure 2.5). Two-month measurement series 

were recorded with intensive monitoring of both temperature and relative humidity. 

Experimentation was executed from May 2017 to July 2017. Heating system was off for this 

period. 

 

 
Figure 2.5: Experimented office – First floor. 

 

At first, around 90 sensors were installed to follow the thermal conditions inside the room. Some 

were placed at the same location to explore the reliability of the monitoring system, others were 

installed at the three walls, facade, at the center (air) and outside (exterior parameters). The facade 

is formed of well insulated, two double glazing windows. The left wall, adjacent to the facade, was 

equipped by three levels of sensors (top, middle and bottom) and by three other spots, for each 

level, each one with a certain distance from the facade (nine sensors at this wall in total). The 

sensors at top level were installed at 238cm height from the ground, others at the middle were at 
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144cm height from the ground and the last level was at 50cm from the ground. For the horizontal 

distance from the facade, the first sport (1) was at 512cm, the other one (2) at 300cm, and the last 

one (3) at 87cm. Figure 2.6 illustrates this monitoring system. 

 

 

Figure 2.6: Monitoring plan for the left wall. 

After one month of monitoring, a database was built with a time series measurement having an 

interval of five minutes. Analyzing these preliminary data allowed us to follow indoor parameter 

distribution in order to understand the building thermal behavior. 

 

2.2.2 Homogeneity of indoor parameters 

2.2.2.1 Bibliographic analysis 

The temperature and humidity distribution are two important indexes often used to evaluate the 

indoor environmental conditions and to assess the human thermal comfort or building management 

[35]. Many studies discussing this topic.  

Some experimental studies have been conducted to investigate the air flow field, temperature 

distribution and uniformity, and the thermal comfort problems inside the finite room. For thermal 

comfort improvements and energy savings, Zhang et al. [36] studied the air flow and temperature 

fields inside a passenger compartment. Zingano [37] evaluated, by experimental studies, the 

importance of the humidity to thermal comfort temperatures.   

Manzan and Saro [38] performed numerical simulations of flow field, temperature field and 

distribution of water vapor within the duct for thermal performance evaluation purposes. Chow 

and Holdo [39] carried out further study of accurate thermal boundary conditions on the simulation 

accuracy of the air field inside an indoor room. Thermal re-distribution by surface heat radiation 

was determined. 

By both experimental method and simulation, Ding et al. [40] examined the flow fields, 

temperature field and uniformity inside a chamber of two kinds of refrigerators. Antonio et al. [41] 
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measured the temperature values in a commercial household and compared the measurement 

results with that from two different simulation methods. 

Other authors have studied the relations between temperature and humidity under certain 

conditions. Liu et al. [42] investigated the heat and moisture transfer between the free water surface 

and surrounding air by experimental tests and CFD simulation. Sureshkumar et al. [43, 44] 

evaluated, through experimental and simulation studies, heat and mass transfer processes between 

a water spray and ambient air under different conditions. 

Traditionally, indoor air environments are considered uniform, and therefore, in several energy 

programs the modeling phase entails the subdivision of the building into zones in which the 

temperature can be considered uniform [45, 46]. Usually rooms and thermal zones coincide but in 

some cases one room must be subdivided into more than one thermal zone. However, there are 

few studies focusing on the investigation of humidity and temperature heterogeneity in indoor 

environments. The indoor temperature and humidity monitoring constitute an important procedure 

to study room parameters distribution. Indoor temperature and humidity differ within a room at a 

given instant. Nevertheless, several monitoring studies adopt one single sensor to record the room 

temperature or humidity [47], meaning that indoor parameters have been considered homogenous. 

The research should define the precision level required, prior monitoring process, to study indoor 

thermal uniformity. A standard methodology for monitoring cannot be found in the scientific 

literature, therefore, the sensors’ number and positions and the recording frequency is often 

omitted since based on empirical approaches. 

Thus, this chapter aims to study the distribution of indoor parameters (temperature and humidity) 

within one room through an advanced monitoring. The number and position of installed sensors 

enable the determination of parameters non-uniformity and maximize the accuracy of the 

monitoring system.  The study will be done on the occupied office. 

 

2.2.2.2 Sensors’ reliability 

At first, the reliability of the monitoring system was checked by the comparison of data recorded 

by sensors located at the same position. These tests showed that the recorded data are very closed 

(Figure 2.7). The maximum temperature difference (0.2°C) between sensors do not exceed the 

precision range of 0.4°C (Figure 2.8). Similar for relative humidity difference, the maximum (1%) 

do not exceed sensors’ precision range (3%). These results confirmed the reliability of the 

monitoring system. Analyses were then conducted to study the variation of the temperature and 

relative humidity in the room in normal operating conditions. 
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Figure 2.7: Recorded data by the sensors located at the same position on the left wall. 
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Figure 2.8: Temperature and relative humidity difference for the sensors located at the same positions. 

 

2.2.2.3 Parameters distribution analysis for the room 

Comparing the temperature at different walls for one week showed that the facade was the most 

influenced by the outside condition with a difference of 2°C in average compared to the wall 

temperature which has the least impact from exterior as we can see in the figure 2.9. The average 

difference between the wall and the air temperatures was 1°C. The external temperature varied 

between 17.5 °C and 34 °C, while the facade indoor temperature varied between 21°C and 25.5°C. 

The temperatures at the center of the office and the center of the lateral wall varied between 22°C 

and 24.2°C. 

Same comparison was made for relative humidity, similar to the temperature variation, the facade 

was the most influenced by the outside. Relative humidity for the center and the left wall were 

almost very close with a difference in average of 5% from the facade (figure 2.10). 

 

 
 

Figure 2.9: Temperature variation for wall, facade and air. 
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Figure 2.10: Relative humidity variation for wall, facade and air. 

 

Figure 2.10 indicates that relative humidity variation for the center and the wall do not always 

keep the same variation as the outdoor relative humidity. Hence, we compare this variation to 

the internal temperature variation (figure 2.11), it indicates that this relative humidity variation 

is similar to that of the internal temperature. 

 

These analyses indicate that the temperature and the relative humidity within a room are not 

homogeneous. In the following, we present analysis of indoor condition along the left wall. 

 

 

 

Figure 2.11: Relative humidity and internal temperature variation. 

 

2.2.2.4 Parameters distribution at the left wall 

For the three positions (1, 2 and 3), we compare the temperature of the bottom and top levels 

to the middle one. Figure 2.12 presents the difference between the middle level temperatures 

with the top land the bottom levels. We noticed a difference between the top and the bottom 
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levels of 0.5°C in average for the three positions. Furthermore, analysis indicates that the 

temperature increases with height. In order to verify this result, we compare the temperature at 

the center of the room for three different heights. This analysis confirms the previous result, 

but we can clearly observe the difference of the temperature distribution between the wall and 

the center of the room. The middle level at the center of the room has the most elevated 

temperature, this is related to occupation. 

 

Same comparison was made for the relative humidity variation, a difference of 5% in average 

was noticed between the top and the bottom levels of the left wall for the three positions. 

However, relative humidity distribution along the wall was not uniform to determine a certain 

relation with the height. This may be explained by the dependency of the relative humidity 

distribution on the internal temperature variation. Moreover, we compare the relative humidity 

variation at the center of three levels, different distribution from the left wall was observed 

with keeping the same difference of 5% in average between top and bottom levels (figure 2.13). 
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Figure 2.12: Temperature variations along the height of the left wall and the center of the room. 
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Figure 2.13: Relative humidity variations along the height of the left wall and the center of the room. 

 

The previous analysis shows the heterogeneity of the temperature and the relative humidity 

distributions within the room. Now, we will study the effect of varying the distance from the facade 

on the uniformity of the indoor parameters. 

 

We studied the temperature variation for the three levels (top, middle and bottom) by changing 

sensors’ distance from the facade. Upon comparing the results, we noticed that by approaching the 

facade, the extremum of the temperature (maximum or minimum) are more influenced by external 

conditions. Figure 2.14 indicates that the temperature at position 3 is the most affected by the 

external variation and that temperature variation is almost close for positions 1 and 2 for the two 

top and middle levels. Furthermore, the temperature difference at the bottom level constitutes the 

most heterogeneous distribution along the length of the wall.  
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Figure 2.14: Temperature variations for different distances from the facade. 

 

Same procedure is applied for the relative humidity distribution. Studying its variation along 

the length of the left wall shows that the distribution is nearly the same for the three levels 

(figure 2.15) and that the difference is almost negligible, within the accuracy interval of sensors 

(3%). This indicates that the relative humidity is not affected by the distance from the facade 

and that can be related as before to the temperature distribution within the room. 
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Figure 2.15: Relative humidity variations for different distances from the facade. 

 

2.2.3 Usage conditions analysis 

After one month of monitoring the occupied office, a database was built with a time series 

measurement having an interval of five minutes. Preliminary analysis allowed us to understand 

the distribution of the indoor parameters. Then, two sets of scenarios were executed to study 

the impact of occupants’ behavior. An air conditioner with an adjustable temperature and a 

power meter was used during these experimentations. It has a coefficient of performance COP 

= 2.6 and a cooling power of 1200 Btu/h. The first set of testing was executed on a temperature 

of 17°C, the other one on 20°C.  

For the first one, an air conditioner was launched at 17°C for four days. We opened the 

windows, located at a south orientation, for 24h, then analyzed the consumption needed. By 

comparing the energy consumption for closed and opened windows (Figure 2.16), we noticed 

an increase by 33% in average. This is illustrated by figure 2.17 where the energy for the two 

scenarios were represented with the sum of the exterior temperature.  
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Figure 2.16: Energy consumption for opened and closed windows with time. 

 

 

Figure 2.17: Energy consumption in cases of opened and closed windows with exterior temperature. 

 

Afterwards, we closed the curtains for 24h and observed the evolution of the consumption. We 

noticed an increase by 28% in average when the curtains were closed (figure 2.18).  
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Figure 2.18: Energy consumption in cases of opened and closed curtains with exterior temperature. 

 

We repeated the same experimentations with the air conditioner launched at 20°C. The energy 

consumed was 5 times less than the one consumed at 17°C. When opening the windows, we 

noticed that the consumption increased by 50% in average. 

Analysis of different usage conditions showed that the energy consumption is largely 

influenced by the window’s opening, the interior operating temperature and the use of stores. 

This previous study contributes to a better understanding of the building thermal behavior 

through exploring sources of energy gain and losses.  

 

2.3 Study of the four unoccupied classrooms 

2.3.1 Experimental Setup 

Four rooms in the same building ‘Polytech’Lille’ were monitored (figure 2.19). These rooms are 

unoccupied offices and classroom situated at the fourth floor.  The central heating system was off 

during this period. The first two rooms have a south orientation, the other two have a north one. 

For the rooms having the same orientation, all windows were closed for the first one and one 

window was opened for the second one. One-month (June) measurement series were recorded with 

intensive monitoring of facade temperature and humidity with exterior thermal parameters too. 

The facade is formed of non-insulated windows. A database was built with a time series 

measurement having an interval of five minutes. This work was done to complete the analysis of 

the first study. It reveals the influence of other parameters on the temperature and humidity 

distribution in order to better understand the thermal behavior of the building. 
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Figure 2.19: Experimented rooms – fourth floor. 

 

2.3.2 Data analysis 

Façade temperature at south and north orientation were compared with the outdoor temperature. 

Figure 2.20 and 2.21show that the range of the temperature distribution for the façade with south 

orientation is wider than the north one. It is closer to the outdoor temperature distribution. Thus, 

south orientation is more influenced by the outdoor conditions. We can notice that the difference 

of temperature distribution between south and north orientations is larger when windows are 

closed.  

 

 

Figure 2.20: Temperature distribution for different orientation - closed windows. 
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Figure 2.21: Temperature distribution for different orientation - opened windows. 

 

While studying the façade temperature for different orientations, we noticed that the difference 

between south and north orientations increases up to 10°C during the day and decreases below 

2°C at night (figure 2.22). This reveals the influence of the orientation on the indoor temperature 

variation.  

  

Figure 2.22: Temperature difference for south and north orientation – closed windows. 

 

Same analysis was done to study the influence of windows’ state on the façade temperature. Figure 

2.23 and 2.24 show that, for both orientations, the highest frequencies are for lower temperatures 

with opening windows. For elevated temperatures, distribution frequencies are almost similar for 

opened and closed windows. This can be explained by the lack of insulation for windows.  
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Figure 2.23: Temperature distribution south orientation - closed and opened windows. 

 

 

Figure 2.24: Temperature distribution north orientation - closed and opened windows. 

 

Upon studying the façade temperature difference with opened and closed windows for both 

orientations, we noticed that for low outdoor temperature the difference is almost negligible at the 

south facade. It increases up to 4°C when the outdoor temperature increases (figure 2.25). While 

for north orientation, for similar outdoor temperature the difference is higher (2°C) than the south 

one (figure 2.26). 

The analysis of collected data for the four rooms indicates that the façade temperature, thus the 

indoor conditions, is highly affected by the orientation of the room and the state of windows. These 

two parameters are considered as major factors for studying building’s behavior in the next 

chapters. 
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Figure 2.25: Temperature difference opened and closed windows – South orientation. 

 

 

Figure 2.26: Temperature difference opened and closed windows – North orientation. 

 

2.4  Building A4 

2.4.1 Experimental Setup 

The A4 is a one floor research building formed by many offices and a large open space volume at 

the center. Offices are equipped by electric radiator as heating system, while the center uses central 

heating through ventilation openings. More than 100 sensors were installed to measure indoor and 

outdoor conditions. Façade, walls, windows, indoor air and all central heating openings were 

monitored. Figure 2.27 illustrates the instrumentation scheme. The study was executed for five 

months from October 2017 to February 2018.  
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At first, a general preliminary analysis was executed to understand the thermal behavior of this 

building. Then, a quantitative and qualitative investigation was performed on the central heating 

of the open space to study the distribution of the indoor temperature and humidity and to 

understand and optimize the heating system. 

Furthermore, a smart intensive monitoring system was installed in an unoccupied office room in 

the building. The office is formed of two façades and two internal walls without windows. It is 

heated by a radiator with two constant power (high level 1500 W and low level 900W) coupled 

with a control system and a counter. Sensors were installed on all walls (internal and external 

sides) and at the center of the room to record the temperature at an interval of 5minutes. The 

instrumentation plan is illustrated in figure 2.28. Data were collected for one month (February 

2018), without heating, with low level heating and with high level heating. 

 

 

Figure 2.27: Instrumentation scheme for building A4. 
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Figure 2.28: Instrumentation plan for the unoccupied room in A4. 

 

2.4.2 Data analysis 

2.4.2.1 Generalities 

A general investigation was made to understand the building thermal behavior and to determine 

the range of temperature difference between indoor and outdoor. We started by comparing the 

temperature of the external and internal sides of the façade. The temperatures follow the same 

variations (figure 2.29). It is noted that at low outside temperatures, the difference can reach 20°C. 

This difference decreases with increasing outdoor temperature. The average difference is about 

10°C. 

 

 
Figure 2.29: Comparison of the temperature at both side of the façade. 
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It is noted that the window temperature is higher than the external façade temperature. The 

difference decreases with the increase of the outside temperature to almost zero at a temperature 

of 20°C (figure 2.30). The average temperature difference varies between 5 and 10°C.  

 

 

Figure 2.30: Comparison of external façade and window temperatures. 

 

By comparing the internal temperature of the façade with the air temperature, we noted that the air 

temperature is higher than that of the facade temperature by 1°C in average and can reach a 

maximum of 2°C around noon (figure 2.31). 

Figure 2.32 shows that the internal temperature of the facade is higher than the window’s 

temperature by 5°C in average except for the peaks which vary according to solar radiation.  

 

 

Figure 2.31: Comparison of internal façade and air temperatures. 
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Figure 2.32: Comparison of internal façade and windows temperatures. 

This preliminary analysis was performed to get a general idea on the temperature distribution and 

the isolation level of the building in order to understand its behavior. This study was completed 

with a detailed investigation of the temperature distribution of the central heating openings located 

at the ceiling level of the open space. 

 

2.4.2.2 Analysis of the central heating system 

The open space of building A4 is heated by a central system through a forced air heating technique. 

The heated air travels through a system of ducts and is expelled through 15 vents (figure 2.33). A 

heat pump warms the air that is transported from the entrance (orange color in figure 2.30) to the 

internal grills. A sensor was placed at each vent’s location to measure the expelled air temperature 

and humidity. Each sensor will be represented by a certain form revealing the zone (1, 2,3 and 4) 

and the sensor numbers. (for example, O3_1 is the sensors located in zone 3 (blue) and its number 

is 1, it is located at the intersection of column 1 and line1.) 

The analysis started by a quantitative study of the temperature and humidity distributions of the 

vents system. Then the investigation is followed by a qualitative analysis to visualize these 

distributions. 
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Figure 2.33: Plan of the sensors installed at the position of the vents. 

 

- Quantitative analysis of the temperature 

The study started by analyzing the daily variation of the temperature. Comparing different sensors’ 

temperature of lines 2 and 5, reveals different variation:  during the day and the night, between 

sensors and between weekday and the weekend. 

Figure 2.34 shows that central system is stopped at 21:00 o’clock and launched at 4:00 o’clock in 

the morning. Temperature of all sensors follows almost the same variation with a difference of 1 

to 2°C. Figure 2.35 indicates that during the weekend the open space is heated at a lower 

temperature than the weekdays. 

   

Figure 2.34: Daily week variation of temperature for sensors of lines 2 and 5. 
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Figure 2.35: Daily variation of temperature during the weekend for sensors of lines 2 and 5. 

 

Referring to this multi-variation of the temperature, for each sensor we have determined some 

statistical parameters of the temperature distribution for one week. We have calculated the average, 

the maximum, the minimum and the standard deviation to better understand the distribution and 

to elaborate some relations with the different vents’ locations. Day and night parameters were 

studied apart. 

The variation of these parameters is illustrated in figure 2.36 and 2.37. The distribution of the 

mean, the maximum and the minimum temperatures are presented for all lines and columns. These 

graphs show that the average of the temperature decreases for all lines from the entrance to the end 

of the building for day and night. While for other parameters, almost for all lines, they decrease 

too. We note that these parameters do not decrease progressively. This investigation was not 

sufficient to illustrate and understand the variation of the air temperature expelled by the different 

vents. The study was completed with a spatial visualization of the parameters distribution through 

the Geographic Information System (GIS) software. 
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Sensors Max Min Average Standard 

deviation 

 O1_5 29,20 21,27 23,92 1,58 

O1_11 27,40 22,87 25,22 1,13 

O1_12 25,53 21,30 23,58 1,15 

O1_13 24,67 20,53 22,75 1,15 

  O2_03 26,87 21,73 23,76 1,08 

O2_04 30,17 21,60 24,23 1,58 

O2_05 27,07 21,70 23,92 1,17 

O2_08 29,13 21,90 24,41 1,42 

O3_1 27,37 22,13 24,48 1,29 

O3_2 30,20 22,87 25,65 1,64 

O3_3 28,90 22,33 24,94 1,50 

O4_1 29,53 21,70 24,80 1,72 

O4_2 29,63 23,10 25,57 1,42 

O4_03 30,30 21,90 24,99 1,81 

O4_04 29,00 23,13 25,44 1,29 

Entrance 50,97 43,63 46,59 1,72 

   

                    

Figure 2.36: Parameters distribution – day. 
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Sensors Max Min Average Standard 

deviation 

O1_05 26,03 18,03 20,85 1,67 

O1_11 25,10 20,17 22,21 0,95 

O1_12 23,97 19,70 21,48 0,88 

O1_13 23,80 19,10 21,01 0,95 

O2_03 24,87 19,20 21,24 1,09 

O2_04 26,47 18,30 20,91 1,72 

O2_05 25,03 19,07 21,24 1,14 

O2_08 26,40 18,80 21,41 1,53 

O3_1 25,93 20,75 22,37 1,13 

O3_2 27,73 20,57 22,74 1,56 

O3_3 26,67 19,60 22,09 1,41 

O4_01 27,40 19,93 22,17 1,63 

O4_02 26,87 19,57 22,34 1,40 

O4_03 27,97 19,87 22,28 1,76 

O4_04 26,63 20,03 22,53 1,26 

Entrance 45,60 38,23 41,20 2,11 

 

 

 

Figure 2.37: Parameters distribution – night. 
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- Qualitative analysis of the temperature 

This section presents spatial plans for parameters’ distribution of the air temperature expelled by 

the vents in the open space. These plans were performed on GIS software. Starting by the average 

temperature distribution, figure 2.38 shows that the mean temperature decreases progressively 

from the entrance to the end of the building for day and night. This was not clearly observed in the 

previous analysis according to the parameter’s values. While, through presenting the density 

distribution, the progressive decrease through zones was obviously illustrated. The maximum 

difference between the start and the end is about 14°C. The plan reveals that the heating system is 

stopped at night, by showing that temperatures at night are lower than the daily ones. 

      

(a)                                                                           (b) 

Figure 2.38: Plan for temperatures’ average distribution: (a) day, (b) night. 

 

Furthermore, by comparing the minimum temperature distribution, same analysis was executed as 

before. Similar distribution variation was observed. The maximum difference between the start 

and the end is about 8°C (figure 2.39). 

              

(a)                                                                           (b) 

Figure 2.39: Plan for temperatures’ minimum distribution: (a) day, (b) night. 
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Afterwards, the max temperature distribution is analyzed. A progressive decrease of the 

temperature is observed from the start until column 3 for day and night. An increase of a maximum 

of 2°C is noted for the last column. The maximum difference between the start and the end is about 

8°C. The plans are illustrated by figure 2.40. 

       

(a)                                                                           (b) 

Figure 2.40: Plan for temperatures’ maximum distribution: (a) day, (b) night. 

 

After understanding the temperature distribution of the expelled air, we compared this temperature 

variation to air and wall temperatures in the open space. Three sensors were installed on three 

internal walls and another three were installed in the air. 

At first, we compare the internal wall and air temperatures in the open space to analyze their daily 

variation and to determine any differences. Figure 2.41 showed that the two variations are similar, 

and temperatures are close. Thus, we will not distinguish between air and wall temperature inside 

the open space. 

    

Figure 2.41: Air and wall temperatures variation in the open space. 

 

By comparing the temperature inside the open space to the expelled air temperature, we noticed 

that at night temperatures are similar, while during the day a difference of 2°C is noted (figure 

2.42). Thus, the temperature of the expelled air drops by 2°C while moving from the top ceiling to 

the human level. 
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Figure 2.42: Variation of the temperature inside the open space and the expelled air temperature. 

 

Same detailed analysis was performed to study the variation of the relative humidity of the expelled 

air through the vents. The major observations were a progressive increase from the start to the end 

for all statistical parameters of the relative humidity. By comparing the relative humidity inside 

the open space to the relative humidity of the expelled air, we noticed that at night relative humidity 

are similar, while during the day a difference of 4% is noted. Thus, the relative humidity of the 

expelled air increases by 4% while moving from the top ceiling to the human level.  

The previous study presented the temperature and the relative humidity distribution of the expelled 

heated air through the vents. The analysis shows that the air temperature inside the open space can 

reach 25°C during the day. Thus, regulation can be applied to reduce this temperature through 

reducing the temperature of the expelled air. We have found that significant energy savings can be 

made through regulation acts. 

 

2.5 Conclusion 

This chapter presented an experimental thermal study conducted at three locations at the University 

of Lille Campus: One office in the first floor, 4 offices at the 4th floor and one open space in 1 level 

building. Experimentations were conducted using an advanced monitoring system of the 

temperature and humidity. 

The study showed that indoor parameters’ distribution is not uniform within the room. We noticed 

variation of temperature and relative humidity in the room, even along one wall. This analysis 

allowed the optimization of the monitoring system by focusing on instrumentation of the external 

wall for the fourth floor. Other parameters were studied to determine their influence on the façade 

temperature. The study indicates that indoor conditions are largely affected by the orientation of 

the room and the state of windows. Moreover, two executed sets of scenarios showed the influence 

of users’ behavior on energy consumption. 

Furthermore, a detailed analysis of a central heating system for an open space is presented. A 

detailed investigation of the temperature distribution for the expelled air is executed. It shows that 

more significant energy savings can be done through regulation. 

 

This chapter constitutes a preliminary study for the modeling approaches that will be presented 

in the next chapters. It indicates the major factors influencing the indoor temperature for better 

forecasting and optimization of the heating energy in order to improve buildings performance. 
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Chapter 3: Artificial neural network model 
 

Introduction 

This chapter presents a data-based model for indoor temperature forecasting, which could be used 

for the optimization of energy device use. The model is based on a black box nonlinear technique: 

‘artificial neural network (ANN)’, which is validated on the recorded data of Polytech’Lille 

building. Two data set (occupied office and the four unoccupied classroom) will be used to 

consider different parameters for the prediction of the temperature.  

 

This chapter proposed a methodology for the development of a simplified model for indoor 

temperature forecasting. This methodology is based on the selection of pertinent input parameters 

after a relevance analysis of a large set of input parameters, including solar radiation, outdoor 

temperature history, outdoor humidity, indoor façade temperature, humidity, orientation and state 

of windows. It shows that an ANN-based model using outdoor and façade temperature sensors 

provides good forecasting of indoor temperatures.  

Flow chart 3.1 presents a summary of different applied ANN models. 

 

3.1 Bibliographic analysis 

To achieve an effective energy management strategy in buildings, an accurate indoor temperature 

prediction model is essential. It can provide a set of future boundary conditions and targets, which 

can guide a building facility manager to optimize the indoor temperature set-point so that ultimate 

improvement in building energy consumption and indoor thermal conditions are achieved. It also 

provides an initial check for facility managers and building automation systems to identify any 

inconsistency between the expected and actual indoor space temperature. The prediction algorithm 

can also be integrated with smart sensors and predictive control system and train them for future 

scenarios [48]. 

Indoor temperature forecasting could be carried out using physical or data-driven approaches [21]. 

The data-driven approach is based on the use of collected data for developing relationships 

(models) between ‘input’ parameters and ‘output’ parameters. These relationships could be 

established by learning from collected data. This application has been widely investigated in 

heating [49], cooling [50] and electric energy consumption [51] of buildings. Artificial neural 

networks (ANN) is a subcategory of machine learning which has repeatedly displayed reliable 

performances in various estimation problems. They can approximate any continuous nonlinear 

function to arbitrary accuracy leading to increasingly being used in solving complex practical 

problems [52]. The artificial neural network (ANN) approach was widely used in the literature to 

build data-driven models [53–55].  

Many authors attempted, using ANN to analyze the heat transfer problems [56-58]. Other authors 

used neural networks to improve performance of built environment [59, 60]. Njau [61, 62] carried 

out some works on the prediction of surface air temperature and other weather parameters. Neural 

networks have been used also for the prediction of outdoor air temperature. Gobakis et al. [63] and  
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Flow chart 3.1: Different applied ANN models 
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Mihalakou et al. [64, 65] have predicted outdoor air temperature in Athens, Kolokotroni et al. [66] 

predicted it for the city of London. Outdoor ambient temperature, relative humidity and air velocity 

were estimated in India by Parishwad et al. [67]. They developed correlations using monthly mean 

values of these parameters. Imran et al. [68] used ANN for the prediction of hourly mean values 

of outdoor ambient temperature 24 h in advance. Soleimani-Mohseni et al. [22] showed that the 

operative temperature could be well estimated by the ANN approach using the indoor air 

temperature, electrical power, outdoor temperature, time of day, wall temperature, and ventilation 

flow rate. Lu and Viljanen [69] used the ANN approach to predict air temperature and relative 

humidity in a test room using indoor and outdoor temperature and humidity. Recently, Zabada and 

Shahrour [70] used the ANN approach for the analysis of the heating expenses in social housing. 

In these works, the ANN model was used as a prediction tool for specific cases.  

 

3.2 Artificial Neural Network approach 

The ANN approach is inspired from the ability of the human brain to predict patterns based on 

learning and recalling processes. It allows the construction of relationships between input 

parameters and output parameters using artificial neurons, which are arranged in an input layer, an 

output layer and one or more hidden layers [71]. Result of ANN depends upon number of hidden 

layer neurons. One way of selecting hidden layer neuron using optimize algorithm technique and 

other way is hit and trial method. In existing proposed model hit and trial method has been used 

and they got optimized number of hidden layer neuron very easily. Figure 3.1 represents a 

schematic diagram of typical multilayer feed-forward neural network architecture.  

 

 

Figure 3.1: Schematic diagram of a fully connected multilayer feed-forward neural network. 

 

In its simple form, each single neuron is connected to all other neurons of a previous layer through 

adaptable synaptic weights. Starting from an initially randomized weighted network system, input 

data is propagated through the network to provide an estimate of the output value. When each 

pattern is read the network uses the input data to produce an output, which is then compared to the 

training pattern, i.e. the correct or desired output. If there is a difference, the connection weights 

are altered in such a direction that the error is decreased. After the network has run through all the 
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input patterns, if the error is still greater than the maximum desired tolerance, the ANN runs again 

through all the input patterns repeatedly until all the errors are within the required tolerance. When 

the training reaches a satisfactory level, the network holds the weights constant and uses the trained 

network to make decisions, identify patterns or define associations in new input data sets not used 

to train it.  

 

The most popular learning algorithms are the backpropagation and its variants [72]. The 

backpropagation (BP) algorithm is one of the most powerful learning algorithms in neural 

networks. Back-propagation is a multi-stage dynamic system optimization method of training 

artificial neural networks to minimize the objective function. It is a supervised learning method 

and is a generalization of the delta rule. It is most useful for feed-forward networks (networks that 

have no feedback, or simply, that have no connections that loop). It tries to improve the 

performance of the neural network by reducing the total error by changing the weights along its 

gradient. 

 

Analyses in this work were conducted using the multilayer back-propagation neural network on 

‘Matlab software’. We used a three-layer ANN with n, m, and p as the number of input parameters, 

hidden and output nodes, respectively, based on the following equation: 

𝑌𝑘 = 𝑆(∑ 𝑊𝑗𝑘 × 𝑆(∑ 𝑊𝑖𝑗𝑋𝑖
𝑛
𝑖=1 )𝑚

𝑗=1 ), (3.1) 

where Yk stands for the output values and Xidenotes the input values; Wij gives the weights of 

connection between the input layer and the hidden layer.   

The default method in the Neural Toolbox for improving generalization is called early stopping. 

In this technique, the available data is divided into three subsets. The first subset is the training 

dataset (50%). The process of training involves tuning the values of the weights and biases of the 

network to optimize network performance. The second subset (35%) is the validation dataset. 

Validation dataset is used to control the overfitting (overfitting occurs when a statistical model 

describes random error or noise instead of the underlying relationship). The error on the validation 

dataset is monitored during the training process. The validation error normally decreases during 

the initial phase of training, as does the training dataset error. However, when the network begins 

to overfit the data, the error on the validation set typically begins to rise. When the validation error 

increases for a specified number of iterations, the training is stopped, and the weights and biases 

at the minimum of the validation error are returned (i.e., minimum MSE). Finally, the testing 

dataset (15%) is used to evaluate each model. 

 

The ANN performances could be evaluated using the mean square error (MSE) and the coefficient 

of correlation (R):  

𝑀𝑆𝐸 = ∑ (
𝑒𝑖

2

𝑁
)

𝑛

𝑖=1
, (3.2) 
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𝑅 = ± √
∑ (𝑌𝑖 −

𝑁

𝑖=1
𝑋 ̅)2

∑ (𝑋𝑖 −
𝑁

𝑖=1
𝑋 ̅)2

 = √1 −
∑ (𝑒𝑖 

𝑁

𝑖=1
)2

∑ (𝑋𝑖 −
𝑁

𝑖=1
𝑋 ̅)2

 (3.3) 

where ei is the error between the ANN output (Yi) and the experimental input (Xi), �̅� represents 

the mean of the input target. 

Different ANN architectures exist. The multilayer perceptron (MLP) structure is the most popular 

[73-78].  Its use with a single hidden layer and a sufficient number of neurons provided good 

accuracy for the approximated function [68, 79]. This architecture is used in this work. 

 

3.3 Prediction time 

Depending on the objective of the prediction model, long-term and short-term load prediction can 

be used. The long-term load prediction model optimally arranges the operation of the HVAC 

systems through providing heating or cooling demand in advance. While the short-term load 

prediction model considers the large load fluctuation that may occur and improves the operational 

safety of HVAC system [80].  

In this work, the short-term prediction is considered. It depends on the building thermal inertia and 

energy regulation system. Each building is characterized by its time lag and the time of heat 

transmission delay [81–83].  The determination of the prediction time for ANN models is based 

on these characteristics. This time should cover the phase of heating exchange through the façade 

to consider loads’ fluctuation to investigate the effectiveness of ANN approach. 

To determine the response time of the façade, an air conditioner was launched at a certain 

temperature (17°C) (detailed experimentations were discussed previously), and the variation of the 

façade temperature were investigated. Figure 3.2 indicates that the response time of the façade to 

the temperature variation inside the room is nearly 3 hours. 

Thus, the prediction time for ANN models in this work were chosen to range from 0.5 hours to 4 

hours (with 30 min interval) to cover the phase of heating exchange through the façade. 
 

 

Figure 3.2: Façade temperature variation and the air conditioner power. 
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3.4 ANN models 

3.4.1 Facade Indoor Temperature Forecasting – Occupied office 

3.4.1.1 Analysis of the input relevance 

The input parameters used in the global analysis are summarized in table 3.1. They concern the 

outdoor conditions (temperature, humidity and solar radiation), outdoor temperature history (input 

matrix for the last 3h values having 30min lag between its different columns: if the actual outdoor 

temperature was recorded at time t, the history matrix corresponds to t-0.5h, t-1h, t-1.5h, t-2h, t-

2.5h and t-3h, the indoor facade temperature history (similar matrix history as the outdoor 

temperature) and time (cumulative minutes of the day). 
 

Table 3.1: Input parameters for the façade temperature forecasting. 

Input Parameters  

Outdoor temperature 

Outdoor Humidity 

Solar radiation 

Outdoor temperature history  

Time  

Façade temperature history 

 

The ANN optimal architecture is presented in figure 3.3. It includes 1 hidden layer with 4 neurons. 

Table 3.2 provides the weight of neurons’ connections. We can observe that the weight could be 

negative or positive providing excitatory or inhibitory influence on each input. It varies for 

different parameters and neurons revealing complex connections and relations. 

 

 

Figure 3.3: ANN optimal architecture. 

 

Figure 3.4 shows a comparison of “predicted” and “recorded” façade temperatures. We observe a 

good agreement between these values with R=0.9967 and MSE=0.0277. This result shows that the 

ANN model predicts well the façade indoor temperature. The determination of input parameters 

requires 2 temperature sensors (outdoor and indoor), an external humidity sensor and a solar 

radiation sensor. 
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Table 3.2: Weight of neurons’ connections. 

 Input parameters Neuron 1 Neuron 2 Neuron 3 Neuron 4 

Time 2.59 0.02 1.46 -0.02 

Outdoor 

temperature 
1.13 -1.25 -0.05 1.32 

History of outdoor 

temperature 

2.55 1.65 -0.93 -1.60 

1.79 -1.05 -1.66 0.93 

2.67 0.62 -2.02 -0.64 

-1.11 -0.95 0.17 0.92 

-1.21 0.21 -0.54 -0.27 

0.86 -0.02 0.23 0.06 

History of façade 

temperature 

-2.65 -0.72 -2.76 1.43 

-3.00 0.90 -1.58 -1.12 

-1.04 0.50 -1.20 -0.38 

-0.26 0.61 -1.18 -0.57 

0.50 -0.31 -0.13 0.33 

-0.34 0.07 -1.10 -0.12 

Solar radiation 1.27 0.23 3.52 -0.22 

Outdoor humidity 0.01 -0.10 -0.43 0.09 

 

 

 

(a)                                                             (b) 

Figure 3.4: Predicted and recorded façade temperatures: (a) Variation of both temperatures in time domain; (b) Predicted 

façade temperature with the recorded façade temperature. 
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In order to determine the most relevant input parameters in the ANN model, IBM SPSS Statistics 

software was used to analyze the “importance” of these parameters. Table 3.3 summarizes the 

obtained results. It shows that the solar radiation, time and humidity have a very low role in the 

model, with an importance factor lower than 5.1%. The outdoor temperature has the highest 

importance (Importance Factor = 42%), followed by the historical façade temperature (Importance 

Factor = 31.9%). The historical outdoor temperature has an intermediate influence with an 

Importance Factor = 12.8%. 
 

Table 3.3: Analysis of the relevance of input parameters. 

Parameter Importance Factor (%) 

Solar radiation 3.7 

Time 4.5 

Humidity 5.1 

Historic Outdoor Temperature 12.8 

Historic Façade Temperature 31.9 

Outdoor Temperature 42.0 

 

Since the role of some input parameters in the ANN model is very weak, analyses were conducted 

in neglecting these parameters. Table 3.4 summarizes the results of these analyses. It shows clearly 

that the neglect of solar radiation, humidity and historical outdoor temperature does not deteriorate 

significantly the quality of the ANN model: The mean square error (MSE) increases from 0.0277 

to 0.0365, while the coefficient of correlation (R) decreases from 0.9967 to 0.9959. The additional 

neglect of the historical data of the façade temperature has a higher influence. MSE increases from 

0.0277 to 0.4922, while R decreases from 0.9967 to 0.946. This result shows that the façade 

temperature could be predicted with a high precision in considering only the outdoor temperature 

and the historical data of the facade indoor temperature. Figure 3.5 illustrates the results of models 

1,5 and 6. 

 
(a)                            (b)    (c) 

Figure 3.5: R results for different models: (a) Model 1; (b) Model 5; (c) Model 6. 
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Table 3.4: Degraded models result. 

Model Input parameter R MSE 

1 

Outdoor Temperature, Historic, 

Outdoor Humidity, Sun radiation, time, 

Facade Historic 

0.9967 0.0277 

2 

Outdoor Temperature, Historic, 

Outdoor Humidity, time, Facade 

Historic 

0.99687 0.0300 

3 
Outdoor Temperature, Historic, 

Outdoor Humidity, Facade Historic 
0.9969 0.0269 

4 

Outdoor Temperature, Historic, 

Facade Historic 

 

0.9975 0.0199 

5 

Outdoor Temperature, Facade 

Historic 

 

0.9959 0.0365 

6 Outdoor Temperature 0.946 0.4922 

 

 

3.4.1.2 Façade temperature forecasting model – Use of the outdoor 

temperature as input parameter 

Considering the results of the previous section, the outdoor temperature is first used as input 

parameter for forecasting the façade indoor temperature. The forecasting model provides the 

temperature at 0.5, 1, 2 and 4 hours. 

Figures 3.6 and 3.7 show the forecasting results at 0.5 and 1.0 hour. We observe that the ANN 

model reproduces well the recorded temperature. For 0.5-hour forecasting, R is equal to 0.956 and 

MSE is equal to 0.4369; while for 1-hour forecasting, R = 0.928 and MSE = 0.48454. Figure 3.8 

shows the forecasting error distribution for 0.5 and 1 hour. It shows that about 90% of the 

forecasting error are less than 1° C.  
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(a)                                                                                       (b) 

Figures 3.6: Recorded and predicted façade temperature variation in the time domain:  

prediction for 0.5h; (b) prediction for 1h. 

 

 

        

(a)                                                                                            (b) 

Figures 3.7: Predicted façade temperature with the recorded façade temperature (Input parameter = Outdoor temperature): (a) 

prediction for 0.5h; (b) prediction for 1h. 

 

     

(a)                                                                                        (b) 

Figures 3.8: Distribution of the error forecasting (Input parameter = Outdoor temperature): (a) prediction for 0.5h; (b) 

prediction for 1h. 
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Figures 3.10 and 3.11 shows the forecasting results at 2 and 4 hours. We observe a deterioration 

in the quality of forecasting regarding to those obtained at 0.5 and 1 hour. For 2 h forecasting, R = 

0.9109 and MSE = 0.89078, while for 4-hours forecasting, R = 0.8370 and MSE =1.23783. Figure 

3.10 shows the forecasting error distribution for 2 and 4 hours. It shows that for the former, about 

70% of the forecasting error are less than 1° C, while for the latter about 64 % of the forecasting 

error are less than 1° C. Table 3.5 summarizes the forecasting results. 

 

Table 3.5: Performances of the forecasting models (Input parameter = Outdoor temperature). 

Model Time R MSE 

1 + 0.5 hour 0.9560 0.436900 

2 + 1 hour 0.9528 0.484594 

3 + 2 hours 0.9109 0.89078 

4 + 4 hours 0.8370 1.23783 

 

 

     

(a)           (b) 

Figures 3.9: Recorded and predicted façade temperature variation in the time domain: (a) prediction for 2h; (b) prediction for 

4h. 
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(a)                           (b) 
Figures 3.10: Predicted façade temperature with the recorded façade temperature (Input parameter = Outdoor temperature): (a) 

prediction for 2h; (b) prediction for 4h. 

 

               

(a)                                                                                          (b) 

Figures 3.1: Distribution of error forecasting (Input parameter = Outdoor temperature): (a) prediction for 2h; (b) prediction for 

4h. 

3.4.1.3 Façade temperature forecasting model – Use of the outdoor 

temperature and the history of the façade temperature as input parameters 

In this section, both outdoor temperature and 3 hours façade temperature history are used as input 

parameters in the forecasting model. The forecasting model provides the temperature at 0.5, 1, 2 

and 4 hours. Table 3.6 summarizes the obtained results. The temperature forecasting is improved 

regarding the forecasting model using the outdoor temperature as input. This result is particularly 

interesting for the temperature foresting at 2 hours: R = 0.957 and MSE = 0.3299 to be compared 

with R = 0.9109 and MSE = 0.89078 obtained with the outdoor temperature as input parameter. 

Figure 3.12 shows the forecasting error distribution for 2 hours. It shows that about 88% of the 

forecasting error are less than 1° C to be compared with 70% obtained with the previous model. 

The 4-hours forecasting at is still weak with R = 0.852; MSE = 1.0533. About 68% of the 

forecasting error are less than 1°C (Figure 3.12). 
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Table 3.6: Performances of the forecasting models (Input parameters = Outdoor temperature and 3 hours façade temperature). 

Model Time R MSE 

1 + 0.5 hour 0.992 0.0701 

2 + 1 hour 0.982 0.1515 

3 + 2 hours 0.957 0.3299 

4 + 4 hours 0.852 1.0533 

 

     

(a)                       (b) 

Figures 3.12: Distribution of error forecasting (Input parameter = Outdoor temperature and 3h façade temperature): (a) 

prediction for 2h; (b) prediction for 4h. 

 

3.4.1.4 Indoor temperature forecasting (room center)  

The ANN approach is used for forecasting the temperature at the room center considering only the 

façade temperature as input parameter. Figure 3.13 shows a comparison of “predicted” and 

“recorded” indoor temperatures. A good agreement is observed between recorded temperature and 

ANN prediction: R =0.951; MSE=0.1679. Only 1% of data have a mean absolute error greater 

than 1° C (Figure 3.14).  
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                             (a)          (b) 

Figures 3.13:  Predicted and recorded indoor temperatures: (a) Variation of both temperatures in time domain; (b) Predicted 

indoor temperature with the recorded indoor temperature. 

 

 

Figure 3.14: Distribution of error forecasting for indoor temperature (input parameters = façade temperature). 
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matrix for the last 3h values having 30min lag between its different columns: if the actual outdoor 

temperature was recorded at time t, the history matrix corresponds to t-0.5h, t-1h, t-1.5h, t-2h, t-

2.5h and t-3h, the indoor facade temperature history (similar matrix history as the outdoor 

temperature), windows state (open or closed) and orientation of the room (north or south). The 

input parameters used in the global analysis are summarized in table 3.7. 
 

Table 3.7: Input parameters for the façade temperature forecasting. 

Input Parameters 

Outdoor temperature 

Outdoor temperature history 

Windows state 

Orientation  

Façade temperature history 

 

In order to determine the most relevant input parameters in the ANN model, IBM SPSS Statistics 

software was used to analyze the “importance” of these parameters. Table 3.8 summarizes the 

obtained results. It shows that the orientation and state of windows have a very low role in the 

model, with an importance factor lower than 5%. The outdoor temperature has the highest 

importance (Importance Factor = 59.7%), followed by the historical façade temperature 

(Importance Factor = 19.0%) and the historical outdoor temperature (Importance Factor = 17.6%). 
 

Table 3.8: Analysis of the relevance of input parameters. 

Parameter classification Importance % 

Orientation 1.3 

State of windows 2.5 

Historic Outdoor Temperature 17.6 

Historic Façade Temperature 19.0 

Outdoor Temperature 59.7 

 

Previous analysis showed that the orientation and state of windows have an important influence 

on the façade temperature distribution. However, table 3.8 reveals their minor role vis a vis the 

historic of the façade temperature. We should note that these two parameters (orientation and state 

of windows) were considered implicitly in the historic façade temperature parameter. 

 

To reveal the importance of the orientation and state of windows parameters, many models were 

executed by increasing the number of input parameters and comparing their performances to be 

able to study their influence on the façade temperature. 



66 
 

At first, we started by a simple model including the outdoor temperature as input. The façade 

temperature will be the target (output) in all the models. We noticed that, the model cannot be 

considered performing with R=0.853 and MSE=4.3328. Then, we added the parameters 

successively and compared the performance of each model. The results are noted in the table 3.9. 

The outdoor temperature is the most important parameter since the simple model results in 

R=0.853. The second one is the temperature historic of the façade by improving R by 3.4% and 

MSE by 95%. By adding the orientation parameter, R is improved by 3.1% and MSE by 44.3 %. 

The state of windows improved R by 5.1%. Comparing models’ performance reveals the 

importance of each parameter. The one contributing in a larger increment of R and decrement of 

error is more important than the others. 

This analysis shows that the façade temperature distribution is influenced by the orientation and 

the state of windows. Figure 3.15 illustrates the results of the optimal model. 

Table 3.9: Performance of different Models for the unoccupied rooms. 

Model input parameters R MSE 

1 Outdoor Temperature 0.853 
4.3890 

 

2 
Outdoor Temperature, 

Historic 
0.891 3.3891 

3 
Outdoor Temperature, 

Historic, State of windows 
0.936 1.9959 

4 

Outdoor Temperature, 

Historic, State of windows, 

Orientation 

0.965 1.1534 

5 

Outdoor Temperature, 

Historic, State of windows, 

Orientation, Historic façade 

temperature 

0.998 0.0581 

 

In order to confirm that ‘the façade temperature could be predicted with a high precision in 

considering only the outdoor temperature and the historical data of the facade indoor temperature, 

similar analysis to the occupied office is executed.  

Since the role of some input parameters in the ANN model is weak vis a vis the historic of the 

façade temperature, analyses were conducted in neglecting these parameters. Table 3.10 

summarizes the results of these analyses. It shows clearly that the neglect of the orientation, state 
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of windows and historic of outdoor temperature does not deteriorate significantly the quality of 

the ANN model: The mean square error (MSE) increases from 0.0595 to 0.1294, while the 

coefficient of correlation (R) decreases from 0.998 to 0.996. The additional neglect of the historical 

data of the façade temperature has a higher influence. MSE increases from 0.0595 to 4.2437, while 

R decreases from 0.998 to 0.852. This result confirms that the façade temperature could be 

predicted with a high precision in considering only the outdoor temperature and the historical data 

of the facade indoor temperature. Figure 3.16 illustrates the results of models 4 and 5. 
 

 
 

 

Fig. 3.15: Results of the optimal model for the unoccupied rooms. 
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Table 3.10: Degraded models result. 

Model input parameters R MSE 

1 

Outdoor Temperature, 

historic, windows state, 

Orientation, Façade Historic 

0.998 0.0595 

2 

Outdoor Temperature, 

historic, windows state, Façade 

Historic 

0.998 0.0716 

3 
Outdoor Temperature, 

historic, Façade Historic 
0.998 0.0736 

4 
Outdoor Temperature, Façade 

Historic 
0.996 0.1294 

5 Exterior Temperature 0.852 4.2437 

 

 

              
(a)                                 (b) 

Figure 3.16: R results for different models: (a) Model 4; (b) Model 5. 
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3.4.2.3 Façade temperature forecasting model – Use of the outdoor 

temperature and the history of the façade temperature as input parameters 

Similar to previous predictions (the occupied office) and relying on prior results, both outdoor 

temperature and 3 hours façade temperature history are used as input parameters in the forecasting 

model that provides the temperature at 0.5, 1, 2 and 4 hours. 

Table 3.11 summarizes the obtained results. We observe that the ANN model reproduces well the 

recorded temperature. For 0.5-hour forecasting, R is equal to 0.991 and MSE is equal to 0.2727; 

while for 1-hour forecasting, R = 0.981 and MSE = 0.6753. Figure 3.17 shows the forecasting error 

distribution for 0.5 and 1 hour. It shows that about more than 80% of the forecasting error are less 

than 1° C (respectively 88% and 81%).  

 

       

(a)                       (b) 

Figures 3.17: Distribution of error forecasting (Input parameter = Outdoor temperature and 3h façade temperature): (a) 

prediction for 0.5h; (b) prediction for 1h. 

 

For 2-hour forecasting, R=0.951 and MSE=1.5473. Figure 3.18 shows the forecasting error 

distribution for 2 hours. It shows that about 60% of the forecasting error are less than 1° C (it can 

be considered relatively acceptable). 

For 4-hour prediction, we observe a deterioration in the quality of forecasting regarding to those 

obtained at 0.5, 1 and 2-hour. The 4-hours forecasting is weak with R=0.890 and MSE=3.6500. 

About 45% of the forecasting error are less than 1°C (Figure 3.18). 

This section confirms the prediction results obtained previously for the forecasting of the façade 

temperature for the occupied office. 
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Table 3.11: Performances of the forecasting models (Input parameters = Outdoor temperature and 3 hours façade temperature). 

Model Time R MSE 

1 + 0.5 hour 0.991 0.2727 

2 + 1 hour 0.981 0.6753 

3 + 2 hours 0.951 1.5473 

4 + 4 hours 0.890 3.6500 

 

          
(a)                       (b) 

Figures 3.18: Distribution of error forecasting (Input parameter = Outdoor temperature and 3h façade temperature): (a) 

prediction for 2h; (b) prediction for 4h. 

 

3.5 Conclusion 

This chapter presented ANN prediction models for forecasting façade and indoor temperature for 

the ‘polytech’Lille’ building. This study proposed a methodology for the development of a 

simplified ANN-based model for forecasting indoor temperature. The methodology includes two 

steps. The first step concerns the forecasting of the indoor façade temperature considering outdoor 

and indoor conditions, while the second step concerns the prediction of the temperature at the room 

center considering only the indoor façade temperature. 

 

This chapter showed that both relevance analysis and the use of different sets of input parameters 

could lead to a simplified forecasting model with restricted input parameters. This methodology 

was illustrated through its application to data collected in an old building. Data included outdoor 

and indoor temperature and humidity, as well as solar radiation, orientation and state of windows. 

Analyses showed that two-hour façade temperature forecasting could be conducted with good 

precision using only the outdoor temperature and three-hour façade temperature history. This result 

could not be generalized. However, the proposed methodology could be used for other situations 

by using at first only temperature sensors for measuring the outdoor and the indoor façade 
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temperatures. Concerning the second step, the ANN model gave good forecasting of the 

temperature at the room center in considering only the façade temperature.  
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Chapter 4: Grey box model 
 

Introduction 

This chapter presents a preliminary study for the generation of an automated process for model’s 

training and identification to determine short term indoor temperature prediction and buildings 

characteristics based on grey-box modeling.  

The study is based on a methodology capable of finding the most reliable set of data that describes 

the best the building’s dynamics.  It shows that the data set used for identification and the 

estimation period has an important influence on the robustness of the identified models.  

In this investigation, three distinct set of collected data from building A4 were used and applied 

on four different grey-box structures. The analysis of results indicates that the quality of the 

obtained model is governed by the dynamic information of collected data.  

Flow chart 4.1 presents a summary for the applied grey box model. 

 

4.1 Bibliographic analysis 

Reduced order grey-box models constitute a suitable approach in predictive control as they 

combine building physics and model structure knowledge (typical of the white-box approach) with 

parameters’ estimation through measured data (black-box approach). 

Grey-box models have been formulated for separate building components i.e. walls [84,85] as well 

as for whole buildings [86–88]. Most authors focus on determining the required order of the model 

and the building elements that should be lumped into separate capacities [90]. Hedgaard and 

Peterson [91] investigated grey-box model structures to identify the building dynamics and to 

determine buildings’ characteristics. The results indicated that both second and third order models 

produce good estimation for the short time constant, the effective thermal mass and the total heat 

loss coefficient. Bacher and Madson [92] evaluated different models for predicting the indoor 

temperature using data from unoccupied building as reference. They showed that results were not 

improved by increasing the model order beyond 3. Moreover, Fux et al. [93] compared reduced-

order grey box models and concluded that a one-capacity model is sufficient to forecast the indoor 

temperature of a residential building.  

Since simulated data are often used in the literature for modeling, Harb et al. [94] used parameters 

estimation models entirely based on historical data without any pre-knowledge requirements about 

the occupied building. This study presented an optimization algorithm to find a model parameters’ 

set which gives the best approximation of the simulated indoor air temperature to the respective 

measured values. Furthermore, Fonti et al. [95] used measured data and analyzed an identification 

procedure to investigate the accuracy of different grey-box model order for short-term thermal 

behavior prediction in a real building, part of a living smart district. Grey-box building models 

presented in the previous studies tend to be too specific in their application. In the following, we 
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present the Grey Box approach and then its use for predicting the indoor temperature of an 

instrumented building of Lille University “A4”. 

 

 

Flow chart 4.1: Grey box modeling summary. 

  

Grey Box 

modeling

A4 building - unoccuped 

office

Free Floating data

Parameters estimation Modeling Sensitivity analysis

Heating 900W Heating 1500W
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4.2 Grey Box approach 

The thermodynamic behavior of a building can be described by a so called “lumped parameter” 

model [96] in the form of an RC equivalent circuit. The concept of a “thermal network” describes 

how heat energy can flow between elements of the building and its surroundings, modeled as nodes 

in a Resistor-Capacitor (RC) circuit. 

In Figure 4.1 a building with a simple RC model is presented, showing how a resistor can be used 

as a model of the walls’ resistance to heat flow, while a capacitor represents the buildings capacity 

to store thermal energy. The node market represents the interior of the building.  

Thermal behavior of a building is described by the flow of heat Q and the temperature T at specific 

points [97]. Heat flow, in the unit of Watt (W), can be induced by a heater, solar irradiation or 

building occupants and it can be driven by a temperature differential, in the unit of Kelvin (K) or 

Celsius (C). For a differential between two absolute temperatures the units K and C are 

interchangeable.  

 
Figure 4.1: Thermal model of a building. 

 

Relationship between temperature differential and heat flow, is determined by the thermal 

resistance that the temperature differential acts across [97], in the unit of Kelvin per Watt. Thermal 

energy can be stored in objects, such as furniture, walls and roof, as determined by the object’s 

thermal capacity, in the unit of Joules per Kelvin [97]. The amount of energy required to raise the 

temperature in an object depends on the thermal capacitance. All these thermal parameters can be 

described by electrical equivalents, and the building can then be modeled as a simple Resistor-

Capacitor (RC) circuit [97], and analyzed using conventional circuit theory, e.g. Kirchhof’s Laws, 

potential dividers, Ohms Law and Laplace transformation for impedance computations [98]. 

Flow of heat is modeled as current in an electric circuit, where the driving potential is the 

temperature, modeled as voltage. Using this analogy, a resistor becomes thermal resistance, while 

thermal capacitance is modeled as electrical capacitance [97]. Modeling thermal flow in a building 

using the electrical circuit analogy has the advantage of being simple. The intuitive understanding 

gained from these simple model structures is important when working with grey-box models. Since 

no accurate physical model, i.e. white box, is needed, the intuitive, or cognitive [96], derivation of 

an RC network allows models to be derived based on knowledge about the building’s thermal 

behavior, without use of complicated thermodynamic laws and equations. 
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Grey box models are established using the combination of building’s physics and statistics. 

Physical knowledge derived from building’s dynamics is formulated by a set of continuous 

stochastic differential equations formulated in a state space form [99]. Statistical measurements 

present information embedded in the collected data. 

𝑑𝑋(𝑡) = 𝐴(𝜃)𝑋(𝑡) + 𝐵(𝜃)𝑈(𝑡) +  𝜎(𝜃)𝑑𝑤                    (4.1) 

𝑌(𝑡) = 𝐶(𝜃)𝑋(𝑡) + 𝐷(𝜃)𝑈(𝑡) +  𝜀 

In these equation X(t) represents the vector state of the dynamic system, in this research, the states 

correspond to the temperature of different building components. U(t) is a vector of the measured 

input parameters (outdoor temperature, sun radiation and heating power). W is a random function 

of time (Wiener process). Y(t) consists of the measured output. 𝜀 is the measurement error. 

Parameters θ were estimated using Matlab software.  The model structures are derived from (RC) 

networks analogue to electric circuit. In this work, first, second, third and fourth order-models 

presented in figure 4.2 were investigated. 

The full model includes four state variables: 

 Ti: indoor air temperature, 

 Tf: Temperature of building envelope, consists of Tfe the temperature of the external 

building façade, and Tfi the temperature of the internal building façade, 

 Tm: The temperature of internal wall. 

 

The parameters of the model represent different thermal properties of the building. This includes 

thermal resistances: 

 R: between indoor and outdoor medium, 

 Re: convection resistance of outdoor air, 

 Ri, Rm: convection resistance of indoor air, 

 Rf: conduction resistance of the façade. 

 The heat capacities of distinct parts of the building are represented by: 

 C: equivalent mass capacity for building, 

 Ci: air mass capacity, 

 Cf: envelope mass capacity consists of Cfe and Cfi for internal and external capacity of the 

façade, 

 Cm: mass capacity of internal walls. 

 

Finally, the input vector consists Te the outdoor temperature, and the internal energy sources which 

are presented by Qs: solar energy gain and Qh: heating energy gain. 
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Figure 4.2: RC networks for the four models. 

An example of a simple model (1R1C) is given here. By applying the dynamic heating balance 

equation, we get: 

 

𝐶
𝑑𝑇𝑖

𝑑𝑡
=

1

𝑅
(𝑇𝑒 − 𝑇𝑖) + ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑠𝑜𝑢𝑟𝑐𝑒 

                                                                             (4.2) 

𝐶
𝑑𝑇𝑖

𝑑𝑡
=

1

𝑅
(𝑇𝑒 − 𝑇𝑖) + 𝑄𝑠 + 𝑄ℎ 

Same methodology was applied for the other orders. 
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Since the RC equivalent thermal network circuit models are a type of “lumped parameter” model, 

[93] it follows that their parameters do not correspond directly to a single physical part of the 

building. Each element may model several structural parts of a building. As an example, all outer 

walls are typically modeled as a single resistance, while any heat loss directly from indoor to 

outdoor temperature, such as through windows and doors, is modeled by a separate resistor. 

Similarly, the energy storage capacity of all walls is modeled as a single capacitance. This example 

illustrates how the thermal behavior of the building, by a cognitive, i.e. not based on physics 

equations, analysis determines the structure of the RC thermal network. The physical structure of 

the building itself could conceivably be used to model each wall separately, including any windows 

and doors, but from a thermal behavior viewpoint the above approach is more meaningful [93]. 

 

4.3 Parameters’ estimation 

The goal of the model identification process is to determine the set of parameters which reproduces 

the building thermal behavior most accurately given the measured input variables. For this 

purpose, a procedure has been conducted using the ‘greyest’ function in Matlab. This function 

contributes to the maximum likelihood estimates by using three different algorithms as search 

method for the iterative parameter estimation: The Gauss-Newton direction, the Levenberg-

Marquardt and the steepest descent gradient search method. This function chooses the search 

method contributing to the minimum error [95-98], [89,99]. Initialization of parameters was 

calculated by applying the French thermal code (RT 2005 - 2012) [100-102]. Table 4.1 presents 

the initial values of parameters defining buildings’ characteristics. 

 
Table 4.1: Initial values for the estimated parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

The performance of the model is evaluated using: the root-mean-square error (RMSE-values); the 

final prediction errors (FPE); the level of fit (FIT) or normalized root mean square error (NRMSE) 

and the auto-correlation of the residuals [103]. RMSE corresponds to the residuals obtained by the 

estimation method indicating the goodness of fit. The FPE-values describes the model quality, the 

most accurate model has the smallest FPE [104]. FIT-values summarize in percentage the model 

Ci (J/K)      1.47x105 

Cfe (J/K) 1.77x108 

Cfi (J/K) 9.36x106 

Cm (J/K) 4.54x106 

Ri, Rm (K/W) 1.82x10-2 

Re (K/W) 3x10-3 

Rf (K/W) 1.1x10-1 
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goodness of fit (similarly to RMSE). Finally, the level of the autocorrelation in the residuals 

indicates if the model explains well the dynamics contained in the dataset. 

 

4.3.1 Initialization of parameters 

Many methods exist to initialize the parameters. Here we propose to use standard values of the 

RT2012, the bylaw of 9 November 2006 on DPE calculation methods (Standard, 2006) and on-

site observations. 

Necessary information obtained by "on-site observation": 

- Year of construction or renovation 

- Type of use (offices, shops, ...) 

- Heated surface (Sh) 

- Surface of vertical walls (Sm) 

- External exchange surface (Sext) 

- Internal exchange surface (Sint) 

- Indoor air volume (Vint) 

- Coefficients of internal convection (hint) and external (hext), supposed constant. 

 

Information to look for in RT 2012: 

- Daily capacity (Cq in kJ / K.m²) according to the inertia class (tables 4.2 and 4.3). 

- The impact of the furniture on the air capacity (Mob = 20 kJ / K.m² for non-empty buildings and 

zero otherwise). 

 

Information to be found in the decree of 9 November 2006 on DPE calculation methods: 

 

- Conductivity of the outer walls: "Uwall", "Uslab" and "Uroof", depending on the year of construction 

(table 4.4). 

 

Here are the formulas to initialize each parameter: (tables 4.4, 4.5, and 4.6) [101-102] 

                                   

𝐶𝑖 = 𝜌𝑎𝑖𝑟 𝑥 𝐶𝑎𝑖𝑟 𝑥 𝑉𝑖𝑛𝑡 + 𝑀𝑜𝑏 𝑥 𝑆ℎ 

                                                                                                                                        (4.3) 

𝐶𝑓 = 𝐶𝑞 𝑥 𝑆ℎ 

 

 

𝑅𝑖 =
1

ℎ𝑖𝑛𝑡 𝑥 𝑆𝑖𝑛𝑡
 

𝑅𝑒 =
1

ℎ𝑒𝑥𝑡 𝑥 𝑆𝑒𝑥𝑡
 

                                                                                                                                      (4.4) 

𝑅𝑚 =
1

𝑈𝑤𝑎𝑙𝑙 𝑥 𝑆𝑚
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Table 4.2: Inertia classes for building. 

Plancher Bas Plancher haut  Paroi verticale Classe d'inertie 

lourd lourd lourde très lourde 

- lourd lourde lourde 

lourd - lourde lourde 

lourd lourd - lourde 

- - lourde moyenne 

- lourd - moyenne 

 
 

Table 4.3: Daily capacity. 

Classe d'inertie 

quotidienne 

Capacité 

quotidienne Cm 

(KJ/K) 

Surface d'échange 

Am(m2) 

très légère 80 x Abât 2.5 x Abât 

légère 110 x Abât 2.5 x Abât 

moyenne 165 x Abât 2.5 x Abât 

lourde 260 x Abât 3 x Abât 

très lourde 370 x Abât 3 x Abât 

 

Tableau 4.4: Conductivity values. 

Année de 

construction 

H1 H2 H3 

Effet joule Autres Effet joule Autres Effet joule Autres 

de 1948 à 1974 2.5 2.5 2.5 

de 1975 à 1977 1 1.05 1.11 

de 1978 à 1982 0.8 1 0.84 1.05 0.89 1.11 

de 1983 à 1988 0.7 0.8 0.74 0.84 0.78 0.89 

de 1989 à 2000 0.45 0.5 0.47 0.53 0.5 0.56 

de 2001 à 2005 0.4 0.4 0.47 

à partir de 2006 0.36 0.36 0.4 
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Tableau 4.5: Coefficient of internal and external convection. 

Position de la 

paroi 

Émissivité hint hext 

Normale Abriée Sévère 

Verticale 0.9 8.13 18.2 12.5 33.3 

Verticale 0 3.29 14.9 9.1 33.3 

Plafond externe 0.9 9.43 22.2 14.3 50 

Plafond externe 0 4.59 18.9 11.1 50 

Plancher externe 0.9 6.67 20 20 20 

Plancher externe 0 1.78 20 20 20 

Horizontale 

interne 

0.9 8 - - - 

Horizontale 

interne 

0 3 - - - 

 

 

4.4 Prediction time 

A smart monitoring system was installed in an unoccupied room in the research building ‘A4’ as 

mentioned previously. It is heated by a radiator with two constant powers (high level 1500 W and 

low level 900W) coupled with a control system and a counter. Data were collected for one month, 

without heating, with low level heating and with high level heating. Analysis of indoor temperature 

variation of the room was executed to determine the time of heat transmission delay in order to 

define the prediction time needed to cover the phase of heating exchange. Figure 4.3 shows the 

variation of indoor temperature and its difference with the outdoor temperature while heating at 

low and high levels. For the indoor temperature variation, the graph indicates that for 4 hours high 

heating, 18 min is needed for a variation of 1°C, while 30min is needed for low heating. By 

decreasing the heating time by 2 hours, 12min is needed for a variation of 1°C at 1500W heating. 

For the variation of the indoor and outdoor temperature difference, the analysis shows that for 4 

hours high heating, 25 min is needed for a variation of 1°C, while 40min is needed for low heating. 

By decreasing the heating time by 2 hours, 15min is needed for a variation of 1°C at 1500W 

heating. 

Hence, prediction models will be executed for 15min, 30min, and 60min. 

 

After the selection of the prediction time needed, we propose to compare four grey box models 

concerning their ability to predict the indoor temperature while using three data set generation: 

free floating (without heating), dynamic heating at low and high levels (random sequence for the 

on/off control of the heating system) [105].  Data were obtained through real measurements. Each 

set of data is applied on four grey-box models of reduced structures for three prediction times 15, 

30 and 60min. Comparison of the models’ performance for the different order and different 

prediction time was executed for each set of input parameters.  
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Figure 4.3: Variation of indoor and outdoor temperature while heating. 
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4.5  Grey box models 

In order to evaluate the influence of the data dynamics on the predictions’ performance, three data 

set were used as mentioned before. For each set, the prediction is executed for 15, 30 and 60 min 

for the first, second, third and fourth order. Comparison and interpretation of all models were made 

to generate a general automated process for model’s identification to get the best thermal prediction 

of indoor temperature. To simplify the comparison, results will be presented in terms of RMSE 

and fit percent to determine the best performant model.  

 

4.5.1 Free Floating data set 

We will start by the free-floating data. This simple experiment does not present any excitation 

frequencies [105]. This explains the results (no convergence) for all the prediction of the fourth 

order which is considered a complex order for this set of data. We should note that the order 2 is 

the most performant for all predictions with a slight difference with other orders (1 and 3). Since 

by increasing the model order above 1, the improvement is considered negligible, order 1 can be 

retained for this data set as the simplest structure. Predictions for 15, 30 and 60 min were 

performant for order 1, 2 and 3 having RMSE < 1 and the fit % > 80%. Tables 4.6, 4.7 and 4.8 

illustrate the results. 

 

Comparison of the error distribution corresponding to the first order is made.  About 99% of the 

data have an error less than 0.5°C for 15, 30 and 60 min predictions (figure 4.4).  We can notice 

that reduced first-order grey box model is effective for short term prediction for the free-floating 

data. 
 

Table 4.6: 15 min prediction results for the free-floating data. 

  1R1C 2R2C 3R3C 4R4C 

Fit percent 95.11 95.35 95.12 10.09 

RMSE 0.0656 0.0616 0.0648 1.2004 

 

 

Table 4.7: 30 min prediction results for the free-floating data. 

  1R1C 2R2C 3R3C 4R4C 

Fit 

percent 
91.86 92.91 91.97 - 

RMSE 0.1086 0.0949 0.1072 - 
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Table 4.8: 60 min prediction results for the free-floating data. 

 1R1C 2R2C 3R3C 4R4C 

Fit 

percent 
87.83 90.24 88.05 - 

RMSE 0.1625 0.1304 0.1594 - 

 

 
 

 
 

 

Figures 4.4: Error distribution for 15,30 and 60min prediction - Free floating data – order 1. 
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4.5.2 Dynamic data 

Two data sets are used in this section corresponding to random heating at 900 W and 1500W. This 

experiment reveals the dynamic of the building.  

By starting the heating at 900W, results indicate that the model of order one is not sufficient to 

explain the data dynamics. This explains the non-convergence of the forecasting models for this 

order. By increasing the order of the model, the forecasting results are improved. We noticed that 

for order 4, models become more sensible and complex for this set of data. Tables 4.9, 4.10 and 

4.11 illustrate the results. They show that model of order 3 is the most performant for all 

forecasting models. Predictions for 15, 30 and 60 min were performant for order 2 and 3 having 

RMSE < 1 and the fit % > 80%.   

Figure 4.5 presents the error distribution for the order 3. We can notice that reduced third-order 

grey box model is effective for short term About 99% of the data have an error less than 0.5°C for 

15 and 30 min predictions.  97% of the data have an error less than 0.5°C for 60 min prediction. 

prediction for this data set. 

Table 4.9: 15 min prediction results - heating at 900W. 

 1R1C 2R2C 3R3C 4R4C 

Fit 

percent 
- 93.97 95.43 44.15 

RMSE - 0.1204 0.0917 1.1170 

 

Table 4.10: 30 min prediction results - heating at 900W. 

  1R1C 2R2C 3R3C 4R4C 

Fit 

percent 
- 87.6 92.98 36.52 

RMSE - 0.2480 0.1404 1.2697 

 

Table 4.11: 60 min prediction results - heating at 900W. 

  1R1C 2R2C 3R3C 4R4C 

Fit 

percent 
- 80.65 90.71 31.25 

RMSE - 0.3869 0.1857 1.3751 
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Figures 4.5: Error distribution for 15,30 and 60min prediction – Heating 900W- order. 

 

Figure 4.6 shows the autocorrelation of residuals for order 3 calculated with a lag of 25. Yellow 

interval indicates a 99% limit of confidence. The autocorrelation levels for the third order model 

are within the confidence limit, meaning that this model describes well the building dynamics in 

the dataset. We can also note that some behaviors and approximations are not considered by the 

model. 
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       Figure 4.6: Residual autocorrelation – heating 900W – order 3. 

 

Afterwards, the second experiment with random heating at 1500W is executed. This dataset 

explains the best the building’s dynamics, since all models’ orders present satisfactory 

performances with the greatest fit percentage and the lowest RMSE. Model of order 2 is the most 

performant for all the predictions. Models of order 3 and 4 present reliable results illustrated in 

tables 12, 13 and 14.  

Figure 7 presents the error distribution for the order 2. About 99% of the data have an error less 

than 0.5°C for 15 and 30 min predictions.  97% of the data have an error less than 0.5°C for 60 

min prediction. Grey box models of order 2 presents the most reliable results for this set of data. 

 

Table 4.12: 15 min prediction results - heating at 1500W. 

 1R1C 2R2C 3R3C 4R4C 

Fit 

percent 
93.36 97.2 95.7 96.18 

RMSE 0.2349 0.0990 0.1523 0.1353 

 

Table 4.13: 30min prediction results - heating at 1500W. 

 1R1C 2R2C 3R3C 4R4C 

Fit 

percent 
83.34 95.56 90.7 92.17 

RMSE 0.5895 0.1572 0.3291 0.2769 

 

Table 4.14: 60 min prediction results - heating at 1500W. 

 1R1C 2R2C 3R3C 4R4C 

Fit 

percent 
71.49 93.54 84.71 87.59 

RMSE 1.0090 0.2285 0.5410 0.4392 
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Figures 4.7: Error distribution for 15,30 and 60min prediction – Heating 1500W- order 2. 

 

Figure 4.8 shows the autocorrelation of residuals for order 2 calculated with a lag of 25. Yellow 

interval indicates a 99% limit of confidence. The autocorrelation levels of the second order model 

are within the confidence limit, meaning that this model describes well the building dynamics in 

the dataset. We can also note that some behaviors and approximations are not considered by the 

model. 
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       Figure 4.8: Residual autocorrelation – heating 1500W – order 2. 

 

By analyzing the previous results, we noticed that the choice of the model’s order depends on the 

data dynamics. The prediction for the most reliable order for all the data sets present performant 

results for short term forecasting. Dynamic data with heating at 1500 W reveals the most buildings’ 

dynamics. We can notice the need of an automated process combining many data set and grey-box 

models to be able to determine the most performant order for the best data set revealing the real 

dynamics of the building. 

 

4.6 Sensibility analysis 

To verify that all models’ parameters are necessary for the predictions, we perform a sensitivity 

study by calculating the Sobol index. This method allows measuring the overall impact of a 

parameter on the (scalar) output of the model. The total Sobol index (St) is dimensionless, 

measures not only the direct impact (i.e. first order impact) of parameter variation but also all the 

possible nonlinear interactions between parameters (i.e. higher order effects). When the total Sobol 

index is high (close to 1) the parameter has a strong impact on the model output and when it is 

close to 0, the parameter has a small impact on the model output.  

Eq. (4.5) presents the total Sobol index formula.  

                                

𝑆𝑇𝑖  =
𝐸𝑋≠𝑖 (𝑉𝑋𝑖(𝑌/𝑋≠𝑖))

𝑉(𝑌)
                                       (4.5) 

         

where i is the studied parameters, V(Y) is the model output variance when all parameters vary, 

𝑉𝑋𝑖(𝑌/𝑋≠𝑖) is the model output variance when all parameters vary except the ith, 𝐸𝑋≠𝑖 is the 

expectation value. 

Saltelli [106] and Jansen [107] proposed another equation for the total Sobol index determination 

allowing a fast convergence and reducing computing time. They propose the following equation:  

𝑆𝑇𝑖  =

1
2𝑁 ∑ (𝑌𝑏 − 𝑌𝑐𝑖)

2
𝑁

𝑤=1

𝑉𝑎𝑟(𝑌𝑎 ,   𝑌𝑏)
                                      (4.6) 
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Where N is the number of samples, Yb and Ya are two vectors of output data in which all parameters 

vary, each vector corresponding to a different input sample; Yci is an output vector in which all 

parameters vary except the ith. The model comparative criterion (Y) is the Root Mean Squared 

Error (RMSE, Eq. (4.7)) between the predicted data and the reference data. The quasi-random LHS 

(Latin hypercube sampling) type method is used to accelerate convergence. All parameters vary 

by plus or minus 30% of their adjusted value (values after learning).  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
                                      (4.7) 

 

Figure 4.9 presents the results of this analysis. For each dataset, the most performant order is 

investigated. If the variation of a parameter has no impact on the output of the model, then it cannot 

be identified correctly. It is therefore necessary that the total Sobol index is sufficiently high for 

all parameters for the model architecture to be validated.  According to table 4.15, all parameters 

have a significant impact on forecasts having similar magnitude order [103].  

 

For the dynamic data study (900W and 1500W heating), the "Ri" parameter is among the two 

highest indices. It represents the thermal resistance of indoor air in the building. It shows that this 

phenomenon has a preponderant impact on the thermal behavior of the building.  

For the 900W heating study, Ci and Cfe have low total sobol indices comparing to other parameters 

(0.07 and 0.09), but their values are not negligible. This can be referred to the subjection of these 

parameter to a small amplitude of variation (± 30%) compared to the dispersion observed in a real 

building. 

  

This study of sensitivity has shown that all identified parameters play a significant role in 

predicting the thermal behavior of the building. They are well identified and are essential for the 

forecast. 
 

Table 4.15: Calculated total Sobol index. 

  
Free-Floating Heating - 900w Heating - 1500W 

Paramete

r 
C R Ci Cfe Cfi Ri Re Rf Ci Cf Ri Re 

STi 0.98 0.99 0.07 0.09 0.24 0.60 0.12 0.18 0.62 0.85 0.72 0.59 
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  Figure 4.9: Results of sensibility analysis. 
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4.7 Conclusion 

This chapter presented the use of Grey Box models to predict indoor temperature of A4 building. 

It included also analysis of the influence of the data dynamics on the prediction of the indoor 

temperature.  

The research was conducted according to the following methodology. At first, analysis of the 

indoor temperature variation while heating permits the determination of the time needed to cover 

the phase of heat exchange and therefore the prediction time for the modeling process. Three data 

sets were used (free-floating and dynamic heating 900 W and 1500 W) and four reduced-order 

models’ structures to predict the indoor temperature at 15, 30 and 60min.  

Results showed that the most performant order for forecasting is not unique. It varies with the data 

dynamics. Reduced model of order 1 is sufficient to predict the indoor temperature without 

heating. For dynamic data, model of order 3 was the most performant for heating at 900W.  

Whereas, model of order 2 was the most performant for heating at 1500W. We should note that, 

prediction models become more sensible for higher orders (order 4) for the first two experiments. 

It indicates that complexity and higher orders are always required for modelling buildings’ 

characteristics and dynamics. 

A sensitivity study showed that all the parameters of the three most performant models have a 

significant impact on model outputs (temperature). This validates the model architecture and 

ensure that all parameters are identifiable.  
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Chapter 5: Control model 
 

Introduction 

This chapter presents a control approach based on the application of an empirical on/off method 

by exploiting the following three elements: the building inertia, the occupation profile and the 

dynamic pricing. It completes the previous grey box investigation. 

The study is based on a methodology capable of finding the most convenient heating power after 

the application of a simple on/off control heating. 

In this investigation, the two most performant model’s orders are studied (2 and 3). The analysis 

of results indicates that the applied control method reduces largely the energy consumption and 

maintain the thermal comfort.  

 

5.1 Bibliographic study 

The main objective of heating system control is to maintain a certain level of comfort and satisfy 

occupants needs. While on the other hand, an optimized control is not only dedicated to 

maintaining the comfort, but also to reduce the consumption and the costs. 

 

The interior temperature is considered the main indicator of the thermal comfort in most practical 

applications because it highly affects the energy consumption and it depends on several factors: 

 Building usage; 

 Outdoor temperature; 

 Occupation; 

 Internal heat gains. 

 

Many investigations have working on the determination of optimal environment in buildings 

considering energy consumption and human comfort [108] or in a certain type of buildings as the 

office buildings optimal working environment in [109] [110] and residential buildings in [111].  

A study of the American Society of Heating, Refrigerating, and Air- Conditioning Engineers 

(ASHRAE) has proposed a simplified method to define a 90% and 80% acceptability range where 

people feel comfortable as a function of the outdoor temperature [112] [113] [114]. 

 

The 90% acceptability level  {
𝑇90 (𝑚𝑖𝑛) = 0.31𝑥𝑇𝑜𝑢𝑡 + 15.3
𝑇90(𝑚𝑎𝑥) = 0.31𝑥 𝑇𝑜𝑢𝑡 + 20.3

}   (5.1) 

 

The 80% acceptability level  {
𝑇80 (𝑚𝑖𝑛) = 0.31𝑥𝑇𝑜𝑢𝑡 + 14.3
𝑇80(𝑚𝑎𝑥) = 0.31𝑥 𝑇𝑜𝑢𝑡 + 21.3

}   (5.2) 

 

The temperature normally used as set temperature for control systems is: 

𝑇𝑐𝑜𝑚𝑓𝑜𝑟𝑡= 0.31x Tout + 17.3                                                 (5.3) 

 

The second objective is to minimize the energy consumption and cost.  By integrating the power 

supplied over time, energy consumption can be determined. In France, the electricity subscription 
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is priced depending on the supplied power P(W) and the consumed energy Q(KWh). A day time 

is also priced into two types: peak hours and normal hours. Table 5.1 shows an example of a 

dynamic pricing plan of the electricity in 2018 in France (euro/KWh).  
 

Table 5.1: Hours classification according to the price of KWh in France 2018. 

  
Normal hours Peak hours 

Hour  22h00- 6h00 6h00-22h00 

Price (euros/KWh) 0.1244 0.1593 

 

Thus, the timing of consumption must be well planned in order not to exceed the maximum power 

supplied on one hand and to minimize the consumption cost on the other hand. 

 

5.2 Proposed control methodology 

This study uses the on/off control method. Heating system is controlled according to the room 

temperature error (equations 5.4 and 5.5). 

 

e = Tcomfort −Troom      (5.4) 
 

                             S = fon-off (e)              (5.5) 

 

Where e is the temperature error and S is the heating device state. 

 

This analysis completes the previous modeling study. Same room was investigated after the 

identification of buildings’ parameters. As deduced previously, models of order 2 and 3 were the 

most performant models in case of dynamic data, thereby they will be used in this study. 

 

The methodology of this control approach is based on, firstly, comparing the indoor predicted 

temperature to the comfort one determined from equation 5.3. The study will consider the 

occupation as well to adjust the heating device state (on or off). Initially, heating will be launched 

at 1500W (high level heating) for a certain time (should be defined later), before the occupation 

period of the room, to minimize e (equation 5.4) and then heating at lower power will be applied 

for the rest of the day. The main objective of this work is to find the most convenient power to be 

used in order to achieve the main two keys of applying the control on the heating system: 

maintaining thermal comfort and performing energy saving. ‘Matlab’ software was used to code 

this control approach. 
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5.3  Response time determination 

After the parameters’ identification and the indoor temperature prediction, a simple on/off control 

was applied with 1500W heating in the studied room. This process provides the period of high-

level heating required before reducing the power of the radiator. Figures 5.1 and 5.2 enable the 

determination of the response time of the room needed to reach the comfort temperature while 

heating at 1500W. 

 

 
  

 
Figures 5.1: Indoor temperature variation with on/off 1500W heating for order 2 and 3 respectively. 
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Figures 5.2: Error temperature variation with on/off 1500W heating for order 2 and 3 respectively. 

 

From previous graphs, we can notice that 20min of 1500W heating were required for the indoor 

temperature to reach the comfort level. Thereby, the initial period of high-level heating needed for 

this control approach is 20min. Thus, the heating will be launched at 1500W for 20min before the 

occupation period. 

 

5.4 Results of the applied control 

The objective of this control method is to minimize the 1500W power used for on/off heating. The 

application of this technique considers the thermal comfort level and the occupation period. Thus, 

the occupation period for one week of February 2018 (figure 5.3) was known and the comfort 

temperature was determined for the same period (figure 5.4). 
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Figure 5.3: Occupation schedule for the studied room for one week of February 2018. 

 

 

 
Figure 5.4: Outdoor and comfort temperatures. 

 

Following the grey box models’ application, the indoor temperature is determined considering 

different heating powers in order to optimize the energy consumption. After several attempts to 

find the most convenient heating power, it was noticed that 150W heating during occupation period 

was enough to provide the thermal comfort for models of order 2 and 3. The error between the 

indoor temperature and the comfort one is less than 0.5℃. Figures 5.5 and 5.6 illustrates the results. 
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Figures 5.5: Empirical on/off control heating 150W – Model of order2. 
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Figures 5.6:  Empirical on/off control heating 150W – Model of order3. 

The energy consumed by applying the empirical on/off control is four times less than the energy 

consumed while applying a simple on/off control. Figures 5.7 and 5.8 illustrate a comparison of 

energy consumption and cost for 24h for different control methods. It indicates that for the two 

model’s orders, the used control method is efficient and provides 3 to 4 times less energy 

consumption from a simple on/off control. We should note that a simple on/off control can also 

contribute to an important energy saving. 
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Figures 5.7: Comparison of energy consumption and cost for 24h for different control methods – Model of order 2. 
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Figures 5.8: Comparison of energy consumption and cost for 24h for different control methods – Model of order 3. 

Previous analysis indicates that this empirical on/off control method is effective. It maintains the 

thermal comfort of the occupant as well as performing important energy savings. 

 

5.5 Other applications 

To confirm these previous results, two other applications of this control approach were executed 

on two different offices (1 & 2) in the same building A4 (figure 5.9). Same procedure of grey box 

modeling and parameters’ identification was applied. Same methodology of control is used, but 

instead of 1500W initial heating, 1000W (max power heating of the radiator) was applied. 

Same process is executed to define the response time of rooms in order to get the high-level heating 

period. Applying simple on/off control of 1000W heating revealed a needed period of 85min for 

the 2 offices. Figure 5.10 illustrates the results. 
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Figure 5.9: Modeled offices in building A4. 

 

 

2 

1 
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Figures 5.10: Indoor temperature variation with on/off 1000W heating for offices 1 and 2. 

 

Thereby, the heating will be launched at 1000W for 85min before the occupation period for the 

two offices. 

Like previous analysis, the occupation period for one week of December 2017 was known and 

the comfort temperature was determined for the same period for the two studied rooms. 

 

After several attempts to find the most convenient heating power, it was noticed that 150W heating 

during occupation period was enough to provide the thermal comfort for models of order 3 for the 

two offices. While for order 2, office 1 needed 500W to reach the thermal comfort level, whereas 

for office 2, 350W was the convenient heating power. Figures 5.11 and 5.12 illustrate these results.  
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Figures 5.11: Empirical on/off control heating 150W – Model of order3 – Office 1 and 2. 

 

 
Figures 5.12: Empirical on/off control heating 150W – Model of order 2 – Office 1 and 2. 
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The error between the indoor temperature and the comfort one is less than 0.5℃ (figure 5.13). 

Thus, thermal comfort is well maintained. 
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Figures 5.13: Error variation for orders 2 and 3 – Offices 1 and 2. 

Furthermore, the energy consumption was analyzed for the studied rooms. The energy consumed 

by applying the empirical on/off control for the first office is about two times less than the energy 

consumed while applying a simple on/off control. Figures 5.14 and 5.15 illustrate a comparison of 

energy consumption and cost for 24h for different control methods for the first office. It indicates 

that for the two model’s orders, the used control method is efficient and provides 2 to 3 times less 

energy consumption from a simple on/off control.  

The energy consumed by applying the empirical on/off control for the second office is about two 

times less than the energy consumed for the second model’s order while applying a simple on/off 

control. Whereas, the energy consumed by applying the empirical on/off control for the same office 

is about eight times less than the energy consumed for the third model’s order while applying a 

simple on/off control. Figures 5.16 and 5.17 illustrate a comparison of energy consumption and 

cost for 24h for different control methods for the first office. It indicates that for the two model’s 

orders, the used control method is efficient.  

We should note that a simple on/off control can also contribute to an important energy saving in 

all the cases. 
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Figures 5.14: Comparison of energy consumption and cost for 24h for different control methods – Model of order 2 – Office 1. 

 

 
Figures 5.15: Comparison of energy consumption and cost for 24h for different control methods – Model of order 3 – Office 1. 
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Figures 5.16: Comparison of energy consumption and cost for 24h for different control methods – Model of order 2 – Office 2. 
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Figures 5.17: Comparison of energy consumption and cost for 24h for different control methods – Model of order 3 – Office 2. 

 

This analysis confirms the effectivity of the proposed empirical on/off control method. These two 

applications complete the initial analysis and strengthen the previous results. The two main 

objectives of the control system were achieved: maintaining the thermal comfort of the occupant 

and performing important energy savings. 

 

5.6 Conclusion 

This chapter presented an empirical on/off control method to minimize the energy consumption. 

It was based on the previous grey box modeling and parameters identification. The most two 

performant model’s orders were considered. 

 

The research was conducted according to the following methodology. At first, a simple on/off 

control while heating at 1500W was applied to determine the response time needed to reach the 

comfort temperature. High level heating for the previous determined time was applied and 

followed by low-level power for the rest of the day considering the occupation period. The indoor 

temperature was predicted considering different heating powers and compared to the comfort one 

in order to optimize the energy consumption. 150W heating during occupation period was found 

enough to provide the thermal comfort for models of order 2 and 3. 

This analysis indicates that this control method was effective. It maintains the thermal comfort of 

the occupant as well as performing important energy savings. Two other applications were 

conducted to confirm these results. 
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Conclusion and perspective 
 

This work constitutes a part of Sunrise project, whose goal is to make the campus of Lille 1 

university a demonstrator of a smart and durable city. The aim of this thesis is to introduce the 

smart concept in the building system to ensure occupant comfort, as well as for energy 

optimization. The use of this technology requires forecasting of the indoor temperature for the 

regulation of energy devices. Thus, the use of models for sustainability assessment of intelligent 

buildings was a key strategy to quantify the improvement of energy efficiency and occupants’ 

satisfaction. The study is applied on tertiary buildings at the school of engineering ‘Polytech’Lille’ 

and at the research building ‘A4’ in Lille1 university in France. An advanced monitoring system 

was installed in many buildings for modeling purpose to study buildings’ thermal behavior.  

Firstly, a bibliographic analysis presented the problematic related to energy consumption and 

focused on thermal modeling for buildings. It showed that recent development in smart technology 

offers new opportunity to collect comprehensive data about the building environment and use. This 

study allows the selection of the appropriate classes of thermal models: ‘Artificial Neural Network’ 

which is a nonlinear application of the black box approach and Grey box models which is a hybrid 

approach located midway between the black box models and the white box models.  

Thermal modeling required a preliminary analysis to determine the major factors influencing the 

indoor temperature for better forecasting and optimization of the heating energy in order to 

improve buildings performance. For this purpose, an experimental thermal investigation was 

conducted at three locations at the University of Lille Campus: One office in the first floor, 4 

offices at the 4th floor and one open space in one level building. The study showed that indoor 

parameters’ distribution is not uniform within the room. This analysis allowed the optimization of 

the monitoring system by focusing on monitoring the external wall for the fourth floor. The 

investigation indicates that indoor conditions are largely affected by the orientation of the room, 

the state of windows and users’ behavior. Furthermore, the analysis of a central heating system for 

an open space showed that more significant energy savings can be done through regulation. 

 

Afterwards, ANN prediction models for forecasting façade and indoor temperature for the 

‘polytech’Lille’ building were presented. A methodology for the development of a simplified 

ANN-based model for forecasting indoor temperature was proposed. The methodology includes 

the forecasting of the indoor façade temperature considering outdoor and indoor conditions and 

the prediction of the temperature at the room center considering only the indoor façade 

temperature. 

Relevance analysis of different parameters led to a simplified forecasting model with restricted 

input parameters. Analyses showed that two-hour façade temperature forecasting could be 

conducted with good precision using only the outdoor temperature and three-hour façade 

temperature history. 
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The proposed methodology could be used for other situations by using first only temperature 

sensors for measuring the outdoor and the indoor façade temperatures. Moreover, the ANN model 

gave good forecasting of the temperature at the room center in considering only the façade 

temperature.  

 

The fourth chapter presented Grey Box models predicting indoor temperature of A4 building. 

Results showed that the most performant order for forecasting is not unique. It varies with the data 

dynamics. Reduced model of order 1 was sufficient to predict the indoor temperature without 

heating. For dynamic data, model of order 3 was the most performant for heating at 900W.  

Whereas, model of order 2 was the most performant for heating at 1500W. We noticed that, 

prediction models became more sensible for higher orders (order 4) for the first two experiments. 

It indicates that complexity and higher orders are always required for modelling buildings’ 

characteristics and dynamics. 

A sensitivity study showed that all the parameters of the three most performant models have a 

significant impact on model outputs (temperature). This validates the model architecture and 

ensure that all parameters are identifiable.  

 

Finally, grey box modeling prediction was completed by the introduction of an empirical on/off 

control method. The proposed methodology aimed for reducing the initial high power and finding 

the most convenient one. Results showed that this method is effective and contributes to important 

energy savings. This was also confirmed by the application of two other models. 

 

Several sequels to this work can be envisaged. This study can be developed to generate an 

automated process for model’s training and identification to determine short term indoor 

temperature prediction and building characteristics based on grey-box modeling.  

Application of the proposed methodology for ANN prediction should be investigated for long-

term temperature forecasting. 

As a follow-up to this study, it would be interesting to delve more deeply into general results. 

Improvement tracks can be envisaged on the forecasting models and strategies on a more 

representative panel of tertiary building sector and for longer periods of heating and cooling.  
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Abstract: The smart building concept aims to use smart technology to reduce energy consumption,
as well as to improve comfort conditions and users’ satisfaction. It is based on the use of smart sensors
and software to follow both outdoor and indoor conditions for the control of comfort, and security
devices for the optimization of energy consumption. This paper presents a data-based model for
indoor temperature forecasting, which could be used for the optimization of energy device use.
The model is based on an artificial neural network (ANN), which is validated on data recorded in an
old building. The novelty of this work consists of the methodology proposed for the development of
a simplified model for indoor temperature forecasting. This methodology is based on the selection of
pertinent input parameters after a relevance analysis of a large set of input parameters, including solar
radiation outdoor temperature history, outdoor humidity, indoor facade temperature, and humidity.
It shows that an ANN-based model using outdoor and facade temperature sensors provides good
forecasting of indoor temperatures. This model can be easily used in the optimal regulation of
buildings’ energy devices.

Keywords: smart building; artificial neural network (ANN); indoor; temperature; facade; outdoor;
forecasting; relevance; sensors; recorded data

1. Introduction

The smart building concept aims to use smart technology to reduce energy consumption, as well
as to improve comfort and users’ satisfaction. Forecasting of the indoor temperature is necessary for
the regulation of energy devices to ensure occupant comfort, as well as for energy optimization [1,2].
This forecasting constitutes a complex task, because it is governed by complex physical and behavioral
phenomena. It is affected by a multitude of parameters, which could be classified into three groups:
outdoor conditions, building characteristics, and occupants’ behavior [3–5]. In addition, investigations
showed that the indoor temperature does not have uniform distribution [6].

Indoor temperature forecasting could be carried out using physical or data-driven approaches [7].
The physical approach is based on the use of numerical modelling [8,9], which requires detailed
information about a building’s characteristics, appliances, and occupant behavior.

The data-driven approach is based on the use of collected data for developing relationships
(models) between ‘input’ parameters and ‘output’ parameters. These relationships could be established
by learning from collected data. The artificial neural network (ANN) approach was used to build
data-driven models [10–12]. Soleimani-Mohseni et al. [13] showed that the operative temperature
could be well estimated by the ANN approach using the indoor air temperature, electrical power,
outdoor temperature, time of day, wall temperature, and ventilation flow rate. Lu and Viljanen [14]
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used the ANN approach to predict air temperature and relative humidity in a test room using indoor
and outdoor temperature and humidity. Recently, Zabada and Shahrour [15] used the ANN approach
for the analysis of the heating expenses in social housing. In these works, the ANN model was used
as a prediction tool for specific cases. This paper proposes a methodology, which could be followed
for the use of the ANN approach for the indoor temperature forecasting in any type of building.
This methodology is based on the use of a relevance analysis for the determination of pertinent input
parameters and the optimal ANN architecture. The methodology is presented through its application
on data recorded in an old building.

2. Data Collection

Data were collected using a smart monitoring of an old building of Polytech’Lille Engineering
School in the north of France. Monitoring concerned indoor and outdoor temperature and humidity,
as well as solar radiation [16,17]. Parameters were recorded at five-minute intervals and then sent
to a local server. Figure 1 illustrates an example of recorded data on a summer day. Data concerns
the outdoor temperature, as well as the indoor temperature at three locations in the office: facade,
center of the lateral wall, and office center. The external temperature varied between 17.5 ◦C and 34 ◦C,
while the facade indoor temperature varied between 21 ◦C and 25.5 ◦C. The temperatures at the center
of the office and the center of the lateral wall varied between 22 ◦C and 24.2 ◦C.

Data were collected for two summer months (June and July) in different offices of the building.

Figure 1. Temperature variation on a summer day.

3. Artificial Neural Network Approach

The ANN approach is inspired from the ability of the human brain to predict patterns based on
learning and recalling processes. It allows the construction of relationships between input parameters
and output parameters using artificial neurons, which are arranged in an input layer, an output layer
and one or more hidden layers [18]. Analyses were conducted using the multilayer back-propagation
neural network. We used a three-layer ANN with n, m, and k as the number of input, hidden,
and output nodes, respectively, based on the equation:

Yk = S(∑m
j=1 Wjk × S(∑n

i=1 WijXi)), (1)

where Yk stands for the output values and Xi denotes the input values; Wij gives the weights of
connection between the input layer and the hidden layer.
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The ANN performances could be evaluated using the mean square error (MSE) and the coefficient
of correlation (R)

MSE = ∑n
i=1 (

e2
i

N
), (2)

R = ±

√√√√ ∑N
i=1 (Yi − X )

2

∑N
i=1 (Xi − X )

2 =

√√√√1 − ∑N
i=1 (ei )

2

∑N
i=1 (Xi − X )

2 (3)

where ei is the error between the ANN output (Yi) and the experimental input (Xi), X represents the
mean of the input target.

Different ANN architectures exist. The multilayer perception (MLP) structure is the most
popular [19–24]. Its use with a single hidden layer and a sufficient number of neurons provided
good accuracy for the approximated function [25,26]. This architecture is used in this work.

The use of ANN for temperature forecasting aims to predict the building indoor temperature for
the optimal regulation of energy devices as well as for ensuring occupants’ comfort. Indoor conditions
of a building are highly affected by its age and thermal performance, which depends on its envelope
and construction material. The input parameters concern the outdoor conditions, indoor conditions,
as well as the occupants’ behavior. The forecasting time depends on the building thermal inertia
and energy regulation system. Each building is characterized by its time lag and the time of heat
transmission delay [27–30]. The prediction time for ANN models ranged from 0.5 to 4 h to cover the
phase of heating exchange through the facade and to investigate the effectiveness of this approach.

This paper proposes a methodology composed of two steps for the use of the ANN approach
for indoor temperature forecasting. The first step concerns the indoor facade temperature forecasting
considering outdoor and indoor conditions, while the second step concerns the prediction of the
temperature at the room center considering the indoor facade temperature.

Analyses were conducted using MATLAB (Mathworks Inc., Natick, MA, USA—Group License)
for ANN modeling and IBM SPSS statistics for input parameter ranking.

4. Facade Indoor Temperature Forecasting

4.1. Analysis of the Input Parameters’ Relevance

The input parameters used in the global analysis are summarized in Table 1. They concern the
outdoor conditions (temperature, humidity, and solar radiation), outdoor temperature history (input
matrix for the last 3-h values having 30 min lag between its different columns: if the actual outdoor
temperature was recorded at time t, the history matrix corresponds to t—0.5 h, t—1 h, t—1.5 h, t—2 h,
t—2.5 h, and t—3 h, the indoor facade temperature history (similar matrix history as the outdoor
temperature), and time (cumulative minutes of the day). The time range of history inputs was chosen
with respect to the prediction time to cover the phase shift that will occur at the facade level. The impact
of a larger range (t—5 h, t—6 h, etc.) for the history inputs did not affect the results. A 30 min lag was
chosen to detect any sudden variation at the facade level.

Table 1. Input parameters for the facade temperature forecasting.

Input Parameters

Outdoor temperature
Outdoor humidity

Solar radiation
Outdoor temperature history

Time
Facade temperature history
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The ANN optimal architecture (Figure 2) was fixed after several comparative analyses. It includes
one hidden layer with four neurons. Table 2 provides the weights of neurons’ connections obtained
from MATLAB software. We can observe that the weight could be negative or positive providing
excitatory or inhibitory influence on each input.

Figure 2. Artificial Neural Network (ANN) optimal architecture.

Table 2. Weight of neurons’ connections.

Input Parameters Neuron 1 Neuron 2 Neuron 3 Neuron 4

Time 2.59 0.02 1.46 –0.02

Outdoor temperature 1.13 –1.25 –0.05 1.32

History of outdoor temperature

2.55 1.65 –0.93 –1.60
1.79 –1.05 –1.66 0.93
2.67 0.62 –2.02 –0.64
–1.11 –0.95 0.17 0.92
–1.21 0.21 –0.54 –0.27
0.86 –0.02 0.23 0.06

History of facade temperature

–2.65 –0.72 –2.76 1.43
–3.00 0.90 –1.58 –1.12
–1.04 0.50 –1.20 –0.38
–0.26 0.61 –1.18 –0.57
0.50 –0.31 –0.13 0.33
–0.34 0.07 –1.10 –0.12

Solar radiation 1.27 0.23 3.52 –0.22

Outdoor humidity 0.01 –0.10 –0.43 0.09

Figure 3 shows comparison of ‘predicted’ and ‘recorded’ facade temperatures. We observe a good
agreement between these values with R = 0.9967 and MSE = 0.0277. This result shows that the
ANN model predicts well the facade indoor temperature. The determination of input parameters
requires two temperature sensors (outdoor and indoor), an external humidity sensor, and a solar
radiation sensor.
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Figure 3. Predicted and recorded facade temperatures: (a) variation of both temperatures in time
domain; and (b) the predicted facade temperature with the recorded facade temperature.

In order to determine the most important input parameters in the ANN model, IBM SPSS statistical
software was used to analyze the ‘importance’ of these parameters. This software is based on inferential
statistics. It uses recorded data to perform a sensitivity analysis for the determination of the importance
of each input parameter. Table 3 summarizes the obtained results. It shows that the solar radiation,
time and humidity have a low role in the forecasting model, with an importance factor lower than
5.1%. The outdoor temperature has the highest importance (Importance Factor = 42%), followed by
the historical facade temperature (Importance Factor = 31.9%). The historical outdoor temperature has
an intermediate influence with an Importance Factor = 12.8%.

Table 3. Analysis of the relevance of input parameters.

Parameter Importance Factor (%)

Solar radiation 3.7
Time 4.5

Humidity 5.1
Historic outdoor temperature 12.8
Historic facade temperature 31.9

Outdoor temperature 42.0

Since the role of some input parameters in the ANN model is very weak (with reference to the
SPSS classification), analyses were conducted by neglecting these parameters. Table 4 summarizes the
results of these analyses. It shows clearly that the neglect of solar radiation, humidity, and historical
outdoor temperature (Model 5) does not significantly deteriorate the quality of the ANN model:
the mean square error (MSE) increases from 0.0277 to 0.0365, while the coefficient of correlation (R)
decreases from 0.9967 to 0.9959. The additional neglect of the historical data of the facade temperature
(Model 6) has a higher influence: MSE increases from 0.0277 to 0.4922, while R decreases from 0.9967
to 0.946. Figure 4 illustrates the results of Models 1, 5, and 6. As expected and according to the physics
of the heat transfer in transient conditions, this result shows that the facade temperature could be
effectively predicted in considering only the outdoor temperature and the historical data of the facade
indoor temperature.
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Figure 4. R results for different models: (a) Model 1; (b) Model 5; and (c) Model 6.

Table 4. Degraded model results.

Model Input Parameter R MSE

1 Outdoor temperature and history, outdoor humidity,
sun radiation, time, facade history 0.9967 0.0277

2 Outdoor temperature, historic, outdoor humidity, time,
facade history 0.99687 0.03

3 Outdoor temperature, historic, outdoor humidity,
facade history 0.9969 0.0269

4 Outdoor temperature, historic, facade history 0.9975 0.0199

5 Outdoor temperature, facade history 0.9959 0.0365

6 Outdoor temperature 0.946 0.4922

4.2. Facade Temperature Forecasting Model

4.2.1. Use of the Outdoor Temperature as Input Parameter

Considering the results of the previous section, the outdoor temperature is first used as the
input parameter for forecasting the facade indoor temperature. The forecasting model provides the
temperature at 0.5, 1, 2, and 4 h.

Figures 5 and 6 show the forecasting results at 0.5 and 1.0 h. We observe that the ANN model
reproduces well the recorded temperature. For 0.5-h forecasting, R is equal to 0.956 and MSE is equal to
0.4369; while for one-hour forecasting, R = 0.928 and MSE = 0.48454. Figure 7 shows the forecasting error
distribution for 0.5 and one hour. It shows that about 90% of the forecasting error are less than 1 ◦C.

Figures 8 and 9 shows the forecasting results at two and four hours. We observe a deterioration
in the quality of forecasting regarding those obtained at 0.5 and one hour. For two-hour forecasting,
R = 0.9109 and MSE = 0.89078, while for four-hour forecasting, R = 0.8370 and MSE = 1.23783. Figure 10
shows the forecasting error distribution for two and four hours. It shows that for the former, about 70%
of the forecasting error are less than 1 ◦C, while for the latter about 64% of the forecasting error are less
than 1 ◦C. Table 5 summarizes the forecasting results.
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Figure 5. Recorded and predicted facade temperature variation in the time domain: (a) prediction for
0.5 h; and (b) prediction for 1 h.

Figure 6. Predicted facade temperature with the recorded facade temperature (input parameter =
outdoor temperature): (a) prediction for 0.5 h; and (b) prediction for 1 h.

Figure 7. Distribution of the error forecasting (input parameter = outdoor temperature): (a) prediction
for 0.5 h; and (b) prediction for 1 h.
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Figure 8. Recorded and predicted facade temperature variation in the time domain: (a) prediction for
2 h; (b) prediction for 4 h.

Figure 9. Predicted facade temperature with the recorded facade temperature (input parameter =
outdoor temperature): (a) prediction for 2 h; and (b) prediction for 4 h.

Figure 10. Distribution of error forecasting (input parameter = outdoor temperature): (a) prediction for
2 h; and (b) prediction for 4 h.
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Table 5. Performances of the forecasting models (input parameter = outdoor temperature)

Model Time R MSE

1 +0.5 h 0.9560 0.436900
2 +1 h 0.9528 0.484594
3 +2 h 0.9109 0.89078
4 +4 h 0.8370 1.23783

4.2.2. Use of the Outdoor Temperature and the History of the Facade Temperature as Input Parameters

In this section, both outdoor temperature and three-hour facade temperature history are used as
input parameters in the forecasting model. The forecasting model provides the temperature at 0.5, 1, 2,
and 4 h. Table 6 summarizes the obtained results. The temperature forecasting is improved regarding
the forecasting model using the outdoor temperature as input. This result is particularly interesting for
the temperature foresting at two hours: R = 0.957 and MSE = 0.3299 to be compared with R = 0.9109
and MSE = 0.89078 obtained with the outdoor temperature as input parameter. Figure 11 shows the
forecasting error distribution for two hours. It shows that about 88% of the forecasting error are less
than 1 ◦C to be compared with 70% obtained with the previous model.

The four-hour foresting is still weak with R = 0.852; MSE = 1.0533. About 68% of the forecasting
error are less than 1 ◦C (Figure 11).

Figure 11. Distribution of error forecasting (input parameter = outdoor temperature and 3-h facade
temperature): (a) prediction for 2 h; and (b) prediction for 4 h.

Table 6. Performances of the forecasting models (input parameters = outdoor temperature and
three-hour facade temperature)

Model Time R MSE

1 +0.5 h 0.992 0.0701
2 +1 h 0.982 0.1515
3 +2 h 0.957 0.3299
4 +4 h 0.852 1.0533

4.3. Indoor Temperature Forecasting (Room Center)

The ANN approach is used for forecasting the temperature at the room center considering
only the facade temperature as input parameter. Figure 12 shows a comparison of ‘predicted’ and
‘recorded’ indoor temperatures. A good agreement is observed between recorded temperature and
ANN prediction with R = 0.951; MSE = 0.1679. Only 1% of data has an error greater than 1 ◦C
(Figure 13).
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Figure 12. Predicted and recorded indoor temperatures: (a) the variation of both temperatures in time
domain; and (b) the predicted indoor temperature with the recorded indoor temperature.

Figure 13. Distribution of error forecasting for indoor temperature (input parameters = facade
temperature).

5. Discussion of Results

Relevance analysis and ANN modeling using different sets of input parameters showed that the
indoor temperature forecasting could be conducted with good precision considering only outdoor
temperature and indoor facade temperature history. Indeed, the influence of solar radiation, humidity,
and outdoor temperature history in the forecasting model could be neglected. The prediction of the
facade temperature was conducted with different inputs parameters and for different forecasting
times. In the example presented in this paper, predictions were good up to two hours. The four-hour
prediction gave unsatisfactory results with R = 0.852; MSE = 1.0533.

Indoor temperature forecasting was successfully conducted using the facade temperature.
Available data did not include indoor activities. The presence of significant indoor activities—such as
meetings, use of energy consuming devices, as well as opening doors and windows—could
significantly affect the energy balance in the room. If these activities are significant, they should
be monitored and included in the forecasting model.

6. Conclusions

This paper proposed a methodology for the development of a simplified ANN-based model for
forecasting indoor temperature. The methodology includes two steps. The first step concerns the
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forecasting of the indoor facade temperature considering outdoor and indoor conditions, while the
second step concerns the prediction of the temperature at the room center considering only the indoor
facade temperature.

This paper shows that both relevance analysis and the use of different sets of input parameters
could lead to a simplified forecasting model with restricted input parameters. This methodology
was illustrated through its application to data collected in an old building. Data included outdoor
and indoor temperature and humidity, as well as solar radiation. Analyses showed that two-hour
facade temperature forecasting could be conducted with good precision using only the outdoor
temperature and three-hour facade temperature history. This result could not be generalized. However,
the proposed methodology could be used for other situations by using first only temperature sensors
for measuring the outdoor and the indoor facade temperatures. Concerning the second step, the ANN
model gave good forecasting of the temperature at the room center in considering only the facade
temperature. Available data did not include indoor activities. The presence of significant indoor
activities should be considered in the forecasting model.
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